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Preliminary Explorations



Chapter 1
Introduction

“The essence of a hedging contract is a coincident purchase and
sale in two markets which are expected to behave in such a way
that any loss realized in one will be offset by an equivalent gain
in the other. If such behavior follows a perfect hedge has been
effected.”

Hardy and Lyon (1923, p. 276).

1.1 Literature Review and Motivation

In the traditional hedging literature, the two markets in which hedgers trade are spot
and futures markets. The trader’s position in the spot market is generally considered
as given. According to Johnson (1960), hedging can be meaningfully defined only
if the spot market is regarded as the trader’s primary market. The futures market is
used solely to counterbalance an existing position in the spot market. Speculators, in
contrast, do not have a commitment in the spot market. They take on risk in futures
markets in order to profit from expected price changes. The hedger synchronizes his
trading activities in spot and futures markets in order to reduce spot risk. In the liter-
ature this approach to hedging is labeled risk reduction concept. Risk reduction will
be achieved if spot and futures prices move more or less in parallel. If prices are per-
fectly correlated, risk is abolished, since losses in one market are perfectly offset by
profits in the other market. However, as Hardy and Lyon (1923) point out, any diver-
gence from perfect correlation results in an imperfect hedge. The less futures and
spot prices move in parallel, the more imperfect the protection offered by hedging is.
According to Kobold (1986), spot and futures prices generally do not move exactly
in parallel. In fact, futures and spot markets are separate markets. Even speaking of
a single spot market may be misleading, since, in general, most commodities are
traded in many different places. The futures market, on the contrary, is generally
highly centralized. Telser (1986) points out that each futures contract is a perfect
substitute for another futures contract with the same maturity. If spot and futures
prices do not move exactly in parallel, hedges end up with a profit or loss. Hence,

A. Röthig, Microeconomic Risk Management and Macroeconomic Stability,
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4 1 Introduction

if the motive for hedging is the elimination of spot risk, spot and futures prices, not
moving in parallel, prevent complete risk reduction and are therefore unfavorable.

However, differences between spot and futures price movements may provide an
additional rationale for hedging activity. Working (1953) contradicts the traditional
hedging literature by assuming that hedging is not solely carried out in order to
reduce risk. The discrepancy between spot and futures prices can be regarded as a
source of potential profit.1 The expected return from hedging transforms the former
risk reduction concept into a selective, or anticipatory, hedging concept. Accord-
ing to Rutledge (1972), these two concepts are quite different, since the hedging
decisions are based on different variables. In the risk reduction concept the hedger
chooses the hedging position that minimizes risk, while in the selective hedging
concept he chooses the hedging position that maximizes expected profit. The dif-
ference between these two approaches might be considerable. Heifner (1973) notes
that the optimal hedging level differs from the risk minimizing level if the expected
return from the hedging position differs from zero. Compared to the risk reduction
concept, the distinction between hedgers and speculators is not that clear-cut here.
Ederington (1979, p. 160) notes that “in his (i.e., Working’s) view hedgers func-
tioned much like speculators, but, since they held positions in the cash market as
well, they were concerned with relative not absolute price changes.”

In general, regardless of whether the motive for hedging is risk minimization
or the maximization of expected profit, a firm will only hedge if it benefits from
hedging. As Heifner (1972) points out, if traders are expected to use futures markets
for hedging, benefits from hedging must be reflected in gains or potential gains of
individual traders. Therefore it is reasonable to ask why firms should hedge.

1.1.1 Why Should Firms Hedge?

In general, hedging will be a value-enhancing activity only if the expected benefits
outweigh the costs. In a perfect setting without market imperfections, as proposed
by the Modigliani-Miller (1958) theorem2, firms will not hedge, since “(...) the
implementation by the firm of a hedging strategy designed to eliminate the unsys-
tematic risk will duplicate shareholders’ previously achieved results at an additional
set of transaction costs.”3 Following the Modigliani-Miller theorem, a vast litera-
ture emerged trying to explain why firms hedge. According to Friberg (1999), the

1 For more information see e.g., Johnson (1957), Rutledge (1972) and Hirshleifer (1975, 1977).
2 According to Allen and Gale (1994, p. 215), “(...) the MMT (i.e., Modigliani-Miller theorem)
is a statement about the effect of the firm’s choices.” The theorem basically says that the market
value of the firm is not affected by the firm’s choice of its financial structure, i.e., by its debt-equity
ratio. A list of the assumptions on which the Modigliani-Miller theorem is build can be found in
Copeland, Weston, and Shastri (2005, p. 559). See also Jensen and Meckling (1976), MacMinn
(1987) and Bauer and Ryser (2004).
3 Fatemi and Luft (2002, p. 31–32).
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main objective of large parts of the hedging literature was to find reasons why risk
neutral firms should hedge their exposure. This literature can best be reviewed by
inspecting Fig. 1.1.4 Suppose the value of a firm V depends on a risky variable x in
a linear fashion as depicted in Fig. 1.1a. The firm is initially at point A. The value of
the firm increases by the same amount when x increases to xB as the value decreases
when x decreases to xC. Since VB−VA =VA−VC, the expected value of the firm is not
affected by the risky variable x. Hence, with this linear relationship between V and x
hedging is irrelevant, since a hedge would not add to the value of the firm. Now sup-
pose that V is a concave function of x, as presented in Fig. 1.1b. Here, the value of the
firm increases less when x increases to xB than it decreases when x decreases to xC
(i.e., VB−VA < VA−VC). The expected value of the firm is less than its initial value.
Therefore, reducing the variability of V by hedging increases the expected value of

4 See also Duffie and Singleton (2003).
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the firm. A large part of the hedging literature is concerned with finding reasons
why a risk neutral firm should hedge its spot exposure. In fact, this is comparable
to finding reasons to transform the linear relationship between a firm’s value and
the risky variable, as shown in Fig. 1.1a, into a concave relationship, as presented in
Fig. 1.1b. The most important findings can be broadly summarized as follows.5

Smith and Stulz (1985) argue that taxes provide a rationale for hedging activity.
If taxes are convex in earnings, hedging is generally value-enhancing.6 To see this,
suppose the firm must pay taxes on profits but does not receive equivalent subsidies
in the case of losses. Expected gains are smaller than expected losses. The firm’s
value is therefore a concave function although the firm is risk neutral. A further
argument concerns financial distress. If bankruptcy is costly, and if bankruptcy costs
increase when the firm’s value shrinks, then the firm’s value function is concave, as
in Fig. 1.1b. Bankruptcy costs include banks being hesitant to lend money due to the
worsening of credit ratings, employees demanding a risk premium for working for a
firm that will probably fail, or customers losing their trust in the product of the firm.
A third argument, put forth by Smith and Stulz (1985), deals with managerial com-
pensation. If the manager’s wealth is a concave function of the firm’s value, then the
manager will hedge perfectly in order to maximize his expected income. According
to Froot et al. (1993, 1994), hedging may be useful to avoid underinvestment prob-
lems.7 If internal funds shrink in times of financial distress, and if external funds
are expensive, the firm may abstain from investing in positive net present value
projects. Hedging may serve to stabilize the supply of internal funds.8 All these
arguments represent important deviations from the perfect capital market scenario,
as presented in the Modigliani-Miller theorem, giving firms incentives to hedge.9

However, this literature generally concludes that if the Modigliani-Miller theorem
holds, firms do not hedge at all, while they hedge fully if the assumptions underly-
ing the Modigliani-Miller theorem are relaxed.10 Concerning the selective hedging

5 For a review of the literature see Froot, Scharfstein, and Stein (1993), Nance, Smith, and Smith-
son (1993), Mian (1996), Géczy, Minton, and Schrand (1997), Schrand and Unal (1998), Tufano
(1998), Beatty (1999), Guay (1999), Brown and Toft (2002), Fatemi and Luft (2002), Albuquerque
(2003), Guay and Kothari (2003), Pennings and Garcia (2004) and Lin and Smith (2005).
6 Graham and Rogers (2002) provide empirical findings on the impact of taxes on hedging.
7 Empirical findings concerning the underinvestment problem and hedging are provided by Gay
and Nam (1998). See also Haushalter, Klasa, and Maxwell (2007).
8 For more information on capital market imperfections, liquidity, and hedging see Myers and
Majluf (1984), Stulz (1990), Mian (1996) and Mello and Parsons (2000).
9 Interestingly, Modigliani and Miller (1958, p. 296) themselves advocate the relaxation of their
theorem’s restrictive assumptions: “These and other drastic simplifications have been necessary in
order to come to grips with the problem at all. Having served their purpose they can now be relaxed
in the direction of greater realism and relevance, a task in which we hope others interested in this
area will wish to share.”
10 See e.g., Smith and Stulz (1985) and Froot et al. (1993). Since the full hedging of the spot
exposure eliminates spot risk, the full hedge can be considered a perfect hedge. Hence, the terms
full hedging and perfect hedging can be used interchangeably if the full hedging strategy perfectly
eliminates spot risk.
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concept put forth by Working (1953), this result cannot be regarded as satisfactory.
A closer look at firms’ optimal hedging strategies is reasonable.

One way to circumvent the discussion of why firms hedge is to assume that firms
are risk averse. In this case, a firm maximizes its utility which is defined as a con-
cave function of profit. A second possibility is to apply the mean-variance concept
to hedging. Here, the objective function to be maximized by the firm depends pos-
itively on expected profit and negatively on risk, where risk is measured by the
variance of profit. In both cases, reducing risk increases the firm’s expected utility.11

This strand of literature does not investigate the question of why firms hedge, but
how much firms hedge under specific market conditions. The emphasis is therefore
on deriving the conditions under which firms do not hedge, hedge partially, hedge
fully, or overhedge. All of these approaches to risk management can be viewed as
optimal hedging strategies of the firm depending on the underlying assumptions and
market conditions. This approach to hedging is therefore closer to Working’s (1953)
idea of selective hedging.

1.1.2 How Much Do Firms Hedge?

The Commodity Futures Trading Commission’s (CFTC) Commitment of Traders
(COT) report provides a periodic breakdown of the composition of open inter-
est for futures contracts. This information on trader positions is collected on each
Tuesday for markets with at least 20 trader positions. The information on trader posi-
tions is divided into reporting and nonreporting traders. Nonreporting traders are
small traders who hold positions below of CFTC reporting levels, whereas report-
ing traders are categorized as commercial and noncommercial traders. Commercial
traders are considered to be hedgers who hold the futures position in conjunction
with an underlying spot position. Noncommercial traders are referred to as spec-
ulators since they are not involved in a spot business.12 Figure 1.2 presents the
position data of hedgers and speculators in six currency futures contracts traded
at the Chicago Mercantile Exchange: Australian Dollar (AUD), Canadian Dollar
(CAD), Swiss Francs (CHF), Euro (EUR), Japanese Yen (JPY), and Mexican Peso
(MXP) futures contracts. The contract sizes of the futures contracts are 100,000
AUD, 100,000 CAD, 125,000 CHF, 125,000 EUR, 12,500,000 JPY, and 500,000
MXP, respectively. The data presented in Fig. 1.2 point to an increase in trading
activity of hedgers and speculators in recent years. Interestingly, in all currency

11 For more information on these two approaches to hedging see e.g., Peck (1975), Holthausen
(1979), Levy and Markowitz (1979), Feder, Just, and Schmitz (1980), Kahl (1983), Benninga,
Eldor, and Zilcha (1985), Zilcha and Broll (1992), Briys and Schlesinger (1993), Lence (1995a,
1995b), Broll and Eckwert (1996, 2000), Vukina et al. (1996), Collins (1997), Adam-Müller
(2000), Haigh and Holt (2000) and Broll, Chow, and Wong (2001).
12 For more information on the CFTC’s COT report, see Ederington and Lee (2002), Chatrath,
Song, and Adrangi (2003), Sanders, Boris, and Manfredo (2004) and Röthig and Chiarella (2007).
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Fig. 1.2 Positions of hedgers (light grey) and speculators (dark grey) in currency futures markets
as reported by the COT report

futures markets, the trading volume of hedgers exceeds the trading volume of spec-
ulators over the entire time frame. This stresses the importance of futures markets for
corporate risk management. According to DeMarzo and Duffie (1995, p. 743), “(...)
the demand for hedging by corporations is an important component of the explosion
in financial innovation (...).” Empirical findings concerning firms’ risk manage-
ment strategies point to firms using financial derivatives for hedging rather than for
speculation. Using survey data on derivatives usage by non-financial corporations,
Bodnar, Hayt, Marston, and Smithson (1995) find that corporations use deriva-
tives most commonly to hedge.13 In addition, hedging is found to increase firm
value.14 Géczy, Minton, and Schrand (1997) find that derivatives may provide a

13 See also Levich, Hayt, and Ripston (1999).
14 See e.g., Nance, Smith, and Smithson (1993), Allayannis and Weston (2001) and Allayannis,
Ihrig, and Weston (2001).
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valuable benefit to firms if used rationally. According to them, rationally means
using the derivatives for hedging, which they find firms to do on average. Guay
(1999, p. 349) finds that “(...) new users of derivatives experience statistically and
economically significant reductions in stock-return volatility, interest rate exposure,
and exchange-rate exposure compared to matched samples of control firms that
do not use derivatives.” Additionally, hedging strategies vary across firms, indi-
cating that they follow a selective hedging strategy. Cummins, Phillips, and Smith
(1998) state that more risk loving firms have lower than average derivatives posi-
tions. Hence, more risk loving companies hedge less. According to Dolde (1993),
firms hedge much, but not all exposure. Surveying a sample of Australian compa-
nies on risk management strategies, Benson and Oliver (2004) conclude that only
a small number of firms hedge all their risk exposure. These findings suggest that
firms’ hedging strategies correspond to Working’s (1953) selective hedging theory,
rather than to the risk reduction concept discussed in the traditional hedging litera-
ture. Recent empirical evidence supports the selective hedging approach. Adam and
Fernando (2006) examine the hedging behavior of gold mining firms and find con-
siderable evidence of selective hedging. Knill, Minnick, and Nejadmalayeri (2006)
investigate hedging strategies of oil and gas companies who use futures contracts as
primary hedging instrument. Their findings suggest that these companies use futures
only when their outlook is unfavorable.

Economic crises and instability are unfavorable in general. If crises are triggered
by hedgeable risks like currency risk, firms can manage their vulnerability through
hedging. Managing the potential impact of adverse shocks on firms, and therefore
on investment, should in turn have consequences for the entire macroeconomy. In
fact, Mishkin (2000) argues that the main reasons for the Asian crisis were microe-
conomic rather than macroeconomic. Among the microeconomic reasons, corporate
risk management plays a key role. While there is a vast literature on the microeco-
nomics of optimal corporate risk management, there is rarely any literature dealing
with macroeconomic consequences. This thesis aims to fill this gap.

1.2 Outline

This thesis is subdivided into a microeconomic and a macroeconomic part, each
containing two chapters. The microeconomic part basically deals with a repre-
sentative firm’s optimal hedging strategy. In both chapters the firm is assumed to
be risk averse. Both the expected utility approach and the mean-variance concept
are applied to the firm’s hedging problem. The findings suggest that hedging the
spot exposure fully, as suggested by the risk reduction concept, is just one possi-
ble outcome out of a number of potential optimal hedging strategies. Depending
on price expectations, costs and risk aversion, it might be optimal for the firm to
hedge fully, less, or more of the spot exposure. Hence, the analysis in the microe-
conomic part points to selective hedging strategies by firms, where underhedging,
full hedging and overhedging all represent optimal hedging strategies under specific
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circumstances. The macroeconomic part is not concerned with optimal hedging
decisions at the firm level, but with the impact of firms’ hedging policies on macroe-
conomic stability. The effect of hedging on investment and economic activity is
investigated. Again, following the selective hedging approach, all possible outcomes
of optimal hedging strategies are examined. Moreover, the impact of speculation is
analyzed as well. In addition, the interaction between hedging and speculation, noise
trading and limits to arbitrage are examined.

Chapter 2 presents the optimal hedging problem of a representative importer
exposed to currency risk. The importer’s optimal hedging strategy is derived in
an expected utility framework with and without hedging costs. The impact of
price biases on the hedging decision are investigated and compared to findings in
the literature dealing with the hedging problem of a representative exporter. The
model suggests that it is optimal for the importer to overhedge (underhedge) if the
futures market exhibits backwardation (contango), where backwardation (contango)
is defined as the futures price being lower (higher) than the expected spot price. In
general, the size of the importer’s hedging position should depend positively on
backwardation. The empirical part of this chapter studies the impact of backwar-
dation on hedgers’ short and long trading activity in six currency futures markets.
Although the evidence, based on vector autoregressive and vector error correction
models, shows that backwardation has a significant impact on hedging activity, the
sign of the impact does not correspond to economic theory for all currencies.

The hedging model presented in Chap. 3 builds on the expected utility approach
discussed in Chap. 2. Here, the mean-variance concept is applied to the importer’s
hedging problem. The optimal hedge ratio is derived and decomposed into a pure
hedge component and a speculative component. It is shown that the pure hedge com-
ponent equals the minimum-variance hedge ratio. This minimum-variance hedge
ratio is investigated in connection with hedging effectiveness. Empirical evidence
for six currency futures markets suggests that this pure hedge component is close to
the “equal and opposite” hedge. The popular “equal and opposite” hedge, or “one
to one” hedge respectively, represents the optimal hedge, as suggested by the risk
reduction concept, where the futures position is the same size as the spot position.
The importer’s individual characteristics, such as the degree of risk aversion and
price expectations, enter the speculative component of the hedge ratio. Hence, the
speculative component can be regarded as representing the divergence between
the optimal hedge ratios suggested by the selective hedging concept as opposed
to the risk reduction concept. Finally, the hedger’s demand for futures contracts is
presented as a Marshallian-type demand function. The hedgers’ surplus is derived
and analyzed.

Chapter 4 deals with macroeconomic consequences of a variety of different risk
management strategies. The impact of firms’ hedging activities on macroeconomic
stability is modeled in a Mundell–Fleming–Tobin type currency crisis model. Here,
firms face exchange rate risk due to debt denominated in foreign currency. In addi-
tion to using currency futures contracts for risk management, forward contracts and
options are discussed. Hence, the effect of hedging strategies with three different
types of financial derivatives on investment and economic activity are at first each
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investigated and then compared to each other. Risk management strategies, again,
include a wide range of activities from no hedging, over underhedging to full hedg-
ing, overhedging, and even speculation. In general, an increase in hedging activity
decreases adverse effects of a currency depreciation and capital flight.

In Chap. 5, the interaction of different types of futures traders is investigated.
First, the impact of price changes on trading activity of hedgers and speculators is
examined. The empirical findings suggest that the proportion of speculators in cur-
rency futures markets increases after a price rise, and that speculators go long in
futures contracts, therefore betting on further increases in prices. Further empirical
investigations of nonlinearities in speculators’ behavior point to positive feedback
trading among speculators. Second, the interaction of hedging, speculation and arbi-
trage is analyzed in a cusp catastrophe model. If arbitrage pressure is reduced,
positive feedback trading can increase instability, therefore leading to a deepen-
ing of mispricing after a price shock. This in turn may result in a long path back to
equilibrium.

Finally, Chap. 6 surveys the results and concludes this thesis.
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Chapter 2
Backwardation and Optimal Hedging Demand
in an Expected Utility Hedging Model

“A theory of speculative markets under ideal conditions of
certainty is Hamlet without the Prince.”

Samuelson (1957, p. 205).

2.1 Introduction

Most recent models on optimal hedging deal with exporting firms facing price
or exchange rate risk. In order to hedge the spot commitment, firms go short in
futures contracts.1 This hedging literature, dealing with exporting firms hedging
short, unequivocally suggests a negative relation between backwardation and the
size of the optimal short hedging position.2 In sum, the literature suggests that if the

1 See e.g., Briys, Crouhy, and Schlesinger (1993), Briys and de Varenne (1998), Briys and
Schlesinger (1993), Friberg (1998), Adam-Müller (1997, 2000) and Lien and Wang (2002). For
more information on the role of unbiasedness in futures markets and hedging see e.g., Benninga,
Eldor, and Zilcha (1984, 1985), Broll and Eckwert (1996, 2000), Broll, Wahl, and Zilcha (1995)
and Zilcha and Broll (1992).
2 In the literature, the term backwardation is used in a variety of ways relating current and expected
spot prices to futures and forward prices. Following Holthausen (1979), Briys and Schlesinger
(1993) and Adam-Müller (2000), in this study, backwardation is defined as the futures price being
less than the expected spot price. Explanations of backwardation include the existence of a risk
premium, cost of carry, convenience yield, and capacity constraints. Note that, investigating the
explanations of backwardation in more detail is beyond the scope of this chapter. Interested readers
are referred to Litzenberger and Rabinowitz (1995), Frechette and Fackler (1999), Pindyck (2001),
Inci and Lu (2007) and Larson (2007). In contrast to backwardation, the futures market is said to
exhibit contango if the futures price exceeds the expected spot price. The literature on backwarda-
tion and contango dates back to Keynes (1930), Hicks (1939) and Kaldor (1940). There is a large
literature dealing with the controversy about the Keynesian “normal backwardation” hypothesis.
Some studies find backwardation to be normal while others reject the hypothesis. For a survey on
the controversy, see e.g., Ehrhardt, Jordan, and Walkling (1987), Kolb (1992) and Miffre (2000).
This study does not add to this controversy but rather investigates the impact of backwardation on
hedgers’ demand for currency futures contracts.
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futures market is characterized by backwardation (contango), it is optimal for the
short hedger to underhedge (overhedge), where underhedging (overhedging) means
choosing a futures position smaller (larger) than the initial spot commitment. In the
absence of backwardation or contango, the firm hedges fully, and therefore chooses
the futures position to be the same size as the spot position.3 Hence, an increase
in backwardation should, ceteris paribus, reduce the trading volume of hedgers in
short futures contracts.

This chapter studies the impact of backwardation on hedging activity in short and
long currency futures contracts.4 First, the optimal hedging strategy of a representa-
tive importer is derived. The importing firm expects delivery of a certain amount of
a good at a futures date at the then prevailing random exchange rate. To hedge the
spot exposure the importer can go long in currency futures markets. Second, hedging
costs are introduced into the model. Third, the impact of backwardation on long and
short hedging activity in six currency futures markets is investigated empirically. To
the best of our knowledge, there is rarely any literature dealing with importers hedg-
ing long. Among the few exceptions are Haigh and Holt (2000) and Jin and Koo
(2006). Haigh and Holt (2000) use a model in which hedgers are simultaneously
long and short in different futures markets. Jin and Koo (2006) examine the hedg-
ing problem of a Japanese grain importer facing multiple risks. However, Haigh and
Holt (2000) and Jin and Koo (2006) do not investigate the role of backwardation and
contango on optimal hedging. In addition the model in this chapter is related to the
expected utility framework laid out by Holthausen (1979) and Briys and Schlesinger
(1993), whereas Haigh and Holt (2000) and Jin and Koo (2006), both employ the
mean-variance concept. Holthausen (1979) and Briys and Schlesinger (1993) inves-
tigate the impact of backwardation on the optimal hedging decisions of exporting
firms. The model presented in this chapter extends these investigations to importers.
In addition, the impact of hedging costs on the importer’s optimal hedging strategy
are investigated.

The model of the importer’s hedging problem introduced in this chapter leads
to the conclusion that it is optimal for long hedgers to overhedge (underhedge) if
the futures market is characterized by backwardation (contango). The firm hedges
fully in the absence of backwardation or contango. However, this result is altered by
introducing hedging costs. In fact, the existence of hedging costs provides a ratio-
nale for backwardation to be normal. In the presence of hedging costs, the importing
firm hedges fully if, and only if, the futures market exhibits backwardation. The
firm tends to overhedge if the amount of backwardation exceeds hedging costs.
The firm hedges fully if the extent of backwardation equals hedging costs. If hedg-
ing costs exceed the amount of backwardation, or if the futures market is unbiased
or exhibits contango, the optimal hedge is a partial hedge. However, irrespective of
the existence of hedging costs, an increase in backwardation should, ceteris paribus,
increase the trading volume of hedgers in long futures contracts.

3 See e.g., Briys, Crouhy and Schlesinger (1990, 1993), Briys and de Varenne (1998) and Broll and
Wong (2002).
4 A previous version of this chapter has been published as Röthig (2008).
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Although there is a large literature dealing with backwardation and firms’ opti-
mal hedging strategies in the theory of the firm, few attempts have been made to
approach the impact of backwardation on hedgers’ demand for futures contracts
empirically. The empirical part of this study analyzes the impact of backwardation
on hedgers’ demand for short and long currency futures contracts in six cur-
rency futures markets. Following Litzenberger and Rabinowitz (1995) and Pindyck
(2001), two measures of backwardation (i.e., weak and strong backwardation) are
employed. Using vector autoregressive (VAR) and vector error correction (VECM)
models, the results of this study show that backwardation has a significant impact
on hedgers’ trading volume in currency futures markets. However, the sign of the
impact does not correspond to economic theory for all currencies. The results there-
fore offer little support for the hypothesis that short (long) hedging activity depends
negatively (positively) on backwardation.

In Sect. 2.2 the model is presented and the firm’s optimal hedging strategy is
derived. The impact of backwardation and contango on the optimal hedge are ana-
lyzed and hedging costs are introduced into the model. Section 2.3 presents the
empirical results based on VAR and VECM models. Section 2.4 concludes.

2.2 The Expected Utility Hedging Model

2.2.1 Optimal Long Hedging

Suppose there is a representative importer in country A who is obliged to buy a
known quantity x of a good from country B at period t = 1 at a certain price level p.5

Having made the decision to import the quantity x, the firm faces exchange rate risk
between the period the decision is made (i.e., t = 0) and the spot commitment date
t = 1. The expected return of the spot position depends on the random exchange rate
ẽ1 as follows:

E(RS) =−ẽ1 px. (2.1)

Since the price level p is non-stochastic and known at period t = 0, p is set equal
to one for simplicity. In addition to the spot commitment, the importer can trade
long futures contracts in the currency futures market. Let f0 be the futures price

5 It is important to stress that the quantity x of imports is given. Since the firm in this model is
not deciding about the optimal production level, and therefore not choosing the optimal amount of
imports, this model can be interpreted as concerned with the short run. Moreover, the price level p
is fixed, also pointing to a short run model. According to Sandmo (1971) this approach may be
considered a weakness but also a strength. The weakness concerns the separation of production
policy and strategies for financing and investment. A strength of dealing with short run profits
is that the model stays relatively simple and is not based on too many assumptions. Moreover it
is more realistic and applicable since hedging is generally concerned with single cash flows and
hedging vehicles like futures are generally available only for the short run.
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at time t = 0 for delivery of a certain amount of foreign currency in t = 1. In this
model the importer holds the futures position until delivery at period t = 1, that
is, until the spot commitment date. At futures delivery date, the random futures
delivery price is f̃1. Suppose that, due to arbitrage relations, the random spot price
and the random futures price coincide at spot commitment date (futures delivery
date, respectively). Then, since basis risk is absent, the expected return of the long
futures position f̃1− f0 equals ẽ1− f0 per contract h.6 If the term ẽ1− f0 is zero
(not zero), the futures market is said to be unbiased (biased). If the futures price
is less than the expected spot price (i.e., ẽ1− f0 > 0), the futures market exhibits
backwardation. The futures market exhibits contango if the futures price exceeds
the expected spot price (i.e., ẽ1− f0 < 0). The expected profit of the hedged port-
folio is the sum of the expected return of the spot position plus the long futures
position:

E(Π) =−ẽ1x+(ẽ1− f0)h. (2.2)

It can easily be seen that the long futures position can be used to offset (i.e., to
hedge) the existing spot exchange rate exposure. If the importer chooses the amount
of futures contracts traded h to equal the spot commitment x, then the expected profit
of the hedged portfolio is non-stochastic. This hedging strategy is widely known as
the “equal and opposite” or “one to one” hedge. However, although potential losses
in the spot position are offset by the futures position, potential gains in the spot
position due to a decrease in the exchange rate are offset as well by losses in the
futures position.

The importer’s decision problem is to choose a futures position h to maximize
expected utility. The importing firm maximizes its expected utility of profit at date
t = 1 where U is a concave, continuous and differentiable utility function defined
over profit Π.

Max
h

EU [Π] = U [−ẽ1x+(ẽ1− f0)h]. (2.3)

The firm is assumed to be risk averse, so that U ′[Π] > 0, U ′′[Π] < 0.7 Following
Briys and Schlesinger (1993) the first-order condition is calculated:

δEU [Π]
δh

= EU ′[−ẽ1x+(ẽ1− f0)h](ẽ1− f0) = 0. (2.4)

Using the representation of profit presented in (2.2) the first-order condition can be
rewritten as

δEU [Π]
δh

= EU ′[Π](ẽ1− f0) = 0. (2.5)

6 The difference between the random variables ẽ1 and f̃1 in the delivery period is known as the
basis (or, basis risk, respectively). See e.g., Peck (1975) and Lapan and Moschini (1994).
7 For more information on similar utility functions and risk aversion see e.g., Pratt (1964), Baron
(1970), Rothschild and Stiglitz (1970), Sandmo (1971), Diamond and Stiglitz (1974), Ishii (1977)
and Kimball (1990, 1993).
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The second-order condition for a maximum is assumed to hold given risk aversion.8

Using the covariance operator Cov, (2.5) can be written as9

dEU [Π]
dh

= EU ′[Π]E(ẽ1− f0)+Cov[U ′[Π], ẽ1] = 0. (2.6)

The covariance term Cov[U ′[Π], ẽ1] is crucial in the subsequent analysis of the rela-
tionship between hedging activity and backwardation. Equation (2.6) can be used to
determine the conditions under which the risk-averse firm hedges fully (i.e., h = x),
hedges partially (i.e., 0 < h < x), or overhedges (i.e., h > x). Note that (2.6) con-
sists of three terms. U ′[Π] is positive for any Π by definition. The second term,
E(ẽ1 − f0), is zero if the futures market is unbiased (i.e., ẽ1 = f0). Suppose the
second term is zero, then (2.6) reduces to Cov[U ′[Π], ẽ1] = 0.

In order to analyze the covariance term in more detail, recall that profit at date 1 is
given by E(Π) =−ẽ1x+(ẽ1− f0)h. As previously mentioned, profit is independent
of the exchange rate if h = x, and hence the covariance is zero. If the firm hedges
less than full (i.e., h < x) the covariance is positive and if the firm overhedges (i.e.,
h > x) the covariance is negative.10

8 The second partial derivative of the utility function with respect to h is

δ 2EU [Π]
δh2 = EU ′′[Π](ẽ1− f0)2.

The equation is negative since U ′[Π] > 0, U ′′[Π] < 0 by definition. Therefore a maximum exists.
However, as Holthausen (1979, p. 989) points out, this is not the case for risk-neutral (U ′′[Π] = 0)
or risk-loving firms (U ′′[Π] > 0).
9 To see this, recall that E(XY ) = E(X)E(Y )+Cov(X ,Y ) (see e.g., Cochrane, 2001, p. 15). Equa-
tion (2.5) can therefore be rewritten as

EU ′[Π](ẽ1− f0) = EU ′[Π]E(ẽ1− f0)+Cov[U ′[Π],(ẽ1− f0)] = 0,

which in turn, using Cov(X +Y,Z) = Cov(X ,Z)+Cov(Y,Z), can be formulated as

EU ′[Π]E(ẽ1− f0)+Cov[U ′[Π], ẽ1]+Cov[U ′[Π],− f0] = 0.

Since f0 is non-stochastic, and using Cov(1,X) = 0, the equation can be simplified to

EU ′[Π]E(ẽ1− f0)+Cov[U ′[Π], ẽ1] = 0.
10 Note that the covariance is defined as

Cov(X ,Y ) = E((X−E(X))(Y −E(Y )).

Suppose that X = U ′[Π] and Y = ẽ1. If the firm underhedges (i.e., h < x), the futures position is
smaller than the spot position and profit therefore depends negatively on the random exchange rate.
An increase in ẽ1 decreases Π and, due to concavity, increases U ′[Π]. Hence, (X −E(X)) > 0. In
addition, an increase in ẽ1 leads to (Y −E(Y )) > 0. The covariance is therefore positive.

However, if the firm overhedges (i.e., h > x), the futures position is larger than the spot posi-
tion. Since the futures position yields profits when ẽ1 increases, profit depends positively on the
exchange rate. Hence, an increase in ẽ1 increases Π and decreases U ′[Π], again, due to concavity.
Therefore (X−E(X)) < 0. Since, everything else is equal, the covariance is negative.
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Now, if the futures market is unbiased, the term ẽ1− f0 in (2.6) is zero. There-
fore, the covariance must be zero as well for (2.6) to hold. For the covariance to be
zero, which is achieved if profit is independent of exchange rate changes, the firm
must hedge fully. Hence, firms hedge fully when the futures market is unbiased. If
the futures market exhibits backwardation (i.e., ẽ1 > f0), the second term in (2.6)
is positive. The covariance in (2.6) must therefore be negative for the condition that
the first-order-condition equals zero to hold. This implies that h > x. The resulting
futures position is an overhedge. Now suppose that the futures market exhibits con-
tango (i.e. ẽ1 < f0). In this case, the covariance in (2.6) must be positive, since the
first term in the equation is negative, for the condition that the first-order-condition
equals zero to hold. This implies that h < x. The resulting futures position is a partial
hedge.

2.2.2 Hedging Costs and Optimal Hedging

In this section hedging costs are introduced into the model. The expected utility of
profit with hedging costs is

EU [Π] = U [−ẽ1x+(ẽ1− f0− c)h]. (2.7)

Again, profit is independent of the exchange rate if the firm hedges fully (i.e., h = x).
In this case, spot exposure is completely offset and therefore perfectly hedged by the
futures position. Maximizing expected utility of profit with respect to h yields

dEU [Π]
dh

= EU ′[−ẽ1x+(ẽ1− f0− c)h](ẽ1− f0− c) = 0. (2.8)

Using covariances, the first-order condition can be rewritten as

dEU [Π]
dh

= EU ′[Π]E(ẽ1− f0− c)+Cov[U ′[Π], ẽ1] = 0. (2.9)

Equation (2.9) consists of three terms. Again, U ′[Π] is positive for any Π by def-
inition. The second term E(ẽ1− f0− c) is zero if hedging costs equal the amount
of backwardation (i.e., c = ẽ1− f0). Suppose the second term is zero, then (2.9)
reduces to Cov[U ′[Π], ẽ1] = 0, which holds true if firms hedge fully. If c > 0, the term
E(ẽ1− f0−c) in (2.9) is zero if E(ẽ1− f0) > 0, or more precisely if E(ẽ1− f0) = c.
Hence, firms hedge fully if, and only if, futures markets are biased, i.e., exhibit back-
wardation (E(ẽ1) > f0). If the amount of backwardation exceeds trading costs c (i.e.,
E(ẽ1− f0) > c), the second term in (2.9) is positive. The covariance in (2.9) must
therefore be negative for the condition that the first-order-condition equals zero to
hold. This implies that h > x. The resulting futures position is an overhedge. In the
case of an unbiased futures market (i.e., E(ẽ1) = f0), or if the futures market exhibits
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contango (i.e., E(ẽ1) < f0), the covariance in (2.9) therefore must be positive for the
condition that the first-order-condition equals zero to hold. This implies that h < x.
The resulting futures position is a partial hedge.

2.3 Empirical Investigation

In this section the impact of backwardation on short and long hedging activity is
empirically investigated. Regarding short hedging, again, the literature suggests that
in the case of backwardation (contango) it is optimal to underhedge (overhedge).
The theoretical model in this study dealing with a representative importer’s long
hedging problem suggests that it is optimal to overhedge (underhedge) if the futures
market is characterized by backwardation (contango). Hence, ceteris paribus, the
hedging models predict a negative effect of backwardation on short hedging activity
as well as a positive effect on long hedging activity.

2.3.1 Data and Summary Statistics

The empirical investigation uses weekly data on spot and futures prices and hedgers’
positions for six currency futures contracts traded at the Chicago Mercantile
Exchange. Australian Dollar (AUD), Canadian Dollar (CAD), Swiss Francs (CHF),
Euro (EUR), Japanese Yen (JPY), and Mexican Peso (MXP) futures contracts are
investigated. The hedgers’ position data come from the Commodity Futures Trad-
ing Commission’s (CFTC) Commitments of Traders (COT) report and the price data
come from Datastream.11

Following Litzenberger and Rabinowitz (1995) and Pindyck (2001), two mea-
sures of backwardation are employed. Futures markets exhibit strong backwardation
if futures prices are below spot prices (i.e., ẽt > f̃t ). Weak backwardation is defined
as a situation where discounted futures prices are below spot prices (i.e., ẽt >
exp(−rt ∗ (3/12)) f̃t where rt is the three month LIBOR rate).

The summary statistics are presented in Table 2.1. With regard to the measure of
weak backwardation, backwardation appears to be normal as proposed by Keynes
(1930). All currency futures markets investigated exhibit weak backwardation at
least 95% of the time. The results for strong backwardation are mixed. While some
currency futures prices were on average strongly backwarded (i.e., the AUD and
MXP series over 90% of the time), some exhibit backwardation and contango from
time to time (i.e., CAD and EUR), and some exhibit contango most of the time (i.e.,
CHF and JPY).

11 For more information on the COT report, see e.g., Ederington and Lee (2002), Chatrath et al.
(2003) and Röthig and Chiarella (2007).
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Interestingly, with regard to the measure of strong backwardation, in the mar-
kets where futures prices exhibit contango, hedgers are on average net long (i.e.,
the mean of long hedging activity exceeds the mean of short hedging activity in
Table 2.1). Miffre (2000) points out that the idea that backwardation and con-
tango depend on hedgers’ net positions is consistent with the Keynesian hypothesis.
According to this hypothesis, futures prices should be backwarded if hedgers are
net short, and futures prices should exhibit contango if hedgers are net long. The
inequality between hedgers’ long and short positions requires the existence of spec-
ulators to fill the gap and restore equilibrium.12 Since backwardation and contango
can be regarded as a risk premium earned by speculators, backwardation (contango)
attracts speculators to go long (short).13 However, with regard to the hedging liter-
ature and in line with the model in the previous section, in addition to speculators,
hedgers are motivated to hedge long (short) if futures prices exhibit backwardation
(contango), as well. Hence, the causality may not run in one, but in both direc-
tions: Backwardation influences hedging activity, which in turn has an impact on
backwardation. If the causality runs in both directions, the assumption underlying
the ordinary least squares (OLS) method, that the explanatory variables (i.e., back-
wardation) are non-stochastic, does not hold. In fact, this assumption is likely to
be violated since hedgers and speculators, as the main traders in futures markets,
jointly determine the degree of backwardation. The simplest way to circumvent this
problem, associated with OLS, is to employ a dynamic model where all variables
are endogenous. In this study, vector autoregressive (VAR) and vector error cor-
rection (VECM) models are chosen for the empirical analysis. The flexible VAR
and VECM models are dynamic in nature, and allow for a simple interpretation of
the results. Applying VAR and VECM models to the analysis at hand may pro-
vide insights into the dynamics of hedgers’ demand for futures contracts. Further
reasons to employ dynamic models that allow for lagged values include the fol-
lowing. First, backwardation may not affect hedgers’ demand immediately. It may
take several time periods to adjust risk management strategies to a change in back-
wardation. It is reasonable to assume that trading activity reacts more slowly to
changes in prices than prices react to changes in trading activity. The speed and
extent of traders’ reactions to price changes may depend on psychological, techno-
logical, and institutional factors. Second, hedging demand might initially overreact
to changes in backwardation. The VAR and VECM models are able to capture
these dynamics.

12 Samuelson (1957, p. 194) points out that “(. . .) the total long position (of hedgers and specula-
tors) must be exactly matched, at the equilibrium pattern, by the total short position (of hedgers
and speculators).” See also Danthine (1978), Anderson and Danthine (1983) and Fort and Quirk
(1988) for more information on backwardation and speculation.
13 Note that, in addition of representing a risk premium, there are several alternative explana-
tions of backwardation including the cost of carry, convenience yield, and capacity constraints.
In fact, while the “(. . .) risk premium is unobserved (. . .)” (Inci and Lu, 2007, p. 181; see also
Longstaff, 2000), “backwardation is an observable statistic (. . .)” (Frechette and Fackler, 1999,
p. 761). Therefore it may be misleading to use the terms backwardation and risk premium
interchangeably.
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2.3.2 Vector Autoregression and Vector Error Correction Analysis

In order to check the stationarity properties of the series, augmented Dickey Fuller
(ADF) tests with one lag and Kwiatowski, Phillips, Schmidt and Shin (KPSS) tests
are carried out. The results indicate that several series, especially AUD− Short,
AUD−BW , EUR− Short, EUR−BW , and MXP− Short are integrated of order
one (i.e., I(1)). Table 2.2 presents the results of the ADF and KPSS tests for the
levels of the series and for the corresponding first differences (i.e., ADF-I(1) and
KPSS-I(1)). The levels of at least some of the variables are non-stationary, while
taking first differences of the variables induces stationarity. The ADF-I(1) and
KPSS-I(1) tests clearly suggest that all series are stationary.

Because at least some of the variables are integrated of order one, the next
step in the analysis is to determine the cointegration properties of the variables.
Table 2.3 presents the results of Johansen trace tests. The number of cointegrating
ranks is determined sequentially. If the hypothesis that there are no cointegrating
ranks (r = 0) is rejected, the analysis proceeds by testing for a cointegrating rank
of one (r = 1). According to Lütkepohl (2004), the following decision rules apply:
Choose a VAR model in first differences if the first null hypothesis (r = 0) cannot be

Table 2.2 Unit root tests

ADF KPSS ADF-I(1) KPSS-I(1) ADF KPSS ADF-I(1) KPSS-I(1)
AUD

Short −0.9648 5.8098 −5.8886 0.0179 BW −1.0887 5.8227 −15.2805 0.0089
Long −1.8793 4.5654 −13.6720 0.0200 BS −3.2506 2.0713 −15.4664 0.0109

CAD
Short −1.7217 15.8062 −21.2685 0.0103 BW −2.1031 14.9800 −23.7622 0.0735
Long −2.9445 5.2036 −20.4193 0.0056 BS −6.7597 3.2904 −24.7462 0.0195

CHF
Short −3.7598 3.4793 −21.2730 0.0054 BW −3.1524 13.1601 −24.2683 0.0308
Long −2.9107 1.3423 −20.6706 0.0080 BS −5.4092 3.5265 −24.3232 0.0118

EUR
Short −1.4393 8.8683 −16.0090 0.0151 BW −1.5966 3.0126 −20.7061 0.0063
Long −1.9690 8.4793 −15.5425 0.0175 BS −5.6774 4.0669 −20.9346 0.0099

JPY
Short −2.6556 15.8938 −20.7894 0.0062 BW −4.2248 9.1204 −22.8943 0.0120
Long −1.9274 8.2294 −21.4288 0.0096 BS −4.8501 3.1897 −22.8242 0.0081

MXP
Short −1.1841 8.1529 −15.2272 0.0724 BW −3.3479 18.8028 −19.0308 0.0284
Long −1.7611 2.7243 −18.7324 0.0213 BS −4.7321 15.8992 −18.9982 0.0273
Note: ADF and KPSS are the test statistics of the augmented Dickey Fuller and the Kwiatowski,
Phillips, Schmidt and Shin test. The ADF test rejects the null hypothesis of nonstationarity if the
test statistic is negative and the absolute value of the test statistic exceeds the critical value of the
respective significance level: 1%: −2.56; 5%: −1.94; 10%: −1.62. The KPSS test rejects the null
hypothesis of stationarity if the test statistic exceeds the critical value of the respective significance
level: 1%: 0.739; 5%: 0.463; 10%: 0.347. For more information on the test statistics, see Lütkepohl
and Krätzig (2004)
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Table 2.3 Tests for cointegrating rank

Short Long

Lags H0 LR pval 90% 95% Lags H0 LR pval 90% 95%
AUD BW 2 0 35.73 0.0001 17.98 20.16 3 0 27.20 0.0038 17.98 20.16

1 7.41 0.1085 7.60 9.14 1 8.08 0.0810 7.60 9.14
BS 2 0 42.39 0.0000 17.98 20.16 2 0 56.57 0.0000 17.98 20.16

1 7.42 0.1084 7.60 9.14 1 9.49 0.0426 7.60 9.14
CAD BW 2 0 71.67 0.0000 17.98 20.16 2 0 97.99 0.0000 17.98 20.16

1 20.01 0.0002 7.60 9.14 1 34.77 0.0000 7.60 9.14
BS 2 0 65.27 0.0000 17.98 20.16 2 0 105.25 0.0000 17.98 20.16

1 19.82 0.0002 7.60 9.14 1 36.24 0.0000 7.60 9.14
CHF BW 3 0 99.04 0.0000 17.98 20.16 3 0 85.04 0.0000 17.98 20.16

1 41.14 0.0000 7.60 9.14 1 30.03 0.0000 7.60 9.14
BS 3 0 92.56 0.0000 17.98 20.16 3 0 81.80 0.0000 17.98 20.16

1 39.08 0.0000 7.60 9.14 1 25.51 0.0000 7.60 9.14
EUR BW 2 0 91.58 0.0000 17.98 20.16 3 0 64.80 0.0000 17.98 20.16

1 19.29 0.0003 7.60 9.14 1 21.52 0.0001 7.60 9.14
BS 3 0 51.20 0.0000 17.98 20.16 3 0 43.53 0.0000 17.98 20.16

1 12.61 0.0096 7.60 9.14 1 19.80 0.0002 7.60 9.14
JPY BW 3 0 94.57 0.0000 17.98 20.16 3 0 109.54 0.0000 17.98 20.16

1 23.01 0.0000 7.60 9.14 1 21.59 0.0001 7.60 9.14
BS 3 0 88.39 0.0000 17.98 20.16 3 0 84.69 0.0000 17.98 20.16

1 25.32 0.0000 7.60 9.14 1 22.33 0.0001 7.60 9.14
MXP BW 1 0 43.77 0.0000 17.98 20.16 3 0 41.18 0.0000 17.98 20.16

1 5.61 0.2310 7.60 9.14 1 15.26 0.0026 7.60 9.14
BS 1 0 55.88 0.0000 17.98 20.16 3 0 50.38 0.0000 17.98 20.16

1 5.57 0.2349 7.60 9.14 1 15.58 0.0022 7.60 9.14
Note: In each case the lag length is chosen using the Akaike, Hannan-Quinn, and Schwartz infor-
mation criteria. H0 represents the null hypothesis that the cointegrating rank r is 0 or 1, respectively.
LR is the test statistics and pval is the p-value. 90% and 95% are the corresponding critical values

rejected. If r = 0 can be rejected but r = 1 cannot, a VECM model should be consid-
ered. If, however, all null hypothesis can be rejected, choose a VAR model in levels.
Regarding the test results for the AUD and the MXP− Short series, the Johansen
trace tests reject the first null hypothesis (r = 0) of no cointegration whereas the null
of r = 1 cannot be rejected. Therefore, following the decision rules, VECM models
are chosen for the AUD and the MXP−Short series. For the remaining series, VAR
models in levels are chosen since all null hypotheses are rejected.

Table 2.4 presents the selected models, lag order, and Granger causality test
results. The results of the Granger causality tests point to a significant impact of
both weak and strong backwardation on short and long hedging activity. Most of
the p-values are smaller than 0.05, indicating causal relations between backwarda-
tion and hedging activity. For 18 out of the total of 24 investigations, using a 5%
significance level, the noncausality null hypothesis can be rejected. The next step in
the analysis is to check whether the empirical results are consistent with economic
theory.
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Table 2.4 Lags and Granger causality test

Short Long

Model Lags Test value p-value Model Lags Test value p-value
AUD BW VECM 1 1.9156 0.1484 VECM 3 8.0633 0.0000

BS VECM 1 2.3132 0.1000 VECM 1 13.9600 0.0000
CAD BW VAR 2 4.2170 0.0149 VAR 2 12.4582 0.0000

BS VAR 2 0.0112 0.9889 VAR 2 0.0812 0.9220
CHF BW VAR 3 21.3415 0.0000 VAR 3 21.6060 0.0000

BS VAR 3 13.3164 0.0000 VAR 3 16.0179 0.0000
EUR BW VAR 2 12.4326 0.0000 VAR 3 8.4114 0.0000

BS VAR 2 0.8242 0.4390 VAR 2 0.7981 0.4506
JPY BW VAR 3 36.8745 0.0000 VAR 3 45.7324 0.0000

BS VAR 3 32.2219 0.0000 VAR 3 41.7792 0.0000
MXP BW VECM 10 1.9845 0.0269 VAR 3 13.1686 0.0000

BS VECM 10 1.9911 0.0263 VAR 3 12.7187 0.0000
Note: In each case the lag length is chosen using the Akaike, Hannan-Quinn, and Schwartz
information criteria

Figures 2.1 and 2.2 present the responses of short and long hedging activity to
shocks in weak and strong backwardation. Again, economic theory suggests that,
with growing backwardation, hedgers’ demand for short futures contracts should
be reduced and hedgers’ demand for long futures contracts should increase. The
impulse response functions reveal whether changes in weak and strong backwarda-
tion have a positive or negative effect on short and long hedging activity.

Considering the signs of the responses presented in Figs. 2.1 and 2.2, the empiri-
cal results do not unambiguously support the negative relation between backwarda-
tion and the trading volume of hedgers in short futures contracts as discussed in the
theoretical hedging literature. Regarding the impact of weak backwardation on short
hedging activity, the AUD, CAD, CHF , and EUR series show a positive response.
The response of the JPY series reveals positive overshooting before turning nega-
tive after about 12 periods. Only the MXP series shows a negative effect of weak
backwardation on short hedging activity, after an initial small positive reaction.

In contrast, the results for strong backwardation and short hedging activity are
more significant. Here, four out of six responses (AUD, CHF , JPY , and MXP) indi-
cate a negative impact of strong backwardation on short hedging activity after an
initial overshooting. Moreover, for the remaining two series (CAD and EUR) the
null hypothesis of no Granger causality cannot be rejected.

The results for long hedging activity and weak backwardation undoubtedly indi-
cate a positive influence and, therefore, support the relation suggested by economic
theory, even though two series (AUD and MXP) reveal initial negative overshooting.
However, the results concerning strong backwardation and long hedging activity
cannot support these findings. Only the EUR and MXP series show a positive
response in the long run.

Summing up, six out of 12 responses of short hedging and eight out of 12
responses of long hedging are consistent with economic theory. Although the
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Table 2.5 Diagnostic tests

Short Long

Port LM ARCH-LM LJB Port LM ARCH-LM LJB
AUD BW 0.3609 0.3767 0.2188 0.0000 0.1714 0.2105 0.1330 0.0000

BS 0.2680 0.5542 0.5880 0.0000 0.0000 0.0035 0.0280 0.0000
CAD BW 0.0001 0.0000 0.0000 0.0000 0.0008 0.0011 0.0429 0.0000

BS 0.0336 0.0002 0.0000 0.0000 0.0131 0.0002 0.0350 0.0000
CHF BW 0.0001 0.2331 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BS 0.0416 0.4304 0.0000 0.0000 0.0155 0.0066 0.0000 0.0000
EUR BW 0.0524 0.0001 0.7007 0.0000 0.0700 0.0000 0.4392 0.0000

BS 0.0349 0.0003 0.6213 0.0000 0.0578 0.0035 0.6277 0.0000
JPY BW 0.0000 0.0465 0.0000 0.0000 0.0000 0.0077 0.0000 0.0000

BS 0.0021 0.0158 0.0001 0.0000 0.0043 0.0013 0.0226 0.0000
MXP BW 0.0000 0.0000 0.0020 0.0000 0.1972 0.3772 0.0524 0.0000

BS 0.0000 0.0000 0.0028 0.0000 0.6040 0.5719 0.0639 0.0000
Note: Port and LM are the Portmanteau (10 lags) and Breusch–Godfrey Lagrange Multiplier tests
(2 lags) for autocorrelation. ARCH-LM is the multivariate ARCH-LM test (5 lags). LJB is the
Lomnicki–Jarque–Bera test for nonnormality

empirical results for long hedging are better than the results for short hedging,
this empirical investigation offers little support for the hypotheses suggested by
economic theory.

A series of diagnostic tests for autocorrelation, nonnormality, and ARCH effects
in the residuals are conducted and the p-values of the tests are presented in Table 2.5.
The results of the diagnostic tests are not all fully satisfactory. For example, the
results for CAD− Short, CAD− Long, CHF − Long, JPY − Short, JPY − Long,
and MXP− Short, all reject the respective null hypotheses of no autocorrelation,
no ARCH and normality. The problem of autocorrelation in the residuals might
be solved by using a model in first differences rather than in levels. However, this
would contradict the decision rules applied in the context of the Johansen trace test.
A second potential solution is to include more lags into the analysis. This, however,
may result in imprecise coefficient estimates if the lag order is chosen too large.14

Moreover, the lag structure is chosen by employing the Akaike, Hannan-Quinn, and
Schwartz information criteria and should therefore not be altered.15 According to
Lütkepohl (2004, p. 131), the remaining ARCH found in several residuals may not
be a big problem “(. . .) if the linear dependencies are of major concern (. . .)”. The
rejection of normality may be caused by few very extreme residuals. Because of the
large sample sizes in this study the violation of the normality assumption should

14 See e.g., Lütkepohl (1990).
15 Note that a number of specifications of VAR and VECM models have been applied to the data,
yielding results similar to the ones presented in the text. For more information on residual auto-
correlation, VARs, and VECMs, see e.g., Brüggemann (2006) and Brüggemann, Lütkepohl, and
Saikkonen (2006).
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be inconsequential due to a central limit theorem.16 Since the main purpose of this
chapter is to investigate the sign of the impact of backwardation on hedging activity,
the empirical results are still sufficient. With respect to diagnostic tests, Ericsson
(1999, p. 42) argues that the “(. . .) rejection of the null does not imply the alterna-
tive. Even so, test rejections are informative by demonstrating that the model can
be improved.” However, finding potential directions of improvement will be left for
future research.

2.4 Discussion

This chapter investigates the impact of backwardation on long and short hedging
activity in currency futures markets. First, the optimal long hedging strategy of an
importer exposed to currency risk is derived in an expected utility framework with
and without hedging costs. The model suggests that it is optimal for the long hedg-
ing importer to overhedge (underhedge) if the futures market exhibits backwardation
(contango). The importing firm hedges fully if the futures market is unbiased. How-
ever, in the presence of hedging costs, the firm hedges fully if the futures market
is characterized by backwardation. Therefore, hedging costs provide a rationale for
backwardation to exist. Irrespective of whether hedging costs are introduced into the
model, backwardation has a positive impact on the size of the firm’s optimal long
hedging position.

The empirical part of this chapter investigates the relationship between back-
wardation and hedgers’ demand for six currency futures contracts, using vector
autoregressive and vector error correction models. The summary statistics suggest
that backwardation and contango are indeed normal in currency futures markets, as
proposed by Keynes (1930). However, the hypothesis of a negative (positive) impact
of backwardation on short (long) hedging activity cannot be supported.

The contribution of this chapter is threefold. First, the hedging problem of the
representative exporter, examined by Holthausen (1979) and Briys and Schlesinger
(1993), is extended to the hedging problem of an importer. Second, hedging costs
are found to provide a rationale for backwardation to be normal. Finally, the impact
of backwardation on long and short hedgers’ trading volume in currency futures
markets is investigated empirically. To the best of our knowledge, this is the first
study to directly regress hedgers’ position data from the Commitments of Traders
(COT) report on two measures of backwardation. However, the results offer little
support for the hypotheses suggested by economic theory.

16 See e.g., Brooks (2002) for a detailed discussion on how to deal with autocorrelation,
heteroscedasticity, and nonnormality.



Chapter 3
Mean-Variance Versus Minimum-Variance
Hedging

“One gains the impression that hedging, like a hitchhiker, seized
the chance for a ride since speculation presented the
opportunity. But as statistics have been accumulated that give
appropriate quantitative information on futures markets, year in
and year out, hedging begins to look like the driver, and
speculation in futures like a companion going where hedging
gives it opportunity to go.”

Working (1953, p. 318).

3.1 Introduction

The hedging model introduced in this chapter is an extension of the expected utility
approach in Chap. 2 The importing firm’s hedging problem here is almost identical
to the one before. The only difference is that this model allows for basis risk. This
is important with regard to the definition of backwardation applied. While in the
previous chapter backwardation is defined as the difference between the expected
spot price and the current futures price (i.e., ẽ1− f0), here, backwardation is defined
as the difference between the expected futures price and the current futures price
(i.e., f̃1 − f0). Note that these two definitions of backwardation are equal in the
absence of basis risk (i.e., if ẽ1 = f̃1). However, aside from basis risk, the model
framework is quite different, since the analysis in this chapter is based on the mean-
variance concept. Nevertheless, this approach can be regarded as an extension, since
mean-variance models are generally not in conflict with expected utility models.1

On the contrary, mean-variance models have several attractive properties that may
add additional insights.

One of these attractive properties is that the impact of risk aversion on the
importer’s optimal hedging strategy can be modeled explicitly. Moreover, the role of
hedging costs and backwardation, which were already investigated in the previous

1 See e.g., Battermann, Broll, and Wahl (2002) and Broll, Wahl, and Wong (2006).

A. Röthig, Microeconomic Risk Management and Macroeconomic Stability,
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chapter, can be modeled in more detail. In this chapter, the impact of risk aversion,
hedging costs and backwardation on the optimal hedging strategy are investigated
empirically by applying data for the Australian Dollar (AUD), Canadian Dollar
(CAD), Swiss Francs (CHF), Euro (EUR), Japanese Yen (JPY), and Mexican Peso
(MXP) futures contracts to the model.

Another interesting property of this modeling approach is that the derived opti-
mal hedge ratio can be analyzed in more detail. The optimal hedge can be decom-
posed into a pure hedge component and a speculative component. Overhedging and
underhedging can be regarded a consequence of speculative demand, affecting the
hedging decision, where the pure hedge can be viewed as the full hedge or “equal
and opposite” hedge, respectively. In fact, it is shown in this chapter that the pure
hedge is close to the “equal and opposite” hedge for the data applied. Based on the
optimal hedging demand, and following Frechette (2000), futures demand can be
illustrated as a stylized Marshallian-type demand curve. Assuming futures supply
to be independent of costs, a stylized futures market is constructed. Using this rep-
resentation of the futures market, the hedgers’ surplus is analyzed graphically and
analytically. Moreover, the effect of risk aversion and hedging costs on the hedgers’
surplus are examined.

A further important property of the mean-variance approach is that it can be eas-
ily compared to the minimum-variance approach, which is very popular in the field
of theoretical and applied finance. The minimum-variance approach can be regarded
a fraction of the mean-variance analysis, leading to the pure, risk-minimizing hedge,
which neglects the hedger’s expectations, hedging costs and risk aversion. Hence,
the speculative component is nonexistent in the minimum-variance approach. This
approach is derived in this chapter and applied to the data. Moreover, the effective-
ness of this hedging strategy is discussed and its relation to the so-called statistical
hedging using regression analysis is investigated.

Section 3.2 presents the mean-variance approach. The optimal hedge is derived
and the impact of risk aversion, hedging costs and price expectations on optimal
hedging are investigated. Moreover, the optimal hedge ratio is decomposed into
the pure hedge and the speculative demand, and the hedgers’ surplus is investi-
gated. Section 3.3 deals with minimum-variance hedging, hedging effectiveness and
empirical hedging using regression analysis. Section 3.4 concludes.

3.2 The Mean-Variance Approach to Hedging

3.2.1 The Model

The importer’s expected profit is identical to the expected profit in the previous
chapter. However, the model framework used in this chapter is quite different to the
one used before. In contrast to the expected utility approach in the previous chapter,
here, mean-variance analysis is conducted. Again, the starting point of the model is
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the representative importer’s expected profit2

E(Π) =−ẽ1x+( f̃1− f0− c)h, (3.1)

which depends negatively on the random exchange rate ẽ1. In order to hedge the
spot exposure, the importer can go long in currency futures markets, where c again
represents hedging costs. The variance of profit is

V (Π) = V (−ẽ1x+( f̃1− f0− c)h)
= V (−ẽ1x+ f̃1h− f0h− ch). (3.2)

Using V (X +Y ) = V (X)+V (Y )+2Cov(X ,Y ), and the fact that the current futures
price f0 and hedging costs c are non-stochastic, yields:3

V (Π) = V (−ẽ1x)+V ( f̃1h)+2Cov(−ẽ1x, f̃1h). (3.3)

Further simplification by using V (λX) = λ 2V (X), Cov(λX ,Y ) = λCov(X ,Y ), and
V (Const) = 0 leads to:

V (Π) = x2V (ẽ1)+h2V ( f̃1)−2xhCov(ẽ1, f̃1). (3.4)

The objective function to be maximized is

Max
h

Ω = E(Π)−λV (Π), (3.5)

where λ represents risk aversion. Inserting for expected profit and the variance of
profit in (3.5) yields:

Max
h

Ω =−ẽ1x+( f̃1− f0− c)h−λ (x2V (ẽ1)+h2V ( f̃1)−2xhCov(ẽ1, f̃1)). (3.6)

3.2.2 Optimal Hedging

Since the level of spot commitment x is given, the optimal hedge can be determined
by differentiating the objective function in (3.6) with respect to the amount of futures
traded h:4

δΩ

δh
= f̃1− f0− c−2λhV ( f̃1)+2λxCov(ẽ1, f̃1). (3.7)

2 Note that the only difference to the model in the previous chapter is that basis risk is not absent.
Hence, ẽ1 6= f̃1.
3 For more information on the properties of expectations operators, variances, and covariances, see
e.g., Pindyck and Rubinfeld (1998).
4 See e.g., Kahl (1983).
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Solving for h gives the optimal hedge:5

h =
f̃1− f0− c+2λxCov(ẽ1, f̃1)

2λV ( f̃1)

=
f̃1− f0− c
2λV ( f̃1)

+
xCov(ẽ1, f̃1)

V ( f̃1)
. (3.8)

Solving for the optimal hedge ratio h/x yields:

h
x

=
f̃1− f0− c
2λV ( f̃1)

1
x

+
Cov(ẽ1, f̃1)

V ( f̃1)
. (3.9)

Since the hedge ratio represents a quantity of futures contracts demanded, standard-
ized by the size of the spot commitment, and since hedging costs c can be regarded
the price for hedging, the optimal hedge ratio presented in (3.9) is equivalent to the
demand curve for hedging.6 Figure 3.1 presents the optimal hedge ratio depending
on hedging costs c for the AUD, CAD, CHF , EUR, JPY , and MXP series.

The values of the respective variance and covariance terms, used in Fig. 3.1 and
in the following graphical representations, are given in Table 3.1. It is assumed that
the futures market is unbiased (i.e., f̃1 = f0 = 1). The size of the spot commitment
is set to x = 1 and the risk aversion variable is chosen to be λ = 3. Following Lence
(1995a, 1996), this level of λ reflects moderate risk aversion. Increasing hedging
costs reduces the demand for futures contracts and therefore the optimal hedge ratio,
as shown in Fig. 3.1. The demand for futures contracts is a linear downward sloping
function of hedging costs. If hedging costs are zero, the optimal hedge ratio is close
to one for all currencies investigated. Hence, in the absence of hedging costs, the
firm chooses the size of the futures position to equal the size of the spot commitment.
The optimal hedge is the well known “equal and opposite” hedge. Note that only
the MXP series shows a larger deviation from the “equal and opposite” hedge when
hedging costs are absent. Here, the optimal hedging strategy is to overhedge. The
firm therefore chooses a futures position larger than the initial spot exposure. This is
because in the case of the MXP series the covariance term is larger than the variance
term V ( f̃1). The term Cov(ẽ1, f̃1)/V ( f̃1), accordingly, exceeds one.

Figure 3.2 presents the effect of risk aversion on the optimal hedge ratio. Again,
the futures market is assumed to be unbiased (i.e., f̃1 = f0 = 1) and the size of
the spot commitment is x = 1. Since f̃1− f0 = 0, risk aversion has an impact on
hedging activity only if hedging costs c are not zero. Hedging costs are therefore

5 The condition for a maximum

δ 2Ω

δh2 =−2V ( f̃1)λ < 0

is fulfilled given risk aversion (i.e., λ > 0).
6 See e.g., Frechette (2000) and Jin and Koo (2006).
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Fig. 3.1 Hedging costs and the optimal hedge ratio

Table 3.1 Variances and covariances

AUD CAD CHF EUR JPY MXP

Sample 01/02/2001– 10/06/1992– 10/06/1992– 01/12/1999– 10/06/1992– 03/26/1996–
01/31/2006 01/31/2006 01/31/2006 01/31/2006 01/31/2006 01/31/2006

V (ẽ) 0.01040773 0.00330530 0.00709616 0.02094100 0.0000007719 0.00018025
V ( f̃ ) 0.01026839 0.00329519 0.00721265 0.02101602 0.0000007876 0.00015096
Cov 0.01029400 0.00329353 0.00713953 0.02091480 0.0000007778 0.00016326

chosen to be c = 0.001 for the AUD, CAD, CHF , and EUR series, c = 0.000001
for the JPY series and c = 0.0001 for the MXP series. Increasing risk aversion
increases the demand for hedging instruments. The graphical representations for
the AUD, CAD, CHF , EUR, JPY , and MXP series show concave functions. Risk
aversion affects hedging activity strongest at its low and moderate levels. Lence
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Fig. 3.2 Risk aversion and the optimal hedge ratio

(1995a, 1996) defines levels of risk aversion to be low if λ = 1, moderate if λ = 3,
and high if λ = 10. In fact, Lence (1995a, p. 357) labels the level of risk aversion
of λ = 10 “extremely high”. According to him, this extremely high level of risk
aversion is not plausible and results based on λ = 10 should therefore be interpreted
with care. In the following calculations and graphical illustrations, a moderate risk
aversion level of λ = 3 will be chosen. However, as risk aversion approaches infinity,
the optimal hedge ratio presented in Fig. 3.2 converges to the “equal and opposite”
hedge position.

It was shown in the previous chapter that hedgers’ demand for long futures
contracts depends positively on the extend of backwardation. Using a different def-
inition of backwardation in this chapter, one which allows for basis risk, the effect
of backwardation on hedgers’ demand for long futures contracts can be investi-
gated. Again, note that while in the previous chapter in the absence of basis risk
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Fig. 3.3 Backwardation and the optimal hedge ratio

backwardation was defined as the difference between the expected spot price and the
current futures price (i.e., ẽ1− f0), here, backwardation is defined as the difference
between the expected futures price and the current futures price (i.e., f̃1− f0).7 In
the literature, this latter definition of backwardation is often referred to as expected
return of the futures position. Figure 3.3 shows a positive impact of backwardation
on the size of the optimal hedge position. Hedging costs, risk aversion and the size
of the spot commitment are set to c = 0, λ = 3, and x = 1, respectively. Since the
futures position promises additional payoffs in the presence of backwardation, the
firm overhedges the spot exposure. Hence, the futures position is larger than the spot
commitment. As shown in Fig. 3.3, the hedge ratio h/x exceeds one if f̃1− f0 is
positive for all currencies investigated.

7 Again, these definitions of backwardation are equal if basis risk is absent (i.e., if ẽ1 = f̃1).
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3.2.3 Pure Hedging and Speculative Demand

The role of expectations for the firm’s hedging strategy is very important. Sup-
pose the firm expects f̃1− f0 to be positive and therefore overhedges. In this case,
expected profits, as presented in (3.1), depend positively on exchange rate changes
if the extent of basis risk is small (i.e., if ẽ1 ≈ f̃1), since h > x. This overhedge can
be regarded as speculation, since the firm does not minimize the existing spot risk,
but takes on additional risk in the futures market. In this context, Hawtrey (1940,
p. 205) writes that:

“If all hedging traders are supposed to have expectations, they are all potential speculators,
and they will be more likely to abstain from incurring some probable loss on hedging if they
are very confident that the expected price will be realised.”

This may lead to some confusion and hence make it difficult to clearly differen-
tiate between hedgers and speculators, since a speculator can be defined as an agent
with an open position (i.e., an agent who does not fully hedge). Pure or full hedging
deals with minimizing existing spot exposure and is therefore not concerned with
earning profits with the futures position. As depicted in Figs. 3.1, 3.2, and 3.3, costs,
risk aversion, and expectations about potential gains in the futures position may lead
hedgers to not hedge fully but to underhedge or overhedge. In order to analyze these
effects on the firm’s hedging strategy in more detail, the optimal hedge ratio pre-
sented in (3.9) can be decomposed into a pure hedge component and a speculative
component:8

• Pure hedging demand:

HD =
Cov(ẽ1, f̃1)

V ( f̃1)
. (3.10)

• Speculative demand:

SD =
f̃1− f0− c
2λV ( f̃1)

1
x
. (3.11)

Expected futures returns, costs, and risk aversion affect the speculative demand.
In accordance with Heifner (1972, 1973), the speculative demand is zero if hedging
costs are absent and the futures market is unbiased (i.e., f̃1− f0 = 0). In addition,
the speculative demand approaches zero as risk aversion approaches infinity. The
representations of pure hedging and speculative demand will be used to examine
the relation between expected returns, costs and hedging activity in what follows.
The parameter for risk aversion is therefore set to λ = 3 and the size of the spot
position is set to x = 1.

It is important to note that the pure hedge shown in (3.10) is not affected by costs,
risk aversion and expectations about prices. Concerning the graphical representation
in Fig. 3.4a–f, the pure hedges are represented by the horizontal gray lines. For all
currency futures markets investigated in this study, the pure hedging ratio is close to

8 See e.g., Briys and Schlesinger (1993), Briys et al. (1993) and Duffie (1989).



3.2 The Mean-Variance Approach to Hedging 39

–0.1 –0.05 0.05 0.1

Return
0.5

1

1.5

2

2.5

3

h/x

(a) AUD

–0.04 –0.02 0.02 0.04

Return
0.5

1

1.5

2

2.5

3

h/x

(b) CAD

–0.06 –0.04 –0.02 0.02 0.04 0.06

Return

0.5

1

1.5

2

2.5

3

h/x

(c) CHF

–0.2 –0.1 0.1 0.2

Return

0.5

1

1.5

2

2.5

3
h/x

(d) EUR

–0.00001 –5·10–6 5·10–6 0.00001

Return

0.5

1

1.5

2

2.5

3

h/x

(e) JPY

–0.002 –0.001 0.001 0.002

Return
0.5

1

1.5

2

2.5

3

h/x

(f) MXP

Fig. 3.4 Speculative and pure hedging demand. The optimal hedge ratio h/x is the straight black
line. Return is defined as f̃1 − f0 − c. The speculative demand is the dashed line and the pure
hedging demand is the straight gray line

one. This means that the futures position is about the same size as the spot position.
Hence, the pure hedge is approximately the “equal and opposite” or “one to one”
hedge ratio.

All deviations from this “equal and opposite” hedge ratio are caused by the spec-
ulative demand. Let the pure hedge represent the “equal and opposite” hedge where
the futures position equals the spot position. Then this pure hedging strategy can be
labelled as full hedging strategy. Since the firm hedges fully if speculative demand is
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zero, deviations in speculative demand cause the firm to underhedge or overhedge,
respectively. The optimal hedge ratio is positive as long as

c < f̃1− f0 +2λxCov(ẽ1, f̃1). (3.12)

The firm underhedges if the hedge ratio is positive but smaller than the full hedge.
As shown in Table 3.2, this is the case if the speculative demand is negative, which in
turn is due to the hedging costs outweighing expected returns of the futures position.
Regarding Fig. 3.4, this is the case where h/x is left of the y-axis and above the
x-axis.

If hedging costs are zero and the futures market is unbiased, or, if hedging costs
are positive and equal to the futures market bias, the speculative demand is zero
and the optimal hedge ratio therefore reduces to the pure hedge. This full hedging
strategy is represented by the intersection of the hedge ratio with the HD− line
and the y-axis in Fig. 3.4. At this point, speculative demand is zero and therefore
the dashed SD− line intersects the x-axis. With growing expected returns, the firm
demands more futures contracts than necessary to reduce risk. Since the speculative
demand increases, the futures position is larger than the spot position. The firm
therefore overhedges its spot exposure. In Fig. 3.4 the SD− line represents the extra
demand for futures contracts that adds to the pure hedge HD− line. The overall

Table 3.2 Full, over-, and underhedging

Costs Speculative demand Hedging strategy Hedge ratio
c > f̃1− f0 SD < 0 Underhedging h/x < HD
c = f̃1− f0 SD = 0 Full hedging h/x = HD
c < f̃1− f0 SD > 0 Overhedging h/x > HD

C

Hedgers’ Surplus

Supply

Demand

Cs

(h/x)∗ h/x

Fig. 3.5 The hedgers’ surplus
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hedge ratio, which is the sum of pure hedge and speculative demand, therefore,
exceeds the full hedge. Hence, the firm overhedges.

3.2.4 The Value of the Futures Market

Since the hedge ratio is analogous to the quantity of futures contracts per spot posi-
tion demanded by the hedger, and the hedging cost is the price for hedging, (3.9)
can be regarded as the demand curve for hedging. The empirical results presented in
Fig. 3.1 point to a linear, negative relation between hedging costs and the demand for
futures contracts. The stylized Marshallian-type demand curve presented in Fig. 3.5
is therefore linear and downward sloping as well.9 Following Frechette (2000), the
supply curve is a horizontal line, where cs represents the price for hedging demanded
by the hedger’s broker. The hedgers’ surplus is the area above the horizontal supply
line and left of the demand curve.10

According to Frechette (2000), the hedgers’ surplus measures the value of the
futures market for the hedging firm. The hedgers’ surplus can be calculated as11

HS = ΩH−Ω0, (3.13)

where ΩH and Ω0 is the objective function presented in (3.5) with and without
hedging, respectively:

ΩH = −ẽ1x+( f̃1− f0− cs)h−λ (x2V (ẽ1)+h2V ( f̃1)−2xhCov(ẽ1, f̃1)),
(3.14)

Ω0 = −ẽ1x+( f̃1− f0− cs)0−λ (x2V (ẽ1)+02V ( f̃1)−2x0Cov(ẽ1, f̃1))
= −ẽ1x−λ (x2V (ẽ1)). (3.15)

Let, for simplicity, the spot commitment be standardized to x = 1. Inserting for ΩH
and Ω0 in (3.13) yields

HS = −ẽ1 +( f̃1− f0− cs)h−λ (V (ẽ1)+h2V ( f̃1)
− 2hCov(ẽ1, f̃1))− (−ẽ1−λ (V (ẽ1)))

= ( f̃1− f0− cs)h−λ (h2V ( f̃1)−2hCov(ẽ1, f̃1)). (3.16)

9 For a similar graphical representation of demand curves for hedging goods, see Frechette (2000)
and Jin and Koo (2006).
10 The graphical representation of the hedgers’ surplus resembles the standard consumers’ surplus
in economic theory.
11 An alternative derivation of the hedgers’ surplus is presented in the appendix.
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The next step is to solve the optimal hedge ratio given in (3.9) for the covariance
term

Cov(ẽ1, f̃1) =
− f̃1 + f0 + cs +2λhV ( f̃1)

2λ
, (3.17)

and inserting in (3.16) yields

HS = ( f̃1− f0− cs)h−λ (h2V ( f̃1)−2h(
− f̃1 + f0 + cs +2λhV ( f̃1)

2λ
))

= λh2V ( f̃1), (3.18)

which is equivalent to the result obtained by Frechette (2000).
Figure 3.6 presents the hedgers’ surplus as a function of risk aversion λ and

hedging costs c. The empirical results for the AUD, CAD, CHF , EUR, JPY , and
MXP series suggest a positive impact of risk aversion and a negative effect of hedg-
ing costs on the hedgers’ surplus. Hence, the value of the futures market increases
as firms become more risk averse. However, firms appreciate the futures market less
as hedging costs increase.

3.3 Minimum-Variance Hedging and Hedging Effectiveness

This section presents a well known and very popular hedging method, widely used in
theoretical and applied finance. Regarding the investigation in the previous sections,
this minimum-variance approach can be regarded as a component of the mean-
variance analysis. While the mean-variance approach is based on both the firm’s
expected profit and the variance of profit, the minimum-variance approach simply
deals with the variance. Although this approach is very practical and popular, it will
be shown that, compared to the mean-variance analysis, information is neglected.

3.3.1 Deriving the Pure Hedge

Applying the minimum-variance approach to the importer’s hedging problem leads
to the pure hedge presented in (3.10). To see this, recall that the variance of profits is

V (Π) = x2V (ẽ1)+h2V ( f̃1)−2xhCov(ẽ1, f̃1). (3.19)

The partial derivative with respect to h is

V (Π)
h

= 2hV ( f̃1)−2xCov(ẽ1, f̃1). (3.20)

The optimal hedge ratio is then given by

h
x

=
Cov(ẽ1, f̃1)

V ( f̃1)
, (3.21)
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Fig. 3.6 The hedgers’ surplus as a function of risk aversion and hedging costs

which is the pure hedge presented in (3.10). Hence the speculative demand is not
a component of the optimal hedge ratio anymore. Therefore risk aversion, hedg-
ing costs, and price expectations do not affect the minimum-variance hedge ratio.
Since this hedge is independent of the individual firm’s characteristics, such as
risk aversion and expectations, it is equal for all hedgers. Moreover, applying this
hedging method is very simple, since hedge ratios are based solely on price data
which are assumed to be available to the hedging firm.
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3.3.2 Hedging Effectiveness and Correlation

Minimum-variance hedging is indeed very popular. However, this popularity is not
only due to its simplicity, but also to its effectiveness with respect to reducing
the spot risk exposure. Following Heifner (1972) and Ederington (1979), hedging
effectiveness can be measured as the percent reduction in the variance of profits:

HE = 1− Variance with hedging
Variance without hedging

. (3.22)

Inserting (3.19) yields:

HE = 1− (
x2V (ẽ1)+h2V ( f̃1)−2xhCov(ẽ1, f̃1)
x2V (ẽ1)+02V ( f̃1)−2x0Cov(ẽ1, f̃1)

)

= 1− (
x2V (ẽ1)+h2V ( f̃1)−2xhCov(ẽ1, f̃1)

x2V (ẽ1)
)

=
−h2V ( f̃1)+2xhCov(ẽ1, f̃1)

x2V (ẽ1)
. (3.23)

Further, inserting the variance minimizing hedge h = xCov(ẽ1, f̃1)/V ( f̃1) yields

HE =
−( xCov(ẽ1, f̃1)

V ( f̃1) )2V ( f̃1)+2x( xCov(ẽ1, f̃1)
V ( f̃1) )Cov(ẽ1, f̃1)

x2V (ẽ1)

=
−( x2Cov(ẽ1, f̃1)2

V ( f̃1) )+2( x2Cov(ẽ1, f̃1)2

V ( f̃1) )

x2V (ẽ1)

=
Cov(ẽ1, f̃1)2

V ( f̃1)V (ẽ1)
(3.24)

which is in fact the squared correlation coefficient, since the correlation coefficient
is defined as

ρ =
Cov(ẽ1, f̃1)

std( f̃1)std(ẽ1)
(3.25)

with std(.) the standard deviation. Hence, the higher the correlation, the more effec-
tive the hedge is.12 If spot and futures prices are perfectly correlated (i.e., if ρ = 1),
Cov(ẽ1, f̃1) = std( f̃1)std(ẽ1) = V ( f̃1), since std( f̃1) = std(ẽ1), and the optimal
hedge ratio is

h
x

=
Cov(ẽ1, f̃1)

V ( f̃1)
=

V ( f̃1)
V ( f̃1)

= 1, (3.26)

12 For similar findings see e.g., Franckle (1980), Johnson (1960), McKinnon (1967), and Vukina,
Li, and Holthausen (1996).
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which is the “equal and opposite” hedge ratio.13 Hence, the futures position is the
same size as the spot position, and, since spot and futures prices are perfectly corre-
lated, the spot risk is eliminated. With perfect correlation, the “equal and opposite”
hedge ratio is optimal.

3.3.3 Optimal Hedge Ratios by Linear Regression

In the previous section, the squared correlation coefficient ρ2 was derived as a mea-
sure of hedging effectiveness. With respect to empirical research, ρ2 can be referred
to as the coefficient of determination R2. In fact, according to Brooks (2002, p. 134),
“one way to define R2 is to say that it is the square of the correlation coefficient (...).”
Ederington (1979) stresses that the coefficient of determination R2 is widely used
as a measure of hedging effectiveness.14 In general, R2 is the most common good-
ness of fit measure in linear regression analysis. Regarding hedging effectiveness,
R2 can be computed by regressing the spot price series on the futures price series.
Moreover, the optimal hedge ratio can be obtained by this regression:15

ẽt = α +β f̃t + ε̂t . (3.27)

The estimated slope coefficient β gives the optimal hedge ratio. The regression
results as well as the coefficient of determination R2 for the six currency futures
markets are shown in Fig. 3.7.

Note that the estimated betas are very close to the optimal hedge ratios, presented
in Table 3.3. In addition, squaring the correlation coefficients in Table 3.1 yields
results very similar to the R2, as shown in Fig. 3.7. The slight differences between
the values presented in Table 3.3 and the estimated hedge ratios in Fig. 3.7 are due
to the intercept in the regression analysis and due to rounding errors. The high hedg-
ing effectiveness, and hence the high correlation, becomes clear by inspecting the
scatterplots presented in Fig. 3.7. For all currency markets investigated, there is a
strong positive linear relationship between spot prices ẽt and futures prices f̃t . In
some cases, such as in the case of the CHF series, the approximation of the rela-
tionship through a linear regression line is so good that the regression line is almost
invisible or, in fact, covered by the single data points, respectively. In general, the

13 To make this point clearer, note that the optimal hedge ratio can be rewritten as

h
x

=
Cov(ẽ1, f̃1)

V ( f̃1)
=

Cov(ẽ1, f̃1)
std( f̃1)2

= ρ
std(ẽ1)
std( f̃1)

.

If spot and futures prices are perfectly correlated (i.e., ρ = 1) and share the same standard deviation
(i.e., std(ẽ1)

std( f̃1) = 1), the “equal and opposite” hedging strategy is optimal. See Haigh and Holt (2000)
for more information.
14 For additional information see Hauser and Neff (1993).
15 See e.g., Brooks (2002) and Lence and Hayes (1994).
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ẽt = 0.0018+0.9978 f̃t + ε̂t ; R2 = 0.99.

Futures Price

S
p

o
t 

P
ri

c
e

0.0064 0.0080 0.0096 0.0112 0.0128
0.0064

0.0072

0.0080

0.0088

0.0096

0.0104

0.0112

0.0120

0.0128

(e) JPY

ẽt = 0.0000+0.9888 f̃t + ε̂t ; R2 = 0.99.
Futures Price

S
p

o
t 

P
ri

c
e

0.080 0.088 0.096 0.104 0.112 0.120 0.128 0.136
0.08

0.09

0.10

0.11

0.12

0.13

0.14

(f) MXP

ẽt =−0.0067+1.0835 f̃t + ε̂t ; R2 = 0.98.

Fig. 3.7 Estimated hedging regression lines and data
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Table 3.3 Correlation and pure hedge ratios

AUD CAD CHF EUR JPY MXP
Sample 01/02/2001– 10/06/1992– 10/06/1992– 01/12/1999– 10/06/1992– 03/26/1996–

01/31/2006 01/31/2006 01/31/2006 01/31/2006 01/31/2006 01/31/2006
ρ 0.99576506 0.99940376 0.99939293 0.99967398 0.99891762 0.99161999
h/x 1.00249871 0.99949748 0.98986114 0.99518384 0.98746539 1.08144143

R2 as well as the betas are close to one for all series, suggesting an “equal and oppo-
site” hedging strategy to be optimal. The worst fit of the linear regression model
in this investigation is the case of Mexico. This is the only case where one can see
larger deviations of data points from the regression line in the scatterplot. However,
even in this case the R2 is 0.9833 and therefore very close to one. As already men-
tioned, the optimal pure hedge is a slight overhedge. The optimal futures position
is therefore larger than the spot position. This finding corresponds to the previous
graphical representations. Regarding the usefulness and applicability of regression
analysis for hedging, Benninga, Eldor, and Zilcha (1984, p. 158) note:

“The strength of the result derives from its generality (it is free from assumptions about
utility functions) and from the ease of its applicability (it requires only a regression analysis
to derive the optimal hedge ratio).”

However, its generality may also be considered its weakness since the hedge
ratio derived by linear regression may not represent the optimal hedge ratio with
respect to the firm’s utility function. It must be clear that information on the firm’s
risk aversion, expectations, and hedging costs are not taken into account using this
method.

3.4 Discussion

This chapter applies mean-variance and minimum-variance concepts to the hedging
problem of a representative importer facing exchange rate risk. Since the importer’s
problem is chosen to be almost identical to the importer’s problem in the previ-
ous chapter, this chapter can be regarded as an extension of the previously applied
expected utility framework. However, this extension and the consequential results
are quite considerable.

First, the mean-variance approach adds to the expected utility framework by
allowing a more detailed analysis of the effects of costs and expectations on the opti-
mal hedging decision. Using this method and price data, it is possible to quantify
these effects without the necessity of defining the firm’s utility function. In addition,
the effect of risk aversion can be modeled in detail. Hence, this approach offers
diverse insights into the individual firm’s characteristics and attitudes towards risk,
price expectations, and costs.

Second, the optimal hedge ratio can be decomposed into the pure hedge com-
ponent and the speculative component. It is in fact very important and interesting
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to differentiate between these two components, since the speculative component is
unique for each individual firm, while the pure hedge component is the same for
all firms. Hence, this analysis can be used to investigate why one firm hedges more
or less than another firm. Or, put differently, it can be used to approach the ques-
tion why single firms overhedge or underhedge instead of just minimizing or even
eliminating the existing spot exposure.

Third, this chapter briefly shows how to construct the equilibrium of futures
demand and futures supply in the futures market. The stylized Marshallian-type
demand curve is derived from the representative firm’s optimal hedging demand,
while futures supply is set constant for simplicity. Based on this basic representation
of the futures market, the hedgers’ surplus is derived graphically and analytically.
The hedgers’ surplus can be considered the value of the futures market for the hedg-
ing firm. It is shown in this chapter that the perceived value of the futures market
increases as risk aversion increases and hedging costs decrease.

The fourth contribution of this chapter leads back to the original problem of
the importing firm. Neglecting a single firm’s unique attitudes towards risk and
price expectations, and therefore neglecting the speculative component, minimum-
variance hedging is introduced as a simple and straightforward way to derive the
pure hedge. The only difference between the mean-variance and the minimum-
variance approach is the speculative component. Nevertheless, this method adds
some interesting insights into the analysis. Suppose the only interest of the hedg-
ing firm is to minimize the existing spot risk and therefore the variance of profit,
which would correspond to the risk reduction approach to hedging, as discussed in
Chap. 1. Then, the minimum-variance concept does not only tell the hedger how
many futures contracts to purchase, but also the expected effectiveness of the hedg-
ing strategy. That is, this hedging method gives the hedger the expected percent
reduction in risk, based on historical data. Since the measure for hedging effective-
ness is the squared coefficient of correlation between spot and futures prices, it is
very simple for the hedger to forecast the expected effectiveness of a single hedging
strategy and to compare different hedging strategies. This, together with the fact that
optimal hedge ratios can be obtained by simple linear regressions, explains the popu-
larity of this method. However, it is important to stress that this perceived strength of
the minimum-variance concept may also be considered a weakness. Neglecting firm
specific features and characteristics, such as risk aversion and expectations, may
lead to a suboptimal hedging strategy although the risk is technically minimized.
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Chapter 4
Corporate Risk Management in Balance-Sheet
Triggered Currency Crises

“In fact, the very distinction between hedging and speculation is
fuzzy; when the trader takes market positions on the basis of
expectations concerning relative price changes, he is
speculating insofar as he is not betting on a ‘sure thing’.”

Johnson (1960, p. 142).

4.1 Introduction

This chapter deals with the role of corporate risk management for macroeconomic
stability. Firms’ balance sheets and the financing-investment relationship are at the
center of this study. The interrelation of firms’ balance sheets and investment has
been extensively investigated in connection with monetary policy transmission and,
in particular, in connection with the balance sheet channel. Bernanke and Gertler
(1990, 1995), Bernanke and Lown (1991), Calomiris and Hubbard (1990), Gertler
and Gilchrist (1994), and Onliner and Rudebusch (1996) model investment as being
sensitive to current cash flows and net worth.1 A decrease in a firm’s cash flow
and, hence, in a firm’s net worth will decrease its ability to borrow. This leads to
investment contraction. An initial monetary shock, which worsens credit market
conditions, can therefore result in large cycles as described by the financial accel-
erator.2 The role of balance sheets in currency and financial crises are also well
recognized.3 Mishkin (1998, p. 13) for example states that:

“(...), there is another factor affecting balance sheets that can be extremely important in pre-
cipitating financial instability in emerging market countries that is not operational in most

1 Fazzari, Hubbard, and Petersen (1988) provide empirical evidence on the interdependence of firm
cash flow and investment. For more recent empirical facts, see e.g., Hu and Schiantarelli (1998),
Bond, Elston, Mairesse, and Mulkay (2003) and Mizen and Vermeulen (2005).
2 See Bernanke, Gertler, and Gilchrist (1996, 1999).
3 See e.g., Aghion, Bacchetta, and Bannerjee (2000a, 2000b, 2004), Céspedes, Chang, and Velasco
(2000) and Jeanne and Zettelmeyer (2005).

A. Röthig, Microeconomic Risk Management and Macroeconomic Stability,
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industrialized countries: unanticipated exchange rate depreciation or devaluation. Because
of uncertainty about the future value of the domestic currency, many nonfinancial firms,
banks and governments in emerging market countries find it much easier to issue debt if
the debt is denominated in foreign currency. (...) With debt contracts denominated in for-
eign currency, when there is an unanticipated depreciation or devaluation of the domestic
currency, the debt burden of domestic firms increases.”

This increased debt burden worsens firms’ balance sheets and therefore leads to
a decline in investment and economic activity. There are several empirical studies
that investigate balance sheet effects on investment induced by domestic currency
depreciation. Pratap, Lobato, and Somuano (2003) study the role of balance sheet
effects in the Mexican crisis in 1994. They find strong negative effects of for-
eign currency denominated debt on investment during episodes of exchange rate
depreciations. Echeverry, Fergusson, Steiner, and Aguilar (2003) find negative bal-
ance sheet effects on firms’ profitability in Colombia. Additionally, Carranza, Cayo,
and Galdón-Sánchez (2003) find negative effects of exchange rate depreciation on
investment in Peru. However, Benavente, Johnson, and Morandé (2003) do not
observe balance sheet effects in Chile. In addition, Bonomo, Martins, and Pinto
(2003) do not find empirical evidence on effects of foreign currency denominated
debt on investment in Brazil. They argue that the main reason for this is that large
firms in Brazil hedge against exchange rate variations where the government is
the net provider of hedging opportunities. Moreover, Gruben and Welch (2001,
p. 12) note that “(...) Brazilian private sector foreign liabilities were largely hedged
in ways that shifted the impact of the devaluation from the private to the public
sector.”4

With respect to crisis prevention, Krugman (2000, p. 90) notes that proposals for
reducing the risk of crisis involve doing something that will diminish the vulnera-
bility of countries to capital flight and the vulnerability of firms’ balance sheets to
exchange rate changes. Mishkin (2000) stresses that the underlying reasons for the
Asian crisis are microeconomic rather than macroeconomic, and points to the key
role played by financial and nonfinancial balance sheets. In fact, the Asian crisis was
largely unanticipated because most warning signals were based on macroeconomic
variables which were generally sound.5 Concerning the microeconomic reasons for
the Asian crisis, Harvey and Roper (1999, p. 114) note:

“Although Asian corporate managers did not initiate the crisis, deficiencies in their risk
management practices greatly exacerbated it. The decline of many corporations can be tied
directly to their failure to manage and control risk.”

With regard to currency and financial crises in Latin America, Galindo, Panizza,
and Schiantarelli (2003) point out that corporate hedging could serve to reduce

4 For more information on the conflict between government guarantees and private hedging activity,
see e.g., Burnside, Eichenbaum, and Rebelo (2001), Martinez and Werner (2002) and Galiani,
Yeyati, and Schargrodsky (2003).
5 See e.g., Corsetti, Pesenti, and Roubini (1998a, 1998b, 1998c) and Radelet and Sachs (2000).
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balance sheet problems.6 Moreover, the differences in the responses of investment
in Mexico and Brazil to exchange rate changes might be due to risk management.

This chapter builds on Röthig, Semmler, and Flaschel (2007), and proposes cor-
porate risk management as the adequate tool to approach the balance sheet and the
capital flight problem. Corporate risk management directly influences firms’ expo-
sure to specific risks and therefore investment’s sensitivity to cash flow variability.
Several different corporate risk management strategies and their effects on invest-
ment and output are discussed and compared. This chapter shows that corporate
hedging also serves to decrease the vulnerability of economies to capital flight.

Section 4.2 presents the basic Mundell–Fleming–Tobin (MFT) model introduced
by Rødseth (2000) and further developed by Flaschel and Semmler (2006). Sec-
tion 4.3 introduces linear risk management strategies. Based on simulation results,
the impact of hedging activity and speculation on economic stability are discussed.
The role of derivatives trading costs, as the main discrepancy between exchange
traded linear futures contracts and over-the-counter traded linear forwards contracts,
is investigated. In Sect. 4.4, nonlinear hedging strategies with currency options are
introduced into the model and compared to the linear hedging strategies. Section
4.5 discusses implications for economic stability of the different hedging strategies.
Moreover, the effects of a capital flight in these hedging scenarios are investigated.
Finally, Sect. 4.6 concludes this chapter.

4.2 The Basic Mundell–Fleming–Tobin Model

4.2.1 The Goods Market

The basic model consists of the goods market equilibrium curve (IS curve) and
the financial markets equilibrium curve (AA curve). The equilibrium in the goods
market is characterized by the condition that production Y equals aggregate demand
Y d (i.e., the sum of consumption C, investment I, government expenditure G, and
net exports NX):

Y = C(Y −δ K̄− T̄ )+ I(e)+ Ḡ+NX(Y,Ȳ ∗,e). (4.1)

Following Flaschel and Semmler (2006) and Röthig et al., (2007), the domestic
and foreign price levels are normalized to one for reasons of simplicity. Therefore,
real interest rates and real exchange rates need not be considered. Moreover, effects

6 Corporate hedging as a potential approach to solving balance sheet problems is not only discussed
with regard to currency and financial crises, but also with regard to monetary policy transmission.
Fender (2000a) investigates the impact of corporate risk management on the broad credit channel of
monetary policy and finds that corporate hedging strategies enable firms to diminish the impact of
monetary policy measures. For more information on the effects of financial derivatives on monetary
policy transmission, see Vrolijk (1997).
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of wealth and interest rates on consumption and investment are not modelled. The
basic model prefers to concentrate on the necessary variables and interrelations for
investigating the balance sheet driven crisis considered by Krugman (1999, 2000).7

Because of this, consumption depends only on disposable income. The capital stock
K̄, the rate of depreciation δ , and the lump-sum tax T̄ are given. Government expen-
diture Ḡ is given as well. Nevertheless, the definitions of investment and net exports
need some explanation. In this model the exchange rate has an impact on net exports
and on investment. As usual, net exports depend negatively on domestic output Y ,
positively on foreign output Ȳ ∗, and positively on the exchange rate e. A depreci-
ation of the domestic currency (i.e., an increase in e) makes domestic goods more
competitive and therefore leads to an increase in net exports (NXe > 0). If this was
the only effect on the goods market, the IS curve would be upward sloping in the
output – exchange rate phase space.

Assume that investment depends on the exchange rate as well. Firms finance
their investment merely through foreign currency denominated debt. This definition
of investment is based on Krugman (2000), who introduces an investment func-
tion where investment is constrained by firms’ net wealth.8 A sharp depreciation
of the domestic currency will increase firms’ debt measured in domestic currency
and therefore decrease their net worth shown in the balance sheet. This has negative
effects on the creditworthiness of the borrowing firm. The balance sheet problems
reduce the ability of firms to finance current investment, as described by the financial
accelerator, and therefore lead firms to cut back investment (Ie < 0).9

The investment function shown in Fig. 4.1 is downward sloping and nonlinear.
The nonlinearity is due to the assumption that exchange rate changes affect invest-
ment most strongly at intermediate values of e around steady state investment I(e0).
For low values of e, firms are not wealth constrained and investment is high. In this
situation balance sheet effects induced by exchange rate changes are rather weak.
On the other hand, if e is large and investment is already very depressed, additional
changes of the exchange rate do not have such a strong impact on the balance sheet
and therefore on investment. Flaschel and Semmler (2006) present further argu-
ments for the nonlinearity of the investment function. They note that for low values
of e and subsequent high investment demand, investment might be limited by supply
bottlenecks. In contrast, if e is high and investment is very depressed, there will still
be some investment projects that can be carried out, despite the reduced creditwor-
thiness of firms. Therefore, for very high and very low values of e, changes of the
exchange rate do not have such a strong impact on investment.

7 For more information on the model, see Flaschel and Semmler (2006) and Proaño, Flaschel, and
Semmler (2005).
8 See also Goodhart (2000).
9 With regard to the link between a firm’s net worth and investment, Bernanke et al. (1996, p. 2)
write that “(...) a fall in the borrower’s net worth, by raising the premium on external finance
and increasing the amount of external finance required, reduces the borrower’s spending and
production.”



4.2 The Basic Mundell–Fleming–Tobin Model 55

Fig. 4.1 The Krugman type
investment function
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This nonlinear investment function is the key element in the balance sheet driven
crisis model. The slope of the IS curve depends on the effects of e on Y . However,
the sign of this effect is ambiguous. At mid-range values of e, where investment
reacts strongly to exchange rate changes, these negative balance sheet effects may
dominate the positive competitiveness effects (Ie > NXe). This will cause the goods
market curve to bend backwards. In case of extraordinarily high or low values of
e where investment is not that sensitive to changes in the exchange rate, the com-
petitiveness effects outweighs the balance sheet effects (NXe > Ie). In this case the
goods market curve is upward sloping.

The adjustment process in the goods market is:10

Ẏ = βY (Y d−Y ) = βY [C(Y −δ K̄− T̄ )+ I(e)+ Ḡ+NX(Y,Ȳ ∗,e)−Y ]. (4.2)

Using the implicit function theorem, the slope of the IS curve can be derived:

Y ′(e) =− Ie +NXe

CY +NXY −1
. (4.3)

It is assumed that CY +NXY < 1. Therefore, the denominator in (4.3) is negative. The
sign of the numerator is ambiguous. It depends on whether competitiveness effects
outweigh negative effects on investment (NXe > Ie), or whether exchange rate effects
on investment dominate the competitiveness effects (Ie > NXe). If NXe > Ie, then the
numerator is positive and the IS curve slopes upward (Y ′(e) > 0). If Ie > NXe, then
the numerator is negative and Y ′(e) < 0. Hence, the IS curve is upward sloping if
NXe > Ie and backward bending otherwise.

10 For a similar formulation, see Blanchard and Fischer (1989, p. 540).
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4.2.2 The Financial Markets

The financial sector in this model is represented by the financial markets equilibrium
curve (AA curve). The AA curve consists of the following equations:

Private wealth: Wp = M0 +B0 + eFp0. (AA1)
LM curve: M = m(Y,r), mY > 0,mr < 0. (AA2)
Demand for foreign bonds: eFp = g(ξ ,Wp), gξ < 0,gWp ∈ (0,1). (AA3)
Demand for domestic bonds: B = Wp−m(Y,r)−g(ξ ,Wp). (AA4)
Expected depreciation: ε = βε(

e0
e −1), εe ≤ 0. (AA5)

Risk premium: ξ = r− r̄∗− ε . (AA6)
Foreign exchange market: F̄∗ = Fp +Fc. (AA7)

Private sector wealth is presented in (AA1). It is defined as a portfolio of domes-
tic money M0, foreign bonds eFp0, and domestic bonds B0. The respective demand
functions for money, foreign bonds, and domestic bonds are presented in (AA2),
(AA3), and (AA4). Money demand depends positively on output Y and negatively
on the interest rate r, as commonly assumed in the LM-relation. The demand for
foreign bonds depends negatively on the risk premium ξ and positively on private
sector wealth Wp, where the partial derivative of eFp with respect to private sector
wealth gWp cannot exceed unity. The demand for domestic bonds is then defined
as the difference between private wealth and the demands for money and foreign
bonds. The expected rate of domestic currency depreciation is defined in (AA5).
This definition is a representation of the standard regressive expectations mecha-
nism, as it is extensively used in Rødseth (2000). Note that ε(e0) = 0, where e0 is
the steady state exchange rate level. Economic agents have perfect knowledge of the
equilibrium exchange rate and, therefore, expect the actual exchange rate to adjust
to the steady state value after the occurrence of a shock. Flaschel and Semmler
(2006) call these expectations asymptotically rational because they allow agents to
behave forward looking. Moreover, this assumption ensures that the instability in
the model is not caused by the expectations formation process. The risk premium ξ

presented in (AA6) is defined as the difference between the domestic and the foreign
interest rate, minus the expected rate of currency depreciation. Equation (AA7) is
the equilibrium condition for the foreign exchange market where the total amount
of foreign bonds held in the domestic economy F̄∗ equals domestic private foreign
bond holdings eFp plus the central bank’s foreign bond holdings Fc. The financial
markets equilibrium curve (AA curve) can be derived by inserting (AA1) and (AA6)
into (AA3):

eFp = g(r(Y,M0)− r̄∗−βε(
e0

e
−1),M0 +B0 + eFp0). (4.4)

The dynamics in the financial markets are the following:

ė = βe[g(r(Y,M0)− r̄∗−βε(
e0

e
−1),M0 +B0 + eFp0)− eFp0]. (4.5)
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Fig. 4.2 The IS-AA model e
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The slope of the AA curve is determined by the implicit function theorem:

e′(Y ) =−
gξ ∗ rY

−gξ ∗ εe +(gWp −1)∗Fp0
< 0. (4.6)

The numerator in (4.6) is negative since gξ < 0 and rY > 0. The denominator is
negative as well, since εe ≤ 0, gWp ∈ (0,1), and Fp0 ≥ 0. Therefore, the AA curve is
downward sloping (i.e., e′(Y ) < 0). In the following sections, the AA curve will be
assumed to be linear to ease graphical expositions.

4.2.3 The Multiple Equilibria MFT Model

Figure 4.2 shows the graphical representation of the IS-AA model. Due to the dif-
ferent reactions of Y to e, depending on Ie and NXe, the IS curve is S-shaped. This
nonlinear IS curve and the strictly downward sloping AA curve have three equilib-
ria.11 Two equilibria are situated on the upward sloping segments of the IS curve (E1
and E3) and one equilibrium is on the backward bending segment of the IS curve
(E2). Hence, in equilibria E1 and E3 the competitiveness effect dominates the bal-
ance sheet effects (NXe > Ie), for which reason the overall effect of the exchange
rate on output is positive (i.e., Y ′(e) > 0). However in equilibrium E2, balance sheet
effects outweigh competitiveness effects (Ie > NXe). Therefore, the effect of e on Y
is negative (i.e., Y ′(e) < 0), and the IS curve bends backward.

The three equilibria presented in Fig. 4.2 represent three different states of the
economy. Equilibrium E1 represents the stable “good equilibrium” with high output

11 Note that the AA curve needs to be sufficiently steep for the model to have three equilibria.
The higher the elasticity of substitution between domestic and foreign bonds, the steeper the AA
curve is, as measured by gξ . According to Flaschel and Semmler (2006), gξ is a measure of capital
mobility. For a representation of the IS-AA model with one equilibrium, see Flaschel and Semmler.
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Table 4.1 Competitiveness vs. balance sheet effects and output

Competitiveness vs. The effect of Stability of
balance sheet effects e on Y equilibrium
NXe > Ie Positive (Y ′(e) > 0) Stable
NXe < Ie Negative (Y ′(e) < 0) Unstable

and a low exchange rate. E2 represents the “fragile intermediate equilibrium,” and
E3 is the stable “crisis equilibrium” with low output and a high exchange rate.12 The
impact of the exchange rate on output, depending on competitiveness and balance
sheet effects, and the stability of the respective equilibria are given in Table 4.1.

Now suppose the economy is initially in the fragile intermediate equilibrium E2.
In this situation a depreciation of the domestic currency (i.e., an increase in e) leads
the economy to the crisis equilibrium E3. The result is high output loss, from Y2 to Y3
in Fig. 4.2. In contrast, if the domestic currency appreciates, the economy moves into
a boom situation (E1) with output expansion from Y2 to Y1. In this fragile situation
(E2), firms are given the opportunity to directly manage their exposure to currency
risk (i.e., Ie), which indirectly impacts the fragility of the entire economy.

4.3 Linear Hedging and Speculation in the MFT Model

4.3.1 The Hedging Methodology and the Investment Function

In this section firms can trade linear financial derivatives (i.e., futures and forwards)
to influence their investment’s sensitivity to the exchange rate.13 A depreciation of
the domestic currency (i.e., an increase in e) increases the value of foreign currency
denominated debt in terms of the domestic currency. Therefore, the depreciation
negatively affects the balance sheet of firms. Since a balance sheet mirrors the net
worth of a firm and therefore its credit worthiness, this may lead to credit rationing
in cases where large depreciations occur.14 In contrast, if the domestic currency
appreciates, the value of the debt of firms is reduced, which in turn leads to an
increase in their credit worthiness.

In general, a depreciation induces a loss on the firms if the debt has to be settled
or if specific debt payments occur after the depreciation. Figure 4.3 presents the
value of a single payment depending on the exchange rate. Now suppose that firms

12 The stability properties of the equilibria are derived in Appendix B.
13 Derivative securities may be grouped into linear and nonlinear instruments. Futures and forwards
are linear instruments since these contracts obligate the holder to buy or sell an underlying asset
on a known future date at a specific price. Nonlinear instruments like options, in contrast, give the
holder the right, but not the obligation, to buy or sell an asset on a known future date at a certain
price. For more information, see e.g., Chew (1996), Hull (2000) and Neftci (2000).
14 Mishkin (1998, p. 10) writes that “net worth performs a similar role to collateral.”
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Fig. 4.3 Firm’s payoff
depending on e
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have the possibility of entering into linear futures contracts to either hedge (i.e.,
reduce the existing spot risk) or speculate (i.e., take on risk). In this model, futures
trading activity h f ut impacts the investment function I(e,h f ut) as follows:

I(e,h f ut) = I(e0)− (ArcTan(e)−h f ut ∗ArcTan(e))− c f ut ∗h f ut , (4.7)

with the costs associated with futures trading given by c f ut . It is assumed that futures
demand hd

f ut equals futures supply hs
f ut :

hd
f ut = hs

f ut = h f ut . (4.8)

Assume that firms want to trade futures to hedge their spot currency risk. This spot
risk is represented by the ArcTan(e)–term in (4.7). If this risk is to be reduced, then
the second term in the brackets h f ut ∗ArcTan(e) must at least partially offset this
spot risk term. Hence, h f ut must take a value between zero and one (0 ≤ h f ut ≤ 1).
If h f ut = 0, there is no demand for futures and therefore no hedging activity. In this
case the investment function is:

I(e,h f ut) = I(e0)−ArcTan(e), (4.9)

which corresponds to the graphical representation of the Krugman (2000) invest-
ment function, presented in Fig. 4.1.

With increasing hedging activity, the risk term in the brackets in (4.7) decreases.
Hence, for values of h f ut between 0 and 1, the futures position partly offsets the spot
exposure to currency risk. If h f ut = 1, the firm is perfectly hedged, since negative
effects of e on investment are completely offset by positive effects of e on the futures
position (i.e., ArcTan(e)−h f ut ∗ArcTan(e) = 0 in (4.7)).

The assumption that perfect hedges and, therefore, the potential to eliminate
existing spot risks exist may at first appear unrealistic. However, it has been shown
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in Chap. 3 that hedging strategies using linear regression are highly effective in
reducing exchange rate risk.15 Moreover, the assumption that perfect hedging is
possible is widely used in the literature. Benninga et al. (1985), Kawai and Zilcha
(1986), and Zilcha and Broll (1992), among others, base the “full-hedging theo-
rem” and the “Separation theorem” on the assumption that unbiased derivatives
markets exist. These derivatives are perfectly correlated to the underlying spot posi-
tion and therefore allow for perfect hedging. These authors conclude that if perfect
hedging is possible, then firms will tend to fully hedge their spot exposure (i.e.,
the “full-hedging theorem” holds). This, in turn, leads to the “Separation theorem”
which states that the export decision does not depend on expectations, or firm’s risk
behavior. Therefore, hedging promotes international trade.16

The model in this chapter, however, does not rely on the assumption that perfect
hedging opportunities necessarily lead to the full hedging of spot risk. As discussed
in Chap. 3, using the mean-variance hedging approach, a firm’s optimal hedging
strategy may diverge from the variance-minimizing hedge. This is due to the firm
specific speculative component of the optimal hedge. The hedging approach in this
chapter builds on this finding, and is therefore broader in perspective by allowing
firms to partly hedge, perfectly hedge, not hedge at all, or even speculate using
financial derivatives.

A perfect hedge in this model is a simple “one to one” or “equal and opposite”
hedge, which corresponds to the pure hedge derived in Chap. 3.17 Hence, if the firm
hedges perfectly, the futures position is as large as the spot position (i.e., h f ut = 1).
Since the spot price for foreign exchange (es

T ) is assumed to equal the price for
foreign exchange in futures markets (e f

T ) at futures delivery date, this can be easily
seen by calculating the optimal hedge ratio:18

β =
cov(e f

T ,es
T )

var(e f
T )

=
var(e f

T )

var(e f
T )

= 1. (4.10)

15 In Sect. 3.3, the squared correlation coefficient ρ2 and the coefficient of determination R2,
between spot and futures prices, are derived as measures of hedging effectiveness. For all currency
futures markets investigated, ρ2 and R2 are close to one. A minimum-variance hedging strategy
would therefore almost eliminate the existing spot exposure.
16 For more information on the “full-hedging theorem” and the “Separation theorem” see Broll
and Wahl (1992), Broll et al. (1995), Broll and Eckwert (1998, 2000), and Zilcha and Broll (1992).
Broll and Eckwert (1996) build on the assumption of perfect hedging and model perfect cross
hedging. Cross hedging is important if derivatives markets do not exist for the spot position. Here,
derivatives on other assets that are correlated with the spot position should be used. Broll (1997)
points out that the two assets involved have to behave similar for the cross hedge to be successful. If
the correlation between the assets is perfect, then perfect hedging is possible. For more information
on cross hedging, see Anderson and Danthine (1981) and Eaker and Grant (1987).
17 Since, in this setting, a full hedge eliminates spot risk, the terms full hedge and perfect hedge
can be used interchangeably.
18 See Sect. 3.3. See also Duffie (1989, p. 207) and Röthig, Semmler and Flaschel (2009) for simple
numerical examples of linear hedging strategies.
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Hence, the optimal hedge ratio equals the “equal and opposite” hedge (i.e., β =
h f ut = 1). This similarity between the naive hedge and the optimal hedge, based
on the assumption that es

T = e f
T , has some empirical foundation. Fung and Leung

(1991) find empirical evidence that the naive “equal and opposite” hedging strategy
performs similar to optimal hedge ratios. Irrespective of how the perfect hedge ratio
is calculated, if firms are perfectly hedged, investment is not exposed to currency
risk anymore. Therefore, investment remains on its steady state level I(e0) minus
the hedging costs c f ut :

I(e,h f ut) = I(e0)− c f ut . (4.11)

Table 4.2 summarizes the investment functions depending on the hedging strat-
egy. For a graphical representation on how this linear hedging strategy works, see
Fig. 4.4. Here, the spot risk of a single payment, as presented in Fig. 4.3, is perfectly
hedged. Since the spot position generates losses if e increases, the futures position
must generate profits if e increases. Hence, the futures position must be long in the
exchange rate e. The illustrated perfect “equal and opposite” linear hedging strat-
egy (i.e., h f ut = 1), with balanced gains and losses from spot and futures positions,
always yields a zero payoff.

It is important to note that with this linear hedging strategy the firms do not
benefit if the domestic currency appreciates. If the spot position generates profits
due to an appreciation, the futures position will generate losses. Hence, the payoff

Table 4.2 Linear hedging and the investment function

Hedging strategy Investment function
No hedge I(e,h f ut) = I(e0)−ArcTan(e)
Partial hedge I(e,h f ut) = I(e0)− (ArcTan(e)−h f ut ∗ArcTan(e))− c f ut ∗h f ut

Full hedge I(e,h f ut) = I(e0)− c f ut

Fig. 4.4 Firm’s perfectly
hedged payoff e

Payoff

e0

Profit

Loss Spot
Position

Position

Futures
Position

Hedged
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of this perfect linear hedging strategy is again zero. If all single payments of firms
are perfectly hedged in this way, the investment function is independent of exchange
rate changes.

4.3.2 Speculation and the Investment Function

Now suppose that firms want to trade futures contracts not to reduce spot risk, but
to take on more risk. In this case, the second term in the brackets in (4.7) has to add
to the first term in the brackets, which represents spot risk. Therefore, in order to
analyze speculation h f ut must take negative values (i.e., speculation is assumed to
be negative hedging). Assume that, for example, h f ut =−0.5. Then the investment
function is:

I(e,h f ut) = I(e0)− (ArcTan(e)− (−0.5)∗ArcTan(e))− c f ut ∗ |−0.5|
= I(e0)−1.5∗ArcTan(e)−0.5∗ c f ut . (4.12)

Note that the trading costs c f ut have been multiplied with the absolute value of
h f ut in order to guarantee that the costs affect investment negatively. The futures
position in (4.12) adds to the already existing spot exposure. Hence, the sensitivity
of investment to exchange rate changes is increased. Figure 4.5 presents this risk-
taking strategy. The slope of the speculative position is steeper than the slope of the
original spot position. This makes clear the increased sensitivity of the cash flow
to exchange rate changes. Note however that not only potential losses in the case
of a depreciation are increased. Potential profits in the case of an appreciation are
increased as well. Therefore, speculation can make sense if the domestic currency
is expected to appreciate.

Fig. 4.5 Firm’s payoff plus
speculation

e

Payoff

e0

Profit

Loss Spot
Position

Speculative
Position
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4.3.3 Simulation of the Basic Model

In this section the basic model without derivatives trading is simulated in order to
get more insights into the mechanisms of the model. The investment function is:

I(e) = I(e0)−b1 ∗ (ArcTan(b2 ∗ e)−h f ut ∗ArcTan(b2 ∗ e))− c f ut ∗ |h f ut |, (4.13)

where I(e0) = 0, b1 = 100, and b2 = 0.1. Figure 4.6a presents the original investment
function without futures trading (h f ut = 0). This ArcTan investment function is a
fairly good representation of the Krugman (2000) function shown in Fig. 4.1.

Next, this investment function is introduced into the IS curve of the model:

a1 ∗e3 + I(e0)−b1 ∗ (ArcTan(b2 ∗e)−h f ut ∗ArcTan(b2 ∗e))−c f ut ∗ |h f ut |−Y = 0,
(4.14)

where a1 ∗ e3 represents net exports. The focus in this IS representation is on the
interaction of output Y and the exchange rate e. Other variables and relations,
like consumption C and government expenditure Ḡ, are set to zero for reasons of
simplicity. The IS relation with a1 = 0.0001 is the following:

0.0001∗e3−100∗ (ArcTan(0.1∗e)−h f ut ∗ArcTan(0.1∗e))−c f ut ∗ |h f ut |−Y = 0.
(4.15)

Figure 4.6b shows the IS curve without futures trading (h f ut = 0). In the mid-range
of e, where e is approximately between −50 and 50, the IS curve bends backwards.
Hence, the balance sheet effects outweigh competitiveness effects (i.e., Ie > NXe).
For values of e < −50 and e > 50, effects on net exports dominate effects on
investment (i.e., NXe > Ie). Therefore, the IS curve is upward sloping.
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Fig. 4.6 ArcTan investment function and IS curve
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4.3.4 Simulation of Hedging Activity

In this section, linear corporate hedging strategies are simulated in the model.
Futures trading activity h f ut , therefore, ranges from 0 to 1.19 Figure 4.7 presents
the investment function and the respective IS curve with different hedging-levels
(h f ut = 0, h f ut = 0.5, and h f ut = 1). With increasing hedging activity h f ut , the invest-
ment function linearizes, which, in turn, reduces the backward bending segment of
the IS curve. Although the investment function is linear if firms are perfectly hedged
(h f ut = 1), the IS curve is still nonlinear. This is due to the definition of net exports.
If the investment function is perfectly hedged, the IS curve slopes strictly upwards.
There is no backward bending segment and, therefore, there are no multiple equilib-
ria. To stress this point, a very simple representation of the AA curve is introduced
into the model. Again, variables and relations that do not affect the “Y−e interface”
are neglected for simplicity. The AA curve is simply defined as e+Y = 0.

Figure 4.8 presents the IS-AA model with different levels of futures trading activ-
ity h f ut = 0, h f ut = 0.5, and h f ut = 1. If firms do not hedge (h f ut = 0), there are three
equilibria. If half of the spot exposure is hedged (h f ut = 0.5), there are still three
equilibria. However, the potential magnitudes of crises, as well as of booms, are
reduced. This is because spot losses and futures profits (or spot profits and futures
losses, respectively) are increasingly balanced with growing hedging activity h f ut .
If investment is perfectly hedged (h f ut = 1), only the intermediate steady state equi-
librium remains. Figure 4.9 presents the IS-AA model with h f ut ranging from 0
to 1. Again, if firms are perfectly hedged (h f ut = 1), there is only one equilibrium
determined by the intersection of the AA-plane with the IS curve. With decreasing
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Fig. 4.7 Investment function and IS curve with linear hedging, h f ut = 0 (black line), h f ut = 0.5
(dashed line), and h f ut = 1 (gray line)

19 Futures trading costs are set to zero (c f ut = 0).
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Fig. 4.8 IS-AA model with
linear hedging, h f ut = 0 (black
line), h f ut = 0.5 (dashed line),
and h f ut = 1 (gray line)
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Fig. 4.9 IS-AA model with h f ut ranging from 0 to 1

hedging activity (i.e., h f ut going from 1 to 0), the backward bending segment of the
IS curve increases, which leads to multiple equilibria.

4.3.5 Simulation of Speculation

In this section, futures trading activity h f ut is in the range [−1,0]. Again, h f ut = 0
is the case without futures trading and therefore without speculation. If h f ut = −1,
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–300 –200 –100 100 200 300
Y

–200

–100

100

200

e

Fig. 4.10 IS-AA model with speculation, h f ut = 0 (black line), h f ut = −0.5 (dashed line), and
h f ut =−1 (gray line)

firms double their exposure to currency risk. In general, speculation is not bound
to doubling the existing spot risk. Analyzing futures trading for values h f ut < −1,
however, does not yield additional insights. Therefore, this investigation is restricted
to the range −1≤ h f ut ≤ 0 of futures trading activity.

Figures 4.10 and 4.11 present the effect of speculation in the IS-AA model.
While the backward bending segment of the IS curve decreases if firms hedge, here,
the backward bending segment increases with increasing speculation. This, in turn,
leads to an increased potential magnitude of recessions and booms.20

4.3.6 The Role of Trading Costs: Forwards Versus Futures

There is one main difference and one main similarity between futures and forwards
contracts. The similarity concerns the payoff functions. Both types of contracts call
for future delivery of a standard amount of foreign exchange at a fixed time, place,
and price. The main difference applies to the different ways these contracts are
traded.21 Forwards are traded over-the-counter (OTC). These OTC products are,
in general, “custom-made” concerning timing and size of the contracts. However,
since forward contracts are not standardized, these products are not available at
small contract sizes. Small amounts of foreign exchange cannot be traded with these

20 Note that, again, futures trading costs are set equal to zero. Their role will be discussed in the
next section.
21 For a brief comparison of futures and forwards, see Eiteman, Stonehill, and Moffett (2004).
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Fig. 4.11 IS-AA model with h f ut ranging from −1 to 0

Table 4.3 Relative OTC to CME FX futures contract size (08/04/2005)
OTC contract size CME contract size OTC to CME

Australian Dollar (AUD) 1,000,000 AUD 100,000 AUD 10
British Pound (GBP) 1,000,000 GBP 62,500 GBP 16
Canadian Dollar (CAD) 1,000,000 USD 100,000 CAD 14.8588
Euro FX (EUR) 1,000,000 EUR 125,000 EUR 8
Japanese Yen (JPY) 1,000,000 USD 12,500,000 JPY 9.4517
Swiss Franc (CHF) 1,000,000 USD 125,000 CHF 11.0375
Data source: Chicago Mercantile Exchange (CME): FX position management

contracts. Table 4.3 presents a comparison between currency forwards and futures
contract sizes. The large contract sizes in OTC markets may pose a barrier to small
firms’ hedging activities, as discussed in Röthig et al. (2009).22 Although the size
of OTC contracts may be considered a disadvantage, there is at least one demon-
strative advantage compared to standardized futures contracts. OTC derivatives are
“zero-sum games.” That means that they are free of costs. Since there are no costs,
OTC derivatives are off-balance-sheet items as long as no collateral is demanded by
the market maker.23 This, in turn, might be a disadvantage with respect to market
transparency and the counterpart’s default risk.24

22 For more information on firms size and hedging, see Fender (2000b), Mian (1996), Géczy et al.
(1997) and Pennings and Garcia (2004).
23 See Garber (1998).
24 For more details on this subject, see Dodd (2000, 2002).
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Investigating the costs of futures trading, or futures prices respectively, is not as
straightforward as the investigation of costs of their “OTC counterparts”. In regard
to futures prices, Duffie (1989, p. 11) notes: “A ‘futures price’ is something of a
misnomer, for it is not a price at all.” Therefore, it is reasonable to take a closer
look at futures trading. Futures are traded on organized exchanges, where they are
marked to market on a daily basis. Two types of clearing margin requirements can
be distinguished:

1. Initial margin or collateral: The initial deposit is required when a position is
opened or increased.25 According to Clifton (1985, p. 376), the initial margin
can be considered a “(...) good faith deposit to ensure that a buyer or seller of
a futures contract will adhere to the terms of the contract, i.e., a performance
guarantee.”

2. Variation margin: The daily resettlement payments. The initial margin is adjusted
on a daily basis. Since the changes of value of the futures position can be positive
or negative, the related variation margin can be positive and negative as well.
Therefore, the variation margin requirements cannot generally be regarded as a
price or a cost.26

In this model, the initial margin, which has to be deposited when the futures
position is opened, is regarded a cost, since it reduces the financial means of the
firms and therefore the amount at their disposal for investment. The variation margin
is not considered, since there are only two time periods in the model.

Table 4.4 shows initial margins and maintenance requirements for currency
futures traded at the Chicago Mercantile Exchange (CME) in total value, as well
as in percentage of contract size.27 The initial margins for non-members range
from 1.93% (Canadian Dollar futures contract) to 7.96% (Brazilian Real futures
contract) of contract size. The initial margins for members equal the maintenance
requirements and range from 1.43% (Canadian Dollar futures contract) to 5.69%
(Brazilian Real futures contract) of contract size.28

The investment functions with the perfect linear hedging strategies are presented
in Fig. 4.12. Since the payoffs of futures equal the payoffs of forwards, the only
difference between these two products are the inherent costs. Therefore, the dif-
ference between the investment function, resulting from a perfect futures hedging

25 There a several synonyms for initial margin. At the Eurex the term “additional margin” is used.
The Chicago Mercantile Exchange (CME) uses the term “performance bond.” Other synonyms are
“original margin,” “earnest money,” and “good faith deposit.”
26 For more details on futures trading see e.g., Röthig (2004).
27 The maintenance performance bond shown in Table 4.4 is the set minimum value that the trader
must maintain in his account. For example, if a futures position moves against a trader and reaches
the minimum maintenance value, a margin call may be required.
28 Members are brokers or traders registered with the exchange. Initial requirements and mainte-
nance requirements can and do change according to market action. The rates in Table 4.4 are from
July 2005.



4.3 Linear Hedging and Speculation in the MFT Model 69

Ta
bl

e
4.

4
C

M
E

cu
rr

en
cy

fu
tu

re
s:

Pe
rf

or
m

an
ce

bo
nd

re
qu

ir
em

en
ts

(0
7/

26
/2

00
5)

C
ur

re
nc

y
Tr

ad
er

C
on

tr
ac

ts
iz

e
In

iti
al

m
ar

gi
n

M
ai

nt
en

an
ce

O
ri

gi
na

l
In

U
S

D
ol

la
rs

To
ta

l(
$)

%
to

co
nt

ra
ct

si
ze

To
ta

l(
$)

%
to

co
nt

ra
ct

si
ze

C
ze

ch
K

or
un

a
(C

ZK
)

N
on

-m
em

be
r

4,
00

0,
00

0
C

Z
K

15
2,

52
0

3,
51

0
2.

30
2,

60
0

1.
70

M
em

be
r

4,
00

0,
00

0
C

Z
K

15
2,

52
0

2,
60

0
1.

70
2,

60
0

1.
70

H
un

ga
ri

an
Fo

ri
nt

(H
U

F
)

N
on

-m
em

be
r

30
,0

00
,0

00
H

U
F

14
4,

69
0

3,
37

5
2.

33
2,

50
0

1.
72

M
em

be
r

30
,0

00
,0

00
H

U
F

14
4,

69
0

2,
50

0
1.

72
2,

50
0

1.
72

Po
lis

h
Zl

ot
y

(P
LN

)
N

on
-m

em
be

r
50

0,
00

0
PL

N
13

0,
55

0
3,

78
0

2.
89

2,
80

0
2.

14
M

em
be

r
50

0,
00

0
PL

N
13

0,
55

0
2,

80
0

2.
14

2,
80

0
2.

14
Au

st
ra

lia
n

D
ol

la
r

(A
U

D
)

N
on

-m
em

be
r

10
0,

00
0

A
U

D
52

,8
20

1,
41

8
2.

68
1,

05
0

1.
98

M
em

be
r

10
0,

00
0

A
U

D
52

,8
20

1,
05

0
1.

98
1,

05
0

1.
98

N
or

w
eg

ia
n

K
ro

ne
(N

O
K

)
N

on
-m

em
be

r
2,

00
0,

00
0

N
O

K
22

7,
00

0
6,

88
5

3.
03

5,
10

0
2.

24
M

em
be

r
2,

00
0,

00
0

N
O

K
22

7,
00

0
5,

10
0

2.
24

5,
10

0
2.

24
Sw

ed
is

h
K

ro
na

(S
E

K
)

N
on

-m
em

be
r

2,
00

0,
00

0
SE

K
19

2,
40

0
6,

75
0

3.
50

5,
00

0
2.

59
M

em
be

r
2,

00
0,

00
0

SE
K

19
2,

40
0

5,
00

0
2.

59
5,

00
0

2.
59

B
ri

tis
h

Po
un

d
(G

B
P

)
N

on
-m

em
be

r
62

,5
00

G
B

P
89

,7
75

1,
75

5
1.

95
1,

30
0

1.
44

M
em

be
r

62
,5

00
G

B
P

89
,7

75
1,

30
0

1.
44

1,
30

0
1.

44
C

an
ad

ia
n

D
ol

la
r

(C
A

D
)

N
on

-m
em

be
r

10
0,

00
0

C
A

D
62

,6
40

1,
21

5
1.

93
90

0
1.

43
M

em
be

r
10

0,
00

0
C

A
D

62
,6

40
90

0
1.

43
90

0
1.

43
E

ur
o

F
X

(E
U

R
)

N
on

-m
em

be
r

12
5,

00
0

E
U

R
13

6,
52

5
3,

10
5

2.
27

2,
30

0
1.

68
M

em
be

r
12

5,
00

0
E

U
R

13
6,

52
5

2,
30

0
1.

68
2,

30
0

1.
68

(c
on

tin
ue

d)



70 4 Corporate Risk Management in Balance-Sheet Triggered Currency Crises

Ta
bl

e
4.

4
(c

on
tin

ue
d)

C
ur

re
nc

y
Tr

ad
er

C
on

tr
ac

ts
iz

e
In

iti
al

m
ar

gi
n

M
ai

nt
en

an
ce

O
ri

gi
na

l
In

U
S

D
ol

la
rs

To
ta

l(
$)

%
to

co
nt

ra
ct

si
ze

To
ta

l(
$)

%
to

co
nt

ra
ct

si
ze

Ja
pa

ne
se

Ye
n

(J
P

Y)
N

on
-m

em
be

r
12

,5
00

,0
00

JP
Y

95
,4

87
.5

2,
70

0
2.

82
2,

00
0

2.
09

M
em

be
r

12
,5

00
,0

00
JP

Y
95

,4
87

.5
2,

00
0

2.
09

2,
00

0
2.

09
Sw

is
s

Fr
an

c
(C

H
F

)
N

on
-m

em
be

r
12

5,
00

0
C

H
F

75
,5

00
1,

89
0

2.
50

1,
40

0
1.

85
M

em
be

r
12

5,
00

0
C

H
F

75
,5

00
1,

40
0

1.
85

1,
40

0
1.

85
M

ex
ic

an
Pe

so
(M

X
P

)
N

on
-m

em
be

r
50

0,
00

0
M

X
P

55
,3

72
.5

1,
87

5
3.

38
1,

50
0

2.
70

M
em

be
r

50
0,

00
0

M
X

P
55

,3
72

.5
1,

50
0

2.
70

1,
50

0
2.

70
B

ra
zi

lia
n

R
ea

l(
B

R
R

)
N

on
-m

em
be

r
10

0,
00

0
B

R
R

43
,9

15
3,

50
0

7.
96

2,
50

0
5.

69
M

em
be

r
10

0,
00

0
B

R
R

43
,9

15
2,

50
0

5.
69

2,
50

0
5.

69
N

ew
Ze

al
an

d
D

ol
la

r
(N

E
D

)
N

on
-m

em
be

r
10

0,
00

0
N

E
D

43
,5

60
1,

68
8

3.
87

1,
25

0
2.

86
M

em
be

r
10

0,
00

0
N

E
D

43
,5

60
1,

25
0

2.
86

1,
25

0
2.

86
R

us
si

an
R

ub
le

(R
U

R
)

N
on

-m
em

be
r

2,
50

0,
00

0
R

U
R

80
,1

00
3,

00
0

3.
74

2,
00

0
2.

49
M

em
be

r
2,

50
0,

00
0

R
U

R
80

,1
00

2,
00

0
2.

49
2,

00
0

2.
49

So
ut

h
A

fr
ic

an
R

an
d

(S
A

R
)

N
on

-m
em

be
r

50
0,

00
0

SA
R

68
,2

75
3,

84
8

5.
63

2,
85

0
4.

17
M

em
be

r
50

0,
00

0
SA

R
68

,2
75

2,
85

0
4.

17
2,

85
0

4.
17

D
at

a
so

ur
ce

:C
hi

ca
go

M
er

ca
nt

ile
E

xc
ha

ng
e;

C
M

E
SP

A
N

m
in

im
um

pe
rf

or
m

an
ce

bo
nd

re
qu

ir
em

en
ts



4.3 Linear Hedging and Speculation in the MFT Model 71

Fig. 4.12 Investment func-
tions with linear hedging

e

I

I(e0)

I(e0, cfut) Futures

Forwards

strategy, and the investment function, with the perfect forwards hedging strategy,
equals the costs of futures hedging. The payoff of a forwards hedging strategy
consists of forward payoffs ∆Forwards and spot payoffs ∆Spot:

∆ΠForwards = h f or ∗ (eT − e0)︸ ︷︷ ︸
∆Forwards

+(e0− eT )︸ ︷︷ ︸
∆Spot

. (4.16)

This strategy yields ∆ΠForwards = 0 in the case of a perfect hedge, where h f or = 1.
The payoff of a futures hedging strategy, including hedging costs, must be equal to

∆ΠFutures = h f ut ∗ (eT − e0− c f ut)︸ ︷︷ ︸
∆Futures

+(e0− eT )︸ ︷︷ ︸
∆Spot

, (4.17)

with the futures position ∆Futures and the spot position ∆Spot. The futures strat-
egy yields ∆ΠFutures = −c f ut if h f ut = 1. Therefore, the forwards hedging strategy
is always superior to the futures hedging strategy, due to the fact that the only
difference between these strategies are the costs of futures trading. The linearity
of both hedging strategies becomes obvious, considering that the hedged pay-
offs of the forwards hedging strategy (∆ΠForwards = 0) and of the futures hedging
strategy (∆ΠFutures =−c f ut ) are independent of the developments of the underlying
exchange rate.

Figure 4.13 presents the perfectly hedged economy for different values of c f ut .
Increasing costs have a negative effect on investment, leading to reduced output.
Figure 4.14 compares the IS curve without hedging to a perfectly hedged IS curve
with c f ut = 200. For this high value of c f ut , the perfectly hedged equilibrium is
inferior to the crisis equilibrium in the case without hedging. However, the values
of c f ut in Figs. 4.13 and 4.14 were chosen arbitrarily in order to stress the link-
age between trading costs and output.The extremely high value of c f ut in Fig. 4.14
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Fig. 4.13 Perfectly hedged
economy with hedging costs
c f ut = 0 (black line), c f ut = 50
(dashed line), and c f ut = 100
(gray line)
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Fig. 4.14 Perfect hedge
(h f ut = 1; gray line) with
c f ut = 200 and “no hedge”
(h f ut = 0; black line)

–300 –200 –100 100 200 300
Y

–200

–100

100

200

e

does not correspond to the empirical findings presented in Table 4.4. Generally
speaking, trading futures on organized exchanges costs only a fraction of contract
size. Therefore, in reality, futures trading costs will not have such an direct impact on
output. Nevertheless, there is an indirect linkage, since firms base their risk manage-
ment decision at least partly on the costs of risk management, as shown in Chaps. 2
and 3. In this way, trading costs have an impact on the risk exposure of investment
and, therefore, on output.
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4.4 A Nonlinear Hedging Strategy Using Options

4.4.1 Options Hedging and Investment

In this section, a nonlinear risk management strategy using options is introduced
into the model. As the options position must generate profits if e increases, in order
to balance losses of the spot position, the hedge must be a long call options strategy
in the exchange rate e. A call option gives the holder the right, but not the obligation,
to buy the underlying asset at a certain future date for a certain price.29 In this model,
and in the case of a depreciation (where eT > e0), the holder of the call option at
time T has the right to purchase foreign currency at the pre-agreed strike price e0.
If he then sells the foreign currency at the spot price eT , his profit is eT − e0. With
these gains in his options position he is able to offset losses in the spot position.
Now imagine the occurrence of an appreciation. Here, the purchaser of the option
will not exercise the option, since it would induce losses.30 For the privilege that
there is no obligation to exercise the option, the purchaser of the option has to pay a
premium to the seller of the option.

Figure 4.15 shows the payoff of the long call options hedging strategy and the
relevant investment function. In this graphical representation of the payoffs, hedging

e

Payoff

e0

Profit

Loss

Hedged

Payoff

Long Call
Position

Spot
Position

(a) Nonlinear hedging strategy

e

I

e0

(b) Investment with nonlinear hedging.

Fig. 4.15 Nonlinear hedging strategy with strike price = e0

29 For an introduction on options, see e.g., Hull (2000), Kolb (1991, 1996) and Neftci (2000).
30 Here, the option would give the holder the right to buy foreign exchange at the pre-agreed
price e0. Because of the appreciation, the spot price in T is: eT < e0. If the option is exercised,
the holder would pay e0 although the price in the spot market (eT ) is lower. The payoff would
therefore be eT − e0 < 0. Hence, the purchaser of the option will walk away from the deal and,
therefore, restrict his losses to the premium paid upfront.
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costs (i.e., the options premium) are not included.31 The main difference between
the hedged payoffs presented in Figs. 4.4 and 4.15a is that the linear hedging strat-
egy always yields a payoff of zero, while the nonlinear hedging strategy yields a
payoff of zero only in case of a depreciation of the domestic currency. In the case
of an appreciation, the option is not exercised. The firm, therefore, gains a positive
payoff due to profits of the spot position. Hence, the option hedge provides insur-
ance against a depreciation of the domestic currency while still allowing the firm
to participate in a capital gain associated with an appreciation of the domestic cur-
rency. The payoff of the long position in a call option including hedging costs is
given by

∆Options = max{(eT − e0− copt),−copt}, (4.18)

with eT the final price of the underlying asset at spot commitment date T , and e0 the
strike price. If the domestic currency appreciates (eT < e0), the firm will choose not
to exercise. In this case, the payoff equals the hedging costs −copt . If the domestic
currency depreciates (eT > e0), the long call position generates a profit under the
condition that

eT − e0 > copt . (4.19)

The break-even-point at which the firm neither gains nor loses on exercise of the
option is

eT − e0 = copt . (4.20)

However, even if 0 < eT − e0 < copt , the option will be exercised, since the profits
eT −e0 reduce the costs. The payoff of the hedged position, accordingly, consists of
the options position ∆Options and the spot position ∆Spot:

∆ΠOptions = hopt ∗max{(eT − e0− copt),−copt}︸ ︷︷ ︸
∆Options

+(e0− eT )︸ ︷︷ ︸
∆Spot

. (4.21)

Depending on whether the domestic currency depreciates or appreciates, one obtains
the following payoffs:

∆ΠOptions =
{

−copt i f eT > e0 (depreciation)
e0− eT − copt i f eT < e0 (appreciation),

(4.22)

where hopt is set to unity. If the domestic currency depreciates, the option is exer-
cised, and the profits from the options position outweigh losses in the spot position.
The overall payoff equals the hedging costs −copt . In the case of an appreciation,
the break-even-point of the options hedging strategy is given by e0 − eT = copt .
This hedging strategy yields profits if the gains in the spot position connected to the
appreciation e0− eT exceed the hedging costs copt .

31 According to Hull (2000, p. 9), it is useful not to include the options premium into the graphical
representation of the payoff.
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Modelling these payoffs in the ArcTan investment function yields:32

I(e) = I(e0)− (ArcTan(e)−hopt ∗max{(ArcTan(e)− copt),−copt}). (4.23)

It is assumed that the demand for call options equals the supply of call options:

hd
opt = hs

opt = hopt . (4.24)

Equation (4.23) can be written as:

I(e) = I(e0)− (ArcTan(e)−hopt ∗max{0, ArcTan(e)})− copt ∗hopt . (4.25)

Equations (4.23) and (4.25) represent the same investment function and can be used
interchangeably. The second equation, however, will be used in the following simu-
lation studies, since it allows for a simpler, more intuitive approach to comparisons
of different hedging strategies with and without hedging costs.

If the domestic currency depreciates (i.e., ArcTan(e) increases), (4.25) yields:

I(e) = I(e0)− (ArcTan(e)−hopt ∗ArcTan(e))− copt ∗hopt

= I(e0)− (1−hopt)∗ArcTan(e)− copt ∗hopt . (4.26)

In the case where all firms are perfectly hedged (hd
opt = 1), investment is independent

of exchange rate changes:
I(e) = I(e0)− copt . (4.27)

This result is equal to the investment function with linear hedging and hedging costs,
as presented in (4.11) if copt = c f ut .

If the domestic currency appreciates (i.e., ArcTan(e) decreases), investment is:

I(e) = I(e0)−ArcTan(e)− copt ∗hopt . (4.28)

Since ArcTan(e) < 0 in this case, the appreciation affects investment positively.33

The overall effect on investment is positive if

|ArcTan(e)|> hopt ∗ copt . (4.29)

32 Note that an increase in ArcTan(e) and the term eT > e0 (or eT − e0 > 0 respectively) both
represent a depreciation of the domestic currency. Contrariwise, a decrease in ArcTan(e) and
eT < e0 (or eT − e0 < 0 respectively) both represent an appreciation. In the following these
terms will be used interchangeably when discussing effects of appreciations and depreciations
on investment and the IS curve.
33 Note that deriving the effects of depreciations and appreciations from (4.23) yields the same
results.
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Hence, the break-even-point is

|ArcTan(e)|= hopt ∗ copt . (4.30)

4.4.2 Simulation of Options Hedging

In the simulation studies, the following representation of the investment function is
used:

I(e) = I(e0)−b1 ∗ (ArcTan(b2 ∗ e)−hopt ∗max{0, ArcTan(b2 ∗ e)})− copt ∗hopt ,
(4.31)

with I(e0) = 0, b1 = 100, b2 = 0.1, and copt = 0. Figure 4.16a presents this invest-
ment function with hopt = 0, hopt = 0.5, and hopt = 1. In contrast to the linear
hedging strategy shown in Fig. 4.7, the nonlinear hedging strategy always yields
a positive payoff in case of an appreciation of the domestic currency. Since there
are no hedging costs in this example, the payoff, which results from spot profits and
the firm’s decision to not exercise the option, is identical for all hopt ∈ [0,1] and,
therefore, independent of the size of the hedging position. If the domestic currency
depreciates, the amount of corporate hedging activity hopt is very important for
the shape of the investment function. A devaluation does not affect the investment
curve if firms are perfectly hedged. The smaller the hedging activity, the larger the
investment’s sensitivity to exchange rate changes is. At this point, it is important to
note that in the case of a depreciation, the investment functions with linear hedging
(Fig. 4.7a) and nonlinear hedging (Fig. 4.16a) are identical if copt = c f ut . The main
difference between these two hedging strategies, therefore, concerns the event of an

–100 –50 0 50 100
e

–150

–100

–50

0

50

100

150

In
ve

st
m

en
t

(a) Investment function.

–300 –200 –100 100 200 300
Y

–200

–100

100

200

e
(b) IS curve

Fig. 4.16 Investment function and IS-AA model with option hedging: hopt = 0 (black line), hopt =
0.5 (dashed line), hopt = 1 (gray line)
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appreciation of the domestic currency, where option holders do not exercise their
call options, whereas futures holders have to stick to their contracts, which, in turn,
will lead to losses in futures markets outweighing profits in spot markets.

Introducing this investment function into the IS curve yields:

a1 ∗ e3 + I(e0)−b1 ∗ (ArcTan(b2 ∗ e) −hopt ∗max{0, ArcTan(b2 ∗ e)})
−copt ∗hopt −Y = 0, (4.32)

with a1 = 0.0001. Figure 4.16b illustrates this IS curve for different hedging
levels (hopt = 0, hopt = 0.5, and hopt = 1). With growing hedging activity, the
backward bending segment of the IS curve in the depreciation-range (where eT > e0)
decreases. The shape of the IS curve in the appreciation-range (where eT < e0) stays
unchanged and independent of hedging activity h. This graphical result corresponds
to the shape of the investment function in the event of an appreciation. Compared
to the linear hedging strategy presented in Fig. 4.7b, the tendency of linearization
applies only to the depreciation case. The remaining nonlinearities in the range
eT < e0 allow for output expansion due to spot profits of firms.

The same IS curve is also presented in Fig. 4.17. Here, hopt ranges from 0 to 1. As
in Fig. 4.16b, the shape of the IS-plane stresses the reduction in output loss through
corporate hedging when eT > e0, while still allowing for output expansion when
eT < e0. This main difference to the linear hedging strategy will be discussed in
more detail in the next section.
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Fig. 4.17 IS curve with option hedging and hopt ranging from 0 to 1
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4.4.3 Linear Versus Nonlinear Hedging Strategies

In this section the call options hedging strategy is compared to the futures and for-
wards hedging strategies. Since the payoffs of long futures and forwards contracts
are assumed to be identical, trading costs play a crucial role in determining which
linear strategy is better. There are futures trading costs, whereas there are none
for entering into a forward contract. However, in general, margin requirements in
futures markets cannot be perceived a cost. In this model futures trading is costly
as it decreases the financial means to finance investment. Since the payoffs are the
same, but there are costs of futures trading while there are none for forwards trading,
the forwards hedging strategy is always superior to the futures hedging strategy.

To compare the nonlinear options hedging strategy to these linear strategies is
more difficult, since the structure and character of the payoffs as well as of costs
differ considerably. Regarding options trading costs, options prices or premiums
are costs due to be paid by the hedging firms. Option premiums have to be paid
upfront and cannot be retrieved. In order to make hedging with futures and options
comparable, the costs of futures and options are assumed to be identical and equal
to c in this model:

c f ut = copt = c. (4.33)

To motivate this empirically, average option premiums of foreign currency call
options are presented in Table 4.5. The average premium, as percentage of contract
size shown in Table 4.5, ranges from 0.65% for the Swiss Franc option to 2.62%
for the Australian Dollar option. Hence, in general, the option premiums, presented
in Table 4.5, are lower than the initial margins demanded from non-members at the
CME, as presented in Table 4.4. However, for some currencies, the option premiums
are very close to the initial margin requirements in futures markets. For example, the
initial margin for the Australian Dollar futures contract (2.68% of contract size) at
the CME is very close to the average option premium for the Australian Dollar
call option (2.62% of contract size) demanded at the Philadelphia Stock Exchange

Table 4.5 Premiums of PHLX foreign currency call options

Currency Contract Average Cleared Total Average % to
size size in contracts premiums ($) premium per contract

US $ contract ($) size
EUR 62,500 EUR 75,250 1,148 711,438 619.72 0.82
AUD 50,000 AUD 37,623 1,066 1,050,755 985.70 2.62
GBP 31,250 GBP 54,765 542 471,625 870.16 1.59
CAD 50,000 CAD 40,823 180 59,025 327.92 0.80
JPY 6,250,000 JPY 55,875 1,713 1,121,381 654.63 1.17
CHF 62,500 CHF 48,298 354 110,688 312.68 0.65

Data source: The OCC monthly statistical report for foreign currency options. Monthly totals for
July, 2005. The Options Clearing Corporation, Chicago, Illinois. The currency options are traded
at the Philadelphia Stock Exchange (PHLX)
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Table 4.6 Payoffs of different hedging strategies

Forwards Futures Options
Depreciation (eT > e0) 0 −c −c
Appreciation (eT < e0) 0 −c e0− eT − c
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Fig. 4.18 IS curves with futures, forwards, and options hedging strategies

(PHLX). In general, and with respect to Tables 4.4 and 4.5, trading options and
futures costs a small percentage of total contract size.

The payoffs of the different hedging strategies, including hedging costs, are
summarized in Table 4.6. Hedging strategies using forwards are always better than
futures hedging strategies, since there are no costs associated with them. The options
hedging strategy and the futures hedging strategy yield equal payoffs in the case of
a depreciation due to the assumption that the costs of both strategies are identical
and equal to c. In the event of an appreciation, however, the payoff of the options
hedging strategy increases because of profits in the spot position.

For a graphical comparison of futures and options hedging strategies see
Figs. 4.18a and 4.19.34 Figure 4.18a presents IS curves with perfect futures and
options hedging (i.e., h = 1). As already presented in Table 4.6, the IS curves are
identical if the domestic currency depreciates (i.e., if e increases). However, if e
decreases, the shapes of the IS curves differ considerably. While an appreciation
leads to an output loss if firms use the linear futures hedging strategy, the nonlin-
ear options hedging strategy leads to output expansion. Figure 4.19 presents the
IS-AA diagram with futures and options hedging from different viewpoints. For all

34 Notice that in Figs. 4.18a and 4.19 hedging costs are left out because they are equal for both
strategies.
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Fig. 4.19 Futures versus options hedging strategies from different viewpoints

possible values of hedging activity h ∈ [0,1], the IS curve is the same for the futures
and the options hedging strategy if the domestic currency depreciates (dark gray
surface area in Fig. 4.19). For values eT < e0 (i.e., an appreciation of the domestic
currency), the IS curve with futures hedging is represented by the solid gray surface
and the IS curve with options hedging is represented by the dashed, light gray sur-
face. If firms do not hedge at all (h = 0), the IS curves are identical, since futures and
options are not traded and, therefore, do not affect the investment function. The dis-
crepancy between the IS curves grows with increasing hedging activity h. When h
approaches unity, the backward bending segments of the IS curve with futures hedg-
ing are substantially reduced. The linearly hedged IS curve slopes strictly upwards.
The perfect options hedging strategy, on the other hand, only reduces the nonlinear-
ities in the depreciation-area eT > e0 of the IS curve. The sigmoid nonlinearity in
the appreciation area remains unchanged, leading to output expansion due to more
investment in the event of an appreciation of the domestic currency. The options
hedging strategy is therefore at least as good as the futures hedging strategy, and
should be preferred.

Comparing the forwards and the options hedging strategy is more delicate. In
contrast to trading forwards, trading options is costly. In the following numerical
simulation, the option premium is set to c = 50. A graphical comparison is pre-
sented in Figs. 4.18b and 4.20. In Fig. 4.18b the IS curve with the perfect forwards
hedging strategy is represented by the solid line, whereas the IS curve with the
perfect options hedge including trading costs is the dashed line. In Fig. 4.20 the
IS curve with forwards hedging is the dark gray surface and the IS curve with
options hedging is the light gray surface. An important difference to the former
comparison of futures and options is that the surfaces of the two IS curves are not
identical in the case of a depreciation. This is because investment in the IS curve
with options hedging is reduced by the trading costs. Therefore, the forwards hedg-
ing strategy is superior to the options strategy when eT > e0. Which strategy is
to be preferred in the case of an appreciation depends on the options position’s
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Fig. 4.20 Forwards versus options hedging strategies from different viewpoints. (Options trading
costs: c = 50)

break-even-point. If eT < e0, the options strategy dominates the forwards strategy
as soon as e0− eT > c.35 Otherwise, the forwards strategy is to be preferred.

4.5 Economic Implications

4.5.1 Corporate Hedging and Economic Stability

In the previous sections four different corporate hedging strategies were discussed:
No hedging, linear hedging using futures, linear hedging using forwards, and non-
linear hedging using options. Each approach has different consequences for the
investment function and, therefore, different consequences for the shape of the IS
curve. Figure 4.21 presents these investment functions and the corresponding IS-AA
dynamics. Figure 4.21a, b presents the investment function and IS-AA dynamics
without hedging. The IS-AA diagram shows multiple equilibria with E1, the stable
“good equilibrium,” E2, the “fragile intermediate equilibrium,” and E3, the stable
“crisis equilibrium.”36 The intermediate equilibrium is unstable because slight devi-
ations from E2 can result in an economic boom, or in a crisis. Above E2 there is
output contraction according to the IS curve. Hence, the economy converges to
the “crisis equilibrium” E3. However, below E2 output expands and the economy
converges to the “good equilibrium” E1.

The linear hedging strategies are presented in Fig. 4.21c, d. The economy is
initially in equilibrium E2. In this situation, the firms can hedge their currency

35 See Table 4.6.
36 The stability properties of each equilibrium are derived in Appendix B. The Jacobian presented
in (B.9) corresponds to equilibria E1 and E3. The Jacobian presented in (B.11) corresponds to
equilibrium E2.
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exposure in derivatives markets. The investment function with perfect forwards
and futures hedging is shown in Fig. 4.21c for the sake of completeness. How-
ever, in Fig. 4.21d only the IS curve with the perfect forwards hedging strategy (i.e.,
without hedging costs) is shown because of the inferiority of the futures hedging
strategy. Since there is no backward bending segment of the IS curve, currency
crises are ruled out. Moreover, the remaining single equilibrium E2 is stable since
NXe ≥ Ie.37

Figure 4.21e, f present the investment function and the IS-AA diagram with the
nonlinear options hedging strategy. As in the case with linear hedging, here, there
is no crisis equilibrium any more, due to corporate hedging activity. If the domestic
currency depreciates, investment is fixed at the initial exchange rate level. How-
ever, in contrast to the linear hedging case presented in Fig. 4.21d, in addition to the
intermediate equilibrium E2, there is still the “good equilibrium” E1. Equilibrium
E2 is unstable since the IS curve is backward bending in this point. The dynamics
in the area between the two remaining equilibria, therefore, correspond to the case
analyzed in the Jacobians presented in (B.9) and (B.11) where (B.9) corresponds to
equilibrium E1 and (B.9) corresponds to equilibrium E2. In the event of an appreci-
ation, the options are not exercised, and the firm gains profits in the spot position if
e0− eT > c. These profits in the spot position are due to reduced debt burdens and,
therefore, positive balance sheet effects. This leads to output expansion. Hence, the
economy moves towards the “good equilibrium” E1. Irrespective of which hedging
strategy is best, it should be emphasized that all hedging strategies avoid the occur-
rence of a currency crisis since there is no “crisis equilibrium” E3 left if firms hedge
perfectly.

4.5.2 Capital Flight and Private Asset Allocation

Up to now, this study focussed on the effects of different corporate risk management
strategies on the investment function and therefore on the IS curve. This section
deals with the impact of shifts of the AA curve in the model. Financial markets
in general, and private asset holders in particular are at the center of this inves-
tigation. Assume that the economy is initially in the intermediate equilibrium E2.
In this situation the AA curve shifts to the right. One reason for this might be a
capital flight leading to increased demand for foreign bonds. Flaschel and Semmler
(2006) introduce the capital flight parameter α into the financial markets equilibrium
curve:

eFp = g(r(Y,M0)− r̄∗−βε(
e0

e
−1),M0 +B0 + eFp0,α). (4.34)

37 See the Jacobian matrix for NXe > Ie (B.9) and NXe = Ie (B.17) in Appendix B. Note that futures
trading costs do not have implications for stability. Costs shift the IS curve to the left as illustrated
in Fig. 4.13. Therefore NXe ≥ Ie still holds.
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Fig. 4.22 Capital flight in the
IS-AA diagram
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The parameter α represents the risk of domestic private asset holders to invest
in domestic bonds.38 If agents expect the domestic currency to depreciate, this
perceived risk will increase. It is assumed that households do not have access
to derivatives markets to manage this risk. The only way to avoid this risk is to
reallocate private asset holdings from domestic into foreign bonds. Hence, the
demand for foreign bonds eFp depends positively on α .

Figure 4.22 presents the effects of a capital flight in the model without hedg-
ing. An increase in α shifts the AA curve to the right to AA’. The AA curve in
Fig. 4.22 shifts to such an extent that the “good equilibrium” E1 and the “interme-
diate equilibrium” E2 vanish. The economy moves to the new “crisis equilibrium”
ECF . Although the shock in the capital flight parameter which pushes the economy
towards the crisis equilibrium (ECF ) shows up in the AA curve, the main cause of
the crisis is, again, the S-shaped nonlinearity in the goods market equilibrium curve.
Therefore, Fig. 4.23 presents the effect of an increase in the capital flight parame-
ter α in the case of a perfectly hedged economy (h = 1) with linear hedging. Here,
the capital flight leads to a depreciation of the domestic currency, but also to out-
put expansion. This output expansion results from positive competitiveness effects
which in turn lead to a trade surplus (i.e., NXe > 0 and NXe > Ie, since Ie = 0 in
the perfectly hedged economy). The linear hedging strategy does not prevent the
domestic currency from depreciating. However, there is no output loss but a slight
output expansion. This moderate effect on output is in line with empirical facts. In
regard to differing output reactions during crises, Aghion et al. (2000b, p. 3) note:

“For example, countries with less developed financial systems are more likely to experience
an output decline during a crisis. It is indeed striking that several countries that experienced
a large depreciation in the ERM crisis in 92–93 had a relatively good output performance;
while others, like Finland, and countries that suffered from the Mexican and Asian crises
faced serious recessions.”

38 For more details, see Flaschel and Semmler (2006).
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Fig. 4.23 Capital flight in the
IS-AA diagram with linear
hedging
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Fig. 4.24 Capital flight in
the IS-AA diagram with
nonlinear hedging
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Suppose now, that Fig. 4.22 presents an economy with a less developed finan-
cial system (i.e., without derivatives markets), while Fig. 4.23 presents an economy
with a developed financial system (i.e., with complete derivatives markets). Both
economies experience a depreciation of the domestic currency. However, the effects
on output are very different. Therefore, the corporate risk management approach
presented in this simple model is able to capture the puzzle described in the above
citation.

The findings shown in Fig. 4.23 also apply to the perfectly hedged economy with
nonlinear hedging, presented in Fig. 4.24. Here the AA curve shifts to such an extend
that there is only one equilibrium (ECF ) remaining.39 The result therefore equals

39 If there was a smaller shift of the AA curve again resulting in three equilibria, the results would
be similar. The intermediate equilibrium was unstable and the other equilibria stable. The economy
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the case with linear hedging strategies. The domestic currency depreciates without
leading to output losses. Again, output expands due to positive effects on net exports.
Both hedging strategies, therefore, are successful in preventing a crisis in the case
of a capital flight.

4.6 Discussion

This chapter deals with the implementation of corporate risk management strategies
in a Mundell–Fleming–Tobin type currency crisis model. In this model, firms are
exposed to exchange rate risk due to debt denominated in foreign currency. A depre-
ciation of the domestic currency increases the debt burden. This worsens the firms’
balance sheets and, in turn, leads to investment contraction and a decline in eco-
nomic activity. However, firms can trade financial derivatives in order to manage
their investment’s vulnerability to exchange rate shocks. Several different hedging
strategies are compared and their impact on economic stability is investigated. Two
contributions of this chapter are noteworthy.

First, a direct linkage between microeconomic risk management and macroeco-
nomic stability is modelled. In this simple model a variety of different derivatives
products can be analyzed. Moreover, a wide range of firms’ selective hedging
activities from no hedging over partial hedging to perfect hedging, as well as risk
taking can be studied. Therefore, the flexibility of this model is an advantage. Cor-
porate risk management strategies in this model are based on risk management
vehicles actually traded in financial derivatives markets. By introducing payoffs of
derivatives, such as futures and options, directly into the investment function, this
investigation suggests a new approach on how to investigate the effects of derivatives
trading in a macroeconomic setting.

Second, corporate risk management in this model is able to solve the balance
sheet problem. Moreover, it is possible to simulate different outcomes of currency
crises with respect to output. In this model the effect of a currency depreciation on
output depends on the hedging level of the economy and ranges from output loss to
output expansion. If the economy is perfectly hedged (i.e., firms in the respective
economy are perfectly hedged), then a capital flight will lead to a currency depreci-
ation, but not to an output loss. Therefore, empirical findings such as the different
responses of output in Mexico and Brazil to currency crises can be sketched within
this simple model.

would move along the new AA curve (AA′) towards the new equilibrium above the intermediate one
(similar to ECF in Fig. 4.24). Hence, the currency would depreciate (i.e., e would increase). How-
ever, output would increase as well. Therefore, the results equal the case with only one remaining
equilibrium.



Chapter 5
Arbitrage Pressure, Positive Feedback
Speculation, Selective Hedging, and Economic
Stability: An Empirical Analysis
and Catastrophe Modelling

“It is natural to associate speculation with optimistic opinion
and hedging with pessimistic opinion as to the likelihood of
more and less favorable states of the world.”

Hirshleifer (1975, p. 539).

5.1 Introduction

This chapter studies nonlinearities and complexity in currency futures markets.
First, the impact of price changes on trading volume is empirically investigated
using linear vector autoregression analysis and nonlinear logistic smooth transi-
tion regression analysis. Second, the empirical findings regarding nonlinearities in
traders’ behavior, together with economic theory concerning arbitrage pressure and
noise trading, are modelled in a cusp catastrophe model. There is a large body
of literature dealing with nonlinearities in financial markets.1 These studies gen-
erally analyze nonlinearities in prices due to inefficient arbitrage and the existence
of noise traders.2 The empirical study in this chapter differs considerably from the
one chosen in the studies mentioned above, since it focusses on nonlinearities in
the responses of the quantity of trading volume to price changes. The empirical
investigation follows Röthig and Chiarella (2007), and applies the logistic smooth
transition regression (LSTR) model to investigate the impact of changes of cur-
rency futures settlement prices on the trading positions of futures traders. Smooth
transition regression models have been widely used in a range of different fields of

1 For a recent survey, see e.g., McMillan and Speight (2006) and Saadi, Gandhi, and Elmawazini
(2006). See also Abhyankar, Copeland, and Wong (1997).
2 Arbitrageurs may be reluctant to exploit and therefore eliminate arbitrage opportunities because
of trading costs. Noise trading can make arbitrage even more costly and less efficient. In addition,
due to low liquidity and infrequent trading, prices may not always adjust instantaneously to new
information. See e.g., Monoyios and Sarno (2002), McMillan and Speight (2002, 2006) and Sarno
and Thornton (2003).

A. Röthig, Microeconomic Risk Management and Macroeconomic Stability,
Lecture Notes in Economics and Mathematical Systems,
DOI 10.1007/978-3-642-01565-6 5, c© Springer-Verlag Berlin Heidelberg 2009
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research, including stock market returns, exchange rates and interest rates3, mon-
etary economics4, GDP growth5, business cycles6, and for modelling phenomena
like El Niño.7

The empirical investigation is conducted for six currency futures contracts traded
at the Chicago Mercantile Exchange (CME): The Australian Dollar (AUD), the
Canadian Dollar (CAD), Swiss Francs (CHF), the Euro (EUR), the Japanese Yen
(JPY), and the Mexican Peso (MXP) futures contracts. First, linear vector autore-
gressions (VARs) are used to investigate the impact of price increases on the ratio of
speculators’ trading volume to hedgers’ trading volume. For all currencies, except
the Japanese Yen, the “speculation-hedging-ratio” increases. In order to obtain more
insights into the characteristics of speculation, impulse response functions (IRFs) of
the ratio between long and short speculation to price shocks are analyzed. For all
currencies, the responses of the “long-short-speculation-ratio” to price shocks are
positive. Hence, this introductory linear analysis leads to two conclusions. First,
the proportion of speculators in these futures markets increases after a price rise.
And second, speculators go long. That is, they bet on further price increases. The
next step of the empirical investigation is to analyze whether the reactions of spec-
ulation to price increases are linear (as suggested by the VARs) or whether there
are nonlinearities in the reactions depending on the price regime. An attribute of
the LSTR model is that it is possible to test for linearity and estimate a nonlin-
ear model without the necessity of assuming specific structures of nonlinearities a
priori. By allowing for distinct regimes the model is suitable for analyzing regime
dependent mean behavior. The results of the LSTR analysis reject linearity in the
reaction of long speculation to price changes in all currency futures markets except
for the Canadian Dollar (CAD) series. In four out of the six currency futures mar-
kets the reaction of the quantity of long speculation to price increases is positive
and much larger in expansion regimes than in contractions. Hence, these results for
the AUD, EUR, JPY, and MXP series point to positive feedback trading. It is only
for the CHF series that long speculation appears to react more moderately to price
increases during expansions.

The empirical findings together with the theory concerning the interrelation
between arbitrage and noise trading are then modelled in a cusp catastrophe
approach. The relatively parsimonious catastrophe model is able to capture the
inherent nonlinearities and complexities associated with the interaction of different
types of traders. The modelling approach is closely related to Zeeman (1974), who
investigates the interaction of fundamentalists and chartists in stock markets. The
approach in this chapter is different because, here, three different types of traders

3 Lundbergh and Teräsvirta (1998, 2006), McMillan (2001, 2003), Aslanidis, Osborn, and Sensier
(2002, 2003), Holmes (2002) and Sensier, Osborn, and Öcal (2002).
4 Lütkepohl, Teräsvirta, and Wolters (1999), Sarno (1999), Sarno, Taylor, and Peel (2003), Osborn
and Sensier (2004) and Lundbergh and Teräsvirta (2006).
5 Camacho (2004) and Mejia-Reyes, Osborn, and Sensier (2004).
6 Skalin and Teräsvirta (1999), van Dijk and Franses (1999) and Arango and Melo (2006).
7 Hall, Skalin, and Teräsvirta (2001).
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are modelled: Speculators, hedgers, and arbitrageurs. In particular the role of arbi-
trage has not yet been investigated in a cusp catastrophe approach. It is shown that
reduced arbitrage pressure leads to increased instability in the presence of posi-
tive feedback traders. Small changes in traders’ sentiment and behavior can lead to
sudden and radical crashes in prices.

The remainder of this chapter is organized as follows. Section 5.2 presents an
overview of the theoretical arguments with regard to the band of inactivity of arbi-
trageurs and the role of noise traders. Section 5.3 describes the data and presents
the results of the VAR analysis including Granger causality tests and impulse
response functions. Section 5.4 reports the results of the LSTR analysis. Section
5.5 presents the cusp catastrophe approach, incorporating the empirical results and
the theory concerning the interaction of arbitrage and noise trading. Section 5.6
concludes.

5.2 Arbitrage Pressure and Noise Trading

As noted in the introduction, the interrelation of trading costs and arbitrage offers an
appealing explanation for mispricing and nonlinear dynamics of market returns. In
a frictionless market without costs of arbitrage, rational arbitrageurs fully eliminate
mispricing. Figure 5.1 shows the amount of mispricing as the difference between the
wave-like hypothetical price path and the fair value, represented by the horizontal
line.8 In a frictionless market the price path would be congruent with the horizontal
line. That is, the price would always be equal to the fair value of the asset. However,
this is only the case in the absence of costs. According to Pontiff (1996), there are
two types of costs affecting arbitrage: Transaction costs and holding costs.

5.2.1 Arbitrage with Transaction Costs

Transaction costs include brokerage fees, commissions, and bid-ask spreads.9 These
costs are incurred per transaction and directly reduce arbitrage profits. These reduced
arbitrage profits will in turn decrease the arbitrageurs’ willingness and ability to
reduce mispricing through corrective trades.10 Hence, assets that are more costly
to trade will be subject to less corrective arbitrage. Figure 5.2 illustrates this point.
Transaction costs are labelled tc and −tc, respectively. The two dotted horizon-
tal lines at tc and −tc represent transaction costs bounds. Within these bounds

8 For a similar graphical representation see Pontiff (2006).
9 Kawaller (1991, p. 455) presents a detailed list of arbitrage costs.
10 Biais, Glosten, and Spatt (2005) state that high transaction costs reduce the efficiency of port-
folio allocation. Tse (2001) finds empirical evidence for a positive relation between the extent of
mispricing and the frequency of arbitrage trades conducted. The larger the mispricing, the stronger
the tendency to return to equilibrium. See also Shleifer (2000) and McMillan (2003).
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Fig. 5.2 Arbitrage with transaction costs

(i.e., this band of inactivity) arbitrage is unprofitable and, hence, prices are deter-
mined by the wave-like price path. Outside these transaction costs bounds arbitrage
is profitable.11 Hence, the price path is congruent with the horizontal lines repre-
senting the transaction costs. The potential for mispricing therefore increases with
increasing transaction costs. This presentation is somehow unsatisfying, since arbi-
trage is not existent within the band of inactivity, whereas there is perfect arbitrage
pressure outside these bounds. Therefore, in addition to transaction costs, holding
costs should be considered.

11 For an empirical approach on how to estimate the band of inactivity, see Martens, Kofman, and
Vorst (1998) and Gemmill and Thomas (2002).
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5.2.2 Arbitrage with Holding Costs

Holding costs include opportunity costs, borrowing costs, and risk exposure. Interest
rates are an important opportunity cost. Pontiff (1996, p. 1137) states that, “(. . . ) the
average magnitude of mispricing is shown to increase when the level of interest
rates increases.” Borrowing costs occur if capital constrained arbitrageurs have to
incur debt to exploit arbitrage opportunities. The potentially strange relationship
between capital constrained arbitrage and arbitrage opportunities becomes obvious
in the following citation from Shleifer and Vishny (1997, p. 37):

“When arbitrage requires capital, arbitrageurs can become most constrained when they have
the best opportunities, i.e., when the mispricing they have bet against gets even worse.”

In contrast to transaction costs, opportunity costs and borrowing costs are
incurred in each period in which the arbitrage position is held. The risk exposure is
due to fundamental or idiosyncratic risk that is unhedgeable. This fundamental risk
includes various risks. If, for example, there is uncertainty about the equilibrium
price level and, therefore, about the nature and the actual amount of mispricing,
arbitrageurs may be reluctant to exploit the arbitrage opportunity.12 This is in par-
ticular the case if it is unclear whether potential gains outweigh the inherent costs.
Even if arbitrageurs learn about the distribution of their expected arbitrage returns,
arbitrage opportunities may not be exploited, because arbitrageurs still learn how
to best exploit them.13 Tse (2001, p. 1833) notes that arbitrageurs “(. . . ) may skip
small mispricings to wait for larger ones.”

Even in the case with full information about the equilibrium price level and cer-
tain convergence to this level, arbitrage might be risky. This is because the length
of the path of convergence is unknown. Increasing the length of the time inter-
val reduces the return of the arbitrageur.14 Mitchell, Pulvino, and Stafford (2002)
note that, in addition to this horizon risk, the path of convergence itself might be
a source of risk if prices do not converge monotonically to equilibrium, but tem-
porarily diverge from this optimal path. If the path to the equilibrium price level is
very volatile, conducting arbitrage might become more costly, or even impossible.
Additional costs can result from margin calls if the arbitrageur has to post addi-
tional collateral in response to adverse developments of the futures position. When
the arbitrageur does not have access to sufficient capital if prices diverge, he may
be forced to close the position and incurs a loss. Tuckman and Vila (1992) point
out that arbitrage trading in futures markets may generate holding costs even in the
absence of margin calls. This is because margin deposits may not earn interest.

Draper and Fung (2003) analyze the potential role of governments with respect
to mispricing, and find that their role may be twofold. First, institutional constraints

12 With respect to the nature of the mispricing, Neal (1996) stresses the importance of distinguish-
ing between true and spurious arbitrage opportunities.
13 See e.g., Mitchell et al. (2002).
14 Sofianos (1993, p. 6) notes that most arbitrage positions are closed before expiration, “(. . . )
following profitable mispricing reversals.”
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Fig. 5.3 Arbitrage with transaction and holding costs

on, for example, short selling might limit the effectiveness of arbitrage. Second,
discretionary government action, in foreign exchange and interest rate markets for
example, introduces an additional risk factor, which adds to the idiosyncratic risk
faced by arbitrageurs. Another factor that worsens the idiosyncratic risk is the
specialization of arbitrageurs. According to Mitchell et al. (2002), imperfect infor-
mation and market frictions often encourage the specialization of arbitrageurs. This
restricts the arbitrageur’s ability to diversify away the risk. Risk averse arbitrageurs
will, therefore, tend to reduce arbitrage trades.15

Figure 5.3 shows the effects of holding costs on the amount of mispricing. As
already illustrated in Fig. 5.2, there are no arbitrage trades conducted within the
transaction costs bounds. However, outside these bounds, arbitrage pressure is not
infinite, but reduced by holding costs. Therefore, the price path does not equal the
dotted horizontal lines representing the transaction costs bounds. The price path with
arbitrage and transaction, as well as holding costs, is between the wave-like curve
without arbitrage and the transaction costs bounds. Hence, mispricing is reduced,
but not eliminated. In this regard, Pontiff (2006, p. 40) notes:

“The mispricing equilibrium with holding costs is a richer description of reality than the
transaction cost equilibrium – arbitrage occurs frequently, yet mispricing continues. In
equilibrium, arbitrageurs and mispricing co-exist.”

5.2.3 Noise, Positive Feedback Trading, and Herding

The second rationale for potential persistent deviations from equilibrium and for
nonlinear dynamics is noise trader behavior.16 Noise traders can be either irrational

15 For more details on specialization and idiosyncratic risk, see Mashruwala, Rajgopal, and Shevlin
(2006), Mendenhall (2004) and Wurgler and Zhuravskaya (2002).
16 For a recent survey of the literature, see e.g., Dow and Gorton (2006), Hughen and McDonald
(2005) and Lo and Lin (2005).
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or rational. Irrational noise traders are generally defined as traders who base their
trading decisions on irrelevant information17, on fads and sentiment18, or on techni-
cal analysis and chartism19, rather than on economic fundamentals.20

The importance of fads and sentiments is well recognized in the finance literature.
Hirshleifer (1975) argues that it is natural to associate speculation with optimistic,
and hedging with pessimistic, opinion. Trading activity based on optimistic opin-
ion or overconfidence can lead to increased deviations of prices from equilibrium,
in particular if traders behave like a herd. Herding means that traders do not act
randomly, but probably make decisions in similar ways.21 The rationale for herding
was previously emphasized by Kaldor (1939, p. 2) who notes that:

“If the proportion of speculative transactions in the total is large, it may become, in fact,
more profitable for the individual speculator to concentrate on forecasting the psychology
of other speculators, rather than the trend of the non-speculative elements.”

This trading strategy has also been captured by Keynes’ metaphor of the beauty
contest, where “(. . . ) each competitor has to pick, not those faces which he himself
finds prettiest, but those which he thinks likeliest to catch the fancy of the other
competitors.”22 Another rationale for herding concerns market power. If large spec-
ulators are able to influence and, therefore, manipulate prices, other traders will
follow them.23 Shiller (2000) points out that individuals might follow the herd even
if they know that they rely on false information. According to him, “(. . . ) people are
ready to believe the majority view or to believe authorities even when they plainly
contradict matter-of-fact judgment.”24

Non-fundamental trading strategies, such as technical analysis and chartism, can
be used to forecast the psychology of other speculators.25 In fact, chartism is often
used to measure a swing in market psychology.26 Moreover, these trading strategies
are widely used in financial markets. Taylor (1992, p. 304) reports that “a very high

17 DeLong, Shleifer, Summers, and Waldmann (1990).
18 Shiller (1984).
19 Bauer and Herz (2005).
20 The idea that noise traders are irrational leads to some important questions about their existence.
Rational agents could take advantage of the irrational traders who trade at incorrect prices, based on
non-fundamental information. This would drive noise traders out of the competitive asset market.
“Noise traders should not survive, and so cannot play the role envisioned for them” (Dow and
Gorton, 2006, p. 4). Irrational noise traders can therefore only exist if there are some frictions. For
more information on the survival of irrational noise traders, see DeLong, Shleifer, Summers, and
Waldmann (1991).
21 Herding can be defined as investors following a common signal, see Nofsinger and Sias (1999).
22 Keynes (1986, p. 156). See also the discussion in Sanyal (2005).
23 For more information on market manipulation, see Hart (1977), Jarrow (1992, 1994), Kumar
and Seppi (1992) and Pirrong (1995).
24 Shiller (2000, p. 151).
25 Shiller (2000) argues that the psychology of other speculators is often predictable. See also Saadi
et al. (2006).
26 For more information on technical analysis, see e.g., Ludden (1999) and Murphy (1986).
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proportion of chief dealers view technical and fundamental analysis as complemen-
tary forms of analysis and a substantial proportion suggest that technical advice may
be self-fulfilling.”27 This self-fulfilling character of technical analysis is in particular
due to trend-following indicators and, hence, may further increase herding.

Reasons for rational noise trading include trading for liquidity, hedging strate-
gies, portfolio insurance, and stop-loss orders.28 Dow and Gorton (1997) argue that
professional traders and fund managers often act like rational noise traders. In their
model, agency problems lead managers to trade even though they would be bet-
ter off doing nothing because their uninformed clients cannot distinguish “actively
doing nothing” from “simply doing nothing.” DeLong et al. (1990) model the inter-
relation of rational speculators and positive feedback traders and find that rational
speculation can be destabilizing in the presence of positive feedback traders.29 Price
increases induced by rational speculators trading activity will lead to imitation by
positive feedback traders. The subsequent price rise therefore consists of a rational
part and a part which results from positive feedback traders flowing into the market.

Traders, irrational and rational, “(. . . ) who do not use or misperceive the fun-
damentals (. . . )”30 pose an additional risk to arbitrageurs. Noise trader risk has at
least two facets: First, noise traders make the assets they trade more risky (i.e., more
volatile).31 Second, momentum trading (or trend chasing) by noise traders may lead
to overreactions of asset prices and therefore to increased deviations from fair val-
ues. The length of the path to equilibrium gets less predictable for arbitrageurs who,
in turn, are more reluctant to take a position contrary to noise traders. Hence, noise
trader risk can significantly add to the holding risk faced by arbitrageurs.

5.3 Vector Autoregression Analysis of Futures
Trading Activity

5.3.1 Data

In this section, nonlinearities in the relationship between weekly settlement price
changes and weekly data on trader positions in Australian Dollar (AUD), Canadian
Dollar (CAD), Swiss Francs (CHF), Euro (EUR), Japanese Yen (JPY), and Mexican

27 Shiller (1987) argues that technical analysis played an important role in market movements
during the October 1987 stock market crash.
28 See e.g., Dow and Gorton (1997) and Vitale (2000). For further approaches, see Romer (1993).
29 Positive feedback traders are noise traders who follow a positive feedback strategy – that is they
buy when prices rise, and sell when prices fall. See e.g., Cutler, Poterba, and Summers (1990) and
Nofsinger and Sias (1999).
30 Taylor (1992, p. 305).
31 With regard to increased volatility, DeLong, Shleifer, Summers, and Waldmann (1987, p. 1)
write that “many prominent market participants see asset markets as little more than casinos.” See
also Sias, Starks and Tiniç (2001).
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Peso (MXP) futures contracts are investigated. The futures contracts are traded at
the Chicago Mercantile Exchange (CME). Futures price data are obtained from
Datastream. The returns ∆pt are measured as follows:

∆pt = 100∗ ln
(

pt

pt−1

)
, (5.1)

with pt the futures settlement price of the respective currency future in t. The trader
position data are obtained from the Commodity Futures Trading Commission’s
(CFTC) Commitments of Traders (COT) report.

5.3.2 Speculation Versus Hedging

This subsection investigates the effects of price shocks on the proportion of hedgers’
and speculators’ trading volume in currency futures markets. The “speculation-
hedging-ratio” shrt is defined as:

shrt =
speculation(t)

hedging(t)
, (5.2)

where speculation(t) and hedging(t) contain both long and short positions of spec-
ulators (i.e., noncommercial traders) and hedgers (i.e., commercial traders) in t.
Continuous returns ∆shrt are computed using the following expression:

∆shrt = 100∗ ln
(

shrt

shrt−1

)
. (5.3)

Table 5.1 presents summary statistics, ARCH-LM and unit root tests for the ∆pt
and ∆shrt series. The ARCH-LM test statistics suggest that there is no conditional
heteroskedasticity in the return series. The augmented Dickey Fuller (ADF) test and
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test confirm that the series are
stationary.

In order to analyze the effects of price shocks on the “speculation-hedging-
ratio,” Granger causality tests are conducted, and impulse response functions based
on vector autoregressions (VAR) are computed. The number of lags of the VARs
are determined from the Akaike, Hannan-Quinn, and Schwartz information criteria.
Table 5.2 presents the results of the Granger causality tests. The noncausality null
hypothesis can only be rejected for the MXP speculation and the AUD speculation
series, using a 10% significance level. On the basis of these tests, no causal relation
can be diagnosed for the remaining series.

Figure 5.4 presents the impulse response functions. The impulse responses of
all but the JPY series show positive reactions of the “speculation-hedging-ratio”
to price changes. These results suggest that there is an increase in speculation
compared to hedging resulting from price increases. For the AUD and the MXP
series, this increase in the share of speculation in the futures market is statistically
significant.
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Table 5.2 Granger causality test for the “speculation-hedging-ratio”

AUD CAD CHF EUR JPY MXP
Test value 3.8277 0.7622 1.9215 0.0179 0.2815 11.7560
p-value 0.0510 0.3828 0.1468 0.8935 0.5958 0.0000

(a) AUD (b) CAD

(c) CHF (d) EUR

(e) JPY (f) MXP

Fig. 5.4 Impulse responses: Effect of price shocks on the “speculation-hedging-ratio”

5.3.3 Long Versus Short Speculation

Based on the previous findings with respect to price effects on the “speculation-
hedging-ratio,” one should not jump to any conclusions concerning the stability
of the markets. Up to now, total trading volume of hedgers and speculators was
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examined. No distinction was made between short and long speculation. For exam-
ple, suppose that speculators react to an increase in prices by going short in the
currency futures. Taking this contrary position may limit the size of disequilibrium
and eventually lead prices to return to equilibrium. A closer look at speculators’
long and short positions in response to price increases is appropriate. Therefore, the
“long-short-speculation-ratio” slsrt is defined as:

slsrt =
long− speculation(t)
short− speculation(t)

. (5.4)

Continuous returns ∆slsrt are then computed:

∆slsrt = 100∗ ln
(

slsrt

slsrt−1

)
. (5.5)

Table 5.3 presents summary statistics, ARCH-LM, and unit root tests for the ∆pt
and ∆slsrt series.32 The ARCH-LM test statistics suggest that there is no conditional
heteroskedasticity except for the CAD series and the EUR and MXP ∆slsrt series.
The ADF and KPSS tests confirm that the series are stationary.

The Granger causality tests presented in Table 5.4 and the impulse response
functions shown in Fig. 5.5 unambiguously suggest a statistically significant positive
effect of price increases on the “long-short-speculation-ratio.” Hence, speculators go
long in the currency futures in response to the price shocks and, therefore, bet on
further price rises.

5.4 Logistic Smooth Transition Regression Analysis
of Long Speculation

The results of the previous section suggest a positive effect of price increases on the
“long-short-speculation-ratio.” That is, the effect on long speculative positions is
stronger than on short positions. In this section, the interrelation of long speculation
and futures prices will be investigated in more detail. Therefore, a new variable
representing the continuous returns of long speculation is defined as:

∆slt = 100∗ ln
(

long− speculation(t)
long− speculation(t−1)

)
. (5.6)

Table 5.5 presents summary statistics, ARCH-LM, and unit root tests for the ∆pt
and ∆slt series. The question is whether the reaction of long speculation ∆slt to

32 Note that, compared to the previous section, here, the Mexican Peso series are shorter. The
estimation is conducted over the sample period May 9, 2000 to January 31, 2006 because of low
liquidity prior to May 2000.
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Table 5.4 Granger causality test for the “long-short-speculation-ratio”

AUD CAD CHF EUR JPY MXP
Test value 4.1941 8.1212 15.6060 15.4464 19.4856 5.2639
p-value 0.0412 0.0003 0.0001 0.0001 0.0000 0.0221

(a) AUD (b) CAD

(c) CHF (d) EUR

(e) JPY (f) MXP

Fig. 5.5 Impulse responses: Effect of price shocks on the “long-short-speculation-ratio”

price shocks ∆pt depends on the underlying price regime. In order to obtain a useful
characterization of the dynamics that, however, allows for a simple interpretation of
the results, the logistic smooth transition regression model is chosen for the inves-
tigation. The empirical analysis in the following sections is based on the modelling
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cycle outlined by Teräsvirta (1994, 1997, 1998, 2004), van Dijk, Teräsvirta, and
Franses (2002), and Lütkepohl and Krätzig (2004).

5.4.1 The LSTR Model

The LSTR model is a regime-switching model that is well suited to modelling the
dynamics of expansion and contraction regimes.33 The standard LSTR model is
defined as

yt = φ
′zt +θ

′ztG(γ,c,τt)+ut , ut ∼ iid(0,σ2), (5.7)

where zt = (w′t ,x
′
t)
′ is a vector of explanatory variables with w′t = (1,yt−1, . . . ,yt−n)′,

and x′t = (x1t , . . . ,xkt)′, which is a vector of exogenous variables. φ = (φ1, . . . ,φm)
and θ = (θ1, . . . ,θm) are parameter vectors. The transition between the alternative
regimes is controlled by the logistic transition function

G(γ,c,τt) =

(
1+ exp

{
− γ

σ̂K
τt

K

∏
k=1

(τt − ck)

})−1

, γ > 0, (5.8)

which is a bounded function between 0 and 1. Equations (5.7) and (5.8), jointly
define the LSTR1 (K = 1) or LSTR2 (K = 2) model. If K = 1, there are two regimes
where the parameters (φ + θG(γ,c,τt)) change monotonically as a function of the
transition variable τt from φ (if G(γ,c,τt) = 0) to φ +θ (if G(γ,c,τt) = 1). Hence, if
K = 1, the values of 0 and 1 of the transition function identify two distinct regimes.
The transition between these two regimes occurs either smoothly or suddenly. The
parameter γ determines how rapid the transition from zero to unity is and, thus,
the smoothness of the transition. When γ → +∞, the transition from one regime to
the other occurs almost instantly at τt = c. The transition parameter c determines
where the transition occurs. The estimated value of c marks the half-way point
between the lower regime G(γ,c,τt) = 0 and the upper regime G(γ,c,τt) = 1. If
K = 2, there are three regimes where the two outside regimes are identical, but dif-
ferent to the middle one.34 The choice of K will be based on linearity tests discussed
in the next section.

5.4.2 Testing Linearity Against LSTR

The modelling cycle outlined by Teräsvirta (1994, 1998, 2004) consists of three
stages: Specification, estimation, and evaluation. Specification comprises testing
linearity against LSTR and, if linearity is rejected, the choice of K = 1 or K = 2

33 See e.g., McMillan (2005) and Pérez-Rodrı́guez, Torra, and Andrada-Félix (2005).
34 For more information on the LSTR2 model, see e.g., Teräsvirta (2004) and Teräsvirta, van Dijk,
and Medeiros (2005).
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Table 5.6 Testing linearity against LSTR

Transition variable F F4 F3 F2 Suggested model
AUD ∆pt 0.0037 0.1280 0.2121 0.0021 LSTR1
CAD ∆pt 0.2587 0.8891 0.0101 0.7011 Linear
CHF ∆pt 0.0280 0.4624 0.1178 0.0176 LSTR1
EUR ∆pt−9 0.0005 0.1742 0.4563 0.0000 LSTR1
JPY ∆pt 0.0167 0.1294 0.4197 0.0085 LSTR1
MXP ∆pt−1 0.0000 0.0000 0.0004 0.0006 LSTR1

referring to (5.8). The choice of K = 1 or K = 2 (or between LSTR1 and LSTR2,
respectively) is based on a series of F-tests.35

The linearity tests for the AUD, CAD, CHF, EUR, JPY, and MXP series are
conducted for up to ten lags. The variables with the smallest p-values are chosen
as transition variables. The p-values of the linearity tests together with the sug-
gested transition variable and the suggested model are presented in Table 5.6. The
test results reveal strong evidence of nonlinearities in all except the CAD series
(p-value: 0.2587). In regard to the AUD, CHF, and JPY series, using ∆pt as transi-
tion variable results in the smallest p-value. However, for the EUR series, ∆pt−9 is
the appropriate transition variable, and for the MXP series ∆pt−1 is the appropriate
transition variable. Moreover, the results suggest to choose an LSTR1 model for all
series where linearity is rejected.

5.4.3 Estimation Results

In the next step of the modelling cycle, the parameter structure of the model is
specified. A number of LSTR models with a variety of different lags are estimated
for the AUD, CHF, EUR, JPY, and MXP speculation series and variables with poor
explanatory power are excluded from the final specifications.36

5.4.3.1 AUD – Speculation Dynamics

The estimation results of the final specification for the AUD series are reported in
(5.9) together with a number of statistics.

∆slt = 35.58
(0.52)

− 0.06
(0.55)

∆slt−1− 0.02
(0.79)

∆slt−2− 0.14
(0.09)

∆slt−3

− 0.04
(0.64)

∆slt−4 + 0.04
(0.28)

∆slt−5− 0.12
(0.08)

∆slt−6 + 0.07
(0.65)

∆slt−7

35 For more details on the F-tests, see Teräsvirta (2004, p. 227).
36 There is no strict formal procedure to determine the lag structure for LSTR models. See e.g.,
Granger and Teräsvirta (1993) and McMillan (2005).
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+ 0.05
(0.53)

∆slt−8 +23.86
(0.04)

∆pt + 2.86
(0.18)

∆pt−1 + 2.22
(0.23)

∆pt−2

− 1.63
(0.31)

∆pt−4− 0.57
(0.77)

∆pt−5− 4.45
(0.00)

∆pt−8

+[−980.01
(0.00)

+ 0.94
(0.64)

∆slt−1− 0.24
(0.90)

∆slt−2 + 1.91
(0.35)

∆slt−3

+ 2.30
(0.36)

∆slt−4− 1.82
(0.35)

∆slt−5 + 0.95
(0.53)

∆slt−6− 2.82
(0.00)

∆slt−7

− 1.41
(0.48)

∆slt−8 +159.59
(0.17)

∆pt + 0.80
(0.98)

∆pt−1− 4.92
(0.87)

∆pt−2

+14.43
(0.60)

∆pt−4 + 1.81
(0.95)

∆pt−5 +54.57
(0.22)

∆pt−8]

[1+ exp{−(1.08
(NaN)

/σ̂
1
∆p)(∆pt − 4.96

(NaN)
)}]−1. (5.9)

T = 241, σ̂ = 27.47, R2 = 0.36, AIC = 6.74, pLMARCH(1) = 0.89,

pLMARCH(4) = 0.71, pLJB = 0.00, pLMAR(1) = 0.30, pLMAR(4) = 0.66.

The p-values of the coefficients appear in parentheses. T is the sample size; σ̂ is
the estimated standard deviation of the residuals; R2 is the coefficient of determina-
tion; AIC is the Akaike information criterion; pLMARCH(q) is the p-value of the LM
test of no ARCH up to order q; pLJB is the p-value of the Lomnicki–Jarque–Bera
normality test; and pLMAR(q) is the p-value of the LM test of no error autocorre-
lation up to order q. The assumption of normality is rejected. However, there is no
evidence of ARCH and autocorrelation.

The estimation results presented in (5.9) suggest that the transition occurs when
∆pt is close to five (c = 4.96). Since this value of the transition variable is not
close to 0, this result does not suggest a contraction and an expansion regime.37

However, the logistic transition function G(γ,c,τt) does not reach the value of 1.
This can be seen in Fig. 5.6, which shows the transition function plotted against
its argument (∆pt ). Since every point in Fig. 5.6 represents an observation, one can
easily retrace the realizations of the transition function. Most observations are in
the intermediate range of ∆pt , between −3 and 3. Moreover, there seems to be an
equal number of observations for ∆pt < 0 and ∆pt > 0. The values of the transition
function range from 0 to approximately 0.2, with the speed of transition being rather
slow (γ = 1.08). Therefore, for the range 0 < G(γ,c,τt) < 0.2, a smooth transition
from a contraction to an expansion regime can be identified.

37 Note that the transition variable ∆pt is the natural logarithm of the difference between the futures
settlement price at time t and the settlement price at t minus one week, since weekly data are
analyzed. Positive values of ∆pt , therefore, represent an increase in futures prices, while negative
values of ∆pt represent a fall in futures prices. A value of the transition variable close to 0 would,
therefore, point to a structural break between contractions and expansions.
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Fig. 5.6 AUD transition function plotted against transition variable ∆pt

The coefficient estimates are presented in (5.9). When the logistic transition func-
tion G(γ,c,τt) equals 0, only the linear part of the model (i.e., the first four rows
of (5.9)) enter the regression model. If G(γ,c,τt) > 0, then the entire equation is
used for the estimation, where the rows five to eight in (5.9) are multiplied with the
value of the transition function. The effects of price changes on long speculation in
contractions with G(γ,c,τt) = 0 are therefore:

∆slt = . . .+ 23.86∆pt +2.86∆pt−1 +2.22∆pt−2

− 1.63∆pt−4−0.57∆pt−5−4.45∆pt−8.

If G(γ,c,τt) > 0, the regression model reads as follows:

∆slt = . . .+(23.86+159.59∗G(γ,c,τt))∆pt +(2.86+0.80∗G(γ,c,τt))∆pt−1

+ (2.22−4.92∗G(γ,c,τt))∆pt−2 +(−1.63+ 14.43∗G(γ,c,τt))∆pt−4

+(−0.57+1.81∗G(γ,c,τt))∆pt−5 +(−4.45+54.57∗G(γ,c,τt))∆pt−8.

The effect of price increases on long speculation trading volume is positive and
much larger in expansions than in the contraction regime. However, most of the esti-
mates are not significant at any level. Nevertheless, these findings might indicate that
speculators react to price increases by betting on further price rises. Price increases
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that act as a signal to speculators might, therefore, lead to positive feedback trading
during booms.

5.4.3.2 CHF – Speculation Dynamics

The estimation results for the CHF series are presented in the following equation:

∆slt = 7.45
(0.53)

− 0.21
(0.00)

∆slt−1− 0.44
(0.00)

∆slt−3− 0.24
(0.00)

∆slt−4− 0.25
(0.00)

∆slt−5

+ 22.31
(0.00)

∆pt + 9.29
(0.00)

∆pt−1 +10.92
(0.00)

∆pt−3 + 5.70
(0.09)

∆pt−4

+ 5.68
(0.06)

∆pt−5− 8.58
(0.00)

∆pt−6− 7.44
(0.01)

∆pt−7

+ [−6.24
(0.61)

+ 0.15
(0.06)

∆slt−1 + 0.46
(0.00)

∆slt−3 + 0.15
(0.04)

∆slt−4 + 0.25
(0.00)

∆slt−5

− 6.82
(0.29)

∆pt − 3.27
(0.37)

∆pt−1−12.05
(0.00)

∆pt−3− 5.85
(0.13)

∆pt−4

− 4.46
(0.22)

∆pt−5 + 5.43
(0.12)

∆pt−6 + 5.21
(0.12)

∆pt−7]

[1+ exp{−(5797.91
(NaN)

/σ̂
1
∆p)(∆pt + 0.88

(NaN)
)}]−1. (5.10)

T = 676, σ̂ = 62.52, R2 = 0.25, AIC = 8.30, pLMARCH(1) = 0.53,

pLMARCH(4) = 0.00, pLJB = 0.00, pLMAR(1) = 0.23, pLMAR(4) = 0.02.

The null hypothesis of normality, as well as the assumption of no ARCH and no
autocorrelation, are rejected up to order four. However, there is no ARCH and
autocorrelation at one lag.

Figure 5.7 shows a sudden transition from the lower to the upper regime. In fact,
there are no observations at intermediate values of the transition function G(γ,c,τt).
The transition occurs at values of ∆pt close to 0. That means the lower regime is the
contraction regime and the upper regime represents expansions.

The estimation results presented in (5.10) support the finding of a rapid transition
(γ = 5,797.91) around ∆pt = 0 (c =−0.88). The effects of price changes on trading
volume in the contraction regime, where G(γ,c,τt) = 0, are

∆slt = . . .+ 22.31∆pt +9.29∆pt−1 +10.92∆pt−3 + 5.70∆pt−4

+5.68∆pt−5−8.58∆pt−6−7.44∆pt−7,

and in the expansion regime, where G(γ,c,τt) = 1, are the following:

∆slt = . . .+ (22.31−6.82)∆pt +(9.29−3.27)∆pt−1
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Fig. 5.7 CHF transition function plotted against transition variable ∆pt

+ (10.92−12.05)∆pt−3 +(5.70−5.85)∆pt−4

+ (5.68−4.46)∆pt−5 +(−8.58+5.43)∆pt−6

+ (−7.44+5.21)∆pt−7

= . . .+15.49∆pt +6.02∆pt−1−1.13∆pt−3−0.15∆pt−4

+ 1.22∆pt−5−3.15∆pt−6−2.23∆pt−7.

These results suggest that the impact of price increases on long speculation is
not stronger during expansions. Therefore, the former results with respect to the
AUD series cannot be supported. For example, the estimated parameters of ∆pt−3
and ∆pt−4 change from positive, during contractions, to negative in the expansion
regime. Hence, the overall reaction of trading volume to price changes seems to be
more moderate during expansions.

5.4.3.3 EUR – Speculation Dynamics

The empirical results for the EUR series are shown in the following equation:

∆slt = 4.25
(0.10)

− 0.21
(0.08)

∆slt−1 + 0.24
(0.01)

∆slt−3 + 0.35
(0.00)

∆slt−5 + 0.21
(0.04)

∆slt−7 (5.11)

+ 0.22
(0.00)

∆slt−8− 0.19
(0.05)

∆slt−9 + 6.55
(0.00)

∆pt − 0.21
(0.90)

∆pt−1− 0.53
(0.75)

∆pt−2
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− 1.13
(0.48)

∆pt−3− 1.63
(0.38)

∆pt−5− 3.61
(0.05)

∆pt−6− 5.09
(0.00)

∆pt−7

+ [−5.17
(0.09)

+ 0.09
(0.52)

∆slt−1− 0.41
(0.00)

∆slt−3− 0.45
(0.00)

∆slt−5− 0.26
(0.05)

∆slt−7

− 0.40
(0.00)

∆slt−8 + 0.15
(0.22)

∆slt−9− 0.58
(0.77)

∆pt + 2.56
(0.24)

∆pt−1 + 1.00
(0.61)

∆pt−2

+ 0.88
(0.66)

∆pt−3 + 1.71
(0.45)

∆pt−5 + 3.11
(0.15)

∆pt−6 + 5.34
(0.00)

∆pt−7]

[1+ exp{−(5.24
(NaN)

/σ̂
1
∆p)(∆pt + 0.89

(NaN)
)}]−1.

T = 356, σ̂ = 18.52, R2 = 0.35, AIC = 5.91, pLMARCH(1) = 0.11,

pLMARCH(4) = 0.24, pLJB = 0.00, pLMAR(1) = 0.17, pLMAR(4) = 0.20.

The assumption of normality is again rejected, and there is no evidence of ARCH
and autocorrelation.

Figure 5.8 shows a smooth transition from the lower to the upper regime (γ =
5.24). The transition takes place at c = −0.89, which is again close to 0. These
results, therefore, suggest a smooth transition from a contraction to an expansion
regime. In the lower regime (i.e., the contraction regime with G(γ,c,τt) = 0), the
coefficient estimates are:

Fig. 5.8 EUR transition function plotted against transition variable ∆pt−9
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∆slt = . . .+6.55∆pt −0.21∆pt−1−0.53∆pt−2−1.13∆pt−3 (5.12)
− 1.63∆pt−5−3.61∆pt−6−5.09∆pt−7.

When G(γ,c,τt) = 1, the coefficient estimates are:

∆slt = . . .+(6.55−0.58)∆pt +(−0.21+2.56)∆pt−1

+ (−0.53+1.00)∆pt−2 +(−1.13+0.88)∆pt−3

+ (−1.63+1.71)∆pt−5 +(−3.61+3.11)∆pt−6

+ (−5.09+5.34)∆pt−7

= . . .+5.97∆pt +2.35∆pt−1 +0.47∆pt−2−0.25∆pt−3

+ 0.08∆pt−5−0.50∆pt−6 +0.25∆pt−7. (5.13)

The sum of the coefficients of the price variables in the lower regime is nega-
tive (−5.65), indicating a negative relationship between prices and trading volume.
In the expansion regime, the sum of the coefficients is 8.37. Thus, the regression
results reveal a clear structural break in the effects of prices on trading volume from
negative effects in the contraction regime to positive ones during expansions.

5.4.3.4 JPY – Speculation Dynamics

The equation shows the estimation results for the JPY series:

∆slt = −1.91
(0.56)

− 0.10
(0.02)

∆slt−1− 0.06
(0.14)

∆slt−2− 0.18
(0.00)

∆slt−3− 0.13
(0.00)

∆slt−4

+ 0.04
(0.32)

∆slt−5− 0.11
(0.02)

∆slt−6 + 0.02
(0.54)

∆slt−7 + 0.07
(0.10)

∆slt−9

− 0.00
(0.10)

∆slt−10 + 7.11
(0.00)

∆pt + 2.97
(0.06)

∆pt−1− 2.07
(0.20)

∆pt−2− 4.28
(0.01)

∆pt−5

− 2.47
(0.11)

∆pt−7− 3.20
(0.04)

∆pt−9− 2.16
(0.16)

∆pt−10

+ [9.04
(0.17)

− 0.11
(0.15)

∆slt−1− 0.18
(0.02)

∆slt−2 + 0.12
(0.12)

∆slt−3 + 0.02
(0.73)

∆slt−4

− 0.26
(0.00)

∆slt−5− 0.10
(0.18)

∆slt−6− 0.21
(0.00)

∆slt−7− 0.31
(0.00)

∆slt−9

− 0.28
(0.00)

∆slt−10− 0.82
(0.82)

∆pt + 4.58
(0.09)

∆pt−1 + 7.35
(0.00)

∆pt−2 + 1.97
(0.46)

∆pt−5

+ 6.10
(0.03)

∆pt−7 + 5.72
(0.04)

∆pt−9 + 4.22
(0.15)

∆pt−10]

[1+ exp{−(2919.04
(NaN)

/σ̂
1
∆p)(∆pt − 0.52

(NaN)
)}]−1. (5.14)

T = 684, σ̂ = 51.43, R2 = 0.23, AIC = 7.93, pLMARCH(1) = 0.00,

pLMARCH(4) = 0.00, pLJB = 0.00, pLMAR(1) = 0.10, pLMAR(4) = 0.03.
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Fig. 5.9 JPY transition function plotted against transition variable ∆pt

The null hypothesis of normality as well as the assumption of no ARCH and the
assumption of no autocorrelation up to order four are rejected.

As evident from Fig. 5.9, which shows the transition function plotted against the
transition variable ∆pt , the sample is split into approximately equal parts between
the two regimes. The transition is rapid (γ = 2,919.04) and takes place close to 0
(c = 0.52). The estimation results for the contraction regime are:

∆slt = . . .+7.11∆pt +2.97∆pt−1−2.07∆pt−2−4.28∆pt−5

− 2.47∆pt−7−3.20∆pt−9−2.16∆pt−10, (5.15)

and for the expansion regime are:

∆slt = . . .+(7.11−0.82)∆pt +(2.97+4.58)∆pt−1

+ (−2.07+7.35)∆pt−2 +(−4.28+1.97)∆pt−5

+ (−2.47+6.10)∆pt−7 +(−3.20+5.72)∆pt−9

+ (−2.16+4.22)∆pt−10

= . . .+6.29∆pt +7.55∆pt−1 +5.28∆pt−2−2.31∆pt−5

+ 3.63∆pt−7 +2.52∆pt−9 +2.06∆pt−10. (5.16)

This result suggests a structural break between a negative relationship between
prices and trading volume in the lower regime, and a positive relationship between
prices and trading volume in the upper regime. The coefficients of the price variables
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sum up to −4.1 in the contraction regime and to 25.02 in the expansion regime.
These findings support the results for the EUR series. Here again the effect of
price changes on trading volume is positive and much stronger during expansions,
pointing to positive feedback trading in booms.

5.4.3.5 MXP – Speculation Dynamics

The last series to be analyzed is the MXP series. The regression results are:

∆slt = 3.94
(0.13)

− 0.10
(0.07)

∆slt−1− 0.31
(0.00)

∆slt−2− 0.16
(0.00)

∆slt−3− 0.03
(0.52)

∆slt−5

− 0.15
(0.00)

∆slt−8 +21.64
(0.00)

∆pt +12.36
(0.00)

∆pt−1 + 9.51
(0.00)

∆pt−2

+ 6.04
(0.01)

∆pt−3− 1.70
(0.50)

∆pt−5− 2.63
(0.23)

∆pt−6

+ [−15.74
(0.48)

+ 0.42
(0.04)

∆slt−1 + 0.85
(0.00)

∆slt−2− 0.68
(0.00)

∆slt−3− 0.34
(0.04)

∆slt−5

+ 0.14
(0.38)

∆slt−8 + 4.03
(0.68)

∆pt − 0.43
(0.96)

∆pt−1−10.41
(0.24)

∆pt−2

− 0.58
(0.95)

∆pt−3 +36.20
(0.00)

∆pt−5 +32.67
(0.00)

∆pt−6]

[1+ exp{−(30.21
(NaN)

/σ̂
1
∆p)(∆pt−1− 1.35

(NaN)
)}]−1. (5.17)

T = 291, σ̂ = 40.87, R2 = 0.45, AIC = 7.50, pLMARCH(1) = 0.00,

pLMARCH(4) = 0.00, pLJB = 0.00, pLMAR(1) = 0.43, pLMAR(4) = 0.61.

The assumption of no ARCH and normality are rejected but there is no autocorre-
lation. Figure 5.10 shows a rather rapid transition (γ = 30.21) from the lower to the
upper regime. The transition occurs at c = 1.35. Most observations are in the lower
regime.

The estimation results for the lower regime are:

∆slt = . . .+21.64∆pt +12.36∆pt−1 +9.51∆pt−2

+ 6.04∆pt−3−1.70∆pt−5−2.63∆pt−6, (5.18)

and for the upper regime are the following:

∆slt = . . .+(21.64+4.03)∆pt +(12.36−0.43)∆pt−1

+ (9.51−10.41)∆pt−2 +(6.04−0.58)∆pt−3

+ (−1.70+36.20)∆pt−5 +(−2.63+32.67)∆pt−6

= . . .+25.67∆pt +11.93∆pt−1−0.90∆pt−2

+ 5.46∆pt−3 +34.50∆pt−5 +30.04∆pt−6. (5.19)
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Fig. 5.10 MXP transition function plotted against transition variable ∆pt−1

The sum of the price variables in the lower regime is 45.22 and 106.70 in the upper
regime. Again, the effect of price changes on trading volume is positive and much
stronger during expansions.

5.4.4 Misspecification Tests

Table 5.7 presents test results from diagnostic tests for no remaining nonlinearity
and parameter constancy. The test results from the linearity test suggest that there
is no remaining nonlinearity in all but the MXP series. However, the results for
the MXP series do not point to an LSTR2 model (i.e., the rejection of F3 is not
the strongest). Since the linearity test suggests an LSTR1 model, and linearity is
most strongly rejected assuming ∆pt−1 is the transition variable, the structure of
the model is not changed. Moreover, parameter constancy is not rejected for the
MXP series. Parameter constancy is only rejected for the EUR series if K = 1 and
K = 3. The rejection of parameter constancy is indicative of general misspecifi-
cation. However, according to Teräsvirta (2004, p. 234), “(. . . ) there is no unique
way of responding to a rejection.” Therefore, and because the linearity tests do not
indicate a misspecification of the model, this is not followed up.
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Table 5.7 Test for no remaining nonlinearity and parameter constancy

Linearity Parameter constancy

F F4 F3 F2 K = 1 K = 2 K = 3
AUD 0.2729 0.5970 0.3317 0.1355 0.1949 0.5518 0.2611
CHF 0.0736 0.0696 0.0230 0.9553 0.4148 0.3380 0.4924
EUR 0.5485 0.6554 0.0629 0.9028 0.0034 0.1127 0.0325
JPY 0.4013 0.2722 0.1595 0.9088 0.9516 0.9959 0.9893
MXP 0.0250 0.0417 0.5300 0.0394 0.2998 0.4558 0.8909

Note: The table contains p-values of F-variants from LM diagnostic tests for no remaining nonlin-
earity and parameter constancy. Concerning the test for no remaining nonlinearity, the following
decision rules apply: F represents the general test for no remaining nonlinearity. If the null hypoth-
esis of no remaining nonlinearity is rejected, a sequence of null hypotheses (corresponding to F4,
F3, and F2) is tested. If the rejection of F3 is the strongest, select an LSTR2 model, otherwise an
LSTR1 model is appropriate (see Teräsvirta, 1998). The results of the parameter constancy test are
given for three different transition functions with K = 1,2,3

5.5 A Catastrophe Theory Approach

The empirical results in the previous section suggest the following stylized
facts:

• Price shocks lead to an increased proportion of speculators in futures markets.
• Speculators bet on further price increases and therefore behave like positive

feedback traders.
• The behavior of speculators is regime dependent. At least for the AUD, EUR,

JPY, and MXP series, the results suggest that the reaction of the quantity of
speculation to price rises is much larger in the expansion regime.

In this section, these empirical findings, together with the theoretical consideration
concerning the interaction of arbitrage and noise trading, are modelled in a cusp
catastrophe approach. Catastrophe theory is chosen because it is able to capture the
nonlinearities found through the LSTR analysis as well as the complex interrelation
of arbitrageurs and noise traders in a relatively parsimonious model. The usefulness
of catastrophe theory for modelling nonlinear and complex relations is, for example,
discussed in Granger and Teräsvirta (1993, pp. 32–33), who note:

“Some nonlinear generators (. . . ) have the property that a small change in parameter values
can lead to large changes in the long-run properties, from one fixed point to another quite
different one, or from a fixed point to a cycle. This effect is called a bifurcation and reflects
the idea that as one searches over parameter values one is actually considering models with
quite different long run properties. (. . . ) This is the basis of catastrophe theory (. . . ). In just
a few of these cases very substantial changes in the motion of the process can occur with
small changes in parameter values, hence the use of the word ‘catastrophe’.”
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The modelling approach in this section is closely related to the work of Zeeman
(1974).38 In his work he models the consequences of the interaction between two
types of investors for the stability of a stock exchange.39 The two types of traders
are fundamentalists and chartists (i.e., speculators). The approach in this section dif-
fers from the one chosen by Zeeman (1974) by considering three different types of
traders. Here, traders are divided into speculators, hedgers, and arbitrageurs. While
speculators equal the chartists in Zeeman’s model and hedgers might be compared
to Zeeman’s fundamentalists, the role of arbitrage has not yet been investigated in
this type of model. In fact, corrective trades of arbitrageurs are at the center of this
investigation. The variables are defined as follows:

• P: Futures settlement price changes is the dependent variable.
• AP: Arbitrage pressure is the “splitting factor.” That means, when arbitrage pres-

sure (i.e., the amount of corrective trades) decreases, a critical point is reached
where the surface of the graphical representation splits (i.e., bifurcates). For
strong values of arbitrage pressure (i.e., if AP ≥ 0 in this model), changes are
smooth. However, for negative values of AP discontinuities may occur. It is
assumed that transaction costs and especially holding costs reduce arbitrage
pressure.40

• T P: Traders net long positions.41 Traders include speculators, hedgers, and arbi-
trageurs. T P is the normal factor in the model. This means that for large positive
and negative values of T P changes are relatively smooth. For intermediate values
of T P catastrophic changes can occur.

38 See also the discussion of Zeeman’s model in Aschinger (1995, 2001).
39 Other applications of catastrophe theory include research concerning business cycles (Varian,
1979), competitive dynamics (Dou & Ghose, 2006; Kauffman & Oliva, 1994; Oliva, Day, &
MacMillan, 1988), industrial adoption decisions (Herbig, 1991), anxiety levels in pre-university
students (Haslett, Smyrnios, and Osborne, 1998), and ceremonial pig giving cycles in the New
Guinea Highlands (Thompson, 1980).
40 See the discussion in Sect. 5.2. Speculators and hedgers also face transaction costs. However,
their trading positions are not effected that much by these costs. This is because of two reasons.
First, expected prices play a crucial role with regard to expected gains from trading. In contrast
to speculators, arbitrageurs expect prices to equal their equilibrium value. They will therefore,
in the absence of holding costs, take positions contrary to the trend as soon as prices cross the
transaction costs bounds. Their gain is the difference between the mispricing and the transaction
costs. Speculators, on the other hand, expect prices to cross the transaction costs bounds and deviate
from equilibrium even further. That is why they go long (short) in the futures contracts if prices rise
(fall). Since their expected price is further away from equilibrium than the transaction costs, it does
not matter if the actual price is below the transaction costs. Second, compared to hedgers, gains
from arbitrage trades are essential to arbitrageurs. Hedgers follow a selective hedging strategy, as
discussed in Chap. 3. Hedgers’ motivation to trade in futures markets is therefore not solely based
on expected gains, but also on risk aversion, especially with respect to the commitment in the spot
market. Therefore, transaction costs play a minor role for hedgers. In this context, Dow and Gorton
(1997) state that hedgers are often regarded as rational noise traders since they do not base their
trading decisions solely on expected gains.
41 Note that negative values of T P represent net short positions.
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Fig. 5.11 The catastrophe model, bifurcation, and divergence

5.5.1 The Cusp Catastrophe Model and Underlying Hypotheses

It is beyond the scope and purpose of this section to give a detailed description of
catastrophe theory. Hence, only a brief overview of the cusp catastrophe model is
presented. In mathematical terminology, the cusp function used in this investigation
is F(P, AP, T P) = P4 +AP∗P2−T P∗P, where AP and T P are independent and P
is the dependent variable. The partial derivative of F(P, AP, T P) with respect to P
gives the three-dimensional response surface. This surface is presented in Fig. 5.11
together with two important characteristics of the cusp catastrophe model.42

The dashed gray lines in Fig. 5.11 represent the bifurcation set in the AP−
T P− plane. This bifurcation set shows that reduced arbitrage pressure may lead
to increased misalignment of traders positions. Assume that, for any reason, spec-
ulators go net long in the currency futures contract (T P > 0). If arbitrage intensity
was infinite (AP≥ 0), arbitrageurs would take positions contrary to speculators. The
overall net long positions of traders (i.e., speculators, hedgers, and arbitrageurs)
would, therefore, be 0. However, in the presence of transaction and holding costs
arbitrageurs might not instantly exploit arbitrage opportunities (AP < 0). In this
situation, misalignment of net trader positions might occur. The second important

42 Appendix C presents the program code for the computation of Fig. 5.11.
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property of the model is represented by the thick black lines in Fig. 5.11. The black
lines show the divergence in the P−AP− plane. For the computation of the black
lines, the variable T P is set constant at T P = 0.1 and T P =−0.1. These slightly dif-
ferent values of T P lead to large changes in state (i.e., in P) as AP decreases. Hence,
small changes in the path may produce totally different trajectories and, therefore,
quite different forms of system behavior.

In order to study the dynamic flows in the model, it is important to define the
exact relation between P, AP, and T P. The following Hypotheses are closely related
to Zeeman (1974):

Hypothesis 1: The price P responds much faster to changes in arbitrage pressure AP and
trader positions T P than AP and T P respond to P. Prices react instantly whereas the reaction
of traders is much slower.

Hypothesis 2: If arbitrage pressure is strong (AP ≥ 0), then the balanced net positions of
traders (T P = 0) will cause the settlement price to be static (P = 0). This is the stable
equilibrium.

Hypothesis 3: Reduced arbitrage pressure (AP < 0) leads to instability. In mathematical
terminology, for large negative values of AP and intermediate values of T P the response
dimension (i.e., the dependent variable P) can take on two possible values. This area of
bimodality is where sudden, discontinuous catastrophe shifts are possible.

Hypothesis 4: Arbitrageurs do not react instantly to mispricing because of transaction costs.
They enter the market when prices cross the transaction costs bounds (i.e., the band of
inactivity).

Hypothesis 5: Speculators are positive feedback traders. They go long in the futures con-
tracts when prices increase, and short otherwise. Moreover, they react faster to price changes
than hedgers.

Hypothesis 6: Positive feedback trading increases the holding costs faced by arbitrageurs.
Holding costs limit arbitrage.

Hypothesis 7: The stronger the mispricing, the more arbitrageurs will enter the market and
take positions contrary to speculators. Moreover, hedgers who recognize the growing insta-
bility in the market will tend to insure themselves against further mispricing by taking
contrary positions.43

5.5.2 The Chain of Events

Based on the hypotheses presented, the following chain of events can be constructed.
It is related to the chain’s graphical illustration shown in Fig. 5.12.

43 Like the activity of arbitrageurs, trading activity of hedgers increases with increasing mispricing.
This hypothesis is in line with the selective hedging theory. In this context, Working (1953, p. 320)
notes that: “Except in firms that have a strict rule against taking hedgable risks, it is common,
therefore, for stocks to be carried unhedged at times, when the responsible individual expects a
price advance, and for the stocks of the commodity to be hedged at other times. Some individuals
and firms hedge stocks only when they are particularly fearful of price decline.”
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Fig. 5.12 The chain of events in the cusp catastrophe model

1. The economy is initially in equilibrium (see point A in Fig. 5.12). The futures
settlement price equals its fair value. Hence, long and short positions are balanced
(T P = 0). There is no mispricing and, therefore, no arbitrage. In this situation a
price shock occurs which pushes the settlement price above its equilibrium value
(P ↑).

2. Arbitrageurs do not react to the initial mispricing because of transaction costs.44

That means the mispricing does not exceed the critical value, represented by the
transaction costs bounds. Speculators react to the price increase by flowing into
the market. Hence, the “speculation-hedging-ratio” increases. Moreover, spec-
ulators go long (i.e., act like positive feedback traders). The value of net long
positions of all traders (speculators, hedgers, and arbitrageurs) increases (T P ↑).
This leads to further price rises and, therefore, deepens the mispricing (P �).

3. Now, the price path crosses arbitrageurs’ transaction costs bounds. Arbitrageurs
engage in trading and take positions contrary to speculators. However, arbitrage
is still limited by holding costs. Moreover, holding costs increase with growing
positive feedback trading (AP ↓). This means that, due to increased speculation,
noise trader risk, as well as increasing horizon risk resulting from an increase

44 Note that transaction costs and holding costs faced are arbitrageurs are treated separately. Trans-
action costs represent a clear barrier prices have to cross before arbitrageurs become actively
involved in the market. Holding costs include several factors arbitrageurs have to consider. See
Sect. 5.2.
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in net long positions (which pushes prices further away from equilibrium),
limits arbitrage. Since arbitrage is limited, prices still increase (P ↑; point B in
Fig. 5.12).

4. In this situation, hedgers realize the extent of the mispricing and the overall
risk in the market. They react to the increasing prices by going short. Like the
arbitrageurs, hedgers take positions contrary to positive feedback traders. The
“speculation-hedging-ratio” and the value of net long positions decreases (T P ↓).

5. The decrease in the “speculation-hedging-ratio” encourages arbitrageurs to
exploit the mispricing. Prices begin to fall (P ↓). Speculators follow hedgers and
arbitrageurs by going short, too (T P �). This abrupt short selling leads to a crash
in prices (P �; from point C to point D in Fig. 5.12).

6. Now, prices are below their fair value. Arbitrageurs go long in futures contracts
as soon as potential gains exceed the transaction costs. However, arbitrage is
again limited by holding costs. Hedgers, who want to protect themselves against
further price decreases, go long as well. Prices begin to rise again, and speculators
go long (P ↑, T P ↑). The more the price path approaches equilibrium, the more
holding costs are reduced and arbitrage pressure increases (AP ↑). Finally, the
price path reaches equilibrium. Long and short positions of traders are again in
equilibrium and there are no arbitrage opportunities.

5.6 Discussion

This chapter deals with the behavior of futures traders. In particular, the response of
the quantity of trading volume to price changes is analyzed. The empirical inves-
tigation proceeds in three steps. The results are threefold. First, the fraction of
speculators in all but the Japanese Yen currency futures market increases responding
to a rise in settlement prices. Second, speculators go long in these futures contracts,
i.e., they bet on further price increases and, thus, act like positive feedback traders.
Third, the reaction of trading volume to price shocks depends on the price regime.
Nonlinearities are found in all markets except the Canadian Dollar futures mar-
ket. The results of the LSTR analysis suggest that positive feedback trading is even
more profound in booms, at least for the Australian Dollar, the Euro, the Japanese
Yen, and the Mexican Peso series. These results present strong evidence that price
increases lead speculators to behave like a herd of positive feedback traders. This
behavior will potentially discourage arbitrageurs from taking positions contrary to
the speculators. The resulting deepening of the mispricing may, in turn, lead to a
long path back to equilibrium.

A hypothetical chain of events, based on these empirical findings, is then mod-
elled by using cusp catastrophe theory. This parsimonious model is able to capture
the nonlinear dynamics and the complexity that is associated with the interrelation
of arbitrage and noise trading. The model is particularly useful because delays (in
arbitrage) and reversibility (of traders’ positions) are characteristic features of the
dynamics. It is shown that in the absence of arbitrage positive feedback trading can
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lead to radical drops (i.e., crashes) in prices. With growing arbitrage pressure, the
transition from one state to the other gets smoother. However, the results based on
this hypothetical chain of events have to be interpreted with caution. In this regard,
Herbig (1991, p. 128) notes that:

“Catastrophe Theory is the study of discontinuous transitions and is a qualitative, not a
quantitative, descriptor. It is analogous to a map without scale; a mountain may be seen to
the left but the exact distance to the peak is unknown. The map will tell you what to expect
but not how far away or how high it is.”

Nevertheless, the hypotheses on which this model is based are plausible with
respect to economic theory and at least partly based on empirical findings. The catas-
trophe model is an appropriate tool for capturing nonlinearities and complexity, and
for presenting some interesting accounts and explanations for instability.



Chapter 6
Conclusions

A hedger is a trader who simultaneously holds positions in spot and futures markets
in order to reduce spot exposure. However, he does not necessarily minimize the
initial spot risk. The minimization of risk is just one single possible outcome from
a wide range of potential hedging strategies. Nevertheless, hedging less than the
initial spot commitment does not mean that the hedger turns into a speculator. This
is because he still holds positions in both markets, with the result that his overall
exposure to risk is smaller than if he would only trade in the spot market. Risk is
reduced, but not eliminated.

The microeconomic part of this thesis focuses on the determinants of firms’ opti-
mal hedging strategies. The impact of price expectations, risk aversion, and hedging
costs are particularly important. If hedgers expect spot prices to move in their favor
they will be less willing to hedge, since potential returns in the spot market are
offset by losses in the futures position. In the presence of hedging costs, the over-
all profit of the hedged position would be negative if earnings and losses in spot
and futures markets were perfectly balanced. Hence, under risk neutrality, compa-
nies will not hedge unless there are other incentives to hedge that outweigh the
costs. These incentives include taxes, bankruptcy costs and underinvestment prob-
lems among others. The models presented in the microeconomic part of this thesis
assume a priori that the hedging firm is risk averse.

In Chap. 2, the impact of price expectations and hedging costs on a firm’s optimal
hedging strategy are investigated in an expected utility framework. The importing
firm can trade futures contracts in order to manage the spot currency risk. The model
suggests that the size of the importer’s hedging position should depend positively
on backwardation. In the absence of hedging costs and price biases, the firm hedges
its currency exposure fully, while it overhedges (underhedges) if the futures mar-
ket exhibits backwardation (contango). This result changes, however, if hedging
costs are introduced into the model. With hedging costs, the importer hedges fully
only if the futures market exhibits backwardation to some degree. Nevertheless, an
increase in backwardation should, ceteris paribus, lead the importing firm to increase
its trading volume in long futures contracts. The empirical analysis in Chap. 2 inves-
tigates the impact of two measures of backwardation on hedgers’ trading volume in
long and short futures contracts. The results offer little support for the hypotheses
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suggested by economic theory that short (long) hedging activity depends negatively
(positively) on backwardation.

The model presented in Chap. 3 builds on the representative importer’s hedging
problem introduced in Chap. 2. The mean-variance approach to hedging is applied
in order to gain additional insights into the determinants of the importing firm’s
optimal hedging strategy. First, the optimal hedge is derived and decomposed into
a pure hedge component and a speculative component. The speculative compo-
nent contains firm specific characteristics, such as the degree of risk aversion and
price expectations. It approaches zero if the hedger is infinitely risk averse, or if he
does not expect prices to move in his favor. The pure hedge component depends on
variances and covariances of spot and futures prices. Hence, the pure hedge compo-
nent is identical for all firms and can be calculated using price data. It is shown in
Chap. 3 that this pure hedge equals the so called minimum-variance hedge. Since
the pure hedge, or minimum-variance hedge, respectively, is identical for all firms,
differences between firms’ hedging strategies depend solely on their individual spec-
ulative demand. The derived optimal hedge ratio, consisting of the speculative and
the pure hedge component, is used to construct a Marshallian-type demand curve.
This demand function for futures contracts, plus a stylized futures supply function,
are then used to derive the hedgers’ surplus. It is shown that risk aversion impacts
the hedgers’ surplus positively, while hedging costs have a negative effect on the sur-
plus. In general, the investigations in Chaps. 2 and 3 show that, even in the presence
of risk aversion, firms do not necessarily fully hedge their spot exposure. Expecta-
tions and hedging costs still play an important role in determining the firm’s optimal
hedging strategy. A wide range of selective hedging strategies from no hedging, over
partial hedging, to full hedging and overhedging might be optimal.

From a macroeconomic perspective, firms’ hedging activity has an impact on
the sensitivity of investment to risk. Suppose that a firm’s investment is exposed
to currency risk. By choosing the optimal hedging strategy, the firm decides over
the vulnerability of its investment to exchange rate changes. The less the firm
hedges, the more vulnerable it is in the case of an adverse exchange rate shock. The
macroeconomic approach, therefore, supplements the microeconomic discussion on
optimal hedging strategies by analyzing the consequences of firms’ risk manage-
ment strategies on investment. This, in turn, allows for a further investigation of
how an adverse shock can potentially affect output.

The analysis in Chap. 4 is concerned with the question of how output is affected
by an exchange rate shock, depending on several alternative realizations of invest-
ment functions which are based on different risk management scenarios. Corporate
hedging activity and speculation are investigated in a Mundell–Fleming–Tobin type
currency crisis model. Using this model, a direct linkage between microeconomic
risk management and macroeconomic stability is established. Three different types
of financial derivatives are examined and compared to each other: Futures, for-
wards, and options. The shape of the investment function depends on which financial
derivative is used by the firm, and how it is used. The investment function, in turn,
is an important component of the goods market equilibrium curve. It is shown in
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the model that corporate hedging activity can serve to reduce adverse effects of
exchange rate shocks and capital flight on output. Especially nonlinear derivatives
such as options are found to be valuable, since they allow for output expansions
after favorable exchange rate changes while still protecting against adverse shocks.

The behavior and interaction of different types of traders is of crucial importance
for economic stability. Suppose that firms tend to follow a selective hedging strategy.
Important aspects, like price expectations and risk aversion, may change over time.
Moreover, market sentiment and, therefore, the behavior of other traders might play
some role if traders tend to herding and to positive feedback trading. If risk manage-
ment strategies are at least partly based on optimistic or pessimistic opinion, ana-
lyzing the behavior and interaction of traders in disequilibrium might be even more
important than in equilibrium. The interaction and behavior of futures market traders
is investigated in Chap. 5. The empirical part of this chapter shows that a shock in
currency futures prices leads to an increased proportion of speculators in these mar-
kets. Moreover, speculators tend to go long in futures contracts in response to a
price rise, and, therefore, bet on further price increases. The third empirical finding
suggests that the behavior of speculators is regime dependent. The impact of price
changes on speculators’ trading volume in futures contracts is much stronger during
price expansions, pointing to positive feedback trading during booms. A hypothet-
ical chain of interaction between traders, based on these empirical findings, is then
incorporated into a cusp catastrophe model. In addition to hedgers and specula-
tors, arbitrageurs play an important role in the model. Transaction and holding costs
can discourage arbitrageurs to exploit arbitrage opportunities. If arbitrageurs are
inactive, weak arbitrage pressure will not prevent further mispricing, especially in
the presence of positive feedback traders. The rather complex interplay between
arbitrage, selective hedging, and positive feedback speculation is examined using
catastrophe theory. The catastrophe approach is particularly useful, since delays in
trading activity and reversibility of traders’ positions are characteristic features of
the model. The results show that, depending on the behavior of traders in response to
a price shock, instability might increase and lead to a long path back to equilibrium.

While the determinants of firms’ optimal hedging strategies on the micro level
are well understood, there is rarely any literature dealing with macroeconomic con-
sequences of microeconomic risk management. The model presented in Chap. 4
can be regarded as a starting point for a detailed analysis of the interrelation
between financing, risk management, investment, and output. The analysis could
be extended to the medium run, allowing for dynamic hedging activity in a stochas-
tic environment. Nonlinearities in traders’ behavior, as discussed in Chap. 5, are
a further important aspect with respect to economic stability. Analyzing market
microstructure in conjunction with behavioral economics and finance could lead
to a better understanding of instability, panics and crashes. It is important to realize
that spot and futures markets are linked by arbitrageurs and hedgers. Arbitrageurs
and hedgers, therefore, might perform as a transmission channel between finan-
cial and real activity. A more rigorous analysis of macroeconomic consequences of
microeconomic risk management is, however, left for future research.



Appendix A
A Geometric Approach to the Hedgers’ Surplus

This section presents an alternative derivation of the hedgers’ surplus. The demand
for futures contracts, as derived in Chap. 3, is

h =
f̃1− f0− c
2λV ( f̃1)

+
Cov(ẽ1, f̃1)

V ( f̃1)
, (A.1)

where the size of the spot commitment is set to x = 1. Solving for c yields the
demand function, presented in Fig. 3.5.

c = f̃1− f0−2λhV ( f̃1)+2λCov(ẽ1, f̃1). (A.2)

The intersection of the demand function with the y-axis is calculated by setting
h = 0:

c = f̃1− f0 +2λCov(ẽ1, f̃1). (A.3)

The supply function is the horizontal line with c = cs. Supply and demand equilib-
rium is

cs = f̃1− f0−2λhV ( f̃1)+2λCov(ẽ1, f̃1). (A.4)

Solving for the optimal hedging position h∗ yields

h∗ =
f̃1− f0− cs

2λV ( f̃1)
+

Cov(ẽ1, f̃1)
V ( f̃1)

. (A.5)

The triangle area left of the demand function and above the supply function can then
be computed as

HS = 0.5( f̃1− f0 +2λCov(ẽ1, f̃1)− cs)h∗

= 0.5( f̃1− f0 +2λCov(ẽ1, f̃1)− cs)(
f̃1− f0− cs

2λV ( f̃1)
+

Cov(ẽ1, f̃1)
V ( f̃1)

)

=
0.25(− f̃1 + f0 + cs−2λCov(ẽ1, f̃1))2

λV ( f̃1)
. (A.6)
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Solving (A.5) for Cov(ẽ1, f̃1)

Cov(ẽ1, f̃1) =
− f̃1 + f0 + cs +2λhV ( f̃1)

2λ
, (A.7)

and inserting into (A.6) yields

HS =
0.25(− f̃1 + f0 + cs−2λ (− f̃1+ f0+cs+2λhV ( f̃1)

2λ
))2

λV ( f̃1)

=
0.25(−2λhV ( f̃1))2

λV ( f̃1)

= λh2V ( f̃1), (A.8)

which is equivalent to the result in Sect. 3.2.



Appendix B
Stability Analysis

The stability properties of the MFT model in Chap. 4 can be established from the
eigenvalues of the Jacobian matrix, along with the trace and the determinant of the
Jacobian.

Given a set of n equations in n variables

y1 = f1(x1, . . . ,xn)
y2 = f2(x1, . . . ,xn)
. . .

yn = fn(x1, . . . ,xn), (B.1)

the Jacobian matrix (or matrix of partial derivatives, respectively) is given by:

J =


δy1
δx1

. . . δy1
δxn

...
. . .

...
δyn
δx1

. . . δyn
δxn

 . (B.2)

Assume the Jacobian of a 2×2 system is

J =
[

a b
c d

]
. (B.3)

The eigenvalues are the roots of the characteristic equation

λ
2− (a+d)︸ ︷︷ ︸

trJ

∗λ +(a∗d−b∗ c)︸ ︷︷ ︸
detJ

= 0, (B.4)
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det
tr2 = 4det

tr

unstable

unstable
nodes

stable
nodes

stable

saddle points

spirals

Fig. B.1 The trace-determinant plane

where trJ is the trace of J and detJ is the determinant of J. The eigenvalues are
therefore given by1

λ± =
1
2

(
trJ±

√
(trJ)2−4detJ

)
. (B.5)

Knowing the trace and the determinant allows to calculate the eigenvalues of
the matrix and, hence, investigate the stability of the system. For a graphical
representation see the trace-determinant-plane in Fig. B.1.2

These stability properties apply only in the neighborhood of the equilibrium
under investigation. For systems with multiple equilibria, the neighborhood of each
equilibrium must be investigated individually. In order to analyze the stability of the
equilibria of the different IS-AA outcomes discussed above, the Jacobian matrix
of the basic IS-AA model (4.1) and (4.4) is derived. The starting point of this
investigation is the IS-AA diagram without hedging:

IS : C(Y −δ K̄− T̄ )+ I(e)+ Ḡ+NX(Y,Ȳ ∗,e)−Y = 0,

AA : g(r(Y,M0)− r̄∗−βε(
e0

e
−1)︸ ︷︷ ︸

ε︸ ︷︷ ︸
ξ

,M0 +B0 + eFp0︸ ︷︷ ︸
Wp

)− eFp = 0.

The Jacobian is

J =

[
δ IS
δY

δ IS
δe

δAA
δY

δAA
δe

]
, (B.6)

1 See Hirsch, Smale, and Devaney (2004, p. 62).
2 For similar graphical representations, see e.g., Hirsch et al. (2004, p. 63), Flaschel and Groh
(1996, p. 129), Chiarella, Flaschel, Groh, and Semmler (2000, p. 257), and Asada, Chiarella,
Flaschel, and Franke (2003, p. 17).
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and, therefore,

J =
[

βY [CY +NXY −1] βY [Ie +NXe]
βe[gξ ∗ rY ] βe[−gξ ∗ εe +(gWp −1)∗Fp0]

]
. (B.7)

Considering gξ < 0, rY > 0, gWp ∈ [0,1], and εe ≤ 0, the Jacobian has the following
signs:

J =
[
− ?
− −

]
. (B.8)

The stability of the equilibria (E1,E2,E3) depends on the sign of “?” in the Jacobian
and, therefore, on the question which effect (NXe or Ie) dominates the other. In
equilibrium E1 and E3, the IS curve is upward sloping and NXe > Ie holds. In this
case, the “?” has a positive sign:

JNXe>Ie =
[
− +
− −

]
. (B.9)

The determinant and the trace of the Jacobian (with NXe > Ie) are

detJNXe>Ie = ((−)∗ (−))− ((+)∗ (−)) = + > 0,

trJNXe>Ie = (−)+(−) =−< 0. (B.10)

Because the determinant is positive (det(J(E1,3)) > 0), and the trace is negative
(tr(J(E1,3)) < 0), equilibria E1 and E3 are stable.

In equilibrium E2, the IS curve is backward bending, since Ie > NXe. Here, the
sign of “?” is negative:

JIe>NXe =
[
− −
− −

]
. (B.11)

The determinant and the trace of the Jacobian (with Ie > NXe) are3

detJIe>NXe = ((−)∗ (−))︸ ︷︷ ︸
a∗d

−((−)∗ (−))︸ ︷︷ ︸
b∗c

=−< 0, (B.12)

trJIe>NXe = (−)+(−) =−< 0. (B.13)

The determinant in (B.12) is negative, because it is assumed that b∗ c is larger than
a∗d. This means that,

δ IS
δe
∗ δAA

δY
>

δ IS
δY
∗ δAA

δe
. (B.14)

It can be shown that (B.14) holds true by using the graphical representation of the
“neighborhood” of equilibrium E2, presented in Fig. B.2. Figure B.2 illustrates the
effect of changes of Y and e on the IS and AA curve. Therefore, Fig. B.2 allows to

3 Note that the terms a∗d and b∗ c correspond to the stylized Jacobian in (B.3).
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Fig. B.2 The “neighborhood” of E2

qualitatively compare δ IS
δY to δAA

δY and δ IS
δe to δAA

δe . The effect of changes in Y is larger
on the AA curve than on the IS curve

δAA
δY

>
δ IS
δY

, (B.15)

and variations in e affect the IS curve stronger than the AA curve

δ IS
δe

>
δAA
δe

. (B.16)

Therefore, (B.14) holds true. The determinant in (B.12) is negative and equilibrium
E2 is a saddle point.4 Since slight deviations from this steady state level can result
in an economic boom or a crisis, this equilibrium is unstable.

Up to now, all cases NXe 6= Ie have been investigated. Here, for the sake of
completeness, the case NXe = Ie is discussed. If NXe = Ie, the Jacobian is:

JNXe=Ie =
[
− 0
− −

]
, (B.17)

with

detJNXe=Ie = ((−)∗ (−))− ((0)∗ (−)) = + > 0,

trJNXe=Ie = (−)+(−) =−< 0. (B.18)

This equilibrium is stable, since detJNXe=Ie > 0 and trJNXe=Ie < 0.

4 See the trace-determinant plane in Fig. B.1.



Appendix C
The Computation of the Catastrophe Surface

This section presents the “Mathematica” program code for the computation of
Fig. 5.11 in Chap. 5. For a detailed description on how to implement catastrophe
models in “Mathematica,” see Sanns (2000).

First, the cusp function is defined, and its partial derivative with respect to P is
computed.

F[P_, AP_, TP_] := Pˆ4 + AP*Pˆ2 - TP*P

D1F[P_, AP_, TP_] := Evaluate[D[F[P, AP, TP], P]]

Then, the surface of the cusp catastrophe model can be drawn using the following
commands.

<< "Graphics‘Master‘"

CriticalPoints =
ContourPlot3D[D1F[P, AP, TP], {AP, -2, 1}, {TP, -2, 2},
{P, -2, 2}, PlotPoints -> 6, ViewPoint -> {2, -2, 1.5},
Axes -> True, AxesLabel -> {"AP", "TP", "P"},
DefaultFont -> 14, BoxRatios -> {2, 2, 2},
ColorOutput -> CMYKColor]

Next, the bifurcation set can be computed as follows.

D2F[P_, AP_, TP_] := Evaluate[D[D1F[P, AP, TP], P]] D2F[P, AP, TP]

scnd = ContourPlot3D[D2F[P, AP, TP], {AP, -2, 1},
{TP, -2, 2}, {P,-2, 2}, Axes -> True,
AxesLabel -> {"AP", "TP", "P"}, PlotPoints -> 6,
ViewPoint -> {2, -2, 1.5}]

compose1 = Show[CriticalPoints, scnd]

solu = Solve[{D1F[P, AP, TP] == 0, D2F[P, AP, TP] == 0}, {AP, TP}]

solu1 = Flatten[solu]

{s, t} = {AP, TP} /. solu1
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foldline =
ParametricPlot3D[
{s, t, P, {Thickness[0.005], RGBColor[1, 0, 0]}},
{P, -0.75, 0.75}, DefaultFont -> 14]

compose2 = Show[compose1, foldline]

cusp = ParametricPlot[{s, t}, {P, -1, 1}, AxesLabel -> {"AP", "TP"},
AspectRatio -> 1]

cusp3D = ParametricPlot3D[
{s, t, -3.7, {Thickness[0.01],
Dashing[{0.01, 0.05, 0.05, 0.05}],
GrayLevel[0.5]}}, {P, -0.751, 0.75},
DefaultFont -> 14]

Finally, the following program lines can be used to compute the divergence.

Clear[P, AP]

eps = 0.1

vconst = -0.1

L = Solve[D1F[P, AP, vconst] == 0, {AP}]

compon = AP /. %

AP1 = compon[[1]]

diverg1 =
ParametricPlot3D[
{AP1, vconst, P + eps, {Thickness[0.015]}},
{P, -1, -0.05}, PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}]

Clear[vconst]

vconst = 0.1

L = Solve[D1F[P, AP, vconst] == 0, {AP}]

compon = AP /. %

AP1 = compon[[1]]

diverg2 =
ParametricPlot3D[
{AP1, vconst, P + eps, {Thickness[0.015]}},
{P, 0.05, 1}, PlotRange -> {{-1, 1}, {-1, 1}, {0, 1}}]

All = Show[CriticalPoints, diverg1, diverg2, cusp3D,
ColorOutput -> CMYKColor]
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Franz Vahlen.
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