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Preface

Oligopoly theory is one of the most intensively studied areas of mathematical
economics. On the basis of the pioneering works of Cournot (1838), many resea-
rchers have developed and extensively examined the different variants of oligopoly
models. Initially, the existence and uniqueness of the equilibrium of the different
types of oligopolies was the main concern, and later the dynamic extensions of
these models became the focus. The classical result of Theocharis (1960) asserts
that under discrete time scales and static expectations, the equilibrium of a single-
product oligopoly without product differentiation and with linear price and cost
functions is asymptotically stable if and only if it is a duopoly. In the continuous
time case, asymptotic stability is guaranteed for any number of firms. In these cases
the resulting dynamical systems are also linear, where local and global asymptotic
stability are equivalent to each other. The classical book of Okuguchi (1976) gives
a comprehensive summary of the earlier results and developments. The multiprod-
uct extensions have been discussed in Okuguchi and Szidarovszky (1999); however,
nonlinear features were barely touched upon in these contributions.

With the development of the critical curve method by Gumowski and Mira (1980)
(see also Mira et al. (1996)) for discrete time systems and the introduction of contin-
uously distributed information lags by Invernizzi and Medio (1991) in continuous
time systems, increasing attention has been given to the global dynamics of non-
linear oligopolies. The authors of this book have devoted a great deal of research
effort to this area. Their cooperation has resulted in several joint conference presen-
tations and a large number of journal publications. The development of the theory
of nonlinear dynamic oligopolies has now reached a stage where the authors feel it
has become necessary and worthwhile to collect and summarize the most important
results in a book form.

This book may be regarded as a continuation of the work of Okuguchi and
Szidarovszky (1999) and is focused mainly on the nonlinearity of oligopoly mod-
els. It consists of six chapters and a sequence of appendices. Chapter 1 introduces
and discusses the classical Cournot model with a large variety of demand and cost
functions. With these examples we try to illustrate a large collection of different
types of best response functions, as well as show the existence of unique and mul-
tiple equilibria. Dynamic processes are introduced in the second part of the chapter,
where we discuss static and adaptive expectations, partial adjustment towards the
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vi Preface

best response, and gradient adjustments. An introduction to the analysis of global
dynamics is given through specific examples of duopolies and symmetric and semi-
symmetric oligopolies. Chapter 2 is devoted to concave oligopolies. The existence
and uniqueness of the equilibrium is proved in general, and conditions are given
for the local asymptotic stability of the equilibrium. In the discrete time case, it is
required that the speeds of adjustment be sufficiently small for all firms, and in the
continuous time case local stability is always guaranteed regardless of the values of
the speeds of adjustments. Global dynamics are investigated in the cases of symmet-
ric and semi-symmetric firms. The relation between gradient adjustment and partial
adjustment towards the best response is then briefly outlined. The global dynamics
of continuous time models are illustrated by assuming continuously distributed time
lags, and we show that time lags may destroy stability. At the critical values of model
parameters at which stability is lost, a Hopf bifurcation occurs giving rise to the pos-
sibility of the birth of limit cycles. General oligopolies are discussed in Chapter 3.
Oligopolies with isoelastic price functions are first considered, conditions are given
for the local asymptotic stability of the equilibrium in both the discrete and con-
tinuous time cases, and global dynamics are examined in the case of discrete time
models. We assume next that the cost function of each firm depends on the output
of the rest of the industry in addition to its own output level. A special case of this
model results in parabolic best response functions, and we show the complexity of
the global dynamics that can occur in such cases. Modified and extended oligopoly
models are introduced and examined in Chapter 4, including market share attraction
games, labor-managed oligopolies, models with intertemporal demand attraction,
and the effects of production adjustment costs. The last section of this chapter is
devoted to the case of partially cooperating firms in which the payoff function of
each firm includes its own profit and a share of the profits of its competitors. Local
and global stability analyses are carried out for these models. Chapter 5 considers
three issues related to the firms’ uncertain knowledge of the demand function. In the
first part it is assumed that the firms misspecify the price function, and the dynamics
of the model depend on the way the firms estimate the price function and also on the
adjustment process the firms select. The steady states of these resulting dynamical
systems usually differ from the full-information equilibria, and so “subjective” equi-
libria occur. In the second part of this chapter, special adaptive learning processes
are introduced, where the firms adaptively learn (update) the unknown parameter
of the price function. For all of the models, both the local and global dynamics are
studied. In the third part, it is assumed that the price function is estimated by the
firms with random errors. Each firm faces a multiobjective problem by maximiz-
ing the expected profit and minimizing the variance of the profit. If the weighting
method is used to transform the problem to a single-objective optimization problem,
then the resulting model is equivalent to that of oligopolies with misspecified price
functions. Finally, Chapter 6 gives a brief overview of the very large and complex
field covered in this book, as well as an outline of future research directions.

Five appendices are included in the book. Appendix A presents the fundamen-
tals of Lyapunov stability theory, while Appendix B presents conditions for local
and global asymptotic stability by using the linearization procedure. Appendix C
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introduces the main concepts of noninvertible maps and critical curves, which serve
as the theoretical basis for the analysis of the global dynamics of discrete time mod-
els. Appendix D introduces the mathematical tools needed to examine continuous
time models with continuously distributed time lags. Appendix E demonstrates a
special determinantal identity that is very helpful in computing the characteris-
tic polynomials of matrices with a particular structure. Finally, Appendix F gives
sufficient and necessary conditions for the asymptotic stability of two-dimensional
systems based on their quadratic characteristic polynomials.

As can be seen from the foregoing description, the authors have tried to give a
comprehensive review of the different model variants and the mathematical method-
ology used in analyzing nonlinear oligopolies. A large collection of references are
cited and listed in the bibliography; however, the authors have not attempted to
give a complete collection of all the important works in this area. The interested
reader should consult Kopel (2009), which gives an up-to-date survey of oligopoly
dynamics and cites all of the important references.

The authors sincerely hope that this book will help graduate students, researchers
in mathematical economics, economists, and applied mathematicians to under-
stand the central issues and major methodologies of this fascinating and exciting
field. Hopefully, the book will inspire them to become interested in initiating, or
continuing, their own research agenda in this area.

The authors have benefitted from discussions with many of their research col-
laborators who are too numerous to list here, but special thanks are particularly due
to Laura Gardini and Iryna Sushko. The authors also thank Stephanie Ji-Won Ough
for the tremendous job she has done in turning the various drafts into an excellent
manuscript and for coping with a great deal of deadline pressure. Finally, acknowl-
edgement should be made to the institutions of the authors: the University of Urbino;
the University of Technology, Sydney; The University of Graz; the University of
Arizona – for providing financial support for this project.

Urbino Gian Italo Bischi
Sydney Carl Chiarella
Graz Michael Kopel
Tucson Ferenc Szidarovszky
May, 2009
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Chapter 1
The Classical Cournot Model

In this chapter we will introduce the classical Cournot model, which is also known as
the single-product quantity setting oligopoly model without product differentiation.
In the first section of the chapter the Cournot model will be discussed as an N -firm
static game and the best responses of the firms and the equilibria will be determined
in a series of examples, many of which will be built upon in developing the ideas
in subsequent chapters. Section 1.2 introduces the dynamic adjustment processes
via which we shall assume that firms adjust output over time. We will in particu-
lar discuss expectation formation processes and adaptive adjustments and gradient
adjustments. The final section will illustrate by simple examples the complexity
of the dynamics that can arise in these models due to certain nonlinear features
to be described below. The fundamental techniques for the global analysis of the
dynamics of such models will be explained in Sect. 1.3.

1.1 Introduction

The basic model can be described as follows. Consider an industry of N firms pro-
ducing a homogeneous product. Let k D 1; 2; : : : ; N denote the firms and let xk be
the output quantity of firm k. We assume that the inverse demand (or price) function
depends on the total output level of the industry, so the market price may be writ-

ten pDf
�

PN
kD1 xk

�

. The particular form of the function f can be derived from

microeconomic principles (see for example, Vives (1999)), and several function
types are discussed in the literature.

An important example of an inverse demand function which is linear is obtained
by assuming that the utility function of a typical consumer is quadratic,

U.q/ D aq � 1

2
bq2; .a; b > 0/;

where q is the quantity of the good purchased by the consumer. If we denote the
market price of the good by p, then for a sufficiently large income the consumer

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 1,
c� Springer-Verlag Berlin Heidelberg 2010
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2 1 The Classical Cournot Model

solves the optimization problem

max.U.q/ � pq/:

Assuming an interior optimum, the first order condition implies that

0 D U 0.q/� p D a � bq � p;

so that the individual demand at the price p is therefore

q.p/ D a

b
� 1

b
p:

Consider now n heterogenous consumers with quadratic utility and preference
parameters ai and bi . From the previous description we know that for any fixed price
consumer i will buy the amount qi D .ai � p/=bi , so the total demand becomes

D D
n
X

iD1

qi D
n
X

iD1

ai

bi

�
n
X

iD1

1

bi

p;

and hence the relationship between total demand and market price is linear. Notice
that if price increases, demand decreases and that there is a maximum price, usually
referred to as the reservation price, above which demand reduces to zero. If we
denote by Q D PN

kD1 xk the quantity supplied by the N firms in the industry and
we assume that at the price p the market clears, that is D D Q, then it also follows
that the relation between industry output and price is linear. Hence, by inverting this
relationship we finally obtain

p D f .Q/ D A� BQ;

where

A D
n
X

iD1

ai

bi

�

n
X

iD1

1

bi

; B D 1�

n
X

iD1

1

bi

:

Obviously, this representation is only valid for Q � A=B , that is as long as the
industry output is below the market saturation point. Otherwise, we have p D 0.

In the case of a general inverse demand function the profit of firm k .1 � k � N/

is the difference between its revenue and its cost and so is given by

'k.x1; : : : ; xN / D xkf

 

N
X

lD1

xl

!

� Ck.x1; : : : ; xN /; (1.1)

where Ck is the cost function of firm k.1 Our formulation takes into account the fact
that the cost of each firm depends not only on its own output but also on the outputs

1 In the game theory context the profit functions are usually called the payoff functions, and the
firms are called the players. We will occasionally make use of these terms throughout this book.



1.1 Introduction 3

of the competitors. The firms have to compete in the secondary market to ensure
capital, manpower, energy, material, etc. for their production processes. The tech-
nological and intellectual spillover between companies is another cost externality
which adds to the interdependence of the firms. In the literature on oligopoly theory
the interdependence of the firms through their cost functions is either ignored by
assuming that the cost of firm k is Ck.xk/; or it is assumed that the cost of firm k

depends on its own production level xk and also on the total production level of the
rest of the industry, which we will denote by Qk D P

l¤k xl so that the cost func-
tion of firm k may be written more generally as Ck.xk ;Qk/. In the rest of the book
we will consider various cases where cost externalities arise. Note that under this
assumption the profit of any firm k just depends on its own output and the output
of the rest of the industry, it does not depend on the individual output level of any
competitor. For this reason it is convenient to rewrite the profit function of firm k as

'k.x1; : : : ; xN / D xkf .xk CQk/� Ck.xk ;Qk/: (1.2)

Taken together, the above set-up yields a static N -person game, where the play-
ers are the firms, the strategy set of firm k is the interval Œ0; Lk �, where Lk is the
capacity limit of firm k and its payoff function is given by (1.2). If we assume that
all firms are rational in the sense that they want to maximize their own profits, then
we can derive the firms’ best responses. That is, if firm k knows the total production
Qk of the rest of the industry, then it will select a production level xk that maxi-
mizes its profit (1.2). For each value ofQk let Rk.Qk/ denote the set of all optimal
solutions, that is

Rk.Qk/ D
�

xk j xk D arg max
0�xk�Lk

fxkf .xk CQk/� Ck.xk;Qk/g
�

; (1.3)

which is called the best response or best reply mapping of firm k. In the general
case this is a point-to-set mapping, and in this case it is usually called the best
reply correspondence. In the case of a unique optimal solution, Rk.Qk/ is called
the best reply or reaction function of firm k. The Nash equilibrium of the game is
a simultaneous production vector ( Nx1; : : : ; NxN ) which is a best response for each
firm, under the assumption that all others maintain their corresponding equilibrium
production levels. This concept can be mathematically expressed for all k as,

Nxk 2 Rk. NQk/ with NQk D
X

l¤k

Nxl : (1.4)

At the equilibrium all firms simultaneously select their best responses to the cor-
responding equilibrium choices of the competitors. In other words, no firm has any
interest to deviate unilaterally from its equilibrium level.

In the following examples we will show that best responses might have a large
variety of forms, and also, that oligopolies may have no equilibrium at all. Further-
more, in the case of existence there may be multiple equilibria, and the number of
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equilibria may be finite or infinite. In the case of multiple equilibria, the problem
of equilibrium selection arises. In such situations, the non-negativity of the profits
and the dynamic evolution of the oligopoly game, determined by the adjustment
processes and the degree of bounded rationality of the players, can be used to deter-
mine which equilibria are realistic and which are not. We will return to this problem
in later chapters.

Example 1.1. Consider the case of a linear oligopoly where the price function has
the form f .Q/ D maxf0;A � BQg with Q D PN

kD1 xk and Ck.xk/ D dk C
ckxk (1�k�N ) with A, B , ck , dk being all positive. Note that the max operation
ensures that the price is zero for total output above the market saturation pointA=B .
In this case 'k is strictly concave in xk with derivative

@'k

@xk

D
(

A� BQk � 2Bxk � ck if Qk C xk <
A
B
;

�ck if Qk C xk >
A
B
;

and this derivative does not exist if Qk C xk D A=B .
If for any firm k it is the case thatA�ck � 0, then @'k=@xk is always negative, so

the best response of this firm is always zero, and hence entry for this firm is blocked.
Hence such firms do not participate in production, and therefore we can ignore them
in all further discussions. If for firm k, the capacity limitLk is sufficiently large, then
with A>ck , its monopoly quantity is xM

k
D .A�ck/=.2B/, which can be obtained

from the first order condition with Qk D 0.
In order to determine the best response of the firms, consider firm k and assume

that the total production levelQk of the rest of the industry is fixed. Notice first that
the best response of this firm cannot exceed A=B � Qk , that is, the total industry
output cannot be larger than the market saturation point. In contrast, assume that
xk >A=B�Qk , then the price is zero, and by decreasing the value of xk by a small
amount, the price will be still zero and the cost decreases. So the payoff of this
firm would increase contradicting the assumption that xk is the firm’s best response.
Therefore with fixed values of Qk the best response of firm k is selected in the
interval Œ0; NLk � with NLk D minfLk; A=B �Qkg. If the capacity limits of the firms
are sufficiently small, that is, when

PN
kD1Lk � A=B , then the zero segment of the

price function cannot occur, so NLk D Lk for all k andQk . For the sake of simplicity
in the following discussion we will assume that this is the case. Since 'k is strictly
concave in xk , the best response of firm k is unique and is given as

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if @'k

@xk
jxkD0� 0;

Lk if @'k

@xk
jxkDLk

� 0;

z�
k

otherwise;

where z�
k

is the solution of
@'k

@xk

D 0;
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implying in the present case that

z�
k D �1

2
Qk C A� ck

2B
: (1.5)

Straightforward calculations reveal that

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if Qk � .A � ck/=B;

Lk if Qk � .A � ck � 2BLk/=B;

�1
2
Qk C .A � ck/=.2B/ otherwise:

(1.6)

In the case of two firms, whenQ1 D x2 andQ2 D x1, we can illustrate graphically
the existence of a unique equilibrium. Figure 1.1 shows the best response functions
of the two firms in the situation where L1 < xM

1 and L2 < x
M
2 . If L1 � xM

1 , then
the vertical segment of R1.x2/ disappears and we simply have R1.0/ D xM

1 . A
similar situation occurs whenL2 � xM

2 . The best replies intersect at a unique point,
which is the Nash equilibrium. It can also be proved that with an arbitrary value of
N , the oligopoly always has a unique equilibrium (see for example Sect. 2.1, and
Okuguchi and Szidarovszky (1999)). If the market saturation point and the capac-
ity limits are sufficiently large, then we can even compute the unique equilibrium.

x1

x2

A�c1

B

xM
2

xM
1

L2

L1

A�c1�2BL1

B

A�c2�2BL2

B
A�c2

B

R1.x2/

R2.x1/

Nash equilibrium

Fig. 1.1 Example 1.1; the Cournot model in the case of duopoly .N D 2/ with linear price and
cost functions. The figure shows the reaction functions R1.x2/ (dashed line), R2.x1/ (solid line)
and the unique equilibrium
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Assume that all equilibrium outputs are positive, the other case can be examined
similarly. The first order conditions imply that

@'k

@xk

D @

@xk

Œxk.A� Bxk � BQk/� .dk C ckxk/�

D A� 2Bxk � BQk � ck

D A� Bxk � BQ � ck D 0; (1.7)

where Q is the total output of the industry. So

xk D A� BQ � ck

B
D A� ck

B
�Q: (1.8)

By summing this last equation over all firms we obtain for Q the single equation

Q D NA�PN
iD1 ci

B
�NQ; (1.9)

implying that at the equilibrium

NQ D NA�PN
iD1 ci

.N C 1/B
: (1.10)

Notice that NQ < A=B , so the price is always positive. From (1.8) and (1.10) we can
compute the equilibrium output levels of the firms as

Nxk D A� ck

B
� NA�PN

iD1 ci

.N C 1/B
D A � .N C 1/ck CPN

iD1 ci

.N C 1/B
: (1.11)

The output levels in (1.11) can be an equilibrium only if they are all non-negative
and below the corresponding capacity limits. The equilibrium price is then

Np D A� B NQ D ACPN
iD1 ci

N C 1
:

At the equilibrium, the profit of firm k is given by

N'k D Nxk Np � .dk C ck Nxk/ D Nxk

 

ACPN
iD1 ci

N C 1
� ck

!

� dk

D 1

.N C 1/2B

 

A� .N C 1/ck C
N
X

iD1

ci

!2

� dk:
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Notice that with zero fixed cost the equilibrium profit of firm k is non-negative, and
if Nxk >0 and dk is sufficiently small, then N'k is necessarily positive. If capacity
limits are present and this “unconditional” equilibrium becomes infeasible, then
the “conditional” equilibrium can still be computed, but cannot be represented by
simple equations. Okuguchi and Szidarovszky (1999) discuss algorithms to compute
such equilibria. �

If nonlinearity (which was in the form of capacity constraints in the above exam-
ple) is introduced into the models, then usually numerical methods are required to
compute the equilibrium in the general case. Analytical methods are available in
only very special cases, for example by assuming symmetric or semi-symmetric
firms. If all firms have identical capacity limits and cost functions, and their initial
outputs are also the same, then the oligopoly is called symmetric. If .N � 1/ firms
are identical in this sense and one firm is different, then we have a semi-symmetric
case. We will frequently make use of such special cases in later chapters.

Example 1.2. Assume again a linear price function f .Q/ D maxf0;A � BQg but
quadratic cost functions Ck.xk/ D ckxk C ekx

2
k
: The profit of firm k now has the

form

'k.x1; : : : ; xN / D
(

xk.A� Bxk � BQk/� .ckxk C ekx
2
k
/ if xk CQk � A

B
;

�.ckxk C ekx
2
k
/ otherwise:

For the sake of simplicity we assume again that
PN

kD1Lk � A=B , that is, the zero
segment of the price function cannot occur.

(i) Assume first that for all k, 0 < ek . Then the cost function is convex, so that
marginal costs are increasing in xk , and the profit is concave in xk . Since

@'k

@xk

D A � 2Bxk � BQk � ck � 2ekxk ;

the best response is unique and has the form

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A � BQk � ck � 0;

Lk if A� 2BLk � BQk � ck � 2ekLk � 0;

.A� BQk � ck/=.2.B C ek// otherwise;

which is piece-wise linear, similar to the case of the previous example where
both demand and cost were linear. Notice that if A � ck , then Rk.Qk/ D 0

regardless of the value of Qk , so we assume that A > ck for all firms. In the
case of duopoly the x1 intercept of R1.x2/ is the monopoly output xM

1 of firm
1, and the x2 intercept of R2.x1/ is the monopoly output xM

2 of firm 2. It can
be proved (see Chap. 2) that there is always a unique Nash equilibrium in this
case.
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x1

xM
1

xM
2

Unique equilibrium

x2

L1

L2

R1.x2/

R2.x1/

xL
1

xL
2

Fig. 1.2 Example 1.2; the Cournot model with linear price function and quadratic cost function in
the case of duopoly .N D 2/. The reaction functions R1.x2/; R2.x1/ and the unique equilibrium.
The figure illustrates case (ii) when B2 < 4.B C e1/.B C e2/ and xLk > x

M
k , k D 1; 2

(ii) Assume next that for all k, �B < ek < 0, then the cost function is concave,
however 'k remains concave in xk , so the best response remains the same as
above. However, this case raises the possibility of multiple equilibria. Consider
a duopoly (N D 2). Figure 1.2 depicts the reaction functions in the case where

B2 < 4.B C e1/.B C e2/;

that is when marginal costs are decreasing but not too strongly.2 Furthermore,
the “limit quantities” xL

k
D .A�ck/=B , that is the corresponding quantity lev-

els which guarantee that the other firm is kept out of the market, are larger than
the monopoly quantities xM

k
D .A� ck/=.2.BC ek//. Under these conditions

there is still a unique interior equilibrium given by

E D . Nx1; Nx2/

D
�

2.B C e2/ .A � c1/� B.A � c2/

4.B C e1/.B C e2/� B2
;

2.B C e1/ .A � c2/� B.A � c1/

4.B C e1/.B C e2/� B2

�

(1.12)

2 This interpretation is based on the fact that the condition is satisfied if �ek .k D 1; 2/ does not
get too close to B .



1.1 Introduction 9

xM
2

xM
1

x1

x2

L1

Boundary equilibria with monopoly outputs

Interior equilibrium

L2

R1.x2/

R2.x1/

xL
2

xL
1

Fig. 1.3 Example 1.2; the Cournot model with linear price function and quadratic cost function
in the case of duopoly .N D 2/. The figure shows case (ii) when B2 > 4.B C e1/.B C e2/ and
xLk < x

M
k , k D 1; 2. Three equilibria occur in this case

and the equilibrium profits are

N'k D .B C ek/. Nxk/
2; k D 1; 2:

If in contrast
B2 > 4.B C e1/.B C e2/;

so that marginal costs are decreasing strongly, then the uniqueness of the
equilibrium is no longer guaranteed. For example, Fig. 1.3 shows a case where

xL
k D A� ck

B
<

A � ck

2.B C ek/
D xM

k ;

so that there is an interior equilibrium and there are also two boundary equilib-
ria given by

E1 D
�

A � c1

2.B C e1/
; 0

�

and E2 D
�

0;
A� c2

2.B C e2/

�

;

where we assume again that A > ck for both firms. Observe in addition, that
Ek includes the monopoly output for firm k (k D 1; 2). At the boundary
equilibrium Ek , the profit of firm k is

.A� ck/
2=.4.B C ek// > 0:

In the borderline case, when

B2 D 4.B C e1/.B C e2/;
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� �

� �
Qk

Rk.Qk/

P

i¤k Li
A�ck

B

Lk

Fig. 1.4 Example 1.2; the Cournot model with linear price function and quadratic cost function
in the case of duopoly .N D 2/. The figure shows the reaction function of a typical firm in case
(iii) when ek D �B . The number of equilibria may be 1; 3 or infinite

the two straight lines either coincide or are parallel. Therefore there are either
infinitely many equilibria, or a unique boundary equilibrium.

(iii) In the case where ek D � B for all k, the profit function assumes the linear
form

'k D xk.A � BQk � ck/;

therefore

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A � BQk � ck < 0;

Lk if A � BQk � ck > 0;

arbitrary xk if A � BQk � ck D 0:

We can assume again that ck <A, otherwiseRk.Qk/D 0 for all Qk. This best
response function is illustrated in Fig. 1.4 in the case when

A � ck

B
<
X

i¤k

Li :

In the case when the last inequality becomes an equality, the vertical seg-
ment moves to Qk D P

i¤k Li . If however the above relation is violated with
strict inequality, then Rk.Qk/DLk for all Qk . Depending on the values of
.A � ck/=B and Lk , in the duopoly case the number of equilibria can be 1, 3
or infinite; Fig. 1.5 shows a case where three equilibria exist.

(iv) Assume finally that for all k, ek < � B . In this case 'k is convex in xk , so the
best response is located at an endpoint of the feasible interval [0;Lk] and is of
the form
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x1

x2

L1A�c2

B

A�c1

B

L2

Fig. 1.5 Example 1.2; the Cournot model with linear price function and quadratic cost function
in the case of duopoly .N D 2/. The figure shows case (iii) when ek D �B , and there exist three
equilibria

� �

� �
Qk

Rk.Qk/

P

i¤k Li
A�ck�.BCek /Lk

B

Lk

Fig. 1.6 Example 1.2; the Cournot model with linear price function and quadratic cost function.
The figure shows case (iv) when ek < �B . The best response of the typical firm is determined by
the fact that the profit function is linear in this case

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

Lk if Lk.A� BLk � BQk/ � .ckLk C ekL
2
k
/ > 0;

0 if Lk.A� BLk � BQk/ � .ckLk C ekL
2
k
/ < 0;

f0ILkg if Lk.A� BLk � BQk/ � .ckLk C ekL
2
k
/ D 0:

This function is illustrated in Fig. 1.6 in the case when

0 < .A� ck � .B C ek/Lk/=B <
X

i¤k

Li :



12 1 The Classical Cournot Model

x1

x2

L1

L2

A�c1�.BCe1/L1

B

A�c2�.BCe2/L2

B

Fig. 1.7 Example 1.2; the Cournot model with linear price function and quadratic cost function in
the case of duopoly .N D 2/. The figure shows case (iv) when ek < �B and the existence of two
equilibria with convex profit functions

In the duopoly case .N D 2/ the Nash equilibrium is at the intersection of
the two best response functions. The number of equilibria can be 1, 2 or 3
depending on the relative order of magnitude of the values (A � ck � .B C
ek/Lk)/B andLl .l ¤ k/. In Fig. 1.7 we show the case of two equilibria .L1; 0/

and .0; L2/.

Notice that in all cases at xk D 0 the profit of firm k is zero, therefore at the best
response it has to be non-negative. Hence, at any equilibrium the profit of each firm
is also non-negative. �
Example 1.3. Consider again the duopoly in which N D 2, furthermore take L1 D
L2 D 1:5, C1.x1/ D 0:5x1, C2.x2/ D 0:5x2 and assume that the price function is
given by

f .Q/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1:75� 0:5Q if 0 � Q � 1:5;

2:5 �Q if 1:5 � Q � 2:5;

0 if Q � 2:5:

(1.13)

Notice that the cost functions are linear but that the price function is piece-wise
linear. Because of the kink in the price function the profit functions are not differen-
tiable at Q D 1:5. By calculating and comparing the left and right hand derivatives
of the profit function, it is easy to show that there are infinitely many equilibria and
they form the set

NX D f. Nx1; Nx2/j0:5 � Nx1 � 1; 0:5 � Nx2 � 1; Nx1 C Nx2 D 1:5g:

Notice that the total output of the two firms is unique, satisfying x1 C x2 D 1:5,
but this total output can be divided between the two firms in infinitely many
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different ways. At any equilibrium, NQD 1:5; so the equilibrium price is f . NQ/D 1;

and therefore the profit of firm k is always positive, being given by

'k. Nx1; Nx2/ D Nxk �1�0:5 Nxk D 0:5 Nxk: �

Example 1.4. In this example we assume linear cost functions, Ck.xk/ D ckxk

with some positive constant ck , and a quadratic price function where

f .Q/ D
(

A�Q2 if 0 � Q � p
A;

0 if Q >
p
A:

It is also assumed that A > ck for all k. Notice that at the best response of firm k

it is the case that Qk C xk � p
A, otherwise the value of xk can be decreased by a

small amount, when the price is still zero and the cost would decrease. Therefore at
the best response of all firms the total output has to be less than or equal to

p
A. For

the sake of simplicity assume that
PN

kD1Lk � p
A, the other case can be discussed

in a similar way. By assuming an interior optimum, the first order condition implies
that

@

@xk

Œxk.A� .xk CQk/
2/� ckxk � D A � 3x2

k � 4xkQk �Q2
k � ck D 0:

If ck � A, then 'k is strictly decreasing in Qk , so the best response of firm k is
always zero. Therefore we may assume that ck < A for all k. The solution of the
above quadratic equation is

z�
k D 1

3

�
q

Q2
k

C 3.A� ck/ � 2Qk

�

:

Since the payoff function of firm k is strictly concave in xk , the best response
assumes the form

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
k
< 0;

Lk if z�
k
> Lk ;

z�
k

otherwise:

This function is illustrated in Fig. 1.8. Simple differentiation shows that z�
k

is strictly
decreasing and convex in Qk . It can be proved that there is always a unique equi-
librium. Since at xk D 0 the profit of firm k is zero, the profits at the best responses
and therefore the equilibrium profits must be non-negative for all firms. In the case
of an interior equilibrium the equilibrium quantities can be derived in closed-form.
The first order condition may be rewritten as

A�Q2 C xk.�2Q/� ck D 0;
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Qk

Rk.Qk/

Lk

P

i¤k Li

z�
k

Rk.Qk/

q

A�ck

3

p
A � ck

Fig. 1.8 Example 1.4; the best response function (thick line) of a typical firm k with a linear cost
function and quadratic price function

implying that at the interior equilibrium

Nxk D A � NQ2 � ck

2 NQ :

Summation over all N firms yields

NQ D NA�N NQ2 �PN
lD1 cl

2 NQ ;

and therefore

NQ2 D NA�PN
lD1 cl

N C 2
:

The individual quantities in equilibrium are then obtained as

Nxk D 1

2

q

.NA�PN
lD1 cl/=.N C 2/

 

A� NA�PN
lD1 cl

N C 2
� ck

!

(1.14)

D 2ACPN
lD1 cl � .N C 2/ck

2

q

.N C 2/.NA�PN
lD1 cl /

:

For positivity of all equilibrium quantities, additional conditions are required,
namely that

ck <
2ACP

l¤k cl

N C 1
for all k:
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Obviously, if firm k’s unit costs ck are too high (for a given number of firms N ),
production might not be feasible (so that firm k offers xk D 0). Furthermore, for
increasing N (and given unit costs) some (high-cost) firms might drop out of the
market. The equilibrium price is given by

Np D 2ACPN
lD1 cl

N C 2
> 0

and the equilibrium profit of firm k is

N'k D .2ACPN
lD1 cl � .N C 2/ck/

2

2.N C 2/

q

.N C 2/.NA�PN
lD1 cl/

: �

Example 1.5. Assume again linear cost functions, Ck.xk/ D dk C ckxk , but isoe-
lastic (hyperbolic) price function, f .Q/DA=Q. The form of the profit of firm k

depends on whetherQk is positive or zero. If Qk > 0; then

'k.x1; : : : ; xN / D Axk

xk CQk

� .dk C ckxk/;

and if Qk D 0; then

'k.x1; : : : ; xN / D
(

A� .dk C ckxk/ if xk > 0;

�dk if xk D 0;

where we assume that firm k cannot exit the market, so with zero production level
it must face fixed costs. Notice that if Qk D 0, then with any xk >0, the revenue
of firm k is always A. In this case firm k has no best response and its interest is to
select a very small output level, since the supremum of its profit occurs at xk D 0.
Assume next that Qk > 0: In maximizing 'k , the first order condition is

AQk

.xk CQk/2
� ck D 0:

Since 'k is strictly concave in Qk , the best response of firm k is

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if
q

AQk

ck
�Qk � 0;

Lk if
q

AQk

ck
�Qk � Lk ;

p

AQk=ck �Qk otherwise:

This function is illustrated in Fig. 1.9. We note that the best response is first increas-
ing and then decreasing. This is in contrast to the examples considered previously,
where the best responses were decreasing everywhere. Some authors consider
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Qk

Rk.Qk/

Lk

A
4ck

A
ck

P

i¤k Li

Fig. 1.9 Example 1.5; the best response function (thick line) of a typical firm k with a linear cost
function and hyperbolic price function

Nx1 D � � � D NxN D 0 as a trivial equilibrium in a limiting sense.3 In a non-trivial
equilibrium, when NQ > 0; still some equilibrium outputs might be zero, when the
marginal costs, ck , for some firms are very large. By assuming that the value of
Lk is sufficiently large for all firms, the positive equilibrium can be computed as
follows. Since for all k,

xk D
s

A.Q � xk/

ck

� .Q � xk/;

we have
ckQ

2 D A.Q � xk/;

implying that

xk D AQ � ckQ
2

A
:

Summing this equation over all N firms, we obtain

Q D NAQ �Q2
PN

kD1 ck

A
:

So the total output of all firms is

NQ D .N � 1/A
PN

kD1 ck

;

3 See Agliari et al. (2005, 2006), Agliari (2006) and Matsumoto and Serizawa (2007).
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and by substituting it into the above expression for xk , the equilibrium output of
firm k is given by

Nxk D .N � 1/A
PN

lD1 cl

� A.N � 1/2ck
�

PN
lD1 cl

�2
;

and the equilibrium profit of firm k is given by

N'k D A Nxk

NQ �ck Nxk �dk D
 

PN
lD1 cl

N � 1 � ck

!

Nxk �dk D A

 

1 � .N � 1/ck
PN

lD1 cl

!2

�dk:

In order to guarantee that all equilibrium outputs of the firms are positive, we have
to assume that

ck <

P

l¤k cl

N � 2 ;

that is, the marginal costs cannot be too high. �

The examples above considered the case in which the cost function of a firm
depends only on its own output. We will next present two particular examples
including cost externalities, with linear price and cost functions, where the fixed
costs are equal to zero and the marginal cost of each firm depends on the output of
the rest of the industry.

Example 1.6. In the case ofN firms assume a linear price function f .Q/DA�BQ,
and furthermore assume that the marginal cost of each firm is a function of the
output of the rest of the industry, Mk.Qk/: If zero fixed cost is assumed, then the
cost function of firm k is given as (see Howroyd and Russell (1984), Russell et al.
(1986) and Furth (2009))

Ck.xk ;Qk/ D xkMk.Qk/;

so the profit of firm k is

xk.A� Bxk � BQk/� xkMk.Qk/;

by assuming that xk C Qk � A=B . Notice that this function is strictly concave in
xk , so in the case of sufficiently small capacity limits there is a unique best response
function given by

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A� BQk �Mk.Qk/ � 0;

Lk if A� 2BLk � BQk �Mk.Qk/ � 0;

z�
k

otherwise;
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where z�
k

is the solution of the equation

A� 2Bzk � BQk �Mk.Qk/ D 0

inside the interval .0; Lk/. That is,

z�
k D A� BQk �Mk.Qk/

2B
:

We mention here that for an arbitrary value of Qk , the profit of each firm k is zero
with xk D 0, so the payoff at the best response also must be non-negative. Hence at
any equilibrium the firms have non-negative profit values.

If Mk.Qk/ is a linear function, then z�
k

is also linear in Qk , so Rk.Qk/ is a
piece-wise linear function similar to Example 1.1. If we assume that Mk.Qk/ is a
quadratic function, then z�

k
is also quadratic in Qk . Thus if we write

Mk.Qk/ D ˛k C ˇkQk C �kQ
2
k;

then

z�
k D .A � ˛k/C .�B � ˇk/Qk � �kQ

2
k

2B
:

Let �k > 1 be a given constant and select

˛k D A; ˇk D �B.1C 2�k/ and �k D 2B�k;

then we have the relatively simple form

z�
k D �kQk.1�Qk/: �

Example 1.7. Consider again the oligopoly of the previous example with the only
difference being that the marginal cost of each firm k is a hyperbola of the form

Mk.Qk/ D ck

1C �kQk

:

In this case Rk.Qk/ has the same structure as in the previous example with

z�
k D A � BQk �Mk.Qk/

2B
D 1

2B

�

A� BQk � ck

1C �kQk

�

:

In Chap. 3 we will give a detailed analysis of this example. �

In our last example we show an oligopoly for which no equilibrium exists.

Example 1.8. Consider the case of two firms,N D 2, with capacity limitsL1DL2D
0:5, linear price function f .Q/D 1�Q withQD P2

kD1 xk , and discontinuous cost
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functions

Ck.xk/ D
(

10 if xk D 0;

10xk C 5 if 0 < xk � 1
2
:

(1.15)

The higher costs at zero reflect exit barriers, which do not occur when the firms start
producing. We will show that this oligopoly has no equilibrium. On the contrary,
assume that . Nx1; Nx2/ is an equilibrium. Assume first that x1 > 0; then

'1.x1; Nx2/ D x1.1 � x1 � Nx2/ � .10x1 C 5/ D �x2
1 � .9x1 C x1 Nx2 C 5/

with derivative
@'1

@x1

.x1; Nx2/ D �2x1 � 9 � Nx2 < 0:

Therefore'1 is strictly decreasing in x1. Assume next that x1 D 0. Then '1.0; Nx2/ D
�10 with limx1!0C '1.x1; Nx2/ D 0 � f .Q/ � 5 D �5 > '1.0; Nx2/ showing that at
Nx2, firm 1 has no best response. Hence no equilibrium exists. �

1.2 Dynamic Adjustment Processes

In this section dynamic adjustment processes in the Cournot model will be intro-
duced. If all firms simultaneously select the corresponding output levels of an
equilibrium, then none of the firms can change unilaterally its output level and
increase profit. So without coordination and cooperation between the firms, the out-
put level of all firms will remain steady at the equilibrium levels. If the selected
output levels do not form an equilibrium, then at least one firm is able to increase
its profit by changing its output level unilaterally. Since the firms are rational, all
firms will do the same. Since the firms change their output levels simultaneously,
they cannot reach their best response levels, because the competitors simultaneously
move away from their previously assumed output levels at the same time. In this way
the firms usually would not reach an equilibrium, so output changes are again under-
taken, and a dynamic process develops. The model of the resulting process depends
on the assumed nature of the time scales and on the way the firms adjust output
levels, which in turn depends on their expectation formation.

In the discrete time case let t D 0; 1; 2 � � � denote the time periods, then here
we shall assume that in each time period each firm changes its output level to the
best response based on its latest belief of the total production level of the rest of the
industry. This process can be written as

xk.t C 1/ D Rk

�

QE
k .t C 1/

�

; (1.16)

where QE
k
.t C 1/ is the total output of the rest of the industry expected by firm

k for the next time period t C 1. We emphasize here the fact that expectation is
not meant in its probabilistic sense, rather it is a deterministic predicted value. The
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most simple expectation scheme is the one in which the firms use the latest available
information,

QE
k .t C 1/ D

X

l¤k

xl .t/; (1.17)

which is sometimes called the static, or naive, or Cournot expectation.
The firms are also able to develop certain learning procedures based on earlier

data. The most popular such learning scheme is obtained when the firms adjust their
expectations adaptively according to

QE
k .t C 1/ D QE

k .t/C ak

0

@

X

l¤k

xl.t/ �QE
k .t/

1

A ; (1.18)

with ak being a positive constant known as the speed of adjustment of firm k. It is
usually assumed that 0<ak � 1 for all k. The interpretation of this dynamic learning
scheme is that, if firm k underestimated (overestimated) the output of the rest of the
industry in the previous time period, then in the next time period this firm wants
to increase (decrease) its estimate. This increase (decrease) is represented by the
second term, and the coefficient ak determines the speed (or rate) of adjustment. If
the expectation of a firm were correct in the previous time period, then there would
be no need to change the expectation, in this case the second term would be zero.
Notice that the special case of ak D 1 reduces to the static or Cournot expectation.

Mathematically, the dynamic process (1.16), together with naive expectations
(1.17) form the N -dimensional dynamical system

xk.t C 1/ D Rk

0

@

X

l¤k

xl.t/

1

A .k D 1; 2; : : : ; N /; (1.19)

to which we will refer as best response dynamics with naive expectations.
Under the adaptive expectations scheme (1.18), the dynamic process (1.16)

becomes the 2N -dimensional dynamical system

xk.t C 1/ D Rk

0

@ak

X

l¤k

xl.t/C .1 � ak/Q
E
k .t/

1

A ; (1.20)

QE
k .t C 1/ D ak

X

l¤k

xl .t/C .1� ak/Q
E
k .t/; (1.21)

for k D 1; 2; : : : ; N . We will refer to this process as the best response dynamics
with adaptive expectations.

In the latter formulation we have formally 2N state variables, however it is easy
to show that the best response dynamics with adaptive expectations are actually
driven by the N expectation variables and the production outputs can be computed
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directly from them. In fact, for all k, (1.18) can be written as

QE
k .tC1/ D ak

X

l¤k

xl.t/C.1�ak/Q
E
k .t/ D ak

X

l¤k

Rl

�

QE
l .t/

�

C.1�ak/Q
E
k .t/:

(1.22)
The dynamic process now reduces to an N -dimensional dynamical system in the
expected variables QE

1 .t/; : : : ;Q
E
N .t/, and at each time period t the output of firm

k is given as

xk.t/ D Rk

�

QE
k .t/

�

;

which is a static mapping from beliefs to realizations in the sense that both sides of
the mapping are computed at the same time t .

In most industries any increase of the output level of any firm requires time, new
hirings, purchase of new machinery, or sometimes even the opening up of a new
plant. Therefore output changes are made gradually. For example, in the case of
the dynamic process (1.19) instead of selecting the best response directly, the new
output level of firm k is selected somewhere in between the current level and the best
response to ensure that the output level change occurs in the right direction. This
concept of partial adjustment towards the best response with naive expectations can
be described by the modified N -dimensional dynamical system

xk.t C 1/ D akRk

0

@

X

l¤k

xl .t/

1

AC .1 � ak/xk.t/; (1.23)

for some ak 2 .0; 1�. In the case of ak D 0 the output level would never change,
therefore this value is excluded. Notice that in the case of ak D 1, the partial adjust-
ment towards the best response with naive expectations (1.23) reduces to best
response dynamics with naive expectations (1.19).

In the special case of two firms .N D 2/ both dynamical systems (1.22) and
(1.23) have the common form

y1.t C 1/ D a1R1 .y2.t//C .1 � a1/y1.t/;

y2.t C 1/ D a2R2 .y1.t//C .1 � a2/y2.t/

with y1 D x1 and y2 D x2 in (1.23), and y1 D QE
2 , y2 D QE

1 and a1 and a2 being
interchanged in (1.22). If N > 2, then systems (1.22) and (1.23) are equivalent if

Rk

�

P

l¤k yl .t/
�

D P

l¤k Rl .yl.t// holds for all k. In the symmetric case (when

Rk � R), this condition holds if R.Qk/ D rQk with some constant r .
It is important to realize that dynamic adjustment processes of the kind con-

sidered above are defined on the action space …N
kD1

Œ0; Lk� and incorporate only
the firms’ quantity decision. In order to obtain economically feasible trajectories,
we need to keep in mind the fact that prices (and profits) have to be non-negative
in the long run, though it is possible (as we shall indeed find) that over some
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periods negative profits may occur. In some of the models we study it will be possi-
ble to ensure non-negative prices simply by selecting suitable parameter values. For
example, for theN -firm oligopoly model with linear inverse demand function a suf-
ficient condition for non-negative prices is

PN
kD1Lk � A=B (see Example 1.1) and

for the model with quadratic price function and linear costs, we can simply select
PN

kD1Lk � p
A (see Example 1.4).

If the time scales are continuous, then output changes are made continuously,
without direct jumps to the best response levels. It is always assumed that in each
time period the output level moves in a direction towards the best response. This
concept is modeled by an N -dimensional system of ordinary differential equations
of the form

Pxk.t/ D ak

0

@Rk.
X

l¤k

xl.t// � xk.t/

1

A .k D 1; 2; : : : ; N /: (1.24)

Here ak >0 is a given constant and also called the speed of adjustment of firm k.
This is the continuous time counterpart of the discrete system (1.23), which is also
called the partial adjustment dynamics.

Example 1.9. Consider again the case of linear oligopolies with linear inverse
demand and linear cost functions, which was discussed earlier in Example 1.1. By
ignoring the non-negativity condition of the outputs and assuming that Lk D 1 for
all k, the best reply of firm k is given as (see (1.6))

Rk.Qk/ D �1
2
Qk C A � ck

2B
:

Since for all k, Rk.Qk/ is linear with identical derivative, the dynamical systems
(1.22) and (1.23) have the same coefficient matrix, so the asymptotic behavior of
the discrete dynamics with adaptive expectations and with adaptive adjustments are
equivalent. The dynamical system (1.23) for partial adjustment towards the best
response can be written as

xk.t C 1/ D ak

0

@�1
2

X

l¤k

xl .t/C A � ck

2B

1

AC .1 � ak/xk.t/; (1.25)

which is a linear system with coefficient matrix

0

B

B

B

@

1 � a1 � a1

2
: : : �a1

2

� a2

2
1 � a2 : : : �a2

2
:::

:::
: : :

:::

� aN

2
� aN

2
: : : 1 � aN

1

C

C

C

A

:
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In Chap. 2 (Theorem 2.1) we will see that the eigenvalues of this matrix lie inside
the unit circle if and only if ak < 4 for all k, and

N
X

kD1

ak

4 � ak

< 1:

In the case of linear systems local and global asymptotic stability are the same, so
the equilibrium is globally asymptotically stable if and only if the above conditions
are satisfied.

In the case of continuous time scales the dynamical system for partial adjustment
(1.24) can be written as

Pxk.t/ D ak

0

@�1
2

X

l¤k

xl .t/C A � ck

2B
� xk.t/

1

A ; (1.26)

which is again a linear system with coefficient matrix

0

B

B

B

@

�a1 � a1

2
: : : � a1

2

� a2

2
�a2 : : : � a2

2
:::

:::
:::

� aN

2
� aN

2
: : : �aN

1

C

C

C

A

:

In Chap. 2 (Theorem 2.2) we will see that all eigenvalues of this matrix always have
negative real parts so the equilibrium is locally asymptotically stable. The linear-
ity of the system implies that the Nash equilibrium is also globally asymptotically
stable. �

Introducing the non-negativity conditions and the capacity limits into the model
makes the best reply functions nonlinear. Nonlinearity can also occur by assum-
ing nonlinear cost or price functions. Then the corresponding dynamical systems
become nonlinear, and local asymptotic stability does not imply global asymptotic
stability. This observation points to the need to perform detailed global analysis of
the dynamical behavior. The next section will present the foundation of the relevant
methodology.

In models (1.20)–(1.21), for the best response dynamics with adaptive expec-
tations, and (1.23) and (1.24) for the dynamics of partial adjustment towards the
best response with naive expectations, we have used simple linear adjustment rules.
However these can be easily extended to the nonlinear case by introducing sign-
preserving adjustment functions. A real-variable, real-valued function ˛ W R ! R

is called sign-preserving, if ˛.x/ has the same sign as x, that is,
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˛.x/

8

ˆ

ˆ

<

ˆ

ˆ

:

> 0 if x > 0,

D 0 if x D 0,

< 0 if x < 0.

(1.27)

Assume now that for all k, ˛k is a sign-preserving function, then the dynam-
ical system (1.20)–(1.21) for the best response with adaptive expectations can be
extended to

xk.t C 1/ D Rk

0

@QE
k .t/C ˛k.

X

l¤k

xl .t/ �QE
k .t//

1

A ; (1.28)

QE
k .t C 1/ D QE

k .t/C ˛k

0

@

X

l¤k

xl .t/ �QE
k .t/

1

A : (1.29)

Similarly the discrete time dynamical system (1.23) for the dynamics of partial
adjustment towards the best response with naive expectations becomes

xk.t C 1/ D xk.t/C ˛k

0

@Rk.
X

l¤k

xl .t// � xk.t/

1

A ; (1.30)

whilst the continuous time dynamical system (1.24) for the same process becomes

Pxk.t/ D ˛k

0

@Rk.
X

l¤k

xl.t// � xk.t/

1

A : (1.31)

Another important class of adjustment processes that has been investigated in the
literature on dynamic oligopolies by many authors is that of the gradient adjustment
process. This adjustment process is based on the observation that if for firm k at a
certain time period, @'k=@xk is positive, then it is in firm k’s interest to increase
the output level, if @'k=@xk is negative, then the firm wants to decrease it, and if
@'k=@xk D 0, then firm k believes that it is already at its maximum level, so it wants
to maintain the same output level. This idea can be mathematically realized in the
gradient adjustment processes

xk.t C 1/ D xk.t/C ˛k

�

@'k.x1.t/; : : : ; xN .t//

@xk

�

.1 � k � N/; (1.32)

in discrete time and

Pxk.t/ D ˛k

�

@'k.x1.t/; : : : ; xN .t//

@xk

�

.1 � k � N/; (1.33)
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in continuous time, where ˛k is a sign-preserving function. Notice that dynamic pro-
cesses based on best response functions require the solution of optimization prob-
lems in order to determine the best responses. In contrast gradient adjustment
processes do not need the computation of best responses, rather they need only local
information about the profit functions. Therefore the uniqueness of best responses
is not an issue with gradient adjustment processes. Observe, however, that in the
case of gradient adjustment, we need to check whether the obtained quantity is
non-negative and also whether it is below the capacity limit.

Clearly the steady states of the dynamic processes (1.28)–(1.29), for the gen-
eralised best response with adaptive expectations, and (1.30)–(1.31) for the gener-
alised partial adjustment towards the best response with naive expectations, are the
Nash equilibria. However only interior equilibria can be the steady states of the
gradient adjustment processes (1.32)–(1.33). Therefore boundary equilibria can be
obtained as the limits of the trajectories as t ! 1 only in special cases. The forego-
ing reasoning is based on the fact that a point is a steady state of best response based
adjustment if and only if the output levels equal the best responses for all firms, that
is, when they are at an equilibrium. However in the case of gradient adjustment a
point is a steady state if and only if all partial derivatives are zero, which is not the
case if the equilibrium lies on the boundary. Therefore even in the case of asymp-
totic stability the trajectory does not need to converge to the equilibrium, since the
solutions of the first order conditions may lie outside the feasible region, so they
are not necessarily steady states. This behavior may be regarded as a drawback of
gradient adjustment processes.

Example 1.10. In the case of linear oligopoly, discussed in Example 1.9, we can
calculate

@'k

@xk

D @

@xk

�

xk

�

A� Bxk � B
X

l¤k

xl

�

� .ckxk C dk/

�

D A � 2Bxk � B
X

l¤k

xl � ck ;

so the gradient adjustment dynamical system (1.32) in discrete time with linear sign-
preserving functions (˛k.x/ D akx with ak > 0) can be written as

xk.t C 1/ D xk.t/C ak

�

� 2Bxk.t/� B
X

l¤k

xl .t/CA � ck

�

D 2Bak

�

� 1

2

X

l¤k

xl .t/C A � ck

2B

�

C .1 � 2Bak/xk.t/;

which is the same as the dynamical system (1.25) for partial adjustment towards the
best response, with ak replaced by 2Bak . The continuous time system (1.33) with
linear sign-preserving functions now assumes the form
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Pxk.t/ D ak

�

� B
X

l¤k

xl .t/ � 2Bxk.t/C A � ck

�

D 2Bak

�

� 1

2

X

l¤k

xl .t/ � xk.t/C A� ck

2B

�

;

which is the same as system (1.26) with ak replaced by 2Bak . �
The dynamical behavior of these adjustment process systems largely depends on

the type and the parameters of the adjustment schemes as well as on the analytical
properties of the best response functions, which in turn depend on the shapes of the
price and cost functions.

There has been some criticism of the modeling of boundedly rational firms in
dynamic oligopoly models using the previously discussed adjustment processes (see
for example, Friedman (1977, 1982)). The essence of the criticism is that the firms
ignore the fact that their current actions will have an impact on the future actions
of the competitors (that is the limit of the adjustment process itself may not be an
equilibrium of the repeated game). Therefore, it has been suggested that it would be
more reasonable to assume that firms operating in markets over many time periods
would seek to maximize a discounted stream of profits over a finite or infinite time
horizon taking the strategic behavior of their competitors into account. Beside the
fact that such an approach necessarily assumes a high degree of information and
rationality on the part of the firms, one justification for the interest in models of
the type studied in this book is given by more recent results demonstrating that
myopic play is (approximately) optimal if the discount factor is very small (see Dana
and Montrucchio (1986, 1987)). Moreover, non-equilibrium adjustment processes
like the adjustment processes presented above can be shown to implicitly rely on a
combination of “lock-in” and impatience, and this may serve as a further explanation
for the players’ myopia (see Fudenberg and Levine (1998), and Tirole (1988)). In
any case, in this book we follow the argument that the kind of adjustment processes
introduced above can “... be interpreted as a crude way of expressing the bounded
rationality of agents” (Vives (1999), p. 49). Readers interested in dynamic games
where players are more rational and forward-looking might want to consult the book
by Dockner et al. (2000) who present a variety of models and summarize many
interesting results. In this book we will mainly concentrate on best response based
dynamic processes.

1.3 An Introduction to the Analysis of Global Dynamics

The purpose of this section is to introduce the main concepts and tools for the analy-
sis of the global properties of a discrete time dynamical system. In order to do so we
will use the example of a simple Cournot oligopoly with linear inverse demand and
quadratic costs. This example has already been introduced in Sect. 1.1 (see Exam-
ple 1.2), where we denoted the linear price function as p D f .Q/ D A � BQ and
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the quadratic production cost functions as Ck.xk/ D ckxk Cekx
2
k

. In order to avoid
trivial best responses we assume again that A > ck for k D 1; 2.

1.3.1 A Cournot Duopoly Game

We first consider a duopoly game (N D 2), where the firms use partial adjustment
towards the best response. The reaction functions in this case become

R1.x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
1 < 0;

L1 if z�
1 > L1;

z�
1 otherwise;

(1.34)

and

R2.x1/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
2 < 0;

L2 if z�
2 > L2;

z�
2 otherwise;

(1.35)

where z�
k

D A�ck�BQk

2.BCek/
.k D 1; 2/ with Q1 D x2 and Q2 D x1. If the duopolists

partially adjust their quantities towards the best replies (based on naive expectations)
and if the speeds of adjustment are constant, the dynamical system is generated by
the iteration of the map Ta W Œ0; L1� � Œ0; L2� ! Œ0; L1� � Œ0; L2�, where

Ta W
�

x1.t C 1/ D .1 � a1/x1.t/C a1R1 .x2.t//

x2.t C 1/ D .1 � a2/x2.t/C a2R2 .x1.t//
; (1.36)

with 0<ak � 1. Recall from Sect. 1.2 that the best reply dynamics with naive
expectations is obtained as a special case with ak D 1 for kD 1; 2. We have also
shown in Sect. 1.2 that in a duopoly partial adjustment towards the best response
and the best reply dynamics with adaptive expectations are equivalent. Hence, the
results obtained in this section also describe what happens if best reply dynamics
with adaptive expectations are considered. Using (1.36) together with the steady
state conditions xk.t C 1/Dxk.t/, kD 1; 2, leads to the equations x1 DR1.x2/,
x2 D R2.x1/, which shows that the steady states of this dynamical system coincide
with the Cournot–Nash equilibria of the underlying game and that they are located
at the intersections of the reaction curves. Clearly, the steady states do not depend
on the adjustment speeds ak . As demonstrated in Sect. 1.1, the number of equilibria
depends on the marginal costs. If marginal costs are increasing or even decreasing
but not too strongly such that B C ek > 0 and

B2 < 4.B C e1/.B C e2/; (1.37)
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then for xL
k
> xM

k
.k D 1; 2/ we have a unique interior equilibrium. The quantities

at this interior equilibrium are given by

E D . Nx1; Nx2/

D
�

2.B C e2/ .A � c1/� B.A � c2/

4.B C e1/.B C e2/� B2
;
2.B C e1/ .A� c2/ � B.A � c1/

4.B C e1/.B C e2/ � B2

�

:

On the other hand, if �B < ek < 0, xL
k
< xM

k
.k D 1; 2/ as before, but

B2 > 4.B C e1/.B C e2/; (1.38)

then a situation of multiple equilibria might be obtained. This is the situation
depicted in Fig. 1.3, where in addition to the interior equilibrium there also appear
two boundary equilibria. The two coexisting boundary equilibria are given by

E1 D .xM
1 ; 0/I E2 D .0; xM

2 /;

where

xM
1 D A � c1

2.B C e1/
I xM

2 D A � c2

2.B C e2/
;

are the monopoly quantities.
Let us first try to give conditions for the global asymptotic stability of an equi-

librium, which would also imply its uniqueness. We recall that an equilibrium is
globally asymptotically stable if any trajectory starting from an initial condition in
the strategy space converges to the equilibrium as t ! 1. In the case of the model
(1.36) the strategy space is given by the trapping region D DŒ0; L1�� Œ0; L2�. How-
ever the map (1.36), whose iteration gives the time evolution of the duopoly game,
is not differentiable in the whole strategy space D because the reaction functions are
piecewise differentiable functions defined by

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if Qk � A�ck

B
;

Lk if Qk � A�ck�2.BCek /Lk

B
;

.A� ck � BQk/=
�

2.B C ek/
	

otherwise:

Accordingly, the phase space D can be subdivided into nine regions defined by the
break points of the reaction functions (see Fig. 1.10), such that the map Ta is dif-
ferentiable (indeed linear in this case) inside each of them, it is defined differently
in each region and it is not differentiable on the boundaries between the regions.
Depending on the possible combination of the reaction functions the different
components of the map are given by

Taj
D.1/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1.A� c1 � Bx2/=
�

2.B C e1/
	

;

x2.t C 1/ D .1 � a2/x2.t/C a2.A� c2 � Bx1/=
�

2.B C e2/
	

;
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Fig. 1.10 Phase space regions for the Cournot duopoly game where firms use partial adjustment
towards the best response

Taj
D.2/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1.A� c1 � Bx2/=
�

2.B C e1/
	

;

x2.t C 1/ D .1 � a2/x2.t/C a2 � L2;

Taj
D.3/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1 � 0;
x2.t C 1/ D .1 � a2/x2.t/C a2 � L2;

Taj
D.4/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1 � 0;
x2.t C 1/ D .1 � a2/x2.t/C a2.A� c2 � Bx1/=.2.B C e2//;

Taj
D.5/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1 � 0;
x2.t C 1/ D .1 � a2/x2.t/C a2 � 0;

Taj
D.6/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1.A� c1 � Bx2/=
�

2.B C e1/
	

;

x2.t C 1/ D .1 � a2/x2.t/C a2 � 0;

Taj
D.7/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a2 � L1;

x2.t C 1/ D .1 � a2/x2.t/C a2 � 0;

Taj
D.8/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1 � L1;

x2.t C 1/ D .1 � a2/x2.t/C a2.A� c2 � Bx1/=
�

2.B C e2/
	

;

Taj
D.9/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1 � L1;

x2.t C 1/ D .1 � a2/x2.t/C a2 � L2:

The derivative of the best response function of firm k is either zero or �B=.2.BC
ek//, or does not exist in the cases when Qk D .A � ck/=B and Qk D .A � ck �
2.B C ek/Lk/=B .
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Hence we need to consider the four different Jacobian matrices given by

J.1/ D
 

1� a1 � a1B
2.BCe1/

� a2B
2.BCe2/

1 � a2

!

I J.2/ D J.6/ D
0

@

1 � a1 � a1B
2.BCe1/

0 1 � a2

1

A I

J.4/ D J.8/ D
 

1 � a1 0

� a2B
2.BCe2/

1 � a2

!

I

J.3/ D J.5/ D J.7/ D J.9/ D
0

@

1 � a1 0

0 1 � a2

1

A :

Select a diagonal matrix P D
�

x 0

0 1

�

with x > 0, then the row norms of these

Jacobians generated by the matrix P are bounded by the row norm of the matrix

 

x 0

0 1

! 

1 � a1
a1B

2.BCe1/
a2B

2.BCe2/
1 � a2

! 

1
x
0

0 1

!

D
 

1 � a1
a1Bx

2.BCe1/
a2B

2.BCe2/x
1 � a2

!

; (1.39)

which is below one if and only if

1 � a1 C a1Bx

2.B C e1/
< 1;

and

1 � a2 C a2B

2.B C e2/x
< 1:

Since we assume that 0 < ak � 1 .k D 1; 2/, these relations can be rewritten as

B

2.B C e2/
< x <

2.B C e1/

B
;

and a feasible x exists if and only if B2 < 4.B C e1/.B C e2/.
Hence under this condition the equilibrium is unique and is globally asymptoti-

cally stable regardless of whether it is interior or not. (See Appendix B, Theorem B.3
for the relevant theoretical background.)

Next we will examine the local asymptotic stability of an interior steady state E.
Let us consider the Jacobian matrix evaluated at the steady state,

J D
 

1 � a1 �a1
B

2.BCe1/

�a2
B

2.BCe2/
1 � a2

!

:
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The characteristic equation of this Jacobian is given by �2 C p� C q D 0, where
p D �2C a1 C a2 and q D .1 � a1/ .1 � a2/ � a1a2B

2= .4 .B C e1/ .B C e2//.
The necessary and sufficient conditions for the eigenvalues to be located inside the
unit circle, which are conditions for the local asymptotic stability of the interior
Nash equilibrium E, are given by the inequalities (see Appendix F, Lemma F.1)

1C p C q > 0 ; 1 � p C q > 0 ; q < 1: (1.40)

These inequalities, respectively, reduce to

B2

4 .B C e1/ .B C e2/
< 1;

B2

4 .B C e1/ .B C e2/
< 1C 2

2� a1 � a2

a1a2

;

B2

4 .B C e1/ .B C e2/
> 1 � a1 C a2

a1a2

:

Observe that the first stability condition coincides with condition (1.37) under which
this is the only equilibrium and so is globally asymptotically stable. The other
conditions do not affect the stability properties, because the second condition is
implied by the first one (since 0<ak � 1) and the last condition is always satis-
fied (since the left hand side is positive, whereas the right hand side is negative).
If B2>4.B C e1/.B C e2/, then the interior equilibrium is unstable. This is the
situation in case (ii) of Example 1.2, where we might have three equilibria with an
unstable interior equilibrium.

Consider now the case shown in Fig. 1.3 and the monopoly equilibrium .0; xM
2 /.

In the neighborhood of this equilibrium xL
2 <x2<L2, so R1.x2/D 0. Furthermore

x1 D 0 or a small positive value. Notice that the segments where R1.x2/DL1, or
R2.x1/DL2 are empty, which implies that the sets D

.k/ for kD 3; 2; 9; 8; 7 are also
empty. Therefore any point in a small neighborhood of the equilibrium .0; xM

2 / is
in the region D

.4/ where the Jacobian matrix is

 

1 � a1 0

� a2B
2.BCe2/

1 � a2

!

: (1.41)

Let

P D
�

x 0

0 1

�

(1.42)

be a diagonal matrix with x > 0. Then the row norm generated by this matrix is
bounded by the row norm of the matrix

 

x 0

0 1

! 

1� a1 0
a2B

2.BCe2/
1 � a2

! 

1
x
0

0 1

!

(1.43)
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which is below one if

1 � a2 C a2B

2.B C e2/x
< 1;

since 0 < ak � 1 for k D 1; 2. This relation can be rewritten as

x >
B

2.B C e2/
;

so a feasible positive x exists. From the local stability result of Appendix B we
conclude that the monopoly equilibrium .0; xM

2 / is locally asymptotically stable.
The stability of the other monopoly equilibrium .xM

1 ; 0/ can be proved similarly.
This provides a first conclusion with regard to the equilibrium selection problem,

because even if we obtain three Nash equilibria, from an evolutionary perspective
a stability argument suggests that the interior equilibrium will not be selected. It
remains an open question, however, as to which one of the two monopoly equi-
libria is more likely to be observed in the long run. The situation is even more
intricate, since in addition to the two asymptotically stable boundary equilibria, in
the strategy space another attracting set might coexist. This can be demonstrated by
considering the best reply dynamics obtained for ak D 1, kD 1; 2. In the case when
xM

2 > .A� c1/ =B and xM
1 > .A� c2/ =B we have .R1.0/; R2.0// D .xM

1 ; xM
2 /

and
�

R1.x
M
2 /; R2.x

M
1 /
	 D .0; 0/. Therefore, under best reply dynamics the peri-

odic cycle C2 D ˚

.0; 0/ I �xM
1 ; xM

2

	


coexists with the two stable monopoly equi-
libria. It is also easy to see that C2 is stable, so it may even occur that an adjustment
process fails to converge towards any Nash equilibrium in the long run. In such a
situation, where several attractors coexist, the question of which attractor will be
reached in the long run crucially depends on the initial conditions and the observed
outcome becomes path dependent. Each of these long run outcomes has its own
basin of attraction (see Appendix C for definitions of these concepts from the qual-
itative theory of dynamical systems) and any external random factor (a so-called
“historical accident”) that causes a displacement of some of the initial outputs may
cause the trajectory to move across a basin boundary and, consequently, it will
converge to a different attractor.

We can shed some light on this issue by using a mixture of analytical, geometrical
and numerical methods, an approach which is typically used in the study of the
global dynamical properties of nonlinear systems of dimension greater than one
(see for example Mira et al. (1996), Brock and Hommes (1997) and Puu (2003)).

To get a better feeling for the global dynamics of our duopoly game where firms
use partial adjustment towards the best response, we numerically compute the basins
of attraction for the coexisting attractors. Let the reservation price be AD 450 and
the slope of the linear inverse demand function be B D 30. For the sake of sim-
plicity, we consider identical firms with cost parameters c1 D c2 D cD 275 and
e1 D e2 D eD � 17, so that production costs are increasing, but marginal costs are
decreasing. (Similar values were chosen by Cox and Walker (1998) in an experimen-
tal setup). In order to guarantee non-negative prices, we selectL1 DL2 D 7:5, which
ensures thatL1CL2 � A=B . For these parameter values condition (1.38) is fulfilled
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and the interior equilibrium is unstable. In addition, A � ck � 2.Bk C ek/Lk <0

implying that the output space Œ0; L1� � Œ0; L2� is divided into only four regions
rather than the nine shown in Fig. 1.10).

� In Fig. 1.11a the basins of attraction of E1; E2; and the coexisting 2-cycle C2

are shown for the best reply dynamics, namely for a1 D a2 D 1. The basin of
attraction of E1 is represented by the light-grey region, the basin of E2 by the
dark-grey region, and the basin of the cycle C2 by the white region. The peculiar
rectangular-shaped structure of the basins is related to the particular structure of
the best reply process, x1.tC1/ D R1.x2.t//, x2.tC1/ D R2.x1.t//, where next
period’s output of firm i only depends on the current output of the other firm. This
implies that the eigenvectors associated with the unstable equilibrium E (that
belongs to the basin boundaries) are parallel to the coordinate axes. Moreover,
the map which generates the dynamics transforms vertical lines into horizontal
lines and vice versa. Hence, the invariant sets associated with the unstable node
E, that form the boundaries of the basins, are formed by vertical and horizontal
lines (on this point see also Bischi et al. (2000b)).

� If the speeds of adjustment are smaller than 1, important differences can be
observed in the global dynamics. For example, Fig. 1.11b has been obtained with
a1 D 0:97, a2 D 0:98, leaving all the other parameters unchanged. Now the stable
2-cycle has both periodic points characterized by positive coordinates, namely
C2 D f.0:19; 0:13/ I .6:39; 6:38/g, and the structure of the basins is different, in
particular the basin of the cycle C2 is smaller. The rectangular shape of the basins
is lost since in the case of partial adjustment the eigenvectors associated with E
are no longer parallel to the coordinate axes.

� If the speeds of adjustment are even further decreased, the basin of the cycle C2

shrinks; see Fig. 1.11c obtained with a1 D 0:93; a2 D 0:95. The periodic points of
C2 approach the boundary of its basin and after a contact with such a boundary,
the cycle C2 becomes unstable. As a consequence, the whole strategy space is
shared by the basins of the two asymptotically stable boundary Nash equilibria
E1 and E2, as depicted in Fig. 1.11d obtained with a1 D 0:9, a2 D 0:92.

Our analysis suggests the following insights. First, the basins of the Nash equi-
libriaE1 andE2 are always simply connected. We emphasize this fact since later on
we will encounter examples where the basins will not have such a simple structure.
Second, whereas the local asymptotic stability of the boundary Nash equilibria does
not depend on the adjustment speeds, the shape of the basins changes significantly
when adjustment speeds become smaller. If the players’ speeds of adjustment are
lower, then the size of the basins of the equilibria is larger. As far as local asymptotic
stability is concerned, it is well-known in the literature that decreasing the speeds of
adjustments usually stabilizes the system (see for instance Fisher (1961), McManus
and Quandt (1961) and some results to be presented in Chap. 2). Here, however,
we emphasize that (in the present example) this also holds for the global dynam-
ics. Finally, since the firm with the smaller adjustment speed has the larger basin,
this firm is more likely to achieve the role of the monopolist, if initial production
quantities are selected randomly from a close to uniform distribution.
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Fig. 1.11 Basins of attraction for the Cournot duopoly when firms use partial adjustment towards
the best response with linear demand/quadratic cost. Light grey basin of E1; dark grey basin of
E2; white basin of the 2-cycle C2. (a) Full adjustment, a1 D a2 D 1. The basins are rectangular.
(b) Partial adjustment, a1 D 0:97, a2 D 0:98. The basins lose their rectangular shape. (c) Partial
adjustment, a1 D 0:93, a2 D 0:95. The basin of C2 shrinks. (d) Partial adjustment, a1 D 0:9,
a2 D 0:92. The 2-cycle C2 has become unstable, and its basin has disappeared

As a final remark we note that although the cyclic outcome C2 is an attrac-
tor from a mathematical point of view, it has several shortcomings as a potential
description of real-world economic behavior. First, whereas convergence to a steady
state implies that the players’ naive expectations are fulfilled at least in the long
run, a sustained low-periodic oscillation implies that the players’ expectations are
permanently wrong. It seems plausible that in such a situation the players would
learn how to improve their forecasts. Second, although profits are always positive
in all Nash equilibria, this is not necessarily true in general for the cycle C2. As an
example consider again the best reply dynamics, where C2 D ˚

.0; 0/ I �xM
1 ; xM

2

	


.
The corresponding profits along the 2-cycle are 'k .0; 0/ D 0 for firm k, with
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'1

�

xM
1 ; xM

2

	 D .A� c1/ Œe2 .A � c1/C B .c2 � c1/�=.4 .B C e1/ .B C e2//, and
'2

�

xM
1 ; xM

2

	 D .A � c2/ Œe1 .A� c2/CB .c1 � c2/� = .4 .B C e1/ .B C e2//.
This shows that for at least one of the firms, profits are negative along the cycle.
Moreover, if �B < ek < 0 and c1 D c2, then we have negative profits for both firms,
a situation which is not sustainable for any firm. As a consequence of these consid-
erations, what our analysis of the global dynamics reveals is that for some initial
production choices an economically infeasible situation will emerge for the firms.
Notice that this important result can only be obtained through a global study of the
structure of the basins of attraction.

We also would like to draw the reader’s attention to a global bifurcation which is
responsible for the drastic change in the dynamics obtained in this simple duopoly
model. In a situation where marginal costs are decreasing strongly and xM

k
< xL

k
,

we obtain three coexisting attractors: two boundary equilibria and a 2-cycle. Notice
that the limiting quantities xL

k
are located on a line where the map is not differen-

tiable. Consider now what happens if marginal costs increase. At a certain point, a
boundary equilibrium xM

k
will collide with xL

k
, and if marginal costs are increased

even further, then the interior equilibrium becomes globally stable. This is actu-
ally a first example of a border collision bifurcation, a global bifurcation occurring
whenever a qualitative change in the phase diagram (that is, creation/destruction of
invariant sets and/or stability change of existing ones) is due to a contact (and cross-
ing) of an invariant set with a border where the map is not differentiable separating
regions where it is differentiable. In this case the boundary that separates regions
D

.5/ and D
.1/ is the one involved in the contact, and such a border is due to the

presence of non-negativity constraint. This kind of global (or contact) bifurcations,
specific to piece-wise differentiable dynamical systems, will be examined in more
detail in Chap. 2, in particular in Examples 2.3 and 2.4.

1.3.2 A Cournot Oligopoly Game

In his seminal paper, Theocharis (1960) studied the asymptotic stability of the
Cournot–Nash equilibrium under discrete-time best reply dynamics with naive
expectations. For this quantity-setting model with linear demand and linear costs,
he found that the (unique) equilibrium is asymptotically stable only in the case of
two competitors. It is marginally stable (see definition (A.1) in Appendix A) for
three firms and unstable for more than three firms. Among others, McManus and
Quandt (1961) and Fisher (1961) demonstrated that this result depends on the type
of adjustment process the firms use to determine their production quantities. They
showed that for certain adjustment processes in continuous-time the equilibrium is
stable no matter what the number of firms is. These facts will be later discussed
in Chap. 2. Despite this result Fisher (1961, p.125) notes that “... the tendency to
instability does rise with the number of sellers for most of the processes consid-
ered”. These early papers gave rise to a lively discussion that has endured until the
present day. One of the main topics in this body of literature is the relation between
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the following issues: the quasi-competitiveness of the economy, that is the question
as to whether output increases and the market price decreases with an increasing
number of firms in the industry; the asymptotic stability of the equilibrium if entry
occurs; the question as to whether perfect competition is obtained in the limit as the
number of competitors is increased. The interested reader should consult for exam-
ple Frank (1965), Ruffin (1971), Howrey and Quandt (1968), Okuguchi (1976), or
more recently, Seade (1980) and Amir and Lambson (2000) to get an impression
of the variety of interesting results obtained concerning this issue. In this section
we focus on asymptotic stability issues and we try to answer the question: is local
asymptotic stability obtained when the number of firms increases? Furthermore, we
also address the topic of global dynamics, that is we look at the changes in the basins
of attraction of the stable equilibria. Clearly, a discussion of these issues becomes
more complicated when the model is nonlinear, since increasing the number of play-
ers means increasing the dimension of the dynamical system. This is so since such
increases lead to greater complexity in the dynamics of nonlinear systems, whereas
in the case of linear systems no new dynamic phenomena arise.

In order to keep the mathematical analysis tractable, but at the same time to
also shed some light on the relation between asymptotic stability and the number
of firms, in what follows we will consider both the symmetric and semi-symmetric
models. Recall that in the symmetric case it is assumed that all firms are identi-
cal, so that they have identical cost functions and all firms start from the same
initial production quantities. Since the cost and demand parameters are identical
for all firms, the reaction functions Rk will be identical, say Rk DR for each k.
Consequently, the quantities will be identical for all periods, and the dynamics are
governed by a 1-dimensional system. If we let x.t/ denote the common output of
the representative firm, then the one-dimensional model in the symmetric case is
obtained by settingQk D .N �1/x for each k. It is worth noting that the symmetric
case may be structurally unstable, that is the outcome obtained for the representa-
tive firm in the symmetric case may be completely different from the outcome of the
model with almost identical, but nevertheless heterogeneous firms (the firms might
differ in their production costs or might select slightly different initial quantities).
Therefore, the insights obtained from the symmetric model need to be accepted with
some caution. In order to derive some results which can be compared with the exist-
ing literature, we reconsider the partial adjustment towards the best response process
given by (1.23).

The symmetric case is obtained if we assume N players with identical quadratic
cost functions (as in Example 1.2), that is c1 D c2 D � � � D cN D c and e1 D
e2 D � � � D eN D e, identical adjustment speeds, that is a1 D a2 D : : : ; aN D a,
and identical capacity limits L1 D L2 D � � � D LN D L. It is also assumed that
BCe > 0, so the payoff functions of the firms are strictly concave in their strategies.
Then from (1.23) the 1-dimensional model which summarizes the common behavior
of all identical firms starting from identical initial condition x1.0/ D x2.0/ D � � � D
xN .0/ D x.0/ is

x.t C 1/ D T .x.t// � .1 � a/ x.t/C aR ..N � 1/ x.t// ;
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where (see the reaction function in case (i) of Example 1.2)

R..N � 1/x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z� < 0;
L if z� > L;
z� otherwise;

with z� D �

A� c � B.N � 1/x	=�2.B C e/
	

:

Observe that the number of firms N enters as a parameter, so we can study the
stability conditions as N is increased. The positive equilibrium is given by

Nx D A � c
B.N C 1/C 2e

and the map T is a contraction provided that jT 0.x/j < 1, that is

0 < a
BN C B C 2e

2.B C e/
< 2.

This implies that the positive equilibrium is always asymptotically stable for suffi-
ciently small values of the adjustment speed a. Moreover, given 0<a� 1, asymp-
totic stability is obtained for

N <
.4 � a/B C 2 .2 � a/ e

aB
:

In the case of best reply dynamics, a D 1, the stability condition reads N < .3B C
2e/=B . In the case of linear costs, e D 0, we obtain the result by Theocharis stating
that asymptotic stability is obtained for N < 3.

In the semi-symmetric case .N � 1/ firms are assumed to be identical, whereas
one firm differs with regard to its production costs and/or initial production quantity.
Let firms 2; : : : ; N be identical, then their production choices will coincide in each
period, that is xk D x2 for all k � 2. Let us denote the production quantity of firm
1 by x1, then

Q1 D .N � 1/x2 andQ2 D x1 C .N � 2/x2: (1.44)

By using the reaction functions R1 and R2 D � � � D RN , we obtain a two-
dimensional system with state variables x1 and x2. In (1.23) we set c2 D � � � D cN ,
e2 D � � � D eN ; a2 D � � � D aN , and L2 D � � � D LN : Then the 2-dimensional
model that governs the behavior of firm 1 and the common behavior of the identical
firms 2; : : : ; N becomes

TN W
�

x1.t C 1/ D .1 � a1/ x1.t/C a1R1 ..N � 1/ x2.t// ;

x2.t C 1/ D .1 � a2/ x2.t/C a2R2 .x1.t/C .N � 2/ x2.t// ;

where (again refer to the reaction function in case (i) of Example 1.2)
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R1..N � 1/x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
1 < 0;

L1 if z�
1 > L1;

z�
1 otherwise;

with z�
1 D �

A� c1 � B.N � 1/x2

	

=
�

2.B C e1/
	

and

R2.x1 C .N � 2/x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
2 < 0;

L2 if z�
2 > L2;

z�
2 otherwise;

with z�
2 D �

A� c2 � B .x1 C .N � 2/x2/
	

=
�

2.B C e2/
	

:

The interior equilibrium is independent of ak , k D 1; 2, but depends on the
number of firms N . It is given by E D . Nx1.N /; Nx2.N // with

Nx1.N / D A.B C 2e2/� 2c1e2 C B .c2.N � 1/� c1N/

2B.N � 2/.B C e1/C 4.B C e1/.B C e2/� B2.N � 1/
;

Nx2.N / D 2.B C e1/.A� c2/� B .A� c1/

2B.N � 2/.B C e1/C 4.B C e1/.B C e2/� B2.N � 1/
:

The Jacobian matrix computed at the interior equilibrium is

 

1 � a1 � a1
B.N �1/
2.BCe1/

�a2
B

2.BCe2/
1 � a2 � a2

B.N �2/
2.BCe2/

!

;

from which the stability conditions can be obtained by applying conditions (1.40).
Interesting stability results are obtained for the boundary equilibria, in the case when
B2 > 4.B C e1/.B C e2/ (illustrated in Fig. 1.3 for one possible situation). The
Jacobian evaluated in the neighborhood of E1 is either

 

1 � a1 � a1
B.N �1/
2.BCe1/

0 1 � a2

!

or

�

1 � a1 0

0 1 � a2

�

or both, if the equilibrium is on the boundary between the two regions, sinceR2 � 0

here. The Jacobian evaluated in the neighborhood of E2 is either

 

1 � a1 0

�a2
B

2.BCe2/
1 � a2 � a2

B.N �2/
2.BCe2/

!

or

 

1 � a1 0

0 1 � a2 � a2
B.N �1/
2.BCe2/

!

or both, because R2 � 0 here.
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As before, let P D
�

x 0

0 1

�

, then the row norms of the Jacobians around E1

generated by the matrix P are bounded by the row norm of the matrix

 

x 0

0 1

! 

1 � a1 a1
B.N �1/
2.BCe1/

0 1 � a2

! 

1
x
0

0 1

!

D
 

1 � a1 a1
Bx.N �1/
2.BCe1/

0 1 � a2

!

(1.45)

which is below one if

1 � a1 C a1

Bx.N � 1/

2.B C e1/
< 1;

that is, when

x <
2.B C e1/

B.N � 1/ :

Hence the equilibrium E1 is locally asymptotically stable for all values of N .
Similarly, E2 is locally asymptotically stable if there is a positive x such that

a2B

2x.B C e2/
C
ˇ

ˇ

ˇ

ˇ

1 � a2 � a2

B.N � 2/
2.B C e2/

ˇ

ˇ

ˇ

ˇ

< 1

which occurs if

�1 < 1 � a2

�

1C B.N � 2/

2.B C e2/

�

< 1:

Therefore,E2 is stable provided that

0 < a2

B.N � 2/C 2.B C e2/

2.B C e2/
< 2:

From this stability condition we can now derive several interesting results. First,
as already shown before, in the case of duopoly .N D 2/ the boundary equilibrium
E2 is also always stable, like E1. Moreover, the boundary equilibrium E2 is stable
provided that a2 is sufficiently small, which means that firms 2; : : : ; N have a high
inertia in adjusting their quantities toward the best responses. Finally, increasing the
number of firms has a destabilizing role. In fact the stability condition can be written
as

N < 2C 2 .2 � a2/ .B C e2/

Ba2

;

so that for given cost parameters and adjustment speeds asymptotic stability is lost
when the number of firms reaches a certain size.

To conclude this section, we study the global dynamics of the semi-symmetric
model. Consider again the parameter values AD 450, B D 30 and c1 D c2 D : : : D
cN D 275, e1 D e2 D � � � D eN D �17. For the adjustment speeds of the two
firms we select a1 D 0:6 and a2 D � � � D aN D 0:45. For these parameter values
the stability condition derived in the previous paragraph tells us that the boundary
equilibriumE2 is asymptotically stable if N < 4. In Fig. 1.12a we depict the basins
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Fig. 1.12 The Cournot oligopoly with linear demand/quadratic cost. Firms use partial adjustment
towards the best response. Basins of attraction of the various equilibria for different values of the
number of firms N . (a) The 3-firm case. Here both E1 and E2 are stable. Dark grey basin of E2;
light grey basin of E1. (b) The 5-firm case. Now E1 is stable, E2 is unstable. Light grey basin of
E1; white basin of the two cycle

of the two boundary equilibria E1 and E2 for N D 3 firms. To guarantee non-
negative prices, we have selected L1 D 7 and L2 D L3 D 4. Both boundary
equilibria are asymptotically stable, each with its own basin of attraction represented
by the different shadings of grey. In Fig. 1.12b we show the situation for N D 5

firms where L1 D 7 and L2 D � � � D L5 D 2. Now only the boundary equilibrium
E1 is asymptotically stable, and its basin is represented by the light grey region.
Points located in the white region converge to the 2-cycle represented by the two
dots.

1.3.3 Cournot Duopoly Revisited: A Gradient Type
Adjustment Process

The local stability of an equilibrium and the global dynamics depend on the
adjustment mechanism the firms use to update their production choices. We now
reconsider the duopoly case analyzed in Sect. 1.3.1, but instead of assuming partial
adjustment towards the best response, we now consider a discrete time adjustment
process based on marginal profits, similar to the gradient adjustment process dis-
cussed in Sect. 1.2 (1.32). However we assume now that the relative variation in
production quantities is proportional to the marginal profits, that is firm i adjusts its
output according to

xi .t C 1/� xi .t/

xi .t/
D ai

�

@'i

@xi

�

with ai > 0. With these assumptions, the dynamics are now governed by the discrete
time system
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Tg W
8

<

:

x1.t C 1/ D x1 .t/C a1x1 .t/ ŒA� c1 � 2.B C e1/x1 .t/ � Bx2 .t/� ;

x2.t C 1/ D x2 .t/C a2x2 .t/ ŒA� c2 � 2.B C e2/x2 .t/ � Bx1 .t/� :
(1.46)

It is easy to see that the interior steady state of the adjustment process based on
marginal profits coincides with the unique interior Nash equilibrium E D . Nx1; Nx2/

given in (1.12). To study the local asymptotic stability of E, we consider the
Jacobian matrix of (1.46). Since the Nash equilibrium is located at the intersec-
tion of the two reaction functions given in (1.34) and (1.35), we have B Nxi D
A � cj � 2

�

B C ej

	 Nxj (i; j D 1; 2, i ¤ j ). Therefore, the Jacobian matrix
evaluated at the interior equilibrium E can be written as

�

1 � 2a1.B C e1/ Nx1 � a1B Nx1

�a2B Nx2 1 � 2a2.B C e2/ Nx2

�

: (1.47)

We can check the stability conditions by use of the relations (1.40) with

q D .1 � 2a1.B C e1/ Nx1/.1 � 2a2.B C e2/ Nx2/� a1a2B
2 Nx1 Nx2;

and
p D �2C 2a1.B C e1/ Nx1 C 2a2.B C e2/ Nx2:

By assuming that B C ek > 0 for k D 1; 2, clearly q < 1. Notice that

p C q C 1 D 4a1a2.B C e1/.B C e2/ Nx1 Nx2 � a1a2B
2 Nx1 Nx2;

which is positive if B2 < 4.B C e1/.B C e2/. Similarly,

�pCqC1 D 4�4a1.BCe1/ Nx1 �4a2.BCe2/ Nx2 C4a1a2 Nx1 Nx2.BCe1/.BCe2/;

so this is positive, if

.4.B C e1/.B C e2/�B2/ Nx1 Nx2a1a2 � 4.BC e1/ Nx1a1 � 4.BC e2/ Nx2a2 C 4 < 0 :

(1.48)
If B2 < 4.B C e1/.B C e2/ and the equilibrium E is positive, then this additional
condition can be used to determine a region of stability in the .a1; a2/-plane. In con-
trast to the adjustment process where firms partially adjust their quantities towards
the best reply, here the speeds of adjustment are crucial for local asymptotic stabil-
ity of the Nash equilibrium. As remarked earlier, the stabilizing role of sufficiently
small values of the adjustment speeds has been observed before by many authors
(see for example Fisher (1961), McManus and Quandt (1961), and Flam (1993)). In
Fig. 1.13 we depict the stability region (shaded) in the .a1; a2/ plane obtained for the
parameter values A D 450, B D 30, c1 D c2 D 275, e1 D e2 D �11. For values
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Fig. 1.13 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. The hashed area indicates the stability region of the interior Nash
equilibrium E in the .a1; a2/ plane of adjustment speeds

of .a1; a2/ inside the stability region, the Nash equilibrium E is an asymptotically
stable node. The boundary of this region represents a bifurcation curve at which
E loses asymptotic stability through a flip (or period doubling) bifurcation (see for
example Guckenheimer and Holmes (1983), or Lorenz (1995)). This bifurcation
curve intersects the axes in the points

A1 D
�

1

.B C e1/ Nx1

; 0

�

and A2 D
�

0;
1

.B C e2/ Nx2

�

;

from which further information on the effects of the model’s parameters on the local
asymptotic stability of E could be derived by further analysis.

So far we have only considered questions related to local asymptotic stability of
the interior equilibrium. But what can we say about the global dynamics? That is,
given that the interior Nash equilibrium is locally asymptotically stable, what can
be said about its basin of attraction, defined as the set of feasible initial conditions
which generate bounded and positive trajectories converging to E? In Fig. 1.14,
obtained with parameters AD 450, BD 30, c1 D c2 D 275, e1 D e2 D � 11 and
speeds of adjustment a1 D 0:01, a2 D 0:012, the Nash equilibriumED .2:57; 2:57/

is locally asymptotically stable and its basin of attraction (or feasible set) is rep-
resented by the white area. The region in grey represents the basin of infinity,
denoted B .1/, that is the set of initial conditions that generates unbounded (and
negative), therefore “infeasible”, trajectories. The interior Nash equilibrium is not
globally asymptotically stable since not all initial conditions in the strategy space



1.3 An Introduction to the Analysis of Global Dynamics 43

O(2)
−1

O (1)
−1

ω1

ω2

(3)O−1

E2

x2

0 7.5E1
x1

E

B(∞)

7

(w2)−1

(w1)−1

Fig. 1.14 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. The white region is the basin of attraction of the Nash equilibrium E ,
the dark grey region is B.1/. The basin of E is bounded by the two segments !1, !2 and their
rank-1 preimages .!1/�1, .!2/�1

are economically feasible. For all quantity choices in the basin of E, we obtain
x1 Cx2 < A=B . Therefore, non-negativity of prices is guaranteed. Note that for the
set of parameters we have selected here, the interior equilibrium would be globally
stable with respect to partial adjustment towards the best response.

For the set of parameters used to obtain Fig. 1.14, the set of initial conditions
which lead to convergence to the Nash equilibrium E is the interior of the quadri-
lateral OO.1/

�1O
.3/
�1O

.2/
�1 , where O D .0; 0/ denotes the origin and the other three

vertexes are the rank-1 preimages ofO , meaning that for these points Tg.O
.i/
�1/DO

holds for i D 1; 2; 3 (Note that the mapping Tg was defined in (1.46)). These points
are given by

O
.1/
�1 D .

1C a1.A � c1/

2a1.B C e1/
; 0/ ; O

.2/
�1 D .0;

1C a2.A � c2/

2a2.B C e2/
/ (1.49)

and

O
.3/
�1 D

�2a2.B C e2/ .1C a1.A � c1// � a1B .1C a2.A � c2//

3B2a1a2 C 4a1a2.e1 C e2/C 4a1a2e1e2

;

2a1.B C e1/ .1C a2.A � c2// � a2B .1C a1.A� c1//

3B2a1a2 C 4a1a2.e1 C e2/C 4a1a2e1e2

�

; (1.50)
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which can be obtained by solving the fourth degree algebraic system (1.46) for
xi .t/, upon setting xi .t C 1/ D 0, (i D 1; 2). A simple strategy for obtaining the
preimages of O is to start from the dynamics of Tg restricted to the axes. Since
xi .t/ D 0 implies xi .t C 1/ D 0, starting from an initial condition on a coordinate
axis, the dynamics are “trapped” on this axis for all t . In other words, a monopoly
prevails over time and the one-dimensional “monopoly dynamics” is obtained from
(1.46) with xi D 0, namely

xj .t C 1/ D .1C aj .A� cj //xj .t/� 2.B C ej /aj x
2
j .t/: (1.51)

We also note that this map is conjugate to the standard logistic map x.t C 1/ D
�x.t/ .1 � x.t// through the linear transformation xj D 1Caj .A�cj /

2aj .BCej /
x, from which

the relation � D 1 C aj .A � cj / can be obtained. The following results for our
map can be directly derived from the properties of the logistic map, which is well-
studied in the literature; see for example, Devaney (1989). The rank-1 preimages
O

.j /
�1 given in (1.49) can now be easily derived from (1.51). Along the xj -axis (j D

1; 2), the one-dimensional restriction (1.51) gives bounded dynamics for aj .A �
cj / � 3 provided that the initial conditions are taken inside the segment !j D
OO

.j /
�1 . Observe that divergent trajectories along the invariant xj axis are obtained

if the initial condition is out of the segment !j (j D 1; 2). Let us now turn to
the quadrilateral region bounded by the two segments !1 and !2 and their rank-
1 preimages, say .!1/�1 and .!2/�1 respectively (see Fig. 1.14). The preimages
.!1/�1 and .!2/�1 can be analytically computed as follows. Let X D .x; 0/ be a
point of !1. Its preimages are the real solutions .x1; x2/ of the algebraic system

8

<

:

x1 Œ1C a1.A � c1/ � 2a1.B C e1/x1 � a1Bx2� D x;

x2 Œ1C a2.A� c2/� a2Bx1 � 2a2.B C e2/x2� D 0 :

(1.52)

From the second equation it is easy to see that the preimages of the points of !1

are either located on the same invariant axis x2 D 0 or on the line represented by
the equation

a2Bx1 C 2a2.B C e2/x2 D 1C a2.A � c2/: (1.53)

Analogously, the preimages of a point of !2 belong to the same invariant axis
x1 D 0 or to the curve represented by equation

2a1.B C e1/x1 C a1Bx2 D 1C a1.A � c1/: (1.54)

It is now straightforward to see that the line (1.53) intersects the x2 axis in the
point O.2/

�1 and the line (1.54) intersects the x1 axis in the point O.1/
�1 . Moreover,

the two lines intersect at the point O.3/
�1 . A summary of these observations leads to

the following description of the basin of the asymptotically stable Nash equilibrium
E as shown in Fig. 1.14. The rank-1 preimages of the origin are the vertexes of the
quadrilateralOO.1/

�1O
.3/
�1O

.2/
�1 . The sides of this region are given by !1, !2 and their
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respective rank-1 preimages .!1/�1 and .!2/�1 respectively. All points inside this
quadrilateral region lead to convergence, all points outside cannot generate feasi-
ble trajectories. Points located to the right of .!2/�1 are mapped into points with
negative value of x1 after one iteration, as can be easily deduced from the first com-
ponent of (1.46). Points located above .!1/�1 are mapped into points with negative
value of x2 after one iteration, as can be deduced from the second component of
(1.46). The expressions in (1.53) and (1.54) can be used to determine the impact
of parameter changes on the basin. Finally, observe that for these values of the
parameters the basin of the unique interior Nash equilibrium is a rather simple and
connected set.

1.3.4 Simple Basins and Critical Curves

In this subsection we introduce the concept of critical curves (see also Appendix C).
This subsection uses many concepts about dynamical systems that may not be famil-
iar to some readers (such as noninvertible maps, critical sets, preimages of various
ranks and so on). These concepts are reviewed in Appendix C, which the reader may
need to study before working through this subsection.

Recall that in the previous subsection we have demonstrated how to obtain the
boundaries of the feasible region by taking the preimages .!i /�1 .i D 1; 2/ of the
coordinate axes. Since the map Tg in (1.46) is a noninvertible map, as can be readily
deduced from the fact that the origin has four preimages, there might be further
preimages of .!i /�1 .i D 1; 2/, which have to be also considered in order to obtain
the whole boundary of the feasible region. In order to determine if .!i /�1 .i D 1; 2/

have further preimages, we can use the critical curves of the map which can be used
to identify regions in the feasible set (or strategy space) with a different number of
preimages.

To begin with, let us consider a given point
�

x0
1; x

0
2

	

in the strategy space. Then
its preimages can be calculated by setting x1.t C 1/ D x0

1; x2.t C 1/ D x0
2 in (1.46)

and solving with respect to x1 and x2 the fourth degree algebraic system,

8

ˆ

ˆ

<

ˆ

ˆ

:

x1 Œ1C a1 .A� c1 � 2.B C e1/x1 � Bx2/� D x0
1;

x2 Œ1C a2 .A � c2 � 2.B C e2/x2 � Bx1/� D x0
2:

(1.55)

Clearly, this algebraic system may have up to four real solutions, which are the
rank-1 preimages of

�

x0
1; x

0
2

	

. We can now use this information to subdivide the
strategy space into regions characterized by a different number of preimages. This
is shown in Fig. 1.15a, which is obtained with the same parameters as Fig. 1.14. The
regions Zk denote the sets of points which have k real and distinct rank-1 preim-
ages. For example, as shown above, the originO D .0; 0/ 2 Z4, because it has four
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Fig. 1.15 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. Illustrating the regions of preimages of different ranks, the sets of points
where the Jacobian vanishes (LC.a/

�1 and LC.b/
�1 ) and the critical curves LCa and LCb . (a) The

parameters are the same as in Fig. 1.13. (b) The speeds of adjustment are slightly higher, E
becomes unstable and a strange attractor emerges, but the basic structure of the basin remains
the same as in (a). Note however that the critical curve LC.b/ in now quite close to the boundary
of the white and grey regions

rank-1 preimages, given by O itself (since Tg.0; 0/D .0; 0/) and O.i/
�1, i D 1; 2; 3

(since Tg.O
.i/
�1/D .0; 0/ as well). The regions Zk are separated by segments of

critical curves denoted as LC .a/ and LC .b/ in Fig. 1.15a.
An intuitive understanding of the importance of critical curves can be obtained

by referring to the folding or unfolding mechanism of a map. The map (1.46) is
noninvertible, which means that distinct points in the action set can be mapped into
the same point by Tg . This can be geometrically envisioned by imagining a process
which folds the action space onto itself (so that points which are in different loca-
tions are folded onto each other). A result from algebraic geometry tells us that the
folding process can be characterized by a change of sign of the determinant of the
Jacobian of the map: if the sign is positive, then the map is orientation preserving,
whereas it is orientation reversing otherwise.4 The folding curves where the sign
change occurs is the locus of points where the determinant of the Jacobian of the
map vanishes. Its image gives the so-called critical curve, which separates zones
or regions with different numbers of preimages (this indicates the importance of
the unfolding action of the map). To sum up, the following numerical procedure

4 Consider a one-dimensional, continuously differentiable map g.y/. If g0.y/ > 0, then for x < y,
it follows that g.x/ < g.y/. If, on the other hand, g0.y/ < 0, the orientation is reversed. Obviously,
the change of signs occurs exactly at the point where the derivative vanishes.
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(see also Appendix C) can be used to obtain the critical curves (for a given set of
parameters):

1. The map (1.46) is continuously differentiable, so the (folding) set LC�1 can
be obtained numerically as the locus of points .x1; x2/ for which the Jacobian
determinant of Tg vanishes.

2. The critical curves LC , which separate the regionsZk , are obtained by comput-
ing the images of the points belonging to LC�1, that is LC D Tg.LC�1/.

In Fig. 1.15a the set of points at which the Jacobian vanishes gives the curves
denoted by LC .a/

�1 and LC .b/
�1 . It is formed by the union of the two branches of a

hyperbola. Also the critical curve LC D Tg.LC�1/ is formed by two branches,

denoted by LC .a/ D Tg.LC
.a/
�1 / and LC .b/ D Tg.LC

.b/
�1 /. The curve LC .b/ sep-

arates the region Z0, whose points have no preimages, from the region Z2, whose
points have two distinct rank-1 preimages. The curveLC .a/ separates the regionZ2

from Z4, whose points have four distinct preimages.
Our analysis based on the critical curves of the map now reveals why the set

of initial conditions that lead to convergence to the Nash equilibrium, bounded by
!1, !2 and its preimages .!1/�1 and .!2/�1, is a rather simple set. It is due to the
fact that only preimages of rank-1 of !1 and !2 exist. Note that .!1/�1 and .!2/�1

are entirely included in Z0, that is a region of the feasible set whose points have no
preimages. Therefore, the preimages .!i /�1 .i D 1; 2/ of the invariant axes, have
no preimages of higher rank. Consequently, the whole boundary that separates the
basin B.E/ and the infeasible set B.1/ is

F D �[1
nD0T

�n
g .!1/

	
[
�[1

nD0T
�n
g .!2/

	

; (1.56)

that is, the union of all the preimages of the segments !1 and !2 (see Appendix C),
which is a rather simple set.

To conclude this subsection, we would like to stress the fact that the properties of
the basin boundaries are related to the global dynamics of our duopoly model. Such
a simple structure of the basin may be also maintained when the Nash equilibrium
loses stability due to local (period-doubling) bifurcations. In Fig. 1.15b, obtained
with the same parameters as before except that a1 D 0:015 and a2 D 0:0165, we
depict a situation where (after the usual period-doubling sequence) a chaotic attrac-
tor describes the long run evolution of the production decisions of the duopolists.
Despite the fact that the dynamic behavior can be considered as complex, the basin
boundaries are still given by the same quadrilateral.

The reader should notice, however, that basins are not always as simple as in the
examples presented so far in this book. Indeed, a closer look at Fig. 1.15b reveals
that the critical curve LC .b/ is rather close to a basin boundary. This indicates that
a small shift of this curve due to a parameter variation may cause a contact, after
which a portion of the set of infeasible points B.1/ crosses the critical curve and,
consequently, enters the region Z2. In the next subsection we will show that such
contact bifurcations may have a considerable impact on the topological structure of
the feasible set.



48 1 The Classical Cournot Model

1.3.5 Disconnected Basins

In all the examples encountered up to now, the basins of the corresponding attractor
were rather simple and were connected sets. As we shall now demonstrate, basins
can have a quite complicated structure. For example, they can be pierced by many
holes or may consist of areas without any connection. In such situations predicting
the long run outcome of the duopoly game where players use certain adjustment
processes to determine their production quantities over time is quite difficult. This
becomes particularly relevant when stochastic influences play a role.

In Fig. 1.16a we depict the situation after an increase in the adjustment speeds
from a1 D 0:015, a2 D 0:0165 (the values in Fig. 1.15b) to a1 D 0:015; a2 D 0:017.
After the contact of the curve LC .b/ with the boundary of B .1/, a set indicated as
H0 which belongs to the infeasible set B .1/ enters Z2 (see the region indicated
by the arrow in Figs. 1.16a, b).

This means that points belonging to H0 have two distinct preimages, say H .1/
�1

andH .2/
�1 , which are located on opposite sides of the curveLC .b/

�1 (the preimages of

points exactly on the curve LC .b/ inside B .1/ are located on LC .b/
�1 ). Obviously,

since H0 belongs to the set B .1/, initial conditions belonging to H .1/
�1 and H .2/

�1

also lead to infeasible trajectories, since they are mapped into the infeasible set after
one iteration. The rank-1 preimages of H0 constitute a so-called hole of B .1/

which is located entirely inside the feasible set (this hole is also called a “lake” in
Mira et al. (1996)). Since this hole, also referred to as the main hole, again lies inside
the region Z2, it also has two preimages. These smaller holes, denoted as H .1/

�2 and
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Fig. 1.16 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. Slightly higher speeds of adjustment than in the case of Fig. 1.15. The
critical curve LC.b/ has crossed the basin boundary and a disconnected basin of attraction now
results. (a) The entire region. (b) A close up of the set H0 and its preimages
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Fig. 1.17 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. The same situation as in Fig. 1.16, but with slightly higher speeds of
adjustment. Note how the holes have become larger and connected along the vertical axis

H
.2/
�2 , contain initial conditions which are mapped into the main hole and then into

the infeasible set. The sets H .1/
�2 and H .2/

�2 are bounded by preimages of rank 3
of !1. Since these smaller holes are again both inside Z2, each of them has again
two further preimages inside Z2, and so on. Summarizing, we can conclude that
the global bifurcation which we have just described transforms a simply connected
basin into a multiply connected basin. The latter set has a countably infinite number
of holes, called an arborescent sequence of holes, which belong to the infeasible
set B .1/. As the speeds of adjustment are further increased, the holes become
more pronounced and they become connected along the vertical axis as shown in
Fig. 1.17.

Our numerical results show that the structure of the basins may become consider-
ably more complex as the adjustment speeds are increased. The transition between
qualitatively different structures of the boundary occur through so called contact
bifurcations (see for example Mira et al. (1996)) and these bifurcations can be
described in terms of contacts between the basin boundaries and arcs of the crit-
ical curves. To conclude this chapter, we would like to stress that in general there
is no relation between the bifurcations which change the qualitative properties of
the basins (global bifurcations) and the bifurcations which change the qualitative
properties of the attractor (sequences of local bifurcations). The former is related to
the global dynamics, whereas the latter focuses on the local (stability) properties.
In later chapters we will encounter situations where the attractor is a rather sim-
ple set (that is, an equilibrium), but the structure of its basin is quite complex. As
demonstrated above, in other situations exactly the opposite might be the case.



Chapter 2
Concave Oligopolies

In the previous chapter we have seen that except in very special cases oligopoly
models have nonlinear features and therefore can generally exhibit a vast array of
dynamical behavior ranging from simple to complicated. Under special conditions
however the uniqueness of the equilibrium can be guaranteed, simple conditions can
be derived for the local asymptotic stability of the equilibrium with both discrete
and continuous time scales, and the global dynamics are less complicated and can
be handled with some of the standard tools of nonlinear dynamical systems. In this
chapter we will consider concave oligopolies, which are the straightforward gener-
alizations of linear oligopolies and are the most frequently discussed cases in the
literature (see for example, Okuguchi and Szidarovszky (1999) and the references
therein).

In the first section we consider oligopolies both without and with cost external-
ities, derive the best response functions in both cases and their various properties
that will be invoked in the ensuing analysis of the dynamics. In Sect. 2.2 we exam-
ine the local stability of discrete time oligopolies using the adjustment processes
introduced in Sect. 1.2. In Sect. 2.3 we then consider the global stability of the dis-
crete time oligopoly, bringing to bear the tools developed in Sect. 1.3. Section 2.4
gives a brief description of the local stability of the dynamics in both discrete and
continuous time where firms use gradient adjustment processes. The local stabil-
ity of continuous time oligopolies using certain types of best response dynamics
is studied in Sect. 2.5. Finally in Sect. 2.6 we study the impact of various kinds of
information delays on the local stability of continuous time oligopolies using best
response dynamics.

2.1 Introduction

We will first consider oligopolies without cost externalities. As in the previous chap-
ter, let N be the number of firms, xk the output of firm k .k D 1; 2; : : : ; N /, and
Q D PN

kD1 xk the total output of the industry. If p D f .Q/ denotes the inverse
demand function and Ck.xk/ is the cost of firm k, then the profit of this firm can be

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 2,
c� Springer-Verlag Berlin Heidelberg 2010
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written as (1.1) that we repeat here for the sake of convenience,

'k.x1; : : : ; xN / D xkf .Q/� Ck.xk/:

Assume that the price function f and all cost functions are twice continuously
differentiable and satisfy the conditions

(A) f 0.Q/ < 0;

(B) xkf
00.Q/C f 0.Q/ � 0;

(C) f 0.Q/� C 00
k
.xk/ < 0;

for all k and feasible values of xk and Q.
Condition (A) means that f .Q/ is strictly decreasing in Q, that is, a larger total

output can only be sold for a lower price. Condition (B) is called the decreasing
marginal revenue condition, it states that marginal revenue for firm k decreases for
higher levels of output of the rest of the industry (see for example, Vives (1999)).
Condition (C) relates the lower bound on the convexity/concavity of the cost func-
tion to the degree of negativity of the slope of the price function. It is assumed by
many authors that f .Q/ is concave and Ck.xk/ is convex for all k. In this case
f 0<0, f 00 � 0, C 00

k
� 0, and naturally C 0

k
>0, since a larger output level requires

higher cost. Conditions (B) and (C) are then clearly satisfied. In fact these condi-
tions are slightly more general, since they can be also satisfied if f is slightly convex
and/or Ck is slightly concave provided that �f 0 is large enough. We have to men-
tion as well, that conditions (A)–(C) are more restrictive than the simple condition
that the profit functions be concave.

Notice that

@

@xk

'k.x1; : : : ; xN / D f .xk CQk/C xkf
0.xk CQk/� C 0

k.xk/; (2.1)

and under these conditions

@2

@x2
k

'k.x1; : : : ; xN / D 2f 0.xk CQk/C xkf
00.xk CQk/ � C 00

k .xk/ < 0; (2.2)

where Qk D P

l¤k

xl as in the previous chapter. Hence 'k is strictly concave in xk .

In order to prove the existence of a unique equilibrium under conditions (A)–(C)
and develop dynamic models we have to determine first the best response functions
of the firms.

The concavity of the profit functions implies that the best response functions can
be obtained in the form
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Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if f .Qk/ � C 0
k
.0/ � 0;

Lk if f .Lk CQk/CLkf
0.Lk CQk/� C 0

k
.Lk/ � 0;

z�
k

otherwise;

(2.3)

where z�
k

is the unique solution of the strictly monotonic equation

f .zk CQk/C zkf
0.zk CQk/� C 0

k.zk/ D 0 (2.4)

in the interval .0; Lk/. Observe that due to our assumptions the left hand side of
(2.4) strictly decreases and is continuous in zk , positive at zk D 0 and negative at
zk D Lk , therefore there is a unique solution.

In order to analyze the asymptotic behavior of any one of the discrete time
and continuous time dynamical systems (1.19), (1.28)–(1.31) emerging from par-
tial adjustment and best reply behavior, we will need to examine the Jacobian of
the systems, and to do so, we have to determine the derivatives of the best response
functions. These derivatives can be obtained by implicitly differentiating equation
(2.4). Assuming that z�

k
is interior (that is, 0 < z�

k
< Lk), then we have

f 0.1CR0
k/CR0

kf
0 CRkf

00.1CR0
k/ � C 00

kR
0
k D 0;

implying that

R0
k D � f 0 CRkf

00

2f 0 CRkf 00 � C 00
k

: (2.5)

Note that the same result could be obtained directly by using

R0
k D �@

2'k=@xk@Qk

@2'k=@x
2
k

: (2.6)

Conditions (B) and (C) imply that

� 1 < R0
k.Qk/ � 0 (2.7)

for all k and Qk . In the first two cases of (2.3), the derivative of Rk is zero, except
at two possible break-points, so (2.7) is always satisfied. This property will play a
crucial role later in the stability analysis.

Notice that relation (2.4) shows thatRk.Qk/ decreases inQk , that is, larger total
output of the rest of the industry requires smaller output responses from the firms.
Since R0

k
.Qk/ is larger than �1, best responses cannot decrease very rapidly.

We notice that if f .0/>C 0
k
.0/, that is the reservation price is higher than the

marginal costs at xk D 0, then the monopoly quantity (ignoring capacity limits) of
firm k is the solution of equation (2.4) with Qk D 0. If it is below Lk , then it is the
best response of firm k at Qk D 0.
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We can also rewrite the best responses of the firms in terms of the total output of
the industry. This idea will be very helpful in proving the existence and uniqueness
of the equilibrium and it can be also used to derive a simple computational method
to find the equilibrium. From (2.3) we have

eRk.Q/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if f .Q/� C 0
k
.0/ � 0;

Lk if f .Q/C Lkf
0.Q/� C 0

k
.Lk/ � 0;

zk otherwise;

(2.8)

where zk is the unique solution of the equation

f .Q/C zkf
0.Q/� C 0

k.zk/ D 0 (2.9)

inside the interval .0; Lk/. We point out that in the case when we consider the best
response as a function of Q (rather thanQk) we denote it by eRk . Notice that in the
third case of (2.8), the left hand side is positive at zk D 0, negative at zk D Lk , and
strictly decreasing, since it has a negative derivative given by

@

@zk

ff .Q/C zkf
0.Q/� C 0

k.zk/g D f 0.Q/� C 00
k .zk/ < 0:

The derivative of eRk.Q/ can be obtained by implicit differentiation, so that

f 0 C eR0
kf

0 C eRkf
00 � C 00

k
eR0

k D 0;

from which

eR0
k D �f

0 C eRkf
00

f 0 � C 00
k

� 0:

Since eRk.Q/ is continuous in the interval Œ0;
PN

lD1Ll �, it is non-increasing in
Q for all Q 2 Œ0;PN

lD1Ll �: Finally, consider the single-variable equation

N
X

kD1

eRk.Q/�Q D 0; (2.10)

which must hold at the equilibrium. The left hand side of (2.10) is strictly decreasing
in Q, it is non-negative at Q D 0 and non-positive at Q D PN

kD1Lk . There-
fore there is a unique solution NQ, and the corresponding equilibrium outputs are
Nxk D eRk. NQ/:
Example 2.1. In our earlier Example 1.1 we introduced oligopolies with linear price
and cost functions,

f .Q/ D A � BQ and Ck.xk/ D dk C ckxk; .1 � k � N/: (2.11)
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We also proved that the best response function of firm k is a piece-wise linear
function

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A� BQk � ck � 0;

Lk if A� 2BLk � BQk � ck � 0;

�1
2
Qk C .A � ck/=.2B/ otherwise

(2.12)
by assuming that

PN
kD1Lk � A

B
.

In the first two cases R0
k
.Qk/ D 0 and in the third case R0

k
.Qk/ D � 1

2
showing

that (2.7) is always satisfied. �

In Example 1.2 we examined oligopolies with linear price and quadratic cost
functions. In case (ii) of that example we observed the possibility of multiple equi-
libria, however it is easy to see that under the stated assumptions condition (C) is
violated.

Let us turn our attention next to the general case when the cost of firm k

is Ck.xk ;Qk/, perhaps because of the presence of externalities as discussed in
Sect. 1.1. In this more general case the profit of firm k is given as

'k.x1; : : : ; xN / D xkf .xk CQk/ � Ck.xk ;Qk/

with derivatives

@'k

@xk

D f .xk CQk/C xkf
0.xk CQk/� C 0

kx.xk;Qk/

and
@2'k

@x2
k

D 2f 0.xk CQk/C xkf
00.xk CQk/� C 00

kxx.xk;Qk/;

where C 0
kx

and C 00
kxx

denote the first and second order partial derivatives of Ck with
respect to xk : Assume that conditions .A/; .B/ are satisfied, furthermore assume

(C’) f 0.xk CQk/ � C 00
kxx

.xk ;Qk/ < 0,

for all k and feasible values of xk and Qk .
Under conditions (A), (B) and (C’), the profit 'k of firm k is strictly concave in

xk , therefore there is a unique best response function of firm k given by

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if f .Qk/ � C 0
kx
.0;Qk/ � 0;

Lk if f .Lk CQk/C Lkf
0.Lk CQk/� C 0

kx
.Lk ;Qk/ � 0;

z�
k

otherwise;

where z�
k

is the unique solution of the equation

f .zk CQk/C zkf
0.zk CQk/� C 0

kx.zk;Qk/ D 0;
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where the left hand side is strictly decreasing in zk . The derivative of the best
response function can be determined by implicitly differentiating this equation to
obtain

f 0.1CR0
k/CR0

kf
0 CRkf

00.1CR0
k/ � C 00

kxxR
0
k � C 00

kxQ D 0;

implying that

R0
k D � f 0 CRkf

00 � C 00
kxQ

2f 0 CRkf 00 � C 00
kxx

;

where C 00
kxQ

is the mixed second order partial derivative of Ck . If in addition to
conditions (A), (B) and (C’) we further assume for all k and feasible values of xk

and Qk that

(D) f 0.xk CQk/C xkf
00.xk CQk/ � C 00

kxQ.xk ;Qk/

< C 00
kxx.xk;Qk/ � f 0.xk CQk/;

then relation (2.7) remains valid even in this more general case. It can be proved,
similarly to the special case without cost externalities, that under conditions (A),
(B), (C’) and (D) there is always a unique Nash equilibrium.

The existence and uniqueness of the Nash equilibrium has been examined by
many authors. Some earlier results used the Brouwer or Kakutani fixed point theo-
rem, which unfortunately is an approach that does not offer computational methods
to find the equilibria, and this would be required in the situation of general price
and cost functions. A comprehensive summary of the most important earlier results
is given in Okuguchi (1976). Okuguchi and Szidarovszky (1999) provide some
extensions of the earlier results that do lead to computational methods to find the
equilibria. The existence and uniqueness proof presented in this section is taken
from Szidarovszky and Yakowitz (1977). Uniqueness and existence results for Nash
equilibria can also be found in Vives (1999), using arguments based on the Tarski
fixed point theorem.

2.2 Discrete Time Models and Local Stability

Consider first the best reply dynamics with adaptive expectations which are gov-
erned by (1.28) and (1.29). A vector ( Nx1; : : : ; NxN ; NQE

1 ; : : : ;
NQE

N ) is a steady state of
this system if and only if

NQE
k D

X

l¤k

Nxl ; (2.13)

and
Nxk D Rk. NQE

k /: (2.14)
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In other words, ( Nx1; : : : ; NxN ) is a Nash equilibrium. The same is true obviously
for partial adjustment towards the best response, which are modeled by (1.30). If the
sign-preserving function ˛k is a homogeneous linear function of the form ˛k.z/ D
akz, then the system (1.28)–(1.29) reduces to (1.20)–(1.21), so we will not discuss
system (1.20)–(1.21) directly, but only as a special case. Similarly, system (1.30)
also reduces to (1.23) in this case.

The local and global stability properties of an equilibrium depend on the partic-
ular adjustment process which is used by the firms to update their quantity choices.
So any stability result to be introduced and proved in this book is always appli-
cable to the particular dynamical system for which it is proved. In this section
best reply dynamics with adaptive expectations and partial adjustment towards the
best response will be examined. We will return to gradient adjustments later in this
chapter.

The asymptotic stability of the equilibrium will be examined by the technique of
linearization around the equilibrium, which is summarized briefly in Appendix B.
Here we assume that the equilibrium is interior, otherwise the best response func-
tions are not differentiable. In such cases we have to assume that the conditions of
Theorem B.3 are satisfied in a neighborhood of the equilibrium. First we show that
as far as local asymptotic stability is concerned, the conditions for the best reply
dynamics with adaptive expectations and partial adjustments are equivalent since it
turns out that the Jacobians of the two processes have identical nonzero eigenvalues.
The Jacobian of the the best reply dynamics1 (1.28)–(1.29) has a special structure,
namely

� NJ 11
NJ 12

NJ 21
NJ 22

�

(2.15)

with

NJ 11 D

0

B

B

B

@

0 r1a1 : : : r1a1

r2a2 0 : : : r2a2

:::
:::

:::

rNaN rNaN : : : 0

1

C

C

C

A

; NJ 12D

0

B

B

B

@

r1.1� a1/ 0

r2.1 � a2/
: : :

0 rN .1 � aN /

1

C

C

C

A

;

NJ 21 D

0

B

B

B

@

0 a1 : : : a1

a2 0 : : : a2

:::
:::

:::

aN aN : : : 0

1

C

C

C

A

; and NJ 22 D

0

B

B

B

@

1 � a1 0

1 � a2

: : :

0 1 � aN

1

C

C

C

A

;

where for all k,

1 See Appendix B for a definition of the Jacobian of a dynamical system. We stress that unless
indicated otherwise the elements of this matrix are evaluated at the steady state of the system,
which is indicated by the overbar.
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rk D R0
k.

NQE
k / and ak D ˛0

k.0/: (2.16)

If we use .u1; u2; : : : ; uN ; v1; v2; : : : ; vN / to denote the typical eigenvector and
� the associated eigenvalue of the matrix (2.15) then it is relatively straightforward
to see that the uk; vk (for k D 1; 2; : : : ; N / are given by the two sets of equations

rkak

X

l¤k

ul C rk.1 � ak/vk D �uk; .k D 1; 2; : : : ; N /; (2.17)

ak

X

l¤k

ul C .1 � ak/vk D �vk ; .k D 1; 2; : : : ; N /: (2.18)

By subtracting the rk-multiple of (2.18) from (2.17) we find that

�.uk � rkvk/ D 0: (2.19)

Since a zero eigenvalue does not destroy the asymptotic stability of the system,
we will consider only nonzero eigenvalues of the Jacobian. If � ¤ 0, then (2.19)
implies that uk D rkvk and if we substitute this condition into (2.17) we see that the
uk values are determined by

rkak

X

l¤k

ul C .1 � ak/uk D �uk; .1 � k � N/;

which is readily shown to be the eigenvalue equation of the N �N matrix

NH D

0

B

B

B

@

1 � a1 r1a1 : : : r1a1

r2a2 1 � a2 : : : r2a2

:::
:::

: : :
:::

rNaN rNaN : : : 1 � aN

1

C

C

C

A

: (2.20)

Observe that this matrix coincides with the Jacobian of the partial adjustment
dynamics (1.30). Therefore, if local asymptotic stability is our concern, then the
conditions for the process (1.28)–(1.29) of best reply dynamics with adaptive expec-
tations is equivalent to the process (1.30) of partial adjustment towards the best
response with naive expectations. This means that best reply dynamics with adap-
tive expectations and best reply dynamics with partial adjustments share the same
local asymptotic stability properties, and the eigenvalue structure of matrix (2.20)
determines whether an equilibrium is locally asymptotically stable or not. In the case
ofN D 2 (duopoly) or very special response functions with arbitrary value ofN , the
two processes are even equivalent as was shown earlier in Sect. 1.2. The following
theorem presents conditions for the local asymptotic stability of the equilibrium. It
allows us to assert that if the initial outputs of the firms are sufficiently close to the
equilibrium, then as t ! 1; the outputs converge to the equilibrium.
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Theorem 2.1. Assume that ak D ˛0
k
.0/ > 0 for all k D 1; 2; : : : ; N:

(i) The equilibrium is locally asymptotically stable if for all k,

ak.1C rk/ < 2 (2.21)

and
N
X

kD1

rkak

2 � ak.1C rk/
> �1: (2.22)

(ii) The equilibrium is unstable if for at least one k,

ak.1C rk/ � 2

or
N
X

kD1

rkak

2 � ak.1C rk/
< �1:

Proof. Notice that the structure of matrix NH is the same as matrix A given in equa-
tion (E.4) of Appendix E. Therefore we can use relation (E.5) to determine that its
characteristic equation has the form

N
Y

kD1

.1 � ak.1C rk/ � �/ �
"

1C
N
X

kD1

rkak

1 � ak.1C rk/� �

#

D 0: (2.23)

In order to make the mathematical analysis easier assume that ak > 0 for all k
and the firms are numbered in such a way that the different ak.1 C rk/ values sat-
isfy a1.1 C r1/ > a2.1 C r2/ > � � � > as.1 C rs/ and their values are repeated
m1; m2; : : : ; ms times. By adding the terms with identical denominators in the
bracketed expression and denoting by �j the sum of the corresponding numerators
rkak , we can rewrite (2.23) as

s
Y

j D1

.1 � aj .1C rj /� �/mj �
2

41C
s
X

j D1

�j

1 � aj .1C rj / � �

3

5 D 0; (2.24)

where �j � 0. So we conclude that if �j D 0 or mj � 2, then 1 � aj .1C rj / is an
eigenvalue of NH . This eigenvalue is always less than 1, so it is inside the unit circle
if and only if aj .1C rj / < 2. All other eigenvalues are the roots of the equation

g.�/ � 1C
s
X

j D1

�j

1 � aj .1C rj / � � D 0;
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where we can assume that all �j values are nonzero. This last equation is equivalent
to a polynomial equation of degree s, so there are s real or complex roots. Clearly,

lim
�!˙1

g.�/ D 1; lim
�!1�aj .1Crj /˙0

g.�/ D ˙1

and

g0.�/ D
s
X

j D1

�j

.1 � aj .1C rj /� �/2
< 0:

Using these properties we can graph g.�/ as shown in Fig. 2.1. This figure indicates
that the structure of the roots is such that there is one root before 1 � a1.1 C r1/,
and one root between each pair of poles 1� aj .1C rj / and 1� aj C1.1C rj C1/ for
j D 1; 2; : : : ; s � 1. So all roots have been found and they are real. Furthermore all
are inside the unit circle if and only if

1 � a1.1C r1/ > �1; and g.�1/ > 0:

At least one eigenvalue is outside the unit circle if either 1 � a1.1 C r1/ � �1 or
g.�1/ < 0. �

In the case of constant speeds of adjustment we usually assume that 0 < ak � 1

for all k, and from relation (2.7) we know that �1 < rk � 0. So condition (2.21) is
usually satisfied in this case.

λ
–1 1–a1(1+r1) 1–a2(1+r2) 1–a3(1+r3) 1–as–1(1+rs–1) 1–as(1+rs) 1

Fig. 2.1 Graph of g.�/, the roots of which are eigenvalues of the Jacobian of the system describing
the dynamics of the discrete time oligopoly under best reply dynamics
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Notice that conditions (A)–(C) (or (A),(B),(C’) and (D)) were assumed for all
feasible values of xk and Qk , and they imply the existence of a Nash equilibrium.
However they need to be satisfied only in a neighborhood of an interior equilibrium
in order to guarantee the local asymptotic stability of that equilibrium. Observe first
that with given price and cost functions the best responses are fixed, so the rk values
are uniquely determined. The firms’ choices are only the adjustment mechanisms,
which are characterized by the functions ˛k . Clearly, conditions (2.21) and (2.22)
are satisfied, if all ak D ˛0

k
.0/ values are sufficiently small.

Example 2.2. Consider again the case of a linear inverse demand and linear cost
functions as in Example 2.1, where rk D � 1

2
for all k. Then (2.21) holds if ak < 4

for all k, and (2.22) holds if
N
X

kD1

ak

4 � ak

< 1: (2.25)

In the further special case when the firms select identical adjustment schemes (that
is, when ˛0

k
.0/ D ak � a), then (2.25) can be rewritten in the form

a <
4

N C 1
: (2.26)

If a 2 .0; 1�, then this condition always holds for duopolies (N D 2). IfN � 3, then
this condition is violated with naive expectations .a D 1/. This is the result derived
by Theocharis (1960). The equilibrium can still be stabilized however by selecting
sufficiently small values of a. �

Consider next the nonlinear case with identical firms. In this case ak � a and
rk � r . Condition (2.22) can now be rewritten as

a <
2

1 � r.N � 1/
: (2.27)

In this case we do not assume that the initial outputs of the firms are the same, so
the system cannot be reduced to a one-dimensional one. Notice that in the special
linear case with r D �1

2
, (2.27) reduces to (2.26).

It is also interesting to analyze condition (2.22) from the point of view of a single
firm k. If for any other firm l , al .1C rl/ � 2, or

X

l¤k

rlal

2 � al .1C rl/
� �1;

then the equilibrium becomes unstable regardless of the adjustment scheme of firm
k. Firm k is able to stabilize the equilibrium alone merely by selecting an adjustment
function ˛k such that its derivative at zero is sufficiently small. That is, the equilib-
rium becomes locally asymptotically stable when ak satisfies the two relations

ak <
2

1C rk
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and
rkak

2 � ak.1C rk/
> �1 �

X

l¤k

rlal

2 � al.1C rl/
:

Simple algebra shows that this last inequality holds if and only if

ak <
2.1C Sk/

1C Sk.1C rk/
; (2.28)

where
Sk D

X

l¤k

rlal

2 � al.1C rl/
2 .�1; 0�:

It is easy to see that the right hand side of relation (2.28) is always positive, since
rk 2 .�1; 0�.

Consider next the case of a duopoly whenN D 2. In this special case conditions
(2.21) and (2.22) can be rewritten as

a1.1C r1/ < 2; a2.1C r2/ < 2

and
a1r1

2 � a1.1C r1/
C a2r2

2 � a2.1C r2/
> �1:

With fixed values of a1 2 .0; 2=.1 C r1//; firm 2 has to select a sign-preserving
adjustment function with ˛0

2.0/ D a2 satisfying condition (2.28) in order to stabilize
the system. In the case of a duopoly this condition has the special form

a2 <

2

�

1C a1r1

2 � a1.1C r1/

�

1C a1r1.1C r2/

2� a1.1C r1/

D 2.2� a1/

2 � a1.1 � r1r2/ : (2.29)

Notice that for a1; a2 2 .0; 1� this relation is always satisfied, so the equilibrium
is always locally asymptotically stable. The stability region of this condition in the
.a1; a2/ plane is illustrated in Fig. 2.2.

Several generalizations of the above analysis, including multiproduct models,
are discussed in Okuguchi and Szidarovszky (1999). In addition, the existence and
uniqueness of the equilibrium is proved without imposing the conditions of differ-
entiability of the price and cost functions, and in the linear cases several alternative
sufficient and necessary stability conditions are derived. The very first stability result
in discrete time dynamic oligopolies dates back to Theocharis (1960) and follow-
ing in his footsteps many researchers have worked intensively on this topic, a task
which continues even to the present day. For an extensive literature review, see
Kopel (2009).
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a2
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1�r1r2
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2

Fig. 2.2 Stability region of a discrete time duopoly under best reply dynamics in the .a1; a2/ plane

2.3 Discrete Time Oligopolies and Global Stability

We start this section with a simple discussion of global asymptotic stability. Our
analysis will be based on the sufficient condition presented in Appendix B which
states that if there exists a matrix norm such that the norms of the Jacobians of a dis-
crete time dynamical system in all regions are less than some q < 1 everywhere in
the phase space, then the system is globally asymptotically stable. Here we present
the case of partial adjustment towards the best response, the case of best reply with
adaptive expectations can be discussed in a similar way. The feasible output set is
divided into subregions depending on the different cases in the best response func-
tion (2.3). In each subregion the Jacobian of the partial adjustment dynamics (1.30)
(that we shall denote by H) has the special structure (2.20), where

rk D R0
k

0

@

X

l¤k

xl

1

A and ak D ˛0
k

0

@Rk

0

@

X

l¤k

xl

1

A � xk

1

A ;

where rk is either given by (2.5) or equals zero. Assume that 0<ak � 1 for all k and
for all feasible output levels x1; x2; : : : ; xN . Under conditions (A)–(C), inequality
(2.7) holds for all k and all feasible output levels. Therefore with the choice of the
row norm, we have

kHk1 D max
k

fj1 � ak j C .N � 1/jrkak jg
D max

k
f1 � ak.1C rk.N � 1//g : (2.30)
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Therefore the equilibrium is globally asymptotically stable if for all k and all
feasible output levels,

1 � ak .1C rk.N � 1// � q < 1 (2.31)

for some positive q. All subregions of the feasible output set are compact and
on each of them the functions Rk and ˛k are continuously differentiable, so the
function 1 � ak .1C rk.N � 1// attains its maximum value in each subregion.
Since there are only finitely many subregions, condition (2.31) can be weakened
by assuming that for all k, and all feasible output levels,

1� ak .1C rk.N � 1// < 1;

that is,

rk > � 1

N � 1
: (2.32)

Notice that this is a sufficient condition for global asymptotic stability.
By assuming no cost externalities and using (2.5), this sufficient condition holds

for all feasible output levels if and only if

.N � 2/.f 0 CRkf
00/C .C 00

k � f 0/ > 0: (2.33)

Conditions (B) and (C) imply that the first term is always non-positive and the
second term always positive. In the case of duopoly N D 2, then (2.33) holds, so
the equilibrium is globally asymptotically stable. If we have a triopoly N D 3, then
(2.33) can be written as

Rkf
00 C C 00

k > 0;

which is not guaranteed to be satisfied. If N becomes larger, then the first term
on the left hand side of (2.33) converges to negative infinity if f 0 C Rkf

00 is not
identically zero, so with a larger number of firms condition (2.33) is violated.

In such cases we might try to apply different matrix norms, for example row or
column norms generated by special diagonal matrices, similar to the examples dis-
cussed in the previous chapter. The choice of an appropriate norm depends on the
problem and its existence is not guaranteed. This fact raises the need to develop and
apply more sophisticated methods for the global analysis of the nonlinear oligopoly
models that we will encounter in this book. The need for more advanced meth-
ods combining numerical, analytical, and geometrical arguments is also underlined
by the fact that neither local analysis, nor the above described sufficient global
asymptotic stability condition can be used in the case of non-differentiable best
responses.
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In order to illustrate our general approach to piecewise differentiable dynamic
models, we reconsider the simplest oligopoly model introduced in Example 1.1
and further studied in Examples 2.1 and 2.2. We assume a linear inverse demand
function, p D f .Q/ D A � BQ, and linear cost functions, Ck.xk/ D ckxk ,
k D 1; : : ; N , where for simplicity we let the fixed costs be zero. The presence
of non-negativity and capacity constraints makes the resulting dynamical system
non-differentiable. In what follows we investigate the asymptotic dynamics for an
increasing number of firms in the industry and we explore the role of the capacity
constraints, the presence of which leads to non-differentiability of the dynamical
system considered. Moreover, we will explain some peculiar dynamic properties of
piecewise linear maps, consider a particular type of bifurcation which causes the loss
of stability of the unique equilibrium, and illustrate which kind of non-equilibrium
dynamics might occur.

Example 2.3. As a first step let us consider the symmetric case of N identical firms
with c1 D c2 D ::: D cN D c, linear adjustment functions with a1 D a2 D
: : : ; aN D a, and L1 D L2 D ::: D LN D L. We assume that A > c and that firms
use partial adjustment towards their best responses. Then, given that firms start from
the identical initial condition x1.0/ D x2.0/ D ::: D xN .0/ D x.0/, the dynamics
are captured by the one-dimensional model

x.t C 1/ D T .x.t// D .1 � a/ x.t/C aR ..N � 1/ x.t// ;

where

R..N � 1/x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

L if x � A�c
.N �1/B

� 2L
N �1

;

A�c
2B

� N �1
2
x if A�c

.N �1/B
� 2L

N �1
� x � A�c

.N �1/B

0 if x � A�c
.N �1/B

:

Obviously, the function T is a piecewise linear map, characterized by three regions
where it is differentiable. These regions are separated by two kinks (points of non-
differentiability), so that the map can be written in detail as

T .x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

.1 � a/ x C aL if x � A�c
.N �1/B

� 2L
N �1

;
�

1 � a.N C1/
2

�

x C aA�c
2B

if A�c
.N �1/B

� 2L
N �1

� x � A�c
.N �1/B

;

.1 � a/ x if x � A�c
.N �1/B

:

Figure 2.3 depicts a typical graph of the map T .x/ together with the graph of
the reaction function (dashed). It should be clear that the exact shape of the graph
and the locations of the kinks depend on the market and cost parameters A;B; c,
on the capacity level L of the firms and the number of firms N in the industry,
and in particular on the adjustment speed a. For larger values of a the graph of
T .x/ is closer to that of R.x/, for smaller values of a the graph of T .x/ is closer
to the diagonal. Furthermore, as we now show, these parameters determine if the
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Fig. 2.3 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. The piece-wise linear map T .x/ and reaction function R.x/

equilibrium is either at the boundary of the feasible set Œ0; L� or in the interior, and
if the equilibrium is stable. The definition of R..N � 1/x/ implies that 0 cannot be
equilibrium, so the equilibrium Nx is either interior or equals L.

As usual, the steady states of the adaptive adjustment process are the equilibria of
the underlying game, since T .x/ D x if and only if R ..N � 1/x/ D x. However,
the equilibrium might be located on the boundary. We account for this possibility by

writing the unique equilibrium point as Nx D min
n

A�c
B.N C1/

; L
o

. Its stability, under

the dynamic adjustment process governed by the iteration of the map T , depends on
the derivative of T , which has three segments with two different derivatives: 1 � a

and 1 � a.N C1/
2

. From the results of Appendix B we know that the equilibrium is

globally asymptotically stable of both j1 � aj and
ˇ

ˇ

ˇ1 � a.N C1/
2

ˇ

ˇ

ˇ are less than one,

which is the case if 0 < a < 4
N C1

.
We now turn to the asymptotic dynamics of the production sequences gener-

ated by T if, (1) the number of firms in the industry changes, and (2) each firm
is capacity-constrained. Figure 2.4 depicts a bifurcation diagram of output x with
respect to the number of firms N obtained with the parameters A D 16, B D 1,
a D 0:5, c D 6 and L D 1 (in all the numerical simulations in this subsection we
select the parameters such that NL � A=B in order to ensure non-negative prices).
Observe that as long as .A�c/=.B.N C1// > L, that isN < 9, each firm produces
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x
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Fig. 2.4 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. Bifurcation diagram of output as the number of firms in the industry increases. Parameter
values are A D 16, B D 1, a D 0:5, c D 6 and L D 1

at capacity. In these cases Nx D L is stable. Note that this holds even if the stability
condition a.N C 1/ < 4 is violated due to N > 4=a � 1 D 7 (which yields a slope
of the decreasing branch of T .x/ less than �1).

The bifurcation diagram reveals that for an increasing number of firms cyclic
and even chaotic behavior of the production sequences can be observed. The first
qualitative change occurs when the number of firms goes fromN D 9 up to N D 10

and it involves a particular kind of global bifurcation known as a border collision
bifurcation. This kind of bifurcation is specific to piecewise differentiable dynamical
systems (see Nusse and Yorke (1995) and Zhanybai and Mosekilde (2003)), hence
we describe it in more detail (see the sequence of pictures in Fig. 2.5). In some
of the figures to follow we depict portions of the phase space outside the strategy
space Œ0; L�. We do this to illustrate and emphasize that in order to understand global
bifurcations sometimes it is not sufficient to focus on the local properties around the
equilibrium. Let us start with a situation where N D 8 firms are in the market. In
this case we have .A � c/=.B.N C 1// > L and the stable equilibrium Nx D L is
located on the left upward-sloping branch of the graph of T .x/ (Fig. 2.5a). Now, if
an additional firm enters the market, N D 9, then Nx D .A � c/=.B.N C 1// D L.
Additionally, since ..A � c/=B.N � 1// � 2L.N � 1/ D L, the kink of the graph
of the map T also is located exactly on the boundary (see Fig. 2.5b). As the number
of firms is even further increased to N D 10, the steady state of the map enters the
decreasing branch. The derivative T 0. Nx/ of the map for this increasing sequence of
N crosses a jump discontinuity, since it assumes the value .1 � a/ D 0:5 on the left
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Fig. 2.5 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. Illustrating the border collision bifurcation that occurs as the number of firms varies from 8
to 13. (a) N D 8; (b) N D 9; (c) N D 10; (d) N D 13. Note how the derivative of the map T at
Nx crosses a jump discontinuity as N passes through the value 9

branch and suddenly attains the value 1� a.N C1/
2

< �1 on the right branch without
passing through the bifurcation value T 0. Nx/ D �1.

In general it is not easy to predict which kind of attractor will emerge from such
a type of bifurcation. In our case, for N >9 a stable cycle of period 2 is created
around the unstable equilibrium Nx (see Fig. 2.5c). The points of the stable 2-cycle
are located on different branches of the piecewise linear map. Hence, the multiplier
of this 2-cycle is given by the product of its derivatives, that is

�2.C2/ D .1 � a/

�

1� a.N C 1/

2

�

:

For increasing values of N the multiplier �.C2/ crosses the critical value �1 for
N D 11 after which a chaotic attractor suddenly appears (Fig. 2.5d).

Border collision bifurcations may occur in the presence of piecewise smooth
reaction functions for example, due to non-negativity and capacity constraints or
even discontinuous reaction functions. As demonstrated above, they are related
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to (1) the crossing of the equilibria (or points of a cycle) through sets where the
dynamical system is not differentiable, and (2) these sets of non-differentiability
separate regions where the maps that represent the dynamical system are differen-
tiable, but different. From the viewpoint of economics and oligopoly theory, these
bifurcations seem to be important since they may cause sudden stability switches
and/or the appearance or disappearance of equilibria, cycles, or chaotic attractors.
Although the study of border collision bifurcations is quite new even in the mathe-
matical literature, some studies report this phenomenon for economic models with
constraints (see for example Hommes (1991, 1995), Hommes and Nusse (1991),
Hommes et al. (1995), Puu and Sushko (2002), Puu et al. (2005), Puu and Sushko
(2006), Sushko et al. (2005, 2006). Some of the main results on this subject can
be found in Nusse and Yorke (1992, 1995), Maistrenko et al. (1993, 1995, 1998),
Di Bernardo et al. (1999), Banerjee et al. (2000a, b), Halse et al. (2003), Zhany-
bai and Mosekilde (2003), Zhusubaliyev et al. (2002, 2007). However, we should
stress that the study of the global dynamical properties of piecewise differentiable
dynamical systems is still at a pioneering stage. Many open problems still await a
systematic approach, even in the case of one-dimensional maps, see for example the
recent papers by Avrutin and Schanz (2006), Avrutin et al. (2006).

To show that after an equilibrium has lost its stability via a border collision bifur-
cation any kind of attractor may be created, in Fig. 2.6 we present a bifurcation
diagram of production x obtained for A D 16, B D 1, a D 0:5, c D 6 and N D 15

and increasing values of the capacity limit L in the range Œ0:2; 1�. In this case at the
bifurcation value L D A�c

.N C1/B
D 0:625 the stable equilibrium Nx D L becomes

unstable by crossing the kink of the map T , and a chaotic attractor is suddenly
created.

Dynamical systems generated by one-dimensional differentiable maps are among
the most frequently studied in the literature. It is well-known, for example, that
the critical point of the map, where the derivative vanishes, and its images play
an important role in deriving the bounds of the attractors in a bifurcation diagram
as well as the regions of higher density of points (see for instance Gumowski and
Mira (1980), Collet and Eckmann (1980), Mira et al. (1996)). In higher-dimensional
dynamical systems based on noninvertible maps the critical curves introduced ear-
lier assume this important role. For a piecewise differentiable map, like the one
encountered in the present example, the two kink points, the relative maximum
and minimum point, can be used to obtain the upper and lower boundaries of the
(chaotic) attractors. These points assume the role of critical (that is, folding) points
in our noninvertible map. Indeed, the piecewise linear map T is a noninvertible map
of Z1 � Z3 � Z1 kind (see Appendix C). However, in contrast to the situations
studied before, these critical points are not found by looking for points of vanish-
ing derivative, as for differentiable maps, but they are the points where the map is
non-differentiable. In Fig. 2.7a, obtained with LD 0:8 and the other parameters as
in Fig. 2.6, the upper boundary of the attractor is the maximum value denoted bym,
and the lower boundary is its imagem1 D T .m/. In Fig. 2.7b, obtained withLD 0:9,
the chaotic interval is Œm1; m�. The property that the dynamics are trapped between
the critical points and their iterates is useful to bound the chaotic attractors in the
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Fig. 2.6 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. Bifurcation diagram of output with respect to capacity L with N D 15 firms. A border
collision occurs as the bifurcation value L D 0:625 is crossed
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Fig. 2.7 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. The determination of the bounds for the chaotic attractor as capacity L varies. The critical
point m is determined at a point where the map T is not differentiable. (a) L D 0:8; (b) L D 0:9

case of two-dimensional discrete-time dynamical systems represented by piecewise
differentiable maps, like the one obtained in the semi-symmetric case, to which we
turn in the next example.

To conclude our analysis of the mathematical properties of the piecewise linear
symmetric model, we investigate what kind of bifurcation occurs when the inte-
rior equilibrium Nx loses stability for increasing values of N because the derivative
T 0. Nx/ become less than �1. As we demonstrate below, a quite particular kind of
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bifurcation, sometimes called degenerate or critical flip bifurcation, occurs in our
piecewise linear map. Although the cycle emerging after the equilibrium has lost
its stability is probably not a plausible description of agents’ behavior from an
economic point of view (see below), we present this case mainly to discuss some
mathematical properties of dynamical systems involving piecewise differentiable
maps. Since piecewise linear functions are often used in models of economic sys-
tems, a study of their peculiar dynamic features may be useful as a reference in other
circumstances.

Let us consider the set of parameters AD 16, BD 1, aD 0:4, cD 8 and LD 1,
and take N as a bifurcation parameter. If N <7 then A � c > .N C 1/BL, so the
equilibrium is NxDL, and it is stable as was shown earlier. ForN >7 the equilibrium
NxD A�c

B.N C1/
is stable for N <4=a� 1D 9, and for N >9 it is unstable. For a linear

map instability of the equilibrium means divergence of all the trajectories starting
arbitrarily close to it, however this is not the case for our piecewise linear model, as
its trajectories are bounded. Indeed, as shown in the numerically computed bifurca-
tion diagram of Fig. 2.8, after the bifurcation occurring at N D 9, a stable cycle C2

of period 2 suddenly appears. We note that the amplitude of the oscillations along
the newly born stable cycle is of finite amplitude from the moment of its creation.

This suggests that such a “hard” bifurcation is different from what is usually
called a flip (or period doubling) bifurcation. The appearance of the stable cycle is
not due to local properties around the equilibrium but is related to the global shape
of the map generating the dynamical system. It should be mentioned, however, that
the non-equilibrium dynamics emerging after the equilibrium has lost its stability do

0.3

7 8 9 10 11 12 13 14 15

Positive profits

Negative profits

x

N

x = 8 / N

1

Fig. 2.8 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. Bifurcation of output with respect to number of firms N when stability of equilibrium is lost
because T 0.�/ becomes less than �1, and a 2-cycle emerges. Note that profits become negative
above the dotted line
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not seem to be a plausible description of real-world economic behavior for at least
two reasons. First, it seems reasonable to assume that such low-periodic dynamics
would be detected by the firms. As a result, they most probably would change their
expectations. Second, for profits to be positive, A� c�BNx>0 has to hold. How-
ever, for the parameter values considered here, profits are negative for x > 8=N , that
is above the dotted line depicted in Fig. 2.8. Therefore, forN >10 the production at
the upper periodic points involve negative profits, that is all firms would cyclically
make a loss every other time period. Again firms would most likely change their
expectations.

In what follows we give a brief mathematical description of the mechanism
which leads to such a bifurcation. Let us consider Figs. 2.9a, b, where the graph
of the map T .x/ is shown for N D 8 andN D 10 respectively (the other parameters
have the same values as in Fig. 2.5). In Fig. 2.9a the equilibrium is stable (a typ-
ical trajectory is shown), whereas in Fig. 2.9b it is unstable, with a stable 2-cycle
around it and having periodic points located on different branches of the piecewise
linear map. The multiplier of this 2-cycle is given by the product of the derivatives

x0 1

1

x

x0

(a)

x0 1

1

(b)

x0 1

1

(c)

x0 1

1

(d)

Fig. 2.9 Example 2.3; linear inverse demand and cost functions and identical capacity constrained
firms. Examining the bifurcation of Fig. 2.5 in more detail. (a) ForN D 8 the equilibrium is stable.
(b) For N D 10 a two cycle emerges. (c) For N D 13 the two cycle becomes unstable and a stable
four cycle is born. (d) For N D 15 a stable two cycle reappears
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computed at the two periodic points : �.C2/ D .1 � a/
�

1 � a.N C1/
2

�

. For the set

of parameters used in Fig. 2.9(b) we obtain �.C2/ D �0:72, hence it is stable,
however �.C2/ decreases for increasing values of N and it reaches the bifurcation
value �.C2/ D �1 at N D 2

a

�

2�a
1�a

	 � 1 D 12:33 for a D 0:4 (see Fig. 2.5).
When the cycle C2 becomes unstable, a stable cycle of period 4, say C4, appears
(see Fig. 2.9(c), obtained for N D 13) and a further increase of N leads to a period
halving bifurcation, typical of bimodal maps (one-dimensional maps with a local
maximum and a local minimum), at which C4 is replaced by another stable cycle of
period 2, with periodic points located on the first and third branches (as in Fig. 2.9(d)
for N D 15). This means that the multiplier associated with this cycle is .1 � a/2,
independent of N , from which we deduce that this 2-cycle will remain stable for
each value of N .

To sum up, this example has illustrated that in a piecewise linear map, even if the
loss of stability of an equilibrium point or of a periodic cycle is related to the local
values of their multipliers, the effects of such bifurcations, as well as the location
of the emerging attractors in the phase space, is related to the global shape of the
iterated map. In particular, the periodic cycles emerging from such bifurcations have
periodic points belonging to branches of the map that are far from the bifurcating
equilibrium. This property also holds for piecewise linear dynamical systems of
dimension greater than one, as we shall see in the next example.

Example 2.4. In this example we consider the semi-symmetric oligopoly, which is
obtained by assuming c2 D ::: D cN , a2 D ::: D aN , and L2 D ::: D LN : Further
let x1.0/ and x2.0/ D ::: D xN .0/ denote the initial production quantities of the
firms. If the firms partially adjust their production quantities towards the best replies
with linear adjustment functions, then the decisions made by firm 1 and the identical
firms 2; : : : ; N are captured by the two-dimensional dynamical system

T W
�

x1.t C 1/ D .1 � a1/ x1.t/C a1R1 ..N � 1/ x2.t// ;

x2.t C 1/ D .1 � a2/ x2.t/C a2R2 .x1.t/C .N � 2/ x2.t// ;
(2.34)

where

R1..N � 1/x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x2 � A�c1

B.N �1/
;

L1 if x2 � A�c1

B.N �1/
� 2L1

N �1
;

A�c1

2B
� 1

2
.N � 1/x2 otherwise;

and

R2.x1 C .N � 2/x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x1 C .N � 2/x2 � A�c2

B
;

L2 if x1 C .N � 2/x2 � A�c2

B
� 2L2;

A�c2

2B
� 1

2
Œx1 C .N � 2/x2� otherwise:
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Therefore

@R1

@x1

D 0 and
@R1

@x2

is either 0 or � N � 1

2
:

Similarly,
@R2

@x1

is either 0 or � 1

2
;

and
@R2

@x2

is either 0 or � N � 2
2

:

Therefore the Jacobians in the different regions have the forms

 

1 � a1
�a1.N �1/

2

� a2

2
1 � a2 � a2.N �2/

2

!

D
 

1 � a1
�a1.N �1/

2

� a2

2
1 � a2N

2

!

;

 

1 � a1
�a1.N �1/

2

� a2

2
1 � a2

!

and a form in which one or both of the off-diagonal elements are equal to zero.

Using the row norm generated by the diagonal matrix P D
�

x 0

0 1

�

we see that this

norm of all possible Jacobians is below one if

1 � a1 C a1.N � 1/x
2

< 1;

a2

2x
C
ˇ

ˇ

ˇ

ˇ

1 � a2N

2

ˇ

ˇ

ˇ

ˇ

< 1;

and
a2

2x
C 1 � a2 < 1:

The first inequality can be rewritten as

x <
2

N � 1 ;

and the third condition can be simplified to

x >
1

2
:

The second inequality is equivalent to

x >
1

N
and a2 < x.4 �Na2/:
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Therefore the equilibrium is globally asymptotically stable if

a2 <
4

N
and max

�

1

2
I a2

4 �Na2

�

< x <
2

N � 1
:

Notice that a feasible x exists if

a2 <
4

N
and max

�

1

2
I a2

4 �Na2

�

<
2

N � 1 :

The second relation implies that N � 4. If N D 2, then a2<2 and
a2=.4 � 2a2/< 2 are the stability conditions, which can be rewritten as a2<1:6.
This condition always holds since we assume that a2 � 1. If N D 3, then the con-
ditions reduce to a2 <4=3. Finally, if N D 4, then a2 <1 and a2=.4 � 2a2/< 2=3

are the conditions which can be summarized as a2<1. As in the earlier examples,
the Jacobian matrix assumes different forms in the different regions (see Fig. 2.10),
where the different regions refer to the different regions of the best response func-
tions based on the non-negativity and capacity constraints, similarly to Sect. 1.3.1.
Therefore, whenever a variation of parameters causes a displacement of the equilib-
rium point (or of a periodic point of a cycle) into a different region by crossing the

x

D(3)

D(4)

D(5)

D(2)

D(1)

D(6)

D(7)

x1

x2

A−c2

B(N–2)
A−c1

B(N–1)

A−c2

B(N–2) N–2
2L2

A−c1

B(N–1) N–1
2L1

Fig. 2.10 Example 2.4; linear inverse demand and cost functions, the case of semi-symmetric
capacity constrained firms. The regions for the different expressions for the quantity dynamics
map
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border where the map is not differentiable, the eigenvalues of the equilibrium (or of
the periodic cycle) may suddenly change. Such transitions are again accompanied
by border collision bifurcations, which we shall demonstrate below. The equilib-
rium Nx D . Nx1; Nx2/ in the semi-symmetric case can be obtained from the result of
Sect. 1.3.2 with e1 D e2 D 0, and has the form

Nx1 D A �Nc1 C .N � 1/c2

B.N C 1/
; Nx2 D A � 2c2 C c1

B.N C 1/
: (2.35)

If this equilibrium is interior, then its local asymptotic stability is determined by the
eigenvalues of the Jacobian matrix

J.1/ D
 

1 � a1 � a1.N �1/
2

� a2

2
1 � Na2

2

!

:

The characteristic polynomial of this matrix is the quadratic equation

�2 C p�C q D 0

with

p D �2C a1 C Na2

2
;

and

q D .1 � a1/

�

1 � Na2

2

�

� a1a2.N � 1/

4
:

Simple calculation shows that the stability conditions q < 1, pC qC 1 > 0 and
�p C q C 1 > 0 (see Appendix F) are satisfied if and only if

N < Nb.a1; a2/ D 16� a1 .8 � a2/

a2 .4 � a1/
:

The right hand side is decreasing in a1, so the global asymptotic stability condition
is obtained by selecting the smallest right hand side value for a1 D 1. As expected,
also in this case, an increasing number of firms in the oligopoly leads to instabil-
ity, and the bifurcation value Nb depends on the speeds of adjustment. As for the
one-dimensional symmetric case in Example 2.3, it is not easy to predict what kind
of asymptotic dynamics are obtained when the equilibrium point is unstable. The
attracting sets created after the bifurcation of a piecewise linear map depend on the
global properties of the map and are influenced by the borders between the dif-
ferent regions D

.i/, where the map is not differentiable. In order to illustrate this
point, we consider a case of border collision bifurcation where the border crossing
has a remarkable qualitative effect. The bifurcation diagram of outputs in Fig. 2.11 is
obtained forN D 21,A D 16,B D 1, a1 D 0:2, a2 D 0:3, c1 D 6, c2 D 6,L1 D 2

and the capacity limit L2 is the bifurcation parameter in the range Œ0:4; 0:6�. At a
capacity level of L2 ' 0:45 the equilibrium Nx crosses the boundary from region
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1
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L2

x2

x1

0.5

Fig. 2.11 Example 2.4; linear inverse demand and cost functions, the case of semi-symmetric
capacity constrained firms. Border collision bifurcations of x1 (the output of firm 1) and x2 (the
output of the other firms) as a function of L2 (the capacity constraint of the other firms). Parameter
values are N D 21, A D 16, B D 1, a1 D 0:2, a2 D 0:3, c1 D 6, c2 D 6 and L1 D 2

D
.7/, where it is always stable, to D

.1/, where the equilibrium is unstable (since
N D 21 > Nb.0:2; 0:3/ D 12:6). The effect of this border collision is the sud-
den creation of a chaotic attractor that becomes larger and larger as the capacity
limit L2 increases. Therefore, if firms in this industry invest in capacity, this can
cause quite dramatic effects in the asymptotic dynamics of the output sequences.
Whereas smaller capacity levels stabilized the industry, a small increase may lead
to complex dynamics. What about non-negativity of prices and profits in this situa-
tion? The profits of firm k are positive as long as x1 C .N � 1/x2 < .A � ck/=B ,
and for the set of parameters used in Fig. 2.11 this means that all the profits are
positive as long as x1 C 20x2 < 10. Non-negativity of prices is ensured because
Qmax D L1 C .N � 1/L2 max D 2 C 20 � 0:6 D 14 < 16 D A=B . Of course,
with these values of the parameters we could even consider capacities L2 up to 0:7,
however this would lead to chaotic oscillations of greater amplitude. Consequently,
a larger proportion of the chaotic attractor in the regions of the strategy space would
be characterized by negative profits. For the one-dimensional model of Example 2.3
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Fig. 2.12 Example 2.4; linear inverse demand and cost functions, the case of semi-symmetric
capacity constrained firms. Computing the bounds on the chaotic attractor in the space of x1 (out-
put of firm 1) and x2 (output of all other firms). Also shown is the line above which profits are
negative

obtained in the symmetric case we noted that the kinks (the local maxima and min-
ima, where the map is non-differentiable) can be used to determine bounds for
the asymptotic dynamics of the dynamical system. In the two-dimensional model
describing the semi-symmetric case the lines of non-differentiability which separate
the different regions may play the role of folding curves. That is, they may act as
critical curves of noninvertible maps. As explained in Appendix C, the images of the
curves where the Jacobian determinant changes sign can be used to bound trapping
regions, within which the asymptotic dynamics are confined. Indeed, if we repre-
sent the chaotic attractor obtained for a capacity level of L2 D 0:58 (see Fig. 2.12),
we notice that it is crossed by the line F of non-differentiability, the equation of
which is x1 C .N � 2/x2 D A�c2

B
� 2L2, separating the regions D

.7/ and D
.1/.

This line acts as a folding line and its images of increasing rank, say F1 DT .F /,
F2 D T .F1/DT 2.F /, give the upper and lower boundaries of the output sequences
along the chaotic attractor. In Fig. 2.12 the line x1 C 20x2 D 10 is also displayed
(thin line). Above this line profits of all firms are negative.

Obviously, as the trajectory of production quantities evolves along the chaotic
attractor, some time periods exist in which the profits are negative. For the set of
parameters used to obtain the bifurcation diagram of Fig. 2.11, this problem only
occurs for L2 > 0:5, so that when L2 < 0:5 the chaotic attractor is entirely
included in the region of the strategy space where profits are positive. Also in this
case, it is not easy to prove what kind of asymptotic dynamics are obtained when
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Fig. 2.13 Example 2.4; linear inverse demand and cost functions, the case of semi-symmetric
capacity constrained firms. Bifurcations of x1 (output of firm 1) and x2 (output of all other firms)
with respect to N (the number of firms)

the equilibrium point is unstable. In fact, as already noted in the study of the sym-
metric case, the attracting sets created after the bifurcation of a piecewise linear
map depend on the global properties of the map and are influenced by the borders
between the different regions D

.i/, where the map is not differentiable. In order to
illustrate this point, we consider in Fig. 2.13 the numerically computed bifurcation
diagram of outputs obtained with parameters A D 14, B D 1, a1 D 0:5, a2 D 0:4,
c1 D 6, c2 D 6, L1 D 2, L2 D 1 and values of the bifurcation parameter N in the
range Œ6; 13�.

Analogously to the symmetric one-dimensional model in Example 2.3 we give
a mathematical description of the bifurcations involved in the present situation in
order to understand the peculiar properties of piecewise linear dynamical systems.
However, also here we should point out that asymptotic behavior characterized by
a low-periodic stable cycle is not realistic from an economic point of view, because
presumably firms would detect such a simple periodicity and change their naive
expectations. Moreover, also in this case the profits are negative in the upper peri-
odic point. For N <7 the point Nx given in (2.35) is outside the region D

.1/, with
Nx2 > L2, hence it is not an equilibrium of the dynamical system (2.34). For
N D 7, Nx D .1; 1/ (see Fig. 2.14a) and it then enters the region D

.1/ as N is
further increased (Fig. 2.14b, obtained with N D 8), and it is locally asymptotically
stable for N <Nb .0:5; 0:4/ D 8:714. At this bifurcation value the equilibrium Nx
becomes unstable and a stable cycle of period 2 appears, clearly visible in the bifur-
cation diagram of Fig. 2.13, with periodic points located in different regions (see
Fig. 2.14c, obtained with N D 10, where the two stable periodic points are labelled
by c.i/

2 ).
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Fig. 2.14 Example 2.4; linear inverse demand and cost functions, the case of semi-symmetric
capacity constrained firms. A more detailed study of the bifurcations with respect to N . Note the
changing structure of the different regions of the map as N increases, and the border collision that
occurs as N increases from 8 to 10

AsN is further increased the periodic points may cross the boundaries that sepa-
rate different regions, giving rise to border collision bifurcations that may change the
stability of the cycle involved and create new attractors. For example, in Fig. 2.14d,
obtained with N D 13, we can see that the periodic point c1

2 has crossed the bor-
der, moving from region D

.1/ to D
.4/. However this border collision did not cause a

change of stability of the 2-cycle, because after the border crossing the two periodic
points are in regions D

.4/ and D
.7/, so the 2-cycle remains stable with its multipli-

ers given by �1.C2/ D .1 � a1/
2, �2.C2/ D .1 � a2/

2 (the two Jacobian matrices
J .4/ D J .7/ are triangular matrices). Nevertheless, in the bifurcation diagram of
Fig. 2.13 the occurrence of this border crossing can be easily detected around the
value N ' 12:7.

Example 2.5. In this example we return to the case of a quadratic price function

f .Q/ D
�

A�Q2 if 0 � Q �
p
A;

0 if Q >
p
A;
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and linear costs Ck.xk/ D ckxk , which was introduced in Example 1.4. We assume
that A > ck for all k D 1; : : : ; N . As shown in Example 1.4, the best response of
firm k is given by the continuous and piecewise differentiable function

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x�
k

� 0 i.e., Qk �
p
A� ck;

Lk if x�
k

� Lk i.e., Qk �
q

L2
k

C A � ck � 2Lk;

z�
k

otherwise i.e.,
q

L2
k

C A� ck � 2Lk < Qk <
p
A � ck ;

where

z�
k D 1

3

�
q

Q2
k

C 3 .A� ck/ � 2Qk

�

:

It is easy to see that
q

L2
k

C A � ck � 2Lk <
p
A � ck holds given our assumption

that A > ck and Lk > 0. In the case of N firms, the unique equilibrium, see (1.14),
is

Nxk D 2ACPN
lD1 cl � .N C 2/ck

2

q

.N C 2/.NA�PN
lD1 cl /

;

under the assumption that it is interior.
Let us first consider the case of duopoly, that is N D 2, with partial adjustment
towards the best response. The sequence of production quantities in this case is
obtained by the repeated application of the piecewise differentiable map

T W
�

x1.t C 1/ D .1 � a1/ x1.t/C a1R1 .x2.t// ;

x2.t C 1/ D .1 � a2/ x2.t/C a2R2 .x1.t// ;

where the reaction functions are given by

R1.x2/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if x2 �
p
A � c1;

L1 if x2 �
q

L2
1 C A� c1 � 2L1;

1
3

�

q

x2
2 C 3 .A� c1/� 2x2

�

otherwise;

and

R2.x1/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if x1 �
p
A� c2;

L2 if x1 �
q

L2
2 C A � c2 � 2L2;

1
3

�

q

x2
1 C 3 .A� c2/ � 2x1

�

otherwise:
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Fig. 2.15 Example 2.5; quadratic price and linear cost functions. The regions of the piece-wise
map in the duopoly case

The strategy space, given by the trapping region D DŒ0; L1� � Œ0; L2�, can be sub-
divided into nine different regions D

.i/, i D 1; : : : ; 9, (see Fig. 2.15), similar to the
previous examples.

Some of these regions may be empty when one or both the capacity limits are too
small. For example D

.3/, D
.4/ and D

.5/ do not exist ifL2 �
p
A� c1. Moreover, the

profit of firm k is positive as long as x1 Cx2 <
p
A � ck , hence some of the regions

in Fig. 2.15 may involve negative profits. For example, if c1 D c2 then regions D
.3/,

D
.4/;D.5/;D.6/ and D

.7/ all involve negative profits and if an attractor is completely
included inside these regions, it should be considered as economically infeasible.
Instead, trajectories that pass through such regions and then exit it to enter other
regions characterized by positive profits can be considered as economically feasible.
The Jacobians of the regions are

J.1/ D

0

B

B

B

B

@

1 � a1 a1

 

x2

3

q

x2
2

C3.A�c1/
� 2

3

!

a2

 

x1

3

q

x2
1

C3.A�c2/
� 2

3

!

1 � a2

1

C

C

C

C

A

;

and matrices which can be obtained from this Jacobian by changing one or both
off-diagonal elements to zero. That is,

J.2/ D J.6/ D

0

B

@

1 � a1 a1

 

x2

3

q

x2
2

C3.A�c1/
� 2

3

!

0 1 � a2

1

C

A
;
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J.3/ D J.5/ D J.7/ D J.9/ D
�

1 � a1 0

0 1 � a2

�

;

J.4/ D J.8/ D

0

B

@

1 � a1 0

a2

 

x1

3

q

x2
1

C3.A�c2/
� 2

3

!

1 � a2

1

C

A
:

The interior equilibrium is

Nx D . Nx1; Nx2/ D
�

2A� 3c1 C c2

4
p
2A� c1 � c2

;
2A� 3c2 C c1

4
p
2A� c1 � c2

�

and it is an equilibrium of the dynamical system provided it belongs to the region
D

.1/. Unfortunately, even in the duopoly case, explicit conditions for the local stabil-
ity of the interior equilibrium are not easy to obtain. However, numerical simulations
indicate that whenever Nx exists then it appears to be globally asymptotically stable.
Now the questions arises under which conditions is stability lost in the oligopoly
case, that is for N >2. Clearly, the general case is hard to analyze. However, to
get some insight into the effect of an increasing number of firms or an increase in
the speeds of adjustment on the stability of the equilibrium we can consider the
semi-symmetric case. Hence, we assume c2 D ::: D cN , a2 D ::: D aN , and
L2 D ::: D LN : Under the further assumption of identical initial conditions for
firms 2; : : : ; N , that is x2.0/ D ::: D xN .0/, the production decisions of firm 1 and
the identical firms 2; : : : ; N are governed by the two-dimensional dynamical system

T W
�

x1.t C 1/ D .1 � a1/ x1.t/C a1R1 ..N � 1/ x2.t// ;

x2.t C 1/ D .1 � a2/ x2.t/C a2R2 .x1.t/C .N � 2/ x2.t// ;
(2.36)

where

R1..N�1/x2/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0 if x2 �
p

A�c1

N �1
;

L1 if x2 �
q

L2
1

CA�c1�2L1

N �1
;

1
3

�

q

.N � 1/2x2
2 C 3 .A � c1/� 2.N � 1/x2

�

otherwise;

and

R2.x1 C .N � 2/x2/

D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if x1 C .N � 2/x2 �
p
A� c2;

L2 if x1 C .N � 2/x2 �
q

L2
2 C A� c2 � 2L2;

1
3

�
q

.x1 C .N � 2/x2/
2 C 3 .A � c2/ � 2 .x1 C .N � 2/x2/

�

otherwise:
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Fig. 2.16 Example 2.5; quadratic price and linear cost functions. The regions of the piece-wise
map in the semi-symmetric case

Also in this case the strategy space D DŒ0; L1� � Œ0; L2� can be subdivided into
up to nine different regions D

.i/, as shown in Fig. 2.16. In each of these regions the
map T is then differentiable. For example, in regions D

.1/ and D
.2/ we have

T j
D.1/ W

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/

C a1
1
3

�

q

.N � 1/2x2
2 C 3 .A� c1/ � 2.N � 1/x2

�

;

x2.t C 1/ D .1 � a2/x2.t/

C a2
1
3

h
q

.x1 C .N � 2/x2/
2 C 3 .A � c2/

�2 .x1 C .N � 2/x2/
i

;

T j
D.2/ W

8

ˆ

ˆ

<

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/

C a1
1
3

�

q

.N � 1/2x2
2 C 3 .A� c1/ � 2.N � 1/x2

�

;

x2.t C 1/ D .1 � a2/x2.t/C a2L2;

and the corresponding Jacobian matrices are given by

J.1/ D

0

B

B

@

1� a1 a1.N � 1/

�

.N�1/x2

3
p
.N�1/2x22C3.A�c1/

� 2
3

�

a2

�

x1C.N�2/x2

3
p
.x1C.N�2/x2/2C3.A�c2/

� 2
3

�

j
.1/
22

1

C

C

A

;

where j .1/
22 D 1 � a2 C a2.N � 2/

�

x1C.N �2/x2

3
p

.x1C.N �2/x2/2C3.A�c2/
� 2

3

�

:
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and

J.2/ D J.6/ D
 

1 � a1 j
.2/
12

0 1 � a2

!

:

where j .2/
12 D a1.N � 1/

 

.N �1/x2

3

q

.N �1/2x2
2

C3.A�c1/
� 2

3

!

:

The other Jacobians are obtained by changing the off-diagonal elements of J.1/

to zero. The interior equilibrium Nx D . Nx1; Nx2/ in the semi-symmetric case is

Nx1 D 2A� .N C 1/c1 C .N � 1/c2

2
p

.N C 2/.NA� c1 � .N � 1/c2/
;

Nx2 D 2A� 3c2 C c1

2
p

.N C 2/.NA� c1 � .N � 1/c2/
; (2.37)

provided it is in region D
.1/. Due to the algebraic complexity of the expressions

involved, the study its local stability analytically is quite difficult. Moreover, when
the equilibrium Nx crosses the boundaries of the region D

.1/ (or other periodic points
move across different regions D

.i/) border collision bifurcations may occur that
cause the creation, destruction, or modification of the qualitative properties of the
attractors. In what follows we employ a combination of analytical and numerical
methods to gain some information about the global dynamical behavior of this non-
linear piece-wise differentiable model and about the global bifurcations occurring
as some parameters are varied.

Let us assume that firm 1 has higher unit costs than the rest of the industry, so
that c1 > c2, and we shall study the properties of the equilibrium as the number of
firms varies. Note that 2AC c1 � 3c2 > 0 is guaranteed by the assumptions c1 > c2

and A > ck (k D 1; 2). As long as 2AC .N � 1/c2 � .N C 1/c1 > 0, all firms are
active in the market. Profits are then given by

N'1 D .2AC .N � 1/c2 � .N C 1/c1/
2

2.N C 2/
p

.N C 2/.NA � c1 � .N � 1/c2/
;

N'2 D .2AC c1 � 3c2/
2

2.N C 2/
p

.N C 2/.NA � c1 � .N � 1/c2/
:

However, ifN > .2A� c2 � c1/=.c1 � c2/ then firm 1 stops producing. In this case
Nx1 D 0 and the other N � 1 identical firms select their symmetric equilibrium

Nx2 D A� c2
p

.N C 1/.N � 1/.A� c2/
; (2.38)

which can be obtained from relation (1.14) with N being replaced by N � 1 and all
ck by c2. The profit of the active firms reads



86 2 Concave Oligopolies

N'2 D 2.A� c2/
2

.N C 1/
p

.N C 1/.N � 1/.A� c2/
:

As a numerical example, consider A D 16; c1 D 10 > 8 D c2 D ::: D cN . Then
using the expressions given in (2.37) we obtain the unique equilibrium

Nx1 D 7 �Np
8N 2 C 14N � 4 ; Nx2 D ::: D NxN D 9p

8N 2 C 14N � 4 ;

which shows that for N >7 firm 1 stops producing and we have a boundary
equilibrium

Nx1 D 0 and Nx2 D ::: D NxN D
r

8

N 2 � 1
:

ForN D 7, total equilibrium industry output becomes NQ D p
6 and the correspond-

ing equilibrium price is f . NQ/ D 10; which obviously equals the marginal cost of
firm 1. However this is not the end of the story. Figure 2.17 shows a bifurcation dia-
gram of outputs obtained for the model (2.36) with speeds of adjustment a1 D 0:5,
a2 D 0:4, capacity limits L1 D L2 D 0:4 and bifurcation parameterN in the range
Œ3; 10� (notice thatL1C.N�1/L2 � A in the whole range, so that non-negativity of
prices is ensured). The bifurcation diagram of Fig. 2.17 confirms that Nx1 goes to zero
forN > 7. However, forN D 10 a positive stable cycle of period 2 characterizes the
long-run dynamics and it appears that firm 1 resumes production. Mathematically,
this stable cycle is created through a border collision bifurcation between N >9

and N >10, and at its creation it coexists with the stable boundary equilibrium. So,

0

4 5 6 7 8 93

0.4

10
0

0.4

N

x1

x2

Fig. 2.17 Example 2.5; quadratic price and linear cost function. The semi-symmetric case. Bifur-
cation diagrams of x1, x2 with respect to the number of firms N . Illustrating how x1 can go to zero
for some values of N
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forN >9 the boundary equilibrium point
�

0;
p

8= .N 2 � 1/
�

is the unique (global)

attractor. Then, as N is increased, a 2-cycle appears with periodic points located in
the regions D

.2/ and D
.4/ respectively, coexisting with the stable boundary equilib-

rium with the stable boundary equilibrium point. Each attractor has its own basin
of attraction, and then the basin of the boundary equilibrium point shrinks, until the
equilibrium becomes unstable. For N D 10 the stable 2-cycle remains the unique
(global) attractor. However, this cycle is not meaningful as a description of a long
run solution of the game that we are considering here. The reason is that a careful
analysis should check if profits, given by 'k D x1




A� c1 � .x1 C .N � 1/x2/
2
�

,
are positive. The two periodic points of the stable cycle for N >10 have coordi-
nates c1

2 ' .0:0889; 0:3058/ and c1
2 ' .0; 0445; 0:2429/. Hence, the profits of firm

1 along this cycle are '1

�

c1
2

	 D �0:18 and '1

�

c2
2

	 D 0:046, and the correspond-
ing profits of firm 2 are '1

�

c1
2

	 D �0:006 and '1

�

c2
2

	 D 0:13. Consequently, as
expected firm 1 has no incentive to resume production again since the average profit
along the stable 2-cycle is negative. With a higher number of firms more compli-
cated non-equilibrium dynamics can be observed. For example, let us consider the
bifurcation diagram obtained with parameters N D 12, AD 144, c1 D 10, c2 D 8,
L1 DL2 D 1, a2 D 0:7 and increasing values of the speed of adjustment a1 2 .0:1�
(Fig. 2.18). In this case chaotic oscillations of large amplitude dominate, a situa-
tion that may imply that firms have great difficulty in forecasting, so that naive
expectations may in fact represent a reasonable assumption.

However, the shape of the chaotic attractor in the strategy space (see Fig. 2.19a,
obtained with the same parameters as those used in Fig. 2.18 and a1 D 0:8) reveals
a certain degree of correlation among the production quantities of firm 1 and the

0.5

0.5
10

1

1

a1

x1

x2

Fig. 2.18 Example 2.5; quadratic price and linear cost function. The semi-symmetric case. Bifur-
cation diagrams of x1, x2 with respect to a1, the speed of adjustment of firm 1. The number of
firms is held equal to N D 12
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D(1)
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x2

(a)

Time

100
0.7

1

0.7
1

150

x2

x1

(b)

Fig. 2.19 Example 2.5; quadratic price and linear cost functions. The semi-symmetric case.
(a) The attractor associated with Fig. 2.18 for a1 D 0:8. (b) The time series along the chaotic
attractor. Note the correlation between x1 and x2 in both figures

quantities of the other (symmetric) firms in the following sense: periods where
the output x1.t/ of firm 1 is high are associated with periods where x2.t/ is high.
The same can be observed for periods with low output values (see also Fig. 2.19b,
where the asymptotic values of typical time series for x1.t/ and x2.t/moving along
the chaotic attractor are shown). In this case, the firms’ actual production choices
and their expectations of the joint outputs of the other firms move jointly up and
down and enable the observer to make a qualitative prediction of what to expect
next, an increase in industry output or a decrease.

2.4 Gradient Adjustments

In this section we briefly examine the gradient adjustment processes introduced in
Sect. 1.2. Further examples and applications of gradient dynamics will be presented
in the following chapters. In the case of the classical Cournot model without cost
externalities the discrete time gradient adjustment process (1.32) becomes

xk.t C 1/ D xk.t/C ˛k

 

xk.t/f
0
 

N
X

iD1

xi .t/

!

C f

 

N
X

iD1

xi .t/

!

� C 0
k.xk.t//

!

;

(2.39)
and the continuous time gradient adjustment process (1.33) simplifies to

Pxk.t/ D ˛k

 

xk.t/f
0
 

N
X

iD1

xi .t/

!

C f

 

N
X

iD1

xi .t/

!

� C 0
k.xk.t//

!

: (2.40)
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Models including externalities can be discussed similarly, the final conclusions
remain similar to those to be presented in this section. First the local asymptotic
stability of the equilibrium is discussed. The Jacobian of the system (2.39) has the
special form

NH D

0

B

B

B

B

B

B

@

1C a1.x1f
00 C 2f 0 � C 00

1 / a1.x1f
00 C f 0/ : : : a1.x1f

00 C f 0/

a2.x2f
00 C f 0/ 1C a2.x2f

00 C 2f 0 � C 00
2 / : : : a2.x2f

00 C f 0/
:
:
:

:
:
:

: : :

aN .xN f
00 C f 0/ aN .xNf

00 C f 0/ : : : 1C aN .xNf
00

C 2f 0 � C 00
N /

1

C

C

C

C

C

C

A

where all derivatives are taken at the equilibrium and ak D ˛0
k
.0/ for all k. Notice

that this matrix has the special structure (E.4) introduced in Appendix E, therefore
(E.5) can be used to write the characteristic polynomial as

N
Y

kD1

.1C ak.f
0 � C 00

k / � �/ �
"

1C
N
X

kD1

ak.xkf
00 C f 0/

1C ak.f 0 � C 00
k
/ � �

#

:

Similarly to best response dynamics with adaptive expectations , the eigenvalues
are 1C ak.f

0 � C 00
k
/ and the roots of the equation

1C
N
X

kD1

ak.xkf
00 C f 0/

1C ak.f 0 � C 00
k
/� �

D 0: (2.41)

Since assumptions (A)–(C) hold, the graph of the function on the left hand side of
(2.41) is the same as shown in Fig. 2.1, so all eigenvalues are inside the unit circle
if and only if for all k,

ak.C
00
k � f 0/ < 2; (2.42)

and

N
X

kD1

ak.xkf
00 C f 0/

2C ak.f 0 � C 00
k
/
> �1: (2.43)

Notice that these conditions are very similar to conditions (2.21) and (2.22) given
for the best reply dynamics with adaptive expectations. In order to compare the two
cases substitute relation (2.5) (from which rk is calculated) into conditions (2.21)
and (2.22) to obtain

ak

C 00
k

� f 0

�.2f 0 C xkf 00 � C 00
k
/
< 2 (2.44)
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and

N
X

kD1

ak

f 0 C xkf
00

�.2f 0 C xkf 00 � C 00
k
/

2 � ak

C 00
k

� f 0

�.2f 0 C xkf 00 � C 00
k
/

> �1; (2.45)

from which it is clear that if ak is replaced by ak=.�.2f 0 C xkf
00 � C 00

k
// for all

firms, then (2.44) is the same as (2.42), and (2.45) is identical to (2.43).
If 2f 0 Cxkf

00 �C 00
k

D �1; then the cases are exactly the same. If 2f 0 Cxkf
00 �

C 00
k
> �1 for all k, then (2.44) implies (2.42) and (2.45) implies (2.43), so the best

reply dynamics are more stable. Notice that

2f 0 C xkf
00 � C 00

k D .f 0 C xkf
00/C .f 0 � C 00

k /;

where the first term is non-positive and the second term is negative. The condition
that this quantity is larger than �1 requires that the absolute values of both terms be
sufficiently small. For example, in the case of linear price and cost functions,

f 00 D C 00
k D 0;

and the condition requires that f 0 > �1=2, so price cannot decrease very fast with
increasing total output of the industry in order to guarantee stability. If 2f 0Cxkf

00�
C 00

k
< �1; then we reach the opposite conclusion.

The Jacobian of the continuous time system (2.40) also has the special form,
NH � I, where NH is the Jacobian of the discrete system and I is the identity matrix.
It is very easy to show that all eigenvalues of NH � I are real and negative, so the
gradient adjustment process is always locally asymptotically stable. Therefore, for
continuous time scales there is no difference between best reply dynamics and gradi-
ent adjustments as long as our concern is only local asymptotic stability. The global
asymptotic properties of gradient adjustment and adaptive adjustment processes are
usually different.

2.5 Continuous Time Oligopolies and Local Stability

Consider now the continuous time model (1.31) of the dynamics of partial adjust-
ment towards the best response with naive expectations. A vector ( Nx1; : : : ; NxN ) is a
steady state of the system if and only if

Nxk D Rk.
X

l¤k

Nxl /;

in which case ( Nx1; : : : ; NxN ) is a Nash equilibrium.
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The main result of this section is the following, in which we use the notation of
Sect. 2.2.

Theorem 2.2. Assume that ak > 0 for all k D 1; 2; : : : ; N . Then the equilib-
rium with respect to the continuous adjustment process (1.31) is always locally
asymptotically stable.

Proof. Using linearization, the eigenvalues of the Jacobian have to be examined.
Similarly to the discrete case, the Jacobian of system (1.31) has the special structure

0

B

B

B

@

�a1 a1r1 � � � a1r1
a2r2 �a2 � � � a2r2
:::

:::
:::

aN rN aN rN � � � �aN

1

C

C

C

A

; (2.46)

which is a special case of the form (E.4) (studied in Appendix E). The characteristic
equation of this matrix can also be given as a special case of equation (E.5), namely

N
Y

kD1

.�ak.1C rk/ � �/ �
"

1C
N
X

kD1

akrk

�ak.1C rk/ � �

#

D 0: (2.47)

We will now proceed similarly to the discrete case examined earlier. Assume again
that ak >0 for all k and the firms are numbered in such a way that the different
ak.1C rk/ values are

a1.1C r1/ > a2.1C r2/ > � � � > as.1C rs/

and these values are repeated m1; m2; : : : ; ms times, respectively, among the N
firms. By adding the terms with identical denominators in the bracketed expression
and denoting by �j the sum of the corresponding numerators akrk , we can rewrite
(2.47) as

s
Y

j D1

��aj .1C rj /� �
	mj �

2

41 �
s
X

j D1

�j

aj .1C rj /C �

3

5 D 0; (2.48)

with �j � 0 .1 � j � s/. So we can reach the following conclusion. If �j D 0 or
mj � 2, then �aj .1 C rj / is an eigenvalue, and this value is always negative. All
other eigenvalues are the roots of the equation

1�
s
X

j D1

�j

aj .1C rj /C �
D 0; (2.49)
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where we assume that �j ¤ 0 for all j . This is equivalent to a polynomial equation
of degree s, so there are s real or complex roots. Let g.�/ denote the left hand side,
then clearly

lim
�!˙1

g.�/ D 1; lim
�!�aj .1Crj /˙0

g.�/ D ˙1;

and

g0.�/ D
s
X

j D1

�j

.aj .1C rj /C �/2
< 0:

The graph of g.�/ is the same as the one shown earlier in Fig. 2.1 with the only
difference being that the poles are now the values �aj .1 C rj / .j D 1; 2; : : : ; s/.
Since all poles are negative, all roots have to be real and negative. This observation
implies the assertion. �

The result of this theorem can also be obtained directly from the proof of Theo-
rem 2.1. Notice that the Jacobian (2.46) can be written as NH � I, where NH is given
in (2.20) and I is the identity matrix. Therefore the eigenvalues of the Jacobian of
the continuous time case can be obtained by subtracting one from the eigenvalues of
the discrete time case. Since the eigenvalues in the discrete time case are less than
unity, all eigenvalues of the continuous time case have to be negative.

So far conditions (A)–(C) (or (A),(B),(C’) and (D)) have been (see Sect. 2.1)
assumed to hold in the entire feasible set of xk and Qk , and they have implied the
existence of a Nash equilibrium. If the oligopoly has an interior equilibrium, then
these conditions need to be satisfied only in a neighborhood of this equilibrium in
order to guarantee its local asymptotic stability. In comparing Theorems 2.1 and 2.2
we notice that in the discrete time case asymptotic stability can be lost if one or
more firms change their adjustment schemes so that the conditions of Theorem 2.1
no longer hold. In the continuous case the equilibrium is always locally asymptot-
ically stable, thus we see that the asymptotic behavior of the equilibrium is much
richer in the discrete case. In the continuous case asymptotic stability cannot be
lost by changing adjustment schemes, however – as we will demonstrate in the next
session – it can be lost if the firms have only delayed information to which to react,
or they respond to certain averaged past information.

Finally we mention that several linear extensions and modifications of the main
result of this section can be found in Okuguchi and Szidarovszky (1999) especially
for multiproduct oligopolies. Al-Nowaihi and Levine (1985), Dixit (1986) and Furth
(1986) introduced adjustment processes based on the marginal profits of the firms
by requiring that Pxk for all times must have the same sign as the marginal profit.
These gradient adjustment processes have been briefly discussed at the end of the
previous chapter. Bellman (1969) offers a comprehensive background in the stability
theory of ordinary differential equations. Global analysis of the asymptotic stability
of continuous time systems is usually based on Lyapunov theory (see Appendix A)
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and on the construction of special Lyapunov functions. Hahn (1962) has shown with
the special choice of

V.x/ D 1

2

N
X

kD1

˛kx
2
k

that the equilibrium of the continuous time system (1.31) is globally asymptotically
stable with symmetric firms and linear cost functions. This result has been gener-
alized to non-symmetric firms by Okuguchi (1964). We also mention that Sect. 6.4
of Okuguchi and Szidarovszky (1999) discusses the multi-product case with special
Lyapunov function selections and derives particular stability conditions.

2.6 Continuous Time Oligopolies with Continuously
Distributed Time Lags

In examining the dynamic model (1.31) we assumed that at each time period t ,
each firm knew the simultaneous output levels xl .t/.l ¤ k/ of the competitors, so
it was able to apply the adjustment scheme represented by the right hand side of
the governing differential equation. This assumption is however unrealistic in real
economic situations, since there is an inevitable time lag because of information
collection and decision implementation. A similar situation occurs when the firms
want to react to certain averaged past information rather than reacting to sudden
market changes. In both cases the output of the rest of the industry as well as the
firm’s own output levels have to be replaced by averaged values of corresponding
past information.

Therefore the differential equations (1.31) are modified to the form

Pxk.t/ D ˛k

 

Rk

 

Z t

0

w.t � s; Tk ; mk/
X

l¤k

xl .s/ds

!

�
Z t

0

w.t � s; Sk; lk/xk.s/ds

!

: (2.50)

In the first term of (2.50) the firm reacts to a time weighted average (back to the
beginning of the process) of the output of the rest of the industry. In the second term
the firm computes its reaction to a time weighted average of its own output. In the
ensuing analysis we select the weighting function given by

w.t � s; T;m/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

T
exp f�.t � s/=T g if m D 0;

1

mŠ

�m

T

�mC1

.t � s/m exp f�m.t � s/=T g if m � 1:

(2.51)
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This weighting function has been frequently used in the analysis of time lagged
dynamical system (see the Appendix D and Cushing (1977)) since as we shall see, it
affords a great deal of mathematical tractability. The main properties of this weight-
ing function are summarized in Appendix D, here we simply point out that T may
be interpreted as the average time delay (in fact for m > 0 the weighting func-
tion peaks at t � sDT ), whilst the parameter m plays the role of “squeezing” the
weights around this average value. If we interpret w as a distribution then T is the
mean and m is related to the inverse of the standard deviation. We see from (2.50)
that firm k may apply a different average time lag .Tk/ and “squeezing” factor .mk/

to information about output of the rivals than to information about its own output
(denoted by Sk and lk respectively). This reflects the fact that a firm should be better
informed about its own production process than that of its rivals.

Equation (2.50) is a Volterra-type integro-differential equation, and as is also
shown in Appendix D, it is equivalent to a system of ordinary differential equations.
Therefore all known tools from the stability theory of ordinary differential equa-
tions can be used to analyze the asymptotic behavior of system (2.50), including
linearization.

For k D 1; 2; : : : ; N , let xkı .t/ denote the deviation of xk.t/ from its equilibrium
level, then the linearized system has the form

Pxkı .t/Dak

8

<

:

rk

Z t

0

w.t�s; Tk ; mk/
X

l¤k

xlı .s/ds �
Z t

0

w.t�s; Sk; lk/xkı .s/ds

9

=

;

;

(2.52)

where 1 � k � N , ak D ˛0
k
.0/ and rk D R0

k

�

P

l¤k Nxl

�

as before. The character-

istic equation of this linear system can be obtained with the same technique that is
usually used in the case of linear differential equations (see Miller (1972)). We seek
the solution in the form

xkı D vke
�t .1 � k � N/;

substitute it into (2.52) and let t ! 1. The resulting equation becomes

�

�Cak

Z 1

0

w.s; Sk ; lk/e
��sds

�

vk �
�

akrk

Z 1

0

w.s; Tk ; mk/e
��sds

�

X

l¤k

vl D 0:

By using the limiting values of the integral (D.3) derived in Appendix D we can
further simplify this equation to

Ak.�/vk C Bk.�/
X

l¤k

vl D 0; (2.53)
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with

Ak.�/ D �C ak

�

Sk�

qk

C 1

��.lkC1/

;

and

Bk.�/ D �akrk

�

Tk�

pk

C 1

��.mkC1/

;

where

qk D
(

1 if lk D 0;

lk if lk > 0;

and

pk D
(

1 if mk D 0;

mk if mk > 0:

The set of equations (2.53) have non-trivial solution if and only if

det

0

B

B

B

@

A1.�/ B1.�/ � � � B1.�/

B2.�/ A2.�/ � � � B2.�/
:::

:::
:::

BN .�/ BN .�/ � � � AN .�/

1

C

C

C

A

D 0: (2.54)

Notice that this determinant is the same as (E.2) discussed in Appendix E, where
it is shown that this equation can be rewritten as

N
Y

kD1

.Ak.�/ � Bk.�// �
"

1C
N
X

kD1

Bk.�/

Ak.�/ � Bk.�/

#

D 0: (2.55)

Since Ak.�/ and Bk.�/ are all rational functions, this equation is equivalent to a
polynomial equation showing that there is a finite number of eigenvalues.

Equation (2.55) generally reduces to a very complicated high order polynomial
equation, so no general analytic results can be derived. However in the special case
of symmetric firms we will be able to derive simple stability conditions and exam-
ine the complex asymptotic behavior of the system. For this purpose assume that
ak � a; rk � r; Tk � T; Sk � S;mk � m; lk � l; so qk � q and pk � p that
is the firms are identical with respect to speeds of reaction and slopes of their reac-
tion functions at the steady state and furthermore they use the same time weighting
schemes. Assume in addition that the initial output levels of the firms are identi-
cal. Then system (2.52) reduces to a one-dimensional integro-differential equation,
since the assumed symmetry implies that the output trajectories of the firms are also
identical. Therefore in (2.53) we set, vk � v; Ak.�/ � A.�/ and Bk.�/ � B.�/, so
that it simplifies to

A.�/C .N � 1/B.�/ D 0; (2.56)
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or

�C a

�

S�

q
C 1

��.lC1/

� .N � 1/ar

�

T �

p
C 1

��.mC1/

D 0;

which can be rewritten as the polynomial equation

�

�

S�

q
C1
�lC1 �

T �

p
C1
�mC1

Ca
�

T �

p
C1
�mC1

�.N�1/ar
�

S�

q
C 1

�lC1

D 0:

(2.57)
Assume first that the firm’s own information lag S is much smaller than T , the

information lag about rival firms. Making the simplest assumption that S D 0,
(2.57) becomes

.�C a/

�

T �

p
C 1

�mC1

� .N � 1/ar D 0: (2.58)

Consider first the special case of T D 0, when there is no information lag about
rival firms. Then (2.58) reduces to the linear equation

.�C a/ � .N � 1/ar D 0;

with solution
� D .N � 1/ar � a < 0;

so the equilibrium is locally asymptotically stable. This case was discussed under
much more general conditions in Theorem 2.2 where the same conclusion was
reached.

Consider next the case when T > 0 and m D 0. Then (2.58) becomes the
quadratic,

�2T C �.1C aT /C a.1 � .N � 1/r/ D 0:

Since all coefficients are positive, both roots are negative or have negative real
parts (see Appendix F), so again the equilibrium is locally asymptotically stable.

In the case of m D 1, (2.58) reduces to the cubic equation

�3T 2 C �2.aT 2 C 2T /C �.1C 2aT /C a.1 � .N � 1/r/ D 0: (2.59)

All coefficients are positive and the Routh–Hurwitz criterion (see Szidarovszky and
Bahill (1998)) implies that all roots have negative real parts if and only if

.aT 2 C 2T /.1C 2aT / > T 2a.1 � .N � 1/r/: (2.60)

This inequality can be rewritten as a quadratic inequality in the variable aT in the
form

2.aT /2 C aT .4C r.N � 1//C 2 > 0: (2.61)
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The discriminant of the left hand side is

.4C r.N � 1//2 � 16 D r.N � 1/Œr.N � 1/C 8�:

The first factor, r.N � 1/, is negative, so we have the following cases.

Case 1. If r.N � 1/ C 8 > 0, then the discriminant is negative, so (2.61) always
holds.

Case 2. If r.N �1/C8 D 0, then (2.61) holds for all values of aT except the single
root of the quadratic polynomial. So the equilibrium is locally asymptotically
stable unless

aT D �4C r.N � 1/
4

D �8C r.N � 1/
4

C 1 D 1:

Case 3. If r.N �1/C8 < 0, then the quadratic polynomial (2.61) has two real roots,

.aT /�1;2 D �4 � r.N � 1/˙p

r.N � 1/Œr.N � 1/C 8�

4
: (2.62)

Since �4� r.N �1/ D �.8C r.N �1//C4 > 0, both roots are positive. Hence
the equilibrium is locally asymptotically stable if

aT < .aT /�1 or aT > .aT /�2;

where .aT /�1 < .aT /�2 . The equilibrium is unstable if

.aT /�1 < aT < .aT /�2 :

Summarizing these results the stability region is shown as the shaded area in
Fig. 2.20.

From the above analysis we can draw the following interesting conclusions. If
N � 9, then r.N�1/C8 > 0, so Case 1 always occurs and the equilibrium is always
locally asymptotically stable. Assume next that N > 9. Then Case 1 occurs if r >
� 8

N �1
resulting in the local asymptotic stability of the equilibrium. Case 2 occurs if

r D � 8
N �1

, so the equilibrium is locally asymptotically stable unless aT D 1. Case
3 is obtained when r < � 8

N �1
, in which case local asymptotic stability occurs if

aT is either sufficiently small (less than .aT /�1/ or sufficiently large (greater than
.aT /�2/. The asymptotic stability does not depend on the individual values of a and
T , it depends on only the product of aT . This property shows a certain kind of
compensation between the speed of adjustment and the average information delay.
If the average delay T is given, then in Case 2 the firms must not select a D 1

T
,

and in Case 3 they should select either a small
�

a <
.aT /�

1

T

�

or a large
�

a >
.aT /�

2

T

�

value of a in order to stabilize the equilibrium.
Assume next that Case 3 occurs, that is, �1< r < � 8

N �1
. If aT < .aT /�1 or

aT > .aT /�2 then the equilibrium is locally asymptotically stable, and if aT is
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r

0−8

N–1

–1

aT

1

*(aT )2

*(aT )1

Fig. 2.20 Stability region in the .r; aT /-space for continuous time symmetric oligopolies with
time delay in information about rival firms

between .aT /�1 and .aT /�2 , then it is unstable. So with fixed value of r , if aT is
gradually increased from a very small value and crosses .aT /�1 , then asymptotic
stability is lost. This instability holds until the value of aT reaches .aT /�2 , and
on crossing this value, asymptotic stability is regained. It is very interesting to see
what happens at these critical values .aT /�1 and .aT /�2 . We will show that a Hopf
bifurcation occurs (see for example, Guckenheimer and Holmes (1983)) giving the
possibility of the birth of limit cycles around the equilibrium as aT crosses these
critical values.

In fact we may state the following theorem concerning a Hopf bifurcation in the
m D 1 case:

Theorem 2.3. In the case of m D 1 the dynamics of the symmetric oligopoly loses
local asymptotic stability and a Hopf bifurcation occurs as aT crosses the critical
value .aT /�1 from below and the critical value .aT /�2 from above.

Proof. We select T as the bifurcation parameter, and consider the roots � of the
eigenvalue equation (2.59) as functions of T , that is � D �.T /. In order to show that
a Hopf bifurcation occurs we have to prove two facts. First, that at the critical value
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of T , we have a pair of pure complex roots while all other eigenvalues have negative
real parts. Second, that the derivative of �.T / at the critical value has nonzero real
part.

At the critical values the inequalities (2.60) as well as (2.61) become equalities,
so the eigenvalue equation (2.59) reduces to

0 D �3T 2 C �2.aT 2 C 2T /C �
T 2a.1 � .N � 1/r/

aT 2 C 2T
C a.1 � .N � 1/r/

D 


�T 2 C .aT 2 C 2T /
�

�

�2 C a.1 � .N � 1/r/

aT 2 C 2T

�

:

Therefore the eigenvalues are

�1;2 D ˙i
s

a.1 � .N � 1/r/
aT 2 C 2T

; (2.63)

and

�3 D �aT
2 C 2T

T 2
< 0:

So the first condition is satisfied at the critical values. In order to show that the
second condition is also satisfied we have to differentiate implicitly the eigenvalue
equation (2.59) with respect to T . A simple calculation shows that

�

with the notation
P� D d�

dT

�

3�2 P�T 2 C 2�3T C 2� P�.aT 2 C 2T /C �2.2aT C 2/C P�.1C 2aT /C 2�a D 0;

implying that

P� D �2�3T � �2.2aT C 2/� 2�a
3�2T 2 C 2�.aT 2 C 2T /C .1C 2aT /

: (2.64)

For the sake of simplicity introduce the notation

˛2 D a.1 � .N � 1/r/
aT 2 C 2T

�

D 1C 2aT

T 2

�

:

Then �1;2 D ˙˛i , and at these values

P� D ˙2˛3iT C ˛2.2aT C 2/� 2a˛i

�3˛2T 2 ˙ 2˛i.aT 2 C 2T /C .1C 2aT /

D ˛2.2aT C 2/C .˙2˛3T � 2a˛/i

�2˛2T 2 ˙ 2˛i.aT 2 C 2T /
:

Multiplying both the numerator and denominator by the complex conjugate of the
denominator, after some simple calculations we find that
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Re P� D �2˛4T 2.2aT C 2/C 4˛2T .˛2T � a/.aT C 2/

.�2˛2T 2/2 C 4˛2.aT 2 C 2T /2
:

The numerator can be simplified to 4˛2T .˛2T � Ta2 � 2a/. Here the first factor is
positive and the second factor can be rewritten as

.1C 2aT /T

T 2
� Ta2 � 2a D 1 � T 2a2

T
¤ 0

since it is easy to see that
.aT /�1 < 1 < .aT /�2 :

Hence the conditions for a Hopf bifurcation are satisfied, giving the possibility of
the birth of limit cycles around the equilibrium. �

If we consider larger values of m then (2.58) leads to higher order equations and
therefore the stability analysis becomes far more complicated, and would usually
require the use of computational methods.

However we can show that if r > �1
N �1

, then all roots of (2.58) have negative
real parts, so the equilibrium is asymptotically stable. On the contrary assume that
Re� � 0. Then

j�C aj � a and
ˇ

ˇ1C �T

p

ˇ

ˇ � 1;

so that

ˇ

ˇ.�C a/

�

T �

p
C 1

�mC1
ˇ

ˇ � a > �ar.N � 1/ D jar.N � 1/j;

hence � cannot be root of (2.58).
So far we have made the simplifying assumption that S D 0 in equation (2.57).

In order to illustrate a case when there are lags in the information on both the rivals’
and own outputs consider (2.57) with positive S and T and with m D l D 0. The
cubic equation

ST �3 C �2.S C T /C � .1C aT � .N � 1/arS/C .a � .N � 1/ar/ D 0

is then obtained. All coefficients are positive, and the Routh–Hurwitz criterion
implies that the roots have negative real parts if and only if

.S C T / .1C aT � .N � 1/arS/ > ST .a � .N � 1/ar/ ;

which can be rewritten as

S C T C aT 2 � .N � 1/arS2 > 0:

This inequality always holds, since r � 0. Hence the equilibrium is always locally
asymptotically stable.
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Continuously distributed time lags were originally introduced and applied in
mathematical biology (see for example, Cushing (1977)). They have been intro-
duced into economic modeling by Invernizzi and Medio (1991). Chiarella and
Khomin (1996) applied these techniques to Cournot oligopolies with some simu-
lation results. Chiarella and Szidarovszky (2001a) gave a detailed discussion of the
problem with a general solution. The fundamentals of bifurcation theory are pre-
sented in many books, for example, Guckenheimer and Holmes (1983), Jackson
(1989), and Kubicek and Marek (1986) are all good sources for the most important
results. In the models discussed in this section nonlinear Volterra-type integro-
differential equations were considered, a topic on which Volterra (1931) and Miller
(1972) offer useful additional material.



Chapter 3
General Oligopolies

In the previous chapter we analyzed concave oligopolies where the best response
functions were monotonic and therefore the local and global analysis of the corre-
sponding dynamic processes were relatively simple. The examples discussed there
have allowed the reader to become familiar with the major concepts and methods
that we shall use in the rest of the book. If we drop the simplifying assumptions of
the previous chapter then more complex dynamics may arise. In this chapter we will
present a collection of such models.

We initiate our discussion in Sect. 3.1 where we consider oligopolies with isoe-
lastic price functions and dynamics in discrete time. We give a detailed analysis
of local and global stability of some particular examples. In Sect. 3.2 we return to
the issue of oligopolies with cost externalities, which may display multiple interior
Nash equilibria. The global analysis of some specific examples indicates how the
oligopoly may converge to particular equilibria.

3.1 Isoelastic Price Functions

In this section we assume that the price function is isoelastic, as in Example 1.5. As
in the previous chapters let N denote the number of firms, let xk be the output of
firm k .k D 1; 2; : : : ; N / and Q D PN

kD1 xk the total output of the industry. Then
the price function is f .Q/ D A=Qwith some positive constantA. If no externalities
are assumed and Ck.xk/ denotes the cost of firm k, then its profit is given as

'k.x1; : : : ; xN / D
8

<

:

�Ck.0/; if xk D 0;
Axk

Qk C xk

� Ck.xk/; if xk > 0;

where we use again the simplifying notationQk D P

l¤k xl so thatQ D Qk Cxk .
In the following discussion we will assume that for all k, Ck is twice continuously
differentiable, increasing and convex, so that for all feasible values of xk ,

(D) C 0
k
.xk/ > 0 and C 00

k
.xk/ � 0.

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 3,
c� Springer-Verlag Berlin Heidelberg 2010
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We can now calculate the best response of firm k. Assume first that Qk D 0, so that
the other firms do not produce. Then

'k.x1; : : : ; xN / D
(

�Ck.0/; if xk D 0;

A� Ck.xk/; if xk > 0:

In this case firm k has no best choice, however it is in its interest to select a
positive value of xk that is as small as possible. In other words, firm k does not have
a maximum profit forQk D 0, its profit has only a supremum at xk D 0. If Qk > 0,
so that the other firms produce, then

@

@xk

'k.x1; : : : ; xN / D AQk

.Qk C xk/2
� C 0

k.xk/; (3.1)

and
@2

@x2
k

'k.x1; : : : ; xN / D � 2AQk

.Qk C xk/3
� C 00

k .xk/ < 0;

showing that 'k is strictly concave in xk with fixed positive values of Qk . If we
assume again that each firm has a finite capacity limit, Lk , then the best response
exists and is unique for each firm and is given by

Rk.Qk/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0; if
A

Qk

� C 0
k
.0/ � 0;

Lk ; if
AQk

.Qk C Lk/2
� C 0

k
.Lk/ � 0;

z�
k
; otherwise;

where z�
k

is the unique solution of the strictly monotonic equation

AQk

.Qk C zk/2
� C 0

k.zk/ D 0 (3.2)

in the interval .0; Lk/. The derivative of the best response function is obtained by
implicit differentiation of the equivalent equation

AQk � C 0
k.zk/.Qk C zk/

2 D 0;

from which we have

A � C 00
kR

0
k.Qk C zk/

2 � 2C 0
k.Qk C zk/.1CR0

k/ D 0

implying that

R0
k.Qk/ D A � 2C 0

k
Q

C 00
k
Q2 C 2C 0

k
Q
: (3.3)
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Here the denominator is always positive but the sign of the numerator is indeter-
minate. Hence, Rk.Qk/ is not necessarily monotonic, which stands in contrast to
the concave case discussed in the previous chapter. If we express the best response
functions in terms of the total output of the industry, then the resulting modified
best response function eRk.Q/ will not be monotonic either. Therefore the existence
and uniqueness of the equilibrium cannot be examined in the same way as was done
for concave oligopolies. However, by using a different approach, the existence of a
unique equilibrium is proved in Szidarovszky and Okuguchi (1997), and this result
is also presented with further details in Okuguchi and Szidarovszky (1999).

Consider now an interior equilibrium, then from (3.2),

A NQk � C 0
k. Nxk/ NQ2 D 0

for all k. The numerator of (3.3) at the equilibrium becomes

A� 2A NQk

NQ D A

NQ.
NQ � 2 NQk/;

so R0
k
. NQk/ � 0 if and only if NQ � 2 NQk.

Notice in addition that

R0
k.Qk/ >

�C 00
k
Q2 � 2C 0

k
Q

C 00
k
Q2 C 2C 0

k
Q

D �1: (3.4)

It is interesting to note that this is exactly the same lower bound as in the concave
case. If N D 2, then at a symmetric equilibrium R0

k
D 0 for kD 1; 2: If the equilib-

rium is asymmetric, then R0
k

is positive for one firm and is negative for the other, so
R0

1R
0
2 < 0. Assume next that N � 3; and for all firms, xk � Qk . This condition

means that there is no large firm dominating the rest of the industry. In this case
Q � 2Qk for all k, so �1 < R0

k
� 0 which is similar to the concave case. Notice

that in the general case the condition Q � 2Qk at the equilibrium can be violated
by at most one firm, so there is at most one firm with positive derivative R0

k
at the

equilibrium.

Example 3.1. In Example 1.5 we have already considered the isoelastic case with
pDf .Q/DA=Q and linear cost functionsCk.xk/Ddk Cckxk . There we derived
the equilibrium quantities of the firms which are given by

Nxk D .N � 1/A
P

l cl

� .N � 1/2Ack

.
P

l cl /2
;

for k D 1; 2; : : : ; N , and the total industry output

NQ D .N � 1/A
P

l cl

:
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Hence, we obtain

NQk D NQ � Nxk D .N � 1/2Ack

.
P

l cl/2
:

In order to guarantee that Nxk � 0 we have to assume that

ck �
P

l cl

N � 1 or ck �
P

l¤k cl

N � 2 : (3.5)

We can also find conditions such that NQ � 2 NQk for all k implying that �1 < R0
k

� 0
at the equilibrium, so the local asymptotic properties of the equilibrium become the
same as in the concave case. This condition has the special form

.N � 1/A
P

l cl

� 2.N � 1/2Ack

.
P

l cl /2
;

which can be rewritten as

ck �
P

l cl

2.N � 1/ :

Notice that this lower bound is the half of the upper bound given in (3.5). The upper
bound guarantees the non-negativity of the equilibrium outputs and the lower bound
guarantees that the derivatives of the best responses at the equilibrium are between
�1 and 0 as in the concave case. If N D 2, then this is true if c1 D c2, otherwise it
holds for one firm and does not hold for the other. If N � 3, then this condition is
certainly satisfied if none of the firms has very low marginal costs compared to its
competitors.

3.1.1 Discrete Time Models and Local Stability

The local asymptotic behavior of the best reply dynamics with adaptive expectations
and partial adjustment towards the best response with naive expectations (1.28)–
(1.30) are equivalent to each other as has been shown earlier. So similar to the
concave case we will discuss only system (1.30). The Jacobian of this dynamic
system was derived in (2.20), where we did not use any special form of the best
response functions, therefore the nonzero eigenvalues of the Jacobian of the isoelas-
tic case are also the eigenvalues of the matrix NH . Its characteristic equation is also
given by (2.23), or equivalently by (2.24).

In the case when all rk DR0
k
.Qk/ values are non-positive, all local stabil-

ity results remain the same as demonstrated for the concave case. However in
the general case the local asymptotic behavior of the equilibrium becomes more
complicated.

Assume now that for a firm k0, rk0
>0. Then NQ>2 NQk0

or equivalently,
Nxk0

> NQk0
. This condition means that firm k0 produces more than the total output
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of the rest of the industry at the equilibrium, therefore rk > 0 is possible for at most
one firm. Similarly to the concave case we assume that ak D ˛0

k
.0/ > 0 for all k.

Number the firms in such a way that the different ak.1C rk/ values are

a1.1C r1/ > a2.1C r2/ > � � � > as.1C rs/;

and these values are repeated m1; m2; : : : ; ms times, respectively, among the N
firms. By adding the terms with identical denominators in the bracketed factor of
(2.23) we obtain (2.24), where at most one �j can be positive. If all �j values are
non-positive, then the problem remains the same as in the concave case with the
same stability results. Therefore assume now that there is a j0 such that �j0

>0.
If �j ¤ 0 and mj D 1, then 1 � aj .1 C rj / is not an eigenvalue of the Jacobian.
Otherwise it is, and the other eigenvalues are the roots of the equation

1C
s
X

j D1

�j

1 � aj .1C rj / � � D 0;

where we assume that all �j ¤ 0.
Let g.�/ denote again the left hand side of the last equation. Then clearly

lim
�!˙1

g.�/ D 1;

lim
�!1�aj .1Crj /˙0

g.�/ D
(

�1 if j D j0;

˙1 if j ¤ j0,

however in contrast to the concave case, g0.�/ has no definite sign, that is, g is not
necessarily monotonic. All poles are less than unity. Depending on the value of j0

we have the following cases:-

Case 1. j0 D 1.
The graph of g.�/ for this case is shown in Fig. 3.1. There are s � 2 real roots
between each pair of poles 1 � aj .1 C rj / and 1 � aj C1.1 C rj C1/ for j D
2; : : : ; s � 1. If the other two roots are real and they are between 1 � a1.1C r1/

and 1 � as.1 C rs/, then the equilibrium is locally asymptotically stable if 1 �
a1.1C r1/ > �1.

Case 2. j0 D s.
The graph of g.�/ in this case is shown in Fig. 3.2. All roots are real, one is
before the smallest pole, one after the largest pole, and one between each pair of
poles 1� aj .1C rj / and 1� aj C1.1C rj C1/ for j D 1; : : : ; s � 2. All roots are
between -1 and 1 if 1 � a1.1C r1/ > �1 and g.�1/ > 0 and g.1/ > 0.

Case 3. 1 < j0 < s.
The graph of g.�/ is shown in Fig. 3.3. There are s � 2 real roots. If we assume
that the remaining two roots are real and are between 1 � a1.1 C r1/ and
1 � as.1 C rs/, then all roots are between �1 and 1 if 1 � a1.1 C r1/ > �1
and g.�1/ > 0.
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λ
1–a1(1+r1) 1–a2(1+r2) 1–a3(1+r3) 1–as–1(1+rs–1) 1–as(1+rs) 1

Fig. 3.1 The oligopoly with isoelastic price function and convex cost functions with partial
adjustment towards the best response with naive expectations. The graphical determination of the
eigenvalues in the case j0 D 1

λ
1−a1(1+r1) 1−a2(1+r2) 1−aS–2(1+rS–2)1−aS–1(1+rS–1) 1−aS(1+rS)1

Fig. 3.2 The oligopoly with isoelastic price function and convex cost functions with partial
adjustment towards the best response with naive expectations. The graphical determination of the
eigenvalues in the case j0 D s



3.1 Isoelastic Price Functions 109

λ
1−aS(1+rS)1−aj0(1+rj0)1−a1(1+r1)

Fig. 3.3 The oligopoly with isoelastic price function and convex cost functions with partial
adjustment towards the best response with naive expectations. The graphical determination of the
eigenvalues in the case 1 < j0 < s

Notice that conditions g.�1/ > 0 and g.1/ > 0 can be written as (2.22) and

N
X

kD1

rk

1C rk
< 1;

respectively.
In the case of complex roots, no similar stability condition can be given. The
possibility of complex roots will be shown later in Example 3.2.

The assumption that Ck is a convex function in its entire domain guarantees the
existence of a Nash equilibrium. However if this condition is not satisfied every-
where and there is an interior equilibrium, then we have to assume that C 0

k
>0 and

C 00
k

� 0 in its neighborhood in order to assure local asymptotic stability of that
equilibrium. As an illustration consider a duopoly with linear cost functions and
isoelastic price function.

Example 3.2. In this example we consider the duopoly case .N D 2/. By using the
notation of Example 3.1 we assume that the cost function of firm k is Ck.xk/ D
dk C ckxk .kD 1; 2/, the price function is f .Q/ D A=Q with some positive con-
stant A and the capacity limits are sufficiently large. The equilibrium is positive,
since condition (3.5), that is ck � c1 C c2, is satisfied for both firms. Furthermore
at the equilibrium
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NQ D A

c1 C c2

and NQk D Ack

.c1 C c2/2
:

From Example 1.5 we know that

Rk.Qk/ D
s

AQk

ck

�Qk;

and so

R0
k.

NQk/ D c1 C c2

2ck

� 1;

therefore
r1 D c2 � c1

2c1

and r2 D c1 � c2

2c2

:

Assume that c1 ¤ c2, and that the firms select identical adjustments, that is,
a1 D a2 � a. The characteristic equation of the Jacobian of the dynamic process
with partial adjustment towards the best response is given in general by (2.23),
which simplifies to

2
Y

kD1

.1 � a.1C rk/� �/

�

1C r1a

1 � a.1C r1/� �
C r2a

1 � a.1C r2/� �

�

D 0:

This equation reduces to the quadratic

�2 C �.2a � 2/C .1 � 2aC a2 � a2r1r2/ D 0;

with roots
�1;2 D .1 � a/˙ ia

p�r1r2;
since

r1r2 D � .c1 � c2/
2

4c1c2

< 0:

By an appropriate choice of the parameters c1 and c2 the quantity r1r2 can take any
negative value. Clearly if c1 ¤ c2, then both roots are complex, and since

j�1;2j2 D 1 � 2a C a2.1 � r1r2/;

the roots can be both inside and outside the unit circle. The equilibrium is locally
asymptotically stable if

a.1 � r1r2/ < 2;

and unstable if this condition is violated with strict inequality. An analogous condi-
tion for the stability of the equilibrium in the duopoly case with constant adjustment
speeds has been derived by Puu (2003, Chap. 7). With fixed r1 and r2, stability
occurs if the value of a is sufficiently small. With a fixed value of a 2 .0; 1� we
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have stability if the product jr1r2j is sufficiently small, which holds if c1 and c2 are
sufficiently close to each other.

Example 3.3. Next we examine an N -firm semi-symmetric oligopoly with linear
cost functions, so we assume that firms 2; 3; : : : ; N have identical marginal costs,
ck D c2 .k D 2; 3; : : : ; N /, identical capacity limits and common linear adjustment
functions, and their initial outputs are also the same, so that x2.0/ D : : : D xN .0/.
Given these assumptions the entire output trajectories of these firms are the same.
Therefore we get a two-dimensional system with state variables x1 and x2 where
xk Dx2 for k � 2. In this case Q1 D .N � 1/x2 and Q2 D x1 C .N � 2/x2.
Assuming that the capacity limits Lk are sufficiently large the general expressions
for the equilibrium quantities given in Example 3.1 imply for the semi-symmetric
case that

Nx1 D .N � 1/A

c1 C .N � 1/c2

�

1 � .N � 1/c1

c1 C .N � 1/c2

�

D .N � 1/A

c1 C .N � 1/c2

�

.N � 1/c2 � .N � 2/c1

c1 C .N � 1/c2

�

Nx2 D ::: D NxN D .N � 1/A

c1 C .N � 1/c2

�

1 � .N � 1/c2

c1 C .N � 1/c2

�

D .N � 1/A

c1 C .N � 1/c2

�

c1

c1 C .N � 1/c2

�

:

For the total industry output in equilibrium we obtain

NQ D Nx1 C .N � 1/ Nx2 D .N � 1/A

c1 C .N � 1/c2

:

The derivatives of the best replies are obtained from (3.3) as

r1 D R0
1.

NQ1/ D A� 2c1
NQ

2c1
NQ D .N � 1/c2 C .3 � 2N/c1

2.N � 1/c1

;

and

r2 D R0
2.

NQ2/ D A� 2c2
NQ

2c2
NQ D c1 � .N � 1/c2

2.N � 1/c2

:

Conditions (3.5) for k D 1 and k D 2 are of the form

c1 � c1 C .N � 1/c2

N � 1 ; c2 � c1 C .N � 1/c2

N � 1
;

where the second inequality always holds and the first one can be written as

	 WD c2

c1

� N � 2

N � 1
;
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where 	 denotes the cost ratio between the firms. In addition,

r1 D .N � 1/	 C .3 � 2N/
2.N � 1/

and r2 D 1 � .N � 1/	
2.N � 1/	

:

The dynamic process can be written as

x1.t C 1/ D .1 � a1/x1.t/C a1R1..N � 1/x2.t//;

x2.t C 1/ D .1 � a2/x2.t/C a2R2.x1.t/C .N � 2/x2.t//;

so the Jacobian has the special form

�

1 � a1 a1r1.N � 1/

a2r2 1 � a2 C a2r2.N � 2/

�

where r1 D R0
1 and r2 D R0

2 at the equilibrium. The characteristic equation of this
matrix can be written as

.1 � a1 � �/.1 � a2 C a2r2.N � 2/� �/ � a1a2r1r2.N � 1/ D 0;

which can be simplified to

�2 C �.�2C a1 C a2 C .2 �N/a2r2/C .1 � a1 � a2 C .N � 2/a2r2

C a1a2.1C .2 �N/r2 C .1 �N/r1r2// D 0:

Using results from Appendix F we know that the roots are inside the unit circle if
and only if

� a1 C a2..N � 2/r2 � 1/C a1a2.1C .2 �N/r2 C .1 �N/r1r2/ < 0; (3.6)

1C .2 �N/r2 C .1 �N/r1r2 > 0; (3.7)

4�2a1 Ca2.�2C .2N �4/r2/Ca1a2.1C .2�N/r2 C .1�N/r1r2/ > 0: (3.8)

The form of the stability region for .a1; a2/ depends on the number of firms and the
actual values of the derivatives r1 and r2. Inserting the expressions for the derivatives
r1 and r2 given above, the stability conditions can be written in terms of the cost
ratio 	 D c2=c1, the number of firms N , and the adjustment coefficients a1 and a2

as

� 4a1	.N � 1/C a1a2.1C 	.N � 1//2 C 2a2.�2CN.1C 	� 	N// < 0; (3.9)

.1C 	.N � 1//2 > 0; (3.10)

� 8.�2Ca1/	.N � 1/Ca1a2.1C 	.N � 1//2 C 4a2.�2CN.1C 	 � 	N// > 0:
(3.11)
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It is clear that the second inequality is always fulfilled. The properties of the stability
region for .a1; a2/ depend on the number of firms and the ratio of the firms’ unit
costs.

Instead of giving a complete analysis in general we reconsider the duopoly case
of Example 3.2, where a1 D a2 D a. In this special case the conditions (3.6)–(3.8)
further simplify to

�2a C a2.1 � r1r2/ < 0;

1 � r1r2 > 0;

and
4 � 4aC a2.1 � r1r2/ > 0:

The second and third inequalities are always satisfied, since in Example 3.2 we have
shown that r1r2 < 0: The first relation holds if and only if

a.1 � r1r2/ < 2:

This condition is the same as the one that was obtained earlier in Example 3.2.

The case of linear cost functions is examined in detail in the book of Okuguchi
and Szidarovszky (1999) and Puu (2003).

3.1.2 Global Dynamics of Discrete Time Models

As we have seen in the discussion in Chap. 2 on concave oligopolies, the conditions
for global asymptotic stability are very restrictive. In most cases of isoelastic price
functions this is true as well.

Under condition (D) of Sect. 3.1, for at most one firm rk >0, and for all other
firms, �1< rk � 0. If all rk values are non-positive, then the global stability condi-
tions are still given by (2.31). However if one rk is positive, this condition can no
longer be used, it has to be modified accordingly.

We also notice that the global stability condition given in Theorem B.3 cannot
be applied either. At Qk D 0, firm k has no best response, which is clear from its
definition given in Example 1.5 and in the first part of Sect. 3.1. Therefore the set
where the dynamical system

xk.t C 1/ D xk.t/C ˛k.Rk.Qk.t// � xk.t//; .k D 1; 2; : : : ; N /;

is defined is not closed, so the contraction mapping theorem (upon which the proof
of Theorem B.3 relies) cannot be used. If we consider the continuous extension
by defining Rk.0/ D 0, then in addition to the Nash equilibrium the zero output
vector also becomes a steady state of the above dynamical system, so the presence
of multiple steady states excludes the possibility of global asymptotic stability.
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In this subsection we start to investigate the kinds of dynamic behavior that
we can observe when the restrictive conditions for global stability are not satis-
fied. A characterization of the global dynamics is not trivial, since we are dealing
with an N -dimensional piecewise differentiable dynamical system. Therefore, our
study is based on a combination of analytical, geometrical and numerical arguments.
As has been demonstrated in previous chapters, qualitative changes of the dynam-
ics are often caused by contacts between singularities known as critical sets (see
Appendix C), lines of non-differentiability, and basin boundaries. In general such
contacts can only be revealed numerically, since the equations of the curves which
are involved in such contacts cannot be analytically expressed in terms of elemen-
tary functions. Hence, an analysis of global bifurcations is, in general, carried out by
using both theoretical and numerical methods. The occurrence of such bifurcations
is shown by computer-assisted proofs, and is based on the knowledge of the prop-
erties of the singularities involved and their graphical representation (see Mira et al.
(1996) for many examples and see also Brock and Hommes (1997)). This “modus
operandi” is quite common in the study of the global properties of nonlinear two-
dimensional discrete dynamical systems. However an extension of such methods
to higher-dimensional dynamical systems is obviously limited. A practical problem
which arises is that the visualization of objects in a phase space of dimension greater
than two and the detection of contacts between surfaces may become very difficult.
Consequently, in the examples that follow we will (again) restrict ourselves to the
case of duopoly or the semi-symmetric case of an oligopoly. It should be mentioned
that in the case of isoelastic demand, the non-negativity of prices is always guar-
anteed. So, in contrast to the oligopolies with for example linear or quadratic price
functions as considered before, we do not need to ensure this property by selecting
the values of the model parameters carefully. On the other hand, we still need to
look at the profits along the sequence of quantity decisions in order to see if the
long-run dynamics are viable from an economic point of view. Although the prob-
lem of negative profits is regularly neglected in the literature on complex dynamics
in oligopolies, it is a crucial element of the analysis of an adjustment type model.
The dynamical system just represents the firms’ individual production decisions,
but does not directly tell us if the firms are profitable as a result of the collective
outcome.

Example 3.4. We consider again the reaction functions in the model with isoelastic
demand and linear cost functions derived at the beginning of this chapter, which in
the current example becomes

Rk.Qk/ D

8

ˆ

<

ˆ

:

0 if z�
k � 0, i.e., Qk � A

ck
;

Lk if z�
k � Lk , i.e., Q2

k C
�

2Lk � A
ck

�

Qk C L2k � 0;

z�
k D

q

AQk

ck
�Qk otherwise;

(3.12)
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where k D 1; : : : ; N . Notice that the constraint z�
k

D Lk is ineffective if Lk �
A=.4ck/, otherwise we have Rk D Lk for

Qk 2
h

�

A

2ck

�Lk

�

� 1

2ck

p

A .A� 4ckLk/;

�

A

2ck

�Lk

�

C 1

2ck

p

A .A � 4ckLk/
i

(see Fig. 1.9). In the duopoly case,N D 2, already considered in Example 3.2, partial
adjustment towards the best response is governed by the discrete time dynamical
system

x1.t C 1/ D .1 � a1/x1.t/C a1R1.x2/; (3.13)

x2.t C 1/ D .1 � a2/x2.t/C a2R2.x1/;

and the unique Nash equilibrium is given by

Nx D . Nx1I Nx2/ D
�

Ac2

.c1 C c2/2
I Ac1

.c1 C c2/2

�

: (3.14)

The local stability properties of Nx in the duopoly case have already been derived in
Example 3.2. For identical adjustment coefficients, a1 D a2 D a, the equilibrium is
locally asymptotically stable if a.1 � r1r2/ < 2, where rk D R0

k
.Qk/ D .c1 C

c2 � 2ck/=.2ck/. Inserting these expressions for the derivatives of the best replies
allows us to express the stability condition in terms of the cost ratio 	 D c2=c1 (cf.
also Example 3.3 for the semi-symmetric case). Hence, in this case local asymptotic
stability of the equilibrium given in (3.14) is ensured if

a.1C 	/2

4	
< 2:

Consequently, for any given a 2 .0; 1�, as long as

	 2
 

4 � a � 2
p
4 � 2a

a
;
4 � a C 2

p
4 � 2a

a

!

holds, the equilibrium is stable. Note that since 	 D 1 is always inside this interval
for all adjustment coefficients a 2 .0; 1�, the equilibrium is always stable if firms
have identical marginal costs. It is also worth pointing out that the cost difference
between the firms has to be quite strong in order to render the equilibrium unstable.
To demonstrate this, we look at a particular case of the best reply dynamics, namely
a1 D a2 D 1. Here the Nash equilibrium (3.14) is stable if and only if the cost ratio
	 D c2=c1 2 .3�2p2; 3C2p2/ ' .0:17; 5:83/ (see also Puu (1991, 2003)). If, for
example, c1 D 1; this result shows that the unit cost of firm 2 has to be either at least
almost 6 times higher than firm 1’s unit cost or less than about 1=6 of it in order that
instability occurs. If the cost ratio c2=c1 exits this interval, then the Nash equilibrium
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Positive profits
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(a)
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x1

x2
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Fig. 3.4 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the duopoly case. The cost ratio 	 D c2=c1 D 0:16. (a) The chaotic attractor in the .x1; x2/ plane
and the dividing line between regions of negative and positive profits for firm 1. (b) Time series of
a portion of the chaotic attractor

loses stability via a period doubling bifurcation. For values of the cost ratio outside
the interval .3� 2p2; 3C 2

p
2/ the asymptotic dynamics may converge to periodic

cycles or even exhibit chaotic motion around the Nash equilibrium. A numerically
computed chaotic trajectory is shown in Fig. 3.4, obtained for A D 1, a1 D a2 D 1,
c1 D 1, c2 D 0:16. It can be noticed that the chaotic area is quite large, hence
we expect no correlations between x1.t/ and x2.t/, in the sense that high values
of x1.t/ are associated either with high or with low values of x2.t/ in the same
time period; see Fig. 3.4b, where a portion of the chaotic trajectory of Fig. 3.4a is
represented for the time periods t 2 Œ300; 370�. Note that the profits for the firms are
non-negative only if x1 C x2 � A=ck; k D 1; 2. In Fig. 3.4a we depict the line of
zero profits for firm 1, which is represented by the equation x1 C x2 D A=c1 D 1.
Notice that the zero profit line of firm 2, x1Cx2 D 6:25, is outside the area shown in
the figure. This indicates that the profits for the low-cost firm 2 are always positive,
whereas firm 1 makes a loss in some periods along any trajectory which describes
the long-run dynamics. The latter point becomes even more obvious if we consider
other kinds of long-run dynamics for the duopoly with best reply dynamics. For
example, let c2 D 0:161, with all other parameter values as before. The cost ratio
is now outside the stability region, and the disequilibrium dynamics in this case are
described by a 4-cyclic chaotic attractor1 (see Fig. 3.52). Of course, even if in this
case chaotic dynamics are observed, the time series are much more regular, since
they are characterized by a quasi-cyclic behavior (Fig. 3.5b). Furthermore, the zero

1 An n-cyclic chaotic attractor consists of n separate pieces that are visited cyclically in a given
order.
2 The particular “rectangular shape” of the attractors shown in Figs. 3.4 and 3.5 is related to the
particular structure of the map in the case of best reply dynamics, see for example, Bischi et al.
(2000b) and Agliari et al. (2002a)
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x2

x1

1.2
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Fig. 3.5 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the duopoly case. The cost ratio 	 D c2=c1 D 0:161. (a) A 4-cyclic chaotic attractor in the .x1; x2/
plane and dividing line between regions of positive and negative profits for firm 1. (b) Time series
of a portion of the chaotic attractor. Note how they are more regular than those in Fig. 3.4b

profit line for firm 1 depicted in Fig. 3.5a indicates that the high-cost firm 1 would
make a loss after every fourth period with certainty, and potentially also makes a
loss after every third period. Consequently, given the regularity of the trajectories in
this situation and the possibility of losses following a regular pattern, it seems that
the assumption of naive expectations would be more plausible in the former case,
where the chaotic attractor extends over a larger portion of the phase space.

Let us now turn to the semi-symmetric case obtained by assuming c2 D � � � D cN ,
a2 D � � � D aN , L2 D � � � D LN and x2.0/ D � � � D xN .0/. This particular situa-
tion, which has been already studied in Example 3.3, allows us to get some insight
into the effects of increasing the number of competitors. As we have seen already in
the previous chapters, if the firms partially adjust their production quantities towards
the best replies, then the decisions made by firm 1 and the identical firms 2; : : : ; N
are captured by the two-dimensional dynamical system

T W
�

x1.t C 1/ D .1 � a1/x1.t/C a1R1..N � 1/x2/;

x2.t C 1/ D .1 � a2/x2.t/C a2R2.x1 C .N � 2/x2/:

Assuming an interior equilibrium, it is given by

Nx1 D .N � 1/A

c1 C .N � 1/c2

�

.N � 1/c2 � .N � 2/c1

c1 C .N � 1/c2

�

;

Nx2 D ::: D NxN D .N � 1/A
c1 C .N � 1/c2

�

c1

c1 C .N � 1/c2

�
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and it is locally asymptotically stable if

� 4a1	.N � 1/C a1a2.1C 	.N � 1//2 C 2a2.�2CN.1C 	 � 	N// < 0
� 8.�2C a1/	.N � 1/C a1a2.1C 	.N � 1//2C4a2.�2CN.1C 	�	N// > 0;

(3.15)

where 	D c2=c1 denotes the cost ratio between firms (see Example 3.3; recall that
the other stability condition derived there is always fulfilled). For given adjustment
coefficients and unit costs, these conditions tell us for which number of firms the
equilibrium becomes unstable. Consider for example AD 16, a1 D 0:4, a2 D 0:3,
c1 D 5, c2 D 6, L1 DL2 D 2. Then it is easy to see that the first condition holds
always for N >2, so we do not consider it in the following analysis. The second
inequality becomes �88N 2 C 1246.N � 1/>0, and it holds as long as the number
of firmsN � 13. So in these cases the equilibrium is stable. ForN D 14 this inequal-
ity is violated, showing that the equilibrium becomes unstable. Figure 3.6 shows a
bifurcation diagram for N in the range Œ2; 30�. As expected, the Nash equilibrium
Nx is stable as long as the number of competitors is less than 13, and then it loses
stability through a period doubling bifurcation. For even higher values of N other
bifurcations occur leading to more complicated kinds of asymptotic behavior. Since
more detailed results can be easily derived on the basis of a standard local stability
analysis, we now turn to the more interesting investigation of the global properties
of our model.

In order to explain what kind of bifurcations and global dynamic properties are
involved in the qualitative changes of the dynamics observed in Fig. 3.6, we study
the properties of the piecewise smooth map T . We first divide the strategy space

0

146 10 18 22 262 30
0

0.6

x1

N

x2

0.8

Fig. 3.6 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the semi-symmetric case. Bifurcation diagrams of outputs x1; x2 with respect to the number of
firms
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D D Œ0; L1� � Œ0; L2� into regions D
.k/ where the map T has different expressions.

As observed in Chap. 2, the curves that divide these regions are curves of non-
differentiability, and these curves may play the role of folding curves (or critical
curves, following the terminology used in Mira et al. (1996)). In order to write the
expression of the map T in the different regions D

.k/, notice that for the set of
parameters considered, in the expression of the reaction curve (3.12) of firm 1 we
have

z�
1 < 0 for x2 >

16

5 .N � 1/ ;

whereas the constraint z�
1 >L1 is ineffective since L1>A=.4c1/. Likewise, for the

reaction function R2 of firms 2; : : : ; N , we have

z�
2 < 0 for x1 C .N � 2/ x2 > 8=3

and the constraint z�
2 > L2 is ineffective since L2 > A=.4c2/. The lines x2 D

16
5.N �1/

and x2 D 8�3x1

3.N �2/
divide the strategy space D into 4 regions. In region D

.1/,

where x2 <
16

5.N �1/
and x2 <

8�3x1

3.N �2/
, we have

T j
D.1/ W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/C a1

�
q

16.N �1/x2.t/
5

� .N � 1/x2.t/

�

;

x2.t C 1/ D .1 � a2/x2.t/C a2

h
q

16.x1.t/C.N �2/x2.t//
6

� x1.t/

�.N � 2/x2.t/
i

:

In region D
.2/, where x2 <

16
5.N �1/

and x2 >
8�3x1

3.N �2/
, the map is

T j
D.2/ W

8

<

:

x1.t C 1/ D .1 � a1/x1.t/C a1

�
q

16.N �1/x2.t/
5

� .N � 1/x2.t/

�

;

x2.t C 1/ D .1 � a2/x2.t/:

In region D
.3/, where x2 >

16
5.N �1/

and x2 >
8�3x1

3.N �2/
, the map is

T j
D.3/ W

�

x1.t C 1/ D .1 � a1/x1.t/;

x2.t C 1/ D .1 � a2/x2.t/:

In region D
.4/, where x2 >

16
5.N �1/

and x2 <
8�3x1

3.N �2/
, we have

T j
D.4/ W

8

ˆ

ˆ

<

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/;

x2.t C 1/ D .1 � a2/x2.t/C a2

h
q

16.x1.t/C.N �2/x2.t//
6

� x1.t/

�.N � 2/x2.t/
i

:
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The positive equilibrium

Nx D
�

16 .N � 1/ .N C 4/

.6N � 1/2
;
80 .N � 1/

.6N � 1/2

�

is in region D
.1/, whereas no equilibria exist in regions D

.k/, k D 2; 3; 4. In order
to study the local stability of the positive fixed point Nx, we consider the Jacobian
matrix

J.1/ D
0

@

1 � a1 a1

h

2.N �1/p
5.N �1/x2

� .N � 1/
i

a2

h p
2p

3Œx1C.N �2/x2�
� 1

i

1 � a2 C .N � 2/a2

h p
2p

3Œx1C.N �2/x2�
� 1

i

1

A

(3.16)

computed at Nx. Using the characteristic equation, the stability condition �88N 2 C
1246.N � 1/>0 given before follows after some calculation. As noticed above,
the equilibrium Nx undergoes a flip (or period doubling) bifurcation for increasing
N . After the first flip bifurcation, occurring at N ' 13, further period doublings
occur and a route towards chaotic behavior is observed for increasing values of
N . However, it is obvious from the stability conditions in (3.15) that the values of
the two speeds of adjustment also play an important role. Stability of the positive
equilibrium is always ensured for appropriately selected low values of the adjust-
ment speed a2. This can also be confirmed by numerical simulations. In Fig. 3.7 we
show a bifurcation diagram obtained with N D 23, where all the other parameters
are chosen as in Fig. 3.6 and with the bifurcation parameter a2 spanning the whole
range .0; 1�. For low values of a2 the equilibrium is stable. For increasing values
of a2 several sudden transitions between chaotic and periodic behavior characterize
the asymptotic dynamics. Many of these bifurcations are different from the common
bifurcations observed for smooth dynamical systems as the reader might notice. The
reason is that the bifurcations observed here are strongly influenced by the pres-
ence of the lines of non-differentiability. As already stressed in Chap. 2, these can
be often classified as border collision bifurcations, occurring when an equilibrium
point (or a periodic point) of a piecewise differentiable dynamical system crosses
a curve of non-differentiability. Such a contact may produce many kinds of effects
(transition to another cycle of any period or a sudden transition to chaos) depend-
ing on the eigenvalues of the two Jacobian matrices on the two adjacent sides of
the curve of non-differentiability involved in the contact (see for example, Banerjee
et al. (2000b)). Moreover, as we have shown in Chap. 2 (see also Appendix C) the
lines of non-differentiability may represent “folding lines,” and consequently they
have a role similar to that of the critical curves, where the latter are defined as sets
of points where the Jacobian determinant vanishes. In other words, candidates for
the “folding curves” F .i/ in the particular example we are considering are:

1. The curves of non-differentiability, that is the lines x2 D 16
5.N �1/

and x2 D 8�3x1

3.N �2/
;

2. The curves of vanishing Jacobian, where the Jacobian matrices in the regions
D

.k/, k D 1; : : : ; 4, are respectively J .1/, given in (3.16),
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Fig. 3.7 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the semi-symmetric case. Bifurcation diagrams of outputs x1; x2 with respect to a2 with the number
of firms held fixed at N D 23. The parameters are otherwise as in Fig. 3.6

J .2/ D
 

1 � a1 a1

�

2.N �1/p
5.N �1/x2

� .N � 1/
�

0 1� a2

!

;

J .3/ D
�

1 � a1 0

0 1 � a2

�

;

and

J .4/ D
 

1 � a1 0

a2

� p
2p

3Œx1C.N �2/x2�
�1
�

1�a2 C .N�2/ a2

� p
2p

3Œx1C.N �2/x2�
�1
�

!

:

Notice that only in regions D
.1/ and D

.4/ may we have points at which the Jacobian
determinant vanishes.

After the foregoing preparations, we are now in a position to describe some bor-
der collision bifurcations as well as some methods to bound chaotic attractors that
involve the lines of non-differentiability for a specific numerical example. Let us
start from the set of parameters used to obtain the bifurcation diagram Fig. 3.7, that
is N D 23, AD 16, a1 D 0:4, c1 D 5, c2 D 6, L1 DL2 D 2. From the second sta-
bility condition in (3.15) we can deduce that at a2 D 21120

127781
' 0:165 the Nash

equilibrium Nx loses stability through a flip bifurcation, at which it becomes a saddle
point, and a stable cycle of period 2 is created around it. Just after this bifurcation,
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Fig. 3.8 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions.
Global dynamics in the semi-symmetric case. (a) At a2 ' 0:2466 a border collision bifurcation
occurs when one of the two periodic points intersects the “folding line” F and a 4-piece chaotic
attractor is born. (b) As a2 increases to a2 D 0:26 the chaotic attractor intersects a “folding line”

the two periodic points are close to the saddle point Nx, hence they belong to region
D

.1/. As the parameter a2 is further increased, the two periodic points move away
from the fixed point, and one of them intersects the boundary of region D

.1/, denoted
as “folding line” F in Fig. 3.8. This first border crossing may produce many kinds
of effects. However, in this case there are no evident effects: if one of the peri-
odic points moves into region D

.2/ (while the other remains in region D
.1/), the

2-cycle remains attracting. This is an example of a border collision without any
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change in the qualitative dynamics. At a2 ' 0:2462 the 2-cycle undergoes a flip
bifurcation and a stable cycle of period 4 appears. As before, just after the bifurca-
tion the four periodic points are close to the 2-cycle saddle, and far from the lines
of non-differentiability. However, as the parameter a2 is further increased, one of
the periodic points moves towards the folding line F , and at a2 ' 0:2466, a peri-
odic point intersects the boundary of region D

.1/, that is the “folding line” F (see
Fig. 3.8a). This marks the occurrence of a true border collision bifurcation, with the
effect of a transition to a 4-piece chaotic attractor (see Fig. 3.8b with a2 D 0:26).

As can be seen, the chaotic attractor crosses the folding line F . Hence, it is
bounded by the images of this line, denoted as T .i/.F /, i D 1 : : : ; 8, in Fig. 3.8b.
This suggests that when a chaotic attractor intersects a folding line F , the boundary
of the chaotic area includes points belonging to images of increasing rank of F .
This is a well-known property of the critical lines of smooth noninvertible maps
(see Appendix C), which is here extended to the lines of non-differentiability of a
piecewise differentiable map (see Mira et al. (1996)). As a2 is further increased,
the 4-cyclic chaotic attractor becomes wider (see Fig. 3.9a) until the merging of the
pieces occurs. This merging leads to a 2-cyclic chaotic attractor (this occurs at a2 '
0:2765/ and then a unique large chaotic attractor emerges (see Fig. 3.9b), obtained
for a2 ' 0:2965). Also in this case, the boundary of the chaotic area is given by the
images of a suitable portion of the folding line F . Finally, we once again point out
that in the two cases shown in Fig. 3.9, the upper portion of the chaotic attractors
is included in the region with negative profits, that is above the lines representing
the equation x1 C .N � 1/x2 DA=ck , kD 1; 2. This means that along the chaotic
trajectories that describe the long run time evolution of the production decisions of
the firms, some periods with negative profits are involved.

3.1.3 Continuous Time Models and Local Stability

In this section model (1.31), describing the continuous time dynamics of par-
tial adjustment towards the best response with naive expectations, is examined in
the isoelastic case. The Jacobian of the system again has the form (2.46), and
its characteristic equation has the special form of (2.47). We assume again that
ak D ˛0

k
.0/>0 for all k. Here either all rk values are in the interval .�1; 0 �, or

exactly one rk value is positive. If none of the rk values is positive, then the local
asymptotic behavior of the equilibrium is the same as in the concave case. By adding
up the terms with identical denominators in the bracketed factor of (2.47) we obtain
(2.48), where at most one �j >0. If all �j � 0, then the problem is the same as in the
concave case, so the equilibrium is always locally asymptotically stable. Therefore
we may assume that �j0

>0 for some j0. If �j ¤ 0 and mj D 1, then �aj .1C rj /

is not an eigenvalue of the Jacobian. Otherwise it is, and the other eigenvalues are
the roots of the equation
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Fig. 3.9 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions.
Global dynamics in the semi-symmetric case. Parameters are the same as in Fig. 3.8. (a) As a2
increases further to a2 ' 0:2765 the pieces of the chaotic attractor merge into a 2-cyclic chaotic
attractor. (b) At a2 ' 0:2965 a unique large chaotic attractor emerges

1 �
s
X

j D1

�j

aj .1C rj /C �
D 0;

where we assume again that �j ¤ 0 for all j , ak > 0 for all firms, and

a1.1C r1/ > a2.1C r2/ > : : : > as.1C rs/:
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If g.�/ denotes again the left hand side of the above equation, then

lim
�!˙1

g.�/ D 1;

lim
�!�aj .1Crj /˙0

g.�/ D
(

�1 if j D j0;

˙1 if j ¤ j0.

However similarly to the discrete time case, g0.�/ has no definite sign. The graph
of g.�/ is the same as shown earlier in Figs. 3.1–3.3 with the only difference being
that the poles are all negative and given by �a1.1Cr1/; : : : ;�as.1Crs/. Therefore
we have again three cases.

Case 1. If j0 D 1, then there are s�2 real roots between each pair of poles �aj .1C
rj / and �aj C1.1 C rj C1/ for j D 2; : : : ; s � 1. If the other two roots are real
and are between �a1.1 C r1/ and �as.1 C rs/, then the equilibrium is locally
asymptotically stable.

Case 2. If j0 D s, then all roots are real and are negative if g.0/ > 0. This condition
can be rewritten as

N
X

kD1

rk

1C rk
< 1:

Case 3. If 1<j0<s, then there are s � 2 real roots, one before �a1.1 C r1/,
and one in between each pair of poles �aj .1 C rj / and �aj C1.1 C rj C1/ for
j D 1; : : : ; j0 � 2, j0 C 1; : : : ; s � 1. If we assume that the remaining two roots
are real and between �a1.1C r1/ and �as.1C rs/, then all roots are negative.

The possibility of complex roots will be shown later in Example 3.6. If there are
complex roots, then no simple stability conditions can be given. We will next return
to the case of Example 3.3, but under the assumption of continuous time dynamics.

Example 3.5. Consider again the N -person semi-symmetric oligopoly of Exam-
ple 3.3, now under the assumption of continuous time adjustment of the outputs of
the firms of the oligopoly. Assume again that c2 D ::: D cN . ThenQ1 D .N �1/x2

and Q2 Dx1 C .N � 2/x2 by assuming that firms 2; : : : ; N select identical lin-
ear adjustment function and initial outputs. From Example 3.3 we know that at the
interior equilibrium

NQ D .N � 1/A

c1 C .N � 1/c2

;

r1 D R0
1.

NQ1/ D .N � 1/c2 C .3 � 2N/c1

2.N � 1/c1

;

r2 D R0
2.

NQ2/ D c1 � .N � 1/c2

2.N � 1/c2

:
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Condition (3.5) for k D 1 and k D 2 is

c1 � c1 C .N � 1/c2

N � 1
; c2 � c1 C .N � 1/c2

N � 1 :

The second inequality always holds, the first can be rewritten as

c2

c1

� N � 2
N � 1 : (3.17)

By introducing again the notation 	 D c2=c1 we have

	 � N � 2

N � 1
;

r1 D .N � 1/	 C .3 � 2N/

2.N � 1/ and r2 D 1 � .N � 1/	

2.N � 1/	
:

The two-dimensional system for the adjustment of firms’ outputs has the form

Px1 D a1.R1..N � 1/x2/ � x1/;

Px2 D a2.R2.x1 C .N � 2/x2/� x2/;

with Jacobian matrix

��a1 a1r1.N � 1/

a2r2 a2.r2.N � 2/� 1/
�

:

The characteristic equation can be written as

.�a1 � �/.a2.r2.N � 2/� 1/� �/ � a1a2r1r2.N � 1/ D 0

or

�2 C�Œa1 Ca2.1Cr2.2�N//�Ca1a2Œ1C .2�N/r2 � .N �1/r1r2� D 0: (3.18)

Clearly,

r2 �
1 � .N � 1/N � 2

N � 1
2.N � 1/	

D 3 �N

2.N � 1/	
:

Notice first that the linear coefficient of (3.18) is always positive since r2 � 0. With
the new variable K D .N �1/	, the multiplier of a1a2 in the constant term of (3.18)
has the form

1C .2 �N/.1 � K/
2K � .N � 1/.K C .3 � 2N//

2.N � 1/
1 � K
2K

D 1

4K Œ4K C .4 � 2N/.1� K/ � .1 � K/.K C 3 � 2N/� D .K C 1/2

4K > 0:
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Then Lemma F.2 implies that the equilibrium is always locally asymptotically
stable.

Example 3.6. Assume in the previous example that N D 2, a1 D a2 D a. Then
(3.18) simplifies to

�2 C 2a�C a2.1 � r1r2/ D 0:

From Example 3.2 we know that r1r2 < 0 if c1 ¤ c2. In this case both the linear and
constant coefficients are positive (as in the general case of the previous example),
and the discriminant is

4a2 � 4a2.1 � r1r2/ D 4a2r1r2 < 0:

So both roots are complex, showing that there is no guarantee that the eigenvalues
are real, contrary to the case of concave oligopolies discussed in Sect. 2.5.

The book by Okuguchi and Szidarovszky (1999) contains some stability results
in the case of linear cost functions. A detailed stability analysis is presented by
Chiarella and Szidarovszky (2002) for the general nonlinear case. Models with con-
tinuously distributed time lags are identical to the concave case, so the derivations
and the similar results are not duplicated here.

3.2 Cost Externalities and Multiple Interior Nash Equilibria

In Chap. 2 we demonstrated that under some standard assumptions on the demand
function and on the cost functions of the oligopolists, the reaction functions of
the firms are decreasing. However, there are several situations where the microe-
conomic fundamentals of an oligopoly model lead to reaction functions which
are non-monotonic. For example, in the previous subsection we have shown that
with isoelastic price functions the reaction functions are increasing over the range
where the expected aggregate quantity of the other players is small, otherwise it is
decreasing (see also Example 1.5 and Bulow et al. (1985b)). Using non-monotonic
reaction functions, several authors have considered the best response dynamics and
the partial adjustment towards the best response and have demonstrated that such
adjustment processes may lead to non-convergence with complicated, but bounded
fluctuations of the production sequences (for example, Rand (1978), Dana and
Montrucchio (1986), Witteloostuijn and Lier (1990) and Puu (1991)). The focus of
these contributions has been mainly towards questions of local stability of the Nash
equilibria and the creation of complex attractors if convergence to an equilibrium
fails. The emphasis of the analysis is, in this case, on the delineation of a trapping
region in the space of production quantities, where the asymptotic dynamics of the
oligopoly game are ultimately bounded.

In the present subsection we will turn our attention to externalities in the cost
functions, which might also give rise to non-monotonic reaction functions (see
Example 1.6, Kopel (1996), Puhakka and Wissink (1995), Bischi and Lamantia
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(2002) and Furth (1986, 2009)). We will consider a duopoly market and we will
show that in a simple model with cost externalities we obtain several coexisting
equilibria. Since an equilibrium point can be considered as a convention that arises
among firms interacting repeatedly, stability arguments are often used to solve
this coordination problem. See for example, Van Huyck and Battalio (1998) and
Van Huyck et al. (1984, 1997). If a stability argument selects a single equilibrium,
this point can be considered as the solution of the oligopoly game. However, as we
will see, in the model with cost externalities multiple equilibria survive this type
of refinement and several (locally) stable equilibria coexist. Each of these equilibria
has its own basin of attraction and, consequently, the dynamic process becomes path
dependent. The long run outcome of the players’ myopic output decisions crucially
depends on the initial production quantity. Hence, in such a situation it is not suffi-
cient to analyze the local stability properties. In order to be able to give some insight
into the long run market outcome, it is important to gain some knowledge about the
boundaries that separate the basins of attraction of the various coexisting equilibria,
and to study the role of these boundaries in the occurrence of global bifurcations
that drastically change the topological structure of the basins.

Recall from Example 1.6 that if the inverse demand function is linear, pD
f .Q/DA � BQ, and the cost functions of the oligopolists are characterized by
interfirm externalities, that is Ck.xk ;Qk/DxkMk.Qk/withMk.Qk/DA�B.1C
2�k/Qk � 2B�kQ

2
k

, then the best response of firm k is given by

Rk.Qk/ D
8

<

:

0 if �kQk.1 �Qk/ � 0;

Lk if �kQk.1 �Qk/ � Lk ;

z�
k

otherwise;

where z�
k

D�kQk.1 �Qk/ and Lk denotes the capacity of firm k. The parameters
�k measure the intensity of the interfirm cost externality (see Kopel (1996)). In what
follows we consider a duopoly market (N D 2), so that Q1 Dx2 and Q2 D x1. We
let �k 2 .1; 4� and for simplicity we assume that Lk D 1. Under these assumptions
the reaction functions reduce to

R1.x2/ D �1x2.1� x2/; R2.x1/ D �2x1.1 � x1/: (3.19)

The Nash equilibria of this duopoly are located at the intersections of the two
reaction curves x1 DR1.x2/ and x2 DR2.x1/. The reaction functions are shown
in Fig. 3.10, where the two panels illustrate that beside the trivial Nash equilibrium
O D .0; 0/, multiple interior Nash equilibria can exist depending on the level of the
cost externalities. For example, for �1 D 3; �2 D 3:5 there is just one interior Nash
equilibrium ES (part (a)), whereas for �1 D 3:7; �2 D 3:5 there are two additional
interior Nash equilibriaE1 andE2 (part (b)). Analytically, the interior equilibria are
obtained as the real solutions of the fourth degree algebraic system

x1 D �1x2.1 � x2/; x2 D �2x1.1 � x1/;

and this system can have up to four solutions.
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Fig. 3.10 Oligopolies with linear inverse demand function and cost externalities. The case of
duopoly, multiple Nash equilibria become a possibility. (a) A unique interior Nash equilibrium
occurs when�1 D 3,�2 D 3:5. (b) Three interior Nash equilibria occur when�1 D 3:7,�2 D 3:5

In order to keep the following analysis tractable, we make the (rather reasonable)
assumption that the influence of each firm’s action on the marginal costs of the
competitor is identical for both firms, that is

�1 D �2 D �: (3.20)
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In the case of � > 1 there is always an interior Nash equilibriumES which belongs
to the diagonal� D f.x; x/ ; x 2 Rg. Its coordinates are given by

ES D
�

1 � 1

�
; 1 � 1

�

�

;

and it is characterized by identical production quantities of the two firms. At � > 3
two further Nash equilibria exist. They are given by

E1 D
 

�C 1Cp

.�C 1/ .� � 3/

2�
;
�C 1 �p

.�C 1/ .� � 3/

2�

!

;

E2 D
 

�C 1 �p

.�C 1/ .� � 3/
2�

;
�C 1Cp

.�C 1/ .� � 3/

2�

!

;

(3.21)

and they are located in symmetric positions with respect to the diagonal �. Notice
that for �D 3, E1; E2 and ES coincide. These Nash equilibria are characterized by
different production quantities of the two players. It is easy to see that the market
share of firm 1 (firm 2) is larger in E1 (E2). Obviously, in a situation where multi-
ple Nash equilibria coexist, a coordination problem for the two firms arises. It is not
clear which of the Nash equilibria the firms can agree upon as an outcome of the
game. One possibility to discriminate among the equilibria is to assume that players
start with quantity pairs out of equilibrium and adjust their production decision to
evolving changes in their environment, for example, using their best replies or esti-
mates of the gradient of the profit functions. Then we can use local stability, global
dynamics, or for example, the extent of the basins of attraction in the case of mul-
tiple locally stable equilibria to obtain insights into the question about which of the
equilibria is more likely to be a long run outcome of the game (see Kopel (2009)
and Cox and Walker (1998)).

We will assume that in order to update their production decisions, the duopolists
use partial adjustment towards the best response with naive expectations. Recall,
however, that in Chap. 1 we have shown that in the duopoly case the best reply
dynamics with adaptive expectations is identical to the dynamical system obtained
by partial adjustment towards the best response with naive expectations (see (1.20)
and (1.21)). Consequently, for our duopoly model with symmetric cost externalities,
in either case the dynamical systems which generates the sequences of (expected)
production quantities is given by

x1.tC1/ D .1�a1/x1.t/Ca1R1.x2.t//D .1� a1/ x1 .t/C a1�x2.t/ .1 � x2.t// ;

x2.tC1/ D .1� a2/x2.t/Ca2R2.x1.t// D .1�a2/x2 .t/C a2�x1.t/ .1�x1.t// :
(3.22)
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3.2.1 Identical Speeds of Adjustment

We first assume that the speeds of adjustment are identical for the two firms, that is

a1 D a2 D a:

Under this assumption, in contrast to the previous examples, the singularities that
are involved in global bifurcations can be given in closed form. Moreover, the
exact values for the parameters at which global bifurcations occur can be explicitly
determined (see Bischi and Kopel (2001) for further details).

In this case, it is obvious that the steady states of this system correspond to the
Nash equilibria of the game and are independent of the adjustment speed a. A proper
study of the two-dimensional map T W .x1; x2/ ! �

x0
1; x

0
2

	

defined by

T W
�

x0
1 D .1 � a/ x1 C a�x2 .1 � x2/ ;

x0
2 D .1 � a/ x2 C a�x1 .1 � x1/ ;

(3.23)

should provide some answers to the questions stated above. Since we restrict our-
selves to � 2 .1; 4�, the strategy space S D fŒ0; 1� � Œ0; 1�g is trapping for each
value of a 2 .0; 1� and for each initial value of production quantities in S.3 In other
words, any sequence of production quantities which starts inside S remains feasible
for all t � 0.

We first turn to the question of local stability of the interior Nash equilibria and
provide a characterization of the corresponding stability regions (see also Fig. 3.11).

Proposition 3.1. Let 
 D ˚

.�; a/ 2 R
2j1 < � � 4; 0 < a � 1




denote the appro-
priate region in the parameter space. Then the following holds.

(i) The symmetric Nash equilibriumES D f1 � 1=�; 1� 1=�g exists for all .�; a/
2 
. It is locally asymptotically stable for .�; a/ 2 
, if 1 < � < 3.

(ii) The Nash equilibria Ei , i D 1; 2, given in (3.21) exist for � > 3. They are
locally asymptotically stable for .�; a/ 2 
; if a < ah .�/ D 2=.�2 � 2�� 3/.

(iii) In the set


s.Ei ; C2/D
(

.�; a/2
 j� > 3; ah .�/ > a>ap .�/ D 6 �p

12� .� � 2/
3C 2� � �2

)

;

(3.24)
the two stable Nash equilibria Ei , i D 1; 2, given in (3.21) coexist with a stable
cycle of period two

3 This is so since the maxima of the reaction functions Rk occur at �k=4, and here we have �1 D
�2 D � with 0 < � � 4.
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Fig. 3.11 Oligopolies with linear inverse demand function and cost externalities. The case of
duopoly with identical speeds of adjustment. Multiple Nash equilibria in the .�; a/ plane. Note
that ES is unique and stable for � < 3. For � > 3 ES becomes unstable and two stable equilibria
E1;E2 occur

C2 D f.p1; p1/ ; .p2; p2/g 2 �; (3.25)

with coordinates

p1 D
a .� � 1/C 2 �

q

a2 .� � 1/2 � 4

2a�
;

and

p2 D a .� � 1/C 2C
q

a2 .� � 1/2 � 4
2a�

:

For the interested reader it should be mentioned that for .�; a/ 2 
 with
a>ah .�/, more complicated dynamics might be observed. The proof of this propo-
sition is based on a standard analysis of the eigenvalues of the Jacobian matrix and
is given in detail in Bischi and Kopel (2001).
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The results given in this proposition show that for a large set of values of the
cost externality � and the adjustment speed a, multiple stable Nash equilibria are
obtained (see the shaded area in Fig. 3.11). Additionally, for sufficiently high values
of the adjustment coefficient a in this area, namely for a > ap .�/, a stable 2-cycle
C2 coexists with the two stable equilibria E1 and E2. This latter point seems to be
important for the following reason. If the adjustment process converges to the equi-
libria only if initial conditions are chosen from a certain subset of S and otherwise
it cannot be observed, it becomes crucial to obtain information on the relative size
of the set of initial conditions from which players can eventually coordinate their
actions (see Mailath (1998), Fudenberg and Levine (1998)).

We will now turn to the analysis of the global dynamics of the model. Since we
are not able to discriminate among the equilibria E1 and E2 on the basis of the
local stability properties, to obtain further information on the stability properties of
the Nash equilibria we will study their basins of attraction. Figure 3.12 depicts the
basins of the locally stable equilibria E1 and E2 for two quite distinct situations.
In Fig. 3.12a, obtained with �D 3:4 and aD 0:2<1=.1C �/ D 0:2273, the basins
have a quite simple structure. For initial production quantities in S with x1.0/ >

x2.0/ the adjustment process (3.23) converges to the equilibrium E1. On the other
hand, if the reverse inequality holds, then the process converges to the equilibrium
E2. Therefore, if firm 1 (firm 2) initially dominates the market in terms of market
share, this property prevails throughout and the equilibrium E1 (equilibrium E2)
is eventually selected. In contrast to this, the situation shown in Fig. 3.12b, is quite
different. It is obtained with the same value of the cost externality�, but with higher
values of the adjustment coefficients, namely aD 0:5 > 1=.1 C �/ D 0:2273. In
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Fig. 3.12 Oligopolies with linear inverse demand function and cost externalities. The case of
duopoly with identical speeds of adjustment. Basins of attraction of the multiple Nash equilibria
(a) Simple structure for � D 3:4 and a D 0:2. Convergence to eitherE1 orE2 depending on which
firm dominates initially. (b) Non-connected basins for � D 3:4 and a D 0:5, now convergence to
E or E2 cannot be determined on the basis of which firm dominates initially
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this case the basins are no longer simply connected sets, and portions of each basin
are present both in the region above and below the diagonal �. The basins are now
disconnected sets, and the adjustment process starting from initial conditions below
or above the diagonal may lead to convergence to either E1 or E2.

The transition from simply connected basins to disconnected basins is caused
by a global bifurcation. We will now describe the mechanism which causes this
bifurcation in more detail. The argument begins by noticing that the map T defined
in (3.23) is noninvertible. Given a point

�

x0
1; x

0
2

	 2 S, its preimages are computed
by solving with respect to x1 and x2 the algebraic system

8

<

:

.1 � a/x1 C a�x2.1 � x2/ D x0
1;

.1 � a/x2 C a�x1.1 � x1/ D x0
2:

(3.26)

As noticed before, this is a fourth degree algebraic system, which may have four
or two real solutions, or no real solution at all. Hence, the strategy set S can be
subdivided into the regions Z4, Z2, and Z0, separated by branches of the critical
curve LC . For the differentiable map (3.23) the curve LC�1 coincides with the set
of points at which the determinant of the Jacobian matrix vanishes (see Appendix C)
so that

�

x1 � 1

2

��

x2 � 1

2

�

D .1 � a/2
4a2�2

: (3.27)

Equation (3.27) represents an equilateral hyperbola. The curve LC�1 is formed
by the union of two disjoint branches, say LC�1 D LC

.a/
�1 [ LC

.b/
�1 , which are

depicted in Fig. 3.13a. Also its imageLC D T .LC�1/ is the union of two branches,
LC .a/ D T .LC

.a/
�1 / and LC .b/ D T .LC

.b/
�1 /. This is shown in Fig. 3.13b. The

branch LC .a/ separates the region Z0, whose points have no preimages, from the
region Z2, whose points have two distinct rank-1 preimages. The other branch
LC .b/ separates the region Z2 from the region Z4, whose points have four distinct
preimages.4 In order to give a geometrical interpretation of the “unfolding action”
of the multivalued inverse T �1, it is useful to consider a region Zk as the super-
position of k sheets, each associated with a different inverse. Such a representation
is known as Riemann foliation of the plane (see for example, Mira et al. (1996)).
Different sheets are connected by folds joining two sheets, and the projections of
such folds on the phase plane are arcs of LC . The foliation associated with the map
(3.23) is qualitatively represented in Fig. 3.13c. It can be noticed that the cusp point
of LC .b/ denoted byK is characterized by three merging preimages at the junction
of two folds.

This cusp point K of LC .b/ plays a crucial role in the analysis, since when K
enters the strategy set S (for a .�C 1/ > 1, see below), suddenly points of S have

4 Following the terminology of Mira et al. (1996), we say that the map (3.23) is a noninvertible
map of Z4 > Z2 � Z0 type, where the symbol “> ” denotes the presence of a cusp point in the
branch LC.b/.
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Fig. 3.13 Oligopolies with linear inverse demand function and cost externalities, the case of
duopoly with identical speeds of adjustment. (a) The two disjoint branches, LC.a/

�1 and LC.b/
�1

of the curve LC�1. (b) The critical curves LC D T .LC�1/. Note the cusp at K . (c) Illustrating
the Riemann foliation of the .x1; x2/ plane

a higher number of preimages then before. The unfolding process of the inverse of
the map T then causes the creation of disconnected components of the basins. The
bifurcation occurring at a .�C 1/ D 1 is a global (or contact) bifurcation, which
is characterized by a contact between the stable set of ES along the diagonal �
and a critical curve LC . The coordinates of the cusp point of LC .b/ can be easily
computed in our case. Using (3.27) it is easy to see that the intersection of LC .b/

�1

with the diagonal� occurs at

K�1 D LC
.b/
�1 \� D .k�1; k�1/ with k�1 D a .�C 1/� 1

2a�
:
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Then the coordinates of the cusp point of the curveLC .b/ D T .LC
.b/
�1 / are given by

KDLC .b/ \�D .k; k/ with k D f .k�1/ D .a .�C 1/� 1/ .a�C 3.1 � a//
4a�

;

where the one-dimensional map f .x/ D .1C a .� � 1// x�a�x2 is the restriction
of the map T to the diagonal. It now becomes obvious that at a .�C 1/ D 1 the cusp
point K enters the strategy set S and that after this bifurcation there are points in
the strategy set that have a higher number of preimages.

To elaborate a little further on the workings of the mechanism which transforms
the basins from simply connected sets to disconnected sets, consider the originO D
.0; 0/. If 0 < a < 1= .�C 1/, thenO 2 Z2 and there are just two rank-1 preimages
of O . Both belong to the diagonal �, with one preimage is O itself (since O is a
fixed point), and the other preimage is

O
.1/
�1 D

�

1C a .� � 1/
a�

;
1C a .�� 1/

a�

�

:

This can be easily seen by using the restriction of the map T to the diagonal. The
situation is depicted in Fig. 3.14a, where for the sake of mathematical exposition we
show the whole extent of the basins of attraction of the locally stable equilibria E1

and E2 (and not just the region belonging to the strategy space S as in Fig. 3.12).
Observe that as long as the cusp point is outside the basins of attraction, the basins
are simple and connected sets. If however a > 1= .�C 1/, then the origin O 2 Z4

since the cusp point has entered S, and two more rank-1 preimages ofO exist. These
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Fig. 3.14 Linear inverse demand function and cost externalities. The case of duopoly with identi-
cal speeds of adjustment - basins of attraction of the two equilibria E1 and E2. (a) Here � D 3:4,
a D 0:2 < 1=.�C1/, and the basins of attraction are simple and connected sets. (b) Here � D 3:4,
a D 0:5 < 1=.�� 1/, and the basins of attraction become disconnected
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two further preimages, O.2/
�1 and O.3/

�1 , are located on the line ��1 of the equation5

x1 C x2 D 1C 1

�

�

1 � 1

a

�

:

in symmetric positions with respect to � (see Fig. 3.14b). Hence

O
.2/
�1 D

 

a .�C 1/� 1Cp

a2�2 C 2a� .1 � a/� 3 .a2 C 1/C 6a

2a�
;

a .�C 1/� 1 �p

a2�2 C 2a� .1 � a/� 3 .a2 C 1/C 6a

2a�

!

(3.28)

and the symmetric point O.3/
�1 is obtained from O

.2/
�1 by swapping the two coordi-

nates.
To conclude this subsection, we would like to reflect on several issues. First, the

occurrence of the bifurcation which transforms the basins from simply connected to
disconnected sets causes a loss of predictability concerning the long-run outcome of
the adjustment process. The presence of many disjoint components of both basins
causes a sensitivity with respect to the initial production quantities, in the sense that
a small perturbation may lead to a crossing of the boundary which separates the two
basins and, consequently, the trajectory may converge to a different Nash equilib-
rium. Second, for increasing values of the adjustment coefficient a, as the line ��1

in Fig. 3.14b moves upwards, certain connected parts of the basins of the equilibria
come closer to the corresponding other equilibrium. That is, initial production quan-
tities which eventually lead to convergence toEi are located close to the equilibrium
Ej ; i ¤ j , and vice versa. In contrast to a global analysis, a study based only on
the local properties of the process around the equilibria would not have been able
to provide us with information on the size of the neighborhood from which conver-
gence to the corresponding equilibrium is achieved. Finally, our global analysis also
reveals that for .�; a/ 2 
s .Ei ; C2/ three coexisting attractors are present6. Hence
the outcome of the oligopoly game is highly path dependent and could end up at any
of the attractors depending on the initial conditions.

3.2.2 Non-Identical Speeds of Adjustment

We now turn to the case of different speeds of adjustment. In contrast to the previous
situation, a rigorous mathematical analysis cannot be provided. However, guided by

5 This can be seen by setting x0
1 D x0

2 in (3.26) and adding or subtracting the two symmetric
equations.
6 We remind the reader that the stability region of E1, E2 and C2 is defined in Proposition 3.1.
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the knowledge of the critical curves, we can still analyze the structure of the basins
of the two coexisting stable Nash equilibria and we can characterize the bifurcations
that cause their qualitative changes using numerical and graphical procedures.

As in the case of identical speeds of adjustment, there exists a rather large set of
parameter values for �; a1, and a2 for which two stable equilibria exist. Moreover,
it is easy to realize that small differences between the two adjustment coefficients do
not cause significant changes in the local stability properties, that is in the modulus
of the eigenvalues. On the other hand, as will be demonstrated below, such small
differences may cause drastic effects with regard to the structure of the basins. Many
of the arguments given in the previous section for the study of the boundaries of the
basins and their global bifurcations continue to hold for non-identical adjustment
speeds. However, there are some important differences.

� The main difference is that the diagonal � is no longer invariant. Even if
the fixed points remain the same, the basins are no longer symmetric with respect
to �.

� The preimages of the unstable fixed point O belong to the boundary of the set
of points which generate bounded trajectories, but a simple analytical expression
of the preimages of O cannot be obtained. Since they are solutions of a fourth
degree algebraic equation, they can be computed by standard numerical routines.

� For increasing values of � or ai the point O enters the region Z4. However
the exact values of the parameters at which this occurs cannot be computed
analytically.

� Although the boundary which separates the basins of E1 and E2 is still formed
by the whole stable set of ES , in the case of a1 ¤ a2 the local stable set of ES

is not along the diagonal �. The contact between the stable set of ES and the
critical curveLC .b/, which causes the transition from simple to complex basins,
does not occur at the fixed point O (since now the origin O does not belong to
the stable set of ES ) and no longer involves the cusp point of LC .b/. Again, the
parameter values at which such contact bifurcations occur cannot be computed
analytically. However, the bifurcation is always caused by a contact betweenLC
and a basin boundary.

We will finally demonstrate that the occurrence of these bifurcations can be
detected by computer-assisted proofs, based on the knowledge of the properties
of the critical curves and their graphical representation. As mentioned before, this
“modus operandi” is typical in the study of the global bifurcations of nonlinear
two-dimensional maps. Figure 3.15a shows the situation obtained for � D 3:6 and
a1 D 0:55, a2 D 0:7. The stable set of ES forms the boundary of the basin of E1.
On the one hand, the effect of such a small asymmetry in the adjustment speeds on
the local stability properties is negligible. The eigenvalues of the two fixed points are
exactly the same and are very close to the eigenvalues obtained for identical adjust-
ment speeds with the same value of � and with, for example, a D .a1 C a2/ =2. On
the other hand, as far as the global dynamics is concerned, non-identical adjustment
speeds have a strong effect on the structure of the basins of attraction of the Nash
equilibriaE1 andE2. Our numerical simulations show that in general the Nash equi-
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Fig. 3.15 Linear inverse demand function and cost externalities. The case of duopoly with differ-
ent speeds of adjustment. (a) Here � D 3:6, a1 D 0:55, a2 D 0:7 - the basin of E1 forms an island
inside the basin of E2. (b) Here � D 3:6, a1 D 0:59, a2 D 0:7 - a contact bifurcation has occurred
and the basin of E2 becomes a set of disjoint islands inside the basin E2

librium Ei dominates Ej in terms of the size of the basin if ai >aj . Figure 3.15a
shows that although the basin of E1 is a simply connected set, the basin of E2 is
now multiply connected. The basin of E1 forms a big “hole” (or “island,” to use the
term of Mira et al. (1996)) inside the basin of E2. The stable set of ES , that is the
boundary which separates the two basins, is entirely included inside the regionsZ2

and Z0. Note, however, that the stable set of ES is close to the critical curve LC ,
which is a signal for the occurrence of a global bifurcation. If a change in parame-
ters causes a contact between the stable set of ES (a basin boundary) and LC , then
this contact marks a bifurcation which normally causes a qualitative change in the
structure of the basins.

This is demonstrated in Fig. 3.15b, where � D 3:6 and a1 D 0:59, a2 D 0:7.
Such a small change in the adjustment speed of player 2 causes a portion of the
basin of E1 to enter the region Z4 (denoted by H0 in the figure). Consequently,
new rank-1 preimages of that portion will appear near LC .b/

�1 , and such preimages

must belong to the basin ofE1. These rank-1 preimages, denoted byH .1/
�1 andH .2/

�1 ,

are located at opposite sides with respect to LC .b/
�1 and merge onto it. Obviously,

the set H�1 D H
.1/
�1 [H

.2/
�1 constitutes a disconnected portion of the basin of E1.

Moreover, since H�1 belongs to the region Z4, it also has four rank-1 preimages.
Two of them are located in the strategy space S and are denoted byH .j /

�2 , j D 1; 2.
Points belonging to these “islands” are mapped intoH0 in two iterations of the map
T . Indeed, infinitely many higher rank preimages of H0 exist, even if only some of
them are inside the strategy space S D Œ0; 1� � Œ0; 1�, thus giving smaller disjoint
“islands” of the basin of E1. Hence, at the contact between the stable set of ES and
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the critical curve LC , the basin of E1 is transformed from a simply connected set
into a disconnected set.

In summary, in the case of non-identical adjustment speeds, parameter changes
may also result in global bifurcations. Such bifurcations are related to a contact
between a basin boundary and critical curves and change the qualitative structure of
the basins. Since the whole basin of E1 is given by the union of the infinitely many
preimages of its immediate basin B0 .E1/, that is B .E1/ D S

k�0 T
�k .B0 .E1//,

the unfolding action of the inverses of the map T can result in disconnected por-
tions of the basin which are quite far away from the Nash equilibrium. In a sense,
this gives rise to a higher degree of uncertainty with respect to the possibility of pre-
dicting the effects of any small change in the initial market share of the competitors
on the long-run outcome of the duopoly game.



Chapter 4
Modified and Extended Oligopolies

The previous chapters have introduced and analyzed the classical Cournot model
under a number of assumptions. In this chapter we discuss some important modifi-
cations and extensions. We first introduce market share attraction games where the
dynamics are driven by a generalization of the gradient adjustment process intro-
duced in Chaps. 1 and 2. We carry out both a local and global analysis of the
stability of these games. In Sect. 4.2 we consider labor-managed oligopolies with
best response dynamics. We give a detailed discussion of the local stability in the
discrete time case and via an example show the type of global dynamical behavior
that is possible in this model type. The section concludes with a brief discussion of
the local stability of a continuous time version of the labor-managed oligopoly. In
Sect. 4.3 we introduce intertemporal demand interaction effects, brought about for
example by habit formation, into dynamic oligopolies with best response dynamics.
We give a local and global stability analysis of the model in discrete time. For the
continuous time version we study the local stability of the dynamics, including also
the case when there are information lags. In Sect. 4.4 we analyze oligopolies with
production adjustment costs. For the case of best reply dynamics in discrete time
we give local stability conditions. In the final section we consider oligopolies where
there is partial cooperation amongst the firms of the industry. We show various prop-
erties of the best response function, give local stability for best reply dynamics in
continuous time, and analyze the global dynamics of a particular example under
discrete time best response dynamics.

4.1 Market Share Attraction Games

Market share attraction models have been used in a variety of contexts to describe
the behavior of competitors in a market. Not only have they been employed fre-
quently in empirical applications, they are also prevalent in the economics, game
theory and operations research literature. In the marketing literature, market share
attraction models are often used to describe the competition between several brands
of a product in the market (see for example, Hanssens et al. (1990) and Cooper and
Nakanishi (1988)). The models are then sometimes referred to as brand competition

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 4,
c� Springer-Verlag Berlin Heidelberg 2010
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models. A typical model of this type specifies that the market share of a competi-
tor is equal to the attraction of its product, divided by the total attraction of all the
competitors’ products in the market. Each competitor’s attraction is given in terms
of its competitive effort allocations. To provide an example, let us consider the case
of two competitors, who compete against each other in the market on the basis of
marketing efforts expended. If x1 >0 denotes the marketing effort of competitor 1
and x2>0 the marketing effort of competitor 2, then ˛1x

ˇ1

1 and ˛2x
ˇ2

2 represent
the attractions of customers to the products of competitors 1 and 2, respectively.
The positive parameters ˛1 and ˛2 in this context denote the relative effectiveness
of efforts and the parameters ˇ1>0 and ˇ2>0 are the elasticities of the products’
attractions with respect to the marketing efforts. The competitors’ market shares are
then given by

s1 D ˛1x
ˇ1

1

˛1x
ˇ1

1 C ˛2x
ˇ2

2

; s2 D ˛2x
ˇ2

2

˛1x
ˇ1

1 C ˛2x
ˇ2

2

: (4.1)

Such a specification has the theoretically appealing property that it is logically con-
sistent in the sense that it yields market shares that are between zero and one, and the
market shares sum to one across all the competitors in the market. If A>0 denotes
the sales potential of the market (in monetary terms) and ci the marginal cost of
effort of firm i , then the one-period profits of firm 1 and 2 are

'1 D As1 � c1x1; '2 D As2 � c2x2: (4.2)

The reader should notice that by introducing the new decision variables z1 D
˛1x

ˇ1

1 , z2 D ˛2x
ˇ2

2 and cost functions C1.z1/ D c1

�

z1

˛1

�1=ˇ1

and C2.z2/ D
c2

�

z2

˛2

�1=ˇ2

, the market share attraction game is identical to an oligopoly game

with isoelastic market demand function which we have discussed in the previous
chapter. Therefore, the results obtained there are valid for market share attraction
games as well.

Recall that ˇ1 and ˇ2 are the elasticities of the products’ attractions with respect
to the marketing efforts. Hence, we typically have ˇi 2 .0; 1/, or 1=ˇi >1, so the
functions C1 and C2 are strictly convex. Consequently, in applications a unique
Nash equilibrium is obtained. In the general case, a closed-form solution for the
Nash equilibrium cannot be given. However, for the symmetric case, that is for
identical elasticities ˇ1 D ˇ2 D ˇ; identical marginal costs of effort c1 D c2 D c;

and identical effectiveness parameters ˛1 D ˛2; the Nash equilibrium can be easily
calculated. It is characterized by identical efforts of the two competitors,

E� D
�

Aˇ

4c
;
Aˇ

4c

�

: (4.3)
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In the existing literature, market share attraction models are predominantly used
in a static framework. In this literature, similarly to that on oligopolistic competition,
the emphasis of the investigation lies on demonstrating the existence and uniqueness
of Nash equilibria (see Friedman (1958), Mills (1961) and Schmalensee (1976))
and on studying the properties of these Nash equilibria (see Monahan (1987) and
Karnani (1985)). Only a few papers have addressed the problem of local stability
of these equilibria (Schmalensee (1976) and Balch (1971)), but issues concerning
the global dynamics of these types of models have been completely disregarded.
This is quite surprising, since Schmalensee (1976) remarked: “Ideally, analysis of
the dynamic behavior of a model of this sort away from equilibrium can perform
two services. First, if it turns out that additional parameter restrictions are needed
to ensure global stability, more comparative static information may be obtained.
Second, such analysis can provide a further test of the model’s plausibility, since
systems that go to equilibrium only if they begin life in a neighborhood thereof are
unattractive.” (p. 502). One reason for a lack of understanding of the global proper-
ties of dynamic models is apparently that there has been a lack of appropriate meth-
ods to carry out such an analysis. In this subsection we will introduce a dynamic
version of a market share attraction model. We will assume that competitive effort
allocations for the two brands are adaptively adjusted over time, and characterize
the global properties of this model. Our main concern here is to provide a rigorous
description of the set of initial effort allocations which leads to convergence to the
Nash equilibrium, and the changes of this set if parameters of the model are varied.

A dynamic version of a market share attraction model can, for example, be
obtained on the basis of marginal profits. We assume that at time t the marketing
efforts of the next period, x1.t C 1/ and x2.t C 1/, are determined according to the
adjustment process

x1 .t C 1/ D x1 .t/C �1.x1.t//

�

@'1 .x1 .t/ ; x2 .t//

@x1

�

;

x2 .t C 1/ D x2 .t/C �2.x2.t//

�

@'2 .x1 .t/ ; x2 .t//

@x2

�

:

(4.4)

Notice that this dynamic process is a generalization of the gradient adjustment pro-
cess, since in this case the constant speeds of adjustment of each firm are replaced
by speeds of adjustment dependent on the marketing effort of the particular firm. In
Sect. 1.3.3 a similar model was examined.

The expressions �i .�/ determine by how much efforts can vary from period to
period and they can be interpreted as the “speeds of reaction.” Obviously, the steady
states of the dynamical system (4.4) are given as solutions of the equations

�1.x1/
@'1

@x1

D 0; �2.x2/
@'2

@x2

D 0:

Any interior Nash equilibrium of the underlying market share attraction game
is obtained as the positive solution of the first order conditions @'1=@x1 D 0;
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@'2=@x2 D 0 assuming that the second order conditions are satisfied. Note, how-
ever, that fixed points which are not Nash equilibria may exist. Furthermore, it
should be mentioned that the functional form of the speeds of reaction �i .�/ are
inconsequential for the computation of the Nash equilibrium.

To keep our analysis simple, we will assume that �1.x1/D v1x1 and �2.x2/D
v2x2. In economic terms, the dynamical system then incorporates the idea that the
relative change in marketing efforts is proportional to the marginal profits, where the
positive parameters v1 and v2 are the proportionality factors. Using the expressions
for the market shares s1 and s2 given in (4.1) and the profits in (4.2), the resulting
dynamic market share attraction model (4.4) can be written as

T W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

x1 .t C 1/ D .1 � v1c1/x1 .t/C v1ˇ1Ak
x1.t/

ˇ1x2.t/
ˇ2

�

x1.t/ˇ1 C kx2.t/ˇ2

	2
;

x2 .t C 1/ D .1 � v2c2/x2 .t/C v2ˇ2Ak
x1.t/

ˇ1x2.t/
ˇ2

�

x1.t/ˇ1 C kx2.t/ˇ2

	2
;

(4.5)

where k D ˛2=˛1. The two-dimensional map

T W .x1.t/; x2.t// ! .x1.t C 1/; x2.t C 1//

generates the sequences of marketing efforts resulting from the decisions of the two
competitors. The corresponding market shares are then obtained via (4.1).

4.1.1 Local Stability

Although the Jacobian matrix for our dynamical system can be easily derived, the
fact that the Nash equilibrium for the general case cannot be given in closed-form
makes a standard stability analysis intractable. Here we have to rely on numerical
methods. However, for the symmetric case, where ˇ1 D ˇ2 D ˇ; c1 D c2 D c;

˛1 D ˛2 D ˛, and v1 D v2 D v, an analytic characterization of the local stability
properties of the symmetric equilibrium (4.3) is possible. In this case, the Jacobian
matrix computed at the Nash equilibrium E� becomes .1 � vc/I, where I is the
identity matrix. Therefore, in the symmetric case the unique Nash equilibrium (4.3)
is locally asymptotically stable if 0 < vc < 2 (see Bischi and Kopel (2003b), for
more details).

4.1.2 The Feasible Set and Global Stability

We now turn to the question as to whether the Nash equilibrium is globally stable
and if so, under which conditions. Obviously, it only makes sense to consider sit-
uations where both firms expend positive efforts. That is, mathematically the map
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(4.5) is defined only for positive values of the dynamic variables x1 and x2. Conse-
quently, the first question that arises is, under which conditions does the sequences
of efforts remain positive? Given initial efforts x1.0/; x2.0/, we will say that a tra-
jectory is feasible if .x1.t/; x2.t// D T t .x1.0/; x2.0//; t D 0; 1; 2; : : : is entirely
contained in the positive orthant R

2C D f.x1; x2/jx1>0 and x2>0g. The feasible
set is the subset of R

2C whose points generate feasible trajectories.
For our dynamical system it is obvious that under the conditions vici < 1 for

i D 1; 2, it follows that if the efforts in period t are positive, then the efforts in
the subsequent period are positive as well. That is, if .x1 .t/ ; x2 .t// 2 R

2C then
.x1.t C 1/; x2.t C 1// 2 R

2C: Furthermore, it is easy to check that any feasible tra-
jectory of our dynamical system is bounded (Bischi and Kopel (2003b)). Hence, the
conditions v1c1 < 1 and v2c2 < 1 are sufficient for the feasibility and boundedness
of all points in R2C. It turns out that these conditions are also necessary for the feasi-
bility of the whole region R

2C. If at least one of these two inequalities does not hold,
then points of R

2C exist that generate infeasible trajectories. In order to see this,
note first that the coordinate axes are invariant: xi .t/ D 0 implies xi .t C 1/ D 0.
The dynamics along the invariant xi -axis is governed by the one-dimensional linear
map

xi .t C 1/ D .1 � vici /xi .t/ : (4.6)

For example, if v1c1 < 1, then given a point .x1; 0/, with x1 >0, the map (4.6)
generates a sequence of points on the x1-axis with x1 >0. By continuity, the same
holds for points .x1; x2/ with arbitrarily small x2. Hence, in this case the feasible
region includes the x1-axis. Instead, if v1c1>1, then a point .x1; 0/, with x1>0,
generates a negative point after the first iteration of (4.6). In this case the whole x1-
axis must belong to the set of infeasible points. Clearly, the same reasoning applies
to the x2-axis.

In order to obtain an exact delineation of the boundary of the feasible region, we
consider the invariant coordinate axes and their preimages. The map T is a nonin-
vertible map. If we consider a generic point

�

0; x0
2

	

, x0
2 >0, on the x2-axis, then its

preimages are the positive solutions of the system

.1 � v1c1/x1

�

x
ˇ1

1 C kx
ˇ2

2

�2 C v1ˇ1Akx
ˇ1

1 x
ˇ2

2 D 0;

..1 � v2c2/x2 � x0
2/
�

x
ˇ1

1 C kx
ˇ2

2

�2 C v2ˇ2Akx
ˇ1

1 x
ˇ2

2 D 0;

obtained from (4.5) with xi .t/ D xi as unknowns and x1.tC1/ D 0, x2.tC1/ D x0
2

taken as parameters. If v2c2 < 1; then one solution always exists on the x2-axis. It
is given by x1 D 0, x2 D 1

1�v2c2
x0

2. Solutions with x1 >0 cannot exist if v1c1<1,
because in this case the first equation can never be satisfied. On the other hand,
if v1c1>1, two preimages with x1 >0 exist. They are located on the curves with
equation
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x2 D
(

x
ˇ1�1
1

2k.v1c1 � 1/

�

v1ˇ1A� 2.v1c1 � 1/x1 ˙
q

v21ˇ
2
1A

2 � 4v1ˇ1A.v1c1 � 1/x1

�

) 1
ˇ2

:

(4.7)

The same arguments, applied to the preimages of a generic point of the x1-axis
�

x0
1; 0

	

, can be used to prove that points of the invariant x1-axis have preimages in
the positive quadrant R

2C only if v1c1 >1. Such preimages are located on the curves
with equation

x1 D
(

kx
ˇ2�1
2

2.v2c2 � 1/

�

v2ˇ2A� 2.v2c2 � 1/x2 ˙
q

v22ˇ
2
2A

2 � 4v2ˇ2A.v2c2 � 1/x2

�

) 1
ˇ1

: (4.8)

These results on the preimages of the invariant axes are of crucial importance to
determine the boundaries of the feasible region, as we will now demonstrate. Let us
first look at the symmetric case, where all parameters of the competitors are iden-
tical. Recall that the Nash equilibrium E� given in (4.3) is locally asymptotically
stable if 0< vc < 2. From the arguments above, we know that 0< vc <1 is suffi-
cient and necessary for any trajectory to be feasible and bounded, hence it is also a
necessary condition for the global stability of E�. Indeed, we numerically see that
whenever 0< vc < 1, the basin of attraction of E� is given by the whole positive
quadrant R

2C, so that the Nash equilibrium is globally stable. On the other hand,
the results given above also show that this is no longer true if 1< vc <2. In this
case the basin B.E�/ is a proper subset of the positive quadrant R

2C, and this subset
is bounded by the preimages of the coordinate axes. Figure 4.1 illustrates the sit-
uation for vcD 1:05>1. The white region represents the basin of attraction of the
Nash equilibrium E�, and the black region indicates the infeasible set of marketing
efforts. As the figure shows, the rank-1 preimages (denoted by .X1/�1 and .X2/�1)
of the axes are curves starting at the origin, they are symmetric with respect to the
diagonal, and join at the rank one preimage of the origin O�1 D . vmBˇ

4.vc�1/
; vmBˇ

4.vc�1/
/:

Thus, for vc > 1, the length of the segmentOO�1 gives a rough idea of the extent of
the feasible region. If vc is decreased below 1, thenE� becomes globally stable. For
vcD 1 a global bifurcation occurs which causes the feasible set to be bounded. If vc
is further increased, with the other parameters held constant, the feasible set shrinks.
If vc is increased beyond the value vcD 2, then the Nash equilibrium loses its sta-
bility and becomes repelling, and we numerically see that the generic trajectory then
becomes infeasible.

To conclude this subsection, we now briefly turn to the question of the robustness
of the results derived for the case of identical competitors. That is, we are trying to
see if the qualitative descriptions given above are still valid if we assume that the
parameters which characterize the two competitors and their effort decisions are dif-
ferent. It turns out that the answer is yes. Also in this case, if vici <1 for i D 1; 2, the
feasible region coincides with the whole positive quadrant R

2C, because no preim-
ages of the coordinate axes exist inside R

2C. Our numerical simulations show that the
Nash equilibrium in this case is globally asymptotically stable. Every combination
of initial marketing efforts in R

2C generates a sequence of efforts which converges to
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(X1)−1

(X2)−1

E*

O−1

11

110

x2

x1

Fig. 4.1 The market share attraction game – the symmetric case. The white region represents the
basin of attraction of the stable Nash equilibrium E�, the black region represents the infeasible
set. This figure is obtained with parameters A D 20; k D 1, v1 D v2 D 0:35, ˇ1 D ˇ2 D 0:3,
c1 D c2 D 3

the equilibrium of the market share game. Like in the symmetric case, a wide range
of parameter values exist such that the Nash equilibrium is stable. If one (or both)
of the above inequalities is (are) reversed, then the Nash equilibrium only attracts
points of the feasible set, which no longer covers the whole area R

2C. The bound-
ary of the feasible set can then be again determined using (4.8) and (4.7). This can
be seen as follows. If v1c1<1 and v2c2>1, then the feasible set is an unbounded
region (extending for arbitrarily large x1) with the upper boundary formed by the
rank-1 preimage of the x1-axis, say .X1/�1 (see Fig. 4.2a). The equation of this
preimage is given by (4.8) with the “C” sign. The curve .X1/�1 is tangent to the
x1-axis at the origin. Analogously, if v1c1>1 and v2c2<1, then the feasible set
is an unbounded region (extending for arbitrarily large x2) with the right boundary
formed by the rank-1 preimage of the x2-axis, say .X2/�1, whose equation is given
by (4.7) with the “C” sign.

If both inequalities are reversed, so that v1c1>1 and v2c2>1, then the feasi-
ble set is a bounded region, whose boundary is formed by the curves .X1/�1 and
.X2/�1, starting at the origin O tangent to the axes and intersecting at the preim-
age of the origin O�1 (see Fig. 4.1). Hence, the conditions vici D 1 and vj cj >1,
i ¤ j , denote the occurrence of a global bifurcation, at which the feasible region
is changed from unbounded to bounded. It should be noticed that other bifurca-
tions that change the topological structure of the boundaries of the feasible region
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(X1)−1

E *

3

110 x1

x2

(a)

E*

c2

3

110

(X1)−2

(X1)−1 (X1)−3

(X2)−1

c1

x1

x2

(b)

Fig. 4.2 The market share attraction game – the asymmetric case. (a) The parameters are A D 20;

k D 1:2; v1 D v2 D 0:3; ˇ1 D 0:5; ˇ2 D 0:3; c1 D 3; c2 D 4 so that v1c1 < 1 and v2c2 > 1.
The basin of attraction of the Nash equilibrium E� is unbounded along the x1-direction, since
v1c1 < 1. (b) With v1 D 0:75; v2 D 0:91; c1 D 3; c2 D 2 so that now v1c1 > 1 and v2c2 > 1. The
Nash equilibrium E� is unstable and a stable cycle of period two attracts the trajectories that start
in the white region: one of these trajectories, starting from an initial condition close to the Nash
equilibrium is represented by a sequence of dots

may occur. This is due to the fact that higher order preimages of the coordinate axes
appear inside R

2C. In fact, in the situation depicted in Fig. 4.2b, a preimage of rank-k
of a coordinate axis bounds a region of the phase space whose points are infeasible,
since points in this set are mapped into points with a negative coordinate after k
iterations. Two such regions are shown and they have the shape of small lobes start-
ing from O and O�1. They are bounded by preimages of rank-2 and rank-3 of the
x1-axis, say .X1/�2 and .X1/�3.

The Nash equilibrium loses stability as one or both of the expressions vici are
increased even further. In contrast to the symmetric case, more complex bounded
attractors (such as periodic cycles) may exist around the unstable Nash equilib-
rium. Hence, in the asymmetric case the long-run dynamics may be characterized
by bounded periodic (or even aperiodic) oscillations around the Nash equilibrium.
However, the occurrence of such local bifurcations, at which new bounded attract-
ing sets appear inside the feasible region, is not related to the global bifurcations
that change the shape of the boundaries of the feasible region. Further details on
the global dynamics of market share attraction models can be found in Bischi and
Kopel (2003b) and Bischi et al. (2000a).

4.2 Labor-Managed Oligopolies

Suppose that N firms produce a single good, or offer identical services and the
payoff function of each firm is the surplus per labor unit of the firm. If f denotes
the price function,W the competitive wage rate, dk the fixed cost of firm k, and hk
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the number of labor units in firm k as a function of its production level xk , then the
payoff of firm k is given as

'k.x1; : : : ; xN / D xkf .Q/�W hk.xk/ � dk

hk.xk/
; (4.9)

with Q D PN
lD1 xl as before. Here the total production costs are given by

Ck.xk/ D W hk.xk/C dk :

Notice that no externalities are included in this model.
The existence of the static Nash equilibrium has been proved by Okuguchi (1996)

under realistic conditions. This result has been also discussed in detail in Okuguchi
and Szidarovszky (1999).

In this section we assume that the price function f and the functions hk , for all
k, are twice continuously differentiable. Furthermore, we assume that

(A) f 0.Q/<0;

(B) xkf
00.Q/C f 0.Q/<0;

(C) h0
k
.xk/> 0; and h00

k
.xk/ � 0,

for all k and all feasible values of xk and Q.
Condition (C) states that the functions hk are convex and increasing, which

means that for additional outputs increasingly more labor units are required.
Consider an interior equilibrium. In its neighborhood the best response of firm k

is the solution of the single variable equation

@'k

@xk
D Œf .xk CQk/C xkf

0.xk CQk/�hk.xk/� Œxkf .xk CQk/� dk�h
0
k.xk/

hk.xk/2
D 0;

which can be written as

Œf .xk CQk/Cxkf
0.xk CQk/�hk.xk/�Œxkf .xk CQk/�dk�h

0
k.xk/ D 0: (4.10)

Notice that the derivative of the left hand side with respect to xk is given by

.2f 0 C xkf
00/hk � .xkf � dk/h

00
k:

Under assumptions (A) and (B), the first term is negative. If we make the natu-
ral assumption that at the equilibrium the firms have non-negative payoffs, then the
second term is non-positive, so the derivative of the left hand side of (4.10) is neg-
ative. Therefore in the neighborhood of the equilibrium the best response function
is unique. By implicitly differentiating (4.10) with respect to Qk and noting that
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xk D Rk.Qk/ we have




f 0.1CR0
k/CR0

kf
0 C xkf

00.1CR0
k/
�

hk C 


f C xkf
0�h0

kR
0
k

� 


R0
kf C xkf

0.1CR0
k/
�

h0
k � Œxkf � dk� h

00
kR

0
k D 0;

implying that

R0
k D �.f 0 C xkf

00/hk C xkf
0h0

k

.2f 0 C xkf 00/hk � .xkf � dk/h
00
k

: (4.11)

Notice that the denominator coincides with the derivative of the left hand side of
(4.10). As we have just shown above, this expression is negative. The first term of
the numerator is positive and the second term is negative. Therefore R0

k
does not

have a definite sign, however it is easy to see that R0
k
> � 1 always holds.

Example 4.1. Consider linear price and labor functions, f .Q/DA � BQ; and
hk.xk/D qk C pkxk with all coefficients being positive. In this case f 0 D � B;

f 00 D 0; h0
k

Dpk and h00
k

D 0 so that

R0
k D B.qk C pkxk/C xk.�B/pk

�2B.qk C pkxk/
D � qk

2.qk C pkxk/
;

which lies between �1
2

and 0. Therefore the rk D R0
k
. NQk/ values satisfy the con-

ditions that hold in the concave oligopoly case, so the asymptotic properties of this
model are the same as those discussed for concave oligopolies in Chap. 2.

In the general case however the R0
k
. NQk/ values can be positive. Contrary to the

case of isoelastic price functions there is the possibility that more than one firm has
positive rk values.

Labor-managed oligopolies were introduced and first discussed by Ward (1958).
Hill and Waterson (1983) investigated profit maximizing and labor-managed mod-
els with identical cost functions. The non-symmetric case was examined by Neary
(1984). The works of Okuguchi (1993) and Okuguchi (1996) contain the most
general existence results.

4.2.1 Discrete Time Models and Local Stability

The dynamic models with discrete time scales have exactly the same general forms
as the best response dynamics with adaptive expectations (1.28)–(1.29) and the par-
tial adjustment towards the best response (1.30) in the case of concave oligopolies.
Therefore the eigenvalue equation is also the same as given in (2.24), which we
repeat here for the sake of convenience:

s
Y

j D1

�

1 � aj .1C rj / � �	mj

2

41C
s
X

j D1

�j

1 � aj .1C rj /� �

3

5 D 0: (4.12)
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Here we assume that ak D ˛0
k
.0/>0 for all firms, the different ak.1 C rk/ values

are
a1.1C r1/ > a2.1C r2/> � � � >as.1C rs/;

and these values are repeated m1; m2; : : : ; ms times, respectively, among the N
firms. The value of �j is the sum of all products rkak such that ak.1Crk/D aj .1C
rj /. If �j ¤ 0 andmj D 1, then 1�aj .1C rj / is not an eigenvalue of the Jacobian,
and if �j D 0 ormj � 2, then 1�aj .1C rj / is an eigenvalue. Since rj > �1, these
eigenvalues are inside the unit circle, if 1 � aj .1C rj /> � 1, that is, when

aj .1C rj /< 2:

Let g.�/ denote the bracketed factor in (4.12). It is easy to see that

lim
�!˙1

g.�/ D 1;

lim
�!1�aj .1Crj /˙0

g.�/ D
(

˙1; if �j <0;

�1; if �j >0:

Since the derivative of g has no definite sign, no monotonocity property of g can
be established. Notice in addition, that all poles 1� aj .1C rj / are less than 1. The
possible presence of complex conjugate roots makes stability analysis intractable
in the general case. In such cases computational methods can be used to find the
roots and check stability conditions. However, if there is at most one sign change in
sequence �1; �2; : : : ; �s and it is from “�” to “C”, then we always have only real
eigenvalues and we can derive simple stability conditions.

Case 1. All �j >0. The graph of g.�/ is as shown in Fig. 4.3. Clearly all roots are
real, and all are between �1 and C1 if all poles are larger than �1 and
g.1/>0:

Case 2. All �j <0. Then the graph of g.�/ is as illustrated in Fig. 4.4. All roots are
real and they are between �1 and C1 if all poles are larger than �1 and
g.�1/>0.

Case 3. There is a sign change in the sequence �1; �2; : : : ; �s. The corresponding
graph of g is shown in Fig. 4.5. We have again s real roots and they are
between �1 and C1, if all poles are larger than �1 and both g.�1/ and
g.1/ are positive.

We note that conditions g.�1/>0 and g.1/>0 can be rewritten as (2.22) and

N
X

kD1

rk

1C rk
<1;

respectively.

Example 4.2. Consider again the linear case examined in the previous example and
assume that hk.0/ D 0 for all k, that is, qk D 0. Then R0

k
D 0 for all k, so Rk
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λ
1−a1(1+r1) 1−a2(1+r2) 1−aS–2(1+rS–2) 1−aS–1(1+rS–1) 1−aS(1+rS)

Fig. 4.3 The discrete time model of labor-managed oligopolies. The determination of the
eigenvalues that are roots of the graph of g.�/, plotted here for �j > 0 for all j

λ
1−a1(1+r1) 1−a2(1+r2) 1−aS–1(1+rS–1) 1−aS(1+rS)

Fig. 4.4 The discrete time model of labor-managed oligopolies. The determination of the
eigenvalues that are roots of the graph of g.�/, plotted here for �j < 0 for all j

has to be constant. This property also follows directly from the special form of the
payoff function

'k.x1; : : : ; xN / D xk.A� Bxk � BQk/� dk

pkxk

�W (4.13)

D � dk

pkxk

C
�

A � Bxk � BQk

pk

�W
�

; (4.14)
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λ
1−a1(1+r1) 1−a2(1+r2) 1−aS–1(1+rS–1) 1−aS(1+rS)

Fig. 4.5 The discrete time model of labor-managed oligopolies. The determination of the
eigenvalues that are roots of the graph of g.�/, plotted here with a sign change in the �j values

which is clearly strictly concave. The first order condition

dk

pkx
2
k

� B

pk

D 0

implies that

xk D
r

dk

B
;

and this is independent of the output selections of the competitors. Hence there is
a unique equilibrium with Nxk D p

dk=B for all k, and since R0
k

� 0, the matrix
(2.20) becomes diagonal with diagonal elements 1� a1; : : : ; 1� aN , which are the
nonzero eigenvalues of the Jacobian. So the equilibrium is locally asymptotically
stable if aj <2 for all j and is unstable if for at least one j , aj >2.

Example 4.3. Let us modify the payoff function (4.13) of Example 4.2 by assuming
an isoelastic price function and that the labor-independent cost is a linear function
of the output xk . In this case we have

f .Q/ D A

Q
; hk.xk/ D pkxk ; Ck.xk/ D dk C ckxk ;

so that

'k.x1; : : : ; xN / D
xk � A

xk CQk

� .dk C ckxk/

pkxk

�W

D A

pk.xk CQk/
�W � ck

pk

� dk

pkxk

: (4.15)
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Assuming an interior optimum in xk , the first order condition is

� A

pk.xk CQk/2
C dk

pkx
2
k

D 0;

implying that

Rk.Qk/ D
p
dkp

A � p
dk

Qk: (4.16)

In order to ensure that xk >0, we have to assume that dk <A for all k. Simple dif-
ferentiation shows that the second order conditions are satisfied at the best response.
Next we will show the existence of infinitely many equilibria under realistic condi-
tions. From (4.16) and noting that xk D Rk.Qk/ we find that

Q D Qk C xk D
 

1C
p
A � p

dkp
dk

!

xk D xk

p
Ap
dk

;

implying that

1 D

N
P

kD1

xk

Q
D

N
P

kD1

p
dk

p
A

:

The payoff of firm k at any equilibrium is

A

pk
NQ �W � ck

pk

� dk

pk Nxk

D A

pk
NQ
�

1 �
p
dkp
A

�

�W � ck

pk

;

which is positive for all k if NQ is sufficiently small, in particular if NQ satisfies

NQ< min
k

( p
A.

p
A� p

dk/

pkW C ck

)

:

Hence we have shown that if dk <A for all k, then positive equilibria exist if and
only if

N
X

kD1

p

dk D p
A: (4.17)

In this case there are infinitely many equilibria, and the set of equilibria are all points
on the ray

Nxk D
p
dkp
A

NQ (4.18)

for any NQ>0. In addition, if NQ is sufficiently small, then the profits of all firms are
positive at the equilibrium.
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From (4.16) we know that the derivatives of the best response functions are

rk D R0
k.Qk/ D

p
dkp

A� p
dk

; (4.19)

and simple substitution of � D 1 into the eigenvalue equation (4.12) of the Jacobian
shows that it is always an eigenvalue.1 Therefore we cannot establish local asymp-
totic stability in the usual sense. This result clearly should be the case, since a small
move away from any given equilibrium along the ray (4.18) would result in another
equilibrium and since the state remains there for all future time, the trajectory of the
state variable does not converge back to the original equilibrium.

Example 4.4. We will consider now a special N -firm labor-managed oligopoly.
Assume that the firms have identical capacity limits, L, and the price function is
f .Q/ D LN � Q. Notice that the price is always non-negative. We also assume
that the number of labor units is a quadratic function for each firm, hk.xk/ D pkx

2
k

.
Then the profit (4.9) per labor unit of firm k is given by

xk.LN � xk �Qk/ �Wpkx
2
k

� dk

pkx
2
k

D LN �Qk

pkxk

� dk

pkx
2
k

� .
1

pk

CW /:

Notice that the value of pk has no effect on the best response of firm k, it only
affects the optimal profit. The derivative of this profit function can be written as

�LN �Qk

pkx
2
k

C 2dk

pkx
3
k

D 1

pkx
3
k

.2dk � xk.LN �Qk//;

implying that the profit function is increasing for xk <2dk=.LN � Qk/ and
decreasing if xk >2dk=.LN �Qk/. So the stationary point is

z�
k D 2dk

LN �Qk

:

Since z�
k

is necessarily positive, the best response of firm k is

Rk.Qk/ D
(

z�
k
; if z�

k
� L,

L; if z�
k
>L,

which is illustrated in Fig. 4.6. If LN � 2dk=L � 0, then Rk.Qk/ D L for all Qk .
We can also show that 0< rk <1 if the best response is interior. In this case

rk D R0
k.Qk/ D 2dk

.LN �Qk/2
D z�

k
2

2dk

>0:

1 Recall the definition of �j above (2.24), and make use of (4.17) and (4.19).
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Qk

LN−
2dk
L

LN

Rk

L

0

2dk
LN

Fig. 4.6 Example 4.4; the discrete time model of an N -firm labor-managed oligopoly. Linear
price function and quadratic labor unit functions. Best response of firm k

From the first order condition we have

�z�
k.LN �QC z�

k/C 2dk D 0;

so that
z�2
k D 2dk � z�

k.LN �Q/;

implying that

rk D 2dk � z�
k
.LN �Q/

2dk

<1:

Hence Case 1 (shown in Fig. 4.3) occurs with all �j >0, so the equilibrium is locally
asymptotically stable if for all k,

ak.1C rk/ < 2

and
N
X

kD1

rk

1C rk
<1:

Since
rk

1C rk
D 1

1C 1
rk

<
1

2
;



4.2 Labor-Managed Oligopolies 157

the local asymptotic stability of the equilibrium is guaranteed forN D 2 and ak � 1

for k D 1; 2. Since the best response functions are continuous, the N -dimensional
best response mapping

R.x1; : : : ; xN / D
 

R1

 

X

l¤1

xl

!

; : : : ; RN

 

X

l¤N

xl

!!

maps the convex compact set XN
kD1

Œ0; Lk� into itself, the Brouwer fixed point the-
orem guarantees the existence of at least one equilibrium. The uniqueness of the
equilibrium however cannot be guaranteed as the following example shows.

Example 4.5. In Example 4.4 selectN D 3,L D 4, dk D 8:5 .k D 1; 2; 3/. We can
easily show that both Nx.1/

k
D 3�p

0:5 and Nx.2/

k
D 3Cp

0:5 are symmetric equilibria

by verifying that both satisfy the best response relations. Clearly 0 � Nx.i/

k
� L for

all k and i , furthermore

Rk. NQ.i/

k
/ D 2dk

LN � NQ.i/

k

D 2dk

LN � 2 Nx.i/

k

D 17

12 � 2.3� p
0:5/

D 8:5

3˙ p
0:5

D 8:5

3˙ p
0:5

� 3� p
0:5

3� p
0:5

D 8:5.3� p
0:5/

9� 0:5

D 3� p
0:5 D Nx.i/

k
:

Okuguchi and Szidarovszky (1999) discussed the discrete time dynamic model of
the linear case given in Example 4.1. The general nonlinear case with local stability
analysis has been examined in Li and Szidarovszky (1999b). The equilibrium anal-
ysis of Example 4.3 has been presented in Li et al. (2003) but no stability analysis
was given in the discrete time case.

4.2.2 Discrete Time Models and Global Dynamics

The global dynamic behavior in discrete-time labor-managed oligopolies is first
illustrated with the following example.

Example 4.6. Consider again the situation of Example 4.4. We now consider a semi-
symmetric oligopoly, that is, firms k, with k � 2, have identical fixed costs, dk D
d2 (k � 2), identical constant speeds of adjustment ak D a2 (k � 2), as well as
identical initial outputs. Then their entire trajectories are identical. In this case as
beforeQ1 D .N � 1/x2 andQ2 D x1 C .N � 2/x2. If we assume that the capacity
limits of all firms are identical and equal to L, and the firms use partial adjustment
towards the best response to update their quantity selections, then the adjustment
process is represented by the two-dimensional dynamical system
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x1.t C 1/ D .1 � a1/x1.t/C a1R1 ..N � 1/x2.t// ;

x2.t C 1/ D .1 � a2/x2.t/C a2R2 .x1.t/C .N � 2/x2.t// ;

with 0<a1; a2 � 1. From the expression of the best response Rk.Qk/ of firm k in
Example 4.4, we obtain

x1.t C 1/ D .1 � a1/x1.t/C a1

�

min

�

2d1

LN � .N � 1/x2

; L

��

;

x2.t C 1/ D .1 � a2/x2.t/C a2

�

min

�

2d2

LN � x1.t/ � .N � 2/x2.t/
; L

��

:

The presence of capacity constraints makes the resulting dynamical system piece-
wise differentiable. The phase space D D Œ0; L��Œ0; L� can be divided into different
subregions, denoted by D

.i/ in Fig. 4.7, inside which the dynamical system is differ-
entiable. These regions are separated by lines (or borders) of non-differentiability

b1 and b2, where b1 and b2 are represented by the equations x2 D NL2�2d1

.N �1/L
and

x2 D � 1
N �2

x1 C NL2�2d2

.N �2/L
respectively. Of course, some of these subregions may

be empty depending on the values of the model parameters. This subdivision is
important for the computation of the equilibria. In fact, interior equilibria are located
inside region D

.1/, where the dynamical system assumes the form

b1

b2

D(4) D(3)

D(2)

D(1)

L

L x10

x2

NL2−2d1

L(N−1)

Fig. 4.7 Example 4.6; the discrete time model of an N -firm labor-managed oligopoly in the semi-
symmetric case. Linear price function and quadratic labor unit functions. The phase space structure
in the plane of outputs
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T j
D.1/ W

8

ˆ

ˆ

<

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/C 2a1d1

LN � .N � 1/x2

;

x2.t C 1/ D .1 � a2/x2.t/C 2a2d2

LN � x1.t/ � .N � 2/x2.t/
;

and the equilibrium outputs are the solutions of the algebraic system

x1 D 2d1

LN � .N � 1/x2

;

x2 D 2d2

LN � x1.t/� .N � 2/x2.t/
;

provided that these solutions are inside the region D
.1/. The local asymptotic sta-

bility of any equilibrium point inside region D
.1/ is determined by the study of the

eigenvalues of the Jacobian matrix

J .1/ D

0

B

B

B

@

1 � a1

2a1d1.N � 1/
.LN � .N � 1/x2/

2

2a2d2

.LN � x1 � .N � 2/x2/
2
1 � a2 C 2a2d2.N � 2/

.LN � x1 � .N � 2/x2/
2

1

C

C

C

A

:

computed at the equilibrium. However, boundary equilibria can also exist, located
in regions D

.i/, i D 2; 3; 4. For example, in the region D
.2/, where the map assumes

the form

T j
D.2/ W

8

<

:

x1.t C 1/ D .1 � a1/x1.t/C 2a1d1

LN � .N � 1/x2

;

x2.t C 1/ D .1 � a2/x2.t/C a2L;

we can have a boundary equilibrium with coordinatesE D .x1; x2/ D .2d1=L;L/

2 D
.2/, provided that x2<

NL2�2d1

.N �1/L
and x2> � 1

N �2
x1 C NL2�2d2

.N �2/L
. This holds ifp

2d1<L<
p
d1 C d2. It is clear that if the equilibrium E exists, that is if the

above inequalities are satisfied, then it is locally asymptotically stable, because
inside the region D

.2/ the Jacobian matrix is triangular with eigenvalues .1 � a1/

and .1 � a2/. Similar arguments apply to the region D
.3/, where the map assumes

the form

T j
D.3/ W

�

x1.t C 1/ D .1 � a1/x1.t/C a1L;

x2.t C 1/ D .1 � a2/x2.t/C a2L;

and a boundary equilibrium of coordinates E 0 D � Nx0
1; Nx0

2

	 D .L;L/ 2 D
.3/ exists

provided that Nx0
2>

NL2�2d1

.N �1/L
and Nx0

2> � 1
N �2

Nx0
1 C NL2�2d2

.N �2/L
, which imply that

L< min
�p
2d1;

p
2d2

	

. Whenever these inequalities are satisfied, then the bound-
ary point .L;L/ is a locally asymptotically stable equilibrium, since the Jacobian
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2

2

0
10.5 1.5 2 2.5 3 3.5

0

L

2
x

1
x

Fig. 4.8 Example 4.6; the discrete time model of an N -firm labor-managed oligopoly in the semi-
symmetric case. Linear price function and quadratic labor unit functions. Bifurcation diagrams of
outputs with respect to the common capacity constraint L

matrix in the region D
.3/ is diagonal with eigenvalues .1 � a1/ and .1 � a2/.

These results stress the important role of the capacity constraints in the global
dynamic properties of the discrete-time labor-managed oligopoly model. This can
be also clearly seen by considering the bifurcation diagram in Fig. 4.8, obtained
with the numerical values N D 5, d1 D 1, d2 D 2, a1 D 0:9, a2 D 0:8 and capacity
constraint L taken as a bifurcation parameter varying in the range Œ0:5; 4�. As long
as L<

p
2d1 D p

2, the only global equilibrium is E 0 D .L;L/. Numerically,
this equilibrium appears to be globally asymptotically stable (see also Fig. 4.9(a)
obtained for L D 1). For

p
2d1<L<

p
d1 C d2, i.e.,

p
2<L<

p
3 in our numer-

ical example, the unique equilibrium is E D .2d1=L;L/, and also in this case it
numerically appears to be globally asymptotically stable (see for example Fig. 4.9(b)
obtained for L D 1:5).

However, the existence of boundary equilibria does not exclude the coexistence
of interior equilibria. Indeed, in our numerical example, as the capacity limit L is
further increased a saddle node bifurcation leads to the creation of two interior equi-
libria in the region D

.1/. They are denoted by E1 and E2 in Fig. 4.10a, obtained
with LD 1:55, where E1 is a stable node and E2 is a saddle point. As long as the
inequality

p
2<L<

p
3 holds, the stable node E1 coexists with the stable bound-

ary equilibrium E, each with its own basin of attraction. In Fig. 4.10a the white
portion of the strategy space D D Œ0; L� � Œ0; L� represents the basin of the inte-
rior equilibrium E1 and the grey shaded region represents the basin of the locally
asymptotically stable boundary equilibrium E. The boundary that separates these
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L

L

D(3)

D(2)

D(1)
b2

b1

1.1

0 1.1

E ′

x1

x2

(a)

L

L

1.6

0 1.6

b2

b1ED(2)

D(1)

x1

x2

(b)

Fig. 4.9 Example 4.6; the discrete time model of an N -firm labor-managed oligopoly in the semi-
symmetric case. Linear price function and quadratic labor unit functions. (a) The phase space for
L D 1. (b) The phase space for L D 1:5

L

L0 1.7

b2

b1E
D(2)

D(1)

1.7

E1

E2

x1

x2

(a)

0

L

L

b1

1.9

D(2)

D(1)

1.9

E1

x1

x2

(b)

Fig. 4.10 Example 4.6; the discrete time model of an N -firm labor-managed oligopoly in the
semi-symmetric case. Linear price function and quadratic labor unit functions. (a) Co-existence of
interior equilibria and their basins of attraction forLD 1:55, (b) AtLD 1:8 the second co-existing
equilibrium E2 has disappeared and E1 becomes the unique and globally stable attractor

two basins is given by the stable set of the saddle point E2. A further increase of L
above the bifurcation value

p
d1 C d2 D p

3marks a remarkable qualitative change
in the global dynamic scenario: the boundary equilibrium E and the saddle point
E2 disappear (they exit the respective regions D

.1/ and D
.2/ after merging along

the boundary) and the interior equilibriumE1 remains the unique (and globally sta-
ble) attractor (see Fig. 4.10b obtained for LD 1:8). This explains the sudden jump
occurring at LD p

3 in the bifurcation diagram of Fig. 4.8.
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4.2.3 Continuous Time Models

The dynamic model with continuous time scales has the same form (1.31) as the
one introduced in Sect. 1.2 and applied in Chaps. 2 and 3 for concave and isoelastic
oligopolies. Therefore the Jacobian and its eigenvalue equation are also the same as
the one given in (2.48), which we repeat here for the sake of convenience:

s
Y

j D1

��aj .1C rj /� �
	mj

2

41 �
s
X

j D1

�j

aj .1C rj /C �

3

5 D 0; (4.20)

where a1.1Cr1/>a2.1Cr2/> � � � >as.1Crs/ are the different ak.1Crk/ values
and �j is the sum of all rkak values such that ak.1 C rk/D aj .1 C rj /. We also
assume that ak >0 for all firms. Since in general rk does not have a definite sign,
the same holds for �j . If �j D 0 or mj � 2, then �aj .1 C rj / is an eigenvalue of
the Jacobian. Notice that they are all negative, since rk > � 1. All other eigenvalues
are the solutions of the equation

1 �
s
X

j D1

�j

aj .1C rj /C �
D 0:

If g.�/ denotes again the left hand side of the above equation, then similarly to
the discrete time case we have

lim
�!˙1

g.�/ D1;

lim
�!�aj .1Crj /˙0

g.�/ D
(

˙1; if �j <0;

�1; if �j >0:

Since g0.�/ has no definite sign, no monotonicity property of g can be estab-
lished. Notice that all poles are negative. For the sake of mathematical simplicity
assume again that there is at most one sign change in the sequence �1; �2; : : : ; �s ,
and it is from “�” to “C”. Under this condition we have the same three possibilities
as in the discrete case (see Figs. 4.3–4.5), and the graph of function g is the same as
in the discrete case with the only difference being that all poles are now negative.

Case 1. All �j >0. Local asymptotic stability occurs if g.0/>0.
Case 2. All �j <0. Then the equilibrium is always locally asymptotically stable.
Case 3. There is a sign change in the sequence �1; �2; : : : ; �s . Local asymptotic

stability occurs if g.0/>0:
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Notice that the condition g.0/>0 can be rewritten as

N
X

kD1

rk

1C rk
<1;

which does not depend on the adjustment scheme, it depends only on the derivatives
of the best response functions.

Example 4.7. In the special case introduced earlier in Example 4.1 we have seen
that�1

2
<R0

k
<0, so �j <0 for all j . Therefore the equilibrium is always locally

asymptotically stable.

Example 4.8. Consider next the case of Example 4.3, where we have infinitely many
equilibria. By using the special form of rk given in (4.19) it can easily be proved that
zero is always an eigenvalue, so we cannot establish local asymptotic stability of the
equilibrium. Clearly this should be the case, since if the initial state is selected close
to any given equilibrium on the ray (4.18), then the state will remain there for all
future times and will not converge back to the original equilibrium. However Li et al.
(2003) have proved that the ray (4.18) is a strongly attracting set, meaning that any
point near the ray is attracted (that is, the trajectory starting at this point converges)
to some particular point on the ray. The basin of attraction contains a cone which is
centered at the ray. In order to prove this result the theory of differentiable manifolds
was used (see for example, Hirsch et al. (1977)), a topic the discussion of which
would take us beyond the scope of this book.

Models with continuously distributed time lags can be discussed in the same way
as was done in Chap. 2. The only difference being that there is no sign restriction on
the rk values.

Example 4.9. Consider again the symmetric case described by characteristic equa-
tion (2.58). The case �1< r < 0 has been examined in Sect. 2.6. In the case of r D 0,
the eigenvalues are �a and �.p=T /, both of which are negative implying the local
asymptotic stability of the equilibrium. That leaves us to consider the case r >0.
If T D 0 then (2.58) becomes

�C a � .N � 1/ar D 0

with solution
� D ..N � 1/r � 1/ a;

which is negative if r <1=.N � 1/ implying the local asymptotic stability of the
equilibrium. If r >1=.N � 1/ then the equilibrium is unstable.
If T >0 andmD 0, then (2.58) becomes the quadratic equation

�2T C �.1C aT /C a.1 � .N � 1/r/ D 0:
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Both roots have negative real parts if all coefficients are positive, which occurs
if 1 � .N � 1/r > 0. That is, if r <1=.N � 1/, then the equilibrium is locally
asymptotically stable, and if r >1=.N � 1/, then it is unstable.

In the case whenmD 1, the cubic equation (2.59) is obtained. All coefficients are
positive if r <1=.N � 1/, and the Routh–Hurwitz criterion shows that the eigenval-
ues have negative real parts if (2.61) is satisfied. Since all coefficients on the left
hand side are positive, this inequality always holds implying the local asymptotic
stability of the equilibrium. If r > 1=.N � 1/, then the equilibrium is unstable.

The special case of Example 4.1 has been examined in Okuguchi and Szidarovszky
(1999) with continuous time scales. The further special case of Example 4.3 with
infinitely many equilibria was investigated by Li et al. (2003), in which the theory
of differentiable manifolds was used to prove that the equilibrium ray is a strongly
attracting set.

4.3 Oligopolies with Intertemporal Demand Interaction

In this section we consider an N firm oligopoly without externalities, but with
intertemporal demand interaction. As in the earlier chapters, let f denote the market
price function andCk the cost function of firm k .1� k�N/. Intertemporal demand
interaction is often a realistic assumption, since previous consumption might satu-
rate the market, or might contribute to taste and habit formation for the consumers,
to mention only some of the most common phenomena.

Okuguchi and Szidarovszky (2003), Szidarovszky and Zhao (2006) and Chiarella
and Szidarovszky (2008b) introduced and analyzed various dynamic models that
extend the classical oligopoly models to include intertemporal demand interaction.
The special case of market saturation was examined by Szidarovszky et al. (2006).

Consider first discrete time scales, and let S.t/ represent the cumulative effect
of the earlier consumptions up to time period t . If for example, market saturation is
considered, then after each time period a certain proportion of goods already in use
by the consumers remains in usable condition, while the rest has to be replaced. It
is assumed that variable S.t/ follows the dynamic rule

S.t C 1/ D ˇSS.t/C
N
X

kD1

xk.t C 1/; (4.21)

where 0 � ˇS <1 is a given constant. This constant represents how past experience
with the product affects current demand, and in the case of market saturation it
shows the fraction of goods remaining in usable condition after each time period.

If we assume that the price depends on the current value of the variable S , then
the profit of firm k at time period t C 1 can be written as

xkf .xk CQk.t C 1/C ˇSS.t//� Ck.xk/ (4.22)
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where Qk D P

l¤k xl as before. If Rk

�

Qk.t C 1/
	

denotes the best response
function of firm k without intertemporal demand interaction, then Rk

�

Qk.t C 1/

CˇSS.t/
	

is the best response when it is taken into account. At time period t C 1;

when firm k makes its decision on its production level, the simultaneous decisions
of the competitors are not known, so instead of the true outputQk.t C 1/ of the rest
of the industry, firm k uses some expectationQE

k
.t C 1/ of this value. If we assume

best reply dynamics with the adaptive expectations scheme (1.18), then the resulting
dynamical system becomes

xk.tC1/DRk

0

@QE
k .t/C ˛k

0

@

X

l¤k

xl.t/ �QE
k .t/

1

A CˇSS.t/

1

A ; .1 � k � N/

(4.23)

QE
k .t C 1/ D QE

k .t/C ˛k

0

@

X

l¤k

xl.t/ �QE
k .t/

1

A ; .1 � k � N/ (4.24)

S.t C 1/ D ˇSS.t/C
N
X

kD1

Rk

0

@QE
k .t/C ˛k

0

@

X

l¤k

xl .t/ �QE
k .t/

1

AC ˇSS.t/

1

A ;

(4.25)
where ˛k is a sign-preserving function for all k.

Clearly . Nx1; : : : ; NxN ; NQE
1 ; : : : ;

NQE
N ;

NS/ is a steady state of the dynamical system
(4.23)–(4.25) if and only if for all k,

NQE
k D

X

l¤k

Nxl ; (4.26)

Nxk D Rk. NQE
k C ˇS

NS/; (4.27)

and

.1 � ˇ/ NS D
N
X

kD1

Nxk : (4.28)

Assume next continuous time scales. If we rewrite the discrete equation (4.21) as

S.t C 1/� S.t/D
N
X

k D 1

xk.t C 1/� .1 � ˇS /S.t/;

we see that S.t/ in the continuous case is driven by the differential equation

PS D
N
X

kD1

xk � �SS; (4.29)

where �S D 1 � ˇS >0. For the market saturation example this equation can also
be interpreted as expressing the fact that during each time period the value of S.t/
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increases by the new sales, however a certain proportion of the new sales has to be
used for replacement of goods which are not in usable condition anymore. Assume
that the price decreases if either the total output of the industry or the value of S
increases. For the sake of simplicity we will assume that the unit price is a function
of a linear combination of these two factors, so it is given as

f

 

N
X

l D 1

xl C ˇ�
SS

!

;

with some ˇ�
S >0. Therefore the profit of firm k can be written as

xkf

 

N
X

lD1

xl C ˇ�
SS

!

� Ck.xk/: (4.30)

If Rk.Qk/ denotes the best response function of firm k without intertemporal mar-
ket interaction, then its best response becomes Rk.Qk C ˇ�

SS/ when taking it into
account, and so the dynamical system in continuous time becomes

Pxk D ˛k

 

Rk

 

X

l¤k

xl C ˇ�
SS

!

� xk

!

; .1 � k � N/ (4.31)

PS D
N
X

lD1

xl � �SS; (4.32)

where ˛k is a sign-preserving function for all firms k. Clearly . Nx1; : : : ; NxN ; NS/ is a
steady state of this system if and only if

Nxk D Rk

 

X

l¤k

Nxl C ˇ�
S

NS
!

(4.33)

and
N
X

kD1

Nxk D �S
NS: (4.34)

4.3.1 Discrete Time Models and Local Stability

The main result of this section on the stability of the discrete time intertemporal
demand interaction dynamical system (4.23)–(4.25) is the following:

Theorem 4.1. Assume that for all k, ak>0, �1<rk � 0 and .ak CˇS /.1C rk/<1,

furthermore
N
P

k D 1

�rk
1 � ak.1C rk/

� 1 is satisfied. Then the equilibrium of the

system (4.23)–(4.25) is locally asymptotically stable if
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N
X

kD1

rk.�ak � 2ˇS /

2� ak.1C rk/
<ˇS C 1;

and is unstable if
N
X

kD1

rk.�ak � 2ˇS /

2 � ak.1C rk/
>ˇS C 1:

Proof. In analyzing the local asymptotic stability of system (4.23)–(4.25) we first
have to determine its Jacobian matrix evaluated at the equilibrium, which turns out
to have the form

0

@

NJ 11
NJ 12

NJ 13

NJ 21
NJ 22

NJ 23

NJ 31
NJ 32

NJ 33

1

A ; (4.35)

with

NJ 11 D

0

B

B

B

@

0 r1a1 : : : r1a1

r2a2 0 : : : r2a2

:::
:::

:::

rNaN rNaN : : : 0

1

C

C

C

A

;

NJ 12 D

0

B

B

B

@

r1.1 � a1/ 0

r2.1 � a2/
: : :

0 rN .1 � aN /

1

C

C

C

A

; NJ 13 D

0

B

B

B

@

ˇSr1
ˇSr2
:::

ˇS rN

1

C

C

C

A

;

NJ 21 D

0

B

B

B

@

0 a1 : : : a1

a2 0 : : : a2

:::
:::

:::

aN aN : : : 0

1

C

C

C

A

; NJ 22 D

0

B

B

B

@

1 � a1 0

1 � a2

: : :

0 1 � aN

1

C

C

C

A

; NJ 23 D

0

B

B

B

@

0

0
:::

0

1

C

C

C

A

;

NJ 31 D
0

@

X

l¤1

rlal ; : : : ;
X

l¤N

rlal

1

A ;

NJ 32 D .r1.1 � a1/; : : : ; rN .1 � aN // ; NJ 33 D
 

1C
N
X

lD1

rl

!

ˇS ;
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where rk DR0
k

at the equilibrium and ak D˛0
k
.0/ as before. The eigenvalue equa-

tion of the Jacobian with eigenvalue � and eigenvector (u1, : : :, uN , v1, : : :, vN , w)>
thus has the special form

RAu C RDv C Rbw D �u; (4.36)

Au C Dv D �v; (4.37)

1T RAu C 1T RDv C .ˇS C 1T Rb/w D �w; (4.38)

where

R D

0

B

B

B

@

r1 0

r2
: : :

0 rN

1

C

C

C

A

; A D

0

B

B

B

@

0 a1 : : : a1

a2 0 : : : a2

:::
:::

:::

aN aN : : : 0

1

C

C

C

A

; b D

0

B

B

B

@

ˇS

ˇS

:::

ˇS

1

C

C

C

A

D ˇS 1;

D D

0

B

B

B

@

1 � a1 0

1 � a2

:::

0 1 � aN

1

C

C

C

A

;

1T D .1; 1; : : : ; 1/; u D .u1; : : : ; uN /
T ; v D .v1; : : : ; vN /

T :

Subtracting the R-multiple of (4.37) from (4.36) we get

Rbw D �.u � Rv/:

We can assume that � ¤ 0, since a zero eigenvalue cannot destroy local asymptotic
stability. Then

v D � 1
�

bw C R�1u; (4.39)

where we assume that rk ¤ 0 for all k. Multiply (4.36) by 1T and subtract the
resulting equation from (4.38), to obtain

ˇS w D �.w � 1T u/:

We also assume that � ¤ ˇS , since ˇS 2 Œ0; 1/. Then,

w D �

� � ˇS

1T u; (4.40)

and from (4.39),

v D
�

� 1

� � ˇS

b1T C R�1

�

u: (4.41)
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Combining (4.41) and (4.37) leads to a single equation for the vector u, namely

�

A C .D � �I/

�

� 1

� � ˇS

b1T C R�1

��

u D 0: (4.42)

If u D 0, then from (4.41), v D 0, and from (4.40), w D 0. Since the eigenvector has
to be nonzero, u must differ from zero, so the determinant of the coefficient matrix
has to be zero.

We will next rewrite this matrix in the special form (E.2) introduced in
Appendix E, so the characteristic polynomial of the system can be obtained in a
simple form. A straightforward calculation shows that the coefficient matrix can
take the form

a1T � .I � D/C .D � �I/R�1 � 1

� � ˇS

.D � �I/b1T ;

where a D .a1; : : : ; aN /
T . The determinant of this matrix can be factored as

det
�

.D � �I/R�1 � .I � D/
	 � det

�

I C ..D � �I/R�1

�.I � D//�1

�

a � 1

� � ˇS

.D � �I/b

�

1T
	 D 0: (4.43)

The first factor of the last equation is zero if

1 � ak � �

rk
� ak D 0;

which implies that
� D 1 � ak.1C rk/: (4.44)

The second factor can be simplified by using identity (E.1), and the resulting
equation is

1C 1T ..D � �I/R�1 � .I � D//�1

�

a � 1

� � ˇS

.D � �I/b

�

D 0;

that is,

1C
N
X

kD1

ak � ˇS .1 � ak � �/
� � ˇS

1 � ak � �

rk
� ak

D 0;

which can be rewritten as

N
X

kD1

rkŒ�.ak C ˇS /� ˇS �

1 � ak.1C rk/ � � D ˇS � �: (4.45)
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Assume now that the price function f and cost functions Ck satisfy the con-
ditions (A)–(C) of concave oligopolies given at the beginning of Sect. 2.1. Then
�1< rk � 0 for all k. Let g.�/ denote the left hand side of (4.45) and assume that
all ak >0 and the 1 � ak.1 C rk/ values are different, otherwise we can add the
terms with identical denominators similarly to (2.24). Clearly,

lim
�!˙1

g.�/ D �
N
X

kD1

rk.ak C ˇS / � 0;

and it is positive unless all rk D 0, which case is excluded from discussion. Further-
more

lim
�!1�ak.1Crk /˙0

g.�/ D ˙1

and

g0.�/ D
N
X

kD1

akrk.1 � .ak C ˇS /.1C rk//

.1 � ak.1C rk/� �/2
<0

by assuming that for all k, .ak C ˇS /.1 C rk/ < 1. The graph of g.�/ is shown
in Fig. 4.11, and notice that under this assumption all poles of g are positive and
below 1. Notice also that

β−λ

0
λ

1−a1(1+r1) 1−a2(1+r2) 1−aS(1+rS) 1

Fig. 4.11 The oligopoly model with intertemporal demand interaction and best reply dynamics
with adaptive expectations in the discrete time case. Graph of g.�/ the roots of which are the
eigenvalues of the Jacobian matrix
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g.0/ D ˇS

N
X

kD1

�rk
1 � ak.1C rk/

;

and if we assume that
N
X

kD1

�rk
1 � ak.1C rk/

� 1; (4.46)

then g.0/ � ˇS , so there is a root between each pair of consecutive poles and there
is either a positive and a negative root, or zero and a positive or negative root, or
zero with multiplicity two before the smallest pole. So all roots are real and they are
between �1 and +1 if g.�1/<ˇS C 1. �

Example 4.10. As a special case consider linear price and cost functions i.e., p D
f .Q/ D A � BQ and Ck.xk/ D dk C ckxk respectively. Then from Example 1.1
we know that rk D �1=2 for all k. In this case

.ak C ˇS /.1C rk/ D ak C ˇS

2
< 1;

if ak C ˇS is below 2, which always holds if both ak and ˇS are less than or equal
to 1 and at least one of them is below one. Condition (4.46) also has the special
form

N
X

kD1

1

2 � ak

� 1;

which clearly holds if N � 2 and 0 � ak � 1. In this special case

g.�1/ D
N
X

kD1

rk.�ak � 2ˇS /

2 � ak.1C rk/
D

N
X

kD1

ak C 2ˇS

4 � ak

;

so the equilibrium is locally asymptotically stable if

N
X

kD1

ak C 2ˇS

4 � ak

<ˇS C 1:

Notice that this relation can be rewritten as

ˇS

 

N
X

kD1

2

4 � ak

� 1

!

<1 �
N
X

kD1

ak

4 � ak

:

If the firms select identical adjustment schemes, then a1 D � � � D aN D a, so this
relation simplifies to

ˇS

�

2N

4 � a � 1
�

<1 � Na

4� a
;
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that is,
ˇS .2N � 4C a/< 4 � .N C 1/a:

Since the multiplier of ˇS is positive for N � 2 and a> 0, this relation can be
rewritten as

ˇS <
4 � .N C 1/a

2N � 4C a
:

The right hand side is positive if

a<
4

N C 1
;

so both a and ˇS have to be sufficiently small. Notice that the above bound on a
decreases inN and converges to zero asN ! 1. So increasing the number of firms
reduces the stability region.

Models with isoelastic price functions can be examined similarly, the details are
not given here but are illustrated in the next subsection.

The stability of equilibria in multiproduct oligopolies with intertemporal demand
interaction was first examined in Szidarovszky (1990). These results with some
extensions are also reported in Okuguchi and Szidarovszky (1999). The model
and results presented in this section are slight generalizations of those given in
Szidarovszky and Zhao (2004).

4.3.2 Discrete Time Models and Global Stability

The global asymptotic stability of oligopolies with intertemporal demand interaction
can be discussed in a similar fashion to the case of concave Cournot models in
Chap. 2. In the following example we illustrate some global dynamic properties and
complex asymptotic behavior by using the methods applied in earlier chapters.

Example 4.11. In this example we will consider N firms, isoelastic price function,
f .Q; S/ D A=.Q C ˇSS/, and linear cost functions, Ck.xk/ D dk C ckxk for
k D 1; 2; : : : ; N . Then the profit (4.22) of firm k becomes

Axk

xk CQk C ˇSS
� .dk C ckxk/:

Assuming an interior optimum, the first order condition shows that at the optimum,

A.xk CQk C ˇSS/ �Axk

.xk CQk C ˇSS/2
� ck D 0;

implying that the solution is

z�
k D

s

A

ck

.Qk C ˇSS/ � .Qk C ˇSS/:
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Let Lk denote the capacity limit of firm k, and since the payoff of firm k is strictly
concave in xk , the best response of firm k is

Rk.Qk; S/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
k

� 0;

Lk if z�
k

� Lk ;

z�
k

otherwise.

In the following discussion we consider the symmetric case of N identical firms,
so that ck D c, dk D d , Lk D L for all k, and we assume adaptive output adjust-
ments with identical speeds ak D a. If all firms are assumed to start with the same
initial output x.0/ then their outputs remain the same for all future periods, and
therefore Qk D .N � 1/x for all k. Due to the presence of the state variable S , by
assuming partial adjustment towards the best response the dynamic model obtained
is a two-dimensional discrete time dynamical system given by

x.t C 1/ D.1 � a/x.t/C aR ..N � 1/x.t/; S.t// ;

S.t C 1/ DˇSS.t/CNx.t C 1/ D ˇSS.t/

CN Œ.1 � a/x.t/C aR ..N � 1/x.t/; S.t//� ; (4.47)

where

R ..N � 1/x.t/; S.t// D
8

<

:

0 if z�<0;
L if z�>L;
z� otherwise;

with

z� D
r

A

c
..N � 1/x C ˇSS/ � .N � 1/x � ˇSS:

All parameters are non-negative, with the constraints 0<a� 1, 0�ˇS <1. Notice
that in the limiting case ˇS D 0 the best response coincides with the best response
in Example 1.5 and in Example 3.4 for the one-dimensional symmetric case of N
identical firms. In the following we are mainly interested in the role of the parameter
ˇS , which measures the inertia of the effects of past sales, on the global dynamical
properties of the model. Again, the presence of non-negativity and capacity con-
straints makes the dynamical system piece-wise differentiable, and the phase space
D D Œ0; L� � Œ0;C1� can be divided into subregions. In each of these subregions,
the dynamical system is differentiable and these regions are separated by lines (or
borders) of non-differentiability:

D
.2/ D f.x; S/ W .N � 1/ x C ˇSS >A=cg where z� is negative,

D
.3/ D f.x; S/ W z1< .N � 1/ x C ˇSS < z2 g

with z1;2 D A=c�2L˙p
A=c.A=c�4L/
2

, where z�>L,
D

.1/ D D n �D.2/ [ D
.3/
	

:
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z2

x

S

D(2) :z*<0

D(1)

D(3) :z*>L

D(1)
b0

2b

b1

A
Sβ

Sβ

z1

Sβ

Fig. 4.12 Example 4.11; the oligopoly model with intertemporal demand interaction and adaptive
adjustment in the discrete time case. The phase space for the N -firm symmetric model with iso-
elastic price function and linear cost functions.

Notice that the region D
.3/ is empty if L>A=.4c/. In this case the capacity

constraint is ineffective since it is larger than the maximum value attained by z�
(see also Fig. 1.9). In Fig. 4.12 these regions are shown for the case L<A=.4c/.

This kind of subdivision is important for the computation of the equilibrium
points. In fact, the map in the different regions is given by the expressions

T j
D.1/ W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

x0 D .1 � a/ x C a

�

q

A
c
..N � 1/ x C ˇSS/ � ..N � 1/ x C ˇSS/

�

;

S 0 D ˇSS CN Œ.1 � a/ x

C a

�

q

A
c
..N � 1/ x C ˇSS/ � ..N � 1/ x C ˇSS/

��

;

T j
D.2/ W

(

x0 D .1 � a/ x;
S 0 D ˇSS CN .1 � a/ x;

T j
D.3/ W

(

x0 D .1 � a/ x C aL;

S 0 D ˇSS CN Œ.1 � a/ x C aL� :
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It is straightforward to calculate that T j
D.3/ has the unique fixed point

E3 D
�

L;
NL

1 � ˇS

�

;

which is an equilibrium for the dynamical system (4.47) provided that E3 2 D
.3/,

that is if z�.E3/ >L. This condition is equivalent to

L<
A.1 � ˇS / .N � 1C ˇS /

cN 2
:

T j
D.2/ has the unique fixed pointO D .0; 0/ which is not inside D

.2/, so it is not
an equilibrium of the dynamic process.

The fixed points of T j
D.1/ are the solutions of the algebraic system

x D
q

A
c
..N � 1/x C ˇSS/ � ..N � 1/x C ˇSS/;

.1 � ˇS / S D N Œ.1 � a/ x C ax� :

From the second equation we get x D .1� ˇS / S=N and after substituting this
expression into the first equation we get

A

Nc
..N � 1/ .1 � ˇS / S CNˇSS/ D S2:

Using these relations it is easy to see that T j
D.1/ has the unique fixed point

E1 D � Nx1; NS1

	

with Nx1 D A .1 � ˇS / .N � 1C ˇS /

N 2c
, NS1 D A .N � 1C ˇS /

Nc
.

This fixed point is also an equilibrium of the map T provided that E1 2 D
.1/,

in other words if 0< z�.E1/<L. Using the fact that z�.E1/ D Nx1, this condition
becomes

L>
A .1 � ˇS / .N � 1C ˇS /

cN 2
:

Since
A .1 � ˇS / .N � 1C ˇS /

cN 2
<
A

4c

always holds, being equivalent to .N � 2 .1 � ˇS //
2 >0, we can summarize the

existence results for an equilibrium as follows:

� If L>
A

4c
, then the region D

.3/ is empty and the unique steady state is E1.
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� If
A .1 � ˇS / .N � 1C ˇS /

cN 2
<L � A

4c
then D

.3/ is not empty, the unique

steady state is E1 (since E3 2 D
.1/) and all the trajectories starting in D

.3/ enter
D

.1/.2

� IfL D A .1 � ˇS / .N � 1C ˇS /

cN 2
, thenE1 D E3, and the equilibrium is located

along the boundary that separates D
.3/ from D

.1/.

� IfL<
A .1 � ˇS / .N � 1C ˇS /

cN 2
, then the unique steady state isE3 (sinceE1 2

D
.3/).

With regard to the stability of the equilibria, it is easy to realize that whenever
E3 2 D

.3/ it is a stable equilibrium, because the Jacobian matrix of the map T j
D.3/

is

J.3/ D
�

1 � a 0

N .1 � a/ ˇS

�

:

Hence its eigenvalues 1 � a and ˇS are always less than one. In contrast, when
E1 2 D

.1/, its stability is not as easily determined because this requires the study of
the eigenvalues of the Jacobian matrix

J.1/ D

0

B

B

@

1� aN C aA.N�1/

2c
p

A
c ..N�1/NxCˇS NS/

aˇS

�

A

2c
p

A
c ..N�1/NxCˇS NS/

� 1

�

N

�

1� aN C aA.N�1/

2c
p

A
c ..N�1/NxCˇS NS/

�

ˇS CNaˇS

�

A

2c
p

A
c ..N�1/NxCˇS NS/

� 1

�

1

C

C

A

evaluated at E1, which has the form

J.1/ .E1/ D
0

B

@

1� aN.N�1C2ˇS /
2.N�1CˇS/

aˇS .2.1�ˇS/�N/
2.N�1CˇS/

N

�

1� aN.N�1C2ˇS /
2.N�1CˇS/

�

ˇS CN
aˇS .2.1�ˇS/�N/
2.N�1CˇS/

1

C

A :

Here the equilibrium condition

2c

r

A

c
.N � 1/ Nx1 C ˇS

NS1 D 2c NS1 D 2A.N � 1C ˇS /=N

has been used. We can see that the stability of E1 depends only on the parameters
N , a and ˇS . Moreover, the matrix J.1/ .E1/ has the structure

�

A11 A12

NA11 ˇS CNA12

�

;

2 Note that at L D A

4c
the region D

.3/ reduce to the line b D b1 D b2, which is a set of measure

zero in R
2.
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with

A11 D 1 � aN .N � 1C 2ˇS /

2 .N � 1C ˇS /
and A12 D aˇS .2 .1� ˇS / �N/

2 .N � 1C ˇS /
:

The characteristic polynomial of this matrix is the quadratic

�2 � �.A11 C ˇS CNA12/C ˇSA11;

so the conditions for asymptotic stability are (see Appendix F)

.1 � ˇS / .1 � A11/�NA12 > 0; (4.48)

.1C ˇS / .1C A11/CNA12 > 0; (4.49)

ˇSA11 < 1; (4.50)

which reduce to the conditions,

.1 � ˇS /
aN .N � 1C 2ˇS /

2 .N � 1C ˇS /
� aNˇS .2 .1 � ˇS / �N/

2 .N � 1C ˇS /
> 0; (4.51)

.1C ˇS /

�

2 � aN .N � 1C 2ˇS /

2 .N � 1C ˇS /

�

C aNˇS .2 .1 � ˇS / �N/
2 .N � 1C ˇS /

> 0; (4.52)

aNˇS .N � 1C 2ˇS /

2 .N � 1C ˇS /
> ˇS � 1:

(4.53)

It is obvious that due to the algebraic complexity of these stability conditions
further analytical calculations will become quite involved. Therefore, instead we
give a brief numerical study that will give us a flavor of the results one might expect
to hold in general.

First of all we investigate the effect of the bifurcation that marks the exchange of
the equilibriumE3 with the equilibriumE1 occurring at

Lbif D A .1 � ˇS / .N � 1C ˇS /

cN 2

along the boundary that separates the regions D
.3/ and D

.1/. This is not a usual
transcritical bifurcation because E1 and E3 are fixed points of two different maps,
and the merging occurs along a line of non-differentiability. Indeed, this is a typical
border collision bifurcation, the effect of which is quite difficult to forecast. This is
shown by three different bifurcation diagrams obtained for increasing values of the
capacity limitL across the bifurcation value. The first bifurcation diagram, shown in
Fig. 4.13 is obtained with the set of parametersN D 4, A D 2, c D 0:15, ˇS D 0:6,
and a D 0:5, with L in the range Œ0:5; 2�. For this set of parameters the bifurcation
value is L D 1:2 and, as it can be seen in Fig. 4.13, when L crosses the bifurcation
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20

0

0

0.750.5 1 21.25 1.5 1.75 L

x

S

1.6

Fig. 4.13 The oligopoly model with intertemporal demand interaction and adaptive adjustment
in the discrete time case. The N -firm symmetric model with iso-elastic price function and linear
cost functions. Bifurcation diagrams with respect to L when the number of firms N D 4. Other
parameter values are A D 2; c D 0:15; ˇS D 0:6; a D 0:5. The bifurcation value is L D 1:2

value a simple change from the stable equilibrium E3 to the stable equilibrium E1

(that is independent of L) is observed.
In contrast to this, in the bifurcation diagram of Fig. 4.14, obtained with one

more firm (N D 5) and aD 1 (the case of best reply dynamics) the bifurcation,
now occurring at LD 3:68=3:75 ' 0:98, leads to the creation of a stable cycle
of period 2. Indeed, by slight changes of the parameters, the creation of stable
cycles of several different periods can be observed, as well as the sudden3 cre-
ation of a chaotic attractor. This is shown in the bifurcation diagram of Fig. 4.15,
obtained with parameters N D 6, AD 2, cD 0:1, ˇS D 0:6, and aD 0:7 with bifur-
cation value LD 4:48=3:6 ' 1:24. However, we are mainly interested in the effect
of the inertia parameter ˇS on the dynamic behavior of the model. The bifurcation
diagram of Fig. 4.16 shows the role of increasing values of ˇS , varying in the range
Œ0; 1�, with the other parameters fixed at the values N D 3, AD 1, cD 0:15, LD 2

and aD 1. The equilibrium E1 is stable for low values of ˇS , then it loses stability
and a stable cycle of period 2 appears. The amplitude of the oscillations increases
for increasing values of ˇS , until the lower periodic point reaches the constraint at
x D 0. It is also interesting to study the impact of the number of firms in the
market on the bifurcation with respect to ˇS . This can be seen from the bifurcation
diagram of Fig. 4.17 obtained with the same parameter values as in Fig. 4.16, but

3 By “sudden” here we mean without the usual sequence of period doubling bifurcations.
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Fig. 4.14 The oligopoly model with intertemporal demand interaction and adaptive adjustment in
the discrete time case. The N -firm symmetric model with iso-elastic price function and linear cost
functions. Bifurcation diagrams with respect to L when the number of firms is increased toN D 5

and a is increased to the value 1. Other parameters are as in Fig. 4.13. The bifurcation occurs at
L ' 0:98, at which point a stable 2 cycle is born

22
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Fig. 4.15 The oligopoly model with intertemporal demand interaction and adaptive adjustment in
the discrete time case. The N -firm symmetric model with iso-elastic price function and linear cost
functions. Bifurcation diagrams with respect to L when the number of firms is increased further
to N D 6. Other parametric changes with respect to Fig. 4.14 are a D 0:7 and c D 0:1, whilst
ˇ remains at the value 0:6. The bifurcation now occurs at L ' 1:24, at which point a chaotic
attractor appears
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Fig. 4.16 The oligopoly model with intertemporal demand interaction and adaptive adjustment in
the discrete time case. The N -firm symmetric model with iso-elastic price function and linear cost
functions. Bifurcation diagrams with respect to ˇS when the number of firms is N D 3. Other
parameters are A D 1; c D 0:15; L D 2; a D 1. Stable 2-cycles are born at the bifurcation point

0 1

0

Sβ

x

S

2

Fig. 4.17 The oligopoly model with intertemporal demand interaction and adaptive adjustment
in the discrete time case. The N -firm symmetric model with iso-elastic price function and linear
cost functions. Bifurcation diagrams with respect to ˇS when the number of firms is increased to
N D 4. Other parameter values are as in Fig. 4.16. Note that the stable 2-cycles are now born at
ˇS D 0, and also the sequence of period-doubling followed by period-halving at some intermediate
values of ˇS
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Fig. 4.18 The oligopoly model with intertemporal demand interaction and adaptive adjustment
in the discrete time case. The N -firm symmetric model with iso-elastic price function and linear
cost functions. Bifurcation diagrams with respect to ˇS when the number of firms is increased
to N D 10 and the speed of adjustment is decreased to a D 0:5. Other parameter values are
as in Fig. 4.17. Note that the amplitude of the fluctuating attractors is much reduced compared to
Fig. 4.16 and 4.17

withN D 4 instead ofN D 3. Now we see that the stable 2-cycles are born at ˇS D 0

and period-doubling followed by period halving occurs at intermediate values of ˇS .
As is commonly observed in adaptive models, the amplitude of the oscillations is
reduced with decreasing values of the speed of adjustment a. This effect is shown
in Fig. 4.18, obtained with the number of firms being increased to N D 10 and the
speed of adjustment being decreased to aD 0:5. The other parameters remain as in
Fig. 4.17.

When the asymptotic dynamics is chaotic, it is important to study the size and
the shape of the chaotic attractors inside which the long-run dynamics are ulti-
mately bounded. As already shown in the examples of the previous chapters (see
also Appendix C), the boundaries of the chaotic sets can be obtained by taking the
images of the folding curves, that may be critical curves (loci of vanishing Jacobian)
or the lines of non-differentiability (the borders that separate the different regions
D

.i/). In our case, the candidates for the “folding curves” are:

� The curves of non-differentiability, which are the lines .N � 1/ xCˇSS D A=c

whenL>A=.4c/ and the lines .N � 1/ xCˇSS D z1 and .N � 1/ xCˇSS D
z2 when L<A=.4c/;

� The curves of vanishing Jacobian, given by detJ .1/.x; S/ D 0.

In Fig. 4.19 two chaotic attractors are shown. Figure 4.19a is obtained with the
parameters N D 8, A D 1, c D 0:15, L D 2, a D 0:8, ˇS D 0:55, for
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b0

S
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T2(b0)

T3(b0)

T(b0)
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(a)

S

1.1x0

b2

b0
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Fig. 4.19 The oligopoly model with intertemporal demand interaction and adaptive adjustment in
the discrete time case. The N -firm symmetric model with iso-elastic price function and linear cost
functions. Parameter values are N D 8; A D 1; c D 0:15; a D 0:8; ˇS D 0:55. Calculating the
regions that delineate the chaotic attractors. (a) Here L D 2; the border b0 and its images T .b0/,
T 2.b0/ and T 3.b0/ delineate the region within which the chaotic attractor lies. (b) Here L D 1:2;
now new borders b1 and b2 appear. The crossing of the lower part of the chaotic attractor by b2
leads to new foldings in the boundaries of the chaotic attractor, indicated by the arrow

which L>A=4c. In this case the chaotic attractor crosses the border b0 between
the regions D

1 and D
2 (see Fig. 4.12), and the images of the portion of b0 that inter-

sects the attractor, denoted by T k.b0/, k D 1; 2; 3 in the figure, give a delineation of
the chaotic attractor (if the sequence of images is continued by representing T k.b0/

for increasing values of k, the whole boundary of the attractor will be obtained).
The chaotic attractor shown in Fig. 4.19b is obtained with L D 1:2, so that

L<A=4c. In this case, borders b1 and b2 also exist, and b2 crosses the lower por-
tion of the chaotic attractor. This implies that its images determine new foldings
in the boundaries of the chaotic attractor, as can be clearly seen in the upper part
(indicated by the arrow) folded by T .b2/. In the cases that we have examined here
the second possible candidate for “folding curves,” namely the locus of vanishing
Jacobians plays no role. This is so since the curve of the vanishing Jacobian does
not intersect the chaotic attractor, and so cannot be used to bound it.

4.3.3 Continuous Time Models

In a similar fashion to the discussion of previous models the local asymptotic
stability of the dynamical system (4.31)–(4.32) is examined by linearization. The
Jacobian of the system at the equilibrium has the form
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0

B

B

B

B

B

@

�a1 a1r1 � � � a1r1 a1r1ˇS

a2r2 �a2 � � � a2r2 a2r2ˇS

:::
:::

: : :
:::

:::

aN rN aN rN � � � �aN aN rNˇS

1 1 � � � 1 ��S

1

C

C

C

C

C

A

;

where we use the notation of the previous section but for the sake of simplicity ˇ�
S is

now denoted by ˇS , which is not necessarily the same as ˇS in the case of discrete
time models. The eigenvalue equation of this matrix has the form

� akuk C
X

l¤k

akrkul C akrkˇS v D �uk; .1 � k � N/; (4.54)

N
X

kD1

uk � �Sv D �v; (4.55)

where � is an eigenvalue and .u1; : : : ; uN ; v/ is an associated eigenvector. By letting
U D PN

kD1 uk , these equations imply that

akrkU D �akrkˇS v C .�C ak C akrk/uk

and
U D .�C �S /v: (4.56)

Substituting this expression into the previous equation we obtain

uk D akrk.�C �S C ˇS /

�C ak.1C rk/
v: (4.57)

Here we assume that � ¤ �ak.1 C rk/, since in both the concave and isoelastic
cases rk > � 1, so �ak.1C rk/< 0 and negative eigenvalues cannot destroy local
asymptotic stability. By summing (4.57) over all k and using (4.56) we get for v the
single equation

 

N
X

kD1

akrk.�C �S C ˇS /

�C ak.1C rk/
� .�C �S /

!

v D 0:

If v D 0, then from (4.57), uk D 0 for all k, so the eigenvector becomes zero, which
is impossible. Therefore v ¤ 0, and the eigenvalue equation becomes

N
X

kD1

akrk

�C ak.1C rk/
D �C �S

�C �S C ˇS

: (4.58)

The following theorem provides results on the local stability of the equilibrium.
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Theorem 4.2. If �1<rk � 0 and ak >0 for all k, and furthermore ˇS ; �S >0,
then all roots of the eigenvalue equation (4.58) have negative real parts implying
the local asymptotic stability of the equilibrium of the system (4.31)–(4.32).

Proof. Let � D A C iB denote a root and suppose that A � 0. If g.�/ and h.�/
denote the left and right hand sides of (4.58), respectively, then

g.AC iB/ D
N
X

kD1

akrk

AC iB C ak.1C rk/
D

N
X

kD1

akrk.AC ak.1C rk/ � iB/
.AC ak.1C rk//2 C B2

;

which has a non-positive real part under the stated assumptions. Similarly,

h.AC iB/ D AC iB C �S

AC iB C �S C ˇS

D .AC �S C iB/.AC �S C ˇS � iB/

.AC �S C ˇS /2 C B2
;

the real part of which is given by

.AC �S /.AC �S C ˇS /C B2

.AC �S C ˇS /2 CB2
>0:

The contradiction implies that A<0 must hold. �
In the isoelastic case there is no guarantee that the rk values are non-positive. In

this case the analysis can be performed in a similar fashion to the case shown earlier
in Sect. 3.1.3. The details are not presented here.

In introducing time lags into the model (4.31)–(4.32) we assume that the firms
react to delayed information about the value of S , and that the firms have identical
delays. The more general non-symmetric case, when all information on the firms
own outputs as well as on the outputs of the competitors are also delayed, can be
discussed similarly, but the analysis becomes much more complicated.

In the simple case of delayed information about S the system (4.31)–(4.32)
becomes

Pxk.t/ D ˛k

0

@Rk

0

@

X

l¤k

xl .t/C ˇS

Z t

0

w.t � s; T;m/S.s/ds

1

A� xk.t/

1

A ; (4.59)

PS.t/ D
N
X

lD1

xl .t/ � �SS.t/;

where the weighting function is selected in the same way as in Sect. 2.6 for concave
oligopolies. Linearizing the system we obtain
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Pxkı .t/ D ak

2

4rk

0

@

X

l¤k

xlı .t/C ˇS

Z t

0

w.t � s; T;m/Sı.s/ds

1

A � xkı .t/

3

5 ;

(4.60)

PSı.t/ D
N
X

lD1

xlı .t/ � �SSı.t/; (4.61)

where ak D ˛0
k
.0/; rk D R0

k
at the equilibrium, and xkı ; Sı are respectively the

deviations of xk , S from their equilibrium levels. Seeking solutions in the form of
xkı .t/ D uke

�t and Sı.t/ D ve�t , substituting these functions into (4.60)–(4.61)
and letting t ! 1 we have

.�C ak/uk D akrk
X

l¤k

ul C akrkˇS

�Z 1

0

w.s; T;m/e��sds

�

v; (4.62)

.�C �S /v D
N
X

lD1

ul : (4.63)

Nonzero solutions for uk .1 � k � N/ and v exist if and only if the determinant of
the matrix

0

B

B

B

B

B

@

�.�C a1/ a1r1 � � � a1r1 a1r1ˇSI.�/

a2r2 �.�C a2/ � � � a2r2 a2r2ˇSI.�/
:::

aN rN aN rN � � � �.�C aN / aN rNˇSI.�/

1 1 � � � 1 �.�C �S /

1

C

C

C

C

C

A

;

is zero, where

I.�/ D
�

�T

p
C 1

��.mC1/

;

with

p D
(

1 if m D 0;

m if m � 1:

Notice that in the special case of T D 0 (no time delay is present) this determinant
reduces to the characteristic polynomial of the Jacobian of the model (4.31)–(4.32)
since I.�/D 1 in this case. In the general case of T >0 we follow a similar path
to that used in deriving equation (4.58) given earlier in this section. The (4.62) and
(4.63) can be rewritten as

akrkU D �akrkˇSI.�/v C .�C ak C akrk/uk (4.64)
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and
U D .�C �S /v; (4.65)

where U D PN
kD1 uk as before. Substituting (4.65) into (4.64) we obtain

uk D akrk.�C �S C ˇSI.�//

�C ak.1C rk/
v;

where we can assume again that � ¤ �ak.1 C rk/. By summing the last equation
over all k and using (4.65) we get for v the single equation

 

N
X

kD1

akrk.�C �S C ˇSI.�/

�C ak.1C rk/
� .�C �S /

!

v D 0:

Noticing again that v ¤ 0, since otherwise the eigenvector would become zero, we
obtain the eigenvalue equation

N
X

kD1

akrk

�C ak.1C rk/
D �C �S

�C �S C ˇSI.�/
: (4.66)

We have already seen in Theorem 4.2 that in the case T D 0 the equilibrium is
locally asymptotically stable. The case T >0 can be examined in a similar fashion to
the cases discussed earlier in this book. In the general case computational methods
are used to locate the eigenvalues and check stability. In the symmetric case however
analytical results can be obtained.

Consider therefore the symmetric case of a1 D � � � D aN D a and r1 D � � � D
rN D r . Then (4.66) has the form

Nar

�C a.1C r/
D �C �S

�C �S C ˇS

�

1C T �
p

��.mC1/
;

that is,

Nar

�C a.1C r/
D

.�C �S /
�

1C T �
p

�mC1

.�C �S /
�

1C T �
p

�mC1 C ˇS

;

or

�

1C T �

p

�mC1

.�C �S /.�C a.1C r.1 �N///�NarˇS D 0: (4.67)

The roots of this equation can be examined in a similar way to the case of (2.58),
which was given in detail earlier in Sect. 2.6. The details are left as an exercise for
the interested reader.
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The result of this section are slight generalizations and extensions of those pre-
sented in Szidarovszky and Zhao (2004). Some simple results are discussed for
multiproduct linear oligopolies in Okuguchi and Szidarovszky (1999).

4.4 Models with Production Adjustment Costs

This section will consider oligopolies in which the firms experience production
adjustment costs. An early contribution along these lines is Howroyd and Rickard
(1981); more recent work on oligopoly models with production adjustment costs
has been carried out for example by Szidarovszky and Yen (1995) and Schoonbeek
(1997). We will consider only discrete time scales as the continuous time case can
be discussed in an analogous fashion. Just as was the case for the models intro-
duced and discussed by Szidarovszky (1999), Chiarella and Szidarovszky (2008a)
and Zhao and Szidarovszky (2008) consider an N -firm oligopoly without external-
ities, with price function f and cost functions Ck, and assume that any increase or
decrease in the outputs of the firms comes at some cost. Taking this additional cost
component into account, at time period t C 1 the profit of firm k can be written as

xkf .xk CQE
k .t C 1//� Ck.xk/ �Kk.xk � xk.t//; (4.68)

whereKk is the additional cost component which depends on the amount xk �xk.t/

of output change from the previous time period, andQE
k
.tC1/ is the expectation of

the output of the rest of the industry by firm k. In addition to assumptions (A)–(C)
stated at the beginning of Sect. 2.1 for concave oligopolies assume thatKk is a twice
continuously differentiable convex function.

Under the above conditions, the expression (4.68) is strictly concave in xk and if
each firm has a finite capacity limit, then there is always a unique best responseRk ,
which depends on bothQE

k
.t C 1/ and xk.t/ and can be 0;Lk ; or an interior value.

Consider the case of an interior equilibrium. In a small neighborhood of it the
best responses are also interior, and the first order condition implies that

f .xk CQE
k /C xkf

0.xk CQE
k / � C 0

k.xk/�K 0
k.xk � xk.t// D 0;

where we use the simplifying notation QE
k

for QE
k
.t C 1/:

The left hand side of the last equation is strictly decreasing in xk , so this equation
has a unique solution, xk D Rk.Q

E
k
; xk.t//, which depends on bothQE

k
and xk.t/.

By implicit differentiation with respect to QE
k

one has

f 0.R0
kQ C 1/CR0

kQf
0 C xkf

00.R0
kQ C 1/� C 00

kR
0
kQ �K 00

kR
0
kQ D 0;

and with respect to xk.t/,

f 0R0
kx CR0

kxf
0 C xkf

00R0
kx � C 00

kR
0
kx �K 00

k.R
0
kx � 1/ D 0;
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where R0
kx

D @Rk

@xk
; R0

kQ
D @Rk

@QE
k

. So

R0
kQ D � f 0 C xkf

00

2f 0 C xkf 00 � C 00
k

�K 00
k

; (4.69)

and

R0
kx D � K 00

k

2f 0 C xkf 00 � C 00
k

�K 00
k

: (4.70)

It is easy to see that as in the concave case the derivatives of the reaction function
of firm k satisfy

�1<R0
kQ � 0 � R0

kx <1

and
�1<R0

kQ � R0
kx � 0:

Consider first the dynamic process (1.28)–(1.29) with adaptive expectations,
which here assumes the form

xk.t C 1/ D Rk

0

@QE
k .t/C ˛k

0

@

X

l¤k

xl .t/ �QE
k .t/

1

A ; xk.t/

1

A ; (4.71)

QE
k .t C 1/ D QE

k .t/C ˛k

0

@

X

l¤k

xl .t/ �QE
k .t/

1

A : (4.72)

The Jacobian of this system at the equilibrium has the special form

� NJ 11
NJ 12

NJ 21
NJ 22

�

where

NJ 11 D

0

B

B

B

@

r1x r1Qa1 � � � r1Qa1
r2Qa2 r2x � � � r2Qa2
:
:
:

:
:
:

: : :
:
:
:

rNQaN rNQaN � � � rNx

1

C

C

C

A

; NJ 12 D

0

B

B

B

@

r1Q.1� a1/

r2Q.1� a2/

: : :

rNQ.1� aN /

1

C

C

C

A

;

NJ 21 D

0

B

B

B

@

0 a1 � � � a1
a2 0 � � � a2
:
:
:

:
:
:

:
:
:

aN aN � � � 0

1

C

C

C

A

; and NJ 22 D

0

B

B

B

@

1� a1
1� a2

: : :

1� aN

1

C

C

C

A

;

and rkQ D @Rk

@Qk
and rkx D @Rk

@xk
evaluated at the equilibrium. If � is an eigen-

value and .u1; : : : ; uN ; v1; : : : ; vN / is an associated eigenvector, then the eigenvalue
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equation of the Jacobian has the form

rkxuk C rkQak

X

l¤k

ul C rkQ.1 � ak/vk D �uk; .k D 1; 2; : : : ; N /; (4.73)

ak

X

l¤k

ul C .1 � ak/vk D �vk: (4.74)

Subtract the rkQ-multiple of the second equation from the first one to obtain

rkxuk D �.uk � rkQvk/;

implying that

rkQvk D � � rkx

�
uk;

where it is assumed that �¤ 0. Note that a zero eigenvalue cannot destroy asymp-
totic stability. Substituting this relation into (4.73) it is found that

rkQak

X

l¤k

ul C
�

rkx C .1 � ak/.� � rkx/

�
� �

�

uk D 0; (4.75)

for all k. A non-trivial solution exists if and only if the determinant of this system is
zero. Notice that by introducing the notation

Ak.�/ D rkx C .1 � ak/.� � rkx/

�
� �; Bk.�/ D akrkQ;

this determinant has the same structure as the one given by (E.2) in Appendix E.
Therefore by using (E.3), the resulting determinantal equation becomes

N
Y

kD1

�

rkx C .1 � ak/.� � rkx/

�
� � � akrkQ

�

�

2

6

4
1C

N
X

kD1

akrkQ

rkx C .1 � ak/.� � rkx/

�
� � � akrkQ

3

7

5
D 0: (4.76)

It is very complicated in general to find conditions that guarantee that the roots of
(4.76) lie inside the unit circle, so instead of a general analysis we will here consider
a particular example.

Example 4.12. Consider the case of symmetric firms, when a1 D ::: D aN D
a; r1Q D ::: D rNQ D rQ; r1x D ::: D rNx D rx . The eigenvalues in this case are
the roots of the equations
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rx C .1 � a/.� � rx/

�
� � � arQ D 0; (4.77)

and

rx C .1 � a/.� � rx/

�
� � � arQ CNarQ D 0: (4.78)

Both of these equations can be written as the quadratic equations

�2 C �.�1C a.1C rQ/ � rx/C rx.1 � a/ D 0;

and
�2 C �.�1C a.1C .1 �N/rQ/� rx/C rx.1� a/ D 0:

By using the result of Lemma F.1 (from Appendix F) and some simple algebra it
can be seen that all roots are inside the unit circle if

rx.1 � a/< 1; (4.79)

a.1C rQ � rx/ > 0; (4.80)

2.1C rx/� a.1C rx C rQ.1 �N//> 0; (4.81)

where the first two inequalities always hold for a> 0, and the third is satisfied if
a is a sufficiently small positive value, that is, if the firms select a small common
constant speed of adjustment, or have a small common derivative value ˛0.0/.

To compare the results just obtained for the best reply dynamics with adaptive
expectations, we now turn to partial adjustment towards the best response with naive
expectations, namely

xk.t C 1/ D xk.t/C ˛k

0

@Rk

0

@

X

l¤k

xl .t/; xk.t/

1

A � xk.t/

1

A ; .1 � k � N/;

(4.82)
which is a straightforward extension of the system (1.30) to take into account
production adjustment costs. Conditions for the local asymptotic stability of the
equilibrium are given in the following theorem.

Theorem 4.3. Assume that ak >0 for all k, C 00
k

� 0 for all k and xk , assumptions
(A)–(C) of Sect. 2.1 of concave oligopolies hold, furthermore the conditions

0<aj <
2

1 � rjx C rjQ

.j D 1; 2; : : : ; N /

are satisfied. Then the equilibrium of the system (4.82) is locally asymptotically
stable, if

1C
N
X

kD1

akrkQ

2 � ak.1 � rkx C rkQ/
> 0:
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If this condition is violated with strict inequality, then the equilibrium is unstable.

Proof. The Jacobian of the system (4.82) is given by

0

B

B

B

@

1 � a1.1 � r1x/ a1r1Q : : : a1r1Q

a2r2Q 1 � a2.1 � r2x/ : : : a2r2Q

:::
:::

:::

aN rNQ aN rNQ : : : 1 � aN .1 � rNx/

1

C

C

C

A

;

where the previous notation of this section is used. The eigenvalue equation can be
easily determined by using relation (E.5) and turns out to be

N
Y

kD1

.1 � ak.1 � rkx C rkQ/� �/

"

1C
N
X

kD1

akrkQ

1 � ak.1 � rkx C rkQ/� �

#

D 0:

(4.83)
As before, assume that ak >0 for all k, and let 1 � aj .1 � rjx C rjQ/ .j D
1; 2; : : : ; s/ denote the different 1 � ak.1 � rkx C rkQ/ values and assume that
they are repeated m1; m2; : : : ; ms times among the N firms. By adding the terms
with identical denominators in the bracketed expression and denoting by �j the sum
of the corresponding numerators akrkQ, one obtains

s
Y

j D1

.1 � aj .1 � rjx C rjQ/ � �/mj

2

41C
s
X

j D1

�j

1 � aj .1 � rjx C rjQ/� �

3

5 D 0;

(4.84)
where �j � 0 for all j . If �j D 0 or mj � 2, then 1 � aj .1 � rjx C rjQ/ is an
eigenvalue of the Jacobian, and this eigenvalue is between �1 and C1, if

0<aj <
2

1 � rjx C rjQ

: (4.85)

All other eigenvalues are the roots of the equation

1C
s
X

j D1

�j

1 � aj .1 � rjx C rjQ/ � � D 0;

when it is assumed that all �j values are nonzero. Under assumption (4.85), the
graph of the left hand side is the same as the one shown in Fig. 2.1, so all roots are
real, all poles are between �1 and C1, furthermore all roots are between �1 and
C1, if

1C
N
X

kD1

akrkQ

2 � ak.1 � rkx C rkQ/
> 0: (4.86)

�
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Example 4.13. Consider the special case of symmetric firms, when ak � a, rkQ �
rQ and rkx � rx . Then condition (4.85) reduces to

0<a<
2

1 � rx C rQ

and condition (4.86) becomes

2 � a.1 � rx C rQ �NrQ/> 0:

These relations hold if the value of a is sufficiently small, in particular if

a<
2

1C .rQ � rx/�NrQ
;

where the right hand side is always positive.

Example 4.14. Assume there are N firms with identical capacity limit L, and
assume that the price function is f .Q/DLN � Q, so the price is always non-
negative. If the firms have linear cost functions Ck.xk/ D dk C ckxk and quadratic
output adjustment costs, Kk.xk � xk.t// D �k � .xk � xk.t//

2 where xk >xk.t/

and zero otherwise, then the profit of firm k may be written as

xk.LN � xk �Qk/� .dk C ckxk/ �
(

0 if xk � xk.t/;

�k.xk � xk.t//
2 if xk >xk.t/:

Assume an interior optimum for the profit maximization problem. In the first case
(xk � xk.t/) the first order condition can be written as

LN � 2xk �Qk � ck D 0;

implying that

xk D LN �Qk � ck

2
:

This point is below xk.t/ if and only if

LN �Qk � ck � 2xk.t/:

In the second case (xk >xk.t/) the first order condition is

LN � 2xk �Qk � ck � 2�k.xk � xk.t// D 0;

the solution of which is

xk D LN �Qk � ck C 2�kxk.t/

2C 2�k

:
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This value is larger than xk.t/ if and only if

LN �Qk � ck >2xk.t/:

Notice also that the profit function of firm k has two parabolic segments, both are
concave, and they have identical derivatives at xk.t/. Consequently, define

z�
k D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

LN �Qk � ck

2
if LN �Qk � ck � 2xk.t/;

LN �Qk � ck C 2�kxk.t/

2C 2�k

otherwise;

then the best response of firm k is given by

Rk.Qk; xk.t// D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
k

� 0;

L if z�
k

� L;

z�
k

otherwise.

It is easy to see that in both cases the derivative of the best response with respect
to Qk is between 0 and � 1

2
so the local stability properties of the corresponding

dynamical system are similar to the concave oligopoly case. Note that the best
responses in this model are piece-wise linear. Therefore, the dynamical system
based on partial adjustment towards the best response belongs to the same class
as the models with linear and quadratic cost functions. Since we have analyzed the
latter models in detail in Chap. 1, we abstain from presenting the details of a global
analysis of the present model. Instead we leave such an analysis to the reader. Con-
sider finally the symmetric case, when ak � a, ck � c, dk � d , Lk D L, �k D �

and the initial outputs are identical. Then Qk D .N � 1/x, and

z� D

8

ˆ

ˆ

<

ˆ

ˆ

:

LN � .N � 1/x � c
2

if LN � .N � 1/x � c � 2x;

LN � .N � 1/x � c C 2�x

2C 2�
otherwise:

Then the common best response of the firms is

R.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z� � 0;

L if z� � L;

z� otherwise:
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The dynamical system is therefore

x.t C 1/ D aR.x.t//C .1 � a/x.t/:

This is again a piecewise linear model and can be analyzed in a similar way to the
one-dimensional examples studied before. We leave the analysis as an exercise for
the reader.

We mention here that Szidarovszky and Yen (1995) have introduced stability
conditions in the linear case. These results and some extensions are presented in
Okuguchi and Szidarovszky (1999). This latter book also discusses the continuous
case where it is shown that the dynamical system is equivalent to a classical Cournot
dynamics with modified speeds of adjustment.

4.5 Oligopolies with Partial Cooperation

It is well known that by selecting the Nash equilibrium quantities, firms in an
oligopoly are trapped in a prisoner’s dilemma situation, and a common way to
increase their payoffs is for the firms to reach some sort of cooperation or collu-
sion amongst each other. In this section we introduce partial cooperation into the
framework of the oligopoly models studied earlier in the book.

The idea of partial cooperation was introduced and first explored by Cyert and
DeGroot (1973). The survey paper of Szidarovszky et al. (2008) contains some
special results.

As before, let P D f .Q/ denote the price of the common product that is pro-
duced by N firms, and let Ck denote the cost function of firm k. Then the profit of
firm k can be obtained as

'k.x1; : : : ; xN / D xkf .Q/ � Ck.xk/; (4.87)

where xk is the output of firm k,Q D PN
lD1 xl is the total production of the industry

and no cost externalities are considered. Cooperation among firms can be achieved
if each firm takes the profits of its competitors into account. If, for example, a firm
has equity positions in the other firms, it would certainly also care about the other
firms’ profits. In this case, cooperation among firms can be achieved, since each
firm’s objective function includes the profits of its competitors (see for example
Clayton and Jorgensen (2005)). A similar effect occurs if firms are linked by partial
equity interests and joint ventures (see for example Reynolds and Snapp (1986) and
Bresnahan (1986)).

Let the parameters �kl 2 Œ0; 1� denote the degree of cooperation of firm k toward
firm l (k; l 2 f1; 2; : : : ; N g; k ¤ l), then we assume that firm k maximizes 'k C
P

l¤k �kl'l instead of its own profit (see also Kopel and Szidarovszky (2006)).
Thus the payoff function of firm k becomes
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‰k.x1; : : : ; xN / D .xkf .Q/� Ck.xk//C
X

l¤k

�kl.xlf .Q/� Cl.xl//; (4.88)

in the case of the classical Cournot model. Other model variants can be examined in
a similar manner.

We can rewrite the payoff function of firm k as

‰k.x1; : : : ; xN / D .xk C Sk/f .xk CQk/ � Ck.xk/�
X

l¤k

�klCl.xl /; (4.89)

where
Sk D

X

l¤k

�klxl :

Notice that

@‰k

@xk

D f .xk CQk/C .xk C Sk/f
0.xk CQk/� C 0

k.xk/

and
@2‰k

@x2
k

D 2f 0.xk CQk/C .xk C Sk/f
00.xk CQk/ � C 00

k .xk/:

Assume that a slightly more restrictive set of conditions than that assumed for
concave oligopolies (see Sect. 2.1) is satisfied, that is,

(A) f 0.Q/<0,

(B) zf 00.Q/C f 0.Q/ � 0,

(C) f 0.Q/� C 00
k
.xk/ < 0,

for all k, all feasible values of xk andQ, and 0 � z � PN
lD1Ll . Then‰k is strictly

concave in xk with fixed values ofQk and Sk , since xk CSk � Q and so @2‰k=@x
2
k

is negative. As earlier, let Lk denote the finite capacity limit of firm k, then it has a
unique best response function, which depends on bothQk and Sk and is given by

Rk.Qk; Sk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if f .Qk/C Skf
0.Qk/ � C 0

k
.0/ � 0;

Lk if f .Lk CQk/C .Lk C Sk/f
0.LkCQk/ � C 0

k
.Lk/�0;

z�
k

otherwise;

where z�
k

is the unique solution of the equation

f .zk CQk/C .zk C Sk/f
0.zk CQk/� C 0

k.zk/ D 0 (4.90)

inside the interval .0; Lk/.
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Implicitly differentiating this equation with respect to Qk and Sk , and consider-
ing zk D Rk.Qk; Sk/ we have

f 0.R0
kQ C 1/CR0

kQf
0 C .zk C Sk/f

00.R0
kQ C 1/� C 00

kR
0
kQ D 0 (4.91)

and

f 0R0
kS C .R0

kS C 1/f 0 C .zk C Sk/f
00R0

kS � C 00
kR

0
kS D 0; (4.92)

where R0
kQ

D @Rk=@Qk and R0
kS

D @Rk=@Sk . Therefore the derivatives of the best
response function are given by

R0
kQ D � f 0 C .zk C Sk/f

00

2f 0 C .zk C Sk/f 00 � C 00
k

(4.93)

and

R0
kS D � f 0

2f 0 C .zk C Sk/f 00 � C 00
k

; (4.94)

implying that
� 1<R0

kQ � 0 and R0
kS <0: (4.95)

If in addition, f 0 C .zk C Sk/f
00 � C 00

k
� 0; then �1 � R0

kS
<0. The payoff

function ‰k of each firm is concave in xk , continuous, and if each firm has a finite
capacity limit Lk , then the Nikaido–Isoda theorem (see for example Forgo et al.
(1999)) implies the existence of at least one Nash equilibrium.

Before examining the dynamic extensions and investigating the asymptotic
behavior of the resulting systems we will briefly discuss the effect of partial coopera-
tion on the equilibrium quantities. Given that Rk.Qk; Sk/ denotes the best response
of firm k with partial cooperation, then clearly Rk.Qk; 0/ is its best response in the
standard oligopoly with no cooperation. One can also consider the best responses as
functions of the total production level Q, as is usual in oligopoly theory and which
was also introduced in Chap. 2. Then clearly

eRk.Q; Sk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if f .Q/C Skf
0.Q/� C 0

k
.0/ � 0;

Lk if f .Q/C .Lk C Sk/f
0.Q/� C 0

k
.Lk/ � 0;

zk otherwise;

(4.96)

where zk is the unique solution of the equation

f .Q/C .zk C Sk/f
0.Q/� C 0

k.zk/ D 0 (4.97)

inside the interval (0;Lk).
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Lemma 4.1. The reaction function eRk.Q; Sk/ defined above is a decreasing func-
tion of both variablesQ and Sk .

Proof. Let g.zk ;Q; Sk/ denote the left hand side of (4.97), then

@g

@zk

D f 0.Q/� C 00
k .zk/ < 0;

@g

@Q
D f 0.Q/C .zk C Sk/f

00.Q/ � 0;

@g

@Sk

D f 0.Q/<0;

so g is strictly decreasing in zk and Sk , and is non-increasing in Q. Assume first
that Q.1/<Q.2/, and fix the value of Sk . If with QDQ.1/ the first case of (4.96)
occurs then assumption (B) implies that the same hold also for QDQ.2/, so eRk

remains 0, and if with QDQ.1/the second case occurs, then eRk cannot increase
any further. If with QDQ.1/ the third case of (4.96) occurs, then the monotonicity
of g in Q implies that with QDQ.2/ the second case is impossible so the best
response with QDQ.2/ is either zero or the solution of (4.97). In the first case eRk

clearly decreases. It will also be shown that if the third case of (4.96) occurs with
both QDQ.1/ and QDQ.2/, then still eRk.Q

.1/; Sk/ � eRk.Q
.2/; Sk/. Assume

this is not the case, then

0 D g.eRk.Q
.1/; Sk/;Q

.1/; Sk/ > g.eRk.Q
.2/; Sk/;Q

.1/; Sk/

� g.eRk.Q
.2/; Sk/;Q

.2/; Sk/ D 0;

which is an obvious contradiction. Assume next that S .1/

k
<S

.2/

k
, and fix the value of

Q. If with Sk DS
.1/

k
the first case of (4.96) occurs, then f 0<0 implies that the same

holds for Sk DS
.2/

k
, so eRk remains 0, and if the second case occurs, then eRk cannot

increase any further. If with Sk DS
.1/

k
the third case of (4.96) occurs, then f 0<0

implies that with Sk DS
.2/

k
the second case is impossible, so the best response is

either zero or the solution of (4.97). In the first case eRk decreases. Assume finally
that with both Sk DS

.1/

k
and Sk DS

.2/

k
the third case of (4.96) occurs. It can easily

be shown that in this case eRk.Q; S
.1/

k
/> eRk.Q; S

.2/

k
/. Assume not, then

0 D g.eRk.Q; S
.1/

k
/;Q; S

.1/

k
/ > g.eRk.Q; S

.1/

k
/;Q; S

.2/

k
/

� g.eRk.Q; S
.2/

k
/;Q; S

.2/

k
/ D 0;

which is again a contradiction. �
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Let now . Nx1; : : : ; NxN / be an equilibrium of the oligopoly without partial cooper-
ation, and let NQ D PN

kD1 Nxk . Assume that . Nx0
1; : : : ; Nx0

N / is an equilibrium with

partial cooperation, and let NQ0 D PN
kD1 Nx0

k
and NS 0

k
D P

l¤k �kl Nx0
l
. Then the

following theorem holds:

Theorem 4.4. Under conditions (A)–(C), NQ0 � NQ, that is, partial cooperation
decreases the total production level of the industry.

Proof. Assume in contrary, that NQ0> NQ. Then

NQ0 D
N
X

kD1

Rk. NQ0; NS 0
k/ �

N
X

kD1

Rk. NQ0; 0/

�
N
X

kD1

Rk. NQ; 0/ D NQ;

which is a contradiction. �
In order to obtain more interesting results assume that each firm has identical

cooperation levels towards its competitors, that is, �kl � �k for all l ¤ k. We can
then rewrite (4.96) as4

eRk.Q; �k/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; if f .Q/C �kQf
0.Q/� C 0

k
.0/ � 0;

Lk ; if f .Q/C ..1 � �k/Lk C �kQ/f
0.Q/� C 0

k
.Lk/ � 0;

zk ; otherwise,
(4.98)

where zk is the unique solution of the equation

f .Q/C ..1 � �k/zk C �kQ/f
0.Q/� C 0

k.zk/ D 0: (4.99)

For the current situation we modify conditions (B) and (C) to read

(B0) .1C �k/f
0 C vf 00 � 0,

(C0) .1 � �k/f
0 � C 00

k
<0

for all Q; v 2
h

0;
PN

kD1Lk

i

and zk 2 Œ0; Lk �.

Lemma 4.2. The reaction function eRk.Q; �k/ defined above is a decreasing func-
tion of Q, and a decreasing function of �k in the domain defined by

eRk.Q; �k/ � Q:

4 Here in the notation we emphasize the dependence of eRk on Q and �k , since in this case
Sk D �k.Q � xk/, and use the same notation for this new form of the reaction function.
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Proof. Now let g.zk ;Q; �k/ denote the left hand side of (4.99), then for all feasible
zk and Q,

@g

@zk

D .1 � �k/f
0.Q/� C 00

k .zk/< 0;

@g

@Q
D .1C �k/f

0.Q/C ..1� �k/zk C �kQ/f
00.Q/ � 0;

and if 0 � zk � Q, then

@g

@�k

D .Q � zk/f
0.Q/ � 0:

We will first prove that eRk.Q; �k/ is decreasing in Q. Assume first that
Q.1/<Q.2/, and fix the value of �k . If withQ D Q.1/ the first case of (4.98) occurs,
then condition .B 0/ implies that the same holds for Q D Q.2/, so eRk remains the
same. Assume next that the second case of (4.98) occurs with Q D Q.1/, then eRk

cannot increase further. If with Q D Q.1/, the third case of (4.98) occurs, then with
Q D Q.2/ the second case of (4.98) is impossible, so either eRk.Q

.2/; �k/ is zero or
is the solution of (4.99). In the first case, eRk decreases, and it will easily be proven
that this is the case even if the third case of (4.98) occurs with Q D Q.2/. Assume
not, that is, eRk.Q

.1/; �k/< eRk.Q
.2/; �k/. Then

0 D g.eRk.Q
.1/; �k/;Q

.1/; �k/ > g.eRk.Q
.2/; �k/;Q

.1/; �k/

� g.eRk.Q
.2/; �k/;Q

.2/; �k/ D 0;

which is a contradiction. Next it will be shown that Rk.Q; �k/ is also decreasing in
�k in the domain fRk.Q; �k/ � Qg. Assume next that � .1/

k
<�

.2/

k
and fix the value

of Q. If the first case of (4.98) occurs with � .1/

k
, then the negativity of f 0 implies

that the same holds for � .2/

k
, and if the second case occurs with � .1/

k
, then eRk cannot

increase further. Assume next that with �k D �
.1/

k
the third case occurs. Then the

second case is impossible for �k D �
.2/

k
, since if firm k selects its maximal output

level Lk , then Q � Lk . So either eRk.Q; �
.2/

k
/ is zero or the solution of (4.99). It

will also be proven that even in this case, eRk.Q; �
.2/

k
/ � eRk.Q; �

.1/

k
/. Assume not,

then

0 D g.eR.Q; �
.1/

k
/;Q; �

.1/

k
/ > g.eR.Q; �

.2/

k
/;Q; �

.1/

k
/

� g.eRk.Qk; �
.2/

k
/;Q; �

.2/

k
/ D 0;

which is again a contradiction. �
Let . Nx1; : : : ; NxN / be an equilibrium of the oligopoly with partial cooperation

levels N�1; : : : ; N�N . Assume that at least one player increases its cooperation level, so



200 4 Modified and Extended Oligopolies

N� 0
k

� N�k for all k and let . Nx0
1; : : : ; Nx0

N / be the new equilibrium. Let NQ D PN
kD1 Nxk

and NQ0 D PN
kD1 Nx0

k
be the total production levels of the industry in the two cases.

Then the following theorem shows that any increase in cooperation levels results in
a decrease of the industry output.

Theorem 4.5. If conditions .A/; .B 0/ and .C 0/ hold, then NQ � NQ0.

Proof. Assume on the contrary that NQ< eQ. Then

NQ D
N
X

kD1

Rk. NQ; N�k/ �
N
X

kD1

Rk. NQ0; N�k/

�
N
X

kD1

Rk. NQ0; N� 0
k/ D NQ0;

which is an obvious contradiction. �

4.5.1 Local Stability Analysis

We will consider only continuous time scales since the discrete time case can
be examined analogously to the model discussed in Sect. 4.4. In this subsection
we consider the local stability of the equilibria and in the next subsection the
global dynamics. In the current context the continuous time dynamical model (1.31)
becomes

Pxk.t/ D ˛k.Rk.
X

l¤k

xl ;
X

l¤k

�klxl/ � xk/; (4.100)

where Rk.Qk; Sk/ is the best response function of firm k.
The Jacobian of this system at an equilibrium has the structure

0

B

B

B

B

@

�a1 a1.R
0
1Q C �12R

0
1S / ::: a1.R

0
1Q C �1NR

0
1S /

a2.R
0
2Q C �21R

0
2S / �a2 ::: a2.R

0
2Q C �2NR

0
2S /

:::
:::

: : :
:::

aN .R
0
NQ C �N1R

0
NS / aN .R

0
NQ C �N 2R

0
NS / ::: �aN

1

C

C

C

C

A

:

(4.101)
In the following analysis we will consider this matrix at an interior equilibrium.

In the general case unfortunately, this Jacobian does not have any special struc-
ture that makes it possible to express its eigenvalue equation in a simple form. In
some important special cases however it is possible to do so. In the general case
computational methods are available to compute the eigenvalues and to check the
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stability conditions. Before turning to special cases, three sufficient conditions for
stability will be presented for the general case.

Theorem 4.6. Assume that for all k, ak >0 and

.N � 1/R0
kQ C

0

@

X

l¤k

�kl

1

AR0
kS > � 1; (4.102)

then the equilibrium is locally asymptotically stable.

Proof. Notice that condition (4.102) implies that the Jacobian is strictly diagonally
dominant in every row with negative diagonal elements. Then the Gerschgorin-
cycle theorem (see for example, Szidarovszky and Yakowitz (1978)) implies that
all eigenvalues have negative real parts. �

Applying this result to the transpose of the Jacobian one easily obtains the
following theorem.

Theorem 4.7. Assume that for all k, ak >0 and

ak C
X

l¤k

al .R
0
lQ C �lkR

0
lS /> 0; (4.103)

then the equilibrium is locally asymptotically stable.

The application of Theorem B.7 given in Appendix B also offers a sufficient
stability condition. Notice that the Jacobian matrix (4.101) can be factored as

A.RQ C RS G / (4.104)

where A D diag.a1; a2; : : : ; aN /, RS D diag.R0
1S ; R

0
2S ; : : : ; R

0
NS /,

RQ D

0

B

B

B

B

@

�1 R0
1Q ::: R0

1Q

R0
2Q �1 ::: R0

2Q
:::

:::
: : :

:::

R0
NQ R0

NQ ::: �1

1

C

C

C

C

A

and G D

0

B

B

B

@

0 �12 : : : �1N

�21 0 : : : �2N

:::
:::

:::

�N1 �N 2 : : : 0

1

C

C

C

A

;

and observe that A is positive definite, if ak >0 for all k. The above considerations
make it possible to assert the following theorem:

Theorem 4.8. Assume that ak >0 for all k, .RQ C RSG / C .RQ C RSG /T is
negative definite. Then the equilibrium is locally asymptotically stable.

The condition of this theorem is satisfied, if RQ C RT
Q is negative definite and

RS G C G T RS is negative semi-definite.
Consider now the special case when �kl � �k , that is, the cooperation levels of

each firm are identical toward its competitors. In this case let
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rk D R0
kQ C �kR

0
kS D �f

0.1C �k/C .xk C �kQk/f
00

2f 0 C .xk C �kQk/f 00 � C 00
k

;

then the Jacobian has exactly the same form as (2.46) for concave oligopolies.
Notice that under conditions (A), (B0) and (C0), there holds �1< rk � 0, similar

to the case of concave oligopolies. Hence one can assert the following theorem:

Theorem 4.9. Assume that ak >0 for all k. Under conditions (A), (B 0), (C 0) and
with identical �kl (l ¤ k) values for all k, the equilibrium is locally asymptotically
stable.

The analysis of global asymptotic stability of the equilibrium with continuous time
adjustment as well as the introduction of continuously distributed time lags can be
carried out in a similar fashion to the cases considered in the previous chapters.

4.5.2 Global Dynamics

In this section we will illustrate the type of global dynamics that can arise in
oligopolies with partial cooperation under a discrete time adjustment process by
considering a specific example.

Example 4.15. We consider the hyperbolic price function f .Q/ D A=Q and linear
cost functions Ck.xk/ D dk C ckxk .k D 1; 2; : : : ; N /. Assume that the firms
have identical cooperation levels toward their competitors, so �kl � �k for all l ¤
k. Then the payoff function (4.89) of firm k can be written as

‰k.x1; : : : ; xN / D .xk C �kQk/A

xk CQk

� .dk C ckxk/�
X

l¤k

�k.dl C clxl /: (4.105)

Assuming an interior optimum, the first order conditions imply that

AQk.1 � �k/

.xk CQk/2
� ck D 0;

from which we have the solution

z�
k D

s

AQk.1 � �k/

ck

�Qk: (4.106)

Let Lk denote the capacity limit of firm k, then the strict concavity of the payoff
function (4.105) implies that the best response of firm k can be obtained as
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Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
k

� 0;

Lk if z�
k

� Lk;

z�
k

otherwise.

(4.107)

Notice that the best response functions have the same shape as those considered,
for example, in Example 1.5 and Example 3.4.

Example 4.16. In order to investigate the effect of a change in the cooperation
levels �k on the equilibrium values and on the global dynamics, following Exam-
ple 3.4 we consider the semi-symmetric case. That is, we consider (4.106) with
Q1 D .N � 1/x2 andQ2 D x1 C .N � 2/x2, that is, the production decisions made
by firm 1 and the identical firms 2; : : : ; N are captured by the two-dimensional
dynamical system

T W
�

x1.t C 1/ D .1 � a1/x1.t/C a1R1..N � 1/x2/;

x2.t C 1/ D .1 � a2/x2.t/C a2R2.x1 C .N � 2/x2/:

The unique positive equilibrium of this system may be written as

Nx1 D .N � 1/A.1 � �1/.1 � �2/ Œ.N � 1/.1� �1/c2 � .N � 2/.1� �2/c1�

.c1.1 � �2/C .N � 1/.1� �1/c2/
2

;

Nx2 D Ac1.N � 1/.1 � �1/.1 � �2/
2

.c1.1 � �2/C .N � 1/.1 � �1/c2/
2
:

(4.108)
It is interesting to note that if one of the cooperation levels equals 1 (full coop-

eration), then both equilibrium quantities vanish. This is due to the fact that a fully
cooperative firm behaves like a profit maximizing monopolist (and therefore, due to
the particular form of the isoelastic demand function, it selects a quantity close to
zero, as mentioned in Example 1.5, whereas the other firm selects a small (close
to zero) quantity as best reply. Notice also that if the degrees of cooperation of all
firms are identical, so that �k D � for k D 1; 2; : : : ; N , then the firms’ equilibrium
quantities become

Nx1 D .N � 1/A.1� �/ Œ.N � 1/c2 � .N � 2/c1�

.c1 C .N � 1/c2/
2

;

Nx2 D ::: D NxN D c1.N � 1/A.1 � �/
.c1 C .N � 1/c2/

2
:

(4.109)

These expressions coincide with the expression we derived earlier in Example 4.3
if we let � D 0 (no cooperation). Note that in the case of identical cooperation levels
of all firms, from the expression of the individual equilibrium values (4.109) we can
easily deduce that not only the total industry output decreases for increasing cooper-
ation levels, but also the individual equilibrium quantities. However, because of the
more complicated expressions of individual equilibrium output quantities (4.108)
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N22 26 301062

0.6

x1

x2

0

14 18

0.8

0

Fig. 4.20 Example 4.15; the discrete time oligopoly under partial cooperation – the semi-
symmetric case. Bifurcation diagrams of outputs with respect to the number of firms N . Here
A D 16, a1 D 0:4, a2 D 0:3, c1 D 5, c2 D 6, L1 D L2 D 2 and � D 0:5

in the case of non-identical cooperation levels, it is not clear if this property holds
when cooperation levels �1 and �2 differ.

The dynamic behavior of the model with partial cooperation and identical coop-
eration levels is the same as the dynamical behavior of the model considered in
Example 3.4, since the former can be obtained by the latter by just replacing the
parameter A with A.1 � �/. From this property we can easily deduce that the
stability condition (3.15), obtained for the semi-symmetric case with no coopera-
tion, also holds for the model with partial cooperation with identical cooperation
levels, since this stability condition is independent of the parameter A. Moreover,
as numerical explorations suggest, the same statement holds even for the stabil-
ity of periodic cycles. To illustrate this fact, in Fig. 4.20, obtained with parameters
A D 16, a1 D 0:4, a2 D 0:3, c1 D 5, c2 D 6, L1 D L2 D 2 and � D 0:5, we show
bifurcations that occur as the number of firms increases. A simple comparison with
Fig. 3.6, which has been obtained for the same set of parameters but without coop-
eration, shows that the losses in stability occur at the same values of the bifurcation
parameter.

The bifurcation diagram in Fig. 4.21 shows the effect of changes in the levels of
cooperation �k on the stability of the positive equilibrium and the kind of asymptotic
dynamics that can occur. Here the parameter �2 is taken as a bifurcation parame-
ter and N D 6, a1 D 0:5, a2 D 0:4; �1 D 0:5. All the other parameters have
the same values as in Fig. 4.20. In this case we can see that the equilibrium loses
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Fig. 4.21 Example 4.15; the discrete time oligopoly under partial cooperation – the semi-
symmetric case. Bifurcation diagrams of outputs with respect to �2 for N D 6. Here a1 D 0:5,
a2 D 0:4, �1 D 0:5 and all other parameters are as in Fig. 4.20
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Fig. 4.22 Example 4.15; the discrete time oligopoly under partial cooperation – the semi-
symmetric case. Bifurcation diagrams of outputs with respect to �2 forN D 8. All other parameters
are as in Fig. 4.21
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stability as the bifurcation parameter �2 tends towards 1. This result is quite surpris-
ing as one would expect a fully cooperative firm to have a stabilizing effect. With
respect to the monotonicity property of the individual quantities mentioned above,
the bifurcation diagram reveals that for an increasing cooperation level of firm 2, the
equilibrium quantity of firm 1 first increases, and then decreases, whereas firm 2’s
equilibrium quantity decreases throughout. The counterintuitive destabilizing effect
of an increase in the cooperation level �k of one of the firms is not a general prop-
erty. This becomes obvious from the diagram shown in Fig. 4.22 (obtained with the
same set of parameters as in Fig. 4.21; the only difference being that the number of
firms has increased to N D 8). Here, an increase in the cooperation level of firm 2
leads first to a stabilization of the equilibrium through a period halving bifurcation.
Then a further increase in the cooperation level finally causes destabilization and
transition to periodic attractors of increasing period as well as to chaotic behavior.

We close this subsection by remarking that the bifurcation diagrams obtained
with different values of �1 and �2 for increasing values of N or increasing values of
ak as bifurcation parameters are qualitatively very similar to those shown in Fig. 3.6
and 3.7 respectively. The only difference is that with higher cooperation levels both
individual quantities and their fluctuations are generally reduced.



Chapter 5
Oligopolies with Misspecified and Uncertain
Price Functions, and Learning

The previous chapters have already dealt with the behavior of boundedly rational
firms in an oligopoly. Although the firms know the true demand relationship, we
have assumed that they do not know their competitors’ quantity choices. Instead
they form expectations about these quantities and they base their own decisions on
these beliefs. In particular, we have focused on several adjustment processes that
firms might use to determine their quantity selections and we have investigated the
circumstances under which such adjustment processes might lead to convergence
to the Nash equilibrium of the static oligopoly game. However, the information that
firms have about the environment may be incomplete on several accounts. For exam-
ple, players may misspecify the true demand function or just misestimate the slope
of the demand relationship, the reservation price, or the market saturation point.
However, if firms base their decisions on such wrong estimates, they will realize that
their beliefs are incorrect, since the market data they observe (for example, market
prices or quantities) will be different from their predictions. Obviously, firms will
try to update their beliefs on the demand relationship and this will give rise to an
adjustment process. In other words, firms will try to learn the game they are play-
ing. Following this line of thought, in this chapter we study oligopoly models under
the assumption that firms either use misspecified price functions (Sect. 5.1) or do
not know certain parameters of the market demand (Sect. 5.2). The main questions
we want to answer are the following. If we understand an equilibrium in a game
as a steady state of some non-equilibrium process of adjustment and “learning,”
what happens if the players use an incorrect model of their environment? Does a
reasonable adaptive process (for example, based on the best response) converge to
anything? If so, to what does it converge? Is the limit that can be observed when the
players play their perceived games (close to) an equilibrium of the underlying true
model? Is the observed situation consistent with the (limit) beliefs of the players?

In Sect. 5.1 we consider a framework based on the idea of Léonard and Nishimura
(1999), who derive similar insights for a simple Cournot duopoly model with
decreasing reaction functions. We demonstrate that in situations where players
choose their actions based on a misspecified model of the environment, additional
self-confirming steady states may emerge, despite the fact that the Nash equilib-
rium of the game under perfect knowledge is unique. We will derive (sufficient)
conditions for the local and global stability of these steady states. For discrete time

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 5,
c� Springer-Verlag Berlin Heidelberg 2010
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models the various steady states of the game may have quite complicated basins
of attraction and, as a consequence, the long run outcome of the game may be
highly dependent upon initial conditions. We will also study the continuous time
version introduced by Chiarella and Szidarovszky (2001b) and investigate how the
asymptotic properties are altered by time delays in obtaining and implementing
information on the output of the rivals.

A weakness of the framework presented in Sect. 5.1 is that it does not take into
account the fact that players might want to change their subjective (misspecified)
demand functions. Such an approach can be justified by pointing out that the firms
do not know the cost functions of their competitors and therefore are not able to
derive the output decisions of their competitors. This implies that they are not able
to estimate the whole quantity sold in the market. So, the price they observe does not
convey sufficient information for them to realize that they are using a misspecified
demand function. An alternative to such a setup is presented in Sect. 5.2, where the
firms use a local linear approximation of the price function based on only their own
outputs. Two types of dynamics are examined. First believed best response dynamics
are examined, and then the case of adaptive adjustment processes is discussed.

Three special adaptive learning models are introduced and examined in Sect. 5.3.
Based on their beliefs of the price function each firm computes its believed equilib-
rium output and price. There the observed discrepancy between the price estimate
and the realized market price not only allows the players to conclude that they are
using an incorrect estimate of the demand function, but they are also allowed to
adaptively adjust the believed demand (or price) function. To be more precise, an
N -firm single-product Cournot oligopoly where the demand and cost functions are
linear is considered. Cost functions are completely known by all firms and, although
they know that the (inverse) demand relationship is linear, they either do not know
the slope, or the reservation price. Each firm has its own estimate of the unknown
market parameter and, by solving a static game, determines its own production quan-
tity as well as an expectation on the production quantity of the rest of the industry
(and hence, an expected industry output and an expected price). While firms will
never observe the realized industry output, they can see if the realized market price
differs from their expected price. This will make players aware that their estimate of
the market parameter is wrong, leading them to update their estimate. Our main goal
in this section is to investigate the conditions under which such a simple learning
process has a unique steady state determined by the true market parameters and if
the adjustment process converges to this steady state. In other words, we are inter-
ested in situations in which the firms learn the true demand. We will also see that
adjustment processes of these kinds are not always convergent, and we examine
their global dynamics including their basins of attraction.

Section 5.4 introduces the case of uncertain price functions, when each firm
believes in a randomized function. It is assumed that they want to maximize their
expected profits and minimize their variances. By introducing a linear utility func-
tion it is shown that the game can be reduced to deterministic oligopolies with
misspecified price functions.
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5.1 Misspecified Price Functions

As before, let xk denote the output of firm k .1�k �N/, Ck.xk/ its cost, so
no externalities are assumed, and pDf .Q/ the true price function, where Q D
PN

kD1 xk . Assume that the firms only have estimates of the price function f and

let efk , denote firm k’s belief about f . In order to be realistic, efk is assumed to be
strictly decreasing. In the case of full information each firm k knows the true price
function. Hence, given the observed market price p, from the equation

p D f .Qk C xk/ (5.1)

each firm would be able to obtain the output of the rest of the industry, namely

Qk D f �1.p/ � xk :

In the case of misspecified price functions, the true price is again given by p D
f .Qk C xk/. However firm k believes that it is p D efk.Qk C xk/, so its estimate
eQk about the output of the rest of the industry satisfies the equation

efk.eQk C xk/ D p D f .Qk C xk/;

implying that
eQk D . ef �1

k of /.Qk C xk/� xk: (5.2)

Firm k also believes that its profit at any time period t C 1 is

e'k D xk
efk.xk CQE

k .t C 1//� Ck.xk/; (5.3)

whereQE
k
.t C 1/ is its expectation of the output of the rest of the industry in period

t C 1. The best response eRk of this firm given its belief can be obtained in the same
way as it was shown by relation (1.3) in Chap. 1. However in this case, the true price
function f has to be replaced by the believed price function efk .

Assuming discrete time scales, using (5.2) and the fact that the firms form adap-
tive expectations on the output of the rest of the industry we obtain the dynamic
model

xk.t C 1/ D eRk

 

QE
k .t/C ˛k

 

. ef �1
k of /

 

N
X

lD1

xl .t/

!

� xk.t/�QE
k .t/

!!

;

(5.4)

QE
k .t C 1/ D QE

k .t/C ˛k

 

. ef �1
k of /

 

N
X

lD1

xl .t/

!

� xk.t/ �QE
k .t/

!

; (5.5)
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for k D 1; 2; : : : ; N , where the firm’s adaptive expectations are based on its belief
eQk on the output of the rest of the industry. Here ˛k is a sign-preserving function
for all k.

The corresponding discrete time model with partial adjustment towards the best
response has the form

xk.t C 1/ D xk.t/C ˛k

 

eRk

 

. ef �1
k of /.

N
X

lD1

xl .t// � xk.t/

!

� xk.t/

!

(5.6)

for k D 1; 2; : : : ; N .
Under the assumption of continuous time scales and that each firm adjusts its

output in the direction toward its believed best response we have the model

Pxk.t/ D ˛k

 

eRk

 

. ef �1
k of /.

N
X

lD1

xl.t// � xk.t/

!

� xk.t/

!

: (5.7)

Notice that in the case of full knowledge of the price function we have eRk D Rk

and efk D f for all k, so that ( ef �1
k
of ) is the identity function and the models (5.4)–

(5.7) formally reduce to the models (1.28)–(1.31) introduced earlier in Chap. 1. For
the sake of simplicity we introduce the notation Hk D . ef �1

k
of ). If efk is a good

approximation of f , then Hk is a good approximation of the identity function. In
the subsequent parts of this section, the asymptotic behavior of systems (5.4)–(5.7)
will be examined. Since usually ef �1

k
of differs from the identity function, and the

best response functions eRk are different from the full information best responses
Rk , the steady states of these systems are usually different from the Nash equilibria
of the full information case. Even if any of these systems is asymptotically stable,
the outputs of the firms will not converge to the Nash equilibria. The trajectories will
instead converge to the steady state of the system, which can be called a believed or
subjective equilibrium.

Example 5.1. Assume that the true price function is isoelastic, f .Q/ D A=Q, but
firm k believes that it is efk.Q/ D Ak=Q, where Ak ¤ A. Since firm k does not
know the true price function f , it is not able to derive the true value of Qk . After
having observed a particular price p, it is only able to estimate this quantity by using
the relationship given in (5.2), which in the present case becomes

Ak

eQk C xk

D p D A

Qk C xk

:

So firm k believes that the output of the rest of the industry is

eQk D Ak � pxk

p
:
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Using the right hand equality in the first equation of this example the above quantity
can be rewritten in terms of the unknown value A as

eQk D .Ak � A/xk C AkQk

A
:

Firm k can now use this value eQk to determine its best response. The expected profit
of firm k is

e'k D Akxk

xk C eQk

� .dk C ckxk/;

where we assume a linear cost function, which is known by the firm. The best
response is therefore given by

eRk.eQk/ D
8

<

:

0 if z�
k

� 0;

Lk if z�
k

� 0;

z�
k

otherwise;

where

z�
k D

s

Ak
eQk

ck

� eQk .

We will next determine the subjective equilibrium in the case when it is interior and
we will realize that it does not coincide with the full information Nash equilibrium.
The quantities in the subjective equilibrium satisfy the equation

xk D
s

Ak

ckA
..Ak �A/xk C AkQk/ � 1

A
..Ak � A/xk C AkQk/;

where we have simply used the expressions provided above. Using the relation
Q D xk CQk , this implies that

AkQ

A
D
s

Ak

ckA
.AkQ �Axk/;

so that the market quantity of firm k can be expressed in terms of the realized
industry outputQ as

xk D Ak.AQ � ckQ
2/

A2
:

By adding up the expressions for the individual quantities offered by the firms
k D 1; 2; : : : ; N , we obtain a simple equation for the realized industry outputQ,

Q D Q

A

N
X

kD1

Ak � Q2

A2

N
X

kD1

Akck:
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This further implies that the realized industry output at the subjective equilibrium
can be expressed as

Q D
A

 

N
X

kD1

Ak � A

!

N
X

kD1

Akck

:

In Example 1.5 we determined the output of the industry in the full information case
as

Q D .N � 1/A
PN

kD1 ck

:

It is important to realize that the quantities in the subjective equilibrium differ from
the quantities in the full information case. Of course, if Ak DA for each k, that is
all firms know the true price function, then the expressions above coincide. �

Oligopolies without full information have been examined by several authors.
Okuguchi (1976) investigated discrete time dynamic models without full infor-
mation, and his stability analysis was based on the contraction mapping theorem.
Szidarovszky and Okuguchi (1990) discussed the asymptotic properties of dynamic
oligopolies with perceived marginal costs. Kirman (1975, 1983), and Gates et al.
(1982) should also be mentioned as early contributions. Léonard and Nishimura
(1999) assumed that the firms know the shape of the demand function but they mis-
specify its scale. They show that if players (slightly) over- or underestimate the true
demand, then an adaptive process based on the best replies converges towards a
unique steady state that differs from the full-information (Nash) equilibrium. They
also demonstrate that this steady state may lose stability as the misspecification
error (of one firm) becomes larger. The general case has been briefly analyzed in
Szidarovszky et al. (2008) for the concave case.

In his early paper Kirman (1975) considers a simple duopoly model, where he
assumes that the duopolists are not aware that their demand depends on each other’s
action. The players choose their quantities such that the expected profit of the next
period is maximized and the duopolists update their estimates of the parameters of
the (misspecified) perceived model. Within this simple framework, he shows that
instead of converging to the “true” situation, the beliefs of the agents may drive
the model towards some other outcome. In addition to the result that agents are
not able to learn the true equilibrium, it is also shown in Kirman (1975, 1983) that
if convergence to the full information equilibrium fails, the process may become
path dependent, that is the particular equilibrium that can be observed depends
on the starting conditions. Furthermore, Brousseau and Kirman (1993) find regions
of stability as well as complicated dynamics in their simulations, whilst Kirman
(1995) makes some remarks on basins of attraction. Schinkel et al. (2002) con-
sider an oligopolistic price setting model where firms do not know the market
demand but have demand conjectures instead. They analyze the global dynamics
and show that the particular equilibrium that is reached in the long run depends
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on the initial beliefs. These observations are interesting, since they once again stress
the fact that we need to study the global dynamics of the market game, in particular
the characteristics of its possible long run outcomes and their respective basins of
attraction.

For further results on continuous time models we refer the reader to Chiarella
and Szidarovszky (2004), where firms may also misspecify the shape of the demand
function and not only its scale.

5.1.1 Discrete Time Models and Local Stability

We consider first the model (5.4)–(5.5), and note that it is the mathematically equiv-
alent to the dynamical system (1.28)–(1.29) introduced in Chap. 1. In Chap. 2 we
have determined the Jacobian of this system as the matrix given in (2.15), which in
the current situation assumes the particular form

� NJ 11
NJ 12

NJ 21
NJ 22

�

;

where

NJ 11 D

0

B

B

B

@

r1a1.h1 � 1/ r1a1h1 : : : r1a1h1

r2a2h2 r2a2.h2 � 1/ : : : r2a2h2

:::
:::

:::

rNaNhN rNaNhN : : : rNaN .hN � 1/

1

C

C

C

A

;

NJ 12 D diag .r1.1 � a1/; r2.1 � a2/; : : : ; rN .1 � aN // ;

NJ 21 D

0

B

B

B

@

a1.h1 � 1/ a1h1 : : : a1h1

a2h2 a2.h2 � 1/ : : : a2h2

:::
:::

: : :
:::

aNhN aNhN : : : aN .hN � 1/

1

C

C

C

A

;

NJ 22 D diag .1 � a1; 1 � a2; : : : ; 1 � aN / ;

with rk D eR0
k

, hk D H 0
k

D . efkof /
0 at the steady state of the system and ak D

˛0
k
.0/. Since both f and efk are strictly decreasing, Hk is strictly increasing, so it

is reasonable to assume that hk >0. The eigenvalue equation of the Jacobian can be
written similarly to (2.17)–(2.18) as
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rkak.hk � 1/uk C rkakhk

X

l¤k

ul C rk.1 � ak/vk D �uk; (5.8)

ak.hk � 1/uk C akhk

X

l¤k

ul C .1 � ak/vk D �vk .k D 1; 2; : : : ; N /: (5.9)

Subtract the rk-multiple of the second equation from the first one to obtain

�.uk � rkvk/ D 0:

We may assume that � ¤ 0, so uk D rkvk . If we substitute this relation into (5.8)
we see that

.rkak.hk � 1/C .1 � ak// uk C rkakhk

X

l¤k

ul D �uk;

which is the eigenvalue equation of the N �N matrix

H D

0

B

B

B

@

r1a1.h1 � 1/C 1� a1 r1a1h1 : : : r1a1h1
r2a2h2 r2a2.h2 � 1/C 1� a2 r2a2h2
:
:
:

:
:
:

: : :
:
:
:

rN aNhN rN aNhN : : : rN aN .hN � 1/C 1� aN

1

C

C

C

A

: (5.10)

Observe that this matrix is the Jacobian of system (5.6), the model with partial
adjustment towards the best response. Therefore if local asymptotic stability is our
concern, then the stability conditions the systems (5.4)–(5.5) and (5.6) are again
equivalent, and the eigenvalues of the matrix (5.10) determine whether or not an
equilibrium is stable.

Assume that functions f , efk and Ck for all k are twice continuously differen-
tiable, furthermore,

(A) f 0.Q/ < 0, ef 0
k
.Q/ < 0,

(B) xk
ef 00
k
.Q/C ef 0

k
.Q/ � 0,

(C) ef 0
k
.Q/� C 00

k
.xk/ < 0,

for all feasible values of xk andQ (see Chap. 2, Sect. 2.1, for an economic interpre-
tation of these conditions).

The main stability result of this section is given in the following theorem.

Theorem 5.1. Assume that ak > 0 for all k, and conditions (A)–(C) are satisfied.

(i) The equilibrium is locally asymptotically stable if for all k,

ak.1C rk/ < 2 (5.11)
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and
N
X

kD1

rkakhk

2 � ak.1C rk/
> �1: (5.12)

(ii) The equilibrium is unstable if for at least one k,

ak.1C rk/ � 2

or
N
X

kD1

rkakhk

2 � ak.1C rk/
< �1:

Proof. The structure of matrix H is the same as (E.4) shown in Appendix E. There-
fore the eigenvalue equation of H can be written as (E.5), which here has the special
form

N
Y

kD1

.1 � ak.1C rk/ � �/ �
"

1C
N
X

kD1

rkakhk

1 � ak.1C rk/� �

#

D 0: (5.13)

If we assume that both f 0 and ef 0
k

are negative, thenH 0
k

is positive, so hk > 0.
Conditions (B) and (C) imply that the believed price functions satisfy the con-

ditions of concave oligopolies stated at the beginning of Sect. 2.1. Under these
conditions

�1 < rk � 0

for all k, which can be proved similarly to (2.7) when f 0 and f 00 are replaced by
ef 0
k

and ef 00
k

. Assume that the firms are numbered in such a way that the different
ak.1C rk/ values are

a1.1C r1/ > a2.1C r2/ > : : : > as.1C rs/

and they are repeated m1; m2; : : : ; ms times. By adding the terms with identical
denominators in the bracketed expression and denoting by �j the sum of the corre-
sponding numerators rkakhk , we can rewrite (5.13) as (2.24). Therefore the proof
of Theorem 2.1 can be applied to show the assertion. �

In the full information case efk � f for all k, so Hk is the identity function,
and hk D 1 for all k. In this special case, the matrix (5.10) reduces to (2.20), and
Theorem 5.1 specializes to Theorem 2.1.

Example 5.2. Assume as in Example 5.1 that the price function is isoelastic. Let
f .Q/ D A=Q be the true price function and assume that firm k believes that the
price function is efk.Q/ D Ak=Q, where Ak > 0 is a constant. The believed best
response function of firm k has the same derivative as given by (3.3) with the only
difference being that A is replaced by Ak , so it has the same properties as in the
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full information case. The local asymptotic stability of the equilibrium then can be
examined by following the argument of Sect. 3.1.1, with identical conclusions. �

5.1.2 Discrete Time Models and Global Dynamics

In order to illustrate the asymptotic behavior of oligopolies with misspecified price
functions and to show the dependence of the believed equilibrium on the way in
which firms misspecify the price function we study a particular example.

Example 5.3. Assume again that the true price function is f .Q/ D A=Q, but firm
k believes that the price function is efk.Q/ D A=.QC "k/ with some "k � 0.
Assume that the firms have linear cost functions denoted by Ck.xk/ D dk C ckxk .
Let Lk denote the capacity limit of firm k. Firm k’s expected profit is (assuming
naive expectations)

e'k D Axk

xk C eQk C "k

� .dk C ckxk/.

Therefore, the best reply is given by

eRk.eQk/ D
8

<

:

0 if z�
k

� 0;

Lk if z�
k

� 0;

z�
k

otherwise;

where

z�
k D

s

A.eQk C "k/

ck

� .eQk C "k/. (5.14)

Firm k is able to observe the market price p, so it can determine the believed output
of the rest of the industry based on its price function estimate. So from the equation

A

xk C eQk C "k

D p;

the firm believes that
eQk D A

p
� xk � "k:

Then the best response of this firm the z�
k

is given by (5.14). However the price is
p D A=.xk CQk/, whereQk is the true output of the rest of the industry, so

eQk D .xk CQk/ � xk � "k D Qk � "k
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and so

z�
k D

s

AQk

ck

�Qk;

which is the best response of the firm with full information. This observation means
that even if firms misspecify the price function in this way, they still take the right
decision with their best responses. �

The global asymptotic stability of the models (5.4)–(5.5) for best reply dynamics
with adaptive expectations and (5.6) for the partial adjustment dynamics can be
discussed similarly to the other cases. The Jacobian of system (5.6) has the special
form (5.10). By using Lemma B.2 of Appendix B, we see that the equilibrium is
globally asymptotically stable if for all k and all feasible values of x1; : : : ; xN ,

jrkak.hk � 1/C 1 � ak j C .N � 1/ jrkakhkj < 1; (5.15)

the feasible output sets are compact and all functions Rk , ˛k and Hk are continu-
ously differentiable on these sets. Under conditions (A)–(C) and by assuming that
hk > 0, this inequality can be written as the pair of inequalities

rkak.hk � 1/C 1 � ak � .N � 1/rkakhk < 1

and

�rkak.hk � 1/� 1C ak � .N � 1/rkakhk < 1:

These relations can be rewritten as

ak

�

rkhk.2 �N/ � rk � 1
�

< 0 (5.16)

and

ak

�

1C rk.1�Nhk/
�

< 2 : (5.17)

Consider the first relation (5.16). Since �1 < rk � 0, forN D 2 it always holds,
and for N D 3 it holds if

�rk.hk C 1/� 1 < 0

that is, when

rk >
�1

hk C 1
:

If N becomes larger, then rkhk.2 �N/ becomes a large positive number, so (5.16)
no longer holds, and stability is lost. Consider next relation (5.17). Since
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1C rk.1 �Nhk/ > 0 for � 1 < rk � 0;

it holds if

ak <
2

1C rk.1 �Nhk/
:

Notice that if rk < 0, then the right hand side converges to zero as N ! 1. So this
condition becomes very restrictive for large values of N .

The previous derivation holds if all trajectories are interior. In the general case,
when boundary points occur we can use Theorem B.3. For each best response the
feasible output set is divided into three regions depending on the zero,Lk , or interior
value of the response function. In the first two cases rk D 0, so in each subregion
the Jacobian has the same form as (5.10) with the difference that at least one rk
value equals zero. Consider now a given value of k. If rk ¤ 0, then (5.15) remains
the same, so the conclusions are also the same as given above. If rk D 0, then the
left hand side of (5.15) is j1 � ak j, which is below unity if ak <2. After these
rather general consideration about global stability we now present an example which
demonstrates that multiple “believed” equilibria may occur. Therefore, global sta-
bility is lost and the tools of global analysis have to be employed to gain further
insights.

Example 5.4. In this example we restrict our attention to a duopoly game and study
its global dynamics. Again, the true inverse demand relationship is given by

p D f .Q/; (5.18)

but firms do not know this relationship. Instead they subjectively believe, as before,
that the price function is efk.Q/; k D 1; 2, that is firm k believes that

p D efk.Q/; .k D 1; 2/: (5.19)

Considering the cost side, we allow for externalities. That is, the costs Ck of firm k

may not only depend on the firm’s own quantity xk but also on the quantity of the
other firm (see Chap. 1, Sect. 1.1, for a motivation as to why positive externalities of
this kind might occur). We assume that players are able to take this effect on their
own costs into account. More precisely, at the beginning of period t firm k chooses
xk.t/ such that the expected profit

e'k D xk
efk.xk CQ

E;prior

k
/ � Ck.xk ;Q

E;prior

k
/; (5.20)

is maximized. Here the quantity QE;prior

k
denotes firm k’s belief in period t about

the quantity chosen by its rival and the additional superscript prior is used to indi-
cate that at the time when this expectation is formed, firm 1 knows the previous price
p.t � 1/, but does not yet know the new price p.t/. Using its subjective demand
relationship efk and its belief on the competitor’s quantityQE;prior

k
, the duopolists
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determine their best responses eR1.x
E;prior
2 / and eR2.x

E;prior
1 /. In general, these

best responses are different from the reaction functions in the usual sense, that
is if firms were to posses full information of the demand relationship. At the end
of period t , after both firms have sold their selected quantities at the market, they
observe the realized market price p.t/, but do not observe the industry output or
the quantity supplied by its rival. They use the realized price p.t/ to update their
belief on the rival’s choice. The updated belief QE;post

k
.t/ for firm k is derived

from relationship
p.t/ D efk.xk.t/CQ

E;post

k
.t//; (5.21)

or equivalently by
Q

E;post

k
.t/ D ef �1

k .p.t//� xk.t/: (5.22)

If we assume naive expectations following Léonard and Nishimura (1999) and
Bischi et al. (2004b), we have

Q
E;prior

k
.t C 1/ D Q

E;post

k
.t/; (5.23)

which by using (5.22) yields

Q
E;prior

k
.t C 1/ D ef �1

k .p.t// � xk.t/: (5.24)

Summarizing, the dynamics of the duopoly with misspecified demand can be
described as follows. The firms start with initial expectations about their rival’s
output and given their subjective demand relationships, the duopolists derive their
best replies eR1.x

E;prior
2 / and eR2.x

E;prior
1 /, with Q

E;prior
1 D x

E;prior
2 and

Q
E;prior
2 D x

E;prior
1 . The firms use the best replies to determine their quan-

tity choices, for example, by using a partial adjustment towards the best response
process with constant speeds of adjustment a1 and a2, so that

x1.t C 1/ D x1.t/C a1

�

eR1.x
E;prior
2 .t C 1//� x1.t/

�

; (5.25)

x2.t C 1/ D x2.t/C a2

�

eR2.x
E;prior
1 .t C 1//� x2.t/

�

:

The price that clears the market is determined by the true (but unknown) price func-
tion according to (5.18). After observing the current price, the firms use the relation
(5.24) to update their beliefs on the rival’s quantity. The expectation-feedback cycle
then repeats itself. Using (5.18) and (5.24), the partial adjustment process can be
written as

x1.t C 1/ D x1.t/C a1

�

eR1Œ ef
�1

1 .f .x1.t/C x2.t/// � x1.t/� � x1.t/
�

; (5.26)

x2.t C 1/ D x2.t/C a2

�

eR2Œ ef
�1

2 .f .x1.t/C x2.t/// � x2.t/� � x2.t/
�

: (5.27)
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In general, this dynamical system involves the best replies which are based on
misspecified beliefs. However, in the special case where firm k mistakenly over-
or underestimates the actual demand by a factor of "k , so that

ef �1
k .p/ D "kf

�1 .p/ ; (5.28)

the dynamical system can be expressed in terms of the true reaction functions
R1 and R2 (see again Léonard and Nishimura (1999), Bischi et al. (2004b)).
This can be seen as follows. First note that with this misspecification we obtain
efk.Q/ D f ."�1

k
Q/, and hence ef 0

k
.Q/ D "�1

k
f 0."�1

k
Q/. Therefore, assuming an

interior solution, the first order condition for firm k can be written as

f ."�1
k xk C "�1

k Q
E;prior

k
/C "�1

k xkf
0."�1

k xk C "�1
k Q

E;prior

k
/ � C 0

k D 0:

If we contrast this equation with the first order condition in the full information
case ("k D1 ) which implicitly defines the relation xk DRk.Q

E;prior

k
/, we can con-

clude that the first order condition together with assumption (5.28) implicitly defines
the relation "�1

k
xk DRk."

�1
k
Q

E;prior

k
/, where Rk denotes the reaction function in

the full information case. Obviously, it follows further that the relations between the
reaction functions eRk and the full information reaction functions are given by

eRk.Q
E;prior

k
/ D "kRk."

�1
k Q

E;prior

k
/: (5.29)

Consequently, if we take (5.28) and (5.29) into account, the dynamical system based
on partial adjustment towards the best response can be rewritten as

x1.t C 1/ D x1.t/C a1

�

"1R1Œ
"1 � 1
"1

x1.t/C x2.t/� � x1.t/

�

; (5.30)

x2.t C 1/ D x2.t/C a2

�

"2R2Œx1.t/C "2 � 1
"2

x2.t/� � x2.t/

�

:

Notice that if both players know the true demand ("1 D "2 D 1), then (5.30) reduces
to the partial adjustment process introduced in Chap. 1. On the other hand, our
derivations show that even if players over- or underestimate the demand by a cer-
tain factor "k ¤ 1, the dynamics of the repeated duopoly game with misspecified
demand is still governed by equations only involving the reaction functions of the
full information case. It is clear that this property makes this particular type of
misspecification quite appealing for further analysis. We will now briefly describe
the effects of mistaken beliefs on the long-run properties of the dynamical system.
More precisely, we will focus on the existence and stability of steady states if firms
misspecify the demand relationship and we will study the extent and topological
structure of the basins of attractions of these steady states. To consider a particular
example, we follow the model of Sect. 3.2 and specify the full information reaction
functions as
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x1 D R1.x2/ D �1x2 .1 � x2/ ; x2 D R2.x1/ D �2x1 .1 � x1/ : (5.31)

As before, the quantities .x1; x2/ are selected in the strategy space Œ0; 1�2 and �k 2
.1; 4�. For simplicity we restrict our analysis to the best reply dynamics, that is we
set a1 D a2 D 1, and obtain from (5.30) the dynamical system

eT W

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

x1 .t C 1/ D �1 Œ"1x2 .t/ .1 � x2 .t//

C ."1 � 1/x1 .t/
�

1 � "1�1
"1
x1 .t/ � 2x2 .t/

�i

;

x2 .t C 1/ D �2 Œ"2x1 .t/ .1 � x1 .t//

C ."2 � 1/x2 .t/
�

1 � "2�1
"2
x2 .t/ � 2x1 .t/

�i

;

(5.32)

where the map eT defined above generates the dynamics of the game. Observe that if
both firms know the true demand function so that, "1 D "2 D 1, then (5.32) reduces
to the Cournot best reply dynamics given by

T W

8

ˆ

<

ˆ

:

x1.t C 1/ D �1x2.t/ .1 � x2.t// ;

x2.t C 1/ D �2x1.t/.1 � x1.t//;

(5.33)

which is a special case of the adjustment dynamics already investigated in Sect. 3.2
(see also Kopel (1996) and Bischi et al. (2000a)). In a similar fashion to the analysis
presented in Sect. 3.2, for (5.32) a complete description of the stability regions of
the emerging equilibria can be obtained for the case of homogenous firms �1 D�2

and "1 D "2. In fact, analytic expressions of the curves that constitute the bound-
aries of such regions can be obtained from a standard analysis of the eigenvalues
of the Jacobian matrix (for details, see Bischi et al. (2004b)). Here we will instead
focus on the model with heterogeneous firms where, although a rigorous analytical
characterization cannot be given, the global dynamical properties of (5.32) can still
be studied by a mixture of analytical and numerical methods. Figure 5.1a depicts the
full information reaction function in a situation (for a choice of �1 ¤ �2) where a
unique Nash equilibrium exists. The question is, what happens if players misspecify
the demand? Will the adjustment dynamics still converge to a steady state close to
the Nash equilibrium of the true game? As will become clear, this depends on the
global dynamics of the system. First observe that the steady states of the dynamical
system with misspecified beliefs (5.32) are the real solutions of the algebraic system
eT .x1; x2/ D .x1; x2/, which yields the equations

�1."1 � 1/2x2
1 C 2�1"1 ."1 � 1/ x1x2 C �1"

2
1x

2
2

C "1 .1 � �1 ."1 � 1// x1 � �1"
2
1x2 D 0;

�2."2 � 1/2x2
2 C 2�2"2 ."2 � 1/ x1x2 C �2"

2
2x

2
1

C "2 .1 � �2 ."2 � 1// x2 � �2"
2
2x1 D 0:
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x1

x2
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Fig. 5.1 Occurrence of multiple steady states due to misspecified demand in the duopoly game
with logistic reaction functions. (a) Reaction functions and the unique Nash equilibrium NE in the
full information case, "1 D 1; "2 D 1. (b) Now "1 ¤ 1; "2 ¤ 1 and multiple steady states are
obtained by overestimating the true demand

These equations represent two parabolas P1 and P2 in the .x1; x2/-plane. Both of
them pass through the origin .0; 0/ and the parabola P1 (P2) intersects the vertical
axis in the point .0; 1/ (intersects the horizontal axis in the point .1; 0/). So, besides
the trivial fixed pointE0 D .0; 0/, we may obtain one or three positive steady states
which are located at the intersections of the two parabolas and are obtained as the
real solutions of a cubic equation. Obviously, for "k D 1 the parabola Pk coincides
with the reaction curve Rk . If "k ¤ 1 (k D 1; 2), then the parabolas P1 and P2

no longer coincide with the reaction curves R1 and R2 and intersection points do
not correspond to Nash equilibria of the “true” game, but to “subjective” equilibria
of the “perceived” game. The qualitative representation in Fig. 5.1b illustrates the
basic mechanism for the emergence of several subjective equilibria when one or
both error parameters "k are varied. In this situation there are three intersections of
the two parabolas P1 and P2 in the interior of the unit square and, consequently,
three potential long run outcomes of the game emerge (depending on their stability
properties). If, for example, both ES and E1 are locally asymptotically stable, then
the adjustment process might guide the players to the (subjective) equilibrium ES

and, hence, close to the Nash equilibrium of the true game. However, players might
in the long run also end up in a situation represented by E1 and, hence, far away
from the Nash equilibrium of the true game.

To illustrate these arguments, we consider the following numerical example. Let
�1 D 2:8 and �2 D 2:9. For these parameter values the Nash equilibrium of the
true game is unique and globally stable for the adjustment process (5.33), which
is obtained in the full information case, with "1 D "2 D 1. Starting from such a
selection, if the misspecification parameter "1 is increased, first a stable cycle of
period 2 appears (due to a saddle-node bifurcation). This is illustrated in Fig. 5.2a
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1
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0

c2ES NE

x1

x2

(a)

1

c1

0

c2ES NE

E2
E1

x1

x2
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Fig. 5.2 The duopoly game with logistic reaction functions. Firm 2 has full information but firm
1 has misspecified demand. (a) The misspecification parameter of firm 1 is "1 D 1:12, ES is
the unique stable steady state (light grey basin of attraction) coexisting with a stable cycle of
period 2 (white basin). Other parameters are �1 D 2:8; �2 D 2:9; "1 D 1:12; "2 D 1. (b) The
misspecification parameter of firm 1 increases to "1 D 1:18. Two new subjective equilibria E1;E2
emerge, of which E1 is stable (dark grey basin of attraction) and E2 is unstable. Other parameters
are �1 D 2:8; �2 D 2:9; "1 D 1:18; "2 D 1

with "1 D 1:12 and "2 D 1. In this case the strategy space consists of the basins
of two coexisting attractors, namely the subjective equilibrium ES and a 2-cycle
C2 D .c1; c2/ (as well as a small portion of the basin of infinity). If the misspecifi-
cation parameter "1 is further increased, two new steady states are created, denoted
byE1 andE2 in Fig. 5.2b (obtained for "1 D 1:18). These new subjective equilibria
are created via a saddle-node bifurcation (through a mechanism similar to the one
shown in Fig. 5.1) and, as a result, they appear far away from ES . The subjective
equilibrium E1 is stable (a stable node) and E2 is unstable. Furthermore, a stable
cycle C2 coexists.

Observe that the Nash equilibrium NE of the true game is located in the basin
of ES and is quite near to ES . If the initial quantities of the firms are located in
the basin of ES , then the adjustment process leads to a situation where the long run
outcome is close to the Nash equilibrium of the true game. On the other hand, if
the trajectories converge to E1, then the adjustment process based on misspecified
demand relationships leads the firms to an equilibrium which is quite different from
the true Nash equilibrium. It is interesting to notice that Fig. 5.1b shows that in
E1 firm 1 has a higher market share, and it turns out that it also has a higher profit
than firm 2 ('1 D 0:465; '2 D 0:2). Despite the fact that firm 2 knows the true
demand, firm 1 (although unwittingly) achieves not only market dominance, but –
with regard to the full information case – gains a higher profit, whereas firm 2’s
profit is reduced by more than 50%. �
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5.1.3 Continuous Time Models

Consider the continuous model (5.7) and assume that conditions (A)–(C) hold,
furthermore hk >0. We will first prove the following result.

Theorem 5.2. Under assumption (A)–(C) and by assuming that hk >0 and ak >0

for all k, the equilibrium is always locally asymptotically stable under the continu-
ous adjustment process (5.7).

Proof. The Jacobian of system (5.7) can be written as

0

B

B

B

@

a1Œr1.h1 � 1/� 1� a1r1h1 � � � a1r1h1

a2r2h2 a2Œr2.h2 � 1/� 1� � � � a2r2h2

:::
:::

: : :
:::

aN rNhN aN rNhN � � � aN ŒrN .hN � 1/� 1�

1

C

C

C

A

(5.34)

which is a straightforward extension of the Jacobian (2.46) of the full information
case, since if efk � f for all k, then Hk is the identity map with hk D H 0

k
D 1.

The eigenvalue equation has now the form

N
Y

kD1

Œ�ak.1C rk/ � �� �
"

1C
N
X

kD1

akrkhk

�ak.1C rk/� �

#

D 0: (5.35)

This equation is equivalent to (2.48) with the only difference that the �j values are
now the sums of numerators akrkhk with identical denominators.

Under conditions (A)–(C) of Sect. 5.1.1, Theorem 2.2 remains true, that is, the
equilibrium is locally asymptotically stable. �

The case of isoelastic price function also can be examined in the same way as
was demonstrated in Chap. 3 for the full information case, and the conclusions are
also identical.

The global asymptotic stability of the equilibrium based on Lyapunov functions
can be similarly discussed to the full information case. The details are omitted.
We will only examine the effect of delayed information on the stability of the
equilibrium.

Assume next that there is a time delay in obtaining and implementing information
on the market price that is used in (5.2) by the firms to form their expectations on the
output of the rest of the industry. By assuming the same type of weighting function
as in Sect. 2.6 for the full information case, the dynamic model (5.7) becomes

Pxk.t/D˛k

 

eRk

 

ef �1
k

 

Z t

0

w.t�s; Tk; mk/f

 

N
X

lD1

xl .s/

!

ds

!

�xk.t/

!

�xk.t/

!

;

(5.36)
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for k D 1; 2; : : : ; N , since firm k observes the market price f .Q/ with delay.
Similarly to the full information case we linearize this equation around the equi-
librium to have

Pxkı .t/ D ak

 

rk

 

hk

Z t

0

w.t � s; Tk; mk/

N
X

lD1

xlı.s/ds � xkı .t/

!

� xkı .t/

!

;

where xkı denotes the deviation of xk from its equilibrium level, and ak; rk and hk

are the same as in Sect. 5.1.1. By seeking the solution as xkı D vke
�t , substituting

it into the linearized equation and letting t ! 1, we obtain the equation

.�C ak.rk C 1//vk �
�

akrkhk

Z 1

0

w.s; Tk ; mk/e
��sds

� N
X

lD1

vl D 0:

We can further simplify this equation by using the limiting values of the integrals
(D.3) derived in Appendix D to obtain

Ak.�/vk C Bk.�/
X

l¤k

vl D 0 .k D 1; 2; : : : ; N /; (5.37)

where

Ak.�/ D �C ak.rk C 1/� akrkhk

�

1C �Tk

pk

��.mkC1/

and

Bk.�/ D �akrkhk

�

1C �Tk

pk

��.mkC1/

;

with

pk D
(

1 if mk D 0;

mk if mk > 0;

as before. System (5.37) has a non-trivial solution if its determinant is zero. Notice
that the determinant has the same structure as (2.54) in the full information case,
in addition its characteristic polynomial can also be expressed similarly to (2.55),
which here has the form

N
Y

kD1

.�C ak.rk C 1//

2

6

4
1 �

N
X

kD1

akrkhk

.�C ak.rk C 1//
�

1C �Tk

pk

�mkC1

3

7

5
D 0:

In the concave and isoelastic cases rk > � 1 for all k, so if ak >0 for all k, then the
values �ak.rk C 1/ are negative, so in order to examine stability we have only to
analyze the locations of the roots of the equation
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1 �
N
X

kD1

akrkhk

.�C ak.rk C 1//
�

1C �Tk

pk

�mkC1
D 0: (5.38)

In the general case computational methods can be used to locate the roots. In order
to obtain analytic results we will consider the case of symmetric firms, when ak �
a; rk � r; hk � h; Tk � T;mk � m and so pk � p. In both concave and isoelastic
cases �1 < r � 0; a > 0 and h > 0. Notice that in the isoelastic case at most one
firm can have a positive rk value, but in the symmetric case all firms would have
positive derivatives rk , which is impossible. Then (5.38) becomes the polynomial
equation

.�C a.r C 1//

�

1C �T

p

�mC1

�Narh D 0: (5.39)

Our results can be summarized in the following theorem.

Theorem 5.3. Assume symmetric firms and that h � 1=N: The equilibrium with
information lag is locally asymptotically stable if T D 0; or T > 0 and m D 0: If
T > 0 andm D 1; then

(i) The equilibrium is locally asymptotically stable, if

Nhr C 8.r C 1/ > 0.

(ii) The equilibrium is locally asymptotically stable for all aT ¤ 1C 8
N h

, when

Nhr C 8.r C 1/ D 0.

(iii) Otherwise the equilibrium is locally asymptotically stable if

aT < .aT /�1 or aT > .aT /�2;

where .aT /�1 and .aT /�2 ..aT /�1 < .aT /�2/ are given in (5.43), and the equilibrium
is unstable, if

.aT /�1 < aT < .aT /�2 :

At the critical values aT D .aT /�1 , and aT D .aT /�2 Hopf bifurcations occur giving
the possibility of the birth of limit cycles around the equilibrium.

Proof. Assume first that T D 0, that is, there is no time lag. Then (5.39) becomes

�C a.1C r.1 �Nh// D 0;

with the only root � D �a.1 C r.1 � Nh//. If efk is a reasonable approximation
of f , then h ' 1, so Nh � 1 implying that � < 0 and the equilibrium is locally
asymptotically stable.

Assume next that T > 0 and m D 0. Then (5.39) is reduces to the quadratic
equation

�2T C �.1C a.r C 1/T /C a.1C r.1 �Nh// D 0:
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Since all coefficients are positive by assuming again thatNh� 1, the equilibrium is
locally asymptotically stable.

Consider next the case of T > 0 and m D 1. Then (5.39) becomes the cubic
equation

�3T 2C�2.a.rC1/T 2C2T /C�.1C2a.rC1/T /Ca.1Cr.1�Nh// D 0: (5.40)

All coefficients are positive if Nh � 1, and the Routh–Hurwitz stability criterion
shows that the roots have negative real parts if and only if

.a.r C 1/T 2 C 2T /.1C 2aT .r C 1// > T 2a.1C r.1 �Nh//; (5.41)

which is equivalent to the quadratic inequality

2.r C 1/2.aT /2 C .aT /.4.r C 1/CNhr/C 2 > 0: (5.42)

The discriminant of the left hand side of (5.42) is

.4.r C 1/CNhr/2 � 16.r C 1/2 D Nhr.Nhr C 8.r C 1//:

The first factor is negative, so we have the following cases:

Case 1. If Nhr C 8.r C 1/ > 0, then the discriminant is negative, so (5.42) always
holds and the equilibrium is locally asymptotically stable.

Case 2. IfNhrC8.rC1/ D 0, then (5.42) holds for all values of aT except the sin-
gle root of the quadratic polynomial. So the equilibrium is locally asymptotically
stable unless

aT D �4.r C 1/�Nhr

4.r C 1/2
D 4.r C 1/

4.r C 1/2
D 1

r C 1
D 1C 8

Nh
:

Case 3. If Nhr C 8.r C 1/ < 0, then the quadratic polynomial (5.42) has two real
roots,

.aT /�1;2 D �4.r C 1/�Nhr ˙p

Nhr.Nhr C 8.r C 1//

4.r C 1/2
: (5.43)

Since
�4.r C 1/�Nhr D �.Nhr C 8.r C 1//C 4.r C 1/ > 0;

both roots are positive. Hence the equilibrium is locally asymptotically stable if

aT < .aT /�1 or aT > .aT /�2
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8
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2(aT )*
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r

Fig. 5.3 The continuous time model with symmetric firms and misspecified demand. The stability
region (shaded) in the .r; aT / plane. The parameter r is the slope of the reaction function at the
steady state, a D ˛0.0/ and T is the time lag in the weighting function. Notice how stability is lost
then regained as aT increases along the dashed vertical line. Hopf bifurcations may occur at the
points .aT /�1 and .aT /�2

where .aT /�1 < .aT /�2 . The equilibrium is unstable if

.aT /�1 < aT < .aT /�2 :

The stability region is shown in Figure 5.3. Assume now that �1 < r < � 8
8CN h

,
then the equilibrium is asymptotically stable with small and large values of aT .
With fixed such values of r , if aT is gradually increasing from a very small value
and crosses .aT /�1 , then stability is lost. The instability holds until the value of
aT reaches .aT /�2 , and after crossing this value stability is regained. We will next
show, that at these critical points Hopf bifurcations occur. Select T as the bifurcation
parameter similarly to the full information case. Then the eigenvalues are functions
of T , so � D �.T /. At the critical values of T , the inequality (5.41) becomes an
inequality, so the cubic equation (5.40) can be rewritten as
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�3T 2 C �2.a.r C 1/T 2 C 2T /C �
T 2a.1C r.1 �Nh//

a.1C r/T 2 C 2T
C a.1C r.1 �Nh//

D .�T 2 C .a.r C 1/T 2 C 2T //

�

�2 C a.1C r.1 �Nh//

a.1C r/T 2 C 2T

�

D 0:

Therefore the eigenvalues are

�1;2 D ˙i
s

a.1C r.1 �Nh//
a.r C 1/T 2 C 2T

and

�3 D �a.r C 1/T 2 C 2T

T 2
< 0:

So we have a pair of pure complex eigenvalues, and the third eigenvalue is negative.
Differentiating equation (5.40) implicitly with respect to T and using the notation
P� D d�

dT
we have

3�2 P�T 2 C2�3T C 2� P�.a.r C 1/T 2 C 2T /

C�2.2a.r C 1/T C 2/C P�.1C 2a.r C 1/T /C �2a.r C 1/ D 0

implying that

P� D �2�3T � �2.2a.r C 1/T C 2/� 2�a.r C 1/

3�2T 2 C 2�.a.r C 1/T 2 C 2T /C .1C 2a.r C 1/T /
: (5.44)

For the sake of simplicity introduce the notation

˛2 D a.1C r.1 �Nh//

a.r C 1/T 2 C 2T

�

D 1C 2aT .r C 1/

T 2

�

then �1;2 D ˙˛i and at these values

P� D ˙2˛3iT C ˛2.2a.r C 1/T C 2/� 2a˛.r C 1/i

�3˛2T 2 ˙ 2˛i.a.r C 1/T 2 C 2T /C .1C 2a.r C 1/T /

D ˛2.2a.r C 1/T C 2/C .˙2˛3T � 2a˛.r C 1//i

�2˛2T 2 ˙ 2˛i.a.r C 1/T 2 C 2T /

with real part

Re P� D 4˛4T 2 � 4a2˛2.r C 1/2T 2 � 8a˛2T .r C 1/

.�2˛2T 2/2 C 4˛2.a.r C 1/T 2 C 2T /2
: (5.45)
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The numerator can be simplified to

4˛2T ŒT .˛2 � a2.r C 1/2/� 2a.r C 1/�:

Here the first factor is positive, and the second factor can be rewritten as

1 � .aT /2.r C 1/2

T
¤ 0;

since it is easy to see that in Case 3

.aT /�1 <
1

r C 1
< .aT /�2 : (5.46)

Hence all conditions of the Hopf bifurcation theorem are satisfied, and therefore
there is the possibility of the birth of limit cycles around the equilibrium. �

Consider again the general equation (5.39) and assume very shallow best response
functions so that

r >
�1

1CNh
:

We can easily show that in this case all roots of this equation have negative real parts,
so the equilibrium is asymptotically stable. On the contrary assume that Re� � 0,
then

j�C a.r C 1/j � a.r C 1/

and

j1C �T

p
j � 1;

so
ˇ

ˇ

ˇ

ˇ

ˇ

.�C a.r C 1//

�

1C �T

p

�mC1
ˇ

ˇ

ˇ

ˇ

ˇ

� a.r C 1/ > �Narh D j �Narhj;

and hence � cannot be a solution of (5.39).
In the general case, higher values of m in (5.39) require the use of computa-

tional methods to locate the eigenvalues. We note again that the case when for all
k, efk � f (that is, the full information case) is the special case of model (5.36)
by selecting Hk as the identity mapping with hk D 1 for all k. However there are
slight differences between the full information model presented in Sect. 2.6 and the
model shown in this section. In the full information case for all firms we assumed
time delays in the information on the output of the rest of the industry, and also
in the firms’ own output levels. In this section we assumed that the firms receive
information only on the price, and they compute the output of the rest of the indus-
try by using the observed market price. Here they use delayed information on the
function values f .Qk C xk/ (which is the actual market price), but they use their
most current output levels for xk .
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5.2 Cournot Oligopolies with Local Monopolistic
Approximation

In this section we consider again a classical Cournot oligopoly model, where
quantity setting firms have incomplete information about the price function. In
particular, the firms do not know the shape of the true price function, although at
each time step they are able to get a correct estimate of the local slope of the price
function. Using this information, they solve the corresponding profit maximization
problem by assuming that the true demand function is a linear function with that
slope, and in addition by ignoring any effects of the competitors’ outputs. As we
shall see, despite such a rough approximation, which has been called “Local Monop-
olistic Approximation” (LMA) in Bischi et al. (2007), the adjustment process may
converge to a Nash equilibrium of the game under the assumption of full informa-
tion. For further work along these lines, see Negishi (1961), Silvestre (1977), and
Tuinstra (2004).

5.2.1 Adjustments with Local Monopolistic Approximation

Let the price function f and the cost functions Ck, k D 1; : : : ; N , be twice contin-
uously differentiable. Assume that through market experiments at any time period
each firm is able to get a correct estimate of the partial derivative

@f .xk.t/CQk.t//

@xk

D f 0.Q.t//, (5.47)

which is used to obtain a simple “rule of thumb” for the computation of the expected
price

pe.t C 1/ D p.t/C f 0.Q.t//.xk.t C 1/� xk.t// (5.48)

where p.t/Df .Q.t//.
Of course, the approximation (5.48) is obtained more easily than complete infor-

mation about the demand function (that involves values of the price or quantity that
may be quite different from the current observations). Indeed, the estimate of f 0.Q/
at time t may be obtained by computing the effects of small price or quantity vari-
ations. For example, introducing a small output variation �xk at time t , firm k can
compute

f .xk.t/CQk.t/C�xk/� f .xk.t/CQk.t//

�xk

, (5.49)

and we assume that this allows firm i to get a correct estimate of f 0.Q/. It is worth
noting that such an estimate can also be obtained through small price variations
since

df .Q/

dQ
D
�

dQ.p/

dp

��1

, (5.50)
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which shows that information about the current price elasticity of demand is suf-
ficient to obtain such an estimate. In practice, price experiments are commonly
carried out by firms through price discounts, hence this information is usually
readily available.

Notice that (5.48) is not a linear approximation of f , as firm k neglects the
influence of the competitor’s production in the computation of the expected price.
Needless to say that this is a very rough approximation. However, this might not
be far from reality, as many authors point out (see for example Kirman (1975)).
Moreover, as we shall see below, even if in the computation of the expected price the
firms neglect the influence of competitors’ outputs, the dynamic process generated
by such an adjustment procedure may lead to convergence to the same equilibria as
the best reply dynamics.

If firm k uses (5.48) to compute the expected price, the expected profit for the
next time period is approximated by

xk.tC1/
�

f .Q.t//Cf 0.Q.t//.xk.tC1/� xk.t//
	�Ck.xk.tC1// .kD1; : : : ; N /;

and the optimal response of firm k, under this information set, is computed as

eRk .Qk.t/; xk.t//

D arg max
xk�0

˚

xk

�

f .xk.t/CQk.t//C f 0.xk.t/CQk.t//.xk � xk.t//
	 � Ck.xk/




(5.51)

for k D 1; : : : ; N . By assuming a positive optimum, the first order condition implies
that

f .Q .t//C2f 0.Q.t//xk�f 0.Q.t//xk.t/�C 0
k.xk/ D 0 .k D 1; : : : ; N /: (5.52)

These first order conditions, computed at the equilibrium, are the same as the first
order conditions obtained for the Cournot game with perfect knowledge of the price
function f . Consequently, the steady states of the optimization problem with local
monopolistic approximation are also Cournot–Nash equilibria of the Cournot game
with complete knowledge of the price function. It is important to point out that this
distinguishes the oligopoly models based on LMA from the oligopoly models with
misspecified demand functions, which we have considered in the previous section
of this chapter. Whereas with misspecified demand functions the steady states are no
longer Nash equilibria of the true game, in the case of LMA the repeated decisions
of boundedly rational players who do not know the global shape of the demand func-
tion may lead to convergence to a Nash equilibrium. Of course, the more refined the
decision-making process and the corresponding decision rule, the more expensive it
is likely to be to obtain data for such a rule. Therefore, especially when a (single)
decision is not of crucial importance, no more than an approximate solution may be
justified. Some authors denote such decisions which are based on simple and inex-
pensive computations as “optimally imperfect decisions” (see for example Baumol
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and Quandt (1964)). Notice that, in order to solve the optimization problem (5.51) at
any time period t firm k needs only the following information: (1) Its current output
xk.t/; (2) The current price p.t/; (3) The current derivative f 0.Q.t//; (4) Its own
cost function Ck.xk/.

A global study of the dynamic properties of the adjustment process based on the
local monopolistic approximation of the demand function, is possible if the implicit
equation (5.52) can be written in the form of an explicit discrete time dynamical
system (that is if one can uniquely compute xk from (5.52) based on the knowledge
of the state variables at time t). This outcome can be obtained if we consider suitable
cost functions, such as:

1. Linear cost functions Ck.xk/ D dk C ckxk , so that C
0

k
.xk/ D ck and (5.52)

gives

xk.t C 1/ D 1

2
xk.t/ � f .Q.t//� ck

2f 0.Q.t//
.k D 1; : : : ; N /I (5.53)

2. Quadratic cost functions: Ck.xk/ D dk C ekx
2
k

, so that C 0
k
.xk/ D 2ekxk , and

so (5.52) gives

xk.t C 1/ D xk.t/f
0.Q.t// � f .Q.t//

2 Œf 0.Q.t// � ek�
.k D 1; : : : ; N /: (5.54)

In the following examples we assume that the demand function is isoelastic and we
study the dynamic properties of the corresponding model.

Example 5.5. Let us consider a duopoly model with the isoelastic price function,

p D f .Q/ D 1

Q˛
, ˛ > 0 , (5.55)

and linear cost functions Ck D dk C ckxk . Notice that for ˛D 1 we obtain again
the hyperbolic price function already considered in several examples in this book.
The model (5.53) with N D 2 and inverse demand function (5.55) becomes a two
dimensional dynamical system, defined by the iterated map

x1.t C 1/ D 1

2
x1.t/ � 1

2˛
.x1.t/C x2.t//

�

c1 .x1.t/C x2.t//
˛ � 1

	

;

(5.56)

x2.t C 1/ D 1

2
x2.t/ � 1

2˛
.x1.t/C x2.t//

�

c2 .x1.t/C x2.t//
˛ � 1

	

.

The equations for the determination of the fixed points, obtained by setting xk D
xk.t C 1/ D xk.t/ in (5.56), become

x1 C 1
˛
.x1 C x2/

�

c1 .x1 C x2/
˛ � 1

	 D 0;

x2 C 1
˛
.x1 C x2/

�

c2 .x1 C x2/
˛ � 1

	 D 0:
(5.57)
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After adding these two equations, we obtain

.x1 C x2/
˛ D 2 � ˛

c1 C c2

:

This equilibrium condition shows us that a realistic non-vanishing steady state exists
only if ˛ < 2. We can use this equation to substitute, for example, x2 D �x1 C
�

2�˛
c1Cc2

�1=˛

in one of equations (5.57), from which we get the unique non-vanishing

equilibrium Nx D . Nx1; Nx2/, with

Nx1 D 1

˛

�

2 � ˛
c1 C c2

� 1
˛
�

c2 � c1 .1 � ˛/

c1 C c2

�

; (5.58)

Nx2 D 1

˛

�

2 � ˛
c1 C c2

� 1
˛
�

c1 � c2 .1 � ˛/

c1 C c2

�

:

This equilibrium is positive if ˛ > 1�min fc1=c2; c2=c1g. The study of the stability
of this equilibrium is particularly easy, because the Jacobian matrix for the map
(5.56) given by

J.x1; x2/ D
�

1
2

� 1
2˛
Œ.˛ C 1/c1.x1Cx2/

˛ � 1� � 1
2˛
Œc1.˛C1/.x1Cx2/

˛�1�
� 1

2˛
Œc2.˛ C 1/.x1Cx2/

˛ � 1� 1
2
� 1

2˛
Œ.˛C1/c2.x1Cx2/

˛�1�
�

;

computed at the equilibrium becomes

J. Nx1; Nx2/ D
0

@

1
2

� 1
2˛

h

.˛ C 1/c1
2�˛

c1Cc2
� 1

i

� 1
2˛

h

c1.˛ C 1/ 2�˛
c1Cc2

� 1
i

� 1
2˛

h

c2.˛ C 1/ 2�˛
c1Cc2

� 1
i

1
2

� 1
2˛

h

.˛ C 1/c2
2�˛

c1Cc2
� 1

i

1

A

and has the simple characteristic equation

�2 � 1C ˛

2
�C ˛

4
D 0:

Hence the eigenvalues are �1 D 1=2 and �2 D˛=2. This implies that the equilibrium
. Nx1; Nx2/ is locally asymptotically stable for each ˛ in the range 0 < ˛ < 2.

This contrasts with the results obtained for the best reply dynamics with complete
knowledge of the demand function as discussed by Puu (1991), in Example 3.4 with
˛D 1. It has been shown there that the unique Nash equilibrium is given by (5.58)
with ˛D 1, that is

Nx D . Nx1; Nx2/ D
�

c2

.c1 C c2/2
;

c1

.c1 C c2/2

�

. (5.59)

Furthermore, as we have demonstrated in this example the local stability of this
equilibrium under the best reply dynamics depends on the ratio between the marginal
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costs c1=c2. Feasible, that is bounded and non-negative, trajectories of the best reply
dynamics are obtained provided that c1=c2 2 Œ4=25; 25=4� D Œ0:16; 6:25�. More-
over, the Nash equilibrium (5.59) is stable if and only if c1=c2 2 .3 � 2

p
2; 3 C

2
p
2/ ' .0:17; 5:83/. If c1=c2 exits this interval then the Nash equilibrium loses

stability via a period doubling bifurcation. If c1=c2 falls outside the interval .3 �
2
p
2; 3 C 2

p
2/ then the asymptotic dynamics may converge to periodic cycles or

even exhibit chaotic motion around the Nash equilibrium. Consequently, in terms
of the cost parameters convergence to the Nash equilibrium is obtained for a wider
range of parameters in the model with LMA than in the case where firms know the
true nonlinear demand and at each time step play the best reply. This insight could be
summarized in the statement that less information implies more stability. However,
it should be noticed that this result is obtained through a comparison of the stability
region in the space of unit cost parameters .c1; c2/ in the following sense: the Nash
equilibrium Nx is stable for each selection of the parameters .c1; c2/ for the model
with LMA, whereas stability only holds in the subset c1=c2 2 .3� 2p2; 3C 2

p
2/

in the case of best reply adjustment. Quite different conclusions may be reached if
we compare the basins of attraction. In fact, with cost parameters such that the Nash
equilibrium is stable under both adjustment mechanisms, larger basins of attraction
can be observed for the model with best reply. This is illustrated in Fig. 5.4. The
white regions represent the basins of attraction of the corresponding stable Nash
equilibrium in the best reply model (case (a), where we also depict the best replies)
and the LMA model (case (b)). The grey regions represent the set of initial condi-
tions that generate infeasible trajectories. Obviously, the basin is larger in the former
case.

1.5

1.50

*x

x1

x2

(a)

0

1.5

1.5

x*

x1

x2

(b)

Fig. 5.4 Local monopolistic approximation with isoelastic demand and linear cost. Here
c1 D 1; c2 D 0:7. (a) Nash equilibrium in the best reply model. (b) The LMA case. In both
cases, the white region represents the basin of attraction of the stable equilibrium, initial values in
the grey region generate infeasible trajectories

�
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Example 5.6. We consider now the duopoly model with the same isoelastic price
function p D 1=Q as before and with quadratic cost functions Ck D dk C ekx

2
k

.
The best reply dynamics with complete knowledge of the demand function cannot
be expressed by a simple dynamical system. In fact, the profit of player k is 'k D
xk= .x1 C x2/ � dk � ekx

2
k

, and the first order conditions for profit maximization
give rise to third degree algebraic equations. For example, the condition for the
reaction function of player 1 becomes

2e1x
3
1 C 4e1x2x

2
1 C 2e1x

2
2x1 � x2 D 0:

Since the left hand side strictly increases in x1, it is easy to see that a unique positive
solution x1 DR1.x2/ exists, however its precise form is not easily obtained. On
the other hand, if we consider the dynamics with LMA, a simple two-dimensional
dynamical system is obtained based on the two-dimensional iterated map

x1.t C 1/ D 2x1.t/C x2.t/

2.1C e1.x1.t/C x2.t//2/
;

(5.60)

x2.t C 1/ D x1.t/C 2x2.t/

2.1C e2.x1.t/C x2.t//2/
;

which can be derived from (5.54). The equations for the determination of the fixed
points, obtained by setting xi .t C 1/ D xi .t/ in (5.60), become

2e1x1 .x1 C x2/
2 D x2;

2e2x2 .x1 C x2/
2 D x1:

(5.61)

By dividing the first equation by the second we have x1 D
q

e2

e1
x2. Substituting this

into (5.61) we calculate the unique non-vanishing equilibrium

Nx1 D
p
e2p

e1 C p
e2

1
p

2
p
e1e2

;

(5.62)

Nx2 D
p
e1p

e1 C p
e2

1
p

2
p
e1e2

.

This equilibrium is always locally asymptotically stable. In fact, sufficient condi-
tions for its stability are easily obtained from the computation of the Jacobian matrix
J D �

Jij

	

of (5.60) at the equilibrium. The diagonal entries are

J11 D � Nx1f
00 � NQ	

2
�

f 0. NQ/ � e1

	 D 3e1
p
e2

3e1
p
e2 C e1

p
e1 C 2e2

p
e1

;
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J22 D � Nx2f
00 � NQ	

2
�

f 0. NQ/ � e2

	 D 3e2
p
e1

3e2
p
e1 C e2

p
e2 C 2e1

p
e2

;

and the off-diagonal entries are

J12 D � Nx1f
00 � NQ	C f 0. NQ/

2
�

f 0. NQ/ � e1

	 D e1
p
e2 � e2

p
e1

3e1
p
e2 C e1

p
e1 C 2e2

p
e1

;

J21 D � Nx2f
00 � NQ	C f 0. NQ/

2
�

f 0. NQ/ � e2

	 D e2
p
e1 � e1

p
e2

3e2
p
e1 C e2

p
e2 C 2e1

p
e2

:

Hence, the trace of the Jacobian matrix at the equilibrium is

T r D 3e1
p
e2

3e1
p
e2 C e1

p
e1 C 2e2

p
e1

C 3e2
p
e1

3e2
p
e1 C e2

p
e2 C 2e1

p
e2

and the determinant is

Det D e1e2.7
p
e1e2 C e1 C e2/

�

3e1
p
e2 C e1

p
e1 C 2e2

p
e1

	 �

3e2
p
e1 C e2

p
e2 C 2e1

p
e2

	 :

A set of sufficient conditions for the stability of Nx (that is for the eigenvalues to be
located inside the unit circle of the complex plane) is given by

1C T r CDet > 0; 1 � T r CDet > 0; Det < 1 (5.63)

(see Appendix F). These conditions become trivial in our case. In fact, given that
T r and Det are both positive, the first condition is always satisfied. Moreover

1 � T r CDet D 2
p
e1e2

�

e2
1 C e2

2 C 6e1e2

	

.e1 C e2/
�

3e1
p
e2 C e1

p
e1 C 2e2

p
e1

	 �

3e2
p
e1Ce2

p
e2C2e1

p
e2

	>0

and Det < 1 since

e1e2.7
p
e1e2 C c1 C c2/ <

�

3e1 � p
e2 C e1

p
e1 C 2e2

p
e1

	 �
� �3e2

p
e1 C e2

p
e2 C 2e1

p
e2

	

:

�

Example 5.7. We now turn back to the case of isoelastic price and linear cost func-
tions and consider the case of N firms. As mentioned in previous chapters, one
question that is often discussed in the literature on oligopoly games deals with the
effect of the number of players on the stability properties of the equilibrium. In
general it is not a straightforward matter to find an answer to this question, since
increasing the number of players implies increasing the dimension of the dynamical
system. To obtain some insight into this problem, let us consider the model (5.53)
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xk.t C 1/ D 1

2
xk.t/C ck � f .Q.t//

2f 0 .Q.t//
.k D 1; : : : ; N /: (5.64)

This N -dimensional dynamical system in the state variables xk can be reduced to
a one-dimensional dynamical system in the total quantity Q.t/ by summing up the
equations (5.64) to yield

Q.t C 1/ D 1

2
Q.t/C � �Nf.Q.t/

2f 0 .Q.t//
(5.65)

where � D PN
kD1 ck . The dynamic equation (5.65) for the aggregate production

includes the number of players N as a parameter. Therefore, we can investigate the
effects of this parameter on the dynamics of the global production. It is trivial to see
that if . Nx1; : : : ; NxN / is a steady state of the disaggregated dynamical system (5.64),
then NQ D PN

kD1 Nxk is a steady state of the aggregated dynamical system (5.65). In
particular, if . Nx1; : : : ; NxN / is a Nash equilibrium, then it is a fixed point of (5.64) and
consequently it corresponds to a fixed point of (5.65). However, the converse is not
true in general because a fixed point NQ of (5.65) can correspond to several different
arrangements of .x1; : : : ; xN /, that do not correspond to fixed points of (5.64). If
we consider the model (5.53) with N firms and isoelastic inverse demand function

p D f .Q/ D 1

Q
; (5.66)

then the dynamical system (5.64) becomes

xk.t C 1/ D 1

2




xk.t/CQ.t/ � ckQ
2.t/

�

.k D 1; : : : ; N /; (5.67)

and the one-dimensional map (5.65) that describes the time evolution of the aggre-
gated outputQ.t/ becomes

Q.t C 1/ D 1

2
Œ1CN � �Q.t/�Q.t/; (5.68)

where � D PN
kD1 ck . This is a quadratic one-dimensional map which is topologi-

cally conjugate to the standard logistic map x.t C 1/ D �x.t/ .1 � x.t// through
the linear homeomorphism Q D x.1 C N/=� and with the parameters related by
� D .1CN/=2. The time evolution of the aggregate production can be deduced
from well-known properties of the logistic map (see e.g., Devaney (1989)). In par-
ticular, here we are interested in the role of the integer parameter N . First of
all, we notice that the dynamics of (5.68) converge to the positive steady state
NQD .1 C N � 2/=� provided that N � 5, corresponding to the well known con-

dition � � 3. The convergence is monotone if N � 3, whereas it exhibits damped
oscillations if 4 � N � 5. With 6 firms we have � D 3:5; hence we have stable
oscillations of period 4 since� > 1Cp

6. The case ofN D 7 competitors gives rise
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to fully developed chaos, as it corresponds with � D 4. Hence, stability is obtained
for a limited number of oligopolists, namely N � 5, and as usual instability occurs
as the number of players increases. �

5.2.2 Dynamics Under Adaptive Adjustment

If we assume that in a neighborhood of the equilibrium the left hand side of (5.52)
is strictly decreasing in xk , then a unique best response (under the assumptions of
LMA) is obtained, and it is a continuously differentiable function eRk.Qk.t/; xk.t//.
By implicit differentiation of (5.52) and noticing that Q.t/ D Qk.t/ C xk.t/ we
have

f 0 C 2f 00xk C 2f 0
eR0

kQ � f 00xk.t/ � C 00
k � eR0

kQ D 0

and
f 0 C 2f 00xk C 2f 0

eR0
kx � f 00xk.t/ � f 0 � C 00

k
eR0

kx D 0;

where we use the notation eR0
kQ

D @eRk

@Qk.t/
and eR0

kx
D @eRk

@xk.t/
. So we have

eR0
kQ D �f

0 C 2f 00xk � f 00xk.t/

2f 0 � C 00
k

(5.69)

and
eR0

kx D �2f
00xk � f 00 xk.t/

2f 0 � C 00
k

: (5.70)

The discrete dynamical process with adaptive adjustments based on the above
subjective best responses has the usual form

xk.t C 1/ D xk.t/C ˛k

�

eRk.Qk.t/; xk.t// � xk.t/
	

; (5.71)

where ˛k is a sign preserving function. It is easy to see that the interior equilibria
under full information are steady states of this system.

The local asymptotic stability of the equilibrium depends on the location of the
eigenvalues of the Jacobian of the system, which has the form

J D

0

B

B

B

@

1C a1.r1x � 1/ a1r1Q : : : a1r1Q

a2r2Q 1C a2.r2x � 1/ : : : a2r2Q

:::
:::

:::

aN rNQ aN rNQ : : : 1C aN .rNx � 1/

1

C

C

C

A

;

where ak D ˛0
k
.0/, and rkQ and rkx are the partial derivatives of the subjective best

response function at the equilibrium, given by

rkQ D �.f 0 C f 00 Nxk/=.2f
0 � C 00

k /
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and
rkx D �.f 00 Nxk/=.2f

0 � C 00
k /:

All eigenvalues are inside the unit circle, if any norm of the Jacobian is less than
unity. By selecting the k : k1, k : k1 and Frobenius norms, we get three sufficient
conditions, namely

max
k

˚j1C ak.rkx � 1/j C .N � 1/ak jrkQj
 < 1 (5.72)

or
max

k

n

j1C ak.rkx � 1/j C
X

l¤k

al jrlQj
o

< 1 (5.73)

or
N
X

kD1

n

.1C ak.rkx � 1//2 C .N � 1/a2
kr

2
kQ

o

< 1: (5.74)

Example 5.8. Assume linear cost functions and (subjective) best response dynam-
ics, then C 00

k
D 0, so rkx � rkQ D 1

2
and ak D 1 for all k. In this special case

1C ak.rkx � 1/D rkx D � f 00 Nxk

2f 0 (5.75)

at the equilibrium, and

akrkQ D �f
0 C f 00 Nxk

2f 0 ;

so (5.72) reduces to

Nxk jf 00. NQ/j C .N � 1/jf 0. NQ/C Nxkf
00. NQ/j < 2jf 0. NQ/j (5.76)

at the equilibrium for all k. Assume next quadratic cost functions Ck.xk/ D
dk C ekx

2
k

and (subjective) best response dynamics. Then C 0
k
.xk/ D 2ekxk and

C 00
k
.xk/ D 2ek, so

1C ak.rkx � 1/ D rkx D � f 00 Nxk

2.f 0 � ek/

and

akrkQ D �f
0 C f 00 Nxk

2.f 0 � ek/
;

therefore condition (5.72) can be rewritten as

Nxk jf 00. NQ/j C .N � 1/jf 0. NQ/C Nxkf
00. NQ/j < 2jf 0. NQ/ � ekj; (5.77)

for all k. The other two matrix norms can be used to obtain similar conditions, the
details are left as easy exercises for the reader. �
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In the following part of this section we will show that the characteristic
polynomial of the Jacobian can be derived in a simple form, and therefore the eigen-
values can be easily located. Therefore a more accurate stability condition can be
derived which is “almost” sufficient and necessary.

Notice that this Jacobian has the special structure (E.4), so its characteristic
polynomial can be written in the special form given by (E.5), namely

'.�/ D
N
Y

kD1

�

1Cak � .rkx � rkQ � 1/� �
	

"

1C
N
X

kD1

akrkQ

1Cak � .rkx � rkQ � 1/��

#

:

(5.78)
Consider first the concave oligopolies of Chap. 2, where we have assumed that

(A) f 0 < 0;

(B) xkf
00 C f 0 � 0;

(C) f 0 � C 00
k
< 0,

for all k and feasible output levels. Then

rkQ � 0 and 0 < rkx � rkQ < 1

for all k. Note that in the special case of linear cost functions, rkx � rkQ D 1
2

. The
eigenvalues are 1C ak.rkx � rkQ � 1/ together with the roots of the equation

g.�/ D 1C
N
X

kD1

akrkQ

1C ak.rkx � rkQ � 1/� � D 0: (5.79)

The values 1C ak.rkx � rkQ � 1/ are inside the unit circle if and only if

ak <
2

1 � .rkx � rkQ/
: (5.80)

Since 0 < ak � 1 is assumed, this inequality always holds.
The poles of the left hand side of (5.79) are between �1 and C1 under assump-

tion (5.80), its derivative is negative (unless all rkQ D 0). The graph of the left hand
side is the same as the one shown in Fig. 2.1. Under condition (5.80) all roots are
real, and they are between �1 and C1 if and only if

g.�1/ D 1C
N
X

kD1

akrkQ

2C ak.rkx � rkQ � 1/
> 0: (5.81)

If this inequality is violated with strict opposite inequality, then the equilibrium is
unstable.
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Example 5.9. Assume again linear cost functions and (subjective) best response
dynamics. Then ak D 1, rkx � rkQ D 1

2
and C 00

k
D 0 for all k. So (5.81) can be

simplified to
X

k

rkQ D �Nf 0 � f 00 � NQ
2f 0 > �3

2
;

or
.N � 3/f 0 C f 00 � NQ > 0: (5.82)

Notice that under conditions (A) and (B) the norm-based sufficient condition (5.76)
assumes the form

.N � 3/f 0 C .N � 1/ Nxkf
00 � Nxk jf 00j > 0 (5.83)

for all k. If f 00. NQ/ < 0, then these conditions may hold only for N D 2, and have
the following forms

�f 0 C f 00 � NQ > 0

and
�f 0 C 2 Nxkf

00 > 0 .k D 1; 2/:

The second inequality is slightly stronger than the first one unless the Nxk values are
identical. Assume next that f 00.Q/�0. In the case of N D 2 both conditions (5.82)
and (5.83) are satisfied. If N D 3, then the two conditions have the special forms

f 00 � NQ > 0 and f 00 � Nxk > 0;

where the second inequality is stronger again. If N >3, then we have the two
conditions

.N � 3/f 0 C f 00 � NQ > 0

and
.N � 3/f 0 C .N � 2/ Nxkf

00 > 0;

where the second condition is again stronger then the first one (by taking Nxk D
min

l
f Nxlg, the left hand side of the second inequality is smaller than that of the first

one). Very similar conditions can be obtained by assuming quadratic cost functions
and in comparing conditions (5.77) and (5.81). �

Example 5.10. Consider next the case of an isoelastic price function. Then f .Q/ D
A=Q and therefore

f 0 D � A

Q2
; f 00 D 2A

Q3
; rkQ D A.2 Nxk � NQ/

NQ.2AC NQ2C 00
k
/

and rkx D 2A Nxk

NQ.2AC NQ2C 00
k
/
:

If there is no dominant firm which produces more than the rest of the industry, then
2 Nxk � NQ � 0 for all k, so at the equilibrium
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rkQ � 0 and 0 < rkx � rkQ � 1

2
< 1

by assuming that C 00
k

� 0 for all k. Therefore all results derived previously for
the concave case remain valid. If there is a dominant firm, then the method shown
above for the concave case cannot be applied, since the monotonicity of the function
in (5.79) cannot be guaranteed. However the sufficient stability conditions (5.72)–
(5.74) remain applicable without any changes. �

Example 5.11. Consider finally the case of a general duopoly, when N D 2. From
the special form of the Jacobian we see that the characteristic polynomial is

.1C a1.r1x � 1/� �/.1C a2.r2x � 1/� �/ � a1a2r1Qr2Q

which becomes the quadratic equation

�2 C � .�2C a1.1 � r1x/C a2.1� r2x//

C .1C a1.r1x � 1//.1C a2.r2x � 1//� a1a2r1Qr2Q D 0:

By using the stability condition introduced in Appendix F we see that the roots are
inside the unit circle if and only if

.1C a1.r1x � 1//.1C a2.r2x � 1//� a1a2r1Qr2Q < 1;

�2C a1.1 � r1x/C a2.1 � r2x/

C .1C a1.r1x � 1//.1C a2.r2x � 1//� a1a2r1Qr2Q C 1 > 0;

2 � a1.1 � r1x/� a2.1 � r2x/

C .1C a1.r1x � 1//.1C a2.r2x � 1//� a1a2r1Qr2Q C 1 > 0:

Instead of examining this in the general case, assume that a1 D a2 D 1. Then we
have the conditions

r1xr2x � r1Qr2Q < 1;

1 � r1x � r2x C r1xr2x � r1Qr2Q > 0;

1C r1x C r2x C r1xr2x � r1Qr2Q > 0;

showing that

r1xr2x � 1 < r1Qr2Q < minf1� r1x � r2x C r1xr2x; 1C r1x C r2x C r1xr2xg:
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For example, in the case of linear cost functions, C 00
1 D C 00

2 D 0, we have

rkQ D �f
0 C f 00 Nxk

2f 0 and rkx D �f
00 Nxk

2f 0

and the stability condition becomes

Nx1 Nx2f
002

4f
02

� 1 <
.f 0 C Nx1f

00/.f 0 C Nx2f
00/

4f
02

< min

(

1C f 00 � . Nx1 C Nx2/

2f 0 C Nx1 Nx2f
002

4f
02

; 1 � f 00 � . Nx1 C Nx2/

2f 0 C Nx1 Nx2f
002

4f
02

)

:

It is very easy to check if this condition holds or not. �

5.3 Other Learning Processes

In this section we consider other adaptive learning processes. We study situations
where firms adaptively adjust their beliefs about the price function based on the dis-
crepancies between their predicted and actually observed market prices. For the sake
of mathematical simplicity, we will assume in this section that no cost externalities
are present, and that the (inverse) demand and cost functions are linear.

Hence, in this section we consider the demand relationship

p D f .Q/ D A� BQ or Q.p/ D f �1.p/ D A

B
� 1

B
p

and the cost function
Ck.xk/ D dk C ckxk

for k D 1; 2; : : : ; N , where xk is the output of firm k and Q D PN
lD1 xl is the

industry output. We assume that the firms have only limited knowledge of the price
function p D f .Q/ and over time they repeatedly update their estimates.

We consider three scenarios. First, regarding the demand function of the general
form Q.p/ we assume that the particular values of the reservation price A and the
slope of the price function B are unknown, but firms know the value of the market
saturation point, that is, they know the value of A=B . In the second scenario we
consider the inverse demand function and assume that the firms know the slope B
but do not know the reservation price A. Finally, we study a situation where firms
know the reservation priceA, but do not know the slope B . As we will demonstrate,
the possibility of learning as well as the asymptotic behavior of the learning process
strongly depends on the firm’s knowledge about the demand parameters and also on
the updating procedure the firms use.

The learning schemes discussed in this chapter have been introduced by
Szidarovszky (2003) and extended by Szidarovszky and Krawczyk (2005) They are
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also briefly discussed in Szidarovszky et al. (2008). The model studied in Sect. 5.3.2
has been analyzed in Szidarovszky (2004) where the effect of information delay has
also been investigated.

5.3.1 Unknown Slope with Known Market Saturation Point

We assume first that the firms know that the demand function is linear and decreasing.
Firms know the value of the market saturations point A=B , that is the total output
level that renders the price zero, but they have only a misspecified estimate of the
slope 1=B of the demand function. Suppose that in period t firm k has an estimate of
this slope, which we write as 1="k.t/. Then, in this case this is equivalent to saying
that firm k’s estimate of the price function is efk.Q/ D "k .A=B �Q/, where the
factor "k.t/ is adjusted over time on the basis of observed price data.

Let us consider the situation from the point of view of an arbitrary firm, say
firm k. Given "k, each firm k solves the static game. It believes that the profit of
each firm l (including itself) is given as

exl"k

�

A

B
� eQl �exl

�

� .clexl C dl/: (5.84)

Based on this belief firm k it is able to calculate the believed equilibrium outputs
and the equilibrium price. Then this believed price will be compared to the actual
market price the firm receives, and based on the discrepancy between the believed
and actual prices firm k can adjust the shape estimate "k .

Assuming an interior optimum, firm k believes that the best response of firm l is

exl D A

2B
� cl

2"k

�
eQl

2
;

implying that

exl D A

B
� cl

"k

� eQ: (5.85)

By summing these equations for all firms we have

eQ D NA

B
� 1

"k

N
X

lD1

cl �N eQ;

so firm k believes that the total output of the industry is

eQk D 1

N C 1

 

NA

B
� 1

"k

N
X

lD1

cl

!

: (5.86)
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Therefore firm k will produce the output

xk D A

B
� ck

"k

� 1

N C 1

 

NA

B
� 1

"k

N
X

lD1

cl

!

D A

.N C 1/B
� ck

"k

C 1

.N C 1/"k

N
X

lD1

cl ; (5.87)

and the equilibrium price is believed to be

epk D efk.eQ
k/ D 1

N C 1

 

A"k

B
C

N
X

lD1

cl

!

; (5.88)

which are the consequences of (5.85) with l D k, and (5.86). Note that the “tilde”
indicates that we are dealing with expected quantities based on firm k’s estimated
price function. In reality, however, each firm thinks in the same way independently
of each other, and each firm’s expected (or believed) price and actually produced
amount depend on its own price function estimate. Therefore the actual total output
of the industry becomes

Q D
N
X

kD1

xk D NA

.N C 1/B
�

N
X

kD1

ck

"k

C
 

PN
lD1 cl

N C 1

!

N
X

kD1

1

"k

;

with the corresponding actual market price

p D A� BQ D A

N C 1
C B

N
X

kD1

ck

"k

� B

N C 1

 

N
X

lD1

cl

! 

N
X

kD1

1

"k

!

(5.89)

being what the firms receive. The actual prices are usually different than the
expected prices of the firms. For firm k, the discrepancy between the actual and
believed prices is

�pk D p�epk D A

N C 1

�

1�"k

B

�

CB
N
X

kD1

ck

"k

� 1

N C 1

 

N
X

lD1

cl

! 

B

N
X

kD1

1

"k

C1
!

:

(5.90)
Based on this discrepancy, firm k develops the following adjustment process. If
�pk D 0, then there is no discrepancy, so firm k believes that its price estimate is
correct. If �pk > 0, then the believed price is too low, so firm k wants to increase
its price estimate by increasing the value of "k . If �pk < 0, then the believed price
is too high, so firm k wants to decrease its price estimate by decreasing the value of
"k . If the time scale is discrete, then this adjustment concept can be modeled as
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"k.t C 1/ D "k.t/C ak�pk.t/ .k D 1; 2; : : : ; N / (5.91)

where ak > 0 is the speed of adjustment of firm k (see Bischi et al. (2008)). Here
we assume linear adjustments for the sake of mathematical simplicity. If the time
scales are continuous, then the dynamic process becomes

P"k D ak�pk .k D 1; 2; : : : ; N /: (5.92)

First we prove that both systems (5.91) and (5.92) have the unique steady state
N"k DB for all k, which corresponds to the full knowledge case. Notice first that
if �pk D 0 for all k, then the N"k values are identical. Let N" denote their common
value, then

0 D A

N C 1

�

1 � N"
B

�

C B

N"
N
X

kD1

ck � 1

N C 1

 

N
X

lD1

cl

!

�

NB

N" C 1

�

D A

N C 1

�

1 � N"
B

�

C
 

N
X

kD1

ck

!

�

B

N" � 1

�

1

N C 1
:

If N" > B , then both terms are negative, and if N" < B , then both terms are positive.
If N" D B , then both terms are equal to zero. Hence N" D B is the only steady state.

It is important to notice that this unique steady state, "k D B for each k, corre-
sponds to the situation where all the believed demand functions coincide with the
true market demand. If the adjustment process converges to such a unique steady
state, then we can say that all the firms learn the true demand, although they start
from misspecified (and different) initial guesses about the slope of the demand func-
tion. In what follows we provide conditions for the stability of the steady state, that
is we identify the sets of parameters which ensure the convergence of the adjustment
process. Furthermore, we also examine some bifurcations that lead to instability of
the steady state.

The local asymptotic stability of the dynamical systems (5.91) and (5.92) can be
examined by linearization. Notice first that

@�pk

@"k

D � A

.N C 1/B
C B

"2
k

 

�ck C 1

N C 1

N
X

lD1

cl

!

(5.93)

and for l ¤ k

@�pk

@"l

D B

"2
l

 

�cl C 1

N C 1

N
X

kD1

ck

!

: (5.94)
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In order to make the notation as simple as possible, let

�k D 1

N C 1

N
X

lD1

cl � ck :

The Jacobian of the discrete time system (5.91) has the special structure

I C J

where

JD

0

B

B

B

B

B

B

B

B

B

@

a1

�

� A
.N C1/B

CB�1

"2
1

�

a1
B�2

"2
2

: : : a1
B�N

"2
N

a2B�1

"2
1

a2

�

� A
.N C1/B

CB�2

"2
2

�

: : : a2
B�N

"2
N

:::
:::

: : :
:::

aN B�1

"2
1

aN B�2

"2
2

: : : aN

�

� A
.N C1/B

CB�N

"2
N

�

1

C

C

C

C

C

C

C

C

C

A

;

(5.95)

so it can be written as D C abT with

D D diag

�

1 � a1A

.N C 1/B
; : : : ; 1 � aNA

.N C 1/B

�

; a D .a1B; : : : ; aNB/
T ;

and

bT D
�

�1

"2
1

; : : : ;
�N

"2
N

�

:

Therefore the characteristic equation of the Jacobian can be rewritten as

det.D C abT � �I/ D det.D � �I/det.I C .D � �I/�1abT /

D
N
Y

kD1

�

1 � akA

.N C 1/B
� �

�

2

41C
N
X

kD1

akB�k

"2
k

1 � akA
.N C1/B

� �

3

5 D 0; (5.96)

where we have used the results of Appendix E. Assume that

�k D 1

N C 1

N
X

lD1

cl � ck � 0 (5.97)

for all k, which is satisfied if the marginal costs cl are close to each other. By repeat-
ing the proof of Theorem 2.1 and noticing that at the steady state "k D B for all k,
we have the following result.
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Theorem 5.4. Under assumption (5.97) the steady state of system (5.91) is locally
asymptotically stable if for all k

akA

.N C 1/B
< 2 (5.98)

and
N
X

kD1

ak�k.N C 1/

2.N C 1/B � akA
> �1: (5.99)

If for at least one k,
akA

.N C 1/B
� 2

or
N
X

kD1

ak�k.N C 1/

2.N C 1/B � akA
< �1;

then the steady state is unstable.

Notice that both stability conditions (5.98) and (5.99) are satisfied if the speeds
of adjustment ak are sufficiently small for all firms.

Consider now the special case of symmetric firms, when ak � a and ck � c.
Notice that in this case

�k � � D Nc

N C 1
� c D � c

N C 1
< 0;

so condition (5.97) is satisfied. Relation (5.98) can be rewritten as

a <
2.N C 1/B

A
(5.100)

and (5.99) has the form
Na�.N C 1/

2.N C 1/B � aA
> �1;

which is equivalent to

a <
2.N C 1/B

A � �N.N C 1/
D 2.N C 1/B

AC cN
: (5.101)

This inequality is stronger than (5.100), so if (5.101) holds, then the steady state is
locally asymptotically stable, and if (5.101) is violated with strict inequality, then
the steady state is unstable.

The stability results given above express sufficient conditions for the local
asymptotic stability of the equilibrium, so they ensure the convergence of the
adjustment process provided that the initial factors selected by the firms, "k.0/,
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are sufficiently close to the true slope B . This local analysis leaves open several
questions. First of all, what are the necessary conditions for local stability, such
that an exact delineation of the stability region in the space of the parameters can
be obtained? What kinds of bifurcations occur when the boundaries of such stabil-
ity regions are crossed? How does the steady state lose stability and what kind of
disequilibrium asymptotic dynamics should be expected when the steady state is
unstable? Finally, what are the extent and the shape of the basin of attraction of the
steady state (when it is stable) or of other attractors when the steady state is unsta-
ble? To answer these questions is, in general, not easy if one considers a nonlinear
N -dimensional dynamical system. Therefore, we will try to gain some insight into
these problems by considering some simple situations, such as the symmetric case
of an oligopoly with N identical firms starting from identical initial guesses, and
a duopoly with two heterogeneous firms that start from arbitrary initial guesses for
the scale factors "k.0/, k D 1; 2.

Example 5.12. Consider first an oligopoly with identical firms such that ck D c;

ak D a for each k, and assume that they also have identical initial conditions,

"k.0/ D ".0/:

So we have "k.t/ D ".t/ for each t � 0. The dynamics of ".t/ are governed by the
following one-dimensional difference equation

".t C 1/ D g.".t// D
�

1 � Aa

.N C 1/B

�

".t/C aBcN

N C 1

1

".t/
C a .A �Nc/

N C 1
;

(5.102)
which can be derived easily from (5.91). At the unique positive equilibrium " D B

the derivative of the function g becomes

g0.B/ D 1 � aA

.N C 1/B
� acN

.N C 1/B
;

and it is easy to realize that the condition for the local asymptotic stability
�1 < g0.B/ < 1 is fulfilled for

a.Nc C A/

B.N C 1/
< 2; (5.103)

which can be rewritten as

a <
2B.N C 1/

Nc C A
:

The stability condition (5.103) illustrates the stabilizing role of small values of the
speed of adjustment a. The role of the number of firms is also clear, since the left
hand side of the stability condition (5.103) is a decreasing function of N if c <A
(note that the reservation price has to be larger than the unit cost in order to make
production profitable). Hence, in our case a higher number of identical firms helps
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the firm to learn the true value of the slope of the market demand. If the expression
on the left hand side of (5.103) is increased past the value 2, then the fixed point
loses its stability via a flip (or period doubling) bifurcation, at which a stable cycle
of period two is created around it.

However, in order to understand the global dynamical properties of the one-
dimensional map (5.102), the graph of g ."/ has to be examined for " > 0. It is
a hyperbola with a vertical asymptote at " D 0C, and for " ! C1 it approaches
the asymptote given by the equation

y D
�

1 � Aa

.N C 1/B

�

"C a .A�Nc/

N C 1
: (5.104)

If Aa
B.N C1/

> 1 then the map g is decreasing, and for " ! C1 it tends to �1 along
the negatively sloped line (5.104). In this case, any positive trajectory converges to
the steady state if the stability condition (5.103) is satisfied, whereas if (5.103) does
not hold a stable cycle of period two may be the unique attractor: no other different
kinds of attractors can exist for a decreasing map. On the other hand, if Aa

B.N C1/
< 1

then the map g is unimodal (see Fig. 5.5a). It decreases for " < "min, where

"min D B

s

Nac

.N C 1/B �Aa ;

and it increases for " > "min. As " ! C1 it approaches the positively sloped line
(5.104). This case may give rise to more complex dynamic properties. In fact, in this
case the first period doubling bifurcation at which the steady state loses stability

g(e)
g2(emin)

g(emin)

emin
e

(a)

0 a/B

30

ε

(b)

Fig. 5.5 Oligopoly withN identical firms starting from identical initial guesses on the scale factor.
(a) The map g and the trapping region of the dynamics. (b) Bifurcation diagram with respect to the
parametric ratio a=B , where a is the common speed of adjustment of the firms and B is the slope
of the demand function. Here N D 3, A D 3, B D 2 and c D 2
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is followed by other period doublings and, in general, by the well-known period
doubling cascade, that constitutes the typical route to chaotic behavior for smooth
unimodal maps. So, complex dynamics, that include periodic cycles of any period
and chaotic motion, can be obtained if the map is unimodal and the fixed point is
unstable, that is if

2B.N C 1/

Nc C A
< a <

B .N C 1/

A
: (5.105)

This range is non-empty provided that A<Nc, that is if the reservation price is
less than the firms’ aggregated marginal costs. For example, if we consider the set
of parameters N D 3, A D 3, c D 2, B D 2, the range given by (5.105) is
16=9 ' 1:78<a<8=3 ' 2:67. This is confirmed by a numerical computation of
the bifurcation diagram shown in Fig. 5.5b. The asymptotic dynamics are trapped
inside the interval Œm; g.m/�, where m D g."min/ > 0 is the minimum value of the
map (see Fig. 5.5a). For increasing values of the adjustment coefficient a the mini-
mum value m decreases until it reaches the value m D 0 (for the set of parameters
used to obtain the bifurcation diagram of Fig. 5.5b, this occurs at a=B ' 1:1858).
This is the final bifurcation, after which the generic trajectory involves negative val-
ues. It is worth stressing that the same kind of bifurcation diagram, as the one shown
in Fig. 5.5b can be obtained by increasing the reservation price A or by increasing
the marginal costs c. In cases where the sequence of scaling factors ".t/ does not
converge learning does not occur in the long run. �

Example 5.13. We now consider the case of a duopoly with heterogeneous play-
ers and we give a detailed study of the region of stability in the space of the
parameters. For N D 2, the dynamic model (5.91) assumes the form of an iterated
two-dimensional map T W ."1.t/; "2.t// ! ."1.t C 1/; "2.t C 1// defined by

"1.tC1/ D "1.t/Ca1

3

�

A

�

1�"1.t/

B

�

CB
�

2c1 � c2

"1.t/
C2c2 � c1

"2.t/

�

� .c1 C c2/

�

;

(5.106)

"2.tC1/ D "2.t/Ca2

3

�

A

�

1�"2.t/

B

�

CB
�

2c1 � c2

"1.t/
C2c2 � c1

"2.t/

�

� .c1 C c2/

�

:

In order to study the stability of the unique positive steady state N" D .N"1; N"2/ D
.B;B/, we consider the Jacobian matrix computed at the equilibrium

�

1 � a1

3B
.AC 2c1 � c2/ �a1

2c2�c1

3B

�a2
2c1�c2

3B
1 � a2

3B
.AC 2c2 � c1/

�

; (5.107)

from which the standard stability conditions are obtained (see Appendix F), namely

1 � T r CDet > 0; 1C T r CDet > 0; Det < 1 (5.108)
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where T r and Det are, respectively, the Trace and the Determinant of the Jacobian
matrix (5.107). The first condition is always satisfied, hence the stability conditions,
after some algebraic manipulations, reduce to

A .c1 C c2 CA/
a1a2

B2
� 6 .2c1 � c2 C A/

a1

B
� 6 .2c2 � c1 C A/

a2

B
C 36 > 0

(5.109)
and

A .c1 C c2 C A/
a1a2

B2
�3 .2c1 � c2 C A/

a1

B
�3 .2c2 � c1 C A/

a2

B
< 0: (5.110)

These two inequalities define a region of stability (we may also call it a learning
region) in the space of the parameters. Moreover, the conditions (5.109) and (5.110)
taken as equalities, define bifurcation hypersurfaces. This means that when one or
more parameters are varied so that the equilibrium N" becomes unstable, if (1) the
stability loss is due to a change of sign of the left hand side of (5.109), then a flip (or
period doubling) bifurcation occurs, and if (2) the stability loss is due to a change
of sign of the left hand side of (5.110), then a Neimark–Hopf bifurcation occurs. It
is useful to represent the learning region by projecting it into the two-dimensional
parameter plane .a1=B; a2=B/, where the bifurcation curves that bound the region
of stability are equilateral hyperbolas (see Fig. 5.6, where F denotes the positive
branch of the hyperbola at which the flip bifurcation occurs,H denotes the positive
branch of the hyperbola at which the Neimark–Hopf bifurcation occurs, and the
shaded area represents the learning region). If

c1=2 < c2 < 2c1; (5.111)

then the two hyperbolas do not intersect, and the learning region is bounded only by
the flip bifurcation curve (Fig. 5.6a), whereas if

2c2 < c1 < 2c2 C A or 2c1 < c2 < 2c1 C A (5.112)

then the two hyperbolas intersect in the positive orthant of the plane .a1=B; a2=B/,
so that the learning region is bounded by an arc of the Neimark–Hopf bifurcation
curve and by two arcs of the flip bifurcation curve1 (Fig. 5.6b).

If the parameters a1=B and/or a2=B are varied, so that they cross the bound-
ary of the stability region along the portion of curve F , then the equilibrium point
changes from a stable node to a saddle point via a supercritical flip bifurcation.2

1 For c1 D 2c2 the curve F degenerates into the pair of straight lines a1=B D 6=.3c2 C A/ and
a2=B D 6=B . For c2 D 2c1 the curve F degenerates into the pair of straight lines a1B D 6=A

and a2=B D 6=.3c1 C A/.
2 A rigorous proof of the supercritical nature of the flip bifurcation requires a center manifold
reduction and the evaluation of higher order derivatives, up to the third order (see for example
Guckenheimer and Holmes (1983)). This is a rather tedious calculation for a two-dimensional map,
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Fig. 5.6 Duopoly with heterogeneous players, the bifurcation curves with respect to the parame-
ters a1=B and a2=B , where ai is the speed of adjustment of firm i and B is the slope of the demand
curve. In all cases A D 5 and c1 D 0:5. The shaded area is the learning region, the curve F is the
flip boundary and H the Neimark–Hopf boundary. (a) Here c2 D 0:8 so that c1=2 < c2 < 2c1,
the F and H curves do not intersect and the learning region is bounded only by the flip curve. (b)
Now c2 D 1:3 and the F and H curves intersect; the learning region is bounded by both curves.
(c) Here c2 D 1:4 and the portion of the arc of H included in the boundary of the stability region
increases due to increasing heterogeneity

This means that, just after the loss of stability of ", the long run evolution of the
trajectories of (5.106) is characterized by the convergence to a periodic cycle
of period two. So, if firms adopt the learning process introduced above, then
they will never learn the true demand function. They will keep on underestimat-
ing/overestimating it, as the subjective scale factors continue to oscillate. If the cost
parameters c1 and c2 are not too different, that is in the case of moderate hetero-
geneity in costs, then according to (5.111) the steady state N" can lose stability only
via a period doubling bifurcation. This is particularly true if players are identical, as
the analysis in Example 5.9 has already shown.

Let us now consider what happens if the parameters a1=B and a2=B are varied,
so that they cross the boundary of the learning region along the portion of curveH .
In this case, the equilibrium " changes from a stable focus to an unstable focus via
a supercritical Neimark–Hopf bifurcation.3 This means that the long run evolution
of the trajectories of (5.106) converges to a quasi-periodic motion around the steady
state. Again, this implies that, on the basis of the adjustment process adopted, play-
ers will never learn the true demand function, as they will continue to over- and
underestimate prices. This kind of route to instability can only occur if the two
players are sufficiently heterogeneous with respect to cost parameters, according to

and we prefer to rely on numerical evidence as a stable 2-cycle close to the saddle " is numerically
detected whenever the parameters cross the bifurcation curve F .
3 Also in this case, a rigorous proof of the supercritical nature of the Neimark–Hopf bifurcation
requires a center manifold reduction and the evaluation of higher order derivatives, up to the
third order (see for example Guckenheimer and Holmes (1983)). This is rather tedious in a two-
dimensional map, and we prefer to rely on numerical evidence as a stable orbit surrounding the
unstable focus " is numerically detected whenever the parameters cross the bifurcation curve H .
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(5.112). Moreover, if the difference between the cost parameters is increased, then
the arc of the curveH included in the boundary of the stability region becomes more
extended (see Fig. 5.6c). Summarizing, on the basis of the results on the stability
region in the plane .a1=B; a2=B/, we can say that the adjustment process can con-
verge to the true demand function provided that both of the ratios a1=B and a2=B

are sufficiently small. This means that for a given slope B , the speeds of adjustment
a1 and a2 cannot be too large in order to ensure convergence of the adaptive learn-
ing process to the true demand. Indeed, increasing one or both speeds of adjustment
may cause overshooting, characterized by oscillations of the scale factors that never
settle to the true demand function. It is interesting to note that some bifurcation
paths exist where an increase of one or both of the parameters ai=Bi may have both
a stabilizing and a destabilizing effect. This occurs if (5.112) holds, so that the sta-
bility region has a shape like the one shown in Fig. 5.6b, c. One such bifurcation path
is indicated by the dashed line in Fig. 5.6c. Along the first portion of this path an
increase of a1=B and/or a2=B has a stabilizing effect: the equilibrium is first unsta-
ble, but becomes stable via a backward flip (or period halving) bifurcation. If we
continue to increase a1=B and/or a2=B along the same path, we get a destabilizing
effect because N" loses stability via a supercritical Neimark–Hopf bifurcation. Such
a scenario can only happen if there is a sufficiently large degree of heterogeneity in
costs because, as remarked above, the portion of the boundary of the learning region
formed by the Neimark–Hopf bifurcation curve becomes smaller and smaller (until
it finally disappears) as the heterogeneity in marginal costs is reduced.

It is also worth noting that the stability region shrinks as, ceteris paribus, the
reservation price A increases. In fact, the intersections F1 and F2 of the curve
F with the coordinate axes of the parameter plane .a1=B; a2=B/ are given by
F1 D .6=.2c1 � c2 C A/ ; 0/ and F2 D .0; 6=.2c2 � c1 CA//. Consequently, con-
vergence of the learning process to the true demand is less likely to occur if
reservation prices are higher. This confirms the results on local stability for the N -
dimensional model given above. The stability analysis provided so far is only based
on local stability and local bifurcations of the unique steady state. With the help of
some numerical simulations we can explore what happens when the parameters are
located far away from the boundaries of the stability region, and we can obtain some
indication about the extent and the shape of the basin of attraction of the steady state
or of the more complex attractors that replace the steady state if the parameters are
outside the learning region. Let us consider, first, the following values of the parame-
ters:A D 5,B D 1, c1 D 0:5 and c2 D 0:6. This gives a shape of the learning region
similar to the one shown in Fig. 5.6a. In this case, when the parameters are inside
the stability region the steady state is a stable node, as in Fig. 5.7a obtained with
a1 D 0:9, a2 D 1. In this case, there are two real eigenvalues, one positive and one
negative. This means that any trajectory of (5.106) starting close to the steady state N"
converges to it through oscillations of decreasing amplitude. Note that in Fig. 5.7 the
white region represents the set of points that generate feasible trajectories (in other
words trajectories entirely included inside the positive orthant) and converging to
the steady state, whereas the grey region represents the set of points that generate
infeasible trajectories (which are trajectories involving negative values). Figure 5.7b
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Fig. 5.7 The duopoly with heterogeneous players. From initial values in the white region the
system generates feasible trajectories, from initial values in the grey region, the trajectories become
infeasible. Here A D 5, B D 1, c1 D 0:5 and c2 D 0:6. (a) The equilibrium is a stable node with
one positive and one negative real eigenvalue. The speeds of adjustment are a1 D 0:9 and a2 D 1.
(b) The steady state becomes a saddle point and a stable cycle of period 2 emerges. The speeds of
adjustment are a1 D 0:9475 and a2 D 1

is obtained with a higher value of the speed of adjustment a1, namely a1 D 0:9475.
In this case, as expected on the basis of the local stability analysis, the steady state
is a saddle point, because a period doubling bifurcation has created a stable cycle of
period 2, represented by the two small dots in Fig. 5.7b. This means that none of the
two firms learns the demand and they keep on underestimating and overestimating
it. As a1=B and/or a2=B are further moved away from the stability region, the peri-
odic points move away from the unstable steady state, and so the amplitude of the
oscillations increases. Moreover, other local bifurcations may occur, at which also
the cycle of period two loses stability and more complex attractors may appear (for
example, the 2-cycle may flip bifurcate to give rise to a stable cycle of period 4, and
so on, until chaotic attractors appear after the well-known period-doubling cascade)
or the attractor may have a contact with the boundary of its basin of attraction and
disappear, after which the generic trajectory will be infeasible.

Let us now consider the case of a larger difference between the cost parameters
c1 and c2, so that the condition (5.112) is satisfied and, consequently, the stabil-
ity region is also bounded by a portion of the curve H where a Neimark–Hopf
bifurcation occurs. By setting A D 5, B D 1, c1 D 0:5 and c2 D 1:3, as in
Fig. 5.6b, we consider a set of parameters inside the stability region, namely a1 D 1,
a2 D 0:9. Hence, the equilibrium, shown in Fig. 5.8a with its feasible set of attrac-
tion, is a stable focus (complex conjugate eigenvalues of modulus less than 1). As
expected, if we increase a1 and/or a2, so that .a1=B; a2=B/ crosses the boundary
H of the stability region, a supercritical Neimark–Hopf bifurcation occurs, at which
the steady state is transformed into an unstable focus, and an attracting closed invari-
ant curve is created around it (see Fig. 5.8b, obtained with a1 D 1:17 and a2 D 0:9).
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Fig. 5.8 The duopoly with heterogeneous players. From initial values in the white region the
system generates feasible trajectories, from initial values in the grey region, the trajectories become
infeasible. Here A D 5, B D 1, c1 D 0:5, c2 D 1:3 and a2 D 0:9. (a) The speed of adjustment of
the first firm is a1 D 1. The equilibrium is a stable focus. (b) The speed of adjustment of the first
firm is a1 D 1:17. After the value of .a1=B; a2=B/ crosses the boundary H an attracting closed
invariant curve is created around the (now) unstable equilibrium

As the parameters a1 and/or a2 are further increased, the size of the attracting closed
orbit around the steady state increases, according to the Neimark–Hopf bifurcation
theorem, and consequently the long-run oscillations of the scale factors "k.t/ will
increase their amplitude until a contact between the boundaries of the attractor and
the boundary of the feasible region occurs. This contact represents a global bifur-
cation (called final bifurcation in Mira et al. (1996), or boundary crisis in Grebogi
et al. (1983)) that marks the disappearance of the attractor, because after the contact
the generic trajectory is infeasible.

We do not analyze these dynamic properties of the model in greater detail, as here
we are mainly interested in studying the conditions under which learning emerges.
However, putting together the information gained by the two numerical simulations
shown above, we can easily see what happens when the condition (5.112) holds
(which implies a high degree of heterogeneity between the two firms) and the param-
eters a1=B and/or a2=B are gradually increased in such a way that we obtain two
bifurcations which cause a transition between two different instability situations
separated by a “window” of stability, like in the bifurcation path represented by
the dashed line in Fig. 5.6c. Moving along that path by increasing the value of the
parameter a1, at first the equilibrium is unstable, with long-run dynamics character-
ized by oscillations of period 2. Then the learning process leads to a period halving
(or backward flip) bifurcation, after which the equilibrium becomes stable. Then, by
further increasing the speed of adjustment a1 a supercritical Neimark–Hopf bifur-
cation occurs after which the equilibrium becomes unstable again, and the long-run
dynamics of the learning process are characterized by quasi-periodic oscillations
along a stable close invariant orbit around the unstable steady state. To conclude
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this example, it is worth making some remarks about the extent and the shape of the
feasible region, which is represented by the white area in the figures shown above.
If the parameters are inside the learning region, the extent of the feasible region pro-
vides important information about the robustness of the learning process. Detailed
information about the feasible basin of the steady state N" provides an answer to the
fundamental question: how far away from the true demand can the guesses of the
players be in order to still guarantee the success of the learning process? First of
all, it can be noticed that the maximum “distance” of a single subjective scale factor
is not important, as the distance of all the scale factors must be considered. Even
if one firm starts with an initial estimate for "k very close to the true value B , the
endogenous dynamics of the global learning process may not lead to convergence to
the true demand in the long run due to the influence of its competitors. Although this
remark may sound obvious ex post, we think that it is worth pointing this out. As a
second and final remark we point out that the boundaries of the feasible region may
be quite complicated. This can be clearly seen in Fig. 5.8b. A study of this kind of
complexity requires an analysis of the global dynamic properties of the map (5.106).
In particular, the creation of complicated topological structures may be related to the
fact that the map (5.106) is noninvertible (as explained in Appendix C). �

Now we turn our attention to the continuous time system (5.92). Its Jacobian is
the matrix J with eigenvalue equation

N
Y

kD1

�

� akA

.N C 1/B
� �

�

2

41 �
N
X

kD1

akB�k

"2
k

akA
.N C1/B

C �

3

5 D 0; (5.113)

which can be derived similarly to the discrete case. In this case we have the fol-
lowing stability theorem, which can be proved along the lines of the proof of
Theorem 2.2.

Theorem 5.5. Under assumption (5.97) the steady state of system (5.92) is always
locally asymptotically stable.

If condition (5.97) is violated, that is, when for at least one firm,

�k D 1

N C 1

N
X

lD1

cl � ck > 0;

then Theorems 5.4 and 5.5 no longer hold, and the asymptotic behavior of the
dynamic systems becomes much more complicated.
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5.3.2 Unknown Reservation Price with Known Slope

In this section we assume that all firms know the slope B of the price function but
the value of the reservation price f .0/DA is unknown. In this case, the firms try to
estimate and learn about the value of A. Let efk.Q/D "k � BQ denote the believed
price function of firm k, where the value of "k will be repeatedly updated. The
learning process will be similar to that introduced in the previous section.

Consider first the situation from the point of view of firm k. The profit of any
firm l (including itself) is given as

exl ."k � B eQl � Bexl /� .clexl C dl/; (5.114)

where the ‘tilde’ again indicates that we are dealing with quantities based on firm
k’s estimate of the price function. So the best response of firm l is

exl D "k � cl

2B
�
eQl

2
;

implying that

exl D "k � cl

B
� eQ: (5.115)

By summing these equations for all l , we find

eQ D N"k �PN
lD1 cl

B
�N eQ;

so firm k believes that the total output of the industry is

eQk D N"k �PN
lD1 cl

.N C 1/B
:

Therefore firm k will produce the output

xk D "k � ck

B
� eQk D "k � .N C 1/ck CPN

lD1 cl

.N C 1/B
(5.116)

and expects the market price to be

epk D efk.eQ
k/ D "k CPN

lD1 cl

N C 1
: (5.117)

In reality however each firm reasons independently in the same way, the expected
price and produced amount depend on its estimated price function, so the actual
total output of the industry becomes
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Q D
N
X

kD1

xk D
PN

kD1 "k �PN
lD1 cl

.N C 1/B
;

with the corresponding equilibrium price

p D A� BQ D A� 1

N C 1

 

N
X

lD1

"l �
N
X

lD1

cl

!

: (5.118)

As in the previous section the firms adjust their beliefs about the price function
based on the discrepancies

�pk D p � epk D 1

N C 1

 

.N C 1/A�
N
X

lD1

"l � "k

!

: (5.119)

They want to increase "k if �pk > 0, and if �pk < 0 then they decrease the
value of "k, and if�pk D 0, then they have no reason to change it. This adjustment
concept can be again modeled by the discrete system (5.91) and its continuous coun-
terpart (5.92). Notice that �pk is a linear function of the state variables "1; : : : ; "N ,
therefore the corresponding dynamical systems are linear, and in this case local and
global asymptotic stability are equivalent. Similarly to the previous case it is easy
to show that both systems have a unique steady state, N"k D A for all k which corre-
sponds to full knowledge of the price function. Notice first that if �pk D 0 for all
k, then the "k values are identical. If N" denotes their common value, then

0 D 1

N C 1
..N C 1/A�N N" � N"/

implying that N" D A.
Consider first the discrete case. The coefficient matrix has now the special

structure
I C J

where

J D 1

N C 1

0

B

B

B

@

�2a1 �a1 : : : �a1

�a2 �2a2 : : : �a2

:::
:::

: : :
:::

�aN �aN : : : �2aN

1

C

C

C

A

D D C abT (5.120)

with

D D diag

�

� a1

N C 1
; : : : ;� aN

N C 1

�

; a D
�

� a1

N C 1
; : : : ;� aN

N C 1

�T

;
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and
bT D .1; : : : ; 1/:

By using again the results of Appendix E we can see that the eigenvalue equation of
the coefficient matrix is

N
Y

kD1

�

1� ak

N C 1
� �

�

"

1C
N
X

kD1

� ak

N C1

1 � ak

N C1
� �

#

D 0: (5.121)

By repeating the proof of Theorem 2.1 we can easily show the following result.

Theorem 5.6. The steady state is globally asymptotically stable if and only if for
all k,

ak < 2.N C 1/ (5.122)

and
N
X

kD1

ak

2.N C 1/� ak

< 1: (5.123)

In the symmetric case ak � a, relations (5.122) and (5.123) reduce to

a < 2.N C 1/

and
a < 2; (5.124)

where the second inequality is the stronger of the two. Therefore the steady state is
globally asymptotically stable if and only if (5.124) holds.

Consider next the continuous time model (5.92). Its coefficient matrix is J with
eigenvalue equation

N
Y

kD1

�

� ak

N C 1
� �

�

"

1C
N
X

kD1

ak

N C1
ak

N C1
C �

#

D 0: (5.125)

By repeating the proof of Theorem 2.2 the following stability result is obtained.

Theorem 5.7. The steady state is always globally asymptotically stable.

Global asymptotic stability means that regardless of how inaccurate the initial
estimations of parameterA are, as t ! 1; the estimates always converge to the true
value of A.

We will next show that this nice stability property may be lost, if the firms obtain
delayed price information. Assuming continuously distributed time lags and using
the same weighting functions as in Sect. 2.6, the dynamical system (5.92) becomes
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P"k.t/ D ak

N C 1

 

.N C 1/A�
Z t

0

w.t � s; Tk; mk/

N
X

lD1

"l.s/ds � "k.t/

!

(5.126)
since at any time period t , firm k uses the current estimate "k.t/ in computingpk.t/

by (5.117), however it uses delayed actual price data, and therefore the computed
discrepancy�pk is based on continuously distributed lagged values of

PN
lD1 "l .

Equation (5.126) constitutes a system of linear Volterra-type integro-differential
equations. In order to compute the eigenvalues we seek the solution of the corre-
sponding homogenous equations in the exponential form "k.t/ D vke

�t .k D
1; 2; : : : ; N /. Substituting these into the homogenous equations implies that

�

�C ak

N C 1

�

vke
�t C ak

N C 1

Z t

0

w.t � s; Tk ; mk/

N
X

lD1

vle
�sds D 0:

Letting t ! 1 and using the limiting property of integral (D.3) we have

�

�C ak

N C 1

�

vk C ak

N C 1

�

1C �Tk

pk

��.mkC1/ N
X

lD1

vl D 0

or
�

N C 1

ak

�C 1

��

1C �Tk

pk

�mkC1

vk C
N
X

lD1

vl D 0; (5.127)

where

pk D
(

1 if mk D 0;

mk if mk > 0;

as before. Non-trivial solutions exist if and only if the determinant of the coefficient
matrix is zero. This determinantal equation has the special structure

det

0

B

B

B

@

A1.�/ B1.�/ : : : B1.�/

B2.�/ A2.�/ : : : B2.�/
:::

:::
: : :

:::

BN .�/ BN .�/ : : : AN .�/

1

C

C

C

A

;

with

Ak.�/ D
�

N C 1

ak

�C 1

��

1C �Tk

pk

�mkC1

C 1;

and
Bk.�/ D 1;
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for all k. By applying relation (E.3) we see that the determinantal equation simplifies
to

N
Y

kD1

(

�

N C 1

ak

�C 1

��

1C �Tk

pk

�mkC1
)

�

�

2

6

4
1C

N
X

kD1

1
�

N C1
ak

�C 1
� �

1C �Tk

pk

�mkC1

3

7

5
D 0: (5.128)

The roots of the first part of the left hand side are

� D � ak

N C 1
and � D �pk

Tk

;

for k D 1; 2; : : : ; N , all are negative, therefore we should examine only the roots of
the second part. So we turn our attention to the equation

1C
N
X

kD1

1
�

N C1
ak

�C 1
� �

1C �Tk

pk

�mkC1
D 0: (5.129)

This is clearly equivalent to a polynomial equation, the roots of which can be
determined by using computational methods in the general case. In order to obtain
analytical results we will consider the case of symmetric firms, when the initial
states are identical, ak � a; Tk � T;mk � m and so pk � p. In this case (5.129)
is reduced to

�

N C 1

a
�C 1

��

1C �T

p

�mC1

CN D 0: (5.130)

Assume first that T D 0, that is, there is no time delay. Then (5.130) assumes the
linear form

N C 1

a
�C 1CN D 0

with the only root � D �a, so the steady state is globally asymptotically stable.
Note that this result is a special case of Theorem 5.7. Assume next that T >0.

For larger values of m computational methods are needed to locate the eigenvalues
and check stability. For m D 0 and m D 1; analytical methods are available, and
the following theorem can be proved.

Theorem 5.8. If m D 0, then the steady state is always globally asymptotically
stable. In the case of m D 1 we have the following possibilities:

(i) If N < 8; then the steady state is always globally asymptotically stable,
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(ii) If N D 8; then it is globally asymptotically stable if and only if LT ¤ 1;

where L D a=.N C 1/;

(iii) If N � 9; then the steady state is globally asymptotically stable if and only
if either LT < .LT /�1 or LT > .LT /�2; where .LT /�1 and .LT /�2 are given
by (5.134). At these critical values Hopf bifurcations occur giving rise to the
possibility of the birth of limit cycles.

Proof.
Let T > 0 and m D 0. Then (5.130) becomes the quadratic equation

�2T .N C 1/

a
C �

�

T C N C 1

a

�

C .N C 1/ D 0:

Since all coefficients are positive, all roots have negative real parts (see Lemma F.2
in Appendix F) implying global asymptotic stability.

Consider next the case of T >0 and mD 1. Then (5.130) becomes a cubic
equation, and with the notation L D a=.N C 1/ it has the form

.�C L/.1C 2�T C �2T 2/CNL D 0;

that is,

T 2�3 C �2.2T C LT 2/C �.1C 2LT /C L.N C 1/ D 0: (5.131)

Since all coefficients are positive, the Routh–Hurwitz stability condition implies that
all eigenvalues have negative real parts if and only if

.2T C LT 2/.1C 2LT / > T 2L.N C 1/; (5.132)

which can be rewritten as a quadratic inequality in LT , namely

2.LT /2 C .LT /.4 �N/C 2 > 0: (5.133)

The discriminant of the left hand side is

.4 �N/2 � 16 D N.N � 8/:
Depending on the number of roots of the left hand side of (5.133) we have to

consider the following cases.

Case 1. If N < 8, then the discriminant is negative, so (5.133) always holds and
the steady state is always globally asymptotically stable.

Case 2. If N D 8, then there is a unique real root

LT D N � 4

4
D 1;
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0
L

T

Fig. 5.9 Stability region (shaded) in the (L; T ) plane

so the steady state is globally asymptotically stable if and only if LT ¤ 1.

Case 3. If N > 8, then there are two real roots,

.LT /�1;2 D N � 4˙p

N.N � 8/
4

; (5.134)

both are positive, and reciprocals of each other. So the steady state is glob-
ally asymptotically stable if and only if either LT < .LT /�1 or LT >

.LT /�2; where we assume that .LT /�1 < .LT /�2 :

The stability region in the (L; T ) plane is the shaded region shown in Fig. 5.9.
The steady state is globally asymptotically stable under the lower hyperbola and
above the upper hyperbola. The white region between the two hyperbolas shows
where the steady state is unstable. If N D 8, then the hyperbolas coincide. In
this case global asymptotic stability occurs outside the curve of the hyperbola. In
Table 5.1 we show the values of .LT /�1 and .LT /�2 for several cases of N � 8.

Consider next N � 9 and a fixed value of L, and start gradually increasing the
value of T starting at a very small level. The steady state is globally asymptotically
stable until we reach the lower hyperbola, and after crossing this hyperbola the
steady state becomes unstable. Stability is regained after the upper hyperbola is
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Table 5.1 Values of .LT /�1 and .LT /�2

N .LT /�1 .LT /�2
8 1 1
9 0.5 2

10 0.382 2.618
11 0.314 3.186
15 0.188 5.312
20 0.127 7.873
30 0.0774 12.923
50 0.0436 22.956

crossed. We will prove that at these critical points Hopf bifurcations occur giving
rise to the possibility of the birth of limit cycles around the steady state.

We select T as the bifurcation parameter. At the critical points inequality (5.132)
becomes equality, so (5.131) can be rewritten as

�3T 2 C �2.2T C LT 2/C �
T 2L.N C 1/

2T C LT 2
C L.N C 1/

D .�T 2 C .2T C LT 2//

�

�2 C L.N C 1/

2T C LT 2

�

D 0;

showing that the roots are

�1;2 D ˙i
s

L.N C 1/

2T C LT 2
(5.135)

and

�3 D �2T C LT 2

T 2
< 0:

Differentiating implicitly (5.131) with respect to T , we have

2T �3 C 3T 2�2 P�C 2� P�.2T C LT 2/C �2.2C 2LT /CP�.1C 2LT /C2�L D 0;

where we use the notation P� D d�
dT

, from which

P� D �2T �3 � �2.2C 2LT / � 2�L
3�2T 2 C 2�.2T C LT 2/C .1C 2LT /

: (5.136)



5.3 Other Learning Processes 267

For the sake of simplifying the notation let

˛2 D L.N C 1/

2T C LT 2

�

D 1C 2LT

T 2

�

;

then �1;2 D ˙i˛ and at these values

P� D ˙2T ˛3i C ˛2.2C 2LT /� 2˛Li

�3˛2T 2 ˙ 2˛i.2T C LT 2/C .1C 2LT /

D ˛2.2C 2LT /˙ 2i.T ˛3 � ˛L/
�2.1C 2TL/˙ 2˛i.2T C LT 2/

with real part

Re P� D 4˛2.1 � .LT /2/

4.1C 2TL/2 C 4˛2.2T C LT 2/2
¤ 0;

since it is easy to show that

.LT /�1 < 1 < .LT /�2

based on the fact that .LT /�1; and .LT /�2 are reciprocals of each other. Hence all
conditions of the Hopf bifurcation theorem are satisfied. �

Larger values of m lead to higher order polynomial equations and therefore the
stability analysis becomes more complicated and requires the use of computational
methods.

5.3.3 Unknown Slope with Known Reservation Price

In this section we assume that the firms know the value of the reservation price,
f .0/DA, but they are uncertain about the slope B of the price function. In this
case firm k believes that the price function is efk.Q/DA� "kQ where the value of
"k is estimated and updated at each time period.

As in the previously discussed cases let us examine the way firm k reasons in
this situation. It believes that the profit of each firm (including its own) is

exl .A� "k
eQl � "kxl /� .clexl C dl/; (5.137)

so the believed best response of firm l is

exl D A� cl

2"k

�
eQl

2
;
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implying that

exl D A � cl

"k

� eQ: (5.138)

By summing these equations for all values of l ,

eQ D NA�PN
lD1 cl

"k

�N eQ;

so firm k believes that the total production level of the industry is

eQk D NA�PN
lD1 cl

.N C 1/"k

: (5.139)

Therefore firm k will produce the output

xk D A� ck

"k

� eQk D A� .N C 1/ck CPN
lD1 cl

.N C 1/"k

(5.140)

and the equilibrium price is believed to be

epk D efk.eQ
k/ D ACPN

lD1 cl

N C 1
; (5.141)

as a consequence of (5.138) with l D k and the particular form of the believed price
function efk . Notice that epk is the same for all firms, that is, the expected equilibrium
prices are identical.

In reality the total production of the industry becomes

Q D
N
X

kD1

xk D 1

N C 1

 

.AC
N
X

lD1

cl /

N
X

kD1

1

"k

� .N C 1/

N
X

kD1

ck

"k

!

;

with actual market price

p D A�BQ D A� B

N C 1

 

.AC
N
X

lD1

cl /

N
X

kD1

1

"k

� .N C 1/

N
X

kD1

ck

"k

!

: (5.142)

For firm k, the discrepancy between the actual and believed price is

�pkDp�epkD 1

N C 1

 

NA� B.AC
N
X

lD1

cl/

N
X

kD1

1

"k

CB.NC1/
N
X

kD1

ck

"k

�
N
X

lD1

cl

!

;
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and since an increase in the value of "k decreases the price estimate the dynamic
processes (5.91) and (5.92) are now modified to become

"k.t C 1/ D "k.t/ � ak�pk .k D 1; 2; : : : ; N / (5.143)

and
P"k D �ak�pk .k D 1; 2; : : : ; N /: (5.144)

Notice also that �pk is the same for all firms, so N"1; : : : ; N"N is a steady state of
the dynamical systems (5.143) or (5.144) if and only if

NA� B

 

AC
N
X

lD1

cl

!

N
X

kD1

1

"k

CB.N C 1/

N
X

kD1

ck

"k

�
N
X

lD1

cl D 0:

Clearly N"1 D � � � D N"N D B satisfies this equation, so the full knowledge of the
price function is a steady state. However, this is single linear equality in the variables
1="1; : : : ; 1="N ; therefore there are infinitely many positive steady states. That is, at
any other steady state there is no discrepancy between expected and actual prices, so
all firms believe that their price functions are correct, but they are not. Therefore no
learning is possible in this case (see Fudenberg and Levine (1998), Marimon (1997),
or Kirman and Salmon (1995)).

5.4 Uncertain Price Functions

In this section we assume that the firms face an uncertain price function, so firm k

believes that the price function is efk.Q/C�k , where efk.Q/ is the estimate of f .Q/
and �k is a random error. It is also assumed that E.�k/ D 0 and Var.�k/ D �2

k
for

all k. The believed profit of firm k,

e'k D xk. efk.Q/C �k/� Ck.xk/; (5.145)

is therefore also random with expectation

E.e'k/ D xk
efk.Q/� Ck.xk/ (5.146)

and variance
Var.e'k/ D x2

k�
2
k : (5.147)

For the sake of simplicity no externalities are considered. The firms want to max-
imize their expected profits and at the same time to ensure as low variance of the
profit as possible. Therefore at each time period each firm faces a multi-objective
optimization problem where E.e'k/ is maximized and Var.e'k/ is minimized.
Assume that �k measures the relative importance of lowering Var.e'k/ compared
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to the increase of E.e'k/ by firm k, then this firm might decide to maximize the
utility function

‰k.x1; : : : ; xN / D E.e'k/� �kVar.e'k/

D xk
efk.Q/� .Ck.xk/C �2

k�kx
2
k/: (5.148)

Notice that this function has the same form as the profit of firm k with believed price
function efk and cost function Ck.xk/ C �2

k
�kx

2
k

. Therefore all results of Sect. 5.1
can be applied to this case by assuming that the firms do not update their informa-
tion about the distributions of the random variables �k based on the repeated price
observations during the dynamic process. In reality however at each time period a
new sample element for each random variable �k becomes available, so each firm is
able to update E.�k/ and Var.�k/ by using Bayesian methodology. If we now use
the notation E.�k.t// D ek.t/ and Var.�k.t// D �2

k
.t/ for the updated expecta-

tion and standard deviation of �k at time period t , then at the next period the utility
function of firm k becomes

xk. efk.xk CQE
k .t C 1//C ek.t// � .Ck.xk/C �2

k .t/�kx
2
k/;

so the best response of firm k as well as the resulting dynamic models with both
discrete and continuous time scales become time variant. The details of Bayesian
updating of the distributions of �k as well as an examination of the asymptotic
behavior of the corresponding time variant dynamical systems are beyond the scope
of this book. The interested reader may consult Cyert and DeGroot (1971, 1973,
1987) to find out more about the relevant methodology.



Chapter 6
Overview and Directions for Future Research

In Chap. 1 we introduced the classical Cournot model and after setting up the general
framework we focused on a number of specific examples involving combinations of
linear and hyperbolic price functions and linear and quadratic cost functions, also
taking careful account of capacity constraints. These examples illustrated the vari-
ety of reaction functions that can occur and the various types of equilibria (possibly
multiple) both in the interior of the domain of interest and on its boundaries. We
then went on to introduce the various types of adjustment processes that under-
pin the dynamic processes, the study of the local and global dynamics of which
has occupied much of the space in this book. In particular we considered discrete
time and continuous time versions of partial adjustment towards the best response
with naive expectations and adaptive expectations as well as the gradient adjust-
ment process. We then introduced some of the basic tools for the analysis of global
dynamics via some examples involving duopoly or symmetric and semi-symmetric
oligopolies. We introduced the important concept of basins of attraction of different
equilibria and the important tool of the critical curve and the concept of border colli-
sion bifurcations. Already with the simple examples considered we see the types of
complexity that can arise in oligopoly models under the type of dynamic adjustment
processes we consider here.

In the second chapter we considered the widely studied class of concave
oligopolies. We first obtained the properties of the reaction function both with and
without cost externalities, and then used these to study the local and global dynam-
ics of discrete time and continuous time concave oligopolies under the various
best response processes of Chap. 1. We made use of the determinantal relation in
Appendix E to obtain results on local stability. The full array of the tools for the
analysis of the global dynamics were brought to bear to obtain interesting results in
a number of special cases of price and cost functions, as well as on the nature of the
oligopoly, such as whether it is a duopoly or semi-symmetric. We saw in particular
the important role of border collision bifurcations in determining the global dynam-
ics and how the number of firms in the oligopoly, the capacity constraints of firms
and their speeds of adjustment are all important bifurcation parameters. The chapter
concluded with a study of the local dynamics of continuous time oligopolies with
continuously distributed informational time lags, and we saw how such time lags
can have a strong influence of local bifurcation behavior.

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 6,
c� Springer-Verlag Berlin Heidelberg 2010
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Chapter 3 considered general oligopolies and started with an analysis of the case
of isoelastic price functions under both continuous time and discrete time adjust-
ment processes. Again the results of Appendix E were invoked to analyze the local
stability and we saw that for semi-symmetric oligopolies in both the discrete time
and continuous time cases this is determined qualitatively by the same set of graphs,
though of course quantitatively the two cases differ. With regard to the global anal-
ysis of the discrete time model we saw the richness of the local bifurcations with
respect to the number of firms, the cost ratio and speeds of adjustment in the semi-
symmetric case. We found also that the speeds of adjustment played a role in the
generation of border collisions and hence global bifurcations. The remainder of the
chapter considered the role of cost externalities that are captured by the assump-
tion of a certain type of non-monotonic reaction function. Here we focused on the
duopoly case and saw that such models can generate situations of several coexist-
ing equilibria that are locally stable, each having its own basin of attraction. In the
case of identical speeds of adjustment we were able to analyze and understand in
some detail the way in which the different equilibria can be born and the way in
which the structure of their basins of attraction change with key parameters, due
mainly to the occurrence of contact bifurcations. Some numerical examples of the
non-identical speed of adjustment situation illustrate how the basins can become
even more complex in this case. The disconnected nature of the basins of attraction
means that the outcome (in the sense of to which equilibrium the game converges) of
oligopolies with cost externalities is highly path dependent. These examples convey
in a very clear way the important distinction between local bifurcations and global
bifurcations.

In Chap. 4 we apply the analysis of the first three chapters to a number of models
that are an extension of the basic oligopoly set-up or are dynamic economic games
that essentially reduce to classical oligopolies. These are market share attraction
games, labor-managed oligopolies, oligopolies with intertemporal demand inter-
action, oligopolies with production adjustment costs and oligopolies with partial
cooperation amongst the firms. Such extensions of the basic oligopoly model and
dynamic economic games exhibit the range of behaviors observed in the basic
oligopolies of the previous chapters.

Finally in Chap. 5 we considered learning behavior under incomplete knowledge
of the demand relationship. We started by considering oligopolies in which firms
have misspecified price functions but otherwise we still use the adjustment pro-
cesses of Chap. 1. Now the possibility of subjective equilibria arises, the local and
global dynamics of which are studied through some examples that illustrate how
such subjective equilibria are born, their local stability properties and the (some-
times complicated) nature of their basins of attraction. Next we assume that firms
use some kind of approximate learning procedure to resolve their incomplete knowl-
edge of the price function. Using a number of specific examples we study the local
stability of the equilibria and how its loss can give rise to fluctuating attractors as
various parameters change. Global analysis indicates how the learning scheme can
affect the basin of attraction of a stable equilibrium. Next we study other types
of learning schemes by firms as they try to determine the true shape of the price
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function. We focus on the case of linear price and cost functions and consider three
scenarios in which firms have different types of partial information about some
parameters of the price function and seek to learn about the remaining parameters
by some adjustment process. Again via specific examples we see that these learning
schemes can generate the type of local and global bifurcations seen in the previ-
ous chapters. Finally we conclude this chapter with a brief discussion of uncertain
price functions which brings us to the edge of the field of statistical learning, which
presents a whole different field of research.

From the point of view of nonlinear dynamical systems the book has introduced
the still relatively new (at least for economists) concept of border collisions and
illustrated its use in a number of examples. The examples have emphasized how
there are in fact two types of complexity of importance in dynamic economic mod-
els. The first is the familiar one arising as a result of local bifurcations, which
frequently occur when equilibria lose local stability via Hopf or flip bifurcations
and local stability of an equilibrium gives way to some sort of fluctuation around
it. The other, less familiar one, arises when a border collision occurs, and basins of
attraction of different equilibria undergo a change in their structure. Also there may
be co-existing attractors within the same basin of attraction. A typical result of such
bifurcations is that the outcome of the economic adjustment process under consid-
eration may be highly sensitive to initial conditions. Future research in economic
applications in this area will probably focus on the systematic description of the dif-
ferent sources of such bifurcations, the elaboration of the types of examples where
such border collision bifurcations can occur and the typical sorts of behavior that
can emerge from them. It would also be useful to try to understand the economic
origins of the different types of such bifurcations.

With regard to the specific models we have studied in this book, a number of
issues are likely to occupy the attention of researchers in the years ahead.

Considering first the case of concave oligopolies, we have derived most of our
results under the assumptions (A)–(C) in Sect. 2.1 (or their modifications in different
model types) which we recall placed restraints on the inverse demand function and
cost functions so as to guarantee the concavity of the profit function and in the
concave case the monotonicity of the best response functions. An important task
for future research will be to study the implications of relaxing any one of these
assumptions. We have seen in Example 1.2 that just by relaxing the condition (C)
how more complicated equilibrium situations can arise.

A number of our examples involved the isoelastic price function, which is widely
used in the literature on oligopoly because it affords a lot of analytical tractability.
However this price function has the disadvantage that it has no reservation price (or
rather the reservation price is infinite) and this is rather unrealistic. Future research
should try to introduce a reservation price into this price function, either by using a
translated hyperbola, or by truncating the function at some (presumably high) price.
The isoelastic price function has also been used frequently in conjunction with a
convex cost function, but what would happen if we were to allow a certain amount
of concavity into the cost function? This could arise for instance if there were an
increasing return to scales effect at low outputs and a decreasing returns to scale
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effect at higher levels of output. Uniqueness of the equilibrium could be lost in such
situations or there may be no equilibrium at all. Also many of the local and global
stability results we have derived rely heavily on the special analytical properties of
the cost functions, so we might expect to see a much richer set of dynamic outcomes.

With regard to the modified and extended oligopolies of Chap. 4 a number of
extensions can be envisaged. The market share attraction games are equivalent
to oligopolies with isoelastic price functions, so all the remarks of the previous
paragraph apply to this class of model as well. In our analysis of labor-managed
oligopolies we assumed very special forms for the labor demand functions, but both
equilibrium results as well as the dynamic analysis will change if we consider more
general forms for these demand functions. The models with intertemporal demand
interaction were analyzed under the assumptions of the concave oligopolies so again
the relaxation of the assumptions on the price and cost functions will lead to a richer
set of outcomes for the equilibria and the dynamics. In the models with production
adjustment costs we have assumed that this additional cost component depends on
the output change from the previous period. A more realistic assumption might be
to make this cost depend on a state variable related to the capacity limit that adjusts
dynamically in such a way that the firm increases it if output needs to go beyond it.
The analysis of oligopolies under partial cooperation also relies very much on the
concavity assumptions being satisfied by the profit functions. Here also it would be
of interest to study the situations in which these concavity conditions are relaxed. It
would also be interesting to include partial cooperation into some of the extensions
described earlier in this chapter.

In the learning schemes in the models with misspecified and uncertain cost func-
tions we have adopted various assumptions on the learning behavior of the firms,
from remaining statically with the same misspecification over every time period,
to updating their estimate of it based on the most recently observed price. There
is now a vast literature on learning in dynamic economic models, see for example
Fudenberg and Levine (1998), and many of these ideas could be brought into the
problems considered in Chap. 5. Many of these schemes are probabilistic in nature
so this strand of research will involve the analysis of economic models evolving
dynamically under random influences, this is an area into which research has barely
begun as it involves bringing together the theory of dynamical systems and the
theory of stochastic processes.



Appendix A
Elements of Lyapunov Theory

Consider a time-invariant nonlinear dynamical system

x.t C 1/ D g.x.t// (A.1)

or
Px.t/ D g.x.t//; (A.2)

where g W D 7! R
n with D being a set in R

n. It is also assumed that g is continuous
on D, and starting with arbitrary initial state x.0/ 2 D, the unique solution of (A.1)
or (A.2) exists for all t > 0 and remains in D. A vector Nx 2 D is an equilibrium of
system (A.1) if and only if Nx D g. Nx/, and it is an equilibrium of system (A.2) if and
only if g. Nx/ D 0. If in any time period x.t/ becomes Nx, then the state remains at the
equilibrium for all future time periods. Therefore equilibria of a dynamical system
are sometimes called the steady states of the system. If x.0/ is selected nearby an
equilibrium, then the state might go away from the equilibrium, it might stay close
to the equilibrium for all future times or it even might converge to the equilibrium
as t ! 1: In all cases distances between state vectors have to be defined in order
to decide if a state vector is close to the equilibrium or not. The distance between
any two vectors is usually defined as the norm of their difference. The norm is a
mathematical way to characterize the lengths of real vectors.

A norm k:k in the n-dimensional vector space R
n is a real valued function defined

on all n-element vectors such that the following conditions are satisfied:

1. kvk � 0 for all v 2 R
n; and kvk D 0 if and only if v D 0

2. k˛vk D j˛j � kvk for all v 2 R
n and real numbers ˛

3. kv C wk � kvk C kwk for all v;w 2 R
n:

It is easy to prove that all vector norms are continuous functions, that is, kvk is
continuous in v. The proof is based on conditions (2) and (3), since

kvk � kv � wk C kwk

and
kwk � kw � vk C kvk D kv � wk C kvk;
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implying that
kvk � kwk � kv � wk

and
kwk � kvk � kv � wk:

Therefore
ˇ

ˇkvk � kwkˇˇ � kv � wk;
showing that the distance between kvk and kwk cannot exceed the distance between
v and w.

We can also show that with any vector norm the circular neighborhoods of any
vector u 2 R

n, denoted

U D fvjv 2 R
n; kv � uk < "g;

are convex sets. In order to prove this property assume that x and y are in U , then
both kx � uk and ky � uk are less than ". With any vector

z D ˛x C .1 � ˛/y .0 � ˛ � 1/;

we have

kz � uk D k˛.x � u/C .1 � ˛/.y � u/k
� j˛j � kx � uk C j1 � ˛j � ky � uk < ˛"C .1 � ˛/" D ";

which proves the assertion.
Consider a linear segment u C t.v � u/ .0 � t � 1/ connecting points u and v in

R
n. Let 0 D t0 < t1 < � � � < tk D 1 and ul D u C tl .v � u/ for l D 0; 1; : : : ; k.

Then

kv � uk D
k
X

lD1

kul � ul�1k; (A.3)

since

k
X

lD1

kul � ul�1k D
k
X

lD1

k.u C tl .v � u// � .u C tl�1.v � u//k

D
k
X

lD1

k.tl � tl�1/.v � u/k D
k
X

lD1

.tl � tl�1/kv � uk

D.tk � t0/kv � uk D kv � uk:

Assume next that f W Œa; b� 7�! R
n is a continuous function. We can easily prove

that
�

�

�

Z b

a

f.t/dt
�

�

� �
Z b

a

�

�

�f.t/
�

�

�dt: (A.4)
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By using the definition of the Riemann integral we have

�

�

�

N
X

iD1

f.�i /.ti � ti�1/
�

�

� �
N
X

iD1

�

�

�f.�i /
�

�

�.ti � ti�1/

where a D t0 < t1 < � � � < tN D b and �i 2 Œti�1; ti � for all i . By letting N ! 1
we conclude (A.4).

In practical applications three particular vector norms are usually used, namely

kvk1 D maxfjv1j; jv2j; : : : ; jvnjg;

kvk1 D jv1j C jv2j C � � � C jvnj

and

kvk2 D
p

jv1j2 C jv2j2 C � � � C jvnj2;

where vi is the i th element of v for i D 1; 2; : : : ; n. The norm k:k2 is usually called
the Euclidean norm.

All three norms satisfy conditions (1)–(3). Notice that k:k2 is the n-dimensional
generalization of the well known definition of the lengths of 2 and 3 dimensional
real vectors.

Let T be an invertible n � n matrix, and k:k a given vector norm. Then a new
vector norm can be defined as

kukT D kTuk:

Clearly this norm also satisfies conditions (1)–(3).
Assume now that x.0/ is the initial state of a system. Then the following stability

types can be considered.

Definition A.1. An equilibrium Nx is called stable (or marginally stable) if for all
"1>0 there exists an ">0 such that kx.0/ � Nxk < " implies that for all t > 0,
kx.t/� Nxk < "1.

Definition A.2. An equilibrium Nx is asymptotically stable (or locally asymptoti-
cally stable) if it is stable and there is an ">0 such that kx.0/ � Nxk < " implies
that x.t/ converges to Nx as t ! 1.

Definition A.3. An equilibrium Nx is globally asymptotically stable in D if it is
stable and for arbitrary x.0/ 2 D, x.t/ converges to Nx as t ! 1.

The (marginal) stability of an equilibrium means that the entire state trajectory
remains close to the equilibrium if the initial state is selected close enough to the
equilibrium. If in addition the state trajectory converges to the equilibrium as t!1,
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ε

D

ε

xx(0)

Asymptotically stable

Globally
asymptotically stable Stable

1

Fig. A.1 Stability concepts

then the equilibrium is (locally) asymptotically stable. Global asymptotic stabil-
ity occurs if with any initial state x.0/ 2 D, the state trajectory converges to the
equilibrium as t!1. Figure A.1 illustrates these concepts.

Assume now that Nx is an equilibrium of the system (A.1) or (A.2) and let 
 be a
subset of D such that Nx 2 
.

Definition A.4. A real valued function V defined in
 is called a Lyapunov function
if is satisfies the following conditions:

(a) V is continuous on 
;
(b) The global minimum of V on
 occurs at the equilibrium Nx;
(c) For any state trajectory x.t/ contained in 
, V.x.t// is non-increasing in t .

Notice that the Lyapunov function concept is a straightforward generalization of
that of the energy function in mechanical systems. Condition (a) requires that V

has no discontinuities, (b) means that V has its smallest value at the equilibrium,
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and condition (c) generalizes the well-known property of mechanical systems that
the energy of a free mechanical system never increases and with friction it always
decreases.

Assume next that 
 is a spherical region


 D fx j kx � Nxk � r0g 	 D: (A.5)

Theorem A.1. If there exists a Lyapunov function on 
, then Nx is (marginally)
stable.

Proof. The proof for the discrete time and continuous time cases are very similar,
therefore we present it here only for the discrete case.

Select an "1>0 and assume that "1 � r0. Notice first that from the continuity
of g we know the existence of a ı 2 .0; "1/ such that kx � Nxk < ı implies that
kg.x/� Nxk < r0, since Nx D g. Nx/ and g is continuous. Therefore if kx.t/� Nxk < ı
with some t � 0, then kx.t C 1/� Nxk < r0 showing that x.t C 1/ 2 
.

Define next
m D minfV.x/ j ı � kx � Nxk � r0g; (A.6)

which exists since the defining set is compact and V is continuous. Since the defining
set does not contain Nx and Nx is the only global minimizer of the Lyapunov function,
V. Nx/ < m. The continuity of V implies the existence of an " 2 .0; ı/ such that
V.x/ < m as kx � Nxk < ".

Finally we prove that this " satisfies the condition of Definition A.1. Select an
x.0/ such that kx.0/� Nxk < ". Then V.x.0// < m, and the non-increasing property
of the Lyapunov function implies that V.x.t// < m for all t � 0. The first part of
the proof guarantees that x.t/ 2 
. The definition of m implies that kx.t/ � Nxk <
ı < 
1 which completes the proof. �

Theorem A.2. In addition to the conditions of the previous theorem assume that
V.x.t// strictly decreases in t unless x.t/ D Nx. Then Nx is (locally) asymptotically
stable.

Proof. Only the discrete time case is shown, the proof in the continuous time case is
similar.

Select " > 0 as in the proof of the previous theorem. We shall show that kx.0/

� Nxk < " implies that x.t/ ! Nx as t ! 1. Assume that this limit relation does not
hold. Since the sequence fx.t/g is bounded it has a convergent subsequence such
that x.tk/! x� ¤ Nx as k! 1. The sequence fx.tk C 1/g is also bounded, so it
also must have a convergent subsequence x.tki

C 1/ ! x�� as i ! 1. From the
strict monotonicity of the Lyapunov function we see that for all i � 0,

V.x.tkiC1
// � V.x.tki

C 1/ < V.x.tki
/;

and by letting i ! 1 we have

V.x�/ � V.x��/ � V.x�/;
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therefore
V.x�/ D V.x��/: (A.7)

The continuity of the function g implies that

x�� D lim
i!1 x.tki

C 1/ D lim
i!1 g.x.tki

//

D g. lim
i!1 x.tki

// D g.x�/;

which contradicts relation (A.7) and the strict monotonicity of the Lyapunov func-
tion. �

Theorem A.3. Assume that a Lyapunov function is defined on the entire state space
D. Assume also that V.x.t// strictly decreases in t unless x.t/D Nx, furthermore
V.x/ ! 1 as kxk ! 1. Then Nx is globally asymptotically stable.

Proof. We show again only the discrete time case. Let x.0/ 2 D be arbitrary, then
for all t � 0, V.x.t// � V.x.0//. Therefore the sequence fx.t/g is bounded, and
the proof can continue along the lines of the proof of the previous theorem. �

The particular choice of the Lyapunov function depends on the special properties
of the dynamical system being examined. The most popular choice is

V.x/ D kx � Nxk2;

where the Euclidean norm is selected. This function clearly satisfies properties (a)
and (b) of Definition A.4, so only the monotonicity condition has to be established.
In the discrete case we have to prove that

kx.t C 1/� Nxk � kx.t/ � Nxk

for marginal stability and the corresponding strict inequality for asymptotic stabil-
ity. Notice that the additional condition of Theorem A.3 is also satisfied. In the
continuous case we have to show the monotonicity of the function

V.x.t// D .x.t/ � Nx/T .x.t/ � Nx/

by showing that its derivative is non-positive or negative. It is easy to see that this
derivative can be expressed as

d

dt
V.x.t// D Px.t/T .x.t/� Nx/C .x.t/� Nx/T Px.t/

D 2.x.t/ � Nx/T g.x.t//:

In proving that this expression is non-positive or negative, the particular form of
the function g has to be used. Unfortunately this function is not always monotonic,
and even if it is, then the actual proof is different for different cases.
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Consider a time-invariant nonlinear dynamical system

x.t C 1/ D g.x.t// (B.1)

in discrete time or
Px.t/ D g.x.t//; (B.2)

in continuous time where g W D 7! R
n, with D 
 R

n being a set in R
n. A vector

Nx 2 D is an equilibrium of system (B.1) if and only if Nx D g. Nx/, and it is an equi-
librium of system (B.2) if and only if g. Nx/D 0. Let x 2 D be an arbitrary point. If
x is interior, then we assume that g is differentiable at x, and if x is on the boundary,
then we assume that g can be extended outside D to an open neighborhood of x, and
this extension is differentiable at x. The Jacobian of g at the point x is defined as the
matrix

J .x/ D

0

B

B

@

@g1

@x1
.x/ : : : @g1

@xn
.x/

:::
@gn

@x1
.x/ : : : @gn

@xn
.x/

1

C

C

A

:

In this Appendix the relation between the local and global asymptotic stability of
the equilibrium and some properties of the Jacobian will be summarized. Some of
the conditions will be based on the computation of matrix norms. Let R

n	n denote
the set of all n � n real matrices. A real valued function A 7�! kAk, defined for all
A 2 R

n	n, is a matrix norm if it satisfies the following conditions:

1. kAk � 0 for all A 2 R
n	n; and kAk D 0 if and only if A is the zero matrix with

all elements being equal to zero

2. k˛Ak D j˛j � kAk for all A 2 R
n	n and all real numbers ˛

3. kA C Bk � kAk C kBk for all A;B 2 R
n	n:

Similarly to the case of vector norms it is easy to prove that matrix norms are also
continuous matrix functions.

281
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There are many particular vector norms which are used in practical applications.
A large class of matrix norms can be generated from vector norms in the following
way. Let k �k be a given vector norm in R

n (see Appendix A), and for any A 2 R
n	n

define

kAk D max
v ¤0

kAvk
kvk D maxkvkD1 kAvk,

where the numerator and the denominator use the same given vector norm. It is easy
to prove that matrix norms generated by vectors norms always satisfy conditions
(1)–(3) and in addition, for all A and B 2 R

n	n,

4. kABk � kAk � kBk.

Furthermore it is an additional important fact, that for all v 2 R
n and A 2 R

n	n,

5. kAvk � kAk � kvk; if the matrix norm kAk is generated from the vector norm
which is used to compute both kvk and kAvk.

If property (5) holds for a given vector norm and a particular matrix norm, then we
say that the two norms are compatible.

The matrix norms generated from the vector norms kvk1; kvk1 and kvk2 are
given as follows. Let aij denote the .i; j / elements of matrix A, then

kAk1 D max
i

8

<

:

n
X

j D1

jaij j
9

=

;

.row norm/

kAk1 D max
j

(

n
X

iD1

jaij j
)

.column norm/

and

kAk2 D
r

max
i
�i .AT A/ .Euclidean norm/

where �i .AT A/ .i D 1; 2; : : : ; n/ are the eigenvalues of the product AT A, and AT

is the transpose of A. It can be proved that all eigenvalues of AT A are real and
nonnegative.

Notice that conditions (1)–(3) for matrix norms do not imply that there is a
vector norm which is compatible with it. For example, consider the matrix norm
kAk D 1

2
kAk1, then kIk D 1

2
, so with a ¤ 0 and any vector norm,

kIxk D kxk > 1

2
kxk D kIk � kxk:
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Let A be a real n�n matrix and � an eigenvalue of A. If k � k is a matrix norm which
is compatible with a vector norm, then

j�j � kAk:

This relation is a simple consequence of the eigenvalue equation of matrix A,

Av D �v;

where v ¤ 0 is an associated eigenvector to �: Then

kAvk � kAk � kvk

and

k�vk D j�j � kvk;

so

j�j � kvk � kAk � kvk:

The assertion is obtained by dividing both sides by kvk > 0:
Consider first the discrete time system (B.1).

Theorem B.1. Let x 2 D be an equilibrium and assume that J .x/ exists in an open
neighborhood of x, kJ .x/k < 1 with some matrix norm and J is continuous at x.
Then x is locally asymptotically stable.

Proof. Since J .x/ is continuous at Nx, there is an " > 0 such that J .x/ exists for all

x 2 U D fx j kx � Nxk < "g

and kJ .x/k � q with some 0 � q < 1. Then with any x 2 U,

g.x/� Nx D g.x/� g. Nx/ D
Z 1

0

J . Nx C t.x � Nx//.x � Nx/dt:

Therefore

kg.x/� Nxk �
Z 1

0

kJ .x C t.x � Nx//k � kx � Nxkdt � q � kx � Nxk: (B.3)

Starting with arbitrary initial state x.0/ 2 U, the entire state sequence generated by
(B.1) remains in U, furthermore for all t � 0,

kx.t C 1/� Nxk D kg.x.t// � Nxk � q � kx.t/ � Nxk:
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Consequently for all t � 1,

kx.t/ � Nxk � qt kx.0/� Nxk (B.4)

showing that x.t/ ! Nx as t ! 1. �
A slight modification of the above proof can be used to show the following

sufficient condition for global asymptotic stability of the equilibrium.

Theorem B.2. Assume that D is convex, and g is continuously differentiable on D.
If with some matrix norm, kJ .x/k � q < 1 for all x 2 D, where q is a constant,
then Nx is globally asymptotically stable.

The conditions of this theorem can be relaxed to cases when g is a continuous and
piece-wise differentiable function. Assume now that D is convex and is the union
of the closed sets D

.1/, D
.2/; : : : , with mutually exclusive interiors. The restriction

of g to the region D
.k/ is denoted by g.k/ and we assume that it can be extended to

an open set containing D
.k/ and that it is differentiable there. Let J.k/.x/ denote the

Jacobian of g.k/ and assume, for all k and x 2 D
.k/, that kJ.k/.x/k � q < 1 where

k:k is a matrix norm that is compatible with some vector norm and q is a scaler.
Assume in addition that for the linear segment between Nx and any x 2 D there are
finitely many values1 0 D t0 < t1 < � � � < tK.x/ D 1 such that for each entire
subsegment,

ŒNx C tl.x � Nx/; Nx C tlC1.x � Nx/� 
 D
.kl /

with some kl .

Theorem B.3. Under the above conditions Nx is globally asymptotically stable
in D.

Proof. Notice that with any x 2 D,

kg.x/ � Nxk D kg.x/� g.Nx/k D
�

�

�

K.x/�1
X

lD0

.g.Nx C tlC1.x � Nx// � g.Nx C tl .x � Nx///
�

�

�

�
K.x/�1
X

lD0

�

�

�

Z tlC1

tl

J.kl /.Nx C t.x � Nx//.x � Nx/dt
�

�

�

�
K.x/�1
X

lD0

Z tlC1

tl

kJ.kl /. Nx C t.x � Nx//k:kx � Nxkdt

� qkx � Nxk
K.x/�1
X

lD0

.tlC1 � tl/ D q � kx � Nxk;

and then the proof can follow the lines of the proof of Theorem B.1. �

1 K.x/ is the number of subregions that a linear segment goes through between x and the
equilibrium.
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The assumption that g.k/ can be extended to an open set containing D
.k/ can be

replaced by the following. For the linear segment between Nx and any x 2 D there
are finitely many values 0 D t0 < t1 < � � � < tK.x/ D 1 such that

(a) Subsegments ŒNx C tl.x � Nx/; Nx C tlC1.x � Nx/� 
 D
.kl / for all l

(b) For each such subsegment there are sequences fukg and fvkg such that uk !
Nx C tl.x � Nx/, vk ! Nx C tlC1.x � Nx/ and the entire linear segment Œuk; vk� is
in the interior of D

.kl /.

Since there are infinitely many matrix norms, and the condition of the theorem
might hold with one matrix norm and not with others, the above conditions are
difficult to check in practical applications.

For example, in the cases of matrices

A1 D
 

0:8 0

0:8 0

!

; A2 D
 

0:8 0:8

0 0

!

and A3 D
 

0:51 0:51

0:51 0

!

;

kA1k1 D 0:8 < 1; kA1k1 D 1:6 > 1; kA1k2 D p
1:28 ' 1:13 > 1;

kA2k1 D 1:6 > 1; kA2k1 D 0:8 < 1; kA2k2 D p
1:28 ' 1:13 > 1

and

kA3k1 D 1:02 > 1; kA3k1 D 1:02 > 1;

kA3k2 D
s

3C p
5

2
.0:51/ ' 0:825 < 1:

That is, only one of the most popular matrix norms is below one, the other two
norms are greater than one. It is well-known that if all eigenvalues of a matrix are
inside the unit circle, then there is a matrix norm such that the norm of this matrix
is below one, (see for example, Ortega and Rheinholdt (1970)). Therefore we can
reformulate Theorem B.1 as follows:

Theorem B.4. Let Nx 2 D be an equilibrium and assume that J .x/ exists in an open
neighborhood of Nx, and is continuous at Nx. Assume furthermore that all eigenvalues
of J . Nx/are inside the unit circle. Then Nx is locally asymptotically stable.

Unfortunately this eigenvalue criterion cannot be extended to prove global asymp-
totic stability. That is, the assumption that for all x 2 D the eigenvalues of J.Nx/
are inside the unit circle does not necessarily imply the Nx is globally asymptotically
stable. In fact Cima et al. (1997, 1999) present counterexamples for nD 2 and n� 3.

Instability of equilibria cannot be proved by showing that a particular matrix
norm of the Jacobian at Nx is larger than one, since there is the possibility that another
norm of the Jacobian is less than one. However it is well known that if at least one
eigenvalue of J . Nx/ is outside the unit circle, then Nx is unstable. For an elementary
proof see Li and Szidarovszky (1999a). If for all eigenvalues �i of J . Nx/, j�i j � 1

and at least one eigenvalue is located on the unit circle, then no conclusion can be
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given, since Nx can be unstable, marginally stable, and even locally (or globally)
asymptotically stable. Such examples are given next.

Example B.1. Consider first the two-dimensional linear system

x.t C 1/ D
�

1 1

0 1

�

x.t/;

with both eigenvalues of the coefficient matrix (which is also the Jacobian) being on
the unit circle. It is easy to show by finite induction that for all t � 1,

�

1 1

0 1

�t

D
�

1 t

0 1

�

:

Consequently, with any x.0/ D .x1.0/; x2.0//
T ,

x.t/ D
�

1 t

0 1

�

x.0/; (B.5)

and when x2.0/ > 0, x1.t/ ! 1. Therefore the zero equilibrium is unstable.

Example B.2. Consider next the single dimensional system

x.t C 1/ D �x.t/

with the unique equilibrium Nx D 0. Notice that the Jacobian of the right hand side
is �1 with unit absolute value. Clearly, for all t � 0,

x.t/ D .�1/tx.0/

showing that the zero equilibrium is only marginally stable.

Example B.3. Consider now the simple nonlinear system

x.t C 1/ D x.t/e�x.t/2

:

Notice first that x.0/D 0 implies that x.t/D 0 for all t � 1, if x.0/>0, then
x.t/ > 0 and if x.0/<0, then x.t/ < 0 for all t � 0. Furthermore if x.0/ ¤ 0, then

j x.t C 1/ j<j x.t/ j;

showing that the positive state sequence is strictly decreasing and the negative state
sequence is strictly increasing. Therefore in both cases the state sequence is bounded
by zero, so convergent. Let x� be the limit. Letting t ! 1 in the defining difference
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equation we have
x� D x�e�.x�/2

;

showing that x� D 0, which is the unique equilibrium of the system. Hence the
zero equilibrium is globally asymptotically stable. In this case the Jacobian is the
derivative of the right hand side:

d

dx
.xe�x2

/ D e�x2 C xe�x2

.�2x/

which equals 1 at x D 0.

We next turn our attention to continuous time systems (B.2), Theorem B.4 can
be modified as follows (see for example, Bellman (1969)).

Theorem B.5. Assume that all eigenvalues of J . Nx/ have negative real parts, then
Nx is locally asymptotically stable.

The global stability version of this theorem is not valid in general. Cima et al.
(1997) provide a counterexample for all n� 3 where all eigenvalues of the Jacobian
of g have negative real parts for all x 2 R

n, but the equilibrium of the continu-
ous time system is unstable. There has been intensive research on this problem for
the case of nD 2. Many authors proved the global asymptotic stability with different
additional conditions, and finally Gutierrez (1995) proved the global asymptotic sta-
bility of the equilibrium without additional assumptions in the case of continuously
differentiable functions. This result was extended without requiring the continuity
of the Jacobian by Fernandes et al. (2004). Their main result is the following:

Theorem B.6. Assume D D R
2, g. Nx/D 0 and g is differentiable everywhere.

Assume furthermore that all eigenvalues of the Jacobian of g have negative real
parts on D. Then Nx is the of system (B.2) and it is globally asymptotically stable.

The eigenvalues of the Jacobian at the equilibrium might also indicate the insta-
bility of the equilibrium, since similarly to the discrete time case we can show that
if at least one eigenvalue of J . Nx/ has positive real part, then Nx is unstable. If all
eigenvalues of J . Nx/ have non-positive real parts and at least one eigenvalue is zero
or pure complex, then Nx may be unstable, marginally stable, or even asymptotically
stable. Such examples are given next.

Example B.4. Consider first the two-dimensional linear system

Px D
�

0 1

0 0

�

x

which has both eigenvalues equal to zero. It is easy to show that the fundamental
matrix (which is the matrix exponential) is given as

�

1 t

0 1

�

;

thus showing the instability of the zero equilibrium.
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Example B.5. In the case of the system Px D 0, the Jacobian is zero with zero
eigenvalue. All solutions are constant and all real numbers are equilibria. Clearly all
equilibria are marginally stable.

Example B.6. Consider finally the system driven by the single dimensional differ-
ential equation

Px D �x3:

Here Nx D 0 is the only equilibrium, and the Jacobian is the derivative

d

dx
.�x3/ D �3x2;

giving zero value at the equilibrium. Since the equation is separable, one can easily
find the state trajectories

x.t/ D x.0/
p

1C 2tx.0/2
:

Clearly x.t/! 0 as t ! 1 showing the global asymptotic stability of the equilib-
rium.

�

In the case of linear systems local and global asymptotic stability are equivalent.
A discrete time invariant linear system is asymptotically stable if and only if all
eigenvalues of the coefficient matrix are inside the unit circle, and a time invariant
continuous linear system is asymptotically stable if and only if all eigenvalues have
negative real parts.

Continuous systems based on certain adjustment principles can often be written
as

Px D K .g.x// (B.6)

where K W R
n ! R

nis an adjustment function with sign preserving components. If
Nx is an equilibrium of this system, then the Jacobian of the right hand side has the
special form

J . Nx/ D J K .g. Nx//J g. Nx/ D J K .0/J g. Nx/;
where J K and J g are the Jacobians of K and g, respectively. In analyzing the
asymptotic behavior of this system the following result can be applied.

Theorem B.7. Assume J K .0/is positive definite and J g. Nx/C J g. Nx/T is negative
definite. Then all eigenvalues of J . Nx/ have negative real parts implying the (local)
asymptotic stability of the equilibrium of system (B.6).

Proof. Consider the time invariant linear continuous system

Pz D J K .0/J g. Nx/z (B.7)
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and notice that Nz D 0 is an equilibrium. Select the Lyapunov function

V.z/ D zT J K .0/
�1z: (B.8)

Since J K .0/
�1 is also positive definite, conditions (a) and (b) of Definition A.4 are

satisfied. Let z.t/ be a trajectory of system (B.7), then

d

dt
V.z.t// D Pz.t/T J K .0/

�1z.t/C z.t/T J K.0/
�1Pz.t/

D 2z.t/T J K .0/
�1Pz.t/

D 2z.t/T J K.0/
�1J K.0/J g. Nx/z.t/

D 2z.t/T J g. Nx/z.t/
D z.t/T

�

J g. Nx/C J g. Nx/T
�

z.t/ < 0;

unless z.t/ D 0:Hence the zero equilibrium of system (B.7) is asymptotically stable
implying that all eigenvalues of its coefficient matrix have negative real parts. �



Appendix C
Noninvertible Maps and Critical Sets

In this appendix we give some definitions, properties and simple examples of
discrete dynamical systems represented by the iteration of noninvertible maps.

C.1 Definitions and Simple Examples

A map T W S ! S , S 	 R
n, defined by x0 D T .x/, transforms a point x 2 S into a

unique point x0 2 S . The point x0 is called the rank-1 image of x, and a point x such
that T .x/ D x0 is a rank -1 preimage of x0.

If x ¤ y implies T .x/ ¤ T .y/ for each x, y in S , then T is an invertible map
in S , because the inverse mapping x D T �1 .x0/ is uniquely defined. Otherwise T
is said to be a noninvertible map, because points x exist that have several rank-1
preimages, i.e., the inverse relation x D T �1 .x0/ is multivalued. So, noninvertible
means “many-to-one”, that is, distinct points x ¤ y may have the same image,
T .x/ D T .y/ D x0.

Geometrically, the action of a noninvertible map can be thought of as “folding
and pleating” the space S , so that distinct points are mapped into the same point.
This is equivalently stated by saying that several inverses are defined in some points
of S , and these inverses “unfold” S .

For a noninvertible map, S can be subdivided into regions Zk , k � 0, whose
points have k distinct rank-1 preimages. Generally, for a continuous map, as the
point x0 varies in R

n, pairs of preimages appear or disappear as this point crosses the
boundaries separating different regions. Hence, such boundaries are characterized
by the presence of at least two coincident (merging) preimages. This leads us to
the definition of the critical sets, one of the distinguishing features of noninvertible
maps (see Gumowski and Mira (1980), Mira et al. (1996)):

Definition C.1. The critical set CS of a continuous map T is defined as the locus
of points having at least two coincident rank�1 preimages, located on a set CS�1,
called the set of merging preimages.

The critical set CS is generally formed by .n � 1/-dimensional hypersurfaces
of R

n, and portions of CS separate regions Zk of the phase space characterized
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by a different number of rank � 1 preimages, for example Zk and ZkC2 (this
is the standard occurrence for continuous maps). The critical set CS is the
n-dimensional generalization of the notion of local minimum or local maximum
of a one-dimensional map, and of the notion of critical curveLC of a noninvertible
two-dimensional map. This terminology, and notation, originates from the notion of
critical point as it is used in the classical works of Julia and Fatou. The set CS�1

is the generalization of local extremum point of a one-dimensional map, and of the
fold curve LC�1 of a two-dimensional noninvertible map.

As an illustration, we consider the one-dimensional quadratic map (logistic map)

x0 D f .x/ D �x.1 � x/: (C.1)

This map has a unique critical point c D �=4, which separates the real line into the
two subsets: Z0 D .c;C1/, where no inverses are defined, and Z2 D .�1; c/,
whose points have two rank-1 preimages (Fig. C.1a). These preimages can be
computed by the two inverses

x1 D f �1
1 .x0/ D 1

2
�
p

� .� � 4x0/
2�

I x2 D f �1
2 .x0/ D 1

2
C
p

� .� � 4x0/
2�

:

(C.2)
If x0 2Z2, its two rank-1 preimages, computed according to (C.2), are located sym-
metrically with respect to the point c�1 D 1=2 D f �1

1 .�=4/ D f �1
2 .�=4/. Hence,

c�1 is the point where the two merging preimages of c are located. As the map (C.1)
is differentiable, at c�1 the first derivative vanishes.

We remark that in general the condition of vanishing derivative is not sufficient
to define the critical points of rank-0 since such a condition may be also satisfied by
points which are not local extrema (for example the inflection points with horizontal
tangent). Moreover, for continuous and piecewise differentiable maps the condition
of vanishing derivative is not necessary as well, because such maps may have the
property that the images of points where the map is not differentiable are critical
points, according to the definition given above. This occurs whenever such points
are local maxima or minima, like in the cases shown in Figs. C.2a, b. In Fig. C.2a,

Fig. C.1 (a) The preimages of the logistic map. (b) The folding action of the logistic map. (c) The
unfolding action of the inverses
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Fig. C.2 The preimage regions of certain maps. (a) The tent-map. (b) A bimodal piecewise linear
map. (c) A discontinuous map. Notice that in (a) and (b) the number of preimages in adjacent
regions differ by 2, whereas in (c) they differ by 1

a typical Z0 �Z2 tent map is shown, where the kink point behaves like the critical
point of the logistic map even if it is not obtained as the image of a point with
vanishing derivative. The same reasoning applies to the “bimodal” Z1 � Z3 � Z1

piecewise linear function shown in Fig. C.2b.
Up to now we have considered continuous maps, but the properties of critical

points can easily be extended also to piecewise continuous maps T . In this case a
point of discontinuity may behave as a critical point of T , even if the definition in
terms of merging preimages cannot be applied. This happens when the ranges of
the map on the two sides of the discontinuity have an overlapping zone, so that at
least one of the two limiting values of the function at the discontinuity separates
regions having a different number of rank-1 preimages (see for example the map
shown in Fig. C.2c). The difference with respect to the case of a continuous map
is that now the number of distinct rank-1 preimages through a critical point differs
generally by one (instead of two), that is, a critical value c (in general the critical
set CS ) separates regions Zk and ZkC1: A one-dimensional example is shown in
Fig. C.2c, where the point of discontinuity is a critical point c�1, and both the two
limiting values of the function in c�1 are critical points, say c1 and c2, associated
with c�1; as both c1 and c2 separate regionsZ1 andZ2: Notice that now the critical
points have no merging rank-1 preimages. More on the properties and bifurcations
of discontinuous maps of the plane can be found in Mira et al. (1996).

In order to explain the geometric action of a critical point in a continuous map,
let us consider, again, the logistic map, and note that as x moves from 0 to 1 the
corresponding image f .x/ spans the interval Œ0; c� twice, the critical point c being
the turning point. In other words, if we consider how the segment � D Œ0; 1� is trans-
formed by the map f , we can say that it is folded and pleated to obtain the image
� 0 D Œ0; c�. Such folding gives a geometric reason why two distinct points of � , say
x1 and x2, located symmetrically with respect to the point c�1 D 1=2, are mapped
into the same point x0 2 � 0 due to the folding action of f (see Fig. C.1b). The same
conclusions can be obtained by looking at the two inverse mappings f �1

1 and f �1
2
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defined in .�1; a=4� according to (C.2). We can consider the range of the map f
formed by the superposition of two half-lines .�1; a=4�, joined at the critical point
c D a=4 (Fig. C.1c), and on each of these half-lines a different inverse is defined. In
other words, instead of saying that two distinct maps are defined on the same half-
line we say that the range is formed by two distinct half lines on each of which a
unique inverse map is defined. This point of view gives a geometric visualization of
the critical point c as the point in which two distinct inverses merge. The action of
the inverses, say f �1 D f �1

1 [ f �1
2 , causes an unfolding of the range by mapping

c into c�1 and by opening the two half-lines one on the right and one on the left of
c�1, so that the whole real line R is covered. So, the map f folds the real line, the
two inverses unfold it.

Another interpretation of the folding action of a critical point is the following.
Since f .x/ is increasing for x 2 Œ0; 1=2/ and decreasing for x 2 .1=2; 1�, its appli-
cation to a segment �1 
 Œ0; 1=2/ is orientation preserving, whereas its application
to a segment �2 
 .1=2; 1� is orientation reversing. This suggests that an application
of f to a segment �3 D Œa; b� including the point c�1 D 1=2 preserves the orienta-
tion of the portion Œa; c�1�, that is f .Œa; c�1�/ D Œf .a/; c�, whereas it reverses the
portion Œc�1; b�, so that f .Œc�1; b�/ D Œf .b/; c�, so that �

0

3 D f .�3/ is folded, the
folding point being the critical point c.

Let us now consider the case of a continuous two-dimensional map T W S !S ,
S 	 R

2, defined by

T W
�

x0
1 D T1.x1; x2/;

x0
2 D T2.x1; x2/:

(C.3)

If we solve the system of the two (C.3) with respect to the unknowns x1 and x2,
then, for a given

�

x0
1; x

0
2

	

, we may have several solutions, representing rank-1 preim-
ages (or backward iterates) of

�

x0
1; x

0
2

	

, say .x1; x2/ D T �1
�

x0
1; x

0
2

	

, where T �1 is
in general a multivalued relation. In this case we say that T is noninvertible, and
the critical set (formed by critical curves, denoted by LC from the French “Ligne
Critique”) constitutes the set of boundaries that separate regions of the plane charac-
terized by a different number of rank-1 preimages. According to the definition, along
LC at least two inverses give merging preimages, located on LC�1 (following the
notations of Gumowski and Mira (1980), Mira et al. (1996)).

For a continuous and (at least piecewise) differentiable noninvertible map of the
plane, the set LC�1 is included in the set where detJ .x1; x2/ changes sign, with
J being the Jacobian matrix of T , since T is locally an orientation preserving
map near points .x1; x2/ such that detJ .x1; x2/ > 0 and orientation reversing if
detJ .x1; x2/ < 0. In order to explain this point, let us recall that when an affine
transformation x0 D Ax C b, where A D ˚

aij




is a 2 � 2 matrix and b 2R
2, is

applied to a plane figure, then the area of the transformed figure grows, or shrinks, by
a factor � D jdetAj, and if detA > 0 then the orientation of the figure is preserved,
whereas if detA < 0 then the orientation is reversed. This property also holds for
the linear approximation of (C.3) in a neighborhood of a point p D .x1; x2/, given
by an affine map with A D J , J being the Jacobian matrix evaluated at the point p
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Fig. C.3 (a) A qualitative visualization of a map of the plane, and how the folding relates to the
sign of the Jacobian matrix. (b) Visualizing a Riemann foliation of the plane, in the case of a
Z0 �Z2 noninvertible map

J .p/ D
�

@T1=@x1 @T1=@x2

@T2=@x1 @T2=@x2

�

: (C.4)

A qualitative visualization is given in Figs. C.3a, b. Of course, if the map is continu-
ously differentiable then the change of the sign of det.J / occurs along points where
det.J / vanishes, thus giving the characterization of the fold line LC�1 as the locus
where the Jacobian vanishes.

In order to give a geometrical interpretation of the action of a multi-valued
inverse relation T �1, it is useful to consider a region Zk as the superposition of
k sheets, each associated with a different inverse. Such a representation is known as
Riemann foliation of the plane (see for example Mira et al. (1996)). Different sheets
are connected by folds joining two sheets, and the projections of such folds on the
phase plane are arcs of LC . This is shown in the qualitative sketch of Fig. C.3b,
where the case of a Z0 � Z2 noninvertible map is considered. This graphical rep-
resentation of the unfolding action of the inverses also gives an intuitive idea of the
mechanism which causes the creation of disconnected basins for noninvertible maps
of the plane.

To give an example, let us again consider a quadratic map T W .x; y/ ! .x0; y0/,
extensively studied in Mira et al. (1996) and Abraham et al. (1997), defined by

T W
�

x0 D ax C y;

y0 D b C x2:
(C.5)

Given x0 and y0, if we try to solve the algebraic system with respect to the unknowns
x and y we get two solutions, given by

T �1
1 W

�

x D �py0 � b;
y D x0 C a

p

y0 � b; ; T �1
2 W

�

x D p

y0 � b;

y D x0 � a
p

y0 � b; (C.6)

if y0 � b, and no solutions if y0 <b. So, (C.5) is a Z0 � Z2 noninvertible map,
where Z0 (the region whose points have no preimages) is the half plane Z0 D
f.x; y/ jy < bg and Z2 (region whose points have two distinct rank-1 preimages)
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Fig. C.4 A quadratic map example. Here a D �0:3 and b D �1. (a) The folding of the ball U
by the map along the critical line LC . (b) The unfolding action of the inverses of the map

is the half plane Z2 D f.x; y/ jy > bg. The line y D b, which separates these two
regions, is LC , that is the locus of points having two merging rank-1 preimages,
located on the line x D 0, that represents LC�1. Since (C.5) is a continuously
differentiable map, the points of LC�1 necessarily belong to the set of points
at which the Jacobian determinant vanishes, in other words LC�1 	 J0, where
J0 D f.x; y/ jdetJ .x; y/ D �2x D 0g. In this case LC�1 coincides with J0 (the
vertical axis x D 0) and the critical curve LC is the image of LC�1, that is
LC D T .LC�1/ D T .fx D 0g/ D f.x; y/ jy D bg.

In order to show the folding action related to the presence of the critical lines,
we consider a plane figure (a circle) U separated by LC�1 into two portions, say
U1 2 R1 and U2 2 R2 (Fig. C.4a) and we apply the map (C.5) to the points of U .
The image T .U1/ \ T .U2/ is a non-empty set included in the region ZkC2, which
is the region whose points p0 have rank-1 preimages p1 D T �1

1 .p0/ 2 U1 and
p2 D T �1

2 .p0/ 2 U2. This means that two points p1 2 U1 and p2 2 U2, located
at opposite sides with respect to LC�1, are mapped in the same side with respect to
LC , in the regionZkC2. This is also expressed by saying that the ball U is “folded”
by T along LC on the side with more preimages (see Fig. C.4a). The same concept
can be equivalently expressed by stressing the “unfolding” action of T �1, obtained
by the application of the two distinct inverses in ZkC2 which merge along LC .
Indeed, if we consider a ball V 
 ZkC2; then the set of its rank � 1 preimages
T �1

1 .V / and T �1
2 .V / is made up of two balls T �1

1 .V / 2 R1 and T �1
2 .V / 2 R2.

These balls are disjoint if V \ LC D ; (Fig. C.4b).
Many of the considerations made above, for one-dimensional and two-

dimensional noninvertible maps, can be generalized to n-dimensional ones, even
if their visualization becomes more difficult. First of all, from the definition of crit-
ical set it is clear that the relation CS DT .CS�1/ holds in any case. Moreover, the
points of CS�1 where the map is continuously differentiable are necessarily points
where the Jacobian determinant vanishes, so that
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CS�1 	 J0 D fp 2 R
njdetJ .p/ D 0g (C.7)

In fact, in any neighborhood of a point of CS�1 there are at least two distinct
points which are mapped by T in the same point. Accordingly, the map is not locally
invertible in points of CS�1, and (C.7) follows from the implicit function theorem.
This property provides an easy method to compute the critical set for continuously
differentiable maps – from the expression of the Jacobian determinant one computes
the locus of points at which it vanishes, then the set obtained after an application of
the map to these points is the critical set CS .

Also the geometric properties illustrated above for the two-dimensional nonin-
vertible map (C.5) can be easily generalized to the case of the critical set of an
n-dimensional noninvertible map. It is worth noting that, in general, for piecewise
differentiable maps the set of points where the map is not differentiable may belong
to CS�1, that is the images by T of such points may separate regions characterized
by a different number of rank-1 preimages (see for example Mira (1987)). Moreover,
piecewise continuous maps may have points of CS�1 at the discontinuities and, dif-
ferently from the case of continuous maps, the corresponding portions of CS may
separate regions that differ by an odd number of preimages (see Mira (1987)). In any
case, the importance of the set CS lies in the fact that its points separate regionsZk

characterized by a different number of preimages. This property may also be shared
by points where some inverses are not defined due to a vanishing denominator, as
shown in Bischi et al. (1999, 2001a, 2003a).

C.2 Discrete Time Dynamical Systems as Iterated Maps

A discrete-time dynamical system, defined by the difference equation

x .t C 1/ D T .x .t//; (C.8)

can be viewed as the result of the repeated application (or iteration) of a map T .
Indeed, the point x represents the state of a system, and T represents the “unit time
advancement operator” T W x .t/ ! x .t C 1/. Starting from an initial condition
x0 2 S , the iteration of T inductively defines a unique trajectory

�.x0/ D ˚

x.t/ D T t .x0/; t D 0; 1; 2; : : :



; (C.9)

where T 0 is the identity map and T t D T .T t�1/. As t ! C1, a trajectory may
diverge, or it may converge to a fixed point of the map T , which is a point x such
that T .x/ D x. It may also asymptotically approach another kind of invariant set,
such as a periodic cycle , or a closed invariant curve or a more complex attrac-
tor, for example a so called chaotic attractor (see for example Devaney (1989),
Guckenheimer and Holmes (1983) and Medio and Lines (2001)). We recall that
a set A 
 R

n is invariant for the map T if it is mapped onto itself, T .A/ D A.
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This means that if x 2A then T .x/2A, so that A is trapping, and every point of A
is an image of some point of A. A closed invariant set A is an attractor if (1) it is
Lyapunov stable, that is for every neighborhoodW ofA there exists a neighborhood
V of A such that T t .V / 
 W 8t � 0; (2) a neighborhood U of A exists such that
T t .x/ ! A as t ! C1 for each x 2 U .

The basin of an attractor A is the set of all points that generate trajectories
converging to A

B .A/ D ˚

xjT t .x/ ! A as t ! C1 


: (C.10)

LetU.A/ be a neighborhood of an attractorAwhose points converge toA. Of course
U.A/ 	 B .A/, and also the points that are mapped into U after a finite number of
iterations belong to B .A/. Hence, the basin of A is given by

B .A/ D
1
[

nD0

T �n.U.A//; (C.11)

where T �n.x/ represents the set of the rank-n preimages of x (the points mapped
into x after n applications of T ).

Let B be a basin of attraction and @B its boundary. From the definition it follows
that B is trapping with respect to the forward iteration of the map T and invariant
with respect to the backward iteration of all the inverses T �1. Points belonging
to @B are mapped into @B both under forward and backward iteration of T . This
implies that if an unstable fixed point or cycle belongs to @B then @B must also
contain all of its preimages of any rank. In particular, if a saddle point, or a saddle
cycle, belongs to @B, then @B must also contain the whole stable set (see Gumowski
and Mira (1980), Mira et al. (1996)).

A problem that often arises in the study of nonlinear dynamical systems con-
cerns the existence of several attracting sets, each with its own basin of attraction.
In this case the dynamic process becomes path dependent, which means that the
kind of long-run dynamics that characterizes the system depends on the starting
condition. Another important problem in the study of applied dynamical systems is
the delineation of a bounded region of the state space in which the system dynamics
are ultimately trapped, despite the complexity of the long-run time patterns. This is
useful information, even more useful than a detailed description of the step-by-step
time evolution.

Both of these questions require an analysis of the global properties of the dynam-
ical system, that is, an analysis which is not based on the linear approximation of
the map. When the map T is noninvertible, its global dynamical properties can be
usefully characterized by using the formalism of critical sets, by which the folding
action associated with the application of the map, as well as the “unfolding” associ-
ated with the action of the inverses, can be described. Loosely speaking, the repeated
application of a noninvertible map repeatedly folds the state space along the critical
sets and their images, and often this allows one to define a bounded region in which
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asymptotic dynamics are trapped. As some parameter is varied, global bifurcations
that cause sudden qualitative changes in the properties of the attracting sets can be
detected by observing contacts of critical curves with invariant sets. The repeated
application of the inverses “repeatedly unfolds” the state space, so that a neighbor-
hood of an attractor may have preimages far from it, thus giving rise to complicated
topological structures of the basins, that may be formed by the union of several
(even infinitely many) disconnected portions. In fact, from (C.11) it follows that in
order to study the extension of a basin and the structure of its boundaries one has
to consider the properties of the inverse relation T �1. The route to more and more
complex basin boundaries, as some parameter is varied, is characterized by global
bifurcations, also called contact bifurcations, due to contacts between the critical set
and the invariant sets that form the boundaries of the basins of attraction.

C.3 Critical Sets and the Delineation of Trapping Regions

Portions of the critical set CS and its images CSk D T k.CS/ can be used to obtain
the boundaries of trapping regions to which the asymptotic dynamics of the iterated
points of a noninvertible map are confined. This can be easily explained for a one-
dimensional noninvertible map, for example the quadratic map (C.1). In fact, it is
quite evident that if we iterate the logistic map for 3 < � < 4 starting from an initial
condition inside the interval Œc1; c�, with c1 D f .c/, no images can be obtained
out of this interval (see Fig. C.5), that is the interval along the 45ı line formed by
the critical point c and its rank-1 image c1 is trapping. Moreover, any trajectory

0 1

1

c

c1

Fig. C.5 The trapping region of the quadratic map. Trajectories starting from any point in .0; 1/,
will enter the trapping region after a finite number of iterations
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generated from an initial condition in .0; 1/, enters Œc1; c� after a finite number of
iterations. Following the terminology introduced in Mira et al. (1996), the interval
Œc1; c� is called absorbing.

In general, for an n-dimensional map, an absorbing region A (intervals in R,
areas in R

2, volumes in R
3; : : :) is defined as a bounded set whose boundary is

given by portions of the critical set CS and its images of increasing order CSk D
T k .CS/, such that a neighborhoodU � A exists whose points enter A after a finite
number of iterations and then never escape it, since T .A/ 	 A, which is to say that
A is trapping (see for example Mira et al. (1996) for more details).

Loosely speaking, we can say that the iterated application of a noninvertible map,
folding and folding again the space, defines trapping regions bounded by critical sets
of increasing order.

Sometimes, smaller absorbing regions are nested inside a bigger one. This can
be illustrated, again, for the logistic map (C.1), as shown in Fig. C.6a, where inside
the absorbing interval Œc1; c� a trapping subset is obtained by higher rank images
of the critical point, given by A D Œc1; c3� [ Œc2; c�. In Fig. C.6b it is shown that,
for the same parameter value �D 3:61 as in Fig. C.6a, the numerical iteration of the
logistic map gives points that are trapped inside the two-cyclic interval A.

Inside an absorbing region one or more attractors may exist. However, if a chaotic
attractor exists which fills up a whole absorbing region then the boundary of the
chaotic attractor is formed by portions of critical sets. This is the situation shown
in Fig. C.6a, b, where the absorbing interval A D Œc1; c3� [ Œc2; c� is invariant and
filled up by a chaotic trajectory, as shown in Fig. C.6b.

To better illustrate the foregoing point, we also give a two-dimensional example,
obtained by using the map (C.5). In Fig. C.7a, a chaotic trajectory is shown, and in
Fig. C.7b its outer boundary is obtained by the union of a segment of LC and three
iterates LCi D T i .LC /, i D 1; 2; 3.
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Fig. C.6 Illustrating a trapping subset inside the absorbing set of Fig. C.5 for the quadratic map
with � D 3:61. (a) The delineation of the trapping subset Œc1; c3� [ Œc2; c�. (b) The iterates of the
map remain trapped inside the two cyclic interval
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Fig. C.7 Delineating the absorbing area of the two-dimensional map given in (C.5). Here a D
�0:3 and b D �1:4. (a) A chaotic trajectory of the map. (b) The boundary of the absorbing
area formed by the critical line and three of its iterates. The location of the starting line LC�1 is
discussed in the text

Indeed, following Mira et al. (1996) (see also Bischi and Gardini (1998)) a prac-
tical procedure can be outlined for obtaining the boundary of an absorbing area
(although it is difficult to give a general method). Starting from a portion of LC�1,
approximately located in the region occupied by the area of interest, compute its
images under T of increasing rank until a closed region is obtained. When such a
region is mapped into itself, then it is an absorbing area A. The length of the ini-
tial segment is to be set, in general, by a trial and error method, although several
suggestions are given in the books referenced above. Once an absorbing area A is
found, in order to see if it is invariant or not the same procedure must be repeated
by taking only the portion

� D A \ LC�1 (C.12)

as the starting segment. Then one of the following two cases occurs:

Case 1. The union of m iterates of � (for a suitable m) covers the whole boundary
of AI in which case A is an invariant absorbing area, and

@A 

m
[

kD1

T k.�/ (C.13)

Case 2. No natural m exists such that
Sm

kD1 T
k.�/ covers the whole boundary of

AI in which case A is not invariant but strictly mapped into itself. An invari-
ant absorbing area is obtained by \n>0T

n.A/ (and may be obtained by a
finite number of images of A).

The application of this procedure to the problem of the delineation of the chaotic
area of Fig. C.7a by portions of critical curves suggests, on the basis of Fig. C.7b,
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Fig. C.8 Delineating more precisely the structure of the absorbing area of the quadratic map
given by (C.5). (a) Higher order iterates of the boundary curves. (b) After a sufficient number of
further iterates the inner boundaries of the chaotic area emerge. These should be compared with
the frequently visited areas of the chaotic trajectory in Fig. C.7a

that we take a smaller segment � and that we take a higher number of iterates in order
to also obtain the inner boundary. The result is shown in Fig. C.8a, where after four
iterates we get the outer boundary. After a few more iterates the inner boundary of
the chaotic area is also obtained, as shown in Fig. C.8b. As can be clearly seen, and
as clearly expressed by the strict inclusion in (C.13), the union of the images also
include several arcs internal to the invariant area A. Indeed, the images of the critical
arcs which are mapped inside the area play a particular role, because these curves
represent the “foldings” of the plane under forward iterations of the map, and this
is the reason why these inner curves often denote the portions of the region which
are more frequently visited by a generic trajectory inside it (compare Fig. C.7a and
C.8b). This is due to the fact that points close to a critical arc LCi , i � 0; are more
frequently visited, because there are several distinct parts of the invariant area which
are mapped into the same region (close to LCi / in i C 1 iterations. Many similar
examples are given in the literature on noninvertible maps, see for example Mira
et al. (1996).

Examples of applications in dynamic economic modeling are given in Bischi and
Naimzada (1999), Bischi et al. (2000a), Puu (2003), Agliari et al. (2000a), Agliari
et al. (2000b), Agliari et al. (2002b), Agliari et al. (2004), Chiarella et al. (2001),
Chiarella et al. (2002), and Sushko et al. (2003).

C.4 Critical Sets and the Creation of Disconnected Basins

From (C.11) it is clear that the properties of the inverses are important in order
to understand the structure of the basins and the main bifurcations that change
their qualitative properties. In the case of noninvertible maps, the multiplicity of
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preimages may lead to basins with complex structures, such as multiply connected
or disconnected sets, sometimes formed by infinitely many disconnected portions
(see Mira et al. (1994), Mira and Rauzy (1995), Mira et al. (1996), Chap. 5 and
Abraham et al. (1997), Chap. 5). In the context of noninvertible maps it is useful to
define the immediate basin B0.A/, of an attracting set A, as the largest connected
component of the basin that contains A. Then the total basin can be expressed as

B .A/ D
1
[

nD0

T �n.B0.A//

where T �n.x/ represents the set of all the rank-n preimages of x, in other words
the set of points which are mapped into x after n iterations of the map T . The
backward iteration of a noninvertible map repeatedly unfolds the phase space, and
this implies that the basins may be disconnected, that is they are formed by several
disjoint portions. Also in this case, we first illustrate this property by using a one-
dimensional map based on an evolutionary game proposed in Bischi et al. (2003b).
In Fig. C.9a, b the graph of a Z1 � Z3 � Z1 noninvertible map is shown, where
Z3 is the portion of the co-domain bounded by the relative minimum value cmin

and the relative maximum value cmax. In the situation shown in Fig. C.9a we have
three attractors: the fixed point z�, with B .z�/ D .�1; q�/, the attractor A around
x�, with basin B .A/ D .q�; r�/ bounded by two unstable fixed points, and C1
(attracting positively diverging trajectories) with basin B .C1/ D .r�;C1/. In
this case all the basins are immediate basins, each being given by an open interval.
In the situation shown in Figure C.9(a), both basin boundaries q� and r� are in Z1,

Z1

Z3

Z1 B(z*)

z*

q*

x*

r*

B(x*)
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B(∞)

(a)

Z1
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x*

r*

H0

H–1

H−2

−1q*

*q−2
*q−2

*q−1

cmax

cmin

z*

(b)

Fig. C.9 The global bifurcation of a one-dimensional noninvertible Z1 �Z3 �Z1, map. (a) The
attractors of the map are z�, x� and C1, and their basins are .�1; q�/, .q�; r�/ and .r�;1/

respectively. Note that cmin is above q�. (b) After a parametric change cmin moves below q� and
a global bifurcation has occurred. Now the basin of z� includes the (countably infinite number
of) disconnected portions, H�1;H�2 etc. on .x�; r�/. These are the preimages of the portion
.cmin; q

�/
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so they have only themselves a unique preimage (as for an invertible map). However,
the situation drastically changes if, for example, some parameter change causes the
minimum value cmin to move downwards sufficiently that it goes below q� (as in
Fig. C.9b). After the global bifurcation, which occurs when cmin D q�, the portion
.cmin; q

�/ enters Z3, so new preimages f �k .cmin; q
�/ appear with k � 1. These

preimages constitute an infinite (countable) set of disconnected portions of B .z�/
nested inside B .A/, represented by the thick portions of the diagonal in Fig. C.9b,
bounded by the infinitely many preimages of any rank, say q�

�k
, k 2 N, of q�,

that accumulate in a left neighborhood of the fixed point r�. In fact, as r� is a
repelling fixed point for the forward iteration of f , it is an attracting fixed point
for the backward iteration of the same map. So, the contact between the critical
point cmin and the basin boundary q� marks the transition from simple connected
to disconnected basins. Similar global bifurcations, due to contacts between critical
sets and basin boundaries, also occur in higher dimensional maps.

Also in higher dimensional cases, the global bifurcations which give rise to com-
plex topological structures of the basins, like those formed by disconnected sets,
can be explained in terms of contacts of basin boundaries and critical sets. In fact,
if a parameter variation causes a crossing between a basin boundary and a critical
set which separates different regions Zk so that a portion of a basin enters a region
where an higher number of inverses is defined, then new components of the basin
may suddenly appear at the contact. However, for maps of dimension greater than 1,
such kinds of bifurcations can be very rarely studied by analytical methods, since
the analytical equations of such singularities are not known in general. Hence such
studies are mainly performed by geometric and numerical methods.

Several examples of two-dimensional noninvertible maps that have disconnected
basins can be found in this book. See also Agliari et al. (2000a, b), Agliari et al.
(2002b), Agliari et al. (2004), Bischi and Kopel (2001), Bischi and Kopel (2003a),
Bischi and Naimzada (1999), Bischi et al. (2000a), Bischi et al. (2003b), Puu (2003).
Examples in three dimensions are given in Agliari et al. (2000b) and Bischi et al.
(2001b).



Appendix D
Continuously Distributed Time Lags

Continuous time dynamical systems with continuously distributed time lags are
frequently modeled with Volterra-type integro-differential equations, when some
or all state variables in the usual differential equation model are replaced by certain
averages of past values. If x.t/ is such a variable then its weighted average is

Nx.t/ D
Z t

0

w.t � s; T;m/x.s/ds; (D.1)

where the weighting function is of the form

w.t � s; T;m/ D
(

1
T
e� t�s

T if m D 0
1

mŠ

�

m
T

	mC1
.t � s/me� m.t�s/

T if m � 1:
(D.2)

Here m is a non-negative integer and T is a positive real parameter.
First we will examine some fundamental properties of this special weighting

function.

(a) The area under the weighting function converges to 1 as t ! 1.
For m D 0 we have

Z t

0

1

T
e� t�s

T ds D
"

1

T
� e

� t�s
T

1
T

#t

0

D 1 � e� t
T ;

and form � 1 by introducing the new integration variable x D m.t � s/=T we
have

Z t

0

1

mŠ

�m

T

�mC1

.t � s/me� m.t�s/
T ds D

Z mt
T

0

1

mŠ

�m

T

�mC1
�

T x

m

�m

e�x Tdx

m

D 1

mŠ

Z mt
T

0

xme�xdx:
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Notice that the integral converges to �.m C 1/ D mŠ, so the right hand side
converges to 1.

(b) For m D 0, weights are exponentially declining with the most weight given to
the most current data. For m � 1, zero weight is given to the most current data,
rising to maximum at s D t � T and declining exponentially thereafter.
Form D 0, the weighting function is a declining exponential function of .t�s/.
For m � 1,

d

ds
w.t � s; T;m/ D 1

mŠ

�m

T

�mC1

e� m.t�s/
T

�

�m.t � s/m�1 C .t � s/mm
T

�

D 1

.m � 1/Š
�m

T

�mC1

e� m.t�s/
T .t � s/m�1

�

t � s

T
� 1

�

which is negative for t � s < T , positive for t � s > T , and zero if t � s D T .
(c) Asm increases, the weighting function becomes more peaked around t�s D T ,

and as m! 1, the weighting function converges to the Dirac delta function
centered at s D t � T .
This property can be easily proved by examining the ratio

w.t � s; T;mC 1/=w.t � s; T;m/

with fixed T and t � s.
(d) As T ! 0, the weighting function tends to the Dirac delta function with all

m � 0.
Notice that the weighting function is the product of a polynomial and a decreas-
ing exponential function of 1

T
unless t � s D T .

Figures D.1 and D.2 show the plots of the weighting function with changing
values of m and T .

In analyzing continuous time systems with continuously distributed time lags,
integrals of the form

1

e�t

Z t

0

w.t � s; T;m/e�sds (D.3)

often arise. Notice first that by introducing the new variable x D t � s, (D.3) can be
simplified as

1

e�t

Z t

0

w.x; T;m/e.t�x/�dx D
Z t

0

w.x; T;m/e��xdx:

If m D 0, then we have

Z t

0

1

T
e� x

T e��xdx D 1

T

"

�e�x.�C 1
T

/

�C 1
T

#t

0

D .1C �T /�1.1 � e�t.�C 1
T

//;
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Fig. D.1 Dependence of w on m is the case of T D 1

T

t s−0

w (t−s,T,m)

Fig. D.2 Dependence of w on T is the case of m D 1
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which converges to .1C�T /�1 if we assume that Re�C 1
T
> 0. Ifm > 1, then the

integral becomes

Z t

0

1

mŠ

�m

T

�mC1

xme� mx
T e��xdx D

Z .�C m
T /t

0

1

mŠ

�m

T

�mC1
�

z

�Cm
T

�m

e�z d z

�Cm
T

D 1

mŠ

 

Z .�C m
T

/t

0

zme�zd z

!

�

1C�T

m

��.mC1/

;

where we have introduced the new variable z D .1C m
T
/x. If Re�C m

T
> 0, then the

integral term always converges to �.mC 1/ D mŠ, so the entire expression tends to
.1C �T

m
/�.mC1/.

Finally we will demonstrate that Volterra-type integro-differential equations with
(D.1)-type integral terms can be rewritten as systems of ordinary differential equa-
tions by introducing additional state variables. Therefore all tools known from
the stability theory of ordinary differential equations can be used to analyze the
asymptotic behavior of the equilibrium of such dynamical systems.

Consider first the case of m D 0. Introduce the new state variable

X0.t/ D
Z t

0

1

T
e� .t�s/

T x.s/ds; (D.4)

then simple differentiation shows that

PX0.t/ D 1

T
Œx.t/ �X0.t/�: (D.5)

By replacing the integral of the form (D.1) with X0.t/ in the integro-differential
equation and adding the additional equation (D.4) this integral term disappears from
the equations describing the dynamical system.

Assume next that m � 1. Then introduce the new state variables

X
.m/

k
.t/ D

Z t

0

1

kŠ

�m

T

�kC1

.t�s/ke� m.t�s/
T x.s/ds .0 � k � m/: (D.6)

Then simple differentiation shows that for k D 1; 2; : : : ; m,

PX .m/

k
.t/ D m

T
ŒX

.m/

k�1
.t/ �X .m/

k
.t/� (D.7)

and
PX .m/
0 .t/ D m

T
Œx.t/ � X

.m/
0 .t/�: (D.8)

Therefore by replacing integral (D.1) with the new state variable X .m/
m .t/ in the

integro-differential equation, adding the new variables X .m/
0 .t/; : : : ; X

.m/
m .t/ and
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(D.7) and (D.8) to the system, the integral term disappears again from the equations
describing the dynamical system.

After we repeat the above procedure for all integral terms, a larger system of
ordinary differential equations is obtained which is clearly equivalent to the original
system of Volterra-type integro-differential equations.



Appendix E
A Determinantal Identity

In analysing the local asymptotic stability of discrete dynamic oligopolies the eigen-
value equation of the associated Jacobians have to be determined. The Jacobians
have similar special structure which allows us to give a simple representation of
their characteristic polynomials.

Our method is based on the following simple identity.

Lemma E.1. Let a;b;2 R
N be two real column vectors, then

det.I C abT / D 1C abT : (E.1)

Proof. Let DN denote this determinant. We will use finite induction with respect to
N to prove identity (E.1). If N D 1, then

D1 D det.1C a1b1/ D 1C a1b1

so (E.1) clearly holds. If N >1, then with the notation a D .ai / and b D bi we
have

DN D det

0

B

B

B

@

1C a1b1 a1b2 : : : a1bN

a2b1 1C a2b2 : : : a2bN

:::
:::

:::

aN b1 aN b2 : : : 1C aN bN

1

C

C

C

A

:

Subtract the aN =aN �1–multiple of rowN�1 from the last row, then the aN �1=aN �2

–multiple of row N � 2 from row N � 1, and so on, and finally subtract the a2=a1-
multiple of row 2 from the first row. Then the value of the determinant remains the
same, so

DN D det

0

B

B

B

B

B

B

B

B

@

1C a1b1 a1b2 : : : a1bN �1 a1bN

� a2

a1
1

� a3

a2

: : :

1

� aN

aN �1
1

1

C

C

C

C

C

C

C

C

A

;
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where all other matrix elements are zeros. Expanding this determinant with respect
to its last column we obtain a recursive relation

DN D DN �1 � 1C .�1/N �1a1bN .�a2

a1

/.�a3

a2

/ : : : .� aN

aN �1

/ D DN �1 C aN bN

completing the proof. ut
Two particular applications of identity (E.1) will be shown next.
Consider first the determinant with the simple structure

Det D det

0

B

B

B

B

B

B

@

A1.�/ B1.�/ : : : B1.�/

B2.�/ A2.�/ : : : B2.�/
:::

:::
:::

: : :

BN .�/ BN .�/ : : : AN .�/

1

C

C

C

C

C

C

A

: (E.2)

By introducing vectors b.�/ D .B1.�/; : : : ; BN .�//
T ; 1T D .1; : : : ; 1/ and the

diagonal matrix D.�/ D diag.A1.�/�B1.�/; : : : ; AN .�/�BN .�//we can rewrite
the determinant as

det.D.�/C b.�/ � 1T / D det.D.�/ � det.I C D�1.�/b.�/1T /:

The first determinant is diagonal, the second has the special structure of (E.1) with
a D D�1.�/b.�/ and bT D 1T . So by using identity (E.1) we have

Det D
N
Y

kD1

.Ak.�/ � Bk.�// �
"

1C
N
X

kD1

Bk.�/

Ak.�/ � Bk.�/

#

: (E.3)

Consider next a special matrix

A D

0

B

B

B

@

a1 b1 : : : b1

b2 a2 : : : b2

:::
:::

:::

bN bN : : : aN

1

C

C

C

A

: (E.4)

The characteristic polynomial of this matrix can be determined by using relation
(E.3). Notice that

det.A � �I/ D det

0

B

B

B

@

a1 � � b1 : : : b1

b2 a2 � � : : : b2

:::
:::

:::

bN bN : : : aN � �

1

C

C

C

A

;
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which is the special case of (E.2) by selecting Ak.�/ D ak � � and Bk.�/ D bk .
Therefore relation (E.3) gives the characteristic polynomial of matrix A as

det.A � �I/ D
N
Y

kD1

.ak � bk � �/ �
"

1C
N
X

kD1

bk

ak � bk � �

#

: (E.5)



Appendix F
Stable Quadratic Polynomials

Consider the quadratic polynomial

�2 C p�C q D 0 (F.1)

with real coefficients.
In examining the asymptotic stability of two-dimensional dynamical systems the

following result can be used.

Lemma F.1. All roots of (F.1) are inside the unit circle if and only if

1C p C q > 0

1 � p C q > 0

and
q < 1:

Proof. The roots are

�1;2 D �p ˙p

p2 � 4q

2
: (F.2)

Assume first complex roots. This is the case when q > p2=4, then

�1;2 D �p
2

˙ i

p

4q � p2

2
;

So j�1;2j < 1 if and only if

p2

4
C 4q � p2

4
D q < 1:

Assume next that the roots are real. Then q � p2=4; and j�1;2j < 1 if and only
if

� 2C p < ˙
p

p2 � 4q < 2C p: (F.3)
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Clearly �2 < p < 2, otherwise this relation cannot hold for both signs of the
square root. Notice that (F.3) is equivalent to

p

p2 � 4q < minf2C p; 2 � pg;

or equivalently

p2 � 4q < minf4C 4p C p2; 4 � 4p C p2g;

which can be rewritten as

1C p C q > 0 and 1 � p C q > 0:

The cases of real and complex roots are shown in Figure F.1. The assertion can
be obtained by combining the two cases. �

Consider next a real matrix
�

a b

c d

�

;

the characteristic polynomial of which is

'.�/ D .a � �/.d � �/ � bc D �2 � �.aC d/C .ad � bc/:

Let T r D a C d denote the trace and Det D ad � bc the determinant of this
matrix, then

'.�/ D �2 � �Tr C Det:

The eigenvalues of this matrix are inside the unit circle if and only if

p

q

Real roots

Complex roots

Fig. F.1 The stability region (shaded) of the quadratic polynomial (F.1) in the .p; q/ plane. It
shows the bounding lines 1C p C q > 0, 1� p C q > 0 and q < 1. Also shown are the regions
where the roots of (F.1) are real and where they are complex, with the boundary between the two
regions being the parabola q D p2=4.
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1C TrCDet > 0;

1 � TrCDet > 0;

Det < 1:

The continuous time counterpart of Lemma F.1 can be formulated in the follow-
ing way.

Lemma F.2. The roots of (F.1) have negative real parts if and only if p; q > 0:

Proof. Assume first that the roots are complex, �1;2 D a ˙ ib with a < 0. Then
p D �.�1 C �2/ D �2a > 0 and q D �1�2 D a2 C b2 > 0: If the roots are real
and negative, then p D �.�1 C �2/ > 0 and q D �1�2 > 0:

Assume next that p; q > 0: If the roots are complex, then Re�1;2 D �p=2 < 0:
If the roots are real, then from (F.2), both roots are negative, since

p

p2 � 4q < p:

�
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