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Foreword to ‘Rationality and Equilibrium’ –
A Symposium in honor of Marcel K. Richter

Charalambos D. Aliprantis1, Rosa L. Matzkin2, Daniel McFadden3,
James C. Moore1, and Nicholas C. Yannelis4

1 Department of Economics, Purdue University, West Lafayette, IN 47907, USA
(e-mail: aliprantis@mgmt.purdue.edu; moorej@mgmt.purdue.edu)

2 Department of Economics, Northwestern University, Evanston, IL 60208, USA
(e-mail: matzkin@northwestern.edu)

3 Department of Economics, University of California, Berkeley, CA 94720-3880, USA
(e-mail: mcfadden@econ.berkeley.edu)

4 Department of Economics, University of Illinois at Urbana-Champaign, IL 61820, USA
(e-mail: nyanneli@uiuc.edu)

This collection of papers is dedicated to Marcel K. Richter, in appreciation of
the fundamental impact that his research, mentoring, and personality has had on
economics and on economists.

Marcel K. Richter’s research has taken economic theory to places it needed to
go, and along the way has left tight, crisp, important, and beautifully elegant results.
Each paper is a destination, a result that is worth the trip, a stop that instructs the
student on the effectiveness of mathematics and the liberating power of crystalline
logic. No paper of his is carelessly written.

A good representative of Ket Richter’s work is his 1966 Econometrica paper
“Revealed Preference Theory.” This paper has had a profound influence, not only on
the problem of preference characterization, but also on the use of powerful logical
tools in economic theory. Using set theory and mathematical logic, it provided a
simple, clear, and general method to address the topic of consumer rationality, which
strongly contrasted with the complex alternative literature on revealed preference
and integrability theory. This was followed by “Rational Choice” and by the joint
work with Leonid Hurwicz, “Revealed Preference Without Demand Continuity
Assumptions,” both published in Preferences, Utility and Demand, edited by J.
Chipman, L. Hurwicz, M.K. Richter, and H. Sonnenschein (1971).

Many other topics in economic theory benefited from Ket Richter’s lucidity.
He developed fundamental relationships between preference, utility and demand,
in, among others, “Continuous and Semicontinuous Utility” (IER 1980), “Duality
and Rationality” (JET 1979), “An Integrability Condition with Applications to Util-
ity Theory and Thermodynamics” (with Leonid Hurwicz, JME 1979), and “Ville
Axioms and Consumer Theory” (with Leonid Hurwicz, Econometrica 1979). To-
gether with G. Fuhrken, he wrote “Polynomial Utility” (ET 1991) and “Additive
Utility” (ET 1991). With Taesung Kim he wrote “Nontransitive Nontotal Consumer
Theory” (JET 1986). With Rosa L. Matzkin, he provided conditions for rational-
ization of finite demand observations, in “Testing Strictly Concave Rationality”
(JET, 1991), and with Kam Chau Wong, he provided conditions for the existence
of a concave utility function on finite sets, in “Concave Utility on Finite Sets”



VI Aliprantis et al.

(JET 2004). His “Cardinal Utility, Portfolio Selection and Taxation” (RES 1960)
developed the theory of portfolio demand under the assumption that the utility of
the investor depended only on characteristics of the probability distribution of the
portfolio’s uncertain earnings.

The theory of the core and Walrasian allocations benefited from Ket Richter’s
major contributions, such as “Existence of Nonatomic Core Walras Allocations”
(JET 1986) and “The Core-Walras Equivalence” (JET 1984), both co-authored with
Thomas Armstrong, and from “Coalitions, Core and Competition” (JET 1971). In
“Invariance Axioms and Economic Indexes” (Econometrica 1966), he contributed
to the axiomatic foundations of index number theory. With Leonid Hurwicz, Ket
generalized constrained maximization and implicit function theory in “Optimiza-
tion and Lagrange Multipliers” and in “Implicit Functions and Diffeomorphisms
without C1” (both published in Advances in Mathematical Economics 2003).

More recently, with Kam Chau Wong, Ket Richter has moved forward the theory
of bounded rationality, by studying issues involving the computability and defin-
ability of utility, demand, and equilibrium. Some of the papers in this series are
“Computable Preference and Utility” (JME 1999), “Noncomputability of Com-
petitive Equilibrium” (ET 1999), and “Definable Utility in O-Minimal Structures”
(JME 2000).

Revealed preference is, however, the topic with which Marcel K. Richter is
most associated. Besides the papers mentioned above on this topic, other classics
are his paper with Leonard Shapiro, “Revelations of a Gambler” (JME 1978); his
well known paper with Daniel McFadden, “Stochastic Rationality and Revealed
Stochastic Preference” (in Preference, Uncertainty and Rationality, edited by J.
Chipman, D. McFadden, and M.K. Richter, 1990), which laid the foundation for
the existence of a random utility rationalization of probabilistic choice; and his joint
paper with Andreu MasColell, Rolf Mantel, and Daniel McFadden, “A Character-
ization of Community Excess Demand Functions” (JET 1974), in which revealed
preference theory was used to demonstrate that a variant of the Sonnenschein-
Debreu characterization held without the added restriction to a strictly positive
closed price cone.

Marcel K. Richter’s mentoring has been as unique as his research. The input
and dedication he has demonstrated in his research has paralleled the input and
dedication he has given to his students. For Ket Richter, no student thesis is ready
to be defended until all ideas are clearly presented, all details are worked out,
and all the lines of the thesis have undergone the close scrutiny of his red pen.
In fact, Ket Richter has been a consummate mentor. All University of Minnesota
students in economics have benefited from Ket’s friendly help and open door, and
his willingness to take up any topic. Ket’s personality is as impressive as, and very
much in line with, his research. He truly cares about each person and makes his or
her happiness his own concern.

The papers assembled in this issue are by colleagues, students, and admirers
of Marcel K. Richter. They deal with topics deeply connected to his work and
interests, such as preferences, demand, equilibrium, core allocations, and testable
restrictions. On behalf of everybody who has contributed to this symposium, we
wish Ket all the best and thank him for his many contributions.
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a synthesis�

Daniel L. McFadden

Department of Economics, University of California, Berkeley, CA 94720-3880, USA
(e-mail: mcfadden@econ.berkeley.edu)

Received: March 13, 2003; revised version: February 11, 2004

Summary. The problem of revealed stochastic preference is whether probability
distributions of observed choices in a population for various choice situations are
consistent with a hypothesis of maximization of preference preorders by members
of the population. This is a population analog of the classical revealed preference
problem in economic consumer theory. This paper synthesizes the solutions to this
problem that have been obtained by Marcel K. Richter and the author, and by J. C.
Falmagne, in the case of finite sets of alternatives, and utilizes unpublished research
of Richter and the author to give results for the non-finite choice sets encountered
in economic consumer theory.

Keywords and Phrases: Choice, Stochastic preference, Revealed preference,
Random utility maximization.

JEL Classification Numbers: D1, C6.

1 Introduction

The problem of revealed stochastic preference asks the question: Are the distri-
butions of choices observed for a population of individuals in a variety of choice
situations consistent with rational choice theory, which postulates that individu-
als maximize preferences? In economic consumer theory, each choice situation is
defined by a budget set; in psychometrics, by the alternatives offered in an ex-
periment; and in political voting behavior, by the issues presented in an election.

� The preparation of this paper was supported by the E. Morris Cox endowment at the University of
California, Berkeley. I am indebted to Robert Anderson, Salvador Barbara, Werner Hildenbrand, Rosa
L. Matzkin, and Aviv Nevo for useful suggestions and comments. I am especially indebted to Marcel
K. Richter, who was the source of many of the ideas and arguments contained in this paper.



2 D.L. McFadden

Distributions of responses arise because of taste heterogeneity in the population,
or because of stochastic elements in individual preferences. The last possibility
connects rational choice theory to psychometric models of choice based on random
scale maximization. This paper synthesizes the relatively complete solutions to the
revealed preference problem that have been obtained for finite choice sets, and
extends these results to the non−finite choice sets commonly encountered in eco-
nomic consumer behavior. This paper is based primarily on unpublished research
that Marcel K. Richter and I did in 1971, and on subsequent published results for the
finite case by Falmagne (1978) and by McFadden and Richter (1990). Ket Richter
has had an impact on economic theory far beyond the papers published over his
name. It is a fitting tribute to his career to draw upon his unpublished ideas and
words to suggest the scope and significance of his influence.

The origin of the revealed stochastic preference problem is the classical eco-
nomic theory of revealed preference, where the Samuelson−Houthaker Strong Ax-
iom of Revealed Preference (SARP) and Richter’s Congruence Axiom provide tight
necessary and sufficient conditions for consistency of one individual’s choices
with preference maximization (see Samuelson, 1938; Houthaker, 1950; Richter,
1966,1971). Marschak (1960) connected this theory to the psychometric literature
(Thurstone, 1927; Luce, 1959), posing the question of when observed choice proba-
bilities could be rationalized as consistent with random utility maximization (RUM).
Papers addressing the revealed stochastic preference problem include Block and
Marschak (1960), McFadden and Richter (1971,1990), McFadden (1973,1975),
Falmagne (1978), Fishbern (1978), Cohen (1980), Barbara and Pattanaik (1986),
McLennan (1990), Fishburn and Falmagne (1989), Barbara (1990), Cohen and
Falmagne (1990), Fishburn (1992), and Bandyopadhyay, Dasgupta, and Pattanaik
(1999).1

The ingredients of a revealed preference problem are the universe of objects
of choice, a family of feasible budget sets giving the alternatives from which a
decision−maker must choose, a class of permissible decision rules consistent with a
specified theory of choice behavior, and observations on the probabilities of choices
made. Both the SARP and the Congruence Axiom consider classes of decision
rules that maximize a preference preorder. They differ in that the SARP requires
permissible decision−rules to produce unique maxima on feasible budget sets, and
assumes a unique offer is observed, while the Congruence Axiom allows decision
rules that yield multiple maxima, and assumes that decision−makers offer the sets
of acceptable alternatives in the case of ties. One can generate a variety of revealed
preference problems by varying the ingredients, particularly the family of feasible
sets, the class of permissible decision rules, and the structure of observations. Some
of the possibilities are discussed in the conclusion.

This paper is organized as follows. Section 2 sets notation and gives a for-
mal statement of the revealed stochastic preference problem. Section 3 reviews

1 There is a large literature in mathematical psychology dealing with concepts of stochastic transi-
tivity, and their relationship to the RUM hypothesis; see Fishburn (1999). There is also a very extensive
literature on the Luce Choice Axiom (Luce, 1959), which provided the foundation for the econometric
theory of discrete choice behavior; see McFadden (1974), Halldin (1974), Manski (1977), McFadden
(1981), McCausland (2002). McFadden (2001) surveys this subject and provides many references.
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the revelation problem when the universe of alternatives is finite, and relates the
necessary and sufficient conditions for this problem obtained by McFadden and
Richter (1971, 1990) and by Falmagne (1978). Section 4 gives the McFadden and
Richter (1971) results on the extension of set functions, together with new results on
countable additivity. Section 5 draws upon this mathematical theory to obtain nec-
essary and sufficient conditions for the revealed stochastic preference problem with
a non−finite universe of alternatives that includes the classical economic consumer
problem. Section 6 concludes with discussion of further extensions and problems.

2 The revealed stochastic preference problem

2.1 Notation

The following notation for the space of alternatives, the choice situations, observed
behavior, and the hypothesis of rational behavior will be used throughout the paper:

(X,X ) a metric space X of possible objects of choice, and the Borel σ-algebra
X of subsets of X.

Q a non−empty index set, a metric space interpreted as indexing the feasible
choice situations.

B(q) a non-empty set in X for q ∈ Q, interpreted as the set of available
alternatives, or “budget set”, in choice situation q.

d : Q → X a decision rule that maps Q into subsets of X, with ∅ �= d(q) ⊆
B(q), interpreted as a behavior rule that designates the decision-maker’s
acceptable alternatives in B(q). The decision rule is decisive if d(q) is
a singleton; a non-decisive choice is interpreted as the offer of a set of
“tied” alternatives.

(q,C) a pair, termed a trial; composed of a feasible choice situation q ∈ Q and
a set C ∈ X . The outcome of a trial is a success (failure) if C contains
(excludes) the choice d(q) made by an individual in situation q. A trial
can be a partial success if the decision rule is non-decisive and d(q)
intersects C but is not contained in C.

(D.D, ζ) a probability space consisting of a set D of decision rules, a Boolean
σ-algebra D of measurable subsets of D, and a probability ζ on D. This
is interpreted as the universe of decision rules that could appear in a
population of decision-makers.

Πq a choice probability on X for q ∈ Q, with Πq(C) for C ∈ X inter-
preted as the proportion of individuals in the population with choice func-
tions satisfying d(q) ⊆ C. The algebra D contains the sets D(q,C) =
{d ∈ D|d(q) ⊆ C} for q ∈ Q and C ∈ X , so that the probability
Πq(C) ≡ ζ(D(q,C)) that the trial (q,C) is a success is defined. The
choice probability satisfiesΠq(B(q)) = 1, and if the decision rules of the
population are almost surely decisive, it satisfies Πq(C)+Πq(Cc) = 1.
More generally, let Π−

q and Π+
q denote set-valued bounds for q ∈ Q,

satisfying Π−
q (C) ≤ ζ(D(q,C)) ≤ Π+

q (C) for C ∈ X .
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t =< (q1,C1), ..., (qm,Cm) > a trial sequence, an ordered sequence with repeti-
tions permitted, and elements (qi,Ci) ∈ Q × X for i = 1, ...,m, where
m is a positive integer.

H a set of choice functions in D, interpreted as the choice functions consis-
tent with a specified hypothesis of rational choice behavior. The algebra
D contains H, so that the sets H(q,C) = D(q,C) ∩ H are contained in
the Boolean σ-algebra H = {A∩H|A ∈ D} for q ∈ Q and C ∈ X , and
ζ(H(q,C)) is defined as the probability that the trial (q,C) is a success
for decision rules that satisfy the rational choice hypothesis.

αH(t) the H-intersection number of a trial sequence t =
< (q1,C1), ..., (qm,Cm) >, defined to be the maximum number
of successes for the sequence attainable by a choice function in H:

αH(t) = max
d∈H

m∑
i=1

1(d(qi) ⊆ Ci).

u : X → R a utility or scale function on X, a representation of a preference pre-
order. A utility function u is weakly decisive if d(q) = d(q;u) ≡ {x ∈
B(q)|u(x) ≥ u(x′) for all x′ ∈ B(q)} is non-empty for q ∈ Q, and is
decisive if d(q;u) is a singleton for q ∈ Q.

(U,U , ν) a non-empty set of utility functions u specified by a hypothesis of rational
choice behavior, a metric space, with U the Borel σ-algebra of subsets
of U, and ν a probability on U , termed a random utility maximization
(RUM) model. A space of decision rules (H, H, ζ) and a space of utility
functions (U,U , ν) are consistent (or, the set H of decision rules is U-
rational) if each u ∈ U is weakly decisive, and each d ∈ H is of the form
d(q;u) for some u ∈ U and all q ∈ Q, the inverse image of H(q,C) is
in U for q ∈ Q,C ∈ X (i.e., U(q,C) ≡ {u ∈ U|d(q;u) ⊆ C ∈ U),
and ζ(H(q,C)) = ν(U(q,C)).

αU(t) the U-intersection number of a trial sequence t =< (q1,C1), ..., (qm,
Cm) >, defined to be the maximum number of successes for
the sequence attainable by a utility function in U; i.e., αU(t) =
maxu∈U

∑m
i=1 1(d(qi;u) ⊆ Ci). If the space H of decision rules and

the space U of utility functions are consistent, then the decision-rule and
utility intersection numbers are the same.

2.2 Discussion

The central results in this paper concern random utility maximization, and uti-
lize spaces (U,U , ν) of weakly decisive utility functions. These results will have
equivalent restatements in terms of the consistent space of decision rules (H,H, ζ).
We will also give some results directly for a space of hypothesized decision rules
(H,H, ζ); these can be applied to theories of choice other than random utility
maximization. The universe (D,D, ζ) of decision rules will play no direct role in
our analysis; but is useful in interpreting revealed preference problems as null hy-
potheses H on this universe. In this interpretation, the revealed preference problem
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can be viewed as an extreme case of the econometric problem of estimating the
probability measure ζ or bounding ζ(H).

In the classical theory of economic consumer demand, each alternative is a
commodity vector represented by a point in a closed consumption set X contained
in the non-negative orthant of R

n; X is often assumed to be convex. The space
of choice possibilities Q is a set of n-vectors of positive commodity prices q =
(q1, ..., qn), where income is normalized to one. Then, the possible choice sets
are the budget sets B(q) = {x = (x1, ..., xn) ∈ X|q1x1 + ... + qnxn ≤ 1};
with Q restricted so that B(q) is always non-empty. The admissible behavior rules
H ⊆ D under the theory of utility-maximizing choice behavior are those consistent
with a specified family of weakly decisive utility functions U. For this setup, it
will often be natural to impose some combination of the following assumptions:
[A1]. X is compact and convex; [A2] The feasible choice sets B(q) are closed
and convex for q ∈ Q; [A3] Q is a metric space, and the mapping B(q) from
Q into non-empty subsets of X is a continuous, compact-valued, convex-valued
correspondence;2 [A4a] Utility functions u ∈ U are uniformly bounded, continuous
and quasi-concave, or uniformly Lipschitz, and strictly quasi-concave, [A4b] Utility
functions u ∈ U are defined on an open neighborhood of X, and are uniformly
bounded and concave.

A complete theory of choice behavior requires either (1) that the structure of the
choice problem is such that decision rules are always decisive, if necessary through
the introduction of explicit tie-breaking mechanisms, or (2) that decision-makers
are observed to offer sets of “tied” acceptable alternatives and they passively ac-
cept assignments from their offers. An incomplete theory that does not specify
tie-breaking mechanisms may nevertheless be empirically complete if in practice
decision-rules are almost surely decisive. Shape restrictions may ensure that eco-
nomic consumer choice is decisive; i.e., if budget sets are compact and convex, and
admissible utility functions are continuous and strictly quasi-concave, then deci-
sion rules always yield singletons. However, more generally utility maximization
does not rule out ties. We will assume that offer sets of admissible alternatives
are observed, and define Πq(C) to be the probability that the observed offer set in
choice situation q is contained in C. The sum of the probabilitiesΠq(C)+Πq(Cc)
is less than one if the probability of a partial success (where d(q) intersects but is
not contained in C) is positive. In this case, we can consider observed lower bounds
Π−

q on the probabilities of success and upper bounds Π+
q on the probabilities of

success or partial success (i.e., Π+
q (C) = 1−Π−

q (Cc)). Alternately, if we observe
Πq(C) + Πq(Cc) = 1 for all C ∈ X , then admissible decision rules are almost
surely decisive at each q ∈ Q, and Πq is an almost surely complete description of
the distribution of demand.

2 A correspondence is continuous if it is upper and lower hemicontinuous in the terminology of
Hildenbrand (1974, I.B.III). When the space of closed non-empty subsets of (X, X ) is metrized by the
Hausdorff distance, then an equivalent characterization is that B(q) is a continuous function from Q
into this metric space.
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2.3 Revelation problems

We define the revelation problems we will consider.

2.3.1 The revealed distribution problem

If Πq is a probability on X for q ∈ Q, find a probability ζ on H (or, by extension, a
probability ζ on D satisfying ζ(H) = 1) such that Πq(C) = ζ(H(q,C)) for C ∈
X , q ∈ Q. [Alternately, find a probability ν on U such that Πq(C) = ν(U(q,C))
for C ∈ X , q ∈ Q].

2.3.2 Revealed dominating distribution problem

If Π−
q and Π+

q are non-negative bounded set functions on X for q ∈ Q, find a
probability ζ on H such thatΠ−

q (C) ≤ ζ(H(q,C)) ≤ Π+
q (C) for C ∈ X , q ∈ Q.

[Alternately, find a probability ν on U with Π−
q (C) ≤ ν(U(q,C)) ≤ Π+

q (C) for
C ∈ X , q ∈ Q].

2.3.3 The axiom of revealed stochastic preference [ARSP]

For a class H of hypothesized decision rules, or alternately, for a class U
of hypothesized utility functions, and for each finite sequence of trials t =
< (q1,C1), ..., (qm,Cm) > with Ci ∈ X and qi ∈ Q,

m∑
i=1

Πqi
(Ci) ≤ αH(t) = max

d∈H

m∑
i=1

1(d(qi) ⊆ Ci) , (1)

or alternately,

m∑
i=1

Πqi
(Ci) ≤ αU(t) = max

u∈U

m∑
i=1

1(d(qi;u) ⊆ Ci) . (2)

The expressionsαH(t) andαU(t) are, respectively, theH-intersection number
and U-intersection number for the trial sequence t. When H is U-rational, these
numbers coincide. More generally, the axiom may be applied to hypothesized deci-
sion rules H that are not necessarily obtained from utility maximization.ARSP says
that the sum of choice probabilities over a finite sequence of trials is no larger than
the maximum number of successes that an admissible decision rule [alternately, an
admissible utility function] can produce. A central result for the revealed distribu-
tion problem, due to McFadden and Richter (1971), is that under some regularity
conditions, ARSP is necessary and sufficient for consistency of observed choice
probabilities with a specified theory of choice behavior.
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3 Finite families of choice situations

3.1 Discussion

In psychometric and voting applications, as well as discrete choice applications in
economics and marketing, it is natural to consider choice situations in which the
space of possible alternatives is finite. The classical economic choice problem can
also be interpreted as finite when the index set Q of budgets is finite, so that X can
be partitioned into a finite family of subsets {X1, ...,Xm} with the property for
each i = 1, ...,m and q ∈ Q, either Xi ⊆ B(q) or Xi ∩ B(q) = ∅, and X is the
field generated by the partition. In this case, observations provide no information
on choice behavior within partition sets, so that the partition sets can themselves
be defined as the objects of choice.

Throughout this section, we will define the index set Q as the family of feasible
“budget sets” in X, and name singleton sets by their elements, so that ΠB(x)
denotes a choice probability for C = {x} when B is a feasible choice set in the
family Q, and by construction ΠB(x) = 0 for x �∈ B. Note that if X contains m
elements, then there arem! possible total orders of these elements. We will represent
these orders by the finite family U of utility functions from X onto the integers
{1, ...,m}; note that this definition excludes ties, so that utility-maximizing choice
functions will be decisive.

The revealed stochastic preference problem was originally examined for the
case of X finite by Marschak (1960), Block and Marschak (1960), and Luce and
Suppes (1965), and it is for this case that the most complete characterizations of
a solution have been given, by McFadden and Richter (1971, 1990), Falmagne
(1978), and Barbara (1990). A closely related result with a different application
was obtained by Freedman and Purves (1969). We will need several definitions.

3.2 Definitions

3.2.1. A set Q of choice situations forms a net if for every feasible set of alterna-
tives, every larger set contained in X is also feasible; i.e., if B ∈ Q and A ⊆ X\B,
then B ∪ A ∈ Q. A set of choice situations is exhaustive if it forms a net and it
contains each singleton in X.

3.2.2. Suppose choice situations Q form a net. Let #(A) denote the number of
elements in a subset A of X. For x ∈ X\A ∈ Q, the Block-Marschak polynomial
Kx,A is the function

Kx,A =
#(A)∑
i=0

(−1)#(A)−i
∑

C⊆A&#(C)=i

ΠX\C(x) . (3)

The Block-Marschak polynomials can also be defined recursively, with

Kx,∅ = ΠX(x),
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Kx,A = ΠX\A(x) −
∑
C⊂A

Kx,C ,

for all A ⊆ X\B and B ∈ Q; see Falmagne (1978, Theorem 2). An implication
of this construction is ΠB(x) =

∑
C⊆X\B Kx,C for B ∈ Q. When the choice

probabilities are the result of utility maximization, Barbara and Pattanaik (1986)
provide a useful interpretation of Kx,A as the probability of the event that x is
ranked behind the elements of A and ahead of all the remaining elements in X\A.

For a trial (B, x) with x ∈ B ∈ Q, and for u ∈ U, define aB,x,u = 1(x =
argmaxx′∈Bu(x′)). Form a column vector π composed of subvectors for each
B ∈ Q, with each subvector composed of the choice probabilities ΠB(x) for
x ∈ B. Form the matrix A with element aB,x,u in the row corresponding to the
trial (B, x) and column u for u ∈ U. An element of A is one if the associated trial
is a success for the specified utility function, and is zero otherwise. Then, integer-
weighted row sums of A will be the number of successes attainable for a specified
trial sequence (with repetitions given by the integer weights) for the various utility
functions, and the maximum of these rows sums will be the U-intersection number
for the trial sequence.

3.3 Theorem

If X is finite, U is the class of utility functions that totally order X, Q is a family
of choice situations, with B ∈ Q a non-empty subset of X, and ΠB(x) is a choice
probability for x ∈ B ∈ Q satisfying ΠB(B) = 1, then the following conditions
are equivalent:

(a) There exists a probability ν on U that rationalizes the choice probability; i.e.,

ΠB(x) =
∑
u∈U

aB,x,uνu for x ∈ B ∈ Q . (4)

(b) The system of linear inequalities π ≤ Aν, ν ≥ 0,1′ν ≤ 1 has a solution.
(c) The linear program minν,s 1′s subject to ν ≥ 0, s ≥ 0, Aν + s ≥ π,1′ν ≤ 1

has an optimal solution with s = 0.
(d) The linear program maxr,t(r′π−t) subject to 0 ≤ r ≤ 1, t ≥ 0, and r′A ≤ t1′

has no positive solution.
(e) The choice probabilities ΠB(x), x ∈ B ∈ Q, satisfy ARSP [cf 2.4].

If the set Q of feasible choice situations forms a net, then (a)–(e) are equivalent
to

(f) The Block-Marschak polynomials Kx,X\B for x ∈ B ∈ Q, are non-negative.

Proof. If a probability ν satisfies (a), then it satisfies (b) with π = Aν. Conversely,
if π satisfies (b), then π = Aν since π satisfies ΠB(B) = 1, so that (a) is satisfied.
But ν solves (b) if and only if ν and s = 0 solve (c). The linear program (d) is
dual to the linear program (c), so that (c) has an optimal solution with s = 0 if and
only if (d) has no positive solution; see Karlin (1959, V.4.1). An optimal solution to
(d) satisfies t = maxu r

′Au, where Au is a column of A. Thus, (d) has a positive
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optimal solution if and only if for some r satisfying 0 ≤ r ≤ 1, one has r′π >
t = maxu r

′Au. But if this is true, then one can achieve the strict inequality with a
vector r whose components are all rational numbers. Clear a common denominator
so that r is a vector of non-negative integers. Then, maxu r

′Au is the intersection
number of the sequence of trials with the components of r giving the number of
repetitions for each trial, so that (d) has a positive solution if and only if ARSP in
(e) is violated. This establishes that (a)−(e) are equivalent.

Consider condition (f), and suppose Q forms a net so that the Block-Marschak
polynomials Kx,A are defined for x ∈ X\A ∈ Q. Let r =< r1, ..., rk > denote
an ordered sequence of the elements of a set A = {r1, ..., rk} ⊆ X, where k =
0, ...,#(X), and RA denote the family of all ordered sequences r of the elements
of A. Let B\r denote the set of elements of B that are not contained in the sequence
r. For r ⊆ B, define

Sr,B = {u ∈ U|u(r1) > ... > u(rk) > u(x) for x ∈ B\r}.
Then, Sr,B contains the utility functions for which the elements in r are ranked

in descending order and are better than any remaining elements in B. If (a) holds,
it is immediate from the construction of Sr,B that for x ∈ B ∈ Q, ΠB(x) =
ν(S<x>,B). The sets Sr,B for B ∈ Q have the property that S<r,x>,B for x ∈ B\r
is a partition of Sr,B (Falmagne, 1978, Lemma 1) and for x ∈ B ∈ Q and
A = X\B, S<x>,B = ∪C≤A∪r∈RC S<r,x>,X, with the sets in this union disjoint
(Falmagne, 1978, Lemma 2). Note that ∪x∈XS<x>,X = U. The family of sets
T0 = {S<r,x>,X|x ∈ B ∈ Q and r ∈ RC for C ⊆ X\B} then form a Boolean
semi-algebra (Neveu, 1965, 1.6.1). Consider the sets Mx,A = {u ∈ U|u(x′) >
u(x) > u(x′′) for x′ ∈ A and x �= x′′ ∈ X\A} = ∪r⊆RAS<r,x>,X, and note that
the sets in the last union are disjoint. Barbara and Pattanaik (1986, Theorem 2.1)
utilize the recursive definition of Kx,A to prove by induction for x ∈ X\A ∈ Q
that when (a) holds, Kx,A = ν(Mx,A) =

∑
r⊆RA

ν(S<r,x>,X) ≥ 0.
Then, (a) implies (f).
Suppose that the Block-Marschak polynomials are non-negative for a class of

feasible choice sets Q that forms a net, so that (f) holds. Following Falmagne (1978,
Theorem 4), construct a set-valued function ν on T0 in the following steps:

(1) For x ∈ X, ν(S<x>,X) = Kx,∅ ≡ ΠX(x).
(2) For x, y ∈ X, x �= y, ν(S<y,x>,X) = Kx,{y} ≡ ΠX\{y}(x) − ΠX(x).
(3) Suppose ν has been defined forSr,X with r ∈ RA for allA such thatX\A ∈ Q

and #(A) < k. Suppose A meets this condition with #(A) = k − 1, and
suppose x ∈ X\A satisfies (X\A) ∪ x ∈ Q. Define ∆ =

∑
r∈RA

ν(Sr,X).
Then, define ν(S<r,x>,X) by the recursion ν(S<r,x>,X) = Kx,A ·ν(Sr,X)/∆
if ∆ > 0, and otherwise ν(S<r,x>,X) = 0.

It is immediate from this construction and the fact that S<r,x>,X is a partition of
Sr,X for x ∈ X\r that ν is non-negative and additive on I0, with ν(U) = 1;
see Falmagne (1978, Lemma 4). Then ν has a unique extension to a probability
on the Boolean algebra I generated by I0 (Neveu, 1964, 1.6.1). Further,defining
ν(A) = sup{ν(B)|B ∈ T&B ⊆ A} for A ⊆ U extends ν to a probability on
the Boolean algebra of all subsets of U; see Neveu (1965, I.6.2). The final step of



10 D.L. McFadden

the proof is to show that the constructed probability ν satisfies (a). Since ΠB(x) =∑
C⊆X\B Kx,C for B ∈ Q, it is sufficient to show that Kx,A = ν(Mx,A) =∑
r⊆A ν(S<r,x>,X) for X\A ∈ Q. But the construction ν(S<r,x>,X) = Kx,A ·

ν(Sr,X )/∆ implies
∑

r∈RA
ν(S<r,x>,X) = Kx,A. This completes the proof. ��

3.4 Remarks

The equivalence of (a)–(e) was established by McFadden and Richter (1971,1990).
The equivalence of (a) and (f) when the family of feasible choice sets is exhaustive
was established by Falmagne (1978), with useful interpretation and refinements
given by Barbara and Pattianiak (1986). Theorem 3.3 generalizes the Falmagne
result slightly by noting that it is not necessary that the feasible choice sets be
exhaustive, provided that they form a net so that the Block-Marschak polynomials
are defined.

The linear programs (c) and (d) provide finite algorithms that can, in principle,
determine if observed choice probabilities can be rationalized. These are, further,
completely general, requiring no particular structure for the set of feasible choice
situations. The construction for condition (f) is also a finite algorithm, with the
advantage that each step in the recursive construction of the measure ν defines a
probability on a Boolean semi-algebra of subsets of U . In some applications, such
as construction of bounds, this intermediate information may be directly useful. The
primary limitation of the Block-Marschak polynomial condition is that it requires
that the feasible choice sets form a net. This excludes some natural applications,
such as those where only paired comparisons are observed, or those defined by
economic budget sets for a finite number of price vectors.

Part of the literature on stochastic choice has concentrated on situations where
decision-makers are faced with binary choice situations (see Luce, 1959; McLen-
non, 1991; Fishburn, 1999). Falmagne’s condition on the Block−Marschak poly-
nomials is not applicable to this case, and while ARSP is applicable, it does not
fully exploit the geometry of the polytope containing the vectors of rationalizable-
choice probabilities. Fishburn (1992) surveys the results on this problem, including
the mathematical literature on the polytopes generated by the decisive preference
preorders.

4 Extension of set functions

4.1 The dominance problem

The results of this paper for the non-finite case hinge on the following mathematical
problem: If P is a non-negative bounded set function on a family S of subsets of
a non-empty set H, find a probability η on the Boolean algebra I generated by S
such that η(S) ≥ P (S) for S ∈ S. The following axiom is the key to the existence
of a solution.
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4.2 The dominance axiom

For each finite sequence t =< S1, ...,Sm > in S, with repetitions allowed,

m∑
i=1

P (Si) ≤ αH(t) = max
d∈H

m∑
i=1

1(d ∈ Si) . (5)

4.3 Finitely-additive extension theorem

P is a non-negative bounded set function satisfying the dominance axiom on a
family S of subsets of a non-empty set H if and only if there exists a finitely
additive probability η on a Boolean algebra I of subsets of H containing S such
that η(S) ≥ P (S) for S ∈ S. If, further, S is closed under complementation and
contains H, and P satisfies P (S) + P (Sc) = 1 for S ∈ S, then η(S) = P (S) for
S ∈ S.

Proof. Necessity of the dominance axiom. Let S1, ...,Sn be a sequence of sets in
S, and T1, ...,Tm the partition of H that they induce. Then Tj ∈ I. Let kj equal
the number of sets Si containing Tj . Then

n∑
i=1

P (Si) ≤
n∑

i=1

η(Si) =
m∑

j=1

kj · η(Tj) ≤ max
j≤m

kj ≡ αD(< S1, ...,Sn >) .

Sufficiency of the dominance axiom. SupposeP satisfies the dominance axiom. Let
Y denote the linear space spanned by the indicator functions 1S of the sets S ∈ I,
and Z denote its linear subspace spanned by the indicator functions 1S of the sets
S ∈ S. Define on Y the norm ‖ f ‖= supd∈H|f(d)|. Define a convex cone in Z,

W =
{
f ∈ Z|f=

m∑
i=1

ki1Si for m>0, non-negative scalars ki, and Si ∈ S
}
,

and on W define the functional

p(f) = sup
{ m∑

i=1

kiP (Si)|f =
m∑

i=1

ki 1Si
for m > 0,

non-negative scalars ki, and Si ∈ S
}
.

On the space R × Z with the norm |r|+ ‖ f ‖ for (r, f) ∈ R × Z, define the sets
A1 = {(r, f) ∈ R × Z|r ≥‖ f ‖} and A2 = {(r, f) ∈ R × W|r < p(f)}.
Then A1 and A2 are convex cones, and A1 has a non-empty interior in the
norm topology of Z. Suppose A1 and A2 have a common point (r0, f0). Then,
‖ f0 ‖≤ r0 < p(f0)− ε for some positive ε. From the definition of p(f), there ex-
ists a representation f0 =

∑m
i=1 ki 1Si

such that p(f0) ≤ ∑m
i=1 kiP (Si) + ε/2.

Then supd∈H
∑m

i=1 ki 1Si
(d) <

∑m
i=1 kiP (Si) − ε/2. Since this inequality is

continuous in the ki, these numbers can be chosen to be rational, and a common de-
nominator cleared so that the inequality supd∈H

∑m
i=1 ki 1Si

(d) <
∑m

i=1 kiP (Si)
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holds for some ki integral. Considering a sequence of sets Si with repetitions ki

for i = 1, ...,m gives a violation of the dominance axiom. Hence, A1 and A2 are
disjoint. A separating hyperplane theorem (Dunford and Schwartz (1964, V.2.8)
implies the existence of a non-zero continuous linear functional (λ, ζ) on R × Z
such that λr − ζ(f) ≥ 0 for (r, f) ∈ A1 and λr − ζ(f) ≤ 0 for (r, f) ∈ A2.
If λ ≤ 0, the first inequality holds at (1,0) ∈ A1 only if λ = 0. However, λ = 0
requires ζ(f) ≤ 0 for all f ∈ Z, implying ζ(f) ≡ 0, a contradiction of (λ, ζ)
non-zero. Hence, λ > 0, and we can normalize it to one. Then, the first inequality
implies ‖ f ‖≥ ζ(f) on Z, while the second inequality implies ζ(1S) ≥ P (S) for
S ∈ S. The Hahn-Banach theorem implies ζ can be extended to a linear functional
on Y satisfying ζ(f) ≤‖ f ‖. Then η(S) = ζ(1S) is a finitely additive probability
satisfying the dominance condition η(S) ≥ P (S) for S ∈ S.

If S is closed under complementation and P (S) + P (Sc) = 1 for S ∈ S, then
the inequality 1 = P (S) + P (Sc) ≤ η(S) + η(Sc) = 1 implies η(S) = P (S) for
S ∈ S. ��

4.4 Compact families

A family K of subsets of a set H is compact if every sequence of members with the
finite intersection property has a non-empty intersection. The family formed from
K by the operations of finite union and countable intersection is again compact
(Neveu, 1965, 1.6.1).

4.5 Tightness

Suppose a non-negative bounded set function P is defined on a family S of subsets
of a set H. Suppose that S is closed under complementation and contains H, and
that P (S) + P (Sc) = 1 for S ∈ S. The function P is tight if there is a compact
family of subsets K of H such that for each ε > 0 and S ∈ S there exist S′ ∈ S
and K ∈ K such that S′ ⊆ K ⊆ S and P (S) − P (S′) < ε.

The definition does not require that P (K) be defined for K ∈ K, but simplifies
(to the requirement that P (S) − P (K) < ε for some K ⊆ S and K ∈ K) when
K ⊆ S. If S is (almost surely) finite, it is itself a compact class.3 More generally,
suppose H can be partitioned into “atoms” {H1, ...,HN} plus a non-atomic set
H0,S0 is a family of subsets of H0, and S is a family whose members can be
written as finite unions of sets in S0 and the atoms H1, ...,HN , or complements of
such sets. If K0 is a compact class of subsets of H0 that is closed under countable
intersection, then K formed by finite unions of H1, ...,HN , and sets K ∈ K0 is
again a compact class. Thus, P can satisfy our definition of tightness even if it has
a finite number of atoms. When S is a Boolean algebra and K is contained in S, our
definition of tightness coincides with that of Neveu (1965, I.6.3). The following
result relates tightness and countable additivity.

3 The class S is almost surely finite if it is countable, and P (S) = 0 for all except a finite number
of sets S in S.



Revealed stochastic preference: a synthesis 13

4.6. Lemma. If P is a non-negative, finitely additive set function defined on the
Boolean algebra I0 generated by a family S of subsets of a non-empty set H, and
if P is tight on S, then P is countably additive on I0, and has a unique countably
additive extension to the Boolean σ-algebra I generated by I0. Conversely, if P is
countably additive on a Boolean σ-algebra I, then each of the following conditions
is sufficient for it to be tight:

(a) H is a Polish space (i.e., a complete separable metric space) and I is its Borel
σ−field.

(b) H is a compact Hausdorff space with a countable base, and I is its Borelσ-field.
(c) H is a countable space, and I is the field of all subsets of H.

Proof. Suppose P is finitely additive on the Boolean algebra I0 generated by a
family of sets S, andP is tight on S. We show thatP is tight on I0, and consequently
σ-additive. First let Tn = ∩n

i=1Si be a finite intersection of sets Si ∈ S. The
tightness assumption on P implies there exists a compact class K of subsets of
H, which we take without loss of generality to be closed under finite union and
countable intersection, such that given ε > 0 there exist S′

i ⊆ Ci ⊆ Si with
Ci ∈ K and P (Si) − P (S′

i) < ε · 2−i. The set ∩n
i=1Ci is in K. The set inclusion

(∩n
i=1Si)\(∩n

i=1S
′
i) ⊆ ∪n

i=1(Si\S′
i) and the additivity and sub-additivity of P

imply

P
(⋂n

i=1
Si

)
− P

(⋂n

i=1
S′

i

)
= P

((⋂n

i=1
Si

)
\
(⋂n

i=1
S′

i

))

≤
n∑

i=1

P (Si\S′
i) =

n∑
i=1

[P (Si) − P (S′
i)] ≤ ε .

Then P satisfies the definition for tightness on the family S1 of all sets formed
from S by the operation of countable intersection. Next, consider the family S2 of
all sets formed from S1 by the operation of finite union V =

⋃N
j=1Tj of pairwise

disjoint sets Tj ∈ S1. From the previous construction, there exist Cj ∈ K and
T′

j ∈ S1 satisfying T′
j ⊆ Cj ⊆ Tj and P (Tj) − P (T′

j) ≤ ε/N , implying
∪N

j=1Kj ∈ K,V′ = ∪N
j=1T

′
j ∈ S2 , and P (V) − P (V′) ≤ ε. But S2 = I0

(Neveu, 1965 I.2.2), so that we have established that P is tight on I0 .
Suppose sets Vn,V′

n ∈ I0 and Cn ∈ K satisfy V′
n ⊆ Cn ⊆ Vn, P (Vn) −

P (V′
n) ≤ ε, and Vn ↘ ∅. Then, Cn ↘ ∅, and compactness implies there exists

N such that V′
N ⊆ CN = ∅. Then P (V′

N ) = 0, implying P (VN ) ≤ ε, and
P is continuous at ∅, and hence countably additive. The Hahn extension theorem
(Dunford, 1964, III.5.8) establishes thatP has a unique countably additive extension
to the Boolean σ-algebra I generated by I0.

Consider the sufficient conditions for tightness. Condition (a) is given by Neveu
(1965), II.7.3. Condition (b) reduces to condition (a) by the Urysohm metrization
theorem. Condition (c) reduces to condition (a) by assigning H the metric ρ(x, y) =
1(x �= y). ��
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4.7 Countably additive extension theorem

Suppose S is a family of subsets of a non-empty set H that contains H and is closed
under complementation, and P is a non-negative bounded set function on S that
satisfies P (S)+P (Sc) = 1 for S ∈ S and is tight. Then, P satisfies the dominance
axiom if and only if there exists a countably additive probability η on the Boolean
σ-algebra I of subsets of H generated by S such that η(S) = P (S) for S ∈ S.

Proof. The proof of Theorem 4.3 establishes the existence of η finitely additive on
I and satisfying η(S) = P (S) for S ∈ S if and only if the dominance axiom holds.
This also establishes the necessity of the dominance axiom when η is countably
additive. For the sufficiency of the dominance axiom, apply the first result in Lemma
4.6 to the finitely additive measure η. ��

5 Solutions for general revealed stochastic preference problems

5.1 Discussion

Consider the revealed distribution problem of 2.3.1, where Πq is a probability on
X for q ∈ Q, and one seeks a probability ζ on H, or alternately a probability ν
on U , that rationalizes the observed choice probabilities. Theorem 5.2 establishes
that the Axiom of Revealed Stochastic Preference (ARSP) in 2.4 is necessary and
sufficient for the existence of a finitely additive probability solving the revealed dis-
tribution problem. Its corollaries extend this result to solve the revealed dominating
distribution problem. Theorem 5.3 gives regularity conditions under which ARSP
is necessary and sufficient for the existence of a countably additive representation
solving the revealed distribution problem. Its corollaries show that these regularity
conditions are met for a formulation of the classical economic consumer revealed
preference problem.

5.2 Theorem

Suppose Πq is a finitely additive probability on X , q ∈ Q, satisfying Πq(C) +
Πq(Cc) = 1 for each C ∈ X . Then ARSP is necessary and sufficient for the
existence of a finitely additive probability η on H solving the revealed distribution
problem.

Proof. Recall that (H,H) is the measurable space of hypothesized decision rules,
with H(q,C) ≡ {d ∈ H|d(q) ⊆ C} for q ∈ Q and C ∈ X . Define the class of
sets S = {H(q,C)|q ∈ Q and C ∈ X }. By assumption, H contains S.

Necessity. Suppose η is a finitely additive probability satisfying Πq(C) =
η(H(q,C)) for q ∈ Q and C ∈ X . For a finite sequence of trials t =
< (q1,C1), ..., (qm,Cm) > with Ci ∈ X , qi ∈ Q, define Si = H(qi,Ci), i =
1, ...,m, and P (Si) = η(H(qi,Ci)). Theorem 4.3 then implies that η satisfies the
dominance axiom; i.e.,

∑m
i=1 Πqi

(Ci) ≤ αH(t). This condition coincides with
ARSP.
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Sufficiency. Suppose ARSP. If Πq1(C1) ≥ Πq2(C2) and H(q1,C1) =
H(q2,C2), then

Πq1(C1) + Πq2(C2
c) ≤ αH(< H(q1,C1),H(q2,Cc

2) >) = 1,

implying Πq1(C1) ≤ Πq2(C2). Hence, one can define uniquely a set function
P on S satisfying P (H(q,C)) = Πq(C),C ∈ X , q ∈ Q. By construction, P
satisfies the dominance axiom. Theorem 4.3 then establishes that the dominance
problem has a solution, and hence that there exists a finitely additive probability η
on H such that Πq(C) ≤ η(H(q,C)) for C ∈ X , q ∈ Q. Since Πq is a probability
satisfying Πq(C) +Πq(Cc) = 1, this solution satisfies Πq(C) = η(H(q,C)) for
C ∈ X , q ∈ Q, and hence solves the revealed distribution problem. ��
5.2.1 Corollary to Theorem 5.2. If Πq is a non-negative bounded set function on
X , q ∈ Q, then a necessary and sufficient condition for the existence of a finitely
additive probability η on H satisfying Πq(C) ≤ η(H(q,C)) for C ∈ X , q ∈ Q,
is that Πq satisfy ARSP.

5.2.2 Corollary to Theorem 5.2. If Π−
q and Π+

q are non-negative bounded set
functions on X , q ∈ Q, then a necessary and sufficient condition for the ex-
istence of a finitely additive probability η on H solving the revealed domi-
nating distribution problem is that the function Πq on X , q ∈ Q defined by
Πq(C) = max{Π−

q (C), 1 − Π+
q (Cc)} satisfy ARSP.

Proof. Necessity of ARSP. If there exists a probability η on H such that Π−
q (C) ≤

η(H(q,C)) ≤ Π+
q (C) for all C ∈ X , then η(H(q,Cc)) ≤ Π+

q (Cc), implying
1 − Π+

q (Cc) ≤ η(H(q,C)), and hence η(H(q,Cc)) ≥ Πq(C). Corollary 5.2.2
then implies that Πq satisfies ARSP.

Sufficiency of ARSP. If Πq satisfies ARSP, then by Corollary 5.2.1, there exists
η on H such that Πq(C) ≤ η(H(q,C)). Then Π−

q (C) ≤ η(H(q,C)) and 1 −
Π+

q (Cc) ≤ η(H(q,Cc)) imply the result. ��

5.3 Theorem

Suppose the universe of alternatives X is a complete separable metric space, and
let X be its Borel σ−field. Suppose the feasible choice sets B(q) are non-empty
compact subsets of X. Suppose the set H of decision rules consistent with a hy-
pothesis of rationality is given a topology whose basis are the sets H(q,C) for
q ∈ Q and open C ∈ X . Suppose that H is a compact space in this topology,
and let H be its Borel σ-field. Suppose Πq is a countably additive probability on
X , q ∈ Q, satisfying Πq(C) +Πq(Cc) = 1 for each C ∈ X , and Πq(B(q)) = 1.
Then ARSP is necessary and sufficient for the existence of a countably additive
probability η on H solving the revealed distribution problem.

Proof. The necessity of ARSP is immediate from Theorem 5.2. To prove suffi-
ciency, suppose ARSP holds, and that η is a finitely additive probability, given
by Theorem 5.2, that satisfies η(H(q,C)) = Πq(C) for q ∈ Q,C ∈ X .
For C ∈ X open, the set H(q,C)c is closed by construction, and satisfies
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η(H(q,C)c) = 1 −Πq(C) = Πq(Cc). Then, the family S0 = {H(q,C)c|q ∈ Q,
open C ∈ X } is a family of closed subsets of a compact space, and is therefore a
compact class. On the family S = {H(q,C)c|q ∈ Q,C ∈ X }, η satisfies

η(H(q,C)c) = Πq(Cc) = sup{Πq(C′c))|C′ open, C ⊆ C′}
= sup{η(H(q,C′)c)|C′ open, C ⊆ C′} ,

since by Lemma 4.6 Πq is countably additive, hence tight, on the compact feasible
choice sets B(q). Therefore, η is tight on S, and Lemma 4.6 implies that it is
countably additive on H. ��
5.3.1 Corollary. Suppose X is a convex compact metric space with metric ρ, and
the feasible choice situations B(q) are convex closed non-empty subsets of X.
Suppose Πq is a (countably additive) probability on X , q ∈ Q, satisfying Πq(C)+
Πq(Cc) = 1 for each C ∈ X , and Πq(B(q)) = 1. Suppose decision-makers
are hypothesized to maximize utilities from a family U of uniformly bounded
functions on X that are equicontinuous; i.e., for each ε > 0 there exists δ > 0 such
that x, x′ ∈ X and ρ(x, x′) < δ implies supu∈U |u(x) − u(x′)| < ε. Then ARSP
is necessary and sufficient for the existence of a (countably additive) probability ν
on U solving the revealed distribution problem.

Proof. The Arzela-Ascoli theorem (Dunford and Schwartz, 1964, IV.6.8) estab-
lishes that U is a compact subset of the space C(X) of continuous functions
on X, with ‖ u ‖= supx∈X |u(x)| for u ∈ C(X). For open C ∈ X , the set
U(q,C) = {u ∈ U| supx∈C∩B(q) u(x) > supx′∈B(q)\C u(x′)} is open. To
show this, suppose u ∈ U(q,C). Then there exists x′′ ∈ B(q) with u(x′′) >
supx′∈B(q)\C u(x′) + ε for some ε > 0. Consider u′ satisfying ‖ u − u′ ‖< ε/3.
Then, u′(x′′) > supx′∈B(q)\C u′(x′) + ε/3, implying u′ ∈ U(q,C). Hence,
U(q,C) with C open is an open set in U. Theorem 5.3 then gives the result.
��
5.3.2 Corollary. Suppose X is a convex compact subset of a locally convex normed
linear space L, and the feasible choice situations B(q) are convex closed non-
empty subsets of X. Suppose Πq is a countably additive probability on X for
q ∈ Q, satisfying Πq(C) + Πq(Cc) = 1 for each C ∈ X , and Πq(B(q)) = 1.
Suppose decision-makers are hypothesized to maximize utilities from a family U of
uniformly bounded and concave functions on an open set containing X. ThenARSP
is necessary and sufficient for the existence of a countably additive probability ν
on U solving the revealed distribution problem.

Proof. Assume that the uniform bound on u ∈ U is ‖ u ‖≤ 1. Each point in X has
an open neighborhood that is contained in the open set on which utility functions
are defined. Since X is compact, it has a maximum diameter µ. Also, one can
extract from the open neighborhoods a finite sub-cover; let λ be the diameter of
the smallest neighborhood in this sub-cover. Suppose x, x′ ∈ X. By construction,
the domain of the functions in U contains x − (x′ − x)λ/µ. Then, for 0 < θ < 1,
concavity implies

u((1 − θ)x + θx′) ≥ (1 − θ)u(x) + θu(x′),
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or u(x + θ(x′ − x)) − u(x) ≥ θ[u(x′) − u(x)] ≥ −2θ

and

u(x) = u((λ/(θµ + λ))(x + θ(x′ − x))
+(θµ/(θµ + λ))(x − (x′ − x)λ/µ))

≥ (λ/(θµ + λ))u(x + θ(x′ − x))
+(θµ/(θµ + λ))u(x − (x′ − x)λ/µ), or

u(x + θ(x′ − x)) − u(x) ≤ (θµ/(θµ + λ))[u(x + θ(x′ − x))
−u(x − (x′ − x)λ/µ)] ≤ 2θµ/λ .

Given ε > 0, choose θ = ε · min(1/2, λ/2µ). Then, U satisfies the condition
that x, x′ ∈ X with ρ(x, x′) < θ implies |u(x) − u(x′)| < ε for all u ∈ U, and
Corollary 5.3.1 gives the result. ��

5.4 Remarks

Theorem 5.3 is difficult to apply without sufficient conditions for the compactness
of the set H of hypothesized decision rules. Corollary 5.3.2, which was suggested
by Rosa Matzkin, provides conditions which correspond to the classical revealed
preference problem. The requirement that the utility functions u ∈ U be defined
on an open set containing X can be replaced by a condition on the subgradient
Γ (x, u) = {p ∈ L∗|u(y) − u(x) ≤ p(y − x) for y ∈ X } that there exist a bound
K > 0 such that ∅ �= Γ (x, u) ∩ {p ∈ L∗| ‖ p ‖< K} for x ∈ X , u ∈ U (see
Matzkin, 1992; Brown and Matzkin, 1996).

If in Corollary 5.3.1, Q is compact and B(q) is a continuous correspondence,
then it is sufficient to test ARSP for trial sequences drawn from a countable subset
of the set of possible trials, and if ARSP fails, this will be detected in a finite
number of trials (see McFadden, 1979). Thus, under these regularity conditions, a
test of the validity of ARSP is computable. Going further, one can consider a net
formed by nests of trial sequences t =< (q1, C1), ..., (qm, Cm) >; i.e., sequences
t1 ⊆ t2 ⊆ ..., and utilize the linear program in Theorem 3.1(c) to recover the
convex closed sets Gt of rationalizing probabilities on the finite algebras of subsets
of H induced by the trial sequences tk, provided ARSP holds. For each set H1
in the Boolean algebra generated by the H(q,C)c for C open and q ∈ Q, the
net formed by the probabilities ηt(H1) for ηt ∈ Gt and a net of trial sequences
t containing the trials that enter the finite intersection and union operations that
produce H1 will contain a sub-net that converges to η(H1) for a probability η that
solves the revealed distribution problem in Theorem 5.2. Thus, there is a sequence
of finite linear programming problems that provide a computable test of ARSP, and
computable bounds for the rationalizing probabilities.

Two published papers have considered somewhat different versions of the issue
of countably additive rationalizations. McFadden (1975) examines the question of
when a joint probability over endowments and a compact set of preferences can be
found that rationalize observed moments, such as per capita mean market demands.
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By restricting and redefining the observed moments, the general moment problem
can be specialized to the revealed distribution problem. Cohen (1980) extends the
finite analysis considered in Section 3 to the case where X is infinite, but all choice
sets B(q), q ∈ Q, are finite. The Block-Marschak polynomials are defined for each
finite restriction of X, and a net of choice sets contained in this restriction. Now
consider a net of nested restrictions of X, and generalized sequences of the prob-
ability measures constructed by Falmagne’s method, as described in Theorem 3.3.
Conditions are then given under which a generalized subsequence has a countably
additive limit. Cohen’s proof is difficult, but the essential idea is that when choices
can be rationalized for all nested sequences of finite X, and compactness condi-
tions hold in the limit so that there can be no countable union of disjoint sets with
positive measure, then the Kolmogorov consistency theorem and the Caratheodory
extension theorem apply to achieve countable additivity. Theorem 5.3 and its corol-
laries provide more easily checked conditions for countable additivity, and handle
the economic choice application where choice sets are not finite.

6 Extensions

New revealed preference problems can be generated by varying the family of fea-
sible choice sets, the class of permissible decision rules, and the structure of ob-
servations. For example, one could consider classes of permissible choice rules
that are either more restrictive than classical preference maximization (e.g., op-
timization of smooth preferences, or preferences that are homothetic, have linear
Engle curves, or are in parametric families) or less restrictive (e.g., incomplete op-
timization of preferences, preferences that are not preorders, or preferences that are
context or perception-dependent).4 One could also consider observational situa-
tions encountered in practice (e.g., composition of market and experimental choice
data, conditional distributions or conditional moments of choices given observable
consumer characteristics). The classical revealed preference problem is tradition-
ally formulated under the assumption that an individual’s choices are observed in
a sequence of static budget situations without carry-over of durables, experience,
or learning from one situation to the next. The revealed distribution problem as-
sumes that individuals are not tracked and that information is collected only on a
population’s distributions of choices. However, our analysis of this problem has
maintained the assumption that the budget situations are static, without dynamics
introduced by intertemporal maximization and state dependence. A much broader
class of revealed preference problems could be formulated that allow these dynamic
elements, and account explicitly for the panel data structure implicit in observation
of repeated choice situations. For example, the observed choices of an individual in
repeated choice situations may be interpreted as a realization of a stochastic process
indexed by the choice situations, and the distributionof the stochastic process in a
population, or its moments, may constitute the observations that can be analyzed.

4 Homotheticity restrictions permit stochastic preference versions of the computational tests of re-
vealed preference theory developed by Varian (1982,1983). One could go further and formulate para-
metric or nonparametric econometric tests of ARSP for a variety of hypothesized decision models.
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The Axiom of Revealed Stochastic Preference can be applied to many classes
of permissible choice rules; the only modifications come in the properties and inter-
pretation of the choice probabilities and the determination of intersection numbers
for trial sequences. For an expanded menu of revealed preference problems, if ob-
served choice data are consistent with the specified class of permissible choice
rules, additional interesting questions arise: Do the observations identify a unique
distribution, or identify bounds on the possible distributions (McFadden, 1975)?
Can the analysis be made conditional on observed population characteristics, with
solutions that reflect the systematic variation in choice distributions with these char-
acteristics? Many of these extended revealed stochastic preference problems have
not been studied, and deserve the attention of economic theorists.
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Summary. We ask whether communication can directly substitute for memory in
dynastic repeated games in which short lived individuals care about the utility of
their offspring who replace them in an infinitely repeated game. Each individual is
unable to observe what happens before his entry in the game. Past information is
therefore conveyed from one cohort to the next by means of communication.

When communication is costless and messages are sent simultaneously, com-
munication mechanisms or protocols exist that sustain the same set of equilibrium
payoffs as in the standard repeated game. When communication is costless but
sequential, the incentives to “whitewash” the unobservable past history of play
become pervasive. These incentives to whitewash can only be countered if some
player serves as a “neutral historian” who verifies the truthfulness of others’ reports
while remaining indifferent in the process. By contrast, when communication is
sequential and (lexicographically) costly, all protocols admit only equilibria that
sustain stage Nash equilibrium payoffs.

We also analyze a centralized communication protocol in which history leaves
a “footprint” that can only hidden by the current cohort by a unanimous “coverup.”
We show that in this case the set of payoffs that are sustainable in equilibrium
coincides with the weakly renegotiation proof payoffs of the standard repeated
game.
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“History is a pack of lies about events that never happened told by people
who weren’t there.” – George Santayana

1 Introduction

1.1 Motivation

In any longstanding strategic relationship, history matters. The ability of the “play-
ers” to construct effective deterrents against “bad” behavior typically relies on
accurate monitoring and recall of the history of play.

One chief interpretation of a long-term relationship is that of a stage game being
repeated between “dynastic players” rather than between infinitely lived individuals.
An infinitely repeated game is interpreted as an ongoing society populated by short
lived individuals who care about the utility of their successors who replace them.
Each successor then faces the same “types” of opponents as his predecessor.

Examples of repeated strategic interaction that would be modelled as dynastic
repeated games abound. For example, in longstanding disputes between groups with
competing claims (e.g., Catholics versus Protestants in Northern Ireland, Israelis
versus Palestinians), the conflicts typically outlive any particular individual. Though
the names of individuals involved change with time, the issues (payoffs) often
remain the same. Other examples include electoral competition between political
parties (e.g., Democrats versus Republicans) and strategic competition between
firms. Firms, like political parties, are long lived organizations populated by short-
lived managers, each of whom are periodically replaced. Putting agency issues
aside, incentives may be structured so that each current manager acts in the long
run interest of the firm, despite his relatively short tenure.

Since it seems unappealing to assume that any living individual observes some-
thing that takes place before he is “born,” a natural problem arises with dynastic
games. It is well known that if the players do not have the means to condition their
current actions on the history of play, equilibrium behavior changes dramatically. In
the extreme case in which players have no knowledge of the past, strategic behavior
can only depend on payoff relevant information (i.e., players must use so-called
Markov strategies). When this happens and when the environment is stationary,
then only repetitions of the stage game Nash equilibria are possible, even in an
infinitely repeated game.1

In a dynastic game, each new entrant cannot condition his behavior on history
unless his “knowledge” of that history comes, directly or indirectly, from past par-
ticipants. Often, that means that current players must rely on the historical accounts
directly communicated by their predecessors.2 This paper examines the properties
of dynastic repeated games when participants do not observe history prior to their
entry in to the game, and must therefore rely on accounts communicated by their
predecessors.

1 Hence, Santayana’s other famous dictum: “Those who cannot remember the past are condemned
to repeat it,” is quite literally true.

2 For a useful perspective on the ways in which history is transmitted and collective memories are
formed, see Pennebaker, Paez, and Rime (1997).
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For simplicity, we examine a model in which each member of a dynasty only
lives one period. At the end of each period, individuals in the current cohort die,
and are replaced by their successors in each dynasty. Each dynastic individual cares
about his successor’s utility as if it was his own discounted utility. Successors inherit
the same preferences, but cannot observe prior behavior.

Since prior behavior is not directly observed, we assume that the only way
current behavior can be linked to the past is through the reports of the previous
cohort. We therefore augment the model to allow for messages to be sent at the
end of each period from the current generation to the next. Communication is
assumed to be publicly observed. Because the veracity of reports cannot be verified
by neutral parties, the messages can also be manipulated. To see why incentives for
manipulation may exist, suppose, for example, that two dynasties face off to play the
Prisoners’ Dilemma in Figure 1 below. Consider the Subgame Perfect equilibrium
(SPE) which, for patient enough players, sustains perpetual mutual cooperation,
(C,C) using “grim trigger” strategies. In this equilibrium, the dynastic players
revert permanently to (D,D) if any defection is ever observed.

Dynasty 2

Dynasty 1

C D

C 2, 2 −2, 3
D 3, −2 0, 0

Figure 1. Prisoners’ dilemma

Now suppose that at some date t, the date t member of Dynasty 1 defects
by choosing “D.” Despite the fact that the individual in Dynasty 1 defected in
the PD game, both individuals at date t may have an incentive to whitewash the
defection by falsely reporting action (C,C) to the next generation. By lying, the
current generation can insulate the next generation against the mutually destructive
punishment phase. However, because lying precludes punishment, incentives for
good behavior in the current stage are destroyed.

Unlike in standard communication (cheap talk) games,3 individuals within a
dynasty value future payoffs in the same way. The potential incentive to misreport
exists not because of payoff differences, but rather from a desire to protect future
generations from the consequences of past deviations. By whitewashing deviations,
the current generation has the chance to give their successors a clean slate to start
the game. In this sense, the environment we analyze is reminiscent of repeated game
models with renegotiation.4

Our interest, therefore, is in the extent to which history is accurately conveyed
from one generation to another. How does potential manipulation of informa-
tion across generations distinguish dynastic repeated play from the “full memory”

3 See Crawford and Sobel (1982) for a classic reference.
4 See Farrell and Maskin (1989), Abreu, Pearce, and Stacchetti (1993), and Benoit and Krishna

(1993).
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model? To sensibly address this question, we adopt an implementation approach.
We examine whether there exist useful communication protocols, i.e., mechanisms
in which communication directly substitutes for memory.

We examine two models. The first is a model of potential whitewashing. In-
formation transmission constitutes cheap talk. Each individual may misrepresent
the information unobservable to the next generation. Misrepresentation is typically
costless to the sender. We examine whether or to what extent members of the current
generation may whitewash the past in equilibrium. The second model examines the
potential for coverups: The aggregation mechanism utilizes, to some extent, ob-
servable information. Consequently, members of the current cohort may attempt
to hide information which might otherwise be observable to the next generation.
Hiding information is difficult, and may require widespread agreement among the
senders.

Despite the incentive to whitewash or to coverup detrimental histories, protocols
that support full and honest communication exist. In the whitewashing model, if the
communication protocol is decentralized and if messages are sent simultaneously
then standard Nash implementation logic can be used to show that Perfect Bayesian
equilibria (PBE) exist in which no whitewashing takes place. The idea is familiar:
since reports contain redundant information, each individual’s report can be used to
screen the veracity of others. Hence, if there are at least three players and all but one
players’ messages agree, then the next generation uses the agreed upon message as
the “official version” of history.5 If there are only two players, then the absence of
an agreed upon message is treated as if a defection occurred. Hence, for any stage
game the set of possible equilibrium strategies and payoffs is equivalent to that of
the standard repeated game.

Ironically, the simultaneous moves protocol disciplines the players by instituting
a coordination failure. For example, in our Prisoners’ Dilemma example above,
under the grim trigger strategy, both individuals in the present cohort would be
better off by whitewashing a deviation, but neither can do it given the anticipated
truthful message of the other. Clearly, if given the opportunity, one of the players
would prefer to signal his intent to lie by moving first.6 Indeed, suppose that the
messages are sent sequentially, and that members of Dynasty 1 communicate first.
If the date t player 1 whitewashes his own defection, then it is clearly a best response
for the date tplayer 2 to confirm the lie. Sequential moves therefore allow the players
to break the “coordination failure” that prevented whitewashing in the simultaneous
case. But since whitewashing will occur, the mutual cooperation equilibrium using
grim trigger strategies cannot be sustained in the first place.

We characterize the PBE payoff set in any game when messages are sequential
rather than simultaneous.A necessary condition for play to differ from the repetition

5 Of course, the original “cross-checking” argument goes back to Maskin (1999). Baliga, Corchon,
and Sjostrom (1997) use a similar type of mechanism in another model of cheap talk communication
when there are three or more players. Similar types of mechanisms have also been used in repeated
games with private monitoring and communication. See Ben-Porath and Kahneman (1996), Compte
(1998), and Kandori and Matsushima (1998).

6 Lagunoff and Matsui (1997) analyze repeated coordination games in which the players move
sequentially.
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of stage Nash actions in any PBE is that some player serves as “a neutral historian.”
The neutral historian is an individual who screens and verifies the truthfulness of
reports of others, while remaining indifferent in the process. This necessity of a
neutral historian rules out some types of equilibria. Nevertheless, a wide array of
payoffs approximating the original payoffs of the repeated game are shown to be
sustainable. It turns out that rectangular, “self generating” subsets of the equilibrium
payoff set are sustainable when communication is sequential.7 The analysis of the
sequential communication protocol is important as a robustness check. If individuals
are unable to commit themselves to the timing structure of the protocol, then some
individual may break the simultaneous communication structure by attempting to
“speak first.”

Hence, on the one hand, our results are reassuring. Rectangular self generation
is broad enough to include many if not most payoffs of interest in the full memory
(non-dynastic) repeated game. On the other hand, it turns out that protocols with
“neutral historians” are fragile. We show that these constructs fail when commu-
nication is no longer costless. When individuals weigh the complexity costs of the
reporting strategies they use, then for any sequential protocol, only the Nash equi-
libria of the stage game are sustainable in the dynastic game. This is the case even
when the actual payoffs from the stage game are lexicographically more important
than the costs associated with a more complex reporting strategy.

In many instances, the assumption that the past history of play cannot be verified
at all by the current cohort may be too extreme. It is easy to think of situations in
which the past should be, at least in part observable, unless a concerted effort to
hide it is made. The remnants of the Jewish Holocaust and the Stalin Purges all
too quickly come to mind. To begin to address this type of set-up, we analyze a
model of dynastic repeated games with a different set of assumptions about the
communication protocol between one cohort and the next.

We assume history leaves a marker or “footprint” for the new generation. Efforts
to manipulate information now entail effort to hide or coverup these footprints. We
examine a protocol in which the truth can only be hidden by the current cohort when
all individuals agree to the coverup. Somewhat counterintuitively, the difficulty in
achieving consensus to unanimously coverup the truth may actually increase the
incentive to hide it. We are able to show that, when communication is sequential,
the set of sustainable payoffs coincides with the set of weakly renegotiation proof
payoffs of the standard repeated game.8 The conclusion is that when the potential
for coverup exists and when messages are sequenced, equilibria with strictly Pareto-
ranked continuation payoffs cannot occur.

7 Self generating payoff sets were first defined by Abreu, Pearce, and Stacchetti (1986) and Abreu,
Pearce, and Stacchetti (1990) who used dynamic programming methods to characterize the equilibrium
payoff set in a repeated game. Note also that we are somewhat abusing the meaning of the word
“rectangular” here. What is required is that the lower contour of the self generating set is that of a
rectangle. See the statement of Theorem 3 below.

8 In the sense of Farrell and Maskin (1989).
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1.2 Outline

The material in the paper is divided into 4 further sections. In Section 2 we describe
the model in detail. This includes briefly setting up the standard repeated game
notation and a complete description of the dynastic repeated game with communi-
cation. Section 3 is devoted to the analysis of our “whitewashing” model. We first
analyze simultaneous and then sequential messages. We then move on to the case
of lexicographic costs of more complex reporting strategies and show that only the
stage game Nash equilibrium payoffs survive in this case. Section 4 is concerned
with our model of “coverups.” After describing the model, we go on to show that
only weakly renegotiation-proof equilibria are viable in this case. Section 5 con-
cludes the paper with a brief discussion putting our results in the context of existing
literature.

For ease of exposition, all proofs are confined to an appendix. In the numbering
of equations, Lemmas, Theorems etc. a prefix of “A” means that the corresponding
item is located in the Appendix.

2 The model

2.1 A standard repeated game

We first describe a standard, n-player repeated game. We will then augment this
structure to describe the dynastic repeated game with communication from one
cohort to the next. The standard repeated game structure is of course familiar. We
set it up below simply to establish the basic notation.

The stage game is described by the array G = (S, u; I) where I = {1, . . . , n}
is the set of players, indexed by i. The n-fold cartesian product S = ×i∈ISi is
the set of pure action profiles s = (s1, . . . , sn) ∈ S, assumed to be finite. Stage
game payoffs are defined by u = (ui)i∈I where ui : S → IR for each i ∈ I . Let
σ ∈ ∆(S) denote a mixed action profile.9 The corresponding payoff to player i,
denoted by Ui, is defined in the usual way: Ui(σ) =

∑
s σ(s)ui(s). Dropping the

i subscript and writing U(σ) gives the entire profile of payoffs. Finally, we let N
denote the set of Nash equilibria of the stage game.

In the repeated game, denote the behavior profile at time t by σ(t) =
(σ1(t), . . . , σn(t)). For t ≥ 1, a period t behavior history (of length t) is an
array ht ≡ (σ(0), σ(1), . . . , σ(t − 1)) of action profiles observed by time t. The
null history is h0 = ∅. Let Ui(σ(t)) denote the expected payoff at date t. The set of
period t behavior histories is denoted by Ht = ∆(S)t. Let H = ∪∞

t=0H
t denoting

the collection of all (finite) behavior histories.10

The players’ (for simplicity) common discount factor is denoted by δ ∈ (0, 1),
so that for a given infinite history h∞ = (σ(0), σ(1), . . . ), player i’s payoff in the

9 At the expense of some extra notation and further manipulations we could consider correlated
action profiles in the stage game without altering the nature of our results below.

10 Therefore we are assuming that actual mixed strategies are observed. This simplifies our framework,
and particularly notation, considerably. However, we later argue that none of the results in the paper
depend on the assumption that mixed strategies are observed.



Dynastic repeated games 27

repeated game is given by

Vi(h∞) = (1 − δ)
∞∑

t=0

δt Ui(σ(t)) (1)

A behavior strategy in the repeated game is a map fi : H → ∆(Si). Let f =
(f1, . . . , fn) denote the profile of strategies in the repeated game. Given any finite
history ht, the mixed action at date t is given by f(ht) = (f1(ht), . . . , fn(ht)).

Given (1) the continuation payoff to i given strategy profile f after any history
ht follows the recursive equation

Vi(f |ht) = (1 − δ)Ui(f(ht)) + δ Vi(f |ht, f(ht)) (2)

where (ht, f(ht)) denotes the period t + 1 history given by the concatenation of
history ht and period t+1 behavior profile f(ht). Dropping the player subscript in
equations (1) and (2) will denote the corresponding payoff profiles in the repeated
game.

A subgame perfect equilibrium (SPE), f∗, for the repeated game is defined in
the usual way: for each i, and each finite history ht, and each strategy fi for i, we
require that Vi(f∗|ht) ≥ Vi(fi, f

∗
−i|ht).11

We denote respectively by F(δ) the set of SPE strategy profiles and by E(δ) the
set of SPE payoff profiles of the repeated game when the common discount factor
is δ.

The standard model of repeated play we have just sketched out may be found
in a myriad of sources. See, for example, Fudenberg and Maskin (1986) and the
references contained therein. Hereafter, we refer to the standard repeated game
model above as the full memory repeated game.

2.2 The dynastic repeated game

Now assume that each i ∈ I indexes an entire progeny of individuals. We refer
to each of these as a dynasty. Individuals in each dynasty are assumed to live one
period. At the end of each period t (the beginning of period t+1), a new individual
from each dynasty — the date (t + 1)-lived individual — is born and replaces the
date t lived individual in the same dynasty. Hence,Ui(σ(t)) now refers to the payoff
received by the t-th individual in dynasty i. Each date t individual is altruistic in
the sense that his payoff includes, as an additively separable argument, the utility
of the t + 1-th individual from the same dynasty. The weight given to his own
payoff is 1 − δ, while the weight given to his offspring (the (t + 1)-th individual)
is δ. Therefore, in the dynastic repeated game, the long-run payoffs retain the same
recursive structure given in equation (2). This observation is of course sufficient to
show that, if all individuals in each dynasty can observe the past history of play, then
the dynastic repeated game is in fact identical to the full memory repeated game
described in Subsection 2.1. In fact, this full information dynastic repeated game

11 As is standard, here, and throughout the rest of the paper, a subscript of “−i” indicates an array
with the i-th element taken out.
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is one extremely appealing interpretation/justification of the standard full memory
repeated game model.

2.3 Communication

If the t-th individuals in each dynasty cannot observe the history of play that took
place before they are born, then their behavior cannot vary across distinct histories
ht. It follows immediately that, in the absence of communication from one cohort
to the next, if all individuals in all dynasties are ignorant in this way, in each period
of the dynastic repeated game only those payoffs that are Nash equilibria of the
stage game can be attained.

The question then becomes: can communication substitute for memory? As-
sume that at each time t a cohort can observe the action profile that takes place at t.
Assume also that they have the chance to communicate with the next cohort. Can
they credibly convey sufficient information to the t + 1-th cohort to attain payoffs
beyond the Nash equilibria of the stage game?

Of course, communication can take place in a variety of different ways. For
instance, as we anticipated above, whether messages are sent simultaneously or
sequentially will have an impact on the outcome of the game. We begin by defining
a model of the communication between one cohort and the next in which the indi-
viduals in each dynasty speak simultaneously to the individuals in the next cohort.
This will be modified in Subsection 3.2 to allow for sequential communication.

Let Ai denote a set of payoff-irrelevant communication actions for dynasty i,
withA = ×iAi being the set of profiles of such actions. These need not be related to
the stage game itself, but are choices that collectively determine a message sent from
one generation to the next. The messages that can possibly be sent to the next cohort
is given by the set M . We assume that both A and M are invariant across time.12

At each date t, let a(t) = (a1(t), . . . , an(t)) denote the profile of communication
actions, and let m(t) ∈ M denote the message (or profile of messages) sent in
period t.

Unless otherwise noted, we will assume that any message(s) transmitted to
the next cohort is commonly observed by all members of the next cohort.13 A
communication protocol in the dynastic repeated game is a list C ≡ (A,M,Φ)
where Φ : A → M . For a = (a1, . . . , an) ∈ A, Φ(a) is the message sent to
the next generation, after the payoff-relevant behavior occurs in that period. Some
“natural” examples of features that communication protocols may satisfy are:

12 It is worth emphasizing here that this assumption implies that “calendar time” cannot be “verified”
by any cohort. For instance, the time t and the time 2t individuals could generate exactly the same
message to be transmitted to the next cohort. In this case, calendar time would clearly “look the same”
to the individuals in cohort t+1 and in cohort 2t+1. A rather strong feature of this assumption, which
may seem unappealing to some, is that any date t individuals could in fact generate a message for the
next cohort which matches the null history ∅. In effect they would be telling their offspring that “the
game has just started, you are the first to play.”
The qualitative nature of our results below would remain unaffected if somehow these “re-starting”
messages were forbidden. In some cases (for instance Theorem 5 below), period t = 0 would have to
be excluded from our characterization of equilibria which would only apply to periods t ≥ 1.

13 See our discussion of this assumption in the concluding section of the paper.
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C1 Babbling: Φ(a) = m for all a ∈ A. Clearly, the message m is uninformative.
C2 Dictatorial: There exists a dynasty i ∈ I such that Φ(a) = ai.
C3 Unanimity: Ai = M = H, ∀i, and

Φ(a) =
{
h if ai = h, ∀i
h∗ otherwise.

Here, a single version of history is sent if everyone agrees. Otherwise, a default
history is reported.

C4 Decentralized Communication: M = ×i∈IAi, H ⊆ Ai, ∀i, and Φ(m) =
m. In a decentralized communication protocol, everyone separately reports
history to next generation.

While the first three examples fulfill an expository function, the last is a useful
benchmark. It describes the least restrictive communication, and so it provides the
most attractive environment for accurate transmission. We examine the case of
decentralized communication protocols in detail below.

Every communication protocol identifies a dynastic repeated game with com-
munication. A strategy for an individual in a dynasty is a pair consisting of an
“action” strategy and a “communication” strategy. The former processes the mes-
sages received from the prior generation and determines current behavior in the
stage game. The latter determines the individual’s communication action, which,
via the communication protocol, determines the message conveyed to the next co-
hort of individuals.

We begin by defining action strategies. For simplicity, we examine action strate-
gies that can be written as a single repeated game strategy describing the plans of
all individuals within a dynasty. When H ⊆ M , there is little loss of generality
with this assumption since an individual from, say, the t-th cohort, need only use
that part of the repeated game strategy which follows histories ht of length t. Let
gi : M → ∆(Si) denote an action strategy for dynasty i. Let g = (g1, . . . gn).

A communication strategy is a map µi from the prior generation’s messages
and current (observed) actions to current messages. Formally, µi(m,σ) denotes
a communication action ai ∈ Ai by an individual from dynasty i given that the
prior generation’s message profile is m and that the current action profile is σ. The
profile (µ1(m,σ), . . . , µn(m,σ)) then maps to a message m′ via Φ. This message
m′ is sent to the next generation. Let µ = (µ1, . . . , µn). To summarize, date t
individuals choose action profile σ(t) = g(m(t − 1)) and take communication
actions a(t) = µ( m(t − 1), σ(t)).

As with the full memory repeated game, something to start off play is needed.
(In the full memory repeated game this is the empty history h0 = ∅.) In the dynastic
repeated game with communication we need to define which message the first (born
at t = 0) cohort observes. Let this initial message be denoted by m(−1) = h0 = ∅.

The pair (g, µ) describes all behavior in the dynastic repeated game with com-
munication.An individual’s dynamic payoff after receiving messagem is expressed
as Vi(g, µ| m). An individual’s dynamic payoff after receiving message m and
after action profile σ is expressed as Vi(g, µ| m,σ). In either case, an individ-
ual’s payoff still follows the recursive form in (2). We can now define a Per-
fect Bayesian equilibrium (PBE) pair (g∗, µ∗) in the usual way: for each i, any
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µi and gi, and for any m and any σ, Vi(g∗, µ∗| m) ≥ Vi(g∗
−i, gi, µ

∗| m) and
Vi(g∗, µ∗| m,σ) ≥ Vi(g∗, µ∗

−i, µi| m,σ).14

Given a communication protocol C and a common discount factor δ, we denote
by FC(δ) the set of PBE, and by EC(δ) the set of PBE payoff profiles. Let C1

denote the babbling protocol described above with m = ∅, and recall that C4

denotes the decentralized protocol. Then it is easy to see that

EC1
(δ) ⊆ EC(δ) ⊆ EC4

(δ) (3)

for all δ and all C. Moreover, EC1
(δ) coincides with Nash equilibrium payoffs of

the stage game. Clearly, if there is no communication, or when communication is
uninformative, there is no hope of attaining anything beyond payoffs of the stage
game. Conversely, if there are no restrictions on communication, then the largest
possible payoff set can be sustained.

3 Whitewashing

In this section we focus on the case in which the current cohort has no access at all
to any direct information about the past history of play. We examine first the case
of simultaneous messages. Then we move on to the case in which the members
of the current cohort speak sequentially to the next cohort. Finally, we turn to the
case of sequential communication in which a more complex reporting strategy is
lexicographically more costly than a simpler one.

3.1 Decentralized communication

We now proceed to examine equilibrium behavior under the decentralized com-
munication protocol defined in Section 2.3 above. Recall that in the decentralized
communication protocol, all individuals in each cohort effectively report separately
and simultaneously a history of play to the next generation, and all reports are com-
monly observed by all individuals in the next cohort. The messages are unrestricted
in the sense that any finite history (of any length) can be conveyed by any individual
(in other words H ⊆ Ai for every i). Intuitively, a decentralized protocol corre-
sponds to a world in which there is no attempt to collectively limit information,
nor is there any direct trace left by the actual history of play. This is of course in
contrast with the model of coverups that we will analyze in Section 4 below.

Our first characterization of the equilibrium set of dynastic games with commu-
nication tells us that in the case of decentralized simultaneous communication from
one cohort to the next, the equilibrium set is the same as in the full memory standard
repeated game. In other words, in this case communication can indeed substitute

14 While there are no proper subgames beginning each date, all individuals have common knowledge
regarding messages they receive. Hence, all Perfect Bayesian equilibria are Perfect Public equilibria of
the dynastic game. Consequently, the definitions above make (partial) use of the “One-Shot Deviation
Principle.”
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for memory in the dynastic repeated game. Those familiar with standard implemen-
tation logic will not find the following Theorem and its immediate Corollary very
surprising.

It should be made clear at the outset that we are setting up Theorem 1 below as
a benchmark case. Our task in the rest of this Section and in Section 4 will then be
to show that this equivalence between the full memory standard repeated game and
the dynastic repeated game is in fact not robust in more senses than one. Indeed
Theorem 1 fails in a rather dramatic way when communication carries arbitrarily
small costs and when the actual past history of play does leave a detectable trace.15

Theorem 1. Assume that the number of players n is at least 3. Fix any common
discount factor δ and any SPE f∗ ∈ F(δ) of the full memory game.

Then, for any decentralized communication protocol C, there exists a PBE
(g∗, µ∗) ∈ FC(δ) of the dynastic game with communication protocol C that is
equivalent to f∗ in the following sense.

For each m such that m = (h, . . . , h) for some h ∈ H and for every σ ∈ ∆(s)

g∗
i (m) = f∗

i (h) and µ∗
i (m,σ) = (h, σ) ∀ i (4)

In other words, provided that the messages sent by the previous cohort are all
the same (equal to h), then the PBE (g∗, µ∗) prescribes the same actual behavior
as the SPE f∗ after h. Moreover, again provided that the messages sent by the
previous cohort are all the same (equal to h), then in the PBE (g∗, µ∗), any profile
of current behavior (equilibrium or not) is truthfully reported to the next cohort by
all i.

Finally, notice that (4) since the first cohort all receive the same (empty) mes-
sage, obviously implies that the outcome path generated by (g∗, µ∗) is the same as
the outcome path generated by f∗.

The proof of Theorem 1 is in theAppendix.As we mentioned above, it runs along
familiar lines. The argument requires building into the equilibrium of the dynastic
repeated game the correct incentives for truthful reporting by all individuals in
each cohort.16 In turn, this of course requires a mechanism to detect and punish
lies. Unilateral deviations from truthful reporting are easily identified when there

15 Note also that we state Theorem 1 for the case of 3 or more players, ignoring the two-player
case. This result can be generalized to the case of two players (a slightly weaker statement holds) for
discount factors arbitrarily close to 1. Proceeding in this way saves a non-negligible amount of space.
The proof of the result for the two-player case involves mimicking the “mutual minmax” argument used
to prove Folk Theorems in two-player standard repeated games, and thus a substantial modification of
the “cross-checking” argument that we outline below.
Since, as we just said, Theorem 1 largely plays the role of a straw man in what follows, we take the view
that stating it only for the case of three or more players carries little or no cost for the sharpness of the
overall message we are trying to convey.

16 Notice that all the equilibria that we construct in the paper are “truthful” in the sense that, without
loss of generality, provided that H ⊆ Ai for every i (so that the space of message actions is rich enough),
we can take it to be the case that, in equilibrium, the members of each cohort report truthfully to the next
generation. Truthfully, of course, can only mean that a given one-to-one map of action messages into
histories is used throughout. This is a weak version of the so-called “revelation principle” that obviously
holds in our model.
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are three dynasties or more. Since only single-player deviations from equilibrium
ever need to be considered this is enough to induce truth-telling as required. Finally,
since the argument constructs incentives for truthful reporting, taking as given the
corresponding (action) incentives in the full memory game, Theorem 1 does not
depend on our assumption that mixed strategies are observable.17 Indeed, we require
only that whatever is observable in the full memory game can be observed (period-
by-period) and reported in the dynastic game.

It is trivial that any equilibrium of the dynastic game with communication is
also an equilibrium of the full memory game. Therefore, an immediate corollary
of Theorem 1 is that the sets of equilibrium payoff profiles are the same in the two
cases.

Corollary 1. Assume thatn ≥ 3 and let any decentralized communication protocol
C and any common discount factor δ be given. Then EC(δ) = E(δ).

Before we turn to sequential communication, some remarks about Theorem 1
and Corollary 1 are in order. First, the “cross-checking” aspect of the mechanism
we construct for three or more players in the proof is by no means new. Baliga,
Corchon, and Sjostrom (1997) use this type of mechanism in a (static) model of
communication. It is also reminiscent of communication mechanisms in repeated
games with private monitoring. For example, Ben-Porath and Kahneman (1996)
prove a Folk Theorem when public communication is admissible in a repeated game
with private monitoring.18 Specifically, they show that the Folk Theorem applies in
any private monitoring game in which individuals’ behavior is (perfectly) observed
by at least two others. Like ours, their proof also exploits a procedure whereby the
deviator is identified as the one whose report fails to correspond to identical reports
of at least two others.

Secondly, if we allow players in the dynastic game to (independently) random-
ize their communication actions, then Theorem 1 and Corollary 1 would have to be
modified to take into account the fact that messages now become a potential coor-
dination device. In particular, it is not hard to see that using random messages the
players could achieve a randomization across different Nash equilibria of the stage
game in a given period. This, of course, would alter (enlarge) the set of achiev-
able long-run payoffs when δ is bounded away from 1.19 However the effect of
randomized messages would become negligible as the discount factor approaches
1 since playing the different Nash equilibria in sequence through time would have
the same effect on long-run payoffs. For simplicity, and because our main question
here is whether the messages can substitute for memory, we focus on pure message
strategies throughout the paper.

17 For exactly the same reasons this is also true in all our other results below. See also footnote 10
above.

18 See also the papers by Compte (1998), and Kandori and Matsushima (1998).
19 We are grateful to Dino Gerardi for pointing out this fact.
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3.2 Coordination failure and sequential communication

Clearly, equilibria in the full memory game represent the outer bound of what is
possible in the dynastic repeated game. As we know from Theorem 1 and Corol-
lary 1 decentralized communication with simultaneous choice of message actions
achieves this bound. In a sense, this equivalence relies on a dependence on the
simultaneity of messages, which is unsettling for at least two reasons. First of all,
simultaneous messages may be simply not feasible.

Secondly, there may be incentives for the players to depart from any simultane-
ous communication protocol. Consider for instance the repeated PD game in Figure
1.A standard way of supporting mutual cooperation utilizes a joint punishment (e.g.,
permanent reversion to the unique equilibrium of the stage game) as a way to de-
ter deviations from the path of perpetual cooperation. However, once a defection
in behavior takes place, everyone, including the “injured party,” would prefer to
whitewash the history of defection. It is clear that the simultaneous structure of the
communication protocol prevents any agent from signaling his intent to falsify the
truth. If communication were sequential then the intent to “whitewash” could be
relayed by one member of the current cohort to the other. Consequently, incentives
to sequence messages may arise, especially if the timing of communication is not
observed by subsequent cohorts.

In this Section we explore the consequences of assuming that message actions
are taken sequentially by individuals in a given cohort.

To keep matters simple, we examine the simplest class of protocols with sequen-
tial choice of action messages. We consider the class of communication protocols
that are decentralized in the sense that we specified above, but modified so that the
individuals in each cohort choose their message actions one after the other.

Definition 1. We say that a communication protocol is a sequential decentralized
communication protocol if it can be obtained as the following simple modification
of a (simultaneous) communication protocol that is decentralized in the sense of
protocol C4 described above.

There exists a permutation mapping θ :{1, . . . , n} → {1, . . . , n} that describes
the order in which the message actions are chosen.20 In other words, first individual
θ(1) chooses a message actionaθ(1) ∈Aθ(1). Immediately after, all other individuals
in the cohort observe aθ(1). Then individual θ(2) chooses a message action aθ(2) ∈
Aθ(2) which is then observed by all other individuals in the same cohort. The choice
of action messages then continues in this fashion until individual θ(n) makes his
choice.

The rest of the details of a sequential decentralized communication protocol
are as in Example C4 above.

With a sequential decentralized communication protocol, Theorem 1 no longer
holds. Some equilibria of the full memory game are destroyed by the incentives to
whitewash the past. For example, consider the stage game in Figure 2.

20 The actual permutation mapping θ is irrelevant for all our results below. Unless we specify otherwise
in what follows we assume that θ is in fact the natural order so that θ(i) = i.



34 L. Anderlini and R. Lagunoff

Dynasty 2

Dynasty 1

L M R
T 2, 2 0, 3 0, 0
M 3, 0 1, 1 0, 0
B 0, 0 0, 0 0, 0

Figure 2. A 3 × 3 stage game

In the full memory game, every payoff profile in the strictly individually rational
set {(v1, v2) : vi > 0,∀i = 1, 2} is sustainable as an SPE if δ is close enough to
one.21

Now suppose that two dynasties play this game with sequential decentralized
communication. We assert that any equilibrium in which a deviation is countered
with permanent reversion to the worst Nash equilibrium (B,R) cannot be sustained.
Consider the perpetual repetition of (T,L) each period. Suppose further that at some
date t, the date t member of Dynasty 1 chooses to “cheat” by deviating to M . Now
both members of generation t communicate sequentially to date t+ 1 individuals.
Dynasty 1 communicates first. If the date t player 1 whitewashes by lying about his
defection then player 2 will confirm the lie unless player 2 can be made at least as
well off by telling the truth about (M,L) taken in the current period. This means
that in the continuation, player 2 must receive a payoff of at least 2 for telling the
truth. However, if he receives a payoff of more than 2, then player 2 will always
report “(M,L)” even when “(T,L)” was the true action taken.

Notice that since communication is cheap talk, the structure of the reporting
“subgame” remains the same after every history.22 Hence, the set of continua-
tion equilibria after the reporting stage must remain the same. Yet, the reporting
“subgame” will typically have multiple “subgame perfect” equilibria, one for each
possible history in the game. In this particular game, this means that player 2 must
be indifferent between truthful reporting and whitewashing. Therefore, player 2’s
continuation payoff in the putative continuation is 2 regardless of whether he reports
“(T,L)” or “(M,L).”

Moreover, since in the putative equilibrium, “(0, 0)” is the hypothesized con-
tinuation after a deviation, player 1 must have an incentive to truthfully report
“(M,L),” after his own deviation. But since player 2 will truthfully report “(M,L),”
should player 1 attempt to lie, the continuation payoff profile after the sequence of
reports “( (T,L), (M,L) )” must be (0, 2). That is, if player 1 attempts to lie, and
player 2 reports the truth, then player 2 must be indifferent between his reports,
and player 1 must no better off than if he told the truth. In the latter case, player 1
cannot be strictly worse off since his lowest feasible payoff is 0, and so he too is
indifferent between his reports.

21 Notice that, as is often the case, the (lower) boundary of the individually rational set is not sustain-
able, except of course for the origin (0, 0) which is a Nash equilibrium of the stage game.

22 We put “subgame” in quotes since the reporting stage is not literally a proper subgame of the dynastic
game. Nevertheless one can refer to the subgame perfect equilibria of the extensive form reporting game,
whose terminal payoffs are equilibrium continuations.
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Figure 3

The problem, however, is that (0, 2) is not a feasible SPE continuation payoff
in the game. Hence, the mutual cooperation equilibrium using these particular
punishments cannot be sustained. The relevant portion of the game tree in the
message phase is represented in a schematic way in Figure 3.23

3.3 Sequential communication: the necessity of a “neutral historian”

The above example demonstrates that the potential for sequential moves to break
the “coordination failure” that prevented whitewashing in the simultaneous case,
is enough for whitewashing to occur in some cases. The example also demon-
strates a general property of perfect equilibria when communication is sequential.
To characterize this property, some further notation is required.

We will denote by ai−1 the (i−1)-tuple of message actions chosen by individu-
als 1, . . . , i−1 (by convention, seta0 = ∅). In this way we can then write the strategy
of individual i in the communication round as determining ai = µi(m,σ, ai−1).
In other words, i chooses his message action as a function of the message m =
(m1, . . . ,mn) sent by the previous cohort, the current action profile σ, and the
message actions ai−1 chosen by individuals 1 through to i−1 in the current cohort.
In this way µ determines an entire path a of message actions that can be written as

a1 = µ1(m,σ, a0), a2 = µ2(m,σ, a1), . . . ,
ai = µi(m,σ, ai−1), . . . , an = µn(m,σ, an−1)

In any sequential decentralized protocol, the choice of profile (g, µ) determines
a reporting “subgame” in the communication round. This “subgame” can be viewed
as an extensive form game of perfect information. The “terminal nodes” of this
extensive form game are the equilibrium continuations that begin with the next
generation’s play of the game. Since communication is cheap talk, the terminal
nodes of this game do not vary with past reports and play. We write v = V (g, µ| a)

23 Clearly, each player has 9 choices at each node in the complete version of the tree drawn in Figure
3 — one for each possible outcome of play at t − 1. We have only represented the two relevant ones
purely for the sake of visual clarity.
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to denote the payoff vector associated with the terminal node reached by path a
given that the continuation of play is determined by (g, µ). When the path has
only been determined up to, say, player j’s report, i.e., when the path is aj =
(a1, . . . , aj−1), then players’ strategies µj+1, . . . , µn are used to determine the
terminal node. Since these strategies depend, in turn, on prior history (m,σ), we
must write V (g, µ| m,σ, aj) to denote the terminal node reached by path aj given
history (m,σ) and strategies (g, µ). In the result below, the reporting subgame
refers to the induced extensive form game in the message phase whose terminal
payoffs are equilibrium continuation payoffs.

Theorem 2. (Necessity of a “Neutral Historian”) Fix a sequential, decentralized
protocol C, and fix a PBE, (g, µ) ∈ FC . Let (m′, σ′) and (m′′, σ′′) denote two
prior histories of message and action profiles, respectively, each of which generate
distinct message paths. Then, there is a path a, a player j, and a pair of distinct
action messages, a′

j and a′′
j , for that player such that µj(m′, σ′, aj−1) = a′

j and
µj(m′′, σ′′, aj−1) = a′′

j and

Vj(g, µ| m′, σ′, aj−1, a′
j) = Vj(g, µ| m′′, σ′′, aj−1, a′′

j )

In words, there exists some path a and some player (a “neutral historian”) who
distinguishes between (m′, σ′) and (m′′, σ′′) by using two action messages that
generate payoff equivalent continuations.

The result gives necessary conditions for the existence of multiple equilibria
of the message game. This is of crucial importance since the message game must
have multiple equilibria in order to successfully punish deviations. That is, since
the next generation has no independent verification of the actual history, both the
continuation from prescribed play and the continuations after deviations must all
be equilibrium continuations of the reporting game. The older generation must
be able to coordinate either on the original equilibrium path continuation, or on
the punishment continuation. Generally, there will be at least n + 1 equilibria of
the message game. One for the equilibrium prescription, and one each for each
individual’s deviation from equilibrium.

However, because the reporting game cannot vary with prior history, the mul-
tiplicity of equilibria in the reporting game implies that subgame is nongeneric.
Somewhere, there must be “ties,” in someone’s payoff, and these ties must have the
structure described in Theorem 2. This structure implies that in every PBE (g∗, µ∗),
the reporting subgame must utilize a “neutral historian.”

Specifically, in any pair of equilibrium paths, there exists someone whose poten-
tial veto of one of the paths is governed by the later choice of a “neutral historian,”
player j. The neutral historian is one who uses his indifference between two ter-
minal payoffs (i.e., his “neutrality”) to influence the earlier messages of others. In
essence, the neutral historian screens and verifies the truthfulness of others’ reports,
while remaining indifferent in the process. An explicit construction that identifies
the behavior of this neutral historian is given in the proof of Theorem 3 in the next
Section.
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3.4 Self generation

Using a, by now standard, notion of self generating sets (Abreu 1988,Abreu, Pearce,
and Stacchetti 1986, Abreu, Pearce, and Stacchetti 1990), one can construct equi-
librium payoff sets for sequential protocols. Formally, a set V is self-generating
if for each v ∈ V there exists a σ ∈ ∆(S) and a map w : ∆(S) → V such that
(i) v = (1 − δ)U(σ) + δw(σ), and (ii) vi ≥ (1 − δ)U(σ′

i, σ−i) + δwi(σ′
i, σ−i)

for each i and each σ′
i. It is not difficult to show that all bounded self generating

sets are contained in the SPE profiles, E(δ), of the standard repeated game. Indeed,
E(δ) itself, as well as any stage Nash payoff vector are self generating sets. The
following Theorem justifies our interest in a special type of self generating sets:
those that have the lower boundary of a rectangle in IRn. It asserts that any such self
generating subset is sustainable in any sequential, decentralized protocol provided
that the protocol allows each individual to report histories and continuation payoffs
to the next generation of players.

Theorem 3. Fix any 0 < δ < 1, and in the full memory game let V be a compact,
self-generating set with the following property. For any i, and any v̂ ∈ V , let vi =
min vi such that (vi, v−i) ∈ V for some v−i. Then for every v̂ ∈ V we have that

(v∗
i , v̂−i) ∈ V (5)

Then, for any sequential, decentralized communication protocol, C, in which H ⊆
Ai for each i,

V ⊆ EC(δ)

The proof in the Appendix gives an explicit account of how the “neutral histo-
rian” is used to sustain payoffs in the self generating set. Roughly speaking, given
any point in V , a protocol is constructed in which player 2 (who speaks second),
serves as the neutral historian. After player 1’s (who speaks first) report, player 2
is asked to “confirm” it or not. (The messages of all other players are ignored.) If
player 2 confirms 1’s report, then play unfolds as dictated by a particular SPE of
the full memory game. If on the other hand player 1 deviates from reporting the
truth, this is treated as if he had behaviorally deviated from equilibrium play, and
he is punished by being awarded the lowest possible payoff in V . The equilibrium
is also constructed so that player 2 is always indifferent between confirming 1’s re-
port or not. Thus, exploiting the properties of V , both 1 and 2 are given the correct
incentives to report the truth and to serve as the “neutral historian” respectively.

The question of whether any particular subset of the equilibrium payoff set E(δ)
that has the lower boundary of a rectangle is self generating is open. However, par-
ticular examples of such self generating sets are not difficult to construct. Clearly,
individual Nash equilibrium payoff profiles are degenerate self-generating rectan-
gles. To see that more interesting self generating sets that have the lower boundary
of a rectangle are common, consider once again the Prisoner’s Dilemma game in
Figure 1 in the Introduction.

We claim that for δ ≥ 4/7 the rectangle {v : (1, 1) ≤ v ≤ (2, 2)} is self
generating. Notice that this includes mutual cooperation. While we don’t verify the
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property for all profiles in the set, we can easily do so for the extremal ones. First
consider (2, 2). Consider the following is simple penal code. Any deviation from
(2, 2) by, say, a player 1, is followed by a one period punishment in which they
play: σ1(C) = 4/5, σ2(C) = 1/3. Following this, the players revert to mutual
cooperation. Further deviations by player 1 restart the punishment; deviations by
player 2 are countered by the same punishments (switching the players’ roles).

We now verify that this is a SPE penal code when δ = 4/7. In fact, by extending
the length of the punishment, this type of penal code also works for discount factors
greater than 4/7 as well.24

While the one shot punishment gives player 1 a stage payoff of −1/3, his
dynamic payoff in the punishment phase is 1 since 1 = (1 − δ)(−1/3) + δ2 when
δ = 4/7. The payoff to player 2 in player 1’s punishment phase is (1 − δ)2 + δ2 =
2. Note that player 1 obtains a payoff of unity from perpetual deviation. Hence,
a (weak) best response is to submit to punishment in order to obtain 2 in the
continuation. This penal code simultaneously verifies that the profiles (2, 2), (1, 2),
and (2, 1) are all SPE profiles (since punishment continuations are obviously SPE
outcomes as well). To see that (1, 1) is also a SPE profile, we construct a penal
code which supports (7/4, 7/4) as follows: play σi(C) = .914 (approximately)
each period.Any deviation is met with one period reversion to the Nash equilibrium,
after which time play resumes as before. This can be verified to be a SPE penal code.
Since the value of the punishment profile is (1, 1), it constitutes a SPE continuation.
Other payoffs in the rectangle may be shown to be sustained more easily since the
punishment will generally be more severe, and the one shot gain to deviation will
generally be lower.25

3.5 Costly communication

Our discussion so far of sequential decentralized communication has yielded two
insights. First of all the potential to whitewash does have an impact on the structure
of equilibria of the repeated game. Theorem 1 no longer holds in this case. Some
equilibria of the full memory game are not viable under sequential decentralized
communication because they would leave one or more individuals with an incentive
to whitewash the past after certain histories of play.

On the other hand, the logic of Theorem 3 demonstrates that whitewashing can
be prevented, even if it makes all current and future generations better off, and even
when individuals can signal their intentions to coordinate on the whitewashing of
previous deviations. Since our examples suggest that most payoffs of interest (e.g.,
mutual cooperation in Prisoner’s Dilemma) can be sustained by rectangular self
generation if players are sufficiently patient, these payoffs are also sustainable by
equilibria of sequential protocols. Our next step is to show that such equilibria are
fragile.

24 Notice that we only establish δ = 4/7 as a lower bound for self-generation when Nash reversion
is the punishment.

25 The same logic that sustains (7/4, 7/4) can be applied to verify the self generating property for
other interior points in the rectangle.
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We modify the dynastic game with sequential decentralized communication
in the following way. We assume that an “infinitesimal” cost is associated with
communication strategies that are more “complex”. In other words, we assume that
there are costs attached to more complex communication strategies, but that they
matter in the comparison between the payoffs that two strategies yield only if these
two strategies yield actual payoffs (from actual play that is) that are the same. Using
a standard term, we call these lexicographic costs of more complex communication
strategies.

Once the model is modified to allow for lexicographic costs of more complex
communication strategies, it behaves in a dramatically different way. Theorem 4
asserts that once complexity costs are taken into account the set of PBE of the
dynastic game shrinks to N – the set of Nash equilibria of the stage game.

We begin with a definition of what it means for a strategy to be more complex
than another at the communication stage. We want to deem a communication strat-
egy to be more complex than another if it prescribes communication actions that
depend “more finely” on the history of play. To describe formally what we mean
by more finely some extra notation is required.

Recall that with sequential decentralized communication the message action of
individual i is denoted by ai = µi(m,σ, ai−1), where m = (m1, . . . ,mn) is the
message sent by the previous cohort, σ is the current action profile, and ai−1 is the
profile of message actions chosen by individuals 1 through to i − 1 in the current
cohort. Let Mi be the set of all possible tuples (m,σ, ai−1).26

Given a communication strategy µi we can of course identify the way in which
µi partitions Mi. We let this partition be denoted by Pi(µi). The “cell” of Pi(µi)
that contains any given (m,σ, ai−1) ∈ Mi is denoted by λi(m,σ, ai−1) and is
defined as follows.

λi(m,σ, ai−1) =
{
(m′, σ′, ai−1′) ∈ Mi | µi(m′, σ′, ai−1′)

= µi(m,σ, ai−1)
}

(6)

Lastly, as is standard, if the partition Pi(µi) is coarser than the partition Pi(µ′
i) we

write Pi(µi) � Pi(µ′
i).

27

We can now proceed with a formal definition of the assertion that a communi-
cation strategy is more complex than another.28

26 So, to be precise we have that Mi = M × ∆(S) × Ai−1, where Ai−1 = A1 × . . . × Ai−1 if
i ≥ 2, and Ai−1 = ∅ if i = 1.

27 Of course in this case we may also say that Pi(µ′
i) is finer than Pi(µi).

28 The notion of complexity embodied in Definition 2 below is related to the definition of complexity
based on the number of states in an automaton needed to implement a strategy (Rubinstein 1986, Abreu
and Rubinstein 1988,Aumann and Sorin 1989, Piccione 1992, Rubinstein and Piccione 1993, Chatterjee
and Sabourian 2000, among others). However, it should be noted that the two are not the same. The
reasons are two-fold. First of all, we do not restrict attention to strategies that are at all implementable
by a finite automaton. In this sense the “domain” of Definition 2 is broader than the ones based on
counting states in a finite automaton. Secondly, our definition below is “weaker” than the automaton
based ones in the following sense. Given two communication strategies that are implementable by a
finite automaton, it is possible that one be less complex than the other in the sense that it requires fewer
states, but that the two are not comparable in the sense of Definition 2 below. On the other hand, it is
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Definition 2. We say that communication strategy µ′
i is more complex than com-

munication strategy µi if and only if Pi(µi) � Pi(µ′
i).

29

As we anticipated above, we assume that whenever the payoffs stemming from
the (repeated) stage-game are equal, communication strategies that are less complex
in the sense of Definition 2 are preferred. The easiest way to include our assump-
tion of lexicographic costs of more complex reporting strategies is to modify the
definition of an PBE for the dynastic repeated game with sequential decentralized
communication.

Definition 3. Consider an PBE (g∗, µ∗) for the dynastic repeated game with se-
quential decentralized communication. We say that (g∗, µ∗) is robust to lexico-
graphic complexity costs of communication if and only if for every dynasty i and
every (m,σ, ai−1) ∈ Mi, there does not exist a communication strategy µ′

i such
that

Vi(g∗, µ′
i, µ

∗
−i|m,σ, ai−1) = Vi(g∗, µ∗|m,σ, ai−1) (7)

and µ∗
i is more complex than µ′

i in the sense of Definition 2.
Given a sequential decentralized communication protocol C and a common

discount factor δ, the set of PBE that are robust to lexicographic complexity costs
of communication will be denoted by F̃C(δ), while the corresponding set of payoffs
will be denoted by ẼC(δ) throughout the rest of the paper.

Notice once again that Definition 3 embodies the idea that complexity costs
of communication only matter if the payoffs from the (repeated) stage game are
the same. A PBE is robust to lexicographic complexity costs of communication
if, given the strategies of the others, no individual can choose a communication
strategy that leaves his basic payoff unaffected but which has a lower degree of
complexity than the equilibrium one.

The idea is that players will not distinguish histories that have equal payoffs in
the equilibrium continuation. Indeed, why would they expend energy to do other-
wise? But if a player does not make fine distinctions between otherwise identical
histories, then he must play the same way after each such history of play.

Notice that the way we have incorporated the role of complexity costs into the
equilibrium notion for our model is in some strong sense the weakest possible one. If
we modelled the complexity costs of communication to be even small but positive,
their impact on the equilibrium set could not be smaller than in the lexicographic
case we are considering here. In this sense, Theorem 4 below refers to the limit case
in which complexity costs of communication have been shrunk to zero.

easy to check that in this case, if one strategy is less complex than the other in the sense used here, then
it necessarily is less complex than the other in the sense of requiring fewer states. While counting states
provides a complete order of strategies that are implementable by a finite automaton, Definition 2 only
defines a partial order on this set. See also footnote 29 below.

29 Notice that the complexity of a communication strategy only defines a partial order on the set of
communication strategies in the sense that clearly there exist pairs µi and µ′

i such that both Pi(µi) ��
Pi(µ′

i) and Pi(µ′
i) �� Pi(µi) hold.
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Theorem 4. Let any sequential decentralized communication protocol C and any
common discount factor δ be given. Then any PBE (g∗, µ∗) that is robust to lexico-
graphic complexity costs of communication has the following features. The action
profile taken in any subgame σ = g∗(m) is a Nash equilibrium of the stage game
(in other words g∗(m) ∈ N for every m ∈ M ). Moreover the action profile σ is
the same in every period along the equilibrium path — except possibly in the first
period.30

The proof of Theorem 4 is in the Appendix. A brief outline of the argument is
as follows.31 We know from Theorem 2 that in order to generate distinct message
paths in any PBE with sequential communication in the dynastic game it must be
the case that at least one player is indifferent between two distinct action messages
in terms of the continuation payoffs they generate. This immediately implies that
at least one player can unilaterally deviate from this putative equilibrium and use
a communication strategy that is less complex in the sense of Definition 2 and
obtain the same continuation payoff. Hence, in any PBE of the dynastic game
with sequential communication that is robust to lexicographic complexity costs
according to Definition 3, the action messages of all players must be the same in
every period.

Since the action messages chosen in equilibrium must be the same in every
communication subgame, regardless of history, it now follows that the continuation
payoffs to every individual cannot depend either on the current action profile or on
the message received from the previous cohort. But then it follows immediately
that the action profile σ chosen in every period cannot be anything other than a
Nash equilibrium of the stage game.

The potential to whitewash is quite devastating when communication is se-
quential and decentralized and complexity costs of communication have even a
lexicographic impact on payoffs. All deviations will be whitewashed by the current
cohort. Continuation payoffs are therefore independent of current behavior, and
only behavior that is equilibrium in a static sense will survive in any equilibrium
of the dynastic game.

4 Coverups

So far we have analyzed the dynastic repeated game with communication protocols
that ensured that all the information available to the current cohort is the result of
message actions taken by the previous cohort. Of course, this is an extreme assump-
tion. A more “realistic” view is that the information available to the current cohort
is a mixture of the true history of play and of the communication behavior of the
previous cohorts. The purpose of this section is to characterize equilibrium behav-

30 Recall that each cohort cannot verify “calendar time” (see footnote 12 above). If, instead, we
allowed calendar time to be verifiable it is relatively easy to see that different Nash equilibria of the
stage game could be played in different periods in a PBE.

31 We are grateful to an associate editor of this journal for pointing out that the proof of Theorem 4
could be shortened considerably by appealing to Theorem 2 in the way we do below.
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ior in the dynastic repeated game under one such possible “mixed” communication
protocol.

As we mentioned in Section 1 we examine a communication protocol in which
the past history of play leaves a “footprint.” This footprint will be enough to reveal
the true behavior of the previous cohort, unless the individuals in the current co-
hort unanimously agree to report a different history to the next generation. As we
anticipated in Section 2 we call this a model of “coverups”.

To describe in detail the communication protocol with unanimous conspiracy
to coverup, it is convenient to refer back to Example C3 of Section 2.3 above.
Essentially, we need to fill out the details of C3 above: we need to specify the
history h∗ that is reported to the next generation in case of disagreement.

As in Example C3, let Ai = M = H . Now define Φ : M ×∆(S) ×A → M as

Φ(m,σ, a) =
{
h if ∃ h such that h = ai ∀ i
(m,σ) otherwise (8)

Using (8) we can now proceed to define our communication protocol with
unanimous conspiracy to coverup.

Definition 4. The dynastic repeated game with unanimous conspiracy to coverup
is defined as follows.

Individuals in each cohort choose their message actions sequentially as de-
scribed in Section 3.2 above.

Consider a cohort that has received message m from the previous cohort. As-
sume that the individuals in the current cohort have chosen action profile σ. Let a
be the profile of action messages chosen by individuals in the current cohort. Then
the message received by the next cohort is given by m = Φ(m,σ, a), where Φ is as
in (8).

In other words, the message sent to the next cohort is equal to (m,σ) where m
is the message of the previous cohort and σ is the true current action profile, unless
all individuals in the current cohort choose identical action messages a1 = . . . an

= h. In the latter case the message passed on to the next generation is h.
It turns out that the set of equilibrium payoffs of the dynastic repeated game

with unanimous conspiracy to coverup is the same as the set of payoffs generated
by equilibria of the full memory game that satisfy a restriction that has been ana-
lyzed before — namely those equilibria of the full memory game that are Weakly
Renegotiation Proof (henceforth WRP) in the sense of Farrell and Maskin (1989).
This is of independent interest since it tells us that Theorem 5 can be viewed as
providing non-cooperative foundations for restricting attention to the set of WRP
equilibria in a repeated game.

Before we proceed any further, for completeness we give a definition of those
SPE that are WRP in the full memory game.

Definition 5 (Farell and Maskin, 1989). Consider the full memory game of Section
2. Let f∗ denote an SPE of this game.

We say that f∗ is Weakly Renegotiation Proof if and only if it has the property
that no continuation equilibrium is strictly Pareto-dominated by another continu-
ation equilibrium.
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In other words, an SPE f∗ of the full memory game is WRP if and only if there
exist no pair of finite histories h and h′ such that

Vi(f∗|h) > Vi(f∗|h′) ∀ i = 1, . . . , n (9)

Throughout the rest of the paper, given a common discount factor δ the set of SPE
strategy profiles of the full memory game that are WRP is denoted by FR(δ), while
the corresponding set of payoff vectors is denoted by ER(δ).

We are now ready to state our last result.32

Theorem 5. Let a communication protocol C with unanimous conspiracy to
coverup and a common discount factor δ be given. Then EC(δ) = ER(δ). In other
words, the set of PBE payoffs in the dynastic repeated game with unanimous con-
spiracy to coverup is the same as the set of SPE payoffs of the full memory game
that are WRP.

The proof of Theorem 5 is in the Appendix. Intuitively, the argument that makes
it hold runs along the following lines.

Start with EC(δ) ⊆ ER(δ). Consider a reporting subgame of the dynastic re-
peated game, in which the players choose their actions sequentially, from 1 to n.
Suppose that the equilibrium prescribes that all individuals report the action profile
σ, but that the continuation payoffs associated with these reports are strictly Pareto-
dominated by the continuation payoffs associated with another profile of message
actions that are different from the “true” σ. Then using backwards induction (on
the set of individuals, within the reporting “subgame” ) it is possible to show that
the true reporting behavior could not be an equilibrium in the first place. Since
every individual can unilaterally trigger the true σ to be communicated to the next
cohort, it is also possible to show that it cannot be the case that equilibrium behavior
prescribes unanimous reporting of a “false” σ that is associated with continuation
payoffs that are strictly dominated by the continuation payoffs associated with the
true profile σ. In this way, it is possible to show that the equilibrium behavior in the
reporting subgame cannot be associated with a profile of continuation payoffs that
are dominated by the continuation payoffs associated with another profile of mes-
sage actions. Hence no continuation equilibrium can be strictly Pareto-dominated
by another continuation equilibrium.

To see that EC(δ) ⊇ ER(δ) consider a reporting subgame of the dynastic re-
peated game and the following communication strategy profile which serves to
implement any WRP equilibrium of the full memory game.33

Player 1 starts by reporting the true history of play, and provided that there have
been no deviations, all subsequent players also report the true history of play. If any
deviations from truthful reporting have occurred (so that the true history is revealed
through its “footprint”) then every subsequent player reports the true history of

32 We are grateful to an Associate Editor of this journal for suggesting that a previous version of
Theorem 5 could be strengthened to yield the result that we now report below. See footnote 33 below.

33 This part of the statement and proof of Theorem 5 was suggested to us by an Associate Editor of
this journal.
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play. Now consider the possibility that, through a sequence of deviations, all players
report some false history instead. Then, since the corresponding equilibrium of the
full memory game is WRP there must be at least one player who (at least weakly)
prefers the continuation payoffs associated with the true history of play. Since a
single player disagreeing with the attempt to cover up the true history is sufficient
to reveal it, this is enough to show that true reporting will in fact take place in
equilibrium. Hence EC(δ) ⊇ ER(δ).

5 Concluding remarks

This paper examines play in dynastic repeated games.34 Since each new generation
cannot (perfectly) observe prior play, they must rely on messages of the prior gen-
eration. When these messages constitute cheap talk, then communication protocols
must guard against whitewashing. When some prior information is available, then
protocols must deter coverups.

Our results show that standard mechanism designs in the protocol can easily
sustain all outcomes that were available in the full memory repeated game. Even
when reports in the communication phase are sequenced, protocols which neces-
sarily utilize some “neutral historian” exist to sustain most if not all outcomes of
the full memory game.

However, our results also suggest that these equilibria are fragile. If individuals’
reports in any communication phase are sequenced, and if complexity matters even
lexicographically, then only stage Nash equilibria can appear along the equilibrium
path. In this world, the messages conveyed from one generation to the next are
devoid of any real content.

Despite some similarities, the present model examines a very different type of
communication than in typical sender-receiver, cheap talk models such as Crawford
and Sobel (1982) and, more recently Krishna and Morgan (2001). The latter is
representative of a more recent variety which, as in our model, features multiple
senders of information. Yet, in all these models, difficulties in reporting incentives
are due to different payoff functions between the sender and receiver. By contrast,
in our model there are no payoff differences, at least between sender and receiver
of the same dynasty. The incentive problems arise because of the requirement that
the equilibria coordinate behavior on intertemporal sanctions. Sometimes these
sanctions punish many or all individuals for the sins of one. This coordination
on sanctions drives the necessary wedge between the senders and receivers of the
hidden information.

Though no one in a cohort observes past history, the assumption of public mes-
sages means that all individuals of a given generation inherit the same “memory”
from their predecessors. For this reason, the present model also bears some re-
semblance to repeated games with public monitoring. (Green and Porter (1984),
Abreu, Pearce, and Stacchetti (1986), Abreu, Pearce, and Stacchetti (1990), and
Fudenberg, Levine, and Maskin (1994), among others).

34 Related issues arise in two recent papers (Kobayashi 2003, Lagunoff and Matsui 2002) that model
organizations populated by dynastic overlapping generations of players.
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The public observation assumption is motivated by our desire to bias things as
much as possible against whitewashing. Public observation allows the adoption of
standard techniques from Nash implementation (see, for example, Jackson (1999) or
Maskin and Sjöström (2002) and the references contained therein). For this reason,
the sensitivity of such mechanisms to sequencing and complexity is somewhat
unexpected.

Nevertheless, one could imagine dropping the assumption of public observabil-
ity. In that event, we do not yet know what happens. With private, intra-dynastic
communication and with only two dynasties, it is possible that folk theorem-like
results similar to those reported in Kobayashi (2003) could be proved. However,
with more than two dynasties, this is less clear.

With private communication, the model would bear closer resemblance to re-
peated games with private monitoring since each member of each cohort would
possess a private version of the history of play that is not common knowledge
across players.35

One the one hand allowing private communication in the present set-up dimin-
ishes the scope for the use of “cross-checking” mechanisms to punish deviators. On
the other hand, with private messages there seems to be a large degree of flexibility
in defining out-of-equilibrium beliefs, which in turn suggests that a larger set of
equilibrium outcomes may be sustainable.36 It may well turn out to be the case that
the role of out-of-equilibrium beliefs is, in fact, a key difference between dynastic
games with private messages and repeated games with private monitoring.

The field of repeated games with private monitoring is an extremely important
and currently active area of research in which general results have, by and large,
eluded the best efforts of a formidable line-up of investigators. Though desirable,
extending the model we have analyzed here to the general private-message case is
evidently beyond the scope of the present paper.

Appendix

Proof of Theorem 1. Let f∗ denote any SPE in the full memory game.
We now define (g∗, µ∗) as follows. For each profile m = (m1, . . . ,mn), and

each i,

g∗
i (m) =

{
f∗

i (h) if∃h such that mj=h,∀j∈J ⊆ I, with|J | ≥ n−1

f∗
i (h0) otherwise

(A.1)

35 See, for instance, Ben-Porath and Kahneman (1996), Sekiguchi (1997), Compte (1998), Kandori
and Matsushima (1998), Mailath and Morris (1998), Bhaskar and van Damme (2002), Compte (2002a),
Compte (2002b), Ely and Valimaki (2002), Kandori (2002), Mailath and Morris (2002), Matsushima
(2002), and Piccione (2002). With few exceptions, this literature tends to examine outcomes of games
that are “close” to those with public monitoring.

36 We are grateful to Dino Gerardi for pointing out a two-player example of out-of-equilibrium beliefs
in which each player believes that the other player has received the same message with probability one.
These out-of-equilibrium beliefs, when available, are helpful in sustaining many of the same equilibrium
outcomes of the dynastic game with public communication.
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and for each m, each σ, and each i,

µ∗
i (m,σ) =

{
(h, σ) if∃h such that mj=h,∀j∈J ⊆ I, with|J | ≥ n−1

(h0, σ) otherwise
(A.2)

It is now straightforward to verify that (g∗, µ∗) is a PBE for the dynastic repeated
game. The details are therefore omitted. Since the profile f∗ was taken to be an
arbitrary SPE of the full memory game, this is clearly enough to prove our claim.

��
Proof of Corollary 1. It is immediate to check that EC(δ) ⊆ E(δ). The details of
this claim are omitted. Since Theorem 1 obviously implies that E(δ) ⊆ EC(δ) the
claim is proved. ��
Proof of Theorem 2. Let (g, µ) denote any PBE. As hypothesized in the Theorem,
let (m′, σ′) and (m′′, σ′′), denote the prior histories of message and action profiles,
respectively.

Now suppose that the Theorem is false. Then, for any path, a, and for every
player j, we must have

EITHER

µj(m′, σ′, aj−1) = µj(m′′, σ′′, aj−1) (A.3)

OR

µj(m′, σ′, aj−1) �= µj(m′′, σ′′, aj−1), and

Vj(g, µ| m′, σ′, aj−1, µj(m′, σ′, aj−1) ) �= Vj(g, µ| m′′, σ′′, aj−1,

µj(m′′, σ′′, aj−1) )

(A.4)

We use the following backward induction argument. Suppose, first, that either
(A.3) or (A.4) holds for all paths and for player n. We now argue that (A.4) cannot
hold for player n. To see this, observe that if (A.4) did indeed hold then, without
loss of generality, we have

v̂n ≡ Vn(g, µ| m′, σ′, an−1, µn(m′, σ′, an−1) ) >

Vn(g, µ| m′′, σ′′, an−1, µn(m′′, σ′′, an−1) ) ≡ vn

(A.5)

But since playern is the last mover to report, then at any node an−1, his preferences
for v̂n over vn cannot depend on prior histories (m′, σ′) and (m′′, σ′′). That is, we
can drop the notational dependence of Vn on (m′, σ′) and (m′′, σ′′) and rewrite
(A.5) as

v̂n ≡ Vn(g, µ|an−1, µn(m′, σ′, an−1))>Vn(g, µ|an−1, µn(m′′, σ′′, an−1)) ≡ vn

(A.6)
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From (A.6), it is easy to see that µn(m′′, σ′′, an−1) is not a best response,
violating the equilibrium property of µ. Therefore, for player n, (A.3) must hold,
i.e.,

µn(m′, σ′, an−1) = µn(m′′, σ′′, an−1) (A.7)

Notice that (A.7) implies that player n must play the same way on every path a,
regardless of which prior history, (m′, σ′) or (m′′, σ′′), occurred.

Now suppose that (A.3) holds for players i+1, . . . , n. As was true for player n,
these players must play exactly the same way on every path. Said another way, along
any path all subsequent players fail to distinguish between (m′, σ′) and (m′′, σ′′) in
their reporting behavior. But if strategies µi+1, . . . , µn fail to distinguish between
(m′, σ′) and (m′′, σ′′) in these subgames, then this must also be true for player i.
For if, instead, (A.4) held, i.e., if

Vi(g, µ|m′, σ′, ai−1, µi(m′, σ′, ai−1))�=Vi(g, µ|m′′, σ′′, ai−1, µi(m′′, σ′′, ai−1))

then either µi(m′, σ′, ai−1) or µi(m′′, σ′′, ai−1) can no longer be a best response.
Hence, player i must satisfy (A.3).

But now consider the incentives of player i = 1. Observe that, as hypothesized,
(m′, σ′) and (m′′, σ′′) each generate distinct paths. Let a′ denote the path following
(m′, σ′) and let a′′ denote the path following (m′′, σ′′). Since equation (A.3) holds
for all other players, 2, . . . , n, it must be true that player 1 plays differently after
each of (m′, σ′) and (m′′, σ′′) in order to distinguish a′ from a′′. Specifically,

µ1(m′, σ′, a0) �= µ1(m′′, σ′′, a0) (A.8)

That is, player 1 must have distinct choices after (m′, σ′) and (m′′, σ′′) since no
other player distinguishes between the two histories. But (A.8) contradicts (A.3) for
player 1. Since we have already established that player 1, as well as all other players
cannot satisfy (A.4), it must be the case that player 1 violates both (A.3) and (A.4),
and so we have obtained our contradiction. This concludes the proof. ��

The following Lemma will be used for the proof of Theorem 3.

Lemma A. 1. Let V be a self-generating closed set of long-run payoffs for the full
memory game that satisfies (5).

For any vector v ∈ V , we let Z(v) be the set of strategy profiles that sustain the
vector of long-run payoffs v as an SPE of the full memory game, with continuation
payoffs that lie entirely in V . For any vector v ∈ V , we let fv denote a generic
element of Z(v). Also, for any vector v ∈ V we let Pi(v) be the projection of v on
the lower boundary of V for player i. In other words, Pi(v) = (v1, . . . , vi−1, vi,
vi+1 . . . , vn).

Now consider an arbitrary v∗ ∈ V . Then there exists an f∗ ∈ Z(v∗) with the
following properties.

For any history ht, let σ∗(ht) be the mixed profile of actions prescribed by f∗ at
time t+ 1, conditional on history ht taking place. Let also σi be any mixed action
profile that agrees with σ∗(ht) on all components except for player i. That is σi

satisfies σi
j = σ∗

j (ht) for every j �= i and σi
i �= σ∗

i (ht).
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Then, for any history ht and for any i,

V (f∗|ht, σi) = Pi[V (f∗|ht, σ∗(ht)] (A.9)

Moreover, let σ̂ be any mixed action profile that differs from σ∗(ht) on two or
more components. Let D be the set of players for which σ̂ and σ∗(ht) differ. Then,
for any history ht

Vi(f∗|ht, σ̂) =

{
vi if i ∈ D
Vi(f∗|ht, σ∗(ht)) otherwise

(A.10)

In other words, without loss of generality, we can take f∗ to have the property
that any unilateral deviation by player i is punished by giving i a continuation
payoff of vi and leaving the continuation payoffs of all other players unchanged.
Moreover, again without loss of generality, we can take f∗ to have the property
that any deviation by two or more players yields “bad” continuation payoffs for
the deviating players only as in the right-hand side of (A.10).

Proof. Let any f̃ ∈ Z(v∗) be given. We now construct f∗ with the desired property
as a modification of f̃ . The construction is recursive.

On h0 = ∅, f∗ prescribes the same behavior as f̃ . So long as no player deviates
from the outcome path prescribed by f̃ , the prescriptions of f∗ are the same as
those of f̃ .

Suppose now that some history ht (on the equilibrium path of f̃ ) has taken place
and that a deviation by player i only has occurred at time t (we ignore deviations by
more than one player for the time being). Let σi be the mixed action profile played
at t which includes i’s deviation. Let also σ̃(ht) be the equilibrium prescription
of f̃ after history ht, and let v = V (f̃ |ht, σ̃(ht)) be the associated continuation
payoff. Then, after i’s deviation at t the prescriptions of f∗ are the same as those
of fPi(v)|h0 (recall that, according to our notation, fPi(v) denotes a strategy profile
that sustains the vector of long-run payoffs Pi(v), with continuation payoffs that lie
entirely in V). Notice that this implies that the continuation payoff vector implied
by f∗ after (ht, σi) is Pi(v).

So long as the prescriptions of fPi(v)|h0 are observed after time t, the pre-
scriptions of f∗ remain as we have just described. Suppose now that a history
hm = (ht, σi, hm−t) (with m > t and hm−t on the equilibrium path of fPi(v))
has occurred and that at time m a deviation by player j takes place. Let σj

be the mixed action profile played at m which includes j’s deviation. Let also
σi(hm−t) be the equilibrium prescription of fPi(v) after history hm−t, and let bi =
V (fPi(v)|hm, σi(hm−t)) be the associated continuation payoff vector. Then, after
j’s deviation atm the prescriptions of f∗ are the same as those of fPj(bi)|h0. Notice
that this implies that the continuation payoff vector implied by f∗ after (hm, σj) is
Pj(bi).

So long as the prescriptions of fPj(bi) are observed after time m, the prescrip-
tions of f∗ remain as we have just described. If a further deviation occurs then the
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players “switch” to a new “phase” in which the deviating player is pushed down
to the lowest payoff available for him in V by playing the appropriate SPE from
then on, in a way completely analogous to the one we have just described. Thus the
description of f∗ can be completed by recursing forward the construction we have
given. The rest of the details are omitted.

Clearly, the profile of strategies f∗ that we have constructed has the property
described in (A.9) by construction. Evidently it is also the case that, by construction,
all continuation payoff vectors of f∗ lie in V , as required.

We now show that f∗ is an SPE strategy profile of the full memory repeated
game. This is relatively straightforward to check since only one-shot single-player
deviations need ever be considered. To verify that no such profitable deviations are
possible, suppose that some history hs has taken place, and let vi be i’s continuation
payoff according to f∗ after hs. Thus, if i at time s adheres to the prescription of
f∗ he receives a payoff of vi. Notice that vi is also i’s continuation payoff in the
particular SPE that is being played in the “phase” that follows history hs. If on the
other hand he deviates in any way from what f∗ prescribes he receives a payoff of
vi. Since vi is the lowest continuation payoff that i can get in any of the SPE that
are used in the construction of f∗ above, it is clear that this must be sufficient to
deter i from deviating from the prescriptions of f∗ after hs has taken place.

Hence, we have shown that an SPE f∗ satisfying (A.9) exists as required. It
remains to show that f∗ can be made to satisfy (A.10) as well. However, this is
completely straightforward once we know that an SPE satisfying (A.9) exists since
deviations by two or more players can always be ignored when checking if a given
strategy profile is an SPE. The details are omitted for the sake of brevity. ��

Proof of Theorem 3. Fix a set V satisfying the hypothesis of the Theorem. Now
fix v∗ ∈ V . We must show that v∗ ∈ EC(δ) for any sequential protocol C with
H ⊆ Ai. Without loss of generality, we consider the sequential protocol with the
natural order: player 1 speaks first, player 2 speaks second, and so forth.

Let f∗ be an SPE of the full memory game that sustains v∗ as vector of long-run
payoffs. Using Lemma A.1. we can assume without loss of generality that f∗ has
the properties described in (A.9) and (A.10), and that all its continuation payoffs
lie in V .

We now construct the pair (g∗, µ∗) that sustains the arbitrary payoff vector
v∗ ∈ V as a PBE. Loosely speaking our construction of (g∗, µ∗) runs along the
following lines. Only the messages of players 1 and 2 are ever taken into account.
Player 1 is asked to report the history of play, then player 2 is asked to “confirm”
1’s report. If player 1 reports the truth, then player 2 confirms 1’s report and play
unfolds according to f∗. If, on the other hand 1 ever issues a false report, then
player 2 does not confirm and reports 1’s deviation from the truth. In this case the
continuation of play unfolds as if player 1 had behaviorally deviated from f∗, using
the punishments prescribed by f∗. Since for player 1’s deviations, f∗ punishes 1
in a way that leaves 2 indifferent, player 2 always has the correct incentives to
report 1’s deviation from truthful reporting. Given the punishment for behavioral
deviations built into f∗, 1 now also has the correct incentives to always report the
true history of play.
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Recall that we set m(−1) = h0 = ∅. To set the system in motion, let g∗(h0) =
f∗|h0.The rest of the equilibrium is constructed recursively forward in the following
way. In every period t ≥ 0, player 1 reports the truth in the sense thatµ∗

1 = (ht−1, σ)
where ht−1 is the history reported by player 2 in period t−1 and σ is the true mixed
profile that was played by the current cohort.

In every period t ≥ 0, player 2’s message depends on the veracity of the report
of player 1 in the following way. If player 1’s report is truthful (as defined above)
then player 2 issues an identical report (ht−1, σ) where ht−1 is the history reported
by player 2 in period t − 1 (h0 if t = 0) and σ is the true mixed profile that was
played by the current cohort. If on the other hand player 1’s report is not truthful,
player 2 issues a report (ht−1, σ′) where ht−1 is the history reported by player 2 at
t − 1, and σ′ is a mixed action profile that is different from that reported by player
1, and that records a behavioral deviation by player 1 only in period t. In other
words, σ′

1 �= f∗
1 |ht−1 and σ′

i = f∗
i |ht−1 for every i = 2, . . . , n. Notice that these

two conditions can clearly always be satisfied simultaneously.
The reports of all players i with i ≥ 3 (if n ≥ 3) are ignored. Therefore we

simply set them equal to a fixed message mi regardless of the history of play.
The g∗ component of the equilibrium is easy to describe. In period t, if the

reports of players 1 and 2 are the same, then all players behave according to f∗,
conditional on the reported (ht−1, σ). If, on the other hand, the reports of players 1
and 2 differ, then all players behave according to f∗ conditional on ĥt = (ĥt−1, σ̂)
defined as follows. We set ĥt−1 equal to the t − 1 history reported by player 1.
Moreover, we set σ̂1 – the first component of σ̂ – equal to the report of player 2,
and all other components (σ̂2, . . . , σ̂n) equal to the report of player 1.

Clearly the proposed equilibrium yields a vector of long-run payoffs v∗ as
required. Of course, it remains to show that f∗ is indeed a PBE of the repeated
game with decentralized communication protocol C. We need to verify that no
player ever has an incentive to unilaterally deviate in any period, either at the
communication stage or at the behavior stage.

All players i ≥ 3 (if any) clearly have no incentive to deviate in any period. Their
messages are ignored, and hence they cannot gain by deviating at the communication
stage. At the behavior stage, since f∗ is an SPE of the full memory game, and
histories are reported truthfully, no individual deviation can be profitable.

Consider now player 1, at the reporting stage after some history ht−1 has been
reported by player 2 of the previous cohort, and the mixed profile σ has taken
place in the current period. If he reports the truth (ht−1, σ) as required, he receives
a continuation payoff of corresponding to f∗, conditional on (ht−1, σ). If on the
other hand he reports anything else, he receives a payoff of vi. Since all continuation
payoffs of f∗ lie in V , this cannot be a profitable deviation by player 1. Of course,
at the behavior stage player 1 has no incentive to deviate simply because f∗ is an
SPE of the full memory game and histories are reported truthfully.

Lastly, consider player 2 at the reporting stage after some history ht−1 has been
reported by player 2 of the previous cohort, the mixed profile σ has taken place
in the current period, and player 1 has reported some (possibly false) (h̃t−1, σ̃).
Clearly, using (A.9) and (A.10) and because of the way we have defined σ̂ above,
the continuation payoff of player 2 is the same regardless of his report. Hence he
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cannot profitably deviate at this stage. Again, at the behavior stage player 2 has
no incentive to deviate simply because f∗ is an SPE of the full memory game and
histories are reported truthfully. This is clearly enough to conclude the proof. ��
Proof of Theorem 4. Consider an PBE (g∗, µ∗) of the dynastic repeated game with
sequential decentralized communication protocol C, and assume that (g∗, µ∗) is
robust to lexicographic complexity costs of communication.

By Definition 3, of course (g∗, µ∗) must be a PBE of the dynastic repeated
game with sequential decentralized communication protocol C. Hence Theorem 2
applies to tell us that if a′ �= a′′ are two distinct action paths following any (m′, σ′)
and (m′′, σ′′) respectively, then for some player i we must have that

Vi(g∗, µ∗| m′, σ′, ai−1′
, a′

i) = Vi(g∗, µ∗| m′′, σ′′, ai−1′′
, a′′

i ) (A.11)

Then, using (A.11) it is clear that we could find a strategy µi �= µ∗
i such that

µ(m′, σ′, ai−1′
) = µ(m′′, σ′′, ai−1′′

) and

Vi(g∗, µ∗| m′, σ, ai−1′
, µ(m′, σ′, ai−1′

))

= Vi(g∗, µ∗| m′′, σ′′, ai−1′′
, µ(m′′, σ′′, ai−1′′

)) (A.12)

and P(µ∗) � P(µ). Therefore, using Definitions 2 and 3 we conclude if (g∗, µ∗)
is robust to lexicographic complexity costs of communication we must have that

µ∗
i (m

′, σ′, ai−1′
) = µ∗

i (m
′′, σ′′, ai−1′′

) ∀m′,m′′, σ′, σ′′, ai−1′
, ai−1′′

(A.13)

Using (A.13) we can now define the sequence of message actions that every
individual in every cohort (except possibly the first one) will take. Recursively
forward from individual 1 we set

a∗
1 = µ∗

i (m,σ, ∅) ∀m, σ (A.14)

and (letting ai−1∗ = (a∗
1, . . . , a

∗
i−1), for i = 2, . . . , n)

a∗
i = µ∗

i (m,σ, ai−1∗) ∀m, σ (A.15)

Lastly, we letm∗ = (a∗
1, . . . , a

∗
n). This is the message that every cohort will receive

in any subgame of the PBE (g∗, µ∗), except of course for the first cohort that will,
by assumption, receive a message m = ∅.

It now follows from (A.14) and (A.15) that the continuation payoff to individual
i after any message m has been received from the previous cohort can be written
as a function of his choice σi as

(1 − δ)Ui(σi, g
∗
−i(m)) + δVi(g∗, µ∗|m∗) (A.16)

Since all cohorts, except for the first one, receive messagem∗ from the previous
cohort, the statement of the theorem now follows immediately from (A.16). The
rest of the details are omitted. ��
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Lemma A. 2. Let a communication protocol C with unanimous conspiracy to
coverup and a common discount factor δ be given. Let also ER(δ) be as in Definition
5. Then EC(δ) ⊆ ER(δ).

Proof. Fix δ. Suppose, by contradiction, that v∗ ∈ EC(δ) while v∗ /∈ ER(δ). Since
v∗ /∈ ER(δ) then for all f∗ that sustain v∗ in the full memory repeated game, there
exists some pair of histories, h′, h′′, such that

v′ ≡ V (f∗| h′) >> V (f∗| h′′) ≡ v′′ (A.17)

Now let (g∗, µ∗) sustain v∗ under protocol C with unanimous conspiracy to
coverup. Clearly, since (A.17) must hold for every SPE of the full memory game that
sustains v∗, we must have that for some pair (m′, σ′) and (m′′, σ′′), corresponding
to h′ and h′′ respectively, the following holds

v′ = V (g∗, µ∗| m′, σ′) >> V (g∗, µ∗| m′′, σ′′) = v′′ (A.18)

To derive the contradiction, suppose now that (m′′, σ′′) has in fact occurred.
We proceed to show that v′′ cannot be the equilibrium continuation of the commu-
nication phase. To verify this, we proceed by induction. Consider the incentives of
player n, when all others have reported a′

i = (m′, σ′), ∀i �= n. That is, all others
have (falsely) reported prior path (m′, σ′).According to the protocol for unanimous
conspiracy to coverup, if n also reports a′

n = (m′, σ′) then v′ is attained. However,
if player n vetoes v′ by reporting any other an, then the true history (m′′, σ′′) is
revealed, and so continuation v′′ occurs. But then (A.18) immediately implies that
n’s best response is to in fact report a′

n.
Proceeding by induction, using the same argument as for player n, it is now

easy to show that every player i’s (i > 1) best response to all preceding players
j = 1, . . . , i−1 having chosen a′

j is in fact to report a′
i. Finally, consider the choice

of player 1. Clearly, if he reports a′
1 (given the best responses of all other players)

he achieves a payoff of v′
1 while if he reports a′′

1 he gets a payoff of v′′
1 . Hence,

using (A.18) again, reporting a′′
1 cannot be player 1’s equilibrium behavior in the

reporting subgame. Moreover, given the equilibrium strategies of the other players
in the reporting subgame, it is clear that player 1 (by choosing a′

1) can achieve a
continuation payoff of v′

1. Hence, v′′ cannot be a continuation equilibrium payoff
vector of the reporting subgame, as is in fact required. This contradiction is clearly
enough to establish the result. ��

Lemma A. 3. Let a communication protocol C with unanimous conspiracy to
coverup and a common discount factor δ be given. Let also ER(δ) be as in Definition
5. Then EC(δ) ⊇ ER(δ).

Proof. Fix δ and any v∗ ∈ ER(δ). Let f∗ be any WRP SPE strategy profile that
sustains v∗ in the full memory game.
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Notice that since f∗ is a WRP SPE we know that there is no pair of finite
histories h′ and h′′ for which (A.17) holds. In other words, for any pair h′ and h′′

∃i such that Vi(f∗|h′) > Vi(f∗|h′′) ⇒ ∃j such that Vj(f∗|h′) ≤ Vj(f∗|h′′)
(A.19)

We now specify a pair (g∗, µ∗) that sustains v∗ as a PBE payoff in the dynastic
game with unanimous conspiracy to coverup. The action strategy profile g∗ is the
same as f∗ in the full memory game. The communication strategy profile is as
follows. Player 1 always reports the true history of play. That is µ∗

1 prescribes a1
= (m,σ) for every possible (m,σ).

For each i = 2, . . . , n we let µ∗
i be defined as

µ∗
i (m,σ) =

⎧
⎪⎪⎨
⎪⎪⎩

h if ∃h such that aj = h, ∀j < i

andVi(g∗, µ∗| m,σ) < Vi(g∗, µ∗| h)

(m,σ) otherwise

(A.20)

In other words, i reports the true history of play unless all players before him have
agreed on a particular report which induces a continuation payoff that he prefers to
the continuation payoff following the true history of play.

It is easy to verify that the profile µ∗ we have just defined yields an equilibrium
path in which all players report the true history of play. Hence (g∗, µ∗) yields
payoffs v∗ in the dynastic game. Of course, we still need to verify that it constitutes
a PBE of the dynastic game.

We need to check that no player has an incentive to deviate from µ∗
i in the

communication stage. Consider first players i = 2, . . . , n. If we are in the case in
which (A.20) prescribes the report (m,σ), then either two players before i have
made conflicting reports, or all players before i have reported a history h that
induces a continuation payoff which gives leaves ino better off than the continuation
following the true history of play. By sticking to the prescription of µ∗

i player i
obtains a continuation payoff of Vi(g∗, µ∗| m,σ). Any deviation will yield either a
payoff of Vi(g∗, µ∗| m,σ) or of Vi(g∗, µ∗|h) (depending on whether the deviation
is to h or to some other history, and on whether all subsequent players agree to
h or not). Hence no profitable deviation is possible in this case. If we are in the
case described by the top line of (A.20), then any deviation leads to a continuation
payoff of Vi(g∗, µ∗| m,σ). On the other hand abiding by the prescription of µ∗

i

leads to a payoff of Vi(g∗, µ∗|h) if all subsequent players agree to h, ad to a payoff
of Vi(g∗, µ∗| m,σ) otherwise. Hence no profitable deviation is possible in this
case.

It then remains to check that player 1 cannot profitably deviate from µ∗
1. Of

course, this is only possible if he can report a false history that all subsequent players
agree upon. However, because (A.19) holds this is impossible. Some subsequent
player must prefer (at least weakly) the continuation payoff that follows the true
history of play. Hence, according to the bottom line of (A.20) he will report the true
history of play. This is clearly sufficient to prove the claim. ��
Proof of Theorem 5. The claim is a direct consequence of Lemma A.2 and Lemma
A.3. ��
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Summary. In this paper I study a class of two-player games, in which both players’
action sets are [0, 1] and their payoff functions are continuous in joint actions and
quasi-concave in own actions. I show that a no-improper-crossing condition is both
necessary and sufficient for a finite subset A of [0, 1] × [0, 1] to be the set of Nash
equilibria of such a game.
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1 Introduction

In this paper I consider the structure of the Nash equilibrium sets of a class of
two-player games. We call a two-player game standard if each player chooses
independently from the unit interval [0, 1] and each player has a payoff function
over [0, 1] × [0, 1] that is quasi-concave in own action and continuous in joint
actions. Although it is well-known that any standard game has at least one Nash
equilibrium, the characterization of the Nash equilibrium set of a standard game
has never been attempted previously. This is the issue I will address here. More
precisely, I will study the problem:

(P) Given an arbitrary finite subset A of [0, 1] × [0, 1], what condition must A

satisfy so that A is the set of Nash equilibria of some standard game?

My inquiry follows the tradition of the revealed preference theory. While the
classical revealed preference theory focuses on implications of individual utility
maximization only, several authors have recently established some revealed prefer-
ence results in the game theory context (Sprumont 2000 and Ray and Zhou 2001).
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I will have a more detailed discussion on the relationship between our main result
here and the other existing results in the literature at the end of the paper.

2 The main result

LetΓc denote the class of all standard two-player games. There are two basic results
concerning the Nash equilibria of standard games: First, every standard game has
at least one Nash equilibrium; Second, the set of Nash equilibria of a standard game
is generically finite.

Suppose the actual choices of the two players in a standard game are observed
and they are represented by a finite subset A ⊂ [0, 1] × [0, 1]. Without knowing
players’ payoff functions, we cannot tell if they are playing the Nash equilibria
of the game. However, we can ask a weaker question: Are their actions at least
consistent with the Nash equilibrium theory? To answer this question, we try to
identify a condition on A that is both necessary and sufficient for A to be the Nash
equilibrium set of some standard game. Since A represents the observed players’
actions, we cannot a priori impose any condition on A other than its finiteness.
However, for simplicity, we first assume that A contains no duplicated strategies
for either player, i.e.,

A = {(x1, y1), (x2, y2), ..., (xn, yn)} ,
in which xi �= xj and yi �= yj for all i �= j.1

We say that two pairs of strategy profiles {(p, q), (p′, q′)} and {(r, s), (r′, s′)}
cross each other if

1. min{r, r′} ≤ min{p, p′} ≤ max{p, p′} ≤ max{r, r′}, and
2. min{q, q′} ≤ min{s, s′} ≤ max{s, s′} ≤ max{q, q′}.

Consider, for example, four strategy profiles (.2, .6), (.4, .8), (.5, .2), and
(.7, .5). If we divide them into two pairs, {(.2, .6), (.7, .5)} and {(.4, .8), (.5, .2)},
then these two pairs cross each other.
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1 This assumption will be removed later.
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The key observation is that these four points alone cannot be the set of Nash
equilibria for any game in Γc. The argument is simple. The set of Nash equilibria
of any game is the intersection of the “reaction curves” of players 1 and 2. Suppose
these four points were the set of Nash equilibria for some game in Γc. Then the
reaction curve of player 1 would pass (.2, .6) and (.7, .5), and the reaction curve of
player 2 would pass (.4, .8) and (.5, .2).As a result, these two curves would intersect
at least one more time inside the square [.4, .5] × [.5, .6], yielding another Nash
equilibrium in addition to the original four strategy profiles. This is a contradiction.
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Hence, for a set A to be the set of Nash equilibria of a game in Γc, it is crucial that
it does not contain strategy profiles in similar positions. To formalize this, we need
to introduce two orderings σ and τ on [0, 1] × [0, 1]: σ orders everything according
to player 1’s strategies, i.e., (x, y) σ(x′, y′) if x < x′, and τ orders everything
according to player 2’s strategies, i.e., (x, y) τ(x′, y′) if y < y′. Now we can state
the main condition.

Definition 1. The no-improper-crossing Condition. A set A satisfies
the no-improper-crossing condition if none of the pairs {(xσ(i), yσ(i)),
(xσ(i+1), yσ(i+1))} and {(xτ(j), yτ(j)), (xτ(j+1), yτ(j+1))} cross each other, in
which the first pair consist of two strategy profiles that are consecutive according
to τ , and the second pair consecutive according to σ.

It turns out that this condition is not only necessary, but also sufficient for A to
be the set of Nash equilibria of some game in G ∈ Γc.

Theorem 1. A finite subset A of [0, 1] × [0, 1] is the set of Nash equilibria of a
game G ∈ Γc if and if it satisfies the no-improper-crossing condition.

Proof. First, suppose A is the Nash equilibrium set of some standard game and A
does not satisfy the no-improper-crossing condition. According to the Berge theo-
rem: the best response correspondence for any standard payoff function is upper-
hemi-continuous and convex-valued. Hence, we can see why the no-improper-
crossing condition is necessary. Since player 2’s payoff function is standard, the
graph of his best response correspondence R2 must be path connected. Hence,
we can find a continuous curve r2, which is a selection of R2, that passes from
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(xσ(i), yσ(i)) to (xσ(i+1), yσ(i+1)). Similarly, we can also find another continu-
ous curve r1, a selection of R1, for player 1 that passes from (xτ(j), yτ(j)) to
(xτ(j+1), yτ(j+1)). These two curves have to intersect at some point (x, y) in the
middle. This must be a Nash equilibrium of the game, yet it does not belong to A.
A contradiction.

On the other hand, we assume that A satisfies the no-improper-crossing con-
dition. We now demonstrate that A is the set of Nash equilibria of some game
G ∈ Γc. First, let us construct two ”reaction” curves, one for each player, so that
the intersection of these two curves is exactly A. For player 2, we simply construct
the reaction curve r2 by connecting (xσ(i), yσ(i)) and (xσ(i+1), yσ(i+1)) for all i.
More precisely,

r2(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yσ(1), 0 ≤ x ≤ xσ(1)

(
xσ(i+1) − x

)
yσ(i) +

(
x − xσ(i)

)
yσ(i+1)

xσ(i+1) − xσ(i)
, xσ(i) ≤ x ≤ xσ(i+1)

yσ(n), xσ(n) ≤ x ≤ 1

.
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The construction of r2 with A =
{(.1, .6), (.3, .7), (.5, .9), (.6, .4), (.8, .2)}

Similarly, we can construct the reaction curve r1. However, after construct-
ing r1, we need to curve slightly the line segment between (xτ(j), yτ(j)) and
(xτ(j+1), yτ(j+1)). This modification is made so that r1 and r2 will not touch
each other in the middle in case they connect two points that are consecutive for
both σ and τ .

The intersection of r1 and r2 must contain A since both go through
all points in A. Suppose that the intersection of r1 and r2 also contains a
point x /∈ A. In this case, suppose that x is on the r1−segment connecting
(xτ(j), yτ(j)) and (xτ(j+1), yτ(j+1)) and the r2−segment connecting (xσ(i), yσ(i))
and (xσ(i+1), yσ(i+1)). By construction, all these four points are different. Since
xσ(i) and xσ(i+1) are consecutive for σ, xτ(j) and xτ(j+1) must be at the two dif-
ferent ends outside interval xσ(i)xσ(i+1). Similarly, yσ(i) and yσ(i+1) must be at
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The construction of r1 with A =
{(.1, .6), (.3, .7), (.5, .9), (.6, .4), (.8, .2)}

the two different ends outside interval yτ(j)yτ(j+1) . But now (xσ(i), yσ(i)) and
(xσ(i+1), yσ(i+1)), and (xτ(j), yτ(j)) and (xτ(j+1), yτ(j+1)) cross improperly. A
contradiction. Hence, the intersection of r1 and r2 is exactly A.
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The intersection of r1 and r2 is exactly A

Finally, let us construct utility functions u1 and u2 that have r1 and r2 as
reaction functions respectively. Since both r1 and r2 are graphs of single-valued
continuous functions, we can let u1(x1, x2) = −(x1 − r1(x2))2 and u2(x1, x2) =
−(x2 − r2(x1))2. ��

The no-improper-crossing condition may seem cumbersome, but it does en-
compass several intuitive cases. For example, when a set A is monotonic, either
increasing or decreasing, it satisfies the no-improper-crossing condition. (A set
A = {(x1, y1), (x2, y2), ..., (xn, yn)} is monotonically increasing if (xi−yi)(xj −
yj) > 0 for all i �= j, and it is monotonically decreasing if (xi − yi)(xj − yj) < 0
for all i �= j.)

Before closing, let us remove the extra assumption thatA contains no duplicated
strategies for either player.WhenAmay contain several profiles that assign the same
strategy for player 1 or several profiles that assign the same strategy for player 2,
we need to define more carefully the orders σ and τ : σ orders A lexicographically
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according to player 1’s strategies first and player 2’s strategies second, i.e., (x, y)
σ(x′, y′) if x < x′, or y < y′ when x = x′, and τ orders A lexicographically
according to player 2’s strategies first and player 1’s strategies second, i.e., (x, y)
τ(x′, y′) if y < y′, or x < x′ when y = y′. With this modification, we can restate
the no improper cross condition and the main result.

Definition 2. The no-improper-crossing Condition. A set A satisfies the
no-improper-crossing condition if none of the pairs {(x, y), (x′, y′)} and
{(u, v), (u′, v′)} cross each other, in which the first pair consist of two strategy
profiles that are consecutive according to σ, and the second pair consist of two
strategy profiles that are consecutive according to τ .

Let us go through Theorem 1 again. The proof of the necessity of the no-
improper-crossing condition is virtually the same. To prove its sufficiency, we
need to construct the best response correspondences more carefully. We first con-
nect (0, yσ(1)) and (xσ(1), yσ(1)), (xσ(i), yσ(i)) and (xσ(i+1), yσ(i+1)) for all i,
(xσ(n), yσ(n)) and (1, yσ(n)) by straight lines. If yσ(i) = yσ(i+1) for any pair
(xσ(i), yσ(i)) and (xσ(i+1), yσ(i+1)), we will curve the segment slightly so that it
touches the original segment only at (xσ(i), yσ(i)) and (xσ(i+1), yσ(i+1)). (This is
crucial for not creating additional “equilibria” because the original straight segment
must be in the graph of R1.) At the end, we obtain a curve that can be viewed as the
graph of a correspondence R2 that is upper-hemi-continuous and always convex-
valued. We take R2 as the candidate for player 2’s best response correspondence.
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Similarly we can construct R1, the candidate best response correspondence for
player 1. The resultingR1 is also upper-hemi-continuous and convex-valued. Given
that A satisfies the no-improper-crossing condition, the intersection of the graphs
of R1 and R2 is exactly A. To complete our proof, we need to identify two payoff
functions u1 and u2, for players 1 and 2 respectively, that are continuous and quasi-
concave in own actions such that R1 and R2 are the best response correspondences
of u1 and u2. This is indeed true due to an inverse of the Berge theorem, which we
discuss in a separate section.
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3 An inverse of the Berge theorem

In this section I prove an inverse of the Berge theorem, which is needed in the proof
of our main result. I thank Nicholas Yannelis for bringing it to my attention that
this result has been proved in a paper by Hidetoshi Komiya published in Economic
Theory (1997). Here I include a simple alternative proof. The result holds in a rather
general setting.

Suppose thatX and Y are two convex compact subsets of some finite Euclidean
spaces Rd and Rr.

Theorem 2. (Berge) Suppose that u(x, y) is quasi-concave in x and continuous in
(x, y). Let B be the best response correspondence of u, i.e., for all y ∈ Y,

B(y) = {x ∈ X|u(x, y) � u(x′, y),∀x′ ∈ X} .

Then B(y) is a nonempty convex compact set for every y, and the correspon-
dence B is upper-hemi-continuous in y.

Now I prove an inverse of the Berge theorem.

Theorem 3. Let B be a correspondence from Y to X. Suppose that B(y) is
a nonempty convex set for every y, and the correspondence B is upper-hemi-
continuous in y. Then there exists a function u on X × Y that is quasi-concave in
x and continuous in (x, y) such that B is the best response correspondence of u,
i.e., for every y,

B(y) = {x ∈ X|u(x, y) � u(x′, y),∀x′ ∈ X} .
Proof. The construction is trivial when B(y) is always single-valued. In this case,
we can take u(x, y) = −dist(x,B(y)). When B(y) is multi-valued, however, this
function is not necessarily continuous and we have to modify our construction.
First, define a function v by:

v(x, y) = −dist ((x, y), graph(B)) .

SinceB is upper-hemi-continuous, graph(B) is closed. Hence, (x, y) ∈ graph(B)
if and only if v(x, y) = 0. Moreover, v is continuous. However, since graph(B)
is not a convex set, v(x, y) is not necessarily quasi-concave in x. We now find a
function u, which is quasi-concave in x, through a partial convexification of v. For
any fixed y,

u(x, y) = sup {α|x ∈ con{x′|v(x′, y) � α}} .

Note that if u(x, y) = α, then there are d + 1 numbers λj � 0 with
∑

λj = 1
and d + 1 points xj ∈ X with v(xj , y) � α such that:

x =
j=d+1∑

j=1

λjxj .
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This follows from the continuity of v and an application of the Caratheodory the-
orem. Hence, for any real number α,

{x|u(x, y) � α} = con{x′|v(x′, y) � α}.
This means u(x, y) is quasi-concave in x. Next, we show that u(x, y) is continuous
in (x, y).

Take (x, y) ∈ X × Y. Suppose that (xk, yk) is an arbitrary sequence that con-
verges to (x, y). If we can show that u(x, y) = lim u(xk, yk) for every such
sequence, then we must have u(x, y) = lim u(xk, yk), which means u is continu-
ous.

Let α = lim u(xk, yk). By taking a subsequence if necessary, we may assume
that u(xk, yk) = αk → α. For each k, there are d + 1 numbers λk

j � 0 with∑
λk

j = 1 and d + 1 points xk
j ∈ X with v(xk

j , y
k) � αk such that:

xk =
j=d+1∑

j=1

λk
jx

k
j .

Again, we may assume, w.l.o.g., that all λk
j and xk

j converge to some λj and xj .
Then, since v is continuous, we have:

x =
j=d+1∑

j=1

λjxj ,

with v(xj , y) � α. This implies u(x, y) � α = lim u(xk, yk).
Now suppose u(x, y) > α = lim u(xk, yk). There would exist an ε > 0, and

d+1 numbersλj � 0 with
∑

λj = 1 and d+1 pointsxj ∈ X with v(xj , y) > α+ε
such that:

x =
j=d+1∑

j=1

λjxj .

Since X is a convex set, the fact that x is a convex combination of xj implies that
the convex combination of the neighborhoods of xj’s is also a neighborhood of x.
Hence, we can find sequences of xk

j such that xk
j → xj for each j, and

xk =
j=d+1∑

j=1

λjx
k
j .

Since (xk
j , y

k) → (xj , y), all v(xk
j , y

k) → v(xj , y) > α+ ε for all j. Hence, there
exists some large K such that for all j and all k > K,

v(xk
j , y

k) > α +
ε

2
.

Hence, u(xk, yk) > α + ε
2 for all k > K, which contradicts the assumption that

α = lim u(xk, yk). This proves u(x, y) = lim u(xk, yk).
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Finally, it is clear that the maximum value of u is zero for any y ∈ Y . Since we
have

{x|u(x, y) � 0} = con{x′|v(x′, y) � 0} = conB(y) = B(y),

B is then the best response correspondence for u. ��

4 Conclusion

My inquiry in this paper follows the tradition of the revealed preference theory.
Samuelson (1947) first developed the theory of revealed preferences in the context
of consumer demand theory. Later on other authors, such as for Houthakker (1950),
Richter (1966), and Sen (1971), extended Samuelson’s work in more general set-
tings. However, the focus of the classical theory is on implications of individual
rationality hypothesis. In the general equilibrium framework Sonnenschein (1973)
studied the implication of individual utility maximization on the aggregate excess
demand function. His work was further improved by Mantel (1974) and Debreu
(1974). In 1990s, Brown and Matzkin (1996) initiated the study of testable impli-
cations of general equilibrium theory on the equilibrium manifold.

Recently, Sprumont (2000) and Ray and Zhou (2001) established some re-
vealed preference results in the game theory context, which explore explicitly the
implications of collective rationality hypothesis embodied in various game the-
ory equilibrium concepts. Their basic model is as follows. Consider a standard
game {1, 2; [0, 1] × [0, 1]}. The players’ preferences are unknown to an outside
observer. However, the observer can let the players choose actions from different
sets X and Y, where both X and Y are subsets of [0, 1], and observe their actions
(x(X ×Y ), y(X ×Y )).2 The question Sprumont, Ray and Zhou ask is: what con-
dition must these observed actions satisfy so that one can find preferences �1 and
�2 on [0, 1]×[0, 1] that can rationalize the observed actions (x(X×Y ), y(X×Y ))
as Nash equilibria, i.e., (x(X × Y ), y(X × Y )) = NE{1, 2;X × Y ; �1,�2} for
all X ′s and Y ′s?

In Sprumont-Ray-Zhou’s setting, players’preferences over [0, 1]×[0, 1] remain
the same while game forms X × Y vary. This “invariant preference” assumption,
however, has been criticized by some scholars. One can argue that players’ pref-
erences might depend on the particular game form they face. Think of the above
game as the game of dividing-a-dollar. Player 1 makes a demand of x and player
2 makes a demand of y. If x + y ≤ 1, the outcome is x to player 1 and y to
player 2. If x + y > 1, both players receive zero dollar. In this case player 2 may
feel very differently towards player 1’s action x = .9 when player 1’s choice set
is X = [.9, 1] than when 1’s choice set is X = [0, 1]. In the first situation, she
might prefer (x, y) = (0.9, 0.1) to (x, y) = (0.9, 0.2); but in the second situation,
she might prefer (0.9, 0.2) to (0.9, 0.1). This critique motivates me to study the
problem (P) in which the outcomes of one particular game only are rationalized.
In this paper I show that the no-improper-crossing condition is both necessary and

2 This is parallel to the assumption in the (individual) revealed preference theory that the observer can
vary the choice sets of the individual and observe his choice in each of these restricted choice problems.
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sufficient for a finite subset A of [0, 1] × [0, 1] to be the set of Nash equilibria of
a standard two-player game. If the observed actions by two players do not satisfy
the no-improper-crossing condition, then they cannot be rationalized as the set of
Nash equilibria of any standard game.

We should also study the same problem for wider classes of games. Yet it is
extremely difficult, if not impossible, to solve this problem in full generality. Of
course, given the inverse of the Berge maximum theorem, the study of the set of
Nash equilibria of games is equivalent to the study of the intersection of graphs
of correspondences that are upper-hemi-continuous and convex-valued. It is still
unclear what mathematical tools are most suitable for tackling this problem. While
the main result reported here has a limited scope, I hope it will stimulate further
research that eventually leads to more general results along this line.
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concave vector-representation. These theorems extend some results on finite games
by Shapley and Aumann. The applicability of the theoretical results is illustrated
with examples from oligopolistic theory, where firms are modelled to aim at max-
imizing both profits and sales (and thus have multiple objectives). Mixed strategy
and trembling hand perfect equilibria are also discussed.

Keywords and Phrases: Incomplete preferences, Nash equilibrium, multi-
objective programming, Cournot Equilibrium.

JEL Classification Numbers: D11, C72, D43.

1 Introduction

The theory of incomplete preferences is an important subfield of decision theory,
which is designed to include in its realm statements such as “I don’t know if I
prefer alternative a or b” in addition to the statements “I prefer a to b,” and “I am
indifferent between a and b”. The fundamentals of this theory have been laid out
in the seminal contributions of Aumann (1962) and Bewley (1986), and it has been

� I would like to thank Jean-Pierre Benôit, Juan Dubra,Alejandrio Jofre, Debraj Ray, Kim-Sau Chung
and the seminar participants at NYU and at the Universidad de Chile for their comments. I am most
grateful to Efe Ok, for his comments, criticism, suggestions and questions.
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pursued further in the recent literature.1 The importance of this theory becomes
even more apparent when one considers the behavior of economic agents made up
of collections of individuals (such as coalitions). However, a very large fraction
of the work on incomplete preferences concerns only individual choice problems;
only few authors have studied strategic interaction between agents with incomplete
preferences. The present paper focuses on precisely this issue, and proposes a way
to study strategic interactions in which agents sometimes remain indecisive.

An immediate observation is that, since incomplete preferences can leave many
options unranked, equilibrium sets in games that allow for incomplete preferences
can be considerably larger than in games with complete preferences. While this
may at first seem undesirable, we should note that if one picks some plausible, but
incorrect, complete preferences to represent the ranking of an indecisive agent, a
good range of equilibria may be overlooked. The relevance of this issue becomes
even more apparent when considering games that do not have any equilibria. Maybe
some of the players’ preferences are, in reality, not as complete as the model would
have us believe. Incorporating this indecision to the model might, in fact, enlarge
the original (empty) equilibrium set, thereby solving the nonexistence problem.2

The potential lack of information on the part of the modeler is another reason
for modeling the preferences of some players as incomplete. An outside observer
might only be able to establish some baseline about an agent’s preferences, such
as that the agent would prefer a lottery that stochastically dominates another, or
that her preferences are single peaked with a certain bliss point. However, it may
be difficult to go beyond such a baseline assumption, and ascertain the precise
trade-offs an agent would be willing to make. It is a consequence of one of our
main results (Theorem 1) that games with incomplete preferences can be used as
a tool for robust modelling of such strategic situations. It may be useful to assume
that agents effectively possess incomplete preferences, in a way to encompass all
plausible formulations of their actual preference profiles. With this conservative
modelling strategy one would be able to identify those action profiles that arise as
an equilibrium for the actual complete preferences of the agents.

After we develop the basic Nash equilibrium theory with incomplete preferences
(Sects. 3 and 4), we illustrate the workings of this theory by means of examples
from oligopoly theory. Motivated by the long-standing debate on the modelling of
the objectives of the firm, we investigate a scenario in which firms have incomplete
preferences: we assume that they might not be able to rank all combinations of prof-
its, revenues, sales and possibly other variables. We show that this model allows us
to substantially mitigate a well known nonexistence problem of oligopoly theory,
the Edgeworth paradox of capacity-constrained Bertrand competition. Using the
theory developed in this paper, we are also able to give an upper bound on the set

1 Among the recent papers that develop a utility theory for incomplete preferences are Dubra, Mac-
cheroni, and Ok (2004), Mandler (2001), Ok (2002), and Sagi (2003). The choice theoretic foundations
of incomplete preferences are, on the other hand, examined in Danan (2003), Eliaz and Ok (2004), and
Mandler (2004).

2 Bade (2003) and Roemer (1999, 2001) all tackle the nonexistence problem of the models of multi-
dimensional political competition between two parties by assuming that parties’ preferences are incom-
plete.
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of all reasonable Cournot equilibria when firms care not only about their profits but
also about revenues and sales. Finally, we apply the assumption of incomplete pref-
erences to the celebrated Kreps-Scheinkman model of oligopolistic competition,
and show that this modified model has a pure strategy equilibrium, whereas the
equilibrium of the original model involves complicated off-the-equilibrium path
mixing.

In passing, we note that most work on games with incomplete preferences fo-
cuses only on the problem of the existence of equilibrium (cf. Ding, 2000; Shafer
and Sonnenschein, 1975; Yu and Yuan, 1998; and the references cited therein).
By contrast, our objective here is to obtain operational characterizations of Nash
equilibrium sets of such games. In this sense, our paper is closer in spirit to that
of Shapley (1959), who characterizes the set of all mixed strategy Nash equilib-
ria in vector-valued two-player zero-sum games. This characterization has been
extended by Aumann (1962) to a larger class of matrix games. In particular, we
show here that the set of Nash equilibria of any game with incomplete preferences
can be characterized in terms of certain derived games with complete preferences.
Provided that all players’ preferences can be represented by concave functions, we
can sharpen this result further; in this case it suffices for the characterization of the
equilibrium set to look at games with complete preferences that are derived from
the original game by a simple linear procedure. We conclude with a discussion of
trembling hand perfect equilibria in games with incomplete preferences.

2 Preliminaries

Throughout this paper G = {(Ai,�i)i∈I} will denote an arbitrary (normal-form)
game.Where I is a (finite) set of players, player i’s nonempty action space is denoted
by Ai and �i is player i′s preference relation on the outcome space A := ×

i∈I
Ai.

Each preference relation �i is assumed to be transitive and reflexive but, in contrast
to the standard theory, need not be complete. Some player i is indifferent between
a and b, denoted by a ∼i b, if and only if a�ib and b�ia. Player i strictly prefers
an outcome a to b, denoted by a �i b, if and only if a�ib but not b�ia.

We say that a preference relation �′ on A is a completion of another preference
relation � on A, if �′ is complete, and if a�b implies a�′b and a � b implies
a �′ b. We say that a game G′ =

{
(Ai,�′

i)i∈I

}
is a completion of a game

G = {(Ai,�i)i∈I} if �′
i is a completion of �i for each i. A transitive and

reflexive relation �′ is called a transitive closure of a reflexive relation � if �′ is
the smallest transitive and reflexive relation such that a�b implies a�′b, we write

�′ = tc(�). It is easy to show that tc(�) =
∞∪

i=0
�i where a �0 b if, and only

if, a � b and a �i b (for i > 0) if, and only if, there exist a1, a2, ..., ai such that
a � a1 � ...ai � b.

There is a natural way of extending the standard notion of Nash equilibrium to
the present framework. An action profile a = (a1, ..., a|I|) is a Nash equilibrium if
and only if no agent has an incentive to deviate from her own action given every
one else’s action. More formally, the profile a is a Nash equilibrium if for no player
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i there exists an action a′
i ∈ Ai such that (a′

i, a−i) �i (ai, a−i). If each player’s
preference relation is complete, this definition reduces to the common definition of
the Nash equilibrium. In what follows, we denote the set of all Nash equilibria of
a game G by N(G).

3 A general characterization result

In this section we shall characterize the set of all Nash equilibria of a game G with
incomplete preferences as the union of all Nash-equilibrium sets of all completions
of G. This characterization reduces the problem of identifying Nash equilibria of
a game with incomplete preferences to the familiar problem of obtaining Nash
equilibria of a collection of games with complete preferences. The proof of the
theorem is based on the following Lemma 1 which amounts to a generalization of
the classical theorem by Szpilrajn (1930).

Lemma 1. Let � be a preference relation on some nonempty set A, let B be a
nonempty subset of A, and let a∗ be a maximal point of � in B. Then there exists
a completion �′ of � such that a∗ is a maximal point of �′ in B.

Proof. Define the following two partial orders on the quotient set A/∼: Define �q

by [a] �q [b] iff a � b. Define �∗ by [a] �∗ [b] iff [a] = [a∗] and there exists a
b′ in B such that [b] = [b′]. Define �u as the union of �q and �∗ and �t as the
transitive closure of �u, �t:= tc(�u). We need to show that [a] �q [b] implies
[a] �t [b]. Suppose not, that is, suppose that for some [a], [b] in A/∼ and some
n ∈ N we have [a] �q [b] and there exist some distinct [a1], [a2], ..., [an] ∈ A/∼
with [b] := [a0] �u [a1] �u [a2] �u ... �u [an] �u [a] := [an+1], where all
inequalities [ai−1] � [ai] are strict, since we have [ai−1] �= [ai] for all i. Since �q

is transitive, there must be (exactly) one 1 ≤ i ≤ n + 1 such that [ai−1] �∗ [ai].
So [ai−1] = [a∗] and [ai] = [b′] for some b′ in B. Let us rearrange the above chain
as [b′] �q [ai+1] �q .... �q [a] �q [b] �q [a1] �q ..... �q [a∗]. The transitivity
of �q implies in turn that [b′] �q [a∗], a contradiction. It follows from Szpilrajn’s
theorem that there exists a completion of �t, call it �′′ . By construction �′′ is
also a completion of �q and �∗which implies that also with respect to �′′, [a∗] is
a maximum in the set of all [b] for b ∈ B. Finally define �′ on A by a �′ b if and
only if [a] �′′ [b]. It is easily checked that �′ fulfills our requirements. ��

Observe that Lemma 1 applies to sets A with infinitely many elements. If A
were finite we would not need Szpilrajn’s theorem for the proof. The following fact
is now easy to obtain.

Theorem 1. Let G = {(Ai,�i)i∈I} be any game. Then

N(G) =
⋃

{N(G′) : G′is a completion of G} .

Proof. The “⊇” part is obvious. To see the “⊆” part of the claim, let a∗ be a Nash
equilibrium of G, and define Bi := {(ai, a

∗
−i) : ai ∈ Ai} for all players i. So

for any player i, a∗ is a maximal point of �i in Bi. By Lemma 1, there exists a
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completion �′
i of �i for each player i such that a∗ is maximal point of �′

i in Bi.
Consequently a∗ is a Nash equilibrium of the completion G′ = {(Ai,�′

i)i∈I}.
��

Theorem 1 establishes a strong relation between games with complete prefer-
ences and games with incomplete preferences. In particular, it allows us to commute
back and forth between games with complete and incomplete preferences when cal-
culating equilibrium sets. The problem of equilibria computation in a game with
incomplete preferences is thus reduced to a known problem: the computation of
equilibria in games with complete preferences.

But at times it can also be useful to model a situation as a game with incomplete
preferences, even though we suspect that the preferences of all agents are complete.
This case arises when one does not know the preferences of players precisely. We
can then specify the preferences of the players as incomplete preorders, consisting
only of the preference statements we feel safe to posit. Theorem 1 then says that the
equilibria of any completion of a game must lie within the equilibrium set of the
game with incomplete preferences. In other words, non-equilibria are robust under
improvements in our knowledge about the preferences of the players. So Theorem
1 on the one hand allows us to simplify the solution of games with incomplete pref-
erences, on the other hand it justifies the use of models with incomplete preferences
as tools of robust modelling, when the preferences of the players are not known in
detail to the modeler.3

4 The case of vector-valued utility functions

The preceding characterization theorem relies on the concept of a completion. In
general, however, the set of all completions of a game is not easy to determine.
To develop a more operational theory we shall now restrict our attention to games
in which all players have representable preference relations. Following the recent
literature on the representation of incomplete preferences, we shall consider pref-
erence relations � that are representable in the sense that there exists a function
u : A → R

n such that a�b iff u(a) ≥ u(b).4’5 Such vector-valued utility functions
are convenient since the problem of maximizing a utility is formally equivalent to
the well studied problem of Pareto-optimization.Anyn-person Pareto-optimization
problem can simply be mapped to a problem of maximizing a preference relation
that is representable in the R

n by identifying the utility-vector representing the
incomplete preference relation with the vector of all the n persons’ utilities. The
utility possibility frontier then corresponds to the set of all maximal points of the
incomplete preference relation.

3 This approach presupposes that only the modeller does not know the preferences of the players. If
we assume that the players are equally ignorant about the preferences of the other players the robustness
result of Theorem 1 breaks down: Given certain priors about the other players, some player might chose
an action in equilibrium, that she would never choose when preferences where common knowledge.

4 See Ok (2002) for an axiomatic treatment of such a vector-valued utility representation.
5 Notation: For any n ∈ N and a, b ∈ R

n a ≥ b signifies ai ≥ bi for all i; a > b signifies a ≥ b

but not b ≥ a. Finally a � b iff ai > bi for all i.



72 S. Bade

In what follows, by G =
{
(Ai, u

i)i∈I

}
we mean the game G = {(Ai,�i)i∈I}

where ui : A → R
mi represents �i in the sense as defined above. For any set of

vectors β = {β1, ..., β|I|} with βi ∈ R
mi we define the game

Gβ :=
{
(Ai, β

iui)i∈I

}

where βiui : A → R is defined as the dot product of βi and ui,that is βiui :=∑mi

j=1 β
i
ju

i
j . To simplify our notation we let

∆ :=
{

{β1, ..., β|I|} : βi ∈ ∆mi for all i
}

and ∆+ := ∆ ∩ R
Σmi
++

where ∆mi denotes the mi − 1 dimensional simplex.
Since in this section we are switching back and forth between the game G ={

(Ai, u
i)i∈I

}
and the derived games Gβ , it makes sense to indicate the utility

function in the definition of the best response correspondence. So we denote player
i’s best response correspondence with respect to his utility function ui as BRui ,
that is, BRui : A−i ⇒ Ai is defined by

BRui(a−i) := arg max
bi∈Ai

ui(bi, a−i).

For any βi � 0, the function βiui represents a completion of the preferences
represented by ui. So, for any β ∈ ∆+, the game Gβ is a (linear) completion of
the game G. Therefore, by applying Theorem 1 we know that N(Gβ) is a subset
of N(G) for all β ∈ ∆+. In some cases we can also use such collections of
vectors to describe an upper bound on N(G), or even the full set N(G). If we
restrict the utility functions of all players to be concave, and all action spaces to
be convex, we can derive such an upper bound. The arguments that are commonly
being used to defend concavity (such as decreasing marginal utility) also apply to
multidimensional utilities. Alternatively, when considering some coalition whose
utility is simply the vector of the utilities of its members, the concavity of the
coalition’s utility can be a consequence of the concavity of the utility functions of
its constituents. Following its proof, we will show that Theorem 2 does not extend
to quasiconcave utility functions.

Theorem 2. Let G =
{
(Ai, u

i)i∈I

}
be a game such that each Ai is a nonempty

convex subset of some finite dimensional Euclidean space and each ui is concave
in ai. Then

⋃{
N(Gβ) : β ∈ ∆+

} ⊆ N(G) ⊆
⋃

{N(Gβ) : β ∈ ∆} .

Proof. The first inclusion is clear from the discussion above. To see the second
inclusion, pick any a ∈ N(G), and fix any i ∈ I . Then we have ai ∈ BRui(a−i) =
arg maxbi∈Ai

ui(bi, a−i). Define

Y (a−i) :=
{
x ∈ R

mi : ui(bi, a−i) ≥ x for some bi

}
.

and

X(ui(a)) := {x ∈ R
mi : ui(a) < x}
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Observe that both of these sets are convex. To see that Y (a−i) is convex pick
any xi, xi′ ∈ Y (a−i) and any λ ∈ (0, 1). Then there exist some bi, b

′
i ∈ Ai with

xi ≤ ui(bi, a−i) and xi′ ≤ ui(b′
i, a−i). While the convexity of all Ai implies

λbi + (1 − λ)b′
i ∈ Ai, the concavity of all ui implies ui(λbi + (1 − λ)b′

i, a−i) ≥
λxi+(1−λ)xi′.Observe furthermore that by the maximality ofui(a) inY (a−i), we
have X(ui(a)) ∩Y (a−i) = ∅. So by Minkowski’s separating hyperplane theorem,
there exists some vector pi ∈ R

mi and some constant c such that pix ≤ c for all
x ∈ Y (a−i) and pix ≥ c for all x ∈ X(ui(a)). Since x < ui(a) implies x ∈
Y (a−i) and x > ui(a) implies x ∈ X(ui(a)), we have pi ≥ 0 and piui(a) = c.
So there exists some βi ∈ ∆mi such that βiui(a) ≥ βix for all x ∈ Y (a−i). Since
ui(Ai, a−i) a subset of Y (a−i), we also have that βiui(a) ≥ βiui(bi, a−i) which
implies that ai ∈ BRβiui(a−i). Since i ∈ I is arbitrary, this yields a β in ∆ such
that a ∈ N(Gβ). ��

The proof of Theorem 2 does not extend to quasiconcave functions, as the
sum of two quasiconcave functions is not necessarily itself quasiconcave. Take
the following trivial one-player game with a convex action space A = {(x, y) ∈
[0, 1]2 : x + y = 1} and a quasiconcave utility defined by u(x, y) = (x2, y2).
While ( 1

2 ,
1
2 ) is an equilibrium in this game, there does not exist any β ∈ ∆ such

that ( 1
2 ,

1
2 ) ∈ arg maxx,y∈A βu.

Theorem 2 gives an upper and a lower bound on the set of all Nash equilib-
ria. In applications we would not expect that there would be many elements in⋃ {N(Gβ) : β ∈ ∆} that are not contained in

⋃ {N(Gβ) : β ∈ ∆+}, that is, the
bulk of N(G) is likely to be contained in

⋃ {N(Gβ) : β ∈ ∆+}. In particular, if
we assume componentwise strict concavity - as would be for example reasonable
when we investigate players that are made up of individuals that each have strictly
concave utility functions - the characterization at hand provides one with a full
description of the set of all Nash equilibria of a game. This claim is proved next.

Lemma 2. Let G =
{
(Ai, u

i)i∈I

}
be a game such that, for some i, Ai is a

convex subset of some finite dimensional Euclidean space and ui is concave in
ai. For some component j ∈ {1, ...,mi} let ui

j : A → R be strictly concave
in ai. Then for any βi ∈ ∆ such that βi

j > 0 and any a−i ∈ A−i we have
BRβiui(a−i) ⊆ BRui(a−i, ).

Proof. Fix any a−i and any βi ∈ ∆ such that βi
j > 0.Assume that there exist an a′

i

and some βi ≥ 0 with βi
j > 0 such that a′

i ∈ BRβiui(a−i) but a′
i /∈ BRui(a−i).

This implies that there exists an a′′
i ∈ Ai such that ui(a′′

i , a−i) > ui(a′
i, a−i).

It follows that βiui(a′′
i , a−i) ≥ βiui(a′

i, a−i), and since a′
i ∈ BRβiui(a−i, Ai),

we have βiui(a′′
i , a−i) = βiui(a′

i, a−i). The strict concavity of ui
j(., a−i) and

positivity of βi
j together with the concavity of ui(., a−i) imply that βiui(., a−i) is a

strictly concave function. Since a strictly concave function is maximized at a unique
point, we conclude that a′′

i = a′
i contradicting our assumption that ui(a′′

i , a−i) >
ui(a′

i, a−i). ��
Theorem 3. Let G =

{
(Ai, u

i)i∈I

}
be a game such that each Ai is a nonempty

convex subset of a finite dimensional Euclidean space and every component of each
ui is strictly concave in ai. Then N(G) =

⋃ {N(Gβ) : β ∈ ∆} .
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Proof. Since every component of each player’s utility functions is strictly concave
in her own action, we know that

∆={β∈∆: for all i, βi
k>0 for at least one k for which ui

k is strictly concave}.

So combining Lemma 2 and Theorem 2, we have

⋃{
BRβiui(a−i) : βi ∈ ∆

} ⊆ BRui(a−i) ⊆
⋃{

BRβiui(a−i) : βi ∈ ∆
}
.

It follows that N(G) =
⋃ {N(Gβ) : β ∈ ∆} . ��

5 Applications to oligopoly theory

We now illustrate the theory developed so far by studying how to incorporate multi-
ple objectives in some standard models of oligopolistic competition. The following
alternatives to profits have been suggested as objectives for the oligopolistic firm.
Firms might concentrate on maximizing revenues or sales, possibly as imperfect
proxies for long run profits. Due to the difficulty in evaluating managerial efforts,
the executives of a firm might be judged according to the relative performance of
the firm, and this might compel managers to focus on the market share in terms of
profits, sales and revenues which suggests another set of possible objectives of the
firm.6

At the very least, it seems worthwhile to explore the implications of the hy-
pothesis that objectives other than profits play a role in the firms decision making,
when profits are above a certain threshold (e.g. nonnegative). We model the pref-
erences of firms such that they depend only on profits and sales7. More precisely,
we investigate the following preference structure on the part of the firms: When
making profits, a firm prefers a situation a to a situation b if in a it has at least as
much profit and sales as in b. If, however, situation a is better according to either
one of the criteria, while b is better according to the other criterion, then the firm is
undecided between these two options. If the firm is making losses in situation a or
b it prefers the one with the lower losses (or equivalently higher profits) no matter
how these two situations compare according to the sales of the firm. For ease of
presentation, we focus in what follows on duopolies. We assume that both firms
produce a homogenous good at constant marginal cost c > 0, and that at a price
p the market demand is 1 + c − p as long as this expression is positive, otherwise
market demand is 0. By convention, i and j denote two different firms in what
follows.

6 See, for instance, Baumol (1959), Fershtman and Judd (1987), Galbraith (1967), Holmstrom (1982),
Marris (1964), Simon (1964), and Sklivas (1987) for arguments in favor of modelling firms as pursuing
objectives that deviate from profit maximization.

7 Revenues and market shares can w.l.o.g. be dropped from consideration as they are monotone
transformations of profits and sales (at least as long as profits are positive).
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5.1 Cournot competition

Consider the Cournot model in which firms choose their production levels. Here
Ai = R+, and the utility function of firm i is defined on R

2
+ by

ui(q) := (πi(q), vi(q)),

where πi denotes the common profit function, and vi(q) := qi if qi ≤ 1 − qj and
vi(q) := 1 − qj otherwise. Here vi(q) represents the sales of firm i as long as
profits are nonnegative. If firm i incurs losses at the output profile q, then vi(q)
takes a constant value; the particular value of this constant, 1 − qj , is chosen to
obtain a utility function that is concave and continuous in the firm’s own action qi.
We denote the resulting game

{
(Ai, u

i)i=1,2
}

by GC .8

We now computeN(GC). Since each firm’s objective function ui(q) is concave
in the firm’s own quantity, and since the first component πi(q) is even strictly
concave Theorem 2 and Lemma 2 readily yield

⋃{
N(GC

β ) : β ∈ ∆,βi
1 > 0

} ⊆ N(GC) ⊆
⋃{

N(GC
β ) : β ∈ ∆

}
. (*)

In the linearly completed game GC
β , firm i’s objective function is βiui, where

βiui(q) =

{
βi

1π
i(q) + βi

2qi, if qi ≤ 1 − qj

βi
1π

i(q) − βi
2(1 − qj), if qi > 1 − qj

.

So, in the completed game GC
β , firm i’s best response to qj is: 1−qj

2 + βi
2

2βi
1

if this

expression is in the interval [0, 1 − qj ], if this expression is smaller than any value
in this interval then the best response is not to sell anything, otherwise firm i’s best
response is 1 − qj . This implies that

⋃{
N(GC

β ) : β∈∆,βi
1>0

}
=
{
q∈R

2
+ :

1
2

(1−qj) ≤qi≤1−qj for i = 1, 2
}

=
⋃{

N(GC
β ) : β ∈ ∆

}
.

Combining this with (*), we conclude that

N(GC) =
{
q ∈ R

2
+ :

1
2

(1 − qj) ≤ qi ≤ 1 − qj for i = 1, 2
}
.

Figure 1 illustrates this analysis: the lines AB and CD represent the reaction
curves when firms maximize profits. The line AD represents the reaction curves
of the two firms when they maximize sales subject to nonnegativity of profits. All
points in the triangle ADE represent Nash equilibria of GC . For any point q in this
triangle, there exists a β such that q ∈ N(GC

β ). The line AGH represents reaction

8 A range of alternative formulations of this game
{
(Ai, v

i)i∈I

}
, with vi being a monotone transfor-

mation of ui for i = 1, 2, yield the same set of Nash equilibria. The present formulation in convenient,
for it allows Theorem 2 and Lemma 2 to be applied. Finally, observe that profits play an important role
in the preferences of the firm, as they enter ui both directly and also indirectly (via sales).
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Figure 1

curve of firm 1 for its completed utility β1u1. For small q2, firm 1 best-responds

with 1−q2
2 + βi

2
2βi

1
; observe that this line (the portion GH of the line AGH) has

the same slope as the firm’s reaction curve according to the traditional model (the

line AB). For large q2, the response with a quantity q1 = 1−q2
2 + βi

2
2βi

1
would yield

negative profits and firm 1 is best off by setting its quantity to 1 − q2; this explains
the portionAG of its reaction curve. Observe that if more weight is placed on profits
in the completion, the line AGH would shift closer to the line AB.9

If we assume that the objective function of a firm should be some positive
combination of their revenues, sales, and profits (as long as the firm does not make
any losses, and if it does, it only tries try to reduce them), we know by Theorem 1
that the equilibrium outcomes of the Cournot model must lie within this triangle.
This application of Theorem 1 helps us to exclude a wide range of action profiles
that cannot be equilibria for any reasonable complete formulation of the game.

5.2 Bertrand competition

To show that Nash equilibrium sets in games with incomplete preferences need not
be large (as opposed to what the previous example might suggest), we now study the
above multi-objective model within Bertrand competition. We again assume that
firms have incomplete preferences as long as profits are nonnegative, preferring
higher sales and profits. The unique Nash equilibrium in this case accords perfectly
with the standard case: the firms set their prices equal to marginal cost. This is not

9 Notice that in this case N(GC) coincides with the convex hull of the Nash equilibria in the “ex-
treme” games GC

π1,π2 , GC
π1,v2 , GC

v1,π2 and GC
v1,v2 (where GC

f1,f2 denotes the game in which firm

i’s utility is the function f i). This is a peculiar consequence of the fact that best response correspondences
in the “extreme” games are linear. The observation does not generalize.
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surprising since no sales or revenue motive could give a firm an incentive to deviate
from the unique equilibrium of the price competition game played amongst profit
maximizing duopolists. The uniqueness of this equilibrium is also not unexpected
since in all relevant cases profits and sales move in the same direction as the own
price of a firm changes. This can be interpreted as a confirmation of the robustness of
the Bertrand equilibrium: By Theorem 1, any completion of the present Bertrand
model either has no equilibrium or its only equilibrium is the classical one. To
deviate from the classical equilibrium firms must have preferences that cannot be
represented as increasing combinations of their profits, revenues and/or sales.

There is, however, more to this story. Edgeworth (1925) showed in his famous
critique of Bertrand-competition that games played amongst capacity constrained
price setters can fail to have any Nash equilibria. In the literature on oligopolistic
competition, this observation is called the Edgeworth paradox.10 Interestingly, this
paradox does not arise in the present multi-objective Bertrand-model. To demon-
strate, let both firms face some identical capacity constraint K ≤ 1

2 . As usual, we
assume that the firm with the lower price serves the customers that are willing to
pay most for the good, the firm with the higher price serves the rest if there is any.
More precisely, given prices pi and pj , the demand is shared in the following way.
If pi < pj , then firm i faces the full market demand, that is,Di(pi, pj) = 1+c−pi,
whereDi(pi, pj) denotes the demand for firm i given the prices pi and pj . If pi > pj

andK ≥ 1+c−pj , then no residual demand remains for firm i:Di(pi, pj) = 0. If,
on the other hand, 1+c−pj > K (and still pi > pj) firm i faces a residual demand
of Di(pi, pj) = 1 + c − pi − K. If both firms set an equal price pi = pj = p they
share the market-demand equally: Di(pi, pj) = 1+c−p

2 . The duopolists play the
game GB =

{
(Ai, u

i)i=1,2
}
, where Ai = R+ is the price space, and

ui := (min
{
Di(pi, pj),K

}
(pi − c), vi(pi, pj))

with vi(pi, pj) := min
{
Di(pi, pj),K

}
as long as pi ≥ c and vi(pi, pj) := −1

otherwise. Observe that these preferences over price profiles are not convex, so we
cannot apply Theorem 2.

The main result of this section is that there is a unique equilibrium in this
Bertrand-game:

N(GB) = {(1 − 2K + c, 1 − 2K + c)} . (**)

Let us first show that in any Nash equilibrium we have pi = pj . Suppose pi < pj

in equilibrium. If 1 − pi + c ≤ K, then Dj(pipj) = 0, so by dropping its price to
pi firm j could get positive profits and sales. If, on the other hand, 1 − pi + c > K,
then firm i sells K units of the good on the market, whereas it could also sell K at
any higher price p′

i for which p′
i < pj and 1 − p′

i + c > K. Charging such a price
p′

i firm i could increase its profits while keeping its quantity sold constant. So, in
any equilibrium, both firms must charge the same price, say p.

10 Maskin (1986) shows that for a very large range of such capacity constrained Betrand games mixed
strategy equilibria exist. However, such mixed strategy equilibria are generally very difficult to calculate.
Moreover, the supports of the firms’ equilibrium strategies tend to be extremly large (see, for example,
Osborne and Pitchik, 1986).
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If p < 1 − 2K + c, then either firm could increase its profits, while keeping its
quantity sold constant, by increasing its price by a small amount. If p > 1−2K+c,
then there exists some p′

i < p at which firm i sells a higher quantity yielding higher
profits, given that firm j continues to play p. Thus, if an equilibrium exists, it must
equal (1 − 2K + c, 1 − 2K + c).

What is more, any deviation of a firm either lowers this firm’s profits or its
quantity sold. The essential difference between the classical model and the model
advanced here is this last step. Certain deviations from (1−2K+c, 1−2K+c) may
raise profits, but only at the expense of sales. Under the classical profit maximization
hypothesis these deviations are of course beneficial, and lead to the non-existence of
equilibrium. Since sales decrease as a consequence, these deviations are, however,
not beneficial in our multi-objective model: (**) holds. One can similarly show that
the equilibrium of the model is (c, c) when K > 1

2 Thus if we denote the present
Bertrand model with capacity constraintK byGB(K), then we haveN(GB(K)) =
(p∗

K , p∗
K) where p∗

K := max {1 − 2K + c, c} ,K ≥ 0.11

It is important to note that this result is robust in the sense that it remains valid
even when a certain level of trade-off between profits and sales is allowed. To see
this, instead of assuming that firms cannot rank any two price profiles, one with
higher sales and the other with higher (positive) profits, let us change the firms
utilities to

ui
κ := (πi, κπi + vi) i = 1, 2,

where κ > 0. According to this alternative model, a change that considerably
increases profits, while decreasing sales only to a small extent, is preferred by the
firm if κ is big enough.

For instance, take the profit and sales profile (π∗, v∗) in Figure 2. In our initial
formulation of the preferences, a firm prefers only those profiles (π, v),for which
we have (π, v) ≥ (π∗, v∗) holds. According to our new formulation, the objective
profile of firm i is ui

κ := (πi, κπi + vi) that is firm i strictly prefers any (π, v) in
Figure 2 that lies left of the line π∗ and above the lineAB (the line through (π∗, v∗)
with slope −κ). Observe that the cone of options that cannot be ranked according
to ui

κ(p) (the striped areas in Figure 2) decreases with κ, in the limit as κ → ∞ the
firms preferences converge to the standard scenario. Let us simplify the analysis by
assuming c = 0 (all the results reported below hold for any c > 0 as well), and let
us find an upper bound on κ such that a firm with the utility function ui

κ(p) has no
incentive to deviate from the equilibrium of GB(K). We restrict our attention to all
linear completions of ui

κ(p), that is, all functions γπi(p) + vi(p) with γ ∈ (κ,∞).
We distinguish three cases in which K belongs to [0, 1

3 ] , ( 1
3 ,

1
2 ] or ( 1

2 ,∞).
If K ≤ 1

3 , any deviation from the equilibrium price p∗
K :=

max {1 − 2K + c, c} lowers profits and sales at the same time. If 1
3 < K ≤ 1

2 , then
there does not exist a preferred deviation from p∗

K , if for all p > 1 − 2K, we have
γ(1 − 2K)K +1 − 2K ≥ γ(1 −K − p)p+1 −K − p. The latter inequality holds

11 The argument establishing the unique equilibrium for multi-objective competition easily ex-
tends to the case of different capacities K1, K2 > 0, any strictly decreasing continuous demand
D : R+ → R+, and different sharing rules. The unique equilibrium is (p∗, p∗) with p∗ =
max

{
c, D−1(K1 + K2)

}
.
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Figure 2

only if 1
3K−1 ≥ γ. So if 2 ≥ γ, then there does not exist any profitable deviation

from (p∗
K , p∗

K) for any K ≤ 1
2 . Let us now show that if we impose 2 ≥ γ there

also does not exist any preferred deviation from (p∗
K , p∗

K) = (0, 0) for K > 1
2 .

Given that the other firm charges pj = 0 the set of feasible profit-sales for firm i is
smaller when K > 1

2 than it is when K = 1
2 . We just showed that, given γ ≤ 2,

the profit sales profile (0, 1
2 ) is maximal in the larger set when γ ≤ 2. But (0, 1

2 )
is also contained (and therefore maximal) in the smaller set, so pi = 0 is a best
response to pj = 0,whenK > 1

2 .We conclude that if γ ∈ (0, 2], (p∗
K , p∗

K) remains
an equilibrium of GB(K) for any K ≥ 0. In other words (p∗

K , p∗
K) is the unique

equilibrium of the present multi-objective Bertrand game with capacity constraint
K ≥ 0 as long as both firms assign a “weight” lower than 2

3 to profits.12

5.3 The Kreps-Scheinkman model

There exists a marked tension between the models of Cournot and Bertrand compe-
tition. While the mechanism assumed in the Bertrand setup (i.e. price competition),
has more empirical support, the prediction of the Cournot model (i.e. oligopolis-
tic rents exist), seems more realistic. In a famous article, Kreps and Scheinkman
(1983) reconcile these conflicting intuitions in a sequential setup, where they pro-
vide a model in which firms reap oligopolistic rents even though they compete in
prices. In this section we introduce the incomplete preferences discussed in the pre-
vious two subsections into the Kreps-Scheinkman model. We show that the Kreps-
Scheinkman result is robust to this modification. There is, however, a considerable

12 If we allow the capacites of both firms to differ, then we have

N(GB(K1, K2)) = {(max {1 − K1 − K2 + c, c} , max {1 − K1 − K2 + c, c})}

is a Nash equilibrium provided that the weight on profits is less than one half (that is κ < 1).
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advantage of the present approach: While some complicated off-the-equilibrium
path mixing is necessary to solve the original game of Kreps and Scheinkman
(1983) the incomplete preferences version of the model has straightforward pure
strategy equilibria.

In the first stage of the game the two competing firms simultaneously build their
capacities, incurring a cost c for each unit. Subsequently, each firm can produce a
homogenous good up to its capacity level at zero marginal cost. Having observed the
capacities both firms compete in the market by setting prices. The market demand
is 1 + c − p as long as this expression is positive and 0 otherwise. The firms share
the demand as explained above in the discussion of Bertrand competition. The only
difference between this model and that of Kreps and Scheinkman (1983) is that
the firms are not only motivated by profits but also by sales and revenues; they
have the same type of incomplete preferences as discussed above. We denote the
resulting game as GKS , and a subgame that obtains after firm i chooses capacity
Ki, byGKS(K1,K2).A strategy of firm i = 1, 2 in this game consists of a capacity
Ki ≥ 0 and a functionfi : R

2
+ → R+ that specifies a price for everyGKS(K1,K2).

As is standard, we call a strategy profile a subgame perfect Nash equilibrium, if it
induces a Nash equilibrium in every subgame.

Proposition 1. The set of all subgame perfect Nash equilibria of GKS consists of
all (K1, f1,K2, f2) such that

1
2

(1 − Kj) ≤ Ki ≤ 1 − Kj and fi(Ki,Kj)

= max{1 − Ki − Kj + c, c}, i, j = 1, 2, j �= i.

Before proving this proposition we need to remark that in games with incom-
plete preferences there can be action profiles that survive backward induction even
though they are not subgame perfect Nash equilibria. For instance, consider the
game presented in Figure 3.

In this game player 1 has two objectives (and hence incomplete preferences)
while player 2 has complete preferences. Observe that the strategy profile raR
survives backward induction, but that raR is not a Nash equilibrium, for player 1
is better off playing lL. Since the focus of the present paper is on static games, we
will not pursue this matter further here. Suffice it to say that Proposition 1 cannot
be proved by backward induction; we need to check directly if the strategy profiles
in Proposition 1 induce Nash equilibria in every subgame.13

Proof of Proposition 1. Let us first show that indeed all action profiles named
in Proposition 1 are subgame perfect Nash equilibria. Pick any (K1, f1,K2, f2)
that satisfies the conditions given in Proposition 1. We need to show that by de-
viating from its choice of K1, f1 firm 1 can neither raise sales nor profits without
lowering the other for the given K2, f2. Suppose an alternative strategy K ′, f ′

that raises sales or profits while keeping the other at least constant existed. Since

13 The game in discussion actually belongs to a certain class of games with incomplete preferences
in which backward induction can be used to solve for subgame perfect Nash equilibria, to define this
class and give the proof would however go beyond the scope of this paper. Questions like this one will
be dealt with in a companion paper on dynamic games.
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Figure 3

v1(K1, f1,K2, f2) = K1
14 we need to have K ′ ≥ K1. Keeping firm 2’s strat-

egy fixed this again implies that f2(K ′,K2) = max(c, 1 − K ′ − K2 + c) ≤
1 − K1 − K2 + c = f2(K1,K2) or in words firm 2 will not raise its price given
firm 1’s altered strategy. We proceed by distinguishing three cases: The price firm
1 would charge in subgame GKS(K ′,K2) : f ′(K ′,K2) might be higher equal or
lower than f1(K1,K2), the price firm 1 charges according to the given strategy
profile (K1, f1,K2, f2).

Case 1. f ′(K ′,K2) > f1(K1,K2). Since f1(K1,K2) = f2(K1,K2) ≥
f2(K ′,K2) firm 1 charges a higher price than firm 2 and only faces the resid-
ual demand 1 − K2 − f ′(K

′
,K2) < K1. So under this deviation sales decrease

and we can rule out such a deviation. Case 2: If f ′(K ′,K2) = f1(K1,K2) the firm
spends more on building capacity while selling the same quantity, so we can rule
out this case. Case 3: Observe that if f ′(K ′,K2) < f1(K1,K2) for all deviations
f ′,K ′ there exists a deviation f ′′,K ′′ that is at least as good for firm 1 and has
f ′′(K ′′,K2) = 1 −K ′′ −K2 + c (if this equation does not already hold for f ′,K ′

price can either be raised or capacity reduced to increase profits while keeping the
quantity sold constant). But this means we need to find some K ′′ ≤ 1 − K2 such
that (K ′′, (1 − K ′′ − K2)K ′′) > (K1, (1 − K1 − K2)K1). In our discussion of
Cournot equilibria we saw that no such deviation exists. So we conclude that in-
deed all strategy profiles named in Proposition 1 are Nash equilibria. We can draw
the argument that any of these strategy profiles induces a Nash equilibrium in any
proper subgame GKS(K1,K2) from our discussion of Bertrand competition.15 So
we conclude that indeed all the strategy profiles defined in Proposition 1 subgame
perfect equilibria.

14 Observe the slight change in notation: the functions vi and πi now map vectors of two real variables
(K1, K2) and two functions f1, f2 to the reals.

15 This was actually only shown for K1 = K2 ∈ [0, 1]; the generalization needed here is easy.
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We only need to check that we did not overlook any subgame perfect
Nash equilibria. First, again by our calculation of Bertrand equilibria we do
know that in any proper subgame GKS(K1,K2) there is a unique Nash
equilibrium{(p1, p2) : pi = max{1 − Ki − Kj , c}} . It follows that for any al-
ternative candidate of a subgame perfect Nash equilibrium (K1, f1,K2, f2) we
must have that fi(Ki,Kj) = max{1 − Ki − Kj + c, c}. Taking this into account
the firms’ utility vectors reduce to the same payoff vectors we had specified in the
Cournot game. And we saw above that

{
(K1,K2) : 1

2 (1 − Kj) ≤ Ki ≤ 1 − Kj

}
is the set of Cournot equilibria. So indeed Proposition 1 describes the set of all
Nash equilibria. ��

Proposition 1 shows that the Kreps-Scheinkman compromise between quantity
and price competition translates to the case where firms have multiple objectives,
profits and sales.As in the case of firms motivated only by profits, the outcomes of the
Cournot model of Section 5.1. and the two stage game of capacity and price setting
are equivalent given the present variation of the firms objectives. One advantage
of the incomplete preference formulation of the Kreps-Scheinkman model is that
it has a pure strategy equilibrium, while the solution of the original model depends
on some rather complex mixing off-the-equilibrium path.

5.4 Owners and mangers in the Kreps-Scheinkman model

Following the literature on the objectives of the firm more closely we can actually
single out one of all these equilibrium outcomes, the classical Cournot equilibrium.
We investigate the option that the quantity and the price of a firm need not be set by
the same agent. They might be set by different agents with different preferences.
Actually, a large part of the literature on the goals of firms focuses on the possible
differences between the goals of owners and managers. It is generally held that
owners wish to maximize profits, while there remains much larger debate around
the goals of managers. It is furthermore typically assumed that owners set up the
game for managers which then make the day to day decisions. Following this
tradition, it seems warranted that we introduce two different agents in the above
formulation of the Kreps-Scheinkman model. We assume that capacities are set
by profit maximizing owners while managers with incomplete preferences over
profits and sales choose prices.16 It is easy to see that in this modified game the set
of subgame perfect Nash equilibria reduces to

{
(K1, f1,K2, f2) : Ki =

1
3

and fi(Ki,Kj)

= max{1 − Ki − Kj + c, c}, i, j = 1, 2, j �= i

}
.

16 In this model we ignore the contractual stage of the game. This should be more carefully adressed
elsewhere where strategic delegation matters would be discussed.
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The Nash equilibrium outcome is then found as:

(K1, f1(K1,K2),K2, f2(K1,K2)) =
(

1
3
,
1
3

+ c,
1
3
,
1
3

+ c

)
,

which is also the Nash equilibrium outcome in the original Kreps-Scheinkman
model and of the classical Cournot model. So, we obtain the same prediction as
Kreps and Scheinkman (1983), albeit in a slightly different setup. By introducing
two different decisionmakers for the two stages of the game and by assuming that
the second decision maker, the manager, has incomplete preferences (in the sense
of having two objectives, profits and sales), we find that the unique pure strategy
subgame perfect equilibrium of the resulting game induces the classical Cournot
equilibrium outcome.17

6 Remarks on the existence of equilibrium

A few remarks on the existence of equilibria for games with incomplete preferences
are in order. In this section we compare and discuss the two prevalent approaches in
the literature for establishing conditions under which games with incomplete pref-
erences have equilibria. We start by the observation that given Theorem 1, we can
simply import existence results for games with complete preferences to the theory
of games with incomplete preferences. If we can show that some completion of a
game has an equilibrium, then the game itself has an equilibrium.With representable
preferences, linear completions provide a natural starting point, since they are easy
to calculate. And indeed this technique is applied in the literature on multicriteria
decision-making to establish conditions under which equilibria exist.18

To obtain completions that are covered by some suitable fixed point theorem,
these papers assume in general that there exists some β ∈ ∆+ such that, for each
player i, the function βiui is quasiconcave in her own action. This condition guar-
antees that, in the completion Gβ , the best response correspondence of each player
is convex-valued, which again makes standard fixed point arguments applicable. In
general, however, this condition is not easy to verify, for the set of quasiconcave
functions is not closed under addition, and hence it does not suffice to check that
every component of the utility of each player is quasiconcave in her own action.
A more restrictive but substantially more operational requirement is, on the other
hand, that all component utilities ui are concave in the players’own action, for then
βiui must be concave (and therefore quasiconcave) in the players’ own action for
all βi � 0.

We should also note that there is an alternative approach to establish existence of
equilibria. Shafer and Sonnenschein (1975), for instance, focus directly on games

17 Our prior discussion on the extent of incompleteness of a managers preferences that is necessary
for (max {1 − 2K + c, c} , max {1 − 2K + c, c}) to be an equilibrium, applies also here. Again, it
is not necessary that managers cannot rank any two price profiles such that one yields the firm higher
sales the other higher profits.

18 Ding (2000), Wang (1991), and Yu and Yuan (1998) among others apply this technique in their
existence proofs.
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with incomplete preferences in which the preferences of each player are convex in
her own action.19 Below we illustrate the difference between the two approaches
to the existence of equilibrium by means of two examples. The first is an example
of a game to which the Shafer-Sonnenschein existence theorem applies, while no
linear completion of this game has a Nash equilibrium. On the other hand, the
Shafer-Sonnenschein existence theorem does not cover the game considered in the
second example, but we can establish the existence of an equilibrium using the
linear completion method.

Example 1. Consider a two player game G = {(Ai, ui)i=1,2} where Ai := {x ∈
[0, 1]2 : x1 + x2 ≤ 1} for i = 1, 2, and

u1(x, y) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
x2

1

x2
2

)
, if y1 = 1

2
(−| 12 − x1|

0

)
, otherwise,

u2(x, y) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−| 12 − y1|
0

)
, if x1 = 1

2
(
y2
1

y2
2

)
, otherwise.

Clearly both u1 and u2 are continuous and quasiconcave in the respective own ac-
tion, and A1 and A2 are both convex and compact, so by the Shafer-Sonnenschein
existence theorem there exists an equilibrium of G. (Indeed, ((.3, .7), ( 1

2
1
2 )) con-

stitutes a Nash equilibrium.) Observe, however, that for no β ∈ ∆+ is β1u1 quasi-
concave in x and we even have that N(Gβ) is empty for all β ∈ ∆+. 20

Example 2. Take a two player game G = {(Ai, ui)i=1,2} with A1 := [0, 1]2,
A2 := [0, 1],

u1(x, y) :=
(
x2

1 + x2
2 + y

2x1x2

)
and u2(x, y) := |x1 + x2 − y|.

Observe that u1 is not quasiconcave in x. Holding player 2’s action fixed observe

that player 1’s utility from choosing either (1, 0) or (0, 1) is

(
1
0

)
, whereas the

utility of playing the linear combination ( 1
2 ,

1
2 ) is

( 1
2 + y

1
2

)
. On the other hand,

for β = (1
2 ,

1
2 ), the function βu1(·, y) is quasiconcave for all y. Therefore Gβ , and

hence G, has an equilibrium.

19 Actually their requirement is even more general than that, but for the purpose of our discussion we
only cover the case of convex preferences.

20 To see this, observe that for any β ∈ ∆+ the game Gβ reduces to some kind of matching-pennies
game. For any β ∈ ∆+, the x1,y1− best responses of both players map to the set {0, 1

2 , 1}. But player

1 prefers an extreme action (0 or 1) if, and only if, player two plays the middle ( 1
2 ). Player 2, on the

other hand, prefers extreme actions if, and only if, also player 1 plays an extreme action.
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7 Mixed extensions

7.1 Mixed strategy equilibria

In this section we investigate the mixed strategy extension of normal form games
with incomplete preferences. We will see that, with some additional arguments,
Theorem 2 in fact yields a full characterization of the set of all mixed strategy
equilibria.

As in the standard context of games with complete preferences, we define the
mixed strategy extension of a game G =

{
(Ai, u

i)i∈I

}
(with each Ai being a

non-empty subset of a metric space and each ui being bounded and Borel mea-
surable) as Gmix :=

{
(�Ai, U

i)i∈I

}
, where ∆Ai is the set of all Borel prob-

ability measures on Ai and U i is a real function on �A := ×
i∈I

�Ai defined by

U i(σ) =
∫

A
uidσ for some ui : A → R

mi . A strategy profile σ is a mixed
strategy Nash equilibrium of G =

{
(Ai, u

i)i∈I

}
, if it is a Nash equilibrium of

Gmix =
{
(�Ai, U

i)i∈I

}
.21 We denote the set of mixed strategy Nash equilibria

of a game G by Nmix(G).

Theorem 4 (Shapley, 1959; Aumann, 1962). Let G =
{
(Ai, u

i)i∈I

}
be a finite

game. Then
⋃{

Nmix(Gβ) : β ∈ ∆+
}

= Nmix(G).

Proof. By Theorem 2 we readily have
⋃{

Nmix(Gβ) : β ∈ ∆+
} ⊆ Nmix(G).

Moreover, since all Ai are finite, for all maximal points x in ui(Ai, aj),
there exists a βi � 0 such that x ∈ maxy∈ui(Ai,aj) β

iy. Consequently⋃{
Nmix(Gβ) : β ∈ ∆+

}
= Nmix(G). ��

Theorem 4 is closely related to the earlier results of Shapley (1959) andAumann
(1962). Aumann shows that σ is a mixed strategy Nash equilibrium of a finite game
G = {(Ai,�i)i∈I} if, and only if, σ is a Nash equilibrium of a completion of G,
such that each completed preference relation admits a von Neumann-Morgenstern
representation.22 This result stands in between Theorems 1 and 4. Given that Au-
mann assumes certain properties about each player’s preferences, he does not need
to look at all completions (as in Theorem 1) but only at those that obey the von
Neumann-Morgenstern axioms to determine the set of all Nash equilibria. Theo-
rem 4 imposes more assumptions on the preferences of the players, in particular
we assume finite dimensional representability, and thus a smaller set of comple-
tions suffices to capture all Nash equilibria: we find that an action profile is a Nash
equilibrium in a game with incomplete preferences if, and only, if it is a Nash equi-
librium in a linear completion of that game. Shapley’s (1959) result only covers

21 Aumann’s (1962) definition of a mixed strategy equilibrium in a game with incomplete preferences
reduces to the present one, when the preferences of each player can be represented by a finite dimensional
utility function.

22 Aumann ’s (1962) result is actually more general than that, the result, for instance, does not assume
finite dimensional representability of the incomplete preference relations. The precise statement of his
result would go beyond the scope of this paper.
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two-person zero-sum matrix games. He furthermore assumes a peculiar kind of
preferences that directly admit finite dimensional representation, so that also in his
case linear completions of the game suffice to describe the set of all Nash equilibria.

We conclude by noting that a version of Theorem 4 still holds when we relax
the finiteness assumption:

Theorem 5. Let G =
{
(Ai, u

i)i∈I

}
be a game such that each Ai is a convex

subset of some finite dimensional Euclidean space. Then
⋃{

Nmix(Gβ) : β ∈ ∆+
} ⊆ Nmix(G) ⊆

⋃{
Nmix(Gβ) : β ∈ ∆

}
.

The proof of Theorem 5 is analogous to the proof of Theorem 2, and is therefore
omitted here.

7.2 Trembling hand perfect equilibria

Since Nash equilibrium sets of games with incomplete preferences can be large, it is
of interest to consider refinements of equilibria such as “trembling hand perfection”.
As in the standard theory, we say that a strategy profile σ in a finite strategic
game G = {(Ai, u

i)i∈I} is a trembling hand perfect equilibrium, if there exists a
sequence (σk)∞

k=0 of completely mixed strategy profiles that converges to σ and
σi ∈ BRui(σk

−i) for all k ∈ N and all i ∈ I.
While in the context of games with complete preferences it is trivial to show

that all trembling hand perfect equilibria are Nash equilibria, this implication does
not hold true for games with incomplete preferences. Consider, for instance, the
following two-player-game:

L R

A
(1
1

)
, 1

( 1
2
0

)
, 0

B
(0
1

)
, 1

(1
1

)
, 0

The row player (1) has incomplete preferences over the outcomes; her prefer-
ences are represented by the two-component-vectors. The preferences of the col-
umn player (player 2), on the other hand, are complete. It is easily checked that the
only Nash equilibrium in this game is (A,L). However (B,L) is trembling hand
perfect according to the above definition. To see this, take any sequence of com-
pletely mixed strategies (σk)∞

k=0 that converges to σ, where σ1(B) = 1 = σ2(L).
Given that player 2 plays the completely mixed strategy σk

2 player 1 compares
U1(A, σk

2 ) = (1 − 0.5σk
2 (R), 1 − σk

2 (R)) to U1(B, σk
2 ) = (σk

2 (R), 1). For no
σk

2 (R) > 0 can these utilities be ranked. Therefore we have that B ∈ BRu1(σk
2 )

(and of course {L} = BRu2(σk
1 )). We conclude that (B,L) is a trembling hand

perfect equilibrium, while it is not even a Nash equilibrium.
Since we are interested in the concept of trembling hand perfection only as a

refinement of Nash equilibrium, in what follows we restrict our attention to trem-
bling hand perfect Nash equilibria. To state the following result we define a game
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G′ := {(Ai, v
i)i∈I} a representable completion of a game G = {(Ai, u

i)i∈I} if
for every player i the utility vi : A → R represents a completion of the preferences
represented by ui.

Lemma 3. Let G = {(Ai, u
i)i∈I} be a finite game. If σ is a trembling hand

perfect equilibrium of some representable completion of G, then σ is a trembling
hand perfect Nash equilibrium in G.

Proof. Let the strategy profile σ be a trembling hand perfect equilibrium of some
representable completion G′ := {(Ai, v

i)i∈I} of G. By Theorem 1 σ is a Nash
equilibrium of the game G. On the other hand, since σ is a trembling hand perfect
equilibrium of G′, there exists a sequence (σk)∞

k=0 of completely mixed strategy
profiles such that σi ∈ BRui′(σk

−i) for all i, k and σk → σ. But since vi a com-
pletion of ui, we have σi ∈ BRui(σk

−i) for all i and k. So σ is a trembling hand
perfect Nash equilibrium of G. ��

Corollary 1 is a direct consequence of Lemma 3.

Corollary 1. Let G = {(Ai, u
i)i∈I} be a finite game. Then G has a trembling

hand perfect Nash equilibrium.

Unfortunately, however, the converse of Lemma 3 is not true: Trembling hand
perfect Nash equilibria in games with incomplete preferences need not be trembling
hand perfect equilibria in any completion of that game. Consider, for instance, the
strategy profile σ1(B) = 1

2 , σ2(L) = 1 in the following game:

L R

A
(0
2

)
, 1

(0
3

)
, 0

B
(1
1

)
, 1

(0
2

)
, 0

First, notice that σ is a Nash equilibrium in this game. Secondly, it is also
trembling hand perfect. For, since U1(A, σk

2 ) =
(
0, 2 + σk

2 (R)
)

and U1(B, σk
2 ) =

(1 − σk
2 (R), 1 + σk

2 (R)) are not comparable we have A,B ∈ BRu1(σk
2 ) for any

completely mixed strategy profile σk
2 , and hence σ is a trembling hand perfect

Nash equilibrium. We now argue that in any completion of G for which σ is a
Nash equilibrium playing B is a weakly dominated strategy for player 1. For any
such completion we must have (A,L) ∼′

1 (B,L) since player 1 is playing A
and B with positive probability in the Nash equilibrium σ. On the other hand,
u1(A,R) > u1(B,R) so for any completion of the preferences of player 1 must
have (A,R) �′

1 (B,R).We conclude thatB indeed is a weakly dominated strategy
in any completion of G for which σ is a Nash equilibrium. Therefore, there is no
completion of G such that σ is trembling hand perfect in that completion.

Observe that this example arises only because definition of mixed strategy
equilibria for games with incomplete preferences does not require that players be
indifferent between all actions that they play with a positive probability in equilib-
rium. All these actions need to be best responses to all other players strategies, but
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in the case of incomplete preferences, ai, a
′
i ∈ BR(a−i) does not imply ai ∼i a

′
i,

for the two actions might be unranked.
As in the context of complete preferences, it can be shown for games with

incomplete preferences that a strategy profile in a finite two-player game is a trem-
bling hand perfect Nash equilibrium if, and only if, it is a Nash equilibrium in which
neither player plays a weakly dominated strategy.23 This is proved in the same way
as it is proved under the assumption of completeness of preferences.

8 Conclusion

The goal of this paper was to develop an operational theory of games with incom-
plete preferences, and to demonstrate the applicability of this theory by means of
some economic examples. We started out by showing a fundamental similarity be-
tween the theory of games with incomplete preferences and the existing theory of
games with complete preferences. In Theorem 1 we showed that for every Nash
equilibrium of a game with incomplete preferences, there exists a completion of
that game such that this action profile is a Nash equilibrium of the completed game.
This result permits us to move back and forth between games with complete and
incomplete preferences. For the calculation of equilibrium sets, we can choose
whichever form of the game is more convenient, with complete or incomplete pref-
erences. Equivalently, we can without loss of generality model the preferences of
some players as incomplete, if we do not know them precisely.

Restricting our attention to games with preferences that can be represented by
vector valued utility functions, we can obtain more operational results. In partic-
ular, we showed here that under certain restrictions on the players action spaces
and preferences, linear completions of a game suffice to characterize the set of
all equilibria. Finite mixed strategy games do, for example, fit these restrictions,
thereby allowing one to characterize the set of all equilibria in mixed strategies of
a finite game in terms of its linear completions. Unfortunately, it turns out that with
respect to some concepts it does not suffice to look at the completions of a given
game. For instance we cannot characterize all trembling hand perfect equilibria by
using the completion method.

We discussed our results at the hand of three well-known models of oligopolistic
competition in which firms have incomplete preferences over profits and sales. We
established a maximal set of equilibria in the case of quantity competition between
firms and we showed that the classical nonexistence problem of capacity constrained
Bertrand competition can be solved by assuming that firms cannot rank all sales
and output profiles. Finally, we showed that our pure strategy equilibrium solution
of capacity constrained Bertrand competition yields the same result as the mixed
strategy solution in the context of the celebrated sequential model of quantity and
price competition by Kreps and Scheinkman (1983).

23 The definition of weak domination is a direct application of the standard definition to games
with incomplete preferences. We say that a strategy σi weakly dominates another strategy σ′

i if
ui(σi, σ−i) ≥ ui(σ′

i, σ−i) for all σ−i and ui(σi, σ
′
−i) > ui(σ′

i, σ
′
−i) for at least one σ′

−i. A
strategy is called weakly dominated if there exists another strategy that weakly dominates it.
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With the exception of our discussion of the incomplete preferences version
of the model by Kreps and Scheinkman (1983), the present study only covered
normal-form games. In our treatment of the latter model, we pointed out in section
5.3. that a set of peculiar problems arise in extensive form games with incomplete
preferences. In particular, in this context we can no longer use backward induction to
solve for subgame perfect equilibria. Further investigation of extensive form games
is needed to make the theory of games with incomplete preferences applicable to
a wider range of economic problems. It would also be interesting to study games
with incomplete preferences and incomplete information.
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Summary. A direct construction of concave utility functions representing convex
preferences on finite sets is presented. An alternative construction in which at first
directions of supergradients (“prices”) are found, and then utility levels and lengths
of those supergradients are computed, is exhibited as well. The concept of a least
concave utility function is problematic in this context.
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1 Introduction

Richter and Wong have recently [10] constructed a concave utility function repre-
senting a “convex” preference ordering � defined on a finite subset K of Rl, using
duality (a Theorem of the Alternative). In the present note we exhibit a simple,
direct construction of such a utility. A two-step alternative construction, in which
at first directions of gradient vectors (supergradients, “prices”) are determined, and
at the second step utility levels and lengths of those supergradients are computed,
is exhibited as well. Furthermore, we show that in many cases there is no least
concave utility function representing the given preference ordering.

Thus, let � denote a complete, transitive and reflexive binary relation on K.
Richter and Wong [10] show that a testable “convexity” condition (condition G
in Section 2) is sufficient (its necessity is obvious) for the existence of a concave
(i.e., a restriction to K of a concave function defined on all of Rl) utility function

� I am indebted to an anonymous referee, Marcel K. Richter and Kam-Chau Wong, for many valuable
remarks and suggestions.
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representing � on K. Richter and Wong assign to each point in K a real number
(which eventually turns out to be the utility level at this point) and a real vector
(which plays the role of the gradient, or rather of a supergradient, of the utility
function at the point). A system of linear inequalities involving these numbers and
vectors is introduced, and existence of solutions to this system (condition E in
Sect. 5) is shown to be equivalent to condition G, via a duality argument, involving
the Theorem of the Alternative.

A consistent system of linear inequalities may be solved effectively [8]. How-
ever, standard solution methods yield values for all unknowns at once. Both utility
levels and supergradients (for all points) are obtained at one and the same time.
There is a certain redundancy here – the values of the utility function are actually
all that we are after, the supergradients were not asked for. Moreover, the geometry
of the preference relation is not clearly visible during the solution process.

We suggest a procedure for computing utility levels successively from the bot-
tom up, one indifference level at a time. The inductive argument is similar to ones
given in [4] and in [9]. While this procedure may not be computationally superior
to the one put forward in [10], it possesses a geometric-intuitive appeal. Knowl-
edge of supergradients in addition to the values has the advantage of facilitating
an easy extension of the utility function from K to all of Rl. However, one may
either calculate supergradients once utility levels are determined, or, alternatively,
one may consider the upper boundary of the convex hull in Rl+1 of the graph of
the utility functions defined on K as being the graph of a concave function defined
on the convex hull of K. (Such a function is easily extendible into all of Rl.) The
methods are compared in more detail in Remark 1, Section 5.

An alternative procedure is suggested, where we start by determining, for each
point x in K, a vector perpendicular to a hyperplane supporting the convex hull
of the upper set {x ∈ K : y � x} at x. Interpreting these vectors as prices, we
realize that the original ordering � is an extension of the resulting (indirectly)
revealed preference ordering. Employing a variant of the Varian algorithm [12], (a
modification of the Afriat algorithm [1]), we assign lengths to these vectors and
scalar values (levels) to the points of K, so as to obtain a concave utility function
(given as a minimum of affine functions, see (4), (22)), whose value at a point of
K is given by the computed level, and the appropriately normalized price vectors
are supergradients. Once again, this method has a geometric-intuitive appeal and
proceeds successively. The two methods may be thought of as each emphasizing
“one half” of the data called for in [10] (utility levels and supergradients).

Least concave utility functions play an important role both in the mathematical
theory and in economic applications ([3–5]). In Section 4 we show that in the
finite case least concave utilities do not necessarily exist. Actually, in many cases
there exist no minimal elements with respect to the relation “more concave than”
(introduced in [3]). Even when minimal elements do exist, they are not unique
(unlike the infinite case where least concave utility functions are unique up to
increasing affine transformations). Put differently, the minimal elements are not
cardinal.

One might inquire as to what happens to the constructed utility functions when
the set K gets larger, eventually becoming dense in a convex subset Ω of Rl.
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Unfortunately, one cannot say much in an explicit form – the utility functions
(or their supergradients) should satisfy certain uniform boundedness conditions
similar to those put forward in Section 2 of [4] or to the A-restricted multipliers
condition introduced in [7]. We will elaborate on these issues in Section 5.

In the next section we describe more precisely the procedures suggested for
constructing utility functions. The following section deals with the proofs. Least
concave utility functions are discussed in Section 4.

It should be clear that the contribution of the present note is rather technical.
Here, as in many other instances, the conceptual breakthrough is due to Ket Richter
(with his collaborators).

2 Descriptions

Let � denote a complete, transitive and reflexive binary relation on K such that

CONDITION G :
For all n ≤ l + 1, for all distinct x, y1, · · · , yn ∈ K, and for

all real numbers λ1, · · · , λn > 0 :
if
∑n

i=1 λi = 1 and x =
∑n

i=1 λiy
i,

then either (a) or (b) holds :
a) x ∼ yi for all i = 1, · · · , n,

b) x � yi for some i = 1, · · · , n.

A function u : K → R is concave if for all y, x1, · · · , xn ∈ K: if y =
∑n

i=1 λix
i

for some λi ≥ 0 with
∑n

i=1 λi = 1, then u(y) ≥ ∑n
i=1 λiu(xi). Note that u is

concave on a finite K if and only if there exists a concave extension v : Rl → R
with v|K = u, and that we may restrict attention to the case n ≤ l + 1 (compare
[10]). Theorem 1 of [10] asserts that if the ordering � satisfies condition G then
there exists a concave utility function on K representing � (and conversely).

Let us denote the (finitely many) indifference classes by L1, · · · , Lm (so that
x � y if and only of x ∈ Li, y ∈ Lj with i ≥ j). A (non-concave) utility
function w representing � is given by w(x) = j for x ∈ Lj . For 1 ≤ k ≤ m,
set wk(x) = min(w(x), k), and let �k denote the preference relation determined
by wk. Theorem 1 of [10] would follow, once we proved that for every 1 ≤ k ≤
m there exists a concave function uk on K representing the preference �k. For
constructing uk, we consider, for every 1 ≤ k ≤ m, the set Ck of those points
x ∈ K such that x is a strict convex combination of n ≤ l+1 elements y1, · · · , yn

of K for which the possibility (b) of condition G holds with respect to �k, i.e.,
x �k yi for some i = 1, · · · , n (see Fig. 1). In the next section we prove the
following proposition.

Proposition 1. There exist real numbers U1, · · · , Um, such that: (i) for every
1 ≤ k ≤ m the functionuk defined onK byuk(x) = Uj forx ∈ Lj , 1 ≤ j ≤ k−1,
uk(x) = Uk if x ∈ Lj , k ≤ j ≤ m, is a concave utility function representing
the preference �k on K, and (ii): if j ≤ k, x ∈ Cj , x =

∑n
i=1 λiy

i with
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Figure 1

λ1, · · · , λn > 0 and
∑n

i=1 λi = 1, then

uk(x) >
n∑

i=1

λiuk(yi). (1)

In particular, the function um is a concave utility function representing � (=�m)
on K.

The (easy) inductive proof is constructive.

In the construction described above we compute directly the utility levels with-
out bothering about (super)gradients.We now suggest an alternative construction, in
which directions of supergradients are determined first. Set Mj = conv(∪m

k=jLk),
where “conv(S)” denotes the convex hull of a set S. With every point x ∈ Lj we
may associate a hyperplane supporting Mj at x. As the next proposition asserts, we
may find a hyperplane separating x strongly from the set {y : y � x}, hence also
from its convex hull Mj+1.

Proposition 2. For every x ∈ K there exists a vector p ∈ Rl such that (i) 〈 p, y −
x〉 ≥ 0 for every y � x, and (ii) 〈 p, y − x〉 > 0 for every y � x.

Thus we may associate with every x ∈ K a vector satisfying (i) and (ii) (see
Fig. 2, where K and the ordering � are the same as in Fig. 1). We fix such a vector
and denote it by p(x). We may normalize the vector p(x) to be a unit vector.

Figure 2
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The vectors p(x) might be loosely interpreted as price vectors, the collection
of pairs (p(x), x) (for x ∈ K) may be viewed as an expenditure configuration ([1,
7]), and the following holds:

Proposition 3. There exist positive numbers λi, Ui for 1 ≤ i ≤ m such that

Ui < Uj if i < j, (2)

and for every x, y ∈ K, x ∈ Li, y ∈ Lj we have

Uj ≤ Ui + λi〈p(x), y − x〉. (3)

It is well known that Proposition 3 implies that the function u(x) defined as

u(x) = min1≤i≤mminz∈Li
ui + λi〈p(z), x − z〉 (4)

is a concave utility function representing � on K (such that u(x) = ui if x ∈ Li).
The details will be explained in Section 3.

3 Proofs

Proof of Proposition 1 The claim is obviously true for k = 1. For k = 2 set
u2(x) = 0 for x ∈ L1 and u2(x) = 1 otherwise, so that U1 = 0, U2 = 1. Suppose
that k < m and that there exists a function uk satisfying the induction hypothesis.
Set uk+1(x) = uk(x) = Uj for x ∈ Lj , 1 ≤ j ≤ k. There are finitely many points
x ∈ Cj , j ≤ k and every such point x may be written in finitely many ways in
the form x =

∑n
i=1 λiy

i with n ≤ l + 1, λ1, · · · , λn > 0,
∑n

i=1 λi = 1. Set
Il = {i : yi ∈ Lj , j ≤ k} and Iu = {i : yi ∈ Lj , j ≥ k + 1}. By the induction
hypothesis,

uk(x) >
n∑

i=1

λiuk(yi) =
∑
i∈Il

λiuk(yi) +
∑
i∈Iu

λiuk(yi) (5)

=
∑
i∈Il

λiuk(yi) + Uk

∑
i∈Iu

λi

We may find a real number Uk+1 > Uk such that all the inequalities

uk(x) >
∑
i∈Il

λiuk(yi) + Uk+1

∑
i∈Iu

λi (6)

will hold. Set uk+1(x) = Uk+1 for x ∈ Lp, p ≥ k + 1. It follows from (5)
and (6) that (1) holds for x ∈ Cj , j ≤ k. The function uk+1 is clearly a utility
representation for the preference �k+1 on K. If x ∈ Ck+1 then there exists at least
one index i ≤ n such that yi ∈ Lj with j ≤ k and (1) follows (with k replaced by
k + 1).

To prove concavity of uk+1, assume that y, x1, · · · , xn ∈ K and y is a convex
combination of x1, · · · , xn. Set

Λ = {λ = (λ1, · · · , λn) : λi ≥ 0,
n∑

i=1

λi = 1, y =
n∑

i=1

λix
i} (7)
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ThenΛ is a compact convex polyhedron, hence a convex combination of its (finitely
many) extreme points Λe. Let λ = (λ1, · · · , λn) be an element of Λe. Then at
most l + 1 of the numbers λ1, · · · , λn are non-zero. Assume, on the contrary, that
the set I = {i : λi > 0} contains more than l + 1 elements. Then the vectors
{xi : i ∈ I} are affinely dependent, so that there exist real numbers αi : i ∈ I ,
not all zero, such that

∑
i∈I αi = 0,

∑
i∈I αix

i = 0. Setting αi = 0 if i �∈ I
and choosing t > 0 small enough, we see that λ+ = (λ1 + tα1, · · · , λn + tαn)
and λ− = (λ1 − tα1, · · · , λn − tαn) are two distinct elements of Λ with λ =
1
2 (λ+ + λ−), contradicting λ ∈ Λe. Hence every λ ∈ Λ may be written in the
form λ =

∑q
p=1 βpλ

p where βp > 0, 1 ≤ p ≤ q,
∑q

p=1 βp = 1, and at most l+1
of the numbers λp

1, · · · , λp
n are non-zero, where λp = (λp

1, · · · , λp
n), 1 ≤ p ≤ q.

It follows that for every function v defined on K,

n∑
i=1

λiv(xi) =
q∑

p=1

βp

n∑
i=1

λp
i v(x

i) (8)

so that if we prove that v(y) ≥ ∑n
i=1 λ

p
i v(x

i) for every 1 ≤ p ≤ q, then v(y) ≥∑n
i=1 λiv(xi). Thus it suffices to prove that uk+1(y) ≥ ∑n

i=1 λiuk+1(xi) for
n ≤ l+1. If y ∈ ∪m

j=k+1Lj then uk+1(y) ≥ uk+1(x) for all x ∈ K. If y ∈ Cj for
j ≤ k then uk+1(y) ≥ ∑n

i=1 λiuk+1(xi) follows from the inequality (1), proved
already for uk+1. If y ∈ Lj \ Cj for j ≤ k then uk+1(y) = uk+1(xi) for all
1 ≤ i ≤ n. ��
Proof of Proposition 2 Let x ∈ K be non-maximal with respect to � (otherwise
there is nothing to prove). SetU = {y−x : y � x} and denote by C the convex cone
generated by the finite collection {x − z : z ∼ x}. We claim that conv(U) ∩ C =
∅. Otherwise, there exist points y1, · · · , yn, z1, · · · , zq and non-negative numbers
α1, · · · , αn, β1, · · · , βq such that yi −x ∈ U for 1 ≤ i ≤ n, zj ∼ x for 1 ≤ j ≤ q,∑n

i=1 αi = 1, and
∑n

i=1 αi(yi − x) =
∑q

j=1 βj(x − zj). Hence

n∑
i=1

αiyi +
q∑

j=1

βjzj =

⎛
⎝1 +

q∑
j=1

βj

⎞
⎠x. (9)

At least one of the coefficients αi is positive, and we may assume without loss
of generality that all the coefficients αi, βj appearing in (9) are positive. Hence x
is a strict convex combination of y1, · · · , yn, z1, · · · , zq (here q might vanish) with
yi, zj � x and y1 � x, contradicting condition G, if n + q ≤ l + 1. It is proved in
[10] that condition G implies that x cannot be such a convex combination even if
n + q > l + 1 (see Remark 1 in [10]).

It follows that the compact set conv(U) may be separated strongly from the
convex cone C, so that there exists a vector p ∈ Rl+1 such that 〈p, w〉 > 0 for all
w ∈ U , 〈p, w〉 ≤ 0 for all x ∈ C. Hence 〈p, y〉 > 〈p, x〉 if y � x and 〈p, y〉 ≥ 〈p, x〉
if y ∼ x. ��
Proof of Proposition 3 (i) Note that there exists (constructively, see [8]) a sufficiently
large positive number t such that for every x ∈ K the vector x ∈ K ⊂ Rl+1 given
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by xi = xi + t for 1 ≤ i ≤ l and xl+1 = t − ∑l
i=1 xi has positive components

and is contained in the hyperplane H = {y ∈ Rl+1 :
∑l+1

i=1 yi = (l + 1)t} (thus
K ⊂ H). For every vector p ∈ Rl normalized by

∑l
i=1 pi = 1, define p ∈ Rl+1

by pi = pi + s for 1 ≤ i ≤ l and pl+1 = s. Then all components of p are positive
if s is sufficiently large, and for every p and all x, y ∈ K we have

〈p,x − y〉 = 〈p, x − y〉. (10)

(ii) The construction of p(x) for x ∈ K implies that if y � x then 〈p(x), y〉 ≥
〈p(x), x〉. It follows from (10) that

y � x =⇒ 〈p(x),x − y〉 ≤ 0. (11)

Hence the inequality 〈p(x),x − y〉 > 0 implies that x � y. In other words, if x is
directly revealed strictly preferred to y thenx � y. The inequality 〈p(x),x − y〉 ≥
0 is equivalent by (10) to 〈p(x), x − y〉 ≥ 0. By Proposition 2 this is inconsistent
with y � x, hence x � y. Put differently, if x is directly revealed preferred to y
then x � y.

(iii) Set x�y if x � y. Then (ii) implies that the complete order � defined
on K is an extension (a refinement, in the terminology of [1]) of the revealed
preference ordering determined by the expenditure configuration (p(x),x), x ∈
K. We may now use a variant of the Varian algorithm 3 [12] (a modification of the
Afriat algorithm [1]) and construct inductively, for 1 ≤ i ≤ m, positive numbers
λi, Ui such that (2) and (3) hold. In the construction we also use auxiliary positive
sequences εi and µi with εi strictly decreasing. We start by settingU1 = λ1 = ε1 =
µ1 = 1. Assuming that Uj , λj and εj have been defined already for all 1 ≤ j ≤ i,
the quantities Uj + λj〈p(x),y − x〉 are well defined for all 1 ≤ j ≤ i, x ∈ Lj ,
y ∈ K. To simplify notations, set

ai,j = mink>iminx∈Lj
miny∈Lk

λj〈p(x),y − x〉, (12)

Vi+1 = minj≤iUj + ai,j , (13)

and define

εi+1 = min
(εi

2
,
ai,i

2

)
, (14)

Ui+1 = Vi+1 − εi+1. (15)

Let I(x, y) denote the indicator function (characteristic function) of the set {x, y :
〈p(x),y − x〉 < 0}, and set (using (15))

µi+1 = minj≤iminx∈Li+1miny∈Lj

Ui+1 − Ui

−〈p(x),y − x〉I(x, y), (16)

λi+1 = min(µi+1, λi). (17)

(iv) Statement (ii) of Proposition 2 implies that the quantities ai,j as defined in (12)
are positive. Hence εi > 0 for all i. Note that ai−1,j ≤ ai,j by definition (12), so



98 Y. Kannai

that Uj + ai−1,j ≤ Uj + ai,j (for j < i). Moreover, Ui + ai,i = Vi − εi + ai,i.
Hence (13) implies that

Vi+1 ≥ min(Vi, Vi − εi + ai,i), (18)

so that

Ui+1 ≥ min(Vi − εi+1, Vi − εi + ai,i − εi+1). (19)

But each term in the right hand side of (19) is strictly bigger (by (14) and (15)) than
Ui = Vi − εi, implying that Ui+1 > Ui, so that the inductively defined sequence
{Ui} is a strictly increasing monotone sequence of positive numbers.

(v) It remains to prove (3). By (10) it suffices to verify the inequality

Uj ≤ Ui + λi〈p(x),y − x〉. (20)

for every x, y ∈ K, x ∈ Li, y ∈ Lj .
We distinguish three cases:

(1) If x ∼ y then i = j and the inequality follows from statement (i) in Proposi-
tion 2.

(2) If y � x then x ∈ Lj̃ and y ∈ Lĩ+1 where j̃ = i, ĩ = j − 1, and j̃ ≤ ĩ.

Then by (13) and (15) (with ĩ, j̃ replacing i, j) we know that Uĩ+1 < Vĩ+1 ≤
Uj̃ + λj̃〈p(x),y − x〉.

(3) If x � y then x ∈ Lĩ+1 and y ∈ Lj with ĩ = i− 1 and j ≤ ĩ. If 〈p(x),y − x〉
is non-negative then (20) holds trivially. If 〈p(x),y − x〉 < 0 then I(x, y) = 1
and (16) and (17) imply that

λĩ+1 ≤ Uĩ+1 − Uj

−〈p(x),y − x〉 =
Uj − Uĩ+1

〈p(x),y − x〉 (21)

so that 〈p(x),y − x〉λĩ+1 ≥ Uj − Uĩ+1.

��
Consider now the function u(x) defined over all of Rl by (4). As is well known

(see e.g. [1,7,10]), Proposition 3 implies that u is a concave utility function rep-
resenting � on K. In fact, u is given as a minimum of affine function, hence is
concave. Replacing x by z and y by x in (3), we see from (4) that u(x) = Uj

whenever x ∈ Lj . That u represents � follows from (2).

4 Least concave utility functions

Let X be an arbitrary set, and let � be a preference relation on X . Recall that if u
and v are two utility functions representing � on X , so that u(x) = f(v(x)) where
f = u ◦ v−1 is a real increasing function defined on v(X) (the range of v), we say
that u is more concave than v if f is concave in v(X) [3]. Let U denote the set of
concave utility functions representing � on X . If X is a convex subset of Rl and
� is concavifiable (i.e. U �= ∅), then there exist least elements in U with respect to
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the partial ordering “more concave than” ([3,4]). (Here and in the sequel the terms
“least” and “minimal” with respect to a partial ordering have the same meaning as
in [2].) Least concave utility representations are cardinal and play a role in many
applications, see e.g. [3,4], and [5].

What happens if X contains only a finite number of elements? (Note that if
X ⊂ Rl and � satisfies condition G then the set U is not empty.) Recall that a
utility function v representing � on X is least concave if for every concave utility
function representing � on X there exists a real concave function f defined on the
set v(X) ⊂ R1 such that f is strictly increasing on v(X) and u(x) = f(v(x)) for
all x ∈ X . (If X contains only a finite number of elements then the set v(X) is
finite and and the functions u, v, and f may be regarded as vectors.)

Example 1. Let X be a finite subset of the unit interval. Then there exist least
concave utility functions representing the order �=≥ on X and they are all given
by u(x) = αx + β with α > 0.

Example 2. Set K = {(0, 0), (.5, .5), (0, 1)} ⊂ R2 , and define a preference
ordering on K by (0, 1) � (.5, .5) � (0, 0). Then the function uβ(x) = βx1 + x2
is a concave utility function representing � onK if and only if −1 < β < 1, anduβ1

is more concave thanuβ2 if and only ifβ1 ≥ β2. Every concave utility function for �
on K is obtainable from a certain uβ by an increasing affine transformation. Hence
there exist no minimal (and certainly no least) elements in U . The same applies
more generally if there exists an extreme point of K which is neither maximal nor
minimal with respect to � and is indifferent to no other point of K. As the next
example shows, least concave utility functions may fail to exist in other cases as
well.

Example 3. K = {(0, 0), (1, 0), (.5, 0), (.5, .5), (0, 1)} ⊂ R2 and define a prefer-
ence relation on K by (0, 1) � (.5, .5) � (.5, 0) � (1, 0) ∼ (0, 0). The function
uα : K → R1 defined by uα(0, 0) = uα(1, 0) = 0, uα(.5, 0) = 1, uα(.5, .5) =
α, uα(0, 1) = 2 is concave on K and represents � if 1 < α < 2. Here uα1 is more
concave than uα2 if and only if α1 ≥ α2. Once again, there exist no least elements
in U .

As a way to remedy the difficulty exhibited in Examples 2 and 3, one may try
modifying the relation “more concave than” by considering the convex hull X of
K and extending �. Recall that it is shown in [10] (and explained in Section 1) that
the function u is concave on K if and only if there exists a concave extension of u
to X . Let u, v be two concave functions on X representing � on K such that the
preferences induced by u and v on X coincide. Then the real function f = u ◦ v−1

is well-defined defined on v(X), and we say that umct v if and only if f is concave.
It is easy to see that every function uβ of the type considered in Example 2

is a least element with respect to the relation mct. However, the functions uβ1

and uβ2 are mct incomparable if β1 �= β2. (Similarly, every function uα of the
type considered in Example 3 is a least element with respect to the relation mct.
However, the functions uα1 and uα2 are mct incomparable if β1 �= β2.)

Least concave utility functions do not necessarily exist if the range is a non-standard
extension of R [6]. It appears that not only is least concavity inherently not an
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elementary (first order) concept, but that it belongs essentially to analysis and
as such is not a very appropriate concept for sets containing only finitely many
elements.

5 Remarks

Remark 1. Richter and Wong [10] show that condition G is equivalent to the
following condition:

CONDITION E :
There exist numbers ui (i = 1, · · · , N), and vectors ui ∈ Rl (i = 1, · · · , N),

that solve the linear system
ui − uj > 0 for all i, j = 1, · · · , N with xi � xj ,
ui − uj − 〈ui, xi − xj〉 ≥ 0 for all i, j = 1, · · · , N,
ui − uj = 0 for all i, j = 1, · · · , N with xi ∼ xj .

Here K = {x1, · · · , xN}.
The equivalence of conditions G and E is demonstrated by means of a duality

argument (the Theorem of the Alternative). It is observed that the numbers ui are
the values of a candidate concave utility function, while the vectors ui play the role
of super-gradients. There exist “effective” (i.e., polynomial time) algorithms for
solving a linear system [8]. Thus, the method of [10] leaves nothing do be desired
from the computational-complexity point of view. An additional advantage is that
an explicit formula for the values of (an extension of) a convex utility function u is
given by

u(x) = min1≤i≤Nui + 〈ui, x − xi〉, (22)

compare [11,7], and equation (3) in [10].
In the first method proposed in this note (see Proposition 1) the numbers ui are

computed successively using a geometric argument in Rl, and the vectors ui do
not appear. Loosely, this is more “efficient”, as the numbers ui are the values of the
utility function on K. The utility levels are computed one at a time and one could
stop upon reaching the particular value at a point of interest. The inequality (1)
needs to be checked at most N l+1 times at each level, so that while the method is
not superior to (not less complex than) a one used for solving a linear system, it is
not inferior either. On the other hand, the computationally effective algorithms for
solving a linear system yield the values of all unknowns at the end (when the process
terminates), and the geometric structures of K and of the preference ordering are
not clearly visible.

With extra work one may construct an extension u(x) after the numbers ui were
computed. In fact, as outlined in Richter and Wong [10], footnote 5, it is possible to
determine real vectors playing the role of the supergradients ui and satisfying the
system of linear inequalities using (for example) a separating hyperplane argument.
Alternatively, one may regard the upper boundary of the convex hull in Rl+1 of the
graph of the utility functions defined on K (i.e., the convex hull of the set (xi, ui)
for 1 ≤ i ≤ N ) as the graph of a concave function defined on the convex hull of
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K. (Such a function is easily extendible to all of Rl.) Once again, this involves
polynomial algorithms [8].

Remark 2. In the second method proposed in this note (see Propositions 2 and 3)
both utility levels and supergradients are computed successively, the supergradient
ui being equal to λjp(xi) if xi ∈ Lj . The directions of the vectors are determined
first (Proposition 2) via a geometric argument involving separation of convex sets.
Then a variant of the Varian algorithm [12] is employed (Proof of Proposition 3) in
order to compute successively utility levels and appropriate lengths for the vectors.
Once again, this algorithm is about as hard as solving a linear system (polynomial
time) such as the one appearing in condition E. Afriat [1] computes first (succes-
sively) lengths for the price vectors; utility levels are determined in a later step.
This could be done because Afriat has to “rationalize” only the revealed preference
ordering, while we have to account for the ordering � (which may contain properly
the revealed preference ordering). The Varian version is suitable for our purposes.
It might be interesting to find a way of assigning lengths to the vectors p(x) without
calculating utility levels at the same time.

The set K and the ordering � were lifted to Rl+1 in order to achieve positivity
of all “price” vectors and gain non-satiation. It was shown that the lifted preference
ordering � is a refinement of the resulting revealed preference ordering. While
these steps are not absolutely necessary for the argument, they help to clarify it and
to put it in context.

Remark 3. It was shown in Section 4 that least concave utility representations do not
exist in many instances if K is finite. Observe that if K is a finite subset of Rl, the
method used in [3] (considering the infimum of a certain family of concave utility
function) does not work, nor does any of the three methods offered in [4]. The strict
inequalities ui − uj > 0 for all i, j = 1, · · · , N with xi � xj , do not necessarily
survive the infimum. The success of the constructions put forward in [4] depends
on the possibility of carrying out various steps in the “best” possible way (e.g.,
computing least values of certain quantities compatible with desired inequalities).
This cannot be done in general in the finite case. Thus, we have to find values so
that the strict inequality (1) holds, and in the k-th induction step we cannot use
the infimum of the allowable values for Uk+1 compatible with (6). Similarly, the
numbers εi in the proof of Proposition 3 cannot chosen in an optimal fashion.

Remark 4. It may be interesting to inquire what happens if the setK gets larger end
eventually becomes dense in an open subset of Rl. Thus, consider an increasing
sequence Km of finite subsets of Rl such that ∪∞

m=1Km is dense in a convex
set Ω and the ordering on each Km is induced by a convex ordering � defined
on Ω. Assume for simplicity that Ω is compact. It is well-known [7] that � is
concavifiable on Ω if and only if there exists a sequence um of concave utility
representations of the order induced by � on Km such that 1) um(x) → 1 if x ∈ Ω
is maximal with respect to �, 2) um(x) → 0 if x ∈ Ω is minimal with respect to
�, and for every non-maximal x ∈ Ω we have supmum(x) < 1. This condition is
unfortunately very implicit and cannot be put easily in an explicit form. (One may
ask for the condition to be verified for utility functions constructed by either one of
our procedures.) In analogy to Theorem 3 of [7] it is easy to derive the following
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(still very implicit) modification of condition E:

CONDITION Ẽ :

The following statements are equivalent:

(i) There exists a concave utility function representing � in Ω;
(ii) For every compact set L of non-maximal elements of Ω there exists a positive

constant A such that for every m there exist numbers ui (i = 1, · · · , N(m)),
and vectors ui ∈ Rl (i = 1, · · · , N(m)), (here N(m) denotes the cardinality
of Km ∩ L) satisfying condition E with respect to Km ∩ L, such that A−1 <
‖ui‖ < A for all i = 1, · · · , N(m);

(iii) For every compact set L of non-maximal elements of Ω there exists
a positive constant A such that for every m there exist vectors ui ∈
Rl (i = 1, · · · , N(m)) satisfying A−1 < ‖ui‖ < A so that for any se-
quence x1, · · · , xk+1 of elements of Km ∩ L with xk+1 = x1 we have∑k

j=1〈uj , xj+1 − xj〉 ≥ 0;
(iv) For every m there exist numbers ui

m (i = 1, · · · , N(m)), and vectors um
i ∈

Rl (i = 1, · · · , N(m)) satisfying condition E, such that 1) lim ui
m = 1 if lim

xi
m is maximal with respect to � in Ω, 2) lim ui

m = 0 if lim xi
m is minimal

with respect to � in Ω, and 3) if x ∈ Ω is non-maximal then

limlim xi
m=xu

i
m < 1

.

Condition G is qualitative, and it is not clear whether one may formulate a
quantitative, uniform (in m) version equivalent to concavifiability of � in Ω.
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Summary. This paper presents very general conditions guaranteeing that a quasi-
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1 Introduction

There are numerous results in the general equilibrium and welfare economics lit-
erature where investigators have been looking for conditions sufficient to establish
either the existence of a Walrasian (competitive) equilibrium, or the equivalence
between a normative criterion and a Walrasian equilibrium; but where what is actu-
ally established is the existence or equivalence of a quasi-competitive equilibrium.
In particular, the most general versions of the ‘Second Fundamental Theorem of
Welfare Economics’ assert that, with appropriate convexity conditions, any Pareto
efficient allocation can be supported as a quasi-competitive equilbrium.1 Simi-
larly, core convergence results typically establish convergence of the core in, say,
replica economies, to a subset of the set of quasi-competitive equilibria. Moreover,

1 A notable exception to this is the recent paper by Hurwicz and Richter (2001). However, their
approach is quite different from mine, and a discussion of the relationship between their approach and
mine will have to await a later work.
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while authors very often state simple conditions sufficient to ensure that the quasi-
competitive equilibrium obtained will actually be a Walrasian equilbrium, these
simple conditions are typically patently unrealistic. For example, it is very often
assumed in an exchange economy setting that each consumer has a strictly positive
endowment of each commodity in the commodity space.

My primary objective in this article has been to develop a more realistic and
acceptable condition which will imply that a known quasi-competitive equilibrium
is actually a Walrasian equilibrium. Several such conditions, the most general of
which I am calling ‘indecomposability,’ are presented in Section 4 of this paper;
and it is there established that if an economy satisfies indecomposability, together
with a very general production condition, then any quasi-competitive equilibrium
for the economy will be a Walrasian equilibrium. This result can, of course, be
combined with many already-published results to obtain a new and stronger con-
clusion. However, I had particularly wanted to apply it to establish the equality
between what Aliprantis et al. (1987a,b) call the set of ‘Edgeworth allocations’
and the set of Walrasian allocations, in a finite economy setting. In looking for a
convenient such result to use in such an application, I realized that an argument
very like a combination of the proofs of the well-known results of Nikaido (1968)
and McKenzie (1988), which show that the set of Edgeworth allocations is a subset
of the set of quasi-competitive allocations, could establish a generalization of their
results. This theorem, which is presented in Section 3, generalizes their results by
allowing for production (which McKenzie’s result does not), dropping all transitiv-
ity requirement on preferences (Nikaido assumes that preferences are continuous
weak orders), and assuming only that preferences are weakly convex, lower semi-
continuous, and locally non-saturating. The proof of this result is also considerably
shorter and more transparent than Nikaido’s proof, and the theorem can be, and is
combined with the indecomposability material to establish sufficient conditions for
the equality of the set of Edgeworth allocations and the set of Walrasian allocations.

Notation and concepts regarding the core are presented in the next section.

2 Notational framework

We will be dealing with a private ownership economy, E =
(〈Xi, Pi〉, 〈Yk〉, 〈ri〉, [sik]), where Xi (i = 1, . . . ,m) and Yk (k = 1, . . . , �) are
non-empty subsets of R

n; Pi is an irreflexive binary relation on Xi and ri ∈ R
n,

for each i ∈ M ; while sik ∈ R+ for i = 1, . . . ,m, k = 1, . . . , � and for each
k ∈ L:

∑
i∈M

sik = 1,

where we define M = {1, . . . ,m} and L = {1, . . . , �}; and when we say the E is
an economy, we will mean that E is a tuple of this form.

For an economy, E we use the generic notation ‘
(〈xi〉i∈M , 〈yk〉k∈L

)
,(〈x∗

i 〉i∈M , 〈y∗
k〉k∈L

)
,’ etc., to denote allocations fo E ; and ‘〈xi〉i∈M , 〈x∗

i 〉i∈M ,’

etc., to denote consumption allocations in X(E) def=
∏

i∈M Xi.
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2.1 Definitions. If E is an economy, we will say that
(〈xi〉i∈M , 〈yk〉k∈L

)
is a

feasible (or attainable) allocation for E iff:

xi ∈ Xi for i = 1, . . . ,m and yk ∈ Yk for k = 1, . . . , �;

and:
∑

i∈M
xi =

∑
i∈M

ri +
∑

k∈L
yk. (1)

We will denote the set of all such allocations by ‘A(E),’ that is:

A(E) =
{(〈xi〉i∈M , 〈yk〉k∈L

)∈R
mn+
n|

∑
i∈M

xi=
∑

i∈M
ri+

∑
k∈L

yk

}
.

(2)

We will say that 〈xi〉i∈M is an attainable consumption allocation for E iff there
exists 〈yk〉k∈L such that

(〈xi〉i∈M , 〈yk〉k∈L

) ∈ A(E), and we will denote the set
of all attainable consumption allocations for E by ‘X∗(E),’ or simply by ‘X∗.’

Further bits of notation are the following. We define the sets Πk and Π by:

Πk = {p ∈ R
n | (∃y∗ ∈ Yk)(∀y ∈ Yk) : p · y∗ ≥ p · y} for k = 1, . . . , �;

and:

Π =
⋂

k∈L
Πk,

respectively, and the functions πk : Πk → R by:

πk(p) = max
y∈Yk

p · y for k ∈ L.

We will also need a couple of fairly standard definitions, as well as a ‘well-known’
proposition, as follows.

2.2 Definitions. IfPi is an irreflexive binary relation on the non-empty setXi ⊆ R
n,

we shall say that Pi is:

1. weakly convex iff Xi is a convex set, and, for each x∗
i ∈ Xi, the set:

Pix
∗
i = {xi ∈ Xi | xiPix

∗
i },

is convex.
2. lower semi-continuous iff, for each x∗

i ∈ Xi and each x′
i ∈ Pix

∗
i , there exists

a neighborhood of x′
i, N(x′

i), such that xiPix
∗
i , for all xi ∈ N(x′

i).

2.3 Proposition. If Pi is a lower semi-continuous binary relation on a convex set,
Xi ⊆ R

n, and x∗
i ∈ Xi, p∗ ∈ R

n, and w∗
i ∈ R satisfy:

w∗
i > minp∗ · Xi

def
= min

xi∈Xi

p∗ · xi and (∀xi ∈ Xi) : xiPix
∗
i ⇒ p∗ · xi ≥ w∗

i ,

then:

(∀xi ∈ Xi) : xiPix
∗
i ⇒ p∗ · xi > w∗

i .
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We will be considering possible actions of coalitions of consumers, where a
coalition of consumers can be identified with a subset, S, of M ; the collection of
all such coalitions, that is, the collection of all non-empty subsets of M , will be
denoted by ‘S.’

In order to define the production possibilities available to a coalition, S ⊆ M ,
we begin by defining the sets Zik, for (i, k) ∈ M × L, by:

Zik = sikYk
def= {z ∈ R

n | (∃yk ∈ Yk) : z = sikyk}. (3)

We then define the set Πik and the function π̂ik : Πik → R by:

Πik = {p ∈ R
n | (∃z∗ ∈ Zik)(∀z ∈ Zik) : p · z∗ ≥ p · z}

and π̂ik(p) = max
z∈Zik

p · z.

Finally, we define the ith consumer’s production set, Zi, as:

Zi =
∑

k∈L
Zik =

∑
k∈L

sikYk. (4)

With these definitions, it is easy to prove the following two propositions.

2.4 Proposition. Let E be an economy, and p∗ ∈ R
n. Then:

1. if y∗
k maximizes p∗ · y on Yk, then z∗

ik

def
= siky∗

k maximizes p∗ · z on Zik; and:
2. for all (i, k) ∈ M × L:, Πk ⊆ Πik and for any p ∈ Πk:

π̂ik(p) = sikπk(p), (5)

3. and, for all i ∈ M , and for any zi ∈ Zi and any p ∈ Π:

p · zi ≤
∑

k∈L
sikπk(p). (6)

2.5 Proposition. If E is an economy, then, given the definitions of this section:

Y ≡
∑
k∈L

Yk ⊆
∑
i∈M

Zi. (7)

Moreover, if Yk is convex and contains 0, for each k ∈ L, then for each S ∈ S we
have:

∑
i∈S

Zi ⊆ Y. (8)

In the remainder of this section we will state a number of fairly standard and
familiar definitions. We will assume throughout this discussion that the following
condition holds:

Xi ∩ [ri + Zi] �= ∅ for i = 1, . . . ,m; (9)
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in other words, for each i ∈ M , we suppose that there exist x̄i ∈ Xi and z̄i ∈ Zi

such that:

x̄i = ri + z̄i. (10)

The assumption expressed as equation (9) is fairly restrictive; in a modern
industrialized society, individuals specialize in the expectation of being able to
purchase (or trade for) necessities which they themselves do not produce. On the
other hand, similar conditions are used throughout the literature, and it greatly
simplifies our analysis, by making the following definition apply to any S ∈ S.2

2.6 Definition. We will say that 〈(xi,zi)〉i∈S is attainable for the coalition S ∈ S
iff:

xi ∈ Xi and zi ∈ Zi for all i ∈ S, (11)

and:
∑

i∈S
xi =

∑
i∈S

ri +
∑

i∈S
zi. (12)

2.7 Definition. Let 〈x∗
i 〉i∈M be a consumption allocation for E , and let S ∈ S be

a coalition. We shall say that 〈x∗
i 〉i∈M can be improved upon by the coalition S iff

there exists an allocation, 〈(xi,zi)〉i∈S , which is attainable for S, and satisfies:

(∀i ∈ S) : xiPix
∗
i . (13)

2.8 Definition. The core of an economy E is defined as the set of all attainable
consumption allocations for E which cannot by improved upon by any coalition,
S ∈ S. We shall denote the set of all core allocations for E by ‘C(E).’

2.9 Definition. An (m + � + 1)n-tuple, (〈x∗
i 〉, 〈y∗

k〉,p∗) is a Walrasian (or com-
petitive) equilibrium for the economy E iff:

1. p∗ �= 0,
2.

(〈x∗
i 〉, 〈y∗

k〉) ∈ A(E),
3. for each k (k = 1, . . . , �), we have: p∗ · y∗

k = πk(p∗), and
4. for each i (i = 1, . . . ,m), we have:

a. p∗ · x∗
i ≤ wi(p∗) def= p∗ · ri +

∑
k∈L sikπik(p∗), and:

b. (∀xi ∈ Xi) : xiPix
∗
i ⇒ p∗ · xi > wi(p∗).

2.10 Definitions. We define the set of all Walrasian allocations for E , W(E), by:

W(E) =
{(〈x∗

i 〉, 〈y∗
k〉) ∈ A(E) | (∃p∗ ∈ R

n
)
:

(〈x∗
i 〉, 〈y∗

k〉,p∗) is a Walrasian equilibrium for E}

We then define the set of Walrasian consumption allocations for E, W (E), by:

W (E) =
{〈x∗

i 〉i∈M ∈ X∗(E) | (∃〈y∗
k〉k∈L) :

(〈x∗
i 〉, 〈y∗

k〉) ∈ W(E)
}
.

2 It should be noted that if the set of viable coalitions, S∗, is a proper subset of S, then Theorem
3.1, below, remains essentially intact.



108 J.C. Moore

3 The core in replicated economies

Given an economy, E = (〈Xi, Pi〉, 〈Yk〉, 〈ri〉, [sik]), we consider the sequence of
related economies, Eq, defined in the following way.

E1 = E ,
. . . . . .

Eq = 〈(Xhi, Phi, rhi, Zhi)〉(h,i)∈,Q×M , where :
Q = {1 . . . , q}, Xhi = Xi, Phi = Pi, rhi = ri

and Zhi = Zi for h = 1, . . . , q; i = 1, . . . ,m.

Thus, in Eq, the agents (consumers) have a double index; agent (h, i) is the
hth agent of the ith type; and each agent of the ith type has the same economic
characteristics as does the ith agent in the original economy. We will refer to
Eq as the q-fold replication of E . In dealing with Eq, we will use the notation
‘〈(xhi,zhi)〉(h,i)∈Q×M ’ to denote allocations for Eq

We will follow the basic approach introduced by Debreu and Scarf (1963) in
considering the sets Cq, defined as the set of all feasible allocations, 〈xi〉i∈M ∈
X∗(E) such that the allocation 〈xhi〉(h,i)∈Q×M given by:

xhi = xi for h = 1, . . . , q; i = 1, . . . ,m; (14)

is in C(Eq). The following result then generalizes a ‘well-known’ version of the
‘First Fundamental Theorem of Welfare Economics.’ Moreover, it establishes the
fact that if W (E) �= ∅, then Cq �= ∅, for q = 1, 2, . . . . I have stated it here without
proof, since it can be proved by fairly standard arguments.

3.1 Theorem. For any economy, E , we have:

1. W (E) ⊆ Cq, and
2. Cq+1 ⊆ Cq,

for q = 1, 2, . . . .

Debreu and Scarf (1963) showed that given any exchange economy, E =
〈(Pi, ri)〉i∈M , satisfying certain assumptions, we will have:

⋂∞
q=1

Cq ⊆ W (E);

which, given Theorem 3.1, means that under the Debreu-Scarf conditions, we have:

lim
q→∞ Cq

def=
⋂∞

q=1
Cq = W (E). (15)

We will prove a generalization of their result; one which applies to a private owner-
ship economy with production, and which dispenses with most of their assumptions
regarding consumer preferences. However, we will begin by introducing the idea
of a ‘quasi-competitive equilibrium,’ and proving that an Edgeworth allocation is a
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quasi-competitive equilibrium allocation. We follow Aliprantis et. al. (1987a,b) in
defining the set of Edgeworth Allocations for E, XE(E), by:

XE(E) =
⋂∞

q=1
Cq. (16)

3.2 Definition. We shall say that (〈x∗
i 〉, 〈y∗

k〉,p∗) is a quasi-competitive equilibrium
for the economy E , iff (〈x∗

i 〉, 〈y∗
k〉,p∗) satisfies conditions 1–3 of Definition 2.9,

and:
4′. for each i ∈ M , we have:

a. p∗ · x∗
i ≤ wi(p∗) ≡ p∗ · ri +

∑
k∈L sikπ(p∗), and:

b. either:

wi(p∗) = minp∗ · Xi,

or:

(∀xi ∈ Xi) : xiPix
∗
i ⇒ p∗ · xi > wi(p∗).

We will denote the set of all consumption allocations, 〈x∗
i 〉 ∈ X∗(E), for which

there exists a production allocation 〈y∗
k〉k∈L and a price vector p∗ such that

(〈x∗
i 〉, 〈y∗

k〉,p∗) is a quasi-competitive equilibrium for E by ‘W †(E).’

In our initial result, we will establish conditions sufficient to ensure that
XE(E) ⊆ W †(E). In our proof, which owes a great deal to McKenzie (1988) and
Nikaido (1968, Theorem 17.4, p. 291), we will need to make use of the following
mathematical result; the proof of which is omitted, since it is fairly ‘well-known.’

3.3 Proposition. If Ci ⊆ R
n is convex and non-empty, for i = 1, . . . ,m, then the

convex hull of C
def
=
⋃m

i=1 Ci, co(C), is given by:

co(C)=
{
x ∈ R

n | (∃a ∈ ∆m&xi ∈ Ci, for i=1, . . . ,m) : x=
∑m

i=1
aixi

}
;

(17)

where we denote the standard unit simplex in R
m by ‘∆m,’ that is:

∆m =
{

a ∈ R
m
+ |

∑m

i=1
ai = 1

}
. (18)

While the above result may seem obvious, it should be noted that the conclusion
no longer holds if the Ci’s are not all convex; that is, the convex hull of C is not
generally given by the formula in equation (17) unless the sets Ci are all convex.

3.4 Theorem. If E is an economy such that:

1. Yk is convex, for k = 1, . . . , �;
and, for each i ∈ M :

2. Pi is locally non-saturating, lower semi-continuous, and weakly convex, and:
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3. Xi ∩ [ri + Zi] �= ∅,
then:

XE(E) ≡
⋂∞

q=1
Cq ⊆ W †(E).

Proof. Suppose 〈x∗
i 〉i∈M ∈ Cq for all q, define Pi = Pix

∗
i − ri − Zi, for each

i ∈ M ,3 and:

P = co
(⋃m

i=1
Pi

)
; (19)

that is, P is the convex hull of the union of the Pi’s. The tricky part of the proof is
to establish the fact that 0 /∈ P.

Suppose, by way of establishing a contradiction, that 0 ∈ P. Then, since each
Pi is a convex set (and non-empty, by the assumption that each Pi is locally non-
saturating), it follows from Proposition 3.3 that there exist a ∈ ∆m, xi ∈ Xi, and
zi ∈ Zi for i = 1, . . . ,m, such that:

∑m

i=1
ai(xi − ri − zi) = 0, (20)

and:

xiPix
∗
i for i = 1, . . . ,m. (21)

We will show that these two conditions allow us to construct a coalition in Eq∗ ,
for some (finite) integer, q∗, which can improve upon 〈x∗

i 〉i∈M ; contradicting the
assumption that 〈x∗

i 〉i∈M ∈ Cq, for all q.
Accordingly, we begin by noting that (20) implies:

∑m

i=1
ai(xi − ri) =

∑m

i=1
aizi. (22)

We then define I = {i ∈ M | ai > 0}, and, for each i ∈ I and each positive
integer, q, we let bq

i be the smallest integer greater than or equal to qai. Now, by
assumption 3, for each i ∈ I there exist x̂i ∈ Xi and ẑi ∈ Zi such that:

x̂i = ri + ẑi. (23)

We make use of the x̂i to define, for each i ∈ I and each positive integer, q:

xq
i =

(qai

bq
i

)
xi +

[
1 −

(qai

bq
i

)]
x̂i; (24)

and note that, since each Pi is lower semi-continuous, and since:

qai

bq
i

→ 1 as q → ∞,

3 That is:

Pi =
{
v ∈ R

n | (∃xi ∈ Xi & zi ∈ Zi) : xiPix
∗
i & v = xi − ri − zi

}
.
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it follows from (21) that for each i ∈ I , there exists a positive integer, qi such that
for all q ≥ qi,

xq
iPix

∗
i . (25)

But now let:

q∗ = max
i∈I

qi,

let b∗ = max{bq∗
1 , . . . , bq∗

m } and consider the coalition, S, in Eb∗ consisting of bq∗
i

consumers of each type i ∈ I , and the allocation 〈x̄hi〉(h,i)∈S defined by:

x̄hi = xq∗
i for h = 1, . . . , bq∗

i , and each i ∈ I. (26)

We have x̄hiPhix
∗
i for each h and each i ∈ I; while by using (24), (23) and (22)

in turn, we have:

∑
i∈I

∑bq∗
i

h=1
x̄hi =

∑
i∈I

bq∗
i xq∗

i =
∑

i∈I

[
(q∗ai)xi + (bq∗

i − q∗ai)x̂i

]

= q∗
(∑

i∈I
ai(xi − ri)

)
− q∗ ∑

i∈I
aiẑi +

∑
i∈I

bq∗
i (ri + ẑi)

= q∗
(∑

i∈I
aizi

)
− q∗ ∑

i∈I
aiẑi +

∑
i∈I

bq∗
i (ri + ẑi)

=
∑

i∈I
bq∗
i ri +

∑
i∈I

bq∗
i

[(q∗ai

bq∗
i

)
zi + ẑi −

(q∗ai

bq∗
i

)
ẑi

]
.

Thus, since each Zi is convex, it follows that the coalition S can improve upon
〈x∗

i 〉i∈M ; contradicting the assumption that 〈x∗
i 〉i∈M ∈ Cq for all positive integers,

q. Therefore 0 /∈ P.
Since we have now established the fact that 0 /∈ P, it follows from the ‘Sepa-

rating Hyperplane Theorem’ that there exists a non-zero p∗ ∈ R
n satisfying:

(∀v ∈ P) : p∗ · v ≥ 0. (27)

From the definition of P, it then follows immediately that for each i ∈ M , we have:

(∀xi ∈ Xi & zi ∈ Zi) : xiPix
∗
i ⇒ p∗ · xi ≥ p∗ · (ri + zi); (28)

and since Pi is locally non-saturating it then follows that, for each i and each
zi ∈ Zi:

p∗ · x∗
i ≥ p∗ · ri + p∗ · zi. (29)

Now, since 〈x∗
i 〉i∈M ∈ Cq, for each q, it follows from the definitions that there

exists 〈y∗
k〉k∈L such that:

∑
i∈M

x∗
i =

∑
i∈M

ri +
∑
k∈L

y∗
k. (30)
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Defining:

z∗
i =

∑
k∈L

siky∗
k, (31)

we then have from (29) that:

p∗ · (x∗
i − ri − z∗

i ) ≥ 0 for i = 1, . . . ,m. (32)

However, since
∑

i∈M z∗
i =

∑
k∈L y∗

k, it follows from (30) that:

∑
i∈M

p∗ · (x∗
i − ri − z∗

i ) = p∗ ·
(∑

i∈M

x∗
i −

∑
i∈M

ri −
∑
k∈L

y∗
k

)
= 0;

and then, from (32) and our definitions we see that:

p∗ · x∗
i = p∗ · ri + p∗ · z∗

i = p∗ · ri +
∑
k∈L

sikp∗ · y∗
k for i = 1, . . . ,m. (33)

Now, let j ∈ L be arbitary, let yj ∈ Yj , and define, for each i:

zi =
∑
k �=j

siky∗
k + sijyj . (34)

Then we see that zi ∈ Zi for each i, so that by (29), we have:

p∗ · x∗
i ≥ p∗ · ri + p∗ · zi for i = 1, . . . ,m. (35)

Adding the inequalities in (35), and making use of our definitions of the zi, we
have:

∑
i∈M

p∗ · x∗
i = p∗ ·

∑
i∈M

x∗
i ≥ p∗ ·

∑
i∈M

ri + p∗ ·
∑
i∈M

zi

= p∗ ·
∑
i∈M

ri + p∗ ·
[∑

i∈M

(∑
k �=j

siky∗
k + sijyj

)]

= p∗ ·
∑
i∈M

ri +
∑
k �=j

p∗ · y∗
k + p∗ · yj . (36)

From (30) and (36) we then see that p∗ · y∗
j ≥ p∗ · yj , and thus y∗

k maximizes
p∗ · yk on Yk, for k = 1, . . . , �.

Finally, let i ∈ M be arbitrary. Then from (33) and the conclusion of the
previous paragraph, we have:

p∗ · x∗
i = wi(p∗) def= p∗ · ri +

∑


k=1
sikπ(p∗).

Furthermore, it follows from (28) that:

(∀xi ∈ Xi) : xiPix
∗
i ⇒ p∗ · xi ≥ wi(p∗);
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and thus from Proposition 2.3, we see that either:

wi(p∗) = minp∗ · Xi,

or:

(∀xi ∈ Xi) : xiPix
∗
i ⇒ p∗ · xi > wi(p∗).

Therefore, (〈x∗
i 〉, 〈y∗

k〉,p∗) is a quasi-competitive equilibrium for E . ��
In the next section we will strengthen the conclusion of Theorem 3.4 to conclude

that XE(E) = W (E).

4 Quasi-competitive and Walrasian equilibrium

In this section we will be examining the implications of the following condition.

4.1 Definition. We say that E is indecomposable at the allocation(〈x∗
i 〉i∈M , 〈y∗

k〉k∈L

)
iff, given any partition of the consumers into two groups,

{S1, S2},4 there exists (x̂i, ẑi) ∈ Xi × Zi, for each i ∈ M , µi ∈ R+ for each
i ∈ S2, and y ∈ AY ,5 such that:

∑
i∈S1

(x̂i − ri − ẑi) =
∑
i∈S2

µi(ri + ẑi − x̂i) + y, (37)

and:

(∀i ∈ S1) : x̂iPix
∗
i .

We will say that E is indecomposable (or that it is globally indecomposable) iff it
is indecomposable at each attainable allocation,

(〈x∗
i 〉i∈M , 〈y∗

k〉k∈L

) ∈ A(E).

This condition generalizes the ‘irreducibility’condition introduced in McKenzie
(1961), and which was generalized somewhat in Moore (1975, 1999). Notice that
it says that, given any attainable allocation in the economy, and any coalition,
S1 �= M , the coalition could improve upon the given allocation for each of its
members if they were allowed to choose amounts to be given up by a coalition
consisiting of replicas (possibly fractional) of the consumers not in S1, and add in a
production vector from AY . It is easily shown that the following condition, which
is the irreducibility condition used in Moore (1999), implies the indecomposability
condition just introduced.

4.2 Definition. We shall say that the economy, E is irreducible at the consumption
allocation 〈x∗

i 〉 ∈ X∗(E) iff, given any partition of the consumers, {S1, S2},
there exists 〈(xi,zi)〉i∈M such that:

xi ∈ Xi & zi ∈ Zi for i = 1, . . . ,m,∑
i∈S1

(xi − ri − zi) =
∑
i∈S2

(ri + zi − xi), (38)

4 By a partition of the consumers, {S1, S2}, we mean Sj ⊆ M & Sj �= ∅, for j = 1, 2,
S1 ∩ S2 = ∅, and S1 ∪ S2 = M .

5 Where ‘AY ’ denotes the asymptotic cone of Y . See Debreu (1959, p. 22).
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and:

(∀i ∈ S1) : xiPix
∗
i . (39)

In particular, notice that this latter condition (and thus the indecomposability
condition) is automatically satisfied in any economy, E at attainable allocations
which are strongly Pareto-dominated by another feasible allocation for E . In effect,
the economy E is irreducible at 〈x∗

i 〉 ∈ X∗(E) iff, given any partition of the
consumers into two groups, S1 and S2, there is a feasible trade between the two
groups which would make each of the consumers in S1 better off than they are at
〈x∗

i 〉. Of course, this same trade may make each of the consumers in S2 worse off
than they are at 〈x∗

i 〉!

4.3 Theorem. If (〈x∗
i 〉, 〈y∗

k〉,p∗) is a quasi-competitive equilibrium for the econ-
omy, E , and:

1. E is indecomposable at
(〈x∗

i 〉, 〈y∗
k〉), and

2. int(X) ∩ [r + Y ] �= ∅,
Then (〈x∗

i 〉, 〈y∗
k〉,p∗) is a Walrasian equilibrium for E .

Proof. From assumption 2 we see that there exists x̂ ∈ X∗ and θ ∈ R++ such
that:

x† def= x̂ − θp∗ ∈ X∗, (40)

and thus:

p∗ · x† = p∗ · [x̂ − θp∗] = p∗ · x̂ − θp∗ · p∗ < p∗ · x̂ ≤ p∗ · x∗,

where the last inequality follows easily from the definition of a quasi-competitive
equilibrium. Therefore, since our definition of attainable allocations implies that at
a quasi-competitive equilibrium, each consumer’s consumption expenditure must
be equal to wealth:

(∃i ∈ M) : wi(p∗) = p∗ · x∗
i > minp∗ · Xi. (41)

Now, define Si ⊆ M (i = 1, 2) by:

S1 = {i ∈ M | wi(p∗) > minp∗ · Xi},
and:

S2 = {i ∈ M | wi(p∗) = minp∗ · Xi},
respectively. By (41), S1 �= ∅. Suppose by way of obtaining a contradiction,
that S2 �= ∅ as well. Then by the indecomposability condition, there exists
〈(xi,zi)〉i∈M , µi ≥ 0 for each i ∈ S2, and y ∈ AY such that:

∑
i∈S1

(xi − ri − zi) =
∑
i∈S2

µi(ri + zi − xi) + y, (42)
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and:

(∀i ∈ S1) : xiPix
∗
i . (43)

However, by definition ofS1 and the fact that (〈x∗
i 〉, 〈y∗

k〉,p∗) is a quasi-competitive
equilibrium, we have, for each i ∈ S1:

p∗ · xi > wi(p∗) = p∗ · ri +
∑

k∈L
sikp∗ · y∗

k. (44)

Moreover, it follows from profit maximization and Proposition 2.4.4 that for each
i ∈ M :

∑
k∈L

sikp∗ · y∗
k ≥ p∗ · zi, (45)

where zi ∈ Zi is from (42). Thus, from (44) and (45) we see that, for each i ∈ S1:

p∗ · (xi − ri − zi) > 0;

so that, from (42):

p∗ ·
( ∑

i∈S2

µi(ri + zi − xi)
)

+ p∗ · y > 0.

However, since p∗ ∈ Π , it must be the case that p∗ · y ≤ 0. Consequently, it then
follows that for at least one i ∈ S2, we must have:

p∗ · xi < p∗ · ri + p∗ · zi ≤ p∗ · ri +
∑


k=1
sikp∗ · y∗

k = wi(p∗);

which contradictions our definition of S2. Therefore, S2 = ∅, and thus
(〈x∗

i 〉, 〈y∗
k〉,p∗) is a Walrasian (competitive) equilibrium for E . ��

We can now make use of this last theorem, together with Theorems 3.1 and 3.4
to deduce some results regarding core convergence. The first of these two results
follows more or less immediately, and will be stated without formal proof.

4.4 Theorem. If E is an indecomposable economy such that:

1. Yk is convex, for k = 1, . . . , �;
2. int(X) ∩ [r + Y ] �= ∅,

and, for each i ∈ M :
3. Pi is locally non-saturating, weakly convex and lower semi-continuous, and:
4. Xi ∩ [ri + Zi] �= ∅,

then:

XE(E) ≡ [⋂∞
q=1

Cq

]
= W (E).
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Our final result makes use of the following definition.

4.5 Definitions. We will say that the jth commodity is a numéraire good for Pi

iff for all x ∈ Xi and all θ ∈ R++,6 we have:

x + θej ∈ Xi and (x + θej)Pix, (46)

where ej is the jth unit coordinate vector.7 We shall say that the jth commodity
is a numéraire good for the economy, E = (〈Xi, Pi〉, 〈Yk〉, 〈ri〉, [sik]) iff it is a
numéraire good for each i ∈ M , and for each i ∈ M there exists θi > 0 such that:

Xi ∩ [(ri − θiej) + Zi] �= ∅. (47)

Since it is easily seen that the numéraire good assumption implies that E is
indecomposable and that each preference relation is locally non-saturating, our last
result is a corollary of Theorem 4.4.

4.6 Corollary. If E = (〈Xi, Pi〉, 〈Yk〉, 〈ri〉, [sik]) is an economy such that:

1. Yk is convex, for k = 1, . . . , �;
2. int(X) ∩ [r + Y ] �= ∅,
3. for some j′ ∈ {1, . . . , n}, the commodity j′ is a numéraire good for E ,

and, for each i ∈ M :
4. Pi is weakly convex and lower semi-continuous,

then:

XE(E) ≡ [⋂∞
q=1

Cq

]
= W (E).
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1 Introduction

A differential (asymmetric) information economy consists of a set of agents, each of
whom is characterized by a random utility function, a random initial endowment, a
private information set and a prior. Such an economy is a generalization of the clas-
sical Walrasian deterministic economy as formulated rigorously by Arrow-Debreu
and McKenzie.A natural extension of the competitive (Walrasian) equilibrium con-
cept, which is appropriate for an asymmetric information economy is the Walrasian
expectations equilibrium or Radner equilibrium introduced by Radner (1968).

The Radner equilibrium, like the Walrasian equilibrium, is a non cooperative
solution concept capturing the idea that if each agent maximizes her ex ante utility
function subject to her budget constraint by taking into account her own private
information, then, this individualistic behavior will lead to a feasible redistribution
of the initial endowments for each state of nature, (i.e., the total demand will balance
the total initial endowment for each state of nature). It is important to notice that
since agents make decisions before the state of nature is realized, (i.e., agents
maximize ex-ante expected utility), prices do not reveal any private information ex
ante. However, the equilibrium price reflects the private information as it has been
obtained by maximizing expected utility subject to the budget constraint and also
considering the private information of each agent.

Thus, the Radner equilibrium takes into account the private information of each
agent, i.e., a change in the private information changes the Radner equilibrium.
This is in sharp contrast with the traditional rational expectation equilibrium (REE)
which, as it is well known, by now is not “sensitive” (does not take into account) to
the private information of an agent (see Allen andYannelis, 2001, and the reference
there for a discussion of those issues).

The aim of this paper is to characterize the Radner equilibrium by means of
cooperative solutions and also to analyze the incentive compatibility of the Radner
equilibrium within an infinite dimensional commodity space setting.

Dealing with cooperative solution concepts with differential information, the
basic problem which arises is, how agents within a coalition share their private
information. Yannelis (1991) introduced the private core concept which is based
on individual measurability requirements (i.e., when a coalition blocks an allocation
each member in the coalition uses only her own private information - thus, we refer
to this blocking as “private blocking”). The Radner equilibrium allocations have the
property that they are not privately blocked by any coalition of agents and, therefore,
the private core contains as a strictly subset the set of Radner equilibrium allocations.
Throughout this paper, we consider that the way in which a coalition shares the
information is the one leading to the private core solution, that is, every member
in a coalition takes into account only her own private information. It turns out,



Characterization and incentive compatibility of Walrasian expectations equilibrium 121

that allowing individuals to make redistributions of their initial endowments based
on their own private information results in allocations that are always Bayesian
incentive compatible and also take into account the informational advantage of an
individual (see Koutsougeras and Yannelis, 1993).

If one enlarges the number of coalitions, the possibilities of blocking an allo-
cation increases and, then, the set of allocations which are not privately blocked
is reduced. Addressing a finite set of agents and complete information economies,
Debreu and Scarf (1963) enlarge the set of coalitions by replicating the original
economy. By identifying the core allocations of each replicated economy with al-
locations in the initial economy, Debreu-Scarf showed that the set of non blocked
allocations in every replicated economy converges to the set of Walrasian equi-
libria. A second development, was proposed by Aubin (1979) who also addresses
a finite set of agents and complete information economies, stated an essentially
similar approach although formally different than the one by Debreu and Scarf. By
considering that, when forming a coalition, the agents in the economy can partic-
ipate with any proportion of their endowments, the number of coalitions that may
block an allocation is infinitely enlarge. This veto mechanism is referred in the lit-
erature to the confusing term fuzzy veto. Aubin (1979) showed that the allocations
belonging to the core solution derived from this veto mechanism, called in this
paper Aubin core, coincides with the Walrasian equilibrium allocations. Debreu-
Scarf core convergence result and Aubin’s result can be extended to differential
information economies (see Meo, 2002).

The approaches of Debreu-Scarf and Aubin, enlarge the possibilities of block-
ing in order to obtain that the allocations which are not blocked by any coalition
are precisely the Walrasian (or competitive) equilibrium allocations. In a compan-
ion paper Hervés-Beloso et al. (2003) showed that in a differential information
economy with a finite dimensional commodity space, the veto power of just one
coalition (the grand coalition) characterizes the Radner equilibrium. This result, not
only corresponds to an extension of the Debreu-Scarf (1963) deterministic result
to a differential information economy, but also has a different flavor. In particu-
lar, Debreu-Scarf in order to characterize the Walrasian equilibrium, replicate the
economy i.e., enlarge the number of coalitions that agents can form. Hervés-Beloso
et al. (2003) provide a characterization of the Radner equilibrium by considering
the veto power (blocking power) of the grand coalition, by enlarging the possible
redistribution of the initial endowments.

The main purpose of this paper is threefold: First, we provide a characterization
of the Radner equilibrium for a differential information economy with an infinite
dimensional commodity space, generalizing the Hervés-Beloso et al. (2003) fi-
nite dimensional commodity space characterization of the Radner equilibrium. It
should be noted, that such a characterization is in general false for the deterministic
Walrasian equilibrium in infinite dimensional spaces, as it was shown in Tourky
and Yannelis (2001) and Podczeck (2003). In particular, the key observation is that
unless the infinite dimensional commodity space is separable, one is bound not to
obtain a characterization of the Walrasian equilibrium by means of the core and
a fortiori of the Radner equilibrium. To overcome this difficulty, our commodity
space in this paper is chosen to be the bounded sequence space �∞, endowed with
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Mackey topology, which is separable. Moreover, the random utility function of
each individual is assumed to be Mackey continuous. This is the standard set up for
which Bewley (1972, 1973) has proved the existence of Walrasian equilibrium and
its equivalence to the core. Recall that in this set up prices are in �1, and therefore
one has a well defined price valuation of commodities. Indeed, for such a set up
we show that an allocation x is a Radner equilibrium allocation of and only if x is
not privately blocked by the grand coalition in any of the economies obtained by
perturbing the original initial endowments in the direction of x (Theorem 4.1). The
proof of this first equivalence theorem relies on an extension of the core-Walras
equivalence showed by Bewley (1973) to differential information economies (The-
orem 3.2) and on an extension of Vind’s (1972) result to economies with infinitely
many commodities and differential information (Theorem 3.3).

Second, we provide another characterization of Radner equilibria (Theorem 4.2)
which deals with theAubin veto mechanism within a differential information frame-
work. Following this veto mechanism each agent in a coalition uses her own private
information and can participate with a determined weight in the coalition. If we
consider (as in the original definition by Aubin) the possibility of null weights or
contributions, the grand coalition contains implicitly any other coalition. In this
case, consider the veto power of the grand coalition as equivalent to the veto power
of all coalitions. This is the reason why, in this paper, we modify Aubin’s defi-
nition by requiring any participation (representing the contribution of an agent in
a coalition) to be strictly positive. Even with non-null participation, the intuition
underlying Aubin’s result suggests that the grand coalition is able to block any non
equilibrium allocation with arbitrarily small participation of some of the agents.
However, this equivalence result provides a second characterization for the Rad-
ner equilibria and shows that the grand coalition privately blocks any non Radner
equilibrium allocation with participation as close to the total participation as one
wants for every individual.

Since the deterministic Arrow-Debreu-McKenzie model is a special case of
the differential information economy model, Theorems 4.1 and 4.2 yield to new
characterizations of the Walrasian equilibria in economies with infinitely many
commodities.

Thirdly, we analyze the Bayesian incentive compatibility of the Radner equi-
libria. As it was shown in Glycopantis et al. (2002), the finite dimensional Radner
equilibrium need not be Bayesian incentive compatible because of the free disposal
requirement that Radner (1968) imposes. By redefining the Radner equilibrium to
exclude free disposal, we show that any no free disposal Radner equilibrium allo-
cation is Coalitional Bayesian Incentive Compatible (CBIC). Note that the private
core is always CBIC (see Koutsougeras and Yannelis (1993)) and in finite dimen-
sional commodity spaces the CBIC of the no free disposal Radner equilibrium
follows from Koutsougeras and Yannelis. However, in this paper not only we use
a stronger definition of CBIC, and allow for infinitely many commodities but also
prove directly that the no free disposal Radner equilibrium is CBIC.

The paper is organized as follows. Section 2 states the model of a differential
information economies with infinitely many commodities, contains the main con-
cepts and a discussion of the assumptions. Section 3 focuses on the interpretation
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of the economy stated as a continuum differential information economy with a
finite number of types of agents. Moreover, in this section, a private core-Walras
expectations equilibrium equivalence and an extension of Vind’s (1972) result are
given for a differential information economy with infinitely many commodities.
Section 4 contains two different characterizations of Radner equilibrium by using
the private blocking power of the grand coalition. Finally, Section 5 shows the
Bayesian incentive compatibility property of the free disposal Radner equilibria.

2 The model

Consider a differential information economy E with n consumers. Let (Ω,F) be a
measurable space, whereΩ denotes the states of nature of the world and the algebra
F denotes the set of all events. Hence, (Ω,F) describes the exogenous uncertainty.
The set of states of nature, Ω, is finite and there are infinitely many commodities
in each state. N = {1, . . . , n} is the set of n traders or agents and �∞ will denote
the commodity space which is the set of all bounded sequences.

The economy extends over two time periods τ = 0, 1.Consumption takes place
at τ = 1. At τ = 0 there is uncertainty over the states of nature and agents make
contracts (agreements) that may be contingent on the realized state of nature at
period τ = 1 (that is, ex ante contract arrangement).

In this paper, we consider that for every state of nature ω ∈ Ω and for every
agent i ∈ N, the consumption set is �∞+ which is the positive cone of the set of all
bounded sequences �∞. Note that infinitely many commodities arise whenever one
allows an infinite variation in any of the characteristics describing commodities.
This characteristics could be physical properties, locations or the time of delivery.
In fact, an infinite variation in time could arise if an infinite time horizon is allowed
by considering the case of infinitely many time periods in each state of nature.
Hence, it is economically natural to restrict commodity bundles to �∞+ , in each
state, since we can assume that only bounded bundles would ever appear in an
economy. For instance, if we restrict our economy to earth, then the availability of
primary resources puts an upper bound on the quantity of any single commodity
that can be produced. If an infinite number of physical commodities appear in the
economy, then the units of these commodities can be chosen in such a way that
only bounded bundles are possible.

Thus, a differential information exchange economy E with a finite number of
agents and infinitely many commodities in every state of nature is defined by

E = {((Ω,F), �∞+ ,Fi, Ui, ei, q) : i = 1, . . . , n}, where:

1. �∞+ is the consumption set for every state of nature ω and for every agent
i = 1, . . . , n.

2. Fi is a partition of Ω, denoting the private information of agent i;
3. Ui : Ω × �∞+ → R is the random utility function of agent i;
4. ei : Ω → �∞+ is the random initial endowment of agent i, assumed to be constant

on elements of Fi.
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5. q is a probability function on Ω giving the (common) prior of every agent. It is
assumed that q is positive on all elements of Ω.

For any x : Ω → �∞+ , the ex ante expected utility of agent i is given by

Vi(x) =
∑
ω∈Ω

Ui(ω, x(ω))q(ω).

An allocation is a function x = (x1, . . . , xn) which associates to every agent
i a random consumption bundle xi ∈ (�∞+ )Ω .

We will refer to a function with domain Ω, constant on elements of Fi, as
Fi-measurable, although, strictly speaking, measurability is with respect to the σ-
algebra generated by the partition. We can think of such a function as delivering
information to trader i, who can not discriminate between the states of nature
belonging to any element of Fi.

Let Xi denote the set of all Fi-measurable selections from the random con-
sumption set of agent i, that is:

Xi =
{
xi : Ω → �∞+ , such that xi is Fi-measurable

}
.

Let X =
∏n

i=1Xi. Any allocation x in X is called an informationally feasible
allocation. An allocation x is said to be physically feasible if

∑n
i=1 xi ≤ ∑n

i=1 ei.
An allocation x is feasible if it is both informationally and physically feasible.

A coalitionS ⊂ N privately blocks an allocationx ∈ X if there exists (yi)i∈S ∈∏
i∈SXi such that

∑
i∈S yi ≤ ∑

i∈S ei and Vi(yi) > Vi(xi) for every i ∈ S.
The private core of the differential information exchange economy E is the set

of all feasible allocations which are not privately blocked by any coalition (see
Yannelis (1991)).

Next we shall define a Walrasian equilibrium notion in the sense of Radner (see
Radner (1968, 1982)). For this, we need the following notations and definitions. Let
�1 denote the space of absolutely summable sequences and let �+1 denote the positive
cone of �1. For any a = (aj)∞

j=1 ∈ �∞+ , b = (bj)∞
j=1 ∈ �1, let a · b =

∑∞
j=1ajbj .

A price system is a non-zero function p : Ω → �+1 . For a price system p, the budget
set of agent i is given by

Bi(p) =

{
xi ∈ Xi, such that

∑
ω∈Ω

p(ω) · xi(ω) ≤
∑
ω∈Ω

p(ω) · ei(ω)

}
.

Notice that traders must balance the budget ex-ante.

Definition 2.1 A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ X
is an allocation, is a Walrasian expectations equilibrium (or a Radner equilibrium)
if

(i) for all i the consumption function xi maximizes Vi on Bi(p),
(ii)

∑n
i=1 xi ≤ ∑n

i=1 ei (free disposal), and
(iii)

∑
ω∈Ω p(ω) · ∑n

i=1 xi(ω) =
∑

ω∈Ω p(ω) · ∑n
i=1 ei(ω).
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Throughout this paper we will refer explicitly to the following assumptions on
preferences and endowments:

(A.1) Continuity. For every consumer i, her utility function Ui(ω, ·) : �∞+ → R is
Mackey continuous for every state ω.

(A.2) Monotonicity. For every consumer i, her utility function Ui(ω, ·) : �∞+ → R

is monotone for every state ω, that is, for every individual i, if x, y ∈ �∞+
and y � 0, then Ui(ω, x + y) > Ui(x).

(A.3) Convexity. For every consumer i, her utility function Ui(ω, ·) : �∞+ → R is
concave for every state ω.

(A.4) Interiority of initial endowments. For every i and w, ei(w) belongs to the
interior of �∞+ , i.e., there exists a > 0 such that eij(w) > a for all j ≥ 1 and
for every i = 1, . . . , n.

The hypothesis (A.3) and (A.4) requiring monotonicity and convexity of pre-
ferences will be used in the proof of our main results where we will refer explicitly
to them. Note also, that assumption (A.3) is a weak monotonicity condition; given
a consumption bundle in some state of nature, if the amount of every coordinate
increases then the utility increases. This assumption is required, for instance, in
Section 3 in which a result by Vind (1972) is extended to differential information
economies with infinitely many commodities. Vind’s (1972) result was stated for
economies with complete information and a finite number of commodities, under a
stronger monotonicity assumption: If the amount of only one commodity increases,
then the utility increases. In our setting, the stronger requirement (A.5) on initial
endowments allows us to use a weaker monotonicity condition. This assumption
(A.5) requiring that initial endowments are strictly positive was also used by Araujo
(1985) addressing complete information economies with �∞ as commodity space.

The topological dual of �∞ depends, of course, on the topology considered
on �∞. It is well known that the Mackey topology is the strongest of the locally
convex topologies on �∞ having �1 as dual space. The stronger the topology is
chosen, the larger the set of preference relations continuous with respect to it.
Assumption (A.2) is stronger than the norm continuity of the utility functions, but,
as Araujo (1985) remarked, if we relax this assumption, allowing in this way for a
larger class of preferences, the equilibrium might fail to exist. On the other hand,
Bewley (1972) proved, within a complete information scenario, an existence of
equilibrium theorem for economies with �∞ as commodity space. Besides the usual
assumptions for the existence of equilibrium, Bewley assumes preferences to be
Mackey continuous. The Mackey topology is sufficiently strong to admit interesting
preference relations. In words of Araujo (1985) “we can say that continuity with
respect the Mackey topology is the best assumption of this kind.”

The Mackey continuity of preferences can be interpreted in terms of impatience
of consumers. To see this, given a consumption bundle z ∈ �∞+ let z(m) denote the

m-tail of z, i.e., the bundle defined as z
(m)
j = 0, 1 ≤ j ≤ m, and z

(m)
j =

zj for j > m. It is known that if a consumer has a preference that is Mackey
continuous then she exhibits impatience behavior in the sense that if x is preferred
to y, then x is also preferred to y+z(m) for any sufficiently largem; that is, Mackey
upper semicontinuity (usc) of preferences implies upper myopia. On the other hand,
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Mackey lower semicontinuity (lsc) of preferences implies lower myopia; that is, if
x is preferred to y and x − z(n) belongs to the consumption set, then x − z(n) is
also preferred to y for any sufficiently large n.

In particular, let y be a consumption bundle and, for a small ε > 0, let x = y+ε
(where εn = ε for every n). Then, x is strictly preferred to y. Let An = {n+1, n+
2, . . . }. Then,

⋂∞
n=1An = ∅. Hence, χAn

converges to zero when n goes to ∞;
where χAn

(ω) ⊂ �∞+ is the function which is one on An and zero elsewhere. From
the Mackey continuity of preferences it follows that x is also preferred to y +χAn

for any sufficiently large n. In other words, a little bit more in the near future would
be preferred to a large constant amount more in every period after some date in the
distant future.

For this kind of myopic preferences and addressing continuum economies with
infinitely many commodities and complete information, Hervés-Beloso et al. (2000)
showed that in order to get the core it is enough to consider, for any ε, the veto power
of coalitions with measure less than ε. On the other hand, Bewley (1973) showed
that Aumann’s (1964) theorem on the equality of the core and the set of equilibria in
atomless markets can be made to apply to complete information economies whose
commodity space is �∞, under monotonicity, convexity and Mackey continuity of
preferences. Hence, loosely speaking, existence and core equivalence of equilibria
as well as blocking efficacy of small coalitions, for complete information economies
with �∞ as commodity space, tend to be hold only in situations where the consumers
“discount” the future in the sense that gains in the distant future are negligible.

In the next section we will deal with the continuum economies introduced by
Aumann (1964, 1966). Our aim is to use this continuum approach in order to obtain
the main results for the economy described in our model.

3 A continuum approach

In this section, we interpret differential information economies with n agents and
infinitely many commodities as continuum or atomless economies with differential
information and infinitely many commodities in which only a finite number of dif-
ferent characteristics can be distinguished (see Garcı́a-Cutrı́n and Hervés-Beloso,
1993, for the deterministic case).

Given the economy E = {((Ω,F), �∞+ ,Fi, Ui, ei, q) : i = 1, . . . , n} with a
finite number of agents, we define a continuum economy Ec, where the ith agent
is the representative of infinitely many identical agents, as follows. The set of
agents is represented by the real interval [0, 1], with the Lebesgue measure µ.
We write I = [0, 1] =

⋃n
i=1 Ii, where Ii =

[
i−1
n , i

n

)
, if i �= n, and In =[

n−1
n , 1

]
. Each consumer t ∈ Ii is characterized by her private information which

is described by Ft = Fi, her consumption set �∞+ , for every ω ∈ Ω; her random
initial endowment e(t, ·) = ei ∈ (�∞+ )Ω and her expected utility function Vt = Vi.
We will refer to Ii as the set of agents of type i in the atomless economy Ec.
Then, the continuum economy Ec with a finite number of types is given by Ec ={
(Ω,F), �∞+ , I =

⋃n
i=1 Ii, Fi, ei, Vi, q) : i = 1, . . . , n

}
.

An allocation in the continuum economy Ec is a Bochner integrable function
f : I → (�∞+ )Ω or, alternatively, f : I × Ω → �∞+ , where f(t, ω) ∈ �∞+ is the
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consumption bundle for agent t associated to the state of nature ω (see Diestel and
Uhl, 1977, for the definition of Bochner integral as an extension of the Lebesgue
integral to Banach spaces).

An allocation f is feasible in the economy Ec if: (i) for almost all t ∈ I the
function f(t, ·) is Ft-measurable, and (ii)

∫
I
f(t, ω)dµ(t) ≤ ∫

I
e(t, ω)dµ(t) for all

ω ∈ Ω.
A coalition S is a measurable subset S ⊂ I, with µ(S) > 0.An allocation f is

privately blocked by a coalitionS in the economy Ec if there exists g : S×Ω → �∞+
such that g(t, ·) is Ft-measurable for every t ∈ S,

∫
S
f(t, ·)dµ(t) ≤ ∫

S
e(t, ·)dµ(t)

and Vt(g(t, ·)) > Vt(f(t, ·)) for every t ∈ S. The set of all feasible allocations
that are not privately blocked by any coalition of agents is the private core of the
economy Ec.

A Walrasian expectations equilibrium in the sense of Radner (or a Radner equi-
librium) in the associated continuum economy Ec is a pair (f, p) where f is a feasible
allocation and p �= 0 is a price system such that, for every consumer t ∈ I, the con-
sumption bundle f(t, ·) maximizes the expected utility function Vt on the budget
set Bt(p) = {y ∈ (�∞+ )Ω such that

∑
ω∈Ω p(ω) · y(ω) ≤ ∑

ω∈Ω p(ω) · e(t, ω)}.
An allocation f in Ec can be interpreted as an allocation x = (x1, . . . , xn)

in E , where xi = 1
µ(Ii)

∫
Ii
f(t, ·)dµ(t). Reciprocally, an allocation x in E can

be interpreted as an allocation f in Ec, where f is the step function given by
f(t, ·) = xi, if t ∈ Ii.

Next result shows that the continuum and the discrete approach can be consid-
ered equivalent with respect to Radner equilibria.

Theorem 3.1 Under assumptions (A.2) and (A.4) the following statements hold:
If (x, p) is a Radner equilibrium for the economy E , then (f, p) is a Radner

equilibrium for the continuum economy Ec, where f(t, ·) = xi if t ∈ Ii.
Reciprocally, if (f, p) is a Radner equilibrium for the atomless economy Ec,

then (x, p) is a Radner equilibrium for E , where xi = 1
µ(Ii)

∫
Ii
f(t, ·)dµ(t).

Proof. Let ((x1, . . . , xn), p) ∈ (�∞+ )Ω×n × �1 be a Radner equilibrium for E .
Then,

∫
I
f(t, ω)dµ(t) =

∑n
i=1 µ(Ii)xi(ω) ≤ ∑n

i=1 µ(Ii)ei(ω) =
∫

I
e(t, ω)dµ(t)

for every state ω ∈ Ω; and the consumption function f(t, ·) maximizes Vt on
Bt(p) = Bi(p) for all t ∈ Ii. Therefore, (f, p) is a Radner equilibrium for the
continuum economy Ec.

Conversely, let (f, p) be a Radner equilibrium for Ec. Then, x = (x1, . . . , xn),
with xi = 1

µ(Ii)

∫
Ii
f(t, ·)dµ(t), is a feasible allocation in the economy E . Since∑

ω∈Ω p(ω)·xi(ω)=
∑

ω∈Ω
1

µ(Ii)

∫
Ii
p(ω)·f(t, ω)dµ(t)≤∑

ω∈Ω p(ω)·ei(ω), we

can deduce thatxi ∈ Bi(p) for every agent i.Let z ∈ (�∞+ )Ω be a random consump-
tion bundle such that Vi(z) > Vi(xi). Then, since Vi is a concave and continuous
function, there exists S ⊂ Ii, with µ(S) > 0, such that Vi(z) > Vi(f(t, ·)) for ev-
ery t ∈ S; and thus

∑
ω∈Ω p(ω) · z(ω) >

∑
ω∈Ω p(ω) · ei(ω). Otherwise, observe

that if Vi(z) ≤ Vi(f(t, ·)) for almost all t ∈ Ii then Vi(z) ≤ Vi(xi) (see Lemma
in Gracı́a-Cutrı́n and Hervés-Beloso, 1993, p. 582). ��
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3.1 Equal treatment private core equivalence

Considering complete information economies, different papers point out the core-
Walras equivalence in continuum economies. Aumann (1964) showed the equiva-
lence between the core and the Walrasian equilibria for atomless economies with a
finite dimensional commodity space. Bewley (1973) proved a core-Walras equiv-
alence for economies in which the commodity space is the space of essentially
bounded, real-valued, measurable functions on a measure space. Rustichini and
Yannelis (1991, 1992) generalized Aumann’s result for economies in which the
commodity space is an ordered separable Banach space.

Addressing economies with differential information, Einy et al. (2001) showed
the equivalence between the Walrasian expectations equilibria (in the sense of
Radner) and the private core for continuum economies with a finite number of
commodities.

Next we state a result which shows that the set of Walrasian expectations equi-
librium allocations with the equal treatment property coincides with the private core
for the differential information continuum economy Ec (associated to the economy
E with a finite number of agents) with infinitely many commodities.

Theorem 3.2 Consider the differential information economy E under assumptions
(A.1)–(A.4). Let f be a feasible allocation in the associated continuum economy Ec

with f(t, ·) = fi for every t ∈ Ii. Then, f is a Walrasian expectations allocation if
and only if f belongs to the private core of Ec.

Proof. Let (f, p) be a Walrasian expectations equilibrium in Ec.Assume that f does
not belong to the private core of Ec. Then, there exists a coalition S ⊂ I which
privately blocks f via y. By concavity of the expected utility functions, we can
consider that y is an equal treatment allocation, i.e., y(t, ·) = yi ∈ Xi for every
t ∈ Si = S

⋂
Ii,

∑n
i=1 µ(Si)yi ≤ ∑n

i=1 µ(Si)ei and Vi(yi) > Vi(fi) for every i
with µ(Si) > 0. This implies that

∑
ω∈Ω p(ω) · yi(ω) >

∑
ω∈Ω p(ω) · ei(ω), for

every i with µ(Si) > 0; which is a contradiction to the physical feasibility of y for
the coalition S.

Now, let f be an equal treatment allocation belonging to the private core of the
continuum economy Ec. Let H be the set of finite dimensional subspaces of �∞

containing fi(ω) and ei(ω), for every ω ∈ Ω and every i = 1, . . . , n. For any
H ∈ H let EH

c denote the continuum economy obtained from Ec by restriction of
the consumption sets to �∞+

⋂
H. That is,

EH
c =

{
(Ω,F), �∞+

⋂
H, I =

n⋃
i=1

Ii, Fi, ei, V
H
i , q, i = 1, . . . , n

}
,

whereV H
i is the expected utility function of the agents of type i restricted to the finite

dimensional positive cone (�∞+
⋂
H)Ω . Obviously, since f belongs to the private

core of Ec, the allocation f belongs also to the private core of EH
c for any H ∈ H.

On the other hand, the economy EH
c satisfies the assumptions which guarantee that

the set of Walrasian expectations equilibrium allocations coincides with the private
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core (see Einy et al., 2001). For each H ∈ H, let pH , with ‖pH‖ = 1, be the price
system such that (pH , f) is a competitive equilibrium for the economy EH

c . By the
Hahn-Banach theorem (see Aliprantis and Burkinshaw, 1985), pH can be extended
to the whole �∞. In this way, we obtain a bounded subset {pH , H ∈ H} of �1.
By the Alaoglu theorem (see Aliprantis and Burkinshaw, 1985) the set of prices
{pH , H ∈ H} is relatively compact in the weak∗ topology denoted by σ(ba, �∞).
Then there exists aσ(ba, �∞) convergent subnet of {pH , H ∈ H}.Let p be the point
to which it converges. Let us show that (p, f) is a Walrasian expectations equili-
brium for the economy Ec. Since the positive cone of ba is σ(ba, �∞) closed, p ≥ 0;
and since ‖pH‖ = 1 for every H ∈ H, we deduce that p �= 0. Assume that (p, f)
is not a Walrasian expectations equilibrium for Ec. Then, for some i, there exists
g ∈ Xi such that

∑
ω∈Ω p(ω) · g(ω) ≤ ∑

ω∈Ω p(ω) · ei(ω) and Vi(g) > Vi(f).
Actually, by assumption (A.4) and continuity of preferences, we can take g such
that

∑
ω∈Ω p(ω) · g(ω) <

∑
ω∈Ω p(ω) · ei(ω). Then, there exists a subspace Ĥ,

such that g ∈ Ĥ and g belongs to the budget set of agent i for the price pH for every
H containing Ĥ, which is a contradiction to the fact that (pH , f) is a Walrasian
expectations equilibrium for the economy EH

c . Finally, as in the proof of Theorem 2
in Bewley (1972), monotonicity and Mackey continuity of preferences allow us to
conclude that p ∈ �1. ��

3.2 Infinite dimensional extension of Vind’s theorem

In the case of considering R

 as commodity space and a complete information

framework, Schmeidler (1972) and Grodal (1972) enforced the Aumann’s (1964)
core equivalence theorem. Vind (1972) completed the previous results by Schmei-
dler and by Grodal and showed that, for atomless economies, it is enough to consider
the veto power of coalitions of any measure, in order to obtain the core; in particular,
the blocking power of arbitrarily big coalitions is enough to get the core. Next we
state an extension of this result to differential information continuum economies
with infinitely many commodities and a finite number of types of agents. For this,
we need some notation. Given x = (xh)∞

h=1 ∈ �∞+ and n ∈ N, we denote by xn

the element of �∞ defined by xn
h = xh if 1 ≤ h ≤ n and xn

h = 0 if h > n. Given a
set J ⊂ I = [0, 1], we denote by Ji the set of agents of type i belonging to J, that
is, Ji = J

⋂
Ii.

Theorem 3.3 Consider the differential information economy E under assumptions
(A.1)–(A.4). Let f be a step function defined by f(t, ·) = fi if t ∈ Ii. Suppose
that f is a feasible allocation in the associated atomless economy Ec and does not
belong to the private core of Ec. Then, for any ε, with 0 < ε < 1, there exists a
coalition S, with µ(S) = ε, privately blocking the allocation f.

Proof. Let f an equal treatment allocation which does not belong to the private core
of the economy Ec. Then, there exist a coalition of agents A ⊂ I and an allocation
g̃ : A → (�∞+ )Ω such that g̃(t, ·) ∈ Xi for every t ∈ Ai (i.e, g̃ is informationally
feasible for the coalition A),

∫
A
g̃(t, ·)dµ(t) ≤ ∫

A
e(t, ·)dµ(t) (i.e, g̃ is physically

feasible for the coalition A) and Vt(g̃(t, ·)) > Vt(f(t, ·)) for every t ∈ A.
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For each state ω ∈ Ω, let gi(ω) = 1
µ(Ai)

∫
Ai

g̃(t, ω)dµ(t). Consider the al-
location g given by g(t, ·) = gi if t ∈ Ai = A

⋂
Ii. Note that gi ∈ Xi and∫

A
g(t, ·)dµ(t) ≤ ∫

A
e(t, ·)dµ(t). Furthermore, by the convexity property of prefe-

rences, Vi(g(t, ·)) > Ui(fi) for every t ∈ Ai. On the other hand, observe that, by
the Mackey continuity of preferences and assumption (A.4), we can take g such that∫

A
(e(t, w) − g(t, w)) dµ(t) ≤ z(ω) = z � 0, for every ω ∈ Ω. Therefore, the

coalition A privately blocks the allocation f via the allocation g which is constant
on types and

∑n
i=1 µ(Ai)gi ≤ ∑n

i=1 µ(Ai)ei − z, where z is a non null constant
sequence.

Since gn
i converges to gi for the Mackey topology , Mackey continuity of

preferences implies that there exists n0 such that for every n ≥ n0 Vi(gn
i ) > Vi(fi)

for every i with µ(Ai) > 0. Hence, coalition A privately blocks f via gn for every
n ≥ n0. In particular, we have the following inequality between n-dimensional
Lebesgue integrals,

∫
A
gn(t, ·)dµ(t) ≤ ∫

A
en(t, ·)dµ(t), where gn(t, ω) = gn

i (ω)
for every t ∈ Ai.

Let the atomless measureη(H) =
(
µ(H),

∫
H
en(t, ·)dµ(t),

∫
H
gn(t, ·))dµ(t)

)
,

restricted to A. Applying Lyapunov theorem to η, we obtain that for any α, with
0 < α < 1, there exists a coalition A ⊂ A, with µ(A) = αµ(A), that privately
blocks f via gn. This proves the result for ε ≤ µ(A).

Then, if µ(A) = 1 the proof is complete. Otherwise, we have that µ(I \A) > 0.
In this case, given ε > 0, consider the allocation gε : A × Ω → �∞+ defined by

gε(t, ω) = εg(t, ω) + (1 − ε)f(t, ω).

By convexity of preferences (assumption (A.3)), Vt(gε(t, ·)) > Vt(f(t, ·)) for
every t ∈ A. Moreover, by continuity of preferences, there exists n1 such that
Vt(gn

ε (t, ·)) > Vt(f(t, ·)) for every t ∈ A and for every n ≥ n1. Consider also the
consumption bundle given by

hi(ω) = fi(ω) +
εµ(A)
µ(I \ A)

z, for each ω ∈ Ω.

By monotonicity of preferences (assumption (A.2)), we have that Vi(hi) > Vi(fi).
Again by Mackey continuity of preferences, there exists n2 such that for every
n ≥ n2 one has that Vi(hn

i ) > Vi(fi) for every i = 1, . . . , n.
Consider now n > max{n1, n2, n3} and the vector measure ν restricted to

I \ A and defined by

ν(C) =
(
µ(C),

∫

C

en(t, ·)dµ(t),
∫

C

fn(t, ·)dµ(t)
)

∈ R
2nk+1 for each C ⊂ I\A,

where k is the number of states of nature, that is, the cardinal of Ω.
Applying Lyapunov’s convexity theorem to the atomless measure ν, we obtain

that, given ε > 0, there exists B ⊂ I \ A such that

(i) µ(B) = (1 − ε)µ(I \ A) and
(ii)

∫
B

(en(t, ·) − fn(t, ·)) dµ(t) = (1 − ε)
∫

I\A
(en(t, ·) − fn(t, ·)) dµ(t).
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Consider the coalition S = A
⋃
B. Note that µ(S) = µ(A)+ (1− ε)µ(I \A).

It remains to show that the coalition S blocks the allocation f. For this, let y :
S × Ω → �∞+ be the allocation given by:

y(t, ·) =

⎧
⎨
⎩
gn

ε (t, ·) = εgn
i + (1 − ε)fn

i if t ∈ Ai = A
⋂
Ii

yi = fn
i + εµ(A)

µ(B) zn if t ∈ Bi = B
⋂
Ii.

Observe that hn
i = fn

i + εµ(A)
µ(I\A) z

n ≤ yi = fn
i + εµ(A)

µ(B) zn for every i.Thus, by
construction, the members in the coalition S prefer the allocation y to the allocation
f, that is, Vi(y(t, ·)) > Vi(fi) for every t ∈ Si, i = 1, . . . , n. Since, gi and fi

belong to Xi and z is a constant sequence, we have that y(t, ·) ∈ Xt for every t ∈ S.
In order to conclude that S privately blocks f via y it remains to show that y is
physically feasible for the coalition S.Actually, we have the following inequalities:
∫

S

(e(t, ·) − y(t, ·)) dµ(t) ≥
∫

S

(en(t, ·) − y(t, ·)) dµ(t)

≥
∫

A

(en(t, ·) − gn
ε (t, ·)) dµ(t) +

∫

B

(en(t, ·) − fn(t, ·)) dµ(t) − εµ(A) zn(·)

≥ (1 − ε)
∫

A

(en(t, ·) − fn(t, ·)) dµ(t) + (1 − ε)
∫

I\A

(en(t, ·) − fn(t, ·)) dµ(t)

= (1 − ε)
∫

I

(en(t, ·) − fn(t, ·)) dµ(t) ≥ 0.

Therefore, the coalition S, with µ(S) = µ(A) + (1 − ε)µ(I \ A), blocks the
allocation f via the allocation y. Since ε is arbitrary, we have construct an arbitrarily
large coalition privately blocking f. ��

4 Equivalence results

In this section, we provide two different characterizations of the Walrasian expecta-
tions equilibria (Radner equilibrium). Both characterizations are obtained in terms
of the private blocking power of the grand coalition. In order to obtain the Radner
equilibrium equivalence theorems, the veto power of the coalition formed by all
the agents is strengthened. In the first characterization, the blocking power of the
grand coalition is made stronger by considering perturbations of the original initial
endowments. The second characterization is obtained by considering that agents
in a coalition can participate with a fraction of their resources, instead. Since the
deterministic Arrow-Debreu-McKenzie model is a special case of the differential
information economy model, one derives insights which yield to new characteri-
zations of the Walrasian equilibria in economies with infinitely many conmodities.

4.1 Non-dominated allocations and equilibria

In this subsection, we obtain a first characterization of Walrasian expectations equi-
librium in differential information economies with a finite number of traders and
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infinitely many commodities. This characterization is obtained by exploiting the
veto power of only one coalition, i.e., the coalition formed by all the agents in the
economy. Precisely, the main result stated in this subsection, Theorem 4.1, shows
that an allocation is a Walrasian expectations allocation if and only if it is non dom-
inated by the grand coalition in any economy which results from altering the initial
endowments, as slightly as one wants, in a precise direction. Welfare theorems
become particular cases of our main result.

Consider the differential information economy E={((Ω,F), �∞+ ,Fi,Ui,ei,q) :
i = 1, . . . , n} defined in Section 2, with n consumers and infinitely many com-
modities.

In order to obtain our first equivalence result, we introduce some additional
notation. Given an allocation x = (x1, . . . , xn) in the economy E and a vector
a = (a1, . . . , an), with 0 ≤ ai ≤ 1, let E(a, x) be a differential information
economy which coincides with E except for the random initial endowment of each
agent i that is given by the following convex combination of ei and xi.

ei(ai, xi) = aiei + (1 − ai)xi,

i.e., given the state ω ∈ Ω, ei(ai, xi)(ω) = aiei(ω) + (1 − ai)xi(ω) ∈ �∞+ .
That is, E(a, x) ≡ {((Ω,F), �∞+ ,Fi, Ui, ei(ai, xi) = aiei + (1 − ai)xi, q) :

i = 1, . . . , n}.

Definition 4.1 An allocation z ∈ X is privately dominated (or privately blocked
by the grand coalition) in the economy E(a, x) if there exists a feasible allocation
y in E(a, x) such that Vi(yi) > Vi(zi) for every i = 1, . . . , n.

The meaning of the definition is clear. An allocation z is dominated in an
economy if the total resources can be distributed in such a way that every agent is
strictly better off with respect to z. That is, z is dominated if it is blocked by the
grand coalition.

Observe that to be physically feasible and to be dominated are independent
conditions for an allocation z ∈ X .According to the definition above, a (privately)
Pareto optimal allocation is a feasible and non-dominated allocation. That is, if z
is feasible in an economy and it is not dominated then z is a Pareto optimum.

The next theorem states that a feasible allocation x in the economy E is a Radner
equilibrium allocation if and only if it is not blocked by the grand coalition in any
economy E(a, x) obtained by perturbing the initial endowments in the direction of
x. In this way, we provide a characterization of Walrasian expectations equilibria
by means of the veto power of the coalition formed by all the agents in a set of
economies, which are defined from the initial economy by altering the original
endowments following a precise direction.

Theorem 4.1 Letx be a feasible allocation in the differential information economy
E satisfying assumptions (A.1)–(A.4). Then x is a Walrasian expectations equilib-
rium allocation in E if and only if x is a non privately dominated allocation for
every economy E(a, x).
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Proof. Let (p, x) be a Walrasian expectations equilibrium for the economy E .
Suppose that there exists a = (a1, . . . , an), such that x is privately dominated in
the economy E(a, x). Then, there exists y = (y1, . . . , yn) ∈ X such that

(i)
∑n

i=1 yi ≤ ∑n
i=1 ei(ai, xi) and

(ii) Vi(yi) > Vi(xi) for every agent i ∈ {1, . . . , n}.
Sincex is a Walrasian expectations equilibrium allocation in the economy E ,we

have that p·xi =
∑

w∈Ωp(ω)·xi(ω) ≤ ∑
w∈Ωp(ω)·ei(ω) = p·ei, for every agent

i; and from (ii) we deduce that p · yi =
∑

w∈Ωp(ω) · yi(ω) >
∑

w∈Ωp(ω) · ei(ω),
for every agent i = 1, . . . , n. Multiplying these inequalities by (1 − ai) and ai,
respectively, we obtain that p · (1 − ai)yi > p · (1 − ai)xi and p · aiyi > p · aiei.
Thus, p · yi > p · aiei + p · (1 − ai)xi, for every agent i. Therefore,

∑n
i=1p · yi >∑n

i=1p · ei(ai, xi), which is a contradiction to (i), that is, a contradiction with the
physical feasibility of y in the economy E(a, x).

Now, let x ∈ X be a non privately dominated allocation for every economy
E(a, x). Let f be a step function on the real interval I = [0, 1], defined by f(t, ·) =
xi if t ∈ Ii =

[
i−1
n , i

n

)
, if i �= n, and f(t, ·) = xn if t ∈ In =

[
n−1

n , 1
]
.

Assume that x is not an equilibrium allocation for the economy E . Then,
by Theorem 3.1, the step allocation f given by x is not an equilibrium al-
location for the associated continuum economy Ec with n different types of
agents. Applying Theorem 3.2, we have that f does not belong to the private
core of the associated continuum economy. Furthermore, by Theorem 3.3, there
exists a coalition S ⊂ I = [0, 1], with µ(S) > 1 − 1

n , privately blocking
the allocation f via an allocation g : S → (�∞+ )Ω , such that for each state
of nature ω ∈ Ω, g(t, ω) = gi(ω) for every t ∈ Si = S

⋂
Ii. That is,∫

S
g(t, ·)dµ(t) =

∑n
i=1 µ(Si)gi ≤ ∫

S
e(t, ·)dµ(t) =

∑n
i=1 µ(Si)ei and Vi(gi) >

Vi(xi) for all i = 1, . . . , n. Let ai = nµ(Si). Notice that, since µ(S) > 1 − 1
n ,

we obtain that ai > 0 for every i.
In the economy E with a finite number of agents, let us consider the allocation

(g1, . . . , gn). Let zi = aigi +(1−ai)xi. By construction,
∑n

i=1zi ≤ ∑n
i=1aiei +

(1 − ai)xi and zi ∈ Xi for every i. By convexity of preferences, Vi (zi) > Vi(xi),
for every agent i ∈ {1, . . . , n}.

Therefore, the grand coalition privately blocks x via z in the economy E(a, x),
which is a contradiction. ��

It should be noted that we characterize the equilibrium allocations as those non-
dominated allocations in the economies given by infinitesimal perturbations in a
precise direction of the original random initial endowments. In fact, the parameters
ai in the statement of Theorem 4.1 can be chosen arbitrarily close to one for every
agent i. Indeed, note that given δ, with 0 < δ < 1, it is enough to consider the
privately blocking coalition S such that µ(S) > 1 − δ

n in order to guarantee
ai = nµ(Si) > 1 − δ for every i.

Notice also that the first welfare theorem is an immediate consequence of The-
orem 4.1. In fact, if x is a Radner equilibrium allocation in the economy E , then x
is a Pareto optimal allocation not only in the economy E but also in any economy
E(a, x) where x is feasible.
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Moreover, observe that if x is a privately Pareto optimal allocation in E , then
x is also a privately Pareto optimal allocation in the economy in which the initial
endowment allocation is x, that is, in the economy E(0, x).Thus, by taking xi = ei,
for all i, all the economies E(a, x) are equal to E(0, x) and x is not privately blocked
by the grand coalition. Then, if x � 0, we can apply Theorem 4.1 to the economy
E(0, x) and we obtain, exactly, the second welfare theorem.

Therefore, Theorem 4.1 not only provides a characterization of equilibria in
terms of the blocking power of the grand coalition but also allows us to obtain both
welfare theorems as particular cases.

4.2 Fuzzy core and equilibria

Aubin (1979), addressing complete information economies with a finite number of
agents and commodities, introduced the pondered veto concept and showed that the
core obtained by this veto mechanism coincides with the Walrasian equilibria (see
also Florenzano, 1990, for more general economies). The veto system proposed
by Aubin extends the notion of ordinary veto in the sense that it is allowed a
participation of the agents with a fraction of their endowments when forming a
coalition. This veto mechanism is referred in the literature to fuzzy veto. On the
other hand, the term fuzzy is usually used when elements belong to a set with
certain probability. Then, this term may lead the reader to situate within another
different scenario. In fact, regarding the veto mechanism introduced by Aubin,
the agents actually (and not probably) participate in a coalition with a fraction
of their endowments . Thus, as it is known, this veto mechanism is equivalent
to the classical (Debreu-Scarf) veto system applied to the sequence of replicated
economies. Therefore, we will refer this veto system as Aubin veto or veto in the
sense of Aubin.

Following Aubin (1979), we define the privately Aubin blocking for differential
information economies as follows.

Definition 4.2 An allocation x is privately blocked in the sense of Aubin by the
coalition S via the allocation y if there exist αs ∈ (0, 1], for each s ∈ S, such that∑

s∈Sαsys ≤ ∑
s∈Sαses, and Vs(ys) > Vs(xs), for every s ∈ S.

The Aubin private core of the economy E is the set of all feasible allocations
which cannot be privately blocked in the sense of Aubin.

This definition of Aubin private veto and the consequent Aubin private core
solution extend the notion of veto mechanism due to Aubin (1979) to a differential
information setting. However, as it was noticed in the introduction, it is important
to remark that we require the coefficients αi to be strictly positive for every agent
forming the coalition. Otherwise, the grand coalition contains implicitly the set of
all possible coalitions.

Definition 4.3 A feasible allocation x is Aubin dominated (or dominated in the
sense of Aubin) in the differential information economy E if x is privately blocked
in the sense of Aubin, by the grand coalition.
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The next result shows that the set of Radner equilibrium allocations for the
economy E = {((Ω,F), �∞+ ,Fi, Ui, ei, q) : i = 1, . . . , n}, coincides with the
set of allocations which are not Aubin dominated. Therefore, in order to obtain
the Walrasian equilibria in the sense of Radner it suffices to consider the privately
Aubin blocking power of just one coalition, namely, the grand coalition. Moreover,
as we will show, from the proof we can deduce that the participation of every agent
i can be taken as close to one as one wants.

Theorem 4.2 Let E be an economy under assumptions (A.1)–(A.4). Then x is a
Walrasian expectations equilibrium allocation in E if and only ifx is not a dominated
allocation in the sense of Aubin in the economy E .

Proof. Let x be dominated allocation in the sense of Aubin in E . Then, the cor-
responding step function f given by x does not belong to the private core of the
associated continuum economy Ec. Hence, by Theorem 3.2, the step function f
is not a Radner equilibrium in the continuum economy Ec. Therefore, applying
Theorem 3.1, x is not a Radner equilibrium allocation in E .

Reciprocally, let x be a non Radner allocation in the economy E . Then, by
Theorem 3.1., the step function f defined by x is not a Radner allocation in the
continuum economy Ec. Hence, f does not belong to the private core of Ec, that is,
there exists a coalition S, with µ(S) > 0 blocking f. By Theorem 3.3, the coalition
S can be chosen such that µ(Si) > 0, for every i = 1, . . . , n. Then, there exists an
allocation g : S × Ω → �∞+ , with g(t, ·) ∈ Xi for every t ∈ Si, such that

(i)
∫

S
g(t, ·)dµ(t) ≤ ∫

S
e(t, ·)dµ(t) =

∑n
i=1 µ(Si)ei and

(ii) Vi(g(t, ·)) > Vi(xi) for every t ∈ Si and for every i = 1, . . . , n.

Consider the allocation y : S × Ω → �∞+ given by

y(t, ·) = yi =
1

µ(Si)

∫

Si

g(t, ·)dµ(t) for every t ∈ Si.

Observe that yi ∈ Xi because g(t, ·) ∈ Xi for every t ∈ Si. Then, taking αi =
nµ(Si) ∈ (0, 1] for every i = 1, . . . , n, we have that

(i)
∑n

i=1 αiyi ≤ ∑n
i=1 αiei and

(ii) Vi(yi) > Vi(xi) for every i = 1, . . . , n.

Condition (i) comes from the construction of the allocation y whereas condition
(ii) is a consequence of convexity of preferences. Therefore, we conclude that x is
privately dominated in the sense of Aubin. ��
Remark. If we interpret that the participation of an agent i in the grand coalition
is close to the total or complete participation when the corresponding coefficient
αi is close to one (αi > 1 − δ, for any small δ), we will show that in Theorem 4.2
the participation of each agent can actually be required to be close to the total
participation:

Given a positive real number δ < 1, by Theorem 3.3, we can take the coalition
S blocking the allocation f such that µ(S) > 1 − δ

n . Therefore, the coefficient
αi = nµ(Si) = nµ(S

⋂
Ii) > 1 − δ for every i = 1, . . . , n.
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Note that as an immediate consequence of the equivalence result above and the
characterization stated in Theorem 4.1, we obtain the following corollary.

Corollary 4.1 Let E be an economy under assumptions (A.1)–(A.4) and let x be a
feasible allocation in E . The following statements are equivalent:

1. The allocation x is a Radner equilibrium allocation.
2. The allocation x is not privately blocked in the sense of Aubin.
3. The allocation x is not privately blocked in the sense of Aubin by the grand

coalition.
4. The allocation x is not privately blocked in the sense of Aubin by the grand

coalition with a participation of each agent as close as the total participation
as one wants.

5. The allocation x is a non-dominated allocation in every economy E(a, x).
6. The allocation x is not dominated in any economy E(a, x) with coefficients ai

as close to the unit as one wants.

5 Radner equilibrium and Bayesian incentive compatibility

Consider the differential information economy E described in Section 2:

E = {((Ω,F), �∞+ ,Fi, Ui, ei, q) : i = 1, . . . , n}
Definition 5.1 A no-free disposal Radner equilibrium for the economy E is a pair
(p, x), where p ∈ �1, p �= 0 is a price system and x = (x1, . . . , xn) ∈ X is an
allocation, such that

(i) for all i the consumption function xi maximizes Vi on Bi(p),
(ii)

∑n
i=1 xi =

∑n
i=1 ei (no-free disposal).

Denote by Ei(ω) the event of agent i which contains the realized state of nature
ω ∈ Ω. Obviously, Ei(ω) is an element of Fi.

Definition 5.2 An allocation x ∈ X =
∏n

i=1Xi is said to be Coalitional Bayesian
Incentive Compatible (CBIC) if the following is not true:

There exists a coalition S ⊂ {1, . . . , n} and states ω, ω′, ω �= ω′ with ω′ ∈
Ei(ω) for all i /∈ S, such that

Ui(ω, ei(ω) + xi(ω′) − ei(ω′)) > Ui(ω, xi(ω)) for every i ∈ S.

The above definition of CBIC is related to the one in Koutsougeras andYannelis
(1993) and Krasa and Yannelis (1994), but we don’t need to assume that the event
Ei(ω) is an element of the1 ∧C∈SFi, i.e., the eventEi(ω) is known to every member
of the coalition S. Thus, our concept is slightly stronger than the one in the above
papers. In essence, this notion of CBIC states that it is not possible for a coalition of
agents S to benefit by announcing to the members of the complementary coalition
I \S, a false state that all members in I \S cannot distinguish from the true trade of

1 The symbol ∧ denotes the “meet” and ∧i∈SFi. is the finest partition contained in each Fi
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nature. Since the Radner equilibrium allows for multilateral contracts we insist on
a coalitional notion of incentive compatibility since a contract which is individual
Bayesian incentive compatible may not be CBIC; of course the reverse is always
true.

We remark (see also Glycopantis et al., 2002) that the Radner equilibrium with
free disposal is not CBIC, as the next example shows:

Example 5.1 Let Ω = {a, b, c}, N = {1, 2}, Ui(ω, x) = x1/2 for every x ∈ R+,
for each state of nature ω ∈ Ω and for every agent i = 1, 2; q(a) = q(b) =
q(c) = 1/3; F1 = {{a, b}, {c}} , F2 = {{a, c}, {b}} and e1 = (15, 15, 0), e2 =
(15, 0, 15).

One can compute the Radner equilibrium for the economy above and find that
x1 = (12, 12, 3) and x2 = (12, 3, 12) is an equilibrium allocation (with free
disposal). Notice that this allocation is not CBIC because if a is the realized state of
nature, c ∈ E2(a) (i.e., agent 2 can not distinguish a from c), then agent 1 reports
c and if agent 2 believes her, agent 1 is better off, that is,

U1(a, e1(a) + x1(c) − e1(c)) = U1(a, 12 + 3 + 0) > U1(a, x1(a)) = U1(a, 12).

In other words, state a has occurred and agent 1 reports that it is state c.Thus, agent
1 keeps the initial endowment in state a (notice that she can even consume 15 units
instead of 12 because nobody can verify that she wasted 3 units) and adds the 3
units she received in state c from agent 2 who believes that c has occurred and gives
agent 1, 3 units.

The theorem below shows that if in the Radner equilibrium allocation we do not
allow for free disposal, then it is always CBIC. Notice that without free disposal
the Radner equilibrium in the example above is no trade and thus it is CBIC.

Theorem 5.1 Let E be a differential information economy satisfying the assump-
tions (A.1) and (A.2). Then, any no free disposal Radner equilibrium allocation is
Coalitional Bayesian Incentive Compatible.

Proof. Let x ∈ X be a Radner equilibrium allocation and by way of contradiction,
suppose that x is not CBIC. Then, there exist S, ω, ω′, ω �= ω′, with ω ∈ Ei(ω′)
for every i /∈ S, such that

Ui(ω, ei(ω) + xi(ω′) − ei(ω′)) > Ui(ω, xi(ω)) for every i ∈ S. (1)

Since for all i net trades are Fi-measurable and ω ∈ Ei(ω′), for every i /∈ S,
it follows that xi(ω) − ei(ω) = zi(ω) = xi(ω′) − ei(ω′) = zi(ω′) for all i /∈ S.

Hence,

Ui(ω, ei(ω) + zi(ω)) = Ui(ω, xi(ω)) for all i /∈ S. (2)

It follows from (1) and the continuity of Ui that there exists a positive ε ∈ �∞+
such that

Ui(ω, ei(ω) + zi(ω) − ε) > Ui(ω, xi(ω)) for every i ∈ S. (3)
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Define for each agent i the function yi : Ω → �∞+ as

yi(ω) =

⎧
⎨
⎩

ei(ω) + zi(ω′) − ε for i ∈ S

ei(ω) + zi(ω′) + |S|
|N |−|S| ε for i /∈ S,

where | S | denotes the cardinality of the set S.
It can be easily checked that y = (y1, . . . , yn) is feasible and also Fi-

measurable for every i.
It follows from (3) and from the definition of y that

Ui(ω, yi(ω)) > Ui(ω, xi(ω)) for every i ∈ S. (4)

From (2) and taking into account monotonicity we obtain that

Ui(ω, yi(ω)) = Ui(ω, ei(ω) + zi(ω′) +
| S |

| N | − | S | ε) (5)

> Ui(ω, xi(ω)) for all i /∈ S.

Thus, (4) and (5) imply that Ui(ω, yi(ω)) > Ui(ω, xi(ω)) for every agent
i, (i = 1, . . . , n) and consequently for every i

Vi(yi) =
∑
ω∈Ω

Ui(ω, yi(ω)) >
∑
ω∈Ω

Ui(ω, xi(ω)) = Vi(xi).

Since
∑n

i=1 yi =
∑n

i=1 ei =
∑n

i=1 xi, one has that p ·∑n
i=1 yi = p · ∑n

i=1 ei

for any p �= 0 and consequently p · yj ≤ p · ej for some agent j. Thus, yj is Fi-
measurable, it belongs to the budget set for j and it yields higher expected utility
to agent j than Vj(xj), a contradiction to the fact that x is a Radner equilibrium
allocation. ��
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1 Laws of scarcity, parameterized collections
of games and equal treatment cores

The importance of the scarcity of a commodity in determining its value in exchange
was already recognized by Adam Smith in the paradox that diamonds, although
used only for adornment, were expensive, while water, essential to human life, was
cheap. This apparent paradox has been much explained in the context of general
equilibrium models of economies with private goods. The current paper1 treats
the problem from the perspective of cooperative game theory and demonstrates
that if gains to population size are nearly exhausted, then numbers of players who
are similar to each other and core payoffs respond in opposite directions. The
players could be units of commodities, or people who are endowed with bundles of
commodities, or people who just like to get together in groups for the pleasure of
each other’s company. We stress that our framework encompasses games derived
from diverse economies, including economies with clubs, with endogenous choice
of skills and club/group/jurisdiction formation, with pure or local public goods (or
both), and also economies with production and exchange.2 The only qualification
is that the games generated are with side payments.

Stating our results more precisely, within the context of parameterized col-
lections of games, we obtain analogues of the celebrated Laws of Demand and
of Supply of general equilibrium theory. Roughly, the Law of Demand states that
prices and quantities demanded change in the opposite directions while, with inputs
signed negatively, the Law of Supply states that quantities demanded as inputs and
produced as outputs change in the same direction as price changes.3 In the frame-
work of a cooperative game, supply and demand are not distinct concepts. Thus,
following [43] we refer to our results for games as Laws of Scarcity. If player types
are thought of as commodity types while payoffs to players are thought of as prices
for commodities, our Laws of Scarcity are closely related to comparative statics
results for general equilibrium models with quasi-linear utilities. As we discuss in a
section relating our paper to the literature, our results extend the literature in several
directions.

Games in a parameterized collection are described by certain parameters: (a)
the number of approximate types of players and the goodness of the approximation
and (b) the size of nearly effective groups of players and their distance from exact
effectiveness.4 An equal treatment payoff vector is defined to be a payoff vector that
assigns the same payoff to all players of the same approximate type. Our laws of
scarcity demonstrate that equal treatment ε-cores satisfy the property that numbers
of players who are similar to each other and equal treatment ε-core payoffs respond

1 A shorter version of the current paper, with fewer results, is [19].
2 See, for example, Cole and Prescott (1997); Conley and Wooders (1997) or, for endogenous skill

formation, Conley and Wooders (1996, 2001). See also Boehm (1974) and Shubik and Wooders (1983)
for coalition production economies and Shubik and Wooders (1982) for a general model with coalition
production and local public goods. We note that some of these papers permit nontransferable utility.

3 The Law of Demand therefore rules out “Giffen goods” or treats compensated demands; see Mas-
Colell,Whinston and Green [22], Sections 2.F and 4.C. This volume also provides a very clear exposition
and further references.

4 Parameterized collections of games were introduced in [15,16], and [17].
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in nearly opposite directions; specifically, we establish an exact upper bound on the
extent to which equal treatment ε-core payoffs may respond in the same direction
and this bound will, under some conditions, be small. We actually demonstrate a
stronger result – equal treatment ε-core vectors and vectors of numbers of play-
ers of each approximate type satisfy cyclic monotonicity.5 In addition to cyclic
monotonicity, we demonstrate a closely related comparative statics result: When
the relative size of a group of players who are all similar to each other increases,
then equal treatment ε-core payoffs to members of that group will not significantly
increase and may decrease.

The conditions required on a game to obtain our results are that (i) each player
has many close substitutes (a thickness condition) and (ii) almost all gains to col-
lective activities can be realized by groups of players bounded in size (a form of
small group effectiveness – SGE). The first condition is frequently employed in
economic theory. The second condition may appear to be restrictive, but in fact, if
there are sufficiently many players of each type, then per capita boundedness (PCB)
– finiteness of the supremum of average payoff over all games considered – and
SGE are equivalent.6 Our results yield explicit bounds, in terms of the parameters
describing the games, on the maximal deviation of equal treatment ε-core payoffs
from satisfying exact monotonicity. Moreover, our framework allows some latitude
in the exact specification of approximate types. These two considerations suggest
that in principle our results can be well applied to estimate the effects on equal
treatment ε-core payoffs of changes in the composition of the total player set. Note
that all the bounds we obtain are exact, and depend on the parameters describing
the games and on the ε of the ε-core.

Our results also contribute to a literature relating games, markets and clubs.
An advantage of the framework of cooperative games over detailed models of
economies is that models of games can accommodate the entire spectrum from
games derived from economies with only private goods to games derived from
economies with pure public goods. Thus, it is of interest to determine conditions
on games ensuring that they are ‘market-like’ – that they satisfy analogues of well
known properties of competitive economies. Important papers in this direction in-
clude Shubik [37], which introduced the study of large games as models of large
private-goods economies, Shapley and Shubik [36], which demonstrated an equiv-
alence between markets and totally balanced games, and Wooders [43,44] demon-
strating that games with many players are market games. Further motivation for
the framework of cooperative games comes from Buchanan [2], who stressed the
need for a general theory, including as extreme cases both purely private and purely
public goods economies and the need for “a theory of clubs, a theory of cooperative
membership.”

5 Cyclic monotonicity relates to monotonicity in the same way as the Strong Axiom of Revealed
Preference relates to the Weak Axiom of Revealed Preference (see, for example, Richter [27,28]).

6 This is shown for “pregames” in Wooders [44], Theorem 4. Per capita boundedness and small
group effectiveness were introduced as conditions limiting returns to coalition size in the study of large
games in Wooders [41,42] respectively, where nonemptiness of approximate cores, the equal treatment
property of cores, and other properties of large games were investigated.
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For our results characterizing ε-cores of games to be interesting, it is impor-
tant that under some reasonably broad set of conditions, ε-cores of large games
are nonempty. Since Shapley and Shubik [35], showing nonemptiness of approx-
imate cores of exchange economies with many players and quasi-linear utilities
and Wooders [40,41], showing nonemptiness of approximate cores of game with
many players with and without side payments, there has been a number of further
results. For parameterized collections of games, such results are demonstrated in
[15–17] and [45]. Importantly, in Kovalenkov and Wooders [16] equal treatment
ε-cores of games with side payments are also shown to be nonempty. The interest of
our monotonicity results is further enhanced by results showing that approximate
cores have the equal treatment property; in this regard, note that [43] shows that
approximate cores of large games treat most similar players nearly equally.7 In this
paper we present an equal treatment result for the “base case” of games with strictly
effective small groups. In Kovalenkov and Wooders [15] further equal treatment
results are demonstrated for parameterized collections of games.

In the next section we define parameterized collections of games. In Section 3,
the results are presented. Section 4 consists of an example, applying our results to
a matching model with hospitals and interns. Section 5 further relates the current
paper to the literature and concludes the paper. In Appendix A we prove that the
bounds cannot be tightened. In Appendix B, for the convenience of the reader we
describe the pregame framework of the prior literature and make some connections
to the framework of parameterized collections of games.

2 Cooperative games

Let (N, v) be a pair consisting of a finite set N, called the player set, and a function
v, called the characteristic function, from subsets of N to the non-negative real
numbers with v(∅) = 0. The pair (N, v) is a game (with side payments or a TU
game). Non-empty subsets of N are called coalitions or groups. A game (N, v)
is superadditive if v(S) ≥ ∑

k v(S
k) for all groups S ⊂ N and for all partitions

{Sk} of S.
In games and economies where the realization of maximum total payoff may

require that a group of players sub-divide into smaller coalitions, superadditivity
does not necessarily hold. If, however, a game is essentially superadditive, that is,
a possibility open to a group S is to divide into subgroups and achieve the total
payoff realizable by the subgroups, it is natural to apply solution concepts such as
the core and approximate cores to the superadditive cover. (See Lemma 0 below.)
Thus, we define the superadditive cover (N, vs) of the game (N, v) where:

vs(S) def= max
∑

k

v(Sk)

and the maximum is taken over all partitions {Sk} of S. Our results apply to both
superadditive games and to superadditive cover games.

7 These results extend prior results for sequences of games with a fixed distribution of player types
in [40,41] and [39].
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Given a nonnegative real number δ ≥ 0, two players i and j are δ-substitutes if
for all groups S ⊂ N with i, j /∈ S, it holds that

|v(S ∪ {i}) − v(S ∪ {j})| ≤ δ.

When δ = 0, players i and j are exact substitutes.

2.1 Parameterized collections of games

δ – substitute partitions. In our approach we approximate games with many play-
ers, all of whom may be distinct, by games with player types. This extends the prior
model for pregames since the assumption of a compact metric space of player types
is not required.

Let (N, v) be a game and let δ ≥ 0 be a non-negative real number. Informally, a
δ-substitute partition is a partition of the player set N into subsets with the property
that any two players in the same subset are “within δ” of being substitutes for each
other. That is, if all players in a coalition are replaced by δ-substitutes, the payoff
to that coalition changes by no more than δ per capita. Formally, a partition {N [t]}
of N into subsets is a δ-substitute partition if all players in each subset are δ-
substitutes for each other.8 The set N [t] is interpreted as an approximate type. Note
that in general a δ-substitute partition of N is not uniquely determined. Moreover,
two games, say (N, v) and (N, v′), may have the same partitions into δ-substitutes
but have no other relationship to each other (in contrast to games derived from a
pregame). Examples are provided at the end of this subsection.

(δ, T ) – type games. The notion of a (δ,T )-type game is an extension of the notion
of a game with a finite number of types to a game with approximate types.

Let δ be a non-negative real number and let T be a positive integer. A game
(N, v) is a (δ, T )-type game if there exists aT -member δ-substitute partition {N [t] :
t = 1, .., T} of N .

profiles . Profiles of player sets are defined relative to partitions of player sets into
approximate types.

Let δ ≥ 0 be a non-negative real number, let (N, v) be a game and let
{N [t] : t = 1, .., T} be a partition of N into δ-substitutes. A profile relative to
{N [t]} is a vector of non-negative integers f ∈ ZT

+ . Given S ⊂ N the profile of
S is a profile, say s ∈ ZT

+ , where st = |S ∩ N [t]|. A profile describes a group
of players in terms of the numbers of players of each approximate type in the
group. Let ‖f‖ denote the number of players in a group described by f , that is,
‖f‖ =

∑
ft.

8 The definition of δ-substitutes in our prior papers, including [19], is slightly less restrictive but
more complicated.
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β – effective B-bounded groups. The following notion formulates the idea of
small group effectiveness, SGE, precisely defined in Appendix B, in the context of
parameterized collections of games. Informally, groups of players containing no
more than B members are β-effective if, by restricting coalitions to having fewer
than B members, the per capita loss is no more than β.

Let β be a given non-negative real number, and let B be a given integer. A
game (N, v) has β-effective B-bounded groups if for every group S ⊂ N there is
a partition {Sk} of S into subgroups with |Sk| ≤ B for each k and

v(S) −
∑

k

v(Sk) ≤ β |S| .

When β = 0, 0-effective B-bounded groups are called strictly effective B-bounded
groups.

parametrized collections of games Γ ((δ, T ), (β,B)). Let T and B be positive
integers, let δ and β be non-negative real numbers. Define

Γ ((δ, T ), (β,B))

to be the collection of all (δ, T )-type games that haveβ-effectiveB-bounded groups.

Example 1. The following games illustrate the ideas of a δ-substitute partition and
β-effectiveB-bounded groups. LetN be a finite set of players. Suppose that players
can be ranked in the [0, 1] interval so that if i, j ∈ N and i > j then i has a higher
rank. We consider three different games, all with the same player set and the same
ranking.

Let (N, v) be a game where the total payoff to any two players is the sum of
their ranks. Suppose also that the payoff v(S) to any other group S is zero. Then
for any β ≥ 0 and any B ≥ 2, the game has β-effective B-bounded groups. Given
δ ≥ 0, if the distance between the ranks of players i and j is less than δ, then i and
j are δ-substitutes, both for the game (N, v) and for the superadditive cover game
(N, vs).

To see that there may be other games with the same partitions of the total player
set into δ-substitutes, consider another game (N, v′) but where the payoff v′({i})
to player i is equal to his rank and the payoff to any other coalition is the given
by the superadditive cover of v′. Here for any β ≥ 0 and any B ≥ 1, B-bounded
groups are effective and if the distance between the ranks of i and j less than δ,
then i and j are δ-substitutes.

Alternatively, let the payoff to any group consisting of two players be the square
of the sum of the ranks of the members of the group (and again take the superadditive
cover to create a superadditive game). Then if the distance between the ranks of
players i and j is less than δ then i and j are δ2 + 4δ substitutes.

Example 2. This example serves to illustrate how the framework of parameterized
collections of games allows new insights that may be hidden within the pregame
framework. (Recall that pregames are formally defined in Appendix B.)
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Let (N, v) be a game with buyers and sellers, where all sellers sell an identical
product, each seller owns one unit of this product and has a reservation price for
the unit he owns. Suppose that each buyer only wants to purchase at most one unit
of the product and has a reservation price for the unit of product. Suppose that the
reservation prices of the buyers are higher than the reservation prices of the sellers,
so that always there exist some gains from trade, but the maximal gain from trade
is bounded by some constant a. Then for any δ > 0 the game (N, v) belongs to the
collection Γ ((δ, Tδ), (0, 2)) where Tδ is the smallest integer greater than a/δ.

Now consider instead a production game (N, v′) where only two person coali-
tions are effective and where the worth of any two person coalition is the sum of
the fixed productivities assigned to these two players and is less than or equal to
a. In spite of the fact that the two games are quite different, the game (N, v′) also
belongs to the collection Γ ((δ, Tδ), (0, 2)).

To put both these sorts of games within one pregame framework would require
a topology on the space of player types and would require that the pregame is really
just the union of two distinct pregames, one with buyers and sellers and another
with production. Also, although it may be intuitive, the pregame framework does
not make precise the similarities between the games that drive results, stated in
terms of the parameters, applying to both games.

2.2 Equal treatment ε-core

the core and ε-cores. Let (N, v) be a game and let ε be a non-negative real
number. A payoff vector x is in the ε-core of (N, v) if and only if it is feasible, that
is,

∑
a∈N xa ≤ v(N) and

∑
a∈S xa ≥ v(S) − ε|S| for all S ⊂ N . When ε = 0,

the ε-core is the core.

Lemma 0. Let (N, v) be a not-necessarily superadditive game and let (N, vs) be
its superadditive cover. Let ε ≥ 0 be given. Then if x is a payoff vector in the ε-core
of (N, v), then x is in the ε-core of (N, vs).

Lemma 0 demonstrates that to study properties of the core of essentially su-
peradditive games, we can assume, without loss of generality, that the game is
superadditive. We leave the easy proof of Lemma 0 to the reader.

the equal treatment ε-core. Given non-negative real numbers ε and δ, we will
define the equal treatment ε-core of a game (N, v) relative to a δ-substitute partition
{N [t]} of the player set as the set of payoff vectors x in the ε-core with the property
that for each t and all i and j in N [t], it holds that xi = xj .

Our notion of the equal treatment core is motivated by standard economic
theory. All units of a commodity may differ; no two workers have exactly the same
fingerprints or DNA for example. But yet, nonidentical commodities, if sufficiently
similar, are treated as one commodity. The equal-treatment core may be viewed as
a stand-in for the competitive equilibrium where similar items are grouped together
as the same commodity.
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For our comparative statics and monotonicity results, we restrict to payoffs
in equal treatment ε-cores. As is well known, even with strictly effective small
groups ε-cores do not necessarily treat identical players identically. For example,
suppose that (N, v) is an inessential game where v(S) = |S| for all groups S ⊂ N .
Then, for any player i ∈ N , the payoff x ∈ R

N where xi = 1 + ε(|N | − 1) and
xj = 1−ε for all j �= i is in the ε-core.9 A number of results, however, have shown
that under the assumption of per capita boundedness and thickness, bounding the
percentages of players of each type strictly away from zero, approximate cores
treat most similar players nearly identically.10 The central result is that with strictly
effective groups and sufficiently many players of each type, the core treats identical
players identically.11 We provide a version of this result below for parameterized
collections of games with strictly effective small groups.

Proposition 0. Let (N, v) ∈ Γ ((δ, T ), (0, B)). Let z ∈ R
N
+ be in the core of

(N, v). Suppose that there are more than B δ-substitutes for each player in the
game. Then if i,j ∈ N and i and j are δ-substitutes, it holds that

|zi − zj | ≤ 2δ.

Proof. The proof of this proposition is essentially the same as the proof of Theorem 3
of Wooders [41]), for NTU games. If δ = 0 then, for the special case of TU games,
the proof is exactly the same as in the prior paper.

For any S ⊂ N let z(S) denote
∑

a∈S za. From the assumption that groups
bounded in size by B are strictly effective, it holds that for some partition {Sk} of
N into groups with |Sk| ≤ B for each k,

v(N) −
∑

v(Sk) = 0.

Therefore, since z is in the core,
∑

v(Sk) −
∑

z(Sk) = 0

and

z(Sk) ≥ v(Sk) for each k.

It follows that

z(Sk) = v(Sk) for each k.

For any i ∈ N let Sk(i) denote the member of {Sk} containing player i. Now
suppose, for some players i0,j0 ∈ N, that i0 and j0 are δ-substitutes and

zi0 − zj0 > 2δ.
9 Such examples go back to earliest versions of [40].

10 See [40,39,43] and [45]. Another related result appears in Kovalenkov and Wooders [15], where
conditions are demonstrated under which all payoffs in approximate cores treat similar players equally.
These conditions hold for NTU games but not for TU games with unlimited side payments.

11 Proofs of the more general results in the cited papers follow from “approximating” ε-cores by exact
cores of games with admissible sizes of coalitions truncated.
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Let us first show that then there exist two players i1, j1 ∈ N, such that i1 and j1
are δ-substitutes, i1 /∈ Sk(j1) and

zi1 − zj1 > δ.

If i0 /∈ Sk(j0) then i0, j0 are such two players i1, j1. Otherwise, since
|Sk(j0)| ≤ B and since there are more than B δ-substitutes for each player it
holds that there is some player l who is a δ-substitute for i0 and j0, and l /∈ Sk(j0).
Then it follows from the triangle inequality that either zi0 − zl > δ or zl − zj0 > δ.
Thus either i0, l or l, j0 are such two players i1, j1.

Now let us considerS∗ = Sk(i1)∪{j1}\{i1}. Since i1 and j1 are δ-substitutes,
it holds that

v(S∗) ≥ v(Sk(i1)) − δ.

But z(S∗) < z(Sk(i1))−δ ≤ v(S∗) and we have a contradiction to the assumption
that z is in the core. ��

With the definition of the equal treatment ε-core in hand, we can next address
monotonicity properties and comparative statics for this concept. In the following
we will simply assume the nonemptiness of equal treatment ε-cores. With SGE
along with PCB, for ε > 0 this assumption is satisfied for all sufficiently large
games in parameterized collections (see Kovalenkov and Wooders result [16,18]).

3 Laws of scarcity

A technical lemma is required. For x, y ∈ RT , let x · y denote the scalar product
of x and y, i.e. x · y :=

∑T
t=1 xtyt.

Lemma 1. Let (N, v) be in Γ ((δ, T ), (β,B)) and let (S1, v), (S2, v) be subgames
of (N, v). Let {N [t]} denote a partition of N into types and, for k = 1, 2, let fk

denote the profile of Sk relative to {N [t]}. Assume that fk
t ≥ B for each k and

each t. For each k, let xk ∈ RT represent a payoff vector in the equal treatment
ε-core of (Sk, v). Then

(x1 − x2) · f1 ≤ (ε + δ + β)
∥∥f1

∥∥ .

Proof. Since (N, v) has β-effective B-bounded groups, there exists a partition
{G1
} of S1, such that |G1
| ≤ B for any � and

∑



v(G1
) ≥ v(S1) − β
∥∥f1

∥∥ .

Let us denote the profiles of G1
 by g
. Observe that
∑


 g

 = f1.

Since f2
t ≥ B for each t, it holds that g
 ≤ f2 for each �. Therefore for each

� there exists a subset G2
 ⊂ S2 with profile g
. Observe that since both G1
 and
G2
 have profile g
, it holds that

∣∣v(G1
) − v(G2
)
∣∣ ≤ δ

∥∥g

∥∥ .
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Since x2 represents a payoff vector in the equal treatment ε-core of (S2, v) and
G2
 ⊂ S2 has profile g
, the total payoff x2 · g
 cannot be improved on by the
coalition G2
 by more than ε‖g
‖. Thus, for each set G2
 ⊂ S2 with profile g
, it
holds that

x2 · g
 ≥ v(G2
) − ε
∥∥g


∥∥ ≥ v(G1
) − (ε + δ)
∥∥g


∥∥ .
Adding these inequalities we have

x2 · f1 ≥
∑




v(G1
) − (ε + δ)
∥∥f1

∥∥ .

It then follows that

x2 · f1 ≥ v(S1) − (ε + δ + β)
∥∥f1

∥∥ .
Since x1 represents a payoff vector in the equal treatment ε-core of (S1, v),

x1 ·f1 is feasible for (S1, v), that is, x1 ·f1 ≤ v(S1). Combining these inequalities
we have

(x1 − x2) · f1 ≤ (ε + δ + β)
∥∥f1

∥∥ .
��

Now we can state and prove our main results.

3.1 Approximate cyclic monotonicity

We derive an exact bound on the amount by which an approximate core payoff
vector for a given game can deviate from satisfying exact cyclic monotonicity. The
bound depends on:

δ, the extent to which players within each of T types may differ from being exact
substitutes for each other;

β, the maximal loss of per capita payoff from restricting effective coalitions to
contain no more than B players; and

ε, a measure of the extent to which the ε-core differs from the core.

Our result is stated both for absolute numbers and for proportions of players of
each type. If exact cyclic monotonicity were satisfied, then the right hand sides of
the equations (1) and (2) below could both be set equal to zero.

Proposition 1. Let (N, v) be in Γ ((δ, T ), (β,B)) and let (S1, v), .., (SK , v) be
subgames of (N, v). Let {N [t]} denote a partition of N into types and for each k
let fk denote the profile of Sk relative to {N [t]}. Assume that fk

t ≥ B for each k
and each t. For each k, let xk ∈ RT represent a payoff vector in the equal treatment
ε-core of (Sk, v). Then

(x1 − x2) · f1 + (x2 − x3) · f2 + .. + (xK − x1) (1)

· fK ≤ (ε + δ + β)
∥∥f1 + f2 + .. + fK

∥∥
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and

(x1 − x2) · f1

‖f1‖ + (x2 − x3) · f2

‖f2‖ + .. + (xK − x1) (2)

· fK

‖fK‖ ≤ K(ε + δ + β).

That is, the equal treatment ε-core correspondence approximately satisfies cyclic
monotonicity both in terms of numbers of players of each type and percentages of
players of each type.

Proof. From Lemma 1 we have

(xk − xk+1) · fk ≤ (ε + δ + β)
∥∥fk

∥∥

for k = 1, ..,K − 1 and (xK − x1) · fK ≤ (ε + δ + β)‖fK‖. Summing these
inequalities we get (1).

Alternatively we have

(xk − xk+1) · fk

‖fk‖ ≤ (ε + δ + β)

for k = 1, ..,K − 1 and

(xK − x1) · fK

‖fK‖ ≤ (ε + δ + β).

Summing these inequalities we obtain (2). ��
Remark. When K = 2, Proposition 1 implies that

(x1 − x2) · (f1 − f2) ≤ (ε + δ + β)
∥∥f1 + f2

∥∥ .

This form of monotonicity is typically called simply monotonicity or weak mono-
tonicity.

Note that weak monotonicity does not imply cyclic monotonicity.

Corollary. When K = 2, Proposition 1 implies that

(x1 − x2) · (f1 − f2) ≤ (ε + δ + β)
∥∥f1 + f2

∥∥
and

(x1 − x2) · ( f1

‖f1‖ − f2

‖f2‖ ) ≤ 2(ε + δ + β).

That is, the equal treatment ε-core correspondence is approximately monotonic.

Note that the bound of Proposition 1 and its Corollary holds for any partition
of the player set into δ-substitutes.
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3.2 Comparative statics

For j = 1, .., T let us define ej ∈ RT such that ej
l = 1 for l = j and 0 otherwise.

Our comparative statics results relate to changes in the abundances of players of a
particular type.

Proposition 2. Let (N, v) be in Γ ((δ, T ), (β,B)) and let (S1, v), (S2, v) be sub-
games of (N, v). Let {N [t]} denote a partition of N into types and for each k let
fk denote the profile of Sk relative to {N [t]}. Assume that fk

t ≥ B for each k and
each t. For each k, let xk ∈ RT represent a payoff vector in the equal treatment
ε-core of (Sk, v). Then the following holds:

(A) If f2 = f1 +mej for some positive integer m (i.e., the second game has more
players of approximate type j but the same numbers of players of other types)
then

(x2
j − x1

j ) ≤ (ε + δ + β)

∥∥f1 + f2
∥∥

‖f2 − f1‖ = (ε + δ + β)
2
∥∥f2

∥∥ − m

m
.

(B) If f2

‖f2‖ = (1 − µ) f1

‖f1‖ + µej for some µ ∈ (0, 1) (i.e., the second game has
proportionally more players of approximate type j but the same proportions
between the numbers of players of other types) then

(x2
j − x1

j ) ≤ (ε + δ + β)
2 − µ

µ
.

That is, approximately the equal treatment ε-core correspondence provides lower
payoffs for players of a type that is more abundant.

Proof. (A): Applying Corollary we get

(x2 − x1) · mej ≤ (ε + δ + β)
∥∥f1 + f2

∥∥ .
Since ‖f2‖ = ‖f1‖ + m, this inequality implies our first result.

(B): From Lemma 1 we have

(1 − µ)(x1 − x2) · f1

‖f1‖ ≤ (1 − µ)(ε + δ + β)

and similarly

(x2 − x1) · f2

‖f2‖ ≤ (ε + δ + β).

Summing these inequalities we obtain

(x2 − x1) · (
f2

‖f2‖ − (1 − µ)
f1

‖f1‖ ) ≤ (2 − µ)(ε + δ + β).

Thus we get that

(x2 − x1) · µej ≤ (2 − µ)(ε + δ + β).

This inequality implies our second result. ��
Obviously, again the bounds provided by Proposition 2 are independent of the

specific partition of the player set into δ-substitutes.
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3.3 Further remarks

1. (B) of Proposition 2 is a strict generalization of (A). ((A) follows from (B) for
µ = m

‖f2‖ .) We choose to present (A) in addition to (B) since (A) may be more
intuitive. Notice also that although (A) is an immediate consequence of Proposition
1, (B) formally does not follow from Proposition 1.

2. Note that the bounds on the closeness of all our results are computable for a given
game and depend only on the parameters describing the game. In the Appendix we
demonstrate that all the bounds obtained are exact, that is, they cannot be made
smaller.

3. For ε = β = δ = 0 the bounds on the closeness of all our approximation
results equals zero. Thus for games with finite number of player types and strictly
effective small groups (e.g. for matching games with types) we demonstrate that
the equal treatment core satisfies cyclic monotonicity and when a type becomes
more abundant, players of that type receive (weakly) lower payoffs.

4. The results stated all require that there be at least B players of each type in each
game under consideration. With other notions of approximate cores, specifically,
the ε-remainder core and the ε1-remainder ε2-core, which allow a small percentage
of players to be ignored, it may only be required that there are many substitutes for
most players in the game; we leave the details to the interested reader. See [17] for
definitions and further references.

5. We also leave it to the interested reader to show that results similar to those herein
could be obtained for the strong ε-core. This approximate core notion requires that
no group of agents can improve on a given payoff by ε in total, that is, given a game
(N, v) and ε ≥ 0, a payoff vector x is in the strong ε-core of (N, v) if and only if∑

a∈N xa ≤ v(N) and
∑

a∈S xa ≥ v(S) − ε for all S ⊂ N . For strong ε-cores,
the goodness of the approximation improves.

6. In the context of a pregame, as noted earlier, when there are sufficiently many
players of each type in the games, then small group effectiveness, SGE, and per
capita boundedness, PCB, are equivalent but, in the context of parameterized col-
lections of games, this equivalence no longer holds. SGE, introduced in Wooders
([42–44]),12 is a relaxation of “minimum efficient scale,” MES ([41]). MES dic-
tates that all gains rather than almost all gains to improvement can be realized
by groups of players bounded in size.13 As indicated already by the techniques
of Wooders ([41]), when there are sufficiently many players of each type present
in the games, sequences of games derived from a pregame satisfying PCB can be
approximated by games satisfying MES. (In fact, [39] suggestively calls PCB near
minimum efficient scale.) This is very useful in proving various results since games

12 A condition closely related to SGE appears in Wooders and Zame [48]. There, to obtain one of their
results, the authors assume that almost all gains to improvement can be realized by groups of players
bounded in absolute size. An equivalence between this condition and SGE is demonstrated in [43].

13 MES has also been called strict small group effectiveness. For pregames with side payments it is
equivalent to the “exhaustion of gains to scale” in [33] and to the “0-exhaustion of blocking opportunities”
[9,10].
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satisfying MES are especially tractable. It is noteworthy that the results of the cur-
rent paper do not depend on PCB – a parameterized collection of games does not
necessarily have bounded average payoffs. Consider, for example, the collection
of games where all players are identical, two-player coalitions are effective, and
the per-capita payoff to a two-person coalition in any game in the collection equals
the number of players in the game. Clearly, without any loss, coalitions can be
restricted to have no more than two players and, even though per capita payoffs are
unbounded, our results apply to all the games in the collection. Thus, the crucial
property is SGE.

7. Cyclic monotonicity has appeared in several papers in economics; see, for
example, Kusomoto [20], Epstein [11] and Jorgenson and Lau [13].All these papers
address duality theory in models of private goods economies. Kusomoto’s also
provides some more general treatment.

4 Matching hospitals and interns: An example

Given the great importance of matching models (see, for example, Roth and So-
tomayor [32] for an excellent study and numerous references to related papers), we
present an application of our results to a model of matching interns and hospitals.
Our example is highly stylized. For a more complete discussion of the matching
interns and hospitals problem, we refer the reader to Roth [31].

The problem consists of the assignment of a set of interns I = {1, .., i, .., I}
to hospitals. The set of hospitals is H = {1, .., h, ..,H}. The total player set N is
given by N = I ⋃H. Each hospital h has a preference ordering over the interns
and a maximum number of interns I(h) that it wishes to employ. Interns also have
preferences over hospitals. We’ll assume I(h) ≤ 9 for all h ∈ H. This gives us a
bound of 10 on the size of strictly effective groups (β = 0). For simplicity, we’ll
assume that both hospitals and interns can be ordered by the real numbers so that
players with higher numbers in the ordering are more desirable. The rank held by
a player will be referred to as the player’s quality. More than one player may share
the same rank in the ordering. In fact, we assume that the total payoff to a group
consisting of a hospital and no more than nine interns is given by the sum of the
rankings attached to the hospital and to the interns. Let us also assume that the rank
assigned to any intern is between 0 and 1 and the rank assigned to any hospital is
between 1 and 2. Thus, if the hospital is ranked 1.3 for example and is assigned 5
interns of quality .2 each, then the total payoff to that group is 2.3.

Since all interns have qualities in the interval [0, 1) and similarly, all hospi-
tals have qualities in the interval [1, 2], given any positive real number δ = 1

n
for some positive integer n we can partition the interval [0, 2] into 2n intervals,
[0, 1

n ), .., [ j−1
n , j

n ), .., [ 2n−1
n , 2], each of measure 1

n . Assume that if there is a player
with rank in the jth interval, then there are at least 10 players with ranks in the
same interval.

Given ε ≥ 0, let x1 represent a payoff vector in the ε-core that treats all interns
with ranks in the same interval equally and all hospitals with ranks in the same
interval equally (that is, x1 is equal treatment relative to the given partition of the
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total player set into types). Let us now increase the abundance of some type of
intern that appears in N with rank in the jth interval for some j. We could imagine,
for example, that some university training medical students increases the number
of type j interns by admitting more students from another country. Let x2 represent
an equal treatment payoff vector in the ε-core after the increase in type j interns. It
then holds, from result (A) of Proposition 2 that

(x2
j − x1

j ) ≤ (ε +
1
n

)

∥∥f1 + f2
∥∥

‖f2 − f1‖ .

Of course this is not the most general application of our results – we could increase
the proportions of players of one type by reducing the numbers of players of other
types. Then part (B) of our Proposition could be applied.

It is remarkable that our results apply so easily. For this simple sort of example, it
is probably the case that a sharper result can be obtained. This is beyond the scope of
our current paper, however. Research in progress considers whether sharper results
are obtainable with assortative matching of the kind illustrated by this example
– that is, where players can be ordered so that players with higher ranks in the
orderings are superior in terms of their marginal contributions to coalitions.

Finally, the parameter values that we have used in this example were chosen
for convenience and simplicity. In principle, these could be estimated and various
questions addressed. For example, are payoffs to interns approximately compet-
itive? Do non-market characteristics such as ethnic background or gender make
significant differences to payoffs?

5 Relationships to the literature and conclusions

5.1 Matching markets

Our results may be viewed as a contribution to the literature on comparative statics
properties of solutions of games. As noted by Crawford [7], the first suggestion of
the sort of results obtained in this paper may be in Shapley [34], who showed that
in a linear optimal-assignment problem the marginal product of a player on one
side of a market weakly decreases when another player is added to that side of the
market and weakly increases when a player is added to the other side of the market.
Kelso and Crawford [14], building on the model of Crawford and Knoer [8], show
that, for a many-to-one matching market with firms and workers, adding one or
more firms to the market makes the firm-optimal stable outcome weakly better for
all workers and adding one or more workers makes the firm-optimal stable outcome
weakly better for all firms. Crawford [7] extends these results to both sides of the
market and to many-to-many matchings.14 In contrast to this literature, our results
are not restricted to matching markets and treat all outcomes in equal treatment ε-
cores. Moreover, we demonstrate cyclic monotonicity. Instead of the assumptions
of “substitutability” of Kelso and Crawford [14], however, we require our thickness

14 And also to pair-wise stable outcomes but this is apparently not so directly related to our paper.
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condition and SGE. Unlike [14] and [7], our current results are limited to games
with side payments – we plan to consider this limitation in future research.

Note that our results imply a certain continuity of comparative statics results
with respect to changes in the descriptors of the total player set. In particular, the
results are independent of the exact partition of players into approximate types.
Specifically, given a number T of approximate types and a measure of the required
closeness of the approximation, subject to the condition that players of each type are
approximate substitutes for each other, our results apply independently of exactly
where the boundary lines between types are drawn. Suppose, for example, that we
wished to partition candidates for positions as hospital interns into three categories
– say “good,” “better” and “best.” It may be that there is more than one way to
partition the set of players into these categories while retaining the property that all
players in each member of the partition are approximate substitutes for each other;
the exact partition does not affect the results. Relating this feature of our work to
general equilibrium theory, a finite set of commodities is typically considered to be
an approximation to the real-world situation that all units of each commodity may
differ. Descriptions of commodities are incomplete and a “commodity” is a group of
objects that satisfy the description. For example, models of labor markets may have
two types of workers, “skilled” and “unskilled” but no two workers (or two loaves of
bread, or two oranges) may be exactly identical. In the differentiated commodities
literature, results addressing this problem show that prices are continuous functions
of attributes of commodities (cf., [21]). Since our framework does not require a
topology on the space of player types, continuity takes a different but valid form
and is more directly apparent.

5.2 Pregames

Besides the matching literature, our results are related to prior results obtained
within the context of a pregame, cf. [44,43].15 A pregame specifies a set of compact
metric space of player types and a single worth function, assigning a worth to each
finite list of attributes (repetitions allowed). (Recall that precise definitions appear
in Appendix B.) Since there is only one worth function, all games derived from
a pregame are related and, given the attributes of the members of a coalition, the
payoff to that coalition is independent of the total player set in which the coalition is
embedded; widespread externalities are not allowed. In contrast, our results apply to
given games and, as in the earlier results for matching models, there is no requisite
topological structure on the space of players types. While our results for a given
game hold for all games in a collection described by the same parameters, there are
no necessary relationships between games. For example, consider the collection
of games where two-player coalitions are effective and there are only two types
of players. This collection includes two-sided assignment games, such as marriage
games and buyer-seller games, and also games where any two-player coalition is
effective. There appears to be no way in which one pregame can accommodate all

15 The formulation of a pregame was introduced in [40].
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the games in the collection. These considerations indicate that the framework of
parameterized collections of games is significantly broader than that of a pregame.16

In the context of pregames under conditions roughly equivalent to those of
Wooders [40] – that all gains to coalition formation can be exhausted by coalitions
bounded in size – a proof of the comparative statics result and weak monotonicity
of core payoffs was provided in Scotchmer and Wooders [33]. Wooders [42,43]
extended the monotonicity analysis of Scotchmer and Wooders to hold for arbitrary
changes in abundances of players of each type in games satisfying SGE and made
the connection to the Law of Demand of economic theory (cf., Hildenbrand 1994).
Engl and Scotchmer [9,10] extended the comparative statics analysis of Scotchmer
and Wooders to hold for proportions of players of each type and further addressed
the relationships between monotonicity and the Law of Demand.All of these results,
unlike the matching literature, require a fixed set of player types (or a fixed finite set
of attributes of players and a single worth function defined over these attributes). The
major difference between the results of these papers and those of the current paper
are that our assumptions and results (a) treat more general collections of games,
(b) apply to individual games, and (c) apply uniformly to all games described by
the same parameters.

A major advantage of our approach over the prior approach using pregames
is that, except for the special case of pregames satisfying strict small group effec-
tiveness (or, in other words, ‘exhaustion of gains to scale by coalitions bounded in
size’) with a finite number of exact types, the conditions used in the prior literature
cannot be verified for any finite game.17 That is, since the conditions are stated on
the worth function of the entire pregame, which includes specification of the worths
of arbitrarily large groups, or on the closeness of the worth function to the limiting
per capita utility function, it is not possible to determine whether the conditions are
satisfied. In contrast, given any game, values of parameters describing that game
can be computed.18

Another major advantage of our approach is that we provide exact bounds,
in terms of the parameters describing a game, on the amounts by which equal
treatment ε-core payoff vectors can differ from satisfying cyclic monotonicity. We
are unaware of any comparable results in the literature. The prior literature does
not indicate the sensitivity of the results to specifications of bounds on group sizes
and of types of players. Such an analysis is important for empirical testing since, in
fact, few commodities are completely standardized. (This may be especially true in
estimating hedonic prices as in Rosen 1978,1986 and more recent literature.) Nor

16 A short survey discussing parameterized collections of games and their relationships to pregames
appears in [46].

17 Strict small group efectiveness dictates that all gains to coalition formation can be realized by
partitioning the total player set, no matter how large, into coalitions bounded in size. This condition was
introduced in Wooders [40] (condition *) and, for NTU games, in Wooders [41], where, as noted earlier,
it was called “minimum efficient scale.”

18 Since there may be many but a finite number of coalitions, in fact determining the required sizes of
δ and T, β and B may be time-consuming but it is possible. In contrast, to verify that a pregame satisfies
SGE or PCB requires consideration of an infinite number of payoff sets or, even more demanding, a
limiting set of equal treatment payoffs.
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does the prior literature provide empirically testable conclusions on approximate
monotonicity or comparative statics.

5.3 Attribute games and production games

One interpretation of a game with side payments, common in the literature, is to
regard commodities or inputs or attributes of players more generally as themselves
players in a game. We call this an attribute game and the equal treatment core is
called the attribute core.19 The motivation for the attribute core is rather obvious;
we each may belong to only a few coalitions of people, but we put our money into
mutual funds, the stock market or houses, our time into a firm or into family and
leisure, and so on. The results of this paper immediately apply to attribute games.

To the best of our knowledge, attribute games have their origins in Owen (1975),
which treats linear production games. A set of playersN who each own a bundle of
resources is taken as given. Coalitions of players can use their resources to produce
outputs according to a common linear technology ΛO. Prices for outputs are taken
as given. This information generates a game (N, v) that has, due to the linearity of
the technology, a nonempty core. Let bi ∈ R

m denote the endowment of resources
of player i.

Owen defines an equilibrium concept, which we shall call an Owen equilibrium
– a set of prices for resources/ commodities/attributes p∗ = (p∗

1, ..., p
∗
t , ..., p

∗
m) ∈

R
m
+ with the property that there are no profits possible in production. As Owen

writes (with a slight change in notation for consistency)

– “The components p∗
1, ..., p

∗
t , ..., p

∗
M can be thought of as equilibrium prices

for the resources. Each of the players is then paid for his resources according
to the equilibrium price vectorp∗; the resulting payments always give a vector
in the core.”

The following simple example illustrates the Owen equilibrium and the fact
that the equilibrium outcomes may be a strict subset of the core.

Example (Owen 1975). Owen’s example is essentially a ‘glove game’ where one
player owns two gloves. Let N = {1, 2} and let the endowment vectors for players
1 and 2 be b1 = (1, 0) and b2 = (0, 2) respectively. Let the technology be given by

ΛO(x, y) = min{x, y}.
Suppose output sells for $1 per unit. Then

v(N) = 1

v({1}) = v({2}) = 0.

The core of the game is the set of points

{(u1, u2) ∈ R
2
+ : u1 + u2 = 1}.

19 Of course this simply gives a name to a familiar concept. The equal-treatment core of a game goes
back to some of the first papers introducing the core, cf. Shubik [37].
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The Owen equilibrium prices solve the following minimization problem:

minimize p1 + 2p2
subject to

p1 + p2 ≥ 1,

which has the unique solution:

p∗
1 = 1, p∗

2 = 0

and gives equilibrium utilities of {u1 = 1, u2 = 0}.20

For this example, the Owen equilibrium prices correspond to the equal treatment
core of a game where the players are units of resources (also called the attribute
core).21

For sequences of games with a fixed distribution of player types, Owen demon-
strates that for all replications of the player set (and their endowments), all payoffs
in the core have the equal-treatment property and if u = (u1, ..., un) represents a
payoff in the core of the r-fold replicated game for all r, then u is obtained from
an (Owen) equilibrium price vector p∗.

The attribute core, defined to be the core of a game where units of commodities
are players, extends the notion of an Owen equilibrium to situations with nonlinear
technologies. Thus, a vector p∗ is in the attribute core if:

p∗ · ∑i∈N bi = v(N)
and

p∗ · ∑i∈S bi ≥ v(S) for all S ⊂ N.

Note that the attribute core is simply the core of a game where the players are
commodities. This differs from the usual core notion of economies where coalitions
consist of players who own bundles of commodities. As Owen’s example already
demonstrates, these two concepts do not necessarily have the same set of utility
outcomes.

Continuing Owen’s example, consider a glove game where each player is a RH
glove or a LH glove and the payoff to a coalition consisting of n1 RH glove players
and n2 LH glove players is Ψ(n1, n2) := min{n1, n2}. Suppose that in total, there
are f1 RH gloves and f2 left hand gloves. Our laws of scarcity apply equally well
to this interpretation of a game. Note that this game is a member of the collection
Γ ((0, 2), (0, 2)).

If ownership of bundles of commodities is assigned to individual units (teams
or divisions within a firm in the literature on subsidy-free pricing or endowments
of individual consumers of commodities in the exchange economy interpretation),

20 The set of utility payoffs that arise from the values of endowments at Owen equilibrium prices has
come to be called the Owen set, cf. Gellekom et al. (2000).

21 We note that the Owen equilibrium is distinct from the so called ‘hedonic core,’, whose elements
are price vectors for attributes but where improvement is carried out by coalitions of players, owning
bundles of attributes. For this example, the hedonic core would consist of the set of vectors {(p1, p2) ∈
R

2
+ : p1 + 2p2 = 1}.
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then another cooperative game is generated. In this game, essentially some players
in the original game are “syndicated,” glued together to become one player.

From the data given above, we can construct games where players may be
endowed with bundles of gloves. By endowing players in this game with various
numbers of RH gloves and LH gloves, we create another game with possibly several
types of players. For specificity, suppose:

1. m1 players of type 1 are endowed with two right hand gloves each;
2. m2 players of type 2 are endowed with a RH glove and;
3. m3 players of type 3 are endowed with a LH glove.

For consistency, it must hold that 2m1 + m2 = f1 and m3 = f2. (Of course
this is only one of many possible games that could be constructed.) Now it is
not so immediate that our main results can be applied. However, from the data
given, with the three possible endowments of gloves given by 1-3 above, we can
determine a number of types T and a bound B so that the game constructed,
say (M,w), is a member of the collection Γ ((0, T ), (0, B)). It is immediate that
T = 3. It is fairly obvious and we leave for the reader to verify that B = 3 suffices;
the largest coalitions that need form in realizing all gains to collective activities
consist of one player of type 1 and two players of type 3. Thus, we have that
(M,w) ∈ Γ ((0, 3), (0, 3)) and our comparative statics and monotonicity results
apply to the games in Γ ((0, 3), (0, 3)).

5.4 Relationship to the literature on general equilibrium

The class of economies treated in the current paper could be considered as a general-
ization of the standard competitive model by Arrow-Debreu-McKenzie. Moreover
we treat the equal treatment ε-core as a “stand-in” for the competitive equilibrium
in the general context of the cooperative game theory. Hence, if player types are
thought of as commodity types while payoffs to players are thought of as prices for
commodities, as in the above subsection, our Laws of Scarcity are closely related
to comparative statics results for general equilibrium models.

Indeed, Nachbar [23] has established conditions for a general equilibrium model
under which the inner product of endowment changes and normalized competitive
equilibrium price changes is negative.22 The conditions are that (a) the general equi-
librium version of Law of Demand holds and (b) goods are normal. A limitation of
Nachbar’s result is that the normalization have to be a very specific and unusual.
However in case of quasi-linear utilities, which corresponds to the case of games
with side payments treated in the current paper, both conditions (a) and (b) are
satisfied and normalization became a natural one with a price of numeraire com-
modity set to one. Thus for quasi-linear utilities Nachbar’s result implies a negative
monotonicity relation between endowment changes and equilibrium price changes.
The results of the current paper show the robustness of this monotonicity conclu-
sion. More precisely our paper considers economies modelled as games with side
payments and identifies conditions that ensure approximate negative monotonicity
of payoffs in the equal treatment ε-core with respect to endowment changes.

22 This result was generalized independently by Nachbar [24] and Quah [26] to allow discrete changes.
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5.5 An intuition behind the results

Numerous examples of games derived from pregames may lead one to expect our
comparative statics result. Consider a glove game, for example where the payoff
function can be written as u(x, y) = min{x, y}. Suppose initially that the number
of RH gloves, say x, is equal to the number of LH gloves, y, and both x and y
are greater than one. Then the equal-treatment core can be described by the set
{(px, py) ∈ R

2
+ : px + py = 1}; each RH glove is assigned px and each LH

glove is assigned py and a pair of gloves is assigned 1. Now increase the number
of players with RH gloves. The equal treatment core is now described by {(0, 1)};
each RH glove is assigned 0 and each LH glove is assigned 1.

In games with a finite set of player types, defining the core via linear program-
ming also leads to a law of scarcity, quite immediately. Let (N, v) be a game with
a finite number T of player types and with mt players of type t, t = 1, ..., T. We
take v as a mapping from subprofiles s of m (s ∈ Z

T
+, s ≤ m). Then, following

Wooders [40], consider the following LP problem23:

minimizep≥0 p · m
subject to p · s ≥ v(s) for all s ≤ m

If the game has a nonempty core, then the solution p∗ satisfies v(m) = p∗ ·m. Now
consider the same problem but with an increased number of players of type t̂ in the
objective function for some t̂ ∈ {1, ..., T}. Assume that the same inequalities are
the only constraints; this imposes a form of strict small group effectiveness on the
game – only groups with profiles s ≤ m are effective. It is clear that the payoff to
players of type t̂ will not increase with the increase in the number of players of that
type in the objective function since the constraint set has not changed – the payoff
to type t̂ can only decrease. This suggests some of the initial intuition underlying
comparative statics results for games.

6 Appendix A: Exact bounds

We construct some sequences of games to demonstrates that all the bounds we
obtained in our results are exact, that is, the bound cannot be decreased.

I). Let us concentrate first on the central case δ = β = 0. Consider a game
(N, v) where any player can get only 1 unit or less in any coalition and there are
no gains to forming coalitions. This game has strictly effective 1-bounded groups
and all agents are identical. Formally, however, we may partition the set of players
into many types. Thus (N, v) ∈ Γ ((0, τ), (0, 1)) for any integer τ, 1 ≤ τ ≤ |N |.
Notice also that for any ε ≥ 0 the ε-core of the game is nonempty and very simple:
it includes all payoff vectors that are feasible and provide at least 1 − ε for each
of the players. All the games that we are going to construct will be subgames of a
game (N, v).

23 The core has been described as an outcome of a linear programming problem since the seminal
works of Gilles and Shapley. Wooders [40] introduces the linear programming formulation with player
types.
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a). For the bound in Lemma 1 we can present even a single game with two
payoffs vectors that realize this bound. Namely, let τ = 1 (all players are of one
type) and let us consider any two subgamesS1, S2 with the same number of players
and the equal treatment payoffsx1 = 1 andx2 = 1−ε. Then (x1−x2)·f1 = ε‖f1‖.

b). For the bound in Proposition 1, for K ≤ |N | and some nonnegative integer
l ≤ |N | −K, let us consider τ = K and the subgroups S1, .., SK with the profiles
f1, .., fK where fk

t = l + 1 for t = k and 1 otherwise. Let also consider payoff
vectors xk where xk

t = 1 for t = k and 1 − ε otherwise. Then (xi − xj) · f i = εl
for any i �= j. Hence

(x1 − x2) · f1 + (x2 − x3) · f2 + .. + (xK − x1) · fK

= εlK = ε
∥∥f1 + f2 + .. + fK

∥∥ l

l + K

and

(x1 − x2) · f1

‖f1‖ + (x2 − x3) · f2

‖f2‖ + .. + (xK − x1)

· fK

‖fK‖ = Kε
l

l + K
.

It is straightforward to verify that for any fixed K both our bounds in Proposition 2
can not be improved for sequences of games (N, v), with |N | going to infinity, for
subgames constructed as above with l going to infinity.

c). For the bound in Proposition 2 it is enough to concentrate on (A) since it is
a special case of the result (B). For |N | ≥ 2 let us consider τ = 2 and l ≤ |N | − 2.
Then consider the subgroupsS1, S2 with the profiles f1 = (1, 1) and f2 = (l+1, 1)
and payoff vectors x1 = (1 − ε, 1) and x2 = (1, 1). Then

(x2
1 − x1

1) = ε = ε

∥∥f1 + f2
∥∥

‖f2 − f1‖
l

l + 4
.

It follows that both our bounds in Proposition 2 can not be improved for sequences
of games (N, v), with |N | going to infinity, for subgames constructed as above
with l going to infinity.

II). It is easy to modify our example to allow for non-zero δ and β in a such
a way that we will have the same profiles as in Part I, but will use the payoffs of
1 + δ + β and 1 − ε instead of 1 and 1 − ε. This will lead us to the appearance of
ε+ δ + β on the places of ε in all bound in Part I. We leave it as a simple exercise
for the interested reader.

7 Appendix B: Pregames

In this appendix, for the convenience of the reader in comparing the concepts and
in evaluating the contribution of this paper, we review the concept of a pregame.

Let Ω be a compact metric space, interpreted as a set of player “types” or
attributes. A profile on Ω, interpreted as a description of a group of players in terms
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of numbers of players of each type in the group, is a function f from Ω to the set
Z+ of nonnegative integers for which the support σ(f) of f, given by

σ(f) = {ω ∈ Ω : f(ω) �= 0},
is finite. A profile is simply a function f from Ω to the nonnegative integers with
the property that f(ω) �= 0 for only a finite number of elements ω in Ω. For each
ω ε Ω, we interpret f(ω) as the number of players of type ω or, in other words,
with attributes ω, in the group of players described by f . The set of profiles on Ω
is denoted by P (Ω). We write f ≤ g if f(ω) ≤ g(ω) for each ω in Ω.

By the norm of a profile, we mean

‖f‖ =
∑

ωεσ(f)

f(ω),

which is simply the number of players in a group represented by f . This is a finite
sum since f has finite support.

A pregame is a pair (Ω,Ψ) where Ω is a compact metric space, called the
space of attributes and Ψ : P (Ω) → R+, called the characteristic function (of the
pregame), is a function with the following properties:

(a) Ψ(0) = 0;

(b) given any ε > 0 there is a δ > 0 such that

for each pair of player types ω1 and , ω2 with dist(ω1, ω2) < δ

it holds that , |Ψ(f + ω1) − Ψ(f + ω2)| < ε (continuity);

(c) Ψ(f) + Ψ(g) ≤ Ψ(f + g) for all profiles f and g , and;

The first condition means that zero players can realize nothing. The second is that
players with similar attributes are nearly substitutes. The third expresses the idea
that an option open to a group is to split into several smaller groups.

We frequently refer to the elements of Ω as “types”. Players of the same type
are substitutes.

7.1 Games induced by pregames

To derive a game from a pregame (Ω,Ψ), we specify a finite set N and a function
α : N → Ω, called an attribute function. With any subset S of N we can then
associate a profile, prof(α|S), given by

prof(α|S)(ω) = |α−1(ω) ∩ S|.
The profile prof(α|S)(ω) simply lists the numbers of players of each type in the
subset S. We have now determined a game (N, vα) where

να(S) = Ψ(prof(α|S))
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for each S ⊂ N. Let n = prof(α|N). An equal treatment payoff is a function
x : Ω → R+. An equal treatment payoff assigns the same value to all players of
the same type. The payoff x is feasible for n if

∑
ω∈σ(n)

n(ω) x(ω) ≤ Ψ(n).

For ease in notation, given a profile f and an equal-treatment payoff x define x(f)
by

x(f) =
∑

ω∈σ(f)

f(ω) x(ω).

Let f be a profile. When
∑

fk = f for some collection of profiles
f1, ..., fK , not necessary distinct, we say that the collection is a partition of f
and each member of the collection is called a subprofile of f . Obviously, a partition
of a profile is related to a partition of a set of players. If (N,vα) is a game derived
from (Ω,Ψ), and {S1, ..., SK} is a partition of N , then

{fk : prof(α|Sk) = fk, k = 1, ...,K}
is a partition of prof(α|N).

7.2 Small group effectiveness

A pregame (Ω,Ψ) satisfies small group effectiveness, (SGE), if for each positive
real number β > 0 there is an integer η1(β) such that for each profile f, for some
partition {fk} of f :

(a) ‖fk‖ ≤ η1(β) for each profile fk in the partition,

(b) Ψ(f) − ∑
k Ψ(fk) < β‖f‖.

Small group effectiveness means that given a measure of per capita approximation
(a β > 0) there is an absolute bound on group sizes with the property that almost
all gains to collective activities can be realized by groups of players smaller in size
than that bound, that is, bounded group sizes nearly exhaust all gains to scale of
collective activities.

Let (Ω,Ψ) satisfy small group effectiveness and let β and η1(β) satisfy the
condition of the definition of SGE. Then it is immediate that any game generated
by the pregame has β-effective η1(β)-bounded groups. SinceΩ is a compact metric
space it holds that given δ > 0 we can partition Ω into a finite number T of subsets
so that all players with attributes in each subset are δ-substitutes. Thus, all games
derived from (Ω,Ψ) are in the collection Γ ((δ, T ), (β,B)).

When games are required to have many substitutes for each player, small group
effectiveness is equivalent to per capita boundedness. A pregame (Ω,Ψ) satisfies
per capita boundedness if there is a constant A such that

Ψ(f)
‖f‖ ≤ A for all profiles f ∈ P (Ω).
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The following result holds more generally but is proven for the case where Ω is a
finite set.

Wooders 1994b, Econometrica, Theorem 4. With “thickness,” SGE=PCB.
(1) Let (T, Ψ) be a pregame satisfying SGE. Then the pregame satisfies PCB.
(2) Let (T, Ψ) be a pregame satisfying PCB. Then given any positive real number

ρ, construct a new pregame (T, Ψρ) where the domain of Ψρ is restricted to profiles
f where, for each t = 1, · · ·, T , either ft

‖f‖ > ρ or ft = 0 (thickness). Then (T, Ψρ)
satisfies SGE on its domain.

The equivalence, with thickness, of small group effectiveness with per capita
boundedness indicates that SGE is an apparently mild yet powerful condition. But,
as we see above, if a pregame satisfies SGE then, given β > 0, for appropriate
choice of δ and T it holds that all games generated by the pregame belong to
a parameterized collection of games Γ ((δ, T ), (β,B)). Thus, our conditions on
parameterized collections of games are less restrictive than those on pregames (as
in [47,44], or [42]) and, with thickness, less restrictive than the earlier condition of
PCB.

The concept of small group effectiveness requires that almost all feasible gains to
collective activities can be achieved by groups bounded in absolute size. A related
concept requires that almost all improvement be feasible for groups bounded in
absolute size.A pregame (Ω,Ψ) satisfies small group effectiveness for improvement
if for each positive real number ε > 0 there is an integer η2(ε) with the following
property:

For any profile f and any payoff function x : σ(f) → R+

if x(f) + ε ‖f‖ < Ψ(f) then there is a subprofile g of f such that

‖g‖ ≤ η2(ε) and x(g) + ε
2 ‖g‖ < Ψ(g).

The pregame framework may also hide what makes the results work – the facts
that there are many close substitutes for most players and that groups bounded is
size can nearly exhaust gains to collective activities. In addition, since the pregame
framework specifies payoffs for all groups, no matter how large, in general it is
difficult, if not impossible to estimate the pregame function Ψ . In contrast, within
the framework of parameterized collections, there are only four parameters to be
estimated – δ, T, β, and B. The notion of β-effective B-bounded groups makes
explicit how close coalitions bounded in size by B are to being able to realize all
gains to collective activities for a given game.
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1 Introduction

This paper considers an exchange economy with a measure space of agents and
consumption externalities, which take into account two possible external effects
on consumers’ preferences: dependence upon prices and dependence upon other
agents’ consumptions.

The price dependence externality is a long recognized problem, which recently
found new applications in the study of financial markets, where a two-period tem-
porary equilibrium model has a reduced form as a Walrasian model with price
dependent preferences. For the existence of equilibria in economies with a measure
space of agents and price externalities we refer to Greenberg et al. [11], who use
ordered preferences and use a game-theoretical approach, which exploits Debreu’s
original idea of introducing a price-setting player.

The dependence upon other agents’ consumptions has also been considered in
recent years, with attempts to have the same level of generality for a measure space
of agents as for the case of finitely many agents. In this paper, we will consider
agents with transitive strict preferences which are not necessarily complete as in
Schmeidler [16]. The question arises if one can drop transitivity and completeness
simultaneously but our approach does not cover this case, for which we refer to Khan
and Vohra [14] and Yannelis [18]. Our treatment of the existence problem differs
from [14] and [18] in considering a weaker convexity assumption on preferences
that allows us to encompass the results of Aumann [2], Greenberg et al. [11] and
Schmeidler [17]; indeed the way they model externalities does not allow for a
convexifying effect on aggregation, even if the measure space is nonatomic.

We first present the model with a general externality mapping. The preference
relation of each agent a, which may depend upon the externality e in a given exter-
nality space E, is denoted by ≺a,e and the influence of the externality on agents’
preferences is represented by a given (exogenous) externality mappingΦ, which as-
sociates to each agent a, each price p and each (integrable) consumption allocation
f , the externality e = Φ(a, p, f) ∈ E. Thus, given the price p and the allocation
f the choices of agent a will be made with the preference relation ≺a,Φ(a,p,f).
Our model considers “finitely many externality effects”; that is, formally, the exter-
nality space E is assumed to be a subset of a finite dimensional Euclidean space.
This makes an explicit restriction on the couples (p, f) of prices and (integrable)
consumption allocation that can influence agents’ preferences via the externality
mapping Φ.

The previous model allows us to consider the particular case of reference coali-
tions externalities, in which the preferences of each agent a are influenced by
prices and by the global or the mean consumption of the agents in finitely many
(exogenously given) reference coalitions associated with agent a. Let (A,A, ν) be
the measure space of consumers, and for each agent a ∈ A and each price p, let
Ck(a, p) ∈ A (k = 1, . . . ,K) be finitely many (exogenously given) reference
coalitions. Each coalition Ck(a, p) ∈ A can be considered as the reference class
of agent a for a particular group of commodities, say clothes, music, housing or
travel. The externality dependence operates via reference consumption vectors (for
the particular group of commodities) which can be obtained either as the global
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or as the mean consumption of agents in the reference coalition of agent a. With
a single reference coalition (i.e., K = 1), the externality mappings Φ1 and Φ2
corresponding to the global and the mean consumption are defined, respectively,
by:

Φ1(a, p, f) =
∫

C(a,p)
f(α)dν(α);

Φ2(a, p, f) :=

⎧
⎪⎨
⎪⎩

1
ν[C(a, p)]

∫

C(a,p)
f(α)dν(α) if ν[C(a, p)] > 0,

0 if ν[C(a, p)] = 0.

Both models consider finitely many external effects, with externality spaceE=IRH
+ ,

the closed positive orthant of the commodity space IRH , denoting by H the number
of commodities in the economy. The first case can be illustrated by network effects,
i.e., the number of persons connected to a network (internet or mobile phone) and
the global consumption in the reference coalition may be important for some agent
to decide to connect herself. In the second model, only the mean consumption is
used to define the “reference trend”.

The aim of this paper is to provide an existence result of equilibria in the
model with a general externality mapping and then to deduce from it an existence
result in the reference coalitions model both for global and mean dependence. In an
exchange economy, we extend the classical results byAumann [2], Schmeidler [16],
Hildenbrand [12], and previous results by Greenberg et al. [11], for price dependent
preferences. In the reference coalition model, our result encompasses the result by
Schmeidler [17] in the case of constant reference coalitions (i.e., when the coalition
does not depend on agent a and the price system). We also generalize the existence
result by Noguchi [15] who considers, for each agent a, a particular reference
coalition, which consists of all the agents who belong to a certain income range
associated with agent a (see Sect. 3.3). Finally, we mention the existence results
obtained independently by Balder [4], which also generalizes those of [2,11] and
[17], without being directly comparable with ours since the externality dependence
is defined in a different way and agents have ordered preferences.

The paper is organized as follows. In Section 2, we present the model with a
general externality mapping and the associated concept of equilibrium [Sect. 2.1]
and we state the main existence results. Our first existence result is stated under a
strong convexity assumption on preferences [Sect. 2.2]. We then weaken this con-
vexity assumption [Sect. 2.3] so that we can encompass the Aumann-Schmeidler-
Hildenbrand existence result in exchange economies. In Section 3, we present the
reference coalitions model [Sect. 3.1], and we deduce from our main result the exis-
tence of equilibria in this model [Sect. 3.2]. Finally, we present the particular case of
a reference coalitions model considered by Noguchi [15] and deduce his existence
result. In Section 4 we give the proof of our main existence result [Theorem 2] . We
first prove an existence result [Theorem 4] under the additional assumption that the
consumption set correspondences are integrably bounded [Sect. 4.1]. We then de-
duce the main result in the general case from it [Sect. 4.2]. Finally, in the Appendix
we present the main properties of the individual quasi-demand correspondence that
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are used in the proof of the existence theorem, along with some properties of the
Noguchi’s reference coalition and a counterexample due to Balder [4].

2 The model and the existence result

2.1 The model and the equilibrium notion

We consider an exchange economy with a finite set H of commodities. The com-
modity space1 is represented by the vector space IRH .

The set of consumers is defined by a measure space (A,A, ν), where A is a
σ-algebra of subsets in A and ν is a measure on A. An element C ∈ A is a possible
group of consumers, also called a coalition. Each consumer a is endowed with
a consumption set X(a) ⊂ IRH , an initial endowment ω(a) ∈ IRH and a strict
preference relation ≺a,e on X(a), which allows for dependence on externalities
e ∈ E (called the externality space), in a way which will be specified hereafter.
The set X(a) represents the possible consumptions of consumer a. A consumption
allocation of the economy specifies the possible consumption of each consumer,
and is formally a selection of the correspondence a → X(a), which is assumed to
be integrable. The set of consumption allocations is denoted by LX . We assume
also that the initial endowment mapping ω : A → IRH is integrable and thus the
total initial endowment of the economy is

∫
A
ω(a)dν(a).

Specific to this economy is the fact that price externalities and consumption
externalities can influence the preference relation of each agent a. Thus, given the
price p ∈ IRH and the allocation f ∈ LX , the choices of agent a will be made with
the strict preference relation ≺a,Φ(a,p,f), where Φ : A× IRH × LX → E is a given
mapping, called the externality mapping.

In the presence of externalities, the exchange economy is completely sum-
marized by the couple (E , Φ), where the externality space E and the externality
mappingΦ are defined as above and E specifies the characteristics of the consumers

E = {IRH , E, (A,A, ν), (X(a), (≺a,e)e∈E , ω(a))a∈A}.
We now give the definition of an equilibrium in this economy.

Definition 1 An equilibrium of the economy (E , Φ) is an element (f∗, p∗) ∈ LX ×
IRH such that p∗ �= 0 and
(a) [Preference Maximization] for a.e. a ∈ A, f∗(a) is a maximal element for
≺a,e∗

a in the budget set B(a, p∗) := {x ∈ X(a) | p∗ · x ≤ p∗ · ω(a)}, where

1 For a finite set H we denote by IRH the set of all mappings from H to IR. An element x of
IRH will be denoted by (xh)h∈H or simply by (xh) when no confusion is possible. For two elements
x = (xh), x′ = (x′

h) in IRH , we denote by x·x′ =
∑

h∈H xhx′
h the scalar product, by ‖x‖ =

√
x · x

the Euclidean norm and by B(x0, r) = {x ∈ IRH | ‖x − x0‖ ≤ r} the closed ball. For X ⊂ IRH ,
we denote by intX , X and coX , respectively, the interior, the closure and the convex hull of X . The
notations: x ≤ x′, x < x′, x << x′ mean, respectively, that for all h ∈ H , xh ≤ x′

h, [x ≤ x′ and
x �= x′], and xh < x′

h; we let IRH
+ := {x ∈ IRH | 0 ≤ x} and IRH

++ := {x ∈ IRH | 0 << x}. We

also let 1 := (1, . . . , 1) ∈ IRH and the canonical basis {ei | i ∈ H} of IRH be defined by ei
h = 1, if

h = i and ei
h = 0, if h �= i.
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e∗
a := Φ(a, p∗, f∗), that is, f∗(a) ∈ B(a, p∗) and there is no x ∈ B(a, p∗) such

that f∗(a) ≺a,e∗
a
x;

(b) [Market Clearing]
∫

A
f∗(a)dν(a) =

∫
A
ω(a)dν(a).

2.2 A first existence result for general externality mappings

We present the list of assumptions that the economy (E , Φ) will be required to
satisfy. Let (A,A, ν) be a measure space, we recall that a measurable set Ā ∈
A is an atom if ν(Ā) > 0 and for every C ∈ A such that C ⊂ Ā, one has
[ν(C) = 0 or ν(Ā \ C) = 0] and we denote by Ana the nonatomic part of A;
that is, the complementary in A of the union of all the atoms of A. We denote
by L1(A, IRH) the space of equivalence classes of integrable mappings from A to
IRH and we let ‖f‖1 :=

∫
A

‖f(a)‖dν(a), which defines a norm on L1(A, IRH).
The space L1(A, IRH) will be endowed with two different topologies, the norm
topology defined by the norm ‖f‖1 and the weak topology σ(L1, L∞); we recall
that a sequence {fn} converges weakly to f if and only if supn ‖fn‖1 < ∞ and∫

C
fn(a)dν(a) → ∫

C
f(a)dν(a), for every C ∈ A (see Dunford and Schwartz

[8], p. 291).

Assumption A The measure space (A,A, ν) is positive, finite, complete and
L1(A, IRH) is separable for the norm topology;

Assumption C For a.e. a ∈ A, every (e, x) ∈ E × X(a):
(i) E is a closed subset of IRN and X(a) is a closed, convex subset of IRH

+ ;
(ii)[Irreflexivity and transitivity] ≺a,e is irreflexive2 and transitive3;
(iii)[Convexity of preferences on atoms] if a ∈ A \ Ana the set {x′ ∈ X(a) |
not[x′ ≺a,e x]} is convex;
(iv)[Continuity] the sets:

{x′ ∈ X(a) | x ≺a,e x
′} and {(x′, e′) ∈ X(a) × E | x′ ≺a,e′ x}

are open, respectively, in X(a) and in X(a) × E (for their relative topologies);
(v)[Measurability] the consumption set correspondence a′ → X(a′) and the pref-
erence correspondence (a′, e′) →≺a′,e′ are measurable4;
(vi) ω ∈ LX , i.e., ω : A → IRH is integrable and ω(a′) ∈ X(a′) for a.e. a′ ∈ A;

Assumption M (i)[Monotonicity] For a.e. a ∈ A, X(a) := IRH
+ and

for every e ∈ E and every x, x′ in X(a), x < x′ implies x ≺a,e x
′;

(ii)[Strong survival]
∫

A
ω(α)dν(α) >> 0.

The above assumptions are standard and need no special comments. In a model
without externalities (say E = {0}), they coincide with Aumann-Schmeidler’s
assumptions, as discussed in the next section.

2 That is, for every x ∈ X(a), not[x ≺a,e x].
3 That is, for every x, x′, x′′ ∈ X(a), x ≺a,e x′ and x′ ≺a,e x′′ imply x ≺a,e x′′.
4 We recall that a correspondence F , from a measurable space (A, A) to IRn, is said to be

A−measurable, or simply measurable, if its graph is a measurable set, i.e., GF := {(a, x) ∈ A×IRH |
x ∈ F (a)} belongs to A ⊗ B(IRn), where B(IRn) denotes the σ−algebra of Borel subsets of IRn

and A ⊗ B(IRn) denotes the σ−algebra product. The preference correspondence (a, e) →≺a,e is
said to be measurable if the correspondence (a, e) → {(x, x′) ∈ X(a) × X(a) | x ≺a,e x′} is
A ⊗ B(E)−measurable.
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The next assumptions concern the externality side. Hereafter, we suppose that
for every (a, p) ∈ A × IRH , Φ(a, p, f) = Φ(a, p, g) if f = g almost everywhere
on A. Without any risk of confusion, this allows us to consider Φ as a mapping
Φ : A × IRH × LX → E, where

LX := {f ∈ L1(A, IRH) | f(a) ∈ X(a) a.e. a ∈ A}.

Assumption E [Caratheodory](i) E is a closed subset of IRN ;
(ii) for all (p, f) ∈ IRH

+ × LX , the mapping a → Φ(a, p, f) is measurable;
(iii) for a.e. a ∈ A, for every sequence {pn} ⊂ IRH

+ converging to p and every
integrably bounded5 sequence {fn} ⊂ LX converging weakly to f , the sequence
{Φ(a, pn, fn)} converges to Φ(a, p, f);

Assumption EB [Boundedness] For all bounded sequence {(pn, fn)} ⊂ IRH
+ ×LX

and for a.e. a ∈ A, the sequence {Φ(a, pn, fn)} is bounded in E.

Assumption EC0 [Convexity of preferences on the nonatomic part] For a.e. a ∈
Ana and every (e, x) ∈ E ×X(a), the set {x′ ∈ X(a) | not[x′ ≺a,e x]} is convex.

The above Caratheodory assumption is a standard regularity assumption. The
boundedness assumption EB will be satisfied, in particular, in the reference coali-
tions model presented hereafter. We also point out that EB is satisfied when the
correspondence a → X(a) is integrably bounded (see Assumption IB hereafter)
and C and E hold.

The last assumption additionally assumes the convexity of preferences on the
nonatomic part of A (whereas in C it was only assumed on the atomic part). This
assumption will be discussed and weakened in Section 2.3.

We can now state our first existence result.

Theorem 1 The exchange economy with externalities (E ,Φ) admits an equilibrium
(f∗, p∗) with p∗ >> 0, if it satisfies Assumptions A, C, M, E, EB and EC0.

Theorem 1 is a direct consequence of a more general result [Theorem 2] that
will be stated in the following section, which is devoted to the weakening of the
convexity assumption EC0.

2.3 Weakening the convexity assumption EC0

Since Aumann [2], most of the existence results in models without externalities
do not assume convexity of preferences on the nonatomic part Ana of the measure
space of consumers (i.e.,Assumption EC0). To be able to coverAumann’s existence
result, we will now weaken the convexity assumption EC0. This will allow us to
encompass the known existence results in the three following important cases.

E1: No externalities [Aumann [2], Schmeidler [16], Hildenbrand [13]] E1 = {0}
and the mapping Φ1 : A × IRH

+ × LX → E1 is defined by Φ1(a, p, f) = 0.
5 That is, there is some integrable function ρ : A → IR+, such that supn ‖fn(a)‖ ≤ ρ(a) for a.e.

a ∈ A.
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E2: Price dependent preferences [Greenberg et al. [11]] E2 = IRH
+ and the

mapping Φ2 : A × IRH
+ × LX → E2 is defined by Φ2(a, p, f) = p.

E3: Constant reference coalitions [Schmeidler [17]] E3 = (IRH
+ )K and the

mapping Φ3 : A × IRH
+ × LX → E3 is defined by

Φ3(a, p, f) :=
(∫

C1

f(a)dν(a), . . . ,
∫

CK

f(a)dν(a)
)
,

where the sets Ck (k = 1, . . . ,K) are nonempty measurable subsets of Ana, which
are pairwise disjoint, i.e., Cj ∩ Ck = ∅ for every j �= k.

In the three above cases, the externality mappings Φi (i = 1, 2, 3) are “convex”
on Ana in the sense of the following definition (see Proposition 1 below):

Definition 2 We say that the externality mapping Φ : A × IRH
+ × LX → E is

“convex” on the measurable set C ⊂ A if for every p ∈ IRH
+ , for every {fi}i∈I ⊂

LX (I finite) and every f ∈ LX such that
for a.e. α ∈ C, f(α) ∈ co{fi(α) | i ∈ I},

there exists f∗ ∈ LX such that:
for a.e. α ∈ C, f∗(α) ∈ {fi(α) | i ∈ I},
for a.e. α ∈ A \ C, f∗(α) = f(α),
for a.e. a ∈ A, Φ(a, p, f) = Φ(a, p, f∗) and

∫
A
f(α)dν(α) =

∫
A
f∗(α)dν(α).

We now can state our main existence result, which extends Theorem 1 and
allows us to cover the three above cases E1, E2, E3. For this, we need to introduce
a new Convexity Assumption EC , which is clearly satisfied in the two important
cases: (i) convexity of the preferences onAna (i.e.,Assumption EC0 of Theorem 1),
and (ii) “convexity” of Φ on Ana.

Theorem 2 The exchange economy with externalities (E ,Φ) admits an equilibrium
(f∗, p∗) with p∗ >> 0, if it satisfies Assumptions A, C, M, E, EB, together with
the following one:

Assumption EC There exists a measurable set C ⊂ Ana such that:
(i) for a.e. a ∈ Ana \ C, the preferences are convex, that is, for every (e, x) ∈
E × X(a), the set {x′ ∈ X(a) | not[x′ ≺a,e x]} is convex, and
(ii) the externality mapping Φ is “convex” on C.

The proof of Theorem 2 is given in Section 4 and relies on an intermediary result
(Theorem 4) in which the monotonicity assumption M is replaced by the assumption
that the consumption correspondence a → X(a) is integrably bounded (which is
clearly stronger than EB holds). In this case, it is worth pointing out that without
Assumption EC, the corresponding existence result (Theorem 4) may not hold as
shown in the Appendix with a counterexample due to Balder [4].

We end this section by showing that the three above externality mappings Φi

(i = 1, 2, 3) satisfyAssumption EC, and also a strongerAssumption EC1 (in which
no convexity assumption on preferences is made).
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Proposition 1 (a) In the three above cases E1, E2, E3, the externality mappings
Φ = Φi (i = 1, 2, 3) satisfy the following assumption:

EC1 There exists a measurable set C ⊂ Ana such that: (i) the externality mapping
Φ only depends on f|C , in the sense that, Φ(a, p, f) = Φ(a, p, g), if f|C = g|C , and
(ii) the externality mapping Φ is “convex” on C.
(b) If Assumption EC1 holds, then Φ is “convex” on Ana, hence Assumption EC
holds.

Proof.
(a) Assumption EC1 is satisfied for C = Ana for the cases E1 and E2 and for
C = ∪K

k=1Ck for E3. This is a consequence of Lyapunov’s theorem, applied to
Ana in the first two cases and applied successively to each Ck (k = 1, . . . ,K) in
the latter case.

(b) We show that the externality mapping Φ is “convex” on Ana. Indeed, for every
p ∈ IRH

+ , let {fi}i∈I ⊂ LX (I finite) and f ∈ LX such that, for a.e. α ∈ Ana,
f(α) ∈ co{fi(α) | i ∈ I}. Since Φ is “convex” on C ⊂ Ana (by EC1), there exists
an integrable mappingf ′ : A → IRH such that, for a.e.α ∈ C,f ′(α) ∈ {fi(α) | i ∈
I}, for a.e. a ∈ A, Φ(a, p, f) = Φ(a, p, f ′) and

∫
C
f(α)dν(α) =

∫
C
f ′(α)dν(α).

From above, for a.e. α ∈ Ana \ C, f(α) ∈ co{fi(α) | i ∈ I}, hence, from
Lyapunov’s theorem, there exists an integrable mapping f

′′
: Ana \C → IRH such

that f
′′
(α) ∈ {fi(α) | i ∈ I} and

∫
Ana\C

f(α)dν(α) =
∫

Ana\C
f

′′
(α)dν(α). We

consider now the mapping f∗ : A → IRH defined by f∗(α) = f ′(α) for every
α ∈ C, f∗(α) = f

′′
(α) for every α ∈ Ana \ C and f∗(α) = f(α) for every

α ∈ A \ Ana and we note that, for a.e. α ∈ Ana, f∗(α) ∈ {fi(α) | i ∈ I} and
for a.e. α ∈ A \ Ana, f∗(α) = f(α). Moreover, from above, for a.e. a ∈ A,
Φ(a, p, f) = Φ(a, p, f ′) = Φ(a, p, f∗) (since f ′

|C = f∗
|C) and

∫
A
f(α)dν(α) =∫

A
f∗(α)dν(α). ��

3 The reference coalitions model

3.1 The model and the existence result

The general model of an exchange economy with externalities (E , Φ) allows us
to consider the reference coalitions model that we now present as an extension of
Schmeidler’s model.

We suppose that, given a price p ∈ IRH
+ , each agent a has finitely many reference

coalitions of agents, Ck(a, p) ∈ A (k = 1 . . .K), whose consumption choices
influence the preferences of agent a in a way defined precisely hereafter. Hence,
the reference coalitions may depend upon the agent and also on the price that
prevails; this differs from Schmeidler’s model, in which the reference coalitions
are constant. We will assume that each agent a is influenced either by the global
consumption or by the mean consumption of agents in the coalition Ck(a, p).
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The “global dependence” case is characterized by the externality space E :=
(IRH

+ )K and the externality mapping ΦC
1 : A × IRH

+ × LX → E defined by

ΦC
1 (a, p, f) =

(∫

C1(a,p)
f(α)dν(α), . . . ,

∫

CK(a,p)
f(α)dν(α)

)
.

The “mean dependence” case, is characterized by the externality space E :=
(IRH

+ )K and the externality mapping ΦC
2 : A × IRH

+ × LX → E, defined by

ΦC
2 (a, p, f) = (ΦC

21(a, p, f), . . . , ΦC
2K(a, p, f)),

ΦC
2k(a, p, f) :=

⎧
⎪⎨
⎪⎩

1
ν[Ck(a, p)]

∫

Ck(a,p)
f(α)dν(α) if ν[Ck(a, p)] > 0

0 if ν[Ck(a, p)] = 0.

The reference coalitions model can thus be summarized by the exchange
economies with externalities (E , ΦC

1 ) and (E , ΦC
2 ), where

E = {IRH , (IRH
+ )K , (A,A, ν), (X(a), (≺a,e)e∈(IRH

+ )K , ω(a))a∈A},
C := (C1(a, p), . . . , CK(a, p))(a,p)∈A×IRH

+
,

and the externality mappings ΦC
1 and ΦC

2 are defined as above (and correspond,
respectively, to the global and the mean dependence).

Before stating the existence result, we recall the following notations; for C1,
C2 in A, we let C1∆C2 := (C1 \ C2) ∪ (C2 \ C1) and we let the characteristic
function χC1 : A → IR be defined by χC1(a) = 1 if a ∈ C1 and χC1(a) = 0 if
a �∈ C1.

Theorem 3 The exchange economy with reference coalitions externalities (E , C)
admits an equilibrium (p∗

1, f
∗
1 ) with p∗

1 >> 0 for global dependence and an equi-
librium (p∗

2, f
∗
2 ) with p∗

2 >> 0 for mean dependence (i.e., (E , ΦC
i ) admits an

equilibrium (p∗
i , f

∗
i ) (i = 1, 2)), if it satisfies Assumptions A, C, M, EC0, together

with:

Assumption R [Reference Coalition Side]
For every k = 1, . . . ,K for a.e. a ∈ A and every p ∈ IRH

+ :
(i) ν[Ck(a, p)] > 0; (ii) for every λ > 0, Ck(a, λp) = Ck(a, p);
(iii) for every sequence pn → p in IRH

+ , ν[Ck(a, pn)∆Ck(a, p)] → 0;
(iv) the set {(a′, a

′′
) ∈ A × A | a′′ ∈ Ck(a′, p)} ∈ A ⊗ A.

The proof of Theorem 3 is given in Section 3.2.

3.2 Proof of Theorem 3

It is a consequence of Theorem 1 and we only have to prove that the externality
mappings ΦC

i (i = 1, 2) satisfy Assumptions E and EB. This will be done in the
following three steps, noticing first that [E(i)] is satisfied.
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Step 1 [E(ii)]: For every (p, f) ∈ IRH
+ × LX , the mapping a → ΦC

i (a, p, f)
(i = 1, 2) is measurable on A.

Proof. Let (p, f) ∈ IRH
+ × LX . We first show that the mapping

a → ΦC
1 (a, p, f) :=

∫

C(a,p)
f(α)dν(α)

is measurable. We notice that the mappings (a, α) → f(α) and (a, α) →
χC(a,p)(α) are both measurable on A × A (endowed with the product σ−alge-
bra A ⊗ A), from the fact that f ∈ L1(A, IRH

+ ) and Assumption R(iv) respectively.
Hence, the mapping (a, α) → χC(a,p)(α)f(α) is measurable on A × A.

Since χC(a,p)(α)f(α) ≤ f(α) for a.e. (a, α) ∈ A × A and f ∈ L1(A, IRH
+ ),

applying the measurability part of Fubini’s theorem, the mapping

a →
∫

A

χC(a,p)(α)f(α)dν(α) =
∫

C(a,p)
f(α)dν(α)

is correctly defined and is measurable on A. Hence, the mapping ΦC
1 satisfies As-

sumption E(ii).
We now show that the mapping

ΦC
2 (a, p, f) :=

⎧
⎪⎨
⎪⎩

1
ν[C(a, p)]

ΦC
1 (a, p, f) if ν[Ck(a, p)] > 0

0 if ν[Ck(a, p)] = 0

is measurable on A. Using the above argument for f = 1, we deduce that the
mapping a → ν[C(a, p)] is measurable on A. Since ν[C(a, p)] > 0 for a.e. a ∈ A
(by R(i)), in view of the measurability property of ΦC

1 , the mapping ΦC
2 satisfies

Assumption E(ii). ��
Step 2 [E(iii)]: For a.e. a ∈ A and for every sequence {pn} converging to p in
IRH

+ and every integrably bounded sequence {fn} converging weakly to f in LX ,
the sequence {ΦC

i (a, pn, fn)} converges to ΦC
i (a, p, f) (i = 1, 2).

Proof. Let {(pn, fn)} as above. We first prove that ΦC
1 satisfies [E(iii)], i.e., for

a.e. a ∈ A

ΦC
1 (a, pn, fn) =

∫

C(a,pn)
fn(α)dν(α) →

∫

C(a,p)
f(α)dν(α) = ΦC

1 (a, p, f).

For this, one notices that
∥∥∥∥∥
∫

C(a,pn)
fn(α)dν(α) −

∫

C(a,p)
f(α)dν(α)

∥∥∥∥∥ ≤
∥∥∥∥∥
∫

C(a,pn)
fn(α)dν(α)−

∫

C(a,p)
fn(α)dν(α)

∥∥∥∥∥+

∥∥∥∥∥
∫

C(a,p)
[fn(α)−f(α)]dν(α)

∥∥∥∥∥ .
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For the second term, since {fn} converges weakly to f , one has
∥∥∥∥∥
∫

C(a,p)
[fn(α) − f(α)]dν(α)

∥∥∥∥∥ → 0.

For the first term we have
∥∥∥∥
∫

A

χC(a,pn)(α)fn(α)dν(α) −
∫

A

χC(a,p)(α)fn(α)dν(α)
∥∥∥∥ ≤

∫

A

|χC(a,pn)(α) − χC(a,p)(α)|‖fn(α)‖dν(α) ≤
∫

A

|χC(a,pn)(α) − χC(a,p)(α)|ρ(α)dν(α) =
∫

C(a,pn)∆C(a,p)
ρ(α)dν(α),

recalling that the sequence {fn} is integrably bounded, hence, for some integrably
function ρ : A → IR+, one has supn ‖fn(a)‖ ≤ ρ(a) for a.e. a ∈ A. Moreover,
for a.e. a ∈ A, ν[C(a, pn)∆C(a, p)] → 0 when pn → p (by R(iii)), hence

∫

C(a,pn)∆C(a,p)
ρ(α)dν(α) → 0,

since the mapping C → ∫
C
ρ(α)dν(α), from A to IR+, is a positive measure,

absolutely continuous with respect to ν. This implies that the first term converges
to zero6 and ends the proof that ΦC

1 satisfies [E(iii)].
We now prove that ΦC

2 satisfies [E(iii)]. Since, for a.e. a ∈ A, ΦC
1 (a, pn, fn) →

ΦC
1 (a, p, f) and ν[C(a, p)] > 0 (by R(i)), it suffices to show that ν[C(a, pn)] →

ν[C(a, p)]. Indeed, one has

|ν[C(a, pn)] − ν[C(a, p)]| =
∣∣∣∣
∫

A

χC(a,pn)(α)dν(α) −
∫

A

χC(a,p)(α)dν(α)
∣∣∣∣

≤
∫

A

|χC(a,pn)(α) − χC(a,p)(α)|dν(α) = ν[C(a, pn)∆C(a, p)],

which converges to zero (by R(iii)) when pn → p. ��
Step 3 [EB]: If {(pn, fn)} ⊂ IRH

+ × LX is a (norm-)bounded sequence, then for
a.e. a ∈ A the sequence {ΦC

i (a, pn, fn)} (i = 1, 2) is bounded in (IRH
+ )K .

Proof. Let {(pn, fn)} as above. For a.e. a ∈ A and for every n, one has

0 ≤ ΦC
1 (a, pn, fn) =

∫

C(a,pn)
fn(α)dν(α) ≤

∫

A

fn(α)dν(α).

6 Note: We don’t need to use the fact that the sequence {fn} is integrably bounded. Indeed, if {fn}
converges weakly to f and ν[C(a, pn)∆C(a, p)] → 0, one has directly

∫

C(a,pn)∆C(a,p)
fn(α)dν(α) → 0.

For details, see Dunford and Schwartz [8] p. 294. Thanks to E. Balder for this remark.
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Since {fn} is norm-bounded and fn ≥ 0, we deduce that for some m ≥ 0

sup
n

‖ΦC
1 (a, pn, fn)‖ ≤ m.

We now prove thatΦC
2 (a, pn, fn) is bounded. Indeed, from above, for a.e. a ∈ A

and every n, we get

∥∥ΦC
2 (a, pn, fn)

∥∥ =
∥∥∥∥

1
ν[C(a, pn)]

ΦC
1 (a, pn, fn)

∥∥∥∥ ≤ m
1

ν[C(a, pn)]
,

since ν[C(a, pn)] > 0 for a.e. a ∈ A. Recalling now that the sequence {pn} is
bounded and that in the previous step we have proved that, for a.e. a ∈ A, the
mapping p → 1

ν[C(a,p)] is continuous on IRH
+ , we get that, for a.e. a ∈ A, there

exists m′
a > 0 such that 1

ν[C(a,pn)] ≤ m′
a for every n. It suffices to take for a.e.

a ∈ A

ma :=
1

min{p∈{pn}|ν[C(a,p)]>0} ν[C(a, p)]
.

Hence, for a.e. a ∈ A, supn ‖ΦC
2 (a, pn, fn)‖ ≤ m′

a.m. ��

3.3 Noguchi’s reference coalitions model

We now present Noguchi’s model (see [15]) and we deduce his existence result
from Theorem 3. It can be described by a reference coalition model, with a unique
reference coalition CN (a, p), defined, for each consumer a at price system p, by

CN (a, p) := {α ∈ A | p · ω(α) ∈ I(ω(a), δ(a), p)},
where δ : A → IRH

+ is a fixed function and I(ω(a), δ(a), p) is a subset of IR.
Quoting Noguchi [15], “intuitively speaking, I(ω(a), δ(a), p) represents (for agent
a) an income range in the income-scale, relative to income p · ω(a) and with
magnitude p · δ(a)” and among the examples given, we point out the following one
defined by the interval I(ω(a), δ(a), p) = (p · ω(a) + p · δ(a),∞).

We now state the existence result.

Corollary 1 [Noguchi] The economy (E , ΦCN
2 ) admits an equilibrium, if it satisfies

Assumptions A, C, M, EC0 together with:

Assumption N For every (a,w, d, p, t) ∈ A × (IRH
+ )3 × IR+:

(i) I(w, d, p) is an open subset of (0,∞);
(ii) ν[CN (a, p)] > 07; (iii) the function δ : A → IRH

+ is measurable;
(iv) for every λ > 0, I(w, d, λp) = λI(w, d, p);
(v) for every sequence {(pn, tn)} ⊂ IRH

+ × IR, (pn, tn) → (p, t), if t ∈ I(w, d, p),
then tn ∈ I(w, d, pn) for n large enough;

7 In fact, Noguchi [15] only assumed that ν[C(a, p)] > 0 for every (a, p) ∈ A × IRH
+ such that

p · ω(a) > 0. To be able to get Noguchi’s existence result in the more general case, we need to weaken
Assumption R of Theorem 3 and, also, Assumptions E and EB of Theorem 2 as in the working paper [7].
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(vi) for every sequence {(pn, tn)} ⊂ IRH
+ × IR, (pn, tn) → (p, t), tn ∈ I(w, d, pn)

implies t ∈ I(w, d, p);
(vii) for every sequence {(wn, dn)} ⊂ IRH

+ × IRH
+ , (wn, dn) → (w, d), if t ∈

I(w, d, p), then t ∈ I(wn, dn, p) for n large enough;
(viii) for every sequence (wn, dn) → (w, d) in IRH

+ × IRH
+ , t ∈ I(wn, dn, p) implies

t ∈ I(w, d, p);
(ix) the set I(w, d, p) \ I(w, d, p) is countable and
c ∈ I(ω(a), δ(a), p) \ I(ω(a), δ(a), p) implies ν[{a ∈ A | p · ω(a) = c}] = 0.

Proof. We define the reference coalitions C := (C(a, p))(a,p)∈A×IRH
+

by

C(a, p) := {α ∈ A | p · ω(α) ∈ I(ω(a), δ(a), p)}.
From Assumption N(ix), for every (a, p) ∈ A × IRH

+ , we get

CN (a, p) ⊂ C(a, p) and ν(C(a, p) \ CN (a, p)) = 0,

hence,
∫

CN (a,p) f(α)dν(α) =
∫

C(a,p) f(α)dν(α) for every f ∈ LX .

Consequently, every equilibrium of (E , ΦC
2 ) is an equilibrium for (E , ΦCN

2 ). We
now obtain the existence of equilibria of (E , ΦC

2 ) from Theorem 3 (K = 1) and it
suffices to prove that the reference coalitions C, defined above, satisfyAssumption R
of Theorem 3. This is proved in Section 5.2 of the Appendix.

4 Proof of the existence theorem

4.1 Proof of Theorem 2 in the integrably bounded case

In this section, we provide an intermediary existence result, also of interest for
itself, under the following additional assumption:

IB [Integrably Bounded] The correspondence a → X(a), from A to IRH
+ ,

is integrably bounded, that is, for some integrable function ρ : A → IR+,
supx∈X(a) ‖x‖ ≤ ρ(a) for a.e. a ∈ A.

Theorem 4 Under Assumptions A, C, E, EC and IB, the economy (E , Φ) admits
a free-disposal quasi-equilibrium (f∗, p∗) ∈ LX × IRH with p∗ > 0, in the sense
that:

(a) [Preference Maximization] for a.e. a ∈ A, f∗(a) ∈ B(a, p∗) and for a.e. a ∈ A
such that p∗ · ω(a) > inf p∗ · X(a), f∗(a) is a maximal element for ≺a,e∗

a
in

the budget set B(a, p∗) where e∗
a := Φ(a, p∗, f∗);

(b) [Market Clearing]
∫

A
f∗(a)dν(a) ≤ ∫

A
ω(a)dν(a).

To prepare the proof of Theorem 4, we define the “quasi-demand” correspon-
dence D, from A × IRH

+ × E to IRH
+ , by

D(a, p, e) :=

⎧
⎪⎪⎨
⎪⎪⎩

{x ∈ B(a, p) |� ∃x′ ∈ B(a, p), x ≺a,e x
′}

if inf p · X(a) < w(a, p)

B(a, p) if inf p · X(a) = w(a, p).
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We let ∆ := {p ∈ IRH
+ | ∑h ph = 1} and we define the correspondence Γ , from

∆ × LX to ∆ × LX , by Γ (p, f) = Γ1(p, f) × Γ2(p, f), where

Γ1(p, f) := {p ∈ ∆ | (p − q) ·
∫

A

(f(a) − ω(a))dν(a) ≥ 0 ∀q ∈ ∆} ⊂ ∆

Γ2(p, f) := {g ∈ LX | g(a) ∈ coD(a, p, Φ(a, p, f)) for a.e. a ∈ A} ⊂ LX .

The next lemmas summarize the properties of the set LX and of the correspon-
dence Γ .

Lemma 1 The set LX , endowed with the weak topology of the (locally convex)
space L1(A, IRH), is nonempty, convex, compact and metrizable.

Proof. First, the set LX is nonempty, since it contains the mapping ω; indeed
ω ∈ L1(A, IRH) and, for a.e. a ∈ A, ω(a) ∈ X(a) (by C(vi)). The set LX is also
convex, since for a.e. a ∈ A, X(a) is a convex set (by C(i)).

We show now that LX is compact for the weak topology of L1(A, IRH). From
the fact that the correspondence a → X(a) is integrably bounded (by IB), one
has limν(C)→0

∫
C
f(a)dν(a) = 0 uniformly for f ∈ LX . Consequently, since

ν(A) < ∞, the set LX , which is (norm-)bounded, is also weakly sequentially
compact (see, for example, Dunford and Schwartz [8], p. 294). In view of Eberlein-
Smulian’s Theorem, this is equivalent to the fact that the weak closure of LX is
weakly compact. The proof will be complete if we show that LX is weakly closed.
But in the normed space L1(A, IRH), the convex set LX is weakly closed if and
only if it is closed in the norm topology of L1(A, IRH) (see, for example, Dunford
and Schwartz [8], p. 422). To show that LX is closed, we consider a sequence
{fn} ⊂ LX which converges to some f ∈ L1(A, IRH) for the norm topology
of L1(A, IRH), then there exists a subsequence {fnk}, which converges almost
everywhere to f . But, for a.e. a ∈ A, fnk(a) ∈ X(a), since fnk ∈ LX . Taking the
limit when k → ∞, for a.e. a ∈ A, f(a) ∈ X(a), since X(a) is a closed set (by
C(i)). This ends the proof that LX is weakly compact.

Finally, LX is metrizable (for the weak topology) since, in a separable Banach
space, the weak topology on a weakly compact set is metrizable (see, for example,
Dunford and Schwartz [8], p. 434). ��
Lemma 2 The correspondences Γ1 and Γ2 defined on ∆ × LX with values, re-
spectively in ∆ and LX , have both a closed graph and non-empty, convex, compact
values.

Proof. For the correspondence Γ1, the proof is a classical argument using Berge’s
Maximum Theorem (see Berge [5] p. 123) and proving that the function (p, f) →
p · (

∫
A
f(a)dν(a) − ∫

A
ω(a)dν(a)) is continuous on ∆ × LX . Indeed, this is

clearly the case since the scalar product (of IRH ) (p, x) → p · x is continuous and
the real-valued functions (p, f) → p and (p, f) → ∫

A
f(a)dν(a) are continuous

on ∆×LX , when LX is endowed with the weak topology ofL1(A, IRH) (recalling
that LX is metrizable).
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Consider now the correspondence Γ2. It has clearly convex values and we show
hereafter that it has nonempty values. For every (p, f) ∈ ∆ × LX

{g ∈ LX | g(a) ∈ D(a, p, Φ(a, p, f)), for a.e. a ∈ A} ⊂ Γ2(p, f).

The existence of a measurable selection of the correspondence

a → D(a) := D(a, p, Φ(a, p, f)) ⊂ B(0, ρ(a))

is a consequence ofAumann’s theorem and it suffices to show that (i) for a.e. a ∈ A,
D(a) �= ∅ and (ii) the correspondence D(.) is measurable. The first assertion is a
consequence of Proposition 2 of the Appendix. We now prove the second assertion.
Indeed,

GD = {(a, z) ∈ A × IRH | z ∈ D(a)}
= {(a, z) ∈ A × IRH | (a, Φ(a, p, f), z) ∈ G} = h−1(G),

where G := {(a, e, z) ∈ A × E × IRH | z ∈ D(a, p, e)} and h : A × IRH →
A×E×IRH is defined by h(a, z) = (a, Φ(a, p, f), z). But the mapping h is clearly
measurable, since the mapping a → Φ(a, p, f) is measurable (by E(ii)), and G∈
A ⊗ B(E) ⊗ B(IRH), since the correspondence (a, e) → D(a, p, e) is measurable
[Proposition 2 of the Appendix]. Consequently, GD = h−1(G) ∈ A ⊗ B(IRH),
which ends the proof of Assertion (ii).

Finally, every measurable selection of the correspondence a → D(a) is inte-
grable, since from Assumption IB, for a.e. a ∈ A, D(a) ⊂ B(0, ρ(a)) for some
integrable function ρ. This shows that Γ2(p, f) is nonempty.

We now show that the correspondence Γ2 has a closed graph. Indeed (recalling
thatLX is metrizable), let {(pn, fn, gn)} be a sequence converging to some element
(p, f, g) in ∆ × LX × LX such that gn ∈ Γ2(pn, fn) ⊂ LX for all n. Since
the sequence {gn} is integrably bounded (by IB) and converges weakly to g in
L1(A, IRH), it is a standard result (see, for example, Yannelis [19]) that

for a.e. a ∈ A, g(a) ∈ coLs{gn(a)}.
But, for a.e. a ∈ A, the correspondence (p, f) → coD(a, p, Φ(a, p, f)) has a
closed graph and convex values, since the correspondence (p, e) → D(a, p, e) has
a closed graph [Proposition 2 of Appendix] and the mapping (p, f) → Φ(a, p, f) is
continuous on∆×LX (by E(iii), IB and the metrizability ofLX ). Hence, recalling
that, for a.e. a ∈ A, gn(a) ∈ coD(a, pn, Φ(a, pn, fn)) for all n, the closed graph
property implies

Ls{gn(a)} ⊂ coD(a, p, Φ(a, p, f)).

Consequently, for a.e. a ∈ A

g(a) ∈ coLs{gn(a)} ⊂ coD(a, p, Φ(a, p, f)),

which shows that g ∈ Γ2(p, f) and ends the proof of the lemma. ��
From the two above lemmas, recalling that the Cartesian product of two corre-

spondences with closed graph and non-empty, convex, compact values is a corre-
spondence with closed graph and non-empty, convex, compact values (see Berge
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[5] p. 121), the space L := IRH × L1(A, IRH), the set K := ∆ × LX and the
correspondence Γ satisfy all the assumptions of the following fixed-point theorem
(see, for example, Fan [9] and Glicksberg [10]).

Theorem 5 (Fan-Glicksberg) Let K be a non-empty, convex, compact subset of
a Hausdorff locally convex space L and let Γ be a correspondence, from K to
K, with a closed graph and non-empty, convex, compact values. Then there exists
x̄ ∈ K such that x̄ ∈ Γ (x̄).

Consequently, there exists an element (p̄, f̄) ∈ ∆ × LX satisfying:

(p̄ − p) ·
∫

A

(f̄(a) − ω(a))dν(a) ≥ 0 for all p ∈ ∆, (1)

f̄(a) ∈ coD(a, p̄, Φ(a, p̄, f̄)) for a.e. a ∈ A. (2)

The following lemma shows that we can remove the convex hull in the above
assertion, by eventually modifying the function f̄ .

Lemma 3 There exists f∗ ∈ LX satisfying:

(p̄ − p) ·
∫

A

(f∗(a) − ω(a))dν(a) ≥ 0 for all p ∈ ∆, (3)

f∗(a) ∈ D(a, p̄, Φ(a, p̄, f∗)) for a.e. a ∈ A. (4)

Proof. From Assertion (2) and the fact that the correspondence a → D(a) :=
D(a, p̄, Φ(a, p̄, f̄)), from A to IRH , is measurable [Proposition 2 of the Appendix],
there exist finitely many measurable selections fi (i ∈ I) of the correspondence
a → D(a) such that, for a.e. a ∈ A, f̄(a) ∈ co{fi(a) | i ∈ I}. Indeed, consider
the correspondence F , from A to (IRH × IR)#H+1, defined by

F (a) := {(fi, λi)i=1,..,#H+1 | (fi, λi) ∈ D(a) × IR+, for all i∑
i

λi = 1 and f̄(a) =
∑

i

λifi}.

Then, clearly F is measurable and nonempty valued, from Caratheodory’s the-
orem and the fact that f̄(a) ∈ coD(a). Consequently, from Aumann’s theorem,
there exists a measurable selection of the correspondence F , which defines the
measurable selections fi of the correspondence a → D(a).

From Assumption EC, there exists a measurable set C ⊂ Ana such that:
(i) for a.e. a ∈ Ana \ C, the preference relation ≺a,Φ(a,p̄,f̄) is convex and
(ii) there exists f∗ ∈ LX such that,

for a.e. a ∈ A,Φ(a, p̄, f̄) = Φ(a, p̄, f∗)
for a.e. a ∈ C, f∗(a) ∈ {fi(a) | i ∈ I} ⊂ D(a, p̄, Φ(a, p̄, f̄))

= D(a, p̄, Φ(a, p̄, f∗)), (5)

for a.e. a ∈ A \ C, f∗(a) = f̄(a) and
∫

A

f̄(α)dν(α) =
∫

A

f∗(α)dν(α). (6)
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Since the preference relation ≺a,Φ(a,p̄,f̄) is convex for a.e. a ∈ A \C (first, for
a.e. a ∈ A \ Ana by C(iii) and, second, for a.e. a ∈ Ana \ C by EC(i)), the set
D(a, p̄, Φ(a, p̄, f̄)) is convex. Then, from above

for a.e. a ∈ A \ C, f∗(a) = f̄(a) ∈ coD(a, p̄, Φ(a, p̄, f̄))
= D(a, p̄, Φ(a, p̄, f∗)). (7)

The Assertions (3) and (4) of the lemma follow from Assertions (1),(6) and (5),(7)
respectively. ��

We come back to the proof of Theorem 4 and we show that, for p∗ = p̄,
(p∗, f∗) is a free disposal quasi-equilibrium of (E , Φ). Indeed, from Assertion (4),
for a.e. a ∈ A, f∗(a) ∈ D(a, p∗, Φ(a, p∗, f∗)), hence the equilibrium preference
maximization condition is satisfied. This implies, in particular, that for a.e. a ∈ A,
f∗(a) ∈ B(a, p∗), hence p∗ · f∗(a) ≤ p∗ · ω(a). Integrating over A, one gets
p∗ · ∫

A
(f∗(a) − ω(a))dν(a) ≤ 0. Using Assertion (3), one deduces that

p ·
∫

A

(f∗(a) − ω(a))dν(a) ≤ 0 for all p ∈ ∆,

which implies the equilibrium market clearing condition
∫

A

f∗(a)dν(a) ≤
∫

A

ω(a)dν(a).

4.2 Proof of Theorem 2 in the general case

4.2.1 Truncation of the economy

For each integer k > 1 and for every a ∈ A, we let

Xk(a) := {x ∈ X(a) | x ≤ k[1 · ω(a)]1}
and, for every e ∈ E, we consider the restriction of the preference relation ≺a,e on
the set Xk(a), which will be denoted identically ≺a,e in the following. We define
the truncated economy Ek, by

Ek = {IRH , E, (A,A, ν), (Xk(a), (≺a,e)e∈E , ω(a))a∈A},
where the characteristics of Ek are the same as in the economy E , but the consump-
tion sets Xk(a) and the preferences (≺a,e)e∈E of the agents, which are defined
as above.

The externality mapping Φk : A× IRH ×Lk
X → E is defined as the restriction

of Φ to A × IRH × Lk
X , where

Lk
X := {f ∈ L1(A, IRH) | f(a) ∈ Xk(a), for a.e. a ∈ A}.

It is easy to see that if (E , Φ) satisfies the assumption of Theorem 2, then for every k,
(Ek, Φk) satisfies all the assumptions of Theorem 4. Consequently, from Theorem 4,
for every k there exists a free-disposal quasi-equilibrium (pk, fk) of (Ek, Φk) with
pk > 0.
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4.2.2 For k large enough, pk >> 0

Lemma 4 There exists δ > 0 such that pk ≥ δ1 for k large enough.

Proof. Without any loss of generality, we can assume that the sequence {pk}
converges to some element p∗ in the compact set ∆. To prove the lemma it suffices
to show that p∗ >> 0.

We first show that, for a.e. a ∈ A

∃(f(a), e(a)) ∈ IRH
+ × E, (p∗, f(a), e(a)) ∈ Ls{(pk, fk(a), ek(a))}. (8)

Indeed, since (pk, fk) is a free-disposal quasi-equilibrium of (Ek, Φk) for every
k, one has

for a.e. a ∈ A, 0 ≤ fk(a) and
∫

A

fk(a)dν(a) ≤
∫

A

ω(a)dν(a),

hence the sequence {∫
A
fk(a)dν(a)} is bounded in IRH and we shall deduce that

supk ‖fk‖1 < ∞. Defining in IRH , ‖x‖1 =
∑

h |xh| and, recalling that, for some
m > 0, ‖x‖ ≤ m‖x‖1 for every x, we get

‖fk‖1 :=
∫

A

‖fk(a)‖dν(a) ≤ m

∫

A

∑
h∈H

fk
h (a)dν(a)

= m

∥∥∥∥
∫

A

fk(a)dν(a)
∥∥∥∥

1
,

since fk(a) ≥ 0, for a.e. a ∈ A. Consequently, supk ‖fk‖1 < ∞, since the
sequence {∫

A
fk(a)dν(a)} is bounded.

Since the sequence {(pk, fk)} is (norm-)bounded in IRH × L1(A, IRH), from
Assumption EB, there exists a set N1 ∈ A with ν(N1) = 0 such that, for all
a ∈ A \ N1 the sequence {ek(a)} is bounded in E, where ek(a) := Φ(a, pk, fk).

In view of the standard version of Fatou’s lemma, one has
∫

A

lim inf ‖fk(a)‖dν(a) ≤ lim inf
∫

A

‖fk(a)‖dν(a) = lim inf ‖fk‖1 < ∞,

since from above supn ‖fk‖1 < ∞. Consequently, there exists N2 ∈ A with
ν(N2) = 0 such that, for all a ∈ A \ N2, lim inf ‖fk(a)‖ < ∞, which implies
that, for all a ∈ A \N2, there exists a subsequence {kn(a)} such that the sequence
{fkn(a)(a)} is bounded in IRH

+ .
Let a ∈ A \ (N1 ∪N2), noticing that the sequence {(fkn(a)(a), ekn(a)(a))} is

bounded in IRH
+ ×E, without any loss of generality we can assume that the sequence

{(fkn(a)(a), ekn(a)(a))} converges to some element (f(a), e(a)) ∈ IRH
+ × E.

Hence, Assertion (8) holds for all a ∈ A \ [N1 ∪ N2]. ��
We now come back to the proof of Lemma 4. We choose a particular

agent a0 ∈ A for whom the following properties hold: (i) the preferences of
agent a0 are continuous, (ii) the preferences of agent a0 are monotonic; (iii)
p∗ · ω(a0) > 0 and there exists a subsequence {kn}, depending on a0, such that
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(iv) (pkn , fkn(a0), ekn(a0)) → (p∗, f(a0), e(a0)), for some (f(a0), e(a0)) ∈
IRH

+ × E, (v) for every n, fkn(a0) ∈ Dkn(a0, p
kn , ekn(a0)) with ekn(a0) =

Φ(a0, p
kn , fkn). Such an agent a0 clearly exists, since each of the above Assertions

(i) − (v) hold for a.e. a ∈ A; they correspond, respectively, to Assumption C(iv),
M(i), M(ii), Assertion (8) and the equilibrium preference maximization condition
for (pkn , fkn) for every n.

We will now show that p∗ >> 0. Suppose it is not true, then there exists h
such that p∗

h = 0. From the above properties of agent a0, for all n, pkn · fkn(a0) ≤
pkn ·ω(a0), pkn → p∗ and fkn(a0) → f(a0), and at the limit one gets p∗ ·f(a0) ≤
p∗ ·ω(a0). Since agent a0 has monotonic preferences, there exists z = f(a0)+teh,
for some t > 0 such that f(a0) ≺a0,e(a0) z and clearly p∗ · z = p∗ · f(a0) ≤
p∗ · ω(a0). We now show that

∃ z′ ∈ IRH
+ , p∗ · z′ < p∗ · ω(a0), f(a0) ≺a0,e(a0) z

′. (9)

Indeed, if p∗ · z < p∗ · ω(a0), we take z′ = z. If p∗ · z = p∗ · ω(a0) > 0, we
can choose i ∈ H such that p∗

i > 0 and zi > 0. Since agent a0 has continuous
preferences, there exists ε > 0 such that z′ = z−εei ∈ IRH

+ and f(a0) ≺a0,e(a0) z
′.

We have also p∗ ·z′ = p∗ ·z−εp∗
i < p∗ ·ω(a0). This ends the proof ofAssertion (9).

We end the proof by contradicting the fact that fkn(a0) belongs to
Dk(a0, p

kn , ekn(a0)). Indeed, from p∗ ·ω(a0) > 0 (by (iii)) and Assertion (9), re-
calling that the sequence {(pkn , fkn(a0), ekn(a0))} converges to (p∗, f(a0), e(a0))
(by (iv)) and using the continuity of preferences of agent a0, for n large enough, we
get pkn · ω(a0) > 0, z′ ∈ IRH

+ , pkn · z′ ≤ pkn · ω(a0) and xkn(a0) ≺a0,ekn (a0) z
′.

Moreover, we can also assume that z′ ∈ Xkn(a0). All together, these conditions
contradict the fact that fkn(a0) ∈ Dk(a0, p

kn , ekn(a0)) and this ends the proof of
the lemma. ��

4.2.3 For k large enough, (pk, fk) is an equilibrium for (E , Φ)

It is a consequence of the following lemma.

Lemma 5 For every k large enough and for a.e. a ∈ A, one has:
(i) B(a, pk) ⊂ Xk(a);
(ii) fk(a) is a maximal element in B(a, pk) for ≺a,ek(a),
where ek(a) = Φ(a, pk, fk);
(iii) pk · fk(a) = pk · ω(a);
(iv)

∫
A
fk(a)dν(a) =

∫
A
ω(a)dν(a).

Proof. From Lemma 4, there exists K such that, for every k ≥ K

pk
h > δ for each h ∈ H and

1
δ

≤ k.

In the following we fix k ≥ K.
(i) For a.e. a ∈ A, let x ∈ B(a, pk), i.e., x ∈ IRH

+ and pk · x ≤ pk · ω(a). From
above, recalling that pk ∈ ∆, one gets

δxh ≤ pk
hxh ≤ pk · x ≤ pk · ω(a) ≤

∑
h

ωh(a) = 1 · ω(a),



188 B. Cornet and M. Topuzu

which implies that

0 ≤ x ≤ 1
δ
[1 · ω(a)]1 ≤ k[1 · ω(a)]1

or equivalently x ∈ Xk(a).
(ii) For a.e. a ∈ A such that pk ·ω(a) > 0, fk(a) is a maximal element in B(a, pk)
for ≺a,ek(a), since B(a, pk) ⊂ Xk(a) (by Part (i)) and the fact that (pk, fk) is a
free-disposal quasi-equilibrium for (Ek, Φk). For a.e. a ∈ A such that pk ·ω(a) = 0,
recalling that pk >> 0 (by Lemma 4), we getB(a, pk) = {0} and the result follows
from the Irreflexivity Assumption C(ii).
(iii) The result is obvious for a.e. a ∈ A such that pk ·ω(a) = 0. Assume now that
pk · ω(a) > 0. From the Monotonicity Assumption M(i), there exists a sequence
{fn(a)} ⊂ IRH

+ such that fn(a) → fk(a) and fk(a) ≺a,ek(a) f
n(a). From Part

(ii), fk(a) is a maximal element of ≺a,ek(a) inB(a, pk), consequently pk ·fn(a) >
pk ·ω(a). Passing to the limit one gets pk · fk(a) ≥ pk ·ω(a), which together with
fk(a) ∈ B(a, pk) implies that pk · fk(a) = pk · ω(a).
(iv) Integrating over A the equalities of Part (iii), one gets

pk ·
(∫

A

fk(a)dν(a) −
∫

A

ω(a)dν(a)
)

= 0.

Since (pk, fk) is a free-disposal quasi-equilibrium for (Ek, Φk), one has∫

A

fk(a)dν(a) ≤
∫

A

ω(a)dν(a)

and, recalling that pk >> 0 (by Lemma 4), we get∫

A

fk(a)dν(a) =
∫

A

ω(a)dν(a).

5 Appendix

5.1 Properties of the quasi-demand correspondence

Let (A,A, ν) be a measure space of consumers, and assume that each consumer
a is endowed with a consumption set X(a) ⊂ IRH , a preference relation ≺a,e on
X(a) (for each externality e ∈ E) and a wealth mapping w : A× IRH → IR. In the
following, we let

P := {p ∈ IRH | inf p · X(a) ≤ w(a, p) for a.e. a ∈ A},
B(a, p) := {x ∈ X(a) | p · x ≤ w(a, p)},

D(a, p, e) :=

⎧
⎪⎪⎨
⎪⎪⎩

{x ∈ B(a, p) |� ∃x′ ∈ B(a, p), x ≺a,e x
′}

if inf p · X(a) < w(a, p)

B(a, p) if inf p · X(a) = w(a, p).

The properties of the quasi-demand correspondence D are summarized in the
following proposition, which extends standard results (see, for example, Hilden-
brand [12]) in the no-externality case (say E = {0}).
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Proposition 2 Let {(A,A, ν), E, (X(a), (≺a,e)e∈E , )a∈A, w} satisfy Assump-
tions A, C and IB and assume that the wealth distribution w : A × IRH → IR
is a Caratheodory function8. Then:
(i) for every p ∈ P the correspondence (a, e) → D(a, p, e), from A × E to IRH ,
is measurable;
(ii) for a.e. a ∈ A the correspondence (p, e) → D(a, p, e), from P × E to IRH ,
has a closed graph and nonempty, compact values.

Proof. In the following, for a.e. a ∈ A and for every p ∈ P , we let

Pa := {p ∈ P | inf p · X(a) < w(a, p)},
Ap := {a ∈ A | inf p · X(a) < w(a, p)}.

Proof of (i). Let p ∈ P , we prove that

G := {(a, e, d) ∈ A × E × IRH | d ∈ D(a, p, e)} ∈ A ⊗ B(E) ⊗ B(IRH)

and we first notice that G = G1 ∪ G2, where

G1 := {(a, e, d) ∈ (A \ Ap) × E × IRH | d ∈ X(a), p · d ≤ w(a, p)},

G2 := {(a, e, d) ∈ Ap × E × IRH | d ∈ D(a, p, e)}.
We notice that G1 ∈ A⊗B(E)⊗B(IRH), since the mapping (a, d) → p·d−w(a, p)
and the correspondence a → X(a) are measurable and Ap ∈ A.

To show that G2 ∈ A ⊗ B(E) ⊗ B(IRH), we apply the argument used by
Hildenbrand [12]. Since the correspondenceB(., p), fromAp to IRH , has nonempty
values and is measurable, there exists a sequence of measurable mappings {fn},
from Ap to IRH , such that for a.e. a ∈ Ap, {fn(a)} is dense in B(a, p) (see, for
example, [6]). We now define the correspondences ξn, from Ap × E to IRH , by

ξn(a, e) = {x ∈ B(a, p) | not[x ≺a,e fn(a)]}
and we claim that: D(a, p, e) = ∩∞

n=1ξn(a, e), for a.e. a ∈ Ap .
Clearly, for every n, D(a, p, e) ⊂ ξn(a, e). Conversely, let x ∈ ∩∞

n=1ξn(a, e)
and suppose that x /∈ D(a, p, e). Then, the set U = {x′ ∈ B(a, p) | x ≺a,e x′} is
nonempty and is open relative to B(a, p) (by C(iv)). Since the sequence {fn(a)} is
dense in B(a, p), we deduce that for some n0, x ≺a,e fn0(a), but this contradicts
the fact that x ∈ ξn0(a, e). Thus, we have

G2 = {(a, e, d) ∈ Ap × E × IRH | d ∈ D(a, p, e)}
= ∩∞

n=1{(a, e, d) ∈ Ap × E × IRH | d ∈ ξn(a, e)}.
Hence, the set G2 is measurable, since ≺a,e is measurable (by C(v)), the mappings
fn and the correspondence a → B(a, p) are measurable and recalling thatAp ∈ A.

8 That is, for every p ∈ IRH , the function a → w(a, p) is measurable and, for a.e. a ∈ A, the
function p → w(a, p) is continuous. We note that the wealth distribution considered in our model
w(a, p) := p · ω(a) satisfies this property, when ω is assume to be measurable.
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Proof of (ii). We first show that D(a, p, e) �= ∅ for a.e. a ∈ A and every (p, e) ∈
P ×E. For a.e. a ∈ A\Ap,D(a, p, e) = B(a, p) �= ∅ since inf p ·X(a) ≤ w(a, p).
We now consider a ∈ Ap and we simply denote B := B(a, p), which is clearly a
nonempty, compact set (by IB). We suppose, by contraposition, thatD(a, p, e) = ∅,
that is, for every x ∈ B, there exists x′ ∈ B, x ≺a,e x′. Then B = ∪x′∈BVx′ ,
where Vx′ = {x ∈ B | x ≺a,e x′} is open in B (by C(iv)). Since B is compact,
there exists a finite subset {x′

i | i ∈ N} ⊂ B such that B = ∪i∈NVx′
i
. We now

claim that there exists i ∈ N such that not [x′
i ≺a,e x′

j] for every j ∈ N . Indeed,
if such a maximal element does not exist, for every i ∈ N , there exists σ(i) ∈ N
such that x′

i ≺a,e x
′
σ(i). The mappings σ : N → N clearly admits a cycle, that is,

for some i and some integer k one has i = σk(i) (the composition of σ with itself
k times). The transitivity (by C(ii)) of ≺a,e implies that x′

i ≺a,e x
′
σk(i) = x′

i which
contradicts the irreflexivity (by C(ii)) of ≺a,e. We end the proof by considering
such a maximal element x′

i ∈ B, which belongs to some set Vx′
j

(j ∈ N), that is,
x′

i ≺a,e x
′
j for some j ∈ J . But this is in contradiction with the maximality of x′

i.
This ends the proof that D(a, p, e) is nonempty.

We now show that, for a.e. a ∈ A, the correspondence (p, e) → D(a, p, e), from
P ×E to IRH , has a closed graph. Let (pn, en, xn) → (p, e, x) inP ×E× IRH such
that, for all n, xn ∈ D(a, pn, en). From pn ·xn ≤ w(a, pn), passing to the limit and
recalling that the mappingw(a, .) is continuous, one gets p ·x ≤ w(a, p). Recalling
that X(a) is closed, we get that x ∈ B(a, p). Thus, if inf p · X(a) = w(a, p), we
have x ∈ D(a, p, e) = B(a, p). We assume now that inf p · X(a) < w(a, p).
Since pn → p, for n large enough, w(a, pn) > inf pn · X(a). Suppose now that
x �∈ D(a, p, e). This implies that there exists x′ ∈ B(a, p) such that x ≺a,e x′.
From the fact that w(a, p) > inf p ·X(a) and the Continuity Assumption C(iv), we
can find x′′ ∈ X(a) such that x ≺a,e x

′′ and p ·x′′ < w(a, p). Since pn → p, for n
large enough, pn · x′′ < w(a, pn). Since en → e, from the Continuity Assumption
C(iv), for n large enough, xn ≺a,en x′′. Consequently, we can choose n (large
enough) such that w(a, pn) > inf pn ·X(a), x′′ ∈ B(a, pn) and xn ≺a,en x′′, but
this contradicts the fact that xn ∈ D(a, pn, en). ��

5.2 Properties of Noguchi’s reference coalitions

In this section, we end the proof of Corollary 1 (of Sect. 3.3) and it only remains
to show that the reference coalitions, defined by

C(a, p) = {α ∈ A | p · ω(α) ∈ I(ω(a), δ(a), p)}

satisfy Assumption R of Theorem 3.

Proof. R(i) is a consequence of N(ii) sinceCN (a, p) ⊂ C(a, p) and R(ii) is a direct
consequence of N(iv). ��
Proof of R(iii). Let (a, p) ∈ A × IRH

+ , we define

W (a, p) := {ω′ ∈ IRH
+ | p · ω′ ∈ I(ω(a), δ(a), p)}.
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Clearly, one has

W (a, p) \ W (a, p) ⊂ {ω′ ∈ IRH
+ | p · ω′ ∈ I(ω(a), δ(a), p) \ I(ω(a), δ(a), p)}

ω−1(W (a, p) \ W (a, p)) ⊂ ∪
c∈I(ω(a),δ(a),p)\I(ω(a),δ(a),p){α∈A | p·ω(α)=c}

and using Assumption N(ix), one gets

ν[ω−1(W (a, p) \ W (a, p))] = 0.

Since the measure τ := νoω−1 is a finite Borel measure on IRH
+ , from

Noguchi [15] (see Lemma 2), for every sequence {pn} ⊂ IRH
+ converging to p,

one has

τ(W (a, pn)∆W (a, p)) := ν[ω−1(W (a, pn)∆W (a, p))] → 0.

Noticing that CN (a, pn) = ω−1(W (a, pn)) and CN (a, p) = ω−1(W (a, p)),
one gets

ν[CN (a, pn)∆CN (a, p)] = ν[ω−1(W (a, pn))∆ω−1(W (a, p))]
= ν[ω−1(W (a, pn)∆W (a, p))] → 0.

Recalling now that ν[C(a, p)/CN (a, p)] = 0 for every (a, p) ∈ A × IRH
+ , from

above, we get ν[C(a, pn)∆C(a, p)] → 0 when pn → p in IRH
+ . ��

Proof of R(iv). It is a consequence of the following lemma, defining, for a fixed
p ∈ IRH

+ , the mappings f : A → (IRH
+ )2, g : A → IRH

+ and the correspondence
F , from (IRH

+ )2 to IR, by f(a) = (ω(a), δ(a)), g(α) = p · ω(α) and F (ω, δ) =
I(ω, δ, p) and noticing that

C(a, p) = {α ∈ A | g(α) ∈ F (f(a))}
and that, Condition N implies that f, g and F satisfy the assumption of the lemma.
(We only notice that, N(vii) implies that for every t ∈ IRH

+ , the set F−1(t) :=
{(ω, δ) ∈ (IRH

+ )2 | t ∈ I(ω, δ, p)} is open, hence measurable.)

Lemma 6 Let f : A → IRm, g : A → IRn be two measurable mappings and let
F be a correspondence, from IRm to IRn, such that, for every (x, t) ∈ ×IRm × IRn,
F (x) is open and F−1(t) is measurable. Then the set

G := {(a, α) ∈ A × A | g(α) ∈ F (f(a))}
is measurable.

Proof. Note that (a, α) ∈ G if and only if

∀k ∈ IN, B

(
g(α),

1
k

)
∩ F (f(a)) �= ∅

and, using the fact that F (f(a)) is an open set, if and only if

∀k ∈ IN, ∃tk ∈ Qn, ‖tk − g(α)‖ <
1
k

and tk ∈ F (f(a)).
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Consequently

G = ∩k ∪t∈Qn

[
A×

{
α∈A | ‖t−g(α)‖ <

1
k

}
∩{a∈A | t∈F (f(a))}×A

]
,

which is measurable since the set {α ∈ A | ‖t− g(α)‖ < 1
k } is measurable (since

the mapping g is measurable) and the set {a ∈ A | t ∈ F (f(a))} is measurable
(since the set F−1(t) is measurable and the mapping f is measurable). ��

5.3 Balder’s counterexample of nonexistence of equilibria

Theorem 4 may not hold if we remove the Convexity Assumption EC.
We consider the following example, due to Balder [4], of an economy E with

a single commodity, A = [0, 1] endowed with the Lebesgue measure ν and the
Lebesgue σ−algebra (i.e. the completion of the Borel σ−algebra). For each agent
a ∈ [0, 1], the consumption set and the initial endowment are given by X(a) =
[0, 2] and ω(a) = 2; the preference relation ≺a,e is defined by the utility function
ua,e(x) := |x + e|. The simplex of prices for this economy is ∆ = {1}, the
externality space is R and the externality mapping Φ : A × ∆ × LX → IR is
defined by

Φ(a, 1, f) := a − 1 −
∫ a

0
f(α)dν(α).

It is easy to check that this economy satisfies all the assumptions of Theorem 4, but
the convexity assumption EC (i.e., it satisfies Assumptions A, C, E and IB).

From Balder [4], this economy does not admit a free disposal quasi-equilibrium.
For the sake of completeness the argument goes as follows. Assume that E admits
such an equilibrium, denoted (f∗, 1). For a.e. a ∈ A, we have B(a, 1) = [0, 2],
and from the equilibrium consumer condition we deduce that f∗(a) = 0 if∫ a

0 f∗(α)dν(α) > a and f∗(a) = 2 if
∫ a

0 f∗(α)dν(α) < a. We now con-
sider the absolutely continuous function Ψ : A → IR+ defined by Ψ(a) :=
[
∫ a

0 (f∗(α) − 1)dν(α)]2. From above, we deduce that

Ψ ′(a) = 2(f∗(a) − 1)
∫ a

0
(f∗(α) − 1)dν(α) ≤ 0 for a.e. a ∈ A.

Hence, for every a ∈ A Ψ(a) ≤ Ψ(0) = 0, which together with 0 ≤ Ψ(a), implies
that

∫ a

0 (f∗(α)−1)dν(α) = 0. Consequently, f∗ = 1, which contradicts the above
assertion that f∗(a) ∈ {0, 2} for a.e. a ∈ A.

Finally, we show that the Convexity Assumption EC does not hold. Indeed,
assume that EC holds. We first notice that for every a ∈ A, for e = −1 (which is
for example obtained by Φ with f = 1) and for x = 1

2 , the set

{x′ ∈ [0, 2] | not[x′ ≺a,e x]} =
[
0,

1
2

]
∪
[
3
2
, 2
]
,

is not convex. Consequently, by Assumption EC, the externality mapping Φ must
be convex on A (in the sense of Definition 2). So, let {fi}i=1,2 defined by f1 = 0
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and f2 = 2, then the function f = 1 satisfies f(α) ∈ co{f1(α), f2(α)} for a.e.
α ∈ A. Since Φ is convex on A, there exists f∗ ∈ LX such that, for a.e. α ∈ A,
f∗(α) ∈ {f1(α), f2(α)} and Φ(a, 1, f∗) = Φ(a, 1, f). From this last relation one
gets that

∫ a

0 f∗(α)dν(α) =
∫ a

0 f(α)dν(α) for a.e. a ∈ A, which implies that
f∗(α) − f(α) = 0 for a.e. α ∈ A. So, f∗ = f = 1, which contradicts the above
assertion that f∗(α) ∈ {0, 2} for a.e. α ∈ A.
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Summary. We provide conditions under which the heterogenous, deterministic
preferences of consumers in a pure exchange economy can be identified from
the equilibrium manifold of the economy. We extend those conditions to consider
exchange economies, with two commodities, where consumers’ preferences are
random. For the latter, we provide conditions under which consumers’heterogenous
random preferences can be identified from the joint distribution of equilibrium
prices and endowments. The results can be applied to infer consumers’ preferences
when their demands are unobservable.
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1 Introduction

A large body of work in economics has dealt with aggregation of agents’ behavior.
The use of a representative consumer has been common in macroeconomics, due
to its tractability, but, at the same time, it has been recognized that only very strong

� Section 2 of this paper is joint work with Donald J. Brown; it is included here for publication with
his permission. Those results were presented at the 1990 Workshop on Mathematical Economics at
the University of Bonn, the 1992 SITE Workshop on Empirical Implications of General Equilibrium
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much appreciated. I am very grateful to an anonymous referee, Donald Brown, and Daniel McFadden for
their detailed comments and insightful suggestions. The research presented in this paper was supported
by NSF grants SES-8900291, SBR-9410182, SES-0241858, and BCS-0433990. This paper is dedicated
to Marcel K. Richter, who has inspired much of my research.
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assumptions on the preferences of the consumers or on the distribution of incomes
are consistent with such a model (See Gorman (1953), Samuelson (1956), Eisenberg
(1961), Chipman (1974), Chipman and Moore (1979), and Polemarchakis (1983),
for theoretical results. For relevant empirical approaches, see Lewbel (1989), Stoker
(1993), and their references.) When such strong conditions are not satisfied, one
may consider studying conditions that will guarantee only a particular aggregate
behavior of interest. For example, the research initiated by Hildenbrand (1983), and
followed by Chiappori (1985), Grandmont (1987, 1992), Marhuenda (1995), and
Quah (2000), among others, provides conditions on the shape of the distribution
of income or the shape of agents’ characteristics under which aggregate demand is
monotone in prices.Another alternative, is, of course, to study the full disaggregated
model, which specifies an individual demand function for each consumer. This
allows for general types of consumer demands and distributions of incomes, but
requires much more knowledge about the consumers. In particular, most predictions
derived from such a model would require being able to first identify the demand
functions of each of the individuals in the economy.

The identification of underlying behavior from observable behavior has at-
tracted the attention of economic theorists and econometricians for a long time.
The theory of revealed preference, which studies whether an individual’s choices
are generated by the maximization of preferences within a certain type, integra-
bility theory, which provides conditions under which one can identify individual
preferences from individual demand functions, and the econometric problem of
identifying structural equations from reduced form equations, are all examples of
questions of this type that have attracted the attention of many economists. Thanks
to their work, we now have methods that allow us to identify preferences of con-
sumers and production technologies of firms purely from their individual market
behavior, and we have methods to identify aggregate demand functions and ag-
gregate supply functions from only equilibrium observations. This identification is
essential if, for example, one wants to evaluate the change in a consumer’s welfare
due to some new income tax or a new price policy, or if one wants to predict changes
in the production plans of a firm due to some new legislation, or if one wants to
predict a new market equilibrium in some new environment. The fact that these
underlying functions and relationships can be identified making use of restrictions
derived from economic models, such as optimization behavior by the individuals
and the firms, or market equilibrium conditions, provides strong evidence about the
usefulness of economic models.

For some time, the power of optimization and equilibrium restrictions, in the
sense described above, had been contrasted with the weakness of aggregation re-
strictions. The path-breaking work of Sonnenschein (1973,1974), together with
Debreu (1974), Mantel (1974, 1976), McFadden, Mas-Colell, Mantel and Richter
(1974), and later results by Mas-Colell (1977a), Geanakoplos and Polemarchakis
(1980), Andreu (1983) and, more recently, Chiappori and Ekeland (1999) have
been widely interpreted to mean that aggregate observable behavior contains no
strong implications, derived from the individual behavior that generated it. More
specifically, their result is that, if the number of consumers is sufficiently large, any
function satisfying some weak properties can be the aggregate demand function
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of an economy, or, in other words, the restrictions on individual demand that are
generated by the optimization of individual preferences essentially vanish when
these demand functions are aggregated. As Mas-Colell (1977a) showed, these re-
sults imply that any set of prices can be the equilibrium prices for some economy.
This interpretation was challenged by Brown and Matzkin (1996), who showed that
the restrictions of consumer demand that are generated by preference optimization
are effectively translated into the equilibrium manifold of the economy. Brown and
Matzkin (1996) showed that if individual endowments are observed, the aggregate
behavior of the consumers satisfies restrictions that are derived from individual
preference maximization.1 In an unpublished paper, Brown and Matzkin (1990)
showed that given the equilibrium manifold of a pure exchange economy, one can
identify the demand functions of all the consumers in the economy. Later work
by Balasko (1999) and by Chiappori, Ekeland, Kubler, and Polemarchakis (2002)
provided constructive ways of identifying the individual demand functions from
the equilibrium manifold. Unlike Brown and Matzkin (1990), Balasko (1999) used
the condition that one can observe equilibrium prices when the endowments of all
but one individual are zero, and Chiappori, Ekeland, Kubler, and Polemarchakis
(2002) restricted the individual demand functions to be differentiable in income.

These identification results show that, without observing the choices that indi-
viduals make, one can still identify their preferences, as long as their endowments
are observed and the aggregation of their behavior is also observed. In fact, a
stronger statement is true. To identify individual preferences one only needs to ob-
serve the incomes of the individuals and the aggregate behavior, e.g. the aggregate
endowment and equilibrium price. Since in most economic situations it is much
easier to observe the incomes of the consumers than to observe their endowments,
these results are important for empirical work. One could combine these identi-
fication results with prior results about the existence of representative consumers
to derive a model with a small number of community groups. In such a model,
the behavior of each community group could be required to be consistent with the
existence of a representative consumer for the group, but no restrictions would be
imposed across representative consumers. The identification results in Brown and
Matzkin (1990) could then be used to identify the preferences of each of the rep-
resentative consumers using only observations on the aggregate endowment, the
equilibrium prices, and the aggregate income of each community.

When one is interested in using observational data to apply these results, how-
ever, one typically encounters the problem that it is rarely the case that the primitives
of an economy stay fixed across observations. Some unobservable random shock
may affect consumer preferences, generating a distribution of equilibrium prices,
instead of a deterministic set of prices. The relevant question of interest in this con-
text is then whether one can identify the random demand or random preferences of
the individuals from the distribution of equilibrium prices, when the distributions of
the individual demands are not observable. For the case where a distribution of de-
mand is observable, McFadden (1975, 2002), McElroy (1981), Brown and Walker

1 Earlier works that presented restrictions are McFadden, Mas-Colell, Mantel and Richter (1974),
McFadden (1975), Diewert (1977), Mas-Colell and Neuefeind (1977), and Hildenbrand (1983), among
others.
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(1989), Lewbel (1996), and Brown and Calsamiglia (2003) consider restrictions
on the distribution of demand generated from a distribution of preferences, and,
starting from Barten (1968), there is a substantial literature on the identification
of the distribution of preferences from an observable distribution of demand. The
latter literature includes Heckman (1974), Dubin and McFadden (1984), McElroy
(1987), and recent work by Brown and Matzkin (1998) and Beckert (2000)2. For the
case where the distribution of demands are unobservable, Carvajal (2002) considers
restrictions on the distribution of equilibrium prices.

This paper has two objectives. The first objective is to present and develop
the identification results for pure exchange deterministic economies of Brown and
Matzkin (1990). The second objective is to develop identification results for stochas-
tic economies, where the preferences of consumers are random. We present the
results for deterministic economies in the next section. In Section 3, we present
those for stochastic economies.

2 Deterministic economies

In this section, we present identification results for pure exchange economies with
nonrandom preferences. Since in many situations, consumers’ incomes are easier to
observe than consumer’s endowments, we first express our identification results in
terms of incomes. This requires defining the aggregate demand and the equilibrium
correspondence over income tuples and aggregate endowments. Later on, we show
that similar results can be obtained when the aggregate demand and the equilibrium
correspondence are defined over tuples of individual endowments.

We consider an economy with J consumers and K commodities. To each
commodity k, there corresponds a price pk. We let ∆ = {p = (p1, ..., pK) ∈
RK

+ |∑K
k=1 pk = 1} denote the set of normalized prices, Υ ⊂ R+ denote a set of

incomes, and Υ J = ΠJ
j=1Υ denote a set of J − tuples of incomes.We will assume

that to each consumer j, there corresponds a demand function Dj : ∆×Υ → RK
+ ,

which, for the time being, is defined just as a function that assigns to each price
vector p ∈ ∆ and income Ij ∈ Υ, an element of the budget hyperplane B(p, I)
= {x ∈ RK

+ | p · x = I}. We let –D= (D1, ..., DJ) denote the J−tuple of demand
functions, and denote the aggregate demand function generated by –D by a function
D : ∆ × Υ J → RK

+ , defined for each (p, I1, ..., IJ) ∈ ∆ × Υ J by

D (p, I1, ..., IJ ; –D) =
J∑

j=1

Dj (p, Ij)

The vectorω ∈ RK
+ will denote the aggregate endowment.An equilibrium price for

an economy with demand functions –D and aggregate endowment ω is defined to be
2 A large literature exists also for the case where observed individual behavior is generated by the

maximization of a random preference over a finite, discrete choice set. The study of the recoverability
of preferences, in this case, was introduced by McFadden (1974). (See Matzkin 1992, 1993 for later
work on recoverability results under weak conditions.) McFadden and Richter (1991) characterized the
restrictions that random optimization generates in this case. (See McFadden 2002 and the references
mentioned in that paper for other work along this line.)
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any p ∈ ∆ such that for some J−tuple of endowment vectors (ω1, ..., ωJ) ∈ RJK
+

(1)
J∑

j=1

ωj = ω & D (p, p · ω1, ..., p · ωJ ; –D) = ω

The equilibrium correspondence generated by –D, which assigns to each vector of
aggregate endowments and J-tuple of incomes the set of equilibrium prices, will be
denoted by Γ : RK

+ × Υ J � ∆, and defined for all (ω, I1, ..., IJ) ∈ RK
+ × Υ J by

Γ (ω, I1, ..., IJ ; –D)
=
{
p∈∆| for (ω1, ..., ωJ) ∈RJK

+ with p·ωj=Ij(j = 1, ..., J), (1) is satisfied
}

(We allow for the possibility that Γ (ω, I1, ..., IJ ; –D) is empty-valued, for some
(ω, I1, ..., IJ ; –D).)

The analysis of any type of identification result for an underlying function
requires a specification of the set to which this function belongs. The specification
may require properties such as continuity and differentiability, or some other type of
restrictions. For example, any result about the identification of a utility function from
a demand function will need to specify the utility function to belong to a set such
that no two utility functions in that set are strictly increasing transformations of each
other. For our identification result of individual demand functions, we will specify
a set of J − tuples of demand functions –D= (D1, ..., DJ) to be such that, for each
consumer j, if Dj and D′

j are in two J − tuples within this set and for some (p̃, Ĩj)
in their domain, Dj(p̃, Ĩj) �= D′

j(p̃, Ĩj), then the income expansion path generated
fromDj ,when the price is p̃, is not a translation of the income expansion path ofD′

j ,
when the price is p̃.Clearly, we need to impose such a restriction to be able to identify
each individual demand from observable variables that only depend on the sum of
these individual demands. To see this, suppose that the set of allowable J − tuples
of demand functions includes –D= (D1, ..., DJ) and –D′ = (D′

1, ..., D
′
J) where –D′

is exactly the same as –D, except that, at some value of (p, I), and for some vector
a, D′

1(p, I) = D1(p, I) + a and D′
2(p, I) = D′

2(p, I) − a. Then, the aggregate
demand generated from –D will be identical to that generated from –D′, even though
–D�= –D′. We next formally specify this set, and then, in Theorem 1, we show that
this condition is sufficient to identify the individual demand functions from either
the aggregate demand or from the equilibrium correspondence, as defined above.

Definition. ΦI will denote the set of all J−tuples of demand functions,
(D1, ..., DJ), such that for all (D1, ..., DJ), (D′

1, ..., D
′
J) in ΦI , for all j and

all p ∈ ∆, either there exits Ij ∈ Υ such that Dj(p, Ij) = D′
j(p, Ij) or there exist

values Ij , I
′
j ∈ Υ such that

ΦI(i) : Dj (p, Ij) − Dj

(
p, I ′

j

) �= D′
j (p, Ij) − D′

j

(
p, I

′
j

)

To see the restriction that this definition implies on the elements ofΦI , consider,
for example, the subset of individual demand functions of the Gorman type

Θj = {Dj (·, ·; a, b) |Dj(p, Ij ; a, b)
= a(p)+b(p)Ij , for some functions a(·)∈A, b(·)∈B}
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where A and B are set of functions defined on the set of prices. The definition of
ΦI implies that the subset of admissible demand functions Dj within Θj is

Θj = {Dj (·, ·; a∗, b) |Dj(p, Ij ; a∗, b)
= a∗(p) + b(p)Ij , for some function b(·) ∈ B}

where a∗ is an element ofA. In contrast to the standard results on aggregation of de-
mand, the restriction is not imposed across the demands of the different consumers;
instead, it is imposed across the set of demands permissible for any particular con-
sumer.

In Theorem 1, we show that different demand tuples in ΦI generate different
aggregate demand functions and different equilibrium correspondences. In other
words, this theorem shows that given an aggregate demand or an equilibrium cor-
respondence, there is a unique J−tuple of demand functions in ΦI that could have
generated it.

Theorem 1. If –D,–D′ ∈ ΦI and –D �=–D′,

(1.i) there exists (p, I1, ..., IJ) ∈ ∆ × IJ such that

D (p, I1, ..., IJ ; –D) �= D (p, I1, ..., IJ ; –D′) , and

(1.ii) there exists (ω, I1, ..., IJ) ∈ RK
+ × IJ such that

Γ (ω, I1, ..., IJ ; –D) �= Γ (ω, I1, ..., IJ ; –D′)

Proof. Let –D= (D1, ..., DJ) and –D′ = (D′
1, ..., D

′
J). Since –D�=–D′, there exists

j ∈ {1, ..., J}, p̃ ∈ ∆, and Ij ∈ Υ such that Dj(p̃, Ij) �= D′
j(p̃, Ij). Suppose,

without loss of generality, that j = 1. Then,

(1.1) D1 (p̃, I1) �= D′
1 (p̃, I1)

Since (D1, ..., DJ), (D′
1, ..., D

′
J) ∈ ΦI , either for some Ĩ2 ∈ Υ

(1.2) D2

(
p̃, Ĩ2

)
= D′

2

(
p̃, Ĩ2

)

or there exist I2, I ′
2 such that

(1.3) D2 (p̃, I2) − D2 (p̃, I ′
2) �= D′

2 (p̃, I2) − D′
2 (p̃, I ′

2)

If (1.2) holds, then

D1 (p̃, I1) + D2

(
p̃, Ĩ2

)
�= D′

1 (p̃, I1) + D′
2

(
p̃, Ĩ2

)

If (1.3) holds, then either

(1.4) D2 (p̃, I2) − D′
2 (p̃, I2) �= D1 (p̃, I1) − D′

1 (p̃, I1)

or

(1.5) D2 (p̃, I ′
2) − D′

2 (p̃, I ′
2) �= D1 (p̃, I1) − D′

1 (p̃, I1)
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Suppose w.l.o.g. that (1.4) holds, then

(1.6) D1 (p̃, I1) + D2 (p̃, I2) �= D′
1 (p̃, I1) + D′

2 (p̃, I2)

Hence, by (1.3) and (1.6), we have established the existence of I2 ∈ Υ such that

D1 (p̃, I1) + D2 (p̃, I2) �= D′
1 (p̃, I1) + D′

2 (p̃, I2)

Using the same argument, we can establish that there exist I3 such that

D1 (p̃, I1) + D2 (p̃, I2) + D3 (p̃, I3) �= D′
1 (p̃, I1) + D′

2 (p̃, I2) + D′
3 (p̃, I3)

Continuing in this fashion, we can determine the existence of I2, I3,..., IJ and
I ′
2, I

′
3,..., I

′
J such that

(1.7) D1 (p̃, I1) +
J∑

j=2

Dj (p̃, Ij) �= D′
1 (p̃, I1) +

J∑
j=2

D′
j (p̃, Ij)

Hence,

D (p̃, I1, ..., IJ ; –D) �= D (p̃, I1, ..., IJ ; –D′) .

This proves (1.i).
To prove (1.ii), let ωj = Dj(p, Ij) (j = 1, ..., J) and ω− =

∑J
j=1 Dj(p, Ij). Then, ω =

∑J
j=1 ωj . By (1.7),

J∑
j=1

Dj (p, p · ωj) = ω− �=
J∑

j=1

D′
j (p, p · ωj)

This implies that p ∈ Γ (ω, I1, ..., IJ ; –D) and p /∈ Γ (ω, I1, ..., IJ ; –D′). Hence

Γ (ω, I1, ..., IJ ; –D) �= Γ (ω, I1, ..., IJ ; –D′)

This completes the proof.

The above theorem does not require any particular assumptions on the pref-
erences of the consumers. In fact, the individual demand functions are not even
required to be generated by the maximization of some preferences. All that is re-
quired is that to each budget set, each individual demand assigns only one element,
and that element is on the budget hyperplane. In particular, and in contrast to the
result in Chiappori, Ekeland, Kubler, and Polemarchakis (2002), demand functions
do not need to be differentiable.

To compare our result with that in Balasko (1999), we note that, in the above
theorem, the set Υ of incomes over which the demand functions are defined is not
required to include the value 0. In contrast, Balasko’s argument is based on the
fact that, when only one consumer has positive income, the equilibrium manifold
is the inverse demand function of that consumer. Hence, being able to observe the
equilibrium manifold when consumers are given 0 income is critical for his argu-
ment. Balasko’s argument does not require restricting the set of possible demand
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functions like we did above when we defined the setΦI . But, if we allow 0 to belong
to Υ, then the restriction (ΦI(i)) is trivially satisfied, and ΦI becomes the set of all
demand functions. To see this, note that when I ′

j = 0, condition (ΦI(i)) is satisfied
by any demand functions that are different. Hence, Theorem 1 implies that when
0 ∈ Υ, the individual demands can be identified from either the aggregate demand
or from the equilibrium correspondence, without imposing any other restrictions.

It is easy to obtain a result analogous to that of Theorem 1, when the individual
demands, the aggregate demand, and the equilibrium correspondence are defined
over the set of individual endowments, instead of over incomes. Let W ⊂ RK

+ de-
note a set of individual endowments and denote ΠJ

j=1W byW J .Abusing notation,
we will now define for each consumer j, the demand function Dj : ∆×W → RK

+ ,
as a function which assigns to each price vector p ∈ ∆ and endowment vector
ωj ∈ W, an element of the budget hyperplane B(p, ωj)={x ∈ RK

+ | p·x = p·ωj}.
We let –D = (D1, ..., DJ) denote the J−tuple of demand functions, and define the
aggregate demand function generated by –D by

D (p, ω1, ..., ωJ ; –D) =
J∑

j=1

Dj (p, ωj)

We say that p is an equilibrium price if

D (p, ω1, ..., ωJ ; –D) =
J∑

j=1

ωj

and we define the (possibly empty-valued) equilibrium correspondenceΓ : W J �
∆ for all (ω1, ..., ωJ) ∈ W J by

Γ (ω1, ..., ωJ ; –D) =

⎧
⎨
⎩p ∈ ∆|D (p, ω1, ..., ωJ ; –D) =

J∑
j=1

ωj

⎫
⎬
⎭

Definition. Φω will denote the set of all J−tuples of demand functions,
(D1, ..., DJ), such that for all (D1, ..., DJ), (D′

1, ..., D
′
J) in Φω, for all j and

p̃ ∈ ∆, either there exists ωj ∈ W such that Dj(p̃, ωj) = D′
j(p̃, ωj) or there exist

vectors ωj , ω
′
j ∈ W, such that

Φω(i) : Dj (p̃, ωj) − Dj

(
p̃, ω′

j

) �= D′
j (p̃, ωj) − D′

j

(
p̃, ω

′
j

)

(Note that if 0 ∈ W, then Φω is the set all demand functions, since then for all Dj ,
D′

j , Dj(p̃, 0) = D′
j(p̃, 0).) .

Then, using the arguments in the proof of Theorem 1 and the fact that if we let
ω′

j = Dj(p, ωj), then Dj(p, ωj) = Dj(p, ω′
j) and D′

j(p, ω
′
j) = D′

j(p, ωj), for any
p, ωj , Dj , and D′

j , we have

Theorem 2. If –D,–D′ ∈ Φω and –D �=–D′,
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(2.i) there exists (p, ω1, ..., ωJ) ∈ ∆ × W J such that

D (p, ω1, ..., ωJ ; –D) �= D (p, ω1, ..., ωJ ; –D′) , and

(2.ii) there exists (ω1, ..., ωJ) ∈ RK
+ × W J such that

Γ (ω1, ..., ωJ ; –D) �= Γ (ω1, ..., ωJ ; –D′)

Theorems 1 and 2 show that consumers demands can be identified from ag-
gregate behavior. From the individual demands we can identify the preferences of
each of the individuals, imposing additional restrictions. We establish this in the
following theorem. Assume that W = RK

+ . Let Φ� denote the set of all J − tuples
� = (�1, ...,�J) of preference relations on RK

+ × RK
+ that generate a J−tuple

in Φω and are such that (i) for each j, �j can be represented by a monotone, con-
tinuous, concave, and strictly quasiconcave utility function, and (ii) the set of all
bundles in the range of the demand function generated by �j is RK

+ . For each
� ∈ Φ�, let D(p, ω1, ..., ωJ ;�) and Γ (ω1, ..., ωJ ;�) denote, respectively, the ag-
gregate demand and the value of the equilibrium correspondence generated by �.
Then

Theorem 3. If �,�′ ∈ Φ� and � �= �′,

(3.i) there exists (p, ω1, ..., ωJ) ∈ ∆ × W J such that

D
(
p, ω1, ..., ωJ ;�

) �= D
(
p, ω1, ..., ωJ ;�′) , and

(3.ii) there exists (ω1, ..., ωJ) ∈ RK
+ × W J such that

Γ
(
ω1, ..., ωJ ;�

) �= Γ
(
ω1, ..., ωJ ;�′)

Proof. Let �,�′ ∈ Φ� be such that � �= �′, and for each j, let Dj and D′
j

denote the demand functions generated, respectively, by �j and �′
j . Since

� �= �′, for at least one j ∈ {1, ..., J}, �j �=�′
j . Since concavifiable prefer-

ences are lipschitizian (see Corollary in Mas-Colell (1977b, pp. 1412)) and since
�j and �′

j can be represented by monotone, continuous, concave, and strictly
quasiconcave utility functions, it follows from Theorem 2 in Mas-Colell (1977b,
pp. 1413) thatDj �=D′

j .Hence, (D1, ..., DJ) �= (D′
1, ..., D

′
J), and, by assumption,

(D1, ..., DJ), (D′
1, ..., D

′
J) ∈ Φω. The statements in (3.i) and (3.ii) then follow by

Theorem 2.

A similar result can be obtained, using Theorem 1, when the aggregate de-
mand and the equilibrium correspondence are defined over a vector of aggregate
endowments and a J−tuple of incomes.

To illustrate the results in this section, we next consider the equilibrium function
of an economy with two commodities, 1 and 2, and two individuals, A and B,
which possess Cobb-Douglas utility functions. We show that, when it is known a-
priori that the utility functions are Cobb-Douglas, but the values of the parameters
of the Cobb-Douglas utilities are unknown, one can identify the values of those
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parameters when the equilibrium price is observed at only two points of its domain.
More specifically, suppose that it is known that the utility function of individual A
is UA(x1, x2) = xα

1 x1−α
2 , for some unknown value of α, and the utility function

of individual B is UB(x1, x2) = xβ
1 x1−β

2 , for some unknown value of β. Suppose

that the equilibrium price is observed at two points, (IA, IB , ω) and (I
A
, I

B
, ω),

such that

det

[
IA IB

I
A
I

B

]
�= 0

where IA and I
A

denote values for the income of individual A, IB and I
B

denote
values for the income of individual B, and ω and ω denote values for the vector of
aggregate endowment. Normalize the price of the second commodity to 1. Let p1
denote the equilibirum price at (IA, IB , ω) and let p1 denote the equilibrium price

at (I
A
, I

B
, ω). Using the properties of Cobb-Douglass utility functions, it is easy

to verify that p1, (IA, IB , ω) and p1, (I
A
, I

B
, ω) satisfy

p1 · ω1 = α · IA + β · IB

and

p1 · ω1 = α · IA
+ β · IB

It is then clear that there is a unique solution for α and β.

3 Random economies

In many cases, and in particular when one is dealing with real data, there are random
elements that affect the preferences of the consumers and which therefore generate
a distribution of prices, for a same vector of endowments. In this section, we show
how the results in the previous section can be extended to guarantee identification
of preferences from the equilibrium prices when these preferences are random.
We consider economies with 2 commodities, where we normalize the price of
the second commodity to equal 1. We will restrict the set of individual demand
functions that we consider to be such that the demand for the first commodity is
strictly decreasing in its price, p. Under these conditions, for every realization of
the random elements, an equilibrium price, if it exists, is unique. Hence, we will be
dealing with an equilibrium function instead of an equilibrium correspondence, as
in Section 2. We concentrate on the case where the individual demand functions,
the aggregate demand function, and the equilibrium correspondence are all defined
on a set of J−tuples of individual endowments. To incorporate randomness into the
model, we will assume that the preferences of the consumers in an economy depend
on unobservable variables. We will show that, in this case, one can still identify the
demand functions of each of the individual consumers, when their choices are not
observed. This will require either specifying the distribution of the unobservable
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variables, or restricting the way in which the demand functions depend on these
unobservable variables.

We consider first the case where the random shock is univariate and affects, in
not necessarily the same way, the demand of all the consumers in the economy.
Let E ⊂ R denote the support of an unobservable random variable, ε. We define
a random demand function D̃ : R+ × W × E → RK

+ to be any function that
assigns, to each price p ∈ R+, endowment vector ωj ∈ W, and realization of
ε, an element in the budget hyperplane B(p, I) = {x ∈ RK

+ | p · x = I}. We

let –̃D = (D̃1, ..., D̃J) denote the J−tuple of random demand functions, and we
denote the aggregate random demand function generated by –D by the function D̃ :
R+ × W J × E → RK

+ , defined for each (p, ω1, ..., ωJ , ε) ∈ R+ × W J × E by

D̃
(
p, ω1, ..., ωJ,ε; –̃D

)
=

J∑
j=1

D̃j (p, ωj , ε)

An equilibrium price for an economy with demand functions –̃D, J-tuple of endow-
ment vectors (ω1, ..., ωJ), and realization of the unobservable random variable ε,
is defined to be any p ∈ R+ such that

D̃
(
p, ω1, ..., ωJ,ε; –̃D

)
=

J∑
j=1

ωj

The (possibly empty-valued) random equilibrium correspondence generated by –̃D,
which to each (p, ω1, ..., ωJ,ε) assigns the set of equilibrium prices will be denoted
by Γ̃ : W J × E � R+. This correspondence, together with any specified distri-
bution Fε,(ω1,...,ωJ ) of the unobservable random shock and the J−tuple of endow-
ment vectors, generates a distribution Fp,(ω1,...,ωJ ) of the equilibrium price and the
J−tuple of endowment vectors. We want to determine whether, from Fp,(ω1,...,ωJ ),
we can identify the J−tuple of individual random demand functions that generated
Fp,(ω1,...,ωJ ). Clearly, this is a more demanding result than the one in Section 2,
where ε and therefore p had degenerate distributions, conditional on (ω1, ..., ωJ).
In this new case, ε is unobservable, and the individual demand functions depend on
it. We will assume, throughout, that ε is distributed independently of (ω1, .., ωJ)
and that the support of the distribution of (ω1, .., ωJ) isW J . Since even for the case
where individual choices are observed and monotonicity properties are imposed,
one can not jointly identify the distribution of ε and the demand function without
any further restrictions (Matzkin (2003)), we will need to make some additional
assumptions to achieve our results. For any J-tuple of random demand functions
–̃D, let Fp|(ω1,...,ωJ )(·; –̃D, Fε) denote the conditional distribution of the equilibrium

price p generated by –̃D and Fε. We will impose restrictions that will either specify
the distribution for ε, or will specify a restriction in the way that the demand func-
tions depend on the unobservable shock. Our first identification result will assume
that ε is distributed independently of (ω1, ..., ωJ), with a specified distribution Fε

that possesses a continuous density fε.
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Definition. Φω,ε will denote the set of J−tuples of continuous random demand
functions, –̃D = (D̃1, ..., D̃J), such that

Φω,ε(i) : For each j, the first coordinate of D̃j is continuous in (p, ωj , ε), strictly
decreasing in p, and strictly increasing in ε, and

Φω,ε(ii) : For all –̃D, –̃D
′ ∈ Φω,ε, for all j, for all (p, ε), either for some ωj ∈ W,

D̃j(p, ωj , ε) =D̃′
j(p, ωj , ε)

or there exist ωj , ω
′
j ∈ W such that

D̃j(p, ωj , ε)−D̃j(p, ω
′
j , ε) �=D̃′

j(p, ωj , ε)−D̃′
j(p, ω

′
j , ε)

Condition (Φω,ε(i)) is made to guarantee the uniqueness of the equilibrium
price, for any given J−tuple of endowments and value of ε, and the monotonicity
in ε of the equilibrium price, for any given J − tuple of endowments. Condition
(Φω,ε(ii)) is a condition similar to (Φω(i)). It is used to eliminate from the set
of possible J − tuples those that possess demand functions that generate income
expansion paths that are translations of each other. Note that when 0 ∈ W, Φω,ε

consists of the set of all J − tuples of random demand functions satisfying only
(Φω,ε(i)), since (Φω,ε(ii)) will always be satisfied by lettingω′

j = 0. The following
theorem shows that, under these conditions, we can identify the random demand
functions of each of the consumers in an economy from the distribution of the
equilibrium prices, conditional on the vector of individual endowments.

Theorem 4. Suppose that ε is distributed independently of (ω1, ..., ωJ) with a
specified distribution Fε, which possesses a continuous density, fε, and whose
support is the bounded set E. Suppose that the distribution of (ω1, ..., ωJ) has

support W J . Then, if –̃D, –̃D
′ ∈ Φω,ε and –̃D �= –̃D

′

Fp,(ω1,...,ωJ )(·; –̃D, Fε) �= Fp,(ω1,...,ωJ )(·; –̃D
′
, Fε)

Proof Suppose that –̃D, –̃D
′ ∈ Φω,ε and –̃D �= –̃D

′
. Then, for some j and some

(p̃, ωj , ε̃) ∈ R+ × W × E, D̃j(p̃, ωj , ε̃) �= D̃′
j(p̃, ωj , ε̃). By the continuity of the

demand functions in ε, we can assume that fε(ε̃) > 0. Suppose, without loss of
generality that j = 1. Then,

D̃1(p̃, ω1, ε̃) �= D̃′
1(p̃, ω1, ε̃)

By the definition of Φω,ε, either for some ω2, D̃2(p̃, ω2, ε̃) = D̃′
2(p̃, ω2, ε̃), or for

some ω2, ω
′
2, D̃2(p̃, ω2, ε̃) − D̃2(p̃, ω′

2, ε̃) �= D̃′
2(p̃, ω2, ε̃) − D̃′

2(p̃, ω
′
2, ε̃). In either

case, we can establish the existence of a ω2 such that

D̃1(p̃, ω1, ε̃) + D̃2(p̃, ω2, ε̃) �= D̃′
1(p̃, ω1, ε̃) + D̃′

2(p̃, ω2, ε̃)

Continuing in this fashion, we can find ω1, ω2, ..., ωJ such that

J∑
j=1

D̃j(p̃, ωj , ε̃) �=
J∑

j=1

D̃′
j(p̃, ωj , ε̃)
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Suppose, without loss of generality, that

J∑
j=1

D̃
(1)
j (p̃, ωj , ε̃) <

J∑
j=1

D̃
′(1)
j (p̃, ωj , ε̃)

where D̃(1)
j and D̃

′(1)
j denote the first coordinates of, respectively, D̃j and D̃′

j . For

each j, let ω̃j = D̃j(p̃, ωj , ε̃). Then, since p̃ · ω̃j = p̃ · D̃j(p̃, ωj , ε̃) = p̃ · ωj ,

D̃j(p̃, ω̃j , ε̃) = ω̃j = D̃j(p̃, ωj , ε̃) and D̃′
j(p̃, ω̃j , ε̃) = D̃′

j(p̃, ωj , ε̃)

Hence, when the endowment vector is (ω̃1, ..., ω̃J) and the value of the random
shock is ε̃, p̃ is an equilibrium price when the J−tuple of demand functions is –̃D

and p̃ is not an equilibrium price when the J−tuple of demand functions is –̃D
′
.

Since for any –̃D, –̃D
′ ∈ Φω,ε, the first coordinate of the random aggregate demand

function generated from any J − tuple of demand functions in Φx,ε is strictly
decreasing in the price of the first commodity, the equilibrium price, if it exists, is
unique, given any J-tuple of endowment vectors and any value of the unobservable
random term. By the continuity of the D̃

′(1)
j functions in ε, the continuity of fε,

and the fact that fε(ε̃) > 0, it follows that there exists a neighborhood of ε̃ in E
such that for all values ε′ in that neighborhood, fε(ε′) > 0 and

J∑
j=1

ω̃
(1)
j <

J∑
j=1

D̃
′(1)
j (p̃, ω̃j , ε

′)

For any –̃D ∈ Φω,ε and any p ∈ R+ and ω = (ω1, ..., ωJ) define

e(p, ω; –̃D)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
{
ε∈E|∑J

j=1 D̃
(1)
j (p, ωj , ε)≤

∑J
j=1 ωj

}

if
{
ε∈E|∑J

j=1 D̃
(1)
j (p, ωj , ε)≤

∑J
j=1 ωj

}
�=∅

inf(E) otherwise

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Then, e(p, ω; –̃D) denotes the value of ε for which p is an equilibrium price
when the vector of endowments is ω, if such a value exists; it equals inf(E)
if for all values of ε in E,

∑J
j=1 ωj <

∑J
j=1 D̃

(1)
j (p̃, ωj , ε); and it equals

sup{ε ∈ E | ∑J
j=1 D̃

(1)
j (p, ωj , ε) <

∑J
j=1 ωj} otherwise.

Since fε(ε̃) > 0, the first coordinate of the aggregate demand generated by –̃D
′

is strictly increasing in the value of the unobservable variable, and, from above,∑J
j=1 ω̃

(1)
j <

∑J
j=1 D̃

′(1)
j (p̃, ω̃j , ε

′) for all ε′ in a neighborhood of ε̃, it follows that

e(p̃, ω̃; –̃D
′
) < ε′ < ε̃ for all ε′ in a neighborhood that possesses positive probability.

By the definition of e(p, ω; –̃D) and the fact that p̃ is the equilibrium price when the
endowment vector is ω̃ , the value of ε is ε̃, and the vector of demand functions is
–̃D, it follows that e(p̃, ω̃; –̃D) = ε̃. Hence,

ε̃ = e(p̃, ω̃; –̃D) > e(p̃, ω̃; –̃D
′
)
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and

Pr
(
ε ≤ e(p̃, ω̃; –̃D)

)
> Pr

(
ε ≤ e(p̃, ω̃; –̃D

′
)
)

Note that

Fp|(ω̃1,...,ω̃J )(p̃; –̃D, Fε) = Pr
(
p ≤ p̃|ω = (ω̃1, ..., ω̃J); –̃D, Fε

)

= Pr
(
ε ≤ e(p̃, ω̃; –̃D) | ω = (ω̃1, ..., ω̃J); –̃D, Fε

)

= Pr
(
ε ≤ ε̃; –̃D, Fε

)

= Fε (ε̃)

and

Fp|(ω̃1,...,ω̃J )(p̃; –̃D
′
, Fε) = Pr

(
p ≤ p̃|(ω̃1, ..., ω̃J); –̃D

′
, Fε

)

= Pr
(
ε ≤ e(p̃, ω̃; –̃D

′
) | (ω̃1, ..., ω̃J); –̃D

′
, Fε

)

= Pr
(
ε ≤ e(p̃, ω̃; –̃D

′
); –̃D, Fε

)

= Fε

(
e(p̃, ω̃; –̃D

′
)
)

where Fp|(ω̃1,...,ω̃J )(p̃; –̃D, Fε) and Fp|(ω̃1,...,ω̃J )(p̃; –̃D
′
, Fε) are the conditional dis-

tributions of the equilibrium price, given ω = (ω̃1, ..., ω̃J), when the J−tuple of

demand functions are, respectively, –̃D and –̃D
′
. Hence, it follows that

Fp|(ω̃1,...,ω̃J )(p̃; –̃D, Fε) �= Fp|(ω̃1,...,ω̃J )(p̃; –̃D
′
, Fε)

This completes the proof.

Theorem 4 showed that when the distribution of ε is specified, we can identify
the individual random demand functions from the distribution of the equilibrium
price, conditional on the J-tuple of endowment vectors. The next theorem relaxes
this assumption. Instead, a restriction on the demand functions is imposed. To
describe this restriction, we will denote for each j, ωj = (ω1,j , ω2,j), and we will
define the set W̃ by

W̃ = {(ω1,j , t)|for some ε ∈ E and ω2,j , (ω1,j , ω2,j) ∈ W and t = ω2,j − ε } .

Definition. Φ′
ω,ε will denote the set of J−tuples –̃D = (D̃1, ..., D̃J) of continuous

random demand functions, D̃j : R+ × W̃ → RK
+ such that

Φ′
ω,ε(i) : For each j, the first coordinate of D̃j is strictly decreasing in p and

strictly increasing in ω2,j − ε,

Φ′
ω,ε(ii) :For all –̃D , –̃D

′ ∈ Φω,ε, all j, and all (p, ε), either for some ωj ∈ W,

Dj(p, ω1,j , ω2,j − ε) = D̃′
j(p, ω1,j , ω2,j − ε),
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or there exist ωj , ω
′
j ∈ W such that

D̃j(p, ω1,j , ω2,j − ε) − D̃j(p, ω′
1,j , ω

′
2,j − ε)

�= D̃′
j(p, ω1,j , ω2,j − ε)−D̃′

j(p, ω
′
1,j , ω

′
2,j − ε)

Φ′
ω,ε(iii) : For some p ∈ R+, there exist, for all j, (ω1,j , tj) ∈ W̃ such that for all

–̃D, –̃D
′ ∈ Φω,ε,

D̃j(p, ω1j , tj) = D̃′
j(p, ω1j , tj)

Condition (Φ′
ω,ε(i)) is analogous to condition (Φω,ε(i)). It is made to guarantee

the uniqueness of the equilibrium price, for any given J−tuple of endowments
and value of ε, and the monotonicity in ε of the equilibrium price, for any given
J − tuple of endowments. Note that the monotonicity of the equilibrium price
in ε is decreasing. Condition (Φ′

ω,ε(ii)) involves two types of restrictions. The
first is analogous to condition (Φω,ε(ii)) in that it eliminates from the set Φ′

ω,ε

any J − tuples with demand functions that generate income expansion paths that
are translations of each other. The second restriction imposes a particular type
of weak separability in the demand function. If, for example, the preferences of
each consumer j are represented by a utility function of the form Uj(x1, x2 − ε),
then, it is easy to verify that when the price of x2 is normalized to 1, the demand
function generated from this utility function will satisfy the special type of weak
separability required in condition (Φ′

ω,ε(ii)). Condition (Φ′
ω,ε(iii)) fixes the values

of the demand functions of each consumer at one point. If, for each j, we could
observe the distribution of choices made by j, given p and ωj , then condition
(Φ′

ω,ε(iii)) together with the special type of weak separability condition imposed
in (Φω,ε(ii)) and the monotonicity with respect to ω2,j − ε imposed in condition
(Φ′

ω,ε(i)) would be enough to identify the distribution of ε and the demand function

D̃j (see Matzkin (2003)). Since, in our case, the distribution of consumer j′s choices
is not observed, we need to require the additional conditions on the set Φ′

ω,ε. The
following theorem establishes that, from the joint distribution of equilibrium prices
and J − tuples of endowment vectors, we can identify the distribution of ε and the
random demand functions of each of the consumers in the economy.

Theorem 5. Suppose that ε is distributed independently of (ω1, ..., ωJ) with an
unknown distribution function, Fε, which possesses a continuous density, fε, and
whose support is the bounded set E.Suppose that the the distribution of (ω1, ..., ωJ)
has support W J . Then, if –̃D, –̃D

′ ∈ Φ′
ω,ε and either –̃D �= –̃D

′
or Fε �= F ′

ε (or both)

Fp,(ω1,...,ωJ )(·; –̃D, Fε) �= Fp,(ω1,...,ωJ )(·; –̃D
′
, F ′

ε)

Proof. Suppose first that Fε �= F ′
ε. Then, for some ε̃ ∈ E, Fε(ε̃) �= F ′

ε(ε̃). By
Φ′

ω,ε(iii),

J∑
j=1

D̃j(p, ω1,j , tj) =
J∑

j=1

D̃′
j(p, ω1,j , tj)
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Hence, p is an equilibrium price generated from both, –̃D, –̃D
′
, given ε̃ and the

endowment vector (ω1, ..., ωJ) = ((ω1,1, ω2,1), ..., (ω1,J , ω2,J)) = ((ω1,1, t1 +
ε̃), ..., (ω1,J , tJ + ε̃)). By Φ′

ω,ε(i) the equilibrium price is unique and decreasing in
the value of ε. Hence,

Fp|((ω1,1,t1+ε̃),...,(ω1,J ,tJ+ε̃))
(
p; –̃D, Fε

)

= Pr
(
p ≤ p|ω =

((
ω1,1, t1 + ε̃

)
, ...,

(
ω1,J , tJ + ε̃

))
; –̃D, Fε

)

= Pr
(
ε ≥ ε̃; –̃D, Fε

)

= 1 − Fε (ε̃)

and

Fp|((ω1,1,t1+ε̃),...,(ω1,J ,tJ+ε̃))
(
p; –̃D

′
, F ′

ε

)

= Pr
(
p ≤ p|ω =

((
ω1,1, t1 + ε̃

)
, ...,

(
ω1,J , tJ + ε̃

))
; –̃D

′
, F ′

ε

)

= Pr
(
ε ≥ ε̃; –̃D

′
, F ′

ε

)

= 1 − F ′
ε (ε̃)

Since Fε(ε̃) �= F ′
ε(ε̃),

Fp|((ω1,1,t1+ε̃),...,(ω1,J ,tJ+ε̃))
(
p; –̃D, Fε

)

�= Fp|((ω1,1,t1+ε̃),...,(ω1,J ,tJ+ε̃))
(
p; –̃D

′
, F ′

ε

)

Suppose, next, that Fε = F ′
ε. Then, –̃D �= –̃D

′
, where –̃D, –̃D

′ ∈ Φω,ε. Hence, for
some j and some (p̃, ω1,j , ω2,j − ε̃), D̃j(p̃, ω1,j , ω2,j − ε̃) �= D̃′

j(p̃, ω1,j , ω2,j − ε̃).
Then, using (Φ′

ω,ε(ii)) and following arguments very similar to those used in the
proof of Theorem 4, we can show that

Fp|(ω̃1,...,ω̃J )(p̃; –̃D, Fε) �= Fp|(ω̃1,...,ω̃J )(p̃; –̃D
′
, Fε)

Hence, different distributions of ε generate different conditional distributions of
equilibrium prices given endowment vectors. This completes the proof.

Theorems 4 and 5 establish that in 2-commodity economies where the individual
demands of the consumers are monotone in an unobservable random term, one
can identify these individual demands, and, under some additional restrictions,
also the distribution of the random term, solely from the conditional distribution
of the equilibrium price, given the J − tuples of individual endowments. These
results assumed that a common unobservable variable was an argument in each
of the individual demand functions. In many situations, however, it may be more
reasonable to assume that to each individual consumer there corresponds a different
unobservable random term. We next show that, restricting the demand functions
further, we can still identify the individual demand functions also in this situation.
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Definition. Φω,ε1,...,εJ
will denote the set of J − tuples, –̃D = (D̃1, ..., D̃J), of

continuous random demand functions D̃j : R+ × W × E → RK
+ such that

Φω,ε1,...,εJ
(i) : For all all p ∈ R+ and all j, there exists ωj ∈ W and αj such that

for all –̃D, –̃D
′ ∈ Φω,ε1,...,εJ

, and all εj ∈ E,

D̃j(p, ωj , εj) = D̃′
j(p, ωj , εj) = αj

Φω,ε1,...,εJ
(ii) : For each j, the first coordinate of D̃j is strictly decreasing in p

and, except at vectors (p, ωj , εj) such that p ·ωj = p ·ωj , where ωj is as specified
in Φω,ε1,...,εJ

(i), the first coordinate of D̃j is strictly increasing in εj .

The effect of condition (Φω,ε1,...,εJ
(i)) is to eliminate the randomness of εj at

some points. Note that when 0 ∈ W, condition (Φω,ε1,...,εJ
(i)) is always satisfied

by letting ωj = 0. Condition (Φω,ε1,...,εJ
(ii)) plays a role similar to that played by

condition (Φω,ε(i)) in Theorem 4. For each j, let ε−j denote the J −1 dimensional
vector (ε1, .., εj−1, εj+1, ..., εJ). Assuming that the ε′

js are independent across j
and, for each j,Fεj

is a specified distribution, we can show that the demand functions
of each of the individual consumers can be identified from the distribution of prices.

Theorem 6. Suppose that for each j, εj is distributed independently of (ω1, ..., ωJ)
and of ε−j with a specified distribution,Fεj

,which possesses a continuous density,
fεj

, and whose support is the bounded set E. Suppose that the distribution of

(ω1, ..., ωJ) has support W J . Then, if –̃D, –̃D
′ ∈ Φω,ε1,...,εJ

and –̃D �= –̃D
′

Fp,(ω1,...,ωJ )(·; –̃D, Fε) �= Fp,(ω1,...,ωJ )(·; –̃D
′
, Fε)

Proof. Suppose that –̃D, –̃D
′ ∈ Φω,ε1,...,εJ

and –̃D �= –̃D
′
. Then, for some j and some

(p̃, ωj , ε̃j) ∈ R+ × W × E, D̃j(p̃, ωj , ε̃j) �= D̃′
j(p̃, ωj , ε̃j). By the continuity of

D̃j and D̃′
j , we can assume that fεj

(ε̃j) > 0. Suppose, w.l.o.g. that j = 1 and

D̃
(1)
j (p̃, ωj , ε̃j) < D̃

′(1)
j (p̃, ωj , ε̃j), where, as in the proofs of previous theorems,

D̃
(1)
j and D̃

′(1)
j denote the first coordinate of D̃j and D̃′

j , respectively. Then,

D̃
(1)
1 (p̃, ω1, ε̃1) < D̃

′(1)
1 (p̃, ω1, ε̃1)

By the definition of Φω,ε1,...,εJ
, there exists ω2, ..., ωJ and α2, ..., αJ such that for

all k = 2, ..., J and all εk ∈ E, D̃k(p̃, ωk, εk) = D̃′
k(p̃, ωk, εk) = αk. Hence, for
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all ε̃2, ..., ε̃J

D̃
(1)
1 (p̃, ω1, ε̃1) +

J∑
k=2

D̃
(1)
k (p̃, ωk, ε̃k)

= D̃
(1)
1 (p̃, ω1, ε̃1) +

J∑
k=1

α
(1)
k

< D̃
′(1)
1 (p̃, ω1, ε̃1) +

J∑
k=1

α
(1)
k

= D̃
′(1)
1 (p̃, ω1, ε̃1) +

J∑
k=2

D̃
′(1)
k (p̃, ωk, ε̃k)

Let ω̃1 = D̃1(p̃, ω1, ε̃1) and for each k = 2, ..., J, let ω̃k = αk. Then, since p̃ · ω̃k

= p̃ · D̃k(p̃, ωk, ε̃k) = p̃ · ωk,

D̃k(p̃, ω̃k, ε̃k) = ω̃k = D̃k(p̃, ωk, ε̃k) and D̃′
1(p̃, ω̃1, ε̃1) = D̃′

1(p̃, ω1, ε̃1)

Hence, when the endowment vector is (ω̃1, ..., ω̃J) and the value of ε1 is ε̃1, p̃ is
an equilibrium price for all values of (ε2, ..., εJ), when the J−tuple of demand
functions is –̃D, and p̃ is not an equilibrium price, for any value of (ε2, ..., εJ), when

the J−tuple of demand functions is –̃D
′
. By Φω,ε1,...,εJ

(ii), p̃ is the unique such
equilibrium price, when the J−tuple of demand functions is –̃D. By the continuity
of D̃

′(1)
1 and fε1 in ε1 and the fact that fε1(ε̃1) > 0, it follows that there exists a

neighborhood of ε̃1 such that for all values ε′
1 in that neighborhood, fε1(ε

′
1) > 0

and

J∑
j=1

ω̃
(1)
j < D̃

′(1)
1 (p̃, ω̃1, ε

′
1) +

J∑
k=2

D̃
′(1)
k (p̃, ω̃k, ε̃k)

For any –̃D ∈ Φω,ε1,...,εJ
, define

e1(p̃, ω1; –̃D)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
{
ε1∈E|D̃(1)

1 (p̃, ω1, ε1)+
∑J

k=2 D̃
(1)
k (p̃, ω̃k, εk)≤ω1+

∑J
k=2 ω̃k

}

if
{
ε1∈E|D̃(1)

1 (p̃, ω1, ε1)+
∑J

k=2 D̃
(1)
k (p̃, ω̃k, εk)≤ω1+

∑J
k=2 ω̃k

}
�=∅

inf(E) otherwise

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Since fε1(ε̃1) > 0, D̃
′(1)
1 (p̃, ω̃1, ε1) is strictly increasing in the value of

the unobservable variable, and, from above,
∑J

k=1 ω̃
(1)
k < D̃

′(1)
1 (p̃, ω̃1, ε

′
1) +∑J

k=2 D̃
′(1)
k (p̃, ω̃k, ε̃k) for all ε′

1 in a neighborhood of ε̃1, it follows that

e1(p̃, ω̃1; –̃D
′
) < ε′

1 < ε̃1 for all ε′
1 in a neighborhood that possesses positive

probability. By the definition of e1(p̃, ω1; –̃D) and the fact that p̃ is the equilibrium
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price when the endowment vector is ω̃ , the value of ε1 is ε̃1, and the vector of
demand functions is –̃D, it follows that e1(p̃, ω̃1; –̃D) = ε̃1. Hence,

ε̃1 = e1(p̃, ω̃1; –̃D) > e1(p̃, ω̃1; –̃D
′
)

and

Pr
(
ε1 ≤ e1(p̃, ω̃1; –̃D)

)
> Pr

(
ε1 ≤ e1(p̃, ω̃1; –̃D

′
)
)

Since

Fp|(ω̃1,...,ω̃J )(p̃; –̃D, Fε) = Pr
(
p ≤ p̃|ω = (ω̃1, ..., ω̃J); –̃D, Fε

)

= Pr
(
ε1 ≤ e1(p̃, ω̃1; –̃D) | ω = (ω̃1, ..., ω̃J); –̃D, Fε

)

= Pr
(
ε1 ≤ ε̃1; –̃D, Fε

)

= Fε1 (ε̃1) ,

Fp|(ω̃1,...,ω̃J )(p̃; –̃D
′
, Fε) = Pr

(
p ≤ p̃|ω = (ω̃1, ..., ω̃J); –̃D

′
, Fε

)

= Pr
(
ε1 ≤ e1(p̃, ω̃1; –̃D

′
) | ω = (ω̃1, ..., ω̃J); –̃D

′
, Fε

)

= Pr
(
ε1 ≤ e1(p̃, ω̃1; –̃D

′
); –̃D, Fε

)

= Fε1

(
e1(p̃, ω̃1; –̃D

′
)
)

and

Fε1 (ε̃1) > Fε1

(
e1(p̃, ω̃; –̃D

′
)
)
,

it follows that

Fp|(ω̃1,...,ω̃J )(p̃; –̃D, Fε) �= Fp|(ω̃1,...,ω̃J )(p̃; –̃D
′
, Fε)

This completes the proof.

If instead of specifying each distributions Fεj
we would have required that, for

each j, D̃j satisfies properties such as those in Φ′
ω,ε, then we would have been able

to establish the identification of also the distributions Fεj
.

In Theorems 4–6, we established that from the distribution of equilibrium prices
and J−tuples of endowment vectors, we can identify the demand function of each
of the J individual consumers. Using each of these demand functions, D̃j , together
with the results in Mas-Colell (1977b), we can identify, for each value of ε, a
unique preference relation generating the demand function D̃j(·, ·, ε), in the same
way that in the proof of Theorem 3 we used the results in Mas-Colell (1977b) to
establish the identification of the preferences of the J consumers from the demand
functions of these consumers. An alternative way of identifying these preferences,
which might be preferred in some circumstances, would be to first identify from the
distribution of equilibrium prices the distribution of the demand function of each
individual consumer, and then use results in Brown and Matzkin (1998) to identify
the random utility functions that generate each of the demand distributions.
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4 Conclusions

We have provided very weak conditions under which either from the aggregate de-
mand function or from the equilibrium correspondence of a pure exchange economy
one can identify the preferences of the consumers in the economy. We considered
the case where the preferences of the consumers are deterministic, and cases where
they are stochastic. In the latter case, we provided conditions under which from the
conditional distribution of equilibrium prices, given endowments, one can identify
both, the random demand functions and the distribution of an unobservable random
terms which generate the randomness in the demand functions.
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Summary. In many applications, assumptions about the log-concavity of a proba-
bility distribution allow just enough special structure to yield a workable theory.This
paper catalogs a series of theorems relating log-concavity and/or log-convexity of
probability density functions, distribution functions, reliability functions, and their
integrals. We list a large number of commonly-used probability distributions and
report the log-concavity or log-convexity of their density functions and their inte-
grals. We also discuss a variety of applications of log-concavity that have appeared
in the literature.
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1 Introduction

A function f that maps a concave set into the positive real numbers is said to be log-
concave if the function ln f is concave and log-convex if ln f is a convex function.
The log-concavity or log-convexity of probability densities and their integrals has
interesting qualitative implications in many areas of economics, in political science,
in biology, and in industrial engineering.

This paper records and proves a series of related theorems on the log-concavity
or log-convexity of univariate probability density functions, cumulative distribu-
tion functions, and their integrals. We examine the invariance of these properties
under integration, truncations, and other transformations. We relate the properties

� We thank Ken Binmore and Larry Samuelson for encouragement and suggestments.
Correspondence to: T. Bergstrom
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of density functions to those of reliability functions, failure rates, and the mono-
tonicity of the “mean-residual-lifetime function.” We define the “mean-advantage-
over-inferiors function” for truncated distributions and relate monotonicity of this
function to log-concavity or log-convexity of the probability density function and
its integral. We examine a large number of commonly-used probability distribu-
tions and record the log-concavity or log-convexity of density functions and their
integrals. Finally, we discuss a variety of applications of log-concavity that have
appeared in the literature.

Most of the results found in this paper have appeared somewhere in the literature
of statistics, economics, and industrial engineering. The purpose of this paper is to
offer a unified exposition of related results on the log-concavity and log-convexity of
univariate probability distributions and to sample some applications of this theory.
An earlier draft of this paper has been available on the web since 1989. The current
version streamlines the exposition and proofs and makes note of several related
papers that have appeared since 1989.

2 From densities to distribution functions

2.1 Log-concavity begets log-concavity

The results in this paper include a bag of tricks that can be used to identify log-
concave distribution functions when more straightforward methods fail. Many fa-
miliar probability distributions lack closed-form cumulative distribution functions,
but have density functions that are represented by simple algebraic expressions.
Often, straightforward application of calculus determines whether the density func-
tion is log-concave or log-convex. Conveniently, it turns out that log-concavity of
the density function implies log-concavity of the cumulative distribution function.
Moreover, log-concavity of the c.d.f. is a sufficient condition for log-concavity of
the integral of the c.d.f. We do not have to look far to find a useful application of
this result. The cumulative normal distribution does not have a closed-form rep-
resentation and direct verification of its log-concavity is difficult. But the normal
density function is easily seen to be log-concave, since its natural logarithm is a
concave quadratic function.

The fact that log-concavity is passed from functions to their integrals was proved
by Prèkopa [32]. Prèkopa finds this result as a corollary of a general theorem that
requires a great deal of mathematical apparatus. Theorem 1, which applies to the
case of differentiable functions of a single real variable this result has a simple
calculus proof which we present in the Appendix.1

Theorem 1 Let f be a probability density function whose support is the interval
(a, b), and let F be the corresponding cumulative distribution function:

– If f is continuously differentiable and log-concave on (a, b), then F is also
log-concave on (a, b).

1 The proof used here is due to Dierker [15]. There is a useful extension of Theorem 1 to higher
dimensions. Prèkopa shows that if f is a log-concave probability density function defined on Rn, then
the “marginal density functions” will also be log-concave. See also An [3]
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– If F is log-concave on (a, b), then the left hand integral G, defined by G(x) =∫ x

a
F (x), is also a log-concave function on on (a, b).

The following corollary of Theorem 1 is often useful for diagnosing log-
concavity.

Corollary 1 If the density function f is monotone decreasing, then F is log-
concave and so is its left hand integral G.

Proof. Since F is a c.d.f., it must be that F is monotone increasing. Therefore
if f is monotone decreasing, it must be that f(x)/F (x) is monotone decreasing.
But ( f(x)

F (x) )
′ = (lnF (x))′′. Therefore if f is monotone decreasing, F must be

log-concave. Log-concavity of G follows from Theorem 1 ��

2.2 Log-convexity (sometimes) Begets log-convexity

Log-convexity, unlike log-concavity, is not always inherited by the cumulative
distribution function F from the density function f . Table 3 below lists examples
of distribution functions that have strictly log-convex density functions and strictly
log-concave distribution functions. But there is an easily diagnosed subset of log-
convex density functions whose cdf’s must also be log-convex. Let us define f(a) =
limx→a f(x). Then if f(a) = 0, the cdf F will inherit log-convexity from the
density function.2 Moreover, if F is log-convex, the left hand integral G, defined
so that G(x) =

∫ x

a
F (t)dt, is also log-convex. A proof appears in the appendix.

Theorem 2 Let f be a probability density function whose support is the interval
(a, b), and let F be the corresponding cumulative distribution function:

– If f is continuously differentiable and log-convex on (a, b), and if f(a) = 0,
then F is also log-convex on (a, b).

– If F is log-convex on (a, b), then the left hand integral G, defined by G(x) =∫ x

a
F (x), is also log-convex on (a, b).

3 From densities to reliability functions

3.1 Reliability theory

Reliability theory is concerned with the time pattern of survival probability of a
machine or an organism.3 Let us consider a machine that will break down and be
discarded at some time in the interval (a, b). The survival density function f is
defined so that f(x) is the probability that a machine breaks down at age x. The
probability that the machine breaks down before reaching age x is given by F (x),
where F is the cumulative distribution function defined by F (x) =

∫ x

a
f(t)dt.

2 Mark Yuying An [3] showed that F inherits log-convexity from f if a = −∞. An’s observation
follows from our result, since for f to be a probability density function it must be that f(−∞) = 0.

3 A thorough and interesting treatment of reliability theory is found in Barlow and Proschan [7].
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The reliability function, (also known as the survival function) F̄ , is defined so that
F̄ (x) = 1 − F (x) is the probability that the machine does not break down before
reaching x. It follows from the definitions that F̄ (x) =

∫ b

x
f(t)dt. The conditional

probability that a machine which has survived to time x will break down at time x
is given by the failure rate (also known as the hazard function), which is defined
by r(x) = f(x)/F̄ (x). Let us also define a function H which is the right hand
integral of the reliability function, so that H(x) =

∫ b

x
F̄ (t)dt.

3.2 Reliability functions inherit log-concavity

Theorem 3 mirrors Theorem 1 by establishing that log-concavity is inherited by
right-hand integrals as well as by left-hand integrals. According to Theorem 3, if
the density function is log-concave, the reliability function, as well as the cumula-
tive distribution function, will be log-concave. Furthermore, log-concavity of the
reliability function is inherited by its right-hand integral.

Theorem 3 Let f be a probability density function whose support is the interval
(a, b), and let F̄ be the corresponding reliability function:

– If the density function f is continuously differentiable and log-concave on (a, b),
then F̄ is also log-concave on (a, b).

– If F̄ is log-concave on (a, b), then the right hand integral H of the reliability

function, defined by H(x) =
∫ b

x
F̄ (t)dt, is also log-concave on (a, b).

Corollaries 2 and 3 are useful consequences of Theorem 3.

Corollary 2 If the density function f is log-concave on (a, b), then the failure rate
r(x) is monotone increasing on (a, b).

Proof. The failure rate is r(x) = f(x)/F̄ (x) = −F̄ ′(x)/F̄ (x). From Theo-
rem 3, it follows that if f is log-concave, then F̄ is also log-concave, and hence
F̄ ′(x)/F̄ (x) = −r(x) is decreasing in x, so that r(x) is increasing in x. ��
Corollary 3 If the density function f is monotone increasing, then the reliability
function, F̄ , is log-concave and the failure rate is monotone increasing.

Proof. Since F̄ is a reliability function, it must be monotone decreasing. Therefore
if f is monotone increasing, the failure rate f/F̄ must be monotone increasing.
But increasing failure rate is equivalent to a log-concave reliability function, which
implies that the failure rate is monotone increasing and mean-residual-lifetime is
monotone decreasing. ��
Remark 1 The converse of Corollary 2 is not true. There exist probability distri-
butions with monotone increasing failure rates but without log-concave density
functions.

The “Mirror-image Pareto distribution,” which is presented later in this paper,
is an example of a distribution with monotone increasing failure rate, but with a
density function that is log-convex rather than log-concave.
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3.3 Reliability functions (sometimes) inherit log-convexity

Theorem 4 does for right hand integrals what Theorem 2 does for left hand integrals.
The reliability function will inherit log-convexity from the density function if the
density function approaches zero at the upper end of the interval (a, b).

Theorem 4 Let f be a probability density function whose support is the interval
(a, b), and let F̄ be the corresponding reliability function:

– If f is continuously differentiable and log-convex on (a, b) and if f(b) = 0,
then F̄ is also log-convex on (a, b).

– If F̄ is log-convex on (a, b), then the right hand integral H , defined by H(x) =∫ b

x
F̄ (t)dt, is also log-convex on (a, b).

4 Log-concavity begets Monotonicity

4.1 The mean-residual-lifetime function

In the industrial engineering literature, the mean-residual-lifetime function MRL
is defined so that MRL(x) is the expected length of time before a machine that is
currently of age x will break down. Suppose that the density function of length of
life is given by a function f with support (a, b) and the corresponding reliability
function is F̄ . Then the probability that a machine which has survived to age x will
survive to age t > x is f(t)/F̄ (x). The mean residual lifetime function is therefore
given by:

MRL(x) =
∫ b

x

t
f(t)
F̄ (x)

dt − x.

If MRL(x) is a monotone decreasing function, then a machine will “age” with
the passage of time, in the sense that it’s expected remaining lifetime will diminish
as it gets older. This property has been studied by Muth [27] and Swarz [37].

4.2 The mean-advantage-over-inferiors function

The mean-residual-lifetime function has a mirror image, which we will call the
mean-advantage-over-inferiors function.4 In the case of length of life, the mean
advantage over inferiors is the difference between the agex of a machine that has not
broken down and the average age at breakdown of the machines that it has outlasted.
Suppose that the survival density function f for machines has support (a, b). For
any x and t, the conditional probability that a machine broke down at age t, given
that it did not survive to age x, is f(t)/F (x). The average age at breakdown of
machines that broke down before age x is therefore

∫ x

a
t(f(t)/F (x))dt. The mean

4 We find it a bit surprising that our invidious civilization has not created a common English word
for this idea, but we haven’t been able to find such a word.
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advantage over inferiors of a machine that survives to exactly age x is defined to
be:

δ(x) = x −
∫ x

a

t
f(t)
F (x)

dt.

We are particularly interested in the question of when the function δ(x) is
monotone increasing in x. As we will demonstrate, this property has important
implications in the economics of information and product quality. The application
explored here is a variant of George Akerlof’s “lemons” model, in which credible
appraisal is possible but costly. [1]

4.3 Log-concavity and monotonic differences

One reason to be interested in log-concavity of the left hand integral of the cumu-
lative distribution function G(x) =

∫ x

a
F (t)dt and of the right hand integral of

the reliability function H(x) =
∫ b

x
F̄ (t)dt is that these properties are equivalent

to monotonicity of the mean-advantage-over-inferiors and mean-residual-lifetime
functions, respectively.

Lemma 1 The mean-advantage-over-inferiors function δ(x) is monotone increas-
ing if and only if G(x) is log-concave.5

Proof. Integrating

δ(x) = x −
∫ x

a

t
f(t)
F (x)

dt

by parts, we have

δ(x) = x − xF (x) − ∫ x

a
F (t)dt

F (x)
=

∫ x

a
F (t)dt
F (x)

=
G(x)
G′(x)

.

Therefore δ(x) is monotone increasing if and only if G′(x)/G(x) is monotone
decreasing. The conclusion of Lemma 1 follows immediately from Remark 2. ��

Combining the results of Lemma 1 and Theorem 1, we have the following.

Theorem 5 The mean-advantage-over-inferiors function δ(x) is monotone in-
creasing if either the density function f or the cumulative distribution function
F is log-concave.

Lemma 2 The mean-residual-lifetime function MRL(x) is monotone decreasing
if and only if H(x) is log-concave.

5 This result was previously reported and proved by Arthur Goldberger [19]. Goldberger attributes
his proof to Gary Chamberlin.
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Proof. Integrating

MRL(x) =
∫ h

x

f̄(t)dt/F̄ (x) − x

by parts and noticing that f(t) = −F̄ ′(t), one finds that

MRL(x) =
xF̄ (x) − ∫ b

x
F̄ (t)dt

F̄ (x)
− x =

−H(x)
H ′(x)

.

It follows that MRL(x) is monotone increasing if and only if H ′(x)/H(x) is
monotone decreasing. But H ′(x)/H(x) is monotone decreasing if and only if H
is log-concave. ��

Combining the results of Lemma 2 and Theorem 3, we have Theorem 6.

Theorem 6 The mean residual lifetime function MRL(x) will be monotone de-
creasing if the density function f(x) is log-concave or if the reliability function F̄
is log-concave.

Since F̄ is log-concave if and only if the failure rate is increasing, the following
is an immediate consequence of Theorem 6.6

Corollary 4 If the failure rate is monotone increasing, then the mean-residual
lifetime function is monotone decreasing.

4.4 Lemons with costly appraisals – an application

Consider a population of used cars of varying quality all of which must be sold
by their current owners. The current owner of each used car knows its quality, but
buyers know only the probability density function f of quality in the population. At
a cost of $c, any used-car owner can have it credibly and accurately appraised, so
that buyers will know its actual value. There is a large number of potential buyers,
and a used car of quality x is worth $x to any of these buyers.

In equilibrium for this market, there will be a pivotal quality, x∗, such that the
owners of used cars of quality x > x∗ choose to have their objects appraised, in
which case they can sell their used cars for their actual values x and receive a net
return of $x − c. Owners of used cars worse than x∗ will not have them appraised
and will be able to sell them for the average value of unappraised used cars, which
in this case is the average value of used cars that are no better than x∗. The owner of
a used car of quality x∗ will be indifferent between appraising and not appraising.
If the owner of a used car of quality x∗ has it appraised, she will get a net revenue
of x∗ − c. If she does not have her object appraised, she will be able to sell it

for
∫ x∗

a
tf(t)/F (x∗)dt. Since this owner is indifferent between appraising and not

appraising, it must be that

x∗ − c =
∫ x∗

a

t
f(t)
F (x∗)

dt,

6 This result is proved, in the industrial engineering literature, by Muth [27].
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or equivalently that δ(x∗) = c. If the function δ(·) is monotone increasing, there
will be a unique solution for the pivotal quality x∗. Moreover, if δ is not monotone
increasing, there will be multiple equilibria for at least some values of c. 7

5 Transformations, truncations, and mirror images

5.1 Transformations

Some commonly-used distribution functions are defined by applying a simpler
distribution to a transformed variable. For example, the lognormal distribution is
defined on (0,∞) by the cumulative distribution functionF (x) = N(ln(x)) where
N is the c.d.f. of the normal distribution. It happens that the normal distribution has
a log-concave density function, and the transformation function ln(x) is a monotone
increasing concave function. These two facts turn out to be sufficient to imply that
the c.d.f. of the lognormal distribution is log-concave. On the other hand, the density
function of the log-normal distribution is not log-concave.

Theorem 7 establishes the inheritance of log-concavity and log-convexity under
concave and convex transformations of variables.

Theorem 7 Let F be a positive-valued, twice-differentiable function with support
(a, b) and let t be a monotonic, twice-differentiable function from (a′, b′) to (a, b) =
(t(a′), t(b′)) Define the function F̂ with support (a′, b′) so that for all x ∈ (a′, b′),
F̂ (x) = F (t(x)).

– If F is log-concave and t is a concave function, then F̂ is log-concave.
– If F is log-convex and t is a convex function, then F̂ is log-convex.

Proof. Calculation shows that (lnF (x))′′ is of the same sign as F ′′(x)
F ′(x) − F ′(x)

F (x) ,

and (ln F̂ (x))′′ is of the same sign as F ′′(x)
F ′(x) + t′′(x)

t′(x) − F ′(x)
F (x) .

If t is a concave function, then t′′(x)
t′(x) ≤ 0 and therefore if F is log-concave, it

must be that F ′′(x)
F ′(x) + t′′(x)

t′(x) − F ′(x)
F (x) ≤ 0, which implies that F̂ is log-concave.

If t is a convex function, then t′′(x)
t′(x) ≥ 0 and therefore if F is log-convex, it

must be that F ′′(x)
F ′(x) + t′′(x)

t′(x) − F ′(x)
F (x) ≥ 0, which implies that F̂ is log-convex. ��

Linear transformations are both concave and convex. Therefore, as a corollary
of Theorem 7, we can conclude that both log-concavity and log-convexity are
preserved under linear transformations of variables, as described in Corollary 5.
This result will be seen to have many useful applications.

Corollary 5 LetF be a function with support (a, b). Let tbe a linear transformation
from the real line to itself and define a function F̂ with support (t(a), t(b)) so that
F̂ (x) = F (t(x)).

7 The function δ(x) must be increasing over some range, since δ(a) = 0 and δ(b) > 0. Therefore
if δ is not a monotone increasing function, it will be increasing over some range and decreasing over
other ranges and hence for at least some values of c there will be multiple solutions.
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– If F is log-concave, then F̂ is log-concave.
– If F is log-convex, then F̂ is log-convex.

5.2 Mirror-image transformations

Consider a cumulative distribution function F and support (a, b). This distribution
can be used to define another cumulative distribution function F ∗, with support
(−b,−a), by setting F ∗(x) = F̄ (−x) = 1 − F (−x). The function F ∗, defined in
this way will be called the “mirror-image” of F , since the graphs of their density
functions will be mirror-images, reflected around x = 0.

Theorem 8 Let F and F ∗ be mirror-image cumulative distribution functions:.

– If the density function for either F or F ∗ is log-concave (log-convex), then so
is the density function for the other.

– The c.d.f. for one of these functions is log-concave if and only if the reliability
function of the other is log-concave.

– The mean-advantage-over-inferiors function for F ∗ is increasing (decreasing)
if and only if the mean-residual-lifetime function for F is decreasing (increas-
ing).

Proof. Since F ∗(x) = 1 − F (−x) = F̄ (−x), it must be that F ∗′(x) = F ′(x).
Therefore where f∗ and f are the density functions for F ∗ and F , respectively,
f∗(x) = f(−x) for all x. Since f∗(x) = f(−x), these two densities are related
by a linear transformation of the variable x. It follows from Corollary 5 that f∗ is
log-concave (log-convex) if and only if f is log-concave (log-convex).

Since F ∗(x) = F̄ (−x), it also follows from Corollary 5 that F ∗ is log-concave
(log-convex) if and only F̄ is log-concave (log-convex).

The mean-advantage-over-inferiors function for F is monotone increasing (de-
creasing) in x if and only if G is a log-concave (log-convex) function of x, where
G(x) =

∫ x

a
F (t)dt. The mean-residual-lifetime function for F ∗ is monotone de-

creasing (increasing) in x if and only if H∗ is log-concave (log-convex), where
H∗(x) =

∫ −a

−x
F̄ ∗(t)dt. But F̄ ∗(x) = F (−x), so that H∗(x) =

∫ −a

−x
F (−t)dt =∫ x

a
F (t)dt = G(x). SinceH∗(x) = G(x), for allx, it must be thatH∗ is log-convex

(log-concave) if and only if G is log-convex (log-concave). ��
If a probability distribution has a density function that is symmetric around

zero, then this distribution will be its own mirror-image. In this case Theorem 8 has
the following consequence.

Corollary 6 If a probability distribution has a density function that is symmetric
around zero, then

– The c.d.f. will be log-concave (log-convex) if and only if the reliability function
is log-concave (log-convex).

– The mean-advantage over-inferiors function will be monotone increasing if and
only if the mean-residual-lifetime is monotone decreasing.
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5.3 Truncations

Suppose that a probability distribution with support (a, b) is “truncated” to con-
struct a new distribution function in which the probability mass is restricted to
a subinterval, (a∗, b∗), of (a, b) while the relative probability density of any two
points in this subinterval is unchanged. If F is the c.d.f. of the original distribution
and F ∗ is the density function of the truncated distribution, then it must be that

F ∗(x) =
F (x) − F (a∗)
F (b∗) − F (a∗)

.

But this means that the distribution function F ∗ is just a linear transformation of
the F . It follows that the corresponding density functions are also linear transfor-
mations of each other, as are the left and right hand integrals of F andF ∗. Applying
Corollary 5, we can conclude the following.

Theorem 9 If a probability distribution has a log-concave (log-convex) density
function (cumulative distribution function), then any truncation of this probability
distribution will also have a log-concave (log-convex) density function (cumulative
distribution function).

6 Log-concavity of some common distributions

This section contains a catalog of information about the log-concavity and log-
convexity of density functions, distribution functions, reliability functions, and of
the integrals of the distribution functions and reliability functions. Descriptions and
discussions of these distributions can be found in reference works by Patel, Kapadia,
and Owen [30], Johnson and Kotz [22], and Patil, Boswell, and Ratnaparkhi [31],
and Evans, Hastings, and Peacock [16]. None of these references deal extensively
with log-concavity. Patel et. al. report results on the monotonicity of failure rates
and mean residual lifetime functions for some of the distributions that are most
commonly studied by reliability theorists.

Whatever we learn about log-concavity of distributions applies immediately to
truncations of these distributions, since log-concavity of a density function or of its
integrals is inherited under truncation. 8

In the tables below, we usually describe distributions in a “standardized form,”
where the linear transformation that sets the scale and the “zero” of random variable
is chosen for simplicity of the expression. Recall from Theorem 7 that log-concavity
is preserved under linear transformations, so that the results listed here apply to
the entire family of distributions defined by linear transformations of the random
variable x in any of these distributions.

8 Reliability theorists normally concern themselves only with distributions that are bounded from
below by zero. It may therefore seem surprising that we apply the definitions of reliability theory to
distributions whose support may be unbounded from below. For our purposes, this is justified, since
log-concavity is preserved under truncations of random variables. If we find that a distribution has, for
example, a log-concave reliability function with a support that is unbounded from below, then we know
that any truncation of this distribution from below is log-concave and has a support with a lower bound.
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Table 1. Distributions with log-concave density functions (distribution functions marked ∗ lack a closed-
form representation)

Name of Support Density Cumulative dist (ln f(x))′′
distribution function f(x) function F(x)

Uniform [0, 1] 1 x 0

Normal (−∞, ∞) 1√
2π

e−x2/2 * −1
Exponential (0, ∞) λe−λx 1 − e−λx 0

Logistic (−∞, ∞) e−x

(1+e−x)2
1

(1+e−x)2 −2f(x)
Extreme Value (−∞, ∞) e−x exp{−e−x} exp{−e−x} −e−x

Laplace (Double eλx if x ≤ 0 0 for x �= 0
Exponential)

(−∞, ∞) 1
2 e−|x|

1 − 1
2 e−x if x ≥ 0

Power Function
(c ≥ 1)

(0, 1] cxc−1 xc 1−c
x2

Weibull
(c ≥ 1)

[0, ∞) cxc−1e−xc
1 − e−xc 1−c

x2 (1 + cxc)

Gamma (c ≥ 1) [0, ∞) xc−1e−x

Γ (c) * 1−c
x2

Chi-Squared
(c ≥ 2)

[0, ∞) x(c−2)/2e−x/2

2c/2Γ (c/2)
* 2−c

2x2

Chi (c ≥ 1) [0, ∞) xc−1e−x2/2

2(c−2)/2Γ (c)
* 1−c

x2 − 1

Beta (ν ≥ 1,

ω ≥ 1)
[0, 1] xν−1(1−x)ω−1

B(ν,ω) * 1−ν
x2 + 1−ω

(1−x)2

Maxwell This is a Chi distribution with c = 3
Rayleigh This is a Weibull distribution with c = 2

6.1 Distributions with log-concave density functions

For distributions that have log-concave density functions, it is easy to determine
the log-concavity of the distribution function and reliability function and the mono-
tonicity of failure rates, of mean-advantage-over-inferiors, and of mean-residual-
lifetime functions. If the density function f is log-concave, then we know from
Theorem 1 that the cumulative distribution function F and the left-hand integral of
the cumulative distribution function G are also log-concave. From Theorem 3 and
its corollary, we know that the reliability function F̄ and its right-hand integralH are
log-concave, and that the failure rate (hazard function) r(x) is monotone increasing.
From Theorem 5 we know that the mean-advantage-over-inferiors function δ(x)
is monotone increasing, and from Theorem 6, we know that the mean-residual-
lifetime function MRL(x)is monotone decreasing.

Table 1 lists several commonly-used continuous, univariate probability distri-
butions that have log-concave density functions. For all of these distributions except
the Laplace distribution, we can verify log-concavity of the density function f by
checking that (ln f(x))′′ ≤ 0 for all x in the support of f . Some distributions, such
as the Weibull distribution, the power function distribution, the beta function, and
the gamma function have log-concave density functions only if their parameters fall
into certain ranges. The parameter ranges where these distributions are log-concave
are indicated in Table 1.
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Table 2. Distributions without log-concave density functions

Name of Support Density c.d.f. (ln f(x))′′
distribution function f(x) F(x)

Power (c < 1) (0, 1] cxc−1 xc 1−c
x2

Weibull (c < 1) (0, ∞) cxc−1e−xc
1 − e−xc 1−c

x2 (1 + cxc)

Gamma (c < 1) (0, ∞) xc−1e−x

Γ (c) * 1−c
x2

Beta
(ν > 1 or ω > 1)

[0, 1] xν−1(1−x)ω−1

B(ν,ω) * 1−ν
x2 + 1−ω

(1−x)2

Arc-sine [0, 1] 1
π
√

x(1−x)
2
π

sin−1(x) 1−2x
2x2(1−x2)

Pareto [1, ∞) βx−β−1 1 − x−β (β+1
x

)2

Lognormal (0, ∞) 1
x

√
2π

e−(ln x)2/2 * ln x
x2

Student’s t (−∞, ∞)
(1+ x2

n
)−n+1/2

√
nB(.5,n/2) * (1 − 2n) n−x2

(n+x2)2

Cauchy (−∞, ∞) 1
π(1+x2)

1
2 + tan−1(x)

π
2 x2−1

(x2+1)2

F distribution (0, ∞) See discussion of F distribution below
Mirror-image
of Pareto dist.

(−∞, −1) βx−β−1 (−x)β (β+1
x

)2

6.2 Distributions whose density functions are not log-concave

Where the density function is not log-concave, determining the properties of the the
cumulative distribution functionF , the reliability function, F̄ , the mean-advantage-
over inferiors function, and the mean-residual-lifetime function is a more compli-
cated task.

One possible outcome is that f is log-convex. As is shown by the examples be-
low, some distributions with log-convex density functions have log-concave c.d.f.’s,
some have log-convex c.d.f.’s and some have c.d.f.’s which are neither log-concave
nor log-convex.

For some probability distribution functions, f is neither log-concave nor log-
convex but is log-concave over some interval of its support and log-convex over
another interval.

Table 2 describes several distributions that do not have log-concave density
functions.

Table 3 reports the log-convexity or log-concavity of density functions, dis-
tribution functions, and reliability functions, as well as the monotonicity of the
mean-advantage-over-inferiors function δ(x) and the mean-residual-lifetime func-
tion MRL(x).

6.3 Remarks on specific distributions

The Uniform Distribution For the uniform distribution, there are simple algebraic
expressions for all of the functions studied in this paper. The mean-advantage-
over-inferiors function is δ(x) =

∫ x

0 F (t)dt/F (x) = x/2, the failure rate
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Table 3. Properties of distributions without log-concave density

Name of Density c.d.f δ(x) Reliability MRL(x)
distribution function function

Power function
(0 < c < 1)

log-convex log-concave increasing neither nonmonotonic

Weibull
(0 < c < 1)

log-convex log-concave increasing log-convex decreasing

Gamma
(0 < c < 1)

log-convex log-concave increasing log-convex decreasing

Arc-Sine log-convex neither nonmonotonic neither nonmonotonic
Pareto log-convex log-concave increasing log-convex increasing
Lognormal neither log-concave increasing neither nonmonotonic
Student’s t neither neither nonmonotonic neither nonmonotonic
Cauchy neither neither undefined neither nonmonotonic
Mirror-image
of Pareto dist. log-convex log-convex decreasing log-concave decreasing
Beta (ν > 1
or ω > 1)

See discussion of Beta distribution below

F distribution See discussion of F distribution below

(hazard function) is r(x) = f(x)/F̄ (x) = 1
1−x , and the mean-residual-lifetime

function is MRL(x) =
∫ 1

x
F̄ (t)dt/F̄ (t) = (1 − x)/2.

The Normal Distribution The normal cumulative distribution function illustrates
the usefulness of Theorems 1-4, since there do not exist closed-form expression
for the c.d.f. or for the functions, δ(x), r(x), and MRL(x). Thus we are able
to determine that the functions δ(x) and r(x) are monotone increasing and that
MRL(x) is monotone decreasing, despite the fact that we can not write out
these functions and calculate their derivatives.

The Extreme-Value Distribution The extreme value distribution arises as the limit
as n → ∞ of the greatest value among n independent random variables. This
is sometimes known as the Gumbel distribution, or as a Type 1 Extreme Value
distribution. In demography, this distribution is known as the Gompertz distri-
bution and is frequently used to model the distribution of the length of human
lives.

The Exponential Distribution Barlow and Proschan [7] point out that the exponen-
tial distribution is the only distribution for which the failure rate and the mean
residual lifetime are constant. In most applications, the exponential distribution
is written with the decay parameter λ. The failure rate is f(x)/F̄ (x) = λ. The
mean residual lifetime function is MRL(x) =

∫ h

x
F̄ (t)dt/F̄ (x) = 1

λ . If the
lifetime of an object has an exponential distribution, then it does not “wear out”
over time. That is to say, the probability of failure and the expected remaining
lifetime remain constant so long as the object “survives”.

The Laplace Distribution The Laplace density function is sometimes known as
the double exponential distribution, since it is proportional to the exponential
density for positive x and to the mirror-image of the exponential distribution
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for negative x. For the Laplace distribution, ln f(x) = −λ|x|. The derivative
of ln f(x) does not exist at x = 0, so that we can not verify log-concavity from
the second derivative. However, concavity of the function −λ|x| can be verified
directly from the definition.

The Power Function Distribution The power function distribution has support
(a, b] = (0, 1], density function f(x) = cXc−1, and c.d.f. F (x) = xc. The
mean-advantage-over-inferiors function is

δ(x) =

∫ x

a
F (t)dt
F (x)

=
x

1 + c
.

Since (ln f(x))′′ = c−1
x2 , we see that f is strictly log-concave if c > 1, strictly

log-convex if 0 < c < 1, and log-linear (and hence both log-concave and
log-convex) if c = 1.
If 0 < c < 1, f(a) = f(0) = ∞ and f(b) = f(1) = c. Therefore neither
Theorem 2 nor Theorem 4 applies, and we cannot use these theorems to conclude
that either F or F̄ inherits log-convexity from f . In fact, we can verify that F is
log-concave by observing that (lnF (x))′′ = −c

x2 < 0. We also see by inspection
that δ(x) = x

1+c is monotone increasing in x.
Since F̄ (x) = 1 − xc, calculation shows that

(ln F̄ (x))′′ =
cxc−2(1 − c − xc)

(1 − xc)2
.

Therefore (ln F̄ (x))′′ is negative for x close to 1 and positive for x close to
0, and hence F̄ is neither log-concave nor log-convex. The right hand integral
of the reliability function is H(x) = c+xc+1

1+c − x This function is found to
be neither log-concave nor log-convex. Therefore the mean-residual-lifetime
function is neither monotone decreasing nor monotone increasing.

The Weibull Distribution The Weibull distribution has support (a, b) = (0,∞) and
density function,

f(x) = cxc−1e−xc

.

Calculation shows that (ln f(x))′ = c−1
x − cxc−1e−xc

, and (ln f(x))′′ =
1−c
x2 (1+cxc). The sign of (ln f(x))′′ is negative, zero, or positive, respectively,

as c > 1, c = 1, or c < 1. Therefore the Weibull distribution is log-concave if
c > 1, log-linear if c = 1, and log-convex if c < 1.
If 0 < c < 1, f(a) = f(0) = ∞ and f(b) = f(∞) = 0. Since f(b) = 0, we
can conclude from Theorem 4 that F̄ is log-convex. Therefore the failure rate
r(x) is monotone decreasing and, by Theorem 6, mean residual lifetime is an
increasing function of age.
Since f(a) �= 0, we cannot conclude from Theorem 2 that F inherits log-
convexity from f for 0 < c < 1. In fact, we can establish by other means that in
this caseF is log-concave, rather than log-convex. If 0 < c < 1, (ln f(x))′ < 0
for all x > 0. Therefore f(x) is seen to be a monotone decreasing function,
and by Corollary 1, it must be that F is log-concave, the left hand integral G is
log-concave. From Theorem 5, it follows that δ(x) is monotone increasing.
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The Gamma Distribution The Gamma distribution has support (a, b) = (0,∞)
and density function f(x) = xc−1e−x

Γ (c) . Calculation shows that (ln f(x))′ =
(c−1)

x − 1, and (ln f(x))′′ = 1−c
x2 . The sign of (ln f(x))′′ is negative, zero,

or positive, respectively, as c > 1, c = 1, or c < 1. Therefore the Gamma
distribution is log-concave if c > 1, log-linear if c = 1, and log-convex if
c < 1.
For the Gamma distribution with c < 1, we have f(a) = f(0) = ∞ and
f(b) = f(∞) = 0. Since f(b) = 0, it follows from Theorem 4 that if c < 1 the
reliability function F̄ and its right hand integral H both inherit log-convexity
from f . Since F̄ and H are log-convex, the failure rate must be decreasing in
x, and the mean-residual-lifetime function must be increasing in x.
Since f(a) �= 0, Theorem 2 does not establish log-convexity of the cumulative
distribution function F . In fact, when 0 < c < 1, we see that (ln f(x))′ < 0 for
allx > 0, so that f is monotone decreasing on (a, b). It follows from Corollary 1
that the cumulative distribution function F is log-concave and from Theorem 1
it follows that G, the left hand integral of F is also log-concave. Theorem 5,
therefore implies that δ(x) is monotone increasing.

The Chi-squared Distribution The Chi-square distribution with c degrees of free-
dom is a gamma distribution with parameter c/2. The most common application
of the Chi-squared distribution comes from the fact that the sum of the squares
of c independent standard normal random variables has a chi-square distribu-
tion with c degrees of freedom. Since the gamma distribution has a log-concave
density function for c ≥ 1, it must be that the sum of the squares of two or
more independent standard normal random variables has a log-concave density
function.

The Chi Distribution Since (ln f(x))′′ = − c−1
x2 − 1, the chi distribution has a

log-concave density function for c ≥ 1.
The sample standard deviation from the sum of n independent standard normal
variables has a chi distribution with c = n/2. Therefore the distribution of
the sum of two or more independent standard normal variables is necessarily
log-concave.
The chi distribution with c = 2 is sometimes known as the Rayleigh distribu-
tion amd the chi distribution with c = 3 is sometimes known as the Maxwell
distribution.

The Beta Distribution The Beta distribution has support (a, b) = (0, 1) and density
function

f(x) =
xν−1(1 − x)ω−1

B(a, b)
.

Calculation shows that (ln f(x))′′ = 1−ν
x + 1−ω

x . Therefore if ν ≥ 1 andω ≥ 1,
then the density function is log-concave.
If ν < 1 and ω < 1, then the density function is log-convex. But in this case,
Theorems 2 and 4 are of no assistance in determining log-convexity of F or
F̄ , since f(a) = f(b) = ∞. More definite results apply for the special case
of the Beta distribution where ν = ω = .5, which is known as the Arc-sine
distribution and is discussed below.
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If ν < 1 and ω > 1, the density function is neither log-convex nor log-concave
on (0, 1). In this case, however, the density function is monotone decreasing on
(0, 1), and therefore from Corollary 1 it follows that the distribution function F
is log-concave and the mean-advantage-over-inferiors function δ is monotone
decreasing.
If ν > 1 and ω < 1, the density function is again neither log-convex nor log-
concave. In this case, the density function is monotone increasing on (0, 1),
and therefore by Corollary 3, the reliability function F̄ is log-concave, the
failure rate is monotone increasing, and mean-residual-lifetime is monotone
decreasing.

The Arc-sine Distribution The Arc-sine distribution is the special case of the Beta
distribution where ν = ω = .5. The cumulative distribution function has the
closed-form expression, F (x) = 2

π sin−1(x). For this distribution,

(ln f(x))′′ =
1 − 2x

2x2(1 − x2)
,

which is positive for x < 1/2 and negative for x > 1/2. The Arc-sine distri-
bution is therefore neither log-concave nor log-convex, but is log-convex on
the interval, (0, 1/2) and log-concave on the interval (1/2, 0). It follows that
on the interval (1/2, 1), the cumulative distribution is log-concave and δ(x) is
monotone decreasing.
The Arc-sine distribution has the property that F̄ (x) = F (1−x). Since 1−x <
1/2 when x > 1/2 and vice versa, it must be that on the interval (0, 1/2) F̄ is
log-concave and MRL(x) is monotone decreasing.

The Pareto Distribution For the Pareto distribution (ln(f(x))′ = −β+1
x and

(ln f(x))′′ = β+1
x2 > 0. Thus the density function is monotone decreasing

and log-convex for all x. Although f is log-convex, the condition of theorem 2
does not apply (since f(a) = β > 0) and the c.d.f is not log-convex. In fact,
since f is a decreasing function, it follows from Corollary 1 that the c.d.f, F (x),
is log-concave and therefore from Lemma 1 it must also be that δ is monotone
increasing.
The reliability function for the Pareto distribution is F̄ (x) = x−β . Therefore
(ln F̄ (x))′′ = β/x2 > 0. Therefore the reliability function is log-convex. The
right hand integral, H(x) =

∫∞
x

F (t)dt, converges if and only if β > 1 and in
this case, H(x) = 1

β−1x
1−β . In this case, (lnH(x))′′ = β−1

x2 > 0. Therefore
H(x) is log-convex and the mean residual lifetime is a decreasing function of
x.

The Lognormal Distribution The log-normal distribution has support (0,∞) and
a cumulative distribution function F (x) = N(ln(x)) where N is the c.d.f. of
the normal distribution.
Since the normal distribution has a log-concave c.d.f., it follows from Theorem
7, that the lognormal distribution also has a concave c.d.f. From Theorem 5 it
then follows that δ(x) is increasing.
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Unlike the normal distribution, the lognormal distribution does not have a log-
concave density function. The lognormal density function is

f(x) =
1

x
√

2π
e−(ln x)2/2.

A bit of calculation shows that

(ln f(x))′′ =
lnx
x2 .

Since lnx is negative for 0 < x < 1 and positive for x > 1, it must be that f(x)
is neither log-concave nor log-convex on its entire domain, but log-concave on
the interval (0, 1) and log-convex on the interval (1,∞).
The failure rate of a log normally distributed random variable is neither mono-
tone increasing nor monotone decreasing. (Patel, et.al. [30]). Furthermore the
mean residual lifetime for the lognormal distribution is not monotonic, but is
increasing for small values and decreasing for large values ofx. (see Muth [27]).
We have not found an analytic proof of either of these last two propositions. As
far as we can tell, they have only been demonstrated by numerical calculation
and computer graphics.

Student’s t Distribution Student’s t distribution is defined on the entire real line
with density function

f(x) =
(1 + x2

n )−n+1/2

√
nB(.5, n/2)

whereB(a, b) is the incomplete beta function and n is referred to as the number
of degrees of freedom. For the t distribution (ln f(x))′′ = −(n + 1) n−x2

(n+x2)2 .
Therefore the density function of the t distribution is log-concave on the central
interval [−√

n,
√
n] and log-convex on each of the outer intervals, [−∞,−√

n]
and [

√
n,∞]. Although the t distribution itself is not log-concave, a truncated t

distribution will be log-concave if the truncation is restricted to a subset of the
interval [−√

n,
√
n].

We do not have a general, analytic proof of the concavity or non-concavity of
the c.d.f. of the t distribution. But numerical calculations show that the c.d.f
is neither log-concave nor log-convex for the cases of n =1, 2, 3, 4, and 24.
Since the t distribution is symmetric, the reliability function is the mirror-image
of the c.d.f. Therefore if the c.d.f. is neither log-concave nor log-convex, the
reliability function must also be neither concave nor convex.

The Cauchy Distribution The Cauchy distribution is a Student’s t distribution with
1 degree of freedom. It is equal to the distribution of the ratio of two independent
standard normal random variables.
The Cauchy distribution has density function f(x) = 1

π(1+x2) and c.d.fF (x) =

1/2 + tan−1(x)
π . Then (ln f(x))′′ = −2 x2−1

(x2+1)2 . This expression is negative if
|x| < 1 and positive if |x| > 1. Like the rest of the family of t distributions,
the density function of the Cauchy distribution is neither log-concave, nor log-
convex.
The integral

∫ x

−∞ F (t)dt does not converge for the Cauchy distribution, and
therefore the function G is not well-defined.
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The F Distribution The F distribution arises in statistical applications as the dis-
tribution of the ratio of two independent chi-square distributions with m1 and
m2 degrees of freedom. The parameters m1 and m2, known as “degrees of
freedom”. The density function of an F distribution with m1 and m2 degrees
of freedom is

f(x) = cx(m1/2)−1(1 + (m1/m2)x)−(m1+m2)/2

where c is a constant that depends only on m1 and m2. The F distribution has
support (a, b)=(0,∞).
For the F distribution,

(ln f(x))′′ = −(m1/2 − 1)/x2 + (m1/m2)2(m1 +m2)/2(1 +m1/m2x)−2.

If m1 > 2, then (ln f(x))′′ is positive or negative depending on whether x is
greater than or less than

m2

√
m1−2

m1+m2

1 −
√

m1−2
m1+m2

.

Therefore the density function is neither log-concave nor log-convex when
m1 > 2.
If m1 ≤ 2, then the density function is log-convex. Since f(b) = f(∞) = 0, it
follows from Theorem 4 that if m1 ≤ 2, the reliability function F̄ is log-convex
and the mean-residual-lifetime function MRL(x) is monotone increasing.

Mirror-image of the Pareto Distribution None of the examples listed so far has
a monotone increasing mean-advantage-over-inferiors function, δ(x). Indeed,
we have not come across a “named” distribution that has this property. But,
according to Theorem 8, the mirror-image of a distribution that has monotone
increasing mean-residual-lifetime must have monotone decreasing δ(x).
A simple probability distribution with increasing mean-residual-lifetime is
the Pareto distribution. The mirror-image of the Pareto distribution has sup-
port (−∞,−1) and c.d.f. F (x) = (−x)−β where β > 0. For β > 1,
G(x) =

∫ x

−∞ F (t)dt converges and G(x) = (β − 1)−1(−x)1−β . Then
δ(x) = G(x)/G′(x) = G(x)/F (x) = x

1−β and δ′(x) = 1
1−β < 0.

7 Notes on related literature

As far as we know, the earliest application of the assumption of log-concavity in
the economics literature is due to Flinn and Heckman [18]. Economic applications
can also be found in the industrial engineering literature in the context of reliability
theory; see for example, Barlow and Proschan [7] and Muth, [27]. A pair of remark-
able papers by Caplin and Nalebuff [11], [12] introduced Prèkopa’s theorems on
log-concave probability to the economics literature and applied them to voting the-
ory and the theory of imperfect competition. Two useful theoretical papers by Mark
Yuying An [2] and [3] discuss properties of log-concave and log-convex probability
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distributions. His papers contain several results not found here.9 The main contri-
butions are: 1) He shows that the standard results on inheritance of log-concavity
can be established without the assumption that density functions are differentiable.
2) He pays more systematic attention to results concerning log-convexity than had
been done previously. 3) He discusses the log-concavity of multivariate distribu-
tions.

Applications to labor economics and search theory

Flinn and Heckman [18] consider a model of job search in which job offers arrive
as a Poisson process and where the wage associated with a job offer is drawn from
a random variable with distribution function F . They show that if the right hand
integral of the reliability function, H(x) =

∫∞
x

(1 − F (t))dt is log-concave, then
with optimal search strategies, an increase in the rate of arrivals of job offers will
increase the exit rate from unemployment.

Heckman and Honore [21] discuss a labor market in which workers have dif-
fering comparative advantage in each of two sectors of the economy. They show
that if the distribution of differences of skills is log-concave, then incomes of work-
ers who are able to choose occupations according to comparative advantage in a
competitive market will be more equally distributed than they would be if workers
were randomly assigned to sectors and paid their marginal products.

Applications to monopoly theory

Consider a product whose consumers buy either one unit or none at all, and sup-
pose that F (·) is the distribution function of consumers’ reservation prices for this
product. Then the quantity demanded at price p is proportional to F̄ (p) = 1−F (p)
and a monopolistic seller’s expected revenue R(p) at price p is proportional to
pF̄ (p). Comparative statics is greatly simplified if the revenue function R(·) is
quasi-concave. It is easy to show that log-concavity of the reliability function F̄ (·)
implies quasi-concavity of R(·).10 This fact finds frequent application in the eco-
nomics literature. It is applied to the distribution of reservation demands for houses
in Bagnoli and Khanna [6] and in a study of firm takeovers by Jegadeesh and
Chowdry [13]. Segal [36] uses this assumption in his study of an optimal pricing
mechanism for a monopolist who faces an unknown demand curve.

The assumption that willingness to pay is log-concavely distributed also plays
a central part in the theory of price-competition with differentiated products.
Dierker [15] develops foundations for a theory of price competition with differenti-
ated products by showing that log-concavity of the distribution of certain preference

9 An generously acknowledges an early draft of this paper, which predated his studies. In turn,
our current paper has benefited from An’s work. In particular, An’s discussion motivated us to treat
the inheritance theorems for log-convex distributions in a more systematic way. Our treatment of log-
convexity is a slight generalization of that of An.

10 In fact, as Caplin and Nalebuff [11] point out, quasi-concavity of the revenue function is implied
by the condition that 1/F̄ (p) is a convex function of p, a condition which is weaker than log-concavity.
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parameters implies quasi-concavity of a firm’s profits in its own price. Caplin and
Nalebuff [11] are able to establish existence and uniqueness of equilibrium un-
der assumptions that the density functions of the population distribution of certain
preference parameters satisfy assumptions that are weaker than log-concavity. Fur-
ther development of the relation between log-concavity and equlibrium in spatial
markets can be found in Anderson, de Palma, and Thisse [4].

Fang and Norman [17] have discovered an important application of log-concave
probability distributions to the theory of commodity bundling. They show that if a
monopolist sells several goods and if each consumer’s demand for any one of the
bundled goods is uncorrelated with his demand for the others, then it will be more
profitable for the seller to bundle these goods rather than sell them separately under
the following conditions: a) the mean willingness to pay for each good exceeds
marginal cost of that good b) the probability density of willingness to pay for each
good is log-concave. It is well understood (see Armstrong [5]) that in the limit
as bundles get large (and demands are independent), the distribution of average
willingness to pay becomes highly concentrated about the mean willingness to pay
and thus a bundling monopolist can capture almost all of consumers’ surplus. Fang
and Norman note that in order to ensure that bundling is profitable when only a
small number of independently demanded commodities is available, one needs a
stronger convergence result than the law of large numbers. The desired property is
that the probability that the sample mean deviates from the population mean by a
specified amount is monotonically decreasing in sample size. Not all probability
distributions have this property, but using a theorem of Proschan [33], Fang and
Norman show that if the density function is log-concave, then the sample means
converge monotonically as required.

Mechanism design theory

With games of incomplete information, it is customary to convert the game into
a game of imperfect, but complete, information by assuming that an opponent
of unknown characteristics is drawn from a probability distribution over a set of
possible “types” of player. For example, in the literature on contracts, it is assumed
that the principal does not know a relevant characteristic of an agent. From the
principal’s point of view the agent’s type is a random variable, with distribution
function, F . It is standard to assume, as do Laffont and Tirole [23] or Corbett
and de Groote [14] that F is log-concave. This assumption is required to make
the optimal incentive contract invertible in the agent’s type and thus to ensure a
separating equilibrium. In the theory of regulation, the regulator does not know the
firm’s costs. Baron and Myerson [8] show that a sufficient condition for existence
of a separating equilibrium is that the distribution function of types is log-concave.
Rob [35] in a study of pollution claim settlements, Lewis and Sappington [24]
in a study of regulatory theory, and Riordan and Sappington [34], in a study of
government procurement, use essentially the same condition.
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Log-concavity also arises in the analysis of auctions. Myerson and Satterth-
waite [28], Matthews[26], and Maskin and Riley[25], impose conditions that are
implied by log-concavity of the distribution function in order to characterize effi-
cient auctions.

Applications to political science and law

Many results from the theory of spatially differentiated markets have counterparts in
the theory of voting and elections. An important paper by Nalebuff and Caplin [12]
introduces powerful mathematical results that generalize the inheritance theorems
for log-concave distributions and apply these concepts to voting theory and to the
theory of income distribution. Weber [40] uses the assumption that individuals have
single-peaked preferences and that the distribution of ideal points among individuals
is log-concave to show the existence and uniqueness of equilibrium in a theory of
“hierarchical" voting, where incumbents act as Stackelberg leaders with respect to
potential entrants. primary elections are followed by general elections. Haimanko,
LeBreton, andWeber [20] use similar assumptions to analyze equilibrium in a model
where central governments use interregional redistribution to prevent succession
of subgroups with divergent interests.

Cameron, Segal and Songer [10] study the transmission of information in a
hierarchical court system. Their model has a lower court and a high court. The
lower court hears the case, learns information that will not be directly available
to the high court, and makes a decision. The high court’s utility function differs
from the lower court’s and the high court tries to infer what the lower court learned
from the decision it made. The high court must decide whether to incur the costs of
reviewing the lower court’s decision. There is a close parallel in logical structure
to that found in the mechanism design literature.

Costly signalling

As noted in Theorem 1, the mean-advantage-over-inferiors function δ(x) is increas-
ing if and only if the left hand integral of the c.d.f. function is log-concave. The
assumption that the distribution of quality has this property plays a critical role in
theories of costly signalling and has found a variety of applications. Bergstrom and
Bagnoli [9] develop a marriage market model in which there is asymmetric infor-
mation about the quality of persons as potential marriage partners and where quality
is revealed with the passage of time. In this model there is a unique equilibrium
distribution of marriages by age and quality of the partners if δ(x) is increasing.

In Verrecchia [38], [39], a manager who wishes to maximize the market value
of a firm must decide whether to incur a proprietary cost to disclose his information
about the firm’s prospects. Thus, the manager compares the market’s expected
value of the firm given his disclosure (less the cost of the disclosure) to the market’s
expected value of the firm given that the manager chooses to not disclose his private
information. The resulting theory is essentially the same as that illustrated in section
4.4 of this paper.
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Nöldeke and Samuelson [29] explore an evolutionary model in which males
engage in costly signaling (as exemplified by the peacock’s tail) to convince females
that they are superior mates. The authors ask whether there can be a costly signaling
equilibrium if females care about the net value of males after they have paid the
cost of their signals. They assume that females choose from among n competing
males. Where F is the cumulative distribution function of initial male quality, it
turns out there exists an equilibrium with costly signaling if and only if the right
hand integral of Fn−1 is a log-concave function. A sufficient condition for this
function to be log-concave is that the distribution function F is log-concave.

Appendix – Proofs of inheritance theorems

Proof of Theorems 1 and 2

We apply two Remarks based on elementary calculus to prove Lemma 3, from
which Theorems 1 and 2 are almost immediate.

Remark 2 A continuously differentiable function f : " → "+ is log-concave (log-
convex) if and only if f ′(x)

f(x) is a non-increasing (non-decreasing) function of x in
(a, b).

Proof. The function ln f is concave (convex) if and only if

(ln f(x))′′ =
d

dx

f ′(x)
f(x)

is non-positive (non-negative) for all x in (a, b). ��
Remark 3 Where F (x) =

∫ x

a
f(t)dt, the function F is log-concave (log-convex)

if and only if f ′(x)F (x) − f(x)2 is non-positive (non-negative) for all x in (a, b).

Proof. The function lnF is concave (convex) if and only if the expression

(lnF (x))′′ =
d

dx

(
f(x)
F (x)

)
=

f ′(x)F (x) − f(x)2

F (x)2

is non-positive (non-negative) for all x in (a, b). ��
Lemma 3 Let f be a continuously-differentiable function, mapping the interval
(a, b) into the positive real numbers, let F (x) =

∫ x

a
f(t)dt for all x in (a, b), and

define f(a) = limx→a f(x). Then:

– If f is log-concave on (a, b), then F is also log concave on (a, b).
– If f is log-convex on (a, b) and if f(a) = 0, then F is also log convex on (a, b).

Proof. If f is log-concave, then for all x ∈ (a, b),

f ′(x)
f(x)

F (x) =
f ′(x)
f(x)

∫ x

a

f(t)dt≤
∫ x

a

f ′(t)
f(t)

f(t)dt=
∫ x

a

f ′(t)dt=f(x)−f(a),
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where the inequality follows from Remark 2. Since f(a) ≥ 0, it follows that

f ′(x)
f(x)

F (x) ≤ f(x) − f(a) ≤ f(x).

and therefore
f ′(x)F (x) − f(x)2 ≤ 0.

From Remark 3 it follows that F is log-concave.
Reasoning similar to that of the previous paragraph leads to the conclusion that

if f is log-convex and if f(a) = 0, then

f ′(x)
f(x)

F (x) ≥ f(x) − f(a) ≥ f(x).

It follows that f ′(x)F (x) − f(x)2 ≥ 0, and then from Remark 3, it follows that F
is log-convex. ��

7.1 Proof of Theorems 3 and 4

We now apply Remarks 2 and 4 to prove Lemma 4, from which Theorems 3 and 4
are almost immediate.

Remark 4 Where F̄ (x) =
∫ b

x
f(t)dt, the function F̄ is log-concave (log-convex)

if and only if f ′(x)F̄ (x) + f(x)2 is non-negative (non-positive) for all x in (a, b).

Proof. The function ln F̄ is concave (convex) if and only if the expression

(ln F̄ (x))′′ =
d

dx

(−f(x)
F̄ (x)

)
= −f ′(x)F̄ (x) + f(x)2

F̄ (x)2

is non-positive (non-negative) for all x in (a, b). ��
Lemma 4 Let f be a continuously-differentiable function, mapping the interval
(a, b) into the positive real numbers, let F̄ (x) =

∫ b

x
f(t)dt for all x in (a, b), and

define f(b) = limx→b f(x). Then:

– If f is log-concave on (a, b), then F̄ is also log concave on (a, b).
– If f is log-convex on (a, b) and if f(b) = 0, then F̄ is also log convex on (a, b).

Proof. If f is log-concave, then for all x ∈ (a, b),

f ′(x)
f(x)

F̄ (x) =
f ′(x)
f(x)

∫ b

x

f(t)dt ≥
∫ b

x

f ′(t)
f(t)

f(t)dt =
∫ b

x

f ′(t)dt = f(b)−f(x),

where the inequality follows from Remark 2. Since f(b) ≥ 0, it must be that

f ′(x)
f(x)

F̄ (x) ≥ f(b) − f(x) ≥ −f(x).
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Therefore f ′(x)F (x) + f(x)2 ≤ 0, and from Remark 3 it follows that F̄ is log-
concave.

Reasoning similar to that of the previous paragraph shows that if f is log-convex
and if f(b) = 0, then

f ′(x)
f(x)

F̄ (x) ≤ f(b) − f(x) = −f(x).

It follows that f ′(x)F̄ (x) + f(x)2 ≤ 0, and from Remark 3, it then follows that F̄
is log-convex. ��
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Notes on stochastic choice
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Universitat Pompeu Fabra, Department of Economics, Ramon Trias Fargas, 25–27, 08005 Barcelona,
Spain

Prologue (2005)

The notes on Stochastic choice that follow were presented at a meeting held in San
Sebastian in June of 1983 and organised by Salvador Barberà. It was research in
progress that, alas, was never pursued. But it seems, by its subject, a most indicated
contribution to a volume to honour Ket Richter. Obviously, I have the hope, but not
the certainty, that something is still of interest in them. Or simply that there will be
something to catch the sharp analytical eye of Ket. With my best regards to Ket, a
model for us all of how theory should be done, here they go. I have corrected some
obvious inaccuracies and, occasionally, tightened some looseness of language. I
have also added some references (in particular, Falmagne,1978, Fishburn,1998,
Barberà and Pattanaik,1986, McFadden and Richter,1991, McFadden,2004, are
very relevant to the subject matter of these notes) and taken into account the remarks
of a referee(whom I thank). Otherwise the text is as in 1983.

I. A general formalism

A very general setting for the stochastic choice problem can be described thus (see
also Manski, 1977). There is given as data:

1. A set of alternatives X . It is convenient to think of X as finite.
2. A set of “budgets” B ⊂ 2X . Put Y =

∏
B∈B

B. A point of Y is a selection of an

alternative in every budget. Denote by M the probability measures on Y .
3. A set of admissible statistics fj : M → R, j ∈ J.
4. A set of observed values aj , j ∈ J of the statistics.

As an example, the usual stochastic choice problem corresponds to the above
where the admissible statistics in (3) are the marginal distributions. [Precisely: f
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is admissible if and only if it is of the form f(v) =
∫
ψ(y)dv where ψ(y) is the

projection on one variable]. Even more restricted, if the admissible statistics are
the mean of every marginal we have as data a sort of aggregate demand. Another
situation falling in the above setting would be one where for every alternative x we
are given the probability that x is chosen for some budget, etc.

Denote by P the set of linear orders on X .
Every probability measure µ on P induces a probability measure vµ on Y by

the rule vµ(A) = µ{�∈ P: denoting by x(B) the �-maximal element on B ∈ B
we have {x(B)}B∈B ∈ A}.

That is to say, vµ is the measure generated on Y by the choice vectors induced
by preferences.

We then have two problems:

Rationalizability problem. A stochastic choice situation (described by (1)–(4)
above) can be rationalized if there is a probability measure µ on P such that
fj(vµ) = aj for every j.

Which conditions must the data of the problem satisfy in order for a rational-
ization to exist?

Recoverability (or identification) problem. Assuming that the data are rationaliz-
able, when is the rationalization unique?

Remark. Strictly speaking there is still a third problem, previous to the rational-
izability one and vacuously non-restrictive in the usual stochastic choice model. It
could be called the compatibility problem, namely, under which conditions there
is a probability measure v on Y such that fj(v) = aj for every j.

II. A particular case

After so much generality I become very concrete. I concentrate for the rest of the
Notes on the particular case where there is a distinguished alternative, denoted 0,
every B ∈ B includes 0 and for each B ∈ B there is an admissible statistic which
is the probability that 0 is not selected in B. In other words, the data of the problem
is an array p(B), B ∈ B, to be interpreted as asserting that given B the probability
that 0 be the preferred element is 1 − p(B). We always put p({0}) = 0.

Define the equivalence relation ≈ on P by �≈ �′ iff “x � 0 ⇔ x�′0”.
Obviously, if �≈ �′ then the data of the problem will never be able to distinguish
between � and �′. Therefore, the rationalizability and, above all, the recoverability
problem should properly be posed with respect to P∗ = P/≈. Note that for the
elements of P∗ the transitivity requirement has no strength.Avoiding the transitivity
issue is the main advantage of analyzing the particular case of a distinguished
alternative.

I briefly discuss three subcases that differ by the nature of the admissible B.
Take X finite, with #X = n + 1.
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(a) B =
{
B ∈ 2X : 0 ∈ B

}

The rationalization problem for this subcase has been extensively treated and is
completely solved. See Falmagne, 1978, Barberà and Pattanaik, 1986, Cohen and
Falmagne, 1990, Barberà, 1991..

Every preference in P ∗ can be identified with a set B ∈ B, i.e. B is the set of
alternatives at least as good as 0. Then a probability on P∗ can be identified with a
list 0 ≤ π(B) ≤ 1,

∑
B∈B π(B) = 1. If π( ) rationalizes p( ) then we must have

1−p(B) =
∑

A∈B
A∩B={0}

π(A) for everyB ∈ B. Therefore, p( ) can be rationalized if

and only if the following recursion process (see Barberà and Pattanaik, 1986)yields
a probability measure. Put first. π({0}) = 1 − p(X). Suppose now that π(C) has
been computed for anyC up to sizem+1. Put then π(B) = 1−p((X\B) ∪ {0})−∑

C �⊂B π(C) for B of size m + 2. Obviously, this recursion process gives us a
complete list π(B), B ∈ B. Also,

∑
B∈B π(B) = 1 by construction. Therefore, π

is a probability measure, i.e. in admissible rationalization, if and only if π(B) is
non-negative for all B. Those are the conditions obtained in the above references.
Note that if p( ) is rationalizable then the rationalization is unique and can be
recovered by the previous recursion.

Recoverability, i.e. uniqueness, is not surprising in view of the fact that one gets
from π to p by a linear transformation and that there are as many equations (one
for each B) as unknowns (one for each B).

(b) B =
{
B ∈ 2X : 0 ∈ B , #B = 2 }

This is in a sense the polar opposite to subcase (a). Here we only have the outcome
of the pairwise matching of 0 against every x �= 0. We write p({0, x}) = p(x).

It is obvious that in this subcase, where there is much less information than in
(a), any p( ) can be rationalized. Indeed, any p( ) can be looked at as a point in
[0, 1]n. Every extreme point of this convex set is of the form p( ) ∈ {0, 1} and can
be rationalized (by ordering “x � 0 ⇔ p(x) = 1)”. Therefore, the entire [0, 1]n

can be rationalized.
The counterpart to the above pleasant fact is that the preference distribution

cannot be recovered. This is clear counting equations (n) and unknowns (2n, one
for every B ∈ 2X , 0 ∈ B).

(c) Intermediate subcases

To get clean results for families B intermediate between subcases (b) and (a) is
hard. Consider, for example, the subcase B = {B ∈ 2X : 0 ∈ B, #B = 3}. It is a
good exercise to verify that for the instance represented in the figure below (with
x = 0, a, b, c, d) there is no rationalizing preferences.

From now on I limit myself to subcase (b), i.e. our data is the probability p(x)
of any x ∈ X winning against 0. The common fact in the next two sections is
that restrictions are imposed on underlying permissible preferences. In Section III
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1

a          1          b          1          c 

½          ½          ½ 

d

I study a rationalization problem with a convexity hypothesis on preferences. In
Section IV I sketch and discuss an analytic treatment of the recoverability problem.

III. Rationalizability with convex preferences

With 0 a distinguished alternative in X we are given, for every x ∈ X , x �= 0 a
number 0 ≤ p(x) ≤ 1 which is interpreted as the probability of x winning over 0.
We have seen (subcase (b) in II) that p can always be rationalized by a distribution
µ on P . In applications, however, it may be important that µ give positive weight
only to preferences satisfying some restrictions.

Suppose, for example, that X∗ = X\{0} is a subset of a linear space. Say
X∗ ⊂ Rm. Then we may be interested in rationalizing by members of the set of
convex (or, more precisely, convex-compatible) preferences, i.e. PC = {�∈ P : if
“A ⊂ X∗, x � 0 for every x ∈ A, and y ∈ (convex hull A) ∩X∗” then y � 0}.

It is no longer true that any p( ) can be rationalized by a µ concentrated on PC .
The problem of characterizing the set of admissible p( ) seems pretty hard indeed.
But for the simplest case, i.e. m = 1 (the set X∗ lies in the real line) the solution
is fairly trivial.

Let X∗ ⊂ R. Put X∗ = {x1, ..., xn} where xi > xj for i > j. Denote
p(i) = p(xi).

Proposition. The function p : X∗ → [0, 1] can be rationalized by a µ on PC if
and only if p1 +

∑i=n
i=2 max{0, pi − pi−1} ≤ 1.

Remark. Presumably the proposition can be extended to the case where X∗ ⊂ R
is compact. The general statement would then be along the lines: “The function
p : X∗ → [0, 1] can be rationalized by a µ on PC if and only if it is of bounded
variation and has variation norm ≤ 1”.

Proof of the Proposition.

(1) Necessity. Identifying sets with preferences let BC be the set of convex pref-
erences. For every i = 1, ..., n denote Bi = {B ∈ BC : xi−1 /∈ B, xi ∈ B}.
These sets constitute, by the convexity hypothesis, a partition of BC . So, if π
is a probability measure concentrated on BC we have

∑n
i=1 π(Bi) ≤ 1. Sup-

pose now that π generates p. Then π(B1) = p1. Consider any i > 1. We have
pi = π({B ∈ BC : xi ∈ B}). But {B ∈ BC : xi ∈ B} = Bi ∪{B ∈ BC : xi ∈ B
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and xj ∈ B for some j less than i}. This is a disjoint union and, by con-
vexity, the second set is a subset of {B ∈ BC : xi−1 ∈ B} which probability is
pi−1. Therefore pi ≤ π(Bi) + pi−1, or max{0, pi − pi−1} ≤ π(Bi). Hence,
p1 +

∑n
i=2 max{0, pi − pi−1} ≤ 1 and necessity is established.

(2) Sufficiency. We shall actually show that: “There is always a π such that∑
B �=φ π(B) = p1 +

∑n
i=2 max{0, pi − pi−1}”. So, let the bracketed statement

be an induction hypothesis on n. It is obviously true for n = 1. Let it be true for
n − 1. In particular for the set {x1, ..., xn−1}, i.e. there is a probability measure π
on Bn−1

C = {B ∈ BC : xn /∈ B} such that:

(a)
∑

B∈Bn−1
C

B �=φ

π(B) = p1 +
n−1∑
i=2

max{0, pi − pi−1} ≤ 1, and

(b) for every i ≤ n − 1, pi =
∑

xi∈B
B∈Bn−1

C

π(B).

Now we extend π to X∗ as follows. Let qn = min{pn−1, pn}.
For any B ∈ Bn−1

C such that xn−1 ∈ B consider the rule B → B ∪ {xn}.
Under this rule transfer a probability weight qn from {B ∈ Bn−1

C : xn−1 ∈ B} to
BC . If qn = pn then we are done: the equality in (a) has not been altered and (b)
also holds for i = n. If qn = pn−1 < pn then we in addition transfer a probability
weight pn − pn−1 from the set φ to the set {xn}. This can be done because by the
induction hypothesis π(φ) = 1 − (p1 +

∑n−1
i=2 (pi − pi−1)) ≥ pn − pn−1. Then

again the equality in (a) remains and (b) has been extended to i = n. This concludes
the induction step.

Remark. As it should be expected if the condition of the proposition holds then
the admissible probability on preferences need not be unique. Suppose that X∗ =
{1, 2} and p1 = 1

3 , p2 = 1
3 . Then two admissible π are “π({1}) = π({2}) = 1

3 ,
π(φ) = 1

3” and “π′({1, 2}) = 1
3 , π′(φ) = 2

3”. The π obtained by construction
in the proof of the proposition would be π′ in this example, namely, it is the one
that maximizes the probability that 0 be the overall maximum, i.e. π(φ). The con-
struction of the proof seems to indicate that this maximizing probability measure
is unique.

IV. Analytic treatment of the recoverability problem

We keep studying the distinguished alternative case. We now take X to be an
Euclidean space Rn. The distinguished alternative is the origin 0. The function
p : X → [0, 1] gives the probability p(x) that x wins against 0. For convenience, p
is left undefined at 0.

For an analytic treatment it is important (or, at least, convenient) that the set
of admissible preferences be somehow restricted to depend on a finite number of
parameters. So, we assume that we have given a parameter set Q which, to make
life simple, we identify with some Euclidean space Rm. For every parameter value
q ∈ Q preferences are expressed by a utility function U(x, q), normalized to equal
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zero whenever x = 0. It is assumed that U : Rn × Rm → R is a “nice” function
(continuous, differentiable, analytic, . . . ).

Given a probability measure µ on Q a probability choice function P : X →
[0, 1] is generated as follows: p(x) = µ{q : U(x, q) > 0} =

∫
{q:U(x,q)>o} f(q)dq

where the second equality applies only if M has a density f . From now on we shall
assume that all µ we deal with have densities which, moreover, are sufficiently nice
(say of class C∞ and equal to zero outside of a compact set, or, at least, “rapidly
decreasing”).

The recoverability problem is then: Assuming that p is generated as above, can
f be uniquely recovered from p (in the class of “nice” densities)?

Remark. Strictly speaking the recoverability problem should be posed only for
the family of indifference curves passing through the origin because this is all the
information that p uses. But, in the parameterized world we are now working in,
recovering the indifference curve will usually be tantamount, (i.e. except perhaps
for a normalizing parameter) to recovering the entire utility function. So, I do not
worry about the distinction.

For the remaining of this section I discuss an extended example with n = 2
and U(x, q) a general quadratic: U(x, q) = ax2

1 + bx2
2 + cx1x2 + dx1 + ex2. So,

without further a priori restrictions we have five parameters, i.e.m = 5. I consider a
sequence of three subcases, which differ by the type of a priori restriction imposed.

Example 1. Take a = b = c = 0 as a priori restrictions.
(The same qualitative features of the example are obtained with other combinations
of three zero restrictions, eg. c = d = e = 0, or b = d = e = 0). In this case
U(x, q) reduces to U(x, q) ≡ U(x, d, e) = dx1 + ex2.

This model is not identified. Take, for example, p(x) = 1
2 for all x. Any

symmetric density f on the d − e plane will generate p because, for any
x, {d, e : dx1 + ex2 > 0} is just the half space above the hyperplane with normal
x and the integral of a symmetric density on a half space is 1

2 . See the figure.

x

e

d

p(x) 
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Example 2. As in example 1, a = b = c = 0. But suppose now that in addition
there is another restriction in the form of a non-homogeneous linear equation.
For instance, d + e = 1. The origin of this restriction could be, for example, a
normalization convention.

Then the model is obviously identified because given any underlying density
f we can use p to compute the distribution function of f on the line defined by
d + e = 1 on the d − e plane.

Observe also that f can be recovered by using only the information contained
in the p function in any arbitrarily small neighbourhood of zero.

After discussing two more examples I shall present, in the next section, a re-
coverability proposition for arbitrary m and n which generalizes Example 2.

Example 3. a = 1, b = 1, c = 0.
In this case for given d, e the indifference curves of the utility functionU(x, e, d) =
x2

1 + x2
2 + dx1 + ex2 are concentric circles around the vector (−d

2 ,− e
2 ). i.e., x is

preferred to 0 according to if (−d
2 ,− e

2 ) is closer to x than to 0.

So, in the obvious way we can identify the variable and the parameter space and
think of densities f as being defined on the x space itself (think of the parameter
as the peak of the preferences). Note that p(x) is the integral of f on the half space
of vectors to the side that includes x of the line perpendicular to x and cutting the
segment [0, x] in its middle point (this is the half space of vectors closer to x than
to 0).

[Remark. The similarities of this with the well known majority voting model are
intended].]

Now a mathematical disgression.
Let S1 be the 1-dimensional sphere in two dimensional Euclidean space. Given

f we can define a function ψ : S1 × R → R by letting ψ(v, t) be the integral of
the f function on the line (more generally, affine subspace) {y : v.y = t} endowed
with the usual Lebesgue measure. In Fourier analysis this function (as well as its
obvious higher dimensional generalizations ψ : Sn−1 × R → R) is known as
the Radon transform of f and, not surprisingly, it is useful in things like X-ray
reconstruction. The fact is that there is an inversion formula such that if f is “nice”
then starting with ψ(v, t) we recover f .

The inversion formula is particularly simple for the case at hand where f is
defined on the plane and the Radon transform (also called in this case the X-ray
transform) evaluates integrals on lines. For any x and s > 0 let ns(x) be the
average value of ψ(v, t) on lines which are at a distance s from x, i.e. ns(x) =
1
2π

∫
S1 ψ(v, v.x + s)dv. Then it turns out that if f is continuous and has a compact

support f(x) can be recovered by the formula f(x) = 1
π

∫∞
0

dns(x)
s where the

integral is in the sense of Stieltjes. More precisely, and integrating the above formula
by parts:

f(x) = lim
ε→0

1
π

(
ηε (x)
ε

−
∫ ∞

ε

ns (x)
s2

ds

)
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See Shepp and Kruskal (1978), Helgason, (1980), or Dym and McKean (1972) for
these Fourier analysis techniques. Their relevance for recoverability problems in
economics has been noted in another context by Ph. Dybvig and A. McLennan. I
would also like to thank A. Grunbaum for the mathematical references.

Back to Example 3. The relevance of the mathematical disgression to our prob-
lem is that the Radon Transform of the density f can be computed from the choice
probabilities p(x). As it is clear from the geometric discussion:

ψ (v, t) = − ∂

∂t
p (2tv)

(Strictly speaking the above applies to t �= 0. For t = 0 just let ψ(v, 0) =
limt→0 ψ(v, t))

Summing up: the model of Example 3 has the recoverability property. Note
however that, in contrast to Example 2, it is now essential to use all the information
contained in p(x). Restricting onerself to a small neighbourhood of 0 will not do.

Remark. Given an arbitrary p( ) we can compute ψ(v, t) as above by means of
the inversion formula to get a f(x). That f be a well defined (and “nice”) density
function (i.e.f(x) ≥ 0 and

∫
f(x)dx = 1) is, therefore, the necessary and sufficient

condition for rationalizability within the restrictions of Example 3. What one gets,
unfortunately, is not precisely a transparent condition.

Example 4. This is not a quadratic but a cubic example: U(x, q) = x2 − ax3
1 −

bx2
1 − cx1. For given a, b, c the equation x2 = ax3

1 − bx2
1 − cx1 yields a non-

linear indifference curve through the origin. Actually, I have no idea if this model is
identified or not. Since we only have two variables but three parameters the guess
is that it is not but . . .

In the next section I present the promised generalization of Example 2.

V. A generalization of Example 2.

Let’s go back to the original set-up of Section IV with

U : Rn × Rm → R

Suppose first thatU takes the additive form:U(x, q) = g1(x)q1 + ...+gm(x)qm =
g(x).q.This covers all the polynomial cases and, pushed to the limit, could cover all
the analytic utility functions. If q3 lies in the segment [q1, q2] ⊂ Rn thenU(., q3) is
intermediate between U( . , q1) and U(., q2) (or, rather, their preference relations
are) in the sense used by Chichilnisky and Grandmont. In fact, one could wonder
if for m ≥ 3 the concept of intermediate preferences provides a characterization
of the above additive form. We assume that the function g : Rn → Rm is C1.

Suppose that in the space of parameter Rm there are some a priori given iden-
tifying restrictions in the form of a system of s linear equations:

Bs×mq − c = 0
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The density f is supported in the set of solutions to the above system. Hence, it is
in the nature of the problem that solutions exists.

Proposition. A sufficient condition for the model to be identified, i.e., for every
nice f to be recoverable, is that:

rank

⎡
⎣

(∂g (0))T

n×m
0

n×1

B
s×m

−c
s×1

⎤
⎦ = m + 1

Moreover, only the values of p( ) on a neighbourhood of 0 matter.

Sketch of proof. Denote

L = ∂g (0) (Rn) ,
M = {q : Bq = αc for some α}
N = {q : Bq = c} .

The three are subspaces of Rm (N is affine). It is a simple exercise to verify that
if the rank condition is satisfied then the dimension of L is not smaller than the
dimension of M and, in fact, that the projection of L on M is onto.

We now argue that any affine half space in N i.e. any set of the form
A = {q ∈ N : q.y < β}, y ∈ Rm, can be realized by taking a y belong-
ing to L and putting β = 0. Indeed, we can first realize A in the form of
A = {q ∈ N : q.z < q̄.z}, where q̄ ∈ A and z belongs to the translate of N
to the origin. If the rank condition is satisfied then c �= 0. So, 0 /∈ N and therefore
{q ∈ N : q.z = q̄.z} spans a hyperplane in M . By the observation in the previous
paragraph this hyperplane is realized for some y ∈ L. This y does the job.

Appealing now (with some care) to the Implicit Function Theorem we conclude
that any affine half space in N can be realized in the form {q ∈ N : q.g(x) < 0}
for an arbitrarily small x.

Because the density function f lies in N and p(x) =
∫

{q∈N :q.g(x)≤0} f(x)dx
we can finally recover f from p by using the Fourier analysis techniques discussed
in Example 3. This ends the sketch of proof.

Example 3 shows that the rank condition is sufficient but not necessary for
identification. The ability to use any x not limited to a neighbourhood of the origin,
may make up for insufficient variation of g at 0. Nevertheless, it can be presumed
(?) that a more general condition will again revolve on a counting of effective
parameters versus independent directions of variations of g(x).

Remark. The entire analysis of this section uses only the information contained
in p(x), i.e. only on the pairwise comparison that include the origin. It stands to
reason that if more information was available, eg. on all pairwise comparisons, then
fewer identifying restrictions would suffice.
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