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Preface

As an obvious consequence of increasingly international competition
and the rising importance of intangible as opposed to tangible assets,
reliable methods for assessing returns and risk associated with intel-
lectual property (IP) have moved to the center stage of value-based
management in major corporations. While a variety of frameworks for
dealing with IP portfolios are conceivable, this text approaches the is-
sue from a capital budgeting perspective, devoting particular attention
to methods commonly summarized under the label “real options.” Also
in line with a burgeoning interest in economic analyses of the law, new
light is shed on the implications of imperfect patent protection, which
has led to increased litigation activity in the pharmaceutical and soft-
ware industries in particular.

Covering very basic as well as quite sophisticated models of invest-
ment under uncertainty in the presence of patent risk, this text provides
a self-contained introduction to the valuation of intellectual property
as real options and also offers some original contributions to current re-
search in the field. Although written with a primarily academic audience
in mind, it may therefore serve as a valuable resource for practitioners
looking for an up-to-date and accessible overview.

This text draws heavily upon my Ph.D. work. It would not have
been possible without the help of a number of inspired and thoughtful
people keeping me company along the way. Specifically, I would like
to thank my parents; my advisors Ulrich Hommel and Onno Lint for
their support throughout this and many other projects; Karoline Jung-
Senssfelder for being there when she is needed; Gudrun Fehler and the
assistants at the Endowed Chair of Corporate Finance and Capital Mar-
kets for assisting me in my teaching activities and for their encourage-
ment; the German National Academic Foundation for generous finan-
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cial support as well as Jürgen Bunge and Rainer Strub-Röttgerding
for supporting me morally and intellectually; the people at the Sol C.
Snider Entrepreneurial Research Center at the University of Pennsyl-
vania, in particular Ian C. MacMillan, for giving me the opportunity
to experience an exceptionally research-friendly environment; his col-
league Sidney G. Winter for having sparked thought about the strate-
gic management of innovation and the patent system; Ernesto Mordecki
(Centro de Matemática, University of the Republic Uruguay) for help-
ful comments on sect. 7.1.2; Yakov Amihud (Stern School of Business,
New York University) and Holger Kraft (Department of Mathematics,
Technical University of Kaiserslautern) for advice on conceptual and
technical issues concerning part III. All remaining errors are, of course,
my own.

Reflecting the dynamic nature of the material discussed and with the
explicit aim of motivating more detailed investigations into specialized
topics, each chapter also hints at a multitude of open research questions
to be addressed in future studies. In this respect, this text is still work
in progress. Comments, additions, and corrections are therefore highly
appreciated. You can reach me at philipp.baecker@ebs.edu.

Oestrich-Winkel, Philipp Baecker
December 2006



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Goal and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Method and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Part I Patenting Under Uncertainty

2 Patent Protection, the Firm, and the Economy . . . . . . . 9
2.1 Patents as a Strategic Resource . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Patents as an Incentive Mechanism. . . . . . . . . . . . . . . . . . . 14
2.3 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Patenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Uncertainty, Irreversibility, and Flexibility . . . . . . . . . . . 21
3.1 Capital Budgeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Traditional Approach . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1.1 Economic Rationale . . . . . . . . . . . . . . . . . . 21
3.1.1.2 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Option-Based Approach . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2.1 Origins and Connections . . . . . . . . . . . . . . 23
3.1.2.2 Non-Technical Introduction. . . . . . . . . . . . 24
3.1.2.3 Applications to Research and

Development . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2.1 Origins and Connections . . . . . . . . . . . . . . 28



viii Contents

3.2.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2.3 Differencing Schemes . . . . . . . . . . . . . . . . . 31
3.2.2.4 Early Exercise . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2.5 Advanced Methods . . . . . . . . . . . . . . . . . . . 45

3.2.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3.1 Itô–Taylor Expansion . . . . . . . . . . . . . . . . . 47
3.2.3.2 Variance Reduction . . . . . . . . . . . . . . . . . . 50
3.2.3.3 Early Exercise . . . . . . . . . . . . . . . . . . . . . . . 50

4 Patent Protection in the Pharmaceutical Industry . . . . 59
4.1 Financial and Strategic Challenges . . . . . . . . . . . . . . . . . . . 59
4.2 Risk in Pharmaceutical Patents . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Expiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Litigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Implications for Capital Budgeting . . . . . . . . . . . . . . . . . . . 65

Part II Exogenous Patent Risk

5 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . 73

6 Patents as Investment Opportunities . . . . . . . . . . . . . . . . . 77
6.1 Static Investment Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Dynamic Investment Policy . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Deterministic Payoff . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.1.1 Project-Level Analysis . . . . . . . . . . . . . . . . 80
6.2.1.2 Profit-Level Analysis . . . . . . . . . . . . . . . . . 84
6.2.1.3 Demand-Level Analysis . . . . . . . . . . . . . . . 90

6.2.2 Stochastic Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2.1 Infinite Protection Period . . . . . . . . . . . . . 94
6.2.2.2 Finite Protection Period . . . . . . . . . . . . . . 104

7 Patent Risk as Jumps in the Underlying Process . . . . . 115
7.1 Single-Stage and Single-Factor Models . . . . . . . . . . . . . . . . 115

7.1.1 Deterministic Jump Size . . . . . . . . . . . . . . . . . . . . . . 115
7.1.1.1 Project-Level Analysis . . . . . . . . . . . . . . . . 115
7.1.1.2 Profit-Level Analysis . . . . . . . . . . . . . . . . . 122

7.1.2 Stochastic Jump Size . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.2.1 Project-Level Analysis . . . . . . . . . . . . . . . . 127
7.1.2.2 Profit-Level Analysis . . . . . . . . . . . . . . . . . 137

7.2 Two-Stage and Two-Factor Models . . . . . . . . . . . . . . . . . . . 142



Contents ix

7.2.1 Perfect Patent Protection . . . . . . . . . . . . . . . . . . . . . 142
7.2.1.1 Time-to-Build . . . . . . . . . . . . . . . . . . . . . . . 142
7.2.1.2 Sequential Investment . . . . . . . . . . . . . . . . 163

7.2.2 Imperfect Patent Protection . . . . . . . . . . . . . . . . . . . 163
7.2.2.1 Certain Cost . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2.2.2 Uncertain Cost . . . . . . . . . . . . . . . . . . . . . . 167

8 From Business Shifts to Jump Processes . . . . . . . . . . . . . 177

9 Preliminary Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Part III Endogenous Patent Risk

10 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . 185

11 Patent Risk as an Option to Litigate . . . . . . . . . . . . . . . . . 187
11.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.2.1 Deterministic Payoff . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.2.1.1 Finite Protection Period . . . . . . . . . . . . . . 192
11.2.1.2 Infinite Protection Period . . . . . . . . . . . . . 196

11.2.2 Stochastic Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
11.2.2.1 Option to Litigate . . . . . . . . . . . . . . . . . . . . 198
11.2.2.2 Option to Commercialize . . . . . . . . . . . . . . 205

11.3 Variations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.3.1 Alternative Litigation Systems . . . . . . . . . . . . . . . . 216

11.3.1.1 Settlement . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.3.1.2 European Rule . . . . . . . . . . . . . . . . . . . . . . 217
11.3.1.3 Variable Cost of Litigation . . . . . . . . . . . . 218

11.3.2 Alternative Underlying Dynamics . . . . . . . . . . . . . . 218
11.3.2.1 Mean Reversion . . . . . . . . . . . . . . . . . . . . . . 218
11.3.2.2 Stochastic Interest Rates . . . . . . . . . . . . . . 219

11.3.3 Exit Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.3.4 Industry Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 219

12 Preliminary Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.2 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . 224



x Contents

Part IV Appendices

Appendices

A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.1 Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.1.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 227
A.1.2 First Hitting Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.2 Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.3 Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.4 Proposition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
B.1 Binomial and Multinomial Trees . . . . . . . . . . . . . . . . . . . . . 235

B.1.1 Single-Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 235
B.1.2 Multi-Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 237

B.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277



1

Introduction

With this text, the author proposes an integrated approach to patent
risk and capital budgeting in pharmaceutical research and development
(R&D), developing an option-based view (OBV) of imperfect patent pro-
tection, which draws upon contingent-claims analysis,1 stochastic game
theory, as well as novel numerical methods. Bridging a widening gap
between recent advances in the theory of financial analysis and current
challenges faced by pharmaceutical companies, it aims at re-initiating a
discussion about the contribution of quantitative frameworks to value-
based R&D management.

1.1 Goal and Motivation

Over the last years, due to intensive competition in the knowledge
economy, legal aspects surrounding IP rights—including litigation and
settlement—have continuously gained in importance. Correspondingly,
professional IP management has become an indispensable element of
successful value-based management (VBM) in research-intensive firms
[132, p. 1].

Moreover, since VBM is essentially about maximizing risk-adjusted
returns, risk management clearly lies at the heart of any serious attempt
at developing a reliable quantitative framework. The pharmaceutical
industry, in many ways the stereotypical research-intensive industry,
is chosen as an illustrative point of reference to clarify the benefits
of combining technology-related, market-related, and legal risk, when
1 While the application of such methods to capital budgeting, relying on a close

analogy between real investment opportunities and derivative securities, is widely
known as the “real option approach,” the author prefers the slightly less descriptive
and more general label “investment analysis under uncertainty.”
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assessing the attractiveness of investment opportunities and allocating
scarce resources across a portfolio of interrelated R&D projects.

On the one hand, both technology-related and market-related risk
factors have already been the subject of numerous analyses. More re-
cently, also the interaction between these components of risk has at-
tracted the attention of researchers in the area of option pricing. Since
technological risk is the main driver in R&D, when it comes to applying
such techniques in a capital budgeting context, practitioners intuitively
recognize the importance of an integrated perspective. On the other
hand, only very few contributions explicitly account for patent risk or
even set out to examine how imperfect patent protection changes the
overall risk profile and, as a consequence, optimal capital allocation.
Among the rare exceptions are mostly empirical analyses, by and large
lacking a thorough microeconomic foundation.

Nevertheless, the potential value impact of litigation is enormous.
Of all patents litigated in the pharmaceutical industry, around 50 per-
cent are found to be invalid, including some of the most valuable ones.
For instance, in 2002, following a lawsuit in which Chiron had sought
over 1 billion dollars in damages from Genentech, Chiron’s patent on
monoclonal antibodies specific to breast cancer antigens was invali-
dated. In 2000, the United States Court of Appeals for the Federal
Circuit (CAFC) invalidated an Eli Lilly patent on Prozac. Although
this decision came less than two years before the patent was set to ex-
pire, it caused Eli Lilly’s stock price to fall by 31 percent in a single day
[193, p. 76].

As the title implies, particular emphasis will thus lie on the role of
imperfect patent protection, and how it affects profitability and incen-
tives in an economy, where value creation is increasingly attributed to
intangible assets. A primary tool employed throughout the analysis will
be the real option approach to investment valuation, drawing the most
comprehensive picture of all relevant aspects of the challenging deci-
sion problems at hand. Therefore, the discussion will also touch upon
some methodological issues, generating new insights into the intrica-
cies of option-based decision making, its advantages and disadvantages.
Nevertheless, the reader should keep in mind the ultimate objective
of connecting the corners of a proposed risk triangle, encompassing
market-related, technology-related, and patent-related elements. The
author will demonstrate how this triangle may form the basis of truly
value-based R&D management, which goes beyond an isolated treat-
ment of risk factors.
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Although not all types of intangible assets are and can in principle
be protected by patents—even a casual analysis of value drivers in the
pharmaceutical industry shows the paramount importance of IP,2 more
specifically the length, breadth, and strength of patent protection [219].
Contributing to the vast body of literature on IP management, the text
also provides a self-contained introduction to relevant continuous-time
and discrete-time option models, describing their sensitivities to some
key characteristics commonly used to describe pharmaceutical R&D
projects.

Fleshing out some important ideas in detail and hinting at several
opportunities for future research, the analysis proceeds by developing
various option-based formalizations of imperfect patent protection. This
text thus not only contributes to and provides a brief overview of the ex-
isting literature on contingent-claims analysis in pharmaceutical R&D,
but also extends the paradigm to settings of imperfect patent protec-
tion.

Furthermore, since closed-form solutions to more advanced option-
based models are rarely available, a significant part of the exposition is
devoted to procedures required to obtain numerical results. Following a
review of the more familiar finite differencing schemes, the author devel-
ops and evaluates a variety of novel techniques involving Monte Carlo
simulation in combination with genetic algorithms (GAs) and pattern
search. In addition, this text advances applied research on option valua-
tion, presenting one of the first implementations of a high-dimensional
quasi-random number generator (QRNG) publicly available and demon-
strating its performance in a variety of settings.

As a result of the multi-faceted nature of the R&D process, it be-
comes necessary to introduce a number of simplifications in order to
capture the complexity of real-world decision problems using stylized
formal models. Wherever appropriate, the author will shed light on
the relationship between the methods described and quantitative tech-
niques and heuristics commonly employed by practitioners in the field.
Consequently, despite a strong focus on the state of the art in capi-
tal budgeting, the ultimate goal of this text remains to advance both
the theory and the practice of resource allocation in industries that are
driven by investments into promising but highly uncertain endeavors.

Coming from a more theoretical angle and beyond the narrower re-
search question of how to best implement value-based R&D manage-

2 A closer look reveals that only a small fraction of value-generating intangibles
actually enjoys patent protection. It is a widely-known fact that the intellectual
capital of a firm is very difficult to identify, let alone to quantify or contract upon.
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ment in the presence of patent risk, the OBV outlined in this text
could be regarded as a cornerstone of an equally ambitious and inno-
vative reconceptualization of uncertain property rights. Again, capital
budgeting in pharmaceutical R&D will serve as an illustrative example,
demonstrating the wide applicability of the concepts presented.

Figure 1.1 illustrates graphically how uncertainty (1) during the in-
terrelated phases of R&D and commercialization (2) drives patent and
project value (3). However, when trying to capture opportunities by
choosing an optimal investment policy in response to market-related,
technology-related, and patent-related risk factors (4), it is important to
anticipate competition, which has a profound impact on uncertainty as
well as investment policy (5), eventually causing substantial variations
in profitability. Throughout the following chapters, selected aspects of
this complex decision problem will be the subject of intensive analysis.

Competition ➄➄

Patent Commercialization

➄

➁Market Uncertainty

➀

➀

Investment
policy

➃

➃

Technology Research and
development

➂

Risk and
opportunity

Patent and
project value ➂

Fig. 1.1. A framework for analyzing R&D under combined market-related,
technology-related, and patent-related uncertainty.

In summary, four interrelated research questions are to be addressed,
which were identified as gaps in the extant literature on option-based
capital budgeting in R&D.
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How does patent risk change patent value and investment
policy?

Neglecting imperfect patent protection means ignoring an important
driver of patent value. Hence, determining optimal investment policies
is impossible unless one accounts for patent risk. Nevertheless, common
methods for R&D valuation are characterized by a lack of systematic
approaches to patent risk assessment. A variety of ways to overcome the
obvious limitations of these methods within the framework of option-
based capital budgeting are presented and described in detail.

What is the source of patent risk?

Simply including patent risk as some exogenous parameter in the val-
uation process fails to explain its determinants and how these are tied
to other key value drivers. So far, no convincing formalization based on
the theory of investment under uncertainty has been proposed. A novel
game-theoretic approach for the formal treatment of imperfect patent
protection is developed and analyzed both analytically and numerically.

How do market, technology, and patent risk interact?

Although, in the parlance of option theory, both technological and
patent risk can be regarded as technical risk, they affect the value of
R&D in distinct ways and should thus be treated differently. With few
noteworthy exceptions, researchers have failed to do so and, for this
reason, have also paid little attention to how the various types of risk
interact. The author introduces a variety of formal models which may
serve as blueprints for comprehensive risk management tools to be de-
vised in the future.

Are option-based models of imperfect patent protection
ready for practice?

There is a widening gap between valuation tools popular in practice
and the highly sophisticated techniques found in the academic litera-
ture. This gap complicates a fruitful dialog between practitioners and
academics, thereby inhibiting significant progress in the field of quan-
titative methods for IP management. Several advanced models are de-
scribed in detail, employing a level of formality that renders the discus-
sion accessible to a wider audience.
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Owing to the necessarily limited scope of the exposition, one also
needs to point out some aspects that, regardless of their obvious rele-
vance to capital budgeting in pharmaceutical R&D in general and the
issue of imperfect patent protection in particular, have been excluded
from the formal part of the analysis or might not receive their due
share of attention in the discussion. Specifically, these aspects include
the peculiarities of technology platforms, the wide field of quantitative
portfolio management, as well as decision problems to be dealt with
by generics manufacturers.3 Also, ethical as well as legal issues sur-
rounding the patentability of certain pharmaceutical innovations are
not discussed in detail. The interested reader is referred to the numer-
ous sources provided throughout the text.

1.2 Method and Outline

As explained previously, analyses are in line with, but also improve
upon modern theory on value-maximizing investment strategies under
uncertainty, which hinges on a close analogy between real investment
opportunities and derivative securities.

Roughly speaking, the material following this introduction is divided
into three parts. Part I (“Patenting Under Uncertainty”) introduces the
reader to the economic significance of patents, investment under uncer-
tainty, and the specific challenges faced by research-driven, pharmaceu-
tical firms. Advancing financial and game-theoretic research into the
nature of R&D, parts II (“Exogenous Patent Risk”) and III (“Endoge-
nous Patent Risk”) offer two alternative approaches to capturing patent
risk in formal models. Both lead to a more thorough understanding of
dynamic investment policies and are, despite fundamental differences,
closely related. The text concludes with a brief summary of important
findings and suggestions for future research.

Section 3.2 in particular as well as parts II and III are slightly more
formal than the remaining discussion. Nevertheless, an attempt was
made to construct models from the most basic of building blocks and
keep mathematics to a necessary minimum. The appendix contains sev-
eral proofs not included in the text as well as additional technical details
on numerical methods.

3 On several occasions, however, it will not be difficult to draw far-reaching con-
clusions based on the general mechanisms underlying the models presented. The
author will highlight such connections whenever possible without obscuring the
line of argument.
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2

Patent Protection, the Firm, and the Economy

This chapter serves as an introduction to the issue of patenting from a
manager’s as well as an economist’s perspective. Since it is beyond the
scope of the analysis to review relevant strategic management research
or the economics of the patent system in its entirety,1 the discussion will
be limited to selected arguments, sufficient to shed light on the two sides
of IP, which is both a strategic resource and an incentive mechanism.

2.1 Patents as a Strategic Resource

Observation 2.1. From a manager’s perspective, patents constitute a
strategic resource, which can be employed to gain competitive advan-
tage.

Contrary to the industry-centered approach of popular strategic
analysis, which is exemplified by the widely-known works of Porter
[272, 273], contemporary management research has increasingly shifted
its focus from monopoly rents2 originating on the industry level to the
factors that determine how a firm gains competitive advantage by ac-
quiring, developing, and retaining valuable resources [320]. More pre-
cisely, only resources that are valuable, rare, inimitatable, and non-
substitutable (VRIN) can be considered a source of economic rents or,
to put it differently, competitive advantage [23].

1 For a more extensive overview of the economics of patents see for example
Langinier and Moschini [179].

2 Under which conditions firms may benefit from such rents follows from a careful
analysis of structure, conduct, and performance in a particular industry. Strategic
management within this framework boils down to the mirror image of antitrust
policy [225].
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Due to its partly inward-looking perspective [212], the resource-
based view (RBV) of the firm, originally developed by Lippman and
Rumelt [205], Barney [22], and Wernerfelt [335], is more or less comple-
mentary to external analyses relying on Porter’s “five forces.” Possibly
for exactly this reason, it has evolved into one of the most influential
ideas in the field of strategic management.3

Nevertheless, the RBV has been criticized as tautological on several
occasions,4 mainly because it does not fully explain why some firms are
more successful in building their portfolio of resources than others. This
shortcoming motivates a rising interest in the capability-based view of
the firm. According to the capability-based view, competitive advantage
is obtained and defended by effectively leveraging existing capabilities
to transform resources and developing new ones as the need arises [319].

The notion of a “core competence” [274] represents a useful heuristic
for selecting desirable capabilities in line with the strategic intent formu-
lated by senior management [294]. A significant danger lies in core com-
petencies becoming core rigidities and, eventually, core in-competencies.
Sustainable competitive advantage is thus rooted in dynamic capabil-
ities, that is capabilities of higher order, which facilitate the integra-
tion, generation, and reconfiguration of capabilities in a highly uncer-
tain world [223, 322].

There is an obvious link between the capability-based view of the
firm and the concept of intangible assets, which is inspired by the stock-
taking approach characteristic of traditional accounting. Like tangible
fixed assets, intangible assets are long-lived and used in the production
of goods and services. However, they lack physical properties. Typi-
cally, intangible assets represent legal rights or competitive advantages
developed or acquired by a firm. Simply put, there is a direct correspon-
dence between the intangible assets and capabilities of a firm. As the
term “asset” suggests, most of these capabilities are assumed to be static
in nature. In contrast, the management of intangible assets necessarily
involves dynamic capabilities.5

When managing intangible assets, one needs to account for consider-
able differences with respect to their useful lives and other key charac-
teristics: patents, copyright, trademarks, and similar intangible assets
can be specifically identified with reasonably descriptive names (iden-
3 For more recent contributions see Amit and Schoemaker [5], Barney [23], Dierickx

and Cool [88].
4 For an introduction to the controvery regarding tautology in the RBV see Barney

[24], Foss [108], Priem and Butler [278, 279].
5 For a more detailed assessment of the relationship between industrial organization,

the RBV, and property rights see Foss and Foss [107].
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tifiability); intangible assets may be purchased or developed internally
(manner of acquisition); some intangible assets have a definite life estab-
lished by law, contract, or economic behavior (definite or indefinite life);
since the right to a patent, copyright, or franchise can usually be iden-
tified separately, it can also be transferred by selling it to an interested
counterparty (transferability).

For valuation purposes, intangible assets must be readily identifiable
and separable from other assets used in the same firm. Legally speak-
ing, an intangible asset can be defined based on practical considerations,
such as whether it is supported by a contract (contractual-or-legal crite-
rion) or whether its economic value can be measured objectively over a
definite lifetime.6 Intangible assets that cannot be separated from other
assets of the firm are included in goodwill (separability criterion) [220].

IP is a subset of intangible assets. Consequently, valuation methods
applicable to intangible assets also apply to IP—specifically patents,
copyrights, trademarks, and identifiable know-how [3]. The ability to
determine the market value of a piece of IP is a prerequisite for optimal
patent strategies and, more specifically, value-based IP management.7

Of course, intellectual property rights (IPRs) are not the only means
of appropriating returns from innovation [199]. Other possibilities in-
clude complementary assets [321], first-mover advantage [200], uncer-
tain imitability [205], learning curve advantages, and secrecy. Therefore,
the effectiveness of IPRs also varies by industry [318].

However, what makes patent protection in particular such a worthy
subject of current research, is the growing use of patents as instruments
to avoid litigation, increasingly in contrast to their original constitu-
tional and statutory basis. This development is seen by some experts as
evidence of the abandonment of the foundations of an effective patent
system. Instead of the patents themselves, budgets for litigation and
patent enforcement are the true determinants of monopoly power.

While, before the advent of the knowledge economy, IP protection
used to be a rather arcane subject and the exclusive domain of legal
experts, it has since appeared on the daily agenda of senior management
in many industries, including pharmaceuticals. This change of mind

6 IAS 38 (“Intangible Assets”) now states that intangible assets may have an indef-
inite useful life when there is no foreseeable limit on the period over which the
asset is expected to generate net cash inflows for the entity in question. However,
the reader should bear in mind that the main focus of this analysis are intangible
assets in the economic sense of the term, which does not necessarily coincide with
legal definitions.

7 For a comprehensive treatment of IP management in practice see Nermien [256].
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reflects the empirical fact that IP typically accounts for the lion’s share
of value growth among market leaders [222, p. 5]

Heightened litigation activity and declining patent quality are at
least partially due to the current regulatory environment. Step by step,
patent offices in the US, Europe, Japan, and other industrialized coun-
tries, have developed from protectors of the public against excessive
monopoly power to facilitators of patent propagation [193, p. 79]

For instance, whereas the examination process at the United States
Patent and Trademark Office (USPTO) takes nearly three years on
average [4], a patent examiner spends an average of only 18 hours per
application comparing the application and prior art, writing provisional
rejections, reviewing responses and amendments, conducting an inter-
view with the applicant’s attorney, and eventually writing a notice of
allowance [191].

Despite comparatively superficial examination, the PTO has accu-
mulated an impressive backlog of more than 750,000 patent applica-
tions. Moreover, the patent prosecution process suffers from structural
deficiencies encouraging the PTO to grant patents of questionable qual-
ity. Apart from a high examiner turnover, the incentive system rewards
examiners only for allowing, not for rejecting applications [234, 323]. In
sum, around 85 percent of patent applications in the US lead to an is-
sued patent. Success rates in Europe and Japan are substantially lower
[280].

The European patent opposition system in particular has shown to
be effective in selecting valuable patents. Patents that survive an oppo-
sition proceeding in Germany are more valuable than any other type
of patent [134]. Taking advantage of the superior information of indus-
try participants to identify patents worthy of receiving more intensive
scrutiny, would enable the PTO to focus its resources on the patents
that are both questionable and commercially relevant.8

However, such differences by no means imply that all patents issued
in Europe or Japan are of high quality. Firms must confront the reality
that the majority of patents is not transferable into assets for use in
financial transactions [222, p. 5]

In addition, following the reinterpretation of the inventive-step cri-
terion of patentability in 1952, the patent system has developed from
a mechanism suitable for protecting the results of individual ingenu-

8 Nevertheless, any opposition system requiring the active participation of third
parties is also subject to a free-riding problem [193]. Furthermore, an opposi-
tion process tends to increase the cost of conflict resolution [198]. For detailed
discussions of post-grant opposition see Hall et al [131], Harhoff et al [136].
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ity to one supporting purposeful, routine corporate R&D [168]. Rou-
tine R&D typically takes the form of entire portfolios of risky projects.
R&D portfolios, in turn, yield patent portfolios, which primarily serve
as “bargaining chips” in the negotiation of cooperative arrangements, de-
signed to prevent lockout from state-of-the-art technologies developed
by competitors.

With the share of products and processes involving advanced tech-
nologies growing, patent pools gain in importance. Simply put, such
agreements give all members of the pool access to the technologies of
all other members, thus helping to avoid costly negotiation or litigation.
If, however, the use of patent pools is forbidden by law, firms tend to en-
gage in widespread patenting, as a safeguard against competing patents
that might hinder incremental improvement in the future.9 Eventually,
the fear of being locked out leads to an “arms’ race,” patent strategies
aimed at preventing competitors from exploiting alternative technolog-
ical trajectories altogether [132, p. 4]. The resulting IP “mine field,” or
patent thicket, develops into a serious impediment to innovation [308].

For an excellent, purely qualitative account of economic problems
related to imperfect patent protection and patent thickets, for example
royalty stacking, the reader is referred to the fairly recent discussion of
probabilistic patents by Lemley and Shapiro [193]. Part III of this text
addresses several of the issues raised using a formal model.

Regardless of problems surrounding the patent system, knowledge
undoubtedly is the primary economic resource, turning its management
and protection into cornerstones of corporate strategy. This insight is
also reflected in the economic literature. For instance, the number of
publications on patents indexed in ECONLIT, increased from around
40 publications between 1981 and 1984 to more than 250 publications
between 1999 and 2002 [132, p. 1]

Before elaborating on the various valuation methods used in prac-
tice, the following section therefore briefly discusses patents from an
economist’s perspective.

9 Nevertheless, as pointed out by Shapiro [308], the strategic accumulation of
patents in patent pools may also result in high barriers to entry. For instance,
a new firm in the semiconductor industry typically spends around 150 million
dollars in licensing fees for basic technologies that, in the end, might turn out to
be only of limited practical use [130].
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2.2 Patents as an Incentive Mechanism

Observation 2.2. From an economist’s perspective, patents constitute
an incentive mechanism, which can be designed to maximize welfare.

Although much has been written on the economics of patenting,
researchers have yet to agree on an answer to the challenging question
of which patent system provides optimal incentives and achieves the
goal of balancing innovation and competition. David admits:

“There is no settled body of economic theory on the subject [of
IP protection] that can be stated briefly without doing serious
injustice to the sophisticated insights that have emerged over
many decades of debate. Instead, the relevant economic litera-
ture is extensive, convoluted, and characterized by subtle points
of inconclusive controversy.” [84, p. 23]

Put aside these difficulties, a useful categorization of patent research is
provided by Nelson and Mazzoleni [255], who propose classifying contri-
butions into four broad theories about the benefits and costs of patents:
(1) the prospect of obtaining patents motivates invention (“invention”
theory); (2) while invention takes place regardless of the level of IP
protection, patents induce inventors to disclose their findings to the
public (“disclosure” theory); (3) patents are required to justify invest-
ments leading to the development and commercialization of inventions
(“development and commercialization” theory); (4) patents facilitate the
orderly exploration of broad prospects for derivative inventions (“explo-
ration” theory). These theories, briefly described in the following, are
not necessarily mutually exclusive.

The “invention” theory in its basic form presumes that, without a
patent system, incentives for invention are too weak to reflect the public
interest [12, 259, 293]. According to the “invention” theory, stronger
patent protection thus always increases inventive activity. Conversely,
if patents are not required to induce invention, granting a patent leads
to a reduction in welfare.

Executives in the pharmaceutical industry agree that 60 percent of
their new drugs would not have been developed without patent pro-
tection. In addition, most studies suggesting that invention does not
crucially depend on patent protection focus on large and medium-sized
firms, which typically are in a position to exploit inventions by using
them in their own production process. Inventors who depend on sale
or licensing to reap returns are sure to consider patents highly impor-
tant [255, pp. 18–21] Furthermore, a lot of what was learned in studies



2.2 Patents as an Incentive Mechanism 15

motivated by the invention-inducement theory might not be relevant to
research tools, for instance in biotechnology.10

In contrast to the “invention” theory, the “disclosure” theory pre-
sumes that secrecy is possible and sufficient to induce invention. Nev-
ertheless, society is better off granting IPRs and getting disclosure in
return. Disclosure makes the invention available for uses that the in-
ventor was not aware or in a position to take advantage of. In other
words, a patent advertises the presence of an invention and facilitates
licensing. This mechanism seems to play a key role in pharmaceuticals
[255, pp. 21–22].

Simply put, the “development and commercialization” theory is a
variant of the “invention” theory, but with patents granted early in the
inventive process. Early-stage patents provide the assurance that the re-
wards of technologically successful development are capturable, thus mo-
tivating the decision to engage in development in the first place. What
is more important is that ownership of a patent enables the holder, pos-
sibly a small firm faced with large development costs, to raise capital for
development financing. Alternatively, the original inventor’s possession
of a patent facilitates handing off the task to a large-scale organization
better situated for development and commercialization. Such scenarios
are in fact fairly common in research-incentive industries, again includ-
ing pharmaceuticals [255, pp. 22–23].

Similar to the “development and commercialization” theory, the “ex-
ploration” theory proposes that the social benefits of patents accrue
after the initial invention [171]. Presumably, making an early-stage in-
vention freely available leads to a development process that is chaotic,
duplicative, and wasteful, whereas granting a broad patent on such an
invention enables orderly development of broad technological prospects.
Consequently, the main difference between the “exploration” and the
“development and commercialization” theory is a wider range of sub-
sequent development projects or inventions depending on the initial
invention as an input. Many research tools invented at universities, for
example protein and DNA sequencing instruments, fall in this category
[255, pp. 23–25].11

10 A detailed analysis of patenting in pharmaceutical biotechnology is beyond the
scope of this text. For more information on IPRs in biotechnology see Adler
[2], Eisenberg [99], Forman and Diner [106], Gold et al [118], Jackson [153]. For
a discussion of moral issues in connection with biotechnology patents see also
Crespi [80].

11 For a thorough analysis of reach-through licensing in pharmaceuticals see Eisen-
berg [100].
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The basic tradeoff between welfare losses and gains described so far
is summarized in table 2.1. Particularly if one follows the “exploration”
theory, but more generally whenever an invention is viewed as a plat-
form for subsequent inventions, the costs and benefits of patents are no
longer fully captured by a static tradeoff between positive effects on in-
ventive activity on the one hand and negative effects on competition on
the other. Rather, in contrast to the very simplistic “invention” theory,
welfare losses and gains due to strong patents are determined by their
long-term impact on innovation [255, p. 25].

This insight calls for formal models of the patent system accounting
not only for the length and breadth of IP protection, but also for the
quality of patents granted, which, as shown above, has deteriorated
noticeably in recent years. The following section serves to clarify how
recent developments in accounting and patent law have contributed
to the evolving economic role of patents, forcing firms to continuously
reassess their patent strategies.

Table 2.1. Intellectual property as an incentive for innovation (Source: table
adapted from Harhoff [133, p. 5]). The effect of IP on innovation and competition
requires a tradeoff between welfare losses and gains.

Welfare Effect of patents

Innovation Competition

Losses Patent thickets, hold-up
problems

Market power

Gains Invention and diffusion Market entry

2.3 Recent Developments

Over the last decades, legal changes in both patenting and accounting
have repeatedly altered the rules of competition in research-intensive
industries.

2.3.1 Patenting

The introduction of the CAFC in 1982 marked the beginning of an
era of strong IPRs in the US, accompanied by a number of important
changes in the legal environment [93].
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Most importantly, courts became more and more “patent-friendly.”
Before 1980, a district court ruling that a patent was valid and infringed
was upheld on appeal 62 percent of the time. Between 1980 and 1990,
the share of rulings upheld increased to 90 percent. Conversely, appeals
overturned only 12 percent of district court rulings on invalidity or non-
infringement before 1980. The share of rulings overturned during the
later period rose to 28 percent. As a result, the overall probability of
a litigated patent being held valid has now reached roughly 54 percent
[155]. In addition, patent holders asserting infringement are also much
more likely to successfully seek a preliminary injunction barring the
competitor from selling the product in question for the duration of the
litigation process [180, 181].12

The Drug Price Competition and Patent Term Restoration Act
(Hatch–Waxman Act) of 1984 aimed at promoting both pharmaceu-
tical innovation and diffusion by compensating research-based firms for
time lost during the FDA approval process, while facilitating generic
entry in the US.13

The Act provides incentives to contest the validity of a patent by
granting successful challengers the exclusive right to market a generic
equivalent for 180 days [66]. Although manufacturers of branded drugs
may request a 30 months postponement of the FDA approval of generic
drugs [111], the Act has in fact intensified competition. In the mid-1980s,
generic products accounted for a mere 19 percent of all prescriptions.
By 1999, this figure had risen to 47 percent [122].

Furthermore, the scope of patentable subject matter was expanded
to also include genetically engineered bacteria and animals, genetic se-
quences, and the like. The share of biotechnological patents grew from
about 3 percent of total patents in 1961 to about 6 percent in 1991.
This increase was even stronger in the nineties [111].14 Nevertheless,
the expansion of patentable subject matter alone does not justify the
recent surge in patenting [155].

Consequently, Kortum and Lerner [175] empirically test a variety of
hypothesis trying to explain this remarkable trend: increased patenting
takes place in response to stronger IP protection; increased patenting
is due to a sharp rise in a few new fields benefiting from extraordinary
scientific and technological progress; increased patenting results from

12 For a formal analysis of time factors in patent litigation see Aoki and Hu [9].
13 Generic firms need only demonstrate that their product is bio-equivalent to the

pioneering brand to receive market registration and may file an abbreviated new
drug application (ANDA) [122, p. 90].

14 For additional data see Lerner [195].
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large firms reacting to a perceived relaxation of antitrust vigilance by
accumulating patent portfolios. Although their analysis seems to indi-
cate that more productive R&D is the driving force, other studies hint
at completely different motives [130].

More specifically, Cohen et al [67] argue that the reconciliation of
increased patenting and a lack of perceived effectiveness may lie in
a steadily rising number of firms that adopt aggressive IP strategies.
Patents not only protect specific inventions. As explained earlier, firms
frequently employ patents to block competing products, as a “currency”
in cross-licensing, and to prevent or defend against infringement law-
suits. In many cases, the use of patents turns out to be a zero-sum
game with only marginal impact on innovation incentives [130].

The type of patent portfolio race observed in many industries is thus
consistent with rising rates of patenting as well as rising patent-per-
R&D ratios, which are not attributable to a significant gain in net patent
value. Still, patents might increase overall efficiency by supporting the
ongoing deconstruction of the pharmaceutical value chain.

There are good reasons to believe that a combination of technological
opportunities, the buildup in government R&D spending and defense
procurement, international competition, and other factors increasing
the returns to R&D would have resulted in a rising number of patents,
even without legal reform strengthening the patent system. Stronger
IP protection presumably only served to reinforce existing tendencies
and did little to stimulate innovation [155]. In summary, patent regime
changes in the 1980s possibly caused a substantial part of resources
to be diverted from innovation towards the acquisition and defense of
IPRs.

Weak patent protection does not necessarily hinder inventive activ-
ity; and strong patent protection does not necessarily slow down diffu-
sion. An optimal configuration of patent and antitrust law may ensure
sufficient incentives for R&D and, at the same time, promote inter-
firm knowledge transfer by inducing the diffusion of results through
cooperative arrangements, for example licensing [260]. An overly broad
interpretation of patent scope, however, may be harmful to economic
growth, leading to lengthy battles in court instead of fostering genuine
rivalry in technical progress [235].

Introduced in August 2005, the Patent Reform Act clearly is the
most comprehensive change to US patent law since Congress passed
the 1952 Patent Act. It proposes a dramatic change in the patent ap-
plication process, again granting rights to the inventor (redundantly
referred to as the first to invent), as apposed to the first to file a patent
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application. In essence, the reform addresses several issues in connec-
tion with excessive litigation mentioned earlier, including, for example,
treble damages in the case of willful infringement, invalidity due to
inequitable conduct, and access to injunctions [236]. Nevertheless, it
is comparatively safe to assume that imperfect patent protection will
continue to trouble decision makers and researchers in the foreseeable
future.

2.3.2 Accounting

Although accounting principles are not the focus of this text, recent
reforms in this important regulatory field should not be neglected.

The last decade has brought a number of changes in the rules for
IP valuation. Above all, the Sarbanes–Oxley (SOX) Act has played a
major role in the transformation of reporting standards. Together with
the new SEC regulations SFAS 141, 142, and 144,15 it has dramati-
cally altered the way firms value and account for IP in mergers or other
business combinations. Not only US-based firms, but firms operating
internationally in general are affected. The new rules differ with respect
to scope, level of detail, definition of asset classes, due diligence require-
ments, and frequency of valuation. Unsurprisingly, the potential impact
on earnings following an acquisition is substantial.

The FASB released its new regulations in 2001, after a long period of
study, hearings, private inputs, and public testimony. SFAS 141 and 142
primarily cover valuation issues. They require firms to use the purchase
method of accounting for business combinations and to provide the fair
value of all intangibles in a detailed purchase price allocation (PPA)
report.16 SFAS 144 is concerned with impairment tests. If the value of
an intangible asset has been impaired and the firm chooses to dispose
of it, SFAS 144 also sets standards for disposal value.

Taken everything together, the increasing use of patents as instru-
ments of strategic management, in combination with the rising impor-
tance of fair value accounting, necessitates novel techniques for IP val-

15 Written out in full, the relevant statements are “Business Combinations”
(SFAS 141), “Goodwill and Other Intangible Assets” (SFAS 142), “Accounting
for the Impairment or Disposal of Long-Lived Assets” (SFAS 144). Correspond-
ingly, IAS 22, 38, and 36 address “Business Combinations,” “Intangible Assets,”
and “Impairment of Assets.”

16 US-GAAP themselves provide no exact definition of fair value. IAS 22, however,
defines fair value as “the amount for which an asset could be exchanged or a
liability settled between knowledgeable, willing parties in an arm’s length trans-
action.”
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uation that reflect and integrate all relevant risk factors, including im-
perfect patent protection. Existing techniques, by and large, are char-
acterized by an isolated treatment of risk factors affecting future cash
flows, possibly leading to an overly optimistic or pessimistic assessment
of exposure.

Effective methods for valuing IP are also likely to support its role in
facilitating economic growth through innovation. The following section
therefore compares traditional and option-based approaches to capital
budgeting, hinting at methodological challenges to be discussed in later
chapters.
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Uncertainty, Irreversibility, and Flexibility

The main characteristics of investment decisions in real-world situa-
tions are uncertainty, flexibility, and irreversibility. This chapter serves
to highlight differences between the traditional and the option-based
approach to capital budgeting. In addition, a detailed review of option
pricing techniques employed in further analyses is provided.

3.1 Capital Budgeting

Capital budgeting is about making optimal investment decisions. How-
ever, no approach is guaranteed to yield optimal decisions under all
circumstances. Hence, a variety of alternative approaches coexist. For
the simple reason of clarity, techniques that do not involve option pric-
ing are referred to as “traditional” in the following.

3.1.1 Traditional Approach

The traditional approach to capital budgeting is based on the net
present value (NPV) criterion. Before presenting some of its variants
geared specifically towards intangible asset valuation in more detail, a
brief look at the underlying economic rationale is advisable.

3.1.1.1 Economic Rationale

Abstracting from agency problems, the separation theorem in financial
markets states that all investors will accept or reject the same invest-
ment projects, regardless of their personal preferences. The investor may
reduce C0 and give up consumption today, in exchange for an increase
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in C1, that is additional consumption tomorrow. The slope of the mar-
ket opportunity line is determined by the interest earned on investment
today.

Figure 3.1 illustrates why it is optimal to choose E1 on the produc-
tion opportunity curve and move along the market opportunity line,
rather than to choose E2, which—judging by the utility curves U2 and
U3—is clearly inferior to E3. Consequently, rational investment deci-
sions are based on the NPV rule: an investment is advantageous if and
only if the present value of cash flows resulting from it is positive. Per-
sonal preferences for consumption can be factored in by lending and
borrowing.

C0

C1 Market opportunity line

Production
opportunity

curve

E1

U1

E2
U2

E3

U3

Fig. 3.1. Separation of financing and investment decisions (Source: figure adapted
from Trigeorgis [328, p. 30]).

In intangible asset valuation, the NPV rule is referred to as the
“income approach,” contrasting it to the market and the cost approach.1

3.1.1.2 Variants

Practitioners in accounting have developed variants of the income ap-
proach, designed to address specific issues in the valuation of intangi-
ble assets [3]. These include the relief-from-royalty method, the Multi-
Period-Excess-Earnings Method (MEEM), and the incremental-cash-
flow method [282]. A certain degree of subjectivity is unavoidable, since
the same asset can be valued differently, depending on the valuation
context [222, p. 10].
1 Alternative methods not discussed here include the use of value indicators such

as patent renewal data [72, 186, 305].
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3.1.1.2.1 Relief from Royalty

The relief-from-royalty method is based on an estimate of hypothetical
after-tax royalty payments one would have to pay to a third party to
reap the benefits of the intangible asset in question. It therefore requires
representative data on recent licensing deals and is commonly applied
in patent, franchise, and brand valuation.

3.1.1.2.2 Multi-Period Excess Earnings

When using the MEEM, incremental after-tax cash flows attributable
only to the subject intangible asset are quantified to obtain its value.
Following AICPA guidelines, the net cash flows attributable to the sub-
ject asset are those in excess of fair returns on all other assets that are
necessary to their realization. The latter are referred to as “contributory
assets.” Typically, the MEEM is applied in the valuation of customer
relationships and R&D processes.

3.1.1.2.3 Incremental Cash Flow

The incremental-cash-flow method aims at estimating the PV of addi-
tional cash flows resulting from the possession of a particular intangible
asset and is almost exclusively applied in brand valuation.

3.1.1.3 Limitations

Put aside fundamental criticism related to the incompleteness and in-
efficiency of markets, NPV fails to account for managerial flexibility
[140, 141]. This deficiency has lead to an increased interest in novel,
option-based methods.

3.1.2 Option-Based Approach

Before introducing the approach on a non-technical level, the following
section briefly addresses the origins of option-based capital budgeting.

3.1.2.1 Origins and Connections

In the early 1970s, Black and Scholes [35], Merton [238], and others
developed a theory of rational option pricing. Even before a thorough
methodological foundation was laid almost a decade later [76, 137, 138],
Myers [253] recognized the applicability of option pricing in the wider
context of corporate finance. A multitude of authors has since followed
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in his footsteps, analyzing almost anything from natural resource in-
vestments to real estate.2

3.1.2.2 Non-Technical Introduction

Roughly speaking, the approach is based on a straightforward analogy
between flexibility in financial and real investment decisions.

3.1.2.2.1 From Financial to Real Options

The classic Black–Scholes equation for a European call option on stock
is

c(St, t) = StN(d1) − Ke−r(T−t)N(d2),

with

d1 =
ln (St/K) +

(
r + 1

2σ2
)
(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t,

where St is the stock price at time t, K the strike price, σ volatility, r
the risk-free rate, and T maturity [35, 238].

Each of the its parameters corresponds to one of the six value drivers
in the real option hexagon (see fig. 3.2) [196, p. 9]. The use of option
theory in the evaluation of real investment opportunities enables an
assessment of the value of flexibility that is consistent with financial
markets. Similar to the NPV rule suitable for analyzing static invest-
ment policies, option pricing is thus independent from individual prefer-
ences. Later chapters will serve to demonstrate this mechanism as well
as underlying assumptions in detail.

A illustrated by fig. 3.3, flexibility creates value, because it enables
firms to wait for uncertainty to resolve and revise their original action
plans accordingly. Effectively, the lower part of the profit distribution
is cut off, while preserving full upside potential. Of course, in realistic
models of investment under uncertainty, the additional value generated
by an option might not always be as obvious.

2 For an extensive review of the relevant literature see Baecker and Hommel [17].
See also Dixit and Pindyck [91], Grenadier [127], Trigeorgis [328].
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Fig. 3.3. Uncertainty as a value driver (Source: Amram and Kulatilaka [6, p. 35]).

3.1.2.2.2 Limitations

Highly innovative technologies with novel uses and unknown risk pro-
files pose severe difficulties, since it is no longer safe to assume that
markets for such assets are arbitrage-free [147]. In fact, the very na-
ture of innovation lies in a sort of arbitrage. Hence, traditional capital
budgeting techniques yield indicative results at best. The option-based
approach is no different in this regard, but provides the distinct advan-
tage of properly capturing important decisions during later stages of
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the investment process. In particular part II will serve to examine such
issues from a more technical perspective.

3.1.2.3 Applications to Research and Development

While most of the early contributions were in the field of natural re-
sources, there has been a growing interest in applications to R&D lately,
leading to new insights about the relationship between finance and strat-
egy. Apart from very abstract formal models, a number of conceptual
papers have examined the role of options in real-world settings. One ex-
ample is the opportunity portfolio developed by McGrath and MacMil-
lan [230].

For obvious reasons, successful R&D management requires a portfo-
lio perspective. Employing the option analogy on the conceptual level,
McGrath and MacMillan propose a framework, which assists in catego-
rizing opportunities available to the firm based on the perceived level
of technological and market uncertainty (see fig. 3.4). In addition to
comparatively safe enhancement launches, firms should invest in posi-
tioning and scouting options as well as stepping stones, enabling them
to learn and take advantage of new opportunities as they arise.

Market uncertainty
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High

Enhancement
launches

Scouting
options

Platform launches
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Fig. 3.4. A portfolio for categorizing opportunities available to the firm (Source:
McGrath and MacMillan [231, p. 176]).

Although such frameworks are extremely helpful in practice, thor-
ough economic analyses frequently call for sophisticated numerical pro-
cedures, to be discussed in the following section.
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3.2 Numerical Methods

This section serves to give an overview of extant numerical procedures
commonly employed to price financial derivatives. Furthermore, it moti-
vates the application of similar approaches to the analysis of real invest-
ment problems for which closed-form solutions are not readily available.

3.2.1 Stochastic Processes

Uncertainty concerning the future value of assets—be it market or tech-
nical uncertainty—can be accounted for by modelling asset prices as
stochastic processes. Based on the pioneering work of Bachelier [14],
Einstein [98], Osborne [261], and Samuelson [290] it is now common to
employ such processes and stochastic calculus when valuing flexibility
in financial and real investments.

While the seminal contributions of Black and Scholes [35] and Mer-
ton [239] assume (continous) diffusion processes, asset prices often ex-
hibit jumps [35, 239]. Closed-form solutions for european options under
pure jump processes and jump-diffusion processes are given by Cox and
Ross [75] and Merton [239], respectively. Current contributions to the
analysis of jumps and their impact on option pricing include the works
of Gukhal [128, 129] and Eraker et al [101]. Recently, there has been a
rising interest in models driven by more general Lévy processes [43, 296].

Later sections will demonstrate how alternative stochastic processes
may be used to better capture certain aspects distinguishing real invest-
ment opportunities from derivative securities. For now, the discussion
will be limited to the standard stock price model.

3.2.2 Finite Differences

If it is safe to assume that the value of financial and real assets follows
some kind of stochastic process, it follows that the value dynamics of
contingent claims—including, of course, real investment opportunities—
can be described in terms of partial differential equations (PDEs) sub-
ject to appropriate initial and boundary conditions.

Strictly speaking, this assumption is often violated but may never-
theless prove to be sufficiently accurate to allow conclusions as to a
value-maximizing investment strategy.3

3 This assumption by no means implies that the value of investment projects fluc-
tuates randomly. Rather, the value of an investment project is determined by how
the firm and its competitors respond to developments in a number of highly un-
certain, seemingly random factors. Uncertainty related to these factors is resolved
in the manner of a stochastic process.
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3.2.2.1 Origins and Connections

While there are known closed-form solutions to many (comparatively)
simple option pricing problems,4 more complicated formulae typically
require numerical methods. One type of numerical procedure is based
on approximating differentials, or infinite differences, with finite dif-
ferences. It is very popular in practice, since it greatly facilitates the
calculation of “greeks” indicating an option’s sensitivity to parameter
changes—an aspect which has not been in the explicit focus of real
option researchers so far.

The basic finite difference (FD) procedure for the valuation of deriva-
tives, first discussed by Schwartz [300], Brennan and Schwartz [53], and
Courtadon [73], serves as a benchmark for any novel technique intro-
duced.5 A more recent and rather extensive overview of the method is
provided by Wilmott et al [337]. Moreover, one can draw upon a large
body of literature in the areas of computational physics and other dis-
ciplines, as exemplified by numerous reference works and introductory
texts [277, 332] At the risk of getting overly historical, it also seems
worth noting that the FD method mirrors the arguments of Newton
and Leibniz at the inception of calculus in the seventeenth century.

A related method, where only the time derivative is discretized, is
the method of lines.6 One very flexible technique for the numerical
solution of PDEs is the finite element (FE) method. For the purposes
of this study, it is comparable in accuracy and efficiency to the FD
approach. As the FE method is less common and slightly more difficult
to implement, no detailed description is given. Instead, the reader is
referred to Topper [326] for a good overview with plenty examples and
additional references. To the author’s best knowledge, neither of these
two methods has so far been applied in a real options context.

Of course, there are the various pricing trees, which are in many
ways similar to the lattice approaches presented here. Applications of
binomial and trinomial pricing models in the realm of investment under
uncertainty are abundant [112, 327]. Although very intuitive tools, their
often-claimed universal usefulness is somewhat questionable, largely due
4 Well-known and often-cited contributions include the articles by Black and Sc-

holes [35], Geske [115], Johnson [159], Margrabe [221], Merton [238], Stulz [317].
In an analogical sense, these formulae are often considered generic building blocks
for demanding investment problems.

5 See the seminal contributions of Brennan and Schwartz [53, 54], Courtadon [73,
74], Schwartz [300].

6 For a brief introduction, the interested reader is referred to Meyer and van der
Hoek [241]. The method of lines is occasionally referred to as “Rothe’s method.”
[289]
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to the impossibility of optimizing a multi-dimensional function by per-
forming a brute-force search over an exponentially increasing number
of grid points.7 The problem boils down to what Bellmann calls “the
curse of dimensionality.” Elaborating on more advanced models, the
discussion will return to this key point in later sections [28, p. 97].

Similar shortcomings, however, are shared by most techniques in-
cluding (direct-sampling) Monte Carlo simulation. This is where the
need for creative model formulation and suitable heuristics arises.

3.2.2.2 Preliminaries

Before proceeding to the discussion of the actual FD method, a few
definitions are in order.

3.2.2.2.1 Difference Formulae

There are several ways in which changes in asset prices can be calcu-
lated. Consider the variable x denoting the value of some investment
project. Given f(x), an investment opportunity somehow dependent on
the value of this variable, project value is examined at discrete time
intervals xi ≡ iΔx, where i ∈ N+.

Let fi ≡ f(xi) represent equidistant table values. Each of the follow-
ing expressions constitutes a different way of describing changes in f(x)
around x = xi:

−→
Δfi ≡ fi+1 − fi (forward difference),
←−
Δfi ≡ fi − fi−1 (backward difference),
←→
Δ fi ≡ fi+1/2 − fi−1/2 (central difference).

In addition, let
Δfi ≡ 1

2 (fi+1 − fi−1)

denote the central mean. It is useful to furthermore establish these re-
cursive definitions:

−→
Δ2fi ≡ −→

Δfi+1 −−→
Δfi,

←−
Δ2fi ≡ ←−

Δfi −←−
Δfi−1,

←→
Δ 2fi ≡ ←→

Δ fi+1/2 −
←→
Δ fi−1/2,

and
7 For a brief description of trees for option pricing see sect. B.1 in the appendix.
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Δ2fi ≡ 1
2 (Δfi+1 − Δfi−1) .

The purpose of higher order approximations in particular becomes im-
mediately evident in the following subsection.

3.2.2.2.2 Interpolation Formulae

Based on the difference formulae introduced in the previous subsection,
it is possible to thread a polynomial through the points (xi, fi). A dif-
ferentiable interpolated function is obtained that can be used to arrive
at suitable approximations for derivatives.

The normalized distance between x and xi is u ≡ (x − xi) /Δx. Em-
ploying the forward equation, the interpolated polynomial becomes

Fk(x) = fi +
k∑

l=1

(
u

l

)−→
Δ lfi + O

(
Δxk+1

)
,

where
−→
Δ lfi denotes the difference approximation of order l and O(·)

signifies the order of the truncation error. This procedure is known as
Newton–Gregory forward interpolation. The simplest possible polyno-
mial is derived by setting k = 1:

F1(x) = fi +
−→
Δfi

Δx
(x − xi) + O

(
Δx2

)
.

Correspondingly, applying the backward difference formula yields the
Newton–Gregory backward interpolation:

Fk(x) = fi +
k∑

l=1

(
u + l − 1

l

)←−
Δ lfi + O

(
Δxk+1

)
.

The polynomial of first order is

F1(x) = fi +
←−
Δfi

Δx
(x − xi) + O

(
Δx2

)
.

Due to the difficulty of evaluating central differences of odd order, terms
of the form

←→
Δ 2l+1 have to be replaced by the corresponding central

mean:

Fk(x) = fi +
k/2∑
l=1

(
u + l − 1
2l − 1

)(
Δ2l−1fi +

←→
Δ 2lfi

)
+ O

(
Δxk+1

)
.
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This equation represents the slightly more complicated Stirling interpo-
lation. Substitute the smallest even positive integer for k and it becomes
clear that

F2(x) = fi +
Δfi

Δx
(x − xi) + 1

2

←→
Δ 2fi

Δx2
(x − xi)

2 + O
(
Δx3

)
.

3.2.2.2.3 Difference Quotients

Derivatives at xi are easily obtained by differentiating the polynomials
with respect to x and setting x = xi.

First derivatives can be approximated based on interpolations of first
order using either of the following formulae:

F ′
1(x) =

−→
Δfi

Δx
=

fi+1 − fi

Δx
+ O(Δx) (forward differences),

F ′
1(x) =

←−
Δfi

Δx
=

fi − fi−1

Δx
+ O(Δx) (backward differences).

Using central differences and a polynomial of second order, one obtains

F ′
2(x) =

Δfi

Δx
=

fi+1 − fi−1

2Δx
+ O

(
Δx2

)
.

The Stirling formula thus yields the most accurate approximation with
the smallest truncation error. Approximations of higher order are pos-
sible, but rarely used, due to the additional complexity they introduce
into the following calculations.

Second derivatives are approximated in a similar manner. As can be
easily verified,

F ′′
2 (x) =

←→
Δ 2fi

Δx2
=

fi+1 + fi−1 − 2fi

Δx2
+ O
(
Δx2

)
.

Refer to the overviews provided by Vesely [332] and also Press et al
[277] for a more detailed account of the concepts presented.

3.2.2.3 Differencing Schemes

The choice of FD approximations for various derivatives constitutes a
differencing scheme. The following subsections serve as a brief summary
of the explicit, the implicit, and the Crank–Nicolson scheme as well as
solution procedures for European and, in particular, American options.
Figure 3.5 illustrates the grid points used in the calculation of unknown
function values for the schemes mentioned above.
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Fig. 3.5. Finite difference schemes. The diagrams illustrate (a) the explicit, (b)
the implicit, and (c) the Crank–Nicolson scheme. Open circles are new points at
which a solution is desired. Filled circles are known points whose function values
are used in calculating the new point. Solid lines connect points that are used to
calculate spatial derivatives. Dashed lines connect points that are used to calculate
time derivatives (Source: Press et al [277]).

3.2.2.3.1 Fully Explicit Scheme

In this section the explicit method is introduced through an examination
of the general case laid out by Hull and White [151]. The discussion then
proceeds to the Black–Scholes equation which also serves as a model
problem for further analysis.

3.2.2.3.1.1 General Case

Consider a real (abandonment) option, with value f , that depends on
a single stochastic variable Xt, usually the gross present value of some
investment. Let the stochastic Itô process followed by Xt be described
by the autonomous stochastic differential equation (SDE)

dXt = a(Xt) dt + b(Xt) dWt, (3.4)

where dWt is the increment of a Wiener process.8 The assumption of
constant instantaneous (proportional) drift α and volatility σ together
with a slightly simplified notation leads to

dx = αxdt + σxdW.

If λ is the market price of risk for x and r is the risk-free interest rate,
f then satisfies the partial differential equation

∂f

∂t
+

∂f

∂x
(α − λσ) x + 1

2x2σ2 ∂2f

∂x2
= rf, (3.5)

8 Equation (3.4) is considered autonomous, since neither a nor b depend explicitly
upon t.
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which is to be solved numerically here [77]. For convenience, let η ≡ λσ
denote the risk premium. An (m + 1)-by-(n + 1) grid is constructed
considering values of f when time equals

t0, t0 + Δt, t0 + 2Δt, . . . , T,

and x equals
x0, x0 + Δx, x0 + 2Δx, . . . , xmax.

Define tj ≡ t0 + jΔt and xi ≡ x0 + iΔx. In line with the common
notation, denote f(xi, tj) by fi,j. Partial derivatives are approximated
as follows:

∂f

∂x

∣∣∣∣
i,j

≈ fi+1,j+1 − fi−1,j+1

2Δx
, (3.6a)

∂2f

∂x2

∣∣∣∣
i,j

≈ fi+1,j+1 + fi−1,j+1 − 2fi,j+1

Δx2
, (3.6b)

and

∂f

∂t

∣∣∣∣
i,j

≈ fi,j+1 − fi,j

Δt
. (3.6c)

Derivatives at the current node are approximated by looking at nodes
that succeed it in time. This scheme is only conditionally stable.

Substituting (3.6a), (3.6b), and (3.6c) into (3.5) gives

fi,j+1 − fi,j

Δt
+

fi+1,j+1 − fi−1,j+1

2Δx
(α − η) xi

+ 1
2x2σ2 fi+1,j+1 + fi−1,j+1 − 2fi,j+1

Δx2
= rfi,j.

Solving for fi,j leads to

fi,j = aifi−1,j+1 + bifi,j+1 + cifi+1,j+1, (3.7)

where i ∈ {0, . . . ,m − 1}, j ∈ {1, . . . , n − 1}, and

ai =
1

1 + rΔt

(
−(α − η) xiΔt

2Δx
+ 1

2

x2
i σ

2Δt

Δx2

)
,

bi =
1

1 + rΔt

(
1 − x2

i σ
2Δt

Δx2

)
,

ci =
1

1 + rΔt

(
+

(α − η) xiΔt

2Δx
+ 1

2

x2
i σ

2Δt

Δx2

)
.
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This system of equations forms the basis of the explicit FD procedure.
Since fi,n, that is the value of the contingent claim at maturity T , is
known for all relevant values of x, it can be solved by simple recursion.

Define

pi,i−1 = −xi (α − η)
Δt

2Δx
+ 1

2

x2
i σ

2Δt

Δx2
,

pi,i = 1 − x2
i σ

2 Δt

Δx2
,

pi,i+1 = +xi (α − η)
Δt

2Δx
+ 1

2

x2
i σ

2Δt

Δx2
,

so that (3.7) becomes

fi,j =
1

1 + rΔt
(pi,i−1fi−1,j+1 + pi,ifi,j+1 + pi,i+1fi+1,j+1) . (3.10)

The scheme is also termed fully explicit, because fi,j for each j can
be calculated explicitly from the quantities that are already known.
Moreover, it is even a single-level scheme, because only values at time-
level j + 1 have to be stored to find values at time level j. The solution
is computed on a narrowing mesh of triangular shape. All this makes
the explicit FD methods quite similar to dynamic programming—and
easier to implement in practice.

As a matter of fact, the resulting lattice can be regarded as a type
of trinomial event tree. Obviously, pi,i−1, pi,i, and pi,i+1 then represent
the probabilities of moving from xi to xi−1, xi, and xi+1, respectively.

If x0 = t0 = 0, then the probabilities reduce to

pi,i−1 = 1
2Δt
(
i2σ2 − i (α − η)

)
,

pi,i = 1 − i2σ2Δt,

pi,i+1 = 1
2Δt
(
i2σ2 + i (α − η)

)
.

It is always appropriate—though not without pitfalls—to define a
new state variable u(x, t) that has a constant (instantaneous) standard
deviation. From Itô’s Lemma the process followed by u is

du = q(x, t) dt +
∂u

∂x
σxdW,

where the drift is given by

q(x, t) =
∂u

∂t
+ (α − η) x

∂u

∂x
+ 1

2σ2x2 ∂2u

∂x2
.
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The transformation is chosen so that

σx
∂u

∂x
= v

for some constant v.9 The probabilities in (3.10) then become

pi,i−1 = −q
Δt

2Δu
+ 1

2v2 Δt

Δu2
, (3.11a)

pi,i = 1 − v2 Δt

Δu2
, (3.11b)

pi,i+1 = +q
Δt

2Δu
+ 1

2v2 Δt

Δu2
. (3.11c)

To ensure convergence it is sufficient that pi,i−1, pi,i, and pi,i+1 be pos-
itive as Δt and Δu → 0. It follows from (3.11a), (3.11b), and (3.11c)
that

v2 Δt

Δu2
< 1 (3.12)

and

q <
v2

Δu
(3.13)

as Δt, Δu → 0. If q is bounded, convergence is ensured as long as
the ratio Δt/Δu is kept constant and less than 1/v2.10 Otherwise, it
is possible to adjust the branching process as described by Hull and
White [151].

3.2.2.3.1.2 Black–Scholes

For reasons of simplicity, consider the case analogous to a non-dividend
paying stock discussed by Brennan and Schwartz [54], where α− η = r.
Equation (3.5) becomes the Black–Scholes equation

∂f

∂t
+

∂f

∂x
rx + 1

2x2σ2 ∂2f

∂x2
= rf. (3.14)

9 Wilmott et al [337] take this idea further by transforming the Black–Scholes PDE
into the diffusion PDE. This alternative approach is not discussed in more detail
here, although it is frequently used for pricing financial options.

10 More generally speaking, Lax’s equivalence theorem states that “[g]iven a properly
posed linear initial-value problem and an FD approximation to it that is consis-
tent, stability is the necessary and sufficient condition for convergence.” [188, 283]
The scheme presented is clearly consistent, as the FDs converge to the respective
derivatives as Δu → 0 and Δt → 0. Stability follows from a von Neumann analy-
sis as described for example by Press et al [277] and Vesely [332]. The discussion
of convergence is limited to heuristic arguments in the following sections.
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Define u ≡ ln x and g(u, t) ≡ f(x, t), so that

∂f

∂x
=

∂g

∂u
e−u,

∂2f

∂x2
=
(

∂2g

∂u2
− ∂g

∂u

)
e−2u,

∂f

∂t
=

∂g

∂t
.

Making the appropriate substitutions in (3.14) gives the transformed
equation

∂g

∂t
+

∂g

∂u

(
r − 1

2σ2
)

+ 1
2σ2 ∂2g

∂u2
= rg.

with constant coefficients. Analogous to fi,j denote g(ui, tj) by gi,j.
From

du =
(
r − 1

2σ2
)
dt + σ dW (3.16)

it can be seen that q = r− 1
2σ2 and v = σ. Consequently, (3.10) becomes

fi,j = gi,j =
1

r + Δt
(pi,i−1gi−1,j+1 + pi,igi,j+1 + pi,i+1gi+1,j+1) ,

where

pi,i−1 =

(
1
2

( σ

Δu

)2 − 1
2

r − 1
2σ2

Δu

)
Δt,

pi,i = 1 −
( σ

Δu

)2
Δt,

pi,i+1 =

(
1
2

( σ

Δu

)2
+ 1

2

r − 1
2σ2

Δu

)
Δt.

The probabilities stay constant throughout the grid, as they no longer
depend on the value of x. Since q is clearly bounded, there is no need
to modify the branching process. Substituting for q and v in (3.12) and
(3.13) leads to

σ2 Δt

Δu2
< 1,

r − 1
2σ2 <

σ2

Δu
,

which implies that
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Δt <
σ2(

r − 1
2σ2
)2 , (3.18)

Δu <
σ2∣∣r − 1

2σ2
∣∣ .

By looking at

E[Δu] = Δu (pi,i+1 − pi,i−1)

=
(
r − 1

2σ2
)
Δu

and

Var[Δu] = Δu2 (pi,i+1 − pi,i−1) −
(
E[Δu]

)2
= σ2Δt − (r − 1

2σ2
)2 Δt2

one can verify that the diffusion limit of the jump process indeed corre-
sponds to (3.16) and the diffusion limit of Δx is (3.4). The approxima-
tion suffers from a downward bias of size

(
r − 1

2σ2
)
Δt. Given (3.18),

an upper bound for this bias is σ4.
The explicit method is easily extended to deal with two-factor mod-

els [337]. Likely applications include, for instance, convertible bonds
and long-term real investment opportunities, where both underlying
and interest rate can be considered stochastic.

To facilitate comparison, the following sections focus on the Black–
Scholes equation. The more general case discussed in the previous sub-
section is not examined further.

3.2.2.3.2 Fully Implicit Scheme

Due to several reasons to be addressed in detail later in this and the
following section, the implicit scheme is often considered superior to
the explicit scheme in option pricing. While tools and techniques evolve
rapidly, it is also widely used in the literature. For example, the implicit
method is used as a benchmark in a comparative study of numerical
procedures by Trigeorgis [327]. Furthermore, Barone-Adesi and Whaley
[25] describe the implicit FD scheme as being the most accurate.11

Compared to the explicit scheme, the implicit scheme uses the ap-
proximations

11 For a more careful weighing of the particular advantages and disadvantages of
various approximation techniques see also Geske and Shastri [116].
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∂g

∂u
≈ gi+1,j − gi−1,j

2Δu
,

∂2g

∂u2
≈ gi+1,j + gi−1,j − 2gi,j

Δu2
,

and

∂g

∂t
≈ gi,j+1 − gi,j

Δt
.

Derivatives at the current node are approximated by looking at nodes
that precede it in time. This scheme has the distinct advantage that
it is unconditionally stable without further adjustments. As it couples
the gi,j for various i and requires matrix inversion, it is also somewhat
more difficult to implement.

Substitute to obtain an alternative FD representation of (3.14):

gi,j+1 − gi,j

Δt
+

gi+1,j − gi−1,j

2Δu

(
r − σ2

2

)
+ 1

2σ2 gi+1,j + gi−1,j − 2gi,j

Δu2
= rgi,j+1.

Solving for gi,j+1 (1 − rΔt) and collecting terms yields

agi−1,j + bgi,j + cgi+1,j = gi,j+1 (1 − rΔt) ,

where i ∈ {1, . . . ,m − 1}, j ∈ {0, . . . , n − 1}, and

a =

(
−1

2

( σ

Δu

)2
+ 1

2

r − 1
2σ2

Δu

)
Δt,

b = 1 +
( σ

Δu

)2
Δt,

c =

(
−1

2

( σ

Δu

)2 − 1
2

r − 1
2σ2

Δu

)
Δt.

Note that, since the coefficients do not depend on the value of u, sub-
scripts may be dropped.

The boundary conditions for the put option are

g0,j = K,

gm,j = 0 for j ∈ {0, 1, . . . , n − 1},

and
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gi,n = max{0,K − eui} for i ∈ {0, 1, . . . ,m}, (3.21a)

where K is the strike price. Equation (3.21a) corresponds to the inner
value, which, at maturity, is equal to the total value of the option.
The interior points and one boundary, the value of gi,0, are left to be
determined. Again going backward in time, it is possible to solve the
following matrix equation for all i ∈ {1, . . . ,m − 1}:⎛⎜⎜⎝

b c 0 . . .
a b c 0 .
. . . . . . . .
. . . 0 a b

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
g1,j

g2,j

. . .
gm−1,j

⎞⎟⎟⎠+

⎛⎜⎜⎝
ag0,j

0
. . .

cgm,j

⎞⎟⎟⎠ =

⎛⎜⎜⎝
g1,j+1

g2,j+1

. . .
gm−1,j+1

⎞⎟⎟⎠ (1 − rΔt) .

Other types of boundary conditions—for more complex derivatives—
could be absorbed into the matrix equation in a similar manner.

As the coefficient matrix is independent of j, it suffices to invert it
once. For each time step, the current price vector is then to be multi-
plied by this constant matrix inverse, eventually giving the value of the
derivative at t0.

The solution of such tridiagonal systems of equations using LU de-
composition is also straightforward and described by Press et al [277,
sect. 2.4] and others. An alternative method, the more generally ap-
plicable and widely used successive overrelaxation (SOR) algorithm, is
discussed in the following section [81]. Section 3.2.2.5 briefly hints at
some of the more advanced techniques not addressed in this text.

As shown by Brennan and Schwartz [54], the elements of the coef-
ficient matrix can again be regarded as probabilities discounted at the
risk-free rate. In contrast to the previously discussed explicit scheme,
the underlying asset price may jump to an infinite number of possible
future values instead of only three.

The implicit method is biased upward by the square of the expected
size of these jumps, a shortcoming overcome by the improved scheme
first proposed by Courtadon [73] and briefly summarized in the following
section.

3.2.2.3.3 Crank–Nicolson Scheme

A closer look at the fully implicit method shows it to be only first-order
accurate in time. In contrast, the Crank–Nicolson scheme, obtained
by forming the average of the implicit and explicit schemes, is also
unconditionally stable, but second-order accurate in both space and
time [79]. In the following a basic Crank–Nicolson model for the plain-
vanilla put option is presented.
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Consider the slightly different transformation of the Black–Scholes
equation chosen by Courtadon [73], where τ ≡ T − t and h(x, τ) ≡
erτf(x, τ). This transformation makes the procedure somewhat more
intuitive, since the known payoffs at maturity become genuine initial
conditions. The resulting PDE is

1
2σ2x2 ∂2h

∂x2
+ rx

∂h

∂x
− ∂h

∂τ
= 0. (3.22)

Taking the average of the implicit and the explicit schemes leads to the
following FD approximation:

∂h

∂x
≈ 1

2

(
hi+1,j+1 − hi−1,j+1

2Δx
+

hi+1,j − hi−1,j

2Δx

)
, (3.23a)

∂2h

∂x2
≈ 1

2

(
hi+1,j+1 + hi−1,j+1 − 2hi,j+1

Δx2

+
hi+1,j + hi−1,j − 2hi,j

Δx2

)
,

(3.23b)

and

∂h

∂t
≈ hi,j+1 − hi,j

Δτ
. (3.23c)

It is also possible calculate a weighted average, where the weights are
chosen to reduce the local truncation error.12

Substituting (3.23a), (3.23b), and (3.23c) in (3.22) yields

1
2σ2x2

i

(
hi+1,j − 2hi,j + hi−1,j + hi+1,j+1 − 2hi,j+1 + hi−1,j+1

2Δx2

)
+ rxi

(
hi+1,j − hi−1,j + hi+1,j+1 − hi−1,j+1

4Δx

)
− hi,j+1 − hi,j

Δτ
= 0.

Collect terms and rearrange, so that all points at timestep j +1 appear
on the left-hand side and all points at timestep j on the right-hand side:

aihi−1,j+1 + (1 + bi) hi,j+1 + cihi+1,j+1 =
− aihi−1,j + (1 − bi)hi,j − cihi+1,j, (3.24)

12 This approach is known as the “Douglas scheme.” [337] A detailed discussion of
three-time-level Douglas FD schemes for American options is provided by Shaw
[310], who also presents suitable SOR and PSOR solvers. Three-time-level schemes
offer advantages when the initial data are discontinuous. A two-time-level scheme
of the same accuracy is required to get the procedure started.
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where

ai = −1
4

(
x2

i σ
2v1 − rxiv2

)
,

bi = 1
2x2

i σ
2v1,

ci = −1
4

(
x2

i σ
2v1 + rxiv2

)
,

and v1 = Δτ/Δx2, v2 = Δτ/Δx. With xi replaced by its FD equivalent,
these coefficients reduce to those given by Courtadon [73]:

ai = −1
4 iΔτ

(
iσ2 − r

)
,

bi = 1
2 i2Δτσ2,

ci = −1
4 iΔτ

(
iσ2 + r

)
.

The boundary conditions for the put option are

h0,j+1 = er(j+1)ΔτK, (3.27a)
hm,j+1 = 0 for j ∈ {0, 1, . . . , n − 1}, (3.27b)

and

hi,0 = max{0,K − iΔx} for i ∈ {0, 1, . . . ,m}.
Equation (3.24) with boundary conditions (3.27a) and (3.27b) incorpo-
rated can be written in matrix form as⎛⎜⎜⎝

1 + b1 c1 0 . . . . . . . . . . . . . .
a2 1 + b2 c2 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 am−1 1 + bm−1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
h1,j+1

h2,j+1

. . .
hm−1,j+1

⎞⎟⎟⎠+

⎛⎜⎜⎝
a1er(j+1)ΔτK

0
. . .
0

⎞⎟⎟⎠

=

⎛⎜⎜⎝
−a1 1 − b1 −c1 0 . . . . . . . . . . . . . . . .
0 −a2 1 − b2 −c2 0 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 0 −am−1 1 − bm−1 −cm−1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
h0,j

h1,j

. . .
hm,j

⎞⎟⎟⎠ ,

or, more concisely,

Aj+1 · hj+1 = Aj · hj − rj+1.

Defining b ≡ Aj · hj − rj+1, x ≡ hj+1, and dropping the remaining
subscript leads to the generic matrix equation

A · x = b. (3.28)
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Fig. 3.6. Value of a put option p as a function of asset price Xt and time t (X0 =
50.0, K = 50.0, T = 5/12, σ = 0.3, r = 0.1). The Black–Scholes PDE was discretized
on a 500-by-500 grid using Courtadon’s Crank–Nicolson scheme.

All “known” information is included in b. Note that most boundary value
problems reduce to solving large sparse linear systems of this form.

Though, in principle, (3.28) could be solved directly by calculating
A−1, this task can be fairly time-consuming. Consequently, iterative
approaches are sometimes preferable. Three such approaches are—in
order of increasing sophistication—the Jacobi, the Gauss–Seidel, and
the SOR methods.

All three methods can be expressed in terms of the matrix splitting
concept [277]. Split A into a sub-diagonal, a diagonal, and a super-
diagonal part:

A = L + D + U.

The rth step of the Jacobi iteration is

D · x(r) = − (L + U) · x(r−1) + b.

The Gauss–Seidel procedure makes use of updated values as soon as
they become available:

(L + D) · x(r) = −U · x(r−1) + b. (3.29)
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This equation can be written as

x(r) = x(r−1) − (L + D)−1 ·
(
(L + D + U) · x(r−1) − b

)
,

where the term in parentheses is the residual vector ξ(r−1). Over-
correcting by ω leads to the SOR algorithm

x(r) = x(r−1) − ω (L + D)−1 · ξ(r−1).

Generally, SOR converges for linear systems arising from finite differ-
encing only if ω ∈ (0, 2) [162]. The optimal value for the over-relaxation
parameter ω depends on the specific problem examined and is best de-
termined by trial and error.13

Written out in components, set

x
(r)
i = ωx̄

(r)
i + (1 − ω)x

(r−1)
i

and solve the scalar equation

x̄
(r)
i =

⎛⎝bi −
i−1∑
j=1

Aijx
(r)
j −

m−1∑
j=i+1

Aijx
(r−1)
j

⎞⎠ 1
Aii

. (3.30)

For ω = 1, the formula reduces to the Gauss–Seidel algorithm, where
x

(r)
i = x̄

(r)
i . This identity can be verified by rewriting (3.29) as

x(r) = D−1 ·
(
b− L · x(r) − U · x(r−1)

)
.

Figure 3.7 shows how the SOR algorithm can be implemented in
practice. One way to speed up convergence is odd-even ordering with
Chebyshev acceleration. The reader is referred to Press et al [277,
sect. 19.5] for further details.

Figure 3.8 illustrates how the results converge towards the exact
solution as the number of time and space steps increases. Option values
obtained using common interpolation techniques are very close to those
suggested by the Black–Scholes formula.

13 As far as the simple model problem is concerned, a suitable value for ω lies in the
interval (1.5, 1.8).
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1: Choose an initial guess x(0) to the solution x.
2: for r ← 1, . . . do
3: for i ← 1, m − 1 do
4: x̄

(r)
i ← 0

5: for j ← 1, i − 1 do
6: x̄

(r)
i ← x̄

(r)
i + ai,jx

(r)
j

7: end for
8: for j ← i + 1, m − 1 do
9: x̄

(r)
i ← x̄

(r)
i + ai,jx

(r−1)
j

10: end for
11: x̄

(r)
i ←

(
bi − x̄

(r)
i

)
/ai,i

12: x
(r)
i ← x

(r−1)
i + ω

(
x̄

(r)
i − x

(r−1)
i

)
13: end for
14: Check convergence; continue if necessary.
15: end for

Fig. 3.7. Successive overrelaxation pseudo code. The algorithm shown here is suit-
able for any type of coefficient matrix. If the matrix is tridiagonal—as it is gener-
ally the case in option pricing—the number of operations and thus the computing
time can be reduced substantially if the summation is limited to non-zero coeffi-
cients thereby eliminating the inner loops. One possible convergence criterion is the
�2-norm of the error vector (Source: figure adapted from Barrett et al [26, p. 11]).
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Fig. 3.8. Convergence of the Crank–Nicolson model (X0 = 50.0, K = 50.0, T =
5/12, σ = 0.3, r = 0.1). The horizontal line indicates the Black–Scholes option value
(p = 2.84458). While the approximation becomes acceptable comparatively quickly,
a fine grid is required to obtain accurate solutions.
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3.2.2.4 Early Exercise

So far, the discussion has been limited to the European put option.
While European options may only be exercised at maturity, American
options may be exercised early, that is prior to maturity. Real options
are typically American options.

Although the SOR procedure is slightly slower than LU decomposi-
tion for European options, it is very easy to incorporate an early exer-
cise feature and, at the same time, preserve the accuracy of the Crank–
Nicolson scheme. The projected successive overrelaxation (PSOR) algo-
rithm is

x
(r)
i = max

{
x

(r−1)
i + ω

(
x̄

(r)
i − x

(r−1)
i

)
, inner value

}
,

where x̄
(r)
i is defined as in (3.30) and “inner value” reflects the specific

claim to be analyzed. A much simpler, albeit less accurate, possibility
is to solve for x(r) and then post-process the result after each iteration
to account for early exercise.

The so-called free boundary is obtained as a by-product of this pro-
cedure. Only in the continuation region, where the price of the asset
lies above a critical value, the option has a positive time value. In the
stopping region immediate exercise is optimal: the value of an option is
equal to its inner value. Correspondingly, the model problem is an opti-
mal stopping problem, the most basic case of stochastic optimal control.
Figure 3.9 depicts the free boundary resulting from an application of
the Crank–Nicolson FD scheme. Explicit approximations to the early
exercise boundary are proposed by Carr [58], Bunch and Johnson [56],
and others.

Not seldomly, pricing American options also involves a reformula-
tion of the optimization problem. A very popular approach is to treat
the valuation of an American put option as a linear complementarity
problem and solve the resulting system of partial differential inequalities
using the procedures described above [40, 337]. From a non-technical
point of view, such models offer little additional value for the problem
at hand and are thus neglected.

3.2.2.5 Advanced Methods

Until the 1970s, SOR was the standard algorithm for solving matrix
equations like the ones arising in option pricing. It is very easy to pro-
gram, but inefficient on large problems. Press et al [277] therefore recom-
mend SOR for problems where ease of programming outweighs expense
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Fig. 3.9. Approximate free boundary for the American put (X0 = 50.0, K = 50.0,
T = 5/12, σ ∈ {0.2, 0.3, 0.4}, r = 0.1). Critical values X∗

τ were obtained using
Crank–Nicolson FDs on a 500-by-500 grid. The inner value required to trigger (early)
exercise decreases as the expiry date approaches and becomes zero at maturity. In-
creasing volatility is associated with lower values of X∗

τ (dotted line), while decreas-
ing volatility moves the boundary upwards (dashed line).

of computer time. Real options models usually require solving a large
problem only once, so that efficiency is rarely an issue. In addition,
grids like the one shown in fig. 3.6 can be computed in fractions of a
second, even using high-level languages like Mathematica. Nevertheless,
it is worth pointing out that there are more advanced—and sometimes
more efficient—methods available.

For example, multigrid methods, among them the projected full ap-
proximation storage (PFAS) method for American options [50], are ex-
tremely efficient for a wide variety of problems, but also more difficult
to implement. There is no general-purpose solver. Rather, the compo-
nents of the algorithm have to be adjusted to solve a specific problem,
for example the Black–Scholes equation.14 In more detail, the concepts
are presented by Bramble [49] and Trottenberg et al [329].

As far as two-factor models are concerned, there are quite a few
(partly) implicit methods to choose from, many of which are based
on some type of alternating-direction implicit (ADI) scheme. Combin-
ing explicit and implicit differences, the typical ADI algorithm shows
performance superior to that of a Crank–Nicolson discretization. Con-
sequently, the ADI method is widely used for pricing interest rate and

14 For a general description of the multigrid framework see Press et al [277,
sect. 19.6].
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foreign exchange products. At least to the author’s knowledge, there
are no examples of real option applications.

In summary, FD pricing and related methods are powerful, but de-
pend on the existence of a pricing PDE. Often, the mathematical for-
malism is far from intuitive and—with the exception of the fully explicit
scheme—seems only remotely related to the original economic problem.

Observation 3.1. FD pricing is based on a discretization of the pricing
PDE, rendering it less intuitive and comparatively difficult to adapt to
problems substantially different from conventional option contracts.

Models presented in part II will make extensive use of the fully ex-
plicit and Crank–Nicolson schemes to analyze optionalities in patenting.

What follows is an examination of alternative approaches, with par-
ticular attention to simulation models for option pricing. Unlike FD
procedures, they do not require a pricing PDE. In principle, it suffices
to discretize the underlying process and specify a payoff function. As a
consequence, adapting simulation models to more advanced problems
is usually not difficult.

3.2.3 Monte Carlo Simulation

This section serves to present Monte Carlo simulation as a slightly more
intuitive means of pricing derivatives. Also, some techniques for improv-
ing accuracy and efficiency are briefly hinted at. In addition, extant al-
gorithms for valuing American options are discussed, before the analysis
proceeds to novel concepts which are the subject of further discussion
in later chapters.

3.2.3.1 Itô–Taylor Expansion

In a first step, asset prices are simulated by numerically integrating the
SDEs describing the value dynamics. The mathematical tool frequently
used in obtaining numerical integration schemes for stochastic diffusion
processes is Itô–Taylor expansion [172]. More recently, similar methods
have also been applied to Poisson jump-diffusion processes [297].

Take again the autonomous SDE (3.4), restated here for convenience:

dXt = a(Xt) dt + b(Xt) dWt.

Recall that it describes how an asset’s price Xt evolves over time. As be-
fore, assume that f(Xt) denotes an investment opportunity contingent
on this asset. By Itô’s Lemma
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df(Xt) = L0f(Xt) dt + L1f(Xt) dWt, (3.31)

where L0 and L1 are differential operators defined as

L0f(Xt) = a(Xt)
∂f(Xt)

∂Xt
+ 1

2b(Xt)2
∂2f(Xt)

∂X2
t

,

L1f(Xt) = b(Xt)
∂f(Xt)

∂Xt
.

Assuming t0 = 0, (3.31) is equivalent to

f(Xt) = f(X0) +
∫ t

0
L0f(Xs) ds +

∫ t

0
L1f(Xs) dWs. (3.33)

Setting f(Xt) ≡ Xt gives

Xt = X0 +
∫ t

0
a(Xs) ds +

∫ t

0
b(Xs) dWs.

Analogously to deterministic Taylor expansion, substitute f(Xt) =
a(Xt) and f(Xt) = b(Xt) into (3.33) and get

Xt = X0 +
∫ t

0

(
a(X0) +

∫ s

0
L0a(Xu) du +

∫ s

0
L1a(Xu) dWu

)
ds

+
∫ t

0

(
b(X0) +

∫ s

0
L0b(Xu) du +

∫ s

0
L1b(Xu) dWu

)
dWs.

Rearranging leads to the approximate solution

Xt = X0 + a(X0)
∫ t

0
ds + b(X0)

∫ t

0
dWs + R.

The residual term R contains the double integrals. Neglecting R, one
obtains the most basic Monte Carlo scheme known as Euler–Maruyama
discretization [224]:

Xj+1 ≈ Xj + a(Xj)Δt + b(Xj)ΔWj.

The discrete equivalent of the Wiener increment dWt is ΔWj ≡
√

Δt εj ,
where εj is a random number drawn from a standard normal distribu-
tion. Figure 3.10 illustrates how asset values evolve over time.

While the deterministic variant of the Euler method converges with
order 1, the Euler–Maruyama scheme for SDEs converges only with or-
der 1/2. This issue is remedied by including additional terms otherwise
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Fig. 3.10. Geometric Brownian motion sample paths. The dotted and dashed lines
represent realizations of the value process for X0 = 10, α = 0.1, σ ∈ {0.1, 0.2},
and T = 25. The solid line illustrates the value process under certainty, that is for
σ = 0.0.

contained in R. Specifically, within the well-known scheme due to Mil-
stein [243], the additional terms arising from Itô–Taylor expansion are
corrected for by setting

Xt = X0 + a(X0)
∫ t

0
ds + b(X0)

∫ t

0
dWs

+ b(X0)b′(X0)
∫ t

0

∫ s

0
dWu dWs + R̃.

Given that ∫ t

0

∫ s

0
dWu dWs = 1

2ΔW 2
t − 1

2Δt,

one obtains

Xj+1 ≈ Xj + a(Xj)Δt + b(Xj)ΔWj + 1
2b(Xj)b′(Xj)

(
ΔW 2

j − Δt
)

as the Milstein scheme.
Maghsoodi [211] generalizes the Euler and Milstein schemes to scalar

jump-diffusion SDEs. The vectorial case is examined by Cyganowski
et al [82]. Methods of higher order are of primary theoretical value,
but play an important role as a starting point for Runge–Kutta-type
schemes [57].15 Although, in principal, such schemes are not difficult to
15 For implementional issues in the simulation of SDEs see Cyganowski et al [82],

Higham [143], Higham and Kloeden [144]. For additional references see Milstein
[244], Platen [271].
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implement, they and even the Milstein discretization are rarely found
in economic applications. In many cases, the simple Euler scheme is
sufficiently accurate. After all, far more important than the scheme is
the choice of asset price model on which the discretization is based.

Once the paths have been simulated, it is often straightforward to
value the derivative. In a second step, option payoffs are determined for
each realization of the stochastic process. A fair price for the claim is
given by the average present value of payoffs. Commonly, the expecta-
tion is taken under an equivalent risk-neutral, or martingale, measure,
that is the risk premium η is deducted from the drift α and the risk-free
rate is used for discounting [137, 138]. For a non-dividend-paying asset,
it thus suffices to simulate using the adjusted drift α∗ = r.

Reliable results require a large number of simulation runs, generally
at least several thousand. For obvious reasons, a particular strength of
Monte Carlo simulation lies in the valuation of path-dependent deriva-
tives.

3.2.3.2 Variance Reduction

There are several techniques commonly used to improve convergence:
antithetic variates, control variates, moment matching, importance sam-
pling, stratified sampling, and the use of quasi-random sequences [47].
Some of these techniques have also been successfully applied to the valu-
ation of American options discussed in the following subsection [324].16

Variance reduction is probably the single most important aspect in
Monte Carlo simulation, since the computational effort of this method
can be considerable. It is less of an issue with rainbow options, because
Monte Carlo simulation scales almost linearly as the number of underly-
ing instruments increases. Consequently, Monte Carlo methods are ideal
for very complex derivatives such as realistic models of investment under
uncertainty.

3.2.3.3 Early Exercise

Until recently, Monte Carlo methods were by and large limited to Eu-
ropean options, with only few exemptions from this rule [47, 325]. As a
result, almost exclusively FD models were used to account for early exer-
cise features. A novel and comparatively simple approach developed by

16 Another often-used technique which increases the efficiency of Monte Carlo simu-
lation is the Brownian bridge. For an application to jump-diffusion processes see
Metwally and Atiya [240].
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Carrière [60], Tsitsiklis and Van Roy [330], and Longstaff and Schwartz
[207] makes Monte Carlo simulation at least equally attractive for the
valuation of real options.17

3.2.3.3.1 Least-Squares Monte Carlo

For each period, the continuation value is approximated by a linear
combination of orthogonal polynomials [295] and estimated using a
cross-sectional least squares regression. If, at any point in time, the
inner value exceeds this conditional expected continuation value, the
option is exercised. Using polynomials in several variables, the method
is also applicable to multi-factor pricing problems. LSM simulation is
the method of choice for a wide variety of alternative stochastic pro-
cesses such as a jump-diffusion models.18

More formally, assume a complete probability space (Ω,F ,P) with
an equivalent martingale measure P∗, where Ω is the set of all possi-
ble realizations of the underlying stochastic process and {Ft}t≥0 is the
standard Brownian filtration.19 Let ω ∈ Ω represent a sample path. Let
Π(ω, s; t, T ) denote the path of cash flows generated by the option, con-
ditional on the option not being exercised at or prior to time t and on
the optimal stopping strategy being followed for all s ∈ (t, T ]. The ex-
pected continuation value under the risk-neutral measure, conditional
on the information known at time tj, is

F (ω; tj) = EP∗

⎡⎣ n∑
k=j+1

e−r(tk−tj)Π(ω, tk; tj , tn)

∣∣∣∣∣∣Ftj

⎤⎦ ,

where EP∗ [·] is the expectation operator under the martingale measure
and 0 ≤ tj < tn = T .

Define an approximation

F̂M (ω; tj) =
M∑

k=0

akLk(Xtj ),

17 For a detailed assessment of the least-squares Monte Carlo (LSM) approach see
Moreno and Navas [249].

18 For example, Longstaff and Schwartz [207] illustrate LSM by analyzing the simple
jump-to-ruin model first proposed by Merton [239].

19 This formalism seems slightly out of place at this point, but greatly facilitates
notation. The significance of risk-neutral valuation will become clearer in following
chapters. For a discussion of the mathematical foundation for probability theory
laid by Kolmogorov in the early 1930s see Steele [314, chap. 4].
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where Lk is the Laguerre polynomial of kth degree, ak are coefficients
to be determined through regression analysis for each tj, and Xtj is the
value of the underlying asset.

It is possible to show that the approximation indeed converges for
very large M . In practice, however, M can be comparatively small. The
weighted Laguerre polynomials can be replaced by any linear combi-
nation of orthonormal basis functions such as Hermite, Legendre, or
Jacobi polynomials. Starting at time tn ≡ T the option value is then
determined by rolling backward and making exercise decision based on
the estimated continuation value F̂M (ω; tj).20

Although, in principal, the LSM procedure is applicable to option
games, examples in the literature are rare [245]. Given a wide variety
of simulation techniques conceivable, new methods for the are likely to
appear in the future.21

Simulation will be employed to analyze some of the more advanced
problems presented in part II, in particular complicated multi-factor
models or models involving alternative stochastic processes, which are
difficult to solve using conventional FDs.

3.2.3.3.2 Evolutionary Monte Carlo

This subsection focuses on a particular type of Monte Carlo simulation—
in the following referred to as “evolutionary Monte Carlo (EMC)”—
where the early exercise boundary (see sect. 3.2.2.4) is determined using
evolutionary computation (EC), or, more specifically, GAs.22 It is still
in its infancy, but holds promise for a variety of current topics in real
options resarch.

3.2.3.3.2.1 Evolutionary Computation and Evolutionary
Game Theory

GAs are a computational tools for global optimization. Similar to sim-
ulated annealing, GAs represent techniques for searching large, poorly-
understood spaces of possible solutions.23 In option pricing, this search
involves the identification of value-maximizing investment programs un-
der uncertainty [65]. As already a comparatively crude approximation of
20 For a convergence analysis see Stentoft [315].
21 For a more recent overview see also Mußhoff et al [251].
22 The discipline of evolutionary computation (EC) encompasses the three subdisci-

plines of genetic programming (GP), GAs, and evolutionary strategy (ES).
23 Simulated annealing was originally conceived as a Monte Carlo method for exam-

ining the equations of state and frozen states of n-body systems [288]. By analogy,
this approach can be applied to combinatorial problems [62, 169].
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the free boundary provides option values with sufficient precision [161],
various types of heuristics could be devised. In the realm of real invest-
ment under uncertainty, genetic algorithms were pioneered by Dias [86]
and Balmann and Mußhoff [19].

Additional impetus comes from an increasing interest in game-
theoretic option models [127]. Further development in this area has
so far been hindered by a lack of pricing tools. It is therefore a distinct
advantage of the EMC approach that it is readily extensible to strate-
gic settings, although this application will not be discussed in detail.24
More precisely, EMC is a suitable framework for numerically analyz-
ing certain Markov perfect equilibria in differential stochastic (option)
games [152].

Even in partial equilibrium analysis there exists a close connection
between evolutionary Monte Carlo (EMC) and the relatively young eco-
nomic subdiscipline of evolutionary game theory initially developed by
Maynard and Price [228] and Maynard [227].25 As argued by Riech-
mann [284], economic learning via genetic algorithms can be described
as a type of evolutionary game. The author points out that GA learning
results in a series of near-Nash equilibria approaching an evolutionary
stable state. According to an informal definition of evolutionary stability
given by Gintis “[a] strategy is evolutionary stable if a whole population
using that strategy cannot be invaded by a small group with a mutant
genotype.” [117, p. 148, emphasis added] Obviously, when determining
the optimal exercise policy for an option contract, only the policy that,
on average, generates the highest payoff fulfills this requirement.26

3.2.3.3.2.2 Evolving an Optimal Investment Program

Figure 3.11 illustrates EMC simulation applied to some simple con-
tingent claim, for example the model problem, the American put op-
tion. Without going into the details of GAs, the procedure is as follows
[119, 176, 242].

Each individual in the population represents a specific investment
program. The free boundary assumed by an individual (the phenotype)

24 For a discussion of co-evolving investment strategies [15].
25 For surveys of the literature see Mailath [213], Weibull [334].
26 Relating evolutionary stable strategy (ESS) to the widely-known notion of Nash

equilibria, it is important to stress that, while all ESS are Nash, not all Nash
equilibria are necessarily evolutionary stable. An algorithm only determining ESS
therefore fails to discover all Nash equilibria. These “non-obvious” Nash equilib-
ria may, however, be very close to evolutionary stability in terms of replicator
dynamics [299].
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Start

➀ Initialization

➁ Simulation

➂ Evaluation

➃ Selection

➄ Combination

➅ Mutation

➆ Insertion

➇ Termination

Completed

Not completed

Stop

Fig. 3.11. Evolution of an optimal investment program. (1) Start: Specify param-
eters of objective funtion. (2) Initialization: Choose random anchor points for free
boundary. (3) Simulation: Simulate random process. (4) Evaluation: Interpolate
boundaries and determine option values. (5) Selection: Select boundaries resulting in
highest option values. (6) Combination: Combine anchor points creating new bound-
aries. (7) Mutation: Randomly move individual anchor points modifying boundaries.
(8) Insertion: Replace unsuitable boundaries. (9) Termination: Check if convergence
criteria are fulfilled. (10) Stop: Present best boundary and resulting option value.
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is described by a sequence of real numbers (the genotype) used to con-
struct a smooth interpolation based on cubic splines or some other suit-
able technique. The critical values may be scaled to represent, say, a
multiple of the strike price. Each individual in the population randomly
chooses a boundary from the feasible set. Then, a large number of price
processes is simulated.27 Based on this information, each individual is
then assigned an objective score reflecting the mean option value result-
ing from following her investment program. This score can be scaled
leading to a relative fitness value.

The algorithm continues by selecting the individuals with the highest
fitness scores, for instance scaled option values. The free boundaries of
these individuals are then cut into segments and randomly recombined.
Alternatively, the average of two boundaries is formed. With a certain
low probability, anchor points are randomly adjusted. The population is
replaced by the new generation in which the offspring with high scores
is in the majority. This procedure is repeated until the maximum option
value no longer increases, the population converges to homogeneity, or
the maximum number of generations is exceeded. The algorithm returns
the option value along with the optimal program given by the free
boundary.28

3.2.3.3.2.3 Noisy Fitness Functions

Although, in principle, genetic algorithms are also applicable to noisy
objective functions, noise may negatively affect the performance of evo-
lutionary heuristics [11, 126, 170].29 Noise in the objective function can
be reduced by minimizing the variance of payoffs resulting from Monte
Carlo simulation. While several methods have been hinted at previously,
(deterministic) quasi-random sequences are particularly useful.30

The use of quasi-random sequences is not common among finance
practitioners, but sufficiently well understood in theory [156, 338].
Among the great variety of sequences available, the Sobol sequence in
particular possesses some very desirable properties [313]. Hybrid quasi–
Monte Carlo (QMC) methods have been proposed to resolve accuracy

27 To avoid an upward bias, it is important to not use the same set of realizations
for each generation.

28 By analogy to the analysis carried out by Longstaff and Schwartz, it can be bene-
ficial to compare this result to the out-of-sample performance of other individuals
with slightly lower option values [207].

29 See also the overview by Arnold [10].
30 The method was introduced to finance in an article by Paskov and Traub [266].

For a recent technical overview see Niederreiter [258].
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issues with low-dicrepancy sequences of higher dimensionality [13, 189],
although there is an obvious trade-off with efficiency gains in EMC.

Other techniques known to improve the performance of QMC simu-
lation for high-dimensional problems include the Brownian bridge, the
partial principle components, and the subsequence methods [166]. Nu-
merical experiments by the author show that correlation effects are
in fact often negligible in this context. Also note that the standard
Box–Muller procedure for generating normally distributed numbers is
not suitable for QMC, because the algorithm fails to preserve the low-
discrepancy property [41, 250]

EMC will be used to obtain approximate solutions to a fairly com-
plicated optimal control problem arising in the valuation of R&D and
patents in part II.

Table 3.1 compares some of the option pricing methods presented.
Looking at the model problem one finds that the FD method clearly
outperforms the LSM and the EMC techniques in terms of accuracy and
speed.31 However, the mathematical formalism is difficult to adapt to
more advanced investment problems and far less intuitive. To improve
the accuracy of EMC, it is possible to combine GAs, which deliver
acceptable performance globally, with other techniques better suited
for local search.

Observation 3.2. EMC is a very flexible technique for valuing real
options. Its flexibility, however, comes at the price of inefficiency.

This chapter served to provide an overview of investment under un-
certainty, including alternative methods for numerical (real) option pric-
ing. Among other tools, these methods will be employed in parts II and
III to examine the value of R&D in the presence of patent risk.

31 Of course, at the price of computational time, each method may be employed to
generate almost infinitely accurate results.
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Table 3.1. Comparison of various approaches to option pricing. All methods were
used to price put options with X0 = 40.0, r = 0.05, and T = 7.0/12. As far as
this model problem is concerned, least-squares Monte Carlo (LSM) simulation is
clearly inferior to the finite difference (FD) method both in terms of accuracy and
efficiency. Its advantages lie in more advanced valuation problems. Obviously, the
computational effort is even higher with evolutionary Monte Carlo (EMC) simula-
tion. FD prices where calculated using a Courtadon scheme with 500 timesteps on
a square grid. Monte Carlo prices are based on an Euler scheme, 100,000 simula-
tion runs, Sobol quasi-random numbers, and Acklam’s approximation for transform-
ing uniformly into normally distributed numbers. The American variants employ a
PSOR solver and a 40-dimensional Sobol sequence in combination with LSM, respec-
tively. Binomial option prices reflect benchmarks reported by Bunch and Johnson
[56, p. 2346]. EMC prices result from a steady state GA with 10 gray-coded real
numbers, 40 individuals, evolved over 30 generations.

Volatility (σ) Method Option value

K = 35.0 K = 40.0 K = 45.0

0.2 Black–Scholes–Merton 0.4132 1.8688 4.8173
FD European 0.4131 1.8686 4.8172
Monte Carlo European 0.4131 1.8688 4.8173

Binomial American 0.4328 1.9904 5.2670
FD American 0.4329 1.9905 5.2671
LSM 0.4344 1.9855 5.2627
EMC 0.4252 1.9840 5.2208

0.3 Black–Scholes–Merton 1.1823 3.0500 5.9512
FD European 1.1823 3.0500 5.9512
Monte Carlo European 1.1823 3.0500 5.9512

Binomial American 1.2198 3.1696 6.2436
FD American 1.2000 3.1698 6.2439
LSM 1.2213 3.1705 6.2301
EMC 1.2177 3.1653 6.2277

0.4 Black–Scholes–Merton 2.1044 4.2332 7.1449
FD European 2.1044 4.2331 7.1449
Monte Carlo European 2.1044 4.2332 7.1450

Binomial American 2.1549 4.3526 7.3830
FD American 2.1549 4.3527 7.3829
LSM 2.1544 4.3573 7.3759
EMC 2.1589 4.3545 7.3868
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Patent Protection in the Pharmaceutical
Industry

Returning to the issue of patenting and the specific situation of research-
driven firms already discussed in chapter 2 on the strategic and eco-
nomic significance of patents, the following sections serve to present
the specific financial and strategic challenges faced by firms in pharma-
ceutical biotechnology. In addition, a brief description of the types of
risk encountered in this highly competitive industry is provided, moti-
vating formal analysis in later chapters.

4.1 Financial and Strategic Challenges

Most experts consider new drug development as the textbook example
of patent protection [267]. Although the initial cost of a pharmaceuti-
cal invention is extremely high, imitation and production is possible at
comparatively low cost once the drug has been developed. In the ab-
sence of patent protection, this discrepancy would result in free riders
capturing a significant portion of economic benefits. As a consequence,
the amount of investment in pharmaceutical R&D would almost surely
drop below the socially optimal level. Due to the specific nature of
pharmaceutical inventions, firms are in a position to obtain IPRs on
clearly-defined products or processes. Each product or process is likely
to result in exceptional market power or even exclusivity in a particular
field, enabling the patent holder to generate monopoly profits. Further-
more, highly codified and packaged technology facilitates licensing and
sale [217].

Over the last 30 years, the pharmaceutical industry has been dom-
inated by giant research-based multinationals generating phenomenal
profits. This post-war success story reflects the fairly simple strategy
of investing in drug discovery and development, following through with
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effective marketing, and leveraging cash flows to establish a continu-
ing R&D pipeline that yields a steady stream of innovative products.
However, as the 1980s progressed, pharmaceutical profitability began
to slide, partially due to numerous government and healthcare payers’
cost-containment measures implemented in key national markets. More-
over, total R&D investment in the US has grown almost exponentially,
from approximately 600 million dollars in 1970 to an estimated 24 bil-
lion dollars in 1999. At the same time, the number of new chemical
entity launches has fallen [29, p. 2].

A combination of cost-containment, lackluster R&D productivity,
and patent expiration has brought about a situation in which the achiev-
able growth rates in revenues and earnings fall short of the double-
digit level investors have become accustomed to (see fig. 4.1). This phe-
nomenon is commonly referred to as the “earnings gap.”

Expiring patents

Rising costs Declining R&D
productivity

Reduced
earnings

Fig. 4.1. Pressures creating the earnings gap (Source: figure adapted from Bennett
[29, p. 27]).

According to Bennett, a number of key strategies have been identi-
fied to combat the earnings gap: effective in-licensing, speedier develop-
ment of new products, enhanced market penetration, improved lifecycle
management, strategic mergers and acquisitions (M&A) activity, im-
proved inventory management and manufacturing asset utilization [29,
pp. 2–3]. Since all major players are equally motivated to unleash the
full potential of these measures, market participants are bound to face
unprecedented competitive pressures. For instance, the need to main-
tain earnings growth has lead to cut-throat competition in the field of
licensing. Correspondingly, licensing agreements have evolved to play a
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key role in pharmaceutical portfolio development. Although the broad
outline and structure of many agreements have remained unchanged,
there has been a noticeable increase in the sophistication and complex-
ity of deals [29, p. 3].

More generally, research-based firms need to capture enough of the
economic returns to make their investment worthwhile. This goal is ac-
complished by defending IP through formal patents and an evolving set
of legal strategies. Established patent practices, however, may not be
suitable for the fast-changing landscape of pharmaceutical biotechnol-
ogy, because the law has yet to catch up with science [94, p. 5].

Oftentimes, the economic reward to innovators no longer lies in com-
mercializing therapeutic or diagnostic end products, but in the use of
inventions during subsequent phases of R&D by others. Unfortunately,
how to use patents to capture the value of these research tools is less
than obvious. Many firms pursue reach-through strategies, trying to
claim a share of the value of derivative inventions. More precisely, these
strategies entail upstream firms reaching into future revenues from end
products developed using their technologies. Unsurprisingly, established
pharmaceutical firms downstream strongly oppose such strategies, for
example because upstream research in the biomedical field is relatively
cheap and heavily subsidized with public funding. Heightened litigation
activity is the unavoidable result [100, pp. 107 and 112]

4.2 Risk in Pharmaceutical Patents

Apart from the obvious market risk, research-based pharmaceutical
firms face a number of risks, three of which are discussed in the follow-
ing section, summarized under the headings “completion,” “expiration,”
and “litigation.” As will become clear in the course of this text, it is not
difficult to incorporate them into option-based models of patents and
R&D.

4.2.1 Completion

Pharmaceutical R&D very closely follows a pre-defined stage-gate pro-
cess [70]. As a consequence, there is abundant statistical evidence on
success probabilities for the various phases (see fig. 4.2). These probabil-
ities vary considerably, for example across different therapeutical areas.
Careful analysis may therefore lead to significant improvements in de-
cision quality during portfolio and project management. More broadly
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0 4 8 12 16

Discovery

Pre-clinical stage

Phase I

Phase II

Phase III
FDA filing

Post-approval testing

5,000–10,000 screened

250 enter pre-clinical testing

5 enter clinical testing

1 approved

Fig. 4.2. Probability of success in pharmaceutical R&D. Regulatory requirements
result in a typical stage-gate process, lending itself to DTA (Source: Gosse et al
[121]).

speaking, only a very small percentage of candidates screened eventually
results in a new drug approved by the FDA [123, 124].

Moreover, commercial providers collect data on the time spent in
each stage as well as the total costs incurred (see table 4.1). Since
the risk resulting from a positive probability of not completing R&D
has been analyzed extensively elsewhere and, more importantly, poses
no serious methodological challenges relevant to this discussion, the
interested reader is referred to the literature for additional information
[34, 316].

Table 4.1. Pre-tax costs, durations, and conditional probabilities of success in R&D.
Commercial data providers have gathered very detailed information on failure rates
across various stages and therapeutic areas, enabling fairly robust estimates of suc-
cess probabilities (Source: Kellogg and Charnes [165, p. 79]).

R&D stage Total cost (in
EUR thousands)

Years in stage Conditional prob-
ability of success

Discovery 2, 200 1 0.60
Pre-clinical stage 13, 800 3 0.90
Clinical stages

Phase I 2, 800 1 0.75
Phase II 6, 400 2 0.50
Phase III 18, 100 3 0.85

FDA filing 3, 300 3 0.75
Post-approval testing 31, 200 9 1.00
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4.2.2 Expiration

Between 2000 and 2005, the pharmaceutical industry has seen unprece-
dented levels of patent expiration, with a total of over 20 blockbuster
drugs losing patent protection. Total sales of these products were ap-
proximately 40 billon dollars in 1998, roughly equivalent to the entire
Japanese ethical pharmaceutical market in 1998 [29, p. 5].

While the CAGR for global blockbuster revenues was around 23.6
percent between 1994 and 2000, strong revenue growth cannot be ex-
pected to continue into the future. Between 2001 and 2008, the block-
buster market is expected to increase with a CAGR of only 4.3 percent
[83, p. 21].

This outlook poses a severe threat to the established players, because
blockbuster products—that is products with annual global sales in ex-
cess of 1 billion dollars—typically are the driving force behind growth
and profitability in large pharmaceutical firms. Conversely, any loss of
blockbuster sales has a serious impact on both total sales and earnings.
In particular, blockbuster drugs tend to attract generic manufacturers,
leading to a rapid erosion in market share, once the branded product is
off-patent [29, p. 28].1

While increasing efforts to establish a common international legal
ground on patent practice have contributed to the wide application of
patent extension strategies common in the US—including Supplemen-
tary Protection Certificates (SPCs), orphan drug status, and pediatric
extensions—these strategies do not pertain to all products. Above all,
they fail to address the fundamental problem of low R&D productivity
[83, p. 37].

Major pharmaceutical firms are currently evaluating the potential
for “patent protection” insurance to recover at least some of the costs
associated with IP challenges from generic manufacturers [83, p. 22].

4.2.3 Litigation

Regardless of the enormous economic significance of legal risk, the vast
majority of patents is actually never asserted in litigation. Only 1.5
percent of all patents are ever litigated, with a mere 0.1 percent litigated
to trial [184, 191]. Although litigation rates vary by industry and reach
as high as 6 percent in biotechnology [194], data from any sample of
litigated patent cases must therefore be interpreted with great care.

1 For detailed analyses of the impact of market entry by generic manufacturers
Caves et al [61], Ferrándiz [105], Frank and Salkever [109], Hudson [149].
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Obviously, the patents involved in litigation are those that are valuable
enough to justify litigation costs and for which the parties failed to
reach a mutually acceptable settlement [193, p. 79].

Some empirical data on patent litigation, categorized by interna-
tional patent classification (IPC), is shown in table 4.2. Patents falling
into the category “drugs and health” are clearly those most frequently
litigated. The total litigation rate is almost twice as high as the aver-
age.2

Table 4.2. Litigation rates by technology group and ownership (Source: Lanjouw
and Schankerman [184]). Numbers shown are filed cases per 1,000 patents between
1980–84. The following IPC categories are included in each group: A61 and A01N
(drugs and health); A62, B31, C01–C20, and D (chemical); G01–G21 and H (elec-
tronic); B21–B30, B32–B68, C21–C30, and E01–F40 (mechanical); A not included
in drug and health, B01–B20, F41–F42, and G21 (other).

Technology group Ownership

Domestic Foreign Total

Drugs and health 26.6 6.5 20.1
Chemical 6.1 1.4 5.4
Electronic 12.7 3.3 9.6
Mechanical 20.1 3.4 11.8
Other 23.4 9.9 15.2

Total 16.4 3.5 10.7

Inevitably, the increasing importance and number of patents has
been accompanied by a higher frequency of IP disputes involving patent
holders and alleged infringers. Between 1978 and 1995, the number of
patent suits filed rose by almost tenfold. Much of this increase occurred
during the 1990s [185, p. 1], with the trend continuing between 1995 and
2000 [275]. As mentioned earlier, the current situation is aggravated by
the emergence of patent thickets [308], requiring more and more firms to
obtain multiple licenses to avoid infringement and bring their products
safely to market [309, p. 391].

For some firms, notably start-ups and smaller biotechnology firms,
litigation represents a necessary evil. In contrast, established pharma-
ceutical firms use litigation aggressively to protect their heavy invest-
ment in R&D [83, p. 78].

2 For details see Lanjouw and Schankerman [183, p. 28] and Harhoff et al [135,
p. 17].
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In 2003, the median patent case with less than 25 million dollars
at stake cost 2 million dollars per side to litigate to trial [192, p. 13].
According to Berman [30], patent suits filed in 2000 alone will generate
around 4.2 billion dollars in legal fees. While such outrageous expenses
are mainly due to the complexity of the subject matter and the large
amounts of money involved, the fact that lawyers benefit more from
protracted litigation than early settlement does little to improve the
situation.

Concluding their review of the empirical literature on the enforce-
ment of IPRs, Lanjouw and Lerner [180] find that the perceived danger
of patent disputes indeed does reduce and distort R&D incentives, de-
pending on the ability of firms to engage in litigation.3 The threat of
costly litigation alone may be sufficient to force a relatively weak firm
to out-license its technology [83, p. 78]. As a consequence, firms with
high litigation costs are less likely to patent in IPCs with many previous
awards by rival firms. They also tend to avoid IPCs occupied by rivals
with low litigation costs [194].

Lanjouw and Schankerman [182] show that patents that are litigated
tend to have more claims and more citations per claim. The more valu-
able a patent, the higher the expected legal cost of enforcing it [186].

4.3 Implications for Capital Budgeting

The primary objective of capital budgeting is the efficient allocation
of resources under uncertainty. Therefore, at least in theory, all types
of risk described should enter into the analysis. Nevertheless, models
used in practice are usually limited to selected risk factors. This text,
of course, places particular emphasis on the legal risk resulting from
imperfect patent protection.

In order to put discussions to come into perspective and as a general
introduction to formal option-based models of pharmaceutical R&D,
consider the pricing approach proposed by Kellogg and Charnes [165],
an often-cited contribution from the applied literature.

A drug needs to successfully pass a number of stages before com-
mercialization finally results in substantial cash inflows: (1) discovery,
(2) pre-clinical trials, (3) clinical trials, (4) new drug application (NDA),
(5) post-approval. Employing a decision tree and basic option pricing,
the expected present value (EPV) of a project can be determined in the

3 For more on litigation and infringement damage see Grandstrand [125], Kingston
[167, 168], Moore [246], Parr [265].
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manner originally suggested by Smith and Nau [312] and further devel-
oped by Loch and Bode-Greuel [206], Copeland and Antikarov [71], and
others.

Kellogg and Charnes commence by laying out a conventional DTA.
The seemingly complicated decision problem shown in fig. 4.3 can be
summarized in a single formula. More specifically, the expected net
present value becomes

ENPV =
7∑

k=1

⎛⎝pk

n∑
j=1

CFD
k,j

(1 + rD)j

⎞⎠+ p7

5∑
k=1

⎛⎝qk

n∑
j=1

CFC
k,j

(1 + rC)j

⎞⎠ ,

where CFD
k,j is the cash flow in period j under the condition that k is

the final stage and pk is the probability of this being the case.4 Cor-
respondingly, CFD

k,j denotes the cash flow in period j, assuming that
the final stage is completed successfully and the product is of quality k.
Moreover, the discount rates rD and rC reflect the specific risk profile
of the R&D stages and the commercialization stage, respectively. Prob-
abilities qk are associated with different categories of product quality,
ranging from “dog” to “breakthrough.”

Looking back at quantitative information on success probabilities
given in table 4.2, it becomes immediately obvious why this data is
extremely useful when estimating the option value of abandonment.5
While a policy of blindly adopting statistical data suffers from certain
drawbacks, it also avoids agency problems and cognitive biases typically
encountered when interviewing experts directly involved in the project
to be evaluated.

4 Kellogg and Charnes incorrectly describe pk as the “conditional probability that
stage k is the end stage for a drug that has reached stage k − 1” [165, p. 79]. If
this were the case

ENPV =
7∑

k=1

(
pk
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n∑

j=1

CFD
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)
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6∏
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(1 − pj)

5∑
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(
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)
.

5 For further details concerning parameters see Kellogg and Charnes [165, p. 79].
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Fig. 4.3. Decision tree for pharmaceutical R&D (Source: figure adapted from Kel-
logg and Charnes [165, p. 80]). Conventional DTA provides little information on the
appropriate choice of discount rates during R&D and commercialization.
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The equivalent option-based model is similar [165, pp. 80–82], but
still exhibits some subtle differences, the most important of which is a
slight increase in consistency with respect to discount rates.6

A first step towards obtaining option values is to calculate the ex-
pected gross present value of cash flows from commercialization, which
can be expressed as

V0 =
5∑

k=1

⎛⎝qk

n∑
j=1

CFC
k,j

(1 + rC)j

⎞⎠ ,

where rC is a risk-adjusted discount rate reflecting the systematic com-
ponent of volatility, that is the standard deviation of returns on Vt. In
option terms, Vt represents the underlying asset of a contingent claim.7

Following Cox et al [76], a discrete-time binomial approximation
of Vt can be employed to perform risk-neutral valuation. Hence, the
present value of cash flows from commercialization increases from Vi,j

to Vi+1,j+1 = uVi,j with risk-neutral probability p. With probability
(1 − p), it decreases to Vi,j+1 = dVi,j. A recombining tree requires u =
1/d. Specifically,

u = eσ
√

Δt,

where Δt = T/n is the length of a single period, in this case one year,
and σ denotes volatility.8 The risk-neutral probability of an upward
movement is

p =
erΔt − d

u − d
.

Once R&D has been completed, the payoff is

Fi,n = max {Vi,n, 0} .

Assuming positive CFC
k,j, which implies positive Vi,n, one obtains Fi,n =

Vi,n. The current value of R&D is then determined by dynamic program-
ming:

6 Strictly speaking, standard option valuation circumvents the issue of determining
appropriate discount rates altogether, because it relies on an adjustment of the
probability measure instead (see sect. 6.2.2).

7 In the terminology of later chapters, this approach corresponds to a project-level
model.

8 For details, also see sect. B.1.1 in the appendix. Choosing such a very crude ap-
proximation of the continuous-time process may lead to substantial mispricing—
an issue unfortunately often neglected in practical applications.
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Fi,j = max
{
pje−rΔt (pFi+1,j+1 + (1 − p)Fi,j+1) − CFD

j , 0
}

,

where pj is the probability of successfully completing stage j.9
Obviously, the risk of litigation plays no explicit role in the Kellogg

and Charnes formalization. Cash flows accrue regardless of the quality of
patent protection and, in addition, seem to be unaffected by competitive
action.

Hence, Patent valuation calls for a careful re-examination by policy
makers and practitioners alike. Before financial institutions are in a
position to adequately characterize patent value in capital budgeting,
M&A, licensing, or pro-forma revenue forecasts, a vigorous review of IP
is mandatory. When selecting valuation methods for IP, accounting for
the risk of PTO quality concerns as well as the cost of enforcement to
actually extract value should be sufficient to attenuate overly optimistic
predictions of profit potential [222, p. 13].

Discrete-time models like the one described are commonly employed
by practitioners in the field of decision analysis.10 The following chap-
ters serve to develop a more comprehensive picture, also discussing more
advanced models in continuous-time. More importantly, the interaction
of different types of risk will be analyzed in detail.

In summary, it appears intuitively evident that patent risk should
play a key role for in capital budgeting decisions, because imperfect
patent protection may have a substantial impact on the valuation and,
thereby, the optimal management of IPRs from a shareholder’s perspec-
tive. In principal, if one chooses to follow the option-based view, there
are two ways in which patent risk can be incorporated into common
formal models of such rights.11

One way is to take patent risk as an exogenous parameter that, in
addition to other parameters like drift and volatility, determines the
evolution of underlying asset values over time. The modified process
has an immediate impact on the value of claims contingent on these
assets, such as patents granting the exclusive right to reap the benefits
of commercialization. In technical terms, events negatively affecting the
value of the patent take the form of discontinuities, or jumps, in the
value process.
9 Note the slight inconsistency in employing continuous-time as well as discrete-

time compounding and discounting. In addition equation (3) provided by Kellogg
and Charnes [165, p. 82] erroneously contains the discount factor D = e−r

√
Δt

instead of D = e−rΔt.
10 For further examples see Copeland and Antikarov [71].
11 For a recent discussion of patent risk and its implications for formal modeling see

Marco [218].
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Correspondingly, models incorporating both features, continuous as
well as discontinuous changes, are referred to as jump-diffusion models,
many of which have been successfully applied in the context of credit
risk.12 Analytic and numerical analyses serve to translate them into
recommendations for value-maximizing investment policies.

Another way is to try to capture the strategic nature of patent risk
by recognizing risk itself as the outcome of value-maximizing behav-
ior of current competitors and potential new entrants. Legal action, in
this framework, is just an additional strategic option open to all mar-
ket participants. In fact it is a real option, because the antagonist will
choose to litigate or to accommodate, depending on new information
gathered about the expected payoff, which changes with the value of
the asset underlying the challenged patent. Since the owner of a patent
is likely to anticipate the behavior of other parties and act accordingly,
game-theoretic arguments are, at least in theory, required to justify
capital budgeting decisions concerning the creation, acquisition, and
subsequent monetization of patents.

Parts II and III consider both approaches in turn, highlighting con-
nections where appropriate.

12 For an overview of credit risk modeling, valuation, and hedging see Bielecki and
Rutkowski [33].
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Exogenous Patent Risk
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Introduction and Related Work

As pointed out by Schwartz [302], no discussion of the R&D process
is complete, unless it accounts for the eventuality of patent litigation
[184, 292]. This part therefore serves to present option-based models of
exogenous patent risk. Following the common approach to investment
analysis under uncertainty [90, 91], a formal analogy between patents
and financial options is established and described in detail. Also under
imperfect patent protection, the analogy proves to be as intuitive as it
is fruitful, both from a theoretical and a practical standpoint.

In order to put into perspective analyses carried out, a brief overview
of related work on option-based capital budgeting in R&D is provided
in the following.

The application of option-based methods to real-world investment
problems, especially in the pharmaceutical industry, is the subject of
an interview with the CFO of Merck recorded by Nichols [257]. Smith
and Nau [312] are the first to present a rigorous discussion of how to
integrate option pricing theory and decision analysis in deriving optimal
policies under combined market and technology risk. Simple discrete-
time representations of the typical stage-gate process mirroring their
approach are now widely accepted tools in R&D intensive settings (see
sect. 4.3) [70].

Moreover, formal investment analysis under uncertainty has at-
tracted the attention of researchers in strategic innovation management,
exemplified by Baldwin and Clark [18], Kogut and Kulatilaka [173].
Other contributions addressing investment under uncertainty from a
more strategic perspective include the papers by Lint [201], Lint and
Pennings [202, 203, 204], Pennings and Lint [268]. In addition, Huchz-
ermeier and Loch [148], Lee and Paxson [190], Ziedonis [340] focus
on various issues in connection with option-based R&D management.
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Game-theoretic considerations come into play in Weeds’s model of R&D
competition [333].

Early applications in the realm of pharmaceuticals include the arti-
cles by Jägle [157], Kellogg and Charnes [165], Ottoo [262]. Lavoie and
Sheldon [187] examine macroecomic aspects. More recently, Brach and
Paxson [48], Loch and Bode-Greuel [206] consider implications for valu-
ation and value-based management. Furthermore, Robinson and Stuart
[285] analyze financial contracting in strategic biotech alliances, while
MacMillan and McGrath [208], McGrath and Nerkar [232] look at strate-
gic portfolio decisions. An innovative use of extreme value theory (EVT)
to study R&D options is proposed by Koh and Paxson [174].

In contrast to more complicated analyses of patents and R&D, some
of which have been mentioned so far, formalizations chosen throughout
the following chapters are deliberately stylized, drawing a clear picture
of the impact of various levels of patent protection on value-maximizing
strategies. For example, choosing a setup closely related to the classic
model by Majd and Pindyck [214], the author clarifies the signifcance of
limited patent duration [263]. Generally speaking, modifying such mod-
els to better reflect real-world investment problems should be straight-
forward.

Similarly, imperfect patent protection is studied employing classic
models from the option pricing literature. Based on seminal contribu-
tions by Black and Scholes [35], McKean [233], Merton [238] who only
consider the basic stock price model devised by Samuelson [14, 261, 290],
Merton [239] extends the analysis of options prices to conventional jump-
diffusion processes. This extended option pricing model constitutes the
framework for introductory analyses of patent risk as jumps of deter-
ministic size. Proceeding with an obvious generalization of Merton’s
setup, the discussion of patent risk as jumps of stochastic size then
draws upon fairly recent literature in the field of option pricing under
alternative price dynamics, more specifically, Lévy processes.

Although not in widespread use among practitioners, more general
Lévy processes in financial applications have been the subject of re-
search for a long time. Fama [102, 103], Mandelbrot [215, 216] are
among the first to examine pure jump Lévy processes with a stable
Pareto–Lévy measure to address deviations of stock returns from nor-
mality. In contrast, Press [276] analyzes an exponential Lévy process
model with a non-stable distribution. His log price process combines
Brownian motion and an independent compound Poisson process with
normally distributed jumps. The use of generalized hyperbolic (GH)
distributions is proposed by Barndorff-Nielsen and Halgreen [20], Eber-
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lein and Keller [97]. These distributions encompass the important sub-
classes of hyperbolic and normal inverse Gaussian (NIG) distributions.
Other possibilities are explored by Carr et al [59], Madan et al [210],
analyzing variance gamma distributions and the more general case of
so-called Carr–Geman–Madan–Yor (CGMY) distributions. In addition,
Cont et al [69], Matacz [226] consider truncated Lévy processes. To
simplify matters, the models proposed here are limited to the case of
exponential jump-diffusion.

Several authors discuss the valuation of American options under
Lévy processes, including, for example Gerber and Landry [113], Gerber
and Shiu [114], Mordecki [247], Mulinacci [252], Pham [269], Zhang [339].
Analytical solutions presented in this part of the text are largely based
on the pricing approach developed by Boyarchenko and Levendorskǐı [44,
46], Mordecki [248]. Similar results concerning real investment options
are obtained in a series of papers by Boyarchenko [42], Boyarchenko and
Levendorskǐı [45, 46] For a more general introduction to Lévy processes
and applications, the reader is referred to the literature Bertoin and
Doney [32], Boyarchenko and Levendorskǐı [43], Jacod and Shiryaev
[154], Raible [281], Sato [291], Schoutens [296], Skorokhod [311].

Again drawing upon a classic paper, the basic model of investment
under market uncertainty with time-to-build due to Majd and Pindyck
[214] is extended to the case of imperfect patent protection. Originally
developed to capture the threat of radical innovation faced by a large
producer of consumer electronics, it leads to several findings on the
nature of risky R&D and serves as a point of reference for the more
advanced models that follow.

Building on fairly recent contributions to the field of option-based
R&D management by Hsu and Schwartz [146], Schwartz [302], Schwartz
and Moon [303], Schwartz and Zozaya-Gorostiza [304], these advanced
models are extensions of Pindyck’s original work on investment of un-
certain costs [270]. In contrast to Miltersen and Schwartz [245], the
explicit analysis of strategic interaction is postponed to part III.

Spanning a comparatively wide range of analytical as well as nu-
merical methods, the discussion is structured as follows. To lay the
foundation for a detailed description of option-based models of exoge-
nous patent risk, chap. 6 introduces the general concept of option-based
patent valuation, starting with deterministic analyses before proceeding
to a stochastic setting. Examples are provided to illustrate the applica-
tion of project-level, profit-level, and demand-level models. Particular
attention is devoted to the impact of finite patent protection, a type of
“hard” portfolio-level patent risk on optimal policies under uncertainty.
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Chapter 7 then addresses the implications of “soft” patent risk, mod-
eled as jumps in the underlying processes, covering patent-related events
of deterministic as well as stochastic severity. Moving from simple single-
stage, single-factor models to more advanced two-stage, two-factor mod-
els, a novel approach for determining value-maximizing policies in R&D
is presented, followed by an extensive numerical analysis of the effects
of patent risk.

Shedding light on some of the issues raised from a slightly more
practical perspective, chap. 8 serves to point out connections between
the advanced jump-diffusion models of R&D described and the business
shift approach to R&D valuation proposed by Lint and Pennings [203].

In chap. 9, the author draws preliminary conclusions and identifies
opportunities for future research.



6

Patents as Investment Opportunities

On a very abstract level, patents represent investment opportunities
or, to use a technical term borrowed from financial markets, options.
Depending on whether decisions are made upfront or over time as new
information is obtained, investment policies in connection with patents
are termed “static” or “dynamic.” Of course, truly option-based methods
require the policy to be dynamic, whereas traditional techniques based
on the NPV criterion are static in nature. A brief description of static
investment policy sets the scene for extensions to come.

6.1 Static Investment Policy

A patent protects its holder from competition, enabling him or her to
generate additional cash flows from commercializing certain goods or
services. These cash flows accrue in the form of monopoly rents, that
is profits in excess of socially-optimal levels. The resulting price in-
crease leads to a loss in welfare, but creates the incentive to obtain the
patent in the first place, usually by investing into R&D and complet-
ing a lengthy and expensive application process. In other words, patent
protection compensates the innovator for accepting potentially signifi-
cant technological and market-related risk. Patent systems thus aim at
maximizing economic growth by ensuring the optimal level of patent
protection that balances social costs and benefits.1

1 Despite the widespread assumption that patents in general have a positive impact
on innovation and economic growth, there is hardly any empirical evidence to
support this claim. In fact, many authors assume that the existence of patents is
by and large owed to path dependency. Innovation activity in the software and
financial industry seems to support their standpoint. See the references in sect. 2.2
for a more detailed account of patenting from an economist’s perspective.
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Leaving aside macroeconomic considerations, R&D and patenting de-
cisions are obviously firm-level, that is microeconomic, investment prob-
lems. Practitioners have developed a variety of income-based, market-
based, and cost-based valuation models to determine the value of a
patent, including, for example, the popular relief-from-royalty method.
Here, a more stylized approach is adopted, which aims at outlining the
general mechanisms driving investment policy.

Simply put, the firm weighs individual costs and benefits of innova-
tion by comparing the gross present value of cash flows from commer-
cialization to the investment required to enter the market. What would
be the value of the patent in a one-period model with no flexibility
beyond the immediate investment decision?

For reasons of simplicity, let V denote the gross present value of fu-
ture cash flows and I the cost of commercialization. It is straightforward
to determine the so-called static value of the patent.

Proposition 1 (Static patent value). Abstracting from the possibil-
ity to postpone commercialization, the (static) value of a patent is

F (V ) =

{
V − I if V ∗ < V ,

0 otherwise,
(6.1)

where
V ∗ = I (6.2)

denotes the critical gross payoff from commercialization.

Proof (Proposition 1). Equation (6.1) and (6.2) simply describe the
standard NPV rule, or Marshallian investment trigger. It is optimal to
invest if and only if the overall payoff is positive.

Since the corresponding investment policy implies a now-or-never
decision, it is termed “static.” Once the patent has been obtained, com-
mercialization takes place immediately. Strictly speaking, according to
the static view, a patent represents an investment project, rather than
an investment opportunity. In contrast, dynamic policies are contingent
on future events and thereby typically involve a number of subsequent
decisions. In the most basic setup, investment into R&D is followed by
an additional investment required to commercialize the patent.

Using a slightly different notation, similarities to financial contracts
become obvious. Equation (6.1) is equivalent to

F (V ) = max{V − I, 0} ≡ (V − I)+,
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which is just the inner value of a plain-vanilla call option.2 It is useful
however, to express the rule in terms of an upper threshold V ∗, since
this makes static investment policies readily comparable to dynamic
ones.

The length of the protection period granted to the holder of the
patent only comes into play if V is broken down into a series of cash
flows. These are then discounted and summed up to arrive at the gross
payoff from commercialization. In a continuous-time setting with finite
time horizon T ,

V (Π0) =
∫ T

0
e−μt

(
Π0 +

∫ t

0
αΠs ds

)
dt,

where Πt is the (expected) cash flow rate at time t, α is the instanta-
neous growth rate (drift), and μ is a risk-adjusted discount rate. As-
suming 0 < α < μ, integration yields

V (Π0) =
(
1 − e−(μ−α)T

) Π0

μ − α
. (6.3)

The longer the protection period, the higher the value of the patent. If
T is infinitely large, (6.3) reduces to the standard perpetuity formula

V (Π0) =
Π0

μ − α
,

so that

F (Π0) =

{
Π0

μ−α − I if Π∗ < Π0,

0 otherwise,

where
Π∗ = I (μ − α)

is an upper investment threshold.
To overcome the obvious limitations of such a static model, a number

of extension are introduced in the following section.

6.2 Dynamic Investment Policy

Although uncertainty is the single most important element in R&D-
related investments, the deterministic case provides a suitable bench-
mark for further analysis. Therefore, sect. 6.2.1 serves to present basic
2 Recall that the total value of a financial option consists of an inner value and a

time value. The latter captures the possibility to respond flexibly as uncertainty
about asset prices resolves over time.
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models of dynamic investment policy under certainty. The stochastic
case is discussed in sect. 6.2.2.

6.2.1 Deterministic Payoff

Depending on the level of detail, investment policies may be analyzed
on the project, profit or demand level. Despite the fact that demand-
level analysis is most comprehensive and, as a consequence, perhaps
also most realistic, many important results can already be derived in a
very simplified setting.

6.2.1.1 Project-Level Analysis

As closed-form expressions for the patent value under uncertainty are
only available for the subclass of problems with infinite patent protec-
tion, this particular case is also chosen as the starting point for the
following discussion of investment under certainty.

6.2.1.1.1 Infinite Protection Period

The optimal policy is derived analytically and illustrated graphically
using a numerical example.

6.2.1.1.1.1 Analytical Derivation

Similar to the time-dependent profit rate specified in sect. 6.1, assume
a gross present value that grows at a constant rate α:

Vt = V0 +
∫ t

0
αVs ds, V0 = v. (6.4)

This specification is similar to the widely-used standard model of stock
prices [290], except for the random component, which is omitted at this
point, but re-introduced in sect. 6.2.2.3

Assumption 6.1. Changes in commercialization payoff are analogous
to stock price movements.

3 Although, for example, typical drug lifecycles observed in the market suggest that
a constant growth rate might not properly reflect important stylized facts of the
industry, the model is a good starting point for further analysis.
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Equation (6.4) implies
Vt = eαtv.

With the initial project value and growth rate known, the value of the
project at any point in time t ∈ [0,∞) is easily calculated. The current
value of the patent F (v) is then obtained by solving the optimization
problem

F (v) = max
τ∈[0,∞)

e−rτ (eατv − I)+

= e−rτ∗ (
eατ∗

v − I
)+

, (6.5)

where τ∗ is the optimal time to commercialize. Future project values are
known with certainty, so that the risk-free rate r may be used for dis-
counting. As commercialization effectively “stops” the process describ-
ing the evolution of Vt over time, τ∗ is also referred to as the “optimal
stopping time.” The investment amount is still considered to be con-
stant.

Assumption 6.2. The holder of a patent maximizes value by choosing
an optimal time to commercialize.

As explained in sect. 6.1, the dynamic value of a patent can be
expressed in terms of a threshold, or critical value. The set {v ∈ [0,∞) :
v∗ < v} is known as the stopping region, whereas {v ∈ [0,∞) : v ≤ v∗}
represents the continuation region [177, pp. 193–221].

Proposition 2. Assuming a moderate growth rate α ∈ (0, r), the dy-
namic value of a patent under certainty and infinite patent protection
is

F (v) =

⎧⎨⎩v − I if v∗ < v,

Iα
r−α

(
v(r−α)

Ir

)r/α
otherwise.

(6.6)

where
v∗ =

Ir

r − α
(6.7)

denotes the critical gross payoff from commercialization at time t = 0.

Proof (Proposition 2). The optimal investment policy depends on the
growth rate α and the discount rate r. The value of the project may
(1) decrease over time, (2) increase over time, but decrease in present-
value terms, (3) stay constant in present-value terms, or (4) increase in
present-value terms. These cases are now examined in turn.
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Case 1 (α ≤ 0). Simply by looking at (6.5) it becomes obvious that, as
long as I remains constant, postponing commercialization will always
decrease the investor’s payoff. Consequently, it is optimal to commer-
cialize immediately, or never. This situation is similar to the static case.

Case 2 (0 < α < r). An interior solution to the optimization problem
exists only for moderately positive growth rates. Set

G(v, τ) = e−rτ (eατv − I) . (6.8)

A necessary condition for an optimum is

∂G(v, τ)
∂τ

∣∣∣∣
τ=τ∗

= e−rτ∗(
Ir − eατ∗

v (r − α)
)

= 0. (6.9)

Solving for τ∗ leads to a solution candidate:

τ∗ =
1
α

ln
Ir

v (r − α)
. (6.10)

Since
∂2G(v, τ)

∂τ2

∣∣∣∣
τ=τ∗

= −Irα

(
v (r − α)

Ir

)r/α

< 0,

this candidate indeed yields a maximum. However, τ∗ is required to be
non-negative. The critical project value v∗ given by (6.7) is derived as
the lowest project value for which τ∗ is actually positive. Solving (6.9)
for Vt = eατ∗

v leads to

eατ∗
v =

Ir

r − α
.

Setting τ∗ = 0 yields the threshold v∗.4 Inserting (6.10) in (6.8) shows
that

F (v) = G(v, τ∗)

= e−rτ∗ (
eατ∗

v − I
)

=
Iα

r − α

(
v (r − α)

Ir

)r/α

> 0

for project values lower than or equal to v∗. Conversely, for all project
values above the threshold, commercializing immediately is optimal. As
evident from (6.7), immediate commercialization also results in a posi-
tive payoff, because 0 < v∗ − I = α/ (r − α).

4 At the critical threshold v∗, it optimal to invest immediately.
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Case 3 (r = α). If the growth rate equals the discount rate, timing has
no effect on the investor’s payoff. He or she is indifferent with respect
to the time of commercialization.

Case 4 (r < α). If the project value grows at a rate in excess of the risk-
free rate, it is never optimal to commercialize. The rational manager
postpones the investment indefinitely.5

Patent value for moderate growth rates is thus given by the piecewise
function (6.6).

Comparing proposition 2 to proposition 1 shows that timing flexibil-
ity indeed increases the value of the patent. In this setting, option value
is not driven by uncertainty, but by growth. The higher the growth rate,
the higher the value of the patent.

Occasionally, v∗ is also referred to as a “deterministic investment
trigger.” Compared to the Marshallian trigger presented in sect. 6.1,
the trigger calculated here is substantially higher, because

I < v∗ = I

(
1 +

α

r − α

)
.

The investment required to commercialize is equivalent to a perpetuity
of Ir. Therefore, the critical project value v∗ corresponds to a growing
perpetuity of the same amount.6

Furthermore, it is important to emphasize that, if payoffs are deter-
ministic, the optimal time to commercialize can be calculated explicitly.

Corollary 1. Assuming a moderate growth rate α ∈ (0, r), the optimal
commercialization time of a patent under certainty and infinite patent
protection is

τ∗ =

{
0 if v∗ < v,
1
α ln Ir

v(r−α) otherwise.
(6.11)

Proof (Corollary 1). Equation 6.11 simply restates a result obtained in
the derivation of proposition 2.

The lower the initial project value, the more attractive postponement
becomes. More formally,

5 This case seems like a mere technicality. However, a similar condition involving
the rate of return shortfall δ will appear under uncertainty.

6 Correspondingly, Dixit and Pindyck [91, p. 184] coin the term “flow-equivalent
cost of investment.”



84 6 Patents as Investment Opportunities

∂τ∗

∂v

∣∣∣∣
v≤v∗

= − 1
vα

< 0. (6.12)

This straightforward relationship could provide a somewhat naïve expla-
nation for the existence of sleeping patents, which are not commercial-
ized despite obvious market opportunities. However, the setup is still
too simplistic to permit such far-reaching conclusions.

6.2.1.1.1.2 Numerical Illustration

Figure 6.1 shows how patent values change depending on the initial
value of the project for various growth rates (α ∈ {0.000, 0.015, 0.030}).
Assuming an investment amount of I = 1.0 and a risk-free rate of
r = 0.05, critical project values become

v∗0 =
1.000 × 0.050
0.050 − 0.000

= 1.000,

v∗1 =
1.000 × 0.050
0.050 − 0.015

= 1.429,

v∗2 =
1.000 × 0.050
0.050 − 0.030

= 2.500.

Already under certainty, the typical option-like shape is clearly recogniz-
able. Obviously, the impact of growth on patent value is most significant
for initial project values close to the investment amount.

6.2.1.1.2 Finite Protection Period

Under finite patent protection, the value of the patent is not necessar-
ily positive, even for positive growth rates. Specifically, if the patent
expires at time t = T and eαT v ≤ I, it is never optimal to commercial-
ize. More importantly, postponing in real-world situations decreases the
payoff from commercialization, because the window of opportunity for
accumulating cash flows closes. In order to investigate this effect and
draw appropriate conclusions, it is indispensable to examine cash flows
instead of aggregate project values.

6.2.1.2 Profit-Level Analysis

Building on previous analyses, extensions introduced in this section
explicitly recognize the fact that project values represent the present
value of future cash flows. This relationship was hinted at in sect. 6.1
and is fleshed out here in detail.
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Fig. 6.1. Dynamic patent value under certainty and infinite patent protection ac-
cording to project-level analysis (I = 1.0, r = 0.05, and α ∈ {0.000, 0.015, 0.030}).
The impact of growth on patent value is most significant for initial project values
close to the investment amount. Vertical lines indicate critical initial project values
at v ∈ {1.00, 1.43, 2.50}.

6.2.1.2.1 Infinite Protection Period

For reasons of clarity and comparability, consider first the case of an
infinite protection period. Again, the optimal policy is first derived ana-
lytically, before resorting to numerical methods to accentuate noticeable
results.

6.2.1.2.1.1 Analytical Derivation

By analogy, the time-dependent value of commercialization becomes

V (�, t) =
∫ ∞

t
e−r(s−t)Πs ds,

where

Πt = Π0 +
∫ t

0
αΠs ds, Π0 = �,

and Πt again denotes the (commercialization) cash flow rate at time t.
For moderate growth rates, Vt is bounded. Integration leads to

V (�, t) =
eαt�

r − α
, 0 < α < r. (6.13)

The rational manager’s objective function is thus
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F (�) = max
τ∈[0,∞)

e−rτ

(
eατ�

r − α
− I

)+

= e−rτ∗
(

eατ∗
�

r − α
− I

)+

. (6.14)

Analogous to the project-level case, τ is chosen to maximize patent
value.

Proposition 3. Assuming a moderate growth rate α ∈ (0, r), the dy-
namic value of a patent under certainty and infinite patent protection
is

F (�) =

{
�

r−α − I if �∗ < �,
Iα

r−α

(
�
Ir

)r/α otherwise,
(6.15)

where
�∗ = Ir (6.16)

denotes the critical cash flow rate at time t = 0.

The simple proof follows the steps outlined in sect. 6.2.1.1.

Proof (Proposition 3). Analogous to project-level analysis, set

G(�, τ) = e−rτ

(
eατ�

r − α
− I

)
. (6.17)

Given that 0 < α < r, a necessary condition for optimal commercializa-
tion is

∂G(�, τ)
∂τ

∣∣∣∣
τ=τ∗

= e−rτ∗ (
Ir − eατ∗

�
)

= 0. (6.18)

Solving for τ∗ leads to an optimal commercialization time,

τ∗ =
1
α

ln
Ir

�
, (6.19)

which, because of

∂2G(�, τ)
∂τ2

∣∣∣∣
τ=τ∗

= −Irα
(�

Ir

)r/α
< 0, (6.20)

in fact represents a partial solution to the maximization problem. Again,
the critical cash flow rate �∗ is obtained by requiring the optimal com-
mercialization time to equal zero. Cash flow rates in excess of �∗ trigger
immediate investment. Simply inserting (6.19) in (6.17) and verifying
that the non-negativity constraint is fulfilled as in sect. 6.2.1.1 produces
(6.15).
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Alternatively, proposition 3 can be derived directly from proposi-
tion 6.2 by substituting

v = V (�, 0) =
�

r − α
, (6.21)

which follows from (6.13), in (6.11).
Since proposition 3 describes the Jorgensonian trigger known from

neoclassical investment theory, it is of particular interest when com-
paring the option-based approach to traditional capital budgeting tech-
niques. By (6.16), it is optimal to invest as soon as the marginal profit
from employing an additional unit of capital exceeds the user cost of
capital [160].

The main difference between propositions 2 and 3 is that, according
to the latter, the payoff from immediate commercialization depends
explicitly on α. As a consequence, patent values vary substantially for
different growth rates, even for very high values of �.

As before, the optimal time to commercialize can be given explicitly.

Corollary 2. Assuming a moderate growth rate α ∈ (0, r), the optimal
commercialization time of a patent under certainty and infinite patent
protection is

τ∗ =

{
0 if �∗ < �
1
α ln Ir

� otherwise,
(6.22)

Proof (Corollary 2). Proposition 3 requires (6.22) to hold.

Decreasing initial cash flow rates will cause the rational investor to
postpone commercialization further. Since, by (6.21), v is a multiple
of the initial cash flow rate, the value of waiting behaves completely
analogous to (6.12), that is τ∗ is inversely proportional to −�, or

∂τ∗

∂�

∣∣∣∣
�≤�∗

= − 1
α�

.

6.2.1.2.1.2 Numerical Illustration

Figure 6.2 illustrates how the value of the patent changes with the initial
cash flow rate � and the growth rate α. In contrast to project-level
analysis, high growth rates result in patent values being particularly
sensitive to changes in the initial cash flow rate, whereas the trigger
is obviously unaffected by such changes. Again assuming I = 1.0 and
r = 0.05, the rational investor commercializes if the initial cash flow
rate exceeds �∗ = 1.0 × 0.05 = 0.05, no matter what the growth rate
α.



88 6 Patents as Investment Opportunities

�

F
(�

)

0.02 0.04 0.06 0.08 0.10

0

1

2

3

4

Fig. 6.2. Dynamic patent value under certainty and infinite patent protection ac-
cording to profit-level analysis (I = 1.0, r = 0.05, and α ∈ {0.000, 0.015, 0.030}).
High initial cash flow rates result in patent values being particularly sensitive to
changes in growth. The critical cash flow rate, which is unaffected by such changes,
is at � = 0.05.

6.2.1.2.2 Finite Protection Period

Consider the case of a finite protection period of length T , which, as
opposed to project-level analysis (see sect. 6.2.1.1), is presented here in
some detail, employing both analytical and numerical methods.

6.2.1.2.2.1 Analytical Derivation

The gross present value of cash flows from commercialization is

V (�, t) =
∫ T

t
e−r(s−t)eαs� ds.

If cash flows grow at a moderate rate, that is 0 < α < r,

V (�, t) =
(
eαt − e−r(T−t)+αT

) �

r − α
.

The resulting objective function is

F (�, 0) = max
τ∈[0,T ]

e−rτ

((
eατ − e−r(T−τ)+αT

) �

r − α
− I

)+

= e−rτ∗
((

eατ∗ − e−r(T−τ∗)+αT
) �

r − α
− I

)+

. (6.23)

In contrast to the case of an infinite protection period, commercializa-
tion has to take place before the patent expires, so that τ∗ ∈ [0, T ].
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Proposition 4. Assuming a moderate growth rate α ∈ (0, r), the dy-
namic value of a patent under certainty and finite patent protection is

F (�, 0) =
(
G(�, τ∗)

)+
, (6.24)

where

G(�, τ∗) =

⎧⎪⎨⎪⎩
(
1 − e−(r−α)T

)
�

r−α − I if �∗ < �,
Iα

r−α

(
�
Ir

)r/α − e−(r−α)T �
r−α if e−αT �∗ < � ≤ �∗,

−e−rT I otherwise,

and
�∗ = Ir

denotes the critical cash flow rate at time t = 0.

The most noticeable difference consists in an additional, lower
threshold for �, which marks the highest level of profitability that is not
yet sufficient to justify commercialization within the protection period.

Proof (Proposition 4). Again, the optimal commercialization time is
found by introducing an auxiliary function. Define

G(�, τ) = e−rτ

((
eατ − e−r(T−τ)+αT

) �

r − α
− I

)
. (6.25)

As can be verified easily, the derivatives of (6.25) with respect to τ are
identical to (6.18) and (6.20), so that the Jorgensonian trigger also ap-
plies under finite patent protection.7 The corresponding lower threshold
is determined by solving

τ∗ =
1
α

ln
Ir

�
= T

for �. Consequently, for all cash flow rates lower than or equal to
e−αT �∗, postponing commercialization to the end of the protection
period is, in principal, optimal.

For certain parameter values, however, it is optimal to forgo the
opportunity to invest, because even optimal commercialization timing
results in a loss. Assuming �∗ < � and solving for the minimum initial
cash flow rate that provides a positive payoff leads to

7 The detailed derivation is omitted, because it is completely identical to the case
of infinite patent protection discussed above.
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I (r − α)
1 − e−(r−α)T

< �.

If � ≤ eαT �∗ the optimal commercialization payoff is clearly negative.
Finally, for all initial cash flow rates eαT �∗ < � ≤ �∗, a threshold
below which commercializing is disadvantageous can be determined nu-
merically. The rational investor, of course, requires the payoff to be
positive, which implies (6.24).

Similar to the case described in sect. 6.2.1.1, a limited protection
period gives rise to situations in which patents are in fact worthless.
For the sake of completeness, the optimal commercialization time is
also provided.

Corollary 3. Assuming a moderate growth rate α ∈ (0, r), the optimal
commercialization time of a patent under certainty and finite patent
protection is

τ∗ =

⎧⎪⎨⎪⎩
0 if �∗ < �,
1
α ln Ir

� if e−αT �∗ < � ≤ �∗,
T otherwise.

(6.26)

Proof (Corollary 3). Proposition 4 implies (6.26).

Decreases in � still lead to a higher value of waiting. Nevertheless,
falling initial profit rates eventually result in a negative payoff, causing
the investor to refrain from commercializing the patent. Thereafter, τ∗
becomes completely insensitive to variations in profitability.

6.2.1.2.2.2 Numerical Illustration

As before, a numerical example is chosen to illustrate the sensitivity
of patent value to changes in cash flow rates and growth. Figure 6.3
shows how G(�, τ∗) changes with � under various growth assumptions.
Compared to the graphs in fig. 6.2, finite patent protection leads to
a downward shift. Patent value in each case corresponds to the non-
negative part of the function.

6.2.1.3 Demand-Level Analysis

An obvious extension to the basic model is to analyze a simple monopoly.
In the interest of brevity, the discussion is limited to the case of infinite
patent protection. To this purpose, an inverse demand function Pt is
introduced. Set
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Fig. 6.3. Dynamic patent value under certainty and finite patent protection ac-
cording to profit-level analysis (I = 1.0, r = 0.05, α ∈ {0.000, 0.015, 0.030}, and
T = 20.0). The thresholds above which the patent carries positive value are at
� ∈ {0.061, 0.070, 0.079}.

P (y, t,Qt) = YtD(Qt),

where

Yt = Y0 +
∫ t

0
αYs ds, Y0 = y (6.27)

represents a time-dependent demand-scaling parameter. Furthermore,

D(Qt) = ae−bQ2
t ,

where a and b are positive constants. Admittedly, the inverse demand
function employed is non-standard, but has the distinct advantage of
providing optimal interior solutions in the absence of a cost component
[245]. At each point in time, the rational monopolist chooses a profit-
maximizing output level Q∗

t :

Π(y, t,Qt) = P (y, t,Q∗
t )Q

∗
t

= max
Qt

P (y, t,Qt)Qt. (6.28)

Solving

dΠ(y, t,Qt)
dQt

∣∣∣∣
Qt=Q∗

t

= ae−b(Q∗
t )2eαty

(
1 − 2b (Q∗

t )
2
)

= 0

for the optimal output level yields
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Q∗
t =

1√
2b

. (6.29)

The candidate represents a maximum, because

d2Π(y, t,Qt)
dQ2

t

∣∣∣∣∣
Qt=Q∗

t

= −2a

√
2b
e

eαty < 0.

Substituting (6.29) in (6.28) leads to

Π(y, t,Q∗
t ) =

a√
2be

eαty. (6.30)

Consequently, the gross present value of cash flows from commercializa-
tion is

V (y, t) =
∫ ∞

t
e−r(s−t)Π(y, s,Q∗

s) ds

=
a√
2be

eαty

r − α
, 0 < α < r.

The objective function, which is analogous to (6.5), (6.14), and (6.23),
becomes

F (y) = max
τ∈[0,∞)

e−rτ

(
a√
2be

eατy

r − α
− I

)+

.

Both, patent value and optimal commercialization time, are easily de-
rived.

Proposition 5. Assuming a moderate growth rate α ∈ (0, r), the dy-
namic value of a patent under certainty and infinite patent protection
is

F (y) =

⎧⎨⎩
a√
2be

y
r−α − I if y∗ < y,

Iα
r−α

(
a√
2be

y
Ir

)r/α
otherwise,

(6.31)

where

y∗ =

√
2be
a

Ir (6.32)

denotes the critical value of the demand-scaling parameter at time t = 0.

Proof (Proposition 5). According to (6.30),

� = Π(y, 0, Q∗
0)

=
a√
2be

y. (6.33)
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Inserting (6.33) into (6.15) yields (6.31). Inserting (6.33) in (6.19) and
solving for the critical value of the demand-scaling parameters leads to
(6.32).

Of course, the assumption underlying the demand-level model and
all previous analyses is that the gross present value of cash flows from
commercialization is zero unless exclusivity is granted to the holder of
a patent. Consequently, the value of the patent equals total monopoly
profits. This simplification is not always appropriate. For example, a
duopoly may prove to be a benchmark better reflecting industry struc-
ture in the absence of patent protection. To introduce such aspects into
the model, however, is a non-trivial task, mainly because strategic inter-
action during commercialization is likely to affect investment behavior
during R&D. Corresponding extensions are therefore postponed to later
sections.

Furthermore, the investor is interested in the optimal time to com-
mercialize.

Corollary 4. Assuming a moderate growth rate α ∈ (0, r), the optimal
commercialization time of a patent under certainty and infinite patent
protection is

τ∗ =

{
0 if y∗ < y
1
α ln
(√

2be
a

Ir
y

)
otherwise.

(6.34)

Proof (Corollary 4). Equation (6.34) is completely analogous to (6.22).

As demonstrated in this section, the value of a patent and the time
of commercialization that maximizes total profit may be determined
based on project-level, profit-level, or demand-level analysis. Project-
level analysis fails to fully capture the effects of finite patent protection.
Demand-level analysis represents an important step towards a better
understanding of competitive interaction during commercialization and
R&D, but, under the simplifying assumptions used, provides hardly any
new insights into real-world strategic investment policies.

Moreover, deterministic analyses obviously neglect the element of
uncertainty, arguably the most influential factor in R&D management.
In order to address this important issue, market risk is introduced at
this point. In the following, a project-level, profit-level, or demand-level
approach is adopted, depending on the respective investment problem
at hand.
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6.2.2 Stochastic Payoff

In this section, the contingent-claims method is used to derive patent
value and optimal timing under uncertainty.8 Again it is important to
distinguish infinite-horizon from finite-horizon analysis.

6.2.2.1 Infinite Protection Period

While the assumption of an infinite protection period may seem fairly
restrictive, it greatly facilitates analytical treatment. Of course, the
infinite-horizon setting represents an important limiting case of the
more realistic model analyzed numerically in sect. 6.2.2.2.

6.2.2.1.1 Analytical Derivation

Quite similar to investment analysis under certainty, the derivation pro-
ceeds in two steps: (1) the value of the investment project, that is the
gross present value of cash flows from commercialization, is calculated;
(2) the value of the investment opportunity, that is the value of the
patent itself, is determined.

6.2.2.1.1.1 Investment Project

Changes in demand have a random component. The obvious way to
introduce randomness into (6.27) is to specify

Yt = Y0 +
∫ t

0
αYs ds +

∫ t

0
σYs dWs, Y0 = y, (6.35)

where σ denotes volatility and W = {Wt}t≥0 is a Wiener process. Since
expected changes are proportional to the current level of Yt, (6.35) is an
example of geometric Brownian motion (GBM). As demonstrated above,
the profit rate Πt is a multiple of Yt. Consequently, in the absence of
variable costs, Πt itself can be taken as the stochastic variable. Without
loss of generality, Πt is assumed to follow the process

Πt = Π0 +
∫ t

0
αΠs ds +

∫ t

0
σΠs dWs, Π0 = �. (6.36)

8 The dynamic-programming approach yields identical results and is therefore per-
fectly equivalent. However, as opposed to contingent-claims analysis, it may also
be employed if spanning does not hold, but requires an exogneously-specified
discount rate under these circumstances. For a brief description of dynamic pro-
gramming see sect. A.1.1 in the appendix.
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Changes in the profit rate are therefore given by the SDE

dΠt = αΠt dt + σΠt dWt. (6.37)

Using Itô’s Lemma (see lemma 1 below), it can be solved for the cash
flow rate at time t, which is

Πt = Π0e
(
α−1

2σ2
)
t+σWt .

Together with the balance of the risk-free savings account Bt, Πt con-
stitutes a complete Black–Scholes market:{

dBt = rBt dt,

dΠt = αΠt dt + σΠt dWt.

Assuming infinite patent protection, one obtains the conditional ex-
pectation

V (Πt) =
∫ ∞

t
e−μ(s−t)E[Πs | Ft] ds

=
∫ ∞

t
e−μ(s−t)eα(s−t)Πs ds,

where E[·] is the expectation operator and Ft, loosely speaking, repre-
sents the information known at time t [91, p. 72].9 The required risk-
adjusted return according to the capital asset pricing model (CAPM)
is

μ = r +
rm − r

σm
σρ, (6.38)

where rm is the rate of return on the market portfolio, σm the corre-
sponding standard deviation, and ρ denotes the correlation coefficient.

Note that λ = (rm − r) /σm is the market price of risk, and β =
σ/σmρ is the widely-used measure of systematic risk. In summary,
project values are determined by discounting expected profits under
the real-world probability measures at a risk-adjusted rate. A suitable
alternative lies in risk-neutral valuation, where an adjusted probability
measure enables the investor to employ the risk-free rate and that is
formally introduced below.

Returning to (6.38), project values are obviously bounded for α < μ.
Direct integration leads to

9 For a formal definition of the standard Brownian filtration in particular see Steele
[314, pp. 50–51].
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V (Πt) =
Πt

μ − α
. (6.39)

The same result follows from contingent-claims analysis. In this con-
text, V represents a contingent claim, because it is a function of Πt.
Therefore, the profit rate is also referred to as an “underlying.”10

To clarify the notion of spanning, assume an asset Xt that is perfectly
correlated with Πt [91, pp. 117–119]. In contrast to Πt, the replicating
asset is directly tradeable and can be used to hedge changes in V (Πt).
Uncertainty in Πt is thus tracked, or spanned, by financial markets. For
reasons of simplicity, Xt is replaced by Πt in the following calculations.
Nevertheless, the reader should keep in mind that a perfect hedge might
not always be available.11

Assumption 6.3. A single replicating asset or a portfolio of assets,
perfectly correlated with the rate of cash flows from commercialization,
allows the investor to hedge against demand fluctuations.

Without spanning, the risk-free rate r is replaced by some exoge-
nous discount rate. Determining this discount rate requires restrictive
assumptions about the investor’s utility function; the CAPM no longer
applies [91, p. 152]. Unfortunately, R&D ventures in particular are often
unrelated to existing traded assets [91, pp. 147–148]. This deficiency is
a fundamental issue shared by all known capital budgeting techniques,
rather than a shortcoming specific to option-based analysis.12

For valuation purposes, assume the investor sets up a portfolio con-
sisting of the investment project and a short position in the traded asset.
Since total project return must equal the required rate of return given
by (6.38), beyond capital gains, holders of the spanning asset earn a
dividend or convenience yield. Let

δ = μ − α (6.40)

denote this rate of return shortfall. Then (6.39) is just

V (Πt) = Πt/δ. (6.41)

Assuming the portfolio includes −n units of Πt, total portfolio return
over a very small time interval dt becomes
10 While the notion of an underlying asset is still comparatively vague at this point,

it will become clearer quickly in the following discussion.
11 Strictly speaking, a perfect hedge is the rare exception. Nevertheless, existence is

a common assumption to facilitate analysis.
12 In the words of Harrison, the assumption of a replicating asset could rightfully

be referred to as a custom of our tribe [314, p. 291].



6.2 Dynamic Investment Policy 97

dΦ(Πt) = dV (Πt) − n dΠt + (Πt − nδΠt) dt. (6.42)

Itô’s Lemma can be used to expand this expression further. For conve-
nience, it is restated here somewhat informally.

Lemma 1 (Itô’s Lemma for scalar processes). If xt follows the
(scalar) Itô process described by

dxt = a(xt, t) dt + b(xt, t) dWt,

the contingent claim f(xt, t) also follows an Itô process, namely

df(xt, t) =
∂f(xt, t)

∂t
dt +

∂f(xt, t)
∂xt

dxt + 1
2

∂2f(xt, t)
∂x2

t

(dxt)2

or, in expanded form,

df(xt, t) =
(

∂f(xt, t)
∂t

+ a(xt, t)
∂f(xt, t)

∂xt

+1
2b2(xt, t)

∂2f(xt, t)
∂x2

t

)
dt

+ b(xt, t)
∂f(xt, t)

∂xt
dWt.

Equation (6.37) is thus equivalent to an Itô process with time-
invariant parameters. In this case, xt ≡ Πt, a(Πt, t) ≡ αΠt, and
b(Πt, t) ≡ σΠt, and f(Πt, t) ≡ V (Πt). Consequently, combining (6.36)
and (6.42) yields

dΦ(Πt) =

(
αΠt

dV (Πt)
dΠt

+ 1
2σ2Π2

t

d2V (Πt)
dΠ2

t

)
dt

+ σΠt
dV (Πt)

dΠt
dWt − n (αΠt dt + σΠt dWt)

+ (Πt − nδΠt) dt.

Setting n = dV (Πt)/dΠt eliminates dWt and thereby all randomness.
The portfolio is risk-free and should therefore earn the risk-free rate:(

1
2σ2Π2

t

d2V (Πt)
dΠ2

t

+ Πt − nδΠt

)
dt = r

(
V (Πt) − nΠt

)
dt.

Dividing by dt and rearranging terms leads to the differential equation
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1
2σ2Π2

t

d2V (Πt)
dΠ2

t

+ (r − δ) Πt
dV (Πt)

dΠt
− rV (Πt) + Πt = 0. (6.43)

It applies to any claim with time-invariant payoff and needs to be solved
subject to appropriate boundary conditions. Fortunately, the function
V (Πt) is already known. Simply inserting (6.41) verifies that the present
value of future cash flows indeed happens to be one solution to (6.43).
It can be shown that (6.41) is in fact the only solution that is not due
to speculative bubbles, but represents a “fundamental component” of
value [91, pp. 181–182].

As demonstrated by this basic example, contingent-claims analysis
is a suitable tool for capital budgeting if payoffs are stochastic. Further-
more, there is a way of obtaining the same result that explicitly involves
the market price of risk. From a technical perspective, choosing a market
price of risk is the same as defining a probability measure. The market
price of risk under the real-world measure P is λ = (rm − r) /σm, and
Πt grows at the rate α = μ − δ. In contrast, the dynamics of Πt in a
risk-neutral world are described by

dΠt = α∗Πt dt + σΠt dWt,

where α∗ = r − δ.
An alternative procedure leading to the gross present value of cash

flows from commercialization thus lies in taking expectations under the
transformed measure P∗ and then simply discounting at the risk-free
rate [91, pp. 123–124]:

V (Πt) =
∫ ∞

t
e−r(s−t)EP∗ [Πs | Ft] ds

=
∫ ∞

t
e−r(s−t)e(r−δ)(s−t)Πs ds = Πt/δ.

This technique is known as risk-neutral valuation [137, 138]: Under P∗,
{e−(r−δ)tΠt}t≥0 is a martingale, that is a zero-drift stochastic process.
Therefore, P∗ is an equivalent martingale probability measure.13 In com-
plete markets, the absence of arbitrage implies the existence of a unique
equivalent risk-neutral measure. Identifying an appropriate measure if
markets are incomplete, an issue to be addressed in chapter 7, is non-
trivial.

13 For an accessible and entertaining introduction to martingales see [314, pp. 11–
60].
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6.2.2.1.1.2 Investment Opportunity

The optimization problem faced by the patentholder can be expressed
in terms of the risk-neutral valuation technique, namely as

F (Πt) = sup
τ∈[t,∞)

e−r(τ−t)EP∗
[(

V (Πτ ) − I
)+ ∣∣∣Ft

]
= e−r(τ∗−t)EP∗

[(
V (Πτ∗) − I

)+ ∣∣∣Ft

]
.

The same procedure employed in determining the gross present value
of cash flows from commercialization also makes it possible to calculate
patent value under uncertainty.

Proposition 6. Assuming a positive rate of return shortfall δ, the dy-
namic value of a patent under uncertainty and infinite patent protection
is

F (Πt) =

{
Πt/δ − I if Π∗ < Πt,

A+Πγ+

t otherwise,
(6.44)

where
Π∗ =

γ+

γ+ − 1
Iδ (6.45)

denotes the critical cash flow rate,

A+ =
I

γ+ − 1

(
1

Π∗

)γ+

=
(

1
γ+δ

)γ+ (
γ+ − 1

I

)γ+−1

, (6.46)

and

γ+ = 1
2 − r − δ

σ2
+

√(
r − δ

σ2
− 1

2

)2

+ 2
r

σ2
. (6.47)

The proof follows standard arguments from the option pricing liter-
ature [233, 238, 290].

Proof (Proposition 6). Again, a risk-free portfolio is constructed, this
time from the investment opportunity and a short position of n units
of a suitable spanning asset. Changes in portfolio value are given by

dΦ(Πt) = dF (Πt) − n dΠt − nδΠt dt.
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Of course, in contrast to (6.42), there is no profit flow Πt dt, be-
cause commercialization has yet to take place. Following the steps of
contingent-claims analysis outlined above, one obtains

1
2σ2Π2

t

d2F (Πt)
dΠ2

t

+ (r − δ) Πt
dF (Πt)

dΠt
− rF (Πt) = 0, (6.48)

which is a homogeneous linear equation of second order. It holds in the
continuation region, where the cash flow rate is below the threshold
and postponement is optimal. In the stopping region, where the cash
flow rate exceeds the critical value, the rational investor commercializes
immediately, so that F (Πt) = Πt/δ − I. A general solution to (6.48)
takes the form

F (Πt) = A+Πγ+

t + A−Πγ−
t , (6.49)

where A+, A− are constants to be determined and γ+, γ− are roots of
the quadratic equation

1
2σ2γ (γ − 1) + (r − δ) γ − r = 0, (6.50)

sometimes referred to as the “fundamental quadratic” [91, pp. 142–
143]. Assuming γ+ is the positive root, A− = 0, because patent value
should become zero if the investment project itself is worthless. Impos-
ing C1-continuity at Πt = Π∗ leads to the so-called value-matching and
smooth-pasting conditions,14 namely

A+ (Π∗)γ
+

= Π∗/δ − I

and

γ+A+ (Π∗)γ
+−1 = 1/δ.

Solving this system of equations leads to (6.46) and (6.47), which proves
that (6.44) in fact represents the value of a patent under uncertainty.

If the value of the investment project, as in this case, is a constant
multiple of Πt, patent value can be obtained by working directly in
terms of Vt, which follows a stochastic process with identical drift and
volatility [91, p. 184]. Of course, this procedure requires the protection
period to be infinite.

14 For in-depth discussions of such conditions see Brekke and Øksendal [52], Dumas
[96], Shackleton and Sødal [306, 307].
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There is a close connection between (6.45) and the Jorgensonian trig-
ger presented in sect. 6.2.1.2. For moderate growth rates under certainty,
by (6.38) and (6.40), δ = r − α < r. Since

lim
σ→0

=
γ+

γ+ − 1
=

{
r/δ if δ < r,

1 otherwise,

the critical value at time t = 0 becomes Π∗ = Ir, which is identical to
(6.16). Therefore, the new investment rule represents a generalization
that converges to the deterministic case for very small σ [91, pp. 144
and 184]. The fraction γ+/ (γ+ − 1) is an “option value multiple,” which
happens to be identical to Tobin’s q in conventional capital budgeting
[91, pp. 146–147].

Remarkably, in order to calculate patent value, it is not essential to
know μ and α, but it suffices to know the rate of return shortfall δ,
which reflects the opportunity cost of keeping the option alive. If this
opportunity cost is zero, commercialization never takes place, regardless
of expected payoff [91, pp. 147–150].

Although, due to an infinite protection period, the critical value is
constant, τ∗ is obviously random. The optimal time to commercialize
is the time Πt exits the continuation region given by (6.45):

τ∗ = inf{t ≥ 0 : Π∗ < Πt}.

Since this specification suffices as an investment policy, the character-
istics of τ∗ are not discussed further at this point.15 Instead, consider
the following numerical example.

6.2.2.1.2 Numerical Illustration

All other things equal, additional demand uncertainty is value-creating,
because commercialization takes place only under favorable market con-
ditions: on the one hand, the patent has significant upside potential;
on the other hand, the holder bears little downside risk. This relation-
ship, well-known in the field of financial option pricing, is depicted in
fig. 6.4. Assuming an investment amount of I = 1.0 and a risk-free rate
of r = 0.05, the critical project value rises from 0.050 to 0.093 as σ
increases from 0.0 to 0.2.

When examining the value of the investment opportunity as a func-
tion of the underlying asset value, graphs turn out to be perfectly similar
15 The expected exit time in this particular case is E[τ∗ | Ft] =

1/
(
α − 1

2
σ2
)
ln (Π∗/Πt), where 1

2
σ2 < α [337, p. 371]. For a brief introduction

to the mathematical procedure see Dixit [90, pp. 54–57].
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to those of options on stock, demonstrating that patents are, in a way,
similar to financial instruments and thereby can be thought of as real
options. An infinite protection period makes the investment opportunity
analogous to a perpetual American call [238].

Observation 6.1. Patents, under certain assumptions, exhibit charac-
teristics typically found in financial derivatives. This analogy can be
used for valuation purposes.

This observation is neither revolutionary, nor does it come at a sur-
prise, because assumptions 6.1 through 6.3 were deliberately chosen to
demonstrate a similarity between real and financial investments. It is
important to note, however, that the widely-known similarity is not lim-
ited to tangible assets, but also extends to intangible assets, including,
of course, intellectual property in the form of patents.

Πt

F
(Π

t)

0.02 0.04 0.06 0.08 0.10

−0.25
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+0.25

+0.50
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+1.00

+1.25

+1.50

Fig. 6.4. Dynamic patent value under uncertainty and infinite patent protection
as a function of profitability (I = 1.0 and r = δ = 0.05). Vertical lines indicate
critical profit rates at Πt ∈ {0.050, 0.069, 0.093} for various levels of uncertainty
(σ ∈ {0.0, 0.1, 0.2}). The higher the volatility of cash flow rates, the higher the
investment threshold [figure adapted from 91, 154].

Another key aspect concerns the role of demand uncertainty in
patent valuation. To be precise, the sensitivity of patent value to the
volatility of cash flow rates depends on how the rate of return shortfall
δ is affected by changes in the uncertainty parameter σ [91, p. 155].
According to (6.38) and (6.40), higher levels of uncertainty tend to in-
crease δ, as long as cash flow rates are positively correlated with market
returns, and the instantaneous growth rate of the replicating asset re-
mains constant. Consequently, the gross payoff given by (6.41) drops,
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thereby counterbalancing a rising value of flexibility:

Πt/δ = Πt

(
rm − r

σm
σ − α

)−1

.

Figure 6.5 depicts the suggested relationship: patent value declines
rapidly as a result of rising volatility. This observation reveals a com-
mon misconception in connection with option-based capital budgeting,
namely that increasing demand uncertainty is value-enhancing under
all circumstances. In many cases, however, it is more convenient to as-
sume δ remains fixed, for example because rising uncertainty also goes
along with a higher growth rate α. Unless stated otherwise, this view
is adopted in further analyses [91, pp. 178–179].
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Fig. 6.5. Dynamic patent value under uncertainty and infinite patent protection
as a function of cash flow rate volatility (Πt = 0.05, I = 1.0, r = 0.05, α = 0.08,
(rm − r)/σm = 0.4, ρ ∈ {0.6, 0.7, 0.8}). Contrary to common economic knowledge,
but in line with intuition, adverse effects of rising uncertainty on patent value can be
observed if δ is assumed to depend on σ. Lower correlation coefficients are associated
with less systematic risk and, as a consequence, higher patent values.

Figure 6.6 illustrates how the value of a patent changes randomly
over time. A simple discretization is used to generate a sample path with
� = 0.05, α = 0.04, σ = 0.2, and r = δ = 0.05. The net payoff from
commercialization, that is the value of the investment project, may even
drop below zero, whereas the value of the investment opportunity before
commercialization stays positive. Equations (6.47) and (6.45) lead to

Π∗ =
1.86

1.86 − 1
× 1.0 × 0.05 = 0.09,
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which is the constant investment threshold under uncertainty. As soon
as the cash flow rate exceeds this critical value, the investor should
prefer immediate commercialization over postponement.

t

F
(Π

t)
,Π

t
/
δ
−

I

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−0.25

0.00

+0.25

+0.50

+0.75

+1.00

+1.25

+1.50

Fig. 6.6. Changes in dynamic patent value under uncertainty and infinite patent
protection over time (I = 1.0, r = δ = 0.05, � = 0.05, α = 0.04, and σ = 0.2).
A single vertical line marks the optimal commercialization time τ∗ = 11.47 for the
particular realization shown. Below the threshold, a solid line represents the payoff
from immediate commercialization, while the line representing actual patent value
is dashed [figure adapted from 91, 160].

6.2.2.2 Finite Protection Period

The impact of a finite protection period on patent value crucially de-
pends on the investor’s ability to maintain profitability beyond the
expiration date. While the profit rate is assumed to drop to zero in
sect. 6.2.1, this section also examines the opposite case of an infinite
commercialization phase, which is computationally similar, but, as ex-
pected, yields fundamentally different results.

6.2.2.2.1 Infinite Commercialization Phase

First assume that, even under finite patent protection, the gross payoff
from commercialization stays constant until expiration, so that (6.41)
continues to hold. Nevertheless, market entry is impossible once the
patent has expired.16 Equation (6.48) becomes

16 It is important to carefully distinguish the length of the protection period from
the length of the commercialization phase.
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1
2σ2Π2

t

∂2F (Πt, t)
∂Π2

t

+ (r − δ) Πt
∂F (Πt, t)

∂Πt

− rF (Πt, t) +
∂F (Πt, t)

∂t
= 0, (6.52)

because patent value depends on the current time t. In addition, a valid
solution has fulfill certain constraints. Specifically,

F (ΠT , T ) = (ΠT /δ − I)+ , (6.53a)
F (0, t) = 0, (6.53b)

and

lim
Πt→∞

∂2F (Πt, t)
∂Π2

t

= 0, (6.53c)

At the end of the protection period, the investor chooses between com-
mercializing immediately and letting the patent expire. Again, in the
absence of profits, the patent is worthless. Equation (6.53c) represents a
generic boundary condition that is independent of the type of contract
and applies as long as the payoff is at most linear in the underlying [336,
p. 642]. Furthermore, the usual value-matching and smooth-pasting con-
ditions apply.

Although there is no closed-form solution to this problem, numerical
procedures may be employed to derive patent value.17 Since the PDE
shown above is identical to the one developed by Black and Scholes
[35], Merton [238] for financial options, suitable methods are readily
available, for example the Crank–Nicolson variant of the FD method
[336, pp. 639–640].18 However, the numerical scheme is usually not ap-
plied directly. To facilitate calculations, consider the transformation

u ≡ T − t (6.54a)

and
F (Πu, u) ≡ e−ruG(Πu, u). (6.54b)

Equation (6.54a) reverses time, transforming (6.52) into a genuine in-
tial value problem. Equation (6.54b) eliminates the “reaction term”

17 For details see Paddock et al [263], Dixit and Pindyck [91, pp. 396–405].
18 Originally, the method was devised by Courtadon [73], Crank and Nicolson [79].
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−rF (Πt, t) by changing the problem from present value to future value
terms.19

Hence,

∂F (Πt, t)
∂Πt

= e−ru ∂G(Πu, u)
∂Πu

,

∂2F (Πt, t)
∂Π2

t

= e−ru ∂2G(Πu, u)
∂Π2

u

,

and

∂F (Πt, t)
∂t

= e−ru

(
rG(Πu, u) − ∂G(Πu, u)

∂u

)
,

so that (6.52) becomes

1
2σ2Π2

u

∂2G(Πu, u)
∂Π2

u

+ (r − δ) Πu
∂G(Πu, u)

∂Πu
− ∂G(Πu, u)

∂u
= 0.

An (m + 1)-by-(n + 1) grid is constructed, where m ≡ Πmax/ΔΠ and
n ≡ T/Δu. Nodes correspond to G(Πu, u) with Πu and u assuming
discrete values, that is

Πu ∈ {0,ΔΠ, . . . , iΔΠ, . . . ,Πmax − ΔΠ,Πmax},
and

u ∈ {0,Δu, . . . , jΔu, . . . , T − Δu, T}.
Furthermore, denote G(Πi, uj) by Gi,j. Using the approximations

∂G(Πu, u)
∂Πu

∣∣∣∣Πu=Πi

u=uj

≈ 1
2

Gi+1,j+1 − Gi−1,j+1

2ΔΠ
+ 1

2

Gi+1,j − Gi−1,j

2ΔΠ
,

∂2G(Πu, u)
∂Π2

u

∣∣∣∣Πu=Πi

u=uj

≈ 1
2

Gi+1,j+1 + Gi−1,j+1 − 2Gi,j+1

ΔΠ2

+ 1
2

Gi+1,j + Gi−1,j − 2Gi,j

ΔΠ2
,

and

19 This manipulation could of course be taken further, for example by adopting a log-
transformed model, where u ≡ T − t, Ψu ≡ ln(Πu), and F (Πu, u) ≡ e−ruG(Ψu, u),
leading to constant coefficients. The slight computational advantage achieved is
irrelevant in this context [336, pp. 82 and 92–93].
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∂G(Πu, u)
∂u

∣∣∣∣Πu=Πi

u=uj

≈ Gi,j+1 − Gi,j

Δu

one obtains

aGi−1,j + (1 + b)Gi,j + cGi+1,j =
− aGi−1,j+1 + (1 − b)Gi,j+1 − cGi+1,j+1, (6.57)

where

ai = −1
4iΔu

(
iσ2 − (r − δ)

)
,

bi = 1
2 i2Δuσ2,

ci = −1
4iΔu

(
iσ2 + (r − δ)

)
.

Equation (6.57) relates three adjacent nodes on time level j + 1 to
three nodes on the preceding level j. To obtain a solution, initial and
boundary conditions must be translated into their FD equivalent. A cen-
tral difference approximation is used to calculate the second derivative
around Gm−1,j+1:

Gm,j+1 + Gm−2,j+1 − 2Gm−1,j+1

ΔΠ2
= 0.

Consequently, for all j ∈ {0, 1, . . . , n − 1},
Gm,j+1 = 2Gm−1,j+1 − Gm−2,j+1,

and

G0,j+1 = 0.

In addition,

Gi,0 =
(

iΔΠ

δ
− I

)+

for all i ∈ {0, 1, . . . ,m}. Using this information as a starting point and
proceeding backwards in time, approximate patent values are obtained
at each step. However, due to timing flexibility, it is not sufficient to
simply solve the resulting matrix equations. As the net payoff from
immediate commercialization may never exceed the value of the patent,
the following constraint has to be fulfilled at all times:

V (Πt) − I = Πt/δ − I ≤ F (Πt, t), (6.60)
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where V (Πt) − I, in analogy to financial options, is referred to as the
“inner value” of the real option. The time-dependent threshold, beyond
which the rational investor prefers to commercialize immediately and
which thus separates the continuation from the stopping region, con-
stitutes a free boundary that is found together with the solution. To
preserve the accuracy of the Crank–Nicolson scheme, options of this
type are usually priced using PSOR, instead of resorting to LU decom-
position and simply post-processing the column vectors to account for
timing flexibility [81].

The resulting patent value as a function of profit rate and time is
depicted in fig. 6.7(a). Due to the implicit assumption of an infinite
commercialization phase, the diagram still closely resembles that of a
plain-vanilla (American) call option—not of a perpetual one, but one
with finite maturity T . The free boundary is depicted in fig. 6.7(b).
The longer the time to expiration, the higher the profit rate required to
trigger commercialization. At the end of the protection period, the value
of waiting is zero. Therefore, the critical profit rate becomes Π∗

T = Iδ. In
contrast, the trigger at time t = 0 quickly converges to (6.45) as T grows
larger [91, p. 401]. However, investment thresholds differ substantially
when the commercialization phase is finite.

Observation 6.2. Patents with a finite lifetime are analogous to plain-
vanilla call options as long as the commercialization phase following
investment is infinite.

6.2.2.2.2 Finite Commercialization Phase

When the commercialization phase is finite, that is the period during
which cash flows are accumulated ends with the expiration of the patent,
the gross present value of cash flows from commercialization under un-
certainty decreases to

V (Πt, t) = E
[∫ T

t
e−μ(s−t)Πs ds

∣∣∣∣Ft

]
. (6.61)

Since E[Πs | Ft] = eα(s−t)Πt and δ = μ − α, integration yields

V (Πt, t) =
(
1 − e−δ(T−t)

)
Πt/δ. (6.62)

Equations (6.60) and (6.53a) become

F (Πt, T ) = 0
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Fig. 6.7. Dynamic patent value under uncertainty and finite patent protection
when the commercialization phase is infinite (I = 1.0, r = δ = 0.05, and T = 20.0).
Panel (a) shows approximate patent values as a function of profit rate and time
(σ = 0.2). Critical profit rates for various levels of uncertainty (σ ∈ {0.0, 0.2, 0.4})
are depicted in (b). Under certainty, the boundary becomes a horizontal line.

and
V (Πt, t) − I =

(
1 − e−δ(T−t)

)
Πt/δ − I ≤ F (Πt, t).

Boundary conditions, (6.53b) and (6.53c), still apply.
In essence, a finite commercialization phase represents a form de-

preciation by sudden death [91, p. 205]. The “profit generator,” in this
case a patent and not a machine, ceases to function at the end of the
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protection period. If the present value integral, unlike (6.61), is difficult
to evaluate, it is most convenient to employ contingent-claims analysis
as demonstrated in sect. 6.2.2.1 [91, pp. 205–206].

Relying on the numerical procedures outlined above, it is straight-
forward to obtain approximate patent values.20 Figure 6.8(a) illustrates
how the value of a patent depends on profit rate and time. Compared
to the model analyzed in the previous subsection, patent values are
substantially lower and eventually drop to zero. The time-dependent
investment threshold is shown in fig. 6.8(b). It is quite different from
the boundary calculated above, as the critical cash flow rate in fact
is not a decreasing, but an increasing function of time. More impor-
tantly, infinite patent protection no longer is a suitable approximation
for analyzing the investment opportunity.

Observation 6.3. Assuming an infinite protection period in the val-
uation of patents as real options leads to substantial overpricing and
faulty investment policy.

While this result seems obvious from a practical perspective, for-
mal option-based analyses of patenting in continuous time are typically
based on the assumption of an infinite protection period, enabling the
derivation of closed-form solutions.

Regardless of these differences, uncertainty, measured by the volatil-
ity of cash flow rates, continues to be an important parameter. The
longer the protection period, the higher the sensitivity of the invest-
ment trigger to variations in σ. Again, the impact of uncertainty is
determined by the relationship between volatility and the rate of re-
turn shortfall. Since the arguments brought forward in sect. 6.2.2.1 are
also applicable in this context, no detailed analysis is provided at this
point.

The option-based view has far-reaching implications. For example,
consider a situation in which the investor has to decide on the acquisi-
tion of a patent with a lifetime of 20 years. The expected present value
of future profits is around 0.63 million euros, which seems too low to
justify the upfront investment of 1.00 million euros that is required to
turn the patent into a marketable product. A closer look at the deci-
sion problem reveals additional option value, because the investor is not
obliged to commercialize immediately.

Cash flow rates are perfectly correlated with a stock portfolio.21 The
standard deviation of returns on this portfolio is 0.02. The rate of return
20 Alternatively, this option can be priced using a simple binomial tree. See

sect. B.1.1 in the appendix for details.
21 If this assumption is dropped, a precise value cannot be determined [147].
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Table 6.1. Dynamic patent value under uncertainty and finite patent protection
when the commercialization phase is finite (I = 1.0 and r = δ = 0.05). Longer
protection periods, higher volatilities, and higher cash flow rates are associated with
higher patent values. Note that this relationship hinges on the assumption of a fixed
rate of return shortfall.

Volatility (σ) Protection period (T ) Patent value

Πt = 0.06 Πt = 0.08 Πt = 0.10

0.20 10 0.00 0.00 0.02
12 0.00 0.01 0.04
14 0.00 0.03 0.07
16 0.01 0.05 0.12
18 0.02 0.09 0.19
20 0.04 0.15 0.28

0.24 10 0.00 0.01 0.03
12 0.00 0.03 0.06
14 0.01 0.05 0.10
16 0.02 0.08 0.15
18 0.04 0.12 0.22
20 0.06 0.18 0.30

0.28 10 0.00 0.02 0.05
12 0.01 0.04 0.08
14 0.02 0.07 0.13
16 0.04 0.10 0.18
18 0.06 0.15 0.25
20 0.08 0.20 0.33

0.32 10 0.01 0.03 0.07
12 0.02 0.06 0.11
14 0.03 0.09 0.16
16 0.05 0.13 0.21
18 0.08 0.18 0.28
20 0.11 0.23 0.36

0.36 10 0.02 0.05 0.09
12 0.03 0.08 0.13
14 0.05 0.11 0.18
16 0.07 0.16 0.25
18 0.10 0.21 0.32
20 0.13 0.26 0.39

0.40 10 0.02 0.06 0.11
12 0.04 0.10 0.16
14 0.06 0.14 0.21
16 0.09 0.18 0.28
18 0.12 0.23 0.35
20 0.16 0.29 0.43
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Fig. 6.8. Dynamic patent value under uncertainty and finite patent protection when
the commercialization phase is finite (I = 1.0, r = δ = 0.05, and T = 20.0). Panel (a)
shows how patent value declines over time (σ = 0.2). Panel (b) illustrates how the
time-dependent stochastic trigger Π∗

t converges to the Marshallian one, indicated
by the solid line, as volatility decreases (σ ∈ {0.0, 0.2, 0.4}).

shortfall is 0.05. According to (6.62), the current cash flow rate is close
to 0.05 million euros per unit of time:

Π0 =
eδT

eδT − 1
V (Π0, 0)δ

=
2.71

2.71 − 1
× 0.63 × 0.05 = 0.05.
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Based on the very stylized model presented, patent value amounts to
almost 0.02 million euros (see table 6.1). Hence, the rational investor
should be willing to pay as much as 20,000 euros for the opportunity to
invest and enter the market in later years, although commercialization
is unattractive under current circumstances. The net present value rule
and the option-based approach yield fundamentally different results.

In addition, it is worth pointing out similarities between the pro-
posed setup and the classic model by Paddock et al, in which offshore
petroleum leases are treated as real options [263]. Similar to the val-
uation of patents, it is important to account for a finite time horizon,
which, for development reserves, is due to a relinquishment requirement.
Also, GBM might be a poor approximation of the true value process in
both cases. An alternative specification is presented in chapter 7.

If one chooses to adopt a project-level approach, instead of resorting
to numerical methods, the value of a patent can be obtained via analyt-
ical approximations developed for the American call option [25, 209].22
The resulting equations are formally similar to those for perpetual op-
tions and can be solved iteratively. For obvious reasons, the impact of
a finite commercialization period is not properly captured under these
circumstances.

In summary, a patent under uncertainty represents a real option
on commercialization. Consequently, it can be analyzed in analogy to
financial derivatives. However, although the framework presented is in-
tuitively appealing, patents, like all real investment opportunities, dif-
fer substantially from standardized financial contracts. In the following,
the discussion focuses on one particular aspect, namely imperfect patent
protection due to the risk of litigation.

22 For a more thorrough discussion of analytical approximations see Hull [150,
pp. 425 and 432–434].
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Patent Risk as Jumps in the Underlying Process

Realistic option-based models account explicitly for at least two stages
with distinct characteristics, namely R&D and commercialization. Prop-
erly capturing the pecularities of each stage usually means introducing
additional sources of risk, including, for example, cost uncertainty or a
random time to completion. Before proceeding to this level of sophis-
tication, however, it is worth studying patent risk using much simpler
single-stage, single-factor models.

7.1 Single-Stage and Single-Factor Models

Not only the frequency, but also the size of jumps in project value caused
by patent-related events may be stochastic. The case of deterministic
jump size is discussed first, followed by an extension to randomly dis-
tributed jumps.

7.1.1 Deterministic Jump Size

Introducing the concept of patent risk as jumps in an otherwise contin-
uous price process, a project-level model serves to illustrate how patent
risk, in principal, affects patent value. Then, a profit-level model is em-
ployed to examine the effect of finite patent protection.

7.1.1.1 Project-Level Analysis

Following the derivation of general valuation formulae, comparative stat-
ics are presented to examine the dependence of patent value on patent
quality.



116 7 Patent Risk as Jumps in the Underlying Process

7.1.1.1.1 Analytical Derivation

The jump-diffusion model used in this section extends the Itô process
describing project value dynamics by adding an additional term dJt

representing the increment of a Poisson process with intensity λ:

dVt = αVt dt + σVt dWt − φVt dJt, 0 ≤ φ ≤ 1. (7.1)

Hence, changes in J are given by

dJt =

{
1 with probability λdt,

0 with probability 1 − λdt.
(7.2)

Within an infinitesimally small time interval dt, a jump occurs with
probability λdt, that is λ denotes the mean arrival rate of a value-
relevant event [91, p. 115]. Upon the occurrence of such an event, Vt

instantaneously drops by φVt. The relative size of jumps is thus fixed.1
A variety of scenarios are conceivable, which serve as practical exam-

ples of events reducing the payoff from commercialization: (1) Should
competitors succeed in obtaining a patent enabling them to market a
substitute, decreased profits will be the result. (2) Also, if a court ruling
finds the original patent to be invalid or to unlawfully restrict the rights
of another patent holder, profits will drop.

The value of a patent is tied to some underlying stochastic process
and is subject to a kind of default risk. In addition, the investor may
choose to give up flexibility in exchange for volatile cash flows at any
point in time, making the patent somewhat similar to a defaultable
claim or, more specifically, convertible debt [33, p. 33]. Although this
similarity justifies an investigation into the applicability of credit risk
models in patent valuation, these models are usually quite complex
and, as a consequence, often require numerical methods. In any case,
the analogy can be exploited to gain insights into the nature of patent
risk from a quantitative perspective. In particular, the formalization
of patent risk presented here is conceptually related to the subclass of
instantaneous-risk-of-default models [336, pp. 565–567 and 580–582].

Observation 7.1. Patents are defaultable contingent claims compara-
ble to convertible bonds.

Put aside conceptual issues, difficulties in connection with discrete
jumps in the value process arise due to a pivotal assumption underlying

1 For a graphical illustration of this type of model see also fig. 7.3 in sect. 7.1.1.2.
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contingent-claims analysis, namely the possibility to continuously re-
balance a replicating portfolio, which creates a position free of risk (see
sect. 6.2.2). Whereas continuous diffusion processes allow for dynamic
hedging strategies, these techniques can no longer be applied once a
jump term is added to the corresponding PDE.

A pragmatic solution to this issue is offered by common equilibrium
models of financial markets. If discontinuous changes in the value of
the underlying asset are unsystematic, that is uncorrelated with the
market portfolio, the diversified investor is not rewarded for accepting
jump risk. Consequently, there is no need to adjust the discount factor,
and the risk-free rate applies [91, p. 120].

While this procedure may appear as an oversimplification, possibly
the only suitable alternative lies in exogenous discount rates, which
are arbitrarily chosen or at least require specific assumptions about
the investor’s risk tolerance. Since the initial motivation behind option-
based methods for capital budgeting was to obtain values independent
from individual preferences, patent risk is assumed to be unsystematic
for the moment. An alternative approach based on the so-called Esscher
transform is briefly discussed in the following section (sect. 7.1.2).

In analogy to previous discussions of dynamic patent value, one ob-
tains a modified investment rule reflecting the possibility of sudden
drops in the gross payoff from commercialization.

Proposition 7. The dynamic value of a patent under uncertainty and
infinite, but imperfect, patent protection is

F (Vt) =

{
Vt − I if V ∗ < Vt,

A+V γ+

t otherwise,
(7.3)

where
V ∗ =

γ+

γ+ − 1
I

denotes the critical project value,

A+ =
I

γ+ − 1

(
1

V ∗

)γ+

=
(

1
γ+

)γ+ (
γ+ − 1

I

)γ+−1

,

γ+ is the positive root of the exponential equation
1
2σ2γ (γ − 1) + (r − δ) γ − (r + λ) + λ (1 − φ)γ = 0, (7.4)

and λ is the mean arrival rate of a value-decreasing event.
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Proof (Proposition 7). Similar to sect. 6.2.2, a type of Itô–Taylor expan-
sion for jump-diffusion processes makes it possible to express changes
in the value of a patent as a function of the underlying variate Vt [91,
pp. 85–87, 112–114, and 171]. Since, by assumption, the investor is risk-
neutral with respect to discontinuous changes, expected values can be
used in all terms related to the jump process.

Changes in the value of the patent thus become

dF (Vt) =

(
αVt

dF (Vt)
dVt

+ 1
2σ2V 2

t

d2F (Vt)
dV 2

t

)
dt + σVt

dF (Vt)
dVt

dWt

+ λ
(
F
(
(1 − φ)Vt

)− F (Vt)
)

dt.

The hedge portfolio is constructed to eliminate demand uncertainty:2

dΦ(Vt) = dF (Vt) − dF (Vt)
dVt

(αVt dt + σVt dWt) − δVt
dF (Vt)

dVt
dt.

Consequently, it yields the risk-free return:

1
2σ2V 2

t

d2F (Vt)
V 2

t

dt + λ
(
F
(
(1 − φ)Vt

)− F (Vt)
)

dt

− δVt
dF (Vt)

dVt
dt = r

(
F (Vt) − Vt

dF (Vt)
dVt

)
dt,

which leads to

1
2σ2V 2

t

d2F (Vt)
dV 2

t

+ (r − δ) Vt
dF (Vt)

dVt

− (r + λ) F (Vt) + λF
(
(1 − φ)Vt

)
= 0. (7.5)

Solutions again take the general form given by (6.49), only that γ+ is
now the positive root of the slightly more complicated equation (7.4).

Employing numerical methods, it is possible to successively deter-
mine the root γ+ that ensures F (0) = 0, the critical gross present value
of cash flows from commercialization V ∗, the constant factor A+, and,
eventually, the patent value F (Vt).

Note that (7.5) is in fact a partial integro-differential equation
(PIDE), which becomes obvious as soon as the expected value is kept
unevaluated. Let h(φ) denote the probability density of φ, and it can
be rewritten as
2 Another possibility lies in constructing a minimum-variance hedge [336, p. 331].
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1
2σ2V 2

t

d2F (Vt)
dV 2

t

+ (r − δ)Vt
dF (Vt)

dVt

− (r + λ)F (Vt) + λ

∫
R

F
(
(1 − φ)Vt

)
h(φ) dφ = 0. (7.6)

In this case, assuming a Poisson process given by (7.2) and a fixed
jump size, the PIDE simplifies considerably, resulting in the PDE shown
above. The general case of stochastic jump size is discussed in the fol-
lowing subsection.

If φ is deterministic and equals unity, the occurrence of a jump
decreases the cash flow rate to zero and, by (7.3), destroys the entire
patent value (“sudden death”). As a pleasant side effect, setting φ = 1
reduces (7.4) to the quadratic equation

1
2σ2γ (γ − 1) + (r − δ) γ − (r + λ) = 0, (7.7)

which is almost identical to (6.50), with r increased by λ in the constant
term. Consequently, there is a closed-form expression for the positive
root [91, p. 171]:

γ+ = 1
2 − r − δ

σ2
+

√(
r − δ

σ2
− 1

2

)2

+ 2
r + λ

σ2
. (7.8)

While this finding is closely related to the well-known pricing formula
for jump-diffusion processes developed by Merton [239], there is a cru-
cial difference between his results and the relationship suggested by
proposition 7. Merton chooses to increase α to compensate rising jump
risk and maintain the rate of return required by investors. Rational in-
vestors, so the argument, would not be willing to invest in a project
yielding inadequate returns. Specifically, r − δ in (7.7) and (7.8) is re-
placed by r − δ + λ.3 As a consequence, a higher frequency of jumps
leads to higher patent value [91, pp. 172–173].

In a real options setting, α is given by the expected return on the
underlying project and, as such, less likely to adapt to rising patent
risk. Strictly speaking, the impact of increases in λ is indeterminate.

3 The characteristic equation becomes

1
2
σ2γ (γ − 1) + (r − δ + λ) γ − (r + λ) = 0

and

γ+ = 1
2
− r − δ + λ

σ2
+

√(
r − δ + λ

σ2
− 1

2

)2

+ 2
r + λ

σ2
.
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Similar to the sensitivity of patent value to changes in volatility (see
sect. 6.2.2.1) results crucially depend on the assumptions made about
interdependencies between key parameters—and on whether patent val-
ues are assumed to be at least approximately arbitrage-free.4

Another interesting observation concerns the aggregate impact of
uncertainty, measured by the variance of changes in commercialization
payoff, on patent value [91, pp. 168–170]. Employing a discrete-time
approximation of the jump-diffusion process, one obtains

dVt =

⎧⎪⎨⎪⎩
−φVt with probability λdt,

αVt dt + σVt

√
dt with probability 1

2 (1 − λdt),
αVt dt − σVt

√
dt with probability 1

2 (1 − λdt).

Neglecting all terms of order dt2 and above leads to

E[dVt] = αVt dt − λφVt dt,

E
[
(dVt)2

]
= σ2V 2

t dt + λφ2V 2
t dt,

and thus

V [dVt] = E
[
(dVt)

2
]
− (E[dVt])2

= σ2V 2
t dt + λφ2V 2

t dt.

Hence, total variance consists of an instantaneous, or local, component
σ2V 2

t dt as well as a jump component λφ2V 2
t dt. Consequently, if to-

tal variance is to be kept constant, an increase in patent risk requires
a downward adjustment of volatility [207, pp. 135–137]. Economically
speaking, however, market and patent risk are not equivalent. After all,
patent risk is assumed to be unsystematic in the derivation of proposi-
tion 7, whereas market risk, by definition, is correlated with the market
portfolio.

7.1.1.1.2 Numerical Illustration

A numerical example, where Vt = 1.0, I = 1.0, r = δ = 0.05, and
φ = 0.5 may serve as an illustration. Consider a real options model
under standard assumptions. As evident from fig. 7.1, different types
of risk affect the value of the patent in fundamentally different ways.
While higher market risk tends to increase patent value, the opposite
is true of patent risk, which clearly diminishes the attractiveness of the

4 This insight is illustrated by fig. 7.2 discussed in the following section.
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investment opportunity. An increase in patent risk is thus compensated
by higher demand uncertainty.

This relationship comes at no surprise, because uncertainty related
to patent protection lacks the upside potential characteristic of random
changes in demand. Although flexibility enables the investor to react
to a sudden drop in the value of the underlying project by further
postponing commercialization, he or she is worse off compared to a
situation that is characterized by perfect patent protection.

σ

λ

0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 7.1. Dynamic patent value under certainty and infinite, but imperfect, patent
protection according to project-level analysis (Vt = 1.0, I = 1.0, r = δ = 0.05,
and φ = 0.5). The plot shows isolines for F (Vt) ∈ {0.11, 0.16, 0.22, 0.28, 0.34, 0.39},
corresponding to σ ∈ {0.2, 0.3, 0.3, 0.5, 0.6, 0.7} for λ = 0.2.

A slightly different picture is drawn by fig. 7.2, which demonstrates
how possible adjustments drive valuation. As expected, depending on
whether drift or volatility are held constant or allowed to vary, increases
in patent risk bring about rising or falling patent values. When exam-
ining the short-term impact of sudden changes in patent quality, other
parameters are very likely to remain unchanged, perhaps resulting in
below-equilibrium rates of return on the investment.

From a more practical perspective, it is important to stress the fact
that it is not a good idea to estimate the jump-diffusion models of the
proposed type as one would normally estimate a stock price model with
fat-tailed return distributions.5 Rather, since value-decreasing patent
events can typically be identified clearly in historical time series, these
events are to be excluded explicitly from a dataset used only for es-

5 For example, see Honoré [145] and the references therein.
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Fig. 7.2. Drift and volatility adjustments for patent risk (Vt = 1.0, I = 1.0, r =
δ = 0.05, σ = 0.3, φ = 1.0). All other things equal, patent risk leads to lower patent
values (solid line). Patent value becomes an increasing function of patent risk if
returns are held constant (short dashes). If total variance of changes in patent value
is held constant by reducing volatility, patent value rises as well, but, for obvious
reasons, is substantially lower (long dashes).

timating the diffusive part of the process. Data on changes in patent
value immediately following a patent event may then be employed to
fit a suitable probability distribution or, in the simplest of cases treated
in this section, to simply determine the average size of jumps. Such
empirical issues will be re-addressed in chapter 8.

7.1.1.2 Profit-Level Analysis

Since profit-level models were shown to better reflect typical patent
characteristics, including finite patent protection, the discussions that
follow focus on profit rates instead of aggregate project values. As in
sect. 6.2.2, the analysis proceeds in two steps, that is by first finding an
expression for the value of the investment project and then calculating
the value of the investment opportunity.

7.1.1.2.1 Investment Project

In analogy to (7.1) set

dΠt = αΠt dt + σΠt dWt − φΠt dJt, 0 ≤ φ ≤ 1.

When the commercialization phase is finite, the expected present value
of cash flows from commercialization, determined via direct integration,
is
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V (Πt, t) = Πt

∫ T

t
e−μ(s−t)eα(s−t)

(
Js∏
i=1

(1 − φ)

)
ds

= Πt

∫ T

t
e−μ(s−t)eα(s−t)

∞∑
i=0

(
(1 − φ)i P{Js = i}

)
ds

= Πt

∫ T

t
e−μ(s−t)eα(s−t)

∞∑
i=0

(
(1 − φ)i e−λ(s−t)

(
λ (s − t)

)i
i!

)
ds

=
(
1 − e−(δ+λφ)(T−t)

) Πt

δ + λφ
, (7.9)

where i is the number of value-relevant events in the interval [t, s]. The
summation term represents the expected multiplicative decrease in the
cash flow rate during that period, assuming J is again a Poisson process
of intensity λ and deterministic amplitude specified by φ. The product
λφ can be interpreted as a type of hazard score measuring the overall
patent risk associated with a commercialization opportunity. For φ = 0,
jumps have no effect, and (7.9) is identical to (6.62).

When the commercialization phase is infinite, one obtains

V (Πt) = lim
T→∞

V (Πt, t)

=
Πt

δ + λφ
. (7.10)

Following Dixit and Pindyck [91, p. 200], the value of a project under
the assumption of exponentially decaying cash flows is

V (Πt) = Πt

∫ ∞

t
e−μ(s−t)eα(s−t)P{Js = 0}ds

= Πt

∫ ∞

t
e−μ(s−t)eα(s−t)e−λ(s−t) ds

=
Πt

δ + λ
.

This expression is identical to (7.10) with φ = 1. Consequently, apart
from the bond analogy pointed out in sect. 7.1.1.1, patent risk is closely
related to the concept of economic depreciation.

Observation 7.2. Patent risk can be regarded as a form of deprecia-
tion.
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If jump risk is again assumed to be unsystematic, and the drift is
adjusted as in Merton’s model,

dΠt = (α + λφ) Πt dt + σΠt dWt − φΠt dJt. (7.11)

Consequently, Πt grows at a risk-neutral rate α∗ + λφ = r − δ + λφ,
which implies

V (Πt, t) = Πt

∫ T

t
e−r(s−t)e(r−δ+λφ)(s−t)

∞∑
i=0

(
(1 − φ)i e−λ(s−t)

(
λ (s − t)

)i
i!

)
ds

=
(
1 − e−δ(T−t)

)
Πt/δ.

Jump risk is exactly offset by the drift correction and (6.62) is obtained.
The extension of proposition 6 to the case of imperfect patent pro-

tection is straightforward. Analyzing the investment problem under the
assumption of a finite protection period, however, is far more informa-
tive.

7.1.1.2.2 Investment Opportunity

Patent valuation boils down to the optimization problem

F (Πt, t) = sup
τ∈[t,T )

e−r(τ−t)EP∗
[(

V (Πτ , τ) − I
)+ ∣∣∣Ft

]
,

= e−r(τ∗−t)EP∗
[(

V (Πτ∗ , τ) − I
)+ ∣∣∣Ft

]
,

with V (Πt, t) given by (7.9).
As explained in sect. 6.2.2.2, numerical methods are required to ob-

tain a solution. In principle, also jump–diffusion models may be solved
using variants of Crank–Nicolson FD discretization. Incorporating the
integral part, however, proves to be more difficult than apparent at first
glance. Direct numerical integration via Gaussian quadrature or Simp-
son’s method is computationally expensive. Alternatively, PIDEs like
(7.6) lend themselves to the application of fast Fourier transform (FFT)
methods [336, p. 331], which involves a variety of prepatory steps
[55, 85].

A completely different approch is adopted here, namely the ex-
tremely simple LSM algorithm proposed by Longstaff and Schwartz
[207]. LSM has the distinct advantage of providing a solution without
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requiring a PDE, or PIDE, for the value of the patent in the first place.
Due to its versatility, the technique is also employed to analyze more
advanced models in sect. 7.2.

Expectations under P∗ can be computed by generating many real-
izations of the risk-adjusted stochastic process, discounting the opti-
mal payoff for each realization at the risk-free rate, and then taking
the average. To this purpose, time is divided into steps of equal size
Δt = T/n. Using the simple Euler scheme for the logarithm of the profit
rate process, a discretization of (7.11) under the risk-neutral measure
is obtained:6

Πj+1 =

{
Πj (1 − φ) with probability λΔt,

Πje
(
r−δ+λφ−1

2σ2
)
Δt+σ

√
Δt εj with probability 1 − λΔt,

where εj ∼ N(0, 1) are random numbers picked from the standard nor-
mal distribution, that is a normal distribution with zero mean and vari-
ance of one.

If the proposed discretization is employed to generate sample paths,
the resulting trajectories are similar to the one depicted in fig. 7.3. Profit
rates evolve continuously until a downward jump occurs, leading to a
sudden (discontinuous) change. Immediately following an event, Π =
{Πt}t≥0 again behaves just like a regular diffusion process.
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Fig. 7.3. Evolution of profit rates under patent risk (Π0 = 0.1, α = 0.1, σ = 0.2,
λ = 1.0, φ = 0.2, T = 1.0, n = 150). For the realization shown, jumps at t ∈
{0.23, 0.61} are indicated by vertical lines. Since the relative jump size is assumed
to be fixed, the profit rate drops exactly by one fifth of its original value each time
a patent event occurs.

6 For alternative methods see Kloeden and Platen [172], Milstein [243, 244].
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Of course, timing flexibility makes it necessary to account for the pos-
sibility of early commercialization. For each timestep, the payoff from
immediate investment is compared to the expected presented value of
cash flows from continuation, which is estimated using least-squares re-
gression.7 The optimal policy derived then leads to the value of the
patent. Although LSM, in principle, is very reliable, the accuracy of
results depends on the quality of the random numbers used. Compared
to conventional methods, convergence is improved substantially by em-
ploying a high-dimensional Sobol QRNG.8

Specifically, the conditional expected value of continuation on each
time level is estimated by regressing previously determined option val-
ues for the following period on a set of basis functions fk in Πt [207,
pp. 122–123]:9

EP∗
[
e−rΔtF

(
Πj+1, (j + 1) Δt

) ∣∣Fj

]
=

∞∑
k=0

akfk (Πj) .

While it is possible to employ a variety of orthogonal polynomials, for
example weighted Laguerre polynomials, simple powers of the state vari-
able provide sufficiently accurate results.

If the expected continuation value is estimated to exceed the present
value of the project V (Πj , jΔt) less the investment amount I, commer-
cialization is postponed for an additional period. Otherwise, immediate
exercise of the real option is optimal. Project values are easily obtained
from (6.62).

Table 7.1 shows results for a patent with Π0 = 0.10, I = 1.0, σ =
0.40, T = 20.0, and r = δ = 0.05, based on n = 32 timesteps and
m = 50,000 simulation runs. The observed increase in patent value as
a consequence of additional patent risk is due to the drift adjustment.

The same technique applied in this section may of course be used to
reproduce results obtained in sect. 6.2.2.2.

Observation 7.3. LSM is suitable for valuing both simple and ad-
vanced option-based models, specifically those based on jump-diffusions.
7 The best-fit is found by singular value decomposition (SVD), more specifically,

the modified Golub–Reinsch algorithm with column scaling implemented in the
GNU Scientific Library (GSL). Any components which have zero singular value
(to machine precision) are discarded from the fit [110, pp. 373–374]. See also Chan
[63].

8 See the appendix for an implementation of such a QRNG see Baecker [16]. See also
Bratley and Fox [51], Joe and Kuo [158], Sobol [313]. For discussions of Brownian
bridge techniques see Metwally and Atiya [240], Papageorgiou [264].

9 See sect. 3.2 for a more detailed description of LSM simulation for option pricing
and benchmark results for the plain-vanilla put.
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Table 7.1. Impact of frequency and severity of patent-related events on patent value
(Π0 = 0.10, I = 1.0, σ = 0.40, T = 20.0, r = δ = 0.05, n = 32, m = 50,000). Results
illustrate how increases in patent risk, measured by the frequency and severity of
value-decreasing events, lead to higher patent values in a Merton-type model with
drift adjustment.

Frequency (λ) Patent value

φ = 0.0 φ = 0.2 φ = 0.4 φ = 0.6 φ = 0.8 φ = 1.0

0.00 0.43 0.42 0.42 0.42 0.41 0.42

0.20 0.41 0.43 0.44 0.49 0.52 0.62
0.40 0.42 0.44 0.48 0.55 0.61 0.78
0.60 0.42 0.44 0.49 0.53 0.67 1.04
0.80 0.42 0.43 0.50 0.59 0.63 1.00

1.00 0.42 0.45 0.51 0.59 0.76 1.07

1.20 0.42 0.45 0.54 0.60 0.75 0.96
1.40 0.42 0.44 0.51 0.54 0.70 1.13
1.60 0.43 0.46 0.48 0.59 0.70 0.81
1.80 0.43 0.45 0.52 0.59 0.65 0.88

2.00 0.43 0.44 0.50 0.71 0.60 0.84

7.1.2 Stochastic Jump Size

As seen in the previous section, patent risk can be modeled as jumps in
the process underlying a real option on commercialization. Assuming
jumps of a fixed size known in advance, however, only poorly reflects
real-world investment problems. Rather, the impact of patent-related
events is random with large jumps occurring less frequently. Closed-form
solutions to investment problems with jumps of stochastic size in the
underlying project value, only mentioned briefly by Dixit and Pindyck
[91, p. 173], can be obtained based on the works of Boyarchenko and
Levendorskǐı [43], Mordecki [247], and others.

7.1.2.1 Project-Level Analysis

If the size of jumps is stochastic, deriving a clear-cut solution becomes
challenging. The somewhat elaborate mathematics involved in obtain-
ing closed-form results for non-Gaussian processes tends to obscure
economic implications. Nevertheless, analyzing this generalization is a
worthwhile exercise. Consequently, for the sake of clarity, the model is
again presented in several steps, and mathematical formalism is kept to
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a necessary minimum. Previous results, as shown later in this section,
can be obtained by analyzing limiting cases of the extended models
presented.

7.1.2.1.1 Analytical Derivation

On a very abstract level, the optimization problem stays the same, only
the gross present value of cash flows from commercialization follows
a slightly less simplistic stochastic process. To better emphasize the
connection between the results obtained in this section and previous
findings, the discussion focuses on the optimal investment rule in the
presence of exclusively value-decreasing events before proceeding to a
more widely applicable jump-diffusion model. Both analyses are based
on the same general formula [248] and a common pricing approach [46].

7.1.2.1.1.1 General Pricing Formula

Very broadly speaking and restating a basic insight from earlier sections,
the value of a patent according to the risk-neutral valuation approach
is

F (Vt) = sup
τ∈[t,∞)

e−r(τ−t)EP∗
[
(Vτ − I)+

∣∣Ft

]
= e−r(τ∗−t)EP∗

[
(Vτ∗ − I)+

∣∣Ft

]
,

where P∗ is an appropriate risk-neutral measure. As suggested by ear-
lier discussions of hedging issues in the presence of jumps, choosing
this measure constitutes a non-trivial task if price processes are partly
discontinuous.

An equally important choice concerns the specific stochastic model
for the underlying asset price. Jump-diffusion models found in the fi-
nance literature are often based on price processes belonging to the
wider class of Lévy processes, that is processes with stationary indepen-
dent increments, encompassing Itô processes (see sect. 6.2.2) as a special
case [95]. It therefore seems natural to express the extended model in
terms of a Lévy process. Pricing techniques introduced recently as a
generalization of Merton [238]’s approach then yield the value of the
investment opportunity under imperfect patent protection.10

10 For relatively recent discussions of perpetual option pricing in Lévy markets see
for example Mordecki [247, 248]. For rare examples of applications to real invest-
ments see Boyarchenko [42], Boyarchenko and Levendorskǐı [45]. For overviews
of Lévy processes in general see Sato [291]. For financial applications see also
Boyarchenko and Levendorskǐı [43], Raible [281], Schoutens [296].
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A Lévy process is fully characterized by the triple
(
b, σ2,H(dy)

)
,

where b is the drift, σ2 is the variance of the continuous component,
and H(dy) the so-called Lévy measure determining jump frequency and
magnitude. The characteristic function of a Lévy process is given by the
widely-known Lévy–Kintchine formula, which states that, if q ∈ R,

E
[
eiqXt

]
= exp

(
t

(
ibq − 1

2σ2q2 +
∫
R

(
eiqy − 1 − iqy1{|y|<1}

)
H(dy)

))
with ∫

R
(y2 ∧ 1) dH(dy) < ∞.

Furthermore, define the convex set

C0 =

{
c ∈ R :

∫
{1<|y|}

ecyH(dy) < ∞
}

.

For all z ∈ C with R(z) ∈ C0, the Lévy exponent

ψ(z) = bz + 1
2σ2z2 +

∫
R

(
ezy − 1 − zy1{|y|<1}

)
H(dy) (7.12)

can be determined from E
[
ezXt

]
= etψ(z). It contains all relevant process

parameters and is thus equivalent to the triple
(
b, σ2,H(dy)

)
.

The random process associated with this triple can be interpreted
as the superposition of a GBM and an infinite superposition of inde-
pendent compensated Poisson processes. As long as

∫
H(dy) = λ is

finite, it is possible to derive a compound Poisson representation of
the Lévy process, which leads to the type of jump-diffusion model an-
alyzed in previous sections [298]. Specifically, a Lévy measure of the
form H(dy) = λh(y) dy implies a Poisson process of intensity λ with
h(y) being the distribution of jump sizes. For example, assume the Lévy
measure

H(dy) =

{
λ+ (+c+) e−c+y dy if 0 < y,

λ− (−c−) e−c−y dy if y < 0,

equivalent to the Lévy exponent

ψ(z) = bz + 1
2σ2z2 +

∫ +∞

0
(ezy − 1) λ+

(
+c+

)
e−c+y dy

+
∫ 0

−∞
(ezy − 1) λ− (−c−

)
e−c−y dy,

= bz + 1
2σ2z2 + λ+ z

c+ − z
+ λ− z

c− − z
. (7.13)
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Note that, in this case, the truncation of small jumps found in (7.12)
can be safely omitted [68].

Two positive intensity parameters λ+ and λ− characterize the inten-
sity of upward and downward jumps, respectively, while c− < 0 < c+

determine the relative intensity of large jumps in each direction. Smaller
values for c+ result in a higher probability of large upward jumps as
opposed to small ones. Conversely, the larger c−, the larger the proba-
bility of large downward jumps. If λ+ = 0 or λ− = 0 there are no jumps
in the corresponding direction [45, p. 4]. It can be assumed that λ+ and
λ− are, by and large, determined by the intensity of competition in a
particular industry, whereas c+ and c− reflect patent quality.

An equation for the project value process analogous to the specifi-
cation used in sect. 6.2.2, a compound Poisson representation of (7.42),
is Vt = V0eXt , where

Xt = bt + σWt +
Jt∑

i=1

Yi,

and b = α − 1
2σ2. Since

∫
H(dy) = λ+ + λ−, J = {Jt}t≥0 is a Pois-

son process of intensity λ = λ+ + λ− and Y = {Yi}i∈J a sequence of
independent and identically distributed upward and downward jumps
described by the density

h(y) = 1{0<y}
λ+

λ+ + λ−
(
+c+

)
e−c+y + 1{y<0}

λ−

λ+ + λ−
(−c−

)
e−c−y.

Of course, a risk-neutral measure remains to be chosen. One possibility
is to apply the Esscher transform known from actuarial sciences [114]. A
transformation of this type results in another Lévy process and makes{
e−(r−δ)tVt

}
t≥0

a martingale.11 More specifically,

dP∗
t

dPt
=

eζXt

E[eζXt ]
⇔ dP∗

t = eζXt−tψ(ζ) dPt,

where ζ is the unique real root of ψ∗(1) = ψ(1+ζ)−ψ(ζ) = r−δ < r.12
The Lévy exponent under P∗ is ψ∗(z) = ψ(z + ζ) − ψ(ζ), or

11 For related transformations see Goovaerts and Laeven [120].
12 For details see Mordecki [248, p. 483], Boyarchenko and Levendorskǐı [46, p. 22].

Equivalent martingale measures are usually calculated via the Radon–Nikodým
derivative dP∗

t / dPt used in Girsanov’s theorem. For a detailed discussion of the
procedure see Gerber and Shiu [114, pp. 168–175], Karatzas and Shreve [163].
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ψ∗(z) =
(
b + ζσ2

)
z + 1

2σ2z2

+ λ+ c+

c+ − ζ

z

(c+ − ζ) − z
+ λ− c−

c− − ζ

z

(c− − ζ) − z
,

which leads to the risk-neutral parameters

b∗ = b + ζσ2, σ∗ = σ,(
λ+
)∗ = λ+ c+

c+ − ζ
,

(
λ−)∗ = λ− c−

c− − ζ
,(

c+
)∗ = c+ − ζ,

(
c−
)∗ = c− − ζ.

Evidently, instead of employing the Esscher transform, one may also
leave the jump component unchanged, and adjust the Gaussian com-
ponent only. Recall that this choice implies entirely unsystematic jump
risk.

As demonstrated in previous sections, the investment problem to be
analyzed is analogous to a perpetual call. A general formula for the
value of a perpetual call if asset prices follow a Lévy process is available
and can be applied in the context of patent valuation.

To clarify this point, consider the supremum and infimum of X killed
at the random time τ(r), which is exponentially distributed with param-
eter r.13 More specifically, define

X = sup
t∈[0,τ(r)]

Xt

to be the supremum and

X = inf
t∈[0,τ(r)]

Xt

to be the infimum. Both processes and their dependency on X are
illustrated by fig. 7.4. In a way, the supremum reflects the most cheerful
outlook, while the infimum corresponds to the most gloomy one [45,
p. 5].

As long as the payoff from commercialization is instantaneous it
suffices to focus on the supremum when calculating the value of a (real)
option.

Theorem 1. If E
[
eX1
]

< er, and the payoff is instantaneous, the value
of a call option is

13 For an introduction to the concept of killed processes and the Feynman–Kac
formula see Steele [314, pp. 264–265], Øksendal [177, pp. 135–137].
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Fig. 7.4. A process, its supremum and infimum. Increases in the supremum X
(short dashes) require record-setting good news. Conversely, only record-setting bad
news cause the infimum X (long dashes) to decrease. Note that the specific X shown
is a pure diffusion process, while the “record-setting good news principle” applies to
any kind of Lévy process, including processes with jumps.

F (V0) =
E
[(

V0eX − E
[
eX
]
I
)+
]

E
[
eX
] ,

where
τ∗ = inf{t ≥ 0 : V ∗ < Vt},

and
V ∗ = E

[
eX
]
I

is the critical asset price.

Proof (Proof of theorem 1). The option pricing formula corresponds to
theorem 1 in Mordecki [248].14

The investment rule looks somewhat involved at first glance, but has an
intuitive interpretation related to the “record-setting good news princi-
ple,” a term coined by Boyarchenko [42].

In the project-level scenario, the patentholder obtains an instanta-
neous payoff upon commercialization. Since, at any point in time, Vt

reflects all future cash flows, he or she is not concerned with any price
movements once the investment has been undertaken. The process X

14 For a complete proof see Mordecki [248, pp. 476 and 486–488], and the references
therein.
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first reaches a constant upper threshold together with its supremum.
Consequently, only record-setting good news, which can never be due
to downward jumps, matter to the patentholder.

In contrast, it can be shown that profit-level analysis is tied to the
infimum of the price process. Roughly speaking, when making the in-
vestment decision, the patentholder ignores all temporary increases in
the gross payoff from commercialization, because he or she remains ex-
posed to declining profit rates. Delaying commercialization therefore
enables the patentholder to avoid record-setting bad news.15

Before elaborating on this point in more detail, a few definitions are
in order, which make it possible to derive option prices, or patent values,
for specific processes. The Laplace transform [1] in t of the distribution
of Xt is given by

rE
[∫ ∞

0
e−rtezXt dt

]
=

r

r − ψ(z)
. (7.14)

Employing the Wiener–Hopf factorization for Lévy processes,16 the
transform can be related to the supremum and infimum processes de-
fined above.17 Specifically,

r

r − ψ(z)
= ψ+

r (z)ψ−
r (z),

where

ψ+
r (z) = E

[
ezX
]

= rE
[∫ ∞

0
e−rtezXt dt

]
,

ψ−
r (z) = E

[
ezX
]

= rE
[∫ ∞

0
e−rtezXt dt

]
are closely tied to EPVs, namely of the supremum and infimum pro-
cesses. The procedure employed to derive option pricing formulae in
terms of these and other EPVs—quite similar to theorem 1—is now
known as the EPV pricing model [46].

15 For a careful analysis see Boyarchenko [42, pp. 558 and 565]. The original “bad
news” principle is due to Bernanke [31].

16 For a description of this procedure see Rogers and Williams [286, p. 89], Rogozin
[287].

17 For details see also Boyarchenko and Levendorskǐı [45, pp. 5–6], Levendorskǐı
[197].
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7.1.2.1.1.2 Value-Decreasing Patent Events Only

Assume the gross present value of cash flows from commercialization
follows a process described by the Lévy exponent

ψ(z) = bz + 1
2σ2z2 + λ− z

c− − z
, (7.16)

corresponding to a special case of the jump-diffusion (7.13) with no
upward jumps. In line with previous analyses, the risk-neutral, or risk-
adjusted, drift is assumed to be

b∗ = α∗ − 1
2σ2 = (r − δ) − 1

2σ2. (7.17)

This choice allows for a straightforward extension of proposition 7.
It can be shown that,18 if γ−

1 < c− < γ−
2 < 0 < γ+ are the roots of

the characteristic equation,

ψ(γ)∗ = r, (7.18)

the supremum and infimum processes are given by

ψ+
r (z) =

γ+

γ+ − z
, (7.19a)

ψ−
r (z) =

(
2∏

i=1

γ−
i

γ−
i − z

)
c− − z

c−
.

Evidently, all operations are performed not under the true, but under
the equivalent martingale measure.

Armed with this information, theorem 1 can be used to derive patent
values for the Lévy process with exponentially distributed downward
jumps described by (7.16).

Proposition 8. The dynamic value of a patent under uncertainty and
infinite, but imperfect, patent protection is

F (Vt) =

{
Vt − I if V ∗ < Vt,

A+V γ+

t otherwise,

where

18 Only if the Lévy exponent is a rational function, there is a simple analytical
formula [42, p. 567]. For a more detailed discussion see Mordecki [248], Boyar-
chenko and Levendorskǐı [45, pp. 4–7], Levendorskǐı [197, pp. 310–311 and 319],
Boyarchenko and Levendorskǐı [46, p. 14].
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V ∗ =
γ+

γ+ − 1
I

denotes the critical project value,

A+ =
I

γ+ − 1

(
1

V ∗

)γ+

=
(

1
γ+

)γ+ (
γ+ − 1

I

)γ+−1

,

and γ+ is the positive root of

1
2σ2γ(γ − 1) + (r − δ)γ −

(
r − λ− γ

c− − γ

)
= 0. (7.20)

Proof (Proposition 8). Loosely speaking, when dealing with a call op-
tion, downward jumps affect the characteristic equation, but not the
option pricing formula itself [45, p. 9].19 Subtituting (7.17) in (7.16)
yields

ψ∗(γ) =
(
(r − δ) − 1

2σ2
)
γ + 1

2σ2γ2 + λ− γ

c− − γ
= r.

and, after rearranging, (7.20). The trigger follows directly from (7.19a)
and theorem 1.

As a sidenote, it is interesting to observe that the standard model of
investment under uncertainty is easily derived as a special case. Simply
omitting the jump component in (7.13) altogether leads to

ψ(z) =
(
α − 1

2σ2
)
z + 1

2σ2z2.

Consequently, if there are no jumps, (7.17) implies

ψ∗(γ) =
(
(r − δ) − 1

2σ2
)
γ + 1

2σ2γ2 = r,

which is identical to the fundamental quadratic (6.50):

1
2σ2γ(γ − 1) + (r − δ)γ − r = 0.

In addition, note that ψ∗(1) = r − δ, which means that {e−(r−δ)tVt}t≥0

again is a martingale [248, p. 483].

19 See also proposition 7.
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7.1.2.1.1.3 Value-Decreasing and Value-Increasing Patent
Events

Although it was assumed that only downward jumps occur with positive
probability, it is not difficult to extend the analysis to also include
value-increasing events.20 This subsection serves to outline necessary
modifications to the EPV formulae and investment rule.

For a change, consider the Esscher transform discussed earlier. Given
the true Lévy exponent (7.13), the characteristic equation under the
martingale measure has four roots, namely γ−

1 < (c−)∗ < γ−
2 < 0 <

γ+
1 < (c+)∗ < γ+

2 , and

ψ+
r (z) =

(
2∏

i=1

γ+
i

γ+
i − z

)
(c+)∗ − z

(c+)∗
,

ψ−
r (z) =

(
2∏

i=1

γ−
i

γ−
i − z

)
(c−)∗ − z

(c−)∗
.

Nevertheless, starting with a valuation formula applicable under perfect
patent protection, it is no longer sufficient to simply adapt the charac-
teristic equation, because jumps may now result in the gross payoff
from commercialization crossing the upper boundary V ∗. As before, set
b = α− 1

2σ2. Preserving formal similarity to investment rules presented
up to this point leads to the following proposition.

Proposition 9. The dynamic value of a patent under uncertainty and
infinite, but imperfect, patent protection is

F (Vt) =

{
Vt − I if V ∗ < Vt,

A+V
γ+
1

t + A−V
γ+
2

t otherwise,

where

V ∗ =

(
2∏

i=1

γ+
i

γ+
i − 1

)
(c+)∗ − 1

(c+)∗
I

denotes the critical project value,

A+ =
1

γ+
1 − 1

γ+
2

γ+
2 − γ+

1

(c+)∗ − γ+
1

(c+)∗

(
1

V ∗

)γ+
1

,

A− =
1

γ+
2 − 1

γ+
1

γ+
1 − γ+

2

(c+)∗ − γ+
2

(c+)∗

(
1

V ∗

)γ+
2

,

20 See the appendix and the references provided in footnote 18 above.
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and γ+
1 , γ+

2 are the positive roots of

1
2σ2γ2 + b∗γ −

(
r − (λ+)∗

γ

(c+)∗ − γ
− (λ−)∗

γ

(c−)∗ − γ

)
= 0.

Proof (Proposition 9). The option pricing formula follows directly from
corollary 1 in Mordecki [248, pp. 480 and 490]. Risk-neutral parame-
ters are obtained by applying the Esscher transform as laid out in the
previous subsection.21

Taking everything together, patent values can be obtained based on
a limitless variety of probability measures, some of which are easier to
justify than others, but none of which may be regarded as the “most
accurate” martingale measure, which comes closest to a hypothetical
fair value. This dilemma arises, because it is very difficult to determine
the appropriate market price of patent risk.

7.1.2.1.2 Numerical Illustration

Connections between both models presented in this section are under-
lined by similarities between the characteristic equations appearing in
the investment rule. While, under certain circumstances, the roots of
such equations can be given explicitly, the resulting expressions are ex-
tremely complicated and, as a consequence, not very informative. There-
fore, the sensitivity to key parameters is perhaps best analyzed numer-
ically.

Panel (a) in fig. 7.5 illustrates how downward jumps affect (7.18) and
thereby the value of patents. As shown in panel (b), once uncertainty
surrounding patent quality is symmetric—implying upward as well as
downward jumps—an additional root appears, leading to the slightly
more complicated investment rule of proposition 9.

As argued previously on more than one occasion, a more realistic
picture of patent value is painted if profit flows instead of aggregate
project values are considered. Therefore, instead of engaging into a more
detailed analysis of the investment rule at hand, the following section
deals with a straightforward extension to the profit level.

7.1.2.2 Profit-Level Analysis

As before, a closed-form expression for the dynamic value of a patent
will be developed and then analyzed numerically.
21 Note that σ∗ ≡ σ.
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(a) No patent events and
value-decreasing patent events only
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(b) Value-decreasing and
value-increasing patent events

Fig. 7.5. Fundamental equation in the presence and the absence of patent risk (b =
0.1, σ = 0.3, and r = 0.05). The dashed line in panel (a) illustrates the case of perfect
patent protection, which leads to the fundamental quadratic discussed previously.
For the given choice of parameters, the roots are at γ− = −2.64 and γ+ = +0.42.
If patent protection is imperfect (solid line), the characteristic equation exhibits a
singularity at γ = c− and there are three roots. For c− = −1.0 and λ− = 0.5 the
roots are at γ−

1 = −5.13, γ−
2 = −0.11, and γ+ = +2.01. Furthermore, panel (b)

shows how the possibility of value-increasing events, that is upward jumps in the
underlying process, gives rise to a second singularity and an additional (positive)
root (c+ = +1.0, c− = −1.0, λ+ = +0.5, and λ− = −0.5). Specifically, γ−

1 = −5.92,
γ−
2 = −0.16, γ+

1 = +0.14, and γ+
2 = +4.22.
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7.1.2.2.1 Analytical Derivation

Recognizing that

V (Πt) = EP∗

[∫ ∞

t
e−rsΠs ds

]
one can use the Laplace transform (7.14) to obtain

V (Πt) =
Πt

r − ψ∗(1)

=
Πt

r −
(
b∗ + 1

2σ2 + λ− 1
c−−1

) .

Substituting (7.17) then leads to

V (Πt) =
Πt

δ − λ− 1
c−−1

. (7.23)

Essentially, this is all that is needed to calculate patent value.

Proposition 10. The dynamic value of a patent under uncertainty and
infinite, but imperfect, patent protection is

V (Πt) =

⎧⎨⎩
Πt

δ−λ− 1
c−−1

− I if Π∗ < Πt,

A+Πγ+

t otherwise.

where

Π∗ =
γ+

γ+ − 1
I

(
δ − λ− 1

c− − 1

)
, (7.24)

denotes the critical project value,

A+ =
I

γ+ − 1

(
1

Π∗

)γ+

=

⎛⎝ 1

γ+
(
δ − λ− 1

c−−1

)
⎞⎠γ+ (

γ+ − 1
I

)γ+−1

,

and γ+ is the positive root of

1
2σ2γ (γ − 1) + (r − δ) γ −

(
r − λ− γ

c− − γ

)
= 0.
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Proof (Proposition 10). In analogy to proposition 8, it remains to be
shown that (7.24) indeed represents the critical project value. By theo-
rem 1, (7.16) and (7.19a),

ψ+
r (1)I =

Π∗

r − ψ∗(1)

⇔ γ+

γ+ − 1
I =

Π∗

δ − λ− 1
c−−1

.

Solving for the critical profit rate yields (7.24). The characteristic equa-
tion is the same as in proposition 8.

A closer look at the proof reveals how the Wiener–Hopf factorization

Π∗ψ+
r (1)ψ−

r (1)
r

= ψ+
r (1)I

ties the critical profit rate to the infimum of the underlying process,
resulting in

Π∗ =
Ir

ψ−
r (1)

.

This finding is in contrast to the project-level model, where

V ∗ = ψ+
r (1)I.

As hinted at previously, value-decreasing events do not show up in the
investment rule if the payoff from commercialization is instantaneous.
Nevertheless, they do appear in the investment rule for profit-level mod-
els, demonstrating the validity of the record-setting bad news principle
proposed by Boyarchenko [42].

If, in addition, there is a positive probability of jumps that increase
the cash flow rate, (7.23) becomes

V (Πt) =
Πt

δ − λ+ 1
c+−1 − λ− 1

c−−1

.

Focusing on the adverse effects of patent-related events, the following
section provides a brief numerical analysis of the project-level model
with exponentially distributed jumps.
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7.1.2.2.2 Numerical Illustration

Recall that, in option-based models under Lévy processes, a higher fre-
quency of downward jumps could be attributed to increased intensity
of competition, while larger jumps may reflect decreasing patent qual-
ity. As expected, patent value is highly sensitive to changes in either of
these two parameters. Fig. 7.6 illustrates this dependency for σ = 0.2,
r = 0.05, and δ = 0.03.
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(a) Competitive intensity (λ−)
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(b) Patent quality (c−)

Fig. 7.6. Impact of competitive intensity and patent quality on patent value in
a model with exponentially distributed jumps (σ = 0.2, r = 0.05, and δ = 0.03).
Panel (a) shows patent value for various jump frequencies (λ− ∈ {0.00, 0.01, 0.02}
and c− = 0.50), whereas panel (b) reflects changes in the expected size of jumps
(λ− = 0.01 and c− ∈ {0.25, 0.50, 0.75}).

Probably the most important insight to be gained from the formal
analysis of Lévy markets is the applicability of the record-setting news
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principle in the context of patent risk. Only two-stage, two-factor mod-
els, however, are suited to capture the process of R&D and commercial-
ization in its entirety. For reasons of simplicity, the discussion will focus
on the case of deterministic jump size in the following.

7.2 Two-Stage and Two-Factor Models

In order to make the following discussion more accessible and to put
the effects of patent risk into perspective, the case of perfect patent
protection is analyzed first. The models presented are then extended in
analogy to previous sections.

7.2.1 Perfect Patent Protection

In contrast to the very stylized formalization of the investment process
proposed in previous sections, analyses in this subsection will serve
to illustrate the significance of “time-to-build” and sequentiality, more
accurately reflecting several stylized facts about capital budgeting in
R&D-intensive industries.

7.2.1.1 Time-to-Build

Depending on whether the impact of investment is deterministic or
stochastic, cost to completion is certain or uncertain. Both cases will be
analyzed in turn, employing FD or Monte Carlo methods, repectively.

7.2.1.1.1 Certain Cost

The model presented in this subsection is similar to one developed by
Majd and Pindyck [214]. Obtaining a solution requires numerical meth-
ods, not too different from those employed in sect. 6.2.2.2 [91, pp. 328–
336 and 353–356].

Consider an aggregate gross payoff from commercialization that de-
velops stochastically according to the following specification:

dVt = αVt dt + σVt dWt.

In contrast to the more simple case of instantaneous payoff, it takes
time to complete the investment. This feature found in some real option
models is known as “time to build” [91, pp. 329–339].
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The length of the investment phase is determined by a time-dependent
investment rate It and a known cost to completion Ct. Changes in Ct

are given by
dCt = −It dt. (7.25)

Although deterministic, (7.25) describes a controlled Itô process. Conse-
quently, in order to calculate the value of a claim contingent on Vt and
Ct, for example a patent, a multi-dimensional variant of Itô’s Lemma
is required.22

Lemma 2 (Itô’s Lemma for vector-valued processes). If x1, . . . , xm

follow the (vector-valued) Itô process described by

dxi = ai(x1, . . . , xm, t) dt + bi(x1, . . . , xm, t) dWi, i = 1, . . . ,m,

and E[dWi dWj] = ρi,j dt, the contingent claim f(x1, . . . , xm, t) also
follows an Itô process, namely

df(·) =
∂f(·)
∂t

+
∑

i

∂f(·)
∂xi

dxi + 1
2

∑
i

∑
j

∂2f(·)
∂xi∂xj

dxi dxj

or, in expanded form,

df(·) =

(
∂f(·)
∂t

+
∑

i

ai(·)∂f(·)
∂xi

+ 1
2

∑
i

b2
i (·)

∂2f(·)
∂x2

i

+1
2

∑
i
=j

ρi,jbi(·)bj(·) ∂2f(·)
∂xi∂xj

⎞⎠ dt +
∑

i

bi(·)∂f(·)
∂xi

dWi.

In this case, m = 2, x1 ≡ Vt, x2 ≡ Ct, a1(Vt, Ct, t) ≡ αVt,
a2(Vt, Ct, t) ≡ −It, b1(Vt, Ct, t) ≡ σVt, b2(Vt, Ct, t) ≡ 0, f(Vt, Ct, t) ≡
F (Vt, Ct), ρ1,2 = 0, and dW1 ≡ dWt. Hence, changes in patent value
become

dF (Vt, Ct) = αVt
∂F (Vt, Ct)

∂Vt
dt − It

∂F (Vt, Ct)
∂Ct

dt

+ 1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

dt + σVt
∂F (Vt, Ct)

∂Vt
dWt.

As before, a portfolio is constructed to eliminate all terms involving
dWt:

22 Note that time indices have been omitted.
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Φ(Vt, Ct) = F (Vt, Ct) − Vt
∂F (Vt, Ct)

∂Vt
. (7.26)

Changes in portfolio value are given by

dΦ(Vt, Ct) = dF (Vt, Ct) − ∂F (Vt, Ct)
∂Vt

dVt

= −It
∂F (Vt, Ct)

∂Ct
dt + 1

2σ2V 2
t

∂2F (Vt, Ct)
∂V 2

t

dt.

Holding the short position again requires a “dividend” payment. In ad-
dition, investment results in a cash outflow. Taking everything together,
the portfolio yields the risk-free rate, that is

rΦ(Vt, Ct) dt = −It
∂F (Vt, Ct)

∂Ct
dt + 1

2σ2V 2
t

∂2F (Vt, Ct)
∂V 2

t

dt

− δVt
∂F (Vt, Ct)

∂Vt
dt − It dt.

Substituting (7.26) and subsequent rearranging leads to a variant of the
option pricing PDE deduced previously:

1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

+ (r − δ) Vt
∂F (Vt, Ct)

∂Vt

− rF (Vt, Ct) − It
∂F (Vt, Ct)

∂Ct
− It = 0. (7.27)

It is solved subject to the boundary conditions

F (Vt, 0) = Vt, (7.28a)
F (0, Ct) = 0, (7.28b)

lim
Vt→∞

∂F (Vt, Ct)
∂Vt

= 1 −
∫ Ct/Imax

0
δe−μteαt dt

= e−δCt/Imax . (7.28c)

While the first two are more or less obvious, the last one requires some
explanation. For very high gross payoffs it is safe to assume that com-
mercialization takes place and the investment rate reaches a maximum
(It = Imax). Nevertheless, the “dividend” outflow continues until project
completion, which implies (7.28c).

Similar to the basic model (see sect. 6.2.2), it is possible to specifiy a
threshold V ∗, obtain patent values above and below the boundary and
then paste both solutions together, producing a smooth value function.
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In the absence of adjustment costs, it is either optimal to invest at the
maximum rate or not to invest at all [91, p. 330]:

It =

{
Imax for V ∗ < Vt,

0 otherwise.

Note that V ∗ is not constant, but varies with Ct. Hence, it is a free
boundary that is found together with the solution. In the “continuation
region,” where Vt ≤ V ∗ and thus It = 0, the PDE to be solved simplifies
considerably and becomes

1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

+ (r − δ)Vt
∂F (Vt, Ct)

∂Vt
− rF (Vt, Ct) = 0.

As demonstrated earlier, a solution to this equation is

F (Vt, Ct) = A+V γ+

t , (7.29)

where

γ+ = 1
2 − r − δ

σ2
+

√(
r − δ

σ2
− 1

2

)2

+ 2
r

σ2
.

Just like V ∗, the constant A+ depends on Ct.
In the “investment region,” where It = Imax, the following PDE

holds:

1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

+ (r − δ) Vt
∂F (Vt, Ct)

∂Vt

− rF (Vt, Ct) − Imax
∂F (Vt, Ct)

∂Ct
− Imax = 0. (7.30)

Unfortunately, (7.30) is of the parabolic type and a closed-form solution
does not exist [91, p. 331]. Taking advantage of boundary conditions
(7.28a), (7.28b), and (7.28c), however, FD procedures can be employed
to obtain a numerical approximation of F (Vt, Ct) in the investment
region. As opposed to the discretization described in sect. 6.2.2.2, the
grid constructed represents patent values along the dimensions Vt and
Ct. Since the procedure is slightly more involved, the steps are described
in detail below.

Value-matching and smooth-pasting conditions can be used to check
for the free boundary and calculate A+ as a function of Ct. Specifically,
C1-continuity at the free boundary implies
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F
(
V ∗, Ct

)
= A+ (V ∗)γ+

, (7.31a)
∂F
(
V ∗, Ct

)
∂Vt

= A+γ+ (V ∗)γ+−1 . (7.31b)

Solving (7.31b) for A+ and substituting the resulting expression in
(7.31a) yields the free-boundary condition

F (V ∗, Ct) =
V ∗

γ+

∂F (V ∗, Ct)
∂Vt

.

Although following discussions will focus on a more sophisticated model,
a brief look at the numerical scheme proposed by Dixit and Pindyck
[91, pp. 353–356] may serve to motivate the use of alternative pricing
techniques.

A complete solution to the problem could be determined based on
the familiar Crank–Nicolson scheme presented in sect. 6.2.2.2. To sim-
plify calculations, however, Dixit and Pindyck consider an explicit FD
scheme applied to a log-transform of (7.30), where Xt ≡ ln Vt and
F (Vt, Ct) ≡ e−rCt/ImaxG(Xt, Ct). Derivatives,

∂F (Vt, Ct)
∂Vt

≡ e−rCt/Imax−Xt
∂G(Xt, Ct)

∂Xt
,

∂2F (Vt, Ct)
∂V 2

t

≡ e−rCt/Imax−2Xt

(
∂2G(Xt, Ct)

∂X2
t

− ∂G(Xt, Ct)
∂Xt

)
,

∂F (Vt, Ct)
∂Ct

≡ e−rCt/Imax

(
∂G(Xt, Ct)

∂Ct
− r

Imax
G(Xt, Ct)

)
.

The transformed PDE becomes

1
2σ2 ∂2G(Xt, Ct)

∂X2
t

+
(
r − δ − 1

2σ2
) ∂G(Xt, Ct)

∂Xt

− Imax
∂F (Vt, Ct)

∂Ct
− erCt/ImaxImax = 0 (7.33)

with boundary conditions

G(Xt, 0) = eXt ,

G(0, Ct) = 0,

lim
Xt→∞

(
e−rCt/Imax−Xt

∂G(Xt, Ct)
∂Xt

)
= e−δCt/Imax .

Similarly, the free boundary condition can be expressed as
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e−rCt/ImaxG(X∗, Ct) =
eX∗

γ+
e−rCt/Imax−X∗ ∂G(X∗, Ct)

∂Xt

⇔ G(X∗, Ct) =
1

γ+

∂G(X∗, Ct)
∂Xt

. (7.35)

Transformation facilitates the FD procedure considerably, because co-
efficients no longer depend on Xt (or Vt). Set Xmax ≡ mΔX and
Cmax ≡ nΔC. Assume a rectangular grid, where

Xt ∈ {0,ΔX, . . . , iΔX, . . . ,Xmax − ΔX,Xmax}

and

Ct ∈ {0,ΔC, . . . , jΔC, . . . , Cmax − ΔC,Cmax}.
Furthermore, let Gi,j denote G(Xi, Cj). Derivatives are approximated
as follows:

∂G(Xt, Ct)
∂Xt

∣∣∣∣Xt=Xi

Ct=Cj

≈ Gi+1,j − Gi−1,j

2ΔX
,

∂2G(Xt, Ct)
∂X2

t

∣∣∣∣Xt=Xi

Ct=Cj

≈ Gi+1,j + Gi−1,j − 2Gi,j

ΔX2
,

and

∂G(Xt, Ct)
∂Ct

∣∣∣∣Xt=Xi

Ct=Cj

≈ Gi,j+1 − Gi,j

ΔC
.

Applying this discretization to (7.33) and solving for Gi,j+1 yields

Gi,j+1 = aGi+1,j + (1 − b)Gi,j + cGi−1,j + dj , (7.37)

where

a = 1
2

ΔC

ImaxΔX

(
σ2

ΔX
+
(
r − δ − 1

2σ2
))

,

b =
ΔC

ImaxΔX

σ2

ΔX
,

c = 1
2

ΔC

ImaxΔX

(
σ2

ΔX
− (r − δ − 1

2σ2
))

,

dj = −erjΔC/ImaxΔC.
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Note that a+(1 − b)+ c ≡ 1. The resulting expressions are very similar
to those appearing in the standard model outlined in sect. 3.2.2.3.1,
with the noteworthy exception of an additional constant term resulting
from the time-to-build feature. Furthermore,

Gi,0 = eiΔX , (7.39a)
G0,j = 0, (7.39b)

e−rjΔC/Imax−mΔX Gm+1,j − Gm−1,j

2ΔX
= e−δjΔC/Imax . (7.39c)

Equation (7.39c) is equivalent to

Gm+1,j = e(r−δ)jΔC/Imax+mΔX2ΔX + Gm−1,j .

Inserting this expression into (7.37) and setting i = m leads to

Gm,j+1 = ae(r−δ)jΔC/Imax+mΔX2ΔX

+ (1 − b) Gm,j + (a + c) Gm−1,j + dj .

The free boundary condition (7.35) is approximately fulfilled if

Gi∗,j+1 ≈ 1
γ+

Gi∗+1,j+1 − Gi∗,j+1

ΔX
,

that is
Gi∗,j+1 − Gi∗+1,j+1

1 + ΔXγ+
≤ ε,

where ε is some small number [91, p. 356].23 Equation (7.29), after
transformation, becomes

e−rCt/ImaxG(Xt, Ct) = A+eXtγ+
.

Consequently, A+ can be determined from

A+ = e−r(j+1)ΔC/Imax−i∗ΔXγ+
Gi∗,j+1.

Using
Gi,j+1 = A+er(j+1)ΔC/Imax+iΔXγ+

,

it is then possible to calculate patent values below the threshold.

23 Note that, deviating from the original scheme, a forward difference approximation
is used to express the first derivative.
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Assuming σ = 0.15, r = δ = 0.05, and a maximum investment rate
Imax = 1.00, one obtains the surface plot shown in fig. 7.7. Dynamic
patent value increases as the project nears completion and eventually
equals gross payoff from commercialization. Furthermore, the procedure
yields an estimate of the free boundary to be discussed later in this
chapter.

CtCt

Vt

F (Vt, Ct)
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Fig. 7.7. Dynamic patent value with time-to-build under cost certainty (σ = 0.15,
r = δ = 0.05, Imax = 1.00, m = 50 and n = 25). The plot shows patent value, which
does not depend explicitly on time, as a function of gross payoff from commercial-
ization and cost to completion. However, a positive investment rate will drive down
cost to completion and thus increase patent value over time.

As illustrated by this comparatively simple example, there are lim-
itations to common methods of analyzing option-based models of the
R&D process, because FD pricing obviously lacks the intuitive appeal
of much simpler approaches, for example multinomial trees. Neverthe-
less, building on the work of Majd and Pindyck [214], Pindyck [270]
takes the FD approach further by introducing cost uncertainty. Simi-
larly, Schwartz and Moon [303], Schwartz and Zozaya-Gorostiza [304]
present analyses based on FD procedures.

In contrast, Hsu and Schwartz [146], Miltersen and Schwartz [245],
Schwartz [302] resort to alternative optimization techniques, some of
which were already successfully employed to study single-factor models
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in earlier chapters. These techniques are more promising, mainly due
to the additional flexibility they provide in a jump-diffusion setting. In-
stead of proceeding along the path of more complicated FD calculations
[85, pp. 25–57], analyses to come therefore highlight the implications of
multiple sources of risk, drawing upon relatively recent advances in
Monte Carlo simulation [207, 249].

Nevertheless, the discussion will return to the project-level model
under certain cost in sect. 7.2.2.1, extending it to a setting of imperfect
patent protection.

7.2.1.1.2 Uncertain Cost

At the heart of analyses carried out so far were uncertainty, flexibil-
ity, and irreversibility. Consequently, the following two subsections will
serve to examine the impact of an additional source of uncertainty,
namely one related to cost, presenting solutions to a model of the now
familiar optimal-stopping type, but also considering the more general
case of optimal control. The next section will then develop these re-
sults further, extending the discussion to a setting of imperfect patent
protection.

7.2.1.1.2.1 Optimal Stopping

As shown in earlier sections, a straightforward extension of any project-
level model—like the one analyzed in sect. 7.2.1.1.1—can be obtained by
decomposing the gross payoff from commercialization into cash flows.

While Majd and Pindyck [214] and Pindyck [270] consider the case
of instantaneous payoff upon completion and present solutions assum-
ing both certain and uncertain cost to completion, cash flows during
the commercialization phase can and should be modeled explicitly, for
example to capture finite patent protection.

As usual, the profit rate process follows GBM:

dΠt = αΠt dt + σΠt dW Π
t .

Replacing the real-world drift by the risk-neutral drift leads to

dΠt = α∗Πt dt + σΠt dW Π
t , (7.40)

where α∗ = r − δ and δ = μ − α. To put it differently, α∗ = α − η,
where η = β (rm − r) is the risk premium over the risk-free rate, such
that μ = r + η.
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Furthermore, if It ∈ [0, Imax] denotes the investment rate at time
t, and ς represents cost uncertainty, changes in the expected cost to
completion of R&D are

dCt = −It dt + ς
√

ItCt dW C
t . (7.41)

The underlying Wiener processes W Π = {W Π
t }t≥0 and W C = {W C

t }t≥0

may be correlated.24
Project value upon completion of R&D then fulfills

1
2σ2Π2

t

∂2V (Πt, t)
∂Π2

t

+ α∗Πt
∂V (Πt, t)

∂Πt

+
∂V (Πt, t)

∂t
− rV (Πt, t) + Πt = 0,

subject to the terminal condition

V (ΠT , T ) = MΠT , (7.42)

where M is a kind of “exit multiple.” It can be shown that gross payoff
from commercialization is

V (Πt, t) = EP∗

[∫ T

t
e−r(s−t)Πs ds + e−r(T−t)MΠT

∣∣∣∣Ft

]
=
(
1 − e−(r−α∗)(T−t)

) Πt

r − α∗

+ e−(r−α∗)(T−t)MΠt.

(7.43)

Patent value is maximized by continuously choosing an optimal invest-
ment rate I∗t , leading to

F (Πt, Ct, t) = EP∗

[
−
∫ T

t
e−r(s−t)I∗s ds

+
∫ T

t
e−r(s−t)1{Cs=0}Πs ds

+e−r(T−t)1{CT =0}MΠT

∣∣∣Ft

]
.

Cash flows are accumulated once the expected cost to completion
reaches zero.

24 Equation (7.41) belongs to the class of Feller processes [104].
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Since the protection period is finite, it seems unlikely that the project
is resumed once it has been abandoned.25 In analogy to the determin-
istic case, the absence of adjustment costs and low correlation between
both processes imply investment at the maximum rate (“bang-bang pol-
icy”). Technically speaking, these simplifications turn the more general
optimal control problem into a much more easily tractable optimal stop-
ping problem,26 which can be analyzed using the LSM approach intro-
duced in sect. 7.1.1.2 and described in detail by Schwartz [302].

Developing a numerical procedure for the original problem is more
challenging and could involve some type of Markov chain approximation
(MCA) [178, pp. 144–145]. Simply employing a trinomial model and fit-
ting it to appropriate drift and volatility surfaces—as commonly done
for option pricing models with stochastic parameters—is likely to re-
sult in severe computational issues due to the non-recombining nature
of the trees created. In any case, with the state space encompassing
two stochastic variables, the problem unfortunately represents a fine
example of Bellman’s “curse of dimensionality.” Nevertheless, the con-
cept of a “bang-bang policy” may be used as a simplifying assumption,
rendering the problem tractable by means of EMC simulation.

Turning again to the simplified model, the optimization problem can
be summarized as follows:

F (Πt, Ct, t) = sup
τ∈[t,T ]

EP∗

[
−
∫ τ

t
e−r(s−t)1{0<Cs}Imax ds

+
∫ T

τ
e−r(s−t)1{Cs=0}Πs ds + e−r(T−t)1{CT =0}MΠT

∣∣∣∣Ft

]
.

Figure 7.8 illustrates the development of expected cost to completion
and profit rates over time. Although investment continues at the maxi-
mum rate until completion, cost uncertainty causes random fluctuations,
that is Ct may even increase despite positive It.

Employing methods introduced in sect. 7.1.1, it is possible to ac-
count for catastophic risk, that is the possibility of project failure. Let
κ denote the probability of project failure per unit of time. As demon-
strated earlier, “jump-to-ruin” risk simply increases the discount rate
for uncompleted projects, thus leading to

25 A detailed assessment of this presumption is provided in the following subsection.
26 In financial terms, one might refer to the contingent claim as a “down-and-in call

option.”
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Fig. 7.8. Cash flow rates and expected cost to completion (C0 = 20, Π0 = 10,
α∗ = 0.02, Imax = 2, σ = 0.1, ς = 0.5, T = 20, and n = 150). Investment continues
at the maximum rate until the expected cost to completion Ct becomes zero (dashed
line). The cash flow rate Πt evolves separately (solid line), but obviously increases
the investor’s wealth only beyond τ∗ = 12.93 (vertical line).

F (Πt, Ct, t) = sup
τ∈[t,T ]

EP∗

[
−
∫ τ

t
e−(r+κ)(s−t)1{0<Cs}Imax ds

+
∫ T

τ
exp
(
−
∫ s

t
r + 1{0<Cu}κdu

)
1{Cs=0}Πs ds

+ exp
(
−
∫ T

t
r + 1{0<Cs}κds

)
1{CT =0}MΠT

∣∣∣∣Ft

]
. (7.44)

Although this expression looks involved, it actually represents a fairly
concise summary of the valuation procedure. Cash flows are discounted
at the increased rate r+κ during the investment phase. Once the project
has been completed, the risk-free rate applies.

For the sake of completeness, note that the value of the ongoing
project F (Πt, Ct, t) is then described by

1
2σ2Π2

t

∂2F (Πt, Ct, t)
∂Π2

t

+ 1
2 ς2
√

ImaxCt
∂2F (Πt, Ct, t)

∂C2
t

+ σςρΠt

√
ImaxCt

∂2F (Πt, Ct, t)
∂Πt∂Ct

+ α∗Πt
∂F (Πt, Ct, t)

∂Πt

− Imax
∂F (Πt, Ct, t)

∂Ct
+

∂F (Πt, Ct, t)
∂t

− (r + κ) F (Πt, Ct, t) − Imax = 0. (7.45)
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Strictly speaking, however, this PDE is not required, because Monte
Carlo simulation—not FD pricing—can be used to determine patent
value.

In addition to project failure, patent events may also give rise to
jump risk not included in κ. Section 7.2.2 will serve to examine this
point in more detail. In this section, patent protection is assumed to be
perfect.

The NPV solution may serve as a benchmark for future analyses. In
the absence of cost uncertainty (ς = 0), time to completion is known in
advance:

τ = C0/Imax.

For the moment, assume a protection period which is sufficiently long
to neglect projects not completed on time. Hence, one might argue that
the NPV is given by

F (Π0, C0, 0) = e−rτV (Πτ , τ) −
(
1 − e−(r+κ)τ

) Imax

r + κ
,

where V (Πτ , τ) follows from (7.43) with EP∗ [Πτ ] = e(α∗−κ)τΠ0 [302].
More specifically,

V (Πτ , τ) = e(α∗−κ)τ

((
1 − e−(r−α∗)(T−τ)

) Π0

r − α∗

+ e−(r−α∗)(T−τ)MΠ0

)
.

A closer look, however, reveals that this approach—discounting invest-
ments at the same rate used for cash flows—implicitly assumes partial
flexibility, namely that investment stops if a catastrophic event causes
the cash flow rate to drop to zero. Compared to

F (Π0, C0, 0) = e−rτV (Πτ , τ) − (1 − e−rτ
)
Imax/r,

substantial mispricing may be the result. Admittedly, this insight is of
primarily theoretical value, because only under very unusual circum-
stances a sensible person would continue to invest into an obviously
worthless project.27

Applying Itô’s Lemma as in the derivation of (7.45) [303, pp. 93–94],
results in

27 Note, however, that such irrational behavior is one of the basic assumptions of
NPV analysis.
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dF (Πt, Ct, t) =
(

α∗Πt
∂F (Πt, Ct, t)

∂Πt
− It

∂F (Πt, Ct, t)
∂Ct

+ 1
2σ2Π2 ∂2F (Πt, Ct, t)

∂Π2
t

+ 1
2 ς2ItCt

∂2F (Πt, Ct, t)
∂C2

t

+σςρΠt

√
ItCt

∂2F (Πt, Ct, t)
∂Πt∂Ct

)
dt

+ σΠt
∂F (Πt, Ct, t)

∂Πt
dW Π

t + ς
√

ItCt
∂F (Πt, Ct, t)

∂Ct
dW C

t .

The volatility
(
σF
)2 of the incomplete project thus becomes

(
σF
)2

=
(

σΠt
∂F (Πt, Ct, t)

∂Πt
/F (Πt, Ct, t)

)2

+ ItCt

(
ς
∂F (Πt, Ct, t)

∂Ct
/F (Πt, Ct, t)

)2

+ 2σςρΠt

√
ItCt

∂F (Πt, Ct, t)
∂Πt

∂F (Πt, Ct, t)
∂Ct

/F (Πt, Ct, t)2.

Similarly, based on Merton’s intertemporal asset pricing model [237],
its beta is quickly derived as

βF = βΠt
∂F (Πt, Ct, t)

∂Πt
/F (Πt, Ct, t).

A detailed analysis of patent value requires numerical methods.
A first step in obtaining a numerical solution is to specify approxi-

mations of the original processes, dividing time into small intervals of
equal length Δt = T/n. The Euler scheme leads to

Πj+1 − Πj = α∗ΠjΔt + σΠj

√
Δt εΠ

j ,

Cj+1 − Cj = −IjΔt + ς
√

IjCj

√
Δt εC

j ,

where εΠ and εC are correlated sequences of random numbers drawn
from the standard normal distribution.28 Patent value is then calculated
in a dynamic programming fashion.
28 At the price of a slight inconsistency, one could apply the Euler scheme to the

logarithm of Π :

Πt+Δt = Πt exp

((
α∗ − 1

2
σ2)Δt + σ

√
Δt εΠ

t

)
.

Since the process describing expected cost to completion is required to reach zero,
such a transformation is not an option for C. Nevertheless, introducing a lower
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At the end of the protection period, set

F (Πm, Cm,mΔt) =

{
MΠm if Cm = 0,

0 otherwise.
(7.47)

For all previous periods, if expected cost to completion is zero,

F (Πj , Cj , jΔt) = ΠjΔt + e−rΔtF
(
Πj+1, Cj+1, (j + 1) Δt

)
. (7.48)

If expected cost to completion is positive, the investor chooses between
continuation and abandonment. Continuation implies

F (Πj , Cj, jΔt) = −ImaxΔt

+ e−(r+κ)ΔtF
(
Πj+1, Cj+1, (j + 1) Δt

)
, (7.49)

whereas abandonment leads to F (Πj , Cj , jΔt) = 0. Note that, by (7.44),
the discount rates used in (7.48) and (7.49) differ.

According to the LSM approach to option pricing, a suitable estimate
of future project value—conditional on the project not being terminated
during the next small time interval—can be obtained by performing a
least-squares regression [207],29 that is

EP∗
[
e−(r+κ)ΔtF (Πj+1, Cj+1, (j + 1) Δt)

∣∣∣Fj

]
=

a0 + a1Πj + a2Cj + a3ΠjCj

+ a4Π
2
j + a5C

2
j + a6Π

2
j Cj + a7ΠjC

2
j + a8Π

2
j C2

j ,

where ak are the regression coefficients. If this estimate, less the
marginal investment required to keep the project alive (ImaxΔt) be-
comes negative, rational investors will choose to abandon the project.
Continuation is optimal otherwise.

Unsurprisingly, Monte Carlo techniques run into difficulties in deter-
mining the boundary around points that are rarely encountered during
simulation, in this case low expected cost to completion at the begin-
ning of the protection period. Since the policy in these areas has no
significant impact on overall patent value, the issue is negligible.

barrier Cmin > 0 makes it possible to also use a log-transformed model, namely

Ct+Δt = Ct exp

(
−It/Ct

(
1 + 1

2
ς2
)
Δt + ς

√
It/Ct

√
Δt εC

t

)
.

29 See also sections 3.2.3.3.1 and 7.1.2.2.2.
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As far as LSM is concerned, little guidance is provided by the es-
timates of continuation value calculated at each timestep, because R2

is typically low and the functional form not very intuitive. In general,
recovering a smooth boundary from the data can be challenging [207,
p. 137]. In order to facilitate comparison, a more detailed analysis of re-
sults is postponed to sect. 7.2.2, which also covers the case of imperfect
patent protection.

Parametrization of the model requires a number of simplifying as-
sumptions. Loosely speaking, one has to look at parameters related to
volatility and correlation, cost and cash flow, compounding and dis-
counting, as well as time to expiration. In the following, these parame-
ters are discussed in turn, with the aim of justifying the choice of values
for the base case described by Schwartz [301, pp. 16–18].

An approximate number for total out-of-the-pocket expenditures per
project is 100 million euros. Given an expected time to completion
of around 10 years, an investment rate of approximately 10 million
euros per year is obtained. This view of course abstracts from different
stages in the R&D process, which are typically characterized by specific
investment rates.

Most statistical data available are on projects not completed, encom-
passing failed as well as abandoned endeavors, whereas λ is supposed to
include project failure only. Consequently, to be precise, the probability
of project failure is best determined in an iterative manner, starting
with an initial guess that is refined by repeatedly deducing the num-
ber of projects abandoned implied and making necessary adjustments.
Following Schwartz, assume for now that roughly half of all projects
started do not reach commercialization due to catastrophic events. This
assumption implies

e−λ×10 = 0.5 ⇔ λ = 0.07.

Based on simulation results, a better choice would be λ = 0.09, more
closely approximating the fraction of projects reaching commercializa-
tion according to DiMasi et al, namely 23 percent. In contrast, setting
λ = 0.07 results in more than 30 percent of projects completed [89].

By (7.43), the value of the complete project is proportional to Πt

and thus exhibits the same volatility. Consequently, traded pure play
benchmark firms may be used to calculate cash flow drift, risk premium,
and volatility (α = 0.02, η = 0.036, and σ = 0.35). Correlation between
cash flow and cost processes is very difficult to observe. Frankly speak-
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ing, Schwartz’s choice (ρ = −0.1) is a mere ad-hoc assumption. Values
for the remaining parameters are T = 20, M = 5, and r = 0.05.30

When examining valuation results, it is important to keep in mind
that LSM valuation of such complicated claims is subject to numerical
inaccuracies, which can only be reduced at the price of considerable
computational effort. Figure 7.2 gives an impression of the ranges to
expect for the base case.

Table 7.2. Inaccuracies in LSM patent valuation (C0 = 100, Imax = 10, ς = 0.5,
Π0 = 20, σ = 0.35, α = 0.02, M = 5, κ = 0.07, T = 20, ρ = −0.1, η = 0.036,
r = 0.05, Δt = 0.25, and m = 100,000). Even with 50,000 antithetic pairs, results for
different seeds still vary. Nevertheless, the procedure is sufficiently accurate to allow
for sensitivity analyses. Static patent value is provided for different assumptions
concerning investments (see sect. 7.2.1.1.2). Calculations for the number of paths
optimally abandoned are based on the risk-neutral measure and thereby do not
reflect true probabilities.

Dynamic value Percentage of
projects abandoned

Static value

Partial flexibility No flexibility

13.24 0.47 6.05 −14.46
13.27 0.46 5.79 −14.67
13.66 0.48 5.99 −14.78
14.26 0.51 5.94 −14.69
13.67 0.53 5.00 −13.84

Looking at the original analysis of Schwartz [302], employing high-
dimensional quasi-random instead of pseudo-random numbers brings
about only marginal improvements in terms of accuracy and compu-
tational speed. However, it can be shown how trinomial trees, under
certain assumptions, provide equivalent results.31

In addition, it is worth pointing out the more pragmatic approach
to option-based models of R&D taken by Hsu and Schwartz [146]. More
specifically, the authors replace the controlled diffusion (7.41) by arith-
metic Brownian motion (ABM):

dCt = −It dt + ς dW C
t .

The most attractive feature of the modified model is a simple expression
for the expected first time the process hits zero. However, assuming that
the diffusion part neither depends on the currently expected cost to
30 For a more detailed account of parametrization see Schwartz [301, 302].
31 For a detailed description of the algorithm, see sect. B.1.2 in the appendix.
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completion nor on the investment rate seems quite unrealistic. Moreover,
because analytical tractability is not of vital importance for the kind
of numerical experiments that follow, implications are not examined
further at this point.

More interesting, because directly comparable in terms of value max-
imization, is the extended problem outlined previously, which enables
the investor to costlessly pause and resume investment. In particular,
it is unclear at this point, whether, in line with the argumentation of
Schwartz [302], a finite protection period really renders the option of
“mothballing” an incomplete project entirely unattractive.

7.2.1.1.2.2 Optimal Control

Instead of considering policies allowing for any positive investment rate,
the analysis will again focus on a “bang-bang policy.” The claim to be
analyzed, originally an option to abandon, becomes an option to switch.
If the adjustment costs of switching between the two states of investing
at the full rate and not investing at all are zero, then there will be a
critical profit rate, which is a function of time and expected cost to
completion.

As long as the current profit rate exceeds the threshold, it will be
optimal to invest. Below the threshold, the investor is better off waiting
for profits to increase again. Neglecting the possibility of projects not
being completed within the protection period, the optimal stopping and
optimal control problems can be contrasted by examining their state
diagrams, shown in fig. 7.9.

Determining the critical profit rate, however, is a non-trivial task.
Almost needless to say, there is no known closed-form solution. Con-
sequently, a numerical procedure is required to arrive at the value-
maximizing program. The method proposed here, a variant of EMC
simulation described in sect. 3.2.3.3.2, is highly effective, but also com-
putationally expensive.

Recall that the generic EMC algorithm involves directly approximat-
ing the threshold by some suitable interpolation, which, for the problem
at hand, leads to splines fitted to two-dimensional gridded data.32 For
32 A polynomial spline of order k can be described in terms of its breaks ξ1, . . . , ξl+1

and the local polynomial coefficients cj,i of its l pieces:

pj(x) =

k∑
i=1

(x − ξj)
k−i cj,i.

Analogously, a bivariate spline comprises a number of break sequences, a multidi-
mensional coefficient matrix, a vector of number pieces, and a vector of polynomial
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Start
0<Ct

It = Imax

Πt<Π∗(Ct,t)

Ct=0

Stop

(a) Option to abandon

Start
0<Ct

It = 0

Π∗(Ct,t)<Πt

It = Imax

Πt≤Π∗(Ct,t)

Ct=0
Stop

(b) Option to switch

Fig. 7.9. State diagram of the optimal stopping and control problems. Panel (b)
can be regarded as a generalization of panel (a). Due to the absence of adjustment
costs, a single boundary Π∗(Ct, t) is sufficient to control transitions between states
in both cases.

practical reasons, the optimization procedure is based on a relatively
coarse three-by-three grid,33 producing nine nodes in total. Each node
corresponds to one data point. Taken together, these real numbers form
the genotype of an individual in the population. Every time the fitness
function is evaluated, the phenotype, that is the free boundary, is con-
structed from this input using piecewise polynomials.34

Numerical experiments show that explicitly introducing a jump com-
ponent into the simulation yields more accurate results than simply
increasing the discount rate. Equation (7.40) becomes

dΠt = α∗Πt dt + σΠt dW Π
t − φΠt dJt,

orders [39, pp. 2–16 and 2–36]. The computer program used in this analysis em-
ploys the cubic spline implementation (k = 4) described by de Boor [38]. See also
de Boor [38, chap. 17], de Boor [37].

33 Robustness checks were performed using a finer mesh. Significant changes in
patent value could not be observed.

34 For an overview of splines and applications see de Boor [38].
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where dJt, in analogy to sect. 7.1.1.2.1, represents the increment of
a Poisson process. As a side effect, this approach also facilitates the
remaining steps.

A distinct advantage of the optimal stopping problem lies in the
possibility to simply generate realizations of an uncontrolled diffusion
process, whereas the optimal control problem requires a genuine con-
trolled process. Fortunately, because, in contrast to LSM, an estimate
of the free boundary is available from the outset in EMC simulation,
this requirement poses no serious difficulties.

Discretization of the controlled vector-valued process produces two
coupled difference equations, namely

Πj+1 − Πj =

{
α∗ΠjΔt + σΠj

√
Δt εΠ

j − Πj dJj if 0 < Cj ,

α∗ΠjΔt + σΠj

√
Δt εΠ

j otherwise

and

Cj+1 − Cj =

{
−IjΔt + ς

√
IjCj

√
Δt εC

j if Π∗
j < Πj,

0 otherwise.

Once a large number of realizations has been generated, it is straight-
forward to derive patent values in the usual manner, starting at the end
of the protection period.

t

C
t
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Fig. 7.10. Realizations of the controlled diffusion process (C0 = 100, Imax = 10,
Π0 = 20, α = 0.02, M = 5, κ = 0.07, T = 20, η = 0.036, r = 0.05, Δt = 0.25,
and m = 100,000). Long dashes illustrate how investment may be paused and later
resumed. Other projects are abandoned altogether (short dashes) or continue at the
maximum investment rate until completion (solid line).
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The terminal condition given by (7.47) remains unchanged. Patent
values are then calculated as follows:

F (Πj, Cj , jΔt) =

⎧⎪⎨⎪⎩
A1 if 0 < Cj ∧ Π∗

j < Πj,

A2 if 0 < Cj ∧ Πj ≤ Π∗
j ,

A3 if Cj = 0,

where

A1 = −ImaxΔt + e−rΔtF
(
Πj+1, Cj+1, (j + 1) Δt

)
,

A2 = e−rΔtF
(
Πj+1, Cj+1, (j + 1) Δt

)
,

A3 = ΠjΔt + e−rΔtF
(
Πj+1, Cj+1, (j + 1) Δt

)
.

Table 7.3 compares patent values for the base case according to the op-
timal stopping and the optimal control policies. As outlined previously,
high correlation in particular may cause results to diverge. Nevertheless,
already moderate negative correlation is sufficient to yield substantial
differences in terms of dynamic patent value and the average cost to
completion.

Table 7.3. Optimal stopping versus optimal control policies in patent valuation
(C0 = 100, Imax = 10, Π0 = 20, α = 0.02, M = 5, κ = 0.07, T = 20, η = 0.036, r =
0.05, Δt = 0.25, and m = 100,000). Conditional expected cost to completion reflects
average values for projects successfully completed. Static patent values obviously do
not depend on the policy chosen and are provided as benchmarks only.

Policy Patent risk
(λ)

Static value Dynamic
value

Conditional
expected cost
to completion

Optimal stop-
ping

0.00 −14.87 13.09 80.49
0.01 −22.67 9.94 78.16

Optimal con-
trol

0.00 −14.87 15.33 77.38
0.01 −22.67 11.45 73.41

In summary, the simplified optimal stopping problem is a quite poor
approximation of the original model, subject to substantial underpric-
ing. Although the protection period is limited, it is often advantageous
to resume projects abandoned earlier. Furthermore, even the optimal
control problem described in this section assumes a “bang-bang policy,”
potentially underestimating the true value of flexibility.
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Conceptually speaking, the proposed algorithm is closely related to
the project-level model by Schwartz and Moon [303] and offers a prag-
matic approach to optimal control in project-level analyses of R&D
investments under cost uncertainty.

The EMC approach—with obvious modifications—can also be em-
ployed to replicate results obtained in the previous subsection. However,
such a procedure is not advisable, due to a substantial increase in com-
putational effort. The following analyses of patent risk will therefore be
limited to the simplified optimal stopping case. Note that, for the sake
of completeness, fig. 7.3 also presents indicative results under imperfect
patent protection.

7.2.1.2 Sequential Investment

R&D in the pharmaceutical industry very closely resembles the stereo-
typical stage-gate model, each stage roughly corresponding to one of
the the different phases prescribed by the FDA. In economic terms, se-
quential investments are compound options and, as such, can be priced
using familiar option pricing techniques. Although breaking down the
process into its parts may be advantageous in practical applications,
particularly because stage-specific success probabilities and costs can
be accounted for, the added value is limited from a conceptual perspec-
tive.

The reader should keep in mind, however, that the formal models
presented could be extended to better capture special types of patents,
most importantly platform technologies, which form the basis of subse-
quent innovations [173].

7.2.2 Imperfect Patent Protection

Based on the models presented so far, this section examines the impact
of imperfect patent protection on optimal investment policies. As before,
the cases of certain and uncertain cost are considered in turn.

7.2.2.1 Certain Cost

The extended FD model proposed here is readily comparable to the
problem studied by Majd and Pindyck [214] and summarized earlier (see
sect. 7.2.1.1.1). While the setup is quite simplistic, more sophisticated
formalizations will be explored towards the end of this chapter.
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Again, patent risk takes the form of jumps in the underlying process.
If the size of jumps is stochastic,35 advanced methods for solving PIDEs
are required. For example, a generally applicable FD scheme for option
pricing under Lévy processes has been developed recently by Cont and
Voltchkova [68]. Such models will not be discussed in detail, because
Monte Carlo techniques may be used to obtain similar results with less
implementational effort.

However, as pointed out earlier, the task simplifies considerably if
one limits the analysis to the case of proportional deterministic jumps.
Gross payoff from commercialization then follows the familiar jump-
diffusion process

dVt = αVt dt + σVt dWt − φVt dJt.

The steps to be carried out are almost completely analogous a setting
with perfect patent protection. Nevertheless, to illustrate some subtle
differences, the procedure is described in detail below.

According to Itô’s Lemma for jump-diffusion processes, changes in
patent value are given by

dF (Vt, Ct) = αVt
∂F (Vt, Ct)

∂Vt
dt − It

∂F (Vt, Ct)
∂Ct

dt

+ 1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

dt + σVt
∂F (Vt, Ct)

∂Vt
dWt

+ λ
(
F
(
(1 − φ)Vt, Ct

)− F (Vt, Ct)
)

dt.

Constructing a portfolio free from market risk by setting

Φ(Vt, Ct) = F (Vt, Ct) − Vt
∂F (Vt, Ct)

∂Vt

leads to

− It
∂F (Vt, Ct)

∂Ct
dt + 1

2σ2V 2
t

∂2F (Vt, Ct)
∂V 2

t

dt

+ λ
(
F
(
(1 − φ)Vt, Ct

)− F (Vt, Ct)
)

dt − δVt
∂F (Vt, Ct)

∂Vt
dt

− It dt = r

(
F (Vt, Ct) − Vt

∂F (Vt, Ct)
∂Vt

)
dt.

Consequently, for the special case ϕ = 1, (7.27) becomes
35 See the discussion of stochastic jump size in sect. 7.1.2.
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1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

+ (r − δ) Vt
∂F (Vt, Ct)

∂Vt

− (r + λ)F (Vt, Ct) − It
∂F (Vt, Ct)

∂Ct
− It = 0.

Rewriting the original upper boundary condition in terms of risk-neutral
valuation yields

lim
Vt→∞

∂F (Vt, Ct)
∂Vt

= 1 −
∫ Ct/Imax

0
δe−rte(r−δ)t dt.

Since the probability of no jump occuring up to time t is eλt (see
sect. 7.1.1.1), (7.28c) becomes

lim
Vt→∞

∂F (Vt, Ct)
∂Vt

= 1 −
∫ Ct/Imax

0
δe−rte(r−δ)te−λt dt

= 1 −
(
1 − e−(δ+λ)Ct/Imax

) δ

δ + λ
.

Above the critical project value It = Imax, whereas

1
2σ2V 2

t

∂2F (Vt, Ct)
∂V 2

t

+ (r − δ) Vt
∂F (Vt, Ct)

∂Vt
− (r + λ) F (Vt, Ct) = 0

holds below the threshold. In analogy to perfect patent protection, so-
lutions in the “continuation region” take the form F (Vt, Ct) = A+V γ+

t ,
where

γ+ = 1
2 − r − δ

σ2
+

√(
r − δ

σ2
− 1

2

)2

+ 2
r + λ

σ2
.

Applying the transformation

Xt ≡ ln Vt,

F (Vt, Ct) ≡ e−(r+λ)Ct/ImaxG(Xt, Ct)

results in the following identities:

∂F (Vt, Ct)
∂Vt

≡ e−(r+λ)Ct/Imax−Xt
∂G(Xt, Ct)

∂Xt
,

∂2F (Vt, Ct)
∂V 2

t

≡ e−(r+λ)Ct/Imax−2Xt

(
∂2G(Xt, Ct)

∂X2
t

− ∂G(Xt, Ct)
∂Xt

)
,

∂F (Vt, Ct)
∂Vt

≡ e−(r+λ)Ct/Imax

(
∂G(Xt, Ct)

∂Ct
− r + λ

Imax
G(Vt, Ct)

)
.
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The transformed PDE is easily derived as

1
2σ2 ∂2G(Xt, Ct)

∂X2
t

+
(
r − δ − 1

2σ2
) ∂G(Xt, Ct)

∂Xt

− Imax
∂F (Vt, Ct)

∂Ct
− e(r+λ)Ct/ImaxImax = 0.

The upper boundary condition is

lim
Xt→∞

(
e−(r+λ)Ct/Imax−Xt

∂G(Xt, Ct)
∂Xt

)
=

1 −
(
1 − e−(δ+λ)Ct/Imax

) δ

δ + λ
.

In contrast, the free boundary condition remains unchanged, because

e−(r+λ)Ct/ImaxG(X∗, Ct) =
eX∗

γ+
e−(r+λ)Ct/Imax−Xt

∂G(X∗, Ct)
∂Xt

⇔ G(X∗, Ct) =
1

γ+

∂G(X∗, Ct)
∂Xt

.

Again, in order to obtain a solution, all equations must be translated
into their discrete-time equivalents. The coefficients a, b, and c are those
derived previously. However,

dj = −e(r+λ)jΔC/ImaxΔC.

Armed with this information, it is straightforward to show that, for very
high project values,

e−(r+λ)jΔC/Imax−mΔX Gm+1,j − Gm−1,j

2ΔX
=

1 −
(
1 − e−(δ+λ)jΔC/Imax

) δ

δ + λ
,

which implies

Gm,j+1 = ae(r−δ)jΔC/Imax+mΔX2ΔX
1

δ + λ

(
δ + e(δ+λ)jΔC/Imaxλ

)
+ (1 − b) Gm,j + (a + c) Gm−1,j + dj .

For low project values,

Gi,j+1 = A+e(r+λ)(j+1)ΔC/Imax+iΔXγ+
,
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where A+ follows from

A+ = e−(r+λ)(j+1)ΔC/Imax−i∗ΔXγ+
Gi∗,j+1.

Setting λ = 0 shows that the extended model encompasses perfect
patent protection as a limiting case.

Table 7.4. Dynamic patent value with time-to-build under perfect and imperfect
patent protection (σ = 0.15, r = δ = 0.05, Imax = 1.00, m = 50, and n = 25). Due
to the project-level specification, patent risk has no impact once the expected cost
to completion reaches zero.

Patent risk (λ) Payoff (Vt) Patent value

Ct =
10.0

Ct = 7.5 Ct = 5.0 Ct = 2.5 Ct = 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.12 0.01 0.02 0.06 0.22 2.12
5.21 0.12 0.25 0.61 2.27 5.21

12.81 1.33 2.71 5.60 8.98 12.81
31.50 11.31 15.46 20.15 25.47 31.50

0.05 0.00 0.00 0.00 0.00 0.00 0.00
2.12 0.00 0.00 0.01 0.11 2.12
5.21 0.02 0.07 0.29 2.14 5.21

12.81 0.48 1.60 5.03 8.85 12.81
31.50 8.90 14.13 19.58 25.34 31.50

0.10 0.00 0.00 0.00 0.00 0.00 0.00
2.12 0.00 0.00 0.00 0.07 2.12
5.21 0.00 0.02 0.14 2.00 5.21

12.81 0.13 0.76 4.35 8.71 12.81
31.50 5.46 12.41 18.91 25.20 31.50

Table 7.4 shows numerical results for the choice of parameters dis-
cussed earlier, namely σ = 0.15, r = δ = 0.05, and Imax = 1.00. Judging
from the example, patent value is particularly sensitive to changes in
expected cost to completion if patent risk is high.

7.2.2.2 Uncertain Cost

A more realistic picture of the R&D process is drawn if costs and thus
the time to completion are uncertain. Following an extension of the
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project-level analysis developed by Majd and Pindyck [214] in the pre-
vious section, this section will now turn to Schwartz’s profit-level model
[302].

7.2.2.2.1 Formalization

Under imperfect patent protection, the cash flow process is still gov-
erned by the discrete-time jump-diffusion equivalent

Πj+1 − Πj = α∗ΠjΔt + σΠj

√
Δt εΠ

j − Πj dJj .

Nevertheless, the intensity of the Poisson process is now κ + λ in the
R&D phase, dropping to λ during commercialization. The first param-
eter (κ) captures project-related risk, while the second parameter (λ),
in analogy to previous chapters, represents patent-related risk. Alter-
natively, J = {Jt}t≥0 could be considered as the superposition of two
independent Poisson processes with intensities κ and λ. In any case, the
occurrence of a jump causes the cash flow rate to drop to zero.

In order to develop a better understanding of the impact of patent
risk, the following discussion will focus on comparative statics. Again,
the familiar base case is examined, greatly facilitating comparison with
the original setup described by Schwartz [301, 302].

7.2.2.2.2 Analysis

According to subtable 7.5(a), the adverse effects of patent risk are
less pronounced if the investment policy is dynamic. This result is ex-
pected, because an abandonment option allows managers to discontinue
projects following value-reducing patent events, thereby taking advan-
tage of flexibility to “cut off” the lower end of the probability distribu-
tion. Furthermore, especially in the absence of patent risk, even static
value increases sharply in cost uncertainty, which, by assumption, is
symmetric. Sensitivity to cost uncertainty is substantially lower under
patent risk.

As evident from subtable 7.5(b), rising cash flow uncertainty leads
to higher dynamic project values, while static patent value is virtually
unaffected. Negative correlation is value-enhancing regardless of patent
risk, because more profitable projects are also completed earlier.

Of particular interest is the relationship between patent risk and
expected cost to completion. On average, costly projects take longer
to complete, rendering dynamic patent value more sensitive to patent
risk. Looking at subtable 7.6(a), however, one finds that the opposite is
true of static patent value, which is in fact less sensitive to patent risk
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Table 7.5. Comparative statics (volatilities and correlation parameters) for two-
factor R&D valuation (C0 = 100, Imax = 10, Π0 = 20, α = 0.02, M = 5, κ = 0.07,
T = 20, η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000). Subcolumns on the left-
hand side represent absolute values, subcolumns on the right-hand side percentage
changes relative to the middle row.

(a) Cost uncertainty (σ = 0.35, ρ = −0.1)

Cost uncertainty (ς) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

0.40 10.43 6.05 −18.20 −26.23
0.45 11.28 7.09 −17.53 −25.82
0.50 14.12 9.42 −14.33 −22.67
0.55 16.32 10.65 −11.82 −20.98
0.60 18.33 12.82 −9.90 −18.27

(b) Cash flow uncertainty (ς = 0.5 and ρ = −0.1)

Cash flow uncertainty (σ) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

0.25 11.69 7.52 −15.33 −23.16
0.30 13.26 8.41 −14.60 −22.97
0.35 14.12 8.96 −14.33 −22.67
0.40 16.19 10.43 −13.11 −22.29
0.45 16.74 13.48 −14.43 −19.88

(c) Correlation (ς = 0.5 and σ = 0.35)

Correlation (ρ) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

−0.10 14.12 9.42 −14.33 −22.67
−0.05 13.06 8.56 −15.45 −23.25

0.00 12.01 7.49 −16.90 −25.02
+0.05 10.03 6.60 −19.06 −26.11
+0.10 8.61 5.07 −20.33 −27.67
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if expected cost to completion is high. Intuitively, this finding can be
explained by the increased significance of cash outflows as opposed to
cash inflows resulting from a static policy. Table 7.7 shows clearly that
similar arguments apply as far as the initial cash flow rate and the cash
flow multiple are concerned. More specifically, higher cash flows lead to
higher reductions in static value due to additional patent risk.

Correspondingly, as illustrated by subtable 7.6(b), high investment
rates in the absence of flexibility turn patent risk into a key value driver,
whereas rising investment rates slightly reduce sensitivity to patent risk
if there is an abandonment option.

Comparative statics with respect to compounding and discounting
parameters are provided in table 7.8. Subtable 7.8(b) yields insights
into the relationship between different types of risk. Flexible projects
exhibiting high technology-related risk happen to be slightly more sen-
sitive to changes in patent-related risk. In the absence of optionality,
however, the opposite is the case, that is sensitivity to patent risk is
high for technologically safe projects. Since the kind of jump risk con-
sidered essentially increases the discount rate, corresponding changes in
sensitivity can also be observed in table 7.8(c).

Finally, table 7.9 contains information on the role of limited patent
duration. Small changes in the time to expiration have little impact
on how different levels of patent risk translate into dynamic value. In
contrast, longer patent duration makes static value substantially more
sensitive to variations in patent risk.

Figure 7.11 illustrates total investments for completed projects,
based on a Kaplan–Meier estimate of the corresponding cumulative
density function (CDF). Rising patent risk reduces the conditional prob-
ability of completed projects being costly. Nevertheless, the expected
percentage of projects that are optimally abandoned before completion
increases more than twofold, resulting in much higher expected invest-
ment outlays overall.

Consequently, rounding off the numerical analysis, fig. 7.12 depicts
the effect of patent risk on abandonment by comparing survivor func-
tions for various intensities of the patent-related jump process.36 Higher
patent risk greatly increases the probability of a project being aban-
doned early, creating substantial value compared to the static policy
benchmark.

36 For another example of survival analysis in the context of patent valuation see
Barney [21].
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Fig. 7.11. Effect of patent risk on the CDF of total investment for successfully com-
pleted projects (C0 = 100, Imax = 10, ς = 0.5, Π0 = 20, σ = 0.35, α = 0.02, M = 5,
κ = 0.07, T = 20, ρ = −0.1, η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000).
Graphs shown reflect Kaplan–Meier estimates of the CDF. Compared to the case of
perfect patent protection (solid line), additional patent risk tends to lower the con-
ditional probability of completed projects being costly (λ ∈ {0.000, 0.025, 0.050}).
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Fig. 7.12. Effect of patent risk on abandonment (C0 = 100, Imax = 10, ς = 0.5,
Π0 = 20, σ = 0.35, α = 0.02, M = 5, κ = 0.07, T = 20, ρ = −0.1,
η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000). Probabilities of project
not having been abandoned at time t decrease significantly as patent risk rises
(λ ∈ {0.000, 0.025, 0.050}). Again, results are based on Kaplan–Meier estimates.
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Table 7.6. Comparative statics (cost parameters) for two-factor R&D valuation
(ς = 0.5, Π0 = 20, σ = 0.35, α = 0.02, M = 5, κ = 0.07, T = 20, ρ = −0.1,
η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000). Subcolumns on the left-hand
side represent absolute values, subcolumns on the right-hand side percentage changes
relative to the middle row.

(a) Expected cost to completion (Imax = 10)

Cost to completion (C0) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

80.00 34.91 26.38 17.02 7.04
90.00 22.64 16.51 −0.26 −9.27

100.00 14.12 9.42 −14.33 −22.67
110.00 7.66 4.44 −27.95 −35.10
120.00 3.41 1.28 −40.07 −45.84

(b) Investment rate (C0 = 100)

Investment rate (Imax) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

8.00 5.93 3.68 −27.58 −33.07
9.00 9.76 6.13 −21.01 −27.83

10.00 14.12 9.42 −14.33 −22.67
11.00 17.85 13.05 −8.94 −16.81
12.00 23.73 16.79 −1.09 −11.34

7.2.2.2.3 Variations and Extensions

More complicated jump-diffusion models can be implemented by a mod-
ification of the underlying processes themselves. Among the many speci-
fications possible, consider the comparably basic variant of deterministic
proportional jumps, or

dΠt = αΠt dt + σΠt dW Π
t − φΠt dJΠ

t ,

dCt = −It dt + ς
√

ItCt dW C
t + ϕCt dJC

t ,

where dJΠ
t and dJC

t are increments of Poisson processes with intensities
λ and κ, respectively. Intuitively, it makes sense to associate project-
related risk with upward jumps in the expected cost to completion,
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Table 7.7. Comparative statics (cash flow parameters) for two-factor R&D valua-
tion (C0 = 100, Imax = 10, ς = 0.5, σ = 0.35, α = 0.02, κ = 0.07, T = 20, ρ = −0.1,
η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000). Subcolumns on the left-hand
side represent absolute values, subcolumns on the right-hand side percentage changes
relative to the middle row.

(a) Cash flow rate (M = 5)

Cash flow rate (Π0) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

16.00 5.54 3.30 −27.15 −33.28
18.00 9.51 6.46 −20.25 −27.04
20.00 14.12 9.42 −14.33 −22.67
22.00 18.97 13.43 −8.65 −16.88
24.00 24.14 17.13 −2.50 −12.05

(b) Cash flow multiple (Π0 = 20)

Cash flow multiple (M) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

3.00 10.33 6.67 −20.05 −26.70
4.00 12.99 7.83 −16.75 −25.02
5.00 14.12 9.42 −14.33 −22.67
6.00 15.80 10.46 −11.89 −20.43
7.00 18.41 11.75 −8.70 −18.05

whereas patent-related risk corresponds to downward jumps in the cash
flow rate. For example, if ϕ = 1.0, project events cause the expected
cost to completion to double.

Figure 7.13 shows how simultaneous project-related and patent-
related risk affects patent value. Project events do not mean complete
failure; and a proportional increase in cost to completion has little im-
pact towards the end of the project. The opposite is true of patent
events, because the cash flow rate tends to increase over time. As a con-
sequence, patent value is less sensitive to changes in ϕ than to variations
in φ.

In order to determine suitable parameters for the modified model,
it obviously is no longer sufficient to simply estimate the percentage
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Table 7.8. Comparative statics (compounding and discounting parameters) for two-
factor R&D valuation (C0 = 100, Imax = 10, ς = 0.5, Π0 = 20, σ = 0.35, M = 5,
T = 20, ρ = −0.1, η = 0.036, Δt = 0.25, m = 100,000). Subcolumns on the left-
hand side represent absolute values, subcolumns on the right-hand side percentage
changes relative to the middle row.

(a) Cash flow drift (κ = 0.07 and r = 0.05)

Cash flow drift (Π0) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

0.00 4.00 2.42 −29.87 −35.92
0.01 7.87 5.28 −23.21 −29.56
0.02 14.12 9.42 −14.33 −22.67
0.03 21.59 14.82 −4.90 −14.82
0.04 31.07 22.30 6.47 −5.57

(b) Technological risk (α = 0.02 and r = 0.05)

Technological risk (κ) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

0.05 20.58 13.40 −2.91 −13.60
0.06 17.68 11.20 −9.12 −18.40
0.07 14.12 9.42 −14.33 −22.67
0.08 12.03 8.14 −18.91 −26.02
0.09 9.94 5.66 −23.72 −30.89

(c) Risk-free rate (α = 0.02 and κ = 0.07)

Risk-free rate (r) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

0.03 28.25 19.59 −1.93 −13.34
0.04 20.69 13.46 −8.56 −18.85
0.05 14.12 9.42 −14.33 −22.67
0.06 9.46 5.55 −18.60 −26.68
0.07 6.02 3.38 −22.27 −28.28
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Fig. 7.13. Impact of simultaneous project-related and patent-related risk (C0 = 100,
Imax = 10, ς = 0.5, Π0 = 20, σ = 0.35, α = 0.02, M = 5, T = 20, ρ = −0.1,
η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000). Randomness in Monte-Carlo
simulation leads to slight inaccuracy. Surfaces shown are based on a smoothing spline
interpolation fitted to an 11-by-11 grid.
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Table 7.9. Comparative statics (time to expiration) for two-factor R&D valuation
(C0 = 100, Imax = 10, ς = 0.5, Π0 = 20, σ = 0.35, α = 0.02, M = 5, κ = 0.07,
ρ = −0.1, η = 0.036, r = 0.05, Δt = 0.25, and m = 100,000). Subcolumns on the left-
hand side represent absolute values, subcolumns on the right-hand side percentage
changes relative to the middle row.

Time to expiration (T ) Dynamic value Static value

λ = 0.00 λ = 0.01 λ = 0.00 λ = 0.01

18.00 10.79 7.30 −19.19 −25.64
19.00 12.73 8.50 −16.01 −23.78
20.00 14.12 9.42 −14.33 −22.67
21.00 15.47 9.95 −12.79 −21.20
22.00 16.77 10.87 −10.69 −20.30

of projects successfully completed. The following chapter thus aims at
pointing out some of the issues to be addressed in practical applications.
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From Business Shifts to Jump Processes

This chapter serves to demonstrate the applicability of the models pre-
sented in real-world settings. In particular, the discussion will focus on
the relationship between advanced jump-diffusion models of R&D cov-
ered up to this point and the business shift approach to R&D valuation
described by Lint and Pennings [203].

Recall from sect. 7.1.1.1.1 that, if

dVt = αVt dt + σVt dWt − φVt dJt,

where J = {Jt}t≥0 is a Poisson process of intensity λ. The variance of
changes in commercialization payoff is

Var[dVt] = σ2V 2 dt + λφ2V 2
t dt.

Consequently, in terms of variance, σ2 and λφ2 are equivalent. This in-
sight motivates the pragmatic approach proposed by Lint and Pennings,
who replace σ by

√
λφ in the Black–Scholes equation for European op-

tions [268].
The dynamic value of a patent, modeled as a European call option

becomes
F (Vt, t) = VtN(d1) − Ie−r(T−t)N(d2),

where

d1 =
ln (Vt/I) +

(
r + 1

2λφ2
)
(T − t)√

λφ
√

T − t
,

d2 = d1 −
√

λφ
√

T − t.

Obviously, the resulting equation is primarily based on practical consid-
erations, ignoring the necessity to devise effective hedging strategies.
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Nevertheless, it may be used to obtain approximate option values.
Reliability is improved by embedding the formula into a comprehensive
assessment tool (see fig. 8.1).

Business plan

Technology

Budget

Project champion

(a) Concept

Business plan
Product

Technology

Sourcing
Budget

Team

Project champion

Marketing

(b) Technology
development

Business
plan

Manufacturing
Product

Technology

Financeability

Sourcing
Budget

Ownership

Team

Project champion

Sales
Marketing

(c) Market
development

Fig. 8.1. Business development graphs generated by the PAT (Source: Lint and
Pennings [203, p. 130]).

As shown in fig. 8.2, preliminary analyses carried out by Lint and
Pennings seem to indicate that each industry is characterized by a dis-
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tinct frequency and severity of value-relevant events. Similarly, impact-
arrival portfolios could be employed to assess the patent risk profile of
certain patent classes or even therapeutical areas. The formal models
described in previous chapters constitute a comprehensive toolkit for
translating such portfolios into optimal investment decisions.

φ

λ
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B

C

D

E

Fig. 8.2. Impact-arrival portfolio (Source: Lint and Pennings [203, p. 130]). Different
industries typically exhibit different risk profiles (A = pharmaceutical, B = financial,
C = multimedia, D = transport, and E = natural resources).
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Preliminary Conclusion

The aim of this part of the text was to develop a formal, option-based
framework for analyzing the impact of imperfect patent protection on
capital budgeting in pharmaceuticals and other research-intensive in-
dustries, treating patent risk as an exogenous parameter. Chapter 6
provided an overview of patent valuation under uncertainty. Develop-
ing a model in the spirit of Paddock et al [263], an FD approximation
of the free boundary was obtained, thereby clarifying the significance of
finite patent protection when determining value-maximizing policies.

A variety of single-stage, single-factor models in sect. 7.1 served to
introduce the notion of patent risk as jumps in the underlying process.
Taking advantage of recent developments in the valuation of options
under Lévy processes [60, 207, 249, 315] as well as advanced Monte Carlo
techniques [42, 46], variants of these models were shown to capture both
the frequency and severity of patent-related events.

Section 7.2 then offered more realistic two-stage, two-factor formal-
izations of patents and R&D, extending work by Schwartz [302] to allow
for additional flexibility. In contrast to presumptions underlying this
earlier analysis, the possibility to pause and later resume investment
was shown to be a significant value driver, regardless of finite patent
duration. The genetic algorithm employed represents, to the author’s
best knowledge, the first application of such optimization procedures to
multi-factor option valuation. In addition, the models presented, also
including the classic problem with time-to-build originally analyzed by
Majd and Pindyck [214], were extended to account for exogenous patent
risk.

Finally, chapter 8 added a more applied perspective, briefly hinting
at connections between advanced jump-diffusion models of R&D and
the business shift approach to R&D valuation [203, 268].
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In summary, the quality of capital budgeting decisions in research-
intensive industries is increased by employing comprehensive models,
encompassing not only market-related and project-related, but also
patent-related risk factors. Future research should therefore aim at de-
veloping an integrated, option-based view of imperfect patent protec-
tion.



Part III

Endogenous Patent Risk
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Introduction and Related Work

In previous analyses, patent risk appeared as an exogenous parameter.
In reality, the litigation is the result of value-maximizing behavior on
the part of potential challengers. Consequently, the discussion proceeds
by endogenizing patent risk, which, as will become clear, is best treated
as an option to litigate.

Generally speaking, the aim of this dicussion is to illucidate the
applicability of option pricing in the wider context of uncertain property
rights and flexible managerial decisions surrounding them.

Lemley [191] points out a noticeable degradation of patent exam-
ination quality at the USPTO in recent years. However, because the
vast majority of patents are of no appreciable business value, the incre-
mental cost associated with marginally improving patent examination
would not be justified by a substantial reduction in litigation costs.

In light of such serious deficiencies and heightened levels of competi-
tion, patenting has come to resemble the purchase of a lottery ticket, ad-
mittedly complicated by interdependencies between individual patents.
Lemley and Shapiro conclude:

“Under patent law, a patent is no guarantee of exclusion but
more precisely a legal right to try to exclude. . . . [M]ost patents
represent highly uncertain or probabilistic property rights. By
this we mean that patents are a mixture of a property right and
a lottery.” [192, p. 2]

Translating the vague notion of a lottery into a consistent valuation
approach, the author will demonstrate how patents can be described as
a mixture of a property right and a short option to litigate.

The analysis of patent risk as an endogenous parameter in option-
based models of intellectual property is still in its infancy. To the au-
thor’s best knowledge, the only detailed discussion of the option value



186 10 Introduction and Related Work

of litigation is due to Marco [219]. His paper, however, has a strong
empirical focus. Furthermore, the approach to formalizing patent risk
differs from the one adopted here. Aoki and Hu [9] discuss time fac-
tors of patent litigation and licensing in a deterministic setting, also
examining the role of settlement.

Roughly speaking, the discussion is structured as follows. The intu-
ition behind the formal model and some basic definitions are provided
in section 11.1, before section 11.2 lays out the details. Section 11.3
hints at a a number of variations and extensions of the original setup.
Section 12 concludes and contains suggestions for future research.
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Patent Risk as an Option to Litigate

Over the years, the literature on investment under uncertainty has seen
a variety of generic (real) options, covering investment as well as disin-
vestment decisions. Since litigation, in a way, represents an investment
with uncertain outcome, it seems natural to examine more closely the
option value of litigation and its impact on capital budgeting decisions.

11.1 Formalization

The incumbent innovator owns a patent expiring at time T allowing
him or her to commercialize some pharmaceutical product. Commer-
cialization is associated with some expected revenue, which fluctuates
randomly. This randomness is captured by specifying the revenue rate
as a stochastic process.

While a variety of specifications are possible, a common choice in line
with models discussed earlier is to let such variables evolve in analogy
to the standard stock price model [290]. As demonstrated previously,
abstracting from operating costs, the dynamics of the associated profit
rate or net cash flow Πt under the martingale measure P∗ are then
described by

dΠt = α∗Πt dt + σΠt dWt, 0 < Π0 = �, (11.1)

or, in integral notation,

Πt = Π0 +
∫ t

0
α∗Πs ds +

∫ t

0
σΠs dWs, (11.2)

where α∗ = α−η = r−δ is the risk-adjusted drift,1 σ the corresponding
volatility, that is standard deviation of returns, and W = {Wt}t≥0 is
1 See section 7.2.1.1.2 for a more thorough account of the risk premium η.
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one-dimensional Brownian motion. Following the risk-neutral pricing
approach [137, 138], (11.1) and (11.2) describe the profit rate process
in an equivalent risk-neutral world, making it possible to discount cash
flows at the risk-free rate.

Without further emphasis, risk-neutral pricing is adopted for the
rest of this analysis. While, in practice, profit rate and beta are difficult
to determine, similar shortcomings are shared by all capital budget-
ing techniques (see sect. 7.1.2.1). Whoever accepts the validity of the
CAPM will also accept the existence and uniqueness of the risk-neutral
measure P∗.

Another assumption worth pointing out is the non-negativity of net
cash flows resulting from (11.1). It seems restrictive at first, but is sensi-
ble in many practical applications, including, in particular, pharmaceu-
tical patents. Commercialization itself is almost always value-enhancing,
because the lion’s share of costs is incurred during R&D.

Due to the limited life of patents, however, cash flows will not con-
tinue indefinitely. The profit rate usually drops sharply upon expiration
of the patent. In this model, the patent is taken to have a terminal value
of MΠT , where M is some multiple. The fiercer competition by imita-
tors, or generics manufacturers, the lower M .

Let EP∗ [·] denote the expectation operator under the risk-neutral
measure. In the absence of additional costs, the value of the project to
the incumbent at time t, conditional on the information available to
him or her at that time, is then given by

VI(Πt, t) = EP∗

[∫ T

t
Πte−r(s−t) ds + MΠT e−r(T−t)

∣∣∣∣Ft

]
.

Note that, throughout this analysis and in line with the notation famil-
iar from previous sections, V is used to refer to the project, whereas F
signifies the option.

Following arguments laid out in detail in part II, the commercializa-
tion value must satisfy the PDE

1
2σ2Π2

t

∂2VI(Πt, t)
∂Π2

t

+ (r − δ) Πt
∂VI(Πt, t)

∂Πt

− rVI(Πt, t) + Πt +
∂VI(Πt, t)

∂t
= 0

with boundary condition

VI(ΠT , T ) = MΠT .
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Again ruling out speculative bubbles and assuming perfect patent pro-
tection, the complete solution to this problem can be derived as

VI(Πt, t) =
(
1 − e−δ(T−t)

)
Πt/δ + e−δ(T−t)MΠt. (11.3)

This formula corresponds to (6.62) plus a terminal value.
As discussed earlier and argued by Schwartz [301, 302], the associ-

ated process exhibits, in terms of risk premium and volatility, charac-
teristics identical to those of the underlying cash flow process. It is thus
possible to estimate η as well as σ from data on the drift and volatility
of comparable completed projects.2

Proposition 11. The dynamics of VI(Πt, t) under P observed in the
real world are described by

dVI(Πt, t) = (r + η) VI(Πt, t) dt + σVI(Πt, t) dWt,

where r + η = α + δ is the required total return on Πt according to the
CAPM.

This proposition is verified by applying Itô’s Lemma to (11.3) and
using

dΠt = αΠt dt + σΠt dWt,

which is just (11.3) under the true probability measure.3
Schwartz [302] also points out that the project value is linear in Πt

and independent of volatility. However, this conclusion hinges on the
absence of flexibility once the incumbent has committed to commercial-
ization. This not only means taking an un-realistic now-or-never view
of decision-making on the side of the incumbent. It also neglects the
effect of competitive action which is similarly contingent on how the
revenue rate develops over time.

In the context of patent risk, which is the main focus of this analysis,
it is important to note the profound impact a potential challenger has
on the incumbent’s optimal investment policy, as will be shown in more
detail below. In the spirit of the real options paradigm, patent risk can
thus be regarded as one of the many manifestation of optionality. As
option value is heavily influenced by volatility, the project turns out to
be sensitive to changes in this important parameter as well.
2 Since VI(Πt, t) represents the value of a completed project under perfect patent

protection, additional adjustments may become necessary in practice.
3 Careful analysis draws a slightly different picture. See section A.2 in the appendix

for details.
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The discussion now proceeds by formalizing the above intuition.
Based on the alleged infringement of a related patent, a challenger may
decide to litigate at any time τ ∈ [0, T ] and, if successful, receives a
damage award, equal to a fraction ζ ∈ [0, 1] of the value of past cash
flows, compounded to time τ .4 Furthermore, the successful challenger
may claim a fraction θ ∈ [0, 1] of future net cash flows. Due to improved
monitoring after litigation, this fraction may very well be higher than
the proportion of past net cash flows claimed.

If, on the one hand, the challenger is not willing or able to commer-
cialize the patent, the incumbent will continue to market the product
for the challenger as long as his or her participation constraint is ful-
filled. Abstracting from a possible super-game, some marginally small
profit is sufficient for this to be the case. Competition in other products
and the threat of various forms of opportunistic behavior, however, may
lead to concessions on the side of the challenger.

If the challenger, on the other hand, does not depend on the incum-
bent to market the product, θ becomes unity. Furthermore, the doctrine
of lashes prevents a patent holder from obtaining damages for a time
span during which he or she was aware of the alleged infringement, but
did not take action. Otherwise, the challenger would be well-advised
to wait for all market uncertainty to resolve, before taking the risk of
a costly patent dispute. While it might prove difficult to establish the
exact point in time at which the challenger took notice, the resulting
damages award, expressed as a proportion of past cash flows, should be
comparatively low.

Although, in principle, it might be interesting to examine the case
in which the challenger is active in the market from the outset and,
together with the incumbent, forms a duopoly, the challenger is assumed
to be idle at time t = 0. Such a variation of the model would lower the
challenger’s expected gain over the status quo and thereby also diminish
the incentive to litigate. Moreover, an alternative scenario with mutual
litigation is conceivable.

According to the so-called American rule, both parties have to pay
their lawyers out of their own pockets. For now, the American rule is
applied to calculate litigation costs incurred by the incumbent and the
challenger, which are denoted by LI and LC, respectively. In addition,
let p denote the probability of successful litigation. The expected payoff
from litigation becomes

4 For reasons of simplicity, litigation has to take place within the specified time-
frame and cannot be postponed beyond patent expiration.
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EP∗ [VC(Πτ , τ) − LC | Fτ ] =

p

(
ζ

(∫ τ

t
er(τ−s)Πs ds + 1{τ=T}MΠT

)
+ EP∗

[
θ

(∫ T

τ
e−r(s−τ)Πs ds

+1{τ<T}e−r(T−τ)MΠT

) ∣∣∣Fτ

])
− LC.

Given the information available at the time of litigation, cash flows are
known for all t ≤ τ . Cash flows beyond this point are still uncertain,
making it necessary to take expectation over all possible realizations.
Litigation costs are constant and known in advance.

The expected payoff is maximized by choosing an optimal litigation
time. At time t = 0, the option to litigate is worth

FC(�, 0) = sup
τ∈[0,T ]

EP∗
[
e−rτ

(
VC(Πτ , τ) − LC

)+]
= EP∗

[
e−rτ∗(

VC(Πτ∗ , τ∗) − LC

)+]
. (11.4)

All agents are assumed to follow a policy of value-maximization. Of
course, the optimal litigation time τ∗ cannot be specified in advance,
but is chosen by the challenger in response to the resolution of uncer-
tainty related to Πt over time. For this reason, the stopping time τ∗ is
stochastic and can be described as the first time Πt exceeds a critical
level Π∗

t ,
τ∗ = inf{t : Π∗

t < Πt},

which is sufficiently high to justify the cost of litigation. If litigation has
not become optimal by the time the patent expires, no action is taken.
Intuitively, the value of the project to the incumbent, including patent
risk, becomes

ṼI(�, 0) = EP∗
[(

1 − e−δT
)

�/δ + MΠT e−δT
]

− FC(�, 0) − EP∗
[
1{τ∗≤T}e−rτ∗

(LI + LC)
]
, (11.5)

that is the expected present value of cash flows from commercialization,
less the option value of litigation, less the present value of additional
litigation costs. In option terms, the incumbent is long the commercial-
ization project and short an option to litigate. This important result
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is valid beyond the scope of this model and applies to any uncertain
property right. For this reason, detailed discussion is deferred to a later
chapter.

11.2 Analysis

Procedures employed to derive optimal policies are familiar from part II.
Again, the deterministic and the stochastic case are examined in turn.

11.2.1 Deterministic Payoff

As a benchmark, this subsection considers optimal litigation under cer-
tainty. In contrast to the stochastic case, an optimal litigation time τ∗
is straightforward to determine.

11.2.1.1 Finite Protection Period

Since deriving closed-form solutions in the presence of a finite patent
protection period poses no difficulties under certainty, the analysis will
focus on the more general model, before examining the limiting case of
infinite patent duration.

11.2.1.1.1 Analytical Derivation

With σ = 0, (11.2) reduces to

Πt = � +
∫ t

0
α ds,

which implies Πt = eαt�. Assuming intense competition after patent
expiration, there will be no revenue for all t > T , which implies M = 0.
Further assuming 0 < α < r [91, p. 138], the discounted payoff from
litigation at some future time τ becomes

e−rτ
(
VC(�, τ) − LC

)
= p

(
ζ

∫ τ

0
e−(r−α)t� dt

+θ

∫ T

τ
e−(r−α)t� dt

)
− e−rτLC

= p

(
ζ
(
1 − e−(r−α)τ

)
+θ
(
e−(r−α)τ − e−(r−α)T

)) �

r − α
− e−rτLC.

(11.6)
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The Marshallian rule commonly used in practice neglects timing is-
sues altogether and simply requires positive net present value, or
0 < VC(�, 0)−LC. If, in addition, the value of waiting is accounted for,
one obtains a critical revenue rate �∗ that triggers litigation, provided
there is a positive expected payoff. This view leads to the following
proposition for the deterministic case.

Proposition 12 (Deterministic trigger). A critical cash flow rate
�∗, above which immediate litigation becomes optimal, exists if and only
if ζ < θ, and it is given by

�∗ =
LCr

p (θ − ζ)
. (11.7)

Proof (Proposition 12). Consider the optimization problem

FC(�, 0) = max
τ∈[0,T ]

(
GC(�, 0)

)+
,

where
GC(�, 0) = e−rτ

(
VC(�, τ) − LC

)
. (11.8)

A necessary condition for a maximum is

∂GC(�, 0)
∂τ

∣∣∣∣
τ=τ∗

= e−rτ∗(
LCr − p (θ − ζ) eατ∗

�
)

= 0.

The optimal policy depends on the ratio ζ/θ. If θ ≤ ζ, that is the
successful challenger receives a larger proportion of past than of future
cash flows, (11.8) is strictly increasing in τ , there is no interior solution,
and it is optimal to postpone litigation as long as possible. Recall that,
by assumption, 0 < α < r. Provided ζ < θ, (11.7) holds, and

τ∗ =

⎧⎪⎨⎪⎩
0 if �∗ < �,
1
α ln LCr

p(θ−ζ)� if e−αT �∗ < � ≤ �∗,
T otherwise.

(11.9)

It is easily verified that the sufficient condition is always fulfilled, be-
cause

∂2GC(�, 0)
∂τ2

∣∣∣∣
τ=τ∗

= −LCrα

(
p (θ − ζ)�

LCr

)r/α

< 0.

For the critical cash flow rate τ∗ = 0, so that, by (11.9), the determin-
istic trigger is in fact given by (11.7).
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The lower the probability of success, the longer the optimal time to
litigation. Increases in the fraction LCr/

(
p (θ − ζ)�

)
make postponing

litigation more attractive. This result corresponds to the Jorgensonian
investment rule,

p (θ − ζ)�∗ = LCr,

which triggers investment when the marginal revenue product equals
the user cost of capital [160]. This rule applies regardless of patent
duration.

Corollary 5 (Independence of patent length). The deterministic
trigger �∗ is independent of patent length.

Proof (Corollary 5). Corollary 5 follows from proposition 12.

Nevertheless, patent duration does have an impact on whether it will
be ever optimal to litigate at all, because optimal timing alone does not
automatically lead to a positive payoff. Substituting (11.9) into (11.6)
yields

FC(�, 0) =
(

pζ
(
1 − e−(r−α)T

) �

r − α
− e−rT LC

)+

,

if � < e−αT �∗, that is litigation takes place at the end of the protection
period (τ∗ = T ). Immediate litigation (τ∗ = 0) is optimal if �∗ < �,
and

FC(�, 0) =
(

pθ
(
1 − e−(r−α)T

) �

r − α
− LC

)+

.

For any profit rate that does not exceed the critical level, but is greater
than e−αT �∗, there is an interior solution to the optimization problem
(0 < τ∗ < T ), and

FC(�, 0) =
(

p
(
ζ − θe−(r−α)T

) �

r − α

+
LCα

r − α

(
p (θ − ζ)�

LCr

)r/α
)+

. (11.10)

Intuitively, (11.10) decomposes the option value of litigation into two
perpetuities and an option (see fig. 11.1). The latter is quite similar to
the contingent claim of proposition 3. This observation comes in handy
also under uncertainty (see sect. 11.2.2).

One implication of the above analysis is that, in the absence of sub-
stantial litigation costs, immediate legal action always maximizes the
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t 0 τ T ∞

+pζΠt • •

−pθΠt • •

+p (θ − ζ) Πt • •

Total pζΠt pθΠt 0

Fig. 11.1. Decomposing the payoff from litigation. Total payoff from litigation can
be decomposed into two perpetuities and one option, creating two closed and one
open interval with distinct profit rates. While T is pre-specified, the stopping time
τ is chosen to maximize litigation payoff.

expected payoff from litigation. If litigation costs are comparatively
high, however, challengers who, on the one hand, are likely to experi-
ence difficulties in claiming the full amount of their damage in court,
but, on the other hand, will probably be able to negotiate participation
in future cash flows benefit from immediate litigation. Firms that aim at
being compensated in full and cannot participate in future increases of
commercial value should postpone litigation. Since, in reality, litigation
costs are usually substantial, optimal timing becomes essential. Opti-
mal timing is determined by the ratio ζ/θ capturing a firm’s relative
ability to participate in past and future profits.

11.2.1.1.2 Numerical Illustration

The impact of this ratio is illustrated by fig. 11.2, which shows the
discounted expected payoff from litigation as a function of litigation
time for p = 0.5, � = 1.0, r = δ = 0.05, α = 0.1, θ = 1.0, T = 20.0,
and LC = 10.0. Simply inserting these parameters and ζ ∈ {0.0, 0.5, 1.0}
into (11.7) yields the thresholds
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�∗
1 =

10.0 × 0.05
0.5 (1.0 − 0.0)

= 1.0,

�∗
2 =

10.0 × 0.05
0.5 (1.0 − 0.5)

= 2.0.

Furthermore,

lim
ζ→1.0

10.0 × 0.05
0.5 (1.0 − ζ)

= ∞.

Setting ζ = 0.0 or ζ = 1.0 thus produces the limiting cases of immediate
litigation and litigation at the end of the protection period. An interior
solution exists only for ζ = ζ/θ = 0.5, namely

τ∗ =
1

0.1
ln

2.0
1.0

= 6.93.

τ

e−
r
τ
( V

C
(�

,τ
)
−

L
C

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−2.5

0.0

+2.5

+5.0

+7.5

+10.0

+12.5

Fig. 11.2. Discounted expected payoff from litigation as a function of litigation
time (p = 0.5, � = 1.0, r = δ = 0.05, α = 0.1, θ = 1.0, T = 20.0, and LC = 10.0).
If ζ = ζ/θ = 0.0, immediate litigation is optimal (solid line); if ζ = ζ/θ = 1.0,
postponing litigation to the end of the protection period is the value-maximizing
strategy (long dashes). For ζ = ζ/θ = 0.5, the rational investor will litigate at time
τ = 6.93 (short dashes and vertical line).

11.2.1.2 Infinite Protection Period

At this point, an additional simplifying assumptions is introduced,
which makes it possible to separate the effects of patent expiration and
patent litigation, namely that the protection period T is infinite. This



11.2 Analysis 197

assumption also greatly facilitates the derivation of closed-form solu-
tions for the stochastic case, analyzed in section 11.2.2. Equation (11.4)
becomes

FC(Πt) = max
τ∈[t,∞)

p
(
ζ + e−(r−α)(τ−t) (θ − ζ)

) Πt

r − α
− e−r(τ−t)LC

= p
(
ζ + e−(r−α)(τ∗−t) (θ − ζ)

) Πt

r − α
− e−r(τ∗−t)LC.

By corollary 5, the trigger deduced previously applies regardless of
patent length and thus continues to hold if the protection period is
infinite. In addition,

ṼI(Πt) =
Πt

r − α
− FC(Πt) − e−r(τ∗−t) (LI + LC) . (11.11)

For example, immediate litigation of a perpetual patent implies

FC(Πt) = VC(Πt) − LC = pθ
Πt

r − α
− LC

and thus

ṼI(Πt) =
Πt

r − α
−
(

pθ
Πt

r − α
− LC

)
− (LI + LC)

= (1 − pθ)
Πt

r − α
− LI.

If litigation is successful, there is no damage award, simply a participa-
tion in future cash flows from commercialization.

Previous discussions served to highlight timing flexibility in patent
litigation under certainty, that is for the special case σ = 0. Under cer-
tainty, the value of waiting is solely driven by the ratio ζ/θ. As this
ratio increases, so does the critical cash flow rate. Nevertheless, this
view neglects the impact of σ, which is another important value driver.
Therefore, in the following section, the effect of uncertainty on the lit-
igation decision will be considered. The case of an infinite protection
period under certainty is not examined further, because it obviously
represents a limiting case of the stochastic model and is more or less
analogous to the analyses carried out in section 6.2.1.1.
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11.2.2 Stochastic Payoff

With the option value of litigation under certainty established, it is
now possible to extend the model to a stochastic setting. The option
value of litigation interacts with the option value of investing into R&D.
Proceeding backwards in time, a sequential stochastic game for patent
valuation will be developed.

11.2.2.1 Option to Litigate

The first step involves determining the payoff from commercialization,
accounting for the short option to litigate held by a potential challenger.

Recall from section 11.1 that, under uncertainty,

dΠt = α∗Πt dt + σΠt dWt, Π0 = �,

and, by assumption, 0 < α∗ < r. The simplified optimization problem
with no terminal value becomes

FC(Πt) = sup
τ∈[t,∞)

EP∗

[
p

(
ζ

∫ τ

t
e−r(s−t)Πs ds

+θ

∫ ∞

τ
e−r(s−t)Πs ds

)
− e−r(τ−t)LC

]
. (11.12)

It looks challenging at first glance, but decomposes into tractable parts
just like the deterministic model. Equation (11.12) can be re-written as

FC(Πt) = sup
τ∈[t,∞)

EP∗

[
−p (θ − ζ)

∫ τ

t
e−r(s−t)Πs ds − e−r(τ−t)LC

]
+ EP∗

[
pθ

∫ ∞

t
e−r(s−t)Πs ds

]
(11.13)

and

EP∗

[
pθ

∫ ∞

t
e−r(s−t)Πs ds

]
= pθ

∫ ∞

0
e−(r−α∗)(s−t)Πt ds

=
pθΠt

r − α∗ .

The second term in (11.13) is thus independent of τ and can be neglected
in determining an optimal stopping time.
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Proposition 13. Assuming ζ < θ, the option value of litigation is

FC(Πt) =

{
pθΠt/δ − LC if Π∗ < Πt,

A+Πγ+

t + pζΠt/δ otherwise,
(11.14)

where
Π∗ =

γ+

γ+ − 1
LCδ

p (θ − ζ)
(11.15)

denotes the critical cash flow rate,

A+ =
LC

γ+ − 1

(
1

Π∗

)γ+

=
(

p (θ − ζ)
γ+δ

)γ+ (
γ+ − 1

LC

)γ+−1

,

and

γ+ = 1
2 − r − δ

σ2
+

√(
r − δ

σ2
− 1

2

)2

+ 2
r

σ2
.

Proof (Proposition 13). For convenience, define

ΨC(Πt) = sup
τ∈[t,∞)

EP∗

[
−p (θ − ζ)

∫ τ

t
e−r(s−t)Πs ds

− e−r(τ−t)LC

∣∣∣∣Ft

]
. (11.16)

Under the abovementioned assumption that the risk in Πt can be
spanned by existing assets (see sect. 6.2.2), it is possible to construct
a risk-free portfolio consisting of one unit of the claim ΨC(Πt) and a
short position of n units of Πt. This feat is accomplished by choosing an
appropriate quantity n. Economically speaking, the claim ΨC(Πt) rep-
resents an abandonment (put) option on a project yielding a profit rate
of −p (θ − ζ)Πt. Nevertheless, the valuation procedure does not differ
significantly from the approach adopted in previous chapters. Holding
the portfolio yields a “dividend” of −(p (θ − ζ) + nδ

)
Πt dt. Expanding

dΨC(Πt) using Itô’s Lemma gives the “capital gain” on the portfolio,
which is

dΨC(Πt) − n dΠt =

(
αΠt

(
∂ΨC(Πt)

∂Πt
− n

)

+1
2σ2Π2

t

∂2ΨC(Πt)
∂Π2

t

)
dt + σΠt

(
∂ΨC(Πt)

∂Πt
− n

)
dWt.
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For the portfolio to be risk-free, set n = ∂ΨC(Πt)/∂Πt and assume
continuous rebalancing. Total return equals the risk-free return:(

1
2σ2Π2

t

∂2ΨC(Πt)
∂Π2

t

− p (θ − ζ)Πt − ∂ΨC(Πt)
∂Πt

δΠt

)
dt =

r

(
ΨC(Πt) − ∂ΨC(Πt)

∂Πt
Πt

)
dt

or

1
2σ2Π2

t

∂2ΨC(Πt)
∂Π2

t

+ (r − δ) Πt
∂ΨC(Πt)

∂Πt

− rΨC(Πt) − p (θ − ζ)Πt = 0.

A general solution, which holds in the continuation region, is

ΨC(Πt) = A+Πγ+

t + A−Πγ−
t − p (θ − ζ)Πt

r − α∗ ,

where the roots of the characteristic equation {γ+, γ−} are those derived
in section 6.2.2. Given that α∗ = r − δ,

γ± = 1
2 − α∗

σ2
±
√(

α∗

σ2
− 1

2

)2

+ 2
r

σ2
.

The constants A+ and A− are to be determined. Setting A− = 0 ensures
that ΨC(Πt) is bounded near Πt = 0. Since the option grants the holder
the right to exchange uncertain negative profits for a negative cash flow
known with certainty, it should be worthless for small Πt.

In the stopping region, immediate exercise is optimal and ΨC(Πt) =
−LC. Hence,

ΨC(Πt) =

{
−LC if Π∗ < Πt,

A+Πγ+

t − p(θ−ζ)Πt

r−α∗ otherwise.
(11.17)

Imposing C1-continuity at Πt = Π∗ as usual leads to

A+(Π∗)γ
+ − p (θ − ζ)Πt

r − α∗ = −LC (11.18a)

and

γ+A+(Π∗)γ
+−1 − p (θ − ζ)

r − α∗ = 0. (11.18b)
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These equations are the value-matching and smooth-pasting conditions,
respectively. Solving (11.18b) for A+, substituting the result in (11.18a)
and subsequently solving for Π∗ leads to

Π∗ =
γ+

γ+ − 1
LC (r − α∗)
p (θ − ζ)

(11.19)

⇔ p (θ − ζ)Π∗

r − α∗ =
γ+

γ+ − 1
LC

and

A+ =
1

γ+

p (θ − ζ) (Π∗)1−γ+

r − α∗ . (11.20)

Since α∗ < r (by assumption) and 1 < γ+, Π∗ will take positive val-
ues if and only if ζ < θ. Since Πt = 0 is an absorbing barrier, litigation
will never be optimal otherwise.

Summing up, provided ζ < θ, by (11.13), (11.16), and (11.17), the
option value of litigation is given by (11.14).

As expected (11.15) is analogous to the deterministic case from
(11.7), but, in addition, includes the well-known “option value multi-
ple” γ+/ (γ+ − 1). It is increasing in σ, which implies a higher value of
waiting for higher levels of uncertainty. Also note that, compared to the
Jorgensonian rule, r − α∗ replaces r. As volatility approaches zero, the
stochastic trigger converges to the deterministic trigger (see sect. 6.2.2):

lim
σ→0

γ+

γ+ − 1
LC (r − α∗)

p (θ − ζ)
=

LCr

p (θ − ζ)
.

Convergence is demonstrated by fig. 11.3.
Litigation will be postponed as long as possible if θ ≤ ζ and

FC(Πt) =
pζΠt

r − α∗ .

The latter result obviously fundamentally relies on the assumption of
infinite patent protection and is thus primarily of theoretical relevance.

If the revenue rate lies above the critical level, that is immediate lit-
igation is optimal, the option value equals the expected share of future
revenues, less litigation costs. Below the critical level, the option value
has two components. One component is the expected payoff from litiga-
tion under the assumption of indefinite postponement. Continuation in
this setting implies that the holder of the option acquires an (expected)
claim on past cash flows. The other component is the value of flexibility.
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Πt

Δ
F

C
(Π

t)
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Fig. 11.3. Impact of uncertainty on the option value of litigation (p = 0.5, r = 0.05,
α = r − δ = 0.01, θ = 1.0, ζ = 0.5, and LC = 10.0). As volatility decreases
(σ ∈ {0.1, 0.2, 0.3}), option values converge to the deterministic solution.

Under the condition that the initial revenue rate is sufficiently high,
the option holder will litigate and give up this flexibility in exchange
for immediate benefits.

The net payoff from commercialization corresponds to the value a ra-
tional investor would attribute to a patent if he or she were to enter the
relevant market immediately. As outlined previously, it equals the net
present value of expected profits, less the option value of litigation, less
the expected value of additional litigation costs. The latter component
deserves more detailed analysis.

With the option value of litigation known, determining the gross pay-
off from commercialization to the incumbent under patent risk ṼI(Πt)
seems straightforward. However, one has to account for the fact that
the cost of litigation for the incumbent and the challenger might dif-
fer, that is LI �= LC. It is therefore insufficient to simply subtract the
“short position.” Finding the appropriate discount rate for the correc-
tion introduced in (11.5), however, is non-trivial, because the occurrence
of litigation is random. Consequently, one needs to form expectations
about the “first hitting time” τ∗.5

Theorem 2. If Π∗ ≥ Πt is a fixed upper threshold, and τ∗ ≥ t is the
first hitting time,

EP∗
[
e−r(τ∗−t)

∣∣∣Ft

]
=
(

Πt

Π∗

)γ+

. (11.21)

5 For details see Dixit and Pindyck [91, pp. 315–316], Dixit et al [92], Harrison [139,
p. 42], Karlin and Taylor [164, p. 362].
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The proof presented here is based on the dynamic-programming ap-
proach outlined in the appendix (see sect. A.1).

Proof (Theorem 2). The discount rate is a function of Πt. Set

G(Πt, t) = EP∗
[
e−r(τ∗−t)

∣∣∣Ft

]
.

If Δt is sufficiently small, the threshold will not be crossed during the
next time interval. The Bellmann equation thus becomes

G(Πt, t) =
1

1 + rΔt
EP∗ [G(Πt + ΔΠt, t + Δt) | Ft] .

Proceeding in analogy to section A.1, that is multiplying by 1 + rΔt,
dividing by Δt, letting it go to zero, and expanding the right-hand side
using Itô’s Lemma, one obtains

rG(Πt) = EP∗ [dG(Πt) | Ft]

= (r − δ) Πt
dG(Πt)

dΠt
+ 1

2σ2Π2
t

d2G(Πt)
dΠ2

t

.

As usual, a general solution to this differential equation is

G(Πt) = A+Πγ+

t + A−Πγ−
t .

If Πt = Π∗, the expected time until the process first crosses the thresh-
old is zero, so that G(Π∗) = 1. Conversely, if Πt = 0, the process will
never cross the boundary, which implies G(0) = 0. From these boundary
conditions it is possible to deduce A− = 0 and A+(Π∗)γ+

= 1, resulting
in

G(Πt) =
(

Πt

Π∗

)γ+

,

which concludes the proof.

Similarities between (11.21) and the option pricing formula of propo-
sition 13 are no coincidence. As outlined in the appendix, patent value
under uncertainty can also be derived based on the first hitting time
(see sect. A.1.2).

Theorem 2 holds in the continuation region of the litigation option.
Immediate litigation obviously implies τ∗ = 0. Therefore, the following
proposition can be derived.
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Proposition 14. The gross payoff from commercializing in the pres-
ence of imperfect patent protection is

ṼI(Πt) =

{
(1 − pθ)Πt/δ − LI if Π∗ < Πt,

(1 − pζ)Πt/δ − B+Πγ+

t otherwise,

where

Π∗ =
γ+

γ+ − 1
LCδ

p (θ − ζ)
.

is the critical profit rate, and

B+ =
(

LI +
γ+

γ+ − 1
LC

)(
1

Π∗

)γ+

.

Proof (Proposition 14). Since litigation risk hinges on the ratio ζ/θ, it
becomes necessary to distinguish the cases ζ < θ and θ ≤ ζ.

Case 1 (ζ < θ). On the one hand, provided that ζ < θ and Πt is in the
continuation region, combining (11.11) and proposition 13 yields

ṼI(Πt) = Πt/δ − FC(Πt) − EP∗
[
e−r(τ∗−t) (LI + LC)

]
= Πt/δ −

(
LC

γ+ − 1

(
Πt

Π∗

)γ+

+ pζΠt/δ

)
− EP∗

[
e−r(τ∗−t)

]
(LI + LC)

= (1 − pζ)Πt/δ − LC

γ+ − 1

(
Πt

Π∗

)γ+

− (LI + LC)
(

Πt

Π∗

)γ+

= (1 − pζ)Πt/δ −
(

LI +
γ+

γ+ − 1
LC

)(
Πt

Π∗

)γ+

.

If the cash flow rate exceeds the critical level, the challenger will litigate
immediately, resulting in litigation costs of LI. With probability p, the
challenger is successful and obtains a fraction of future profits, namely
θΠt/δ. The gross present value of cash flows from commercialization
thus becomes

ṼI(Πt) = Πt/δ − (pθΠt/δ − LC) − (LI + LC)
= (1 − pθ)Πt/δ − LI.
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Case 2 (θ ≤ ζ). If, on the other hand, θ ≤ ζ one obtains

ṼI(Πt) = (1 − pζ)Πt/δ. (11.22)

The cost of litigation, which takes place in the very distant future, be-
comes negligible in present-value terms.

Intuitively speaking, gross payoff equals the value of the project if
the challenger were to litigate immediately, plus the value of waiting,
less the expected present value of litigation costs.6

Figure 11.4 shows ṼI as a function of Πt. Interestingly, rising profit
rates under imperfect patent protection may result in declining patent
value. This seemingly counter-intuitive result is due to litigation risk,
which—under certain conditions—may over-compensate the positive ef-
fects of heightened profitability. The adverse effects of patent risk are
particularly pronounced if the challenger’s litigation costs are small com-
pared to those incurred by the incumbent.

Since the payoff from commercialization includes a short position, it
may also turn out to be negative.

11.2.2.2 Option to Commercialize

The analysis can be carried one step further by examining the option
to invest held by the incumbent who owns the patent, but has not
yet commenced commercialization. This view implies that a patent is
properly valued by pricing a (compound) call on a portfolio consisting
of a project and a short option to litigate.

11.2.2.2.1 Analytical Derivation

The extended decision problem is a sequential game in continuous time.
Its discrete-time equivalent is depicted in fig. 11.5.

Proposition 14 gives the value of commercialization under litigation
risk. The value of the patent is the result of the nested optimization
problem

F̃I(Πt) = sup
τ∈[t,∞)

EP∗
[
e−r(τ−t)

(
ṼI(Πτ ) − I

)]
= EP∗

[
e−r(τ∗∗−t)

(
ṼI(Πτ∗∗) − I

)]
,

6 While this intuition served as the starting point for the proof just presented, the
appendix offers an alternative derivation of proposition 14, based on the expected
first hitting time (see sect. A.4).
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Fig. 11.4. Gross payoff from commercialization under endogenous patent risk when
the protection period is infinite (σ = 0.1, r = δ = 0.05, ζ = 0.1, and θ = 0.5).
Panel (a) shows ṼI(Πt) for p = 0.5. Assuming LC = 10, an increase in the incum-
bent’s litigation cost LI from 10 to 20 results in a downward shift of the correspond-
ing graph, but does not affect the trigger (long dashes). In contrast, holding the
incumbent’s litigation cost constant at LI = 10, an increase in the challenger’s lit-
igation cost LC from 10 to 12 leads to a higher investment threshold Π∗ (vertical
lines), but, for obvious reason, has no influence on ṼI(Πt) in the stopping region
(short dashes). Panel (b) illustrates the impact of patent quality, measured by the
probability of litigation success p, on ṼI(Πt). As p decreases, higher profit rates are
required to trigger litigation; and ṼI(Πt) eventually equals VI(Πt) (LI = LC = 10
and p = {0.4, 0.5, 0.6}).
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Fig. 11.5. Sequential game for patent valuation. At each node in {I1, I2, I3, . . . } the
incumbent decides whether to commercialize the patent (c) or wait an additional
period (w). Once the incumbent has decided to commercialize, the challenger faces
a similar sequence of choices {L1, L2, L3, . . . }. At each node he or she may either
litigate (l) or postpone litigation to a later point in time (w). In the event of litigation,
nature determines the outcome at {N1, N2, N3, . . . }. The sub-tree starting at L1

corresponds to the litigation option discussed in the previous subsection.
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where I denotes the up-front investment required to commercialize the
patent.

Due to the non-linear payoff function, deriving specific patent value
requires careful analysis. Among other parameters, the ratio ζ/θ plays
a key role.

Consider the case θ ≤ ζ. As shown previously, litigation will be
postponed as long as possible, and the underlying becomes linear in Πt.
Option exercise is only optimal above some threshold Π∗∗, making the
claim quite similar to the type of real call option discussed earlier:

F̃I(Πt, t) =

{
ṼI(Πτ ) − I if Π∗∗ < Πt,

C+Πγ+
t otherwise,

Substituting (11.22) one obtains the value-matching and smooth-pasting
conditions

C+(Π∗∗)γ
+

= (1 − pζ)Π∗∗/δ − I,

γ+C+(Π∗∗)γ
+−1 = (1 − pζ) /δ.

Consequently,

C+ =
1

γ+
(1 − pζ) (Π∗∗)1−γ+

/δ

=
I

γ+ − 1

(
1

Π∗∗

)γ+

,

where
Π∗∗ =

γ+

γ+ − 1
Iδ

1 − pζ
.

These equations correspond to (11.19) and (11.20), respectively. In sum-
mary, the dynamic value of a patent under imperfect patent protection
is

F̃I(Πt) =

{
(1 − pζ)Πt/δ − I if Π∗∗ < Πt,

I
γ+−1

(
Πt
Π∗∗
)γ+

otherwise.

For obvious reasons, patent value does not dependent on θ. Patent value
is almost completely analogous to the case of perfect patent protection,
with the noteworthy exception of an expected payment to the challenger
litigating in the very distant future.

Consider now the case ζ < θ. If Πt is very large, both options will
end up in their respective stopping regions, so that
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F̃I(Πt) = (1 − pθ)Πt/δ − LI − I.

The incumbent commercializes, followed by immediate litigation. Nev-
ertheless, the option value will proof to be more complicated to deter-
mine for a wide range of moderate cash flow rates. In order to provide a
more comprehensive picture under various assumptions, especially with
respect to patent duration, further analysis are best carried out numer-
ically.

11.2.2.2.2 Numerical Illustration

In the following, a numerical method for determining patent value under
litigation risk is described. Taking advantage of a decomposition similar
to the one depicted in fig. 11.1 and the pricing approach for profit-level
models discussed in the appendix (see chap. B.1.1), it also captures the
effect of a finite protection period.

In order to improve accuracy, not a standard Cox–Ross–Rubinstein
(CRR) tree like the one employed in chapter 7, but the log-transformed
variant proposed by Trigeorgis is constructed.7 Based on Itô’s Lemma,
the discrete-time equivalent of the profit rate process under the risk-
neutral measure is

Πt+Δt = Πt exp
((

r − δ − 1
2σ2
)
Δt + σΔWt

)
.

Furthermore, consider the transformation Xt ≡ ln (Πt) and u ≡ σ2t
[328, p. 321], so that X = {Xu}u≥0 becomes ABM, and time is ex-
pressed “in units of variance.” Assuming the protection period is divided
into intervals of equal length Δt ≡ T/n, this choice implies Δu ≡ σ2Δt.
Over each interval, Xi,j ≡ XiΔX,jΔu increases by

ΔX = ln
(

Πt+Δt

Πt

)
=
(
r − δ − 1

2σ2
)
Δt + σΔWt

or decreases by the same amount. The probability of an upward move-
ment is q. Figure 11.6 shows the binomial tree representing this discrete-
time process.

Parameters are chosen to mirror continuous-time dynamics. Set μ ≡
(r − δ) /σ2 − 1

2 .8 Hence,
7 For a more detailed account see Trigeorgis [327], Trigeorgis [328, pp. 320–322].

For an extension to multi-variate processes see Gamba and Trigeorgis [112].
8 Deviating from the notation of previous chapters, μ here does not signify the

required rate of return.
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Fig. 11.6. Log-transformed binomial tree for the numerical valuation of patents
under endogenous litigation risk.

E[ΔX] = μΔu

= qΔX − (1 − q)ΔX

= 2qΔX − ΔX

and

Var[ΔX] = Δu

= E
[
ΔX2

]− (E[ΔX])2

= ΔX2 − (E[ΔX])2 .

Solving for the risk-neutral probability leads to

q = 1
2

(
1 + μ

Δu

ΔX

)
,

where
ΔX =

√
Δu + (μΔu)2.

Note that the procedure is unconditionally stable [328, p. 322].
Recall from (11.13) that the option to litigate decomposes into a call

option and a perpetuity. However, in order to solve the optimization
problem, it becomes necessary to choose a slightly different decomposi-
tion, namely

FC(Πt, t) = EP∗

[
pζ

∫ T

t
e−r(s−t)Πs ds

∣∣∣∣Ft

]
+ ΨC(Πt, t), (11.24)
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where

ΨC(Πt, t) = sup
τ∈[t,T ]

EP∗

[
p (θ − ζ)

∫ T

τ
e−r(s−t)Πs ds − e−r(τ−t)LC

∣∣∣∣Ft

]
= EP∗

[
p (θ − ζ)

∫ T

τ∗
e−r(s−t)Πs ds − e−r(τ∗−t)LC

∣∣∣∣Ft

]
.

The stopping times derived lead to the gross present value of commer-
cialization under patent risk, which is

VI(Πt, t) = EP∗

[
(1 − pζ)

∫ τ∗

t
e−r(s−t)Πs ds

−e−r(τ∗−t)LI + (1 − pθ)
∫ T

τ∗
e−r(s−t)Πs ds

∣∣∣∣Ft

]
or, after rearranging,

VI(Πt, t) = EP∗

[
(1 − pζ)

∫ T

t
e−r(s−t)Πs ds

∣∣∣∣Ft

]
+ Ψ̃I(Πt, t), (11.25)

where

Ψ̃I(Πt, t) = EP∗

[
−p (θ − ζ)

∫ T

τ∗
e−r(s−t)Πs ds − e−r(τ∗−t)LI

∣∣∣∣Ft

]
.

For implementation purposes, the algorithm has to be translated into
discrete-time formulae.

Employing the log-transformed model described above, a profit rate
tree is constructed. Once the value of the underlying has been deter-
mined at each node, it is not difficult to calculate the present value of
cash flows. Starting at the leaves of the tree, one obtains

Vi,n = Πi,nΔt.

For all previous periods, the expected present value of cash flows is

Vi,j = Πi,jΔt + e−rΔt (qΠi+1,j+1 + (1 − q)Πi−1,j+1) .

Standard dynamic programming techniques lead to the flexible compo-
nent of option value, namely

ΨC(Πi,n, nΔt) = max {p(θ − ζ)Vi,j − LC, 0}

and
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ΨC(Πi,j, jΔt) = max
{

p(θ − ζ)Vi,j − LC,

e−rΔt
(
qΨC (Πi+1,j+1, (j + 1) Δt)

+ (1 − q) ΨC (Πi−1,j+1, (j + 1) Δt)
)}

.

The resulting policy is then used to arrive at the corresponding compo-
nent of project value. At the end of the protection period,

Ψ̃I(Πi,n, nΔt) =

{
−p(θ − ζ)Vi,n − LI if Π∗ < Πi,n,

0 otherwise.

For all previous nodes, if option exercise is optimal (Π∗ < Πi,j),

Ψ̃I(Πi,j, jΔt) = −p(θ − ζ)Vi,j − LI.

If continuation is optimal (Πi,j ≤ Π∗),

Ψ̃I(Πi,j, jΔt) = e−rΔt
(
qΨI (Πi+1,j+1, (j + 1)Δt)

+ (1 − q) ΨI (Πi−1,j+1, (j + 1) Δt)
)
.

Using (11.24) and (11.25), one obtains the option value of litigation as
well as the gross payoff from commercialization.

For example, consider the illustrative example shown in table 11.1,
where Δt = T/n = 20.0/2 = 10.0. Assuming an initial profit rate of
Π0 = 1.00, cash flow volatility of σ = 0.1, r = δ = 0.05, p = 0.5,
ζ = 0.1, θ = 0.5, LC = 2, and LI = 10, the option value of litigation is

FC(Π0,0, 0) = pζV0,0 + ΨC(Π0,0, 0)
= 0.5 × 0.1 × 19.755 + 1.951 = 2.939.

Gross payoff from commercialization under patent risk becomes

ṼI(Π0,0, 0) = (1 − pζ)V0,0 + Ψ̃I(Π0,0, 0)
= (1 − 0.5 × 0.1) × 19.755 − 13.951 = 4.816.

Accurate patent and project values, however, require significantly larger
trees.

Figure 11.7 presents selected numerical results graphically. Although
discretization brings about visible inaccuracies around the challenger’s
critical threshold, the overall shape of curves is in line with analyti-
cal project values provided earlier. In addition, fig. 11.7(b) shows that
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Table 11.1. Log-transformed binomial model for patent valuation under endoge-
nous litigation risk (Π0 = 1.00, σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5,
LC = 2, LI = 10, T = 20.0, and n = 2). Carrying out the steps described, it is possi-
ble to determine the gross payoff from commercialization, which is indispensable for
calculating dynamic patent value. Panel (d) shows the challenger’s optimal policy,
ones indicating nodes at which litigation is optimal.

(a) Underlying

State Πi,j

t = 0 t = 10 t = 20

+2 1.897
+1 1.377

0 1.000 1.000
−1 0.726
−2 0.527

(b) Present value

State Vi,j

t = 0 t = 10 t = 20

+2 18.971
+1 22.134

0 19.755 10.000
−1 11.668
−2 5.271

(c) Option

State ΨC(Πi,j , jΔt)

t = 0 t = 10 t = 20

+2 1.794
+1 2.427

0 1.951 0.000
−1 0.334
−2 0.000

(d) Policy

State Policy

t = 0 t = 10 t = 20

+2 1
+1 1

0 1 0
−1 1
−2 0

(e) Project

State Ψ̃I(Πi,j , jΔt)

t = 0 t = 10 t = 20

+2 −13.794
+1 −14.427

0 −13.951 0.000
−1 −12.334
−2 0.000

(f) Patent

State F̃I(Πi,j , jΔt)

t = 0 t = 10 t = 20

+2 8.022
+1 11.028

0 8.767 0.000
−1 1.084
−2 0.000
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longer protection periods are associated with higher project values, but
also make litigation attractive at comparatively low levels of profitabil-
ity.

Under finite patent protection, the potentially adverse effect of ris-
ing profit rates on gross payoff from commercialization are more pro-
nounced. As evident from fig. 11.7(a) and in analogy to the case of an
infinite protection period, comparatively high costs of litigation for the
incumbent cause project values to drop sharply as rising profit rates
approach the critical threshold.
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Fig. 11.7. Gross payoff from commercialization under endogenous patent risk when
the protection period is finite (σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5,
and n = 500). Panel (a) shows ṼI(Πt) for T = 20.0, the base case (LC = LI = 10.0)
represented by a solid line. In analogy to previous analyses, long and short dashes
illustrate results for LI = 20.0 and LC = 12.0, respectively. Panel (b) depicts gross
payoff for T = 20.0 (solid line), T = 25.0 (long dashes), and T = 30.0 (short dashes).
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Finally, dynamic patent value can be quantified by pricing an option
on the gross payoff from commercialization, that is

ṼI(Πi,j, jΔt) = (1 − pζ)Vi,j + Ψ̃I(Πi,j, jΔt).

Patent values at the leaves of the tree are given by

F̃I(Πi,n, nΔt) = max
{

ṼI(Πi,n, nΔt) − I, 0
}

.

Proceeding backwards in time, all previous nodes are calculated as fol-
lows:

F̃I(Πi,j, jΔt) = max
{
ṼI(Πi,j, jΔt) − I,

e−rΔt
(
qF̃I

(
Πi+1,j+1, (j + 1) Δt

)
+ (1 − q) F̃I

(
Πi−1,j+1, (j + 1) Δt

))}
.

Figure 11.8 shows dynamic patent value as a function of the initial
profit rate under various assumptions concerning litigation costs and
the investment required to commercialize the patent. Obviously, the
resulting diagram differs substantially from the familiar “hockey stick”
associated with plain-vanilla call options—real or financial. Although
the drop in patent value due to rising patent risk is mitigated by the
value of flexibility, it is still noticeable, in particular if commercialization
is inexpensive.

Correspondingly, the optimal policy is far more complicated than for
the fairly simple litigation option. For very low profit rates, early exer-
cise is unattractive. As profit rates rise, early exercise becomes optimal,
before increasing patent risk renders it unattractive again. Eventually,
profit rates are high enough to justify early exercise despite the threat
of litigation. Fig. 11.9 shows numerical approximations of the resulting
boundaries Π∗

t , Π∗∗
t , and Π∗∗∗

t as a function of time, assuming LC = 1.0,
LI = 10.0, and I = 1.0.

11.3 Variations and Extensions

A stylized model like the one presented in this chapter can be extended
in a number of ways. In the following, a selection of possible extension
will be discussed in more detail.
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Fig. 11.8. Dynamic patent value under endogenous patent risk when the protection
period is finite (σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5, T = 20.0, and
n = 500). Panel (a) shows patent values for I = 10.0. Again, the base case with
LC = LI = 10.0 is represented by a solid line, while long and short dashes serve to
illustrate the sensitivity of patent value to changes in these parameters. Moreover,
panel (b) depicts how increases in the investment amount required to commercialize
lower patent value (I ∈ {10.0, 20.0, 30.0}).

11.3.1 Alternative Litigation Systems

An important area of research is the design of the legal system, and
the patent system in particular, addressing important issues such as
optimal patent length and breadth. Moreover, incentives to litigate and
the outcome of disputes are determined by the cost of litigation.
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Fig. 11.9. Incumbent’s critical thresholds under endogenous patent risk when the
protection period is finite (Π0 = 1.0, σ = 0.1, r = δ = 0.05, LC = 1.0, LI = 10.0,
I = 1.0, p = 0.5, ζ = 0.1, θ = 0.5, and T = 20.0). Again, approximations of
the boundaries were obtained using a log-transformed binomial tree with n = 500
timesteps.

11.3.1.1 Settlement

Apart from litigation, settlement of patent disputes plays an impor-
tant role in the value-based management of property rights.9 Lanjouw
and Schankerman [185] find that some 95 percent of patent lawsuits
are settled prior to a court judgment. More importantly, as argued by
Shapiro [309, p. 391], a wide range of commercial arrangements involv-
ing IP—including patent licenses, mergers, and joint ventures—can be
regarded as settlements of IP disputes, effectively or even literally. Roy-
alty rates in licensing deals, for instance, reflect the bargaining power of
the contracting parties, which fundamentally depends on the likelihood
of winning in court.

Technically speaking, the tradeoff between seeking a decision in court
or opting to settle most likely involves the calculation of Nash bar-
gaining solutions. The current model may be used to establish suitable
threat points.

11.3.1.2 European Rule

As mentioned before, the American rule requires both parties to bear
their own legal costs. However, legal systems differ in the treatment of
such expenses. If the loosing party or the state covers costs of litigation,

9 For example see Aoki and Hu [7, 8], Bebchuk [27], Crampes and Langinier [78].
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different option values result. A thorough comparison of alternatives
could provide insights into the impact on innovation incentives.

11.3.1.3 Variable Cost of Litigation

Almost needless to say, assuming a constant cost of litigation is a simpli-
fication of the actual process, because lawyers might claim a proportion
of the damage award. In essence, variable costs of litigation correspond
to a stochastic strike price, which, depending on the choice of param-
eters, could lead to a higher or lower option value of litigation. Again,
an extensive sensitivity analysis would be required to draw meaningful
conclusions.

11.3.2 Alternative Underlying Dynamics

Simulation results might change considerably, depending on the dynam-
ics employed to capture the development of expected cost to comple-
tion and cash flow rates. Common variations of the standard stock price
model include mean reversion and stochastic interest rates.

11.3.2.1 Mean Reversion

Cash flow rates usually track a product-specific lifecycle. In contrast,
cash flow rates in this chapter were assumed to follow GBM with a
positive drift, on average leading to an increase in profitability as the
end of the protection period approaches. While a variety of alternative
specifications are conceivable, mean-reversion processes probably better
reflect the stylized facts [91, pp. 74–78]. One example is the Ornstein–
Uhlenbeck process

dΠt = ϑ
(
Π − Πt

)
dt + σ dWt,

where ϑ is the speed of reversion and Π denotes the long-run average
level of profitability, to which Π tends to revert [331].

Similar SDEs are very popular in option-based models of natural
resource investments. One way to answer the question of whether a
mean-reversion process indeed matches empirical data more closely is
the application of unit root tests [87].
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11.3.2.2 Stochastic Interest Rates

As pointed out by Schwartz [301, p. 18], analyzing patent value under
stochastic interest rates is facilitated by the Monte Carlo approach. In
principal, it suffices to specifiy a suitable model, generate the required
number of interest rate processes and carry out all calculations employ-
ing a time-variant discount factor [207, pp. 131–135]. Similarly, stochas-
tic interest rates can be accounted for in tree-based option pricing, for
example employing the widely-used Heath–Jarrow–Morton model of in-
terest rates.10

11.3.3 Exit Option

Due to the fact that the current setup abstracts from operating costs,
exit options during the commercialization phase have so far been ne-
glected. Introducing an exit option along the lines of existing analyses
would complicate matters somewhat, but should not pose severe diffi-
culties [91, 229]. It is important to note, however, that—at least in the
pharmaceutical industry—firms very rarely exercise the option to stop
commercializing, mainly due to the paramount importance of expendi-
tures during R&D.

11.3.4 Industry Equilibrium

A closer look at industry equilibrium would call for a demand-level
model. Roughly speaking, excess profits earned by commercializing cer-
tain patents are likely to attract challengers, thereby increasing patent
risk. In equilibrium, these excess profits are exactly offset by the threat
of litigation.

10 Other possibilities include the Black–Derman–Toy model, the Hull–White model,
and its Black–Karanski modification, all of which are available in commercial
implementations [36, 142, 150].
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Preliminary Conclusion

According to Lemley and Shapiro, uncertainty surrounding patent pro-
tection is an inherent part of the patent system, reflecting the hundreds
of thousands of patent applications filed each year, the inability of third
parties to participate effectively in determining whether a patent should
issue, and the fact that for most issued patents, scope and validity are of
little commercial significance. Probabilistic patents thus require rethink-
ing patent granting, opposition, litigation, and settlement [193, p. 95].1

Consequently, the aim of this part of the dissertation was to develop
a deeper understanding of patent risk, looking beyond the seemingly ran-
dom occurrence of patent-related events, suggested by jump-diffusion
models of the R&D process. Following introductory definitions and the
model setup in section 11.1, section 11.2.1 served to discuss the op-
tion value of litigation under certainty. Building on some basic insights
into the composition of cash flows, section 11.2.2 outlined a sequential
stochastic game for patent valuation, which was studied using both an-
alytical and numerical methods. Finally, section 11.3 hinted at some
variations and extensions of the basic framework presented.

Among the many noteworthy findings is the non-obvious functional
relationship between cash flow rates and commercialization payoff with
important implications for the option value of R&D under imperfect
patent protection. As outlined in detail, higher profitability not neces-
sarily goes along with higher patent values.

This insight highlights an important stylized fact of market entry in
research intensive industries. Common sense dictates that a high proba-
bility of litigation is an indicator of attractive commercial opportunities.
Not only do high profits attract potential challengers; high profits are
often the result of novel products and services, which due to the lim-
1 For more on antitrust issues in the context of settlement see Shapiro [309].
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ited experience of all parties involved, are typically difficult to protect
through patents. This uncertainty, in turn, gives rise to increased litiga-
tion activity. Consequently, potential entrants have to trade off growth
and profit potential in markets driven by innovation for a comparatively
high reliability of intellectual property protection in more mature mar-
kets.

While, as a result of various barriers to entry imposed by incum-
bent oligopolists, this consideration appears somewhat theoretical on
the level of whole industries, similar issues arise on the project level.
The formal model analyzed in this part of the dissertation may be seen
as a first step to more comprehensive models of R&D and commercial-
ization, demonstrating that the impact of litigation on patent value in
strategic settings can in fact be anticipated and, to some degree, even
quantified.

The type of model proposed may serve as a tool for studying the
optimal level of patent protection from an option-based perspective,
including, for example, not only the length of the protection period,
but also other aspects, such as the reliability of patent protection, which
may differ substantially across countries and industries.

In addition, the discussion served to present the option-based view
of patent risk as a special case of a more general reconceptualization
of uncertain property rights, capturing legal risk as embedded short
options to litigate.
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Conclusion

This final chapter summarizes some important results and provides sug-
gestions for future research.

13.1 Summary

Since many of the more technical results have already been discussed
extensively in chapters 9 and 12, the aim of this section is to provide
non-technical answers to the four research questions formulated in the
introduction: (1) How does patent risk change patent value and invest-
ment policy? (2) What is the source of patent risk? (3) How do market,
technology, and patent risk interact? (4) Are option-based models of
imperfect patent protection ready for practice?

As shown in part II of this dissertation, the impact of patent risk on
patent value and investment policy is essentially determined by the fre-
quency and severity of value-relevant events. Jump-diffusion processes
may serve to capture these effects in formal option-based models. Sev-
eral models of this type were presented, extending previous work on
capital budgeting under uncertainty to the case of imperfect patent
protection.

Part II shed light on the source of patent risk, which arises as the
result of strategic interdependency in the increasingly complex IP land-
scape. As explained in detail, this interdependency yields surprising
results, calling for careful analysis in real-world settings.

While parts II and II offered a variety of explanations as to the inter-
action of market, technology, and patent risk, findings crucially depend
on the specific setup chosen. More generally, an isolated treatment was
shown to result in suboptimal decisions under most circumstances, in
particular including strategic settings.
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Not all option-based models are ready for practice. The author is
convinced, however, that the option-based view (OBV) outlined in this
dissertation will contribute to a more widespread use of advanced capi-
tal budgeting techniques when assessing the impact of risk on optimal
investment policies in R&D. As demonstrated by the case of imper-
fect patent protection, complicated decision problems sometimes require
equally complicated tools.

13.2 Suggestions for Future Research

Although a multitude of further theoretical studies—for instance in-
tegrating the exogenous and endogenous perspective—could certainly
be conceived of, both academia and practice are most likely to profit
from empirical investigations into the nature of imperfect patent protec-
tion, aimed at testing hypotheses derived from the exogenous and en-
dogenous models of patent risk presented. Furthermore, extensive case
studies may lower the hurdles that have so far hindered the adoption
of more advanced capital budgeting techniques. Improvement potential
exists also on the portfolio level, which has largely been neglected in
formal analyses. Given recent challenges posed by accounting rules and
patent law, the potential economic benefits are sizeable.
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Appendices



A

Proofs

In addition to the proofs presented throughout the chapters of this dis-
sertation, the appendix contains alternative proofs of important propo-
sitions.

A.1 Proposition 6

There are at least two alternative approaches to deriving dynamic
patent value if the gross payoff from commercialization is stochastic.
One is based on dynamic programming, the other one on the distribu-
tion of first hitting times.

A.1.1 Dynamic Programming

Starting with a Bellman [28] equation in discrete time, it is possible to
express the current value of a patent as

F (Πt, t) =
1

1 + rΔt
EP∗ [F (Πt + ΔΠt, t + Δt) | Ft] ,

namely the expected future value of the same patent, discounted back
to time t. In line with the risk-neutral pricing approach, the martingale
measure is adopted here; and r is the appropriate discount rate. Again,
in contrast to the project itself, there is no profit flow ΠtΔt [91, pp. 104–
108]. Multiplying by 1 + rΔt and subtracting F (Πt, t) results in

rΔtF (Πt, t) = EP∗ [F (Πt + ΔΠt, t + Δt) − F (Πt, t) | Ft]
= EP∗ [ΔF (Πt, t) | Ft] .

Dividing by Δt, letting it go to zero, and expanding the right-hand side
using Itô’s Lemma yields
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rF (Πt) = (r − δ) Πt
dF (Πt)

dΠt
+ 1

2σ2Π2
t

d2F (Πt)
dΠ2

t

,

which, after re-arranging becomes the familiar option pricing PDE.
Note that, since expectations are taken under the risk-neutral measure,
α = α∗ ≡ r − δ. Furthermore, in the case of an infinite protection
period, patent value no longer depends explicitly on time. Similar to
contingent-claims analysis, the simplified equation can be solved subject
to appropriate terminal and boundary conditions, leading to a closed-
form expression for the dynamic value of a patent.

A.1.2 First Hitting Time

In order to demonstrate the validity of theorem 2, consider the following
derivation of dynamic patent value based on the distribution of first
hitting times. A closed-form expression for EP∗

[
e−r(τ∗−t)

]
as a function

of the critical profit rate Π∗ leads to a simplified optimization problem.1
In the continuation region {Πt ∈ [0,∞) : Πt ≤ Π∗},

F (Πt) = max
Π∗∈[0,∞)

EP∗
[
e−r(τ∗−t) (Π∗/δ − I)

∣∣∣Ft

]
= max

Π∗∈[0,∞)
EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
(Π∗/δ − I)

= max
Π∗∈[0,∞)

(Π∗/δ − I)
(

Πt

Π∗

)γ+

.

A necessary condition for Π∗ to be optimal is(
γ+I

Π∗ − γ+ − 1
δ

)(
Πt

Π∗

)γ+

= 0,

which implies

Π∗ =
γ+

γ+ − 1
Iδ.

The sufficient condition is fulfilled, because

−γ+I

Π2
t

(
Πt

Π∗

)γ++2

< 0.

1 Note that, in the perpetual case, one can safely examine the payoff function
(Π∗ − I) instead of (Π∗ − I)+, because it is always possible to postpone option
exercise indefinitely.
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In the stopping region immediate exercise is optimal, hence F (Πt) =
Πt/δ−I. Consequently, in accordance with proposition 13, patent value
is given by

F (Πt) =

{
Πt/δ − I if Π∗ < Πt,

I
γ+−1

(
Πt
Π∗
)γ+

otherwise,

which is just the value calculated previously using contingent-claims
analysis.

A.2 Proposition 11

Consider the cash flow rate process described by

dΠt = αΠt dt + σΠt dWt.

In analogy to (11.3), the value of the completed project is

VI(Πt, t) =
(

1 − e−
(
r−(α−η)(T−t)

))
Πt

r − (α − η)

+ e−
(
r−(α−η)(T−t)

)
MΠt,

where η is the appropriate risk premium. Itô’s Lemma leads to

dVI(Πt, t) = (r + η)

((
α

r + η
− e−

(
r−(α−η)(T−t)

))
Πt

r − (α − η)

+e−
(
r−(α−η)(T−t)

)
MΠt

)
dt

+ σ

((
1 − e−

(
r−(α−η)(T−t)

))
Πt

r − (α − η)

+ e−
(
r−(α−η)(T−t)

)
MΠt

)
dWt.

Hence, the value of a completed project exhibits the same volatility, but
does not exhibit the same drift as the underlying cash flow rate.
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A.3 Proposition 13

Section 11.2.2 served to introduce the option value of litigation. A proof
based on contingent-claims analysis was presented. The same result can
be obtained in a slightly different manner, mirroring arguments brought
forward in section A.1.2.

Again, the option value of litigation is decomposed into a controlled
and an uncontrolled diffusion process, resulting in

FC(Πt) = max
Π∗∈[0,∞)

EP∗

[
−p (θ − ζ)

∫ τ∗

t
e−r(s−t)Πs ds

− e−r(τ∗−t)LC + pθ

∫ ∞

t
e−r(s−t)Πs ds

∣∣∣∣∣Ft

]
. (A.1)

An expression that can be employed to discount the cost of litigation,
is known from previous analyses (see theorem 2) and is restated here
for convenience:

EP∗
[
e−r(τ∗−t)

∣∣∣Ft

]
=
(

Πt

Π∗

)γ+

. (A.2)

The first integral remains to be evaluated. Dixit and Pindyck [91,
pp. 315–316] provide the following theorem.

Theorem 3. If Π∗ ≥ Πt is a fixed upper threshold, and τ∗ ≥ t is the
first hitting time,

EP∗

[∫ τ∗

t
e−r(s−t)Πs ds

∣∣∣∣∣Ft

]
= Πt/δ − Π∗/δ

(
Πt

Π∗

)γ+

. (A.3)

Proof (Proof of theorem 3). Using familiar dynamic-programming tech-
niques [91, p. 316], it is not difficult to see that

G(Πt) = EP∗

[∫ τ∗

t
e−r(s−t)Πs ds

∣∣∣∣∣Ft

]
,

satisfies

1
2σ2Π2

t

d2G(Πt)
dΠ2

t

+ (r − δ) Πt
dG(Πt)

dΠt
− rG(Πt) + G(Πt) = 0.

General solutions take the form
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G(Πt) = A−Πγ−
t + A+Πγ+

t + Πt/δ,

subject to G(0) = 0 and G(Π∗) = 0. Hence, A− = 0 and A+ =
−Π∗/δ (1/Π∗)γ+

, leading to (A.3).

Note that theorem 3 also follows directly from theorem 2, because

EP∗

[∫ τ∗

t
e−r(s−t)Πs ds

∣∣∣∣∣Ft

]
= EP∗

[∫ ∞

t
e−r(s−t)Πs ds

−e−r(τ∗−t)

∫ ∞

τ∗
e−r(s−τ∗)Πs ds

∣∣∣∣Ft

]
= Πt/δ − EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
Π∗/δ,

which is equivalent to (A.3).
It is then straightforward to deduce proposition 13 by substituting

(A.2) and (A.3) in (A.1), which yields

FC(Πt) = max
Π∗∈[0,∞)

−p (θ − ζ)

(
Πt/δ − Π∗/δ

(
Πt

Π∗

)γ+
)

− LC

(
Πt

Π∗

)γ+

+ pθΠt/δ. (A.4)

A necessary condition for the threshold to be optimal is(
γ+LC

Π∗ − p (θ − ζ)
γ+ − 1

δ

)(
Πt

Π∗

)γ+

= 0.

Solving for the critical profit rate yields

Π∗ =
γ+

γ+ − 1
LCδ

p (θ − ζ)
, (A.5)

which is the trigger deduced earlier. As is easily verified, the sufficient
condition is also fulfilled. Inserting (A.5) in (A.4) leads to

FC(Πt) =
LC

γ+ − 1

(
Πt

Π∗

)γ+

+ pζΠ/δ

for dynamic patent values in the continuation region.



232 A Proofs

A.4 Proposition 14

In section 11.2.2, gross payoff from commercialization under patent risk
was derived as a portfolio of claims. Alternatively, one may arrive at
the same result directly, again making use of the expected first hitting
time and the threshold of proposition 13 (see sect. A.3).

Gross payoff from commercialization is

ṼI(Πt) = EP∗

[∫ ∞

t
e−r(s−t)Πs ds

− p

(∫ τ∗

t
e−r(s−t)ζΠs ds +

∫ ∞

τ∗
e−r(s−t)θΠs ds

)

− e−r(τ∗−t)LI

∣∣∣∣∣Ft

]
Re-write this equation to obtain

ṼI(Πt) = (1 − pθ)EP∗

[∫ ∞

t
e−r(s−t)Πs ds

∣∣∣∣Ft

]
+ p (θ − ζ)EP∗

[∫ τ∗

t
e−r(s−t)Πs ds

∣∣∣∣∣Ft

]
− EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
LI.

Recall that the first and second terms represent the gross payoff from
commercialization under the assumption of immediate litigation and the
value of waiting, respectively. Figure A.1 illustrates this decomposition
graphically.

The second and the third integral follow from (A.2) and (A.3). Ap-
plying the critical profit rate and taking expectations over first hitting
times leads to

ṼI(Πt) = (1 − pθ)Πt/δ + p (θ − ζ)

(
Πt/δ − Π∗/δ

(
Πt

Π∗

)γ+
)

− LI

(
Πt

Π∗

)γ+

= (1 − pζ)Πt/δ −
(

LI +
γ+

γ+ − 1
LC

)(
Πt

Π∗

)γ+

,

thus verifying proposition 14.
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t 0 τ ∞

(1 − pθ)Πt • •

p (θ − ζ)Πt • •

Total (1 − pζ) Πt (1 − pθ)Πt

Fig. A.1. Decomposing the payoff from commercialization. Total payoff from liti-
gation can be decomposed into one perpetuity and one option, creating one closed
and one open interval with distinct profit rates. The stopping time τ is chosen by
the challenger to maximize litigation payoff.
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Numerical Methods

This appendix adds to the overview of extant numerical procedures
provide in section 3.2. Furthermore, it hints at some of the particular
challenges posed by the specific option-based models of imperfect patent
protection presented.

B.1 Binomial and Multinomial Trees

This subsection presents variants of the CRR option pricing technique,
looking a single-factor as well as multi-factor models in the context of
patent valuation.

B.1.1 Single-Factor Model

The method described in this section represents an alternative way of
calculating patent value in the presence of finite patent protection and
thereby offers a possibility to check the accuracy of the FD techniques
employed earlier (see sect. 6.2.2.2). Specifically, the proposed approach
is based on the simple CRR model, which uses a binomial tree to ap-
proximate the continuous diffusion process in discrete time [76].

The protection period is divided into n periods of length Δt ≡ T/n.
In each period, the discrete profit rate process exhibits an upward jump
with probability p or a downward jump with probability 1 − p. If j
denotes the current period and i the number of upward jumps, the
current profit rate becomes

Πi,j = Π0,0u
idj−i, 0 ≤ j ≤ n, 0 ≤ i < j,
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where u > 1 and d = 1/u are chosen to properly reflect expected value
and variance under the equivalent martingale measure. Figure B.1 shows
an illustrative two-period example.

Equating mean and variance for the continuous-time and discrete-
time process leads to

p =
e(r−δ)Δt − d

u − d
,

where u = eσ
√

Δt [336, pp. 164 and 173]. The resulting binomial tree
converges to GBM as the number of timesteps increases.1

Π0,0

Π1,1 = uΠ0,0

p

Π2,2 = u2Π0,0

p

Π1,2 = Π0,0

1−p

Π0,1 = dΠ0,0

1−p

p

Π0,2 = d2Π0,0

1−p

Fig. B.1. Binomial profit rate tree. Continuous dynamics are approximated by
discrete upward and downward jumps. Parameters are chosen to make the tree
recombining, thereby greatly facilitating calculations.

In contrast to a project-level model, which is analogous to a plain-
vanilla call option, a profit-level model requires an additional step to
determine the gross payoff from commercialization. In order to derive
Vi,j ≡ V (Πi,j, jΔt) at each node, a second directed graph is constructed,
starting at the leaves of the orginal profit rate tree. In each period the

1 As is easily verified by applying Itô’s Lemma to the logarithm of the profit rate
process, instead of the standard CRR discretization, one could also set

u = e

(
(r−δ)Δt− 1

2
σ2
)

+σ
√

Δt
,

d = e

(
(r−δ)Δt− 1

2
σ2
)
−σ

√
Δt

.

A similar approach is adopted in sect. B.1.2 [254, p. 495].
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investor accumulates cash at the then current rate Πi,j. Consequently,
at the end of the protection period,

Vi,n = Πi,nΔt.

Moving backwards in time and taking expectations, one obtains

Vi,j = Πi,jΔt + e−rΔt
(
pVi+1,j+1 + (1 − p)Vi,j+1

)
.

The final step is straightforward and involves the construction of a third
tree representing patent values. Again, the procedure starts in period
n. A rational investor commercializes if and only if the net payoff is
positive:

Fi,n = max{Vi,n − I, 0}.

For each preceding period, the payoff from immediate commercialization
is compared to the alternative of postponement, that is

Fi,j = max
{
Vi,j − I, e−rΔt

(
pFi+1,j+1 + (1 − p)Fi,j+1

)}
.

Eventually, the value of the patent F0,0 ≡ F (Π0, 0) is obtained.
Table B.1 shows a numerical example. Similar to section 6.2.2.2,

assume an initial profit rate Π0 = 0.10, a protection period of T = 20
years, r = δ = 0.05, and σ = 0.05. Calculating jump sizes and risk-
neutral probabilities for the two-period model discussed previously leads
to

u = e+0.4×10 = 3.54, d = 1/3.54 = 0.28,

and

p =
e(0.05−0.05)10 − 0.28

3.54 − 0.28
= 0.22.

Further assuming an investment amount of I = 1.0, one obtains an ap-
proximate patent value of F (Π0, 0) = 0.97. This result differs substan-
tially from the one derived using FD techniques. However, a similar tree
with n = 50 timesteps yields patent values very close to those reported
in table 6.1.

B.1.2 Multi-Factor Model

Define Ct ≡ eXt , so that Xt follows ABM, and use Itô’s Lemma to
derive the stochastic process followed by the logarithm of expected cost
to completion from (7.41):
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Table B.1. Dynamic patent value under uncertainty and finite patent protection
if the commercialization phase is finite (binomial trees). Panel (a) shows profit rate
dynamics under the risk-neutral probability measure for Π0 = 0.10, T = 20, r =
δ = 0.05, and σ = 0.05. Panel (b) shows the gross payoff from commercialization
V (Πt, t), and panel (c) patent value F (Πt, t) for I = 1.0. The result, which differs
substantially from the more accurate benchmark, reveals that discretization errors
should not be neglected.

(a) Profit rate

State Πi,j

t = 0 t = 10 t = 20

+2 1.26
+1 0.35

0 0.10 0.10
−1 0.03
−2 0.01

(b) Investment project

State Vi,j

t = 0 t = 10 t = 20

+2 12.55
+1 5.69

0 1.97 1.10
−1 0.45
−2 0.08

(c) Investment opportunity

State Fi,j

t = 0 t = 10 t = 20

+2 11.55
+1 4.69

0 0.97 0.00
−1 0.00
−2 0.00

dXt = ν(Ct, t) dt + θ(Ct, t) dW C
t

= − It

Ct

(
1 + 1

2ς2
)
dt + ς

√
It

Ct
dW C

t ,

that is

ν = − It

Ct
− 1

2θ2, (B.1a)

θ = ς

√
It

Ct
. (B.1b)

This information can be used to construct a trinomial tree of the form
shown in fig. B.2.
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Xj

aXj

pa

a2Xj

pa

abXjpb

b2Xj

pc

bXjpb

pa

pb

bcXj

pc

cXj

pc

pa

pb

c2Xj

pc

Fig. B.2. Trinomial tree for patent valuation. Compared to binomial trees, addi-
tional degrees of freedom make it possible to fit drift and volatility surfaces.

Since the tree is recombining, set

ac = b2.

Coefficients are chosen to resemble the CRR model:

a = eνΔt+θ
√

Δt,

b = eνΔt,

c = eνΔt−θ
√

Δt,

where ν and θ are constants to be determined. Note that this specifi-
cation also implies constant a, b, and c, while probabilities (pa, pb, and
pc) may vary to reflect local drift and volatility. More precisely,

E[Xt] = νΔt = νΔt + (pa − pc) θ
√

Δt,

V[Xt] = E
[
X2
]− (E[Xt])

2

= θ2Δt = (pa + pc) θ
2Δt − (νΔt)2 .

Neglecting terms smaller than O(Δt),

θ2Δt = (pa + pc) θ
2Δt. (B.3)

Solving the resulting system of equations, one obtains
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pa = 1
2

((
θ

θ

)2

+
ν − ν

θ

√
Δt

)
,

pb = 1 −
(

θ

θ

)2

,

pc = 1
2

((
θ

θ

)2

− ν − ν

θ

√
Δt

)
.

Define

p ≡ pa + pc =
(

θ

θ

)2

,

q ≡ pa − pc

θ
√

Δt
=

ν − ν

θ
2 .

Consequently,

pa = 1
2

(
p + qθ

√
Δt
)

, (B.6a)

pb = 1 − p, (B.6b)

pc = 1
2

(
p − qθ

√
Δt
)

. (B.6c)

Equation (B.6b) leads to
0 ≤ p ≤ 1. (B.7)

Using (B.6a) and (B.6c), non-negative probabilities are obtained for

−qθ
√

Δt ≤ p, (B.8a)

+qθ
√

Δt ≤ p. (B.8b)

Since p ≡ pa + pc, (B.3) and (B.7) imply

θ2 ≤ θ
2
.

It therefore seems natural to simply choose θ = θmax, where θmax and
θmin are the maximum and minimum values of the volatility parameter
within the relevant range.

Provided that νmin ≤ ν ≤ νmax, (B.8a) and (B.8b) imply

−νmin − ν

θmax

√
Δt ≤

(
θmin

θmax

)2

,

+
νmax − ν

θmax

√
Δt ≤

(
θmin

θmax

)2

.
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Consequently, ν = 1
2 (νmax + νmin) leads to

√
Δt ≤ 2θ2

min

θmax (νmax − νmin)
.

Since this constraint requires the timestep size to become infinitely
small as the cost of completion tends to zero, a lower boundary Cmin > 0
is introduced to ensure stability. Constructing the drift and volatility
surfaces employing (B.1a) and (B.1b) is then comparatively straightfor-
ward.

Patent values are obtained by combining the resulting trinomial tree
with a binomial one for the profit rate process.2 No detailed description
is given at this point, because Monte Carlo simulation has been shown to
yield reliable results, while a hexanomial model suffers from the “curse
of dimensionality.” In general, valuing barrier options using multinomial
trees is a very inefficient approach. Such limitations, however, can be
overcome by making careful adjustments. Hull [150, pp. 477–482] pro-
vides an overview of suitable techniques, including the adaptive mesh
model.

B.2 Monte Carlo Simulation

Some of the random numbers needed to perform Monte Carlo simu-
lations throughout this dissertation were produced by QRNGEXTRA,
an extension package for the GSL developed by the author, providing a
high-dimensional Sobol sequence generator [110, 313]. The use of Sobol
sequences, today considered as examples of (t, d)-sequences in base 2,
represents only one of many possibilities to increase computational effi-
ciency and accuracy by employing (deterministic) quasi-random instead
of pseudo-random numbers.3 More specifically, QRNGEXTRA is based
on Algorithm 659, originally developed by Bratley and Fox [51] and
later extended by Joe and Kuo [158].

Consisely, generating the jth component in a Sobol sequence requires
a primitive polynomial of degree sj in the field Z2:

xsj + a1,jx
sj−1 + · · · + asj−1,jx + 1,

2 For details on how to combine uncertainties in option valuation see Copeland and
Antikarov [71, pp. 270–293].

3 For a general theory of low discrepancy (t, d)-sequences in base b see Niederreiter
[258].
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where {a1,j, . . . , a
sj−1,j} are binary coefficients. A sequence of positive

integers follows from the recursive equation

mk,j = 2a1,jmk−1,j ⊕ 22a2mk−2,j ⊕ . . .

⊕ 2sj−1asj−1,jmk−sj+1,j ⊕ 2sjmk−sj ,j ⊕ mk−sj,j,

where k ≥ sj + 1 and ⊕ is the bitwise XOR operator. The quality
of the sequences generated fundamentally hinges on the initial values
{m1,j , . . . ,msj ,j}, which can be chosen freely provided that mk,j, k ∈
[1, sj ], is odd and less than 2k.

The direction numbers

vk,j ≡ mk,j/2k

then make it possible to calculate the jth component of the ith point
in a Sobol sequence:

xi,j = b1v1 ⊕ b2v2 ⊕ . . . ,

where bl is the lth bit from the right in the binary representation of i,
namely (. . . b2b1)2 [158, p. 50].

The choice of suitable primitive polynomials and direction numbers
not covered here is discussed in detail by Jäckel [156], Joe and Kuo
[158].

Despite some advantages over the application of pseudo-random
numbers, valuing American options based on high-dimensional Sobol
sequences also suffers from potential drawbacks. For example, compar-
atively poor two-dimensional projections may occur, reducing the accu-
racy of results (see fig. B.3).

As mentioned previously, such inaccuracies can be reduced by choos-
ing appropriate direction numbers—but not eliminated completely. The
form of scrambling best-suited to overcome these issues continues to be
the subject of scientific debate [64]. Since numerical accuracy is not of
paramount importance in real option analysis, Sobol sequences are used
as generated by QRNGEXTRA, without prior scrambling.
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(b) Dimensions 11 and 12
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(c) Dimensions 101 and 102
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(d) Dimensions 1,001 and
1,002

Fig. B.3. Quasi-random numbers generated by QRNGEXTRA. The quality of the
numbers generated is very sensitive to the initial choice of direction numbers. Com-
paring the two-dimensional projections shown in panels (b) and (d) illustrates very
nicely that satisfactory results are difficult to achieve for any combination of dimen-
sions.
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supremum of a ∼ 131
Wiener ∼ 94

projected full approximation storage
46

purchase price allocation 19

quasi-random number 3, 55, 126,
241–242

Radon–Nikodým derivative 130
real option 1, 28, 46, 47, 52, 70, 102,

108, 110, 113, 119, 127, 189
∼ hexagon 24

relief-from-royalty method 22–23,
78

research and development 1, 26, 73,
75, 115, 142, 163, 219

research tools 61
resource-based view 10
risk-neutral valuation 98, 134, 165,

227
Rothe’s method 28
royalty stacking 13

Runge–Kutta method 49

Sarbanes–Oxley Act 19
SEC see Securities and Exchange

Commission
Securities and Exchange Commission

19
separation theorem 21
settlement 186, 217
Simpson’s method 124
singular value deomposition 126
Sobol sequence 55, 241–242
SOR see successive overrelaxation
SOX see Sarbanes–Oxley Act
stability analysis

von Neumann ∼ 35
stopping region 45, 81, 100, 108,

200, 208
strategic intent 10
successive overrelaxation 39, 43

progressive ∼ 40, 45, 108

time value 79
Tobin’s q 101
tree 28

binomial ∼ 235–237
multinomial ∼ 237–241

unit root test 218
United States Patent and Trademark

Office 12, 185
USPTO see United States Patent

and Trademark Office

variance reduction 50

Wiener–Hopf factorization 133, 140
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ABM arithmetic Brownian motion
ACM Association for Computing Machinery
ADI alternating-direction implicit
AdW Akademie der Wissenschaften
AICPA American lnstitute of Certified Public Accountants
AIPLA American Intellectual Property Law Association
ANDA abbreviated new drug application
CAFC Court of Appeals for the Federal Circuit
CAGR compound annual growth rate
CAPM capital asset pricing model
CDF cumulative density function
CEO chief executive officer
cf. confer
CFO chief financial officer
CGMY Carr–Geman–Madan–Yor
chap. chapter
CPA certified public accountant
CRR Cox–Ross–Rubinstein
DCF discounted cash flow
DDR Deutsche Demokratische Republik
DNA desoxyribonucleic acid
DTA decision tree analysis
EC evolutionary computation
EMC evolutionary Monte Carlo
ENPV expected net present value
EP evolutionary programming
EPO European Patent Office
EPV expected present value
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ES evolutionary strategy
ESS evolutionary stable strategy
EUR euros
EVT extreme value theory
FAS full approximation storage
FASB Financial Accounting Standards Board
FD finite difference
FDA Food and Drug Administration
FE finite element
FFT fast Fourier transform
fig. figure
FTC Federal Trade Commission
GA genetic algorithm
GAAP Generally Accepted Accounting Principles
GBM geometric Brownian motion
GH generalized hyperbolic
GNU GNU is Not UNIX
GP genetic programming
GSL GNU Scientific Library
HBS Harvard Business School
IAS International Accounting Standards
IEEE Institute of Electrical and Electronics Engineers
IFRS International Financial Reporting Standards
IP intellectual property
IPC international patent classification
IPR intellectual property right
ITC International Trade Commission
IUI Industriens Utredningsinstitut (The Research Institute of

Industrial Economics)
KTH Kungliga Tekniska högskolan (Royal Institute of Technol-

ogy)
LSM least-squares Monte Carlo
M&A mergers and acquisitions
MCA Markov chain approximation
MEEM Multi-Period-Excess-Earnings Method
MIT Massachusetts Institute of Technology
MULTICS Multiplexed Information and Computing Service
NAS National Academies of Science
NBER National Bureau of Economic Research
NDA new drug application
NIG normal inverse Gaussian
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no. number
NPD new product development
NPV net present value
OBV option-based view
p., pp. page, pages
PAT Primary Assessment Tool
PDE partial differential equation
PDF probability density function
PFAS projected full approximation storage
PIDE partial integro-differential equation
PPA purchase price allocation
PRNG pseudo-random number generator
PSOR projected successive overrelaxation
PTO Patent and Trademark Office
PV present value
QMC quasi–Monte Carlo
QRNG quasi-random number generator
RAND research and development
RBV resource-based view
R&D research and development
ROI return on investment
SDE stochastic differential equation
SEC Securities and Exchange Commission
sec. section
SFAS Statement of Financial Accounting Standards
SIAM Society for Industrial and Applied Mathematics
SME small and medium-sized enterprises
SOR successive overrelaxation
SOX Sarbanes–Oxley
SPC Supplementary Protection Certificate
SVD singular value decomposition
SWOT strengths, weaknesses, opportunities, and threats
TOMAC Transactions on Modeling and Computer Simulation
UCLA University of California, Los Angeles
UK United Kingdom
UNIX UNIX is Not MULTICS
US United States
USD US dollars
USPTO United States Patent and Trademark Office
VBM value-based management
vol. volume
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VRIN valuable, rare, inimitatable, and non-substitutable
ZIMM Zentralinstitut für Mathematik und Mechanik



List of Symbols

α instantaneous proportional drift
β systematic risk according to the CAPM
D(·) inverse demand function excluding the demand-scaling pa-

rameter
δ dividend yield−→
Δ forward difference←−
Δ backward difference←→
Δ central difference
Δ central mean
E[·] expectation operator
η risk premium
Ft σ-algebra generated by {Ws : s ≤ t}
F value of the investment opportunity
FC option value of litigation
F̃I patent value under imperfect patent protection
γ+

i positive root of the characteristic equation
γ−

i negative root of the characteristic equation
I investment required to initiate the project
K strike price
LC challenger’s cost of litigation
LI incumbent’s cost of litigation
λ market price of risk
M exit multiple
μ risk-adjusted discount rate
O(·) order
Pt price at time t
Π∗ critical profit (cash flow) rate
Πt profit (cash flow) rate at time t
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� initial profit (cash flow) rate
�∗ critical initial profit (cash flow) rate
Qt supply at time t
Q∗

t optimal supply at time t
r risk-free rate of interest
rm market rate of return
ρ correlation coefficient
σ instantaneous proportional volatility
σm standard deviation of market returns
St stock price at time t
T maturity
τ stopping time
τ∗ optimal stopping time
θ proportion of future cash flows claimed
V value of the investment project
v initial project value
V ∗ critical project value
v∗ critical initial project value
Vt project value at time t
VC payoff from litigation
VI gross payoff from commercialization under perfect patent

protection
ṼI gross payoff from commercialization under imperfect patent

protection
Wt state of a Wiener process at time t
Xt value of the spanning asset at time t
y initial value of the demand-scaling parameter
y∗ critical initial value of the demand-scaling parameter
Yt value of the demand-scaling parameter at time t
ζ proportion of past cash flows claimed
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