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Preface

This volume is based on lectures delivered at the international conference “New
trends in harmonic and complex analysis”, held May 7–12, 2007 in Voss, Nor-
way, and organized by the University of Bergen and the Norwegian University
of Science and Technology, Trondheim. It became the kick-off conference of the
European Science Foundation Networking Programme “Harmonic and complex
analysis and its applications” (2007–2012). The purpose of the Conference was to
bring together both experts and novices in analysis with experts in mathematical
physics, mechanics and adjacent areas of applied science and numerical analysis.
The participants presented their results and discussed further developments of
frontier research exploring the bridge between complex, real analysis, potential
theory, PDE and modern topics of fluid mechanics and mathematical physics.

Harmonic and Complex Analysis is a well-established area in mathematics.
Over the past few years, this area has not only developed in many different direc-
tions, it has also evolved in an exciting way at several levels: the exploration of
new models in mechanics and mathematical physics and applications has at the
same time stimulated a variety of deep mathematical theories.

During the last quarter of the twentieth century the face of mathematical
physics changed significantly. One very important aspect has been the increasing
degree of cross-fertilization between mathematics and physics with great benefits
to both subjects. Whereas the goals and targets in the understanding of funda-
mental laws governing the structure of matter and energy are shared by physicists
and mathematicians alike, the methods used, and even views on the importance
and credibility of results, often differ significantly. In many cases, mathematical
or theoretical predictions can be made in certain areas, but the physical basis
(in particular that of experimental physics) for confirming such predictions re-
mains out of reach, due to natural engineering, technological or economic limi-
tations. Conversely, ‘physical’ reasoning often provides new insight and suggests
approaches that transcend those that may be rigorously treated by purely math-
ematical analysis; physicists tend to ‘jump’ over apparent technical obstacles to
arrive at conclusions based on physical insight that may form the basis for signifi-
cant new conjectures. Mathematical analysis in a broad sense has proved to be one
of the most useful fields for providing a theoretical basis for mathematical physics.
On the other hand, physical insight in domains such as equilibrium problems in
potential theory, asymptotics, and boundary value problems often suggests new
avenues of approach.



viii Preface

We hope that the present volume will be interesting for specialists and grad-
uate students specializing in mathematics and/or mathematical physics. Many
papers in this volume are surveys, whereas others represent original research. We
would like to acknowledge all contributors as well as referees for their great service
for mathematical society. Special thanks go to Dr. Thomas Hempfling, Birkhäuser,
for his kind assistance during preparation of this volume.

Björn Gustafsson
Alexander Vasil’ev
Stockholm-Bergen, 2009
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From Diff(S1) to Univalent Functions.
Cases of Degeneracy

Hélène Airault

Abstract. We explain in detail how to obtain the Kirillov vector fields (Lk)k∈Z

on the space of univalent functions inside the unit disk. Following Kirillov,
they can be produced from perturbations by vectors (eikθ)k∈Z of diffeomor-
phisms of the circle. We give a second approach to the construction of the
vector fields. In our approach, the Lagrange series for the inverse function
plays an important part. We relate the polynomial coefficients in these se-
ries to the polynomial coefficients in Kirillov vector fields. By investigation
of degenerate cases, we look for the functions f(z) = z +

∑
n≥1 anzn+1 such

that Lkf = L−kf for k ≥ 1. We find that f(z) must satisfy the differential
equation:[

z2w

1− zw
+

zw

w − z

]
f ′(z) − f(z) − w2f ′(w)2

f(w)2
× f(z)2

f(w)− f(z)
= 0. (∗)

We prove that the only solutions of (∗) are Koebe functions. On the other
hand, we show that the vector fields (Tk)k∈Z image of the (Lk)k∈Z through

the map g(z) = 1
f( 1

z
)

can be obtained directly as the (Lk) from perturbations

of diffeomorphisms of the circle.

Mathematics Subject Classification (2000). Primary 17B68; Secondary 30C35.

Keywords. Reverted series, Koebe function, Kirillov vector fields.

1. Introduction

For f(z) = z+a1z
2+a2z

3+· · · , Schiffer’s procedure of elimination of terms in series
[16] permits to construct the Kirillov vector fields L−kf(z) for a positive integer k.
Let z1−kf ′(z) = f(z)1−k

[
1+
∑

j≥1 P
k
j f(z)j

]
be the expansion of z1−kf ′(z) in pow-

ers of f(z), then L−kf(z) =
∑

j≥k+1 P
k
j f(z)1+j−k. If f is univalent, let z = f−1(u)

The author thanks Paul Malliavin for discussions and for having introduced her to the classical

book by A.C. Schaeffer and D.C. Spencer, Ref. [15]. Also thanks to Nabil Bedjaoui, Université
de Picardie Jules Verne, for his help in the preparation of the manuscript.



2 H. Airault

in z1−kf ′(z), then the expansion in powers of u of L(u) = f−1(u)1−k

(f−1)′(u)
is obtained

with the derivative of the Lagrange expansion of [f−1(u)]k. This explains why Lau-
rent expansions for inverse functions are important in the theory of Kirillov vector
fields. On the other hand, for positive k, let Lkf(z) = z1+kf ′(z) as in [10], [14].
We prove that Lkf = L−kf for any k ∈ Z if and only if f(z) = z/(1− εz)2, ε = 1

or −1. We exhibit some of the many solutions of dft
dt

= (L−k −Lk)ft. However we
can relate these solutions to the Koebe function only when k = 1. In sections two
and three, we discuss expansions of powers of inverse functions and manipulations
on these series. In section four, we relate the inverse series to the Kirillov vector
fields and to diffeomorphisms of the circle. In section five, we calculate some of
the flows associated to the vector fields (Lk). In section six, we consider the image
(Tk) of the vector fields (Lk) under the map f → g where g(z) = 1/f(1/z). For
a univalent function f(z), it is natural to consider g(z) = 1

f(1
z )

, see for example

[17], [5]. Then z1−k f
′(z)
f(z) = v1+k g

′(v)
g(v) . This leads us to consider expansions of

v1+kg′(v) in powers of g(v) for a function g(v) = v + b1 + b2
v + · · · . We have

vk+1g′(v) = g(v)1+k
[
1+
∑

j≥1 V
−k
j g(v)−j

]
. The image vector fields (Tk) are given

by Tkg(z) =
∑

j≥k+1 V
−k
j g(u)−j. We compare the two families of vector fields (Lk)

and (Tk), they have respectively the generating functions A(f) and B(g) where

A(φ)(u, y) =
φ′(u)2φ(y)2

φ(u)2(φ(u) − φ(y))
=

φ′(u)2

φ(u) − φ(y)
− φ′(u)2

φ(u)
− φ′(u)2φ(y)

φ(u)2
(1.1)

B(φ)(u, y) =
φ′(u)2φ(y)

φ(u)(φ(u) − φ(y))
=

φ′(u)2

φ(u) − φ(y)
− φ′(u)2

φ(u)
(1.2)

Let ψ(z) =
1

φ(1
z )

then
u2

φ(y)2
B(φ)(u, y) = − 1

u2
A(ψ)

(
1
u
,
1
y

)
. (1.3)

In the last section seven, we examine degenerate cases for the vector fields (Lk)
and (Tk).

2. Change of variables in series

2.1. Laurent series for [g−1(z)]p with g(z) = z+b1+
∑

n≥1
bn+1

zn and for [f−1(z)]p

with f(z) = z + · · ·+ bnz
n+1 + · · · . Derivatives of the Laurent series

For n ≥ 0, n integer, the Faber polynomial Fn(z) of g is the polynomial part in
the Laurent expansion of [g−1(z)]n where g−1 is the inverse function of g, see [6],
[5], [9] and [8]. For any p ∈ C, the Laurent expansions of [g−1(z)]p and of [f−1(z)]p

can be obtained with the method of [2].
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Definition 2.1. The homogeneous polynomials Kp
n, Fn and Gn = K−1

n , n ≥ 1, n
integer, p a complex number, are defined with⎧⎪⎪⎨⎪⎪⎩

(1 + b1z + b2z
2 + · · · )p = 1 +

∑
n≥1K

p
n(b1, b2, . . . )zn

log(1 + b1z + b2z
2 + · · · ) = −

∑
k≥1

Fk
k

(b1, b2, . . . )zk

1
1 + b1z + b2z

2 + · · · = 1 +G1z +G2z
2 + · · ·

. (2.1)

Remark that p = 0 is a root of Kp
n as a polynomial in p, since for n ≥ 1, K0

n = 0.

Lemma 2.2. See [2]. Let g(z) = z + b1 + b2
z + · · ·+ bn+1

zn + · · · and let p ∈ Z, then⎧⎪⎨⎪⎩
(g(z)z )p = 1 +

∑
j≥1H

p
j

1
g(z)j

zg′(z)
g(z) (g(z)z )p = 1 +

∑
j≥1H

p−j
j

1
zj

with the same coefficients (Hp
j ).

If p �= 0, Hp−j
j = (1 − j

p)Kp
j . It extends for any p ∈ C and limp→0

j
p K

p
j = −Fj.

In particular, z g
′(z)
g(z) = 1 +

∑
j≥1 Fj

1
zj with Fj = H−j

j .

Corollary 2.3. Let g(z) = z + b1 + b2
z + · · · + bn+1

zn + · · · and f(z) = z + b1z
2 +

b2z
3 + · · · + bnz

n+1 + · · · , let p ∈ C. With the convention that p
p− nK

n−p
n is Fp

if p = n and p
n+ pK

−(n+p)
n is equal to Fp if n+ p = 0, we have⎧⎨⎩[g−1(z)]p = zp

[
1 +

∑
n≥1

p
p− nK

n−p
n

1
zn

]
[f−1(z)]p = zp

[
1 +

∑
n≥1

p
p+ nK

−(n+p)
n zn

]
.

(2.2)

Corollary 2.3 generalizes: Let h(z) = 1+b1z+b2z2 + · · · . We put f(z) = zh(z) and
g(z) = zh(1

z ). Define the maps Ep : f(z) → Ep(f)(z) = z[h(z)]p with p �= 0, p ∈ C
and Inv : f(z) = z[h(z)] → φ(f)(z) = f−1(z), the inverse of f and compositions
of these maps. Then Ek oEp = Ekp and Inv o Inv = Id.

Lemma 2.4. Let (kj)1≤j≤s be a finite sequence, kj �= 0. then

φ(f)(z) = [Eks o Inv oEks−1 o Inv o · · · oEk1 o Inv oEk0 ](f)(z) =

z

⎡⎣1 +
∑
n≥1

An(k1, k2, . . . , ks)
βn(k1, k2, . . . , ks)

K−k0βn(k1,k2,...,ks)
n zn

⎤⎦
where An(k1, k2, . . . , ks) and βn(k1, k2, . . . , ks) do not depend on the coefficients of
f(z). If βn(k1, k2, . . . , ks) = 0, we replace the corresponding term in the expansion
by (−1)s−1k0 ×

∏s
j=1 kj × 1

nFn z
n.

A similar result holds for g(z) by defining Ep : g(z) → Ep(g)(z) = z[h(1
z )]p with

p �= 0, p ∈ C and Inv : g(z) → φ(g)(z) = g−1(z), the inverse of g. The next
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expansions will be important. We take the derivative with respect to z in the
series of Corollary 2.3, the denominators (n+ p) disappear and for any p ∈ C,⎧⎪⎨⎪⎩

(g−1)′(y)
[g−1(y)]1−p = 1

y1−p

[
1 +
∑

n≥1K
n−p
n

1
yn

]
(f−1)′(y)

[f−1(y)]1−p = 1
y1−p

[
1 +
∑

n≥1K
−(n+p)
n yn

]
.

(2.3)

2.2. Expansions of z2(f
′(z)
f(z) )2 (f(z)

z )p, of
[f−1(y)]1−p

(f−1)′(y)
and of

[g−1(y)]1−p

(g−1)′(y)
In [1], see (A.1.2), (A.7.1), the following lemma is used to prove the identity on
the polynomials coefficients of the Schwarzian derivative L−kPp − L−pPk = (k −
p)Pp+k. With a change of variables in the Cauchy integral, we prove

Lemma 2.5. See [1]. Let f(z) = z +
∑

n≥1 cnz
n+1, then⎧⎪⎨⎪⎩

(i) (zf
′(z)

f(z) )2 (f(z)
z )p = 1 +

∑
n≥1 P

n+p
n zn

(ii) zf ′(z)
f(z) (f(z)

z )p = 1 +
∑

n≥1 P
p
n f(z)n

with the same polynomials P p
n .

Lemma 2.6. See [2]. Let g(z) = z + b1 + b2
z + b3

z2 + · · · , then⎧⎪⎨⎪⎩
z
g′(z)
g(z) (g(z)z )k = 1 +

∑
j≥1 V

k
j

1
g(z)j

(z g
′(z)
g(z) )2 (g(z)z )k = 1 +

∑
j≥1 V

k−j
j

1
zj

with the same polynomials V k
j .

The polynomials P p
n and V k

j are homogeneous in the variables (cj), respec-
tively (bj), they can be calculated with differential operators as in [1] or with
binomial analysis as in [6]. In the following, we relate them to the (Kp

n).

Proposition 2.7. The polynomials (P p
n) in Lemma 2.5 satisfy

[f−1(y)]1−p

(f−1)′(y)
= y1−p [1 +

∑
n≥1

P p
ny

n] =
y1−p

1 +
∑

n≥1K
−(n+p)
n yn

(2.4)

P p
n = Gn(K−(1+p)

1 ,K
−(2+p)
2 , . . . ,K−(n+p)

n ). (2.5)

Proof. We put z = f−1(y) in Lemma 2.5 and we use (2.3). We have

Gn(P p
1 , P

p
2 , . . . , P

p
n) = K−(n+p)

n ∀n ≥ 1. (2.6)

Moreover the map G on the manifold of coefficients is involutive (GoG = Identity).
�

Proposition 2.8. The polynomials (V k
j ) in Lemma 2.6 satisfy

[g−1(y)]1−k

y1−k(g−1)′(y)
= 1 +

∑
j≥1

V k
j

1
yj

=
1

1 +
∑

n≥1K
n−k
n

1
yn

(2.7)



Cases of Degeneracy 5

V k
n = Gn(K1−k

1 ,K2−k
2 , . . . ,Kn−k

n ) (2.8)

V k
n (b1, b2, . . . , bn) = P−k

n (G1(b1), G2(b1, b2), . . . , Gn(b1, b2, . . . , bn)). (2.9)

Moreover
∂

∂b1
V p

j+1 = (p+ j − 1)V p
j . (2.10)

Proof. Let z = g−1(y) in Lemma 2.6, then 1
k
d
dy [(g−1)(y)]k = yk−1

1 +
∑

j≥1 V
k
j y

−j .

We remark that 1
k
d
dy

[(g−1)(y)]k = yk−1 [1 +
∑

n≥1K
n−k
n

1
yn ]. To prove that

V k
n = P−k

n oG, we use Kk−n
n oG = Kn−k

n . To obtain (2.10), we remark that g′(z)
does not depend on b1, then we differentiate with respect to b1,

z1+kg′(z) =
∑
j≥0

V −k
j g(z)1+k−j

with V k
0 = 1 and we identify equal powers of g(z). �

Writing g′(z)2, we find V 2−p
p = K2

n(0,−b2,−2b3,−3b4, . . . ). We have V p
1 =

(p−1)b1, V
p
2 = (p−2)b2+ (p− 1)p

2 b21 = (p−2)b2+p
∫
V p

1 db1, V
p
3 = (p−3)b3+(p−

2)(p+ 1)b1b2 + (p− 1)p(p+ 1)
3! b31 = (p− 3)b3 + (p+ 1)

∫
V p

2 db1, V p
4 = (p− 4)b4 +

p2 − p− 4
2 b22 +(p+2)

∫
V p

3 db1, V
p
5 = (p−5)b5+(p2−p−8)b2b3+(p+3)

∫
V p

4 db1,

V p
6 = (p− 6)b6 + (p2 − p− 14)b2b4 + p2 − p− 12

2 b23 + (p+ 4)(p2 − p− 6)
3! b32 + (p+

4)
∫
V p

5 db1.

2.3. The expansion of zk+1(f
′(z)
f(z) )k+1 (f(z)

z )p

Lemma 2.9. Let f(z) = z + b1z
2 + · · · . For any k and p, then⎧⎪⎨⎪⎩

(zf
′(z)

f(z) )k+1 (f(z)
z )p = 1 +

∑
n≥1 J

n+p
n (k)zn

(zf
′(z)

f(z) )k (f(z)
z )p = 1 +

∑
n≥1 J

p
n(k) f(z)n

with the same Jp
n(k).

We have P p
n = Jp

n(1) and Jp
n(k) is a polynomial of the two variables (p, k),

its coefficients can be calculated with the method of [6]. The expansion of the

Schwarzian derivative Sf(z) = f ′′′(z)
f ′(z) − 3

2
(f ′′(z)
f ′(z)

)2 is related to the expan-

sions of Lemma 2.9 since z2S(fp)(z) = − (p2 − 1)
2 × z2f ′(z)2

f(z)2
+ z2Sf(z) and

S(f−1)(f(z)) = −Sf(z)/f ′(z)2. For f(z) = z+ b1z
2 + · · ·+ bnz

n+1 + · · · , what is
the expansion z2Sf(z) =

∑
n≥2 λn f(z)n in sum of powers of f(z)?
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3. Taylor series in the Laurent expansions of inverse functions

In this section, we consider Taylor series inside the Lagrange series for inverse
functions.

3.1. Polynomials associated to g(z) = z + b1 + b2
z + · · ·

The inverse function g−1, i.e., g−1 o g = Identity has for expansion

g−1(z) = z − b1 −
∑
n≥1

1
n
Kn

n+1

1
zn

and when p is integer, p ≥ 1,

[g−1(z)]p = zp +
∑

1≤k≤p−1

p

p− k
Kk−p

k zp−k + Fp −
∑
n≥1

p

n
Kn

n+p

1
zn
. (3.1)

With the Taylor formula on the polynomial part of [g−1(z)]p , see [5] and [4], we
obtain

Fp(z) = zp +
∑

1≤k≤p−1

p

p− k
Kk−p

k zp−k + Fp (3.2)

1
(p− j)!

∂p−j

∂zp−j
Fp(z)|z=0 =

p

p− j
Kj−p

j ∀p ≥ j. (3.3)

Let z = g(u) in (3.1), it gives up = Fp(g(u)) − ∑n≥1
p
nK

n
n+p

1
g(u)n . We define

the Grunsky coefficients βpq by Fp(g(u)) = up +
∑

q≥1 βpq
1
uq . Then, see [2], [7],

1
pβpq =

∑q−1
n=1

1
nK

n
n+pK

−n
q−n =

∑p−1
n=1

1
nK

n
n+qK

−n
p−n.

Proposition 3.1. The particularity of Fp(z) and of the series

Sp(z) =
∑
n≥1

p

n
Kn

n+p(b1, b2, . . . , bn+p)
1
zn

(3.4)

is that as functions of b1 and z, they depend only on b1 − z,

Fp(z) = Fp(z; b1, b2, . . . , bp) = Fp(0; b1 − z, b2, . . . , bp) (3.5)

Sp(z) =
∑
n≥1

p

n
Kn

n+p(0, b2, . . . , bn+p)
1

(z − b1)n
. (3.6)

Moreover Kq
p+q(b1, b2, . . . , bp+q) is a polynomial of degree q − 1 in b1,

Kq
p+q(b1, b2, . . . , bp+q) =

∑
1≤n≤q

p

n
Cq−1

n−1K
n
p+n(0, b2, . . . , bp+n) bq−n

1 . (3.7)

Proof. To prove that g−1(z) as function of (b1, z) and the other variables is a
function of b1−z and the other variables, we take the derivative with respect to b1
in g−1(g(z)) = z. Since ∂g(z)

∂b1
= 1, we obtain ( ∂

∂b1
g−1)(g(z)) + (g−1)′(g(z)) = 0.

Thus ∂
∂b1

g−1 + (g−1)′ = 0. We expand (3.6) in powers of b1z to obtain (3.7) �
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3.2. The polynomial part of
[g−1(y)]k

(g−1)′(y)

If k ≥ 0, then [g−1(y)]k

(g−1)′(y)
= yk[1 +

∑
j≥1 V

1−k
j

1
yj ] has a non zero polynomial part

and it depends only on y − b1. In analogy with the Faber polynomials, if k ≥ 0,
let φk(z) be the polynomial part of

[g−1(z)]k

(g−1)′(z)
= zk

⎡⎣1 +
k∑

j=1

V 1−k
j

1
zj

⎤⎦ . (3.8)

Then
φk(0) = V 1−k

k (b1, b2, . . . , bk) (3.9)

φk(z; b1, b2, . . . , bk) = φk(0; b1 − z, b2, . . . , bk) = V 1−k
k (b1 − z, b2, . . . , bk) (3.10)

φ0(z) = 1, φ1(z) = z−b1, φ2(z) = (z−b1)2−3b2, φ3(z) = (z−b1)3−4(z−b1)b2−5b3.
The generating function of (φn(z))n is

zg′(z)2

g(z)− w
= 1 +

∑
n≥1

φn(w)
1
zn
. (3.11)

φn(w) is the unique polynomial such that φn(g(w)) = wng′(w) +
∑

k≥1 γnk
1
wk .

φn(z) = Fn(z)− b2Fn−2(z)− 2b3Fn−3(z)− (n− 1)bn (3.12)

V 1−k
k+p (b1, b2, . . . ) =

p−1∑
n=0

V 1−k
k+p−n(0, b2, . . . )

(p− 1)!
n!(p− 1 − n)!

bn1 . (3.13)

The subseries U(z; b1, b2, . . . ) =
∑

j≥1 V
1−k
k+j

1
zj in the Laurent series of [g−1(z)]k

(g−1)′(z)
is a function of b1 − z and⎧⎪⎨⎪⎩

U(z) =
∑

j≥1 V
1−k
k+j (b1, b2, . . . ) 1

zj =
∑

j≥1 V
1−k
k+j (0, b2, . . . ) 1

(z − b1)j

=
∑

j≥1,n≥0 V
1−k
k+j (0, b2, . . . )

(n+ j − 1)!
n!(j − 1)! b

n
1

1
zn+j .

(3.14)

3.3. Polynomials related to f(z) = z + b1z
2 + · · ·

When p is a positive integer, 1
f−1(z)p is equal to

1
zp

+
∑

1≤k≤p−1

p

p− k
Kp−k

k

1
zp−k

− Fp −
∑
n≥1

p

n
K−n

n+pz
n = Hp(

1
z
) −
∑
n≥1

p

n
K−n

n+pz
n

where Hp(u) = up +
∑

1≤k≤p−1
p

p− k
Kp−k

k up−k − Fp. With z = f(u), it gives

Hp(
1

f(u)
) =

1
up

+
∑
n≥1

p

n
K−n

n+pf(u)n =
1
up

+
∑
q≥1

γpqu
q. (3.15)
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Given k integer, k ≥ 1, one find a unique sequence of homogeneous polynomials
(Qp)p≥1 in the variables b1, b2, . . . such that

f(z)k −Q1f(z)k+1 −Q2f(z)k+2 − · · · −Qpf(z)k+p − zk (3.16)

= Qp+1z
k+p+1 + higher terms in zj for j ≥ k + p+ 2.

We have [2, p. 349] Q1(b1) = kb1, Q2(b1, b2) = kb2 − k(k+3)
2 b21, Q3(b1, b2, b3) =

kb3 − k(k+4)b1b2 + k(k + 4)(k + 5)
3! b31, . . . ,Qn(b1, b2, . . . , bn) = − k

k + n
K
−(n+k)
n .

4. Diffeomorphisms of the circle and expansions
of inverse functions

4.1. Left invariant and right invariant vector fields on Diff(S1)
Given θ → χ(θ), then exp(εχ) is defined by

θ → exp(εχ(θ)) = θ + εχ(θ) +
ε2

2
χ oχ(θ) + · · ·+ εn

n!
χ oχ . . . o χ(θ) + · · · (4.1)

Let γ be a diffeomorphism of the circle, θ → γ(θ). For small ε > 0, we consider

γl
ε(θ) = exp(εχ) o γ (θ) = γ(θ) + εχ o γ(θ) + O(ε2) and Lγ =

d

dε |ε=0
γl

ε = χ o γ(θ)

γr
ε (θ) = γ o exp(εχ)(θ) = γ(θ+εχ(θ)+O(ε2)) and Rγ =

d

dε |ε=0
γr

ε = γ′(θ)χ(θ).

Then
( d
dε |ε=0

γl
ε

)
( γ−1(u)) and 1

γ′(u)
d
dε
γr

ε (u) are independent of γ.(
d

dε |ε=0
γε

)
( γ−1(u)) = − 1

(γ−1)′(u)
d

dε |ε=0
γ−1

ε (u). (4.2)

4.2. From γ to the univalent functions f and g such that f o γ = g.
The Laurent series L

To γ, we associate g univalent from the exterior of the unit disk and f univalent
from the interior of the unit disk such that on the circle |z| = 1, we have f o γ(z) =
g(z). For γε, we have γε = f−1

ε o gε. Following [10],

d

dε
γε(z) =

(
d

dε
f−1

ε

)
( gε(z)) + (f−1

ε )′( gε(z)) ×
d

dε
gε(z). (4.3)

Thus
( d

dεγε

)
( γ−1

ε (z) ) =
( d
dε
f−1

ε

)
( fε(z) ) + (f−1

ε )′(fε(z)) ×
( d
dε
gε

)
( g−1

ε (fε(z) ) .
We divide by (f−1

ε )′(fε(z)) and put y = fε(z).

Definition 4.1. Let⎧⎪⎨⎪⎩
L = 1

(f−1
ε )′(y)

( d
dε
γε

)
( γ−1

ε (f−1
ε (y)) )

= 1
(g−1

ε )′(y)
× 1
γ′(g−1

ε (y))
( d
dε
γε

)
( g−1

ε (y)).
(4.4)
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We have L = 1
(f−1

ε )′(y)
× d

‘dε
f−1

ε (y) +
( d
dε
gε

)
( g−1

ε (y) = Lf + Lg with

Lf =
1

(f−1
ε )′(y)

× d

dε
f−1

ε (y) and Lg =
(
d

dε
gε

)
( g−1

ε (y) ). (4.5)

Proposition 4.2.

If
(
d

dε |ε=0
γε

)
( γ−1(u)) = χ(u) = − u1−k, then L = − [f−1(y)]1−k

(f−1)′(y)
(4.6)

If
1

γ′(u)
×
(
d

dε |ε=0
γε(u)

)
= χ(u) = − u1−k, then L = − [g−1(y)]1−k

(g−1)′(y)
. (4.7)

This shows the importance of the polynomials P p
n and V k

j in section 3. As in
[12], the vector fields Lf can be related to the variational formulae on univalent
functions of Goluzin and Schiffer. See also the related works [3] and [13]. In the
following, we shall adopt the point of view of asymptotic expansions. The vector
fields do not preserve Diff(S1) and we shall not study whether the vector fields
associated to Lf or Lg as in (4.5) preserve the univalence of f or g. They are
simply related to the series of sections 2 and 3. They induce vector fields on the
set of functions f and g of the form (I) or (II) where

(I) :

{
f(z) = z + a1z

2 + · · ·+ anz
n+1 + · · ·

g(z) = c0z + c1 + c2
z + · · · + cn

zn−1 + · · · (4.8)

(II) :

{
f(z) = a0z + a1z

2 + · · ·+ anz
n+1 + · · ·

g(z) = z + c1 + c2
z + · · ·+ cn

zn−1 + · · · . (4.9)

Taking the perturbation γε of γ, we split differently the Laurent expansion of
( d
dε
γε)(γ−1

ε (z)) according to what we take (I) or (II) as normalization for f and
g in the decomposition f o γ = g. With (I), we obtain the vector fields (Lk) and
the generating function (1.1) and with (II), we obtain the vector fields (Tk) with
generating function (1.2). This is explained below.

5. Kirillov vector fields (Lk)

With (I), f(z) = z +
∑

n≥1 bnz
n+1. Let fε(z) such that

fε(z) = z +
∑
n≥1

bn(ε)zn+1 and f0(z) = f(z). (5.1)

The Taylor series of d
dε
fε(z) start with a term in z2 since d

dε
fε(z) =

∑
n≥2 b

′
n(ε)zn.

The Taylor series Lf start with a term in z2. On the other hand, Lg is of the form
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αz+ a sum of terms in zn with n ≤ 0. In this section, we assume (4.6) and

χ(u) = −u1−k. We put P 0
0 = 1. For k ≥ 0, L = − [f−1(y)]1−k

(f−1)′(y)
is given by

L =
1

yk−1

⎡⎣1 +
∑
n≥1

P k
ny

n

⎤⎦
= −

[
1

yk−1
+ P k

1

1
yk−2

+ · · · + P k
k−1 + P k

k y + P k
k+1y

2 + · · ·
]
.

In the decomposition (4.5),⎧⎪⎨⎪⎩
Lf = 1

(f−1
ε )′(y)

d
dε
f−1

ε (y) = − ∑n≥1 P
k
k+ny

n+1

= − [f−1(y)]1−k

(f−1)′(y)
−
(
d
dε
gε

)
( g−1

ε (y) )
(5.2)

Lg =
(
d

dε
gε

)
( g−1

ε (y) ) = − [
1

yk−1
+ P k

1

1
yk−2

+ · · ·+ P k
k−1 + P k

k y ]. (5.3)

If k ≤ 0, we have L = Lf , we obtain

Proposition 5.1. If
( d
dε |ε=0

γε

)
( γ−1(u)) = χ(u) = − u1+k and k ≥ 1, then

d

dε
f−1

ε (y) = − [f−1
ε (y)]k+1. (5.4)

In accordance with (5.2)–(5.3),

Definition 5.2. Let f(z) = z + b1z
2 + b2z

3 + · · ·+ bnz
n+1 + · · · . We define the left

vector fields [Lkf ](z) for k ∈ Z with

L−kf(z) = z1−kf ′(z)−
k∑

j=0

P k
k−jf(z)1−j =

+∞∑
j=0

P k
1+j+kf(z)j+2 for k ≥ 0 (5.5)

Lkf(z) = z1+kf ′(z) for k ≥ 1. (5.6)

5.1. Expression of the vector fields (Lk)k∈Z on the manifold of coefficients

We replace f(z)1−j = z1−j
∑

n≥0K
1−j
n zn in (5.5), it gives

[L−kf ](z) =
∑
n≥1

[ n∑
k=1

P p
k+pK

k+1
n−k

]
zn+1. (5.7)

Since ∂
∂bn

[f(z)] = zn+1, from (5.5)–(5.6), we deduce, see [10], [1],⎧⎨⎩L−p =
∑

n≥1A
p
n

∂
∂bn

with Ap
n =
∑n

k=1 P
p
k+pK

k+1
n−k ∀ p ≥ 0

Lp = ∂
∂bp

+ 2b1 ∂
∂bp+1

+ · · ·+ (n+ 1)bn ∂
∂bp+n

+ · · · for p ≥ 1.
(5.8)
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5.2. Integration of d
dt
ft(z) = L−kft(z) for positive integer k

We treat the cases k = 1 and k = 2, the method extends to arbitrary k. If
f(z) = z + b1z

2 + b2z
3 + · · · , we have L0f(z) = zf ′(z)− f(z),

L1f(z) = z2f ′(z) and L−1f(z) = f ′(z)− 1 − 2a1f(z) (5.9)

L2f(z) = z3f ′(z) and L−2f(z) =
f ′(z)
z

− 1
f(z)

−3a1+(a2
1−4a2)f(z) (5.10)

L−3f(z) =
f ′(z)
z2

− 1
f(z)2

− 4a1

f(z)
− (a2

1 + 5a2) − (6a3 − 2a1a2)f(z) (5.11)

L−4f(z) = f ′(z)
z3 − 1

f(z)3
− 5a1

f(z)2
− (4a2

1 + 6a2) 1
f(z) − (7a3 + 4a1a2 − a3

1)

− (8a4 − 2a1a3 − 2a2
1a2 + a4

1)f(z).

We see that ft(z) = f( z
1 + tz ) is solution of d

dt
ft = L1ft and the solutions of

d
dt
ft = Lkft for positive k are given in [10], [1], [11],

ft(z) =
z

(1 − tkzk)1/k
. (5.12)

On the other hand, for L−1, the function ft(z) = f(z + t)− f(t)
f ′(t) is a solution of

d

dt
ft(z) = f ′t(z)− 1 − f ′′t (0) ft(z). (5.13)

The function gt associated to ft as in (5.2) is given by d
dtgt(z) = − 1− f”t(0)gt(z).

Since f ′′t (0) = f ′′(t)
f ′(t) , we obtain

gt(z) =
g(z)− f(t)

f ′(t)
. (5.14)

Let γ be a homographic transformation, eiγ(θ) = γ(eiθ) = eiθ + b
1 + beiθ = γ(z) with

z = eiθ, then foγ = g with f(z) = z
1 − bz

and g(z) = z + b
1 − bb

. When t varies,

ft(z) =
z(1 − bt)

1 − b(t+ z)
(5.15)

f−1
t (u) = u(1 − bt)

1 − b(t− u)
, gt(z) = (1 − bt)2

1 − bb
z + (b− t)(1 − bt)

1 − bb
. We see that γt =

f−1
t o gt is the homographic transformation γt(z) = (1 − bt)z + b− t

1 + bz
, but γt does

not transform the unit circle to itself.
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The example k = 2. Since P 2
1 = 3b1 = 3

2f
′′(0), P 2

2 = 4b2−b21 = 4
3!f

′′′(0)− f ′′(0)2
4 ,

see [1] (A.1.9), we have to integrate

d

dt
ft(z) =

f ′t(z)
z

− 1
ft(z)

− 3
2
f ′′t (0) +

(
f ′′(0)2

4
− 4

3!
f ′′′(0)

)
ft(z)

where f ′t, f ′′t , f ′′′t are the derivatives with respect to z of ft.
For any k ≥ 1, the ft(z) defined by

ft(z)k =
φ(τ + zk) − φ(τ)

φ′(τ)
= zk +

φ′′(τ)
2φ′(τ)

z2k + · · ·

is a solution of d
dt
ft = L−kft if τ = kt. It is not difficult to find other solutions of

this equation. For example,

Lemma 5.3. Let ft(z) = z + a1(t)z2 + a2(t)z3 + · · · such that

ft(z)k − ka1(t)ft(z)k+1 = zk. (5.16)

If a1(t) satisfies the differential equation

d

dt
a1(t) = [(k + 1)a1(t)]k+1 (5.17)

then ft(z) is a solution of d
dtft(z) = L−kft(z) for k ≥ 1.

Proof. By identification of the coefficients of equal powers of z, the other coeffi-
cients an(t)n≥2 are uniquely determined by ft(z)k − ka1(t)ft(z)k+1 = zk. With
(2.1), Kk

n+1 = ka1K
k+1
n for n ≥ 1. Thus ft(z) depends only on a1(t). To prove

that ft(z) is a solution of d
dtft(z) = L−kft(z), it is enough to verify that

(kft(z)k−1 − k(k + 1)a1ft(z)k)
d

dt
ft(z) = (kft(z)k−1 − k(k + 1)a1ft(z)k)L−kf(z).

(5.18)
We have (kft(z)k−1 − k(k + 1)a1ft(z)k) d

dt
ft(z) = kft(z)k+1 d

dt
a1(t) and

(kft(z)k−1 − k(k + 1)a1ft(z)k)f ′t(z) = kzk−1.

Thus (5.18) is the same as

kft(z)k+1 d

dt
a1(t) = k − (kft(z)k−1 − k(k + 1)a1ft(z)k)

k∑
j=0

P k
k−jft(z)1−j .

By identifying equal powers of f(z) in this last equation, it is satisfied if

(k + 1)a1P
k
k−j = P k

k+1−j for 1 ≤ j ≤ k. (5.19)

This is a consequence of z1−kf ′(z)f(z)k−1 = 1 +
∑

j≥1 P
k
j f(z)j, see Lemma 2.5.

Also d
dt
a1(t) = (k + 1)a1P

k
k . �
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Lemma 5.3 extends to a more general class of solutions. According to (3.16),
for p ≥ 1, one can find differential equations for the coefficients a1(t), a2(t), . . . ,
ap(t) such that a solution of

ft(z)k +
p∑

j=1

k

k + j
K
−(k+j)
j ft(z)k+j = zk (5.20)

is a solution of d
dtft(z) = L−kft(z) for k ≥ 1.

5.3. Integration of d
dtft = (L−k − Lk)ft for k ∈ Z

There exist numerous solutions of d
dt
ft = (L−k − Lk)ft. One may think that

some of those solutions interact with boundaries of Schlicht regions as studied
in [15]. We shall prove in the last section that the Koebe function f satisfies
L−kf = Lkf for any integer k ≥ 1. However we obtain the Koebe function as

solution of f(z)k = f(u(z))− f(τ)
(1 − τ2)f ′(τ)

only when k = 1. Below, we give some examples

of solutions.

Lemma 5.4. The differential equation d
dtft = (L−1 − L1)ft can be written as

d

dt
ft(z) = (1 − z2)f ′t(z)− 1 − f ′′t (0)ft(z). (5.21)

Let τ(t) such that dτ
dt

= 1 − τ2 and let

ht(z) =
f( z + τ

1 + τz )− f(τ)

(1 − τ2)f ′(τ)
. (5.22)

The function ht(z) satisfies d
dt
ht(z) = (L−1 − L1)ht(z). If f(z) = z

(1 − z)2
, then

ht(z) is equal to z
(1 − z)2

, thus it is independent of t. Conversely if ht(z) is inde-

pendent of t, then f is a Koebe function or f(z) = 1
2 ln(1 + z

1 − z ).

Let k ≥ 1,

L−kf(z) = z1−kf ′(z)−f(z)1−k−2kakf(z) if f(z) = z+akz
k+1+a2kz

2k+1+ · · · .
(5.23)

Proposition 5.5. For k integer, k ≥ 1, d
dt
ft = (L−k − Lk)ft is of the form

d

dt
ft =

1 − z2k

zk−1

d

dz
ft − ft(z)1−k ×

k∑
j=0

P k
j ft(z)j . (5.24)

For k = 2, d
dtft = (L−2 − L2)ft is the same as

d

dt
ft(z) =

1 − z4

z
f ′t(z) −

1
ft(z)

− 3
2
f ′′t (0) −

(
4
3!
f ′′′(0) − f ′′(0)2

4

)
ft(z). (5.25)
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Let u(z) = zk + τ
1 + τzk . For any function φ(u) having a Taylor expansion at u = τ

such that φ′(τ) �= 0, then ft(z) given by

ft(z)k =
φ(u(z)) − φ(τ)
(1 − τ2)φ′(τ)

(5.26)

is a solution of d
dt
ft = (L−k − Lk)ft if dτ

dt
= k(1 − τ2).

For φ(u) = u
(1 − u)2

, then ft(z) = z
(1 − zk)

2
k

and for φ(u) = u2, ft(z) is given by

ft(z)k = (1 + τ2)z2k + 2τzk

2τ(1 + τzk)2
, . . . .

Proof. We obtain (5.24) since d
dt
ft = (L−k − Lk)ft is of the form

d

dt
ft =

1 − z2k

zk−1

d

dz
ft − ft(z)×

k∑
j=0

P k
k−j

1
f(z)j

.

With (2.4),
∑k

j=0 P
k
j f

j ×
∑

n≥0K
−(n+k)
n fn = 1−P k

k+1f
k+1 + terms in f j, j ≥

k+ 2. Now, we prove (5.26). We have du
dz

= kzk−1(1 − τ2)
(1 + τzk)2

and du
dτ

= 1 − z2k

(1 + τzk)2
.

The expansion ft(z) in powers of z is obtained as follows

φ(u) − φ(τ) = φ′(τ)(u − τ) +
φ′′(τ)

2
(u− τ)2 + · · ·

u = τ

(
1 +

zk

τ

)
(1 + τzk)−1 = τ

(
1 +
(

1
τ
− τ

)
zk + (τ2 − 1)z2k + · · ·

)
u− τ = (1 − τ2)(zk − τz2k + · · · thus

ft(z)k = zk +
[
− τ +

(1 − τ2)φ′′(τ)
2φ′(τ)

]
z2k + · · · = zk[1 + kakz

k+1 + · · · ].

This gives ft(z) = z + akz
k+1 + · · · with k ak = − τ + (1 − τ2)φ′′(τ)

2φ′(τ) . Taking

logarithmic derivatives, we verify that

z1−k(1 − z2k)
f ′t(z)
ft(z)

− 1
ft(z)k

− 2kak =
1

ft(z)
d

dt
ft(z). �

We give another example of solution,

Lemma 5.6. Let ft(z) be a solution of

ft(z)2 − 2a1(t)ft(z)3 =
z2

1 −Q2(t)z2
with Q2 = 2a2 − 5a2

1. (5.27)

We assume that dQ2(t)
dt

= −2(1 −Q2(t)2) and a′1(t) = 2a1Q2 + 27a3
1, then ft(z)

is a solution of d
dt
ft = (L−2 − L2)ft.
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Proof. We have ft(z)2−2a1(t)ft(z)3 = z2+Q2(t)z4+· · · , compare with (3.16). Let

J = z2

1 −Q2(t)z2 , we do a verification by replacing f3 in terms of J and f2. �

5.4. ft(z) = z
(1 + τ(t)zk)1/k belongs to two different integral manifolds

Let ft(z) = z
1 + τ(t)(zk)1/k and k integer, k ≥ 1, then if τ(t) = − kt, according to

(5.12), ft(z) is solution of d
dtft(z) = Lkft(z). On the other hand, with Proposition

5.5. taking φ(u) = u, we see that ft(z) is a solution of d
dtft(z) = (L−k − Lk)ft(z) if

dτ(t)
dt = (1 − τ2). We explain this as follows: In the infinite-dimensional manifold

M of functions f such that f(z) = z+a1z
2+a2z

3 + · · ·+akz
k+1 + · · · , we consider

the one-dimensional submanifold Nk of functions fk(z) = z
(1 + τzk)1/k for fixed

k ≥ 1. This manifold is parametrized by τ . On M , define the functional φk by
φk(f) = k2a2

k. Then on Nk, the two vector fields L−k and Lk are proportional, it
holds L−k = φk Lk.

5.5. f and g are like in (I). Generating functions for the Kirillov vector fields

Let A(φ)(u, y) as in (1.1) and d
dε
fε(z) = 1

2iπ
∫
A(fε)(u, z)

( d
dε
γε

)
( γ−1

ε (u)) du as
in (4.4)–(4.5). For k ∈ Z, |z| < |u|

Lkf(z) =
1

2iπ

∫
A(f)(u, z)uk+1du =

f(z)2

2iπ

∫
f ′(u)2

f(u)2(f(u) − f(z))
uk+1du.

(5.28)

We deduce
∑

k∈Z(Lkf(z))u−k = u2f ′(u)2f(z)2

f(u)2(f(u)− f(z))
. Since Lkf(z) = zk+1f ′(z)

for k ≥ 1,⎧⎨⎩
∑

k≥1 Lkf(z)uk =
∑

k≥1 z
1+kf ′(z)uk = z2u

1 − zu f
′(z)∑

k≥1 L−kf(z)uk = u2f ′(u)2

f(u)2
× f(z)2
f(u)− f(z) − zuf ′(z)

u− z + f(z).
(5.29)

6. The vector fields (Tk)

Let g(z) = z+ b1 + b2
z + · · · and gε(z) = z+ b1(ε) +

∑
n≥1

bn+1(ε)
zn . Let k ≥ 0 and

1
γ′ε(u) ×

( d
dε
γε

)
(u) = χ(u) = u1+k. Then L = Lf + Lg as in (4.4)–(4.5) and (2.7).

L =
[g−1

ε (y)]1+k

(g−1
ε )′(y)

= y1+k

⎡⎣1 +
∑
j≥1

V −k
j

1
yj

⎤⎦ (6.1)

Lg =
(
d

dε
gε

)
(g−1

ε (y)) =
∑
j≥1

V −k
j+k y

1−j =
[g−1

ε (y)]1+k

(g−1
ε )′(y)

− y1+k −
k∑

j=1

V −k
j y1+k−j

(6.2)
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Lf =
1

(f−1
ε )′(y)

× d

dε
f−1

ε (y) = y× the polynomial part of
(

1
y
× [g−1

ε (y)]1+k

(g−1
ε )′(y)

)
.

(6.3)
Let z = gε(y) in (6.2), then ( d

dε
gε)(z) = z1+kg′(z)−g(z)1+k−

∑k
j=1 V

−k
j g(z)1+k−j .

The vector fields induced by ( d
dε
gε)(z) are different from the right vector fields on

g in [10].

Definition 6.1. We put Tp g (z) = z1+pg′(z) −∑p
j=0 V

−p
j g(z)p+1−j. This defines

the vector fields (Tp) with

Tp g (z) =
∑
j≥1

V −p
p+j g(z)

1−j if p ≥ 0 and T−p g (z) = z1−pg′(z) if p > 0.

Then T0g(z) = zg′(z)−g(z), T1g(z) = z2g′(z)−g(z)2+2b1g(z), T−1g(z) = g′(z),

T2g(z) = z3g′(z) − g(z)3 + 3b1g(z)2 + (4b2 − 3b21)g(z), T−2g(z) = g′(z)
z , . . . .

6.1. Generating functions for the vector fields (Tk)k∈Z

Let B(φ)(u, y) as in (1.2). We split L with the normalization (II), see (4.9). In L,
the powers yn, n ≥ 1 correspond to f and powers yn, n ≤ 0 correspond to g. Let

χ(u) = 1
γ′(u) ×

( d
dε
γε

)
(u), then

( d
dε
gε

)
(g−1

ε (z)) = z
2iπ
∫ χ(g−1(u))
u(u− z)(g−1)′(u)

du.

With z = g(y) and u = g(v),

d

dε
gε(y) =

1
2iπ

∫
B(g)(v, y)χ(v) dv. (6.4)

When χ(u) = u1−p,

(Tpg)(z) =
1

2iπ

∫
g′(u)2g(z)u1−p

g(u)(g(u)− g(z))
du =

z

2iπ

∫
[g−1(u)]1−p

u(u− z)(g−1)′(u)
du (6.5)

∑
p∈Z

(Tpg)(z)up =
u2g′(u)2g(z)

g(u)(g(u)− g(z))
. (6.6)

We deduce⎧⎨⎩
∑

p≥1 T−pg(z)u−p = z
uz − 1 g

′(z)∑
p≥1 Tpg(z)up = u2g′(u)2g(z)

g(u)(g(u)− g(z)) − uz2g′(z)
uz − 1 + g(z).

(6.7)

6.2. The Schwarzian derivative of g and the operators (Tp)

The Schwarzian derivative of g(z) = z + b1 + b2
z + · · · is given by

Sg(z) =
(g′′
g′
)′ − 1

2
(g′′
g′
)2 =

∑
n≥2

Q̃n z
−(n+2)

= −6b2
1
z4 − 24b3

1
z5 − 12(b22 + 5b4)

1
z6 − 24(3b2b3 + 5b5)

1
z7 − · · · . (6.8)
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On the manifold of coefficients, with ∂
∂bn

g(z) = 1
zn−1 and (6.8), we define

T−p = −
∑
n≥0

(n− 1)bn
∂

∂bn+p
∀p > 0. (6.9)

Lemma 6.2. T−p(Q̃n) = −(p3 − p)δn,p − (n+ p)Q̃n−p

Proof. Since T−pg(z) = z1−pg′(z) if p > 0, we have T−p(Sg) = p(p + 1)(1 −
p)z−(p+2) + z1−p

(
Sg

)′ + 2(1 − p)z−p Sg. We identify equal powers of z. �
The coefficients of the Schwarzian derivative Sg in terms of (bj) are calculated in
[7] with the method of [6]. All the polynomials Q̃n have negative coefficients. We
can take advantage of that to obtain majorations of Q̃n, for all n ≥ 2. This kind
of argument was used in [17] and [5] to obtain majorations of derivatives of the

Faber polynomials of f̃(z) = z2

f(z) . It differs from the methods in [18].

7. Degeneracy of the vector fields Lk and Tk

7.1. Degeneracy of (Lk)k∈Z . The condition Lk = L−k

The condition L1f = L−1f gives (i) (1− z2)f ′(z) = 1 + f ′′(0) f(z). The condition
L2f = L−2f gives (ii) (1− z4)f ′(z) = z

f(z) + 3a1z + (4a2 − a2
1) z f(z) with 2a1 =

f ′′(0), 6a2 = f ′′′(0).

Proposition 7.1. The only solutions f of the system

L2f(z) = L−2f(z) and L1f(z) = L−1f(z) (7.1)

are f(z) = z
(1 − εz)2

with ε = 1 or ε = −1.

Proof. The solutions of (i) are f(z) = 1
2a1

[ (1 + z
1 − z )a1 − 1 ] if a1 �= 0 and f(z) =

1
2 ln(1 + z

1 − z ) if a1 = 0. Assume that a1 �= 0, the condition f ′′′(0) = 6a2 implies that

3a2 = 1 + 2a2
1. In (ii), we put u = 1 + z

1 − z and h(u) = f(z) = 1
2a1

[ua1 − 1], it gives
4u(u2 + 1)
u2 − 1

h′(u) = 1
h(u) + 3a1 + (4a2 − a2

1)h(u); we replace h(u) by its expression

and make u→ 0 or u→ ∞, we obtain 3a2
1 = 4a2. We deduce from 3a2 = 1 + 2a2

1

and 3a2
1 = 4a2 that a2 = 3 and a1 = 2 or a1 = −2. Assume that a1 = 0 and

consider f(z) = 1
2 ln(1 + z

1 − z ) = z + z3

3 + z5

5 + · · · . We have f ′′′(0) = 2. In that

case, (ii) transforms into 4u(u2 + 1)
u2 − 1

h′(u) = 1
h(u) + 8h(u), it is immediate that

h(u) = 1
2 ln(u) is not a solution of this last equation. �

Theorem 7.2. The function f(z) = z + a1z
2 + · · · + anz

n+1 + · · · is a solution of
(∗) (i.e., Lkf = L−kf) if and only if f(z) = constant × z

(1 − εz)2
with ε = 1 or

ε = −1. In particular a3 = 2a1a2 − a3
1, 4a1a2 = 3a3

1, 3a2 = 1 + 2a2
1.
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Proof. First, to χ(u) = uk+1 − u1−k, k ≥ 1, we associate Lkf − L−kf . Then∑
k≥1[Lkf(z) − L−kf(z)]wk

=
[
z2w

1 − zw
+

zw

w − z

]
f ′(z) − f(z) − w2f ′(w)2

f(w)2
× f(z)2

f(w) − f(z)
(7.2)

and the condition Lkf = L−kf for any k ≥ 1 is the same as (∗) or[
z(1− z2)

( 1
w − z)(w − z)

]
f ′(z) − f(z) − w2f ′(w)2

f(w)2
× f(z)2

f(w) − f(z)
= 0. (7.3)

If zf
′(z)

f(z) = 1 + z
1 − z or equivalently f(z) = constant × z

(1 − z)2
, then it is not

difficult to verify that f is a solution of (∗). Conversely, if f is a solution of (∗),
then for any k ≥ 1, we have Lkf(z) = L−kf(z). From Proposition 7.1, we see that
f(z) is a Koebe function. �

7.2. Degeneracy of the vectors (Tk)k∈Z , (Tkg = T−kg, ∀k ∈ Z)
The condition T1g(z) = T−1g(z) gives (iii): (1− z2)g′(z) = − g(z)2 + 2b1g(z). We
put v(z) = 1

g(1
z )

= z − b1z
2+· · · . We have (1−z2)v′(z) = 1−2b1v(z) and v′′(0) =

−2b1. This shows that v(z) satisfies (i). The condition T2g(z) = T−2g(z) gives (iv):
(1 − z4)

z g′(z) = − g(z)3 + 3b1g(z)2 + (4b2− 3b21)g(z). We put v(z) = 1
g(1
z )

in (iv),

it gives (1− z4)v′(z) = z
v(z) − 3b1z − (4b2−3b21)z v(z). This is the same equation

as (ii) where we put a1 = G1(b1) = −b1 and a2 = G2(b1, b2) = b21 − b2. According
to Proposition 7.1, the common solutions of (iii) and (iv) are v(z) = z

(1−εz)2 . It

gives g(z) = z − 2ε+ 1
z .

Proposition 7.3. We have Tkg = T−kg for any k ∈ Z if and only if g(z) = z−2ε+ 1
z

with ε = 1 or ε = −1.
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Poincaré–Steklov Integral Equations
and Moduli of Pants

Andrei Bogatyrev

Abstract. Various physical and mathematical settings bring us to a bound-
ary value problem for a harmonic function with spectral parameter in the
boundary conditions. One of those problems may be reduced to a singular 1D
integral equation with spectral parameter. We present a constructive repre-
sentation for the eigenvalues and eigenfunctions of this integral equation in
terms of moduli of explicitly constructed pants, one of the simplest Riemann
surfaces with boundary. Essentially the solution of the integral equation is re-
duced to the solution of three transcendental equations with three unknown
numbers, moduli of pants.

Mathematics Subject Classification (2000). Primary 30Fxx; Secondary 14H15,
30C20, 45C05, 33E30.

Keywords. Spectral parameter, Riemann surface, pair of pants, branched com-
plex projective structure, Dessin d’Enfants.

We introduce the new type of constructive pictorial representations for the
solutions of the following spectral singular Poincaré–Steklov (PS for brevity) inte-
gral equation

λ V.p.

∫
I

u(t)
t− x

dt− V.p.

∫
I

u(t) dR(t)
R(t) −R(x)

= const, x ∈ I := (−1, 1), (0.1)

where λ is the spectral parameter; u(t) is the unknown function; const is indepen-
dent of x. The functional parameterR(t) of the equation is a smooth nondegenerate
change of variable on the interval I:

d

dt
R(t) �= 0, t ∈ [−1, 1]. (0.2)

This work was supported by grant MD4798.2007.01.
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1. Introduction

H. Poincaré (1896) and V.A. Steklov (1901) were the first who put the spectral
parameter to the boundary conditions of the problem for an elliptic operator. Later
it became a popular technique for the analysis and optimization in diffraction
problems [1], (thermo)conductivity of composite materials, simple 2D model of oil
extraction etc.

1.1. Spectral boundary value problem

Let a domain in the plane be subdivided into two simply connected domains Ω1

and Ω2 by a smooth simple arc Γ. We are looking for the values of the spectral
parameter λ when the following problem has a nonzero solution:�

�

�

�
� �

Ω1

Ω2
Γ

ΔU1 = 0 in Ω1; U1 = 0 on ∂Ω1 \ Γ;
ΔU2 = 0 in Ω2; U2 = 0 on ∂Ω2 \ Γ;
U1 = U2 on Γ;

−λ∂U1

∂n
=

∂U2

∂n
on Γ,

(1.1)

Spectral problems of this type naturally arise, e.g., in the justification and
optimization of a domain decomposition method for the solution of a boundary
value problem for Laplace equation. It is easy to show that the eigenfunctions and
the eigenvalues of the problem (1.1) are correspondingly the critical points and
critical values of the functional (the so-called generalized Rayleigh ratio)

F (U) =

∫
Ω2

| grad U2|2 dΩ2∫
Ω1

| grad U1|2 dΩ1
, U ∈ H1/2

oo (Γ), (1.2)

where Us is the harmonic continuation of the function U from the interface Γ to
the domain Ωs, s = 1, 2, vanishing at the outer boundary of the domain.

The boundary value problem (1.1) is equivalent to a certain Poincaré–Steklov
equation. Indeed, let Vs be the harmonic function conjugate to Us, s = 1, 2. From
the Cauchy–Riemann equations and the relations on Γ it follows that the tangent
to the interface derivatives of V1 and V2 differ by the same factor −λ. Integrating
along Γ we get

λV1(y) + V2(y) = const, y ∈ Γ. (1.3)

The boundary values of conjugate functions harmonic in the half-plane are related
by a Hilbert transformation. To reduce our case to this model we consider a con-
formal mapping ωs(y) from Ωs to the open upper half-plane H with normalization
ωs(Γ) = I, s = 1, 2. Now equation (1.3) may be rewritten as

−λ
π
V.p.

∫
I

U1(ω−1
1 (t))

t− ω1(y)
dt− 1

π
V.p.

∫
I

U2(ω−1
2 (t′))

t′ − ω2(y)
dt′ = const, y ∈ Γ.
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Introducing the new notation x := ω1(y) ∈ I; R := ω2 ◦ ω−1
1 : I → Γ → I;

u(t) := U1(ω−1
1 (t)) and the change of variable t′ = R(t) in the second integral we

arrive at the Poincaré–Steklov equation (0.1). Note that in this context R(t) is the
decreasing function on I.

1.2. Some known results

The natural way to study integral equations is operator analysis. This discipline
allows to obtain for the smooth nondegenerate change of variables R(x) the fol-
lowing results [2]:

• The spectrum is discrete; the eigenvalues are positive and converge to λ = 1.
•
∑

λ∈Sp |λ− 1|2 <∞ (a constructive estimate in terms of R(x) is given)

• The eigenfunctions u(x) form a basis in the Sobolev space H1/2
oo (I).

1.3. Goal and philosophy of the research

The approach of complex geometry for the same integral equation gives different
types of results. For quadratic R(x) = x + (2C)−1(x2 − 1), C > 1, the eigenpairs
were found explicitly [3]:

un(x) = sin

⎡⎢⎣nπ
K ′

(C+x)/(C−1)∫
1

(s2 − 1)−1/2(1 − k2s2)−1/2ds

⎤⎥⎦ ,
λn = 1 + 1/ cosh2πτn, n = 1, 2, . . . ,

where τ = K/K ′ is the ratio of the complete elliptic integrals of modulus k =
(C − 1)/(C + 1). Now we are going to give constructive representations for the
eigenpairs {λ, u(x)} of the integral equation with R(x) = R3(x) being a rational
function of degree 3. Equation (0.1) itself will be called PS-3 in this case.

The notion of a constructive representation for the solution should be however
specified. Usually this means that we restrict the search for the solution to a certain
class of functions such as rational, elementary, abelian, quadratures, the Umemura
classical functions, etc. The history of mathematics knows many disappointing re-
sults when the solution of the prescribed form does not exist. Say, the diagonal of
the square is not commensurable with its side, generic algebraic equations cannot
be solved in radicals, linear ordinary differential equations usually cannot be solved
by quadratures, Painlevé equations cannot be solved by Umemura functions. Na-
ture always forces us to introduce new types of transcendent objects to enlarge
the scope of search. The study of new transcendental functions constitutes the
progress of mathematics. This research philosophy goes back to H. Poincaré [4].
From the philosophical point of view our goal is to disclose the nature of emerging
transcendental functions in the case of PS-3 integral equations.
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1.4. Brief description of the result

The rational function R3(x) of degree three is explicitly related to a pair of pants
in Section 2.2. On the other hand, given a spectral parameter λ and two auxiliary
real parameters, we explicitly construct in Section 2.3 another pair of pants which
additionally depend on two integers. When the above two pants are conformally
equivalent, λ is the eigenvalue of the integral equation PS-3 with parameter R3(x).
Essentially, this means that to find the spectrum of the given integral equation
(0.1) one has to solve three transcendental equations involving three moduli of
pants.

Whether this representation of the solutions may be considered as construc-
tive or not is a matter of discussion. Our approach to the notion of a constructive
representation is utilitarian: the more we learn about the solution from the given
representation the more constructive is the latter. At least we are able to obtain
valuable features of the solution: to determine the number of zeroes of the eigen-
function u(t), to find the exact locus for the spectra and to show the discrete
mechanism of generating the eigenvalues.

2. Description of the main result

The shape of the two domains Ω1 and Ω2 defines the variable change R(x) only
up to a certain two-parametric deformation. One can easily check that the gauge
transformation R→ L2 ◦R ◦ L1, where the linear fractional function Ls(x) keeps
the segment [−1, 1], does not affect the spectrum of equation (0.1) and induces
only the change of the argument for its eigenfunctions: u(x) → u ◦ L1(x). For
this reason we do not distinguish between two PS equations with their functional
parameters R(x) related by the gauge transformation.

The space of equivalence classes of equations PS-3 has real dimension 3 =
7−2−2 and several components with different topology of the functional parameter
R3. In the present paper we study for brevity only one of the components, the
choice is specified in Section 2.1.1.

2.1. Topology of the branched covering

In what follows we consider rational degree three functions R3(x) with separate
real critical values different from ±1. The rational function R3(x) defines a 3-
sheeted branched covering of a Riemann sphere by another Riemann sphere. The
Riemann–Hurwitz formula suggests that R3(x) has four separate branch points
as, s = 1, . . . , 4. This means that every value as is covered by a critical (double)
point bs, and an ordinary point cs.

Every point y �= as of the extended real axis R̂ := R∪{∞} belongs to exactly
one of two types. For the type (3:0) the pre-image R−1

3 (y) consists of three distinct
real points. For the type (1:2) the pre-image consists of a real and two complex
conjugate points. The type of the point remains locally constant on the extended
real axis and changes when we step over the branch point. Let the branch points
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as be enumerated in the natural cyclic order of R̂ so that the intervals (a1, a2) and
(a3, a4) are filled with the points of the type (1:2). Later we will specify the way
to exclude the relabeling a1 ↔ a3, a2 ↔ a4 of branch points.

� �a1 a2 � �a3 a4
R̂

�y
� �c4 c3 � �c2 c1

�
�
�
�� �b1 b2

�
�
�
�� �b3 b4

R̂ −→
R3(x)

�x

Figure 1. The topology of the covering R3 with real branch points

The total pre-image R−1
3 (R̂) consists of the extended real axis and two pairs

of complex conjugate arcs intersecting R̂ at the points b1, b2, b3, b4 as shown at the
left side of Fig. 1. The compliment of this pre-image on the Riemann sphere has
six components, each of them is mapped 1-1 onto the upper or lower half-plane.

2.1.1. The component in the space of equations. The nondegeneracy condition
(0.2) forbids that any of critical points bs be inside the segment of integration
[−1, 1]. In what follows we consider the case when the latter segment lies in the
annulus bounded by two ovals passing through the critical points bs. Possibly
relabeling the branch points we assume that [−1, 1] ⊂ (b2, b3).

Other components in the space of PS-3 integral equations are treated in [11].

2.2. Pair of pants

For obvious reason a pair of pants is the name for the Riemann sphere with
three holes in it. Any pair of pants may be conformally mapped to Ĉ := C ∪ {∞}
with three nonintersecting real slots. This mapping is unique up to the real linear-
fractional transformation of the sphere. The conformal class of pants with labeled
boundary components depend on three real parameters varying in a cell.
Definition To the variable change R3(x) we associate the pair of pants

P(R3) := Closure
(
Ĉ \ {[−1, 1]∪ [a1, a2] ∪ [a3, a4]}

)
. (2.1)

Closure here and below is taken with respect to the intrinsic spherical metrics
when every slot acquires two sides. Boundary components of the pair of pants are
colored (labeled) in accordance with the palette:

[−1, 1] – “red”,
[a1, a2] – “blue”,
[a3, a4] – “green”.

The conformal class of pants (2.1) depends only on the equivalence class of
integral equations. To simplify the statement of our result we assume that infinity
lies strictly inside the pants (2.1) which is not a loss of generality – we can always
apply a suitable gauge transformation of the parameter R3(x).
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2.2.1. Reconstruction of R3(x) from the pants. Here we show that the branched
covering map R3(x) with given branch points as, s = 1, . . . , 4, is essentially unique.
A possible ambiguity is due to the conformal motions of the covering Riemann
sphere.

Let La be the unique linear-fractional map sending the critical values a1,
a2, a3, a4 of R3 to respectively 0, 1, a > 1, ∞. The conformal motion Lb of the
covering Riemann sphere sends the critical points b1, b2, b3, b4 (unknown at the
moment) to respectively 0, 1, b > 1, ∞. The function La◦R3◦L−1

b with normalized
critical points and critical values takes a simple form

R̃3(x) = x2L(x)

with a real linear fractional function L(x) satisfying the restrictions:

L(1) = 1, L′(1) = −2,
L(b) = a/b2, L′(b) = −2a/b3.

We got four equations for three parameters of L(x) and the unknown b. The first
two equations suggest the following expression for L(x)

L(x) = 1 + 2
(c− 1)(x− 1)

x− c
.

Another two are solved parametrically in terms of parameter c:

b = c
3c− 3
2c− 1

; a = c
(3c− 3)3

2c− 1
.

Both functions b(c) and a(c) increase from 1 to ∞ when the argument c ∈
(1/3, 1/2). So, given a > 1 we find the unique c in just specified limits, and there-
fore the mapping R̃3(x). Now we can restore the linear fractional map Lb. The

inverse image R̃3

−1
of the segment La[−1, 1] consists of three disjoint segments.

For our case we choose the (unique) component of the pre-image belonging to the
segment [1, b]. The requirement: Lb maps [−1, 1] to the chosen segment determines
R3(x) up to a gauge transformation.

2.3. Another pair of pants

For real λ ∈ (1, 2) we consider an annulus α depending on λ bounded by εR̂,
ε := exp(2πi/3), and the circle

C := {p ∈ C : |p− μ−1|2 = μ−2 − 1}, μ :=

√
3 − λ

2λ
∈ (

1
2
, 1). (2.2)

Another annulus bounded by the same circle C and ε2R̂ is denoted by α. Note
that for the considered values of λ the circle C does not intersect the lines ε±1R.
We paint the boundaries of our annuli in the following way:

C – “red”,
εR̂ – “green”,
ε2R̂ – “blue”.
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Given λ in the specified above limits, real h1, h2 and nonnegative integers
m1,m2, we define three pairs of pants Ps(λ, h1, h2|m1,m2) of different fashions
s = 1, 2, 3.

Fashion 1:
P1(λ, h1, h2|m1,m2) := m1α + m2α +

C

0

h

+

C

0

h

"red"
"green"
"blue"

The operations ‘+’ here stand for a certain surgery. First of all take two
annuli α and α and cut them along the same segment (dashed red line in the
figure above) starting at the point h := h1 + ih2 from the interior of α ∩ α and
ending at the circle C. Now glue the left bank of one cut to the right bank of
the other. The resulting two sheeted surface (called Überlagerungsfläche in the
following) will be the pair of pants P1(λ, h1, h2|0, 0). It is possible to modify the
obtained surface sewing several annuli to it. Cut the annulus α contained in the
pants and m1 more copies of this annulus along the same segment (shown by the
dashed green line in the figure above) connecting the boundaries of the annulus.
The left bank of the cut on every copy of α is identified with the right bank of
the cut on another copy so that all copies of the annulus are glued in one piece. A
similar procedure may be repeated for the annulus α (cut along the dashed blue
line). The scheme for sewing together fashion 1 pants from the patches α, ᾱ when
m1 = 3 and m2 = 2 is shown in Fig. 2.

Fashions 2 and 3:
P2(λ, h1, h2|m1,m2) := P3(λ, h1, h2|m1,m2) :=
m1α + m2α + m1α + m2α +

C

0

−ε2h2

−ε2h1 C

0

−εh2

−εh1
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The pair of pants P2(λ, h1, h2|0, 0) (resp. P3(λ, h1, h2|0, 0)) by definition is
the annulus α (resp. α) with removed segment −ε2[h1, h2] (resp. −ε[h1, h2]), 0 <
h1 < h2 < ∞. As in the previous case those pants may be modified by sewing in
several annuli α, α. The scheme of cutting and gluing is shown in Fig. 3

α

α

α
α

α
_

α
_

α
_*

Figure 2. The scheme for sewing pants P1(λ, h1, h2|3, 2). Asterisk is
the critical point of p(y).

α
α

α
α

α
_

α *

*
α

α
_

α
_

α
_

α
_

*

*

Figure 3. The scheme for sewing pants P2(λ, h1, h2|4, 1) (left); and
P3(λ, h1, h2|1, 3) (right). Asterisks are the critical points of the mapping
p(y).

2.3.1. Remarks on the constructed pairs of pants. 1. The limiting case of the first
fashion of the pants when the branch point h1 + ih2 tends to ε±1R coincides with
the limiting cases of the two other fashion pants when h1 = h2 > 0:

P1(λ,−Re(ε2h),−Im(ε2h)|m1,m2) = P2(λ, h, h|m1,m2 + 1),
P1(λ,−Re(εh),−Im(εh)|m1,m2) = P3(λ, h, h|m1 + 1,m2),

(2.3)

where parameter h > 0. We denote those intermediate cases as Ps(λ, h|m1,m2),
s = 12, 13 respectively.

2. The surgery procedure of sewing annuli, e.g., to the pants (known as graft-
ing of projective structures) was designed by B. Maskit (1969), D. Hejhal (1975)
and D. Sullivan-W. Thurston (1983), see also W. Goldman (1987).

3. Every pair of pants Ps(λ, h1, h2|m1,m2) may be conformally mapped to
the sphere with three real slots, i.e., pants of the type (2.1). Let p(y) be the
inverse mapping. We observe that p(y) has exactly one critical point in the pants
P(R3), counting multiplicity and weight. For the fashion s = 1 this point lies
strictly inside the pants and is mapped to h = h1 + ih2. For the case s = 2 (resp.
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s = 3) there will be two simple critical points of p(y) on the blue (resp. green)
boundary component of the pants which are mapped to the points −ε2h1, −ε2h2

(resp.−εh1, −εh2). Finally, for the intermediate case (see Remark 1) there will
be a double critical point on the boundary. The multiplicity of the critical point
on the boundary should be calculated with respect to the local parameter of the
double of pants P(R3):

M :=

{
w2 = (y2 − 1)

4∏
s=1

(y − as)

}
, (2.4)

e.g., at the endpoint a = ±1, a1, . . . , a4 of the slot this local parameter is
√
y − a.

We consider the critical points on the boundary with the weight 1
2 .

2.4. Main theorem

Later we explain that real eigenfunctions of the integral equation PS-3 are split
with respect to the reflection symmetry into two groups: the symmetric and the
antisymmetric. In the present paper we consider only the second group of solutions.

Theorem 2.1. When λ �= 1, 3 the antisymmetric eigenfunctions u(x) of the PS-3
integral equation with parameter R3(x) are in one to one correspondence with the
pants Ps(λ, h1, h2|m1,m2), s = 1, 2, 3, 12, 13, which are conformally equivalent to
the pair of pants P(R3) with colored boundary components.

Let p(y) be the conformal map from P(R3) to Ps(λ, h1, h2|m1,m2), then up
to proportionality

u(x) =

√
(y − y1)(y − y2)
p′(y+)p′(y−)

p(y+)− p(y−)
w(y)

, (2.5)

where x ∈ [−1, 1]; y := R3(x), y± := y ± i0. For s = 1, y1 = y2 is the critical
point of the function p(y); for s = 2, 3 the real y1 and y2 are critical points of the
function p(y).

The proof of this theorem will be given in the remaining two sections of the
article.

2.5. Corollaries

The representation (2.5) cannot be called explicit in the usual sense, since it com-
prises a transcendent function p(y). We show that nevertheless the representation
is useful as it allows us to understand the following properties of the solutions.

1. The “antisymmetric” part of the spectrum is always a subset of [1, 2)∪{3}.
2. Every λ ∈ (1, 2) is the eigenvalue for infinitely many equations PS-3.

Proof. Any of the constructed pants may be transformed to the standard form: a
sphere with three real slots. Normalizing the red slot to be [−1, 1], the end points
of the two other slots will give the branch points a1, . . . , a4. We know already how
to reconstruct the branched covering R3(x) from its branch points. �
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3. Eigenfunction u(x) related to the pants Ps(. . . |m1,m2) has exactly m1 +
m2 +2 zeroes on the segment [−1, 1] when s = 2, 3 and one more zero when s = 1.

Proof. According to the formula (2.5), the number of zeroes of eigenfunction u(x)
is equal to the number of points y ∈ [−1, 1] where p(y+) = p(y−). This number in
turn is equal to the number of solutions of the inclusion

S(y) := Arg[p(y−) − μ−1]−Arg[p(y+)− μ−1] ∈ 2πZ, y ∈ [−1, 1]. (2.6)

Let the point p(y) go m times around the circle C when its argument y
travels along the two sides of [−1, 1]. The integer m is naturally related to the
integer parameters of the pants Ps(. . . ). The function S(y) strictly increases from
0 to 2πm on the segment [−1, 1], therefore the inclusion (2.6) has exactly m + 1
solutions on the mentioned segment. �

4. The mechanism for generating the discrete spectrum of the integral equa-
tion is explained. Sewing an annulus to the pants Ps(λ, h1, h2| . . . ) changes the
conformal structure of the latter. To return to the conformal structure specified
by P(R3) we have to change the real parameters of the pants, one of them being
the spectral parameter λ.

If we knew how to evaluate the conformal moduli of the pair of pants

Ps(λ, h1, h2|m1,m2)

as functions of its real parameters, the solution of the integral equation would
be reduced to a system of three transcendental equations for the three numbers
λ, h1, h2. This solution will depend on the integer parameters s, m1, m2.

3. Geometry of integral equation

PS integral equations possess a rich geometrical structure which we disclose in this
section. The chain of equivalent transformations of PS-3 equation described here
in a somewhat sketchy fashion is given in [10, 11] with more details.

3.1. A nonlocal functional equation

Let us decompose the kernel of the second integral in (0.1) into a sum of elementary
fractions:

R′3(t)
R3(t) −R3(x)

=
d

dt
log(R3(t) −R3(x)) =

3∑
k=1

1
t− xk(x)

− Q′

Q
(t), (3.1)

where Q(t) is the denominator in an irreducible representation of R(t) as the ratio
of two polynomials; x1(x) = x, x2(x), x3(x) – are all solutions (including multiple
and infinite) of the algebraic equation R3(xs) = R3(x). This expansion suggests
to rewrite the original equation (0.1) as a certain relationship for the Cauchy-type
integral

Φ(x) :=
∫
I

u(t)
t− x

dt+ const∗, x ∈ Ĉ \ [−1, 1]. (3.2)
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The constant term const∗ in (3.2) is introduced to compensate for the constant
terms arising after substitution of expression (3.2) to the equation (0.1).

For a known Φ(x), the eigenfunction u(t) may be recovered by the Sokhot-
skii-Plemelj formula:

u(t) = (2πi)−1 [Φ(t+ i0)− Φ(t− i0)] , t ∈ I. (3.3)

Function Φ(x) generated by an eigenfunction of PS integral equation satisfies
a nonlocal functional equation:
Lemma 3.1. [10] For λ �= 1, 3 the transformations (3.2) and (3.3) imply a 1-1 cor-
respondence between the Hölder eigenfunctions u(t) of the PS-3 integral equation
and the nontrivial solutions Φ(x) of the functional equation which are holomorphic
on a sphere with the slot [−1, 1]

Φ(x + i0) + Φ(x − i0) = δ

(
Φ(x2(x)) + Φ(x3(x))

)
, x ∈ I, (3.4)

δ = 2/(λ− 1), (3.5)
with Hölder boundary values Φ(x± i0).

3.2. The Riemann monodromy problem

The lifting R−1
3 (P(R3)) of the pants associated to the integral equation consists

of three components Os, s = 1, 2, 3. We number them in the following way (see
Fig. 1): the segment [−1, 1] lies on the boundary of O1; the segment [c4, c3] is on
the boundary of O2 and the boundary of O3 comprises the segment [c2, c1].

3.2.1. Let the function Φ(x) be related to the solution u(x) of the integral equa-
tion (0.1) as in (3.2). We consider a 3-vector defined in the pair of pants:

W (y) := (W1,W2,W3)t = (Φ(x1),Φ(x2),Φ(x3))t, y ∈ P(R3), (3.6)

where xs is the unique solution of the equation R3(xs) = y in Os. Vector W (y) is
holomorphic and bounded in the pants P(R3) as all three points xs, s = 1, 2, 3,
remain in the holomorphicity domain of the function Φ(x). We claim that the
boundary values of the vector W (y) are related via constant matrices:

W (y + i0) = D∗W (y − i0), when y ∈ {slot∗}. (3.7)

The matrix D∗ assigned to the “green” [a3, a4], “blue” [a1, a2], and “red” [−1, 1]
slot respectively is

D2 :=
0 0 1
0 1 0
1 0 0

; D3 :=
0 1 0
1 0 0
0 0 1

; D :=
−1 δ δ
0 1 0
0 0 1

. (3.8)

This in particular means that our vector (3.6) is a solution of a certain Riemann
monodromy problem. The monodromy of vectorW (y) along the loop crossing only
“red”, “green” or “blue” slot is given by the matrix D, D2 or D3 correspondingly
– see Fig. 4.

Indeed, let y+ := y + i0 and y− := y − i0 be two points on opposite sides of
the “blue” slot [a1, a2]. Their inverse images x+

3 = x−3 , x±1 = x∓2 lie outside the cut
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a3 a4 a1 a2-1 1

"red"

"green"

"blue"

Figure 4. Three loops on a sphere with six punctures ±1, a1, . . . , a4

[−1, 1]. Hence W (y+) = D3W (y−). For two points y± lying on opposite sides of
the “green” slot [a3, a4], their inverse images satisfy relations x+

2 = x−2 , x±1 = x∓3 ,
which means W (y+) = D2W (y−). Finally, let y± lie on both sides of the “red”
slot [−1, 1]. Now two points x+

2 = x−2 and x+
3 = x−3 lie in the holomorphicity

domain of Φ(x) while x+
1 and x−1 appear on the opposite sides of the cut [−1, 1].

According to the functional equation (3.4),

Φ(x+
1 ) = −Φ(x−1 ) + δ(Φ(x±2 ) + Φ(x±3 )),

therefore W (y+) = DW (y−) holds on the slot [−1, 1].

3.2.2. Conversely, let W (y) be the bounded solution of the Riemann monodromy
problem (3.7). We define a piecewise holomorphic function on the Riemann sphere:

Φ(x) := Ws(R3(x)), when x ∈ Os, s = 1, 2, 3. (3.9)

From the boundary relations for the vector W (y) it immediately follows that the
function Φ(x) has no jumps on the lifted cuts [a1, a2], [a3, a4], [−1, 1] except for the
cut [−1, 1] from the upper sphere. Say, if the two points y± lie on opposite sides
of the cut [a1, a2], then W3(y+) = W3(y−) and W1(y±) = W2(y∓) which means
that the function Φ(x) has no jump on the components of R−1

3 [a1, a2]. From the
boundary relation on the cut [−1, 1] it follows that Φ(x) is the solution for the
functional equation (3.4). Therefore it gives a solution of Poincaré–Steklov integral
equation with parameter R3(x). Combining formulae (3.3) with (3.9) we get the
reconstruction rule

u(x) = (2πi)−1

(
W1(R3(x) + i0)−W1(R3(x) − i0)

)
, x ∈ [−1, 1]. (3.10)

We have just proved the following

Theorem 3.2. [3] If λ �= 1, 3 then the two formulas (3.6) and (3.10) imply the one-
to-one correspondence between the solutions u(x) of the integral equation (0.1)
and the bounded solutions W (y) of the Riemann monodromy problem (3.7) in the
punctured sphere Ĉ \ {−1, 1, a1, a2, a3, a4}.

3.2.3. Monodromy invariant. The following statement is proved by direct compu-
tation.
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Lemma 3.3. All matrixes (3.8) (i) are involutive (i.e., D2 = D2
2 = D3

2 = 1) and
(ii) conserve the quadratic form

J(W ) :=
3∑

k=1

W 2
k − δ

3∑
j<s

WjWs. (3.11)

The form J(W ) is not degenerate unless −2 �= δ �= 1, or equivalently 0 �=
λ �= 3. Since the solution W (y) of our monodromy problem is bounded near the
cuts, the value of the form J(W ) is independent of the variable y. Therefore the
solution takes values either in the smooth quadric {W ∈ C3 : J(W ) = J0 �= 0},
or the cone {W ∈ C3 : J(W ) = 0}.

3.3. Geometry of the quadric surface

The nondegenerate projective quadric {J(W ) = J0} contains two families of line
elements1 which for convenience are denoted by the signs ‘+’ and ‘−’. Two different
lines from the same family are disjoint while two lines from different families must
intersect. The intersection of those lines with the ‘infinitely distant’ secant plane
gives points on the conic

C := {(W1 : W2 : W3)t ∈ CP 2 : J(W ) = 0} (3.12)

which by means of the stereographic projection p may be identified with the Rie-
mann sphere. Therefore we have introduced two global coordinates p±(W ) on the
quadric, the ‘infinite part’ of which (= conic C) corresponds to coinciding coordi-
nates: p+ = p− (see Fig. 5).

The natural action of them pseudo-orthogonal group O3(J) in C3 conserves
the quadric, the conic at infinity C, and the families of line elements possibly
interchanging their labels ‘±’. The induced action of the group O3(J) on the
stereographic coordinates p± is a linear fractional with a possible change of the
superscript ‘±’.

3.3.1. Stereographic coordinates. To obtain explicit expressions for the coordinate
change W ↔ p± on the quadric we bring the quadratic form J(W ) to the simpler
form J•(V ) := V1V3 − V 2

2 by means of the linear coordinate change

W = KV (3.13)

where

K := (3δ + 6)−1/2
1 1 1
1 ε2 ε
1 ε ε2

·
0 μ−1 0
0 0 1
1 0 0

, (3.14)

ε := exp(2πi/3), μ :=

√
δ − 1
δ + 2

=

√
3 − λ

2λ
.

1This property of quadric is sometimes used in architecture. The line generators of the hyper-
boloid serve as construction elements, e.g., for the Shukhov tower in Moscow.
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Figure 5. Global coordinates p+ and p− on quadric

Translating the first paragraph of the current section into formulae we get

p±(W ) :=
V2 ± i

√
J0

V1
=

V3

V2 ∓ i
√
J0

; (3.15)

and inverting this dependence,

W (p+, p−) =
2i
√
J0

p+ − p−
K

⎛⎝ 1
(p+ + p−)/2

p+p−

⎞⎠ . (3.16)

The point W (p+, p−) with coordinate p+ (resp. p−) being fixed moves on the
straight line with the directing vector K(1 : p+ : (p+)2) (resp. K(1 : p− : (p−)2))
belonging to the conic (3.12).

3.3.2. Action of the pseudo-orthogonal group.

Lemma 3.4. There exists a (spinor) representation χ : O3(J) → PSL2(C) such
that:

1) The restriction of χ(·) to SO3(J) is an isomorphism to PSL2(C).
2) For coordinates p± on the quadric the following transformation rule holds:

p±(TW ) = χ(T)p±(W ), T ∈ SO3(J),
p±(TW ) = χ(T)p∓(W ), T �∈ SO3(J). (3.17)
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3) The linear-fractional mapping χp := (ap + b)/(cp + d) is the image of the
matrix:

T :=
1

ad− bc
K

d2 2cd c2

bd ad+ bc ac
b2 2ab a2

K−1 ∈ SO3(J). (3.18)

4) The generators of the monodromy group are mapped to the following elements
of PSL2:

χ(Ds)p = ε1−s/p, s = 1, 2, 3;

χ(D)p =
μp− 1
p− μ

.
(3.19)

Proof. We define the action of the matrix A ∈ SL2(C) on the vector V ∈ C3 by
the formula:

A :=
a b
c d

:
V3 V2

V2 V1
−→ A

V3 V2

V2 V1
At. (3.20)

It is easy to check that (3.20) gives the faithful representation of a connected
3-dimensional group PSL2(C) := SL2(C)/{±1} into SO3(J•) and therefore, an
isomorphism. Let us denote by χ• the inverse isomorphism SO3(J•) → PSL2(C)
and let χ(±T) := χ•(K−1TK) for T ∈ SO3(J). The obtained homomorphism χ :
O3(J) → PSL2(C) will satisfy statement 1) of the lemma.

To prove 2) we replace components of the vector V in the right-hand side of
(3.20) with their representation in terms of the stereographic coordinates p±:

i
√
J0

p+ − p−
A
[
(p+, 1)t · (p−, 1) + (p−, 1)t · (p+, 1)

]
At

= i
√
J0

(cp+ + d)(cp− + d)
p+ − p−

[
(χp+, 1)t · (χp−, 1) + (χp−, 1)t · (χp+, 1)

]
=

i
√
J0

χp+ − χp−
[
(χp+, 1)t · (χp−, 1) + (χp−, 1)t · (χp+, 1)

]
= V3(χp+, χp−) V2(χp+, χp−)

V2(χp+, χp−) V1(χp+, χp−) ,

where we set χp := (ap + b)/(cp + d). Now (3.17) follows immediately for T ∈
SO3(J). It remains to check the transformation rule for any matrix T from the
other component of the group O3(J), say T = −1.

Writing the action (3.20) component-wise we arrive at conclusion 3) of the
lemma.

And finally, expressions 4) for the generators of monodromy group may be
obtained either from analyzing formula (3.18) or from finding the eigenvectors
of the matrices Ds,D which correspond to the fixed points of linear-fractional
transformations. �

For convenience we collect all the introduced objects related to the boundary
components of the pair of pants P(R3) in Tab. 1
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Table 1. Slots, their associated colors, matrices and linear-fractional maps

slot [−1, 1] [a1, a2] [a3, a4]

color “red” “blue” “green”

matrix D∗ D :=
−1 δ δ
0 1 0
0 0 1

D3 :=
0 1 0
1 0 0
0 0 1

D2 :=
0 0 1
0 1 0
1 0 0

χ(D∗)p
μp− 1
p− μ

ε/p ε2/p

3.4. Entangled projective structures

Definition 3.5. A branched complex projective structure [5, 6, 8, 9] on a Riemann
surface M is a meromorphic function p(t) on the universal covering M̃ which
transforms fractionally linear under the cover transformations of M̃. The appro-
priate representation χ : π1(M) → PSL2(C) is called the monodromy of the
projective structure. The set of all critical points of p(t) with their multiplicities
survives under the cover transformations of M̃. The projection of this set to the
Riemann surface M is known as the branching divisor D(p) of projective structure
and the branching number of the structure p(t) is deg D(p).

Examples. The unbranched projective structures arise in Fuchsian and Schottky
uniformizations of the Riemann surface. Any meromorphic function on a Riemann
surface is a branched projective structure with trivial monodromy.

3.4.1. Projective structures generated by eigenfunction. Every bounded solution
W (y) of the Riemann monodromy problem (3.7) generates two nowhere coincid-
ing meromorphic functions p±(y) in the sphere with three slots. Those functions
are stereographic coordinates (3.15) for the vector W (y). The boundary values of
functions p+(y) and p−(y) on every slot are related by linear-fractional transfor-
mations:

p±(y + i0) = χ(D∗)p∓(y − i0), y ∈ {slot∗} (3.21)
where the matrix D∗ = D, D2, D3 stand for the ‘red’, ‘green’ and ‘blue’ slots
respectively.

Relations (3.21) allow us to analytically continue both functions p+(y) and
p−(y) through any slot to the second sheet of the genus 2 Riemann surface

M :=

{
w2 = (y2 − 1)

4∏
s=1

(y − as)

}
, (3.22)

and further to its universal covering M̃ . Thus obtained functions p±(t), t ∈ M̃ , will
be locally single valued on the Riemann surface since all matrices D∗ are involutive.
However varying the argument t along the handle of the surface M may result in a
linear-fractional transformation of the value p±(t). Say, the continuations of p+(y)
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from the pants through the red and green slots will give two different functions on
the second sheet related by the linear-fractional mapping χ(DD2).

3.4.2. Branching of the structures p±. The way we have carried out the continua-
tion of functions p±(y) suggests that the branching divisors of the arising projective
structures are related via the hyperelliptic involution H(y, w) := (y,−w) of the
surface M :

D(p+) = HD(p−). (3.23)
The condition p+ �= p− allows to determine the branching numbers of the struc-
tures which is done in the next theorem.

Theorem 3.6. [11] When λ �∈ {0, 1, 3} the solutions u(x) of the integral equation
PS-3 that have invariant J0 �= 0 are in one-to-one correspondence with the cou-
ples of not identically equal functions meromorphic in the pants P(R3) p±(y) with
boundary values satisfying (3.21) and two critical points in common. The corre-
spondence u(x) → p±(y) is established by the sequence of formulae (3.2), (3.6) and
(3.15); the inverse dependence is given by the formula

2πu(x) =

√
(δ + 2)J0

3
p+(y)p−(y) − μ(p+(y) + p−(y)) + 1

p+(y) − p−(y)
, (3.24)

where x ∈ [−1, 1] and y := R3(x) + i0.

Remark: The number of critical points of the structures in the pants is counted
with their weight and multiplicity (see Remark 3 on page 28): 1) the branching
number of p±(y) at the branch point a ∈ {±1, a1, . . . , a4} of M is computed with
respect to the local parameter z =

√
y − a, 2) every branch point of the projective

structure on the boundary of the pants should be considered as a half-point.

Proof. 1. Let u(x) be an eigenfunction of the integral equation PS-3, then the
stereographic coordinates p±(y) of the solution of the associated Riemann mon-
odromy problem inherit the boundary relationship (3.21). What remains is to find
the branching numbers of the entangled structures p±(y). To this end we consider
the Kleinian quadratic differential on the slit sphere

Ω(y) =
dp+(y)dp−(y)

(p+(y) − p−(y))2
, y ∈ Ĉ. (3.25)

This expression is the infinitesimal form of the cross ratio, hence it remains un-
changed after the same linear-fractional transformations of the functions p+ and
p−. Therefore, (3.25) is a well-defined quadratic differential on the entire sphere.
Lifting Ω(y) to the surface M we get a holomorphic differential. Indeed, p+ �= p−

everywhere and applying suitable linear-fractional transformation we assume that
p+ = 1 + zm+ + {terms of higher order} and p− = czm− + · · · in terms of lo-
cal parameter z of the surface, m± ≥ 1, c �= 0. Then Ω = cm+m−zm++m−−2 +
{terms of higher order}. Therefore

D(p+) + D(p−) = (Ω).
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Any holomorphic quadratic differential on a genus 2 surface has 4 zeroes and taking
into account the symmetry (3.23) of the branching divisors, we see that each of
the structures p± has the branching number two on the curve M . It remains to
note that the pair of pants P(R3) are exactly “one half” of M .

2. Conversely, let p+(y) and p−(y) be two not identically equal meromorphic
functions on the slit sphere, with boundary conditions (3.21) and total branching
number two in the pants (see remark above). We can prove that p+ �= p− every-
where. Indeed, for the meromorphic quadratic differential (3.25) on the Riemann
surface M we establish (using a local coordinate on the surface) the inequality

D(p+) + D(p−) ≥ (Ω) (3.26)

where the deviation from equality means that there is a point where p+ = p−.
But the degree of the divisor on the left of (3.26) is four and the same number is
deg(Ω) = 4g − 4. Therefore this pair of functions p± will give us the holomorphic
vector W (p+(y), p−(y)) in the pants which solves our Riemann monodromy prob-
lem. We already know how to convert the latter vector to the eigenfunction of the
integral equation PS-3. �

3.4.3. Remark about the non-smooth quadric. It is shown in [11] how to incor-
porate the exceptional case J0 = 0 into the above scheme. In the latter case the
functions p±(y) coincide, however the boundary relations (3.21) survive. The total
branching number of the function p+ = p− in the pair of pants is either zero or
one. The solutions to the PS-3 integral equation and the associated Riemann mon-
odromy problem may be recovered up to proportionality from the unified formulae
(true whatever J0)

u(x) =

√
Ω(y)

dp+(y)dp−(y)
(p+(y)p−(y)− μ(p+(y) + p−(y)) + 1), (3.27)

W (y) =

√
Ω(y)

dp+(y)dp−(y)
K(1, (p+(y) + p−(y))/2, p+(y)p−(y))t, (3.28)

where Ω(y) = (y − y1)(y − y2)
(dy)2

w2(y)
is the holomorphic quadratic differential on

the Riemann surface M with zeroes at the branching points of the possibly coin-
ciding structures p+ and p− [or with two arbitrary double zeroes when the struc-
ture p+ = p− is unbranched, further analysis however shows that the required
unbranched structures do not exist].

3.5. Types of the mirror symmetry of the solution

The eigenvalues of the integral equation are the critical values of the positive
functional (1.2) – the generalized Rayleigh ratio. So we may consider only real
eigenfunctions u(x) without loss of generality. Real solutions of the PS-3 equation
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give rise to exactly two types of mirror symmetry for the entangled structures:

Symmetric p±(ȳ) = 1/p±(y)
Antisymmetric p±(ȳ) = 1/p∓(y)

, y ∈ P(R3),

depending on the sign of the real number (δ + 2)J0. In what follows we restrict
ourselves to the case of antisymmetric eigenfunctions. In this case:

p+(y ± i0) = 1/p−(y ∓ i0) = 1/χ(D∗)p+(y ± i0), y ∈ slot∗,
and hence we know where the boundary components of the pair of pants P(R3)
are mapped to. In particular,

“green” boundary → εR̂

“blue” boundary → ε2R̂

“red” boundary →
{
C − see (2.2) when 1 < λ < 3
∅ when λ < 1 or 3 < λ.

(3.29)

We see that the above geometrical analysis of the integral equation gives the
universal limits for (the antisymmetric part of) the spectrum.

The branching divisor of the projective structure p+ has the mirror symmetry:
D(p+) = H̄D(p+) where H̄(y, w) := (ȳ,−w̄) is the anticonformal involution of the
surface M leaving boundary components (ovals) of pair of the pants P(R3) intact.
Therefore exactly three situations may occur: p+(y) has one simple critical point
strictly inside the pants, or there are two simple critical points on the boundary of
pants or there is one double critical point of p+(y) on the boundary of the pants.

4. Combinatorics of integral equation

For the antisymmetric eigenfunctions we arrive at the essentially combinatorial
Problem (about putting pants on a sphere). Find a meromorphic function p := p+

defined in the pair of pants P(R3) mapping boundary ovals to the given circles
(3.29) and having exactly one critical point (counted with weight and multiplicity)
in the pants.

The three above-mentioned types of the branching divisor D(p) will be treated
separately in Sections 4.1, 4.2. When the branch point of the structure p is strictly
inside the pants we show that the solution of the problem takes the form of the
Überlagerungsfläche P1(. . . ) with certain real and integer parameters. The case of
two simple branch points belonging to the boundary gives us the pants Ps(. . . ),
s = 2, 3 and the unstable intermediate case with double branch point on the
boundary brings us to the pants Pj(. . . ), j = 12, 13 described in (2.3).

Let p(y) be a holomorphic map from a Riemann surface M with a boundary
to the sphere and the selected boundary component (∂M)∗ be mapped to a circle.
The reflection principle allows us to holomorphically continue p(y) through this
selected component to the double of M. Therefore we can talk of the critical points
of p(y) on (∂M)∗. When the argument y passes through a simple critical point,
the value p(y) reverses the direction of its movement on the circle. So there should
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be an even number of critical points (counted with multiplicities) on the selected
boundary component.

4.1. The branchpoint is inside a pair of pants

4.1.1. Construction 1. Using otherwise a composition with a suitable linear-frac-
tional map, we suppose that the circle p((∂M)∗) is the boundary of the unitary
disc

U := {p ∈ C : |p| ≤ 1}, (4.1)

and that a small annular vicinity of the selected boundary component is mapped
to the exterior of the unit disc. We define the mapping of a disjoint union M∪U

to a sphere

p̃(y) :=
{
p(y), y ∈M,
L(yd), y ∈ U,

(4.2)

where the integer d > 0 is the degree of the mapping p : (∂M)∗ → ∂U, and where
L(y) is an (at the moment arbitrary) linear fractional mapping keeping the unitary
disc (4.1) unchanged. The choice of L(·) will be fixed later to simplify the arising
combinatorial analysis.

Now we fill in the hole in M by the unit disc, identifying the points of (∂M)∗
and the points of ∂U with the same value of p̃ (there are d ways to do so). The
holomorphic mapping p̃(y) of the new Riemann surface M∪ U to the sphere will
have exactly one additional critical point of multiplicity d− 1 at the center of the
glued disc.

4.1.2. Branched covering of a sphere. We return to the function p(y) being the
solution of the problem stated in the beginning of section 4. Suppose that the
point p(y) completes turns on the corresponding circle dr, dg and db times when
the argument y runs around the ‘red’, ‘green’ and ‘blue’ boundary component
of P(R3) respectively. We can apply the just introduced construction 1 and glue
the three discs Ur, Ug, Ub, to the holes of the pants. Essentially, we arrive at a
commutative diagram:

P(R3)
inclusion−→ CP 1

�
�
�
�
�
��

p(y)

�

p̃ is branched
covering.

CP 1 (4.3)

Applying the Riemann–Hurwitz formula for the holomorphic mapping p̃ with
four ramification points (three of them are in the artificially glued discs and the
fourth is inside the pants) we immediately get:

dr + dg + db = 2N, N := deg p̃. (4.4)
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4.1.3. Intersection of circles.

Lemma 4.1. The circle C does not intersect the two other circles ε±1R̂. Therefore
the spectral parameter 1 < λ < 2 when the projective structure p(y) branch point
is inside the pants.

Proof. We know that the point 0 lies in the intersection of two of our circles: εR̂
and ε2R̂. The total number �{p̃−1(0)} of the pre-images of this point (counting the
multiplicities) is N and cannot be less than db + dg – the number of pre-images
on the blue and green boundary components of the pants. Comparing this to (4.4)
we get dr ≥ N which is only possible when

dr = dg + db = N. (4.5)

Assuming that the circle C intersects any of the circles ε±1R̂ we repeat the
above argument for the intersection point and arrive at the conclusion db = dr +
dg = N or dg = dr + db = N which is incompatible with the already established
equation (4.5). �

Remark 4.2. In Section 3.4.3 we promised to show that any meromorphic function
p mapping the boundaries of the pants to the circles (3.29) has a critical point.
Indeed, the inequalities db + dg ≤ N and dr ≤ N remain true whatever the
branching of the structure p is, while (4.4) originating from the Riemann–Hurwitz
formula takes the form db + dg + dr = 2N + 1 for the unbranched structure which
leads to a contradiction.

4.1.4. Image of the pants. Let us investigate where the artificially glued discs are
mapped to. Suppose for instance that the disc Ur is mapped to the exterior of the
circle C. The point 0 will be covered then at least dr + dg + db = 2N times which
is impossible. The discs Ug and Ub are mapped to the left of the lines εR and ε2R

respectively, otherwise points from the interior of the circle C will be covered more
that N times. The image of the pair of pants P(R3) is shown on the left of Fig. 6.

C

*

Point Branching type	 ����
����
��

dg

db
 ���������
� dr

* ���� 2

Figure 6. a) Shaded area is the image of pants (b) Branching type of
the branch points
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We use the ambiguity in the construction of the gluing of the disks to the
pants and require that the critical values of p̃ in the discs Ug, Ub coincide. Now
the branched covering p̃ has only three different branch points shown as •, ◦
and ∗ on Fig. 6a). The branching type at those three points for dg = 2, db = 3,
d = N = 5 is shown on Fig. 6b). The coverings with three branch points are called
Belyi maps and are described by certain graphs known as Grothendieck’s “Dessins
d’Enfants”. In our case the dessin is the lifting of the segment connecting white
and black branch points: Γ := p̃−1[•, ◦].

4.1.5. Combinatorial analysis of the dessins. There is exactly one critical point of
p̃ over the branch point ∗. Hence, the complement to the graph Γ on the upper
sphere of the diagram (4.3) contains exactly one cell mapped 2 − 1 to the lower
sphere. The rest of the components of the complement are mapped 1 − 1. Two
types of cells are shown in figures 7 a) and b), the lifting of the red circle is not
shown to simplify the pictures. The branch point ∗ should lie in the intersection
of the two annuli α and α, otherwise the discs Ug, Ub glued to different boundary
components of our pants will intersect: the hypothetical case when the branch
point of p(y) belongs to one annulus but does not belong to the other is shown in
Fig. 7 c).

* *

(a) (b) (c)

Figure 7. (a) Simple cell (b) Double cover (c) Impossible double cover

The cells from Fig. 7 a), b) may be assembled in a unique way shown in
Fig. 8. The pants are colored in white, three artificially sewed discs are shaded.
Essentially this picture shows us how to sew together the patches bounded by our
three circles C, ε±1R̂ to get the pants conformally equivalent to P(R3). As a result
of the surgery procedure we obtain the pants P1(λ, h1, h2|dg − 1, db − 1).

4.2. Simple branch points on the boundary of the pants

Our strategy remains the same: to fill in the holes in the pants and to convert p(y)
into a branched covering with a simple type of branching.

4.2.1. Construction 2. Let again p(y) be a holomorphic mapping of a bounded
Riemann surface M to the sphere with the selected boundary component (∂M)∗
being mapped to the boundary of the unit disc U. Now the mapping p(y) has two
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"red"

"green"

"blue"

Figure 8. Dessin for dg = 3, db = 2; the pre-image of the branch point
∗ is at the infinity

�� 	


 �� �

	




∗

∗

M

(∂M)∗


p(y) **

Figure 9. Mapping of the boundary component (∂M)∗ with two sim-
ple branch points ∗ on it and winding indices d+ = 1, d− = 2.

simple critical points on the selected boundary component (the case of coinciding
critical values is not excluded). Those two points divide the oval (∂M)∗ into two
segments: (∂M)+∗ and (∂M)−∗ . Let the increment of arg p(y) on the segment
(∂M)+∗ be 2πd+ − φ, 0 < φ ≤ 2π, and the decrement on the segment (∂M)−∗ be
2πd−−φ, the point y moves around the selected oval in the positive direction and
d± are positive integers. We are going to fill in the hole in the Riemann surface
M with two copies of the unitary disc (4.1): U+ and U−.

We define the mapping from the disjoint union M∪ U+∪ U− to the sphere:

p̃(y) :=

⎧⎨⎩
p(y), y ∈M,

L−(yd−), y ∈ U−,
L+(y−d+

), y ∈ U+,

(4.6)

where L±(·) are the (at the moment arbitrary) linear fractional mappings keeping
the unitary disc (4.1) invariant. The choice of L±(·) will be specified later to
simplify the combinatorial analysis.

Identifying the points y with the same value of p̃(y) we glue the segments
(∂M∗)± of the selected boundary oval of M to the portions of the boundaries of
the discs U± respectively. The remaining parts of the boundaries of U± are glued
to each other as shown in Fig. 10a).
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�

�



�∗

∗

(a) U+U− M

(∂M)∗

(b)

C*

*

Figure 10. (a) Filling in the hole bounded by (∂M)∗ (b) The shaded
area is the image of P(R3).

4.2.2. Branched covering of a sphere. At the moment we do not know which of
the three boundary ovals of the pants P(R3) contains the critical points of p(y).
Therefore we introduce the ‘nicknames’ {1, 2, 3} for the set of colors {r, g, b} so
that the critical points will be on the oval number 3. The usage of construction
2 from Section 4.2.1 allows us to glue two discs U±3 to the latter boundary. The
usage of construction 1 from Section 4.1.1 fills in the remaining two holes with two
discs U1 and U2. Positive integers arising in those constructions are denoted by
d±3 , d1, d2 respectively.

Again, we split the mapping p(y) from the pants to the sphere as in the
diagram (4.3): p = p̃◦ inclusion with the branched covering p̃. The latter mapping
has six critical points: two simple ones inherited from the pants and four at the
centers of the artificially glued discs and multiplicities d±3 − 1, d1 − 1, d2 − 1
respectively. The Riemann–Hurwitz formula for this covering gives

d1 + d2 + d+
3 + d−3 = 2N, N := deg p̃. (4.7)

Lemma 4.3. The images of the ovals with numbers 1 and 2 do not intersect.

Proof. Suppose the opposite is true and a point Pt lies in the intersection of the
images of the first two ovals. Then N ≥ �p̃−1(Pt) ≥ d1 + d2. On the image of the
third oval there is a point (e.g., in the right side of Fig. 9 this is a point i) with
d+
3 + d−3 ≤ N pre-images. Comparing the last two inequalities to (4.7) we get the

equalities
d1 + d2 = d+

3 + d−3 = N

and Pt is covered at least d1 + d2 + min(d+
3 , d

−
3 ) > N times. �

Corollary 4.4. Two circles ε±1R̂ intersect, therefore the critical points of p(y) lie
either on the blue or on the green boundary of pants. Moreover, the circle C –
the image of the red boundary oval – does not intersect the two mentioned circles
which may only happen when μ ∈ (1

2 , 1), or equivalently λ ∈ (1, 2).
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Convention: We assume that both critical points of p lie on the blue oval. The
remaining case when they belong to the green oval is absolutely analogous to the
case we consider. Now the notations U±b , Ur, Ug, d±b , dr, dg have the obvious
meaning.

4.2.3. The Image of the Pants. Let us show that the the image of the pants remains
the same as in Section 4.1.4.

Lemma 4.5. The image p(P(R3)) of the pants lies in the intersection of annuli α
and ᾱ – see Fig. 10b).

Proof. We refer to the four sectors: C \ ε±1R as to ‘top’, ‘down’, ‘left’ and ‘right’.
It is a matter of notation to say that the disc U+

b is mapped to the ‘top’ and ‘left’
sectors while the disc U−b is mapped to the ‘down’ and ‘right’ sectors.

The disc Ug covers either the ‘top’ or the ‘left’ sector and both are covered
by the disc U+

b . Therefore, dg + d+
b ≤ N . In a similar way we get dr + d−b ≤ N .

The obtained inequalities and the Riemann–Hurwitz formula (4.7) – which in our
notations becomes dr + dg + d+

b + d−b = 2N – give us

dr + d−b = dg + d+
b = N.

If the disc Ur is mapped to the exterior of the circle C, then either ‘left’ or
‘top’ sector is covered dr + dg + d+

b > N times. If the disc Ug is mapped to the
right of the line εR, then the interior of the circle C is covered dr + dg + d−b > N
times.

We see that the ‘left’ sector and the interior of the circle C are covered by
the artificially inserted discs only. �

Corollary 4.6. Both critical values of p(y) lie on the ray −ε2(0,∞).

Corollary 4.7. The integer d−b is equal to 1, since the point 0 is covered at least
dg + d+

b + d−b − 1 ≤ N times.

Let us recall that the constructions of attaching discs to the pants allow us
to move branch point (= the critical value of p̃(y) in the inserted disc) within the
appropriate circle. In particular, the critical values of p̃(y) in the discs Ug, U+

b

may be placed to the same point in the ‘left’ sector, say to p = −1 (point ◦ in
Fig. 10b) while the critical values in the discs Ur, U−b may be placed to the same
point inside C, say to p = 1 (point • in Fig. 10b). Now we lift the segment [◦, •]
connecting the branch points to the upper sphere of the diagram (4.3) and analyze
the arising graph Γ := p̃−1([◦, •]).

4.2.4. Combinatorial analysis of the graph. The restriction of p̃ to every compo-
nent F of the compliment Ĉ\Γ to the graph is naturally continued to the branched
coverings over the disc2 Closure(Ĉ\ [◦, •]). We can list all flat surfaces F covering a

2Closure here has the same meaning as in the formula (2.1)
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Table 2. Flat surfaces F covering the disc with the branching number
B ≤ 2

number of sheets B surface F picture

1 0 disc Fig. 7(a)
2 1 disc Fig. 11(a)
3 2 disc Fig. 11(b)
2 2 annulus Fig. 11(c)

*Ob

–

Ob

+

Ob

+

*

*

Ob

–

Or

Or

**

(a) (b) (c)

Figure 11. Flat surfaces F covering the disc with the branching num-
bers B = 1, 2.

disc with the branching number B ≤ 2. To this end we use the Riemann–Hurwitz
formula for the branched coverings of the bordered surfaces:

2 +B = �{∂F}+ deg p̃|F
which relates B – the total branching number of p̃ in the selected flat surface F
covering a disc; �{∂F} – the number of its boundary components and deg p̃|F –
the degree of the restriction of the covering p̃ to the component F . Taking into
account that �{∂F} ≤ deg p̃|F we obtain the list shown in Tab. 2.

The combinatorics of the green and blue circles lifted to the listed covering
surfaces F is shown in Fig. 7a) and Fig. 11a–c). Let us denote the centers of the
four artificially glued discs Ur, Ug, U+

b U−b as respectively Or (black vertex of
graph Γ with valency dr), Og, O+

b (white vertexes with valencies dg, d+
b ) and O−b

(dangling black vertex). Their mutual positions in the graph Γ are subject to the
following restriction:

Lemma 4.8. The vertices Og and O−b are not neighbors in Γ.

Proof. The disjoint discs U−b and Ug of the upper sphere in the diagram (4.3)
would intersect otherwise – see Fig. 12. �

Corollary 4.9. The vertices on the border of the triply covering disc F – see Fig.
11b) – appear in the following order: Og, Or, O+

b , O−b , O+
b , Or.
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Og Ob

–

Figure 12. If Og and O−b were neighbors, the discs U−b and Ug would intersect.

Og

Ob

–

Or

Ob

+
*

*

Or

Ob

+ Og

Ob

– *

*

(a) (b)

Figure 13. Graph Γ for the basic mappings with dg = 1, d+
b = dr = 2,

N = 3 (a) and dg = d+
b = dr = 1, N = 2 (b). Artificially inserted discs

are shaded.

They may be uniquely ascribed to the vertices in the picture after the obser-
vation: the blue line divides the vicinity of any critical point ∗ into four quadrants,
two of which belong to the pair of pants, one belongs to the disc U−b , and the rest
is contained in the disc U+

b .

Corollary 4.10. The complement to the graph Γ cannot contain two doubly covering
discs F .

Indeed, the point O−b lies on the boundary of one of those discs. Both neigh-
boring vertices on the boundary of the disc F should be O+

b according to the
lemma. But this contradicts the above observation: two quadrants of this covering
disc belong to U+

b – see Fig. 11a).

4.2.5. Assembly scheme. We see that there remain only two possibilities for the
complement to the graph Γ. It consists either of (a) one disc mapped 3-1 and
N − 3 simple cells mapped 1-1 or (b) an annulus mapped 2-1 and N − 2 simple
discs mapped 1-1. The graphs Γ with compliment containing no simple cells are
shown in Fig. 13. They correspond to the pants P2(. . . |0, 1) (a) and P2(. . . |0, 0)
(b). The graphs with simple cells in the complement are obtained from those two
basic pictures as a result of the surgery. We cut the graph along the edge OrOg

and insert dg − 1 simple discs in the slot as in Fig. 8. The graph on the left side of
Fig. 13 admits another surgery: we cut the graph along the edge OrO

+
b and sew

in d+
b − 2 patches shown in Fig. 7a) in the slot. The arising graph corresponds to

the pair of pants P2(. . . , dg − 1, d+
b − 1).
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4.3. Remaining cases

If the branch points of the projective structure p := p+ belong to the green oval
of the pants we arrive at the pair of pants Ps of fashion s = 3. Finally, when the
branch points merge the limit variant of construction 2 may be applied for the
analysis and we arrive at the pants of intermediate types s = 12, 13.

5. Conclusion

A similar analysis based on the geometry and combinatorics may be applied to
obtain the representations of the solutions of the PS-3 integral equation in all the
omitted cases. Much of the techniques used may be helpful for the study of other
integral equations with low degree rational kernels.
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Abstract. We study geometrically invariant formulas for heat kernels of sub-
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operators.
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1. Introduction

Let us start with the Laplace operator on Rn,

Δ =
1
2

n∑
j=1

∂2

∂x2
j

.

It is well known that the heat kernel for Δ is the Gaussian:

Pt(x,x0) =
1

(2πt)
n
2
e−

|x−x0|2
2t .

Given a general second-order elliptic operator in n-dimensional Euclidean space,

ΔX =
1
2

n∑
j=1

X2
j + lower-order term,
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where the {X1, . . . , Xn} is a linearly independent set of vector fields, the heat
kernel takes the form

Pt(x,x0) =
1

(2πt)
n
2
e−

d2(x,x0)
2t

(
a0 + a1t+ a2t

2 + · · ·
)
.

Here d(x,x0) stands for the Riemannian distance between x and x0 induced by
a metric such that vector fields X1, . . . , Xn are orthonormal with respect to this
metric. The aj ’s are functions of x and x0. Note that

∂

∂t

(d2

2t

)
+

1
2

n∑
j=1

(
Xj

d2

2t

)2

= 0,

i.e., d2

2t is a solution of the Hamilton–Jacobi equation.
Now let us move to subelliptic operators. We first consider the famous exam-

ple: Heisenberg sub-Laplacian on H1

ΔX =
1
2

( ∂

∂x1
+ 2x2

∂

∂y

)2

+
1
2

( ∂

∂x2
− 2x1

∂

∂y

)2

. (1.1)

We shall try to find a heat kernel in the form
1
tq
e−

f
t · · · ,

where h = f
t is a solution of the Hamilton–Jacobi equation

∂h

∂t
+

1
2

( ∂h
∂x1

+ 2x2
∂h

∂y

)2

+
1
2

( ∂h
∂x2

− 2x1
∂h

∂y

)2

= 0.

In other words,
∂h

∂t
+H(x,∇h) = 0, (1.2)

where
H =

1
2

[(
ξ1 + 2x2η

)2 +
(
ξ2 − 2x1η

)2] =
1
2
[
ζ2
1 + ζ2

2

]
(1.3)

is the Hamilton function associated with the sub-elliptic operator (1.1) and ξ1, ξ2
and η are dual variable to x1, x2 and y respectively. Using the Lagrange-Chapit
method, let us look at the following equation:

F (x, y, t, h, ξ, η, γ) = γ +H(x, y, ξ, η) = 0.

We shall find the bicharacteristic curves which are solutions to the following Hamil-
ton system:

ẋ1 = Fξ1 = ξ1 + 2x2η = ζ1,

ẋ2 = Fξ2 = ξ2 − 2x1η = ζ2,

ẏ = Fη = 2ẋ1x2 − 2x1ẋ2,

ṫ = Fγ = 1,

ξ̇1 = −Fx1 − ξ1Fh = 2ηẋ2,

ξ̇2 = −Fx2 − ξ2Fh = −2ηẋ1,
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η̇ = −Fy − γFh = 0,
γ̇ = −Ft − γFh = 0,

ḣ = ξ · ∇ξF + ηFη + γFγ = ξ · ẋ+ ηẏ −H

since ṫ = 1 and γ = −H . With 0 ≤ s ≤ t, one has

γ(s) =γ = constant,

η(s) =η = constant,

t(s) =s.

Here “constant” means “constant along the bicharacteristic curve”. Furthermore,

H =
1
2
ẋ2

1 +
1
2
ẋ2

2 = E = energy.

Another way to see that E is constant along the bicharacteristic, note that

ẍ1 =ξ̇1 + 2ηẋ2 = +4ηẋ2,

ẍ2 =ξ̇2 − 2ηẋ1 = −4ηẋ1.
(1.4)

Therefore, ẍ1ẋ1 + ẍ2ẋ2 = 0, and E =constant.
We need to find the classical action integral

S(t) =
∫ t

0

(
ξ · ẋ + ηẏ −H

)
ds.

Let us find ξ and x from the Hamilton system. We obtain
...
x 1 + 16η2ẋ1 = 0,

...
x 2 + 16η2ẋ2 = 0

from (1.4). Hence

ẋ1(s) = ẋ1(0) cos(4ηs) +
ẍ1(0)
4η

sin(4ηs)

= ẋ1(0) cos(4ηs) + ẋ2(0) sin(4ηs)

= ζ1(0) cos(4ηs) + ζ2(0) sin(4ηs)

(1.5)

and

ẋ2(s) =ẋ2(0) cos(4ηs) +
ẍ2(0)
4η

sin(4ηs)

=ẋ2(0) cos(4ηs)− ẋ1(0) sin(4ηs)

=− ζ1(0) sin(4ηs) + ζ2(0) cos(4ηs),

(1.6)

which yields

x1(s) = x1(0) + ζ1(0)
sin(4ηs)

4η
+ ζ2(0)

1 − cos(4ηs)
4η

(1.7)

and

x2(s) = x2(0) − ζ1(0)
1 − cos(4ηs)

4η
+ ζ2(0)

sin(4ηs)
4η

. (1.8)
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At s = t one has x1(t) = x1 and x2(t) = x2, so
1
2
ζ1(0) sin(4ηt) +

1
2
ζ2(0)

(
1 − cos(4ηt)

)
= 2η
(
x1 − x1(0)

)
,

−1
2
ζ1(0)

(
1 − cos(4ηt)

)
+

1
2
ζ2(0) sin(4ηt) = 2η

(
x2 − x2(0)

)
,

or,

+ζ1(0) cos(2ηt) + ζ2(0) sin(2ηt) =
2η
(
x1 − x1(0)

)
sin(2ηt)

,

−ζ1(0) sin(2ηt) + ζ2(0) cos(2ηt) =
2η
(
x2 − x2(0)

)
sin(2ηt)

.

(1.9)

Hamilton’s equations give

ξ2(s) =− 2ηx1(s) +
(
ξ2(0) + 2ηx1(0)

)
= − 2ηx1(0) − 1

2
ζ1(0) sin(4ηs)− 1

2
ζ2(0)

(
1 − cos(4ηs)

)
+ ζ2(0) + 4ηx1(0)

=2ηx1(0)− 1
2

[
ζ1(0) sin(4ηs) − ζ2(0)

(
1 + cos(4ηs)

)]
,

and
ξ1(s) = −2ηx2(0) +

1
2

[
ζ1(0)

(
1 + cos(4ηs)

)
+ ζ2(0) sin(4ηs)

]
.

The above calculations imply

ξ1ẋ1 + ξ2ẋ2 =− 2ηẋ1(s)x2(0) + 2ηx1(0)ẋ2(s) +
1
2
(
ζ2
1 (0) + ζ2

2 (0)
)(

1 + cos(4ηs)
)

=− 2η
(
ẋ1(s)x2(0) − x1(0)ẋ2(s)

)
+
(
1 + cos(4ηs)

)
E,

and∫ t

0

(
ξ · ẋ + ηẏ −H

)
ds = η

[
y − y(0) + 2

(
x1(0)x2 − x1x2(0)

)
+

sin(4ηt)
4η2

E
]
.

To find E we square and add the two equations in (1.9),

E =
1
2
ζ2
1 (0) +

1
2
ζ2
2 (0) = 2η2 |x− x0|2

sin2(2ηt)
.

Hence,

S(t) =
∫ t

0

(
ξ · ẋ + ηẏ −H

)
ds

=η
[
y − y(0) + 2

(
x1(0)x2 − x1x2(0)

)
+ |x− x0|2 cot(2ηt)

]
.

We note that
x, y, t, x0 and η = η(0)

are free parameters while

y(0) = y(0;x,x0, y, η; t)
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is not. Therefore, we need to introduce one more free variable h(0) such that
h(t) = h(0) + S(t) is a solution of the Hamilton–Jacobi equation (1.2).

It reduces to find h(0). To find it we shall substitute S into (1.2). Straight-
forward computation shows that

∂h

∂t
+H(x, y, ξ(t), η(t)) = 0,

where
h(t) = η(0)y(0) + S(t), i.e., h(0) = η(0)y(0). (1.10)

This yields
∂h

∂t
+H
(
x, y,∇xh,

∂h

∂y

)
= 0.

We have the following theorem.

Theorem 1.1. We have shown that

h =η(0)y(0) +
∫ t

0

(
ξ · ẋ + ηẏ −H

)
ds

=ηy + 2η
(
x1(0)x2 − x1x2(0)

)
+ η|x− x0|2 cot(2ηt)

(1.11)

is a “complete integral” of (1.2) and (1.3), i.e., a solution of (1.2) and (1.3) which
depends on 3 free parameters x1(0), x2(0) and η.

Before we move further, let us consider a more general situation.

2. Generalized Hamilton–Jacobi equations

In this section we study the Hamilton–Jacobi equation which is crucial in the con-
struction of the heat kernel associated with elliptic and sub-elliptic operators. We
deduce a general form of the solution to the Hamilton–Jacobi equation and its gen-
eralized form. We consider an (n+m)-dimensional space Rn×Rm. The coordinates
are denoted x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , ym) ∈ Rm with dual variables
(ξ1, . . . , ξn) and (η1, . . . , ηm) respectively. The roman indices i, j, k, . . . will vary
from 1 to n and the Greek indices α, β, . . . will vary from 1 to m. As usual, the
Hamiltonian function H(x,y, ξ, η) is a homogeneous polynomial of degree 2 in the
variables (ξ, η) and has smooth coefficients in (x,y).

We have the following nice generalization of a result from [11].

Theorem 2.1. Set

h(t;x,y, ξ, η) =
m∑

α=1

ηα(0)yα(0) + S(t;x,y, ξ, η), (2.1)

where

xj = xj(s;x,y, ξ, η; t), j = 1, . . . , n; yα = yα(s;x,y, ξ, η; t), α = 1, . . . ,m
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and

S(t;x,y, ξ, η) =
∫ t

0

(
ξ(u) · ẋ(u) + η(u) · ẏ(u) −H(x(u),y(u), ξ(u), η(u))

)
du.

Then h satisfies the usual Hamilton–Jacobi equation:

∂h

∂t
+H
(
x,y,∇xh,∇yh

)
= 0.

Proof. In order to prove the theorem, we first calculate the partial derivatives of
the function S with respect to all variables explicitly. For j = 1, . . . , n,

∂S

∂xj
(t;x,y, ξ, η)

=
∫ t

0

[ n∑
k=1

( ∂ξk
∂xj

dxj

ds
+ ξk

d

ds

∂xk(s;x,y, ξ, η; t)
∂xj

)
+

m∑
α=1

(∂ηα

∂xj

dyα

ds
+ ηα

d

ds

∂yα(s;x, · · · ; t)
∂xj

)
−

n∑
k=1

∂H

∂ξk

∂ξk
∂xj

−
m∑

α=1

∂H

∂ηα

∂ηα

∂xj

−
n∑

k=1

∂H

∂xk

∂xk(s;x,y, ξ, η; t)
∂xj

−
m∑

α=1

∂H

∂yα

∂yα(s;x,y, ξ, η; t)
∂xj

]
ds

=
∫ t

0

d

ds

( n∑
k=1

ξk
∂xk(s;x,y, ξ, η; t)

∂xj
+

m∑
α=1

ηα
∂yα(s;x,y, ξ, η; t)

∂xj

)
ds

=
n∑

k=1

ξk(s)
∂xk(s;x,y, ξ, η; t)

∂xj

∣∣∣s=t

s=0
+

m∑
α=1

ηα(s)
∂yα(s;x,y, ξ, η; t)

∂xj

∣∣∣s=t

s=0
.

It follows that

∂S

∂xj
(t;x,y, ξ, η) = ξj(t) −

m∑
α=1

ηα(0)
∂yα(0;x,y, ξ, η; t)

∂xj
.

Similarly, for β = 1, . . . ,m,

∂S

∂yβ
(t;x,y, ξ, η) = ηβ(t) −

m∑
α=1

ηα(0)
∂yα(0;x,y, ξ, η; t)

∂yβ
.

Moreover,

∂S

∂t
(t; · · · ) =

n∑
k=1

ξk(t; · · · )ẋk(t; · · · )

+
m∑

α=1

ηα(t; · · · )ẏα(t; · · · ) −H
(
x,y, ξ(t; · · · ), η(t; · · · )

)
+

n∑
k=1

ξk(s; · · · )∂xk(s; · · · )
∂t

∣∣∣s=t

s=0
+

m∑
α=1

ηα(s; · · · )∂yα(s; · · · )
∂t

∣∣∣s=t

s=0
.
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Differentiating x1 = x1(t;x,y, ξ, η; t) yields

0 =
d

dt
x1(t;x,y, ξ, η; t) = ẋ1(t; · · · ) +

∂x1(s;x,y, ξ, η; t)
∂t

∣∣∣
s=t

.

On the other hand, one has

ξk(s; · · · )∂xk(s; · · · )
∂t

∣∣∣s=t

s=0
= −ξk(t; · · · )ẋk(t; · · · ), k = 1, . . . , n,

and

ηα(s; · · · )∂yα(s; · · · )
∂t

∣∣∣s=t

s=0
= −ηα(t; · · · )ẏα(t; · · · ) − ηα(0; · · · )∂yα(0; · · · )

∂t
,

α = 1, . . . , n,

therefore,
∂S

∂t
= −H(t; · · · ) −

m∑
α=1

ηα(0; · · · )∂yα(0; · · · )
∂t

.

It follows that if we set as in the statement of the theorem

h(t;x,y, ξ, η) =
m∑

α=1

ηα(0)yα(0) + S(t;x,y, ξ, η),

then it satisfies
∂h

∂xk
= ξk(t;x,y, ξ, η; t), k = 1, . . . , n

∂h

∂yα
= ηα(t;x,y, ξ, η; t), α = 1, . . . ,m,

and
∂h

∂t
+H
(
x,y, ξ(t), η(t)

)
= 0 ⇒ ∂h

∂t
+H
(
x,y,∇xh,∇yh

)
= 0.

This completes the proof of the theorem. �

We note that the derivation that (2.1) satisfies the Hamilton–Jacobi equa-
tion was complete general, not restriction to H

(
x,y,∇xh,∇yh

)
being (1.3). In

particular we did not assume that ηα(s) =constant for α = 1, . . . ,m. The action
integral S is not a solution of the Hamilton–Jacobi equation because some of our
free parameters are dual variables ηα(0) instead of yα(0). For the Heisenberg sub-
Laplacian or the Grusin operator, η(0) = η cannot be switched to y(0). As we
know, ẏ = 2(ẋ1x2 − x1ẋ2). From (1.5)–(1.8), one has

ẏ = 2
[
ẋ1x2(0) − x1(0)ẋ2 +

1
2
(
ζ2
1 (0) + ζ2

2 (0)
)1 − cos(4ηs)

2η

]
,

and

y(s) = 2
(
x1(s)x2(0)− x1(0)x2(s)

)
+

E

4η2

(
4ηs− sin(4ηs)

)
+ C.
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At s = t, one has x1(t) = x1, x2(t) = x2 and

y = 2
(
x1x2(0) − x1(0)x2

)
+

E

4η2

(
4ηt− sin(4ηt)

)
+ C.

Hence, one has

y(s) = y − 2
[(
x1 − x1(s)

)
x2(0)− x1(0)

(
x2 − x2(s)

)]
− E

4η2

[
4η(t− s)− (sin(4ηt)− sin(4ηs))

]
.

At s = 0,
y(0) = y + 2

(
x1(0)x2 − x1x2(0)

)
+ |x− x0|2μ(2ηt),

where we set

μ(φ) =
φ

sin2 φ
− cot φ.

To replace η by y(0), one needs to invert μ,

μ(2ηt) =
y − y(0) + 2

(
x1(0)x2 − x1x2(0)

)
|x− x0|2

.

This is impossible since for most of the values on the right-hand side μ−1 is a
many-valued function [2]. Therefore we must leave η as one of the free parameters
which does not permit S to be a solution of the Hamilton–Jacobi equation.

Before we go further, we present a scaling property of the solution to the
Hamiltonian system

dxj

ds
=
∂H

∂ξj
,

dyα

ds
=
∂H

∂ηα
,

dξj
ds

= − ∂H
∂xj

,
dηα

ds
= − ∂H

∂yα
,

s ∈ [0, t] with the boundary conditions

x(0) = x0, x(t) = x, y(t) = y, η(0) = η(0).

Lemma 2.1. One has the following scaling property

xj(s;x,x0,y, ξ, η(0); t) = xj

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
, j = 1, . . . , n

yα(s;x,x0,y, ξ, η(0); t) = yα

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
, α = 1, . . . ,m

ξj(s;x,x0,y, ξ, η(0); t) = λξj

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
, j = 1, . . . , n

ηα(s;x,x0,y, ξ, η(0); t) = ληα

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
, α = 1, . . . ,m

(2.2)

for λ > 0, if the two sides of (2.2) stays in the domain of unique solvability of the
Hamiltonian system.
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Proof. Denote the curve on the right-hand side of (2.2) by {x̃(s), ỹ(s), ξ̃(s), η̃(s)}.
Note that s ∈ (0, t). Then for j = 1, . . . , n

∂x̃j

∂s
=λẋj

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)

=λ
∂H

∂ξj

(
x1

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
, x2

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
, . . .
)

=
∂H

∂ξj

(
x̃(s), ỹ(s), ξ̃(s), η̃(s)

)
,

since ∂H
∂ξj

, j = 1, . . . , n, are homogeneous of degree 1 in ξ1, . . . , ξn and η1, . . . , ηm.

Similar calculations and homogeneity of degree 2 of ∂H
∂xj

and ∂H
∂yα

in ξ1, . . . , ξn and
η1, . . . , ηm yield

∂ỹα

∂s
=
∂H

∂ηα
,

∂ξ̃j
∂s

= − ∂H
∂xj

,
∂η̃α

∂s
= − ∂H

∂yα
.

Clearly,

x̃j(0) = xj

(
0;x,x0,y, ξ,

η(0)
λ

;λt
)

= xj(0),

x̃j(t) = xj

(
λt;x,x0,y, ξ,

η(0)
λ

;λt
)

= xj ,

for j = 1, . . . , n and

ỹα(t) = yα

(
λt;x,x0,y, ξ,

η(0)
λ

;λt
)

= yα,

η̃α(0) = ληα

(
0;x,x0,y, ξ,

η(0)
λ

;λt
)

= λ
ηα(0)
λ

= ηα(0)

for α = 1, . . . ,m. The bicharacteristic curves are unique, so the two sides of (2.2)
agree. �

Corollary 2.2. One has

h(x,x0,y, ξ, η(0); t) = λh

(
x,x0,y, ξ,

η(0)
λ

;λt
)
.

Proof. In the case of the Heisenberg group, the corollary is a direct consequence
of the explicit formula (1.11) and in this case, η(0) = η is a constant. Here we
would like to give a proof which applies in more general case. We know that for
j = 1, . . . ,m,

ẋj(s;x,x0,y, ξ, η(0); t) =
dxj

ds
(s;x,x0,y, ξ, η(0); t)

=
dxj

ds

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)

=λẋj

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
.
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Similar result holds for ẏα for α = 1, . . . ,m. Therefore,∫ t

0

[
ξ(s) · ẋ(s) + η(s) · ẏ(s) −H(x(s; . . .), . . .)

]
ds

=
∫ t

0

[
λξ

(
λs;x,x0,y, ξ,

η(0)
λ

;λt
)
· λẋ(λs; . . .) +

m∑
α=1

ληα(λs; . . .) · λẏα(λs; . . .)

− λ2H(x(λs; . . .), . . .)
]
ds

=
1
λ

∫ t

0

[
λ2

n∑
k=1

ξk(λs; . . .)ẋk(λs; . . .) + λ2
m∑

α=1

ηα(λs; . . .)ẏα(λs; . . .)

− λ2H(x(λs; . . .), . . .)
]
d(λs)

= λ

∫ t

0

[
ξ
(
s′;x,x0,y,

η(0)
λ

, λt
)
· ẋ(s′; . . .) + η(s′; . . .) · ẏ(s′; . . .)

−H(x(s′; . . .), . . .)
]
ds′

= λS
(
x,x0,y, ξ,

η(0)
λ

, λt
)
.

Also,
m∑

α=1

ηα(0)yα(0;x,x0,y, ξ, η(0); t) = λ

m∑
α=1

ηα(0)
λ

yα

(
0;x,x0,y, ξ,

η(0)
λ

;λt
)

and the proof of the corollary is therefore complete. �

Set
f(x,x0,y, ξ, η(0)) = h(x,x0,y, ξ, η(0), t)

∣∣∣
t=1

.

Then

Theorem 2.2. f is a solution of the generalized Hamilton–Jacobi equation
m∑

α=1

ηα(0)
∂f

∂ηα(0)
+H
(
x,y,∇xf,∇yf

)
= f. (2.3)

Proof. By homogeneity property of the function h, one has

h(x,x0,y, ξ, η(0), t) =
1
t
h(x,x0,y, ξ, tη(0), 1) =

1
t
f(x,x0,y, ξ, tη(0)),

so,
∂h

∂t
= − 1

t2
f +

1
t

m∑
α=1

ηα(0)
∂f

∂ηα(0)
(2.4)

on one hand. On the other hand,
∂h

∂t
= −H

(
x,y,∇xh,∇yh

)
(2.5)

from Theorem 2.1. Since (2.4) agrees with (2.5) for all t so we may set t = 1 which
yields the proposition. �
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At the rest of the section we present some examples that reveal the geomet-
rical nature of functions h and f .

2.3. Laplace operator

We start from the Laplace operator Δ = 1
2

∑n
k=1

∂2

∂x2
k

in Rn. The Hamiltonian
function H(ξ) is

H(ξ) =
1
2

n∑
k=1

ξ2k

and hence we need to deal with F (ξ, γ) = H + γ = 0. The Hamilton’s system is

ẋ = ξ, ξ̇ = 0, γ̇ = 0.

with initial-boundary conditions x(0) = x0, x(t) = x. Since ξ̇ = 0, it follows that
ξ(s) = ξ(0) = constants, is a constant vector. Then

ẍ = ξ̇ = 0 ⇒ x(s) = ξ(0)s+ x0.

Moreover,

x = x(t) = ξ(0)t+ x0 ⇒ ξ(0) =
x− x0

t
and

∂h

∂t
=

1
2

n∑
k=1

ξ2k =
n∑

k=1

(xk − x
(0)
k )2

2t2
=

|x− x0|2
2t2

or,

h(x,x0, t) = h(0) +
|x− x0|2

2t2
t = h(0) +

|x− x0|2
2t

.

Since this is a translation invariant case, we may assume that h(0) = 0. Therefore,

f(x,x0) = h(x,x0, t)
∣∣∣
t=1

=
|x− x0|2

2
gives us the Euclidean action function.

2.4. Grusin operator

We are in R2 now and the horizontal vector fields X1, X2 are given by

X1 =
∂

∂x
, and X2 = x

∂

∂y
.

The Grusin operator is given as follows: ΔX = 1
2

(
∂
∂x

)2

+ 1
2x

2
(

∂
∂y

)2

. It is obvi-
ous that ΔX is elliptic away from the y-axis but degenerate on the y-axis. Since
[X1, X2] = ∂

∂y , hence {X1, X2, [X1, X2]} spanned the tangent bundle of R2 every-
where. By Hörmander’s theorem [12], ΔX is hypoelliptic.

The Hamiltonian function H for the ΔX is

H(x, y, ξ, η) =
1
2
ξ2 +

1
2
x2η2. (2.6)
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The Hamilton system can be obtained as follows;
ẋ =Hξ = ξ,

ẏ =Hη = ηx2,

ξ̇ = −Hx = −η2x,

η̇ = −Hy = 0,

Ṡ = ξẋ+ ηẏ −H.

With 0 ≤ s ≤ t,
η(s) = η(0) = η0 = constant,

here “constant” means “constant along the bicharacteristic curve”. Next,

ẍ = ξ̇ = −xη2, so ẍ+ η2x = 0.

It follows that

x(s) = A cos(ηs) +B sin(ηs) = x(0) cos(ηs) +
ξ(0)
η

sin(ηs)

= x0 cos(ηs) +
ξ(0)
η

sin(ηs).

Hence,
ξ(s) = ẋ(s)

yields
ξ(s) = ξ(0) cos(ηs) − ηx0 sin(ηs).

We also have

x = x(t) = x0 cos(ηt) +
ξ(0)
η

sin(ηt),

and
ξ(0)
η

=
x− x0 cos(ηt)

sin(ηt)
. (2.7)

Consequently,

x(s) = x(0) cos(ηs) +
x− x0 cos(ηt)

sin(ηt)
sin(ηs).

The singularities occur at η = η0 = kπ
t when x = ±x0; they are η = (2k+1)π

t if
x = x0 and η0 = 2kπ

t if x = −x0. Next,

ẏ(s) = ηx2(s)

= η
[
x0

(1
2

+
1
2

cos(2ηs)
)

+ 2x0
ξ(0)
η

sin(ηs) cos(ηs) +
(ξ(0)

η

)2(1
2
− 1

2
cos(2ηs)

)]
=

d

ds

{
η
[x2

0

2

(
s+

sin(2ηs)
2η

)
+
x0ξ(0)
η2

sin2(ηs) +
1
2

(ξ(0)
η

)2(
s− sin(2ηs)

2η
)]}

=
d

ds

{η
2

[
x2

0 +
(ξ(0)
η

)2]
s+

1
4

[
x2

0 −
(ξ(0)
η

)2] sin(2ηs) +
x0

2
ξ(0)
η

(
1 − cos(2ηs)

)}
.
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We replace ξ(0)
η by (2.7) and collect terms with x2

0:

x2
0

2

{
ηs+

1
2

sin(2ηs) + ηs
cos2(ηt)
sin2(ηt)

− 1
2

cos2(ηt)
sin2(ηt)

sin(2ηt) − cos(ηt)
sin(ηt)

(
1 − cos(2ηs)

)}
=
x2

0

2

{ ηs

sin2(ηt)
− 1

2
cos2(ηt) − sin2(ηt)

sin2(ηt)
sin(2ηs)− cos(ηt)

sin(ηt)
(
1 − cos(2ηs)

)}
=

x2
0

2 sin2(ηt)

{
ηs− 1

2
[
cos(2ηt) sin(2ηs) + sin(2ηt)

(
1 − cos(2ηs)

)]}
=

x2
0

4 sin2(ηt)

{
2ηs−

[
sin(2ηt)− sin

(
2η(t− s)

)]}
.

The terms containing x2 are:

1
4

x2

sin2(ηt)

(
2ηs− sin(2ηs)

)
,

and the terms with x0x are the following:

1
2

2xx0

sin2(ηt)

{1
2
[
sin
(
η(2s− t)

)
+ sin(ηt)

]
− η s cos(ηt)

}
.

So,

ẏ(s) =
d

ds

{ x2
0

4 sin2(ηt)

[
2ηs−

[
(sin(2ηt)− sin

(
2η(t− s)

)]
)
]

+
x2

4 sin2(ηt)

(
2ηs− sin(2ηs)

)
+

2xx0

4 sin2(ηt)

[1
2
(
sin
(
η(2s− t)

)
+ sin(ηt)

)
− η s cos(ηt)

]}
.

The action function has the form

S =
∫ t

0

(ξẋ+ ηẏ −H)ds = η(y − y(0)) +
∫ t

0

(ξ2 −H)ds.

We find ξ2 as follows

ξ2(s) =
ξ2(0)

2
(
1 + cos(2ηs)

)
− ξ(0)ηx0 sin(2ηs) +

1
2
η2x2

0

(
1 − cos(2ηs)

)
=

1
2
[
ξ2(0) + η2x2

0

]
︸ ︷︷ ︸

=H(0)

+
1
2
[
ξ2(0)− η2x2

0

]
cos(2ηs) − ηx0ξ(0) sin(2ηs).

Since H is constant along the bicharacteristic, one has

H = H(0) =
1
2
[
ξ2(0) + η2x2

0

]
.
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Continuing, we obtain the action function

S = η(y − y(0)) +
∫ t

0

[
(ξ2(0) − η2x2

0)
cos(2ηs)

2
− ηx0ξ(0) sin(2ηs)

]
ds

= η(y − y(0)) +
1
2
(
ξ2(0) − η2x2

0

) sin(2ηt)
2η

+ ηx0ξ(0)
cos(2ηt) − 1

2η
.

We simplify this

S − η(y − y(0)) =
η2

2

(x− x0 cos(ηt)
sin(ηt)

)2 sin(2ηt)
2η

− 1
2
η2x2

0

sin(2ηt)
2η

+ η2x0
x− x0 cos(ηt)

sin(ηt)
cos(2ηt) − 1

2η

=
η

4

{(x− x0 cos(ηt)
sin(ηt)

)2

sin(2ηt)− x2
0 sin(2ηt)

− 2x0
x− x0 cos(ηt)

sin(ηt)
(
1 − cos(2ηt)

)}
.

(2.8)

In the bracket {· · · } of (2.8), terms involved x2
0 are

x2
0

[(cos2(ηt)
sin2(ηt)

− 1
)

sin(2ηt) + 2
cos(ηt)
sin(ηt)

(1 − cos(2ηt))
]

= x2
0

(cos(2ηt) sin(2ηt)
sin2(ηt)

+ 2
cos(ηt)
sin(ηt)

− cos(2ηt) sin(2ηt)
sin2(ηt)

)
= 2x2

0 cot(ηt),

terms involved x2 are

x2 sin(2ηt)
sin2(ηt)

= 2x2 cot(ηt),

and terms containing x0x are

2xx0

(
− cos(ηt)

sin2(ηt)
sin(2ηt)− 1 − cos(2ηt)

sin(ηt)

)
= −2xx0

(2 cos2(ηt)
sin(ηt)

+ 2 sin(ηt)
)

= − 4xx0

sin(ηt)
.

Hence,

{· · · } =2(x2 + x2
0) cot(ηt) − 4xx0

sin(ηt)

=
[
(x+ x0)2 + (x− x0)2

]
cot(ηt) − (x+ x0)2 − (x − x0)2

sin(ηt)

= (x+ x0)2
(

cot(ηt) − 1
sin(ηt)

)
+ (x− x0)2

(
cot(ηt) +

1
sin(ηt)

)
=(x+ x0)2

cos(ηt) − 1
sin(ηt)

+ (x− x0)2
cos(ηt) + 1

sin(ηt)

= − (x+ x0)2 tan
(ηt

2
)

+ (x − x0)2 cot
(ηt

2
)
.
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Thus S has the following form:

S = η(y − y(0)) − η

4

[
(x+ x0)2 tan

(ηt
2

)
− (x− x0)2 cot

(ηt
2

)]
.

By Theorem 2.1, we know that

h(t;x, x0, y, η) = ηy(0) + S(t;x, y, η)

= ηy(0) + η(y − y(0)) − η

4

[
(x+ x0)2 tan

(η
2

)
− (x− x0)2 cot

(η
2

)]
= ηy − η

4

[
A2 tan

(ηt
2
)
−B2 cot

(ηt
2

)]
is a solution of the Hamilton–Jacobi equation. Here A = x + x0 and B = x− x0.
Now by Theorem 2.2, the function

f(x, x0, y, η) = h(t;x, x0, y, η)
∣∣∣
t=1

=
1
2
η

2

{
4y −A2 tan

(η
2

)
+B2 cot

(η
2

)}
is a solution of the generalized Hamilton–Jacobi equation

η
∂f

∂η
+H
(
x, x0, y, ∂xf, ∂yf

)
= f.

We set
η

2
= η̃τ,

where τ ∈ R yields the domain of integration and η̃ is a fixed complex number.

Lemma 2.5. Suppose f is a smooth function of τ ∈ R and

lim
τ→±∞Re(f)(τ) = ∞

off the canonical curve x2
0 + x2 = 0. Then η̃ is pure imaginary.

Proof. Let η̃ = η1 + iη2. An elementary calculation yields

f =
1
2
(
η1 + iη2

)
τ
{

4y +
sin(2η1τ)

[
(B2 −A2) cosh(2η2τ) + (B2 +A2) cos(2η1τ)

]
cosh2(2η2τ) − cos2(2η1τ)

− i
sinh(2η2τ)

[
(B2 +A2) cosh(2η2τ) + (B2 −A2) cos(2η1τ)

]
cosh2(2η2τ) − cos2(2η1τ)

}
(i) η1 = 0, i.e., η ∈ iR. When τ ≈ ±∞,

f ≈
1
2
iη2τ
{

4y − i2(x2
0 + x2) tanh(2η2τ)

}
,

and
Re(f) ≈

1
4
(x2

0 + x2)2η2τ tanh(2η2τ) → ±∞
as τ → ±∞ as long as x2

0 + x2 �= 0.
(ii) η2 = 0, that is η ∈ R. Then

f = 2η1τy +
1
4

2η1τ
sin(2η1τ)

[
B2 −A2 + (B2 +A2) cos(2η1τ)

]
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is singular in τ ∈ R when x2
0 + x2 �= 0, otherwise

Re(f) = f = 2η1τy −→︸︷︷︸
τ→±∞

±(sgn(y))∞.

(iii) η1 �= 0, η2 �= 0. Here

f ≈
1
2
(
η1 + iη2

)
τ
{

4y − i(A2 + B2) tanh(2η2τ)
}

as τ → ±∞, and

Re(f) ≈ 2η1τy + (x2
0 + x2)

∣∣η2τ ∣∣
= |τ |

[
2(sgn(τ))η1y + (x2

0 + x2)|η2|
]

and choosing x0, x, y so that

2η1y > (x2
0 + x2)|η2|

we have
lim

τ→±∞Re(f) = ±∞
which we do not want. This complete the proof of Lemma (2.5). �

Following the tradition, we shall choose

η̃ = − i

2
.

Then
f = −iτy +

1
2
(x2

0 + x2)τ coth τ − τx0x

sinh τ
.

2.6. Sub-Laplace operator on step 2 nilpotent Lie groups

Let M be a simply connected 2-step nilpotent Lie group G equipped with a left
invariant metric. Let G be its Lie algebra and it is identified with the group G by
the exponential map:

exp : G → G.

We assume
G = [G,G] ⊕ [G,G]⊥ = C ⊕ [G,G]⊥ = C ⊕H,

where H and C are vector spaces over R with an skew-symmetric bilinear form

B : H×H → C
such that B(H,H) = C. The group law is given by

(H⊕ C)× (H⊕ C) → H⊕ C
with

(x,y) ∗ (x′,y′) =
(
x + x′,y + y′ +

1
2
B(x,x′)

)
and then the exponential map is the identity map. Let {X1, . . . , Xn} be a ba-
sis of H and let {Y1, . . . , Ym} be a basis of the center [G,G] = C. We assume
{X1, . . . , Xn} and {Y1, . . . , Ym} are orthonormal, and introduce a left invariant
Riemannian metric on the group G in an obvious way.
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We write the vector fields Xj , j = 1, . . . , n by:

Xj =
∂

∂xj
+

n∑
k=1

m∑
α=1

aα
jkxk

∂

∂yα

where the aα
jk are real numbers and form skew-symmetric matrices

[
aα

jk

]
j,k

, i.e.,
aα

jk = −aα
kj . We are interested in the sub-Laplacian ΔX which can be defined as

follows:

ΔX =
1
2

n∑
j=1

X2
j

It is easy to see that [
Xj , Xk

]
= 2

n∑
k=1

m∑
α=1

aα
jk

∂

∂yα
. (2.9)

Lemma 2.7. The operator ΔX is hypoelliptic if and only if the rectangular matrix
of order n(n−1)

2 ×m with element
[
aα

jk

]
{(j<k),α} is of rank m (which implies that

m ≤ n(n−1)
2 ).

Proof. The operator ΔX is hypoelliptic when the vector fields {Xj}n
j=1 satisfy

the “first” bracket generating condition. This implies that we can recover all the
∂

∂yα
from the n(n−1)

2 relations (2.9). If we consider
[
aα

jk

]
as a matrix with indices

α = 1, . . . ,m and the couples (j, k) where j < k, this means that this matrix
should have rank m. �

We may define a Lie group structure on Rn × Rm with the following group
law:

(x,y) ◦ (x′,y′) (2.10)

=
(
x1 + x′1, . . . , xn + x′n, y1 + y′1 +

n∑
j,k=1

a1
jkx

′
jxk, . . . , ym + y′m +

n∑
j,k=1

am
jkx

′
jxk

)
.

It is easy to see that the Xj are left invariant vector fields such that(
Xjf
)
(x,y) =

∂

∂x′j

(
f ◦ L(x,y)

)
(x′,y′)

∣∣∣
x′=0,y′=0

where
L(x,y)(x′,y′) = (x,y) ◦ (x′,y′)

is the left translation by the element (x,y). In particular, ΔX is a left invariant
operator for this group structure (see [1] and [16]).

Let ξ1, . . . , ξn be the dual variables of x and η1, . . . , ηm be the dual variables
of y. We define the symbols ζj of the vector field Xj by

ζj = ξj +
n∑

k=1

m∑
α=1

aα
jkxkηα.
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We shall try to find a solution of the following equation:

∂h

∂t
+

1
2

n∑
j=1

( ∂h
∂xj

+
n∑

k=1

m∑
α=1

aα
jkxk

∂h

∂yα

)2

= 0.

Thus we start with
∂z

∂t
+H(∇z) = 0, (2.11)

where H(x,y; ξ, η) is the Hamiltonian function as the full symbol of ΔX ,

H(x,y; ξ, η) =
1
2

n∑
j=1

(
ξj +

n∑
k=1

m∑
α=1

aα
jkxkηα

)2

=
1
2

n∑
j=1

(
ξj +

n∑
k=1

Akj(η) · xk

)2

.

(2.12)
Here

Akj(η) =
m∑

α=1

aα
kjηα.

We shall find the bicharacteristic curves which are solutions to the corresponding
Hamilton’s system. The solutions define a one parameter family of symplectic
isomorphism of the (punctures) cotangent bundle T ∗(Rn×Rm)\{0}. Since At(η) =
−A(η), the Hamilton’s system can be written explicitly as follows:

ẋj =Hξj = ξj −
n∑

k=1

Ajk(η) · xk = ζj , for j = 1, . . . , n

ẏα =Hηα =
n∑

j=1

n∑
k=1

aα
jkxkζj , for α = 1, . . . ,m

ξ̇j = −Hxj = −
n∑

k=1

Ajk(η) · ζk =
n∑

k=1

Akj(η) · ζk, for j = 1, . . . , n

η̇α = −Hyα = 0, for α = 1, . . . ,m

(2.13)

with the initial-boundary conditions such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(0) = 0
x(t) = x = (x1, . . . , xn)
y(t) = y = (y1, . . . , ym)
η(0) = iτ = i(τ1, . . . , τm),

(2.14)

where t ∈ R, x and y are arbitrarily given. With 0 ≤ s ≤ t,

ηα(s) = ηα = constant, for α = 1, . . . ,m.

Again, “constant” means “constant along the bicharacteristic curve”. Also

H =
1
2

n∑
j=1

ẋ2
j =

1
2

n∑
j=1

ζ2
j = E = energy.
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Another way to see that E is constant along the bicharacteristic, note that

ẍj = ζ̇j = ξ̇j −
n∑

k=1

Ajk(η) · ẋk = −
n∑

k=1

Ajk(η) · ζk −
n∑

k=1

Ajk(η) · ζk

= −2
n∑

k=1

Ajk(η) · ζk
(2.15)

for j = 1, . . . , n. Hence

ẍ = ζ̇ = ξ̇ +A(η)ẋ = −2A(η)ζ. (2.16)

Therefore,
ẍ · ẋ = −2A(η)ζ · ζ = 0

since A is skew-symmetric. It follows that

1
2

n∑
j=1

ẋ2
j =

1
2
ẋ · ẋ = E = energy.

Since ẋ(s) = e−2sA(η)ξ(0), by integrating the equation

A(η)ẋ(s) = A(η)e−2sA(η)ξ(0),

one has

A(η)x(s) = −1
2

(
e−2sA(η) − I

)
ξ(0)

where I is the n× n identity matrix. Since ηα = η(0) = iτα is pure imaginary, the
matrix iA(τ) is self-adjoint. It follows that the matrix

isA(τ)
sinh(itA(τ))

=
1

2πi

∫
γ

λ

sinh(λ)

(
λ− itA(τ)

)−1

dλ

is well defined and invertible for any t ∈ R and τ ∈ Rm. Here γ is a suitable
contour surrounding the spectrum of the matrix itA(τ). The matrix

1
2πi

∫
γ

λ

sinh(λ)

(
λ− itA(τ)

)−1

dλ

has an inverse:
1

2πi

∫
γ

sinh(λ)
λ

(
λ− itA(τ)

)
dλ.

We write it as
sinh(iA(τ))
iA(τ)

=
∞∑

k=0

(iA(τ))2k

(2k + 1)!
.

Then for any fixed t ∈ R, we have one-to-one correspondence between the initial
condition ξ(0) and boundary condition x:

ξ(0) = eitA(τ) · iA(τ)
sinh(itA(τ))

· x, t �= 0.
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Now we may solve the initial value problem:⎧⎨⎩ẋj(s) = ∂H
∂ξj

= ξj + i
∑n

k=1

∑m
α=1 a

α
jkxkτα = ξj + i

∑
k=1 Akj(τ)xk ,

ξ̇j(s) = − ∂H
∂xj

= −i∑n
k=1

(
ξk + i

∑n
=1 Ak(τ)x

)
· Ajk(τ)

with the initial conditions{
x(0) = 0
ξ(0) = eitA(τ) · iA(τ)

sinh(itA(τ))x.

Straightforward computations show that

x(s) =x(s;x, τ, t) = ei(t−s)A(τ) sinh(isA(τ))
sinh(itA(τ))

· x

ξ(s) = ξ(s;x, τ, t)

=
iA(τ)

sinh(itA(τ))
· eitA(τ)

(
I − e−isA(τ) sinh(isA(τ))

)
· x

=
(
e−isA(τ) cosh(isA(τ))

)
·
(
eitA(τ) iA(τ)

sinh(itA(τ))

)
x

=
(
e−isA(τ) cosh(isA(τ))

)
· ξ(0).

Hence we obtain solutions for the initial-boundary problem (2.13) under the con-
dition (2.14). We also have the following solutions for y(s):

yα(s) = yα(0) +
∫ s

0

n∑
k=1

((
e−2iuA(τ)ξ(0)

)
k
·

n∑
=1

aα
kx(u)

)
du, α = 1, . . . ,m.

Again by Theorem 2.2, the function

f(x,y, τ) = h(x,y, τ, t)
∣∣∣
t=1

is a solution of the generalized Hamilton–Jacobi equation. In our case, the function
f can be calculated explicitly.

f(x,y, τ) = h(x,y, τ, t)
∣∣∣
t=1

=
m∑

α=1

ηα(0)yα(0) +
∫ 1

0

(
ξ · ẋ + η · ẏ −H

)
ds

= η0

m∑
α=1

ταyα +
∫ 1

0

(
ξ · ẋ−H

)
ds.

Here η0 is a pure imaginary number. This choice can be motivated by Lemma 2.5.
Since

ξ · ẋ−H =
1
2
〈ζ, ζ〉 − 〈ζ,Ax〉,
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then

〈ζ,Ax〉 =
〈
ζ,
A(τ)e2sA(τ)

e2A(τ) − I
x
〉
−
〈
ζ,

A(τ)
e2A(τ) − I

x
〉

=
1
2
〈ζ, ζ〉 −

〈2A(τ)e2sA(τ)

e2A(τ) − I
x,

A(τ)
e2A(τ) − I

x
〉
.

It follows that

ξ·ẋ−H =
〈2A(τ)e2sA(τ)

e2A(τ) − I
x,

A(τ)
e2A(τ) − I

x
〉

=
〈2A(τ) cosh(2sA(τ))

e2A(τ) − I
x,

A(τ)
e2A(τ) − I

x
〉
.

The second equality due to A is skew-symmetric. Now we can integrate from s = 0
to s = 1 to obtain∫ 1

0

(
ξ · ẋ−H

)
ds =

1
2

〈(
A(τ) coth(A(τ))

)
x,x
〉
.

It follows that

f(x,y, τ) = −i
m∑

α=1

ταyα +
1
2

〈(
A(τ) coth(A(τ))

)
x,x
〉
. (2.17)

Using equation (2.17), we may complete the discussion in Section 2.

Example 2.8. When

A =

⎡⎢⎢⎣
a1 0 · · · 0
0 a2 · · · 0

· · ·
0 0 · · · a2n

⎤⎥⎥⎦ ∈ M2n×2n, with aj = aj+n, j = 1, . . . , n,

i.e., the group is an anisotropic Heisenberg group. In this case, m = 1 and

f(x, y, τ) = −iτy + τ

n∑
k=1

ak coth(2akτ)
(
x2

k + x2
n+k

)
.

Example 2.9. In R4, the basis of quaternion numbers H = {a + bi + cj + dk :
a, b, c, d ∈ R} can be given by real matrices

M0 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , M1 =

⎡⎢⎢⎣
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦ ,

M2 =

⎡⎢⎢⎣
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ , M3 =

⎡⎢⎢⎣
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤⎥⎥⎦ .
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We have

q =

⎡⎢⎢⎣
a b −d −c

−b a −c d
d c a b
c −d −b a

⎤⎥⎥⎦ = aM0 + bM1 + cM2 + dM3.

The number a is called the real part and denoted by a = Re(q). The vector u =
(b, c, d) is the imaginary part of q. We use the notations

b = Im1(q), c = Im2(q), d = Im3(q), and Im(q) = u = (b, c, d).

We introduce the quaternionic H-type group denoted by Q. This group consists
of the set

H × R3 = {[x,y] : x ∈ H, y = (y1, y2, y3) ∈ R3}
with the multiplication law defined in (2.10) with [aα

jk] = Mα, α = 1, 2, 3. The
horizontal vector fields X = (X1, X2, X3, X4) of the group Q can be written as
follows:

X = ∇x +
1
2

(
M1x

∂

∂y1
+M2x

∂

∂y2
+M3x

∂

∂y3

)
,

with x = (x1, x2, x3, x4) and

∇x =
( ∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4

)
.

In this case, the solution for the generalized Hamilton–Jacobi equation is

f(x, y1, y2, y3, τ1, τ2, τ3) = −i
3∑

α=1

ταyα +
|x|2
2

|τ | coth(2|τ |)

See details in [6]. In general multidimensional case, the matrix A can be defined
as follows:

A =

⎡⎢⎢⎣
∑3

α=1 a
α
1Mα 0 . . . 0

0
∑3

α=1 a
α
2Mα . . . 0

. . .

0 0 . . .
∑3

α=1 a
α
nMα

⎤⎥⎥⎦ .
In this case we obtain the so-called anisotropic quaternion Carnot group considered
in [7]. The complex action is given by

f(x, y, τ) = −i
∑
α

ταyα +
1
2

n∑
l=1

|xl|2|τ |l coth(2|τ |l),

where |xl|2 =
∑3

j=0 x
2
4l−j , |τ |l =

(∑3
α=1(a

α
l )2τ2

α

)1/2. If all aα
l , l = 1, . . . , n are

equal, we get the example of multidimensional quaternion H-type group. More
information about H-type groups can be found in [5, 13, 14, 15].
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3. Heat kernel and transport equation

Let us return to the heat kernel. We consider the sub-Laplacian

ΔX =
1
2

n∑
k=1

X2
k with Xk =

∂

∂xk
+

n∑
j=1

m∑
α=1

aα
kjxj

∂

∂yα
.

Assume that {X1, . . . , Xn} is an orthonormal basis of the “horizontal subbundle”
on a simply connected nilpotent 2 step Lie group. The Hamiltonian of the operator
ΔX is

H(x,y, ξ, η) =
1
2

n∑
k=1

(
ξk +

n∑
j=1

m∑
α=1

aα
kjxjηα

)2

.

By Theorem 2.2, the function f associated with H is a solution of the generalized
Hamilton–Jacobi equation:

H(x,y,∇xf,∇yf) +
m∑

α=1

τα
∂f

∂τα
= f(x,y; η1, . . . , ηm).

As we know, the function f depends on free variables ηα, α = 1, . . . ,m. To this
end we shall sum over ηα, or for convenience τα = tηα, α = 1, . . . ,m; an extra t
can always be absorbed in the power q which can be determined after we solve the
generalized Hamilton–Jacobi equation. Thus we write heat kernel of ΔX − ∂

∂t as
following

K(x,y; t) = Kt(x,y) =
1
tq

∫
Rm

e−
f(x,y,τ)

t V (τ)dτ. (3.1)

Here V is the volume element. To see whether (3.1) is a representation of the heat
kernel we apply the heat operator to K and take it across the integral.(
ΔX− ∂

∂t

)e− f(x,y,τ)
t

tq
=
e−

f(x,y,τ)
t

tq+2

(
H(x,y,∇xf,∇yf)−f

)
− e

− f(x,y,τ)
t

tq+1

(
ΔX(f)−q

)
,

and the eiconal equation (2.3) implies that(
ΔX − ∂

∂t

)e− f(x,y,τ)
t V (τ)
tq

=
e−

f(x,y,τ)
t

tq+1

m∑
α=1

τα

(
− 1
t

∂f

∂τα

)
V (τ) − e−

f(x,y,τ)
t

tq+1

(
ΔXf − q

)
V (τ)

= −e
− f(x,y,τ)

t

tq+1

[ m∑
α=1

τα
∂V

∂τα

+
(
ΔXf − q +m

)
V (τ)

]
+

m∑
α=1

∂

∂τα

(e− f(x,y,τ)
t ταV (τ)
tq+1

)
.

Assuming
e−

f(u)
t ταV (τ)
tq+1

→ 0
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as τα tends to the ends of an appropriate contour Γα for α = 1, . . . ,m, one has(
ΔX − ∂

∂t

)
Kt(x,y)

=
(
ΔX − ∂

∂t

){ 1
tq

∫
∪m

α=1Γα

e−
f(x,y,τ)

t V (τ)dτ
}

= − 1
tq+1

∫
∪m

α=1Γα

e−
f(x,y,τ)

t

[ m∑
α=1

τα
∂V

∂τα
+
(
ΔXf − q +m

)
V (τ)

]
dτ = 0

if t �= 0 and
m∑

α=1

τα
∂V

∂τα
(τ) +

(
ΔXf − q +m

)
V (τ) = 0. (3.2)

Equation (3.2) is called the first-order transport equation.

Remark 3.1. Here we have made a crucial assumption on the volume element, i.e.,
V does not depend on the space variables x and y. That simplify the transport
equation significantly. Under a more general situation a function V will found
among co-dimension one form

V dτ =
m∑

=1

(−1)−1Vdτ1 ∧ · · · ∧ d̂τ ∧ · · · ∧ dτm

which satisfies a so-called “generalized transport equation”:

df ∧ΔX(V ) +
n∑

=1

X(f)X(dV ) +D(dV ) −
(
ΔXf + n−m− 1

)
dV = 0,

where D(V ) is defined by

D(V ) =
m∑

k=1

τk
∂

∂τk
(V ) =

m∑
k=1

m∑
=1

(−1)−1τk
∂V

∂τk
dτ1 ∧ · · · ∧ d̂τ ∧ · · · ∧ dτm.

Detailed discussion can be found in Furutani [9] and Greiner [11].

With f given by (2.17), one has

ΔXf =
1
2
tr
(
A(τ) coth(A(τ))

)
=

1
2
tr
( 1

2πi

∫
C
λ

cosh(λ)
sinh(λ)

(
λ− iA(τ)

)−1
dλ
)
. (3.3)

Then (3.2) becomes
m∑

α=1

τα
∂V

∂τα
(τ) +

(
ΔXf − q +m

)
V (τ) = 0 ⇔

m∑
α=1

τα
∂V

∂τα
(τ) =

(
q −m− 1

2
tr
(
A(τ) coth(A(τ))

))
V.

(3.4)

Fix τ and define for 0 ≤ λ ≤ 1

W (λ) = V (λτ).
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Hence, (3.4) reduces to

λ
dW

dλ
=
[
q −m− 1

2
tr
(
λA(τ) coth(λA(τ))

)]
W.

Here we are using the fact that A(τ) is linear in τ . It follows that

dW

W
=
(q −m

λ
− 1

2
tr
(
A(τ) coth(λA(τ))

))
dλ.

Hence,

logW = (q −m)
(
log λ+ log C

)
− 1

2
log(sinh(A(λτ))

)
.

Therefore,

V (τ) =
(detA(τ))q−m√(
det sinh(A(τ))

) .
If we propose the volume element V is real analytic and non-vanish at 0, then we
have q = n

2 +m.
Consequently,

P =
A

(2πt)q

∫
Rm

e−
f(x,y,τ)

t V (τ)dτ, (3.5)

where f is given by (2.17) and

V (τ) =
(detA(τ))

n
2√(

det sinh(A(τ))
) ,

where the branch is taken to be V (0) = 1. Finally we can write down the second
main results on this paper.

Theorem 3.2. The equation

Pt(x,y) =
A

(2πt)q

∫
Rm

e−
f(x,y,τ)

t V (τ)dτ,

represents the heat kernel for ΔX if and only if q = n
2 +m, in which case A = 1.

We clearly have
∂P

∂t
−ΔXP = 0, t > 0

and

lim
t→0

P (x,y, t) = δ(x)δ(y).

The calculation is long but straightforward. Readers can find the proof of this
theorem in many places, see, e.g., [1, 2, 3, 4, 8, 10]. We skip the proof here.
Instead, we list some examples.
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Example 3.1. The Heisenberg sub-Laplacian: ΔX = 1
2

(
∂

∂x1
+ 2x2

∂
∂y

)2

+ 1
2

(
∂

∂x2
−

2x1
∂
∂y

)2

which is defined as (1.1). The action function is f(x, y) = −iτy + (x2
1 +

x2
2)τ coth(2τ). The volume is V (τ) = 2τ

sinh(2τ) . In this case n = 2, m = 1 and (3.5)
has the following expression:

Pt(x, y) =
2

(2πt)2

∫ +∞

−∞
e−

f(x,y,τ)
t

τ

sinh(2τ)
dτ. (3.6)

Example 3.2. The Grusin operator: ΔG = 1
2

(
∂
∂x

)2

+ 1
2x

2
(

∂
∂y

)2

. There is no group
structure in this case. However, this operator has connection with the Heisenberg
sub-Laplacian. Let H1 be the Heisenberg group whose Lie algebra has a basis
{X1, X2, T } with the bracket relation [X1, X2] = −4T . As in (1.1),

ΔX = −1
2
(
X2

1 +X2
2

)
is the sub-Laplacian on H1. Let NX2 = 〈X2〉 = [{aX2}a∈R] be a subgroup gener-
ated by the element X2. The map ρ : H1 → R2 defined by

ρ : H1 → R2 ∼= h � g =x1X1 + x2X2 + zZ

=(x1, x2, z) → (u, v) ∈ R2

where
u = x1, v = z +

1
2
x1x2

realizes the projection map

H1
∼= R3 → NX2 \H1

∼= R2.

In fact, this is a principal bundle and the trivialization is given by the map

NX2 × (NX2 \H1) ∼= R × R2 � (a;u, v) → (x1, x2, z) ∈ R3 ∼= H1

where
(a;u, v) →

(
u, a, v − 1

2
au
)
.

So the sub-Laplacian ΔX on H1 and Grusin operator ΔG commutes each other
through the map ρ:

ΔH ◦ ρ∗ = ρ∗ ◦ ΔG.

The heat kernel Pt(x, y) ∈ C∞(R+ ×H1) is given by (3.6). Hence,∫ +∞

−∞
Pt

(
(x1, x2, y),

(
u, a, v − 1

2
ua
))

= PG
t

((
x1 + y +

1
2
x1x2

)
, (u, v)

)
that is, the fiber integration of the function Pt(g, h) along the fiber of the map ρ
gives the heat kernel of the Grusin operator.

PG
t ((x0, 0), (x, y)) =

1

(2πt
) 3

2

∫ +∞

−∞
e−

f(x,x0,y,τ)
t

√
|τ |

sinh |τ |dτ
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Example 3.3. Step 2 nilpotent Lie group: ΔX = − 1
2

∑n
j=1X

2
j where

Xj =
∂

∂xj
+

n∑
k=1

( m∑
α=1

aα
jkxk

) ∂

∂yα

with A(α)
jk =

[
aα

jk

]
j,k

is a skew-symmetric and orthogonal matrix. The heat kernel
is

Pt(x,y) =
1

(2πt)
n
2 +m

∫
Rm

e−
2iy·τ−〈A(τ) coth(A(τ))x,x〉

2t

√
det

A(τ)
sinh(A(τ))

dτ.

Here Ajk(τ) =
∑m

α=1 a
α
jkτα. In particular, if A(α)

jk satisfies further assumption:

A(α)
jk A(γ)

jk +A(γ)
jk A(α)

jk = 0, i.e., the group in a H-type group. Then the heat kernel
has the following form:

Pt(x,y) =
1

(2πt)
n
2 +m

∫
Rm

e−
2iy·τ+|x|2|τ| coth(|τ|)

2t

( |τ |
sinh |τ |

)n
2
dτ.
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Bergen Lecture on ∂̄-Neumann Problem

Der-Chen Chang

Abstract. Let Ω ⊂⊂ Cn+1 be a bounded, pseudoconvex domain of finite type
with smooth boundary. We assume further that the Levi form of ∂Ω is diago-
nalizable. In this article, we give detailed discussion of recent progress of the
∂̄-Neumann problem. Using this result, we obtain solving operator for inho-
mogeneous Cauchy-Riemann equation ∂̄U = f in Ω. Here f =

∑n+1
j=1 fj ω̄ is

a given (0, 1)-form. Then we discuss the “possible” optimal estimates of the
solution.

Mathematics Subject Classification (2000). 32A20.

Keywords. Cauchy-Riemann equation, ∂̄-Neumann problem, Heisenberg
group, Carnot-Carathéodory distance, Calderón operator, Cauchy-Szegö pro-
jection, pseudo-differential operators, singular integral operators.

1. Introduction

This article is based on a series of lectures presented by the author at the Matem-
atisk Institutt, Universitetet i Bergen, May 2007. The purpose of this article is to
give an exposition of some recent progress in the ∂̄-Neumann problem.

Given a bounded domain Ω ⊂⊂ Cn+1 with smooth boundary ∂Ω, i.e., there
exists a real-valued function ρ ∈ C∞(Ω̄) such that

∂Ω = {z ∈ Cn+1 : ρ(z) = 0}
with dρ(z) �= 0, ∀ z ∈ ∂Ω. One of the basic problems in several complex variables
is to solve the inhomogeneous Cauchy-Riemann equation

∂̄U = f in Ω (1.1)

with “good” bounds on Ω, where f is a given (0, 1)-form f =
∑n+1

j=1 fjω̄j . Obvious,
the right-hand side of (1.1) has n + 1 data but the left-hand side of (1.1) has
only one function. Therefore, the equation (1.1) is over-determined. It follows that

The author is partially supported by European Science Foundation Networking Program HCAA,

a Hong Kong RGC competitive earmarked research grant #600607 and a competitive research
grant at Georgetown University.
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the equation (1.1) is solvable only when f satisfies a consistence condition, i.e.,
∂̄f = 0. Moreover, solution for the equation (1.1) is highly non-unique. Suppose U
is a solution of (1.1), then U+F is also a solution whenever F ∈ H(Ω) where H(Ω)
is the set of all holomorphic functions defined on Ω. Denote A2(Ω) = L2(Ω)∩H(Ω)
the Bergman space. Then we can find a “canonical solution” which satisfies an
extra condition:

U ⊥ H(Ω) in A2(Ω).

It is also called the Kohn solution of (1.1) which minimizes the L2-norm among all
solutions. In order to find the Kohn solution, let us consider a first-order differential
operator D and μ, ν ∈ C∞(Ω̄), then the formal adjoint D∗ of D can be defined as
follows ∫

Ω

(Dμ)ν̄dV =
∫

Ω

μ(D∗ν)dV +
∫

∂Ω

μ(A�ν)dσ,

where A� is a 0th-order operator defined on ∂Ω. In our case D = ∂̄ is the Cauchy-
Riemann operator. Hence,

dom(∂̄∗) =
{
ν ∈ C∞(Ω̄) : A�ν = 0 on ∂Ω

}
.

Note that with U = ∂̄∗u, then

〈∂̄∗u, F 〉 = 〈u, ∂̄F 〉 = 0, for all F ∈ H(Ω).

This means that if we solve the equation

∂̄∂̄∗u = f, u ∈ dom(∂̄∗), (1.2)

then we solve (1.1) with a canonical solution.
In fact, problem (1.2) is equivalent to the case ∂̄f = 0 of the system

�u =
(
∂̄∂̄∗ + ∂̄∗∂̄

)
u = f,

u ∈ dom(∂̄∗), ∂̄u ∈ dom(∂̄∗).
(1.3)

To see that,
0 = ∂̄f = ∂̄

(
∂̄∂̄∗ + ∂̄∗∂̄

)
u = ∂̄∂̄∗∂̄u,

and so
0 = 〈∂̄u, ∂̄∂̄∗∂̄u〉 = 〈∂̄∗∂̄u, ∂̄∗∂̄u〉 ⇒ ∂̄∗∂̄u = 0.

For general u ∈ B(0,q)(Ω), the system (1.3) is called that “∂̄-Neumann problem”.
Here B(0,q)(Ω) is the collection of all (0, q) forms defined on Ω. The formalism of
the ∂̄-Neumann problem was introducing by D.C. Spencer in the early 1950’s. The
first result was obtained by Kohn (see [25], [26]):

‖u‖L2
k+1(Ω) ≤ C

(
‖f‖L2

k(Ω) + ‖u‖L2(Ω)

)
, k ∈ Z+.

This estimate is sharp in L2. Unlike the elliptic case, the solution u does not gain
two in all directions. Therefore, the system (1.3) has great interests from the point
of view of partial differential equations.
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There are essentially three aspects to this problem:

1. Existence of solutions;
2. Find the solving operator N (and hence ∂̄∗N) for the system (1.3) (and hence

the system (1.2));
3. Sharp estimates for N and ∂̄∗N.

It is well known that although the given (0, 1)-form f satisfies the consist
condition, the equation ∂̄u = f is not necessary solvable. The solvability of in-
homogeneous Cauchy-Riemann equation heavily rely on the geometry of Ω. This
is a significant difference between analysis in one and several complex variables.
Before we go further, let us recall some basic tools in several complex variables
(see e.g., Folland-Kohn [20] and Fefferman-Kohn [19]).

Definition 1.1. Let M be a (2n+ 1)-dimensional manifold. Then a CR structure
on M is given by a subbundle T 1,0(M) of the complex tangent bundle CT (M)
satisfying the following properties:

(1) T 1,0(M) ∩ T 1,0(M) = {0};
(2) The fiber dimension of T 1,0(M) is n;
(3) If Z and Z ′ are local vector fields with values in T 1,0(M), then the commu-

tator
[Z,Z ′] = ZZ ′ − Z ′Z

also has values in T 1,0(M).

In general, a manifold M with a fixed CR structure is called a CR manifold.

Definition 1.2. Let Z1, . . . , Zn be C∞ vector fields on an open set U ⊂ M which
are a local basis of sections of T 1,0(M) on U . Let T be a local vector field on
U such that {Zj, Z̄j, T }j=1,...,n forms a basis of the complex tangent bundle. The
vector fields [Zj , Z̄k] in terms of this basis is given by

[Zj, Z̄k] = cjk

√
−1T +

n∑
=1

a
jkZ +

n∑
=1

bjkZ̄.

The Hermitian form (cjk) is called the Levi form. M is called pseudoconvex if
each point of M has a neighborhood on which the vector field T can be chosen so
that (cjk) ≥ 0. The Levi form is said to be diagonalizable on U if the local basis
Z1, . . . , Zn can be chosen so that

cjk = δjkλj on U.

Remark 1.1.

1. M is strongly pseudoconvex if the Levi form (cjk) is positive definite.
2. If M is a hypersurface in Cn+1 then it has the CR structure induces by Cn+1

where
T 1,0(M) = T 1,0(Cn+1) ∩CT (M);
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that is, the fiber T 1,0
p (M) consists of vectors of the form

n+1∑
j=1

aj
∂

∂zj

which are tangent to M at p.
3. When the Levi form (cjk) of M is diagonalizable, “finite type” means the

horizontal subbundle of the tangent bundle T (M) satisfies the Chow’s con-
dition [16], i.e., the vector fields {Re(Z1), Im(Z1), . . . ,Re(Zn), Im(Zn)} to-
gether with their brackets generate the tangent bundle of M.

Let g be a smooth Hermitian metric on Cn+1. Then there is an open neigh-
borhood U of ∂Ω such that if ρ denotes a signed geodesic distance in the metric g
to ∂Ω, then

Ω+ = Ω ∩ U = {z ∈ U : ρ(z) > 0};
�ρ(z) �= 0 for all z ∈ U.

We choose a smooth orthogonal basis for (0, 1)-form on U , given by ω̄1,. . . ,ω̄n+1

with
ω̄n+1 =

√
2∂̄ρ.

We let Z̄1,. . . ,Z̄n+1 be the dual basis of antiholomorphic vector fields on U . Then

Z1, . . . , Zn, Z̄1, . . . , Z̄n

are tangential to ∂Ω. If ∂
∂ρ is the vector field dual to the one form dρ, then

Zn+1 =
1√
2
∂

∂ρ
+ iT

is the complex normal.
Because the vector fields split into “tangential” and “normal” part, we may

consider a (0, 1)-form u as follows:

u =
n+1∑
j=1

ujω̄j =
n∑

j=1

ujω̄j + un+1ω̄n+1.

Then the ∂̄-Neumann problem is the following boundary value problem:

�u = f in Ω
un+1 = 0 on ∂Ω

Z̄n+1(uj) − [S(u)]j,n+1 = 0 on ∂Ω

for j = 1, . . . , n. Here

[S(u)]j,n+1 =
n∑

=1

s̄
j,n+1uj, j = 1, . . . , n
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and the matrix S is defined by the equations

∂̄ω̄ =
∑
j<k

s̄
jkω̄j ∧ ω̄k.

Then

�u =

⎡⎢⎢⎢⎢⎣
�1 0 · · · 0 0
0 �2 · · · 0 0
· · ·
0 0 · · · �n 0
0 0 · · · 0 �n+1

⎤⎥⎥⎥⎥⎦u
+ (hn+1In+1 + St)(Z̄n+1u)− (S̄(Zn+1u)) + ε(Z, Z̄)u + ε(u)

where hn+1 is a smooth function which comes from the volume element. ε(Z, Z̄)u
represents terms of first derivatives of u along horizontal directions and ε(u) rep-
resents terms of u multiplying by smooth functions. Here

� = −1
2

n∑
j=1

(ZjZ̄j + Z̄jZj) − Zn+1Z̄n+1 +
( n∑

j=1

λj − 2λ

)
iT

for � = 1, 2, . . . , n and

�n+1 = −1
2

n∑
j=1

(ZjZ̄j + Z̄jZj)− Zn+1Z̄n+1 +
( n∑

j=1

λj

)
iT

We shall construct a solving operator for the ∂̄-Neumann problem according to
the geometry of ∂Ω, i.e., construct N = (N1, . . . ,Nn+1) such that modulo smooth
error uj = Nj(fj) for j = 1, . . . , n+ 1.

2. n ≥ 2 and Ω is strongly pseudoconvex

When Ω is strongly pseudoconvex, the Levi form is positive definite. In this case, Ω
has a foliation by a result of Chern and Moser [15]. Locally, Ω can be approximated
by the “upper half-space” in Cn+1, holomorphically equivalent to the unit ball.
Readers can consult Stein’s book [35] for background of Heisenberg group and its
connection with analysis in several complex variables. The domain consists of all
z ∈ Cn+1, n ≥ 1, so that

Ω =
{
(z1, . . . , zn+1) : Im(zn+1) >

n∑
j=1

|zj |2
}
.

Its boundary is the “paraboloid”

∂Ω =
{

Im(zn+1) =
n∑

j=1

|zj |2
}
. (2.1)
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The domain Ω is bi-holomorphic to the unit ball in Cn+1:

B =
{
(w1, . . . , wn+1) :

n+1∑
j=1

|wj |2 < 1
}

via the generalized Cayley transform

wn+1 =
i− zn+1

i+ zn+1
, wk =

2izk

i+ zn+1
, k = 1, . . . , n.

In this correspondence the boundary (2.1), together with the “point at ∞” maps
onto the unit sphere in Cn+1. The Heisenberg group Hn gives the translation of
the domain Ω:

Hn = Cn × R = {(ζ, ξ) : ζ ∈ Cn, ξ ∈ R}.
The action of an element (ζ, ξ) on Ω is given by

(z′, zn+1) →
(
z′ + ζ, zn+1 + ξ + 2iz′ · ζ̄ + i|ζ|2

)
where z′ = (z1, . . . , zn).

Multiplication on Hn is given by

(ζ1, ξ1) · (ζ2, ξ2) =
(
ζ1 + ζ2, ξ1 + ξ2 + 2 Im(ζ1 · ζ̄2)

)
.

The group Hn acts on ∂Ω in a simply transitive manner. The mapping of Hn to
Cn+1

(ζ, ξ) →
(
ζ, ξ + i|ζ|2

)
(2.2)

identifies the group Hn with ∂Ω. In this case, the vector fields Zj can be written as

Zj =
∂

∂zj
+ iz̄j

∂

∂t
, j = 1, . . . , n

and the complex normal Zn+1 is

Zn+1 =
1√
2

( ∂
∂ρ

+ iT
)

=
1√
2

( ∂
∂ρ

+ i
∂

∂t

)
where ρ = Im(zn+1) −

∑n
j=1 |zj |2 is the “height” function and T = ∂

∂t is the
“missing direction”. On the model domain, the system is split in an obvious way.
The “normal” component un+1 of u is the solution of a Dirichlet problem of the
complex Laplacian:

��un+1 = fn+1 in Ω
un+1 =0 on ∂Ω

Recall that

�� =
{
− 1

2

n∑
j=1

(
ZjZ̄j + Z̄jZj

)
− 1

2
∂2

∂t2
− inT

}
− 1

2
∂2

∂ρ2
.

Denote

Aα = 2
{
− 1

2

n∑
j=1

(
ZjZ̄j + Z̄jZj

)
− 1

2
∂2

∂t2
− iαT

}
.
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So,

�� =
1
2
Aα − 1

2
∂2

∂ρ2
, α = n.

Taking the partial Fourier transform in ρ-variable, one has

(Fρ→ςu)(z, t; ς) =
2f̃(z, t; ς)
Aα + ς2

.

It follows that

u(z, t; ρ) =
1
2π

∫ ∫
ei(ρ−ρ̃)ς

Aα + ς2
f(z, t; ρ̃)dρ̃dς =

∫
ei|ρ−ρ̃|√Aα

√
Aα

f(z, t; ρ̃)dρ̃.

Plugging in the boundary condition, one has

u(z, t; ρ) =
∫ ∞

0

e−|ρ+ρ̃|√Aα

√
Aα

f(z, t; ρ̃)dρ̃−
∫ ∞

0

e−(ρ−ρ̃)
√

Aα

√
Aα

f(z, t; ρ̃)dρ̃.

Since we want to find the kernel G� of the Green’s function for the operator ��,
we let

f(z, t; ρ̃) = δz(w) ⊗ δt(s) ⊗ δρ̃(�).

Then

G�(z, t; ρ) =
e−|ρ−�|√Aα

√
Aα

(
δz(w) ⊗ δt(s)

)
− e−(ρ+�)

√
Aα

√
Aα

(
δz(w) ⊗ δt(s)

)
.

Let σ(Aα) be the symbol of Aα. Then it is easy to see that

σ(Aα) = Δ2 + 2ατ =

√√√√2
n∑

j=1

|σ(Zj)|2 + τ2 + 2ατ

where τ = σ
(

∂
i∂t

)
. Hence we have

e−ρ
√

Aα

√
Aα

(
δz(w) ⊗ δt(s)

)
=

1
(2π)n+1

∫
R2n+1

σ
(e−ρ

√
Aα

√
Aα

)
F
(
δz(w) ⊗ δt(s)

)
ei(
∑ 2n

j=1 xjξj+tτ)dξdτ

=
1

(2π)n+1

∫
R2n+1

e−ρΔ

Δ
ei(
∑ 2n

j=1(xj−yj)ξj+(t−s)τ)dξdτ

− 1
(2π)n+1

∫
R2n+1

e−ρΔ
(αρ

Δ2
+

α

Δ3

)
ei(
∑ 2n

j=1(xj−yj)ξj+(t−s)τ)τdξdτ

+ terms with weaker singularities = I + II + t.w.w.s.

After length calculation, we have

I =
Cn

[2|z − w|2 + (t− s+ 2 Im(z · w̄))2 + ρ2]n
with Cn =

2n−1Γ(n)
πn+1
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and

II =
−Cn

2(n− 1)
1

[2|z − w|2 + (t− s+ 2 Im(z · w̄))2 + ρ2]n−1
.

Therefore, the kernel for the normal component Nn+1 can be written as

G�((z,t;ρ),(w,s;�))=
Cn

[2|z−w|2 +(t−s+2Im(z ·w̄))2 +(ρ−�)2]n (2.3)

− Cn

[2|z−w|2 +(t−s+2Im(z ·w̄))2 +(ρ+�)2]n
+ t.w.w.s.

Here “t.w.w.s” stands for “terms with weaker singularities”. It is easy to see that
the “normal component” Nn+1 of ∂̄-Neumann operator N gains two in all direc-
tions, i.e.,

Nn+1 : Lp
k(Ω) → Lp

k+2(Ω)
for all k ∈ Z+ and 1 < p < ∞. Now we are left with solving the following sub-
elliptic boundary problem: Given f on Ω, find a function u on Ω̄ such that

��u = f in Ω,

Z̄n+1u = 0 on ∂Ω
(2.4)

where

�� = −1
2
∂2

∂ρ2
− 1

2

n∑
j=1

(
ZjZ̄j + Z̄jZj

)
− 1

2
∂2

∂t2
− (n− 2)iT.

(In general, the operator �� should be a matrix. But on the model domain, �� can
be written as a scalar operator multiply by an identity matrix. Here we omit the
index j.)

In order to solve the problem (2.4), we may assume the solution u is given by

u(x, t, ρ) = G�(f) + P (ub) (2.5)

where ub is the “boundary value” of u which we need to determine. Here G� is
the Green’s function for the Dirichlet problem which is similar to (2.3) and P is
a pseudo-differential operator Poisson type. More precisely, we are interested the
following coercive boundary value problem{

p(x,D)u = 0 in Rn+1
+

Qj(x,D)u = gj , on Rn, j = 1, . . . ,m
(2.6)

where p(x,D) is a strongly elliptic differential operator of order 2m with coefficients
smooth up to boundary, and gj are given functions on the boundary. By a result
of Phong [31], operators Pj , j = 1, . . . ,m mapping C∞(Rn) to C∞(Rn+1

+ ) can be
constructed such that

u =
m∑

j=1

Pj(gj) + S−∞(u)

which satisfies (2.6). Here S−∞ is an infinity smoothing operator. The operators
Pj , j = 1, . . . ,m play an analogue role to the Poisson kernel in the case of the
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Dirichlet problem for the Laplacian. Operators Pj j = 1, . . . ,m, originally defined
on C∞(Rn) can be written as follows:

Pj(gj)(x, ρ) =
1

(2π)n

∫
Rn

eix·ξpj(x, ρ; ξ)ĝj(ξ)dξ.

Here pj(x, ρ; ξ) ∈ C∞(Rn × [0, 1] × Rn) is a symbol of Poisson type of order k
which satisfies

1. pj(x, ρ; ξ) has compact support in the (x, ρ) variables;
2. For all multi-indices α, β and integers γ, δ there is a constant Cα,β,γ,δ so that∣∣∣∣ρδ

( ∂
∂ρ

)γ( ∂
∂x

)β( ∂
∂ξ

)α

pj(x, ρ; ξ)
∣∣∣∣ ≤ Cα,β,γ,δ(1 + |ξ|)k−|α|+γ−δ.

In the case of (2.6), Pj will have order −kj id Qj(x,D) has order kj as a differential
operator.

Plugging in the ∂̄-Neumann boundary conditions on u in (2.5), i.e.,

RZ̄n+1(u) = 0, j = 1, . . . , n

where R is the restriction operator to the boundary. Therefore,

0 = RZ̄n+1(u) = RZ̄n+1G
�(f) + RZ̄n+1P (ub)

i.e., �+(ub) = RZ̄n+1P (ub) = −RZ̄n+1G
�(f).

The operator �+ is called the Calderón operator associated to the ∂̄-Neumann
problem. This is a 1st-order pseudo-differential operator defined on ∂Ω. Hence, in
order to solve the ∂̄-Neumann problems reduces to invert the operator �+.

The principal symbol of the operator �+ is

σ(�+) =
1√
2
(τ −Δ)− 1√

2
(2 − n)

τ

Δ
.

where Δ =
√

2
∑n

j=1 |σ(Zj)|2 + τ2. Obviously, �+ is a 1st-order pseudo-different-
ial operator which is elliptic when τ < 0 but doubly characteristic on half of the
line bundle

Σ+ = {(z, t; ξ, τ) : τ > Δ}
on the cotangent bundle T ∗(∂Ω).

So far, we have dealt exclusively with the ∂̄-Neumann problem on the domain
Ω+. However, we may also construct the Calderón operator �− of the ∂̄-Neumann
problem on

Ω̄− = {z ∈ U : ρ(z) ≤ 0}.
Similar calculus gives us the principal symbol of �− is

σ(�−) =
1√
2
(τ + Δ) +

1√
2
(2 − n)

τ

Δ
.

This is a 1st-order pseudo-differential operator characteristic on the half of the
line bundle

Σ− = {(z, t; ξ, τ) : τ < −Δ}
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but elliptic on the characteristics of �+. Let us try to look the compositions
�+ ◦ �− and �− ◦ �+.

The important phenomenon is that

�+ ◦ �− = −�b + zero-order terms

and
�− ◦ �+ = −�b + zero-order terms.

Here �b is the Kohn Laplacian on (0, 1)-forms defined on the boundary ∂Ω. More
precisely,

�b =

⎡⎢⎢⎣
�′1 0 · · · 0
0 �′2 · · · 0
· · ·
0 0 · · · �′n

⎤⎥⎥⎦+A

with

�′ = −1
2

n∑
j=1

(
ZjZ̄j + Z̄jZj

)
+ i
( n∑

k=1

λk − 2λ

)
T

for � = 1, . . . , n and A = [Aαβ ] of the form

Aαβ =
n∑

k=1

ak
αβZk +

n∑
k=1

bkαβZ̄k + cαβ .

Now we are ready to write down a parametrix for the ∂̄-Neumann problem.
By a result of Folland and Stein [21] (see also Beals-Greiner [1] and Beren-

stein-Chang-Tie [4]), �b has an inverse K (for (0, q)-forms, 1 ≤ q ≤ n − 1) such
that

�b ◦K = I + smoothing operators.

The kernel for K has the following form:

K(z, t) =
Γ(n− 1)

22−2nπn+1

1
(|z|2 − it)n−q(|z|2 + it)q

. (2.7)

Summarizing the above discussion, for n ≥ 2 and � = 1, . . . , n we have

N = G� + P (−K�−RZ̄n+1G
�) + S−∞

where S−∞ is a smoothing operator. Hence we have the following theorem, see
Greiner-Stein [23] and Chang [9].

Theorem 2.1. Let Ω ⊂⊂ Cn+1 be a smoothly bounded, strongly pseudoconvex
domain. Then the following operators are bounded on the indicated spaces, for
1 < p <∞, k ≥ 0, and α > 0:

1. N : Lp
k(Ω) → Lp

k+1(Ω);
2. P(Zj, Z̄j)N : Lp

k(Ω) → Lp
k(Ω). Here P(Zj , Z̄j) is any quadratic monomial

in “horizontal” vector fields;
3. N : Λα(Ω) → Λα+1(Ω) ∩ Γα+2(Ω).
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Corollary 2.1. Let Ω ⊂⊂ Cn be a smoothly bounded, strongly pseudoconvex do-
main. Then the solving operator ∂̄∗N of the Kohn solution for the inhomogeneous
Cauchy-Riemann equation satisfies the following estimates.

1. ∂̄∗N : Lp
k(Ω) → Lp

k+ 1
2
(Ω);

2. X∂̄∗N : Lp
k(Ω) → Lp

k(Ω) for any “good” vector fields X;
3. ∂̄∗N : Λα(Ω) → Λα+ 1

2
(Ω) ∩ Γα+1(Ω).

3. n = 1 and Ω is pseudoconvex of finite type m

In this case, we just have one holomorphic tangential vector field Z = X + iY .
Here finite type condition means X and Y satisfying Chow’s condition, i.e.,

{X,Y, [X,Y ], [X, [X,Y ]], [Y, [X,Y ]], . . . }
spans the tangent bundle of T ∗(∂Ω). In this case

�b = −1
2
(
ZZ̄ + Z̄Z

)
− i

2
λT = −Z̄Z.

However,
Zu = f

is the Lewy’s equation which is not in general locally solvable. However, by a result
of Greiner and Stein [23], there exists an operator K̃ defined on the Heisenberg
group whose kernel equals

K̃(z, t) =
1

2π2

1
|z|2 − it

log
[ |z|2 − it

|z|2 + it

]
, (3.1)

such that
(−Z̄Z)K̃ = K̃(−Z̄Z) = I− S.

Here
S : L2(∂Ω) → H2(∂Ω)

is the Cauchy-Szegö projection (see Stein [35]) whose kernel equals

S((z, t), (w, s)) =
2n−1Γ(n+ 1)

πn+1

1(
i(s− t)− 2z · w̄

)n+1 .

Let us consider 0th-order pseudo-differential operators: Γ+ and Γ− with sym-
bols in the class S0

1,0 such that the principal symbol of Γ+ equals to 1 on the set{
Δ <

1
4
σ(T )

}
and whose principal symbol equals 0 on the set{

Δ >
1
2
σ(T )

}
.

Denote Γ− = I− Γ+. Now we define

K+ = QΓ− + Γ+K�−,
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where QΓ− is the parametrix for �+ in the support of Γ−, i.e.,

QΓ−�+ = I− Γ+ + S−∞.

Then we have
K+�+ = QΓ−�+ + Γ+K�−�+

= I− Γ+ + Γ+K(�b + T0) + S−∞

= I− Γ+ + Γ+(I− S) + S−∞
= I− Γ+S + S−∞.

It can be shown that Γ+S ∈ ∩∞k=1S
k
1,0 by using microlocal analysis where Sk

1,0 is
the class of order k pseudo-differential operators of type (1, 0). Therefore, we have
for the C2 case

N1 = G+ P
(
(−QΓ− + Γ+K�−)RZ̄2G

)
+ S−∞. (3.2)

For higher step cases, the projection operator is not S but we still can construct
a projection operator T such that (−ZZ̄)K̃ = K̃(−ZZ̄)) = I − T (see Section
7). Then we may obtain a parametrix for the Neumann operator similar to (3.2).
Hence we have the following theorem, see Chang, Nagel and Stein [14].

Theorem 3.1. Let Ω ⊂⊂ C2 be a smoothly bounded, pseudoconvex domain of finite
type m. Then the following operators are bounded on the indicated spaces, for
1 < p <∞, k ≥ 0, and α > 0:

1. N1 : Lp
k(Ω) → Lp

k+ 2
m

(Ω);

2. P(Z1, Z̄1)N1 : Lp
k(Ω) → Lp

k(Ω). Here P(Z1, Z̄1) is any quadratic monomial
in Z1 and Z̄1;

3. N1 : Λα(Ω) → Λα+ 2
m

(Ω) ∩ Γα+2(Ω).

Corollary 3.1. Let Ω ⊂⊂ C2 be a smoothly bounded, pseudoconvex domain of finite
type m. Then the solving operator ∂̄∗N of the Kohn solution for the inhomogeneous
Cauchy-Riemann equation satisfies the following estimates.

1. ∂̄∗N : Lp
k(Ω) → Lp

k+ 1
m

(Ω);

2. X∂̄∗N : Lp
k(Ω) → Lp

k(Ω) where X = Z1 or Z̄1;
3. ∂̄∗N : Λα(Ω) → Λα+ 1

m
(Ω) ∩ Γα+1(Ω).

4. Ω: decoupled domain of finite type

A domain Ω ⊂ Cn+1 and its boundary M are said to be decoupled if there are
sub-harmonic, nonharmonic polynomials Pj with Pj(0) = 0 such that

Ω =
{
(z1, . . . , zn, zn+1) : Im(zn+1) >

n∑
j=1

Pj(zj)
}

;

M =
{
(z1, . . . , zn, zn+1) : Im(zn+1) =

n∑
j=1

Pj(zj)
}
.
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We call the integer mj = 2+degree(ΔPj) the “degree” of Pj . We identify M with
Cn × R so that the point(

z1, . . . , zn, t+ i
( n∑

j=1

Pj(z)
))

∈M

corresponds to the point (z1, . . . , zn, t) ∈ Cn × R.
We define the “type” of Ω is

m = max{m1, . . . ,mn}.

Remark 4.1. The actual degree of Pj may be larger, but the addition of a harmonic
polynomial to Pj does not affect our analysis, and can be eliminated by a change
of coordinates.

Examples. 1. The Siegel upper half-space:

Ω =
{
(z1, . . . , zn+1) : Im(zn+1) >

n∑
j=1

aj |zj|2
}

with aj > 0 for j = 1, . . . , n. This domain is decoupled and strongly pseudoconvex.
2. Decoupled and finite type:

Ω =
{

(z1, . . . , zn+1) : Im(zn+1) >
n∑

j=1

|zj|2mj

}
.

3. The domain

Ω =
{
(z1, . . . , zn+1) : Im(zn+1) >

( n∑
j=1

|zj |2
)mj
}

is finite type but not decoupled.
4. The domain

Ω =
{
(z1, z2, z3) : Im(z3) > |z1|2 + exp(−|z2|−2)

}
is decoupled but not finite type.

Without loss generality, one may concentrate on a model domain

Ω =
{
(z1, . . . , zn+1) : Im(zn+1) > |z1|2m1 + · · · + |zn|2mn

}
with m1, . . . ,mn ∈ N and m1 ≤ m2 ≤ · · · ≤ mn. Then ∂Ω can be identified with
{(z, t) = (z1, . . . , zn, t) ∈ Cn × R}, and

Z̄1 =
∂

∂z̄1
− im1|z1|2(m1−1)z1

∂

∂t
, . . . Z̄n =

∂

∂z̄n
− imn|zn|2(mn−1)zn

∂

∂t

form a basis of the tangential Cauchy-Riemann vector fields. The eigenvalues
λ1, . . . , λn of the Levi form at a point (z1, . . . , zn, t) are essentially |z1|2(m1−1),
. . . , |zn|2(mn−1) and are not comparable unless m1 = · · · = mn.
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We begin by considering separately the component domains

Ωj =
{
(zj , wj) ∈ C2 : Im |wj | > |zj|2mj

} ∼=
{
(zj , tj, ρj) ∈ C × R × R+

}
Mj =

{
(zj , wj) ∈ C2 : Im |wj | = |zj|2mj

} ∼=
{
(zj , tj) ∈ C × R

}
,

where ρj = Im |wj |−|zj|2m1 . We denote by M̃ the Cartesian productM1×· · ·×Mn

and we let π be the projection of M̃ to ∂Ω by

π : (z1, t1) × · · · × (zn, tn) → (z1, . . . , zn, t1 + · · ·+ tn).

The idea is to deduce the results about regularity of �b on ∂Ω from corresponding
results on M̃.

5. Geometry on Mj

Recall that Z̄j = Xj + iXn+j where {Xj, Xn+j} are real vector fields on Mj and
satisfy the bracket generating condition. By Chow’s theorem [16], given A,B ∈
Mj , there exists a piecewise C1 curve γ : [0, 1] → Mj such that γ(0) = A and
γ(1) = B, and such that for s ∈ [0, 1]:

γ̇(s) = αj(s)Xj(γ(s)) + αn+j(s)Xn+j(γ(s)).

As we know, for j = 1, . . . , n,

Xj =
∂

∂xj
+mjxn+j(x2

j + x2
j+n)mj−1 ∂

∂t
,

Xn+j =
∂

∂xn+j
−mjxj(x2

j + x2
j+n)mj−1 ∂

∂t
,

Then

H =
1
2

[(
ξj +mjxn+j(x2

j + x2
j+n)mj−1θ

)2 +
(
ξn+j −mjxj(x2

j + x2
j+n)mj−1θ

)2]
is the Hamiltonian function of the sub-Laplacian on the cotangent bundle T ∗Mj .
A bicharacteristic curve (xj(s), xn+j(s), t(s), ξ2n+j(s), θ(s)) ∈ T ∗Mj is a solution
of the Hamilton’s system:

ṫ(s) = Hθ, θ̇(s) = −Ht, ẋj(s) = Hξj , ξ̇j(s) = −Hxj , ξ̇n+j(s) = −Hxn+j ,

with boundary conditions,

t(0) = t(0), xj(0) = x
(0)
j , xn+j(0) = x

(0)
n+j ,

t(τ) = t, xj(τ) = xj , xn+j(τ) = xn+j .

The projection (xj(s), xn+j(s), t(s)) of the bicharacteristic curve on Mj is a geo-
desic.

By results of Calin, Chang and Greiner [5,6,8], there are finitely many geo-
desic that join the origin to (zj, tj) ⇔ zj �= 0. In particular, there is only one geo-
desic connecting the point (zj , 0) and the origin. These geodesics are parametrized
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by the solution θ of

|tj |
|zj |2mj

= μj(θ) =
2

2mj − 1

∫ (2mj−1)θ

0 sin
2mj

2mj−1 (v)dv

sin
2mj

2mj−1 (θ)
. (5.1)

If 0 ≤ θ1 < · · · < θN are the solutions of (5.1) (see [2,3,7,8]), there are exactly N
geodesics, and their lengths are given by

(d(j)
k )2mj = νj(θk)

(
|tj | + |zj|2mj

)
, k = 1, . . . , N

where

νj(θ) =

[ ∫ (2mj−1)θ

0 sin
− 2mj−2

2mj−1 (v)dv
]2mj

m
2mj

j (1 + μj(θ)) sin
2mj

2mj−1 ((2mj − 1)θ)
.

If |zj| = 0, then there are uncountably infinitely many geodesics join the
origin to a point (0, tj). Their lengths are d(j)

1 , d
(j)
2 , . . . , where

(d(j)
k )2mj =

( k

2mj − 1

)2mj−1M2mj

Q
|tj |,

where the constants M and Q expressed in terms of beta function B:

M = B
( 1

4mj − 2
,
1
2

)
, Q = 2B

(4mj − 1
4mj − 2

,
1
2

)
.

In order to do analysis on M, we combine the ideas in [8], [28] and [30] to quantize
the Carnot-Carathéodory distance. Define dj on Mj as follows:

dj(p, q) = inf
{
length(γ): γ horizontal, γ : [0, 1] →Mj , γ(0) = p, γ(1) = q

}
where

length(γ) =
∫ 1

0

√
|αj(s)|2 + |αn+j(s)|ds.

The corresponding non-isotropic ball is

Bj(p, δ) =
{
q ∈ Mj : dj(p, q) < δ

}
.

Write the commutator

[Xj , Xn+j] = λj(p)T + aj(p)Xj + an+j(p)Xn+j .

For k ≥ 2 set
Λk

j (p) =
∑

α1+···+α�≤k−2

∣∣Xα1 · · ·Xα�
λj(p)

∣∣,
where Xαi = Xj or Xn+j , i = 1, . . . , �. Set

Λj(p, δ) =
mj∑
k=2

Λk
j (p)δk.
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Now it is easy to see that there are constants C1, C2 depending only on mj so
that for p ∈Mj and δ > 0

C1δ
2Λj(p, δ) ≤

∣∣Bj(p, δ)
∣∣ ≤ C2δ

2Λj(p, δ).

Note that for δ > 0, δ → Λj(p, δ) is a monotone increasing function. Hence there
is a unique inverse function σj(p, δ) such that for δ ≥ 0 :

Λj(p, σj(p, δ)) = σj(p,Λj(p, δ)) = δ.

We have

σj(p, δ) ≈

mj∑
k=2

k
√

Λj(p)

δ
1
k

.

For every 0 < δ < 1, every p ∈M, we have

cδ
1
2 ≤ σj(p, δ) ≤ Cδ

1
mj ,

and for every 0 ≤ λ ≤ 1, there are constants C′1, C′2 depending only on mj so that
for p ∈Mj and δ > 0

C′1δ · σ2
j (p, δ) ≤

∣∣Bj(p, δ)
∣∣ ≤ C′2δ · σ2

j (p, δ).

This allows us to define a pseudometric on M as follows. For p, q ∈M,

dc(p, q) = inf
{
δ > 0 : ∃ piecewise curve C1 γ : [0, 1] →M, γ(0) = p, γ(1) = q,

γ̇(s) =
n∑

j=1

(
aj(s)Xj + an+j(s)Xn+j

)
, |aj(s)|,

|an+j(s)| ≤ σj(p, δ), de(p, q) ≤ δ
}
.

Here de(p, q) is the Euclidean distance between p and q.

6. Fundamental solution for operators �j

We shall construct the fundamental solution for the Kohn-Laplacian on Mj (see
Beals-Gaveau-Greiner [2] and Chang-Greiner [11]). It reduces to consider the fol-
lowing operator:

Δλ,m = − 1
2
(ZZ̄ + Z̄Z)− 1

2
λ[Z, Z̄]

= − ∂2

∂z∂z̄
+ im|z|2m−2 ∂

∂t

(
z
∂

∂z
− z̄

∂

∂z̄

)
−m2|z|4m−2 ∂

2

∂t2
+ im2λ|z|2m−2 ∂

∂t

where

Z =
∂

∂z
+ imz̄|z|2(m−1) ∂

∂t
, Z̄ =

∂

∂z̄
− imz|z|2(m−1) ∂

∂t
,

with m ∈ N and λ �∈ Γ. Here Γ is an exceptional set. We need to calculate the
fundamental solution Kλ,m for the operator Δλ,m.
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We shall look for a Kλ,m in the form (see Beals-Gaveau-Greiner [2,3] and
Chang-Tie [13]):

Kλ,m =
∫ ∞
−∞

Eλ(z, w, τ)Vλ(z, w, τ)
gm(z, w, t− s, τ)

dτ = −
∫ ∞
−∞

Vλd
(
log gm

)
,

where gm is the action of the complex Hamiltonian problem which satisfies the
Hamilton-Jacobi equation

∂gm

∂τ
+

1
2
[
(Xjgm)2 + (Xn+jgm)2

]
= 0,

and E = −∂gm

∂τ is the associated energy, the first invariant of motion. The volume
element Vλ is the solution of a second-order transport equation

Δλ,m(EλVλ) +
∂

∂τ

[
T (Vλ) +

(
Δλ,mgm

)
Vλ

]
= 0,

where
T =

∂

∂τ
+ (Xjgm)Xj + (Xn+jgm)Xn+j

is the differentiation along the bicharacteristics.

Theorem 6.1. For −1 < Re(λ) < 1, the fundamental solution Kλ,m for the sub-
Laplacian Δλ,m has the following closed form:

Kλ,m(z, w, t− s) = − 1
4mπ2

Fλ,m

A(1−λ)/2Ā(1+λ)/2
, (6.1)

where
A =

1
2
(
|z|2m + |w|2m + i(t− s)

)
.

and

Γ
(

1 − λ

2

)
Γ
(

1 + λ

2

)
Fλ,m

=
∫ 1

0

∫ 1

0

{ [s(1 − σ)]−
1+λ
2 [σ(1 − s)]−

1−λ
2

(1 − Ps 1
m )(1 − P̄σ 1

m )
1 − (sσ)

1
m |P|2

1 − sσ|P|2m

}
dsdσ

with

P =

{
m√2z·w̄

m√A
, if w �= 0

0, if w = 0.

Remark 6.2. We can show that |P| ≤ 1 and P = 1 ⇔ (z, t) = (w, s). Hence, Kλ,m

has a unique singularity at (w, s). Moreover, one can show that∣∣Kλ,m(p, q)
∣∣ ≤ Cdj(p, q)2

|Bj(p, dj(p, q))|
.

Hence Kλ,m ∈ L1
loc(R

3) and

Δλ,mKλ,m = δ(z, w, t− s).

From Theorem 6.1, we obtain the fundamental solution for the operator Δ0,m

as a corollary.
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Corollary 6.1. Assume (z, t) �= (w, s). Then the fundamental solution K0,m for the
sub-Laplacian Δ0,m has the following closed form:

K0,m =
1

4mπ3|A|

∫ 1

0

∫ 1

0

m−1∏
=1

(
1 − e

2�π
m i|P|2(sσ)

1
m

)−1

× dsdσ√
s(1 − s)σ(1 − σ)(1 − Ps 1

m )(1 − P̄σ 1
m )
.

In particular, when m = 1, one has

K0,1 =
1

4π3|A|

∫ 1

0

ds√
s(1 − s)(1 − Ps)

∫ 1

0

dσ√
σ(1 − σ)(1 − P̄σ)

=
1
2π

[
|z − w|4 +

(
t− s+ 2 Im(z · w̄)

)2]− 1
2

This coincides with the Folland-Stein formula (2.7) for q = n
2 .

When m = 2, one has

K0,2(z, w, t− s) =
1

4πd
+

i

2π2d
log[h(P , P̄)],

where
d =
√
|z2 − w2|4 +

(
t− s+ 2 Im(z2w̄2)

)2
and

h(P , P̄) =
|1 − P2| − i(P + P̄)

1 + |P|2 .

This recovers a result of Greiner [22].

7. Kernel K1,m and projection operators

If |Re(λ)| ≥ 1 ⇒ the integral in formula (6.1) will be divergent. However, we may
consider analytic continuation in λ. In fact,

Theorem 7.1. The function Kλ,m has a meromorphic extension in λ with simple
pole at the exception set Γ:

Γ =
{
±
(2k
m

+ 1 + 2�
)
, k = 0, 1, . . . ,m− 1, � ∈ Z+

}
.

If λ �∈ Γ, Kλ,m ∈ Cω(Mj ×Mj \ Γ) and

Δλ,mKλ,m = δ(z, w, t− s).

The limiting case λ → ±1 can be evaluated by a residue calculation: for
m > 1,

K1,m(z, w, t− s) =
1

4π2mĀ

{ 1
1 − P̄ log

Ā

A
+

m

1 − P̄m
log
(1 − P̄

1 − P
)

− P̄
1− P̄

m−1∑
=1

1 − e
2�π
m i

1 − e
2�π
m iP̄

log
(1 − e

2�π
m i|P|2

1 − e−
2�π
m i

)}
.

(7.1)



Bergen Lecture on ∂̄-Neumann Problem 95

For m = 1, we recover the formula (3.1) of Griener and Stein [23]. As we mentioned
before,

Δ1,1K1,1(z, w, t− s) = I − S1.

where S1 is the Cauchy-Szegö projection.
On Mj , the operator

Δ1,m = −1
2
(
ZZ̄ + Z̄ Z

)
− 1

2
[Z, Z̄]

= −ZZ̄

which is not solvable in general. However, from (7.1), one has

Δ1,mK1,m = I −T1

where T1 is a projection operator, see, e.g., Christ [17], Fefferman-Kohn [19], and
Chang-Nagel-Stein [14]. In general, T1 �= S1 (except m = 1).

However, one can show T1 = T1S1. It follows that

Δ1,mK1,m(I − S1) = (I −T1)(I − S1) = I − S1.

Using (7.1) again, one has

Theorem 7.2. Let

K̃j = ker(K1,m(I − S1)) = K1,m − ker(K1,mS1)

=
−1

4π2mĀ

{ 1
1 − P̄ log

A

Ā
+

1
1 − P̄ log(1 − |P|2m)

−mP
∫ 1

0

dσ

(1 − σP)(1 − σm|P|2m)

}
+

1
8π3m

∫ ∞
−∞

∫ ∞
0

Ā−1
(z,t)A

− 1
m−1

(w,s) log
[A(z,t)

Ā(z,t)

− |zw̄′|2m

|A(z,t)|2
]

×
{

1 −
( zmw̄mr2m

Ā(z,t)A(w,s)

) 1
m

}−2

rdrds′.

Then

Δ1,mK̃j = δ(z, w, t− s)− S1(z, w, t− s).

Here

A(z,t) =
1
2

(
|z|2m + |w′|2m + i(t− s′)

)
,

A(w,s) =
1
2

(
|w|2m + |w′|2m + i(s− s′)

)
.
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8. Descent to M
The operator

K̃ = K̃1 ⊗ K̃2

on M̃ turns out to be a product-type singular integral on M1×M2. Using results
on M̃, we have

K(z, w, t) =
∫

Σ(t)

K̃(z, w, ζ)dζ̃ = (K̃)�(z, w, t),

where dζ̃ is the volume element on the surface

Σ(t) =
{
ζ = (ζ1, ζ2) : ζ1 + ζ2 = t

}
.

It is easy to check that K is the relative fundamental solutions for � = �1 + �2

in the sense that
K� = �K = I − S1 ⊗ S2 = I − S.

Here S = S1 ⊗ S2 is the orthogonal projection onto the intersection of the null
spaces of the operators {�1,�2}, which is the same as the projection onto the null
space of the operator

� = −(Z1Z̄1 + Z̄2Z2) = �1 + �2.

Since � is translation invariant along the missing direction t, we may take partial
Fourier transform of � with respect to that variable:

f̃(z, w, τ) =
1
2π

∫
R

e−itτf(z, w, t)dt.

The support of the partial Fourier transform of distribution kernel S1 of the pro-
jection operator S1 is supported where τ ≥ 0. Similarly, the support of the partial
Fourier transform of distribution kernel S2 of the projection operator S2 is sup-
ported where τ ≤ 0. Therefore, when 1 ≤ q ≤ n− 1, we may invert �. But when
q = 0 and q = n, we need to invert � in the orthogonal complements of S1 or S2.
Summarizing, we have the following theorem.

Theorem 8.1. Let ϑ = {(j1, . . . , jq) : j1 ≤ · · · ≤ jq, 1 ≤ j ≤ n, 1 ≤ � ≤ q}. For
each of the n!

q!(n−q)! possible operator �J with J ∈ ϑq, we construct a distribution
KJ on M×M so that if KJ denotes the linear operator〈

KJ [ϕ], ψ
〉

=
〈
KJ , ϕ⊗ ψ

〉
,

for ϕ, ψ ∈ C∞0 (M). Then

KJ�J = �JKJ =

⎧⎪⎨⎪⎩
I − S0, if J ∈ ϑ0

I, if J ∈ ϑq, 1 ≤ q ≤ n− 1
I − Sn, if J ∈ ϑn.
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Let us consider again the model domain in C3:

M =
{
(z1, z2, z3) : Im(z3) = |z1|2m1 + |z2|2m2

}
.

With Z̄j = 1
2 (Xj + iX2+j), we can construct

dΣ ≈ |z1|+ |z2| + |t|
1

2m2

the “control metric” defined by the sub-Laplacian X2
1 +X2

2 +X2
3 +X2

4 .
However, there is another natural which reflects the “flatness” of the bound-

ary in different complex directions, the “Szegö metric”:

d2m2
S ≈ |z1|2m2 + |z2|2m1 + |t|.

Note that if m1 < m2,

dS(0, p) ≈ |z1| + |z2|
m1
m2 + |t|

1
2m2 �∼= dΣ(0, p)

dS controls the orthogonal projection on the null-space of the operator −(Z1Z̄1 +
Z2Z̄2). Some mixture of dΣ and dS arises in the fundamental solution of the op-
erator

�b = − (Z1Z̄1 + Z̄2Z2) = �1 + �2

= − 1
2

2∑
k=1

(
ZkZ̄k + Z̄kZk

)
− 1

2
[Z1, Z̄1] +

1
2
[Z̄2, Z2].

Theorem 8.2. For all J ∈ ϑq, the distribution KJ satisfies the following size esti-
mates: let ∂|αk|

k be a derivative of order |αk| made up of the vector fields Zk and Z̄k

in which each acts in either the variables pj or qj. Then for all αk = (αk1 , . . . , αkn)
there is a constant Cαk

such that∣∣∣[ n∏
k=1

∂
|αk|
k

]
KJ (p, q)

∣∣∣
≤ Cαk

[∏n
k=1 σk(p, dS(p, q))

]2∣∣BS(p, dS(p, q))
∣∣ log

{
2 +

[∏n
k=1 σk(p, dS(p, q))

]
dΣ(p, q)

}
×

n∏
k=1

[
σk(p, dS(p, q))−1 + dΣ(p, q)−1

]|αk|
.

The log term cannot be removed.

This phenomena was first discovered by Machedon [27]. In fact, Derridj [18]
has already shown that maximal hypoelliptic estimates are possible only if the
eigenvalues of the Levi form degenerate at the same rate. Therefore, analysis on a
domain like Ω = {(z1, z2, z3) ∈ C3 : Im(z3) > |z1|4 + |z2|4} is easier than analysis
on a domain like Ω = {(z1, z2, z3) ∈ C3 : Im(z3) > |z1|2 + |z2|4}. Readers can
also read a survey article by Chang and Fefferman [10] for detailed discussion.
Moreover, mixed typed homogeneities singular integrals have already seen when
we study the Henkin solution for inhomogeneous equation. Sharp estimates for
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singular integral with kernels like EkH which arise from ∂̄-Neumann on strongly
pseudo-convex domains was obtained by Phong and Stein [33], [34]. Here Ek is a
kernel with Euclidean homogeneity of degree−k andH is a kernel with Heisenberg
homogeneity of degree −�. It takes sometime for mathematicians to understand
this puzzle when ∂Ω is a decoupled domain of finite type. However, unlike Lp

estimates, it is easier to obtain Hölder estimates for the kernel KJ . We have the
following theorems.

Theorem 8.3. Let m = max1≤j≤n{mj} be the largest of the degrees of the polyno-
mials Pj. (This is the “type” of the boundary M.) Assume m > 2, and suppose
that f is a function bounded and supp(f) ⊂ BS(p, 1) ⊂ M where BS(p, 1) is the
unit ball induced by the Szegö metric centered at the point p. Then for all J ∈ ϑq

there is a constant CJ such that if q ∈ BS(p, 10−1) ⊂ M, the fundamental solution
KJ satisfies ∣∣∣KJ (f)(p+ q) +KJ (f)(p− q)− 2KJ (f)(p)

∣∣∣ ≤ CJ |q|
1
m .

for p ∈ M.

In particular, when m = 1, i.e., M is strongly pseudo-convex, one has

Theorem 8.4. Suppose that f is a bounded function and supp(f) ⊂ BS(p, 1) ⊂ M.
Then there is a constant CJ such that if q ∈ BS(p, 10−1), one has∣∣∣K(f)(p+ q) +K(f)(p− q) − 2K(f)(p)

∣∣∣ ≤ C
[ n∑

j=1

σj(p, |q|)2
]
≈ C|q|.

9. Flag singular integral operators

There is a fundamental issue that arises at this point. Operator like K̃J is not
pseudo-local, because as product-like operators their kernels have singularities on
the products of the diagonals of the Mj, and not just on the diagonal of M̃. As a
result the projection KJ = (K̃J )� of such operator on M is thus in general again
not pseudo-local.

We need to obtain the appropriate differential inequalities and cancellation
properties satisfied by the kernels of KJ , J ∈ ϑ away from diagonal. This leads to
a new research direction: flag singular integral operators.

Let
RN = Rm1 × · · · × Rmn ,

each of which is homogeneous under a given family of possible non-isotropic dila-
tions. We denote the elements x ∈ RN by n-tuples x = (x1, . . . , xn) with xj ∈ Rmj .
On each Rmj we can choose coordinates xj = (x1

j , . . . , x
mj

j ) so that the dilation
by δ > 0 is given by

δ · xj =
(
δλ1

jx1
j , . . . , δ

λ
mj
j x

mj

j

)
.
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We denote by Qj =
∑mj

k=1 λ
k
j the homogeneous dimension of Rmj and |xj | a

smooth homogeneous norm on Rmj . If αj = (α1
j , . . . , α

mj

j ) is a multi-index with
mj components, we denote its weighted length by |αj | =

∑mj

k=1 λ
k
jα

k
j .

A k-normalized bump function on a space Rmj is a Ck function supported on
the unit ball with Ck-norm bounded by 1.

Definition 9.1. A flag (or filtration) in RN is a family of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = RN .

For each j let Wj be a complementary subspace Vj−1 in Vj , i.e.,

Vj = Vj−1 ⊕Wj .

The family {Wj} is called a gradation associated to the filtration {Vj}.

Definition 9.2. A flag kernel, relative to the flag {Vj}, is a distribution K on RN

which coincides with a C∞ function away from the coordinate subspace xn = 0
and which satisfies:

(1) Differential inequalities: For each

α = (α1, . . . , αn) ∈ (Z+)n

there is a constant Cα so that∣∣∣∂α1
x1

· · · ∂αn
xn
K(x)

∣∣∣
≤Cα

(
|x1|+ · · · + |xn|

)−Q1−|α1|
× · · · ×

(
|xn−1|+ |xn|

)−Qn−1−|αn−1|
|xn|−Qn−|αn|

for xn �= 0.

(2) Cancellation conditions: These are defined induction on n.

(a) For n = 1, given any normalized bump function φ and any scaling
parameter R > 0, the quantity∫

K(x)φ(Rx)dx

is bounded uniformly on φ and R;

(b) for n > 1, given any j ∈ {1, . . . , n}, any normalized bump function φ
on Wj , and any scaling parameter R > 0, the distribution

Kφ,R(x1, . . . , x̂j , . . . , xn) =
∫
K(x)φ(Rxj)dxj

is a flag kernel on ⊕k =jWk, adapted to the flag

0 ⊂W1 ⊂ · · · ⊂ ⊕j−1
k=1Wk ⊂ ⊕j+1

k =j;k=1Wk ⊂ · · · ⊂ ⊕n
k =j;k=1Wk.
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Here are two examples of flag singular integrals.

Example 1. K1 is the distribution given by integration against the function

K1(x, y) =
1

x(x + iy)
on the set where x �= 0, and defined as a principal value integral.

Example 2. K2 is defined in a similar way:

K2(x, y) = P.V.
1
xy
χ
(y
x

)
, away from y �= 0.

Here χ is an even function with compact support.

10. Littlewood-Paley square function associated
with flag singular integrals

Let ψ1 ∈ C∞0 (Rn+m) and ψ2 ∈ C∞0 (Rm) which satisfying∑
j

∣∣∣ψ̂1
( ξ1
2j
,
ξ2
2j

)∣∣∣2 =1 ∀ (ξ1, ξ2) ∈ Rn+m \ {(0, 0)},

∑
k

∣∣∣ψ̂2(
ζ

2k

)∣∣∣2 =1 ∀ ζ ∈ Rm \ {0}

and the moment conditions∫
Rn+m

xαyβψ1(x, y)dxdy =
∫

Rm

zγψ2(z)dz = 0

for all multiindices α, β, and γ.
Denote

ψ�(x, y) =
∫

Rm

ψ1(x, y − z)ψ2(z)dz.

For f ∈ Lp, 1 < p < ∞, the Littlewood-Paley square function gF (f) is
defined by

gF (f)(x, y) =
{∑

j

∑
k

∣∣ψ�
j,k ∗ f(x, y)

∣∣2} 1
2

where ψ�
j,k(x, y) =

(
τ2j ,2kψ�

)
(x, y). Here(

τδ1,δ2ψ
�
)
(x, y) = δn+m

1 δm
2

∫
Rm

ψ1(δ1x, δ1(y − z))ψ2(δ2z)dz.

Theorem 10.1. There are constants C1 and C2 such that for 1 < p <∞,

C1‖f‖Lp ≤ ‖gF (f)‖Lp ≤ C2‖f‖Lp .

The following theorem was first proved by Nagel, Ricci and Stein [29] for Lp,
1 < p < ∞. Using Littlewood-Paley square functions, the result can be extended
to Hp for 0 < p <∞.



Bergen Lecture on ∂̄-Neumann Problem 101

Theorem 10.2. Suppose that T is a flag singular integral operator defined on Rn ×
Rm with the flag kernel

K�(x, y) =
∫

Rm

K̃(x, y − z, z)dz,

where the product kernel K̃ satisfies the conditions in Definition 9.2. Then T is
bounded on Lp for 1 < p < ∞. Moreover, there exists a constant C such that for
f ∈ Lp, 1 < p <∞,

‖T (f)‖Lp ≤ C‖f‖Lp.

11. Hp theory associated with flag singular integrals

In this section, we just give a rough introduction to Hp theory associated with
flag singular integral operators (see Han [24]). Detailed discussion will appear
elsewhere. It is well known that when 0 < p < 1, Hp is a class of distributions
satisfying certain criterion. Hence we first need to introduce suitable test function
space on Rn+m × Rm.

Definition 11.1. A Schwartz test function ϕ(x, y, z) defined on Rn × Rm × Rm is
said to be a test function of product type on Rn+m × Rm if∫

Rn×Rm

ϕ(x, y, z)xαyβdxdy =
∫

Rm

ϕ(x, y, z)zγdz = 0

for all multiindices α, β, and γ of nonnegative integers.

We denote S∞(Rn+m × Rm) the set of all product Schwartz test functions.

Definition 11.2. A function ϕ�(x, y) defined on Rn×Rm is said to be a text function
in SF (Rn × Rm) if there exists a function ϕ ∈ S∞(Rn+m × Rm) such that

ϕ�(x, y) =
∫

Rm

ϕ(x, y − z, z)dz. (11.1)

If ϕ� ∈ SF (Rn × Rm), then the norm of ϕ� is defined by

‖ϕ�‖SF (Rn×Rm) = inf
{
‖ϕ‖S∞(Rn+m×Rm) : ∀ representations of ϕ in (11.1)

}
.

We denote by (SF (Rn × Rm))′ the dual space of SF (Rn × Rm).
Since the functions ψj,k constructed above belong to SF (Rn × Rm), so

the Littlewood-Paley square function gF can be defined for all distributions in
(SF (Rn × Rm))′.

Definition 11.3.

Hp
F =
{
f ∈ (SF (Rn × Rm))′ : gF (f) ∈ Lp(Rn+m)

}
.

The norm of f is defined by

‖f‖Hp
F

= ‖gF (f)‖Lp .
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A question. Does the definition of Hp
F depend on the choice of functions ψj,k?

Moreover, one needs to discretize the norm of Hp
F . We have

(1) to prove a Calderón reproducing formula,
(2) to prove a Plancherel-Polya inequality.

However, we are dealing with non-convolution operators here. So we need to de-
velop a local theory for Hardy spaces. Using the ϕ�

j,k which was constructed above,
one has

f(x, y) =
∑

j

∑
k

ϕ�
j,k ∗ ϕ�

j,k ∗ f(x, y).

The series converges in the norm of SF and in the dual space (SF )′.

We have the following Plancherel-Polya inequality.

Theorem 11.1. Suppose ψ1, φ1 ∈ C∞0 (Rn+m) and ψ2, φ2 ∈ C∞0 (Rm) and satisfy
the conditions ∑

j

∣∣∣ψ̂1
( ξ1
2j
,
ξ2
2j

)∣∣∣2 = 1 ∀ (ξ1, ξ2) ∈ Rn+m \ {(0, 0)},

∑
k

∣∣∣ψ̂2(
ζ

2k

)∣∣∣2 = 1 ∀ ζ ∈ Rm \ {0}

∑
j

∣∣∣φ̂1
( ξ1
2j
,
ξ2
2j

)∣∣∣2 = 1 ∀ (ξ1, ξ2) ∈ Rn+m \ {(0, 0)},

∑
k

∣∣∣φ̂2(
ζ

2k

)∣∣∣2 = 1 ∀ ζ ∈ Rm \ {0}.

Define

ψ�(x, y) =
∫

Rm

ψ1(x, y − z)ψ2(z)dz,

φ�(x, y) =
∫

Rm

φ1(x, y − z)φ2(z)dz.

Then for f ∈ (SF )′ and 0 < p <∞,∥∥∥{∑
j

∑
k

∑
J

∑
I

sup
u∈I,v∈J

∣∣ψ�
j,k ∗ f(u, v)

∣∣2χIχJ

} 1
2
∥∥∥

Lp

≈
∥∥∥{∑

j

∑
k

∑
J

∑
I

inf
u∈I,v∈J

∣∣φ�
j,k ∗ f(u, v)

∣∣2χIχJ

} 1
2
∥∥∥

Lp

where

ψ�
j,k(x, y) =

(
τ2j ,2kψ�

)
(x, y),

φ�
j,k(x, y) =

(
τ2j ,2kφ�

)
(x, y),
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I and J are cubes in Rn and Rm with side length 2−j−N and 2−k−N + 2−j−N

for large integer N . Here χI and χJ are the characteristic functions of I and J ,
respectively.

As a consequence of the Plancherel-Polya inequality, it is easy to see that the
Hardy space Hp

F is well defined.
Using the Plancherel-Polya inequality, we can prove the boundedness of flag

singular integrals on Hp
F .

Theorem 11.2. Suppose that T is a flag singular integral with the kernel K(x, y)
satisfying the same conditions as in Theorem 10.2. Then T is bounded on hp

F for
pm < p ≤ 1. Here pm is an index depending on the type m. Moreover, there exists
a constant C such that for 0 < p ≤ 1,

‖T (f)‖hp
F
≤ C‖f‖hp

F
.

Theorem 11.3. There is an operator K so that, when it is applied to smooth func-
tions with compact support, there is the identity

K�b = �bK = (�1 + �2)K = I.

Moreover,
1. The four operators

Z1Z̄1K = �1K, Z̄2Z2K = �2K,

and
Z̄1Z̄1K, Z2Z2K

are bounded on Lp
k(∂Ω) for 1 < p <∞, k ∈ Z+ and hp

F (∂Ω) for pm < p ≤ 1.
Here pm is an index depending on the type m of the domain;

2. Let B1 and B2 be bounded functions on ∂Ω and suppose there are constants
C1, C2 so that

λ1(z1)B1(z, t) ≤ C1λ2(z2);

λ2(z2)B2(z, t) ≤ C2λ1(z1).

Then the two operators

B1Z̄1Z1K = B1�̄1K, B2Z2Z̄2K = B2�̄2K

are bounded on Lp
k(∂Ω) for 1 < p <∞, k ∈ Z+ and hp

F (∂Ω) for pm < p ≤ 1.
Here λ1(z1) = |z1|2(m1−1), λ2(z2) = |z2|2(m2−1) are the eigenvalues of the
Levi form;

3. Let B1 and B2 be bounded functions on ∂Ω and suppose there are constants
C1, C2 so that

B1(z, t) ≤ C1λ2(z2); B2(z, t) ≤ C2λ1(z1).

Then the two operators

B1Z1Z1K, B2Z̄2Z̄2K

are bounded on Lp
k(∂Ω) for 1 < p <∞, k ∈ Z+ and hp

F (∂Ω) for pm < p ≤ 1;
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4. K maps L∞(∂Ω) to the isotropic Lipschitz space Λα(∂Ω), where

α = min
{ 1
m1

,
1
m2

}
.

This theorem shows the fundamental solution K = (K1,K2) of �b will not
gain two in all horizontal directions. However, the Kohn solution

u = ∂̄∗b K̄(φ) = −Z1K̄1(φ1) − Z2K̄2(φ2) = −Z1K̄1(φ1)− Z2K1(φ2)

for the inhomogeneous tangential Cauchy-Riemann equation ∂̄bu = φ = φ1ω̄1 +
φ2ω̄2 is well defined in Lp. But, it will not gain one in all horizontal directions.

12. Further results

1. Using the method we mentioned above, construct the “fundamental solution”
N for the ∂̄-Neumann problem.

2. Obtain possible “sharp” Lp and Lipschitz estimates for the Neumann oper-
ator N.

3. Obtain the Heikin-Skoda estimate:∥∥∂̄∗N(f)
∥∥

L1(Ω)
≤ C
(
‖f‖L1(Ω) +

n∑
j=1

∥∥μj

ρ
fj

∥∥
L1(Ω)

)
.

Then use this estimate to characterize zero sets of functions in Nevanlinna
class:

N+(Ω) =
{
f ∈ H(Ω) : sup

ε>0

∫
ρ=ε

log+ |f(z)|dσ(z) <∞
}
.
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Numerical Scheme for
Laplacian Growth Models Based on
the Helmholtz–Kirchhoff Method

A.S. Demidov and J.-P. Lohéac

Abstract. The Helmholtz–Kirchhoff method is an efficient tool for analysing
bi-dimensional problems in fluid mechanics. It especially allows to transform
a free boundary problem in a fixed boundary problem by introducing a con-
venient parametrization of the free boundary.

In this paper, it will be shown how it also leads to build numerical
schemes. The case of Hele-Shaw flows will be especially studied.
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Keywords. Hele-Shaw flows, free boundary problems, integro-differential equa-
tions.

1. Hele-Shaw problems

The core of the Hele-Shaw device is a blob of fluid moving between two glass
plates. We are interested in the motion of such a blob when fluid is injected or
sucked between the plates. The air which surrounds the blob is another fluid with
negligible viscosity. In 1934, L.S. Leibenson gave a simplified mathematical model
for this problem when the source of the flow is punctual.

We here consider a class of free boundary problems derived from this so-called
Stokes-Leibenson problem.

Let Ω0 ⊂ R2 be a bounded simply connected domain such that its boundary
Γ0 is smooth enough. This domain will be deformed according to the following
law: at time t, we obtain a domain Ωt = Ω of boundary Γt = Γ such that the
normal velocity of each point s ∈ Γ is given by the following kinetic condition,

ṡ.ν = ∂νu , (1.1)

where u is the solution of some Laplace problem.
Above we denote by ν the normal unit outwards vector at s ∈ Γ and by ∂νu

the normal derivative of u at this point. We will consider three cases (see Fig. 1).
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Γ

Ω

O

Γ

Ω

ω

Γ

γ

Ω

(1.1) (1.2) (1.3)

Figure 1. The three considered cases: (1.1) punctual source, (1.2) dis-
tributed internal source, (1.3) distributed boundary source

1.1. Punctual source

Here u is the solution of the following problem,{
Δu = q δ , in Ω ,
u = 0 , on Γ , (1.2)

where δ is the Dirac distribution at some point O ∈ Ω0 and q represents the power
of the source.

Observe that by an elementary computation, one can obtain the increasing
rate of the fluid domain Ω: ∫

Γ

ṡ.ν dσ =
∫

Γ

∂νu dσ = q .

1.2. Distributed internal source

In this case, u satisfies {
Δu = f , in Ω ,
u = 0 , on Γ . (1.3)

Here, the support of the right-hand side f is contained in an open set ω such that
ω ⊂ Ω0.

As well as above, the increasing rate of the fluid domain Ω can be computed∫
Γ

ṡ.ν dσ =
∫

Γ

∂νu dσ =
∫

ω

f dx .

1.3. Distributed boundary source

Here, u satisfies ⎧⎨⎩Δu = 0 , in Ω ,
−∂νu = g , on γ ,
u = 0 , on Γ ,

(1.4)

and we can write ∫
Γ

ṡ.ν dσ =
∫

Γ

∂νu dσ =
∫

γ

g dσ .
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2. Helmholtz–Kirchhoff method

In each case, we consider u as an harmonic function on some subdomain Ω′ of Ω
and we introduce its harmonically conjugate function v. At every point of Ω′, level
curves of u and v are orthogonal.

Let us set: z = x + ıy and: w = u+ ıv. the function z −→ w is analytic and
univalent from Ω′ onto a fixed domain Π ⊂ C.

In Fig. 2, 3, 4, we construct a way composed of level curves of u and v in Ω′

and its image in Π.

u

v

q
O

Figure 2. The case of a punctual source: Ω′ = Ω \ {O} and Π =
(−∞, 0)× (0, q), when q > 0.

u

v

Figure 3. The case of an internal distributed source: Ω′ = Ω \ ω and
Π ⊂ (−∞, 0)× (0,

∫
ω
f dx), when

∫
ω
f dx > 0.

u

v

Figure 4. The case of a boundary distributed source: Ω′ = Ω and
Π ⊂ (−∞, 0)× (0,

∫
γ
g dσ), when

∫
γ
g dσ > 0.
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Now, in order to simplify, we assume that

• there is a constant axis of symmetry,
• the increasing rate of the fluid domain is 2.

Then we can only consider the “upper” part of the fluid domain and we can choose
v so that

v(t, x, 0) = 0 , if x > 0 , v(t, x, 0) = 1 , if x < 0 .

Γ+

v = 0v = 1

u = 0

Ω+

Γ+

v = 0v = 1

Γ+

v = 0v = 1

u = 0

γ+

Ω+ Ω+

O

ω+

u = 0

Figure 5. The upper part of the domain in the three above cases.

The corresponding domain Π+ is a simply connected subset of (−∞, 0) × (0, 1)
and the boundary of Π+ contains {0} × (0, 1), which corresponds to Γ+.
Since Γ+ is a part of a level curve of u, it can be parametrized by the value of v
at each point. In Fig. 6, we show an example of computed level curves of u and v
(this has been obtained by using a finite elements method).

Figure 6. Case of an uncentered source in a circular domain: level
curves of u (left) and v (right).

Then we can define the Helmholtz–Kirchhoff function [1]:

A+ ıB = ln
∂z

∂w
,

where A and B are harmonically conjugate real functions. We can write

(A+ ıB)(t, w) = a0(t) + πw +
∞∑

k=1

βk(t) exp(kπw) ,

and define
a(t, η) = A(t, 0, η) , b(t, η) = B(t, 0, η) .
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This leads to a parametrization of Γ+,

s(t, η) = s0(t) +
∫ η

0

exp(a(t, v)) τ (t, v) dv , with 0 ≤ η ≤ 1 ,

where τ is the tangential unit vector at some point of the moving upper boundary
Γ+ (see Fig. 7). Since a and b are linked by a Hilbert-type transform, the main
unknown of our problem becomes the function b which represents the orientation
of normal unit vector ν.

b

v = 1 v = 0

s

τ

s0

u = 0

ν

Figure 7. Parametrization of Γ+, unit vectors ν and τ .

If Γ+ is regular enough, then we can write, for t ≥ 0 and η ∈ [0, 1],

(ea ∂tb) (t, η) =
(
e−a ∂ηa

)
(t, η) + ∂ηb(t, η)

∫ η

0

(
ea ∂ta− e−a ∂ηb

)
(t, v) dv .

In other words, we can say that function β such that β(t, η) = b(t, η)−πη, satisfies
an integro-differential equation

2(t+ t0) [K(β) ∂tβ](t, η) = [F(β)](t, η) , (2.1)

where t0 > 0 depends on the measure of the initial domain Ω0.
This especially leads to prove existence and uniqueness results and qualitative

results in some cases of Hele-Shaw flows with a punctual source [2, 3].

3. Numerical model

Our main idea is to restrict above computation to the case of some class of poly-
gonal domains [4].

Hence let us consider the class Pm (m ∈ N∗) of simply connected polygonal
domains such that

• each of these domains is symmetric with respect to the x-axis and contains
the source region,

• its boundary, which we call the “quasi-contour”, is a polygonal line with
2m+ 1 vertices,
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• one vertex belongs to the positive part of the x-axis.
We will compute the behavior of such domains by applying some discrete law
inspired by the law of motion of smooth curves in the classical Stokes-Leibenson
problem.

For instance, in the case of a punctual source, we obtain the approximated
problem:

Let Ωm
0 in Pm be some “approximation” of Ω0 and Γm

0 = ∂Ωm
0 .

For t > 0, find Ωm = Ωm
t in Pm and its boundary Γm = ∂Ωm such that every

vertex p ∈ Γm verifies the punctual kinetic law

ṗ.ν(p) =
∫

Γm

dp|∇u| dγ , (3.1)

with {
Δu = 2δ , in Ωm ,
u = 0 , on Γm .

(3.2)

As above, we introduce v harmonically conjugate function of u and we use it to
get a convenient parametrization of Γm+.

In Fig. 8, we show an example of computed level curves of u and v for some
polygonal domain.

Figure 8. Case of an uncentered source in a pentagonal domain (m =
2): level curves of u (left) and v (right).

Here, the unknown function b is piecewise constant and can be represented by the
finite sequence N of the orientations of the m normal unit vectors with respect to
each edge of Γm+.

An explicit computation of terms of integro-differential equation (2.1) leads to

2(t+ t0) [Q(N) Ṅ](t) = [P (N)](t) , (3.3)

where Q(N) is a m×m-matrix and P (N) belongs to Rm.
Then, using initial data, we can perform an explicit Euler scheme for (3.3).
We only present here two examples of computed evolution of quasi-contours:

in Fig. 9, the computed evolution of a pentagonal quasi-contour (m = 2) and in
Fig. 10, the computed evolution of a polygonal quasi-contour (m = 4).

In addition, we have got for Hele-Shaw flows with a punctual source the
existence of an attractive manifold in the space of quasi-contours. In the case of a
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Figure 9. An increasing pentagonal quasi-contour: initial shape (cen-
ter) and shapes at time 1, 2, 3 (dot-lines), 4.

Figure 10. An increasing polygonal quasi-contour (m = 4): initial
shape (center) and shapes at time 1, 2, 3 (dot-lines), 4.

sink, we have to reverse the time-scale. This manifold becomes repulsive and this
can explain some fingering phenomenons [4].

For the source case, it has been proved in [2, 3] that the limit of the contour
when time tends to ∞ is a circle centered at the source point. Here we obtain in our
numerical experiments a similar property: for a fixed m, the quasi-contour tends
to a regular polygonal contour centered at the source point when time increases.
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In the other hand, the nature of our discrete model does not allow to confirm
the property proved in [6] showing that the free boundary becomes instantaneously
smooth.
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Gravitational Lensing by Elliptical Galaxies,
and the Schwarz Function

C.D. Fassnacht, C.R. Keeton and D. Khavinson

Abstract. We discuss gravitational lensing by elliptical galaxies with some
particular mass distributions. Using simple techniques from the theory of
quadrature domains and the Schwarz function (cf. [18]) we show that when
the mass density is constant on confocal ellipses, the total number of lensed
images of a point source cannot exceed 5 (4 bright images and 1 dim image).
Also, using the Dive–Nikliborc converse of the celebrated Newton’s theorem
concerning the potentials of ellipsoids, we show that “Einstein rings” must
always be either circles (in the absence of a tidal shear), or ellipses.

1. Basics of gravitational lensing

Imagine n co-planar point-masses (e.g., condensed galaxies, stars, black holes) that
lie in one plane, the lens plane. Consider a point light source S (a star, a quasar,
etc.) in a plane (a source plane) parallel to the lens plane and perpendicular to the
line of sight from the observer, so that the lens plane is between the observer and
the light source. Due to deflection of light by masses multiple images S1, S2, . . . of
the source may form (cf. Fig. 1). Fig. 2 and Fig. 3 illustrate some further aspects
of the lensing phenomenon.

2. Lens equation

In this section we are still assuming that our lens consists of n point masses.
Suppose that the light source is located in the position w (a complex number) in
the source plane. Then, the lensed image is located at z in the source plane while
the masses of the lens L are located at the positions zj , j = 1, . . . , n in the lens

The third author gratefully acknowledges partial support from the National Science Foundation
under the grant DMS-0701873. The first and third authors are also grateful to Kavli Institute of

Theoretical Physics for the partial support of their visit there in 10/2006 under the NSF grant
PHY05-51164.
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Figure 1. The lens L located between source S and observer O pro-
duces two images S1, S2 of the source S.

Figure 2. Lensing of a galaxy by a cluster of galaxies; the blue spots are
all images of a single galaxy located behind the huge cluster of galaxies.
(Credit: NASA, W.N. Colley (Princeton), E. Turner (Princeton) and
J.A. Tyson (AT&T and Bell Labs).)

plane. The following simple equation, obtained by combining Fermat’s Principle
of Geometric Optics together with basic equations of General Relativity, connects
then the positions of the lensed images, the source and the positions of the masses
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Figure 3. The bluish bright spots are the lensed images of a quasar
(i.e., a quasi-stellar object) behind a bright galaxy in the center. There
are 5 images (4 bright + 1 dim), but one cannot really see the dim image
in this figure. (Credit: ESA, NASA, K. Sharon (Tel Aviv University) and
E. Ofek (Caltech).)

which cause the lensing effect

w = z −
n∑
1

σj

z̄ − z̄j
, (2.1)

where σj are some physical (real) constants. For more details on the derivation
and history of the lensing equation (2.1) we refer the reader to [19], [12], [14], [21].
Sometimes, to include the effect caused by an extra (“tidal”) gravitational pull by
an object (such as a galaxy) far away from the lens masses, the right-hand side of
(2.1) includes an extra linear term γz̄, thus becoming

w = z −
n∑
1

σj

z̄ − z̄j
− γz̄, (2.2)

where γ is a real constant. The right-hand side of (2.1) or (2.2) is called the lensing
map. The number of solutions z of (2.1) (or (2.2)) is precisely the number of images

of the source w generated by the lens L. Letting r(z) =
n∑
1

σj

z−zj
+ γz+ w̄, the lens

equations (2.1) and (2.2) become

z − r(z) = 0, (2.3)

where r(z) is a rational function with poles at zj , j = 1, . . . , n and infinity if γ �= 0.
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3. Historical remarks

The first calculations of the deflection angle by a point mass lens, based on New-
ton’s corpuscular theory of light and the Law of Gravity, go back to H. Cavendish
and J. Michel (1784), and P. Laplace (1796) – cf. [20]. J. Soldner (1804) – cf. [21]
is usually credited with the first published calculations of the deflection angle and,
accordingly, with that of the lensing effect. Since Soldner’s calculations were based
on Newtonian mechanics they were off by a factor of 2. A. Einstein is usually given
credit for calculating the lensing effect in the case of n = 1 (one mass lens) around
1933. Yet, some evidence has surfaced recently that he did some of these calcu-
lations earlier, around 1912 – cf. [17] and references therein. The recent outburst
of activity in the area of lensing is often attributed to dramatic improvements of
optics technology that make it possible to check many calculations and predictions
by direct visualization.

H. Witt [24] showed by a direct calculation that for n > 1 the maximum
number of observed images is ≤ n2 +1. Note that this estimate can also be derived
from the well-known Bezout theorem in algebraic geometry (cf. [3,8,9,22]). In [11]
S. Mao and A.O. Petters and H.J. Witt showed that the maximum possible number
of images produced by an n-lens is at least 3n+1. A.O. Petters in [13], using Morse’s
theory, obtained a number of estimates for the number of images produced by a
non-planar lens. S.H. Rhie [15] conjectured that the upper-bound for the number
of lensed images for an n-lens is 5n − 5. Moreover, she showed in [16] that this
bound is attained for every n > 1 and, hence, is sharp. Rhie’s conjecture was
proved in full in [8]. Namely, we have the following result.

Theorem 3.1. The number of lensed images by an n-mass, n > 1, planar lens
cannot exceed 5n−5 and this bound is sharp [16]. Moreover, the number of images
is an even number when n is odd and odd where n is even.

The proof of the above result rests on some simple ideas from complex dy-
namics (cf. [9, 10]).

4. “Thin” lenses with continuous mass distributions

If we replace point masses by a general, real-valued mass distribution μ, a com-
pactly supported Borel measure in the lens plane, the lens equation with shear
(2.2) becomes

w = z −
∫

Ω

dμ(ζ)
z̄ − ζ̄

− γz̄. (4.1)

Here Ω is a bounded domain containing the support of μ. The case of the atomic

measure μ =
n∑
1
σjδzj , σi ∈ R is covered by Theorem 3.1. Also, as noted in [8],

if we replace n-point-masses by n non-overlapping radially symmetric masses, the
total number of images outside of the region occupied by n-masses is still 5n− 5
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when γ = 0, and ≤ 5n when γ �= 0. The reason for that, of course, is that the
Cauchy integral ∫

|ζ−zj |<R

dμ(ζ)
z − ζ

, |z − zj | > R

for any radially symmetric measure μ = μ (|ζ − zj |) is immediately calculated to
be equal c

z−zj
, where c is the total mass μ of the disk {ζ : |ζ − zj| < R}, hence

reducing this new situation to the one treated in Theorem 3.1.
Here is another situation that can be treated with help from Theorem 3.1.
Recall that a simply-connected domain Ω is called a quadrature domain (of

order n) if Ω is obtained from the unit disk D := {z : |z| < 1} via a conformal
mapping ϕ that is a rational function of degree n, Ω = ϕ(D). Of course, all poles
βj , j = 1, . . . , n of ϕ will lie outside D. Then if, say, μ is a uniform mass distribution
in Ω, i.e., μ = constdx dy, the Cauchy potential term in (4.1) for z /∈ Ω becomes

n∑
j=1

cj
z − zj

, zj = ϕ

(
1
βj

)
, (4.2)

where the coefficients cj are determined by the quadrature formula associated with
Ω (cf. [18] for details).

Hence, substituting (4.2) into (4.1) we again obtain that for such thin lens
Ω with a uniform density distribution, the number of “bright” images outside Ω
cannot exceed 5n− 5 when no shear is present, or 5n otherwise.

In this general context the only previously known (to the best of our knowl-
edge) result is the celebrated Burke’s theorem [2]:

Theorem 4.1. A (finite) number of images produced by a smooth mass distribution
μ is always odd, provided that γ = 0 (no shear).

An elegant complex-analytic proof of Burke’s theorem can be found in [19].
The crux of the argument is this. Take w = 0 and let n+, n− denote, respectively,
the number of sense-preserving and sense-reversing zeros of the lens map in (4.1)
(γ = 0).

The argument principle applies to harmonic complex-valued functions in the
same way it does to analytic functions. Since the right-hand side of (4.1) behaves
like O(z) near ∞, the argument principle then yields that 1 = n+ − n−. Thus,
giving us the total number of zeros N := n+ + n− = 2n− + 1, an odd number.

5. Ellipsoidal lens

Suppose the lens Ω :=
{

x2

a2 + y2

b2 ≤ 1, a > b > 0
}

is an ellipse. First assume the

mass density to be constant, say 1. Let c : c2 = a2 − b2 be the focal distance of Ω.
The lens equation (4.1) can be rewritten as

z̄ − 1
π

∫
Ω

dA(ζ)
z − ζ

− γz = w̄, (5.1)
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where dA denotes the area measure. Using complex Green’s formula (cf., e.g., [19]),
we can rewrite (5.1) for z ∈ C \ Ω as follows:

z̄ − 1
2πi

∫
∂Ω

ζ̄ dζ

z − ζ
− γz = w̄. (5.2)

As is well known [18], the (analytic) Schwarz function S(ζ) for the ellipse defined
by S(ζ) = ζ̄ on ∂Ω can be easily calculated and equals

S(ζ) =
a2 + b2

c2
ζ − 2ab

c2

(
ζ −
√
ζ2 − c2

)
=
a2 + b2 − 2ab

c2
ζ +

2ab
c2

(
ζ −
√
ζ2 − c2

)
= S1(ζ) + S2(ζ).

(5.3)

Note that S1 is analytic in Ω, while S2 is analytic outside Ω and S2(∞) = 0. This
is, of course, nothing else but the Plemelj–Sokhotsky decomposition of the Schwarz
function S(ζ) of ∂Ω. From (5.3) and Cauchy’s theorem we easily deduce that for
z ∈ C \ Ω the lens equation (5.2) reduces to

z̄ +
2ab
c2

(
z −
√
z2 − c2

)
− γz = w̄. (5.4)

Squaring and simplifying, we arrive from (5.4) at a complex quadratic equation[
z̄ +
(

2ab
c2

z − γ

)
zw̄

]2
=

2a2b2

c2
(
z2 − c2

)
which is equivalent to a system of two irreducible real quadratic equations. Bezout’s
theorem (cf. [8,9], [10], [3]) then implies that (5.1) may only have 4 solutions z /∈ Ω.
For z ∈ Ω, using Green’s formula and (5.3) we can rewrite the area integral in (5.1)

− 1
π

∫
Ω

dA(ζ)
z − ζ

= −z̄ +
1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z

= −z̄ +
1

2πi

∫
∂Ω

[S1(ζ) + S2(ζ)]
ζ − z

= −z̄ + S1(z) = −z̄ +
a2 + b2 − 2ab

c2
z

(5.5)

We have used here that the Cauchy transform of S2 |∂Ω vanishes in Ω since S2 is
analytic in C \ Ω and vanishes at infinity. Substituting (5.5) into (5.1), we arrive
at a linear equation (

a2 + b2 − 2ab
c2

− γ

)
z = w̄ (5.6)

for z ∈ Ω. Equation (5.6), of course, may only have one root in Ω. Thus, we have
proved the following

Theorem 5.1. An elliptic lens Ω (say, a galaxy) with a uniform mass density may
produce at most four “bright” lensing images of a point light source outside Ω and
one (“dim”) image inside Ω, i.e., at most 5 lensing images altogether.
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This type of result has actually been observed experimentally – cf. Fig. 4,
where four bright images are clearly present. It is conceivable that the dim image
is also there but we can’t see it because it is perhaps too faint compared with the
galaxy. Of course, one has to accept Fig. 4 with a grain of salt since we do not
expect “real” galaxies to have uniform densities. A model of an elliptical lens, with
shear, that produces five images (4 bright + 1 dim) is given in Fig. 5.

Figure 4. Four images of a light source behind the elliptical galaxy.
(Credit: NASA, K. Ratnatunga (Johns Hopkins University).)

Figure 5. A model with five images of a source behind an elliptical
lens with axis ratio 0.5 and uniform density 2.

We can extend the previous theorem for a larger class of mass densities.
Denote by q(x, y) := x2

a2 + y2

b2 − 1 the equation of Γ := ∂Ω. Let qλ(x, y) = x2

a2+λ +
y2

b2+λ − 1, −b2 < λ < 0 stand for the equation of the boundary Γλ := ∂Ωλ of the
ellipse Ωλ confocal with Ω.

The celebrated MacLaurin theorem (cf. [7]) yields that for any z ∈ C \ Ω

1
Area (Ωλ)

∫
Ωλ

dA(ζ)
ζ − z

=
1

Area(Ω)

∫
Ω

dA(ζ)
ζ − z

. (5.7)
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Thus, if we denote by u(z, λ) the Cauchy potential of Ωλ evaluated at z ∈ C | Ω
we obtain from (5.7)

u (z, λ) = c(λ)uΩ(z, 0), (5.8)

where

c(λ) =
Area (Ωλ)
Area(Ω)

=

(
a2 + λ

)1/2 (
b2 + λ

)1/2

ab
. (5.9)

Hence,
∂uλ(z, λ)

∂λ
= c′(λ)uΩ(z). (5.10)

So, if the mass density μ(λ) in Ω only depends on the elliptic coordinate λ, i.e., is
constant on ellipses confocal with Ω inside Ω, its potential outside Ω equals

uμ,Ω(z) = cuΩ(z). (5.11)

The constant c is easily calculated from (5.9)–(5.10) and equals

c =
∫ 0

−b2
μ(λ)c′(λ) dλ. (5.12)

It is, of course, natural for physical reasons to assume that μ(λ) ↑ ∞ at the “core”
of Ω (i.e., when λ ↓ −b2), the focal segment [−c, c]. Yet, from (5.12) since (5.9)
yields c′(λ) = O

((
b2 + λ

)−1/2
)

near λ0 = −b2, it follows that μ(λ) should not

diverge at the core faster than say O
((
b2 + λ

)−1/2+ε
)

for some positive ε, so
the integral (5.12) converges. Substituting (5.11) into the lens equation (5.1) with
constant density replaced by the density μ(λ) and following again the steps in
(5.2)–(5.4) we arrive at the following corollary.

Corollary 5.1. An elliptic lens Ω with mass density that is constant inside Ω on
the ellipses confocal with Ω may produce at most four “bright” lensing images of
a point light source outside Ω.

6. Einstein rings

For a one-point mass at z1 lens with the source at w = 0 the lens equation (2.1)
without shear becomes

z − c

z̄ − z̄1
= 0. (6.1)

As was already noted by Einstein (cf. [12,19,21] and references cited therein), (6.1)
may have two solutions (images) when z1 �= 0 and a whole circle (“Einstein ring”)
of solutions when z1 = 0, in other words when the light source, the lens and the
observer coalesce – cf. Fig. 6 and Fig. 7.
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Figure 6. A model of an elliptical Einstein ring surrounding an ellipti-
cal lens with axis ratio 0.5 and uniform density 2. The shear in this case
must be specially chosen to produce the ring instead of point images.
Note that the ring is an ellipse confocal with the lens – cf. Thm. 6.1.

As the following simple theorem shows the “ideal” Einstein rings are limited
to ellipses and circles in much more general circumstances.

Theorem 6.1. Let Ω be any planar (“thin”) lens with mass distribution μe. If
lensing of a point source produces a bounded “image” curve outside of the lens Ω,
it must either be a circle when the external shear γ = 0 or an ellipse.

Proof. First consider a simpler case when γ = 0. If the lens produces an image
curve Γ outside Ω, the lens equation (4.1) becomes

z̄ − w̄ =
∫

Ω

dμ(ζ)
z − ζ

, (6.2)

for all z ∈ Γ. Note that Γ being bounded and also being a level curve of a harmonic
function must contain a closed loop surrounding Ω [22]. Without loss of generality,
we still denote that loop by Γ. The right-hand side f(z) of (6.2) is a bounded
analytic function in the unbounded complement component Ω̃∞ of Γ that vanishes
at infinity. Hence (z−w)f(z) is still a bounded and analytic function in Ω̃∞ equal
to |z − w|2 > 0 on Γ := ∂Ω̃∞. Hence (z − w)f(z) = const and Γ must be a circle
centered at w.

Now suppose γ �= 0. Once again we shall still denote by Γ a closed Jordan
loop surrounding Ω. Denote by Ω̃ the interior of Γ, Ω̃∞ = C \ clos

(
Ω̃
)
. Also, by

translating we can assume that the position of the source w is at the origin.
The equation (4.1) now reads

z̄ =
∫

Ω

dμ(ζ)
z − ζ

+ γz, z ∈ Γ. (6.3)

In other words the right-hand side of (6.3) represents the Schwarz function S of Γ,
analytic in C \ suppμ with a simple pole at ∞. It is well known that this already
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Figure 7. Einstein rings. The sources in these observed “realistic”
lenses are actually extended, and that is why we see sometimes arcs
rather than whole rings. (Credit: ESA, NASA and the SLACS survey
team: A. Bolton (Harvard / Smithsonian), S. Burles (MIT), L. Koop-
mans (Kapteyn), T. Treu (UCSB), and L. Moustakas (JPL/Caltech).)

implies that Γ must be an ellipse (cf. [4,18]) and references therein. For the reader’s
convenience we supply a simple proof.

Applying Green’s formula to (6.3) yields (cf. (5.1)–(5.2)) that for all z ∈ Ω̃∞∫
Ω

dμ(ζ)
z − ζ

=
1
π

∫
Ω̃

dA(ζ)
z − ζ

, z ∈ Ω̃ := C \ Ω̃∞. (6.4)

Let

h(z) :=
1
π

∫
Ω̃

dA(ζ)
z − ζ

− z̄, z ∈ Ω̃. (6.5)

Then, h(z) is analytic in Ω̃ (cf. (5.2)) and, in view of (6.3) and (6.4)

h |Γ=
∫

Ω

dμ(ζ)
z − ζ

∣∣∣∣
Γ

− z̄|Γ = γz |Γ . (6.6)

Thus, h(z) is a linear function and since (6.5) for z ∈ Ω̃

h(z) :=
1
2

grad
[

1
π

∫
Ω̃

log |z − ζ| dA(ζ) − |z|2
]

(6.7)
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we conclude from (6.7) that the potential of Ω̃

uΩ̃(z) =
1
2π

∫
Ω̃

log |z − ζ| dA(ζ), z ∈ Ω̃

equals to a quadratic polynomial inside Ω̃. The converse of the celebrated theorem
of Newton due to P. Dive and N. Nikliborc (cf. [7, Ch. 13–14] and references
therein) now yields that Ω̃ must be an interior of an ellipse, hence Γ := ∂Ω̃ = ∂Ω̃∞
is an ellipse. �

Remark 6.1. One immediately observes that since the converse to Newton’s theo-
rem holds in all dimensions the last theorem at once extends to higher dimensions
if one replaces the words “image curve” by “image surface”.

7. Final remarks

1. The densities considered in §5 are less important from the physical viewpoint
than so-called “isothermal density” which is obtained by projecting onto the lens
plane the “realistic” three-dimensional density ∼ 1/ρ2, where ρ is the (three-
dimensional ) distance from the origin. This two-dimensional density could be
included into the whole class of densities that are constant on all ellipses homothetic
rather than confocal with the given one. The reason for the term “isothermal” is
that when a three-dimensional galaxy has density ∼ 1/ρ2 the gas in the galaxy
has constant temperature (cf. [5] and the references therein).

Recall that the Cauchy potential of the ellipse

Ω :=
{
x2

a2
+
y2

b2
≤ 1, a > b > 0

}
outside of Ω (cf. (5.2)–(5.4)) equals

u0(z) := k
(
z −
√
z2 − c2

)
, z ∈ C \ Ω, c2 = a2 − b2, (7.1)

where k = 2ab/c2 is a constant. Replacing the ellipse Ω by a homothetic ellipse
Ωt := tΩ := x2

a2 + y2

b2 ≤ t2, 0 < t < 1. We obtain using (7.1) for z /∈ Ω:

u(z, t) : =
∫

tΩ

dA(ζ)
ζ − z

= t2
∫

Ω

dA(ζ)
tζ − z

= tu
(z
t
; 1
)

= k
(
z −
√
z2 − c2t2

)
.

(7.2)

Thus,
∂u(z, t)
∂t

= k
c2t√

z2 − c2t2
. (7.3)

So, if the “isothermal” density μ = 1
t on ∂Ωt inside Ω (ignoring constants),

we get from (7.3) that the Cauchy potential of such mass distribution outside Ω
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equals

uμ(z) := C0

∫ 1

0

dt√
z2 − c2t2

, (7.4)

where the constant C0 depends on Ω only. This is a transcendental function (one
of the branches of arcsin c

z ), dramatically different from the algebraic potential in
(7.1). The lens equation (4.1) now becomes

z − C0

∫ 1

0

dt√
z̄2 − c2t2

− γz̄ = w. (7.5)

To the best of our knowledge the precise bound on the maximal possible
number of solutions (images) of (7.5) is not known. Up to today, no more than
5 images (4 bright +1 dim) have been observed. However, in [5] there have been
constructed explicit models depending on parameters a, b and 0 < γ < 1 having 9
(i.e., 8+1) images. The equation (7.5) essentially differs from all the lens equations
considered in this paper since it involves estimating the number of zeros of a tran-
scendental harmonic function with a simple pole at ∞. At this point, we are even
reluctant to make a conjecture regarding what this maximal number might be.

Note, that in case of a circle Ω =
{
x2 + y2 < 1

}
with any radial density

μ := ϕ(r), r =
√
x2 + y2 < 1, the situation is very simple. The Cauchy potential

u(z) outside Ω, as was noted earlier, equals

c

z
, |z| > 1, (7.6)

where c is a constant. Hence, outside Ω the lens equation becomes

z − c

z̄
− γz̄ = w, (7.7)

a well-known Chang–Refsdal lens (cf., e.g., [1]) that may have at most 4 solutions
except for the degenerate case γ = w = 0, when the Einstein ring appears. In
particular, when γ = 0, w �= 0, such mass distribution may only produce two
bright images outside Ω. For z : |z| < 1 inside the lens the potential is still
calculated by switching to polar coordinates:

u(z) :=
∫ 1

0

∫ 2π

0

ϕ(r)rdrdθ
reiθ − z

=
∫ 1

|z|
ϕ(r)dr

∫ 2π

0

rdθ

reiθ − z
+
∫ |z|

0

ϕ(r)rdr
∫ 2π

0

dθ

reiθ − z

=
∫ 1

|z|
ϕ(r)dr

∫ 2π

0

( ∞∑
0

(z
r

)
e−i(n+1)θ

)
dθ +

1
z

∫ |z|
0

ϕ(r)rdr
∫ 2π

0

( ∞∑
0

(
reiθ

z

)n

dθ

=
2π
z

∫ |z|
0

ϕ(r)rdr. (7.8)
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In particular, for the “isothermal” density ϕ(r) ∼ 1
r , (7.8) yields for z : |z| < 1

u(z) =
2π
z
|z|,

so the lens equation (7.7) becomes

z̄ − c

z
|z| − γz = w̄, (7.9)

where c is a real constant. Equation (7.9) can have at most two solutions inside
Ω (only one, if γ = 0), again, excluding the degenerate case of the Einstein ring.
Furthermore, since Burke’s theorem allows only an odd number of images, the total
maximal number of images for an isothermal sphere cannot exceed 5 (4 bright +
1 dim) as before (or ≤ 3, i.e., (2+1) if γ = 0). Note, that strictly speaking, Burke’s
theorem cannot be applied to the isothermal density because of the singularity at
the origin. Yet, since the density is radial and smooth everywhere excluding the
origin and because it is clear from (7.9) that the origin cannot be a solution,
Burke’s theorem does apply yielding the above conclusion.
2. The problem of estimating the maximal number of “dim” images inside the lens
formed by a uniform mass-distribution inside a quadrature domain Ω (cf. §4) of
order n is challenging. In this case the Cauchy potential in (4.1) inside Ω equals
to the “analytic” part of the Schwarz function S(z). It is known that S(z) is an
algebraic function of degree at most 2n. Yet, the sharp bounds, similar to those in
Theorem 3.1, for the number of zeros of harmonic functions of the form z̄ − a(z),
where a(z) is an algebraic function, are not known.
3. Another interesting and difficult problem would be to study the maximal number
of images by a lens consisting of several elliptical mass distributions. Some rough
estimates based on Bezout’s theorem can be made by imitating the calculations
in §5. Yet, even for 2 uniformly distributed masses these calculations give a rather
large possible number of images (≤ 15) while, so far, only 5 images by a two
galaxies lens and 6 images by a three galaxies lens have been observed – cf. [6,23].

Added in Proof. Recently, in the 2009 preprint “Transcendental Harmonic Map-
pings and Gravitational Lensing by Isothermal Galaxies”, the third author and
E. Lundberg managed to prove that the total number of bright images produced
by an isothermal ellipsoidal galaxy without a shear is at most 8. They conjecture
however, in correspondence with the models in [5], that the sharp bound for the
maximum number of bright images is actually 4 without a shear, and 8 with a
shear.
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Nevanlinna Domains in Problems of
Polyanalytic Polynomial Approximation

Konstantin Yu. Fedorovskiy

Abstract. The concept of a Nevanlinna domain, which is the special analytic
characteristic of a planar domain, has been naturally appeared in problems of
uniform approximation by polyanalytic polynomials. In this paper we study
this concept in connection with several allied approximation problems.
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1. Introduction

In this paper we deal with the notion of a Nevanlinna domain. This notion is the
special analytic characteristic of a planar domain that plays a significant role in
problems on approximability of functions by polyanalytic polynomials on compact
subsets of the complex plane C.

Denote by D the unit disk {z ∈ C : |z| < 1} and let T = ∂D to be the unit
circle and m to be the normalized Lebesgue measure on T. In what follows we will
use the term “almost all” instead of the term “m-almost all”.

For an open set E ⊂ C let us denote by H∞(E) the class of all bounded
holomorphic functions on E. We recall, that for each function f ∈ H∞(D) and
for almost all ξ ∈ T there exists the finite angular boundary value f(ξ) of f at
ξ from D. The following concept of a Nevanlinna domain was introduced in [1,
Definition 2.1]:

Definition 1. One says, that a bounded simply connected domain Ω in C is called
a Nevanlinna domain if there exist two functions u, v ∈ H∞(Ω) (with v �≡ 0) such

The author is partially supported by the Russian Foundation for Basic Research (grant no.
07-01-00503) and by the program “Leading Scientific Schools” (grant no. NSh-3877.2008.1).
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that the equality

ζ =
u(ζ)
v(ζ)

(1.1)

holds on ∂Ω almost everywhere in the sense of conformal mappings. It means that
the equality of angular boundary values

ϕ(ξ) =
(u ◦ ϕ)(ξ)
(v ◦ ϕ)(ξ)

,

holds for almost all ξ ∈ T, where ϕ is some conformal mapping from D onto Ω.

In fact the definition of a Nevanlinna domain does not depend on the choice
of ϕ and, in view of the Luzin-Privalov boundary uniqueness theorem, the quotient
u/v is uniquely defined in Ω (for a Nevanlinna domain Ω). If Ω is a Jordan domain
with rectifiable boundary, then the equality (1.1) may be understood directly as
the equality of angular boundary values almost everywhere with respect to the
Lebesgue measure on ∂Ω. Moreover, the equality (1.1) can be similarly understood
on any rectifiable Jordan arc γ ⊂ ∂Ω such that each point a ∈ γ is not a limit point
for the set ∂Ω \ γ. Notice, that for Jordan domains with rectifiable boundaries the
concept of a Nevanlinna domain was introduced in [2] in slightly different terms.

It is easy to find out examples of Nevanlinna (any disk) and not Nevanlinna
domains (any domain which is bounded by an ellipse that is not a circle, or by a
polygonal line) amongst the domains with piecewise analytic boundaries. However,
the construction of Nevanlinna domains with non analytic boundaries as well as
with other prescribed analytical and geometrical properties is fairly difficult and
delicate problem. This problem was discussed in [3] where, in particular, for each
α ∈ (0, 1) the example of Nevanlinna domain with C1 but not C1,α boundary was
constructed.

The concept of a Nevanlinna domain has been appeared in investigations
of problem on uniform approximability of functions by polyanalytic polynomials
on compact sets in C. For instance, the criterion of uniform approximability of
functions by polyanalytic polynomials on Carathéodory compact sets (see [1, The-
orem 2.2]) was formulated in terms of this concept. Let us formulate and briefly
discuss these problem and result.

We need to recall, that a function f is called polyanalytic of order n (for
integer n > 0) or, shorter, n-analytic, in an open set U ⊂ C if it is of the form

f(z) = f0(z) + zf1(z) + · · ·+ zn−1fn−1(z), (1.2)

where f0, . . . , fn−1 are holomorphic functions in U . Notice that the space On(U) of
all n-analytic functions in U consists of all continuous functions f on U such that
∂

n
f = 0 in U in the distributional sense, where ∂ = ∂/∂z is the Cauchy-Riemann

operator. By n-analytic polynomials and n-analytic rational functions we mean
the functions of the form (1.2), where f0, . . . , fn−1 are polynomials and rational
functions in the complex variable z respectively, and we will use the notation P(n)
and R(n) for these sets of functions. One says, that n-analytic rational function f
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has its poles outside some set E ⊂ C, if all (rational) functions f0, . . . , fn−1 have
their poles outside E.

For a compact set X ⊂ C we denote by C(X) the space of all continuous
complex-valued functions on X endowed with the uniform norm and set An(X) =
C(X) ∩ On(X◦). We also denote by Pn(X) and Rn(X,Y ), where Y ⊇ X is some
compact set, the closures in C(X) of the subspaces {p|X : p ∈ P(n)} and {g|X :
g ∈ R(n), and g has its poles outside Y } respectively. We are interested in the
following approximation problem.

Problem A. Let X ⊂ C be a compact set and n ≥ 2 be an integer. What conditions
on X are necessary and sufficient in order that An(X) = Pn(X) or An(X) =
Rn(X,Y ) for some appropriately chosen compact set Y ⊇ X?

The investigation of this problem was started in 1980th (see [4, 5, 6], where
several sufficient approximability conditions were obtained) and until now it re-
mains unsolved in the general case. Some bibliographical notes concerning the mat-
ter may be found in [7]. We exclude the case n = 1 from the consideration, because
in this case the classical theorem by Mergelyan (see [8]) says that A1(X) = P1(X)
if and only if the set C \X is connected, and therefore, the respective problem is
completely solved (in terms of topological properties of X).

Let us recall, that a bounded domain Ω is called a Carathéodory domain if
∂Ω = ∂Ω∞, where Ω∞ is the unbounded connected component of the set C \ Ω
as well as a compact set X is called a Carathéodory compact set if ∂X = ∂X̂,
where X̂ denotes the union of X and all bounded connected components of the
set C \X . In fact each Carathéodory domain Ω is simply connected and possesses
the property Ω = (Ω)◦. The following result was proved in [1, Theorem 2.2]:

Theorem 1. Let n ≥ 2 be an integer.
1. If Ω ⊂ C is a Carathéodory domain, then

C(∂Ω) = Rn(∂Ω,Ω) ⇐⇒ Ω is not a Nevanlinna domain.

2. If X ⊂ C is a Carathéodory compact set, then An(X) = Pn(X) if and only
if C(∂Ω) = Rn(∂Ω,Ω) for each bounded connected component Ω of the set
C \X and, therefore, if and only if each bounded connected component of the
set C \X is not a Nevanlinna domain.

It is worthwhile to mention that the approximability conditions in Theo-
rem 1 are independent on the order of polyanalyticity n. The result of Part 2
of Theorem 1 was obtained in frameworks of the special “reductive” approach,
which was elaborated and applied for several different approximation problems in
[1, 9, 10, 11]. This approach allow us to conclude (under some suitable assump-
tions) that one approximability property takes place on a compact set X whenever
one has certain similar properties on some appropriately chosen (and more simple)
compact subsets of X .

At the same time Problem A for non Carathéodory compact sets is more dif-
ficult and remains open. Several interesting and important general results in this
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problem were obtained in [1, 10, 12]. These results are related with usage of some
special refinements of the concept of a Nevanlinna domain, as well as of the men-
tioned above reductive approach and on studying of special properties of conformal
mappings of Carathéodory domains onto the unit disk and new special properties
of measures that are orthogonal to rational functions on non Carathéodory com-
pact sets of special type. In [1, Example 4.5] it was shown, that there exists a
non Carathéodory compact set Y such that P2(Y ) �= C(Y ), but P3(Y ) = C(Y ).
Furthermore, in view of [13, Theorem 1], for each integer n ≥ 1 there exists a non
Carathéodory compact set X ⊂ C such that P2n(X) = C(X) �= Pn(X). Thus the
approximability conditions in Problem A are no longer independent on the order
of polyanalyticity for non Carathéodory compact sets.

2. Main results and proofs

Let De = C\D. For each function F ∈ H∞(De) and for ξ ∈ T we denote by F (ξ) the
angular boundary value of F at ξ from De, that exists for almost all ξ ∈ T. Let us
recall the notion of a Nevanlinna-type pseudocontinuation of bounded holomorphic
functions (see [3, Definition 2]):

Definition 2. Let f ∈ H∞(D). One says, that a function f admits a Nevanlinna-type
pseudocontinuation, if there exists two functions F1, F2 ∈ H∞(De) (with F2 �≡ 0)
such that the equality f(ξ) = F1(ξ)/F2(ξ) of angular boundary values holds for
almost all points ξ ∈ T.

This definition is the partial case of the general notion of a pseudocontin-
uation which was introduced in [14] (see also [15, Definition 2.1.2]). The notions
of a Nevanlinna domain and a Nevanlinna-type pseudocontinuation of bounded
holomorphic functions are closely related. Indeed, the following characterization
of Nevanlinna domains was proved in [1, Proposition 2.1]:

Proposition 1. Let Ω be a bounded simply connected domain and ϕ be some con-
formal mapping from D onto Ω. Then, Ω is a Nevanlinna domain if and only if ϕ
admits a Nevanlinna-type pseudocontinuation.

This property was turned out to be rather interesting and useful, and it was
used in [3], [10] and [12] in order to obtain several new properties and examples
of Nevanlinna domains.

Actually, the notion of a Nevanlinna-type pseudocontinuation of bounded
holomorphic functions have also appeared in one other approximation problem
that is allied with Problem A, and now we are going on to consider this problem.

Let p ∈ [1,∞]. In what follows by Lp(T) one denotes the standard Lebesgue
space of functions on T considering with respect to the measure m. As usual, the
symbol Hp(D) stands for the Hardy space in the unit disk. We recall that the space
Hp(D) for p <∞ consists of all holomorphic functions f in D such that

lim
r→1

∫
T

|f(rξ)|p dm(ξ) <∞
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as well as the space H∞(D) consists of all bounded holomorphic in D functions. For
all p > q > 1 we have H∞(D) ⊂ Hp(D) ⊂ Hq(D) ⊂ H1(D) and Hp(D) ⊂ N(D) for
each p ∈ [1,∞], where N(D) is the Nevanlinna class in D. Actually, each function
f ∈ N(D) has the form f1/f2, where f1, f2 ∈ H∞(D).

Let us also denote by Hp(T) the space which consists of all functions f ∈
Lp(T) such that f̂(k) :=

∫
T
f(ξ) ξk dm(ξ) = 0 for all integer k < 0. If f ∈ Hp(D)

for p ∈ [1,∞] then, by Fatou’s theorem, for almost all ξ ∈ T there exists the
angular boundary value f(ξ) of f at ξ. These angular boundary values define a
function in Hp(T) and the map that takes a function f ∈ Hp(D) onto its boundary
values is an isometric isomorphism of Hp(D) onto Hp(T), as well as for p = ∞ this
map is also a weak-star homeomorphism. From now on, whenever f ∈ Hp(D), we
will always keep the notation f for the respective boundary function.

For a function f ∈ H∞(D) and for an integer n ≥ 2, let us define the space

Mp
n(T, f) = Hp(T) + f Hp(T) + · · ·+ f n−1Hp(T).

Theorem 2. Let f ∈ H∞(D), and let n ≥ 2 be an integer and p ∈ [1,∞).
1. The space Mp

n(T, f) is not dense in Lp(T) if and only if the function f admits
a Nevanlinna-type pseudocontinuation.

2. The space M∞
n (T, f) is not weak-star dense in L∞(T) if and only if the func-

tion f admits a Nevanlinna-type pseudocontinuation.

Notice, that the approximability conditions in Theorem 2 are independent
on the order of polyanalyticity n, as it takes place in Theorem 1.

The proof of Theorem 2 is essentially based on the same technical ideas as
the proof of the result of [2, Theorem 1]. For the technical reasons we need to
reformulate the assertion of Proposition 1 as follows:

Lemma 1. Let f ∈ H∞(D). Then, f admits a Nevanlinna-type pseudocontinuation
if and only if there exists two functions f1, f2 ∈ H∞(D) such that f2 �≡ 0 and the
equality f(ξ) = f1(ξ)/f2(ξ) holds for almost all points ξ ∈ T.

Although the proof of this lemma may be found in [1, Proof of Proposition 2.1]
we give it for the reader convenience. Here and in the sequel, for a function ψ we
denote by ψ∗ the function ψ∗(z) := ψ(z), for all z, where ψ∗ is defined.

Proof of Lemma 1. Let f admits a Nevanlinna-type pseudocontinuation and let
the functions F1 and F2 are taken from Definition 2. For |z| < 1 we put f1(z) :=
(F1)∗(1/z) and f2(z) := (F2)∗(1/z), thus f1, f2 ∈ H∞(D). If, for almost all ξ ∈ T,
the point z ∈ D tends non tangentially to ξ then

f1(z)
f2(z)

=
(F1)∗(1/z)
(F2)∗(1/z)

=
(
F1(z′)
F2(z′)

)
→ f(ξ),

because z′ = 1/z ∈ De tends non tangentially to ξ.
Conversely, if the functions f1 and f2 from H∞(D) exist, then for |z| > 1 we

define F1(z) = (f1)∗(1/z) and F2(z) = (f2)∗(1/z), so that F1, F2 ∈ H∞(De). Thus,
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for almost all ξ ∈ T, if z ∈ De tends to ξ non tangentially, then

F1(z)
F2(z)

=
(f1)∗(1/z)
(f2)∗(1/z)

=
(
f1(z′)
f2(z′)

)
→ f(ξ),

because z′ = 1/z ∈ D also tends to ξ non tangentially. Therefore, f admits a
Nevanlinna-type pseudocontinuation. �

Proof of Theorem 2. We recall that the space of all linear functionals on Lp(T)
can be identified with Lq(T) via the paring

〈f, g〉 =
∫

T

f(ξ)g(ξ) dm(ξ), (2.1)

where f ∈ Lp(T), g ∈ Lq(T) and q = p/(p− 1) is the conjugate index for p.
Let us prove the assertion of the part 1. Assume that the function f admits

a Nevanlinna-type pseudocontinuation. By Lemma 1 there exist two functions
f1, f2 ∈ H∞(D) such that f2 �≡ 0 and f(ξ) = f1(ξ)/f2(ξ) for almost all points ξ ∈ T.
In view of [16, Ch. IX, Sect. 4, Theorem 5], for any functions h0, . . . , hn−1 ∈ Hp(T)
we have∫

T

( n−1∑
k=0

hk(ξ)f(ξ)k
)
f2(ξ)n−1 dξ =

∫
T

( n−1∑
k=0

hk(ξ)f1(ξ)kf2(ξ)n−k−1
)
dξ = 0. (2.2)

If we define the function g(ξ) = 2πiξf2(ξ)n−1 on T, then g ∈ L∞(T) and g �≡
0 (since f2 �≡ 0). Thus the function g defines a linear functional on the space
Lp(T) that annihilates, by formulas (2.1) and (2.2), the space Mp

n(T, f). Therefore,
Mp

n(T, f) is not dense in Lp(T).
Conversely, let us assume that Mp

n(T, f) is not dense in Lp(T), so that
Mp

2(T, f) is not dense in Lp(T). Then, there exists a functional on Lp(T) that
annihilates Mp

2(T, f), which means that there exists a function g ∈ Lq(T), where
q = p/(p− 1), such that g �≡ 0 and the equality∫

T

(
h1(ξ) + f(ξ)h2(ξ)

)
g(ξ) dm(ξ) = 0 (2.3)

holds for all functions h1, h2 ∈ Hp(T). Let w = g, thus w ∈ Lq(T). Taking h1 ≡ ξ

for integer � > 0 and h2 ≡ 0 in (2.3) we conclude, that for any integer k < 0

ŵ(k) =
∫

T

w(ξ) ξk dm(ξ) =
∫

T

ξ−k w(ξ) dm(ξ) = 0.

It means that w ∈ Hq(T). Furthermore, taking in (2.3) h1 ≡ 0 and h2 ≡ ξ for
integer � > 0, and arguing analogously we obtain that w1 = fw ∈ Hq(T) because
of ŵ1(k) = 0 for any integer k < 0.

Finally, for almost all ξ ∈ T one has f(ξ) = w1(ξ)/w(ξ) and since w,w1 ∈
Hq(T) and w,w1 �≡ 0, then there exists two functions f1, f2 ∈ H∞(D) such that
f2 �≡ 0 and the equality

f(ξ) =
w1(ξ)
w(ξ)

=
f1(ξ)
f2(ξ)
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holds for almost all ξ ∈ T. In view of Lemma 1, it gives that the function f admits
a Nevanlinna-type pseudocontinuation.

We are going now to prove the assertion of Part 2. The proof of this assertion
is very similar to the proof of [2, Theorem 1]. As previously we assume, that the
function f admits a Nevanlinna-type pseudocontinuation and take the functions
f1, f2 ∈ H∞(D) from Lemma 1. It means that f2 �≡ 0 and f(ξ) = f1(ξ)/f2(ξ) for
almost all points ξ ∈ T. Let us define the measure ν on T by the formula

dν(ξ) = 2πiξf2(ξ)n−1dm(ξ) = f2(ξ)n−1 dξ,

so that ν �≡ 0 (since f2 �≡ 0). Furthermore, for any integer k, 0 ≤ k < n and for
any function h ∈ H∞(T) one has∫

T

h(ξ)f(ξ)k dν(ξ) =
∫

T

h(ξ)f(ξ)kf2(ξ)n−1 dξ =
∫

T

h(ξ)f1(ξ)kf2(ξ)n−k−1 dξ = 0.

Thus ν ⊥ M∞
n (T, f), and therefore M∞

n (T, f) is not weak-star dense in L∞(T).
Let now M∞

n (T, f) is not weak-star dense in L∞(T). Then M∞
2 (T, f) is not

weak-star dense in L∞(T), and therefore there exists a measure μ on T orthogonal
to M∞

2 (T, f), so that the equality∫
T

(
h1(ξ) + f(ξ)h2(ξ)

)
dμ(ξ) = 0 (2.4)

holds for all functions h1, h2 ∈ H∞(T).
Taking in (2.4) h1 ≡ 0 and h2 = ξk for integer k ≥ 0 we obtain that the

measure ν = fμ is orthogonal to all polynomials. By F. and M. Riesz’s theorem,
there exists a function w1 ∈ H1(D) such that dν = w1(ξ) dm. Similarly, taking in
(2.4) h1 = ξk for integer k ≥ 0 and h2 ≡ 0 we find the function w2 ∈ H1(D) such
that dμ = w2(ξ) dm(ξ). Since μ �≡ 0, then w1 �≡ 0 and w2 �≡ 0.

Thus the equality f(ξ)w2(ξ) = w1(ξ) of the angular boundary values holds for
almost all points ξ ∈ T, and therefore (since w2 �≡ 0) we can rewrite this equality
in the form f(ξ) = w1(ξ)/w2(ξ). Since w1, w2 ∈ H1(D) ⊂ N(D), then there exist
two functions f1, f2 ∈ H∞(D) such that the quotient w1/w2 equals to the quotient
f1/f2 in D. Then, for almost all ξ ∈ T we have f(ξ) = f1(ξ)/f2(ξ) and, in view of
Lemma 1, the function f admits a Nevanlinna-type pseudocontinuation. �

Let us consider one corollary of Theorem 2 that seems to be interesting and
useful. For a finite complex-valued Borel measure μ we denote by Lp(μ) (where
p ∈ [1,∞]) the standard Lebesgue space of functions with respect to the measure
μ. For a Borel measure μ and for an integer n ≥ 2 we denote by Pr

n(μ) the closure
of n-analytic polynomials in the space Lr(μ) for r ∈ [1,∞), as well as by P∞n (μ)
the weak-star closure of n-analytic polynomials in L∞(μ).

Let now Ω be a Jordan domain and ϕ be some conformal mapping from D

onto Ω. In view of Carathéodory extension theorem (see [17, Theorem 2.6]) we
may (and shell) assume that ϕ is extended to a homeomorphism of D onto Ω (let
us observe that ϕ ∈ A1(D) and ϕ−1 ∈ A1(Ω) in this case). One has



138 K.Yu. Fedorovskiy

Corollary 1. Let Ω and ϕ be as mentioned above, r ∈ [1,∞] and ω = ω(ϕ(0), ·,Ω)
be the harmonic measure on ∂Ω evaluated with respect to the point ϕ(0) ∈ Ω. Then
Pr

n(ω) = Lr(ω) if and only if ϕ does not admit a Nevanlinna-type pseudocontinu-
ation, or, equivalently, if and only if Ω is not a Nevanlinna domain.

Let us revert to the assertion of Theorem 2 (Part 1) in the case when p = 2.
So we are dealing with the Hilbert space L2(T) endowed with the scalar product
〈f, g〉 =

∫
T
f(ξ)g(ξ) dm(ξ). In what follows, by an operator, one means a bounded

linear operator acting on the space L2(T) or on some its subspace. For an operator
A one denotes by A∗ its adjoint operator and by ker(A) its kernel. For a subset
H ⊂ L2(T) one denotes by H⊥ the orthogonal complementary of H in L2(T).

For a function f ∈ L∞(T) let us consider the multiplication operator M(f)
on L2(T) generated by the function f . It means, that

M(f) g = fg ∈ L2(T), for any g ∈ L2(T).

Furthermore, let Π denotes the Riesz projection operator, i.e., Π is the operator
from L2(T) onto H2(T) acting as follows

for a function g =
∞∑

k=−∞
λkz

k ∈ L2(T) one has Πg =
∞∑

k=0

λkz
k.

Let us also consider the Toeplitz operator T (f) on H2(T) generated by the
function f (see [18], in order to find out a review of the theory of Toeplitz opera-
tors). It means that the operator T (f) acting in the space H2(T) by the formula

T (f) g = Π(M(f) g) = Π(fg), for a function g ∈ H2(T).

Henceforth let us assume that f ∈ H∞(D). Let H2
0(T) := {h ∈ H2(T) : h(0) =

0} and H
2

0(T) := {h : h ∈ H2
0(T)}. Then L2(T) decomposes into the orthogonal

sum of these spaces:
L2(T) = H2(T) ⊕ H

2

0(T). (2.5)
Accordingly, every operator can be represented as the respective 2 × 2 operator
matrix, and matrix representations of operators M(f) and M(f)∗ with respect to
this decomposition have the form

M(f) =
(
T (f) X(f)

0 Y (f)

)
and M(f)∗ =

(
T (f)∗ 0
X(f)∗ Y (f)∗

)
. (2.6)

Furthermore, we set T̃ (f) := Y (f)∗, T k(f) := (T (f))k and T̃ k(f) := (T̃ (f))k,
and define, for integer k ≥ 1, the operators Ek(f) and Ẽk(f), related with the
operators T (f) and T̃ (f) by the formulas

Ek(f) := T k(f)∗T k(f) − T k(f)T k(f)∗,

Ẽk(f) := T̃ k(f)∗T̃ k(f) − T̃ k(f)T̃ k(f)∗.

In the following theorem we calculate explicitly the orthogonal complemen-
tary of the space M2

n(T, f) in L2(T) and interpret the result of Theorem 2 (Part 1)
in terms of special properties of operators Ek(f) and Ẽk(f).
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Theorem 3. Let f ∈ H∞(D).
1. For any integer k ≥ 1

ker(Ek(f)) = {h ∈ H2(T) : fkh ∈ H2(T)}, (2.7)

ker(Ẽk(f)) = {b ∈ H
2

0(T) : fkb ∈ H
2

0(T)}. (2.8)

2. For any integer n ≥ 2

M2
n(T, f)⊥ = Qn(f) =

n−1⋂
k=1

ker(Ẽk(f)), where (2.9)

Qn(f) :=
{
b ∈ H

2

0(T) : fb ∈ H
2

0(T), ∀ � ∈ {1, . . . , n− 1}
}
.

3. For any integer k ≥ 1, ker(Ek(f)) �= ∅ if and only if ker(Ẽk(f)) �= ∅ and if
and only if the function fk admits a Nevanlinna-type pseudocontinuation.

Proof. Take an integer k ≥ 1. Using (2.6) we obtain the following matrix repre-
sentations for operators Mk(f) = (M(f))k and Mk(f)∗:

Mk(f) =
(
T k(f) Xk(f)

0 T̃ k(f)∗

)
and Mk(f)∗ =

(
T k(f)∗ 0
Xk(f)∗ T̃ k(f)

)
, (2.10)

where Xk(f) is the operator from H
2

0(T) to H2(T) such that X1(f) = X(f) and
Xk+1(f) = T k(f)X(f) +Xk(f)T̃ (f)∗ for k > 1.

Let Nk(f) := Mk(f)∗Mk(f) −Mk(f)Mk(f)∗. It follows from (2.10) that

Nk(f) =

(
Ek(f) −Xk(f)Xk(f)∗ T k(f)∗Xk(f)−Xk(f)T̃ k(f)

Xk(f)∗T k(f) − T̃ k(f)∗Xk(f)∗ Xk(f)∗Xk(f) − Ẽk(f)

)
.

Since M(f)∗ = M(f), then for any function g ∈ L2(T) we have

Nk(f) g = Mk(f)∗Mk(f) g −Mk(f)Mk(f)∗ g = fkfkg − fkfkg = 0,

which gives Nk(f) = 0 and therefore

Ek(f) = Xk(f)Xk(f)∗ and Ẽk(f) = Xk(f)∗Xk(f),
so that

ker(Ek(f)) = ker(Xk(f)∗) and ker(Ẽk(f)) = ker(Xk(f)).

In order to prove (2.7) one represents any function g ∈ L2(T) in the “vector”
form g = (h, b), where h = Π g ∈ H2(T) and b = g − h ∈ H

2

0(T). Taking into
account the matrix representation for Mk(f)∗ in (2.10), one obtains that

Mk(f)∗ g =
(
T k(f)∗ h , Xk(f)∗ h+ T̃ k(f) b

)
,

and finally, that

ker(Ek(f)) = ker(Xk(f)∗) =
{
h ∈ H2(T) : Xk(f)∗ h = 0

}
=
{
h ∈ H2(T) : Mk(f)∗(h, 0) = (T k(f)∗ h, 0)

}
=
{
h ∈ H2(T) : Mk(f)∗ h ∈ H2(T)

}
=
{
h ∈ H2(T) : fkh ∈ H2(T)

}
.
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Repeating this computation with minor clear modifications one proves (2.8) and
therefore, the assertion of Part 1.

Let us prove the equality (2.9). Since for all functions g ∈ L2(T) and h ∈
H2(T) for � = 0, 1, . . . , n− 1, one has〈

g,
n−1∑
=0

f h

〉
=

n−1∑
=0

〈
g, fh

〉
=

n−1∑
=0

〈
gf, h

〉
,

and since 〈gf, h〉 = 0 upon gf ∈ H
2

0(T) and h ∈ H2(T), then each function
g ∈ Qn(f) is orthogonal to M2

n(T, f). Let us take now some function g ∈ L2(T)
such that g ⊥ M2

n(T, f). Then, for each � ∈ {0, 1, . . . , n− 1} one has

〈gf, h〉 = 〈g, fh〉 = 0

for any function h ∈ H2(T). It means that gf ∈ H
2

0(T) for all � ∈ {0, 1, . . . , n− 1}
and thus g ∈ Qn(f). The second equality in (2.9) immediately follows from the
first one and from the equality (2.8).

We start the proof of Part 3 proving the fact that ker(Ek(f)) �= ∅ if and only
if the function fk admits a Nevanlinna-type pseudocontinuation. Let ker(Ek(f)) �=
∅. It follows from (2.7), then there exists a function h ∈ H2(T) such that h �≡ 0
and w := fkh ∈ H2(T), thus fk = w/h. Since H2(D) ⊂ N(D), then there exists two
functions f1, f2 ∈ H∞(D) such that f(ξ)k = w(ξ)/h(ξ) = f1(ξ)/f2(ξ) for almost all
ξ ∈ T and in view of Lemma 1 we conclude, that the function fk admits a Nevan-
linna type pseudocontinuation. Conversely, if the function fk admits a Nevanlinna-
type pseudocontinuation and if the functions f1, f2 ∈ H∞(D) (with f2 �≡ 0) are
taken from Lemma 1 so that f(ξ)k = f1(ξ)/f2(ξ), then f2 ∈ H2(T) and fkf2 =
f1 ∈ H2(T). Thus, by (2.7), f2 ∈ ker(Ek(f)) and, therefore, ker(Ek(f)) �= ∅.

Let us calculate the operators T (f) and T̃ (f) explicitly. Assuming that

h(z) =
∞∑

j=0

λjz
j ∈ H2(T), b(z) =

∞∑
j=1

βjz
j ∈ H

2

0(T), and that f(z) =
∞∑

j=0

αjz
j,

we obtain by direct computations that

T (f)h =
∞∑

m=0

(∑m
j=0 αjλm−j

)
zm, and T̃ (f) b =

∞∑
m=1

(∑m−1
j=0 αjβm−j

)
zm.

Therefore, if J is the operator on L2(T) acting as Jf(z) = f(z), then J∗ = J and

T̃ (f) = J∗ T (f∗) J,

where the function f∗ was defined by the formula f∗(z) = f(z). Since J2 = 1 (the
identity operator), then

T̃k(f) = J∗ Tk(f)J, and hence Ẽk(f) = J∗Ek(f∗)J.

Since the functions fk and (f∗)k = (fk)∗ admit or do not admit a Nevanlinna-
type pseudocontinuation simultaneously, then the kernels of operators Ek(f) and
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Ek(f∗) are empty or non empty simultaneously and it follows from the last formula,
that the same is true for kernels of operators Ek(f) and Ẽk(f). �

Let us illustrate the results of Theorems 2 and 3 by two simple examples. Let
p = 2 and let n ≥ 2 be an integer. We have

Example 1. Let ϕ1(z) := z. It is easy to verify that the function ϕ1 admits a
Nevanlinna-type pseudocontinuation (indeed, the desired functions in Definition 2
are F1 ≡ 1 and F2(z) = 1/z). By Theorem 2 (Part 1) the space M2

n(T, ϕ1) is not
dense in L2(T), and in view of (2.7) and (2.9) one has

M2
n(T, ϕ1)⊥ =

{
b ∈ H

2

0(T) : zkb ∈ H
2

0(T), k = 1, 2, . . . , n− 1
}

=
{
b ∈ H

2

0(T) : b =
∞∑

k=1

βkz
k, β1 = · · · = βn−1 = 0

}
.

Example 2. Let now ϕ2(z) = ez. Since ez = ez = e 1/z, and since the function
e 1/z has an essential singular point at the origin, then (in view of Lemma 1) the
function ϕ2 does not admit a Nevanlinna-type pseudocontinuation. Thus, using
Theorem 2 (Part 1) one concludes that M2

n(T, ϕ2) is dense in L2(T).
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Potential Theory in Denjoy Domains

Stephen J. Gardiner and Tomas Sjödin

Abstract. This paper presents an account of Denjoy domains in relation to
minimal harmonic functions, the boundary behaviour of the Green function,
and to their usefulness as a source of counterexamples in potential theory. The
discussion begins with an exposition of key work of Ancona and Benedicks
and then moves on to describe several very recent results.
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1. Introduction

A result of Denjoy [16], dating from 1909, says that a domain of the form C\E,
where E ⊂ R, supports nonconstant bounded analytic functions if and only if E
has positive Lebesgue measure. Domains Ω ⊂ C for which C\Ω is contained in a
line, or, more generally, domains Ω ⊂ Rn (n ≥ 2) for which Rn\Ω is contained
in a hyperplane, have subsequently come to be known as Denjoy domains. The
purpose of this article is to describe how the special geometry of Denjoy domains
has led to some very precise and illuminating potential theoretic results. We will
not attempt to provide a comprehensive survey of the subject, but will present
some of the key theory and also outline several recent developments.

Denjoy domains sometimes arise naturally in the study of certain domain
properties. To take a simple example, let Hc(Ω) denote the collection of harmonic
functions on a domain Ω that have a finite-valued continuous extension to com-
pactified space Rn ∪ {∞}. It is easy to see, by consideration of Poisson integral
representations in half-spaces, that Hc(Ω) does not separate the points of Ω if
Ω is a Denjoy domain. In fact, essentially only Denjoy domains have this non-
separation property. More precisely, when n ≥ 3, domains Ω with this property

This work is part of the programme of the ESF Network “Harmonic and Complex Analysis

and Applications” (HCAA), and was also supported by Science Foundation Ireland under Grant
06/RFP/MAT057.
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must be of the form ω\F , where ω is a Denjoy domain and F is a relatively closed
polar subset of ω; and, when n = 2, the characterization is similar, except that ω
can be the image of a Denjoy domain under a linear fractional transformation (for
this and related results, see [9]).

Denjoy domains also arise naturally in the study of null quadrature domains,
that is, domains Ω on which every integrable harmonic function has integral 0.
A simple example of a domain with this property is a half-space; for, if h is an
integrable harmonic function on ω = Rn−1 × (0,∞), then the function

t →
∫

R

. . .

∫
R

h(x1, . . . , xn−1, t) dx1 . . . dxn−1 (t > 0)

is of the form at + b for some a, b ∈ R (by Theorem 1.5.12 in [8]), so a = 0 = b
and hence

∫
ω h = 0. It follows that any Denjoy domain also has this property,

but it seems that very few other domains have it. In fact, when n = 2, Sakai [23]
has shown that the only other possibilities are complementary to closed elliptic or
parabolic regions, and something similar has been conjectured to be true in higher
dimensions (see [22]).

However, while such examples are of some interest, the main potential the-
oretic motivation for studying Denjoy domains is the desire to gain insight into
how the geometry of a domain affects subtle potential theoretic phenomena. One
such topic is the Martin boundary (see Chapter 8 of the book [8]), which provides
an integral representation for positive harmonic functions on a Greenian domain
in the spirit of the Riesz-Herglotz representation in a ball. Since the relationship
between the Euclidean and Martin boundaries can be quite complicated, several
authors, beginning with Ancona [3] and Benedicks [10], have analysed what can
occur in the case of Denjoy domains. Another topic where the case of Denjoy do-
mains has provided insight is the relationship between the geometry of a domain
and the boundary behaviour of its Green function (see Carleson and Totik [14] and
Carroll and Gardiner [12]). As we will explain later, these two apparently distinct
questions are, in fact, intimately related.

Finally, Denjoy domains, and variants of them, can be a fruitful source of
counterexamples. In the final section of this article we will illustrate this with ref-
erence to recent work of Sjödin [26] concerning integrability and positive harmonic
functions, and the solution by Gardiner and Hansen [21] of a long-standing open
question about the Riesz decomposition in fine potential theory. We note, in pass-
ing, that Denjoy domains have also arisen recently as natural counterexamples in
connection with the study of minimal harmonic functions on John domains [2].

Other papers where potential theoretic aspects of Denjoy-type domains have
been considered include [1], [4], [5], [6], [7], [13], [15], [20], [24], [25] and [27].

2. Notation and preliminary material

Here we set out our notation and recall some of the potential theoretic facts we
need, a convenient reference for which is the book [8].
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We will work in Euclidean space Rn (n ≥ 2), using the notation

x = (x1, x2, . . . , xn) = (x′, xn) and x̃ = (x′,−xn), where x′ ∈ Rn−1,

and writing |x| for the Euclidean norm of x. We define

H+ = {x ∈ Rn : xn > 0}, H− = {x ∈ Rn : xn < 0}, L = {x ∈ Rn : xn = 0},

at = (0′, t) (t > 0) and Tt = {as : 0 < s < t} (0 < t ≤ ∞),

and write B(x, r) for the open ball of center x and radius r.
To avoid confusion, sequences in Rn will be denoted x(k) and not xk (since

this is used for the kth coordinate of x). Sequences in R and sequences of sets will,
however, be represented using the familiar subscript notation.

If η is a measure, then

Lp(η) :=
{

{f : |f |p is η-integrable} (0 < p <∞)
{f : |f | is essentially bounded} (p = ∞) .

By supp(η) we will always denote the closed support of a measure η.
For an open set D ⊂ Rn we introduce the following classes of real-valued

functions on D.

P(D) : the non-negative functions on D,
Lp(D) : the pth power Lebesgue integrable functions on D,
H(D) : the harmonic functions on D.

We also use superpositioning so that, for instance, HP(D) = H(D) ∩ P(D). If
D ⊂ Rn is Greenian, then GD(·, ·) denotes its Green function, and if μ is a measure
on D we denote its Green potential by GDμ.

For a set A ⊂ Rn we denote by ∂A its boundary in Rn, and by ∂∞A its
boundary in Rn ∪ {∞}. The harmonic measure on ∂∞D for a Greenian open set
D with respect to a point x ∈ D is denoted by λD

x .
We recall that, if D is a Greenian domain D, then the Martin kernel normal-

ized at some reference point x0 is defined on D × (D \ {x0}) by

MD(x, y) :=
GD(x, y)
GD(x0, y)

.

The Martin compactification D̂ is the smallest compactification of D such that
MD(x, ·) can be continuously extended to the boundary ∂MD = D̂ \D for each
x. (We still use MD(·, ·) for the extended function.) For each h ∈ HP(D) there is
(at least) one representing measure η on ∂MD for h, that is, for which

h(x) =
∫
MD(x, y)dη(y). (Clearly η(∂MD) = h(x0)).

In general, such measures are not unique, but if we require them to be carried by
the minimal Martin boundary ∂M

1 D, then there is a unique measure, which we
denote by νh.
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We will also need the concept of minimal thinness (see Chapter 9 of [8]). If
y ∈ ∂M

1 D and A ⊂ D, then we recall that A is said to be minimally thin at y (with
respect to D) if

MD(·, y) �≡ R̂A
MD(·,y),

where R̂A
MD(·,y) denotes the regularized reduction of MD(·, y) over the set A with

respect to positive superharmonic functions on D.

3. Basic theory

3.1. Martin boundary points

We will follow the approach of Ancona [3] to establish a kind of boundary Har-
nack principle for Denjoy domains, and then use minimal thinness arguments to
prove the basic properties of the set of Martin points associated with a Euclidean
boundary point for these domains.

Theorem 1. Suppose that D ⊂ Rn is a Greenian domain which contains H+. There
is a constant C1, depending only on n, such that

GD(x, y) ≤ C1GD(x, a|y|) (x ∈ T∞; y ∈ D \ {0}). (1)

Proof. (I) For all x ∈ H+ and y ∈ D ∩ H− we have GD(x, y) ≤ GD(x, ỹ). This
holds because the function

u(y) := GD(x, ỹ) −GD(x, y)

is superharmonic and lower bounded in D ∩H− and has non-negative lower limit
quasi-everywhere on ∂∞(D ∩ H−). Hence u ≥ 0 in D ∩ H− by the minimum
principle.

We now identify Rn with Rn−2 × C by letting

(x1, . . . , xn−2, xn−1, xn) = (x1, . . . , xn−2, xn−1 + ixn) = (x′′, z),

and use arg z to denote the value of the argument in (−π, π].
(II) There is a constant d1, depending only on n, such that every positive harmonic
function h on the set

{(x′′, z) : 0 < arg z < π/2}
satisfies

h(x′′, teiθ) ≤ d1h(x′′, teiϕ) (θ, ϕ ∈ [π/8, 3π/8]; t > 0).
This is an easy consequence of Harnack’s inequalities.

Let s denote the reflection map with respect to the hyperplane

{(w′′, z) ∈ Rn : arg z ∈ {−7π/8, π/8}}.
(III) For all x ∈ T∞ and y = (y′′, z) with arg z = −π/8 we have

GD(x, y) ≤ d1GD(x, s(y)).

This follows by combining (I) and (II).
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Now, for fixed x ∈ T∞, we apply the minimum principle to the function

w(y) := d1GD(x, s(y)) −GD(x, y)

in the set
D ∩ {(y′′, z) ∈ Rn : −π

8 < arg z < π
8 }

to see from (III) that

sup
{
GD(x, (y′′, z)) : y′′ ∈ Rn−2, arg z ∈

[
−π

8 ,
π
8

]}
≤ d1 sup

{
GD(x, (y′′, z)) : y′′ ∈ Rn−2, arg z ∈

[
π
8 ,

3π
8

]}
.

By rotating the coordinate system around the xn-axis and letting K denote the
cone around T∞ with vertex 0 and half-angle 3π/8 we now obtain:

(IV) For all x ∈ T∞ and t > 0 we have

sup{GD(x, y) : |y| = t} ≤ d1 sup{GD(x, y) : |y| = t, y ∈ K}.
Applying Harnack’s inequality we get:

(V) There is a constant d2, depending only on n, such that, for all t > 0, y ∈
D ∩ ∂B(0, t), and x ∈ T∞ with |x| ≤ t/2 or |x| ≥ 2t,

GD(x, y) ≤ d2GD(x, at).

To complete the argument let t = |y| and t/2 < |x| < 2t. The case |x| = t
is trivial, so we assume that |x| �= t. The function GD(x, ·) is harmonic outside
B(x, |t− |x|| /2) and is majorized on ∂B(x, |t− |x|| /2) by d3GD(x, at) for some
constant d3 depending only on n, in view of Harnack’s inequalities. Letting C1 =
max{d2, d3} we now obtain (1). �

Corollary 2. Suppose D ⊂ Rn is a Greenian domain which contains H+. There is
a constant C2, depending only on n, such that

GD(x, y) ≤ C2GD(x, a|y|) (x ∈ H+; y ∈ D \B(0, 2|x|)). (2)

Proof. Let x = (x′, xn) and a∗|y| = (x′, a|y−(x′,0)|). By Theorem 1 we have

GD(x, y) ≤ C1GD(x, a∗|y|).

But the function GD(x, ·) is positive and harmonic on H+ \B(0, |y|/2) and so, by
Harnack’s inequalities,

GD(x, a∗|y|) ≤ d1GD(x, a|y|)

for some constant d1 depending only on n. Thus (2) holds with C2 = C1d1. �

Theorem 3. Suppose D ⊂ Rn is a Greenian domain which contains H+. There is
a constant C3, depending only on n, such that, for any α > 0,

GD(x, at)
GD(x, a2α)

≤ C3
GD(y, at)
GD(y, a2α)

(x, y ∈ H+ ∩B(0, α); t ≥ 10α).
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Proof. By dilation we may assume, without loss of generality, that α = 2. From
Corollary 2

GD(x, v) ≤ C2GD(x, a4) (x ∈ H+ ∩B(0, 2); v ∈ ∂B(0, 4) ∩D).

Let R = D \B(0, 4). Now we have

GD(x, v) ≤ C2GD(x, a4)λR
v (∂B(0, 4)) (x ∈ H+ ∩B(0, 2); v ∈ R). (3)

Fix φ ∈ C∞(Rn) with support in {3 ≤ |v| ≤ 5} such that 0 ≤ φ ≤ 1, and also
φ = 1 on ∂B(0, 4). Now

λR
v = βnΔGR(v, ·) + δv,

where (βnmax{1, n − 2})−1 is the surface area of ∂B(0, 1) and GR = 0 outside
R×R, so

λR
v (∂B(0, 4)) ≤

∫
φ(w)dλR

v (w)

=
∫
βnGR(v, w)Δφ(w)dw (v ∈ D \B(0, 5)).

Hence

λR
v (∂B(0, 4)) ≤ βn||Δφ||1 sup{GR(v, w) : |w| ≤ 5} (v ∈ D \B(0, 5)). (4)

Now suppose that t > 13. By Theorem 1 applied to R,

sup{GR(at, w) : |w| ≤ 5} ≤ sup{GR(at, w) : |w − a4| ≤ 9}
≤ C1GR(at, a13).

In view of (3) and (4) we now have
GD(x, at)
GD(x, a4)

≤ C2λ
R
at

(∂B(0, 4))

≤ βnC2||Δφ||1 sup{GR(at, w) : |w| ≤ 5}
≤ βnC1C2||Δφ||1GR(at, a13)

= d1GR(at, a13), say, (5)

for all x ∈ H+ ∩ B(0, 2) and all t ≥ 20, where d1 depends only on n and our
choice of φ. However, by Harnack’s inequality, there are positive constants d2, d3,
depending only on n, such that

GD(y, w)
GD(y, a4)

≥ d2 > 0 andGR(a13, w) ≤ d3 (y ∈ H+ ∩B(0, 2);w ∈ ∂B(a13, 2)).

By the maximum principle
GD(y, at)
GD(y, a4)

≥ d2

d3
GR(a13, at) (t ≥ 20).

Hence
GD(x, at)
GD(x, a4)

≤ d1GR(at, a13) ≤
d1d3

d2

GD(y, at)
GD(y, a4)

(t ≥ 20),

in view of (5), and the result is now established with C3 = d1d3/d2. �
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Corollary 4. Suppose D ⊂ Rn is a Greenian domain which contains H+. Then the
closure T1

M
of T1 in D̂ intersects ∂MD in exactly one point y, and y ∈ ∂M

1 D.

Proof. Let MD(z, y) denote the Martin kernel of D with reference point a10. By
Theorem 3

1
C3
MD(a2α, x) ≤MD(a2α, y) ≤ C3MD(a2α, x)

for all x, y ∈ H+ ∩ B(0, α) and α ≤ 1. By continuity this inequality also holds

for x, y ∈ H+ ∩B(0, α)
M

. Now fix x ∈ ∩α>0H+ ∩B(0, α)
M

. If t < 1, then by
Harnack’s inequalities,

MD(z, x) ≥ d1MD(z, at)
MD(a2t, x)
MD(a2t, at)

(z ∈ ∂B(at, t/2)),

where d1 depends only on n, whence by the minimum principle,

MD(z, x) ≥ d1

C3
MD(z, at) = d2MD(z, at), say (z ∈ D \B(at, t/2)). (6)

If atk
→ y ∈ T1

M∩ ∂MD, it follows that

MD(z, x) ≥ d2MD(z, y) (z ∈ D). (7)

Let
Bk = B(a2−k , 2−k−1) and Dk =

⋃
j≥k

Bj .

From (6) we have

R̂Dk

MD(·,x)(a10) ≥ R̂Bk

MD(·,x)(a10) ≥ d2R̂
Bk

MD(·,a2−k )(a10)

≥ d2MD(a10, a2−k) = d2

for all k, and so D1 cannot be minimally thin at all points of ∂M
1 D. In particular,

D1
M∩ ∂M

1 D �= ∅. Further, by (7) and minimality, the sets D1
M∩ ∂M

1 D and T1
M∩

∂MD coincide and consist of exactly one point. �

We observe that, in the above proof, we have also shown that⋂
α>0

H+ ∩B(0, α)
M

contains exactly one minimal point. (It may also possibly contain non-minimal
points.)

By inversion it is easy to see that the preceding results have analogues when
a domain satisfies an inner ball condition. In particular, if a Greenian domain
D ⊂ Rn contains the ball B(x, r) and y ∈ ∂D∩∂B(x, r), then there is exactly one
minimal point associated to y that can be reached from the ball B(x, r).
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For the remainder of Section 3 we use Ω to denote a Denjoy domain of the
form Rn \E, where E ⊂ L = Rn−1 ×{0}. Further, when n = 2, we require that E
be non-polar. We define

ME =
⋂
α>0

(Ω ∩B(0, α))
M

;

that is, ME is the set of all Martin boundary points (not necessarily minimal) asso-
ciated with 0. Further, we let PE denote the positive convex cone generated by the
functions {MΩ(·, y) : y ∈ ME}. We will say that PE is k-dimensional if the mini-
mum number of functions in PE whose positive linear combinations span PE is k.

Remark 5. The functions in PE are the same as the set of positive harmonic
functions which are bounded outside every neighbourhood of the origin and vanish
continuously at every regular boundary point apart from 0. (This will become
apparent from the proof of the next theorem.)

The following theorem essentially corresponds to Theorems 2 and 3 in Benedicks
[10], but has a somewhat different formulation. Chevallier [13] was the first to
exploit minimal thinness in this connection.

Theorem 6. The set ME ∩ ∂M
1 Ω consists of either one or two points, and the

corresponding functions span PE. Further:

(1) PE is one-dimensional if and only if one of the following equivalent conditions
holds:

a) all functions in PE are symmetric with respect to L;
b) there is no point y in ME ∩ ∂M

1 Ω such that Ω ∩ L is minimally thin at
y.

(2) PE is two-dimensional if and only if one of the following equivalent conditions
holds:

a) there is a function in PE which is not symmetric with respect to L;
b) there is a point y in ME ∩∂M

1 Ω such that Ω∩L is minimally thin at y.

Proof. By Corollary 4 and the subsequent remark we know that⋂
α>0

(H+ ∩B(0, α))
M

and
⋂
α>0

(H− ∩B(0, α))
M

each contain exactly one minimal point. We denote these by y+ and y−, respec-
tively. (They may or may not be equal.) It is easy to see that⋂

α>0

(Ω ∩B(0, α))
M

=
⋂
α>0

(H+ ∩B(0, α))
M ∪

⋂
α>0

(H− ∩B(0, α))
M
.

From this we see that ME ∩ ∂M
1 Ω = {y+, y−}. We now wish to prove that any

function MΩ(·, y), where y ∈ME , can be written in the form

MΩ(·, y) = c+MΩ(·, y+) + c−MΩ(·, y−),
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for some constants c+, c−. To do this it is enough to prove that

R̂
Ω∩B(0,10α)
MΩ(·,y) = MΩ(·, y) (α > 0), (8)

because every point z in ∂Ω has at most two minimal points associated with it,
and, as will become clear below, Ω \ B(z, r) is minimally thin at both of these
for any r > 0 (similar statements hold for ∞, by inversion). From Corollary 2,
Theorem 3 and Harnack’s inequality we see that there is a constant d (depending
on n and α) such that

MΩ(z, y) ≤ d(MΩ(a|z|, at) +MΩ(−a|z|,−at))

for all z ∈ Ω \ B(0, 10α), y ∈ Ω ∩ B(0, α) and 0 < t < α. By continuity this

holds also for y ∈ Ω ∩B(0, α)
M

and ±at replaced by y±. Suppose now that y(k)

is a sequence in Ω converging to 0 in the Euclidean topology, and to some point
y ∈ME . By the above estimates (if we assume y(k) ∈ B(0, α) for all k) we see that
MΩ(·, y(k)) converges to MΩ(·, y) with bounded convergence on ∂B(0, 10α) ∩ Ω,
and so

R̂
Ω∩B(0,10α)

MΩ(·,y(k))
→ R̂

Ω∩B(0,10α)
MΩ(·,y) .

Since
R̂

Ω∩B(0,10α)

MΩ(·,y(k))
= MΩ(·, y(k))

for each k, we obtain (8), whence the functions corresponding to ME ∩∂M
1 Ω span

PE .
We can change our normalization of MΩ(·, ·) to ensure that

MΩ(x, y+) = MΩ(x̃, y−),

whence y+ �= y− if and only if MΩ(x, y+) �= MΩ(x̃, y+) for some x ∈ Ω.
If Ω ∩ L, which is the same as Ω \ (H+ ∪H−), is minimally thin at y+, then

so is Ω \H+ (because either Ω \H+ or Ω \H− must be minimally thin at y+, by
Lemma 9.6.1 in [8], and it cannot be the latter). By symmetry, Ω\H− is minimally
thin at y−, so y+ �= y−.

On the other hand, if y+ �= y−, then y+ �∈ H−
M

, by the observation following
Corollary 4, so Ω \H+ is certainly minimally thin at y+, and similarly Ω \H− is
minimally thin at y−. �

Again there is nothing special about the boundary point 0 in the above result.
The same phenomenon holds for all boundary points, including ∞ (as can be seen
by means of an inversion). When constructing certain examples we will actually
work with ∞ for reasons of notational convenience.

Some simple examples are as follows. Firstly, if E contains B(0, ε) ∩ L for
some ε > 0, then it is clear that PE is two-dimensional. In fact, ME consists of
exactly two points in this case, and so, in particular, it is not connected. On the
other hand, if there is a sequence of balls B(x(k), rk) in Ω such that x(k) ∈ L,
x(k) → 0 and rk ≥ c|x(k)| for some c ∈ (0, 1), then PE is one-dimensional. The
reason for this is that a|x(k)| can be connected to −a|x(k)| by a Harnack chain
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whose length does not depend on k, and so the sequences
(
±a|x(k)|

)
converge to

the same minimal point.

Example 7. We now outline a less trivial example, due to Ancona [3], where
dimPE = 2. As we will work in the plane it is convenient to use complex no-
tation. Let

D = C \
⋃
k∈Z

[k + 1/4, k + 3/4] ,

and

Ω = {z ∈ C : 1/z ∈ D} = C \
(⋃

k∈Z

[
1

k + 3/4
,

1
k + 1/4

]
∪ {0}

)
.

We denote the two (possibly equal) minimal points associated with ∞ on D by
w+ and w− respectively. We want to prove that w+ �= w−. From Theorem 6 we
know that w+ = w− if and only if the set D ∩R is not minimally thin at w+. We
also know that it→ w+ as t→ +∞, so it is enough to prove that the unbounded
function MD(·, w+) is bounded above by some positive constant on D ∩ R. To
prove this we see from symmetry that

GD(p, it) = GD(0, p+ it) (p ∈ Z; t ∈ (0,∞)).

Hence, by Theorem 1 and Harnack’s inequalities,

GD(p, it) = GD(0, p+ it) ≤ C1GD(0, i
√
p2 + t2)

≤ C1d1GD(0, it) (p ∈ Z; t ≥ 2p),

where d1 is an absolute constant. Thus

MD(p, w+) = lim
t→∞

GD(p, it)
GD(0, it)

≤ C1d1 (p ∈ Z).

Harnack’s inequalities can be applied to the circles ∂B(k, 1) to see that there is a
constant d2 such that

MD(x,w+) ≤ d2 (x ∈ ∂B(k, 1); k ∈ Z),

and this bound also holds on B(k, 1)∩D by the maximum principle. In particular,
MD(·, w+) is bounded on D ∩ R, and so w+ �= w−.

3.2. A Wiener-type criterion

We have seen that PE is either one- or two-dimensional. Benedicks [10] provided an
integrated harmonic measure criterion involving “moving cubes” for distinguishing
between these two cases. This criterion was recently shown by Carroll and Gardiner
[12] to be equivalent to one involving capacity. In this section we will combine ideas
from [10] and [12] to give a direct proof of this Wiener-type characterization.

Let C(A) denote the Newtonian (or logarithmic, if n = 2) capacity of a set
A. Also, let γ ∈ (0, 1/3) and D(r) = L ∩ B(0, r) and, for any k = 0, 1, . . . , let
Dk = D(2−k) and

Ek = (E ∩Dk) ∪D(γ2−k) ∪Dk\D((1 − γ)2−k).
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In the sequel we will use C(n, . . .) to denote a constant depending at most on
n, . . .; its value may change from line to line.

Theorem 8. For a Denjoy domain Ω = Rn\E with 0 ∈ E the following statements
are equivalent:
(a) PE is two-dimensional;

(b)
{ ∑

2k(n−2) [C(Dk) − C(Ek)] <∞ (n ≥ 3)∑
2k [C(Dk) − C(Ek)] <∞ (n = 2)

.

In the proof of Theorem 8 we will make use of the following elementary
version of the boundary Harnack principle (see Lemma 8.5.1 in [8]).

Lemma 9. Let z ∈ L and 0 < α < 1. If g, h are positive harmonic functions on
B(z, r) ∩ H+ which continuously vanish on B(z, r) ∩ L, then g/h has a positive
continuous extension to B(z, r) ∩ (H+ ∪ L) and

g(x)
h(x)

≤ C(n, α)
g(y)
h(y)

for any x, y ∈ B(z, αr) ∩H+.

We will give a proof of Theorem 8 when n ≥ 3 and leave the adjustments
required for the plane case to the reader. For any compact set K ⊂ Rn, we denote
by vK the capacitary potential of K, and by μK the associated Riesz measure. We
also write

Ak = {x′ : 2−k ≤ 3 |x′| ≤ 21−k} and A∗k = {x′ : γ2−k ≤ |x′| ≤ (1 − γ)2−k}.
Suppose firstly that PE is two-dimensional. By Theorem 6 there is a function

in PE which is not symmetric with respect to L. It follows, by consideration of
Poisson integral representations in H+ and in H−, and by symmetrization, that
there is a function u in PE satisfying u ≥ |h|, where h(x) = xn |x|−n. Now 1− vEk

vanishes on D(γ2−k) and Dk\D((1 − γ)2−k). It thus follows from Lemma 9 and
Harnack’s inequalities that

1 − vEk

u
≤ 1 − vEk

|h| ≤ C(n, γ)
1 − vEk

(0′, 2−k)
h(0′, 2−k)

≤ C(n, γ)2k(1−n)

on ∂B(0, (1 − γ/2)2−k)\L and on ∂B(0, γ2−k−1)\L. We can therefore apply the
maximum principle on the open set

B(0, (1 − γ/2)2−k)\[E ∪B(0, γ2−k−1)]

to see that
1 − vEk

≤ C(n, γ)2k(1−n)u on (A∗k × {0})\E. (9)
Also, dμD0(x′, xn) = f (|x′|) dx′dδ0, where δ0 is the Dirac measure at 0 in R and
f : [0, 1) → (0,∞) is continuous. (This can be shown using Green’s theorem and
the fact that the function x′ → limt→0+(1−vD0(x′, t))/t is positive and continuous
on {|x′| < 1}, by Lemma 9.) Letting c1 = max[0,1−γ]f , we can thus use dilation to
see that

dμDk
≤ 2kc1dx

′dδ0 on D((1 − γ)2−k). (10)
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Since vDk
= 1 on Dk and Ek ⊆ Dk, we have

C(Dk) − C(Ek)

= C(Dk) −
∫

Ek

vDk
(y)dμEk

(y) = C(Dk) −
∫

Ek

∫
Dk

dμDk
(x)

|x− y|n−2 dμEk
(y)

=
∫

Dk

(
1 −
∫

Ek

dμEk
(y)

|x− y|n−2

)
dμDk

(x) =
∫

Dk

(1 − vEk
) dμDk

(11)

≤ 2kc1

∫
A∗k

(1 − vEk
(x′, 0))dx′ (12)

≤ C(n, γ)2k(2−n)

∫
A∗k

u(x′, 0)dx′,

by (10) and then (9). Condition (b) now follows from the integrability of u on D0.
The elementary lemma given below will be used in the proof of the converse.

Let B = B(0, 1) and let σ denote surface area measure on ∂B.

Lemma 10. Let q ∈ (0, 1) be such that σ(S1) = σ(∂B)/2, where S1 = {y ∈ ∂B :
|yn| ≥ q}, and let U = B\F , where F is a closed subset of L and 0 /∈ F . Then
λU

0 (∂B) ≤ 2λU
0 (S1).

Proof of the lemma. Let S2 = ∂B\S1 and ui(x) = λB
x (Si) (i = 1, 2). Clearly

u1(0) = u2(0) = 1
2 . Further, it follows from the maximum principle and considera-

tions of symmetry that, for any ε > 0, the set {u2 >
1
2 − ε} contains B ∩L. Hence

u2 ≥ 1
2 ≥ u1 on L ∩B. Since

λU
x (Si) = ui(x) −

∫
B∩∂U

uidλ
U
x (x ∈ U)

and B ∩ ∂U ⊂ B ∩ L, we see that

λU
0 (S2) ≤

1
2
−
∫

B∩∂U

u1dλ
U
0 = λU

0 (S1),

and the lemma follows. �

If x′ ∈ Ak, we define

Bx′ = B

(
(x′, 0),

(
1
3
− γ

)
2−k

)
and Sx′ =

{
y ∈ ∂Bx′ : yn > q

(
1
3
− γ

)
2−k

}
.

It follows from Lemma 10, symmetry, dilation and the maximum principle that

λ
Bx′\E
(x′,0) (∂Bx′) ≤ 4λBx′\E

(x′,0) (Sx′) ≤ 4
1 − vEk

(x′, 0)
minSx′ (1 − vEk

)

≤ 4
1 − vEk

(x′, 0)
minSx′ (1 − vDk

)
≤ C(n, γ) (1 − vEk

(x′, 0)) .
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Letting c2 = min[0,2/3]f , we can now argue as in the first part of the proof to see
that ∫

Ak

λ
Bx′\E
(x′,0) (∂Bx′)dx′ ≤ c−1

2 2−kC(n, γ)
∫

Dk

(1 − vEk
) dμDk

= C(n, γ)2−k [C(Dk)− C(Ek)] . (13)

Now suppose that PE is one-dimensional and let u ∈ PE . It follows from
Theorem 6 that u is symmetric with respect to L and it is not difficult to see that

u(0′, t) = C(n)
∫

Rn−1

tu(x′, 0){
|x′|2 + t2

}n/2
dx′ (t > 0). (14)

Since tn−1u(0′, t) ↓ 0 as t→ 0+, we have

tn−1u(0′, t) ≤ 2j(1−n)u(0′, 2−j) (0 < t ≤ 2−j). (15)

It follows easily from Theorem 1 that

u(x) ≤ C(n)u(0, |x|) (x ∈ Ω), (16)

and so, by Harnack’s inequalities,

u(x′, 0) =
∫
udλ

Bx′\E
(x′,0) ≤ C(n)u(0, |x′|)λBx′\E

(x′,0) (∂Bx′) (x′ �= 0′).

Combining this with (14), we obtain

u(0′, 2−j) ≤ C(n)
∫

Rn−1

2−ju(0, |x′|){
|x′|2 + 2−2j

}n/2
λ

Bx′\E
(x′,0) (∂Bx′)dx′

= C(n){J1 + J2 + J3}, (17)

where J1, J2 and J3 are integrals of the preceding integrand over

{|x′| ≤ 21−j/3}, {21−j/3 < |x′| ≤ 2/3} and {|x′| > 2/3},
respectively. Using (15), and then (13), we see that

J1 ≤
∫
{|x′|≤21−j/3}

2−jn |x′|1−n
u(0′, 2−j)

2−jn
λ

Bx′\E
(x′,0) (∂Bx′)dx′

≤ 3n−1u(0′, 2−j)
∞∑

k=j

2k(n−1)

∫
Ak

λ
Bx′\E
(x′,0) (∂Bx′)dx′

≤ C(n, γ)u(0′, 2−j)
∞∑

k=j

2k(n−2) [C(Dk) − C(Ek)] . (18)

Since, by the maximum principle and (16),

u ≤ sup
∂B(0,r)

u ≤ C(n)u(0′, r) on Ω\B(0, r),
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we can also use (13) and Harnack’s inequalities to see that

J2 ≤ C(n)
∫
{21−j/3<|x′|≤2/3}

2−ju(0′, 21−j/3)
|x′|n λ

Bx′\E
(x′,0) (∂Bx′)dx′

≤ C(n, γ)u(0′, 2−j)2−j

j−1∑
k=1

2k(n−1) [C(Dk)− C(Ek)] . (19)

Also,

J3 ≤ C(n)u(0′, 2−j)2−j

∫
{|x′|>2/3}

|x′|−n
dx′ = C(n)u(0′, 2−j)2−j. (20)

Combining (17)–(20) yields

1 ≤ C(n, γ)
{ ∞∑

k=j

2k(n−2) [C(Dk) − C(Ek)]

+ 2−j

j−1∑
k=1

2k(n−1) [C(Dk) − C(Ek)] + 2−j

}
(j ≥ 1),

which is incompatible with convergence of
∑

k 2k(n−2) [C(Dk)− C(Ek)]. This com-
pletes the proof of Theorem 8.

3.3. Examples

We will now briefly illustrate when the criterion in Theorem 8 holds. When n =
2, we know that C(Dk) = 2−k−1 and C(Ek) ≥ l1(Ek)/4, where lm denotes m-
dimensional measure, so from Theorem 8 it follows that PE is two-dimensional if∑

2kl1(Dk\Ek) <∞. However, a sharper result is true.

Corollary 11. Let n ≥ 2. If
∑

2nk [ln−1 (Dk\Ek)]n/(n−1) < ∞, then PE is two-
dimensional.

The corollary will follow, by dilation, once we establish the following lemma.
(We present the details only for the case where n ≥ 3.)

Lemma 12. If F = D(1)\W , where W is a relatively open subset of D(1−γ), then

C(D(1)) − C(F ) ≤ C(n, γ) [ln−1 (W )]n/(n−1) .

Proof. To see this, we choose ρ such that ln−1 (D(ρ)) = 2ln−1(W ). Thus ρ =
C(n) (ln−1(W ))1/(n−1). We may assume, without loss of generality, that ρ <
2−3/2γ. Let

U = {(x′, xn) : |x′ − z′| < |xn| < ρ for some (z′, 0) ∈ W} ∪W,

let h(x) = λω
x (∂B(0, 1)), where ω = (B(0, 1)\L) ∪W , and let m = supW h. Ele-

mentary estimates of harmonic measure show that there is a constant c3 ∈ (0, 1),
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depending only on n and γ, such that λH+
x (W ) ≤ c3 when x ∈ H+ ∩ ∂U . Let

V = B(0, 1) ∩H+. Since

h(x) = λV
x (H+ ∩ ∂B(0, 1)) +

∫
W

h dλV
x (x ∈ V ),∫

W

h dλV
x ≤

∫
W

h dλH+
x ≤ c3m (x ∈ H+ ∩ ∂U),

and
λV

x (H+ ∩ ∂B(0, 1)) ≤ C(n, γ)xn (x ∈ H+ ∩B(0, 1 − γ/2)),

we see that
h ≤ C(n, γ)ρ+ c3m on H+ ∩ ∂U,

whence
m = sup

W
h ≤ C(n, γ)(1 − c3)−1ρ.

Finally, we use the fact that 1− vF ≤ h on B(0, 1)\F to see (as in (11)) that

C(D(1))− C(F ) =
∫

D(1)

(1 − vF ) dμD(1) ≤
∫

W

h dμD(1)

≤ C(n, γ)ρμD(1)(W ) ≤ C(n, γ) [ln−1(W )]1+1/(n−1)
.

in view of (10) and our choice of ρ. �

Corollary 11 provides a sufficient condition for PE to be two-dimensional. A
necessary condition is that∫

{|x′|≤1}
|x′|−n dist((x′, 0), E)dx′ <∞. (21)

To see this, we note from Theorem 6 that, if PE is two-dimensional, then there is
a function u in PE satisfying u(x) ≥ xn |x|−n on Ω, whence

u(x′, 0) ≥ C(n)u(x′, dist((x′, 0), E)) ≥ C(n)dist((x′, 0), E) |x′|−n

by Harnack’s inequalities, and (21) now follows from the local integrability of u
on L.

Combining Corollary 11 with the observed necessity of (21), we see that, for

E = L\
(⋃

k

B(x(k), rk)

)
, where x(k) ∈ L ∩ ∂B(0, 2−k) and rk < 2−k,

the cone PE is two-dimensional if and only if
∑

2nkrn
k <∞.

Further illustrations of condition (b) in Theorem 8 may be found in [12]. In
particular, it is shown there that, for

E = L\
{
x ∈ (0, 1)× Rn−2 × {0} :

√
x2

2 + · · ·+ x2
n−1 < g(x1)

}
,
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where n ≥ 3 and g : (0, 1) → (0,∞) is increasing, PE is two-dimensional if and
only if ∫ 1

0

t−n [g(t)]n−1
dt <∞.

3.4. Boundary behaviour of the Green function

Up to now we have been discussing the relationship between the Euclidean and
Martin boundaries of Denjoy domains. Next we consider the boundary behaviour
of their Green functions. Let x0 ∈ Ω. We will say that GΩ(x0, ·) is Lipschitz
continuous at 0 if there is a constant C > 0 such that GΩ(x0, x) ≤ C |x| on
some neighbourhood of 0, where GΩ(x0, ·) is interpreted as 0 on E. This defini-
tion is independent of the choice of x0, in view of Harnack’s inequalities. Since
GH+(x0, x)/xn has a finite (positive) limit at 0, it is clear that GH+(x0, ·) is Lip-
schitz continuous at 0. The next result shows that this remains true of GΩ(x0, ·)
when Ω is sufficiently like H+ near 0.

Theorem 13. For a Denjoy domain Ω = Rn\E with 0 ∈ E, and for any point
x0 ∈ Ω, the following statements are equivalent:

(a) GΩ(x0, ·) is Lipschitz continuous at 0;

(b)
{ ∑

2k(n−2) [C(Dk) − C(Ek)] <∞ (n ≥ 3)∑
2k [C(Dk) − C(Ek)] <∞ (n = 2)

.

This result was first established for the case n = 2 by Carleson and Totik
[14], without reference to the work of Benedicks [10]. Below we will present a
proof of this result in all dimensions, taken from [12], which explains why the
same condition appears in both Theorems 8 and 13.

A few preliminary comments may serve to illuminate this phenomenon. Thin-
ness (in the ordinary sense) of a set A at 0 may be characterized by the existence
of a superharmonic function v on a neighbourhood of 0 such that

lim inf
x→0,x∈A

v(x) > v(0) = lim inf
x→0

v(x). (22)

However, it may equivalently be characterized by the existence of a superharmonic
function v on a neighbourhood of 0 such that

lim inf
x→0,x∈A

v(x)

|x|2−n > lim inf
x→0

v(x)

|x|2−n . (23)

(When n = 2, we replace |x|2−n by log(1/ |x|) in (23).) A similar duality occurs in
the case of minimal thinness. By analogy with (23), a set A ⊂ Ω is minimally thin
at y ∈ ∂M

1 Ω if and only if there is a positive superharmonic function v on Ω such
that

lim inf
x→y,x∈A

v(x)
MΩ(x, y)

> lim inf
x→y

v(x)
MΩ(x, y)

,
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but an equivalent characterization is that there is a positive superharmonic func-
tion v on Ω such that

lim inf
x→y,x∈A

v(x)
GΩ(x0, x)

> lim inf
x→y

v(x)
GΩ(x0, x)

(cf. (22)). It is this possibility of characterizing minimal thinness in terms either
of minimal harmonic functions or of the Green function that allows us to connect
the dimensionality of PE with the boundary behaviour of GΩ. We will now make
this connection precise.

Proof. Suppose firstly that condition (b) of Theorem 13 holds, and let x0 = (0′, 1).
By Theorems 8 and 6 there is a point y ∈ ME∩∂M

1 Ω such that Ω∩L is minimally
thin at y. The associated minimal harmonic function u, say, must differ from its
Poisson integral in one of the half-spaces, H+, say. Hence Ω\H+ is minimally thin
at y, and it follows from Theorem 9.5.2 of [8] that

lim sup
x→y,x∈H+

GH+(x0, x)
GΩ(x0, x)

> 0.

In view of Remark 5, we know that any sequence of points in H+ that converges
to y must converge to 0 in the Euclidean topology, so

lim sup
x→0,x∈H+

GH+(x0, x)
GΩ(x0, x)

> 0.

Hence, by Theorem 9.3.3(ii) of [8], GΩ(x0, ·)/GH+(x0, ·) has a finite minimal fine
limit at 0 relative to H+, and so a finite nontangential limit there, by Theorem
9.7.4 of [8]. Since GΩ(x0, x) ≤ C(n)GΩ(x0, (0′, |x|)), by Theorem 1, we now see
that GΩ(x0, x)/ |x| is bounded above on B(0, 1/2)∩Ω, and so GΩ(x0, ·) is Lipschitz
continuous at 0.

Conversely, suppose that condition (a) holds, and let y be the minimal Martin
boundary point of Corollary 4 (with D = Ω). Since

lim sup
x→y,x∈H+

GH+(x0, x)
GΩ(x0, x)

≥ C(n)lim sup
t→0+

t

GΩ(x0, (0′, t))
> 0,

by hypothesis, we can apply Theorem 9.5.2 of [8] again to see that Ω\H+, and hence
L ∩ Ω, is minimally thin at y. Theorem 6 now shows that PE is two-dimensional,
and condition (b) follows by Theorem 8. �

4. Applications

4.1. Approximation of positive harmonic functions

Let D ⊂ Rn be a Greenian domain. In this section, which extends [26], we shall
study the following approximation problem: when is HPLp(D) dense (with respect
to uniform convergence on compact subsets in D) in HP(D)? We will deal with
the cases 0 < p ≤ 1 and p = ∞ (so the case p = ∞ refers to approximation by
bounded positive harmonic functions).
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In all cases there are some trivial counterexamples. In the case p = ∞ the
punctured ball D = B(0, 1) \ {0} is a counterexample. Indeed it is easy to see
that HPL∞(D) �= HP(D) if ∂D\ supp(λD

x ) is non-empty, because the latter set is
removable for bounded harmonic functions. Of course, a point such as the origin in
the case of the punctured ball corresponds to exactly one Martin boundary point,
which is minimal, and the associated minimal harmonic function has the same
singularity as the fundamental solution of the Laplacian, and so is integrable.
However, we easily obtain counterexamples in the case where 0 < p ≤ 1 if we
allow unbounded domains D, for then the half-space D = H+ is a domain for
which HPLp(D) �= HP(D) (cf. Section 1).

We now give a general theorem which relates the above approximation prob-
lem to “topological” properties of the Martin boundary. Later we will see that
Denjoy domains play a role in constructing non-trivial counterexamples to the
above approximation properties.

Theorem 14. Let D ⊂ Rn be a Greenian domain.
(1) Let 0 < p ≤ 1, and Ap = {y ∈ ∂M

1 D : MD(·, y) ∈ Lp(D)}. Then HPLp(D) =
HP(D) if and only if ∂M

1 D ⊂ Ap
M

.
(2) HPL∞(D) = HP(D) if and only if ∂M

1 D ⊂ supp(ν1).

Proof. (1) Firstly we note that, if Dk is an exhaustion of D, then

Ap = ∂M
1 D ∩ {y ∈ ∂MD : lim

k→∞

∫
Dk

(MD(x, y))pdx <∞},

so Ap is a Borel set.
Suppose now that h ∈ HPLp(D), and assume without loss of generality that

h(x0) = 1, where x0 is the reference point of MD(·, ·). Then, by Tonelli’s theorem
and Jensen’s inequality,∫

∂M
1 D

∫
D

(MD(x, y))pdxdνh(y) ≤
∫

D

(∫
∂M
1 D

MD(x, y)dνh(y)

)p

dx

=
∫

D

(h(x))p dx <∞,

and so νh is carried by Ap.
Let us now introduce two convex subcones of HP(D) as follows: K1 denotes

the cone of all (finite) positive linear combinations of functions of the formMD(·, y)
for y ∈ Ap, and K2 denotes the cone of all those positive harmonic functions
h which have a representing measure (not necessarily the one carried by ∂M

1 D)
supported by Ap

M
.

We note that
K1 ⊂ HPLp(D) ⊂ K2,

and K2 is closed by weak∗-compactness. We will now prove that K1 = K2 by
an application of the Hahn-Banach theorem (about separation of convex cones).
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Suppose η is a signed Radon measure with compact support inD such that
∫
kdη ≥

0 for all k ∈ K1. In particular, by assumption,∫
MD(x, y)dη(x) ≥ 0 (y ∈ Ap),

and by continuity this also holds for all y ∈ Ap
M

. Hence, if h ∈ K2, so that h has
a representing measure ν supported by Ap

M
, then∫

hdη =
∫ ∫

MD(x, y)dν(y)dη(x) =
∫ ∫

MD(x, y)dη(x)dν(y) ≥ 0.

This proves that K2 ⊂ K1, and hence the first part of the theorem is proved.
(2) This follows by analogous reasoning using the fact that HPL∞(D) is

precisely the set of functions representable in the form
∫
MD(·, y)f(y)dν1(y), where

f is a non-negative bounded Borel measurable function. �

Example 15. Theorem 14 shows that topological information about the minimal
Martin boundary points is crucial for these approximation questions. We now claim
that the Denjoy domain

Ω = C \
(⋃

k∈Z

[
1

k + 3/4
,

1
k + 1/4

]
∪ {0}

)
from Example 7 has the property that the two distinct minimal points y+ and y−
corresponding to 0 are isolated in ∂M

1 Ω. This is, of course, equivalent to saying that
the two distinct minimal points w+ and w− corresponding to ∞ for the domain D
in the same example are isolated in ∂M

1 D. For reasons of notational convenience
we will establish this latter assertion. We again choose 0 as our reference point.

To show this, we note from symmetry that every sequence x(k) in R ∩ D
converging to ∞ satisfies

MD(·, x(k)) → 1
2

(MD(·, w+) +MD(·, w−)) .

It follows by applying Harnack’s inequality to the circles ∂B(k, 1) that no sequence(
x(k)
)

with x(k) ∈ ∂B(k, 1) can converge to either w+ or w−. From this the claim
follows easily using the maximum principle.

We note that Ancona’s interest in this example stemmed from the fact that
∂M
1 Ω is not dense in ∂MΩ in this case.

Example 16. We now give non-trivial examples of domains Dp (that is, bounded
domains for which supp(λDp

x ) = ∂Dp) where HPLp(Dp) �= HP(Dp).
We begin with the case p = ∞. The Denjoy domain Ω of Example 15 has

the property that HPL∞(Ω) �= HP(Ω), because the points y+ and y− are not in
the support of ν1 (see Theorem 14 (2)). If we define D∞ = B(0, 1) ∩ Ω, we get a
bounded domain with supp(λD∞

x ) = ∂D∞, yet HPL∞(D∞) �= HP(D∞).
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However, every positive harmonic function on D∞ is integrable. To treat the
case where 0 < p ≤ 1 we fix such a p, choose k ∈ N such that pk ≥ 1, and define
Dp = {z ∈ C : z2k ∈ D∞}. Then

Dp = B(0, 1) \
4k−1⋃
j=0

{
2k√r exp

(
i
πj

2k

)
: r ∈ ∂Ω ∩ [0,∞)

}
.

(The boundary of Dp in B(0, 1) consists of subsets of 4k rays emanating from
0 with angular spacing π/2k.) From the construction of the Martin boundary it
is easy to see that, analogously to the case of D∞, the origin corresponds to 4k
distinct points in ∂M

1 Dp, and these points are isolated in ∂M
1 Dp.

Further, the growth of the corresponding minimal functions is comparable to

Im
(

1
z2k

)
=

1
r2k

sin(2θk) on 0 < θ < π/2k,

where z = reiθ. Since pk ≥ 1, we get∫ 1

0

∫ π/2k

0

(
1
r2k

sin(2θk)
)p

rdrdθ =
∫ 1

0

1
r2pk−1

dr

∫ π/2k

0

sinp(2θk)dθ = +∞.

By applying Theorem 14 (1) we now see that HPLp(Dp) �= HP(Dp).

4.2. Minimal harmonic functions associated with an irregular boundary point

As is well known, the minimal harmonic functions on the unit ball B are simply
multiples of the Poisson kernel with arbitrary boundary pole; that is, they are
multiples of the functions

vz : x → 1 − |x|2
|x− z|n (z ∈ ∂B).

We note that vz continuously vanishes on ∂B\{z} but tends to ∞ along a tan-
gential approach region to z. Now let U = B\{x0}, where x0 ∈ B. The minimal
harmonic functions on U comprise all the minimal harmonic functions on B to-
gether with multiples of

vx0 : x → GB(x, x0) = ux0(x) −HB
ux0

(x),

where

uy(x) =
{

|x− y|2−n (n ≥ 3)
− log |x− y| (n = 2)

and HV
f denotes the solution to the Dirichlet problem on V with boundary func-

tion f . Clearly vx0 continuously vanishes on ∂U\{x0} and tends to ∞ at x0. This
observation, concerning the irregular boundary point x0 of U , illustrates the fol-
lowing general fact. Let U be a (Greenian) domain with an irregular boundary
point x0 (so Rn\U is thin at x0), and define

GU (x, x0) = ux0(x) −HU
ux0

(x) (x ∈ U).
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If u is a positive multiple of GU (·, x0), then u is a minimal harmonic function
on U and u(x) → ∞ as x → x0 outside a set which is thin at x0. Brelot [11]
observed that the converse to this statement also holds when n = 2, but the
corresponding question in higher dimensions has remained open until the following
recent result [21].

Theorem 17. Let n ≥ 3. There is a domain U with irregular boundary point 0, and
a minimal harmonic function u on U , such that u(x) →∞ as x→ 0 outside a set
which is thin at 0, yet u is not a multiple of GU (·, 0).

We will shortly outline a construction motivated by the theory of Denjoy
domains, which was used in the proof of Theorem 17. First we will indicate the
significance of this result for fine potential theory.

Recall that, for nonnegative superharmonic functions on a Greenian domain
U , the Riesz decomposition says that the following conditions are equivalent:

(i) the only nonnegative harmonic minorant of u is 0;
(ii) the only nonnegative subharmonic minorant of u is 0;
(iii) there is a Borel measure μ on U such that u =

∫
GU (·, y)dμ(y).

The fine topology on Rn is the coarsest topology which renders all superharmonic
functions continuous. Fuglede and others have developed, since around 1970, an
elegant and powerful theory of finely harmonic and finely superharmonic functions
on fine domains (that is, finely connected, finely open sets), an account of which
may be found in [17]. The fine topology counterparts of conditions (ii) and (iii)
above were shown to be equivalent by Fuglede [18], and so either can be used as
the definition of a fine potential. Also, it is obvious that (ii) implies (i). However,
it has been a long-standing open question whether the fine topology counterparts
of conditions (i) and (ii) are actually equivalent. This question was first raised
by Fuglede in 1972 (see p. 105 of [17]), and further emphasized in [19]. We now
explain, using an argument from [19], how Theorem 17 leads to a negative answer
to this question.

Let U and u be as in Theorem 17. The set U0 = U∪{0} is then a fine domain.
Further, if we define u(0) = +∞, then u certainly satisfies the fine topology ana-
logue of the supermeanvalue property at 0, and so u is “finely superharmonic” on
U0. Any non-negative finely harmonic minorant v of u on U0 is actually harmonic
on the open set Ω (by Theorem 10.16 of [17]), so v = cu for some c ∈ [0, 1] by the
minimality of u on U . Since v(x0) is finite, we must have c = 0 and so v = 0. Thus
the fine topology version of Property (i) above holds. However, if u were the fine
potential of a measure μ on U0, then μ(U) = 0 by the harmonicity of u on U , and
we would be led to the contradictory conclusion that u is a multiple of GU (·, 0).
Thus the fine topology version of Property (iii) (equivalently, (ii)) fails to hold.

We now outline one approach to proving Theorem 17. Let B′ denote the
unit ball in Rn−1, and let V = B′ × R. We are going to exploit the translational
invariance of V and the thinness of V at infinity when n ≥ 4. (A more intricate
approach is required when n = 3: see [21].) Let α denote the square root of the
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first eigenvalue of −∑n−1
i=1 ∂

2/∂x2
i on B′, and φ be the corresponding eigenfunction

which satisfies φ(0) = 1. The function

h : (x′, xn) → φ(x′)eαxn

is then a minimal harmonic function on V that vanishes on ∂V . We extend h to be
a subharmonic function on all of Rn by defining h = 0 on Rn\V . Let Ṽ = Rn\V .
It is enough to establish the following.

Proposition 18. There is a minimal positive harmonic function u∗ on a domain
U∗ ⊃ Rn\∂V such that u∗ continuously vanishes on ∂U∗ and satisfies u∗ ≥ h,
u∗ = H Ṽ

u∗ (where u∗(∞) = 0) and

|x′|n−2
u∗(x′, 0) → +∞ as |x′| → ∞. (24)

Theorem 17 follows from this proposition using the Kelvin transform and
inversion in ∂B: the resulting minimal harmonic function u is defined on a domain
U which has 0 as an irregular boundary point, so u has a fine limit at 0 which
must be infinite, by (24). However, u cannot be a multiple of GU (·, 0) because of
its rapid growth along the xn-axis on approach to 0.

Next, using the symmetries of V , it is not difficult to see that (24) is equiva-
lent to ∫

∂V

u∗ dσ = ∞, (25)

where σ denotes surface area measure on ∂V . This guides our choice of U∗, as
follows. We fix β ∈ (0, 1/4) and define

Ak,β = {(x′, xn) ∈ ∂V :
∣∣xn − 2k

∣∣ < βe−α2k−1} (k ∈ N)

and U∗ = V ∪ Ṽ ∪(∪kAk,β). The point here is that, since h(x′, xn) ≈ (1−|x′|)eαxn

on V , if there is a harmonic function u∗ on U∗ such that u∗ ≥ h, then Harnack’s
inequalities will show that

u∗(x′, xn) ≥ C(n, β)e−α2k−1
eα2k

= C(n, β)eα2k−1
on Ak,β/2,

and so (25) automatically holds.
It therefore remains to show that there is a minimal harmonic function u∗

on U∗ such that u∗ vanishes on ∂U∗, u∗ ≥ h and u∗ = H Ṽ
u∗ . This is analogous to

Case (2) of Theorem 6, where there was a minimal harmonic function on Ω which
vanishes on E, majorizes x → x+

n |x|−n and equals its Poisson integral in H−.
The approach taken in [21] to showing this is as follows. We define the cylin-

drical annular sets

Wk = {(x′, xn) : ||x′| − 1| < e−α2k−1
and

∣∣xn − 2k
∣∣ < βe−α2k−1}

and, for any nonnegative continuous function f on Rn, the functions

Hjf =

{
H
∪j

1Wk

f on ∪j
1 Wk

f elsewhere
, H0f =

⎧⎨⎩
h+HV

f on V
H Ṽ

f on Ṽ
f on ∂V

.



Potential Theory in Denjoy Domains 165

(We always interpret f(∞) as 0.) Next we inductively define a sequence (sj) of
continuous functions on Rn by

s0 = h, s2j−1 = Hjssj−2, s2j = H0s2j−1.

It is not difficult to see, using the maximum principle, that each function sj is
subharmonic and the sequence is increasing. Less obvious is the fact that the
sequence converges on Rn: this has to be verified using appropriate estimates of
harmonic measure. Once this is done it can be checked that the limit function u∗

does indeed have all of the desired properties.
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Acad. Sci. Paris 149 (1909), 258–260.



166 S.J. Gardiner and T. Sjödin

[17] B. Fuglede, Finely harmonic functions. Lecture Notes in Math. 289, Springer, Berlin,
1972.
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Carathéodory Convergence of Immediate
Basins of Attraction to a Siegel Disk

Pavel Gumenyuk

Abstract. Let fn be a sequence of analytic functions in a domain U with a
common attracting fixed point z0. Suppose that fn converges to f0 uniformly
on each compact subset of U and that z0 is a Siegel point of f0. We establish
a sufficient condition for the immediate basins of attraction A∗(z0, fn, U)
to form a sequence that converges to the Siegel disk of f0 as to the kernel
w. r. t. z0. The same condition is shown to imply the convergence of the Kœnigs
functions associated with fn to that of f0. Our method allows us also to obtain
a kind of quantitative result for analytic one-parametric families.

Mathematics Subject Classification (2000). Primary 37F45; Secondary 30D05,
37F50.

Keywords. Iteration of analytic functions, Fatou set, Siegel disk, basin of at-
traction, convergence as to the kernel.

1. Introduction

1.1. Preliminaries

Let U be a domain on the Riemann sphere C and f : U → C a meromorphic
function. Define fn, the n-fold iterate of f , by the following relations: f1 : U → C,
f1 := f , fn+1 :

(
fn
)−1(U) → C, fn+1 := f ◦ fn, n ∈ N. It is convenient to define

f0 as the identity map of U . Denote

E(f, U) :=
⋂
n∈N

(
fn
)−1(U).

The Fatou set F(f, U) of the function f (w. r. t. the domain U) is the set of all
interior points z of E(f, U) such that {fn}n∈N is a normal family in some neigh-

This work is partially supported by the Research Council of Norway, the Russian Foundation for

Basic Research (grant #07-01-00120), and ESF Networking Programme “Harmonic and Complex
Analysis and its Applications”.
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bourhood of z. Define the Julia set J (f, U) of f (with respect to the domain U)
to be the complement U \ F(f, U) of the Fatou set.

Classically iteration of analytic (meromorphic) functions has been studied for
the case of U ∈

{
C,C,C∗ := C \ {0}

}
and f : U → U , see survey papers [1, 2]

for the details. As an extension the cases of transcendental meromorphic functions
and functions meromorphic in C except for a compact totally disconnected set
have been also investigated, see, e.g., [3, 4]. (Note that f(U) �⊂ U for these cases.)
In this paper we shall restrict ourselves by the following
Assumption. Suppose that U, f(U) ⊂ C, i.e., f is an analytic function in a subdo-
main U of C.

One of the basic problems in iteration theory of analytic functions is to study
how the limit behaviour of iterates changes as the function f is perturbed. A
large part of papers in this direction are devoted to the continuity property for
the dependence of the Fatou and Julia sets on the function to be iterated. We
mention the work of A. Douady [5], who investigates the mapping f → J (f,C)
from the class of polynomials of fixed degree to the set of nonempty plane com-
pacta equipped with the Hausdorff metric dH(X,Y ) := max{∂(X,Y ), ∂(Y,X)},
∂(X,Y ) := supx∈X dist(x, Y ). We also mention subsequent papers [6]–[11] dealing
with other classes of functions. Continuity of Julia sets is closely related to be-
haviour of connected components of the Fatou set containing periodic points. Now
we recall necessary definitions.

Let z0 ∈ U be a fixed point of f . The number λ := f ′(z0) is called the
multiplier of z0. According to the value of λ the fixed point z0 is said to be attracting
if |λ| < 1, neutral if |λ| = 1, and repelling if |λ| > 1. An attracting fixed point
is superattracting if λ = 0, or geometrically attracting otherwise. Suppose z0 is a
neutral fixed point of f and none of fn, n ∈ N, turns into the identity map; then
the fixed point z0 is parabolic if λ = e2πiα for some α ∈ Q, or irrationally neutral
otherwise. If an irrationally neutral fixed point belongs to F(f, U), then it is called
a Siegel point.

The component of the Fatou set F(f, U) that contains a fixed point z0 is
called the immediate basin of z0 and denoted by A∗(z0, f, U). The immediate basin
of a Siegel point is called a Siegel disk, and the immediate basin of an attracting
fixed point is called an immediate basin of attraction. It is a reasonable convention
to put by definition A∗(z0, f, U) := {z0} for fixed points z0 ∈ J (f, U), in particular
for repelling and parabolic ones.

By passing to a suitable iterate of f , the above definitions are naturally
extended to periodic points.

1.2. Main results

Consider a sequence {fn : U → C}n∈N of analytic functions with a common at-
tracting fixed point z0 ∈ U . Suppose that fn converges to f0 uniformly on each
compact subset of U . It follows easily from arguments of [5] that A∗(z0, fn, U) →
A∗(z0, f0, U) as to the kernel w. r. t. z0 provided z0 is an attracting or parabolic
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fixed point of the limit function f0. At the same time A∗(z0, fn, U) fails to con-
verge to A∗(z0, f0, U) in general if z0 is a Siegel point of f0 (see Example 1 in
Section 4). Similarly, the dependence of Julia sets on the function under iteration
fails to be continuous at f0 (with respect to the Hausdorff metric) if f0 has (gen-
erally speaking, periodic) Siegel points. Nevertheless, in the paper [12] devoted
to the continuity of Julia sets for one-parametric families of transcendental entire
functions H. Kriete established an assertion, which can be stated as follows.

Theorem A. Suppose f : C × C → C; (λ, z) → fλ(z) is an analytic family of
entire functions fλ(z) = λz + a2(λ)z2 + · · · and λ0 := e2πiα0 , where α0 ∈ R \ Q

is a Diophantine number. Let Δ be any Stolz angle at the point λ0 with respect
to the unit disk {λ : |λ| < 1}. Then A∗(0, fλ,C) → A∗(0, fλ0 ,C) as to the kernel
w. r. t. z0 when λ→ λ0, λ ∈ Δ.

Remark 1.1. It was proved by C. Siegel [13] that for a fixed point with multi-
plier e2πiα, α ∈ R \ Q, to be a Siegel point, it is sufficient that α be Diophantine.
This condition is not a necessary one even if restricted to the case of quadratic
polynomials f(z) := z2 +c, c ∈ C (see [14, Th. 6] and [15]). Furthermore, it is easy
to construct a nonlinear analytic germ with a Siegel point for any given α ∈ R\Q.

The Diophantine condition on α0 is substantially employed in [12], and in
view of the above remark it is interesting to find out whether this condition is
really essential in Theorem A. Another question to consider is the role of analytic
dependence of fλ on λ. A possible answer is the following statement improving
Theorem A.

Theorem 1.2. Let f0 : U → C be an analytic function with a Siegel point z0 ∈ U
and {fn : U → C}n∈N a sequence of analytic functions with an attracting fixed
point at z0. Suppose that fn converges to f0 uniformly on each compact subset
of U and the following conditions hold

(i)
∣∣ arg

(
1 − f ′n(z0)/f ′0(z0)

)∣∣ < Θ for some Θ < π/2 and all n ∈ N;
(ii) the functions

(
fn(z)−f0(z)

)
/
(
f ′n(z0)−f ′0(z0)

)
, n ∈ N, are uniformly bounded

on each compact subset of U .
Then A∗(z0, fn, U) converges to A∗(z0, f0, U) as to the kernel w. r. t. z0.

Condition (i) in this theorem requires that λn := f ′n(z0) tends to λ0 := f ′0(z0)
within a Stolz angle, condition (ii) appears instead of analytic dependence of fλ

on λ, and the Diophantine condition on α0 turns out to be unnecessary. Both
conditions (i) and (ii) are essential. We discuss this in Section 4.

Dynamics of iterates in the immediate basin of a fixed point can be described
by means of so-called Kœnigs function.

Let z0 be a fixed point of an analytic function f . The Kœnigs function ϕ
associated with the pair (z0, f) is a solution to the Schröder functional equation

ϕ
(
f(z)
)

= λϕ(z), λ := f ′(z0), (1.1)

analytic in a neighbourhood of z0 and subject to the normalization ϕ′(z0) = 1.
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It is known (see, e.g., [16, pp. 73–76, 116], [17]) that the Kœnigs function
exists, is unique, and can be analytically continued all over A∗(z0, f, U) provided
z0 is a geometrically attracting or Siegel fixed point. If the Kœnigs function is
known, then the iterates can be determined by means of the equality

ϕ
(
fn(z)

)
= λnϕ(z), λ := f ′(z0).

By ϕk, k ∈ N0 := N ∪ {0}, denote the Kœnigs function associated with the
pair (z0, fk). We prove the following

Theorem 1.3. Under the conditions of Theorem 1.2, the sequence ϕn converges
to ϕ0 uniformly on each compact subset of A∗(z0, f0, U).

The assertion of Theorem 1.3 should be understood in connection with Theo-
rem 1.2, because the uniform convergence of ϕn on a compact setK ⊂ A∗(z0, f0, U)
requires that K were in the range of definition of ϕn, i.e., in A∗(z0, fn, U), for all
n ∈ N apart from a finite number.

Assumption. Hereinafter it is convenient to assume without loss of generality
that z0 = 0, saving symbol z0 for other purposes.

For any a ∈ C and A ⊂ C let us use aA as the short variant of {az : z ∈ A}.
By D(ξ0, ρ) denote the disk {ξ : |ξ − ξ0| < ρ}, but reserve the notation D for the
unit disk D(0, 1).

Remark 1.4. The Kœnigs function ϕ0 associated with the Siegel point of f0 admits
another description (see, e.g., [16, p. 116], [17]) as the conformal mapping of the
Siegel disk A∗(0, f0, U) onto a Euclidean disk D(0, r) that satisfies the condition
ϕ0(0) = ϕ′0(0) − 1 = 0. From this viewpoint it will be convenient to consider
the conformal mapping ϕ, ϕ(0) = 0, ϕ′(0) > 0, of A∗(0, f0, U) onto the unit
disk D instead of the Kœnigs function ϕ0. Obviously, ϕ(z)/ϕ0(z) is constant, and
consequently, ϕ satisfies the Schröder equation (1.1) for f := f0. For shortness, S
will stand for A∗(0, f0, U). By ψ denote the inverse function to ϕ and let Sr :=
ψ(rD), Lr := ∂Sr for r ∈ [0, 1]. One of the consequences of the fact mentioned
above is that f0 is a conformal automorphism of S and Sr, r ∈ (0, 1).

During the preparation of this paper another proof of Theorems 1.2 and 1.3
given in [18, p. 3] became known to the author. However, our method allows
us also to establish an asymptotic estimate for the rate of covering level-lines of
the Siegel disk by basins of attraction for one-parametric analytic families. Let
f : W ×U → C; (λ, z) → fλ(z), where U � 0 and W are domains in C, be a family
of functions and α0 an irrational number satisfying the following conditions:

(i) fλ(z) depends analytically on both the variable z ∈ U and the parame-
ter λ ∈W ;

(ii) fλ(0) = 0 and f ′λ(0) = λ for all λ ∈ W ;
(iii) λ0 := exp(2πiα0) ∈ W and the function fλ0 has a Siegel point at z0 = 0,

with S := A∗(0, fλ0 , U) lying in U along with its boundary ∂S.
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Consider the continued faction expansion of α0 and denote the nth convergent
by pn/qn. (See, e.g., [19, 20] for a detailed exposition on continued factions.) For
x > 0 we set

n0(x) := min
{
n ∈ N :

2qnqn+1

qn + qn+1
≥ x

}
, �(x) := qn0(x).

Notation ϕ, ψ, S, and Sr will refer to the limit function fλ0 . Lemma 2.2 with a
slight modification can be used to prove the following statement.

Theorem 1.5. For any Stolz angle Δ at the point λ0 there exist a constant C > 0
and a function ε : (0, 1) → (0,+∞) such that for any r ∈ (0, 1) the following
statements are true:

(i) Sr ⊂ A∗(0, fλ, U) for all λ ∈ W ∩ Δ satisfying |λ− λ0| < ε(r);
(ii) ε(r) ≥ C(1 − r)3/�

(
(1 − r)−γ

)
,

where γ > γ0 := 1 + max
{
βψ(1), βψ(−1)

}
and βψ stands for the integral means

spectrum of the function ψ,

βψ(t) := lim sup
r→1−

log
∫ 2π

0
|ψ′(reiθ)|t dθ

− log(1 − r)
. (1.2)

It is known [21] that βψ(1) ≤ 0.46 and βψ(−1) ≤ 0.403 for any function ψ
bounded and univalent in D. Consequently, γ0 ≤ 1.46.

Theorem 1.5 has been published in [22]. We sketch its proof and specify the
function ε(r) explicitly in Section 3.

2. Proof of theorems

2.1. Lemmas

Denote λk := f ′k(0), k ∈ N0. Let us fix arbitrary n∗ ∈ N and consider the linear
family

fλ[n∗](z) := (1 − t)f0(z) + tfn∗(z), t :=
λ− λ0

λn∗ − λ0
, z ∈ U, λ ∈ C. (2.1)

The number n∗ will be not varied throughout the discussion in the present section.
So we shall not indicate dependence on n∗ until it is necessary. In particular we
shall often write fλ instead of fλ[n∗].

We need the following elementary statement on approximation of integrals
by quadrature sums (see, e.g., [23, pp. 55–62]).

Theorem B. Suppose φ is a continuously differentiable function on [0, 1]. Then for
any N ∈ N and any set of points x0, x1, . . . , xN−1 ∈ [0, 1] the following inequality
holds ∣∣∣∣∣∣

1∫
0

φ(x) dx − 1
N

N−1∑
n=0

φ(xn)

∣∣∣∣∣∣ < Q
(
x0, x1, . . . , xN−1

) 1∫
0

|φ′(x)| dx, (2.2)



172 P. Gumenyuk

where Q
(
x0, x1, . . . , xN−1

)
:= sup

x∈[0,1]

∣∣F (x;x0, x1, . . . , xN−1) − x
∣∣ and

F (x;x0, x1, . . . , xN−1) :=
1
N

N−1∑
n=0

θ(x− xn), θ(y) :=
{

1, if y > 0,
0, if y ≤ 0.

Remark 2.1. Consider the sequence xβ
n := {α0n + β}, where { · } stands for

fractional part, α0 is given by λ0 = e2πiα0 , and β is an arbitrary real number.
Denote

Qβ,N := Q
(
xβ

0 , x
β
1 , . . . , x

β
N−1

)
.

Since α0 ∈ R\Q, we have (see, e.g., [23, pp. 102–108]) Qβ,N → 0 as N → +∞.

Fix any r0 ∈ (0, 1). The following lemma allows us to determine ε∗ > 0 such
that Sr0 ⊂ A∗(0, fλ, U) whenever | arg(1− λ/λ0)| < Θ and |λ− λ0| < ε∗. In order
to state this assertion we need to introduce some notation.

Denote

k0(z) :=
z

(1 − z)2
, z ∈ D, kγ(z) := eiγk0(e−iγz), γ ∈ R,

u(z) :=
fn∗(z)− f0(z)
λn∗ − λ0

, H(ξ) := 1 +
ξψ′′(ξ)
ψ′(ξ)

,

J(t) :=
ξu′(ψ(ξ))ψ′(ξ) − u(ψ(ξ))H(λ0ξ)

λ0ξψ′(λ0ξ)
, ξ := r0e

2πit.

For τ ∈ (0,− log r0) and N ∈ N we put

QN := inf
β∈R

Qβ,N , aN := 2πQN

∫ 1

0

|J(t)| dt,

ΛN(τ, ε) :=
√

1 + 2b2 cos 2ϑ+ b4 − 1 + b2

2b cosϑ
, ε > 0,

where ϑ := Θ + arcsinaN , b := πεN(1 − aN )/(4τ),

εN(τ) :=
1 − kπ(r∗)/kπ(r∗)

sup
z∈Sr∗

|1 − fn∗(z)/f0(z)|
|λn∗ − λ0| , r∗ := r0e

τ(1−1/N), r∗ := r0e
τ .

Lemma 2.2. Let N ∈ N and τ ∈ (0,− log r0). If aN < sin(π/2−Θ), then fN
λ

(
Sr0

)
⊂

Sr0 for all λ such that
∣∣ arg(1 − λ/λ0)

∣∣ < Θ and |λ − λ0| < ε∗, where ε∗ :=
εN (τ) ΛN

(
τ, εN (τ)

)
.

Remark 2.3. In view of Montel’s criterion the inclusion fN
λ

(
Sr0

)
⊂ Sr0 in Lem-

ma 2.2 implies that Sr0 ⊂ A∗(0, fλ, U). We will use this simple fact without
reference.

Lemma 2.2 in a slightly different form has been proved in [22]. We state
its proof here for completeness of the discussion. The scheme of the proof is the
following. The main idea is to fix arbitrary z0 ∈ Lr0 and consider the function
sN (λ) = sN (z0, λ) := ϕ(fN

λ (z0)). The first step (Lemma 2.4) is to determine a
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neighbourhood of λ0 where sN is well defined, analytic and takes values from a
prescribed domain of the form {ξ : ρ1 < |ξ| < ρ2}. The next step (Lemma 2.5) is
to calculate the value of (∂/∂λ) log sN(λ) at λ = λ0, which turns out to be equal to

AN (z0) :=
s′N (λ0)
sN (λ0)

=
N−1∑
k=0

G
(
λk

0ϕ(z0)
)
,

where G is an analytic function in D. The concluding step is to use the equal-
ity
∫ 1

0 G
(
e2πitϕ(z0)

)
dt = 1/λ0 and Theorem B in order to estimate |AN (z0)|

and | argAN (z0)|. This allows us to employ a consequence of the Schwarz lemma
(Proposition 2.6) for proving that |sN (λ)| ≤ |ϕ(z0)| for any λ satisfying | arg(1 −
λ/λ0)| < Θ and |λ − λ0| < ε∗. Since z0 ∈ Lr0 is arbitrary, this means that
fN

λ

(
Sr0

)
⊂ Sr0 for all such values of λ.

Lemma 2.4. Under the conditions of Lemma 2.2, sN (z, λ) := ϕ
(
fN

λ (z)
)

is a well-
defined and analytic function for all z ∈ Sr0 and λ ∈ D(λ0, εN(τ)). Moreover, the
following inequality holds

r0e
−τ < |sN (z, λ)| < r0e

τ , z ∈ Lr0 , λ ∈ D(λ0, εN(τ)). (2.3)

Proof. Let us show that for any r1 ∈ (0, 1), r2 ∈ (r1, 1) the following inclusion
holds

B(z0, r1, r2) :=
{
z : |z − z0| < |z0|

(
1 − kπ(r1)/kπ(r2)

)}
⊂ Sr2 \ Sr3 , (2.4)

where z0 ∈ Lr1 and r3 := r21/r2. To this end we remark that for any z0 ∈ Lr1 the
domain Sr2 \ Sr3 contains all points z such that∣∣ log(z/z0)

∣∣ < log
(
kπ(r2)/kπ(r1)

)
(2.5)

for some of the branches of log. To make sure this statement is true it is sufficient
to employ the following estimate, see, e.g., [24, p. 117, inequal. (18)],∣∣∣∣log

zψ′(z)
ψ(z)

∣∣∣∣ ≤ log
1 + |z|
1 − |z| , z ∈ D, (2.6)

Owing to (2.6), for any rectifiable curve Γ ⊂ Sr2 \Sr3 that joins z0 with Lr2 or Lr3

we have∫
Γ

∣∣∣∣dzz
∣∣∣∣ = ∫

ϕ(Γ)

∣∣∣∣ψ′(ξ)ψ(ξ)

∣∣∣∣ |dξ| ≥ ∫
ϕ(Γ)

∣∣∣∣ψ′(ξ)ψ(ξ)

∣∣∣∣ d|ξ|
≥ min

⎧⎨⎩
r2∫

r1

(1 − r)dr
(1 + r) r

,

r1∫
r3

(1 − r)dr
(1 + r) r

⎫⎬⎭ = log
(
kπ(r2)/kπ(r1)

)
.

Using the inequality | log(1+ ξ)| ≤ − log(1−|ξ|), ξ ∈ D, we conclude that for
any z ∈ B(z0, r1, r2),∣∣ log

(
z/z0
)∣∣ = ∣∣ log

(
1 + (z − z0)/z0

)∣∣
≤ − log

(
1 − |z − z0|/|z0|

)
< log

(
kπ(r2)/kπ(r1)

)
,

i.e., all z ∈ B(z0, r1, r2) satisfy condition (2.5). Therefore inclusion (2.4) holds.
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Let r ∈ (0, e−τ/N). Set r′ := reτ/N and r′′ := re−τ/N . Consider an arbitrary
function h subject to the following conditions: h is analytic in S, h(0) = 0, and
|h(z)− z| < |z|

(
1 − kπ(r)/kπ(r′)

)
for all z ∈ Sr \ {0}.

Set r1 := |z0|, r2 := |z0|eτ/N for some z0 ∈ Sr \ {0}. Since kπ(x)/kπ(xeτ/N )
increases with x ∈ (0, r], the Schwarz lemma can be applied to the function h(z)−z
to conclude that h(z0) ∈ B(z0, r1, r2) for all z0 ∈ Sr \ {0}. Therefore (2.4) implies
the following inclusions

h(Sr) ⊂ Sr′ , h(Lr) ⊂ Sr′\Sr′′ . (2.7)

By considering the function
(
h(z) − z

)
/z with fλ0(w) substituted for z it is

easy to check that since the function fλ0 is an automorphism of Sr for any r ∈ (0, 1]
(see Remark 1.4), the above argument can be applied to h(z) := fλ(f−1

λ0
(z)) for all

λ ∈ D(λ0, εN (τ)) and r ∈ (0, r∗]. Thus (2.7) implies that for any λ ∈ D(λ0, εN(τ)),

fλ

(
Srj

)
⊂ Srj+1 , j = 0, 1, . . . , N − 1, (2.8)

fλ

(
Srj\Sr−j

)
⊂ Srj+1\Sr−(j+1) , j = 0, 1, . . . , N − 1, (2.9)

where rj := r0e
jτ/N , j = 0,±1, . . . ,±N . Applying (2.8) repeatedly, we see that

fN
λ (Sr0) ⊂ SrN . Similarly, (2.9) implies that fN

λ (Lr0) ⊂ SrN\Sr−N . The former
means that the function sN (z, λ) is well defined and analytic for all z ∈ Sr0 and
λ ∈ D(λ0, εN (τ)), while the latter means that inequality (2.3) holds for indicated
values of λ. This completes the proof of Lemma 2.4. �

Lemma 2.5. Under the conditions of Lemma 2.4, the following equality holds

AN (z0) :=
∂ log sN (z0, λ)

∂λ

∣∣∣∣
λ=λ0

=
N−1∑
k=0

G
(
λk

0ϕ(z0)
)
, z0 ∈ Lr0 , (2.10)

where

G(ξ) :=
u
(
ψ(ξ)
)

λ0ξψ′(λ0ξ)
.

Proof. Consider the following function of n+ 1 independent variables

gn(z;λ1, . . . , λn) :=
{ (

fλn ◦ · · · ◦ fλ1

)
(z), n ∈ N,

z, n = 0.

Note that

AN (z0) =
ϕ′
(
fN

λ0
(z0)
)

sN (z0, λ0)
· ∂gN(z0;λ, . . . , λ)

∂λ

∣∣∣∣
λ=λ0

and

∂gN(z0;λ, . . . , λ)
∂λ

∣∣∣∣
λ=λ0

=
N−1∑
k=0

g′N,k+1(z0;λ0, . . . , λ0),

where g′n,j stands for (∂/∂λj)gn. Using the equality

gN(z;λ1, . . . , λn) = gN−j

(
fλj

(
gj−1(z;λ1, . . . , λj−1)

)
;λj+1, . . . , λN

)
,
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we get
g′N,k+1(z0;λ0, . . . , λ0) =

(
fN−k−1

λ0

)′(
fk+1

λ0
(z0)
)
· u
(
fk

λ0
(z0)
)
.

Schröder equation (1.1) for f := fλ0 allows us to express f j
λ0

and
(
f j

λ0

)′ in terms
of ϕ and ψ. Denoting zj := f j

λ0
(z0), j ∈ N0, we obtain

g′N,k+1(z0;λ0, . . . , λ0) = λN−k−1
0 ψ′

(
λN−k−1

0 ϕ(zk+1)
)
ϕ′(zk+1)u(zk)

= λN−k−1
0 ψ′

(
λN−k−1

0 ϕ(zk+1)
) u(zk)
ψ′
(
ϕ(zk+1)

)
= λN−k−1

0 ψ′
(
λN

0 ϕ(z0)
) u(ψ(λk

0ϕ(z0)
))

ψ′
(
λk+1

0 ϕ(z0)
) .

In the same way, we get

ϕ′
(
fN

λ0
(z0)
)

sN (z0, λ0)
=

1
ψ′
(
λN

0 ϕ(z0)
)
λN

0 ϕ(z0)
.

Now one can combine the obtained equalities to deduce (2.10). �

Proposition 2.6. Let τ > 0 and Θ ∈ (0, π/2). If a function v(ς) is analytic in D

and satisfies the following inequalities

|v(0)|e−τ < |v(ς)| < |v(0)|eτ , ς ∈ D, (2.11)

ϑ :=
∣∣ arg{v′(0)/v(0)}

∣∣+ Θ < π/2,
then the modulus of t := πv′(0)/(4τv(0)) does not exceed 1 and the following
inequality holds

|v(ς)| ≥ |v(0)|, ς ∈ Ξ(ρ0), (2.12)
where Ξ(ρ) stands for the circular sector {ς : |)m ς| ≤ |ς| sinΘ ≤ ρ sin Θ} and
ρ0 :=

√
γ2 + 1 − γ, γ := (1 − |t|2)/(2|t| cosϑ).

Proof. Replacing v(ς) with v(ς)/v(0), we can suppose that v(0) = 1. The multi-
valued function

φ(ξ) := h

(
exp
(
iπ log ξ

2τ

))
, h(z) := −i z − 1

z + 1
,

maps the annulus {ξ : e−τ < |ξ| < eτ} conformally onto D (in the sense of [24,
p. 248]) and satisfies the conditions φ(1) = 0, φ′(1) > 0. Since the composition
f := φ ◦ v can be continued analytically along every path in D, it defines an
analytic function f : D → D, f(0) = 0. By the Schwarz lemma, |f ′(0)| ≤ 1. Since
f ′(0) = φ′(1)v′(0) = πv′(0)/(4τ) = t, the first part of Proposition 2.6 is proved.
To prove the remaining part we note that (2.12) is equivalent to the inequality
*e f(ς) ≥ 0. Applying the invariant form of the Schwarz lemma to f(z)/z, we
obtain ∣∣∣∣∣f(ς)− f ′(0)ς

ς − f ′(0)f(ς)

∣∣∣∣∣ ≤ |ς|, ς ∈ D,
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It follows that f(ς) lies in the closed disk of radius R := |ς|2(1 − |t|2)/(1− |tς|2)
centred at σ0 := tς(1 − |ς|2)/(1 − |tς|2). Therefore for the inequality *e f(ς) ≥ 0
to be satisfied, it is sufficient that *eσ0 ≥ R. An easy calculation leads to the
following condition

cos(arg t+ arg ς) ≥ |ς|(1 − |t|2)
|t|(1 − |ς|2) ,

which is satisfied for all points of the arc

l(ρ) := {ς : |)m ς| ≤ |ς| sin Θ = ρ sinΘ}, ρ ∈ (0, 1),

provided

cosϑ ≥ ρ(1 − |t|2)
|t|(1 − ρ2)

. (2.13)

The right-hand of (2.13) increases with ρ ∈ (0, 1) and ρ := ρ0 satisfies (2.13).
Therefore inequality (2.12) holds for all ς ∈ ⋃ρ∈[0,ρ0]

l(ρ) = Ξ(ρ0). This completes
the proof of Proposition 2.6. �

Proof of Lemma 2.2. Consider the function sN (z, λ) introduced in Lemma 2.4.
This lemma states that sN (z, λ) is well defined and analytic for all z ∈ Sr0 and λ ∈
D(λ0, εN (τ)) and satisfies inequality (2.3). According to Remark 1.4, fλ0

(
Lr

)
= Lr

for all r ∈ [0, 1). Consequently |sN (z, λ0)| = |ϕ(z)|, z ∈ S. Therefore for any
z0 ∈ Lr0 the function v(ς) := 1/sN

(
z0, λ0(1 − εN (τ)ς)

)
is analytic in D and

satisfies inequality (2.11).
Let us employ now Proposition 2.6. To this end we compute the logarithmic

derivative of v(ς) at ς = 0. By Lemma 2.5,

v′(0)
v(0)

= λ0εN (τ)AN (z0) = λ0εN (τ)
N−1∑
k=0

G
(
λk

0ϕ(z0)
)
.

Consider the sum EN :=
∑N−1

k=0 G(λk
0ϕ(z0))/N . It can be regarded as an

approximate value of the integral E∗ :=
∫ 1

0
G
(
r0e

2πi(t+t0)
)
dt, where t0 ∈ R is an

arbitrary number, which does not affect E∗:

E∗ =
1

2πi

∫
|ξ|=r0

G(ξ)
ξ

dξ = R e s
ξ=0

G(ξ)
ξ

= G(0) =
1
λ0
.

Applying Theorem B to the points xn := xβ
n, β := (argϕ(z0))/(2π) − t0, and the

function φ(t) := G
(
r0e

2πi(t+t0)
)
, we get the following estimate

|EN − E∗| < Qβ,N

∫ 1

0

∣∣(d/dt)G(r0e2πi(t+t0)
)∣∣ dt.

Since t0 ∈ R is arbitrary real, we have

|EN − E∗| ≤ QN

∫ 1

0

∣∣(d/dt)G(r0e2πi(t+t0)
)∣∣ dt. (2.14)
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The function under the sign
∫ 1

0
| · |dt is

dG
(
r0e

2πi(t+t0)
)

dt
= 2πi ξG′(ξ) = 2πi J(t+ t0), ξ := r0e

2πi(t+t0).

From (2.14) it follows that∣∣∣∣∣ 1N ·
N−1∑
k=0

G(λk
0ϕ(z0)) −

1
λ0

∣∣∣∣∣ ≤ aN ,

and hence, ∣∣∣∣ 1N · v
′(0)
v(0)

− εN (τ)
∣∣∣∣ ≤ aNεN (τ). (2.15)

Since by condition 0 ≤ aN < 1, inequality (2.15) implies that∣∣∣∣v′(0)
v(0)

∣∣∣∣ ≥ N(1 − aN )εN (τ), (2.16)∣∣∣∣arg
v′(0)
v(0)

∣∣∣∣ ≤ arcsinaN . (2.17)

Now if we recall that validity of (2.11) has been already verified and take
into account (2.16), (2.17), we see that the conditions of Proposition 2.6 are sat-
isfied. Therefore, by elementary reasoning we see that (2.12) holds for all ς ∈
Ξ
(
ΛN

(
τ, εN (τ)

))
. In terms of sN this means that

|sN (z0, λ)| ≤ |sN (z0, λ0)| = r0, λ ∈ Ξ0, (2.18)

where
Ξ0 :=

{
λ :
∣∣λ− λ0

∣∣ < ε∗,
∣∣ arg(1− λ/λ0)

∣∣ < Θ
}
.

Since z0 ∈ Lr0 = ∂Sr0 is arbitrary in the above arguments, by the maximum
modulus theorem, inequality (2.18) implies that |ϕ(fN

λ (z))| < r0 for all z ∈ Sr0

and λ ∈ Ξ0. Therefore for indicated values of λ we have fN
λ

(
Sr0

)
⊂ Sr0 . This

completes the proof of Lemma 2.2. �

2.2. Proof of Theorem 1.2

Suppose that the sequence {fn}n∈N satisfies the conditions of Theorem 1.2. Then
every subsequence of fn also meets these conditions. So we have only to prove that
S := A∗(0, f0, U) is the kernel of the sequence An := A∗(0, f0, U), that is:

(i) any compact set K ⊂ S lies in all but a finite number of An’s;
(ii) S is the largest domain that contains z = 0 and satisfies condition (i).

Now we employ Lemma 2.2 in order to prove (i). To this end we should fix
any r0 ∈ (0, 1) such that Sr0 ⊃ K, specify appropriate values of N and τ , and
trace the dependence on the choice of n∗. As a result we would prove that

ε0∗ := inf
n∗∈N

ε∗ > 0. (2.19)

Since λn → λ0 as n→ +∞, (2.19) would imply that K ⊂ Sr0 ⊂ A∗(z0, fn, U) for
all n ∈ N large enough.
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Set τ := (1 + r0)/(2r0). In view of condition (ii) of Theorem 1.2,

L := sup
n∗∈N

(∫ 1

0

|J(t)| dt
)
< +∞.

Since by Remark 2.1, QN → 0 as N → +∞, there exists N ∈ N such that

QN <
sin (π/4 −Θ/2)

2πL
.

Fix any such value of N . Then aN < sin(π/4 − Θ/2) < sin(π/2 − Θ). Hence
Lemma (2.2) is applicable to the specified values of N and τ .

Let us estimate ε∗ from below. In view of condition (ii) of Theorem 1.2,

ε0 := inf
n∗∈N

εN(τ) > 0.

Denote b := πεN (τ)N(1 − aN )/(4τ), b1 := min{1, b}.
Since ϑ = Θ + arcsinaN < π/4 + Θ/2 < π/2, we have

ΛN

(
τ, εN(τ)

)
≥
√

1 + 2b21 cos 2ϑ+ b41 − 1 + b21
2b1 cosϑ

≥
√

1 + 2b21 cos 2ϑ+ (b21 cos 2ϑ)2 − 1 + b21
2b1 cosϑ

> b1 cosϑ > b1 cos(π/4 + Θ/2)

≥ cos(π/4 + Θ/2)min

{
1,
πε0N

(
1 − sin(π/4 −Θ/2)

)
4τ

}
=: C0.

The constant C0 is positive and does not depend on n∗. From the inequality
ε∗ > ε0C0 it follows that (2.19) takes place. This proves assertion (i).

To prove (ii) let us assume the converse. Then there exists a domain S′ �⊂ S,
0 ∈ S′, satisfying (i). Let z0 ∈ S′ \ S and Γ ⊂ S′ be a curve that joins points
z = 0 and z0. Consider any domain D such that Γ ⊂ D and K := D ⊂ S′. By the
assumption, K ⊂ An for all n large enough. Now we claim that

D ⊂ E(f0, U). (2.20)

Consider an arbitrary ζ0 ∈ D. Suppose that ζ0 �∈ E(f0, U). Then there exists
j0 ∈ N such that f j0

0 is well defined (and so analytic) in some domain D0 � ζ0,
D0 ⊂ D, with f j

0 (ζ0) ∈ U , j < j0, but f j0
0 (ζ0) �∈ U . Since the sequence fn converges

to f0 uniformly on each compact subset of U , the sequence f j0
n converges to f j0

0

uniformly on each compact subset of D0. According to Hurwitz’s theorem, this
means that f j0

n (D0) �⊂ U for all n ∈ N large enough. Consequently, D �⊂ E(fn, U)
for large n. At the same time, K = D ⊂ An ⊂ E(fn, U) for all n large enough.
This contradiction proves (2.20).
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The remaining part of the proof depends on the properties of the domain U .
Since U ⊂ C, we have three possibilities:

(Hyp) The domain U is hyperbolic. Then by Montel’s criterion,F(f0, U) coincides
with the interior of E(f0, U). Since D � 0 is connected, we conclude that
z0 ∈ Γ ⊂ D ⊂ S. With this fact contradicting the assumption, the proof
of (ii) for the hyperbolic case is completed.

(Euc) The domain U coincides with C. The functions fn, n ∈ N0, are entire
functions.

(Cyl) The domain U is the complex plane punctured at one point.

Let us prove (ii) for case (Euc). Since Γ∩∂S �= ∅ and ∂S ⊂ J (f0,C), we have
D∩J (f0,C) �= ∅. The classical result proved for entire functions by I.N. Baker [25]
asserts that the Julia set coincides with the closure of the set of all repelling
periodic points. Therefore,D contains a periodic point of f0 different from 0. Owing
to Hurwitz’s theorem, the same is true for fn provided n is large enough. This leads
to a contradiction, because the immediate basin of attraction A∗(0, fn, U) contains
no periodic points except for the fixed point z = 0. Assertion (ii) is now proved
for case (Euc).

It remains to consider case (Cyl). Similarly to case (Euc), we need only to
show that D \ {0} contains a periodic point. By means of linear transformations
we can assume that U = C \ {1}. From (2.20) it follows that functions

φn(z) :=
fn
0 (z)− z

fn
0 (z) − 1

, n ∈ N,

does not assume values 1 and ∞ in D. Since D∩J (f0, U) �= ∅, the family {ϕn}n∈N

is not normal inD. Hence, due to Montel’s criterion, there exists z1 ∈ D and n0 ∈ N

such that φn0(z1) = 0 and so z1 ∈ D is a periodic point of f0. This completes the
proof of (ii) for case (Cyl).

By now (i) and (ii) are shown to be true. Theorem 1.2 is proved. �

2.3. Proof of Theorem 1.3

Fix any r0 ∈ (0, 1). As in the proof of Theorem 1.2 one can make use of Lemma 2.2
to show that there exist n1, N ∈ N such that fN

n (Sr0) ⊂ Sr0 for all n > n1. By
Remark 1.4 the function ϕ0 maps S conformally onto a Euclidian disk centred
at the origin. It is convenient to rescale the dynamic variable, by replacing fk,
k ∈ N0, with rfk(z/r) for some constant r > 0, so that ϕ0(S) = D (or equivalently
ϕ0 = ϕ). Then the functions gn(ζ) := (1/r0)

(
ϕ0 ◦ fN

n ◦ ϕ−1
0

)
(r0ζ), n > n1, are

defined and analytic in D. Furthermore, gn(0) = 0 and gn(D) ⊂ D for any n > n1.
Let us observe that for any analytic function f with a geometrically attracting
or Siegel fixed point z0 the Kœnigs function ϕ associated with the pair (z0, f) is
the same as that of the pair (z0, fN ). Hence it is easy to see that the function
φn(ζ) := ϕn

(
ϕ−1

0 (r0ζ)
)
/r0 is the Kœnigs function associated with (0, gn). Since

S = ϕ−1
0 (D) and r0 ∈ (0, 1) is arbitrary, it suffices to prove that φn(ζ) → ζ as

n→ +∞ uniformly on each compact subset of D.
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According to Remark 1.4, the function f0 is a conformal automorphism of S.
Therefore, with fn converging to f0 uniformly on each compact subset of U ⊃ S,
there exists n2 ≥ n1 such that for all n > n2 functions fN

n and consequently gn are
univalent in Sr0 and in D, respectively. It follows (see, e.g., [26]) that φn, n > n2,
are also univalent in D. The convergence of fn to f0 implies also that gn converges
to g0, g0(ζ) := λN

0 ζ, uniformly on each compact subset of D.
We claim that there exists a sequence

{
rn ∈ (0, 1)

}
n∈N

converging to 1 such
that for all n > n2 the domain φn(rnD) is contained in some disk {ξ : |ξ| < Rn}
that lies in φn(D). Owing to the Carathéodory convergence theorem and normality
of the family {φn : n ∈ N, n > n2}, this statement would imply convergence of
the sequence φn to the identity map and hence the proof of Theorem 1.3 would
be completed.

By p/q and p′/q′ let us denote some successive convergents of the number
αn :=

(
arg g′n(0)

)
/(2π) = (argλN

n )/(2π) (regardless of whether αn is irrational or
not). Put Ωn := φn(D), κn := − log |g′n(0)| = −N log |λn|, an := κn(q − 1),
and bn := π(1/q + 2/q′). Consider a point ζ0 ∈ D and make use of the following
inequality (see, e.g., [24, p. 117, inequal. (18)]) from the theory of univalent function∣∣∣∣log

ζφ′n(ζ)
φn(ζ)

∣∣∣∣ ≤ log
1 + |ζ|
1 − |ζ| , ζ ∈ D,

to obtain ∫
Γ

∣∣∣∣dww
∣∣∣∣ ≥ − log

(
4kπ(|ζ0|)

)
, kπ(z) :=

z

(1 + z)2
, z ∈ D, (2.21)

where Γ is any rectifiable curve that joins ξ0 := φn(ζ0) with ∂Ωn and lies in Ωn

except for one of the endpoints. The equality in (2.21) can occur only if φn is a
rotation of the Koebe function k0(z) := z/(1− z)2 and Γ is a segment of a radial
half-line. It follows that Ωn contains the annular sector

Σ :=
{
ξ0e

x+iy : |x| ≤ an, |x| ≤ bn, x, y ∈ R
}

provided |ζ0| ≤ rn := k−1
π

(
(1/4) exp(−

√
a2

n + b2n)
)
. Moreover, Ωn is invariant

under the map ζ → λN
n ζ. Indeed,

λN
n ζ = λN

n φn

(
φ−1

n (ζ)
)

= φn

(
gn

(
φ−1

n (ζ)
))

∈ Ωn

for all ζ ∈ Ωn. Denote

Σ0 :=
{
ξ0e

x+iy : |x| ≤ π/q, |x| ≤ bn, x, y ∈ R
}
, λ∗ := e−κ+2πip/q.

Since p and q are coprime integers, the union of the annular sectors λj
∗Σ0, j =

0, 1, . . . , q− 1, contains the circle ξ0T, T := ∂D. The inequality from the theory of
continued fractions |αn − p/q| ≤ 1/(qq′) implies that

λj
∗Σ0 ⊂

(
λN

n

)jΣ, j = 0, 1, . . . , q − 1.

Therefore, for any ξ0 ∈ φn(rnD) the domain Ωn contains the circle ξ0T. It
follows that φn(rnD) is a subset of some disk {ξ : |ξ| < Rn} contained in Ωn.
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It remains to choose the successive convergents p/q and p′/q′ of αn in such a
way that rn → 1 as n→ +∞. To this end we fix some successive convergents p/q
and p′/q′ of α∗ := (argλN

0 )/(2π) and note that p/q and p′/q′ are also successive
convergents of αn provided n is large enough, because αn → α∗ as n → +∞.
Using the fact that κn → 0 as n→ +∞ and that the denominators of convergents
of the irrational number α∗ forms unbounded increasing sequence, we see that
it is possible to choose p/q for each n in such a way that

√
a2

n + b2n → 0 and,
consequently, rn → 1 as n → +∞. The proof of Theorem 1.3 is now completed.

�

3. Proof of Theorem 1.5

In this section we sketch the proof of Theorem 1.5. First of all we note that the
proof of Lemma 2.2 does not use the fact that the dependence of fλ[n∗] (see
equation (2.1)) on the parameter λ is linear. So Lemma 2.2 can be applied to
any analytic family fλ satisfying conditions (i)–(iii) on page 170, provided some
notations are modified to a new (more general) setting. First of all we have to
redefine u(z) := ∂fλ(z)/∂λ|λ=λ0

. Then fix any r ∈ (0, 1) and consider the modulus
of continuity for the family hλ := fλ/fλ0 calculated at λ = λ0,

ωr(δ) := sup
{∣∣1 − fλ(z)/fλ0(z)

∣∣ : z ∈ Sr, λ ∈W ∩ D(λ0, δ)
}
, δ > 0.

This quantity, as a function of δ, is defined, continuous, and increasing on the
interval I∗ := (0, δ∗), δ∗ := dist(λ0, ∂W ), with limδ→+0 ωr(δ) = 0. Therefore there
exists an inverse function ω−1

r : (0, ε∗) → (0,+∞), where ε∗ := limδ→δ∗−0 ωr(δ).
If ε∗ �= +∞, then we set ω−1

r (ε) := δ∗ for all ε ≥ ε∗. Now we can redefine εN (τ) as

εN (τ) := ω−1
r∗

(
1 − kπ(r∗)/kπ(r∗)

)
, r∗ := r0e

τ(1−1/N), r∗ := r0e
τ .

Finally, define Θ to be equal to the half-angle of Δ. To apply Lemma 2.2 we need
the following

Proposition 3.1. For any n ∈ N the following inequality holds

Qqn < (1/qn + 1/qn+1)/2. (3.1)

Proof. Fix n ∈ N. Due to the inequality |α0 − pn/qn| < 1/(qnqn+1) there exists
γ ∈ (0, 1/qn+1) such that

|α0 − pn/qn| < γ/qn. (3.2)
Let β0 :=

(
1/q− (−1)nγ

)
/2. Taking into account that pn and qn are coprime inte-

gers one can deduce by means of the inequalities γ < 1/qn+1 < 1/qn, (−1)n(α0 −
pn/qn) > 0, and (3.2) that

Qβ0,qn < (1/qn + 1/qn+1)/2. (3.3)

This proves the proposition. �
Now let us show how Theorem 1.5 can be proved. Fix r0 ∈ (0, 1). Define ε(r0)

in the following way.
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According to Proposition 3.1, 0 < aN < sin
(
π/4 − θ/2

)
for

N := �
(

2π
∫ 1

0

∣∣J(t)
∣∣ dt/ sin

(
π/4− θ/2

))
, τ := log

1 + 2r0
3r0

.

Hence, Lemma 2.2 can be used with the specified values of N and τ . Therefore,
we can set ε(r0) := ε∗, so that statement (i) in Theorem 1.5 becomes true. Let us
show that statement (ii) of this theorem is also true, assuming that r0 is sufficiently
close to 1.

Since S ⊂ U there exists C1 > 0 such that∣∣∣∣1 − fλ(ψ(ξ))
fλ0(ψ(ξ))

∣∣∣∣ < C1|λ− λ0|

for all ξ ∈ D and λ ∈ D(λ0, ε
0), where ε0 > 0 is chosen so that D(λ0, ε0) ⊂ W .

It follows that ω−1
r (s) ≥ min

{
ε0, s/C1

}
, for all s > 0, r ∈ (0, 1). Elementary

calculations show that

1 − kπ(r∗)
kπ(r∗)

≥ 1 − exp
(
− τ(1 − r∗)
N(1 + r∗)

)
≥ C2

(1 − r0)2

N

for some constant C2 > 0. Combining these two inequalities we obtain εN(τ) ≥
C3(1 − r0)2/N , where C3 := C2/C1. Now we estimate ΛN (τ, εN (τ)) in the same
way as in the proof of Theorem 1.2 to conclude that ε∗ ≥ C(1 − r0)3/N for some
constant C > 0. To complete the proof we use the following inequalities (see,
e.g., [24, p. 52]): ∣∣∣∣ξψ′′(ξ)ψ′(ξ)

− 2r2

1 − r2

∣∣∣∣ ≤ 4r
1 − r2

, 0 ≤ r = |ξ| < 1,∣∣∣∣ψ′(ξ)ψ′(0)

∣∣∣∣ ≥ 1 − r

(1 + r)3
, 0 ≤ r = |ξ| < 1,

which imply that N ≤ �
(
(1 − r0)−γ

)
for all r0 < 1 sufficiently close to 1. �

4. Essentiality of conditions in Theorem 1.2

In this section we show that conditions (i) and (ii) in Theorem 1.2 are essential.
As for condition (i) this can be regarded as a consequence of lower semi-continuity
of the Julia set.

Example 1. Consider the family fλ(z) := λz + z2 in the whole complex plane
(U := C). The map λ → J (fλ,C) is lower semi-continuous [5], i.e.,

J (fλ∗ ,C) ⊂
⋂
ε>0

⋃
δ>0

⋂
|λ−λ∗|<δ

Oε

(
J (fλ,C)

)
for any λ∗ ∈ C,

where Oε(·) stands for the ε-neighbourhood of a set. Let λ0 := e2πiα0 , α0 ∈ R\Q,
and αn ∈ Q converge to α0 as n → +∞. The point z0 := 0 is a parabolic fixed
point of fλ0

n
, λ0

n := exp(2πiαn), and so 0 ∈ J (fλ0
n
,C). Due to lower semi-continuity

of λ → J (fλ,C) at the points λ0
n, there exists a sequence {μn ∈ (0, 1)}n∈N such
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that D(0, 1/n)∩J (fλn ,C) �= ∅, λn := μnλ
0
n, n ∈ N. It follows that A∗(0, fλn ,C) →

{0} as to the kernel. Assume that fλ0 , λ0 := exp(2πiα0), has a Siegel point at
z0 = 0. This is the case if α0 is a Brjuno number ([14, Th. 6], see also [15]). The
sequence fn := fλn satisfies all conditions of Theorem 1.2 except for condition (i),
but the conclusion of Theorem 1.2 fails to be true. Therefore condition (i) is an
essential one.

It is known [27, p. 44] that condition (ii) can be omitted in Theorem 1.2 pro-
vided that the multiplier of the Siegel fixed point λ0 := f ′0(z0) equals to exp(2πiα0)
for some Brjuno number α0. However, if no such assumptions concerning α0 are
made, condition (ii) cannot be omitted. This fact is demonstrated by the following

Example 2. Let α0 be an irrational real number. By qn denote the denominator
of the nth convergent of α0. Consider the sequence of polynomials

fn(z) :=
λ0

(
z + zqn+1

)
1 + 1/2qn

, λ0 := e2πiα0 ,

converging to f0(z) = λ0z uniformly on each compact subset of D.
We claim that the sequence of domains A∗(0, fn,D) does not converge to

A∗(0, f0,D) = D as to the kernel, provided the growth of qn is sufficiently rapid.
Assume the converse. Then for all n ∈ N large enough, say for n > n0, the
inclusion D48 ⊂ A∗(0, fn,D) holds, where Dj := j/(j + 1)D, j ∈ N. It follows
that fm

n (D48) ⊂ D for all n > n0, n ∈ N, and m ∈ N. Hence the family Φ :=
{fm

n }n>n0, n,m∈N0 is normal in the disk D48. In particular, there exist constants
C1 > 1, C2 > 0 such that∣∣(fm

n )′ (z)
∣∣ < C1, z ∈ D8, n > n0, n,m ∈ N0, (4.1)∣∣(fm

n )′′ (z)
∣∣ < C2, z ∈ D8, n > n0, n,m ∈ N0. (4.2)

Furthermore, by the Schwarz lemma,

fm
n (D4) ⊂ D5, f

m
n (D6) ⊂ D7 n > n0, n,m ∈ N0, (4.3)

Consider functions gn := f qn
n , g̃n := f̃ qn

n ,

f̃n(z) :=
exp (2πipn/qn)

1 + 1/2qn

(
z + zqn+1

)
, z ∈ D, n > n0, n ∈ N,

where pn stands for the numerator of the nth convergent of α0. Apply the following
inequality∣∣f̃n(z)− fn(z)

∣∣ = ∣∣fn(z)
∣∣ · ∣∣λ0 − exp (2πipn/qn)

∣∣
≤ 4π

∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 4π
qnqn+1

, z ∈ D, (4.4)

to prove that ∣∣g̃n(z)− gn(z)
∣∣ < 4πC1

qn+1
, z ∈ D4, (4.5)

for all n ∈ N large enough.
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Since qn → +∞ as n→ +∞, there exists n1 ∈ N, n1 ≥ n0, such that
4π

qnqn+1
<

1
72

and
4πC1

qn+1
<

1
42
, n > n1, n ∈ N.

We shall show that for all n > n1, n ∈ N, and k = 1, 2, . . . , qn − 1 the following
implication holds (

P (j), j = 1, 2, . . . , k
)

=⇒ P (k + 1), (4.6)

where

P (j) :
[ ∣∣f̃ j−1

n (z)
∣∣ < 1, z ∈ D4, and∣∣f̃ j

n(z)− f j
n(z)
∣∣ < 4jπC1

qnqn+1
, z ∈ D4.

]
(4.7)

Now let n > n1 and P (j) take place for all j = 1, 2, . . . , k. Relations (4.3),
(4.4), and (4.7) imply the following inclusions

f̃n(D6) ⊂ D8, f̃ j
n(D4) ⊂ D6, j = 1, 2, . . . , k. (4.8)

For j := k the latter guarantees that |f̃k
n(z)| < 1, z ∈ D4. Fix any z ∈ D4 and de-

note wj := f̃ j
n(z), ξ̃j := f̃n(wj), ξj := fn(wj). According to (4.3) and (4.8), we have

wj ∈ D6, ξ̃j , ξj ∈ D8, j = 1, 2, . . . , k. Taking this into account, from (4.1) and (4.4),
we get the following inequality∣∣∣f̃k+1

n (z)− fk+1
n (z)

∣∣∣ ≤ k∑
j=0

∣∣∣(fk−j
n ◦ f̃ j+1

n

)
(z) −

(
fk−j+1

n ◦ f̃ j
n

)
(z)
∣∣∣

=
k∑

j=0

∣∣∣(fk−j
n ◦ f̃n

)
(wj) −

(
fk−j

n ◦ fn

)
(wj)
∣∣∣

=
k∑

j=0

∣∣∣fk−j
n (ξ̃j) − fk−j

n (ξj)
∣∣∣ < k∑

j=0

C1|ξ̃j − ξj | ≤
4(k + 1)πC1

qnqn+1
.

Therefore, (4.7) holds also for j := k + 1. This proves implication (4.6).
For j := 1 inequality (4.7) follows from (4.4). Hence P (1) is valid. Owing

to (4.6), P (1) implies P (qn). Therefore, inequality (4.5) holds for all n > n1.
The functions g̃n have the fixed point z̃∗ := 1/2. Now we apply (4.5) to show

that if
qn+1 ≥ 2qn , n ∈ N, (4.9)

then for any sufficiently large n ∈ N the function gn has also a fixed point z∗ ∈
D3 \ {0}. Straightforward calculation gives

g̃′n(z̃∗) = ln :=
(

1 + (qn + 1)/2qn

1 + 1/2qn

)qn

> 1.

From (4.2), (4.5), and the Cauchy integral formula it follows that

|g̃′′n(z)| < C3 := C2 + 51200πC1/qn+1, z ∈ D3, n > n1.
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Now we assume that n ∈ N is large enough and apply Rouché’s theorem to the
functions g̃n(z) − z and gn(z) − z in the disk Bn :=

{
z : |z − 1/2| < ρn

}
, where

ρn := (ln − 1)/(2C3). Since Bn ⊂ D3, we have

*e
d

dz

(
g̃n(z)− z

)
>
ln − 1

2
, z ∈ Bn.

It follows that

|g̃n(z)− z| ≥ (ln − 1)ρn

2
, z ∈ ∂Bn. (4.10)

Inequalities (4.5), (4.9), and (4.10) imply that |g̃n(z)−z| > |g̃n(z)−gn(z)| for
all z ∈ ∂Bn. Consequently, gn(z)− z vanishes at some point z∗ ∈ Bn. At the same
time, the immediate basin A∗(0, fn,D) contains no periodic points of fn except
for the fixed point at z0 = 0. Therefore, D3 �⊂ A∗(0, fn,D) for large n. This fact
implies that the sequence A∗(0, fn,D) does not converge to D as to the kernel.

It is easy to see that the prescribed sequence fn satisfies all conditions of
Theorem 1.2 with U := D except for condition (ii), but the conclusion fails to
hold. This shows that (ii) is also an essential condition in Theorem 1.2.
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Rings and Lipschitz Continuity of
Quasiconformal Mappings

Vladimir Gutlyanskĭı and Anatoly Golberg

Abstract. Sufficient conditions which guarantee Lipschitz’s and Hölder’s con-
tinuity for quasiconformal mappings in Rn are established. These conditions
are based on a spatial analogue of the planar angular dilatation and can be
regarded as Teichmüller-Wittich regularity theorems.
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1. Introduction

A homeomorphism f : G→ Rn is called weakly Lipschitz continuous at x0 ∈ G if
for every 0 < α < 1 there is a constant C > 0 such that

|f(x) − f(x0)| ≤ C|x− x0|α (1.1)

holds if |x−x0| < δ, where δ > 0 is a sufficiently small number. If (1.1) holds with
α = 1, then f is called Lipschitz continuous at x0 ∈ G.

For many questions concerning quasiconformal mappings in space it would
be desirable to have criteria for such mappings to be Lipschitz or weakly Lips-
chitz continuous in a prescribed point. Moreover, it would be desirable to have
such criteria written in terms of some integral means of suitable local dilatation
coefficients. There are several such results in the plane, see, e.g., [1], [3], [8], [11]
and not much seems to be known if n > 2, see, e.g., [2], [6], [9], [12].

In this paper we consider the dilatationDf (x, x0) of the mapping f : Ω → Rn

at the point x ∈ Ω with respect to x0 ∈ Rn, x �= x0, which is defined by

Df (x, x0) =
Jf (x)

�nf (x, x0)
, (1.2)
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where

�f(x, x0) = min
|∂hf(x)|

|〈h, x−x0
|x−x0| 〉|

. (1.3)

Here ∂hf(x) denotes the derivative of f at x in the direction h and the minimum
is taken over all unit vectors h ∈ Rn; Jf (x) is the Jacobian of f at x. For brevity,
we will write Df(x, 0) = Df(x). The dilatation Df (x, x0) is a measurable function
in Ω and satisfies the inequalities

1
Kf(x)

≤ Df (x, x0) ≤ Lf (x),

where

Kf (x) =
||f ′(x)||n
Jf (x)

, Lf (x) =
Jf (x)

�(f ′(x))n

stand for the well-known outer and inner dilatations of f at x, respectively. Here
||f ′(x)|| = sup |f ′(x)h| and �(f ′(x)) = inf |f ′(x)h| taken over all unit vectors h ∈
Rn. For n = 2 the dilatation Df (z, z0) in the form (1.2) and (1.3) has been defined
in [10]. For this case the above double inequality reads as

1 − |μ(z)|
1 + |μ(z)| ≤

∣∣1 − μ(z) z̄−z̄0
z−z0

∣∣2
1 − |μ(z)|2 ≤ 1 + |μ(z)|

1 − |μ(z)|
for almost all z, see [4], cf. [10]. Here μ(z) = fz̄/fz is the complex dilatation
of f(z) at z. In other words, for n = 2 the dilatation Df (z, z0) coincides with
the well-known angular dilatation Dμ,z0(z) of f at z with respect to z0, z �= z0,
given by

Dμ,z0(z) =

∣∣1 − μ(z) z̄−z̄0
z−z0

∣∣2
1− |μ(z)|2 =

|∂θf(z)|2
r2Jf (z)

.

Here z = z0 + reiθ . Thus, the dilatation Df (x, x0) can be viewed as a spatial
counterpart of the angular dilatation Dμ,z0(z), which have been used by many
authors for the study of quasiconformal mapping in the plane, see, e.g., [4], [5],
[7], [8], and the reference therein.

Let Bn denote the unit ball in Rn. Suppose that f(x) is a quasiconformal
mapping in Bn normalized by f(0) = 0. It is known, see [2], [12], that the condition∫

|x|<R

Kf (x) − 1
|x|n dx < +∞ (1.4)

for some R > 0 implies for f to have conformal dilatation at the origin, that is, the
limit limx→0 |f(x)|/|x| exists and differs from 0 and ∞. This result is referred to as
the spatial counterpart of the well-known Teichmüller-Wittich regularity theorem
[13], [15].

The sufficient condition for a mapping to be weakly Lipschitz continuous is
given in [6]. It has been proved that if f : Bn → Rn, f(0) = 0, is a quasiconformal
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mapping, satisfying

lim
t→0

1
Ωntn

∫
|x|<t

Kf(x)dx = 1, (1.5)

then f is weakly Lipschitz continuous at 0, that is Hölder continuous with every
exponent less than one.

2. Module of ring domain

Let E be a family of Jordan arcs or curves in space Rn. A nonnegative and Borel
measurable function ρ defined in Rn is called admissible for the family E if the
relation ∫

γ

ρds ≥ 1

holds for every locally rectifiable γ ∈ E . The quantity

M(E) = inf
ρ

∫
Rn

ρn dx,

where the infimum is taken over all ρ admissible with respect to the family E is
called the modulus of the family E (see, e.g., [14], p. 16).

A ring domain R ⊂ Rn is defined as a finite domain whose complement
consists of two components C0 and C1. The sets F0 = ∂C0 and F1 = ∂C1 are two
boundary components of R. For definiteness, let us assume that ∞ ∈ C1.

We say that a curve γ joins the boundary components in R if γ lies in R,
except for its endpoints, one of which lies on F0 and the second on F1. Denote by
ΓR the family of all locally rectifiable curves γ which join the boundary components
of R.

The module of a ring domain R can be represented in the form

mod R =
(

ωn−1

M(ΓR)

) 1
n−1

;

here ωn−1 is the (n−1)-dimension Lebesgue measure of the unit sphere Sn−1 in Rn.
When R is a spherical annulus A(x0; r,R) = {x ∈ Rn : 0 < r < |x − x0| <

R <∞}, its module is given by

modA(x0; r,R) = log
R

r
.

The conformal invariance of the quantity modR in the planar case allows
us to restrict ourselves by the circular annulus {1 < |z| < emodR}. But this is
impossible in Rn, with n ≥ 3.
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3. Lipschitz and Hölder continuity of quasiconformal mappings

In this section, we establish the following two theorems.

Theorem 3.1. Suppose that f : Bn → Bn, f(0) = 0, is a quasiconformal mapping,
such that

lim sup
r→0

∫
r<|x|<1

Df (x) − 1
|x|n dx < +∞.

Then
|f(x)| ≤ C|x|

holds in Bn with some constant C depending only on the value of the above supre-
mum, and therefore, the mapping f is Lipschitz continuous at the origin.

Remark 3.2. The inequality (1.4) implies for f to be Lipschitz continuous at the
origin. On the other hand, the mapping

f(x) = (x1 cos θ − x2 sin θ, x2 cos θ + x1 sin θ, x3, . . . , xn) , f(0) = 0, |x| < 1,

where x = (x1, . . . , xn) and θ = log(x2
1 + x2

2), for which Kf (x) ≡ (1 +
√

2)n and
Df (x) ≡ 1, satisfies the assumption of Theorem 3.1 whereas the integral (1.4)
diverges.

Theorem 3.3. Let f : Bn → Bn, f(0) = 0, be a quasiconformal mapping, such that

lim sup
t→0

1
Ωntn

∫
|x|<t

Df (x)dx ≤ 1
M

(3.1)

holds for a constant M > 0. Then for each 0 < α < M1/(n−1), there is a constant
C such that

|f(x)| ≤ C|x|α, x ∈ Bn.

Remark 3.4. The radial stretching in Rn

f(x) = x|x|Q−1, Q ≥ 1

has
Df (x) = 1/Qn−1, Kf(x) = Qn−1, Lf(x) = Q.

So, the inequality (3.1) holds with M = Qn−1. By Theorem 3.3, |f(x)| ≤ C|x|α,
0 < α < Q. But the sufficient condition (1.5) is not fulfilled.

The proofs of the above theorems are based on series of lemmas. Let us note
only two most important statements.

Lemma 3.5. Let f : Ω → Rn be a quasiconformal mapping. Suppose that Df (x, x0)
is locally integrable in the annulus A = A(x0; r,R) ⊂ Ω. Then for each nonnegative
measurable function ρ(t), t ∈ (r,R), such that∫ R

r

ρ(t)dt = 1,
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the following inequality holds

M(f(Γ)) ≤
∫
A

ρn(|x− x0|)Df (x, x0)dx,

where Γ stands for the family of curves joining the boundary components of A in A.

Lemma 3.6. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a quasiconformal mapping
with the angular dilatation coefficient Df (x). Then for every spherical annulus
A = A(0; r,R) centered at the origin

mod f(A)
modA

≥
(

1
ωn−1modA

∫
A

Df (x)
|x|n dx

) 1
1−n

.

If additionally modA−mod f(A) ≥ 0, then

modA−mod f(A) ≤ 1
ωn−1

∫
A

Df (x) − 1
|x|n dx.
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maps with VMO dilatation, Complex Var. Theory Appl. 47 (2002), no. 6, 495–505.

[7] O. Lehto, On the differentiability of quasiconformal mappings with prescribed complex
dilatation, Ann. Acad. Sci. Fenn. Ser. A I No. 275 (1960), 28 pp.

[8] E. Reich, H. Walczak, On the behavior of quasiconformal mappings at a point, Trans.
Amer. Math. Soc. 117 (1965), 338–351.

[9] S. Rohde, Bilipschitz maps and the modulus of rings, Ann. Acad. Sci. Fenn. Math.
22 (1997), no. 2, 465–474.

[10] V. Ryazanov, U. Srebro, E. Yakubov, On ring solutions of Beltrami equations, J.
Anal. Math. 96 (2005), 117–150.

[11] A. Schatz, On the local behavior of homeomorphic solutions of Beltrami’s equations,
Duke Math. J. 35 (1968), 289–306.

[12] K. Suominen, Quasiconformal maps in manifolds, Ann. Acad. Sci. Fenn. Ser. A I
No. 393 (1966), 39 pp.



192 V. Gutlyanskĭı and A. Golberg
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A Theoretical Algorithm to get a Schottky
Uniformization from a Fuchsian one

Rubén A. Hidalgo

Abstract. Riemann surfaces appear in many different areas of mathematics
and physics, as in algebraic geometry, the theory of moduli spaces, topo-
logical field theories, cosmology, quantum chaos and integrable systems. A
closed Riemann surface may be described in many different forms; for in-
stance, as algebraic curves and by means of different topological classes of
uniformizations. The highest uniformization corresponds to Fuchsian groups
and the lowest ones to Schottky groups. In this note we discuss a theoretical
algorithm which relates a Schottky group from a given Fuchsian group both
uniformizing the same closed Riemann surface.

Mathematics Subject Classification (2000). 30F10, 30F40.

Keywords. Riemann surface, Fuchsian groups, Schottky groups.

1. Introduction

Riemann surfaces appear in many different areas of mathematics and physics, as in
algebraic geometry, the theory of moduli spaces, topological field theories, cosmol-
ogy, quantum chaos and integrable systems. For practical use of Riemann surfaces,
one needs efficient numerical approaches. In recent years considerable progress has
been achieved in the numerical treatment of Riemann surfaces which stimulated
further research in the subject and led to new applications. In this note we will
be mainly interested on closed Riemann surfaces and its uniformizations. An uni-
formization of a Riemann surface S is provided by a tuple (Ω, G, P : Ω → S), where
G is a Kleinian group, Ω is a G-invariant component of its region of discontinuity
and P : Ω → S is a regular planar covering with G as group of cover transfor-
mations. There is a natural partial order on the collection of uniformizations of
S; the uniformization (Ω1, G1, P1 : Ω1 → S) is bigger than the uniformization
(Ω2, G2, P2 : Ω2 → S) if there is a covering map Q : Ω1 → Ω2 so that P1 = P2Q.

This work was completed with the support of project Fondecyt 1070271 and UTFSM 12.08.01.
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The highest uniformization is provided by the universal covering (if S is a closed
Riemann surface of genus g ≥ 2, then these are provided by Fuchsian groups G).
In Section 2 we recall the definition of Schottky uniformizations of closed Riemann
surfaces (these uniformizations correspond to the lowest ones).

A closed Riemann surface may be described by different objects, for instance,
by algebraic projective curves, Riemann period matrices and uniformizations. A
natural question is, given one of the above representations of a closed Riemann
surface, to find explicitly any of the others. Unfortunately, in the general case this
has not been possible. In some few cases (closed Riemann surfaces with a large
group of conformal automorphisms) one may produce explicitly both a Fuchsian
uniformization and an algebraic curve corresponding to the same (conformal equiv-
alent) closed Riemann surface, see for instance the early works [4, 5].

The general numerical uniformization problem may be stated as to find nu-
merical algorithms which permits to find, given explicitly one of the representa-
tions of a closed Riemann surface, some of the other ones. In this direction, in [9]
P. Buser and R. Silhol explain how to obtain an algebraic curve in terms of a Fuch-
sian uniformization, in [12] Gianni and Seppälä explain how to obtain Riemann
period matrices in terms of algebraic curves, in [17, 26] (based in original works
of P. Myrberg [25]) Seppälä explains how to obtain Schottky uniformizations in
terms of hyperelliptic algebraic curves and in [16] (based in original works of W.
Burnside [8]) it is explain how to obtain the algebraic curves in terms of Schottky
uniformizations.

At the level of uniformizations, in general if we start with some explicit uni-
formization for a closed Riemann surface S, then it is not easy to get explicitly all
or some of the other uniformizations of it. In this paper we deal within the follow-
ing particular numerical uniformization problem: Given an explicit uniformization
of S, to find algorithmically any of the other uniformizations of it. More precisely,
if we are given explicitly a Fuchsian uniformization of a closed Riemann surface S,
then we provide a theoretical algorithm that permits to obtain an explicit Schottky
uniformization of it.

Genus 1
If S is closed Riemann surface of genus g = 1 (tori), then everything can be
done explicitly. In this case, S is uniformized (universal uniformization) by using
a Kleinian group of the form Gτ = 〈A(z) = z + 1, Bτ (z) = z + τ〉 ∼= Z2, where
τ ∈ H2. Any two values τ1, τ2 ∈ H2 provide uniformizations of the same conformal
class of tori if and only if there is a Möbius transformation T (z) = (az+b)/(cz+d),
where a, b, c, d ∈ Z and ad−bc = 1, such that τ2 = T (τ1). Schottky uniformizations
of the same S, say given by τ ∈ H2, is provided by the group Kλ = 〈C(z) = λz〉,
where λ = exp(2πiτ).

Genus g ≥ 2
If S is a closed Riemann surface of genus g ≥ 2, then the uniformization theorem
ensures the existence of an uniformization (Δ,Γ, π : Δ → S), where Δ is the
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unit disc and Γ is a Fuchsian group isomorphic to the fundamental group of S.
Any subgroup of finite index of Γ is again a surface group of higher genus while
any subgroup of infinite index must be a free group (known since the early 1900’s
and proved purely algebraically using Reidemeister-Schreier rewriting by Hoare,
Karrass and Solitar in 1971 [18, 19]). Let (Ω, G, P : Ω → S) be an uniformization
of S, where Ω is not simply-connected. There is a normal subgroup N so that
Ω = Δ/N and G = Γ/N . By the above, N must have infinite index in Δ and, in
particular, N is an infinite rank free group. It follows that every finitely generated
subgroup of N is in fact a Schottky group. This last fact will be used frequently
below. In this case, the numerical uniformization problem ask for some algorithm
that permits to get G in terms of Γ.

This paper is organized as follows. In Section 2 we recall some equivalent
definitions of Schottky groups and Schottky uniformizations. In Sections 3 and 4
we discuss a theoretical algorithm which relates a Schottky group from a given
Fuchsian group both uniformizing the same closed Riemann surface. In Section 5
we discuss two possible numerical implementations. The second numerical imple-
mentation relays on the works of D. Crowdy and J.S. Marshall on quadrature
domains and the Schottky-Klein prime function [11].

2. Schottky uniformizations

Let Ck, C
′
k, k = 1, . . . , g, be 2g Jordan curves on the Riemann sphere Ĉ such that

they are mutually disjoint and bound a 2g-connected domain, say D. Suppose that
for each k there exists a fractional linear transformation Ak so that (i) Ak(Ck)=C′k
and (ii) Ak(D)∩D = ∅. Let G be the group generated by all these transformations.
As consequence of Klein-Maskit’s combination theorems, G is a Kleinian group, all
its non-trivial elements are loxodromic and a fundamental domain for it is given
by D. The group G is called a Schottky group of genus g, the set of generators
A1,. . . , Ag is called a Schottky system of generators and the loops C1, C′1,. . . , Cg,
C′g, is called a fundamental set of loops respect to these generators. That every
set of g generators of G is always a Schottky system of generators is due to V.
Chuckrow [10].

In [21] is proved that a Schottky group of rank g is equivalent to a Kleinian
group, with non-empty region of discontinuity, which is purely loxodromic and
isomorphic to a free group of rank g. As a consequence of Marden’s isomorphism
theorem [24], a Schottky group of rank g is equivalent to a geometrically finite
Kleinian group which is purely loxodromic and isomorphic to a free group of rank g.

If Ω is the region of discontinuity of a Schottky group G, say of rank g, then
it is known that Ω is connected and that S = Ω/G is a closed Riemann surface of
genus g. Retrosection theorem (see [6] for a modern proof) asserts that for every
closed Riemann surface S of genus g there exists a Schottky group G of genus g
with Ω/G holomorphically equivalent to S; we say that S is uniformized by the
Schottky groupG and that (Ω, G, P : Ω → S) is a Schottky uniformization of S. As
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a consequence of the results in [22], the lowest uniformizations of a closed Riemann
surface are provided by the Schottky ones.

We will need the following basic property on conformal maps defined on the
region of discontinuity of a Schottky group.

Lemma 2.1. Let G be a Schottky group with region of discontinuity Ω. If T :
Ω → Ĉ is a one-to-one conformal map, then T is the restriction of a Möbius
transformation.

Proof. The region of discontinuity Ω of a Schottky group G is a domain of class
OAD (that is, it admits no holomorphic function with finite Dirichlet norm (see [3,
p. 241]). It follows from this (see [3, p. 200]) that any one-to-one conformal map
on Ω is necessarily the restriction of a Möbius transformation. �

3. Schottky uniformization from a Fuchsian one

3.1. Starting from a Fuchsian uniformization

Let Γ be a Fuchsian group, acting on the unit disc Δ, so that Δ/Γ = S is a
closed Riemann surface of genus g ≥ 2. The tuple (Δ,Γ, Q : Δ → S) is a Fuchsian
uniformization of S. A presentation of Γ is given as follows

Γ =
〈
A1, . . . , Ag, B1, . . . , Bg :

g∏
j=1

[Aj , Bj ] = 1
〉

where [A,B] = ABA−1B−1.

3.2. Construction of a Schottky uniformization

Let N = 〈〈B1, . . . , Bg〉〉 be the normal envelope of B1, . . . , Bg inside Γ. Clearly, N
is of infinite index in Γ (then a free group of infinite rank) and G = Γ/N is a free
group of rank g. It is not difficult to see that Ω = Δ/N is a planar surface (we only
need to note that there are not two elements in N whose axis intersect transver-
sally). Also, G is a group of conformal automorphisms of Ω acting discontinuously.
In this way, we have a regular planar covering P : Ω → S, with G as group of
cover transformations. It follows from the results in [23] that we may assume Ω
to be a region inside the Riemann sphere Ĉ and G being a geometrically finite
Kleinian group containing an invariant component in its region of discontinuity
and without parabolic transformations. It follows that G is a Schottky group of
rank g and that (Ω, G, P : Ω → S) is a Schottky uniformization of S. As N � Γ,
there is a regular conformal covering map

F : Δ → Ω ⊂ Ĉ

whose group of cover transformations is N and so thatQ = PF . Moreover, for each
Ak ∈ Γ there is a Möbius transformation Ck ∈ G so that F (Ak(z)) = Ck(F (z)),
for every z ∈ Δ. The collection C1,. . . , Cg is a collection of free generators of the
Schottky group G.
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3.3. A normalization

Let D ⊂ Δ be a fixed fundamental polygon for N and fix three different values
a, b, c ∈ D. We may assume these three points to be in the interior of a fundamental
domain for Γ.

Lemma 3.1. If we normalize F by requiring that F (a) = 0, F (b) = 1 and F (c) = ∞,
then F is unique.

Proof. This is a consequence of Lemma 2.1. �

In this case, a first step into the numerical uniformization problem is to find an
algorithm which permits to generate conformal maps Fj : Δ → Fj(Δ) = Wj ⊂ Ĉ

converging locally uniformly to F .

4. A convergence process

In this section we maintain all the definitions of the previous section.

4.1. Choosing a sequence of Schottky groups inside N

Let us consider a collection of groups

〈B1, . . . , Bg〉 = G1 < G2 < · · · < N

so that ∞⋃
j=1

Gj = N

and each Gj is finitely generated. The construction of the groups Gj is always
possible (just add one extra element of N −Gj to Gj in order to obtain Gj+1). As
N is a free group (of infinite rank) and the subgroups of free groups are again free
groups, eachGj is a free group of finite rank gj . As the elements in N are hyperbolic
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(then loxodromic) and Δ is necessarily contained in the region of discontinuity of
Gj , each Gj is in fact a Schottky group of rank gj.

If we denote by Ωj the region of discontinuity of Gj , then

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ω∞ = Δ ∪ Δ∗,

where Δ∗ = Ĉ −Δ and

Int

⎛⎝⋂
j≥1

Ωj

⎞⎠ = Ω∞.

Note that, necessarily, the fixed fundamental domain D is contained in some
fundamental domain for Gj , in particular, a, b, c ∈ Ωj , for all j.

4.2. Some conformal maps

If we set Ĝj = 〈Gj , τ(z) = 1/z〉, then there are di-analytic covering maps (that is,
in local coordinates are either conformal or anti-conformal maps)

Fj : Ωj → Ωj/Ĝj = Wj ⊂ Ĉ,

where Wj is a planar closed set bounded by (gj +1) pairwise disjoint real-analytic
simple loops and normalized by the conditions

Fj(a) = 0, Fj(b) = 1 and Fj(c) = ∞.

We may assume that Fj : Δ → Wj is conformal, by composing F at the
left by the reflection J(z) = z, if necessary; so Fj : Δ∗ → Wj is necessarily
anti-conformal.

Unfortunately, our normalization does not makes Fj unique. This in particu-
lar seems to be a problem in the process: which choice we need to consider for Fj?
Next result asserts that the choice we make for Fj does not matter at the limit
process.

Theorem 4.1. Let us consider a sequence of conformal covering maps

Fj : Δ →Wj ⊂ Ĉ

for the corresponding Schottky groups Gj normalized by the rule that Fj(a) = 0,
Fj(b) = 1 and Fj(c) = ∞. Then, such a sequence converges locally uniformly to
the covering map F .

Proof. The proof is divided into three parts. In the first one we show that the
family is normal. Secondly, we note that every convergent subsequence converges
to F and finally we obtain that the complete family converges to F as required.
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Normality of the family

Let R ⊂ Δ be the union of the orbits under N of the points a, b, c, and set
ΔR = Δ − R. Montel’s theorem asserts that the family Fj : ΔR → C is a normal
family. Unfortunately, this is not enough to ensure this family to be normal on
all Δ.

Let us consider any fundamental domain D for N (not necessarily the fixed
one D) so that in its interior D0 are contained points aD ∈ D0 in the N -orbit of a,
bD ∈ D0 in the N -orbit of b and cD ∈ D0 in the N -orbit of c. Consider the family
of restrictions Fj : D0 → Ĉ. Clearly, Fj(aD) = 0, Fj(bD) = 1 and Fj(cD) = ∞. It
follows from Theorem 2.1 in [20] that Fj : D0 → Ĉ is a normal family.

If D1, . . . , Dn are fundamental domains for N , so that the interior D0
k of Dk

always contains a point in the N -orbit of a, b and c, then the previous ensures
that Fj : D0

k → Ĉ is a normal family. It follows that Fj : ∪n
k=1D

0
k → Ĉ is a normal

family.
As Δ is a countable union of interior of fundamental domains as above, we

may construct a family of open domains R1 ⊂ R2 ⊂ · · · ⊂ Δ so that ∪∞k=1Rk = Δ
and Fj : Rk → Ĉ is a normal family, for each k.

If we consider any subsequence of Fj : Δ → Ĉ, there is a subsequence of
Fj : R1 → Ĉ converging locally uniformly. Now, there is a subsequence of such one
whose restriction to R2 converges locally uniformly. We now consider such a new
subsequence and restrict it to R3 and continue inductively such a process. Now we
use the diagonal method to to obtain a subsequence converging locally uniformly
on all Δ.

Limit mappings of subsequences

Let us choose any subsequence Fjk
: Δ → Ĉ that converges locally uniformly,

say to F∞ : Δ → Ĉ. As Fjk
(a) = 0, Fjk

(b) = 1 and Fjk
(c) = ∞, it follows

that F∞(a) = 0, F∞(b) = 1 and F∞(c) = ∞, in particular, F∞ is non-constant
conformal mapping.

Choose any fundamental domain D for N (not necessarily the fixed one D)
and let D0 its interior. As each Gj < N , D is contained in some fundamental
domain Dj for Gj . Since Fj restricted to Dj is injective, each Fj restricted to
D0 is also injective. We consider the subsequence Fjk

: D0 → Ĉ, which we know
that converges locally uniformly to the non-constant conformal mapping F∞ :
D0 → Ĉ. As the uniform limit of injective conformal mappings is either injective
or constant, F∞ : D0 → Ĉ is injective. This proves that F∞ restricted to D0 is an
homeomorphism onto its image.

As the above holds for any fundamental domain for N and Δ is countable
union of such sets, F∞ is a local homeomorphism on Δ.

Let γ ∈ N . Then, there is some j0 so that γ ∈ Gj for j ≥ j0. It follows
that for j ≥ j0 the equality Fj(γ(z)) = Fj(z) holds for each z ∈ Δ. In particular,
F∞(γ(z)) = F∞(z) for every z ∈ Δ. The above invariance and the fact that the
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restriction of F∞ to any of its fundamental domains is an homeomorphism asserts
that F∞ is a covering map for which N is group of cover transformations. Since F∞
and F acts in the same way at the points a, b and c, then F = F∞ by Lemma 3.1.

Convergence of the family

Since any subsequence of Fj : Δ → Ĉ has a locally uniform convergent subse-
quence to F∞ = F , the above asserts that the complete sequence converges locally
uniformly to F . �

Remark 4.2. As already noted, the normalization Fj(a) = 0, Fj(b) = 1, Fj(c) = ∞
does not makes Fj unique. If we consider any two choices for Fj , say Fj,k : Ωj →
Wj,k, k = 1, 2, then there is a conformal homeomorphism Hj : Wj,1 → Wj,2 so
that F2 = HjF1. We may make a unique choice for each Fj as follows. Let us start
with any choice for Fj and let us consider the restriction Fj : Δ → Wj which is
a conformal covering map. A classical result [2, 7, 13, 27] asserts that there is a
circular domain Σj ⊂ Ĉ and a conformal homeomorphism Tj : Wj → Σj . As the
boundary of Wj consists of real-analytic simple loops, by Carathéodory’s exten-
sion theorem, Tj extends as an homeomorphism from Wj onto Σj . By composing
Tj at the left by a suitable Möbius transformation, we may also assume Tj(0) = 0,
Tj(1) = 1 and Tj(∞) = ∞. Now, we replace Fj : Ωj → Wj by F c

j = TjFj , that
is, we may now assume Wj to be a circular domain. We claim that the map F c

j

is unique under the normalization F c
j (a) = 0, F c

j (b) = 1, F c
j (c) = ∞ and the fact

that F c
j (Δ) is a circular domain. In fact, as previously noted, any other possible

map with the same conditions as for F c
j will be of the form HjF

c
j , where Hj is

a conformal homeomorphism between two circular domains and fixing the three
points 0, 1,∞. By reflection principle, we may extend H to a conformal homeo-
morphism between two regions U1 and U2, where U1 is the region of discontinuity
of the extended Kleinian group Kj generated by the reflections on the boundary
circles of Wj (similarly for U2). As U1 is the region of discontinuity of a Schottky
group (the orientation-preserving half of Kj) it follows from Lemma 2.1 that Hj

is the restriction of a Möbius transformation. As it fixes three different points,
Hj = I.

4.3. Approximating G

Now, in order to get the generators C1, . . . , Cg of G, we proceed as follows. For each
j = 1, . . . and each k = 1, . . . , g, we consider the unique Möbius transformation
Cj,k so that Cj,k(Fj(a)) = Fj(Ak(a)), Cj,k(Fj(b)) = Fj(Ak(b)) and Cj,k(Fj(c)) =
Fj(Ak(c)). At this point we need to recall that a, b, c have been chosen to be in the
interior of a fundamental domain for Γ. This asserts that the collection of points

Fj(a), Fj(Ak(a)), Fj(b), Fj(Ak(b)), Fj(c), Fj(Ak(c))

are pairwise different.

Theorem 4.3. The Möbius transformations Cj,k converge to Ck.
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Proof. This is consequence of the fact that each Möbius transformation is uniquely
determined by its action at three different points, that the sequence Fj converges
locally uniformly on Δ and that F (Ak(z)) = Ck(F (z)) for z ∈ Δ and k = 1, . . . , g.

�

Let FΓ any fundamental domain for Γ contained in D. As FΓ is a compact
subset of the unit disc Δ and Fj converges locally uniformly to F , we obtain
that the compact sets Fj = Fj(FΓ) ⊂ Ĉ converges in Hausdorff topology to a
fundamental domain F∞ for the Schottky group G.

5. Numerical implementations

5.1. First approach

Let us choose a point d ∈ ∂Δ in the boundary of the fixed fundamental domain
D for N , where ∂Δ denotes the boundary unit circle of Δ. This choice permits to
extend each Fj and F continuously to d from inside D. Let Tj be the unique Möbius
transformation so that Tj(0) = 0, Tj(1) = 1 and Tj(Fj(d)) = ∞. The map Hj =
TjFj : Δ → Tj(Rj) is a covering map associated to the group Gj (whose image still
a circular domain, one of the circles being a line). In particular, eachHj is analytic
inside Δ with a simple pole at d. Let us consider a subsequence Fjk

so that Fjk
(d)

converges, say to d∞. The Möbius transformations Tjk
now converges to the unique

Möbius transformation T∞ so that T∞(0) = 0, T∞(1) = 1 and T∞(Fj(d)) = ∞.
The map H∞ = T∞F : Δ → Ω is a covering map associated to the group N . As
Fjk

converges to F , it follows from the above that Hjk
converges locally uniformly

to H∞F . In this case, the Schottky group we obtain is T∞GT−1
∞ . As Hj is analytic

on all Δ, if we take a = 0, then this ensures that Hj(z) =
∑∞

k=1 μjkz
k, with radius

of convergence 1. If we find numerical approximations of Hj , then we will obtain
numerical approximations of both H∞ and T∞GT−1

∞ . The idea is to consider a
truncation Hj,N (z) =

∑N
k=1 μjk,Nz

k and some points wr (well-distributed) on D.
The coefficients μjk,N can be (over)determined by considering a set of generators
of Gj , say A1, . . . , Agj ∈ Gj , and asking Hj,N (As(wr)) = Hj,N (wr).

5.2. Second approach

The second approach is related to quadrature domains [14] and work of D. Crowdy
and J.S. Marshal [11] using the Schottky-Klein prime function.

A bounded domain D ⊂ C (we assume its boundary consists of a finite
collection of pairwise disjoint simple loops) is said to be a (classical) quadrature
domain [14] if there exists finitely many points a1, . . . , aN ∈ D, positive integers
n1, . . . , nN and complex numbers ckj ∈ C (k = 1, . . . , N , j = 0, 1, . . . , nk − 1) so
that, for every integrable analytic function h(z) in D (extending continuously to
the boundary of D) it holds that (the first equality is just Green’s formula)∫∫

D

h(z)dxdy =
1
2i

∫
∂D

h(z)zdz =
N∑

k=1

nk−1∑
j=0

ckjh
(j)(ak).
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For instance, the unit disc D = {z ∈ C : |z| < 1} is a quadrature domain
with N = 1 = n1, a1 = 0 and c10 = π. A survey about quadrature domains is, for
instance, [15].

A domain D is a quadrature domain if and only if there exists a meromorphic
function h : D → Ĉ so that h(z) = z for every z ∈ ∂D [1]. This last property asserts
that the domain D is a quadrature domain if and only if there is a closed Riemann
surface S admitting an anticonformal involution τ : S → S with maximal number
of ovals (components of fixed points) and a meromorphic map Ψ : S → Ĉ so that,
if S1 and S2 are the two components of S−Fix(τ), then F : S1 → D is a conformal
homeomorphism [14].

In our case, for each fixed j, we need to find a regular covering Fj : Δ →
Fj(Δ) = Wj , where Wj is a domain in the Riemann sphere bounded by some finite
number of simple loops. It may happens that Wj is not a quadrature domain.
But, as consequence of Theorem 4 in [14], there is a conformal homeomorphism
Qj : Wj → Dj , where Dj is a quadrature domain.

Now, in [11] it is provided a numerical algorithm to obtain a regular con-
formal covering Tj : Δ → Dj with Gj as group of covering transformations. This
numerical implementation is based on the Schottky-Klein prime function of the
group Gj [4], in this case, given by

ω(z, μ) = (z − μ)
∏

γ∈G∗j

(γ(z)− μ)(γ(μ) − z)
(γ(z)− z)(γ(μ) − μ)

z, μ ∈ Ωj(the region of discontinuity of Gj)

G∗j ⊂ Gj − {I} and for every γ ∈ G − {I} either γ or γ−1 belongs to G∗j (but
not both). Let Lj be the Möbius transformation determined by the fact that
Lj(Tj(a)) = 0, Lj(Tj(b)) = 1 and Lj(Tj(c)) = ∞. Then we may consider Fj =
Lj ◦ Tj.
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Scattering from Sparse Potentials:
a Deterministic Approach

Vojkan Jakšić and Philippe Poulin

Abstract. Completeness of the wave operators has been proven for a family
of random Schrödinger operators with sparse potentials in the recent paper
[17], using a probabilistic approach. As mentioned at Voss, a deterministic
result in this direction can also be derived from a Jakšić–Last criterion of
completeness [7] and Fredholm’s theorem. We present this approach.
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1. Introduction

Since their introduction by Anderson [1], there has been considerable interest
in Schrödinger operators with random potentials. These operators represent the
energy of a particle affected by a random potential on a lattice. They are of the
form H = Δ + λV , where Δ is the centered, discrete Laplacian on Zd, λ is a
real parameter (the so-called disorder) and V is a random potential supported
on Zd. In [1], Anderson anticipated the spectral structure of H (i.e., the intervals
of localization/delocalization) with respect to the disorder. While the localization
aspect of the Anderson conjecture has been mathematically settled in the seminal
papers [5, 4, 2, 3], practically nothing is known about the delocalization aspect.

Several research teams have also studied various sparse models [6, 9, 10,
11, 12, 13, 14, 15, 17]. In these nonergodic models, spectral properties of H are
expected to follow from various geometric constraints on the sites of the potential.
These constraints have in common that the minimal distance between two sites
becomes arbitrarily large when removing a finite number of them. Examples have
been exhibited where all the expected spectral properties are satisfied (almost
surely), including completeness [17] of the wave operators on the spectrum of Δ.
We present a deterministic extension of this last result.
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We consider a discrete Schrödinger operator H = Δ +V in dimension d � 2,
where Δ is the centered Laplacian and V is a bounded potential: for ϕ ∈ l2(Zd)
and n ∈ Zd

(Hϕ)(n) =
∑

|m−n|1=1

ϕ(m) + V (n),

where |n|1 =
∑d

j=1 |n(j)|. We assume that the support of V , which we denote by
Γ ⊂ Zd, satisfies the following sparseness assumption:

(A) There exists an ε > 0 such that
∑

m∈Γ\{n} |n−m|− 1
2+ε is finite for all n ∈ Γ

and tends to 0 when |n| → ∞ in Γ.

This is the case, for instance, if Γ = {(j4, 0, . . . , 0) ∈ Zd ; j ∈ Z}.
Recall [18] that the wave operators on a Borel set Θ ⊂ R are the strong limits

Ω±(H,Δ) = limt→±∞ eitHe−itΔ1Θ(Δ) (if they exist); they are complete if their
range is Ran1Θ(H) (so Δ and H are unitarily equivalent on Θ). We prove:

Theorem. Assume (A). Then, the wave operators Ω±(H,Δ) exist on [−2d, 2d].
Moreover, they are complete on [−2d, 2d] minus a set of Lebesgue measure zero.

It is possible to remove the exceptional set in the above by working in the
random frame. Then {V (n)}n∈Γ is a family of independent, identically distributed,
absolutely continuous random variables whose common density is compactly sup-
ported.1 Since the essential support of the absolutely continuous spectrum of Δ is
[−2d, 2d], and since under Assumption (A) the wave operators exist on this last
interval, the Jakšić–Last theorem [8] and the above immediately yield:

Corollary. In the random frame, Assumption (A) implies that the wave operators
exist and are complete on [−2d, 2d], almost surely.

This conclusion is stronger than the one we obtained in [17], where only
completeness of the wave operators is derived. However, our present assumption
is also stronger, since unbounded potentials are discarded.

Here is the outline of the paper. In the sequel {n ∈ Zd ; infm∈Γ |n−m|1 � 1}
is denoted by Γ1, while 10 and 11 denote the projections onto l2(Γ) and l2(Γ1)
respectively. Moreover δm(n) denotes the Kronecker delta, where m,n ∈ Zd. For
z ∈ C+ we consider the following restrictions of the free and perturbed resolvents,

F1(z) = 11(Δ − z)−111, F0(z) = 10(Δ − z)−110,

P1(z) = 11(H − z)−111, P0(z) = 10(H − z)−110.

Our study is based the following theorem of Jakšić and Last [7]:

Proposition 1. Let U ⊂ R be open. Suppose ‖F1(e+ i0)‖ <∞ and ‖P1(e+ i0)‖ <
∞ for all e ∈ U . Then, the wave operators exist and are complete on U .

1Explicitly, the probability space is given by RΓ equipped with its Borel σ-algebra and a prob-
ability measure

∏
Γ μ, where μ is an absolutely continuous, compactly supported measure on R.

The variable V (n) is then the projection on the nth coordinate, for n ∈ Γ.
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For [a, b] ⊂ [−2d, 2d] \ ({2d, 2d− 4, . . . ,−2d+ 4,−2d} ∪ {0}) and z in the
strip S: ={e+ iy ; a < e < b, 0 < y < 1}, the following a priori estimate [16] is
available:

Proposition 2. Let n = |n|ω ∈ Zd. Then, limz→e,z∈C+〈δ0 | (Δ − z)−1δn〉 exists and
is O(|n|− 1

2 ) uniformly in (e, ω) ∈ [a, b]×Sd−1. More generally, 〈δ0 | (Δ − z)−1δn〉 =
O(|n|− 1

2 log |n|) uniformly in (z, ω) ∈ S × Sd−1.

Therefore, sparseness will ensure that the matrix elements of F1(z) are small
except about its diagonal. By subtracting a block-diagonal to F1(z) the remaining
part will be compact. We will derive the finiteness of ‖F1(e+ i0)‖ first, and then
deduce the same for ‖P1(e+ i0)‖ by means of Fredholm’s theorem:

Proposition 3. Let K(z) be a function with values in the space of compact opera-
tors (endowed with the uniform topology). Suppose K(z) is continuous on S and
analytic in S. Then, either 1−K(z) is never invertible on S, or it is invertible ex-
cept on a closed set of Lebesgue measure zero whose intersection with C+ consists
of isolated points.

2. Proof of the theorem

Let us partition Γ1 as follows: for all n ∈ Γ, we select a neighborhood B(n) ⊆
{m ∈ Γ1 ; |m− n|1 � 1} containing n in such a way that

⋃
n∈Γ B(n) = Γ1 and

B(n)∩B(n′) = ∅ if n �= n′. For all m ∈ Γ1 there exists exactly one n ∈ Γ such that
m ∈ B(n); we then set B(m) = B(n).

For n ∈ Γ1, let S(n) =
∑

m∈Γ1\B(n) supz∈S |〈δm |F1(z)δn〉|. Then,

Lemma 1. S(n) is finite for all n ∈ Γ1 and tends to 0 when |n| → ∞ in Γ1.

Proof. By Proposition 2, S(n) � Const
∑

m∈Γ1\B(n) |n−m|− 1
2+ε. Moreover, there

exists a C � 1 such that for B(m) �= B(n), C−1|n−m| � |n−m′| � C|n−m| for
all m′ ∈ B(m). Since the cardinalities of the B(m) are bounded, Assumption (A)
yields the result. �

For z ∈ S let us decompose F1(z) into two summands: a block-diagonal,
D1(z) =

∑
n∈Γ1

∑
m∈B(n)〈δn |F1(z)δm〉〈δm | ·〉δn, and the other part, K1(z) =

F1(z)−D1(z). By Proposition 2, 〈δn |F1(e+ i0)δm〉 exists for e ∈ [a, b]. In partic-
ular, letting F1(e): =

∑
m,n∈Γ1

〈δn |F1(e+ i0)δm〉〈δm | ·〉δn, lim z→e
z∈C+

F1(z) = F1(e)

weakly. Let us define D1(e) and K1(e) in a similar way, so they are weak limits of
D1(z) and K1(z) respectively.

Lemma 2. For any e ∈ [a, b], limz→e,z∈C+ D1(z) = D1(e) uniformly.

Proof. Let {Aj}L
j=1 be the list of all subsets of {m ∈ Zd ; |m|1 � 1} containing

0. For all n ∈ Γ there exists exactly one j, which we denote by j(n), such that
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B(n)− n = Aj . Thus, by translational invariance

D1(z) =
L∑

j=1

∑
p,q∈Aj

〈δq |F1(z)δp〉
∑

j(n)=j

〈δn+p | ·〉δn+q.

The result follows. �

Lemma 3. Let ε > 0. There exists a finite-dimensional projection Pε such that,
letting Mε(z): =PεK1(z)Pε, ‖K1(z)−Mε(z)‖ � ε for all z ∈ S. Moreover, Mε(z)
is continuous on S (with respect to the uniform operator topology).

Proof. By Lemma 1, there exists a finite set F ⊂ Γ1 such that for all z ∈ S

sup
n∈Γ1\F

∑
m∈Γ1

|〈δn |K1(z)δm〉| + sup
n∈F

∑
m∈Γ1\F

|〈δn |K1(z)δm〉| � ε. (2.1)

Let Pε be the projection onto the vector space generated by {δn}n∈F . Notice
that Mε(z) is weakly continuous and hence uniformly continuous on S. More-
over, 〈δn | (K1(z)−Mε(z))δm〉 = 〈δm | (K1(z) −Mε(z))δn〉 for all m,n ∈ Γ1, so
the equation (2.1) is equivalent to ‖K1(z)−Mε(z)‖1 = ‖K1(z)−Mε(z)‖∞ � ε.
Schur’s interpolation theorem then completes the proof. �

Lemma 4. For any e ∈ [a, b], limz→e,z∈C+ K1(z) = K1(e) uniformly.

Proof. Let ε > 0. For e ∈ [a, b] and z ∈ S
‖K1(z) −K1(e)‖ � ‖K1(z) −Mε(z)‖ + ‖K1(e) −Mε(e)‖ + ‖Mε(z) −Mε(e)‖

� ‖Mε(z)−Mε(e)‖ + 2ε.

Since limz→e,z∈C+ Mε(z) = Mε(e) uniformly, the proof is complete. �

By Lemmas 2 and 4, F1(z) has a continuous extension on C+ ∪ [a, b], so we
have reached that ‖F1(e+ i0)‖ <∞ for all e ∈ [a, b]. Let us focus on l2(Γ). By the
previous work, F0(z) is continuous on S and analytic in S. Moreover,

Lemma 5. F0(z) is invertible in B(l2(Γ)) for all z ∈ S.

Proof. Let μϕ be the spectral measure of a unit vector ϕ ∈ l2(Γ) with respect to
Δ. For a fixed z = e+iy ∈ S, )〈ϕ |F0(z)ϕ〉 = y

∫ 2d

−2d((t− e)2 + y2)−1 dμϕ(t). This
expression is bounded away from zero when ϕ varies in the unit vectors. Thus, the
closure of the numerical range of F0(z) is included in C+. The result follows. �

Let D0(z) = 10D1(z)10 and K0(z) = 10K1(z)10. By Lemma 3, K0(z) is
a compact operator for any z ∈ S. Moreover, D0(z) is diagonal; it is indeed a
constant (times the identity on l2(Γ)) by translational invariance. By Theorem 6.1
in [16], the number infz∈S )D0(z), which we denote by I, is positive.

Lemma 6. 1 +D0(z)V is invertible in B(l2(Γ)) for any z ∈ S.
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Proof. First, (1 +D0(z)V )−1 exists, since I > 0. If2 |V (n)D0(z)| � 1/2, then
|(1 +D0(z)V )−1(n)| � 2. Otherwise, |(1 +D0(z)V )−1(n)| � 2|D0(z)|/I. Hence,
(1 +D0(z)V )−1 is bounded, as claimed. �

We now transfer our result from the free resolvent to P0. Since V is bounded,
by the argument in Lemma 5, P0(z) is invertible for each z ∈ S. Moreover,

Lemma 7. There exists a closed set of Lebesgue measure zero, R ⊂ [a, b], such that
P0 has a continuous extension S \ R −→ B(l2(Γ)).

Proof. Let z ∈ S. By the resolvent identity, (1 + F0(z)V )P0(z) = F0(z). Notice
that 1 + F0(z)V is invertible, since P0(z) and F0(z) are. Thus,

P0(z) = (1 + F0(z)V )−1F0(z), (2.2)

where z ∈ S. One wonders to which extent (1 + F0(z)V )−1 is still invertible when
z ∈ ∂S. Indeed, for any z ∈ S, 1 + F0(z)V = (1 − K(z))(1 + D0(z)V ), where
K(z):= − K0(z)V (1 +D0(z)V )−1 is compact. Since for z ∈ S both 1 + D0(z)V
and 1 + F0(z)V are invertible, 1 − K(z) is. By Proposition 3, 1 − K(z) is thus
invertible in B(l2(Γ)) for all z ∈ [a, b] \ R, where R ⊂ [a, b] is a closed set of
Lebesgue measure zero. Hence, the right side in (2.2) extends continuously up to
S \ R, as desired. �
Lemma 8. There exists a closed set of Lebesgue measure zero, R ⊂ [a, b], such that
P1 has a continuous extension S \ R −→ B(l2(Γ1)).

Proof. By the resolvent identity, F1(z)10 − P1(z)10 = F1(z)V P0(z). Since F1(z)
and P0(z) extend continuously up to S \ R, P1(z)10 also does. By the resolvent
identity again, F1(z)− P1(z) = P1(z)10V F1(z). The result follows. �

In particular, ‖P1(e+ i0)‖ <∞ on [a, b]\R. Since the analogous relation has
been established for F1, Proposition 1, the arbitrariness of [a, b], and the absolute
continuity of the spectrum of Δ yield the theorem.
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210 V. Jakšić and P. Poulin
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Application of ATS in a Quantum-optical Model

Anatolii A. Karatsuba and Ekatherina A. Karatsuba

Abstract. The problem of the interaction of a single two-level atom with a sin-
gle mode of the quantized electromagnetic field in a coherent state in an ideal
resonator in the resonance case is considered. The evolution in time of the
atomic inversion, represented by the Jaynes-Cummings sum, is studied. On
the basis of the application of the theorem on the approximation of a trigono-
metric sum by a shorter one (ATS), a new efficient method for approximating
the Jaynes-Cummings sum is constructed. New asymptotic formulas for the
atomic inversion are found, which approximate it on various time intervals,
defined by relation between the atom-field coupling constant and the average
photon number in the resonator field before the interaction of the field with
the atom. The asymptotics that we obtain give the possibility to predeter-
mine the details of the process of the inversion in the Jaynes-Cummings model
depending on the field characteristics.

Mathematics Subject Classification (2000). 34A45, 40G99, 41A60, 70K40.

Keywords. Jaynes-Cummings model, atomic inversion, coherent state, trigono-
metric sums, approximation, theorem on the approximation of a trigonomet-
ric sum by a shorter one (ATS), functional equation for the Jacobi Theta-
functions.

1. Introduction

We shall consider the behavior of an atom which reacts to one or some modes of the
radiation field. Assume the situation where the optical field is almost monochro-
matic and its frequency is close to one from the frequencies of atomic transitions.
Then it is possible not to take into account the transitions between other energy
levels and to consider the given atom as the two-level atom. Jaynes and Cum-
mings [4] showed that the equations of motion in the problem on the interaction
of a single two-level atom with a single mode of the quantized radiation field are
analytically solvable ones. At present, the Jaynes-Cummings model (JCM) [1], [2],
[3], [4], [13], [14], [15] is the most simple approximation of the process of interaction
of atoms with light, the exact description of which is not possible.
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Thus, the JCM and its generalizations (see [1], [4], [12], [14], [15]) can be
considered as an approximate answer to the question of what happens with every
active atom of a quantum generator. For a long time one referred to the JCM as
to purely theoretical construction [15]. However, the creation of one-atom maser
and microlaser, and also one-mode resonator of high quality allowed to realize the
JCM in practice. The data obtained in experiments confirmed some phenomena
theoretically predicted in the JCM. So, by measuring such experimentally observed
value as atomic inversion (the difference between the population in the excited
state and the ground state of an atom) have been registered the predicted collapses
and revivals of the inversion oscillations, which show the corpuscular nature of the
radiation field. At present the JCM has a special place in quantum optics also
for the reason that it serves for an examination and verification of conjectures
concerning of models which are more complicated and close to reality.

We shall consider the dynamics of the JCM where there is only exchange
by a single quantum of excitation between fixed atom and field. In this case the
Schrödinger equation

i�
∂

∂t
|ψ (t)〉 = Ĥint |ψ (t)〉 (1)

for the vector of the state |ψ〉 of an atom-field system is usually solved (see, for
example, [14], [15]) in the so-called “rotating wave approximation”, that is sim-
plifying the Hamiltonian of the interaction Ĥint by neglecting the fast oscillating
terms. As a result the Hamiltonian takes the form

Ĥint = �g
(
σ̂−â+e−iΔt + σ̂+âe

iΔt
)
, (2)

where g is the atom-field coupling constant, σ̂+, σ̂− are the Pauli Spin Matrices,
â+, â the Bose field creation and annihilation operators, Δ is the difference between
the frequency of the atomic transition and the frequency of the resonator field (for
exact resonance Δ = 0).

Assume that at the initial moment t = 0 the atom has no connections with
the field. Then the solution of the equation (1), (2), which represents the amplitude
of the probability pa,m(t) to find the atom in the excited state |a〉 and m photons
in the resonator, or the amplitude of the probability pb,m+1(t) to find the atom
in the ground state |b〉 and m+ 1 photons in the resonator, can be written in the
form (see [14], [15])

pa,m(t) = eiΔ
2 t

((
cos(λmt) − i

Δ
2λm

sin(λmt)
)
pa,m(0)

−i g
√
m+ 1
λm

sin(λmt)pb,m+1(0)
)
, (3)

pb,m+1(t) = e− iΔ
2 t

(
−i g

√
m+ 1
λm

sin(λmt)pa,m(0)

+
(

cos(λmt) + i
Δ

2λm
sin(λmt)

)
pb,m+1(0)

)
, (4)
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where λm is the parameter which is called the generalized Rabi frequency:

λm =

√(
Δ
2

)2

+ g2(m+ 1).

Definition 1. The atomic inversion W (t) is defined as

W (t) = W (t; |a〉)−W (t; |b〉),
where

W (t; |a〉) =
∞∑

m=0

|pa,m(t)|2, W (t; |b〉) =
∞∑

m=0

|pb,m(t)|2,

are the probabilities to find atom at the moment t in the excited and in the ground
state correspondingly.

Our aim is to study the evolution in time of the atomic inversion W (t). We
shall consider the case of exact resonance Δ = 0, that is when

λm = g
√
m+ 1. (5)

If the atom was in its ground state at t = 0, then from (3), (4), (5) we have (see
for details [14], [15])

W (t) = W0(t) = −
+∞∑
m=0

Wm cos (2gt
√
m), (6)

and if the atom was in the excited state at t = 0, then

W (t) = W1(t) =
+∞∑
m=0

Wm cos (2gt
√
m+ 1), (7)

where Wm = Wm(0) = |pm(0)|2 is the probability to find at t = 0 in the resonator
field m photons.

In quantum optics in the analysis of the JCM the case of the coherent state
of the field with the Poissonian photon statistics is more often investigated:

Wm = e−m1
mm

1

m!
, (8)

where
m1 = 〈m〉

is the initial average number of photons before the interaction of the field with the
atom. Substituting (8) into (6) and (7), we have

W (t) = Wj(t) = (−1)j+1e−m1

+∞∑
m=0

mm
1

m!
cos (2gt

√
m+ j), j = 0, 1. (9)

The most direct approach to study W (t) is to approximate the sum (9) by
another sum, which is more simple for studying, for example, by the sum of a
small amount of summands, in particular, by one summand. Such an approach is
applied, for example, in [3], [13] (see also [1]), where the sum (9) is substituted by
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the infinite sum of integrals or by one integral (without estimating the remainder
term), which then are calculated by the saddle point method.

In the present work we shall study the functionW (t) from (9), approximating
it by a simpler function and by considering certain, interesting, in our opinion,
particular cases of this approximation. Some of our formulas coincide with the
derived ones in [3], [13]. We note, the greaterm1, the better the formulas obtained.
However, for small m1 these formulas are also of interest.

In what follows, to simplify the calculations for estimating, we shall assume
that in Theorems 1, 2

m1 ≥ 100, m1 is an integer, (10)

and in Theorems 3, 4

m1 ≥ 2000, m1 is an integer. (11)

A general scheme of the method for the approximation of W (t) in the form
(9) was described in [11]. It is based on the application of the theorem on the
approximation of a trigonometric sum by a shorter one (briefly, ATS) [5]–[8] (on
other applications of the ATS to the problems of physics see [9], [10])). Besides, we
also use essentially the functional equation for the Jacobi Theta-functions (see [8]).

Let us denote

T = 2gt, C(m) =
mm

1

m!
. (12)

In this connection, from (9)

W (t) = Wj(t) = (−1)j+1e−m1

+∞∑
m=0

C(m) cos (T
√
m+ j), j = 0, 1. (13)

The structure of the paper is the following: Section 2 contains main results,
formulated as theorems, Section 3 contains the proofs of auxiliary statements –
lemmas, Section 4 contains the proofs of the theorems.

The following notations are used in the paper:
θ, θ1, θ2, . . . – the functions, the module of which doesn’t exceed 1, in different

formulas they are, generally speaking, different;
for the real x, the function y = {x} fractional part of the number x, that is

y = {x} = x− [x], where [x] is the integral part of x, that is an integer such that
[x] ≤ x < [x] + 1,

the function y = ||x|| = min({x}, 1 − {x}) distance from x to the nearest
integer ;

the functions ρ(x) and σ(x) are defined by

ρ(x) =
1
2
− {x}, σ(x) =

∫ x

0

ρ(u)du.

We note, that for any x

0 ≤ {x} < 1, 0 ≤ ||x|| ≤ 1
2
, −1

2
< ρ(x) ≤ 1

2
, 0 ≤ σ(x) ≤ 1

8
. (14)
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We emphasize that the constants in the obtained asymptotic equalities can
be replaced by smaller ones by means of more detailed calculations. However, the
role of these constants is a secondary one. We calculate them only to show that
the derived asymptotic formulas are effective. Besides, in reality, the accuracy of
the formulas, which we obtained, can be much better than this is established in
the theorems and lemmas.

2. Statements of main theorems

First of all we formulate the simplest theorem on approximation of the function
W (t) by the sum of a finite number of summands for any values of t.

Theorem 1. Let ν1 be an arbitrary natural number, such that 1 ≤ ν1 ≤ m
2/3
1 . Then

the formula holds:

W (t) = Wj(t) =
(−1)j+1

√
2πm1

(
1 − θ

12m1

)( ∑
−ν1≤ν≤ν1

exp
(
− ν2

2m1

)
cos(T

√
m1 + ν)

+ 8θj1 + 4θj2
m1

ν1
exp
(
− ν2

1

4m1

))
; j = 0, 1. (15)

Remark 1. It is natural to assume in (15) that ν1 ≥
√

2m1 lnm1.

Then we have the theorems on approximation of W (t) by sums of a small
number of summands.

Theorem 2. Let T ≤ m1, γ = ||T/(4π√m1)||. Then for W (t) the following asymp-
totic formula holds:

W (t) = Wj(t) = (−1)j+1

(
1 +

θj1

12m1

)(
T
− 1

4
1 exp

(
−2π2m1

T1
γ2

)
cos(D(m1))

+ 3θj2T
− 1

4
1 exp

(
− π2m1

2T1

)
+

5θj3√
2πm1

+
θj4T

4
√

2πm1

)
; j = 0, 1; (16)

where

T1 = 1 +
T 2

16m1
, D(m1) = T

√
m1 +

π2T
√
m1

2T1
γ2 − 1

2
arctan

(
T

4
√
m1

)
. (17)

Remark 2. The necessary condition of the relevance of the equation (16) is the
fulfillment of the inequality

T ≤ m
5
6
1 . (18)

That is why in Theorem 2 we assume that (18) is satisfied.

Remark 3. The inequality

γ ≤
√√√√ T1

2π2m1
ln

√
2πm1

T
1
4
1

(
5 + T

4
√

m1

) , (19)
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is sufficient for the summand with cosine to be the main term of (16). Since
T ≤ m

5/6
1 , then the right part of (19) will be a small number, that is the num-

ber T/(4π
√
m1) will be close to an integer.

Remark 4. Let T ≤ 2π
√
m1, and consequently, γ = T/(4π

√
m1). Then from (16),

(17) we have

W (t) = Wj(t) = (−1)j+1

(
1 +

θj1

12m1

)(
T
− 1

4
1 exp

(
− T 2

8T1

)
cos(D(m1))

+ 3θj2 exp
(
− π2

7
m1

)
+

3θj3√
m1

)
; j = 0, 1; (20)

where

D(m1) = T
√
m1 +

T 3

32
√
m1T1

− 1
2

arctan
(

T

4
√
m1

)
. (21)

Remark 5. The formula (20) will be relevant when

T ≤ 2
√

lnm1.

From here and from (20), (21) we get

W (t) = Wj(t) = (−1)j+1 exp
(
−T

2

8

)
cos(T

√
m1) + θj1

2T 3

√
m1

; j = 0, 1. (22)

Remark 6. From the previous remarks, it follows that on the interval 0 < T ≤
2π
√
m1 (16) will be asymptotic one only for 0 < T ≤ 2

√
lnm1. If 2

√
lnm1 <

T ≤ 2π
√
m1, then we can not claim about the inversion W (t) anything besides,

it is “small” in this interval and is trivially estimated from above by the value
∼ m

−1/2
1 . At the same time, we note, that in reality, (22) can be relevant and also

for T > 2
√

lnm1.

Remark 7. Let now 2π
√
m1 < T ≤ m

5/6
1 . For any integer k; k = 1, 2, 3, . . . , k0 =[

m
1/3
1 /(4π)

]
− 1, we shall consider the intervals of the form(

4πk
√
m1 −

√
lnm1; 4πk

√
m1 +

√
lnm1

)
,

which are inside the interval (2π
√
m1,m

5/6
1 ). For every k; k = 1, 2, 3, . . . , k0 and

every T of the form

T = 4πk
√
m1 + 2x, |x| ≤

√
1
2

ln
√
m1,

the following asymptotics for W (t) is valid:

W (t) = Wj(t) =
(−1)j+1

(1 + π2k2)1/4

(
exp
(
− x2

8π2k2

))
× cos

(
x2

8πk
+ x− π

4
+

1
2

arctan
1
πk

)
+ θj1

k

2
√
m1

; j = 0, 1;
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where k = k0 =
[
m

1/3
1 /(4π)

]
− 1. As is obvious from the last asymptotic for-

mula for W (t), the maximal values |W (t)| decrease with the increasing k as values
1/(2

√
πk).

Remark 8. Using the function “fractional part”, it is possible to rewrite the as-
ymptotic formula (16) in another form. Thus, for T ≤ m

5/6
1 the following formula

is valid

W (t) = Wj(t)

=
(−1)j+1

T
1/4
1

(
exp
(
− 2π2m1

T1
ξ2
)

cos
(
T
√
m1 +

π2T

2T1
ξ2 − 1

2
arctan

T

4
√
m1

)
+ exp

(
− 2π2m1

T1
(1 − ξ)2

)
cos
(
T
√
m1 +

π2T

2T1
(1 − ξ)2 − 1

2
arctan

T

4
√
m1

)
+

5θj1√
2πm1

+
θj2T

4
√

2πm1

)
; j = 0, 1; (23)

where T1 = 1 + T 2

16m1
, ξ = {T/(4π√m1)}.

It is clear that if ξ is “close” to 0 or 1, then the main term in (23) will be the
first or the second summand respectively. If ξ is “far” from both 0 and 1, then the
both terms with cosines are “small” and the inversion is also “small”. Therefore,
the greatest values of W (t) are situated in small neighborhoods of such t, for which

t = tr =
2π
√
m1

g
r,

where r is an integer. We note, that in [3], [13] the value tr is called the “time of
revivals”.

In the next theorem W (t) is approximated by the sum of a small number
(comparatively with the value of

√
m1 lnm1) of summands, for T ≥ m

5/6
1 .

Theorem 3. Let
√
m1 ≤ T ≤

√
m3

1. Define the number ν1 by the equality

h(ν1) = min
4X≤ν≤8X

h(ν), X =
√
m1 lnm1,

h(ν) =
(∣∣∣∣∣∣∣∣ T

4π
√
m1 − ν

∣∣∣∣∣∣∣∣)−1

+
(∣∣∣∣∣∣∣∣ T

4π
√
m1 + ν

∣∣∣∣∣∣∣∣)−1

.

Then the following asymptotic formula holds:

W (t) = Wj(t) = (−1)j+1m
1
4
1√
T

(
1 + 3θj1

ν1
m1

)
×
∑

α � n � β

exp

(
− 1

2m1

(
T 2

16π2n2
−m1

)2
)

cos
(
T 2

8πn
− π

4

)
+

θj2√
m1

+
θj3R0

2
√

2πm1
;

j = 0, 1;
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where

α =
T

4π
√
m1 + ν1

, β =
T

4π
√
m1 − ν1

, R0 = 1800
(

1 +
m1

T
√

lnm1

)
(lnm1)

2
.

It is possible to formulate Theorem 3 in slightly different form, by representing
the variable of summation n in the form

n = a+ μ, where a =
[

T

4π
√
m1

]
; μ = 0,±1,±2, . . . .

Theorem 4. In the conditions and notations of Theorem 3 the following asymptotic
formula holds:

W (t) = Wj(t) = (−1)j+1m
frac14
1√
T

∑
−M1 � μ � M2

(
1 + 840θj1

(
π|μ− ξ|m

5
6
1

T

)3)

× exp
(
− 32π2m2

1

T 2
(μ− ξ)2

)
cos
(

T 2

8π(a+ μ)
− π

4

)
+ θj2

R0

2
√

2πm1
; (24)

j = 0, 1;

where

M1 =
Tν1

8πm
3
2
1

− 3
32π

Tν2
1

m
5
2
1

, M2 =
Tν1

8πm
3
2
1

+
3

32π
Tν2

1

m
5
2
1

,

a =
[

T

4π
√
m1

]
; ξ =

{
T

4π
√
m1

}
.

Remark 9. The application of the ATS made possible to approximate the initial
sum (15) with 1 + 2ν1 summands (for integer ν1) by the sum (24), that is the sum
of no more than 1 + Tν1/(4πm

3/2
1 ) summands, what is less than 1 + 2ν1 for all

T ≤
√
m3

1 .

Remark 10. If T ≤ m1/(
√

lnm1) and the number T/(4π
√
m1) is an integer, then

a = T/(4π
√
m1), ξ = 0, and the sum with respect to μ in (24) consists of one

summand with μ = 0, and the formula for the inversion obtains the following
simple form:

W (t) = Wj(t) = (−1)j+1m
1/4
1√
T

cos
(
T

2
√
m1

)
+Rj1; j = 0, 1; (25)

where

|Rj1| ≤
R0

2
√

2πm1
.
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Remark 11. If m1/(
√

lnm1) < T ≤
√
m3

1, then from (24)

W (t) = Wj(t) = (−1)j+1m
1
4
1√
T

∑
−M1 � μ � M2

exp
(
− 32π2m2

1

T 2
μ2

)
(26)

× cos

(
T 2

8π

(
T

4π
√
m1

+ μ

)−1

− π

4

)
+Rj2 + θj2

R0

2
√

2πm1
; j = 0, 1;

where

|Rj2| ≤ 840π3m
1
4
1√
T

∑
−M1 � μ � M2

(
|μ|m

5
6
1

T

)3

exp
(
− 32π2m2

1

T 2
μ2

)
≤ 840π3 (lnm1)

3/2
m
−1/4
1 T−1/2.

Remark 12. For m1 such great that M1 ≥ (Tν1)/(16πm3/2
1 ), that is for m1 ≥ 3

2ν1,
it is possible to approximate the sum with respect to μ in (26) by the sum of the
same summands with |μ| ≤ (T

√
lnm1)/(4πm1). For T < m1/(

√
lnm1) only one

summand with μ = 0 remains in (26), and this formula will coincide with (25).

3. Auxiliary statements

The statements presented below are the basis of our proof of main theorems. Some
of them have also independent interest.

Lemma 1. The following equality holds:

W (t) = Wj(t) = (−1)j+1 1√
2πm1

(
1 − θ

12m1

)
F̃j(t), j = 0, 1; (27)

where

F̃j(t) =
∞∑

m=0

r(m) cos (T
√
m+ j),

r(m) =

⎧⎪⎪⎨⎪⎪⎩
(m+1)...(m1−1)

m
m1−m−1
1

, if m < m1

1, if m = m1

m
m−m1
1

(m1+1)...m , if m > m1.

Proof. We consider W (t) in the form (13). For any m ≥ 0 from (12)

C(m) ≤ C(m1).

Indeed, if m < m1, then

C(m)
C(m1)

=
mm

1

m!
m1!
mm1

1

=
m1(m1 − 1) . . . (m1 −m+ 1)

mm1−m
1

< 1. (28)
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And if m > m1, then

C(m)
C(m1)

=
mm

1

m!
m1!
mm1

1

=
mm−m1

1

m(m− 1) . . . (m1 + 1)
< 1. (29)

Taking out the factor C(m1) from the sum in (13), we get

W (t) = Wj(t) = (−1)j+1e−m1C(m1)
∞∑

m=0

r(m) cos (T
√
m+ j), j = 0, 1; (30)

where

r(m) =
m1!
m!

mm−m1
1 =

⎧⎪⎪⎨⎪⎪⎩
(m+1)...(m1−1)m1

m
m1−m
1

, if m < m1

1, if m = m1

m
m−m1
1

(m1+1)...m , if m > m1.

0n the other hand, according to the Stirling formula

C(m1) =
mm1

1

m1!
=

em1

√
2πm1

(
1 − θ

12m1

)
.

From here and from (30)

W (t) = Wj(t) = (−1)j+1 1√
2πm1

(
1 − θ

12m1

)
F̃j(t), j = 0, 1. �

It is easily seen from (28), (29) that the function r(m1 + ν) = C(m1+ν)
C(m1)

is
decreasing with increase of |ν|. Let us study the speed of this decreasing.

Lemma 2. Let ν be an integer. Then the following formulas are valid:
– for 0 ≤ ν < m1,

r(m1 + ν) = exp (−A(m1; ν)) , (31)

where

A(m1; ν) =
(
m1 + ν +

1
2

)
ln
(

1 +
ν

m1

)
− ν − J1(ν), (32)

J1(ν) =
∫ ν

0

σ(x)dx
(m1 + x)2

; (33)

– for 1 ≤ ν < m1,

r(m1 − ν − 1) = exp (−B(m1; ν)) ,

where

B(m1; ν) =
(
m1 − ν − 1

2

)
ln
(

1 − ν

m1

)
+ ν + J2(ν), (34)

J2(ν) =
∫ ν

0

σ(x)dx
(m1 − x)2

. (35)
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Proof. We consider r(m1 + ν). If ν = 0, then (31) is valid, since

A(m1; 0) = 0; r(m1) = 1. (36)

Let ν ≥ 1. Then

r(m1 + ν) =
mν

1

(m1 + 1) . . . (m1 + ν − 1)(m1 + ν)
(37)

Taking the logarithm of (37), we obtain

ln(r(m1 + ν)) = ν lnm1 −
∑

0 < x � ν

ln(m1 + x). (38)

We apply the Euler summation formula (see, for example [8]) to the sum of loga-
rithms from (38). We have∑

0<x�ν

ln(m1 +x)=
∫ ν

0

ln(m1 +x)dx+ρ(ν)ln(m1 +ν)−ρ(0)lnm1

−
∫ ν

0

σ(x)dx
(m1 +x)2

=ν ln(m1 +ν)−ν+m1 ln
(

1+
ν

m1

)
+

1
2

ln
(

1+
ν

m1

)
−J1(ν).

From here and from (36)–(38) follows the statement of the lemma for ν ≥ 0.
Let now 0 < ν < m1. We find successively

r(m1 − ν − 1) =
(m1 − ν)(m1 − ν + 1) . . . (m1 − 1)

mν
1

,

ln(r(m1−ν−1)) =
∑

0 < x � ν

ln(m1−x)−ν lnm1 =
∫ ν

0

ln(m1−x)dx+ρ(ν) ln(m1−ν)

−ρ(0) lnm1−
∫ ν

0

σ(x)dx
(m1 − x)2

−ν lnm1 =
(
−m1 + ν +

1
2

)
ln
(

1 − ν

m1

)
−ν−J2(ν).

From here follows the statement of the lemma for 1 ≤ ν < m1. �

Lemma 3. The functions A(m1;x) and B(m1;x) of Lemma 2 are monotonically
increasing for 0 < x < m1 − 1

Proof. Taking into account (14), we find for 0 ≤ x ≤ m1 − 1

d

dx
A(m1;x) = ln

(
1 +

x

m1

)
+
m1 + x+ 1

2

m1 + x
− 1 − σ(x)

(m1 + x)2
> 0,

d

dx
B(m1;x) = − ln

(
1 − x

m1

)
− m1 − x− 1

2

m1 − x
+ 1 +

σ(x)
(m1 − x)2

> 0. �

Lemma 4. For any ν1 such that 2 ≤ ν1 ≤ m1
2 the inequalities

A(m1; ν1) ≥
ν2
1

4m1
, B(m1; ν1) ≥

ν2
1

4m1
,

are satisfied.
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Proof. From (32), (34), taking into account (14), we easily find

A(m1; ν1) ≥
(
m1 + ν1 +

1
2

)(
ν1
m1

− ν2
1

2m2
1

)
− ν1 −

ν1
8m2

1

≥ ν2
1

4m1
,

B(m1; ν1) ≥
(
m1 − ν1 −

1
2

)(
− ν1
m1

− ν2
1

2m2
1

− 7ν3
1

12m3
1

)
+ ν1

≥ ν2
1

2m1
+

ν1
2m1

− ν3
1

3m2
1

≥ ν2
1

4m1
. �

Lemma 5. Let ν1 be an arbitrary number, such that 1 < ν1 ≤ m1
2 . Then for the

function F̃j(t) the following asymptotic formula is valid:

F̃j(t) = F0(T ) + 4θ
m1

ν1
exp
(
− ν2

1

4m1

)
; j = 0, 1; (39)

where
F0(T ) =

∑
−ν1 � ν � ν1

r(m1 + ν) cos (T
√
m1 + ν). (40)

Proof. Using Lemmas 2–4, we get∑
ν > ν1

r(m1 + ν)+
∑

ν1 < ν � m1

r(m1 − ν) ≤ 2
∫ +∞

ν1

e
− x2

4m1 dx ≤ 4m1

ν1
exp
(
− ν2

1

4m1

)
.

From here follows the statement of the lemma. �
We remark, that from (39), (40) it follows that the function F̃j(t), j = 0, 1;

is well approximated by the sum F0(T ) having the total number of summands of
the order

√
m1 lnm1 or

√
m1 lnm1.

Lemma 6. For any ν such that −ν1 ≤ ν ≤ ν1, where

1 ≤ ν3
1 ≤ 1

2
m2

1,

the following formulas are valid

r(m1 + ν) = exp
(
− ν2

2m1

)(
1 + θ1

( |ν|3
m2

1

+
|ν|
m1

))
,

F0(T ) =
∑

−ν1 � ν � ν1

exp
(
− ν2

2m1

)
cos (T

√
m1 + ν) + 6θ2. (41)

Proof. We shall consider (32) and (34). It follows from (33), (35) that it is possible
to represent the function A(m1; ν) in the form

A(m1; ν) =
ν2

2m1
+ a(m1; ν);

where

a(m1;ν)=
ν

2m1
− ν2

(
ν+ 1

2

)
2m2

1

+
(
m1 +ν+

1
2

)(
ln
(

1+
ν

m1

)
− ν

m1
+

ν2

2m2
1

)
−J1(ν).

(42)
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Similarly

B(m1; ν) =
ν2

2m1
+ b(m1; ν);

where

b(m1;ν)=
ν

2m1
+
ν2
(
ν+ 1

2

)
2m2

1

+
(
m1−ν−

1
2

)(
ln
(

1− ν

m1

)
+

ν

m1
+

ν2

2m2
1

)
+J2(ν).

(43)
We estimate easily |a(m1; ν)|, |b(m1; ν)| from above, taking into consideration only
that ν3 ≤ ν3

1 ≤ 1
2m

3
1 (m1 ≥ 100). Taking into account (36), we find from (42), (43)

by means of simple calculations, that

for any ν ≥ 0 : |a(m1; ν)| ≤
|ν|

2m1
+

|ν|3
m2

1

,

for any ν ≥ 1 : |b(m1; ν)| ≤
|ν|

2m1
+

|ν|3
m2

1

.

From here and from (32), (34) we have

r(m1 + ν) = exp
(
− ν2

2m1

)(
1 + θ1

( |ν|3
m2

1

+
|ν|
m1

))
. (44)

By substituting (44) into (40), we get

F0(T ) =
∑

−ν1 � ν � ν1

exp
(
− ν2

2m1

)
cos (T

√
m1 + ν) +R1,

where

|R1| ≤
∑

|ν| � ν1

exp
(
− ν2

2m1

)( |ν|3
m2

1

+
|ν|
m1

)
≤ 2
∫ +∞

0

e−
x2

2m1

(
x3

m2
1

+
x

m1

)
dx = 6.

�

One should remark that for many applications, the relation (41) is sufficiently
precise. Nevertheless, it is possible to improve the estimate of the remainder term
in (41), taking into account the oscillation of the cosine-factor and using the fact
that a(m1; ν) and b(m1; ν) are differentiable as the functions in ν and are the
piecewise monotone functions. In the present paper we shall not do it.

We shall approximate the argument of the cosine in (41) by a polynomial of
the second degree.

Lemma 7. Let

α0 = T
√
m1, α1 =

T

2
√
m1

, α2 =
T

8
√
m3

1

,

F1(T ) =
∑

−ν1 � ν � ν1

exp
(
− ν2

2m1

)
cos (α0 + α1ν − α2ν

2). (45)
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Then the following formula holds

F0(T ) = F1(T ) + 6θ3 +
1
2
θ4Tm

− 1
2

1 . (46)

Proof. Using the Taylor formula and the Lagrange finite increments formula, we
have

cos (T
√
m1 + ν) = cos (α0 + α1ν − α2ν

2) +
θ1
8
T |ν|3m−

5
2

1 (47)

Besides, ∑
−ν1 � ν � ν1

exp
(
− ν2

2m1

)
|ν|3 ≤ 2

∫ ∞
0

x3e
− x2

2m1 dx = 4m2
1. (48)

From (41), (47), (48) and (45) we get the statement of the lemma. �
We note that, the remainder term in (46) isn’t worse than one in (41) for all

T ≤ 12
√
m1. Furthermore, just as for (41), it is possible to make more precise the

estimate of the remainder term in (46) more precise on account of the oscillations
of the summands of this sum.

Lemma 8. Let the function F2(T ) be defined by the equality

F2(T ) =
+∞∑

ν=−∞
exp
(
− ν2

2m1

)
cos (α2ν

2 − α1ν − α0). (49)

Then the following formula holds

F1(T ) = F2(T ) + 4θ5
m1

ν1
exp
(
− ν2

1

2m1

)
, (50)

where ν3
1 ≤ 1

2m
2
1.

Proof. From (45) and (49) we have

|F1(T )− F2(T )| ≤ 2
∫ +∞

ν1

e−
x2

2m1 dx. (51)

From here we find that

|F1(T )− F2(T )| ≤
√

2πm1, if ν1 ≤
√

2m1,

|F1(T )− F2(T )| ≤ 2m1

ν1
exp
(
− ν2

1

2m1

)
, if ν1 >

√
2m1. �

For asymptotic evaluation of F2(T ) we need the lemma about the functional
equation of Jacobi’s Theta-functions.

Lemma 9. Let *(τ) > 0,

Θ(τ, α) =
+∞∑

n=−∞
exp
(
−πτ(n+ α)2

)
.
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Then the following equality is valid

Θ
(

1
τ
, α

)
=
√
τ

+∞∑
n=−∞

exp
(
−πτn2 + 2πiαn

)
. (52)

Proof. See proof of this lemma, for example, in [8].

Lemma 10. For F2(T ) the following formula is valid:

F2(T ) =
√

2πm1

4
√

1 + 4m2
1α

2
2

+∞∑
n=−∞

exp
(
− 2π2m1

1 + 4m2
1α

2
2

(
n− α1

2π

)2
)

cos (D(n)), (53)

where

D(n) =
4π2m2

1α2

1 + 4m2
1α

2
2

(
n− α1

2π

)2

− ϕ

2
+ α0, (54)

ϕ = arctan(2m1α2), α0 = T
√
m1, α1 =

T

2
√
m1

, α2 =
T

8
√
m3

1

.

Proof. From (49) we have

F2(T ) = *
+∞∑

n=−∞
exp
(
− n2

2m1
+ iα2n

2 − iα1n− iα0

)

= * exp(−iα0)
+∞∑

n=−∞
exp
(
−πτn2 + 2πiαn

)
, (55)

where
τ =

1
2πm1

− i
α2

π
, α = −α1

2π
.

Using (52), we find
+∞∑

n=−∞
exp
(
−πτn2 + 2πiαn

)
=

1√
τ
Θ
(

1
τ
, α

)
=

√
2πm1

4
√

1 + 4m2
1α

2
2

exp
(
i
ϕ

2

)
×

+∞∑
n=−∞

exp
(
− 2π2m1

1 + 4m2
1α

2
2

(
n− α1

2π

)2
)

exp
(
− i

4π2m2
1α2

1 + 4m2
1α

2
2

(
n− α1

2π

)2
)
,

where
ϕ =

π

2
− arctan

1
2m1α2

.

From here and from (55) we get the statement of the lemma. �
For the proof of Theorem 3 we shall need the following ATS theorem (see [5],

[8] and especially [6], [7]):
Theorem (ATS). Let the real functions f(x), ϕ(x) satisfy on the segment [a, b] the following
conditions:
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1) f (4)(x) and ϕ′′(x) are continuous;

2) there exist the nonnegative numbers H, U , A, λ, φ0, φ1, φ2, c1, c2, c3 and c4 such
that the inequalities

U � 1; 0 < b− a � λU ; |ϕ(x)| � φ0H ; |ϕ′(x)| � φ1HU− 1; |ϕ′′(x)| � φ2HU− 2;

c1A
− 1 � f ′′(x) � c2A

− 1; |f (3)(x)| � c3A
− 1U− 1; |f (4)(x)| � c4A

− 1U− 2

are fulfilled. Then, if we define the numbers xn by the equation f ′(xn) = n, we get∑
a < x � b

ϕ(x) exp (2πif(x)) =
∑

α � n � β

c(n)Z(n) (56)

+ θH (K1 ln(β − α + 2) + K2 + K3 (Ta + Tb)) ,

where α = f ′(a), β = f ′(b),

c(n) =

{
1, if α < n < β,

0.5, if n = α or n = β,

Z(n) =
1 + i√

2

ϕ(xn)√
f ′′(xn)

exp (2πi(f(xn)− nxn)),

Tμ =

{
0, if ‖f ′(μ)‖ = 0,

min
(√

A, ‖f ′(μ)‖− 1
)
, if ‖f ′(μ)‖ �= 0;

K1 = π− 1
(
φ0(6.5 + 2c− 1

1 c2) + 6.5λφ1

)
,

K2 = (πc2
1)
− 1 ((λc2 + 2AU− 1)K + 2φ0c2(c1 + A(b− a)− 1)

)
+ (φ0 + λφ1)(22.5 + 9c2A

− 1),

K3 = 2(2 + π− 1)φ0 + (πc1)
− 1
(
(4 + 2.8

√
c1 + c2 + 2c− 1

1 c2)φ0 + 2λe− 1φ1

)
,

K = 5φ0c3 + 2φ1c1 +
3

4
λ

(
φ1c3 + φ2c2 +

λ

3
φ2c3

)
+

λφ0

2
max

(
9

8
c4 +

(
13

6

)2

c− 1
1 (c3 + 0.5kc4)

2, 2c2k
− 2

)
,

k = min

(
c1

4c3
,

√
c1

2c4

)
, |θ| ≤ 1.

4. Proof of main theorems

Using the previous auxiliary statements, it isn’t difficult to prove the main theo-
rems.

Proof of Theorem 1 follows from (27), (39), (41).

Proof of Theorem 2. We transform the function F2(T ) which is defined by (53).
Let

γ =
∣∣∣∣∣∣α1

2π

∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ T

4π
√
m1

∣∣∣∣∣∣∣∣ ,
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and let

n1 =
[α1

2π

]
, if

{α1

2π

}
≤ 1

2
: n1 =

α1

2π
− γ,

n1 =
[α1

2π

]
+ 1, if

{α1

2π

}
>

1
2

: n1 =
α1

2π
+ γ.

Then for n = n1, (
n− α1

2π

)2

=
(
n1 −

α1

2π

)2

= γ2.

Besides, for T ≤ m1 we have the bound

+∞∑
n=−∞
n=n1

exp
(
− 2π2m1

1 + 4m2
1α

2
2

(
n− α1

2π

)2
)

≤ exp
(
− π2m1

2 (1 + 4m2
1α

2
2)

)
+ 2

∞∑
n=1

exp
(
− 2π2m1

1 + 4m2
1α

2
2

n2

)

≤ 3 exp

⎛⎝− π2m1

2
(
1 + T 2

16m1

)
⎞⎠ .

From here and from (53), (54) we find

F2(T ) =
√

2πm1

4

√
1 + T 2

16m1

exp

(
− 2π2m1

1 + T 2

16m1

)
cos (D(n1))

+ 3θ4

√
2πm1

4

√
1 + T 2

16m1

exp

⎛⎝− π2

2
(
1 + T 2

16m1

)
⎞⎠ , (57)

where

D(n1) =
4π2m2

1α2

1 + 4m2
1α

2
2

γ2 − ϕ

2
+ α0.

Setting ν1 = 4
√
m1 lnm1 in Lemmas 5–8 and using (57), (27), (39), (46), (50) we

get the statement of Theorem 2. �

Proof of Theorem 3. We rewrite (41) in the form F0(T ) = * ˜̃F 0(T ) + 7θ2, where

˜̃
F 0(T ) =

∑
−ν1 � x � ν1

exp
(
− x2

2m1

)
exp (−iT

√
m1 + x).

We apply the ATS to the ˜̃F 0(T ), setting in it

f(x) = − T

2π
√
m1 + x, ϕ(x) = exp

(
− x2

2m1

)
, a = −ν1, b = ν1. (58)
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We find successively

f (1)(x) = − T

4π
√
m1 + x

, f (2)(x) =
T

8π(m1 + x)3/2
, α1 = − T

4π
√
m1 − ν1

,

β1 = − T

4π
√
m1 + ν1

, − T

4π
√
m1 + xn

= n, xn =
(

T

4πn

)2

−m1,

f(xn) − nxn = − T 2

16π2(−n)
− (−nm1). (59)

(n takes negative values).
We set

A =
8πm

3
2
1

T
. (60)

Replacing (−n) by n we obtain the following formula for Z(n):

Z(n) = exp
(
i
π

4

) ϕ(xn)√
f ′′(xn)

exp
(

2πi
(
− T 2

16π2n
− nm1

))
,

where α ≤ n ≤ β;

α =
T

4π
√
m1 + ν1

= −β1, β =
T

4π
√
m1 − ν1

= −α1. (61)

In accordance with the choice of ν1 the values ||α|| and ||β|| are not equal to zero,
and C(n) = 1. Since m1 is an integer, then exp(−2πinm1) = 1, and the imaginary
exponential in Z(n) doesn’t depend on m1. Then we have:

1√
f ′′(xn)

=
T

2
√

2πn
3
2
, ϕ(xn) = exp

(
− 1

2m1

(
T 2

16π2n2
−m1

)2
)
.

Consequently,

Z(n) =
T

2
√

2πn
3
2

exp

(
− 1

2m1

(
T 2

16π2n2
−m1

)2
)

exp
(

2πi
( −T 2

16π2n
+

1
8

))
,

F0(T ) =
∑

α � n � β

T

2
√

2πn
3
2

exp

(
− 1

2m1

(
T 2

16π2n2
−m1

)2
)

cos
(
T 2

8πn
− π

4

)
+ 7θ2 + R0(T ), (62)

where R0(T ) is the remainder term of the ATS.
We shall simplify the sum with respect to n in (62), approximating in it the

number n−3/2 by the number
(

T
4π
√

m1

)−3/2

. We find from (59)

n =
T

4π
√
m1

(
1 +

θ

2
ν1
m1

)
.

From here

n−
3
2 =
(

4π
√
m1

T

) 3
2
(

1 + θ1
ν1
m1

)
.
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Therefore, it is possible to represent F0(T ) in the form

F0(T ) =
2
√

2πm
3
4
1√

T

(
1 + θ1

ν1
m1

) ∑
α � n � β

exp

(
− 1

2m1

(
T 2

16π2n2
−m1

)2
)

× cos
(
T 2

8πn
− π

4

)
+ 7θ2 +R0(T ). (63)

Let us estimate R0(T ). From the theorem condition

4
√
m1 lnm1 ≤ ν1 ≤ 8

√
m1 lnm1.

Using the definition of h(ν1), it isn’t difficult to prove that

h(ν1) ≤ 8π
(

m1

T
√

lnm1

+ 1
)
. (64)

From (60), (61) and (58) we find successively the values of the ATS parameters:

φ0 = 1, H = 1, φ1 =
ν1
m1

U, φ2 =
ν2
1

m2
1

U2, C1 =
1
2
, C2 =

3
2
,

b = ν1, a = −ν1, λ =
2ν1
U
, C3 =

3U
m1

, C4 =
15U2

2m2
1

, U ≥ 1.

Setting U = 1 and taking into account (11), from (56) and (64) we come after
simple calculations to the estimate

|R0(T )| < 1800
(

1 +
m1

T
√

lnm1

)
ln2m1.

From here and from (63), (27), (39) the statement of the theorem follows. �
Proof of Theorem 4. For numbers α and β from (61) we find the following asymp-
totic representations

α =
T

4π
√
m1

− Tν1

8πm
3
2
1

+
3

32π
Tν2

1

m
5
2
1

+ R̃1,

β =
T

4π
√
m1

+
Tν1

8πm
3
2
1

+
3

32π
Tν2

1

m
5
2
1

+ R̃2,

where for the remainder terms R̃1, R̃2 the relations hold

R̃k ≤ Tν3
1

m
7
2
1

+ T (lnm1)
3
2

m2
1

+ (lnm1)
3
2

√
m1

< 1; k = 1, 2.

Let

a =
[

T

4π
√
m1

]
; ξ =

{
T

4π
√
m1

}
.

Let us represent the number n from (63) in the form

n = a+ μ,
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where the parameter μ takes the values of integers, such that

−M1 ≤ μ ≤M2,

M1 =
Tν1

8πm
3
2
1

− 3
32π

Tν2
1

m
5
2
1

, M2 =
Tν1

8πm
3
2
1

+
3

32π
Tν2

1

m
5
2
1

.

Since

n =
T

4π
√
m1

− ξ + μ,

then, taking (11) into account, we have

− 1
2m1

(
T 2

16π2n2
−m1

)2

= −m1

2

((
1 − ξ − μ

T
4π
√
m1

)−2

− 1

)2

= − 32π2m2
1(μ− ξ)2

T 2

(
1 + θ

5
2

(μ− ξ)4π
√
m1

T

)2

= − 32π2m2
1(μ− ξ)2

T 2
+ 840θ1

π3|μ− ξ|3m
5
2
1

T 3
.

Consequently,

exp

(
− 1

2m1

(
T 2

16π2n2
−m1

)2
)

=
(
1 + 840θ2π3|μ− ξ|3m

5
2
1 T

−3
)(

exp
(
− 32π2m2

1

T 2
(μ− ξ)2

))
. (65)

Applying (65), we can represent (63) in the form

F0(T ) =
2
√

2πm
3
4
1√

T

(
1 + 2θ1

ν1
m1

) ∑
−M1 � μ � M2

⎛⎝1 + 840θ2

(
π|μ− ξ|m

5
6
1

T

)3
⎞⎠

× exp
(
− 32π2m2

1

T 2
(μ− ξ)2

)
cos
(

T 2

8π(a+ μ)
− π

4

)
+ 7θ3 + R0(T ).

The statement of Theorem 4 follows from here and from Theorem 3. �

5. Conclusion

The asymptotic formulas, proved above with the help of the ATS and of other more
simple theorems, allow to approximate and to compute with good accuracy the
atomic inversion on various time intervals. These formulas reflect the peculiarities
of the behavior of the inversion observed in experiments: collapses and revivals of
quantum oscillations are repeated, moreover the amplitude of the Rabi oscillations
decreases with time, and the duration of revivals increases, the interference of the
late revivals with the previous revivals occurs, and we “come out of framework”
of the ATS-theorem. As it was shown above, this moment is determined by time
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of the interaction of the atom with the field and by the parameters: the atom-field
coupling constant and the initial average number of photons before the interaction
of the field with the atom. The same parameters determine the time of collapses
and revivals.

The revivals of the JCM reflect the discrete structure of the photon distribu-
tion, which is described by the Jaynes-Cummings sum and which is a pure quan-
tum mechanical phenomenon. The discreteness, expressed in the Jaynes-Cummings
sum for the atomic inversion, has caused idea to apply the technics which was con-
structed in number theory, in particular the ATS, to approximate similar sums.
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Abstract. We compare geometries of two different local Lie groups in a Car-
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sis vector fields, α ∈ [0, 1], and the dependence of the estimates on α is estab-
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Gromov’s Theorem on nilpotentization of vector fields for which we give new
and simple proof. All the above imply basic results of the theory: Gromov
type Local Approximation Theorems, and for α > 0 Rashevskǐı-Chow Theo-
rem and Ball–Box Theorem, etc. We apply the obtained results for proving
hc-differentiability of mappings of Carnot–Carathéodory spaces with contin-
uous horizontal derivatives. The latter is used in proving the coarea formula
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3.3 hc-differentiability of smooth mappings on Carnot manifolds . . . . . . . 307

4 Application: The coarea and area formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.2 Lay-out of the proof of the coarea formula . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.3 Lay-out of the proof of the area formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
5.1 Proof of Lemma 2.1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

1. Introduction

The geometry of Carnot–Carathéodory spaces naturally arises in the theory of
subelliptic equations, contact geometry, optimal control theory, nonholonomic
mechanics, neurobiology and other areas (see works by A.A. Agrachev [1], A.A.
Agrachev and J.-P. Gauthier [3], A.A. Agrachev and A. Marigo [4], A.A. Agrachev
and A.V. Sarychev [6, 7, 8, 9, 10], A.A. Agrachev and Yu.L. Sachkov [5], A. Bel-
läıche [16], A. Bonfiglioli, E. Lanconelli and F. Uguzzoni [19], S. Buckley, P. Koskela
and G. Lu [20], L. Capogna [23, 24], G. Citti, N. Garofalo and E. Lanconelli [33],
L. Capogna, D. Danielli and N. Garofalo [25, 26, 27, 28, 29], Ya. Eliashberg
[37, 38, 39], G.B. Folland [45, 46], G.B. Folland and E.M. Stein [47], B. Franchi,
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R. Serapioni, F. Serra Cassano [56, 57, 58, 59], N. Garofalo [61], N. Garofalo and
D.-M. Nhieu [63, 64], R.W. Goodman [66], M. Gromov [70, 71], L. Hörmander [76],
F. Jean [77], V. Jurdjevic [84], G.P. Leonardi, S. Rigot [94], W. Liu and H.J. Suss-
man [96], G. Lu [97], G.A. Margulis and G.D. Mostow [105, 106], G. Metivier [107],
J. Mitchell [108], R. Montgomery [109, 110], R. Monti [111, 112], A. Nagel, F. Ricci,
E.M. Stein [114, 115], A. Nagel, E.M. Stein and S. Wainger [116], P. Pansu [118,
119, 120, 121], L.P. Rothschild and E.M. Stein [127], R.S. Strichartz [134], A.M.
Vershik and V.Ya. Gershkovich [136], S.K. Vodop′yanov [137, 139, 140, 141, 142],
S.K. Vodop′yanov and A.V. Greshnov [143], C.J. Xu and C. Zuily [152] for an
introduction to this theory and some its applications).

A Carnot–Carathéodory space (and its special case referred below to as a
Carnot manifold) M (see, for example, [70, 136]) is a connected Riemannian mani-
fold with a distinguished horizontal subbundle HM in the tangent bundle TM that
meets some algebraic conditions on the commutators of vector fields {X1, . . . , Xn}
constituting a local basis in HM, n = dimHpM for all p ∈ M.

The distance dcc (the intrinsic Carnot–Carathéodory metric) between points
x, y ∈ M is defined as the infimum of the lengths of horizontal curves joining x
and y and is not equivalent to Riemannian distance if HM is a proper subbundle
(a piecewise smooth curve γ is called horizontal if γ̇(t) ∈ Hγ(t)M). See results on
properties of this metric in the paper by A. Nagel, E.M. Stein and S. Wainger [116]
and in the monograph by D.Yu. Burago, Yu.D. Burago and S.V. Ivanov [22].

The Carnot–Carathéodory metric is applied in the study of hypoelliptic op-
erators, see C. Fefferman and D.H. Phong [44], L. Hörmander [76], D. Jerison [78],
A. Nagel, E.M. Stein and S. Wainger [116], L.P. Rothschild and E.M. Stein [127],
A. Sánchez-Calle [128]. Also, this metric and its properties are essentially used
in theory of PDE’s (see papers by M. Biroli and U. Mosco [17, 18], S.M. Buck-
ley, P. Koskela and G. Lu [20], L. Capogna, D. Danielli and N. Garofalo [25, 26,
27, 28, 29], V.M. Chernikov and S.K. Vodop′yanov [31], D. Danielli, N. Garo-
falo and D.-M. Nhieu [35], B. Franchi [48], B. Franchi, S. Gallot and R. Whee-
den [49], B. Franchi, C.E. Gutiérrez and R.L. Wheeden [50], B. Franchi and E. Lan-
conelli [51, 52], B. Franchi, G. Lu and R. Wheeden [53, 54], B. Franchi and R. Ser-
apioni [55], R. Garattini [60], N. Garofalo and E. Lanconelli [62], P. Haj�lasz and
P. Strzelecki [73], J. Jost [79, 80, 81, 82], J. Jost and C.J. Xu [83], S. Marchi [104],
K.T. Sturm [135]).

The following results are usually regarded as foundations of the geometry of
Carnot–Carathéodory spaces:

1) Rashevskǐı–Chow Theorem [32, 126] on connection of two points by a hori-
zontal path;

2) Ball–Box Theorem [116] (saying that a ball in Carnot–Carathéodory metric
contains a “box” and is a subset of a “box” with controlled “radii”);

3) Mitchell’s Theorem [108] on convergence of rescaled Carnot–Carathéodory
spaces around g ∈ M to a nilpotent tangent cone;
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4) Gromov’s Theorem [70] on convergence of “rescaled” with respect to g ∈ M

basis vector fields to nilpotentized (at g) vector fields generating a graded
nilpotent Lie algebra (the corresponding connected and simply connected Lie
group is called the nilpotent tangent cone at g); here g ∈ M is an arbitrary
point;

5) Gromov Approximation Theorem [70] on local comparison of Carnot–Cara-
théodory metrics in the initial space and in the nilpotent tangent cone, and
its improvements due to A. Belläıche [16].
The goal of the paper is both to give a new approach to the geometry of

Carnot–Carathéodory spaces and to establish some basic results of geometric mea-
sure theory on these metric structures including an appropriate differentiability.

New results in the geometry of Carnot–Carathéodory spaces contain essen-
tially new quantitative estimates of closeness of geometries of different tangent
cones located one near another. One of peculiarities of the paper is that we solve
all problems under minimal assumption on smoothness of the basis vector fields
(they are C1,α-smooth, 0 ≤ α ≤ 1), although all the basic results are new even
for C∞-vector fields. In some parts of this paper, the symbol C1,α means that
the derivatives of the basis vector fields are Hα-continuous with respect to some
nonnegative symmetric function d : U × U → R, U � M, such that d ≥ Cρ,
0 < C <∞, where C depends only on U , and ρ is the following distance which is

comparable with Riemannian one in U : if y = exp
( N∑

i=1

yiXi

)
(x) then

ρ(x, y) = max
i=1,...,N

{|yi|}. (1.0.1)

Some additional properties of d are described below when it is necessary.
Note that from the very beginning it is unknown whether Rashevskǐı–Chow

Theorem is true for C1,α-smooth basis vector fields. Therefore Carnot–Carathéo-
dory distance can not be well defined. We prove that the function d∞ : M×M → R,

which is defined locally as follows: if y = exp
( N∑

i=1

yiXi

)
(x), then

d∞(x, y) = max
i=1,...,N

{|yi|
1

deg Xi },

is a quasimetric, and we use it instead of dcc. Note that, in the C∞-smooth case
d∞ is comparable locally with dcc [116, 70]. One of the main results is the following
(see below Theorem 2.4.1 for sharp statement).

Theorem 1.0.1. Suppose that d∞(u, u′) = Cε, d∞(u, v) = Cε for some C, C <∞,

wε = exp
( N∑

i=1

wiε
deg XiX̂u

i

)
(v) and w′ε = exp

( N∑
i=1

wiε
deg XiX̂u′

i

)
(v).

Then, for α > 0, we have

max{du
∞(wε, w

′
ε), d

u′
∞(wε, w

′
ε)} ≤ Lερ(u, u′)

α
M
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where L is uniformly bounded in u, u′, v ∈ U ⊂ M, and in {wi}N
i=1 belonging to

some compact neighborhood of 0.
In the case of α = 0, we have

max{du
∞(wε, w

′
ε), d

u′
∞(wε, w

′
ε)} ≤ εo(1)

where o(1) is uniform in u, u′, v ∈ U ⊂ M, and in {wi}N
i=1 belonging to some

compact neighborhood of 0 as ε→ 0.

Here we assume that U ⊂ M is a compact neighborhood (or compactly
embedded neighborhood) small enough, and ρ is a Riemannian metric. The symbol
X̂u

i (X̂u′
i ) denotes a nilpotentized at u (u′) vector field (see Gromov’s Theorem

below) for each i = 1, . . . , N . These vector fields constitute Lie algebra of the
nilpotent tangent cone at u (u′).

Further, in Theorem 2.3.1 we extend this result to the case of a “chain”
consisting of several points.

The content of obtained estimates is very profound: they imply both new
properties of Carnot–Carathéodory spaces and the above-mentioned classical ones.
Moreover, it allows to obtain these results under minimal smoothness of basis
vector fields. We emphasize that many classical results were earlier known only in
the cases of sufficiently smooth basis vector fields.

The investigation of sub-Riemannian geometry under minimal smoothness
of the basis vector fields is motivated by the recently constructed by G. Citti
and A. Sarti, R.K. Hladky and S.D. Pauls, and J. Petitot models of visualiza-
tion [34, 75, 123]. More exactly, the model of a brain perception of a black-and-
white plain image is constructed in these papers. This model makes possible the
interpretation on a computer of a human brain’s work during the visualization of
information. In particular, it is shown how the human brain completes the image a
part of which is closed. The geometry of this model is based on a roto-translation
group which is a three-dimensional Carnot–Carathéodory space with a tangent
cone being a Heisenberg group H1 at each point. Since by now there are no the-
orems on regularity of the image created by a human brain, any reduction of
smoothness of vector fields is essential for the construction of sharp visualization
models.

The main result concerning the geometry of Carnot–Carathéodory spaces
is proved in Section 2. The method of proving is new, and it essentially uses
Hölder dependence of solutions to ordinary differential equations on parameter
(see Theorem 2.1.16). Probably, this dependence is not a new result. For reader’s
convenience we give its independent proof in Section 5. In Subsection 2.1, all other
auxiliary result are formulated.

In Subsection 2.2 we discuss, in particular, the following statements.
A) Let Xj, j = 1, . . . , N , belong to the class C1 on a Carnot–Carathéodory

space M. On Box(g, εrg), consider the vector fields {εXi}={εdeg XiXi} for
all i = 1, . . . , N . Then the uniform convergence

Xε
i =
(
Δg

ε−1

)
∗
εXi → X̂g

i as ε→ 0, i = 1, . . . , N,
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(see the definition of Δg
ε−1 below in 2.2.4) holds at the points of the box

Box(g, rg) and this convergence is uniform in g belonging to some compact
neighborhood, where the collection {X̂g

i }, i = 1, . . . , N , of vector fields around
g constitutes a basis of a graded nilpotent Lie algebra.

B) For each compact domain U ⊂ M small enough, there exists a constant Q =
Q(U), such that the inequality

d∞(u, v) ≤ Q(d∞(u,w) + d∞(w, v))

holds for every triple of points u, w, v ∈ U , where Q(U) depends on U .

C) Given points u, v ∈ M, d∞(u, v) = Cε for some C <∞, for points

wε = exp
( N∑

i=1

wiε
deg XiXi

)
(v) and w′ε = exp

( N∑
i=1

wiε
deg XiX̂u

i

)
(v),

we have
max
{
d∞(wε, w

′
ε), d

u
∞(wε, w

′
ε)
}
≤ εo(1)

where o(1) is uniform in u, v belonging to a compact neighborhood U ⊂ M,
and in {wi}N

i=1 belonging to some compact neighborhood of 0 as ε→ 0.

Statement A is just Gromov’s Theorem [70] on the nilpotentization of vector
fields. Gromov has formulated it for C1-smooth fields, however, Example 2.2.15 by
Valerǐı Berestovskǐı makes evident the fact that arguments of the proof given in
[70, pp. 128–133] have to be corrected. In Corollary 2.2.13, in one particular case,
we give a new proof of this assertion based on an another idea.

Statement B says that d∞ meets the generalized triangle inequality, i.e., it is
a quasimetric. The implication A =⇒ B is proved in Corollary 2.2.17.

Statement C gives an estimate of divergence of integral lines of the given
vector fields and the nilpotentized vector fields.

The implication B =⇒ C is a particular case of Theorem 2.7.1.
In the theory developed in Subsection 2.4, the generalized triangle inequality

plays the crucial role.
In Subsection 2.4, we prove one of the basic results of Section 2, namely,

Theorem 2.4.1 which compares local geometries of two different local Lie groups. It
is essentially based on the main theorem of Subsection 2.3 which compares “global”
geometries of different tangent cones (i.e., it looks like Theorem 2.4.1 with ε = 1).
Subsection 2.5 is devoted to approximation theorems. In particular, we compare
quasimetrics of two tangent cones, and the quasimetric of a tangent cone with the
initial one. There we give their proofs and the proofs of some auxiliary properties
of the geometry. Further, in Subsection 2.6, we prove Theorem 2.3.1, which is the
“continuation” of Theorem 2.4.1. In Subsection 2.7, we compare the geometry of a
Carnot–Carathéodory space with the one of a tangent cone. In Subsection 2.8, we
give applications of our results to investigation of the sub-Riemannian geometry.
From Gromov type theorem on the nilpotentization of vector fields [70], we obtain
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Rashevskǐı–Chow Theorem, Ball–Box Theorem, Mitchell Theorem on Hausdorff
dimension of Carnot manifolds and many other corollaries.

Main results of Section 2 are formulated in short communications [144, 145].
Section 3 is devoted to differentiability of mappings in the category of Carnot–

Carathéodory spaces.
We recall the classical definition of differentiability for a mapping ϕ : M →

M̃ of two Riemannian manifolds: ϕ is differentiable at x ∈ M if there exists a
linear mapping L : TxM → Tϕ(x)M̃ of the tangent spaces such that

ρM̃(ϕ(expx h), expϕ(x) Lh) = o(‖h‖x), h ∈ TxM,

where expx : TxM → M and expϕ(x) : Tϕ(x)M̃ → M̃ are the exponential map-

pings, and ρM̃ is the Riemannian metric in M̃, ‖h‖x is the length of h ∈ TxM.
It is known (see [70, 110]) that the local geometry of a Carnot manifold at a

point g ∈ M can be modelled as a graded nilpotent Lie group GgM. It means that
the tangent space TgM has an additional structure of a graded nilpotent Lie group.
If M and M̃ are two Carnot manifolds and ϕ : M → M̃ is a mapping then a suitable
concept of differentiability (that is, the hc-differentiability) can be obtained from
the previous concept in the following way: ϕ is hc-differentiable at x ∈ M if there
exists a horizontal homomorphism L : GxM → Gϕ(x)M̃ of the nilpotent tangent
cones such that

d̃cc(ϕ(expx h), expϕ(x) Lh) = o(|h|x), h ∈ GxM,

where d̃cc is the Carnot–Carathéodory distance in M̃ and | · |x is an homogeneous
norm in GxM.

For us, it is convenient to regard some neighborhood of a point g both as a
subspace of the metric space (M, dcc) and as a neighborhood of the unity of the
local Lie group GuM with Carnot–Carathéodory metric du

cc (see Definition 1.2).
In the sense explained below (see Definition 2.1.21), exp−1 : GuM → GuM is an
isometrical monomorphism of the Lie structures. Then the last definition of the
hc-differentiability can be reformulated as follows. Given two Carnot manifolds
(M, dcc) and (M̃, d̃cc) and a set E ⊂ M, a mapping ϕ : E → M̃ is called hc-
differentiable at a point u ∈ E (see the paper by S.K. Vodop′yanov and A.V. Gresh-
nov [143], and also [139, 140, 141, 142]) if there exists a horizontal homomorphism
Lu :

(
GuM, du

cc

)
→
(
Gϕ(u)M̃, d

ϕ(u)
cc

)
of the local Lie groups such that

dϕ(u)
cc (ϕ(w), Lu(w)) = o(du

cc(u,w)) as E ∩ Gu � w → u. (1.0.2)

The given definition of the hc-differentiability of mappings for Carnot manifolds
can be treated as a straightforward generalization of both the classical definition
of differentiability and the definition of P-differentiability. Clearly, if the Carnot
manifolds are Carnot groups then this definition of hc-differentiability is equiva-
lent to the definition of P-differentiability introduced by P. Pansu in [121] for an
open set E ⊂ G. For an arbitrary E ⊂ G, the last concept was investigated by
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S.K. Vodop′yanov [137] and by S.K. Vodop′yanov and A.D. Ukhlov [150] (see also
the paper by V. Magnani [98]).

In Section 3, we introduce the notion of hc-differentiability, which is ade-
quate to the geometry of Carnot manifold, and study its properties. Moreover, in
this section, we prove the hc-differentiability of a composition of hc-differentiable
mappings.

In the same section we prove the hc-differentiability of rectifiable curves. In
the case of curves, the definition of the hc-differentiability is interpreted as follows:
a mapping R ⊃ E � t → γ(t) ∈ M̃ is hc-differentiable at a point s ∈ E in a Carnot
manifold M̃ if the relation

dγ(s)
c

(
γ(s+ τ), exp(τa)(γ(s))

)
= o(τ) as τ → 0, s+ τ ∈ E, (1.0.3)

holds, where a ∈ Hγ(s)M̃ ((1.0.3) agrees with (1.0.2) when M = R, see also
[105]). On Carnot groups (Carnot manifolds), relation (1.0.3) is equivalent to
the P-differentiability (cc-differentiability) of curves in the sense of Pansu [121]
(Margulis–Mostow [105]). Our proof of differentiability is new even for Carnot
groups. We prove step by step the hc-differentiability of the absolutely continuous
curves, the Lipschitz mappings of subsets of R into M, and the rectifiable curves.
Here we generalize a classical result and obtain the following assertion: the conti-
nuity of horizontal derivatives of a contact mapping defined on an open set implies
its pointwise hc-differentiability (Theorem 3.3.1).

As an important corollary to these assertions, we infer that the nilpotent
tangent cone is defined by the horizontal subbundle of the Carnot manifold: tangent
cones found from different collections of basis vector fields with the same span of
horizontal vector fields are isomorphic as local Carnot groups (Corollary 3.3.3).
Thus, the correspondence “local basis → nilpotent tangent cone” is functorial.
In the case of C∞-vector fields, this result was established by A. Agrachev and
A. Marigo [4], and G.A. Margulis and G.D. Mostow [106] where a coordinate-free
definition of the tangent cone was given.

Main results of Section 3 are formulated in short communications by S.K. Vo-
dopyanov [139, 140] (see some details and more general results on this subject
including Rademacher–Stepanov Theorem in [141, 142]).

Section 4 is dedicated to such application of results on hc-differentiability as
the sub-Riemannian analog of the coarea and area formulas.

It is well known that the coarea formula∫
U

Jk(ϕ, x) dx =
∫
Rk

dz

∫
ϕ−1(z)

dHn−k(u), (1.0.4)

where Jk(ϕ, x) =
√

det(Dϕ(x)Dϕ∗(x)), has many applications in analysis on
Euclidean spaces. Here we assume that ϕ ∈ C1(U,Rk), U ⊂ Rn, n ≥ k. For the
first time, it was established by A.S. Kronrod [93] for the case of a function ϕ :
R2 → R. Next, it was generalized by H. Federer first for mappings of Riemannian
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manifolds ϕ : Mn → N k, n ≥ k, in [41], and then, for mappings of rectifiable
sets in Euclidean spaces ϕ : Mn → N k, n ≥ k, in [42]. Next, in the paper [117],
M. Ohtsuka generalized the coarea formula (1.0.4) for mappings ϕ : Rn → Rm,
n,m ≥ k, with Hk-σ-finite image ϕ(Rn). An infinite-dimensional analog of the
coarea formula was proved by H. Airault and P. Malliavin in 1988 [11] for the
case of Wiener spaces. This result can be found in the monograph by P. Malliavin
[102]. See other proofs and applications of the coarea formula in the monographs
by L.C. Evans and R.F. Gariepy [40], M. Giaquinta, G. Modica and J. Souček [65],
F. Lin and X. Yang [95].

Formula (1.0.4) has applications in the theory of exterior forms, currents, in
minimal surfaces problems (see, for example, paper by H. Federer and W.H. Flem-
ing [43]). Also, Stokes formula can be easily obtained by using the coarea formula
(see, for instance, lecture notes by S.K. Vodop′yanov [138]). Because of the develop-
ment of analysis on more general structures, a natural question arise to extend the
coarea formula on objects of more general geometry in comparison with Euclidean
spaces, especially on metric spaces and structures on sub-Riemannian geometry.
In 1999, L. Ambrosio and B. Kirchheim [12] proved the analog of the coarea for-
mula for Lipschitz mappings defined on Hn-rectifiable metric space with values in
Rk, n ≥ k. In 2004, this formula was proved for Lipschitz mappings defined on an
Hn-rectifiable metric space with values in an Hk-rectifiable metric space, n ≥ k,
by M. Karmanova [85, 87]. Moreover, necessary and sufficient conditions on the
image and the preimage of a Lipschitz mapping defined on an Hn-rectifiable metric
space with values in an arbitrary metric space for the validity of the coarea for-
mula were found. Independently of this result, the level sets of such mappings were
investigated, and the metric analog of Implicit Function Theorem was proved by
M. Karmanova [86, 87, 89].

All the above results are connected with rectifiable metric spaces. Note that,
their structure is similar to the one of Riemannian manifolds. But there are also
non-rectifiable metric spaces which geometry is not comparable with the Riemann-
ian one. Carnot manifolds are of special interest. Up to now, the problem of the
sub-Riemannian coarea formula was one of well-known intrinsic unsolved problems.

A Heisenberg group and a Carnot group are well known particular cases of a
Carnot manifold. In 1982, P. Pansu proved the coarea formula for functions defined
on a Heisenberg group [118]. Next, in [74], J. Heinonen extended this formula to
smooth functions defined on a Carnot group. In [113], R. Monti and F. Serra
Cassano proved the analog of the coarea formula for BV -functions defined on a
two-step Carnot–Carathéodory space. One more result concerning the analogue of
(1.0.4) belongs to V. Magnani. In 2000, he proved a coarea inequality for mappings
of Carnot groups [100]. The equality was proved only for the case of a mapping
defined on a Heisenberg group with values in Euclidean space Rk [101]. Until now,
the question about the validity of the coarea formula even for a model case of a
mapping of Carnot groups was open.

The sub-Riemannian analogs of the well-known area formula are proved in
recent papers by V. Magnani [98] and S. D. Pauls [122] for Lipschitz mappings of
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Carnot groups ϕ : G → G̃:∫
G

J (ϕ, y) dHν(y) =
∫
G̃

dHν(x), (1.0.5)

However, in their works, these authors do not give the analytic description of
sub-Riemannian Jacobian since they construct the Hausdorff measures Hν with
respect to Carnot–Carathéodory metrics where ν is the Haudorff dimension of G.
The definition is the following:

J (ϕ, y) = lim
r→0

Hν(ϕ(Bcc(y, r)))
Hν(Bcc(y, r))

= lim
r→0

Hν(D̂ϕ(x)[Bcc(y, r)])
Hν(Bcc(y, r))

where Bcc(y, r) is the Carnot–Carathéodory ball and D̂ϕ(x) is the P-differential
of ϕ at y. Obviously, it is impossible to calculate this value.

We prove the sub-Riemannian area formula for Lipschitz (with respect to sub-
Riemannian metric) mappings of Carnot–Carath-éodory spaces. The result is new
even for mappings of Carnot groups: instead of (1.0.5), for a Lipschitz mapping
ϕ : M → M̃, we prove that∫

M

√
det(D̂ϕ(y)∗D̂ϕ(y)) dHν(y) =

∫
M̃

f(y) dHν(x) (1.0.6)

where D̂ϕ(x) is the hc-differential of ϕ at y and and Hausdorff measures Hν are
constructed with respect to a special (sub-Riemannian) quasimetric d2 which is
locally equivalent to the Carnot–Carathéodory metric dcc and ν is the Haudorff
dimension of M. Notice that the sub-Riemannian area formula (1.0.6) looks like
in the Riemannian spaces with sub-Riemannian differential instead of Riemannian
one.

Main results of Section 4 are formulated in [146, 147, 90].

2. Metric properties of Carnot–Carathéodory spaces

2.1. Preliminary Results

Recall the definition of a Carnot–Carathéodory space.

Definition 2.1.1 (compare with [70, 116]). Fix a connected Riemannian C∞-mani-
fold M of a dimension N . The manifold M is called the Carnot–Carathéodory
space if, in the tangent bundle TM, there exists a tangent subbundle HM with a
finite collection of natural numbers dimHxM = dimH1 < · · · < dimHi < · · · <
dimHM = N , 1 < i < M , and each point p ∈ M possesses a neighborhood
U ⊂ M with a collection of C1-smooth vector fields X1, . . . , XN on U enjoying the
following three properties. For each v ∈ U we have
(1) X1(v), . . . , XN (v) constitutes a basis of TvM;
(2) Hi(v) = span{X1(v), . . . , Xdim Hi(v)} is a subspace of TvM of a dimension

dimHi, i = 1, . . . ,M , where H1(v) = HvM;
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(3) [Xi, Xj ](v) =
∑

deg Xk≤deg Xi+deg Xj

cijk(v)Xk(v) (2.1.1)

where the degree degXk equals min{m | Xk ∈ Hm};
If, additionally, the fourth condition holds then the Carnot–Carathéodory space
will be called the Carnot manifold:
(4) a quotient mapping [ ·, · ]0 : H1 × Hj/Hj−1 → Hj+1/Hj, induced by Lie

brackets by the rule [X,Y modHdeg Y−1]0 = [X,Y ] modHdeg Y , is an epi-
morphism for all 1 ≤ j < M (here X ∈ H1, Y ∈ Hj are C1-smooth vector
fields). Here H0 = {0}.

Remark 2.1.2. For any Carnot–Carathéodory space, we prove below, in Theorem
2.1.8, that the coefficients

{cijk(v)}deg Xk=deg Xi+deg Xj

meet the Jacobi identity (2.1.8) and, thus, they define a nilpotent graded Lie
algebra. As soon as

[X, fY ] = f [X,Y ] + (Xf) · Y = f [X,Y ] modHdeg X+deg Y−1

for a C1-function f , it follows that, at the point v ∈ U , in the standard way, the
operator [ ·, · ]0 defines the structure of this algebra on

gv = Al(TvM) =
M⊕

k=1

Hk(v)/Hk−1(v), H0(v) = {0}.

(Here the first equality means that there is an isomorphism between gv and the
canonical representation of the algebra Al(TvM) independent of the choice of a
local basis fields.) Really, for Xi ∈ Hdeg Xi and Xj ∈ Hdeg Xj we define the com-
mutator in gv as

[Xi modHdeg Xi−1, Xj modHdeg Xj−1]

=
( ∑

k: deg Xk=deg Xi+deg Xj

cijk(v)Xk(v)
)

modHdeg Xi+deg Xj−1. (2.1.2)

In view of saying above, we have

[Xl modHdeg Xl−1, [Xi modHdeg Xi−1, Xj modHdeg Xj−1]]

=
∑

k: deg Xk=deg Xi+deg Xj

cijk(v)[Xl modHdeg Xl−1, Xk(v) modHdeg Xi+deg Xj−1]

=
∑

q: deg Xq=deg Xl+deg Xk

∑
k: deg Xk=deg Xi+deg Xj

cijk(v)clkq(v)Xq modHdeg Xq−1.

This equality can be obtained by continuity like in the proof of Theorem 2.1.8.
Applying the equalities (2.1.5), we verify that the commutators (2.1.2) meet Jacobi
identity.
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If we denote Vk(v) = Hk(v)/Hk−1(v) then

[Vk(v), V1(v)]0 ⊂ Vk+1(v) if 1 ≤ k < M, and [VM (v), V1(v)]0 = {0}. (2.1.3)

It is well known [47] that a connected simply connected nilpotent Lie group
G whose Lie algebra g is nilpotent and graded, is called the homogeneous group.

On a Carnot manifold, instead of (2.1.3) we have a stronger property

[Vk(v), V1(v)]0 = Vk+1(v) if 1 ≤ k < M, and [VM (v), V1(v)]0 = {0}. (2.1.4)

In this case, a connected simply connected nilpotent Lie group G whose Lie algebra
g has properties (2.1.4), is called the stratified homogeneous group [47] or the
Carnot group [118].

Notice that all results of Section 2, except of Subsubsections 2.8.1, 2.8.2, and
Subsection 3.2, except of Subsubsection 3.2.3, are valid in any Carnot–Carathéodo-
ry space. From another side, Condition (4) is necessary only for obtaining results
of Subsubsections 2.8.1, 2.8.2 and 3.2.3, Subsection 3.3 and Section 4. The point
is that, in the second case, we use the property on connection of any two points
of a local Carnot group (see the definition below) by a horizontal (with respect to
the local Carnot group) curve that consists of at most L segments of integral lines
of horizontal (with respect to the local Carnot group) vector fields. The latter is
impossible without Condition (4). By another words, we obtain a part of results
only for Carnot manifolds.

Example 2.1.3 (A typical example of a Carnot manifold). For the fixed horizontal
subbundle HM, choose CM -smooth vector fields X1, . . . , Xdim H1 in U constituting
a basis of H1 = HM at every g ∈ U (here M ∈ N is a fixed number). Denote by
Hi(g) the subset of the tangent space generated by the values of all kinds of
commutators of the vector fields X1, . . . , Xdim H1 up to order i−1; we assume here
that the commutators of order zero of vector fields are the vector fields themselves.
Suppose that X1, . . . , Xdim H1 meet the Hörmander condition [74] on U ; i.e., for
each g ∈ U , we have TgM = HM (g) where M is the above-mentioned number.
The (equi)regularity condition [70] is that dimHi(g) is independent of the choice of
g ∈ U for every i ≥ 1; moreover, we assume that M = min{n ∈ N | TgU = Hn(g)}.

Define by induction vector fields Xi, i = 1, . . . , N , constituting a basis at
every g ∈ U , as follows: at the first step, to the vector fields X1, . . . , Xdim H1

that form a basis of H1, we add vector fields Xdim H1+1, . . . , Xdim H2 so that the
vector fields X1, . . . , Xdim H2 constitute a basis of H2; at the (k − 1)th step, to
the vector fields X1, . . . , Xdim Hk−1 , add vector fields Xdim Hk−1+1, . . . , Xdim Hk

so
that X1, . . . , Xdim Hk

form a basis of Hk. As a result, in M − 1 steps, we obtain
a desired set of vector fields Xi, i = 1, . . . , N . The construction of the basis of
TU yields Xk ∈ CM+1−deg Xk . Moreover, we obtain the commutator table of the
form 2.1.1 in which cijk(g) are continuous functions which are identical zero if
degXk > degXi + degXj .

Example 2.1.4 (A Carnot manifold with C1-smooth vector fields). Like in the
previous example consider the CM -smooth vector fields X1, . . . , Xdim H1 ∈ H in
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U ⊂ M constituting a basis of H1 = HM at every g ∈ U . Suppose that the
dimensions of [H,H ](x), [H, [H,H ]](x),. . ., [H, [H, . . . [H,H ] . . .]](x) do not depend
on x (here the last space consists of commutators ofX1, . . . , Xn of the orderM−1).
Choose a basis in H2 = span{H, [H,H ]} by the following way:

Xk(v) =
∑
i,j

ak
ij(v)[Xi, Xj ](v) +

∑
l

bkl (v)Xl,

where ak
ij(v), b

k
l (v) ∈ C1, i, j, l = 1, . . . , n, k = n + 1, . . . ,dimH2. Similarly, we

choose the following basis in Hm+1 = span{Hm, [H,Hm]}, m = 2, . . . ,M − 1:

Xk(v) =
∑
i,j

ak
ij(v)[Xi, Xj ](v) +

∑
l

bkl (v)Xl,

where ak
ij(v), b

k
l (v) ∈ C1, i = 1, . . . , n, j, l = dimHm−1 + 1, . . . ,dimHm, k =

dimHm + 1, . . . ,dimHm+1.

Remark 2.1.5. Consider a C2-smooth local diffeomorphism η : U → RN , U ⊂ M.
Then η∗Xi = Dη〈Xi〉 are also C1-vector fields, i = 1, . . . , N . We have the following
relations instead of (2.1.1):

η∗[Xi, Xj ](w) = [η∗Xi, η∗Xj ](w) =
∑

deg Xk≤deg Xi+deg Xj

cijk(η−1(w))η∗Xk(w).

Denote by X(w) the matrix, the ith column of which consists of the coordinates of
η∗Xi(w) in the standard basis {∂j}N

j=1. Then the entries of X(w) are C1-functions.
Note that

η∗[Xi, Xj ](w) = X(w)(cij1(η−1(w)), . . . , cijN (η−1(w)))T .

Consequently,

(cij1(η−1(w)), . . . , cijN (η−1(w)))T = (X(w))−1 · η∗[Xi, Xj ](w).

From here it follows that all functions cijk ◦ η−1 are continuous, i, j, k = 1, . . . , N .
Since η is continuous, then we have that each cijk = (cijk ◦ η−1) ◦ η is also contin-
uous, i, j, k = 1, . . . , N .

Similarly, if the vector fields Xi belong to the class C1,α, α ∈ (0, 1], i =
1, . . . , N , then the functions cijk belong to the class Hα, i, j, k = 1, . . . , N .

Assumption 2.1.6. Throughout the paper, we assume that all the basis vector
fields X1, . . . , XN are C1,α-smooth, and, consequently, their commutators are Hα-
continuous, α ∈ [0, 1].

In some parts of this paper, we consider cases when the derivatives of the
basis vector fields are Hα-continuous with respect to some nonnegative symmetric
function d : U ×U → R, U � M, such that d ≥ Cρ, 0 < C <∞, where C depends
only on U , and ρ is defined in (1.0.1). Some additional properties of d are described
below when it is necessary.
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Notation 2.1.7. In the paper:

1. The symbol X ∈ C1,0 means that X ∈ C1, and the symbol X ∈ H0 means
X ∈ C.

2. 0-Hölder continuity means the ordinary continuity. We denote a modulus of
continuity of a mapping f by ωf(·).

3. We use the distance ρ from (1.0.1) which is equivalent to Riemannian one.

Theorem 2.1.8. The coefficients

c̄ijk =

{
cijk(u) of (2.1.1) , if degXi + degXj = degXk

0, in other cases

define a graded nilpotent Lie algebra.

Proof. Fix an arbitrary point u ∈ M and show that the collection {cijk(u)} with
degXk = degXi + degXj defines the structure of a Lie algebra. To do this, we
should prove that (see, for example, [125, 19])

1) c̄ijk = −c̄jik for all i, j, k = 1, . . . , N ;
2) the collection {c̄ijk} enjoys Jacobi identity, that is,∑

k

c̄ijk(u)c̄kml(u) +
∑

k

c̄mik(u)c̄kjl(u) +
∑

k

c̄jmk(u)c̄kil(u) = 0 (2.1.5)

for all i, j,m, l = 1, . . . , N .

The property c̄ijk = −c̄jik is evident. Prove that the collection {c̄ijk} under
consideration enjoys Jacobi identity. Note that, the case of degXi + degXj +
degXm > M we have c̄kml(u) = c̄kjl(u) = c̄kil(u) = 0 for all k, l = 1, . . . , N , thus,
such case is trivial.

First step. We may assume without loss of generality that X1, . . . , XN are the
vector fields on an open set of RN (otherwise, consider the local C2-diffeomorphism
η similarly to Remark 2.1.5).

For a vector field Xi(x) =
N∑

j=1

ηij(x)∂j , consider the mollification (Xi)h(x) =

N∑
j=1

(ηij ∗ ψh)(x)∂j , i = 1, . . . , N , where the function ψ ∈ C∞0 (B(0, 1)) is such that∫
B(0,1)

ψ(x) dx = 1, and ψh(x) = 1
hN ψ
(

x
h

)
. By the properties of mollification ηij∗ψh,

i, j = 1, . . . , N , we have (Xi)h
C1

−→
h→0

Xi locally in some neighborhood of u. Note that

the vector fields (Xi)h(v), i = 1, . . . , N , meet the Jacobi identity, and are a basis
of TvM for v belonging to some neighborhood of u, if the parameter h is small
enough. Consequently, defining the coefficients {chijk}N

i,j,k=1 by [(Xi)h, (Xj)h] =



Carnot–Carathéodory Spaces, Coarea and Area Formulas 247

N∑
k=1

chijk(Xk)h, we have

∑
k

∑
l

chijkc
h
kml(Xl)h +

∑
k

∑
l

chmikc
h
kjl(Xl)h

+
∑

k

∑
l

chjmkc
h
kil(Xl)h −

∑
l

[(Xm)hc
h
ijl](Xl)h

−
∑

l

[(Xj)hc
h
mil](Xl)h −

∑
l

[(Xi)hc
h
jml](Xl)h = 0.

Note that, since (Xi)h
C1

−→
h→0

Xi locally, and the vector fields {(Xi)h}N
i=1 are linearly

independent for all h ≥ 0 small enough, we have

(chij1, . . . , c
h
ijN )T = ((X1)h, . . . , (XN )h)−1[(Xi)h, (Xj)h]

and, consequently, chijk → cijk as h→ 0.
Now, fix 1 ≤ l ≤ N . Since the vector fields {(Xi)h}N

i=1 are linearly indepen-
dent for h > 0 small enough, we have∑

k

chijkc
h
kml +

∑
k

chmikc
h
kjl +

∑
k

chjmkc
h
kil

− [(Xm)hc
h
ijl]− [(Xj)hc

h
mil] − [(Xi)hc

h
jml] = 0 (2.1.6)

for each fixed l in some neighborhood of u. Fix i, j,m and l such that degXl =
degXi +degXj +degXm, and consider a test function ϕ ∈ C∞0 (U) on some small
compact neighborhood U � u, U � M. We multiply both sides of (2.1.6) on ϕ and
integrate the result over U . For h > 0 small enough, we have

0 =
∫
U

[∑
k

chijk(v)chkml(v) +
∑

k

chmik(v)chkjl(v)

+
∑

k

chjmk(v)chkil(v)
]
· ϕ(v) dv −

∫
U

[(Xm)hc
h
ijl](v) · ϕ(v) dv

−
∫
U

[(Xj)hc
h
mil](v) · ϕ(v) dv −

∫
U

[(Xi)hc
h
jml](v) · ϕ(v) dv.

Show that, among the last three integrals, the first one tends to zero as h → 0.
Indeed, ∫

U

[(Xm)hc
h
ijl](v) · ϕ(v) dv = −

∫
U

[(Xm)∗hϕ](v) · chijl(v) dv,

where (Xi)∗h is an adjoint operator to (Xi)h. The right-hand part integral tends
to zero as h→ 0 since the value [(Xm)∗hϕ](v) is uniformly bounded in U as h→ 0,
and (cijl)h(v) → 0 as h → 0 in view of the choice of l. The similar conclusion is
true regarding the last two integrals.
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Consequently, taking into account the facts that chijk → cijk locally, and
cijk = 0 for degXk > degXi + degXj, and using du Bois–Reymond Lemma for
h→ 0 we infer∑

k: deg Xk≤deg Xi+deg Xj

cijk(v)ckml(v) +
∑

k: deg Xk≤deg Xm+deg Xi

cmik(v)ckjl(v)

+
∑

k: deg Xk≤deg Xj+deg Xm

cjmk(v)ckil(v) = 0 (2.1.7)

for all v ∈ M close enough to u.

Second step. For fixed l, such that degXl = degXi + degXj + degXm, inves-
tigate the properties of the index k. Consider the first sum. Since degXl ≤
degXk + degXm, we have degXk ≥ degXl − degXm = degXi + degXj . By
(2.1.1), degXk ≤ degXi + degXj , and, consequently, degXk = degXi + degXj .
The other two cases are considered similarly. Thus, the sum (2.1.7) with degXl =
degXi + degXj + degXm and v = u is∑

k: deg Xk=deg Xi+deg Xj

cijk(u)ckml(u) +
∑

k: deg Xk=deg Xm+deg Xi

cmik(u)ckjl(u)

+
∑

k: deg Xk=deg Xj+deg Xm

cjmk(u)ckil(u) = 0. (2.1.8)

The coefficients {c̄ijk = cijk(u)}deg Xk=deg Xi+deg Xj enjoy the Jacobi identity, and,
thus, they define the structure of a nilpotent graded Lie algebra. �

We construct the Lie algebra gu from Theorem 2.1.8 as a graded nilpotent Lie
algebra of vector fields {(X̂u

i )′}N
i=1 on RN such that (X̂u

i )′(0) = ei, i = 1, . . . , N ,

and the exponential mapping (x1, . . . , xN ) → exp
( N∑

i=1

xi(X̂u
i )′
)
(0) is identical [124,

19]. By the construction, the relation

[(X̂u
i )′, (X̂u

j )′] =
∑

deg Xk=deg Xi+deg Xj

cijk(u)(X̂u
k )′ (2.1.9)

holds for the vector fields {(X̂u
i )′}N

i=1 everywhere on RN .

Notation 2.1.9. We use the following standard notations: for each N -dimensional

multi-index μ = (μ1, . . . , μN ), its homogeneous norm equals |μ|h =
N∑

i=1

μi degXi.

Definition 2.1.10. Consider the ODE⎧⎨⎩γ̇(t) =
N∑

i=1

yiXi(γ(t))

γ(0) = x, t ∈ [0, 1],
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where the vector fields X1, . . . , XN are C1-smooth. Then, for the point y = γ(1),

we write y = exp
( N∑

i=1

yiXi

)
(x).

Definition 2.1.11. The graded nilpotent Lie (homogeneous) group GuM corre-
sponding to the Lie algebra gu, is called the nilpotent tangent cone of M at u ∈ M.
We construct GuM in RN as a group algebra [124], that is, the exponential map is
identical. By Campbell–Hausdorff formula, the group operation is defined for the
basis vector fields (X̂u

i )′ on RN , i = 1, . . . , N , to be left-invariant [124]: if

x = exp
( N∑

i=1

xi(X̂u
i )′
)
, y = exp

( N∑
i=1

yi(X̂u
i )′
)

then x · y = z = exp
( N∑

i=1

zi(X̂u
i )′
)
,

where

zi = xi + yi, degXi = 1,

zi = xi + yi +
∑

|el+ej |h=2,
l<j

F i
el,ej

(u)(xlyj − ylxj), degXi = 2,

zi = xi + yi +
∑

|μ+β|h=k,
μ>0, β>0

F i
μ,β(u)xμ · yβ (2.1.10)

= xi + yi +
∑

|μ+el+β+ej |h=k,
l<j

Gi
μ,β,l,j(u)xμyβ(xlyj − ylxj), degXi = k,

and the coefficients F i
μ,β(u) depend on the constants cijk(u) of (2.1.9).

(Comment: it is just formula (2.1.9) of the paper).

Theorem 2.1.8 implies

Theorem 2.1.12 ([47]). If { ∂
∂xl

}N
l=1 is the standard basis in RN then the jth coor-

dinate of a vector field (X̂u
i )′(x) =

N∑
j=1

zj
i (u, x)

∂
∂xj

can be written as

zj
i (u, x) =

⎧⎪⎨⎪⎩
δij if j ≤ dimHdeg Xi ,∑
|μ+ei|h=deg Xj ,

μ>0

F j
μ,ei

(u)xμ if j > dimHdeg Xi . (2.1.11)

Definition 2.1.13. Suppose that u ∈ M and (v1, . . . , vN ) ∈ BE(0, r), where BE(0, r)
is a Euclidean ball in RN . Define a mapping θu(v1, . . . , vN ) : BE(0, r) → M as
follows:

θu(v1, . . . , vN ) = exp
( N∑

i=1

viXi

)
(u).
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It is known, that θu is a C1-diffeomorphism if 0 < r ≤ ru for some ru > 0. The
collection {vi}N

i=1 is called the normal coordinates or the coordinates of the 1st kind
(with respect to u ∈ M) of the point v = θu(v1, . . . , vN ).

Assumption 2.1.14. The compactly embedded neighborhood U � M under con-
sideration is such that θu(BE(0, ru)) ⊃ U for all u ∈ U .

By means of the exponential map we can push-forward the vector fields (X̂u
i )′

onto U for obtaining the vector fields X̂u
i = (θu)∗(X̂u

i )′ where

(θu)∗〈Y 〉(θu(x)) = Dθu(x)〈Y 〉,

Y ∈ TxRN . Note that X̂u
i (u) = Xi(u). Indeed, on the one hand, by the defi-

nition, we have (θu)−1
∗ 〈Xi〉(0) = ei. On the other hand, Theorem 2.1.12 implies

(X̂u
i )′(0) = ei. Thus X̂u

i (u) = Xi(u).

Theorem 2.1.15. The vector fields X̂u
i , i = 1, . . . , N , are locally Hα-continuous

on u.

The proofs of this theorem and of many other assertions concerning smooth-
ness use often the following lemma (see its proof in Section 5).

Theorem 2.1.16. Consider the ODE{
dy
dt = f(y, v, u),
y(0) = 0

(2.1.12)

where t ∈ [0, 1], y, v, u ∈ W ⊂ RN and Lipy(f) = L < 1.

1) If the mapping f(y, v, u) = f(y, u) ∈ C1(y)∩Hα(u) then the solution y(t, u) ∈
Hα(u) locally.

2) If f(y, v, u) ∈ C1,α(y, u) ∩ C1(v) and ∂f
∂v ∈ C1,α(y, u) then dy(t,v,u)

dv ∈ Hα(u)
locally.

Notation 2.1.17. If a mapping η is α-Hölder with respect to d then we write η ∈ Hα
d .

Remark 2.1.18. The following statements are proved similarly to Theorem 2.1.16.

1) If in (2.1.12) the mapping f(y, v, u) = f(y, u) ∈ C1(y) ∩Hα
d (u), where d is a

nonnegative symmetric function defined on U ×U , U � M, such that d ≥ Cρ,
0 < C < ∞, where C depends only on U , then the solution y(t, u) ∈ Hα

d (u)
locally.

2) If f(y, v, u) ∈ C1(y, u)∩C1(v), its derivatives in y and in u belong toHα
d (y, u)

locally, ∂f
∂v ∈ C1(y, u), and the derivatives of ∂f

∂v in y and in u belong to
Hα

d (y, u) locally then dy(t,v,u)
dv ∈ Hα

d (u) locally.

Notation 2.1.19. Hereinafter, we denote a nonnegative symmetric function defined
on U × U , U � M, possessing properties from item 1 of Remark 2.1.18, by d.
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Proof of Theorem 2.1.15. First step. Fix U � M small enough. Recall that the
vector fields {(X̂u

i )′}N
i=1, u ∈ U , are smooth on θ−1

u (U) � RN . By (2.1.9), for
v ∈ U we have the table of commutators

[(X̂u
i )′, (X̂u

j )′](v) =
∑

deg Xk=deg Xi+deg Xj

cijk(u)(X̂u
k )′(v).

By means of Assumption 2.1.6 and Definition 2.1.1, the functions cijk(u) from
(2.1.1) are Hα-continuous.

If X =
N∑

i=1

xi(X̂u
i )′ and Y =

N∑
i=1

yi(X̂u
i )′ then by Campbell–Hausdorff formula

we have exp tY ◦ exp tX(g) = expZ(t)(g) where Z(t) = tZ1 + t2Z2 + · · ·+ tMZM

and Z1, Z2, . . . are some vector fields independent of t. Dynkin formula (see, for
instance, [124]) for calculating Zl, 1 ≤ l ≤M , gives

Zl =
1
n

l∑
k=1

(−1)k−1

k

∑
(p)(q)

(adY )qk(adX)pk . . . (adY )q1(adX)p1−1X

p1!q1! . . . pk!qk!

=
∑

(p)(q)

C(p)(q)(adY )qk(adX)pk . . . (adY )q1(adX)p1−1X,

where C(p)(q) = const, (p) = (p1, . . . , pk), (q) = (q1, . . . , qk). We sum over all
natural p1, q1, . . . pk, qk, such that pi + qi > 0, p1 + q1 + · · · + pk + qk = l, and
(adA)B = [A,B], (adA)0B = B. According to (2.1.9), each summand can be
represented as a sum

Zl(v) =
N∑

j=1

dj,l(u, x, y)(X̂u
j )′(v),

where dj,l(u, x, y) are polynomial functions of x = (x1, . . . , xN ), y = (y1, . . . , yN)
coefficients of which are polynomial functions of {c̄imk(u)}i,m,k and, consequently,
are Hölder in u. More exactly (see, for example, [47]),

M∑
l=2

Zl =
M∑
l=2

N∑
j=1

dj,l(u, x, y)(X̂u
j )′ =

N∑
j=1

[ M∑
l=2

∑
|μ+β|h=l,
μ>0,β>0

F j
μ,β(u)xμ · yβ

]
(X̂u

j )′.

Consequently,

dj,l(u, x, y) =
M∑
l=2

∑
|μ+β|h=l,
μ>0,β>0

F j
μ,β(u)xμ · yβ.

Hence, F j
μ,β(u) are Hα-continuous in u, and (X̂u

i )′ are also Hα-continuous in u

(see (2.1.11)).
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Second step. Consider the following Cauchy problem:⎧⎨⎩dΦ(t,u,ξ)
dt =

N∑
i=1

ξiXi(Φ),

Φ(0, u, ξ) = u,

(2.1.13)

where ξ = (ξ1, . . . , ξN ). Note that Φ(t, u, ξ) = exp
( N∑

i=1

tξiXi

)
(u). We can assume

without loss of generality, that M = RN . Setting Ψ = Φ − u, rewrite this Cauchy
problem the following way:⎧⎨⎩dΨ(t,u,ξ)

dt =
N∑

i=1

ξiXi(Ψ + u),

Ψ(0, u, ξ) = 0.

If Assumption 2.1.6 holds then the mapping f(Ψ, ξ, u) =
N∑

i=1

ξiXi(Ψ + u) is C1,α-

smooth in Ψ and u, and it is C1-smooth in ξ. Moreover, ∂f
∂ξ ∈ C1,α(Ψ, u). Note

that, from the definition it follows θu(ξ) = Φ(1, u, ξ) = Ψ(1, u, ξ) + u.
By theorem 2.1.16 (with Ψ instead of y and ξ instead of v) on smooth de-

pendence of ODE solution on parameters (see Section 5 for details), it is easy to
see, that the differential Dθu(y) is Hα-continuous in u locally.

Since X̂u
i (x) = (θu)∗(X̂u

i )′(y), x = θu(y), the proposition follows from results
of the 1st and 2nd steps. �

Remark 2.1.20. If the derivatives of Xi, i = 1, . . . , N , are locally Hölder with
respect to d, then X̂u

i , i = 1, . . . , N , are locally Hölder on u with respect to d.

Definition 2.1.21. To the Lie algebra {X̂u
i }N

i=1 at u ∈ M, it corresponds a local
homogeneous group GuM. Define it in such a way that the mapping θu is a local
group isomorphism of some neighborhood of the unity of the group GuM and GuM.

The canonical Riemannian structure on GuM is defined by scalar product
at the unit of GuM coinciding with those in TuM. The canonical Riemannian
structure on the nilpotent tangent cone GuM is defined by such a way that the
local group isomorphism θu is an isometry.

Assumption 2.1.22. Hereinafter in the paper, we assume that the neighborhood
U under consideration is such that U ⊂ GuM for all u ∈ U . Consider the map-

ping θu
g (x1, . . . , xN ) = exp

( N∑
i=1

xiX̂
u
i

)
(g). It is well defined for (x1, . . . , xN ) ∈

BE(0, rg,u). We suppose that U ⊂ θu
g (BE(0, rg,u)) for all u, g ∈ U .

Remark 2.1.23. Recall that the vector fields X̂u
i , i = 1, . . . , N , are locally Hα-

continuous on M, α ∈ [0, 1]. The exponential mapping exp
( N∑

i=1

aiX̂
u
i

)
(g) is not
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defined correctly for such fields. Therefore, in view of smoothness of (θ−1
u )∗(X̂u

i ),
i = 1, . . . , N , we define the point

a = exp
( N∑

i=1

aiX̂
u
i

)
(g)

according to Definition 2.1.21: first, we obtain a point

au = exp
( N∑

i=1

ai · (θ−1
u )∗〈X̂u

i 〉
)

(θ−1
u (g)) = exp

( N∑
i=1

ai · (X̂u
i )′
)

(θ−1
u (g)),

and then we define a = θu(au). Moreover, we similarly define the whole curve
corresponding to this exponential mapping. Suppose that⎧⎨⎩γ̇u(t) =

N∑
i=1

ai · (θ−1
u )∗〈X̂u

i 〉(γu(t))

γu(0) = θ−1
u (g).

Then, for the curve γ(t) = θu(γu(t)), we have⎧⎨⎩γ̇(t) =
N∑

i=1

aiX̂
u
i (γ(t))

γ(0) = g.

In particular, we have:

1) The exponential mapping θ̂u(v1, . . . , vn) = exp
( N∑

i=1

viX̂
u
i

)
(u) is defined as

θu

[
exp
( N∑

i=1

vi(X̂u
i )′
)

(0)
]
;

and the mapping θ̂w
u (v1, . . . , vn) = exp

( N∑
i=1

viX̂
u
i

)
(w) is defined as

θu

[
exp
( N∑

i=1

vi(X̂u
i )′
)

(θ−1
u (w))

]
.

2) The inverse mapping exp−1 is also defined by the unique way for vector fields
{X̂u

i }N
i=1 since it is defined by the unique way for {(X̂u

i )′}N
i=1.

3) The group operation is defined by the following way: if x = exp
( N∑

i=1

xiX̂
u
i

)
,

y = exp
( N∑

i=1

yiX̂
u
i

)
then x · y = exp

( N∑
i=1

yiX̂
u
i

)
◦ exp

( N∑
i=1

xiX̂
u
i

)
=

exp
( N∑

i=1

ziX̂
u
i

)
where zi are taken from Definition 2.1.11.
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4) Using the normal coordinates θ̂−1
u , define the action of the dilation group δu

ε

in the local homogeneous group GuM: to an element x = exp
( N∑

i=1

xiX̂
u
i

)
(u),

assign δu
ε x = exp

( N∑
i=1

xiε
deg XiX̂u

i

)
(u) in the cases where the right-hand side

makes sense.

Property 2.1.24. It is easy to see using Property 2.1.23 that the mapping δu
ε is dif-

ferentiable. Moreover, for each vector field X̂u
i , i = 1, . . . , N , we have (δu

ε )∗X̂u
i (g) =

εdeg XiX̂u
i (δu

ε g).

This property comes from the “canonical” homogeneous group TuM [47].

Lemma 2.1.25 ([139]). Suppose that u ∈ U . The equality
j∑

i=1

∑
|μ+ei|h=deg Xj ,
|μ+ei|=l, μ>0

xiF
j
μ,ei

(u)xμ = 0, x = (x1, . . . , xN ) ∈ RN ,

holds for all degXj ≥ 2, l = 2, . . . ,degXj.

Proof. Consider a vector field X =
N∑

i=1

xi(X̂i
u)′. It is known that exp rsX ◦

exp rtX(g) = exp r(s + t)X(g). Therefore, by (2.1.10), we have∑
|μ+β|h=deg Xj ,

μ>0, β>0

r|μ+β|F j
μ,β(g)s|μ|xμ · t|β|xβ = 0 (2.1.14)

for all fixed s and t, degXj ≥ 2. It follows that the coefficients at all powers of r
vanish. In particular, if |μ+ β| = l ≥ 2 then∑

|μ+β|h=deg Xj ,
μ>0, β>0, |μ+β|=l

F j
μ,β(g)s|μ|xμ · t|β|xβ = 0

for all t and arbitrary fixed x and s. Consequently, if |β| = 1 then we infer

P (s) =
deg Xj∑

l=2

sl−1

j∑
i=1

∑
|μ+ei|h=deg Xj ,
|μ+ei|=l, μ>0

xiF
j
μ,ei

(g)xμ ≡ 0,

where s is an arbitrarily small parameter. Therefore, all coefficients of the polyno-
mial P (s) at the powers of s vanish. The lemma follows. �
Lemma 2.1.26 ([139]). Let u ∈ U be an arbitrary point. Then

exp
( N∑

i=1

aiXi

)
(u) = exp

( N∑
i=1

aiX̂
u
i

)
(u)

for all |ai| < ru, i = 1, . . . , N .
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Proof. Let a = (a1, . . . , aN ) ∈ RN . Relations (2.1.10) and (2.1.14) imply the fol-
lowing equalities:

N∑
i=1

tai(X̂u
i )′(ta1, . . . , taN)

=
N∑

i=1

tai

(
∂

∂xi
+

∑
j>dim Hdeg Xi

∑
|μ+ei|h=deg Xj ,

μ>0

F j
μ,ei

(u)(ta)μ ∂

∂xj

)

=
N∑

i=1

tai
∂

∂xi
+

N∑
j=2

N+1∑
l=1

tl
( j∑

i=1

ai

∑
|μ+ei|h=deg Xj ,
|μ+ei|=l, μ>0

F j
μ,ei

(u)aμ

)
∂

∂xj

= t

N∑
i=1

ai
∂

∂xi
.

By the definition of the exponential map, we infer

RN � (a1, . . . , aN ) =
N∑

i=1

ai(X̂u
i )′(a1, . . . , aN) = exp

( N∑
i=1

ai(X̂u
i )′
)

since the exponential map is identical. From this, it follows immediately that

θu(a1, . . . , aN ) = θu

( N∑
i=1

ai(X̂u
i )′(a1, . . . , aN )

)

= θu

(
exp
( N∑

i=1

ai(X̂u
i )′
))

= exp
( N∑

i=1

aiX̂
u
i

)
according to Remark 2.1.23. �

Definition 2.1.27. Suppose that M is a Carnot–Carathéodory space, and u ∈ M.
For a, p ∈ GuM, where

a = exp
( N∑

i=1

aiX̂
u
i

)
(p),

we define the value du
∞(a, p) = max

i
{|ai|

1
deg Xi } on GuM.

The following properties comes from those on the “canonical” homogeneous
group GuM [47].

Property 2.1.28. It is easy to see that du
∞(x, y), u ∈ U , is a quasimetric on GuM

meeting the following properties:
1) du

∞(x, y) ≥ 0, du
∞(x, y) = 0 if and only if x = y;

2) du∞(u, v) = du∞(v, u);
3) the value du

∞(x, y) is continuous with respect to each of its variables;
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4) there exists a constant Q� = Q�(U) such that the inequality

du
∞(x, y) ≤ Q�(du

∞(x, z) + du
∞(z, y))

holds for every triple of points x, y, z ∈ U ∩ GuM, i.e., du
∞ is a quasimetric.

Property 2.1.29. Let

wε = exp
( N∑

i=1

εdeg XiwiX̂
u
i

)
(v) and gε = exp

( N∑
i=1

εdeg XigiX̂
u
i

)
(v).

Then du
∞(wε, gε) = εdu

∞(w1, g1).

Notation 2.1.30. By Boxu(x, r) we denote a set {y ∈ M : du
∞(x, y) < r}.

Property 2.1.31. We have δu
ε (Boxu(u, r)) = Boxu(u, εr).

2.2. Gromov’s theorem on the nilpotentization of vector fields
and estimate of the diameter of a box

Definition 2.2.1. Suppose that M is a Carnot–Carathéodory space, and let U ⊂ M

be as in Assumption 2.1.14. Given

v = exp
( N∑

i=1

viXi

)
(u)

u, v ∈ U , define the value d∞(u, v) = max
i
{|vi|

1
deg Xi }. By Box(x, r) we denote a

set {y ∈ M : d∞(x, y) < r}, r ≤ rx.

Proposition 2.2.2. The relations

ρ(u, v) ≤ d∞(u, v) ≤ ρ(u, v)
1

M

hold for all u, v ∈ U � M.

Remark 2.2.3. d∞ is one of particular cases of d.

Definition 2.2.4. Using the normal coordinates θ−1
u , define the action of the dilation

group Δu
ε in a neighborhood of a point u ∈ M: to an element x = exp

( N∑
i=1

xiXi

)
(u),

assign Δu
εx = exp

( N∑
i=1

xiε
deg XiXi

)
(u) in the cases where the right-hand side

makes sense.

Property 2.2.5. By Lemma 2.1.26 we have Δu
εx = δu

ε x.

Property 2.2.6. By Lemma 2.1.26 we have Boxu(u, r) = Box(u, r).

Property 2.2.7. We have Δu
ε (Box(u, r)) = Box(u, εr), r ∈ (0, ru], ε ≤ 1.
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Property 2.2.8. The value d∞ has the following properties:

1) d∞(u, v) ≥ 0, d∞(u, v) = 0 if and only if u = v;
2) d∞(u, v) = d∞(v, u);
3) the value d∞(u, v) is continuous with respect to each of its variables;
4) there exists a constant Q = Q(U) such that the inequality

d∞(u, v) ≤ Q(d∞(u,w) + d∞(w, v))

holds for every triple of points u,w, v ∈ U , i.e., d∞ is a quasimetric.

Proof. The proof of Properties 1–3 is based on known properties of solutions to
ODE’s. We prove the generalized triangle inequality at the end of the current
subsection (see Corollary 2.2.17). �

Theorem 2.2.9. Let Xj ∈ C1 and M = 2. Fix u ∈ M. If d∞(u,w) = Cε, then

X̂u
j (w) =

∑
k: deg Xk≤deg Xj

[δkj +O(ε)]Xk +
∑

k: deg Xk>deg Xj

o(εdeg Xk−deg Xj )Xk(w),

j = 1, . . . , N . All o(·) and O(·) are uniform in u belonging to some compact subset
of U .

Proof. First step. Fix u ∈ M and put zk
j (s) = zk

j (u, s), k, j = 1, . . . , N , s ∈ RN ,
from relations (2.1.11). Applying the mapping θ−1

u to each vector field X̂u
j , j =

1, . . . , N , we deduce

Dθ−1
u 〈X̂u

j 〉(s) =
N∑

k=1

zk
j (s)

∂

∂xk
,

where
{

∂
∂xk

}N

k=1
is the collection of the vectors of the standard basis in RN =

TxRN , and by (2.1.11) we have

zk
j (s) = δkj +

∑
|μ|h=deg Xk−deg Xj>0

F k
μ,ej

(u)sμ.

Note that, here |sμ| = O(εdeg Xk−deg Xj ), since

d∞(0, s) = d∞(θ−1
u (u), s) = du

∞(u, θu(s)) = O(ε).

Then, for s = (s1, . . . , sN), we obtain

X̂u
j (θu(s)) =

N∑
k=1

zk
j (s)Dθu(s)

〈 ∂

∂xk

〉
=

N∑
k=1

zk
j (s)
(
Xk(θu(s)) +

1
2

[
Xk,

N∑
l=1

slXl

]
(θu(s))

)
,
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since Dθu(s)〈 ∂
∂xk

〉 = Xk(θu(s)) + 1
2

[
Xk,

N∑
l=1

slXl

]
(θu(s)). The latter is doubtless

true for C∞-vector fields since in this case Baker-Campbell-Hausdorff formula does
all job:

θu(s+ rek) = exp
( N∑

l=1

slXl + rXk

)
(u)

= exp
( N∑

l=1

slXl + rXk

)
◦ exp

(
−

N∑
l=1

slXl

)
◦ exp

( N∑
l=1

slXl

)
(u)

= exp
(
rXk +

r

2

[
Xk,

N∑
l=1

slXl

]
+ o(r)

)
(θu(s)) as r → 0.

It follows directly that, for C∞-vector fields, we have

Dθu(s)
〈 ∂

∂xk

〉
=

∂

∂r
θu(s+rek)

∣∣∣
r=0

= Xk(θu(s))+
1
2

[
Xk,

N∑
l=1

slXl

]
(θu(s)). (2.2.1)

Otherwise, in some local coordinate system around the point u we can approximate
the given C1-vector fields Xl by C∞-vector fields X(q)

l , q ∈ N, l = 1, . . . , N , in
C1-topology (see the proof of Theorem 2.1.8 for details). Then, in some neighbor-
hood of 0 small enough, we have correctly defined the mapping θ(q)u (s) constructed
according to Definition 2.1.13 by means of vector fields X(q)

l , l = 1, . . . , N (note
that the mentioned neighborhood of 0 can be chosen the same for all q ∈ N).
Moreover, θ(q)u (s) converges to θu(s) uniformly in some neighborhood of 0 as
q → ∞, and Dθ

(q)
u (s)

〈
∂

∂xk

〉
= ∂

∂r θ
(q)
u (s + rek)

∣∣∣
r=0

converges to Xk(θu(s)) +

1
2

[
Xk,

N∑
l=1

slXl

]
(θu(s)) uniformly in the same neighborhood of 0. By the well-

known classical result on the differentiability of a limit mapping, the equality
(2.2.1) follows for the given C1-vector fields Xl, l = 1, . . . , N .

In view of the properties of the point s, we get |sl| = O(εdeg Xl), l = 1, . . . , N .
Moreover, taking into account the table of commutators (2.1.1) from the definition
of the Carnot–Carathéodory space, we have[

Xk,

N∑
l=1

slXl

]
(θu(s)) =

N∑
l=1

∑
m:deg Xm≤deg Xk+deg Xl

cklm(θu(s))Xm(θu(s)).

Consequently,

X̂u
j (θu(s)) =

N∑
k=1

zk
j (s)Xk(θu(s))

+
1
2

N∑
k=1

N∑
l=1

∑
m: deg Xm≤deg Xk+deg Xl

zk
j (s)slcklm(θu(s))Xm(θu(s))
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=
N∑

k=1

[
zk

j (s) +
1
2

∑
m,l: deg Xk≤deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

]
Xk(θu(s)).

Represent the last sum as∑
k: deg Xk<deg Xj

[
zk

j (s) +
1
2

∑
m,l: deg Xk≤deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

]
Xk(θu(s))

+
∑

k: deg Xk=deg Xj

[
zk

j (s) +
1
2

∑
m,l: deg Xk≤deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

]
Xk(θu(s))

+
∑

k: deg Xk>deg Xj

[
zk

j (s) +
1
2

∑
m,l: deg Xk≤deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

]
Xk(θu(s)).

(2.2.2)

Note that, we have zk
j (s) = 0 if degXk < degXj . Next, if degXk < degXj and

degXk = degXm + degXl, we have degXm < degXj and zm
j (s) = 0. Thus, the

first sum equals∑
k: deg Xk<deg Xj

[1
2

∑
m,l:deg Xk<deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

]
Xk(θu(s)).

Similarly, for the second sum we have zk
j (s) = δkj , and if degXj = degXm+degXl

then zm
j (s) = 0 since this relation implies degXm < degXj . Thus, we obtain∑

k: deg Xk=deg Xj

[
δkj +

1
2

∑
m,l:deg Xj<deg Xm+deg Xl

zm
j (s)slcmlj(θu(s))

]
Xj(θu(s)).

In the third sum, the functions zk
j (s) and zm

j (s) can take any possible values.

Second step. Now, we calculate exact estimates of three sums in (2.2.2).

1) Let degXk > degXj and degXk = degXm+degXl. From the above estimate
we infer ∣∣zm

j (s)sl

∣∣ = O(εdeg Xk−deg Xj ).

Next, suppose that degXk > degXj and degXk < degXm + degXl. Then
all the situations degXm > degXj , degXm = degXj and degXm < degXj

are possible. Here we have

∣∣zm
j (s)sl

∣∣ =
⎧⎪⎨⎪⎩
εO(εdeg Xl) ≤ εO(εdeg Xk−deg Xj ) if degXm > degXj ,

O(εdeg Xl) ≤ εO(εdeg Xk−deg Xj ) if degXm = degXj ,

0 if degXm < degXj .

2) Let now degXk = degXj and degXk < degXm + degXl. We again have to
consider the situations degXm > degXj, degXm = degXj and degXm <
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degXj . It follows

∣∣zm
j (s)sl

∣∣ =
⎧⎪⎨⎪⎩
εO(εdeg Xl) ≤ εO(1) if degXm > degXj ,

O(εdeg Xl) ≤ εO(1) if degXm = degXj ,

0 if degXm < degXj .

3) Finally, let degXk < degXj and degXk < degXm + degXl. In three situa-
tions degXm > degXj , degXm = degXj and degXm < degXj , we obtain
the same result as in the previous case:

∣∣zm
j (s)sl

∣∣ =
⎧⎪⎨⎪⎩
εO(εdeg Xl) ≤ εO(1) if degXm > degXj ,

O(εdeg Xl) ≤ εO(1) if degXm = degXj ,

0 if degXm < degXj .

Thus, in the first sum of (2.2.2), the coefficients at Xk equal O(ε), and in
the second sum the coefficient at Xj equals 1 + O(ε), and the coefficients at Xk

for k �= j equal O(ε).

Third step. Consider the last sum (where degXk > degXj). Note that,

cmlk(θu(s)) = cmlk(u) + o(1). (2.2.3)

Then, taking into account the results of the second step, we deduce∑
m,l:deg Xk≤deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

=
∑

m,l:deg Xk=deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

+
∑

m,l:deg Xk<deg Xm+deg Xl

zm
j (s)slcmlk(θu(s))

=
∑

m,l:deg Xk=deg Xm+deg Xl

zm
j (s)slcmlk(u) + o(1) · εdeg Xk−deg Xj

+ ε ·O(εdeg Xk−deg Xj )

=
∑

m,l:deg Xk=deg Xm+deg Xl

zm
j (s)slcmlk(u) + o(1) · εdeg Xk−deg Xj . (2.2.4)

Consequently,

X̂u
j (θu(s)) =

∑
k: deg Xk≤deg Xj

[δkj +O(ε)]Xk

+
∑

k: deg Xk>deg Xj

[
zk

j (s) +
1
2

∑
m,l

zm
j (s)slcmlk(u) + o(εdeg Xk−deg Xj )

]
Xk(θu(s)),

(2.2.5)

where m, l in the last sum are such that degXk = degXm + degXl.
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Fourth step. It only remains to show that

zk
j (s) +

1
2

∑
m,l:deg Xk=deg Xm+deg Xl

zm
j (s)slcmlk(u) = δkj . (2.2.6)

For obtaining this, consider the mapping

θ̂u(x) = exp
( N∑

i=1

xiX̂
u
i

)
(u) = θu(x),

where x = (x1, . . . , xN ), and apply the arguments of the first step with the follow-
ing difference: it is known, that the vector fields X̂u

i , i = 1, . . . N , are continuous,
but they may not be differentiable, and formally, we cannot consider commutators
of such vector fields. Therefore we modify previous arguments. For doing this, we
consider the following representation of the identical (see Lemma 2.1.26) mapping:

θ̃0(s) = exp
( N∑

i=1

siDθ̂
−1
u 〈X̂u

i 〉
)

(0) = s,

and represent ∂
∂xk

= Dθ̃0(s)
〈

∂
∂xk

〉
as before we represented Dθu(s)

〈
∂

∂xk

〉
. It is

possible, since the vector fields Dθ̂−1
u 〈X̂u

i 〉, i = 1, . . . , N , are smooth. Similarly to
the first step, we infer

Dθ̃0(s)
〈 ∂

∂xk

〉
= Dθ̂−1

u 〈X̂u
k 〉(θ̂0(s)) +

1
2

[
Dθ̂−1

u 〈X̂u
k 〉,

N∑
l=1

slDθ̂
−1
u 〈X̂u

l 〉
]
(θ̃0(s)).

Since θ̃0(s) = s, in view of properties of the vector fields Dθ̂−1
u 〈X̂u

i 〉, i = 1, . . . , N ,
we deduce

∂

∂xk
= Dθ̂−1

u 〈X̂u
k 〉(s) +

1
2

[
Dθ̂−1

u 〈X̂u
k 〉,

N∑
l=1

slDθ̂
−1
u 〈X̂u

l 〉
]
(s)

= Dθ̂−1
u 〈X̂u

k 〉(s) +
1
2

N∑
l=1

sl

∑
m: deg Xm=deg Xk+deg Xl

cklm(u)Dθ̂−1
u 〈X̂u

m〉(s).

It follows

Dθ̂u(s)
〈 ∂

∂xk

〉
= X̂u

k (θu(s)) +
1
2

N∑
l=1

sl

∑
m: deg Xm=deg Xk+deg Xl

cklm(u)X̂u
m(θu(s)).

Applying further the arguments of the first step, we have

X̂u
j (θu(s)) =

N∑
k=1

[
zk

j (s) +
1
2

∑
m, l:deg Xk=deg Xm+deg Xl

zm
j (s)slcmlk(u)

]
X̂u

k (θu(s)),

and thus (2.2.6) is proved.
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Taking into account the result (2.2.5) of the third step, we obtain

X̂u
j (w) =

∑
k: deg Xk≤deg Xj

[δkj +O(ε)]Xk +
∑

k: deg Xk>deg Xj

o(εdeg Xk−deg Xj )Xk(w),

j = 1, . . . , N . The theorem follows. �

Remark 2.2.10.

1) If the vector fields Xi, i = 1, . . . , N , belong to the class C1,α, α ∈ (0, 1], then
in (2.2.3) and, consequently, in (2.2.4), we obtain o(1) = O(ρ(u, θu(s))α). In
this case, we have

X̂u
j (w) =

∑
k: deg Xk≤deg Xj

[δkj +O(ε)]Xk

+
∑

k: deg Xk>deg Xj

ρ(u, θu(s))α ·O(εdeg Xk−deg Xj )Xk(w).

2) If the derivatives of the basis vector fields are Hölder with respect to d∞, we
obtain o(1) = O(d∞(u, θu(s))α) = O(εα), and

X̂u
j (w) =

∑
k: deg Xk≤deg Xj

[δkj+O(ε)]Xk+
∑

k: deg Xk>deg Xj

O(εdeg Xk−deg Xj+α)Xk(w).

3) If the derivatives of the basis vector fields are Hölder with respect to d, we
have

X̂u
j (w) =

∑
k: deg Xk≤deg Xj

[δkj +O(ε)]Xk

+
∑

k: deg Xk>deg Xj

d(u, θu(s))α ·O(εdeg Xk−deg Xj )Xk(w).

Corollary 2.2.11. For x ∈ Box(u, ε), the coefficients {aj,k(x)}N
j,k=1 from the equal-

ity

Xj(x) =
N∑

k=1

aj,k(x)X̂u
k (x) (2.2.7)

enjoy the following property:

aj,k(x) =

⎧⎪⎨⎪⎩
O(ε) if degXj > degXk,

δkj +O(ε) if degXj = degXk,

o(εdeg Xk−deg Xj ) if degXj < degXk,

(2.2.8)

j = 1, . . . , N . All o(·) and O(·) are uniform in u belonging to some compact neigh-
borhood within U .

Proof. According to Theorem 2.2.9, the coefficients bj,k(x) from the relation

X̂u
j (x) =

N∑
k=1

bj,k(x)Xk(x),
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j = 1, . . . , N , have the same properties. Put A(x) = (aj,k(x))N
j,k=1 and B(x) =

(bj,k(x))N
j,k=1. Then A(x) = B(x)−1.

We use the well-known formula of calculation of the entries of the inverse
matrix to estimate all aj,k(x), j, k = 1 . . . , N . We estimate the value |aj,k(x)| =
| detBj,k(x)|
| det B(x)| , where the (N−1)×(N−1)-matrix Bj,k is constructed from the matrix
B(x) by deleting its jth column and kth line.

It is easy to see that | detB(x)| = 1 +O(ε), where O(ε) is uniform for x and
u belonging to some compact neighborhood U ⊂ M.

Next, we estimate | detBj,k(x)|. Obviously, | detBj,j(x)| = 1 + O(ε) and
| detBj,k(x)| = O(ε) for degXj = degXk and j �= k, where O(ε) is uniform for x
and u belonging to some compact neighborhood U ⊂ M, j = 1, . . . , N .

Let now degXk > degXj . By construction, the diagonal elements of Bj,k(x)
with numbers (i, i), j ≤ i < k, equal o(εdeg Xi+1−deg Xi), and the elements under
these ones equal 1+O(ε). Note that, detBj,k(x) up to a multiple (1+O(ε)) equals
the product of determinants of the following three matrices: the first P (x) = pi,l(x)
is a (j − 1) × (j − 1)-matrix with pi,l(x) = bi,l(x), the second Q(x) = qi,l(x) is a
(k − j)× (k − j)-matrix with qi,l(x) = bi+j−1,l+j(x), and the third R(x) = ri,l(x)
is an (N − k) × (N − k)-matrix with ri,l(x) = bi+k−1,l+k−1(x).

For the matrices P (x) and R(x), we have

| detP (x)| = 1 +O(ε) and | detR(x)| = 1 +O(ε).

By construction, qi,i(x) = o(εdeg Xi+1−deg Xi) and qi+1,i(x) = 1 + O(ε). We have
that the product of the diagonal elements of Q(x) equals

k−1∏
i=j

o(εdeg Xi+1−deg Xi) = o(εdeg Xk−deg Xj ).

It is easy to see that, for all other summands constituting detQ(x), we have the
same estimate.

Similarly, we show that for degXk < degXj we have | detBj,k(x)| = O(ε).
Here O(ε) is uniform in x and u belonging to some compact neighborhood U ⊂ M.
The lemma follows. �

Remark 2.2.12. Similarly to Remark 2.2.10:
1) if Xi ∈ C1,α then

aj,k(x) =

⎧⎪⎨⎪⎩
O(ε) if degXj > degXk,

δkj +O(ε) if degXj = degXk,

ρ(u, x)α ·O(εdeg Xk−deg Xj ) if degXj < degXk,

2) if the derivatives of the basis vector fields are Hölder with respect to d∞ then

aj,k(x) =

⎧⎪⎨⎪⎩
O(ε) if degXj > degXk,

δkj +O(ε) if degXj = degXk,

O(εdeg Xk−deg Xj+α) if degXj < degXk,
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3) if the derivatives of the basis vector fields are Hölder with respect to d then

aj,k(x) =

⎧⎪⎨⎪⎩
O(ε) if degXj > degXk,

δkj +O(ε) if degXj = degXk,

d(u, x)α ·O(εdeg Xk−deg Xj ) if degXj < degXk,

j = 1, . . . , N .

Corollary 2.2.11 implies instantly Gromov’s Theorem on the nilpotentization
of vector fields [70].

Corollary 2.2.13 (Gromov’s Theorem [70]). Let Xj ∈ C1. On Box(u, εru), consider
the vector fields {εXi}={εdegXiXi}, i = 1, . . . , N . Then the uniform convergence

Xε
i =
(
Δu

ε−1

)
∗〈

εXi〉 → X̂u
i as ε→ 0, i = 1, . . . , N, (2.2.9)

holds at the points of the box Box(u, ru) and this convergence is uniform in u
belonging to some compact neighborhood.

Proof. Really, by (2.2.7), (2.2.8) and in view of Corollary 2.2.11 and Proper-
ties 2.1.24 and 2.2.5, we infer

Xε
i (x) =

(
Δu

ε−1

)
∗〈

εXi〉(x) = εdeg Xi

N∑
k=1

ai,k

(
Δu

ε (x)
)(

Δu
ε−1

)
∗〈X̂

u
k 〉(x)

=
N∑

k=1

εdeg Xi−deg Xkai,k

(
Δu

ε (x)
)
X̂u

k (x)

=
∑

k: deg Xk≤deg Xi

εdeg Xi−deg Xk(δik +O(ε))X̂u
k (x) +

∑
k: deg Xk>deg Xi

o(1)X̂u
k (x)

as ε → 0. From here it follows the uniform convergence Xε
i =
(
Δg

ε−1

)
∗
εXi → X̂g

i

as ε→ 0, i = 1, . . . , N , at the points of the box Box(g, rg) and this convergence is
uniform in g belonging to some compact neighborhood. �

Remark 2.2.14. For C∞-vector fields and arbitrary M , the above corollary is for-
mulated in [107, 127] in another way: X̂g

i is a homogeneous part of Xi, 1 =
1, . . . , N . This statement implies Corollary 2.2.13. It is shown in [68] that, apply-
ing arguments based on Campbell–Hausdorff formula, the smoothness of vector
fields can be reduced to be 2M + 1.

Estimates (2.2.8) were written in the proof of [142, Thereom 3.1] as a con-
sequence of the Gromov’s Theorem which can be proved by method of [127] un-
der an additional smoothness of vector fields: Xj ∈ C2M−deg Xj . Corollary 2.2.13
shows that estimates (2.2.8) are not only necessary but also sufficient for the va-
lidity of the Gromov’s Theorem. In our paper estimates (2.2.8) are obtained under
minimal assumption on the smoothness of vector fields: Xj ∈ C1, j = 1, . . . , N .
Thus, taking into account the footnote in [142, p. 253]: If Gromov’s Theorem is
proved under weaker assumptions then all main results of the present paper and
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[139, 140, 141, 142, 144] hold under the same assumptions on the smoothness of
vector fields, i.e., all results of the mentioned papers [139, 140, 141, 142, 144] are
valid under the minimal assumptions on the smoothness of basis vector fields.

Recall that Gromov [70, p. 130] has formulated the theorem under assump-
tion Xj ∈ C1. Valerǐı Berestovskǐı sent us the following example confirming that
arguments of Gromov’s proof have to be corrected.

Example 2.2.15. Let X = ∂
∂x , Y = xy ∂

∂x + ∂
∂y +x ∂

∂z . Then Z := [X,Y ] = y ∂
∂x + ∂

∂z ,
[X,Z] = 0, [Y, Z] = ∂

∂x − y
(
y ∂

∂x + ∂
∂z

)
= (1 − y2) ∂

∂x − y ∂
∂z . One can easily see

that X,Y, Z constitutes a global frame of smooth vector fields over the ring of
smooth functions in R3. Also for corresponding one-parameter subgroups X(x),
Y (y), Z(z), we have (X(x) ◦ Y (y) ◦ Z(z))(0, 0, 0) = (x, y, z). Under this X = ∂

∂x

on R3, Y = ∂
∂y on x = 0, Z = ∂

∂z on z-line (even on y = 0). On the other hand,
∂
∂yZ = X �= [Y, Z] (see above) on x = 0. This contradicts to Gromov’s statement
that (A) of [70, p. 131] implies (B) of [70, p. 132] in general case.

Corollary 2.2.16 (Estimate of the diameter of a box). In a compact neighbor-
hood U ⊂ M, for each point u ∈ U and each ε > 0 small enough, we have
diam(Box(u, ε)) ≤ Lε, where L depends only on U .

Proof. Assume the contrary: there exist sequences {εk}k∈N, {uk}k∈N, {vk}k∈N and
{wk}k∈N such that εk → 0 as k → ∞, d∞(uk, vk) = εk and d∞(uk, wk) ≤ εk but
d∞(vk, wk) > kεk. Since U ⊂ M is compact, we may assume without loss of
generality that uk → u0 as k →∞. Then vk → u0 and wk → u0 as k →∞.

Assume without loss of generality that εdeg XiDΔuk

ε−1Xi(x) → X̂uk

i (x) as
ε → 0 for x ∈ Box(u0,Kr0), r0 ≤ 1, uniformly in uk, i = 1, . . . , N , where K =
max{5, 5c4}, c is such that duk∞ (v, w) ≤ c(duk∞ (u, v) + duk∞ (u,w)) for all u, v, w ∈
Box(u0,Kr0) and k ∈ N (see Corollary 2.2.13). Note that, c < ∞ since c =
c(uk) continuously depends on values of {F j

μ,β(uk)}j,μ,β , consequently, it depends
continuously on uk. Moreover, the choice of K implies the following:

1) For k big enough, we have that an integral curve of a vector field with constant
coefficients connecting Δuk

r0ε−1
k

(wk) and Δuk

r0ε−1
k

(vk) in the local homogeneous

group GukM lies in Box(uk,Kr0).
2) We may choose k by the following way: d∞(u0, uk) < r0 and the Riemann-

ian distance between the integral curves corresponding to the collections
{X̂uk

i }N
i=1 and {(r0−1εk)deg XiDΔuk

r0ε−1
k

〈Xi〉}N
i=1 (with constant coefficients)

that connect points Δuk

r0ε−1
k

(wk) and Δuk

r0ε−1
k

(vk), is less than r0.

Fix k ∈ N. Then

vk = exp
( N∑

i=1

ξiε
deg Xi

k Xi

)
(uk), wk = exp

( N∑
i=1

ηiε
deg Xi

k Xi

)
(uk),
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and wk = exp
( N∑

i=1

ζi(εk)εdeg Xi

k Xi

)
(vk). Apply the mapping Δuk

r0ε−1
k

to vk and wk.

We have

Δuk

r0ε−1
k

(wk) = exp
( N∑

i=1

ζi(ε)ε
deg Xi

k DΔuk

r0ε−1
k

〈Xi〉
)(

Δuk

r0ε−1
k

(vk)
)
.

Note that, d∞
(
uk,Δuk

r0ε−1
k

(vk)
)

= r0 and d∞
(
uk,Δuk

r0ε−1
k

(wk)
)
≤ r0. In view of

Corollary 2.2.13, the vector fields (r0−1εk)deg XiDΔuk

r0ε−1
k

〈Xi〉(x) = X̂uk
i (x)+ o(1),

i = 1, . . . , N , where o(1) is uniform in x and in uk. Consequently, since
dim span{X̂uk

i (x)}N
i=1 = N at each x ∈ Box(u0, r0), the Riemannian distance be-

tween Δuk

r0ε−1
k

(wk) and Δuk

r0ε−1
k

(vk) is bounded from above for all k ∈ N big enough.

Therefore, the coefficients ζi(εk), i = 1, . . . , N , are bounded from above for all
k ∈ N big enough. The assumption d∞(vk, wk) > kεk contradicts this conclusion.

Thus there exists a constant L = L(U) such that diam(Box(u, ε)) ≤ Lε for
u ∈ U . The statement follows. �

From the previous statement we come immediately to the following

Corollary 2.2.17 (Triangle inequality). The quasimetric d∞(x, y) meets locally the
generalized triangle inequality (see Property 2.2.8).

Corollary 2.2.18 (Decomposition of the basis vector fields). Fix a point θu(s) ∈
Box(u,O(ε)). Remarks 2.2.10 and 2.2.12 imply the following decomposition of
Dθ−1

u 〈Xi〉, i = 1, . . . , N :

[Dθ−1
u 〈Xi〉(s)]j = [(X̂u

i )′(s)]j +
N∑

k=1

(ai,k(θu(s)) − δik)[(X̂u
k )′(s)]j .

If d∞(u, θu(s)) = O(ε), we have

[Dθ−1
u 〈Xi〉(s)]j = zj

i (u, s) +
∑

k: deg Xk≤deg Xi

O(ε)zj
k(u, s)

+
∑

k: deg Xk>deg Xi

ai,k(θu(s))zj
k(u, s).

If degXj ≤ degXi then [Dθ−1
u 〈Xi〉(s)]j = δij + O(ε). For degXj > degXi we

have:
1) If the basis vector fields are C1-smooth then we deduce [Dθ−1

u 〈Xi〉(s)]j =
zj

i (u, s) +O(εdeg Xj−deg Xi+1) + o(1) · εdeg Xj−deg Xi , and therefore

[Dθ−1
u 〈Xi〉(s)]j = zj

i (u, s) + o(εdeg Xj−deg Xi).

2) If the derivatives of the basis vector fields are Hα-continuous with respect to
d, then if degXj > degXi we have

[Dθ−1
u 〈Xi〉(s)]j = zj

i (u, s) + d(u, θu(s))α ·O(εdeg Xj−deg Xi).
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In particular, for α = 1 and d = d∞ or d = dz
∞, where d∞(u, z) = O(ε) (see

further Local Approximation Theorem 2.5.4), we have

[Dθ−1
u 〈Xi〉(s)]j = zj

i (u, s) +O(εdeg Xj−deg Xi+1).

Remark 2.2.19. Next we assume that Gromov’s Theorem 2.2.13 holds for arbitrary
M . In particular, it follows that all corollaries of this subsection are valid under
the same assumption.

2.3. Comparison of geometries of tangent cones

The goal of Subsections 2.3, 2.4 and 2.6 is to compare the geometries of two local
homogeneous groups. The main result of Section 2 is the following

Theorem 2.3.1. Let u, u′ ∈ U be such that d∞(u, u′) = Cε. For a fixed Q ∈ N,
consider points w0, d∞(u,w0) = Cε, and

wε
j = exp

( N∑
i=1

wi,jε
deg XiX̂u

i

)
(wε

j−1), wε
j
′ = exp

( N∑
i=1

wi,jε
deg XiX̂u′

i

)
(wε′

j−1),

wε′
0 = wε

0 = w0, j = 1, . . . , Q. (Here Q ∈ N is such that all these points belong to
the neighborhood U ⊂ M, for all ε > 0.) Then, for α > 0,

max{du
∞(wε

Q, w
ε′
Q), du′

∞(wε
Q, w

ε′
Q)} = ε · [Θ(C, C, Q, {F j

μ,β |U}j,μ,β)]ρ(u, u′)
α
M .

(2.3.1)
In the case of α = 0, we have

max{du
∞(wε

Q, w
ε′
Q), du′

∞(wε
Q, w

ε′
Q)} = ε · [Θ(C, C, Q, {F j

μ,β|U}j,μ,β)][ω(ρ(u, u′))]
1

M

where ω → 0 is a modulus of continuity. (Here Θ is a bounded measurable function:
|Θ| ≤ C0 < ∞, it is uniform in u, u′, w0 ∈ U and {wi,j}, i = 1, . . . , N , j =
1, . . . , Q, belonging to some compact neighborhood of 0, and it depends on Q and
on {F j

μ,β |U}j,μ,β.)

Notation 2.3.2. Throughout the paper, by the symbol Θ, we denote some bounded
function absolute values of which do not exceed some 0 ≤ C <∞, where C depends
only on the whole neighborhood where Θ is defined (i.e., it does not depend on
points of this neighborhood).

Remark 2.3.3. If the derivatives ofXi, i = 1, . . . , N , are locally Hölder with respect
to d, then we have d(u, u′)

α
M instead of ρ(u, u′)

α
M in (2.3.1).

In the current subsection we prove the “base” of the main result, i.e., we
obtain it for Q = 1 and ε = 1. The proof for the general case is written in
Subsection 2.6.

Fix points u, u′ ∈ U , where U is such that Assumption 2.1.14 holds. Recall
that the collections of vector fields {X̂u

i }N
i=1 and {X̂u′

i }N
i=1 are frames in GuM and

in Gu′M respectively.
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Definition 2.3.4. By X̂p(q), we denote the matrix, such that its ith column consists
of the coordinates of the vector X̂p

i (q), i = 1, . . . , N , p ∈ M, q ∈ GpM, in the frame
{Xj}N

j=1.

Lemma 2.3.5. Suppose that Assumption 2.1.6 holds. Let Ξ(u, u′, q), u, u′, q ∈ U , be
the matrix such that

X̂u′(q) = X̂u(q)Ξ(u, u′, q). (2.3.2)
Then the entries of Ξ(u, u′, q) are (locally) Hα-continuous in u and u′.

Proof. This statement is a direct consequence of Theorem 2.1.15. Indeed, the latter
asserts that the vector fields {X̂u

i }N
i=1 are locally Hα-continuous in u. Since we

prove a local property, and M is a Riemannian manifold, then, instead of M, we
may consider without loss of generality some neighborhood U ⊂ RN containing
u and u′. Then it is easy to see that the entries of the matrices X̂u and X̂u′

are (locally) Hα-continuous on U × U . Since both matrices are non-degenerate in
U ⊂ M, we have that Ξ(u, u′, q) = X̂u(q)−1X̂u′(q) is also non-degenerate, and its
entries Ξij(u, u′, q) belong locally to Hα(U × U), i, j = 1, . . . , N . Moreover, these
Hölder constants are the same for all q ∈ U . �

Remark 2.3.6. If the derivatives of Xi, i = 1, . . . , N , are locally Hölder with
respect to d, then the entries of Ξ are also locally Hölder with respect to d (see
Remark 2.1.20).

Remark 2.3.7. Suppose that Assumption 2.1.14 holds. Since Ξ(u, u′, q) equals the
unit matrix if u = u′ then Ξij = δij + Θρ(u, u′)α, where Θ = Θ(u, u′, q) is a
bounded measurable function: |Θ| ≤ C0 < ∞, and the constant C0 ≥ 0 depends
only on the neighborhood U ⊂ M.

Indeed, it follows immediately from the α-Hölder continuity of all vector
fields: we have |Ξij(u, u′, q)− δij | ≤ C0(ρ(u, u′)α), where

C0 = sup
u,u′,q∈U

|Ξij(u, u′, q) − δij |
ρ(u, u′)α

<∞

depends only on the neighborhood U ⊂ M.

Remark 2.3.8. If the derivatives ofXi, i = 1, . . . , N , are locally Hölder with respect
to d, then Ξij(u, u′, q) = δij + Θd(u, u′)α.

Theorem 2.3.9. Suppose that u, v ∈ U . Consider points

w = exp
( N∑

i=1

wiX̂
u
i

)
(v), and w′ = exp

( N∑
i=1

wiX̂
u′
i

)
(v).

Then, for α > 0, we have

max{du
∞(w,w′), du′

∞(w,w′)} = Θ[ρ(u, u′)αρ(v, w)]
1

M , (2.3.3)

where u, u′, v ∈ U , {wi}N
i=1 ∈ U(0) ⊂ RN .
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In the case of α = 0,

max{du
∞(w,w′), du′

∞(w,w′)} = Θ[ωΞ(ρ(u, u′))ρ(v, w)]
1

M .

Here the symbol ωΞ denotes the modulus of continuity of Ξ on the variables u
and u′.

Remark 2.3.10. Here (see Notation 2.3.2), the value

sup |Θ(u, u′, v, {wi}N
i=1)| <∞

depends only on U ⊂ M and U(0) ⊂ RN .

Proof of Theorem 2.3.9. First step. Fix q ∈ U � M. Notice that both collections of
vectors {X̂u

i (q)}N
i=1 and {X̂u′

i (q)}N
i=1, u, u

′ ∈ U , are frames of TqM. Consequently,
there exists the transition (N ×N)-matrix Ξ(u, u′, q) = (Ξ(u, u′, q))i,k such that

X̂u′
i (q) =

N∑
k=1

(Ξ(u, u′, q))k,iX̂
u
k (q). (2.3.4)

Remark 2.3.7 implies that

Ξ(u, u′, q)i,j =

{
1 + Θi,jρ(u, u′)α if i = j

Θi,jρ(u, u′)α if i �= j,
(2.3.5)

where the values Θi,j are bounded uniformly in all u, u′, q ∈ U . Thus X̂u′
i (q) =

X̂u
i (q) + X̂u(q)[Ξ(u, u′, q) − I], where |[Ξ(u, u′, q) − I]|k,j = Θk,jρ(u, u′)α for all

k, j = 1, . . . , N .

Second step. Consider the integral line γ(t) of the vector field
N∑

i=1

wiX̂
u′
i starting at

v with the endpoint w′. Rewrite the tangent vector to γ(t) in the frame {X̂u
i }N

i=1

as γ̇(t) =
N∑

i=1

wu
i (γ(t))X̂u

i (γ(t)). From (2.3.4) it follows that

wu
i (q) =

N∑
k=1

wk(Ξ(u, u′, q))i,k.

From (2.3.5) we can estimate the coefficient wu
i at X̂u

i :

wu
i = wi +

N∑
k=1

[wkΘi,kρ(u, u′)α], i = 1, . . . , N. (2.3.6)

Third step. Next, we estimate the Riemannian distance between w and w′. By κ(t)

denote the integral line of the vector field
N∑

i=1

wiX̂
u
i connecting v and w, i.e., a line

such that κ(0) = v and

κ̇(t) =
N∑

i=1

wiX̂
u
i (κ(t)).
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By means of the mapping θ−1
u we transport κ(t) and γ(t) to RN . Let κu(t) =

θ−1
u (κ(t)) and γu(t) = θ−1

u (γ(t)). Then

κ̇u(t) = (θ−1
u )∗〈κ̇(t)〉 =

N∑
i=1

wi(X̂u
i )′(κu(t))

and similarly

γ̇u(t) =
N∑

i=1

wi(θ−1
u )∗〈X̂u′

i 〉 =
N∑

i=1

wu
i (t)(X̂u

i )′(γu(t))

since (θ−1
u )∗〈X̂u′

i 〉(θ−1
u (q)) =

N∑
k=1

(Ξ(u, u′, q))k,i(X̂u
i )′(θ−1

u (q)) (see (2.3.4)). Using

formula (2.1.11), rewrite the tangent vectors in Cartesian coordinates:

κ̇u(t) =
N∑

i=1

wi

N∑
j=1

zj
i (u, κu(t))

∂

∂xj
=

N∑
j=1

Wj(u, κu(t))
∂

∂xj

where

Wj(u, κu(t)) =
N∑

i=1

wiz
j
i (u, κu(t)) = wj +

j−1∑
i=1

wiz
j
i (u, κu(t))

since zj
i = 0 if j < i. Similarly

γ̇u(t) =
N∑

j=1

Wu
j (u, γu(t))

∂

∂xj

where

Wj(u, γu(t)) = wu
j (t) +

j−1∑
i=1

wu
i (t)zj

i (u, γu(t)).

Now we estimate the length of the curve λu(t) = γu(t) − κu(t) + θ−1
u (w) with

endpoints θ−1
u (w) and θ−1

u (w′). The tangent vector to λu(t) equals

λ̇u(t) = γ̇u(t) − κ̇u(t) =
N∑

j=1

[Wu
j (u, γu(t)) −Wj(u, κu(t))]

∂

∂xj

=
N∑

j=1

[
(wu

j (t) − wj) +
∑
i<j

wi(z
j
i (u, γu(t)) − zj

i (u, κu(t)))
] ∂

∂xj

+
N∑

j=1

[ N∑
i: i<j

(wu
i (t) − wi)z

j
i (u, γu(t))

] ∂

∂xj
. (2.3.7)

Notice that for the last sum we have∣∣∣ N∑
j=1

[ N∑
i: i<j

(wu
i (t) − wi)z

j
i (u, γu(t))

] ∂

∂xj

∣∣∣ = Θρ(u, u′)αρ(v, w)
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since wu
i (t) = wi + Θρ(u, u′)αρ(v, w) by (2.3.6). By properties of zj

i ,

zj
i (u, γu(t)) − zj

i (u, κu(t)) = Θ
[∑
|μ|=1

|γμ
u (t) − κμ

u(t)|
]
.

Notice that

|γu(t) − κu(t)| ≤
t∫

0

|γ̇u(τ) − κ̇u(τ)| dτ.

Consequently

max
t

|γu(t) − κu(t)| ≤ max
t

|γ̇u(t) − κ̇u(t)| = max
t

|λ̇u(t)|.

Applying these estimates to (2.3.7) and taking into account (2.3.6), we obtain

max
t

|λ̇u(t)| = Θρ(u, u′)αρ(v, w) + Θρ(v, w)max
t

|λ̇u(t)|.

From here it follows

max
t

|λ̇u(t)| =
Θρ(u, u′)αρ(v, w)

1 −Θρ(v, w)
≤ 2Θρ(u, u′)αρ(v, w)

if Θρ(v, w) ≤ 1
2 . Further, we denote the function 2Θ also by the symbol Θ. Thus,

ρ(θ−1
u (w), θ−1

u (w′)) ≤
1∫

0

|λ̇u(t)| dt ≤ max
t

|λ̇u(t)| = Θρ(u, u′)αρ(v, w),

and ρ(w,w′) ≤ Θρ(u, u′)αρ(v, w).

Fourth step. By the inequality du∞(p, q) ≤ Cρ(p, q)
1

M , we obtain the estimate of
du
∞(w,w′):

du
∞(w,w′) = Θ[ρ(u, u′)αρ(v, w)]

1
M

in a compact neighborhood U . The same estimate is true for du′
∞(w,w′). The the-

orem follows. �

Remark 2.3.11. If the derivatives of Xi, i = 1, . . . , N , are locally Hölder with
respect to d, then we have d(u, u′)α instead of ρ(u, u′)α in (2.3.3) (the proof is
similar, see Remarks 2.1.20 and 2.3.8).

2.4. Comparison of local geometries of tangent cones

Consider points

wε = exp
( N∑

i=1

wiε
deg XiX̂u

i

)
(v) and w′ε = exp

( N∑
i=1

wiε
deg XiX̂u′

i

)
(v).

Theorem 2.4.1. Assume that u, u′, v ∈ U � M. Suppose that d∞(u, u′) = Cε and
d∞(u, v) = Cε for some C, C <∞. Then, for α > 0, we have

max{du
∞(wε, w

′
ε), d

u′
∞(wε, w

′
ε)} = ε[Θ(C, C)]ρ(u, u′)

α
M . (2.4.1)
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In the case of α = 0, we have

max{du
∞(wε, w

′
ε), d

u′
∞(wε, w

′
ε)}

= ε[Θ(C, C)] max{ωΞ(ρ(u, u′)), ωΔu

ε−1,v
◦Δu′

ε,v
(ρ(u, u′))} 1

M ,

where Δu
ε−1,v is defined below in (2.4.5) and (2.4.6). (Here Θ is uniform in u, u′, v ∈

U ⊂ M, and in {wi}N
i=1 belonging to some compact neighborhood of 0 (see Notation

2.3.2), and all the values ωΔu

ε−1,v
◦Δu′

ε,v
(·) are uniform in u, u′, v ∈ U and ε > 0).

Remark 2.4.2. If the derivatives of Xi, i = 1, . . . , N , are locally α-Hölder with
respect to d (instead of ρ), then we have d(u, u′)

α
M instead of ρ(u, u′)

α
M in (2.4.1)

(the proof is similar, see also Remark 2.3.11).

Proof of Theorem 2.4.1. First step. We put w = w1 and w′ = w′1. In the frame
{X̂u

i }N
i=1, we have

w′ = exp
( N∑

i=1

w′iX̂
u
i

)
(v).

Consider the point

ωε = exp
( N∑

i=1

w′iε
deg XiX̂u

i

)
(v).

Note that ω1 = w′. In view of the generalized triangle inequality, du∞(wε, w
′
ε) ≤

c(du
∞(wε, ωε) + du

∞(ωε, w
′
ε)). By the above estimate

du
∞(ωε, wε) = εdu

∞(w,w′) = εΘ(ρ(u, u′)αρ(v, w))
1

M . (2.4.2)

Note that, if α = 0, then we obtain here εΘ(ωΞ(ρ(u, u′))ρ(v, w))
1

M instead of
εΘ(ρ(u, u′)αρ(v, w))

1
M .

Now we estimate the distance du
∞(ωε, w

′
ε). Represent w′ε in the frame X̂u

i ,
i = 1, . . . , N :

w′ε = exp
( N∑

i=1

αi(ε)εdeg XiX̂u
i

)
(v), (2.4.3)

and consider the point

ω′ = exp
( N∑

i=1

αi(ε)X̂u
i

)
(v).

Here the coefficients αi(ε), i = 1, . . . , N , depend on u, u′, {wi}N
i=1 and ε > 0. Note

that, in view of definition, we have du∞(ωε, w
′
ε) = εdu∞(w′, ω′).

Second step. Next, we show that the coefficients αi(ε), i = 1, . . . , N , are uniformly
bounded for all ε > 0 uniformly on u, u′, v and {wi}N

i=1. By another words, we
prove that there exists S <∞ such that du

∞(v, w′ε) ≤ Sε for all ε > 0 small enough
and all u and {wi}N

i=1. Indeed, by the generalized triangle inequality for Carnot
groups, we have

du
∞(v, w′ε) ≤ c(du

∞(u, v) + du
∞(u,w′ε)).
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Next, du
∞(u,w′ε) = d∞(u,w′ε). Since d∞(u, v) = Cε, it is enough to show that

d∞(u,w′ε) ≤ Kε. We obtain it via estimating the value d∞(u′, w′ε) and taking into
account the fact that d∞(u, u′) = Cε. Since d∞(u′, w′ε) = du′

∞(u′, w′ε), then in view
of the generalized triangle inequality for homogeneous groups, we have

du′
∞(u′, w′ε) ≤ c(du′

∞(u′, v) + du′
∞(v, w′ε)). (2.4.4)

The conditions d∞(u, u′) = Cε, d∞(u, v) = Cε and Corollary 2.2.16 imply

du′
∞(u′, v) = d∞(u′, v) ≤ Lmax{C, C}ε.

Applying (2.4.4) and Corollary 2.2.16 to points u, u′ and w′ε, we infer

d∞(u,w′ε) ≤ Kε.

From here and from the fact that d∞(u, v) = Cε, we have

du
∞(v, w′ε) ≤ Sε

for all ε > 0 small enough, u, u′, v ∈ U and {wi}N
i=1 belonging to some compact

neighborhoods.
From here, we have that all αi(ε), i = 1, . . . , N , are bounded uniformly in

ε > 0.

Third step. Note that du
∞(ωε, w

′
ε) = εdu

∞(w′, ω′). Consider the mapping

Δu
ε,v(x) = exp

( N∑
i=1

xiε
deg XiX̂u

i

)
(v). (2.4.5)

More exactly, if we fix u, v ∈ U , then

U � x → {x1, . . . , xN} by such a way that x = exp
( N∑

i=1

xiX̂
u
i

)
(v)

Δu
ε,v−→ exp

( N∑
i=1

xiε
deg XiX̂u

i

)
(v). (2.4.6)

Show that the coordinate functions are Hα-continuous in u ∈ U uniformly on
ε > 0.

1. The case of α > 0. Indeed, the mapping

θv,u(x1, . . . , xN ) = exp
( N∑

i=1

xiX̂
u
i

)
(v),

where (x1, . . . , xN ) ∈ Box(0, T ε), is Hα-continuous in u ∈ U as a solution to an
equation with Hα-continuous in u right-hand part (see Section 5), and its Hölder
constant does not depend on v belonging to some compact neighborhood. This
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mapping is also quasi-isometric on (x1ε
− deg X1 , . . . , xNε

− deg XN ) ∈ Box(0, T ) with
respect to the metric ρ: there exist 0 < K1 ≤ K2 <∞, such that

K1|(y1, . . . , yN) − (z1, . . . , zN)| ≤ ρ(θv,u(y), θv,u(z))

≤ K2|(y1, . . . , yN) − (z1, . . . , zN)|,
where y = (y1, . . . , yN ), z = (z1, . . . , zN ), y, z ∈ Box(0, T ). Consider now the
inverse mapping, which assigns to a given point x ∈ M, du

∞(v, x) ≤ Tε, the “coor-
dinates” x1(u, x)ε− deg X1 , . . . , xN (u, x)ε− deg XN such that

x = exp
( N∑

i=1

xi(u, x)X̂u
i

)
(v).

Note that the quasi-isometric coefficients of the mapping θv,u are independent
of (x1, . . . , xN ), u and v belonging to some compact set (here we suppose that
du
∞(v, x) ≤ Tε). Show that the functions x1(u, x)ε− deg X1 , . . ., xN (u, x)ε− deg XN

are Hα-continuous in u ∈ U for a fixed x ∈ M, and their Hölder constants are
bounded locally uniformly in x, v and in ε > 0. (Here, to guarantee the uniform
boundedness of x1(u, x)ε− deg X1 , . . . , xN (u, x)ε− deg XN , we assume that

1) both values d∞(u, v) and du∞(v, x) are comparable to ε;
2) the point u can be changed only by such a point u′, that the distance d∞(u, u′)

is also comparable to ε (see second step).)

The latter statement follows from the fact, that θu,v(x1, . . . , xN ) is locally
Hölder in u, and its Hölder constant is independent of v belonging to some com-
pact neighborhood, and of (x1, . . . , xN ) belonging to some compact neighborhood
U(0) of zero. Since we prove a local property of a mapping then we may assume
that u, u′, x and v meet our above condition on d∞-distances and they belong
to some compact neighborhood U such that the mapping θu,v is bi-Lipschitz on
(x1ε

− deg X1 , . . . , xNε
− deg XN ) if u ∈ U : there exist constants 0 < Q1 ≤ Q2 < ∞

such that

Q1|(x1
1ε
− deg X1 , . . . , x1

Nε
− deg XN )− (x2

1ε
− deg X1 , . . . , x2

Nε
− deg XN )|

≤ ρ
(
θu,v(x1,ε), θu,v(x2,ε)

)
≤ Q2|(x1

1ε
− deg X1 , . . . , x1

Nε
−deg XN ) − (x2

1ε
− deg X1 , . . . , x2

Nε
− deg XN )|

for x1,ε = (x1
1ε
− deg X1 , . . . , x1

Nε
− deg XN ) and x2,ε = (x2

1ε
− deg X1 , . . . , x2

Nε
− deg XN ).

Moreover, its bi-Lipschitz coefficients are independent of points u, v, and

(x1ε
− deg X1 , . . . , xNε

− deg XN )

belonging to some compact neighborhoods. Indeed, consider the mapping

θv(u, x1, . . . , xN ) = θu,v(x1, . . . , xN )

and suppose that for any L > 0 there exist ε > 0, points v, x ∈ U , a level set
θ−1

v (x), and points (u, x1(u)ε− deg X1 , . . . , xN (u)ε− deg XN ) and (u′, x1(u′)ε− deg X1 ,
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. . . , xN (u′)ε− deg XN ) on it such that∣∣∣(x1(u)ε− deg X1 , . . . , xN (u)ε− deg XN )

− (x1(u′)ε− deg X1 , . . . , xN (u′)ε− deg XN )
∣∣∣ ≥ Lρ(u, u′)α (2.4.7)

for some u and u′. The assumption (2.4.7) leads to the following contradiction:

0 = ρ
(
θv(u, x1(u)ε− deg X1 , . . . , xN (u)ε− deg XN ),

θv(u′, x1(u′)ε− deg X1 , . . . , xN (u′)ε− deg XN )
)

≥ ρ
(
θv(u, x1(u)ε− deg X1 , . . . , xN (u)ε− deg XN ),

θv(u, x1(u′)ε− deg X1 , . . . , xN (u′)ε− deg XN )
)

− ρ
(
θv(u, x1(u′)ε− deg X1 , . . . , xN (u′)ε− deg XN ),

θv(u′, x1(u′)ε− deg X1 , . . . , xN (u′)ε− deg XN )
)

≥ Cx

∣∣∣(x1(u)ε− deg X1 , . . . , xN (u)ε− deg XN )

− (x1(u′)ε− deg X1 , . . . , xN (u′)ε− deg XN )
∣∣∣

− Cuρ(u, u′)α ≥ (LCx − Cu)ρ(u, u′)α > 0 if L > Cu/Cx. (2.4.8)

Note that ω′ = Δu
ε−1,v(Δ

u′
ε,v(w′)), and w′ = Δu′

ε−1,v(Δ
u′
ε,v(w′)). Here, for the

point w′ε = Δu′
ε,v(w′), we have xi(u,w′ε) = αi(ε) · εdeg Xi on the one hand, and

we have xi(u′, w′ε) = wi · εdeg Xi on the other hand, i = 1, . . . , N . Since the
points u, u′, v and w′ε meet our assumption on points (see above two assump-
tions marked by “•”), we have that the Hölder constants of xi(u, x)ε− deg Xi are
bounded uniformly in {wj}N

j=1 belonging to some neighborhood of zero. Hence,
ρ(ω′, w′) = Θρ(u, u′)α, and

du
∞(ω′, w′) = Θρ(u, u′)

α
M . (2.4.9)

2. The case of α = 0 is proved similarly to the previous case. We prove that
the functions x1(u, x)ε− deg X1 , . . . , xN (u, x)ε− deg XN are uniformly continuous in
u ∈ U for a fixed x ∈ M, and this continuity is uniform in x, v and ε > 0. The
points under consideration meet the above condition:

1) both values d∞(u, v) and du∞(v, x) are comparable to ε;
2) the point u can be changed only by such a point u′, that the distance d∞(u, u′)

is also comparable to ε (see second step).

To prove our result, we assume the contrary that there exists σ > 0 such that
for any δ > 0 there exist ε > 0, points v, x ∈ U , a level set θ−1

v (x), and points
(u, x1(u)εdeg X1 , . . . , xN (u)εdeg XN ) and (u′, x1(u′)εdeg X1 , . . ., xN (u′)εdeg XN ) on it
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such that ρ(u, u′) < δ, and in the right-hand part of (2.4.7) instead of Lρ(u, u′)α,
we obtain σ.

Repeating further the scheme of the proof almost verbatim and replacing
(LCx − Cu)ρ(u, u′)α by σCx − ωθv(ρ(u, u′)) in the right-hand part of (2.4.8), we
obtain the similar contradiction and deduce

ρ(ω′, w′) = ωΔu

ε−1,v
◦Δu′

ε,v
(ρ(u, u′)). (2.4.10)

We may assert without loss of generality, that ωΔu
ε−1,v

◦Δu′
ε,v

does not depend on x

and v (see (2.4.7) and (2.4.8)).

Fourth step. Taking (2.4.2), (2.4.9) and (2.4.10) into account we obtain

du
∞(ωε, w

′
ε) = ε[Θ(C, C)]ρ(u, u′)

α
M and du

∞(wε, w
′
ε) = ε[Θ(C, C)]ρ(u, u′)

α
M

for α > 0. Similarly, we obtain the theorem for α = 0:

du
∞(wε, w

′
ε) = ε[Θ(C, C)] max{ωΞ(ρ(u, u′)), ωΔu

ε−1,v
◦Δu′

ε,v
(ρ(u, u′))} 1

M .

The theorem follows. �

Corollary 2.4.3. 1. Note that d∞(u, u′) = Cε implies ρ(u, u′) ≤ Cε. Then, for
α > 0, we have

du
∞(wε, w

′
ε) = O(ε1+

α
M ) as ε→ 0

where O is uniform in u, u′, v ∈ U ⊂ M, and in {wi}N
i=1 belonging to some compact

neighborhood of 0, and depends on C and C.
2. If α = 0 then

du
∞(wε, w

′
ε) = o(ε) as ε→ 0

where o is uniform in u, u′, v ∈ U ⊂ M, and in {wi}N
i=1 belonging to some compact

neighborhood of 0, and depends on C and C.

Remark 2.4.4. The estimate O(ε1+
α
M ) is also true for the case of vector fields Xi,

i = 1, . . . , N , which are Hölder with respect to such d that d∞(u, u′) = Cε implies
d(u, u′) = Kε, where K is bounded for u, u′ ∈ U .

A particular case is d = dz
∞, where d∞(z, u) ≤ Qε (see Local Approximation

Theorem 2.5.4, case α = 0, below).

2.5. The approximation theorems

In this subsection, we prove two Approximation Theorems. Their proofs use the
following geometric property.

Proposition 2.5.1. For a neighborhood U � M, there exist positive constants C > 0
and r0 > 0 depending on U , M , N and values {F j

μ,β|U}j,μ,β such that for any
points u and v from a neighborhood U the following inclusion is valid:⋃

x∈Boxu(v,r)

Boxu(x, ξ) ⊆ Boxu(v, r + Cξ), 0 < ξ, r ≤ r0.
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Proof. Suppose x = exp
( N∑

i=1

xiX̂
u
i

)
(v), du

∞(v, x) ≤ r, and z = exp
( N∑

i=1

ziX̂
u
i

)
(x),

du
∞(x, z) ≤ ξ. We estimate the distance du

∞(v, z) applying formulas (2.1.10) to
points x and z. Denote by {ζi}N

i=1 the coordinates of z with respect to v: z =

exp
( N∑

i=1

ζiX̂
u
i

)
(v).

Case of degXi = 1. Then |ζi| ≤ |xi| + |zi| ≤ (r + ξ)deg Xi .
Case of degXi = 2. Then

|ζi| ≤ |xi|+ |zi| +
∑

|el+ej |h=2,
l<j

|F i
el,ej

(u)||xlzj − zlxj |

≤ r2 + ξ2 + ci(u)rξ ≤ r2 + 2r
ci(u)

2
ξ +
(ci(u)

2
ξ
)2

=
(
r +

ci(u)
2

ξ
)deg Xi

= (r + Ci(u)ξ)deg Xi .

Here we assume without loss of generality that Ci(u) ≥ 1.
Case of degXi = k > 2. We obtain similarly to the previous case

|ζi| ≤ |xi| + |zi| +
∑

|μ+β|h=k,μ>0,β>0

|F i
μ,β(u)|xμ · zβ

≤ rk + ξk +
∑

|μ+β|h=k

cμβ
i (u)r|μ|hξ|β|h ≤ (r + Ci(u)ξ)deg Xi .

Here we assume without loss of generality that Ci(u), ci(u) ≥ 1. Denote by C(u) =
max

i
Ci(u). From above estimates we obtain

du
∞(v, x) = max

i
{|ζi|deg Xi} ≤ max

i
{(r + Ci(u)ξ)

deg Xi
deg Xi } ≤ r + C(u)ξ.

Since all the Ci(u)’s are continuous on u then we may choose C < ∞ such that
C(u) ≤ C for all u belonging to a compact neighborhood. The lemma follows. �

Theorem 2.5.2 (Approximation Theorem). Assume that u, u′, v, w ∈ U . Then the
following estimate is valid:

|du
∞(v, w) − du′

∞(v, w)| =

{
Θ[ρ(u, u′)αdu

∞(v, w)]
1

M if α > 0,
Θ[ωΞ(ρ(u, u′))ρ(v, w)]

1
M if α = 0.

(2.5.1)

All these estimates are uniform on U � M.

Proof. Let α > 0. Denote by z = exp
( N∑

i=1

ziX̂
u
i

)
(v) and z′ = exp

( N∑
i=1

ziX̂
u′
i

)
(v).

If z ∈ Boxu(v, du∞(v, w)) then z′ ∈ Boxu′(v, du∞(v, w)) and z ∈ Boxu′(z′, R(u, u′)).
Here

R(u, u′) = sup
p′∈Boxu′ (v,du∞(v,w))

du′
∞(p, p′),
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where p = exp
( N∑

i=1

piX̂
u
i

)
(v) and p′ = exp

( N∑
i=1

piX̂
u′
i

)
(v). Using Proposition 2.5.1

we have that

Boxu(v, du
∞(v, w)) ⊂

⋃
x∈Boxu′ (v,du∞(v,w))

Boxu′(x,R(u, u′))

⊂ Boxu′(v, du
∞(v, w) + CR(u, u′))

for some 0 < C <∞. Note that, in view of Theorem 2.3.9 we have

R(u, u′) = sup
p′∈Boxu′ (v,du∞(v,w))

Θ[ρ(u, u′)αρ(v, p′)]
1

M ≤ Θ[ρ(u, u′)αdu
∞(v, w)]

1
M

Thus, we can write

Boxu(v, du
∞(v, w)) ⊂ Boxu′(v, du

∞(v, w) + CR(u, u′)) ⊂
Boxu′(v, du

∞(v, w) + Θ[ρ(u, u′)αdu
∞(v, w)]

1
M ). (2.5.2)

If du
∞(v, w) ≤ Θ[ρ(u, u′)αdu

∞(v, w)]
1

M then the theorem follows:

|du
∞(v, w) − du′

∞(v, w)| ≤ du
∞(v, w) + du′

∞(v, w) = Θ[ρ(u, u′)αdu
∞(v, w)]

1
M .

If du
∞(v, w) > Θ[ρ(u, u′)αdu

∞(v, w)]
1

M then applying again Proposition 2.5.1
we obtain

Boxu′(v, du
∞(v, w) −Θ[ρ(u, u′)αdu

∞(v, w)]
1

M ) ⊂ Boxu(v, du
∞(v, w)).

From the latter relation, taking into account the fact that w ∈ ∂ Boxu(v, du
∞(v, w))

and relation (2.5.2), we infer

du
∞(v, w) −Θ[ρ(u, u′)αdu

∞(v, w)]
1

M ≤ du′
∞(v, w)

≤ du
∞(v, w) + Θ[ρ(u, u′)αdu

∞(v, w)]
1

M .

The case of α = 0 is proved similarly. The theorem follows. �

Remark 2.5.3. If the derivatives ofXi, i = 1, . . . , N , are locally Hölder with respect
to d, then we have d(u, u′)α instead of ρ(u, u′)α in (2.5.1) (the proof is similar).

Approximation Theorem and local estimates (see Theorem 2.4.1) imply Local
Approximation Theorem.

Theorem 2.5.4 (Local Approximation Theorem). Assume that u, u′, v, w ∈ U .
Suppose that d∞(u, u′) = Cε, d∞(u, v) = Cε and d∞(u,w) = Cε for some C, C,
C <∞.

1. If α > 0, then

|du
∞(v, w) − du′

∞(v, w)| = ε[Θ(C, C,C)]ρ(u, u′)
α
M . (2.5.3)

Moreover, if u′ = v and α > 0, then

|du
∞(v, w) − d∞(v, w)| = ε[Θ(C,C)]ρ(u, v)

α
M .
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2. If α = 0, then

|du
∞(v, w) − du′

∞(v, w)| = εo(1) = o(ε)

as ε→ 0, where o is uniform in u, u′, v, w ∈ U ⊂ M. Moreover, if u′ = v and
α = 0, then

|du
∞(v, w) − d∞(v, w)| = o(ε)

as ε→ 0, where o is uniform in u, v, w ∈ U ⊂ M.

The Proof follows the same scheme as the proof of Approximation Theorem 2.5.2
with R(u, u′) = ε[Θ(C, C,C)]ρ(u, u′)

α
M . The latter equality is valid by the unifor-

mity assertion of Theorem 2.4.1.

Remark 2.5.5. If the derivatives ofXi, i = 1, . . . , N , are locally Hölder with respect
to d, then we have d(u, u′)

α
M instead of ρ(u, u′)

α
M in (2.5.3) (the proof is similar).

2.6. Comparison of local geometries of two local homogeneous groups

Proof of Theorem 2.3.1. First step. Consider the case of α > 0. The case of Q = 1
is proved in Theorem 2.4.1.

Second step. Suppose that Q = 2. For ε = 1, put w2 = w1
2 and w′2 = w1

2
′. Then,

we have

w2 = exp
( N∑

i=1

ωi,2X̂
u
i

)
(w0) (2.6.1)

and

w′2 = exp
( N∑

i=1

ω′i,2X̂
u′
i

)
(w0). (2.6.2)

It follows from the formulas of group operation in GuM and Gu′M, that

wε
2 = exp

( N∑
i=1

ωi,2ε
deg XiX̂u

i

)
(w0)

and

wε
2
′ = exp

( N∑
i=1

ω′i,2ε
deg XiX̂u′

i

)
(w0).

To estimate du′
∞(wε

2, w
ε
2
′), consider the auxiliary points

w′′2 = exp
( N∑

i=1

ωi,2X̂
u′
i

)
(w0) and w′′2

ε = exp
( N∑

i=1

ωi,2ε
deg XiX̂u′

i

)
(w0).

From the generalized triangle inequality we deduce

du′
∞(wε

2, w
ε
2
′) ≤ c(du′

∞(wε
2, w

′′
2

ε) + du′
∞(w′′2

ε
, wε′

2 )). (2.6.3)

In view of Theorem 2.4.1, we have du′
∞(wε

2, w
′′
2

ε) = εΘρ(u, u′)
α
M . By the homogene-

ity of the distance du′
∞ we have

du′
∞(w′′2

ε
, wε′

2 ) = εdu′
∞(w′′2 , w

′
2). (2.6.4)
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Now, we estimate the value du′
∞(w′′2 , w

′
2). For doing this, we use the group operation

in the local homogeneous group Gu′M.
First of all, note that |ωi,2 − ω′i,2| = Θρ(u, u′)α. Indeed, if we calculate

these values ωi,2 and ω′i,2 via formulas of group operation (2.1.10), we see that all
these expressions differ only in values of the function {F j

μ,β}j,μ,β. Since |F j
μ,β(u)−

F j
μ,β(u′)| = Θρ(u, u′)α for all j, μ, β, we have also |ωi,2 − ω′i,2| = Θρ(u, u′)α.

Next, note that while applying the group operation (see (2.1.10)), all sum-
mands look like ωi,2 − ω′i,2 or ωi,2 − ω′i,2 +

∑
Θ(ωk,2ω

′
j,2 − ωj,2ω

′
k,2). By (2.1.10),

we deduce

ωk,2ω
′
j,2 − ωj,2ω

′
k,2

= ωk,2(ωj,2 + Θρ(u, u′)α)− ωj,2(ωk,2 + Θρ(u, u′)α) = Θρ(u, u′)α,

and finally du′∞(w′′2 , w′2) = Θ(ρ(u, u′)
α
M ). Here Θ depends on C, C, Q = 2 and

{F j
μ,β(u′)}j,μ,β .

Taking into account the relations (2.6.3) and (2.6.4), we obtain

du′
∞(wε

2, w
ε
2
′) ≤ εΘρ(u, u′)α

In view of Local Approximation Theorem 2.5.4, we derive

du
∞(wε

2, w
ε
2
′) = εΘρ(u, u′)

α
M .

Third step. In the case of Q = 3, it is easy to see from the previous case and the
group operation, that if

w3 = exp
( N∑

i=1

ωi,3X̂
u
i

)
(w0)

and

w′3 = exp
( N∑

i=1

ω′i,3X̂
u′
i

)
(w0),

then again |ωi,3 − ω′i,3| = Θρ(u, u′)α. Here Θ depends on C, C, Q = 3 and
{F j

μ,β |U}j,μ,β. (It suffices to apply the group operation (2.1.10) in the local ho-
mogeneous groups GuM and Gu′M to expressions (2.6.1) and (2.6.2) and to points
w3 and w′3, respectively.) From now on, for obtaining estimate (2.3.1) at Q = 3,
we repeat the arguments of the second step.

Fourth step. It is easy to see similarly to the third step, that the group operation
and the induction hypothesis |ωi,l−1 − ω′i,l−1| = Θρ(u, u′)α, 3 < l < Q, imply
|ωi,l − ω′i,l| = Θρ(u, u′)α. Indeed, it suffices to put ωi,l and ω′i,l instead of ωi,3 and
ω′i,3, and ωi,l−1 and ω′i,l−1 instead of ωi,2 and ω′i,2 in the third step, and apply
arguments from the second step.

The case of α = 0 can be proved by applying the similar arguments.
The theorem follows. �
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2.7. Comparison of local geometries of a Carnot–Carathéodory space
and a local homogeneous group

In this subsection, we compare the local geometry of a Carnot–Carathéodory space
manifold with the one of a local homogeneous group.

Theorem 2.7.1. Let u,w0 ∈ U be such that d∞(u,w0) = Cε. For a fixed Q ∈ N,
consider points

ŵε
j = exp

( N∑
i=1

wi,jε
deg XiX̂u

i

)
(ŵε

j−1), wε
j = exp

( N∑
i=1

wi,jε
deg XiXi

)
(wε

j−1),

wε
0 = ŵε

0 = w0, j = 1, . . . , Q. (Here Q ∈ N is such that all these points belong to a
neighborhood U ⊂ M small enough for all ε > 0.) Then, for α > 0 we have

max{du
∞(ŵε

Q, w
ε
Q), d∞(ŵε

Q, w
ε
Q)} =

Q∑
k=1

Θ(C, k, {F j
μ,β|U}j,μ,β) · ε1+ α

M . (2.7.1)

In the case of α = 0 we have

{du
∞(ŵε

Q, w
ε
Q), d∞(ŵε

Q, w
ε
Q)} = ε ·Θ(C, Q, {F j

μ,β|U}j,μ,β)[ω(ε)]
1

M

where ω(ε) → 0 as ε→ 0. (Here Θ is a bounded measurable function: |Θ| ≤ C0 <
∞, it is uniform in u, u′, w0 ∈ U and {wi,j}, i = 1, . . . , N , j = 1, . . . , Q, belonging
to some compact neighborhood of 0, and it depends on Q and on {F j

μ,β |U}j,μ,β.)

Proof. For simplifying the notation we denote the points ŵ1
j by ŵj , and we denote

w1
j by wj for ε = 1, j = 1, . . . , Q. First, we estimate the distances between the

points ŵQ and wQ. To do it, we construct the following sequence of points.
Let

ωk,j = exp
( N∑

i=1

wi,jX̂
wk

i

)
(ωk,j−1),

ωk,0 = wk, k = 0, . . . , Q− 1, j = 1, . . . , Q− k.

By another words, for k = 0 we obtain such sequence of integral lines that its

first fragment coincides with exp
( N∑

i=1

wi,1ε
deg XiXi

)
(w0), and the other ones may

diverge. Next, for k = 1, we obtain such sequence of integral lines that its first frag-

ment coincides with exp
( N∑

i=1

wi,2ε
deg XiXi

)
(w1), and the other ones may diverge,

etc. Hence, ωQ−1,1 = wQ and

du
∞(ŵQ, wQ) = Θ ·

(
du
∞(ŵQ, ω0,Q) +

Q−1∑
k=1

du
∞(ωk,Q−k, ωk−1,Q−k+1)

)
.

If α > 0 then Theorem 2.3.1 implies

du
∞(ŵQ, ω0,Q) = Θ(C, Q, {F j

μ,β|U}j,μ,β)ρ(u,w0)
α
M .
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Moreover, for each of the summands we have

du
∞(ωk,Q−k, ωk−1,Q−k+1) = Θ(C, Q− k, {F j

μ,β|U}j,μ,β)ρ(wk, wk−1)
α
M .

By the same theorem, if we replace wi,j by wi,jε
deg Xi , and wk and ŵk by wε

k

and ŵε
k respectively in all the above formulas, i = 1, . . . , N , j, k = 1, . . . , Q, then

it is easy to see using induction by k that firstly du∞(wε
k, w

ε
k−1) = Ckε, secondly

du∞(u,wε
k) = Ckε and du∞(u, ωε

k,Q−k) = ckε for all k = 0, . . . , Q− 1 (this fact gives
possibility to estimate du

∞ instead of dwk∞ , see Local Approximation Theorem 2.5.4),
thirdly

du
∞(ŵε

Q, ω
ε
0,Q) = εΘ(C, Q, {F j

μ,β|U}j,μ,β)ρ(u,w0)
α
M ,

fourthly,

dwk∞ (ωε
k,Q−k, ω

ε
k−1,Q−k+1) = εΘ(C, Q− k, {F j

μ,β |U}j,μ,β)ρ(wε
k, w

ε
k−1)

α
M ,

and

du
∞(ωε

k,Q−k, ω
ε
k−1,Q−k+1) = εΘ(C, Q− k, {F j

μ,β |U}j,μ,β)ρ(wε
k, w

ε
k−1)

α
M .

Thus we obtain du
∞(ŵε

Q, w
ε
Q) =

Q∑
k=1

Θ(C, k, {F j
μ,β|U}j,μ,β) · ε1+ α

M .

Since du∞(ŵε
Q, w

ε
Q) = O(ε) and du∞(u, ŵε

Q) = O(ε) then, by Local Approxi-
mation Theorem 2.5.4, we have

d∞(ŵε
Q, w

ε
Q) =

Q∑
k=1

Θ(C, k, {F j
μ,β|U}j,μ,β) · ε1+ α

M .

If α = 0 then we repeat the above arguments replacing ρ(·, ·) α
M by o(1). The

theorem follows. �

Remark 2.7.2. If the derivatives ofXi, i = 1, . . . , N , are locally Hölder with respect
to d, such that d∞(x, y) ≤ ε implies d(x, y) ≤ Kε, where K is bounded on U , then
the same estimate as in (2.7.1) is true (the proof is similar).

A particular case of such d is dz
∞, d∞(u, z) ≤ Qε (see Local Approximation

Theorem 2.5.4).

2.8. Applications

In Subsubsections 2.8.1 and 2.8.2 below, we assume that a Carnot–Carathéodory
space M is a Carnot manifold meeting the 4th condition in the definition 2.1.1:

(4) a quotient mapping [ ·, · ]0 : H1 × Hj/Hj−1 → Hj+1/Hj induced by Lie
brackets, is an epimorphism for all 1 ≤ j < M .

Under Condition (4) a local homogeneous group will be a local Carnot group
(a stratified graded nilpotent group Lie).

We will not need this condition only in Remark 2.8.7 and subsubsection 2.8.3.
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2.8.1. Rashevskǐı–Chow theorem.

Definition 2.8.1. An absolutely continuous curve γ : [0, a] → M is said to be hori-

zontal if γ̇(t) ∈ Hγ(t)M for almost all t ∈ [0, a]. Its length l(γ) equals
a∫
0

|γ̇(t)|gM
dt,

where the value |γ̇(t)|gM
is calculated using the Riemann tensor gM on M. Anal-

ogously, the canonical Riemann tensor gGuM on GuM defines a length l̂ of an
absolutely continuous curve γ̂ : [0, a] → GuM.

Definition 2.8.2. The Carnot–Carathéodory distance between points x, y ∈ M is
defined as dcc(x, y) = inf

γ
l(γ) where the infimum is taken over all horizontal curves

with endpoints x and y.
The Carnot–Carathéodory distance du

cc(x, y) between points x, y ∈ GuM is
defined in the local Carnot group GuM similarly.

Corollary 2.8.3 (of Theorem 2.7.1). Let M be a Carnot manifold. Suppose that
Assumption 2.1.6 holds for α ∈ (0, 1]. Let y ∈ M. Let also ε be small enough to
provide GxM ⊃ Box(y, ε) for all x ∈ Box(y, ε), and u, v, ŵ ∈ Box(y, ε). The points
v, ŵ ∈ Box(y, ε) can be joined in the local Carnot group (GuM, du

1 ) ⊃ Box(y, ε) by a
horizontal curve γ̂ composed by at most L segments of integral curves of horizontal
fields X̂u

i , i = 1, . . . ,dimH1. To the curve γ̂ it corresponds a curve γ, horizontal
with respect to the initial horizontal distribution HM, constituted by at most L
segments of integral curves of the given horizontal fields Xi, i = 1, . . . ,dimH1.
Moreover,

1) l̂(γ̂) is equivalent to du
∞(v, ŵ): 0 < α ≤ l̂(γ̂)

du∞(v,ŵ) ≤ β <∞;
2) the curve γ has endpoints v, w ∈ Box(y,O(ε));
3) |l(γ)− l̂(γ̂)| = o(ε);
4) max{du

∞(ŵ, w), d∞(ŵ, w)} ≤ Cε1+
α
M where C is independent of y, u, v, ŵ in

some compact neighborhood U � M;
5) if v = u then l(γ) is equivalent to d∞(v, w): 0 < α1 ≤ l(γ)

d∞(v,w) ≤ β1 <∞.

All these estimates are uniform in ŵ, v and y of some compact neighborhood U � M

as ε→ 0.

Proof. The desired curve comes from those on any Carnot group [47]: given a
Carnot group G with the vector fields X̂1, . . . , X̂N , each point x can be repre-
sented as

x = exp(aLX̂iL) ◦ · · · ◦ exp(a1X̂i1), ij ∈ {1, . . . ,dimH1},

where each |aj | is controlled by the distance d̂cc(0, x) (or d̂∞(0, x)), j = 1, . . . , L,
and L is independent of x. To this composition of exponents it corresponds a
horizontal curve γ̂ constituted by at most L segments γ̂j , j = 1, . . . , L, of integral
curves of the horizontal vector fields X̂i1 , X̂i2 , . . . , X̂iL with endpoints 0 and x. For
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doing this, we set{
γ̂1(t) = exp(ta1X̂i1),
t ∈ [0, 1],{
γ̂j(t) = exp(tajX̂ij )(γ̂j−1(1)) = γ̂j−1(1) · exp(tajX̂ij ),
t ∈ [0, 1],

j = 2, . . . , L, and from here we have x = γ̂iL(1).
Now we carry over a construction described above to the local Carnot group

(GuM, du
∞) ⊃ Box(y, ε): the given points ŵ, v ∈ GuM can be connected by a

horizontal curve γ̂ corresponding to the composition:

ŵ = exp(aLX̂
u
iL

) ◦ · · · ◦ exp(a1X̂
u
i1)(v), ij ∈ {1, . . . ,dimH1}, (2.8.1)

j = 1, . . . , L. It follows immediately the first statement of the corollary.
Then the curve γ, corresponding to the composition

w = exp(aLXiL) ◦ · · · ◦ exp(a1Xi1)(v), ij ∈ {1, . . . ,dimH1}, (2.8.2)

and constituted by segments{
γ1(t) = exp(ta1Xi1)(v),
t ∈ [0, 1],{
γj(t) = exp(tajXij )(γj−1(1)),
t ∈ [0, 1],

j = 2, . . . , L, and from here we have w = γiL(1), is horizontal and its length equals
l̂(γ̂)+ o(ε) due to small difference of Riemann tensors in M and in GuM. It can be
verified by a direct estimation of the length integral

L∫
0

|γ̇(t)|gM
dt =

L∑
j=1

1∫
0

|ajXij (γj(t))|gM
dt

taking into account the following evaluations: gM(x) = gM(v)+o(1) for Riemannian
tensor on Box(y, ε), and the same behavior of Riemannian tensor gGuM on GuM,
|aj | = O(ε), and the evaluations of Theorem 2.2.9 and Corollary 2.2.11.

The estimate

max{du
∞(w,w′), d∞(w,w′)} ≤ Cε1+

α
M

follows immediately from (2.7.1).
The last statement of the corollary is a consequence of previous ones: we may

assume that d∞(v, w) = dv
∞(v, w) = ε, then

α− o(1) ≤ l̂(γ̂)
ε

− |l(γ)− l̂(γ̂)|
d∞(v, w)

≤ l(γ)
d∞(v, w)

≤ l̂(γ̂)
ε

+
|l(γ) − l̂(γ̂)|
d∞(v, w)

≤ β + o(1).

�
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Theorem 2.8.4. Let M be a Carnot manifold. Suppose that Assumption 2.1.6 holds
for some α ∈ (0, 1]. Let y ∈ M. Given two points w, v ∈ B(y, ε) where ε is
small enough, there exist a curve γ, horizontal with respect to the initial horizontal
distribution HM, with endpoints w and v, and a horizontal curve γ̂ in the local
Carnot group (GyM, dy

∞) with the same endpoints, such that

1) l̂(γ̂) is equivalent to dy
∞(w, v);

2) |l(γ)− l̂(γ̂)| = o(ε);
3) if v = y then the length l(γ) is equivalent to d∞(y, w).

All these estimates are uniform in w, v and y of some compact neighborhood U � M

as ε→ 0.

Proof. We can choose ε from the condition of the theorem by requests C2+ α
M ε

α2

M2 ≤
1 and ε ≤ 1

2 , where C is the constant from Corollary 2.8.3.
Apply Corollary 2.8.3 to the points u = y, v and w. It gives a horizontal curve

γ1 (γ̂) with respect to the initial horizontal distribution HM (in the local Carnot
group (GyM, dy

∞)) with endpoints v and w1 (v and w) constituted by at most L
segments of integral curves of given horizontal fields Xi (X̂y

i ), i = 1, . . . ,dimH1.
In view of Corollary 2.8.3, the curve γ̂ has length comparable with dy∞(v, w),
|l(γ)− l̂(γ̂)| = o(ε) and max{dy∞(w1, w), d∞(w1, w)} ≤ Cε1+

α
M .

Next, we apply again Corollary 2.8.3 to the points u = v = w1 and w. It
gives a horizontal curve γ2 with respect to HM with endpoints w1 and w2. Its
length is O(ε1+

α
M ) where O is uniform in u, v, w ∈ Box(y, ε), and d∞(w2, w) ≤

C(Cε1+
α
M )1+

α
M ≤ ε1+

2α
M .

Assume that we have points w1, . . . , wk and horizontal curves γl, l = 2, . . . , k,
with respect to HM with endpoints wl−1 and wl, such that γl has a length not
exceeding C(ε1+

l−1
M α), and d∞(wl, w) ≤ ε1+

lα
M .

We continue, by the induction, applying Corollary 2.8.3 to the points u =
v = wk and w. It results a horizontal curve γk+1 with endpoints wk and wk+1, such
that γk+1 has a length O(ε1+

kα
M ) and d∞(wk+1, w) ≤ C(Cε1+

kα
M )1+

α
M ≤ ε1+

k+1
M α.

A curve Γm = γ1 ∪ · · · ∪ γm is horizontal, has endpoints v and wm, its length

does not exceed l(γ1) + o(ε) + C
∞∑
l=1

ε1+
lα
M ≤ l(γ1) + o(ε) and d∞(wm, w) → 0 as

m→∞. Therefore the sequence Γm converges to a horizontal curve γ as m→∞
with Property 2 mentioned in the theorem.

Under v = y we can take d∞(y, w) as ε in above estimates: it gives an
evaluation l(γ) ≤ Cd∞(y, w). The opposite inequality can be verified directly by
means of the above-obtained estimate: indeed, if d∞(y, w) = ε then d∞(y, w) =
dy∞(y, w) ≤ Cl̂(γ̂) ≤ Cl(γ) + o(ε); it follows that d∞(y, w) − o

(
d∞(y, w)

)
≤ Cl(γ)

and the estimate d∞(y, w) ≤ C1l(γ) holds with C1 independent of y from some
compact neighborhood if w is close enough to y. Thus we have obtained the Prop-
erty 3. �
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As an application of Theorem 2.8.4 we obtain a version of Rashevskǐı–Chow
type connectivity theorem.

Theorem 2.8.5. Let M be a Carnot manifold. Suppose that Assumption 2.1.6 holds
for α ∈ (0, 1]. Every two points v, w of a connected Carnot manifold can be joined
by a rectifiable absolutely continuous horizontal curve γ composed by not more than
countably many segments of integral lines of given horizontal fields.

2.8.2. Comparison of metrics, and Ball–Box theorem.

Corollary 2.8.6. Let M be a Carnot manifold. Suppose that Assumption 2.1.6 holds
for α ∈ (0, 1]. In some compact neighborhood U � M, the distance dcc is equivalent
to the quasimetric d∞.

Proof. An estimate dcc(x, y) ≤ C1d∞(x, y) for points x, y from a compact neigh-
borhood U � M follows from Theorem 2.8.4. Our next goal is to prove the con-
verse estimate. Fix a compact neighborhood U � M and assume the contrary:
for any l ∈ N there exist points xl, yl ∈ U such that d∞(xl, yl) ≥ ldcc(xl, yl).
In this case we have d∞(xl, yl) → 0 as l → ∞ since otherwise, for some subse-
quences xln and yln , we have simultaneously dcc(xln , yln) → 0 as n → ∞, and
d∞(xln , yln) ≥ α > 0 for all n ∈ N what is impossible. We can assume also
that xl → x ∈ U as l → ∞ and xl �= yl. Setting d∞(xl, yl) = εl we have
d∞
(
xl,Δxl

rε−1
l

yl

)
= r where r > 0 is normalizing factor. Let γ : [0, 1] → M

be a Lipschitz horizontal path such that its length equal dcc(xl, yl) [22]. Then a
length l(Γl) of the curve Γl: [0, 1] � t→ Δxl

rε−1
l

(γ(t)), equal r
εl
dcc(xl, yl) where the

length l(Γl) is measured with respect to the frame
{
X

εl/r
i

}
with pushed-forward

Riemannian tensor. Really, if γ̇(t) =
dim H1∑

i=1

γi(t)Xj(γ(t)) a. e. in t ∈ [0, 1], then

Γ̇l(t) = r
εl

dim H1∑
i=1

γi(t)Xεl/r(Γl(t)) a. e. in t ∈ [0, 1]. It follows directly the equality

l(Γl) = r
εl
dcc(xl, yl). As far as the vectors Xεl/r

i , i = 1, . . . ,dimH1, are closed to

the corresponding nilpotentized vector fields X̂xl

i , i = 1, . . . ,dimH1, by Gromov’s
Theorem (see Corollary 2.2.13), the Riemannian distance ρ

(
xl,Δxl

rε−1
l

yl

)
→ 0 as

l→ ∞:

ρ
(
xl,Δxl

rε−1
l

yl

)
≤ Cl(Γl) = C

r

εl
dcc(xl, yl) ≤ Crl−1 d∞(xl, yl)

εl
= Crl−1,

where the constant C is independent of l.
It is in a contradiction with d∞

(
xl,Δxl

rε−1
l

yl

)
= r for all l ∈ N (see Proposition

2.2.2 for a comparison of metrics). �

Remark 2.8.7. Note that, for obtaining the estimate d∞(x, y) ≤ C2dcc(x, y), the
value α need not to be strictly greater than zero. Thus, the estimate d∞(x, y) ≤
C2dcc(x, y) is valid not only for α = 0 but also in a Carnot–Carathéodory space.
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Another corollary is the so-called Ball–Box Theorem proved earlier for smooth
vector fields in [116, 70].

Theorem 2.8.8 (Ball–Box Theorem). Let M be a Carnot manifold. Suppose that
Assumption 2.1.6 holds for α ∈ (0, 1]. The shape of a small ball Bcc(x, r) in the
metric dcc looks like a box: given compact neighborhood U ⊂ M there exist constants
0 < C1 ≤ C2 <∞ and r0 independent of x ∈ U such that

Box(x,C1r) ⊂ Bcc(x, r) ⊂ Box(x,C2r) (2.8.3)

for all r ∈ (0, r0).

Theorem 2.8.8 implies

Corollary 2.8.9. Let M be a Carnot manifold. Suppose that Assumption 2.1.6 holds
for α ∈ (0, 1]. The Hausdorff dimension of M equals

ν =
M∑
i=1

i(dimHi − dimHi−1)

where dimH0 = 0.

This corollary extends Mitchell Theorem [108] to general Carnot–Carathéo-
dory spaces with minimal smoothness of basis vector fields.

Remark 2.8.10. Let Assumption 2.1.6 hold for α ∈ (0, 1]. Applying Corollary 2.8.8,
we obtain

1) the generalization of Theorem 2.3.9 for points w and w′ close enough:

max{du
cc(w,w

′), dcc(w,w′)} = Θ[ρ(u, v)ρ(v, w)]
1

M ≤ Θ[dcc(u, v)dcc(v, w)]
1

M ;

2) the generalization of Theorem 2.4.1:

max{du
cc(wε, w

′
ε), dcc(wε, w

′
ε)} = ε[Θ(C, C)]ρ(u, v)

α
M ;

3) the generalization of Theorem 2.7.1:

max{du
cc(ŵ

ε
Q, w

ε
Q), dcc(ŵε

Q, w
ε
Q)} =

Q∑
k=1

Θ(C, k, {F j
μ,β}j,μ,β) · ε1+ α

M .

Corollary 2.8.6 and [72, Theorem 11.11] imply the following statement con-
taining a result of [67], where only the first assertion is obtained under assumption
of higher smoothness of vector fields.

Proposition 2.8.11. Let M be a Carnot manifold. Let X and Y be two families
of vector fields on M with the same horizontal distribution HM for both of which
Assumption 2.1.6 holds with some α ∈ (0, 1]. Then, in some compact neighborhood
U � M, the following assertions are equivalent:

1) There exists a constant C ≥ 1 such that C−1dX
∞ ≤ dY

∞ ≤ CdX
∞.

2) There exists a constant C ≥ 1 such that C−1|XHϕ| ≤ |YHϕ| ≤ C|XHϕ| for
all ϕ ∈ C∞(M).
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Here dX
∞ and dY

∞ are quasimetrics constructed with respect to the bases X
and Y , and XHϕ and YHϕ are horizontal gradients (i.e., horizontal parts of the
gradients) of ϕ.

Remark 2.8.12. If the derivatives of Xi, i = 1, . . . , N , are locally Hölder with
respect to d, where d meets conditions of Remark 2.7.2, the statements of Corol-
lary 2.8.3, Theorem 2.8.4, Theorem 2.8.5, Corollary 2.8.6, Theorem 2.8.8, Corol-
lary 2.8.9, Remark 2.8.10 and Proposition 2.8.11 are also true.

2.8.3. Mitchell Type theorem for quasimetric Carnot–Carathéodory spaces. In
the papers [129], [130] the theory of convergence for quasimetric spaces is devel-
oped. It includes as a particular case the Gromov–Hausdorff theory for metric
spaces [22]. Using main results of the present paper, Svetlana Selivanova proves
the existence of the tangent cone (with respect to the notion of convergence intro-
duced in her papers) to a quasimetric Carnot–Carathéodory space. The matter of
this subsection is taken from [129], [130]. Now we formulate some definitions and
statements from those papers. The following notion generalizes definition 2.2.1.

Definition 2.8.13 ([133]). A quasimetric space (X, dX) is a topological space X
with a quasimetric dX . A quasimetric is a mapping dX : X ×X → R+ with the
following properties
(1) dX(u, v) ≥ 0; dX(u, v) = 0 if and only if u = v;
(2) dX(u, v) ≤ cXdX(v, u), where 1 ≤ cX < ∞ is a constant independent of

u, v ∈ X ;
(3) dX(u, v) ≤ QX(dX(u,w) + dX(w, v)), where 1 ≤ QX < ∞ is a constant

independent of u, v, w ∈ X (generalized triangle inequality);
(4) the function dX(u, v) is lower semicontinuous on the first argument.

If cX = 1, QX = 1, then (X, dX) is a metric space.

The distortion of a mapping ϕ : (X, dX) → (Y, dY ) is the value

dis(ϕ) = sup
u,v∈X

|dY (ϕ(u), ϕ(v)) − dX(u, v)|.

Definition 2.8.14 ([129]). The distance dqm(X,Y ) between quasimetric spaces
(X, dX) and (Y, dY ) is defined as the infimum is taken over ρ>0 for which there
exist (not necessarily continuous) mappings ϕ :X→Y and ψ :Y →X such that

max
{
dis(ϕ), dis(ψ), sup

x∈X
dX(x, ψ(ϕ(x))), sup

y∈Y
dY (y, ϕ(ψ(y)))

}
≤ ρ.

Note that for bounded quasimetric spaces the introduced distance is obviously
finite.

Proposition 2.8.15 ([130]). The distance dqm possesses the following properties:
1) if quasimetric spaces X and Y are isometric, then dqm(X,Y ) = 0; if X and Y

are compact and dqm(X,Y )=0, then X and Y are isometric (nondegeneracy).
2) dqm(X,Y ) = dqm(Y,X) (symmetricity).
3) dqm(X,Y ) ≤ (QZ+1)(dqm(X,Z)+dqm(Z, Y )) (analog of the triangle inequal-

ity).
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Definition 2.8.16 ([129]). A sequence of compact quasimetric spaces (Xn, dXn),
n ∈ N, converges to a compact quasimetric space (X, dX), if lim

n→∞ dqm(Xn, X) = 0.

Proposition 2.8.15 implies

Proposition 2.8.17 ([130]). If compact quasimetric spaces (X, dX), (Y, dY ) are
obtained as limits of the same sequence of compact spaces (Xn, dXn) such that
|QXn | ≤ C <∞ for all n ∈ N, then X and Y are isometric.

For noncompact spaces the following more general notion of convergence is in-
troduced. A pointed (quasi)metric space is a pair (X, p) consisting of a (quasi)metric
space X and a point p ∈ X . Whenever we want to emphasize what kind of
(quasi)metric is on X , we shall write the pointed space as a triple (X, p, dX).

Definition 2.8.18 ([129]). A sequence (Xn, pn, dXn) of pointed quasimetric spaces
converges to the pointed space (X, p, dX), if there exists a sequence of reals δn → 0
such that for each r > 0 there exist mappings ϕn,r : BdXn (pn, r+ δn) → X, ψn,r :
BdX (p, r + 2δn) → Xn such that

1) ϕn,r(pn) = p, ψn,r(p) = pn;
2) dis(ϕn,r) < δn, dis(ψn,r) < δn;
3) sup

x∈BdXn (pn,r+δn)

dXn(x, ψn,r(ϕn,r(x))) < δn.

Recall that a quasimetric space X is boundedly compact, if all closed bounded
subsets of X are compact. Two pointed quasimetric spaces (X, p) and (Y, q) are
called isometric, if there exists an isometry η : Y → X such that η(q) = p.

The following theorem (see [129, 130] for details) informally states that, for
boundedly compact spaces, the limit is unique up to isometry.

Theorem 2.8.19. Let (X, p), (Y, q) be two complete pointed quasimetric spaces
obtained as limits (in the sense of Definition 2.8.18) of the same sequence (Xn, pn)
such that |QXn | ≤ C for all n ∈ N. If X is boundedly compact then (X, p) and
(Y, q) are isometric.

Definition 2.8.20. Let X be a boundedly compact (quasi)metric space, p ∈ X .
If the limit of pointed spaces lim

λ→∞
(λX, p) = (TpX, e) (in the sense of Definition

2.8.18) exists, then TpX is called the tangent cone to X at p. Here λX = (X,λ ·
dX); the symbol lim

λ→∞
(λX, p) means that, for any sequence λn → ∞, there exists

lim
λn→∞

(λnX, p) which is independent of the choice of sequence λn →∞ as n→∞.

Remark 2.8.21 ([130]). According to theorem 2.8.19, the tangent cone is unique
up to isometry, i.e., one should treat the tangent cone from definition 2.8.20 as
a class of pointed quasimetric spaces isometric to each other. Note also that the
tangent cone is completely defined by any (arbitrarily small) neighborhood of the
point.

In [129], [130] the introduced definitions are then compared with their coun-
terparts for metric spaces [22]. Recall that the Hausdorff distance between subsets
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A and B of a metric space (X, dX) is the value dH(A,B) = inf{r > 0 |A ⊂
Ur(B), B ⊂ Ur(A)}, where Ur(A) =

⋃
a∈A

BdX (a, r) is the r-neighborhood of the

set A.

Definition 2.8.22. The Gromov–Hausdorff distance dGH(X,Y ) between metric
spaces X and Y is the infimum over r > 0 for which there exists a metric space
Z and its subspaces X ′ and Y ′, isometric to X and Y , respectively, such that
dH(X ′, Y ′) < r.

Proposition 2.8.23 ([130]). Let (X, dX), (Y, dY ) be metric spaces and ρ > 0.
1) If there exist (not necessarily continuous) mappings ϕ : X → Y and ψ :

Y → X such that dis(ϕ) ≤ ρ, dis(ψ) ≤ ρ, sup
x∈X

dX(x, ψ(ϕ(x))) ≤ ρ, then

dGH(X,Y ) ≤ ρ.
2) If dGH(X,Y ) ≤ ρ, then for each ε > 0 there exist mappings ϕ : X → Y and

ψ : Y → X such that dis(ϕ) ≤ 2ρ+ε, dis(ψ) ≤ 2ρ+ε, sup
x∈X

dX(x, ψ(ϕ(x))) ≤
2ρ+ ε.

As noted in [130], the conditions on the behaviour of sup
x∈X

dX(x, ψ(ϕ(x)))

(missing in [16], where an analog of Proposition 2.8.23 is formulated) are indeed
necessary for validity of this proposition. From Proposition 2.8.23 it follows

Proposition 2.8.24 ([129, 130]). Distances dqm and dGH are equivalent. More pre-
cisely, the following inequality holds: dGH(X,Y ) ≤ dqm(X,Y ) ≤ 2dGH(X,Y ).

Definition 2.8.25 ([22, 69, 71]). A sequence of compact metric spaces {Xn}∞n=1

converges in the Gromov–Hausdorff sense to a compact metric space X , if

lim
n→∞ dGH(Xn, X) = 0.

According to Proposition 2.8.24, one obtains

Proposition 2.8.26 ([129, 130]). For metric spaces, Definitions 2.8.16 and 2.8.25
are equivalent.

Definition 2.8.27 ([22]). A sequence (Xn, pn) of pointed metric spaces converges
in the Gromov–Hausdorff sense to a pointed metric space (X, p), if for all r > 0,
ε > 0 there is a number n0 such that for all n > n0 there exist mappings ϕn,r :
BdXn (pn, r) → X such that

1) ϕn,r(pn) = p;
2) dis(ϕn,r) < ε;
3) Uε(ϕn,r(BdXn (pn, r)) ⊃ BdX (p, r − ε).

Using known criteria of convergence in the Gromov–Hausdorff sense [22], it
is not difficult to show [130] the equivalence of Definitions 2.8.18 and 2.8.27 for
metric spaces.
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Thus, taking in account Theorem 2.8.19 and its metric analog, one derives

Corollary 2.8.28 ([130]). Tangent cones to the metric space X at p ∈ X, obtained
using convergences from Definitions 2.8.18 and 2.8.27, respectively, are isometric.

Consider again Carnot–Carathéodory spaces. The main result of [129] is the
following statement.

Theorem 2.8.29. Let M be a Carnot–Carathéodory space. The quasimetric space
(GuM, 0, du

∞) is the tangent cone at the point u ∈ M to the quasimetric space
(U , u, d∞), U ⊂ M.

Recall that the quasidistance du∞ for points x, y ∈ GuM such that x =

exp
( N∑

i=1

xi(X̂u
i )′
)
(y), is defined as du

∞(x, y) = max
i
{|xi|

1
deg Xi }. Theorem 2.8.29

follows from Local Approximation Theorem 2.5.4. The dilations Δλn , Δψ

λ−1
n

are
taken as the mappings ϕn,r, ψn,r in Definition 2.8.18.

Remark 2.8.30 ([129]). The metric version of Theorem 2.8.29 (in the case when
the Carnot–Carathéodory space M can be equipped with the intrinsic metric dcc)
is proved in [70, 108] with the help of Gromov’s criterion (based on finite ε-nets) of
convergence for compact metric spaces. Moreover, the convergence of noncompact
pointed spaces is defined as convergence of the corresponding balls in the sense
of Definition 2.8.25. The definition of the tangent cone obtained in this way is
equivalent to the definition with respect to convergence from Definition 2.8.27
only for length metric spaces. Thus, this approach is not applicable to the situation
under consideration.

Remark 2.8.31. In fact, one can consider an abstract quasimetric space with dila-
tions (which generalizes Carnot–Carathéodory spaces) and prove that the tangent
cone exists at each point satisfying some condition similar to the Local Approx-
imation Theorem [130] (compare with [21]). Moreover, assuming additionally a
certain regularity condition one can show that the tangent cone has the structure
of a Lie group, the Lie algebra of which is graded and nilpotent. The proof of this
fact is based on the well-known theorem due to A.I. Mal’cev [103] that provides
necessary and sufficient conditions for a local topological group to be locally iso-
morphic to a topological group, and on results of [132] concerning the structure of
contractible groups. The last result will appear in a forthcoming paper [131].

3. Differentiability on a Carnot–Carathéodory spaces

3.1. Primitive calculus

Recall that the dilation group δu
ε is defined in the local homogeneous group GuM:

to an element x = exp
( N∑

i=1

xiX̂
u
i

)
(u), it assigns δu

ε x = exp
( N∑

i=1

xiε
deg XiX̂u

i

)
(u) in

the cases where the right-hand side makes sense.
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Further, we extend the dilations δu
t to negative t by setting δu

t x = δu
|t|(x

−1)
for t < 0. The convenience of this definition is seen from the comparison of different
kinds of differentiability.

3.1.1. Definition.

Notation 3.1.1. Let M, M̃ be two Carnot–Carathéodory spaces. We denote the
vector fields on M̃ by X̃i. We label the remaining objects on M̃ (the distance, the
tangent cone etc.) with the same symbols as on M but with a tilde ˜ excluding the
cases where the objects under consideration are obvious: for example, for a given
mapping ϕ : E → M̃, it is clear that GuM is the tangent cone at a point u ∈ M and
Gϕ(u)M̃ is the tangent cone at the point ϕ(u) ∈ M̃; du

∞ is Carnot–Carathéodory
metric in the cone GuM, d̃ϕ(u)

∞ is Carnot–Carathéodory metric in Gϕ(u)M̃, etc.

Recall that a horizontal homomorphism of homogeneous groups L : G and G̃

is a continuous homomorphism L : G → G̃ such that

1) DL(0)(HG) ⊂ HG̃.

The notion of a horizontal homomorphism L :
(
GuM, du

∞
)
→
(
GqM̃, d̃q

∞
)
, u ∈ M,

q ∈ M̃, of local homogeneous groups is different from this only in that the inclusion
L(GuM ∩ expHGuM) ⊂ GqM̃ ∩ exp HGqM̃ holds only for v ∈ GuM ∩ expHGuM

such that L(v) ∈ GqM̃.
Since a homomorphism of Lie groups is continuous, it is easy to prove that a

horizontal homomorphism L : G → G̃ also has the property

2) L(δtv) = δ̃tL(v) for all v ∈ G and t > 0 (in the case of a horizontal homo-
morphism L :

(
GuM, du∞

)
→
(
GqM̃, d̃q∞

)
of local homogeneous groups, the

equality L(δtv) = δ̃tL(v) is fulfilled only for v ∈ GuM and t > 0 such that
δtv ∈ GuM and δ̃tL(v) ∈ GqM̃).

Definition 3.1.2. Given two Carnot–Carathéodory spaces M and M̃, and a set
E ⊂ M, a mapping ϕ : E → M̃ is called hc-differentiable at a point u ∈ E if there
exists a horizontal homomorphism L :

(
GuM, du

∞
)
→
(
Gϕ(u)M̃, d̃

ϕ(u)
∞
)

of the local
homogeneous groups such that

d̃ϕ(u)
∞ (ϕ(v), L(v)) = o

(
du
∞(u, v)

)
as E ∩ GuM � v → u. (3.1.1)

A horizontal homomorphism L :
(
GuM, du∞

)
→
(
Gϕ(u)M̃, d̃

ϕ(u)
∞
)

satisfying
condition (3.1.1), is called an hc-differential of the mapping ϕ : E → M̃ at u ∈ E

on E and is denoted by D̂ϕ(u). It can be proved [141] that if u is a density point
of E then the hc-differential is unique.

Moreover, it is easy to verify that the hc-differential commutes with the one-
parameter dilation group:

δ̃
ϕ(u)
t ◦ D̂ϕ(u) = D̂ϕ(u) ◦ δu

t . (3.1.2)
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Proposition 3.1.3 ([141]). Definition 3.1.2 is equivalent to each of the following
assertion:

1) d̃ϕ(u)
∞
(
Δϕ(u)

t−1 ϕ
(
δu
t (v)
)
, L(v)

)
= o(1) as t → 0, where o(·) is uniform in the

points v of any compact part of GuM;
2) d∞

(
Δϕ(u)

t−1 ϕ
(
δu
t (v)
)
, L(v)

)
= o(1) as t→ 0, where o(·) is uniform in the points

v of any compact part of GuM;
3) d̃∞(ϕ(v), L(v)) = o

(
du∞(u, v)

)
as E ∩ GuM � v → u;

4) d̃∞(ϕ(v), L(v)) = o
(
d∞(u, v)

)
as E ∩ GuM � v → u.

Proof. First, we prove item 1. Consider a point v of a compact part of GuM and a
sequence εi → 0 as i→ ∞ such that δu

εi
v ∈ E for all i ∈ N. From (3.1.1) we have

d̃
ϕ(u)
∞
(
ϕ
(
δu
εi
v
)
, L
(
δu
εi
v
))

= o
(
du
∞
(
u, δu

εi
v
))

= o(εi). In view of (3.1.2), we infer

d̃ϕ(u)
∞
(
Δϕ(u)

εi

(
Δϕ(u)

ε−1
i

ϕ
(
δu
εi
v
))
, δϕ(u)

εi
L(v)
)

= o(εi) uniformly in v.

From here and properties of quasimetric d̃ϕ(u)
∞ item 1 follows. Obviously, the ar-

gument is reversible.
Further we have αρGϕ(u)(x, y) ≤ d̃

ϕ(u)
∞ (x, y) ≤ βρGϕ(u)(x, y)

1
M , where ρGϕ(u)

is the Riemannian metric on Gϕ(u), ρ(x, y) ≤ d∞(x, y) ≤ ρ(x, y)
1

M (α and β
depend on the choice of the compact part), and metrics ρGϕ(u)(x, y) and ρ(x, y) are
equivalent on any compact neighborhood part of point u. It gives the equivalence
of item 1 to item 2.

By Local Approximation Theorem 2.5.4, we obtain the equivalence of (3.1.1)
to the items 3 and 4. Really, it is enough to apply the following relations:∣∣d̃ϕ(u)

∞ (ϕ(v), L(v)) − d̃∞(ϕ(v), L(v))
∣∣ = o

(
d̃ϕ(u)
∞ (L(v), ϕ(u)

)
= o
(
dϕ(u)
∞ (v, u)

)
= o
(
d̃∞(L(v), ϕ(u)

)
= o(d∞(v, u)). �

3.1.2. Chain rule. In this subsubsection, we prove the chain rule.

Theorem 3.1.4 (The Chain Rule [141]). Suppose that M, M̃, M̂ are Carnot–Carathé-
odory spaces, E is a set in M, and ϕ : E → M̃ is a mapping from E into M̃

hc-differentiable at a point u ∈ E. Suppose also that F is a set in M̃, ϕ(E) ⊂ F

and ψ : F → M̂ is a mapping from F into M̂ hc-differentiable at p = ϕ(u) ∈ M̃.
Then the composition ψ ◦ ϕ : E → M̂ is hc-differentiable at u and

D̂(ψ ◦ ϕ)(u) = D̂ψ(p) ◦ D̂ϕ(u).
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Proof. By hypothesis, dϕ(u)
∞ (ϕ(v), D̂ϕ(u)[v]) = o

(
du
∞(u, v)

)
as v → u, v ∈ E, and

also dψ(p)
∞ (ψ(w), D̂ψ(p)[w]) = o

(
dp
∞(p, w)

)
as w → p, w ∈ F . We now infer

dψ(p)
∞ ((ψ ◦ ϕ)(v), (D̂ψ(p) ◦ D̂ϕ(u))[v])

≤ Q
(
dψ(p)
∞ (ψ(ϕ(v)), D̂ψ(p)[ϕ(v)]) + dψ(p)

∞ (D̂ψ(p)[ϕ(v)], D̂ψ(p)[D̂ϕ(u)(v)])
)

≤ o
(
dp
∞(p, ϕ(v))

)
+O
(
dp
∞
(
ϕ(v), D̂ϕ(u)[v]

))
≤ o
(
du
∞(u, v)

)
+O
(
o
(
du
∞(u, v)

))
= o
(
du
∞(u, v)

)
as v → u,

since p = ϕ(u) and

dp
∞
(
p, ϕ(v)

)
≤ Q
(
dp
∞
(
p, D̂ϕ(u)[v]

)
+ dp

∞
(
ϕ(v), D̂ϕ(u)[v]

))
= O
(
du
∞(u, v)

)
+ o
(
du
∞(u, v)

)
= O
(
du
∞(u, v)

)
as v → u.

The estimate dp
∞
(
p, D̂ϕ(u)[v]

)
= O
(
du
∞(u, v)

)
as v → u follows from the continuity

of the homomorphism D̂ϕ(u) (see [151]) and (3.1.2). �

3.2. hc-differentiability of curves on Carnot–Carathéodory spaces

3.2.1. Coordinate hc-differentiability criterion. Recall that a mapping γ : E → M,
where E ⊂ R is an arbitrary set, is called a Lipschitz mapping if there exists a
constant L such that the inequality d∞(γ(y), γ(x)) ≤ L|y−x| holds for all x, y ∈ E.

Definition 3.2.1. A mapping γ : E → M, where E ⊂ R is an arbitrary set, is
called hc-differentiable at a limit point s ∈ E of E if there exists a horizontal

vector a =
dim H1∑

i=1

αiX̂
γ(s)
i (γ(s)) ∈ Hγ(s)M such that the local homomorphism

τ → exp
(
τ

dim H1∑
i=1

αiX̂
γ(s)
i

)
(γ(s)) ∈ Gγ(s)M is the hc-differential of the mapping

γ : E→M, i.e., dγ(s)
∞
(
γ(s + τ), δγ(s)

τ a
)

= o(τ) for τ → 0, s + τ ∈ E. The point

exp
(dim H1∑

i=1

αiX̂
γ(s)
i

)
(γ(s)) ∈ Gγ(s)M is called the hc-derivative 1.

Some properties of the introduced notion of hc-differentiability can be ob-
tained from Proposition 3.1.3. For instance, the coefficients αi are defined uniquely:

if, in the normal coordinates, γ(s+ τ) = exp
( N∑

i=1

γi(τ)X̂
γ(s)
i

)
(γ(s)), s+ τ ∈ E, for

sufficiently small τ then Proposition 3.1.3 implies:

Property 3.2.2 ([141]). A mapping γ : [a, b] → M is hc-differentiable at a point
s ∈ (a, b) if and only if one of the following assertions holds:

(1) γi(τ) = αiτ + o(τ), i = 1, . . . ,dimH1, and γi(τ) = o(τdeg Xi), i > dimH1, as
τ → 0, s+ τ ∈ E;

1See Remark 2.1.23 for the cases of C1,α-smooth basis vector fields, α ∈ [0, 1].
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(2) the vector
dim H1∑

i=1

αiX̂
γ(s)
i (γ(s)) ∈ Hγ(s)M is the Riemannian derivative of

γ : [a, b] → M at a point s ∈ (a, b), and γi(τ) = o(τdeg Xi), i > dimH1, as
τ → 0, s+ τ ∈ E.

Proof. Really, consider an arbitrary real number τ of a compact neighborhood of 0
such that s+τ ∈ E and any sequence tn going to 0 as n→∞ such that s+tnτ ∈ E.

Then, by 3.1.3, Δγ(s)

t−1
n
γ(s+ tnτ) = exp

( N∑
i=1

γi(tnτ)

t
deg Xi
n

Xtn

i

)
(γ(s)), s+ tnτ ∈ E, has to

go to exp
(dim H1∑

i=1

ταiX̂
γ(s)
i

)
(γ(s)), s + τ ∈ E. As far as, by Corollary 2.2.13, Xtn

i

converges uniformly to X̂
γ(s)
i we derive γ̇i(s) = αi for i = 1, . . . ,dimH1 and

γi(τ) = o(τdeg Xi) as τ → 0, s+ τ ∈ E, for i > dimH1. �

3.2.2. hc-differentiability of absolutely continuous curves. If a curve γ : [a, b] → M

is absolutely continuous in Riemannian sense then all coordinate functions γi(t) are
absolutely continuous on the closed interval [a, b] (it is clear that this property is
independent of the choice of the coordinate system). Therefore the tangent vector
γ̇(t) is defined almost everywhere on [a, b]. If, moreover, γ̇(t) ∈ Hγ(t)M at the
points t ∈ [a, b] of Riemannian differentiability then the curve γ : [a, b] → M is
called horizontal.

It is well known that almost all points t of a closed interval E = [a, b] are
Lebesgue points of the derivatives of the horizontal components, that is, if, in the

normal coordinates γ(t+ τ) = exp
( N∑

j=1

γj(τ)Xj

)
(γ(t)), t+ τ ∈ E, τ ∈ (−ε, ε) for

some ε > 0, then the horizontal components γj(σ), j = 1, . . . ,dimH1, have the
property ∫

{σ∈(α,β) | t+σ∈E}

|γ̇j(σ) − γ̇j(0)| dσ = o(β − α) as β − α→ 0 (3.2.1)

on intervals (α, β) � 0. Note that property (3.2.1) is independent of the choice of
the coordinate system in a neighborhood of γ(t).

Below we formulate some statements on hc-differentiability of curves on
Carnot–Carathéodory space.

Theorem 3.2.3 (see also [141]). Let a curve γ : [a, b] → M on a Carnot–Carathéo-
dory space be absolutely continuous in the Riemannian sense and horizontal. Then
γ : [a, b] → M is hc-differentiable almost everywhere: any point t ∈ [a, b] which
is a Lebesgue point of the derivatives of its horizontal components is also a point

at which γ is hc-differentiable. If γ(t + τ) = exp
( N∑

j=1

γj(τ)Xj

)
(γ(t)), where τ ∈
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(−ε, ε) for ε small enough, then hc-derivative γ̇(t) equals

exp
(dim H1∑

j=1

γ̇j(0)X̂γ(t)
j

)
(γ(t)) = exp

(dim H1∑
j=1

γ̇j(0)Xj

)
(γ(t)).

Proof. Fix a Lebesgue point t0 ∈ (a, b) of the derivatives of the horizontal compo-

nents of the mapping γ(t0 + τ) = exp
( N∑

j=1

γj(τ)Xj

)
(γ(t0)). Put u = γ(t0). In this

proof, we also fix a normal coordinate system θu at u. To simplify the notation, we
write the vector fields X ′i

u = (θ−1
u )∗Xi and X̂ ′i

u = (θ−1
u )∗X̂u

i defined in a neigh-
borhood of 0 ∈ RN without the superscript u: X ′i = (θ−1

u )∗Xi and X̂ ′i = (θ−1
u )∗X̂u

i

respectively.
For proving the hc-differentiability of the mapping γ at t0, we need to estab-

lish the estimate γj(τ) = o(τdeg Xj ) as τ → 0 for all j > dimH1, t0 + τ ∈ [a, b]
(see Property 3.2.2). The proof given below is new with those on Carnot groups
[118] and on Carnot manifolds with some restrictions on a system of given vector
fields [105]. The main goal of the proof is to obtain the following behaviour of the
derivative γ̇j(τ): if degXj = l > 1 then γ̇j(τ) = o(τ l−1) as τ → 0 (it follows from
(3.2.11)). After that the Newton–Leibnitz formula does job. Partition the proof of
the desired estimate into several steps.

First step. Here we show that the hypothesis implies the Riemannian differentia-
bility of the mapping γ at t0, and γ̇(t0) ∈ HuM. Put Γ(τ) = θ−1

u (γ(t0 + τ)) =
(γ1(τ), . . . , γN (τ)). The curve Γ(τ) is absolutely continuous, and its tangent vector
Γ̇(τ) is horizontal in a neighborhood of 0 ∈ TuM with respect to the vector fields
{X ′i}: Γ̇(τ) ∈ (θ−1

u )∗〈Hγ(t0+τ)M〉 for almost all τ since γ is horizontal. From here,
for almost all τ sufficiently close to 0, we infer

Γ̇(τ) =
N∑

j=1

γ̇j(τ)
∂

∂xj
=

dim H1∑
i=1

ai(τ)X ′i(Γ(τ)). (3.2.2)

The Riemann tensor pulled back from the manifold M onto a neighborhood
of 0 ∈ TuM is continuous at zero. Therefore, using this continuity and taking into
account the horizontality of γ, we see that, for any τ such that t0 + τ ∈ [a, b],
(3.2.1) implies

dcc(γ(t0), γ(t0 + τ)) ≤ c1

∫
(0,τ)

|Γ̇(σ)|r dσ

≤ c2

dim H1∑
j=1

∫
(0,τ)

(|γ̇j(σ) − γ̇j(0)|+ |γ̇j(0)|) dσ = O(τ)

as τ → 0, where |Γ̇(σ)|r stands for the length of the tangent vector in the
pulled-back Riemannian metric. By Proposition 2.8.6 and Remark 2.8.7, we have
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d∞(γ(t0), γ(t0 + τ)) = O
(
dcc(γ(t0), γ(t0 + τ))

)
as τ → 0. Therefore the coordinate

components γj(τ) of the mapping γ satisfy

γj(τ) = O(τdeg Xj ) as τ → 0 for all j ≥ 1. (3.2.3)

It follows that the curve Γ(τ) is differentiable at 0 and

Γ̇(0) = (γ̇1(0), . . . , γ̇dim H1(0), 0, . . . , 0).

Hence, the curve γ is differentiable in the Riemannian sense at t0 and γ̇(t0) ∈ HuM.
From (3.2.3) we also obtain γ(τ) ∈ Box(u,O(τ)).

Second step. Corollary 2.2.11 and the fact that γ(τ) ∈ Box(u,O(τ)) imply that, in
a neighborhood of 0, each vector field X ′i can be expressed via {X̂ ′k}N

k=1 so that

X ′i(Γ(τ)) =
N∑

k=1

αik(τ)X̂ ′k(Γ(τ)), where αik(τ) =

⎧⎪⎨⎪⎩
o(τdeg Xk−deg Xi) if

degXk > degXi,

δik +O(τ) otherwise

as τ → 0 (here αik(τ) = ai,k(Γ(τ)) from Corollary 2.2.11). Now, using expan-
sion (2.1.11) of the vector fields X̂ ′i in the standard Euclidean basis, for all points
τ sufficiently close to 0, from (3.2.2) we now obtain

N∑
j=1

γ̇j(τ)
∂

∂xj
=

dim H1∑
i=1

ai(τ)X̃i(Γ(τ)) =
N∑

k=1

dim H1∑
i=1

ai(τ)αik(τ)X̂ ′k(Γ(τ))

=
N∑

j=1

j∑
k=1

dim H1∑
i=1

ai(τ)αik(τ)zj
k(u,Γ(τ))

∂

∂xj
. (3.2.4)

Third step. For 1 ≤ j ≤ dimH1, we have degXj = 1. Then from (2.1.11)
and (3.2.3) we conclude that zj

k(u,Γ(τ)) = δjk + O(τ). Therefore, from (3.2.4)
we infer

γ̇j(τ) =
j∑

k=1

dim H1∑
i=1

ai(τ)(δik +O(τ))(δjk +O(τ)) =
dim H1∑

i=1

ai(τ)α̃ij(τ),

where, as before, α̃ij(τ) = δij +O(τ).
Hence,

ai(τ) =
dim H1∑

q=1

γ̇q(τ)βqi(τ), (3.2.5)
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where {βqi(τ)}, q, i = 1, . . . ,dimH1, is a matrix inverse to {α̃ij(τ)}, has the ele-
ments βqi(τ) = δqi +O(τ). Consequently,

ai(τ) =
dim H1∑

i=1

γ̇q(τ)βqi(τ) =
dim H1∑

q=1

ṙq(τ)βqi(τ) +
dim H1∑

q=1

γ̇q(0)βqi(τ),

where rq(τ) =

τ∫
0

(γ̇q(σ) − γ̇q(0)) dσ. (3.2.6)

Fourth step. Fix dimHl−1 < j ≤ dimHl, 1 < l ≤ M . For estimating γ̇j(τ), we
replace ai(τ) in (3.2.4) by (3.2.5) to come to

γ̇j(τ) =
dim H1∑
k,i,q=1

γ̇q(τ)βqi(τ)αik(τ)zj
k(u,Γ(τ)) (3.2.7)

+
j∑

k=dim H1+1

dim H1∑
i,q=1

γ̇q(τ)βqi(τ)αik(τ)zj
k(u,Γ(τ)) = Ij + IIj ,

where

Ij =
dim H1∑
k,i,q=1

γ̇q(τ)βqi(τ)αik(τ)zj
k(u,Γ(τ))

and

IIj =
j∑

k=dim H1+1

dim H1∑
i,q=1

γ̇q(τ)βqi(τ)αik(τ)zj
k(u,Γ(τ)).

From the one hand, since in this case we have degXk > degXi, then consequently
αik(τ) = o(τdeg Xk−deg Xi). Next,

zj
k(u,Γ(τ)) = O(τdeg Xj−deg Xk) (3.2.8)

in view of the fact that Γ(τ) ∈ Box(0, O(τ)). From here, taking into account that
degXj = l, we deduce that all the components in the double sum IIj have a factor
o(τ l−1). Therefore

IIj =
dim H1∑

q=1

γ̇q(τ)o(τ l−1). (3.2.9)

From the other hand, in view of Corollary 2.2.11, (2.1.11) and (3.2.8) we infer

Ij =
dim H1∑

q=1

γ̇q(τ)zj
q(u,Γ(τ)) +

dim H1∑
k,q=1

γ̇q(τ)o(1)zj
k(u,Γ(τ)) (3.2.10)

=
dim H1∑

q=1

γ̇q(0)zj
q(u,Γ(τ)) +

dim H1∑
q=1

ṙq(τ)zj
q(u,Γ(τ)) +

dim H1∑
k,q=1

γ̇q(τ)o(1)zj
k(u,Γ(τ))
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=
dim H1∑

q=1

γ̇q(0)
∑

|μ+eq|h=deg Xj , μ>0

F j
μ,eq

(u)Γ(τ)μ

+
dim H1∑

q=1

ṙq(τ)O(τ l−1) +
dim H1∑

q=1

γ̇q(τ)o(τ l−1).

In the estimation of the increment of γj(τ) on [0, τ ] by the Newton–Leibnitz for-
mula, the components of (3.2.9) and the last two summands in (3.2.10) have order
o(τ l). Indeed, for all 1 ≤ q ≤ dimH1 and s > 0, from (3.2.1) and (3.2.6) we have

|γ̇q(τ)| ≤ |γ̇q(0)| + |ṙq(τ)| from (3.2.6), |rq(τ)| ≤
τ∫
0

|γ̇q(σ) − γ̇q(0)| dσ = o(τ) and

∣∣∣∣
τ∫

0

ṙq(σ)O(σs) dσ
∣∣∣∣ ≤ |O(τs)|

τ∫
0

|γ̇q(σ) − γ̇q(0)| dσ = o(τs+1).

Fifth step. In the remaining double sum in (3.2.10), the summands with index μ
for which |μ+ eq| < degXj contain the factor Γ(τ)μ = o(τ l−1), since, in this case,
the product Γ(τ)μ necessarily contains the factor γj(τ) = γ̇j(0)τ + o(τ) = o(τ),
j > dimH1. Therefore, expression (3.2.10) for γ̇j(τ) is reduced to the following:

γ̇j(τ) =
dim H1∑

q=1

γ̇q(0)
∑

|μ+eq |h=deg Xj ,
|μ+eq|=deg Xj

F j
μ,eq

(u)Γ(τ)μ + o(τ l−1). (3.2.11)

Since also Γ(τ) = Γ̇(0)τ + o(τ), we see that each summand in (3.2.11) is equal
to γ̇q(0)F j

μ,eq
(u)Γ(τ)μ = τ l−1γ̇q(0)F j

μ,eq
(u)Γ̇(0)μ + o(τ l−1). Consequently, (3.2.11)

can be written as

γ̇j(τ) =
dim H1∑

q=1

τ l−1
∑

|μ|=|μ|h=l−1

γ̇q(0)F j
μ,eq

(u)Γ̇(0)μ + o(τ l−1). (3.2.12)

Similarly, the second summand in the estimation of the increment of γj(τ) is equal
to o(τ l). Consequently, for the validity of the theorem, it is necessary and sufficient
that the double sum in (3.2.12) equals zero. This was established in Lemma 2.1.25.

Thus, we have proved that γj(τ) = o(τdeg Xj ) for all j > dimH1. Since the
horizontal components of γ are differentiable at t0, by Property 3.2.2, the estimate
γj(τ) = o(τdeg Xj ) for all j > dimH1 yields the hc-differentiability of γ at t0. �

The method of proving Theorem 3.2.3 is applicable to a wider class of map-
pings and makes it possible to make additional conclusions about the nature of
hc-differentiability.

Corollary 3.2.4. Suppose that a curve γ : [a, b] → M on a Carnot–Carathéodory
space is Lipschitz with respect to the Riemannian metric and horizontal, i.e.,
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γ̇(s) ∈ Hγ(s)M for almost every s ∈ [a, b]. Then the curve γ : [a, b] → M is
hc-differentiable almost everywhere2.

Proof. Every Lipschitz curve with respect to the Riemannian metric is also abso-
lutely continuous in the Riemannian sense. Thus all conditions of Theorem 3.2.3
hold. �

Corollary 3.2.5. Suppose that we have a family of curves γ : [a, b] × F → M on a
Carnot–Carathéodory space M that is bounded and continuous in the totality of its
variables, where F is a locally compact metric space. Suppose that, for each fixed
u ∈ F , the curve γ(·, u) is differentiable in the Riemannian sense at all points of
[a, b] and horizontal, i.e., d

dsγ(s, u) ∈ Hγ(s,u)M for all s ∈ [a, b]. If the Riemannian
derivative d

dsγ(s, u) is bounded and continuous in the totality of its variables s and
u then its hc-derivative is also bounded and continuous on [a, b]×F . Furthermore,
the convergence Δγ(s)

τ−1 γ(s + τ, u) to γ̇(s, u) ∈ Gγ(s,u)M is locally uniform in the
totality of s ∈ [a, b] and u ∈ F .

Proof. It suffices to prove in all items of the proof of Theorem 3.2.3 that the
smallness of all quantities converging to zero is locally uniform on [a, b]× F . �

Corollary 3.2.6. Suppose that a curve γ : [a, b] → M on a Carnot–Carathéodory
space M belongs to C1 and its Riemannian tangent vector γ̇i(t) is horizontal for
all t ∈ [a, b]. Then the curve γ : [a, b] → M is hc-differentiable at all t ∈ [a, b].
Furthermore, the convergence of Δγ(s)

τ−1 γ(s + τ) to γ̇(s) ∈ Gγ(s)M is uniform in
s ∈ [a, b].

Proof. For any x, y ∈ [a, b], the length L(γ|[x,y]) of the curve γ : [x, y] → M is de-
fined; moreover, d∞(γ(y), γ(x)) ≤ c1L(γ|[x,y]) ≤ c1C|y−x|, where C = max

t∈[a,b]
|γ̇(t)|.

Thus, the curve γ : [a, b] → M meets the conditions of Theorem 3.2.3 at all points
of [a, b] and, therefore, is uniformly hc-differentiable by Corollary 3.2.5 (in this
case F can be considered as one-point set). The corollary follows. �

Lemma 3.2.7. Let M be a Carnot–Carathéodory space. Every Lipschitz (with re-
spect to d∞) mapping γ : E → M, E ⊂ R, is differentiable almost everywhere
in the Riemannian sense, and γ̇(t) ∈ Hγ(t)M at the points of the Riemannian
differentiability of γ.

Proof. In the normal coordinates at a point u = γ(t), we have

γ(t+ τ) = exp
( N∑

j=1

γj(τ)Xj

)
(u), t+ τ ∈ E.

The Lipschitzity with respect to d∞ of the mapping γ : E → M and the properties
of d∞ imply the estimate γj(τ) = O(τdeg Xj ) for all j ≥ 1, t + τ ∈ E. Since
degXj ≥ 2 for j > dimH1, the derivative γ̇j(0) exists and equals zero for all

2In papers [141, 142], a wrong Corollary 3.1 is formulated instead of this.
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such j. Consequently, the Riemannian differentiability of γ at t is equivalent to
the differentiability of the horizontal components γj , j = 1, . . . , n, of γ at 0.

Now, the Lipschitz mapping γ : E → M is also Lipschitz with respect to
the Riemannian metric (see Proposition 2.2.2). Thus, by Rademacher’s classical
theorem, the Riemannian derivative γ̇(t) ∈ Tγ(t)M exists for almost every t ∈ [a, b].
The above implies that, at every such point, γ̇(t) ∈ Hγ(t)M. �

Since a Lipschitz with respect to d∞ mapping γ : [a, b] → M is absolutely
continuous in the Riemannian sense (see the comparison of the metrics in Propo-
sition 2.2.2), from Lemma 3.2.7 and Theorem 3.2.3 we infer

Corollary 3.2.8. Let M be a Carnot–Carathéodory space. Every Lipschitz with re-
spect to d∞ mapping γ : [a, b] → M is hc-differentiable almost everywhere on [a, b]:
if t ∈ [a, b] is a Lebesgue point of the derivatives of its horizontal components then
this point is its hc-differentiability point.

3.2.3. hc-differentiability of scalar Lipschitz mappings. In this subsubsection, we
establish the hc-differentiability of Lipschitz mappings γ : E → M, where E ⊂ R

is an arbitrary set. We assume that a Carnot-Carathéodory space M is a Carnot
manifold meeting the 4th condition in the definition 2.1.1.

Recall that x ∈ A, where A ⊂ R is a measurable set, is the density point of
A if

|A ∩ (α, β)|1 = β − α+ o(β − α) for β − α→ 0, x ∈ (α, β) (3.2.13)

(here | · |1 stands for the one-dimensional Lebesgue measure). It is known that
almost all points of a measurable setA are its density points (see, for example, [42]).

It is explicitly seen from the above proof of Lemma 3.2.7 that the answer
to the question on hc-differentiability of Lipschitz with respect to d∞ mapping
depends on the differentiability of its horizontal components. If a Lipschitz with
respect to d∞ mapping γ : E → M (we may assume that E ⊂ R is closed) is written

in the normal coordinates: γ(t + τ) = exp
( N∑

j=1

γj(τ)Xj

)
(γ(t)), t ∈ E is a fixed

number, t+ τ ∈ E, then, by Lemma 3.2.7, its components γj(τ), j = 1, . . . , N , are
differentiable almost everywhere on E. It is known that almost all density points
of E are Lebesgue points of the derivative of the horizontal components (see, for
example, Lemma 3.2.7 and [42]), i.e., for intervals (α, β) � τ , t+ τ ∈ E, we infer∫

{σ∈(α,β) | t+σ∈E}

|γ̇j(σ) − γ̇j(τ)| dσ = o(β − α) for β − α→ 0 (3.2.14)

for all j = 1, . . . ,dimH1. Note that Property (3.2.14) does not depend on the
choice of the coordinate system in a neighborhood of the point u = γ(t).

Theorem 3.2.9 ([141]). Let M be a Carnot manifold. Every Lipschitz with respect
to d∞ mapping γ : E → M, where E ⊂ R is closed, is hc-differentiable almost
everywhere on E. Namely, the mapping γ : E → M is hc-differentiable at every
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point t ∈ E such that
1) t is a density point of E;
2) there exist derivatives γ̇j(0), j = 1, . . . ,dimH1, of the horizontal components

of γ, where γ(t+ τ) = exp
( N∑

j=1

γj(τ)Xj

)
(γ(t)), t+ τ ∈ E;

3) condition (3.2.14) is fulfilled at the point τ = 0.

The hc-derivative D̂γ(t) equals

exp
(dim H1∑

j=1

γ̇j(0)X̂γ(t)
j

)
(γ(t)) = exp

(dim H1∑
j=1

γ̇j(0)Xj

)
(γ(t)).

Proof. On a Carnot group G the theorem is proved in [137]. The method used in
[137] is based on an extension of a given Lipschitz mapping γ : E → G, where
E ⊂ R is closed, to a Lipschitz mapping γ̃ : [a, b] → G where [a, b] ⊃ E is a closed
segment. On this way we have to apply Rashevskǐı–Chow Theorem on a horizontal
path with given endpoints. Under condition of Theorem 3.2.9 we do not have
this opportunity. Therefore the sketch of the proof, given in [137], is essentially
modified: instead of horizontal paths in the Carnot manifolds we connect given
two points by a horizontal path in a local Carnot group associated with one point
of every pair (because of this, local Carnot groups are different one from another).
It is clear that this construction does not give a Lipschitz curve with respect
to d∞-quasimetric (therefore we are not able to reduce the proof to Theorem
3.2.3). But it will be a Lipschitz curve with respect to Riemannian metric, and the
Newton–Leibnitz formula can be applied. Estimates similar to those in Theorem
3.2.3 provide the hc-differentiability of the given curve in a prescribed point.

Suppose that t ∈ E is a point at which conditions 1–3 of the theorem hold
and u = γ(t). Since the result is local, we may also assume that E is included in
an interval [a, b] ⊂ R, t ∈ [a, b], a, b ∈ E, whose image is included in GuM (we may
assume by diminishing the interval [a, b] if necessary that γ([a, b] ∩ E) ⊂ Gγ(η)M

for every η ∈ [a, b] ∩ E).

First step. The open bounded set Z = (a, b)\E is representable as the union of an
at most countable collection of disjoint intervals: Z =

⋃
j(αj , βj), where, for conve-

nience of the subsequent estimates, we put αj < βj if t ≤ αj and βj < αj if αj < t.
It is known (for example, see [47]), that, in Gγ(αj)M, there exists a horizontal (with
respect to the basis

{
X̂

γ(αj)
l

}N

l=1
) curve σ̃j : [0, bj] → Gγ(αj)M joining the points

σ̃j(0) = γ(αj) and σ̃j(bj) = γ(βj) and parameterized by the arc length; more-
over, bj = d

γ(αj)
cc (γ(αj), γ(βj)) ≤ Cd

γ(αj)∞ (γ(αj), γ(βj)) = Cd∞(γ(αj), γ(βj)) ≤
CL|βj − αj | (since γ is Lipschitz with respect to d∞), where C is independent of
j. Consequently, the mapping σj : [αj , βj] → M defined by the rule

[αj , βj ] � η → σj(η) = σ̃j

( bj
|βj − αj |

|η − αj |
)
∈ Gγ(αj)M

is Lipschitz in the metric dγ(αj)
cc with the Lipschitz constant cL for all j ∈ N.
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Define now the extension f : [a, b] → M as follows:

f(η) =

{
γ(η), if η ∈ E,
σj(η), if η ∈ (αj , βj).

Second step. The mapping f : [a, b] → M has the following properties (justifications
are given below):
(1) f : [α, β] → M is a Lipschitz mapping with respect to the Riemannian metric;
(2) the Riemannian derivative of f exists for almost every η ∈ [a, b] and is

bounded;
(3) the vector ḟ(η) belongs to the horizontal space Hγ(η)M for almost every

η ∈ E;
(4) the mapping f : [a, b] → M has a Riemannian derivative at t equal to γ̇(t);

if f(t+ τ) = exp
( N∑

j=1

fj(τ)Xj

)
(u), t+ τ ∈ [a, b], then

(5) fj(τ) = O(τdeg Xj ) as τ → 0 for all j ≥ 1;
(6) 0 is a Lebesgue point for the derivatives ḟj(τ), j = 1, . . . ,dimH1.

Indeed, if t ≤ αj < η1 < βj < αk < η2 < βk ≤ b then, taking the rela-
tions between the metrics into account, we obtain the estimates ρ(f(η1), f(η2)) ≤
C1(ρ(f(η1), γ(βj))+ρ(γ(βj), γ(αk))+ρ(γ(αk), f(η2))) ≤ C2((βj−η1)+(αk−βj)+
(η2 − αk)) = C2|η2 − η1|. The other cases of mutual disposition of η1 and η2 with
respect to t are considered similarly. Hence we obtain properties (1) and (2).

Next, if t ≤ αj < t+τ < βj then d∞(f(t+τ), f(t)) ≤ Q(d∞(f(t+τ), γ(αj))+
d∞(γ(αj), γ(t))) ≤ Q1

(
d

γ(αj)∞ (f(t+ τ), γ(αj))+(αj − t)
)

= Q2((t+ τ −αj)+(αj −
t)) = Q2τ by the generalized triangle inequality, the construction of f , Lipschitzity
of γ, and the relations between the metrics. From this we obtain Property (5) and,
hence, the differentiability of all components fj at 0, j > dimH1: ḟj(0) = 0.

Since the derivatives of Lipschitz functions are bounded and t is the density
point of E, for intervals (r, s) � 0 we have∫

(r,s)

|ḟj(σ) − γ̇j(0)| dσ =
∫

{σ∈(r,s) | t+σ∈E∩[a,b]}

|γ̇j(σ) − γ̇j(0)| dσ (3.2.15)

+
∫

{σ∈(r,s) | t+σ/∈E∩[a,b]}

|ḟj(σ) − γ̇j(0)| dσ = o(|s− r|)

as s−r → 0 for all j = 1, . . . ,dimH1 (the first (second) integral is o(|s−r|) because

of (3.2.14) ((3.2.13))). Hence,
τ∫
0

(ḟj(σ) − γ̇j(0)) dσ = fj(τ) − γ̇j(0)τ = o(τ) and

dfj

dτ (0) = γ̇j(0) for all j = 1, . . . ,dimH1 (for negative τ , such estimate is obtained
similarly). Thus, we have proved properties (4) and (6).

Note that the preceding arguments are independent of the coordinate sys-
tem. They are based on the following principle: if η is the density point for E, the



304 M. Karmanova and S. Vodop′yanov

mapping f |E has a Riemannian derivative at η ∈ E, and η ∈ E is a Lebesgue point
for the horizontal coordinate functions of f |E then, in view of Lemma 3.2.7 and
what has been proved above, f has a Riemannian derivative at η; moreover, the
Riemannian tangent vector belongs to the horizontal space Hγ(η)M. This proves
Property (3).

Third step. Since the Riemannian derivative ḟ(η) of the mapping f : [a, b] → M be-
longs to the horizontal spaceHf(η)M only at almost every point η ∈ E, and E is an
arbitrary measurable set but not necessarily a closed interval, a direct application
of Theorem 3.2.3 is impossible. However, granted the fact that the complement
[a, b] \E has density zero at t, the method of its proof can be adapted also to this
case. We now indicate the changes to the proof of Theorem 3.2.3 necessary for
obtaining the hc-differentiability of f at the point t fixed above.

Introduce the notation

Γ(τ) =

{
(γ1(τ), . . . , γN (τ)), if t+ τ ∈ E,
(f1(τ), . . . , fN (τ)), if t+ τ /∈ E.

It has been proved above that Γ̇(0) = (γ̇1(0), . . . , γ̇dim H1(0), 0, . . . , 0). Deduce a
representation like (3.2.2) for the points τ sufficiently close to 0 and such that
t+ τ ∈ E. At the points t+ τ ∈ (αj , βj), we have (due to the construction of f)

Γ̇(τ) =
N∑

j=1

ḟj(τ)
∂

∂xj
=

dim H1∑
i=1

ai(τ)(X̂
f(αj)
i )′(Γ(τ)). (3.2.16)

According to Theorem 2.2.8, at the points t+τ ∈ (αj , βj) the relation f(τ) ∈
B(u,O(τ)) implies that, in a neighborhood of 0, the vector fields (X̂f(αj)

i )′ are
expressed via the vector fields X̂ ′k (here we write X̂ ′k instead of (X̂u

k )′) in the form

(X̂f(αj)
i )′(Γ(τ)) =

N∑
k=1

γik(τ)X̂ ′k(Γ(τ)),

where

γik(τ) =

{
o(τdeg Xk−deg Xi), if degXk > degXi,

δik +O(τ) otherwise

as τ → 0. Indeed, by (2.2.7), we have X̂ ′i
f(αj)(Γ(τ)) =

N∑
l=1

βil(τ)X ′l (Γ(τ)) at points

f(τ) ∈ B(u,O(τ)), where

βil(τ) =

{
o(τdeg Xl−deg Xi) if degXl > degXi,

δil +O(τ) otherwise
(3.2.17)
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as τ → 0, and X ′l(Γ(τ)) =
N∑

k=1

αlk(τ)X̂ ′k(Γ(τ)) where

αlk(τ) =

{
o(τdeg Xk−deg Xl) if degXk > degXl,

δik +O(τ) otherwise
(3.2.18)

as τ → 0. It follows X̂ ′i
f(αj)(Γ(τ)) =

N∑
k=1

N∑
l=1

βil(τ)αlk(τ)X̂ ′k(Γ(τ)). Now taking

into account (3.2.17) and (3.2.18), we consider two cases for getting the desired
asymptotic behaviour of γik(τ) as τ → 0.

Case I: degXk ≤ degXi. Then

γik(τ) =
N∑

l=1

βil(τ)αlk(τ) =
∑

l:deg Xl<deg Xk

βil(τ)αlk(τ) (3.2.19)

+
∑

l:deg Xk≤deg Xl≤deg Xi

βil(τ)αlk(τ) +
∑

l:deg Xi<deg Xl

βil(τ)αlk(τ)

=
∑

l:deg Xl<deg Xk

(δil +O(τ)) · o(τdeg Xk−deg Xl)

+
∑

l:deg Xk≤deg Xl≤deg Xi

(δil +O(τ)) · (δlk +O(τ))

+
∑

l:deg Xi<deg Xl

o(τdeg Xl−deg Xi) · (δlk + O(τ)) = δik +O(τ).

Case II: degXk > degXi. Then representing the sum for γik(τ) in (3.2.19)
as

∑
l:deg Xl≤deg Xk

+
∑

l:deg Xi<deg Xl<deg Xk

+
∑

l:deg Xi≤deg Xl

we obtain

γik(τ) =
∑

l:deg Xl≤deg Xi

o(τdeg Xk−deg Xl) +
∑

l:deg Xk≤deg Xl

o(τdeg Xl−deg Xi)

+
∑

l:deg Xi<deg Xl<deg Xk

o(τdeg Xl−deg Xi) · o(τdeg Xk−deg Xl)

= o(τdeg Xk−deg Xi)

as τ → 0. Consequently, we have just qualitative situation similar to those on the
third step of the proof of Theorem 3.2.3. Thus, the further proof repeats verbatim
the 3rd, the 4th and the 5th

Steps of the proof of Theorem 3.2.3 with f instead
of γ. Thus, the theorem follows. �

3.2.4. hc-differentiability of rectifiable curves. In this section, we in particular
prove that, in a Carnot manifold, rectifiable curves are hc-differentiable almost
everywhere. We obtain this result as a corollary to the more general assertion
about the hc-differentiability of a mapping ϕ : E → M from a measurable set
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E ⊂ R that satisfies the condition

lim
y→x, y∈E

d∞(ϕ(y), ϕ(x))
|y − x| <∞ (3.2.20)

for almost all x ∈ E.

Theorem 3.2.10 ([141]). Let M be a Carnot manifold. Every mapping ϕ : E → M,
where E ⊂ R is a measurable set, satisfying (3.2.20) is hc-differentiable almost
everywhere in E.

This theorem is a particular case of Theorem 3.3.6 (see its proof below).
Now we can prove the hc-differentiability of rectifiable curves. Consider a

curve (continuous mapping) γ : [a, b] → M. By a partition In = In([a, b]) of the
segment [a, b] we mean any finite sequence of points {s1, . . . , sn} with a = s1 <
· · · < sn = b. To every partition In([a, b]), we assign a number M(In) by setting

M(In) =
n−1∑
i=1

d∞(γ(si), γ(si+1)).

Put mn = max{si+1 − si | i = 1, . . . , n− 1}.

Definition 3.2.11 ([22]). A curve γ : [a, b] → M is called rectifiable if

L([a, b]) = lim
mn→0

sup
In

Mn <∞.

Making use of standard arguments (see, for instance, [22]), we may prove:

Property 3.2.12. Suppose that a sequence of curves γq : [a, b] → M, q ∈ N,
converges pointwise to a curve γ : [a, b] → M: γq(s) → γ(s) for every s ∈ [a, b].
Then the lengths Lq([a, b]) of γq possess the semicontinuity property:

L([a, b]) ≤ lim
q→∞

Lq([a, b]).

If we have an usual metric but not the quasimetric d∞, the above-mentioned
property is a well-known classical result. Its proof given in [22] can be generalized
straightforward to our situation. We notice that the length of Definition 3.2.11 is
not additive set function since d∞ does not meet the triangle inequality. Never-
theless the following statement holds.

Proposition 3.2.13. Every rectifiable curve γ : [a, b] → M meets (3.2.20).

Proof. Consider the following set function Φ defined on intervals included in [a, b]:
the value Φ(α, β) at an interval (α, β) ⊂ [a, b] equals L([α, β]), the length of the
curve γ : [α, β] → M. The set function Φ is quasiadditive: the inequality∑

i

Φ(αi, βi) ≤ Φ(α, β)
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holds for every finite collection of pairwise disjoint intervals (αi, βi) with (αi, βi) ⊂
(α, β), where (α, β) ⊂ [a, b] is some interval. It is known (see, for example, [150]),
that Φ has a finite derivative

Φ′(x) = lim
(α,β)�x,
β−α→0

Φ(α, β)
β − α

= lim
(α,β)�x,
β−α→0

L([α, β])
β − α

almost everywhere in [a, b]. Hence,

lim
y→x

d∞(γ(y), γ(x))
|y − x| ≤ lim

(α,β)�x,
β−α→0

d∞(γ(α), γ(β))
L([α, β])

· lim
(α,β)�x,
β−α→0

L([α, β])
β − α

≤ Φ′(x) <∞

for almost all x ∈ [a, b] if L([α, β]) �= 0 for any interval (α, β) � x. Otherwise,
d∞(γ(y), γ(x)) = 0 in a neighborhood of x, and it is evident that the hc-derivative
of γ at x equals 0. �

Theorem 3.2.10 and Proposition 3.2.13 imply

Proposition 3.2.14. Let M be a Carnot manifold. Every rectifiable curve γ : [a, b] →
M is hc-differentiable almost everywhere.

Remark 3.2.15. If the Carnot manifold is a Carnot group then our definition of the
hc-differentiability of curves coincides with the P-differentiability of curves given
by P. Pansu in [121]. He proved also [121, Proposition 4.1] the P-differentiability
almost everywhere of rectifiable curves on Carnot groups using a different method.

3.3. hc-differentiability of smooth mappings on Carnot manifolds

In this subsection we prove hc-differentiability of some classes of mappings ϕ :
M → M̃ (or ϕ : E → M̃ where E ⊂ M) assuming that M is a Carnot manifold,
i.e., M meets the 4th condition in the definition 2.1.1.

Only in the Corollary 3.3.3 we assume that both M and M̃ are Carnot man-
ifolds. We recall that a local tangent cone of a Carnot manifold is a local Carnot
group (a stratified graded nilpotent group Lie) properties of which are essentially
used in the proofs below.

The approach to the subject is based on methods of papers [137, 139, 140,
141, 142]

3.3.1. Continuity of horizontal derivatives and hc-differentiability. In this sub-
subsection, we generalize the classical property that the continuity of the partial
derivatives of a function defined on a Euclidean space guarantees its differentia-
bility.

In what follows, we repeatedly use the following correspondence: to an arbi-

trary element a = exp
( N∑

i=1

aiX̂
u
i

)
(u) ∈ GuM and point w ∈ Gu, assign the element

Δw
ε a = exp

( N∑
j=1

ajε
deg XjXj

)
(w) (3.3.1)
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for those ε for which the right-hand side of (3.3.1) exists. Note that, by Prop-
erty 2.2.5, we have Δu

εa = δu
ε a for all a ∈ GuM.

Theorem 3.3.1. Suppose that ϕ : M → M̃ is a Lipschitz with respect to d∞ and d̃∞
mapping of a Carnot manifold M to a Carnot–Carathéodory space M̃ such that, at
each point u ∈ M, there exist horizontal derivatives Xiϕ(u) ∈ Hϕ(u)M̃ continuous
on M, i = 1, . . . ,dimH1. Then ϕ is hc-differentiable at every point of M. The
homomorphism of Lie algebras, corresponding to D̂ϕ(u) : GuM → Gϕ(u)M̃, is
uniquely defined by the mapping

HuM � Xi(u) → Xiϕ(u) =
d

dt
ϕ(exp tXi(u))|t=0 =

dim H̃1∑
j=1

bijX̃j(ϕ(u)) ∈ Hϕ(u)M̃

of the basis horizontal vectors Xi(u), i = 1, . . . ,dimH1, to horizontal vectors in
Hϕ(u)M̃:

HGuM � X̂u
i →

dim H̃1∑
j=1

bij
̂̃
X

ϕ(u)
j ∈ HGϕ(u)M̃.

Proof. First step. Fix a point u ∈ M and a compact neighborhood F ⊂ GuM of
the local Carnot group GuM. For each horizontal vector field Xi, a family of curves
γ : [−ε, ε]× F → M̃ is defined: for u ∈ F , put γi(s, u) = ϕ(exp(sαiXi)(u)), where
αi ∈ A, A ⊂ R is a bounded neighborhood of 0 ∈ R. This family of curves meets
the conditions of Corollary 3.2.5 since d

dsγi(s, u) = αiXiϕ(γi(s, u)) is bounded and
continuous. Hence, the convergence

Δϕ(u)
s−1 γi(s, u) → δϕ(u)

αi
exp([Xiϕ](u))(ϕ(u)) ∈ Gϕ(u)M̃ as s→ 0 (3.3.2)

is uniform on F × A and the hc-derivative δ
ϕ(u)
αi exp(Xiϕ(u))(u) is continuous

with respect to (u, αi) ∈ F × A. Denote by xi the “horizontal basis element”
exp(Xi)(u) = exp(X̂u

i )(u) ∈ GuM and, for all 1 ≤ i ≤ dimH1, denote by ai the
hc-derivative exp(Xiϕ(u))(ϕ(u)) = d

dsϕ(γi(s, u))|s=0.
It is known [47] that any element v ∈ F can be represented (non-uniquely)

in the form
δu
α1
xj1 · · · · · δu

αS
xjS , 1 ≤ ji ≤ dimH1, (3.3.3)

where S is independent of the choice of the point, and the numbers αi are bounded
by a common constant. Together with the mapping

[0, ε) � t → v̂i(t) = δu
tα1
xj1 · · · · · δu

tαi
xji , 1 ≤ jk ≤ dimH1, 1 ≤ k ≤ i ≤ S,

consider the mapping (see (3.3.1))

[0, ε) � t → vi(t) = Δvi−1(t)
tαi

xji = exp(tαiXji)(vi−1(t)), 2 ≤ i ≤ S, where

v1(t) = Δu
tα1
xj1 = exp(tα1Xj1)(u).

By Theorem 2.7.1, d∞(vi(t), v̂i(t)) = o(t) as t → 0 uniformly in u ∈ F and
αi ∈ A, i ≤ S. Since the mapping ϕ is Lipschitz on F , the limits lim

t→0
Δϕ(u)

t−1 ϕ(v̂S(t))
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and lim
t→0

Δϕ(u)
t−1 ϕ(vS(t)) exist simultaneously. According to Proposition 3.1.3 we

have to prove that Δϕ(u)
t−1 ϕ(v̂S(t)) converges uniformly to homomorphism of the

local homogeneous group GuM to Gϕ(u)M̃. Taking into account above-mentioned
observation, it suffices to prove the existence of the limit lim

t→0
Δϕ(u)

t−1 ϕ(vS(t)).

Second step. For proving this, by (3.3.2), we infer that

w1(t) = ϕ(v1(t)) = exp
( Ñ∑

k=1

ξ1k(t)X̃k

)
(ϕ(u))

has hc-derivative δϕ(u)
α1

aj1 ∈ Gϕ(u)M̃ at t = 0.

Here X̃k, k = 1, . . . , Ñ , is a local basis on M̃ around the point ϕ(u). Assume that
the mapping

t → wi(t) = ϕ(vi(t)) = exp
( Ñ∑

k=1

ξi
k(t)X̃k

)
(ϕ(vi−1(t)))

has hc-derivative δϕ(u)
α1

aj1 · · · · · δϕ(u)
αi

aji ∈ Gϕ(u)M̃, at t = 0, 2 ≤ i < S.

Our next goal is to show that the hc-derivative of the mapping t → wi+1(t) =

ϕ(vi+1(t)) = exp
( Ñ∑

k=1

ξi+1
k (t)X̃k

)
(ϕ(vi(t))) equals δϕ(u)

α1 aj1 ·· · ··δ
ϕ(u)
αi aji ·δ

ϕ(u)
αi+1aji+1 .

Together with the mapping wi+1(t), consider the mapping

t → ŵi+1(t) = exp
( Ñ∑

k=1

zi+1
k (t) ̂̃Xu

k

)
(ϕ(vi(t))).

By Theorem 2.7.1 we have dϕ(u)
∞ (wi+1(t), ŵi+1(t)) = o(t) as t→ 0. Therefore, the

relation dϕ(u)
∞
(
wi+1(t), δ

ϕ(u)
t

(
δ

ϕ(u)
α1 aj1 · · · · ·δ

ϕ(u)
αi+1aji+1

))
= o(t) as t→ 0 holds if and

only if dϕ(u)
∞
(
ŵi+1(t)), δ

ϕ(u)
t

(
δ

ϕ(u)
α1 aj1 · · · · · δ

ϕ(u)
αi+1aji+1

))
= o(t) as t → 0. On the

local homogeneous group Gϕ(u)M̃ the last property is equivalent to the relation

dϕ(u)
∞
(
δu
t−1ŵi+1(t)), δϕ(u)

α1
aj1 · · · · · δϕ(u)

αi+1
aji+1

)
= o(1) as i→∞.

Note that, by the continuity of the group operation in GuM, we always have the
convergence

δ
ϕ(u)
t−1 (ŵi+1(t)) → δϕ(u)

α1
aj1 · · · · · δϕ(u)

αi+1
aji+1 as t→ 0.

Thus, by induction, the hc-derivative of the mapping [0, ε) � t → ϕ(vS(t)) at 0 is
equal to δϕ(u)

α1 aj1 · · · · ·δ
ϕ(u)
αS ajS ; moreover, the convergence is uniform in v ∈ F and

αi, 1 ≤ i ≤ S. Consequently, granted the equality vS(t) = δu
t v, we infer

dϕ(u)
∞
(
ϕ
(
δu
t v
)
, L
(
δu
t v
))

= o
(
du
∞
(
u, δu

t v
))

= o(t) (3.3.4)
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uniformly in v ∈ F , where L stands for the correspondence

GuM � v = δu
α1
xj1 · · · · · δu

αS
xjS → δϕ(u)

α1
aj1 · · · · · δϕ(u)

αS
ajS ∈ Gϕ(u)M̃. (3.3.5)

For finishing the proof, it remains to check that the correspondence L : GuM →
Gϕ(u)M̃ is a homomorphism of these local homogeneous groups.

Third step. Note that L(v) is the hc-derivative at 0 of the mapping t → ϕ
(
δu
t v
)

for a fixed v ∈ GuM (see (3.3.4)), which is obviously independent of representation
(3.3.3) (since the path t → ϕ

(
δu
t v
)

depends only on v). Consequently, L : GuM →
Gϕ(u)M̃ is a mapping of the local groups. By definition (3.3.5) of L, it is clear this
mapping is continuous. Demonstrate that it is a group homomorphism. Consider
a second element v = δu

β1
xj1 · · · · · δu

βS
xjS , 1 ≤ ji ≤ dimH1, such that

vv = δu
α1
xj1 · · · · · δu

αS
xjS · δu

β1
xj1 · · · · · δu

βS
xjS ∈ GuM and L(v) ·L(v) ∈ Gϕ(u)M̃.

(3.3.6)
By (3.3.4) and (3.3.5), the value L(vv) is independent of the representation

of an element vv as the product (3.3.6). Hence, applying the above-mentioned
conclusions to vv and its representation (3.3.6), we see that

L(vv) = δϕ(u)
α1

aj1 · · · · · δϕ(u)
αS

ajS · δϕ(u)
β1

aj1 · · · · · δ
ϕ(u)
βS

ajS = L(v) · L(v).

Thus, the mapping L : GuM → Gϕ(u)M̃ is a continuous group homomorphism.
By the well-known properties of the Lie group theory [151], the mapping L is a
homomorphism of the local homogeneous groups.

Now, from (3.3.5) it follows directly that L commutes with a dilation, L◦δu
t =

δ
ϕ(u)
t ◦L, t > 0. Furthermore, since Xiϕ(u) ∈ Hϕ(u)M, the homomorphism L is the
hc-differential of the mapping ϕ : M → M̃ at u. The Lie algebra homomorphism
corresponding to L is a mapping of horizontal subspaces. The theorem follows. �
Corollary 3.3.2 ([141]). Assume that we have a basis {Xi}, i = 1, . . . , N , on
a Carnot manifold M for which Assumption 2.1.6 or conditions of Remark 2.7.2
hold with some α ∈ (0, 1]. Suppose that ϕ : M → M̃ is a mapping of the Carnot
manifold M to a Carnot–Carathéodory space M̃ such that, at each point u ∈
M, there exist horizontal derivatives Xiϕ(u) ∈ Hϕ(u)M̃ continuous on M, i =
1, . . . ,dimH1. Then ϕ is hc-differentiable at every point of M. The homomorphism
of Lie algebras, corresponding to D̂ϕ(u) : GuM → Gϕ(u)M̃, is defined uniquely by
the

HuM � Xi(u) → Xiϕ(u) =
d

dt
ϕ(exp tXi(u))|t=0 =

dim H̃1∑
j=1

bijX̃j(ϕ(u)) ∈ Hϕ(u)M̃

of the basis horizontal vectors Xi(u), i = 1, . . . ,dimH1, to horizontal vectors in
Hϕ(u)M̃:

HGuM � X̂u
i →

dim H̃1∑
j=1

bij
̂̃
X

ϕ(u)
j ∈ HGϕ(u)M̃.
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Proof. The hypothesis implies that ϕ is a locally Lipschitz mapping:

d̃∞(ϕ(x), ϕ(y)) ≤ Cd∞(x, y),

x, y belong to some compact neighborhood of U . To verify this, it suffices to join
points x, y ∈ U by the horizontal curve γ of Subsection 2.8 whose length is con-
trolled by the quasidistance d∞(x, y) and observe that ϕ ◦ γ is a horizontal curve
whose length is controlled by the length of the initial curve. From this, Corol-
lary 2.8.6 and Remark 2.8.7 we infer d̃∞(ϕ(x), ϕ(y)) ≤ C1L(ϕ ◦ γ) ≤ C2L(γ) ≤
C3d∞(x, y). �

3.3.2. Functorial property of tangent cones. The definition of the tangent cone
depends on the local basis. The question arises on the connection between two
tangent cones found from two different bases. Theorem 3.3.1 implies:

Corollary 3.3.3 ([140, 141]). Suppose that we have two local bases {Xi} and {X̃i},
i = 1, . . . , N , on a Carnot manifold M for both of which Assumption 2.1.6 or con-
ditions of Remark 2.7.2 hold with some α ∈ (0, 1], and that two collections X1, . . . ,
Xdim H1 and X̃1, . . . , X̃dim H1 generate the same horizontal subbundle H1. Then
the local Carnot group GuM defined by the {Xi}’s is isomorphic to the local Carnot
group G̃uM, determined by the {X̃i}’s: (δ̃u

t−1 ◦ δu
t )(v) converges to an isomorphism

D̂i(u) of local Carnot groups GuM and G̃uM as t→ 0 uniformly in v ∈ GuM. (Here
δ̃u
t is the one-parameter dilation group associated with the vector fields {X̃i}.)

The isomorphism of Lie algebras, corresponding to D̂i(u), is defined uniquely
by giving the mapping

HuM � Xi(u) → Xi(u) =
dim H1∑

j=1

bijX̃j(u) ∈ HuM

of the basis vectors Xi(u), i = 1, . . . ,dimH1, of the horizontal space HuM to
horizontal vectors of the space HuM:

HGuM � X̂u
i →

dim H1∑
j=1

bij
̂̃
X

u

j ∈ HG̃uM.

Proof. Denote by MX the Carnot manifold M with the local basis {Xi} and denote
by MX̃ the Carnot manifold M with the local basis {X̃i}, i = 1, . . . , N . Let also
the symbol i : MX → MX̃ stand for the identity mapping from M into M. Clearly,
i meets the conditions of Corollary 3.3.2 since the collections X1, . . . , Xdim H1

and X̃1, . . . , X̃dim H1 generate the same horizontal subbundle H1. Then i is hc-
differentiable at u and, by Corollary 3.3.2 and Proposition 3.1.3, the “difference
ratios” δ̃u

t−1(δu
t (w)) converge uniformly to a homomorphism Di(u) : GuMX →

G̃uMX̃ as t → 0. Applying the same argument to the inverse mapping i−1 and
Theorem 3.1.4, we infer that Di(u) is an isomorphism of the local Carnot groups
(of the local tangent cones at u with respect to different local bases). �
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Remark 3.3.4. In [4, 16, 67, 106] above statement is proved by other methods
under additional assumptions on the smoothness of the basis vector fields.

3.3.3. Rademacher Theorem. The aim of this part is to formulate Rademacher
type theorems on the hc-differentiability of Lipschitz with respect to d∞ and d̃∞
mappings of a Carnot manifold to a Carnot–Carathéodory space. This theorem
was proved in [141] by means of the theory expounded above. The way of proving
this result generalizes essentially the methods of [137], where the P-differentiability
of Lipschitz mappings of Carnot groups defined on measurable sets was proved in
details: additional arguments are needed since a tangent cone has different metric
properties with respect to a given Carnot–Carathéodory space.

Let M, M̃ be two Carnot–Carathéodory spaces and let E ⊂ M be an arbitrary
set. A mapping ϕ : E → M̃ is called a Lipschitz mapping if

d̃∞(ϕ(x), ϕ(y)) ≤ Cd∞(x, y), x, y ∈ E,
for some constant C independent of x and y. The least constant in this relation is
denoted by Lipϕ.

The following result extends the theorems on the P-differentiability on Carnot
groups [121, 137, 149] (see also [98]) to the case of Carnot–Carathéodory spaces.

Theorem 3.3.5 ([141]). Let E be a set in a Carnot manifold M and let ϕ : E → M̃

be a Lipschitz mapping from E into a Carnot–Carathéodory space M̃. Then ϕ is
hc-differentiable on E.

The homomorphism of the Lie algebras corresponding to the hc-differential is
defined uniquely by the mapping

HuM � Xi(u) → Xiϕ(u) =
d

dt
ϕ(exp tXi(u))|t=0 =

dim H̃1∑
j=1

aijX̃j(ϕ(u)) ∈ Hϕ(u)M̃

of the horizontal basis vectors Xi(u), i = 1, . . . ,dimH1, to horizontal vectors of
the space Hϕ(u)M̃:

HGuM � X̂u
i →

dim H̃1∑
j=1

aij
̂̃
X

ϕ(u)

j ∈ HGϕ(u)M̃.

3.3.4. Stepanov Theorem. As a corollary to Theorem 3.3.5, we obtain a general-
ization of Stepanov’s theorem:

Theorem 3.3.6 ([141]). Let E ⊂ M be a measurable set in a Carnot manifold M

and let ϕ : E → M̃, where M̃ is a Carnot–Carathéodory space, be a mapping such
that the relation

lim
x→a,x∈E

d̃∞(ϕ(a), ϕ(x))
d∞(a, x)

<∞ (3.3.7)

holds for almost all a ∈ E. Then ϕ is hc-differentiable almost everywhere on E
and the hc-differential is unique.
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The homomorphism of the Lie algebras corresponding to the hc-differential is
defined uniquely by the mapping

HuM � Xi(u) → Xiϕ(u) =
d

dt
ϕ(exp tXi(u))|t=0 =

dim H̃1∑
j=1

aijX̃j(ϕ(u)) ∈ Hϕ(u)M̃

of the basis horizontal vectors Xi(u), i = 1, . . . ,dimH1, to horizontal vectors of
the space Hϕ(u)M̃:

HGuM � X̂u
i →

dim H̃1∑
j=1

aij
̂̃
X

ϕ(u)

j ∈ HGϕ(u)M̃.

The proof written below is based on a sketch of the proof of Stepanov theorem
given in [42] but is different of it in some details (a reader can look also at [88] for
the proof of metric differentiability of mappings meeting the condition (3.3.7) in
which the quasimetric d̃∞ is replaced by an usual metric, and d∞ is replaced by
the Euclidean one).

Proof. Since the result is local, we may assume that E is bounded. Since, in view
of (3.3.7), the “upper derivative” is finite almost everywhere, it follows that every
point x ∈ E \Σ, where Σ ⊂ E is some set of measure zero, belongs at least to one
of the sets

Ak =
{
x ∈ E :

d̃∞(ϕ(x), ϕ(y))
d∞(x, y)

≤ k for all y ∈ Box(x, k−1) ∩ E
}
, k ∈ N.

(3.3.8)
Note that the sequence of sets Ak is monotone: Ak ⊂ Ak+1, k ∈ N. Suppose that
the measure of Ak is nonzero for some k ∈ N. Up to a set of measure zero, we
represent Ak as the union of a disjoint family of sets Ak,1, Ak,2, . . . of nonzero
measure whose diameters are at most 1/k:

Ak = Zk ∪Ak,1 ∪Ak,2 ∪ . . . , |Zk| = 0.

Then the restriction ϕk,j = ϕ|Ak,j
meets a Lipschitz condition for all j; therefore,

it is extendable by continuity to a Lipschitz mapping ϕ̃k,j : Ak,j → M̃.
Verify that if (E\Σ)∩(Ak,j\Ak,j) �= ∅ then ϕ̃k,j : (E\Σ)∩Ak,j → M̃ coincides

with ϕ : (E \ Σ) ∩ Ak,j → M̃. In other words, if x ∈ (E \ Σ) ∩ (Ak,j \ Ak,j) then
the extension of ϕ : Ak,j → M̃ by continuity to the point x equals ϕ(x). Indeed,
if the fixed point x belongs E \ Σ then x ∈ Al for some l > k. Consequently, the
inequality described in (3.3.8) (with l instead of k) holds for y ∈ E ∩Box(x, l−1).
Since Al ∩ Box(x, l−1) ⊃ Ak,j ∩ Box(x, l−1), we have

ϕ(x) = lim
y→x, y∈Al

ϕ(y) = lim
y→x, y∈Ak,j

ϕ(y) = ϕ̃k,j(x).

By Theorem 3.3.5 (Theorem 3.2.9 in the case of E ⊂ R), the mapping
ϕ̃k,j : Ak,j → M̃ is hc-differentiable almost everywhere in Ak,j . We are left with



314 M. Karmanova and S. Vodop′yanov

checking the hc-differentiability of the mapping ϕ : E \Σ → M̃ at the points of hc-
differentiability of the mapping ϕ̃k,j : Ak,j → M̃ having density one with respect
to Ak,j .

For brevity, denote the set Ak,j by A and denote the mapping ϕk,j by ϕ.
Extend the Lipschitz mapping ϕ : A→ M̃ by continuity to a Lipschitz mapping ϕ̃ :
A → M̃. By the definition of A, the inequality d∞(ϕ(y), ϕ(z)) ≤ kd∞(y, z) holds
for all y ∈ A and all z ∈ Box(y, k−1) ∩ E. Note that this inequality is extendable
to A by continuity. Consequently, the inequality

d̃∞(ϕ̃(y), ϕ(z)) ≤ kd∞(y, z)

holds for all y ∈ A and all z ∈ Box(y, k−1) ∩E.
Suppose now that a point a ∈ A is a point of hc-differentiability for ϕ̃ and

the point density of A. If z ∈ E belongs to the neighborhood B(x, k−1) ∩ E of a
then, by the well-known property of a density point (see, for example, [133, 150]),
there exists a point y ∈ A such that

d∞(z, y) = o(d∞(z, a)) as z → a.

Let D̂ϕ(a) be the hc-differential of ϕ̃ : A→ M̃ at the point a. Then, in a sufficiently
small neighborhood of a, from what was said above, Proposition 3.1.3 and the Local
Approximation Theorem 2.5.4 we have

d̃∞(ϕ(z), D̂ϕ(a)[z]) ≤ Q2(d̃∞(ϕ(z), ϕ̃(y)) + d̃∞(ϕ̃(y), D̂ϕ(a)[y])

+ d̃∞(D̂ϕ(a)[y], D̂ϕ(a)[z]))

≤ Q2
(
kd∞(z, y) + o

(
d∞(a, y)

)
+ d̃ϕ(a)

∞ (D̂ϕ(a)[y], D̂ϕ(a)[z]) + d̃ϕ(a)
∞ (ϕ(a), D̂ϕ(a)[z])

)
= o
(
d∞(a, z)

)
+ ‖D̂ϕ(a)‖ ·

(
da
∞(y, z) + da

∞(a, z)
)

= o
(
d∞(a, z)

)
as z → a, z ∈ E. Here

‖D̂ϕ(a)‖ = sup
y∈GaM

d̃
ϕ(a)
∞ (D̂ϕ(a)[y])

da∞(y)
,

and we have used again the Local Approximation Theorem 2.5.4: |da
∞(y, z) −

d∞(y, z)| = o(d∞(a, z)).
Hence, by Proposition 3.1.3, the mapping ϕ : E → M̃ is hc-differentiable at

a. Thus we have just proved the hc-differentiability of ϕ at almost all points of
Ak,j ∩ (E \Σ) for arbitrary k and j. Since the collection of sets Ak,j covers E \Σ
the theorem follows. �
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4. Application: The coarea and area formulas

4.1. Notations

All the above results on geometry and differentiability are applied in proving the
sub-Riemannian analogs of the well-known coarea and area formulas for some
classes of contact mappings of Carnot manifolds.

Notation 4.1.1. Denote by N (Ñ) the topological dimensions of M (M̃) and denote
by ν (ν̃) its Hausdorff dimension (see Corollary 2.8.9). Assume that

TM =
M⊕

j=1

(Hj/Hj−1), H0 = {0}, and T M̃ =
M̃⊕

j=1

(H̃j/H̃j−1), H̃0 = {0},

whereH1 ⊂ TM and H̃1 ⊂ T M̃ are horizontal subbundles. The subspaceHj ⊂ TM

(H̃j ⊂ T M̃) is spanned by H1 (H̃1) and all commutators of order not exceeding
j − 1, j = 2, . . . ,M (M̃).

Denote the dimension of Hj/Hj−1 (H̃j/H̃j−1) by nj (ñj), j = 1, . . . ,M (M̃).
Here the number M (M̃) is such that

HM/HM−1 �= {0}, (H̃
M̃
/H̃

M̃−1
�= {0}),

and
HM+1/HM = {0} (H̃

M̃+1/H̃M̃
= {0}).

The number M (M̃) is called the depth of M (M̃).

4.2. Lay-out of the proof of the coarea formula

The key point in proving the non-holonomic coarea formula is to investigate the
interrelation of “Riemannian” and Hausdorff measures on level sets (see below).
The research on the comparison of “Riemannian” and Hausdorff dimensions of
submanifolds of Carnot groups can be found in paper by Z.M. Balogh, J.T. Tyson
and B. Warhurst [15]. See other results on sub-Riemannian geometric measure
theory in works by L. Ambrosio, F. Serra Cassano and D. Vittone [13], L. Capogna,
D. Danielli, S.D. Pauls and J.T. Tyson [30], D. Danielli, N. Garofalo and D.-
M. Nhieu [36], B. Franchi, R. Serapioni and F. Serra Cassano [56, 57], B. Kirchheim
and F. Serra Cassano [92], V. Magnani [99], S.D. Pauls [122] and many other.

The purpose of Section 4 is to explain some ideas and methods of a proof
of the coarea formula for sufficiently smooth contact mappings ϕ : M → M̃ of
Carnot manifolds from [146] and its forthcoming complete version. Note that, all
the obtained results are new even for mappings of Carnot groups.

Assumption 4.2.1. Suppose that
1) N ≥ Ñ ;
2) ni ≥ ñi, i = 1, . . . ,M ;
3) the basis vector fields X1, . . . , XN (in the preimage) are C1,α-smooth, α > 0,

and X̃1, . . . , X̃Ñ (in the image) are C1,ς -smooth, ς > 0, or conditions of
Remark 2.7.2 hold for α > 0 in the preimage and ς > 0 in the image.
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Remark 4.2.2. Note that, if there exists at least one point where the hc-differential
D̂ϕ is non-degenerate, then the condition dimH1 ≥ dim H̃1 implies ni ≥ ñi,
i = 2, . . . ,M (compare with the above assumption).

Notation 4.2.3. Denote by Z the set of points x ∈ M such that

rank(Dϕ(x)) < Ñ.

Remark 4.2.4. For proving Theorems 4.2.9, 4.2.11, 4.2.13, and 4.2.18, the smooth-
ness C1 (in Riemannian sense) for mappings ϕ : M → M̃ is sufficient. For proving
Theorem 4.2.17, the (Riemannian) smoothness C2,�, � > 0, of ϕ is sufficient.

As it is mentioned above, for the first time, a non-holonomic analogue of
the coarea formula is proved in paper of P. Pansu [118]. The main idea of this
work (which is used in many other ones) is to prove the coarea formula via the
Riemannian one:

(1.0.4) =⇒
∫
U

J Sb
Ñ

(ϕ, x) dHν (x) (4.2.1)

=
∫
M̃

dHν̃(z)
∫

ϕ−1(z)

J Sb
Ñ

(ϕ, u)

JÑ (ϕ, x)
dHN−Ñ (u) ?=

∫
M̃

dHν̃(z)
∫

ϕ−1(z)

dHν−ν̃(u)

Here N , Ñ are topological dimensions, and ν, ν̃ are Hausdorff dimensions of preim-
age and image, respectively; J Sb

Ñ
is a sub-Riemannian coarea factor introduced

below in Definition 4.2.12 and JÑ (ϕ, x) is the Riemannian coarea factor; HN−Ñ is
the well-known Riemannian Hausdorff measure with respect to the distance ρ in M,
Hν−ν̃ is a sub-Riemannian Hausdorff measure defined below in Definition 4.2.12; it
is well known that, in sub-Riemannian case, topological and Hausdorff dimensions
differ. It easily follows from (4.2.1), that the key point in this problem is to inves-
tigate the interrelation of “Riemannian” and Hausdorff measures on Carnot man-
ifolds theirselves and on level sets of ϕ, and of Riemannian and sub-Riemannian
coarea factors. It is well known that the question on interrelation of measures on
Carnot manifolds is quite easy, while both the investigation of geometry of level
sets and the calculation of sub-Riemannian coarea factor are non-trivial. The main
problems are connected with peculiarities of a sub-Riemannian metric. In partic-
ular, the non-equivalence of Riemannian and sub-Riemannian metrics can be seen
in the fact that “Riemannian” radius of a sub-Riemannian ball of a radius r varies
from r to rM , M > 1, where the constant M depends on the Carnot manifold
structure. Thus, a question arises immediately on how “sharp” the approximation
of a level by its tangent plain is (since the “usual” order of tangency o(r) is obvi-
ously insufficient here: a level may “jump” from a ball earlier then it is expected).
Also a question arises on existence of a such sub-Riemannian metric suitable for
the description of the geometry of an intersection of a ball and a level set. But
even if we answer these questions, one more question appears: what is the relation
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of the Hausdorff dimension of the image and measure of the intersection of a ball
and a level set.

We have solved all the above problems. First of all, the points in which the
differential is non-degenerate, are divided into two sets: regular and characteristic.

Definition 4.2.5. The set

χ = {x ∈ M \ Z : rank D̂ϕ(x) < Ñ}
is called the characteristic set. The points of χ are called characteristic.

Definition 4.2.6. The set

D = {x ∈ M : rank D̂ϕ(x) = Ñ}
is called the regular set. If x ∈ D, then we say that, x is a regular point.

We define a number ν0(x) depending on x ∈ M that shows whether a point
is regular or characteristic.

Definition 4.2.7. Consider the number ν0 such that

ν0(x) = min
{
ν =

Ñ∑
j=1

degXij : ∃{Xi1 , . . . , Xi
Ñ
}
(
rank([Xijϕ](x))Ñ

j=1 = Ñ
)}
.

It is clear that ν0|χ > ν̃ and ν0|D = ν̃.
We also define such sub-Riemannian quasimetric d2, that makes the calcula-

tion of measure of the intersection of a sub-Riemannian and a tangent plain to a
level set possible:

Definition 4.2.8. Let M be a Carnot manifold of topological dimension N and of

depth M , and let x = exp
( N∑

i=1

xiXi

)
(g). Define the distance d2(x, g) as follows:

d2(x, g) = max
{( n1∑

j=1

|xj |2
) 1

2
,

( n1+n2∑
j=n1+1

|xj |2
) 1

4
, . . . ,

( N∑
j=N−nM +1

|xj |2
) 1

2M
}
.

The similar metric du
2 is introduced in the local Carnot group GuM̃.

The construction of d2 is based on the fact that a ball in this quasimetric
Box2 asymptotically equals a Cartesian product of Euclidean balls:

Box2(x, r) ≈ Bn1(x, r) ×Bn2(x, r2) × · · · ×BnM (x, rM ), M > 1,

where N,ni, i = 1, . . . ,M , are (topological) dimensions of balls. The latter fact
makes the calculation of above-mentioned measure possible (while the geometry
of boxes is rather complicated for an estimation of a measure of sections since the
sections have different shapes).
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Using properties of this quasimetric, we calculate the HN−Ñ -measure of the
intersection of a tangent plain to a level set and a sub-Riemannian ball in the
quasimetric d2.

Theorem 4.2.9. Fix x ∈ ϕ−1(t). Then, the Riemannian Hausdorff measure HN−Ñ -
measure of the intersection T0[(ϕ ◦ θx)−1(t)] ∩ Box2(0, r) is equivalent to

C(1 + o(1))rν−ν0(x)

where C is independent of r, and o(1) → 0 as r → 0.

While investigating the approximation of a surface by its tangent plain, we
introduce a “mixed” metric possessing some Riemannian and sub-Riemannian
properties.

Definition 4.2.10. For v, w ∈ Box2(0, r) put d0
2E(v, w) = d0

2(0, w− v), where w− v
denotes the Euclidean difference.

This definition implies that Box2(0, r) coincides with a ball Box2E(0, r) cen-
tered at 0 of radius r in the metric d0

2E .
We prove that in regular points the tangent plain approximates the level set

quite sharp with respect to this metric, and from here we deduce the possibility of
calculation of the Riemannian measure of a level set and a sub-Riemannian ball
intersection. Notable is the fact that this measure can be expressed via Hausdorff
dimensions of the preimage and the image: it is equivalent to rν−ν̃ (see below):

Theorem 4.2.11. Suppose that x ∈ ϕ−1(t) is a regular point. Then:
(I) In the neighborhood of 0 = θ−1

x (x), there exists a mapping from

T0[(ϕ ◦ θx)−1(t)] ∩ Box2(0, r(1 + o(1))) to ψ−1(t) ∩ Box2(0, r),

such that both d2- and ρ-distortions with respect to 0 equal 1 + o(1), where o(1) is
uniform on Box2(0, r);

(II) The HN−Ñ -measure of the intersection ϕ−1(t) ∩ Box2(x, r) equals√
det(gM|ker Dϕ(x)gM|ker Dϕ

∗(x))·
M∏

k=1

ωnk−ñk
·
√

det(Dϕ(x)Dϕ∗(x))√
det(D̂ϕ(x)D̂ϕ∗(x))

rν−ν̃(1+o(1)),

where gM is a Riemann tensor, D̂ϕ is the hc-differential of ϕ, and o(1) → 0 as
r → 0.

Definition 4.2.12. The (spherical) Hausdorff Hs-measure, s > 0, of a set A ⊂ M is
defined as

Hν(A) = ων lim
δ→0

inf
{∑

i∈N

rs
i :
⋃
i∈N

Box2(xi, ri) ⊃ A, xi ∈ A, ri ≤ δ
}
.

From these results and obtained properties, using a result of [150], we deduce
the interrelation of two measures in regular points of a level sets.
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Theorem 4.2.13 (Measure Derivative on Level Sets). Hausdorff measure Hν−ν̃ of
the intersection Box2(x, r) ∩ ϕ−1(ϕ(x)), where x is a regular point, and

dist(Box2(x, r) ∩ ϕ−1(ϕ(x)), χ) > 0,

asymptotically equals ων−ν̃r
ν−ν̃ . The derivative DHN−ÑHν−ν̃(x) equals

1√
det(gM|ker Dϕ(x)gM|ker Dϕ

∗(x))
· ων−ν̃

M∏
k=1

ωnk−ñk

·

√
det(D̂ϕ(x)D̂ϕ∗(x))√
det(Dϕ(x)Dϕ∗(x))

.

Finally, we introduce the notion of the sub-Riemannian coarea factor via the
values of the hc-differential of ϕ.

Definition 4.2.14. The sub-Riemannian coarea factor equals

J SR
Ñ

(ϕ, x) =
√

det(D̂ϕ(x)D̂ϕ∗(x)) · ωN

ων

ων̃

ωÑ

ων−ν̃

M∏
k=1

ωnk−ñk

.

We consider and solve problems connected with the characteristic set. The
case of characteristic points is a little more complicated since in characteristic
points a surface may jump from a sub-Riemannian ball, consequently, we cannot
estimate the measure of the intersection of the surface and the ball via the one
of the tangent plain and the ball. Note also that in all the other works on sub-
Riemannian coarea formula, the preimage has a group structure, which is essen-
tially used in proving the fact that the Hausdorff measure of characteristic points
on each level set equals zero (see also the paper [14] by Z.M. Balogh, dedicated to
properties of the characteristic set). In the case of a mapping of two Carnot mani-
folds, there is no group structure neither in image, nor in preimage. Moreover, the
approximation of Carnot manifold by its local Carnot group is insufficient for gen-
eralization of methods developed before. That is why we construct new “intrinsic”
method of investigation of properties of the characteristic set. First of all, in all
the characteristic points the hc-differential is degenerate. We solve this problem
with the following assumption.

Property 4.2.15. Suppose that x ∈ χ, and rank D̂ϕ(x) = Ñ −m. Let also D̂ϕ(x)
equals zero on n1 − ñ1 +m1 horizontal (linearly independent) vectors, n2 − ñ2 +
m2 (linearly independent) vectors from H2/H1, nk − ñk + mk (linearly inde-
pendent) vectors from Hk/Hk−1, k = 3, . . . , M̃ . Then, on the one hand, since

rank D̂ϕ(x) = Ñ −m, we have
M∑
i=1

mk = m. On the other hand, rankDϕ(x) = Ñ .

Consequently, there exist m (linearly independent) vectors Y1, . . . , Ym of degrees
l1, . . . , lM̃ (which are minimal) from the kernel of the hc-differential D̂ϕ, such that
Dϕ(x)(span{H

M̃
, Y1, . . . , Ym}) = Tϕ(x)M̃.

In this subsection, we will assume that, among the vectors Y1, . . . , Ym, m1 of
them of the degree l1 have the horizontal image, m2 of them of the degree l2 ≥ l1
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have image belonging to H̃2, and mk of them of the degree lk, lk ≥ lk−1, have
image belonging to H̃k, k = 3, . . . , M̃ .

By another words, the “extra” vector fields on which the hc-differential
of ϕ is degenerate in characteristic points, possess the following property: if in
Hk/Hk−1(x) the quantity of such “extra” vectors equals mk > 0, then there exist
mk vectors from Hlk/Hlk−1(x) such that their images have the degree k, they are
linearly independent with each other and with the images of Hlk−1(x), lk ≥ lk−1.
We develop new “intrinsic” method of investigation of the properties of the char-
acteristic set.

Example 4.2.16. The condition described in Assumption 4.2.15, is always valid for
the following M and M̃:

1. M is an arbitrary Carnot manifold, and M̃ = R;
2. M is an arbitrary Carnot manifold of the topological dimension 2m + 1,

GuM = Hm for all u ∈ M, M̃ = Rk, k ≤ 2m;
3. M = M̃ , dimH1 ≥ dim H̃1, dim(Hi/Hi−1) = dim(H̃i/H̃i−1), i = 2, . . . ,M ;
4. M = M̃ + 1, dimHi = dim H̃i, i = 1, . . . , M̃ .

In particular, in Theorem 4.2.9 it is shown, that in the characteristic points
HN−Ñ -measure of the intersection of a sub-Riemannian ball and the tangent plain
to the level set is equivalent to r to the power ν − ν0(x) < ν − ν̃. Next, we show,
that HN−Ñ -measure of the intersection of the level set and the sub-Riemannian
ball centered at a characteristic point is infinitesimally big in comparison with
rν−ν̃ , i.e., is equivalent to rν−ν̃

o(1) (but it is not necessarily equivalent to rν−ν0(x)).
From here we deduce that, the intersection of the characteristic set with each level
set has zero Hν−ν̃-measure.

Theorem 4.2.17 (Size of the characteristic set). The Hausdorff measure

Hν−ν̃(χ ∩ ϕ−1(t)) = 0 for all z ∈ M̃.

We also show that the degenerate set of the differential does not influence
both parts of the coarea formula.

Theorem 4.2.18. For Hν̃-almost all t ∈ M̃, we have

Hν−ν̃(ϕ−1(t) ∩ Z) = 0.

Finally, we deduce the sub-Riemannian coarea formula.

Theorem 4.2.19. For any smooth contact mapping ϕ : M → M̃ possessing Prop-
erty 4.2.15, the coarea formula holds:∫

M

J Sb
Ñ

(ϕ, x) dHν(x) =
∫
M̃

dHν̃(t)
∫

ϕ−1(t)

dHν−ν̃(u). (4.2.2)
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Using the result of the paper by R. Monti and F. Serra Cassano [113, The-
orem 4.2] for Lip-functions defined on a Carnot–Carathéodory space M of the
Hausdorff dimension ν, we deduce that the De Giorgi perimeter coincides with
Hν−1-measure on almost every level of a smooth function ϕ : M → R.

Theorem 4.2.20. For C2,α-functions ϕ : M → R, α > 0, where dimHM = ν, the
De Giorgi perimeter coincides with Hν−1-measure on almost every level.

In paper [91], under assumption that vector fields are C∞-smooth on M and
M̃, Maria Karmanova proves the following

Theorem 4.2.21. Let ϕ : M → M̃ be an arbitrary smooth contact mapping of two
Carnot manifolds. Then, on every level, Hν−ν̃-measure of characteristic points
equals zero.

Remark 4.2.22. Notice, Theorem 4.2.21 is proved in [91] without Property 4.2.15.
As a consequence, under the same assumptions, the coarea formula (4.2.2) holds.

4.3. Lay-out of the proof of the area formula

In this Subsection we exhibit a proof of the area formula for contact C1-mappings
ϕ : M → M̃ of Carnot manifolds:∫

M

f(y)
√

det(D̂ϕ(y)∗D̂ϕ(y)) dHν(y) =
∫
M̃

∑
y: y∈ϕ−1(x)

f(y) dHν(x).

Recall that we denote the quasimetric of Definition 4.2.8 in the preimage (in
the image) by the symbol d2 (d̃2).

Assumption 4.3.1. We suppose that

1) N ≤ Ñ , ni ≤ ñi, i = 1, . . . ,M ;
2) the basis vector fields in the preimage and in the image belong to the class

C2, and ϕ is a contact (i.e., Dϕ(H1) ⊂ H̃1) C1-mapping.

Under these assumptions the mapping ϕ : M → M̃ of Carnot manifolds has
both Riemannian Dϕ(x) and sub-Riemannian D̂ϕ(x)) differentials at all points
x ∈ M.

Put Z = {x ∈ M : rank(D̂ϕ(x)) < N}.

Theorem 4.3.2 ([148]). Fix y ∈ M \ Z, y ∈ U , and x = ϕ(y). Then, HN -measure
of the intersection ϕ(U) ∩ Box2(x, r) equals

M∏
k=1

ωnk
·
√

det(g̃
M̃
|Tϕ(M)

∗(x)g̃
M̃
|Tϕ(M)(x) ·

√
det(Dϕ∗(y)Dϕ(y))√
det(D̂ϕ∗(y)D̂ϕ(y))

· rν · (1 + o(1)),

where ωl is the volume of the unit ball in Rl, g̃|
M̃

is the Riemann tensor in M̃, and
o(1) → 0 as r → 0.
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Definition 4.3.3. The (spherical) Hausdorff Hν-measure of a set A ⊂ ϕ(M) is
defined as

Hν(A) = ων lim
δ→0

inf
{∑

i∈N

rν
i :
⋃
i∈N

Box2(xi, ri) ⊃ A, xi ∈ A, ri ≤ δ
}
.

The next result is established by the application of the above result on “Rie-
mann” measure of the intersection Box2(x, r) ∩ ϕ(U). Recall that the symbol
Dμ1μ2(y) denotes the derivative of a measure μ2 with respect to a measure μ1

at y: Dμ1μ2(y) = lim
r→0

μ2(B(y,r))
μ1(B(y,r)) .

Theorem 4.3.4 ([148]). Hausdorff Hν-measure of the intersection Box2(x, r)∩ϕ(M)
is asymptotically equal to ωνr

ν , and the derivative DHνHN (x) equals
M∏

k=1

ωnk
·
√

det(g̃
M̃
|Tϕ(M)

∗(x)g̃
M̃
|Tϕ(M)(x)

ων
·
√

det(Dϕ∗(ϕ−1(x))Dϕ(ϕ−1(x)))√
det(D̂ϕ∗(ϕ−1(x))D̂ϕ(ϕ−1(x)))

,

and for each set A ⊂ ϕ(U) we have

HN (A) =
∫
A

DHνHN(x) dHν (x).

Since outside the set Z we have |DHνHN (x)| ≥ β > 0 locally, and the measure
HN is locally doubling on balls, then in view of Lebesgue Differentiability Theorem
we have

Hν(A) =
∫
A

DHNHν(x) dHN (x)

=
∫
A

ων

M∏
k=1

ωnk
·
∣∣g̃

M̃
|Tϕ(M)(x)

∣∣ ·
√

det(D̂ϕ∗(ϕ−1(x))D̂ϕ(ϕ−1(x)))√
det(Dϕ∗(ϕ−1(x))Dϕ(ϕ−1(x)))

dHN (x),

where
∣∣g̃

M̃
|Tϕ(M)(x)

∣∣ =√det(g̃
M̃
|Tϕ(M)

∗(x)g̃
M̃
|Tϕ(M)(x).

The latter result motivates the following

Definition 4.3.5. The sub-Riemannian Jacobian at y equals

J SR(ϕ, y) =
√

det(D̂ϕ(y)∗D̂ϕ(y)).

Theorem 4.3.6 ([148]). We have Hν(ϕ(Z)) = 0, where

Z = {y ∈ M : rank D̂ϕ(y) < N}.

The above results and the Riemannian area formula imply the sub-Rieman-
nian area formula.
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Theorem 4.3.7 ([148] The area formula). Let ϕ : M → M̃ be a contact C1-mapping.
Let also N ≤ Ñ and dimHi − dimHi−1 ≤ dim H̃i − H̃i−1, i = 1, . . . ,M . Then,
the formula ∫

M

f(y)J SR(ϕ, y) dHν(y) =
∫
M̃

∑
y: y∈ϕ−1(x)

f(y) dHν(x) (4.3.1)

holds, where f : M → E (E is an arbitrary Banach space) is such that the function
f(y)J SR(ϕ, y) is integrable. Here, Hausdorff measures are constructed with respect
to d2 and d̃2 with the normalizing multiple ων .

Proof. Consider the neighborhood U ⊂ M, on which ϕ is bi-Lipschitz on its image
ϕ(U), and rank D̂ϕ(y) = N for all y ∈ U . For simplicity, put f(y) ≡ 1. As-

suming y = ϕ−1(x), |D̂ϕ(y)| =
√

det(D̂ϕ(y)∗D̂ϕ(y)), |g(y)| =
√

det(g∗(y)g(y)),∣∣g̃
M̃
|Tϕ(M)(x)

∣∣=√det(g̃
M̃
|Tϕ(M)

∗(x)g̃
M̃
|Tϕ(M)(x), |Dϕ(y)|=

√
det(Dϕ(y)∗Dϕ(y)),

we have∫
M

J SR(ϕ, y) dHν(y)

=
∫
M

|D̂ϕ(y)| ων

M∏
k=1

ωnk

1
|g(y)| dH

N (y) =
∫
M̃

|D̂ϕ(y)|
J (ϕ, y)

ων

M∏
k=1

ωnk

1
|g(y)| dH

N (x)

=
∫
M̃

|D̂ϕ(y)|
J (ϕ, y)

ων

M∏
k=1

ωnk

1
|g(y)|DHνHN (x) dHν(x)

=
∫
M̃

|D̂ϕ(y)|
J (ϕ, y)

ων

M∏
k=1

ωnk

M∏
k=1

ωnk
·
∣∣g̃

M̃
|Tϕ(M)(x)

∣∣
ων

· |Dϕ(y)|
|D̂ϕ(y)|

1
|g(y)| dH

ν(x)

=
∫
M̃

|Dϕ(y)| ·
∣∣g̃

M̃
|Tϕ(M)(x)

∣∣
J (ϕ, y)|g(y)| dHν(x) =

∫
M̃

dHν(x),

since the Riemannian Jacobian J (ϕ, y) equals |Dϕ(y)|
∣∣g̃

M̃
|Tϕ(M)(x)

∣∣
|g(y)| . �

Remark 4.3.8. In the paper [90], Maria Karmanova proves the area formula for
Lipschitz mappings of Carnot manifolds with respect to sub-Riemannian metrics.
Note that a proof of the formula 4.3.1 under these assumptions requires essentially
new methods of investigation of Lipschitz mappings. The methods of proving are
new even in the case of Lipschitz mappings of Euclidean spaces.
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Remark 4.3.9. In the paper [122], the area formula is proved for Lipschitz with
respect to sub-Riemannian metrics mappings of Carnot groups, and the Jacobian
is defined as

lim
r→0

Hν
cc(ϕ(Bcc(y, r)))
Hν

cc(Bcc(y, r))
, (4.3.2)

where Bcc is a ball in Carnot–Carathéodory metric [70], and Hausdorff measures
Hν

cc are constructed also with respect to dcc. If we consider in (4.3.2) Hausdorff
measures Hν constructed with respect to metrics d2 and d̃2, then, in view of The-

orem 4.3.7, we infer lim
r→0

Hν(ϕ(Bcc(y,r)))
Hν(Bcc(y,r)) =

√
det(D̂ϕ(y)∗D̂ϕ(y)) for C1-mappings

ϕ : M → M̃.

Theorem 4.3.10 ([148]). Suppose that the mapping ϕ : G → G̃ is Lipschitz with
respect to sub-Riemannian metrics on Carnot groups. Then the area formula∫

G

f(y)J SR(ϕ, y) dHν(y) =
∫
G̃

∑
y: y∈ϕ−1(x)

f(y) dHν(x), (4.3.3)

holds, where J SR(ϕ, x) is defined in the Definition 4.3.5, and f : G → E (E is
an arbitrary Banach space) is such that the function f(y)J SR(ϕ, y) is integrable.
Here, Hausdorff measures Definition 4.3.3 are constructed with respect to d2 and
d̃2 with the normalizing multiple ων .

Proof. It is easy to show using arguments of the papers [138, 122], that in a
neighborhood of almost every point g ∈ G \ Z we have

d̃2(ϕ(v), ϕ(w)) = d̃2(D̂ϕ(y)[v], D̂ϕ(g)[w]) · (1 + o(1)),

where o(1) → 0 as v, w → y. Consequently, the distortions of Hν-measure under ϕ
and under the mapping w → D̂ϕ(y)[w] are asymptotically equal (see, for example,
[138, 122]). Since the mapping w → D̂ϕ(y)[w] is smooth and contact, then, its
sub-Riemannian Jacobian and, consequently, the sub-Riemannian Jacobian of ϕ
coincides:

lim
r→0

Hν(ϕ(Bcc(y, r)))
Hν(Bcc(y, r))

= lim
r→0

Hν(D̂ϕ(y)(Bcc(y, r)))
Hν(Bcc(y, r))

= |D̂ϕ(y)|

almost everywhere, and in view of the N -property of Lipschitz mappings and
results of [122], the area formula (4.3.3) is valid.
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5. Appendix

5.1. Proof of Lemma 2.1.16
Proof. It is well known, that the solution y(t, u) of the ODE (2.1.12) equals
y(t, u) = lim

n→∞ yn(t, u), where

y0(t, u) =

t∫
0

f(y(0), u) dτ, and yn(t, u) =

t∫
0

f(yn−1(τ, u), u) dτ.

This convergence is uniform in u, if u belongs to some compact set.
From the definition of this sequence it follows, that yn(t) → y(t) as n → ∞

in C1-norm.
1. We show, that every yn(t, u) ∈ Hα(u) for each t ∈ [0, 1]. We have

max
t

|yn(t, u1)− yn(t, u2)|

≤
1∫

0

|f(yn−1(τ, u1), u1) − f(yn−1(τ, u2), u2)| dτ

≤
1∫

0

|f(yn−1(τ, u1), u1) − f(yn−1(τ, u1), u2)| dτ

+

1∫
0

|f(yn−1(τ, u1), u2)− f(yn−1(τ, u2), u2)| dτ

≤ H(f)|u1 − u2|α + Lmax
t

|yn−1(t, u1)− yn−1(t, u2)|

≤ H(f)
n−1∑
m=0

Lm|u1 − u2|α + Ln max
t

|y0(t, u1) − y0(t, u2)|

≤ H(f)
∞∑

m=0

Lm|u1 − u2|α,

where H(f) is a constant, such that |f(u1) − f(u2)| ≤ H(f)|u1 − u2|α. Note that

the constant H = H(f)
∞∑

m=0
Lm < ∞ since L < 1, and it does not depend on

n ∈ N.
Suppose that u belongs to some compact set U . Then

|y(t, u1) − y(t, u2)|
≤ |y(t, u1) − yn(t, u1)|+ |yn(t, u1) − yn(t, u2)| + |y(t, u2) − yn(t, u2)|
≤ H |u1 − u2|α + 2ε

for every ε = ε(n) > 0. Since the convergence is uniform in u ∈ U , and ε(n) → 0
as n→∞, then |y(t, u1) − y(t, u2)| ≤ H |u1 − u2|α, and y ∈ Hα(u) locally.
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To show, that ∂y
∂vi

(t, v, u) ∈ Hα(u) locally, i = 1, . . . , N , we obtain our esti-
mates in the simplest case of N = 1.

2. Note that the mappings {yn}n∈N converge to y in C1-norm, and this convergence
is uniform, if u belongs to some compact set U .

Let u ∈ U , v ∈ W (0) ⊂ RN . Then similarly to the case 1, we see, that if the
Hölder constant of y′n does not depend on n ∈ N, then y′ ∈ Hα(u).

max
t,v

∣∣∣dyn

dv
(t, v, u1) −

dyn

dv
(t, v, u2)

∣∣∣ (5.1.1)

≤ max
t,v

∣∣∣ d
dv

t∫
0

f(yn−1(τ, v, u1), v, u1) − f(yn−1(τ, v, u2), v, u2) dτ
∣∣∣

≤ max
t,v

∣∣∣ d
dv

t∫
0

f(yn−1(τ, v, u1), v, u1) − f(yn−1(τ, v, u2), v, u1) dτ
∣∣∣

+ max
t,v

∣∣∣ d
dv

t∫
0

f(yn−1(τ, v, u2), v, u1) − f(yn−1(τ, v, u2), v, u2) dτ
∣∣∣.

For the first summand we have

max
t,v

∣∣∣ d
dv

1∫
0

f(yn−1(τ, v, u1), v, u1) − f(yn−1(τ, v, u2), v, u1) dτ
∣∣∣

≤ max
v

1∫
0

∣∣∣ d
dv

(f(yn−1(τ, v, u1), v, u1)− f(yn−1(τ, v, u2), v, u1))
∣∣∣ dτ

≤ max
v

1∫
0

∣∣∣ df
dy

dyn−1

dv
(τ, v, u1) −

df

dy

dyn−1

dv
(τ, v, u2)

∣∣∣ dτ
+ max

v

1∫
0

∣∣∣∂f
∂v

(yn−1(τ, v, u1)) −
∂f

∂v
(yn−1(τ, v, u2))

∣∣∣ dτ. (5.1.2)

Then, we get

max
v

1∫
0

∣∣∣∂f
∂v

(yn−1(τ, v, u1)) −
∂f

∂v
(yn−1(τ, v, u2))

∣∣∣ dτ ≤ C(f)H(y)|u1 − u2|α,

since each ym is Hölder. The first summand in (5.1.2) is evaluated in the following
way:

max
v

1∫
0

∣∣∣ df
dy

dyn−1

dv
(τ, v, u1) −

df

dy

dyn−1

dv
(τ, v, u2)

∣∣∣ dτ
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≤ max
v

1∫
0

∣∣∣ df
dy

(u1)
dyn−1

dv
(τ, v, u1)−

df

dy
(u1)

dyn−1

dv
(τ, v, u2)

∣∣∣ dτ
+ max

v

1∫
0

∣∣∣ df
dy

(u1)
dyn−1

dv
(τ, v, u2) −

df

dy
(u2)

dyn−1

dv
(τ, v, u2)

∣∣∣ dτ
≤ Lmax

t,v

∣∣∣dyn−1

dv
(t, v, u1) −

dyn−1

dv
(t, v, u2)

∣∣∣
+ max

u,v

1∫
0

∣∣∣dyn−1

dv
(τ, v, u)

∣∣∣ dτ ·H(Df)|u1 − u2|α. (5.1.3)

Next, we estimate

max
u,v

1∫
0

∣∣∣dym

dv
(τ, v, u)

∣∣∣ dτ ≤ max
t,u,v

∣∣∣dym

dv
(t, v, u)

∣∣∣
= max

t,u,v

[
L
∣∣∣dym−1

dv

∣∣∣+ ∣∣∣∂f
∂v

∣∣∣] ≤ max
t,u,v

∣∣∣∂f
∂v

∣∣∣[ ∞∑
k=0

Lk
]
<∞.

Thus, in the first summand of (5.1.1) we have

Lmax
t,v

∣∣∣dyn−1

dv
(t, v, u1)−

dyn−1

dv
(t, v, u2)

∣∣∣+ C|u1 − u2|α,

where 0 < C <∞ does not depend on n ∈ N. The second summand in (5.1.1) is

max
t,v

∣∣∣ d
dv

t∫
0

f(yn−1(τ, v, u2), v, u1) − f(yn−1(τ, v, u2), v, u2) dτ
∣∣∣

max
v

1∫
0

∣∣∣∂f
∂v

(yn−1, v, u1) −
∂f

∂v
(yn−1, v, u2)

∣∣∣ dτ ≤ C(f)|u1 − u2|.

Thus,

max
t,v

∣∣∣dyn

dv
(t, v, u1) −

dyn

dv
(t, v, u2)

∣∣∣
≤ Lmax

t,v

∣∣∣dyn−1

dv
(t, v, u1) −

dyn−1

dv
(t, v, u2)

∣∣∣+K|u1 − u2|α

≤ k
∞∑

k=0

Lk|u1 − u2|α,

and dyn

dv ∈ Hα(u) locally. Hence, dy
dv ∈ Hα(u) locally. �
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Carnot–Carathéodory spaces and the sub-Riemannian coarea formula, and Martin
Reimann for interesting discussions of differentiability theorems.

References

[1] A.A. Agrachev, Compactness for sub-Riemannian length minimizers and subana-
lyticity. Rend. Semin. Mat. Torino, 56 (1998).

[2] A.A. Agrachev and R. Gamkrelidze. Exponential representation of flows and
chronological calculus. Math. USSR-Sb. 107 (4) (1978), 487–532 (in Russian).

[3] A.A. Agrachev and J.-P. Gauthier. On subanalyticity of Carnot–Carathéodory dis-
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[16] A. Belläıche, Tangent Space in Sub-Riemannian Geometry. Sub-Riemannian geom-
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inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble) 45 (1995),
577–604.

[54] B. Franchi, G. Lu, R. Wheeden, A relationship between Poincaré type inequalities
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Fourier Transforms of UD Integrals

Igor Kondrashuk and Anatoly Kotikov

Abstract. UD integrals published by N. Usyukina and A. Davydychev in
1992–1993 are integrals corresponding to ladder-type Feynman diagrams. The
results are UD functions Φ(L), where L is the number of loops. They play an
important role in N = 4 supersymmetric Yang-Mills theory. The integrals
were defined and calculated in the momentum space. In this paper the po-
sition space representation of UD functions is investigated. We show that
Fourier transforms of UD functions are UD functions of space-time intervals
but this correspondence is indirect. For example, the Fourier transform of
second UD integral is the second UD integral.
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1. Introduction

As has been shown in Refs. [1]–[12], Slavnov-Taylor identity predicts that the cor-
relators of dressed mean fields for N = 4 supersymmetric Yang-Mills theory in the
position space can be represented in terms of UD integrals. The UD integrals cor-
respond to the momentum representation of ladder diagrams and were calculated
in Refs. [15, 16] in the momentum space, and the result can be written in terms
of certain functions (UD functions) of conformally invariant ratios of momenta.
Indeed, the Lcc correlator in the position space in Wess-Zumino-Landau gauge of
maximally supersymmetric Yang-Mills theory is a function of Davydychev inte-
gral J(1, 1, 1) at two loop level1 [5, 6, 7]. By using Slavnov-Taylor identity one can
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1In the position space Feynman diagrams contain integrations over coordinates of internal ver-

tices. Integration over internal vertices appears in dual representation of the momentum diagrams
too (see below and [13, 14]).
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represent correlators of dressed mean gluons in terms of this integral at two-loop
level. What kind of integrals will contribute to the scale-independent Lcc corre-
lator at all loops is unclear at present. However, using a method of Ref. [7] one
can suggest that at higher loop orders in the position space the UD integrals will
survive only. Conformal invariance of the effective action of dressed mean fields in
the position space, predicted in Refs. [1, 2, 3, 4] corresponds to the property of
conformal invariance of UD integrals.

In the momentum space it was shown that UD functions are the only con-
tributions (at least up to three loops) to off-shell four-point correlator of gluons
that corresponds to four gluon amplitude [17, 18]. The conformal invariance of UD
functions was used in the momentum space to calculate four point amplitude and
to classify all possible contributions to it [19, 20]. Later, the conformal symme-
try in the momentum space appeared on the string side in the Alday-Maldacena
approach [21] in the limit of strong coupling.

The purpose of this paper is to find the position space representation of
the ladder diagrams that produce UD functions in the momentum space. In this
paper we show that Fourier transform of the second UD integral is the second UD
integral and that Fourier transform of the first UD function can be related to the
second UD function. We consider three-point ladder UD integrals and comment
four-point ladder UD integrals. In Section 2 we illustrate the idea of the method on
an example of the simplest diagram. The most important point is that the problem
is solved diagrammatically via conformal transformation. Two other solutions to
this problem are given in Section 3 and Section 4.

2. First UD triangle diagram

First UD triangle diagram is depicted on the l.h.s. of Fig. 1. All the notation
used in this paper is the notation of Ref. [5]. To calculate it we use conformal
transformation. The conformal transformation for each vector of the integrand

1

3

2

3

1

~ 2 0
C T

Figure 1. Initial conformal transformation in the position space.
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(including the external vectors) is

yμ =
y′μ
y′2

, zμ =
z′μ
z′2

. (2.1)

On the level of equations, the chain of conformal transformations of the l.h.s.
of Fig. 1 according to Eq. (2.1) is∫

d4y d4z
1

[2y][yz][2z][3z][1y]

= [2′]2[3′][1′]
∫

d4y′ d4z′
1

[2′y′][y′z′][2′z′][3′z′][1′y′][y′][z′]

= [2′]2[3′][1′]
1

[3′1′][2′]2
Φ(2)

(
[1′2′][3′]
[3′1′][2′]

,
[1′][2′3′]
[3′1′][2′]

)
=

[3′][1′]
[3′1′]

Φ(2)

(
[1′2′][3′]
[3′1′][2′]

,
[1′][2′3′]
[3′1′][2′]

)
=

1
[31]

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
.

The second row of this chain of transformations looks like the second UD integral
in the dual representation of Ref. [17]. It corresponds to the r.h.s. of Fig. 1. The
last line is the conformal transformation back to the initial variables. Thus, we
have proved the formula∫

d4y d4z
1

[2y][1y][3z][yz][2z]
=

1
[31]

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
. (2.2)

After making Fourier transformation, we have the following representation for the
l.h.s. (definitions of momenta are indicated on Fig. 2):

p
2

p
1

p
3

Figure 2. One loop diagram in the momentum space.
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d4y d4z

1
[2y][1y][3z][yz][2z]

= 4π2

∫
d4p1d

4p2d
4p3d

4r δ(p1 − p2 + p3)

× 1
p2
1 p

2
3

eip2x2e−ip1x1e−ip3x3
1

(r + p1)2r2(r − p3)2

= 4π2

∫
d4p1d

4p2d
4p3 δ(p1 − p2 + p3)eip2x2e−ip1x1e−ip3x3

× 1
p2
2 p

2
1 p

2
3

Φ(1)

(
p2
1

p2
2

,
p2
3

p2
2

)
.

Thus, comparing with Eq.(2.2), we can derive the first relation:

1
[31]

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
= 4π2

∫
d4p1d

4p2d
4p3 δ(p1 − p2 + p3) (2.3)

× eip2x2e−ip1x1e−ip3x3
1

p2
2 p

2
1 p

2
3

Φ(1)

(
p2
1

p2
2

,
p2
3

p2
2

)
.

However, looking at the definition of the UD integrals in Refs. [15, 16], we can
write from Eq. (2.3) another relation:

1
[31]2

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
=

1
16π4

∫
d4p1d

4p2d
4p3 δ(p1 − p2 + p3) (2.4)

× eip2x2e−ip1x1e−ip3x3
1

(p2
2)2

Φ(2)

(
p2
1

p2
2

,
p2
3

p2
2

)
.

The next two sections demonstrate how to derive the formula (2.2) by other two
different methods.

3. Graphical identity

First of all, we show validity of the graphical identity of Fig. 3. This is identity in
the position space. We assume integration over internal vertices. This identity can
be proved in two ways.

1. First way to prove Fig. 3 is to use a relation on Fig. 4. This is a graphical
representation of the equation (rules of the integration are taken from Ref. [5])

∂2
(y)

1
[1y]1−ε

= k(ε)δ(4−2ε)(1y)

from Ref [7]. The coefficient between the l.h.s. and the r.h.s. of Fig. 4 is k = −4 in
the number of dimensions d = 4. On the other side, d’Alembertian can travel along
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=

1

3

2
2

3

1

Figure 3. Graphical identity.

the propagator. Computer program of Ref. [7], written in Mathematica, produces
the equation2

∂2
(2)

∫
Dy Dz

1
[2y][1y][3z][yz][2z]

= − 4[31]
[12][23]

J(1, 1, 1). (3.1)

This identity is depicted on Fig. 5. The dash lines correspond to the inverse

3

1

2∂
2

( 2 )
∼ 2

1

3

Figure 4. Use of d’Alembertian.

2

3

1

∂
2

(2) ~ 2

3

1

Figure 5. Use of d’Alembertian.

2The l.h.s. of (3.1) appears on page 24 of Ref. [7]
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propagator. The coefficient between the l.h.s. and the r.h.s. of Fig. 5 is k = −4.
Combining Fig. 4 and Fig. 5 we reproduce the graphical identity of Fig. 3. Inte-
gration in the internal vertices includes powers of π due to the definition of Ref.
[5]. Since both parts of Fig. 3 contain two internal vertices, the identity of Fig. 3
is valid for a usual four-dimensional measure of integration. Thus, we have proved
the formula:∫

d4y d4z
1

[2y][1y][3z][yz][2z]
= [31]

∫
d4y d4z

1
[2y][yz][1y][3y][1z][3z]

. (3.2)

This formula corresponds to the graphical identity of Fig. 3.

2. Another way to show validity of Fig. 3 is a useful identity of Ref. [17] in the posi-
tion space which can be obtained from the property that Φ(2) function depends on
two conformally invariant ratios of spacetime intervals. This representation is valid
in the position space. The turning identity is re-presented in Fig. 6. Historically it
appeared in Ref. [17] as a “dual” representation of the momentum two-loop UD
integral which is not exactly the same as a position representation (the position
representation is usual Feynman ladder diagram integrated over coordinates of
internal vertices). Internal vertices correspond to the momenta that run into the
loops. However, in the dual representation the integrations are done over “coordi-
nates” of the internal vertices too and thus the dual diagram can be considered as
another Feynman diagram in the position space. By multiplying both parts of the

2 4

=

1

3

1

3

2 4

Figure 6. Turning identity.

turning identity by propagator [24], we have another graphical identity depicted
on Fig. 7. Integrating both parts over the variable x4 in d = 4− 2ε dimensions, we
obtain the relation re-presented on Fig. 8, where

A(1, 1, 2 − 2ε) =
Γ2(1 − ε)Γ(ε)

Γ(2 − 2ε)
.

Cancelling the coefficient A(1, 1, 2 − 2ε) in the both parts and taking the limit
ε→ 0, we reproduce Fig. 3.
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2 4

3

1

=
2 4

1

3

Figure 7. Multiplication by propagator.

Α(1,1,2−2ε) 2

3

1

1 + ε Α(1,1,2−2ε)=

1

3 ε

2

Figure 8. Integration over x4.

4. Relation between graphical identity and UD integral

After proving Fig. 3, we can relate its r.h.s. to UD integrals. This can be done in
two ways.

1. First way is by conformal transformation of the r.h.s. of Fig. 3. Indeed, the
integral that corresponds to the r.h.s. of Fig. 3 is∫

d4y d4z
1

[2y][yz][1y][3y][1z][3z]
.

According to the conformal substitution of Eq. (2.1) the integral of the r.h.s. of
Fig. 3 can be transformed to∫

d4y d4z
1

[2y][yz][1y][3y][1z][3z]
=
∫
d4y′ d4z′

[y′]4[z′]4
[2′][3′]2[1′]2[y′]4[z′]3

[2′y′][y′z′][1′y′][3′y′][1′z′][3′z′]

=
∫
d4y′ d4z′

[2′][3′]2[1′]2

[2′y′][y′z′][1′y′][3′y′][1′z′][3′z′][z′]
.

(4.1)
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The transformation is presented on Fig. 9. The r.h.s. of Fig. 9 looks like the second
UD integral in the dual representation of Ref. [17]. Thus, we can represent Eq. (4.1)

3

1

2
C T∼

1

3

02

Figure 9. Conformal transformation of the r.h.s. of Fig. 3.

as ∫
d4y′ d4z′

[2′][3′]2[1′]2

[2′y′][y′z′][1′y′][3′y′][1′z′][3′z′][z′]

= [2′][3′]2[1′]2
1

[3′1′]2[2′]
Φ(2)

(
[1′2′][3′]
[3′1′][2′]

,
[1′][2′3′]
[3′1′][2′]

)
=

[3′]2[1′]2

[3′1′]2
Φ(2)

(
[1′2′][3′]
[3′1′][2′]

,
[1′][2′3′]
[3′1′][2′]

)
=

1
[31]2

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
.

The last line is the conformal transformation back to the initial variables of Eq.
(2.1). Thus, we have demonstrated that∫

d4y d4z
1

[2y][yz][1y][3y][1z][3z]
=

1
[31]2

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
.

Taking into account Eq. (3.2), we have proved the formula of Eq. (2.2)∫
d4y d4z

1
[2y][1y][3z][yz][2z]

=
1

[31]
Φ(2)

(
[12]
[31]

,
[23]
[31]

)
.

2. Second way to demonstrate validity of Eq. (3.2) does not require the conformal
transformation. The dual representation for the two-loop diagram on Fig. 10 in the
momentum space is given on Fig. 11. Thus, for the case α = β = 0 we have the
structure of the dual diagram depicted on Fig. 12. However, using the definition
of UD functions of Refs. [15, 16] and taking into account the relation for dual
momenta, one can see that the r.h.s. of Fig. 12 is

1
[31]2

Φ(2)

(
[12]
[31]

,
[23]
[31]

)
. (4.2)
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p
2

α

β

p
3

p
1

Figure 10. Two-loop diagram.

p
2

β

α

p
3

p
1 1

3

2

α

β

=
D

Figure 11. Dual representation.

p2

=
D

1

3

2

3p

p1

Figure 12. α = β = 0.

Thus, comparing the l.h.s. of Fig. 12 with the graphical identity Fig. 3 and taking
into account Eq. (4.2) we have in the position space for the l.h.s. of Fig. 3 the
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result
1

[31]
Φ(2)

(
[12]
[31]

,
[23]
[31]

)
.

This coincides with the result in Eq. (2.2).

5. Conclusion

We have shown that Fourier transform of the second UD integral is the second UD
integral, and that Fourier transforms of the first and the second UD functions are
related. Apart from pure academic interest, this conclusion allows to investigate
correlators of N = 4 supersymmetric Yang-Mills theory in the position space. It
is useful from the point of view of Slavnov-Taylor identity. This identity will allow
to find even maybe yet unknown relations between different types of UD integrals.
We hope that the property exists above the present consideration, that is for four-
point ladder diagrams and at higher loops too. We plan to consider this in future.
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Fredholm Eigenvalues of Jordan Curves:
Geometric, Variational
and Computational Aspects
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Abstract. The Fredholm eigenvalues of closed Jordan curves L on the Rie-

mann sphere Ĉ (especially their least nontrivial values ρL = ρ1) are intrin-
sically connected with conformal and quasiconformal maps and have various
applications. These values have been investigated by many authors from dif-
ferent points of view.

We provide completely different quantitative and qualitative approaches
which involve the complex Finsler geometry of the universal Teichmüller
space, the metrics of generalized negative curvature and holomorphic mo-
tions.
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Keywords. Fredholm eigenvalue, univalent function, quasiconformal, Grun-
sky inequalities, universal Teichmüller space, Teichmüller metric, Kobayashi
metric, Gaussian curvature, variation, generalized Laplacian.

1. Introductory remarks

The Fredholm eigenvalues of closed Jordan curves L on the Riemann sphere Ĉ have
various applications and have been investigated by many authors from different
points of view (see, e.g., the classical works of Ahlfors, Gaier, Schiffer, Warschawski
et al.). These values, especially their least nontrivial values ρL = ρ1, are intrinsi-
cally connected with conformal and quasiconformal maps.

Though many interesting problems still remain open. One of the reasons is
that there are no appropriate variational methods for the related maps. The vari-
ational approach is very important and requires further investigations. There are
also important computational problems, first of all to find the general algorithms
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for exact and approximate calculation of these values. We will see that this is
important, for example, in quasiconformal classification of curves.

In this talk, we provide completely different quantitative and qualitative ap-
proaches. They rely on the deep results of complex Finsler geometry of universal
Teichmüller space T and accordingly involve the metrics of generalized negative
curvature and holomorphic motions. It became possible in this way to solve, for
example, certain the old problem of Kühnau on inversion of classical Ahlfors and
Grunsky inequalities, certain extremal problems for Fredholm eigenvalues going
back to Schiffer and obtain many other results.

We briefly survey here the main recently obtained results in these topics.

2. Fredholm eigenvalues

2.1. The Fredholm eigenvalues ρn of a smooth closed Jordan curve L ⊂ Ĉ are the
eigenvalues of its double-layer potential, or equivalently, of the integral equation

u(z) =
ρ

π

∫
L

u(ζ)
∂

∂nζ
log

1
|ζ − z|dsζ . (1)

This equation has many applications, in particular, in two-dimensional poten-
tial theory, in the theory of boundary value problems (solving the Dirichlet and
Neumann problems either in bounded or in unbounded domains), in approximate
construction of conformal maps, etc. (see, e.g., [1], [8], [23], [27], [34], [35], [36],
[40] and references cited there). Note that

− ∂

∂nζ
log |ζ − z|dsζ = dζ arg(ζ − z);

this equality is useful, for example, in numerical applications.
The smallest eigenvalue ρL = ρ1 > 1 plays a crucial role. One of the reasons

is that by applying to the equation (1) the standard approximation method, the
speed of approximation is equal to O(1/ρL).

This value ρL can be defined for any oriented closed Jordan curve L on the
Riemann sphere Ĉ by

1
ρL

= sup
|DG(u)−DG∗(u)|
DG(u) +DG∗(u)

,

where G and G∗ are, respectively, the interior and exterior of L; D denotes the
Dirichlet integral, and the supremum is taken over all functions u continuous on
Ĉ and harmonic on G ∪G∗. In particular, ρL = ∞ only for the circle.

A basic ingredient for estimating ρL is the well-known Ahlfors inequality
1
ρL

≤ qL, (2)

where qL is the reflection coefficient of L, i.e., the minimal dilatation of quasi-
conformal reflections across L (that is, of the orientation reversing quasiconformal
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homeomorphisms of Ĉ which preserve the curve L point-wise); see, e.g., [2], [20],
[27]. This inequality remains invariant under the action of the group PSL(2,C).

The inequality (2) is a basis for all known algorithms for the evaluation of
exact or approximate values of ρL for specified curves L.

3. Ahlfors and Grunsky inequalities

3.1. It suffices to take the images L = fμ(S1) of the unit circle under quasicon-
formal self-maps of Ĉ with Beltrami coefficients μ = ∂zf/∂zf supported in the
unit disk Δ. Then qL equals the minimal dilatation k(fμ) = ‖μ‖∞ of such maps,
and the inequality (2) is reduced to a strengthened Grunsky inequality.

The classical Grunsky theorem states that a holomorphic function f(z) =
z + const+O(z−1) in a neighborhood U0 of z = ∞ is extended to a univalent
holomorphic function on the disk

Δ∗ = {z ∈ Ĉ = C ∪ {∞} : |z| > 1}

if and only if its Grunsky coefficients αmn satisfy the inequalities∣∣ ∞∑
m,n=1

√
mn αmnxmxn

∣∣ ≤ 1. (3)

These coefficients are generated by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmnz
−mζ−n, (z, ζ) ∈ (Δ∗)2, (4)

where x = (xn) runs over the unit sphere S(l2) of the Hilbert space l2 with

‖x‖ =
(∞∑

1
|xn|2

)1/2

, and the principal branch of logarithmic function is chosen

(cf. [12]). In particular, this assumes that f(z) �= 0 on Δ∗. The quantity

κ(f) := sup
{∣∣∣ ∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

(5)

is called the Grunsky norm of f .
Note that the function g(z) = 1/f(1/z) = z + a2z

2 + · · · , which is univalent
in Δ, has the same Grunsky coefficients αmn as f(z).

Consider the class Σ of univalent holomorphic functions f(z) = z + b0 +
b1z

−1 + · · · mapping the disk Δ∗ into Ĉ \ {0}, and let Σ(k) be its subclass of f
with k-quasiconformal extensions to the unit disk Δ = {|z| < 1} so that f(0) = 0,
and Σ0 =

⋃
k Σ(k).

Grunsky’s theorem has been essentially strengthened for the functions with
quasiconformal extensions, for which we have instead of (3) a stronger inequality
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(see [25]) ∣∣ ∞∑
m,n=1

√
mn αmnxmxn

∣∣ ≤ k = k(f), (6)

where
k(f) := inf{k(wμ) = ‖μ‖∞ : wμ|∂Δ∗ = f}

is the minimal dilatation of (quasiconformal extensions of) f .
Here ‖μ‖∞ = ess supC |μ(z)|.
This inequality implies that the Grunsky and Teichmüller norms of f ∈ Σ0

are related as follows:
κ(f) ≤ k(f). (7)

On the other hand, by a theorem of Pommerenke and Zhuravlev, any f ∈ Σ with
κ(f) ≤ k < 1, has k1-quasiconformal extensions to Ĉ with k1 = k1(k) ≥ k (see
[31], [42]; [23, pp. 82–84]).

3.2. The eigenvalues ρL are intrinsically connected with the Grunsky matrix
(αmn(f)), which is qualitatively expressed by Kühnau-Schiffer theorem which
states that ρL is reciprocal to the Grunsky norm κ(f) of the Riemann mapping
function of the exterior domain of L (cf. [27], [35]). This is one of the key results in
the investigation and estimation of Fredholm eigenvalues by applying the Grunsky
inequalities technique.

Our first main theorem relates to Moser’s conjecture that each function f ∈ Σ
can be approximated locally uniformly on Δ∗ by functions fn ∈ Σ0 with κ(fn) <
k(fn), which sheds light to deep geometric features of Fredholm eigenvalues and
is recently proved in [26]. To formulate it, we shall need certain results concerning
the universal Teichmüller space; we present them in the next section.

3.3. Note that the set of f ∈ Σ0 with κ(f) = k(f), or equivalently, with 1/ρf(S1) =
k(f), is rather sparse in Σ0, but these functions play a crucial role in various
applications of the Grunsky inequalities technique.

To describe these functions, denote

A1(Δ) = {ψ ∈ L1(Δ) : ψ holomorphic},
A2

1 = {ψ ∈ A1(Δ) : ψ = ω2, ω holomorphic}
and put

〈μ, ψ〉Δ =
∫∫

Δ

μ(z)ψ(z)dxdy (μ ∈ L∞(Δ), ψ ∈ L1(Δ), z = x+ iy).

Then we have the following basic result.

Theorem 3.1. [15], [20] The equality 1/ρL = κ(f) = k(f) for the Riemann mapping
function of the exterior (or interior) of L holds if and only if the function f is the
restriction to Δ∗ of a quasiconformal self-map wμ0 of Ĉ with Beltrami coefficient
μ0 satisfying the condition

sup |〈μ0, ϕ〉Δ| = ‖μ0‖∞, (8)
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where the supremum is taken over holomorphic functions ϕ ∈ A2
1(Δ) with

‖ϕ‖A1(Δ) = 1.
If, in addition, the equivalence class of f (the collection of maps equal f

on S1) is a Strebel point, i.e., contains an extremal Teichmüller map, then μ0 is
necessarily of the form

μ0(z) = ‖μ0‖∞|ψ0(z)|/ψ0(z) with ψ0 ∈ A2
1 in Δ. (9)

The condition (8) has a geometric nature and equality (9) holds, for example,
for all f with asymptotically conformal values on the unit circle. For analytic curves
f(S1) the equality (9) was obtained by a different method in [28]. Note also that
Strebel points are dense in Teichmüller spaces (cf. [9], [39]).

4. Universal Teichmüller space and its Finsler metrics

Recall that the universal Teichmüller space T is the space of quasisymmetric home-
omorphisms of the unit circle S1 = ∂Δ factorized by Möbius maps.

This space admits a complex Banach structure defined by factorization of the
unit ball of Beltrami coefficients

Belt(Δ)1 = {μ ∈ L∞(C) : μ|Δ∗ = 0, ‖μ‖∞ < 1}, (10)

letting μ, ν ∈ Belt(Δ)1 be equivalent if the corresponding maps wμ, wν ∈ Σ0

coincide on S1 (and hence on the closed disk Δ∗). The equivalence class of a map
wμ will be denoted by [wμ].

Using the functions f ∈ Σ0, the universal Teichmüller space can be mod-
elled (holomorphically embedded) as a bounded domain in the Banach space B
of hyperbolically bounded holomorphic functions in Δ∗ with finite norm ‖ϕ‖B =
supΔ∗(|z|2 − 1)2|ϕ(z)|.

All ϕ ∈ B can be regarded as the Schwarzian derivatives

Sf (z) =
(f ′′(z)
f ′(z)

)′
− 1

2

(f ′′(z)
f ′(z)

)2

, z ∈ Δ∗,

of locally univalent holomorphic functions in Δ∗. The points of T represent f ∈ Σ0,
i.e., the univalent functions in the whole disk Δ∗ with quasiconformal extensions
to Ĉ.

The defining projection φT : μ → Swμ is a holomorphic map from L∞(Δ)
to B.

An intrinsic complete metric on the space T is the Teichmüller metric de-
fined by

τT(φT(μ), φT(ν)) =
1
2

inf
{
logK

(
wμ∗ ◦

(
wν∗
)−1) : μ∗ ∈ φT(μ), ν∗ ∈ φT(ν)

}
.

(11)
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It is generated by the Finsler structure on the tangent bundle T (T) = T × B of
T defined by

FT(φT(μ), φ′T(μ)ν) = inf
{∥∥ν∗(1 − |μ|2)−1

∥∥
∞ :

φ′T(μ)ν∗ = φ′T(μ)ν; μ ∈ Belt(Δ)1; ν, ν∗ ∈ L∞(C)
}
.

(12)

The space T admits also invariant metrics. The largest of those is the Koba-
yashi metric dT. It is contracted by holomorphic maps h : Δ → T so that for any
two points ψ1, ψ2 ∈ T, we have

dT(ψ1, ψ2) ≤ inf{dΔ(0, t) : h(0) = ψ1, h(t) = ψ2},

where dΔ is the hyperbolic Poincaré metric on Δ of Gaussian curvature −4, with
the differential form

ds = λhyp(z)|dz| :=
|dz|

1 − |z|2 . (13)

The following key theorem on plurisubharmonicity is a strengthened version
for universal Teichmüller space of the Gardiner-Royden theorem on the equality
of Kobayashi and Teichmüller metrics on Teichmüller spaces (cf. [6], [7], [9], [32]).

Theorem 4.1. The differential Kobayashi metric KT(ϕ, v) on the tangent bundle
T (T) of the universal Teichmüller space T is logarithmically plurisubharmonic
in ϕ ∈ T, equals the canonical Finsler structure FT(ϕ, v) on T (T) generating
the Teichmüller metric of T and has constant holomorphic sectional curvature
κK(ϕ, v) = −4 on T (T).

The proof of Theorem 2.1 essentially involves the technique of Grunsky coef-
ficient inequalities. In fact, these inequalities give that all invariant metrics on T
are equal, but this will not be used here.

Recall that the generalized Gaussian curvature κλ of a upper semicontinuous
Finsler metric ds = λ(t)|dt| in a domain Ω ⊂ C is defined by

κλ(t) = −Δ logλ(t)
λ(t)2

, (14)

where Δ is the generalized Laplacian

Δλ(t) = 4 lim inf
r→0

1
r2

{ 1
2π

∫ 2π

0

λ(t+ reiθ)dθ − λ(t)
}

(15)

(provided that −∞ ≤ λ(t) < ∞), and the sectional holomorphic curvature of a
Finsler metric on T is the supremum of curvatures (14) over appropriate collections
of holomorphic maps from the disk into T.

Similar to C2 functions, for which Δ coincides with the usual Laplacian, one
obtains that λ is subharmonic on Ω if and only if Δλ(t) ≥ 0; hence, at the points
t0 of local maxima of λ with λ(t0) > −∞, we have Δλ(t0) ≤ 0 (cf., e.g., [5], [14]).
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5. Main geometric theorems

The desired geometric theorem on Fredholm eigenvalues mentioned in the end of
the previous section states:

Theorem 5.1. The set of quasiconformal curves L, for which Ahlfors’ inequality
(2) is fulfilled in the strict form 1/ρL > qL, is open and dense in the strongest
topology determined by the norm of the space B.

We derive this theorem from the following theorem which proves a much
stronger version of Moser’s conjecture.

Theorem 5.2. The set of points ϕ = Sf , which represent the maps f ∈ Σ0 with
κ(f) < k(f), is open and dense in the space T.

The proof of Theorem 5.2 is given in [22]; it is complicate and relies on deep
results concerning the Finsler geometry of the universal Teichmüller space.

A basic fact is that Grunsky coefficients αmn(f) depend holomorphically on
the Schwarzians Sf and hence generate the holomorphic maps

hx(ϕ) =
∞∑

m,n=1

√
mn αmn(ϕ)xmxn : T → Δ (16)

for each x = (xn) ∈ S(l2). Using these functions, we define a new complex Finsler
metric on T of holomorphic curvature at most −4.

Let Ω be a holomorphic disk in T; then Ω = φT(Ω0), where Ω0 is a holo-
morphic disk in the ball Belt(Δ)1. Let us consider in the tangent bundle T (T) =
T × B the holomorphic disks Ω̃ covering Ω. Their points are pairs (ϕ, v), where
v = φ′T[ϕ]μ ∈ B is a tangent vector to T at the point ϕ, and μ runs over the ball

Belt(Dϕ)1 = {μ ∈ L∞(C) : μ|D∗ϕ = 0, ‖μ‖∞ < 1}.

Here Dϕ and D∗ϕ denote the images of Δ and Δ∗ under f = fϕ ∈ Σ0 with Sf = ϕ.
To get the maps Δ → T preserving the origins, we transform the functions

(16) by the chain rule for Beltrami coefficients wν = wσ(ν) ◦ (fν0)−1, where

σ(ν) ◦ fν0 =
ν − ν0
1− ν0ν

∂zf
ν0

∂zfν0
; (17)

denote the composed maps by gx[σϕ]. Using the form

Hx(ϕ, ϕ0) =
hx(ϕ) − hx(ϕ0)
1 − hx(ϕ0)hx(ϕ)

,

one defines on T (T) a new Finsler structure

Fκ(ϕ0, v) = sup{|dHx(ϕ0;ϕ0)v| : x ∈ S(l2)}. (18)

It is dominated by the canonical Finsler structure (12).
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The structure (18) determines in a standard way on embedded holomorphic
disks γ(Δ), where γ are injective holomorphic maps Δ → T, the Finsler metrics
λγ(t) = Fκ(γ(t), γ′(t)) and then the corresponding distance

dγ(ϕ1, ϕ2) = inf
∫
β

λγ(t)dst.

The infimum over C1 is taken over smooth curves β : [0, 1] → T joining the points
ϕ1 and ϕ2.

This structure reproduces the Grunsky norm at least on the Teichmüller
extremal disks:

Lemma 5.3. On any extremal disk Δ(μ0) = {φT(tμ0) : t ∈ Δ} (and on its
isometric images in T), we have the equality

tanh−1[κ(Sfrμ0 )] =
∫ r

0

λκ(t)dt. (19)

Using this structure, we pull back via the maps (16) the hyperbolic metric
(13) onto suitable holomorphic disks Ω̃ in the tangent bundle T (T) over T and
get on these disks the conformal subharmonic metrics ds = λgx [σϕ(ν)](t)|dt| on G0,
with

λgx[σϕ(ν)] = gx[σϕ(ν)]∗(λhyp) =
|g′x[σϕ(ν)]|

1 − |gx[σϕ(ν)]|2 ,

whose curvature at nonsingular points is equal to −4.
The upper envelope of these metrics λ̂κ = sup λ̂gx[σϕ], where the supremum

is taken over all x ∈ S(l2) and all σϕ ∈ Belt(Δ)1, generates a subharmonic metric
on these disks, which descends to a subharmonic metric λκ on the underlying
holomorphic disks Ω in T. The generalized Gaussian curvature of λκ satisfies
kλκ

≤ −4, or equivalently, Δuκ ≥ 4e2uκ .
We can compare this metric with the restrictions of the Kobayashi differential

metric K to Ω by applying Minda’s maximum principle for upper semicontinuous
solutions of the differential inequality Δu ≥ Ku.

Lemma 5.4. [30] If a function u : Ω → [−∞,+∞) is upper semicontinuous in
a domain Ω ⊂ C and its generalized Laplacian satisfies the inequality Δu(z) ≥
Ku(z) with some positive constant K at any point z ∈ Ω, where u(z) > −∞, and
if lim sup

z→ζ
u(z) ≤ 0 for all ζ ∈ ∂Ω, then either u(z) < 0 for all z ∈ Ω or else

u(z) = 0 for all z ∈ Ω.

This lemma is applied to the function u = log(λκ/λK) and implies that both
metrics λκ and λK must coincide on Ωa. Thereafter, one derives the assertion of
Theorem 5.2
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6. Inversion of Ahlfors inequality

6.1. An important question, which actually arose after the seminal Ahlfors paper
[1] is whether the reflection coefficient of a quasicircle L can be estimated by its
Fredholm eigenvalue ρL. An equivalent problem on the sharp estimation of the
dilatation k(f) by the Grunsky norm of f was stated by Kühnau in 1981.

He established a not sharp estimate of k(f) by an explicit function of κ(f).
His bound relates to known estimates of dilatations of quasiconformal extensions
of k-quasisymmetric homeomorphisms of the real axes (see [29]).

The following theorem proved in [22] solves this problem completely and has
many other applications.

Theorem 6.1. For f ∈ Σ0 we have the estimate

k(f) ≤ 3
2
√

2
1

ρf(S1)
=

1.07 . . .
ρf(S1)

(20)

which is asymptotically sharp as ρ→∞ . The equality holds for the map

f3,t(z) =

{
z(1 + t/z3)2/3 if |z| > 1
z[1 + t(|z|/z)3]2/3 if |z| ≤ 1

(21)

with t = const ∈ (0, 1).

Note that the Beltrami coefficient of f3,t in Δ is μ3(z) = t|z|/z. This map
was the first (though the simplest) example of functions with κ(f) < k(f) found
by Kühnau.

We again can consider only f ∈ Σ0 represented in T by Strebel points,
i.e., with Teichmüller coefficients μf = k|ϕ|/ϕ, where k = const ∈ (0, 1) and
ϕ ∈ A1(Δ). Put μ∗(z) = μ(z)/‖μ‖∞.

We apply the following improvement of Theorem 3.1.

Theorem 6.2. For every function f ∈ Σ0 with unique extremal extension fμ0 to
Δ, we have the sharp bound

k(fμ0) ≤ 1
α(fμ0)

min
|t|=1

κ(f tμ0 )

with
a(fμ0) = sup{|〈μ∗0, ϕ〉Δ| : ϕ ∈ A2

1, ‖ϕ‖A1 = 1}. (22)

The proof of Theorem 6.2 is geometric and relies on properties of conformal
metrics ds = λ(z)|dz| on the disk Δ with λ(z) ≥ 0 of negative integral curvature
bounded from above. The curvature is understood in the classical supporting sense
of Ahlfors or, more generally, in the potential sense introduced by Royden [33] in
his investigation of the case of equality in the Ahlfors-Schwarz lemma (cf. [13]).

Namely, a metric λ has curvature at most K in the potential sense at a point
z0 if there is a disk U about z0 in which the function

logλ+K PotU (λ2),
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where PotU denotes the logarithmic potential

PotU h =
1
2π

∫
U

h(ζ) log |ζ − z|dξdη (ζ = ξ + iη),

is subharmonic. One can replace U by any open subset V ⊂ U , because the
function PotU (λ2) − PotV (λ2) is harmonic on U . This is equivalent to condition
that λ satisfies the inequality Δ logλ ≥ Kλ2 in the sense of distributions; here
Δ = 4∂∂. For such metrics, we have the following Royden’s lemma.

Lemma 6.3. If a circularly symmetric conformal metric λ(|z|)|dz| in Δ has curva-
ture at most −4 in the potential sense, then λ(r) ≥ a/(1− a2r2), where a = λ(0).

We consider the extremal disk Δ(μ∗0) = {φT(tμ∗0) : t ∈ Δ} ⊂ T, on which
the differential Kobayashi metric λK coincides with hyperbolic metric (13), and
construct the corresponding maps (16), getting similar to Theorem 5.2 a logarith-
mically subharmonic metric λκ(t) on Δ whose curvature in both supporting and
in the potential senses is less than or equal −4. Its circular mean

M[λκ ](|t|) = (2π)−1

∫ 2π

0

λκ(reiθ)dθ

is a circularly symmetric metric with curvature also at most −4 in the poten-
tial sense. The needed value of this mean at zero can be calculated by applying
the standard quasiconformal variations. Together with Lemma 5.3, this implies
Theorem 6.2.

To get (20), we have to estimate the quantity (22) from below. Applying
Theorems 3.1 and 6.2, we can restrict ourselves by finding the minimal value of
the functionals lμ(ψ) = |〈μ∗, ϕ〉Δ| on the set {ϕ ∈ A2

1 : ‖ϕ‖1 = 1} for μ∗ = |ψ|/ψ
defined by integrable holomorphic functions in Δ of the form

ψ(z) = zm(c0 + c1z + · · · ), m = 1, 3, 5, . . . .

The rather long calculations imply that this minimum equals 2
√

2
3 and is attained

on the map (21).
The equality in (20) is attained by the map (21) only asymptotically as

ρ→∞ (see [22]).

6.2. The inequalities (2) and (20) result in

1
ρL

≤ qL ≤ 3
2
√

2
1
ρL

(23)

(and in the equivalent inequalities for Grunsky norm).
Since the universal Teichmüller space is a homogeneous Banach domain, so

that any two its points are connected by a map from the universal Teichmüller
modular group Mod1 preserving the invariant distances, one obtains from (23)
the following interesting geometric estimates.
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Theorem 6.4. Every contractable separately plurisubharmonic metric rT(ϕ, ψ) on
T is deviated from the Kobayashi metric at most as follows

rT(ϕ1, ϕ2) ≤ dT(ϕ1, ϕ2) ≤ tanh
[ 3
2
√

2
tanh−1 rT(ϕ1, ϕ2)

]
.

7. Quasireflections and Finsler metrics

We mention here an application of geometric method exploited above to somewhat
other kind of problems.

7.1. As is well known, a topological circle admitting quasiconformal reflections is
a quasicircle and, according to [Ah2], it is characterized by uniform boundedness
of the cross-ratios of ordered quadruples of its points. Moreover, it was established
in [16] that any set E ⊂ S2, which admits quasireflections, is necessarily located
on a quasicircle with the same reflection coefficient.

For each mirror E, its reflection coefficient is defined as qE = inf ‖∂zf/∂z̄f‖∞
(where the infimum is over all quasireflections across E) and the quasiconformal
dilatation is defined by

QE = (1 + qE)/(1 − qE) ≥ 1.

Due to [2], [16], [27], we have

QE = (1 + kE)2/(1 − kE)2,

where kE = inf ‖∂z̄f/∂zf‖∞, taking the infimum over all quasicircles L ⊃ E

and all orientation preserving quasiconformal homeomorphisms f : Ĉ → Ĉ with
f(R̂) = L.

One of the important problems in this theory and its applications is devel-
oping general algorithms for exactly, or at least approximately, calculating of the
reflection coefficients of particular curves and their subarcs.

One of the standard ways of determining the reflection coefficients qL and the
Fredholm eigenvalues ρL for a given curve L consists of verifying whether we have
for this curve the case of equality in (7). This is unknown even for the rectilinear
quadrilaterals.

7.2. Already more than 20 years ago, Kühnau stated a question whether for any
rectangle P , the equality qP = 1/ρP holds, which was completely answered only
recently. It was established in [27], [41] (by explicit constructing the extremal
reflections) that the answer is affirmative for the rectangles R sufficiently close
to the square so that their moduli m(R) satisfy 1 ≤ m(R) < 1.037; for such
rectangles, we have qL = 1/ρL = 1/2.

The above geometric approach provides also a complete answer to this ques-
tion as well as to certain other related problems. Namely, the equalities

q∂P = 1/ρ∂P = κ(f∗) = k(f∗) (24)
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hold for every rectangle P; here f∗ denotes the Riemann mapping function Δ∗ →
P∗ = Ĉ \ P.

In this case, the elliptic integral

ft(ζ) = Ct

ζ∫
0

dξ√
(1 − ξ2)(1 − t2ξ2)

= F(ζ, t),

defines a conformal map of the upper half-plane U = {z : Im z > 0} onto the
rectangle P so that the points points ±1 and ±t (0 < t < 1) go to the vertices
(±a, 0), (±a,±a + ib) of P . The corresponding map b(t) = Sft(·, t) : (−1, 1) →
T defines a real curve Γ in T which represents all rectangles P (up to linear
equivalence). It is located on a non-geodesic holomorphic disk (planar domain) Ω0

in a tubular neighborhood VΓ of Γ in T.
Now, composing the solutions to the Schwarz equation Sf = ϕ, ϕ ∈ T,

with a suitable Möbius map Δ∗ → U , one obtains the functions F ∈ Σ0, for
which we have by (16) the corresponding holomorphic maps hx(ϕ) : T → Δ.
This implies, similar to the Theorem 5.2, a subharmonic Finsler metric λκ on the
disk Ω0 of generalized Gaussian curvature kλκ

≤ −4, which is the restriction of a
corresponding Finsler metric determined on the whole neighborhood VΓ.

The equality q∂P = 1/ρ∂P , already known for rectanglesP close to the square,
allows us to conclude that this metric coincides at the corresponding points ϕ ∈ Ω0

with the dominant differential Teichmüller-Kobayashi metric λK on T. Then, by
Lemma 5.4, λκ and λK are equal on the whole disk Ω0, which implies the equalities
(24). For details see [21].

8. Variational problems for Fredholm eigenvalues

8.1. In this section, we consider certain basic important variational problems
concerning the Grunsky eigenvalues and quasiconformal maps.

Some extremal problems for Fredholm eigenvalues have been investigated in
pioneering papers of Schiffer (see, e.g., [34]), and applied to obtaining the existence
of conformal maps onto canonical domains.

Note that the smallest positive Fredholm eigenvalue ρL regarded as a curve
functional is upper semicontinuous with respect to uniform convergence on curves.
The discontinuity causes the difficulties in solving the extremal problems for Fred-
holm eigenvalues of arbitrary Jordan curves. Another source of difficulties is pro-
vided by non-compactness of many of the intrinsically involved collections of maps.

The situation is different when the maps are convergent in the Teichmüller
distance, because the function κ(f) is continuous on T (cf. [37]).

From this point of view, it is natural to consider the extremal problems on
the classes of conformal maps f with Fredholm eigenvalues ρf(S1) bounded from
below.
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Such problems have not been fully investigated. One of the points is that
there are no variational methods for these classes. We will apply the complex
geometry of universal Teichmüller space.

8.2. Consider the subclass Σ〈k〉 of Σ which consists of f ∈ Σ having k-quasicon-
formal extensions to Ĉ and with the eigenvalues ρf(S1) ≤ 1/k (or equivalently, of
f with the Grunsky norm κ(f) ≤ k). Theorem 5.2 implies that this class is much
wider than Σ(k).

Let F (f) be a holomorphic functional on the class Σ, which means that F
is continuous and Gateaux C-differentiable, i.e., we have for any f ∈ Σ and small
t ∈ C the equality

F (f + th) = F (f) + tF ′f (h) +O(t2), t→ 0, (25)

in the topology of uniform convergence on compact sets in Δ∗. Here F ′f (h) is a
C-linear functional. The restriction of F to Σ0 can be lifted to the ball Belt(Δ)1,
using the equality F̂ (μ) = F (fμ). We require that this lifting is holomorphic
on Belt(Δ)1. This yields that the functional F ′f (h) in (25) is a strong (Fréchet)
derivative.

We shall assume that the derivative on the identity map id(z) = z,

ϕ0(z) = F ′id(g(id, z)) (26)

is a meromorphic functions on C, which is holomorphic and integrable on the unit
disk Δ.

This rather natural assumption holds, for example, for the general distortion
functionals F of the form

F (f) = F (f(z1), f ′(z1), . . . , f (m1)(z1); . . . ; f(zp), f ′(zp), . . . , f (mp)(z1)),

where z1, . . . , zp are the distinct fixed points in Δ∗ with assigned orders m1, . . . ,
mp, respectively. In this case, the function (26) is rational.

The following general theorem solves the maximization problem for any func-
tional F on Σ〈k〉 of the above form, under an appropriate restriction to dilatation k.

Theorem 8.1. Suppose that the range domain of F on Σ0 has more than two
boundary points. If a function ϕ0 defined by (26) has in Δ only zeros of even
order, then there exists a number k0(F ) > 0 such that for all k ≤ k0(F ), the
extremal functions for F on the class Σ〈k〉 are the same as in the smaller class
Σk; in other words,

max
κ(f)≤k

|F (f) − F (id)| = max
k(f)≤k

|F (f) − F (id)| = max
|t|=k

|F (f t|ϕ0|/ϕ0) − F (id)|. (27)

A similar result has been established earlier by the author for the classes
Σ(k) using the equality of Carathéodory and Kobayashi metrics on the disk

Δ(ϕ0) = {φT(t|ϕ0|/ϕ0) : t ∈ Δ} ⊂ T

following from Theorem 3.1 (see, e.g., [19]). The basic ingredient of the proof is the
existence of a projector with norm one, which is ensured by the mentioned above
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equality of Carathéodory and Kobayashi metrics. Also the standard variational
formula for the maps fμ ∈ Σ(k),

fμ(z) = z +
1

2πi

∫∫
Δ

μ(ζ)dζ ∧ dζ
ζ − z

+O(‖μ‖2), ‖μ‖ → 0,

where the ratio O(‖μ‖2)/‖μ‖2 is uniformly bounded on compact sets of C, was
essentially used.

This method does not work for the maps of class Σ〈k〉, where no variational
formulas are known.

Theorem 8.1 sounds rather surprisingly and shows that the underlying fea-
tures are generated by hyperbolicity, like in the classes Σ(k). We derive this theo-
rem as a consequence of the following result which is of independent interest.

Theorem 8.2. If a holomorphic functional F on Σ0 with F (id) = 0 satisfies

sup
‖μ‖∞<1

|F (fμ)| = 1,

and if its derivative F ′id(g(id, z)) = ϕ0 has in Δ only zeros of even order, then, for
any k ∈ [0, 1] and any t with |t| = k, we have

max
κ(f)≤k

|F (f)| = |F (f t|ϕ0|/ϕ0)| = k. (28)

Theorem 3.1 plays a crucial role in the proof of Theorems 8.1 and 8.2. We
again use the density of Strebel points in T and establish that the maps f t|ψ|/ψ

with ψ ∈ A1(Δ) cannot be extremals F unless ψ = ϕ0.

8.3. For the bounded functionals F : Σ → C with F (id) = 0, there is a useful
lower estimate for k0(F ), which allows us to apply this theorem effectively. Namely
(cf. [19]),

k0(F ) ≥ a
‖F ′id‖

‖F ′id‖+M(F ) + 1
=: k′0(a), (29)

where a is any number satisfying 0 ≤ a ≤ 1/2,M(F ) := supΣ |F (f)| <∞ and

‖F ′id‖ =
1
π

∫∫
Δ

|F ′id(g(id, z))|dxdy. (30)

8.4. Specifying the functional (25), one gets the new sharp distortion estimates.
For example, taking F (f) = b2n−1, n ≥ 1, one obtains

Theorem 8.3. For each f(z) = z +
∞∑
0
bnz

−n ∈ Σ〈k〉, we have the sharp bound

max
κ(f)≤k

|b2n−1| ≤
k

n
, n = 1, 2, . . . , (31)

provided that

k < kn =
1

n+ n√
2n−1

+ 1
. (32)
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The equality in (30) is attained on the maps

fn,t(z) =

⎧⎨⎩z
(
1 + t

zn+1

)2/(n+1)
, |z| ≤ 1,

z
[
1 + t

(
z
z

)(n+1)/2
]2/(n+1)

, |z| > 1,

with Beltrami coefficients

μn(z) = t(z/z)n−1, |t| = k,

as well as for their admissible translations hn,t(z) = fn,t(z) − a with a ∈ C, i.e.,
such that hn,t also remains in the class Σ〈k〉.

The bound (32) follows from the known corresponding best estimate for the
maps of class Σ(k).

8.5. The above arguments work well also for the classes S〈k〉 of univalent functions
f(z) = z +

∑∞
2 anz

n in the unit disk, which have quasiconformal extensions to Ĉ

satisfying f(∞) = ∞ and such that their Grunsky norms satisfy κ(f) ≤ k.
In this case, one obtains, by applying the bound (28), that for every function

f ∈ S〈k〉 its odd coefficients a2n−1 satisfy the inequality

|a2n−1| ≤
k

n− 1
, n = 2, 3, . . . ,

provided that
κ(f) < kn = 1/[(2n− 1)2 + 1].

In contrast to classes Σ〈k〉, an additional normalization condition for the functions
of f ∈ S〈k〉 (for example, at infinity) essentially reflects upon the growth order of
the coefficients.

Such classes of univalent functions in the disk without an additional normal-
ization were investigated by Grinshpan and Pommerenke, also by applying the
Grunsky inequalities (see [10], [11]); they established the exact growth order of
coefficients an in n.

8.6. The following question bridges the maximization problem studied above with
the problems for Fredholm eigenvalues considered by Schiffer.

Let Σ(b01, b
0
2, . . . , b

0
m) denote the collection of functions f ∈ Σ with the same

first m coefficients b01, b
0
2, . . . , b

0
m, which are fixed. Find the Jordan curves L =

f(S1) with maximal Fredholm eigenvalue ρL.
In other words, one has to find the curves whose eigenvalue is the closest to

the eigenvalue of the circle.
The case m = 1 is rather simple; then 1/maxρL = |b01|, with equality only

for the maps

f1,t(z) =

{
z + t/z, |z| ≥ 1,
z + tz, |z| < 1,

with |t| = |b01|. These maps are extremal for many problems.
A partial answer for m > 1 follows from Theorem 8.1; in the general case,

the problem is open.
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9. Computation of Fredholm eigenvalues

9.1. Another approach to estimating the reflection coefficients and Fredholm eigen-
values of curves relies on the properties of holomorphic motions, i.e., of holomor-
phic isotopies depending on complex parameter (see, e.g., [4], [38]). We illustrate
it on the following theorem proved in [17].

Theorem 9.1. Let a function f map conformally the upper half-plane U into C,
and let the equation

w′′(ζ) = tbf(ζ)w′(ζ), ζ ∈ U, (33)

have univalent solutions on U for all t ∈ [0, t0], t0 > 1. Then the image f(U) is a
quasidisc, and the reflection coefficient of its boundary L = f(R̂) = ∂f(U) satisfies

qL ≤ 1
t0
. (34)

This bound cannot be improved in the general case. The equality in (34) is attained
by any quasicircle which contains two C1+ε smooth subarcs (ε > 0) with the interior
intersection angle απ, where α = 1− 1/t0 (under above univalence assumption for
logarithmic derivative bf = f ′′/f ′). In this case,

qL =
1
ρL

=
1
t0
. (35)

The exact bound for the reflection coefficient qL follows from (34) by choosing
the maximal value of t0 admitting the indicated univalence property for all t ∈
[0, t0]. The corresponding solution wt0 of (33) for this value is also univalent on U ,
but the domain wt0(U) is not a quasidisc.

To prove the theorem, we use the conformal maps σt of the disks Δt =
{|z| < t}, t < t0 onto U and construct the desired holomorphic motions w(z, t) :
Δ×Δt → Ĉ as the ratios u2/u1 of normalized independent solutions of the equation

u′′ = tbf◦σ−1u′, 0 ≤ t < t0.

The well-known properties of holomorphic motions provide the estimate (34). To
examine the case of equality, one must combine (34) with the angle inequality of
Kühnau [27] which asserts that if a closed curve L contains two analytic arcs with
the interior intersection angle πα, then its reflection coefficient satisfies qL ≥ |1−α|
and use approximation.

Theorem 9.1 concerns the Ahlfors conjecture that conformal maps of U
onto the interior of quasicircles are analytically characterized by their logarith-
mic derivatives (see [2]). It was investigated by many authors.

9.2. The following theorem shows that the bound (35) given by Theorem 9.1 is
attained on the maps onto unbounded convex or concave domains and on their
fractional linear images.
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Theorem 9.2. For every unbounded convex domain D ⊂ C with piecewise C1+ε-
smooth boundary L (ε > 0), the equalities

qL = 1/ρL = κ(g) = κ(g∗) = k0(g) = k0(g∗) = 1 − |α| (36)

hold, where g and g∗ denote the appropriately normalized conformal maps Δ → D

and Δ∗ → Ĉ\D, respectively; k0(g) and k0(g∗) are the minimal dilatations of their
quasiconformal extensions to Ĉ, and π|α| is the opening of the least interior angle
between the boundary arcs Lj ⊂ L. Here 0 < α < 1 if the corresponding vertex is
finite and −1 < α < 0 for the angle at the vertex at infinity.

The same is true for the unbounded concave domains which do not contain
∞; for those one must replace the last term by |β| − 1, where π|β| is the opening
of the largest interior angle of D.

The univalence of solutions to the equation (33) for 0 ≤ t ≤ 1/(1 − |α|) is
established for such domains approximating f : U → D by conformal maps fn

of the half-plane onto the rectilinear polygons Pn which are chosen to be also
unbounded and convex or concave simultaneously with the original domain D.
These maps fn are represented by the Schwarz-Christoffel integral.

The main point is that if the least interior angle of Pn equals |αn| (taking the
negative sign for the angle at infinity), then for any t ∈ [0, 1/(1− |αn|)] the corre-
sponding fiber map wt(z) is again a conformal map of the half-plane onto a well-
defined rectilinear polygon. After the needed approximation, the basic equalities
q∂Pn = 1/ρ∂Pn = 1− |αn| follow from Theorem 9.1, while the remaining equalities
in (36) are obtained by combining this theorem with the Kühnau-Schiffer theorem
mentioned above.

9.3. Theorems 9.1 and 9.2 have various important consequences. For example, for
any closed unbounded curve L with the convex interior, which is C1+ε-smooth at
all finite points and has at infinity the asymptotes approaching the interior angle
πα < 0, we have

qL = 1/ρL = 1 − |α|. (37)
More generally, let L = γ1 ∪ γ2 ∪ γ3, where

γ1 = [a1,∞], γ2 = eiπα[a2,∞], a1 ≥ a2 > 0, 0 < α ≤ 1/2,

and
γ3 = {(x, y) : y = h(x), a2 cosπα ≤ x ≤ a1}

with a decreasing convex piecewise C1+ε-smooth function h such that

h(a2 cosπα) = a2 sinπ|α|, h(a1) = 0.

Equalities (37) hold for any such curve.
The above geometric assumptions on the domains are essential. In particular,

the assertion of Theorem 9.2 extends neither to the arbitrary unbounded noncon-
vex and nonconcave domains nor to the arbitrary bounded convex domains, with-
out some additional assumptions. This shows also that univalence of solutions wt

for all t ∈ [0, t0] in Theorem 9.1 is essential.



366 S. Krushkal

For a few special curves, similar equalities were established in [26], [27], [41])
by applying geometric constructions giving explicitly the extremal quasireflections.

9.4. Note that Theorem 9.1 closely relates to the structure of holomorphic embed-
dings of the universal Teichmüller space. The space T is not starlike with respect
to any of its points, and there exist points ϕ ∈ T for which the line interval
Iϕ = {tϕ : 0 < t < 1} ⊂ B contains the points vt for which the corresponding
functions f with Sf = ϕt are only locally univalent on Δ∗ (see, e.g., [19]).

The logarithmic derivatives βf = f ′′/f ′ determine the Becker embedding of
T as a domain T1 in the Banach space B1 of holomorphic functions ψ on Δ∗ with
the norm ‖ψ‖ = supΔ∗(|z|2−1)|zψ(z)|; see [3]. This space also is not starlike with
respect to its origin, and therefore the general intervals in T1 are not connected.
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A Note on Life-span of Classical Solutions
to the Hele–Shaw Problem

Alexander Kuznetsov

Abstract. The Hele–Shaw flow with a source and with a simply connected
initial domain is considered. It is shown that, if the solution exists for a
sufficiently long time, then it is close to the identical map, and hence, it is
starlike and exists infinitely long time. An estimate for this time is given.
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1. Introduction

Hele–Shaw flow is a difficult problem of mathematical physics. A powerful tool for
the description of this process can be provided by the theory of univalent functions.

Let D(t) be a simply connected domain in the complex plane, occupied with
a viscous fluid. Without loss of generality, we can assume, that the source is sit-
uated at the origin and it is of unit strength. We define a parametric function
f(z, t), f(0, t) = 0, f ′(0, t) > 0, which maps the unit disk D = {z : |z| < 1} con-
formally onto the domain D(t), and which satisfies (see, e.g., [1, 6]) the following
equation

ḟ(z, t) = zf ′(z, t)
1
2π

2π∫
0

1
|f ′(eiθ, t)|2

eiθ + z

eiθ − z
dθ, (1.1)

in the case of negligible surface tension. In (1.1) dot and prime denote derivatives
with respect to t and z, respectively. A nice introduction to Hele–Shaw flows is
given in [7].

It is known that some geometric properties of the function f(z, t) are pre-
served as long as the solution to (1.1) exists, in particulars, starlikeness with re-
spect to the origin. Based on this fact, it was shown [2], that if the initial domain
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is starlike and has an analytic boundary, then the solution to the equation (1.1)
exists infinitely long.

On the other hand, if solution exists infinitely long, then the normalized
domain 1√

2t
f(D, t) tends to the unit disk in the Hausdorff metric [3]. Thus, it is

reasonable to assume that, if the solution exists long enough, then it is close to the
identical map at some moment, and hence, is starlike and exists infinitely long.
This paper is devoted to the proof of this fact.

Let
M = max

|z|≤1
|f ′(z, 0)|2 = ||f ′(z, 0)||21,

||f(z)||r = max
|z|≤r

|f(z)|,

and S be the area of the domain D(0). Let

D =
√
M −

√
S/π,

d =
√
πM − S,

and

T = max
{
2D + 4d,

(D + 2d)(3D + 2d+ 2
√
S/π) − S/π

D +
√
S/π

}
+

5
2
D.

Theorem 1.1. If the solution to (1.1) exists for all

t ∈
[
0,max

{(2
9

2d+D + (2
9 − x)T

x

)2

− S/π,
(3D + 2d+ 2

√
S/π)2 − S/π

2

}]
,

then it exists infinitely long.

(The number x = 0.0010686995709770337 . . . will be defined below as a so-
lution to a transcendental equation.)

2. Estimate for internal and external radii

The fact that the normalized domain tends to the unit disk was proved in [4],
and it is based on the following inequality Re(t) = max|z|=1 |f(z, t)|, and Ri(t) =
min|z|=1 |f(z, t)|, where the ring rt < |z − ξt| < Rt is the smallest ring containing
∂Ω(t). First we need the following inequality (see [4] p. 57 or [5] p. 22 and p. 19)

Re(t) ≤
√

2t+M.

From the inequality √
2t+M −

√
2t+ S/π ≤ D, (2.1)

we obtain
Re(t) ≤

√
2t+ S/π +D. (2.2)

Also we need an estimate for Ri(t), that can be obtain as a consequence of the
following inequalities (see paper [4] p. 78 or [5] p. 30):

Rt ≥
√

2t+ S/π, rt ≥ Rt −
√
πM − S.
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Therefore,
rt ≥

√
2t+ S/π −

√
πM − S.

For |ξt|, we have

|ξt| ≤
√

2t+M −
√

2t+ S/π +
√
πM − S.

Using (2.1) we obtain |ξt| ≤ D + d. Taking into account, that Ri ≥ rt − |ξt|, we
have

Ri(t) ≥
√

2t+ S/π − 2d−D. (2.3)

3. Extension of solution

Proposition 3.1. If the solution f(z, t) to the equation (1.1) exists for t satisfying
the inequality √

2t+ S/π ≥ 3D + 2d+ 2
√
S/π, (3.1)

then the function f(z, t) has an analytic extension to the disk D2 = {z : |z| ≤ 2}
and satisfies the following inequality

||f(z, t)||2 ≤
9
2

√
2t+ S/π + T.

Proof. Let r(t) = max
z∈∂Ω(0)

|f−1(z, t)|. The function f(z, t) (see, e.g., [2]) can be

analytically extended to the disk |z| < 1/r by the following equality:

f(1/ξ, t) = S(f(ξ, t), t).

Where
S(z, t) = z − χΩ(t)(z) + χΩ(0)(z) +

2t
z

(3.2)

and
χΩ(z) = − 1

π

∫∫
Ω

dσw

z − w
,

where σw stands for the area measure in the w-plane.
By the Schwartz lemma r(t) ≤ Re(0)

Ri(t)
. Therefore from (2.2) and (2.3) we

obtain, that inequality (3.1) means Ri(t) > 2Re(0). Thus, the function f(z, t) is
analytic in the disk |z| < 2.

It is easy to see that

||f(z, t)||2 ≤ max
φ∈R

|S(f(eiφ/2, t)), t)|.

Since ||f(z, t)||1 ≤ Re(t), then

|f(eiφ/2, t)| ≤ Re(t)/2. (3.3)

Noting that the preimage of the disk |z| ≤ Ri(t) lies in D, and using the
Schwartz lemma, we have that the preimage of the disk |z| ≤ Ri(t)/2 lies in the
disk |z| ≤ 1/2. From this we obtain

|f(eiφ/2, t)| ≥ Ri(t)/2. (3.4)
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From (3.2), (3.3) and (3.4) we have

|S(f(eiφ/2, t)), t)| ≤ Re(t)/2 +
4t

Ri(t)
+

1
π

∫∫
Ω(t)/Ω(0)

dσw

|z − w| , z := f(eiφ/2, t).

Again using (3.3) and (3.4) we obtain

|S(f(eiφ/2, t)), t)| ≤ Re(t)/2 +
4t

Ri(t)
+

1
π

∫∫
|w|≤Re(t)

dσw

|w| =
5
2
Re(t) +

4t
Ri(t)

.

Thus,

|S(f(eiφ/2, t)), t)| ≤ 9
2

√
2t+ S/π +

5
2
D +

4t√
2t+ S/π − 2d−D

− 2
√

2t+ S/π.

Latter two expressions are equivalent to

2(D + 2d)
√

2t+ S/π − 2S/π√
2t+ S/π − 2d−D

.

Using the monotonicity of this function, the inequality (3.3), and assuming, that

T = max
{
2D + 4d,

(D + 2d)(3D + 2d+ 2
√
S/π) − S/π

D +
√
S/π

}
+

5
2
D,

we finish the proof. �

4. Sufficient condition of starlikeness

Fist we are going to prove the following statement

Lemma 4.1. For an analytic function f : D → D, ||f(z)||r = ε, 0 < r < 1, we have

||f ′(z)||r ≤ F (ε, r) =

⎧⎪⎨⎪⎩
√

1−log2
ε r logr ε

2r ε
log r

√
1+logε r
1−logε r

log r , ε ≤ r
1+r2

1−r2

1
1−r2 , ε > r

1+r2

1−r2 .

Proof. Using the Hadamard three-circle theorem, we have

||f(z)||r1 ≤ ε
log r1
log r , r < r1 ≤ 1.

Using the invariant version of the Schwartz lemma

|g′(z)| ≤ 1 − |g(z)|2
1 − |z|2 ≤ 1

1 − |z|2 , |z| < 1, |g(z)| < 1

for the function
f(z/r1)

ε
log r1
log r

,

we conclude that

||f ′(z)||r ≤ ψ(r1) =
ε

log r1
log r

r1(1 − ( r
r 1

)2)
.
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Let us find the minimum of the right-hand side of this inequality. In order to do
this we calculate the derivative

ψ′(r1) = ε
log r1
log r

(r21 − r2) log ε− (r21 + r2) log r
(r21 − r2)2 log r

.

The equation ψ′(r1) = 0 is equivalent to

r21(log ε− log r) = r2(log ε+ log r). (4.1)

In the case ε ≥ r, the equation (4.1) has no solutions. If 0 < ε < r, the
equation (4.1) has one positive solution

r1 = r

√
log ε+ log r
log ε− log r

= r

√
1 + logε r

1 − logε r
.

Solving the inequality r1 ≤ 1, we have that if

ε ≤ r
1+r2

1−r2 < r,

then the solution belongs to the interval (r, 1]. So we have

||f ′(z)||r ≤ F (ε, r) =

⎧⎪⎨⎪⎩
√

1−log2
ε r logr ε

2r ε
log r

√
1+logε r
1−logε r

log r , ε ≤ r
1+r2

1−r2

1
1−r2 , ε > r

1+r2

1−r2 . �
�

Proposition 4.2. An analytic function f(z) : D → D, f(0) = 0, f(z) = αz + φ(z)
is starlike in the disk Dr, 0 < r < 1 if ||φ(z)||r ≤ x, where x is a unique solution
to the equation

arcsin
x

rα
+ arcsin

F (x, r)
α

=
π

2
.

Proof. Due to the necessary and sufficient condtion of starlikeness, we have to
prove that

*e α+ φ′(z)
α+ φ(z)/z

≥ 0, |z| = r. (4.2)

Using lemma 4.1, we find the estimate for the argument of the numerator θ of the
fraction in (4.2)

− arcsin
F (||φ(z)||r , r)

α
≤ θ ≤ arcsin

F (||φ(z)||r , r)
α

.

Similarly, we derive an estimate for the argument γ of the denominator

− arcsin
||φ(z)||r
rα

≤ γ ≤ arcsin
||φ(z)||r
rα

.

Condition (4.2) can be written as
π

2
≥ θ − γ ≥ −π

2
,
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or

− arcsin
||φ(z)||r
rα

− arcsin
F (||φ(z)||r , r)

α

≥ θ − γ ≥ arcsin
||φ(z)||r
rα

+ arcsin
F (||φ(z)||r, r)

α

Thus, if the inequality

arcsin
||φ(z)||r
rα

+ arcsin
F (||φ(z)||r, r)

α
≤ π

2
,

holds, then the function f(z) is starlike.
Using the monotonicity of F (x, r) for a fixed r, we arrive at the equation

arcsin
x

rα
+ arcsin

F (x, r)
α

=
π

2
.

It has a unique solution x, and from ||φ(z)||r ≤ x, we have (4.2). �

5. Proof of the theorem

Let

g(z/2, t) =
f(z, t)

9
2

√
2t+ S/π + T

.

From Proposition 3.1 we have that if√
2t+ S/π ≥ 3D + 2d+ 2

√
S/π, (5.1)

then the function g(z, t) maps D into itself.
Proposition 4.2 implies that, if∣∣∣∣∣∣g(z, t)− 4

9
z
∣∣∣∣∣∣

1/2
≤ δ = 0.03898585230688595 . . . ,

where δ is a unique solution to the equation

arcsin
9δ
2

+ arcsin
9F (δ, 1/2)

4
=
π

2
,

then the function f(z, t) is starlike in D and the solution to (1.1) exists infinitely
long time [2]. We have∣∣∣∣∣∣ |g(z, t)| − ∣∣∣4

9
z
∣∣∣ ∣∣∣∣∣∣

1/2
≤ max

{∣∣∣ Re(t)
9
2

√
2t+ S/π + T

− 2
9

∣∣∣, ∣∣∣ Ri(t)
9
2

√
2t+ S/π + T

− 2
9

∣∣∣}
= x,

also
2Ri(t)

9
2

√
2t+ S/π + T

≤ g′(0, t) ≤ 2Re(t)
9
2

√
2t+ S/π + T

.

So we have ∣∣g′(0, t)− 4
9

∣∣ ≤ 2x. (5.2)
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We need the following statement.

Lemma 5.1. Suppose that f(z) = βz+ zq(z), β > 0, q(z) = a1z+ a2z
2 + · · · , is an

analytic function in D satisfying the inequality |f(z)| ≤ 1, |z| < 1. Let r ∈ (0, 1),
ε > 0, and α > 0, |β − α| ≤ ε. If

∥∥ |f(z)| − |αz|
∥∥

r
≤ rε, then

‖zq(z)‖r ≤ 4εr logr 4ε+
4εr

1 − r
.

Proof. For the function f(z)/z we have

‖f(z)/z‖r = ||β + q(z)||r ≤ α+ ε.

Taking into account the inequality |α− β| ≤ ε we conclude that

*e q(z) ≤ 2ε, |z| ≤ r.

Hence the function

p(z) =
2ε− q(rz)

2ε
= 1 + p1z + p2z

2 + . . .

has positive real part in D. It follows that |pn| ≤ 2 for all n > 0. Consequently,
|an| ≤ 4εr−n, n > 0. Since |f(z)| ≤ 1, |z| < 1, we have |an| ≤ 1, n > 0. Therefore,

|an| ≤
{

4εr−n, 0 < n ≤ logr 4ε,
1, n > logr 4ε.

It follows that

||q(z)||r ≤ 4ε logr 4ε+
4ε

1 − r
,

which finishes the proof of the lemma. �

From this lemma and inequality (5.2) we obtain∣∣∣∣∣∣g(z, t)− 4
9
z
∣∣∣∣∣∣

1/2
≤ 4x log1/2 8x+ 9x.

From this it follows that if

max
{∣∣∣ Re(t)

9
2

√
2t+ S/π + T

− 2
9

∣∣∣, ∣∣∣ Ri(t)
9
2

√
2t+ S/π + T

− 2
9

∣∣∣} ≤ x,

then the solution is starlike, where x = 0.0010686995709770337 . . . is the minimal
positive solution to the equation

4x log1/2 8x+ 9x = δ.

Taking into account the inequality Re(t) > Ri(t), we find that is sufficient to
show that

Re(t)
9
2

√
2t+ S/π + T

− 2
9
≤ x, and

Ri(t)
9
2

√
2t+ S/π + T

− 2
9
≥ −x.
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Using estimates (2.3) and (2.2) for Re(t) and Ri(t), we have

D − 2
9T

9
2

√
2t+ S/π + T

≤ x and
2d+D + 2

9T
9
2

√
2t+ S/π + T

≤ x.

As D, d, T are positive, first inequality implies second. And it is sufficient to show
that √

2t+ S/π ≥ 2
9

2d+D + (2
9 − x)T

x
.

Tacking into account (4.2) we have that, if a solution exists for

t ≥ max
{(2

9
2d+D + (2

9 − x)T
x

)2

− S/π,
(3D + 2d+ 2

√
S/π)2 − S/π

2

}
,

then it exists infinitely long.
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Abstract. Extending the notion of the general monotonicity for sequences
to functions, we exploit it to investigate integrability problems for Fourier
transforms. The problem of controlling integrability properties of the Fourier
transform separately near the origin and near infinity is examined. We then
apply the obtained results to the problems of integrability of trigonometric
series.
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1. Introduction

We consider the cosine and sine Fourier transforms

F (x) =
∫ ∞

0

f(t) cosxt dt (1.1)

and

G(x) =
∫ ∞

0

g(t) sinxt dt, (1.2)

respectively, with x ≥ 0.
We assume that f and g are locally absolutely continuous on (0,+∞) and

lim
t→∞ f(t), g(t) = 0. We call such functions admissible. For applications, we are
interested in bounded functions, but some of our results are valid for functions
tending to infinity near the origin. Our functions can be non-integrable on the
whole half-axis R+ = [0,∞), hence the integrals are understood as improper inte-
grals.

While studying conditions for integrability of the Fourier transform, those
for the integrability near infinity are usually of the most interest and of crucial



378 E. Liflyand and S. Tikhonov

importance in applications. One of the reasons is that for L1 functions integrability
of the Fourier transform on a compact set is an obvious fact. But since we allow the
functions we deal with to be not in L1, integrability near the origin is of interest as
well. For instance, the example of an even monotone function with non-integrable
Fourier transform given in [14, 6.11, Theorem 125] is the one where the Fourier
transform is not integrable on [0, 1]. The reader can find many important results
in more recent books [4, 16].

Conditions for integrability of the Fourier transform near the origin are also
helpful for applications to trigonometric series (see Section 5 below).

The paper is organized as follows. Section 2 is devoted to monotone functions.
The results presented in that section are a starting point for further study and one
of the model cases on which the sharpness (or lack of it) of general results to be
checked. In Section 3, we introduce our main concept: a two-parameter family of
classes of general monotone functions. Then, in Section 4, we study integrability
conditions for the Fourier transform of a function that either itself or its derivative
is from certain class of the mentioned family. Finally, we obtain applications of
the results from the previous sections to trigonometric series.

Throughout the paper C will denote absolute positive constant which may
differ from line to line. We will use f + g if f ≤ Cg and f , g if f ≥ Cg. Also,
f - g means that f + g and f , g simultaneously.

2. Monotone functions

Let us start with a few examples. First, if f and g are t−1/2 each, their Fourier
transforms F and G both are equal to (π/2)1/2x−1/2. The latter is integrable over
(0, 1) but not near infinity. If both f and g are e−t, then we have that F (x) =
1/(1+x2) and G(x) = x/(1+x2). In this case F is integrable over (0,+∞) while G
is integrable only on finite intervals. Finally, if both f and g are t−1, we obtain (for
all these relations, see [2]) G(x) = π/2 for all x > 0 while F (x) merely does not
exist as improper integral. These examples give us a general idea what to expect
near infinity and near the origin.

The results we give below are probably known but we failed to find them
in that form. Clear hints are delivered by trigonometric series with monotone
coefficients.

Theorem 2.1. For f and g admissible and monotone,∫ π

0

|F (x)| dx ≤ π

∫ 1

0

|f(t)| dt+ 3
∫ ∞

1

t−1|f(t)| dt (2.1)

and ∫ 1

0

t|g(t)| dt+ (1/12)
∫ ∞
1

t−1|g(t)| dt ≤
∫ π

0

|G(x)| dx

≤ (π2/2)
∫ 1

0

t|g(t)| dt+ 2
∫ ∞

1

t−1|g(t)| dt. (2.2)
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Proof. Let us begin with the cosine transform. We have∫ ∞
0

f(t) cosxt dt =
∫ π/x

0

f(t) cosxt dt− x−1

∫ ∞
π/x

f ′(t) sinxt dt. (2.3)

Integrating the absolute value of the first integral on the right, we obtain∫ π

0

∣∣∣ ∫ π/x

0

f(t) cosxt dt
∣∣∣ dx ≤ ∫ 1

0

|f(t)|
∫ π

0

| cosxt| dx dt

+
∫ ∞

1

|f(t)|
∫ π/t

0

| cosxt| dx dt ≤ π

∫ 1

0

|f(t)| dt+ 2
∫ ∞

1

t−1|f(t)| dt. (2.4)

In the second integral on the right-hand side of (2.3) we merely use the
monotonicity of f and rough estimates. By this we arrive at (2.1).

It is clear that in the above examples only f(t) = t−1 does not satisfy (2.1).
For the sine transform, G is of the same sign as g is (see, e.g., [14, 6.10,

Theorem 123]). Let, for simplicity, g be monotone decreasing with, consequently,
non-negative Fourier transform. We have∫ π

0

|G(x)| dx =
∫ π

0

∫ ∞
0

g(t) sinxt dt dx = 2
∫ ∞

0

t−1g(t) sin2(πt/2) dt. (2.5)

The right-hand side of (2.5) is

2
(∫ 1

0

+
∫ ∞

1

)
t−1g(t) sin2(πt/2) dt ≤ (π2/2)

∫ 1

0

tg(t) dt+ 2
∫ ∞

1

t−1g(t) dt.

The estimate from below is derived as follows.∫ π

0

|G(x)| dx ≥ 2
∫ 1

0

t−1g(t) sin2(πt/2) dt+ 2
∫ ∞

5/2

t−1g(t) sin2(πt/2) dt

≥ 2
∫ 1

0

tg(t) dt+ 2
∞∑

k=1

∫ 2k+1

2k+1/2

t−1g(t) sin2(πt/2) dt.

To estimate the sum on the right, we observe that on each (2k+1/2, 2k+1) there
holds sin2(πt/2) = sin2

(
(t− 2k)π/2

)
≥ 1/2 and, by the monotonicity of t−1g(t),

3
∫ 2k+1

2k+1/2

t−1g(t) dt ≥
∫ 2k+2+1/2

2k+1

t−1g(t) dt. (2.6)

We get ∫ π

0

|G(x)| dx ≥ 2
∫ 1

0

tg(t) dt+ (1/6)
∫ ∞

5/2

t−1g(t) dt.

Next, using again (2.6) with k = 0, we obtain∫ 1

0

tg(t) dt ≥
∫ 1

1/2

t2(t−1g(t)) dt ≥ (1/12)
∫ 5/2

1

t−1g(t) dt.

This is the lower bound in (2.2), and the proof is complete. �
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3. General monotone functions

Theorem 2.1 is only an initial point for further study. Our aim is to relax the mono-
tonicity condition. A natural attempt is to generalize Leindler’s rest of bounded
variation condition for sequences [7]. For an admissible function, say h, such a
generalization to functions reads as∫ ∞

x

|h′(t)| dt+ |h(x)| (3.1)

for all x ∈ (0,∞), written h ∈ RBV.
Clearly, any admissible monotone function h satisfies (3.1). The reverse is

not true. However, any admissible function h satisfying (3.1) can be represented
as the difference of two monotone decreasing admissible functions. Indeed, let
h1(x) =

∫∞
x

|h′(t)| dt, then taking h2(x) = h1(x)−h(x), we easily derive that both
h1 and h2 are monotone decreasing and admissible. This means that all upper
estimates from (2.1) and (2.2) are valid for such functions as well.

Thus, we are going to relax not only the monotonicity but (3.1) as well.
The condition we will study is an extension of the general monotonicity in-

troduced in [12] for sequences. Such an extension to functions is given by

||dh||Lp(x,2x) + β(x) (3.2)

for all x ∈ (0,∞), some p, 1 ≤ p ≤ ∞, and any h locally of bounded variation.
A majorant β(x) is a fixed non-negative function on (0,∞). Of course, we shall
use dh(t) = h′(t) dt when possible. We denote the introduced class by GMp(β). If
β(x) = |h(x)|, we will write GMp; and GM for GM1.

It is obvious that any monotone function belongs to GM, and that GM is
less restrictive than (3.1). Let us now investigate the properties of the introduced
classes. Our study will be minimal in the sense that we give only the basic proper-
ties we use in this paper; more detailed research will appear in [9] devoted to the
weighted integrability of Fourier transforms.

First, the Hölder inequality yields for 1 ≤ p1 ≤ p2 ≤ ∞
GMp2(β

(2)) ⊂ GMp1(β
(1)), where β(1)(x) = x1/p1−1/p2β(2)(x).

To get “proper” embedding, that is, with the same β, one has to consider
slightly modified classes of general monotone functions G̃Mp(β) defined as(

x−1

∫ 2x

x

|h′(t)|pdt
)1/p

+ β(x)

for 1 ≤ p < ∞ and the limit case as p → ∞ for G̃M∞(β) (when both classes
coincide). Since we do not use embedding properties, the initial definition suits us
well.

Let us figure out when a general monotone function is of bounded variation.
It is important in various respects, for example, the Fourier transform of a function
of bounded variation is well defined as improper integral.
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Lemma 3.1. Let h ∈ GMp(β). If h′ is integrable near the origin, then it is integrable
over R+, that is, such h is of bounded variation on R+, provided that in addition∫ ∞

1

t−1/pβ(t) dt <∞. (3.3)

Furthermore, we have∫ ∞
0

|h′(t)| dt+
∫ 2

0

|h′(t)| dt+
∫ ∞

1

t−1/pβ(t) dt.

Proof. We write∫ ∞
0

|h′(t)| dt = (1/ ln 2)
(∫ 1

0

+
∫ ∞

1

)
x−1

∫ 2x

x

|h′(t)| dt

≤ (1/ ln 2)
∫ 1

0

x−1

∫ 2x

x

|h′(t)| dt+ C

∫ ∞
1

x−1/pβ(x) dx,

where the last bound came from the Hölder inequality and h ∈ GMp(β).
We then obtain∫ 1

0

x−1

∫ 2x

x

|h′(t)| dt =
∫ 1

0

|h′(t)|
∫ t

t/2

x−1dx dt+
∫ 2

1

|h′(t)|
∫ 1

t/2

x−1dx dt

≤ ln 2
∫ 2

0

|h′(t)| dt,

which completes the proof. �

Remark 3.2. If we omit the assumption of integrability of h′ near the origin, the
condition, which insures that h to be of bounded variation is similar to (3.3),
but with integration over the whole R+. This can be meaningless, for example,
for a monotone h, p = 1, and β(x) = |h(x)| when we arrive at infinite integral∫∞
0 t−1|h(t)| dt.

The next properties are of special interest and importance.

Lemma 3.3. For any N > x we have for h ∈ GMp(β) and c > 1∫ N

x

|h′(t)| dt+ x1−1/pβ(x) +
∫ N

x

t−1/pβ(t) dt, (3.4)∫ N

x

|h′(t)| dt+
∫ N

x/c

t−1/pβ(t) dt. (3.5)

Proof. For N ≤ 2x, the estimate (3.4) trivially follows from Hölder’s inequality.
Suppose that N > 2x. With∫ N

x

u−1

∫ 2u

u

|h′(t)| dt du =
∫ 2x

x

|h′(t)| ln(t/x) dt+ ln 2
∫ N

2x

|h′(t)| dt

+
∫ 2N

N

|h′(t)| ln(2N/t) dt
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in hand, we obtain

ln 2
∫ N

x

|h′(t)| dt ≤ ln 2

(∫ 2x

x

+
∫ N

2x

)
|h′(t)| dt+

∫ 2N

N

|h′(t)| ln(2N/t) dt

= ln 2
∫ 2x

x

|h′(t)| dt+
∫ 2N

N

|h′(t)| ln(2N/t) dt+
∫ N

x

u−1

∫ 2u

u

|h′(t)| dt du

−
∫ 2x

x

|h′(t)| ln(t/x) dt−
∫ 2N

N

|h′(t)| ln(2N/t) dt

=
∫ N

x

u−1

∫ 2u

u

|h′(t)| dt du +
∫ 2x

x

|h′(t)| ln(2x/t) dt.

The right-hand side does not exceed

ln 2
∫ 2x

x

|dh(t)| +
∫ N

x

u−1

∫ 2u

u

|dh(t)| du

that, in turn, by Hölder’s inequality and (3.2), is dominated, up to a constant
multiplier, by

x1−1/pβ(x) +
∫ N

x

u−1/pβ(u) du.

To prove (3.5), considering (3.4) as K(x) + L(x) and integrating it over (z/c, z),
we obtain

z(1 − 1/c)
∫ N

z

|h′(t)| dt+ z

∫ z

z/c

t−1/pβ(t) dt+ z(1− 1/c)
∫ N

z/c

t−1/pβ(t) dt.

This inequality immediately reduces to (3.5), which completes the proof. �

4. Integrability of the Fourier transform

4.1. Integrability of the Fourier transform on R+

Many such conditions are known; see, e.g., [4, 14, 16, 8]. However, the classes
we are going to study are different. A model case, in many respects, is that of
monotone functions. First, G cannot be integrable on R+, since g being extended
to the whole axis has discontinuity at the origin. This is not the case for F. The
following result of Pólya type is well known (see, e.g., [14, 6.10, Theorem 124]).

Theorem 4.1. Let f be a bounded non-negative convex function vanishing at infin-
ity. Then F is positive and integrable on (0,∞).

This fits our study since such f is necessarily monotone (see [4, 6.3.1]). We
observe that convexity controls the behavior of the Fourier transform on the whole
half-axis and not specifically near infinity. This is the case for much wider classes
from [8] as well.
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To get a flavor of functions with integrable Fourier transform, we note that
such a function necessarily possesses certain smoothness. More precisely, if F (x)
or G(x) is integrable on R+, then the integrals∫ x/2

ε

h(x+ t) − h(x− t)
t

dt,

where h is either f or g, are uniformly bounded; for the well-known prototype for
Fourier series see [6, Ch. II, 10]. Indeed, expressing, say, f(x+ t) and f(x− t) via
the Fourier inversion, we obtain∣∣∣∣∣

∫ x/2

ε

f(x+ t) − f(x− t)
t

dt

∣∣∣∣∣
= π−1

∣∣∣∣∣
∫ x/2

ε

t−1

∫ ∞
0

F (u)[cosu(x+ t)− cosu(x− t)] du dt

∣∣∣∣∣
≤ 2π−1

∫ ∞
0

|F (u)|
∣∣∣∣∣
∫ x/2

ε

sin t
t

dt

∣∣∣∣∣ du.
The last integral on the right is uniformly bounded; the proof for g is the same.

In Theorem 4.1 we actually assume the monotonicity of both the function
and its derivative.

Let us discuss how the assumption on the derivative may be relaxed. First, let
us replace the monotonicity of f ′ with the RBV condition. As above, no chance to
get something new under assumption (3.1) since every such (admissible) function
is represented as the difference of two monotone decreasing (admissible) functions.
In our case this leads to the difference of two convex functions, with common
integral, which is a partial case of quasi-convex functions, that is, locally absolutely
continuous with derivative locally of bounded variation and such that∫ ∞

0

t|df ′(t)| <∞. (4.1)

Every such f is the difference of two convex functions f1(t) =
∫∞

t

∫∞
s |df ′(u)| ds

and f2(t) = f1(t)−f(t); for f twice differentiable f ′′1 and f ′′2 are just non-negative.
We obtain this case in full by assuming f not monotone but of bounded variation
with the derivative satisfying (3.1). The cosine Fourier transform of such function
is known to be integrable on the whole half-axis, see [4, Sect. 6.3].

Let us continue with assuming the derivative to be general monotone.

Theorem 4.2. Let f, g be admissible and of bounded variation and let lim
t→∞ f

′(t),

g′(t) = 0 and f ′, g′ ∈ GMp(β). Then∫ ∞
0

|F (x)| dx+
∫ ∞

0

t1−1/pβ(t) dt, (4.2)

and for x > 0
G(x) = x−1g(π/(2x)) + θγ(x), (4.3)



384 E. Liflyand and S. Tikhonov

where |θ| ≤ C and ∫ ∞
0

|γ(x)| dx ≤
∫ ∞

0

t1−1/pβ(t) dt.

Proof. First, if f ′ ∈ GMp(β) and lim
t→∞ f ′(t) = 0, one has for any q ∈ [1,∞]

f ∈ GMq(β), where β(x) = x1/q

∫ ∞
x/2

t−1/pβ(t) dt.

Indeed, by Lemma 3.3,(∫ 2x

x

|f ′(t)|q dt
)1/q

≤
(∫ 2x

x

∣∣∣∣∫ ∞
t

df ′(z)
∣∣∣∣q dt)1/q

+ x1/q

∫ ∞
x/2

t−1/pβ(t) dt.

Integrating now by parts in the Fourier transform formula for F, we obtain

F (x) = −x−1

(∫ π/(2x)

0

+
∫ ∞

π/(2x)

)
f ′(t) sinxt dt.

We now have∫ ∞
0

x−1
∣∣∣ ∫ π/(2x)

0

f ′(t) sinxt dt
∣∣∣ dx ≤ (π/2)

∫ ∞
0

|f ′(t)| dt, (4.4)

and, using the fact that f ∈ GM1(β),∫ ∞
0

|f ′(t)| dt+
∫ ∞

0

x−1

∫ 2x

x

|f ′(t)| dt dx

+
∫ ∞

0

x−1β(x) dx =
∫ ∞

0

∫ ∞
x/2

t−1/pβ(t) dt dx+
∫ ∞

0

t1−1/pβ(t) dt.

Integrating again by parts and using assumptions of the theorem, we obtain

x−1

∫ ∞
π/(2x)

f ′(t) sinxt dt = x−2

∫ ∞
π/(2x)

cosxt df ′(t). (4.5)

Then, using (3.5) with c = π/2, we get∫ ∞
0

x−2

∫ ∞
π/(2x)

|df ′(t)| dx+
∫ ∞

0

x−2

∫ ∞
1/x

t−1/pβ(t) dt dx

+
∫ ∞

0

t1−1/pβ(t) dt. (4.6)

Estimates of the sine transform go along the same lines with certain changes.
We have

G(x) =

(∫ π/(2x)

0

+
∫ ∞

π/(2x)

)
g(t) sinxt dt = I1 + I2. (4.7)
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After twice integrating by parts, I2 is estimated similarly to (4.5) and (4.6). Indeed,∫ ∞
π/(2x)

g(t) sinxt dt = x−1

∫ ∞
π/(2x)

g′(t) cos xt dt

= x−2g′(t) sinxt
∣∣∣∞
π/(2x)

− x−2

∫ ∞
π/(2x)

sinxt dg′(t)

= −x−2g′(π/(2x)) − x−2

∫ ∞
π/(2x)

sinxt dg′(t),

and
∫∞
0

∣∣x−2g′(π/(2x))
∣∣ dx is dominated by∫ ∞
0

|g′(t)| dt+
∫ ∞

0

t1−1/pβ(t) dt,

while the second term is estimated exactly as in (4.6). For I1, we have∫ π/(2x)

0

g(t) sinxt dt

=
∫ π/(2x)

0

[g(t)− g(π/(2x))] sinxt dt+
∫ π/(2x)

0

g(π/(2x)) sinxt dt

= x−1g(π/(2x))−
∫ π/(2x)

0

g′(u)
∫ u

0

sinxt dt du.

The integral on the right is estimated like in (4.4), which completes the proof.
�

Let us now consider several examples of majorants β in assumptions of this
theorem. One of the most important is the GM -condition, that is, ||dh||L1(x,2x) +
|h(x)|. Then we can rewrite estimate (4.2) as∫ ∞

0

|F (x)| dx+
∫ ∞

0

|f ′(t)| dt,

with a similar estimate for
∫∞
0 |γ(x)| dx in (4.3).

We note that the same estimates hold if we replace the GM-condition with
the more general one

||dh||L1(x,2x) +
∫ cx

x/c

|h(t)|
t

dt for some c > 1 (4.8)

(see for the discrete case [13]). Moreover, the result still holds if we suppose the
limit version of (4.8), i.e.,

||dh||L1(x,∞) +
∫ ∞

x/c

|h(t)|
t

dt for some c > 1, (4.9)

which is more general than (4.8) (for the discrete case, see [5]).
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The conditions considered, like those in [8], control the integrability of the
Fourier transform on the whole R+. This is not surprising since they imply the
quasi-convexity. Indeed, when p = 1 for the most general case, (4.9), we write∫ ∞

0

t|dh′(t)| =
∫ ∞

0

∫ ∞
u

|dh′(t)| du+
∫ ∞

0

∫ ∞
u/c

|h′(t)|
t

dt du+
∫ ∞

0

|h′(u)| du.

where h is either f or g. What is specific is that the upper bound in the the-
orem is

∫∞
0

|h′(u)| du rather than
∫∞
0
t|dh′(t)|. This is provided by the general

monotonicity of the derivative.
Considering now functions from GMp(β), with p > 1, rather than the deriva-

tives to be such, we obtain similar results with different bounds.

Theorem 4.3. Let h := f and h := g be admissible functions satisfying GMp(β)
for some 1 < p ≤ ∞. Then∫ ∞

0

|F (x)| dx+
∫ ∞

0

x−1/pβ(x) dx

and

G(x) = x−1g(π/(2x)) + θγ(x),

where θ ≤ C and ∫ ∞
0

|γ(x)| dx ≤
∫ ∞

0

x−1/pβ(x) dx.

Proof. Multiplying both sides of (3.2) by x−1/p and integrating then over (0,∞),
we obtain ∫ ∞

0

x−1/p||dh||Lp(x,2x) dx+
∫ ∞

0

x−1/pβ(x) dx. (4.10)

Assuming the right-hand side to be finite, we get for 1 < p <∞ exactly the Fomin
type condition ∫ ∞

0

(
x−1

∫ 2x

x

|h′(t)|p dt
)1/p

dx <∞,

and for p = ∞, the Sidon-Telyakovskĭı type condition∫ ∞
0

sup
x≤t≤2x

|h′(t)| dx <∞;

all studied in detail in [8]. Now, Theorem 3 (or Theorem 4 for p = ∞) from
[8] yields the result. The above argument (4.10) lets

∫∞
0
x−1/pβ(x) dx to be the

bound. �

Remark 4.4. For p = 1, the same argument as that in the beginning of the proof
implies h to be only of bounded variation provided

∫∞
0 x−1β(x) dx <∞; unlike in

the case p > 1 where we obtain belonging to specific integrability subspaces of the
space of functions of bounded variation. Assuming bounded variation alone is by
no means enough for integrability of the Fourier transform.



Fourier Transforms 387

The last two theorems give convenient conditions for integrability of the
Fourier transform, and even asymptotic formulas for the sine transform, but again
on the whole half-axis.

Let us now study integrability of the Fourier transform separately near the
origin and near infinity.

4.2. Integrability of the Fourier transform near the origin

We will first try to check which conditions are enough for the integrability of the
Fourier transform of a general monotone function near the origin.

Theorem 4.5. For f and g admissible and from GM1(β)∫ π

0

|F (x)| dx+
∫ 1

0

|f(t)| dt+
∫ ∞

1

t−1β(t)
(
1 + ln t

)
dt (4.11)

and ∫ π

0

|G(x)| dx+
∫ 1

0

t|g(t)| dt+
∫ ∞

1

t−1β(t)
(
1 + ln t

)
dt. (4.12)

Proof. We proceed exactly like in Theorem 2.1. Using then (3.4) leads to (4.11)
and (4.12) (more restrictive than the above conditions (2.1) and (2.2) for monotone
functions). Indeed, let us see how it works for the last integral in (2.3). We have∫ π

0

x−1
∣∣∣ ∫ ∞

π/x

f ′(t) sinxt dt
∣∣∣ dx ≤ ∫ 1

0

x−1

∫ ∞
1/x

|f ′(t)| dt dx

+
∫ 1

0

x−1
[
β(1/x) +

∫ ∞
1/x

u−1β(u) du
]
dx

≤
∫ ∞

1

x−1β(x) dx +
∫ ∞

1

u−1β(u)
(
1 + ln t

)
du,

and this is exactly the last integral in (4.11). The last integral in (2.4) as well as
the corresponding integrals for G(x) are treated similarly.

The proof is complete. �
Remark 4.6. Assuming in Theorem 4.5 that f, g ∈ GMp(β) with p > 1, we will ob-
tain similar estimates but with t−1/p instead of t−1 in the corresponding integrals.
However, Theorem 4.3 gives less restrictive condition for β at infinity.

Assuming general monotonicity of the derivative rather than that of the func-
tion, we obtain the following result.

Theorem 4.7. Let f, g be admissible and let lim
t→∞ f

′(t), g′(t) = 0 and f ′, g′ ∈
GMp(β). Then ∫ π

0

|F (x)| dx+
∫ 1

0

t|f ′(t)| dt+
∫ ∞

1/2

t1−1/pβ(t) dt, (4.13)

and for 0 < x ≤ π
G(x) = x−1g(π/(2x)) + θγ(x), (4.14)
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where |θ| ≤ C and∫ π

0

|γ(x)| dx ≤
∫ 1

0

t|g′(t)| dt +
∫ ∞

1/2

t1−1/pβ(t) dt.

Proof. The proof is just repeating the proof of Theorem 4.2 with integrating over
[0, π] instead of over R+. Let us give only two key estimates.

First, as in (4.4) we have∫ π

0

x−1
∣∣∣ ∫ π/(2x)

0

f ′(t) sinxt dt
∣∣∣ dx ≤ ∫ 1/2

0

t|f ′(t)| dt
∫ π

0

dx

+
∫ ∞

1/2

t|f ′(t)|
∫ π/(2t)

0

dx dt+
∫ 1

0

t|f ′(t)| dt+
∫ ∞

1

|f ′(t)| dt.

By (3.5), ∫ ∞
1

|f ′(t)| dt ≤
∫ ∞

1

∫ ∞
t

|df ′(u)| dt

+
∫ ∞

1

∫ ∞
t/2

u−1/pβ(u) du+
∫ ∞

1/2

t1−1/pβ(t) dt.

In the same way, instead of (4.6) we have (by (3.4))∫ π

0

x−2

∫ ∞
π/(2x)

|df ′(t)| dx+
∫ π

0

x−2
[
x−1+1/pβ(π/2x) +

∫ ∞
π/(2x)

t−1/pβ(t) dt
]
dx

+
∫ ∞

1/2

t1−1/pβ(t) dt.

Estimates of G go along the same lines. The proof is complete. �
4.3. Integrability of the Fourier transform near infinity

To investigate integrability near infinity, let us apply the same approach as in
Theorems 4.2 and 4.3. To show that it really makes sense, we shall specify β and
p in the sequel.

Theorem 4.8. Let f and g be admissible functions, with f of bounded variation on
[0, 1], such that lim

t→∞ f ′(t), g′(t) = 0 and f ′, g′ ∈ GMp(β). Then∫ ∞
π

|F (x)| dx+
∫ 1

0

|f ′(t)| dt+
∫ 1

0

t−1|f(0)− f(t)| dt

+
∫ 1

0

t1−1/pβ(t) dt +
∫ ∞

1

t−1/pβ(t) dt (4.15)

and for x > π
G(x) = x−1g(2π/x) + θγ(x), (4.16)

where |θ| ≤ C and∫ ∞
π

|γ(x)| dx ≤
∫ 2

0

t−1|g(0)−g(t)| dt+
∫ 2

0

t1−1/pβ(t) dt+
∫ ∞

2

t−1/pβ(t) dt. (4.17)
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Proof. Let again

F (x) =

(∫ π/x

0

+
∫ ∞

π/x

)
f(t) cosxt dt.

First, ∫ π/x

0

f(t) cosxt dt =
∫ π/x

0

[f(t) − f(0)] cosxt dt.

Next, ∫ ∞
π

∫ π/x

0

|f(t)− f(0)| dt dx ≤ π

∫ 1

0

t−1|f(t) − f(0)| dt.

Further, integrating by parts twice and using that both f and f ′ vanish at infinity,
we obtain ∫ ∞

π/x

f(t) cosxt dt = x−2f ′(π/x) − x−2

∫ ∞
π/x

cosxt df ′(t). (4.18)

Integrating the first term on the right over [π,∞) gives
∫ 1

0 |f ′(t)| dt.
Applying Lemma 3.3 with c = π to the last term on the right-hand side of

(4.18), we have∫ ∞
π

x−2
∣∣∣ ∫ ∞

π/x

cosxt df ′(t)
∣∣∣ dx ≤ ∫ ∞

π

x−2

∫ ∞
π/x

|df ′(t)| dx

+
∫ ∞

π

x−2

∫ ∞
1/x

t−1/pβ(t) dt dx+
∫ 1

0

t1−1/pβ(t) dt +
∫ ∞

1

t−1/pβ(t) dt,

which gives the required estimate.
For G, we proceed along the same lines with slight difference. First, we split

the integral as

G(x) =

(∫ 2π/x

0

+
∫ ∞

2π/x

)
g(t) sinxt dt.

We estimate the first integral exactly as that for F using the fact that
∫ 2π/x

0 sin tx dt
= 0. Integrating the second integral by parts twice, we obtain∫ ∞

2π/x

g(t) sinxt dt = x−1g(2π/x)− x−2

∫ ∞
2π/x

sinxt dg′(t).

The first term on the right gives the leading term in the asymptotic formula (4.16),
while the second one is treated exactly in the same way as that in (4.18). The proof
is complete. �

Let us discuss various particular cases of this theorem. First, for monotone
g from the class in question the leading term in (4.16) cannot be integrable near
infinity. Indeed, integrating it over (π,∞) leads to the integral

∫ 2

0
t−1|g(t)| dt. But

g(0) �= 0 for monotone functions.
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Second, our attempts rest on proper choices of β in (3.2). It is natural to
substitute the Hardy transform of |h| for β, i.e.,

‖dh(t)‖Lp(x,2x) + x−1

∫ x

0

|h(t)| dt. (4.19)

In the case of h = f ′ say, we have in place of (4.15)∫ ∞
π

|F (x)| dx+
∫ 1

0

t−1|f(0)− f(t)| dt+
∫ ∞

1

t−1/p|f ′(t)| dt

+
∫ 1

0

|f ′(t)|
({

1, if 1 < p <∞
ln(2/t), if p = 1

)
dt

with a similar right-hand side in (4.17); here p = ∞ does not make sense at all.
Trying a weaker version with the absolute value of the Hardy transform of h

itself, that is,

‖dh(t)‖Lp(x,2x) +
∣∣∣∣1x
∫ x

0

h(t) dt
∣∣∣∣ , (4.20)

we get a smaller class. When applied to h = f ′, the bounds in (4.19) and (4.20)
coincide for monotone f. Indeed, in this case∫ x

0

|f ′(t)| dt =
∣∣∣∣∫ x

0

f ′(t) dt
∣∣∣∣ = |f(0)− f(x)|.

Back to (4.20) with h = f ′, we obtain for 1 ≤ p <∞ in (4.15)∫ ∞
π

|F (x)| dx+
∫ 1

0

|f ′(t)| +
∫ 1

0

t−1|f(0)− f(t)| dt+
∫ ∞

1

t−1−1/p|f(0)− f(t)| dt

+
∫ 1

0

|f ′(t)| +
∫ 1

0

ω(f ; t)
t

dt+ sup
t∈[0,∞)

|f(t)|, (4.21)

where ω(f ; ·) is the modulus of continuity of f. The integral
∫∞

π |γ(x)| dx in (4.17)
has a similar bound.

Finally, applying Theorem 4.7, with p = 1 in (4.20), for integrability over
[0, π] we arrive at the boundedness of

∫∞
1/2

t−1|f(0)− f(t)| dt. This is of sense only
when f(0) = 0 which is of course not the case for monotone functions. This means
that (4.20) with h = f ′ controls integrability just near infinity.

Remark 4.9. We know (see the beginning of the proof of Theorem 4.2) that f ′ ∈
GMp(β) implies f ∈ GMq(β) for any q ∈ [1,∞] with β(x) = x1/q

∫∞
x/2

t−1/pβ(t) dt.

Using f ∈ GM1(β), we obtain∫ 1

0

|f ′(t)| dt+
∫ 1

0

t−1|f(0)− f(t)| dt+
∫ 1

0

t1−1/p
(
1 + | ln t|

)
β(t) dt

+
∫ ∞

1

t−1/pβ(t) dt.
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Therefore, we can write in place of both (4.15) and (4.17)∫ ∞
π

|F (x)| dx,
∫ ∞

π

|γ(x)| dx+
∫ 1

0

t1−1/p
(
1 + | ln t|

)
β(t) dt (4.22)

+
∫ ∞

1

t−1/pβ(t) dt.

Analogously, estimating in the same way the first term on the right-hand side
of (4.13), we obtain∫ 1

0

t|f ′(t)| dt+
∫ 1/2

0

t2−1/pβ(t) dt+
∫ ∞

1/2

t−1/pβ(t) dt,

with a similar estimate for g. Hence,∫ π

0

|F (x)| dx,
∫ π

0

|γ(x)| dx+
∫ 1

0

t2−1/pβ(t) dt+
∫ ∞

1

t1−1/pβ(t) dt. (4.23)

Comparing now (4.22) and (4.23) with (4.2) in terms of the majorant β, we
see that conditions providing integrability of the Fourier transform near the origin
are less restrictive for β near the origin, while those near infinity allow us to relax
restrictions for β just near infinity.

5. Applications to trigonometric series

We wish to apply the above-proved results to trigonometric series. Observe that
we use either those where conditions are for integrability of the Fourier transform
near the origin or finite part of those where integrability is over the whole half-axis.

The almost one hundred years old problem of the integrability of trigonomet-
ric series reads as follows. Given a trigonometric series

a0/2 +
∞∑

k=1

(ak cos kx+ bk sin kx), (5.1)

find assumptions on the sequences of coefficients {ak}, {bk} under which the series
is the Fourier series of an integrable function. We will say in this case that the
trigonometric series is integrable. Frequently, the series

a0/2 +
∞∑

k=1

ak cos kx (5.2)

and
∞∑

k=1

bk sin kx (5.3)

are investigated separately, since there is a difference in their behavior.
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Given series (5.2) or (5.3) with the null sequences of coefficients in an appro-
priate space (subspace of the space of sequences of bounded variation). We apply
the following interpolation procedure. Set for t ∈ [k − 1, k]

A(t) = ak + (k − t)Δak−1, a0 = 0,

B(t) = bk + (k − t)Δbk−1,

where Δdk = dk − dk+1. These two functions A(t) and B(t) take at integer points
the values {ak} and {bk}, respectively, and are linear in between.

The following result due to Trigub [16, Theorem 4.1.2] is a “bridge” between
sequences of Fourier coefficients and Fourier transforms (for an extension, see the
recent paper [15]; an earlier version, for functions with compact support, is due to
Belinsky [3]):

sup
0<|x|≤π

∣∣∣∣∫ +∞

−∞
ϕ(t)e−ixt dt−

+∞∑
−∞

ϕ(k)e−ikx

∣∣∣∣+ ||ϕ||BV . (5.4)

This is, in a sense, equiconvergence of the Fourier integral and trigonometric series,
both generated by a function of bounded variation. Relation (5.4) allows us to
pass from estimating trigonometric series (5.2) and (5.3) to estimating the Fourier
transform of A(t) and B(t), respectively, and vice versa. More precisely, A(t) and
B(t) satisfy assumptions of one of the theorems from the previous section they
inherit from the corresponding assumptions on the sequences ak and bk. Then (5.4)
delivers the claimed result for trigonometric series. This approach was suggested
in [8], where the reader can find numerous references to important results on the
integrability of trigonometric series, first of all to those by Kolmogorov, Sidon,
Boas, Telyakovskĭı, Fomin, etc. Many results of early period can be found in [1].

The above scheme along with corresponding routine calculations goes through
smoothly in each of the next results. We thus omit the details.

First, let us write down a known result (see, e.g., [1]) that follows immediately
from Theorem 2.1.

Corollary 5.1. If ak and bk are monotone null-sequences, then∫ π

0

|a0/2 +
∞∑

k=1

ak cos kx| dx+
∞∑

k=1

k−1|ak|

and
∞∑

k=1

k−1|bk| +
∫ π

0

|
∞∑

k=1

bk sin kx| dx+
∞∑

k=1

k−1|bk|.

The same upper estimates are also true for RBV sequences as is discussed
above.

Let us obtain, in the same way, integrability results for general monotone
sequences of the coefficients of trigonometric series.
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First of all, let us indicate how the general monotonicity for the sequence
d = {dk} looks like, written d ∈ GMSp(β):(

2n−1∑
k=n

|.dk|p
)1/p

+ βn, (5.5)

with the usual modification for p = ∞.
It is clear that for 1 ≤ p1 ≤ p2 ≤ ∞, one has the following embeddings

GMSp1(β
(1)) ⊂ GMSp2(β

(1)) ⊂ GMSp1(β
(2)),

where
{
β

(2)
n = n1/p1−1/p2β

(1)
n

}
n∈N

. In the above approach to get a function β we

just take β(x) = βk for k ≤ x < k + 1.

Corollary 5.2. If ak and bk are null-sequences both from GMS1(β), then∫ π

0

|a0/2 +
∞∑

k=1

(ak cos kx+ bk sin kx)| dx+
∞∑

k=1

k−1βk ln k.

Remark 5.3. We took both sequences to be from GMS1(β) with the same β just
for brevity. If each is from a class with different β we simply write similar assertions
separately for cosine and sine series.

And finally using Theorems 4.7 and 4.3, we obtain integrability results for
the classes of sequences of the coefficients that, to the best of our knowledge,
have never been considered before (for corresponding earlier results, see [1, Ch. X,
§7], [10]).

Theorem 5.4. Let ak and bk be null-sequences of bounded variation, and let .ak

and .bk be null-sequences from GMSp(β). Then for each x, 0 < x ≤ π,

∞∑
k=1

ak cos kx = θ1γ1(x), (5.6)

and
∞∑

k=1

bk sinkx = x−1B(π/(2x)) + θ2γ2(x), (5.7)

where |θi| ≤ C and
∫ π

0 |γj(x)| dx ≤
∞∑

k=1

k1−1/pβk, j = 1, 2.

For a partial result of this type, with first differences in RBVS, see the recent
paper [11].

Theorem 5.5. Let ak and bk be null-sequences satisfying (5.5) for some 1 < p ≤
∞. Then for each x, 0 < x ≤ π, (5.6) and (5.7) hold but with

∫ π

0
|γj(x)| dx ≤

∞∑
k=1

k−1/pβk, j = 1, 2.
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If one wishes to have integrability results in a more traditional form, the only
thing to be done is to integrate (5.6) and (5.7).

Corollary 5.6. Let ak and bk satisfy either assumptions of Theorem 5.4 or Theorem
5.5 provided the corresponding series in the bounds converge. Then the series (5.2)
is the Fourier series of an integrable function, while the series (5.3) is such if and

only if
∞∑

k=1

k−1|bk| <∞.
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Traces of Hörmander Algebras
on Discrete Sequences

Xavier Massaneda, Joaquim Ortega-Cerdà and Myriam Ounäıes

Abstract. We show that a discrete sequence Λ of the complex plane is the
union of n interpolating sequences for the Hörmander algebras Ap if and only
if the trace of Ap on Λ coincides with the space of functions on Λ for which
the divided differences of order n− 1 are uniformly bounded. The analogous
result holds in the unit disk for Korenblum-type algebras.

Mathematics Subject Classification (2000). 30E05, 42A85.

Keywords. Interpolating sequences, divided differences.

1. Definitions and statement

A function p : C −→ R+, is called a weight if
(w1) There is a constant K > 0 such that p(z) ≥ K ln(1 + |z|2).
(w2) There are constants D0 > 0 and E0 > 0 such that whenever |z−w| ≤ 1 then

p(z) ≤ D0p(w) + E0.

Let H(C) denote the space of all entire functions. We consider the algebra

Ap =
{
f ∈ H(C), ∀z ∈ C, |f(z)| ≤ AeBp(z) for some A > 0, B > 0

}
.

Condition (w1) implies that Ap contains the polynomials and (w2) that it is
closed under differentiation.

Definition 1.1. Given a discrete subset Λ ⊂ C we denote by Ap(Λ) the space of
sequences ω(Λ) = {ω(λ)}λ∈Λ of complex numbers such that there are constants
A,B > 0 for which

|ω(λ)| ≤ AeBp(λ), λ ∈ Λ.

Partially supported by the Picasso programme (Action Intégrée) HF2006-0211. First and second
authors supported by MEC grant MTM2008-05561-C02-01 and CIRIT grant 2005-SGR 00611.
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We say that Λ is an interpolating sequence for Ap when for every sequence
ω(Λ) ∈ Ap(Λ) there exists f ∈ Ap such that f(λ) = ω(λ), λ ∈ Λ. In terms of the
restriction operator

RΛ : Ap −→ Ap(Λ)

f → {f(λ)}λ∈Λ,

Λ is interpolating when RΛ(Ap) = Ap(Λ).

Definition 1.2. Let Λ be a discrete sequence in C and ω a function given on Λ.
The divided differences of ω are defined by induction as follows

Δ0ω(λ1) = ω(λ1) ,

Δjω(λ1, . . . , λj+1) =
Δj−1ω(λ2, . . . , λj+1) −Δj−1ω(λ1, . . . , λj)

λj+1 − λ1
j ≥ 1.

For any n ∈ N, denote

Λn = {(λ1, . . . , λn) ∈ Λ×
n
�· · · ×Λ : λj �= λk if j �= k},

and consider the set Xn−1
p (Λ) consisting of the functions in ω(Λ) with divided

differences of order n uniformly bounded with respect to the weight p, i.e., such
that for some B > 0

sup
(λ1,...,λn)∈Λn

|Δn−1ω(λ1, . . . , λn)|e−B[p(λ1)+···+p(λn)] < +∞ .

Remark 1.3. It is clear that Xn
p (Λ) ⊂ Xn−1

p (Λ) ⊂ · · · ⊂ X0
p(Λ) = Ap(Λ).

To see this assume that ω(Λ) ∈ Xn
p (Λ), i.e., there exists B > 0 such that

C := sup
(λ1,...,λn+1)∈Λn+1

∣∣∣∣Δn−1ω(λ2, . . . , λn+1)− Δn−1ω(λ1, . . . , λn)
λn+1 − λ1

∣∣∣∣
× e−B[p(λ1)+···+p(λn+1)] <∞ .

Then, given (λ1, . . . , λn) ∈ Λn and taking λ0
1, . . . , λ

0
n from a finite set (for instance

the n first λ0
j ∈ Λ different of all λj) we have

Δn−1ω(λ1, . . . , λn) =
Δn−1ω(λ1, . . . , λn) −Δn−1ω(λ0

1, λ1, . . . , λn−1)
λn − λ0

1

(λn − λ1
0)

+
Δn−1ω(λ0

1, λ1, . . . , λn−1) −Δn−1ω(λ0
2, λ

0
1, . . . , λn−2)

λn−1 − λ0
2

(λn−1 − λ0
2) + · · ·

+
Δn−1ω(λ0

n−1, . . . , λ
0
1, λ1) −Δn−1ω(λ0

n, . . . , λ
0
1)

λ1 − λ0
n

(λ1−λ0
n)+Δn−1ω(λ0

n, . . . , λ
0
1)
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Then a direct estimate and (w1) show that for some B > 0 there is a constant
K(λ0

1, . . . , λ
0
n) such that∣∣Δn−1ω(λ1, . . . , λn)

∣∣ ≤ C
(
eB[p(λ0

1)+···+p(λn)] + · · ·+ eB[p(λ0
n−1)+···+p(λ1)]

)
≤ K(λ0

1, . . . , λ
0
n)eB[p(λ1)+···+p(λn)],

and the statement follows.

The main result of this note is modelled after Vasyunin’s description of the
sequences Λ in the unit disk such that the trace of the algebra of bounded holo-
morphic functions H∞ on Λ equals the space of (hyperbolic) divided differences
of order n (see [7], [8]). The analogue in our context is the following.

Theorem 1.4 (Main Theorem). The identity RΛ(Ap) = Xn−1
p (Λ) holds if and only

if Λ is the union of n interpolating sequences for Ap.

For the most usual of these weights there exists a complete description of
the Ap-interpolating sequences, both in analytic and geometric terms. This is the
case for doubling and radial weights (see [2, Corollary 4.8]), or for non-isotropic
weights of the form p(z) = | Im z|+ log(1 + |z|) (see [5, Theorem 1]).

With similar techniques it should be possible to extend this result to an
Hermite-type interpolation problem with multiplicities, along the lines of [6].

2. General properties

We begin by showing that one of the inclusions of Theorem 1.4 is immediate.

Proposition 2.1. For all n ∈ N, the inclusion RΛ(Ap) ⊂ Xn−1
p (Λ) holds.

Proof. Let f ∈ Ap. Let us show by induction on j ≥ 1 that, for certain constants
A,B > 0

|Δj−1f(z1, . . . , zj)| ≤ AeB[p(z1)+···+p(zj)] for all (z1, . . . , zj) ∈ Cj.

As f ∈ Ap, we have |Δ0f(z1)| = |f(z1)| ≤ AeBp(z1).
Assume that the property is true for j and let (z1, . . . , zj+1) ∈ Cj+1. Fix

z1, . . . , zj and consider zj+1 as the variable in the function

Δjf(z1, . . . , zj+1) =
Δj−1f(z2, . . . , zj+1) −Δj−1f(z1, . . . , zj)

zj+1 − z1
.

By the induction hypothesis,

|Δj−1f(z2, . . . , zj+1) −Δj−1f(z1, . . . , zj)|
≤ A
(
eB[p(z2)+···+p(zj+1)] + eB[p(z1)+···+p(zj)]

)
≤ 2AeB[p(z1)+···+p(zj+1)].
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Thus, if |zj+1 − z1| ≥ 1, we easily deduce the desired estimate. For |zj+1− z1| ≤ 1,
by the maximum principle and (w2):

|Δjf(z1, . . . , zj+1)| ≤ 2A sup
|ξ−z1|=1

eB[p(z1)+···+p(zj)+p(ξ)]

≤ Ae(B+D0)[p(z1)+···+p(zj)+p(zj+1)]. �
Definition 2.2. A sequence Λ is weakly separated if there exist constants ε > 0 and
C > 0 such that the disks D(λ, εe−Cp(λ)), λ ∈ Λ, are pairwise disjoint.

Remark 2.3. If Λ is weakly separated then X0
p (V ) = Xn

p (V ), for all n ∈ N.
To see this it is enough to prove (by induction) that X0

p(Λ) ⊂ Xn
p (Λ) for

all n ∈ N. For n = 0 this is trivial. Assume now that X0
p(Λ) ⊂ Xn−1

p (Λ). Given
ω(Λ) ∈ X0

p (Λ) we have

|Δnω(λ1, . . . , λn+1)| =
∣∣∣∣Δn−1(λ2, . . . , λn+1)−Δn−1(λ1, . . . , λn)

λn+1 − λ1

∣∣∣∣
≤ 2A

ε
e(B+C)[p(λ1)+···+p(λn+1)] .

Lemma 2.4. Let n ≥ 1. The following assertions are equivalent:
(a) Λ is the union of n weakly separated sequences,
(b) There exist constants ε > 0 and C > 0 such that

sup
λ∈Λ

#[Λ ∩D(λ, εe−Cp(λ))] ≤ n .

(c) Xn−1
p (Λ) = Xn

p (Λ).

Proof. (a) ⇒(b). This is clear, by the weak separation.
(b) ⇒(a). We proceed by induction on j = 1, . . . , n. For j = 1, it is again

clear by the definition of weak separation. Assume the property true for j − 1.
Let 1 ≥ ε > 0 and C > 0 be such that supλ∈Λ #[Λ ∩ D(λ, εe−Cp(λ))] ≤ j. Put
ε′ = e−E0Cε/2 and C′ = D0C. By Zorn’s Lemma, there is a maximal subsequence
Λ1 ⊂ Λ such that the disks D(λ, ε′e−C′p(λ)), λ ∈ Λ1, are pairwise disjoint. In
particular Λ1 is weakly separated. For any α ∈ Λ \ Λ1, there exists λ ∈ Λ1 such
that

D(λ, ε′e−C′p(λ)) ∩D(α, ε′e−C′p(α)) �= ∅,
otherwise Λ1 would not be maximal. Then λ ∈ D(α, εe−Cp(α)), since

|λ− α| < ε′e−C′p(λ) + ε′e−C′p(α) < εe−Cp(α),

by (w2). Thus D(α, εe−Cp(α)) contains at most j − 1 points of Λ \Λ1. We use the
induction hypothesis to conclude that Λ\Λ1 is the union of j−1 weakly separated
sequences and, by consequence, Λ is the union of j weakly separated sequences.

(b)⇒(c). It remains to see that Xn−1
p (Λ) ⊂ Xn

p (Λ). Given ω(Λ) ∈ Xn−1
p (Λ)

and points (λ1, . . . , λn+1) ∈ Λn+1, we have to estimate Δnω(λ1, . . . , λn+1). Un-
der the assumption (b), at least one of these n + 1 points is not in the disk
D(λ1, εe

−Cp(λ1)). Note that Λn is invariant by permutation of the n+1 points, thus
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we may assume that |λ1−λn+1| ≥ εe−Cp(λ1). Using the fact that ω(Λ) ∈ Xn−1
p (Λ),

there are constants A,B > 0 such that

|Δnω(λ1, . . . , λn+1)| ≤
|Δn−1ω(λ2, . . . , λn+1)| + |Δn−1ω(λ1, . . . , λn)|

|λ1 − λn+1|
≤ AeB[p(λ1)+···+p(λn+1)].

(c)⇒(b). We prove this by contraposition. Assume that for all C, ε > 0, there
exists λ ∈ Λ such that #[Λ ∩D(λ, εe−Cp(λ))] > n. Since Λ has no accumulation
points, for any fixed C > 0, we can extract from Λ a weakly separated subsequence
L = {αl}l∈N such that #[(Λ \ L) ∩ D(αl, 1/l e−Cp(αl))] ≥ n for all l. Let us call
λl

1, . . . , λ
l
n the points of Λ \ L closest to αl, arranged by increasing distance. In

order to construct a sequence ω(Λ) ∈ Xn−1
p (Λ) \Xn

p (Λ), put

ω(αl) =
n−1∏
j=1

(αl − λl
j), for all αl ∈ L

ω(λ) = 0 if λ ∈ Λ \ L.

To see that ω(Λ) ∈ Xn−1(Λ) let us estimate Δn−1ω(λ1, . . . , λn) for any given
vector (λ1, . . . , λn) ∈ Λn. We don’t need to consider the case where the points
are distant, thus, as L is weakly separated, we may assume that at most one of
the points is in L. On the other hand, it is clear that Δn−1ω(λ1, . . . , λn) = 0
if all the points are in Λ \ L. Then, taking into account that Δn−1 is invariant
by permutation, we will only consider the case where λn is some αl ∈ L and
λ1, . . . , λn−1 are in Λ \ L. In that case,

|Δn−1ω(λ1, . . . , λn−1, α
l)| = |ω(αl)|

n−1∏
k=1

|αl − λl
k|−1 ≤ 1,

as desired.
On the other hand, a similar computation yields

|Δnω(λl
1, . . . , λ

l
n, α

l)| = |ω(αl)|
n∏

k=1

|αl − λl
k|−1 = |αl − λl

n|−1 ≥ leCp(αl).

Using (w2), for any constant B > 0, and choosing C = B(nD0 + 1), we have

|Δnω(λl
1, . . . , λ

l
n, α

l)|e−B(p(λl
1)+···+p(λl

n)+p(αl)) ≥ le−BnE0 → +∞.

We finally conclude that ω(Λ) /∈ Xn
p (Λ). �

Corollary 2.5. If Λ is an interpolating sequence, then it is weakly separated.

Proof. If Λ is an interpolating sequence, then RΛ(Ap) = X0
p(Λ). On the other

hand, by Proposition 2.1, RΛ(Ap) ⊂ X1
p (Λ). Thus X0

p(Λ) = X1
p (Λ). We conclude

by the preceding lemma applied to the particular case n = 1. �
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Lemma 2.6. Let Λ1, . . . ,Λn be weakly separated sequences. There exist positive
constants a, b, B1, B2 and ε > 0, a subsequence L ⊂ Λ1 ∪ · · · ∪ Λn and disks
Dλ = D(λ, rλ), λ ∈ L, such that

(i) Λ1 ∪ · · · ∪ Λn ⊂ ∪λ∈LDλ

(ii) aεe−B1p(λ) ≤ rλ ≤ bεe−B2p(λ) for all λ ∈ L
(iii) dist(Dλ, Dλ′) ≥ aεe−B1p(λ) for all λ, λ′ ∈ L, λ �= λ′.
(iv) #(Λj ∩Dλ) ≤ 1 for all j = 1, . . . , n and λ ∈ L.

Proof. Let 0 < ε < 1 and C > 0 be constants such that

|λ− λ′| ≥ εe−C/D0(p(λ)−E0), ∀λ, λ′ ∈ Λj, λ �= λ′, ∀j = 1, . . . , n , (2.1)

where D0 ≥ 1 and E0 ≥ 0 are given by (w2).
We will proceed by induction on k = 1, . . . , n to show the existence of a

subsequence Lk ⊂ Λ1 ∪ · · · ∪ Λk and constants Ck ≥ C, Bk ≥ 0 such that:

(i)k Λ1 ∪ · · · ∪ Λk ⊂ ∪λ∈Lk
D(λ,Rk

λ),

(ii)k 2−3ke−Ckp(λ)−Bkε ≤ Rk
λ ≤ εe−Cp(λ)

k−1∑
j=0

2−(3j+2) ≤ 2/7e−Cp(λ)ε,

(iii)k dist(D(λ,Rk
λ), D(λ′, Rk

λ′)) ≥ 2−3kεe−Ckp(λ)−Bk for any λ, λ′ ∈ Lk, λ �= λ′.

The constants Ck and Bk are chosen, in view of (w2), so that Ckp(λ)+Bk ≤
Ck+1p(λ′) +Bk+1 whenever |λ− λ′| ≤ 1.

Then it suffices to chose L = Ln, rλ = Rn
λ, a = e−Bn2−3n, b = 2/7, B1 = Cn

and B2 = C. As rλ < e−Cp(λ)ε, it is clear that D(λ, rλ) contains at most one point
of each Λj , hence the lemma follows.

For k = 1, the property is clearly verified with L1 = Λ1 and R1
λ = e−Cp(λ)ε/4.

Assume the property true for k and split Lk = M1∪M2 and Λk+1 = N1∪N2,
where

M1 = {λ ∈ Lk : D(λ,Rk
λ + 2−3k−2εe−Ckp(λ)−Bk) ∩ Λk+1 �= ∅},

N1 = Λk+1 ∩
⋃

λ∈Lk

D(λ,Rk
λ + 2−3k−2εe−Ckp(λ)−Bk),

M2 = Lk \M1,

N2 = Λk+1 \ N1.

Now, we put Lk+1 = Lk ∪ N2 and define the radii Rk+1
λ as follows:

Rk+1
λ =

⎧⎪⎨⎪⎩
Rk

λ + 2−3k−2εe−Ckp(λ)−Bk if λ ∈M1,

Rk
λ if λ ∈M2,

2−3k−3εe−Ck+1p(λ)−Bk+1 if λ ∈ N2.

It is clear that
Λ1 ∪ · · · ∪ Λk+1 ⊂

⋃
λ∈Lk+1

D(λ,Rk+1
λ )
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and, by the induction hypothesis,

2−3k−3εe−Ck+1p(λ)+Bk+1) ≤ Rk+1
λ ≤ εe−Cp(λ)

k∑
j=0

2−3j−2 ≤ 2/7εe−Cp(λ).

In order to prove (iii)k take now λ, λ′ ∈ Lk+1, λ �= λ′. We will verify that

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = |λ−λ′|−Rk+1
λ −Rk+1

λ′ ≥ 2−3k−3εe−Ck+1p(λ)−Bk+1

by considering different cases.
If λ, λ′ ∈ Lk and p(λ) ≤ p(λ′), then

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ |λ− λ′| −Rk
λ −Rk

λ′ − 2−3k−1εe−Ckp(λ)−Bk

≥ 2−3k−1εe−Ckp(λ)−Bk .

Assume now λ, λ′ ∈ N2 and p(λ) ≤ p(λ′). Condition (2.1) implies |λ − λ′| ≥
εe−Cp(λ), hence

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ (1 − 2−3k−2)εe−Cp(λ).

If λ ∈M1 and λ′ ∈ N2 there exists β ∈ N1 such that |λ− β| ≤ Rk+1
λ . There

is no restriction in assuming that |λ− λ′| ≤ 1. Then, using (2.1) on β, λ′ ∈ Λk+1,
we have

|λ− λ′| ≥ |β − λ′| − |λ− β| ≥ εe−C/D0(p(β)−E0) −Rk+1
λ ≥ εe−Cp(λ) −Rk+1

λ .

The definition of Rk+1
λ′ together with the estimate Rk+1

λ ≤ 2/7εe−Cp(λ) yield

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ εe−Cp(λ) − 2Rk+1
λ −Rk+1

λ′

≥ εe−Cp(λ) − 2Rk
λ − 2−3k−1εe−Ckp(λ)−Bk − 2−3k−3εe−Ck+1p(λ′)−Bk+1

≥ εe−Cp(λ) − 4
7
εe−Cp(λ) − 2−3kεe−Ckp(λ)−Bk ≥ εe−Cp(λ)(3/4− 2−3k),

as required.
Finally, if λ ∈ M2 and λ′ ∈ N2, again, assuming that |λ− λ′| ≤ 1, we have

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = |λ− λ′| −Rk
λ − 2−3k−3εe−Ck+1p(λ′)−Bk+1

≥ 2−3k−2εe−Ckp(λ)−Bk − 2−3k−3εe−Ckp(λ)−Bk

≥ 2−3k−3εe−Cp(λ). �

3. Proof of Theorem 1.4. Necessity

Assume RΛ(Ap) = Xn−1
p (Λ), n ≥ 2. Using Proposition 2.1, we have Xn−1

p (V ) =
Xn

p (V ), and by Lemma 2.4 we deduce that Λ = Λ1 ∪ · · · ∪ Λn, where Λ1, . . . ,Λn

are weakly separated sequences. We want to show that each Λj is an interpolating
sequence.

Let ω(Λj) ∈ Ap(Λj) = X0
p (Λj). Let ∪λ∈LDλ be the covering of Λ given by

Lemma 2.6. We extend ω(Λj) to a sequence ω(Λ) which is constant on eachDλ∩Λj



404 X. Massaneda, J. Ortega-Cerdà and M. Ounäıes

in the following way:

ω|Dλ∩Λ =

{
0 if Dλ ∩ Λj = ∅
ω(α) if Dλ ∩ Λj = {α} .

We verify by induction that the extended sequence is inXk−1
p (Λ) for all k. It is clear

that it belongs to X0
p(Λ). Assume that ω ∈ Xk−2

p (Λ) and consider (α1, . . . , αk) ∈
Λk. If all the points are in the same Dλ then Δk−1ω(α1, . . . , αk) = 0, so we may
assume that α1 ∈ Dλ and αk ∈ Dλ′ with λ �= λ′. Then we have

|α1 − αk| ≥ aεe−B1p(λ),

by Lemma 2.6 (iii). With this and the induction hypothesis it is clear that for
certain constants A,B > 0

|Δk−1ω(α1, . . . , αk)| =
∣∣∣∣Δk−2ω(α2, . . . , αk) −Δk−2ω(α1, . . . , αk)

α1 − αk

∣∣∣∣
≤ AeB[p(α1)+···+p(αk)].

In particular ω(Λ) ∈ Xn−1
p (Λ), and by assumption, there exist f ∈ Ap interpolat-

ing the values ω(Λ). In particular f interpolates ω(Λj).

4. Proof of Theorem 1.4. Sufficiency

According to Proposition 2.1 we only need to see that Xn−1
p (Λ) ⊂ RΛ(Ap).

Before going further, let us recall the following facts about interpolation in
the spaces Ap.

Lemma 4.1. [1, Lemma 2.2.6] Let Γ be an Ap-interpolating sequence. Then:
(i) For all A,B > 0, there exist constants A′, B′ > 0 such that for all se-

quences ω ∈ Ap(Γ) with sup
γ∈Γ

|ω(γ)|e−Bp(γ) ≤ A there exists f ∈ Ap with

sup
z

|f(z)|e−B′p(z) ≤ A′ and f(γ) = ω(γ) for all γ ∈ Γ..

(ii) There exists a constant C > 0 such that
∑

γ∈Γ e
−Cp(γ) <∞.

Applying (i) to the sequences ωγ = {δγ,γ′}γ′∈Γ it is easy to deduce that Γ is
weakly separated. Property (ii) is just a consequence of the weak separation and
properties (w1) and (w2).

Assume thus that Λ = Λ1 ∪ · · · ∪ Λn where Λ1, . . . ,Λn are interpolating
sequences. Recall that each Λj is weakly separated (Corollary 2.5). Consider also
the covering of Λ given by Lemma 2.6.

Lemma 4.2. There exist constants A,B>0 and a sequence {Fλ}λ∈L⊂Ap such that:

Fλ(α) =

{
1 if α ∈ Λ ∩Dλ

0 if α ∈ Λ ∩Dλ′ , λ
′ �= λ

|Fλ(z)| ≤ AeB(p(λ)+p(z)) for all z ∈ C.
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Proof. Fix λ ∈ L and define ω(Λ) by

ω(α) =

⎧⎨⎩
∏

β∈Λ∩Dλ

(α− β)−1 if α /∈ Λ ∩Dλ

0 if α ∈ Λ ∩Dλ.

By Lemma 2.6 (iii), we have |α−β| ≥ cεe−Cp(α) whenever α /∈ Λ∩Dλ, β ∈ Λ∩Dλ.
Since #(Λ ∩Dλ) ≤ n we deduce that

|ω(α)| ≤ (cε)−nenCp(α)

Recall that Λj is an interpolating sequence for all j = 1, . . . , n, thus there exist a
n-indexed sequence {fλ,j}λ∈L,j∈[[1,n]] ⊂ Ap such that for all z ∈ C,

|fλ,j(z)| ≤ AeBp(z), fλ,j(α) =
∏

β∈Λ∩Dλ

(α− β)−1 if α /∈ Λj ∩Dλ,

with the constants A and B independent of λ (see Lemma 4.1(i)).
The sequence of functions {Fλ}λ∈L defined by

Fλ(z) =
n∏

j=1

⎡⎣1 − ∏
β∈Λ∩Dλ

(z − β)fλ,j(z)

⎤⎦
has the desired properties. �

Lemma 4.3. For all D > 0, there exist D′ > 0 and a sequence {Gλ}λ∈L ⊂ Ap such
that:

Gλ(α) = eDp(λ) if α ∈ Λ ∩Dλ.

|Gλ(z)| ≤ AeBp(λ)eD′p(z) for all z ∈ C,

where A,B > 0 do not depend on D.

Proof. In this proof D′ denotes a constant depending on D but not on λ, and its
actual value may change from one occurrence to the other.

Let λ ∈ L. Assume, without loss of generality, that Dλ ∩ Λj = {αλ,j} for all
j. As Λ1 is an interpolating sequence and eDp(λ) ≤ AeD′p(αλ,1), by Lemma 4.1(i)
there exists a sequence {hλ,1}λ ⊂ Ap such that

hλ,1(αλ,1) = eDp(λ), |hλ,1(z)| ≤ AeD′p(z) for all z ∈ C.

Setting Hλ,1(z) = hλ,1(z), we have Hλ,1(αλ,1) = eDp(λ). Now, as Λ2 is Ap-
interpolating and

|eDp(λ) −Hλ,1(αλ,2)|
|αλ,2 − αλ,1|

=
|Hλ,1(αλ,1) −Hλ,1(αλ,2)|

|αλ,2 − αλ,1|
≤ AeD′p(αλ,2),
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there exists a sequence {hλ,2}λ ⊂ Ap such that

hλ,2(αλ,2) =
eDp(λ) −Hλ,1(αλ,2)

αλ,2 − αλ,1
, |hλ,2(z)| ≤ AeD′p(z) for all z ∈ C.

Setting Hλ,2(z) = hλ,1(z) + hλ,2(z)(z − αλ,1). We have

Hλ,2(αλ,1) = Hλ,2(αλ,2) = eDp(λ).

We proceed by induction to construct a sequence of functions {hλ,k}λ ⊂ Ap such
that

hλ,k(αλ,k) =
eDp(λ) −Hλ,k−1(αλ,k)

(αλ,k − αλ,1) · · · (αλ,k − αλ,k−1)

|hλ,k(z)| ≤ AeD′p(z) for all z ∈ C.

Then the function defined by Hλ,k(z) = Hλ,k−1(z)+hλ,k(z)(z−αλ,1) · · · (z−
αλ,k−1) verifies

Hλ,k(αλ,1) = · · · = Hλ,k(αλ,k) = eDp(λ).

Finally, we set Gλ = Hλ,n. �

To proceed with the proof of the inclusion Xn−1
p (Λ) ⊂ RΛ(Ap), let ω(Λ) ∈

Xn−1
p (Λ).

Fix λ ∈ L and let Λ∩Dλ = {α1, . . . , αk}, k ≤ n. We first consider a polyno-
mial interpolating the values ω(α1), . . . , ω(αk):

Pλ(z) = Δ0ω(α1) + Δ1ω(α1, α2)(z − α1) + · · ·+ Δk−1ω(α1, . . . , αk)
k−1∏
j=1

(z − αj).

Notice that Pλ ∈ Ap, since ω(Λ) ∈ Xn−1
p (Λ) and by properties (w1) and (w2) we

have
|Pλ(z)| ≤ A|z|keB[p(α1)+···+p(αk)] ≤ AeB′[p(z)+p(λ)] .

Now, define

f =
∑
λ∈L

FλGλPλe
−Dp(λ),

where D is a large constant to be chosen later on.
By the preceding estimates on Gλ and Pλ, there exist constants A,B > 0 not

depending on D and a constant D′′ > 0 such that, for all z ∈ C, we have

|f(z)| ≤ AeD′′p(z)
∑
λ∈L

e(B−D)p(λ).

In view of Lemma 4.1 (ii), takingD = B+C, the latter sum converges and f ∈ Ap.
To verify that f interpolates ω(Λ), let α ∈ Λ and let λ be the (unique) point

of L such that α ∈ Dλ. Then, f(α) = Gλ(α)Pλ(α)e−Dp(α) = Pλ(α) = ω(α), as
desired.
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5. Similar results in the disk

The previous definitions and proofs can be adapted to produce analogous results
in the disk. To do so one just needs to replace the Euclidean distance used in C

by the pseudo-hyperbolic distance

ρ(z, ζ) =
∣∣∣∣ z − ζ

1 − ζ̄z

∣∣∣∣ z, ζ ∈ D,

and the Euclidean divided differences by their hyperbolic version

δ0ω(λ1) = ω(λ1) ,

δjω(λ1, . . . , λj+1) =
Δj−1ω(λ2, . . . , λj+1)−Δj−1ω(λ1, . . . , λj)

λj+1−λ1

1−λ̄1λj+1

j ≥ 1.

In this context a function φ : D −→ R+ is a weight if
(wd1) There is a constant K > 0 such that φ(z) ≥ K ln

(
1

1−|z|
)
.

(wd2) There are constants D0 > 0 and E0 > 0 such that whenever ρ(z, ζ) ≤ 1/2
then

φ(z) ≤ D0φ(ζ) + E0.

The model for the associated spaces

Aφ = {f ∈ H(D) : sup
z∈D

|f(z)|e−Bφ(z) <∞ for some B > 0},

is the Korenblum algebra A−∞, which corresponds to the choice e−φ(z) = 1− |z|.
The interpolating sequences for this and similar algebras have been characterised
in [3] and [4].

With these elements, and replacing the factors z−α by z−α
1−ᾱz when necessary,

we can follow the proofs above and, mutatis mutandis, show that Theorem 1.4 also
holds in this situation.

The only point that requires further justification is the validity of Lemma 4.1
for the weights φ. Condition (i) is a standard consequence of the open mapping
theorem for (LF)-spaces applied to the restriction map RΛ, and the same proof as
in [1, Lemma 2.2.6] holds. Applying (i) to the sequences ωλ(Λ) defined by

ωλ(λ′) =

{
1 if λ′ = λ

0 if λ′ �= λ

we have functions fλ ∈ Aφ interpolating these values and with growth con-
trol independent of λ. Since 1 = |fλ(λ) − fλ(λ′)|, an estimate on the deriva-
tive of fλ shows that for some C > 0 and ε > 0 the pseudohyperbolic disks
DH(λ, εe−Cφ(λ)) = {z ∈ D : ρ(z, λ) < e−Cφ(λ)} are pairwise disjoint. In particular
the sum of their areas is finite, hence∑

λ∈Λ

(1 − |λ|)2e−2Cφ(λ) < +∞ .

From this and condition (wd1) we finally obtain (ii).
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Resonance Dynamics and Decoherence

Marco Merkli

Abstract. We present a rigorous analysis of the phenomenon of decoherence
for general N-level quantum systems coupled a reservoir modelled by a ther-
mal bosonic quantum environment. We present an explicit form of the dom-
inant reduced dynamics of open systems. We give explicit results for a spin
1/2 (qubit), including decoherence and thermalization times. Our approach
is based on a dynamical theory of quantum resonances. It yields the exact
reduced dynamics of the small system and does not involve master equation
or van Hove limit approximations. This approach is suitable for a wide variety
of systems which are not explicitly solvable, including systems of interacting
spins (registers of interacting qubits), for which the coupling between the
system and the environment is fixed but small.
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mal environment, spins, qubits, classical-quantum transition, non-equilibrium
dynamics, quantum resonances, spectral deformation.

1. Introduction

We consider an open quantum system S+R, where S is a “system of interest” and
R is an “environment” or “reservoir”. Typically, S is a system under examination
in a laboratory, like an atom, a molecule or an aggregate of spins. It is not possible
in reality to isolate any physical system entirely from its surroundings R, and only
if we take these surroundings into account can we consider the total system as
being closed and evolving according to a Hamiltonian dynamics. The reservoir R
is supposed to be a very large quantum system compared to S. An immediate
question is how the reservoir influences the dynamics of the small system. Prime
examples of effects S shows are thermalization and decoherence. The former means
that, due to its interaction with R, the system S is driven to the equilibrium state at
the temperature of R. The effect of decoherence is the subject of this contribution,
and we will describe it in detail in the next section.



410 M. Merkli

Typically, we may assume that we know the (relatively simple) microscopic
structure of S, while our knowledge of R is limited to its macroscopic characteriza-
tion. In other words, we shall assume the energy levels and corresponding states of
S to be given to us, as well as the thermodynamic parameters of R (temperature,
pressure, chemical potential. . . ). We will always assume that the state space of S
is finite-dimensional. Of course, in a true concrete analysis, we will also have to
specify the reservoir R on a microscopic level. However, when studying the reduced
dynamics of S, only the macroscopic properties of R will be left in the description.
The details of the environment do not play any role. In order to avoid introducing
the microscopic structure of the environment, often an effective dynamics of the
small system S is introduced – however, any trustworthy effective dynamics has
to be derived from a full microscopic model, to which certain reduction and/or
approximation schemes are applied (e.g., Born- or Born-Markov approximations).
Our approach is to start off with a fully microscopic model of S + R, to eliminate
the degrees of freedom of R and to analyze the remaining reduced description of
S. In this process, we do not employ any approximation, however, our results are
perturbative in the strength of the coupling between S and R.

We will take reservoirs to be spatially infinitely extended quantum systems.
This is not merely a mathematical convenience, but rather a physical necessity that
is linked to the very phenomena we want to describe. Indeed, if we try to keep
the reservoir very large but finite, then irreversible physical processes will not take
place. One can understand this easily heuristically, since for finite systems, Hamil-
tonians have pure point spectrum, and so the dynamics will not drive the system to
a final state. On the other hand, we may want to consider reservoirs which are just
large, but maybe not infinitely extended, say an oven in a laboratory. The tempo-
ral behaviour of such systems is approximated by that of systems with infinitely
extended reservoirs on time-scales which are large, but not too large, see, e.g., [5].

We focus in this paper on the phenomenon of decoherence. A definition of
decoherence is the vanishing of off-diagonal matrix elements of the reduced den-
sity matrix of S. A state given by a diagonal density matrix is characterized by
classical probabilities, in the sense that averages of observables are obtained by
weighing averages in specific states with given probabilities. The quantum nature
is contained in the off-diagonal reduced density matrix elements, which are respon-
sible for interference effects typical for quantum mechanics [16]. In this sense, a
decohering system undergoes a transition from quantum to classical behaviour.

2. Description of decoherence

The pure states of S + R are described by normalized vectors ψ in the Hilbert
space H = HS ⊗ HR. An observable A is a (self-adjoint) operator on H, its expec-
tation value in the state ψ is 〈A〉 = 〈ψ,Aψ〉. The dynamics is determined by the
Hamiltonian (energy operator)

H = HS +HR + λv,
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where HS and HR are the Hamiltonians of S and R, λ ∈ R is a coupling constant
and where v represents the interaction between S and R. The dynamical equation
is the Schrödinger equation,

i�∂tψ = Hψ.

We will set for convenience � = 1, so that the state vector evolves as ψt = e−itHψ0.
Not all states can be represented by a single vector ψ. Mixed states are determined
by density matrices ρ on H. These are non-negative (self-adjoint) trace-class op-
erators which are normalized as Trρ = 1. The average of an observable A in the
mixed state ρ is given by 〈A〉 = Tr(ρA). To any density matrix ρ, we can associate
normalized vectors ψn and probabilities pn, n = 1, 2, . . . , s.t.

ρ =
∞∑

n=1

pn|ψn〉〈ψn|, (2.1)

where |ψn〉〈ψn| is the rank-one orthonormal projection onto Cψn (spectral decom-
position of ρ). Since the evolution of ψn is given by e−itHψn, it follows from (2.1)
that the density matrix ρ evolves according to ρt = e−itHρ0eitH .

Consider the system S to be finite-dimensional, HS = CN . An example of a
mixed state of S is its equilibrium state at temperature T = 1/β, given by the
density matrix ρS,β ∝ e−βHS . It is readily seen that one cannot find any vector
ψ ∈ CN representing this state, i.e., having the property that 〈ψ,Aψ〉 equals
Tr(ρS,βA) for all A ∈ B(HS). However, by enlarging the Hilbert space, such a
vector can be found: view √

ρS,β as an element of the Hilbert space of Hilbert-
Schmidt operators on HS (this space is naturally isomorphic to HS ⊗ HS). Then
clearly 〈A〉 = Tr(ρS,βA) =

〈√
ρS,β, A

√
ρS,β

〉
HS

, where 〈κ, σ〉HS = Tr(κ∗σ) is the
inner product of Hilbert-Schmidt operators.1

As mentioned in the introduction, the system R is infinitely extended in space.
Consequently, even if it has a finite energy density, the total energy HR is not well
defined (is infinite). In fact, it is not even clear which Hilbert space can describe
states of the infinitely extended system R. One constructs the system R via the
thermodynamic limit. First, one takes a state ρR,Λ of the reservoir constrained to
a box Λ ⊂ R3, with fixed thermodynamic properties (such as temperature, density
etc.). For each finite Λ, one knows the Hilbert space and the state. (For instance,
a quantum gas in a box Λ is described by the Hilbert space ⊕n≥0L

2(Λn, d3nx)
(Fock space), and since Λ is finite, the energy operator has discrete spectrum, so
the Gibbs-state density matrix is well defined.) Then the size of the box is made
larger and larger, Λ ↑ R3. This defines averages of (localized) observables A in the
infinitely extended state, E(A) = limΛ↑R3 Tr(ρR,ΛA). One can now try to find a
Hilbert space HR and a normalized vector ψR ∈ HR such that E(A) = 〈ψR, AψR〉.
This is a difficult task in general, but explicit expressions for Hilbert spaces and
vectors have been found in the important cases of infinitely extended ideal quantum

1This is a manifestation of a general fact: a state over a C∗-algebra can be represented by a
vector state in a Hilbert space. This is the so-called Gelfand-Naimark-Segal representation [3].
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gases in thermal equilibrium.2 We understand that this construction has been
carried out, and that the state of R is represented on the Hilbert space HR by a
vector (or a density matrix). We give a more detailed explanation of this procedure
at the end of this section. For now we carry on with a more qualitative discussion.

Given the density matrix of the total system, ρt, how can we extract the
dynamics of S? Define the reduced density matrix of S by

ρt := TrR(ρt),

where the trace is taken over HR only (partial trace). This is a density matrix on
HS, and it satisfies

TrS(ρtAS) = TrS+R

(
ρt(AS ⊗ 1lR)

)
for all obvservables AS ∈ B(HS). The reduced density matrix contains all infor-
mation to describe the evolution of expectation values of observables of S alone.
The degrees of freedom of R and the effects of the interaction between S and R
are encoded in ρt, which acts on the Hilbert space of the system S only.

Let {ϕj}N
j=1 be a fixed basis of HS and denote the matrix elements of ρt as

[ρt]m,n := 〈ϕm, ρtϕn〉. A definition of decoherence is the vanishing of off-diagonal
reduced density matrix elements in the limit of large times,

lim
t→∞[ρt]m,n = 0, ∀m �= n. (2.2)

This is a basis dependent notion of disappearance of correlations,

ρt =
∑
m,n

cm,n(t)|ϕm〉〈ϕn| −→
∑
m

pm(t)|ϕm〉〈ϕm|, (2.3)

as t → ∞. Most often, the basis considered is the energy basis, consisting of
eigenvectors of HS. A mixture of states ϕj of the form

∑
m,n cm,n|ϕm〉〈ϕn| is

called an incoherent mixture if all “off-diagonals” vanish, cm,n = 0 for m �= n. Else
it is called a coherent mixture of the ϕj . The process (2.3) is thus a transition of
a coherent to an incoherent mixture. Hence the name decoherence.

2.1. An explicitly solvable model of decoherence

Consider S to be an N -level system, coupled to a reservoir R of thermal bosons at
temperature T = 1/β through an energy-conserving interaction (see [15] for the
qubit case, N = 2, and [11] for general N).

The Hilbert space and Hamiltonian of S are given by HS = CN and HS =
diag(E1, . . . , EN ), respectively, and the interaction operator is v = G⊗ϕ(g), where
G = diag(γ1, . . . , γN ). Here,

ϕ(g) =
1√
2
[a∗(g) + a(g)], (2.4)

2For bosons, this is known as the Araki-Woods construction, for fermions it is the Araki-Wyss
construction, [1, 2, 14].
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where the a#(g) are the usual bosonic creation and annihilation operators, smeared
out with a form factor g ∈ L2(R3, d3k) (momentum space representation): a(g) =∫

R3 g(k)a(k)d3k, a∗(g) =
∫

R3 g(k)a∗(k)d3k, [a(k), a∗(l)] = δ(k − l).
Since [HS, H ] = [HS, HS + HR + v] = 0 the energy of the small system is

conserved. This model is exactly solvable. The solution is given by

[ρt]m,n = [ρ0]m,ne−it(Em−En)+iαm,n(t), (2.5)
where

αm,n(t) = (γ2
m − γ2

n)S(t) + i(γm − γn)2Γ(t) (2.6)

Γ(t) =
∫

R3
|g(k)|2 coth(β|k|/2)

sin2(|k|t/2)
|k|2 d3k (2.7)

S(t) =
1
2

∫
R3
|g(k)|2 |k|t− sin(|k|t)

|k|2 d3k. (2.8)

The parameter β in the above expression for Γ(t) is the inverse temperature of the
reservoir. We immediately see that

1. The populations are constant, [ρt]m,m = [ρ0]m,m for all m and all t.
2. If γm = γn for some m �= n, then the corresponding off-diagonal matrix

element does not decay (decoherence-free subspaces).
3. Full decoherence (2.2) occurs if and only if Γ(t) →∞ as t→∞. Whether this

happens or not depends on the infrared behaviour (small k) of the form factor,
as well as on the space dimension. Let the infrared behaviour be characterized
by g(k) ∼ |k|p as |k| ∼ 0. We obtain in three space-dimensions

lim
t→∞

αm,n(t)
t

=
1
2
(γ2

m−γ2
n)
〈
g, |k|−1g

〉
+i(γm−γn)2

⎧⎨⎩
0 if p > 0
const. if p = −1/2
+∞ if p < −1/2.

For p = −1/2 the off-diagonal matrix elements decay exponentially quickly,
|[ρt]m,n| ∼ e−const.t(γm−γn)2 and for p < −1/2 the decay is quicker. For p > 0
the function h(k) := |g(k)|2 coth(β|k|/2) |k|−2 is integrable on R3. We write
sin2(|k|t/2) = 1

2 (1 − cos(|k|t)) and obtain from (2.7)

Γ(t) =
1
2

∫
R3

|g(k)|2
|k|2 coth(β|k|/2)d3k − Re

(
F̂ (t)
)
,

where F̂ is the Fourier transform of the function

F (r) =
1
4

coth(β|r|/2)
∫

S2
|g(|r|, σ)|2dσ,

defined for and integrable on r ∈ R (dσ is the uniform measure on the sphere
S2). From the Riemann-Lebesgue lemma we know that limt→∞ F̂ (t) = 0, so

lim
t→∞Γ(t) =

1
2

∫
R3

|g(k)|2
|k|2 coth(β|k|/2)d3k �= 0, for p > 0.

That is, for p > 0 we do not have full decoherence.
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This is a non-demolition model (HS conserved), in which processes of absorption
and emission of quanta of the reservoir by the system S are suppressed. To enable
such processes one needs interactions v which do not commute with HS. In the
latter case, one typically expects that thermalization takes place. The phenomenon
of thermalization can be described as follows.

Let ρ(β, λ) be the equilibrium state of the total system at temperature
T = 1/β (where λ is the coupling constant measuring the strength of interaction
between S and R) and let ρt=0 be any initial density matrix (on H). Thermalization
means that

TrS+R(ρtA) −→ TrS+R(ρ(β, λ)A), as t→∞, (2.9)
where A is any observable of the total system S+R. The convergence (2.9) implies
that

ρt −→ ρ∞(β, λ) := TrR(ρ(β, λ)),
as t→∞. An expansion of ρ∞(β, λ) in the coupling constant λ gives

ρ∞(β, λ) = ρ∞(β, 0) +O(λ),

where ρ∞(β, 0) is the Gibbs state of the system S. The Gibbs state (density matrix)
is diagonal in the energy basis (diagonalizing HS), however, the correction term
O(λ) is not, in general (see, e.g., [11] for explicit calculations for the qubit). This
shows the following effect.

Even if S is initially in an incoherent superposition of energy eigenstates
it will acquire some “residual coherence” of order O(λ) in the process
of thermalization. This leads us to defining decoherence in thermalizing
systems as being the decay of off-diagonals of ρt to their (non-zero) limit
values, i.e., to the corresponding off-diagonals of ρ∞(β, λ).

In examining the vast literature on this topic (some references are [7, 15, 16,
17]) we have only encountered either models with energy-conserving interactions
(which are explicitly solvable), or models with Markovian approximations with
uncontrolled errors (master equations, Lindblad dynamics). The goal of our work
is to describe decoherence for systems which may also exhibit thermalization, in a
rigorous fashion (controlled perturbation expansion).

2.2. Description of the infinitely extended reservoir R
Before taking the thermodynamic limit, as outlined above, the reservoir confined
to a box Λ is described by the bosonic Fock space

HR,Λ =
⊕
n≥0

L2
sym(Λn, d3nx), (2.10)

where the subindex “sym” means that we take symmetric square-integrable func-
tions only (indistinguishable Bose particles). The Hamiltonian is that of non-
interacting particles, given by HR,Λ = ⊕n≥0H

(n)
R,Λ, with H

(n)
R,Λ =

∑n
j=1

√
−∂2

xj

(with periodic boundary conditions). The density matrix ρR,β,Λ = Z−1
R,β,Λe−βHR,Λ

is a well-defined trace-class operator on the space (2.10), and the normalization
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factor ZR,β,Λ is chosen so that Tr(ρR,β,Λ) = 1. One calculates [1, 14] Eβ(a#(f)) :=
limΛ↑R3 Tr

(
ρR,β,Λa

#(f)
)

= 0, where a# stands for either a or a∗, and

Eβ(a∗(f)a(g)) := lim
Λ↑R3

Tr
(
ρR,β,Λa

∗(f)a(g)
)

=
〈
g,

1
eβ|k| − 1

f

〉
, (2.11)

where the square-integrable f, g are represented in Fourier transform in the inner
product on the right-hand side.3 All products of creation and annihilation opera-
tors can be calculated using the Wick theorem [3], so (2.11) (plus the vanishing of
averages of a(f) and a∗(f)) determines the infinitely extended thermal state Eβ

of R completely. We consider here only reservoir equilibrium states below critical
density, i.e., in absence of Bose-Einstein condensate.

The Araki-Woods Hilbert space representation is given by

HR = F ⊗ F , (2.12)

where F = ⊕n≥0L
2
sym(R3n, d3nx),

ψR = Ω⊗ Ω, (2.13)

the product of the Fock vacua in F , and

a∗β(g) = a∗
(√

eβ|k|

eβ|k| − 1
g

)
⊗ 1l + 1l⊗ a

(√
1

eβ|k| − 1
g

)
,

where g is the complex conjugate of g, and where the a# are the ordinary Fock
creation and annihilation operators on F . We also set aβ(g) := [a∗β(g)]∗. It is easy
to check that

Eβ(a∗(f)a(g)) =
〈
ψR, a

∗
β(f)aβ(g)ψR

〉
.

This last equation shows us that we have successfully represented the thermal state
of the infinitely extended R as a vector state on a concrete Hilbert space.

3. Dynamical resonance theory: Results

Let S be an N -level system, HS = CN , with energies {Ej}N
j=1, and let R be

the free massless Bose field, spatially infinitely extended in R3 in equilibrium at
temperature T = 1/β, as described at the end of Section 2.

The interaction operator is obtained by taking the thermodynamic limit of
λvΛ = λG ⊗ ϕ(gΛ). Here, G = G∗ ∈ B(HS) is a self-adjoint N × N matrix
and ϕ(gΛ) is the smoothed-out field operator (2.4) acting on HR,Λ, (2.10), and
gΛ(x) = χΛ(x)g(x) is the function g, cut off by being set equal to zero outside Λ.
It is customary to abbreviate this description by simply writing

v = λG ⊗ ϕ(g), (3.1)

and the thermodynamic limit is understood to be taken automatically.

3Of course, one has to restrict this to functions for which the r.h.s. is well defined.
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We denote the average of observables A ∈ B(HS) at time t by

〈A〉t := TrS(ρtA), (3.2)

and the ergodic average is denoted by

〈〈A〉〉∞ := lim
T→∞

1
T

∫ T

0

〈A〉tdt.

Our approach is based on a dynamical resonance theory, where resonances are
treated in a setting of spectral deformation (see Section 4). This leads to the
following regularity requirement which we assume to be fulfilled throughout this
paper.
(A) The function

gβ(u, σ) :=
√

u

1 − e−βu
|u|1/2

{
g(u, σ) if u ≥ 0
eiφg(−u, σ) if u < 0

is such that ϑ → gβ(u + ϑ, σ) has an analytic continuation, as a map C →
L2(R × S2, du × dσ), into {|ϑ| < τ}, for some τ > 0. Here, φ is an arbitrary
fixed phase. (See [6] for the usefulness and physical interpretation of this
phase.)

Examples of admissible g are g(k) = g1(σ)|k|pe−|k|2 , where p = −1/2 + n, n =
0, 1, 2, . . ., and g1(σ) = eiφg1(σ). They include the physically most important cases,
see also [15]. We point out that it is possible to weaken condition (A) considerably,
at the expense of a mathematically more involved treatment, as mentioned in
[11, 13]. The following result is the main result of [11]. We give an outline of the
proof in Section 4.

Theorem 3.1 (Evolution of observables [11]). There is a λ0 > 0 s.t. the following
statements hold for |λ| < λ0, t ≥ 0, and A ∈ B(HS).

1. 〈〈A〉〉∞ exists.
2. We have

〈A〉t − 〈〈A〉〉∞ =
∑
ε=0

eitεRε(A) +O(λ2e−τt), (3.3)

where the ε are “resonance energies”, 0 ≤ Imε < τ/2, and Rε(A) are linear
functionals of A which depend on the initial state ρt=0.

3. Let e be an eigenvalue of the operator HS⊗1lS−1lS⊗HS (acting on HS⊗HS).
For λ = 0 each ε coincides with one of the e and we have the following
expansion for small λ

ε ≡ ε(s)e = e− λ2δ(s)e +O(λ4).

The δ
(s)
e satisfy Im δ

(s)
e ≤ 0. They are eigenvalues of so-called level shift

operators Λe, and s = 1, . . . , ν(s) ≤ mult (e) labels the eigenvalue splitting.
Furthermore, we have

Rε(A) =
∑

(m,n)∈Ie

κm,nAm,n +O(λ2), (3.4)
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with Ie = {(m,n) | Em − En = e}, and where Am,n is the (m,n)-matrix
element of A and the numbers κm,n depend on the initial state.

Discussion. Relation (3.3) gives a detailed picture of the dynamics of averages of
observables. The resonance energies ε and the functionals Rε can be calculated
for concrete models, to arbitrary precision (in the sense of rigorous perturbation
theory in λ). See Section 3.1 for explicit expressions for the qubit. In the absence
of interaction (λ = 0) we have ε = e ∈ R. Depending on the interaction each
resonance energy ε may migrate into the upper complex plane, or it may stay on
the real axis, as λ �= 0. The averages 〈A〉t approach their ergodic means 〈〈A〉〉∞
if and only if Imε > 0 for all ε �= 0. In this case the convergence takes place on
the time scale [Imε]−1. Otherwise 〈A〉t oscillates. A sufficient condition for decay
is that Imδ(s)e < 0 (and λ small).

There are two kinds of processes which drive the decay: energy-exchange pro-
cesses and energy preserving ones. The former are induced by interactions enabling
processes of absorption and emission of field quanta with energies corresponding
to the Bohr frequencies of S (this is the “Fermi Golden Rule Condition”). Energy
preserving interactions suppress such processes, allowing only for a phase change
of the system during the evolution (“phase damping”).

Even if the initial density matrix, ρt=0, is a product of the system and reser-
voir density matrices, the density matrix ρt at any subsequent moment of time
t > 0 is not of product form. The evolution creates entanglement between the sys-
tem and reservoir. Our technique does not require ρt=0 to be a product state [11].

Our next goal is to use Theorem 3.1 to describe in detail the decay of reduced
density matrix elements. According to Theorem 3.1 the dynamics is governed by
the resonance energies ε(s)e whose lowest-order contributions δ(s)e are eigenvalues
of level shift operators Λe. In what follows we assume that all eigenvalues δ(s)e

are simple. We denote the corresponding eigenvector by η(s)
e , and the eigenvector

associated to the adjoint operator Λ∗e with eigenvalue δ(s)e is denoted by η̃(s)
e . They

are normalized as
〈
η
(s)
e , η̃

(s)
e

〉
= 1. The assumption of simplicity of the spectrum of

Λe is not necessary at all for our method, it is simply made to make the exposition
somewhat simpler. Let {ϕn} be an orthornomal basis of CN diagonalizing the
Hamiltonian of S, HSϕn = Enϕn. The matrix element [ρt]m,n is obtained by
choosing the observable A = |ϕn〉〈ϕm| in (3.2). We denote the difference of two
eigenvalues of HS by Em,n = Em − En. A closer analysis of the functionals Rε

yields the following result, the proof of which we give in Section 5.

Theorem 3.2 (Dominant dynamics). There is a constant λ1 s.t. if 0 < |λ| < λ1,
then for all m,n and all t ≥ 0

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞

=
∑

{s:ε(s)
En,m

=0}
eitε

(s)
En,m

∑
{k,l:El,k=En,m}

σ
(s)
m,n;k,l [ρ0]k,l +O(λ2e−tγm,n), (3.5)
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where

γm,n = min{Imε(s)e : ε(s)e �= 0 and e �= En,m}.

The mixing constants σ(s)
m,n;k,l are given by

σ
(s)
m,n;k,l =

〈
η̃
(s)
En,m

, ϕn ⊗ ϕm

〉〈
ϕl ⊗ ϕk, η

(s)
En,m

〉
,

η
(s)
En,m

and η̃(s)
En,m

being the resonance eigenvectors introduced above.

Discussion. The group of matrix elements [ρt]m,n associated to the same energy
difference e = En−Em evolve in a coupled way, while groups belonging to different
e evolve independently, in the regime of Theorem 3.2. It is clear that the eigenvalue
e = 0 is always degenerate (ϕk ⊗ ϕk is always an associated eigenvector, for all
k). One easily sees that if e = En − Em is simple then σ

(s)
m,n;k,l vanishes unless

(k, l) = (m,n), in which case σ(s)
m,n;k,l = 1 equals one (this follows simply from the

fact that ηe and η̃e belong to the spectral subspace associated to e). The main
term of the r.h.s. of (3.5) is then simply eitεEn,m , so

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞ = eitεEn,m [ρ0]m,n +O(λ2e−tγm,n).

The usefulness of Theorem 3.2 is that it relates [ρt]m,n to the initial conditions
[ρ0]k,l. We can understand how to arrive at Theorem 3.2 from Theorem 3.1 in the
following way. The expansion (3.4) implies that the main term of Rε(|ϕn〉〈ϕm|)
is non-vanishing only if ε bifurcates out of e = En − Em. This means that all
contributions to the sum in (3.3) with ε not bifurcating out of En − Em are of
order λ2, and decaying according to eitε. These terms, plus the O(λ2e−τt) term in
(3.3), constitute the remainder term in (3.5).

The constants γm,n are typically of order λ2 (they may be of higher order
if the so-called Fermi Golden Rule condition for efficient coupling is not satisfied
[9]). Expansion (3.5) is thus useful in the regime

λ2e−tλ2 min{Im δ(s)
e : e=En,m} << e

−tλ2 max{Im δ
(s)
En,m

: s=1,...,ν(En,m)}
.

In other words, given any finite maximal time of interest tmax, there is a λ1 s.t. if
0 < |λ| < λ1, expansion (3.5) is valid, and the remainder term is negligible for all
0 ≤ t ≤ tmax. The expansion (3.5) thus isolates the dominant dynamics.

3.1. Application: thermalization versus decoherence time for a qubit

A qubit, or spin 1/2, is described by the Hilbert-space of pure states C2. The
Hamiltonian is HS = diag(E1, E2) (in the canonical basis of C2). We set Δ =
E2 − E1 > 0. The coupling operator is given by the self-adjoint operator

v =
[
a c
c b

]
⊗ ϕ(g),
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where ϕ(g) is given in (2.4). The operator HS ⊗ 1l− 1l⊗HS has four eigenvalues,
e ∈ {−Δ, 0, 0,Δ}. One calculates the resonance energies associated to these e to
be (see also Theorem 3.1 and the next subsection)

ε
(1)
0 (λ) = 0

ε
(2)
0 (λ) = iλ2|c|2ξ(Δ) +O(λ4)

εΔ(λ) = Δ + λ2R+
i
2
λ2
[
|c|2ξ(Δ) + (b − a)2ξ(0)

]
+O(λ4)

ε−Δ(λ) = −εΔ(λ)

where we have set

ξ(η) := π

∫
R3

coth
(
β|k|
2

)
|g(k)|2δ(η − |k|)d3k

and (P.V. denoting the principal value)

R =
b2 − a2

2
〈
g, |k|−1g

〉
+

|c|2
2

P.V.
∫

R×S2
u2 coth

(
β|k|
2

) |g(|u|, σ)|2
u−Δ

du dσ. (3.6)

The corresponding resonance eigenvectors (defined before Theorem 3.2) are as
follows, where {ϕ1, ϕ2} is the canonical orthonormal basis of C2, and where ϕi,j =
ϕi ⊗ ϕj :

η
(1)
0 = ϕ1,1 + ϕ2,2, η̃

(1)
0 =

1
1 + e−βΔ

[ϕ1,1 + e−βΔϕ2,2],

η
(2)
0 = ϕ1,1 − eβΔϕ2,2, η̃

(2)
0 =

1
1 + eβΔ

[ϕ1,1 − ϕ2,2],

and ηΔ = η̃Δ = ϕ2,1, η−Δ = η̃Δ = ϕ1,2. Note that η(1)
0 is just the (not normalized)

trace state on S. The mixing constants σ(s)
m,n;k,l (see Theorem 3.2) are thus

σ
(1)
1,2;1,2 = σ

(1)
2,1;2,1 = 1,

σ
(2)
1,1;1,1 =

〈
η
(2)
0 , ϕ1,1

〉〈
ϕ1,1, η

(2)
0

〉
=

1
1 + eβΔ

,

σ
(2)
1,1;2,2 = σ

(2)
2,2;1,1 =

〈
η
(2)
0 , ϕ1,1

〉〈
ϕ2,2, η

(2)
0

〉
=

−1
1 + e−βΔ

,

σ
(2)
2,2;2,2 =

〈
η
(2)
0 , ϕ2,2

〉〈
ϕ2,2, η

(2)
0

〉
=

1
1 + e−βΔ

.

We shall assume that the Fermi Golden Rule is satisfied: ξ(Δ) �= 0. Then zero is a
simple resonance eigenvalue, ε(1)0 = 0, and consequently, for e = 0 the term s = 1
is not present in the sum (3.5). Theorem 3.1 thus gives the following dominant
dynamics:

[ρt]1,1 − 〈〈|ϕ1〉〈ϕ1|〉〉∞ ∼ eitε
(2)
0 (λ)

{
[ρ0]1,1

1 + eβΔ
− [ρ0]2,2

1 + e−βΔ

}
, (3.7)

[ρt]1,2 − 〈〈|ϕ2〉〈ϕ1|〉〉∞ ∼ eitεΔ(λ)[ρ0]1,2. (3.8)
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The dynamics for [ρt]2,2 and [ρt]2,1 are easily obtained also directly from Theorem
3.1, or by using that [ρt]1,1+[ρt]2,2 = 1 (since Tr ρt = 1) and the fact that ρt is self-
adjoint. We point out that since the system S+R approaches its (joint) equilibrium
as t → ∞, we have 〈〈|ϕ1〉〈ϕ1|〉〉∞ = eβΔ

1+eβΔ + O(λ2) and 〈〈|ϕ2〉〈ϕ1|〉〉∞ = O(λ2)
(Gibbs distribution). This law can also be recovered by setting t = 0 in (3.7), (3.8)
and using that [ρ0]2,2 = 1 − [ρ0]1,1.

The thermalization time (decay of diagonals) is τth := [Imε(2)0 (λ)]−1, and the
decoherence time (decay of off-diagonals) is τdec := [ImεΔ(λ)]−1. Their ratio is

τth
τdec

=
1
2

[
1 +

(b − a)2

|c|2
ξ(0)
ξ(Δ)

]
+O(λ2).

Note that we have ξ(0) > 0 for infra-red behaviour g(k) ∼ |k|−1/2 as |k| ∼ 0 and
ξ(0) = 0 for more regular infra-red behaviour. Moreover, ξ(0) ∼ T and ξ(Δ) ∼
const. > 0, as the temperature T ∼ 0.

Spin-Boson model. The Hamiltonian of S is given by [4, 8]

HS = −1
2

�Δ0σx +
1
2
εσz ,

where the σ are Pauli matrices, Δ0 is the bare tunnelling matrix element, and ε is
the bias. The coupling operator is

v = σz ⊗ ϕ(g).

This determines the matrix elements a, b, c in the general formulation, and we
obtain

(b− a)2

|c|2 = 16
ε2

�2Δ2
0

.

This shows for instance that the thermalization time will become smaller relative
to the decoherence time if the bias ε is decreased, or if the tunnelling parameter
Δ0 is increased.

Explicit form of the level shift operators. For the sake of completeness, we include
the explicit form of the level shift operators Λe, e = 0,±Δ. By definition,

Λe = PeIP e(L0 − e+ i0)−1P eIPe,

where Pe is the spectral projection onto the eigenspace ofHS⊗1l−1l⊗HS associated
to the eigenvalue e, P e = 1l− Pe, L0 is the operator L0 restricted to RanP e, and
where I is the interaction operator, see [11] and Section 4. The explicit form of
Λe has been calculated in [11] for a general N -level system coupled to the thermal
Bose environment (Proposition 5.1 of [11]).4 The explicit form of Λ0, expressed in

4In the present work, we take the generator of dynamics to be the Liouville operator associated to
the reference state ψ0 = ψS,∞⊗ψR, see Section 4. In [11] the Liouville operator is taken with re-
spect to the reference vector ψS,β⊗ψR. Those two choices are related by a simple transformation,

and all physical results are independent of the particular choice of reference state.
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the basis {ϕ1 ⊗ ϕ1, ϕ2 ⊗ ϕ2} of RanP0 is

Λ0 =
i
2
|c|2ξ(Δ)
eβΔ − 1

[
1 −1

−eβΔ eβΔ

]
.

The dimension of RanP±Δ is one, so Λ±Δ reduces simply to a number,

Λ±Δ = R± i
2
[|c|2ξ(Δ) + (b − a)2ξ(0)],

where R is given in (3.6). Knowing the explicit form of the level shift operators,
the expansions of the resonance energies and resonance eigenvectors are now easy
to obtain.

4. Outline of resonance approach

Consider any observable A ∈ B(HS). We have

〈A〉t = TrS [ρt A] = TrS+R [ρt A⊗ 1lR]

=
〈
ψ0, eitLλ [A⊗ 1lS ⊗ 1lR] e−itLλψ0

〉
. (4.1)

In the last step, we pass to the representation Hilbert space of the system (the
GNS Hilbert space), where the initial density matrix is represented by the vector
ψ0 (in particular, the Hilbert space of the small system becomes HS⊗HS), see also
after equation (2.1) and Section 2.2. For this outline we take the initial state to be
one represented by the product vector ψ0 = ψS,∞ ⊗ ψR, where ψS,∞ is the trace
state of S, 〈ψS,∞, (AS ⊗ 1lS)ψS,∞〉 = 1

N Tr (AS), and where ψR is the equilibrium
state of R at a fixed inverse temperature 0 < β < ∞, (2.13). (This form of the
initial state is is not necessary for our method to work, see [11].) The dynamics
is implemented by the group of automorphisms eitLλ · e−itLλ . The self-adjoint
generator Lλ is called the Liouville operator. It is of the form Lλ = L0 + λW ,
where L0 = LS + LR represents the uncoupled Liouville operator, and λW is the
interaction (represented in the GNS Hilbert space).

We borrow a trick from the analysis of open systems far from equilibrium:
there is a (non-self-adjoint) generator Kλ s.t.

eitLλAe−itLλ = eitKλAe−itKλ for all observables A, t ≥ 0, and
Kλψ0 = 0.

There is a standard way of constructing Kλ given Lλ and the reference vector
ψ0. Kλ is of the form Kλ = L0 + λI, where the interaction term undergoes a
certain modification (W → I), cf. [11]. As a consequence, formally, we may replace
the propagators in (4.1) by those involving K. The resulting propagator which is
directly applied to ψ0 will then just disappear due to the invariance of ψ0. One can
carry out this procedure in a rigorous manner, obtaining the following resolvent
representation [11]

〈A〉t = − 1
2πi

∫
R−i

〈
ψ0, (Kλ(ω)− z)−1 [A⊗ 1lS ⊗ 1lR]ψ0

〉
eitzdz, (4.2)
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where Kλ(ω) = L0(ω) + λI(ω), I is representing the interaction, and ω → Kλ(ω)
is a spectral deformation (translation) of Kλ. The latter is constructed as follows.
There is a deformation transformation U(ω) = e−iωD, where D is the (explicit)
self-adjoint generator of translations [11, 10] transforming the operator Kλ as

Kλ(ω) = U(ω)KλU(ω)−1 = L0 + ωN + λI(ω). (4.3)

Figure 1. Spectrum of K0(ω)

Here, N = N1 ⊗ 1l + 1l ⊗ N1 is the total number operator of HR, (2.12),
and where N1 is the usual number operator on F . N has spectrum N ∪ {0},
where 0 is a simple eigenvalue (vacuum eigenvector ψR). For real values of ω,
U(ω) is a group of unitaries. The spectrum of Kλ(ω) depends on Imω and moves
according to the value of Imω, whence the name “spectral deformation”. Even
though U(ω) becomes unbounded for complex ω, the r.h.s. of (4.3) is a well-defined
closed operator on a dense domain, analytic in ω at zero. Analyticity is used in the
derivation of (4.2) and this is where the analyticity condition (A) before Theorem
3.1 comes into play. The operator I(ω) is infinitesimally small with respect to
the number operator N . Hence we use perturbation theory in λ to examine the
spectrum of Kλ(ω).

The point of the spectral deformation is that the (important part of the) spec-
trum of Kλ(ω) is much easier to analyze than that of Kλ, because the deformation
uncovers the resonances of Kλ. We have (see Figure 1)

spec
(
K0(ω)

)
= {Ei − Ej}i,j=1,...,N

⋃
n≥1

{ωn+ R},

because K0(ω) = L0 + ωN , L0 and N commute, and the eigenvectors of L0 =
LS + LR are ϕi ⊗ ϕj ⊗ ψR. The continuous spectrum is bounded away from the
isolated eigenvalues by a gap of size Imω. For values of the coupling parameter
λ small compared to Imω, we can follow the displacements of the eigenvalues by
using analytic perturbation theory. (Note that for Imω = 0, the eigenvalues are
imbedded into the continuous spectrum, and analytic perturbation theory is not
valid! The spectral deformation is indeed very useful!)
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Figure 2. Spectrum of Kλ(ω). Resonances ε(s)e are uncovered.

Theorem 4.1. (See Fig. 2.) Fix Imω s.t. 0 < Imω < τ (where τ is as in Condition
(A) given after (3.2)). There is a constant c0 > 0 s.t. if |λ| ≤ c0/β then, for all ω
with Imω > ω′, the spectrum of Kλ(ω) in the complex half-plane {Im z < ω′/2} is
independent of ω and consists purely of the distinct eigenvalues

{ε(s)e : e ∈ spec(LS), s = 1, . . . , ν(e)},
where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e. Moreover,
limλ→0 |ε(s)e (λ) − e| = 0 for all s, and we have Im ε

(s)
e ≥ 0. Also, the continuous

spectrum of Kλ(ω) lies in the region {Im z ≥ 3ω′/4}.
Next we separate the contributions to the path integral in (4.2) coming from

the singularities at the resonance energies and from the continuous spectrum. We
deform the path of integration z = R − i into the line z = R + iω′/2, thereby
picking up the residues of poles of the integrand at ε(s)e (all e, s). Let C(s)

e be a
small circle around ε

(s)
e , not enclosing or touching any other spectrum of Kλ(ω).

We introduce the generally non-orthogonal Riesz spectral projections

Q(s)
e = Q(s)

e (ω, λ) = − 1
2πi

∫
C(s)

e

(Kλ(ω) − z)−1dz. (4.4)

It follows from (4.2) that

〈A〉t =
∑

e

ν(e)∑
s=1

eitε(s)
e

〈
ψ0, Q

(s)
e [A⊗ 1lS ⊗ 1lR]ψ0

〉
+O(λ2e−ω′t/2). (4.5)

Note that the imaginary parts of all resonance energies ε(s)e are smaller than ω′/2,
so that the remainder term in (4.5) is not only small in λ, but it also decays faster
than all of the terms in the sum! (See also Figure 3.)

Finally, we notice that all terms in (4.5) with ε
(s)
e �= 0 will vanish in the

ergodic mean limit, so

〈〈A〉〉∞ = lim
T→∞

1
T

∫ T

0

〈A〉t dt =
∑

s:ε
(s)
0 =0

〈
ψ0, Q

(s)
0 [A⊗ 1lR ⊗ 1lR]ψ0

〉
.
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Figure 3. Contour deformation:
∫

R−i dz =
∑

e,s

∫
C(s)

e
dz +

∫
R+iω′/2 dz

The identification of the linear functionals

R
ε
(s)
e

(A) =
〈
ψ0, Q

(s)
e [A⊗ 1lS ⊗ 1lR]ψ0

〉
(4.6)

(cf. (3.3)) is useful for concrete calculations, as well as in the proof of Theorem
3.2. This concludes the outline of the proof of Theorem 3.1.

5. Proof of Theorem 3.2

The proof is based on expansion (3.3) together with formula (4.6). We have
[ρt]m,n = Tr (ρt|ϕn〉〈ϕm|), and it follows that

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞
=
∑

{e,s:ε
(s)
e =0}

eitε(s)
e

〈
ψ0, Q

(s)
e [|ϕn〉〈ϕm| ⊗ 1lS]ψ0

〉
+O(λ2e−ω′t/2). (5.1)

We leave out the trivial 1lR. Remembering that ψ0 = ψS,∞ ⊗ ψR, where ψS,∞ is
the trace state of S, represented by the vector 1√

N

∑N
j=1 ϕj ⊗ ϕj , we see that

[|ϕn〉〈ϕm| ⊗ 1lS]ψ0 =
1√
N
ϕn ⊗ ϕm ⊗ ψR. (5.2)

We shall treat in here the case where all resonance eigenvalues ε(s)e are simple (the
general case is dealt with in a similar fashion). Thus Q(s)

e = |χ(s)
e 〉〈χ̃(s)

e | is a rank-

one projection, with Kλ(ω)χ(s)
e = ε

(s)
e χ

(s)
e , Kλ(ω)∗χ̃(s)

e = ε
(s)
e χ̃

(s)
e and with the

normalization
〈
χ

(s)
e , χ̃

(s)
e

〉
= 1. We expand the resonance eigenvectors in powers

of λ,
χ(s)

e = η(s)
e ⊗ ψR +O(λ), χ̃(s)

e = η̃(s)
e ⊗ ψR +O(λ), (5.3)

where η(s)
e , η̃(s)

e are eigenvectors of the level shift operator Λe associated to the
eigenvalue δ(s)e and its complex conjugate, respectively (see also before Theorem



Resonance Dynamics and Decoherence 425

3.2 and [11]). Λe acts on the eigenspace P (LS = e), and η(s)
e , η̃

(s)
e ∈ RanP (LS = e).

We obtain
Q(s)

e = |η(s)
e 〉〈η̃(s)

e | ⊗ |ψR〉〈ψR|+R1(λ),
where R1 satisfies 〈ψR|R1(λ)|ψR〉 = O(λ2). (This term is of order λ2 and not
only λ since the average of the interaction (3.1) vanishes in the vacuum state.)
Combining (5.2) and (5.3) and setting ϕm,n = ϕm ⊗ ϕn, we arrive at〈

ψ0, Q
(s)
e [|ϕn〉〈ϕm| ⊗ 1lS]ψ0

〉
=
δe=En,m√

N

〈
ψ0, η

(s)
e ⊗ ψR

〉〈
η̃(s)

e , ϕn,m

〉
+O(λ2)

=
δe=En,m√

N

∑
{l,k:El,k=e}

〈ψ0, ϕl,k ⊗ ψR〉
〈
ϕl,k, η

(s)
e

〉〈
η̃(s)

e , ϕn,m

〉
+O(λ2).

(The δ is the Kronecker delta here.) The initial values are recovered from the first
scalar product on the r.h.s.,

1√
N

〈ψ0, ϕl,k ⊗ ψR〉 = 〈ψ0, [|ϕl〉〈ϕk| ⊗ 1lS]ψ0〉 = [ρ0]k,l.

This shows that〈
ψ0, Q

(s)
e [|ϕn〉〈ϕm| ⊗ 1lS]ψ0

〉
= δe,En,m

∑
{l,k:El,k=En,m}

σm,n;k,l[ρ0]k,l +O(λ2), (5.4)

where the “mixing coefficients” σ
(s)
m,n;k,l are defined in Theorem 3.2. We use ex-

pression (5.4) in (5.1),

[ρt]m,n − 〈〈|ϕn〉〈ϕm|〉〉∞ (5.5)

=
∑

{e,s:ε
(s)
e =0}

eitε(s)
e

⎡⎣δe,En,m

∑
{l,k:El,k=En,m}

σ
(s)
m,n;k,l[ρ0]k,l +O(λ2)

⎤⎦+O(λ2e−ω′t/2).

The main term in the sum selects e = En,m and only the summation over s :
ε
(s)
En,m

�= 0 remains. This yields the dominant part in the r.h.s. of formula (3.5).
The remainder is ∑

{e:e=En,m, s:ε
(s)
e =0}

eitε(s)
e O(λ2) +O(λ2e−ω′t/2),

which is O(λ2e−tγm,n), as indicated in Theorem 3.2. This concludes the proof of
Theorem 3.2.
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Ramified Integrals, Casselman Phenomenon,
and Holomorphic Continuations
of Group Representations

Yuri A. Neretin

To Mark Iosifovich Graev on his 85th birthday

Abstract. Let G be a real semisimple Lie group, K its maximal compact
subgroup, and GC its complexification. It is known that all K-finite matrix
elements on G admit holomorphic continuations to branching functions on
GC having singularities at a prescribed divisor. We propose a geometric ex-
planation of this phenomenon.

1. Introduction

1.1. Casselman’s theorem. Let G be a real semisimple Lie group, let K be a
maximal compact subgroup. Let GC be the complexification of G.

Let ρ be an infinite-dimensional irreducible representation of G in a complete
separable locally convex space W 1. Recall that a vector w ∈ W is K-finite if the
orbit ρ(G)v spans a finite-dimensional subspace in W .2

A K-finite matrix element is a function on G of the form

f(g) = �(ρ(g)v),

where v is a K-finite vector in W and � is a K-finite linear functional, i.e., a
K-finite element of the dual representation.

Supported by the grant FWF, project P19064, Russian Federal Agency for Nuclear Energy,
Dutch grant NWO.047.017.015, and grant JSPS-RFBR-07.01.91209 .
1the case of unitary representations in Hilbert spaces is sufficiently non-trivial.
2Let us rephrase the definition. We restrict ρ to the subgroup K and decompose the restric-
tion into a direct sum

∑
Vi of finite-dimensional representations of K. Finite sums of the form∑

vj∈Vj
vj are precisely all K-finite vectors.
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Theorem 1.1. 3 There is an (explicit) complex submanifold Δ ⊂ GC of codimension
1 such that each K-finite matrix element of G admits a continuation to an analytic
multi-valued ramified function on GC \ Δ.

Example. Let G = SL(2,R) be the group of real matrices
(
a b
c d

)
, whose

determinant = 1. Then K = SO(2) consists of matrices
(

cosϕ sinϕ
− sinϕ cosϕ

)
, where

ϕ ∈ R; the group GC is the group of complex 2×2 matrices with determinant = 1.
The submanifold Δ ⊂ SL(2,C) is a union of the following four manifolds

a = 0, b = 0, c = 0, d = 0. (1.1)

Indeed, in this case, there exists a canonical K-eigenbasis. All the matrix elements
in this basis are Gauss hypergeometric functions of the form

2F1(α, β; γ; θ), where θ =
ad

bc
,

where the indices α, β, γ depend on parameters of a representation and of a pair
of basis elements (see [6]).

Points of ramification of 2F1 are θ = 0, 1,∞. Since ad − bc = 1, only θ = 0
and θ = ∞ are admissible; this implies (1.1). �

Thus a representation ρ of a real semisimple group admits a continuation
to an analytic matrix-valued function on GC having singularities at Δ. This fact
seems to be strange if we look to explicit constructions of representations.

Our purpose is to clarify this phenomenon and to find a direct geometric
construction of the analytic continuation. We achieve this aim for a certain special
case (namely, for principal maximally degenerate series of SL(n,R), see Section 2)
and formulate a general conjecture (Section 3). It seems that our explanation (a
reduction to the ‘Thom isotopy Theorem’), see [4], [5]) is trivial. However, as far
as I know it is not known for experts in representation theory.

Addendum contains a general discussion of holomorphic continuations of rep-
resentations.

2. Isotopy of cycles

2.1. Principal degenerate series for the groups SL(n,R). Let G = SL(n,R) be the
group of all real matrices with determinant = 1. The maximal compact subgroup
K = SO(n) is the group of all real orthogonal matrices.

3This theorem was obtained in famous preprints of W. Casselman on the Subrepresentation
Theorem. Unfortunately, these preprints are unavailable for the author; however these results
were included to the paper of W. Casselman and Dr. Milicic [1]. There are (at least) two known
proofs; the original proof is based on properties of system of partial differential equations for

matrix elements [1], also by a simple trick [3] the theorem can be reduced to properties of
Heckman–Opdam hypergeometric functions [2].
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Denote by RPn−1 ⊂ CPn−1 the real and complex projective spaces; recall
that the manifold RPn−1 is orientable iff n is even.

Denote by dω the SO(n)-invariant Lebesgue measure on RPn−1, let d(ωg) be
its pushforward under the map SL(n,R), denote by

J(g, x) :=
dωg

dω
the Jacobian of a transformation g at a point x.

Fix α ∈ C. Define a representation Tα(g) of the group SL(n,R) in the space
C∞(RPn−1) by the formula

Tα(g)f(x) = f(xg)J(g, x)α.

The representations Tα are called representations of principal degenerate series. If
α ∈ 1

2 + iR, then this representation is unitary in L2(RPn−1).

2.2. Discriminant submanifold Δ. Denote by gt the transpose of a matrix g. Denote
by Δ the submanifold in SL(n,C) consisting of matrices g such that the equation

det(ggt − λ) = 0

has a multiple root.
We wish to construct a continuation of the function g → Tα(g) to a
multi-valued function on SL(n,C) \ Δ.

For simplicity, we assume n is even.4

2.3. Invariant measure. Denote by x1 : x2 : · · · : xn the homogeneous coordinates
in the projective space. The SO(n)-invariant (n− 1)-form on RPn−1 is given by

dω(x) = (
∑

j

x2
j)
−n/2

∑
j

(−1)jxj dx1 . . . d̂xj . . . dxn.

This expression can be regarded as a meromorphic (n− 1)-form on CPn−1 having
a pole on the quadric

Q(x) :=
∑

x2
j = 0.

Now we can treat the Jacobian J(g, x) as a meromorphic function on CPn−1

having a zero at the quadric Q(x) = 0 and a pole on the shifted quadricQ(gx) = 0.

2.4.K-finite functions. The following functions span the space ofK-finite functions
on RPn−1:

f(x) =

∏
x

kj

j

(
∑
x2

j )
∑

kj/2
, where

∑
kj is even.

Evidently, they have singularities at the quadric Q(x) = 0 mentioned above.

2.5. K-finite matrix elements. K-finite matrix elements are given by the formula

{f1, f2} =
∫

RPn−1
f1(x)f2(xg)J(g, x)αdω(x). (2.1)

4If n is odd, then we must replace the integrand in (2.1) by an (n−1)-form on two sheet covering
of CPn−1 \ RPn−1. Also we must replace the cycle RPn−1 by its two-sheet covering.
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The integrand is a holomorphic form on CPn−1 of maximal degree ramified over
the quadrics Q(x) = 0, Q(xg) = 0. Denote by U = U[g] the complement to these
quadrics. Therefore locally in U the integrand is a closed (n − 1)-form. Hence we
can replace RPn−1 by an arbitrary isotopic cycle C in U.

2.6. Reduction to the Pham Theorem. Now let g(s) be a path in SL(n,C) starting
in SL(n,R). For each s one has a pair Q(x) = 0, Q(x · g(s)) = 0 of quadrics and
the corresponding complement U[g(s)].

Is it possible to construct an isotopy C(s) of the cycle RPn−1 such that
C(s) ⊂ U[g(s)] for all s?

Now recall the following theorem of F. Pham [4] (see, also, V.A. Vasiliev [5]).

Theorem 2.1. Let R1(s), . . . , Rl(s) be nonsingular complex hypersurfaces in CPk

depending on a parameter. Assume that Rj are transversal (at all points for all
values of the parameter s). Then each cycle Q(s0) in the complement of ∪Rj(s0)
admits an isotopy Q(s) such that for each s a cycle Q(s) is contained in the
complement of ∪Rj(s).

2.7. Transversality of quadrics

Lemma 2.2. Let A, B be non-degenerate symmetric matrices. Assume that all the
roots of the characteristic equation

det(A− λB) = 0

are pairwise distinct. Then the quadrics
∑
aijxixj = 0 and

∑
bijxixj = 0 are

transversal.

By the Weierstrass theorem such pair of quadrics can be reduced to∑
λjx

2
j = 0,

∑
x2

j = 0, (2.2)

where λj are the roots of the characteristic equation. If they are not transversal
at a point x, then the rank of the Jacobi matrix(

λ1x1 . . . λnxn

x1 . . . xn

)
is 1. Therefore

(λi − λj)xixj = 0 for all i, j. (2.3)

The system (2.3), (2.2) is inconsistent. �

2.8. Last step. In our case, the matrices of quadratic forms are ggt and 1. Therefore,
by the virtue of the Pham Theorem a desired isotopy of the cycle RPn−1 exists.
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3. General case

By the Subrepresentation Theorem, all the irreducible representations of a semisim-
ple group G are subrepresentations of the principal (generally, non-unitary) series.
Therefore, it suffices to construct analytic continuations for representations of the
principal series.

For definiteness, we discuss the spherical principal series of the group G =
SL(n,R).

3.1. Spherical principal series for G = SL(n,R). Denote by Fl(Rn) the space of all
complete flags of subspaces

W : 0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂ Rn

in Rn; here dimWk = k. By Grk(Rn) we denote the Grassmannian of all k-
dimensional subspaces in Rn. By γk we denote the natural projection Fl(Rn) →
Grk(Rn).

By ωk we denote the SO(n)-invariant measure on Grk(Rn). For g ∈ GL(n,R)
we denote by Jk(g, V ) the Jacobian of the transformation V → V g of Grk(Rn),

Jk(g, V ) =
dωk(V g)
dωk(V )

.

Fix α1, . . . , αn−1 ∈ C. The representation Tα of the spherical principal series
of the group SL(n,R) acts in the space C∞(Fl(Rn)) by the formula

Tα(g)f(W) = f(W · g)
n−1∏
k=1

Jk(g, γk(W))αk .

3.2. Singularities. Consider the symmetric bilinear form in Cn given by

B(x, y) =
∑

xjyj .

By Lk ⊂ Grk(Cn) we denote the set of all the k-dimensional subspaces, where
the form B is degenerate5. By L ⊂ Fl(Cn) we denote the set of all the flags
W1 ⊂ · · · ⊂Wn−1, where Wk ∈ Lk for some k.

In fact, all K-finite functions on Fl(Rn) admit analytic continuations to
Fl(Cn) \ L (a singularity on L is a pole or a two-sheet ramification).

3.3. A conjecture

Conjecture 3.1. Let γ(t) be a path on GL(n,C) avoiding the discriminant sub-
manifold Δ, let γ(0) ∈ SL(n,R). Then there is an isotopy C(t) of the cycle
C(t0) := Fl(Rn) in the space Fl(Cn) avoiding the submanifolds L and L · g(s)

Such isotopy produces an analytic continuation of representations of principal
series of SL(n,R).

5Equivalently, we can consider all the (k − 1)-dimensional subspaces in CPn−1 tangent to the
quadric

∑
x2

j = 0.
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Addendum. Survey of holomorphic continuations of representations

Let G be a connected linear Lie group. Denote by GC its complexification. Let ρ
be an irreducible representation of G (in a Fréchet space). We are interested in
the following problems:

– Is it possible to extend ρ holomorphically to GC?
– Is it possible to extend ρ holomorphically to an open domain U ⊂ GC.

See, also, [16], Section 1.5.

A.1. Weyl trick. Let ρ be a finite-dimensional representation of a semisimple Lie
group G. Then ρ admits a holomorphic continuation to the group GC.

A.2. Why the Weyl trick does not survive for infinite-dimensional unitary rep-
resentations? Let G be a noncompact Lie group, let ρ be its irreducible faithful
unitary representation. Let X be a noncentral element of the Lie algebra g. It is
more-or-less obvious that the operator ρ(X) is unbounded.

Then, for t, s ∈ R,

ρ(exp(t+ is)X) = exp(isρ(X)) exp(tρ(X)).

Since iρ(X) is self-adjoint, then exp(tρ(X)) is unitary; on the other hand
exp(isρ(X)) have to be unbounded for all positive s or for all negative s (and
usually it is unbounded for all s.

However, this argument does not remove completely an idea of holomorphic
continuation, since it remain two following logical possibilities

– a holomorphic extension exists in spite of the unboundedness of operators.
– If a spectrum of X is contained on the positive half-line, then exp(tX) is

defined for negative t. We can hope to construct something from elements of
this kind.
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The second variant is realized for Olshanski semigroups, see below, the first
variant is general, this follows from the Nelson Theorem.

A.3. Nelson’s paper. In 1959 E. Nelson [13] proved that each unitary irreducible
representation ρ of a real Lie group G has a dense set of analytic vectors. This
implies that ρ can be extended analytically to a sufficiently small neighborhood of
G in GC.

Usually this continuation can be done in a constructive way as it is explained
below (see also [16], Section 1.5.).

A.4. Induced representations. First, we recall the definition of induced represen-
tations.

Consider a Lie group G and its closed connected subgroup H . Let ρ be a
representation of H in a finite-dimensional complex space V .

These data allow to construct canonically a vector bundle (skew product) over
G/H with a fiber V . Recall a construction (see, for instance, [8]). Consider the
direct product G× V and the equivalence relation

(g, v) ∼ (gh−1, ρ(h)v), where g ∈ G, v ∈ V , h ∈ H.

Denote by R = G ×V H the quotient space. The standard map G → G/H de-
termines a map R → G/H (we simply forget v). A fiber can be (noncanonically)
identified with V .

Next, the group G acts on G× V by transformations

(g, v) → (rg, v), where g ∈ G, v ∈ V , r ∈ G.

This action induces an action of G on G×H V , the last action commutes with the
projection G×H V → G/H .

Therefore G acts in the space of sections of the bundle G ×H V → G/H
(because the graph of a section is a subset in the total space; the group G simply
moves subsets). The induced representation π = IndG

H(ρ) is the representation of
G in a space of sections of the bundle G×H V → G/H.

The most important example are principal series, which were partially dis-
cussed above.

Our definition is not satisfactory since rather often it is necessary to specify
the space of sections (for instance, smooth functions, L2-functions, distributions,
etc.). This discussion is far beyond our purpose, for the moment let us consider
the space C∞[G/H ; ρ] of smooth sections.

A.5. Analytic continuation of induced representations. Here we discuss some heur-
istic arguments (see [16], Section 1.5). Their actual usage depends on the explicit
situation.

Denote by H[C] the complexification of the group H inside GC.
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The (finite-dimensional) representation ρ admits a holomorphic extension to
a representation of the universal covering group of H̃[C] of H[C] in the space V . For
a moment, let us require two assumptions6

– H[C] is closed in GC.

– ρ is a linear representation of H[C].

Under these assumptions, the same construction of a skew-product produces
the bundle (GC) ×HC

V → GC/HC. Moreover,

G×H V ⊂ (GC) ×HC
V.

Now let us agree on the next assumption7. Let the space of holomorphic
sections of (GC) ×HC

V be dense in C∞ on G/H. Then we get a holomorphic
continuation of the induced representation π to the whole complex group GC.
More precisely, we slightly reduce the space of representation, but the ‘formulae’
determining a representation are the same.

This variant is realized for all nilpotent Lie groups.

A.6. Nilpotent Lie groups

Example. Let a, b, c range in R, Consider operators T (a, b, c) in L2(R) given by

T (a, b, c)f(x) = f(x+ a)eibx+c.

They form a 3-dimensional group, namely the Heisenberg group. Now let a, b, c
range in C and f ranges in the space Hol(C) of entire functions. Then the same
formula determines a representation of the complex Heisenberg group in Hol(C).
After this operation, the space of representation completely changes. However it
is easy to find a dense subspace in L2(R) consisting of holomorphic functions and
invariant with respect to all the operators T (a, b, c). �

Now, let G be a simply connected nilpotent Lie group. By the Kirillov The-
orem [7], each unitary representation of a nilpotent Lie group G is induced from a
one-dimensional representation of a subgroup H ; the manifolds G/H are equiva-
lent to standard spaces Rm. Therefore, GC/HC is the standard complex space Cm,
and we get a representation of GC in the space of entire functions.

However, the following Goodman–Litvinov Theorem (R. Goodman [4], G.L.
Litvinov [11], [12]) is more delicate.

Theorem. Let ρ be an irreducible unitary representation of a nilpotent group G in
a Hilbert space W . There exists a (noncanonical) dense subspace Y with its own
Fréchet topology and holomorphic representation ρ̃ of GC in the space W coinciding
with ρ on G.

6The second assumption is very restrictive. It does not hold for the parabolic induction.
7If it does not hold, then we go to Subsection A.7, where all the assumptions are omitted.
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Let us explain how to produce a subspace Y . Let ρ be a unitary representation
of a nilpotent group G in a space W . Let f be an entire function on GC (it is
specified below). Consider the operator

ρ(f) =
∫

G

f(g)ρ(g) dg.

Let r ∈ GC. We write formally

ρ(r)ρ(f) =
∫

G

f(g)ρ(rg) dg =
∫

G

f(gr−1)ρ(g).

Assume that for each r ∈ GC the function γr(g) := f(gr−1) is integrable on G.
Under this condition we can define operators

ρ(r) :
{
Image of ρ(f)

}
→ W

as just now.
In fact, we need a subspace Z in L1(G) consisting of entire functions and

invariant with respect to complex shifts. To be sure that

Y := ∪f∈ZIm(ρ(f)) ⊂W

is dense, we need a sequence of positive fj ∈ Z converging to δ-functions; then
ρ(fj)v converges to v for all v ∈ W . In what follows we describe a simple trick
that allows to construct many functions f and a subspace Z.

A construction of functions f . First, let G = Tn be the unipotent upper triangular
subgroup of order n. Let tij , i < j, be the natural coordinates on Tn. Write them
in the order

t12, t23, t34, . . . , t(n−1)n, t13, t24, . . . , t(n−2)n, t14, . . .

and re-denote these coordinates by x1, x2, x3, . . . . In this notation, the right shift
g → gr−1 is an affine transformation of the form

(x1, x2, x3, . . . ) → (x1 + a1, x2 + a2 + b21x1, x3 + a3 + b31x1 + b32x2, . . . ).

Now we can choose a desired function f in the form

f(x) = exp
{
−
∑

pjx
2kj

j

}
, where pj > 0 and k1 > k2 > · · · > 0 are integers.

For an arbitrary nilpotent G we apply the Ado theorem (in fact, the standard
proof, see [17], produces a polynomial embedding of G to some Tn with very
large n).

A.7. Local holomorphic continuations. Now let G ⊃ H be arbitrary.
The construction of a skew product survives locally. It determines a holo-

morphic bundle on a (noncanonical) neighborhood U ⊂ GC/HC of G/H . Denote
by A(U) the space of holomorphic sections of this bundle. Let r ∈ GC satisfies
r · G/H ⊂ U . Then r determines an operator π(r) : A(U) → C∞ and we get a
local analytic continuation of the induced representation.
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A.8. Local analytic continuations for semisimple groups. For definiteness, consider
G = SL(n,R). Denote by P be the minimal parabolic (i.e., P is the group of
upper triangular matrices), Then G/P is the flag space mentioned above. Next,
GC = SL(n,C), and P[C] is the group of complex upper-triangular matrices of the
form

B =

⎛⎜⎝b11 b12 . . .
0 b22 . . .
...

...
. . .

⎞⎟⎠ , where bii �= 0.

Evidently, the group PC is not simply connected.
Fix sj ∈ C and consider the one-dimensional character

χs(B) :=
n∏

j=1

b
sj

jj

of P . The function χs is defined on PC only locally, however this is sufficient for
the arguments of the previous subsection.

This kind of arguments can be easily applied to an arbitrary representation of
a nondegenerate principal series. Keeping in the mind the Subquotient Theorem,
we easily get the following statement.

Observation. Let G be a semisimple Lie group. Then there are (noncanonical)
open sets U1 ⊂ U2 ⊂ GC containing G such that U2 ⊃ U1 · U1 and the following
property holds. Let ρ be an irreducible representation of G in a Fréchet space
W . Then there is a (noncanonical) dense subspace Y ⊂ W (equipped with its
own Fréchet topology) and an operator-valued holomorphic function ρ̃ : U2 →
Hom(Y,W ) such that ρ̃ = ρ on G and

ρ̃(g1)ρ̃(g2)y = ρ̃(g1g2)y for g1, g2 ∈ U1, y ∈ Y
Certainly, the operators ρ̃(g) are unbounded in the topology of Hom(W,W ).

A.9. Crown. D.N. Akhiezer and S.G. Gindikin (see [1]) constructed a certain ex-
plicit domain A ⊂ GC (‘crown’) to which all the spherical functions of a real
semisimple group G can be extended. Also the crown is a domain of holomorphy
of all irreducible representations of G, see B. Krotz, R. Stanton, [9], [10].

The relation of their constructions with our previous considerations are not
completely clear.

A.10. Olshanski semigroups. In all the previous examples, the operators of holo-
morphic continuation are unbounded in the initial topology. There is an important
exception.

Unitary highest weight representations of a semisimple Lie group G admit
holomorphic continuations to a certain subsemigroup Γ ⊂ GC (M.I. Graev [6],
G.I. Olshanski [19]). Since this situation is well understood, we omit further dis-
cussion, see also [18].

A.11. Infinite-dimensional groups. Induction (in different variants) is the main tool
of construction of representations of Lie groups.
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For infinite-dimensional groups the induction exists8 but it is a secondary
tool (however, the algebraic variant of induction is important for infinite-dimen-
sional Lie algebras). A more effective instrument are symplectic and orthogonal
spinors.

Let us realize the standard real orthogonal group O(2n) as a group of
(n+ n)× (n+ n) complex matrices g having the structure

g =
(

Φ Ψ
Ψ Φ

)
that are orthogonal in the following sense

g

(
0 1
1 0

)
gt =

(
0 1
1 0

)
.

Actually we do the following. Consider the space R2n equipped with a standard
basis e1, . . . , en, en+1,. . . , e2n. Then we pass to the space C2n and write matrices
of real orthogonal operators in the basis

e1 + ien+1, e2 + ien+2, . . . , en + ie2n, e1 − ien+1, e2 − ien+2, . . . , en − ie2n

Next, we set n = ∞. Denote by OU(2∞) the group of all bounded matrices
of the same structure satisfying an additional condition: Ψ is a Hilbert–Schmidt
matrix (i.e., the sum

∑ |ψkl|2 <∞).
By the well-known theorem of F.A. Berezin [2], [3] and D. Shale-W. Stine-

spring [20], the spinor representation is well defined on the group OU(2∞).
Numerous infinite-dimensional groups G can be embedded in a natural way

to OU(2∞), after this we can restrict the spinor representation to G.
For instance, for the loop group C∞(S1, SO(2n)) we consider the natural

action in the space L2(S1,R2n) and define the operator of the complex structure
in this space via Hilbert transform (see, for instance, [16]). Applying the spinor
representation, we get the so-called basic representation of the loop group. To
obtain other highest weight representations we apply restrictions and tensoring.

The group OU(2∞) admits a complexification OGL(2∞,C) consisting of
complex matrices g = ( A B

C D ) that are orthogonal in the same sense with Hilbert–
Schmidt blocks B and C. The spinor representation of OU(2∞) admits a holo-
morphic continuation to the complex group OGL(2∞), see [14], [16], the operators
of the holomorphic continuation are unbounded in the initial topology, but are
bounded on a certain dense Fréchet subspace equipped with its own topology.

This produces a highest weight representation of complex loop groups as free
byproducts (see another approach in R. Goodman, N. Wallach [5]).

More interesting phenomenon arises for the group Diff of diffeomorphisms
of circle, in this case the analytic continuation exists in spite of the nonexistence
DiffC, see [15].

8If a group acts on the space with measure, then it acts in L2.
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[10] Krötz, B.; Stanton, R.J. Holomorphic extensions of representations. II. Geometry
and harmonic analysis. Geom. Funct. Anal. 15 (2005), no. 1, 190– 245.

[11] Litvinov, G.L. On completely reducible representations of complex and real Lie
groups. Funct. Anal. Appl., v. 3 (1969), 332–334.

[12] Litvinov, G.L. Group representations in locally convex spaces, and topological group
algebras. (Russian) Trudy Sem. Vektor. Tenzor. Anal. 16 (1972), 267–349; English
transl. in Selecta Math. Soviet. 7 (1988), 101–182.

[13] Nelson, E., Analytic vectors. Ann. Math., 70 (1959), 572–615.

[14] Neretin, Yu.A. On the spinor representation of O(∞, C). Dokl. Akad. Nauk SSSR
289 (1986), no. 2, 282–285. English transl.: Soviet Math. Dokl. 34 (1987), no. 1,
71–74.

[15] Neretin, Yu.A. Holomorphic continuations of representations of the group of diffeo-
morphisms of the circle. Mat. Sbornik 180 (1989), no. 5, 635–657, 720; translation
in Russ. Acad. Sci. Sbornik. Math., v. 67 (1990); available via
www.mat.univie.ac.at/∼neretin

[16] Neretin, Yu.A. Categories of symmetries and infinite-dimensional groups. London
Mathematical Society Monographs, 16, Oxford University Press, 1996.



Ramified Integrals and Group Representations 439

[17] Neretin, Yu.A. A construction of finite-dimensional faithful representation of Lie
algebra. Proceedings of the 22nd Winter School “Geometry and Physics” (Srni, 2002).
Rend. Circ. Mat. Palermo (2) Suppl. No. 71 (2003), 159–161.

[18] Neretin Yu.A. Lectures on Gaussian integral operators and classical groups. Available
via http://www.mat.univie.ac.at/ neretin/lectures/lectures.htm

[19] Olshanskii, G.I. Invariant cones in Lie algebras, Lie semigroups and holomorphic
discrete series. Funct. Anal. Appl. 15, 275–285 (1982).

[20] Shale, D., Stinespring, W.F., Spinor representations of infinite orthogonal groups. J.
Math. Mech. 14 1965 315–322.

Yuri A. Neretin
Math. Dept., University of Vienna
Nordbergstrasse, 15
Vienna, Austria

and

Institute for Theoretical and Experimental Physics
Bolshaya Cheremushkinskaya, 25
Moscow 117259, Russia

e-mail: neretin@mccme.ru

URL: www.mat.univie.ac.at/∼neretin, wwwth.itep.ru/∼neretin



Analysis and Mathematical Physics

Trends in Mathematics, 441–453
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The Stability of Solitary Waves of Depression
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Abstract. We provide a sufficient condition for the orbital stability of negative
solitary-wave solutions of the regularized long-wave equation. In particular,
it is found that solitary waves with speed c < − 1

6
are orbitally stable.
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1. Introduction

In this article, the dynamic stability of negative solitary-wave solutions of the
regularized long-wave equation

ut + ux +
(
u2
)
x
− uxxt = 0, (1.1)

is investigated. This equation which is also called the BBM equation, is used
to model the propagation of small-amplitude surface waves on a fluid running
in a long narrow channel. For an account of modeling properties of (1.1), the
reader may consult the work of Benjamin et al. [6], Peregrine [14] and Whitham
[17]. As is well known, equation (1.1) admits solitary-wave solutions of the form
u(x, t) = Φ(x−ct). Indeed, when this ansatz is substituted into (1.1), there appears
the ordinary differential equation

−cΦ + Φ + cΦ′′ + Φ2 = 0, (1.2)

where Φ′ = dΦ
dξ , for ξ = x− ct. It is elementary to check that a solution of (1.2) is

given by

Φ(ξ) = 3
2 (c− 1) sech2

(
1
2

√
c−1

c ξ
)
. (1.3)

These solutions are strictly positive progressive waves which propagate to the right
without changing their profile over time. As can be seen from the expression (1.3),
solitary waves with positive propagation velocity are defined only when c > 1. It is

This work was supported in part by the Research Council of Norway and the ESF Research
Networking Programme HCAA.
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well known that these positive solitary waves are dynamically stable with respect
to small perturbations. As observed by one of the authors in [12], the formula (1.3)
is still valid when c < 0, resulting in a solitary wave of depression which propagates
to the left. Surprisingly, the stability of these solitary-waves of depression depends
on the speed c. In fact, it was shown in [12] that for negative values of c close to
zero, the solitary waves are unstable.

The original proof of stability of positive solitary waves was given by Ben-
jamin [5] and Bona [7], using previous ideas of Boussinesq concerning the char-
acterization of solitary waves as extremals of a constrained minimization problem
[1, 9]. While the main thrust of their work was in the direction of the Korteweg-
deVries equation

ut + ux +
(
u2
)
x

+ uxxx = 0,

their proof is also applicable to the regularized long-wave equation (1.1). In fact,
the proof of stability of positive solitary waves appears in the appendix of [5]. The
method of Benjamin has subsequently been refined and extended, and a general
theory has been developed [2, 4, 8, 10, 11, 16]. It appears however that almost
all previous work has exclusively focused on positive solitary waves. In order to
treat negative solitary waves, the general theory developed in [10, 16] cannot be
applied straightforwardly, and it is our purpose here to indicate a complete proof
of stability of negative solitary waves. Thus the main contribution of the present
article is the proof of the following theorem.

Theorem. The solitary wave Φ with velocity c is stable if c < − 1
6 .

Observe that this theorem provides a sufficient condition for the stability
of negative solitary waves. We must hasten to mention however that numerical
computations in [12, 13] suggest that our result is not sharp. For the sake of
clarity, we closely follow the original proof of Benjamin without paying much heed
to the more general theory.

Figure 1 is depicting a stable solitary wave of depression, with velocity c =
−1.2 and amplitude maxx |Φ| = 3.3, propagating to the left.

2. Preliminaries

As already observed by Benjamin and others [5, 6], a solitary wave cannot be stable
in the strictest sense of the word. To understand this, consider two solitary-waves
of different height, centered initially at the same point. Since the two waves have
different amplitudes, they have different velocities according to the formula (1.3).
As time passes the two waves will drift apart, no matter how small the initial
difference was. However, in the situation just described, it is evident that two
solitary waves with slightly differing height will stay similar in shape during the
time evolution. Measuring the difference in shape therefore will give an acceptable
notion of stability. This sense of orbital stability was introduced by Benjamin [5].
We say the solitary wave is orbital stable, if for a solution u of the equation (1.1)
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Figure 1. Stable solitary wave of depression with velocity c = −1.2.

that is initially sufficiently close to a solitary-wave will always stay close to a
translation of the solitary-wave during the time evolution. A more mathematically
precise definition is as follows. For any ε > 0, consider the tube

Uε = {u ∈ H1 : inf
s
‖u− τsΦ‖H1 < ε}, (2.1)

where τsΦ(x) = Φ(x− s) is a translation of Φ. The set Uε is an ε-neighborhood of
the collection of all translates of Φ.

Definition 2.1. The solitary wave is stable if for any ε > 0, there exists δ > 0 such
that if u0 = u(·, 0) ∈ Uδ, then u(·, t) ∈ Uε, ∀t ∈ R. The solitary wave Φ is unstable
if Φ is not stable.

The proof of stability is based on the conservation of certain integral quanti-
ties under the action of the evolution equation. Equation (1.1) has four invariant
integrals. In particular, the functionals

V (u) = 1
2

∫ ∞
−∞

(u2 + u2
x) dx, (2.2)

and

E(u) =
∫ ∞
−∞

(1
2u

2 + 1
3u

3) dx, (2.3)

are critically important to the proof of stability of Φ. Note that V (g) = 1
2‖g‖2

H1 .
The properties of these functionals are summarized in the following proposition.
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Proposition 2.2. Suppose u is a smooth solution of (1.1) with sufficient spatial
decay. Then V and E are constant as functions of t, invariant with respect to
spatial translations and continuous with respect to the H1(R)-norm.

Proof. The proof is standard. To see conservation in time for V and E, multiply
the equation by u and (−u− u2 + uxt), respectively. Translation invariance means

V (u) = V (τs(u)); and E(u) = E(τs(u)), ∀s ∈ R.

This follows immediately from the definition. Finally, we prove continuity of E
with respect to the H1(R)-norm. Let {wn} be any sequence in H1(R) such that
limn→∞ ‖wn − w‖H1 = 0. Then∣∣E(wn)− E(w)

∣∣ = ∣∣∣ 1
2

∫ ∞
−∞

[w2
n − w2]dx+ 1

3

∫ ∞
−∞

[w3
n − w3]dx

∣∣∣
≤ 1

2

∣∣∣ ∫ ∞
−∞

(wn − w)(wn + w)dx
∣∣∣ + 1

3

∣∣∣ ∫ ∞
−∞

(wn − w)(w2
n + wnw + w2)dx

∣∣∣.
Using the Cauchy-Schwarz inequality, this can be dominated by

1
2 ‖wn − w‖L2‖wn + w‖L2 + 1

3 ‖wn − w‖L2‖w2
n + wnw + w2‖L2 .

Thus there appears the estimate

|E(wn) − E(w)|

≤ ‖wn − w‖H1

{
1
2

(
‖wn‖H1 + ‖w‖H1

)
+ 1

3

(
‖w2

n‖H1 + ‖wnw‖H1 + ‖w2‖H1

)}
.

This expression approaches 0 as n → ∞, because wnand w ∈ H1(R) imply
‖wrws

n‖H1 <∞ for r, s = 0, 1, 2; Thus, limn→∞ |E(wn)− E(w)| = 0. �

It is well known that the initial value problem for (1.1) is globally well posed.
In fact, as soon as local existence is established, the conservation of the H1-norm
can be exploited to obtain a global solution. For the exact proof, the reader may
consult the articles of Benjamin et al. [6] and Albert and Bona [3].

The notation used in this article is the standard notation in the theory of
partial differential equations. Since all functions considered here are real-valued,
we take the L2-inner product to be 〈f, g〉 =

∫∞
−∞ f(x) g(x) dx. We will also have

occasion to consider the L2-inner product on the half-line, and this will be denoted
by 〈f, g〉L2[0,∞) =

∫∞
0 f(x) g(x) dx.

3. Orbital stability

In this section, orbital stability of the solitary waves of depression will be proved.
Consider for a moment the difference in L2(R) of a solitary wave and a general
solution of (1.1). Intuitively, for each u in H1(R), there is an α ∈ R, such that∫ ∞

−∞

{
u(ξ + α(u)) − Φ(ξ)

}2

dξ = inf
a∈R

∫ ∞
−∞

{
u(ξ + a) − Φ(ξ)

}2

dξ. (3.1)
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If the integral on the right is a differentiable function of a, and ‖u‖L2 = ‖Φ‖L2,
then α(u) could be determined by solving the equation〈

u(·+ α(u)),Φ′
〉

= 0. (3.2)

A formal proof of the existence of a α(u) proceeds with the use the implicit function
theorem as follows.

Proposition 3.1. There is ε > 0, such that there exists a C1-mapping α : Uε −→ R,
with the property that

〈
u(·+ α(u)),Φ′

〉
= 0 for every u ∈ Uε.

Proof. For a given u ∈ Uε, consider the functional

F : (u, α) −→
∫ ∞
−∞

u(ξ + α(u))Φ′(ξ)dξ.

Observe that
dF (Φ, 0)
dα

=
∫ ∞
−∞

(Φ′(ξ))2dξ > 0,

and

F (Φ, 0) =
∫ ∞
−∞

Φ(ξ)Φ′(ξ)dξ. =
1
2

∫ ∞
−∞

d

dξ
Φ2(ξ)dξ =

1
2
[Φ2(∞) − Φ2(−∞)] = 0

Therefore, by the implicit function theorem, there exists a C1-map α(u) near Φ
such that 〈

u(·+ α(u)),Φ′
〉

= 0.
By translation invariance, the size of the neighborhood is the same everywhere.

�

A crucial ingredient in the proof of stability is the fact that for all c less
than some critical speed c∗, the functional E(u) attains its minimum value when
restricted to functions for which V (u) = V (Φ). In fact, we have the following
explicit estimate.

Proposition 3.2. If c < − 1
6 , there are β > 0, and ε > 0 such that

E(u)− E(Φ) ≥ β

2
‖u(·+ α(u)) − Φ‖2

H1 ,

for all u ∈ Uε, satisfying V (u) = V (Φ).

Proof. The demonstration of this theorem follows the ideas outlined in the work of
Benjamin [5]. In that work, however, the focus was on positive solitary waves. To
accommodate negative solitary waves, the proof has to be modified accordingly.

For each u in Uε such that V (u) = V (Φ), let v = u(·+α(u))−Φ, where α is
defined in Proposition 3.1. Let ΔV = V (Φ + v) − V (Φ), and note that ΔV = 0.
However, according to the definition of V , we also have

ΔV =
1
2

∫ ∞
−∞

{
v2 + v′2 + 2Φv + 2Φ′v′

}
dξ. (3.3)
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Defining ΔE in a similar way, we see that

ΔE = E(Φ + v) − E(Φ) =
∫ ∞
−∞

{
1
2v

2 + Φv + Φ2v + Φv2 + 1
3v

3
}
dξ. (3.4)

On the other hand, since ΔV = 0, we may also write

ΔE = ΔE − cΔV.

Therefore, in view of equations (3.3) and (3.4) there appears the expression

ΔE =
∫ ∞
−∞

{
1
2v

2 + Φv2 + 1
3v

3 − 1
2cv

2 − 1
2cv

′2} dξ
+
∫ ∞
−∞

{
Φ− cΦ + Φ2 + cΦ′′

}
v dξ.

Since Φ satisfies (1.2), the integrand of the second integral vanishes identically.
Therefore,

ΔE =
1
2

∫ ∞
−∞

{
−cv′2 + (−c+ 1 + 2Φ)v2

}
dξ +

1
3

∫ ∞
−∞

v3dξ .

Thus we have ΔE = δ2E + δ3E, where δ2E and δ3E are the second and third
variation of E, respectively. In order to obtain a lower bound for δ2E, v is written
as the sum of an even function f and an odd function g. Since Φ itself is even, it
can be shown directly that the even and odd parts of v contribute independently
to δ2E. In other words, we have

δ2E = δ2E(f) + δ2E(g). (3.5)

The contribution to δ2E from even functions is obtained as follows.

Lemma 3.3. If c < − 1
6 , there are positive constants κ1 and κ2 such that

δ2E(f) ≥ κ1‖f‖2
H1 − κ2‖v‖3

H1 .

Proof. The estimate for the lower bound of the contribution of δ2E(f), where f
is an even function will be obtained by comparison with the integral

J =
∫ ∞

0

{
2
√

c
c−1 f

′2 +
[

μ
2

√
c−1

c + 20
3

√
1

c(c−1) Φ
]
f2

}
d ξ,

where μ is a constant to be specified later. The substitution z = 1
2

√
c−1

c ξ yields

Φ = 3
2 (c− 1) sech2z, and puts the integral in the simpler form

J =
∫ ∞

0

{(
∂f
∂z

)2

+
(
μ− 20 sech2z

)
f2
}
dz.

From here one, derivatives with respect to z will be denoted by ∂
∂z , while derivatives

with respect to ξ will be indicated by a prime. Moreover, the integrands will be
interpreted as functions of z or ξ as indicated by the variable of integration. Next,
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we will make use of the spectral theory for a certain linear operator on the Hilbert
space L2(0,∞). Let the operator Le be defined by

Le = − d2

dz2
− 20 sech2z, (3.6)

with domain defined as those functions φ ∈ H2(0,∞) that satisfy the boundary
condition φ′(0) = 0. As it turns out, Le has only two negative eigenvalues:

λ1 = −16 and λ2 = −4,

with corresponding normalized eigenfunctions

ψ1 =
√

35
16 sech4z, and ψ2 =

√
5
8

(
6 sech2z − 7 sech4z

)
. (3.7)

� λ�
λ1 = −16
�λ2 = −4

0 Positive continuous spectrum λ > 0

Figure 2. The spectrum of Le.

The rest of the singular set consists of positive continuous spectrum. Now
it can be seen from the expressions in (3.7) that ψ1 and ψ2 have sech4z as a
common term. Thus we may write sech2z as a linear combination of ψ1 and ψ2.
In particular,

sech2z = 7
6

√
16
35 ψ1 + 1

6

√
8
5 ψ2. (3.8)

The connection between J and Le becomes apparent as follows.〈
Lef, f

〉
L2[0,∞)

=
∫ ∞

0

{
f ′2 − 20 sech2z f2

}
dz.

One should recognize the right-hand side of this equation as the first and last term
in the integral J. By the spectral theorem, the left-hand side of this equation is
equal to

−16 F 2
1 − 4 F 2

2 +
∫ ∞

0

F 2(λ) λdρ(λ), (3.9)

where ρ(λ) is the spectral-function on R. The coefficients F1, F2, and F (λ) are
defined by

F1,2 =
∫ ∞

0

ψ1,2 f(z)dz and F (λ) =
∫ ∞

0

ψ(z;λ)f(z)dz, (3.10)

where ψ(z;λ) is the generalized eigenfunction corresponding to the continuous
spectrum of Le. Moreover, the spectral decomposition

f(z) = F1ψ1 + F2ψ2 +
∫ ∞

0

ψ(z;λ)F (λ)dρ(λ),
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and Parseval’s identity give∫ ∞
0

f2dz = F 2
1 + F 2

2 +
∫ ∞

0

F 2dρ(λ). (3.11)

From equation (3.9) and (3.11), we obtain a new form for the integral J as follows:

J = (μ− 16)F 2
1 + (μ− 4)F 2

2 +
∫ ∞

0

(μ+ λ)F 2dρ(λ). (3.12)

Next, we introduce the notation p = ‖v‖H1 , and write F2 as a linear combination
of F1 and p2. Here, the constraint ΔV = 0 will play a major role. According to
equation (3.3), the constraint ΔV = 0 is equivalent to

−p2 = 2
∫ ∞
−∞

(Φv + Φ′v′) dξ.

On the right-hand side, use integration by parts in the last term yields

−p2 = 2
∫ ∞
−∞

(Φ− Φ′′) v dξ.

In light of equation (1.2) and the fact that Φ is an even function, this equation
can be put in the form

−p2 =
4
c

∫ ∞
0

(Φ + Φ2) f dξ.

On the right-hand side of this equation, use the expression (1.3) for Φ, and make

a change variable z = 1
2

√
c−1

c ξ. Then (3.7) and (3.10) can be used to put the
equation in the form∫ ∞

0

sech2z fdz = − 3
2

√
16
35 (c− 1)F1 − 1

12

√
c

c−1 p
2. (3.13)

Using the definition of F2, (3.13), the definition of F1, it appears that

F2 = AF1 + Ip2,

where A and I are defined by

A = (−9c+ 2)
√

2
7 , and I = − 1

2

√
5
8

√
c

c−1 . (3.14)

Thus equation (3.12) becomes

J =
[
μ− 16 + (μ− 4)A2

]
F 2

1 + (μ− 4)(2AIF1p
2 + I2p4) +

∫ ∞
0

(μ+ λ)F 2 dρ(λ).

Now for positive μ, the integral term is nonnegative. We choose μ is such a way
that the coefficient of F 2

1 in the expression for J is nonnegative. Thus we need

μ ≥ 4(4 +A2)
1 +A2

. (3.15)
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Since 4(4+A2)
1+A2 > 4, the coefficient (μ − 4) is then automatically also positive.

Therefore, with this choice of μ, J can be estimated below by

J ≥ 24
1 +A2

AIF1p
2.

By using straightforward inequalities

F 2
1 ≤
∫ ∞

0

f2dz ≤ 1
2

∫ ∞
−∞

v2dz ≤ 1
2

∫ ∞
−∞

{
v2 + 1

4
c−1

c v′2
}
dz

=
1
4

√
c−1

c

∫ ∞
−∞

{
v2 + v′2

}
dξ =

1
4

√
c−1

c p2,

we obtain the lower bound for the integral as

J ≥ 12AI
1 +A2

(
c−1

c

) 1
4 ‖v‖3

H1 . (3.16)

Finally, a lower bound for the even contribution to δ2E is found as follows.

δ2E(f) =
∫ ∞

0

{
− 2c

5 f
′2 + (−c+ 1)

(
1 − 3

20 μ
)
f2
}
dξ +

3
10

√
c(c− 1) J

≥ 1
2

∫ ∞
−∞

{
− 2c

5 f
′2 + (−c+ 1)

(
1 − 3

20μ
)
f2
}
dξ

+
18AI

5(1 +A2)

√
c(c− 1)

(
c−1

c

) 1
4 ‖v‖3

H1 .

Now we need the coefficient 1− 3
20μ to be positive, and considering (3.15), this is

possible only if 20
3 > μ ≥ 4(4+A2)

1+A2 . But by (3.14), this inequality can be satisfied
only if c < − 1

6 . Thus as long as c < − 1
6 , we have the estimate

δ2E(f) ≥ κ1

∫ ∞
−∞

(
f ′2 + f2

)
dξ − κ2‖v‖3

H1 , (3.17)

where κ1 = min
(
− c

5 ,
1
2 (−c + 1)(1 − 3

20μ)
)
, and κ2 = −18AI

5(1+A2)

√
c(c− 1)

(
c−1

c

) 1
4

are positive constants. �

Next, we turn to the contribution to δ2E from the odd part of v.

Lemma 3.4. For all c < 0, there holds the estimate

δ2E(g) ≥ −c
8
‖g‖2

H1 .

Proof. For the odd contribution to δ2E, the result in Proposition 3.1 will play an
important role. By virtue of this result, we have∫ ∞

−∞
(Φ + v)Φ′dξ = 0.
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Since Φ is even, this is the same as∫ ∞
−∞

gΦ′dξ = 0. (3.18)

Let s be a positive constant, and consider the linear operator

Lo =
1
s

[
− d2

dξ2
− 3s sech2

(
1
2

√
s ξ
)]
, (3.19)

defined on those functions φ ∈ H2(0,∞) that satisfy the boundary condition
φ(0) = 0. As illustrated in Figure 3, Lo has only one negative eigenvalue λ1 = −1
with corresponding eigenfunction

θ1 =
d

dξ

{
3s sech2

(
1
2

√
s ξ
)}
, (3.20)

and the rest of the spectrum of Lo is positive continuous [5].

� λ�λ1 = −1

0 Positive continuous spectrum λ > 0

Figure 3. The spectrum of Lo.

Now the spectral theorem asserts that

〈Log, g〉L2[0,∞) = −〈g, θ1〉2L2[0,∞) +
∫ ∞

0

λG2(λ)dρ(λ),

where G(λ) =
∫∞
0
θ(ξ;λ)g(ξ)dξ, and θ(ξ;λ) is a generalized eigenfunction of Lo.

If we now choose s = c−1
c , where c < 0 then it follows from (3.18) that

〈g, θ1〉L2[0,∞) = 0.

Thus we obtain
〈Log, g〉L2[0,∞) ≥ 0. (3.21)

On the other hand, after integration by parts, there appears

0 ≤ 〈Log, g〉L2[0,∞) =
c

c− 1

∫ ∞
0

{
g′2 − 3 c−1

c sech2
(

1
2

√
c−1

c ξ
)
g2
}
dξ.

Thus it is immediate that the following integral is nonnegative.

K =
∫ ∞

0

{
g′2 − 2

cΦ g2
}
dξ ≥ 0. (3.22)

The contribution to δ2E due to the odd part of v may now be estimated by
comparison with the integral K.

δ2E(g) = −3c
4
K +

1
2

∫ ∞
0

{
Φ+ 3

2 (−c+1)
}
g2dξ+

1
4

∫ ∞
0

{
− cg′2 +(−c+1) g2

}
dξ.
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In light of (3.22), −c+1 ≥ −c, and the fact that Φ ≥ 3
2 (c−1) [cf.(1.3) with c < 0],

there follows

δ2E(g) ≥ −c
8

∫ ∞
−∞

(
g′2 + g2

)
dξ . (3.23)

�

Proof of Proposition 3.2: Using (3.5), Lemma (3.3), and Lemma (3.4), it is plain
that

δ2E ≥ β

∫ ∞
−∞

(v′2 + v2)dξ − κ2‖v‖3
H1 , (3.24)

where β = min(−c
8 , κ1) is a positive constant, and κ1 and κ2 are defined in (3.17).

Now using the inequality supξ∈R |v(ξ)| ≤ 1√
2
‖v‖H1

1, there appears an esti-
mate for δ3E.

δ3E = −1
3

∫ ∞
−∞

(−v)v2dξ ≥ −1
3

sup |v|
∫ ∞
−∞

v2dξ ≥ − 1
3
√

2
‖v‖3

H1 . (3.25)

Combining (3.24) and (3.25) yields the final estimate

ΔE ≥ β

∫ ∞
−∞

(v′2 + v2)dξ − γ‖v‖3
H1 = ‖v‖2

H1(β − γ‖v‖H1).

where γ = κ2 + 1
3
√

2
. Therefore, if ‖v‖H1 is sufficiently small, say ‖v‖H1 < β

2γ , we
obtain

ΔE ≥ β

2
‖v‖2

H1 . �

Finally, we will close this section by showing a necessary condition for stability
of the solitary-wave.

Theorem. The solitary wave Φ with velocity c is stable if c < − 1
6 .

Proof. The proof is based on the techniques of of Bona, Grillakis, Souganidis
Shatah, and Strauss in [8, 10]. In particular, the theorem will be proved by con-
tradiction as follows. Suppose Φ is not stable, then there exists an ε > 0, and a se-
quence of initial data u0

n ∈ H1(R) and corresponding solutions un ∈ C(R, H1(R))
with un(·, 0) = un

0 , such that

lim
n→∞ ‖u0

n − Φ‖H1 = 0, (3.26)

but
sup
t>0

inf
s∈R

‖un(·, t) − τsΦ(·)‖H1 ≥ 1
2ε,

for large enough n. By the continuity of un in t, we can pick the first time tn so
that

inf
s∈R

‖un(·, tn) − τsΦ(·)‖H1 = 1
2 ε. (3.27)

In other words, un(·, tn) ∈ ∂U 1
2 ε.

1This is known as the Sobolev lemma. The reader may refer to [5] for a simple proof.
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Since V is continuous in H1(R) and invariant under time evolution, we have
limn→∞ V (u0

n) = V (Φ), and consequently

lim
n→∞V (u(·, tn)) = V (Φ). (3.28)

Choose a sequence wn ∈ H1(R), such that V (wn) = V (Φ) and limn→∞ ‖wn −
un(·, tn)‖H1 = 0. 2 Note that by H1-continuity of E, and time invariance,

lim
n→∞

[
E(wn)− E(Φ)

]
= 0,

and also note that wn ∈ Uε for large n. On the other hand, so long as ε is small
enough, Proposition (3.2) shows that

E(wn) − E(Φ) ≥ β

2
‖wn(·+ α(wn)) − Φ‖2

H1 ,

where β is the constant defined in (3.24). Therefore, since α(u) is a continuous
function, it appears that

lim
n→∞ ‖un(·, tn) − Φ(· − α(un(·, tn)))‖H1 = 0.

Finally, this is a contradiction to (3.27) �
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Singular and Tangent Slit Solutions
to the Löwner Equation

Dmitri Prokhorov and Alexander Vasil’ev

Abstract. We consider the Löwner differential equation generating univalent
maps of the unit disk (or of the upper half-plane) onto itself minus a single
slit. We prove that the circular slits, tangent to the real axis are generated by
Hölder continuous driving terms with exponent 1/3 in the Löwner equation.
Singular solutions are described, and the critical value of the norm of driving
terms generating quasisymmetric slits in the disk is obtained.
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1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk and T := ∂D. The famous Löwner
equation was introduced in 1923 [3] in order to represent a dense subclass of the
whole class of univalent conformal maps f(z) = z(1 + c1z + · · · ) in D by the limit

f(z) = lim
t→∞ etw(z, t), z ∈ D,

where w(z, t) = e−tz(1 + c1(t)z + · · · ) is a solution to the equation

dw

dt
= −we

iu(t) + w

eiu(t) − w
, w(z, 0) ≡ z, (1)

with a continuous driving term u(t) on t ∈ [0,∞), see [3, page 117]. All functions
w(z, t) map D onto Ω(t) ⊂ D. If Ω(t) = D \ γ(t), where γ(t) is a Jordan curve in D

except one of its endpoints, then the driving term u(t) is uniquely defined and we
call the corresponding map w a slit map. However, from 1947 [5] it is known that

The first author was partially supported by the Russian Foundation for Basic Research (grant
07-01-00120) and the second by the grants of the Norwegian Research Council #177355/V30,

the European Science Foundation RNP HCAA, and the Scandinavian Network Analysis and
Applications (Nordforsk).
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solutions to (1) with continuous u(t) may give non-slit maps, in particular, Ω(t)
can be a family of hyperbolically convex digons in D.

Marshall and Rohde [4] addressed the following question: Under which con-
dition on the driving term u(t) the solution to (1) is a slit map? Their result states
that if u(t) is Lip(1/2) (Hölder continuous with exponent 1/2), and if for a certain
constant CD > 0, the norm ‖u‖1/2 is bounded ‖u‖1/2 < CD, then the solution w is
a slit map, and moreover, the Jordan arc γ(t) is s quasislit (a quasiconformal im-
age of an interval within a Stolz angle). As they also proved, a converse statement
without the norm restriction holds. The absence of the norm restriction in the lat-
ter result is essential. On one hand, Kufarev’s example [5] contains ‖u‖1/2 = 3

√
2,

which means that CD ≤ 3
√

2. On the other hand, Kager, Nienhuis, and Kadanoff
[1] constructed exact slit solutions to the half-plane version of the Löwner equation
with arbitrary norms of the driving term.

Let us give here the half-plane version of the Löwner equation. Let H = {z :
Im z > 0}, R = ∂H. The functions h(z, t), normalized near infinity by h(z, t) =
z − 2t/z + b−2(t)/z2 + · · · , solving the equation

dh

dt
=

−2
h− λ(t)

, h(z, 0) ≡ z, (2)

where λ(t) is a real-valued continuous driving term, map H onto a subdomain of
H. The question about the slit mappings and the behaviour of the driving term
λ(t) in the case of the half-plane H was addressed by Lind [2]. The techniques
used by Marshall and Rohde carry over to prove a similar result in the case of the
equation (2), see [4, page 765]. Let us denote by CH the corresponding bound for
the norm ‖λ‖1/2. The main result by Lind is the sharp bound, namely CH = 4.

In some papers, e.g., [1, 2], the authors work with equations (1, 2) changing
(–) to (+) in their right-hand sides, and with the mappings of slit domains onto
D or H. However, the results remain the same for both versions.

Marshall and Rohde [4] remarked that there exist many examples of driving
terms u(t) which are not Lip(1/2), but which generate slit solutions with simple
arcs γ(t). In particular, if γ(t) is tangent to T, then u(t) is never Lip(1/2).

Our result states that if γ(t) is a circular arc tangent to R, then the driving
term λ(t) ∈Lip(1/3). Besides, we prove that CD = CH = 4, and consider properties
of singular solutions to the one-slit Löwner equation.

The authors are grateful for the referee’s remarks which improved the pre-
sentation.

2. Circular tangent slits

We shall work with the half-plane version of the Löwner equation and with the
sign (+) in the right-hand side, consequently with the maps of slit domains onto H.

We construct a mapping of the half-plane H slit along a circular arc γ(t)
of radius 1 centered on i onto H starting at the origin directed, for example,
positively. The inverse mapping we denote by z = f(w, t) = w− 2t/w+ · · · . Then
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ζ = 1/f(w, t) maps H onto the lower half-plane slit along a ray co-directed with R+

and having the distance 1/2 between them. Let ζ0 be the tip of this ray. Applying
the Christoffel-Schwarz formula we find f in the form

1
f(w, t)

=

1/w∫
0

(1 − γw) dw
(1 − αw)2(1 − βw)

=
β − γ

(α− β)2
log

w − α

w − β
+
α− γ

α− β

1
w − α

, (3)

where the branch of logarithm vanishes at infinity, and f(w, t) is expanded near
infinity as

f(w, t) = w − 2t
w

+ · · ·
The latter expansion gives us two conditions: there is no constant term and the
coefficient is −2t at w, which implies γ = 2α + β and α(α + 2β) = −6t. The
condition Im ζ0 = −1/2 yields

−2α
(α− β)2

=
1
2π
.

Then, β = α+2
√
−απ, and α(3α+4

√
−απ) = −6t. Considering the latter equation

with respect to α we expand the solution α(t) in powers of t1/3. Hence,

α(t) = −
(

9
4π

)1/3

t2/3 +A2t+A3t
4/3 + · · ·

and
β(t) = (12π)1/3t1/3 +B2t

2/3 + · · ·
Formula (3) in the expansion form regarding to 1/w gives

β − α

2π
1
w

+
β2 − α2

4π
1
w2

+· · ·+
(

1 + 2
α

β
+ 2

α2

β2
+ · · ·

)(
1
w

+
α

w2
+ · · ·

)
= ζ. (4)

Remember that this formula is obtained under the conditions γ = 2α + β and
(α − β)2 = 4απ. We substitute the expansions of α(t) and β(t) in this formula
and consider it as an equation for the implicit function w = h(z, t). Calculating
coefficients B2 . . . B4 in terms of A2, . . . , A4, and verifying A2 = −3/4π we come
to the following expansion for h(z, t):

w = h(z, t) = h(
1
ζ
, t) =

1
ζ

+ 2ζt+
3
2
(12π)1/3t4/3 + · · · .

This version of the Löwner equation admits the form
dh

dt
=

2
h− λ(t)

, h(z, 0) ≡ z. (5)

Being extended onto R \ λ(0) the function h(z, t) satisfies the same equation. Let
us consider h(z, t), z ∈ Ĥ \ λ(0) with a singular point at λ(0), where Ĥ is the
closure of H. Then

λ(t) = h(z, t)− 2
dh(z, t)/dt

= λ(0) + (12π)1/3t1/3 + · · ·
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about the point t = 0. Thus, the driving term λ(t) is Lip(1/3) about the point
t = 0 and analytic for the rest of the points t.

Remark 2.1. The radius of the circumference is not essential for the properties of
λ(t). Passing from h(z, t) to the function 1

rh(rz, t) we recalculate the coefficients of
the function h(z, t) and the corresponding coefficients in the expansion of λ(t) that
depend continuously on r. Therefore, they stay within bounded intervals whenever
r ranges within the bounded interval.

Remark 2.2. In particular, the expansion for h(z, t) reflects the Marshall and Ro-
hde’s remark [4, page 765] that the tangent slits can not be generated by driving
terms from Lip(1/2).

3. Singular solutions for slit images

Suppose that the Löwner equation (5) with driving term λ(t) generates a map
h(z, t) from Ω(t) = H \ γ(t) onto H, where γ(t) is a quasislit. Extending h to the
boundary ∂Ω(t) we obtain a correspondence between γ(t) ⊂ ∂Ω(t) and a segment
I(t) ⊂ R, while the remaining boundary part R = ∂Ω(t) \ γ(t) corresponds to
R \ I(t). The latter mapping is described by solutions to the Cauchy problem for
the differential equation (5) with the initial data h(x, 0) = x ∈ R \ λ(0). The set
{h(x, t) : x ∈ R \ λ(0)} gives R \ I(t), and λ(t) does not catch h(x, t) for all t ≥ 0,
see [2] for details.

The image I(t) of γ(t) can be also described by solutions h(λ(0), t) to (5),
but the initial data h(λ(0), 0) = λ(0) forces h to be singular at t = 0 and to possess
the following properties.

(i) There are two singular solutions h−(λ(0), t) and h+(λ(0), t) such that I(t) =
[h−(λ(0), t), h+(λ(0), t)].

(ii) h±(λ(0), t) are continuous for t ≥ 0 and have continuous derivatives for all
t > 0.

(iii) h−(λ(0), t) is strictly decreasing and h+(λ(0), t) is strictly increasing, so that
h−(λ(0), t) < λ(t) < h+(λ(0), y).

We will focus on studying the singularity character of h± at t = 0.

Theorem 3.1. Let the Löwner differential equation (5) with the driving term λ ∈
Lip(1/2), ‖λ‖1/2 = c, generate slit maps h(z, t) : H \ γ(t) → H where γ(t) is a
quasislit. Then h+(λ(0), t) satisfies the condition

lim
t→0+

sup
h+(λ(0), t) − h+(λ(0), 0)√

t
≤ c+

√
c2 + 16
2

,

and this estimate is the best possible.

Proof. Assume without loss of generality that h+(λ(0), 0) = λ(0) = 0. Denote
ϕ(t) := h+(λ(0), t)/

√
t, t > 0. This function has a continuous derivative and
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satisfies the differential equation

tϕ′(t) =
2

ϕ(t) − λ(t)/
√
t
− ϕ(t)

2
.

This implies together with Property (iii) that ϕ′(t) > 0 iff

λ(t)√
t
< ϕ(t) < ϕ1(t) :=

λ(t)
2
√
t

+

√
λ2(t)
4t

+ 4.

Observe that ϕ1(t) ≤ A := (c+
√
c2 + 16)/2.

Suppose that limt→0+ supϕ(t) = B > A, including the case B = ∞. Then
there exists t∗ > 0, such that ϕ(t∗) > B − ε > A, for a certain ε > 0. If B = ∞,
then replace B − ε by B′ > A. Therefore, ϕ′(t∗) < 0 and ϕ(t) increases as t runs
from t∗ to 0. Thus, ϕ(t) > B − ε for all t ∈ (0, t∗) and we obtain from (5) that

dh+(λ(0), t)
dt

≤ 2√
t(B − ε− c)

,

for such t. Integrating this inequality we get

h+(λ(0), t) ≤ 4
√
t

B − ε− c
<

4
√
t

A− c
,

that contradicts our supposition. This proves the estimate of Theorem 3.1.
In order to attain the equality sign in Theorem 3.1, one chooses λ(t) =

c
√
t. Then h+(λ(0), t) = A

√
t solves equation (5) with singularity at t = 0. This

completes the proof. �

Remark 3.1. Estimates similar to Theorem 3.1 hold for the other singular solution
h−(λ(0).t).

Remark 3.2. Let us compare Theorem 3.1 with the results from Section 2. The im-
age of a circular arc γ(t) ⊂ H tangent to R is I(t) = [h−(λ(0), t), h+(λ(0), t)],
where h−(λ(0), t) = α(t) = −(9/4π)1/3t2/3 + · · · , and h+(λ(0), t) = β(t) =
(12π)1/3t1/3 + · · · , so that h−(λ(0), t) ∈ Lip(2/3) and h+(λ(0), t) ∈ Lip(1/3).

Remark 3.3. Singular solutions to the differential equation (5) appear not only at
t = 0 but at any other moment τ > 0. More precisely, there exist two families
h−(γ(τ), t) and h+(γ(τ), t), τ ≥ 0, t ≥ τ , of singular solutions to (5) that describe
the image of arcs γ(t), t ≥ τ under map h(z, t). They correspond to the initial
data h(γ(τ), τ) = λ(τ) in (5) and satisfy the inequalities h−(γ(τ), t) < λ(t) <
h+(γ(τ), t), t > τ . These two families of singular solutions have no common inner
points and fill in the set

{(x, t) : h−(λ(0), t) ≤ x ≤ h+(λ(0), t), 0 ≤ t ≤ t0},

for some t0.
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4. Critical norm values for driving terms

In this section we discuss the results and techniques of Marshall and Rohde [4]
and Lind [2]. The authors of [4] proved the existence of CD such that driving terms
u(t) ∈ Lip(1/2) with ‖u‖1/2 < CD in (1) generate quasisymmetric slit maps. This
result remains true for an absolute number CH in the half-plane version of the
Löwner differential equation (2), see, e.g., [2].

Lind [2] claimed that the disk version (1) of the Löwner differential equation
is ‘more challenging’, than the half-plane version (2). Working with the half-plane
version she showed that CH = 4. The key result is based on the fact that if
λ(t) ∈ Lip(1/2) in (2), and h(x, t) = λ(t), say at t = 1, then Ω(t) = h(H, t) is not
a slit domain and ‖λ‖1/2 ≥ 4. Moreover, there is an example of λ(t) = 4−4

√
1 − t

that yields h(2, 1) = λ(1). Although there may be more obstacles for generating
slit half-planes than that of the driving term λ catching up some solution h to
(2), Lind showed that this is basically the only obstacle. The latter statement was
proved by using techniques of [4].

We will modify here the main Lind’s reasonings so that they could be applied
to the disk version of the Löwner equation. After that it remains to refer to [4]
and [2] to state that CD also equals 4.

Suppose that slit disks Ω(t) correspond to u ∈ Lip(1/2) in (1) with the
sign ‘+’ in its right-hand side instead of ‘−’. Then the maps w(z, t) are extended
continuously to T \ {eiu(0)}. Let z0 ∈ T \ {eiu(0)}, and let α(t, α0) := argw(z0, t)
be a solution to the following real-valued initial value problem

dα(t)
dt

= cot
α− u

2
, α(0) = α0. (6)

Similarly, suppose that slit half-planes Ω(t) correspond to λ ∈ Lip(1/2) in
(2) with the sign ‘+’ in its right-hand side instead of ‘−’. Then the maps h(z, t)
are extended continuously to R\λ(0). Let x0 ∈ R\λ(0) and let x(t, x0) := h(x0, t)
be a solution to the following real-valued initial value problem

dx(t)
dt

=
2

x(t) − λ(t)
, x(t0) = x0. (7)

For all t ≥ 0, tan((α(t) − u(t))/2) �= 0 in (6), and x(t) − λ(t) �= 0 in (7) (see
[2] for the half-plane version). Let us show a connection between the solutions α(t)
to (6), and x(t) to (7), where the driving terms u(t) and λ(t) correspond to each
other.

Lemma 4.1. Given λ(t) ∈ Lip(1/2), there exists u(t) ∈ Lip(1/2), such that equa-
tions (6) and (7) have the same solutions. Conversely, given u(t) ∈ Lip(1/2) there
exists λ(t) ∈ Lip(1/2), such that equations (6) and (7) have the same solutions.

Proof. Given λ(t) ∈ Lip(1/2), denote by x(t, x0) a solution to the initial value
problem (7). Then the solution α(t, α0) to the initial value problem (6) is equal to
x(t, α0) when

tan
α− u

2
=
x− λ

2
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and

x0 = λ(0) + 2 tan
α0 − u(0)

2
.

The function u(t) is normalized by choosing

u(0) = x0 − arctan
x0 − λ(0)

2
.

This condition makes α0 and x0 equal. Hence, the first part of Lemma 1 is true if
we put

u(t) = x(t, x0) − 2 arctan
x(t, x0) − λ(t)

2
. (8)

Obviously, (8) preserves the Lip(1/2) property.
Conversely, given u(t) ∈ Lip(1/2), a solution x(t, x0) is equal to α(t, α0) when

λ(t) = α(t, α0) − 2 tan
α(t, α0) − u(t)

2
. (9)

Again (9) preserves the Lip(1/2) property. This ends the proof. �

Observe that in some extreme cases relations (8) or (9) preserve not only the
Lipschitz class but also its norm. Lind [2] gave an example of the driving term
λ(t) = 4 − 4

√
1 − t in (7). It is easily verified that x(t, 2) = 4 − 2

√
1 − t. If t = 1,

then x(1, 2) = λ(1) = 4, and λ cannot generate slit half-plane at t = 1. This
implies that CH ≤ 4. Going from (7) to (6) we use (8) to put

u(t) = x(t, 2) − 2 arctan
x(t, 2) − λ(t)

2
= 4 − 2

√
1 − t− 2 arctan

√
1 − t.

From Lemma 4.1 we deduce that α(1, 2) = u(1). Hence u cannot generate slit disk
at t = 1, and CD ≤ ‖u‖1/2. Since

sup
0≤t<1

u(1)− u(t)√
1 − t

= sup
0≤t<1

(
2 + 2

arctan
√

1 − t√
1 − t

)
= 4,

we have that ‖u‖1/2 ≤ 4. It is now an easy exercise to show that ‖u‖1/2 = 4. This
implies that CD ≤ 4.

Lemma 4.2. Let u ∈ Lip(1/2) in (6) with u(0) = 0 and α0 ∈ (0, π). Suppose that
α(t) is a solution to (6) and α(1) = u(1). Then ‖u‖1/2 ≥ 4.

Proof. Observe that α(t) is increasing on [0, 1], and α(t) − u(t) > 0 on (0, 1). Let
u ∈ Lip(1/2) in (3), and ‖u‖1/2 = c. Then,

α(t) − u(t) ≤ α(1)− u(1) + c
√

1 − t = c
√

1 − t. (10)

Given ε > 0, there exists δ > 0, such that

tan
c
√

1 − t

2
<
c
√

1− t

2
(1 + ε),
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for 1 − δ < t < 1 and all 0 < c ≤ 4. We apply this inequality to (6) and obtain
that

dα

dt
≥ cot

c
√

1 − t

2
>

2
c
√

1− t(1 + ε)
.

Integrating gives that

α(1) − α(t) ≥ 4
√

1− t

c(1 + ε)
.

This allows us to improve (10) to

α(t) − u(t) ≤ α(1) − 4
√

1 − t

c(1 + ε)
− u(1) + c

√
1 − t =

(
c− 4

c(1 + ε)

)√
1 − t. (11)

Repeating these iterations we get

α(t) − u(t) ≤ cn
√

1 − t,

where c0 = c, cn+1 = c − 4/[(1 + ε)cn], and cn > 0. Let gn be recursively defined
by (see Lind [2])

g1(y) = y − 4
y
, gn(y) = y − 4

gn−1(y)
, n ≥ 2.

It is easy to check that cn < gn((1 + ε)c) < (1 + ε)cn
Lind [2] showed that gn(yn) = 0 for an increasing sequence {yn}, and gn+1(y)

is an increasing function from (yn,∞) to R. So c(1+ε) > yn for all n, and it remains
to apply Lind’s result [2] that limn→∞ yn = 4. Hence, c ≥ 4/(1+ ε). The extremal
estimate is obtained if ε→ 0 which leads to c ≥ 4. This completes the proof. �

Now Lind’s reasonings in [2] based on the techniques from [4] give a proof of
the following statement.

Proposition 4.1. If u ∈ Lip(1/2) with ‖u‖1/2 < 4, then the domains Ω(t) generated
by the Löwner differential equation (1) are disks with quasislits.

In other words, Proposition 4.1 states that CD = CH = 4.
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Abstract. It is shown that tube sets over amoebas of algebraic varieties of di-
mension q in Cn

∗ (and, more generally, of almost periodic holomorphic chains
in Cn) are q-pseudoconcave in the sense of Rothstein. This is a direct conse-
quence of a representation of such sets as supports of positive closed currents.
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1. Introduction

Let V be an algebraic variety in Cn
∗ = (C \ 0)n. Its image AV = LogV under

the mapping Log (z1, . . . , zn) = (log |z1|, . . . , log |zn|) is called the amoeba of A.
The notion was introduced in [9] and has found numerous applications in complex
analysis and algebraic geometry, see the survey [11].

The amoeba of V is a closed set with non-empty complement Ac
V = Rn \AV .

If V is of codimension 1, then each component of Ac
V is convex because Log−1(Ac

V )
is the intersection of a family of domains of holomorphy. This is no longer true for
varieties of higher codimension; nevertheless, some rudiments of convexity do take
place. As shown by Henriques [10], if codimV = k, then Ac

V is (k − 1)-convex, a
notion defined in terms of homology groups for sections by k-dimensional affine
subspaces. A local result, due to Mikhalkin [11], states that AV has no supporting
k-cap, i.e., a ball B in a k-dimensional plane such that AV ∩B is nonempty and
compact, while AV ∩ (B+ εv) = ∅ for some v ∈ Rn and all sufficiently small ε > 0.

The notion of amoeba was adapted by Favorov [3] to zero sets of holomorphic
almost periodic functions in a tube domain as “shadows” cast by the zero sets to
the base of the domain; a precise definition is given in Section 4. In [2], Henriques’
result was extended to amoebas of zero sets of so-called regular holomorphic almost
periodic mappings. This was done by a reduction to the case considered in [10]
where the proof was given by methods of algebraic geometry.
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In this note, we propose a different approach to convexity properties of amoe-
bas in higher codimensions. It is purely analytical and works equally well for both
algebraic and almost periodic situations. Moreover, we get our (pseudo)convexity
results as a by-product of a representation of an amoeba as the support of a certain
natural measure determined by the “density” of the zero set.

Let us start with a hypersurface case. When V = {P (z) = 0} ⊂ Cn∗ is defined
by a Laurent polynomial P , the function

NP (y) =
1

(2π)n

∫
[−π,π]n

log |P (ey1+iθ1 , . . . , eyn+iθn)| dθ,

known in tropical mathematics community as the Ronkin function, is convex in
Rn and linear precisely on each connected component of Ac

V . This means that the
support of the current ddcNP (Im z) equals TAV = Rn + iAV , the tube set in Cn

with base AV . Since the complement to the support of a positive closed current of
bidegree (1, 1) is pseudoconvex (being a domain of existence for a pluriharmonic
function), this implies pseudoconvexity of TAc

V
and thus convexity of every compo-

nent of Ac
V . Of course, the function NP gives much more than simply generating

the amoeba (see, for example, [18], [8], [12]).
The same reasoning applies to amoebas of holomorphic almost periodic func-

tions f with Ronkin’s function NP replaced by the mean value Mf (y) of log |f |
over the real planes {x+ iy : x ∈ Rn}, y ∈ Rn.

What we will do in the case of codimension k > 1, is presenting TAV as
the support of a closed positive current of bidegree (k, k) (namely, a mean value
current for the variety or, more generally, for a holomorphic chain) and then using
a theorem on (n − k)-pseudoconcavity, in the sense of Rothstein, of supports of
such currents due to Fornaess and Sibony [7]. In addition, we show that for a
closed set Γ ⊂ Rn, Rothstein’s (n− k)-pseudoconcavity of TΓ implies the absence
of k-supporting caps of Γ (Proposition 2.2).

We obtain our main result, Theorem 4.1, for arbitrary almost periodic holo-
morphic chains, which is a larger class than zero sets of regular almost periodic
holomorphic mappings, and the situation with algebraic varieties (Corollary 4.2)
is a direct consequence. The existence of the mean value currents was established
in [4], so we just combine it together with the theorem on supports of positive
closed currents. In this sense, this note is just a simple illustration of how useful
the mean value currents are.

2. Rothstein’s q-pseudoconvexity

We will use the following notion of q-pseudoconvexity, due to W. Rothstein [19],
see also [14]. Given 0 < q < n and α, β ∈ (0, 1), the set

H = {(z, w) ∈ Cn−q × Cq : ‖z‖∞ < 1, ‖w‖∞ < α or β < ‖z‖∞ < 1, ‖w‖∞ < 1}
is called an (n− q, q)-Hartogs figure; here ‖z‖∞ = maxj |zj |. Note that its convex
hull Ĥ is the unit polydisc in Cn. An open subset Ω of a complex n-dimensional
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manifold M is said to be q-pseudoconvex in M if for any (n−q, q)-Hartogs figure H
and a biholomorphic map Φ : Ĥ →M , the condition Φ(H) ⊂ Ω implies Φ(Ĥ) ⊂ Ω.
If this is the case, we will also say that M \ Ω is q-pseudoconcave in M .

Loosely speaking, the q-pseudoconvexity is the Kontinuitätssatz with respect
to (n−q)-polydiscs; usual pseudoconvexity is equivalent to (n−1)-pseudoconvexity.

Theorem 2.1. ([7], Cor. 2.6) The support of a positive closed current of bidimension
(q, q) on a complex manifold M is q-pseudoconcave in M .

It is easy to see that for tube sets, (n − k)-pseudoconcavity implies absence
of k-caps in the sense of Mikhalkin.

Proposition 2.2. Let Γ be a closed subset of a convex open set D ⊂ Rn. If the tube
set TΓ = Rn + iΓ is (n−k)-pseudoconcave in the tube domain TD = Rn + iD, then
Γ has no k-supporting caps.

Proof. Assume Γ has a k-supporting cap B. We assume that the vector v in the
definition of the cap is orthogonal to B (in the general case, one gets an image of
a Hartogs figure under a non-degenerate linear transform). Choose coordinates in
Rn such that

B = {(y′, y′′) ∈ Rk × Rn−k : ‖y′‖∞ < 1, y′′ = 0},
{β < ‖y′‖∞ < 1, ‖y′′‖∞ < 1} ⊂ D \ Γ, β ∈ (0, 1),

and B + εv ⊂ D \ Γ for all ε ∈ (0, 1), where v = (0, v′′), ‖v′′‖∞ = 1. Since D is
open, {y : ‖y′‖∞ < 1, ‖y′′ − 1

2v
′′‖∞ < α} ⊂ D \ Γ for some α ∈ (0, 1). Therefore,

the i
2v
′′-shift of the corresponding (k, n − k)-Hartogs figure H is a subset of the

tube set TD \TΓ. Since B is a subset of the shifted polydisc Ĥ+ i
2v
′′ and B∩Γ �= ∅,

the set TΓ is not (n− k)-pseudoconcave. �

3. Almost periodic holomorphic chains

Here we recall some facts from Ronkin’s theory of holomorphic almost periodic
mappings and currents; for details, see [15], [17], [4], [5], and the survey [6].

Let Tt denote the translation operator on Rn by t ∈ Rn, then for any function
f on Rn, (T ∗t f)(x) = f(Ttx) = f(x+ t).

A continuous mapping f from Rn to a metric spaceX is called almost periodic
if the set {T ∗t f}t∈Rn is relatively compact in C(Rn, X) with respect to the topology
of uniform convergence on Rn. The collection of all almost periodic mappings from
Rn to X will be denoted by AP(Rn, X).

As is known from classical theory of almost periodic functions, any function
f ∈ AP(Rn,C) has its mean value Mf over Rn,

Mf = lim
s→∞(2s)−n

∫
Πs

f dmn,

where Πs = {x ∈ Rn : ‖x‖∞ < s} and mn is the Lebesgue measure in Rn.



468 A. Rashkovskii

Let D be a convex domain in Rn, TD = Rn + iD. A continuous mapping
f : TD → X is called almost periodic on TD if {T ∗t f}t∈Rn is a relatively compact
subset of C(TD, X) with respect to the topology of uniform convergence on each
tube subdomain TD′ , D

′ � D. The collection of all almost periodic mappings from
TD to X will be denoted by AP(TD, X).

The set AP(TD,C) can be defined equivalently as the closure (with respect
to the topology of uniform convergence on each tube subdomain TD′ , D

′ � D) of
the collection of all exponential sums with complex coefficients and pure imagi-
nary exponents (frequencies). The mean value of f ∈ AP(TD,C) is a continuous
function of Im z. The collection of all holomorphic mappings f ∈ AP(TD,C

k) will
be denoted by HAP(TD,C

k). In particular, any mapping from Cn to Ck, whose
components are exponential sums with pure imaginary frequencies, belongs to
HAP(Cn,Ck).

The notion of almost periodicity can be extended to distributions. For exam-
ple, a measure μ on TD is called almost periodic if φ(t) =

∫
(Tt)∗φdμ ∈ AP(Rn,C)

for every continuous function φ with compact support in TD. Furthermore, it can
be extended to holomorphic chains as follows.

Let Z =
∑

j cjVj be a holomorphic chain on Ω ⊂ Cn supported by an analytic
variety |Z| = ∪jVj of pure dimension q. Its integration current [Z] acts on test
forms φ of bidegree (q, q) with compact support in Ω (shortly, φ ∈ Dq,q(Ω)) as

([Z], φ) =
∫

Reg |Z|
γZφ =

∑
j

cj

∫
Reg Vj

φ,

where the function γZ takes constant positive integer values on the connected
components of Reg |Z|. The q-dimensional volume of Z in a Borel set Ω0 ⊂ Ω is

VolZ(Ω0) =
∫

Ω0∩Reg |Z|
γZβq

(the mass of the trace measure of [Z] in Ω0). If f is a holomorphic mapping on Ω
such that |Z| = f−1(0) and γZ(z) equals the multiplicity of f at z, the chain will
be denoted by Zf .

A q-dimensional holomorphic chain Z on TD is called an almost periodic
holomorphic chain if (T ∗t [Z], φ) ∈ AP (TD,C) for any test form φ ∈ Dq,q(TD). Here
T ∗t S =

∑
αIJ (z+t) dzI∧dz̄J is the pullback of the current S =

∑
αIJ(z) dzI∧dz̄J .

For any f ∈ HAP(TD,C), the chain (divisor) Zf is always almost periodic;
on the other hand, there exist almost periodic divisors (starting already from di-
mension n = 1) that are not divisors of any holomorphic almost periodic function;
when n > 1, even a periodic divisor need not be the divisor of a periodic holomor-
phic function [16]. The situation with higher-dimensional mappings is even worse,
since the chain Zf generated by f ∈ HAP(TD,C

k)), k > 1, need not be almost
periodic [4]. It is however so if the mapping f is regular, that is, if codim |Zg| = k
or |Zg| = ∅ for every mapping g from the closure of the set {T ∗t f}t∈Rm [4], [5]. A
sufficient regularity condition [15] shows that such mappings are generic.
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Now we can turn to construction of the current that plays central role in
our considerations, the details can be found in [5]. Let Z be an almost periodic
holomorphic chain of dimension q. For any test form φ ∈ Dq,q(TD), the mean
value MφZ of the function φZ(t) := (T ∗t [Z], φ) ∈ AP(Rn,C) defines the mean
value current MZ of Z by the relation

(MZ , φ) = MφZ .

The current is closed and positive. Since MZ is translation invariant with respect
to x, its coefficients have the form MIJ = mn ⊗ M′

IJ , where M′
IJ are Borel

measures in D. In addition, if ψ =
∑
ψIJdzI ∧ dz̄J is a form with coefficients

ψIJ ∈ D(D) and χs is the characteristic function of the cube Πs, then there exists
the limit

lim
s→∞(2s)−n([Z], χsψ) = (M′

Z , ψ
′),

where M′
Z =
∑M′

IJdyI ∧ dyJ and ψ′ =
∑
ψIJdyI ∧ dyJ .

The trace measure μZ = MZ ∧ βq can also be written as μZ = mn ⊗ μ′Z ,
where μ′Z is a positive Borel measure on D. The following result shows that it can
be viewed as a density of the chain Z along Rn.

Theorem 3.1. ([4], [5]) Let Z be an almost periodic holomorphic chain in a tube
domain TD. For any open set G � D such that μ′Z(∂G) = 0, one has

lim
s→∞(2s)−n VolZ(Πs + iG) = μ′Z(G);

in addition, μ′Z(G) = 0 if and only if |Z| ∩ TG = ∅.

Remark 3.2. For Z = Zf with regular f ∈ HAP(TD,C
k), Theorem 3.1 was proved

in [15] (for k = n) and [13] (k < n), without using the notion of almost periodic
chain. The current MZf

can be constructed as follows. The coefficients aIJ of
the current log |f |(ddc log |f |)k−1 are locally integrable functions on TD, almost
periodic in the sense of distributions: (T ∗t aIJ , φ) ∈ AP(TD,C) for any test function
φ ∈ D(TD). Therefore, they possess their mean values AIJ = MaIJ , and the
current MZf

= ddc(
∑
AIJdzI ∧ dz̄J).

4. Amoebas

Following [3], if Z is an almost periodic holomorphic chain in TD, then its amoeba
AZ is the closure of the projection of |Z| to D:

AZ = Im |Z|,

where the map Im : Cn → Rn is defined by Im (z1, . . . , zn) = (Im z1, . . . , Im zn).
When Z = Zf for a regular mapping f ∈ HAP(TD,C

p), we write simply Af .
Our convexity result is stated in terms of the tube set TAZ = Rn + iAZ .
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Theorem 4.1. If Z is an almost periodic holomorphic chain of dimension q in
a tube domain TD ⊆ Cn, then TAZ = suppMZ , where MZ is the mean value
current of the chain Z. Therefore, TAZ is q-pseudoconcave in TD. In particular,
for any regular mapping f ∈ HAP(TD,C

k), the set TAf
is (n− k)-pseudoconcave.

Proof. By Theorem 3.1, AZ = suppμ′Z , which can be rewritten as

TAZ = suppmn ⊗ μ′Z = suppMZ .

Since the current MZ is positive and closed, Theorem 2.1 implies the correspond-
ing pseudoconcavity. �

This covers the algebraic case as well by means of the map E : Cn → Cn∗ ,
E (z1, . . . , zn) = (e−iz1 , . . . , e−izn). For a Laurent polynomial P , the exponential
sum E ∗P is periodic in TRn , and its mean value Mlog |E∗P | coincides with the
Ronkin function NP . Furthermore, given an algebraic variety V ⊂ Cn∗ , its pullback
E ∗V is almost periodic (actually, periodic) in Cn and AE ∗V = AV , which gives

Corollary 4.2. The set TAc
V

for an algebraic variety V ⊂ Cn
∗ of pure codimension

k is (n− k)-pseudoconvex.
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Quadratic Differentials and Weighted Graphs
on Compact Surfaces

Alexander Yu. Solynin

Abstract. We prove that for every simply connected graph Γ embedded in a
compact surface R of genus g ≥ 0, whose edges ei

kj carry positive weights wi
kj ,

there exist a complex structure on R and a Jenkins-Strebel quadratic differen-
tial Q(z) dz2, whose critical graph ΦQ complemented, if necessary, by second
degree vertices on its edges, is homeomorphic to Γ on R and carries the same
set of weights. In other words, every positive simply connected graph on R
can be analytically embedded in R. We also discuss a problem on the extremal
partition of R relative to such analytical embedding. As a consequence, we
establish the existence of systems of disjoint simply connected domains on R
with a prescribed combinatorics of their boundaries, which carry proportional
harmonic measures on their boundary arcs.

Keywords. Quadratic differential, Riemann surface, embedded graph, bound-
ary combinatorics, harmonic measure, extremal partition.

1. Introduction and Main Theorem

In this paper we consider two structures on a compact surface R of genus g ≥ 0.
The first one is a combinatorial structure defined by a simply connected weighted
graph Γ = {V,E, F,W} embedded in R with the set of vertices V = {vk}, set
of edges E = {ei

kj}, set of faces F = {fk}, and the set of non-negative weights
W = {wi

kj}. The graph Γ is said to be simply connected if each of its faces fk

is a simply connected domain. Throughout the paper, m ≥ 1 and n ≥ 1 will be
reserved to denote the cardinalities of the sets V and F , respectively. We will
always assume that edges of Γ are enumerated in such a way that ei

kj separates
faces fk and fj and carries the weight wi

kj > 0. Then, of course, ei
kj and ei

jk denote
the same edge of Γ and wi

kj = wi
jk .

This research was supported in part by NSF grant DMS-0525339.
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The second structure is a conformal structure associated with a special type
of quadratic differentials. Namely, we will consider meromorphic quadratic differ-
entials with poles of order at most 2, whose domain configuration consists of circle
domains or strip domains exclusively. We remind the reader that, in general, the
domain configuration of a quadratic differential on a compact Riemann surface
may include circle domains, ring domains, strip domains, end domains, as well
as density structures; see [11, Chapter 3]. The so-called Jenkins-Strebel quadratic
differentials, i.e., quadratic differentials whose domain configuration consists of
circle domains and/or ring domains only, play an important role in the theory of
conformal and quasiconformal mappings, where they appear naturally as solutions
to numerous extremal problems [9, 11, 14, 19, 20, 22].

The primary goal of the present paper is to prove Theorem 1 below and The-
orem 3 given in Section 4 and discuss some related questions. Theorem 1 shows
that combinatorial and conformal structures may coexist on the same configura-
tion. In its formulation, we use standard terminology from graph theory and the
theory of quadratic differentials, which will be explained further in Section 2.

Theorem 1. For every simply connected graph Γ = {V,E, F,W} embedded in a
compact surface R of genus g ≥ 0 carrying positive weights wi

kj ∈ W on its
edges ei

kj ∈ E, there is a complex structure on R, turning R into a compact
Riemann surface of genus g, and a Jenkins-Strebel quadratic differential Q(z) dz2,
unique up to conformal automorphisms of R, the critical weighted graph ΦQ =
{VQ, EQ, FQ,WQ} of which, complemented, if necessary, by second degree vertices
on its edges, is homeomorphic to Γ on R and carries the same weights as Γ does.

Each face Dk ∈ FQ is a circle domain of Q(z) dz2 centered at some double
pole of Q(z) dz2.

In other words, Theorem 1 asserts that every simply connected weighted
graph Γ embedded in R can be realized as a critical graph of some Jenkins-Strebel
quadratic differential. Any such realization will be called an analytic embedding
of Γ in R. Since every edge of ΦQ is a geodesic arc with respect to the metric
|Q(z)|1/2 |dz|, any analytic embedding can be thought as a geodesic embedding in
R. It also worth mentioning that Theorem 1 can be easily reformulated in terms
of the moduli space Mg of compact Riemann surfaces of genus g.

Let S2 denote the two-dimensional unit sphere, which will be identified with
the Riemann sphere C = C ∪ {∞}. In the case R = S2, Theorem 1 can be stated
in the following form, which is convenient for possible applications in complex
analysis.

Theorem 2. For every connected plane graph Γ = {V,E, F,W} carrying positive
weights wi

kj ∈W on its edges ei
kj ∈ E, there is a Jenkins-Strebel quadratic differ-

ential Q(z) dz2, unique up to a Möbius self-map of C, the critical weighted graph
ΦQ = {VQ, EQ, FQ,WQ} of which, complemented, if necessary, by second degree
vertices on its edges, is homeomorphic to Γ on C and carries the same weights as
Γ does.
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Each face Dk ∈ FQ is a circle domain of Q(z) dz2 centered at some double
pole, say bk, of Q(z) dz2.

Let αk denote the length (total weight) of the boundary cycle in Γ consisting
of all boundary edges of ∂fk in which each cut edge of Γ is transversed twice. Let
AQ = {a1, . . . , al}, AQ ⊂ VQ, be the set of all simple poles of Q(z) dz2 and let
bn = ∞. Then Q(z) dz2 has the form

Q(z) dz2 =
P (z)∏l

k=1(z − ak)
∏n−1

k=1 (z − bk)2
dz2, (1.1)

where
P (z) = C(z − p1) · · · (z − pl+2n−4) (1.2)

is a polynomial of degree l + 2n − 4 such that P (z) and R(z) =
∏l

k=1(z −
ak)
∏n−1

k=1 (z − bk)2 are relatively prime and

P (bk) = − α2
k

4π2

∏l

j=1
(bk−aj)

∏′n−1

j=1
(bk−bj)2, k = 1, . . . , n−1, C = − α2

n

4π2
.

(1.3)
Here

∏′ denotes the product taken over all nonzero terms.

Theorems 1 and 2 may be useful in both, the graph theory and complex anal-
ysis, and may have applications to the qualitative theory of differential equations
in the complex plane. In complex analysis, they give a rather efficient approach to
use combinatorics.

In Section 2, we introduce necessary notations and explain terminology re-
lated to plane graphs and quadratic differentials. In Section 3, we collect the nec-
essary results from Jenkins’s theory of extremal partitions. In particular, we will
discuss two extremal problems related to quadratic differentials and give differenti-
ation formulas for their solutions. This section also contains two technical lemmas,
which will be used in Section 7.

In Section 4, we discuss another aspect of the problem under consideration
that is related to the problem on proportional harmonic measures studied in [2, 3].
The main result of this section, stated in Theorem 3, shows that the domain
structure FQ of the quadratic differential (1.1) is an essentially unique cellular
structure on R with boundary combinatorics defined by Γ such that for every pair
of indices k and j, every boundary arc γ ⊂ ∂Dk ∩ ∂Dj carries harmonic measures
ω(γ,Dk, bk) and ω(γ,Dj, bj) proportional with respect to the weights αk and αj .

In Sections 5 and 6, we prove uniqueness and existence parts of Theorems 1
and 3, respectively. In Section 7, we discuss a problem on the extremal partition
of R that leads to the same quadratic differential as in Theorems 1 and 3. In
the final section, we consider some interesting particular cases of Theorem 2. Our
intention here is to demonstrate a variety of problems where Theorem 1 may have
applications.

This paper represents an extended version of the author’s talk given at the
international conference on Analysis and Mathematical Physics: “New Trends in
Complex and Harmonic Analysis” in May 7–12, 2007, Bergen, Norway.
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2. Notations and terminology

1. Graphs embedded in R. Throughout the paper, Γ = {V,E, F,W} will denote a
simply connected weighted graph described in the Introduction. We always assume
that its edges ei

kj are open Jordan arcs on R such that the closure ēi
kj of ei

kj is a
rectifiable closed Jordan arc or a rectifiable closed Jordan curve on R. By A = AΓ

we will denote the set of all vertices vk ∈ V such that deg vk = 1. Later on, this
set will play a special role.

Since Γ is simply connected, each face fk ∈ F is a simply connected domain
on R, whose boundary ∂fk represents a closed walk of Γ in which each cut edge
is transversed twice. We will call this walk the boundary cycle1 around fk. By αk

we denote the length (total weight) of the boundary cycle around fk, i.e.,

αk =
∑
i,j

wi
kj , (2.1)

where the weight wi
kjk of each cut edge ei

kk ∈ ∂fk is counted twice. In the latter
case, the cut edge ei

kk represents two distinct boundary arcs of fk.
A function τ : R × [0, 1] → R is called a deformation of R if the following

conditions are fulfilled:
1) τ is continuous on R× [0, 1],
2) τ(·, 0) is the identity mapping,
3) for every fixed t ∈ [0, 1], τ(·, t) is a homeomorphism from R onto itself.

Every deformation τ transforms a graph Γ embedded in R into a homeo-
morphic graph Γτ embedded in R. More precisely, by Γτ (t′), 0 ≤ t′ ≤ 1, we will
denote the graph obtained from Γ via deformation τ(P, t), when the real param-
eter t varies from 0 to t′. Then Γτ = Γτ (1). By GΓ we will denote the set of all
graphs embedded in R, which are homeomorphic to Γ on R.

A set M ⊂ R is called a fixed set of a deformation τ if τ(P, t) = P for all
P ∈ M and all 0 ≤ t ≤ 1. In this case we also say that τ is a deformation on
R \M .

By a cell (D, b) we mean a hyperbolic simply connected domain D ⊂ R with
a distinguished center b ∈ D. Accordingly, F becomes a cellular structure [F,B]
of Γ if every fk ∈ F is considered as a cell centered at some point bk ∈ fk. Here
the set B = {b1, . . . , bn} may be thought as a set of isolated vertices added to the
graph Γ.

Let Γ′ = {V ′, E′, F ′,W} be a graph on R dual of Γ, which has B as a set of
its non-isolated vertices and the set AΓ defined above as its set of isolated vertices.
We will write AΓ = {a1, . . . , al}.

Let G′Γ = GΓ′ be the collection of all graphs Γ̃ on R homeomorphic to Γ′ on
R. If Γ′ ∈ G′Γ, then its edges are in a natural one-to-one correspondence with the
edges of Γ. Namely, by likj we will denote the edge of Γ′ ∈ G′Γ transversal to the

1Boundary cycle is not, in general, a cycle as it is usually defined in the graph theory since its
cut edges are transversed twice.
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edge ei
kj of Γ. We also assume that likj carries the weight wi

kj as ei
kj does. Then

αk defined by (2.1) can be interpreted as the total weight of the vertex bk ∈ V ′.

2. Quadratic differentials. We remind the reader that a quadratic differential on a
Riemann surface, in particular on C, is locally defined by a form Q(z) dz2, where
Q is a meromorphic function of a local coordinate z. If z = z(ζ) is a conformal
change of variables then

Q1(ζ) dζ2 = Q(z(ζ))(z′(ζ))2 dζ2 (2.2)

represents Q(z) dz2 in terms of ζ. We refer to [9, 11, 13, 14, 19, 20, 22] for basic
properties and applications of quadratic differentials.

Now we introduce some objects related to a quadratic differential Q(z) dz2

defined on R. To avoid trivialities, we exclude from our consideration the case when
R = C and Q(z) dz2 is conformally equivalent to Cz−2 dz2 with some C ∈ C.

Every quadratic differential onR defines the so-calledQ-metric |Q(z)|1/2 |dz|.
Accordingly, the Q-length of a rectifiable arc γ ⊂ C, which does not depend on a
local coordinate z, is given by

|γ|Q =
∫

γ

|Q(z)|1/2 |dz|.

A maximal curve or arc γ such that Q(z) dz2 > 0 (respectively, Q(z) dz2 < 0)
along γ is called a trajectory (respectively, orthogonal trajectory) of Q(z) dz2. Ze-
ros and poles of Q are critical points of Q(z) dz2. Let VQ be the set of all zeros and
simple poles of Q(z) dz2. Any trajectory/orthogonal trajectory having at least one
of its terminal points in VQ is called a critical trajectory/orthogonal trajectory, re-
spectively. By ΦQ we denote the critical set of Q(z) dz2, i.e., ΦQ is the union of all
critical trajectories of Q(z) dz2 and their end points. According to the Basic Struc-
ture Theorem [11, Theorem 3.5], the set (R\Closure (ΦQ))∪Interior (Closure (ΦQ))
consists of a finite number of domains called the domain configuration of Q(z) dz2.
As we already mentioned in the Introduction the domain configuration may in-
clude circle domains, ring domains, strip domains, end domains, as well as density
structures.

A circle domain D of Q(z) dz2 is a maximal simply connected domain swept
out by regular closed trajectories of Q(z) dz2 surrounding a second-order pole
a that is the only singularity of Q(z) dz2 in D. A circle domain is necessarily
bounded by a finite number of critical trajectories of Q(z) dz2 and their terminal
points in VQ.

Similarly, a ring domain D of Q(z) dz2 is a maximal non-degenerate doubly-
connected domain swept out by regular closed trajectories of Q(z) dz2. Again,
each boundary component of D consists of a finite number of critical trajectories
of Q(z) dz2 and their terminal points in VQ.

In modern literature, quadratic differentials whose domain configuration con-
sists of circle domains and/or ring domains only are often called the Jenkins-Strebel
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differentials. They were first studied by J.A. Jenkins [10, 12] in connection with ex-
tremal problems in conformal mapping. Then Jenkins’s theory was developed fur-
ther and found many important applications in works of Strebel, Renelt, Kuz’mina,
and others.

If Q(z) dz2 is a Jenkins-Strebel quadratic differential on R, then its critical
set ΦQ can be considered as a weighted graph ΦQ = {VQ, EQ, FQ,WQ} called
the critical graph of Q(z) dz2. Namely, we define VQ as above and EQ = {νi

kj}
as the collection of all critical trajectories of Q(z) dz2. Then, FQ is the domain
configuration of Q(z) dz2 consisting of all circle domains and/or ring domains of
Q(z) dz2. Finally, for every edge νi

kj ∈ EQ we prescribe its Q-length as a weight:

wi
kj =

∫
νi

kj

|Q(z)|1/2 |dz|. (2.3)

A strip domain (or digon) G of Q(z) dz2 is a maximal simply connected
domain swept out by regular trajectories γ of Q(z) dz2, each of which has its
initial and terminal points at some poles q1 and q2 (possibly coincident) each of
order ≥ 2 such that q1 and q2 represent distinct boundary points of G. We want
to emphasize here that ∂G consists of two boundary arcs (sides of the digon G)
joining q1 and q2 and that each of these boundary arcs contains a zero or simple
pole of Q(z) dz2.

Quadratic differentials Q(z) dz2, whose domain configuration consists of di-
gons only, each of which has its vertices at the second-order poles of Q(z) dz2 with
the radial trajectory structure in their neighborhoods, also have found important
applications in extremal problems. We will christen them as Kuz’mina quadratic
differentials after Galina V. Kuz’mina, who inspired their study in early 1980’s.
She also obtained some important results related to quadratic differentials of this
type, see [14, 15, 16, 17].

If Q(z) dz2 is a Jenkins-Strebel quadratic differential without ring domains in
its domain configuration, then the orthogonal quadratic differential −Q(z) dz2 is a
Kuz’mina quadratic differential. As one can easily see from examples, the converse
is not true in general.

Let A = {a1, . . . , al} and B = {b1, . . . , bn} be the sets of simple poles and
double poles of a Kuz’mina quadratic differential Q(z) dz2. Let {Gi

kj} be the do-
main configuration of Q(z) dz2. We assume here that a digon Gi

kj has its vertices
at the poles bk and bj , possibly coincident. Let wi

kj be the height of the digon Gi
kj ,

i.e., wi
kj is the Q-length of an arc γ ⊂ Gi

kj of any orthogonal trajectory of Q(z) dz2

joining the sides of Gi
kj . Let γi

kj be the regular trajectory of Q(z) dz2 selected in
Gi

kj such that the set Gi
kj \ γi

kj consists of two digons, each of which has height
wi

kj/2.
Now we can consider a weighted graph ΓQ = {V,E, F,W} on R with the

set of vertices V = A ∪ B, set of edges E = {γi
kj}, and set of positive weights
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W = {wi
kj}. The graph ΓQ constructed in such way will be called the trajectory

graph of a Kuz’mina quadratic differential Q(z) dz2.
A Kuz’mina quadratic differential Q(z) dz2 is called associated with a

weighted graph Γ on R if its trajectory graph ΓQ is homeomorphic to Γ on R
and carries the same set of weights as Γ does.

3. Extremal partitions and quadratic differentials

In this section, we collect results of Jenkins’s theory of extremal partitions, which
will be used later. We refer to the original paper [10], monographs [9, 11, 14, 20],
and surveys [13, 16, 19] for a general account and technical details of this theory.

Let A = {a1, . . . , al} and B = {b1, . . . , bn} be two sets of distinct points on
a Riemann surface R called punctures and centers, respectively. Below we always
assume that each center bk ∈ B is supplied with a fixed local coordinate zk such
that zk(bk) = 0. Let R′ = R \ A and let α = {α1, . . . , αn} be a set of positive
weights. Then for a given family D = {D1, . . . , Dn} of non-overlapping cells Dk

on R′ centered at bk ∈ Dk, we consider the following weighted sum:

M1(D) =
n∑

k=1

α2
kmzk

(Dk, bk).

Here mz(D, b) denotes the reduced module of a simply connected domain D at
b ∈ D with respect to the local coordinate z, which can be defined as

mz(D, b) =
1
2π

log Rz(D, b) =
1
2π

log |f ′(0)|,

were Rz(D, b) is the conformal radius of D at b with respect to z, f is the Riemann
mapping from the unit disc D = {ζ ∈ C : |ζ| < 1} onto D normalized by f(0) = b,
and f ′(0) is the derivative with respect to the local coordinate z. Below we also
use the following notations. For r > 0 and a ∈ C, let Dr(a) = {ζ ∈ C : |ζ−a| < r},
Cr(a) = ∂Dr(a). If a = ∞, then Dr(a) = {ζ ∈ C : |ζ| > 1/r} and Cr(a) = ∂Dr(a).

Problem 1. For given sets of punctures A and centers B with the corresponding
set Z = {z1, . . . , zn} of local coordinates, and a given set of positive weights α,
find the supremum

M1 = sup M1(D)
taken over all families D described above and find all families D∗ = {D∗1 , . . . , D∗n}
such that M1(D∗) = M1.

Of course, Problem 1 is just a particular case of the original Jenkins’s problem
studied in [10, 12, 14, 19, 20].

Now we define a similar problem for digons, which study began with the
works of Emel’yanov [8] and Kuz’mina [15]. By a digon we will mean a hyper-
bolic simply connected domain G on R with two distinguished points, b1 and
b2, called vertices, on its boundary. As before, we assume that vertices b1 and
b2 are supplied with fixed local coordinates z1 and z2. Every digon G considered
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below will have well-defined non-zero interior angles, say ϕ1 and ϕ2, at its ver-
tices b1 and b2, respectively. In addition, we always will assume that for every
ε > 0 sufficiently small the intersection G ∩ Cε(bk) consists of a single open arc
denoted by γG(bk, ε). Here and below, circles and disks on R are defined in terms
of distinguished local coordinates. For example, Cε(bk) = {P ∈ R : |zk(P )| = ε},
Dε(bk) = {P ∈ R : |zk(P )| < ε}, etc. Then for all ε1 > 0 and ε2 > 0 small enough,
the set Gε1,ε2 = G\

(
Dε1(b1) ∪ Dε2(b2)

)
can be considered as a quadrilateral having

γG(b1, ε1) and γG(b2, ε2) as a pair of distinguished sides on its boundary. For any
given quadrilateral Q, by Mod(Q) we will denote the module of Q with respect
to the family of locally rectifiable arcs separating the distinguished sides of Q, see
[11, Chapter 2]. Then the module of the digon G (with respect to local coordinates
z1, z2) is defined by

mz1,z2(G, b1, b2) = lim
ε1,ε2→0

(
Mod(Gε1,ε2) +

1
ϕ1

log ε1 +
1
ϕ2

log ε2

)
,

provided that a finite limit exists.
Let Γ be a simply connected weighted graph on R defined in Section 2. Let

Γ′ ∈ G′Γ be a dual of Γ, which has isolated vertices A = {a1, . . . , al} and non-
isolated vertices B = {b1, . . . , bn} with the total weights α = {α1, . . . , αn}.

A system G = {Gi
kj} of non-overlapping digons Gi

kj on R\ (A∪B) such that
Gi

kj = Gi
jk for all possible k, j, and i, is called admissible for Γ′ if the following

conditions are satisfied:
(1) A digon Gi

kj has its vertices at the points bk and bj of B (possibly coincident).
(2) Non-zero angles ϕi

kj and ϕi
jk of Gi

kj at the vertices bk and bj and the module
mi

kj = mzk,zj (Gi
kj , bk, bj) are well defined.

(3) ϕi
kj : ϕi

jk = αj : αk for all k and j and all possible i.
(4) Selecting in each digon Gi

kj a Jordan arc likj , which joins the vertices bk and
bj , we obtain a graph Γ′′ on R with the set of vertices V = A ∪B and set of
edges {likj} carrying weights {wi

kj}, which is homeomorphic to the graph Γ′

on the punctured surface R \ V .
Let GΓ′ be the set of all systems G = {Gi

kj} admissible for Γ′. Then on GΓ′

we consider the weighted sum of the reduced moduli of digons:

M2(G) = −
∑

(wi
kj)

2mzk,zj(G
i
kj , bk, bj),

where each digon Gi
kj is counted precisely once.

Problem 2. For a given graph Γ′ described above, find the supremum

M2 = sup M2(G)

taken over all systems G admissible for Γ′ and find all systems G∗ = {Gi∗
kj} in GΓ′

such that M2(G∗) = M2.

It is well known (see [10, 14, 19, 20]) that Problem 1 has a unique extremal
configuration D∗ = {D∗1 , . . . , D∗n} formed by circle domains of a Jenkins-Strebel
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quadratic differential Q1(z) dz2. If R = C and bn = ∞, then Q1(z) dz2 has the
form

Q1(z) dz2 =
P1(z)∏l

k=1(z − ak)
∏n−1

k=1 (z − bk)2
dz2, (3.1)

where P1 is a polynomial of degree 2n+ l − 4 satisfying conditions (1.3).
It is less known (see [8, 13, 15, 16, 19, 22]) that Problem 2 also has a unique

extremal configuration G∗ = {Gi∗
kj} formed by digons of a Kuz’mina quadratic

differential Q2(z) dz2. In the case R = C and bn = ∞, Q2(z) dz2 has the form

Q2(z) dz2 = − P2(z)∏l
k=1(z − ak)

∏n−1
k=1 (z − bk)2

dz2. (3.2)

Here P2 is a polynomial of degree 2n+ l − 4 satisfying conditions (1.3).
In addition, we want to mention that the metric (wi

kj)
−1|Q2(z)|1/2 |dz| is

extremal for the module problem in the digon Gi
kj . In particular,∫

γ

|Q2(z)|1/2 |dz| ≥ wi
kj (3.3)

for every rectifiable arc γ ⊂ Gi
kj joining the sides of Gi

kj .

In what follows, we always assume that the weights αk and wi
kj are fixed.

Then M1 = M1(a1, . . . , al, b1, . . . , bn) becomes a function of the punctures a1, . . .,
al and centers b1, . . . , bn, which also depends on the corresponding local coordinates
z1, . . . , zl, zl+1, . . . , zl+n. For each choice of local coordinates, M1 is a continuous
function of the punctures and centers, which is single-valued on

R̃l+n = {(P1, . . . , Pl+n) ∈ Rl+n : Pj �= Pk, for j �= k}.
In contrast, the sum M2 = M2(a1, . . . , al, b1, . . . , bn) can be defined as a

single-valued function only locally, i.e., on a sufficiently small neighborhood of
every point of R̃l+n. Considered globally on R̃l+n, M2(a1, . . . , al, b1, . . . , bn) be-
comes, in general, a path dependent infinitely-valued function. In particular, if
R = C, then M2 is infinitely-valued if l + n ≥ 4. To give a precise definition of
this multi-valued function, we fix a finite atlas on R, then we fix A0 ∈ R̃l and
B0 ∈ R̃n such that (A0, B0) ∈ R̃l+n, and then we fix a graph Γ′0 as in Problem 2.
For these initial conditions we define M2(a0

1, . . . , a
0
l , b

0
1, . . . , b

0
n) to be the solution

to Problem 2 for A0, B0, and Γ′0. Then we deform R via deformation τ = τ(P, t).
Let Γ′τ be the graph obtained from Γ′0 via this deformation. Let ak = τ(a0

k, 1),
1 ≤ k ≤ l, and let bk = τ(b0k, 1), 1 ≤ k ≤ n.

By the branch of M2(a1, . . . , al, b1, . . . , bn) corresponding to the deformation
τ , we mean the solution to Problem 2 for the graph (Γ′)τ .

The gradient theorems for solutions of Problems 1 and 2, the study of which
was initiated by this author in 1980’s, see [7, 16, 18, 19], show that the function
M1 and every single-valued branch of M2 are smooth. Below we give a precise
statement for the case of the Riemann sphere, i.e., we assume till the end of this
section that R = C.
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Theorem A (cf. Theorems 5.4–5.6, [19]). Let R = C. If all punctures a0
1, . . . , a

0
l

and centers b01, . . . , b
0
n are distinct and the varying parameter ak or bk is finite,

then M1 and M2 are locally single-valued continuously differentiable functions of
this parameter at (A0, B0) and the corresponding partial derivatives are given by

∂Ms

∂ak
= πRes [Qs, a

0
k],

∂Ms

∂bk
= πRes [Qs, b

0
k], s = 1, 2, (3.4)

where Q1(z) dz2 and Q2(z) dz2 are quadratic differentials extremal for Problem 1
and Problem 2, respectively.

Next, we prove some results about global behavior of the multi-valued func-
tion M2 for the case R = C. Let z1 and z2 be distinct points on C and let
C(z1, z2) = C \ {z1, z2}. Let γ : [0, 1] → C be a simple arc in C(z1, z2) from ζ1 to
ζ2. By the index of γ with respect to z1 and z2 we mean the normalized change in
the argument of z−z1

z−z2
, when z varies from ζ1 to ζ2 along γ, i.e.,

indz1,z2 (γ) =
1
2π

Δγ

(
arg

z − z1
z − z2

)
. (3.5)

In (3.5) we assume, of course, that z1, z2 �= ∞. If zk = ∞ for k = 1 or k = 2, then
we put indz1,z2(γ) = (−1)k+1(2π)−1Δγ (arg(z − zk)).

Now let Γ be a connected plane graph and let Γ′ ∈ G′Γ be a graph dual of Γ
as in Problem 2. Then the index of Γ′ is defined by

ind(Γ′) = max
likj

max
(
indz1,z2 l

i
kj

)
, (3.6)

where the inner maximum is taken over all pairs of distinct points z1 and z2 such
that z1, z2 ∈ (A ∪ B) \ {bk, bj}. We remind the reader that A = {a1, . . . , al} and
B = {b1, . . . , bn} denote the set of isolated vertices of Γ′ and set of non-isolated
vertices of Γ′, respectively. Also, likj joins the vertices bk and bj . Thus, ind (Γ′) is
a non-negative real number.

Let GΓ′(V ′), V ′ = A∪B, denote the family of graphs Γ̃ with isolated vertices
A = {a1, . . . , al} and non-isolated verticesB = {b1, . . . , bn}, for each of which there
is a deformation τ = τ(z, t) transforming Γ′ into Γ̃ such that τ(ak, 1) = ak for all
1 ≤ k ≤ l and τ(bk, 1) = bk for all 1 ≤ k ≤ n. If, in addition, τ is a deformation
on C \ V ′, then we say that the graphs Γ′ and Γ̃ belong to the same homotopic
class. Let HΓ′(V ′) = {H} denote the collection of all homotopic classes of the
family GΓ′(V ′). Let H ∈ HΓ′(V ′). One can easily see that ind (Γ1) = ind (Γ2) if
Γ1,Γ2 ∈ H. Thus, the index of H, denoted by ind (H), can be defined as a common
index of all graphs in H.

Since the number of edges and vertices of all graphs under consideration is
fixed, the following elementary lemma is an easy consequence of our definition of
the index, see (3.6).

Lemma 1. For every plane graph Γ′ ∈ G′Γ with the set of isolated vertices A and set
of non-isolated vertices B, and for every positive integer N , the number of distinct
homotopy classes H ∈ HΓ′(V ′) such that ind (H) ≤ N is finite.
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Let z1 and z2 be distinct points in the closed annulus A(r1, r2) = {z : r1 ≤
|z| ≤ r2}, 0 < r1 < r2. Let G be a digon on C(z1, z2) having its vertices at ζ1 = 0
and ζ2 = ∞. Let ind z1,z2(G) denote the common index of all simple arcs γ ⊂ G
joining ζ1 and ζ2. Suppose that each side of G is a piecewise analytic arc (not
necessarily Jordan). Then each of the sets G ∩ Cr1(0) and G ∩ Cr2(0) consists of
a finite number of circular arcs. Let L be the collection of all such arcs, which
join the sides of G. Let e1 be the arc in L, which separate inside G the vertex
ζ1 from all other arcs of L. Similarly, let e2 ∈ L be the arc in G separating ζ2
from all other arcs of L. The arcs e1 and e2 divide G into three simply connected
components. By Gr1r2 , we will denote those of them, which has both arcs e1 and
e2 on its boundary. Then Gr1r2 can be considered as a quadrilateral with e1 and
e2 as its pair of distinguished sides.

Lemma 2. Let r1 and r2, 0 < r1 < r2 < ∞, be fixed and let z1 and z2 be distinct
points in A(r1, r2). There is a constant C0 > 0, depending on r1 and r2, but not
on z1 and z2, such that

Mod(Gr1,r2) ≥ C0n (3.7)
for every quadrilateral Gr1r2 , which corresponds to a digon G in C(z1, z2) described
above such that ind z1,z2(G) ≥ 2n.

Proof. Since the module of a quadrilateral is invariant under conformal mappings
and reflections, we may assume without loss of generality that z1 = 1, |z2| ≥ 1,
and ) z2 ≥ 0.

Let G be a digon satisfying the assumptions of the lemma such that

ind z1,z2(G) ≥ 2n, n ≥ 1. (3.8)

Let L be a circular arc in the closed upper half-plane joining z1 and z2, which
is orthogonal to the real axis. Since the boundary of G is piecewise analytic, the
intersection G ∩ L consists of a finite number of open circular arcs. By l1, . . . , lN
we denote those of them, which join the opposite sides of G. We assume that these
arcs are enumerated in a “natural order” in G. The latter means that for every
2 ≤ k ≤ N , the arc lk−1 separates lk from the vertex ζ1 = 0 inside G. We also put
l0 = ζ1, lN+1 = ζ2.

The set G \ ∪N
k=1lk consists of N + 1 simply connected components. Let Rk,

k = 1, . . . , N + 1, denote the component, which has lk−1 and lk on its boundary.
Let γ be a Jordan arc in G, which joins the vertices ζ1 and ζ2 and meets each arc
lk exactly once. Let γk = γ ∩Rk. Then

ind z1,z2(γ) =
N+1∑
k=1

ind z1,z2(γk). (3.9)

Since γk does not intersect L, one can easily see that |ind z1,z2(γk)| < 2 for all
1 ≤ k ≤ N + 1. This together with (3.8) and (3.9) implies that among the arcs γk

there are at least n arcs, each of which has index ind z1,z2(γk) ≥ 1.
If 1 ≤ ind z1,z2(γk) < 2, then one can easily see that γk separates the point

ζ1 = 0 from ζ2 = ∞ inside the domain C \ L. Therefore in this case the domain
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Rk can be considered as a quadrilateral in C \ L having its distinguished sides on
L. Let

K(z1, z2) = max
(
(Mod(Ω)−1

)
, (3.10)

where the maximum is taken over all quadrilaterals Ω in C\ (L∪{0}) having their
distinguished sides on L and separating ζ1 = 0 from ζ2 = ∞ in C \ L.

Of course, problem (3.10) is just a particular case of Jenkins’s problem on the
extremal partitions for one homotopy class. It easily follows from general results
of Jenkins’s theory that K(z1, z2) is positive and continuous on the set A(r1, r2)×
A(r1, r2). Therefore there is a constant C0 > 0 such that Mod(Ω) ≥ C0 for every
quadrilateral Ω described above and every pair of points z1 and z2 in A(r1, r2).

Finally, applying Grötzsch’s lemma (see [11, Theorems 2.6 and 2.7]) to
the quadrilateral Gr1r2 and system of quadrilaterals Rk in Gr1r2 such that
ind z1,z2(γk) ≥ 1, we obtain

Mod(Gr1,r2) ≥
∑

Mod(Rk) ≥ C0n.

This sum, containing at least n terms, is taken over all quadrilaterals Rk such that
ind z1,z2(γk) ≥ 1. The proof is complete. �

Let r > 0 and let z1 and z2 be distinct points in D∗r = C \Dr(0). Let G be a
digon as in Lemma 2 but having both its vertices ζ1 and ζ2 at z = 0. Let L0 be
the collection of all arcs in G ∩ Cr(0). For k = 1, 2, let ek denote the arc in L0,
which separates inside G the vertex ζk from all other arcs in L0. Finally, let Gr be
a simply connected component of G \ (e1 ∪ e2), which has both arcs e1 and e2 on
its boundary. Then Gr can be considered as a quadrilateral with e1 and e2 as a
distinguished pair of its sides. Lemma 3 below shows that inequality (3.7) remains
valid for digons G having both their vertices ζ1 and ζ2 at the same point, say at
z = 0. Its proof is almost identical with the proof of Lemma 2 and therefore is left
to the reader.

Lemma 3. There is a constant C1 > 0, depending on r but not on z1 and z2,
such that Mod(Gr) ≥ C1n for every quadrilateral Gr described above such that
ind z1,z2(G) ≥ 2n.

4. Proportional harmonic measures

Another aspect of the problem on extremal partitions is related to the ques-
tion about proportional harmonic measures. This question was first discussed by
J. Akeroyd [2], who considered two “crescent regions” in the unit disc D. We re-
mind the reader that the harmonic measure ω(·, D, a) is a unique Borel probability
measure on the boundary ∂D of a Dirichlet domain D such that

h(a) =
∫

∂D

h(z) dω(z,D, a)

for all functions h harmonic on D and continuous on D, see [6].
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Let D1 and D2 be disjoint domains on a Riemann surface R having a Jordan
arc L on their common boundary ∂D1 ∩ ∂D2. We say that D1 and D2 carry
proportional harmonic measures on L if there are points b1 ∈ D1 and b2 ∈ D2 and
positive constants c1, c2 such that

c1ω(E,D1, b1) = c2ω(E,D2, b2)

for every Borel set E ⊂ L.
Now we modify this definition of proportionality for the case of a slit lying

on the boundary of a simply connected domain D. Let L be an open Jordan arc
on ∂D such that G = D ∪ L is a doubly-connected domain. Then L is a slit in
G, which defines two boundary arcs, say L+ and L−, on ∂D. For E ⊂ L, let E+

and E− denote the set E considered as subsets of boundary arcs L+ and L−,
respectively. We say that D carries proportional (equal) harmonic measures on a
slit L if there is a point a ∈ D such that ω(E+, D, a) = ω(E−, D, a) for every
Borel set E ⊂ L.

Definitions given above can be extended to systems of more than two do-
mains. Let [F,B] be the cellular structure of a simply connected weighted graph
Γ = {V,E, F,W} on R, where F = {D1, . . . , Dn} and B = {b1, . . . , bn}. Thus,
here Dk (not fk!) denotes the face of Γ centered at bk. Let FΓ denote the set of
all cellular structures [F̃ , B̃] associated with some graph Γ̃ homeomorphic to Γ
on R. Let αk be the length of the boundary cycle ∂Dk defined by (2.1) and let
δi
kj = wi

kj/αk be the relative weight of the edge ei
kj with respect to the boundary

cycle ∂Dk.
We say that [F,B] carries harmonic measures proportional with respect to

the set of weights W = {wi
kj} if

ω(ei
kj , Dk, bk) = δi

kj for all k, j, and i, (4.1)

and
αkω(E,Dk, bk) = αjω(E,Dj, bj)

for every Borel set E ⊂ ∂Dk ∩ ∂Dj.
The problem on proportional harmonic measures is to find, for a given graph

Γ = {V,E, F,W}, all cellular structures [F̃ , B̃] ∈ FΓ, which carry harmonic mea-
sures proportional with respect to the set of weights W = {wi

kj}.
For planar linear graphs with central symmetry a solution to this problem

follows from Theorem 1.3 in [3]. The following theorem solves this problem for any
simply connected weighted graph Γ on R.

Theorem 3. For every simply connected weighted graph Γ on a compact surface R
of genus g ≥ 0 defined in Theorem 1 there is a complex structure on R, turning
R into a compact Riemann surface of genus g, and there is a cellular structure
[F ∗, B∗] ∈ FΓ on R, unique up to a conformal automorphism of R, which carries
harmonic measures proportional with respect to the set of weights W = {wi

kj}.
Let F ∗ = {D1, . . . , Dn}, B∗ = {b1, . . . , bn}, and let A∗ = {a1, . . . , al} denote

the set of all vertices of degree 1 of the graph Γ∗ corresponding to [F ∗, B∗]. The
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configuration F ∗ coincides with the domain configuration FQ of a Jenkins-Strebel
quadratic differential Q(z) dz2 defined by Theorem 1.

In the case when R = C and bn = ∞, F ∗ coincides with the domain configu-
ration FQ of a Jenkins-Strebel quadratic differential Q(z) dz2 defined by formulas
(1.1)–(1.3) of Theorem 2.

Now we remind some simple properties of quadratic differentials, which will
be used in the proof of Theorem 3. A point a is a second-order pole of Q(z) dz2 in
its circle domain D if and only if for every local coordinate z with z(a) = 0 there
exists c > 0 such that

Q(z) = − c2

4π2

1
z2

+
a1

z
+ · · · (4.2)

near z = 0. If γ is a trajectory of Q(z) dz2 in D, then

c = |γ|Q =
∫

γ

|Q(z)|1/2 |dz| =
∫

γ

Q1/2(z) dz

is the Q-length of γ. Here we assume that Q1/2 dz > 0 along the corresponding
trajectory.

Let ζ = f(P ) map D conformally onto the unit disk D such that f(a) = 0
and f(b) = 1 for some b ∈ ∂D. Then

f(P ) = exp
{

2πi
c

∫
b

Q1/2(z) dz
}
,

where z = z(P ) is a local coordinate such that z((a) = 0; see [11, Section 3.3]. The
following simple lemma and its corollary, which in case of planar domains were
used in [3], reveal a role played by quadratic differentials in problems on domains
carrying proportional harmonic measures on their boundaries.

Lemma 4 (cf. [3]). Let D be a circle domain of a quadratic differential Q(z) dz2,
which in terms of a local coordinate z = z(P ) such that z(a) = 0 has expansion
(4.2) at z = 0. Then

dω(z,D, a) = c−1|Q(z)|1/2 |dz| for all z = z(P ) such that P ∈ ∂D. (4.3)

Corollary 1 (cf. [3]). Let D1 and D2 be circle domains of Q(z) dz2 centered at
a1 and a2, respectively. Let c1 and c2 be Q-lengths of trajectories of Q(z) dz2 in
the domains D1 and D2. Let L be an open Jordan arc on ∂D1 ∩ ∂D2. If Q is
meromorphic on L, then for every Borel set E ⊂ L,

c1ω(E,D1, a1) = c2ω(E,D2, a2). (4.4)

Lemma 5. Let D1 and D2 be non-overlapping simply connected domains on R
having a Jordan arc L on their common boundary ∂D1 ∩ ∂D2. Let ζ = f(P ) map
D1 conformally onto D. If D1 and D2 carry proportional harmonic measures on L,
then f can be analytically continued across L. In particular, L is an analytic arc.
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Proof. By assumptions of the lemma, there are points a1 ∈ D1 and a2 ∈ D2 and
positive constants c1 and c2 such that (4.4) holds for every Borel set E ⊂ L.
Postcomposing with a Möbius map, if necessary, we may assume without loss of
generality that f(a1) = 0 and f(L) = {eiϕ : 0 < ϕ < ϕ1} for some 0 < ϕ1 ≤ 2π.

Let ζ = g(P ) map D2 conformally onto D∗ = C \D such that g(a2) = ∞ and
g(L) = {eiϕ : 0 < ϕ < ϕ2}. Here ϕ2 = (c2/c1)ϕ1 by (4.4).

Let D̃2 = g−1(D′), where D′ = D∗ \ {z = t : 1 ≤ t ≤ ∞}, and let g̃(P ) be a
single-valued branch of (g(P ))c1/c2 defined on D̃2 by condition 1c1/c2 = 1. Then g̃
is analytic on D̃2 and continuous on D̃2 ∪ L.

Consider the function

Φ(P ) =
{
f(P ) if P ∈ D1 ∪ L
g̃(P ) if P ∈ D̃2.

Since D1 and D2 carry proportional harmonic measures on L, it follows from
(4.4) that f(τ) = g̃(τ) for every τ ∈ L. Thus, Φ is continuous and one-to-one on
D1 ∪ D̃2 ∪ L. Since |Φ(τ)| = 1 for all τ ∈ L, the latter implies that Φ is analytic
in D1 ∪ D̃2 ∪ L. Hence, L is an analytic arc. The proof is complete. �

The proof above shows also that the analytic continuation of f into D̃2 is
given by a single-valued branch of the function gc1/c2 .

Lemma 6 below, which proof is left to the reader, shows that a similar result
also holds for a simply connected domain carrying proportional harmonic measures
on a boundary slit.

Lemma 6. Let D carry proportional (equal) harmonic measures on its boundary slit
L and let ζ = f(P ) map D conformally onto D such that f(L+) = l+, f(L−) = l−.
Then l+ and l− are disjoint arcs of equal length on T and the inverse mapping
g(ζ) = f−1(ζ) can be continued analytically onto a doubly-connected domain C \
(T \ (l+ ∪ l−)).

5. Proof of uniqueness

In this section, we prove the uniqueness assertion of Theorem 3, which in turn
implies the uniqueness assertion of Theorem 1.

(1) Proof of the uniqueness assertion of Theorem 3. Assume that there are
two cellular structures [F1, B1] and [F2, B2] in FΓ corresponding to graphs Γ1

and Γ2, respectively, each of which carries harmonic measures proportional with
respect to the weights {αk} and {wi

kj}. For s = 1, 2, let Fs = {Ds
1, . . . , D

s
n},

Bs = {bs1, . . . , bsn}, where bsk ∈ Ds
k, 1 ≤ k ≤ n. Let (ei

kj)s denote the edge of Γs

corresponding to the edge ei
kj of Γ. Let ζ = fk,s(P ) map Ds

k conformally onto
the unit disc D such that fk,s(bsk) = 0. Let (τ i

kj)s = fk,s((ei
kj)s) be the image of

the boundary arc (ei
kj)s ⊂ ∂Ds

k under the mapping fk,s. Let Ak,s = {(τ i
kj)s}i,j be

the collection of all arcs (τ i
kj)s on T corresponding to the domain Ds

k and function
fk,s, s = 1, 2, k = 1, . . . , n. Since each of the structures [F1, A1] and [F2, A2] carries
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harmonic measures proportional with respect to the same weights, it follows from
(4.1) that the systems Ak,1 and Ak,2 coincide up to rotation about the origin.
Rotating Ak,2, if necessary, we may assume that Ak,1 and Ak,2 coincide.

For 1 ≤ k ≤ n, let Φk(P ) = f−1
k,2(fk,1(P )). Then Φk maps D1

k conformally
onto D2

k such that Φk(b1k) = b2k. Since each of the domains D1
k and D2

k is bounded
by a finite number of Jordan arcs, it follows from our argument above that Φk

maps the boundary arc (ei
kj)1 of D1

k continuously and one-to-one in the sense of
boundary correspondence onto the boundary arc (ei

kj)2 of D2
k. In particular, the

end points of (ei
kj)1 correspond to the end points of (ei

kj)2 under this mapping.
For k �= j, let Ds

k and Ds
j have an edge (ei

kj)s on their common boundary.
By Lemma 5, (ei

kj)s is an analytic arc. We claim that Φj(P ) gives an analytic
continuation of the function Φk(P ) across (ei

kj)1.
Indeed, by our remark after Lemma 5, the analytic continuation of the func-

tion fk,s, s = 1, 2, across (ei
kj)s is given by some single-valued branch gs(P ) of the

function eiθk,j/(fj,s(P ))αk/αj , where θk,j is a real constant independent of s. We
have

g−1
s (ζ) = f−1

j,s ((eiθk,j ζ−1)αj/αk), s = 1, 2.

Therefore,
Φj(z) = f−1

j,2 (fj,1(P )) = g−1
2 (g1(P ))

is an analytic continuation of Φk across (ei
kj)1.

Similarly, using Lemma 6, one can show that Φk is single-valued and analytic
on every slit (ei

kk)1 lying on the boundary of D1
k.

Consider the function Φ : R→ R defined by

Φ(P ) = Φk(P ) if P is in the closure of D1
k, 1 ≤ k ≤ n.

Our argument above shows that Φ is well defined (single-valued), continuous and
one-to-one from R onto R. Moreover, Φ is analytic on R except, possibly, the
vertices of the graph Γ1. Therefore using Riemann’s theorem on the removable
singularity, Φ is analytic and one-to-one from R onto R. Hence, Φ is a conformal
automorphism of R. This proves the uniqueness assertion of Theorem 3. �

(2) Proof of the uniqueness assertion of Theorem 1. Assume that there are
two complex structures on R turning R into compact Riemann surfaces R1 and R2

such that Rk, k = 1, 2, admits a Jenkins-Strebel quadratic differential Qk(z) dz2,
the critical weighted graph ΦQk

= {VQk
, EQk

, FQk
,WQk

} of which, complemented,
if necessary, by second degree vertices on its edges, is homeomorphic to Γ on R
and carries the same weights as Γ does.

For k = 1, 2, let FQk
= {fs

Qk
}n

s=1
. Let Bk = {bk,s}n

s=1, where bk,s denotes the
double pole of Qk(z) dz2 lying in the circle domain fs

Qk
. It follows from Corollary 1

that [FQ1 , B1] and [FQ2 , B2] are cellular structures on R1 and R2, respectively,
each of which carries harmonic measures proportional with respect to the same
set of weights W = {wi

kj} defined in Theorem 1.
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Therefore, it follows from the uniqueness assertion of Theorem 3 proved above
that there is a conformal mapping f : R1 → R2 which transplants the quadratic
differential Q1(z) dz2 defined on R1 to the quadratic differential Q2(z) dz2 defined
on R2. Thus, the required conformal structure and the corresponding Jenkins-
Strebel quadratic differential are defined uniquely up to conformal autohomor-
phisms of R. �

6. Proof of existence

Here we work in the reverse order compared to the previous section. First, we
prove the existence assertion of Theorem 1. The latter easily implies the existence
assertion of Theorem 3.

(1) Proof of the existence assertion of Theorem 1. Without loss of generality
we may assume that Γ has no vertices of degree 2. Indeed, if vl is a vertex of degree
2 and ei1

jk, ei2
jk are edges having vl as their end point, then we can replace ei1

jk and
ei2

jk with a single edge ẽjk = ei1
jk ∪ ei2

jk ∪ vl with the weight wi1
jk + wi2

jk. Continuing
this gluing procedure, we reduce the proof to the case of graphs without vertices
of degree 2.

Consider n copies, say D1, . . . ,Dn, of the unit disk. For k = 1, . . . , n, let
Ak = {τ i

kj}i,j be a collection of mutually disjoint open arcs on the boundary of
Dk satisfying the following conditions:

(1) Ak contains an arc τ i
kj with indexes j and i if and only if E contains an edge

ei
kj .

(2) ∪i,j τ̄
i
kj = T;

(3) The cyclic order in which the arcs τ i
kj follow on the circle T coincides with

the cyclic order in which the edges ei
kj follow on the boundary cycle around

fk.
(4) length (τ i

kj) = 2πδi
kj , where δi

kj is the relative weight of γi
kj defined in Sec-

tion 4.

Next we construct a compact surface by gluing the boundary arcs of the
disks Dk, k = 1, . . . , n, as follows. Let Ak contain an arc τ i

kj (and therefore Aj

contains an arc τ i
jk) and let ζi

kj = eiϕi
kj and ηi

kj = eiψi
kj with ϕi

kj < ψi
kj < ϕi

kj +2π
be the initial point of τ i

kj and the terminal point of τ i
kj , respectively, assuming

positive orientation of T. In this case, we glue Dk and Dj along the closure of τ i
kj

by identifying the points of τ̄ i
kj with the points of τ̄ i

jk according to the following
rule:

τ̄ i
kj � eiϕi

kj ζ2δi
kj ←→ eiψi

jkζ−2δi
jk ∈ τ̄ i

jk. (6.1)

Here ζ = eiθ, 0 ≤ θ ≤ π.
Applying this gluing procedure for all arcs τ i

kj , we obtain the resulting com-
pact surface R̃ that is homeomorphic to R. Below, by P and z = zP we denote a
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point on R̃ and its affix on C, respectively. Thus, z = zP ∈ D. Also, by Dk
P we de-

note the disk Dk considered as a subset of R̃. The gluing procedure described above
generates a weighted graph Γ̃ = {Ṽ , Ẽ, F̃ , W̃} on R̃ with Ṽ = {ζi

kj}, Ẽ = {τ i
kj},

F̃ = {Dk}n
k=1, and W̃ = {wi

kj}. We emphasize once more that τ i
kj and τ i

jk denote
the same edge of Γ̃ since the points of these arcs are identified via formula (6.1).
In a similar way this identification works for the end points ζi

kj and ηi
jk as well.

Namely, each pair ζi
kj , η

i
jk defines the same point P ∈ R̃. In addition, several

such pairs ζis

ksjs
, ηis

jsks
, being identified via (6.1), may define the same vertex of Γ̃.

It is not difficult to see that the surface R̃ with the graph Γ̃ embedded in R̃ is
homeomorphic to the surface R with the graph Γ embedded in R.

To uniformize R̃, we introduce a complex atlas U as follows:
(1) Each disk Dk

P supplied with its “natural” local coordinate z = zP is consid-
ered as a chart (Dk

P , zP ) of U .
(2) For each arc τ i

kj we assign a chart (U i
kj , q

i
kj) as follows. Let Δi

kj = {P ∈ Dk
P :

ϕi
kj < arg zP < ψi

kj} and let U i
kj = {P ∈ R̃ : P ∈ Δi

kj ∪ Δi
jk ∪ τ i

kj}. Then
U i

kj is a simply connected open subset of R̃. A corresponding local coordinate
qi
kj : U i

kj → C can be introduced by

qi
kj(P ) =

⎧⎪⎨⎪⎩
(
e−iϕi

kjzP

) 1
2δi

kj if P ∈ Δi
kj ∪ τ i

kj ,(
e−iψi

jkzP

)− 1
2δi

jk if P ∈ Δi
jk.

(6.2)

It follows from (6.1) that qi
kj is continuous and one-to-one from U i

kj onto the
upper half-plane {ζ ∈ C : ) ζ > 0}.

(3) Now we assign a chart for each vertex of Γ̃. Assume that Pl ∈ R̃, l = 1, . . . ,m,
is a vertex of Γ̃ of degree d ≥ 3. In this case, we can find precisely d distinct
initial points ζi1

k1j1
, . . . , ζid

kdjd
, corresponding to the edges τ i1

k1k2
, . . . , τ id

kdjd
, such

that the points ζis

ksjs
= eiϕis

ksjs , s = 1, . . . , d, represent Pl on the boundary

of D
ks

P . We should note here that the disks D
ks

P and D
kp

P are not necessarily
distinct. We may assume that ζis

ksjs
, s = 1, . . . , d, are enumerated in such

way that the corresponding faces D
k1
P , . . . ,D

kd+1
P , where D

kd+1
P := D

k1
P , follow

clockwise around Pl. Then, of course, js = ks+1 for s = 1, . . . , d.
For ε > 0 sufficiently small and s = 1, . . . , d, define

V ε,s
Pl

= {P ∈ D
ks

P : | arg zP − ϕis

ksks+1
| < 2εδi1

k1k2
αk1/αks}.

Let V ε
Pl

= ∪d
s=1V

ε,s
Pl

. Assuming that the points of the corresponding circular
parts of the boundaries of V ε,s

Pl
and V ε,s+1

Pl
are identified according to the rule

(6.1), the set V ε
Pl

can be considered as an open neighborhood of Pl ∈ R̃. A

corresponding local coordinate ζ = ql(P ) can be introduced as ζ =
(

w−1
w+1

)2/d

,
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where w = w(P ) is defined by

w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
e−iϕ

i1
k1k2 zP

) 1

2δ
i1
k1k2 if P ∈ V ε,1

Pl
,(

e
−iψ

is−1
ksks−1 zP

) (−1)s+1

2δ
i1
k1k2

αks
αk1

if P ∈ V ε,s
Pl

, s = 2, . . . , d.
(6.3)

Here αk denotes the length of the boundary cycle around fk defined by (2.1).
Using the identification rule (6.1), one can easily verify that ql(P ) defined
above maps V ε

Pl
continuously and one-to-one onto some neighborhood of the

point 0 ∈ C.
The explicit expressions in (6.2) and (6.3) show that the local coordinates

introduced in (1)–(3) are conformally compatible. Combining all the charts intro-
duced in (1)–(3), we obtain the desired complex atlas U on R̃.

Now for each chart introduced above, we define a quadratic differential
Q(ζ) dζ2 satisfying the desired conditions. First, we put

Q(ζ) dζ2 = − α2
k

4π2

dζ2

ζ2
with ζ = zP , if P ∈ Dk

P , k = 1, . . . , n. (6.4)

This immediately implies that each disk Dk
P is a circle domain of Q(ζ) dζ2 and

every closed trajectory of Q(ζ) dζ2 lying in Dk
P has the Q-length equal to αk.

To define Q(ζ) dζ2 in terms of the local coordinate (6.2), we put

Q(ζ) dζ2 = −

(
wi

kj

)2

4π2

dζ2

ζ2
with ζ = qi

kj(zP ), if P ∈ U i
kj . (6.5)

Equation (6.5) implies that the Q-length of τ i
kj equals wi

kj .
Finally, to define Q(ζ) dζ2 in a vicinity of the vertex Pl, we fix ε > 0 suffi-

ciently small and then put

Q(ζ) dζ2 = −
d2
(
wi1

k1k2

)2
π2

ζd−2

(ζd − 1)2
dζ2 with ζ = ql(zP ), if P ∈ V ε

Pl
. (6.6)

Changing variables in (6.4) via (6.2) or (6.3) and using the transformation
rule (2.2), one can easily convert the quadratic differential (6.4) into the form
given by (6.5) or (6.6), respectively. Thus, equations (6.4), (6.5), and (6.6) define
the same quadratic differential on R̃.

By our construction, this quadratic differential has disks Dk
P as its circle do-

mains and the weighted graph Γ̃ as its critical graph. In addition, each open set
corresponding to a local coordinate introduced in (1), (2), or (3) has a nonempty
open intersection with at least one of the circle domains Dk

P , k = 1, . . . , n. This
implies that the domain configuration of the constructed quadratic differential
Q(ζ) dζ2 consists precisely of the domains D1

P , . . . ,D
n
P . In particular, it does not

contain density structures. Thus, Q(ζ) dζ2 is a Jenkins-Strebel quadratic differen-
tial on R̃. This completes the proof of the existence assertion of Theorem 1. �
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(2) Proof of the existence assertion of Theorem 3. The domain configuration
of the quadratic differential Q(ζ) dζ2 constructed in the proof above satisfies all
topological requirements of Theorem 3. In addition, it follows from our construc-
tion in the proof above and Corollary 1 that this domain configuration, considered
as a cellular structure on R̃, carries harmonic measures proportional with respect
to the weights {wi

kj}. �
Remark. In the first version of this paper, to prove the existence of quadratic
differentials with required properties, we used a special extremal problem, which
will be discussed in the next section. The referee of that version suggested that
uniformization can be used to prove the existence assertion. A simple existence
proof given above is based on his suggestion.

7. An extremal problem related to Theorem 1

The well-known heuristic Teichmüller principle, valid for a wide class of extremal
problems on conformal and quasiconformal mappings, asserts that every such prob-
lem is intrinsically related to a certain quadratic differential. So, a question of inter-
est is what extremal problem is hiding behind the quadratic differential appearing
in Theorems 1 and 3? Of course, if a conformal structure on R is prescribed and
the positions of double poles b1, . . . , bn are already determined, then the quadratic
differential of Theorem 1 is just a quadratic differential corresponding to the Jenk-
ins problem on the extremal partition of R. The main question here is how to deal
with the case of varying Riemann surfaces and moving centers b1, . . . , bn. In this
section, we first discuss this question for a general compact surface of genus g ≥ 0.
Then, we give a detailed treatment to this problem for the case R = S2.

Let Γ be a simply connected graph embedded in a compact surface R as
described in Theorem 1. Let Γ′ be a graph dual of Γ as defined in Section 2. Let
V ′ = A∪B, L = {likj}, and W = {wi

kj} be the sets of vertices, edges, and weights
of Γ′, respectively. Here A = {a1, . . . , al} denotes the set of all first degree vertices
of Γ and B = {b1, . . . , bn} denotes the set of centers bk ∈ fk. Equivalently, A is
the set of all isolated vertices of Γ′.

Let U be a complex atlas turning R into a Riemann surface RU in the corre-
sponding moduli space. Let MU ,1 be the solution to Problem 1 onRU for the punc-
tures A = {a1, . . . , al}, centers B = {b1, . . . , bn}, and weights α = {α1, . . . , αn}.
Let MU ,2 be the solution to Problem 2 on RU for the graph Γ′.

To unify notations, we will write C = (A,B) = (c1, . . . , cl+n), where ck = ak

for 1 ≤ k ≤ l and ck = bk−l for l < k ≤ l + n. Keeping the weights wi
kj , and

therefore the total weights αk, to be fixed, we consider the multi-valued function

MU = MU(A,B) = MU(C) = MU(c1, . . . , cl+n) = MU ,1 +MU ,2,

which is locally single-valued and continuous on the set R̃l+n
U .

Now we are ready to state the main problem of this section.
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Problem 3. For a given weighted graph Γ embedded into a compact surface R of
genus g ≥ 0, find the supremum

M = M(R,Γ) = sup MU (c1, . . . , cl+n) (7.1)

taken over all complex structures U on R, all vectors (c1, . . . , cl+n) ∈ R̃l+n
U , and

all branches of MU .

By Emel’yanov’s comparison theorem for dual problems on extremal parti-
tions (see [19, Theorem 3.3] for a version of this theorem for Riemann surfaces),

MU = MU ,1 +MU ,2 ≤ 0 on R̃l+n
U (7.2)

for every branch of MU .
Furthermore, equality holds in (7.2) if and only ifQU ,1(z) dz2 = −QU ,2(z) dz2.

Here QU ,1(z) dz2 and QU ,2(z) dz2 denote quadratic differentials on RU extremal
for the problems on MU ,1 and MU ,2, respectively. In other words, equality holds
in (7.2) if and only if the Kuz’mina quadratic differential for the problem on MU ,2

coincides up to a sign with the Jenkins-Strebel quadratic differential for the prob-
lem on MU ,1. The quadratic differential defined by Theorems 1 and 3 is precisely
of this kind. This gives the following solution to Problem 3.

Theorem 4. Let R and Γ be a compact surface and a graph as in Problem 3. Then
there is a conformal structure U0, a vector (c01, . . . , c

0
l+n) ∈ R̃l+n

R0
, and a branch

M̂U0 of MU0 such that

M̂U0(c
0
1, . . . , c

0
l+n) = M(R,Γ) = 0.

Furthermore, the complex structure U0, the vector (c01, . . . , c
0
l+n), and the branch

M̂U0 are determined uniquely up to conformal automorphisms.

Problem 3 suggests another way (although rather technical) to establish the
existence of a quadratic differential in Theorems 1 and 3. Namely, one can start
with a maximizing sequence of complex structures {U (k)}∞k=1, vectors {C(k)}∞k=1,
and single-valued branches {M̂U(k)}∞k=1 such that M̂U(k)(C(k)) → M(R,Γ) and
then show that, for some subsequence of indices ks → ∞, the corresponding sub-
sequence of sets of faces converges to a domain configuration of an appropriate
quadratic differential. Below in this section, we show how this can be done in the
case of the Riemann sphere, i.e., we assume that R = C. A similar, but even more
technical proof works for a general compact surface as well.

Let us consider the maximization problem 7.1 for the multi-valued function
M on the set C̃l+n. The known results on the change of the reduced module under
conformal mapping, cf. [19, Lemma 1.3], show that M is Möbius invariant, i.e.,

M(ϕ(c1), . . . , ϕ(cl+n)) = M(c1, . . . , cl+n)

for an appropriate choice of branches of M and every Möbius map ϕ.
Without loss of generality we may assume that Γ has no vertices of degree 2.
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1. In the case l + n = 3, the required quadratic differentials can be found
explicitly. Assume, for example, that n = 3, l = 0. In two other cases, when n = 2,
l = 1 and n = 1, l = 2, verification is similar and is left to the reader. Let Γ′ be
dual of the graph Γ. We may assume that Γ′ has its vertices at b1 = 0, b2 = 1,
and b3 = ∞. Since l = 0, Γ′ has no loops. Since deg vk �= 2 for vk ∈ V , Γ′ has
no parallel edges belonging to the same homotopic class on the punctured sphere
C \ {0, 1}. Thus, we are left with the following three subcases:
(1) Γ′ has edges l13 = (−∞, 0) and l23 = (1,+∞) with positive weights w13 and

w23, respectively.
(2) Γ′ has edges l13 and l23 as in (1) and the edge l12 = (0, 1) with weight w13 > 0.
(3) Γ′ has edges w13, w23 as above and the edge l33 = {z = (1/2) + it : −∞ <

t <∞} with weight w33 > 0.
In each of these cases the corresponding quadratic differential

Qi(z) dz2 = − 1
4π2

Pi(z)
z2(z − 1)2

dz2, i = 1, 2, 3,

can be found explicitly. Namely we have:
Case 1: P1(z) = α2

3(z − p)2 with α3 = w13 + w23, α1 = w13, and p = α1α
−1
3 ;

Case 2: P2(z) = α2
3(z − a)(z − ā) with α3 = w13 + w23, α1 = w12 + w13,

α2 = w12 + w23, and a defined by conditions |a| = α1α
−1
3 , |1 − a| = α2α

−1
3 ,

) a > 0;
Case 3: P3(z) = α2

3(z − p1)(z − p2) with α3 = w13 + w23 + w33, α1 = w13,
α2 = w23, and 0 < p1 < p2 < 1 defined by equations p1p2 = α2

1α
−2
3 , p1 + p2 =

1 + α2
1α
−2
3 − α2

2α
−2
3 .

2. Let l+n ≥ 4. Our first goal is to show that M achieves its maximal value

M = supM(c1, . . . , cl+n), −∞ < M ≤ 0,

at some point C∗ = (A∗, B∗) ∈ C̃l+n, where A∗ = (a∗1, . . . , a
∗
l ) ∈ C̃l, B∗ =

(b∗1, . . . , b
∗
n) ∈ C̃n, and for some single-valued branch of M.

(a) Let Γ′s, s = 1, 2, . . . , be a maximizing sequence of graphs and let Cs =
(As, Bs) ∈ C̃l+n be the sequence of vertex sets of Γ′s. Without loss of generality
we may assume that Cs → C∗ = (A∗, B∗) = (c∗1, . . . , c∗l+n} ∈ C

l+n
as s → ∞. To

emphasize that objects under consideration depend on s, we will use an additional
lower index s. Accordingly, we will write Γs, Cs = (As, Bs), Ms, M1,s, M2,s, etc.
Then

Ms = M(c1,s, . . . , cl+n,s) →M as s→∞. (7.3)
We claim that using auxiliary Möbius maps, selecting subsequences, and

changing numeration, if necessary, we may either achieve a situation when all
the coordinates of C∗ are distinct or, alternatively, we can find indices j1, j2, j3,
and j4 such that conditions (a), (b), and (c) below are fulfilled and, in addition,
at least one of the conditions (d1) or (d2) is satisfied:
(a) cj1,s = 0, cj2,s = ∞, cj3,s = 1 for all s.
(b) |ck,s| ≤ 1 for all k �= j2 and all s.
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(c) cj4,s → 0 as s→∞.
(d1) The graph Γ′s contains a loop, called (l1j1,j1

)s, which has its ends at cj1,s = 0
and separates cj2,s = ∞ from cj3,s = 1 on C \ {0}.

(d2) The graph Γ′s contains an edge, called (l1j1,j2)s, which joins cj1,s = 0 and
cj2,s = ∞.

Indeed, using a suitable Möbius map we may first satisfy the following three
conditions: cj1,s = b1,s = 0, cj2,s = ∞, where cj2,s = b2,s if n ≥ 2 and bj2,s = a1,s

otherwise, and maxk≥3 |ck,s| = 1 for all s = 1, 2, . . . For every given s, the number
of vertices ck,s is finite. Therefore selecting subsequences and rotating about the
origin, if necessary, we may assume in addition that cj3,s = 1 for some index
j3 �= j1, j2 and all s = 1, 2, . . . We still assume that ck,s → c∗k for 1 ≤ k ≤ l + n as
s→∞.

If c∗1, . . . , c∗l+n are not all distinct, then we have to consider the following
cases:

(i) Let #B∗ = 1. Since cj1,s = b1,s = 0 and cj2,s = ∞, this assumption implies
that cj2,s = a1,s is an isolated vertex of Γ′s. Therefore n = 1 and Bs contains the
only one vertex b1,s = 0. Hence every edge of Γ′s is a loop having its ends at 0.
In particular, Ls contains a loop, which separates cj2,s = ∞ from cj3,s = 1 on
C \ {0}. Since c∗1, . . . , c

∗
l+n are not all distinct, there are sequences ci1,s, . . . , cip,s,

2 ≤ p ≤ l+ n− 2, each of which converges to the same limit a ∈ D. If a = 0, then
conditions (a), (b), (c), and (d1) are satisfied.

If a �= 0, then we can choose two sequences, call them ci1,s and ci2,s, such
that ci1,s → a, ci2,s → a. Since ci1,s is an isolated vertex of Γ′s, there is a loop,
called (l11,1)s, which separates ci1,s from all other vertices of Γ′s on C \ {0}. Let
ϕs be a Möbius map such that ϕs(0) = 0, ϕs(ci1,s) = ∞, ϕs(ci2,s) = 1. Then one
can easily see that ϕs(∞) → 0 as s → ∞. If |ϕs(ck,s)| ≤ 1 for all ck,s �= ∞, then
conditions (a), (b), (c), and (d1) are satisfied. If |ϕs(ck,s)| > 1 for some ck,s �= ∞,
then using suitable dilations, selecting subsequences, and changing numeration, if
necessary, we will get the same conditions.

(ii) Let #B∗ ≥ 2. Assume that there are sequences ci1,s, . . . , cip,s, 2 ≤ p ≤ l+n−2,
each of which converges to the same limit a ∈ D. Assume, in addition, that at least
one of these sequences, let ci1,s, is a sequence of centers, i.e., ci1,s ∈ Bs.

In this case we can find sequences ck′,s ∈ Bs and cm′,s ∈ Bs such that
ck′,s → a, cm′,s → b �= a and such that for every s the graph Γ′s has an edge, called
(γ̃k′,m′)s, which joins the vertices ck′,s and cm′,s.

Now, using Möbius maps ϕs such that ϕs(ck′,s) = 0, ϕs(cm′,s) = ∞ for
s = 1, 2, . . ., and then selecting subsequences, changing numeration, and using
dilations, if necessary, we will satisfy requirements (a), (b), (c), and (d2).
(iii) Let #B∗ ≥ 2. Assume as in case (ii) that there are sequences ci1,s, . . . , cip,s,
2 ≤ p ≤ l+ n− 2, each of which converges to the same limit a ∈ D. In contrast to
case (ii), we assume now that there are no sequences of centers, which converge to
a. Then, of course, a �= 0 since cj1,s = b1,s = 0.
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Since ci1,s is an isolated vertex of Γ′s, there is a loop l̃s of Γ′s having its ends at
some vertex b̃s, which separates ci1,s from all other vertices of Γ′s on C \ {b̃s}. Let
ϕs be a Möbius map such that ϕs(b̃s) = 0, ϕs(ci1,s) = ∞, ϕs(ci2,s) = 1. As in the
case (i), one can easily see that ϕs(∞) → 0 and ϕs(0) → 0 as s → ∞. Therefore
conditions (a), (c), and (d1) are satisfied. To satisfy condition (b), we apply, as
above, suitable dilations, selections of subsequences, and changing numeration if
necessary.

Our next claim is that if conditions (a), (b), and (c) are fulfilled and, in
addition, at least one of conditions (d1) or (d2) is satisfied, then

Ms = M(c1,s, . . . , cl+n,s) → −∞ as s→∞. (7.4)

To prove this claim, we first introduce notations, which also will be used in
part (b) of this proof. If bk,s �= ∞, then let dk,s = mincj,s =bk,s

|bk,s − cj,s| be the
distance from bk,s to the closest vertex of Γ′s different from bk,s. If bk,s = ∞, then
we put dk,s = maxcj,s =bk,s

|cj,s|. Of course, under conditions (a) and (b) above,
dj2,s = 1.

Let D1,s, . . . , Dn,s be the extremal partition of Problem 1 for the set of punc-
tures As, set of centers Bs, and set of weights α. Then Koebe’s 1/4-theorem, see
[11, Theorem 2.9], implies that

m(Dk,s, bk,s) ≤
1
2π

log(4dk,s), 1 ≤ k ≤ n, s = 1, 2, . . . . (7.5)

Therefore,

M1,s =
n∑

k=1

α2
km(Dk,s, bk,s) ≤

1
2π

n∑
k=1

α2
k log dk,s + C (7.6)

with some real C independent of s.

If bk,s �= ∞, then let Δk,s = {z : |z − bk,s| < dk,s/4}. If bk,s = ∞, then
we put Δk,s = {z ∈ C : |z| > 4dk,s}. Then for every given s, Δ1,s, Δ2,s, . . .,
Δn,s are disjoint discs on C centered at the vertices b1,s, . . . , bn,s of the graph Γ′s.
Let Q2(z, s) dz2 be the extremal quadratic differential corresponding to Problem 2
defined for the graph Γ′s with the set of vertices Cs = (As, Bs). Let {(Gi

kj)s} be
the domain structure of Q2(z, s) dz2. Here for every i and s, (Gi

kj)s is a digon
having its vertices at bk,s and bj,s. Let (G̃i

kj)s denote the connected component of
the intersection ((Gi

kj)s)
⋂

Δk,s, which contains the vertex bk,s on its boundary.
We note that in case k = j the digon (Gi

kk)s has both its vertices at the same
point and therefore we have two such connected components. In this case, (G̃i

kj)s

will denote the union of these two components. Let Δ̃k,s =
⋃

j,i((G̃
i
kj)s).

If γ is a closed Jordan curve in Δk,s separating bk,s from ∂Δk,s, then (3.3)
and (2.1) yield

α−1
k

∫
γ∩Δ̃k,s

|Q2(z, s)|1/2 |dz| ≥ 1.
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Therefore the restriction of the metric α−1
k |Q2(z, s)|1/2|dz| onto the set Δ̃k,s is an

admissible metric for the reduced module problem in the punctured disc Δk,s \
{bk,s}. Hence for 1 ≤ k ≤ n and s = 1, 2, . . ., we have

m(Δk,s, bk,s) =
1
2π

log(dk,s/4) ≤ lim
ε→0+

(
α−2

k

∫ ∫
Δ̃ε

k,s

|Q2(z, s)| dAz +
1
2π

log ε

)
,

(7.7)
where Δ̃ε

k,s = Δ̃k,s \ {z : |z − bk,s| < ε} if k �= 2 and Δ̃ε
2,s = {z : |z| > 1/ε} \ Δ̃2,s.

Suppose that conditions (a), (b), (c), and condition (d2) are satisfied. Then
the extremal decomposition of Problem 2 for the graph Γ′s contains a digon, called
(G1

12)s, which has its vertices at b1,s = 0 and b2,s = ∞. Let Rs be the quadrilateral
defined, as in Lemma 2, for the digon

(
G1

12

)
s

and the annulus A(s) = A(r1, r2)
with r1 = d1,s/4, r2 = 4d2,s. Let l′s and l′′s denote the sides of Rs joining the circles
∂Δ1,s and ∂Δ2,s. By (3.3), the metric (w1

12)
−1 |Q2(z, s)| |dz| is admissible for the

module problem in Rs. Therefore,

Mod(Rs) ≤ (w1
12)
−2

∫ ∫
Rs

|Q2(z, s)| dAz, s = 1, 2, . . . (7.8)

Since every closed Jordan curve separating the boundary circles of the annu-
lus A(s) contains an arc joining the sides l′s and l′′s of Rs, the well-known compar-
ison principle for module/extremal length, see [1], implies that

Mod(Rs) ≥ Mod(A(s)) =
1
2π

log(16/d1,s) → +∞ as s→∞ (7.9)

since d1,s → 0 by condition (c).
Finally, combining relations (7.5)–(7.8), we obtain

Ms = M1,s +M2,s =
n∑

k=1

α2
km(Dk,s, bk,s) −

∑
k,j,i

(wi
kj)

2m((Gi
kj)s, bk,s, bj,s)

≤ C −
∫ ∫

Rs

|Q2(z, s)| dAz (7.10)

+
1
2π

n∑
k=1

α2
k log dk,s − lim

ε→0

n∑
k=1

(∫ ∫
Δ̃ε

k,s

|Q2(z, s)| dAz +
α2

k

2π
log ε

)

≤ C −
∫ ∫

Rs

|Q2(z, s)| dAz ≤ C −Mod(Rs),

which together with (7.9) implies (7.4). The latter, of course, contradicts (7.3).
The proof given above remains valid if we replace condition (d2) by condition

(d1). We still assume that conditions (a), (b), and (c) are satisfied. In this case,
Rs will denote the quadrilateral in C \ Δ1,s defined for the digon (G1

11)s as in
Lemma 3. Then Rs has its pair of distinguished sides on ∂Δ1,s and separates the
point cj2,s = ∞ from cj3,s = 1 on C \ Δ1,s. All inequalities in (7.10) remain valid
in this case. The well-known estimates for the module of quadrilaterals, related to
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Grötzsch’s ring, see [1], show that Mod(Rs) → ∞ as s → ∞. This together with
(7.10) again contradicts (7.3).

Therefore in the rest of this proof we may assume that all coordinates of the
limit point C∗ = (A∗, B∗) are distinct.

(b) Next we show that all graphs Γ′s of the maximizing sequence defined
in part (a) can be chosen to be in the same homotopy class defined by some
deformation of C with the initial point C∗ = (A∗, B∗). This will allow us to apply
differentiation formulas (3.4) to locate the maxima of M.

Arguing by contradiction, we assume that all graphs Γ′s are homotopically
distinct in a vicinity of the point C∗. Then Lemma 1 implies that the sequence
of indices {ind (Γ′s)}∞s=1 can not be bounded. Therefore there is a subsequence of
graphs, still denoted by Γ′s, such that

ind c1,sc2,s(ls) → +∞ (7.11)

for some vertices c1,s and c2,s of Γ′s and some edge ls of Γ′s. Let c3,s and c4,s be
the ends of ls. Here we assume that each of the vertices c1,s and c2,s is distinct
from the other three vertices but the vertices c3,s and c4,s may coincide.

Assume first that c3,s �= c4,s. Then, changing numeration if necessary, we may
assume that c3,s = a1,s = 0, c4,s = a2,s = ∞, c1,s = 1. We claim, as in part (a),
that Ms = Ms(c1,s, . . . , cl+n,s) → −∞ as s → ∞. To prove this, we notice that
all inequalities (7.5)–(7.8) remain valid for the considered sequence of graphs Γ′s
and for the corresponding sequence of extremal partitions. All notations related
to these inequalities are the same as in part (a). Therefore inequalities (7.10)
also remain valid in the case under consideration. Taking into account (7.11), we
conclude from Lemma 2 that Mod(Rs) → ∞ as s→ ∞. The latter together with
(7.10) implies that Ms → −∞ as s → ∞ contradicting our assumption that Ms

is a maximizing sequence.
Taking into account Lemma 3, one can easily see that similar argument works

also in the case c3,s = c4,s.

(c) Since M1 and M2 are locally single-valued and continuous on C̃l+n, our
arguments in parts (a) and (b) show that M = M1 + M2 achieves its maximal
value for some single-valued branch of M at some point (c∗1, . . . , c

∗
l+n) ∈ C̃l+n.

Since M is invariant under Möbius maps, we may assume without loss of generality
that c∗l+n = b∗n = ∞, c∗l+n−1 = 0, c∗l+n−2 = 1.

The point (c∗1, . . . , c
∗
l+n) is a critical point of M. Hence all partial derivatives

∂M/∂ck, 1 ≤ k ≤ l + n − 3, must vanish at (c∗1, . . . , c
∗
l+n). Using differentiation

formulas (3.4), we find

∂

∂bk
M = π

d

dz

(
(z − bk)2Q1(z)

)∣∣∣∣
z=bk

+ π
d

dz

(
(z − bk)2Q2(z)

)∣∣∣∣
z=bk

(7.12)
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for all varying centers bk and
∂

∂ak
M = π lim

z→ak

((z − ak)Q1(z)) + π lim
z→ak

((z − ak)Q2(z)) (7.13)

for all varying punctures ak.
From (7.12) and (7.13) taking into account (3.1) and (3.2), we obtain

∂

∂bk
M(C∗) = π (P ′1(b

∗
k) + P ′2(b

∗
k))
∏l

j=1
(b∗k −a∗j )−1

∏′n−1

j=1
(b∗k − b∗j)−2 = 0 (7.14)

and
∂

∂ak
M(C∗) = π (P1(a∗k) + P2(a∗k))

∏′l

j=1
(a∗k − a∗j )

−1
∏n−1

j=1
(a∗k − b∗j )

−2 = 0.

(7.15)
In (7.14) we assume, of course, that n ≥ 4 and 1 ≤ k ≤ n−3. In addition, if n = 4,
then the second product in (7.14) is taken over empty set of terms. In this case,
we assume that the value of this product is 1. Similarly, the first product in (7.15)
is 1 if l = 1. In (7.15) we assume that 1 ≤ k ≤ k0, where k0 = min{l, l+ n− 3}.

Therefore if n ≥ 4, then (7.14) gives the following n− 3 necessary conditions
for critical points of M:

P ′1(b
∗
k) = −P ′2(b∗k), 1 ≤ k ≤ n− 3. (7.16)

If l ≥ 1, then (7.15) in its turn gives k0 necessary conditions:

P1(a∗k) = −P2(a∗k), 1 ≤ k ≤ k0. (7.17)

It follows from formulas (3.1) and (3.2) in Section 3 that each of the poly-
nomials P1 and −P2 satisfies equations (1.3). For n ≥ 2, this gives another n− 1
conditions:

P1(b∗k) = −P2(b∗k), for 1 ≤ k ≤ n− 1. (7.18)
Let P (z) = P1(z)+P2(z). Since P1 and −P2 are polynomials of degree l+2n−

4, each of which has the highest coefficient −α2
n/4π

2, the polynomial P has degree
≤ l + 2n − 5. Since all points a∗1, . . . , a

∗
l ,b
∗
1, . . . , b

∗
n are distinct, equations (7.16)–

(7.18) imply that the polynomial P has at least l+2n−4 zeros counting multiplicity.
Therefore, P must vanish identically. Then, of course, P1(z) = −P2(z) and hence
Q1(z) dz2 = −Q2(z) dz2.

Summing up, if M achieves its maximum at (c∗1, . . . , c∗l+n) ∈ C
l+n

with
c∗l+n = a∗1 = ∞, c∗l+n−1 = 0, and c∗l+n−2 = 1, then for 1 ≤ k ≤ l + n − 1 all coor-
dinates c∗k are finite and distinct. Let Q1(z) dz2 be the Jenkins-Strebel quadratic
differential associated with Problem 1 for punctures a∗1, . . . , a

∗
l , centers b∗1, . . . , b

∗
n,

and weights α1, . . . , αn. Then the orthogonal differential Q2(z) dz2 = −Q1(z) dz2

is a Kuz’mina quadratic differential associated with Problem 2 such that the tra-
jectory graph Γ′Q2

of Q2(z) dz2 is homeomorphic to Γ′ on C. In addition, the side
γi

kj of Γ′Q2
corresponding to the side likj of Γ′ carries the same weight wi

kj as likj

does. This implies that the critical graph ΓQ1 , which is dual of Γ′Q2
, is homeo-

morphic to Γ on C and the side νi
kj of ΓQ1 , which is transversal to γi

kj , has the
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Q1-length wi
kj . Therefore the quadratic differential Q1(z) dz2 satisfies all condi-

tions required by Theorem 2. This establishes the existence of a Jenkins-Strebel
quadratic differential with the desired properties.

8. Examples and remarks

In this section we consider some important particular cases of Theorem 2.
(a) Trees and continua of the minimal logarithmic capacity. Let Γ = {V , E,

F , W} be a free tree with l leaves and positive lengths of its edges. Then n = 1,
F contains only one face D = C \ (V ∪E), and we may assume that the length of
∂D is 1. By Theorem 2, there is a quadratic differential of the form

Q(z) dz2 = − 1
4π2

P (z)∏l
k=1(z − ak)

dz2,

where P (z) = zl−2 + · · ·+ c0 and R(z) =
∏l

k=1(z−ak) are relatively prime, whose
critical graph ΓQ, complemented, if necessary, by second degree vertices on its
edges, is homeomorphic to Γ and carries the same weights.

It is well known, see [14, Chapter 1], that the setKQ = VQ∪EQ is extremal for
Chebotarev’s problem on continua of the minimal logarithmic capacity containing
the points a1, . . . , al. Thus, Theorem 2 shows in this particular case that every
positive free tree can be realized uniquely up to a linear mapping as a continuum of
minimal logarithmic capacity on C. A detailed treatment of Chebotarev’s problem
and related trees was given in a recent paper of P.M. Tamrazov [21].

(b) Triangulation. Assume that every face fk ∈ F is bounded by three distinct
edges. Then Γ induces a finite triangulation on S2. Now, Theorem 2 says that every
triangulation with prescribed lengths of sides of all triangles can be constructed as
a conformal triangulation induced by some Jenkins-Strebel quadratic differential.
In addition, such a conformal triangulation is unique if we fix the vertices of its
initial triangle.

(c) Cells with a fixed perimeter. Let Γ = {V,E, F,W} be a plane weighted
graph such that vk ≥ 3 for all k, 1 ≤ k ≤ m, and let every boundary cycle ∂fk has
length 1. Let

Q(z) dz2 = − 1
4π2

P (z)∏n−1
k=1 (z − bk)2

dz2 (8.1)

be the quadratic differential defined by Theorem 2 for the graph Γ. Here P (z) =
z2n−1+ · · ·+c0 is a polynomial of degree 2n−4 such that P (bk) =

∏′n−1

k=1 (bk−bj)2.
It is well known, see [14, Chapter 6], that the quadratic differential (8.1) is

extremal for the problem of the maximal product
∏n

k=1 R(Dk, bk) of conformal
radii of non-overlapping simply connected domains D1, . . . , Dn such that bk ∈ Dk

and bn = ∞. Thus, Theorem 2 asserts in this case that every cellular structure,
each cell of which has perimeter 1, can be realized as a domain configuration of a
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quadratic differential Q(z) dz2 which is extremal for the problem of the maximal
product of conformal radii.

(d) Linear graphs. Let Γ have a single vertex v1 lying at ∞ and n ≥ 2 loops.
Then its dual Γ′ is a linear graph with n edges and n+1 vertices. We may assume
that Γ′ has vertices v′1, . . . , v′n+1 such that 0 = v′1 < v′2 < · · · < v′n+1 = 1, edges
lk,k+1 = [v′k, v

′
k+1], and weights wk,k+1 = v′k+1 − v′k, 1 ≤ k ≤ n. Then, of course,

the total weight of the vertex v1 is 1. Theorem 2 implies that the linear graphs Γ′

are in a one-to-one correspondence with quadratic differentials of the form

Q(z) dz2 = − C2

4π2

dz2∏n+1
k=1(z − bk)2

, (8.2)

where 0 = b1 < b2 < · · · < bn+1 = 1 and C = w1,2

∏n+1
j=2 bj. One can easily see

that the quadratic differential (8.2) has a single zero of order 2n − 2 at ∞. An
explicit correspondence between the poles b1, . . . , bn+1 of Q(z) dz2 and the weights
w1,2, . . . , wn,n+1 of the graph Γ is given by the following n− 1 equations:

wk−1,k + wk,k+1 = w1,2

∏n+1

j=2
bj
∏′n+1

j=1
|bk − bj|−1, 2 ≤ k ≤ n− 1,

wn,n+1 = w1,2

∏n+1

j=2
bj
∏n

j=1
(1 − bj)−1.

(8.3)

It follows from Theorem 2 that for every set of positive weights wk,k+1, 1 ≤ k ≤ n,
such that

∑n
k=1 wk,k+1 = 1, the equations (8.3) have a unique solution b1, . . . , bn+1

satisfying the conditions 0 = b1 < b2 < · · · < bn+1 = 1. The latter also can be
established by lengthy, routine calculation involving some work with Vandermonde
determinants; cf. proof of Theorem 1.3 in [3].

(e) Cyclic graphs. If Γ has two vertices v1 = 0 and v2 = ∞ and n ≥ 2 parallel
edges from v1 to v2, then its dual Γ′ is a cyclic graph with n vertices and n edges.
We may assume that Γ′ has vertices bk = eiθk , 0 = θ1 < · · · < θn < 2π = θn+1

and edges lk,k+1 = {eiθ : θk < θ < θk+1}, 1 ≤ k ≤ n. In addition, we may assume
that lk,k+1 carries the weight wk,k+1 = (θk+1 − θk)/2π. Then, the total weight of
each of the vertices v1 and v2 is 1. Theorem 2 implies that the cyclic graphs are
in a one-to-one correspondence with quadratic differentials of the form:

Q(z) dz2 = − C2

4π2

zn−2∏n
k=1(z − eiαk)2

dz2, (8.4)

where 0 = α1 < α2 < · · · < αn < 2π = αn+1 and C = (w1,2 + wn,n+1)
∏n

k=2(1 −
eiαk). An explicit correspondence between weights wk,k+1 and poles of Q(z) dz2 is
given by the system of equations:

wk−1,k + wk,k+1 = Ceiαk(n−2)/2
∏′n

j=1
(eiαk − eiαj )−1, 1 ≤ k ≤ n. (8.5)

It follows from Theorem 2 that for every admissible choice of weights the sys-
tem (8.5) has a unique solution C ∈ C and α1, . . . , αn ∈ R such that 0 = α1 <
· · · < αn < 2π.



502 A.Yu. Solynin

In the case of equal weights w1,2 = · · · = wn,n+1 = 1/n, the poles of quadratic
differential (8.4) are equally spaced on the unit circle and therefore (8.4) becomes:

Qn(z) dz2 = − 1
π2

zn−2

(zn − 1)2
dz2. (8.6)

By the well-known theorem of Dubinin [4, Theorem 2.17], the quadratic differential
Qn(z) dz2 is extremal for the problem of the maximal product

∏n
k=1 R(Dk, bk) of

conformal radii of non-overlapping simply connected domains Dk, 1 ≤ k ≤ n,
whose centers bk ∈ Dk vary on the unit circle. The counterpart of this problem,
suggested by G.V. Kuz’mina, for 2n non-overlapping domains, n of which have
centers varying on the circle Cr(0) and the remaining n have centers varying on
C1/r(0), 0 < r < 1, has remained open for a quite long time. It is conjectured that
for every n ≥ 2 and 0 < r < 1, the extremal partition of this problem is given by
the domain configuration of the quadratic differential

Qn,r(z) dz2 =
zn−2(zn + pn)(zn − 1/pn)
(zn − rn)2(zn + 1/rn)2

dz2

with some 0 < p < 1 depending on n and r.
It is worth mentioning that symmetric cyclic graphs with an even number

of edges are in a one-to-one correspondence with linear graphs. Therefore, the
corresponding quadratic differentials are in a one-to-one correspondence as well.
Indeed, let Q(z) dz2 be a quadratic differential of the form (8.4), for which the the
set of poles is symmetric with respect to the real axis and contains poles at ±1.
Then, scaled Joukowski’s mapping z → (1/4)(z + 1 + z−1) transforms Q(z) dz2

into a quadratic differential of the form (8.2).
We want to mention also that the Joukowski’s mapping z → (1/2)(eπi/2nz+

e−πi/2nz−1) transforms the symmetric quadratic differential Q2n(z) dz2 defined by
(8.6) into the quadratic differential

QT (z) dz2 = − 1
4π2

dz2

(z2 − 1)2T 2
n(z)

,

where Tn(z) = cos(n arccos(z)) denotes the classical Chebyshev polynomial of
degree n which deviates least from zero on [−1, 1].

(f) Platonic solids. Of course, every regular pattern can be represented by
the critical graph of some Jenkins-Strebel quadratic differential. The five Platonic
polyhedra: tetrahedron, cube, octahedron, dodecahedron, and icosahedron, corre-
spond, respectively, to the following Platonic quadratic differentials:

Qt(z)dz2=− 1
4π2

z(z3+8)
(z3−1)2

dz2,

Qc(z)dz2=− 1
4π2

z8 +14z4+1
z2(z4−1)2

dz2,

Qo(z)dz2=− 1
4π2

(z6 +5
√

2z3−1)2

z2(z6−(7
√

2/4)z3−1)2
dz2,
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Qd(z)dz2=− 1
4π2

z20−228z15+494z10+228z5+1
z2(z10 +11z5−1)2

dz2,

Qi(z)dz2=− 1
4π2

(z12 +11
√

5z9−33z6−11
√

5z3+1)3

z2(z18− 57
√

5
8 z15− 57

2 z
12− 247

√
5

4 z9 + 57
2 z

6− 57
√

5
8 z3−1)2

dz2.

For each of the Platonic polyhedra, the above representation is unique up to a
Möbius map. The zeros of the Platonic quadratic differential represent the vertices
of the corresponding polyhedra while the poles represent its face centers. In each
case, the representation above is given via a stereographic projection in such a way
that the center of one of the faces is located at ∞.

The first three of these quadratic differentials are easy to compute. To get
the explicit expression for the dodecahedral quadratic differential, we used Klein’s
invariants V (z) = z(z10 + 11z5− 1) and F (z) = z20 − 228z15 + 494z10 + 228z5 + 1
for the icosahedral group G60, see [5, Section 5]. Then since the icosahedron and
dodecahedron are dual polyhedra, the icosahedron can be represented by the qua-
dratic differential Qi(ζ) dζ2 = C(V 3(ζ)/F 2(ζ)) dζ2 for some constant C < 0.
Now changing variables via the Möbius map z = (ζ − c)/(1 + cζ) with c =

− 5
√

5
√

255 + 114
√

5 − 57− 25
√

5 being the smallest, in absolute value, negative
zero of F (z), we obtain the desired form Qi(z) dz2 after long but routine simplifi-
cation.

It is important to emphasize that the critical graph of each of the Platonic
quadratic differentials coincides precisely with the stereographic projection of the
corresponding Platonic tessellation of the sphere and is not just a homeomorphic
representation of it.

(g) Disconnected graphs. If Γ is a disconnected graph homeomorphic to the
critical graph ΓQ of some Jenkins-Strebel quadratic differentialQ(z) dz2, then each
face fk of Γ is necessarily a simply connected domain or doubly-connected domain
on R̃. Thus, Theorems 1 and 2 can not be extended for arbitrary disconnected
graphs, at least not directly. Even more, as simple examples show, an analytic
embedding of a disconnected graph, if it exists, is not unique in its homotopy
class, not even up to Möbius maps in the case of R = C. So, any study of analytic
embedding of disconnected graphs should address these issues.
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Riesz Transforms and Rectifiability

Xavier Tolsa

Abstract. The n-dimensional Riesz transform of a measure μ in Rd is defined
by the singular integral∫

x− y

|x− y|n+1
dμ(y), x ∈ R

d.

Let E ⊂ Rd with Hn(E) < ∞, where Hn stands for the n-dimensional Haus-
dorff measure. In this paper we survey some recent results and open problems
about the relationship between the L2 boundedness and existence of principal
values for the Riesz transform of the measure Hn

|E , and the rectifiability of E.

Mathematics Subject Classification (2000). 42B20, 28A75.

1. Introduction

Given x ∈ Rd, x �= 0, we consider the signed Riesz kernel Kn(x) = x/|x|n+1, for
n such that 0 < n ≤ d. Observe that Kn is a vectorial kernel. The n-dimensional
Riesz transform of a finite Borel measure μ on Rd is defined by

Rnμ(x) =
∫
Kn(x − y) dμ(y), x ∈ Rd \ supp(μ).

Notice that the integral above may fail to be absolutely convergent for x ∈ supp(μ).
For this reason one considers the ε-truncated n-dimensional Riesz transform, for
ε > 0:

Rn
εμ(x) =

∫
|x−y|>ε

Kn(x− y) dμ(y), x ∈ Rd.

The principal values are denoted by

p.v.Rnμ(x) = lim
ε→0

Rn
εμ(x),

whenever the limit exists.

Partially supported by grants MTM2007-62817 (Spain) and 2005-SGR-00774 (Generalitat de
Catalunya).
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Given f ∈L1
loc(μ), we also denote Rn

μ(f)=Rn(f dμ) and Rn
μ,ε(f)=Rn

ε (f dμ).
Recall the definition of the maximal Riesz transform:

Rn
∗μ(x) = sup

ε>0
|Rn

εμ(x)|.

We say that the Riesz transform operator Rn
μ is bounded in L2(μ) if the truncated

operators Rn
μ,ε are bounded in L2(μ) uniformly on ε > 0.

If in the preceding definitions one replaces the kernel Kn(x) by the Cauchy
kernel 1/z, with z ∈ C, and one considers a Borel measure μ in the complex plane,
one gets the Cauchy transform:

Cμ(z) =
∫

1
z − ξ

dμ(ξ), z �∈ supp(μ).

We have analogous definitions for Cεμ, Cμ(f), Cμ,ε(f), C∗μ, etc.
One says that a subset E ⊂ Rd is n-rectifiable if there exists a countable

family of n-dimensional C1 submanifolds {Mi}i≥1 such that

Hn
(
E \
⋃
i

Mi

)
= 0,

where Hn stands for the n-dimensional Hausdorff measure.
In this paper we are interested in the relationship between rectifiability and

Riesz transforms, in particular in the existence of principal values and L2 bound-
edness for Riesz transforms. This subject has been object of active research in the
last years and there are still many difficult open questions dealing with this topic.
In next sections we survey some recent results and open problems in this field.
There is no attempt at completeness.

As usual, in the paper the letter ‘C’ stands for an absolute constant which
may change its value at different occurrences. On the other hand, constants with
subscripts, such as C1, retain its value at different occurrences. The notationA � B
means that there is a positive absolute constant C such that A ≤ CB. Also, A ≈ B
is equivalent to A � B � A.

2. Principal values for Riesz transforms and rectifiability

Before talking about principal values of Riesz transforms we recall a fundamental
result of geometric measure theory.

Theorem 2.1. Let E ⊂ Rd with Hn(E) <∞. Then, the density

Θn(x,E) := lim
r→0

Hn(E ∩B(x, r))
(2r)n

exists for Hn-almost every x ∈ E if and only if n is integer and E is n-rectifiable.

The difficult implication in this theorem is

∃ Θn(x,E) Hn-a.e. x ∈ E ⇒ n is integer and E n-rectifiable.
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The fact that n must be integer if the density exists is a result of Marstrand [Mar],
and that E must be n-rectifiable is due to Preiss [Pre] (and to Besicovitch in the
case n = 1, d = 2).

Let us remark that if E is n-rectifiable, then Θn(x,E) = 1 for Hn-a.e. x ∈ E.
Moreover, previously to Preiss’ theorem, Mattila [M1] proved that

Θn(x,E) = 1 for Hn-a.e. x ∈ E ⇒ E is n-rectifiable.

Concerning principal values for the Riesz transforms we have the following.

Theorem 2.2. Suppose that n is an integer such that 0 < n ≤ d. Let E ⊂ Rd

with Hn(E) <∞. The principal value p.v.Rn(Hn
|E)(x) exists for Hn-almost every

x ∈ E if and only if E is n-rectifiable.

Notice the analogies between Theorems 2.1 and 2.2.
The fact that rectifiability implies the existence of principal values was proved

first by Mattila and Melnikov [MM] for the Cauchy transforms (with n = 1, d = 2),
and their proof generalizes easily to n-dimensional Riesz transforms. That E must
be n-rectifiable if the principal values p.v.Rn(Hn

|E)(x) exist for Hn-almost every
x ∈ E was recently proved by the author in [To7].

Under the additional assumption that

lim inf
r→0

Hn(B(x, r) ∩ E)
rn

> 0 Hn-a.e. x ∈ E, (2.1)

Mattila and Preiss had previously proved [MPr] that if the principal value
p.v.Rn(Hn

|E)(x) exists Hn-almost everywhere in E, then E is n-rectifiable. Getting
rid of the hypothesis (2.1) was an open problem raised by authors in [MPr].

Let us also remark that in the particular case n = 1, Theorem 2.2 was previ-
ously proved in [To1] (and in [M3] under the assumption (2.1)) using the relation-
ship between the Cauchy transform and curvature of measures (see Theorem 3.2
below for the details). In higher dimensions the curvature method does not work
(see [Fa]) and new techniques were required.

It is not known if Theorem 2.2 holds if one replaces the assumption on the
existence of principal values for the Riesz transforms by

Rn
∗ (Hn

|E)(x) <∞ Hn-a.e. x ∈ E.

That this is the case for n = 1 was shown in [To1] using curvature. However, for
n > 1 this is an open problem that looks very difficult (probably, as difficult as
proving that the L2 boundedness of Riesz transforms with respect to Hn

|E implies
the n-rectifiability of E. See next section for more details).

Given a Borel measure μ on Rd, its upper and lower n-dimensional densities
are defined, respectively, by

Θn,∗(x, μ) = lim sup
r→0

μ(B(x, r))
rn

, Θn
∗ (x, μ) = lim inf

r→0

μ(B(x, r))
rn

.

The “only if” part of Theorem 2.2 is a particular case of the following some-
what stronger result.
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Theorem 2.3. Let μ be a finite Borel measure on Rd. Suppose that n is an integer
such that 0 < n ≤ d, and let E ⊂ Rd be such that for all x ∈ E we have

0 < Θn,∗(x, μ) <∞ and ∃p.v.Rnμ(x).

Then E is n-rectifiable.

The arguments to prove Theorems 2.2 and 2.3 are very different from the ones
in [MPr] and [M3], which are based on the use of tangent measures. A fundamental
step in the proof of Theorem 2.3 consists in obtaining precise L2 estimates of Riesz
transforms on Lipschitz graphs. In a sense, these L2 estimates play a role analogous
to curvature of measures in [To1]. Loosely speaking, the second step of the proof
consists of using these L2 estimates to construct a Lipschitz graph containing a
suitable piece of E, by arguments more or less similar to the ones in [Lé].

To describe in detail the L2 estimates mentioned above we need to introduce
additional terminology. We denote the projection

(x1, . . . , xn, . . . , xd) → (x1, . . . , xn, 0, . . . , 0)

by Π, and we set Π⊥ = I −Π. We also denote

Rn,⊥μ(x) = Π⊥(Rnμ(x)) and Rn,⊥
ε μ(x) = Π⊥(Rn

εμ(x)).

That is to say, Rn,⊥μ(x) and Rn,⊥
ε μ(x) are made up of the components of Rnμ(x)

and Rn
εμ(x) orthogonal to Rn, respectively (we are identifying Rn with Rn ×

{(0, . . . , 0)}).

Theorem 2.4. Consider the n-dimensional Lipschitz graph Γ := {(x, y) ∈ Rn ×
Rd−n : y = A(x)}, and let μ = Hn

|Γ. Suppose that A has compact support. If
‖∇A‖∞ ≤ ε0, with 0 < ε0 ≤ 1 small enough, then

‖p.v.Rn,⊥μ‖L2(μ) ≈ ‖p.v.Rnμ‖L2(μ) ≈ ‖∇A‖2.

Let us remark that the existence of the principal values p.v.Rnμ μ-a.e. under
the assumptions of the theorem is a well-known fact.

The upper estimate ‖p.v.Rnμ‖L2(μ) � ‖∇A‖2 is an easy consequence of some
results from [Do] and [To6] and also holds replacing ε0 by any big constant. The
lower estimate ‖p.v.Rn,⊥μ‖L2(μ) � ‖∇A‖2 is more difficult. To prove it one uses
a Fourier type estimate as well as the quasiorthogonality techniques developed in
[To6].

We remark that we do not know if the inequalities

‖p.v.Rnμ‖L2(μ) ≥ C−1
3 ‖∇A‖2 or ‖p.v.Rn,⊥μ‖L2(μ) ≥ C−1

3 ‖∇A‖2

in Theorem 2.4 hold assuming ‖∇A‖∞ ≤ C4 instead of ‖∇A‖∞ ≤ ε0, with C4

arbitrarily large and C3 possibly depending on C4.
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3. L2 boundedness of Riesz transforms and rectifiability

In this section we are interested in the following problem.

Question 3.1. Consider E ⊂ Rd with Hn(E) < ∞, with n integer. Suppose that
the Riesz transform Rn

μ is bounded in L2(Hn
|E). Is then E n-rectifiable?

The answer to this question is known (and it is positive in this case) only
for n = 1. This is due to the relationship between the Cauchy transform and the
notion of curvature of measures. Given a measure μ, its curvature is

c2(μ) =
∫∫∫

1
R(x, yz)2

dμ(x)dμ(y)dμ(z), (3.1)

where R(x, y, z) stands for the radius of the circumference passing through x, y, z.
If two among these points coincide, we let R(x, y, z) = ∞. Given ε > 0, c2ε(μ)
stands for the ε-truncated version of c2(μ), defined as in the right-hand side of
(3.1), but with the triple integral over {(x, y, z) ∈ C3 : |x− y|, |y− z|, |x− z| > ε}.

The notion of curvature of a measure was introduced by Melnikov [Me] when
he was studying a discrete version of analytic capacity, and it is one of the notions
which is responsible of the big recent advances in connection with analytic capacity.
Curvature is connected to the Cauchy transform by the following result, obtained
by Melnikov and Verdera [MeV].

Theorem 3.2. Let μ be a Borel measure on C such that μ(B(x, r)) ≤ C0r for all
x ∈ C, r > 0. We have

‖Cεμ‖2
L2(μ) =

1
6
c2ε(μ) +O(μ(C)), (3.2)

where |O(μ(C))| ≤ C1μ(C), with C1 depending only on C0.

Building on some techniques developed by Jones [Jo] and David and Semmes
[DS1], Léger proved the following remarkable result (see also [To3] for another
different and more recent proof):

Theorem 3.3. Let E ⊂ C be compact with H1(E) < ∞. If c2(H1
|E) < ∞, then E

is rectifiable.

Using Theorems 3.2 and 3.3, it follows then easily that if H1(E) < ∞ and
the Cauchy transform is bounded in L2(H1

|E), then E is 1-rectifiable. However, an
identity analogous to (3.2) is missing in dimensions n > 1. This is the reason why
Question 3.1 is still open for n > 1.

Recall that a measure μ such that μ(B(x, r)) ≈ rn for all x ∈ supp(μ),
0 < r ≤ diam(supp(μ)), is called n-Ahlfors-David (n-AD) regular, or abusing the
language, AD regular. A set E ⊂ C is called n-AD regular (abusing the language,
AD regular) if Hn

|E is AD regular.
A variant of Question 3.1 is the following:

Question 3.4. Consider E ⊂ Rd n-AD regular, with n integer, and set μ = Hn
|E.

If Rn
μ is bounded in L2(μ), is then E uniformly n-rectifiable?
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We recall now the notion of uniform n-rectifiability (or simply, uniform rec-
tifiability), introduced by David and Semmes in [DS2]. For n = 1, an AD regular
1-dimensional measure is uniformly rectifiable if its support is contained in an AD
regular curve. For an arbitrary integer n ≥ 1, the notion is more complicated. One
of the many equivalent definitions (see Chapter I.1 of [DS2]) is the following: μ
is uniformly rectifiable if there exist θ,M > 0 so that, for each x ∈ supp(μ) and
R > 0, there is a Lipschitz mapping g from the n-dimensional ball Bn(0, R) ⊂ Rn

into Rd such that g has Lipschitz norm ≤M and

μ
(
B(x,R) ∩ g(Bn(0, R))

)
≥ θRn.

In the language of [DS2], this means that supp(μ) has big pieces of Lipschitz images
of Rn. A Borel set E ⊂ Rd is called uniformly rectifiable if Hn

|E is uniformly
rectifiable.

For n = 1 the answer to Question 3.4 is true again, because of curvature.
The result is from Mattila, Melnikov and Verdera [MMV]. For n > 1, in [DS1]
and [DS2] some partial answers are given. Let Hn be class of all the operators T
defined as follows:

Tf(x) =
∫
k(x− y)f(y) dμ(x),

where k is some odd kernel (i.e., k(−x) = −k(x)) smooth away from the origin
such that |x|n+j |∇jk(x)| ∈ L∞(Rd \ {0}) for j ≥ 0. Next result is from [DS1].

Theorem 3.5. Let E ⊂ Rd be n-AD regular, with n integer. E is uniformly n-
rectifiable if, and only if, all operators T from the class Hn are bounded in L2(Hn

|E).

In Theorem 2.1 we mentioned that the existence of the density Θn(x,E) for
Hn-almost every x ∈ E implies that n is integer. If we replace existence of density
by L2 boundedness of Riesz transforms the following holds:

Theorem 3.6. Let E ⊂ Rd with Hn(E) < ∞, and set μ = Hn
|E. Suppose that Rn

μ

is bounded in L2(μ). We have:
(a) n �∈ (0, 1).
(b) If E is n-AD regular, then n is integer.

The statement (a) is from Prat [Pra]. It follows by the “curvature method”,
that is to say, by using a formula analogous to (3.2) which holds for 0 < n < 1.
The statement (b) was proved Vihtila using tangent measures. Her proof can be
easily extended to the case where Θn

∗ (x,Hn
|E) > 0 Hn-a.e. in E, instead of the

AD regularity assumption. However, it is an open question to prove that this also
holds for arbitrary sets E with Hn(E) < ∞. Under the stronger assumption of
the existence of p.v.Rn(Hn

|E)(x) Hn-almost everywhere, this problem has been
recently solved in [RT].

For more information and additional results regarding L2 boundedness of
Riesz transforms and rectifiability we suggest to have a look at [Vo], [MaT], [GPT],
[JP], [To4], [To5], [To6], and [ENV], for instance.
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