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Preface

This textbook addresses students of science and engineering. It should be appropri-
ate for a senior level applied physics or engineering course on lasers.

There are many textbooks on lasers. Why may it be useful to have another one?
I have tried to unify the description of different types of lasers: gas lasers; solid
state lasers, including semiconductor lasers; dye lasers; and free-electron lasers.
Semiconductor lasers are described in more detail than in other textbooks on lasers.
This may be adequate according to the very different types of semiconductor
lasers and the many different applications.

What is the working principle of a laser and how is it realizable in different
types of lasers? I introduce a laser as an oscillator (D laser oscillator) that generates
coherent radiation via the interaction of radiation with an active medium. An active
medium consists of an ensemble of atomic systems with a population inversion.

I make use, on an elementary quantum mechanical basis, of the Einstein
coefficients of absorption, spontaneous and stimulated emission of radiation to
characterize the interaction of radiation with an atomic system. Einstein coefficients
are determinable from quantities that are experimentally accessible. I formulate the
working principle of a laser by the use of rate equations, yielding the condition of
laser oscillation and other properties of a laser.

The main topics of the book concern: the working principle of a laser; the parts
of a laser — like the laser resonator and the active medium; beams of radiation
generated by a laser; femtosecond laser pulses; and different types of lasers.
Additional topics deepen the understanding of more specific questions concerning,
in particular: origin of gain in a titanium–sapphire laser; optical frequency analyzer;
theory of gain of radiation in doped glass fibers.

It seems that an important type of laser — the free-electron laser — does not meet
the criteria of a laser: classical physics is well suited to analyze operation a free-
electron laser. I will, nevertheless, illustrate operation of a free-electron laser by use
of an energy-level description. An active medium of a free-electron laser consists
of oscillating free electrons. I attribute, to an oscillating free electron, an energy-
ladder system. In this description, population inversion occurs in an ensemble of
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energy-ladder systems; the concept is known for a particular semiconductor laser —
the superlattice Bloch laser (also called Bloch oscillator) — that exists, however,
only as an idea based on theoretical work. The energy-level description illustrates
similarities of free-electron lasers and conventional lasers as well as differences
between them.

A chapter comparing laser oscillators and quasiclassical solid state oscillators
provides a connection to textbooks covering the field of microwave oscillators; addi-
tionally, the van der Pol oscillator is introduced as a model of a classical oscillator. In
contrast to a laser, with a population inversion in an ensemble of quantum systems, a
quasiclassical oscillator operates without population inversion: radiation in an active
medium interacts with collectives of electrons — the interaction is determined by
classical physics but the ability to form appropriate collectives of electrons is of
quantum mechanical nature.

A reader may skip, in a first study, several chapters or sections that serve for
deepening: Chap. 9 (dynamics of the active medium); Sect. 11.7 (Gouy phase);
Sects. 12.9, 12.10, 13.3–13.9 (laser applications); Chap. 17 (physical basis of
broadband solid state lasers); Chap. 18 (theory of fiber lasers and amplifiers);
Sects. 19.5–19.12 (energy-level description of the free-electron laser); Chap. 21
(theory of semiconductor lasers); Sects. 25.8–25.15 (theory of electromagnetic
waves in layered materials); Chap. 26 (discussing quantum well lasers in
detail); Chap. 30 (theory of electron waves in semiconductor heterostructures);
Chap. 31 (comparing lasers with quasiclassical oscillators); Chap. 32 (Bloch
laser); Chaps. 33–35 (laser-related topics). Deepening of topics related to solid
state physics (including semiconductor physics) corresponds to my experience in
research in solid state spectroscopy. Several other textbooks deepen the discussion
of lasers more toward atomic physics or quantum mechanics.

Text illustrations, examples, and exercises should allow a student to follow the
main line but also single arguments.

I would like to thank the students who attended my “Laser Physics” course for
asking questions about a first manuscript. I thank Alfons Penzkofer for examining a
large portion of the manuscript and suggesting many improvements. I am indebted
to Al Sievers for very helpful advice with respect to manuscript and exercises.
I appreciate many valuable comments from Laurence Eaves, Max Maier, Peter
Renk, Jens Siewert, Benjamin Stahl, Herbert Welling, and Ernst Werner. I thank
Rupert Huber, Joachim Keller, Tobias Korn, John Lupton, Christoph Strunk, Werner
Wegscheider for discussions, and Peter Olbrich for advice on electronic data
processing. Ulla Turba has drawn a large part of the figures and has written a large
part of the manuscript. I am very grateful for her engagement during preparation of
various versions of the manuscript and for allowing me to permanently change text,
formula, and drawings. I am indebted to Claus Ascheron for his encouragement to
write a book.

Regensburg, Germany Karl F. Renk
September 2011
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Chapter 1
Introduction

We will ask and partly answer a few questions. What is the difference between a
laser and a light bulb? In which frequency ranges are lasers available? Which are
the sizes and the costs of lasers? Why is it necessary to have different types of lasers
in the same frequency range? We will also mention some specific lasers and we will
discuss the concept of the book.

1.1 Laser and Light Bulb

The spatial and temporal coherence makes the difference between a laser and a
light bulb (Fig. 1.1). While a lamp emits uncorrelated wave trains into all spatial
directions, a laser generates coherent waves and the waves can have a high
directionality. Which are the possibilities of generation of spatially and temporally
coherent waves? A laser can generate a coherent continuous wave or a coherent
pulse train. Extreme cases of generation of visible radiation are as follows:

• The continuous wave laser (cw laser) emits a continuous electromagnetic wave.
The field is spatially and temporally coherent.

• The femtosecond laser emits an electromagnetic wave consisting of a pulse
train; the duration of a single pulse of a train can be as short as 5 fs (1 fs D 1
femtosecond D 10�15 s). The field of a pulse train is spatially and temporally
coherent too.

Beside continuous wave lasers and femtosecond lasers, there are pulsed lasers
producing laser pulses with durations in the picosecond, nanosecond, microsecond,
or millisecond ranges. We use the abbreviations:

• 1 ms D 1 millisecond D 10�3 s
• 1�s D 1 microsecond D 10�6 s
• 1 ns D 1 nanosecond D 10�9 s
• 1 ps D 1 picosecond D 10�12 s

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 1, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1 Continuous wave (cw) laser, femtosecond (fs) laser and light bulb

• 1 fs D 1 femtosecond D 10�15 s
• 1 as D 1 attosecond D 10�18 s

The acronym LASER means: Light Amplification by Stimulated Emission of
Radiation. It developed to laser D device for generation of coherent electromagnetic
waves by stimulated emission of radiation. The maser (Dmicrowave laser) makes
use of microwave amplification by stimulated emission of radiation.

1.2 Spectral Ranges of Lasers and List of a Few Lasers

Figure 1.2 shows wavelengths and frequencies of spectral ranges of the electro-
magnetic spectrum — from X-rays over the ultraviolet (UV), the visible, the near
infrared (NIR), the far infrared (FIR) spectral ranges to microwaves and radiowaves.
The frequency � of an electromagnetic wave in vacuum obeys the relation

� D c=�; (1.1)

where c (D 3�108 m s�1) is the speed of light and � the wavelength. Abbreviations
of frequencies are as follows:

• 1 MHz D 1 megahertz D 106 Hz
• 1 GHz D 1 gigahertz D 109 Hz
• 1 THz D 1 terahertz D 1012 Hz
• 1 PHz D 1 petahertz D 1015 Hz

The visible spectral range corresponds to a frequency range of about 430–750 THz
(wavelength range about 400–700 nm). Optics and light refer to electromagnetic
waves with vacuum wavelengths smaller than about 1 mm, i.e., with frequencies
above 300 GHz. Lasers are available in the ultraviolet, visible, near infrared, far
infrared, and microwave regions. Lasers of the range of X-rays are being developed.
The spectral ranges in which lasers are available extend from the GHz range over
the THz range to the region above 1,000 THz.

The ancient Greeks understood�–”’ (mega) as something that was exceeding all
measurable things, ”š”’ (giga) had to do with the giants, £–¡a (tera) included their
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Fig. 1.2 Spectral ranges of lasers

Table 1.1 Laser wavelengths, frequencies, and quantum energies

Laser � � (THz) h� .10�19 J/ Pout

HeNe 633 nm 474 3:1 1 to 10 mW
CO2 10.6 �m 28 0:18 1 W to 1 kW
Nd:YAG 1.06 �m 283 1:9 2 W
TiS 830 nm 360 2:4 100 mW to 5 W
Fiber 1.5 �m 200 1:3 1 W
Semiconductor 840 nm 357 2:4 10 to 100 mW
QCL 5 �m 600 0:25 10 to 100 mW

gods, and  –£a (peta) was the largest one could imagine — world, giants, gods,
and all spheres together. The notation “terahertz” was introduced shortly after the
discovery of the helium–neon laser, which emits coherent radiation at a frequency
near 474 THz (wavelength 633 nm).

Table 1.1 shows data of a few continuous wave lasers. The data concern: � D
laser wavelength; � D laser frequency; h� D quantum energy of the photons of a
laser field (D photon energy); h D 6:6 � 10�34 J s; Pout D output power.

• Helium–neon laser (HeNe laser). It generates red laser light of a power in the
milliwatt range. Helium–neon lasers emitting radiation at other wavelengths are
also available.

• CO2 laser (carbon dioxide laser). It produces infrared radiation of high power at
wavelengths around 9.6 and 10.6 �m.

• Neodymium YAG laser (Nd:YAG laser; YAG D yttrium aluminum garnet). The
laser is a source of near infrared radiation (wavelength 1.06�m).

• Titanium–sapphire laser (TiS laser). The laser operates as a continuous wave
laser or as a femtosecond laser. The cw titanium–sapphire laser is tunable over a
very wide spectral range (650–1080nm).

• Fiber laser. Fiber lasers ( D lasers with glass fibers, doped with rare earth ions)
operate in the wavelength range of about 0.7–3 �m.

• Semiconductor laser. Semiconductor lasers (more accurately: bipolar semicon-
ductor lasers) are available in the entire visible, the near UV, and the near
infrared. The wavelength and the power (from the nW range to the 100 mW
range) of radiation generated by a semiconductor laser depend on its design. A
stack of semiconductor lasers can produce radiation with a power up to the kW
range.
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Table 1.2 Pulsed lasers

Laser � tp Wp Pulse power �rep Pav

Excimer 351 nm 50 ns 1 J 20 MW 10 Hz 10 W
Nd:YAG 1.06 �m 6 ns 100 mJ 16 MW 100 Hz 10 W
TiS 780 nm 10 fs 10 nJ 1 MW 50 MHz 0.5 W

• Quantum cascade laser (QCL). A QCL is a type of semiconductor laser that
produces radiation in the infrared or in the far infrared. The laser wavelength of
a quantum cascade laser depends on its design.

Table 1.2 shows data of a few pulsed lasers: tp D pulse duration D halfwidth of
a pulse on the time scale D FWHM D full width at half maximum; Wp D energy
of radiation in a pulse D pulse energy; pulse power D Wp=tp; �rep D repetition rate;
Pav D average power.

• Excimer laser. It is able to produce UV radiation pulses of high pulse power;
the wavelength given in the table is that of a laser operated with XeF excimers.
Excimers with other materials generate radiation at other wavelengths (XeCl,
� D 308 nm; KrF, 248 nm; ArF, 193 nm).

• Neodymium YAG laser. Depending on the design of a pulsed neodymium YAG
laser, the pulse duration can have a value between 5 ps or a value that is larger
than that given in the table. The average power can be larger than 10 W.

• Titanium–sapphire femtosecond laser. The power is large during a very short
time.

A laser system, consisting of a laser oscillator and a laser amplifier, can generate
radiation pulses of much larger pulse power levels (Sect. 16.8).

1.3 Laser Safety

Laser safety has to be taken very seriously: a laser emitting visible radiation of 1 mW
power leads to a power density in the focus (area �2) of a lens — for instance, in
the focus of the lens of an eye — of the order of 109 W m�2 (105 W cm�2). Such
a power density can lead to damage of an eye. Dear reader, please take care of the
corresponding safety rules when you experiment with a laser!

1.4 Sizes of Lasers, Cost of Lasers, and Laser Market

There are lasers of very different size.

• A gas laser or a solid state laser has a typical length of 1 m (down to 10 cm). The
price of a laser is between 100 U.S. dollar and 1 million dollar.
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• A free-electron laser has a typical length of 10 m (not taking account of a
much larger accelerator). The price of a free-electron laser lies, depending on
its properties, between 10 million and several billion dollar.

• The smallest lasers are semiconductor lasers with sizes ranging from about 1 mm
to smaller sizes. Microlasers with dimensions of the order of 10�m can be
fabricated; nanolasers — with extensions below 1�m — may be suitable for
special applications. Mass production (at a price of 10 dollar per laser or much
less) resulted in a great variety of applications of semiconductor lasers.

The laser market (Fig. 1.3a) is strongly growing. The development may be
similar as for the computer market. After the discovery of the transistor in 1946, it
took about 50 years until the transistor became widely distributed — as the essential
basis of a computer. The main breakthrough was due to miniaturization realized in
the microelectronics, and due to integration of transistors in large systems. The laser,
with its first operation 14 years after the transistor, is beginning to be widely spread
as a part of devices of the daily life. The integration of the lasers in other devices and
in large systems became possible by the development of the semiconductor lasers
and their miniaturization.

The laser market offers a large variety of different lasers designed for particular
applications. The laser field is in a rapid development; improvements of laser
designs, new types of lasers, and new applications make the field strongly growing.
We mention here the industrial lasers, machines suitable for various applications.
In 2009, the main contributions to the turnover in the market of industrial lasers

Fig. 1.3 Laser market. (a) General development. (b) Industrial lasers (in 2010). (c) Places of
installation
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(Fig. 1.3b) came from the CO2 lasers, the excimer lasers, and the solid state lasers
(including a small portion of semiconductor lasers). Among the solid state lasers,
there are different types, namely rod lasers, disk lasers, and fiber lasers. Industrial
lasers find use in material processing — cutting, welding, marking, engraving,
and microprocessing. A main application of excimer lasers concerns structuring
of semiconductors. The overall turnover of industrial lasers was about nine billion
dollar in 2010. Most installations of industrial lasers (Fig. 1.3c) are in Asia, Europe,
and North America.

Lasers are the basis of photonics ( D photoelectronics) and optics. Optoelectron-
ics — the counterpart at optical frequencies to electronics at radio and microwave
frequencies — and integrated optics refer to optical systems used in optical
communications, signal processing, sensing with radiation, and other fields. A
characteristic of optoelectronics is the extension of methods of electronics to the
range of optical frequencies.

Semiconductor lasers used in data communications and in consumer applications
are produced at a rate of more than one million in a week (at a prize of about 1 U.S.
$ per piece); these are mainly vertical-cavity surface-emitting lasers (Sect. 22.7).
More than one million lasers per month are produced for the telecommunication
market. The lasers for the telecommunication market have a higher level of sophis-
tication and are produced in 2011 at a price of about $10 per piece; the lasers are
edge-emitting lasers, especially distributed feedback lasers (Sects 20.5 and 25.4).

1.5 Questions About the Laser

In this book, we will treat a number of questions about the laser. Here we list some
questions answered in different chapters of the book.

• What is common to all lasers?
Answer: common to all lasers is the generation of radiation of high directionality;
the generation is due to stimulated emission of radiation either by quantum
systems such as atoms and molecules or by oscillating free electrons.

• What is the working principle of the free-electron laser?
• How can we generate monochromatic radiation?
• How can we generate femtosecond pulses?
• What is the role of diffraction in a laser? We will see that diffraction plays an

important and favorable role: diffraction can suppress unwanted radiation.
• What is the angle of divergence of laser radiation? The angle of divergence is in

general not determined by diffraction but by a kind of natural beams — Gaussian
beams — that fit perfectly to resonators with two spherical mirrors. A laser is
able to generate a Gaussian beam.

• How can we produce laser radiation in different ranges of the electromagnetic
spectrum?

• What is the difference between a laser and a classical oscillator?
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Laser physics connects optics with atomic physics, molecular physics, solid state
physics (including semiconductor physics), and, of course, quantum mechanics, and
furthermore with engineering, chemistry, biology, and medicine.

1.6 Different Types of Lasers in the Same Spectral Range

Why do we need different types of lasers for the same spectral range? Different
types of lasers fulfill different tasks.

• If we need lasers for CD (compact disk) or blue ray players, semiconductor
lasers, with small sizes and low power consumption, fulfill the task.

• To cut metal plates, a high power laser like the CO2 laser is suited. The efficiency
of conversion of electric power to radiation power of a CO2 laser is large (larger
than 10%).

• To generate femtosecond optical pulses, with durations from 100 fs to 5 fs,
only few of the many lasers have appropriate properties. The most prominent
femtosecond laser is the titanium–sapphire femtosecond laser.

Large progress came with the miniaturized semiconductor lasers but also with
the high-power semiconductor lasers — that can be applied, for example, as pump
sources of other lasers.

1.7 Concept of the Book

Figure 1.4 gives a survey of the main topics treated in the book.
General description of a laser and an example. We will describe main properties

of a laser and of the components, namely the active medium and the resonator. We
will introduce the laser as an oscillator: an active medium drives the oscillation of
an electromagnetic field in a resonator. Early in the book we will discuss a particular
laser (the titanium–sapphire laser) in some detail. This allows us to be specific, if

Fig. 1.4 Concept of the book
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necessary, during a treatment of the theory and the discussion of the operation of a
laser.

Theory of the laser. To describe the interaction of light with matter, we introduce
the Einstein coefficients. A theoretical treatment of the laser oscillation yields the
laser threshold condition and other important properties.

Operation of a laser. We will mention different techniques of operation of a
laser as a continuous wave laser or as a pulsed laser. We will begin this part with a
treatment of the properties of resonators and the description of Gaussian waves.

Lasers except semiconductor lasers

• Gas lasers. The active medium consists of atoms, ions, or molecules in gases.
Gas lasers are available in the UV, visible, NIR, FIR, and microwave ranges.
Two of the most important industrial lasers (the excimer and the CO2 laser) are
gas lasers.

• Solid state lasers (except semiconductor lasers). The active medium consists of
ions in a dielectric solid; the solid is a host of ions. Solid state lasers, operated at
room temperature, are available in the visible and the near infrared. Stimulated
transitions between electronic states of ions give rise to generation of laser
radiation. Beside crystals, other condensed matter materials — glasses, polymers,
and liquids — are suited as host materials of ions, atoms, or molecules.

• Free-electron lasers. The basis is the emission of radiation by oscillating free
electrons. The electrons are passing at a velocity near the speed of light through a
spatially periodic magnetic field. Free-electron lasers are available in the visible,
infrared, and far infrared; free-electron lasers generating X-rays are in a planning
state.

Semiconductor lasers (bipolar semiconductor lasers and quantum cascade
lasers). Semiconductor lasers are solid state lasers that make use of conduction
electrons in semiconductors. Semiconductor lasers are available in the visible, near
UV, and NIR spectral ranges and are being developed for the FIR. Stimulated
transitions are either due to electronic transitions between the conduction band
and the valence band of a semiconductor — in bipolar lasers — or between
subbands of a conduction band — in quantum cascade lasers. Preparation of mixed
semiconductor materials and of heterostructures makes it possible to realize new,
artificial materials that are used in quantum well, quantum wire, quantum dot, and
quantum cascade lasers. The laser wavelength is adjustable through an appropriate
design of a heterostructure. We will, furthermore, present the idea of a Bloch
laser ( D superlattice Bloch laser D Bloch oscillator) that may become suitable
for generation of FIR radiation.

Laser-related topics
• Optical communications. This is an important field of applications of semicon-

ductor lasers.
• Light emitting diode (LED). The LED is the basis of many different kinds

of illumination. The development of LEDs is going on in parallel to the
development of semiconductor lasers. The organic LED (OLED) is suited to
realize simple large area light sources.
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• Nonlinear optics. We will give a short introduction to the field of nonlinear optics.
Our main aspect will be: how can we convert coherent laser radiation of one
frequency to coherent radiation of other frequencies?

We will discuss various applications in connection with different topics.

1.8 References

References cited either at the end of a chapter or in the text include: textbooks
on lasers; textbooks on optoelectronics and integrated optics; books on lasers and
nonlinear optics; textbooks on other fields (optics, electromagnetism, atomic and
molecular physics, quantum mechanics, solid state physics; microwave electronics,
mathematical formulas; and to a small extent original literature). Original literature
about lasers is well documented in different textbooks on lasers [1–11]. Introduc-
tions to quantum optics are given, for instance, in [12, 13]. In connection with
mathematical functions, see, for instance, [14–20].

1.9 A Remark about the History of the Laser

Data concerning the history of lasers
1865 James Clerk Maxwell (King’s College, London): Maxwell’s equations.
1888 Heinrich Hertz (University of Karlsruhe): generation and detection of

electromagnetic waves.
1900 Max Planck (University of Berlin): quantization of radiation in a cavity.
1905 Albert Einstein (Patent office Bern): quantization of radiation.
1905 Niels Bohr (University of Copenhagen): quantization of the energy

states of an atom.
1917 Einstein (then in Berlin): interaction of radiation with an atom; sponta-

neous and stimulated emission.
1923 Henryk A. Kramers: influence of stimulated emission on the refractive

index of atomic gases containing excited atoms.
1928 Rudolf Ladenburg (Kaiser Wilhelm Institute, Berlin): observation of an

influence of stimulated emission on the refractive index of a gas of neon
atoms excited by electron collisions in a gas discharge.

1951 Charles H. Townes (Columbia University): idea of a maser.
1954 Townes: ammonia maser (frequency 23.870 GHz, wavelength 1.25 cm);

Nicolai Basov, Aleksandr Prokhorov (Lebedev Physical Institute,
Moscow): idea of a maser in parallel to the development in the U.S.A
and realization of an ammonia laser.

1956 Nicolaas Bloembergen (Harvard University): proposal of the three-level
maser (leading to solid state masers in other laboratories).
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1958 Arthur L. Schawlow, Townes: proposal of infrared and optical masers
(lasers) including the formulation of the threshold condition of laser
oscillation; Prokhorov: general description of the principle of optical
masers (lasers).

1959 Basov: proposal of the semiconductor laser.
1960 Theodore Maiman (Hughes Research Laboratories): ruby laser

(694 nm).
1960 Ali Javan (Bell laboratories): helium-neon laser (1.15�m, later

633 nm).
1961 L. F. Johnson, K. Nassau (Bell Laboratories): neodymium YAG laser.
1962 Robert N. Hall (General Electric Research Laboratories): semiconduc-

tor laser.
1963 Herbert Kroemer (University of California Santa Barbara): proposal of

the heterostrucure laser.
1964 C. Kumar N. Patel (Bell Laboratories): carbon dioxide laser; W. Bridges

(Bell Laboratories): argon ion laser.
1966 Peter P. Sorokin (IBM Yorktown Heights) and Fritz P. Schäfer (Max-

Planck-Institut für Biophysikalische Chemie, Göttingen): dye laser.
1968 William T. Silfvast (Bell Laboratories): metal vapor laser.
1975 Basov: excimer laser.
1977 John Madey, Luis Elias and coworkers (Stanford University): free-

electron laser.
1979 J. C. Walling (Allied Chemical Corporation): alexandrite laser (first

tunable solid state laser).
1982 P. Moulton (Schwartz Electro-Optics): titanium-sapphire laser.
1991 M. Haase and coworkers (3M Photonics): green diode laser (based on

ZnSe).
1994 Federico Capasso, Jérome Faist and coworkers (Bell laboratories):

quantum cascade laser.
1997 Shuji Nakamura and coworkers (Nichia Chemicals, Japan): blue diode

laser (based on GaN).

For references concerning the history of lasers, see [21–25] and also Sects. 9.10
and 19.13. The acronym laser was introduced by Gordon Gould (Columbia Uni-
versity) at the Ann Arbor Conference on Optical Pumping in 1959. In his thesis
(Moscow 1940 – unknown until 1959) Vladimir Fabrikant proposed amplification
of optical radiation by stimulated emission of radiation.

In 1951, Charles Townes, searching for an oscillator generating microwave radi-
ation at higher frequencies than other microwave oscillators (magnetron, klystron)
available at the time, had the idea of a maser [22] – based on three aspects (see
Sect. 4.1): stimulated emission of radiation by an atomic system; creation of a
population inversion (in a molecular beam); feedback of radiation by use of a
resonator. The realization of the first maser (1954) stimulated the development of
other types of masers, particularly of the solid state three-level maser. In 1958,
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Schawlow and Townes published an article on “infrared and optical masers.” This
paper described the conditions of operation of a laser (Chap. 8) and initiated the
search for a concrete laser. Maiman was the first to operate a laser, the ruby laser, in
Mai 1960. Later in the year, Javan reported operation of a helium–neon laser.

The application for a laser patent in mid-1958 by Bell Laboratories, with
Schawlow (at Bell Laboratories) and Townes (Columbia University) as inventors,
led to the first U.S. patent on a laser, issued in 1960. Gordon Gould, then working
in a group at Columbia University on his PhD thesis, wrote in several notebooks
(from 1958 on after the circulation of preprints of the 1958 paper of Schawlow and
Townes) ideas about lasers, which later were the basis of patent applications. After
many court cases, Gould succeeded to obtain patents on various aspects of lasers.
Since it took a very long time to be issued (in 1976, 1978, 1988, and 1989), the
patents allowed Gould and several companies he co-founded to get back the money
(several tens of millions of dollar). For this purpose, laser companies were forced
by further court cases to pay license fee.

The theoretical basis of the laser was the “old quantum mechanics” developed
(1900–1917) by Planck, Bohr, and Einstein. The main results of the old quantum
mechanics obtained a consequent founding by the quantum mechanics (developed
1925–1928). Why did it last about 40 years until maser and laser were operating?
This question will be discussed in Sect. 9.10.

Nobel Prizes in the field of lasers
1964 Charles Townes, Nicolay Basov, Aleksandr Prokhorov: fundamental

work in the field of quantum electronics, which has led to the construc-
tion of oscillators and amplifiers based on the maser-laser principle.

1966 Alfred Kastler: optical pumping.
1971 Dennis Gabor: holography.
1981 Nicolas Bloembergen, Arthur Schawlow: nonlinear optics and laser

spectroscopy.
1989 Norman F. Ramsey: maser and atomic clocks.
1997 Steven Chu, Claude Cohen-Tannoudji, William D. Phillips: methods of

cooling and trapping of atoms by use of laser light.
1999 Ahmed Zewail (Chemistry): study of chemical reactions by use of

femtosecond laser pulses.
2000 Zhores Alferov, Herbert Kroemer: semiconductor heterostructures – the

basis of lasers of high-speed opto-electronics.
2001 Wolfgang Ketterle, Eric Cornell, Carl Wieman: experimental realization

of Bose Einstein condensation.
2002 John B. Fenn, Koichi Tanaka (chemistry); mass spectroscopic analysis

of biomolecules by use of laser desorption.
2005 Roy Glauber: theory of coherence (the basis of modern quantum optics);

Theodor Hänsch, John Hull: optical frequency analyzer.
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2009 Charles K. Kao: ground braking achievements concerning the
transmission of light in fibers of optical communications; Willard
S. Boyle, George E. Smith: invention of an imaging semiconductor
circuit – the CCD sensor.

Problems

1.1. Physical constants. Remember numerical values of physical constants (in
units of the international system, SI).

(a) c D speed of light.
(b) h D Planck’s constant.
(c) „ D h=.2�/.
(d) e D elementary charge.
(e) m0 D electron mass.
(f) �0 D magnetic field constant.
(g) �0 D electric field constant.
(h) k D Boltzmann’s constant.
(i) NA D Avogadro’s number.
(j) R D gas constant.
(k) L0 D Loschmidt’s number.
[Hint: in examples in the text and in the Problems, an accuracy of several percent of
a quantity is in most cases appropriate.]

1.2. Frequency, wavelength, wavenumber, and energy scale. It is helpful to
characterize a radiation field on different scales: frequency �; wavelength �; wave
number Q� D �=cD 1=� ( D number of wavelengths per unit of length D spatial
frequency); and photon energy h� in units of Joule or eV. Express each of the
following values by the corresponding values on the three other scales.

(a) � D 1�m.
(b) � D 1 THz.
(c) � D 1 nm.
(d) Q� D 1 m�1.
(e) h� D 1 eV.

1.3. Express the following values on different scales:

(a) kT for T D 300 K (T D temperature); (b) 1 meV; (c) 1 cm�1; (d) 10 cm�1.

1.4. Power of the sun light and of laser radiation. The intensity of the sun light
on earth (or slightly outside the atmosphere of the earth) is 1,366 W m�2.

(a) Evaluate the power within an area of 1 cm2.
(b) Estimate the power density ( D intensity) if the radiation incident on an area

of 1 cm2 is focused to an area of 100�m in diameter; focusing to a smaller
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diameter is not possible because of the divergence (5 mrad) of the radiation
from the sun.

(c) Determine the power density of the radiation of a helium-neon laser (power
1 mW, cross sectional area 1 cm2) focused to an area that has a diameter of
1�m.

1.5. Determine the time it takes light pulses to travel different distances.

(a) A distance that corresponds to the diameter of an atom.
(b) A distance of 1 cm.
(c) From a point of the surface of the earth to a point on the surface of the moon

(at a distance of about 174,000 km).



Chapter 2
Laser Principle

A laser ( D laser oscillator) is a self-excited oscillator. A self-excited oscillator starts
oscillation by itself and maintains an oscillation. Laser radiation is generated by
stimulated transitions in an active medium. The active medium is a gain medium —
propagation of radiation in the active medium results in an increase of the energy
density of the radiation. The active medium in a laser experiences feedback from
radiation stored in a laser resonator. A portion of radiation coupled out from the
resonator represents the useful radiation.

In this chapter, we characterize an active medium by a population inversion in
an ensemble of two-level atomic systems. We formulate the threshold condition
of laser oscillation. We solve the resonator eigenvalue problem in order to find
possible frequencies of laser oscillation. We also show that the buildup of steady
state oscillation of a laser takes time — the oscillation onset time.

To describe a coherent electromagnetic wave, we make use of the model of
a quasiplane wave — a parallel beam of coherent radiation. A quasiplane wave
is characterized by a well-defined propagation direction, a finite spatial extension
perpendicular to the propagation direction, and a constant field amplitude within
the beam. The model is very useful for a basic description of the field in a laser
oscillator. Later (Chap. 11) we will introduce a modified description of a coherent
electromagnetic wave.

In later chapters, we will specify the two-level atomic systems. A two-level
atomic system can belong to various states: electronic states of an atom or an
ion (in a gas, crystal, glass, or liquid); electronic, vibrational, or rotational states
of a molecule; electronic states of electrons in a semiconductor or semiconductor
heterostructure.

We will introduce (Chap. 4) still another type of active medium — an active
medium containing energy-ladder systems rather than two-level systems.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 2, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 2.1 A laser

2.1 A Laser

A laser (Fig. 2.1) emits coherent radiation of an output power Pout. A laser has the
following parts.

• Active medium (D gain medium D laser medium). The active medium is able to
amplify electromagnetic radiation. The active medium, located inside a resonator,
fills out a resonator partly or completely.

• Pumping system. It “pumps” the active medium. Methods of pumping are: optical
pumping with another laser or a lamp; pumping with a gas discharge; pumping
with a current through a semiconductor or a semiconductor heterostructure;
chemical pumping.

• Laser resonator. The laser resonator has the task to store a coherent electro-
magnetic field and to enable the field to interact with the active medium — the
active medium experiences feedback from the coherent field. We will describe
resonators that consist of two mirrors — one is a reflector of a reflectivity
R1 near 1, and the other is a partial reflector serving as output coupler. The
output coupling mirror has a reflectivity (R2) that also can have a value near
1 but that can be much smaller; semiconductor lasers can have reflectors with
R1 D R2 � 0:3. Each type of laser requires its own resonator design. There
is a main criterion concerning reflectivities of resonators: a laser should be able
to work at all. Depending on the task of a laser, other criteria can be chosen —
for instance, that a laser should have optimum efficiency of conversion of pump
power to laser output power.

2.2 Coherent Electromagnetic Wave

We describe a coherent electromagnetic wave generated by a continuous wave laser
as a quasiplane wave ( D parallel beam of coherent light),

E.z; t/ D A cosŒ!.t � t0/ � k.z � z0/	: (2.1)

E is the electric field at time t and location z, A is the amplitude, ! D 2��

the angular frequency, � the frequency, and k the wave vector of the wave; t0
defines a time coordinate and z0 a spatial coordinate. The direction of E (and A)
is perpendicular to the direction of the propagation direction (z direction). The
dispersion relation

! D ck; (2.2)
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relates the frequency and the wave vector. The quasiplane wave has a finite lateral
extension. We assume that the amplitude of the field does not vary, at a fixed z, over
the cross section and that the amplitude is independent of z. The quasiplane wave is
a section of a plane wave (which has infinite extensions in the plane perpendicular
to the direction of propagation).

If we choose t0 D 0 and z0 D 0 to describe a quasiplane wave propagating in free
space, we can write

E.z; t/ D A cos.!t � kz/: (2.3)

The instantaneous energy density, uinst, in the electromagnetic field is

uinst D �0A
2 cos2.!t � kz/; (2.4)

where �0 is the electric field constant. The energy density u of the electromagnetic
field, that is, the instantaneous energy density averaged over a temporal period T D
2�=!, is equal to

u D 1

2
�0A

2: (2.5)

The quasiplane wave transports energy in z direction. The power P of the wave is

P D 1

2
c�0A

2a1a2; (2.6)

where a1a2 is the cross-sectional area of a beam of rectangular shape. The intensity
( D power per unit of area D energy flux density) is

I D P

a1a2
D 1

2
c�0A

2: (2.7)

We interpret the transport of radiation energy as a flux of photons along the
z direction and introduce the average number of photons per unit of volume, the
photon density Z, by the relation

u D Zh� D Z„!: (2.8)

The energy density is equal to the photon density times the photon energy h�.
Simplifying further, we describe a light beam of laser light as a parallel bundle of

light rays (Fig. 2.2). To characterize the propagation of light within a parallel light
bundle, we introduce the disk of light. It is a section of a light bundle and has the
length ız; we assume that ız is much larger than the wavelength of the radiation,
ız � �. The disk of light propagates along the z direction with the speed of light.
The energy density in a disk of light is u.�; z/ and the photon density is equal to

Z.�; z/ D u.�; z/

h�
: (2.9)



20 2 Laser Principle

Fig. 2.2 Parallel light bundle
and disk of light

We will make use of the complex notation of the field. A complex field QE
corresponds to a real field according to the relation

E D ReŒ QE	 D 1

2
. QE C QE�/ D 1

2
QE C c:c:; (2.10)

where ReŒ QE	 is the real part of QE . The real field is equal to the sum of QE/2 and its
conjugate complex (c:c:) QE�/2.

The real part of a complex field, which is the product of a complex quantity QA
and another complex quantity QK, is

E D ReŒ QE	 D 1

2
. QA� QK C QA QK�/ D 1

2
QA� QK C c:c: (2.11)

The complex field QE D Aei.!t�kz/, with the real amplitudeA, corresponds to the real
field E D A cos.!t � kz/. It follows that the energy density in an electromagnetic
field is

u D �0

2
QE QE� D �0

2
j QEj2 D �0

2
A2: (2.12)

The photon density is given by

Z D �0

2h�
QE QE� D �0

2h�
j QEj2 D �0

2h�
A2: (2.13)

Accordingly, the amplitude of the field is

A D
p
2h�Z=�0: (2.14)

More generally, we can characterize a quasiplane wave by

E D A cosŒ!.t � t0/ � kz C '0	; (2.15)

where the time t0 defines the time axis and '0 the z axis. The corresponding complex
field is

QE D A eiŒ!.t�t0/�kzC'0	: (2.16)

If a wave propagates in a dielectric medium (dielectric constant �), then �0 has to be
replaced by ��0 in the expressions concerning u, Z, A, and intensity.
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Fig. 2.3 Amplification of
radiation in an active medium

The transit of coherent radiation through an active medium (Fig. 2.3) results in
an increase of the photon density,

Z D G1Z0; (2.17)

and of the energy density,
u D G1u0: (2.18)

G1 (> 1) is the single-pass gain factor of the radiation.Z0 is the photon density and
u0 the energy density in the incident beam.Z is the photon density and u the energy
density in the beam after passing through the active medium. We write

G1 D e˛L; (2.19)

where ˛ is the gain coefficient of the active medium and L the length of the active
medium. It follows that

˛ D 1

L
lnG1 D 1

ln 10

1

L
logG1 D 0:43

1

L
logG1: (2.20)

The transit of radiation through an absorbing medium results in a decrease of
energy density and of photon density,

u D NG1u0; (2.21)

Z D NG1Z0; (2.22)

where NG1 < 1 is the absorption factor .D Z=Z0/. We write

NG1 D e�˛absL: (2.23)

˛abs is the absorption coefficient of a medium. It follows that

˛abs D 1

L
ln NG1 D 0:43

1

L
log NG1: (2.24)

We can interpret the absorption coefficient as a negative gain coefficient; for units
of gain, see Sect. 16.11.

An active medium can have a gain coefficient that has a maximum ˛max at a
resonance frequency �0 (Fig. 2.4a). The gain coefficient decreases toward smaller
and larger frequencies and remains positive. However, an active medium can have a
gain coefficient that changes sign (Fig. 2.4b). Such a medium has a transparency
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Fig. 2.4 Frequency
dependence of the gain
coefficient of an active
medium. (a) Gain coefficient
at frequencies around a
resonance frequency. (b)
Gain coefficient at
frequencies around a
transparency frequency

frequency �tr — the active medium is amplifying at frequencies � < �tr but
absorbing at frequencies � > �tr.

2.3 An Active Medium

An atom (or a molecule) used in a laser has two laser levels, beside other energy
levels. We ignore for the moment the other levels and describe an atom as a two-
level atomic system (Fig. 2.5) and accordingly an ensemble of atoms as an ensemble
of two-level atomic systems. We introduce the following notation.

• Level 2 (energyE2) D upper laser level.
• Level 1 (energyE1) D lower laser level.
• E21 D E2 � E1 D energy difference between the two laser levels D transition

energy.
• N2 D population of level 2 D density of excited two-level atomic systems

D number density (number per unit of volume) of excited two-level atomic
systems.

• N1 D population of level 1 D density of unexcited two-level atomic systems.
• N2 �N1 = population difference.
• N1 CN2 D density of two-level atomic systems.

Monochromatic electromagnetic radiation of frequency � can interact with a two-
level atomic system if Bohr’s energy-frequency relation

h� D E21 D E2 � E1; (2.25)

holds, that is, if the photon energy h� of the photons of the radiation field is equal
to the energy differenceE21. But because of lifetime broadening of the upper level,
a two-level atomic system can also interact if h� is unequal to E21.

Two processes are competing with each other in a laser, absorption and stimu-
lated emission of radiation. In an absorption process (Fig. 2.6), a photon is converted
to excitation energy of a two-level atomic system by a 1 ! 2 transition. A two-level
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Fig. 2.5 Two-level atomic system and ensemble of two-level atomic systems

Fig. 2.6 Absorption and
stimulated emission

atomic system transfers by a stimulated emission process its excitation energy to the
light field. Einstein showed: Radiation created by stimulated emission has the same
frequency, direction, polarization and phase as the stimulating radiation.

If the active medium is an ensemble of two-level systems, the strength of
stimulated emission is proportional to N2, and the strength of absorption is
proportional to N1. We will later (Sect. 7.2) show, for an ensemble of identical two-
level systems, that the factor of proportionality is the same for both processes. The
net effect is proportional to the population differenceN2 �N1. Stimulated emission
prevails if N2 � N1 > 0 while absorption prevails if N2 � N1 < 0. In an active
medium, the population differenceN2 �N1 is larger than zero,

N2 �N1 > 0: (2.26)

Alternatively, we can write:
N2 > N1I (2.27)

in an active medium the population of the upper laser level is larger than the
population of the lower laser level. Stimulated emission and absorption compensate
each other if N2 D N1. In this case, the medium is transparent. We can formulate
the transparency condition:

N2 �N1 D 0: (2.28)

(If the lower laser level has the degeneracy g1 and the upper laser level the
degeneracy g2, the criterion of population inversion is

g2N2 � g1N1 > 0: (2.29)

We assume, for convenience, in the following that g1 D g2.)
It is useful, in particular with respect to the treatment of semiconductor lasers, to

make use of occupation numbers. We introduce the (relative) occupation number

fi D NiP
Ni
; (2.30)
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where Ni is the population of level i and
P
Ni is the sum of the populations of

all levels of an ensemble of atomic systems. The sum of the relative occupation
numbers of an ensemble is unity,

P
fi D 1. The relative occupation number fi is

equal to the probability that level i is occupied.
The relative occupation number of the upper laser level (Fig. 2.7) is equal to

f2 D N2

N1 CN2
; (2.31)

and the relative occupation number of the lower laser level is

f1 D N1

N1 CN2
: (2.32)

The sum of the relative occupation numbers is unity,

f2 C f1 D 1: (2.33)

The occupation number difference (that is the difference between two probabili-
ties) is

f2 � f1 D N2 �N1

N1 CN2
: (2.34)

The occupation number difference is the ratio of the population differenceN2 �N1
and the densityN1CN2 of two-level atomic systems. Thus, the population difference
is equal to the occupation number difference times the density of two-level atomic
systems,

N2 �N1 D .f2 � f1/.N1 CN2/: (2.35)

It follows that the strength of stimulated emission of radiation is proportional to
f2, and that the strength of absorption of radiation is proportional to f1. The net
effect — the difference between the strength of stimulated emission and absorption
— is proportional to f2 � f1. Stimulated emission prevails if

f2 � f1 > 0; (2.36)

while absorption prevails if f2 � f1 < 0. The condition f2 � f1 > 0 is again the
condition of gain. We can write the transparency condition in the form:

f2 � f1 D 0I (2.37)

Fig. 2.7 Relative occupation
numbers of a two-level
atomic system
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a medium is transparent if the occupation number difference (more accurately:
the relative occupation number difference) is zero. The corresponding density of
two-level atomic systems in the upper laser level is the transparency density Ntr

.D N2;tr/.
A population inversion corresponds to a nonequilibrium state of an ensemble of

two-level atomic systems. At thermal equilibrium, the populationN2 of an ensemble
of two-level atomic systems is always smaller than the populationN1.

Thermal equilibrium of many media, which contain an ensemble of atomic
systems, is governed by Boltzmann’s statistics. If Boltzmann’s statistics holds, the
ratio of the population of the upper level and the population of the lower level is
given by

N2

N1
D e�.E2�E1/=kT ; (2.38)

where k ( D 1.38 � 10�23 J K�1) is Boltzmann’s constant and T the temperature of
the ensemble. At thermal equilibrium, the population difference is always negative,
N2�N1 < 0; the net effect of stimulated emission and absorption of radiation results
in damping of radiation at the frequency � � .E2�E1/=h. For an ensemble of two-
level atomic systems, which obeys Boltzmann’s statistics, the occupation number of
the upper level is equal to

f Boltz
2 D N2

N1 CN2
D 1

expŒ.E2 �E1/=kT 	C 1
; (2.39)

and the occupation number of the lower level

f Boltz
1 D N1

N1 CN2
D 1

expŒ�.E2 � E1/=kT 	C 1
: (2.40)

At thermal equilibrium, the relative occupation number of the lower level is always
larger than the relative occupation number of the upper level, f Boltz

1 � f Boltz
2 > 0,

that is, at thermal equilibrium, absorption always exceeds stimulated emission.
In the case that the energy levels of an ensemble governed by Boltzmann’s

statistics are degenerate, the relative occupation number of level i is given by

f Boltz
i D gi exp ŒEi=kT 	P

gi exp ŒEi=kT 	
: (2.41)

In atomic physics and thermodynamics, the occupation number of an atomic
level denotes the total number of atoms in the level. To describe laser media, it is
convenient to make use of number densities and of relative occupation numbers.
In order to avoid a confusion, we mark total numbers by the suffix “tot.” If an
ensemble of two-level systems is distributed in the volume V , we are dealing with
the following quantities:

• N1 D density of atoms in level 1.
• N2 D density of atoms in level 2.
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• N1;tot DN1 � V D occupation number of level 1 D total number of two-level
systems in level 1.

• N2;tot DN2 � V D occupation number of level 2 D total number of two-level
systems in level 2.

• Ntot D .N1 CN2/ � V D total number of two-level atomic systems.
• f2 DN2=.N2CN1/ DN2;tot=Ntot �V D relative occupation number of level 2.
• f1 DN1=.N2 CN1/ DN1;tot=Ntot �V D relative occupation number of level 1.
• f2 � f1 D .N2 �N1/=.N2 C N1/ D (N2;tot �N1;tot/=Ntot = occupation number

difference ( D difference of the relative occupation numbers).

We will use the notation “occupation number” instead of “relative occupation
number.”

2.4 Laser Resonator

The Fabry–Perot resonator (Fig. 2.8) consists of two plane mirrors arranged in
parallel at a distance L; the Fabry–Perot resonator is an open resonator — it has
no sidewalls. We consider a Fabry–Perot resonator with reflectors of rectangular
shape. We choose cartesian coordinates, with the z axis parallel to the resonator
axis; laser radiation propagates along z. Characteristic quantities of a Fabry–Perot
resonator are:

• a1 D width of the resonator (along x).
• a2 D height of the resonator (along y).
• L D length of the resonator (along z).
• z D 0 D location of mirror 1.
• z D L D location of mirror 2.
• R1 D reflectivity of mirror 1.
• R2 D reflectivity of mirror 2.

We assume for the moment that the mirrors are perfectly reflecting (R1 DR2 D 1)
and describe the laser field within a resonator as a quasiplane standing wave
composed of two waves of equal amplitude and opposite propagation directions:

Fig. 2.8 Fabry–Perot resonator
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E D 1

2
A cosŒ!t � .kz � '0/	C 1

2
A cosŒ!t C .kz � '0/	: (2.42)

The field E and the amplitude A have an orientation along a direction (e.g., the
x direction) perpendicular to the z direction. Using the relations cos .˛ ˙ ˇ/ D
cos˛ cosˇ � sin ˛ sinˇ, we can write (2.42) in the form

E D A cos.kz � '0/ cos!t; (2.43)

which describes a standing wave. To find k, !, and '0, we make use of three
conditions:

• The solution to the resonator eigenvalue problem provides discrete values of the
wave vector.

• The dispersion relation for electromagnetic radiation then yields the resonance
frequencies of a resonator.

• Two boundary conditions for electromagnetic fields provide the phase.

The resonator eigenvalue problem reads: after a round trip transit through the
resonator, the field at a location z at time t C T is the same as the field at time t ,

E.z; t C T / D E.z; t/: (2.44)

This leads to the condition

2kl D l � 2�I l D 1; 2; 3; : : : : (2.45)

The integer l is the order of a resonance. The change of phase per round trip transit
is 2kL D 2� . Accordingly, the wave vector has discrete values,

kl D l � 2�

2L
: (2.46)

We obtain, with k D !=c,

!l D l � 2�c

2L
; (2.47)

or
�l D l � c

2L
: (2.48)

The resonance frequencies ( D eigenfrequencies) �l of a Fabry–Perot resonator
are multiples of c=2L. The resonance frequencies �l are equidistant. Next-near
resonance frequencies have the frequency distance (Fig. 2.9)

�l � �l�1 D c

2L
: (2.49)

The round trip transit time — the time it takes the radiation to perform a round trip
transit through the resonator — is
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Fig. 2.9 Resonance frequencies of the Fabry–Perot resonator

T D 1=�1 D 2L=c: (2.50)

The resonance wavelengths of radiation in a Fabry–Perot resonator are given by the
relation

l � �l=2 D LI (2.51)

the length of the Fabry–Perot resonator is a multiple of �l /2. To determine
the resonance wavelengths of a Fabry–Perot resonator containing a medium of
refractive index n, we have to take into account that the speed of light in a medium
is c=n and the wavelength is �=n, where � is the wavelength of light in vacuum.

Taking account of the boundary conditions and the dispersion relation, we obtain:

E D A cos.klz � '0/ cos!l t: (2.52)

The boundary conditions are: E D 0 at z D 0 and z D L. We obtain the phase
'0 D ��=2. Thus, the standing wave has the form

E D A sin kl z cos!lt: (2.53)

A resonance characterized by a frequency !l D 2��l and a wave vector kl
corresponds to a resonator mode, that is, to a particular pattern of the amplitude
of the electromagnetic wave within a resonator. Figure 2.10a shows the electric
field E.z/ for t D 0 and T=2. At a fixed time, the field varies sinusoidally along
the resonator axis according to the variation of the phase kz. The sign of the field
varies in z direction (Fig. 2.10b). The polarization of the electric field has a direction
perpendicular to the z axis — along the x axis (Fig. 2.10c) or along the y axis
(Fig. 2.10d). We now summarize the main properties of a quasiplane standing wave
in a Fabry–Perot resonator:

• Amplitude. The amplitude A is a constant everywhere within the Fabry–Perot
resonator.

• Phase variation along the z axis. The phase varies along the z axis.
• Phase variation perpendicular to the z axis. The phase does not vary in directions

perpendicular to the z axis.
• Polarization of the radiation. The field is oriented perpendicular to z.
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Fig. 2.10 Standing wave in a Fabry–Perot resonator. (a) Field E.z/. (b) Phase of the field in the
zy plane. (c) Field lines in the xy plane for E k x. (d) Field lines in the xy plane for E k y

Two waves propagating in opposite directions add to the field, now written in
complex form,

QE D 1

2
A eiŒ!t�.kz�'0/	 C 1

2
A eiŒ!tC.kz�'0/	: (2.54)

The energy density of the field at a location z in the resonator averaged over a period
of time is equal to

u.z/ D 1

2
�0A

2 sin2 kl z (2.55)

and the photon density (also averaged over a period of time) is

Z.z/ D �0A
2

2h�
sin2 klz: (2.56)

The average taken over a wavelength of the radiation yields the average energy
density u of the electromagnetic field in the resonator

u D 1

4
�0A

2 (2.57)

and the average photon density

Z D u

h�
D �0

4h�
A2: (2.58)

If a resonator has two reflectors both with R D 1, light within the resonator
travels without loss; it performs an infinite number of round trip transits. But the
number of round trip transits is finite if one of the reflectors is a partial reflector
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Fig. 2.11 Resonator with loss

acting as output coupling mirror. A partial reflection at the output coupling mirror
corresponds to a reduction of the energy density within the resonator. How long does
a photon remain in a resonator? We consider the energy density u at a fixed location
within the resonator (Fig. 2.11). After one round trip of the radiation, the energy
density is V u, where the V factor describes how much of the energy remained in the
resonator after one round trip transit; accordingly, the photon density Z is reduced
to VZ after one round trip of the radiation. The V factor is a measure of loss:

• V factor D fraction of radiation energy that remains in the resonator after a round
trip transit D fraction of the number of photons remaining in the resonator after
one round trip D survival probability of a photon after a round trip transit through
the resonator.

• V D 1, there is no loss.
• V < 1, there is loss.

The photon density develops as follows:
t D 0; Z0.
t D T ; one round trip transit, Z D VZ0.
t D sT ; s round trip transits,

Z.s/ D V sZ0: (2.59)

Replacing s by the continuous variable t=T , we write

Z.t/ D Z0V
t=T : (2.60)

Using the identity ax D ex ln a, we obtain

Z.t/ D Z0 e�
t D Z0 e�t=�p ; (2.61)

where


 D 1

�p
D � lnV

T
(2.62)

is the loss coefficient of the resonator and

�p D T

� lnV
(2.63)
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is the photon lifetime ( D average lifetime of a photon in the resonator D decay time
of the energy density of radiation in the resonator). We write the V factor as

V D e�T=�p D e�
T : (2.64)

The energy density decreases exponentially with the same decay constant as the
photon density,

u D u0 e�t=�p D u0 e�
t ; (2.65)

where u0 is the initial energy density.
If the loss is due to both output coupling loss (described by Vout) and internal loss

in the resonator (Vi), the total V factor is equal to

V D VoutVi: (2.66)

Then the loss coefficient of a resonator is


 D 
out C 
i; (2.67)

where

• 
out is the loss coefficient due to output coupling of radiation and
• 
i is the loss coefficient due to internal loss.

Diffraction at the reflectors, for instance, causes internal loss.
The relative decrease of the energy density after one round trip transit is

.u � V u/=u D 1 � V: (2.68)

The quantity 1 � V is the loss per round trip transit.
Example. A resonator has the V factor V D 0.9. This means:

• There remain, after one round trip of the radiation, 90% of the photons in the
resonator.

• The loss per round trip is 10%.
• The photon lifetime is �p D T=.� lnV / D 9:5T .
• The survival probability of a photon after a round trip through the resonator is 0.9.

2.5 Laser D Laser Oscillator

The laser ( D laser oscillator) is a self-excited oscillator (D self-sustained oscillator).
It is characteristic of a self-excited oscillator that it starts oscillation itself and
maintains oscillation as long as pump energy is supplied by an external energy
source.
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We mention a classical self-excited oscillator. A string of a violin is excited to
an oscillation during a continuous motion of the bow. The string together with the
bow, which steadily delivers energy to the oscillation, is a self-excited oscillator.
The length of the string determines the fundamental frequency.

We will now formulate the condition of laser oscillation and also show that the
buildup of a steady state oscillation takes time.

2.6 Radiation Feedback and Threshold Condition

Radiation in a resonator containing an active medium is repeatedly propagating
through the active medium. The active medium experiences feedback from the
radiation that is stored in a resonator.

We now assume that population inversion and gain are suddenly turned on at time
t D 0. At the start of a laser oscillation, the energy density of the radiation is u and
VGu after one round trip (Fig. 2.12).G is the gain factor per round trip transit. It is
equal to the product of the single-pass gain factors (G D G2

1 ). The energy density
increases if

VGu > u (2.69)

or
GV > 1: (2.70)

The energy in a resonator increases with time if the product of the gain factor and
the V factor is larger than unity. Without loss (V D 1), the energy density after one
round trip is Gu. The relative increase of the energy density after one round trip is

Gu � u

u
D G � 1: (2.71)

The quantity G � 1 is the gain per round trip. If gain and loss are present, we can
write the condition of net gain in the form

Gu � u

u
>

u � V u

u
(2.72)

Fig. 2.12 Balance of energy in a laser
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or
G � 1 > 1 � V; (2.73)

gain per round trip > loss per round trip. We did not differ between radiation prop-
agating in the resonator in clockwise or counterclockwise direction: we supposed
that propagation in both directions leads to gain.

We assume that V does not change with time. Can we also assume that the gain
factor G is independent of time? If G would be constant, the energy in the laser
would permanently increase and reach an infinitely large value. But this is not the
case if V < 1. Then the energy in a laser resonator becomes finite — G decreases
during the buildup of the light field in the laser resonator. We have the condition
that VG1u D u at steady state or

G1V D 1I (2.74)

at steady state oscillation, the product of the gain factorG1 and the V factor is 1.
We describe the following case: an active medium is suddenly turned on at time

t D 0. The initial gain factor is G0 (Fig. 2.13). The gain factor remains nearly
constant and then decreases to the steady state valueG1. The transition from G0 to
G1 occurs at the onset time ton, which is a measure of the time it takes to build up
a steady state oscillation. G0 is the small-signal gain factor and G1 the large-signal
gain factor. The two conditions lead to the threshold condition of laser oscillation
( D laser condition):

GV � 1: (2.75)

The condition implies that during the buildup of a laser field, G is larger than at
steady state oscillation. We can also interpret the threshold condition as follows: an
oscillation builds up if G0 is only slightly larger than G1. In the extreme case that
G0 ! G1, reaching a steady state takes infinitely long time (ton ! 1). In this
sense, we introduce the threshold gain factor,

Gth D G1: (2.76)

Fig. 2.13 Gain factor during onset of laser oscillation
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The small-signal gain factor G0 is always larger than the large-signal gain factor
G1 ( DGth). At steady state oscillation, the gain factor is clamped at

G1 D V �1: (2.77)

We will treat onset of oscillation in more detail (Sects. 2.9, 8.4, and 9.7; Fig. 9.6).
A laser is a regenerative amplifier: at steady state oscillation, radiation lost during a
round trip transit through the resonator is regenerated after the round trip.

The energy density of radiation in a lossless resonator of a continuously pumped
laser increases to infinitely large values — but optical damage limits the energy
density (Sect. 16.10).

2.7 Frequency of Laser Oscillation

At steady state oscillation, the electric field at a fixed location in the laser resonator
reproduces itself after each round trip transit through the resonator; this is the
resonator eigenvalue problem in the case that a resonator contains an active medium.
The electric field in a resonator (Fig. 2.14) has to obey the condition

QGE QVE e�i.2kL���'3/ QE D QE: (2.78)

The quantities concern a round trip transit through the active medium.

• QGE D GEei'1 D complex gain factor with respect to the field.
• QVE D VEei'2 D complex loss factor with respect to the field.
• '3 D phase shift due to dispersion in the resonator (Sect. 13.3).
• 2kL D geometric phase shift.
• � D Gouy phase shift D additional phase shift connected with focusing of

radiation by a curved mirror (Sect. 11.7); the Gouy phase shift of radiation in a
Fabry-Perot resonator is zero.

We obtain the condition

GEVE e�i.2kL���'1�'2�'3/ D 1: (2.79)

Fig. 2.14 Field in a laser
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The factor to the exponential has to be equal to unity, and the sum of all phases has
to be a multiple of 2� . It follows that GEVE D 1 and, with G2

E D G and V 2
E D V ,

that GV D 1 as already derived in the preceding section. The second condition is

2kL �� � '1 � '2 � '3 D l � 2�; (2.80)

where l is an integer. The sum of all changes of phase after a round trip transit has
to be a multiple of 2� . Since k D !=c, the condition provides the eigenfrequencies
!l D 2��l . In the special case that all additional phases — but not the geometric
phase shift kz — are zero, we obtain the eigenfrequencies �l D lc=.2L/, with
l D 1, 2, . . . ; otherwise the resonance frequencies are shifted.

Electromagnetic radiation propagating in a medium of refractive index n has the
wave vector k D n!=c. It depends on the properties of the resonator and of the
active medium at which resonance frequency (or frequencies) a laser oscillates.

We will discuss the origin of phase shifts of electromagnetic wave propagating in
an active medium in Chap. 9 and phase shifts of an electromagnetic wave in a laser
resonator in Chap. 11 and Sect. 13.3.

2.8 Data of Lasers

Table 2.1 shows data of continuous wave lasers. The data concern the quantities (see
also Fig. 2.15):

• L D resonator length.
• d D diameter in case of a circular resonator.
• a1 D width and a2 D height of a rectangular resonator.
• Resonator volume D�.d=2/2L for a circular-mirror resonator and a1a2L for a

rectangular resonator.
• G D gain factor per round trip of the radiation.
• V D V factor per round trip; the V factor is a measure of loss and indicates the

reduction of the photon density in the resonator per round trip.
• Pout D output power.

Table 2.1 Data of lasers

Laser � L(m) Resonator
d (m), or
a1 (m); a2 (m)

Volume
(m3)

G [or G1] V [or V1] Pout (W)

HeNe 633 nm 0.5 2� 10�3 5� 10�5 1.02 0.99 10�2

CO2 10.6 �m 0.5 2� 10�2 5� 10�3 3 0.95 70
Nd:YAG 1.06 �m 0.5 2� 10�2 5� 10�3 50 0.9 2
TiS 830 nm 0.5 2� 10�2 5� 10�3 50 0.9 5
fiber 1.5 �m 10 10�5 10�9 100 0.5 1
SC 810 nm 10�3 10�6; 10�4 10�13 [12] [0.3] 10�1

QCL 5 �m 10�3 10�5; 10�4 10�13 10 0.9 10�3
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Fig. 2.15 Various lasers

By modifying a laser (e.g., by choosing an other cross sectional area), it can be
possible to obtain a larger or a smaller output power. The lasers generate radiation
at wavelengths listed in the table but also at other wavelengths. The length of the
active medium of a gas laser is about equal to the length of the resonator. The length
of the active medium of a solid state laser is smaller than the resonator length. The
length of the active medium of a semiconductor laser is about equal to the resonator
length. Semiconductor lasers have much smaller sizes than other lasers:

• Helium–neon laser. The gain is small. Therefore, the V factor has to be close
to unity — the reflectivities of the resonator mirrors have to be near unity (e.g.,
R1 D 0:998 and R2 D 0:99). A glass plate covered on the front surface with a
highly-reflecting multilayer coating and on the back surface with an antireflecting
dielectric coating is a high-reflectivity mirror (Chap. 25). The front surface with
its coating acts as resonator mirror while the back surface is outside the resonator.
The glass tube that contains the laser gas is closed by Brewster windows.

• CO2 laser. The gain is large. One of the reflectors is a metal mirror; a metal
mirror has a reflectivity near unity for radiation at wavelengths larger than about
5 �m. The output coupling mirror has a reflectivity that is noticeably smaller
than unity (e.g., R1 D 1; R2 D 0:95). The output coupling mirror is a dielectric
plate (e.g., a germanium plate) covered on the resonator side with a dielectric
multilayer coating and on the other side with a dielectric antireflecting coating; a
metal film is not suitable as a partial reflector because of a very high absorptivity
for radiation passing through a metal film (Problem 25.18).

• Neodymium YAG laser (Nd:YAG laser). The gain is large. The length of the
active medium is much smaller than the length of the resonator. Both mirrors
(e.g., R1 � 1 and R2 D 0:95) consist of dielectric multilayers on glass plates.
The Nd:YAG crystal surfaces are obliquely oriented relative to the beam axis so
that the angle of incidence of the radiation is the Brewster angle and radiation
traverses the crystal surfaces without loss.
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• Titanium–sapphire laser. The active medium also fills a small portion of the
resonator. The gain is large (mirror reflectivities are, e.g., R1 � 1 and R2 �
0:95). The titanium–sapphire crystal surfaces are obliquely oriented relative to
the beam axis so that the angle of incidence of the radiation is the Brewster angle
and radiation traverses the crystal surfaces without loss.

• Fiber laser. The active medium is a doped fiber of small diameter and large
length. The output power can reach several hundred watt.

• Bipolar semiconductor laser (SC). The gain can be large already at a small length
of an active medium. It is possible to use the semiconductor surfaces as reflectors.
Then each of the surfaces has the reflectivityR1 D R2 D R D .n�1/2=.nC1/2,
where n is the refractive index of the semiconductor laser material. The resonator
material of a GaAs semiconductor laser has the refractive index n D 3:6, and the
reflectivity has a value (R D 0:32) that is markedly smaller than unity.

• Quantum cascade laser. The gain is also large at small length of the gain medium.

Radiation passing through a parallel plate at normal incidence experiences loss
due to reflection, while radiation of the appropriate polarization direction passes
through a Brewster window without reflection loss. The Brewster angle follows
from Snell’s law

sin ˛2
sin ˛1

D n1

n2
; (2.81)

where ˛1 is the angle of incidence, ˛2 the angle of the transmitted beam, n1 .� 1/

the refractive index of air, and n2 the refractive index of the dielectric material.
The reflectivity is zero if the electric field vector lies within the plane of incidence
(p polarization) and if the angle of incidence is equal to the Brewster angle ˛B

(Fig. 2.16). The Brewster angle is determined by the relation

tan ˛B D n2=n1: (2.82)

The incident and the reflected beam (that has no power) are perpendicular to
each other. Radiation of a polarization perpendicular to the plane of incidence
(s polarization) is partly reflected and is therefore attenuated by a Brewster
window. Accordingly, the radiation of a laser that contains Brewster windows is
polarized.

Fig. 2.16 Brewster angle
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2.9 Oscillation Onset Time

The threshold condition does not specify the value of the initial energy density
of the electromagnetic field. However, there is a physical limit: if there is no
electromagnetic energy in the resonator, nothing can be amplified. Already one
photon in the resonator can initiate laser oscillation if the threshold condition is
satisfied. One photon in a resonator corresponds to a photon density of Z0 D
.a1a2L/

�1, where a1a2L is the volume of the resonator. After the round trip transit
time, the density of the photons is VG0 and after s round trip transits, the density of
the photons in the resonator is

Z.s/ D Z0.VG0/
s: (2.83)

To estimate the onset time, we assume that the gain, described by the round trip
gain factorG0, is turned on at t D 0, then remains constant, and suddenly decreases
at t D ton to G1 (Fig. 2.17, upper part). It follows that the photon density increases
exponentially from the initial value Z0 until it reaches at t D ton the steady state
value Z1 ( D density of photons in the resonator at steady state oscillation). We
write

.VG0/
son D Z1=Z0; (2.84)

where son is the number of round trip transits necessary to reach the steady state. It
follows that the oscillation onset time, ton D sonT , is given by

ton D T
ln.Z1=Z0/

ln.VG0/
: (2.85)

The onset time is proportional to the round trip transit time and to the natural
logarithm of Z1=Z0. And it is inversely proportional to the natural logarithm of
the product VG0.

We replace s by the continuous variable t=T and write

Z.t/ D Z0 .VG0/
t=T : (2.86)

With the identity ax D ex ln a, we obtain

Z D Z0 eln.VG0/t=T : (2.87)

The number of photons increases exponentially until, at t D ton, a steady state
oscillation is established.

It follows, for 1 � V � 1 and G0 � 1 � 1, that ln.VG0/ D lnV C lnG0 D
.G0 � 1/� .1 � V / D gain minus loss per round trip. Then we can write

ton D T

.G0 � 1/� .1 � V /
ln.Z1=Z0/: (2.88)
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Fig. 2.17 Onset of laser
oscillation: gain factor and
photon number

If the gain is small compared to unity, .G0 � 1/ � 1, the oscillation onset time is
large compared to the round trip time, ton � T .

Example. A helium–neon laser (length 0.5 m; cross-sectional area 1 mm2; output
power 1 mW; gain DG�1 D 0:02; loss 1�V D 0:01) starts with one photon in the
laser mode (Z0a1a2L D 1) and contains, at steady state oscillation, Z1a1a2L D
Pout�p D 1010 photons, where �p D T=.1�V / D 3:3�10�7 s is the photon lifetime.
The density of photons in the resonator at t D 0 is Z0 D .a1a2L/

�1 D 106 m�3.
The density of photons at steady state oscillation is Z1 � 1016 m�3. The round trip
transit time is T D 3.3 � 10�9 s. It follows that the onset time is ton � 8 � s. The
buildup of steady state oscillation of a helium–neon laser requires the radiation to
perform about thousand round trip transits through the resonator. The photon density
(Fig. 2.17, lower part) increases exponentially during the onset time (t < ton) and
has a constant value for t > ton.

REFERENCES [1–11, 26–28]

Problems

2.1. Photon density. Calculate the density Z of photons in a radiation field
(wavelength 1 �m, 1 nm or 1 mm) of an energy density of 1 J m�3.

2.2. Amplitude of a field in a resonator containing a medium of the dielectric
constant � D 1 at the laser wavelength.

(a) Determine the amplitude of a field that corresponds to radiation of an energy
density of 1 J/m3.



40 2 Laser Principle

(b) Evaluate the photon density Z, the field amplitude, and the energy density in a
laser resonator (size 1 cm3) if the resonator contains 1 photon and if the energy
of a photon corresponds to a wavelength of 1 �m.

(c) Evaluate the photon density, the field amplitude, and the energy density in a
laser resonator (size 100 �m � 1 �m � 500�m) if it contains 1 photon (photon
wavelength 1 �m).

2.3. Thermal occupation number of an atomic system governed by Boltzmann
statistics.

(a) Show that f Boltz
1 � f Boltz

2 > 0 for an ensemble of two-level atomic systems in
thermal equilibrium.

(b) Estimate the thermal occupation number difference f Boltz
2 � f Boltz

1 for an
ensemble of two-level atomic systems (at 300 K) at level separations that
correspond to visible radiation (wavelength of 600 nm).

(c) Calculate the occupation number difference at level separations that correspond
to far infrared radiation (� D 300 �m).

2.4. Threshold condition of laser oscillation.

(a) Show that the threshold condition (expressed for the power of radiation) is
the same for light starting propagation in �z direction as for light starting
propagaton in Cz.

(b) Show that the threshold condition is also the same for two electromagnetic
fields propagating in ˙ z directions if G2 ¤ G1, where the gain factors
correspond to the single-pass gain factors for the two propagation directions.

2.5. Brewster angle. Determine the Brewster angles of materials used in lasers as
windows or as active materials.

(a) Helium–neon laser (633 nm); quartz glass, n D 1.4.
(b) CO2 laser; NaCl crystal, n D 1.5.
(c) Nd:YAG laser; YAG, n D 1.82.
(d) Titanium–sapphire laser; sapphire, n D 1.76.

2.6. Photon lifetime and oscillation onset time. Determine the photon lifetime
and the oscillation onset time of lasers mentioned in Table 2.1.

2.7. Fresnel coefficients.
Derive the Brewster angle by use of the Fresnel coefficients:

r? D E
.r/

?
E
.i/

?
D n1 cos �1 � n2 cos �2
n1 cos �1 C n2 cos �2

; (2.89)

t? D E
.t/

?
E
.i/

?
D 2n1 cos �1
n1 cos �1 C n2 cos �2

; (2.90)

rjj D E
.r/

jj
E
.i/

jj
D n2 cos �1 � n1 cos �2
n1 cos �1 C n2 cos �2

; (2.91)
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tjj D E
.t/
jj

E
.i/
jj

D 2n1 cos �1
n1 cos �1 C n2 cos �2

: (2.92)

• r? D Fresnel coefficient of reflection, with the electric field direction perpendic-
ular to the plane of incidence.

• rjj D Fresnel coefficient of reflection, with the electric field direction in the plane
of incidence.

• �1 D angle of incidence.
• �2 D angle of the refracted beam.
• n1 D refractive index of medium 1.
• n2 D refractive index of medium 2.

The coefficients r? and rjj are the corresponding Fresnel coefficients of
transmission.

2.8. Fresnel coefficients for normal incidence.

(a) Show that rjj D r? D r D .n1�n2/=.n1Cn2/ and tjj D t? D t D 2n1=.n1Cn2/
and determine the reflectivity R and the transmissivity T.

(b) Show that r21 D �r12 and that t12t21 � r12r21 D 1.

2.9. Relate the intensity of radiation to the photon density.



Chapter 3
Fabry–Perot Resonator

The main topics of this chapter concern the characterization of a resonator mirror,
of the Fabry–Perot interferometer, and of the Fabry–Perot resonator.

In the 1890s, Charles Fabry and Alfred Perot (Marseille, France) introduced
the Fabry–Perot interferometer. It consists, in principal, of two partial mirrors that
have infinitely large lateral extensions. We will determine the transmissivity of a
Fabry–Perot interferometer. The transmission curve (Airy curve) exhibits, at high
reflectivities of the mirrors, narrow resonances with Lorentzian shape.

A Fabry–Perot resonator consists of two partial mirrors of finite lateral exten-
sions. The spectral transmission curve of a Fabry–Perot resonator is — for
quasiplane waves — the same as that of a Fabry–Perot interferometer. We will show
that the transmission curve narrows when a gain medium is inserted into a Fabry–
Perot resonator.

We mention different types of laser resonators and then discuss properties of a
Fabry–Perot resonator. We introduce the ideal mirror and determine the transmission
curves of the Fabry–Perot interferometer and of the Fabry–Perot resonator.

The Fabry–Perot resonator, together with the description of radiation as a
quasiplane wave, represents a model resonator that is well suited to study basic
properties of a resonator and of a laser. We will later (Sect. 11.6) show that the
Fabry–Perot resonator differs from the Fabry–Perot interferometer, particularly for
radiation that propagates at an angle to the resonator axis. There is another very
important difference: radiation in a Fabry-Perot resonator experiences diffraction
(Sect. 11.8) while diffraction plays no role in a Fabry–Perot interferometer.

3.1 Laser Resonators and Laser Mirrors

There are different types of resonators:

• Resonator with curved mirrors as reflectors (Chap. 11). The resonators are
suitable for most of the gas and solid state lasers as well as for free-electron
lasers.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 3, © Springer-Verlag Berlin Heidelberg 2012
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• Fabry–Perot resonator (this chapter). It has two plane reflectors. This resonator
represents an ideal model resonator suitable for the study of basic properties of a
resonator and of a laser. This type of resonator is used in vertical-cavity surface-
emitting lasers (Sect. 22.7).

• Waveguide Fabry–Perot resonator. It has two plane reflectors oriented parallel
to each other. Within the Fabry–Perot resonator, the light is guided by an
optical waveguide structure. This type of resonator is used in edge-emitting
semiconductor lasers (Sect. 20.5) and fiber lasers (Sect. 15.7).

• Cavity resonator (Chap. 10). The cavity resonator has metallic walls. It is used
as resonator of semiconductor lasers of the far infrared and of microwave lasers.

• Photonic crystal resonator (Chap. 25). A reflector of a photonic crystal resonator
can consist of periodically arranged materials of different refractive indices. The
photonic crystal resonator can be a Fabry–Perot-like resonator or a cavity-like
resonator. Photonic crystal resonators are becoming more and more important of
a variety of lasers, e.g., of microlasers and nanolasers.

The design of mirrors of a laser resonator depends on the availability of materials of
mirrors. We mention a few types of mirrors:

• Ideal mirror (Sect. 3.4). The ideal mirror is lossless; its thickness is infinitely
small; it is able to divide an incident wave in a reflected and a transmitted
wave. We can choose the reflectivity of this model mirror. We will make use
of the model mirror to describe main properties of a Fabry–Perot resonator (this
chapter) and of resonators with curved mirrors (Chap. 11).

• Crystal surface. A crystal surface is able to divide, without loss, an optical
wave in a reflected and a transmitted wave. However, the reflectivity at normal
incidence is much smaller than unity. GaAs crystal surfaces are nevertheless
suitable as reflectors of semiconductor lasers (Sect. 20.5).

• Dielectric multilayer mirror (Chap. 25). A stack of dielectric quarter-wavelength
layers represents a dielectric multilayer mirror that can be designed as an almost
lossless reflector with a reflectivity very near unity (e.g., R D 0:999) for
visible radiation or as a lossless partial reflector with a reflectivity that we can
choose.

• Metal mirror. A metal mirror has a relatively low reflectivity and large absorp-
tivity for visible radiation and is not suitable as mirror of a laser that generates
visible radiation — a silver mirror shows a reflectivity of 0.95 and an absorptivity
5% for red light. Metal reflectors are in use as reflectors of infrared radiation
at wavelengths larger than several micrometers. Metal films are not suitable as
partial reflectors because the absorptivity of a metal film is much larger than the
transmissivity (see Problems 25.17 and 25.18).

In Chap. 25, we will discuss various mirrors and methods used for realization of
feedback and we will describe a method that is suitable to calculate properties of
multilayer reflectors. In this chapter we treat the Fabry–Perot resonator.
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3.2 V Factor and Related Quantities

We first study an empty Fabry–Perot resonator that has a reflector (reflectivity D 1)
and a partial reflector (reflectivity R) as described in Sect. 2.4. Radiation starting at
time t D 0 and performing many round trip transits through a resonator propagates
during the time t over a total distance d D ct . We can write

Z.d/ D Z0 e�d=lp : (3.1)

Z is density of photons after propagation over the distance d , Z0 is the photon
density at d D 0 and

lp D c�p D 2L

� lnV
(3.2)

is the average path length of a photon in the resonator. During its lifetime in the
resonator, a photon propagates over the distance lp. We introduce the effective
number seff D lp=2L of round trip transits of a photon. After seff round trip transits,
the photon density decreases to Z0/e. We obtain the relations

seff D lp

2L
D 1

� lnV
D �p

T
: (3.3)

Beside Z and u, also the total number ua1a2L of photons in the resonator and
the total energy Za1a2Lhv in the resonator decrease exponentially with the photon
lifetime �p.

The quality factor Q ( D Q factor D Q value) of a resonator is equal to 2� times
the ratio of the energy stored in the resonator and the energy loss per oscillation
period. It follows that the Q factor of a Fabry–Perot resonator is given by

Q D 2� � u � a1a2L
u � a1a2L��1

p � T D !�p D !T

� lnV
D 2�l

� lnV
D 2�lseff: (3.4)

The Q factor is equal to the product of the order l of the resonance and the effective
number of round trip transits of a photon through the resonator, multiplied by 2� .

We summarize the relations of the V factor and other quantities:

• �p D T=.� lnV / D lifetime of a photon in the resonator.
• lp D 2L=.� lnV / D path length of a photon in the resonator.
• seff D 1=.� lnV / D number of round trip transits of a photon within the

resonator.
• Q D 2�=.� lnV / D Q factor.

T is the round trip transit time and L the length of the resonator, and l the order
of resonance. If V has a value near unity (1 � V � 1), the expansion of lnV in a
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Table 3.1 Lifetimes of photons in laser resonators

Laser � L (m) T (s) V ; ŒV1	 �p (s)
�p

T

h
�p

T=2

i

HeNe 632 nm 0.5 3.3 �10�9 0.99 3:3� 10�7 100
CO2 10 �m 0.5 3.3 �10�9 0.9 3.3 �10�8 10
Nd:YAG 1.06 �m 0.5 3:3 � 10�9 0.9 3:3� 10�8 10
TiS 830 nm 0.5 3:3 � 10�9 0.9 3:3� 10�8 10
Fiber 1.5 �m 10 6:7 � 10�8 0.5 10�7 1.4
SC 840 nm 10�3 2:4� 10�11 [0.33] 2:4� 10�11 [0.9]
QCL 5 �m 10�3 2:4� 10�11 0.9 2:4� 10�10 10

Taylor series yields

� lnV D 1 � V: (3.5)

In the case that the output coupling loss is the main loss and that only a small
portion of radiation is coupled out per round trip transit, 1 � R � 1, we obtain the
relations:

• V D R.
• �p D T=.� lnR/ D T=.1 �R/ D lifetime of a photon in the resonator.
• lp D 2L=.� lnR/ D 2L=.1� R/ D path length of a photon in a resonator.
• seff D 1=.� lnR/ D 1=.1�R/ D number of round trip transits.
• Q D 2�=.� lnR/ D 2�=.1� R/ D Q factor.

Table 3.1 shows data of lifetimes of photons in different laser resonators. The
lifetimes differ by several orders of magnitude and correspond to ten to hundred
round trip transits through a resonator. There is an exception: a semiconductor laser
is, in principle, able to operate if the surfaces of a semiconductor act as laser mirrors.
A reflectivity ofR D 0:33 of each of the surfaces (of a GaAs semiconductor crystal)
corresponds to a photon lifetime �p D 0:9T=2. The V factor at a single transit is
V1 D 0:33 and the laser threshold condition V1G1 D 1 requires a threshold gain
factor G1 D 3 at a single transit of the photons through the resonator.

3.3 Number of Photons in a Resonator Mode

The energy of radiation in a mode of a resonator is quantized (Fig. 3.1) and assumes
the values

En D n � h�; (3.6)

with n D 0; 1; 2; : : :; we neglect the zero point energy. The occupation number n
is equal to the total number of photons in a single-mode resonator. The occupation
number of a mode of a rectangular Fabry–Perot resonator is Za1a2L, where Z is
the average photon density.
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Fig. 3.1 Number of photons
in a mode

Fig. 3.2 Laser mirror

3.4 Ideal Mirror

We characterize a mirror by the complex reflection coefficient Qr and the complex
transmission coefficient Qt (Fig. 3.2). A plane wave

QE.i/ D A ei.!t�kz/ (3.7)

incident on a mirror is partly reflected and partly transmitted. The reflected field is

QE.r/ D QrA ei.!tCkz/ (3.8)

and the transmitted field is

QE.t/ D QtA ei.!t�kz/: (3.9)

We assume that the mirror has negligible thickness. The reflectivity of the mirror is

R D j QE.r/j2
j QE.i/j2 D jQr j2 (3.10)

and the transmissivity of the mirror is

Tm D j QE.t/j2
j QE.i/j2 D jQt j2: (3.11)

The sum of reflectivity and transmissivity of a lossless mirror is unity,RC Tm D 1.
(We use the subscript m to characterize the mirror transmissivity Tm to avoid a
confusion with the round trip transit time T .) We can write the reflection coefficient
in the form Qr D rei' , where r D p

R is the amplitude reflection coefficient and
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' the phase between reflected and incident wave. A reflector with the reflectivity
R D 1 has a reflection coefficient Qr D ei� D �1, i.e., the field at z D 0 has opposite
direction relative to the incident field.

3.5 Fabry–Perot Interferometer

A Fabry–Perot interferometer (Fig. 3.3) consists of two plane parallel partial
reflectors — of infinite lateral extensions — at a distance L. We consider an
interferometer with two equal mirrors. Due to multiple reflections within the
interferometer, a plane wave incident on the interferometer splits into an infinite
number of plane waves. The partial waves transmitted by the interferometer add to
the transmitted field

QE.t/ D QE1 C QE2 C QE3 C : : : D eikL Qt Qt �1C Qr2eiı C Qr4e2iı C : : :
�
Aei.!t�kz/;

(3.12)

where

ı D k � 2LC 2' D 2!L=c C 2' (3.13)

is the phase difference between two successive partial waves in the case that the
propagation direction of the radiation is parallel to the interferometer axis and where
' is the phase change due to reflection at a mirror. The partial waves (described by
a geometric series) add to the plane wave

QE.t/ D Qt Qt
1 � Qr2eiı

A eiŒ!t�k.z�L/	: (3.14)

The transmissivity of the Fabry–Perot interferometer is given by

TFP D j QE.t/j2
j QE.i/j2 D T 2m

1CR2 � 2R cos ı
; (3.15)

Fig. 3.3 Fabry–Perot interferometer
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where E.i/ D A ei.!t�kz/ is the incident plane wave, Tm is the transmissivity, and
R the reflectivity of a mirror. With cos ı D 1�2 sin2 ı=2, we obtain the Airy formula

TFP D T 2m
.1 �R/2

1

1C 4R.1� R/�2 sin2.ı=2/
: (3.16)

The maximum transmissivity is equal to

TFP;max D T 2m
.1 �R/2 ; (3.17)

obtained for

ıl D l � 2�I l D 1; 2; : : : : (3.18)

The maxima appear at the frequencies

�l D l � c

2L
I l D 1; 2; : : : : (3.19)

The frequency distance between next-near maxima is the free spectral range

��1 D c

2L
: (3.20)

The halfwidth (full width at half maximum; FWHM) of the Airy curve is equal to

��res D �l

lF
D 1� R

�
p
R

� c

2L
: (3.21)

The quantity

F D �
p
R

1� R
(3.22)

is the finesse of the Fabry–Perot interferometer. The halfwidth is independent of the
order of resonance.

In the case that the Fabry–Perot mirrors are lossless, Tm D 1�R, the maximum
transmissivity is unity and the transmissivity of a Fabry–Perot interferometer is
given by

TFP D 1

1C 4R.1� R/�2 sin2 ı=2
: (3.23)
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Fig. 3.4 Transmissivity of a Fabry–Perot interferometer

Figure 3.4 shows the transmissivity of the Fabry–Perot interferometer for different
values of the reflectivity R.

• R D 0:1. This case corresponds to a simple plane parallel plate, R D .n � 1/2

.n C 1/�2 D 0:1 for n D 1:9; application: low-Q resonator, suitable for
wavelength selection of a single-mode laser (Sect. 12.3).

• R D 0:3. This case corresponds to a GaAs plate for radiation at a wavelength
of 800 nm (n D 3:6; R D 0:33); application: low-Q resonator of semiconductor
lasers.

• R D 0:8. Such a Fabry–Perot resonator shows already Lorentzian resonance
curves (see next section).

A Fabry–Perot interferometer can be used as an optical frequency analyzer.
The Fabry–Perot interferometer mainly transmits radiation of frequencies around
�l , �lC1, . . . and mainly reflects radiation at frequencies in the ranges between the
resonances. At resonance, the transmissivity is unity. The resolving power,

�res

��res
D �res

��res
D lF; (3.24)

is equal to the product of the order of resonance and the finesse; �res is a resonance
frequency, ��res the halfwidth of the transmission curve on the frequency scale,
�res D �res=c the resonance wavelength, and ��res the halfwidth on the wavelength
scale. The free spectral range (on the frequency scale) is equal to c=2L.

3.6 Resonance Curve of a Fabry–Perot Resonator

The Airy formula is also valid in the case that a quasiplane wave is incident on a
Fabry–Perot resonator. The resonance frequencies are

�l D l � c

2L
I l D 1; 2; : : : : (3.25)
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The halfwidth

��res D �l

lF
D 1 �R
�

p
R

� c

2L
(3.26)

of the resonance curve is, as already mentioned, independent of the order of
resonance. If the reflectivity is near unity,

p
R 	 1, the halfwidth is given by

��res D 1 �R
�T

D 1

2��p
: (3.27)

T D 2L=c is the round trip transit time of the radiation and

�p D T

2.1� R/
(3.28)

is the photon lifetime. If R 	 1, the Q factor is equal to

Qres D �l

��
D �l

1 � R
D !l�p: (3.29)

The values of �p and of Qres are half the corresponding values of a Fabry–Perot
resonator that consists of a reflector with a reflectivity of unity and another reflector
with a reflectivity R.

We consider the transmissivity of a Fabry–Perot resonator at frequencies in the
vicinity of a resonance. We expand the sine function in the denominator of (3.23),
sin .ı=2/ D l�.� � �l /=�l . We find

TFP D ��2res

4

1

.� � �l/2 C .��2res=4/
; (3.30)

which we write as

TFP D ���res

2
gL.�l /; (3.31)

where

gL.�/ D ��res

2�

1

.� � �res/2 C .��res=2/2
(3.32)

is the Lorentzian function ( D Lorentz resonance function). It has the properties:

• �res D resonance frequency.
• ��res D halfwidth of the resonance curve.
• gL.�0/ D 2.���res/

�1 	 0:64=��res.
•
R1
0
gL.�/d� D 1.
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Our treatment shows that the resonance curve of a Fabry–Perot resonator (for
R near unity) is a Lorentzian, and that the halfwidth of the resonance curve is
��res D 1=2��p. The width of the resonance curve is determined by the lifetime
of a photon in the resonator.

There is an essential difference between a Fabry–Perot interferometer and a
Fabry–Perot resonator:

• A Fabry–Perot interferometer has an infinite lateral extension.
• A Fabry–Perot resonator has a finite lateral extension, with the consequence that

specific mode patterns occur (Sect. 11.6) and that diffraction plays an important
role (Sect. 11.8).

3.7 Fabry–Perot Resonator Containing a Gain Medium

The field transmitted by a Fabry–Perot resonator containing a gain medium is
given by

QE.t/ D eikL Qt QtG1;E
�
1CG2

1;Er
2eiı CG4

1;Er
4e2iı C : : :

�
Aei.!t�kz/: (3.33)

G1;E is the single-pass gain factor of the field. We assume that G1;E is real and
assume that G1R D G2

1;Err
� D GR is smaller than 1. We obtain the transmissivity

of a Fabry–Perot resonator containing an active medium:

T �
FP D G.1� R/2

.1� GR/2
� 1

1C 4GR
�
.1 � GR/�2 sin2 .ı=2/

� : (3.34)

The transmissivity (for 1 � R � 1) is given by

T �
FP D T �

FP;max
.���

res=2/
2

.� � �l /2 C .���
res=2/

2
: (3.35)

The transmission curve has Lorentzian shape. The halfwidth is equal to

���
res D 1 � GR

�

c

2L
D 1 � GR

�T
: (3.36)

The maximum transmissivity (for ı D l � 2�) is given by

T �
FP;max D G.1� R/2

.1� GR/2
: (3.37)

The maximum transmissivity of a Fabry–Perot resonator containing an active
medium (Fig. 3.5) is larger than unity. Incident radiation is amplified. The trans-
missivity becomes infinitely large for GR ! 1. The halfwidth of the resonance
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Fig. 3.5 Fabry–Perot
resonator containing an active
medium

curve decreases with increasing GR and approaches zero for GR ! 1. If GR > 1,
a Fabry–Perot resonator with an active medium is able to perform a self-excited
oscillation — an oscillation starts from noise and is self-sustained. We will show
later (Sect. 8.9) that the halfwidth of the spectral distribution of radiation generated
in a resonator containing an active medium can be very small but is always nonzero.

We mention that a quasiclassical oscillator can also generate radiation with
Lorentzian lineshape (Chap. 31, Fig. 31.3b).

Example. Fabry–Perot resonator (R1 D R2 D R D 0:9) containing a gain
medium (G D 1:1). The peak transmissivity is T �

FP;max D 120 and the width
���

res D 0:01=�T in comparison to ��res D 0:1=�T .

REFERENCES [1, 8, 9, 26, 28–30]

Problems

3.1. Number of modes of a resonator. How many modes of a Fabry–Perot
resonator of 1 cm length belong to the visible spectral range?

3.2. Photon lifetime. A resonator (length 10 cm) has loss due to output coupling
via a partial mirror (R D 0:9). Determine: V factor; number of round trip transits of
the radiation in the resonator; lifetime of a photon in the resonator; path length of a
photon during the lifetime in the resonator; Q factor of the resonator.

3.3. Resonator with air. A Fabry–Perot resonator of a length L D 0:5m
operates, for visible radiation near 600 nm, in vacuum or in air (refractive index
n D 1:00027).

(a) Evaluate the frequency difference between next-near resonances.
(b) Determine the change of the mode separation if the resonator, originally in

vacuum, is flooded with air.

3.4. Energy density of radiation in a Fabry–Perot resonator.

(a) Evaluate the average energy density of a quasiplane standing wave in a Fabry–
Perot resonator.
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(b) Show that the average energy density is twice the energy density (averaged over
time and space) of two beams of light propagating in opposite directions.

3.5. Laser with two output coupling mirrors. A resonator with two output
coupling mirrors (reflectivities R1 D R2 D R, with R � 1 � 1) emits radiation
in two opposite directions. Determine the V factor and the photon lifetime.

3.6. Photon density. Relate the average density of photons in a Fabry–Perot
resonator and the average density of photons in the light beam outside the resonator
for the following two cases.

(a) R1 D 1 and R2 D R.
(b) R1 D R2 D R.

3.7. Evaluate the reflectivity of a symmetric lossless Fabry–Perot interferometer
(R1 D R2 D R).

3.8. Determine the transmissivity (Airy formula) of an asymmetric Fabry–Perot
interferometer.

3.9. Fabry–Perot interferometer with absorbing mirrors.

(a) Determine the transmissivity (Airy formula) and the maximum transmissivity
of a symmetric Fabry–Perot interferometer with two absorbing mirrors.

(b) What is the condition, with respect to the absorptivity of the mirrors, that the
maximum transmissivity of the Fabry–Perot interferometer is larger than 0.98?
[Hint: the sum of the transmissivity Tm, the reflectivity R, and the absorptivity
Am of a mirror is unity.]

3.10. Fabry–Perot interferometer for obliquely incident radiation.

(a) Determine the resonance condition for a symmetric Fabry–Perot interferometer
if the direction of incident radiation has an angle � relative to the interferometer
axis.

(b) Determine the resonance condition assuming that the interferometer is a plane
parallel plate.

3.11. Determine the reflectivity of a plane surface of a dielectric medium from
Fresnel’s formulas for normal incidence (Problems to Chap. 2).

3.12. Determine the mode spacing for different Fabry–Perot resonators: L D 1m
(n D 1); L D 10 cm (n D 1); L D 10�m (n D 3:6).

3.13. A Fabry–Perot interferometer with nonabsorbing mirrors has, for radiation
at a resonance frequency, a transmissivity of 1 although the entrance mirror can
have, for itself, a reflectivity of, for instance, 99%. Why do the boundary conditions
for the incident wave not require that a portion of radiation is reflected at the
entrance mirror? [Hint: sketch the incident field and the field that propagates within
the interferometer for a moment of strong field strength at the position of the
entrance mirror and compare the situation with the case that radiation is reflected
at a single mirror rather than at a resonator mirror.]



Chapter 4
The Active Medium: Energy Levels
and Lineshape Functions

We present a characterization of active media with respect to energy levels and
line broadening. We differ between two-level based lasers and energy-ladder based
lasers.

We differ between two-level based lasers and energy-ladder based lasers. In a
two-level based laser, stimulated transitions occur between two levels of an atomic
system. A two-level system of a particular atom or molecule is a subsystem of the
energy levels of the atom or the molecule. We divide the two-level based lasers in:
four-level lasers; three-level lasers; two-level lasers; two-band lasers; and quasiband
lasers. All presently operating lasers except free-electron lasers can, in principle, be
described as two-level based lasers.

In an energy-ladder based laser, stimulated transitions occur between levels of
energy-ladder systems. The (yet hypothetical) Bloch laser (Chap. 32) belongs to this
type. We will make use (Chap. 19) of the concept of an energy-ladder based laser to
illustrate the properties of free-electron lasers.

Line broadening can be due to homogeneous or inhomogeneous broadening. We
discuss the Lorentzian and Gaussian lineshape functions. We describe the classical
oscillator model of an atom and the natural line broadening.

Finally, we introduce low-dimensional active media. In a low-dimensional
medium, the free motion of electrons is spatially restricted. There are two-
dimensional media, with electrons moving freely along a plane, or one-dimensional
media, with electrons moving along a line. The strongest restriction occurs in a
zero-dimensional medium — all three dimensions are restricted (like in an atom).
The division concerns semiconductor lasers. The most important semiconductor
lasers — quantum well lasers — operate with two-dimensional active media.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 4, © Springer-Verlag Berlin Heidelberg 2012

55



56 4 The Active Medium: Energy Levels and Lineshape Functions

Fig. 4.1 Types of laser. (a)
Two-level based laser. (b)
Energy-ladder based laser

4.1 Two-Level Based and Energy-Ladder Based Lasers

A two-level based laser contains two-level atomic systems. Coherent radiation
is generated by stimulated transitions between the upper and the lower laser
level of two-level systems (Fig. 4.1a). Quantities characterizing a two-level
system are:

• E2 D energy of the upper laser level
• E1 D energy of the lower laser level
• E2 �E1 D transition energy
• �0 D .E2 � E1/=h D transition frequency D atomic resonance frequency

The laser frequency has a value at or near the transition frequency,

�L � �0: (4.1)

We will divide the two-level based lasers according to the number of different levels
involved in transitions in a laser medium (Sects. 4.2 and 4.3). A two-level system
is a subsystem of the energy level system of an atom or a molecule. All presently
operating lasers — except free-electron lasers — are two-level based lasers.

An energy-ladder based laser contains energy-ladder systems. A free electron in
a spatially periodic field executes oscillations (free-electron oscillations). According
to an energy level description, an oscillating free electron forms an energy-ladder
system and occupies one of the level of the energy-ladder system. Stimulated
emission of a photon by the oscillating electron corresponds to a stimulated
transition between next-near energy levels the energy-ladder system (Fig. 4.1b). The
energy levels are equidistant,

El D l E0; (4.2)

where l is an integer. Quantities characterizing an energy-ladder system are:

• E0 D energy distance between next-near levels D transition energy.
• �0 D E0=h D transition frequency D resonance frequency of the electron

oscillation.
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The laser frequency �L of an energy-ladder based laser is slightly smaller than the
resonance frequency,

�L < �0: (4.3)

We will describe the (yet hypothetical) superlattice Bloch laser (Chap. 32) as an
energy-ladder based laser. We will furthermore show that the free-electron laser
can, in principle, be interpreted as an energy-ladder based laser (Chap. 19).

4.2 Four-Level, Three-Level, and Two-Level Lasers

In a four-level laser (Fig. 4.2), a pump excites atoms, molecules, or other atomic
systems from the ground state level (level 0) to an excited state level (level 3 D pump
level). Relaxation leads to population of the upper laser level (level 2). Stimulated
emission by 2 ! 1 transitions results in a population of the lower laser level
(level 1). Depopulation of the lower level occurs by relaxation to the ground state.
We have three relaxation processes, namely 3 ! 2, then 2 ! 1, and 1 ! 0. We
assume that the relaxation 3 ! 2 is very fast. We neglect other relaxation processes
(e.g., 2 ! 0). Continuous pumping maintains a permanent population inversion
(N2 > N1) if the relaxation time ��

rel of the upper laser level is larger than the
relaxation time �rel of the lower laser level,

��
rel > �rel: (4.4)

Without stimulated emission, the population of the upper level is equal to the
product of the pump rate r and the relaxation time ��

rel,

N2 D r��
rel: (4.5)

Pumping of a four-level laser medium creates two-level atomic systems; a
two-level atomic system is either in its ground state (level 1) or in its excited

Fig. 4.2 Four-level laser
(principle)
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state (level 2). The density of two-level atomic systems, N2 C N1, increases with
increasing pump strength. Population inversion in the active medium of a four-level
laser medium occurs already at the smallest pump rate.

The maximum efficiency of conversion of a pump quantum (energyE3 � E0) to
a laser light quantum (energy h�) is the quantum efficiency

�q D h�

E3 � E0
D E2 �E1

E3 �E0 : (4.6)

The quantum efficiency is very small (�q � 1) if E2 � E1 � E3 � E0. Then, a
large portion of the pump energy is converted to relaxation energy and therefore to
heat (or to radiation produced by spontaneous emission). The quantum efficiency is
near unity if the pump level lies only slightly above the upper laser level and if, at
the same time, the lower laser level lies only slightly above the ground state level.

Table 4.1 shows values of relaxation times of upper and lower laser levels of
a few laser materials. The relaxation times differ by many orders of magnitude.
The relaxation 2 ! 1 can be due to spontaneous emission of radiation or due to
nonradiative relaxation. Relaxation of the lower level can also be due to spontaneous
emission of radiation or due to nonradiative relaxation, that is, by a radiationless
transition. We will specify the relaxation processes later in connection with the
discussion of specific lasers. The lasers mentioned in the table can operate as
continuous wave lasers (��

rel > �rel).
Optical transitions between two discrete energy levels lead to fluorescence lines

and absorption lines that have finite linewidths (Sect. 4.4); the notation fluorescence
is used for photo luminescence ( D optically excited luminescence).

Many laser media have levels with energy distributions. A pump band has, in
comparison to a single pump level, the advantage that a lamp that emits radiation in
a broad spectral range can pump a laser. In the case of pumping with another laser,
radiation of different frequencies is suitable for pumping.

Examples of four-level lasers: neodymium YAG laser; titanium–sapphire laser.
We are dealing with a three-level laser if the pump level coincides with the

upper laser level (Fig. 4.3a). This type of three-level laser is a special case of the
four-level laser. For another type of three-level laser (Fig. 4.3b), the lower laser
level is identical with the ground state level. We denote it as ruby laser type.
Population inversion requires that more than half of the atoms are in the excited
state. Accordingly, the transparency density of a ruby laser type is given by

Table 4.1 Relaxation times of laser levels

Laser � ��

rel �rel

HeNe 633 nm 100 ns 10 ns
CO2 10.6 �m 5 s < 5 s
Nd:YAG 1.06 �m 230 �s � 230 �s
TiS 790 nm 3.8 �s 10�13 s
QCL 5 �m 10�11 s 10�12 s
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Fig. 4.3 Three-level lasers. (a) Three-level laser with coinciding pump and upper laser level. (b)
Ruby laser type

Ntr D N0=2: (4.7)

N0 is the density of impurity ions in a crystal.
In a two-level laser only two atomic energy levels play a role.

Example of a two-level laser: the ammonia (NH3) maser [32]. To obtain population
inversion, long-lived excited molecules are permanently injected into a resonator
where stimulated emission occurs. The molecules leave the resonator spatially. The
upper laser level is 35 � eV above the ground state level. Ammonia gas in a box
contains NH3 molecules in the ground state and in the excited state. A hole in a box
with NH3 gas at room temperature is the source of a molecular beam consisting of
excited and nonexcited NH3 molecules. The molecular beam traverses an atomic
filter that separates the excited molecules and the nonexcited molecules. The atomic
filter consists of an inhomogeneous field (an electric quadrupole field) that exerts
forces on the molecules due to their electric dipole moments. The magnitude of the
dipole moment of a molecule in the excited state differs from that in the ground
state. Therefore, the forces lead to a spatial separation of the molecules. The excited
molecules pass the resonator and deliver, via stimulated emission, the excitation
energy to the laser field in the resonator. The ammonia laser was the first microwave
maser (frequency near 24 GHz).

4.3 Two-Band Laser and Quasiband Laser

A two-band laser medium has (beside other energy levels or energy bands) a lower
energy band (band 1) and an upper energy band (band 2), separated by an energy
gap (Fig. 4.4a). The gap energy is Eg. Without pumping, almost all energy levels
belonging to the lower band are full and all energy levels in the upper band are
empty. We assume that Eg is much larger than kT so that thermal excitation from
the lower to the upper band can be ignored.

Pumping — injection of electrons into the upper band and extraction of electrons
from the lower band (Fig. 4.4b) — results in a quasithermal population of energy
levels in the upper band and in empty levels in the lower band. Fast intraband
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Fig. 4.4 Two-band laser. (a) Energy bands. (b) Laser principle

Table 4.2 Relaxation times of laser levels of two-band laser media and quasiband laser media

Laser � ��

rel �intra

Semiconductor 0.4–2 �m 1–5 ns 10�13 s
Fiber 1–2 �m 10�2 s 10�13 s

relaxation processes lead to a population in the upper band. The population in the
upper band is in a quasithermal equilibrium, which is determined by the lattice
temperature of the active medium. The levels have energies near the minimum of
the lower band. The width of the energy distribution of populated levels is � kT

(or larger at strong pumping). Energy levels near the energy minimum of the upper
band have largest population. The energy distribution of populated levels in the
upper band is governed by Fermi’s statistics.

The population in the lower band is also in a quasithermal equilibrium, cor-
responding to the lattice temperature of the active medium. The empty levels
have energies near the maximum of the lower band. The width of the energy
distribution of empty levels is � kT (or larger at strong pumping). Energy levels
near the maximum of the lower band have the lowest population. Fermi’s statistics
determines the energy distribution of populated levels in the lower band too.

Quasithermal means that the population within an energy band has a thermal
distribution according to the lattice temperature of the active medium — but that
the population in the upper energy band is, relative to the population in the lower
energy band, far out of equilibrium. Stimulated transitions from occupied levels in
the upper band to empty levels in the lower band are the source of laser radiation.
Establishment of a quasiequilibrium in the upper band and establishment of a
quasiequilibrium in the lower band are due to the interaction of electrons with
phonons, that is, due to electron–phonon scattering.

Table 4.2 shows relaxation times: the intraband relaxation time �intra is much
smaller than the interband relaxation time ��

rel. Interband relaxation in an active
medium is mainly due to spontaneous emission of radiation.

The quasiband laser represents a model of a glass fiber laser. The active medium
(Fig. 4.5a) contains excited-impurity quasiparticles in a quasiband. The quasiband
lies � 1 eV above a vacuum level. The width of a quasiband of an impurity-doped
glass can have a value of 10–100 meV. Optical pumping via transitions from the
vacuum level to the quasiband creates quasiparticles (Fig. 4.5b). Annihilation of
quasiparticles via stimulated transitions from the quasiband to the vacuum level is
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Fig. 4.5 Quasiband laser. (a)
Quasiband. (b) Laser
principle

the origin of laser radiation. The quasiparticles in the quasiband have a quasithermal
distribution determined by Fermi’s statistics; for relaxation times, see Table 4.2 The
model will be described in Chap. 18.

Examples. Two-band lasers: all bipolar semiconductor lasers.
Quasiband lasers: erbium-doped fiber laser; other fiber lasers and fiber amplifiers
(Sect. 15.7 and Chap. 18).
Two-quasiband lasers (with the active medium having a lower and an upper
quasiband): organic and polymer lasers (Sect. 34.4).

4.4 Energy-Ladder Based Laser

Figure 4.6 shows the principle of an energy-ladder based laser. A free electron
(energy Eel;0) is injected into a spatially periodic field. The energy levels of an
electron in a spatially periodic field represent an energy-ladder system. The electron
occupies one of the levels. Stimulated transitions in the energy-ladder system give
rise to gain. A stimulated transition occurs into the high-energy wing of the next-
near energy level at lower energy. The energy level in the wing corresponds to
a distortion of the energy-ladder system. The transition energy E0 is converted
to a laser photon of energy h� and to energy of distortion. A relaxation process
(relaxation time �) transfers the electron into a new undistorted energy-ladder state.
An electron can undergo a large number (sstim) of stimulated emission processes
during the motion through the active medium; �stim is the time between two
stimulated emission processes. An electron leaves the active medium with an energy
Eel;1 < Eel;0.

The transition frequency of an energy-ladder medium is a transparency fre-
quency. Radiation with frequencies below the resonance frequency is amplified.

Examples of energy-ladder based lasers: the (not yet realized) Bloch laser
(Chap. 32) and, in principle, the free-electron laser (Chap. 19).

4.5 Lineshape: Homogeneous and Inhomogeneous Line
Broadening

We use the notation “lineshape” in different ways:

• Lineshape of a luminescence line.
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Fig. 4.6 An energy-ladder based laser

• Lineshape of an absorption line D absorption profile D shape of an absorption
coefficient D shape of ˛abs.�/.

• Lineshape of a gain curve D gain profile D shape of a gain coefficient D shape
of ˛.�/.

We characterize the lineshape of a line that is due to transitions between two levels
of an atomic system by:

• �0 D center frequency of a line.
• ��0 D linewidth.
• The lineshape function g.�/ with the normalization

R1
0
g.�/d� D 1 or,

alternatively, Ng.�/ with the normalization Ng.�0/ D 1.

There are many different mechanisms responsible for lineshapes. Accordingly,
there are a large number of different lineshapes. We divide the lineshapes as
lineshapes due to homogeneous broadening and lineshapes due to inhomogeneous
broadening.

A homogeneous line broadening occurs if all two-level atomic systems have the
same lineshape function ghom.�/ Dg.1/ D g.2/ D : : : D g.N/, where N is the
number of atomic systems (Fig. 4.7, left). The atomic resonance frequency �0 is the
same for all two-level atomic systems.

In the case that a line is inhomogeneously broadened (Fig. 4.7, right), each
two-level atomic system of an ensemble has its own resonance frequency. The
linewidth of the ensemble is larger than the transition linewidth of a single two-
level atomic system. We can regard an inhomogeneously broadened line (with the
lineshape function ginh and the center frequency �0) as composed of homogeneously
broadened lines with the frequencies �0;1, �0;2, . . . , �0;N of different two-level
systems.

Examples of homogeneous line broadening: collision broadening in gases
(Sect. 14.2) and vibronic line broadening of the transition in Ti3C:Al2O3 used for
operation of the titanium–sapphire laser (Chap. 5; Sects. 7.6 and 15.2; Chap. 17).

Example of inhomogeneous broadening: Doppler broadening of transition lines
in gases (Sect. 14.1).
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Fig. 4.7 Homogeneous and inhomogeneous line broadening

Fig. 4.8 Lorentz resonance function

4.6 Lorentz Functions

An important lineshape function is the Lorentz resonance function (Fig. 4.8),

gL.�/ D gL;res.�/ D ��0

2�

1

.�0 � �/2 C��20=4
; (4.8)

where �0 is the resonance frequency and ��0 the half width (full width at half
maximum, FWHM). The Lorentz resonance function is normalized,

Z 1

0

gL;res.�/d� D 1: (4.9)

The maximum value is equal to

gL;res.�0/ D 2

���0
	 0:64

��0
: (4.10)

We define the Lorentz dispersion function by the relation
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gL;disp.�/ D �0 � �
��0=2

gL;res.�/: (4.11)

We write the Lorentz resonance function, normalized to unity at the line center,
in dimensionless units:

NgL;res.�=�0/ D .��0=�0/
2=4

.1 � �=�0/2 C .��0=�0/2=4
: (4.12)

The corresponding Lorentz dispersion function is equal to

NgL;disp.�=�0/ D 1 � �=�0
��0=2�0

NgL;res.�=�0/: (4.13)

The Lorentz resonance curve (Fig. 4.9, upper part) is symmetric with respect to
the resonance frequency �0, while the Lorentz dispersion curve (Fig. 4.9, lower
part) is antisymmetric. The Lorentz dispersion curve is zero at � D �0 and has
extrema at the frequencies �0 ˙ ��0=2. The extrema of NgL;res are equal to
˙ 0.5.

The Lorentz resonance function on the ! scale is given by

gL;res.!/ D �!0

2�

1

.!0 � !/2 C�!20=4
: (4.14)

We have the relation, because of g.!/d! D g.�/d�, ! D 2�� and
R
g.!/d! D 1,

Fig. 4.9 Lorentz functions. (a) Lorentz resonance function. (b) Lorentz dispersion function
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gL;res.�/ D 2�gL;res.!/: (4.15)

On the ! scale, the Lorentz resonance function, normalized to unity at the line
center, has the form

NgL;res.!/ D ��!0

2
gL;res.!/ D �!20=4

.!0 � !/2 C�!20=4
: (4.16)

The corresponding Lorentz dispersion function is

NgL;disp.!/ D ��!0

2
gL;disp.!/ D !0 � !

�!0=2

�!20=4

.!0 � !/2 C�!20=4
: (4.17)

The Lorentz resonance function on the energy scale is given by

gL;res.h�/ D �E0

2�

1

.E21 � h�/2 C�E2
0=4

; (4.18)

where we have the quantities:

• �E0 D h��0 D halfwidth of the line on the energy scale.
• E21 D E2 � E1 D transition energy.
• �0 D E21=h D .E2 �E1/=h D transition frequency.
• h� D quantum energy of the photons in a radiation field of frequency �.

The relation gL;res.�/d� D gL;res.h�/d.h�/ leads to

gL;res.h�/ D 1

h
gL;res.�/: (4.19)

Because of line broadening, the photon energy h� (Fig. 4.10) does not need to
coincide with the transition energy E21.

The Lorentz functions we presented describe narrow resonance lines, �!0 �
!0. Otherwise we have the (general) Lorentz resonance function

Fig. 4.10 Lorentz resonance function on the energy scale
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Fig. 4.11 Lorentz resonance function and Gauss distribution function

GL;res.!/ D !�!0

.!20 � !2/2 C .!�!0/2
: (4.20)

The Lorentz resonance function normalized to 1 at the line center is equal to

NGL;res.x/ D a2x

.1 � x2/2 C a2x2
; (4.21)

where x D !=!0 D �=�0 and a D �!0=!0 D ��0=�0 D �E0=E0. The Lorentz
resonance function increases proportionally to frequency at small frequencies,! �
!0, and decreases inversely proportional to the third power of the frequency at large
frequencies, ! � !0 (Fig. 4.11, upper part); the relative halfwidth of the curves
shown in the figure is a D 0:03.

4.7 Gaussian Lineshape Function

Line broadening can lead to a Gaussian lineshape described by

gG.�/ D 2

��0

�
ln 2

�

�1=2
exp

�
� ln 2 .� � �0/

2

��20=4

	
; (4.22)

where �0 is the center frequency and��0 the half width. The maximum value is
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gG.�0/ D 2

��0

r
ln 2

�
	 0:94

��0
: (4.23)

The lineshape function is normalized,
R1
0
gG.�/d� D 1. The Gaussian lineshape

function normalized to unity at the line center is

NgG.�/ D exp

�
� ln 2 .� � �0/2

��20=4

	
: (4.24)

A Gaussian line (Fig. 4.11, lower part) and a Lorentzian line of the same relative
halfwidth show only small differences at frequencies around the line center.
But there are essential differences in the wings. The Gaussian line decreases
exponentially and has negligibly small values at frequencies a few halfwidths away
from the center frequency; see the double logarithmic plots (Fig. 4.11, right). The
Gaussian line has finite values around the center frequency while the Lorentzian line
(with the same linewidth) extends far into the wings.

Examples of Gaussian lines: Doppler broadened lines (Sect. 14.1) are inhomo-
geneously broadened; the line of Ti3C:Al2O3 used for operation of the titanium–
sapphire laser is homogeneously broadened (Sect. 7.4).

4.8 Experimental Linewidths

Table 4.3 shows values of the linewidth��0 of 2 ! 1 transition lines together with
values of the natural linewidth ��nat. The halfwidth ��nat of the upper laser level
follows from the relation ��nat D .2��sp/

�1, where �sp is the lifetime with respect
to 2 ! 1 spontaneous transitions (Sect. 4.10). Various methods of determination of
linewidths are available. We mention a few methods.

• Helium–neon laser. The fluorescence line is inhomogeneously broadened (due to
Doppler broadening). The linewidth can be calculated by use of the expression
of Doppler broadening (Sect. 14.1).

• CO2 laser. The 2 ! 1 fluorescence line is Doppler broadened at low gas pressure
and collision broadened at high pressure.

• Nd:YAG laser. A fluorescence experiment provides the linewidth.

A lower limit of the linewidth of a transition is the natural linewidth. Active media
of lasers operated at room temperature show linewidths of the atomic transitions

Table 4.3 Linewidths

Laser � � (THz) ��0 ��nat �sp

HeNe 633 nm 474 1.6 GHz 1.2 MHz 100 ns
CO2 10.6 �m 28 (0.07–500) GHz 0.03 Hz 5 s
Nd:YAG 1.06 �m 280 140 GHz 1 kHz 230 �s
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that are always larger than the natural linewidth as a study of specific lasers shows
(see the chapters beginning with Chap. 14).

4.9 Classical Oscillator Model of an Atom

An atom consists of a nucleus and an electron cloud (Fig. 4.12a). In the classical
oscillator model of an atom, the electron cloud is replaced by an electron located at
the center of the electron cloud, that is, at the position of the nucleus. In equilibrium,
the electron does not move. When it is brought out of its equilibrium position
(Fig. 4.12b), it performs an oscillation with a displacement x.t/ and an amplitude
x0. The oscillation of the electron (charge q D �e) corresponds to an oscillation
of a dipole with the dipole moment p D qx D �ex (Fig. 4.12c). An oscillation
of a classical electric dipole ( D Hertzian dipole) gives rise to emission of radiation.
Here, we describe the model of the atomic oscillator ( D dipole oscillator D classical
model of an atom D Lorentz model of an atom); later (in Chap. 9), we will make
use of the model to derive the gain coefficient of radiation propagating in an active
medium.

We consider the atomic oscillation as a damped oscillation. The equation of
motion is given by

Rx C ˇ Px C !20x D 0; (4.25)

where x is the displacement from the equilibrium position (x D 0), !0 the
eigenfrequency, and ˇ the damping constant. We chose the eigenfrequency
( D transition frequency) so that „!0 D E2 � E1, where E1 is the energy of
the ground state, E2 the energy of an excited state of the two-level atom, and
E21 D E2 �E1 is the transition energy.

The solution to the equation of motion has, for ˇ � !0, the form

Qx D x0e� 1
2 ˇte�i!0t ; (4.26)

Fig. 4.12 Classical oscillator model of an atom. (a) Electron cloud and nucleus of an atom. (b)
Oscillation of an electron around the equilibrium position x D 0. (c) Excited atom as an oscillating
dipole
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where x0 is a displacement at t D 0; the displacement is 0 for t < 0. The time of
decay of the amplitude of the oscillation is 2� (Fig. 4.13, left) and the time of decay
of the energy of the atomic oscillation is the lifetime � D 1=ˇ.

Connected with an oscillation is an electric field

QE D A e� 1
2 ˇte�i!0t : (4.27)

The initial value A of the amplitude of the field corresponds to the initial value of
the displacement. The field is not monochromatic but has a frequency distribution
(Fig. 4.13, right) that follows by Fourier transformation,

QE.!/ D Ap
2�

Z 1

�1
QE.t/ei!tdt; (4.28)

which leads, with ˇ D �!0, to

QE.!/ D Ap
2�

Z 1

�1
exp iŒ.! � !0/t C i.ˇ=2/t	dt

D �Ap
2�

1

i.! � !0/C�!0=2
: (4.29)

Accordingly, the oscillating electron emits an electromagnetic wave with an inten-
sity distribution that corresponds to a Lorentzian line (Fig. 4.13, right),

I.!/=I0 D NgL;res.!/: (4.30)

I0 is the intensity at the line center. The linewidth�!0 is equal to ��1.
In the classical oscillator model description of an atom, the nonoscillating

state corresponds to the atomic ground state, and an oscillating state corresponds
(independently of the value of the amplitude of the oscillation) to the excited state
of the atom.

Fig. 4.13 Damped oscillator (left) and shape of the fluorescence line (right)
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4.10 Natural Line Broadening

The finite lifetime of the upper level of a two-level atomic system with respect to
spontaneous emission of radiation by 2 ! 1 transitions leads to a line broadening
described by the natural lineshape function

gnat.�/ D ��nat

2�

1

.�0 � �/2 C��2nat=4
; (4.31)

where �0 is the atomic resonance frequency,

��nat D 1

2��sp
(4.32)

is the natural linewidth, and �sp the lifetime of the upper level with respect to
spontaneous emission of radiation by 2 ! 1 transitions. We design �sp as the
spontaneous lifetime of level 2. The maximum value of the lineshape function,

gnat.�0/ D 4�sp D 2

���nat
; (4.33)

is proportional to the spontaneous lifetime, that is, inversely proportional to the
natural linewidth.

4.11 Energy and Phase Relaxation

There are two types of relaxation of the excited state of a two-level atomic system:
energy relaxation ( D longitudinal relaxation) and phase relaxation ( D transverse

relaxation). Making use of the oscillator model of a two-level atom, we characterize
the two relaxation processes.

• Energy relaxation (Fig. 4.14a). Atomic excitation loses energy due to damping.
The amplitude of the oscillation decreases exponentially. Accordingly, the
amplitude A of the field E emitted by the atom decreases exponentially too.
The decay time of the amplitude of the displacement is 2T1 and the decay time
of the oscillation energy is equal to

T1 D ��
rel: (4.34)

T1 is the longitudinal relaxation time ( D energy relaxation time). The linewidth
of the frequency distribution of the power of the emitted radiation is
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Fig. 4.14 Relaxation. (a) Energy relaxation. (b) Phase relaxation

�!0 D 1

T1
D 1

��
rel

: (4.35)

• Phase relaxation (Fig. 4.14b). An oscillation randomly changes the phase while
the amplitude x0 and the resonance frequency!0 remain unchanged. The average
time between two succeeding changes of the phase is the transverse relaxation
time T2. Radiation emitted by an atom consists of wave trains. The average
duration of a wave train is equal to T2. A Fourier analysis of a series of wave
trains E.t/ of constant amplitude A leads to a power spectrum of a Lorentzian
line; that is, the lineshape is a Lorentz resonance function. The center frequency
is an average frequency and the linewidth is given by

�!0 D 1

T2=2
D 2

T2
: (4.36)

Example: phase relaxation due to collisions of atoms and molecules in gases
(Sect. 14.2).

We will discuss the role of phase relaxation for laser oscillation of two-level based
lasers in Sect. 9.8.

We will later (Sects. 19.7 and 32.7) show that phase relaxation is essential for
laser oscillation of enrgy-ladder based lasers.

4.12 Three-Dimensional and Low-Dimensional Active Media

We divide media used in lasers as three-dimensional (3D) and low-dimensional
media. A low-dimensional active medium is either two-dimensional (2D), one-
dimensional (1D), or zero-dimensional (0D). This division is useful with respect
to semiconductor lasers. Semiconductor lasers make use of low-dimensional media.
Low-dimensional media are realized by means of semiconductor heterostructures.

The dimensionality concerns solely the question whether electrons move freely
(between two collisions) in three dimensions, in two dimensions, in one dimension,
or cannot move freely at all. In this sense, an atom is a 0D system.
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Fig. 4.15 Three-dimensional and low-dimensional active media

Figure 4.15 gives a survey of active media of different dimensionality:

• 3D active medium. The electrons move freely in three dimensions. The unit of
the density N of electrons is m�3.
Example: electrons in a 3D bipolar semiconductor.

• 2D active medium. The electron motion is bound to a plane. The unit of the two-
dimensional density (area density D sheet density) N 2D of electrons is m�2.
Example: electrons in a quantum film (in a quantum well laser).

• 1D active medium. The electron motion is bound to a line. The unit of the one-
dimensional density ( D line density) N 1D of electrons is m�1.
Example. Electrons in a quantum wire (in a quantum wire laser).

• 0D active medium. The electrons are imprisoned. An ensemble of 0D active
media forms a 3D active medium.
Example: electrons in a quantum dot (in a quantum dot laser); we can regard a
quantum dot as an artificial atom.

Ensembles of atoms, molecules, or ions are three-dimensional media. Each atom
(or molecule or ion) is for itself a quantum system. Boltzmann’s statistics governs
the population of the energy levels in an ensemble of atoms because the interaction
(for instance, by collisions in gases) between the atoms is weak. An electron gas
( D ensemble of the electrons) in the upper band in a bipolar semiconductor laser
forms a quantum system. The electron gas ( D ensemble of the electrons) in the
lower band forms another quantum system. The two coexisting electron gases obey,
each for itself, Fermi’s statistics and have different Fermi energies (called quasi-
Fermi energies).

REFERENCES [1–4, 31, 32]

Problems

4.1. Lineshape functions. At which frequency distance from the central line (�0 D
4� 1014 Hz; ��0 D 1 GHz) does the lineshape function decrease by a factor of 100
(a) if the line has Lorentzian shape and (b) if the line has Gaussian shape?
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4.2. Absolute number of two-level atomic systems. Determine the absolute
numberNtot of two-level atomic systems for systems of different dimensionality.

(a) Three-dimensional medium with a density N D 1024 m�3 of two-level systems
and a volume of 1 mm � 1 mm � 1 mm.

(b) Two-dimensional medium with an area density N 2D D 1016 m�2 and an area of
1 mm � 1 mm.

(c) One-dimensional medium with a line density N 1D D 107 m�1 and a length of
1 mm.

4.3. Relate the lineshape function on the frequency scale and the lineshape function
on the wave number scale.

4.4. Relate the dimensionless variables of the Lorentz resonance function expressed
on the frequency scale and those expressed on the angular frequency scale.



Chapter 5
Titanium–Sapphire Laser

As an example of a laser, we describe the titanium–sapphire laser.
Titanium–sapphire ( D titanium-doped sapphire) has a broad pump band, a long-

lived upper laser level, and a distribution of short-lived lower laser levels. The broad
pump band allows for pumping with a lamp or a laser. The broad distribution of
lower laser levels makes it possible to operate the laser as a tunable continuous
wave laser or as a femtosecond laser.

A continuous wave titanium–sapphire laser is tunable over a large frequency
range — extending from the red to the infrared spectral region. A titanium–sapphire
femtosecond laser generates ultrashort light pulses with a duration between about
5 fs and 100 fs (depending on the special arrangement).

In a simplified description, we characterize the titanium–sapphire laser as a four-
level laser with a broad distribution of pump levels, a sharp upper laser level, a broad
distribution of lower laser levels, and a sharp ground state level.

In this chapter, we discuss the principle of the titanium–sapphire laser, and we
will give a short description of the design. Additionally, we present absorption
and fluorescence spectra of titanium–sapphire. We will obtain more information
about the titanium–sapphire in later sections and chapters (particularly in Sect. 7.6,
Chap. 13, Sect. 15.2, and Chap. 17).

5.1 Principle of the Titanium–Sapphire Laser

A titanium–sapphire (Ti3C:Al2O3) crystal contains Ti3C ions replacing Al3C ions in
a sapphire (Al2O3) crystal. The density (number density) of Ti3C ions in Al2O3 is
typically 1�1025 m�3, corresponding to a doping concentration of 0.03% by weight
Ti2O3 in Al2O3.

Figure 5.1a shows the energy level diagram of a Ti3C ion in Al2O3. Above
the ground state level (energy E D 0), there is a continuum of energy levels
(the vibronic levels of the ground state). Above the lowest excited state level (at
E � 2.0 eV), there is another continuum of energy levels (the vibronic levels of

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 5, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 Titanium–sapphire laser. (a) Energy level diagram and transitions. (b) Simplified energy
level diagram

the excited state). The lowest excited state level and the vibronic energy levels of
the excited state have a long lifetime (�3.2 � s) with respect to relaxation to the
ground state level or to vibronic levels of the ground state; the lifetime is mainly
due to spontaneous emission of radiation (spontaneous lifetime �3.8 �s). Optical
pumping and fast nonradiative relaxation lead to population of the lowest excited
state level. Laser radiation is generated by stimulated transitions to vibronic levels
of the ground state — to levels well above the ground state level. The vibronic
levels of the ground state then relax by nonradiative relaxation processes. Relaxation
within the excited state levels and within the ground state levels occurs in relaxation
times of the order of 10�13 s. Absorption processes are mainly due to transitions
from the ground state to levels that lie, in comparison to the value of kT at room
temperature, far above the lowest excited state level. Stimulated transitions occur to
energy levels far above the ground state level.

We describe the titanium–sapphire laser as a four-level laser (Fig. 5.1b) — with a
pump level (that has a broad energy distribution), a sharp upper laser level, a lower
laser level (that has a broad energy distribution too), and a sharp ground state level.

We will treat vibronic systems in more detail in Sect. 15.2 and Chap. 17. All Ti3C
ions in Al2O3 have the same energy level distribution: optically pumped titanium–
sapphire is an active medium with a homogeneously broadened 2 ! 1 fluorescence
line (Sect. 17.3).

The titanium–sapphire laser operates as a cw laser or as a femtosecond laser. The
laser frequency of a cw laser — and thus the energy of the lower laser level — is
mainly determined by the resonance frequency of the laser resonator, which itself
is adjustable by the use of appropriate frequency selective elements within the
resonator. In a femtosecond laser, with a broadband resonator, transitions occur at
the same time into a large number of lower laser levels; in this case, the resonator
contains elements controlling the phases of the electromagnetic waves of different
frequencies that are present in the resonator at the same time.
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5.2 Design of a Titanium–Sapphire Laser

Pumping of a titanium–sapphire laser is possible by use of a discharge lamp or
of another laser. If a laser is pumped by use of a lamp, light of the lamp is
focused on the crystal leading to an almost homogeneous excitation of the crystal.
Pumping with a laser is possible by transverse or longitudinal pumping. In the case
of transverse pumping, the pump radiation irradiates the titanium–sapphire crystal
from the side.

In the case of longitudinal pumping (Fig. 5.2), the pump radiation passes
a dichroitic mirror and is then absorbed in the titanium–sapphire crystal. The
dichroitic mirror is transparent for the pump radiation but is a reflector for the laser
radiation.

By inserting into the resonator an element indicated as “black box” in the figure,
the laser operates in different ways.

If the black box is a dispersive element (e.g., a prism or a diffraction grating), the
laser generates

• cw radiation; tuning range from about 650 to 1200 nm on the wavelength scale
(250–460 THz on the frequency scale).

If the black box is a mode coupler, the laser generates

• ultrashort pulses; pulse duration 5–100 fs.

Heat produced by nonradiative relaxation processes leaves the titanium–sapphire
crystal by heat transfer mainly via the mechanical support of the crystal. Heating
effects can strongly be reduced if only a small portion of a Ti3C:Al2O3 crystal rod
is optically pumped. The pump volume is, for example, a cylindrical volume of a
diameter of 0.5 mm in a Ti3C:Al2O3 rod of 1 cm diameter. The heat produced in the
optically pumped region is distributed over the whole crystal. This results in a much
smaller temperature enhancement than in the case that the crystal is homogeneously
pumped. Thus, much larger populations of the upper laser level or a much larger
output power can be obtained. Al2O3 has a large heat conductivity. This favors a
fast heat escape.

Fig. 5.2 Titanium–sapphire laser
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5.3 Absorption and Fluorescence Spectra
of Titanium–Sapphire

Spectra of the absorption cross section and fluorescence spectra of Ti3C:Al2O3

are known from experimental studies [33]. Figure 5.3 (upper part, left) shows the
absorption cross section �abs.�/ of a Ti3C ion in sapphire. The absorption cross
section follows from the relation

˛abs.�/ D N0 �abs.�/; (5.1)

where ˛abs is the experimental absorption coefficient and N0 the density of
Ti3C ions. The absorption band extends from the blue to the green spectral region.
Sapphire is an anisotropic crystal. Therefore, the optical properties depend on the
orientation of the direction of the electric field E of the electromagnetic wave
relative to the direction of the optic axis (c axis) of the crystal. The absorption lines
for E jj c (� polarization) and E ? c (� polarization) have different strengths but
the same shape.

Figure 5.3 (lower part) shows the fluorescence spectrum. S�.�/ is the spectral
distribution of the fluorescence radiation on the wavelength scale and S�;max is
the maximum of the spectral distribution. The fluorescence spectrum extends from
the red to the near infrared. The fluorescence lines for E jj c and E ? c have
different strengths but the same shape. The large linewidth and especially the long
infrared tail of the fluorescence band are the basis of the broadband tunability of
a titanium–sapphire laser and of the operation as femtosecond laser. The range of
laser oscillation (dashed in Fig. 5.3) extends far into the range of the infrared tail
of the fluorescence curve.

Fig. 5.3 Absorption and gain cross sections and fluorescence spectra of Ti3C:Al2O3
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The occurrence of a broad range of laser oscillation is a consequence of
the special properties of Ti3C in Al2O3. We will discuss these properties later
(Sect. 15.2). We will also show (Sect. 17.3) that almost all excited Ti3C ions
contribute to gain, and that each of the excited Ti3C ions contributes equally, i.e., all
excited Ti3C ions contribute equally to generation of radiation in a continuous-wave
laser or to generation of femtosecond pulses in a femtosecond titanium–sapphire
laser.

There remains the question: how can we determine, from the fluorescence
spectrum, the gain factor and especially the frequency dependence of the gain
factor? This will be discussed in Sect. 7.6. We anticipate the result. Figure 5.3 (upper
part, right) shows the gain cross section �gain of an excited Ti3C ion as derived
from the fluorescence spectrum and by taking into account the spontaneous lifetime
of an excited Ti3C ion. The gain cross section has a maximum near 830 nm. The
maximum value of the gain cross section of excited Ti3C is about 4 times larger
than the absorption cross section of Ti3C; a possible reason for the difference will be
discussed at the end of Sect. 17.2. In comparison to the gain profile, the fluorescence
curve decreases strongly with wavelength because of the wavelength dependence of
spontaneous emission.

5.4 Population of the Upper Laser Level

Without laser oscillation, the population of the upper laser level (Fig. 5.4) increases
with increasing pump power P linearly with P at small P (dashed line) and less
than linearly at large P . The population saturates at very large P , where the N2
population approaches the densityN0 of Ti3C ions. The population difference varies
according to N2 �N1 D K.P=Psat/.1CP=Psat/

�1, whereK is a constant and Psat

the saturation-pump power. At the saturation pump power, the absorption coefficient
˛abs.�/ is half of its value at weak pumping. A population inversion (N2 > N1)
occurs already at the smallest pump power.

Fig. 5.4 Population of the
upper laser level of
Ti3C:Al2O3
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5.5 Heat and Phonons

Nonradiative relaxation processes in active media produce heat. Therefore, cooling
of an active medium is necessary. Cooling occurs via heat conduction and heat
transfer. In solids, phonons play an important role in relaxation processes; phonons
are quanta of lattice vibrations, i.e., of vibrations of the atoms of a solid. After a
relaxation process, a phonon decays into heat. Phonons are treated in textbooks on
solid state physics. As a standard book of heat conduction and heat transfer, see [34].

REFERENCES [1–4, 7, 33, 34]

Problems

5.1. Geometrical length of the resonator. Determine the optical length of a
resonator (distance between reflector and output coupling mirror 50 cm) that
contains a titanium–sapphire crystal (length 1 cm; refractive index n D 1:76).

5.2. Photon density. The diameter of a laser beam at the output coupling mirror
is 10 cm. The laser generates visible radiation of a power of 1 W and fluorescence
radiation of a power of 1 W too.

(a) Estimate the power of laser radiation from the active medium of the laser
passing through an area of 1 cm diameter in a distance 10 m away from a laser
that emits radiation into a cone with a cone angle of 0.1 mrad.

(b) Estimate the power of fluorescence radiation from the active medium of the
laser passing through the same area.

5.3. What is the prescription of conversion of the shape of a narrow fluorescence
spectrum on the wavelength scale into the shape of the spectrum on the frequency
scale? [Hint: for the answer, see Sect. 7.6.]

5.4. Population of the upper laser level. A Ti3C:Al2O3 crystal of a length of 1 cm
is optically pumped in a cylindrical volume of 0.2 mm diameter.

(a) Estimate the pump power necessary to excite a tenth of the Ti3C ions into the
excited state.

(b) Determine the absolute number of excited Ti3C ions.
(c) Determine the energy stored as excitation energy and the corresponding energy

density per liter.
(d) Estimate the pump power necessary to excite a tenth of the Ti3C ions into the

excited state in the case that the population disappears every 300 ns. [Why may
it be possible that the population disappears regularly?]
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Chapter 6
Basis of the Theory of the Laser: The Einstein
Coefficients

According to Bohr’s atomic model (1911), which is based on spectroscopic investi-
gations, transitions between discrete energy levels of an atom can lead to emission or
absorption of radiation of a frequency that fulfills Bohr’s energy-frequency relation.
In an absorption process, a photon is absorbed. In an emission process, a photon
is emitted. Einstein found that the emission of a photon is possible by two different
processes, spontaneous and stimulated emission, and that the coefficients describing
the three processes — absorption, stimulated and spontaneous emission — are
related to each other (Einstein relations).

Making use of Planck’s radiation law, we derive the Einstein relations. We also
show that stimulated emission of radiation is a process that occurs permanently
around us. There remains the question: what is, in addition to the stimulated
emission, a specific property of a laser?

Einstein coefficients can be extracted from results of experimental studies of
optical properties of matter at thermal equilibrium. In this chapter, we consider an
ensemble of two-level systems in thermal equilibrium determined by Boltzmann’s
statistics. Later (Chap. 20), we will treat ensembles that obey Fermi’s statistics.

6.1 Light and Atoms in a Cavity

How does light interact with a two-level atomic system? We will study this question
in three steps:

• We describe the thermal equilibrium between the radiation in a cavity and the
walls of the cavity.

• We describe the thermal equilibrium between an ensemble of two-level atomic
systems in a cavity and the walls of the cavity.

• We consider a cavity that contains an ensemble of two-level atomic systems and
radiation.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 6, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 A cavity and Planckian distribution of radiation

A cavity (Fig. 6.1, left) contains blackbody radiation. The spectral distribution of
the energy density �.�/ of the radiation depends on the temperature T of the walls
of the cavity. The spectral energy density is determined by Planck’s radiation law

�.�/ D 8��2

c3
h�

eh�=kT � 1 ; (6.1)

where k is Boltzmann’s constant. The frequency distribution is shown in Fig. 6.1
(right). The frequency �max of the maximum of the distribution is directly propor-
tional to the temperature according to the relation

h�max � 2:8 kT: (6.2)

If the walls are at room temperature (T D 300K), the maximum of the distribution
lies in the infrared (�max D 1:8 � 1013 Hz). The spectral density increases as �2 at
small frequency (� � �max) and decreases as �3e�h�=kT at large frequency. Thermal
equilibrium is established by absorption of radiation by the walls of the cavity and
by emission of radiation from the walls into the cavity.

The energy density of radiation in the frequency interval �; � C d� is

u.�/ D �.�/ d�: (6.3)

We now treat a cavity containing an ensemble of two-level atomic systems in
thermal equilibrium, which is governed by Boltzmann’s statistics,

N2=N1 D e�.E2�E1/=kT : (6.4)

The population ratio is near unity if E2 � E1 � kT . It decreases exponentially
with the energy differenceE2�E1. Thermal equilibrium is established by collisions
of the two-level atomic systems with each other and with the walls of the cavity.

Impurity ions in a solid have fixed locations. The populations of the energy levels
of different ions are in thermal equilibrium with the solid due to absorption and
emission of phonons. The populations are governed by Boltzmann’s statistics.
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Einstein showed [38] that the thermal equilibrium in a gas of atoms can also
be established by the direct interaction of the radiation with the atoms and that
three processes of interaction between radiation and atoms must occur: absorption,
spontaneous emission, and stimulated emission.

Using Bohr’s energy-frequency relation,

h�0 D E2 �E1; (6.5)

where �0 is the transition frequency, we can write

N2=N1 D e�h�0=kT : (6.6)

We will now characterize the three processes by the three Einstein coefficients.

6.2 Spontaneous Emission

Excited atoms (Fig. 6.2) can emit photons spontaneously, i.e., without external
cause. The radiation emitted spontaneously is incoherent and the emission occurs
into all spatial directions. The change dN2 of the population N2 of the upper level,
within a time interval dt , is proportional to N2 and to dt ,

dN2 D �A21N2dt: (6.7)

A21 is the Einstein coefficient of spontaneous emission. The population of the upper
level decays exponentially,

N2.t/ D N2.0/ e�A21t D N2.0/ e�t=�sp : (6.8)

N2.0/ is the density of excited two-level atomic systems at t D 0 and �sp is the
average lifetime of an excited two-level atomic system with respect to spontaneous
emission ( D spontaneous lifetime). We have the simple relation

A21 D 1=�sp: (6.9)

The Einstein coefficient A21 is equal to the reciprocal of the spontaneous lifetime.

Fig. 6.2 Spontaneous
emission
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Fig. 6.3 Stimulated
transitions. (a) Absorption
and (b) stimulated emission

6.3 Absorption

Photons of a light field can be absorbed (Fig. 6.3a) by 1 ! 2 transitions. The
change dN1 of the population N1 of the ground state, within a time interval dt ,
is proportional to the population of the ground state itself, to the spectral energy
density � of the radiation field, and to dt ,

dN1 D �B12�.�0/N1dt: (6.10)

B12 is the Einstein coefficient of absorption and �.�0/ is the spectral energy density
of radiation at frequencies around �0. Absorption is only possible in the presence of
a field — the absorption is a stimulated process.

6.4 Stimulated Emission

Stimulated emission (Fig. 6.3b), by 2 ! 1 transitions, is caused (stimulated,
induced) by a radiation field. The change dN2 of the population of atoms in the
excited state, within a time interval dt , is proportional to the population N2, to the
spectral energy density of radiation at frequencies around �0, and to dt ,

dN2 D �B21�.�0/N2dt: (6.11)

B21 is the Einstein coefficient of stimulated emission. The radiation created by
stimulated emission has the same frequency, direction, polarization, and phase as
the stimulating radiation.

6.5 The Einstein Relations

We are looking for relations between the Einstein coefficients. As discussed,
the interaction of a two-level atomic system with radiation occurs (Fig. 6.4) via
absorption, stimulated and spontaneous emission. We describe the three processes
by rate equations that correspond to differential equations of first order:

• The rate of change of the populationN1 due to absorption is given by

.dN1=dt/abs D �B12 �.�0/ N1I (6.12)
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Fig. 6.4 Absorption,
stimulated emission, and
spontaneous emission

the temporal change of the population N1 due to absorption is proportional to
�.�0/ and to N1.

• The rate of change of the populationN2 due to stimulated emission is equal to

.dN2=dt/stim D �B21 �.�0/ N2I (6.13)

the temporal change of the population N2 due to stimulated emission is propor-
tional to �.�0/ and to N2.

• The rate of change of the populationN2 due to spontaneous emission is

.dN2=dt/sp D �A21N2I (6.14)

the temporal change of the population N2 due to spontaneous emission of
radiation is proportional to N2.

We consider a cavity with an ensemble of two-level atomic systems and radiation
in thermal equilibrium. In the time average, the ratioN2=N1 is a constant. Therefore,
the absorption rate has to be equal to the emission rate,

.dN1=dt/abs D .dN2=dt/sp C .dN2=dt/stim: (6.15)

This leads to the relation

B12�.�0/N1 D A21N2 C B21�.�0/N2: (6.16)

It follows that

�.�0/ D A21=B21

.B21=B12/N1=N2 � 1 : (6.17)

The Boltzmann factor determines the ratio N1=N2. The comparison with Planck’s
radiation law provides the Einstein relations

B21 D B12; (6.18)

A21 D 8��2

c3
h�B21: (6.19)
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Fig. 6.5 Natural lifetime

The frequency � (replacing �0) follows from Bohr’s relation h� D E2 � E1. We
have the result:

• The same Einstein coefficient governs both stimulated emission and absorption.
• There is a connection between the coefficients of spontaneous and stimulated

emission.
• The Einstein coefficientA21 increases strongly with frequency.

Figure 6.5 shows the spontaneous lifetime for different transition frequencies
� D .E2 � E1/=h at a fixed value of B21 (= 1018 m3 J�1 s�2); the spontaneous
lifetime is of the order of 10�6 s at a transition frequency (5 �1014 Hz) in the
visible, 100 s at a transition frequency (1012 Hz) in the far infrared and 10�15 s
at a transition frequency (1017 Hz) in the X-ray range. Spontaneous lifetimes at
X-ray transition frequencies are very short. Therefore, operation of an X-ray laser
is difficult (Sect. 16.4).

If energy levels are degenerate, Boltzmann’s statistics yields

N2

N1
D g2

g1
e�.E2�E1/=kT ; (6.20)

where g1 is the degree of degeneracy of level 1 and g2 the degree of degeneracy of
level 2. The treatment of the equilibrium between the atomic populations and the
radiation in a cavity leads to the relations

B12 D g2

g1
B21 (6.21)

and (as in the nondegenerate case)

A21 D 8��2

c3
h�B21: (6.22)

In the following, we will treat the case of nondegenerate energy levels (g1 D
g2 D 1).

If two-level atomic systems are embedded in a medium of refractive index n, the
speed of light in vacuum has to be replaced by the speed of light in the medium. The
Einstein relations then are

B21 D B12; (6.23)
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Table 6.1 Einstein coefficients

Laser � n �sp A21(s�1) B21 (m3 J�1 s�2)

HeNe 633 nm 1 100 ns 107 1:5� 1020

CO2 10.6 �m 1 5 s 0.2 1:4� 1016

Nd:YAG 1.06 �m 1.82 230 �s 4:3� 103 5:1� 1016

TiS (E k c) 830 nm 1.74 3.8 �s 2:6� 105 1:7� 1018

Fiber 1.5 �m 1.5 10 ms 102 6:6� 1015

Semiconductor 810 nm 3.6 3� 109 3:7� 1021

QCL 5 �m 3.6 4� 1021

A21 D 8��2

.c=n/3
h�B21; (6.24)

and

B21 D .c=n/3

8�h�3
A21: (6.25)

In this form, the Einstein relations are valid if a medium is optically isotropic.
If a medium is optically anisotropic, the relation between A21 and B21 has to be
modified.

Table 6.1 shows values of Einstein coefficients determined by the use of
experimental or theoretical methods. A few methods are mentioned in the following:

• Measurement of �sp (by a luminescence experiment) provides A21 and (via the
Einstein relations) B21 too. Example: Nd:YAG.

• Measurement of the absorption coefficient provides (Chap. 7) B21 and (via the
Einstein relations) A21.

• An analysis of the luminescence spectrum yieldsA21; example: bipolar semicon-
ductor lasers (see chapters on semiconductor lasers).

• Theoretical studies of the transition rates provide B21; example: QCL.

The Einstein coefficients of different systems differ by many orders of magnitude.
If the spectral energy density is given on the angular frequency scale, � D �.!/,

the Einstein coefficient B!
21 is larger by the factor 2� , B!

21 D 2�B21. The Einstein
relations then are B!

12 D B!
21 and A21 D �„!3=�2c3�B!

21.

6.6 Einstein Coefficients on the Energy Scale

If the spectral energy density is given on the energy scale,

�.h�/ D �.�/=h; (6.26)
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the Einstein coefficients of stimulated and spontaneous emission are

NB21 D Bh�
21 D hB21; (6.27)

NA21 D A21 D 8�.h�/3

h3.c=n/3
NB21 D 8��3

.c=n/3
NB21: (6.28)

NB21 is given in units of m3 s�1.

6.7 Stimulated Versus Spontaneous Emission

Stimulated emission is a general phenomenon that does not only occur in lasers.
Stimulated emission is a permanent process, for instance, in the lecture hall.

The thermal occupation number of a mode of a cavity is given by the
Bose-Einstein factor (Fig. 6.6)

Nn D 1

eh�=kT � 1 : (6.29)

At room temperature, T D 300K, the thermal occupation number has very different
values in different spectral regions:

• Nn � 1 for h� � kT (visible).
• Nn � 1 for h� 	 kT (infrared).
• Nn � 1 for h� � kT (far infrared and microwaves).

The approximation for small frequencies, Nn D kT=h�, shows that Nn increases to
infinitely large values ( Nn ! 1 for � ! 0). At a frequency � D 1011 Hz, the
thermal occupation number is large, Nn 	 100.

We return to Planck’s radiation law and write it in the form

�.�/d� D D.�/d� � Nn.�/ � h�; (6.30)

Fig. 6.6 Thermal occupation
number of a photon mode at
frequency �
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Fig. 6.7 Stimulated and spontaneous emission of radiation. (a) The two processes and (b) regions
of their dominance

where we have the quantities:

• �.�/ D spectral energy density of radiation at the frequency �.
• �.�/d� D energy density in the frequency interval �; � C d�.
• D.�/ D 8��2=c3 D mode density D density of states of photons D density of

modes per unit of volume and frequency (Sect. 10.4).
• D.�/d� D number of modes per unit of volume in the frequency interval �;
� C d�.

• h� D quantum energy of a photon ( D photon energy).

We can formulate Planck’s radiation law as follows: the spectral energy density of
blackbody radiation is equal to the product of mode density, thermal occupation
number and energy of a photon.

A two-level atomic system (Fig. 6.7a) in equilibrium with thermal radiation can
emit radiation either by spontaneous emission at an emission rate per excited atomic
system of ��1

sp D A21 or by stimulated emission at an emission rate per atomic
system of ��1

stim D �.�/B12. The stimulated emission dominates,

��1
stim

��1
sp

D �.�/B21

A21
D �.�/

D.�/h�
D Nn.�/ > 1; (6.31)

if the occupation number of the modes at the frequency � is larger than unity. In
thermal equilibrium of an ensemble of two-level atomic systems with radiation
(Fig. 6.7b), the transitions 2 ! 1 are:

• Mainly due to stimulated emission at small frequencies (h� � kT ).
• Mainly due to spontaneous emission at large frequencies (h� � kT ).

Stimulated transitions between energy levels at a transition frequency of 1011 Hz
occur, at room temperature, almost 100 times faster than spontaneous transitions!
Not only the walls of a lecture hall but also the persons in the hall permanently emit
1011-Hz radiation mainly by stimulated emission.
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What is specific about a laser? A thermal system contains radiation with portions
in all spatial directions. Stimulated emission of radiation propagating in a direction
compensates absorption of radiation propagating in exactly the opposite direction.
In a lecture hall, we have permanently stimulated emission due to the interaction of
the thermal radiation with the persons in the hall and with the walls. The situation
is completely different in a laser. Pumping produces an active medium, which is
in a nonequilibrium state. The active medium experiences feedback from radiation
stored in the laser resonator and therefore emits, by stimulated emission, radiation
only in the direction of the stimulating radiation — i.e., the active medium is able
to emit radiation belonging to a single mode only.

6.8 Determination of Einstein Coefficients from Wave
Functions

The stimulated emission of radiation by a two-level atomic system, characterized
by the wave function  1 of the lower level and  2 of the upper level, is determined
(for an electric dipole transition) by the dipole matrix element

�21 D �
Z
 �
2 er 1dV; (6.32)

where dV denotes a volume element. The Einstein coefficient of stimulated
emission is equal to

B21 D 2�2j�21j2
3�0h2

; (6.33)

where the spectral energy density of the field that stimulates the transitions is given
on the frequency scale, � D �.�/. The Einstein coefficient of absorption is

B12 D B21: (6.34)

Quantum mechanics, taking account of the quantization of the electromagnetic field,
shows that spontaneous emission is caused by vacuum fluctuations of the electro-
magnetic field. Theory yields the Einstein coefficient of spontaneous emission

A21 D 16�3�3j�21j2
3�0hc3

: (6.35)

The Einstein relations are satisfied. Quantum theory thus provides a foundation of
the old quantum mechanics.

REFERENCES [1–4, 6, 31–38]
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Problems

6.1. Photon density. Estimate the density of photons in a lecture room, present in
a frequency interval of 1 MHz.

(a) At a microwave frequency of 1 GHz.
(b) At a terahertz frequency of 1 THz.
(c) At a frequency (500 THz) in the visible.

6.2. Number of thermal photons in a laser. Calculate the average number of
thermal photons in a mode of a laser resonator at room temperature, for different
lasers.

(a) Titanium–sapphire laser (frequency 400 THz).
(b) CO2 laser (30 THz).
(c) Far infrared laser (300 THz).

6.3. Einstein coefficients. Determine the Einstein coefficients from spontaneous
lifetimes of lasers mentioned in Table 6.1.

(a) Helium–neon laser; �sp D 100 ns.
(b) CO2 laser; �sp D 5 s.
(c) Nd:YAG laser; �sp D 230�s.

6.4. Einstein coefficient. Relate the Einstein coefficientsB!
21 (for � on the ! scale)

and B�
21 (for � on the � scale).

6.5. Write Planck’s radiation law on the wavelength scale.

6.6. Radiation laws. Derive from Planck’s radiation law other laws.

(a) Wien’s displacement law on the frequency scale; �max.T /.
(b) Wien’s displacement law on the wavelength scale �max.T /.
(c) Rayleigh–Jeans law (h� � kT ).
(d) Wien’s law (h� � kT ).
(d) Stefan–Boltzmann law;

R
�.V /dv D f .T / [Hint:

R
x3.ex � 1/�1dx D �4=15.]

6.7. Maximum of the Planckian distribution.

(a) The spectrum of the cosmic background radiation has a Planck distribution
corresponding to a temperature of 2.7 K. Determine the frequency �max of the
maximum of the distribution on the frequency scale and the wavelength �max

of the maximum of the distribution on the wavelength scale. [Hint: �max ¤
�max=c.]

(b) Determine �max and �max for blackbody radiation emitted by a blackbody at a
temperature of 300 K.

6.8. Determine the number of photons contained in a cavity with walls at tempera-
ture T. [Hint:

R1
0
x2.ex � 1/�1dx D 2:40.]



Chapter 7
Amplification of Coherent Radiation

In the preceding chapter, we discussed the interaction of broadband radiation
with an ensemble of two-level atomic systems. Here, we treat the interaction of
monochromatic radiation with an ensemble of two-level atomic systems. We will
show that the photon density in a disk of light traveling in an active medium
increases exponentially with the traveling path length. The gain coefficient of an
active medium is proportional to the Einstein coefficient of stimulated emission and
to the population difference. We express the gain coefficient as the product of the
gain cross section of a two-level atomic system and the population difference.

The largest gain cross section is obtainable for an active medium with a naturally
broadened 2 ! 1 fluorescence line. Then the gain cross section at the line center is
equal to the square of the wavelength of the radiation divided by 2�; we assume that
the medium is optically isotropic. The broadening of a transition line of an active
medium operated at room temperature is always due to another mechanism (and
not by natural broadening). Therefore, the gain cross section of atoms in an active
medium at room temperature is smaller than the square of the wavelength of the
radiation divided by 2� .

In the case that an active medium is a two-band medium, it is convenient to
introduce an effective gain coefficient. It is related to the difference of the density of
electrons in the upper band and the transparency density.

We compare gain coefficients and gain cross sections of different active media
and discuss, in particular, the gain coefficient of titanium–sapphire.

A two-dimensional active medium can interact with a light beam, which is three-
dimensional, in two ways: it can propagate along the two-dimensional medium or
it can cross the two-dimensional medium. In the case that radiation propagates
along an active medium, it is useful to introduce a modal gain coefficient, which is
related to the average density of two-level atomic systems within a photon mode —
the populations of two-level atomic systems still underly the laws governing the
two-dimensional medium. In the case that radiation crosses an active medium, a
description by use of the gain factor of radiation (rather than a gain coefficient of
the active medium) is more adequate.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 7, © Springer-Verlag Berlin Heidelberg 2012
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7.1 Interaction of Monochromatic Radiation with an
Ensemble of Two-Level Systems

In a laser, monochromatic radiation acts on an ensemble of two-level atomic
systems. Which are, in this case, the rate equations?

We characterize monochromatic radiation (Fig. 7.1) by a spectral energy density
�.�/ that has a constant value within a frequency interval �; � C d� and is zero
outside this interval. The energy density u.�/ of the monochromatic radiation is

u.�/ D �.�/d�: (7.1)

We assume that the spectral width of the monochromatic radiation is small
compared to the linewidth ��0 of the atomic transition,

d� � ��0: (7.2)

If only naturally line broadening is present, then d� � ��nat.
(We treat d� as a small but finite physical quantity; d� appears also as a

differential in differential equations or integrals. The two aspects — to consider d�
as a finite quantity or as a differential — are compatible with each other, see [20].)

We ignore, for the moment, spontaneous emission. Stimulated emission pro-
cesses depopulate the upper level and absorption processes populate it. The temporal
change of the population of the upper level is

dN2=dt D �B21�.�/g.�/d�N2 C B12�.�/g.�/d�N1; (7.3)

where g.�/d� is the portion of the transition probability in the interval �; � C d�
and g.�/ is the lineshape function

Justification: Broadband radiation with a constant spectral density in the fre-
quency region of the spectral line leads to the temporal change of population of the
upper level

dN2
dt

D �B21�.�/N2
1Z

0

g.�0/d�0 C B12�.�/N1

1Z

0

g.�0/d�0: (7.4)

Fig. 7.1 Monochromatic
radiation
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This is, because of
R
gd� D 1, equal to the result of the preceding chapter.

(We assumed that B21 is independent of �.)
We continue the discussion of the interaction of monochromatic radiation with

an ensemble of two-level atomic systems and write, for B12 D B21, the decay rate
in the form

dN2=dt D �B21�.�/g.�/d�.N2 �N1/: (7.5)

It follows, with u D u.�/ D �.�/d�, that the temporal change of the population of
the upper level is given by

dN2=dt D �B21u g.�/.N2 �N1/: (7.6)

The transitions 2 ! 1 dominate (dN2=dt < 0) if N2 � N1 > 0. The change dN2
of the population N2 is associated with a change du of the energy density of the
radiation,

du D � dN2 � h�: (7.7)

Thus, we obtain

du=dt D h�g.�/B21.N2 �N1/ u: (7.8)

We replace the energy density u by the photon density, Z D u=h�, and obtain the
temporal change of the population of the upper level

dN2=dt D � h� g.�/B21.N2 �N1/ Z; (7.9)

and the change of the photon density

dZ

dt
D � d.N2 �N1/

dt
: (7.10)

It follows that

dZ=dt D b21.N2 �N1/Z; (7.11)

where

b21 D h�B21g.�/ (7.12)

is the growth rate constant ( D relative growth rate Z�1dZ=dt per excited two-
level atomic system per unit of volume). The growth rate constant is a measure of
the strength of stimulated emission. The growth rate constant b21.�/ is equal to the
product of the photon energy h�, the Einstein coefficient of stimulated emission, and
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the value of the lineshape function at frequency �. We have the result: the growth
rate (dZ=dt) of the photon density is proportional to the population difference and
to the photon density.

According to the equation

dN2=dt D �b21Z.N2 �N1/; (7.13)

we also can interpret b21 as the decay rate constant of decay of the population N2,
per unit of the photon density.

We replace the population difference by the occupation number difference,
N2 �N1 D .N2 CN1/.f2 � f1/, and write

dN2=dt D �b21.N1 CN2/.f2 � f1/Z: (7.14)

The decay rate of the population of the upper laser level is proportional to the density
N1 C N2 of two-level atomic systems and to the occupation number difference
f2 � f1. The net decay rate of the decay of a single two-level atomic system in
an ensemble of two-level atomic systems is equal to

r21.�/ D �h�B21g.�/.f2 � f1/Z: (7.15)

Alternatively, we can write

r21.h�/ D r21.�/ D �h� NB21g.h�/.f2 � f1/Z; (7.16)

where the lineshape function g is now expressed on the energy scale and where
NB21 D hB21.

7.2 Growth and Gain Coefficient

The temporal change of the photon density is equal to

dZ=dt D �Z; (7.17)

where

� D h�B21g.�/.N2 �N1/ D b21.N2 �N1/ (7.18)

is the growth coefficient of an active medium.
If we suddenly turn on, at time t D 0, the population inversion, then the density

of photons increases exponentially,

Z D Z0e�t : (7.19)

Z0 is the photon density at t D 0.
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Fig. 7.2 Monochromatic
radiation in an active medium

The radiation in a disk of light (thickness ız) propagating in an active medium
(Fig. 7.2) is amplified. On the path from z to zCdz, the change of the photon density
within the disk of thickness ız � dz is

dZ D b21.N2 �N1/Zdt; (7.20)

where

dt D dz=.c=n/ (7.21)

is the time the disk of light takes to travel the distance dz. We can write

dZ D ˛.�/ Z dz; (7.22)

where

˛.�/ D �.�/

c=n
D b21.�/

c=n
.N2 �N1/ D h�

c=n
B21g.�/.N2 �N1/ (7.23)

is the gain coefficient ( D small-signal gain coefficient) of an active medium. The
gain coefficient is proportional to b21 and to the population difference.

(If the energy levels are degenerate, the gain coefficient is given by

˛.�/ D �.�/

c=n
D b21.�/

c=n

�
N2 �N1

g2

g1

�
D h�

c=n
B21g.�/

�
N2 �N1

g2

g1

�
: (7.24)

In the following, we consider two-level systems.)
The photon density increases exponentially with the traveling path length,

Z.z/ D Z.z0/ e˛.�/.z�z0/: (7.25)

If N2 < N1, then ˛.�/ is negative, and we obtain the absorption coefficient

˛abs D �˛ D .n=c/h�B21g.�/.N1 �N2/: (7.26)

In this case, the photon density decreases exponentially according to the Lambert–
Beer law

Z.z/ D Z.z0/e�˛abs.z�z0/: (7.27)
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We continue the discussion of gain. We can replace the population difference by
the product of the occupation number difference and the density of two-level atomic
systems, N2 �N1 D .f2 � f1/.N1 CN2/, and obtain

˛.�/ D .n=c/h�B21g.�/ .N1 CN2/ .f2 � f1/: (7.28)

The gain coefficient is proportional to the density of two-level atomic systems and
to the occupation number difference f2 � f1. We introduce the gain bandwidth��g

as the halfwidth of the gain curve ˛.�/. If B21 is independent of frequency,��g is
determined by the halfwidth of the lineshape function g.�/.

If the lineshape function is given on the energy scale, then

˛.�/ D ˛.h�/ D .n=c/h� NB21g.h�/ .N1 CN2/ .f2 � f1/: (7.29)

If a line has Lorentzian shape, we can write the gain coefficient in the form

˛.�/ D h�

c=n
B21

���0

2
NgL;res.�/ .N2 �N1/; (7.30)

or

˛.�/ D .n=c/h�B21
���0

2
NgL;res.N1 CN2/ .f2 � f1/; (7.31)

where NgL;res is the lineshape function normalized to unity at the line center.
In a light beam propagating through an active medium of length L, the photon

density increases from the value Z0 to the value

Z D Z0e
˛.�/L: (7.32)

The single-path gain factor is equal to

G1.�/ D e˛.�/L: (7.33)

The single-path gain is

Z �Z0
Z0

D u � u0
u0

D G1.�/� 1 D e˛.�/L � 1: (7.34)

If ˛.�/L � 1, then

G1.�/� 1 D ˛.�/L; (7.35)

i.e., the single-path gain G1 � 1 is equal to the product of the gain coefficient and
the length of the active medium.
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7.3 Gain Cross Section

We write the gain coefficient of an active medium (containing two-level atomic
systems) in the form

˛.�/ D N2�21 �N1�12; (7.36)

where �21 is the gain cross section of a two-level atomic system and �12 the
absorption cross section. The cross sections are equal, �12 D �21. It follows that the
gain coefficient of an active medium containing an ensemble of two-level atomic
systems is given by

˛ D .N2 �N1/ �21; (7.37)

where

�21.�/ D b21

c=n
D h�

c=n
B21g.�/: (7.38)

The gain cross section at the frequency � is proportional to �, to the Einstein
coefficient of stimulated emission, and to the value of the lineshape function at the
frequency �.

In the case that a line is naturally broadened, we can use the Einstein relations
and the relation A21 D ��1

sp . We then find

�21.�/ D c2A21

8�n2�2
gnat.�/ D c2

8�n2�2
1

�sp
gnat.�/: (7.39)

The largest gain cross section of an isotropic two-level atomic system in an active
medium is obtainable if the 2 ! 1 line is naturally broadened. Then g.�0/ D 4�sp

and

�nat D �21;nat.�0/ D c2

2�n2�20
D .�=n/2

2�
; (7.40)

where � D c=�0 is the wavelength of the radiation in vacuum, n is the refractive
index of the active medium at the frequency �0 and �0 D .E2 � E1/=h. The gain
cross section of a two-level system with a naturally broadened line increases with
the square of the wavelength (Fig. 7.3, solid line).

We will see later, when we will discuss specific lasers (Chaps. 14–16 and chapters
on semiconductor lasers), that the active media of all lasers operated at room
temperature show 1 ! 2 absorption lines and 2 ! 1 fluorescence lines that are
not broadened by natural broadening, but that other mechanisms dominate the line
broadening. Therefore, the gain cross section of radiation propagating in an active
(isotropic) medium at room temperature is smaller than .�=n/2=2� .
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Fig. 7.3 Gain cross sections

If the gain coefficient curve is a Lorentz resonance curve, we can write

�21.�/ D h�

c=n
B21 gL;res.�/ D 2

���0

h�

c=n
B21 NgL;res: (7.41)

The gain cross section at the center of a Lorentzian gain curve is

�21;L.�0/ D ��nat

��0
�nat.�0/ D ��nat

��0

.�=n/2

2�
: (7.42)

The gain cross section of radiation at the line center of a Lorentzian line is by the
factor��nat=��0 smaller than in case of a naturally broadened line.

The gain cross section of radiation at the center of a Gaussian line is

�21;G.�0/ D ��

��0

p
� ln 2 �nat.�0/ � 1:48

��nat

��0

.�=n/2

2�
: (7.43)

Table 7.1 shows values of gain bandwidths and gain cross sections (and of effec-
tive gain cross sections, see next section and Sect. 18.7). The different halfwidths
are: ��g D gain bandwidth D halfwidth of the gain curve; ��0 D halfwidth of
an absorption line; ��fluor D halfwidth of a fluorescence line, measured on the
frequency scale.

• Helium–neon laser. The gain bandwidth is equal to the 2 ! 1 fluorescence line,
��g D ��fluor D ��0.

• CO2 laser. ��g D ��fluor D ��0.
• Nd:YAG laser. ��g D ��fluor D ��0.
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Table 7.1 Gain bandwidths and gain cross sections

Laser � n ��g ��g=�0 �21 (m2)
[�eff (m2)]

HeNe 633 nm 1 1.5 GHz 3� 10�6 1:4 � 10�16

CO2 10.6 �m 1 69 MHz... 2:5� 10�6... 1:2 � 10�20

500 GHz 1:7� 10�2

Nd:YAG 1.06 �m 1.82 140 GHz 1:4 � 10�4 8:1 � 10�22

TiS (E jj c) 830 nm 1.74 110 THz 0.3 2:3 � 10�23

TiS (E ? c) 8� 10�24

Fiber 1.5 �m 1.5 5 THz... 2.5... 2� 10�25

12 THz 6� 10�2 [6� 10�25]
Semiconductor 840 nm 3.6 10 GHz... 3� 10�5 Œ3� 10�19	

1 THz 3� 10�3

QCL 5 �m 3.4 10 GHz... 2� 10�4... 10�16

1 THz 1:6� 10�2

• Titanium–sapphire laser. The gain bandwidth is very large (Sect. 7.6). In the
table, the crystal anisotropy of Ti3C:Al2O3 is taken into account. An average
gain cross section is �21 D 1

3
.�1 C 2�2/, where �1 is the gain cross section for

E jj c and �2 is the gain cross section for E ? c. The experimental fluorescence
curves indicate that �2 � 3�1 and that therefore �1 �1.8 �21 and �2 �0.6 �21.

• Fiber laser. The gain bandwidth depends on the pump strength (Chap. 18).
• Bipolar semiconductor laser. The gain bandwidth changes if the strength of the

pumping (i.e., the current flowing through the active semiconductor medium)
changes (Chaps. 21 and 22).

• Quantum cascade laser. The gain bandwidth varies if the strength of the pumping
changes. The gain bandwidth of an active medium of a specific quantum cascade
laser can be obtained by a detailed analysis of the properties of the active medium
(Chap. 29).

The gain bandwidths of the different active media differ by five orders of magnitude.
The titanium–sapphire laser has by far the largest gain bandwidth, corresponding to
30% of the center frequency. The gain cross section (see also Fig. 7.3) differs by
nine orders of magnitude. The helium–neon laser and the quantum cascade laser
have large values of the gain cross section. The bipolar semiconductor lasers have
smaller values. CO2 lasers and solid state lasers have still smaller values.

7.4 An Effective Gain Cross Section

We consider a two-band laser with an active medium containing an ensemble of
N0 two-level atomic systems. Without pumping, all levels in the lower band are
occupied and all levels in the upper band are empty (Fig. 7.4a); we assume that
E2;min � E1;max � kT . Pumping leads to a population in the upper band and to
empty levels in the lower band. The population in the upper band and the population
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Fig. 7.4 Two-band laser. (a) Population without pumping. (b) Quasi-thermal distributions of the
populations for N D Ntr. (c) Quasi-thermal distributions of the populations for N > Ntr

in the lower band are in a nonequilibrium relative to each other. At weak pumping,
the populationN2 ( DN ) in the upper band is small and the densityN1 ( DN0�N )
of empty levels in the lower band is also small. Accordingly, the relative occupation
number f2 (at energies near the minimum of the upper band) is small (f2 � 1),
the relative occupation number f1 (at energies near the maximum of the lower
band) is only slightly smaller than unity and absorption of radiation prevails. The
width of the energy distributions of each of the populations is of the order of kT .
With increasing N , f2 increases and f1 decreases until N reaches the transparency
density Ntr, where f2 � f1 D 0 (Fig. 7.4b). The width of the energy distributions
of each of the populations is still of the order of kT . The largest population in
the upper band occurs at energies near the band minimum (energy E2;min) and the
smallest population in the lower band at energies near the band maximum (energy
E1;max). If N > Ntr (i.e., f2 > f1), the medium is a gain medium and the gain
increases with increasing N . The gain bandwidth increases with increasing band
filling and becomes larger than kT at large filling (Fig. 7.4c); then the widths of the
distributions are larger than kT .

The gain coefficient ˛ depends on different parameters: temperature of the active
medium; Einstein coefficient B21; electron density N ; energy distributions of the
levels in the lower and the levels in the upper band. The ˛.�/ curve can have a
complicated shape (Fig. 7.5a). Gain occurs if the maximum ˛max of the ˛.�/ curve
becomes (for N D Ntr) positive. With increasing N , ˛max increases and the gain
bandwidth increases too. Figure 7.5b (solid line) shows ˛max versusN for values of
N around the transparency density. The expansion of ˛max leads to

˛max D �eff � .N �Ntr/; (7.44)

where

�eff D .@˛max=@N/NDNtr (7.45)
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Fig. 7.5 Gain coefficient of a two-band laser medium. (a) Frequency dependence of the gain
coefficient. (b) Dependence of the maximum gain coefficient on the population N in the upper
band

is an effective gain cross section. The effective gain cross section (Fig. 7.5b, dashed)
corresponds to the slope of ˛max.N / near Ntr. The effective gain cross section is the
gain cross section related to the density of two-level systems excited in addition to
the two-level systems that are, at the transparency density, already in the excited
state. We will discuss later (Chaps. 21 and 22) how we can determine the effective
gain cross sections and ˛max as well as gain bandwidths of bipolar semiconductor
lasers; a value of an effective gain cross section is given in Table 7.1.

We will introduce two other effective gain cross sections in connection with the
discussion of the gain coefficient of a doped fiber (Sect. 18.7).

7.5 Gain Coefficients

The gain coefficients of different laser media differ markedly (Table 7.2 and
Fig. 7.6 — they differ by five orders of magnitude. The gain coefficient is small
for the helium–neon laser, it is large for the CO2 laser and for solid-state lasers. It
is very large for the (bipolar) semiconductor laser and the quantum cascade laser.
The gain coefficient of a medium can be obtained by an analysis of the properties
of an active medium or from the study of the laser threshold. The length L0 of an
active medium is about 1 mm or smaller for semiconductor lasers and lies between
several centimeters and about one meter for the other lasers. We can ask whether
it is possible to increase N2 � N1 in order to obtain larger gain coefficients. The
answer is different for the different lasers:

• Helium–neon laser. The excited neon atoms have a large gain cross section.
However, the population differenceN2 �N1 that can be reached is very small.

• CO2 laser. The value of the population difference given in the table is obtained
at a discharge in a gas of 5 mbar pressure. Higher population differences are
obtainable at higher gas pressures (e.g., at a gas pressure of 1 bar in pulsed lasers),
which emit pulses of high power. The gain coefficient ˛ at the line center does
not change with N2 �N1 because of collision broadening (Sects. 14.2 and 14.8).

• Nd:YAG laser. The population difference N2 � N1 increases in case of stronger
pumping. However, it is preferable to make use of stronger pumping to
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Table 7.2 Gain coefficients

Laser � ˛ (m�1) L0 (m) G �21 N2 �N1
(G1) Œ�eff	 ŒN �Ntr	

(m2) (m�3)

HeNe 633 nm 0.014 0.5 1.014 1:4 � 10�16 1014

CO2 10.6 �m 5 0.5 3 1:2 � 10�20 1:5� 1018

Nd:YAG 1.06 �m 20 0.1 50 8:1 � 10�22 1� 1023

TiS Ejjc 830 nm 20 0.1 50 2:3� 10�23 8� 1023

Fiber 1.5 �m 0.7 10 (103/ 6� 10�25 1:2� 1024

Semiconductor 840 nm 1,500 10�3 (4.5) Œ3� 10�19	 Œ6� 1021	

QCL 5 �m 1,000 10�3 2.7 10�16 1019

Fig. 7.6 Gain coefficients of different laser media

increase the laser output power rather than to enhance the population difference
(Chap. 8).

• Titanium–sapphire laser. The population difference cannot increase much fur-
ther, it has already a value near 10% of the density of Ti3C ions (at a doping level
of 1025 m�3). A further increase of N2 �N1 leads to saturation of the pump rate
(Chap. 5).

• Fiber laser. An increase of the population difference (at stronger pumping) by a
factor of 10 is possible; the impurity concentration, N0 D 7 � 1025 m�3, is by
about an order of magnitude larger than for crystals. The transparency density is
Ntr � N0=2.

• Bipolar semiconductor laser. An increase of the population difference N � Ntr

and of ˛ by less than an order of magnitude is possible.
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• Quantum cascade laser. Whether the population difference can be increased
depends on the specific device.

While the gain coefficient curves for gas laser media follow directly from atomic
properties of gases and for solid-state laser media from atomic properties of impurity
ions in solids, the situation is completely different for semiconductor and quantum
cascade laser media: it is possible to choose the center frequency �0 of a gain
coefficient curve through the choice of an appropriate semiconductor material and
an appropriate heterostructure. Designing bipolar semiconductor lasers is possible
for almost all frequencies of radiation in the near UV, the visible, and the near
infrared (150–800 THz). Designing quantum cascade lasers is possible for all
frequencies in the range 11–150 THz or, as cooled quantum cascade lasers operating
at a temperature of 80 K, in the range 1–5 THz.

7.6 Gain Coefficient of Titanium–Sapphire

In the preceding section, we presented gain data of titanium–sapphire. Here, we
show how we can obtain the data. The fluorescence band extends over a large wave-
length range. Therefore, we have to take into account that the Einstein coefficient
of spontaneous emission varies strongly with frequency. We now determine the
spectral distribution S�.�/ on the frequency scale from the spectral distribution
S�.�/ on the wavelength scale, represented in Fig. 5.3 (Sect. 5.3). We use the
relation

S�.�/jd�j D S�.�/jd�j; (7.46)

where d� is a frequency range near the frequency � and d� the corresponding
wavelength range near the wavelength � D c=�. With � D c=� and jd�j D jd�j=�2,
we obtain

S� D 1

jd�=d�j S� D �2

c
S�: (7.47)

S� is proportional to g.�/ and to A21.�/, i.e.,

g.�/ D K1

S�.�/

A21.�/
D K2 �

5 S�: (7.48)

K1 and K2 are constants. Multiplying NS� (Fig 5.3) by �5 and normalizing the
maximum of the lineshape function to 1, we obtain the gain profile Ng.�/ shown in
Fig. 7.7 (solid line). The curve yields the center frequency �0 (� 360 THz) and the
gain bandwidth ��g (�110 THz). The ratio of the gain bandwidth and the center
frequency is about 0.3. The gain coefficient ˛.�/ has a Gaussian-like profile. At
small frequencies (� < �0), the decrease of the Ng.�/ curve is less steep than for
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Fig. 7.7 Gain profile of Ti3C:Al2O3

Fig. 7.8 Absorption and gain coefficients of Ti3C:Al2O3

a Gaussian lineshape (dotted). A Gaussian-like profile, with a deviation from a
Gaussian profile at small frequencies, is consistent with the vibronic character of the
energy levels as we will discuss later (Chap. 17) — the deviation is a consequence
of the anharmonictity of the lattice vibrations of sapphire. We attribute the line
broadening to homogeneous broadening (Sect. 17.3).

Figure 7.8 (upper part) shows the absorption coefficient of Ti3C:Al2O3 and,
furthermore, the gain coefficient of excited Ti3C:Al2O3 in the case that 8% of the
titanium ions (in a crystal containing 1025 Ti3C ions per m3) are in the excited state.
The maximum gain coefficient follows from the relation ˛max D N2�max, where N2
is the density of excited Ti3C ions. We find that the maximum gain cross section is
equal to

�max D a
p
� ln 2

��nat

��0
�nat.�0/ � 1:48a

��nat

��0

.�=n/2

2�
; (7.49)

where ��nat is the natural linewidth, ��0 the gain bandwidth, �nat.�0/ the cross
section corresponding to a naturally broadened line, and n ( D 1.74) the refractive
index of sapphire; the factor

p
� ln 2 takes account of the difference of a Gaussian

and a Lorentzian profile, and the factor a (�2) of crystal anisotropy.
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7.7 Gain Coefficient of a Medium with an Inhomogeneously
Broadened Line

We can decompose an inhomogeneously broadened line, e.g., a Gaussian line, into
homogeneously broadened lines. We introduce:

• �c D center frequency of an inhomogeneous broadened line.
• ginh.�; �c/ lineshape function describing the inhomogeneous broadening.
• �0 D resonance frequency of a particular two-level atomic system; each two-

level atomic system has its own resonance frequency.
• ghom.�; �0/ D lineshape function describing the homogeneous broadening of a

two-level atomic system that has the resonance frequency �0.
• dN d�0

2 D N2ginh.�0; �c/d�0 D density of two-level atomic systems in the upper
laser level that have the resonance frequency in the frequency interval �0; �0 C
d�0.

• dN d�0
1 D N1ginh.�0; �c/d�0 D density of two-level atomic systems in the lower

laser level that have the resonance frequency in the frequency interval �0, �0 C
d�0.

The temporal change of the population difference is given by

d.N2 �N1/=dt D �� Z; (7.50)

and the temporal change of the photon density by

dZ=dt D � Z; (7.51)

where

�.�/ D
1Z

0

h�ghom.� � �0/B21.N2 CN1/.f2 � f1/ginh.�0/d�0 (7.52)

is the growth coefficient. We used the relation N2 �N1 D .N2 CN1/.f2 � f1/.
The gain coefficient is ˛ D .n=c/� . Two-level atomic systems that have different

resonance frequencies �0 contribute to the gain coefficient at frequency �. The
Einstein coefficient B21 can depend on frequency. A special case of (7.52) is the
Voigt profile (Problem 14.12b).

7.8 Gain Characteristic of a Two-Dimensional Medium

There are two possibilities to arrange a two-dimensional active medium in a light
beam. The propagation direction of the light can be parallel to the plane of the
medium or perpendicular. We treat here the first case and the second case in the next
section.
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Fig. 7.9 Two-dimensional
medium in a light beam

We consider the propagation of a parallel light beam that contains a two-
dimensional active medium (Fig. 7.9). The propagation direction of the light is
parallel to the plane of the medium. We introduce the average density of two-level
atomic systems in the light beam,

Nav D N 2D

a2
; (7.53)

where a2 is the extension of the beam perpendicular to the film plane — the height
of the photon mode — andN 2D is the two-dimensional density of two-level systems
in the two-dimensional medium. IfN 2D

2 �N 2D
1 is the popular difference, the average

population difference in the light beam is

.N2 �N1/av D N 2D
2 �N 2D

1

a2
: (7.54)

The average density is independent of the thickness of the two-dimensional active
medium. It follows that the temporal change of the photon density in a disk of light
is equal to

dZ

dt
D b21

N 2D
2 �N 2D

1

a2
Z: (7.55)

Our procedure is justified because it does not matter at which position within the
photon mode the two-level atomic systems are located. As an essential condition,
we assumed that the photons in the light beam belong to a single mode.

The growth coefficient is equal to

� D b21
N 2D
2 �N 2D

1

a2
: (7.56)

Taking into account that b21 D .c=n/�21, we find the gain coefficient

˛ D �21
N 2D
2 �N 2D

1

a2
: (7.57)
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The gain coefficient ˛ is inversely proportional to the extension of the photon mode
perpendicular to the plane of the two-dimensional medium and is called modal gain
coefficient. The single-path gain factor of radiation transversing a medium of length
L is

G1 D e˛L: (7.58)

We introduce the two-dimensional gain characteristic

H 2D.�/ D �21.�/.N
2D
2 �N 2D

1 /; (7.59)

as the product of the gain cross section and the difference of the two-dimensional
populations. The model gain coefficient is given by

˛ D 1

a2
H 2D (7.60)

and the model growth coefficient by

� D n

ca2
H 2D: (7.61)

The two-dimensional gain characteristic completely describes the active medium
while the modal gain coefficient and the growth coefficient depend not only on
the properties of the active medium but also on the extension of the photon mode
perpendicular to the plane of the two-dimensional medium. Thus, a modal gain
coefficient refers to a hypothetical medium: the hypothetical medium has the height
of the photon mode; it contains a homogeneous distribution of two-level systems;
the density of two-level systems in the hypothetical medium is equal to the density
of two-level systems in the two-dimensional medium divided by the height of the
photon mode.

Example: GaAs quantum well in a light beam in a quantum well laser (Chaps.
21 and 22).

7.9 Gain of Light Crossing a Two-Dimensional Medium

In the case that a light beam is crossing a two-dimensional active medium
(Fig. 7.10), it is convenient to make use of the gain factor rather than the gain
coefficient. The average population difference in a disk of light is

.N2 �N1/av D N 2D
2 �N 2D

1

ız
; (7.62)
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Fig. 7.10 Light beam
crossing a two-dimensional
active medium

where ız is the length of the disk. The change of the photon density within the
interaction time ıt D ız=c is

ıZ D N 2D
2 �N 2D

1

ız
b21 Z ıt: (7.63)

It follows that

ıZ

Z
D �21.N

2D
2 �N 2D

1 / (7.64)

and, with G1 � 1 D ıZ=Z, that

G1 � 1 D �21.N
2D
2 �N 2D

1 / D H 2D.�/: (7.65)

The single-path gain G1 � 1 of radiation crossing a two-dimensional medium is
equal to the two-dimensional gain characteristic.

Example: a light beam crossing a GaAs quantum well in a quantum well laser
(Chaps. 21 and 22).

REFERENCES [1–4, 6, 31, 35–37]

Problems

7.1. Amplification of radiation in titanium–sapphire. Given is an active
titanium–sapphire medium with a population differenceN2 �N1 D 1024 m3.

(a) Determine the gain coefficient at the frequency of maximum gain.
(b) Determine the single-path gain factor at the frequency of maximum gain when

the crystal has a length of 10 cm.
(c) Determine the gain coefficient and the single path gain factor of radiation at a

wavelength in vacuum of 1 �m.

7.2. Gain cross section of Ti3C in titanium–sapphire. Compare the gain cross
section of an excited Ti3C ion with the gain cross section of a two-level system
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that has a naturally broadened line at the frequency of maximum gain coefficient of
titanium–sapphire.

7.3. Two-dimensional gain medium. The two-level systems of a two-dimensional
gain medium have a gain cross section �21 D 1:5 � 10�19 m2. The population
difference is equal to N 2D

2 �N 2D
1 D 1016 m�2.

(a) Estimate the modal gain coefficient in the case that radiation propagates along
the active medium and that the mode has a height of 800 nm.

(b) Estimate the gain of radiation traversing the medium.

7.4. Anisotropic media.

(a) We manipulate the two-level atomic systems of an active medium (for example,
by applying a magnetic field, so that the atomic dipoles have an orientation
mainly in one direction (instead of a random orientation); we assume that A21
does not change. Determine B21 and �21 for radiation of different orientations
of the electric field vector of electromagnetic radiation.

(b) We assume that we orient the two-level systems with their dipoles in a plane.
Determine B21 and �21 for radiation polarized either parallel or perpendicular
to the plane.

7.5. Oscillator strength. The classical oscillator model of an atom provides the
classical absorption cross section of an atom, �cl.�/ D e2=.4"0m0C /gL;res.�/,
according to (9.67).

(a) Show that the classical absorption strength is

Scl 

Z
�cl.�/d� D e2

4�0m0c
: (7.66)

(b) Show that the quantum mechanical absorption strength is equal to

S 

Z
�21.�/d� D n

c
h�B21 D c2A21

8�n2�2
D c

8�n2�2�sp
: (7.67)

(c) We introduce the oscillator strength f via the relation

S D Scl � f: (7.68)

Estimate the oscillator strength of the absorption line and of the gain line of
titanium–sapphire.

(d) Show that in case of a narrow line

S D �20
8�n3�sp

; (7.69)
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where �0 D c=�0.

7.6. Fluorescence line and absorption cross section.

(a) Show that we can write, in case of a narrow line caused by transitions in an
ensemble of two-level atomic systems,

1

�sp
D 8�cn2

�40

Z
�12.�/d�; (7.70)

where �0 is the center wavelength, n the refractive index, and �12 the absorption
cross section.

(b) Show that this leads to the relation

�12.�/ D �40
8�n2�sp

S.�/d�
R
S.�/d�

; (7.71)

where S.�/d� is the fluorescence intensity in the wavelength interval d� at
the wavelength � and

R
S.�/d� is the total fluorescence intensity. This relation

is sometimes called Füchtbauer-Ladenburg relation; in the 1920s; Füchtbauer
studied absorption lines [48] and Ladenburg (see Sect. 9.10) fluorescence lines
of atomic gases.

7.7. Gain saturation. We consider a four-level laser medium and take into account
both pumping and relaxation. Instead of (7.13), we write

dN2=dt D r � b21Z.N2 �N1/�N2=�
?
rel; (7.72)

where r is the pump rate (per unit of volume). We assume that �rel � �?rel and
thereforeN1 � N2, and find

N2 D N2;0=.1 � b21�?relZ/: (7.73)

We introduce the intensity I D Zh�. It follows that the large-signal gain
coefficient is

˛I D ˛=.1C I=Is/; (7.74)

where

Is D h�=
�
B21g.�/�

?
rel

�
(7.75)

is the saturation intensity.

(a) Sketch gain curves for I=Is D 0; 1; 10. [Hint: in the case of homogeneous
broadening, the whole line saturates.]

(b) Determine the saturation intensity for Nd:YAG.
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(c) Determine the saturation intensity for titanium–sapphire.

7.8. Saturation of absorption.

(a) Consider an ensemble of two-level atomic systems and show that the large-
signal absorption coefficient is

˛abs;I D ˛abs=.1C I=Is/; (7.76)

where ˛abs D �.n=c/h�B21g.�/.N2 � N1/ is the small-signal absorption
coefficient, I D Zh� the intensity of radiation, and

Is D h�=
�
2B21g.�/�

?
rel

�
(7.77)

the saturation intensity. [Hint: begin with (7.26); take into account that the
total population density Ntot D N2 C N1 is constant; introduce the population
difference �N , with �N D N2 � N1; then derive the differential equation
for d.�N/=dt and look for the steady state solution; because the lower level
remains populated, the saturation intensity is smaller (by a factor two) than
in case of a four-level system with a short lifetime of the lower laser level
(Problem 7.7).]

(b) Determine�N;N2 and N1 for I D Is.
(c) Sketch absorption curves for I=Is D 0; 1; 10.
(d) Why is the saturation intensity in case of saturation of absorption and in case of

gain saturation independent of the populations of the two-level systems?



Chapter 8
A Laser Theory

In this chapter, we present simple laser equations describing the dynamics of laser
oscillation. The equations are coupled differential equations of first order relating
the populations of the laser levels and the photon density.

The laser equations provide the threshold condition, the pump threshold, and
the threshold population difference. The solutions to the equations indicate that, at
steady state oscillation, clamping of the population difference occurs. Pumping with
a pump power exceeding the pump threshold results in generation of laser radiation.
The analysis of the laser equations allows, furthermore, to determine the oscillation
onset time and to calculate the optimum output coupling efficiency of a laser.

During the onset of laser oscillation, the interplay of the active medium with the
field in a laser resonator can lead to oscillations (relaxation oscillations) of both
the density of photons in the resonator and the population difference. We derive
a criterion of the occurrence of relaxation oscillations. The relaxation oscillations
have frequencies in the GHz range.

We perform an estimate of the laser linewidth. It is finite because of the influence
of noise on laser oscillation. Amplification of radiation, which is either due to
spontaneous emission by the active medium or due to thermal radiation in the laser
resonator, is the origin of the finite linewidth of laser radiation.

In the next chapter, we will extend the theory taking into account that the active
medium experiences a change during the onset of laser oscillation.

8.1 Rate Equations

To describe dynamical processes occurring in a laser, we make use of a rate equation
theory; the rate equations correspond to differential equations of first order. We treat
the four-level laser. The theory applies, without modification, also to the three-level
laser (with the pump level coinciding with the upper laser level).

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 8, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 8.1 Four-level laser

In the center of the four-level laser (Fig. 8.1) is a two-level atomic system with
the upper laser level 2 and the lower laser level 1. An ensemble of two-level atomic
systems interacts with the laser radiation by stimulated emission and absorption of
radiation. The upper laser level can relax (relaxation time ��

rel) by transitions to the
lower laser level. Pumping into the pump level (level 3) and fast relaxation leads to
a population of the upper laser level. The population rate r is a measure of the pump
strength. The lower laser level is depopulated by relaxation (relaxation time �rel). We
assume that further processes, like the relaxation 3 ! 1 or 2 ! 0, are negligibly
week.

We describe the dynamics of the four-level laser by the laser equations:

dN2
dt

D r � N2

��
rel

� b21Z.N2 �N1/; (8.1)

dN1
dt

D �N1
�rel

C N2

��
rel

C b21Z.N2 �N1/; (8.2)

dZ

dt
D b21Z.N2 �N1/� Z

�p
: (8.3)

These laser equations take into account the following processes:

• The upper laser level is populated by pumping with the pump rate r . It is
depopulated by relaxation with the relaxation rate N2=��

rel and by the net effect
of stimulated emission and absorption, with the rate b21Z.N2 �N1/.

• The lower laser level is depopulated by relaxation to the ground state with the
rate N1=�rel. It is populated by the relaxation of the upper laser level and the net
effect of stimulated emission and absorption.

• The photon density increases according to the net effect of stimulated 2 ! 1

transitions and the absorption processes, and decreases due to loss of photons in
the resonator.

The three equations are nonlinear differential equations relating N1, N2 and Z. We
list the quantities used for description of the four-level laser:

• N2 D population of the upper laser level D density of two-level atomic systems
in the upper laser level D number density ( D number per m3) of two-level
atomic systems in the upper laser level.

• N1 D population of the lower laser level D density of two-level atomic systems
in the lower laser level.
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• N2 �N1 D population difference.
• N1 CN2 D density of two-level atomic systems.
• ��

rel D lifetime of the upper laser level with respect to 2 ! 1 relaxation.
• �rel D lifetime of the lower laser level with respect to 1 ! 0 relaxation.
• r D pump rate (per unit of volume) D number of two-level atomic systems in

the upper laser level that are excited per m3 and s.
• E21 D E2 � E1 D energy difference of the laser levels D transition energy.
• � D frequency of the laser radiation.

Because of broadening effects, the quantum energy h� of a laser photon must not be
equal to the transition energy E21. We are describing a laser that oscillates on one
mode. We characterize the light in the laser resonator by the quantities:

• Z D photon density ( D number of photons per m3).
• �p D photon lifetime D average lifetime of a photon in the resonator.
• 
 D 
i C 
out ( D 1/�p) D photon loss coefficient of the resonator.
• 
i D internal loss coefficient describing loss of photons within the resonator.
• 
out D loss coefficient describing loss of photons by output coupling of radiation.
• b21.�/ D h�B21g.�/ D growth rate constant.
• �21 D nb21=c D gain cross section.
• n D refractive index of the active medium at the laser frequency.
• c D speed of light in vacuum.

8.2 Steady state oscillation of a laser

At steady state oscillation, the populations and the photon density are independent
of time,

dN2=dt D 0I dN1=dt D 0I dZ=dt D 0: (8.4)

We obtain the three laser equations

r �N2=�
�
rel � b21Z.N2 �N1/ D 0; (8.5)

�N1=�rel CN2=�
�
rel C b21Z.N2 �N1/ D 0; (8.6)

b21Z.N2 �N1/�Z=�p D 0: (8.7)

(In the case that the laser levels are degenerate, we have to replace N2 � N1 by
N2 �N1g2=g1. Population inversion then corresponds to the condition that N2 >
N1g2=g1; g1 D degree of degeneracy of level 1 and g2 D degree of degeneracy of
level 2. In the following, we treat an ensemble of two-level atomic systems, g1 D
g2 D 1.)

At steady state oscillation, the photon density is unequal to zero (Z ¤ 0). We
can eliminate Z from the first two equations and find

N1;1=�rel D r: (8.8)
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The relaxation rate of the lower laser level is equal to the pump rate. This result
is obvious (see Fig. 8.1): at steady state, the pumping compensates the loss of two-
level atomic systems.

Equation (8.7) yields the threshold condition:

.N2 �N1/th D .N2 �N1/1 D 1

b21�p
D 
i C 
out

h�B21g.�/
: (8.9)

.N2 � N1/th is the threshold population difference. The population difference at
steady state oscillation is equal to the threshold population difference,

.N2 �N1/1 D .N2 �N1/th: (8.10)

The population difference is independent of the pump rate and is “clamped” to the
threshold population difference .N2 � N1/th. The population difference is equal to
the reciprocal of the product of the growth rate constant and the lifetime of a photon
in the resonator. The threshold decreases with increasing growth rate constant and
with increasing photon lifetime. The threshold condition is also discussed in the
next section.

We find, with

.N2 �N1/1 D .N2;1 �N1;1/; (8.11)

that

N2;1 D N1:1 C 1

b21�p
: (8.12)

Both N2;1 and N1;1 increase linearly with the pump rate while the difference
experiences clamping.

It follows from (8.5) and (8.6) that the photon density is given by

Z1 D r

�
1 � �rel

��
rel

�
�p � .N2 �N1/1

��
rel

: (8.13)

The photon density at steady state oscillation increases linearly with the pump rate
(Fig. 8.2). The threshold pump rate rth follows from the last equation, for Z1 D 0,

rth D .N2 �N1/1
��

rel.1 � �rel=�
�
rel/
: (8.14)

The threshold pump rate (D pump rate at laser threshold) compensates the loss of
N2 population that is due to 2 ! 1 relaxation processes.

Equation (8.13) shows that the photon density Z1 becomes infinitely large if
�p D 1, i.e., if the lifetime of the photons is not limited by loss of photons by
escape from the resonator or by loss within the resonator.
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Fig. 8.2 Photon density at
steady state oscillation

As already shown, a laser without any loss, 
i D 
out D 0, would contain an
infinitely large number of photons.

We now consider the case that the relaxation time of the lower laser level is small
compared with the relaxation time of the upper laser level, �rel � ��

rel. Then the
threshold pump rate is equal to

rth D .N2 �N1/1
��

rel

D 1

b21�
�
rel�p

D 
i C 
out

b21�
�
rel

(8.15)

and the photon density at steady state oscillation is

Z1 D .r � rth/�p D
�
r

rth
� 1

�
1

b21�
�
rel

: (8.16)

Without output coupling loss (
out D 0) but with internal loss, the threshold
pump rate is equal to

rth;i D 
i

b21�
�
rel

(8.17)

and the photon density is

Z1;i D r


i
� 1

b21�
�
rel

: (8.18)

8.3 Balance Between Production and Loss of Photons

We will express the threshold condition in different ways. All formulations are
equivalent.

The condition of steady state oscillation is the following: the rate of photon
production is equal to the rate of photon loss:

b21.N2 �N1/1Z1 D Z1
�p
: (8.19)

Dividing by Z1, we obtain

1

b21.N2 �N1/1
D �p: (8.20)
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On the left side, we have the time it takes, in the time average, to produce one
photon and on the right side, we have the average lifetime of a photon in the laser
resonator. We can interpret the steady state: during its lifetime in the resonator,
a photon reproduces itself by a stimulated emission process exactly once.

Alternatively, we can write

.N2 �N1/1 D 1

c�p�21
D 1

lp�21
: (8.21)

The threshold population difference is inversely proportional to the product of the
path length lp of a photon in the resonator and of the gain cross section �21. We can
also write

.N2 �N1/1�21lp D 1: (8.22)

This means: On its multiple path through the resonator, a photon induces exactly
one photon by a stimulated emission process. Or, on its multiple path through the
resonator, a photon reproduces itself before it leaves the resonator. Finally, we write

.N2 �N1/1 D 1

�21lp
: (8.23)

By replacing the photon path length lp D 2nL=.� lnV /, we obtain the threshold
population difference

.N2 �N1/1 D � lnV

2nL�21
: (8.24)

The threshold population difference tends to zero if the V factor approaches unity.

8.4 Onset of Laser Oscillation

We assume that we suddenly, at time t D 0, turn on a population difference .N2 �
N1/0. The temporal change of the photon density Z in the laser resonator is, for
small Z, given by the equation

dZ

dt
D b21.N2 �N1/0 � 1

�p
: (8.25)

The solution is

Z.t/ D Z0 e.�0�
/t : (8.26)

Z0 is the photon density at t D 0,

�0 D b21.N2 �N1/0 (8.27)
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is the small-signal growth coefficient and 
 D 1=�p the decay coefficient of the
resonator with respect to the decay of a photon.

To estimate the onset time ton, we now assume that the population difference
remains constant during the buildup of laser oscillation and changes suddenly
to the steady state value .N2 � N1/1. Under this assumption, the density Z of
photons in the resonator increases exponentially until it reaches the steady value
Z1. Accordingly, we find

Z1 D Z0 e.�0�
/ton : (8.28)

It follows that the oscillation onset time is equal to

ton D ln.Z1=Z0/
�0 � 
 : (8.29)

This is the same result as derived earlier (in Sect. 2.9) since the gain factor is G0 D
e�0T and the V factor V D e�
T , where T is the round trip transit time.

According to our description of the buildup of laser oscillation, the photon
density increases exponentially (Fig. 8.3) until it reaches, at the onset time ton,
the steady state value Z1. The population density decreases at the onset time ton

from .N2 �N1/0 to .N2 �N1/1. We will later (Sect. 9.8) show that the population
difference N2 � N1 and the photon density Z are smoothly going over into their
steady state values (dashed curves of Fig. 8.3).

In our discussion of the onset of laser oscillation, we assume that the relaxation
time of the upper laser level is much smaller than the onset time, ��

rel � ton. In this
case, the population N2 reaches a constant value at t D 0, immediately after the

Fig. 8.3 Onset of laser oscillation
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start of the pumping, as indicated in Fig. 8.3. Together with the population N2, the
populationN1 reaches a constant value immediately after the start of pumping too.

The helium–neon laser belongs to the lasers that fulfill the condition of a fast
relaxation in comparison with the oscillation onset time. The relaxation time ��

rel of
many other laser media (for instance, of titanium–sapphire) is much larger than the
oscillation onset time. For lasers with such media, the population and the photon
density show dynamic effects, which we will discuss later (Sects. 8.8 and 9.8).

8.5 Clamping of the Population Difference

The population difference at steady state oscillation is clamped to the threshold
population difference. What does this mean with respect to the occupation number
difference f2 � f1? It follows from the laser equations of the steady state that
the density of two-level atomic systems increases with increasing pump rate
according to

.N1 CN2/1 D 1

b21�p
C 2r�rel: (8.30)

Both N1;1 and N2;1 increase,

N1;1 D r�rel; (8.31)

N2;1 D 1

b21�p
C r�rel: (8.32)

The occupation number difference is given by

.f2 � f1/1 D .N2 �N1/1
.N2 CN1/1

D 1

.N2 CN1/1
� 1

b21�p
: (8.33)

The solid lines of Fig. 8.4 illustrate our result concerning a laser operating above
threshold. With increasing pump rate, the density N2 C N1 of two-level atomic
systems increases and the population difference .N2 � N1/1 remains constant
while the occupation number difference f2 � f1 decreases; below threshold, the
populations N2 and N1 as well as f2 � f1 increase linearly with the pump rate
(dashed lines). In a four-level laser, the occupation number difference f2 � f1
decreases with increasing pump rate. An increaasing pump rate corresponds to an
increasing density of two-level systems in the active medium.

If the lifetime of the lower laser level is very small, �rel � ��
rel, the two-

level atomic systems are mainly in their excited states because the population of
level 1 is small compared to the population of level 2 .N1 � N2/. Then the
population difference is nearly equal to the density of the two-level atomic systems,
N2 �N1 	 N2 CN1. Accordingly, the occupation number difference is near unity,
.f2 � f1/1 � 1.
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Fig. 8.4 Populations and occupation number difference for a four-level laser

We will later find (Chaps. 21 and 22) that for a two-band laser, clamping occurs
for the occupation number difference f2 � f1. The reason is that the density of two-
level systems in a two-band medium is constant and does not depend on the pump
strength.

8.6 Optimum Output Coupling

How can we obtain optimum laser output? We have two limiting cases:

• If we choose an output coupling mirror of reflectivity R D 1, a strong laser field
builds up. The laser, however, does not emit radiation.

• If we choose an output coupling mirror of a reflectivity allowing laser oscillation
to occur just at threshold, then the laser field in the resonator is extremely weak.
The output power of the laser is negligibly small too.

Optimum output corresponds to an intermediate case. We can choose the reflectivity
of the output coupling mirror of a laser and thus the output coupling coefficient 
out

(Fig. 8.5a). We are now looking for the value of 
out that leads to optimum output;
we assume that �res � ��

res. We introduce the photon output coupling rate rout. At
steady state, the output coupling rate ( D number of photons coupled out from the
resonator per m3 and s) is

rout D 
outZ1 D 
out


i C 
out
.r � rth/: (8.34)

The output coupling rate is proportional to the difference of pump rate and threshold
pump rate. We can write

rout D Z1
out D r
out


out C 
i
� 
out

b21�
�
rel

: (8.35)
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Fig. 8.5 Output coupling of radiation. (a) Output coupling coefficient. (b) Output coupling
efficiency for two different pump rates

We define the output coupling efficiency by

�out D rout=r; (8.36)

where r is the pump rate. A straightforward calculation yields

�out D 1

K

.K � 1/
out=
i � 
2out=

2
i

1C 
out=
i
; (8.37)

where the parameter

K D r=rth;i (8.38)

is a measure of the pump rate. By differentiating �out with respect to 
out and
equating to zero, we find that optimum output coupling occurs if

.
out=
i/opt D p
K � 1: (8.39)

The output coupling efficiency depends on the pump rate parameter K (Fig. 8.5b).
At a fixed pump rate (e.g., corresponding toK D 3), the efficiency increases at weak
output coupling (
out < 
i) linearly with 
out, reaches a maximum and decreases to
zero at the threshold value of 
out.

The maximum output coupling efficiency (Fig. 8.6) increases, for K > 1, with
K according to

�out;max D .
p
K � 1/2=K: (8.40)

When a laser is pumped far beyond threshold,
p
K � 1, the optimum efficiency �out

approaches unity. In this case, the pump power is converted into energy of relaxation
and energy of photons in the laser mode; almost all photons are coupled out. The
intrinsic loss of photons (e.g., due to diffraction or due to absorption of radiation
within the laser resonator) becomes negligibly small.

Which is the density Z1 of photons in the laser resonator? Using the relation


outZ1 D rout D �outr; (8.41)
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Fig. 8.6 Dependence of the
maximum output coupling
efficiency on the pump rate
parameter K

Fig. 8.7 Output coupling
efficiency and density of
photons in a laser resonator
(for K D 10)

we obtain, after a simple calculation,

Z�1 D Z1
rth;i=
i

D .K � 1/� 
out=
i

1C 
out=
i
; (8.42)

where the ratio rth;i=
i D .b21�
�
rel/

�1 is a quantity that characterizes a two-level
atomic system and where Z�1 is the photon density in units of this quantity.

Figure 8.7 shows, for K D 10, the output coupling efficiency and the density of
photons in the laser resonator. At optimum output coupling, the number of photons
in the resonator is by far smaller than at weak output coupling. The analysis shows
that optimum output coupling corresponds to a compromise between a high density
of photons in the resonator and a large output coupling efficiency.

The total output coupling rate is rout;tot D routa1a2L, where a1a2 is the cross-
sectional area of the laser mode and L the length of the resonator. The total output
coupling rate corresponds to an output power Pout D rout;toth�.

8.7 Two Laser Equations

We will replace the (8.1) and (8.2) by one equation. By subtraction of (8.2) from
(8.1), we obtain

d

dt
.N2 �N1/ D r C N1

�rel
� 2.N2 �N1/

��
rel

� 2b21Z.N2 �N1/ (8.43)
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and by addition,

d

dt
.N2 CN1/ D r � N1

�rel
D 0: (8.44)

Addition of (8.43) and (8.44) leads to the differential equation

d

dt
.N2 �N1/ D 2r � 2.N2 �N1/

��
rel

� 2b21Z.N2 �N1/: (8.45)

We investigate the case that the population difference is suddenly turned on. At
t D 0, immediately after the production of the population inversion, the photon
density Z is negligibly small. It follows that

.N2 �N1/0 D r��
rel: (8.46)

The population difference .N2 � N1/0 at time t D 0 is equal to the pump rate
multiplied by the lifetime of the upper laser level. By replacing r , we obtain (instead
of originally three equations) two-laser equations:

d

dt
.N2 �N1/ D 2.N2 �N1/0

��
rel

� 2.N2 �N1/
��

rel

� 2b21Z.N2 �N1/; (8.47)

dZ

dt
D b21.N2 �N1/Z � Z

�p
: (8.48)

At steady state, d.N2 �N1/=dt D 0, the population difference is given by

.N2 �N1/1 D .N2 �N1/0

1C b21�
�
rel

Z1 D .N2 �N1/0

1CZ1=Zs
; (8.49)

where

Zs=Z1 D 1

b21�
�
rel

(8.50)

and where Zs is the saturation density. The decrease of the population difference
during onset of laser oscillation corresponds to a decrease of gain (gain saturation).
At the steady state, the large-signal gain coefficient is equal to

˛1 D b21

c=n

.N2 �N1/0
1CZ1=Zs

D ˛0

1CZ1=Zs
; (8.51)

where ˛0 is the small-signal gain coefficient, i.e., the gain coefficient for Z � Zs.
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We relate the initial population, the population at steady state, and the photon
density at steady state. We assume again that �rel � ��

rel. We find, from (8.9), (8.15),
and (8.46), and with c�21 D b021, the relations

.N2 �N1/0
.N2 �N1/1 D r

rth
D 1C c��

rel�21Z1 D 1C ��
relb

0
21Z1: (8.52)

Now, the questions remain howN2�N1 develops in the time region t 	 ton from
the initial value .N2 � N1/0 to .N2 � N1/1, and how the photon density changes
from the exponential increase at t � ton to the constant value Z1. To study the
transition from the initial to the steady state, it is necessary to know more about the
role of the active medium. This question is a topic of the next chapter.

We obtain a connection to the next chapter by considering the energy content
of a laser. A laser contains three forms of energy: energy of excitation of two-level
atomic systems, with the energy density uex D .N2�N1/1.E2�E1/ D h�=c�21�p;
electromagnetic field energy u D �0A

21=4; and polarization energy of density upol.
A goal of the discussion presented in Chap. 9 will be to find out the relations between
the three forms of energy during the buildup of laser oscillation as well as at steady
state — we will find that, at steady state, the polarization energy density is equal to
the field energy density.

8.8 Relaxation Oscillation

A relaxation oscillation can occur during the buildup of a laser oscillation. We
search for an oscillation of the population difference and of the photon density at
time t D ton. We use the ansatz

.N2 �N1/D .N2 �N1/1 CNosc; (8.53)

ZDZ1 CZosc: (8.54)

Nosc 
 .N2 � N1/osc is the oscillating portion of the population difference and
Zosc the oscillating portion of the photon density. We assume, for simplicity, that
Nosc � .N2 �N1/1 and Zosc � Z1. It follows from the laser equations that

dNosc

dt
D � 2

�p
Zosc � 2rb21�pNosc; (8.55)

and

dZosc

dt
D
�
r

rth
� 1

�
Nosc

��
rel

: (8.56)

We neglected the terms with the product NoscZosc and made use of the relations
.N2 � N1/1 D 1=.b21�p/ and Z1 D .r=rth � 1/=.b21�

�
rel/. By differentiating the
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first of the two equations, and using the second equation, we find

d2Nosc

dt
C 2

��
rel

r

rth

dNosc

dt
C 2

�p�
�
rel

�
r

rth
� 1

�
Nosc D 0: (8.57)

This is the equation of a damped harmonic oscillation with the solution

Nosc D Nosc.0/ e.t�ton/=�damp cos .!osc.t � ton// : (8.58)

Nosc.0/ is an initial value of the oscillating portion of the population difference at
time t D ton. The ansatz yields the frequency of the relaxation oscillation

!osc D 1

��
rel

s
2��

rel

�p

�
r

rth
� 1

�
�
�
r

rth

�2
(8.59)

and the damping (relaxation) time

�damp D rth

r
��

rel: (8.60)

A relaxation oscillation occurs if

�
r

rth

�2
�
�
r

rth
� 1

�
2��

rel

�p
: (8.61)

Otherwise, the relaxation oscillation is overdamped, i.e., there is no relaxation
oscillation.

At a pump rate r D 2 � rth, a relaxation oscillation is expected if �p � ��
rel.

This is plausible. An instantaneously large population difference leads to a large
photon density. This causes a strong decrease of the population difference. Since
the photons leave the resonator quickly, the population can build up again and
the process of decrease and enhancement of population repeats until the damping
suppresses relaxation oscillation. If the photons have a long lifetime .�p � ��

rel/, an
instantaneous accumulation of a population difference is not possible and there is
no relaxation oscillation.

A helium–neon laser fulfills the condition �p � ��
rel; it shows no relaxation

oscillation. The photon lifetime of solid-state lasers (including semiconductor
lasers) is shorter than the relaxation time of the upper laser level, which is a
condition of occurrence of relaxation oscillations.

Example. Relaxation oscillation in a bipolar semiconductor laser (Fig. 8.8).

• r=rth D 2; ��
rel D 4 ns; �p D 10�11 s.

• !osc D 7 � 109 Hz; �osc D 1:1GHz; ��1
osc D 0:9 ns.

• �damp D 8 ns.
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Fig. 8.8 Relaxation oscillation

A bipolar semiconductor laser driven by a modulated current emits radiation
pulses. The modulation frequency has to be smaller than the oscillation frequency.
Otherwise, instabilities can occur. We will discuss in Sect. 9.8 how we can calculate
the dynamics of such instabilities.

8.9 Laser Linewidth

Due to noise in the laser resonator, a laser line has a finite spectral width. To estimate
the laser linewidth, we make use of results obtained for a Fabry–Perot resonator
containing an active medium (Sect. 3.7). The power P of radiation emitted by a
Fabry–Perot resonator (containing an active medium) at a frequency � in the vicinity
of a resonance frequency �l is given by

P.�/ D K

.1 � p
G1V /2 C 4

p
G1V sin2Œ2�.� � �l/L=c	

: (8.62)

K is a measure of the maximum power of a particular laser. It follows that the
linewidth (D laser linewidth [FWHM]) is given by

��L D 1 � p
G1V

�
p
G1V

c

2L
: (8.63)

The linewidth is zero if G1V D 1 but finite if G1V is smaller than unity. We
consider the case that G1V is slightly smaller than unity. We can approximate,
with .1 � p

a/.1C p
a/ D 1� a and 1C p

a 	 2, the laser linewidth by

��L D 1 �G1V
2�

c

2L
: (8.64)

We will now show that G1V is slightly smaller than unity because of sponta-
neous emission. We modify the rate equation of the photon density. The change of
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the density of photons during a round trip transit is the sum of the change due to
stimulated and spontaneous emission,

dZ

dt
D GV � 1

T
Z C A21g.�/��1

c3

8��2l a1a2L
N2: (8.65)

The frequency range of spontaneous emission, covered by a mode, is ��1 D
c=2L D 1=T and the probability of spontaneous emission of radiation into one
mode is the inverse of the density of states of photon modes in the resonator volume
a1a2L. The condition of steady state oscillation, dZ=dt D 0, leads to the relation

.1�G1V / Z1 D T b21N2;th
1

a1a2L
(8.66)

or

��L D b21N2;th

2�a1a2LZ1
: (8.67)

We can express the photon density by the power of the laser radiation,

Z1a1a2Lh�
�p

D Pout: (8.68)

It follows, with the resonator linewidth��res D .2��p/
�1, that

��L D h�

Pout
��resb21N2;th: (8.69)

Using the threshold condition that is still approximately valid,

.N2;th �N1;th/ b21 D N2;th
N2;th �N1;th

N2;th
b21 D 1

�p
; (8.70)

we find the Schawlow-Townes formula [39]

��L D 2�h�.��res/
2

Pout

N2;th �N1;th

N2;th
: (8.71)

We define the quality factor QL of the laser radiation as the ratio of the laser
frequency and the halfwidth of the laser line. It follows, with Pout D Ztot � h�=�p,
where Ztot is the total number of photons in the resonator, that

QL D �

��L
D Ztot Qres

N2;th �N1;th

N2;th
D Ztot Qres

f2 � f1
f2

: (8.72)



8.9 Laser Linewidth 133

Qres D �=��res D 2���p is the Q factor of the resonator and �p the lifetime of a
photon in the resonator. The quality factor of the laser radiation is proportional to:
the number of photons in the resonator, to the quality factor of the resonator, and to
the occupation number difference divided by the relative occupation number of the
upper laser level. If f1 � f2, we have .f2 � f1/=f1 D 1. Then the quality factor of
the laser radiation is equal to the product of the number of photons in the resonator
and the quality factor of the resonator,

QL D Ztot Qres: (8.73)

Since we are considering a single mode laser,Z1 is equal to the occupation number
n of the photons in the laser resonator mode. We obtain the simple relationship:

��L D ��res

n
I (8.74)

the halfwidth of the laser line is equal to the halfwidth of the resonance curve of the
laser resonator divided by the occupation number of the mode that is excited in the
laser resonator!

In the case that a laser is started by thermal radiation, i.e., if h� � kT , the
quality factor of the laser radiation is smaller by the factor h�=kT ,

QL D Ztot Qres
h�

kT
: (8.75)

Example: helium–neon laser; � D 5 � 1014 Hz; ��res D 1MHz; Pout D 1mW;
theoretical laser linewidth ��L D 10�3 Hz. A laser linewidth of 0.1 Hz has been
realized by thermal and mechanical stabilization. The experimental laser linewidth
corresponded to a relative frequency width of the laser radiation of��L=� � 10�14.

The frequency width of laser radiation can be very narrow as a consequence of
the feedback an active medium experiences from the radiation in the laser resonator.
Because of thermal and mechanical fluctuations, stabilization of a continuous-wave
laser, in order to use it as a frequency standard, is extremely difficult. Femtosecond
lasers are more suited to develop a frequency standard (Sect. 13.7).

REFERENCES [1–4, 6, 31, 35–37, 39]

Problems

8.1. Threshold condition. Evaluate the threshold condition for a titanium–sapphire
laser operated as cw laser. The data of the laser: Fabry–Perot resonator L D 10 cm,
filled with the active titanium-sapphire crystal (gain cross section �21 D 3 �
10�23 m2; frequency � D 360THz); reflectivity of the output coupling mirror
R D 0:98; cross-sectional area of the laser beam a1a2 D 0:5mm2.
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8.2. Photon density, output power and efficiency. Determine the density of
photons density in the laser resonator and the laser output power of the laser
described in Problem 8.1., for a pump power that is 10 times larger than the threshold
pump power. Evaluate the efficiency of conversion of a pump photon into a laser
photon.

8.3. Oscillation onset time.

(a) Show that the oscillation onset time is always large compared with the period
2�=! of the laser field. [Hint: make use of the data of Table 7.1.]

(b) Estimate the oscillation onset time of the titanium-sapphire laser (described in
Problem 8.1).

8.4. Formulate the threshold condition in the case that the length L0 of the active
medium is smaller than the length of the laser resonator. Is the condition GV D 1

still valid?

8.5. Estimate the laser linewidth of a semiconductor laser of a wavelength of
0.8 �m and an output power of 1 mW; loss factor V1 D 0:3 and volume of the
active medium D 10�13 m3.

8.6. Coherence length. Monochromatic laser radiation consists of radiation of a
line (halfwidth��) at the laser wavelength �.

(a) Determine the coherence length lcoh. [Hint: use as criterion that the number of
wavelengths of radiation at � ���=2 and �C��=2 differs by 1.]

(b) Determine the coherence length of radiation generated by a semiconductor
laser.

(c) Determine lcoh of radiation generated by a highly stabilized helium–neon laser.
(d) Determine the coherence length of the radiation of a hypothetical continuous

wave laser at a frequency of 4�1014 Hz that is stabilized with a relative accuracy
of 10�16.



Chapter 9
Driving a Laser Oscillation

We investigate the role of electric polarization of a laser medium in order to obtain
further insight into dynamical processes occurring in a laser. The reader, who does
not wish to interrupt the description of a laser and its operation, may skip over this
chapter.

We study interaction of a medium with a high frequency field by use of
Maxwell’s equations. We derive five coupled differential equations of second order.
Applying the slowly varying amplitude approximation, we can reduce the equations
to five nonlinear differential equations of first order. The equations relate: population
difference amplitude of the field; phase of the field; amplitude of the polarization;
and phase of the polarization.

We can reduce the five differential equations to three in the case that transverse
relaxation of the polarization is absent and that the three relevant frequencies —
laser frequency, atomic transition frequency and resonance frequency of the laser
resonator — coincide with each other. The three equations relate population
difference, amplitude of the field and amplitude of the polarization. The solutions
yield the temporal development of population difference, amplitude of the field and
amplitude of the polarization during onset of laser oscillation.

We finally derive, in the slowly varying amplitude approximation, the laser
equations in the case that transverse relaxation is present and that the laser frequency
is equal to the resonance frequency of the resonator but differs from the atomic
transition frequency. We obtain five coupled nonlinear differential equations of first
order (Lorenz–Haken equations).

This chapter begins with an introduction of the electric polarization of a medium.
We make use of the classical oscillator model of an atom. We derive a classical
expression for the dielectric susceptibility, which relates the field in a medium and
the polarization of the medium. We determine the classical absorption coefficient
of a medium. Comparing the classical absorption coefficient with the absorption
coefficient derived earlier by quantum mechanical arguments, we obtain a quantum
mechanical expression for the dielectric susceptibility. The susceptibility of an
active medium depends linearly on the population difference. We mention the
Kramers–Kronig relations, which relate real and imaginary part of a physical
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response function — the polarization of a medium is the response to an external
field and the dielectric susceptibility is the corresponding response function.

According to Maxwell’s equations, a laser oscillation can be driven either by a
high frequency electric polarization or by a high frequency electric current.

9.1 Maxwell’s Equations

To describe the response of a medium to an electromagnetic field, we make use of
Maxwell’s equations,

r � H D j C @D

@t
; (9.1)

r � E D �@B
@t
; (9.2)

r � E D 0; (9.3)

r � B D 0: (9.4)

r D .@=@x; @=@y; @=@z/ is the del operator (= Nabla operator), E the electric
field, D the displacement field, j the electric current density of a high frequency
electric current carried by free electrons, H the magnetic field, and B the magnetic
induction. We exclude, with r � E D 0, local charge accumulations. Material
equations provide further relations:

D.E / D �0E C P.E/; (9.5)

j D j .E/; (9.6)

B D �0H ; (9.7)

where �0 D 8:86 � 10�12 A s V�1 m�1 is the electric field constant, �0 D 4� �
10�7 V s A�1 m�1 the magnetic field constant, and �0�0 D c�2. We ignore, using
the relation B D �0H , magnetic effects. The displacement field is the sum of the
high frequency electric field (times �0) and the high frequency polarization P , which
itself depends on the field. The current density depends on the field. The quantities
E , P and j depend on time and location. We can write the first Maxwell equation
in the form

r � H D j C �0
@E

@t
C @P

@t
: (9.8)

We now assume that the response is linear and introduce the dielectric suscepti-
bility Q�, the dielectric constant Q�, and the conductivity Q� by the relations:

P D "0 Q�E ; (9.9)
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D D �0 Q� E ; (9.10)

Q� D 1C Q�; (9.11)

j D Q� E : (9.12)

The function Q� is a linear response function. It characterizes the linear response
of the polarization of a dielectric medium to a high frequency electric field.
Correspondingly, Q� is the linear response function of the dielectric displacement
while Q� is the linear response function of the current density.

The first Maxwell equation describing linear response is given by

r � H D j C �0
@.Q� E/

@t
D Q� E C �0

@Q�
@t

E C �0 Q� @E
@t
: (9.13)

When a medium is in thermal equilibrium, then the time dependent dielectric
constant is zero, @Q�=@t D 0. But it can be unequal to zero, @Q�=@t ¤ 0, for an
active medium — which is always in a nonequilibrium state.

The first Maxwell equation contains the displacement current density

j d D @D

@t
D �0

@E

@t
C @P

@t
; (9.14)

which is the sum of the displacement current density �0@E=@t and the polarization
current density @P=@t . The polarization current density is the portion of the
displacement current density that is due to polarization of a medium.

We assume that high frequency field, polarization, and current are oriented along
x. A field

QE D A ei!t (9.15)

gives rise to a polarization

QP D "0 Q� QE D P1 � i P2 D "0�1A cos!t � i"0 �2A sin!t; (9.16)

with

Q� D �1 � i �2: (9.17)

The real part of the polarization,

P1 D "0�1 A cos!t; (9.18)

has the same phase as the field. The imaginary part - iP2, where

P2 D "0�2 A sin!t (9.19)
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has a phase of 90ı relative to the field. We will see that gain occurs if �2.!/
is negative. Note: throughout the book, we discuss, for convenience, the negative
imaginary part (e.g., �2) of a complex quantity, which characterizes a material
property, rather than the imaginary part (��2) itself.

The polarization is phase shifted relative to the field,

P D "0� A cos Œ!t C '.!/	; (9.20)

where

� D
q
�21 C �22 (9.21)

is the absolute value of the susceptibility and where ' is the phase between
polarization and field. The phase is given by the relation

tan' D �2=�1: (9.22)

We now describe the linear response of a conductive gain medium. A high
frequency field

QE.!/ D A ei!t (9.23)

gives rise to a high frequency current of current density

Qj D Q� QE; (9.24)

where Q� is the complex high frequency conductivity,

Q� D �1 � i �2: (9.25)

The current density

Qj D j1 � i j2 D �1A cos!t � i�2A sin!t (9.26)

has a real part

j1 D �1 A cos!t (9.27)

that has the same phase as the field. We will see that gain occurs if �1.!/ is negative.
The (negative) imaginary part

j2 D �2 A sin!t (9.28)

has a phase of 90ı relative to the field and corresponds to a lossless current. The
current is phase shifted relative to the field,
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j D � A cos Œ!t C '.!/	; (9.29)

where

� D
q
�21 C �22 (9.30)

is the absolute value of the conductivity and where ' now is the phase between
current density and field. The phase is given by the relation

tan' D �2=�1: (9.31)

We can introduce a generalized dielectric constant Q�gen and a generalized
conductivity Q�gen. We write the first Maxwell equation in different ways:

r � H D j C @D

@t
D Q� QE C �0 Q� @E

@t
D . Q� C i!�0 Q�/E D Q�gen E D i!�0 Q�gen E :

(9.32)

We obtain the relation

Q�gen D �gen;1 � i�gen;2 D i !�0 Q�gen (9.33)

or, alternatively,

Q�gen D �gen;1 � i�gen;2 D Q�gen

i!�0
: (9.34)

It follows that

�gen;1 D �1 � �2

!�0
; (9.35)

�gen;2 D �2 C �1

!�0
: (9.36)

This formulation is useful for determination of optical constants and other optical
properties of a medium in thermal equilibrium or of an active medium too. The
complex refractive index n1 � in2 follows from the relation

.n1 � in2/
2 D �gen;1 � i�gen;2: (9.37)

We obtain

n1;2 D
r
1

2



�gen;1 ˙

q
�2gen;1 C �2gen;2

�
: (9.38)
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9.2 Possibilities of Driving a Laser Oscillation

It follows from Maxwell’s equations, with

r � .r � E/ D r � r � E � r2E ; (9.39)

that

@2E

@t2
� 1

�0�0
r2E D � 1

�0

@2P

@t2
� 1

�0

@j

@t
: (9.40)

On the right side, we have two terms, the second derivative of the polarization and
the derivative of the electric current density with respect to time. There are two
possibilities to obtain gain:

• A high frequency polarization can be the origin of gain.
• A high frequency electric current can be the origin of gain.

In the following sections (Sects. 9.3–9.6), we will present a model of a dielectric
medium. The model is suited to study basic properties of lasers (Sects. 9.7 and 9.8).

We will begin with a derivation of the classical susceptibility and the classical
absorption coefficient ˛cl of an ensemble of classical oscillators. A comparison of
the classical absorption coefficient with the quantum mechanical expression for
the absorption coefficient ˛abs (Sect. 7.2) will lead to a procedure that allows us
to change from classical expressions for the susceptibility to quantum mechanical
expressions. The model yields the complex susceptibility of a dielectric medium
consisting of an ensemble of two-level atomic systems.

We will show later (Chaps. 19 and 32) how a high frequency electric current
carried by free electrons can give rise to gain.

9.3 Polarization of an Atomic Medium

We make use of the classical oscillator model to describe the interaction of an atom
with an electromagnetic field. An electric field

E D Re Œ QE	 D 1

2
.Aei!t C c:c:/ D A cos!t (9.41)

excites an oscillator to a forced oscillation described by the equation of motion

d2x

dt2
C ˇ

dx

dt
C !20x D q

m0

E; (9.42)
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where q D �e is the electron charge (e D elementary charge), m0 the electron
mass) and ˇ the damping constant with respect to the energy; the decay constant
with respect to the amplitude is ˇ=2. We write the displacement as a complex
quantity

x D ReŒ Qx	 D 1

2
. Qxei!t C c:c:/; (9.43)

where Qx.!/ is a frequency-dependent complex amplitude of the oscillation. We
assume that the amplitude (envelope) is slowly varying, jd Qx=dt j � !j Qxj (slowly
varying envelope approximation, SVEA), and find, with ˇ D �!0, the solution

Qx D � e

m0

1

!20 � !2 C i!�!0
A: (9.44)

(We can write

Qx D � e

m0

QGL.!/ A; (9.45)

where

QGL.!/ D 1

!20 � !2 C i!�!0
(9.46)

is the complex Lorentz response function in general form; see Sect. 9.9.
In the following, we assume that ˇ � !0, i.e., that �!0 � !0, and we restrict

the frequency! to a range around!0 so that j!�!0j � !0. We obtain from (9.44),
with !20 � !2 D 2!0.!0 � !/, the solution

Qx D � e

2m0!0

1

!0 � ! C i�!0=2
A: (9.47)

An oscillating electron is associated with an oscillating electric dipole moment

Qp D �e Qx: (9.48)

It follows that

d2p

dt2
C ˇ

dp

dt
C !20p D e2

m0

E: (9.49)

The ansatz

p D 1

2
. Qp ei!t C c:c:/; (9.50)
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with the complex amplitude Qp of the dipole moment, leads to

Qp D e2

2m0!0

1

!0 � ! C i�!0=2
A: (9.51)

The dipole moment shows, as the displacement, a resonance at the frequency !0.
A medium consisting of an ensemble of two-level atomic systems of density N

experiences, under the action of an electric field, the electric polarization

P D
NX

iD1
pi ; (9.52)

where pi is the electric dipole moment of the i th two-level atomic system andN the
number of two-level systems per unit of volume. Without a high frequency electric
field, the dipole moments are zero, pi D 0, and there is no polarization. Under
the action of a high frequency field, atomic dipole moments and polarization can
oscillate synchronously to the field.

The differential equation

d2P

dt2
C ˇ

dP

dt
C !20P D Ne2

m0

E; (9.53)

that follows from the equation of motion of a single dipole relates a high frequency
polarization P and a high frequency electric field. The ansatz

P D Re Œ QP 	 D 1

2
. QP ei!t C c:c:/; (9.54)

where QP is the complex amplitude of the polarization, yields

QP D Ne2

2m0!0

1

!0 � ! C i�!0=2
A: (9.55)

The polarization has the same frequency as the electric field. The amplitude is
proportional to the amplitude of the field that produces the polarization. The
polarization has a resonance at !0. We find the electric susceptibility

Q� D Ne2

2�0m0!0

1

!0 � ! C i�!0=2
: (9.56)

The real part and the (negative) imaginary part of the susceptibility are

�1.!/ D Ne2

2�0m0!0

!0 � !
.! � !0/2 C .�!0/2=4

D !0 � !
�!0=2

�2.!/; (9.57)
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�2.!/ D Ne2

2�0m0!0

�!=2

.! � !0/2 C .�!0/2=4
D N�e2

2�0m0!0
gL;res.!/; (9.58)

where gL;res.!/ is the Lorentz resonance function. To obtain the susceptibility on
the frequency scale, we replace gL;res.!/ by (1/2�/gL;res.�/ and !0 by 2��0. We
find

�1.�/ D �0 � �
��0=2

�2.�/; (9.59)

�2.�/ D N
e2

8��0m0�0
gL;res.�/: (9.60)

We assumed in our derivation of the susceptibility that all atomic dipoles have the
same resonance frequency and the same damping constant. This corresponds to
homogeneous line broadening. The damping can be due to emission of radiation
(resulting in natural line broadening) or due to other energy relaxation processes
that lead to a Lorentzian line.

9.4 Quantum Mechanical Expression for the Susceptibility of
an Atomic Medium

We characterize a dielectric medium, which we assume to be optically isotropic, by
the complex displacement field

QD D �0 QE C QP D �0 QE C �0 Q� QE D Q� QE; (9.61)

where Q� D �1 � i�2 is the complex dielectric constant. The real part is �1 D 1C �1
and the (negative) imaginary part is �2 D �2. We obtain the complex refractive index
n1 � in2 from the relation

.n1 � in2/2 D �1 � i�2: (9.62)

The wave vector of a plane wave traveling in z direction is

k D .n1 � in2/
!

c
; (9.63)

where n1 
 n is the refractive index. The complex field of the plane wave is

QE D A ei.!t�kz/ D A e�.n2!=c/z eiŒ!t�.n1!=c/z	: (9.64)

In the vicinity of the center of a narrow Lorentzian line, the imaginary part of the
refractive index is approximately given by n2 	 1

2
�2. At frequencies around the
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resonance frequency !0, the energy density in a wave is

u D u0e
�˛clz; (9.65)

where u0 D 1
2
�0A

2 is the energy density at z D 0 and

˛cl.!/ D �e2N

2�0m0c
gL;res.!/ (9.66)

is the classical absorption coefficient. The absorption coefficient on the frequency
scale is given by

˛cl.�/ D N
e2

4�0m0c
gL;res.�/: (9.67)

We now compare this formula with the quantum mechanical expression (7.23) for
the absorption coefficient, which we derived in Chap. 7,

˛abs.�/ D 1

c
h�B21gL;res.�/.N1 �N2/: (9.68)

The two expressions for ˛cl.�/ and for ˛abs.�/ are in accord with each other if we
replace

Ne2

4�0m0

! .N1 �N2/h�B21 D .N1 �N2/h!B
!
21: (9.69)

We perform the same replacement in the expressions for the susceptibility and
obtain

�1.!/ D !0 � !

�!0=2
�2.!/; (9.70)

�2.!/ D .N1 �N2/
2�

!0
b21.!/; (9.71)

where�!0 is the half width of the atomic transition, and where

b21.!/ D „!0B!
21gL;res.!/: (9.72)

The complex susceptibility Q� D Q�1 � i Q�2 is equal to

Q�.!/ D 2„B!
21.N1 �N2/ 1

!0 � ! C i�!0=2
: (9.73)



9.4 Quantum Mechanical Expression for the Susceptibility of an Atomic Medium 145

The susceptibilities on the frequency scale are given by

�1.�/ D �0 � �
��0=2

�2.�/ D hB21.N1 �N2/ gL;disp.�/; (9.74)

�2.�/ D .N1 �N2/
1

�0
b21.�/ D hB21.N1 �N2/ gL;res.�/; (9.75)

where b21.�/ D h�B21gL;res.�/.
The susceptibilities of a nonactive medium (Fig. 9.1a) indicate that the inter-

action of an electric field with a medium is strongest at resonance, where �2 has
a maximum and �1 is zero. Absorption of radiation is strongest at the transition
frequency !0. In comparison with a nonactive medium, the susceptibilities of an
active medium (Fig. 9.1b) have opposite signs. The gain coefficient of an active
medium will be largest if the frequency of the radiation is equal to the transition
frequency.

We have the important result: the imaginary part of the susceptibility of a medium
that shows a homogeneously broadened transition caused by energy relaxation has
the shape of a Lorentz resonance function while the real part has the shape of a
Lorentz dispersion function.

The replacement of the classical expressions of the susceptibilities by the
quantum mechanical expressions in (9.53) leads to the differential equation

d2P

dt2
C�!0

dP

dt
C !20P D 2

�
�0„!B!

21.N1 �N2/E: (9.76)

P and E are real quantities.
At the center of a resonance line, at the frequency !0, the real part of the

susceptibility is zero. In the vicinity of !0, the real part of the susceptibility is
proportional to the frequency difference,

�1 D 8

�!0
„B!

21.N1 �N2/.!0 � !/: (9.77)

Fig. 9.1 Dielectric susceptibilities (a) of a nonactive medium and (b) of an active medium
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It follows that the refractive index varies with frequency — i.e., the medium
shows dispersion—and that the refractive index is approximately given by

n.!/ D n.!0/C .dn=d!/!0 .!0 � !/: (9.78)

Differentiation of n21 – n22 D 1 C �1 leads to 2n1dn1=d! D �0d�1=d! and, with
n1 D 1, to dn1=d! D 1

2
�0d�1=d!, and to

dn

d!
D � 4

�!20
„B!

21.N1 �N2/; (9.79)

where�!0 is the atomic linewidth.
On the frequency scale, the change of the refractive index is

dn

d�
D 2

���20
hB21.N1 �N2/: (9.80)

The square of the refractive index of a nonabsorbing medium is given by n2 D
n22 D 1C �.

Example. Dispersion of an active medium. We estimate the dispersion of optically
pumped titanium–sapphire .N2 �N1 D 1024 m�3; B!21 D 2� � 1:7 � 1018 m�3 J�1
s�2). In comparison with a Lorentzian line caused by natural broadening, dn=d!
is reduced by a factor �!0=.1:48�!nat/ D 4 � 1010; �!nat D 2:6 � 105 s�1, and
�!0 D 2� � 100THz. It follows that dn=d! D 4 � 10�11 s.

We summarize here the results with respect to the complex susceptibility that
characterizes a resonance line whose shape is determined by energy relaxation. The
complex susceptibility is given by

Q� D a! QGL; (9.81)

where a D 4.N1�N2/„B12 is a measure of the strength of the transition and where

QGL D GL;disp � iGL;res D 1

!20 � !2 C i!�!0
(9.82)

is the (general) complex Lorentz function. At frequencies around a narrow
Lorentzian resonance, the susceptibility is Q� D a0 QgL, where a0 D a=2 and

QgL D gL;disp � igL;res D 1

!0 � ! C i�!0=2
: (9.83)

Many textbooks, for instance [4], treat the theory of classical dispersion (see
preceding section) or present quantum mechanical derivations of the susceptibility;
see, for instance, also [4].
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Fig. 9.2 Polarization and electric field at resonance (a) of an nonactive medium and (b) of an
active medium

9.5 Polarization of an Active Medium

A field E D A cos!t in a medium produces a polarization. In the special case that
the frequency of the field is equal to the resonance frequency of the atomic transition
.! D !0/, we obtain

P D �0�2 sin.!0t/A D .N1 �N2/ b21.!0/ sin.!0t/A: (9.84)

The polarization of a nonactive medium (Fig. 9.2a) is delayed (by �=2 for ! D !0)
with respect to the field that creates the polarization while the polarization of an
active medium (Fig. 9.2b) is advanced (by �=2) with respect to the field.

An external electric field in a nonactive medium delivers energy to an ensemble
of two-level atomic systems. The power transferred to a single two-level system is
equal to

force times path

time
D qE Px D E Pp: (9.85)

The power, averaged over time, a field (frequency ! D !0) delivers to a medium of
polarization P D .N1 �N2/p, is equal to

W D < E
dP

dt
>tD 1

2
�0�2.!0/A

2 D .N1 �N2/��0
!0

b21.!0/A
2: (9.86)

The power is negative,W < 0, if a medium is active: then the polarization delivers
energy to the field. The polarization is maintained by pumping of the active medium.
Thus, the polarization mediates gain of the field. Pump power is converted — via
the polarization — to power of the high frequency field.

If an active medium interacts with radiation at a frequency that is not the
resonance frequency (! ¤ !0), the phase shift between field and polarization is

tan'.!/ D �2.!/=�1.!/ (9.87)

and the power is

W.!/ D W0 sin'; (9.88)
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where

W0 D .N1 �N2/
��0

!0
b21.!0/A

2 (9.89)

is the power delivered by the field for ! D !0. Accordingly, the power transfer is
smaller at frequencies outside the resonance frequency, that is, the gain in a laser
medium is largest for radiation at the resonance frequency.

In an active medium of a laser, after a sudden turning on of the population
difference (at t D 0), the atomic dipole moments oscillate with arbitrary phases
relative to each other and therefore the polarization is zero (Fig. 9.3, left). An
electric field of small amplitude A.t D 0/ produces a weak polarization and this
enhances the field. The amplitude of the field and the amplitude of the polarization
grow together by the mutual interaction of field and polarization until a steady state
oscillation is established (right).

The interplay of the radiation and the atomic dipoles results in the growth of both
the field and the polarization. With increasing field, the atomic dipole oscillations
become more and more synchronized to the field. Accordingly, the polarization
becomes more and more able to deliver energy to the field. The energy necessary
for the buildup of the field originates from the excitation energy of the ensemble of
two-level atomic systems. The initial field that starts oscillation can be due to spon-
taneous emission of radiation by the ensemble of two-level atomic systems (in the
visible, UV and X-ray range) or due to thermal radiation (in the far infrared spectral
region).

At steady state oscillation, synchronization of the field and the polarization is
maintained. Loss of polarization is compensated by pumping. The field synchro-
nizes the atomic dipole oscillations that are produced by the pumping.

A high frequency polarization is characteristic of a large variety of excitations
used in lasers:

• Electronic excitations of atoms, molecules or ions.
• Electronic excitations by interband transitions in bipolar semiconductor lasers.
• Electronic excitations by intersubband transitions in quantum cascade lasers.
• Vibrational excitations of molecules.
• Rotational excitations of molecules.

The origin of electric dipole moments are oscillating charges in electronic and
vibrational excitations and rotating charges in rotational excitations.

Fig. 9.3 Polarization of an active medium in a laser immediately after generation of population
inversion and at steady state oscillation of the laser
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Before we treat the question how the amplitudes of the field and of the polar-
ization build up during the onset of laser oscillation, we introduce the polarization
current.

9.6 Polarization Current

If transverse relaxation is absent, we can introduce the polarization current charac-
terized by the polarization current density

jpol D Nq Px D dP=dt: (9.90)

The polarization current density is equal to the rate of change of the polarization.
By differentiation of (9.53) with respect to time and multiplication of the equation
by Nq, we obtain

d2jpol

dt2
C ˇ

djpol

dt
C !20jpol D Re

�
i!
Ne2

m0

Aei!t

	
: (9.91)

With jpol D ReŒ Qjpol	 and the ansatz

Qjpol D Q�pol QE; (9.92)

we find the complex polarization conductivity

Q�pol D Ne2

2m0

1

!0 � ! C i�!0=2
: (9.93)

We write

Q�pol D �
pol
1 � i�pol

2 : (9.94)

Making use of (9.69), we obtain quantum mechanical expressions for the real and
the imaginary part of the polarization conductivity,

�
pol
1 .!/ D �0!�2.!/ D .N1 �N2/ � 2��0b21.!/; (9.95)

�
pol
2 .!/ D �0!�1.!/ D !0 � !

�!0=2
�1.!/: (9.96)

The polarization conductivities on the frequency scale are

�
pol
1 .�/ D .N1 �N2/ � �0b21.�/; (9.97)
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�
pol
2 .�/ D �0 � �

��0=2
�1.�/: (9.98)

We can also write

�
pol
1 .!/ D 2��0!0B

!
21.N1 �N2/ gL;res.!/; (9.99)

�
pol
2 .!/ D !0 � !

�!0=2
�1.!/ D 2��0!B

!
21.N1 �N2/ gL;disp.!/; (9.100)

or

�
pol
1 .�/ D 2��0�0B21.N1 �N2/ gL;res.�/; (9.101)

�
pol
2 .�/ D �0 � �

��0=2
�1.�/ D 2��0�0B21.N1 �N2/ gL;disp.�/: (9.102)

The real part of the polarization conductivity of a nonactive medium (Fig. 9.4a)
is positive and has a Lorentzian shape. The (negative) imaginary part is positive for
! < !0 and negative for ! > !0. The polarization conductivities are dynamical
conductivities ( D high frequency conductivities). The real part of the polarization
conductivity shows a resonance curve with the maximum at !0. The signs of the
polarization conductivities are reversed in case of an active medium (Fig. 9.4b).

Thus, we find that the real part of the polarization conductivity of a medium with
a homogeneously damped resonance transition has the shape of a Lorentz resonance
function and the imaginary part has the shape of a Lorentz dispersion function.

We consider the special case that ! D !0 and that therefore �2 D 0. With
E D A cos!0t , we obtain

jpol D �
pol
1 .!0/E D .N1 �N2/ � 2��0b21.!0/ cos.!0t/ A: (9.103)

The polarization current in a nonactive medium has the same phase as the field
(Fig. 9.5a) and jpolE is positive at any moment. The field experiences damping.
Power of the field is converted to heat due to relaxation of the polarization. The

Fig. 9.4 Polarization conductivities (a) of a nonactive medium and (b) of an active medium
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Fig. 9.5 Polarization current and field at resonance (a) in a nonactive medium and (b) for an active
medium

polarization current for an active medium has a phase of � relative to the field
(Fig. 9.5b). The product jpolE is negative at any moment. The field is amplified.
Pump power is converted to power of the field. Amplification is mediated by the
polarization current.

An electric field delivers to an oscillating electron the power

power D work

time
D qE Px (9.104)

and to an ensemble of electrons the power jpolE . The time average of the power
transferred from the field to the polarization current is given by

.N1 �N2/�1.!0/A < cos2 !0t >tD .N1 �N2/ � ��0b21.!0/A2: (9.105)

To describe the interaction of a medium with radiation, we will make use of both
the polarization and the polarization current. The polarization is the fundamental
quantity. The use of the polarization current density — in the case that transverse
relaxation can be neglected — has the advantage that we can write some expressions
in a simpler form, particularly in the special case that ! D !0; then the phase
between polarization current and field is either zero or � .

9.7 Laser Oscillation Driven by a Polarization

We now treat the case that the polarization is the origin of gain and that the active
medium is a purely dielectric medium (j D 0). The wave equation has the form

1

c2
@2E

@t2
� r2E D � 1

�0

@2P

@t2
: (9.106)

We assume, for simplicity, that the active medium is optically isotropic and fills a
Fabry-Perot resonator completely. We also assume that the field does not vary over
the cross-sectional area of the resonator. We can write

@2E.z; t/

@t2
� c2

@2E.z; t/

@z2
D � 1

�0

@2P.z; t/

@t2
: (9.107)
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The field in the resonator represents a standing wave

E.z; t/ D E.t/ sin kz: (9.108)

This leads, with k2 D !2res=c
2, where !res is the resonance frequency of the

resonator, to the differential equation

�
d2E

dt2
� !2resE

�
sin kz D � 1

�0

d2P.z; t/

dt2
: (9.109)

The polarization has the same z dependence as the field. Therefore, we can divide
by sin kz, except at the positions where E.z/ D 0. Thus, we obtain, with P.z; t/ D
P.t/ sin kz and P D P.t/, the differential equation:

d2E

dt2
� !2resE D � 1

�0

d2P

dt2
: (9.110)

In our derivation of the wave equation, we did not include damping of the field
that is, for instance, due to output coupling of radiation. We now introduce damping
by use of the differential equation of the empty resonator:

d2E

dt2
C 


dE

dt
C !2resE D 0; (9.111)

where 
 is the loss coefficient of the resonator. We assume that 
 � !res, i.e., that
the field in the empty resonator is given by

E D A0e� 1
2 
t cos!rest: (9.112)

A0 is the amplitude at t D 0. The differential equation describing a field in a Fabry–
Perot resonator containing an active medium is given by

d2E

dt2
C 


dE

dt
C !2resE D � 1

�0

d2P

dt2
: (9.113)

We now assume that transverse relaxation of the polarization is absent and treat
the particular case that all three frequencies — laser frequency, atomic transition
frequency, and resonance frequency of the resonator — coincide with each other,

! D !res D !0: (9.114)

We therefore can replace the second derivative of the polarization by the first
derivative of the polarization current,

d2P

dt2
D djpol

dt
; (9.115)
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and obtain the differential equation

d2E

dt2
C 


dE

dt
C !2E D � 1

�0

djpol

dt
: (9.116)

At a sudden turning on of an initial population difference, the amplitude of the
field is time dependent,

E.t/ D A.t/ cos!t: (9.117)

Immediately after starting the pumping, the polarization current density is

jpol D �neg;0E; (9.118)

where

�neg;0 D ��0b021.N2 �N1/0 (9.119)

is the small-signal polarization conductivity, .N2 � N1/0 is the initial population
difference and

b021 D b21.!0/ D „!0B!
21gres.!0/ (9.120)

is the growth rate constant at the transition frequency !0. It follows that

d2E

dt2
C .��0 C 
/

dE

dt
C !20E D 0; (9.121)

where

�0 D �.!0/ D � 1

�0
�neg;0 D b021.N2 �N1/0 (9.122)

is the growth coefficient of the active medium at !0 and

˛0 D ˛.!0/ D �0

c=n
D � n

c��0
�neg;0 D n

c
b021 .N2 �N1/0 (9.123)

is the gain coefficient at !0. If �0 � !, the solution to (9.121) is given by

E D A0 e
1
2 .�0�
/t cos!t: (9.124)

A0 is the amplitude of the starting field. A very small field, e.g., a field corresponding
to one photon in the resonator mode, can initiate the oscillation. The amplitude of
the field increases exponentially.
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We now investigate the large-signal behavior. We assume that the amplitudeA.t/
is a slowly varying function, i.e., that the envelope of the functionE.t/ varies slowly
(slowly varying envelope approximation). This means: the temporal change of the
amplitude during one period of the oscillation period is negligibly small,

jdA=dt j � !jA.t/j; (9.125)

jd2A=dt2j � !jdA=dt j � !2jA.t/j: (9.126)

Thus, we obtain

dE

dt
D dA

dt
cos!t � !A sin!t; (9.127)

d2E

dt2
D �2! dA

dt
sin!t � !2A cos!t: (9.128)

In the last equation, we omitted the term .d2A=dt2/ cos!t . Making use of the last
two equations, we find from (9.116) the differential equation

�2! dA

dt
sin!t � 
!A sin!t D � 1

�0

djpol

dt
: (9.129)

We neglected the term 
.dA=dt/ cos!t in accordance with the condition
jdA=dt j � !jA.t/j.

We write the polarization current density in the form

jpol D �J.t/ cos!t: (9.130)

J.t/ is the time-dependent amplitude of the polarization current density. This leads
to the differential equation

dA

dt
C 


2
A D 1

2�0
J: (9.131)

This differential equation relates the amplitude of the field and the amplitude of the
polarization current density. From jpol D �

pol
1 E , we find immediately a relation

between the amplitude of the current density and the population difference,

J D �0b
0
21.N2 �N1/A: (9.132)

Another relation is obtained by the use of the energy conservation law: the change
of the population difference by stimulated emission and by relaxation from level
2 to level 1 compensates the power, which the polarization current transfers to the
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field. We assume that the population of the lower level is negligibly small compared
with the population of the upper level. Then we can write

�
d

dt
.N2 �N1/C .N2 �N1/

��
rel

� .N2 �N1/0

��
rel

	
h� D jpolE: (9.133)

Neglecting the rapidly varying term in jpolE and averaging over the temporal and
spatial variation,

< jpolE >t;zD JA < cos2 !t >t < sin2 kz >zD 1

4
JA; (9.134)

we obtain three laser equations

dA

dt
C 


2
A D 1

2�0
J; (9.135)

J D �0b
0
21.N2 �N1/A; (9.136)

d

dt
.N2 �N1/C .N2 �N1/

��
rel

� .N2 �N1/0
��

rel

D � 1

4h�
JA: (9.137)

These relate the amplitude of the field, the amplitude of the current density, and the
population difference.

By eliminating J and N2 � N1 from the two first equations, and from the first
and the third equation, respectively, we obtain

dA

dt
C 


2
A D b021

2
.N2 �N1/A; (9.138)

d

dt
.N2 �N1/C N2 �N1

��
rel

� .N2 �N1/0

��
rel

D � �0

h�
A

dA

dt
� �0


4h�
A2: (9.139)

From the first of these equations, we find

N2 �N1 D 2

b021

1

A

dA

dt
C 


b021
(9.140)

and, by differentiation,

d

dt
.N2 �N1/ D 2

b021

d

dt

�
1

A

dA

dt

�
: (9.141)

By elimination of d.N2�N1/=dt and ofN2�N1 from (9.138), (9.139) and (9.141),
we find
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a
dA

dt
C
�



2
� b021.N2 �N1/0

2

	
AC �0b

0
21�

�
rel


8h�
A3 D 0: (9.142)

The abbreviation

a D 1C �0b
0
21�

�
rel

h�
A2 C 1

A

dA

dt
(9.143)

contains two terms that are small compared to 1, so that we obtain

dA

dt
C 1

2
.��0 C 
/AC �0b

0
21�

�
rel


8h�
A3 D 0: (9.144)

The amplitude A increases at small times exponentially and approaches at large
times the steady state value

A1 D 2

s
.�0 � 
/h�
�0b

0
21�

�
rel


: (9.145)

The differential equation (9.144) has the solution

A.t/ D A1p
1C .A1=A0/2e�.�0�
/t

: (9.146)

A0 D A.t D 0/ is the initial amplitude of the field. According to (9.131), the
amplitude of the polarization current density is

J D �0
AC 2�0
dA

dt
: (9.147)

It follows from (9.138) that the population difference is equal to

N2 �N1 D 1

�0b
0
21

J

A
: (9.148)

Multiplication of the differential (9.144) by 2A leads to

d

dt
.A2/C .��0 C 
/A2 C �0b

0
21�

�
rel


4h�
A4 D 0: (9.149)

Taking into account that the energy density of the field is Zh� D 1
4
�0A

2, we
obtain

dZ

dt
D .�0 � 
/Z � b021�

�
rel
Z

2: (9.150)
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The equation describes the initial exponential increase of Z as well as the transition
to the steady state. The photon density at the steady state is

Z1 D �0 � 


b021�
�
rel


D .r � rth/�p; (9.151)

where �p D 
�1 is the lifetime of a photon in the resonator, rth D .N2�N1/th=�sp is
the threshold pump rate, and r D .N2 � N1/0=�sp is the pump rate. The expression
for t � ton is the same as derived in Sect. 8.4.

The differential (9.150) has, with Z.t D 0/ D Z0 � Z1, the solution

Z.t/ D Z1
1CZ1=Z0 e�.�0�
/t : (9.152)

We define the oscillation onset time as the time where

Z.ton/ D Z1=2 (9.153)

and find a value,

ton D ln.Z1=Z0/
�0 � 
 ; (9.154)

which we derived in Sects. 2.9 and 8.4 by simple arguments.
Figure 9.6 shows the buildup of laser oscillation at a sudden turning on of the

population difference; the numbers concern a helium–neon laser (see next example).
The curves of the figure indicate the following:

• The initial population difference (produced at t D 0) remains almost constant
and decreases near ton smoothly to the steady state value.

• The amplitude of the polarization current increases exponentially, shows a
maximum at the time t D ton, and then decreases to the steady state value.

• The amplitude of the field increases exponentially for t < ton and reaches, for
t > ton, the steady state value.

• The photon density reaches half the steady state value for t D ton.

It follows from the preceding equations that the steady state amplitude of the
polarization current density is equal to

J1 D �0A1=�p (9.155)

and that the energy density of the polarization is

upol D 1

4
J1A1�p D �0

4
A21 D u: (9.156)
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Fig. 9.6 Onset of laser oscillation: population difference; amplitude of the polarization current
density; amplitude of the electric field; and photon density

At steady state oscillation, the polarization energy density is equal to the energy
density of the electric field. During the buildup of laser oscillation, the polarization
energy exceeds the electric field energy; the polarization energy is largest at the
onset time ton.

The ratio of the initial population difference and the steady state population
difference is given by

.N2 �N1/0

.N2 �N1/1
D 1C b021�

�
relZ1: (9.157)

During the buildup of laser oscillation, the polarization conductivity changes from
the small-signal value

�
pol
1;0 D .N2 �N1/0�0b021 (9.158)

to the large-signal value

�
pol
1;1 D .N2 �N1/1�0b021: (9.159)

The ratio of the small-signal and the large-signal polarization conductivities is equal
to the corresponding ratios of the susceptibilities and the gain coefficients,
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�
pol
1;0

�
pol
1;1

D �1;0

�1;1
D ˛0

˛1
D .N2 �N1/0
.N2 �N1/1 D 1C b021�

�
relZ1: (9.160)

Example. Helium–neon laser: output power 3 mW; �.d=2/2L D 10�6 m3;
L D 0.5 m; gain cross section �21 D 1:4�10�16 m2; ��

rel D 100 ns; �p D 1:8�10�7 s.
We find the following values:

• Pout D Z1�.d=2/2 Lh�=�p; Z1 D 1:6 � 1015 m�3.
• Z1 D �0A

21=4 h�; A1 D 1:5 � 104 V m�1.
• .N2 �N1/0=.N2 �N1/1 D 1C c��

rel�21Z1 D 4:1.
• .N2 �N1/1 D .�pb

0
21/

�1 D 1:2 � 1014 m�3; b021 D c�21.

• �
pol
1 =�

pol
1;1 D �1;0=�1;1 D ˛0=˛1 D .G0 � 1/=.G1 � 1/ D 4:1.

• G1 D 1:02; G0 D 1:08.
• J1 D �0A1=�p D 0:68A m�2.
• Z0 D 106 m�3; Z1=Z0 D 1:6 � 109.
• ton D T ln.Z1=Z0/= ln.G0V / D 22 T D 720 ns.

A current density-field curve (Fig. 9.7a) is a straight line with a negative slope
described by the relation

jpol.t/ D �
pol
1 E.t/: (9.161)

Fig. 9.7 Interplay of polarization current and field. (a) A current density-field curve and time-
dependent current and field. (b) Current density-field curves during buildup of laser oscillation
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It follows from the negative slope that jpol.t/ andE.t/ have opposite phases. During
the onset of laser oscillation, the negative polarization conductivity varies with time
(Fig. 9.7b). The variation is very slow, i.e., �pol

1 is nearly constant during a cycle
of the field. The absolute value of the polarization conductivity is large at t D 0

and decreases with increasing amplitude of the field until it reaches its maximum at
t D ton. Then it decreases to the steady state value j�pol

1;1j D �0
.
That �neg changes with time is the consequence of the quantum mechanical origin

of gain: during the buildup of a field, the population difference N2 � N1 decreases
and therefore, the gain cross section �21 decreases.

9.8 Laser Equations

We study the laser oscillation for a more general case (assuming again that the
population difference is suddenly turned on):

• ! ¤ !res ¤ !0; i.e., laser frequency, resonance frequency of the resonator, and
transition frequency have different values.

• The polarization undergoes both longitudinal and transverse relaxation.

Our goal is to find differential equations that relate the field, the polarization, and
the population difference. We make use of the quantities:

• ! D laser frequency.
• !res D resonance frequency of the laser resonator.
• !0 D transition frequency; !0 D .E2 �E1/=„.
• QA D amplitude of the field.
• QB D amplitude of the polarization.
• �N D N2 �N1 D population difference.
• �N0 D .N2 �N1/0 D initial population difference.
• 
=2 D 1=.2�p/; 2=
 D lifetime of the field in the laser resonator.
• T1 D spontaneous lifetime of the population difference D longitudinal

relaxation time.
• T2 D transverse relaxation time.
• �!0=2 D 1=.2T1/C 1=T2; 2=�!0 D relaxation time of the polarization.
• b021 D „!B!

21g.!0/.

The energy conservation law requires: the change of the population times the
quantum energy of a photon is equal to the change of the average energy density
contained in the field and the polarization,

�
d�N

dt
C �N ��N0

T1

�
„! D � < E

dP

dt
>t;zI (9.162)

the average is taken over a temporal and a spatial period of the field. Atomic
excitation energy is converted to field and polarization energy.
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We have seen (Sect. 9.6) that a polarization can drive a laser oscillation. We
now assume that we inject into the resonator of an oscillating laser an external
high frequency electric field E1. The external field acts as an additional source term

1dE1=dt , where 
1 is a coupling constant.

We make use of laser equations of second order, namely of (9.113) with the
additional source term and of (9.76). We then have, together with (9.162), the laser
equations:

d2E

dt2
C 


dE

dt
C !2resE D � 1

�0

d2P

dt2
C 
1

dE1
dt
; (9.163)

d2P

dt2
C�!0

dP

dt
C !20P D � 2

�
�0„!B!

21.N2 �N1/E; (9.164)

�
d�N

dt
C �N ��N0

T1

�
D � 1

„! < E
dP

dt
>t;z : (9.165)

The equations are the semiclassical laser equations (also called neoclassical laser
equations): the atomic states are quantized while the field is treated classically.
The equations are suited to describe the dynamics of a laser oscillator, except
noise.

We make use of the ansatz:

E D 1

2
Œ QA ei!t C c:c:	; E1 D 1

2
Œ QF ei!1t C c:c:	; P D 1

2
Œ QB ei!t C c:c:	:

(9.166)

The slowly varying envelope approximation

ˇ
ˇ
ˇ
ˇ
ˇ
d QA
dt

ˇ
ˇ
ˇ
ˇ
ˇ

� !
ˇ
ˇ QAˇˇ and

ˇ
ˇ
ˇ
ˇ
ˇ
d2 QA
dt2

ˇ
ˇ
ˇ
ˇ
ˇ

� !

ˇ
ˇ
ˇ
ˇ
ˇ
d QA
dt

ˇ
ˇ
ˇ
ˇ
ˇ
; (9.167)

d QB
dt

� !
ˇ
ˇ QBˇˇ and

ˇ
ˇ
ˇ
ˇ
ˇ
d2 QB
dt2

ˇ
ˇ
ˇ
ˇ
ˇ

� !

ˇ
ˇ
ˇ
ˇ
ˇ
d QB
dt

ˇ
ˇ
ˇ
ˇ
ˇ
; (9.168)

and the restriction to frequencies around !0 so that

!2 � !20 D .! C !0/.! � !0/ 	 2!.! � !0/; (9.169)

leads to the laser equations:

d QA
dt

C
h

2

C i.! � !res/
i QA D � i!

2�0
QB C 
1

2
QF ; (9.170)



162 9 Driving a Laser Oscillation

d QB
dt

C
�
�!0

2
C i.! � !0/

	
QB D �0b

0
21�N

QA; (9.171)

d�N

dt
C �N ��N0

T1
D � 1

4„.
QA QB� � QA� QB/: (9.172)

The laser equations are coupled differential equations relating: amplitude of the
field; phase of the field; amplitude of the polarization; phase of the polarization;
and population difference. The equations take into account the dephasing of the
polarization by transverse relaxation.

We introduce amplitudes and phases,

QA.t/ D A.t/ei'.t/; QF .t/ D F.t/ei'1.t/; QP .t/ D ŒC.t/ � iS.t/	ei'.t/; (9.173)

and obtain five laser equations (in slowly varying envelope approximation):

dA

dt
C 


2
A D !

2�0
S C 
1

2
F cos.' � '1/; (9.174)

d'

dt
C ! � !0 D � !

2�0

C

A
� 
1

2

F

A
sin.' � '1/; (9.175)

�
d

dt
C �!0

2

�
C C

�
d'

dt
C ! � !0

�
S D 0; (9.176)

�
d

dt
C �!0

2

�
S �

�
d'

dt
C ! � !0

�
C D � 


2
�NA; (9.177)

d�N

dt
C �N ��N0

T1
D � 1

„AS: (9.178)

These five equations describe dynamical processes in laser oscillators.
Example: Injection locking of a laser. Injection locking (D frequency locking D

phase locking) of a self-excited oscillator means that an external high frequency
field, injected into the resonator of the oscillator, forces the oscillator to assume the
frequency of the external field rather than to execute an oscillation at its “natural”
frequency. At the same time, the field in the resonator has a fixed phase relative to the
external field. Injection of an external field (frequency !1) of a small amplitude can
force a laser (natural frequency !1) to oscillate at !1. The natural frequency is not
necessarily the frequency of maximum gain but is the frequency that is determined
by the corresponding condition (2.80). The small-power laser acts as “seed” laser
( D master oscillator) of the large-power laser (D slave laser) as shown in Fig. 9.8a.
The frequency of the seed laser can be chosen in a range around the frequency of
maximum gain (Fig. 9.8b). The power of the frequency-locked laser is the same
as that of the free running laser. Injection of a monochromatic field results in a
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Fig. 9.8 Injection locking. (a) Seed laser (master oscillator) and laser. (b) Gain curve, free-
running laser, external source, and frequency-locked laser

large occupation number of photons in a mode of frequency !1. Thus, the laser
starts oscillation at frequency !1 rather than at !0. If a laser is already oscillating
at the frequency !L and the seed laser starts, the laser frequency “jumps” to !1.
Injection locking by use of a frequency stabilized small-power laser can result in a
stabilization of the large-power laser with respect to frequency and output power.
The minimum power necessary for phase locking and the locking range can be
derived by use of the five laser equations; a detailed treatment of injection locking
can be found in [1].

Frequency locking of an oscillator is a general phenomenon. Two mechanical
oscillators that are weakly coupled can force themselves to oscillate at a fixed
phase. In 1865, Huygens observed phase locking ( D frequency locking) of two
pendulum clocks fixed at a wall and mechanically coupled via the wall. Injection
locking of an electrical classical self-excited oscillator (Sect. 31.8) is well-known: a
high frequency current flowing through the active element of a self-excited classical
oscillator is superimposed with an external high frequency current. Frequency
locking of a laser oscillator occurs via the influence of the electric field on the
polarization of the active medium according to (9.163).

In the following, we consider the case that an external field is absent and that
the laser frequency is equal to the resonance frequency of the resonator (! D !res)
and, furthermore, that the phase relaxation time is much smaller than the energy
relaxation time. We obtain the equations

d QA
dt

D �
QA

2�p
� i!

2�0
QB; (9.179)
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d QB
dt

D �
QB
T2

C i.! � !0/ QB C �0b
0
21�N

QA; (9.180)

d

dt
�N D � 1

T1
.�N ��N0/� i

4„.
QA QB� � QA� QB/: (9.181)

We introduce dimensionless variables.

• � D t=T2 D dimensionless time.
• Qx D QA=KE D dimensionless amplitude of the field.
• Qy D QB=KP D dimensionless amplitude of the polarization.
• z D .�N0 ��N/=KN; �N0=KN D dimensionless initial population inversion;
�N=K3 D dimensionless population inversion.

With

KE D 1

T2
p
�0B21

; KP D 1

!�pT2

r
�0

B21
; KN D 1

„!T2�pB21 ; (9.182)

b D T2=T1, � D T2=2�p, ı D i.! � !0/T2 and r D !T2�pb
0
21�N0, we find the

Lorenz-Haken equations

d Qx
d�

D �� Qx C � Qy; (9.183)

d Qy
d�

D �.1 � iı/ Qy C r Qx � Qxz; (9.184)

dz

d�
D �bz C ReŒ Qx� Qy	: (9.185)

Edward Lorenz derived the equations to describe the dynamics of a convective
fluid of the atmosphere and Hermann Haken derived the equations to describe laser
dynamics. The equations are the basis of studies of laser dynamics, including chaotic
behavior [41–45].

9.9 Kramers–Kronig Relations

The Kramers–Kronig relations relate the real part of a linar response function and
the imaginary part. If the real part of a linear response function is known for all
frequencies, then the imaginary part can be calculated for all frequencies. And if
the imaginary part of a quantity is known for all frequencies, the real part can
be calculated for all frequencies. The Kramers–Kronig relations for the complex
susceptibility are

�2.!/ D �2!
�

Z 1

0

�1.!
0/

!02 � !2 d!0; (9.186)
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�1.!/ D � 2

�

Z 1

0

!0�2.!0/
!02 � !2 d!0: (9.187)

Example. If a susceptibility has the form of a complex (general) Lorentz function

Q�.!/ D �1 � i�2 D a! QGL.!/; (9.188)

where a is a measure of the strength of the corresponding transition and

QGL.!/ D 1

!20 � !2 C i!�!0

D !20 � !2
.!20 � !2/2 C .!�!0/2

� i
!�!0

.!20 � !2/2 C .!�!0/2
(9.189)

the complex general Lorentz function. An electric field QE D Aei!t causes a
polarization QP D "0.�1�i�2/ QE. The susceptibilities �1 and �2 are related according
to (9.186) and (9.187).

The Kramers–Kronig relations are a consequence of causality. The Dutch
physicists Hendrik A. Kramers [46] and Ralph L. de Kronig [47] derived the
relations independently from each other. The relations are treated in many textbooks
on Solid State Physics and Optics; see, for instance, [59, 177–181, 184, 297].

9.10 Another Remark about the History of the Laser

We come back to the question: why did it take — after the discovery of stimulated
emission by Einstein — 40 years until the maser and the laser were invented? The
laser is an apparatus developed by experimentalists. We have to ask the question
about the development of spectroscopy after stimulated emission became known.
In the time from 1900 to 1930, Berlin was a center of spectroscopy, with two
outstanding spectroscopists: Heinrich Rubens (1865–1922) and Rudolf Ladenburg
(1882–1952). Rubens developed methods suited to study the far infrared spectral
range. His results (1900) with respect to the spectral distribution of radiation
emitted by a thermal radiation source were the basis of the derivation of Planck’s
radiation law. One of Rubens’ PhD students, Marianus Czerny (1896–1985), studied
the (far infrared) rotational spectrum of HCl [49]; he found that the positions of
the absorption lines did not agree with predictions of classical physics. Richard
Tolman (Caltech, Pasadena) analyzed in 1924 [50] Czerny’s data (that he knew
before publication by Czerny) with respect to the strength of absorption, taking
into account thermal populations of energy levels, which had transition energies of
the order of kT . Tolman included in his analysis stimulated emission (then called
“negative absorption).” Tolman discussed in his lectures about quantum mechanics
the three processes described by Einstein. Thus, stimulated emission was known in
the physics community (see [22]).
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Based on the quantum theory of Einstein and making use of the correspondence
principle, Hendrik A. Kramers [51] developed a theory of the refractive index of
gases taking account of stimulated emission. He showed that the refractive index in
the vicinity of a resonance line of an atomic gas is expected to decrease if a portion
of atoms is in the excited state, i.e., if the population difference is reduced. The
effect that is due to stimulated emission was called “negative dispersion.” In 1928,
Rudolf Ladenburg and coworkers [52–56] found experimentally that stimulated
emission resulted in a reduction of the refractive index of excited neon. Making
use of an interferometric technique combined with a spectral analysis, Ladenburg
and coworkers measured the change of refractive index of a gas (neon), contained
in a long tube, that was excited by a gas discharge. The refractive index in
the neighborhood of lines decreased, at strong current, with increasing discharge
current, i.e., with increasing excitation. Thus, Ladenburg and coworkers performed
experimental studies of energy levels of gases in nonequilibrium states. Ladenburg
studied (beginning in 1908) atomic gases by analyzing emission spectra excited by
gas discharges. He emigrate in 1928 to the U.S.A. (becoming professor at Princeton
University).

In Germany, the activities in the field of experimental spectroscopy were strongly
reduced after the stock market crash in 1929 and when Hitler came to power. In the
U.S.A. and other countries, the Great Depression resulted in a reduced investment
in physics. It seems that atomic physics was in principal understood at the end of
the 1920s. During the 1930s and especially after the discovery of nuclear fission,
the field of nuclear physics became most attractive for physicists. Great interest
in spectroscopy (including microwave spectroscopy) began with the discovery of
masers and lasers.

Townes writes in his memoirs [22]: “By the 1950s, then, the idea of getting
amplification by stimulated emission of radiation was already recognized here
and there, but for one reason or another, nobody really saw the idea’s potency or
published it, except for me and the Russians [Basov and Prokhorov], whose work
was then unknown for me.” The essential new idea, beside the idea to make use of
atomic transitions in a system with population inversion, was the idea — introduced
by Townes — to use a resonator in order to realize a self-excited oscillator. The next
step, toward the optical maser (laser), was the idea to use an optical resonator, i.e.,
a resonator without sidewalls.

Was there a chance to invent the laser already in the late 1920s? In his first
paper mentioning negative dispersion [52], Ladenburg reported the formula of the
refractive index of a gas near a resonance line but outside the range of absorption,

n1 � 1 D �50
� � �0

1

16�c
A21

�
g2

g1
N1 �N2

�
; (9.190)

where g1 is the degeneracy of the lower level, g2 the degeneracy of the upper
level, � the wavelength of the radiation and �0 D c=�0. Equation (9.190) follows
from (9.80) if degeneracy of energy levels is taken into account. Ladenburg
wrote (translated from German): “It is one of the most important tasks to detect
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Fig. 9.9 A comparison. (a) Ladenburg’s arrangement used for measurement of negative dispersion
of a neon gas. (b) Helium-neon laser

experimentally Kramers’ negative dispersion, whose theoretical importance is
unquestionable.”

Ladenburg and coworkers used an arrangement [53] shown in Fig. 9.9a. The
optical arrangement consisted of a Jamin interferometer. One arm of the inter-
ferometer contained a tube filled with neon gas (at low pressure) and the other
arm contained an evacuated reference tube. A beam of white light from an arc
discharge lamp was divided into two beams (one traversing the tube with the gas
and the other traversing the empty tube) and then recombined. The recombined
beam passed a diffraction grating and was detected by the use of a photo plate.
The interference pattern on the photo plate contained information on the frequency
dependence of the refractive index. At large current, both the lower and the upper
level of a resonance transition were occupied. The results [54–56] indicated that the
refractive index decreased as predicted by theory. The relative population difference
.N1�N2g1=g2/=N1 was most likely between ten and forty percent. The arrangement
had similarities to that of a helium–neon laser (Fig. 9.9b). The dimension of the
helium tube, the gas pressure and the strength of current were similar. There are
two important differences: the helium–neon laser contains, in addition to neon, also
helium and the gas tube is enclosed between highly reflecting mirrors; additionally,
the gas tube of a laser is closed by Brewster windows. The helium is essential to
obtain a population inversion and the highly reflecting mirrors are necessary to
reach laser threshold. The effect of energy transfer from helium to neon atoms
was not known at Ladenburg’s time and highly reflecting dielectric mirrors were
not available. A helium–neon laser generating visible light was realized in 1962.
If Ladenburg or somebody else would have had the idea of a neon laser, a more
elaborated investigation of gas discharges and of laser mirrors would have been
necessary.

In the 1920s and the beginning 1930s, there was not yet much knowledge
about optical properties of dielectric crystals, of doped dielectric crystals, and of
semiconductors. Therefore, a solid state laser would not have been a reachable goal
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at the time. Research in the field of solid state physics grew strongly between 1920
and 1960 [57].

REFERENCES [5, 12, 13, 22, 40–58, 177–181, 184, 297]

Problems

9.1. Susceptibilities and polarization conductivities. Instead of our ansatz of an
electromagnetic wave, QE D Aei.!t�kz/, we could use the ansatz QE D Aei.kz�!t/.
Show that the imaginary part of the susceptibility changes sign but that the real
field and the real polarization are the same in both cases. Discuss the corresponding
polarization conductivity.

9.2. Linear dispersion.

(a) Determine the linear dispersion dn=d! of titanium–sapphire at a population
differenceN2 �N1 D 1024 m�3.

(b) Determine the shift of the resonance frequencies of a Fabry-Perot resonator
(length 0.5 m) due to optical pumping of a crystal of 1 cm length), i.e., at a
change of the population differenceN2 �N1 D 0 to N2 �N1 D 1024 m�3.

9.3. Nonlinear dispersion of optically pumped titanium-sapphire.

(a) Determine the nonlinear dispersion d2n=dv2 around the center frequency v0.
(b) Determine the nonlinear dispersion in the case that N2 �N1 D 1024 m�3.
(c) How large is the change of the refractive index in the frequency range �0 �

��0=2; �0 and in the range �0; �0 C��0=2?
(d) Determine the shift of the resonance frequencies (due to nonlinear dispersion

of a crystal of 1 cm length) of a Fabry–Perot resonator (length 0.5 m) due to
optical pumping, i.e., at a change of the population differenceN2 �N1 D 0 to
N2 �N1 D 1024 m�3.

9.4. Drude theory. We obtain the Drude theory of the electric transport if we treat
the electrons in a solid as free electrons, i.e., if we set !0 D 0 in (9.42) and introduce
the electron velocity v D dx=dt . Then ˇ�1 D � is the relaxation time of an electron:
an electron (accelerated at time t D 0) by an electric field loses its energy after the
time � .

(a) Derive the high frequency conductivities �1.!/ and �2.!/.
(b) Determine the real part and imaginary of the high frequency mobility Q�.!/;

Qv.!/ D Q�.!/ QE.!/.
(c) Determine the corresponding frequency-dependent susceptibilities and dielec-

tric constants ( D dielectric functions).

9.5. Perfect conductor of high frequency currents. We define a perfect conductor
of high frequency currents as a conductor with free electrons that have an infinitely
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long relaxation time. [A superconductor at temperatures that are small compared to
its superconducting transition temperature Tc can be a perfect conductor of high
frequency currents at frequencies where h� < 2�; 2� is the superconducting
energy gap; Tc D 7K for lead and 90 K for the high temperature superconductor
YBa2Cu3O7.]

(a) Derive the high frequency conductivity of a perfect conductor.
(b) Determine the dielectric function.
(c) Calculate the values of �2 for an ideal conductor that contains free electrons of

a density N D 1028 m3; N D 1025 m3; N D 1022 m3.

9.6. Show that the slowly varying amplitude approximation is valid if the change
of the amplitude within a quarter of the period of a high frequency field is small
compared to the amplitude of a high frequency field.

9.7. Rabi oscillation. An ensemble of two-level atomic systems that interacts with
a strong electric field can show an oscillation of the population inversion and,
synchronously, an oscillation of the polarization. We assume that the frequency of
the field is equal to the atomic resonance frequency and that transverse relaxation
is absent. We furthermore assume that the only relaxation process is spontaneous
emission of radiation but that the spontaneous lifetime T1 is much larger than the
period of the field. We describe the dynamics of the polarization by

d2P

dt2
C�!0

dP

dt
C !20P D 2

�
�0„!0B!

21�NE: (9.191)

An electric field E D A cos!0t causes a polarization P D B sin!0t that is 90
degrees phase shifted relative to the field. We find, in slowly varying amplitude
approximation, the equation

dB

dt
C �!0

2
B.t/ D 1

�
�0„!0B!

21A�N.t/: (9.192)

The time dependence of the population difference is determined by the differential
equation:

d�N.t/

dt
C �N.t/��N0

T1
D 1

2„!0AB.t/I (9.193)

the change of the population difference averaged over a period of the field is AB/2
divided by 2„!.

(a) Show that, under certain conditions, these two equations are equivalent to two
second-order differential equations,

d2B=dt2 C !2RB D 0; (9.194)

d2�N=dt2 C !2R�N D 0; (9.195)
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where

!2R D �0b
0
21=.4„!0/A2 (9.196)

and where !R is the Rabi frequency. The differential equations are approxi-
mately valid if !R � !0. The solutions are

B D B0 cos!Rt; (9.197)

�N D �N0 sin!Rt: (9.198)

The amplitude of the polarization and the population difference oscillate with
the Rabi frequency. The Rabi frequency is proportional to the amplitude of the
electric field.

(b) Calculate the Rabi frequency for a medium with a naturally broadened line, with
T1 D 10�2s. What is the minimum field amplitude necessary for the occurrence
of a Rabi oscillation? (For more information about Rabi oscillations, see, for
instance, [1, 5, 40].)



Part III
Operation of a Laser



Chapter 10
Cavity Resonator

After a basic description of a laser in the first parts of the book, we now are dealing
with the question how we can operate a laser. For this purpose, we will first discuss
laser resonators. In this chapter, we treat the cavity resonator, which is a closed
resonator. In the next chapter, we will study the open resonator.

We solve the wave equation for electromagnetic radiation in a metallic rectangu-
lar cavity and determine the eigenfrequencies and the field distributions of modes
of a cavity resonator. A cavity resonator has a low frequency cutoff. The cutoff
frequency, determined by the geometry of the resonator, corresponds to a resonance
of lowest order. The field of a mode is a standing wave.

Standing waves composed of two waves that propagate in opposite directions
along one of the three axes of a rectangular resonator are forbidden modes. A long
resonator has modes that are composed of waves that propagate nearly parallel to the
long axis. We express the frequency separation of these modes in a simple way by
the use of the Fresnel number; we will later see that Fresnel numbers are important
parameters of the theory of diffraction.

We finally calculate the mode density that corresponds to frequencies, which are
large compared to the cutoff frequency. This leads to the expression of the mode
density we used in connection with the discussion of Planck’s radiation law and the
Einstein coefficients (Sect. 6.7).

10.1 Cavity Resonators in Various Areas

Max Planck used the model of a cavity resonator (D “hohlraum” resonator) to derive
the radiation law.

Microwave oscillators (Chap. 31) and far infrared semiconductor lasers
(Chap. 29) make use of cavity resonators.

High-Q microwave cavities that are able to store electromagnetic fields of large
amplitude are suited to accelerate particles in accelerators.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 10, © Springer-Verlag Berlin Heidelberg 2012
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10.2 Modes of a Cavity Resonator

We discuss properties of a rectangular metallic cavity resonator (Fig. 10.1). All walls
are metallic. We assume that the walls are ideal conductors, i.e., that reflection of
radiation at the walls occurs without absorption loss. The extensions of the cavity
resonator are: a1 D width (along x axis); a2 D height (along y); L D length
(along z). Coupling of radiation into a resonator is possible, for instance, by means
of a hole in one of the walls. We treat the interior of the resonator as a vacuum space,
ignoring the effect of air (or of another medium).

To describe the electromagnetic field in the resonator, we make use of Maxwell’s
equations

r � H D @D=@t; (10.1)

r � E D �@B=@t; (10.2)

r � E D 0; (10.3)

r � B D 0: (10.4)

E is the electric field, B the magnetic induction, H the magnetic field, D the
dielectric displacement, �0 the electric field constant and �0 the magnetic field
constant. A field in vacuum is characterized by

�0H D B; (10.5)

D D �0E : (10.6)

The boundary conditions for electromagnetic fields require continuity of the
tangential component Et of the electric field at a boundary and continuity of the
normal componentHn of the H field. The tangential component of the electric field
is zero everywhere on the walls of an ideal conductor,

Et.wall/ D 0: (10.7)

Forming r �.r � E C @B=@t/ D 0, and with r �.r �E/ D r �r �E �r2E ,
we obtain the wave equation

Fig. 10.1 Rectangular cavity resonator
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r2E � 1

�0�0

@2E

@t2
D 0: (10.8)

This corresponds to three equations for the field componentsEx , Ey , and Ez:

�
@2

@x2
C @2

@y2
C @2

@z2

�
Ex � 1

c2
@2Ex

@t2
D 0; (10.9)

�
@2

@x2
C @2

@y2
C @2

@z2

�
Ey � 1

c2
@2Ey

@t2
D 0; (10.10)

�
@2

@x2
C @2

@y2
C @2

@z2

�
Ez � 1

c2
@2Ez

@t2
D 0; (10.11)

where c D 1=
p
�0�0 is the speed of light in vacuum. The ansatz

Ex D f .x/ g.y/ h.z/ cos!t; (10.12)

leads to the equation

1

f

@2f

@x2
C 1

g

@2g

@y2
C 1

h

@2h

@z2
C !2

c2
D 0: (10.13)

By separation of the variables,

f �1@2f=@x2 D k2x; (10.14)

g�1@2g=@y2 D k2y; (10.15)

h�1@2h=@z2 D k2z ; (10.16)

we obtain
! D c

q
k2x C k2y C k2z : (10.17)

The solutions concerning the field components, the wave vector and the fre-
quency are given by the following equations:

Ex.r; t/ D Ax coskxx sin kyy sin kzz cos!t; (10.18)

Ey.r; t/ D Ay sin kxx cos kyy sin kzz cos!t; (10.19)

Ez.r; t/ D Az sin kxx sin kyy coskzz cos!t; (10.20)

k D kmnl D
�
m
�

a1
; n

�

a2
; l
�

L

�
; (10.21)

! D !mnl D c

s�
m
�

a1

�2
C
�
n
�

a2

�2
C


l
�

L

�2
: (10.22)
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Ax , Ay , and Az are the amplitudes of the three field components, r D .x; y; z/ is
a location, m, n and l are integers. With the exception that at least two of the three
numbers are nonzero, these can have the values

m D 0; 1; 2:::I n D 0; 1; 2:::I l D 0; 1; 2; ::: :

We thus obtained the modes of a resonator. A mode is characterized by the number
triple mnl and a discrete eigenfrequency!mnl. The electric field fulfills the condition
of transversality, r � E D 0, or

k � E D 0 (10.23)

corresponding to
kxAx C kyAy C kzAz D 0: (10.24)

The 101 mode has the frequency

�101 D c

2

s
1

a21
C 1

L2
: (10.25)

The electric field of the 101 mode is

Ey D Ay sin
�x

a1
sin

�z

L
cos!t: (10.26)

The field (Fig. 10.2a) is oriented along the y axis. The field strength has the largest
value in the center of the cavity.

The 011 mode has the frequency

Fig. 10.2 Modes of a cavity resonator. (a) Field lines of the 101 mode at a fixed time.
(b) Frequency distribution
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�011 D c

2

s
1

a22
C 1

L2
: (10.27)

The field of the 011 mode is oriented along x. In the case that a1 D a2, the 011 mode
is degenerate with the 101 mode, i.e., the modes have the same frequency but differ-
ent field patterns. Microwave cavities often have a side ratio close to a2=a1 D 1=2.

The frequency distribution of the modes (Fig. 10.2b) shows that there is a forbid-
den frequency range between � D 0 and �101 (for a2 < a1). The lowest frequency is
the cutoff frequency of the resonator. The corresponding cutoff wavelength (of free-
space radiation) is � D c=�101. The cutoff wavelength of a cubic cavity resonator is
� D a

p
2.

Example. a1 D 1 cm, a2 D 0:5 cm, L D 1 cm; �101 D !101=2� D
.c=2/

q
a�2
1 C L�2 � 21:2GHz. The corresponding free-space wavelength of

the radiation is about 1.42 cm.

The solutions (10.18) through (10.20) describe standing waves. As an example,
we consider a n0l mode

Ey D Ay sin kxx sin kzz cos!t: (10.28)

We can consider the field as composed of two waves propagating in Cz and �z
direction,

Ey D 1

2
Ay sin.kxx/



cos



!t � kzz � �

2

�
C cos



!t C kzz C �

2

��
: (10.29)

The two waves have the same amplitude, but the amplitude varies along the x
direction. Alternatively, we can describe the n0l wave as composed of two waves
propagating in x and �x direction,

Ey D 1

2
Ay sin.kzz/



cos



!t � kxx � �

2

�
C cos



!t C kxx C �

2

��
: (10.30)

In this description, the amplitude varies along the z direction.
In conclusion, the phase of the field of a standing wave in a rectangular cavity

resonator varies along either two or three axes of the resonator.

10.3 Modes of a Long Cavity Resonator

We study modes corresponding to wave vectors that have small angles with respect
to the axis of a long resonator (L � a, with a1 D a2 D a). The modes fulfill the
conditions:

m

a
� l

L
I kx � kz; (10.31)
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n

a
� l

L
I ky � kz:

The frequency of a mode is

�mnl D c

2

l

L

�
1C m2 C n2

l2
L2

a2

�1=2
: (10.32)

A Taylor expansion yields

�mnl 	 c

2L

�
l Cm2 L

2

2la2
C n2

L2

2la2

�
: (10.33)

The frequency distance of the modes with high order in l and low order in m and n
(Fig. 10.3) is equal to

��m D �l;mC1;n � �l;m;n D c

2L

�
mC 1

2

�
L2

la2
: (10.34)

A simple calculation yields

��m D ��l
mC 1

2

F
; (10.35)

where��l D c=2L is the frequency distance between neighboring 00l modes (that
are forbidden modes) at the frequencies �l D l � c=.2L/ and where

F D .a=2/2

L�
(10.36)

is the Fresnel number. If F D 1, the frequency separation between the 0nl mode
and the 1nl mode is ��mD0 D ��l=2. If F � 1, the frequency distance,
��mD0 D ��l=.2F /, is small compared to ��l . The Fresnel number combines

Fig. 10.3 Frequency spectrum of modes of a long resonator
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geometric quantities (the area of the reflectors and the distance L between the
reflectors) and the wavelength of the radiation; see also Sect. 10.5.

10.4 Density of Modes of a Cavity Resonator

The k vectors of the modes of a cavity resonator have discrete values. In k space
(Fig. 10.4), the k values are

k D
�
m
�

a1
; n

�

a2
; l
�

L

�
; (10.37)

where m, n and l are integers. The numbers are positive, the k vectors lie in one
quadrant of the k space. There is one allowed k point in the k-space volume

V1 D �

a1
� �

a2
� �

L
: (10.38)

A spherical shell of radius k and thickness dk has the k-space volume

V D 1

8
� 4�k2dk: (10.39)

At large k, the number of k values in the interval k,k C dk is equal to

ND.k/dk D V

V1
D a1a2L

2�2
k2dk: (10.40)

The density of modes in k space, i.e., the density of allowed k values, is equal to

ND.k/ D a1a2L

2�2
k2: (10.41)

It follows from the dispersion relation of light (Fig. 10.5a),

Fig. 10.4 Modes in k space
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Fig. 10.5 Electromagnetic waves in a cavity of large volume. (a) Dispersion relation. (b) Mode
density

� D c

2�
k; (10.42)

that the frequency interval

d� D c

2�
dk; (10.43)

contains as many modes as the corresponding interval dk. Taking into account that
there are two waves of different polarization for each k vector, we obtain

ND.�/d� D 2 ND.k/dk (10.44)

or

ND.�/ D 2 ND.k/
d�=dk

: (10.45)

This leads to the mode density on the frequency scale (D number of modes per unit
of frequency),

ND.�/ D a1a2L
8��2

c3
: (10.46)

We have, for frequencies large compared to the cutoff frequency, i.e., for a resonator
that has extensions large compared to the wavelength of the radiation, the result: the
density of the modes of a cavity resonator increases proportionally to the square
of the frequency (Fig. 10.5b). It also increases proportionally to the volume of the
cavity. The mode density per unit of volume is given by

D.�/ D 1

a1a2L
ND.�/ D 8��2

c3
: (10.47)

Accordingly,D.�/d� is the number of modes (per unit of volume) in the frequency
interval �,� C d�.

The density of modes of a cavity resonator containing an optically isotropic
medium (refractive index n) is equal to

D.�/ D 8��2

.c=n/3
: (10.48)
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Due to the smaller wavelength, i.e., the larger wave vector of radiation of frequency
�, the density of modes of a cavity containing a dielectric medium with the refractive
index n is by the factor n3 larger than the density of modes of the cavity without a
medium.

The density of modes (per unit of volume) in free space is the same as the density
of modes (per unit of volume) in a cavity resonator (Problem 10.7).

10.5 Fresnel Number

The Fresnel number (Sect. 10.3)

F D a2

4�L
D a=2

�
� a=2

L
(10.49)

is a combination of resonator extensions (width a, height a, length L) and wave-
length �. The Fresnel number is dimensionless. Many properties of optic apparatus
of different size depend solely on F ; the Fresnel number plays an important role in
the characterization of diffraction occurring in laser resonators (Sect. 11.8).

We introduce the Fresnel number in a different way. We consider (Fig. 10.6) the
widening of a light beam by diffraction at an iris diaphragm (diameter a). The angle
of diffraction is approximately given by

� 	 �

a
: (10.50)

A mirror (also of diameter a) at distance L from the iris reflects a portion of the
radiation. The Fresnel number is

F D intensity of the reflected light

intensity of the unreflected light

D �a2=4

�.a=2C L�/2 � �a2=4 D a2=4

a2=4C aL� � a2=4 D a2

4�L
: (10.51)

Fig. 10.6 Fresnel number
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The mirror reflects half of the light if F D 1 and most of the light if F � 1. The
intensity of the reflected beam is

Ir D I0
F

1C F
; (10.52)

where I0 is the intensity of the incident beam.

10.6 TE Waves and TM Waves

We choose the z axis of a rectangular cavity resonator as a preferred axis. Then we
can divide the waves, with respect to the z axis, in TE and TM waves:

• TE wave (D transverse electric wave). The electric field is transverse to z. The
magnetic field has a z component as well as an x or a y component. Or it has z; x
and y components. (A TE wave is also called H wave or magnetic wave.)

• TM wave (D transverse magnetic wave). The magnetic field is transverse to z.
The electric field has a z component and an x or a y component. Or it has z; x
and y components. (A TM wave is also called E wave or electric wave.)

To calculate the fields of different modes, we have to take into account that
the boundary conditions for electromagnetic fields at the boundary of a perfect
conductor are Et.wall/ D 0 and Hn.wall/ D 0. It turns out that a mode of a
rectangular cavity resonator is either a TE mode or a TM mode; i.e., if a mode
is excited, the corresponding wave is a TE wave or a TM wave. (For calculations of
amplitudes of electric and magnetic fields, see Problems.)

Example. (Fig. 10.7). The magnetic field of the 101 mode can be calculated by use
of (10.2) and (10.5). We obtain (with Ay D E0):

Ey D E0 sin
�x

a2
sin

�z

L
cos!t; (10.53)

Hx D
r
�0

�0

�

2L
E0 sin

�x

a2
cos

�z

L
sin!t; (10.54)

Fig. 10.7 Rectangular cavity resonator: electric field lines (solid) and magnetic field lines
(dashed)
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Hz D
r
�0

�0

�

a2
E0 cos

�x

a2
sin

�z

L
sin!t; (10.55)

where � D c=� D 2�c=! is the free-space wavelength; the parameter
p
�0=�0 D

377� is the impedance of free space. The 101 mode is a TE mode, which we can
denote as TE101 mode.

10.7 Quasioptical Arrangement

Microwave radiation generated by a microwave oscillator (Chap. 31) can be guided
by means of waveguides. Emission of radiation into free space is possible by the
use of an antenna. An antenna mediates the excitation of a wave in free space. A
free-space wave excited by an antenna consists of a mixture of radiation belonging
to different modes of free space. The strongest portion of radiation can belong to
the fundamental (Gaussian) mode (next chapter). However, radiation belonging to
other modes (corresponding to a power of radiation of the order of 1%) cannot be
avoided. Vice versa, it is not possible to convert radiation belonging to a single mode
of the free space to radiation of a single mode of a waveguide. The combination of
microwave and optical techniques leads to quasioptical arrangements [63].

REFERENCES [59–63]

Problems

10.1. Modes of a cubic cavity. Determine the frequencies of the four modes of
lowest frequencies for a cubic cavity resonator (side length a D 1 cm).

10.2. Degeneracy of modes of a rectangular cavity resonator.

(a) Determine the degree of degeneracy of the 011, 110 and 101 modes if
a1 D a2 D L.

(b) Determine the degree of degeneracy of the 011, 110 and 101 modes if
a1 D a2 ¤ L.

(c) Determine the degree of degeneracy of the 011, 110 and 101 modes if
a1 ¤ a2 ¤ L.

(d) Determine the degree of degeneracy of the 111 mode.

10.3. Density of modes of a cavity resonator. Determine the density of modes of a
cubic cavity resonator of 1 cm side length at a frequency corresponding to a vacuum
wavelength � D 700 nm for the following cases.

(a) If the cube (with metallic walls) is empty.
(b) If the cube contains an Al2O3 crystal (refractive index n D 1:8) and fills the

cavity completely.
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(c) If the cube contains a GaAs crystal (n D 3:65) that completely fills out the
cube.

10.4. Number of modes. Determine the number of modes of a cubic cavity (side
length 1 cm) in the frequency interval 1 � 1014 Hz, 1.1 � 1014 Hz.

10.5. Mode density on different scales. Determine the relations between the mode
density on the frequency scale and on different scales:

(a) scale of photon energy h�; (b) ! scale; (c) scale of vacuum wavelength �.

10.6. Variation of the resonance frequency of a mode. By changing the length L
of a resonator, the resonance frequencies change. Determine the dependence of the
frequency � of the 101 mode on the change ıL of the length L of a long resonator
(L � a1).

10.7. Density of modes in free space. Determine the density of modes of electro-
magnetic waves in free space. [Hint: make use of periodic boundary conditions.]

10.8. Energy of a field in a cavity resonator.

(a) Determine the energy of a field in the 101 mode of a rectangular cavity
resonator (width a1, height a2, length L; field of amplitude A).

(b) Determine the energy content in the case that a1 D 1 cm, a2 D 0:5 cm, L D
2 cm, A D 1V cm�1.

10.9. Magnetic field in a rectangular cavity resonator.

(a) Derive the wave equations describing theH field.
(b) Solve the wave equations. [Hint: the normal component Hn of the magnetic

field is zero everywhere on the walls, Hn .wall/ D 0.]

10.10. TEmnl modes of a rectangular cavity resonator.

(a) Determine the fields of a TEmnl mode.
(b) Express the amplitudes of the field components by the amplitude of the z

component of the H field. [Hint: take into account that k � E D 0 and
k � H D 0.]

10.11. TM mode of a rectangular cavity resonator.

(a) Determine the fields of a TMmnl mode.
(b) Express the amplitudes of the field components by the amplitude of the z

component of the E field.

10.12. Field components of different modes of a rectangular cavity resonator.

(a) Determine the magnetic field components of the 101 mode. [Solutions are given
in (10.54) and (10.55).]

(b) Determine the electric and magnetic field components of the 011 mode.
(c) Determine the electric and magnetic field components of the TE111 mode and

the TM111 mode.
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(d) Show that the 101, 011 and 110 modes exist only as TE modes.
(e) Show that the TEmnl and TMmnl modes are degenerate if none of the three

numbers is zero.

10.13. Rectangular waveguide. If we omit in a rectangular resonator the two walls
perpendicular to the z axis, we obtain a rectangular waveguide.

(a) Characterize the TE mode of lowest order.
(b) Characterize the TM mode of lowest order.



Chapter 11
Gaussian Waves and Open Resonators

A large number of gas and solid state lasers as well as free-electron lasers make use
of an open resonator.

Before discussing open resonators, we introduce the Gaussian wave ( D Gaussian
beam). It is a kind of a natural mode of electromagnetic radiation in free space. A
Gaussian wave is a paraxial wave, that is a wave with a well-defined propagation
direction along the beam axis (z axis) and a small divergence. The amplitude of the
field perpendicular to the beam axis has a Gaussian distribution. A Gaussian beam
traveling from z D �1 to z D 1 has a beam waist. Accordingly, the diameter of
the beam shows a minimum at the beam waist.

A Gaussian wave is a solution of the wave equation — which we use in the
form to the Helmholtz equation — and an appropriate boundary condition: the
energy transported by the wave through a plane perpendicular to the propagation
direction is finite. Beside the Gaussian mode ( D fundamental Gaussian mode), the
wave equation provides higher order Gaussian modes.

A Gaussian wave fits to a resonator with spherical mirrors — a longitudinal
mode of an open resonator is a standing wave composed of two Gaussian waves
propagating in opposite directions. Higher order Gaussian modes lead to transverse
modes of a resonator. A laser with a spherical-mirror resonator is able to generate a
Gaussian wave.

The analysis of resonators having mirrors of various curvature shows that there
are stable and unstable resonators. The confocal, the concentric and the plane
parallel resonator are three special types of resonators.

We describe the effect of diffraction that can be used to suppress laser oscillation
on transverse modes and to operate a laser on longitudinal modes only.

We introduce the ray matrix (ABCD matrix) to describe the propagation of
paraxial optical rays in free space and in optical systems. We show that a Gaussian
beam can be focused by a lens to an area of a diameter that is equal to about a
wavelength of the radiation.

The wavelength of a monochromatic Gaussian wave is a constant far outside the
beam waist but shows a (small) variation in the range of the waist. As a consequence,
the resonance frequencies of a resonator with spherical mirrors are not multiples

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 11, © Springer-Verlag Berlin Heidelberg 2012
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of a minimum frequency but are shifted toward higher frequencies. The change of
wavelength in a beam waist corresponds to a change of phase that has been predicted
and experimentally demonstrated by L. G. Gouy in 1891 and experimentally
demonstrated also recently by the use of femtosecond pulses. The Gouy phase shift
influences the frequency spectrum of frequency combs (Sect. 13.3).

We begin this chapter with a characterization of radiation generated by the use
of a resonator with spherical mirrors.

11.1 Open Resonator

Figure 11.1a shows a design of a laser (e.g., of a titanium-sapphire laser). The laser
resonator consists of spherical mirrors (diameter 1 cm) at a distance of 1 m. The
active medium has a diameter of 1 cm. The diameter of the laser wave is about
1 mm. The spherical mirrors have the extraordinary property to concentrate the
radiation within the resonator at the resonator axis. The radiation circulates within
the resonator. A portion of radiation, coupled out via the partial reflector, has a
small beam divergence (e.g., 1 mrad). Diffraction of the wave at the reflector and the
partial mirror has (in the laser design shown in the figure) almost no effect on the

Fig. 11.1 Laser with a spherical-mirror resonator and modes of the resonator. (a) Laser. (b)
Spherical-mirror resonator. (c) Longitudinal mode. (d) Transverse mode
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waves — except that diffraction plays an important role with respect to elimination
of radiation belonging to unwanted modes (Sect. 12.2).

We give here a short characterization of a spherical-mirror resonator: it is an
open resonator — it has no sidewalls (Fig. 11.1b). The length L of the resonator is
much larger than the wavelength of the radiation. We characterize the modes of the
resonator by use of a cartesian coordinate system; we choose the direction of the
resonator axis as z axis. We now blow up the lateral extension of the wave in order
to visualize different modes. The simplest type is a longitudinal mode (Fig. 11.1c).
The phase of the field varies along the resonator axis. The field amplitude has the
largest value on the resonator axis and decreases in directions perpendicular to the
resonator axis. Figure 11.1d shows a transverse mode: the phase of the field varies
in axial direction (as for a longitudinal mode); however, the amplitude of the field is
zero at the resonator axis and changes the sign in x direction. There are many other
types of transverse modes as we will see.

We will show that longitudinal and transverse modes of a resonator with spherical
mirrors correspond to standing waves in accord with the wave equation and with
appropriate boundary conditions. A standing wave in a spherical-mirror resonator
consists of two Gaussian waves propagating in Cz and �z direction. The waves are
Gaussian waves ( D Gaussian beams). Before treating resonators, we will introduce
Gaussian waves as solutions of the wave equation describing electromagnetic waves
in free space (see the next two sections). A Gaussian wave is a paraxial wave:
it has a well-defined propagation direction and a small beam divergence. We will
see that Gaussian waves in free space can also be divided into longitudinal and
transverse modes. A Gaussian (or higher-order Gaussian) mode of the free space
is characterized by the propagation direction (z direction) and a number pair mn,
where m is the number of changes of the sign of the amplitude in x direction and n
is the number of changes in y direction.

The electric field of a Gaussian wave in free space is transverse or nearly
transverse to the z direction. The direction of the magnetic field (that has always
a direction perpendicular to the electric field) is also transverse or nearly transverse
to the z direction. A Gaussian wave characterized as

TEMmn wave

means that the electric and magnetic fields of the wave are transverse or nearly
transverse to the z direction (Problem 11.6). A TEMmn wave can be a longitudinal
or a transverse mode.

• Longitudinal mode D 00 mode D axial mode D Gaussian mode D fundamental
Gaussian mode D lowest-order Gaussian mode — the longitudinal mode appears
under different names which will become clear during this chapter. The phase
of the field in a longitudinal mode varies in the axial ( D longitudinal) direction.
The sign of the amplitude does not change in the directions perpendicular to the
resonator axis.

• Transverse mode ( D higher-order Gaussian mode). The phase of a transverse
mode varies in the axial direction and the sign of the amplitude varies in one
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or two directions perpendicular to the resonator axis. We will introduce the
Hermite–Gaussian modes.

Paraxial electromagnetic waves are transverse electromagnetic (TEM) waves
( D transversely polarized electromagnetic waves), whether they belong to
longitudinal or transverse modes. The active medium of a laser resonator is able
to excite a standing Gaussian mode in the resonator and — if one of the spherical
mirrors is a partial mirror — also a Gaussian wave propagating in free space.

A Gaussian mode or a higher-order Gaussian mode within a resonator is a

TEMmnl mode.

The index l indicates the number of half wavelengths of the field in a resonator.
The electric and magnetic fields of a Gaussian wave in a resonator are transverse or
nearly transverse to the z direction. Each number triple corresponds to a mode of the
electromagnetic field, i.e., to a particular pattern of the field in a resonator.

A polarized electromagnetic wave on a mode mn of free space or on a mode mnl
of a resonator can be polarized in one of two directions perpendicular to each other
(and perpendicular to the propagation direction). The direction of the polarization of
laser radiation can be chosen by inserting a polarizer or other elements (for instance,
a Brewster window) into the laser resonator.

The division of modes in longitudinal and transverse modes is of practical
interest: most lasers generate radiation belonging mainly to longitudinal modes.

11.2 Helmholtz Equation

We make use of a simple wave optics, first described by Helmholtz. We start with
the equation

r2E � 1

c2
@2E

@t2
D 0; (11.1)

which represents three wave equations, one for each of the three components of the
field vector E . Ignoring the polarization of the electric field, we can reduce the three
wave equations to one equation,

r2E � 1

c2
@2E

@t2
D 0: (11.2)

E is the field treated as a scalar quantity. We consider a monochromatic wave

E.x; y; z; t/ D  .x; y; z/ ei!t : (11.3)

The time independent part of the field,  .x; y; z/, obeys the Helmholtz equation

r2 C k2 D 0; (11.4)
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where k D !=c. The energy density of the field is u.x; y; z/ D 1
2
�0j .x; y; z/j2.

Among the many solutions of the Helmholtz equation are two simple cases.
Plane wave. The solution is

E D A ei.!t�kz/; (11.5)

where
k D !=c (11.6)

is the wave vector and c the speed of light. The wave vector is independent of x, y
and z. The phase of the wave assumes constant values,

'.t; z/ D !t � kz D const: (11.7)

The condition @'=@t D 0 yields the phase velocity vp D dz=dt D!=kD c. The
condition @'=@z D 0 yields the group velocity vg D dz=dt D c. Group and phase
velocities are equal to the speed of light. The wavelength �D 2�=k, i.e., the spatial
period, is independent of x; y and z. The amplitude A of a plane wave is the same
everywhere in space. The phase kz is a constant on planes of fixed z. The wave has
no angular spread. We can decompose the phase,

'.t; z/ D 't .t/ � 'z.z/; (11.8)

where 't.t/ is the time-dependent portion of the phase and 'z.z/ is the position-
dependent portion. The temporal change of 't.t/ is the angular frequency,

d't=dt D !; (11.9)

and spatial change of 'z.z/ is the wave vector (D 2�� spatial frequency),

d'z=dz D k: (11.10)

Spherical wave. A spherical wave has the form

E D K

s
ei.!t�ks/: (11.11)

K is a measure of the strength of a wave. Inserting (11.11) in (11.4) yields kD!=c.
The amplitude decreases inversely proportional to the distance s from a point source.
The phase ks is a constant on spheres around the origin s D 0. The phase and group
velocities are equal to the speed of light. The direction of the phase and of the group
velocity is radial away from the source point s D 0. The wavelength �D 2�=k is
independent of x; y and z.

The plane wave and the spherical wave cannot be realized experimentally. We
will now look for paraxial waves. These have a well-defined propagation direction
(along z) and a small angular spread. We describe the waves by the ansatz
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 D f .x; y; z/ e�ikz: (11.12)

We assume that f changes only weakly with z. We can therefore neglect the second
derivative of f with respect to z and obtain the Helmholtz equation of paraxial
waves,

@2f

@x2
C @2f

@y2
� 2ik

@f

@z
D 0: (11.13)

Gaussian waves and waves in optical resonators are described in many textbooks;
see REFERENCES at the end of the chapter. Studies of mode patterns began in 1961
[67–69]. We will study various aspects of Gaussian waves. We will begin with the
discussion of a solution of the Helmholtz equation, following [40].

11.3 Gaussian Wave

A Gaussian wave ( D Gaussian beam) is a paraxial wave. We solve the Helmholtz
equation of paraxial waves by use of the ansatz

f .x; y; z/ D G.z/ e�.x2Cy2/=F.z/: (11.14)

G and F are complex functions that change only weakly with z.
Differentiation yields

d2f

dx2
D �2G

F
C 4x2

G

F 2
e�.x2Cy2/=F ; (11.15)

df

dz
D
�

dG

dz
C x2 C y2

F 2
G

dF

dz

�
e�.x2Cy2/=F : (11.16)

The Helmholtz equation leads to an equation

� 2

F.z/
� ik

1

G.z/

dG.z/

dz
C x2 C y2

F 2.z/

�
2� ik

dF

dz

�
D 0; (11.17)

which includes two conditions,

2 � ik
dF

dz
D 0; (11.18)

� 2

ikF
� 1

G

dG

dz
D 0: (11.19)

Integrating (11.18) yields

F.z/ D 2

ik
.z C C1/: (11.20)



11.3 Gaussian Wave 193

The integration constant C1 is a complex quantity. We assume that the wave front
at z D z0 is a plane, i.e., that the phase of f .x; y; z/ is independent of x and y. Then
F.z0/ is real. By writing F.z0/ D w20, we find

C1 D ik

2
w20 � z0 (11.21)

and

F D w20 C 2

ik
.z � z0/: (11.22)

We separate 1=F in real and imaginary part,

1

F
D k2w20 C 2ik.z � z0/

k2w40 C 4.z � z0/2
D 1

w2
C ik

2R
; (11.23)

where

w D w0

s

1C 4.z � z0/2

k2w40
; (11.24)

R D z � z0 C k2w40
4.z � z0/

: (11.25)

We will see that w = w(z) is the beam radius and R = R(z) is the radius of curvature
of the beam at the location z. The beam radius has the smallest value for z D z0, i.e.,
the beam has a waist at z D z0 where the radius of the beam is equal to w0. That R
is the radius of curvature follows from the relation (Fig. 11.2):

2.z � z0/r2

k2w40 C 4.z � z0/2
D r2

2R
: (11.26)

We obtain, with r2 D x2 C y2, the solution

f .z; r/ D G.z/ e�r2=w2.z/ e�ikr2=2R.z/: (11.27)

Fig. 11.2 Curvature of the
wave front of a Gaussian
wave
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Making use of (11.22) and (11.19), we obtain the differential equation

1

G

dG

dz
D � w20=2

z � z0 C ik
: (11.28)

We write
G.z/ D K.z/ ei.z/: (11.29)

K D jGj is the absolute value of G and  is a phase, the Gouy phase. We obtain
the differential equation

1

G

dG

dz
D 1

K

dK

dz
C i

d

dz
D � z � z0

.z � z0/2 C k2w40=4
C ikw20=2

.z � z0/2 C k2w40=4
: (11.30)

Separation of real and imaginary part provides two differential equations,

1

K

dK

dz
D z � z0

.z � z0/2 C k2w40=4
; (11.31)

d

dz
D kw20=2

.z � z0/2 C k2w40=4
: (11.32)

The solutions are

K D 2C2

kw0w
; (11.33)

.z/ D tan�1 2.z � z0/

kw20
or tan.z/ D 2.z � z0/

kw20
: (11.34)

C2 is an integration constant, which is real. (Instead of the notation tan�1, the
notation arctg can be used). It follows that the field is

 .z; r/ D C3

w.z/
e�r2=w2.z/ e�iŒkz�.z/Ckr2=2R.z/	: (11.35)

C3 D 2C2=kw0 is a constant. The phase shows a change according to propagation
and, additionally, due to the Gouy phase shift .z/. The amplitude of the field
decreases in propagation direction inversely proportional to the beam radius. The
field amplitude at a fixed z decreases from its value on the axis (r D 0) to 1/e at the
beam radius w.z/. The solution contains two integration constants, w0 (contained
in the expression of w) and C3. The values of w0 and C3 of a particular Gaussian
wave can be determined experimentally — for instance by determination of the
beam diameter of the intensity distribution at a fixed location z (e.g., at z0) and
determination of the power of the wave. In the beam waist, i.e., at the location of
minimum beam diameter, the field distribution is equal to

 .z0; r/ D C3

w0
e�r2=w20 e�iŒkz0�.z0/	: (11.36)
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We can write

G.z/ D C2

z C C1
D C2

ikF.z/=2
(11.37)

and therefore

 .z; r/ D 2C2

ikF.z/
e�r2=w2.z/ e�iŒkz�.z/Ckr2=2R.z/	; (11.38)

where
1

F.z/
D 1

w2.z/
C ik

2R.z/
: (11.39)

The propagation of a Gaussian wave is completely described by the beam radius
w.z/ and the radius of curvature R.z/ or, alternatively, by the complex beam
parameter F.z/. It is convenient to introduce another complex beam parameter

Qq.z/ D ik

2
F.z/: (11.40)

(We omit in this section the tilde sign of complex quantities, except for the beam
parameter Qq). It follows that

1

Qq.z/ D 1

R.z/
� 2i

kw2.z/
D 1

R.z/
� i�

�w2.z/
: (11.41)

We can write the field in the form

 .z; r/ D 2C2

ikF
exp

�
�ikz � r2

F

�
D C2

Qq exp

�
�ikz � r2

2 Qq
�
: (11.42)

We now discuss the solution in more detail. The field is equal to

E.z; r/ D C3

w.z/
e�r2=w2.z/ ei.!t�Œkz�.z/Ckr2=2R	/: (11.43)

The spatially dependent part is

 .z; r/ D C3

w.z/
e�r2=w2.z/ e�iŒkz�.z/Ckr2=2R	: (11.44)

We write
 .z; r/ D A.z; r/ e�i'.z;r/: (11.45)

The amplitude of the Gaussian wave is

A.z; r/ D C3

w.z/
e�r2=w2.z/ (11.46)
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and the phase is

'.z; r/ D kz � .z/C r

2R.z/
kr: (11.47)

The expression contains two terms that depend on z only and another term
that depends additionally on r ; this term vanishes on the beam axis. The field
distribution has the following properties (Fig. 11.3 and Table 11.1):

•  .r; z/ is circularly symmetric around the beam axis.
• The amplitude of the wave decreases laterally according to the Gaussian function

and is, around the beam axis, inversely proportional to the beam radius w.z/.
• The wave has a waist. The beam radius in the waist is w0. In the waist, the wave

front is a plane and the field amplitude distribution is given by

A.z0; r/ D C3

w0
e�r2=w20 D A0 e�r2=w20 : (11.48)

A0 is the amplitude of the wave on the beam axis (r D 0) at z D z0.
• If z ¤ z0, the wave front is curved and the beam radius increases with increasing

jz � z0j.
• For large jz � z0j, namely for jz � z0j � kw20=2, the curvature is R.z/ D z � z0

and the beam radius is w.z/ D 2kw0.z � z0/. Both the curvature and the beam
radius increase linearly with jz � z0j.

• The Rayleigh range is equal to

Fig. 11.3 Gaussian wave. (a) Rays and lateral distribution of the amplitude. (b) Rayleigh range.
(c) Divergence. (d) Gouy phase
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Table 11.1 Properties of field and energy density of a Gaussian beam propagating from z D �1
to z D C1

z D �1 z D z0 z D .z0 C zR/ z ! 1
Radius (field) w0

p
2 w0 w0.z � z0/=zR

A.r D 0/ A0 A0=
p
2 A0zR=.z � z0/

 ��=2 0 �=4 �=2

Wave front Spherical Plane Curved Spherical
Radius (energy) ru;0 D w0/

p
2

p
2ru;0 ru;0.z � z0/=zR

u.r D 0/ u0z
2
0=.z � z0/2 u0 u0=2 u0z

2
0=.z � z0/2

zR D kw20=2 D �w20=�: (11.49)

The beam diameter increases in the range z0; z0 C zR by the factor
p
2. In the

range z0�zR; z0CzR the Gaussian wave remains almost parallel. This range is the
near-field (or Fresnel) range. The range jz�z0j > zR is the far-field (Fraunhofer)
range. We can express the three parameters w, R, and  of a Gaussian wave by
the beam waist w0 and the Rayleigh range zR,

w.z/ D w0

s

1C .z � z0/2

z2R
; (11.50)

R.z/ D z � z0 C z2R
z � z0

; (11.51)

.z/ D tan�1 z � z0
zR

: (11.52)

The distance between the points �z0 and +z0 is the confocal parameter or depth
of focus.

• Gouy phase. The Gouy phase — inherent to a Gaussian wave — describes a
phase that is associated with the spatial and the temporal change of the curvature
of the wave front (Sect. 11.7).

• Change of phase. When a wave front with the field distribution  .z1; r/
propagates from z1 to z2, the phase ' changes according to

'.z2/� '.z1/ D Œkz2 � .z2/	 � Œkz1 � .z1/	: (11.53)

.z2/ - .z1/ is the Gouy phase shift. When the wave front propagates through
the beam waist from a far-field location z1 � z0 to a far-field location z2 � z0,
the phase ' changes by

'.z2/� '.z1/ D kz2 � kz1 C �: (11.54)

The propagation through the beam waist changes the phase of the wave by � , in
addition to the geometrical phase change kz2 � kz1. When the wave front travels
from z1 D �zR to z2 D zR, the change of phase is
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'.zR/ � '.�zR/ D kzR C �=2I (11.55)

in addition to the change kzR of the phase, the Gaussian wave changes its phase
by C�=2.

• The field of a Gaussian wave is given by

E.z; r; t/ D A0
w0
w

e�r2=w2.z/ cos
�
!t � .kz �  C kr2=2R/

�
: (11.56)

A0 D C3=w0 is the amplitude in the center of the beam waist (at z D z0 and
r D 0).

• The energy density, averaged over a temporal period, is

u.z; r/ D 1

2
�0A

2
0

r2u;0

r2u
e�r2=r2u ; (11.57)

where ru D w=
p
2 is the beam radius with respect to the energy density

distribution. The radius of the energy distribution at the beam waist is ru;0 D
w0=

p
2. At the beam waist, the energy density decreases within the radius ru;0

to 1/e relative to the energy density on the beam axis.
• Divergence. At large jz � z0j, the angle of divergence of the field is given by

�0 D w0
zR

D �

�w0
: (11.58)

The product of the far-field aperture angle �0 and the diameter at the beam waist
is a constant,

2w0 � �0 D 2�=�: (11.59)

The angle of divergence, with respect to the energy density, is �u;0 D �0=
p
2.

The product
2ru;0�u;0 D �=� (11.60)

is by a factor of two smaller than the product with respect to the field amplitude.
• Radiance of a Gaussian beam. The radiance of a paraxial beam is defined as the

power of radiation passing through an area (oriented perpendicular to the beam
direction) divided by the area and the solid angle of the beam. To estimate the
radiance of a Gaussian beam, we approximate exp .�r2=r2u / by a rectangular
radial distribution of diameter 2ru and find that the power of radiation passing
through the beam waist is approximately given by

P D Lu � area �˝; (11.61)

which is the product of the area of the beam in the beam waist, the solid angle˝
of the beam, and where Lu is the radiance. We can write:
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Lu D P

area �˝ : (11.62)

For small values of �u;0, the solid angle of the beam is ˝ D ��2u;0 This leads to

Lu D P

�r2u;0 � ��2u;0
: (11.63)

Taking into account the relation (11.60), we find that the radiance of a Gaussian
beam is equal to the power divided by .�=2/2 in units of m�2 sr�2.
Example. P D 1W; �D 0.5 �m; Lu D 1.6 � 1013 W m�2 sr�1.

Is it possible to realize a Gaussian wave? The answer is: a laser with appropriately
arranged spherical mirrors as resonator mirrors is able to produce a Gaussian wave.
We will begin the discussion of resonators with spherical-mirrors by treating a
particular spherical-mirror resonator, the symmetric confocal resonator.

11.4 Confocal Resonator

A confocal resonator consists of two spherical mirrors having the same focus. We
discuss the symmetric confocal resonator. It has two equal mirrors.

Two spherical mirrors arranged at a distanceL D R form a (symmetric) confocal
resonator (Fig. 11.4, left). We choose z D 0 as the location of the center of one of
the mirrors. We will show that a Gaussian wave can fit to a confocal resonator. The
symmetry of the arrangement requires that z0 D L=2. It follows that the radius of
curvature is

R D L

2

�
1C k2w40

L2

�
(11.64)

and that the beam radius ( D mode radius) with respect to the field amplitude in the
waist is

w0 D
r
L�

2�
: (11.65)

With respect to the energy density, the mode radius in the beam waist is ru;0 Dp
L�=4� .
The Gaussian mode within the resonator (Fig. 11.4, right) has the beam waist w0.

The beam radius on each of the mirrors is w0
p
2. The distance between the center

of the resonator and a mirror is equal to the Rayleigh range. In the far-field range,
outside the resonator — with one of the spherical mirrors being a partial reflector
— the field has the divergence angle �0 D 2�=.�w0/.

The field in the resonator corresponds to a Gaussian standing wave, i.e., to two
Gaussian waves propagating in opposite directions,
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E.z; r/ D 1

2
A.z; r/ eiŒ!t�'.z;r/C'0	 C 1

2
A.z; r/ eiŒ!tC'.z;r/�'0	: (11.66)

The field at the axis is equal to

E D A0
w0
w

e�r2=w2 cosŒkz � .z/� '0	 cos!t: (11.67)

We obtain the resonance frequencies by the use of the resonance condition
(2.80), namely that the change of the phase of a field propagating in the resonator is,
at a round trip transit, a multiple of 2� (that is the resonator eigenvalue problem).
The Gouy phase shift per round trip transit is

� D .z2/� .z1/C .z2/� .z1/ D 2 ..z2/� .z1// D � (11.68)

This leads to the condition

2kL �� D 2kL � � D l � 2� (11.69)

or

klL D
�
l C 1

2

�
�I l D 1; 2; ::: (11.70)

The resonance frequencies are (Fig. 11.5)

Fig. 11.4 Confocal resonator

Fig. 11.5 Resonance frequencies
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�l D c

2L

�
l C 1

2

�
D l � c

2L
C �Gouy; (11.71)

where �Gouy D c=4L is the Gouy frequency of the symmetric confocal resonator.
In comparison with a Fabry–Perot resonator of the same length, the resonance fre-
quencies are shifted toward higher frequencies. However, the frequency separation
between adjacent modes is the same,

�lC1 � �l D c

2L
: (11.72)

The phase '0 is determined by the choice of the origin (z D 0) of the z axis. We
have chosen the position of one of the reflectors as z D 0. The boundary condition,
namely that the field on the mirrors (assumed to have reflectivities near 1), has to be
zero, requires that

'0 C .0/ D '0 � �=4 D 3�=4 (11.73)

and therefore '0 D 3�=4. Thus, we obtain the field at the axis:

 D A0
w0
w

e�r2=w2 sinŒkz � .z/	 cos!t: (11.74)

The energy density, averaged over both a temporal period and a spatial period, is

u D �0

4
A20

r2u;0

r2u
e�r2=r2u D u0

r2u;0

r2u
e�r2=r2u ; (11.75)

where u0 D .�0=4/A
2
0 is the energy density at r D 0 at the beam waist (z D z0).

The energy contained in a mode is given by

Z L

0

dz
Z 1

0

u.r/ � 2�rdr D u0

Z L

0

dz
r2u;0

r2u

Z 1

0

2�rdre�r2=r2u D u0�r
2
u;0L:

(11.76)
What is the volume V0 of a (hypothetical) mode, which contains the same radiation
energy as the 00 mode, but with a constant energy density? We can write u0V00 D
u0�r2u;0L and interpret V00 as the mode volume. Thus, the mode volume of the 00
mode of a confocal resonator is equal to

V00 D �r2u;0L: (11.77)

The mode volume of the 00 mode of a confocal resonator is equal to the product of
the cross sectional area of the beam waist (with respect to the energy distribution)
and the length of the resonator. Table 11.2 shows values of beam waists and mode
volumes for radiation of a fixed wavelength.

The confocal resonator is suitable as resonator of, for instance, a helium–neon
laser or a free-electron laser.
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• Helium–neon laser (�D 633 nm). The small gain of the active medium requires
a large length (typically 0.5 m) of the resonator. The mechanism of the relaxation
of the excited neon atoms makes it necessary to use a tube with a small diameter;
the neon atoms relax by collisions with the walls (Sect. 14.3).

• Free-electron laser. A free-electron laser requires a resonator of a length of
typically 10 m. The Gaussian wave in a confocal resonator has a large overlap
with an electron wave that propagates along the axis of the resonator (Sect. 19.1).

Other resonator configurations will be discussed in the next section.

11.5 Stability of a Field in a Resonator

There are a large number of different resonators. However, not all have stable
modes. We treat a resonator with two spherical mirrors (Fig. 11.6) that have different
radii (R1 and R2) of curvature. A Gaussian mode, fitting to the resonator, can be
determined by means of the conditions for the radii of curvature:

R1 D z0

�
1C z2R

z20

�
; (11.78)

R2 D .L � z0/

�
1C z2R

.L � z0/2

�
; (11.79)

where z0 is the location of the beam waist; z D 0 and z D L are the positions of the
two mirrors. From the two relations, we find

z0 D .1 � g1/g2L

g1 C g2 � 2g1g2 ; (11.80)

Table 11.2 Beam waist and mode volume of confocal resonators of different lengths suitable for
radiation of wavelength � D 0:6 �m

L(m) ru;0 D p
L�=4� V00 (m3)

0.1 69 �m 1.5 � 10�8

0.5 155 �m 3.5 � 10�8

10 0.69 mm 1.5 � 10�5

Fig. 11.6 Resonators with
spherical mirrors
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z2R D .1 � g1g2/g1g2L2
.g1 C g2 � 2g1g2/2 ; (11.81)

w20 D L�

�

p
.1 � g1g2/g1g2

g1 C g2 � 2g1g2
; (11.82)

w2i D L�

�gi

r
g1g2

1 � g1g2 ; (11.83)

where wi (i D 1; 2) is the beam radius at the mirror 1 or 2, respectively, and where

g1 D 1 �L=R1; (11.84)

g2 D 1 � L=R2 (11.85)

are the mirror parameters. The mode diameters wi are infinitely large if the product
g1g2 D 1. There is no real solution if g1g2.1 � g1g2/

�1 is negative. This leads to
the stability criterion: a stable mode can be realized if

0 � g1g2 � 1: (11.86)

Figure 11.7 shows the resonator stability diagram. Stable resonators have mirror
parameters of the shadowed regions.

There are limiting cases.

• R1 D R2 D 1I g1 D g2 D 1; plane parallel ( D Fabry-Perot) resonator.
• R1 CR2 D 2LI g1 C g2 � g1g2 D 0; confocal resonator (general case).
• R1 D R2 D LI g1 D g2 D 0; symmetric confocal resonator.
• R1 CR2 D LI g1g2 D 1; concentric resonator (general case).
• R1 CR2 D LI g1 D g2 D �1; symmetric concentric resonator.

Fig. 11.7 Resonator stability
diagram



204 11 Gaussian Waves and Open Resonators

Fig. 11.8 Types of resonators; confocal and semiconfocal (left); near-concentric and semiconcen-
tric (center); planar and near-planar (right)

The different types of resonators (Fig. 11.8) have advantages and disadvantages.

• The confocal resonator. It has the lowest diffraction loss (Sect. 11.8). Corre-
sponding to the stability criterion, the confocal resonator is at the limit of
stability. To reach stability, the distance between the mirrors should be slightly
smaller than the radius of curvature of the mirrors. In comparison with other
resonators, this resonator can easily be adjusted.

• A semiconfocal resonator consists of a spherical mirror and a plane mirror at
the distance R/2, where R is the radius of curvature of the spherical mirror —
the plane mirror is located at the position of the beam waist of a corresponding
confocal resonator.

• The concentric resonator ( D spherical resonator) has a beam waist of w0 D 0 and
an infinitely large divergence. It is therefore not realizable.

• The near-concentric resonator has the smallest mode volume.
• A semiconcentric resonator ( D hemispheric resonator) consists of a spherical

mirror and a plane mirror at the distance R=4 — the plane mirror is located at
the position of the beam waist of a corresponding confocal resonator.

• The plane parallel ( D Fabry-Perot) resonator has, in comparison with all other
resonators, the largest mode volume. It is difficult to adjust.

• The near-planar resonator ( D superconfocal resonator) has one or two mirrors
with a radius of curvature that is much larger than the length of the resonator. This
resonator has the advantage, in comparison with the plane parallel resonator, that
it is easier to adjust. In comparison with the confocal resonator, the near-planar
resonator allows to achieve a larger mode volume at the same resonator length
and to obtain, in special cases, larger output power. The beam radius of a near-
planar resonator, withR1 D R2 D R � L, is almost constant along the resonator
axis,

w20 D w21 D w22 D �L

�

r
R

2L
: (11.87)

The change of the phase of a Gaussian wave propagating in a near-planar
resonator during a single transit through a resonator is small, since .z D 0/ 	
.z0/ 	 .z D L/ � 0. This follows from the expression  D tan�1 .z � z0/=zR.
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In the general case of a stable resonator, the change of the Gouy phase shift per
round trip transit is given by

� D 2Œ.L/� .0/	 D 2

�
tan�1 L � z0

z2R
� tan�1 �z0

z2R

�
D 2 cos�1.˙p

g1g2/:

(11.88)
We made use of the relations tan�1 x C tan�1 y D tan�1 �Œx C y	Œ1 � xy	�1

�

and tan�1 x D cos�1.1=
p
1C x2/. (Note that the inverse trigonometric function

cos�1 x 
 arccos x). The condition

2kLC� D l � 2�; l D 1; 2; ::: (11.89)

leads to the resonance frequencies

�l D c

2L

�
l C 1

�
cos�1.˙p

g1g2/

	
; (11.90)

where the plus sign has to be chosen if g1 and g2 are positive while the minus sign
has to be chosen if g1 and g2 are negative. Limiting cases are as follows:

• Fabry–Perot resonator. g1; g2 ! 1; cos�1 p
g1g2 ! 0.

• Confocal resonator; g1; g2 ! 0; cos�1 p
g1g2 ! �=2.

• Concentric resonator; g1; g2 ! 0; cos�1 p˙g1g2 ! � .

The frequency difference between adjacent modes is

�lC1 � �l D c=.2L/: (11.91)

This is an important result: the Gouy phase shift of radiation propagating within
a resonator causes a shift of the resonance frequencies of the resonator toward
higher frequencies. The shift is the same for all resonance frequencies. But the

Fig. 11.9 Resonance frequencies of different resonators
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frequency distance between neighboring resonances remains uninfluenced by the
Gouy phase shift.

Figure 11.9 shows the frequencies of the modes of different resonators. The
Gouy frequency is zero for a Fabry-Perot resonator, c=4L for a symmetric confocal
resonator, and c/2L for a symmetric concentric resonator.

11.6 Transverse Modes

We use the ansatz

f .x; y; z/ D X.x/ Y.y/ G.z/ e�.x2Cy2/=F.z/; (11.92)

whereX depends on x only, Y on y only, F andG on z only. Differentiation yields

@2f

@x2
D X 00 � 4x

F
X 0 � 2

F
X C 4x2

F 2
XYGe�r2=F ; (11.93)

@f

@z
D
�
G0 C GF0

F 2
.x2 C y2/

	
XYe�r2=F ; (11.94)

with X 0 D dX=dx, Y 0 D dY=dy and G0 D dG=dz. The Helmholtz differential
equation leads to

X 00

X
� 4x

F

X 0

X
C Y 00

Y
� 4y

F

Y 0

Y
� 4

F
� 2ik

G0

G
C 2

x2 C y2

F 2
.2� ikF 0/ D 0: (11.95)

We obtain again the condition that 2 � ikF 0 D 0. With the same arguments used
earlier, we find again that F.z/ D w20 C 2=.ik/.z � z0/. Furthermore, we obtain
differential equations for X and Y ,

X 00

X
� 4x

F

X 0

X
C 4m

F
D 0; (11.96)

Y 00

Y
� 4y

F

X 0

X
C 4n

F
D 0; (11.97)

where mD 0, 1, : : : and nD 0, 1, : : : . We introduce the dimensionless variable
� D p

2=F . Then the differential equation for X becomes

d2X

d�2
� 2�

dX

d�
C 2mX D 0: (11.98)
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This is the Hermite differential equation. The solutions are the Hermite polynomials
Hm.�/; Hm is the Hermite polynomial of mth order. We list a few Hermite
polynomials.

• m D 0 ; H0.�/ D 1.
• m D 1 ; H1.�/ D �.
• m D 2 ; H2.�/ D 2�2 � 1.
• m D 3 ; H3.�/ D �3 � 3�.

The Hermite functionH0 is an even function with respect �, H1 is an odd function,
H2 an even function and so on. The Hermite polynomials obey the recursion formula

Hm.�/ D 2�Hm.�/� 2mHm�1.�/ D 0: (11.99)

The solutions are

X.x/ D Hm

 r
2

F
x

!

and Y.y/ D Hn

 r
2

F
y

!

: (11.100)

We obtain from (11.95) the differential equation

G
0

G
D 2i

k

1CmC n

F
D � 1CmC n

z C C1
: (11.101)

We write
Gmn.z/ D jGmn.z/j eimn.z/: (11.102)

Separation in real and imaginary parts leads to two differential equations for jGj
and . The solution for jGj is

jG.z/j D jGmn.z/j D C3;mn

w
; (11.103)

where

C3;mn D C2

.kw0=2/1CmCn
(11.104)

and where C2 is an integration constant, which is real. The solution for  is

mn.z/ D .1CmC n/ .z/: (11.105)

.z/ is the same as in the case mDnD 0. Thus, we have the solution

 mn.x; y; z/ D Hm

 r
2

F
x

!

Hn

 r
2

F
y

!
C3;mn

w.z/
e�i.kz�mnCkr2=2R/: (11.106)
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Fig. 11.10 Longitudinal and transverse modes. (a) Amplitude distributions and field lines.
(b) Intensity distributions

The Gouy phase increases with increasing m and increasing n. Each number pair
mn corresponds to a mode of radiation in free space. We denote the paraxial modes
with mn D 00 ( D fundamental Gaussian modes D Gaussian modes) as longitudinal
modes and the paraxial modes with mn ¤00 as transverse modes ( D Hermite-
Gaussian modes D higher-order Gaussian modes).

Figure 11.10a shows the amplitudes of the fields of a few modes together with
field lines. The amplitudes of longitudinal and transverse modes have different
spatial distributions.

• 00 mode. The field amplitude  has the largest value at the beam axis.
• 10 mode. In x direction, the amplitude changes once the sign and has two extrema

— according to the Hermite polynomialH1(x). The field amplitude is zero at the
beam axis.
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• 20 mode. In x direction, the amplitude changes twice the sign and has three
extrema.

The transverse modes mnl have the same beam diameter and the same radius of
curvature as the longitudinal mode 00l. A transverse mnl mode has, along the z
axis, the same number of field maxima as the longitudinal 00l mode (compare
with Figs.11.1c and d). Figure 11.10b shows different mode patterns as they can
be observed for the intensity distribution of laser radiation outside a laser resonator;
special filters placed in a laser resonator can select a particular mode at which a laser
oscillates.

It follows that the phase shift per round trip transit of radiation in a mode mnl
has to obey the resonator eigenvalue condition

2kL � .1CmC n/� D l � 2�; (11.107)

where

� D .z2/ � .z1/C .z2/� .z1/ D 2 ..z2/� .z1// ; (11.108)

.zi / D tan�1 zi � z0
zR

; (11.109)

and where z1 D 0 and z2 D L. We obtain the resonance frequencies

�lmn D c

2L

�
l C 1CmC n

�
cos�1.˙p

g1g2/

	
: (11.110)

The frequency separations between longitudinal and transverse modes depend on
the values of g1 and g2. The frequency separation between two neighboring modes
mn(l C 1) and mnl is always c=.2L/.

Figure 11.11 shows special cases that follow from (11.110).

• The frequencies of the transverse modes mnl of a near-planar resonator lie near
the frequency of the longitudinal mode 00l, at slightly larger frequencies.

• A confocal resonator has a transverse mode for which the sum m C n is an
odd number is degenerate with an l mode, as it follows from cos�1 0 D �=2;
a transverse mode for which the sum m C n is an even number has a frequency
between two frequencies of longitudinal modes.

• A near-concentric resonator has transverse modes mnl at frequencies slightly
smaller than the frequency of the 00(l-1) longitudinal modes, as it follows from
cos�1.�1/ D � .

We note that the solution (11.106) can also be written in a form,

 mn.x; y; z/ D Hm

 r
2

F
x

!

Hn

 r
2

F
y

!
C3;mn

.ikF=2/1CmCn
e�iŒkz�.x2Cy2/=F 	;

(11.111)
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Fig. 11.11 Resonance frequencies of longitudinal (L) and transverse (T) modes

that contains the complex beam parameter F.z/, which is the same as for a
fundamental Gaussian wave.

In our study of Gaussian waves, we have made use of Cartesian coordinates.
The solution to the Helmholtz equation of paraxial waves provides the fundamental
Gaussian waves and the Hermite-Gaussian waves. The number pair mn describes
the variation of the sign of the amplitude along the x and the y axis. Solutions to the
Helmholtz equation are Laguerre-Gaussian modes too. These are also characterized
by a number pair mn, however m now describes the variation of the sign of the
amplitude in radial direction and n the variation in azimuthal direction. The waves
are also TEM waves. The Laguerre-Gaussian modes are obtained by solving the
Helmholtz equation written in cylinder coordinates. Depending on the experimental
arrangement of a laser, either type of higher-order Gaussian mode can be observed.

11.7 The Gouy Phase

The field of a Gaussian wave is given by

E.z; r; t/ D A0
w0
w

e�r2=w2 cos
�
!t � Œk.z � z0/�  C kr2=2R	

�
: (11.112)

A0 is the amplitude, w0 the beam radius in the beam waist, z0 the position of the
beam waist, w.z/ the beam radius at the position z � z0, k the wave vector of the
radiation,  the Gouy phase, and kr2=2R.z/ a phase in lateral direction that is zero
on the beam axis; we have chosen the phase '0 so that the beam waist lies at z0. The
beam radius is

w.z/ D w0

s

1C .z � z0/2

z2R
; (11.113)

where
zR D kw20=2 D �w20=� (11.114)
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is the Rayleigh range. The Gouy phase is given by

.z/ D tan�1 z � z0
zR

: (11.115)

The curvature of the wave front is

R.z/ D z � z0 C z2R
z � z0

: (11.116)

The derivative of the time-dependent portion 't of the phase yields the frequency,

d't=dt D !: (11.117)

From the position-dependent portion of the phase,

'z D k.z � z0/ � ; (11.118)

we obtain, by differentiation, the effective wave vector

keff D k � d=dz: (11.119)

The effective wavelength is

�eff D 2�

keff
D �

1 � k�1d=dz
D �

1 � �=.2�/d=dz
; (11.120)

where � D 2�=k is the wavelength of the radiation far outside the beam waist.
The effective wave vector and the effective wavelength depend on the position z.
The Gouy phase (Fig. 11.12) shows the strongest change in the Rayleigh range
and the derivative

d

dz
D 1

1C .z � z0/2=z2R
(11.121)

has a maximum at the center of the beam waist. The phase far outside the beam
waist, at z � z0 � 0, is given by

'z D keff � .z � z0/ (11.122)

and for the range far outside the beam waist at z � z0 � 0 by

'z D keff � .z � z0/ � �: (11.123)

The Gouy phase shift at a transit of radiation through the beam waist is � . In the
range of the beam waist, the effective wavelength is larger than �. In the center
of the beam waist, the effective wavelength is equal to �eff D � C �=.4�/. The
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Fig. 11.12 Gaussian beam: Gouy phase; variation of the Gouy phase; spatial part (dashed) of the
phase and total phase (solid); effective wavelenth; wavefronts

wave fronts have the largest distance in the center of the beam waist. The sum of all
differences �eff � � at a transit of radiation through the beam waist is equal to �=2.

We now discuss the Gouy phase shift of radiation in a resonator. The field of a
standing wave of an open resonator is

E.z; r; t/ D A0
w0
w

e�r2=w2 cos
�
!t � Œk.z � z0/�  C kr2=2R	

�
: (11.124)

The resonance condition requires that

2kL �� D l � 2�I l D 1; 2; :::; (11.125)

where l is the order of resonance and� the Gouy phase shift per round trip transit.
At resonance, the phase change 2kL per round trip transit is larger than 2� because
of the Gouy phase shift,

2kL D l � 2� C�: (11.126)
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It follows that the resonance frequencies are

�l D l � c

2L
C �Gouy; (11.127)

where �Gouy is the Gouy frequency,

�Gouy D �

2�
� c

2L
: (11.128)

The resonance frequencies of an open resonator (Fig. 11.13) are multiples of
c=2L but shifted toward higher frequencies by the Gouy frequency.

Figure 11.14 and Table 11.3 show values of Gouy frequencies of stable res-
onators. The Gouy frequency is zero for a Fabry–Perot resonator and has the largest
value for a concentric resonator. The Gouy frequency of a symmetric confocal
resonator is �Gouy D (1/2)c=2L.

Fig. 11.13 Low-order resonance frequencies of an open resonator

Fig. 11.14 Gouy frequency
of a stable resonators

Table 11.3 Gouy phase shift and Gouy frequency of resonators

Resonator � �Gouy

Fabry-Perot 0 0
Symmetric confocal � 0:5 c=.2L/

Semiconfocal �=2 0:25 c=.2L/

Symmetric concentric 2� c=.2L/
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Example. The Gouy phase shift of a symmetric confocal resonator of a length of
0.5 m is D� and the Gouy frequency is 0.5c=.2L/D 150 MHz; for a semicon-
focal resonator of the same length, the Gouy phase shift is �=2 and the Gouy
frequency is 75 MHz.

In 1891, Louis Gouy (Lyon, France) found that an electromagnetic wave changes
the phase by � if it propagates through a focus point — beside the phase change
due to spatial propagation [70–72]. Gouy studied an interference pattern of two
beams (arising from the same white light source), which were reflected from two
plane mirrors, and observed an additional phase shift when he replaced one of the
mirrors by a spherical mirror that produced a focus point in one of the beams;
Gouy derived the phase shift from an analysis of the focusing process by use of
Huygens’ principle. Various studies in the years shortly after 1900 confirmed the
results (see [73]).

The Gouy phase shift has also been observed by means of coherent waves —
waves with well-defined amplitudes and phases. Experiments have been performed
with microwaves [74], far infrared radiation [75] and visible radiation [76]. We
describe the far infrared experiment (Fig. 11.15). The radiation consisted of single-
cycle terahertz radiation wave packet, generated with a small-area source. The
radiation was made parallel with a lens and focused with another lens to a small-
area detector. The detector monitored the time dependent amplitude and phase of
the radiation at the position of the detector. Alternatively, two additional lenses
produced a focus point between source and detector. Signals were measured at
different time delays relative to the starting time of a pulse. The experiment showed
that the phase of a wave packet changed by � when the wave propagated through
the focus; we will describe the method of measuring phases and amplitudes of
electromagnetic fields in Sect. 13.5.

We can ask: is the group velocity of radiation traversing a beam waist smaller
than the speed of light? The answer is no: the change of phase by � causes a reversal
of the direction of the electric field of the wave. The group velocity remains therefore
unchanged.

Fig. 11.15 Measurement of the Gouy phase shift
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Fig. 11.16 Diffraction loss
per round trip

11.8 Diffraction Loss

Up to now, we have neglected loss by diffraction at the resonator mirrors. The
diffraction loss depends on the resonator type. Figure 11.16 shows examples of
the diffraction loss ı ( D loss per round trip) for resonators of different Fresnel
numbers (F ).

• The diffraction loss of radiation in a confocal resonator is (for F � 0:5) much
smaller than the diffraction loss of radiation in a planar resonator.

• Longitudinal modes have a smaller diffraction loss than transverse modes.
• The diffraction loss decreases strongly with increasing Fresnel number.

The theory of Kirchhoff (1882) allows for determination of diffraction loss. We give
here a short sketch of the theory. We are looking for a solution of the wave equation
in the form of the Helmholtz equation,

r2 C k2 D 0: (11.129)

Originally, Kirchhoff formulated the theory assuming that a parallel light wave
is incident on an iris diaphragm (Fig. 11.17a). The boundary condition is the
following: in the open part of the iris, the field has the same value  as without
iris. According to Huygens’ principle, spherical waves are leaving from each point
in the open part of the iris. The field amplitude at a point (x2; y2) is the sum of
all partial waves arriving from all points x1; y1 in the open part of the iris. The
summation yields

 .x2; y2/ D ik

4�

Z
.1C cos �/

eiks

s
 .x1; y1/ dx1dy1: (11.130)

The amplitude depends on the distance s between the iris and the point (x1; y1)
and on the angle � between the central axis and the direction between the iris and
the point; s is large compared to the diameter of the open part of the iris. The
solution obeys the Helmholtz equation. The factor i to the integral (11.130) implies
the occurrence of the Gouy phase shift.
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Fig. 11.17 Diffraction. (a) Diffraction at an iris diaphragm. (b) Multiple diffraction at iris
diaphragms in series

Radiation in a resonator undergoes multiple reflections with diffraction, illus-
trated in Fig. 11.17b for iris diaphragms in series. The calculation starts with an
arbitrarily assumed field distribution 1.x1; x2/, for instance, a constant distribution
over one of the mirrors. A first integration provides the distribution at the second
mirror — at a single transit through the resonator. The numerical calculation of
 nC1 from  n, where n is the number of passes through the resonator, leads to the
following results.

• Stable resonator. After a field has performed a certain number of transits through
the resonator, the field obeys the relation

 nC1.x; y/ D �  n.x; y/; (11.131)

where � (< 1) is a number. The shape of the field distribution is reproduced, but
there is a loss at each reflection.

• Instable resonator. The distribution  .x; y/ does not stabilize.

We have seen that in the far field of a fundamental Gaussian wave the product of
the beam diameter and of the angle of aperture is a constant,

D0 � �0 D 4

�
�: (11.132)

D0 D 2w0 is the diameter of the field distribution at the beam waist. If diffraction
at the output coupling mirror or at another optical element of a laser resonator
enhances the angle of aperture, the beam diameter D can be larger than D0 and
the angle � can be larger than �0. The product can be written as

D � � D M2D0�0: (11.133)
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Fig. 11.18 Paraxial optical beam

The M factor is a measure of the quality of a beam.M D 1 corresponds to a Gaussian
beam.

11.9 Ray Optics

We characterize an optical ray (Fig. 11.18) at a the point z; r by the vector

r D
�
r

r 0
�
; (11.134)

where r is the distance of the ray from the beam axis and r 0 D dr=dz is the slope of
the ray. The slope of a paraxial ray is approximately equal to the angle between the
ray and the optical axis. Therefore, we can make use of the approximation dr=dz D
sin ˛ 	 ˛.

We describe the trajectory of an optical ray propagating from a location r1 to a
location r2 by

r2 D
�
A B

C D

�
r1; (11.135)

where

�
A B

C D

�
is the ray matrix ( D ABCD matrix).

The propagation of an optical ray in an optical system with s optical elements in
series is described by the matrix product

�
A B

C D

�
D
�
As Bs
Cs Ds

�
:::

�
A2 B2
C2 D2

��
A1 B1
C1 D1

�
: (11.136)

We illustrate the method by various examples (Fig. 11.19).

• Propagation in free space;

�
A B

C D

�
D
�
1 L

0 1

�
.
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Fig. 11.19 Optical rays in different systems

• Snell’s law;

�
A B

C D

�
D
�
1 0

0 n1=n2

�
.

• Thin lens with a focus length f ;

�
A B

C D

�
D
�

1 0

�f �1 1

�
.

• Spherical mirror;

�
A B

C D

�
D
�

1 0

�2R�1 1

�
D
�

1 0

f �1 1

�
. The radius has a

positive sign (R > 0) for a concave mirror and a negative sign (R < 0) for a
convex mirror.

We derive, by the use of ray optics, the stability criterion for resonators. A
spherical mirror and a thin lens are equivalent optical elements. Accordingly, we
can replace a two-mirror resonator by a series of lenses with the focus lengths
f1 D R1=2 and f2 D R2=2 (Fig. 11.20). The periodicity interval of the series of
lenses includes a half-lens with the focus length 2f1 D R1, a lens with the focus
length f2 D R2=2 and another half lens with the focus length 2f1 D R1. A round
trip through the resonator corresponds to the path through the periodicity interval in
the lens system from r1 to r2, where

r2 D
�

1 0

�.2f1/�1 1
��

1 L

0 1

��
1 0

�f �2
2 1

��
1 L

0 1

��
1 0

�.2f1/�1 1
�

r1: (11.137)
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Fig. 11.20 Optical beam passing lenses in series (upper part) and periodicity interval (lower part)

We obtain, with the mirror parameters g1 D 1 � L=R1 and g2 D 1 � L=R2, the
ABCD matrix

r2 D
�

2g1g2 � 1 2g2L

�2g1.g1g2 � 1/L�1 2g1g2 � 1
�

r1: (11.138)

We are looking for rays that remain unchanged after the propagation through a
periodicity interval. A stable trajectory requires that

�
A B

C D

�
r1 D � r1 (11.139)

and j�j D 1. The eigenvalue equation

�
A� � B

C D � �
��

r1
r 0
1

�
D 0; (11.140)

leads to ˇ
ˇ
ˇ
ˇ
A� � B

C D � �

ˇ
ˇ
ˇ
ˇ D 0; (11.141)

�2 � 2.2g1g2 � 1/�C 1 D 0; (11.142)

�a;b D 2g1g2 � 1˙
p
.2g1g2 � 1/2 � 1: (11.143)

There are two possibilities.

• �a and �b are real if g1g2 � 1. This corresponds to instable resonators because,
after N round trip transits through the resonator and N ! 1, the vector

�
rN

r 0
N

�
D �N

�
r1

r 0
1

�
; (11.144)

diverges.
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• �a and �b are imaginary if g1g2 < 1. This is the stability criterion. We obtain
�a;b D exp.˙'/, where cos' D 2g1g2 � 1. After N round trip transits, the
vector �

rN
r 0
N

�
D e˙i'

�
r1
r 0
1

�
(11.145)

remains stable because j�aj D j�bj D 1. In our derivation of the stability
criterion, we did not specify the values of r1 and r 0

1. Thus, the result is valid
for all paraxial rays.

It is possible to describe the propagation of a Gaussian beam through an optical
system by the use of the ABCD matrix of the optical system. We have found, see
(11.41) and (11.42), that a Gaussian beam can be characterized by the complex beam
parameter Qq.z/. We now make use of this complex beam parameter: if the complex
beam parameter Qq1.z1/ is known, then Qq2.z2/ follows from the relation

Qq2 D A Qq1 C B

C Qq1 CD
(11.146)

or
1

Qq2 D C CD= Qq1
ACB= Qq1 D 1

R.z2/
� i�

�w2.z/
: (11.147)

We mention two examples.
Example: propagation of a Gaussian beam from the location z0 (beam waist)

to a location z. The elements of the ABCD matrix for propagation in free space
are A D 1, B D z � z0, C D 0 and D D 1. At the beam waist, we have R.z0/ D 1,
w.z0/ D w0 and 1= Qq1 D �i�=�w20. It follows, for z D z2, that

�i�.�w20/
�1

1 � i�.�w20/
�1.z � z0/

D 1

R.z/
� i�

�w2.z/
: (11.148)

Equating real and imaginary parts leads to expressions for w.z/ and R.z/ that we
derived (in Sect. 11.3) by the use of the Helmholtz equations; see (11.24) and
(11.25). The agreement may be seen as a justification of the relation (11.146).

Example: focusing a Gaussian beam by a thin lens (Fig. 11.21). A thin lens
is located in the beam waist of a Gaussian beam. The ABCD matrix describing
propagation through a thin lens at z0 and then over a distance z � z0 is

Fig. 11.21 Focusing of a
Gaussian beam by a lens
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�
A B

C D

�
D
�
1 z � z0
0 1

��
1 0

�f �1 1

�
D
�
1 � .z � z0/f �1 z

�f �1 1

�
: (11.149)

We find, with 1= Qq1 D �i=zR D �i�=.�w20/ and

�f �1 � iz�1
R

1 � .z � z0/f �1 � i.z � z0/z�1
R

D 1

R.z/
� i

�

�w2.z/
; (11.150)

the values

1

R.z/
D �f �1 C .z � z0/.f �2 C z�2

R /

1 � .z � z0/2f �2 C .z � z0/2z�2
R

; (11.151)

�

�w2.z/
D z�1

R

.1 � .z � z0/2f �2 C .z � z0/2z�2
R

: (11.152)

At the focus point of the lens, z D zf, the curvatureR.zf/ is infinitely large. It follows
that

zf � z0 D f

1C f 2z�2
R

(11.153)

or, for f � zR, that zf � z0 	 f . The radius of the beam in the focus of the lens is

wf D �f

�w0
: (11.154)

With respect to the energy distribution, the beam radius is ru;f D wf=
p
2 and the

angle of divergence is �u;f D w0=.f
p
2/. The radiance in the focus of the lens,

Lu D P

�2r2u;f�
2
u;f

; (11.155)

is the same as in the incident Gaussian beam, namely P=.�=2/2 in units of m�1
sr�1. When a Gaussian beam traverses more than one optical element and all optical
elements in the beam produce ideal images (without optical aberration and without
diffraction), the radiance is the same at any location along the beam.

The diameter of the wave (with respect to the energy density) is

2ru;f D �

�

f

w0
: (11.156)

A lens of focal length f D �w0 focuses the radiation of a Gaussian beam to an area
with a diameter that is about equal to the wavelength of the radiation. If we choose
a lens of diameterD D 2w0, the diameter of the focused beam is equal to
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2ru;f D 2�

�

f

D
� �

f

D
: (11.157)

The beam diameter is �, i.e., 2ru;f D �, if the f-number of the focusing lens is
f=D D �=2 � 1.6. It follows that a lens with an f-number of 1.6 can focus a
Gaussian beam to an area of �.�=2/2 	 �2. The light intensity in the focus is

If D P

�2
; (11.158)

where P is the power of the radiation.
We mention another radiometric quantity, the brilliance of a beam:

B D rp

area �˝ ��v
: (11.159)

The brilliance of an optical beam is equal to the photon flux rp (number of photons
per second) divided by the area, by the solid angle of the beam, and by the bandwidth
of the radiation. For a detailed discussion of radiometric (physical) quantities and
photometric quantities (how the human eye records radiation), see [29].

REFERENCES [1–4, 6–11, 26, 29, 40, 64–76]

Problems

11.1. Gaussian wave.

(a) Determine the energy that is contained in a sheet (perpendicular to the beam
axis) of thickness ız at the position z.

(b) Calculate the portion of power of radiation passing an area that has the beam
radius ru;0 D r0.

(c) Evaluate the radius rp of the area passed by radiation of a portion p of the total
power of the Gaussian wave.

(d) Evaluate rp if pD 95%.
(e) Evaluate rp if pD 99%.
(f) Determine the power of the radiation that passes an area of radius rp � r0.

11.2. Determine the minimum diameter of the tube of a helium–neon laser
(�L D 633 nm) that is necessary to keep, per round trip, 99% of the radiation within
a confocal resonator (LD 0.5 m).

11.3. Angle of divergence. Determine the angle of divergence of a Gaussian beam
generated by a helium–neon laser (resonator length 0.5 m; radius of the energy
density distribution at the beam waist ru;0 D 0.16 mm; wavelength 633 nm).
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11.4. Photon density in a Gaussian wave. An argon ion laser (length 1 m; radius
of the beam waist 1 cm; wavelength 480 nm; power 1 Watt) emits a Gaussian wave.
By the use of a telescope, the angle of aperture diminishes by a factor of 10.
Estimate the number of photons arriving each second at a detector of 2 cm diameter
at different distances between laser and detector.

(a) 100 km.
(b) 374,000 km (distance earth-moon).

11.5. ABCD matrix. Determine the effective focal length of an arrangement of two
thin lenses (focal lengths f1 and f2) in contact.

11.6. Transversality of the radiation of a Gaussian wave. If a polarizer is located
in a parallel beam of polarized radiation, the amplitude of the field transmitted by the
polarizer isA D A0 cos � , where � is the angle between the direction of polarization
of the incident wave and the direction of the radiation for which the polarizer is
transparent. (We assume that the transmissivity of the polarizer is 1 for � D 0.)
Determine the loss of power of a Gaussian wave passing a polarizer (that is assumed
to be thin compared to the Rayleigh range z0 if the polarizer is located at different
positions.

(a) In the beam waist at z0.
(b) At z D z0=2.
(c) At z D z0.
(d) At z � z0.
(e) Estimate the contribution of the polarizer to the V factor of a confocal laser

resonator of 1 m length if the polarizer has a thickness of 1 cm and is located in
the center of the resonator.

11.7. Hermite-Gaussian wave. Given is a 10l Hermite–Gaussian wave.

(a) Determine the radius of the wave at the beam waist and the angles of divergence
in the far-field.

(b) Compare the results with corresponding values of a 00l Gaussian wave.

11.8. Calculate the Gouy phase of a Gaussian wave (�D 0.6 �m; w0 D 1 mm) for
propagation from the center of the beam waist over a distance of one wavelength;
1 mm; 1 cm; and 1 m.

11.9. Calculate the Gouy phase per round trip transit through a resonator of a
Gaussian wave (�D 0.6 �m).

(a) If the resonator is a near-planar resonator with two mirrors (radius of curvature
R1 D R2 D 7 m; resonator length D 1 m).

(b) If the resonator is a near-confocal resonator (radius of curvature R1 D
R2 D 1.10 m; resonator length D 1 m).

11.10. Show that a concentric resonator is not realizable. [Hint: consider the beam
waist and the angle of divergence.]
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11.11. Show that (11.44) is a solution of the Helmholtz equation.

11.12. Derive ray matrices for different optical arrangements.

(a) Reflection of radiation at a plane surface of a dielectric medium.
(b) Propagation of radiation through a thin lens.
(c) Focusing of radiation by a spherical mirror. [Hint: for solutions, see Sect. 11.9.]

11.13. Show that the intensity of radiation in a Gaussian beam averaged over an
optical period is I D c�0A

2�w20=2 and that

I.z; r/ D 2P

�w2.z/
e�2r2=w2.z/; (11.160)

where P D 2�
R
I.z; r/rdr is the power of the radiation.



Chapter 12
Different Ways of Operating a Laser

In this chapter, we describe techniques used to operate lasers as continuous wave
lasers or as pulsed lasers — in the next chapter we will treat femtosecond lasers.

We discuss single mode lasers. We mention spectral hole burning, occurring in
lasers that operate with inhomogeneously broadened transitions. We give a short
introduction to various methods of Q-switching of lasers used to generate laser
pulses.

Furthermore, we describe two applications of continuous wave lasers — optical
tweezers and gravitational wave detector.

12.1 Possibilities of Operating a Laser

Lasers can operate as continuous wave lasers, as pulsed lasers or as femtosecond
lasers. Lasers operated in different ways at different wavelengths have various
applications in physics, chemistry [77,78], biology, and medicine [79–82,127–129].
An early application was the holography [83, 84].

There are continuous wave lasers and different types of pulsed lasers:

• The cw (continuous wave) laser. Continuous pumping maintains the laser
oscillation.

• Pulsed laser. A pump pulse generates a population inversion. Or more general:
each laser that delivers pulses is a pulsed laser.

• Q-switched laser. In the Q-switched laser, the quality factor Q of the laser
resonator varies with time. The Q factor is small for most of the time and large
for a short time. During the time of small Q, population in the upper laser level is
collected. During the time of large Q, laser oscillation occurs and the population
of the upper laser level is strongly reduced.

• Giant pulse laser. This is a Q-switched laser with an upper laser level that has a
very long lifetime (for instance 1 ms); pumping leads to a large concentration of
atoms in the upper laser level.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 12, © Springer-Verlag Berlin Heidelberg 2012
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• Femtosecond laser (Chap. 13). The pumping is continuous. For most of the time,
the Q factor of the resonator is small but it is large during short time intervals
that follow each other periodically. The laser emits a coherent pulse train.

12.2 Operation of a Laser on Longitudinal Modes

A mode diaphragm eliminates transverse modes. The transverse modes suffer
stronger diffraction than longitudinal modes and cannot reach the threshold condi-
tion. This mode selection makes it possible to operate a laser on longitudinal modes,
00l, 00(lC1), : : : .

There are different possibilities of the operation of a laser on longitudinal
modes:

• Single line laser, operated on a few neighboring longitudinal modes at frequen-
cies in a narrow frequency range.

• Single mode laser, operated on a single longitudinal mode.
• Mode-locked laser, operated on a large number of longitudinal modes with

frequencies in a large frequency range — the phases of the electromagnetic fields
at different modes are coupled (locked) to each other (Chap. 13).

12.3 Single Mode Laser

Many lasers (e.g., the helium-neon laser) have narrow gain profiles, but oscillate
on a few modes (Fig. 12.1). By inserting an etalon (a plane parallel plate) into

Fig. 12.1 Mode selection with an etalon; arrangement and result for a helium–neon laser (� D
633 nm, � D 474THz)
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the resonator, selection of a single mode is possible. An etalon represents a low-Q
resonator of the resonance wavelength

�s D 2nd

s

p
n2 � sin2 � D 2nd

s
cos �; (12.1)

where n is the refractive index, d the thickness of the etalon and � the angle between
the laser beam within the etalon and the normal to the etalon; s (an integer) is the
order of resonance. Rotation of the etalon changes the angle � and the resonance
wavelength �s .

Example. Without an etalon in the resonator, a helium–neon laser oscillates on
about three modes at once (Fig. 12.1, lower part) but with etalon on a single mode.

12.4 Tunable Laser

A laser with a broadband gain profile oscillates on a single line if the laser resonator
contains an appropriate wavelength selective element. We mention three wavelength
selective elements suited to force a laser with a broad gain profile to emit a
single line.

• Prism (Fig. 12.2a). A prism in the resonator selects the laser wavelength.
The laser is tunable; rotation of the prism changes the wavelength. With an

Fig. 12.2 Tunable laser. (a) Line selection with a prism. (b) Line selection with a grating. (c) Line
selection with a birefringent filter
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etalon additionally inserted into the resonator, a laser is able to oscillate on a
single mode.

• Echelette grating (Fig. 12.2b). An echelette grating acts as one of the two
reflectors of a laser resonator. In the Littrow arrangement, radiation that is
incident on the echelette grating is diffracted in first order. The diffracted beam
has the reverse direction relative to the incident beam. A rotation of the grating
changes the wavelength of the backward diffracted radiation and thus the laser
wavelength. A mirror telescope extends the diameter of the beam in order to
obtain a higher resolving power and, furtheremore, to reduce the field strength at
the surface of the echelette grating thus avoiding damage of the grating. With an
etalon that is additionally inserted into the resonator, a laser is able to oscillate
on a single mode.

• Birefringent filter (Fig. 12.2c). The frequency selective element is a birefringent
plate (e.g., a crystal of KDP D potassium dihydrogen phosphate) located
between two polarizers in the laser resonator. The optic axis of the birefringent
plate is oriented along the surface of the plate. The birefringent plate splits a beam
of polarized radiation, incident under the Brewster angle, into an ordinary and
an extraordinary beam. Behind the plate, the radiation has elliptical polarization
and the second polarizer causes loss. There is no loss if the change of the phase
between the ordinary and extraordinary beam is a multiple of � ,

2�

�
.ne � no/lp D s � �; (12.2)

where ne is the refractive index of the extraordinary beam, no the refractive index
of the ordinary beam, lp the length of the plate along the beam direction and s
is an integer. By rotating the plate while keeping the angle of incidence at the
Brewster angle, the direction of the optic axis relative to the direction of the
electric field vector (E) changes, leading to changes of ne and of �.

12.5 Spectral Hole Burning in Lasers Using
Inhomogeneously Broadened Transitions

The oscillation behavior of a continuous wave laser depends on the type of line
broadening.

A cw laser based on a homogeneously broadened line oscillates at the frequency
of maximum gain (Fig. 12.3). When the population inversion begins, laser oscilla-
tion at the line center — where the gain coefficient ˛ has its maximum — builds
up. The onset of laser oscillation leads to a reduction of the population difference,
from (N2 � N1/0 to (N2 �N1/th for frequencies at the line center. Accordingly, the
gain coefficient changes from the small-signal gain coefficient to the threshold gain
coefficient ˛th for frequencies at the line center. Then the population difference and
the gain coefficient are not sufficient for laser oscillation at frequencies in the wings
of the line.
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Fig. 12.3 Continuous wave laser based on a homogeneously broadened transition (upper part) or
an inhomogeneously broadened transition (lower part)

Examples of continuous wave lasers based on transitions with homogeneous line
broadening: Nd:YAG laser; titanium–sapphire laser.

If laser oscillation is based on an inhomogeneously broadened line, a cw laser
can oscillate on all modes that reach the threshold gain. Laser oscillation on one
mode does not directly influence the population of two-level atomic systems that
contribute to oscillation on other modes.
Examples of lasers based on transitions with inhomogeneous broadening: helium–
neon laser; cw CO2 laser.

The gain curve ˛.�/ of a laser operated with an inhomogeneous broadened
line shows ‘holes” (see Fig. 12.3) — the effect is a manifestation of spectral hole
burning. Irradiation of a medium with laser radiation can lead to spectral hole in
a medium burning. (Generation of a spectral hole in a medium by the use of a
pulsed laser and the probing of the spectrum with cw radiation or with probe pulses,
allows for the measurement of the lifetime of a spectral hole; different methods of
spectral hole burning are widely used in physics and chemistry for studying spectral
properties of various media.)

12.6 Q-Switched Lasers

We discuss a few methods of Q-switching.

• Mechanical Q-switching (Fig. 12.4a). The reflector of the laser resonator rotates
(for example with an angular frequency of 100 turns per second). The resonator
has a high Q factor only during a short time in which the rotating mirror is
oriented parallel to the output coupling mirror. During the time of a low Q factor,
the upper laser level is populated and during the time of large Q, it is depopulated.
Example: Generation of pulses (duration 100 ns) with a Q-switched CO2 laser.

• Electro-optic Q-switch making use of the Pockels effect (Fig. 12.4b). A Pockels
cell switches the Q factor of the laser resonator from a low to a high value.
An optically isotropic crystal becomes birefringent when a static voltage (U )
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Fig. 12.4 Q-switching. (a)
Mechanical and (b)
electro-optic Q-switching

across the crystal is applied and produces a static field E s in the crystal. Then the
refractive indices for a light field E are different for the polarization directions
parallel and perpendicular to the static field. The difference of the refractive
indices is given by

n .E jj E s/ � n .E?E s/ D aU; (12.3)

where a is a material constant. A Pockels cell with applied voltage rotates the
polarization direction of the light after two transits through the cell by �=2.
A polarizer blocks the radiation. When the voltage is quickly turned off, the
crystal is no longer blocking the radiation — a laser pulse builds up in the
resonator. The Pockels effect is large for KDP (for a specific crystal orientation).
A voltage of about 25 kV is necessary for Q-switching with a crystal of 5 mm
height and 5 cm length.

• Electro-optic Q-switch making use of the Kerr effect. In a Kerr cell, an isotropic
medium becomes birefringent under the action of a static field. The difference
between the refractive indices of the ordinary and the extraordinary beam varies
quadratically with the voltage,

n .E jj E s/ � n .E?E s/ D b U 2: (12.4)

A static field orients the molecules in a Kerr cell giving rise to birefringence. The
effect is especially large for liquid nitrobenzene (C6H5NO2). A voltage of about
10 kV is necessary at a cell size of 1 cm height and 1 cm length.

• Q-switching with a saturable absorber (Fig. 12.5a). As an example of
Q-switching with a saturable absorber, we discuss Q-switching with a dye
solved in a liquid. The ground state of a dye molecule is a singlet state (S0).
The two lowest excited states are a singlet state (S1) and a triplet state (T), at
a smaller energy. By transitions S0 ! S1, laser radiation is absorbed and by
nonradiative transitions S1 ! T, molecules are transferred into the triplet state.
A triplet state has a long lifetime (0.1-1 �s); the decay of a triplet state occurs
mainly via nonradiative transitions. A Q-switched laser based on a saturable
absorber (Fig. 12.5b) is continuously pumped. At the start of the pumping, a
laser field begins to build up. The buildup of a laser field occurs slowly because
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Fig. 12.5 Q-switching with a saturable absorber. (a) Saturation process for dye molecules.
(b) Arrangement. (c) Photon density in the laser resonator

of absorption of radiation by the dye molecules. The absorption saturates the dye
molecules, then almost all dye molecules are in the triplet state and the dye cell
becomes transparent giving rise to generation of a strong laser pulse (Fig. 12.5c).
During the buildup of a pulse, the population of the upper laser level becomes
reduced to a low value. Due to relaxation of the dye molecules to their ground
state, absorption sets in and the Q value becomes small. The buildup of a laser
field begins again. Pumping is possible with radiation of another laser.

We will later (in Sect. 13.2) discuss other methods of Q-switching. Dye molecules
are discussed in more detail in Sect. 16.1.

12.7 Longitudinal and Transverse Pumping

An active medium can be obtained by longitudinal or transverse pumping.

• Examples of longitudinal pumping: pumping with a gas discharge, with the
electric field being parallel to the laser beam (Chap. 14); optical pumping with
laser radiation whose propagation direction is along the laser beam (Sect. 5.2).

• Examples of transverse pumping: pumping with a gas discharge, with the electric
field, which drives the discharge, oriented perpendicular to the laser beam
(Sect. 14.8); optical pumping with a gas discharge lamp.

12.8 An Application of CW Lasers: The Optical Tweezers

The optical tweezers are suitable for optical trapping of single biomolecules solved
or suspended in a liquid. The optical tweezers have many applications especially in
biology and chemistry.
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• Biology. Spectroscopy of trapped single molecules (e.g., red blood cells); study
of properties of DNA; sorting of cells.

• Chemistry. Spectroscopy of trapped single organic macromolecules.

Figure 12.6a illustrates the principle of the optical tweezers. A glass pearl
(diameter 1–10 �m), which is transparent for light, is trapped in the focus of a
laser beam. The beam (power � 1 mW) is strongly focused. When the glass pearl
has a position below the focus, the pearl acts as a lens and the light leaves the
pearl at an angle of aperture that is smaller than the angle under which it enters
the pearl. Accordingly, the light gains momentum in the direction of the light beam,
namely downward, and therefore the pearl gains momentum toward the focus. When
the pearl has a position above the focus, it acts as a diverging lens and the force
on the pearl is downward. In the focus, there is an equilibrium position. The light
leaves the pearl under the same angular distribution as it enters the pearl and there
is no momentum transfer. When the glass pearl is located at the height of the focus
but shifted to the left, the light beam is deflected to the left and the pearl moves
toward the focus. Finally, when the pearl is on the right side of the focus, there
is a force toward the left. Thus, the stable location of the pearl is the focus of
the lens.

An optical tweezers system can be realized as a modified microscope
(Fig. 12.6b). The object lens produces a strongly focused beam of laser radiation.
A camera monitors reflected radiation. The optical tweezers are able to trap a
macromolecule in a solvent. Investigation of a trapped molecule is possible by

Fig. 12.6 Optical tweezers. (a) Trapping of a glass pearl in a focused laser beam. (b) Arrangement
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the use of spectroscopic techniques, e.g., by studying fluorescence radiation.
Applications in biology are described in [79].

12.9 Another Application: Gravitational Wave Detector

An extraordinary ambitious project concerns the goal to detect gravitational waves
(see, for instance, [85]). The collapse of a big star generates (according to the
general theory of gravitation) a gravitational wave, propagating with the speed of
light. The wavelength of a gravitational wave is of the order of the extension of
the collapsing star. A gravitational wave is expected to compress the space in a
direction perpendicular to the propagation direction and to dilate the space in the
other direction perpendicular to the propagation direction. At present, gravitational
wave detectors based on the Michelson interferometer are built and tested at many
places.

The center of the gravitational wave detector (Fig. 12.7) is a Michelson inter-
ferometer with a laser light source. The Michelson interferometer has two arms
arranged perpendicular to each other. A beam splitter divides the laser beam into
two beams. A gravitational wave pulse traversing the Michelson interferometer is
expected to shorten one arm and to lengthen the other arm. Estimates of the effect
suggest that the path length difference may only be of the order of 10�22 m for
L1 D L2 D 1 km. The experiment requires an extremely high stability of the
laser and of the arrangement and, furthermore, an extremely high sensitivity of
detection. To have a chance to observe a signal, the arms have to be very long
(of the order of 1 km or much longer). Making use of satellites, very large arms
are realizable. The arms have slightly different lengths (L1 � L2 D �=4, where
� is the wavelength of the laser radiation) in order to have a high sensitivity of
detection.

REFERENCES [1–4, 6, 77–85, 127–129]

Fig. 12.7 Gravitational wave
detector
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Problems

12.1. Resonance condition for a planparallel plate. Derive the resonance condi-
tion (12.1) for a planparallel plate. [Hint: Determine the difference of the optical
path of a beam directly reflected at the surface of the plate and a beam reflected at
the backside of the plate.]

12.2. Michelson interferometer. A Michelson interferometer operates with a
parallel laser beam (wavelength � D 580 nm; P0 D power of the laser radiation).

(a) Calculate the intensity I.x/ at the detector for a length difference x when one
arm has the length L and the other arm the length LC x.

(b) Determine the path difference ıx for values of x in the interval x0 � x � x0C�
for x0 D 1 km that leads to the largest signal-to-noise ratio for the signal.

(c) Estimate the change of the signal if one of the arms changes its length by
ıL=L D 10�15 and the other arm by ıL=L D �10�15. [Hint: The beam splitter
in the Michelson interferometer splits an incident electromagnetic field into two
fields.]

12.3. It is possible to reduce suddenly the reflectivity of the output mirror of a laser.
Show, qualitatively, that this “cavity dumping” results in a much stronger laser pulse
than without cavity dumping.



Chapter 13
Femtosecond Laser

Mode locking allows a laser with a broad gain bandwidth to generate femtosecond
pulses. A mode-locked laser oscillates at the same time on a large number of modes.
The fields of all modes are phase-locked to each other.

We describe the principle of mode locking, techniques of mode locking, and a
method for determination of the duration of femtosecond pulses. We explain the
pump-probe method, which is suited to take ultrashort snapshots during dynamical
processes in an atomic system.

The femtosecond laser is the basis of a great variety of new areas of research
and applications. We discuss: femto-chemistry; optical frequency analyzer; terahertz
time domain spectrometer; and attosecond pulses — that is an area of nonlinear
optics with very strong optical fields. Other applications concern surgery and
material processing.

An optical frequency analyzer makes use of an optical frequency comb.
A titanium–sapphire laser generates a frequency comb with a frequency distribution
that extends over about an octave. We show in this chapter that the exact position
of the frequencies of a frequency comb generated with a femtosecond laser are
determined by: the optical length of the resonator; the Gouy phase shift; dispersion
of the active medium; and dispersion of the optical elements. Making use of methods
of nonlinear optics, the distribution can be broadened — a frequency comb can
consist of fields at equally spaced frequencies corresponding to radiation from the
near infrared to the near ultraviolet. The position of the frequencies generated by a
particular laser can be determined with a very high accuracy (Sect. 35.7).

We will introduce (Sect. 13.1) the mode locking without taking account of Gouy
phase shift and dispersion. In Sect. 13.3, we will discuss the role of the Gouy phase
shift and of dispersion.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 13, © Springer-Verlag Berlin Heidelberg 2012
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13.1 Mode Locking

The secret of the femtosecond laser is the mode locking: the laser oscillates at
the same time on a large number of longitudinal modes — with equal frequency
separation between next-near modes — and all oscillations have fixed phases
relative to each other.

We choose an active medium with a broad gain coefficient profile (Fig. 13.1a)
that has a Gaussian shape. The spectral profile F 2.!/ for a particular femtosecond
laser depends on parameters of the laser. For a first treatment of a femtosecond laser,
we assume that the profile has a rectangular shape and that the width is equal to the
gain bandwidth (Fig. 13.1b). Accordingly, the amplitude A of the field components
is constant within the frequency range !0 ��!g=2; !0 C�!g=2 and zero outside
this range. The frequency distribution represents an optical frequency comb: the
frequency distribution consists of equally spaced peaks. The frequency separation
between next-near peaks is equal to

˝ D 2�=T D 2�c=L D �c=L; (13.1)

where T D 2L=c is the round trip transit time. The number of modes with
frequencies in the gain bandwidth�!g is

N D �!g=˝: (13.2)

Fig. 13.1 Mode locking. (a) Gain coefficient profile. (b) Spectral intensity profile with a rectan-
gular shape. (c) Spectral intensity profile with a Gaussian shape
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The instantaneous electric field at a fixed location z in the laser resonator is given by

QE.t/ D A

N�1X

sD0
eiŒ.!1Cs˝/tC's	; (13.3)

where 's is the phase of the mode s and !1 D s1! is the lowest frequency of
the oscillating modes; s1 is an integer. Without mode coupling, the fields of the
different modes have different phases (which fluctuate with time). Therefore, the
field fluctuates very strongly. The laser emits laser radiation in a broad frequency
band (�!g); the radiation propagates along the resonator axis. The average intensity
of the laser radiation is

Iincoh D 1

2
c�0NA2I (13.4)

A is the amplitude of the field components.
Mode locking forces the fields to oscillate in phase,

's.t/ D 's D ': (13.5)

We choose the timescale so that

's.0/ D 's D 0: (13.6)

A round trip transit changes the phase of the fields at fixed z by 2� (Fig. 13.2). The
field at a location z in the resonator is given by

QE D A

N�1X

sD0
ei.!1Cs˝/t D A

N�1X

sD0
eis˝tei!1t : (13.7)

This is a geometric series. With r D ei˝t , we have

QE D A.1CrCr2C:::CrN�1/ei!1t D A
1 � rN

1 � r
ei!1t D A

1 � eiN˝t

1 � ei˝t
eis1˝t : (13.8)

Fig. 13.2 Field of different
modes and total field at a
fixed position z in a laser



238 13 Femtosecond Laser

We introduce the carrier frequency !c. The carrier frequency is a multiple of the
round trip transit frequency (see Fig. 13.1c) and lies in the vicinity of the center
frequency !0. We can write

QE D A
e�i 12N˝t � ei 12N˝t

e�i 12˝t � ei 12˝t
eiŒ!1tC.N=2�1=2/˝t	 D A

sin . 1
2
N˝t/

sin. 1
2
˝t/

ei!ct : (13.9)

The carrier frequency is given by

!c D !1 C .N=2� 1=2/ ˝ (13.10)

if N is an odd number and by

!c D !1 C .N=2/ ˝ (13.11)

if N is an even number. The carrier frequency is a multiple of the frequency
separation between next-near peaks,

!c D lc �˝; (13.12)

where lc is an integer. The femtosecond pulse train does not change if we add
another integer to lc (or subtract another integer from lc) as long as this number
is small compared to lc.

The real part of the field is

E D ReŒ QE	 D A
sin. 1

2
N˝t/

sin. 1
2
˝t/

cos !ct: (13.13)

We write
E D A.t/ cos!ct; (13.14)

where

A.t/ D A
sin. 1

2
N˝t/

sin. 1
2
˝t/

(13.15)

is a time-dependent amplitude. The amplitude has the form sin.Nx/= sinx, where
x D 1

2
˝t . The electric field consists of a series of wave packets with the pulse

repetition rate

fr D ˝

2�
D c

2L
: (13.16)

The carrier frequency �c D!c=2� is a multiple of c=2L, i.e., of the pulse repetition
rate.

The amplitude of the field (Fig. 13.3) shows main maxima and side maxima.

• Main maxima occur for ˝t=2 D s � � . Main maxima appear at the times

t D sT with s D 0; 1; 2; ::: : (13.17)
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Fig. 13.3 Amplitude of the wave train of femtosecond pulses and field of a pulse

Fig. 13.4 Femtosecond pulse train on the timescale (at a fixed location) and in space (at a
fixed time)

The temporal distance between next-near pulses is equal to the round trip transit
time of radiation in the laser.

• The first point, t1, of zero amplitude follows from the relation N˝t1=2 D � ,
leading to t1 D 2�=.N˝/ D T=N .

A femtosecond pulse train is coherent. It consists of periodically repeated wave
packets. The amplitude A.t/ is the envelope of the electric field curve E.t/.

The intensity I.t/ of a femtosecond pulse train (Fig. 13.4, upper part) has main
maxima and side maxima. The peak intensity,

Ipeak D 1

2
c�0A

2N 2; (13.18)

is proportional to the square of the number of oscillating modes; in case of a
measurement (outside the laser resonator), the peak intensity is smaller according
to the output coupling strength. As a measure of the pulse duration tp, we take the
halfwidth of the main peak,

tp D 1=��g: (13.19)

The mode locking corresponds to a synchronization of fields of different fre-
quencies (belonging to different modes). The synchronization is possible because all
frequencies are multiples of the same fundamental frequency˝ D 2�=T according
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to the resonance condition !l D l �˝; the phase of each field component has, after
each round trip transit through the resonator, the same value ('l D' D 0).

An active medium with a homogeneously broadened 2 ! 1 fluorescence line
is most favorable as an active medium of a mode locked laser. Then all excited
two-level atomic systems contribute to generation of radiation.

Because of frequency dependent loss, which we describe by a loss coefficient
ˇ.!/, we obtain an effective gain curve

˛eff.!/ D ˛.!/ � ˇ.!/: (13.20)

The optical properties of the coatings of the optical elements (including the
resonator mirrors) in the laser resonator depend on the wavelength. Therefore, also
the loss factor depends on the wavelength. The gain medium together with the
coatings determine the actual carrier frequency — the carrier frequency can be
smaller or larger than !0. Thus, the carrier frequency can be chosen by making
use of appropriate optical elements.

Mode locking is possible by active mode locking or by passive mode locking.
We will describe techniques of mode locking in the next section.

Before, we should mention that the field E.t/ is the Fourier transform of the
frequency spectrum F.!/ and vice versa:

E.t/ D 1

2�

Z C1

�1
F.!/ei!td! (13.21)

and

F.!/ D
Z C1

�1
E.t/e�i!tdt: (13.22)

Figure 13.5 (upper part) shows the rectangular spectral intensity profile F 2.�/.
The lower part shows E.t/, obtained by a Fourier transformation of F.t/, together

Fig. 13.5 A frequency comb: the spectral intensity profile (of rectangular shape) and the field
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with the envelope function A.t/. The product of the pulse duration and the gain
bandwidth is equal to unity,�tp��g D 1.

Example: titanium–sapphire laser (see Fig. 13.4, lower part). Width of the gain
profile ��g D 1.1 � 1014 Hz (Sect. 7.6); length of the resonator 1.5 m; pulse
duration tp D 9 fs; spatial length of a single pulse ctp D 3 �m; distance between
subsequent pulses � 3 m. The number of phase-locked modes is N � 1 �
1014 Hz/108 Hz � 106. The round trip transit time of a light pulse is T D 10 ns
and the pulse repetition rate fr D 100 MHz.

We mention here also Gaussian pulses [86]. A Gaussian pulse is characterized
by the following quantities.

• Spectral intensity profile F 2.!/ D expŒ�4 ln 2.! � !0/
2=�!2g 	I�!g D gain

bandwidth (FWHM).
• Fourier transformation of E.!/ yields the time-dependent amplitude A.t/ and

thus the temporal intensity profile I.t/=Ip D A2.t/=A2, where Ip is the peak
intensity.

• Temporal intensity profile I.t/=Ip D expŒ�4 ln 2t2=t2p 	I tp D 4 ln 2=�!g D
pulse duration (FWHM)

For a Gaussian profile of the spectral-intensity envelope, the pulse duration-
bandwidth product is, with ��g D �!g=2� , equal to

tp ��0 D 2 ln 2

�
D 0:441: (13.23)

According to the gain bandwidth of titanium-sapphire, pulses with a pulse duration
as short as �4 fs should be attainable; pulses of a duration of �5 fs have indeed been
observed [87]. (Note: in comparison with a rectangular shape of the intensity profile,
a Gaussian shape with the same gain bandwidth has a broader spectral distribution
of the amplitudes and leads therefore to shorter pulses.)

13.2 Active and Passive Mode Locking

An acousto-optic modulator (Fig. 13.6a) is suitable for active mode locking. The
switch consists of a periodically in time-varying diffraction grating. An ultrasonic
wave in a crystal modulates spatially the mass density of the crystal and therefore the
refractive index. Every half period of the ultrasonic field, the modulation disappears
during a short moment. Therefore, there is no diffraction pattern for a short moment
and a light pulse passes the modulator without diffraction loss. Laser pulses pass the
modulator without diffraction at twice the ultrasonic frequency fs. The frequency of
the ultrasonic wave is 2fs D 1=T . A laser of length 1.5 m, 1=T D c=2L D 108 Hz
(100 MHz) requires an ultrasonic wave of a frequency of 50 MHz.

Kerr lens mode locking is a method of passive mode locking. The refractive
index of a material depends on the radiation intensity I,
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Fig. 13.6 Mode locking.
(a) Acousto-optic switch and
(b) Kerr lens mode locking

n.x; y; t/ D n0 C n2 I.x; y; t/; (13.24)

where n0 is the refractive index and n2 the Kerr coefficient.
Figure 13.6b shows the principle of the Kerr lens mode locking: a strong laser

pulse produces a Kerr lens in the Kerr medium due to self-focusing of the radiation
(Sect. 35.6). The Kerr lens is a transient lens; it exists only during the passage of the
laser pulse through the Kerr medium. The radiation belonging to the wings of the
temporal distribution of the intensity does not become focused. Therefore, the Kerr
lens cuts radiation in the wings of the temporal distribution of the intensity. At the
steady state of a femtosecond laser, a pulse lengthening during one round trip transit
through the laser resonator is compensated by the action of the Kerr lens.

The active medium itself, a Ti3C:Al2O3 crystal, is suitable as a Kerr lens in a
titanium–sapphire laser. The Kerr coefficient of sapphire has the value n2 D 3 �
10�20 m2 W�1; for an estimate of n2, see Sect. 35.6 and Problem 35.3. To reach a
change of the refractive index (n D 1.74) by an appreciable amount (for example,
by 0.3), the power density of the radiation has to be very large (� 1019 W m�2).

The titanium–sapphire femtosecond laser (Fig. 13.7a) contains a chirped mirror
that compensates different optical path lengths of radiation of different wavelengths;
a chirped mirror consists of an antireflecting surface layer and of multilayers
composed of layers of different thicknesses. The crystal surfaces of the titanium–
sapphire crystal are cut under the Brewster angle. A pump laser produces population
inversion. The spectral distribution of the radiation emitted by a femtosecond
titanium–sapphire laser (Fig. 13.7b) corresponds (for pulses with a duration of about
5 fs) to a frequency width (110 THz), which is about a third of the carrier frequency
(360 THz). Femtosecond pulse operation is possible at different carrier frequencies;
however, a modification that corresponds to an effective spectral gain coefficient
leads to a narrowing of the spectral gain coefficient profile and therefore to a
lengthening of the femtosecond pulses.

Another technique of mode locking makes use of a saturable absorber. A laser
pulse saturates the absorption. After each transit of a pulse through the saturated
absorber, the pulse is amplified in the gain medium and the population of the upper
laser level is strongly reduced. After each transit of a pulse, the population builds
up again. Dye molecules solved in a solvent are suitable as saturable absorbers of
visible radiation (Sect. 12.6).



13.3 Optical Frequency Comb 243

Fig. 13.7 Titanium–sapphire laser. (a) Arrangement. (b) Spectral intensity distribution of laser
radiation of a mode locked titanium-sapphire laser

Later, we will discuss a further technique of passive mode locking, namely mode
locking via the intensity-dependent reflectivity of a mirror (Sect. 15.6).

13.3 Optical Frequency Comb

In the preceding section, we assumed that the mode-locked fields have frequencies
that are multiples of the repetition rate. We neglected three effects — Gouy phase
shift; phase shift due to dispersion of the active medium; and phase shift due to
dispersion of the optical elements.

We first discuss the influence of the Gouy phase shift on the wave packets

QE D A

N�1X

sD0
ei.!1Cs˝/tC!Gouy D A

N�1X

sD0
eis˝tei.!1C!Gouy/t ; (13.25)

where !Gouy D 2��Gouy is the Gouy angular frequency. It follows, from a calcula-
tion according to (13.10)–(13.15), that the field is given by

E D A.t/ cos.!c C !Gouy/t; (13.26)

A.t/ D A
sin. 1

2
N˝t/

sin. 1
2
˝t/

: (13.27)

While !c is still a multiple of the repetition rate ˝ , the frequency !c + !Gouy is
not a multiple of ˝ (except for the Gouy phase zero). Taking into account that

generated by a femtosecond laser. Instead of (13.7), the field is equal to
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!Gouy � !c, we can write

E D A.t/ cosŒ!ct C 'ce.t/	; (13.28)

where
'ce.t/ D 2��Gouyt D � t=T (13.29)

is a time-dependent phase, the carrier envelope phase, and� the Gouy phase shift
per round trip transit. The carrier envelope phase varies slowly in comparison with
the phase !ct . A variation by 2� occurs in a time distance that corresponds to many
periods of the carrier frequency.

A frequency comb (Fig. 13.8a) is characterized by:

• �c D!c=2� D carrier frequency (near the frequency �0 of maximum gain);
• fr D c=2L D 1=T D˝=2� D pulse repetition rate ( D pulse repetition

frequency);
• fo D offset frequency;
• �l D l � fr + fo D frequencies of the frequency comb;
• �lC1 � �l D˝=2� D c/2L D frequency distance between next-near peaks.

The halfwidth of a peak is determined by the pulse duration. The field (Fig. 13.8b)
shows that there is a jitter between theA.t/ curve and the cos.!ctCce/ curve.A.t/
is periodic with the period 1=T . The cos.!ctC2��Gouyt/ term changes continuously
its phase from 2��Gouyt D 0 to 2� but remains, in the time average, synchronous to
A.t/; the fields E1.t/, E2.t/, E3.t/ andE4.t/ (Fig. 13.8b) are the fields at the times
t , t C f �1

o =4, t C f �1
o =2 and t C 3f �1

o =4, respectively.

Fig. 13.8 A frequency comb influenced by the Gouy phase shift. (a) Frequency offset.
(b) Amplitude of the femtosecond pulses and field curves at different times
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Fig. 13.9 Influence of dispersion of the active medium on a frequency comb. (a) Gain coefficient.
(b) Change of refractive index. (c) Frequency comb (dashed) with a frequency shift due to
dispersion of the active medium

Example of an offset frequency due to the Gouy phase shift. A femtosecond
titanium–sapphire laser (confocal resonator of length L D 0.5 m; fr D 300 MHz;
Gouy phase shift Gouy D�) shows an offset frequency fo D �Gouy D 150 MHz.

We now discuss the influence of dispersion of an active medium. We characterize
the active medium by the gain coefficient ˛.!/ (Fig. 13.9a). We assume that the
refractive index increases linearly with frequency (Fig. 13.9b), as expected for
frequencies around the frequency!0 of maximum gain (Sect. 9.4, Example). Above
the center frequency !0, the change of the refractive index is positive, causing an
increase of the resonance frequencies of the laser resonator. Below !0 the change
of the refractive index is negative, causing a decrease of the resonance frequencies
of the resonator. The frequency separation between next-near modes has a constant
value (Fig. 13.9c) because the frequency shift is proportional to ! � !0. Without
dispersion, the separation between next-near modes is

˝ D 2�c

2L
: (13.30)

With dispersion of the active medium (of length L0), the separation between next-
near modes follows from
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�
:

(13.31)
The frequency difference is

˝ �˝ 0 D ˝
L0

L

dn

d!
˝: (13.32)

Dispersion of the active medium reduces the frequency distance between next-near
resonances. The field at a fixed position in the laser resonator is given by

QE D A

N�1X

sD0
ei.!1Cs˝0/t D A

N�1X

sD0
eis˝0tei!1t : (13.33)

In comparison with (13.7),˝ 0 replaces˝ . The summation leads to

E D A.t/ cos!ct; (13.34)

where

A.t/ D A
sin. 1

2
N˝ 0t/

sin. 1
2
˝ 0t/

(13.35)

is the time-dependent amplitude. The repetition rate of the pulses is

fr D 2�=˝ 0: (13.36)

The carrier frequency!c is not a multiple of the repetition rate but of˝ D 2�c=2L,

!c D lc˝; (13.37)

where lc is an integer. We write

!c D !0
c C !o; (13.38)

where
!0

c D l 0c˝ 0 (13.39)

now is a carrier frequency that is a multiple of the repetition rate ˝ 0, l 0c is an integer
and where

!o D lc˝ � l 0c˝ 0 (13.40)

is a carrier offset angular frequency. It follows that the field is

E D A
sin. 1

2
N˝ 0t/

sin. 1
2
˝ 0t/

cos
�
!0

ct C 'ce.t/
�
; (13.41)
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where
'ce.t/ D !ot (13.42)

is the carrier envelope phase. We find the carrier offset angular frequency

!0
o D lc˝ � l 0c˝ 0 D l 0c˝

L0

L

dn

d!
˝ � .l 0c � lc/˝: (13.43)

We obtain, with l 0c˝ � !0, an estimate of the offset angular frequency,

!0
o D ˝

L0

L

dn

d!
!0 � .l 0c � lc/˝; (13.44)

and thus of the offset frequency,

fo D
�
L0

L

dn

d!
!0 � .l 0c � lc/

�
c

2L
: (13.45)

We choose l 0c so that fo is positive but not larger than c=2L,

fo � c

2L
: (13.46)

Example of an offset frequency due to dispersion of an active medium. A fem-
tosecond titanium–sapphire laser (active medium: population difference N2 �
N1 D 1022 m�3, dn=d! D �1� 10�13 s�1, crystal length L0 D 1.5 cm ; resonator
length L D 0.5 m; pulse repetition rate fr D 100 MHz) shows an offset frequency
due to dispersion of fo D 400 MHz; the offset frequency due to dispersion of the
active medium depends on the density of excited two-level states and depends
therefore on the pump strength.

A third effect contributes to the carrier envelope offset phase: dispersion of the
optical elements in the resonator of a femtosecond laser. Depending on the sign of
dn=d! of an optical element (for instance, of a reflector), the corresponding change
of phase can lead to an increase or a decrease of the frequency separation between
next-near peaks of the frequency comb.

Thus, the offset frequency of a femtosecond laser is the sum of the offset
frequencies that are caused by Gouy phase shift, dispersion of the active medium,
and dispersion of the optical elements.

The field of a frequency comb has peaks the frequencies

�l D lfr C fo: (13.47)

To find exact values of the frequencies of a frequency comb, we have to determine
three parameters: order l ; pulse repetition rate fr; and frequency offset fo. For a
particular laser, all three quantities can be determined experimentally with a high
accuracy (Sect. 35.7) by the use of techniques based on nonlinear optics.
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Nonlinear dispersion, occurring in addition to linear dispersion, disturbs each
pulse during a round trip transit through the laser resonator. This disturbance would
continuously deform the shapes of the pulses. However, the disturbence is strongly
suppressed from pulse to pulse by the Kerr lens. Due to the pulse shaping by the
Kerr lens, the round trip transit time is strictly periodic: the pulses propagate within
the resonator with the group velocity described by the envelope functionA.tCT / D
A.t/. The carrier wave (at the frequency !c), on the other hand, propagates with the
phase velocity.

It is possible to broaden a frequency comb in the frequency space by the use
of techniques of nonlinear optics (Sect. 35.7). A broad frequency comb, extending
over the entire visible spectral range, represents white light. Focusing ultrashort light
pulses onto a transparent material (a solid, a liquid or a gas) can lead to generation
of a white light continuum (with a spectral super broadening of the femtosecond
pulses — the origin is the interplay of short pulses and a dispersive medium; for
more information, see for instance [86]).

13.4 Optical Correlator

How can we determine the duration of femtosecond pulses? In an autocorrelator
(Fig. 13.10a), a beam splitter divides the laser beam into two beams. The paths
of the two beams are different but join each other after passing another beam
splitter. A lens focuses the beams on a frequency doubler, which produces second
harmonic radiation. A filter behind the frequency doubler blocks the radiation of
the fundamental frequency. Another lens focuses the second harmonic radiation on
a detector. The detector signal is a measure of the strength of the second harmonic
radiation. The two second-harmonic pulses arriving at the frequency doubler have
equal strength. The detector has a large response time and monitors the average
power of the second harmonic radiation. It is not necessary that the detector is able
to resolve the single pulses temporally. A KDP crystal, which has a high nonlinearity
of second harmonic generation, is suitable as a frequency doubler. The delay time
between the two pulses is

td D 2x=c; (13.48)

Fig. 13.10 Optical correlator. (a) Arrangement. (b) Signal
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where x is the shift of the movable mirror and where x D 0 corresponds to equal
path lengths of the two pulses. The detector signal (Fig. 13.10b) has a maximum
if the delay time is zero. The pulse duration follows from the shape of the signal
curve. The intensity of the second harmonic radiation increases quadratically with
the intensity,

I.2!; t; td/ D K jI1.t/C I2.t C td/j2 : (13.49)

K is a constant and I1 and I2 are the intensities of the two beams. The integration
with respect to time yields the signal as a correlation

S.td/ D K

�det

Z �det

0

I.2!; td/dt; (13.50)

where �det is the integration time of the detector (or of a following electronic
monitoring device). If the intensities are equal, we expect the signal

S.td/ D K

�det

�
2 < I2.t/ > C4 < I.t/I.t C td/ >

�
: (13.51)

The signal caused by a beam with a Gaussian shape of the temporal distribution is,
for td D 0, about three times the signal caused by the corresponding two pulses
arriving at large delay (td � tp).

We will treat the mechanism of frequency doubling later (Sect. 35.3). Beside the
measurement of the intensity autocorrelation, which we described here, there are
various other techniques of autocorrelation measurements (e.g., measurement of the
field autocorrelation; see books on femtosecond lasers).

13.5 Pump-Probe Method

The femtosecond pulses are suited to investigate the dynamics of fast processes.
Examples are the studies of short-lived excited states of atoms, molecules or solids.
Applications lie in fields of physics, chemistry, biology, and medicine.

In a pump-probe experiment (Fig. 13.11a), a pump pulse (of large pulse energy)
and a probe pulse (of small pulse energy) are passing through a sample containing,
for example, molecules. The pump pulse excites molecules into an excited state. The
probe pulse excites molecules further to an energetically higher lying state, which
decays by emission of fluorescence radiation. The second excitation is only possible
during the lifetime .�/ of the excited state. A pump-probe arrangement (Fig. 13.11b)
consists of a femtosecond laser, a beam splitter, and a delay section. To measure the
fluorescence radiation, a detector with a large response time (large compared to the
temporal separation of two subsequent pulses) is suitable. The detector signal S.td/,
determined for different time delays td, yields the lifetime � of the first excited
state (Fig. 13.11c); the delay time is td D 2x=c, where x D 0 corresponds to the
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Fig. 13.11 Pump-probe experiment. (a) Principle. (b) Arrangement. (c) Signal

Fig. 13.12 Dissociation of an ICN molecule and fluorescence signal of the (CN)� fragment

situation that probe and pump beam passed the same path length when they reach the
sample.

The pump-probe method provides ultrashort snapshots.

13.6 Femtosecond Pulses in Chemistry

In 1999, the Egyptian scientist Ahmed H. Zewail at the California Institute of
Technology in Pasadena (U.S.A.) received the Nobel Prize in chemistry for his
“Outstanding research on the transition states of chemical reactions with the fem-
tosecond spectroscopy.” Zewail and coworkers and other research groups developed
methods (femtochemistry) allowing for an investigation of the dynamics of chemical
reactions. Here, we discuss an experiment.

In a reaction process (Fig. 13.12, left), the molecule ICN (iodine cyanide) is
brought, by excitation with a femtosecond pump pulse (frequency �1), into an
excited state (ICN)�. This state is antibonding and decays into an I (iodine) atom and
a CN radical. How long does it take until the CN radical forms by the dissociation
of ICN in I and CN? To study this question, a probe pulse (frequency �2) following
the first pulse excites CN radicals. Fluorescence radiation (Fig. 13.12, right) from
excited CN radicals (CN)� indicates that it takes about 200 fs until CN forms.
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13.7 Optical Frequency Analyzer

In 2005, the Nobel Prize in physics was donated to Roy Glauber, John Hall, and
Theodor Hänsch for pioneering work in quantum optics and laser spectroscopy.
Glauber performed theoretical investigations in the field of quantum optics. Hall
and Hänsch received the Nobel Prize “for their contribution to the development
of laser-based precision spectroscopy, including the optical frequency comb.” The
frequency comb is the basis of an optical frequency analyzer and, in future, most
likely of a new frequency standard.

The main part of an optical frequency analyzer (Fig. 13.13a) is a frequency comb.
It consists of radiation at discrete frequencies (�l , �lC1, �lC2, ...). The frequency
distribution extends from the near infrared to the near ultraviolet. The optical
frequency analyzer serves for determination of the frequency � of a monochromatic
radiation source (for instance of a highly stabilized continuous wave laser). The
measurement of the beat frequency

fbeat D �l � �; (13.52)

yields the value of �. The beat frequency is measured by frequency mixing of
radiation at the frequencies �l and � in a photodiode (Fig. 13.13b). The beat
frequency can be in the range of 0.1–10 GHz.

The frequencies �l are equally spaced. The exact position of a frequency �l is
influenced by the Gouy phase and by dispersion effects (Sect. 13.3). In order to
determine �l of a particular laser and to reach a high accuracy (1:10�16) of the
frequency measurement, the operation of an optical frequency analyzer makes use,
as already mentioned, of nonlinear optical effects (Sect. 35.6).

Fig. 13.13 Optical frequency analyzer. (a) Frequencies involved in the frequency analyzer.
(b) Arrangement
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13.8 Terahertz Time Domain Spectroscopy

The time domain spectroscopy [92–96] is a new spectroscopic method — it allows
for the simultaneous measurement of the time dependences of both the amplitude
and phase of an electromagnetic wave. The method is particularly suited to perform
spectroscopic investigations with coherent terahertz and sub-terahertz waves, in the
frequency range from about 0.1 to 100 THz (wavelength range 3 �m to 0.3 mm).
Applications lie in fields of physics, chemistry, and biology. Optical properties of
materials such as solids, liquids, chemicals, and biomaterials can be determined.

A THz time domain spectrometer (Fig. 13.14a) consists of a THz field generator
and a THz field detector both operated by the use of the same femtosecond laser
(pulse duration 10 fs; repetition rate 50 MHz). The beam of the femtosecond laser
is split into a main beam (used for generation of the THz field) and a reference
beam (for detection). The main beam passes a generator crystal and the reference
beam passes, after a time delay, a detector crystal. The generator crystal emits
coherent THz radiation pulses; their duration is much larger than the duration of the
femtosecond pulses. THz radiation reflected from a sample is focused to the detector
crystal. The reference beam serves for the measurement of the instantaneous
strength of the THz field at the location of the detector crystal. Under the action of
the THz field, the detector crystal becomes birefringent and rotates the polarization
direction of the optical radiation. Therefore, the radiation is able to pass a polarizer
and to give rise to a signal by a photodetector; without THz field, the polarizer
blocks the optical radiation.

The signal S.x/ of the photodetector corresponds, since td D 2x=c, to the
signal S.td/ for different time delays td (Fig. 13.14b). S.td/ is a measure of the
time dependence of the THz field. A Fourier analysis of the S.td/ curve yields
(Fig. 13.14c) both the spectrum F.�/ of the amplitude and the spectrum '.�/ of the
phase of the THz field. From these informations, the complex reflectivity coefficient
and thus real and imaginary parts of the dielectric response function of the sample
can be extracted. The Fourier coefficients provide the connection between F.�/
and '.�/, on one side, and the real part �1.�/ and the imaginary part �2.�/ of the
susceptibility, on the other side.

The origin of generation of a THz field is the difference frequency generation:
nonlinear frequency mixing of the field components contained in a femtosecond
pulse results in generation of a THz field. Femtosecond pulses with a spectral
width of 100 THz lead to difference frequencies of all different field components
from zero frequency to 100 THz. The difference frequency generation makes use
of the nonlinear polarization (Sect. 35.4). GaSe has a large nonlinear coefficient for
difference frequency generation.

Electrooptic crystals with large coefficients for THz field induced birefringence
(used for detection) are GaSe and ZnTe.

The method makes it possible, as mentioned, to determine amplitudes and
phases of THz fields. Thus, the real and imaginary parts of the susceptibility of
materials can be determined. Almost all solid or liquid materials have excitations
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Fig. 13.14 Time domain THz spectroscopy. (a) Time domain THz spectrometer. (b) Detector
signal. (c) Amplitude and phase spectra

Fig. 13.15 Time domain sub-THz/THz time domain spectrometer. (a) THz field generator.
(b) THz field detector. (c) Arrangement

in the frequency range 1–100 THz. In this range, electrons, phonons, and magnetic
excitations determine optical properties of solids, liquids, and biomolecules.

Time-domain spectroscopy began with a fast switch, the Auston switch
[97–100] (Fig. 13.15a). Irradiation of semi-insulating GaAs with a 100-fs pulse
results in generation of charge carriers. A static field produced with a static voltage
(for instance 80 V across a GaAs crystal of 50 �m thickness) accelerates the
electrons giving rise to generation of radiation. The spectrum of the radiation is
determined by the temporal change of the current, dI=dt . The device acts as a
Hertzian dipole. The spectrum of the radiation extends from � 100 GHz to several
THz with a maximum at a wavelength around 1 mm (i.e., the radiation covers a
range of sub-THz and THz frequencies). Another switch can be used as an antenna
for measuring the instantaneous strength of a THz field (Fig. 13.15b). The THz
field accelerates free electrons that are created by means of a femtosecond pulse.
Variation of the delay between a femtosecond pulse and a THz pulse at the detector
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Fig. 13.16 Attosecond pulses. (a) Arrangement for generation of attosecond pulses. (b) Femtosec-
ond pulse and a neon atom. (c) A neon atom and electrons in the femtosecond field. (d) Accelerated
electrons corresponding to an instantaneous current I and attosecond pulse

makes it possible to determine amplitude and phase of the THz field. THz radiation
reflected by an object can be detected (Fig. 13.16c). The signal obtained from the
detector contains information on the surface region of an object.

13.9 Attosecond Pulses

Figure 13.16a illustrates a method for generation of attosecond pulses. An intense
femtosecond pulse (duration 2.5 fs, obtained by a pulse-shortening technique) of
visible radiation focused on a box containing noble gas atoms (for instance neon)
generates an attosecond pulse. The attosecond pulse (duration 80 as) represents an
X-ray flash. The spectral distribution of the radiation lies mainly in the 10–20 nm
range. Figure 13.16b shows an optical field pulse and a neon atom. The field excites
electrons so strongly that they separate from the positive core (Fig. 13.16c). The field
of a femtosecond pulse accelerates the electrons further and then decelerates them.
The deceleration and the recombination of the electrons with the core results in the
emission of attosecond radiation. The electron motion corresponds to a current I
with a fast temporal change dI=dt giving rise to emission of an electromagnetic
field (Fig. 13.16d). The process corresponds to a nonlinear polarization of the atoms
(Sect. 35.2); see, for instance, [101–103].

REFERENCES [86–105]

Problems

13.1. Ultrashort pulses. Estimate the pulse duration of a mode locked laser
operated in a spectral range from �0 to 1.1 �0 for lasers in different frequency
ranges.
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(a) If �0 D 30 THz (range of the CO2 laser; only a frequency region of 5% width
relative to the frequency has been realized in experiments).

(b) If �0 D 1 THz (far infrared).
(c) If �0 D 3 �1017 Hz (X-rays of a wavelength of 1 nm).

13.2. Femtosecond titanium-sapphire laser. Estimate the output pulse power,
the average power, and the energy of a train of pulses emitted by a femtosecond
titanium–sapphire laser (pulse duration 10 fs; pulse repetition rate 100 MHz; length
of the crystal L0 D 1 cm; beam area a1a2 D 0.25 mm2; pump rate r D 3 �
1028 m�3 s�1).

13.3. Attosecond pulses. Determine the pulse power of an attosecond pulse
(duration 100 as) consisting of 108 photons of radiation at an average wavelength
of 10 nm.

13.4. Unstabilized femtosecond laser. A femtosecond laser that is highly stabi-
lized generates a train of pulses of duration of 10 fs. In the case that the laser is
not sufficiently stabilized, the temporal separation of subsequent pulses varies due
to fluctuations of the length of the laser resonator. The pulses can be described as
pulses with an average amplitudeA.t/ that has a Gaussian shape on the timescale.

(a) Give an expression for the frequency spectrum.
(b) Determine the frequency spectrum if the pulse duration is equal to 100 fs.

13.5. Stabilization of a femtosecond laser. Determine the requirement of length
stabilization of a femtosecond laser that produces pulses of a duration of 5 fs
(repetition rate 100 MHz).

13.6. Acousto-optic switch.

(a) Relate the frequency of the ultrasonic wave and the length of the optical
resonator.

(b) What is the condition that determines the length of the quartz plate?
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Chapter 14
Gas Lasers

A gas laser contains atoms or molecules. Stimulated transitions occur in atoms
between electronic states and in molecules between rotational, vibrational, or
electronic states. We describe various gas discharge lasers: helium–neon laser; metal
vapor laser; argon ion laser; excimer laser; nitrogen laser; CO2 laser; optically
pumped gas lasers.

The excimer laser and the CO2 laser are two important industrial lasers. The
excimer laser generates intense UV radiation pulses. The CO2 laser is a source
of infrared radiation. It has a high efficiency of conversion of electric power to
power of laser radiation. The CO2 laser is very versatile — it operates as continuous
wave laser or as pulsed laser. Optically pumped gas lasers (pumped with CO2 laser
radiation) are suitable for generation of far infrared radiation.

We first treat two line broadening mechanisms that play a role in gas lasers: the
Doppler and the collision broadening. Then we discuss different gas lasers.

14.1 Doppler Broadening of Spectral Lines

Doppler broadening is a main broadening mechanism for spectral lines of gases at
low pressure. The frequency of the radiation that is due to transitions between two
discrete energy levels of an atom (or a molecule) is

� D �0 C .vz=c/ �0; (14.1)

where �0 is the frequency of the radiation emitted by the atom at rest and vz is the
velocity component in z direction. The atoms in a gas have a Maxwellian velocity
distribution

f .vx; vy; vz/ D

 m

2�kT

�3=2
exp



� m

2kT



v2x C v2y C v2z

��
: (14.2)

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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T is the temperature of the gas, m the mass of an atom (or molecule), and
f .vx; vy; vz/dvxdvydvz) is the probability to find an atom with a velocity vxvyvz

in the velocity element dvxdvydvz. The integral over the distribution is equal to
unity,

Z 1

�1

Z 1

�1

Z 1

�1
f dvxdvydvz D 1: (14.3)

How large is the probability to find an atom in the velocity interval vz; vz C dvz

(Fig. 14.1a)? It is

f .vz/dvz D

 a
�

�3=2
e�av2z dvz

Z 1

�1
e�av2xdvx

Z 1

�1
e�av2ydvy; (14.4)

where a D m=2kT is an abbreviation. It follows, with

Z 1

�1
e�av2xdvx D .�a/�1=2; (14.5)

that

f .vz/ D
r

m

2�kT
exp



� m

2kT
v2z
�
: (14.6)

How large is the probability g.�/d� of a transition in the frequency interval �; � C
d�? The answer is

g.�/d� D f .vz/dvz: (14.7)

Fig. 14.1 Doppler broadening. (a) Maxwellian velocity distribution. (b) Gain coefficient of a
medium with a Doppler broadened line
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With
dvz D c

�0
d�; (14.8)

we obtain

g.�/ D 2
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�
ln 2
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�
� ln 2

.� � �0/
2

.��D=2/2

	
; (14.9)

where

��D D 2�0

r
2kT ln 2

mc2
(14.10)

is the Doppler linewidth. It depends on the temperature and the atomic mass of
the atoms and is independent of the gas pressure. The Doppler broadening leads to
a Gaussian line. The Doppler broadening is an inhomogeneous broadening mecha-
nism because atoms of different velocities have emission lines (and absorption lines)
at different frequencies.

The gain coefficient ˛.�/ of an active medium with a Doppler broadened
transition is proportional to the population difference N2 � N1 (Fig. 14.1b). The
halfwidth of the gain curve is independent of N2 �N1.
Example. Helium–neon laser; � D 633 nm; mNe D 20 mp; mp D proton mass;
k D 1:38 � 10�23 J K�1; ��D D 1:5 � 109 Hz.

14.2 Collision Broadening

According to a classical description of collision broadening (D pressure broaden-
ing) in gases, a collision of an excited atom with another (nonexcited) atom changes
the phase of the sinusoidal oscillation of the excited atom — an atomic oscillation
is submitted to dephasing (Fig. 14.2a); see also Sect. 4.11. The time �c between two
collisions is a phase relaxation time (D dephasing time). Between two collisions, an
electron of the excited atom performs, in the picture of the classical oscillator model
(Sect. 4.9), an oscillation at the transition frequency.

Fig. 14.2 Collision broadening. (a) Collision time. (b) Absorption coefficient
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A Fourier analysis of the electric field emitted by the atom leads to a Lorentzian
line

gL;res.�/ D ��c

2�

1

.�0 � �/2 C��2c=4
: (14.11)

The linewidth is equal to

��c D 1

��c
: (14.12)

The theory of collision broadening provides, in accordance with experimental
results, a relation between linewidth and collision time,

��c D
r
8

�

�2cp
mkT

� p D K � p: (14.13)

The linewidth is proportional to the pressure.K is a characteristic constant of a gas,
�c is the cross section for collisions,m the mass of the gas molecules (or atoms) and
p the gas pressure. At room temperature, K � 1 GHz/p, where p is measured in
units of bar; K has values between 0.3 and 2.5 GHz/p, depending on the atoms or
molecules.

The collision broadening corresponds to a homogeneous broadening mechanism
because all atoms are submitted to collisions. The absorption coefficient of radiation
interacting with a collision broadened transition is equal to

˛abs.�/ D .h�=c/B21gL.�/N1: (14.14)

N1 is the (number) density of molecules (atoms). The density is proportional
to pressure. The maximum of the lineshape function is inversely proportional to
pressure. Therefore, the absorption coefficient at the line center is independent of
pressure while the linewidth increases linearly with pressure (Fig. 14.2b).

The gain coefficient of an active medium consisting of molecules with a collision
broadened line is equal to

˛.�/ D .h�=c/B21gL.�/ � .N2 �N1/: (14.15)

Example. CO2 lasers operated at large gas pressures (Sect. 14.8).

14.3 Helium–Neon Laser

The helium–neon laser belongs, beside the ruby laser, to the two first lasers and is
still in use. In the helium–neon laser, Ne atoms are excited into s states (Fig. 14.3a).
Laser transitions are s ! p transitions. The helium–neon laser is a three-level laser
type. Accidentally, the second lowest excited state of a helium atom (21S state) has
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almost the same energy as the 5s state of Ne. This coincidence allows for a selective
excitation of the 5 s state of Ne:

• In a gas discharge, electrons excite helium atoms; the excited helium atoms have
very long lifetimes.

• Atomic collisions between excited He and Ne atoms lead to a transfer of
excitation energy from He to Ne atoms.

• Stimulated 5s ! 3p transitions result in generation of laser radiation of a
wavelength of 633 nm.

• The 3p levels are depopulated by spontaneous emission of radiation (wavelength
near 450 nm) by 3p ! 3s transitions. The 3s state has a very long lifetime.
Relaxation is possible via collisions of the neon atoms in the 3s state with the
wall of the tube that contains the gas; it is a process of nonradiative relaxation.
To obtain a sufficiently fast relaxation, a narrow gas tube is favorable.

• The lifetime of the 5s state is about 100 ns and the lifetime of the 3p state about
10 ns.

• Stimulated 5s ! 4p transitions lead to generation of laser radiation of a
wavelength of 3.4 �m.

The lowest excited state level of He (23S state) almost coincides with the 4s level
of neon; the energy difference (�40meV) is equal to �2kT . Helium atoms, excited
by electron collisions to their lowest excited state, transfer the excitation energy to
neon atoms resulting in a population of the 4 s level of neon. Stimulated 4s ! 3p
transitions lead to generation of laser radiation at a wavelength of 1.15 �m.

The helium–neon laser (Fig. 14.3b) contains a gas mixture of helium and neon
(ratio 5:1; pressure �5 mbar) in a glass tube (typical length 0.5 m; diameter
1–2 mm). Brewster windows close the tube. Radiation of the appropriate polariza-
tion passes the windows without reflection loss (Fig. 2.16). A gas discharge (voltage
�2 kV; current �10 mA) leads to a laser output power (�1 mW at 633 nm), which

Fig. 14.3 Helium–neon laser. (a) Principle. (b) Arrangement
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corresponds to an efficiency of the order of 0.01%. There are different reasons that
the efficiency is small: the quantum efficiency is small and the pump process is not
very efficient in the helium–neon gas. The laser resonator (especially the coating on
the dielectric reflectors) determines the wavelength of a helium–neon laser.

Table 14.1 shows data of different helium–neon lasers; ��g is the gain band-
width.

The electronic configuration of Ne is 1s22s22p6. Excited states have the con-
figurations 1s22s22p5 – 3s, 3p, 4s etc. The 3s, 3p, : : : levels are split because
of the interaction of an excited electron with the hole in the 2p shell (spin-
orbit interaction). The s levels are split into 4 sublevels and the p levels into 10
sublevels. Due to the level splitting, a large number of transitions are available
as laser transitions — about a hundred laser lines (many of them in the infrared
and far infrared) are known. The first helium–neon laser operated in the infrared
(wavelength 1.15 �m).

Figure 14.4 indicates a possible labeling of the energy levels of Ne. The 2s2
sublevel is the highest 2s level; the sublevels have the numbers 2 : : : 5. The highest
2p sublevel is 2p1 and the lowest 2p level is 2p10. In this notation (Paschen notation),
the NeC core is considered as an effective potential and the states of the additional
electron are 1s, 2s, 2p, etc. An analysis of the energy levels is more adequate by
use of the Racah notation. An excited neon atom has the configuration 1s22s22p5

plus an additional state with one electron (the outer electron). In the Racah notation,

Table 14.1 Helium–Neon lasers

� Transition ��g (GHz) ˛ (m�1) Power (mW)

543 nm 3s2 ! 2p10 1.75 0.005 1
594 nm 3s2 ! 2p8 1.60 0.005 1
612 nm 3s2 ! 2p6 1.55 0.017 1
633 nm 3s2 ! 2p4 1.50 0.1 1–10
1.15 �m 2s2 ! 2p4 0.83 1
1.52 �m 2s2 ! 2p1 0.63 1
3.39 �m 3s2 ! 3p4 0.28 100 10

Fig. 14.4 Sublevels of Ne
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an energy level (for instance, a 5s sublevel) is characterized by 5s[K]J or 5s0[K]J,
where the symbols indicate the following:

• 5 s or 5s0; configuration of the outer electron.
• K; quantum number of the sum of the total angular momentum Jc (quantum

number j) of the core electrons and the quantum number of the orbital momentum
L (quantum number l) of the outer electron.

• J D K ˙ 1
2
, where 1

2
is the quantum number of the spin of the outer electron.

The coupling leads to 4 sublevels of s states (Fig. 14.4); s is attributed to a state
with K D 3=2 and s0 to a state with K D 1=2. A p state has 10 sublevels; 3p[K]
configurations (j D 3=2) are possible with K D 1=2, 3/2 and 5/2 while 3p0[K]
configurations are possible with K D 1=2 and 3/2. The coupling corresponds to
intermediate coupling (j-l coupling). The energy levels (energy values, lifetimes and
assignment to appropriate quantum states) have been studied long before the arrival
of the laser; for discussions of Ne levels used in lasers, see [116–118].

Applications. The helium–neon laser generates monochromatic radiation with a
small beam divergence. The laser serves for various applications (e.g., holography),
which need a high coherence and low beam divergence.

14.4 Metal Vapor Laser

A metal vapor laser operates with copper, gold, lead or cadmium vapor. In the copper
vapor laser (Fig. 14.5), Cu atoms are excited by electron collisions from the ground
state 3d104s to the 3d104p state, giving rise to stimulated transitions to 3d94s2 states.
The level splitting is due to spin–orbit interaction. The levels are labeled according
to the LS coupling (Russel-Saunders coupling); a level 2SC1LJ corresponds to a state
with the quantum number L of the orbital momentum, the quantum number S of the
spin and the quantum number J D L C S of the total momentum. 2S C 1 is the spin
multiplicity and the S, P, D states correspond to states with L D 0, 1, 2.

Fig. 14.5 Copper vapor laser
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A copper vapor laser consists of a ceramic tube (with Brewster windows) in
the laser resonator. The tube contains a little piece of metallic copper. The laser
oscillation depends very sensitively on the gas pressure and therefore on the
temperature. There is only a narrow temperature window (1,500 ıC ˙ 20 ıC)
in which the laser operates. Population inversion is produced by electric pulses
(duration 20 ns; pulse energy 10 mJ; repetition rate 3 kHz). An electric pulse causes a
pulsed discharge and excitation of copper atoms via electron collisions. The lifetime
of the upper laser level is smaller than the lifetime of the lower laser level. Therefore,
continuous oscillation is not possible; the laser is a self-terminating laser.

The copper vapor laser has a large gain coefficient (7 m�1), and it has an excellent
beam quality because of a large diameter of the active medium and of the resonator.
The efficiency of conversion of electric pump energy to energy of laser radiation is
about 1 percent.

Copper vapor lasers generate radiation at the wavelengths 510 nm and 578 nm
and gold vapor lasers at 628 nm and 312 nm.

Applications lie in medicine, particularly in the detection and destruction of
tumors by the photodynamic therapy. Today, metal vapor lasers are competing with
semiconductor lasers.

14.5 Argon Ion Laser

In the argon ion laser (Fig. 14.6), subsequent electron collisions lead to ionization
of argon atoms and to excitation of argon ions. The electron configurations are the
following:

• Ar 1s2 2p6 3s2 3p6; argon.
• ArC 1s2 2p6 3s2 3p5; argon ion.
• (ArC)� 1s2 2p6 3s2 3p4 4p; excited argon ion.

Different 4p ! 4s transitions between the 3p44p and 3p44s levels (split due to spin–
orbit interaction) give rise to cw laser emission in the blue and green, with strong
emission lines at 488 nm and 514.5 nm.

Fig. 14.6 Argon ion laser
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A gas discharge in a ceramic tube (diameter 1–2 mm; length 1 m; cooled
with water) containing the argon gas (pressure 0.1 mbar) pumps the argon ion
laser. Because of the twofold excitation, the efficiency of the argon ion laser is
proportional to the square of the current density in the gas discharge. At a high
electric power (current 10 A; voltage 5 kV), the output power is large (20 W). The
efficiency of the laser is small (�0.1%).

The krypton ion laser operates in the same way as the argon ion laser; it emits
radiation at other wavelengths (between 406 nm and 676 nm); the 676-nm laser line
is the strongest. An important application of the argon and the krypton ion lasers is
the optical pumping of other lasers, especially of the titanium–sapphire laser (and
before this laser existed, the optical pumping of dye lasers).

14.6 Excimer Laser

We now treat an important industrial laser. The excimer laser makes use of the KrF
excimer or of other excimers. The following processes occur in a KrF excimer laser
(Fig. 14.7):

• A gas discharge in a mixture of krypton and fluorine gas produces (KrF)�
molecules, i.e., KrF molecules in an excited electronic state. The lifetime of the
excited state is of the order of 10�9 s.

• Stimulated transitions take place to nonbonding KrF states. After a transition,
the Kr atom and the F atom repel each other and separate spatially. Therefore,
the lower laser level has a shorter lifetime than the upper laser level. During
an optical transition in a KrF excimer, the nuclear distance RKr�F between the
nucleus of Kr and the nucleus of F does not change (Franck–Condon principle)
— the transition corresponds to a vertical line in the energy-nuclear distance
diagram.

• The excitation occurs by electron collisions with Kr and by a chemical reaction,
respectively, Kr + e� ! Kr� + e� and Kr� + F2 ! (KrF)� + F.

An excimer (excited dimer) is a molecule with two equal atoms, which undergo
chemical bonding in the excited state but not in the ground state.
Examples of excimers: Ar�

2 (emission at 126 nm); Kr�
2 (146 nm); Xe�

2 (172 nm). An
exciplex (excited state complex) is denoted as excimer too.

Fig. 14.7 KrF excimer laser
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Examples of exciplexes (excimers) and laser lines: ArF (193 nm); KrF (248 nm);
XeCl (308 nm); XeF (351 nm); KrBr (206 nm); ArBr (161 nm); NeF (108 nm).

The excimer laser is a TEA laser (transversely excited atmospheric laser). We
will describe a TEA laser arrangement in connection with the CO2 laser (Sect. 14.8).
The laser gas of a krypton fluoride excimer laser has the composition: He (D buffer
gas, pressure �1 bar); Kr (10%); and F2 (0.1%). At a large pump power density
(200 MW per liter gas volume), the gain is about 10% per cm (gain coefficient ˛ D
10m�1).

Data of an excimer laser: pumping by electric discharge pulses (voltage �1 MV,
current 10 kA, pulse duration 30 ns, electric energy per pulse 100 J); laser pulse
energy 1 J; efficiency 1%; repetition rate 1–50 Hz.

Applications of the excimer laser are: labeling (of semiconductor chips, glasses,
polymers, etc.) during mass production; structuring of materials by means of UV
lithography — at present (2011), semiconductor structures of lateral size of 45 nm
are prepared by the use of the ArF laser (wavelength 193 nm).

14.7 Nitrogen Laser

The nitrogen laser is a prototype of a vibronic laser (Fig. 14.8). The electronic
energy depends on the distance RN�N between the nitrogen nuclei. A vibronic
energy level of N2 has electronic and vibrational energy,

En;v D En C
�

v C 1

2

�
h�vib: (14.16)

En is the electronic energy in the nth state; n D 1, ground state; n D 2, 3, : : :, excited
states; (v C 1=2/h�vib is the vibrational energy; v D 0; 1; 2; : : : are the vibrational
quantum numbers; and �vib (D 70:8THz) is the vibrational frequency. Electron
collisions in a gas discharge excite N2 molecules to vibronic states belonging to
the n D 3 electronic state. Stimulated transitions to vibronic levels of the n D 2

Fig. 14.8 Nitrogen laser
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electronic level (energiesE2;v) produce laser radiation in the near UV (near 337 nm).
The lifetime (40 ns) of the upper laser level is shorter than the lifetime of the
lower laser level. Therefore, continuous operation is not possible; the laser is a self-
terminating laser. Suitable for pumping are very short gas discharge pulses (duration
1 ns). Optical transitions obey the Franck–Condon principle.

14.8 CO2 Laser

The CO2 laser, another industrial laser, is of great importance:

• It has a high efficiency (10–50%) of conversion of electrical power to power of
laser radiation.

• Different ways of operation are possible; in particular, cw operation, pulsed
operation, and TEA laser operation.

• The cw CO2 laser generates cw radiation of a large power (100 W at a length of
the active medium of about 1 m, and up to 1,000 W or even more at very large
length of the active medium).

• The TEA (transversely excited atmospheric) CO2 laser produces pulses (duration
�100 ns) of high peak power (100 kW).

Applications of CO2 lasers concern material processing (cutting, welding, hardening
of metal surfaces, shock hardening at power densities of 109 W/cm2) and medicine.

The CO2 laser (Fig. 14.9a) makes use of vibrational-rotational levels,

E D Evib.v1; v2; v3/C Erot.J /: (14.17)

Evib is the vibrational energy and Erot the rotational energy (J D quantum number
of the rotation). The vibrational energy is

Fig. 14.9 CO2 laser. (a) Vibrational levels of CO2 and N2. (b) Vibrations of the CO2 molecule.
(c) Vibrational-rotational transitions in CO2
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Evib D
�

v1 C 1

2

�
h�1 C

�
v2 C 1

2

�
h�2 C

�
v3 C 1

2

�
h�3; (14.18)

where the oscillation frequency �1 (D 41:6THz) corresponds to the symmetric
valence vibration, �2 (D 20:0THz) to the bending vibration and �3 (D 70:5THz)
to the antisymmetric valence vibration (Fig. 14.9b); v1, v2 and v3 are the vibrational
quantum numbers; v1 D 0; 1; 2; : : :; v2 D 0; 1; 2; : : :; v3 D 0; 1; 2; : : :. We denote a
state with the quantum numbers v1, v2 and v3 as v1v2v3 state.

Electron collisions in a gas discharge excite the CO2 molecules. More efficient
is the indirect excitation. Electron collisions produce excited N2 molecules (in the
lowest vibrational state); an excited N2 molecule in the lowest vibrational state has
a very large lifetime. Energy transfer processes by collisions between excited N2

molecules and nonexcited CO2 molecules lead to population of the 001 state of CO2

molecules. This state has a very long lifetime (�4 s) with respect to spontaneous
emission of radiation that is due to 001 ! 100 and 001 ! 100 transitions. There
are two groups of laser transitions corresponding to two wavelength regions:

• 10.6 �m; transitions 001 ! 100; frequencies near 28 THz.
• 9.6 �m; transitions 001 ! 020; frequencies near 31 THz.

The transitions between different types of vibrations are allowed due to the
anharmonicity of the vibrations. The depopulation of the lower states occurs by
collisions of the molecules with walls (nonradiative relaxation). A vibrational
transition in a CO2 molecule is associated with a change of the rotational energy
(Fig. 14.9c), where one of the selection rules

�J D ˙1; (14.19)

must be fulfilled. The selection rule �J D C1 corresponds to laser lines in the P
branch and the selection rule�J D �1 to laser lines in the R branch. The rotational
energy is (approximately)

Erot D BJ.J C 1/I B D „2
2�

: (14.20)

B (�15 GHz times h) is the rotational constant that is a measure of the rotational
energy and� is the momentum of inertia of a CO2 molecule; each J state is 2J C1

fold degenerate.
Not all rotational quantum numbers lead to allowed states. The CO2 molecule is

a Boson (more exactly, the 12C16O2 molecule). Interchange of the two O atoms must
leave the total wave function of the molecule unchanged — the wave function must
be an even function. The electronic wave function of the electronic ground state of
the molecule is even as well as the wave function of the nuclei (the nuclear spins of
12C and of 16O are zero). It follows: J is odd for an antisymmetric vibration, J is
even for a symmetric vibration.
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The frequency distance between two neighboring lines is 2 � 2B=h D 4B=h.
Because of centrifugal distortion, the distance between two neighboring lines is not
exactly 4B=h but depends on the vibrational quantum number and on the rotational
quantum number. About twenty discrete laser lines belong to each of the four
branches (Fig. 14.10a). The distance between next-near lines is �60 GHz or less,
because of the centrifugal distortion.

A gas discharge pumps the cw CO2 laser (Fig. 14.10b). The gas, a mixture of
CO2, N2 and He (at a ratio of about 1:1:8) can have a pressure of about 1 mbar. The
glass tube (diameter 1 cm) that contains the laser gas is closed by Brewster windows
(NaCl crystal plates). The spherical output coupling mirror consists of crystalline
germanium. The outer side of the germanium mirror is covered with an antireflecting
dielectric multilayer coating. Thus, standing waves in the output coupling mirror
are avoided. The other surface, covered with another dielectric multilayer coating,
has a reflectivity (�95%) that is appropriate to reach optimum output coupling. An
echelette grating in the expanded beam is the reflector of the laser resonator. By
rotating the echelette grating, the laser resonator is adjusted to different lines.

In the TEA CO2 laser (Fig. 14.10c), the direction of the gas discharge (at a
pressure of 1 atm 	 1 bar) is transverse to the laser beam. Two Brewster windows
(NaCl plates) are closing a box containing the laser gas. The resonator mirrors
are outside the box. A power supply charges a Marx generator (a capacitor bank
with many capacitors in parallel and in series). An electric switch starts the

Fig. 14.10 CO2 laser. (a) Laser lines. (b) Continuous wave CO2 laser. (c) TEA (transversely
excited atmospheric) CO2 laser. (d) Profile of the electrodes of a TEA laser, together with discharge
needles causing UV pre-ionization at the arrival of an electric pulse
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Fig. 14.11 Broadening of
vibrational-rotational lines of
CO2

discharge leading to a high-power electric pulse (voltage 100 kV; current 100 A;
duration 20 ns). The electric pulse, guided to one of the electrodes, causes a
transverse discharge between the electrodes. The electrodes (distance 1 cm, length
40 cm) of the TEA laser (Fig. 14.10d) have a special profile (Rogowski profile)
providing a homogeneous discharge. Arc discharges between the tips of metal
needles initiate the discharge. The arc discharges produce UV radiation, which
causes pre-ionization of molecules in the volume between the main electrodes. A gas
discharge between pairs of needles, arranged along the electrodes (on both sides of
the discharge volume), occurs when a high voltage pulse arrives at the electrodes.
The TEA laser is a multi-mode laser; a single pulse consists of radiation at several
modes (longitudinal and transverse modes).

At small gas pressure, Doppler broadening of the vibrational-rotational lines of
CO2 determines the width of the lines (Fig. 14.11). Collision broadening dominates
at pressures between 5 mbar and about 1,000 mbar; in this pressure range, the
gain bandwidth increases proportionally to pressure. At still higher pressures,
the vibrational-rotational lines overlap partly and above a pressure of 20 bar the
single vibrational-rotational lines overlap completely. Then the gain profile of each
of the four branches is continuous and has a width of about 500 GHz. A mode locked
high-pressure CO2 laser operating on one of the four branches produces picosecond
pulses (duration �1 ps) consisting of radiation around a frequency of 30 THz.

14.9 Other Gas Discharge Lasers and Optically Pumped Far
Infrared Lasers

Beside CO2 lasers, there are other infrared and far infrared gas discharge lasers
(Fig. 14.12). Laser oscillation is due to stimulated emission of radiation by transi-
tions between vibrational-rotational levels (CO laser) or between rotational levels
(D2O and HCN lasers) in the vibrational ground state or an excited vibrational state.

The CO2 laser is suitable for optical pumping of other gas lasers. Lasers operated
with gases of CH3F, D2O and alcohol molecules (and many other organic molecules)
emit far infrared radiation at a large number of wavelengths.
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Fig. 14.12 Gas discharge lasers in the 1–100 THz range (far infrared range)

Fig. 14.13 Optically pumped CH3F laser. (a) Principle. (b) CH3F vibration. (c) Arrangement

Figure 14.13a shows an example of an optically pumped gas laser. Radiation of
a CO2 laser excites CH3F from the vibrational ground state to an excited vibrational
state. The vibration of the CH3F molecule corresponds to a vibration of CH3

against F (Fig. 14.13b). Stimulated rotational transitions (J D 13 ! J D 12)
generate far infrared laser radiation (wavelength 496 �m, frequency near 605 GHz).
A lens focuses the radiation of a CO2 laser into a glass tube that contains the gas
(Fig. 14.13c). A filter absorbs CO2 laser radiation passing the tube.

Optical pumping is also possible if the CO2 laser line and the absorption line
of CH3F do not completely coincide. Then stimulated Raman scattering (Sect. 35.8)
results in generation of far infrared radiation. A variation of the CO2 laser frequency
leads to a variation of the frequency of the far infrared laser. The tuning range,
however, is small (about 0.1 percent relative to a far infrared laser line).

The optically pumped gas lasers emit, depending on the gas and the wavelength
of the CO2 pump laser, radiation at a very large number of frequencies (about
ten thousand laser lines have been reported). A gas laser pumped by a TEA laser
generates intense far infrared radiation pulses (pulse power about 1 kW [119]).

In comparison with optically pumped cw far infrared gas lasers, quantum
cascade lasers (Chap. 29) are becoming important alternatives. In comparison with
far infrared gas lasers optically pumped by TEA CO2 lasers, free-electron lasers
(Chap. 19) produce tunable single mode radiation.

REFERENCES [1–4, 6, 35, 106–119]
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Problems

14.1. Helium–neon laser: line broadening and gain cross section. Show that
Doppler broadening is the dominant broadening mechanism for a helium–neon laser
operated at 633 nm. Compare the different linewidths that are caused by different
effects.

(a) Doppler broadening.
(b) Collision broadening (pressure 0.5 mbar).
(c) Natural line broadening.
(d) Line broadening due to the finite lifetime of the lower laser level (3p).
(e) And estimate the gain cross section �21.

14.2. Helium–neon laser: threshold condition, output power, and oscillation
onset time. A helium–neon laser is characterized by: length of the active medium
L D 0:5m; cross section a1a2 D 4mm2 (� the actual ross section is circular);
reflectivity of the output coupling mirror R D 0:98; reflectivity of the reflector
R D 0:998. Determine the following quantities.

(a) Threshold population difference (per m3).
(b) Absolute value of the threshold population difference.
(c) Output power at a pump rate that is 10 times stronger than at threshold.
(d) Oscillation onset time.

14.3. Doppler effect in the helium-neon laser.

(a) Calculate the frequency difference of the emission line at 633 nm for a neon
atom that moves with a velocity of 500 m/s toward an observer and of an atom
that moves with the same velocity away from the observer.

(b) In which velocity range do the emission lines overlap?
(c) Discuss the consequence for the gain in a helium–neon laser: the gain shows

a minimum at the line center of the gain curve (D Lamb dip, according to
W. Lamb).

14.4. CO2 laser (length L D 1m; cross-sectional area a1a2 D 1 cm2; reflectivity
of the output coupling mirrorR D 0:7; lifetime of the upper laser level with respect
to spontaneous emission of radiation by 2 ! 1 transitions, ��

rel D 4 s; gas pressure
10 mbar).

(a) Calculate: Doppler linewidth; gain cross section; threshold condition; pump
rate (relative to the threshold pump rate) that is necessary to obtain an output
power Pout D 60W.

(b) Discuss the onset of laser oscillation taking into account that the upper laser
level has a long lifetime with respect to spontaneous emission and that there
are many rotational levels belonging to the excited state.

(c) Estimate the maximum gain coefficient of an excited CO2 gas and the corre-
sponding small-signal gain factor of radiation in a cw CO2 laser. [Hint: the
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maximum gain coefficient is determined by the density of CO2 molecules that
are available in a gas at low pressure.]

(d) Show that the gain coefficient of an excited CO2 gas in a TEA laser or in a
high pressure CO2 laser (pressure 20 bar) is about the same as in a cw laser
at a gas pressure of 10 mbar. Why is the pulse power of a TEA laser or of a
high pressure laser much larger than the power of the cw laser? Estimate the
radiation energy of a pulse within a TEA laser.

(e) Estimate the oscillation onset time of a TEA laser.

14.5. Optical radar.
Determine the frequency difference between the frequency of radiation emitted by
a helium–neon laser and the frequency of radiation reflected by a car traveling at a
velocity of 60 km per hour.

14.6. CO molecule.

(a) Estimate the isotope shift of the vibrational frequency of CO (frequency Q� D
2; 170 cm�1) if 16O is replaced by 18O.

(b) Next-near lines that are due to transitions between vibrational-rotational levels
have a frequency separation of 3.86 cm�1. Determine the rotational constant
QB D B=.hc/). Which of the rotational levels has the highest occupancy at

room temperature?

14.7. Rotational levels at thermal equilibrium.

(a) Which of the J levels of a CO2 molecule in the vibrational ground state has the
largest occupancy in a gas at room temperature?

(b) Determine the excitation energy and the occupancy of the v D 0, J D 1 state
of a nitrogen molecule (N-N distance D 0.1 nm) in a gas at room temperature.

14.8. Estimate the density of neon atoms, the density of excited neon atoms, and the
corresponding absolute numbers of nonexcited and excited neon atoms in a helium–
neon laser.

14.9. Explain the nomenclature used to characterize: (a) the two lowest excited
states of He; (b) the ground state and the four lowest excited states of Cu; (c) the
states of Ar, ArC and (ArC/?.

14.10. Spatial hole burning and diffusion of excited molecules in a CO2 laser.
On the one hand, the excitation of CO2 molecules in a gas discharge occurs
homogeneously in the gas discharge tube. On the other hand, the amplitude of
the standing wave field in the laser resonator shows a sinz dependence along the
resonator axis. The stimulated emission is therefore spatially inhomogeneous. Show
that — nevertheless — all excited CO2 molecules can contribute to stimulated
emission. Study the problem in case of a cw CO2 laser (length 0.7 m; gas pressure
5 mbar; ratio He:Ne:CO2 D 6:1:1; spontaneous lifetime of an excited CO2 molecule
�sp � 5 s; reflectivity of the output mirror R D 0:95; efficiency of conversion of
pump power to power of laser radiation � 20%).
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(a) Determine the density of CO2 molecules.
(b) Determine the density of excited CO2 molecules.
(c) Estimate the diffusion constant D D v�m=3, where v is an average velocity

and �m (� 100 �m) the mean free path of a CO2 molecule with respect to a
collision with another atom or molecule in the gas mixture of a CO2 laser.

(d) Estimate the time �esc it takes an excited CO2 molecules to escape from a region
of weak field strength to a region of large field strength. [Hint: replace the
cosine squared field distribution by a rectangular distribution and apply a one-
dimensional diffusion equation to describe the dynamics of the local density
Nloc of excited CO2 molecules, dNloc=dt D Dd2Nloc=dx2.]

14.11. Collision cross sections of molecules in a CO2 laser. Estimate the cross
sections of collisions of CO2 molecules with other CO2 molecules, with N2

molecules, and with helium atoms. [Hint: Use the hard-sphere approximation of
the cross section, �c D �=4.d1Cd2/

2, where d1 and d2 are the diameters of the two
colliding molecules; treat the CO2 molecule as a sphere (diameter 0.4 nm) as well
as the N2 molecule (diameter 0.2 nm).]

14.12. Voigt profile. A Voigt profile is observed when collision and Doppler
broadening influence the spectral broadening of an optical transition. Atoms of
velocity v have a transition frequency � D �0 C �0v=c. The lineshape function
describing optical transitions in atoms with the transition frequency !0

0 is

g.!0
0; !/ D �!0

2�

1

.!0
0 � !/2 C�!20=4

; (14.21)

where �!0 is the halfwidth of a transition. The probability of a transition in the
frequency interval !0

0, !
0
0 C d!0

0 is equal to
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0
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p
ln 2p

��!c
exp

�
� ln 2.!0
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�
d!0

0: (14.22)

where�!c is the halfwidth and !0 the center frequency of the Gaussian profile. We
obtain the spectral profile of a line by averaging,

S.!/ D
Z 1

0

g.!0
0; !/P.!

0
0/d!

0
0: (14.23)

It follows that
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�
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0:

(14.24)
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The equation has to be solved numerically.

(a) Show that the limits of the Voigt profile are the Lorentzian or the Gaussian
profile, depending on the ratio of the two halfwidth�!0 and�!c.

(b) Show that (14.24) is consistent with (7.52).



Chapter 15
Solid State Lasers

We discuss solid state lasers that make use of electronic states of impurity ions
in dielectric crystals or in glasses — other types of solid state lasers, namely
semiconductor lasers that are based on electrons in energy bands of semiconductors,
will be treated in later chapters.

We describe the principle of the ruby laser. We treat the titanium–sapphire laser
in more detail than in an earlier chapter. We mention other broadband solid state
lasers. Then we present a description of the neodymium-doped YAG laser, of other
neodymium lasers, and of other YAG lasers. We describe disk lasers and fiber
lasers. We give a short survey of solid state lasers with respect to host materials
and impurities. Finally, we describe line broadening processes occurring in solid
state laser media.

The active medium of a disk laser has the form of a disk rather than the form of
a rod. A disk laser pumped with a semiconductor laser has a high beam quality.

Glass lasers are used for generation of near infrared radiation of different
wavelengths. The neodymium-doped glass laser can produce intense radiation
pulses at a wavelength of 1.05 �m. Doped glass fiber lasers generate radiation
in the wavelength range 0.7–3 �m. Fiber lasers are robust and flexible. They are
suitable for applications in many areas (material processing, biophyics, medicine);
fiber lasers are able to generate continuous wave radiation or picosecond pulses.

15.1 Ruby Laser

A ruby laser (Fig. 15.1) uses Cr3C ions in an Al2O3 (sapphire) crystal with a doping
concentration of typically 0.05% by weight Cr2O3; the density of Cr3C ions is N0 D
1.6�1025 m�3. An excited Cr3C ion in Al2O3 has two long-lived energy levels with
a small energy separation. The lifetime of the levels with respect to spontaneous
emission of radiation is about 3 ms. Two broad energy bands are suited as pump
bands. The optical transitions between the long-lived levels and the ground state
level occur at two slightly different wavelengths (R1 fluorescence line at 694.3 nm
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Fig. 15.1 Ruby laser
(principle)

and R2 line at 692.8 nm. The level splitting is due to a week trigonal crystalline
field that is present, in addition to a cubic crystalline field, at the sites of the Cr3C
impurity ions in sapphire. The ground state level is identical with the lower laser
level. By optical pumping into a pump band and fast nonradiative relaxation, the
upper laser levels are populated. At sufficiently strong pumping, the populations of
the upper laser levels are larger than the population of the ground state level. The
gain cross section (at the center frequencies of the two lines) has the value �21 D
2.5�10�24 m2.

The further development of the ruby laser, after its first operation (in 1960 [120]),
stimulated the development of special high-power discharge lamps (continuously
working lamps and pulsed flash lamps too). Today, pumping of a ruby laser is
possible with radiation of another laser. The long lifetime of the upper laser level
makes it possible to excite almost all Cr3C ions in a ruby crystal and to produce, by
Q-switching, pulses of very large power.

15.2 More about the Titanium–Sapphire Laser

In an earlier chapter we have already introduced the titanium-sapphire laser
(Ti:Al2O3 laser). Here, we discuss the laser in more detail.

We can describe the energy level diagram of Ti3C in Al2O3 (Fig. 15.2, left) in a
formal way. We introduce the configuration coordinate Q. It describes an average
distance between a Ti3C ion and neighboring ions. The energy of a level depends
on Q. The energy curve E.Q/ indicates that the ground state is accompanied
by vibronic levels. The energy of a vibronic level is composed of electronic and
vibrational energy.Q0 is the configuration coordinate at which the energy minimum
of the electronic ground state occurs. Correspondingly, the E�.Q/ curve indicates
that the excited state of Ti3C is accompanied by vibronic energy levels too. The
configuration coordinate Q�

0 at which the energy minimum of excited Ti3C occurs
is larger than Q0.

Figure 15.2 (right) illustrates the four-level description of the titanium-sapphire
laser:

• In an optical absorption process, a Ti3C ion is excited from the ground-state level
(level 0) to a vibronic level (level 3) of the electronically excited state.
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Fig. 15.2 Titanium–sapphire laser (principle)

Fig. 15.3 Ti3C in Al2O3. (a) Surrounding of a Ti3C ion. (b) Crystal field splitting of the 3d state
of Ti3C. (c) Vibronic energy levels due to coupling to a phonon

• Fast relaxation (relaxation time �10�13 s) leads to population of the lowest
excited-state level (level 2) of Ti3C.

• An optical transition occurs to a vibronic level of the electronic ground state.
• After fast relaxation (relaxation time �10�13 s), the Ti3C ion is in its ground

state.

Optical transitions are governed by the Franck–Condon principle: optical transitions
occur without a change of the atomic distances.

We now discuss the origin of the vibronic energy levels of Ti3C in Al2O3. The
Ti3C ion has the electron configuration 1s22s22p63s23p63d. It has filled shells (like
an argon atom) and an external electron in the 3d shell. The 3d state of the free Ti3C
ion is fivefold degenerate according to the quantum number (l D 2) of the orbital
momentum.

A Ti3C ion in an Al2O3 crystal (Fig. 15.3a) is surrounded by an octahedron
of oxygen ions (O2� ions). In the field of the ions (crystal field), the 3d state
splits (Fig. 15.3b) into two states, one shows a threefold and the other a twofold
degeneracy with respect to the electron orbital. The threefold degenerate state is
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the ground state of Ti3C in Al2O3 and the twofold state is the lowest excited state; the
energy level splitting is about 3 eV. These two electronic states are the basis of the
titanium–sapphire laser.

An oscillation of the oxygen octahedron is associated with an oscillating electric
field at the site of a Ti3C ion. The field influences the orbital of the 3d electron and
therefore the electronic states. An oscillation of the octahedron couples to lattice
vibrations of the whole crystal. Vice versa, all lattice vibrations of the Al2O3 crystal
couple to an oxygen octahedron and therefore to the electronic states of a Ti3C ion.
The coupling gives rise to a distribution of electronic ground state levels as well as of
excited state levels. The energy of the electronic ground state of Ti3C is (Fig. 15.3c)

E D E0;e C Evib: (15.1)

E0;e is the electronic energy of Ti3C without oscillation and Evib the energy of the
vibrational energy levels. The levels are vibronic (D vibro-electronic) energy levels.
The corresponding states are vibronic states.

The energy of the electronically excited state of Ti3C is

E� D E�
0;e C Evib: (15.2)

E�
0;e is the electronic energy of the excited state and Evib again the vibrational

energy.E� is the energy of a vibronic state of excited Ti3C.
A single vibration of an Al2O3 crystal has the vibrational energy

Evib D
�

v C 1

2

�
h�vib; (15.3)

where �vib is a vibrational frequency, v the vibrational quantum number of the
vibration and 1

2
h�vib the zero point energy of the vibration.

An Al2O3 crystal has a large number of vibrational frequencies; the number of
different lattice vibrations is of the order of 1022 for a crystal volume of 1 cm3.
Therefore, the vibronic levels have a continuous energy distribution. The different
energy levels of Ti3C in Al2O3 are:

• E0 D E0;eC zero point energy of all lattice vibrations D the energy of the ground
state level.

• E2 D E�
0;eC zero point energy of all lattice vibrations D lowest energy of the

excited state.
• E1 D E0 C Evib D lower laser levels, having a broad energy distribution.

The spontaneous lifetime of a vibronic level of an excited Ti3C ion is �3.8 �s.
Our discussion shows that the occurrence of a broad distribution of pump

levels and of a broad distribution of lower laser levels in titanium–sapphire is a
consequence of the vibronic character of the energy levels of Ti3C in Al2O3. We
will derive the gain profile of Ti3C:Al2O3 in Sect. 17.3. Vibronic energy levels are
the basis of many other lasers.
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15.3 Other Broadband Solid State Lasers

We compare the titanium–sapphire laser with other broadband tunable solid state
lasers (Table 15.1): alexandrite laser; Cr:LiSAF laser (chromium-doped lithium
strontium aluminum fluoride laser); and Cr:LiCaF laser (chromium-doped lithium
calcium fluoride laser). The wavelength � given in the table is the wavelength of
maximum gain coefficient. Titanium–sapphire has the largest gain bandwidth��g.

The alexandrite laser was the first solid state laser that was tunable over a wide
wavelength range (700 nm to 820 nm). In alexandrite (BeAl2O4 crystal doped with
Cr3C), the Cr3C ions (concentration 3 � 1025 m�3) replace about 0.1% of the Al3C
ions. The energy levels of Cr3C in alexandrite, used in the laser, are (Fig. 15.4) the
following:

• 0; ground state. Q0 is the configuration coordinate of the energy minimum of the
vibronic ground state levels.

• 1A; vibronic band of the ground state.
• 2A; vibronic band of excited Cr3C; spontaneous lifetime 1.5 ms.
• 2B; another vibronic band of excited Cr3C, 70 meV above the 2A band;

spontaneous lifetime 1.5 �s. Q?
0 is the configuration coordinate of the energy

minimum of this vibronic band.
• 2; upper laser level (belonging to 2B); spontaneous lifetime 1.5 �s.
• 1; lower laser level (vibronic level belonging to 1A).
• 3; pump levels (belonging to 2B), pumped with radiation around 680 nm.

Optical pumping and fast relaxation result in populations of the 2A and the
2B vibronic bands. The population of each of the vibronic bands is in thermal

Table 15.1 Tunable lasers

Lasers � (nm) �sp (�s) �21 (m2) ��g (THz) Tuning range (nm)

TiS 790 3.8 3�10�23 110 660–1,180
alexandrite 760 260 10�24 50 700–820
Cr:LiSAF 850 70 5�10�24 80 780–1,010
Cr:LiCaF 780 170 13�10�24 60 720–840

Fig. 15.4 Alexandrite laser
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equilibrium and the populations of the two bands are in thermal equilibrium with
each other. The equilibrium is determined by the crystal temperature. To obtain a
large population of 2B levels, the crystal is kept at an elevated temperature (60ıC
or higher). Laser transitions occur around a wavelength of 760 nm within a width of
about 100 nm.

The energy levels of Cr3C in LiSAF and LiCaF are similar to the energy levels
of Cr3C in alexandrite. There is, however, an important difference: the energy
minimum of the 2B band lies below the minimum of the 2A band. Therefore, heating
of the crystals is not necessary.

Alexandrite, Cr3C:LiSAF and Cr3C:LiCaF lasers can be used for the same
tasks as the titanium–sapphire laser. Titanium–sapphire has the advantage that the
crystalline material has a larger hardness and a higher heat conductivity.

15.4 YAG Lasers

A Nd:YAG laser (YAG D Y3Al5O12 D yttrium aluminum garnet) can have a high
beam quality and can be operated as a cw or as a pulsed laser. Applications:

• Material processing; drilling, point welding, marking.
• Medicine; surgery (Nd:YAG laser radiation can be guided with a glass fiber

into the interior of a body and focused by a lens); eye surgery; applications in
dermatology, see, for instance [127–129].

A neodymium YAG laser (Fig. 15.5a) makes use of energy levels of Nd3C. The
Nd atom has the electron configuration 4f35s25p66s2. The free Nd3C ion has the
configuration 4f25s25p6; the two lowest energy levels are 4I9=2 and 4I11=2. The
crystalline electric field causes a splitting of these levels (not shown in the figure).
Energetically higher lying levels serve for optical pumping. Optical pumping and
fast relaxation leads to population of the long-lived 4F3=2 level (spontaneous lifetime
230 �s). The laser transition 4F3=2 ! 4I11=2 corresponds to a wavelength of 1.064
�m (frequency �300 THz).

Fig. 15.5 YAG lasers. (a) Neodymium-doped YAG laser. (b) Ytterbium-doped YAG laser
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YAG crystals can be prepared in a very high crystal quality. Nd3C ions can
replace about 1% of the Y3C ions. Optical pumping of a neodymium YAG laser
is possible with a lamp or with a semiconductor laser. Depending on the size of a
laser crystal, a neodymium YAG laser can produce laser radiation at power levels
of 1–10 W or more. Operated as a giant pulse laser, a Nd:YAG laser can generate
pulses of an energy of 1 J.

Other laser frequencies of the Nd3C: YAG laser lie at 0.914 �m
(4F3=2 ! 4I9=2 transitions) and at 1.35 �m (4F3=2 ! 4I13=2 transitions).

Table 15.2 shows a list of various other YAG lasers:

• Ytterbium-doped YAG laser (Fig. 15.5b). The ytterbium-doped YAG laser
(Yb:YAG laser) emits at 1.03 �m, it is pumped with radiation (at 940 nm) of
a semiconductor laser (InGaAs laser) by transitions between 7F3=2 sublevels and
7F5=2 sublevels. The Yb3C ions can replace 6% of the Y3C ions in YAG. The
ytterbium-doped YAG laser is becoming a competitor of the neodymium-doped
YAG laser. Due to a high concentration of impurity ions, ytterbium-doped YAG
crystals are especially suited as active media of lasers of small length (namely
disk lasers, Sect. 15.6).

• Praseodymium-doped YAG laser. Pr3C ions replace Y3C ions. The doping can be
extraordinarily high; it is possible to replace about 26 percent of the Y3C ions by
Pr3C ions. The Pr:YAG laser, pumped with radiation of a semiconductor laser,
emits infrared radiation.

• Erbium-doped YAG lasers (Fig. 15.6). The free erbium (Er) atom has the
configuration [Xe]4f125s25p66s2. Removing three electrons leads to Er3C with
the electronic configuration [Xe]4f115s25p6. The Er3C ion, doped into a solid,

Table 15.2 YAG lasers

Laser � �pump �sp (�s) ��g �21 (m2)

Nd:YAG 1.06 �m; 808 nm 230 140 GHz 3�10�22

Yb:YAG 1.03 �m; 941 nm; 960 1.7 THz 2.1�10�24

968 nm
Pr:YAG 1.03 �m 941 nm
Er:YAG 2.94 �m 800 nm;

970 nm

Fig. 15.6 Erbium-doped YAG lasers
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has a long-lived excited state 4I11=2. Laser transitions, 4I11=2 ! 4I13=2, generate
infrared radiation (wavelength 2.94 �m). Pumping of the erbium-doped YAG
laser, via the narrow 4I11=2 or 4I9=2 levels, is possible with a semiconductor laser
(at 980 nm or 800 nm); it is possible to operate an erbium-doped YAG laser at
1.54 �m as a three-level laser (of the ruby laser type).

The erbium-doped YAG laser with emission of radiation at 2.94 �m is of interest
for biomedical applications.

15.5 Different Neodymium Lasers

Various other solids doped with Nd3C are suitable as active media (Table 15.3):

• The Nd:YVO4 laser emits at the same wavelength (1.064 �m) as the Nd3C:YAG
laser. With respect to applications, the Nd3C:YVO4 laser competes with the
Nd3C:YAG laser.

• Nd:YLF laser (D Nd:LiYF4 D neodymium-doped lithium yttrium fluoride laser).
The laser emits at 1.047 �m and 1.053 �m. Pumping is possible with a
semiconductor laser (pump band at 804 nm, halfwidth 4 nm). The laser is also
an alternative to the Nd:YAG laser.

• Neodymium-doped glass laser. In glass, Nd3C ions occupy sites with different
surroundings and different crystal fields. This leads to an inhomogeneous
broadening of the excited-state levels. The halfwidth of the corresponding line
(�6 THz) allows for generation of picosecond pulses. There are broad pump
bands around 750 nm and 810 nm.

The lasers can generate radiation at power levels in the 10–100 W range.

15.6 Disk Lasers

A disk laser is a compact, highly efficient laser. It produces radiation of high power
(1 kW or more). Applications lie in fields of material processing (cutting, welding,
labeling) covered by the Nd:YAG laser.

Table 15.3 Neodymium-doped solid state lasers

Laser � (�m) �pump �sp (�s) ��g �21 (m2)

Nd:YAG 1.064 808 nm 230 140 GHz 2.8�10�22

Nd:YVO4 1.06 809 nm 90 210 GHz 1.1�10�22.�/

4.4 � 10�23.�/

Nd:YLF 1.047 804 nm 480 200 GHz 1.8�10�23

1.053 1.2 �10�23

Nd:glass 1.05 300 6 THz 3�10�24
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Fig. 15.7 Disk laser

Fig. 15.8 Picosecond disk
laser

A disk laser (Fig. 15.7) consists of a disk (thickness 100-200 �m), pumped with
a semiconductor laser. Because of the large diameter, the disk laser has a high beam
quality. A large concentration of Yb3C ions in Yb3C: YAG allows for a compact
design of the laser. We described the laser principle in the preceding section.

In comparison with a laser medium with a rod shape, the disk laser has a larger
ratio of cooling area and active volume. The temperature distribution within the
active medium has a nearly homogeneous radial distribution. This leads to a high
beam quality.

A Nd:YVO4 laser can be operated as miniature picosecond laser (Fig. 15.8).
A semiconductor laser (808 nm) pumps the laser, which emits radiation at 1,064 nm.
The laser can generate picosecond pulses (duration 10 ps) at a high repetition rate
(e.g., 30 GHz). Mode locking is possible by use of a mirror with a reflectivity that
depends on the radiation intensity. The reflectivity is small at small intensity and
large at high intensity. The mirror is a semiconductor saturable absorber mirror
(SESAM). A Nd:GdVO4 laser has similar properties as the Nd:YVO4 laser.

15.7 Fiber Lasers

Fiber lasers are important glass lasers. Fiber lasers have many applications in fields
of material processing, chemistry, medicine, and biology. The second harmonic
radiation of glass fiber lasers serves for pumping of other lasers, e.g., of disk lasers.
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In comparison with other solid state lasers, fiber lasers are flexible and simple with
respect to adjustment (or may not need adjustment at all).

The active medium of a fiber laser is a glass that is doped with rare earth ions.
We describe here main features of a fiber laser (Fig. 15.9a):

• Glass fiber (length 1–10 m, or longer; diameter 5 �m), doped with ions.
• Dichroitic end mirror. It is highly reflecting for the laser radiation and transparent

for the pump radiation.
• Output coupling mirror. In order to reach optimum efficiency, the reflectivity of

the output coupling mirror is chosen appropriately.
• A fiber laser can be pumped with a semiconductor laser.

The pump waveguide either coincides with the laser waveguide (Fig. 15.9b) or has
a larger diameter (Fig. 15.9c).

Fiber lasers are available in the 0.7–3 �m wavelength range. Rare earth ions in a
glass occupy sites of different strength of the crystalline electric field. Therefore, the
energy levels of the electronic states of ions in a glass are energetically distributed
and the gain curves are broader than for rare earth ions in a crystal. The gain
bandwidth can have a value of 10% of the center frequency of the gain curve.

Table 15.4 shows a list of fiber lasers:

• Ytterbium-doped glass laser (Yb3C fiber laser). This laser generates radiation in
a wavelength range near 1 �m.

• 1.5-�m erbium-doped fiber laser (Pr3C/Er3C fiber laser). The erbium-doped fiber
laser makes use of the three energy levels 4I15=2 (ground state), 4I13=2 and 4I11=2 of
Er3C (Fig. 15.10a). The 1.5-�m erbium-doped fiber laser is based on stimulated
4I13=2 !4I15=2 transitions. The absorption coefficient for pump radiation is much
larger if a glass contains, in addition to Er3C ions, a large concentration of Yb3C
ions; the concentration can be ten times larger than the Er3C concentration. The

Fig. 15.9 Fiber laser. (a) Arrangement. (b) Fiber with coinciding pump and laser waveguide. (c)
Fiber with pump and laser waveguide of different diameters
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Table 15.4 Fiber lasers

Laser � .�m) Doping
% per weight

Yb3C fiber 1.02–1.2 4
Yb3C=Er3C fiber 1.5–1.6 8/1
Yb3C=Er3C fiber 2.7–2.8 8/8
Tm3C fiber 1.85–2.1 4
Ho3C fiber 2.1 and 2.9 3

Fig. 15.10 Fiber lasers. (a) 1.5-�m erbium-doped fiber laser. (b) 2.8-�m erbium-doped fiber laser

2F4 level of Pr3C coincides with the energy level 4I11=2 of Er3C. Optical pumping
and resonant energy transfer from Pr3C ions to Er3C ions leads to population
inversion in the Er3C ion ensemble. Co-doping with ytterbium enhances the
absorptivity and allows for a more efficient optical pumping. The additional
doping with ytterbium has only a small influence on the energy levels of the
Er3C ions.

• 2.8-�m erbium-doped fiber laser (Pr3C/Er3C fiber laser). The laser is pumped
via Pr3C ions. Above a concentration of about 1.5 percent, an excited Er3C ion
can transfer the excitation energy to a neighboring excited Er3C ion leading
to population of 4I9=2 states (Fig. 15.10b). This upconversion process results in
a population of 4I11=2 levels of Er3C. Laser radiation is due to 4I9=2 !4I11=2
transitions.

• 2-�m thulium-doped fiber laser (Tm3C fiber laser). Pumping results in popu-
lation of 3H4 levels (Fig. 15.11, left). Cross relaxation leads to population of
3F4 levels; in a cross relaxation process, excitation energy is transferred to a
neighboring unexcited ion (Fig. 15.11, center). Stimulated emission occurs by
3F4 ! 3H6 transitions. Relaxation processes (Fig. 15.11, right) from 3H4 to 3F4
contribute additionally to population of the 3F4 level.

• 2.1-�m and 2.9-�m Ho3C doped fiber laser. Pumping is possible with radiation
at 1.15 �m. The two laser transitions make use of the three lowest energy levels,
5I8 (ground state), and the 5I7 and 5I8 states of Ho3C.
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Fig. 15.11 2-�m thulium-doped fiber laser

We mentioned the energy transfer processes:

• Resonant energy transfer.
• Upconversion.
• Cross relaxation.
• Phonon-assisted energy transfer (Chap. 18).

Transfer of the excitation energy from an ion to another ion determines the
microscopic dynamics of fiber laser media. We will treat the basis of energy transfer
and the role of energy transfer processes in the microscopic dynamics of fiber media
in Chap. 18. The treatment of the dynamics will yield the gain coefficient.

It is possible to use optically pumped fibers as amplifiers of radiation (Sect. 16.9
and Chap. 18). A special amplifier is the erbium-doped fiber amplifier — used in
systems of optical communications. It is also possible to pump the active medium
of a erbium-doped fiber amplifier with radiation at a wavelength (1.48 �m) that
is only slightly smaller than the wavelengths (1.52–1.56 �m) of the range of gain
(Chaps. 18 and 34).

15.8 A Short Survey of Solid State Lasers and Impurity Ions
in Solids

The active medium of a solid state laser (Fig. 15.12) is transparent for pump and
laser radiation. The solid (a crystal or a glass) acts as a host of impurity ions. The
electric field (crystal field) at the site of an impurity ion in a crystal or in glass mainly
determines the energy levels of an impurity ion.

Table 15.5 shows a list of few host crystals and impurity ions. The maximum
concentration of impurity ions in a solid depends on both the properties of the solid
and the impurity ions. Maximum doping concentrations lie between 0.1% by weight
(Ti3C in Al2O3) and 26% by weight (Pr3C in YAG):

• Sapphire (Al2O3). The crystal field splitting of the 3d state state and the
interaction of the electronic states with the lattice vibrations (phonons) are the
basis of the titanium–sapphire laser.
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Fig. 15.12 Solid state laser:
energy levels

Table 15.5 Maximum doping concentrations

Laser � (�m) wt.% N0 (m�3)

Nd:YAG 1.06 1 1.4 � 1026

Nd:YVO4 1.06 1 1.5 � 1026

Nd:YLF 1.05 1 1.3 � 1026

Nd:glass 1.05 3.8 3.2 � 1026

Yb: YAG 1.06 6.5 9 � 1026

Pr: YAG 1.03 26 2.7 � 1028

Er: YAG 2.8 0.7 1 � 1026

Er: glass 1.5 3 2 � 1026

Cr: Al2O3 0.69 0.05 1.6 � 1025

Cr: LiSAF 0.9 15 1.5 � 1027

Cr: LiCAF 0.8 15 1.5 � 1027

Ti:Al2O3 0.83 0.1 3.3 � 1025

• YAG (yttrium aluminum garnet D Y3Al5O12). This material grows in a very high
crystal quality. Doping with all three-valid rare earth ions is possible. Doping ions
replace Y3C ions. The doping concentration has a value of about 1% for all but
two rare earths: the doping with Pr3C can be exceptionally high (25%) and also
the doping with Yb3C can be very high (6%).

• YVO4 (yttrium vanadium oxide). This host material became available in the last
years as a high-quality crystalline material.

• CaWO4, CaF2, LaF3 doped with rare earths can also be used as laser media.
• LiYF4, LiSAF, LiCaF (Sect. 15.5).
• Alkali halides in color center lasers.

Doping of a solid with impurity ions creates the basic electronic states used in
active media. Another possibility is the use of color centers. The following list gives
a short survey of defect centers (ions and color centers) contained in various laser
media:

• Ions with valence electrons. The ions of the transition metals (Ti3C, Cr3C, V3C)
have 3d electrons, which are strongly influenced by the crystalline electric field.
The energy levels are vibronic levels.

• Rare earth ions. Three-valid ions (Nd3C, Er3C, Ho3C, Pr3C) as well as two-valid
ions are suitable as impurity ions of laser media. The ions of the rare earths have
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closed external shells (5s25p6) and (internal) 4f states. A crystal field leads to
a splitting of the 4f levels. The gain bandwidth of rare earth doped crystals at
room temperature is of the order of 100 GHz (Sect. 15.9). The rare earth ions are
excited via 4f levels or other energy levels. The crystal field splitting depends on
the symmetry of the site of an impurity ion in a host material and on the lattice
parameters of the host. Therefore, the wavelength of laser radiation, which is due
to transitions between two particular energy levels of impurity ions, depends on
the host material.

• Color centers. There are many different color centers. A color center can be an F
center, which is an electron on an empty halide ion site in an alkali halide crystal,
replacing the negative ion in an ionic crystal (LiF, NaF, KF, NaCl, KCl, CsCl).
However, F centers that can be produced by irradiating a crystal with X-rays are
not suitable as defect centers of active media. Suitable as laser media are alkali
halides that contain FC

2 centers. An FC
2 center consists of two adjacent empty

halide ion sites occupied with one electron. An FC
2 center may be compared

with an HC
2 molecule. The electronic energy levels of an FC

2 center are strongly
influenced by the crystal surrounding: the electronic states of an FC

2 center are
vibronic states; for a discussion of vibronic lasers, see Chap. 17. The color center
lasers are tunable. Different host crystals lead to different emission bands in the
near infrared (from 0.8 to 4 �m). Most of the color center lasers require cooling
to liquid nitrogen temperature. Today, color center lasers cannot compete with
semiconductor lasers.

The laser medium can have, as already mentioned, various geometrical shapes:

• Circular cylindrical rod. There is a temperature gradient perpendicular to the rod
axis; the rod is cooled mainly via the cylindrical surface. The gain factor can be
large.

• Disk. There is a temperature gradient perpendicular to the disk axis; the disk is
cooled mainly via one of the plane surfaces.

• Fiber; Sect. 15.7 and Chap. 18.

Table 15.6 shows a selection of impurity ions. The energy levels of the transition
metals have electrons in 3d states. These are strongly influenced by the crystalline
electric field giving rise to strong splitting of the energy levels and to strong vibronic
sidebands (Chap. 17). A crystalline electric field splits the energy levels of a rare
earth ion, too. However, the splitting energy is much smaller and vibronic sidebands
are weak.

As an example of crystal field splitting of energy levels of a rare earth ions, we
show energy levels of Nd3C (Fig. 15.13):

• Free Nd3C ion. The 4f3 state splits in states with different total angular
momentum (quantum number J), due to spin–orbit interaction. The ground state
is 4I9=2. Optical transitions are forbidden.

• Nd3C:YAG. The crystalline electric field splits a level with the quantum number
J into (2J C 1)/2 sublevels (Stark splitting); a rare earth ion with an odd number
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Table 15.6 A selection of ions

Atomic number Element Ion Configuration

22 Titanium Ti3C 3d 2D3=2

24 Chromium Cr3C 3d3 4F3=2
59 Praseodymium Pr3C 4f2 3H4

60 Neodymium Nd3C 4f3 4I9=2
64 Gadolinium Gd3C 4f3 8S7=2
68 Erbium Er3C 4f11 4I15=2
69 Thulium Tm3C 4f12 3H6

70 Ytterbium Yb3C 4f13 2F7=2

Fig. 15.13 Energy levels of Nd3C

of 4f electrons shows a twofold degeneracy (Kramers degeneracy) — see, for
instance, [121]. The splitting of the sublevels has values in the range of several
meV to about 100 meV [122–126]. Optical transitions are allowed due to spin–
orbit interaction or due to the interplay of spin–orbit interaction and crystalline
electric field. The strongest transition is a transition between a 4F3=2 sublevel and
a 4I11=2 sublevel. The corresponding line (at 1.064�m) has a linewidth of 12 GHz
at room temperature. The values of the crystal field splitting of levels of Nd3C in
other crystals are of the same order.

• Nd3C:glass. Because of the great variation of the crystal field acting on ions at
different sites in a glass, the energy of a sublevel differs strongly for ions at
different sites — we obtain a continuous energy distribution of sublevels. The
strongest transition is again a transition between a 4F3=2 sublevel and a 4I11=2
sublevel. The corresponding line (with the center near 1.054 �m) has a linewidth
(7–10 THz) that is large and depends on the composition of the glass.
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Table 15.7 Gain data of Nd3C:YAG and Nd3C:glass

Laser � .�m) ��g �sp .�s) �21 (m2)

Nd3C:YAG 1.064 140 GHz 230 3 � 10�22

Nd3C:glass 1.054 7 THz 300 7 � 10�24

Fig. 15.14 Optical transition
accompanied with phonon
Raman scattering

Table 15.7 shows data of Nd3C:YAG and Nd3C:glass. The gain cross section of
an Nd3C ion in a glass is 40 times smaller than the gain cross section of an Nd3C
ion in a YAG crystal.

15.9 Broadening of Transitions in Impurity Ions in Solids

Various broadening mechanisms can be responsible for the shape of the gain profile
of an active medium based on optical transitions between two levels of an impurity
ion in a solid:

• Line broadening due to phonon Raman scattering. An electronic transition is
accompanied by a phonon Raman scattering process, i.e., by inelastic scattering
of a phonon during the emission of a photon (Fig. 15.14). This process is frozen
out at low crystal temperature (e.g., at 4 K or 77 K) but is the main broadening
mechanism of many transitions in impurities in crystals at room temperature.
Phonon Raman scattering leads to homogeneous line broadening. Both the
fluorescence and the absorption line have Lorentzian shape.
Examples: 1.06-�m line of Nd3C:YAG at room temperature; the R1 and R2 lines
of ruby at room temperature.

• Line broadening due to the Stark effect. Due to the Stark effect, the energy levels
of ions at different sites of impurity ions in a glass have an energy distribution —
and the transition energies too. Phonon-assisted energy transfer processes create
a quasiband of excited ions (Chap 18).

At low temperature, the Stark effect of impurity ions in a solid (crystal or glass)
leads to inhomogeneous broadening of absorption lines. An impurity ion occupies
not exactly the position of an ion that it replaces. The strength of the crystal field at
different impurity ion sites is slightly different. Due to the Stark effect, the energy
levels and transition energies of the ions at different sites are different. The lineshape
can be Gaussian.
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Examples: almost all lines that are due to transitions between 4f states of ions in
crystals at low temperature (e.g., at 4 K); the R lines of ruby at low temperature; all
lines of impurity ions in glasses at low temperature.

REFERENCES [1–4, 6, 11, 31, 120–126]

Problems

15.1. Ruby laser.

(a) The crystal of a Q-switched ruby laser is optically pumped by the use of a flash
lamp so that almost all Cr3C ions are excited. Estimate the energy and the power
of a laser pulse of 100 ns duration. [Hint: ignore oscillations that could cause a
temporal structure in the pulse shape].

(b) Laser oscillation is possible with a ruby crystal cooled to low temperature
(4 K) with two plane parallel surfaces as reflectors (refractive index of ruby
n D 1:76). Estimate the threshold pump power of a laser with a ruby crystal
(length 1 cm) pumped in a volume of 0.2 mm diameter by another laser (pump
wavelength 530 nm); at low crystal temperature, the R1 and R2 lines are 100
times narrower than at room temperature.

15.2. Gain cross sections. Determine, by use of the data of linewidths and
spontaneous lifetimes, the ratio of the gain cross section of the 1.06 �m line of
Nd3C:YAG and of the gain cross section at the line center of Ti3C:Al2O3.

15.3. Titanium–sapphire laser. Why is the energy distribution of vibronic energy
levels of Ti3C in Al2O3 continuous while the vibronic energy levels of N2 are
discrete?

15.4. Laser tandem pumping. A femtosecond titanium–sapphire laser can be
pumped with the frequency-doubled radiation of a Nd3C:YVO4 laser, which itself
is pumped by use of a semiconductor laser.

(a) Estimate the quantum efficiency of such an arrangement if the frequency
doubling has a power conversion efficiency of 50%.

(b) What is the advantage of the tandem pumping in comparison with the direct
pumping of the titanium–sapphire laser with a semiconductor laser?

15.5. Fiber laser. Estimate the efficiency of an erbium-doped fiber laser pumped
with a pump power twice the threshold pump power.

15.6. Explain the nomenclature (4I9=2, 4I11=2, 7F7=2 etc.) used for characterization
of atomic states.



Chapter 16
Some Other Lasers and Laser Amplifiers

We present further types of lasers: dye laser; chemical laser; X-ray laser; organic
laser. And we discuss the principle of laser amplifiers. Another topic concerns
optical damage.

16.1 Dye Laser

The dye laser was the first laser with a broad gain profile. The dye laser operates as
tunable cw laser or as picosecond laser (pulse duration �1 ps). The tuning range of
a dye laser is about 5% relative to the laser frequency. By the use of different dyes,
the whole visible spectral range can be covered with laser radiation.

The dye laser is a vibronic laser (Fig. 16.1a). Transitions involve vibronic energy
levels of the ground state (S0) and of the first excited singlet state (S1). The spatial
extension of a molecule in the S1 state is larger than in the S0 state. Spontaneous
emission of radiation determines the lifetime (2–5 ns). The vibronic levels are due
to interaction of the electronic states with molecular vibrations. Optical pumping
and fast nonradiative relaxation leads to population of the S1 state. Laser radiation
is generated by stimulated transitions from the lowest S1 states of excited molecules
to vibronic S0 states. An optical transition is governed by the Franck–Condon
principle.

In a dye laser (Fig. 16.1b), the solvent (water or an alcohol) that contains the dye
molecules can continuously be pressed through a nozzle leading to a jet. The laser
radiation passes the jet under the Brewster angle. The laser can be optically pumped
with another laser (e.g., an argon ion laser) or with a lamp.

As an example of a dye molecule, we mention 7-hydroxycoumarin.The molecule
has a benzene-like molecular structure (Fig. 16.1c). A corresponding dye laser
contains coumarin solved in water (0.1 molar solution).

The S0 ! S1 absorption band of 7-hydroxycoumarin (Fig. 16.2) lies in the
blue (450–470 nm) and the emission band in the green (580–600 nm). The fluo-
rescence band (D fluorescence line) has a Gaussian-like shape. We attribute the

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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Fig. 16.1 Dye laser. (a) Principle. (b) Arrangement. (c) A dye molecule (7-hydroxycoumarin)

Fig. 16.2 Absorption and fluorescence of 7-hydroxycoumarin (left) and fluorescence bands of
different dyes (right)

line broadening to homogeneous broadening (Sect. 17.3). The linewidth of the
fluorescence line is about 20 THz. Dyes suitable as active media of dye lasers are
available in the entire visible spectral range and also in the near UV and the near IR.
The following list shows characteristic data:

• �0 D 0.3–1.5 �m D wavelength of the line center of the gain curve; depending
on the dye.

• �sp D 2–5 ns.
• ��g D 10–20 THz.
• �21 D 5 � 10�21 to 5 � 10�19 m2.
• Concentration 10�4 to 10�3 molar (N0 D 0.1-1 �1025 m�3).

Active media with dye molecules can have high gain coefficients (Problem 16.1).
Other applications of dyes. Dye molecules solved in water or in alcohol are sat-

urable absorbers suitable for Q-switching of lasers (Sect. 13.2). Dye molecules find
applications in medicine: dye molecules are suitable as markers in the photodynamic
diagnosis and as active species in the photodynamic therapy of cancer.
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16.2 Solid State and Thin-Film Dye Laser

The active medium of a solid state dye laser can consist of a solid matrix,
for instance polymethylmetacrylate, containing dye molecules. Suitable as pump
sources are semiconductor lasers or diodes.

A thin-film dye laser consists of a thin film of dye molecules (embedded in a
solid matrix) on a plane solid surface. A grating on the surface of the thin film can
act as distributed feedback reflector (Sects. 25.4 and 34.4).

16.3 Chemical Laser

The basis of a chemical laser is a chemical reaction. In an HF laser, a gas discharge
drives the reactions

F + H2 ! H + (HF)�, (16.1)

F2 + H ! F + (HF)�. (16.2)

The (HF)� molecules are in excited vibrational-rotational states and emit radiation
in the 3-�m range by transitions between vibrational-rotational states.

A chemical reaction changes the enthalpy H of a system. The two reactions
described by (16.1) and (16.2) are exothermic reactions — producing reaction
energy (D reaction heat �H ). In the first reaction, (16.1), the reaction heat is
�H D 1:3 eV/molecule (132 kJ/mole). A portion of the reaction heat is transferred
to energy of excitation of vibrational-rotational states of the v D 0, 1, 2 vibrational
levels (Fig. 16.3). The second reaction, (16.2), has a larger reaction heat (�H D
4:0 eV/molecule) and results in excitation of vibrational-rotational energy levels up
to the v D 6 vibrational level. The population of the different vibrational-rotational
levels is a nonequilibrium population. Therefore, many laser transitions between
different vibrational-rotational states can occur. The laser wavelengths are in the
range between 2.7 �m and 3.3 �m.

Fig. 16.3 Chemical laser:
principle of pumping
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The HF laser operates as continuous wave laser (driven by a gas discharge) or as
TEA laser. The continuous wave laser can generate radiation of a power of 10 kW.
The TEA laser pulses (of about 100 ns duration) have pulse energies of several kJ.
The energy of a pulse corresponds to the energy of 100 J of laser radiation that can
be generated per liter of the active material.

Other chemical lasers operating with other gases produce laser radiation in
slightly different wavelength regions (DF, 3.5–4.5�m; HCl, 3.5–4.1 �m; HBr, 4.0–
4.7 �m).

16.4 X-Ray Laser

There are first steps toward a table-top X-ray laser. Figure 16.4a shows the principle
of an X-ray laser [127–129]. Two strong visible laser pulses, focused on a titanium
plate, pump an X-ray laser in a two-step excitation:

• A laser pulse 1 (wavelength around 600 nm; pulse energy 20 J; duration 1 ns)
produces a plasma with a large concentration of Ti12C ions; the configuration of
a Ti12C ion corresponds to a [Ne] configuration (2p6).

• A laser pulse 2 (frequency around 600 nm; 4J; 1 ps) excites the plasma further.
Then hot electrons in the plasma produce, by electron collisions, a population
inversion, giving rise to stimulated emission of X-ray pulses.

In the second step, electrons collide with Ti12C leading to excited Ti12C ions in
2p53s states (Fig. 16.4b). Transitions 3s ! 2p result in laser radiation at 18.2 nm
(pulse energy 30 �J, repetition rate 1 s�1). The 2p states decay by fast radiative
transitions.

X-ray lasers with other solids (Ge, Pd, Ag, etc.) generate radiation pulses at other
wavelengths (6–40 nm) in the soft X-ray region.

The X-ray laser presented here is a mirrorless laser: there is no feedback from
radiation in a resonator. Laser radiation is generated by amplified spontaneous
emission (ASE). During propagating through the plasma, spontaneously generated
radiation is amplified by stimulated emission of radiation.

Fig. 16.4 X-ray laser. (a) Arrangement. (b) Laser transition in Ti12C



16.8 High-Power Laser Amplifier 301

16.5 Random Laser

A random laser can consist of an optical powder, for example a powder of
Nd3C:YAG crystallites. Due to light scattering at the powder particles, the light
emitted spontaneously is amplified by stimulated emission; for information about
solid state random lasers, see [134].

16.6 Optically Pumped Organic Lasers

We will treat optically pumped organic lasers in a later chapter (Sect. 34.4);
then we will have available concepts, described in Chap. 18 and in chapters on
semiconductor lasers, that are useful to explain how gain of radiation in an organic
medium can occur.

16.7 Laser Tandem

A laser tandem is suitable for generation of laser radiation of high beam quality. A
semiconductor laser, with a high efficiency of conversion of electric power to laser
radiation, pumps a solid state laser. The frequency doubled radiation of this laser
pumps a third laser. A semiconductor laser has a low beam quality. The combination
of both types of lasers is most favorable: the use of a semiconductor laser as pump
laser of a solid state laser allows for an efficient conversion of electric energy to high
quality laser radiation.

Example. A semiconductor laser pumps a Nd:YAG laser, then the radiation is
frequency-doubled. The frequency doubled radiation finally pumps a titanium–
sapphire laser.

16.8 High-Power Laser Amplifier

In a high-power laser system (Fig. 16.5) consisting of a laser and a laser amplifier,
the laser beam is expanded by the use of a telescope in order to avoid optical damage
of the active medium of the amplifier. The (single-pass) gain factor G1 of a laser
amplifier can have a value of the order of 10. By the use of laser amplifiers in
series, very large power levels can be obtained. Table 16.1 shows data of three high-
power laser systems (tp D pulse duration; Wp D pulse energy; P D pulse power;
�rep D repetition rate):

• Femtosecond titanium–sapphire laser amplifier. The radiation of a femtosecond
titanium–sapphire laser can be amplified with a laser amplifier containing
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Table 16.1 High-power laser systems

Laser � tp Wp P.W / �rep

TiS 780 nm 100 fs 1 mJ 10 GW 1 kHz
Nd:glass 1.06 �m 1 ns 10 kJ 10 TW 1 h
TEA CO2 10.6 �m 100 ns 1 J 10 MW 10 Hz

Fig. 16.5 Laser amplifier

optically pumped titanium–sapphire as the active medium. An optical switch
can reduce the pulse repetition rate (which is of the order of 100 MHz) of the
radiation of a femtosecond titanium-sapphire laser to a value of, for example,
1 kHz.

• Neodymium glass laser amplifier. By amplification of a light pulse of a
neodymium-doped glass laser with glass laser amplifiers, a pulse of extremely
high power can be generated. The beam, emitted by a glass laser, is widened
and amplified by a first amplifier, then widened and amplified by a second
amplifier and so on. (It is possible to produce glass in cylinders of large diameter.)
A radiation pulse generated by a laser amplifier system (or pulses generated by
systems in parallel), focused on a target containing deuterium and tritium, can
heat up the target to a temperature at which nuclear fusion processes can occur
(laser fusion); a laser pulse can produce a plasma of a temperature of the order
of 100 million degrees.

16.9 Fiber Amplifier

Fiber amplifiers consisting of glass doped with rare earth ions are suitable for
amplification of radiation in the 1–3 �m range; fiber amplifiers make use of the
same rare earth-doped glasses as fiber lasers (Sect. 15.7 and Chap. 18). By the use
of amplifiers, radiation at kW power levels can be generated.

The erbium-doped fiber amplifier – that is of great importance for long-distance
optical communications — will be treated in Chap. 18.

16.10 Optical Damage

A strong radiation field in a transparent solid material can cause optical damage.
Different materials have different damage thresholds. The damage threshold of
a material depends strongly on the wavelength of the radiation. The damage
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threshold is orders of magnitude larger for pulses of 10 fs duration than for pulses of
1 ns duration. Accordingly, the optical-damage threshold can have values between
10 kW per cm (or smaller) and 20 MW per cm.

Optical damage can be caused by interband transitions of electrons and subse-
quent impact ionization processes [135, 136]. An interband transition in a crystal
in a strong electromagnetic field can be due to a multiphoton transition. Interband
transitions excite electrons into the conduction band. Subsequently, the electrons in
the conduction band gain energy by absorption processes, i.e., due to acceleration
of the conduction electrons by the optical field. Highly excited conduction electrons
excite, by impact ionization, further electrons from the valence band to the
conduction band. The impact ionization is an avalanche process that can lead to
optical breakdown associated with crystal damage.

16.11 Gain Units

The power of a light beam that traverses an amplifier increases fromP0 toP . We can
characterize the increase in different ways, assuming that the gain does not change
along the path of the beam:

• G D P=P0 D gain factor.
• G D e˛L, where ˛ is the gain coefficient (in m�1) and L (in m) the length of the

gain medium.
• 1 dB (D 1 decibel) D 10 � log.P=P0/ D 10 � 0:43 � ˛L D 4:3 � ˛L.
• (1 B D 1 Bel D 10 dB).
• 1 dB/m D L�1 � 10 � log.P=P0/ D 4.3˛.
• 1 dB m D 1 decibel milliwatt D 1 decibel � 1 milliwatt D a unit of gain of an

amplifier.

Example: erbium fiber amplifier; ˛ D 0:5 m�1 and L D 14m; gain D 2:15 dB/m;
G D 103.

REFERENCES [130–136]

Problems

16.1. Dye laser (length of the active medium 1 mm; beam diameter 0.2 mm;
reflectivity of the output coupling mirror R D 0:7; frequency 500 THz).

(a) Determine the threshold condition.
(b) Determine the output power at pumping 10 times above threshold.

16.2. Laser amplifier. To amplify femtosecond pulses emitted by a titanium-
sapphire laser, an optical switch reduces the pulse repetition rate to 1 kHz. By
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passing through two amplifier stages (optically pumped titanium-sapphire crystals),
each with a single path gain of 10, intense laser pulses are generated. Determine
(by use of the data of Problem 13.2) the pulse power and the average power after
amplification.

16.3. Momentum of a photon and radiation pressure.

(a) When an atom at rest emits a photon, then the atom experiences a recoil.
Estimate the velocity of a neon atom that was originally at rest and emitted
a photon (wavelength 632 nm).

(b) Estimate the average velocity of a spherical target (diameter 0.2 mm) consisting
of frozen deuterium after absorption of an intense light pulse (energy 100 J,
wavelength 1.05 �m).



Chapter 17
Vibronic Medium

We study the origin of gain of radiation in a vibronic medium. We find that the
gain coefficient of a vibronic medium like optically pumped titanium-sapphire has
a Gaussian-like shape.

We introduce a one-dimensional model of a vibronic medium that illustrates
the occurrence of vibronic transitions and we describe the results of theoretical
investigations. The energy of an atomic state of a vibronic medium, i.e., the energy
of a vibronic state, is composed of electronic energy of an impurity ion and of
vibrational energy of the host crystal. The broad frequency distribution of lattice
vibrations (phonons) of a crystal together with the possibility that many phonons
can be involved in an optical transition lead to two broad vibronic sidebands of the
zero-phonon line. One of the bands is observable as absorption band and the other
as fluorescence band. In a laser, the absorption band is used for optical pumping and
the other band for stimulated transitions.

In a classical description of vibronic transitions, we make use of the classical
oscillator model of an atom to describe the electronic transition in an impurity ion
and attribute a vibronic transition to an atomic oscillation experiencing frequency
modulation by a vibration of the host crystal.

A vibronic laser like the titanium-sapphire laser is based on a homogeneous
broadening mechanism, which determines the optical transitions.

17.1 Model of a Vibronic System

We first illustrate, by the use of a simple model, the origin of vibronic coupling.
We consider a TiO2 molecule (Fig. 17.1a); x0 is the TiO distance. We describe the
potential of the 3d electron of the Ti3C ion in a TiO2 molecule by a one-dimensional
square well potential of infinite height (Fig. 17.1b). We make use of the Schrödinger
equation

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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Fig. 17.1 Electronic excitation of a TiO2 molecule. (a) TiO2 molecule. (b) Electron in a one-
dimensional potential well. (c) Excited electron in the potential well
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wherem0 is the electron mass, � the spatial coordinate and � the wave function. The
energy eigenvalue of the electronic ground state is equal to (Sect. 30.1)

Ee D �2„2
8m0x

2
0

; (17.2)

where 2x0 is the width of the well. The first excited state has the energy

E�
e D 4�2„2

8m0x
2
0

: (17.3)

We assume that an excitation of the 3d electron extends the TiO2 molecule, i.e., that
the TiO distance increases. The width 2x�

0 of the potential well corresponding to the
excited state is larger than 2x0 and the energy of the excited state is smaller than
E�

e (Fig. 17.1c); ı is the increase of the TiO distance and � is the decrease of the
exited-state energy.

The symmetric valence vibration of the TiO molecule causes a variation of the
width of the potential well. The energy of the electronic ground state depends on the
displacement x � x0 according to the relation

E.x/ D Ee C 1

2
f .x � x0/2 D �2„2

8m0x2
C 1

2
f .x � x0/2 D E.x � x0/; (17.4)

where f is a spring constant and .1=2/f .x � x0/
2 is the elastic energy.

The energy of the excited state also depends on the TiO distance and therefore
on the displacement x � x�

0 ,

E�.x/ D E�
e C 1

2
f .x � x�

0 /
2 D 4�2„2

8m0s2
C 1

2
f .x � x�

0 /
2 D E�.x � x�

0 /; (17.5)
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Fig. 17.2 Model of a vibronic system. (a) Vibronic energy levels. (b) Transitions between vibronic
levels

where x�
0 is the TiO distance in the excited state. We assume, for simplicity, that f

has the same value as in the electronic ground state. But we take into account that
the TiO distance is larger than in the case that the Ti ion is in the ground state.

Figure 17.2a (solid lines) shows parabolas describing the energy of the electronic
ground state and of the excited state. The parabola describing the excited state is
shifted toward larger x. According to the Franck–Condon principle, an electronic
transition from the ground state to the excited state takes place without a change of
the TiO distance — indicated in Fig. 17.2b as a “vertical” transition. A transition
occurs to an energy that corresponds to the minimum of a parabola (dashed) that
shifted in energy by the excitation energy of an electron in a rigid potential well.
This energy is equal to

E�.x � x0/ D 4�2„2
8m0x

2
0

C f

2
.x � x0/

2: (17.6)

We assume that the change of the distance between the oxygen ions is small,
x�
0 � x0 � x0. Then we can write (Problem 17.1)

E�.x � x0/ D E�
0 ��C f

2
.x � Œx0 C ı	/2 ; (17.7)

� is a relaxation energy and ı is the increase of the TiO distance. After an absorption
process, the TiO molecule relaxes to the equilibrium position of the excited state.
Emission of a photon occurs to a vibronic state of the ground state. Another
relaxation process takes the system back to the ground state.

17.2 Gain Coefficient of a Vibronic Medium

Vibronic systems have been studied in detail by the use of appropriate quantum
mechanical methods [137]. The configuration diagram (Fig. 17.3a) illustrates the
role of lattice vibrations. The configuration coordinate Q replaces x of our
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Fig. 17.3 Vibronic transitions in a crystal at low temperature. (a) Vibronic transitions and gain
curve. (b) Wave functions

one-dimensional model. Q0 describes, in principal, the TiO distance of the oxygen
ions if Ti3C is in its electronic ground state. Q�

0 describes the distance if Ti3C is
excited. Q � Q0 is a measure of the displacement due to lattice vibrations; the
configuration coordinate takes into account that a large number of lattice vibrations
(phonons) of a crystal can couple to an electronic transition.

We discuss the gain coefficient of Ti3C:Al2O3 at zero temperature. We make
use of results obtained for vibronic transitions in Cr3C:Al2O3 [137]. We assume
that Ti3C:Al2O3 shows a similar vibronic coupling strength as Cr3C:Al2O3 as a
comparison of the widths of the vibronic absorption bands suggests. Both Ti3C and
Cr3C are transition metal ions; Ti3C has one electron and Cr3C two electrons in the
3d shell.

If the E.Q � Q0/ and E�.Q � Q�
0 / curves have parabolic shape (Fig. 17.3a),

the gain coefficient ˛.�/ is expected to have a Gaussian shape. Optical pumping
leads to a population of the lowest excited-state level. Gain is due to transitions to
vibronic levels of the ground state. The maximum of the gain curve corresponds,
with respect to a single emission process, to emission of a photon and creation of
about ten phonons of an average frequency of 7.5 THz. The halfwidth of the gain
curve is about 10 times the average photon energy. The density of states D1(h�vib)
of the phonons of Al2O3 extends from �vib D 0 to a maximum vibrational frequency
�max of about 15 THz. The Gaussian shape of the gain curve reflects the Gaussian
shape of the wave function of the lowest excited state (Fig. 17.3b). According to
the Franck–Condon principle, the TiO distance does not change during an optical
transition from the excited state to a vibronic state of the electronic ground state.

In an optically pumped crystal at room temperature, transitions occur also from
thermally populated vibronic states (Fig. 17.4a). The population is determined by
the crystal temperature. Because of additional transitions, in comparison with low
temperature, the gain curve shifts to higher energy and the halfwidth is larger than
at low temperature (by a factor of 1.2 according to theory [137]). Figure 17.4b
shows the E.Q � Q0/ and E�.Q � Q�

0 / curves together with the shape of the
gain coefficient ˛. The gain coefficient has a Gaussian shape. Due to anharmonicity
of the phonons, theE.Q�Q0/ deviates from a parabolic shape atQ > Q0 (dashed)
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Fig. 17.4 Vibronic medium at room temperature. (a) Vibronic transitions. (b) E.Q/ curves and
gain curves

and Q > Q�
0 (dotted). This is most likely the main reason for the deviation of the

gain curve from a Gaussian curve at frequencies below the center frequency (see
Fig. 17.7 and Fig. 17.8). Anharmonicity, occurring at room temperature, can lead to
a broadening of the gain curve; the halfwidth (110 THz), derived from fluorescence
data (Sect. 7.6), corresponds to about 15 times the average frequency of a phonon in
Al2O3.

While the gain curve deviates from a Gaussian shape at small frequencies, the
experimental absorption curve deviates at large frequencies (see Fig. 7.8). This is in
accordance with a deviation (Fig. 17.4, dotted) of the shape of the E�.Q � Q�

0 /

curve from a parabolic shape due to anharmonicity for Q < Q�
0 . A structure in

the absorption line, indicated in Fig. 7.8, is due to a splitting — caused by the
Jahn-Teller effect [138]. The Jahn-Teller effect is most likely responsible that the
absorption cross section of a Ti3C ion in the ground state is by about a factor of 4
smaller than the gain cross section of an excited Ti3C ion (see Fig. 5.3, upper part).

The maximum quantum efficiency of titanium-doped sapphire is about
80% [139].

17.3 Frequency Modulation of a Two-Level System

Instead of describing a vibronic state as a state with electronic and vibrational
components, we can choose an alternative view.
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We consider transitions between two discrete energy levels of a two-level system
(with the upper level 2 and the lower level 1) of an impurity ion in a crystal at low
temperature. We make use of the classical oscillator model of an atom (Sect. 4.9)
and describe the electric field connected with an oscillating electron by (Fig. 17.5 a)

E D A cos!0t: (17.8)

A is the amplitude of the field at the position of the electron and !0 the transition
frequency; we assume, for simplicity, that the spontaneous lifetime is infinitely
large. We now assume that a lattice vibration (frequency˝) is present in the crystal.
The vibrational wave modulates the crystalline field at the position of the impurity
ion and therefore modulates the transition frequency of the electronic transition —
corresponding to a frequency modulation. The instantaneous transition frequency is
equal to

!inst D !0 C a cos˝t; (17.9)

where a is the maximum change of frequency toward larger and toward smaller
frequency with respect to the “carrier” frequency !0. Due to frequency modulation,
the instantaneous frequency varies periodically with time (Fig. 17.5b). It follows
that the electric field is given by

E.t/ D A cos
Z t

0

.!0 C a cos˝t 0/dt 0 D A cos.!0t Cm sin˝t/; (17.10)

where
m D a=˝ (17.11)

is the modulation degree; m � 1 corresponds to weak modulation and m � 1 to
strong modulation. We make use of the relation [15]:

cos.˛ Cm sinˇ/ D
1X

nD�1
Jn.m/ cos.˛ C nˇ/: (17.12)

Jn is the Bessel function of nth order. A Fourier transformation leads to the spectrum
of the frequency modulated field [15],

E.!/ D 1

2

1X

nD�1
Jn.m/ .ı.! � !0 � n˝/C ı.! C !0 C n˝// : (17.13)

The fluorescence spectrum is given by

S.!/ D KE2.!/; (17.14)

where K is a constant that depends on the electronic properties of the impurity
ion and on the experimental arrangement. If the modulation is weak, the spectrum
(Fig. 17.5c) consists mainly of a strong zero-phonon line at !0 and a weak satellite
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Fig. 17.5 Frequency modulation of an atomic oscillation by a lattice vibration. (a) Electric field
without frequency modulation. (b) Frequency modulated electric field. (c) Luminescence spectrum
at weak modulation. (d) Luminescence spectrum at strong modulation

line at !0 �˝ . If the coupling is strong (Fig. 17.5d), we obtain a vibronic spectrum
with many lines (in principle an infinitely large number). The lines around !0�m˝
are strongest; now the spectral weight of the zero-phonon line is small. We omitted
in Fig. 17.5c and Fig. 17.5d the sidebands at frequencies larger than !0, according
to the situation of a crystal at low temperature that does not contain thermally
excited phonons. At low temperature, the transition frequency is modulated due
to the creation of phonon waves during emission of radiation. Taking into account
that we have a continuous frequency distribution of phonons, we obtain a continuous
multiphonon sideband (of Gaussian shape). For information on the zero-phonon line
of Ti3C in Al2O3, see [138].

17.4 Vibronic Sideband as a Homogeneously
Broadened Line

In an active medium of a vibronic laser like the titanium–sapphire laser, all
impurity ions contribute in the same way to stimulated emission of radiation.
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A titanium–sapphire laser can therefore be seen as a laser that operates on a
homogeneously broadened transition.

REFERENCES [31, 137–139].

Problems

17.1. Determine the dependencies of � and ı in (17.7) on x0 and f .



Chapter 18
Amplification of Radiation in a Doped Glass
Fiber

We study the dynamics of gain of fiber amplifiers and fiber lasers. We present
a model — the quasiband model — that allows for derivation of an analytical
expression for the gain coefficient of an optically pumped doped glass fiber. We
concentrate the discussion mainly on the erbium-doped fiber amplifier. We will
however discuss other fiber amplifiers and fiber lasers too.

A glass fiber of the worldwide optical fiber network contains, about every 50 km,
an erbium-doped fiber amplifier. This amplifier operates in a frequency band (width
�5THz) around 195 THz (1.54 �m). It is possible to pump the erbium-doped fiber
amplifier with radiation of a semiconductor laser at a frequency (�202THz) that
lies just outside the range of gain. Alternatively, pumping with radiation at a much
larger frequency is possible.

While an excited atom in a gas, a liquid, or a crystal keeps its excitation until a
stimulated emission process takes place, the situation is completely different for
a fiber glass medium. In a glass, an excited ion loses its excitation to another
ion and this to a third ion and so on — the excitation migrates within the glass.
The origin of the migration of excitation are phonon-assisted energy transfer
processes. An excitation travels over a very large number of ions before a stimulated
emission process takes place. The migration of excitation plays an essential role
in the dynamics of gain of radiation in fiber amplifier. We will introduce a model
(quasiband model) that takes account of the migration of energy and that enables us
to calculate the gain coefficient of a fiber.

We will begin this chapter with a short survey of the erbium-doped fiber
amplifier: we first describe the gain coefficient and the quasiband model. Later in
the chapter, we will justify the model and derive the gain coefficient. In the last
section of the chapter, we will show that the quasiband model is in accord with
experimental results of absorption, fluorescence, and gain measurements. We will
also discuss three-level laser models often used for description of fiber lasers and
amplifiers.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 18, © Springer-Verlag Berlin Heidelberg 2012
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18.1 Survey of the Erbium-Doped Fiber Amplifier

Figure 18.1 shows the gain coefficient of an erbium-doped fiber amplifier; the
gain coefficient was calculated (Sect. 18.6) under the assumption that �60% of the
erbium ions are in the excited state. The amplifier operates in a wavelength range
near 1.54 �m (frequency 195 THz); see also Table 18.1. The gain bandwidth of
about 40 nm (�5THz) corresponds to �2:5% of the center frequency. Radiation of
a semiconductor laser serves as pump laser (pump wavelength 1.48 �m, frequency
�203THz). According to the small difference between pump and laser wavelength,
it is possible to reach a high quantum efficiency of conversion of pump radiation to
laser radiation. The model of a glass fiber amplifier, presented in this chapter, has
been published in 2010 [145].

We begin with mentioning few data of an erbium-doped fiber amplifier:

• Density of SiO2 glass D 2.3 �103 kg m�3, corresponding to an SiO2 number
density of 2.3 � 1028 m�3.

• N0 D 7 � 1025 m�3 D density of Er3C ions, corresponding to one Er3C ion per
330 SiO2 units; molar concentration of Er2O3 in quartz glass D 1,500 ppm D 1%
by weight Er2O3 in SiO2 glass.

• N D density of excited Er3C ions.
• ��g D 5 THz D gain bandwidth.
• Wavelength of maximum gain; � D 1:54 �m (frequency 195 THz).
• Refractive index of quartz glass; n D 1.5.
• �sp�10ms D spontaneous lifetime of the upper laser levels.
• ˛ D 13 m�1 D gain coefficient at a density of excited Er3C ions of N D 4

�1025 m�3.

Fig. 18.1 Gain coefficient of an erbium-doped fiber

Table 18.1 Erbium-doped fiber amplifier

� � Energy

Gain region 1.52-1.56 �m 193–197 THz 799–815 meV
Center of gain region 1.54 �m 195 THz 807 meV
Gain bandwidth 40 nm 5 THz 20 meV
Pump 1.48 �m 203 THz 840 meV
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Fig. 18.2 Principle of the
erbium-doped fiber amplifier

• Gain cross section at the wavelength of maximum gain �21 D 10�26 m2; see
Sect. 18.7.

• Gain factor for a fiber of 10 m in length: G D 3 � 103; this correspond to a gain
of 3.5 dB m�1.

• Pump rate
r D N=�sp � 4 � 1026 m�3 s�1I (18.1)

this corresponds to a pump power P D r � V � h� �43mW if a fiber of 10
�m diameter and 10 m length (volume V ) is pumped with radiation at 1.48 �m.

Figure 18.2 illustrates the principle of the erbium-doped fiber amplifier
( D Er3C:glass amplifier) as we will explain in the following sections. Pump
radiation creates excited-impurity quasiparticles in a quasiband via optical
transitions from a vacuum level to the upper part of the quasiband. Stimulated
emission of radiation by transitions from the lower part of the quasiband to the
vacuum level gives rise to amplification of radiation. The width (�50meV) of
the quasiband is small compared to the center energy (819 meV); the width of the
quasiband depends on the type of glass and differs by a factor 2–3 for glasses of
different composition. Pumping via higher levels has already been discussed (see
Fig. 15.10).

The erbium-doped fiber laser at room temperature is a quasiband laser
(Sect. 4.2) — the intraband relaxation time (10�13 s) is much smaller than the
relaxation time of energy levels with respect to relaxation to the ground state
(��

rel D 10�2 s). Intraband relaxation is a nonradiative relaxation. Population
inversion occurs if the occupation number difference is larger than zero, f2�f1 > 0.
Because the halfwidth of the quasiband is comparable to kT , population inversion
requires that about half of the erbium ions are in the excited state (Sect. 18.7).

18.2 Energy Levels of Erbium Ions In Glass and
Quasiband Model

An energy level of a free Er3C ion (Fig. 18.3) is characterized by the quantum
number J of the total angular momentum; J D 15/2 in the ground state (4I15=2) and J
D 13/2 in the first excited state (4I13=2). A crystalline electric field splits a level into
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Fig. 18.3 Energy levels of free Er3C ions, Er3C ions in LaF3, Er3C ions in a glass and a pump
and a laser transition (arrows)

a multiplet of J + 1/2 sublevels; because of Kramers degeneracy [121], a state with
an odd J does not experience the complete lifting of the 2J + 1 fold degeneracy. The
splitting of the ground state level is larger than the splitting of the excited-state level
as indicated in the figure for Er3C ions in a LaF3 crystal [146, 147].

In a glass, the Er3C ions are randomly distributed on sites of different crystalline
electric field. Boltzmann’s statistics determines the occupancy of the sublevels of
an ion; thermal equilibrium of the sublevel population of an ion is established
via spin-lattice relaxation; at room temperature, nonradiative relaxation by spin-
lattice relaxation processes leads to a fast establishment of thermal equilibrium in
an erbium-doped glass as long as pump radiation is absent.

Multiplet splitting and crystal field variations suggest widths of energy distri-
butions (�50meV for the ground state levels and �25meV for the excited-state
levels), which are of the order of kT at room temperature (T D temperature;
k D Boltzmann’s constant). In a laser medium consisting of a doped crystal, an
excited ion loses its excitation energy mainly via a stimulated optical transition. But
in a doped-glass medium, an ion excited via a pump process transfers its excitation
to another ion, this again to another ion and so on. On average, a laser transition
process occurs only after 1011 transfer processes.

As an example of a glass, we discuss a quartz glass ( D SiO2 glass). A two-
dimensional structural model (Fig. 18.4) illustrates the structure of glass. The SiO2

glass consists of silicon ions and oxygen ions. The silicon and oxygen ions do not
form a periodic structure: the Si-O distance varies within the glass and the atomic
arrangement shows no symmetry. Er3C ions occupy different sites and therefore
experience different crystal line fields. The energy of the ground state level, the
energy of the excited state level, as well as the transition energy are different for
erbium ions at different sites.
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Fig. 18.4 Microscopic
structure of glass

Fig. 18.5 A phonon-assisted
energy transfer process and
its reverse process

To discuss the role of energy transfer, we describe, for simplicity, an Er3C ion as a
two-level atomic system consisting of a ground state level and an excited-state level.
An excited two-level system at site (i) with a transition energy Ei can transfer its
excitation to a neighboring unexcited two-level system at site (j) that has a transition
energy Ej (Fig. 18.5, left). The energies of the ground state levels differ by ıij. Energy
conservation in a phonon assisted energy transfer process requires that

Ei C �p1 D Ej C �p2 C ıij; (18.2)

where �p1 is the frequency of a phonon and �p2 is the frequency of another phonon.
The energy transfer rate depends on the concentration of impurity ions and the
temperature of the glass. In the reverse process (Fig. 18.5, right), energy of excitation
of an ion and of a phonon is transferred to energy of excitation of another ion and
of another phonon (plus energy of position).

Energy transfer processes between rare earth ions in a glass at room temperature,
with involvement of two phonons, first discussed in theoretical investigations
[148, 149], are very efficient as experimental studies indicated [150, 151]. The
microscopic process of energy transfer can be due to Coulomb interaction between
two impurity ions.

Beside the two-phonon-assisted energy transfer, there are other energy transfer
processes: resonant energy transfer (without the involvement of a phonon); energy
transfer with involvement of one phonon; cross relaxation — an impurity ion in an
upper level is excited to a higher level by transfer of energy from another ion that
is in an excited state. The Förster mechanism (resonant energy transfer by dipole-
dipole interaction) was first discussed in 1949 [152]. Different transfer processes are
illustrated in Sect. 15.7.

A spectral hole burning study showed [153] that the broadening of an energy
level of an excited Er3C ion in a glass at room temperature corresponds to a lifetime
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of the order of 10�13 s (at a concentration of 1% Er2O3 by weight in glass). We
associate the broadening to phonon-assisted energy transfer.

Now, we attribute the transition energies, sorted according to their values, to a
quasiband (Fig. 18.6):

• D.E/ D density of states of the levels in the quasiband D number of levels per
unit of volume and energy.

• D.E/dE D number of levels within the energy interval E;E C dE per unit of
volume.

• N0 D density of impurity ions D density of two-level atomic systems D number
of impurity ions per unit of volume D number of lower levels per unit of volume
( D number of upper levels per unit of volume).

• N D N2 D density of excited ions.
• N0 �N D number of empty lower levels per unit of volume.
• N=N0 D band filling factor.
• f2.E/ D relative occupation number of levelE D probability that the level with

the energyE is occupied.
• f1 D 1 � f2.E/ D relative occupation number of the lower level D probability

that the lower level, which belongs to the upper level of energy E , is occupied.
• f2 � f1 D 2f2.E/ � 1 D occupation number difference.
• f2.E/D.E/dE D density of occupied levels in the energy interval E;E C dE .

The integral over the density of states is equal to the density of impurity ions,

Z 1

0

D.E/dE D N0: (18.3)

We describe, for simplicity, the density of states by a Gaussian distribution,

D.E/ D N0 �
r
4 ln 2

�

1

�E
exp

�
� ln 2 � .E �Ec/

2

�E2=4

	
: (18.4)

Ec is the center and �E the halfwidth of the distribution.
Because of the phonon-assisted energy transfer processes, the quasiparticles

interact with each other and couple to the thermal bath. The coupling to the thermal
bath gives rise to the formation of a thermal equilibrium of the population in

Fig. 18.6 Quasiband model of excited-impurity quasiparticles
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Fig. 18.7 Steady state of a gas of impurity quasiparticles

the quasiband (Fig. 18.7). At steady state, the average number of quasiparticles is
constant. Continuous optical pumping compensates the loss of quasiparticles that is
due to relaxation (mainly caused by spontaneous emission of radiation) and due to
the net effect of stimulated emission and absorption of radiation.

Our model does not take into account that the ground state as well as the
excited state of a single Er3C ion are multiplets (due to crystal field splitting).
Without pumping, the population in a multiplet of the ground state is in thermal
equilibrium. This equilibrium is established via spin-lattice relaxation processes.
During optical pumping, the ensemble of occupied ground state levels is not in a
thermal equilibrium.

18.3 Quasi-Fermi Energy of a Gas of Excited-Impurity
Quasiparticles

An energy level in the quasiband is, according to the Pauli principle, either empty or
occupied with one quasiparticle. We apply to the ensemble of quasiparticles Fermi’s
statistics and describe the average occupation number of an energy level by the
Fermi–Dirac distribution function

f2.E/ D 1

exp Œ.E � EF/=kT 	C 1
; (18.5)

EF is the quasi-Fermi energy of the quasiparticle gas and T the temperature of the
glass. The quasi-Fermi energy follows from the condition that

Z 1

0

f2.E/D.E/dE D N: (18.6)

N is the density of quasiparticles. The probability to find a quasiparticle in a level of
energy E is f2.E/. The probability that the ground state level, which corresponds
to the excited-state level of energyE , is occupied, is f1 D 1 � f2.
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We introduce dimensionless variables x D E=kT , a D EF=kT , b D Ec=kT ,
w D �E=kT and write (assuming a Gaussian distribution of the density of states)
the condition (18.6) in the form

Z 1

0

exp
��4 ln 2.x � b/2=w2

�
dx

exp .x � a/C 1
D 1:06 w

N

N0
: (18.7)

If b � 1 (Ec � kT ), which is the case for glass amplifiers and lasers, a numerical
analysis of (18.7) yields a quasi-Fermi energy that does not depend on w; the integral
is finite only in a small range of x around b and zero otherwise. The quasi-Fermi
energy EF (Fig. 18.8) increases with increasing filling factor N=N0 and is equal to
Ec at half filling; EF is -1 at zero quasiband filling (N D 0) and C1 at complete
filling (N D N0). The quasi-Fermi energy EF depends linearly on N=N0 in a large
range of the filling factor,

EF D Ec C 4:44 � .N=N0 � 0:5/ kT: (18.8)

Figure 18.9 shows the occupation number difference f2 � f1 for quasiparticles
at the center of the quasiband (E D Ec). The occupation number difference is
�1 for N D 0. With increasing N , f2 � f1 increases, becomes zero at half
filling of the quasiband and increases further. At complete filling (N D N0), the
occupation number difference is unity. The occupation number difference shows a
linear dependence on the filling factor,

f2 � f1 	 2:22 .N=N0 � 1=2/; (18.9)

with small deviations near N=N0 D 0 and N=N0 D 1.
At the center of the quasiband, the occupation number difference (see Fig. 18.9)

increases linearly over almost the whole range of the filling factor,

f2.Ec/� f1 D 2f2.Ec/� 1 D 2:22 � .N=N0 � 0:5/: (18.10)

Fig. 18.8 Dependence of the quasi-Fermi energy on the filling factor of a quasiband
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Fig. 18.9 Occupation number difference for quasiparticles in the center of the quasiband

The linear dependence of the occupation number difference on the filling factor, for
E D Ec, appears to be characteristic of a Gaussian shape of the density of states of
the quasiband; there are only small deviations from the linear dependence, occurring
atN=N0 near 0 and 1. The linear slope is slightly (11%) larger than for an ensemble
of two-level systems that all have the same transition energy. We will show that
f2 � f1 > 0 corresponds to gain and f2 � f1 < 0 to absorption.

A Fourier expansion of f2.E/ around Ec indicates that the linear dependence
of the occupation number difference f2.Ec/ � f1 on N=N0 follows directly from
the linear dependence of the quasi-Fermi energy EF on N=N0 (Problem 18.3). The
linear dependence of f2.Ec/�f1 extends, however, over a much larger range of the
filling factor than the linear dependence of the quasi-Fermi energy.

18.4 Condition of Gain of Light Propagating in a Fiber

Electromagnetic radiation (frequency �) that has a continuous energy distribution
around the photon energy h� D E interacts with a quasiparticle in a level of energy
E (Fig. 18.10) by absorption, stimulated and spontaneous emission. The transition
rate ( D number of transitions per s and m3) of stimulated emission is given by

rem.h�/ D NB21f2�.h�/ (18.11)

and the rate of absorption by

rabs.�/ D rabs.h�/ D NB12f1�.h�/: (18.12)

We use the quantities:

• E D transition energy.
• NB21 D Einstein coefficient of stimulated emission (in units of m3 s�1); NB21 D
hB21 (Sect. 6.6).

• NB12 D Einstein coefficient of absorption; NB12 D NB21.
• f2 D probability that the upper level is occupied.
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Fig. 18.10 Radiative
transitions between an energy
level of a quasiband and the
vacuum level

• f1 D 1 � f2 probability that the lower level is occupied.
• �.h�/ D spectral energy density of the radiation on the energy scale.

It is convenient to express the energy density on the energy scale.
The difference between the rates of stimulated emission and absorption is

r.h�/ D NB21.f2 � f1/�.h�/: (18.13)

Stimulated emission prevails if f2 � f1 > 0 or f2 > 1=2. This is the condition for
gain of light propagating in a fiber. The spontaneous emission rate is

rsp D A21f2: (18.14)

A21 is the Einstein coefficient of spontaneous emission.

18.5 Energy Level Broadening

The phonon-assisted energy transfer processes cause a broadening of the levels of
the quasiband (Fig. 18.11). We describe the broadening of a level of energy E by a
lineshape function g.h� �E/ that has a halfwidth ıE and is normalized,

Z
g.h� �E/ d.h�/ D 1: (18.15)

The integral over all contributions g.h� � E/d.h�/ in the photon energy interval
h�,h� C d.h�/ is unity. The net transition rate of monochromatic radiation, i.e., of
radiation with �.h�/ ¤ 0 in the energy interval h�; h�Cd.h�/, where d.h�/ � ıE ,
is given by

.rem � rabs/h�d.h�/ D NB21g.h� � E/.f2 � f1/�.h�/d.h�/: (18.16)

Supposing that the lineshape function is a Lorentzian, we can write

g.h� � E/ D ıE

2�

1

.h� �E/2 C .ıE=2/2
; (18.17)
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Fig. 18.11 Energy level broadening

where ıE is the halfwidth of the level broadening. The net transition rate is

r.�/ D r.h�/ D rem � rabs D
Z

NB21g.h� � E/.f2 � f1/�.h�/d.h�/: (18.18)

Introducing the energy density u D R
�.h�/d.h�/ D Zh�, where Z is the density

of photons, leads to the net transition rate

r.�/ D h� NB21g.h� �E/.f2 � f1/Z: (18.19)

The net transition rate is proportional to the occupation number difference f2�f1 D
2f2 � 1 and to the photon densityZ. The condition of gain of light propagating in a
fiber is the same as derived for the case of neglected energy level broadening,

f2 � f1 D 2f2.E/ � 1 > 0 or f2.E/ > 1=2I (18.20)

gain occurs for radiation of quantum energies

h� < EF: (18.21)

Optical pumping is possible by the use of radiation of a quantum energy h� that
is larger than the quasi-Fermi energyEF. The mechanism leading to the quasi-Fermi
distribution is the intraband relaxation. Due to phonon-assisted energy transfer,
the excited two-level atomic systems lose a portion of their excitation energy to
phonons. This leads, at room temperature, to the formation of the quasi-Fermi
distribution in the quasiband. After the formation of a quasithermal equilibrium,
the excited two-level atomic systems still interact with phonons. Accordingly, each
upper level is energetically broadened due to energy transfer processes. The width of
a broadened energy level is ıE 	 „=�in, where �in is the scattering time, i.e., the time
between two energy transfer events. The scattering time �in depends on temperature.
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At room temperature, the occupation number of thermal phonons is large at phonon
energies kT �25meV. Thus, a few energy transfer events (per excited two-level
system) establish a quasiequilibrium after a few scattering events. Therefore, we
regard �in as the intraband relaxation time.

The intraband relaxation time (�10�13 s) of Er3C:glass at room temperature is
much shorter than the lifetime (of the order of 10 ms) of an upper level with respect
to spontaneous emission of a photon. The width of the broadening of an upper level,
„=�in�4meV, is small compared to the range (� kT ) of populated levels.

18.6 Calculation of the Gain Coefficient of a Doped Fiber

The temporal change of the density of excited ions due to stimulated transitions is

dN

dt
D �h�

Z
NB21g.h� �E/.f2 � f1/D.E/ dE � Z; (18.22)

It follows that the temporal change of the photon density Z is given by the relation

dZ=dt D �dN=dt D �Z; (18.23)

where

� D h�

Z
NB21D.E/.f2 � f1/ g.h� �E/ dE (18.24)

is the growth coefficient of radiation of frequency �. With dt D ndz=c, where z is
the direction of propagation of the radiation (along the fiber axis), c is the speed of
light in vacuum, n (�1:5) the refractive index of the fiber glass, we find

dZ=dz D ˛Z; (18.25)

where

˛ D n

c
h�

Z
NB21D.E/.f2 � f1/ g.h� � E/ dE (18.26)

is the gain coefficient. The level broadening due to energy transfer is small compared
to kT . Therefore, we can replace g(h� � E/ by a delta-function, ı.h� � E/,
and find

˛.�/ D .n=c/h� NB21D.E/.f2 � f1/; (18.27)

where .f2 � f1/ D 2f2.E/ � 1 and E D h�.
Under the assumption that B21 is the same for all two-level systems and does

therefore not depend on E , the peak gain coefficient is

˛p D .n=c/h�c NB21D.Ec/: (18.28)
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Then the slope of the gain coefficient curves is given by the simple expression

˛.�/=˛p D f2 � f1 D 2f2.E/ � 1I E D h�: (18.29)

Gain coefficient curves (Fig. 18.12) show that the range of gain increases with
increasing quasiband filling according to the increase of the frequency

�F D EF=h: (18.30)

The frequency �F is a transparency frequency. At complete filling, the gain
coefficient has the same profile as the density of states and reaches the peak gain
coefficient ˛p at the center frequency �c D Ec=h. If the quasiband is empty, the
absorption coefficient has the same profile as the density of states.

From the peak gain coefficient, we obtain a peak gain cross section according to
the relation

˛p D N0 �p: (18.31)

We find

�p D n

c
h� NB21D.Ec/=N0 D 1:48

��hom

��

.�=n/2

2�
; (18.32)

with the quantities: �� D�E=h; A21 D 8��3.n=c/�3 NB21 D Einstein coefficient
of spontaneous emission; � D c=�c. Thus, �p has the same value as the peak gain
cross section of an ensemble of noninteracting two-level systems with transitions
characterized by an inhomogeneously broadened line of Gaussian shape.

The condition of gain

.f2 � f1/ D 2f2.E/ � 1 � 0 with E D h� (18.33)

means that gain occurs at frequencies

� < �F.N=N0/ D EF.N=N0/=h (18.34)

Fig. 18.12 Gain coefficient profile for different band filling factors N=N0 (in steps of 0.1)
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and that ˛.�F/ D 0. It follows that the transparency density Ntr is, in a large range
of the filling factor, given by

Ntr

N0
D 0:5C EF � Ec

4:44 kT
D 0:5C �F � �c

4:44 kT=h
: (18.35)

Example. Gain coefficient of a fiber doped with 1% Er2O3 by weight (N0 D 7 �
1025 m�3) at a filling factor N=N0 D 0.6 (see Fig. 18.1).

• A21 D 100 s�1; ��hom D A21=.2�/ �16 s�1.
• NB21 D 4.0 � 10�18 m3 s�1.
• Ec D 819 meV; �c�198THz.
• c=n D 2 � 108 m s�1.
• �E D 50 meV D 8 � 10�21 J; �� �12THz.
• D.Ec/ D 8.3 � 1045 m�3 J�1.
• ˛p D 22 m�1; �p D 3.2 � 10�25 m2.

The gain coefficient (at a filling factor of 0.6) is positive below a frequency that
is slightly larger than �c while a range of absorption follows at higher frequency;
the maximum gain coefficient (�9 m�1) is slightly larger than half the peak gain
coefficient ˛p.

Figure 18.13 illustrates our result. Gain occurs up to the transparency frequency
�F D EF=h. The quasi-Fermi energy EF and thus �F increase with increasing band
filling.

According to the linear dependence of the occupation number difference at the
center of the quasiband on the filling factor (see Fig. 18.9), we find

˛.�c/=˛p 	 2:22 .N=N0 � 1=2/I (18.36)

the gain coefficient at the frequency �c D Ec=h increases linearly with the filling
factor (Fig. 18.14).

Fig. 18.13 Quasi-Fermi energy and transparency frequency
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Fig. 18.14 Gain coefficient of an erbium-doped fiber at the center frequency �c D Ec=h; N0 D
7� 1025 m�3 and �p D 3.2 � 10�25 m2

18.7 Different Effective Gain Cross Sections

Here, we introduce three different effective gain cross sections: effective gain cross
section � ; effective gain cross section N�eff; effective gain cross section �eff.

Figure 18.15 shows gain coefficients (solid lines) for different quasiband filling
factors. The maximum gain coefficient ˛max (dashed) depends on the filling factor.
We can relate the maximum gain coefficient and the density of quasiparticles (i.e.,
the density of excited ions),

˛max D N � I (18.37)

the effective gain cross section � (Fig. 18.16, dashed) increases with increasing
filling factor, from zero for the empty quasiband to �p at complete quasiband filling.

The effective gain cross section

N�eff D .d˛max=dN/N=N0 (18.38)

describes the change of ˛max with N . With increasing N=N0, the effective gain
cross section N�eff (Fig. 18.16, solid line) increases from zero nearN=N0 D 0, shows
a maximum (�2�p) for N=N0 �0:6, then decreases and approaches zero near
N=N0 D 1.

We can introduce another effective gain cross section, �eff, writing

˛.�c/ 	 2:22.N=N0 � 1=2/.n=c/h� NB21D.Ec/ D .N �N0=2/ �eff (18.39)

and find
�eff 	 2:22 .n=c/h� NB21D.Ec/ D 2:22 �p: (18.40)

The effective gain cross section �eff (Fig. 18.15, dotted) has a constant value (2.22
�p) over a large range of the filling factor, from N=N0 D 0.5 to nearly N=N0 D 1,
where it decreases to 2�p. At complete filling, �eff D 2�p; the factor 2 is due to the
different reference values, N=N0 � 0:5 andN , respectively. At smaller band filling,
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Fig. 18.15 Gain coefficient at different filling factors

Fig. 18.16 Effective gain
cross sections of Er3C in an
erbium-doped fiber

�eff exceeds 2�p because band filling in the center of the quasiband leads to stronger
gain than filling in the wing of the band for N=N0 ! 1.

The effective gain cross section

�eff D .d˛=dN/ (18.41)

describes, for radiation of frequency �c, the gain cross section related to the two-
level systems that are excited above half filling; N0=2 is the transparency density
for radiation of frequency �c.

Here, we can ask: does the gain coefficient curve show a narrowing near complete
quasiband filling, i.e., when almost all erbium ions (for instance 90%) are in the
excited state? In this case, the energy transfer processes strongly slow, particularly
in the wings of the quasiband.

18.8 Absorption and Fluorescence Spectra of an
Erbium-Doped Fiber

The shape of an absorption curve is given by

N̨abs D ˛abs.�/=˛p D f1 � f2 D 1 � 2f2.E/; (18.42)
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whereE D h� and where ˛p is the absorption coefficient at the frequency �c at zero
quasiband filling. The shape of a fluorescence curve is given by

NS�.�/ D S�.�/=S�;p D f2.E/I E D h�: (18.43)

S�.�/ is the spectral distribution of the fluorescence radiation. S�;p is the peak
intensity, namely the intensity at the frequency �c in the case of complete quasi-
band filling. We neglect the frequency dependence of the Einstein coefficient of
spontaneous emission.

Figure 18.17 shows an absorption curve and a fluorescence curve both for week
quasiband filling (N=N0 D 0.1). The absorption curve is slightly blue-shifted with
respect to the absorption curve for zero qasiband filling. The fluorescence curve is
red-shifted. The absorption and the fluorescence curves have different shapes. The
shapes of the curves as well as the frequencies of their maxima depend on the filling
factor.

The filling factor relates the absorption coefficient and the shape of the fluores-
cence curves according to the expression

NS D f2

1� 2f2
� N̨abs: (18.44)

At week quasiband filling (N=N0 � 1/, the relation is

NS D f2 � N̨abs D 1

expŒ.E � EF/=kT 	C 1
� N̨abs: (18.45)

In this case, the shape of the fluorescence curve is determined by the product of the
Fermi–Dirac distribution function and the absorption coefficient.

It is possible to modify the quasiparticle model taking into account that B21 can
have different values for ions at different sites in a glass and that the density of states
does not have Gaussian shape. An analysis of absorption and fluorescence spectra

Fig. 18.17 Shapes of an absorption and a fluorescence curve of a fiber medium at the filling factor
N=N0 D 0.1
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measured or different filling factorsN=N0 (and different sample temperatures) may
provide detailed information on B21.�/ andD.�/.

There remains the question how to take account of the multiplet splitting,
especially of the occupied sublevels of the ground state. During optical pumping,
the population of the ensemble of sublevels of the nonexcited ions is not in thermal
equilibrium as already mentioned.

18.9 Experimental Studies and Models of Doped Fiber Media

The gain coefficient curves for different filling factors (see Fig. 18.12) and the
absolute values of the gain coefficients (see Fig. 18.1) are, in principle, in accord
with experimental results. However, experimental studies of the shape of absorption
curves, gain curves, and fluorescence curves of erbium-doped fibers indicate the
following:

• The profiles of absorption spectra and of fluorescence spectra are non-Gaussian
[154]; this shows that the densities of states of quasiparticles have non-Gaussian
profiles and that — most likely — B21 does not have a constant value.

• The profiles depend on the composition of a fiber glass; fibers can consist of
various types of glasses (silicate, phosphate, germanite, fluorite, fluorozirconate
glass).

• The fluorescence spectrum is red-shifted relative to the absorption spectrum —
in accord with the results (see Fig. 18.17) obtained with the quasiparticle model.

We mention two other models that are mostly used to describe fluorescence,
absorption and gain curves of fiber media:

• Three-level laser model (Fig. 18.18a). It describes gain and absorption of an
erbium-doped fiber amplifier [155, 156]; numerical simulations provide gain
coefficient curves that show a similar behavior as the gain curves (Fig. 18.12)
obtained by the analytical expression (18.29).

• Three-level laser medium of the ruby laser type (Fig. 18.18b). It describes
amplifiers and lasers, which are strongly pumped via high-lying pump levels
[157, 158].

These models assume a quasithermal equilibrium of the population of the ground
state levels. Although the assumption is not fully justified, the models provide a
basis of the description of optical properties of a fiber.

The quasiband model should also be applicable to analyze active media of fiber
lasers and amplifiers strongly pumped via high-lying energy levels mentioned in
Sect. 15.7:

• 1.05-�m ytterbium-doped fiber laser [159].
• 1.5-�m ytterbium/erbium-doped fiber amplifiers [160].
• Thulium-doped fiber laser [161, 162].
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Fig. 18.18 Models of fiber amplifiers and lasers. (a) Three-level laser model of the erbium-doped
fiber amplifier. (b) Ruby laser type model of an erbium-doped fiber laser

• 2.1-�m holmium-doped fiber laser [163].
• 3-�m ytterbium/erbium-doped fiber laser [164, 165].

The quasiparticle model predicts a narrowing of the gain curve at nearly complete
population inversion. When nearly all impurity ions are in the excited state, the rate
of phonon-assisted energy transfer processes slows down; at complete population
inversion, energy transfer processes are no longer possible.

REFERENCES [140–165]

Problems

18.1. Fiber laser. Estimate the efficiency of an erbium-doped fiber laser pumped
with a pump power twice the threshold pump power if the laser is pumped with
1480-nm radiation or if it is pumped with 980-nm radiation.

18.2. A glass contains erbium ions of a density N0 D 7 � 1025 m�3.
(a) Determine the average distance r0 between neighboring erbium ions.
(b) Estimate the number of neighbors of an erbium ion that lie in spherical shells
(thickness r0) with the radii r0 and 2r0; 2r0 and 3r0; 3r0 and 4r0; furthermore with
the radii sr0 and sr0 C r0 with s � 1.
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18.3. Occupation number difference in an erbium-doped fiber amplifier.
(a) Show that the occupation number difference at the energyEc for Fermi energies
in the vicinity of Ec is given by f2 � f1 D 2f .Ec/� 1 	 .EF � Ec/=2kT .
(b) How large is f2 � f1 if EF D Ec C kT ?
(c) Determine the percentage of energy levels of the quasiband lying in the energy
range Ec ��E=2;Ec C�E=2.

18.4. Discuss why the following lasers do not belong to the type “quasiband laser”:
(a) Titanium–sapphire laser, alexandrite laser; and, generally, vibronic lasers.
(b) Helium–neon laser.
(c) Continuous wave CO2 laser and TEA CO2.

18.5. Density of states. We consider the following case: the density of states of
quasiparticles in an erbium-doped fiber is the sum of two densities of state, D D
D1 C D2; the center frequencies have a frequency distance of 4kT .T D 300K);
the halfwidth of both densities of states is 2kT .
(a) Estimate the maximum gain coefficient ˛max.
(b) Estimate the maximum gain coefficient in the case that the center frequencies
have a frequency distance of kT .

18.6. Present arguments that show that it is most likely that the spontaneous lifetime
�sp of the 4I13=2 level of erbium ions in a glass fiber depends on the quasiband filling
factor.

18.7. Einstein coefficients. Consider an impurity-doped fiber with a Gaussian
shape of the density of states of quasiparticles.
(a) Design a dependence B21.E/ that leads to a double peak in the gain curve.
(b) Then discuss the dependence of �sp on the filling factor.

18.8. Temperature coefficient.
Make use of the quasiparticle model to estimate the temperature coefficient (in units
of dB/ıC) of an erbium-doped fiber amplifier of 10 m length for the temperature
ranges 10–20 ıC, �50 to �40 ıC and 50–60 ıC:
(a) If the frequency of the radiation is equal to the center frequency.
(b) If the frequency of maximum gain occurs at a filling factor of 0.6.

18.9. Fiber laser and fiber amplifier. Determine the gain of radiation passing
through an erbium-doped fiber (length 16 m) pumped at twice the transparency
density; for data, see Sect. 18.6.

18.10. Why is the population of the multiplet levels of the ground state of Er3C not
in thermal equilibrium during optical pumping?



Chapter 19
Free-Electron Laser

In a free-electron laser (FEL), free electrons of a velocity near the speed of light are
passing through a periodic magnetic field. Due to the Lorentz force, the electrons
perform oscillations (free-electron oscillations) with displacements transverse to the
propagation direction. Stimulated emission of radiation by the oscillating electrons
is the origin of free-electron laser radiation. The frequency of the radiation increases
quadratically with the electron energy. Frequency tuning over a large frequency
range is possible by changing the electron energy; the range of the electron energy is
determined by the particle accelerator that produces an external electron beam used
to operate a free-electron laser.

Infrared and far infrared free-electron lasers generate pulses of radiation of high
power; one of the presently operating far infrared free-electron lasers generates
quasi-continuous radiation.

Single-pass free-electron lasers, i.e., mirrorless lasers, are able to generate optical
pulses of extremely large pulse power. An important single-pass free-electron laser
is the SASE (self-amplified spontaneous emission) free-electron laser. It generates
optical pulses by amplification of spontaneously emitted radiation. Operation of UV
and VUV SASE free-electron lasers has been demonstrated; VUV is the vacuum
ultraviolet range (100–200 nm). X-ray SASE free-electron lasers are in planing;
X-rays have wavelengths below 10 nm. Another type of single-pass free-electron
laser is the free-electron laser amplifier, which amplifies a coherent radiation pulse.

Free-electron lasers, SASE free-electron lasers, and free-electron laser amplifiers
make use of the interaction of single electrons with a high frequency field. The
electrons executing oscillations in the periodic magnetic field represent the active
medium of a free-electron laser. Interaction of the oscillating electrons with a high
frequency field gives rise to the buildup of both the high frequency field and a high
frequency transverse current. Mediated by the high frequency transverse current,
energy of longitudinal motion of the electrons is converted to energy of radiation.

The equation of motion of an electron in a periodic magnetic field provides the
oscillation frequency (resonance frequency) �0 of the free-electron oscillation; �0
depends on the energy of the electron as well as on the strength and the period of
the spatially periodic field.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 19, © Springer-Verlag Berlin Heidelberg 2012
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Classical theories describe the motion of an electron in a free-electron laser by
use of Maxwell’s equations. Theory yields the small-signal gain factor of radiation
passing through the free-electron laser medium. Gain occurs at frequencies slightly
below �0. The resonance frequency �0 itself is a transparency frequency. Simulations
based on the theory indicate that the amplitude of the high frequency field in a
free-electron laser medium is limited; even if the high frequency field in the laser
resonator has no loss, the field cannot exceed a saturation field — conventional
lasers do not have such a limitation.

We give an introduction of free-electron lasers and present results of the theory
of free-electron lasers. Instead of treating the theory in detail, we apply a simple
model. We describe the interaction of a high frequency field with the electron
oscillations as a frequency modulation of the oscillations. Phase relaxation of the
frequency-modulated oscillations leads to synchronization of the oscillations to
the high frequency field. The synchronized oscillations mediate gain of the high
frequency field. Relaxation is due to the coupling of transverse and longitudinal
motion via the Lorentz force. The model describes the occurrence of transparency at
the resonance frequency, gain at frequencies slightly below the resonance frequency,
and the occurrence of saturation of the high frequency field. We will, additionally,
ascribe an energy-ladder medium to the active medium of a free-electron laser.
Accordingly, an oscillating electron is associated with an energy-ladder system; the
electron occupies one of the levels. Radiation is generated by stimulated transitions
between next-near energy levels in the ensemble of energy-ladder systems. This
intuitive description of a free-electron medium — though not introduced on a
consequent theoretical basis — illustrates similarities and differences of a free-
electron laser and a conventional laser.

We will not discuss a radiation source — also called free-electron laser — that is
operating at very large electron currents. In this type of free-electron laser, electron–
electron interaction gives rise to charge density domains. Electromagnetic radiation
interacts with a collective of electrons. These free-electron lasers, which are single-
pass free-electron lasers, are also able to produce radiation of very large power;
however, the radiation is not monochromatic.

19.1 Principle of the Free-Electron Laser

In a free-electron laser (Fig. 19.1), a beam of electrons (energy Eel;0) traverses a
periodic magnetic field (period �w). Due to the Lorentz force, the electrons execute
transverse oscillations. The oscillating electrons form an active medium (free-
electron laser medium D FEL medium). Stimulated emission of radiation by the
free-electron oscillators gives rise to buildup and maintenance of a high frequency
field in a laser resonator. Laser radiation (output power Pout) is coupled out via a
partial mirror.

The relativistic energy of an electron, which enters a periodic magnetic field with
the velocity vz;0, is given by
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Fig. 19.1 Free-electron laser

Eel;0 D �m0c
2; (19.1)

wherem0 is the electron mass and

� D 1
q
1 � v2z;0=c

2

(19.2)

is the Lorentz parameter; � measures the relativistic energy of an electron in units of
m0c

2; � D EMeV/0.51 MeV. The oscillation frequency of a free-electron oscillation
is equal to

�0 D K2
el
2c�2

�w
: (19.3)

K2
el (< 1) is a measure of the deviation of the oscillation frequency from 2c�2=�w.

The quantity N� D Kel� is an effective Lorentz parameter. It is smaller than
� according to a reduction of the initial energy of longitudinal motion due to
conversion of energy of longitudinal motion into energy of transverse motion.
We write

1

K2
el

D 1CK2
w=2: (19.4)

Kw is the dimensionless wiggler strength. We will show (Sect. 19.3) that it is
given by

Kw D eBw�w

2�m0c2
: (19.5)

Bw is the maximum strength of a magnetic field assumed to vary sinusoidally along
the wiggler axis. A value K2

w D 0:5, for instance, characterizes strong transverse
oscillations. K2

w D 0:5 corresponds to a reduction of � by �30% — then the
oscillation frequency is half the oscillation frequency of weak transverse oscillations
(in the case that Kw D 1).

Interaction of the free-electron oscillations with the high frequency field in the
resonator results in conversion of a portion of power of the electron beam into power
of laser radiation. The laser frequency has a value near the resonance frequency of
the free-electron oscillations,
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Fig. 19.2 Characterization of the free-electron laser. (a) Electron beam and wiggler. (b) Section
of a wiggler. (c) Optical resonator with free-electron laser (FEL) medium

� � �0: (19.6)

But � is slightly smaller than �0. It follows that the wavelength of the laser radiation
is given by

� D �w

2�2
.1CK2

w=2/: (19.7)

We describe the free-electron laser in more detail. A beam of relativistic
electrons, produced by use of an accelerator (Fig. 19.2a), traverses a spatially
periodic magnetic field and excites a radiation field in the optical resonator. The
electron beam, guided by a bending magnet into the resonator, passes through the
periodic magnetic field, which is produced by use of a periodic magnet structure,
the wiggler (D undulator). The electron beam then leaves the resonator by means
of a second bending magnet. Along the resonator axis (z axis), the magnetic field
direction assumes the Cy direction and the �y direction in turn. It varies in the
simplest case sinusoidally,

By D Bw sin
2�

�w
z: (19.8)

The length of the wiggler is Lw D Nw�w and Nw is the number of wiggler periods.
Due to the Lorentz force, the electrons execute oscillations perpendicular to the

magnetic field direction (y direction) and perpendicular to the z direction; i.e., the
electrons oscillate with displacements in ˙x direction.
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The wiggler can consist of two rows of equal magnets, with north poles N and
south poles S arranged periodically (Fig. 19.2b). The magnetization of a magnet
and the distance d between the rows determine the field strength Bw. Magnets
prepared from a samarium-cobalt alloy, which has a high magnetization, are suitable
as wiggler magnets. Alternatively, the wiggler is a superconducting magnet with
a helical winding of the superconducting wires, leading to a circular sinusoidally
varying transverse magnetic field.

The electron beam in the range between the wiggler magnets constitutes the free-
electron laser medium (Fig. 19.2c). A radiation field propagating in Cz direction is
amplified.

The length L of the optical resonator is larger than the length Lw of the active
medium; z0 is the center of both the optical resonator and the active medium. Thus,
the optical beam is a parallel (Gaussian) beam within the active medium.

There are various comprehensive books and articles about free-electron lasers;
see, for instance, [166, 167].

19.2 Free-Electron Laser Arrangements

Operation of a free-electron laser places great demands on the accelerator:

• High current density. The current density of a quasi-continuous free-electron
laser should lie in the range 1–10 A. At smaller current, the gain is too small to
reach laser threshold. At larger current, electron-electron interaction (Coulomb
repulsion) destroys the quality of the electron beam. The current density can be
much larger in the case that the pulses are very short — 1 kA for instance or even
more for electron pulses of 0.1 ps duration.

• High quality of the electron beam. The energy distribution in the electron beam
should be narrow, for instance 0.1–1% of Eel;0. The divergence of the electron
beam should be small.

Almost all free-electron lasers make use of electron pulses, produced by linear
accelerators, and therefore generate radiation pulses. There is one exception: a free-
electron laser in Santa Barbara (U.S.A.) produces quasi-continuous radiation.

The first free-electron laser was operated at Stanford University [168, 169] and
the second at the research center in Santa Barbara. After the first demonstrations of
free-electron lasers, many research centers began to develop free-electron lasers.

The free-electron laser in Santa Barbara is still very successful with respect to the
study of excitations in condensed matter. An electrostatic accelerator with a design
of high originality drives the free-electron laser (Fig. 19.3). The accelerator (6 MeV)
is a pelletron (a modified van de Graaff accelerator), which allows for a high
charging current (current strength 100 �A). Metal cylinders (length about 10 cm,
diameter 10 cm) move from the anode to the cathode and back. Metal tips on the
low-voltage side extract electrons from the anode and metal tips on the high-voltage
side extract electrons from the metal cylinders. Free electrons, produced with an
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Fig. 19.3 Electrostatic
accelerator with energy
recovering and free-electron
laser

electron gun at the cathode, are accelerated, pass through the laser resonator and
are then recovered by a deceleration system. The recovery of the electrons makes
it possible that, during a certain time (�30 �s), a constant current of high strength
(�5 A) is flowing through the free-electron laser. A voltage (�50 kV), produced
with a generator and a power supply at the cathode, accelerates the electrons to
compensate energy loss due to generation of radiation in the free-electron laser. The
wiggler consists of samarium-cobalt magnets. The resonator has a length of 16 m.
Radiation pulses of 30 �s duration are generated at a repetition rate of few Hz.
The radiation has a very high degree of monochromaticity. The free-electron laser
generates millimeter waves and far infrared radiation in the wavelength range 63
�m up to 1.25 mm (frequency range 0.25–4.7 THz) of a power up to 10 kW. The
free-electron laser is continuously tunable.

The free-electron laser in Santa Barbara is available as user facility. We mention
two pulsed free-electron lasers that are also available as user facilities:

• FELIX (at Rijnhuizen, The Netherlands); 4–250 �m (1.2–75 THz); the wiggler
consists of samarium-cobalt magnets.

• ELBE (at Rossendorf, Germany) 4-250 �m (1.2–75 THz); superconducting
wiggler.

These free-electron lasers are driven by linear accelerators (LINACs) with
15–45 MeV electron energy and peak currents in a range of 10 A to 1 kA. An
electron beam, and thus a laser beam, can consist of pulses (duration �1 ps or
longer) repeated at a rate of 10 MHz. The lasers generate radiation pulses with
pulse powers of 100 kW to 1 MW. The electron pulses and the light pulses in the
resonator must overlap within the wiggler. This is the case if the round trip transit
time of the light in the resonator is equal to the temporal distance of pulses.

The SASE free-electron laser principle has been successfully demonstrated
[170]: a free-electron laser generated visible radiation (wavelength 530 nm) and near
ultraviolet radiation (385 nm). The laser showed saturation of the power of radiation.
Operation of SASE free-electron lasers generating radiation of GW power of VUV
radiation in the 100 nm range (tuned in the range 95–105 nm) [171] and of radiation
at 32 nm [172] has been achieved. A SASE free-electron laser is a mirrorless laser;
SASE D self-amplified spontaneous emission.
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X-ray SASE free-electron lasers for generation of X-ray radiation at wavelengths
around 0.1 nm are in a planning state [173, 174]. It is expected that the use of an
electron beam (energy Eel of 10-20 GeV) consisting of very short intense pulses
(duration 20 fs, peak current 1 kA), large diameter (e.g., 0.1 mm) should generate
X-ray pulses of extremely high intensity (up to 10 GW). Due to the light guiding
effect, long tapered wigglers (length up to 100 m) can be used; a long tapered
wiggler can consist of a series of short stages which lead to the same resonance
frequency though the electron energy decreases along the wiggler.

During the flight through a wiggler, an electron permanently loses energy due
to stimulated emission of radiation. Therefore, the oscillation frequency decreases
along the wiggler. In a tapered wiggler, the oscillation frequency is kept con-
stant. A constant oscillation frequency can be achieved either by reducing, along
the Cz direction, the wiggler period or by increasing the distance d between
the wiggler magnets. Tapered wigglers are of importance for lasers that produce
radiation at a GW power level. Then stimulated emission of radiation during
the flight of an electron through a long wiggler reduces the electron energy
notably.

SASE free-electron lasers and free-electron amplifiers are presently operating
worldwide in more than twenty laboratories. The sources generate radiation of
wavelengths in the infrared up to the VUV at pulse powers up to 1 GW.

The radiation of free-electron lasers is suitable for research (e.g., in solid state
physics and biology), for technical applications (e.g., for structuring).

19.3 Frequency of Free-Electron Oscillations

In this section, we will relate the frequency of free-electron oscillations and the
electron energy. We will proceed in three steps.

• First step: we study generation of spontaneously emitted radiation and take the
relativistic Doppler effect into account. We will obtain the oscillation frequency
of the free-electron oscillations,

�0 D 2c�2

�w
; (19.9)

and a spectrum of spontaneously emitted dipole radiation, centered at �0.
• Second step: we interpret the emission of radiation as relativistic Compton

scattering. We will find that the analysis also leads to the frequency �0.
• Third step: we determine the modified resonance frequency �0 as it occurs in

free-electron lasers.

An oscillating free electron moving at a relativistic velocity emits radiation at a
frequency according to the relativistic Doppler effect. The radiation observed in the
laboratory frame has an extreme forward direction.
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Fig. 19.4 Path of an electron through a wiggler field and dipole radiation

The motion of an electron through a wiggler takes the time (Fig. 19.4)

t D Nw�w=v: (19.10)

Nw is the number of wiggler periods, �w the wiggler period and the electron velocity
along the wiggler. In the same time in which an electron traverses the wiggler, the
electron emits an electromagnetic wave packet with Nw oscillation cycles. A wave
packet of radiation emitted in z direction has the spatial length

.c � v/t D Nw�w.1 � ˇ/=ˇ; (19.11)

where ˇ D v=c. Since .c � v/t D Nw�, where � is the wavelength of the radiation,
it follows that

Nw� D Nw�w.1 � ˇ/=ˇ (19.12)

or, with ˇ 	 1,

� 	 .1 � ˇ/�w: (19.13)

With 1=
p
1 � ˇ2 D � and

1

1 � ˇ2 D 1

.1 � ˇ/.1C ˇ/
	 1

2.1� ˇ/ D �2; (19.14)

we find

� D �w

2�2
: (19.15)

The number of oscillation cycles in a wave packet is Nw. The rectangular
envelope of the field has the temporal length

�t D Nw�=c: (19.16)
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It follows that the power spectrum of the spontaneously emitted radiation has the
shape:

S!.!/=Smax D
ˇ
ˇ
ˇ
ˇ

Z �t

0

e�i.!�!0/tdt
ˇ
ˇ
ˇ
ˇ

2

D
ˇ
ˇ̌
ˇ
sinŒ2�Nw.! � !0/=.2!o/	

2�Nw.! � !0/=.2!0/
ˇ
ˇ̌
ˇ

2

D
ˇ
ˇ̌
ˇ
sinX=2

X=2

ˇ
ˇ̌
ˇ

2

: (19.17)

S!.!/ is the spectral distribution of the radiation, Smax the maximum of the spectral
distribution, !0 D 2�c=� the resonance frequency and

X D 2�Nw

�
!

!0
� 1

�
: (19.18)

The halfwidth of the Œsin.X=2/=.X=2/	2 curve (Fig. 19.5) is equal to ıX0 D 5:7.
This yields an expression of the halfwidth �!0 of the spectrum of spontaneously
emitted radiation,

�!0

!0
	 1

Nw
: (19.19)

The halfwidth corresponds, for Nw D 100, to 1% of !0. The oscillations of
the electrons are not synchronized to each other. Therefore, the phases of the
wave packets, emitted by different electrons, are statistically distributed. A pulse
containing Np electrons leads to an average amplitude that is proportional to

p
N p.

The power is proportional to Np, which itself is proportional to the strength I of the
electron current. Thus, the power of spontaneously emitted radiation is proportional
to the current strength. Since the electrons are moving at a relativistic velocity
near the speed of light, the emission occurs into a narrow cone directed along the
direction of the electron beam.

In the first step, we obtained an important result with respect to a beam of
electrons, which have a narrow energy distribution. A beam of electrons traversing
a periodic transverse magnetic field generates radiation by spontaneous emission:

Fig. 19.5 Spectral
distribution of radiation
spontaneously emitted by
relativistic electrons in a
periodic magnetic field of
small strength (Kel D 1)
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• The spectrum of spontaneously emitted radiation has a maximum at the
frequency �0 D 2c�2=�w; this is the oscillation frequency (resonance frequency)
of the free-electron oscillations if Kw D 1.

• The spectrum shows a frequency distribution varying as .sinX=X/2, where
X D Nw.� � �0/=�0.

• The relative width of the spectrum is 1/Nw.

In the second step, we attribute the origin of free-electron laser radiation to
Compton scattering. We perform a relativistic transformation from the laboratory
frame to the electron frame. We then describe the Compton scattering in the electron
frame. The relativistic transformation back into the laboratory frame yields the
wavelength of the radiation (Fig. 19.6):

• Laboratory frame (a). An electron has the velocity v and moves toward the
wiggler field of wavelength �w.

• Electron frame, before scattering (b). The electron experiences an electromag-
netic field of the wavelength �0 D �w=.2�/. The wavelength �0 is smaller than
�w because of the relativistic length contraction. The factor 1=2 occurs since
the wiggler field in the laboratory frame is a static field (Weizsäcker-Williams
theorem [59]).

• Electron frame, scattering process (c). Compton scattering of the electromagnetic
radiation at the electrons reverses the direction of the electromagnetic field.
Therefore, the wavelength �0 is the same before and after scattering (supposed
that the recoil energy of an electron can be neglected).

• Laboratory frame (d). The transformation back into the laboratory frame leads,
due to the relativistic contraction of length, to the wavelength � D �w=.2�

2/.

In the first two steps, we assumed that an electron has almost no energy of
transverse motion and that an electron in the wiggler has therefore the � value of
a free electron. We come to the third step. We assume that the average energy of
longitudinal motion of an electron in the wiggler is notably reduced, in comparison
with the free flight, because of the occurrence of transverse oscillations. The
equation of motion in x direction is given by:

�m0

dvx
dt

D qvzBy 	 qcBw sin

�
2�

�w
z

�
: (19.20)

Fig. 19.6 Stimulated
Compton scattering
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The value of � is a constant for electrons in the magnetic field; it is slightly smaller
than for the electrons outside the magnetic field. Integration leads to

vx D qBw�w

2��m0

cos

�
2�

�w
z

�
D Kwc

�
cos

�
2�

�w
z

�
; (19.21)

vz

s

1 � 1

�2
� v2x
c2

	 Nvz � K2
wc

4�2
cos

�
4�

�w
z

�
; (19.22)

where

Nvz D c

�
1� 1CK2

w=2

2�2

�
(19.23)

is an average velocity in z direction and Kw D e�wBw=2�m0c
2; the equations

(19.20) through (19.23), which should be understandable for themselves, can be
found, for instance, in [4, 169]).

19.4 Free-Electron Laser Theory

Quantum mechanical and classical theories have been developed to describe
free-electron lasers. A first quantum mechanical theory [175] made use of
the Weizsäcker–Williams transformation. Results of classical theory, based on
Maxwell’s equations, are in accord with results of quantum mechanical theory; for
a discussion of this point, see [176].

Classical theory yields the small-signal gain [166]:

G0 � 1 D 2jeg.X/I X D 2�Nw

�
!

!0
� 1

�
: (19.24)

The dimensionless quantity

je D 2�K2
weL

2
wNwJel

�0�3m0c3
(19.25)

is a measure of the strength of the gain, Jel is the current density in the electron
beam and

g.X/ D � 1

X3

�
1 � cosX � X

2
sinX

�
D � d

dX

�
sin.X=2/

X

�2
(19.26)

is a lineshape function.
The gain curve (Fig. 19.7) is antisymmetric with respect to the resonance

frequency (X D 0); there is no gain at the resonance frequency !0. The gain curve
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Fig. 19.7 Small-signal gain of radiation per transit through a free-electron laser medium

shows a modulation according to the finite time of flight of the electrons through the
wiggler. Maximum gain

G0;m � 1 D 2jeg.Xm/ D 0:134 je (19.27)

occurs at a frequency (Xm D �2:6) slightly smaller than !0. The frequency distance
(�X0 D 5:2) between the largest maximum and the corresponding minimum is
given by

�!0

!0
D 1

Nw
: (19.28)

The width of the largest peak (�Xg D 2:5) corresponds to the gain bandwidth�!g,
given by

�!g

!0
D 1

2Nw
: (19.29)

G0;m � 1 is proportional to the square of the wiggler strength, the square of the
wiggler length, the number of wiggler periods, and the current density.

During the onset of laser oscillation, the amplitude of the high frequency field
and the amplitude of the transverse high frequency current grow exponentially
until saturation sets in. The classical theory yields a saturation field amplitude that
depends on the wiggler and resonator properties.

We introduce, formally, a small-signal gain coefficient ˛� according to the
relation

G0 � 1 D ˛�Lw (19.30)

leading to

˛�.X/ D 2.je=Lw/g.X/: (19.31)
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The maximum gain coefficient

˛�
m D 0:134 je=Lw (19.32)

is proportional to the experimental parameters: square of the wiggler strength;
wiggler length; number of wiggler periods; and current density.

The amplitude of a high frequency field in a free-electron laser is limited to a
saturation field as numerical solutions of Maxwell’s equations indicate [166].

19.5 Data of a Free-Electron Laser

In the following sections, we will make use of data shown in Table 19.1. The data,
oriented at infrared free-electron lasers, are concerning the laser resonator, the high
frequency field (D optical field) in a resonator, the electron beam, and the free-
electron laser medium.

We choose the laser wavelength � D 5�m (laser frequency � D 6 � 1013 Hz;
photon energy h� D 0:25 eV). A resonator of length L D 10m is suitable as laser
resonator; the beam waist has a radius ru;0 D 3:5mm. The lifetime of a photon in
the resonator is �p D .2L=c/=.1�R/. We assume that the reflectivity of the output
coupling mirror is R D 0:9 and that the gain factor at steady state oscillation of the
laser is therefore G1 D 1:1.

We assume that the wiggler has a length of Lw D 1 m and a period of
�w D 2:4 cm. The time it takes the electrons and the radiation to pass through
the wiggler field is the transit time ttr D Lw=c (D 7 ns). The resonance frequency �0
of the free-electron oscillations is only slightly larger than the laser frequency �.
The gain bandwidth is 6 � 1011 Hz. A current I D 1 kA corresponding to an
electron current density Jel D I=.�r2u;0ec/ D 6:6 � 105 A m�2, an electron density
N0 D jdc=.ec/D 8 � 1015 m�3 and a rate of electrons traversing the active medium
rel D I=e (D 1:2 � 1020 s�1) leads to je D 1:4 and G0 � 1 D 0:5.

We assume that the output power Pout has a value of �100 kW and that this
output power corresponds to laser operation at saturation of the high frequency field
within the laser resonator. Accordingly, the saturation field amplitude is A1 � 4 �
106 V m�1 and the density of photons in the resonator is Z1 D �0A

21=2h� (�2 �
1021 m�3). The total photon output coupling rate rout;tot DPout=h�.D 2:5�1024 s�1)
are also saturation values. The output power,

Pout D Z1
�p

�r2u;0Lh� D .1=2/�r2u;0.1 � R/A21; (19.33)

of a free-electron laser is independent of the length of the active medium — because
of field saturation. This is a main difference between a free-electron laser and a
conventional laser: the density Z1 of photons in the resonator of a conventional
laser and Pout increase if we increase the length of the active medium (and double
the total pump strength).
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Table 19.1 Data of a free-electron laser

Quantity Value Notation

� 5 �m Laser wavelength
� 6 � 1013 Hz Laser frequency
h� 0.25 eV Photon energy
L 10 m Resonator length
�p D .2L=c/=.1�R/ 7 � 10�7 s Lifetime of a photon

in the resonator
ru;0 3.5 mm Radius of the optical beam waist

= Radius of the electron beam
Lw 1 m Length of active medium =

Length of wiggler
�w 2.4 cm Wiggler period
Nw 50 Number of wiggler periods
�0 6 � 1013 Hz Resonance frequency
��g D �0=2Nw 6 � 1011 Hz Gain bandwidth
ttr D Lw=c 3.5 � 10�9 s Transit time
Kw 1 Wiggler strength
I 1 kA Current strength
Jel D I=�r2u;0 2.5 � 107 A m�2 Current density
N0 D Jel=ec 5 � 1017 m�3 Electron density
rel D I=e 1.2 � 1020 s�1 Electron rate
je 1.4 Gain strength
G0 � 1 0.5 Small-signal gain
R 0.9 Reflectivity of output mirror
G

1

� 1 D 1=R � 1 0.1 Steady state gain
A

1

4 � 106 V m�1 Amplitude of saturation
field in the resonator

Pout =
(1/2).1� R/c�0A

2
1

�r2u;0 100 kW Output power
rph D Pout=h� 2.5 � 1024 s�1 Photon output coupling rate
sstim 2.1 � 104 Emission processes per electron
�stim D ttr=sstim 1.6 � 10�13 s Time between two

stimulated emission processes
Eel;0 50 MeV Initial electron energy
Pel D relEel;0 1 � 109 W Power of electron beam
�P D Pout=Pel 10�4 Power conversion efficiency
Eel;0 � Eel;1 D sstimh� 5 keV Loss of energy of an electron

Each electron traversing the active medium generates a large number of photons:
the number of photons generated (per electron) by stimulated emission is sstim. The
time between two stimulated emission processes is �stim D ttr=sstim (D 3:3�10�13 s).

A free-electron laser for generation of radiation in the range around 5 �m
can be realized by the use of a beam of electrons of an initial energy Eel;0 near
50 MeV (at a wiggler period �w D 2:4 cm). It follows that the power efficiency,
�P D Pout=Pel (D 10�4), is small compared to unity. The loss of energy of an
electron,Eel;0 �Eel;1 D sstimh� (D 5 keV) due to stimulated emission corresponds
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to 10�4 Eel;0. This is small compared to the energy spread of the electrons; we
assume that the energy distribution has a width of 10�3 Eel;0.

The data of Table 19.1 characterize a pulsed laser and correspond to peak values.
We obtain an average output Pout;av D Pouttprp, where tp is the pulse duration and
rp the pulse repetition rate; for example, tp D 1 ps, rp D 107 s�1 and Pout;av D 2 W.

Laser operation requires that the amplitude of the high frequency field in the
resonator is smaller than the damage field for the laser mirrors. A short pulse
duration is therefore necessary to reach the amplitude A1.

19.6 High Frequency Transverse Polarization and Current

The free-electron laser medium consists of an ensemble of free-electron oscillators
(Fig. 19.8a). An electron oscillator i with displacements in x direction is associated
with an electric dipole moment

px;i D Op cos.!0t C 'i /; (19.34)

where Op is the amplitude and 'i a phase. The high frequency polarization (in x
direction) of the free-electron laser medium is equal to

P D
X

px;i: (19.35)

In the absence of a high frequency field, the high frequency electric polarization of
the free-electron laser medium is zero since the electron oscillators oscillate with
different phases 'i according to the different arrival times of the electrons at the
wiggler.

A high frequency field (amplitude A, frequency !, oriented along x)

QE.!/ D A ei!t ; (19.36)

which propagates in the free-electron laser medium along the z axis, interacts
with the electron oscillators. We will show that the interaction leads to frequency
modulation of the electron oscillations and that synchronization of the electron
oscillations of all electrons in the active medium results in a high frequency

Fig. 19.8 Response of a
free-electron laser medium to
a high frequency field. (a)
Free-electron laser medium:
ensemble of free-electron
oscillators. (b) Field and
current density
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polarization. Mutual interaction of the polarization and the field leads to the buildup
of both the polarization and the field.

A high frequency polarization corresponds to a high frequency electric current (in
x direction) of current density j (Fig. 19.8b). The high frequency electric field can
be amplified or damped — depending on the phase between the electron oscillations
and the current. At small field amplitude A, the current density depends linearly on
the field,

Qj .!/ D Q�.!/ QE.!/: (19.37)

The linear response is characterized by the complex high frequency conductivity

Q�.!/ D �1.!/� i �2.!/: (19.38)

The current density,

Qj .!/ D j1.!/� i j2.!/ D �1.!/A cos!t � i�2.!/A sin!t; (19.39)

has a real part
j1.!/ D �1.!/A cos!t (19.40)

that has the same phase as the field. Gain occurs if �1.!/ < 0. The (negative)
imaginary part

j2.!/ D �2.!/A sin!t (19.41)

has a phase of 90ı relative to the field and corresponds to an inductive current. The
current is phase shifted relative to the field,

j.!/ D �.!/A cosŒ!t C '.!/	; (19.42)

where

� D
q
�21 C �22 (19.43)

is the absolute value of the conductivity and where ' is the phase between current
density and field. The phase follows from the relation

tan' D �2=�1: (19.44)

We assume that the optical beam has the same lateral extension as the electron
beam, and that the electron density N0 and the amplitude A of the high frequency
field do not vary over the cross section. Our goal is to derive �1.!/ and �2.!/. From
the real part of the high frequency transverse conductivity, we obtain the (small-
signal) gain coefficient:

˛.!/ D � 1

�0c
�1.!/: (19.45)

We relate the high frequency transverse velocity Qv of a single electron and the
high frequency electric field,
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Qv.!/ D Q�.!/ QE.!/; (19.46)

where Q� is the complex high frequency mobility of an electron for transverse
motion. It then follows that the high frequency current density of a free-electron
laser medium is given by

Qj .!/ D N0q Qv.!/ D N0q Q�.!/ QE.!/; (19.47)

where q (D �e) is the electron charge.
It is a goal to determine the small-signal conductivity Q�.!/ and furthermore,

to estimate the saturation field amplitude A1. The small-signal conductivity deter-
mines the laser threshold and the onset of laser oscillation while the saturation field
amplitude characterizes dynamical processes occurring at steady state oscillation of
the laser.

19.7 Free-Electron Oscillations

After entering a wiggler field, an electron oscillates under the action of the Lorentz
force. We assume, for simplicity, that the transverse velocity of the electron within
the periodic magnetic field varies sinusoidally,

v.t/ D v0 cos!0t; (19.48)

where v0 is the amplitude of the high frequency velocity. By integration, we find the
trajectory

� D �0 sin!0t; (19.49)

where
�0 D v0=!0 (19.50)

is the amplitude of the oscillation.
The energy of transverse motion, averaged over time, corresponds to an apprecia-

ble portion of the initial electron energy. The transverse velocity is therefore near the
speed of light. We find, with v0 �c and for a resonance frequency �0 D 6�1013 Hz,
the amplitude �0 D c=2��0 D 800 nm.

We now assume that an oscillating electron travels along z together with the high
frequency field E , which is oriented along x, and that the field varies harmonically,

E.!/ D A cos!t: (19.51)

A is the amplitude and! the frequency of the field. The high frequency field causes a
frequency modulation of the electron oscillation. The electron has an instantaneous
frequency

!inst D !0 C 
A cos!t; (19.52)
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where 
 is the coupling strength. Integration yields the phase

inst D !0.t � t0/Cm.sin!t � sin!t0/; (19.53)

where t0 is a starting time of the oscillation. The instantaneous transverse velocity
is given by

vinst.t; t0/ D v0 cos Œ!0.t � t0/Cm.sin!t � sin!t0/	; (19.54)

where

m D 
A

!
(19.55)

is a modulation degree: according to (19.52), the high frequency field modulates the
oscillation frequency of the electron. The modulation degree is proportional to the
amplitude of the high frequency field and inversely proportional to the frequency —
if 
 is a constant.

We will show that the coupling of transverse and longitudinal oscillation due
to the Lorentz force causes a transfer of energy of longitudinal motion to energy
of transverse motion and vice versa. The coupling leads to conversion of power
of longitudinal electron motion to power of the field if ! < !0 and vice versa if
! > !0

We describe the transfer of energy of transverse motion to energy of longitudinal
motion as a phase relaxation process. The relaxation causes a change of the phase
of the oscillation. We assume, for simplicity, that an electron oscillation changes
the instantaneous transverse velocity in a single relaxation process (Fig. 19.9); the
relaxation corresponds to a phase relaxation because the oscillation continuous, after
a relaxation process, with the same amplitude as before the process. The probability
that an electron does not undergo a relaxation process in the time interval t � t0 is
given by

p.t; t0/ D e�.t�t0/=� ; (19.56)

where � is the average time between two subsequent relaxation processes. The
average over all starting times yields an instantaneous transverse velocity

Fig. 19.9 Phase relaxation of a free-electron oscillation
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vinst.t/ D v0
1

�

Z t

�1
p.t; t0/v.t; t0/dt0: (19.57)

The instantaneous velocity varies periodically with the period T D 2�=! of the
high frequency field. A Fourier transformation [15] yields the amplitude of the real
part of the velocity:

v1 D v0

C1X

nD�1
Jn.m/

.!0 C n!/�

.!0 C n!/2�2 C 1
: (19.58)

Jn is the Bessel function of nth order. The terms for n D �2;�3; : : : describe higher
order resonances with n! D !0. In the following, we will discuss the case n D 1

and !0� � 1.
Making use of the relation J�1 D �J1, we obtain, for n D 1, the result

v1 D � vp NgL;disp.!/; (19.59)

where
vp D v0J1.m/ (19.60)

is a peak amplitude of the high frequency velocity, J1.m/ the Bessel function of first
order,

NgL;disp.!/ D !0 � !

�!0=2
NgL;res (19.61)

is the Lorentz dispersion function,

NgL;res.!/ D �!20=4

.!0 � !/2 C�!20=4
(19.62)

is the corresponding Lorentz resonance function and where�!0 D 2=� .
We find for the case of weak modulation,m � 1 leading to J1.m/ D m=2,

vp D v0 m=2: (19.63)

The peak mobility at weak modulation is equal to

�p D vp=A D 
v0=!: (19.64)

It follows that the real part of the complex conductivity �1 � i�2 is given by

�1.!/ D ��p NgL;disp.!/; (19.65)

�p D N0ev0


2!0
	 N0ec


2!0
: (19.66)
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In Sect. 9.9, we mentioned the Kramers–Kronig relations, which relate the real
part and the imaginary part of a physical response function. If the shape of the
imaginary part of a response function is a Lorentz resonance function, the shape of
real part of the response function is a Lorentz dispersion function. The Kramers–
Kronig relations have been derived for systems in thermal equilibrium. We assume
that the Kramers–Kronig relations are also valid for a nonequilibrium system.
Accordingly, we find the imaginary part of the high frequency conductivity (see
also Sect. 32.9),

�2.!/ D ��p NgL;res.!/: (19.67)

The response function of the current density is

Q�.!/ D � �p
�!0=2

i .!0 � !/C�!0=2
: (19.68)

The peak conductivity, �p, is proportional to the electron density, to the transverse
velocity v0 (�c) and to the coupling strength 
. And it is inversely proportional to
the resonance frequency. The shape of the real part of the conductivity corresponds
to a Lorentz dispersion function and the imaginary part to a Lorentz resonance
function (Fig. 19.10). The maximum of j�2j is the peak conductivity �p. The extrema
of �2 have the values � �p=2.

The small-signal gain coefficient is given by

˛.!/ D 1

c�0
�1.!/ D ˛p NgL;disp.!/; (19.69)

where

˛p D 1

2c�0
�p 	 N0e


2�0!0
(19.70)

is a peak gain coefficient. The gain coefficient curve (Fig. 19.11, solid line) is
antisymmetric with respect to the resonance frequency !0. The gain coefficient is
positive for ! < !0. The maximum gain coefficient,

Fig. 19.10 High frequency conductivities of a free-electron laser medium
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Fig. 19.11 Gain coefficient of a free-electron medium: model curve (solid) and theoretical curve
(dashed)

˛m D ˛p

2
D N0e


4�0!0
; (19.71)

occurs at the frequency !0 � �!0=2. The frequencies of the maximum and the
minimum of the gain coefficient curve have the distance �!0.

We now compare the ˛.!/ curve with the ˛�.!/ curve (Sect. 19.4). We fit the
frequency distance and the maximum gain coefficient,

�!0

!0
D 1

Nw
I ˛m D ˛�

m: (19.72)

The ˛.!/ curve coincides with the ˛�.!/ curve (Fig. 19.11, dashed) in the vicinity
of the resonance. But j˛.!j shows a less steep decrease outside the resonance and
does not take into account that the gain coefficient depends on the length of the gain
medium. (In the case that the energy of the incident electron is less sharp than we
assumed, inhomogeneous broadening smears out the modulation of the theoretical
curve. However, the gain curve remains antisymmetric with respect to the resonance
frequency.)

19.8 Saturation Field of a Free-Electron Laser

We now discuss the saturation behavior. At large amplitude of the high frequency
field, i.e., at large modulation degree, the peak velocity is equal to

vp D v0J1.m/: (19.73)

The Bessel function J1 has a maximum form D 1:8 (and then decreases to zero and
becomes negative). The peak velocity cannot exceed the corresponding maximum
peak velocity vp;1 (Fig. 19.12, upper part) because dvp=dm D 0 at the maximum.
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Fig. 19.12 Saturation behavior of a free-electron laser medium: peak velocity and differential gain
coefficient

The maximum peak velocity corresponds to the saturation field A1. We find the
coupling parameter


 D 1:8 !0

A1
: (19.74)

In the range of the nonlinear dependence of vp.A/, gain is determined by the
differential gain coefficient (Fig. 19.12, lower part)

˛d D N0e

2c�0

dvp

dA
: (19.75)

The velocity vp;1 will be reached in the absence of output coupling. Then

˛d.A1/ D 0I (19.76)

the transverse velocity has a phase of �=2 relative to the high frequency field.
If the laser operates at finite output coupling, the gain coefficient assumes a value
necessary for maintaining oscillation.

The saturation field amplitude,

A1 D m!0



; (19.77)

does not depend on the length of the free-electron laser medium (Fig. 19.13).
Doubling of the length of the free-electron laser medium results in a shortening
of the oscillation onset time.

While the output power of a free-electron laser,

Pout D .1=2/.1�R/c�0A21�r2u;0; (19.78)

is determined by A1 and by the area of the beam waist (radius ru;0), the output
power of a mirrorless free-electron,
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Fig. 19.13 Onset of laser oscillation

Fig. 19.14 Free-electron laser medium at steady state oscillation of a free-electron laser

Pout D .1=2/c�0A
21�r2e ; (19.79)

is determined by A1 and by the area of the electron beam (radius re). Since re can
be much larger than a beam waist of radiation in a laser resonator, the output power
of a mirrorless free-electron laser can be much larger than for a laser with mirrors.
A mirrorless free-electron laser has furthermore the advantage that optical damage
of laser mirrors is avoided.

In comparison with a laser pulse, a radiation pulse of a SASE free-electron
laser is less coherent. It shows transverse coherence but not longitudinal coherence.
The transverse coherence is important for diffraction experiments. Longitudinal
coherence corresponds to the temporal coherence with respect to the arrival time
of radiation at a particular location. There is no longitudinal coherence because
different light waves are starting in a SASE free-electron laser at randomly
distributed time points. A radiation pulse is therefore composed of radiation of
different longitudinal wavelengths belonging to slightly different modes; in a laser,
the resonator forces the high frequency field to oscillate on one mode. Coherent
radiation can be obtained when a single-pass free-electron laser is used as an
amplifier of weak coherent radiation pulses — when such pulses are available.
Another possibility is the injection of a modulated electron beam — the modulation
requires again a coherent light pulse.

Our analysis is consistent with the dynamics in the electron beam, described
by three regions in a free-electron laser medium at steady state laser oscillation
(Fig. 19.14):

• Bunching region. Electrons entering the active medium execute transverse
oscillations. The high frequency field synchronizes the transverse oscillations.
The transverse oscillations are associated with longitudinal oscillations. The
synchronization leads to spatial bunching of the electrons (Sect. 19.10) too.

• Gain region. The synchronized electrons mediate amplification of the high
frequency field until the amplitude of the field approaches the saturation field
amplitude A1.
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• Transparency region. Stimulated emission and absorption processes compensate
each other.

At the onset of laser oscillation, the bunching region extends over the whole length
of the active medium. Mutual interaction of the field in the resonator and the electron
oscillations leads to the growth of both the field amplitude and the strength of
bunching. At strong field, the bunching range becomes smaller.

19.9 Optical Constants of a Free-Electron Laser Medium

We find from the high frequency conductivity, making use of (9.38), that the
components of the complex refractive index Qn D n1 � in2 are given by

n1.�/ 	 1C ın NgL;res.�/; (19.80)

n2.�/ 	 � ın NgL;disp.�/; (19.81)

ın 	 c ˛p

2��0
: (19.82)

The real part of the refractive index, n1, shows a resonance at �0 and is slightly
larger than unity (Fig. 19.15, upper part). The free-electron laser medium can act
as an optical lightguide for radiation propagating in Cz direction; for the radiation
propagating in �z direction, the refractive index is unity and the free-electron laser
medium does not influence the radiation. We find, with data of Table 19.1 and
according to (9.38), the value ın �10�5. The imaginary part of the refractive index,
n2, shows dispersion (Fig. 19.15, lower part).

Fig. 19.15 Real and imaginary part of the refractive index of a free-electron laser medium
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19.10 Bunching of Electrons in a Free-Electron Laser

We illustrate the result of the gain calculation. Electrons in a free-electron laser
medium perform oscillations at the resonance frequency. The oscillations of dif-
ferent electrons are uncorrelated to each other (Fig. 19.16, left). The average high
frequency current at the resonance frequency is almost zero. A high frequency field
(frequency !) forces the electrons to execute oscillations with the same average
phase relative to the high frequency field (Fig. 19.16, right). If ! D !0, this phase
is �/2 and there is, on average, no net energy transfer from the field to the electrons
and vice versa.

Figure 19.17a shows, for the case that no high frequency field is present, the
transverse velocity of two electrons, which enter the wiggler at different times t0.
The shape of the velocity curves is the same. During an oscillation cycle, transverse
velocity is converted into longitudinal velocity and vice versa. In the time average,

Fig. 19.16 Free-electron oscillations, unsynchronized (left) and synchronized to a high frequency
field (right)

Fig. 19.17 Transverse velocities of two electrons in a wiggler field, (a) in the absence and (b) in
the presence of a high frequency field
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the mean values of the velocities of the two electrons are equal. Therefore, the two
electrons transfer during an oscillation cycle the same amount of average transverse
velocity to longitudinal velocity and vice versa.

Under the influence of a high frequency field, the shapes of the velocity curves
of the two electrons are different (Fig. 19.17b). The electrons have different average
transverse velocities. The electron with the larger average transverse velocity will
lose a larger amount of transverse velocity than the other electron. Therefore,
electrons are relaxing toward the velocity curve with the smallest average transverse
velocity. This corresponds to a synchronization of the electron oscillations to
the field. The synchronization of the transverse oscillations is joined with a
synchronization of the longitudinal oscillations to the field and corresponds to a
bunching of the electrons along the wiggler axis. The electrons form bunches (called
microbunches):

• If ! D !0, the phase between the transverse velocity and the high frequency field
is �/2 and there is no net energy transfer from the electrons to the field and vice
versa. The electron oscillations are perfectly synchronized to the high frequency
field.

• If ! < !0, the phase lies between �/2 and 3�; energy of longitudinal motion is
transferred to the high frequency field. Since the frequency of the electron oscilla-
tions and the frequency of the high frequency field are different, synchronization
occurs only for limited time intervals. Synchronization is established again and
again via relaxation processes.

• If ! > !0, the phase lies between 0 and �/2, or between 3�=2 and 2�;
energy is transferred from a field to the electrons. Since the frequencies are
different, synchronization occurs only for limited time intervals. Synchronization
is established again and again via relaxation processes.

In all three cases, the high frequency polarization and the high frequency currents
are synchronized to the field.

Figure 19.18 shows, qualitatively, instantaneous distributions N.z/ of the elec-
trons together with the transverse high frequency field E.z/ in a range of two
wavelengths along z. Each range of a wavelength � of the optical radiation contains
an electron microbunch. If! <!0, bunches appear in regions (dashed) of decreasing
field, if ! D !0, in the minima of the field and if ! > !0, in regions of increasing
field. The field and the microbunches propagate synchronously in Cz direction.

In a free-electron laser, power is transferred from longitudinal to transverse
motion in order to compensate energy loss of electromagnetic radiation emitted by
the laser. This transfer occurs, according to our model, via dephasing processes
of the electron oscillations. After a dephasing process, energy transfer from
longitudinal to transverse energy becomes more efficient than the reverse process.
We assumed that an electron loses, in a relaxation process, its whole transverse
velocity. However, the transfer of velocity can occur by continuous dephasing joined
with a continuous exchange of transverse and longitudinal velocity. However, there
remains a net transfer from the longitudinal to the transverse motion.
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Fig. 19.18 Electron microbunches at a high frequency field of a frequency smaller than the
resonance frequency, equal to the resonance frequency and larger than the resonance frequency

The model yields various important results:

• There is no gain if ! D !0.
• The gain curve is antisymmetric with respect to !0.
• Maximum gain is obtained when ! is slightly smaller than !0.
• A field that has exactly the resonance frequency (! D !0) produces a transverse

current that is phase shifted by �/2 relative to the field so that there is no net
energy transfer from the field to an electron or vice versa.

• Interaction of transverse and longitudinal motion mediated by the Lorentz force
is the origin of relaxation and therefore of synchronization and bunching.

• The output power of a free-electron laser is limited by a maximum field strength
reachable in a free-electron laser medium.

We summarize the description of the bunching effect. Before entering a wiggler,
an electron beam (Fig. 19.19) contains electrons randomly distributed over the cross
section of the electron beam and along the beam. Each electron has the energyEz;0.
An electron entering the wiggler at z D 0 begins an oscillation, in x and z direction,
and a portion of translational energy is converted to transverse oscillation energy.
The oscillations of different electrons have random phases to each other according to
the different times of arrival at the wiggler. The field of radiation propagating in Cz
direction interacts with the oscillators, resulting in synchronization of the oscillators
to the field. Because of the coupling of longitudinal and transverse oscillations, the
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Fig. 19.19 Bunching of the electrons in a free-electron laser at steady state laser oscillation

synchronization of the transverse oscillations leads also to synchronization of the
longitudinal oscillations to the transverse field, and therefore to a spatial bunching
of the electrons along the z direction. The phase of the transverse current density at
the frequency of the radiation field lies between �=2 and 3�/2. During the flight of
the electrons through the gain region, translational energy is converted into energy
of the radiation field.

The longitudinal velocity of the electrons is slightly smaller than the speed of
light. The synchronization of the electron oscillations is nevertheless maintained
via relaxation; under the action of the high frequency field, the electron oscillations
are permanently forced to convert, in the time average, energy of longitudinal
motion into energy of transverse motion. An electron permanently slips from one
microbunch to the subsequent microbunch. The light wave, which interacts with the
electrons, propagates with the speed of light while the electrons propagate with
an average longitudinal velocity that is slightly smaller than the speed of light.
Synchronization of the electron oscillations to the field — resulting in microbunches
of the electrons — is established and maintained via phase relaxation of the free-
electron oscillations.

19.11 Energy-Level Description of a Free-Electron Laser
Medium

In this and the following section, we will characterize, in a simple picture, the
energy levels of an electron in a spatially periodic magnetic field by an energy-
ladder system (Fig. 19.20a),

El D l E0; (19.83)

where l is an integer and
E0 D h�0 (19.84)

is the transition energy, i.e., the energy distance between two next-near energy
levels. Electromagnetic radiation interacts via spontaneous emission, absorption or
stimulated emission according to the Einstein coefficients. However, absorption and
stimulated emission processes have the same transition probability (Fig. 19.20b).
Therefore, the average rate of absorption processes is the same as the average rate
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Fig. 19.20 Energy levels of an electron in a periodic magnetic field and transitions. (a) Energy
ladder. (b) Absorption and stimulated emission. (c) Two-photon transitions. (d) Stimulated
emission and absorption for h� < E0. (e) Absorption and stimulated emission for h� > E0

of stimulated emission processes if the frequency of the radiation is equal to the
resonance frequency, i.e., if � D �0. The description as a frequency modulation
(Sect. 19.7) indicates that stimulated emission prevails if � < �0 and absorption if
� > �0. Accordingly, the gain coefficient curve is not a Lorentz resonance curve but
a Lorentz dispersion curve.

In a strong electromagnetic field, transitions between next-near levels are also
allowed as multiphoton transitions (Fig. 19.20c) corresponding to the condition

nh� D h�0I n D 1; 2; ::: : (19.85)

This corresponds to transverse velocity components of higher order according to
(19.58).

Whether a radiation field experiences a population inversion in the free-electron
laser medium, depends on the frequency of the high frequency field:

• A radiation field experiences a population inversion if h� < E0 (Fig. 19.20d).
In a stimulated emission process by radiation at the frequency � by an l !
l � 1 transition, the transition energy E0 is converted to photon energy h� and
distortion energy Edist,

E0 D h� CEdist: (19.86)

A stimulated transition in an energy-ladder system leads to a distortion. Absorp-
tion does not occur as long as the states of distortion are not populated, i.e., the
upper laser level has an occupation number of nearly unity, f2 	 1, and the lower
level of nearly zero, f1 	 0, at small distortion. At large distortion, absorption
processes compensate the stimulated emission processes: this corresponds to the
saturation field amplitude A1 and to .f2 � f1/1 D 0.
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• A radiation field does not experience population inversion if h� > E0
(Fig. 19.20e). In an absorption process, a photon is converted into excitation
energy E0 and energy of distortion,

h� D E0 CEdist: (19.87)

The reverse process, namely stimulated emission by an l C 1 ! l process, does
not occur as long as the states of distortion are not populated, i.e., the upper
level has the occupation number of nearly zero, f2 	 0, and the lower laser
level of nearly unity, f1 	 1. At large distortion, stimulated emission processes
compensate the absorption processes at the saturation field amplitudeA1, which
corresponds to .f1 � f2/1 D 0.

• If h� D E0, upward and downward transitions are equally strong and there is
no net energy transfer from the field to the electrons and vice versa. A high
frequency field excites a transverse high frequency current that has a phase of
�/2 relative to the field.

In the energy-level description, a limitation of the field amplitude A1 is caused
by a distortion of the energy-ladder systems and corresponds to a saturation of the
average population difference at steady state oscillation, .f2 � f1/1 D 0.

We make use of the following quantities:

• E0 D transition energy D resonance energy.
• �0 D E0=hD transition frequency D resonance frequency.
• � D laser frequency (slightly smaller than the resonance frequency).
• � D phase relaxation time.
• �stim D time between two subsequent stimulated emission processes.

Figure 19.21 illustrates, in the energy-level description, the principle of the free-
electron laser. An electron of energy Eel;0 injected into the wiggler field forms
an energy ladder system. A cascade of stimulated transitions in the energy-ladder
system contributes to amplification of radiation. The electron leaves the wiggler

Fig. 19.21 Cascade of stimulated emission (and relaxation) processes in an energy-ladder system
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field at an energy Eel;1. The energy difference Eel;0 � Eel;1 corresponds to the
energy of the number sstim of photons generated by stimulated emission. During
the flight of an electron through the active medium, energy of longitudinal motion
is converted to energy of the high frequency field; amplification occurs only for
radiation propagating in Cz direction. A stimulated transition from a level l of an
energy-ladder system occurs to the high-energy wing of the level l � 1 of the same
energy-ladder system. Phase relaxation, with the phase relaxation time � , removes
the energy of distortion from the energy-ladder system.

The change from gain at h� < E0 to absorption at h� > E0 is due to a change
of the phase between the high frequency current and the high frequency field, in
accord with the frequency dependencies of the conductivities �1.�/ and �2.�/. If
h� D E0, upward and downward transitions are equally strong and there is no net
energy transfer from the field to the electrons and vice versa. A high frequency field
excites a transverse high frequency current that has a phase of �/2 relative to the
field. The free-electron medium is transparent — the resonance frequency �0 is a
transparency frequency.

We estimate the Einstein coefficients of stimulated emission and of absorption
from the expression of the gain coefficient

˛.�/ D ˛p NgL;disp.�/ (19.88)

by comparison with an expression derived earlier (in Sect. 7.5),

˛.�/ D .1=c/h�B21
2

���0
Ng.�/.N1 CN2/.f2 � f1/: (19.89)

We replace the Lorentz dispersion function gL;disp by the Lorentz resonance function
gL;res and obtain, by replacing N1 C N2 by N0, and with f2 � f1 D 1, the Einstein
coefficient of stimulated emission

B21 D �ce


4�0h�0Q0

: (19.90)

The Einstein coefficient of stimulated emission is proportional to the coupling
strength 
. And it is inversely proportional to the resonance frequency �0, and to
the quality factor Q0 D Nw D �0=��0 of the electron oscillation. The Einstein
coefficient of absorption is equal to the Einstein coefficient of stimulated emission,
B12 D B21.

Spontaneous emission of radiation of electrons moving with a velocity near
the speed of light occurs into a cone with a cone angle 1/ N� . In comparison with
emission into all spatial directions, the reduction of the density of states available
for spontaneous emission is therefore reduced by the factor 1/(4 N�2). We obtain the
Einstein coefficient of spontaneous emission

A21 D 1

4 N�2
8�h�30
c3

B21: (19.91)
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Table 19.2 Einstein coefficients of a free-electron laser medium

Value

�0 6 � 1013 Hz Resonance frequency
��0 D �0=Nw 1.2 � 1012 Hz Width of resonance
A

1

4 � 106 V m�1 Amplitude of saturation

 D 3:6��0=A1

2 � 108 m V�1 s�1 Coupling strength
Q0 D Nw D �0=��0 50 Quality factor
B21 D �ce
=.4�0h�0Q0/ 4 � 1026 m3 J�1 s�2 Einstein coefficient
N� 70
A21 D .1=4 N�2/ � 8�h�30B21=c

3 2 � 108 s�1 Einstein coefficient
�sp 5 � 10�9 s Spontaneous lifetime

The spontaneous lifetime is given by

�sp D 1=A21: (19.92)

Table 19.2 shows values of Einstein coefficients characterizing transitions
between energy-ladder levels of a free-electron laser medium. The data are obtained
for a free-electron laser presented in Sect. 19.6 (Table 19.1). The Einstein coefficient
of stimulated emission is larger than that of active media of conventional lasers (for
a comparison, see Table 6.1 in Sect. 6.5).

The gain cross section �21.!/ has the same frequency dependence as the gain
coefficient. The maximum gain cross section is �21;m D ˛m=N0 (D 2 � 10�18 m2).
In comparison, a naturally broadened two-level system propagating with a velocity
corresponding to a Lorentz factor N� would have a gain cross section 4 N�2�2=2�
(�10�7 m2).

The states belonging to an energy-ladder system are transient states according to
the finite time of flight of an electron through the wiggler. However, the time of flight
is by many orders of magnitude larger than the period of a free-electron oscillation.
An illustration of a free-electron medium as an ensemble of energy-ladder systems
may therefore be justified.

We introduced the energy-ladder system on basis of a comparison of a free-
electron medium with a Bloch laser medium with the arguments:

• The active medium of a superlattice Bloch laser (Chap. 32) consists of an ensem-
ble of free electrons in a periodic electric potential. The electrons execute, under
the action of a static field and the periodic potential, free-electron oscillations.
An electromagnetic field modulates the free-electron oscillations, which leads
to a synchronization of the free-electron oscillations to the field and to gain for
the field. The gain coefficient curve is a Lorentz dispersion curve. The states
of an electron subject to both a periodic potential and a static field are quantum
mechanical describable as Wannier–Stark states. The energy levels of an electron
form a Wannier–Stark ladder — i.e., an energy-ladder with equidistant energy
levels. An electron occupies one of the levels. A stimulated transition occurs from
the occupied Wannier–Stark level to an intermediate level that corresponds to the
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distorted level of the energetically next-near level of lower energy (Sect. 32.11
and [268]).

• The active medium of a free-electron laser consists of an ensemble of free
electrons that execute, under the action of a periodic magnetic field, free-electron
oscillations. An electromagnetic field modulates the free-electron oscillations,
which leads to a synchronization of the free-electron oscillations to the field and
to gain for the field. The gain coefficient curve is a Lorentz dispersion curve.
We introduced — on basis of the similarity of the formal description of the free-
electron oscillations in a free-electron laser and the free-electron oscillations in
a Bloch laser — an energy-ladder description. It is however an open question
whether it is possible to develop a theory of energy states of relativistic electrons
in a spatially periodic magnetic field.

19.12 Comparison of a Free-Electron Laser with a
Conventional Laser

We now compare, on basis of a description of a free-electron medium as an
ensemble of oscillating electrons characterized by (quasi-)quantum states, a free-
electron laser with a conventional laser.

Table 19.3 indicates the main difference between a conventional laser and a free-
electron laser: the elementary system of a conventional laser medium, on one hand,
can be characterized as a two-level system and the elementary system of a free-
electron laser medium, on the other hand, as an energy-ladder system. Accordingly,
the response functions of the polarization — the susceptibilities — are different:

• Conventional laser medium. The shape of the imaginary part of the response
function is a Lorentz resonance function and the shape of the real part is a
Lorentz dispersion function. The amplitude of the high frequency field is not
limited (beside limitations by the pump strength and due to optical damage).

• Free-electron laser medium. The shape of the imaginary part of the response
function is a Lorentz dispersion function and the shape of the real part is a
Lorentz resonance function. The amplitude of the high frequency field shows
an intrinsic limitation.

The lasers have in common that the laser field synchronizes the elementary
oscillations to the laser field, and that a population inversion between energy levels
of a quantum system occurs.

Table 19.3 Conventional laser and free-electron laser: a comparison

Conventional laser Free-electron laser

Elementary system Two-level system Energy-ladder system
Susceptibility, imaginary part gL;res gL;disp

Susceptibility, real part gL;disp gL;res

Saturation field No Yes
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19.13 A Remark about the History of the Free-Electron
Laser

We mention a few data concerning the history of the free-electron laser.
1933 P. Kapiza and P. Dirac discussed the possibility of stimulated Compton

scattering.
1951 H. Motz (Oxford) proposed to use a wiggler configuration for genera-

tion of incoherent radiation.
1971/76 J. Madey (Stanford University) proposed a free-electron laser and

realized the first free-electron laser (50 MeV LINAC; superconducting
helical coil as wiggler magnet; wavelength of the radiation 3.4 �m).

1983 Petroff (Orsay) used radiation of a storage ring (150 MeV; the laser
generated visible radiation (wavelength 650 nm).

1983 Stanford; 1 GeV LINAC.
1983 Los Alamos; 1 GeV LINAC.
1985 L. Elias et al. developed the free-electron laser in Santa Barbara, with

a 6 MeV static accelerator; the laser was the first tunable far infrared
laser.

1992 FELIX (Rijnhuizen, The Netherlands); pulsed infrared and far infrared
laser.

2006 Rossendorf (near Dresden, Germany); pulsed infrared laser.
Presently, free-electron lasers in more than 30 laboratories worldwide are operating
or are in planing.

REFERENCES [5, 12, 166–176]

Problems

19.1. Acceleration energies. Given is wiggler (�w D 2:4 cm and K D 1). [Hint:
make use of data of Table 19.1 to solve this and the following problems.]

(a) Determine the electron energy necessary to drive a terahertz FEL at 1 THz and
determine the change of energy necessary to change the frequency by 1%.

(b) Determine the electron energy necessary to drive an X-ray laser at a wavelength
of 10 nm and determine the change of energy necessary to change the frequency
by 1%.

19.2. Frequency tuning. Relate a small change of energy relative to the energy E
to the relative change of frequency and to the relative change of wavelength of a
free-electron laser.

19.3. Show that the inhomogeneous broadening of the gain profile of a free-electron
laser due to energy smearing is negligibly small if the condition �� � �=.2Nw/ is
fulfilled.
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19.4. Refractive index of a free-electron laser medium.

(a) Estimate the frequency shift of a mode of a free-electron laser resonator that
occurs when a free-electron laser is switched on.

(b) Determine the speed of light in a free-electron medium.
(c) Estimate the difference of the time it takes light and the time it takes an electron

to propagate through the wiggler.

19.5. Determine the absolute number of electrons present in an active medium of a
free-electron laser.

19.6. Estimate the time of onset of laser oscillation in a free-electron laser.
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Chapter 20
An Introduction to Semiconductor Lasers

Beginning with this chapter, we will treat semiconductor lasers — that are solid state
lasers with active media based on semiconductor materials. We will concentrate
our discussion on diode lasers ( D laser diodes), that is, of current pumped semi-
conductor lasers and, in particular, on diode lasers operating at room temperature.
These are presently the most important semiconductor lasers with respect to
applications.

There are two families of semiconductor lasers: the bipolar semiconductor lasers
and the unipolar semiconductor lasers.

The bipolar semiconductor lasers are two-band lasers. In a bipolar semiconductor
laser, stimulated transitions between occupied electron levels in the conduction
band and empty electron levels in the valence band generate the laser radiation.
The photon energy of the laser radiation is about equal to the gap energy of the
semiconductor.

The unipolar semiconductor lasers, realized as quantum cascade lasers, belong to
the three-level laser type. Electrons are performing transitions between three energy
levels in three different subbands of the conduction band. The photon energy of the
laser radiation is much smaller than the gap energy.

We describe an electron in the conduction band of a semiconductor as a free elec-
tron, i.e., as an electron that can freely move (between two collisions) within a semi-
conductor. Accordingly, a hole in the valence band is a free hole. The free motion of
an electron or a hole is either three-dimensional (in a bulk crystal), two-dimensional
(in a quantum film), one-dimensional (in a quantum wire), or zero-dimensional
(in a quantum dot); in a quantum dot, free motion of an electron is not possible,
an electron is imprisoned in the quantum dot. The free motion of an electron in a
direction is restricted if the extension of a semiconductor in the direction is, for a
semiconductor at room temperature, about 10 nm or smaller.

The waveguide Fabry–Perot resonator, with reflectors formed by semiconduc-
tor surfaces only, is suited as laser resonator for all types of bipolar lasers.
Later (Chap. 25) we will discuss other types of resonators that can be used in
semiconductor lasers.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 20, © Springer-Verlag Berlin Heidelberg 2012
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We present the further topics concerning semiconductor lasers. We will
treat bipolar semiconductor lasers of different types: junction lasers; double-
heterostructure lasers; quantum well lasers; quantum wire lasers; and quantum
dot lasers. The active media of the junction and double-heterostructure lasers are
three-dimensional semiconductors while the active media of the other types of
bipolar lasers are semiconductors of lower dimensions.

We also give a short survey of the frequency ranges of the different semicon-
ductor lasers and mention the energy band engineering as the basis of the great
variety of semiconductor lasers.

In comparison with other lasers, semiconductor lasers are unique with respect
to their small sizes and, particularly, with respect to the possibility to design a
semiconductor laser for a specific frequency — at any frequency in the near UV,
visible and infrared. Realization of small-size semiconductor lasers is possible
because both the Einstein coefficient B21 of stimulated emission and the density
of two-level atomic systems in an active semiconductor can have large values at the
same time; in active media of other lasers, only one of the two quantities, either B21
or the density of two-level systems, has a large value.

20.1 Energy Bands of Semiconductors

We characterize (Fig. 20.1) a semiconductor by a conduction band c and a valence
band v separated from each other by an energy gap:

• Ec D energy minimum of the conduction band.
• Ev D energy maximum of the valence band.
• Eg D Ec � Ev D gap energy.

We describe the electron states of the conduction band by free-electron waves

 .k; r/ D A eiŒkr�.E=„/t/	; (20.1)

Fig. 20.1 Conduction band and valence band
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where the quantities are:

•  D wave function.
•  �.r/ .r/dV D probability to find an electron in the state  at the location

r in the volume element dV .
• A D amplitude of the electron wave.
• k D wave vector of the electron wave.
• r D spatial coordinate.
• E D energy.
• t D time.

We characterize the relation between the energy and the k vector by a parabolic
dispersion relation

E D Ec C �c; (20.2)

where

�c D „2k2
2me

(20.3)

is the energy within the conduction band,me the effective mass of a conduction band
electron and 1/me the curvature of the dispersion curve in the energy minimum at k
D 0. We can interpret �c as the kinetic energy of a conduction band electron.

With respect to the valence band, we are only interested in the range near the
band maximum. We describe the wave function of a valence band electron also as a
free electron wave, however with another dispersion relation,

E D Ev � �v; (20.4)

where

�v D „2k2
2mh

(20.5)

is the energy of a valence band electron state measured from the top of the valence
band, k is the wave vector and mh the effective mass of a valence band electron at
the top of the valence band.

We denote an empty level in the valence band as a hole. The energy of a hole is
equal to the energy of an electron in the valence band in the case that the electron
occupies the empty level. The effective mass of a hole is equal to the effective mass
of a valence band electron.

Example. Effective masses of electrons and holes in GaAs at room temperature.

• me D 0.07m0 D effective mass of a conduction band electron.
• m0 D 0.92 � 10�30 kg D electron mass.
• mh D 0.43m0 D effective mass of a hole (in the valence band) D mass of

a valence band electron (on top of the valence band).
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• mh � 6 me; the effective mass of a hole is about six times the effective mass of a
conduction band electron.

We utilize notations that are in use in semiconductor physics. A “free electron”
in a crystal is a conduction band electron ( D electron in the conduction band) or
a valence band electron ( D electron in the valence band). We denote an ensemble
of electrons in the conduction band as electron gas in the conduction band and,
accordingly, an ensemble of electrons in the valence band as electron gas in the
valence band.

20.2 Low-Dimensional Semiconductors

In a bulk semiconductor crystal, electrons move freely in space; we have a three-
dimensional semiconductor (Fig. 20.2). The restriction of the free motion in one
direction leads to a two-dimensional semiconductor realized as quantum well
(= quantum film). The further restriction results in the one-dimensional semiconduc-
tor (quantum wire) and, finally, in the zero-dimensional semiconductor (quantum
dot). Electrons in a quantum dot cannot move freely at all. The density of states
( D level density) of electrons depends on the dimensionality of a semiconductor:

• Three-dimensional density of states D number of states per unit of energy and
unit of volume,

D3D.�/ D 1

2�2

�
2m

„2
�3=2

�1=2I (20.6)

relevant to the junction laser and the doubleheterostructure laser.
• Two-dimensional density of states ( D number of states per unit of energy and

unit of area),

D2D.�/ D m

�„2 I (20.7)

relevant to quantum well lasers.

Fig. 20.2 Three-dimensional and low-dimensional semiconductors
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• One-dimensional density of states ( D number of states per unit of energy and
unit of length),

D1D.�/ D 1

�„

r
2m

�
I (20.8)

relevant to quantum wire lasers.
• Density of states of a zero-dimensional system DD0D.�/; the energy levels are

discrete; relevant to quantum dot lasers.

The spin degeneracy (allowing each k state to be occupied with two electrons of
opposite spin) is taken into account. The density of states concern:

• Electrons in the conduction band; then � D �c is the energy within the conduction
band andm D me is the effective mass of a conduction band electron.

• Electrons or holes in the valence band near the top of the band; then � D �v is the
energy within the valence band and m D mh is the effective mass of a valence
band electron ( D effective mass of a hole in the valence band).

20.3 An Estimate of the Transparency Density

The effective mass of an electron in the conduction band and the effective mass of
an electron in the valence band are quite different. Therefore, the densit ( D level
density) for the of states ( D level densities) for the conduction band differs strongly
from the density of states for the valence band. We expect, according to the criterion
used to determine the transparency density (Sect. 4.2), that the transparency density
has a value between

N �
tr;c D 1

2

Z kT

0

Dc.�/d� (20.9)

and

N �
tr;v D 1

2

Z kT

0

Dv.�/d�: (20.10)

Table 20.1 shows the lower limit (N �
tr;c) of the transparency density and the

upper limit (N �
tr;v) together with the transparency density Ntr calculated by taking

into account the appropriate occupation numbers. We will present a method for
calculation of Ntr in the next two chapters. Our estimated limiting values indicate
the orders of magnitudes of the values of the transparency density of GaAs

Table 20.1 Transparency density

N �

tr;c N �

tr;v

�
N �

tr;cN
�

tr;v

�1=2
Ntr

3D 0.39 �1026 m�3 5.9 �1026 m�3 1.5 � 1026 m�3 1.2 � 1026 m�3

2D 0.82 � 1016 m�2 4.9 � 1016 m�2 2 � 1016 m�3 1.4 � 1016 m�2

1D 0.69 � 108 m�1 1.7 � 108 m�1 1.1 � 108 m�1
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semiconductors in different dimensions. The geometric averages .N �
tr;cN

�
tr;v/

1=2 are
not far from the calculated values. (However, we cannot provide a real justification
for taking the geometric average.)

20.4 Bipolar and Unipolar Semiconductor Lasers

In a bipolar semiconductor laser (Fig. 20.3a), the active medium contains nonequi-
librium electrons in the conduction band and empty electron levels in the valence
band. A current leads to injection of electrons into the conduction band and, at
the same time, to extraction of electrons from the valence band. The electrons
injected into the conduction band occupy mainly energy levels near the bottom of
the conduction band — while empty electron levels that occur due to extraction
of electrons from the valence band accumulate at the top of the valence band. The
electrons in the conduction band are in a quasithermal equilibrium at the temperature
of the semiconductor, and the electrons in the valence band are in a quasithermal
equilibrium at the temperature of the semiconductor too. But the population of
the conduction band is far out of equilibrium with respect to the population of the
valence band. Stimulated transitions of electrons in the conduction band to empty
electron levels in the valence band lead to generation of laser radiation. There is
a distribution of transition energies E21. The smallest transition energy is the gap
energy:

E21 D E2 � E1 � Eg: (20.11)

The range of transition energies is small compared to the gap energy. Accordingly,
the photon energy of laser radiation generated by a bipolar semiconductor laser is
comparable to the gap energy,

h� � Eg: (20.12)

To cover the spectral ranges from the UV to the infrared with radiation of semi-
conductor lasers, semiconductors with quite different values of Eg are necessary.
Thus, almost all semiconductors are candidates as basic materials of bipolar
semiconductor lasers.

Fig. 20.3 Semiconductor lasers. (a) Bipolar semiconductor laser. (b) Quantum cascade laser
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Table 20.2 Einstein coefficients of electronic transitions in GaAs-based semiconductor hetero-
structures used in lasers

Laser � (�m) A21 (s�1) B21 (m3 J�1 s�2) B
jj

21 (m3 J�1 s�2)

quantum well 0.8 3 � 109 2.2 � 1021 1.5 B21
quantum wire 0.8 3 � 109 2.2 � 1021 3 B21
quantum dot 0.8 3 � 109 2.2 � 1021

QCL 100 2 � 1021

But to be suitable as an active semiconductor medium, a semiconductor has to
fulfill an important condition: the semiconductor must be a direct gap semicon-
ductor. Silicon and germanium have indirect gaps and are therefore not suitable as
active media of bipolar semiconductor lasers. Most of the group III-V and group
II-VI semiconductors have direct gaps and are usable as laser media. In a direct gap
semiconductor, the conduction band minimum occurs at the same k value as the
valence band maximum.

In a unipolar semiconductor laser (Fig. 20.3b), electronic transitions between
subbands of the conduction band of a semiconductor heterostructure generate
the laser radiation. Now, the design of the heterostructure mainly determines the
transition energy. There is again a distribution of transition energies. The transition
energies are smaller than the gap energy,

E21 D E2 � E1 � Eg; (20.13)

and consequently, the laser frequencies are small compared with the gap frequency,

h� � Egap: (20.14)

The unipolar laser realized as quantum cascade laser is available in frequency ranges
of the infrared and far infrared.

Table 20.2 shows data of Einstein coefficients for GaAs-based semiconductor
heterostructures. The values ofB21 for bipolar semiconductor structures follow from
A21 (known from fluorescence studies). Due to anisotropy of a heterostructure, the
Einstein coefficient B21 is different for different orientations of the electromagnetic
field relative to the heterostructure. If a laser field is oriented parallel to a quantum
well or a quantum wire, B jj

21 can be larger than B21 (Sect. 22.8). The value of the
Einstein coefficient of stimulated emission for a QCL medium can be derived from
theory.

20.5 Edge-Emitting Bipolar Semiconductor Laser

An edge-emitting bipolar semiconductor laser emits radiation from one of the
edges of a device (or from two edges), see Fig. 20.4. The resonator corresponds
(in the simplest case) to a Fabry-Perot resonator with two uncovered semiconductor
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Fig. 20.4 Edge-emitting bipolar laser with a waveguide Fabry-Perot resonator

surfaces as reflectors. A central layer sandwiched between two other layers contains
the active medium. The central layer has a slightly larger refractive index (n0)
than the adjacent layers (refractive index n1). The field is confined to the central
layer, the laser light is index guided ( D refractive index guided). The central layer
has a thickness (a2) that is equal to half a wavelength or larger than half a wavelength
of the laser radiation in the resonator. The reflectivity of a single surface is

R1 D R2 D .n0 � 1/2
.n0 C 1/2

: (20.15)

The refractive index of a GaAs-based semiconductor is � 3.6 (or smaller) and the
reflectivity of the surfaces R1 D R2 � 0:3. The V factor characterizing the loss
per single transit through the resonator is V1 � 0.3. The laser threshold condition,
G1V1 � 1, requires that the gain factor for a single transit of radiation through a
laser resonator must have a value G1 � V �1

1 (� 3) that is noticeably larger than
unity. Laser radiation leaves the resonator via both ends of the resonator.

Example. Resonator consisting of a semiconductor (GaAlAs) with n0 D 3:5.

• L D 1mm.
• T=2 D nL=c D 1.2 � 10�11 s D half of the round trip transit time.
• V1 D 0.3 D V factor related to a single transit of radiation through the resonator.
• lp D 0.8 mm; an average path length of a photon in the resonator.
• �p D 1.2 mm D 1 � 10�11 s; lifetime of a photon in the resonator.

The lifetime of a photon is slightly smaller than the time of flight (T=2) of the light
through the resonator. We will show later that waveguide Fabry–Perot resonators
are nevertheless suitable for operation of bipolar semiconductor lasers.

20.6 Survey of Topics Concerning Semiconductor Lasers

We will introduce (Fig. 20.5), on the basis of the properties of semiconductors and
semiconductor heterostructures, the bipolar semiconductor lasers and the unipolar
semiconductor lasers. We characterize the different types of the two families as
follows:
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Fig. 20.5 Survey of topics concerning semiconductor lasers

• Junction laser ( D homojunction laser D homostructure junction laser). The
active medium is the junction region between an n-doped and a p-doped part
of a crystal. This was the first semiconductor laser type.
Example: GaAs junction laser, containing an n GaAs/p GaAs junction.

• Double-heterostructure laser. The active medium is an undoped film embedded
in n- and p-doped materials. The undoped film is a well for electrons and holes.
The thickness of the film is so large that the electrons move as free electrons in all
spatial directions. With this type, the laser design making use of heterostructures
began.
Example: GaAs/GaAlAs laser, containing the layers n GaAlAs/GaAs/p GaAlAs.

• Quantum well laser. The active medium is an undoped quantum film. Adjacent
to the quantum film, there is on one side n-doped material and on the other
side p-doped material. The materials act as injectors of electrons and holes,
respectively. Quantum well lasers are available for the visible, near infrared, and
near UV spectral range and dominate presently the semiconductor laser field
with respect to applications.
Example: GaAs quantum well laser, containing layers of n GaAlAs-2/n
GaAlAs-1/GaAs/p GaAlAs-1/p GaAlAs-2; the numbers 1 and 2 refer to different
compositions.

• Quantum wire laser. Quantum wire lasers, with quantum wires embedded in
injector material, are in the first stage of realization.

• Quantum dot laser. This type of a bipolar semiconductor laser is being developed.
• Quantum cascade laser (QCL). This laser type is presently in a very active state

of development. The radiation of quantum cascade lasers covers large wavelength
ranges of the infrared and the far infrared (2–28 �m) and, as cooled QCL,
wavelength ranges of the far infrared (70–300 �m).

• Superlattice Bloch laser ( D Bloch laser D Bloch oscillator). This type of laser
exists only as an idea on the basis of theoretical studies. The active element
is a doped semiconductor superlattice. The superlattice is composed of two
different semiconductor materials, for instance, GaAs and AlAs. An electron
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that propagates along the superlattice axis experiences a periodic potential. The
energy is confined to a miniband of a width that is much smaller than the gap
energy of the two semiconductors. In a strong static electric field (Es), the states
of an electron in a miniband form an energy-ladder system. An electron occupies
one of the levels in an energy-ladder system. Stimulated transitions between
energetically next-near levels in the energy-ladder systems give rise to gain.
Bloch lasers — if realizable — should operate at room temperature and cover
a frequency range beginning at a frequency below 1 THz up to several THz.

We will begin in the next section with a discussion of a bipolar laser and
then concentrate the discussion during several chapters — because of its great
importance — on the quantum well laser.

20.7 Frequency Ranges of Semiconductor Lasers

The frequency ranges covered by different semiconductor lasers extends from the
near UV to the far infrared (Fig. 20.6):

• Quantum well lasers; 0.3–2 �m.
• Junction lasers (cooled); 2–30 �m.
• Quantum cascade lasers; 2–28�m and as cooled quantum cascade lasers, 70-300
�m.

• Superlattice Bloch laser (hypothetical); � 100 �m to 1 mm.

In the wavelength range covered by quantum well lasers, there are other bipolar
lasers such as quantum wire lasers, quantum dot lasers, double-heterostructure lasers
and junction lasers.

At present, there is a gap with respect to semiconductor based oscillators
operating at room temperature; the gap (“terahertz gap”) extends from about 30 �m
to 3 mm (Sect. 28.7). The cooled quantum cascade lasers cover a part of the gap.

Fig. 20.6 Frequency ranges of semiconductor lasers; solid lines, lasers operated at room temper-
ature and dotted lines, lasers operated at liquid nitrogen temperature
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20.8 Energy Band Engineering

An important tool used to design semiconductor lasers is the energy band engineer-
ing (tailoring of semiconductors), based on two principles:

• The use of mixed crystals. The energy gap of a mixed crystal is different from the
gaps of the single components.

• The preparation of heterostructures. Heterostructures are spatial structures con-
sisting of different semiconductor materials.

20.9 Differences Between Semiconductor Lasers and Other
Lasers

Semiconductor lasers ( D diode lasers D laser diodes) have a series of extraordinary
properties:

• The transition energies can have, for different materials, very different values.
Accordingly, lasers can be designed for the UV, visible, infrared and far infrared
spectral regions.

• The use of alloys of semiconductors makes it possible to design semiconductor
lasers for each wavelength in the range from the near UV to the infrared.

• The use of heterostructures leads to an extraordinary extension of the possibility
of designing lasers.

A laser diode:

• Converts electric current directly to light.
• Has a high gain coefficient (e.g., 10 cm�1 or more), in comparison with the

helium–neon laser (10�3 cm�1) or the CO2 laser (0.05 cm�1).
• Can reach a high efficiency (50% or more).
• Operates as cw or pulsed laser.
• Can be tailored for a given wavelength.
• Has a small dimension (typical sizes of a quantum well laser: 200 �m � 1 �m

� 500�m (edge-emitting laser) and 10 �m � 100 �m � 100 �m down to 10 �m
� 10 �m � 100 �m or a corresponding circular area (vertical-surface emitting
laser).

• Can be manufactured by mass production.

The combination of the radiation of a large number of semiconductor lasers
leads to a high-power semiconductor laser; the radiation is monochromatic but not
coherent.

The other lasers have, in comparison with semiconductors, other advantages:
they are suitable for generation of radiation of high directionality and of high
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monochromaticity; some of the lasers allow for generation of ultrashort pulses; some
are suitable as giant pulse lasers.

The Einstein coefficient B21 of transitions used in semiconductors is large and
the density of two-level atomic systems, which contribute to a laser oscillation,
is large too. This has different reasons. A three-dimensional semiconductor can
carry a large density of electrons contributing to the gain. A low-dimensional
semiconductor, with a large two-dimensional density of electrons contributing to
gain, can be integrated in a resonator of small size so that the average density of
two-level atomic systems in a photon mode has a large value too. In comparison
with active media of semiconductor lasers, only one of the quantities of an active
medium of other lasers has a large value — either the Einstein coefficientB21 or the
density of two-level atomic systems (Sects. 7.3 and 7.5).

REFERENCES [177–186]

Problems

20.1. De Broglie wavelength. Estimate the ratio of the de Broglie wavelength of a
conduction band electron in GaAs and a free electron in vacuum that move with the
same velocity.

20.2. Number of states. Evaluate the number of states in the conduction band of
GaAs (me D 0.07 m0) that are available at the energy Eg + 26 meV in an energy
interval of 1 meV for different cases.

(a) The semiconductor is three-dimensional.
(b) The semiconductor is two-dimensional.
(c) The semiconductor is one-dimensional.

20.3. Frequency distance of longitudinal modes of a waveguide Fabry–Perot
resonator. Evaluate the frequency distance of longitudinal modes of a GaAs
waveguide Fabry–Perot resonator (n D 3.6) of a length of 1 mm.



Chapter 21
Basis of a Bipolar Semiconductor Laser

We treat the basis of bipolar semiconductor lasers. We discuss: condition of gain;
joint density of states; gain coefficient; laser equation; bipolar character of the active
medium. And we derive, by use of Planck’s radiation law, the Einstein coefficients
for an ensemble of two-level systems that is governed by Fermi’s statistics.

The first part of this chapter is dealing with three-dimensional semiconductors.
Another part, Sects. 21.8 and 21.9, concerns quantum well lasers. Instead of
following through these two sections, a reader may solve the Problems 21.5 and
21.6, or jump to the next chapter that contains, in a short form, the main conclusions
with respect to quantum well lasers.

The active medium of a bipolar semiconductor laser is a semiconductor con-
taining electrons in the conduction band and empty electron levels (holes) in the
valence band. Permanent pumping (via a current delivered by a voltage source)
leads to injection of electrons into the conduction band and to extraction of electrons
from the valence band. The active medium carries no net charge. The density N of
electrons in the conduction band is equal to the density of empty electron levels in
the valence band. Laser radiation occurs due to stimulated transitions of electrons
in the conduction band to empty levels in the valence band. The electrons in the
conduction band have a Fermi distribution, f2, corresponding to a quasi-Fermi
energy EFc. The electrons in the valence band have another Fermi distribution, f1,
corresponding to a quasi-Fermi energyEFv.

We derive the condition of gain: gain occurs if the occupation number difference
is larger than zero, f2 � f1 > 0. This is equivalent to the condition that the density
of conduction band electrons is larger than the transparency density (N > Ntr).
And it is also equivalent to the condition that the difference of the quasi-Fermi
energies is larger than the gap energy,EFc �EFv > Eg. Gain occurs for photons of a
quantum energy that is smaller than the difference of the quasi-Fermi energies, h� <
EFc � EFv. The range of gain increases with increasing density of nonequilibrium
electrons in the conduction band (and a corresponding increasing density of empty
levels in the valence band).

We determine the reduced density of states ( D joint density of states), taking
into account that energy and momentum conservation laws have to be obeyed in a

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 21, © Springer-Verlag Berlin Heidelberg 2012
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radiative transition. We derive expressions describing stimulated and spontaneous
emission. Furthermore, we formulate laser equations. Their solutions provide
the threshold condition, particularly the threshold current. The solutions reveal
clamping of the occupation number difference f2 � f1 and accordingly, clamping
of the quasi-Fermi energies.

To combine, for calculation of gain, a quantum well that is a two-dimensional
semiconductor with a radiation field that is three-dimensional, we use appropriate
average densities. We introduced the method earlier (Sects. 7.8 and 7.9 about gain
mediated by a two-dimensional active medium). The topics we will treat with
respect to the quantum well laser concern: condition of gain; quasi-Fermi energies;
reduced mass; transparency density; gain characteristic; gain mediated by a quantum
well oriented along the direction of a light beam; gain of radiation traversing a
quantum well; laser equations and their solutions.

21.1 Principle of a Bipolar Semiconductor Laser

A bipolar semiconductor laser contains an electron gas in the conduction band
and another electron gas in the valence band (Fig. 21.1a). The electron gas in
the conduction band is in a quasithermal equilibrium with the thermal bath. The
quasithermal equilibrium with the thermal bath, i.e., with the crystal lattice, is estab-
lished via electron–phonon scattering. The electron gas in the valence band is also
in a quasithermal equilibrium with the thermal bath. The quasithermal equilibrium

Fig. 21.1 Principle of a bipolar semiconductor laser. (a) Dynamics. (b) Quasi-Fermi energies and
transparency frequency
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with the thermal bath is also established via electron–phonon interaction. However,
the two electron gases are far out of equilibrium with each other. Electron injection
into the conduction band and electron extraction from the valence band maintain the
nonequilibrium state.

We will characterize the electron gas in the conduction band by the quasi-Fermi
energy EFc and the electron gas in the valence band by the quasi-Fermi energy EFv

(Fig. 21.1b, left). The gain coefficient ˛ of an active medium (Fig. 21.1b, right) is
positive for radiation in the frequency range between �g and�F , where �g D Eg=h

is the gap frequency,Eg the gap energy and where �F corresponds to the difference
of the quasi-Fermi energies according to the relation

�F D .EFc �EFv/=h: (21.1)

This will be shown in the next sections.

21.2 Condition of Gain of Radiation in a Bipolar
Semiconductor

We consider (Fig. 21.2) two discrete energy levels, a level 2 (energy E2) in the
conduction band and a level 1 (energyE1) in the valence band. Radiative transitions
between the two levels can occur by the three processes: absorption, stimulated and
spontaneous emission. The transition rate of absorption ( D number of transitions
per m3) is equal to

r12.�/ D r12.h�/ D NB12f1.1 � f2/�.h�/: (21.2)

We use the following quantities:

• Ec D energy of the bottom of the conduction band.
• Ev D energy of the top of the valence band.
• E2 D energy of the upper laser level.

Fig. 21.2 Radiative transition in a bipolar semiconductor medium
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• E1 D energy of the lower laser level.
• E21 D E2 � E1 D transition energy.
• NB12 D Einstein coefficient of absorption (in units of m3 s�1); NB12 DhB12

(Sect. 6.6).
• NB21 D Einstein coefficient of stimulated emission.
• A21 D Einstein coefficient of spontaneous emission.
• f1 D f1.E1/ D probability that level 1 is occupied; 1 � f1 D probability that

level 1 is empty.
• f2 D f2.E2/ D probability that level 2 is occupied.
• .1 � f2/ D probability that level 2 is empty.
• �.h�/ D spectral energy density of the radiation on the energy scale.

It is convenient to choose the energy scale. Consequently, the Einstein coefficients
of absorption and stimulated emission, NB12 and NB21, differ from B12 and B21.

The rate of stimulated emission processes is equal to

r21.h�/ D NB21f2.1 � f1/�.h�/: (21.3)

The spontaneous emission rate is equal to

r21;sp.h�/ D A21f2.1 � f1/: (21.4)

The occupation probability of level 2 is given by the Fermi–Dirac distribution

f2 D 1

exp Œ.E �EFc/=kT 	C 1
: (21.5)

EFc is the quasi-Fermi energy of the electrons in the conduction band and T is the
lattice temperature. The occupation probability of level 1 is

f1 D 1

exp Œ.E � EFv/=kT 	C 1
: (21.6)

EFv is the quasi-Fermi energy of the electrons in the valence band.
At thermal equilibrium, the transition rates of upward and downward transitions

are equal,
r12 D r21 C r21;sp (21.7)

and the Fermi energies coincide,

EFc D EFv D EF: (21.8)

It follows that

�.h�/ D A21f2.1� f1/

NB12f1.1 � f2/� NB21; f2.1� f1/
(21.9)

must be equal to the expression given by Planck’s radiation law (now with the
energy density given on the energy scale),
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�.h�/ D 8�n3�3

c3
1

eh�=kT � 1
: (21.10)

The comparison yields
A21 D 8�n3�3c�3 NB21 (21.11)

and
NB12 D NB21: (21.12)

We find again the Einstein relations. If a semiconductor is optically anisotropic, the
value of NB12 ( D NB21) depends on the direction of the electromagnetic field relative to
the orientation of the semiconductor. Then a modification of the Einstein relations
is necessary.

At nonequilibrium, the quasi-Fermi energies are different, EFc ¤ EFv, i.e.,
the electrons in the conduction band are not in an equilibrium with respect to the
electrons in the valence band. However, the electrons within the conduction band
form an electron gas that is in a quasiequilibrium with the lattice at the temperature
T — and the electrons within the valence band form another electron gas that is in
a quasiequilibrium with the lattice at the temperature T . In a bipolar semiconductor
laser, the nonequilibrium state consists of two electron gases that are far out of
equilibrium relative to each other.

The net rate of stimulated emission and absorption by transitions between the
two energy levels of energy E1 and E2 is equal to

r21 � r12 D NB21.f2 � f1/�.h�/: (21.13)

Stimulated emission prevails if the occupation number difference is larger than zero,

f2 � f1 > 0: (21.14)

This condition corresponds to

EFc �EFv > Eg: (21.15)

A bipolar medium is an active medium if the difference of the quasi-Fermi energies
is larger than the gap energy. The injection of electrons leads to a density N of
electrons in the conduction band. The extraction of electrons from the valence band
leads to a density P of empty levels in the valence band ( D density of holes in the
valence band). Because of neutrality, the two densities are equal, N D P .

The quasi-Fermi energy of the electrons in the conduction band follows from the
condition that the density of occupied levels in the conduction band is equal to the
density N of nonequilibrium electrons in the conduction band,

Z 1

�1
f2.E/Dc.E/dE D N: (21.16)
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The quantities are:

• Dc.E/ D density of states in the conduction band (in units of m�3 J�1).
• f2.E/Dc.E/dE D density of occupied levels in the conduction band in the

energy interval E;E C dE .
• N D density of electrons D density of electrons injected into the conduction

band (in units of m�3).

The density of unoccupied electron levels in the valence band is

Z 1

�1
.1 � f1/Dv.E/dE D P .D N/; (21.17)

where the quantities are:

• Dv.E/ D density of states in the valence band.
• f1.E/Dv.E/dE D density of occupied levels in the valence band within the

energy interval E , E C dE .
• .1 � f1/Dv.E/dE D density of empty levels in the valence band within the

energy interval E , E C dE .
• P D density of empty levels in the valence band ( D density of holes).

We can use the last two equations to determine, for a given electron density N , the
quasi-Fermi energies EFc and EFv.

The description of the electronic states takes into account that the electrons in the
conduction band obey the Pauli principle. Each of the states can be occupied with
two electrons (of opposite spin). A Fermi distribution function describes the filling
of the conduction band. With increasing electron densityN , the quasi-Fermi energy
EFc increases. Correspondingly, the extraction of electrons from the valence band
leads, with increasing density N of empty levels, to a decrease of the quasi-Fermi
energy EFv. The difference of the quasi-Fermi energies, EFc � EFv, increases with
increasing N . The difference becomes equal to the gap energy,

EFc � EFv D Eg if N D Ntr: (21.18)

Ntr is the transparency density. At this electron density, the Fermi functions have,
for E2 � E1 D Eg, the same values, f2.E2/ D f1.E1/. Furthermore, the rates of
stimulated emission and absorption are equal. Accordingly, the semiconductor is
transparent for radiation of the photon energy h� D E2 � E1 D Eg. Gain occurs if
the electron density exceeds the transparency density. The range of gain increases
with increasing N � Ntr. We can express the result in other words: the range of
gain increases with increasing filling of the conduction band with electrons and the
simultaneous extraction of electrons from the valence band (i.e., with the filling of
the valence band with holes).
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21.3 Energy Level Broadening

We study transitions involving monochromatic radiation in the energy interval
h�,h� C d.h�/ taking into account energy level broadening (Fig. 21.3). The net
transition rate is equal to

.r21 � r12/hv d.h�/ D NB21g.h� � E21/ .f2 � f1/ �.h�/d.h�/; (21.19)

where g.h��E21/ is the lineshape function that corresponds to the 1 ! 2 absorption
line. The lineshape function is normalized,

Z
g.h� � E21/ d.h�/ D 1I (21.20)

the integral over all contributionsg.h��E21/d.h�/ is unity. If the lineshape function
is a Lorentzian, we can write

g.h� �E21/ D ıE21

2�

1

.h� �E21/2 C ıE2
21=4

: (21.21)

ıE21 is the linewidth of the transition.
If the radiation is monochromatic, d.h�/ � ıE21, then the net transition rate of

transitions between level 2 and level 1 is given by

r21 � r12 D
Z
.r21 � r12/h�d.h�/ D

Z
NB21g.h� �E21/.f2 � f1/�.h�/d.h�/:

(21.22)
With u D R

�.h�/d.h�) and the energy density u D Zh�, we can write

r21 � r12 D h� NB21g.h� �E21/ Œf2.E2/ � f1.E1/	 Z: (21.23)

Fig. 21.3 Energy level broadening
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The transition rate is proportional to the occupation number difference f2�f1 and to
the photon densityZ. The condition of gain remains the same, f2.E2/�f1.E1/ > 0,
as derived without taking account of energy level broadening. At the transparency
density, where f2.E2/� f1.E1/ D 0, there is no contribution to gain of radiation of
the quantum energy h� by 2 ! 1 transitions — whether h� lies in the line center or
in the wing of the line. We thus have obtained the condition of gain:

f2.E2/ � f1.E1/ > 0 (21.24)

or
EFc �EFv > Eg; (21.25)

which corresponds to
h� < EFc �EFv: (21.26)

The photon energy can have a value that is smaller than the gap energy Eg because
of the energy level broadening. An electron level (in the conduction band as well
in the valence band) has a finite lifetime due to inelastic scattering of electrons at
phonons.

The condition of gain, h� < EFc �EFv, is sometimes called Bernard–Duraffourg
relation according to the authors of a corresponding publication [201].

21.4 Reduced Density of States

Because of momentum conservation, a radiative transition from a particular level
2 can only occur to a particular level 1. Vice versa, a radiative transition from the
lower level 1 can only occur to a corresponding upper level 2. The momentum „k2
of a conduction band electron involved in an emission process must be equal to the
momentum „k1 of the electron in the valence band (after the transition) plus the
momentum „qp of the photon created, or

k2 D k1 C qp: (21.27)

We assume, for simplicity, that

jqpj � jk1j; jk2j: (21.28)

It follows that
k1 D k2: (21.29)

A radiative transition corresponds in the energy-wave vector diagram (see Fig. 21.2)
to a “vertical” transition. The radiative transitions between the conduction and the
valence band occur between states that have the same wave vector, i.e., radiation
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interacts with radiative pair levels. We consider a radiative transition from a level 2
of energy

E2 D Ec C „2
2me

k2; (21.30)

to a level 1 of energy

E1 D Ev � „2
2mh

k2: (21.31)

A conduction band level and a valence band level belonging to states with the same
wave vector have the energy difference

E21 D E2 � E1 D Eg C „2
2mr

k2; (21.32)

where
1

mr
D 1

me
C 1

mh
(21.33)

is the reciprocal of the reduced mass mr. Using the expressions for the energy of an
electron in the conduction band (Fig. 21.4),

�c D E2 � Ec D „2
2me

k2; (21.34)

and of the energy of the corresponding level in the valence band,

�v D Ev � E1 D „2
2mh

k2: (21.35)

We can write
E21 D Eg C �c C �v: (21.36)

By elimination of k2, we obtain the relations

�c D mr

me
.E21 � Eg/ (21.37)

Fig. 21.4 Reduced density of
states
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and
�v D mr

mh
.E21 � Eg/: (21.38)

How many radiative pair levels are available in the energy interval E21, E21 C
dE21? The number of states, Dr.E21/dE21, is equal to the corresponding number of
levels in the conduction band,

Dr.E21/dE21 D Dc.�c/d�c: (21.39)

Thus, the reduced density of states ( D joint density of states D density of states of
radiative pair levels) is given by

Dr.E21/ D Dc.�c/

dE21=d�c
D mr

me
Dc.�c/: (21.40)

Dc is the density of states in the conduction band and �c D .mr=me/.E21 � Eg/ is
the energy of an electron in the conduction band. Correspondingly, we can write

Dr.E21/ D mr

mh
Dv.�h/: (21.41)

Dv is the density of states in the valence band. The reduced density of states is
smaller than the density of states in the conduction band and also smaller than the
density of states in the valence band. The reason is the spreading of the energy scale:

dE21 D d�c C d�v: (21.42)

As a result, we find that radiative transitions occur between radiative pairs of
electron states. A radiative pair of electron states consists of a state of the
conduction band and a state of the valence band that have the same wave vector.
One of the states is occupied and the other is unoccupied.

21.5 Growth Coefficient and Gain Coefficient of a Bipolar
Medium

The temporal change of the density N of conduction band electrons due to
stimulated transitions is equal to

dN

dt
D �h�

Z
NB21g.h� �E21/.f2 � f1/Dr.E21/dE21Z: (21.43)

It follows that the temporal change of the photon density is

dZ=dt D �dN=dt D �Z; (21.44)
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where

� D h�

Z
NB21Dr.E21/.f2 � f1/g.h� � E21/dE21 (21.45)

is the growth coefficient of the semiconductor and, with dt D .n=c/dz, that

dZ=dz D ˛Z; (21.46)

where n is the refractive index, c the speed of light and

˛ D n

c
h�

Z
NB21Dr.E21/.f2 � f1/g.h� � E21/ dE21 (21.47)

is the gain coefficient of the semiconductor.
Figure 21.5 shows electron distributions for T D 0 and for finite temperature. At

T D 0, all conduction band levels between Ec andEFc are occupied and all valence
band levels between Ev and EFv are empty. Gain occurs, for T D 0, in the range

Eg � h� < EFc �EFv: (21.48)

At finite temperature, the electrons in the conduction band are distributed over a
larger energy range and the quasi-Fermi energy EFc is smaller than in the case
that T D 0. The empty levels in the valence band are distributed over a larger
range too and the quasi-Fermi energy FFv has a larger value than for T D 0. At
high temperatures, the energy levels broaden due to electron–phonon scattering.
Therefore, the photon energy can be smaller than Eg and the condition of gain is

h� < EFc �EFv: (21.49)

For h� <Eg, the gain coefficient decreases with decreasing quantum energy
according to the lineshape function g.h� �E21/.

If N � Ntr, the maximum gain coefficient is equal to (Sect. 7.4)

˛max D �eff � .N �Ntr/; (21.50)

Fig. 21.5 Quasi-Fermi energies
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where
�eff D .@˛max=@N/NDNtr (21.51)

is the effective gain cross section. It follows that the growth coefficient is

�max D beff � .N �Ntr/ (21.52)

and that
beff D .c=n/�eff (21.53)

is the effective growth rate constant.
If thermal broadening of the energy levels is negligible, the gain coefficient is

˛ D .n=c/h� NB21Dr.E21/Œf2.E2/ � f1.E1/	; (21.54)

where E21 D h�. It follows, for N � Ntr, that

�eff D n

c
h� NB21Dr.E21/ � d; (21.55)

where
d D .@F=@N/NDNtr (21.56)

is the expansion parameter of F with respect to N �Ntr and where F D f2 � f1 is
an abbreviation of the occupation number difference.

Electrons injected into the conduction band have an energy that is larger than the
quasi-Fermi energy EFc. The mechanism leading to the quasi-Fermi distribution is
the intraband relaxation of the electrons. The electrons lose energy by emission of
phonons. At finite temperature, emission and absorption of phonons leads to the
establishment of the quasi-Fermi distribution of the electrons in the conduction
band. After the establishment of a quasithermal equilibrium, the conduction band
electrons still scatter permanently at phonons. Accordingly, each electron level
is broadened. The width of a broadened energy level in the conduction band is
�E2 	 „=�in, where �in is the inelastic scattering time of an electron, i.e., the
time between two inelastic scattering events. The scattering time �in depends on
temperature.

The main process of electron–phonon interaction is the interaction with polar
optic phonons; the energy of polar optic phonons of GaAs is about 40 meV. The
inelastic scattering time (�10�13 s) of a conduction electron in GaAs at room
temperature is much shorter than the lifetime (of the order of 1 ns) with respect
to a radiative transition to the valence band by spontaneous emission of a photon.
The width of broadening of an level in the conduction band is „=�in �6meV.

The extraction of valence band electrons from the active region leads to the
establishment of a quasi-Fermi distribution of the valence band electrons. Due to
nonradiative relaxation, the valence band, nearly filled with electrons, has empty
states (holes) near the maximum of the band, as characterized by the quasi-Fermi
energy EFv. The electrons in the valence band scatter also at phonons and the
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strength of the scattering is about the same as for the electrons in the conduction
band. Accordingly, an electron level in the valence band has approximately the
same lifetime with respect to inelastic scattering at phonons as an electron state
in the conduction band — and the width of an energy level in the valence band is
�E1 	 „=�in too.

Taking into account broadening of both the energy level in the conduction band
and the energy level in the valence band, which are involved in a radiative transition,
we attribute to the transition a Lorentzian function g.h� � E21/ of a width that is
by a factor of

p
2 larger than the value of the width of a level in a single band. The

halfwidth of radiative transitions in GaAs is ıE21 � 10 meV.

21.6 Spontaneous Emission

Spontaneous emission of radiation is the origin of luminescence radiation. The rate
of spontaneous emission of photons by transitions in the energy rangeh�,h�Chd� is

Rsp;h�hd� D
Z
g.h� � E21/hd� � A21Dr.E21/f2.1� f1/dE21: (21.57)

Rsp;h� is the spontaneous emission rate per unit of photon energy (and per unit
of volume). The integration takes account of the contributions of all electrons in
the conduction band and of the corresponding empty levels in the valence band. It
follows that

Rsp;h� D
Z
A21Dr.E21/f2.1 � f1/g.h� �E21/dE21: (21.58)

Spontaneous emission can also occur at photon energies h� <Eg. This is the
consequence of the broadening of the energy levels due to the finite lifetimes of
the conduction band and valence band states with respect to inelastic scattering at
phonons. The total spontaneous emission rate is

Rsp D
Z Z

A21Dr.E21/f2.1 � f1/g.h� �E21/dE21d.h�/: (21.59)

The lifetime of an electron in the conduction band with respect to spontaneous
emission is

�sp D 1

Rsp=N
: (21.60)

N is the density of electrons in the conduction band. If g.h� � E21/ is a narrow
function, we obtain

Rsp;h� D A21Dr.E21/f2.1� f1/: (21.61)

The total spontaneous emission rate is
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Rsp D
Z
A21Dr.E21/f2.1 � f1/d.h�/ (21.62)

and the decay constant is equal to

1

�sp
D A21

R
Dr.E21/f2.1 � f1/d.h�/

N
: (21.63)

The occupation numbers of a continuously pumped crystal at zero temperature
are f2 D 1 and f1 D 0, within the energy range E2 � E1 � Eg D �Fc C �Fv; the
integral is equal to N . In this case, ��1

sp D A21.
At finite temperatures, transitions from an occupied electron level in the conduc-

tion band to an occupied electron level in the valence band cannot occur. Therefore,
the decay constant is smaller than the Einstein coefficient of spontaneous emission,
��1

sp < A21. The value of ��1
sp depends on the electron density N and on the

temperature.

21.7 Laser Equations of a Bipolar Semiconductor Laser

The laser equations (in the form of rate equations) of a continuously pumped single-
mode bipolar laser are two coupled differential equations:

dN

dt
D r � N

�sp
� �Z; (21.64)

dZ

dt
D �Z � Z

�p
: (21.65)

The quantities are:

• dN=dt D temporal change of the electron density ( D temporal change of the
density of electrons in the conduction band D temporal change of the density of
holes in the valence band).

• dZ=dt D temporal change of the density of photons.
• r D pump rate D number of electrons injected into the conduction band per m3

and s ( D number of electrons extracted from the valence band).
• N=�sp D loss of conduction band electrons due to spontaneous transitions to the

valence band.
• �p D lifetime of a photon in the resonator.
• Z=�p D loss of photons in the resonator (e.g., due to output coupling of

radiation).
• ��Z D rate of change of the density of electrons in the conduction band due to

the net effect of stimulated emission and absorption of radiation.
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• �Z D rate of change of the photon density in the resonator due to the net effect
of stimulated emission and absorption of radiation.

• � D R1
0
h� NB21g.h� �E21/.f2 � f1/Dr.E21/dE21 D growth coefficient.

• f2.E2/� f1.E1/ D occupation number difference.
• E21 DE2�E1 D energy difference of radiative pair levels ( D transition energy).
• Dr.E21/ D reduced density of states D density of states of radiative pair levels.
• g.h� � E21/ D lineshape function describing level broadening due to inelastic

scattering of electrons at phonons.

At steady state, dN=dt D 0 and dZ=dt D 0, the second equation yields the
threshold condition

�th D 1=�pI (21.66)

the photon generation rate is equal to the photon loss rate. The solution to the laser
equations yields the threshold densityNth. We can write the threshold condition also
in the form

˛thL D .nL=c/�th D 1; (21.67)

where L is the resonator length. The first laser equation leads to the photon density
Z1 in the laser resonator at steady state,

Z1 D .r � rth/�p; (21.68)

where
rth D Nth=�sp (21.69)

is the threshold loss rate (in units of m�3 s�1). The loss is due to spontaneous
transitions of electrons from the conduction band to the valence band; we ignore
other loss processes like the nonradiative recombination of electrons and holes.

In a bipolar semiconductor laser diode (Fig. 21.6a), the current I is flowing via
the large area (a1L) through the active volume (height a2). Below threshold, the
electron concentration N increases (Fig. 21.6b) with increasing current strength
until the current reaches the threshold current

Ith D rthea1a2L D Nthea1a2L=�sp: (21.70)

The threshold current density is

jth D Ith

a2L
D Ntha1e

�sp
: (21.71)

At stronger pumping, the carrier density remains at the value Nth. This means
clamping of the following quantities: populations in the conduction and valence
band; quasi-Fermi energy of the electrons in the conduction band; quasi-Fermi
energy of the electrons in the valence band. Pumping above threshold leads to
conversion of the additional pump power into photons and energy of relaxation.
Above threshold, the rate of photon generation is equal to the additional rate of
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Fig. 21.6 Bipolar laser diode. (a) Device. (b) Dependence of the electron density and the photon
density on the current. (c) Laser and luminescence radiation

electron injection. The photon density in the laser resonator increases linearly with
I � Ith.

The luminescence spectrum (Fig. 21.6c) is broad while the spectrum of the laser
radiation is narrow.

At weak pumping (below threshold), luminescence radiation becomes stronger
with increasing pump strength. Above threshold, clamping of luminescence occurs
together with the clamping of the quasi-Fermi energies.

We can describe operation of a laser near the transparency density by the laser
equations

dN=dt D r �N=�sp � beff.N �Ntr/Z; (21.72)

dZ=dt D beff.N �Ntr/Z �Z=�p: (21.73)

It follows that the threshold density is given by

Nth �Ntr D 1

beff�p
D 1

�efflp
(21.74)

and that the photon density is again Z D .r � rth/�p, with rth D Nth=�sp.
If g is a narrow function, we obtain:

dN=dt D r �N=�sp � h� NB21Dr.E21/.f2 � f1/Z; (21.75)

dZ=dt D h� NB21Dr.E21/.f2 � f1/Z �Z=�p: (21.76)

Then, the threshold occupation number difference is given by
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.f2 � f1/th D 1

h� NB21Dr.E21/�p
(21.77)

and the photon density by
Z D .r � rth/�p: (21.78)

21.8 Gain Mediated by a Quantum Well

In two earlier sections (Sects. 7.8 and 7.9), we treated the question how we can
combine a two-dimensional active medium with a light beam, which is threedi-
mensional. We introduced the two-dimensional gain characteristicH 2D and showed
how we can determine the modal gain coefficient of radiation propagating along
a two-dimensional gain medium and how we can determine the gain, G1 � 1, of
radiation crossing a quantum well. The topic of this section concerns the following
questions.

• How can we determine semiconductor properties of an active quantum well
(quasi-Fermi energies; strength of spontaneous emission of radiation; two-
dimensional transparency density; two-dimensional gain characteristic)?

• How can we determine gain of radiation interacting with an active quantum well
(according to the concepts presented in Sects. 7.8 and 7.9)?

Instead of proceeding with this section, a reader may jump to Sect. 21.10 and
then work out Problem 21.5 (gain mediated by a quantum well) and Problem 21.6
(quantum well laser).

The quasi-Fermi energy of a two-dimensional gas of conduction electrons in a
two-dimensional semiconductor follows from the condition

Z
f2D

2D
c dE D N 2D (21.79)

and the quasi-Fermi energy of the electrons in the valence band from

Z
.1 � f1/D

2D
v dE D P 2D D N 2D; (21.80)

where we have the quantities:

• D2D
c D two-dimensional density of levels in the conduction band.

• D2D
v D two-dimensional density of levels in the valence band.

• N 2D D two-dimensional density of electrons in the conduction band.
• P 2D D two-dimensional density of empty states in the valence band D two-

dimensional density of holes.
• P 2D D N 2D, due to neutrality.
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The k vector of an electron is a vector in the plane of the two-dimensional
semiconductor. The requirement of energy and momentum conservation leads to
the two-dimensional reduced density of states

D2D
r .E21/ D mr

me
D2D

c .�c/: (21.81)

The two-dimensional density of upper laser levels that contribute to stimulated
radiative transitions in the energy interval E21,E21 C dE21 is

dN 2D
2 D f2.1 � f1/D

2D
r .E21/dE21 (21.82)

and the corresponding density of electrons in the lower laser levels, which contribute
to absorption, is

dN 2D
1 D f1.1� f2/D

2D
r .E21/dE21; (21.83)

where f2 D f2.E2/ and f1 D f1.E1/ and E21 D E2 � E1. The spontaneous
emission rate per unit of volume and photon energy is given by

R2D
sp;h� D

Z
A21D

2D
r .E21/f2.1 � f1/g.h� � E21/ dE21: (21.84)

The spontaneous emission rate per unit of volume is equal to

R2D
sp D

Z Z
A21D

2D
r .E21/f2.1 � f1/g.h� �E21/dE21d.h�/: (21.85)

The spontaneous lifetime of an electron in the conduction band is

�sp D N 2D=R2D
sp : (21.86)

If g is a narrow function, then

R2D
sp;h� D A21D

2D
r .E21/f2.1� f1/ (21.87)

and

R2D
sp D

Z
A21D

2D
r .E21/f2.1 � f1/d.h�/: (21.88)

The two-dimensional densities of states D2D
2 and D2D

1 completely determine the
reduced density of states Dr.E21/. The occupation numbers f2 and f1 depend on
the two-dimensional density N 2D of electrons and the temperature.

To describe the interaction of the two-dimensional active medium with the three-
dimensional radiation field, we consider two cases, namely that the propagation
direction of the light is parallel to the plane of the two-dimensional active medium
and that the propagation direction is perpendicular to the plane.
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Fig. 21.7 Light beam
propagating along a
quantum well

If the propagation direction is parallel to the plane of the active medium
(Fig. 21.7), the average electron density in a photon mode is

Nav D N 2D=a2; (21.89)

where a2 is the height of the mode. The temporal change of the average density is

dNav=dt D �NavZ D �.c=na2/H 2DZ (21.90)

and

H 2D D .n=c/

Z
h� NB21g.h� �E21/.f2 � f1/D

2D
r .E21/dE21 (21.91)

is the two-dimensional gain characteristic. The expression forH 2D indicates: a two-
dimensional semiconductor is a gain medium if f2 > f1. The condition is satisfied
if the difference of the quasi-Fermi energies is larger than the gap energy,EFc �EFv

> Eg. There is no net gain (H2D D 0) if, at the two-dimensional transparency
density N 2D

tr , the occupation number difference is zero, f2 � f1 D 0. This
corresponds to the condition EFc � EFv D Eg. Thus, the condition of gain,
f2 � f1 > 0, is the same as in the three-dimensional case.

The temporal change of the photon density in a photon mode is

dZ=dt D �Z; (21.92)

where
� D .n=c/H 2D=a2 (21.93)

is the modal growth coefficient. The spatial change of the photon density is

dZ=dz D ˛Z; (21.94)

where

˛ D H 2D

a2
(21.95)
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is the modal gain coefficient. The modal growth coefficient and the modal gain
coefficient are inversely proportional to the lateral extension of the laser resonator
mode.

If N � Ntr, we can write

�max D beff
N 2D �N 2D

tr

a2
; (21.96)

where

beff D n=c

a2

�
@H 2D

@N 2D

�

N 2DDN 2D
tr

(21.97)

is the effective growth rate constant and, furthermore,

˛max D �eff
N 2D �N 2D

tr

a2
; (21.98)

where

�eff D 1

a2

�
@H 2D

@N 2D

�

N 2DDN 2D
tr

D
�
@˛max

@N 2D

�

N 2DDN 2D
tr

(21.99)

is an effective gain cross section (see Sect. 7.4) .
If g is a narrow function, we obtain

H 2D D .n=c/h� NB21D2D
r .E21/.f2 � f1/; (21.100)

with E21 D h�. It follows that the modal growth coefficient is given by

� D n=c

a2
h� NB21D2D

r .E21/.f2 � f1/ (21.101)

and the modal gain coefficient by

˛ D n

a2c
h� NB21D2D

r .E21/.f2 � f1/: (21.102)

Growth coefficient and gain coefficient are proportional to the occupation number
difference.

In the case that f2 � f1 � 1, we can expand F with respect to N 2D,

F D f2 � f1 D d 2D � .N 2D �N 2D
tr /; (21.103)

where

d 2D D
�
@F

@N 2D

�

N 2DDN 2D
tr

(21.104)

is the expansion coefficient of the occupation number difference with respect to
N 2D �N 2D

tr . The expansion leads to
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� D beff
N 2D �N 2D

tr

a2
D beff.Nav �Ntr;av/ (21.105)

and
beff D h� NB21D2D

r .E21/d
2D: (21.106)

The modal growth coefficient is proportional to the difference of the density of
excited electrons and inversely proportional to the height of the photon mode. The
unit of beff is the same as in the three-dimensional case since the product D2Dd 2D

has the same unit as the corresponding product in the three-dimensional case.
It follows that the gain coefficient is equal to

˛ D �eff
N 2D �N 2D

tr

a2
; (21.107)

where
�eff D n

c
h� NB21D2D

r .E21/d
2D: (21.108)

In a disk of light traversing a two-dimensional bipolar medium (Fig. 21.8), the
temporal change of the photon density is given by (see also Sect. 7.9):

ıZ

ıt
D �ıNav

ıt
D .c=na2/

H 2D

ız
Z; (21.109)

where ız D .c=n/ıt is the length of the disk of light and ıt the time it takes the
disk to propagate over the medium (that has zero thickness). It follows that the gain
of light traversing a two-dimensional bipolar medium is

G1 � 1 D ıZ

Z
D H 2D: (21.110)

If g is a narrow function, we obtain

G1 � 1 D n

c
h� NB21D2D

r .E21/.f2 � f1/: (21.111)

Now, the gain, G1 � 1, is proportional to .f2 � f1/.

Fig. 21.8 Light beam
traversing a quantum well
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21.9 Laser Equations of a Quantum Well Laser

The laser equations of a quantum well laser, with light propagating along the
quantum well, are given by:

dNav

dt
D rav � Nav

�sp
� .c=na2/HavZ; (21.112)

dZ

dt
D .c=na2/HavZ � Z

�p
: (21.113)

Nav D N 2D=a2 is the average electron density in the laser mode, Hav D
H 2D=a2 is the average gain characteristic — averaged over the laser mode volume.
Furthermore,

rav D r2D=a2 (21.114)

is the pump rate averaged over the the volume of the resonator, r2D the two-
dimensional pump rate ( D pump rate per m2) and a2 the height of the resonator
mode.

The solution describing steady laser oscillation provides the threshold condition

H 2D
th D na2=c�p (21.115)

or, with �p D nlp=c,

H 2D
th D a2

lp
: (21.116)

H 2D
th is inversely proportional to the ratio of the photon path length and the extension

of the resonator mode perpendicular to the plane of the active medium. A small
value of H 2D

th corresponds to a small occupation number difference (f2 � f1 � 1)
and to an electron density that is only slightly larger than the transparency density
(N 2D �N 2D

tr � N 2D
tr ).

Equation (21.112) yields the photon density Z1 in the laser resonator at steady
state oscillation,

Z1 D
�
r2D

a2
� r2D

th

a2

�
�p; (21.117)

where

r2D
th D N 2D

th

�sp
(21.118)

is the two-dimensional threshold loss rate ( D loss per s and m2). The threshold
current is

Ith D eN 2D
th a1a2L

a2
� 1

�sp
D eN 2D

th a1L

�sp
(21.119)
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and the threshold current density

jth D eN 2D
th

�sp
: (21.120)

In the case of a narrow function g, the laser equations are

dNav

dt
D rav � Nav

�sp
� 1

a2
h� NB21D2D

r .E21/.f2 � f1/Z; (21.121)

dZ

dt
D 1

a2
h� NB21D2D

r .E21/.f2 � f1/Z � Z

�p
: (21.122)

It follows that the threshold occupation number difference is equal to

Fth D .f2 � f1/th D c=n

h� NB21D2D
r lp=a2

: (21.123)

If g is a narrow function and the threshold density is only slightly larger than the
transparency density, Nth �Ntr � Ntr, we can write

dNav

dt
D rav � Nav

�sp
� beff .Nav �Ntr;av/ Z; (21.124)

dZ

dt
D beff .Nav �Ntr;av/ Z � Z

�p
; (21.125)

where rav D r2D=a2 is the average pump rate (averaged over the resonator volume),
r2D the pump rate per m2, beff D h� NB21D2D

r .E21/d
2D is the effective growth rate

constant and where

d 2D D
�
@F

@N 2D

�

N 2DDN 2D
tr

: (21.126)

F D f2 � f1 is the occupation number difference. It follows that

N 2D
th �N 2D

tr D a2

beff�p
D 1

�efflp=a2
; (21.127)

N 2D
th �N 2D

tr

a2
D 1

�efflp
: (21.128)

The average density difference plays the same role as the density difference in a
three-dimensional active semiconductor medium.

A laser containing a quantum well that is oriented perpendicular to the laser beam
will be discussed in Sect. 22.7.
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21.10 What is Meant by “Bipolar”?

Instead of discussing empty electron states in the valence band of a bipolar laser
medium, we can use the picture of holes: an empty level in the valence band is a
hole in the valence band. Accordingly, a current leads to injection of electrons into
the conduction band and to injection of holes into the valence band. In the electron-
hole picture, the current is carried by electrons in the conduction band and by holes
in the valence band — the current is carried by negatively charged quasiparticles
(electrons) and positively charged quasiparticles (holes); the discussion that now
follows can be found in [236].

Involved in a radiative transition (Fig. 21.9) are an electron (in the conduction
band) and a hole (in the valence band). In an emission process, an electron and a
hole (recombine) and create a photon. Conservation of momentum requires that the
momentum before an emission process is equal to the momentum after the process,

„ke C „kh D „qp; (21.129)

where ke is the wave vector of the electron, kh the wave vector of the hole and qp

the wave vector of the photon. If qp � ke; kh, then

kh D �ke: (21.130)

In the electron-hole picture, the wave vector conservation ke C kh D 0 corresponds
to the wave vector conservation kce D kve in the electron picture. The momentum
of an empty electron state of the valence band is �„kve while „kve is the momentum
of an electron that occupies this state. The wave vector kh of a hole (in the valence
band) is

kh D �kve: (21.131)

Electron and hole have opposite wave vectors. A radiative pair — an electron-hole
pair consisting of an electron and a hole of opposite wave vector — can annihilate
( D recombine) by spontaneous or stimulated emission of a photon. Laser radiation
in a bipolar laser is due to stimulated electron-hole recombination. The energy of a
radiative pair is

Fig. 21.9 Bipolar laser in an
electron-hole picture
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E D Eg C „2k2
2me

C „2k2
2mh

D Eg C „2k2
2mr

; (21.132)

wheremr is the reduced mass, me the electron mass and mh the hole mass.
The occupation number of a hole state is

fh D 1 � f1: (21.133)

It follows that the quasi-Fermi energy EFh of the holes is equal to the quasi-Fermi
energyEFv of the valence band electrons,

EFh D EFv (21.134)

and that

fh D 1

exp .EFv �E/=kT C 1
: (21.135)

Figure 21.10 illustrates the connection between the electron picture and the
electron-hole picture:

• Electron picture. The conduction band contains an electron gas characterized by
the quasi-Fermi energyEFc and the energy distribution f2.E/. The valence band
contains an electron gas characterized by the quasi-Fermi energy EFv and the
distribution f1.E/. The condition of gain requires that f2 � f1 > 0. Optical
transitions occur between radiative pair levels.

• Electron-hole picture. The conduction band contains an electron gas character-
ized by EFc and the distribution f2 D fe (as in the electron picture). The valence
band contains a hole gas characterized by the quasi-Fermi energy EFv and the
distribution fh D 1 � f1. The condition of gain now requires that

fe C fh � 1 > 0: (21.136)

Optical transitions occur by recombination (annihilation) of radiative electron-
hole pairs.

Fig. 21.10 Quasi-Fermi distributions of electrons and holes
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Because of bipolarity and charge neutrality of an active medium, the knowledge
of the density N of electrons in the conduction band is sufficient for a complete
characterization of a particular active medium (if the density of states of electrons
and holes as well as the temperature are known).

The bipolarity of a medium manifests itself in the dependence of the spontaneous
lifetime on the densities of positive and negative charge carriers. It turns out
(analyzing Rsp) that the rate ��1

sp of spontaneous transitions of electrons in a
semiconductor at room temperature is, for very small values of N , approximately
proportional to the product of the density N of electrons and the density P D N of
holes,

1

�sp
D KN2: (21.137)

K is a constant. At large values of N , the decay rate ��1
sp is nearly independent of

N . The behavior is characteristic of a bipolar system.

REFERENCES [1–4, 6, 187–201]

Problems

21.1. Wave vector of nonequilibrium electrons in GaAs.

(a) Calculate the wave vector k of electrons in GaAs that have an energy of
100 meV; 10 meV; and 1 meV. Compare the values with the wave vector qp

of a photon with the energy h� D Eg (me D 0.07 m0; m0 D 0.92 � 10�30 kg;
Eg D 1.42 eV; n D 3.6).

(b) Determine the energies �c and �v if qp D k.

21.2. Wave vector of radiative pair levels. We assumed that the wave vector of a
photon involved in a radiative transition is small compared to the wave vector of the
electron and the hole that are involved in the radiative transition. Show that this is
justified for electrons and holes of sufficient energies.

21.3. Electron and holes in an undoped GaAs quantum film in thermal
equilibrium.

(a) What is the condition, with respect to the quasi-Fermi energies, that the electron
gas and the hole gas are in thermal equilibrium?

(b) What is the corresponding condition with respect to �Fc and �Fv?
(c) Estimate the electron density N 2D

thermal of subband electrons ( D density of
subband holes) in a quantum film at temperature T . Show that N 2D

thermal is
by many orders of magnitude smaller than the transparency density N 2D

tr of
electrons in the quantum film.

21.4. Condition of gain. Show that the condition of gain, EFc � EFv > E21 D
E2 � E1, follows from the condition f2 � f1 > 0.
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21.5. Gain mediated by a quantum well. Given are the following quantities:

• D2D
c D two-dimensional density of states of electrons in the conduction band.

• D2D
v D two-dimensional density of states of electrons in the valence band

( D two-dimensional density of states of holes).
• N 2D D two-dimensional density of nonequilibrium electrons in the conduction

band (assumed to be equal to the two-dimensional density of nonequilibrium
holes in the valence band).

• g.h� �E21/ D lineshape function.
• a2 D height of a photon mode that contains the quantum well; the plane of the

quantum well is oriented parallel to the propagation direction of the radiation.
• F 
 f2 � f1 D d 2D � .N 2D � N 2D

tr /; this expansion implies that the quantum
well is operated near the transparency density.

Formulate equations, which are suited to determine the following quantities:
(a) EFc D quasi-Fermi energy of electrons in the conduction band.
(b) EFv D quasi-Fermi energy of electrons in the valence band.
(c) N 2D

tr D two-dimensional transparency density.
(d) R2D

sp;h� D spontaneous emission rate per unit photon energy in the cases that the
lineshape function is broad or narrow.
(e) R2D

sp D total spontaneous emission rate (for a broad or a narrow lineshape
function).
(f) �sp D lifetime of the nonequilibrium electrons with respect to spontaneous
emission of radiation.
(g)H 2D D two-dimensional gain profile.
(h) � D modal growth coefficient.
(i) ˛ D modal gain coefficient.
(j) beff D effective growth rate constant.
(k) �eff D effective gain cross section.
(l) G1 � 1 D gain of light traversing a quantum well.
The answers are found in Sect. 21.8.

21.6. Quantum well laser. Given are the quantities:

• H 2D D two-dimensional gain profile of a quantum well.
• a2 D extension of the resonator perpendicular to the quantum well.
• a1 D width of the resonator.
• a1 �L D area of the quantum well.
• L D length of the resonator.
• N 2D D two-dimensional density of nonequilibrium electrons.
• r2D D two-dimensional pump rate.
• f2 � f1 Dd 2D � .N 2D �N 2D

tr /; operation near the transparency density.
• beff D growth rate constant.
• �eff Dnbeff=c D effective gain cross section.
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(a) Formulate the laser equations (rate equations).
(b) Derive the threshold condition.
(c) Determine the threshold current and the threshold current density.
(d) Formulate the threshold condition for a quantum well laser operated at an

electron density near the transparency density; neglect lineshape broadening.
The answers can be found in Sect. 21.9.

21.7. Determine the de Broglie wavelength �dB D h=p of electrons of an energy
of 10 meV that are propagating (a) in free space and (b) as conduction electrons in
a GaAs crystal.

21.8. A three-dimensional GaAs semiconductor at zero temperature contains
nonequilibrium electrons of a density that corresponds to a quasi-Fermi energy
�Fe D 25 meV. Determine the following quantities.

(a) Density of electrons in the conduction band.
(b) Fermi momentum kF, i.e., the momentum of the electrons at the Fermi surface.
(c) The de Broglie wavelength of the electrons that have Fermi momentum.
(d) Quasi-Fermi energy �Fh of the nonequilibrium holes in the valence band,

assuming crystal neutrality.
(e) Fermi momentum of the nonequilibrium holes.
(f) The de Broglie wavelength of the holes that have Fermi momentum.

21.9. Answer the questions of the preceding problem with respect to a two-
dimensional GaAs semiconductor at zero temperature containing nonequilibrium
electrons of a density that corresponds to a quasi-Fermi energy �Fe D 25 meV.

21.10. Answer the same questions with respect to a one-dimensional GaAs semi-
conductor at zero temperature containing nonequilibrium electrons of a density that
corresponds to a quasi-Fermi energy �Fe D 25 meV.



Chapter 22
GaAs Quantum Well Laser

As an example of a bipolar semiconductor laser, we treat the GaAs quantum well
laser (wavelength around 800 nm). In later chapters, we will study quantum well
lasers consisting of other materials and bipolar lasers of other types.

We describe a quantum well by an electron subband and a hole subband (the
heavy hole subband); we will, in a later chapter (Chap. 26), slightly modify the
description of a quantum well laser by taking into account another hole subband
(the light hole subband).

To characterize an active quantum well, we calculate the quasi-Fermi energies
of electrons and holes; because the densities of states of electrons and holes have
constant (energy-independent) values, we obtain analytic expressions for the quasi-
Fermi energies. We consider a GaAs quantum well (at low temperature and at
room temperature) carrying nonequilibrium electrons of different densitiesN 2D. We
determine the quasi-Fermi energy, the occupation number difference f2 � f1, and
the two-dimensional gain characteristic H 2D. We discuss modal growth and gain
coefficients. We introduce the material gain coefficient; the material gain coefficient
corresponds to a three-dimensional description of the quantum film, but with a two-
dimensional density of states.

The quantum well laser consists of a heterostructure composed of at least five
semiconductor layers. These have the tasks: to form a quantum well; to provide a
light guide effect; to allow for injection of electrons and holes into the quantum well
by means of a current. We describe the principle and the design of the edge-emitting
GaAs quantum well laser. We derive the laser threshold condition and determine
the threshold current. The solutions of the rate equations of a quantum well laser
indicate clamping of the quasi-Fermi energies of the electron and hole gases.

A multi-quantum well laser, containing several quantum wells in parallel, has
a larger gain and a larger output power than a quantum well laser containing one
quantum well only.

The arrangement of many laser diodes in a linear array or in a stack of
arrays results in a high-power semiconductor laser. The radiation of a high-power
semiconductor laser is not a single coherent wave but is composed of different

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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coherent waves, which permanently change the relative phase to each other. The
radiation has, however, a high degree of monochromaticity.

Beside the edge-emitting quantum well laser, we discuss the vertical-cavity
surface-emitting laser (VCSEL). The importance with respect to applications — of
both edge-emitting quantum well laser and vertical-cavity surface-emitting laser —
has already been discussed (in Sect. 1.4).

We finally point out that the laser radiation of an edge-emitting laser can be
polarized, with the electric field vector of the laser radiation lying in the plane of the
quantum well. As a last point, we determine the spectrum of luminescence radiation
emitted by a quantum well laser in addition to laser radiation.

22.1 GaAs Quantum Well

A GaAs quantum well (Fig. 22.1) consists of a thin GaAs film embedded in GaAlAs.
Electrons can assume lower energies in the GaAs layer than in GaAlAs and holes
can assume higher energies. Because of the lateral restriction, free electron motion
is only possible along the film plane. The two-dimensional free electron motion of a
conduction band electron is characterized by an electron subband. Correspondingly,
the two-dimensional free electron motion of a valence band electron is characterized
by a hole subband. The gap energy E2D

g of the two-dimensional semiconductor is
slightly larger than Eg because of the zero point energy associated with the electron
and the hole confinement.

Example. GaAs quantum well (at room temperature).

• Eg � 1.42 eV; gap energy.
• Ga0:85Al0:15As; Eg � 1.51 eV (that is 90 meV larger than for GaAs).
• Ga0:75Al0:25 As; Eg � 1.60 eV (that is 180 meV larger than for GaAs).
• E2D

g D 1:45 eV (that is 30 meV larger than for bulk GaAs); two-dimensional gap
energy of a quantum well of 10 nm thickness (Sect. 26.4).

• �2D
g D E2D

g =h � 359 THz; gap frequency.
• �2D

g D c=�2D
g � 836 nm; vacuum wavelength corresponding to the gap

frequency.
• me � 0:07 m0; m0 D 0.92 � 10�30 kg D electron mass.

Fig. 22.1 GaAs quantum
well
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• mh D 0.43m0.
• mr � 0:06 m0.
• D2D

c Dme=.�„2/ D 2.0 � 1036 J�1 m�2; density of states of electrons in the
conduction band.

• D2D
v Dme=.�„2/ D 12 � 1036 J�1 m�2; density of states of holes D density of

states of electrons in the valence band.
• D2D

r D 1.7 � 1036 J�1 m�2 D reduced density of states for E21 � E2D
g ; see

(21.81).

22.2 An Active Quantum Well

Injection of electrons into the conduction band (i.e., into the electron subband) and
extraction of electrons from the valence band (i.e., injection of holes into the hole
subband) results in an active quantum well (Fig. 22.2). An electron in the conduction
band has the energy

Ec D E2D
c C �c; (22.1)

where E2D
c is the minimum of the electron subband and �c is the energy within the

conduction band. An electron level in the valence band has the energy

Ev D E2D
v � �v; (22.2)

where E2D
v is the maximum of the hole subband and �v is the energy within the

valence band. The conduction band electrons have a Fermi–Dirac distribution with
the quasi-Fermi energy EFc and the electrons in the valence band have a Fermi–
Dirac distribution with the quasi-Fermi energyEFv. We can write

EFc D E2D
c C �Fc; (22.3)

Fig. 22.2 An active quantum
well and energy scales



414 22 GaAs Quantum Well Laser

EFv D E2D
v � �Fv; (22.4)

where �Fc is the quasi-Fermi energy of the conduction band electrons relative to the
energyE2D

c of the conduction band minimum and �Fv the quasi-Fermi energy of the
valence band electrons relative to the energy E2D

v of the valence band maximum.
At zero temperature, all conduction band levels betweenE2D

c and the quasi-Fermi
energy EFc are occupied while all valence band levels between E2D

v and EFv are
completely empty. The quasi-Fermi energies at T D 0 are

EFc D E2D
c CN 2D=D2D

c D E2D
c C �Fc; (22.5)

EFv D E2D
v �N 2D=D2D

v D E2D
v � �Fv: (22.6)

EFc increases linearly with N 2D and EFv decreases linearly with N 2D. Because
of the larger density of states in the valence band, the energy range EFc � E2D

c
of occupied energy levels in the conduction band is larger than the energy range
Ev � EFv of empty levels in the valence band.

At finite temperature, the Fermi distributions are broader. The quasi-Fermi
energy of the electrons in the conduction band follows from the expression

Z
f2D

2D
c dE D N 2D (22.7)

and the quasi-Fermi energy of the electrons in the valence band from

Z
.1 � f1/D

2D
v dE D N 2D; (22.8)

where

f2 D 1

exp Œ.E � EFc/kT 	C 1
D 1

exp Œ.�c � �Fc/=kT 	C 1
(22.9)

is the quasi-Fermi distribution of the electrons in the conduction band and

f1 D 1

exp Œ.E �EFv/=kT 	C 1
D 1

exp Œ.�Fv � �v/=kT 	C 1
(22.10)

is the quasi-Fermi distribution of the electrons in the valence band. Because
the densities of states are constants, the quasi-Fermi energies can be expressed
analytically. Taking into account that

Z 1

0

dx

1C ex�a D ln
ex

1C ex
D aC ln.1C e�a/; (22.11)

we find the quasi-Fermi energies

�Fc D kT ln
��1C expŒN 2D=D2D

c kT 	
�
; (22.12)
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�Fv D kT ln
��1C expŒN 2D=D2D

v kT 	
�
: (22.13)

The difference of the quasi-Fermi energies is given by

.Ec �EFv/=kT D .�Fv C �Fc/=kT D ln
��1C expŒN 2D=D2D

c kT 	
�

C ln
��1C expŒN 2D=D2D

v kT 	
�
: (22.14)

We now discuss a GaAs quantum well at room temperature (T D 300 K), which
contains different electron densitiesN 2D (Fig. 22.3). The quasi-Fermi energyEFc of
the electrons in the conduction band has a value of – 1 at zero electron density. With
increasing electron density, the quasi-Fermi energy increases, reaches the minimum
E2D

c of the conduction band (where EFc D E2D
c ) and increases further. At large

electron density the quasi-Fermi energyEFc increases proportionally to the electron
density. The quasi-Fermi energy EFv of the electrons in the valence band is C 1
at N 2D D 0, decreases with increasing N 2D, reaches the maximum of the valence
band (where EFv D E2D

v ) and decreases further.
The difference of the quasi-Fermi energies (Fig. 22.3, lower part) increases with

increasing electron density. The difference is 0 at the transparency density N 2D
tr

( D 1.2 � 1016 m�2). Gain occurs if EFc � EFv > E2D
g . The difference of the

quasi-Fermi energies reaches a value of 100 meV at an electron density of about

Fig. 22.3 Quasi-Fermi energies and their difference for a GaAs quantum well at room temperature
(solid lines) and at zero temperature (dashed)
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3 � 1016 m�2. For a GaAs quantum well at zero temperature, EFc � EFv is always
larger than E2D

g (dashed curves).
The energy difference between radiative pair levels is

E2 �E1 D E2D
g C �; (22.15)

where
� D E2 �E1 �E2D

g D �c C �v (22.16)

is the energy differenceE2 �E1 minus the gap energy and where

�c D me

mr
�; (22.17)

�v D mv

mr
�: (22.18)

The difference between the occupation number of the upper level and the
occupation number of the lower level is (with mh D 6me for GaAs):

f2.E2/� f1.E1/ D f2.�c/ � f1.�v/ D f2

�
6

7
�

�
� f1

�
1

7
�

�
: (22.19)

To discuss the occupation number difference, we first consider the energy range
in which gain occurs, i.e., where f2 � f1 > 0. Figure 22.4 shows the occupation
number difference concerning a GaAs quantum well at room temperature at
different electron densities. With increasing electron density N 2D, the difference
f2 � f1 increases and approaches, near E2 � E1 D Eg, at very large N 2D, the
saturation value f2 � f1 D 1. The range of gain increases with increasing electron
density. When f2�f1 is known, we can determine the different quantities describing
gain:

• H 2D.�/ D .n=c/h� NB21D2D
r .E21/.f2 �f1/ D two-dimensional gain characteris-

tic.

Fig. 22.4 Occupation number difference for a GaAs quantum well at room temperature
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• ˛.�/ D .1=a2/H
2D.E21/ D .n=c/h� NB21.D2D

r =a2/E21.f2 � f1/ D modal gain
coefficient (D gain coefficient related to a mode); ˛ depends on the extension
of the radiation mode perpendicular to the propagation direction; D2D

r =a2 is the
average density of states of radiative pair levels within a mode of the radiation.

• �.�/ D .n=a2c/h� NB21D2D
r .f2�f1/ D modal growth coefficient; it also depends

on the extension a2 of the mode perpendicular to the quantum well.

For completeness, we write the gain coefficient in the form

˛ D ˛mat � �; (22.20)

where

˛mat.�/ D 1

s
H 2D D n

c
h� NB21D

2D
r

s
.f2 � f1/ (22.21)

is the material gain coefficient, i.e., the gain coefficient of the quantum well that is
now described as a three-dimensional system, with the two-dimensional density of
states averaged over the quantum well thickness s, and where

� D a2=s (22.22)

is the ratio of the height of a photon mode and the quantum well thickness
sometimes called confinement factor. The material gain coefficient depends on the
thickness of the quantum well while the modal gain coefficient is independent of the
quantum well thickness but depends on the height of the photon mode.

Example: Gain mediated by a GaAs quantum well, with a nonequilibrium
electron densityN 2D D 2�1016 m�2 corresponding to f2�f1 D 0.25, for radiation
of frequency � D �2D

g D E2D
g =h.

• �2D
g D 3.6 � 1014 Hz; n D 3:6.

• A21 D 3 � 109 s�1; B21 D 2.2 � 1021 m3 J�1 s�2; NB21 D hB21.
• H 2D D 1.5 � 105 m s�1.
• � D 7.4 � 1011 s�1 for a2 D 200 nm.
• ˛ D 8.9 � 103 m�1 for a2 D 200 nm.
• ˛mat D 1.8 � 105 m�1 for s D 10 nm.

We now determine the occupation number difference f2 � f1 for � D 0

(E2�E1 D E2D
g ). The occupation number difference (Fig. 22.5) is �1 forN 2D D 0.

Fig. 22.5 Occupation
number difference at the
transition energy
E2 � E1 D E2D

g for a GaAs
quantum well at room
temperature
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With increasing electron (and hole) density, f2 � f1 increases, becomes zero at
the transparency density and increases further. At very large electron density, it
approaches C1. If the electron densities have values near N 2D

tr , we can approximate
the occupation number difference by

f2 � f1 D d 2D � .N 2D �N 2D
tr /; (22.23)

where d 2D = 3.8 � 10�17 m2. The gain characteristic is then given by

H 2D.�2D
g / D .n=c/h�2D

g
NB21D2D

r .E2D
g /d 2D � .N 2D �N 2D

tr /: (22.24)

The modal gain coefficient is equal to

˛.�2D
g / D H 2D.�2D

g /

a2
D beff.Nav �Ntr;av/ (22.25)

and the modal growth coefficient

�.�2D
g / D cH 2D.�2D

g /

na2
D �eff.Nav �Ntr;av/; (22.26)

where a2 is the height of the photon mode, beff D h� NB21D2D
r .E21/d

2D is the
effective growth constant, �eff D .n=c/beff is the effective gain cross section, Nav D
N 2D=a2 the average electron density in the photon mode, and Ntr;av D N 2D

tr =a2 the
average transparency density.

Example: Gain, mediated by a GaAs quantum well (at room temperature), of
radiation of frequency �2D

g .

• N 2D �N 2D
tr D 0.1 N2D

tr .
• N 2D

tr D 1.4 � 1016 m�2.
• N 2D �N 2D

tr D 1.4 � 1015 m�2.
• d 2D D 3.8 � 10�17 m2; �eff D 2.7 � 10�19 m2.
• H 2D D 3.2 � 10�4 m s�1.
• � D 1.6 � 1011 s�1 for a2 D 200 nm.
• ˛ D 1.9 � 103 m�1 for a2 D 200 nm.
• ˛mat D 3.8 � 104 m�1 for s D 10 nm.

We finally discuss the effect of thermal broadening of energy levels (Fig. 22.6).
Due to inelastic scattering of the electrons at phonons, the gain characteristic
broadens and the maximum gain becomes smaller. The change of the gain curve is
strongest in the range near the two-dimensional gap energy E2D

g . The transparency
density does not depend on the thermal broadening since the population difference
f2.E2/�f1.E1/ is determined by the energy differenceE21 D E2 �E1, i.e., by the
energy difference between the center of level 2 and the center of level 1 rather than
by the photon energy h�. Due to thermal broadening, the maximum gain mediated
by a quantum well at room temperature is reduced by a factor of about two, in



22.2 An Active Quantum Well 419

Fig. 22.6 Two-dimensional gain characteristic of a GaAs quantum well at room temperature
without and with level broadening due to electron–phonon scattering

Fig. 22.7 Difference of the quasi-Fermi energies and transparency frequency for a GaAs quantum
well at room temperature

comparison with the case that the thermal broadening is not taken into account. (This
factor is compensated because of the anisotropy of a quantum well; see Sects. 22.8
and 26.8.)

Figure 22.7 shows the density of states of radiative electron-hole pairs and a
modal gain coefficient of a GaAs quantum well at room temperature. Gain occurs at
quantum energies up to

h�F D EFc � EFv: (22.27)

The gain coefficient (in the case that inelastic is neglected) is given by the expression

˛.h�/=˛p D f2.E2/ � f1.E1/ with E D E2 �E1 D h�; (22.28)

with a peak gain coefficient

˛p D n=.ca2/h� NB21D2D
r .E/: (22.29)

E is the energy of a radiative electron-hole pair composed of a conduction band
electron of energy E2 and a valence band hole of energy E1, D2D

r .E/ is the
density of states of radiative electron-hole pairs, f2 is the occupation number of
the conduction band electrons, and f1 the occupation number of the valence band
electrons. With increasing band filling, i.e., with increasing �F, the range of gain
increases and the maximum absorption coefficient ˛max .< ˛p/ increases. If � D �F,
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annihilation and creation of electron-hole pairs compensate each other; �F is the
transparency frequency.

22.3 GaAs Quantum Well Laser

The GaAs quantum well laser (Fig. 22.8) consists of a heterostructure with two dif-
ferent n-doped GaAlAs layers, the GaAs quantum layer, and two different p-doped
GaAlAs layers. Under the influence of a voltage, electrons from the n-doped region
and holes from the p-doped region drift into the quantum film. Stimulated transitions
from occupied levels in the conduction band to empty levels in the valence band
give rise to generation of laser radiation. The quantum film has no net charge, the
two-dimensional densities of nonequilibrium electrons and nonequilibrium holes
are equal. The quantum well laser contains at least five different semiconductor
layers. An n-doped GaAs substrate (nC GaAs substrate) supports the layers. The
layer sequence can be, for instance, the following (beginning with the substrate):

• nC GaAs substrate.
• n Ga0:75Al 0:25As.
• n Ga0:9Al 0:1As.
• GaAs quantum well (QW).
• p Ga0:9Al 0:1As.
• p Ga0:75Al 0:25As.

The layers fulfill the following different tasks:

• Quantum well (QW); GaAs.
• Waveguide; the Ga0:9Al 0:1As and Ga0:75Al 0:25As layers together.

Fig. 22.8 GaAs quantum well laser (principle)
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• Electron injector; both n-doped GaAlAs layers together.
• Hole injector; both p-doped GaAlAs layers together.

The heavily doped substrate (nC GaAs) and an adjacent epitaxial nC GaAs
layer are doped with silicon atoms and contain free electrons of a concentration of
(1-2) � 1019 m�3; nC indicates a high n-doping concentration. The Fermi level EFn

lies within the conduction band of GaAs. The concentration of excess electrons is
smaller (by about two orders of magnitude) in the n GaAlAs layers. The Fermi level
of the valence band electrons in the p-doped GaAs layers lies within the valence
band.

The photon mode of a laser diode (Fig. 22.9) has submillimeter size (e.g., 100�m
� 0.2 �m � 500 �m). Metal films on top of the heterostructure and on the backside
of the substrate serve as electrical contacts. Under the action of a voltage .U /, a
current .I / is flowing through the heterostructure. Electrons in the n-doped region
and holes in the p-doped region carry the current. Electrons and holes recombine
within the quantum well. Stimulated electron-hole pair recombination drives the
laser oscillation.

Example of a light guiding structure (at room temperature).

• GaAs; n D 3.60 for radiation with h� D 1.42 eV.
• Ga0:9Al 0:1As ; refractive index n D 3.52.
• Ga0:75Al 0:25As; n D 3.41.

The refractive is n(Ga1�xAlxAs) 	 3.60 - 0.71x. Across the heterostructure, the
refractive index has the largest value in the very thin GaAs quantum layer. The

Fig. 22.9 GaAs quantum well laser; five semiconductor layers; refractive index profile; principle
of the design
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refractive index is smaller in the Ga0:75Al0:25As layers than in the Ga0:9Al0:1As
layers. This leads to a light guide effect. The light is concentrated in the Ga0:9Al0:1As
(and the G0:9aAl0:1As) layers, which together have an optical thickness between one
and two wavelengths. The GaAs film has a thickness (of the order of 10 nm) that is
much smaller than the thickness of the adjacent Ga0:9Al0:1As layers. Accordingly,
only a small portion of the field overlaps with the quantum well.

The current through a quantum well corresponds to a migration of electrons from
the nC substrate to the quantum well and, at the same time, to the migration of holes
from the p-doped layers to the quantum well. The injection of electrons into the
quantum well (see Fig. 22.8) leads to a nonequilibrium population of electrons in the
electron subband, described by the quasi-Fermi energy EFe. The injection of holes
into the quantum well leads to a nonequilibrium population of holes in the hole
subband, described by the quasi-Fermi energy EFv. Under the action of a voltage
U across the heterostructure, an electron migrating through the heterostructure
loses its potential energy eU mainly due to the processes: relaxation within the
electron subband; transition to the hole subband by stimulated emission of a photon;
and energy necessary for extraction of the electron from the hole subband. The
extraction of an electron from the hole subband corresponds to injection of a hole
from the p-doped region into the hole subband accompanied with relaxation of the
hole. Accordingly, we find the quantum efficiency

�q D .EFn � E2/C .E2 � EFp/

hv
D EFn � EFP

hv
; (22.30)

where h�DE2 � E1, and where E2 � E1 is the energy difference of energy levels
that contribute to stimulated emission of radiation at frequency �, EFn is the Fermi
energy of the n GaAs contact layer, EFp is the Fermi energy of the p GaAs contact
layer. The energy levels of energy E2 belong to the lower part of the electron
subband and the energy levels of energy E1 to the upper part of the hole subband.
The quantum efficiency can reach a value larger than 0.9.

The efficiency for a GaAs quantum well laser is

� D �q � �loss; (22.31)

where �loss is an efficiency factor that takes account of losses.

22.4 Threshold Current of a GaAs Quantum Well Laser

To estimate the laser threshold condition for a GaAs quantum well laser at room
temperature, we choose the simplest description:

• We ignore thermal broadening of the energy levels. The gain characteristic is then
equal to

H 2D.�/ D H 2D.h�/ D .n=c/h� NB21D2D
r .E21/ Œf2.E2/� f .E1/	 ; (22.32)
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where E21 D E2 �E1 = h�.
• We choose E21 D E2D

g .
• We assume that the threshold density has a value near the transparency density.

Then we can write

f2.E2/ � f1.E1/ D d 2D � .N 2D �N 2D
tr /; (22.33)

where d 2D D 3:8 � 10�17 m2.
• The modal growth coefficient is

� D .n=c/H 2D

a2
D beff � N 2D �N 2D

tr

a2
; (22.34)

where a2 is the height of the mode and

beff D h� NB21D2D
r d 2D (22.35)

is the effective growth rate constant.

The photon generation rate at steady state oscillation of the laser is equal to the
loss rate,

beff.Nav;1 �Ntr;av/Z D Z

�p
: (22.36)

Nav;1 D N 2D1 =a2 is the average threshold electron density andNtr;av D N 2D
tr =a2 the

average transparency density in the laser resonator. This leads, with N 2D1 D N 2D
th

(D threshold density) and beff D .c=n/�eff, to

N 2D
th �N 2D

tr D 1

�efflp=a2
; (22.37)

where �eff is the effective gain cross section and lp is the photon mean free path in
the resonator. The threshold current is, for N 2D

th �N 2D
tr � N 2D

tr , equal to

Ith D N 2D
tr La1e=�sp (22.38)

and the threshold current density (with e D elementary charge) by

jth D N 2D
tr e=�sp: (22.39)

Example: GaAs quantum well laser.

• h� D E2D
g .

• L = 1 mm; a1 D 100 �m; a2 D 0.2 �m.
• lp D 1.2 mm; lp=a2 � 7 � 103.
• N 2D

tr D 1:4 � 1016 m�2.
• �eff D 2.7 � 10�19 m2.
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• N 2D
th �N 2D

tr D 1 � 1015 m�2.
• ˛th D 700 m�1.
• �sp D 2 � 10�9 s.
• jth D 1 � 106 A m�2; Ith D 100 mA.

Because of the small height of the active volume, the ratio lp=a2 has a large value.
We can write the laser threshold condition in the form

˛thlp D 1; (22.40)

where

˛th D �eff
N 2D

th �N 2D
tr

a2
(22.41)

is the threshold gain coefficient.
Or we can write

˛th D �eff
N 2D

th �N 2D
tr

s
� � D ˛mat;th � �; (22.42)

where we have the quantities:

• s D thickness of a quantum well.
• N 2D=s D electron density within the quantum well described as a three-

dimensional system.
• � D s=a2 D confinement factor.
• ˛mat;th D threshold material gain coefficient.

It follows from our example that ˛th � 103 m�1 and that � D 1=20 and ˛mat;th D
104 m�1 at a quantum well thickness of s D 10 nm.

To determine the threshold current, we have taken into account the loss due to
spontaneous emission of radiation. We ignored loss that is due to other processes
such as nonradiative transitions of electrons from the conduction band to the valence
band and loss of photons within the semiconductor materials.

22.5 Multi-Quantum Well Laser

A laser diode can contain (Fig. 22.10) more than one quantum well (e.g., five to
ten quantum wells), arranged in parallel. This leads to a larger output power and a
smaller threshold current. The radiation of a multi-quantum well laser is coherent.

22.6 High-Power Semiconductor Laser

A high-power semiconductor laser consists of laser diodes arranged in an array or
as a bar of laser arrays (Fig. 22.11). A laser array contains 10–100 laser diodes.
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Fig. 22.10 Multi-quantum
well laser

Fig. 22.11 Laser array and laser bar (high-power semiconductor laser)

The laser diodes are kept at room temperature by the use of a cooler, which
itself is cooled with air or via the mechanical support. Each single laser diode
emits coherent radiation. However, the oscillations of different laser diodes are
not in phase. Therefore, a high-power semiconductor laser generates a beam of
incoherent monochromatic radiation. Depending on the number of arrays, a high-
power semiconductor laser produces radiation with a power in the watt to kW range.

A diode array of laser diodes, each with a microlens collimating the radiation,
emits radiation that has a divergence of �10ı in the plane of the array and 1ı
perpendicular to the plane; without lenses, the divergence is 10ı in the plane and
40ı perpendicular to the plane.

22.7 Vertical-Cavity Surface-Emitting Laser

In a vertical-cavity surface-emitting laser ( D VCSEL), the reflector and the output
coupling mirror are parallel to the quantum film (Fig. 22.12). The condition of
steady state oscillation,

beff.Nav;1 �Ntr;av/Z D Z

�p
; (22.43)

leads, with Nav D N 2D=L, to the threshold condition
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Fig. 22.12 Surface-emitting
semiconductor laser

N 2D
th �N 2D

tr D 1

�efflp=L
; (22.44)

where �p is the mean lifetime of a photon in the resonator and lp D .c=n/�p the
length of the path of a photon within the resonator. In order to obtain a large ratio
lp=L, the quality factor of the laser resonator has to be large. For a high-Q resonator,
with a reflector (reflectivity D 1) and a partial reflector (reflectivityR), the threshold
condition can be written, with lp=L D 1=.1�R/, in the form

N 2D
th �N 2D

tr D 1 � R

�eff
; (22.45)

or
1 �R D �

N 2D
th �N 2D

tr

�
�eff: (22.46)

Example. Surface-emitting GaAs quantum well laser, with N 2D
th � 2N 2D

tr .

• L D 10 �m; a1 D 10 �m; a2 D 10 �m.
• �eff D 2.7 � 10�19 m2.
• N 2D

th �N 2D
tr D 1.4 � 1016 m�2.

• �sp D 4 � 10�9 s.
• 1 � R D 1 � 10�3.
• jth D 5 � 105 A m�2.
• Ith D 50 �A.

To describe a case of stronger pumping, we use the laser equation involving the
occupation number difference and find

.f2 � f1/th D c=n

h� NB21d 2Dlp=L
: (22.47)

As we have seen, the occupation number differencef2�f1 saturates at large electron
densities. Therefore, an increase ofN 2D to values much larger than a few timesN 2D

tr
does not lead to noticibly larger values of f2 � f1 (Problem 22.4).

In comparison with the edge-emitting laser, the vertical-cavity surface-emitting
laser requires, as shown, a resonator with a high Q factor. The vertical-cavity
surface-emitting laser has advantages:
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Fig. 22.13 Luminescence
radiation from a
quantum well

• The radiation is less divergent.
• The size can be much smaller.
• The threshold current can be much smaller.

The lower threshold current results in a smaller heating effect.

22.8 Polarization of Radiation of a Quantum Well Laser

A quantum film is optically anisotropic. More detailed studies show that the Einstein
coefficient B?

21, i.e, for the electric field being oriented perpendicular to the film

plane, is zero and therefore B jj
21 D 1:5B21. Accordingly, the radiation of an

edge-emitting bipolar laser — that generates radiation due to recombination of
electrons and heavy holes — is polarized and the direction of the electric field of
the electromagnetic wave is parallel to the plane of the quantum well. However,
emission of radiation of well-defined polarization direction is limited to a narrow
frequency range near the two-dimensional gap frequency. Toward higher frequency,
light holes (Sect. 26.3) can give rise to generation of radiation of a less defined
polarization direction.

It is a further consequence of the anisotropy that the Einstein relations have to be
modified: A21 is related to an average between B jj

21 and B?
21.

22.9 Luminescence Radiation from a Quantum Well

Figure 22.13 (solid line) shows a luminescence spectrum calculated by the use
of (21.61), modified corresponding to the two-dimensional density of states of
electrons and holes in a quantum well, of a GaAs quantum well at room temperature
containing electrons in the electron subband of a density of about twice the
transparency density. S/Smax is equal to the ratio of the luminescence intensity
at the frequency � and the maximum luminescence intensity at the two-dimensional
gap frequency �2D

g D E2D
g =h, calculated without taking into account thermal level

broadening. In comparison, a luminescence curve (dashed), which takes account of
thermal level broadening, is wider and the maximum occurs at a larger frequency.
The halfwidth of the luminescence curve is larger than kT . The luminescence
radiation is emitted into the whole solid angle.

REFERENCES [1–4, 6, 187–201]
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Problems

22.1. Quasi-Fermi energies. A quantum film contains nonequilibrium electrons
and holes. Determine the electron density at which the difference of the quasi-Fermi
energies is 3kT (T D 300 K). [Hint: make use of the figure concerning the Fermi
energies.]

22.2. Quantum well laser. A GaAs quantum well laser (length 0.5 mm, width
0.2 mm, resonator height 500 nm) containing 3 quantum wells is operated at room
temperature. Estimate the threshold electron density, the threshold current density,
and the threshold current. [Hint: neglect thermal broadening of the gain curve.]

22.3. Photons in a quantum well laser. A GaAs quantum well laser (length
0.5 mm, width 0.2 mm, resonator height 500 nm) containing 3 quantum wells, is
operated at room temperature, and emits, in two directions, laser radiation of a power
of Pout D 1 mW into each of the directions.

(a) Determine the photon density in the resonator.
(b) Determine the total photon numberZtot in the resonator.
(c) CompareZtot with the total number of nonequilibrium electrons in the quantum

film.

22.4. Vertical-cavity surface-emitting laser. A vertical-cavity surface-emitting
laser contains a GaAs quantum well and another laser contains five quantum wells;
.f2 � f1/th D 0:5 and �sp D 8 � 10�9 s. Determine the following quantities.

(a) Threshold reflectivity of the output coupling mirror.
(b) Threshold current.
(c) Threshold current density.



Chapter 23
Semiconductor Materials and Heterostructures

We give a survey of semiconductor materials suitable for preparation of semicon-
ductor lasers. The materials are compounds of elements of the third and fifth group
of the periodic table or compounds of elements of the second and the sixth group.
The compounds have energy gaps corresponding to gap frequencies ranging from
the infrared to the near UV.

We describe the zinc blende crystal structure that is common to many of
the semiconductor laser materials and introduce the monolayer as an important
structural element of heterostructures. Heterostructures are suitable for the design
of artificial materials with spatially varying energy bands.

We shortly mention the methods of preparation of semiconductor heterostruc-
tures.

After a survey of the different materials, we will concentrate the discussion on
heterostructures composed of GaAs and AlAs.

We will present dispersion curves of electrons in GaAs and AlAs. And we
will discuss absorption coefficients of GaAs and AlAs, characterizing absorption
due to interband transitions in a direct semiconductor (GaAs) and an indirect
semiconductor (AlAs).

23.1 Group III–V and Group II–VI Semiconductors

Group III–V semiconductors — materials composed of group III and group V
elements of the periodic table — are well suitable for preparation of laser diodes.
Figure 23.1 shows a section of the periodic table. The III–V semiconductors are the
materials of laser diodes from the UV to the infrared. The III–V semiconductors
consisting of atoms of small masses have large bandgaps and III–V semiconductors
consisting of atoms of large masses have small bandgaps. AlN has a large bandgap
and InSb a small one. The group IV semiconductors diamond, silicon, germanium,
and gray tin are indirect semiconductors. These are not suitable as active materials
of bipolar semiconductor lasers. Group III–V semiconductors are known since
1952 [202].

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 23, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 23.1 Section of the
periodic table of the elements

Table 23.1 Energy gaps and gap wavelengths of III–V and II–VI semiconductors (at 300 K)

Semiconductor Eg (eV) �g

InSb indium antimonide 0.17 7.3 �m
InAs indium arsenide 0.36 3.4 �m
GaSb gallium antimonide 0.72 1.7 �m
GaAs gallium arsenide 1.42 873 nm
InN indium nitride 1.8 690 nm
AlAs aluminum arsenide [2.2]
GaP gallium phosphide [2.3]
GaN gallium nitride 3.4 370 nm
AlN aluminum nitride 6.2 200 nm
CdTe cadmium telluride 1.56 795 nm
CdSe cadmium selenide 1.8 690 nm
CdS cadmium sulfide 2.42 510 nm
ZnSe zinc selenide 2.7 460 nm
ZnS zinc sulfide 3.8 330 nm

Table 23.2 Effective masses (in units of m0)

me mh mlh

GaAs 0.067 0.43 0.09
InP 0.077 0.6 0.12
InAs 0.027 0.34 0.027
InSb 0.014 0.34 0.016
GaN 0.20 1.4

The group II-VI semiconductors, composed of elements of the sixth group
(S, Se, Te), elements of the second main group (Mg), or of elements of a side group
of the second group (Zn, Cd), are direct semiconductors. Heterostructures of mixed
crystals of II-VI semiconductors can be used to prepare green laser diodes.

Table 23.1 shows energy gaps and gap wavelengths �g D h=Eg of semicon-
ductors at room temperature. The semiconductors listed in the table are direct gap
semiconductors, except AlAs and GaP that are indirect gap semiconductors. The
values of Eg of AlAs and GaP correspond to the k D 0 gap (Sect. 23.8).

The crystal structure of most of the group III–V semiconductors used to prepare
lasers is the zinc blende structure (Sect. 23.3). GaN can crystallize not only in the
zinc blende structure but also in the wurtzite structure.

Table 23.2 shows effective masses of group III-V semiconductors;me D effective
mass of a conduction band electron;mh (
mhh) D effective mass of a heavy hole in
the valence band;mlh D effective mass of a light hole (Chap. 26).
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Fig. 23.2 Energy gap of Ga1�xAlxAs mixed crystals. (a) Dependence of the gap energy on the
composition. (b) Relation between gap energy and lattice constant

23.2 GaAlAs Mixed Crystal

It is possible to prepare Ga1�xAlxAs mixed crystals of each mixing ratio x. In
a GaAlAs crystal, Al atoms replace Ga atoms. The energy gap of Ga1�xAlxAs
(Fig. 23.2a) varies linearly with the mixing ratio, from the energy gap of GaAs
(x D 0) up to the k D 0 gap of AlAs (x D 1); Ga1�xAlxAs is a direct gap
semiconductor for x < 0:32 and an indirect gap semiconductor for larger x. The
energy gap (in units of eV) of a mixed GaAlAs crystal (at room temperature) follows
from the relation Eg (Ga1�xAlxAs) D 1.424 C 1.247 x.

A GaAs crystal and an AlAs crystal have a special property in common: they
have nearly the same lattice constant. The cubic lattice constants (of crystals at room
temperature) are:

• GaAs d D 0.565326(2)nm.
• AlAs d D 0.5660 nm.

The difference between the lattice constants of GaAs and AlAs is only about a tenth
of a percent and smaller for the Ga1�xAlxAs (x D 0:::1) mixed crystals. Therefore,
GaAs is an ideal substrate for deposition of Ga1�xAlxAs layers, independently of
the value of x. The lattice constant d increases, from the value of GaAs to the value
of AlAs, linearly with x (Fig. 23.2b).

23.3 GaAs Crystal and Monolayer

The GaAs crystal lattice has the zinc blende crystal structure. The GaAs crystal
contains a Ga sublattice (Fig. 23.3, left) and an As sublattice (not shown). The
Ga sublattice is a face centered cubic lattice; the As sublattice, which is a face
centered cubic lattice too, is shifted by ( 1

4
, 1
4
, 1
4
)d relative to the Ga sublattice. The

GaAs crystal can be described as a sequence of Ga layers and of As layers in turn
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Fig. 23.3 Ga sublattice of a GaAs lattice and GaAs monolayer

Fig. 23.4 GaAlAs/GaAs heterostructure. (a) Heterostructure and change of energy values across
the heterostructure. (b) Conduction band offset

(Fig. 23.3, right). We introduce the GaAs monolayer, it has a lattice period a that is
half the cubic lattice constant of GaAs,

a D 1

2
d: (23.1)

23.4 GaAs/GaAlAs Heterostructure

A Ga1�xAlxAs/GaAs heterostructure (Fig. 23.4a) consists of a Ga1�xAlxAs layer
adjacent to a GaAs layer. A GaAs substrate (a GaAs crystal) supports the layers.
The GaAs lattice structure of the substrate is continued in the heterostructure. The
lattice matching between the Ga1�xAlxAs layer and the GaAs substrate is nearly
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perfect because the lattice constants of GaAs and AlAs are only slightly different
from each other. For x D 1, the lattice mismatch, measured relative to the monolayer
thickness, is �10�3. It is smaller for smaller x (preceding section). Across an
undoped GaAlAs/GaAs heterostructure (in 100 direction or x direction), there is
a change of the values of various energies measured relative to a vacuum level of an
electron, as illustrated in the figure:

• Evac D vacuum level of an electron.
• EF D Fermi energy.
• Ec D conduction band minimum.
• Ev D valence band maximum.
• ıc D conduction band offset.
• ıv D valence band offset.

The Fermi-level of an undoped crystal has a value between Ec and Ev. We
introduce:

• The conduction band profile Ec.x/ D minimum of the conduction band along
the coordinate x across the heterostructure.

• The valence band profile Ev.x/ D maximum of the valence band across the
heterostructure.

The gap energy Eg D Ec � Ev of GaAs is smaller than that of GaAlAs. The
change ıEg of the gap energy across the GaAlAs/GaAs interface is partly due to the
conduction band offset and partly due to the valence band offset. Both vary linearly
with the composition x. The mixed crystal is, as already mentioned, a direct gap
semiconductor for x < 0:32 and an indirect gap semiconductor for larger x. The
conduction band offset (Fig. 23.4b) is ıc.x/ D 0:67ıEg.x/ and the valence band
offset is ıv.x/ D 0:33ıEg.x/.

23.5 Preparation of Heterostructures

There are two basic techniques of preparation of heterostructures, the molecular
beam epitaxy (MBE) and the metal oxide chemical vapor deposition (MOCVD),
which is a special method of chemical vapor deposition (CVD).

Molecular beam epitaxy is performed in a chamber with ultrahigh vacuum
(pressure <10�10 mbar). To grow a heterostructure containing GaAs and GaAlAs,
the elements Ga and Al are evaporated from effusion cells. The chamber contains
As at a very low pressure. The GaAs substrate has a temperature that is favorable for
epitactic growth — for the growth of atomic layers with the same lattice constant
as the substrate. Silicon (for n-doping) or phosphorus (for p-doping) are evaporated
from appropriate effusion cells. The molecular beam epitaxy is suitable for growing
heterostructures of atomic accuracy, in particular for preparation of GaAs and InAs-
based heterostructures of infrared bipolar lasers and quantum cascade lasers.
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In the chemical vapor deposition process, a gas mixture of organic metal oxides
containing the constituents (e.g., Ga and N) flows over a substrate. Near the
substrate surface, the organic metal oxides decompose and the new material (GaN)
grows on the substrate. The chemical vapor deposition is used to prepare GaN-
based heterostructures. Doping materials of GaN-based semiconductors are silicon
(n-doping) or magnesium (p-doping). In comparison with the molecular beam
epitaxy, the chemical vapor deposition needs less technical effort and allows for
a higher speed of production of heterostructures.

23.6 Preparation of Laser Diodes

To prepare laser diodes, a wafer covered with a heterostructure is laterally struc-
tured. Different steps of structuring include photolithography, chemical etching or
plasma etching and the preparation of ohmic contacts.

23.7 Material Limitations

Bipolar semiconductor lasers are realizable in a wide frequency range. There are
limitations at large frequencies and at small frequencies.

The direct gap semiconductor with the widest gap (used to prepare semiconduc-
tor lasers) is AlN. The gap energy (6.2 eV) corresponds to a gap frequency of 1.5 �
1015 Hz (wavelength 200 nm).

At small frequencies, bipolar semiconductor lasers operating at room temper-
ature are limited to frequencies of about 1.3 � 1014 Hz (vacuum wavelength 2
�m), corresponding to an energy gap of 0.6 eV. At smaller frequencies (smaller
gap energies) nonradiative transitions between conduction band and valence band
become strong and population inversion is not possible. By cooling, the nonradiative
transitions slow and laser oscillation at smaller frequencies is possible. With
cooled lead salts, bipolar semiconductor lasers down to frequencies of about 8 THz
(wavelength 40 �m) can be prepared (Sect. 28.4).

23.8 Energy Bands and Absorption Coefficients
of GaAs and AlAs

Figure 23.5 shows dispersion curves for electrons in GaAs and AlAs crystals, with
the k vector oriented along the 100 direction. The energy bands are periodic with the
period 2�=.d=2/, where d is the cubic lattice constant; the Brillouin zone extends
in the 100 direction from �2�=d to 2�=d .
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Fig. 23.5 Dispersion curves of electrons in GaAs and AlAs, with the wave vector oriented along
the (100) direction; the arrows indicate direct transitions (in GaAs) and indirect transitions (in AlAs)

Fig. 23.6 Absorption coefficients of GaAs and AlAs

The energy maximum (Ev) of the valence band of GaAs occurs at the same k
vector as the energy minimum (Ec) of the conduction band — GaAs is a direct gap
semiconductor (Fig. 23.5, left). Accordingly, the electronic transitions between the
two bands of GaAs are strong at frequencies � > �g; GaAs is transparent for � < �g .

The absorption coefficient ˛abs of GaAs (Fig. 23.6, left) reaches a value of the
order of 104 cm�1. Population inversion results in a gain coefficient that can, in
principle, be of the same order of magnitude. That means that a crystal with an
inverted population can have a gain factor G D e˛L D e D 2:6 already at a length
of 1 �m. The large coefficient of absorption due to interband transitions, with a
corresponding large gain coefficient, in case of a population inversion, is the basis
of the bipolar semiconductor lasers.

In an absorption process, a photon (momentum „qphoton/ is absorbed and an
electron (momentum „k1/ in the valence band is excited to the conduction band
where it has the momentum „k2. Momentum conservation requires that

„k1 C „qphoton D „k2: (23.2)

The sum of the momentum „k1 of a valence band electron and the momentum
„qphoton of a photon has to be equal to the momentum „k2 of the conduction band
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electron after the excitation. Since the momentum of a photon is small compared to
the wave vector at the Brillouin zone boundary, „qphoton � 2�=d , the condition for
the occurrence of an electronic transition is:

„k1 	 „k2: (23.3)

In the energy-wave vector diagram, the transition appears as “vertical” transition
( D direct transition).

AlAs is an indirect gap semiconductor: the minimum of the conduction band
occurs at a k vector that differs from the k vector at which the maximum of the
valence band occurs (see Fig. 23.5, right). A transition between a state of maximum
energy in the valence band and a state of minimum energy in the conduction band is
possible only by the involvement of a phonon. Momentum and energy conservation
require that

„k1 C „qphonon D „k2; (23.4)

E1 C „!phonon D E2; (23.5)

where „qphonon is the momentum, ! the angular frequency and „!phonon the energy
of a phonon, E1 is the energy of the valence band electron before excitation and
E2 is the energy of the electron in the conduction band (after excitation; the
momentum of the photon is negligibly small). The transitions at photon energies
near the indirect gap energy,Eg;ind D Ec �Ev, of AlAs are indirect. The absorption
coefficient for these processes is very small (see Fig. 23.6, right). Accordingly, the
gain of radiation of a frequency near the indirect gap frequency �g;ind D .Ec�Ev/=h

would be very small in case of a population inversion.

REFERENCES [1–4, 6, 187–204]

Problems

23.1. Wave vectors of light and of electrons. Compare the wave vector of visible
light with the wave vector of electrons in GaAs at the Brillouin zone boundary.

23.2. Indirect gap semiconductor. An indirect gap semiconductor can absorb or
emit light by the involvement of phonons; however, the processes are much weaker
than the direct processes (processes without phonons). Formulate the energy and
momentum conservation laws for the indirect processes:

(a) Absorption of a photon and simultaneous generation of a phonon.
(b) Emission of a photon and simultaneous generation of a phonon.

23.3. Determine the absorption coefficient in the vicinity of the gap frequency (a)
of bulk GaN and (b) of a GaN quantum well.
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23.4. Determine the transparency density of a GaN quantum well at room
temperature.

23.5. A GaN VCSEL has a diameter of 10 �m and contains 10 quantum wells.
Determine the reflectivity of the output coupling mirror that is necessary to reach
laser threshold. Calculate the threshold current.



Chapter 24
Quantum Well Lasers from the UV to the
Infrared

Quantum well lasers are available in a large wavelength range, extending from the
near UV to the near infrared. Basic materials are: GaN for UV and blue lasers; GaAs
for red lasers; InP for near infrared lasers; GaN, GaAs, or ZnSe for green lasers. We
will discuss the design of different lasers.

24.1 A Survey

Figure 24.1 shows a selection of quantum well materials, together with barrier and
substrate materials. At each wavelength in the range of 0.3–2 �m, a laser diode
is in principle available. The materials used for preparing a laser diode must have
appropriate energy gaps. There are further requirements:

• Red and infrared laser diodes. The materials must have a very good lattice
matching. This condition requires the use of binary, ternary, or quaternary
compounds. Suitable substrates are GaAs and InP. Heterostructures are prepared
by molecular beam epitaxy.

• Blue and UV laser diodes. The material basis is GaN. The lattice matching is not
critical. Sapphire has a large lattice mismatch to GaN, but it is nevertheless suited
as a substrate. Heterostructures can be prepared by chemical vapor deposition
(CVD).

• Green laser diodes. The basic materials are GaN, GaAs or ZnSe. Green lasers
are, due to material instabilities, not yet as stable (with respect to their lifetimes)
as red and blue lasers.

24.2 Red and Infrared Laser Diodes

By mixing GaAs with the heavier InAs, all energy gaps between the gap of
GaAs (1.4 eV) and the gap of InAs (0.4 eV) are available (Fig. 24.2a). All ternary

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 24, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 24.1 Quantum well lasers: materials and wavelength regions

Fig. 24.2 Energy gaps (a) of GaAs-based and (b) of GaN-based semiconductors

Ga1�xInxAs (x D 0:::1) compounds are direct semiconductors. InP is an appropri-
ate substrate material. As a rule of determination of a property a (like gap energy or
lattice constant) of a semiconductor consisting of the compounds A, B, and C, we
can use the relation a.A1�xBxC / D .1 � x/ � a.AC/C x � a.BC/.

The following materials are lattice matched to InP:

• InP and Ga0:52In0:48As (a combination of a binary and a ternary semiconductor).
The energy gap of Ga0:52In0:48As has the value Eg D 0:75 eV and the refractive
index is n D 3.56 while the refractive index of InP is n D 3.16 at the gap energy
(1.2 eV) of InP .

• InP and Ga1�xInxAs1�yPy (a combination of a binary and a quaternary III-V
compound); Ga is partly replaced by the heavier In, and As by the lighter P.

These materials, together with InP substrates, are suitable for preparation of a
variety of lasers:

• Ga1�xInxAs/GaAs laser; wavelength in the range 900–1100 nm; application:
pump lasers.

• Ga0:8In0:2As/GaAs; 980 nm; pump laser of the Er3C: glass fiber laser and
amplifier.

• Ga1�xInxAs1�yPy /GaInAsP; 1.2–1.6 �m.
• GaInAs/GaInAlAs; 1.8-2.1 �m.
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The following materials, lattice matched to InP, are suited to prepare lasers used in
optical communications:

• � D 1.32 �m; Ga0:27In0:73As0:58P0:42.
• � D 1.55 �m; Ga0:42In0:58As0:9P0:1.

Lasers with GaAs substrates.

• GaInP (quantum layer)/AlGaInP; wavelength � � 630–700 nm; pump lasers of
other lasers.

• Ga1�xAlxAs/Ga1�yAlyAs; 720–850 nm; pump lasers.

24.3 Blue and UV Laser Diodes

In 1997, S. Nakamura and coworkers at a small Japanese company (Nichia
Chemicals) succeeded in preparing blue diode lasers [196, 203, 204]. From the
beginning, the lasers had a high brilliance. The basic materials are nitrides
(Fig. 24.2b):

• GaN; Eg D 3.4 eV (�g D 365 nm).
• AlN; Eg D 6.2 eV.
• InN; Eg D 1.8 eV.

Ga1�x AlxN and Ga1�xInxN mixed materials are most suitable for preparation of
blue and near UV laser diodes. Although sapphire (Al2O3) has a large mismatch
(16%) to GaN, it serves as a substrate; SiC is suitable as substrate too.

An example of a GaN-based laser diode is shown in Fig. 24.3a. The laser diode
(emitting at a wavelengths of 413 nm) consists of the following layers:

• InGaN quantum well layers (thicknesses 3 nm).
• GaN barrier layers.
• GaAlN (p type) electron blocking layer; it acts as a reflector of electrons.
• GaAlN layers, n-doped on one side and p-doped on the other side of the GaN

layer.

At a wavelength of 400 nm, the refractive index of GaN is n D 2.55, while
the refractive index of AlGaN is smaller. Doping with silicon leads to n-type
conductivity and doping with magnesium to p-type conductivity.

The design of a blue laser diode is shown in Fig. 24.3b. The different layers
are (beginning at the Al2O3 substrate): a very thin undoped GaN layer (e.g., of
a thickness of 50 nm) as buffer layer; an n-doped AlGaN cladding layer; then the
layers embedding the layers containing the multi-quantum wells (MQWs); finally,
a p-doped AlGaN cladding layer. The pump current flows from the metallic anode
through the heterostructure to the metallic cathode.

The current-voltage (I�V ) curve (Fig. 24.3c) shows that current flow sets in at
a voltage above 5 V. At a voltage of 7 V, the threshold current Ith is reached. In the
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Fig. 24.3 Blue laser diode. (a) Principle. (b) Design. (c) Dependence of the current and the laser
output power on the voltage across the diode

range I > Ith, the current increases strongly due to generation of laser radiation.
The laser output power Pout increases almost proportionally to I � Ith.

24.4 Group II–VI Materials of Green Lasers

As already mentioned, green laser diodes consist of GaAs-, GaN-, or ZnSe-based
materials. The ZnSe-based mixed materials have energy gaps between 2 eV and
4 eV (Fig. 24.4a). There are various possibilities to prepare mixed crystal materials
composed of elements of group II and group VI in the periodic table:

• Binary II-VI semiconductors; ZnS, ZnSe, CdSe ... .
• Ternary II-VI semiconductors; ZnSSe, ZnSeTe, CdSSe, CdZnSe with energy

gaps between 3.8 eV (ZnS) and 1.8 eV (CdSe); lattice matched to GaAs
(substrate).

The layer sequence of a ZnS-based laser diode [205,206] is shown in Fig. 24.4b. On
an n-doped GaAs substrate, first a GaAs buffer layer is grown in order to obtain a
perfect crystal structure to which the further layers are added. The different tasks of
the layers are as follows:
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Fig. 24.4 Green semiconductor laser. (a) Energy gaps. (b) Device

• CdZnSe (quantum well).
• p ZnSSe/p ZnSe/CdZnSe/ n ZnSe/ n ZnSSe (light guide).
• p-doped layers (hole injector).
• n-doped layers; electron injector.
• An indium film on the heterostructure serves as anode and a gold film on the

backside of the highly doped substrate as cathode.

24.5 Applications of Semiconductor Lasers

We mention a few applications of semiconductor lasers: optical storage (e.g.,
compact disc; blue ray disc); color projection; laser printer; sensor devices; micro
controllers. In comparison with a red laser, a blue laser emits radiation of smaller
wavelength. Therefore, a blue laser allows for a higher storage density.

REFERENCES [1–4, 6, 187–201, 203–206]
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Problems

24.1. GaN quantum well. The effective mass (m� � 0.2 m0) of conduction
electrons in GaN is about three times the effective mass of conduction electrons
in GaAs.

(a) Compare the density of states of electrons in a GaN quantum well with the
density of states of electrons in a GaAs quantum well.

(b) Compare the condition of gain mediated by a GaN quantum well with the
condition of gain mediated by a GaAs quantum.



Chapter 25
Reflectors of Quantum Well Lasers
and of Other Lasers

We discuss different reflectors: distributed feedback reflector; Bragg reflector and
photonic crystal reflector; total internal reflector leading to whispering gallery
modes. The reflectors are suited as reflectors not only in quantum well lasers but
also in quantum wire and quantum dot lasers (Chap. 27). Depending on the type of
reflector, it is possible to design semiconductor lasers of submillimeter size down
to (10 �m)3. In connection with photonic crystals, we mention the photonic crystal
fiber as a dielectric light guiding structure. The one-dimensional photonic crystal
reflector ( D Bragg reflector D multilayer reflector) is in use for almost all types of
lasers.

We consider propagation of electromagnetic waves in layered materials (stratified
media) in the special — but important — case that radiation is propagating in the
direction perpendicular to the layers. We introduce the plane-wave transfer matrix
that describes transfer of a wave from one side of an interface to the other side —
and the propagation matrix, which characterizes propagation of a wave within a
medium. The plane-wave matrix method is based on the boundary conditions for
fields at an interface. We treat: thin film between two media; dielectric multilayer;
one-dimensional photonic crystal. We will apply (Sect. 11.9) the plane-wave matrix
method also to investigate electron waves passing through an interface of two
semiconductor media.

25.1 Plane Surface

We have already discussed the edge-emitting quantum well laser with two uncov-
ered crystal surfaces as reflectors. Cleaving a substrate (together with the layers on
the substrate) results in a plane surface and cleaving along two parallel planes results
in a resonator. Disadvantages and advantages of an edge-emitting laser with cleaved
surfaces (Fig. 25.1a) are the following:

• The reflectivity, determined by the refractive index of the semiconductor material
has a fixed value.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 25, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 25.1 Resonators of semiconductor lasers. (a) Resonator with cleaved surfaces. (b) Resonator
with a coated and an uncoated surface. (c) Resonator with an external reflector. (d) Resonator
with distributed feedback. (e) Resonator with a distributed Bragg reflector. (f) Resonator with two
distributed Bragg reflectors

• Emission occurs into two directions.
• The laser beam has a large angle of aperture in the plane perpendicular to the

active layer.
• It is easy to prepare a plane surface by cleaving.

We now will discuss other possibilities to realize laser resonators of semiconduc-
tor lasers.

25.2 Coated Surface

By deposition of a dielectric coating on a surface (Fig. 25.1b), one of the reflectors
has a high reflectivity (HR). The other surface can remain without coating. Thus,
the laser emits radiation in one direction only.

25.3 External Reflector

An external reflector (Fig. 25.1c) makes it possible to realize a tunable semiconduc-
tor laser. The reflector is an echelette grating in Littrow arrangement. Rotation of
the grating results in a change of the wavelength of the laser radiation. Resonances
between the surface and the grating are avoided by the use of an antireflecting
coating (a coating with a low reflectivity, LR) on one of the surfaces of the laser
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diode. The length of the external resonator limits the tuning range — up to about
50 GHz — for tuning on one mode.

25.4 Distributed Feedback Reflector

The integration of a grating into the light guiding structure (Fig. 25.1d) leads to
distributed feedback. The wavelength of the laser radiation is determined by the
period of the distributed reflector, the refractive index, and the thickness of the
laser medium. Distributed feedback together with coated cleaved surfaces makes
it possible to optimize the laser output of distributed feedback edge-emitting
semiconductor lasers.

Distributed feedback reflectors are also suitable as reflectors of solid state dye
lasers and organic and polymer lasers (Sect. 34.4).

25.5 Distributed Bragg Reflector

A distributed reflection grating separated from the gain region is a distributed
Bragg reflector (Fig. 25.1e). A distributed Bragg reflector acts as output coupler.
The surface opposite to the Bragg reflector is highly reflecting.

By the use of two distributed Bragg reflectors (Fig. 25.1f), a high reflectivity at
one end of the active region and an optimized output coupler at the other end can be
realized.

Distributed Bragg reflectors are well suitable as reflectors of bipolar semicon-
ductor lasers.

25.6 Total Reflector

Internal total reflection in a circularly shaped solid results in a resonator with a very
high Q factor. Light is propagating in a whispering gallery mode (Fig. 25.2). Output
coupling of radiation is possible by positioning a prism near the surface, resulting in
frustrated total reflection in a small region of the resonator. The distance d between

Fig. 25.2 Whispering gallery
mode
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Fig. 25.3 Bragg reflector

the prism and the surface of the resonator regulates the output power. The quality
factor can be of the order of 106.

25.7 Bragg Reflector

A very successful type of a reflector is the Bragg reflector ( D dielectric multilayer
reflector D 1D photonic crystal reflector); it can consist of a multilayer coating on
a transparent substrate.

A Bragg reflector (Fig. 25.3, left) consists of dielectric layers of two different
materials of different refractive indices. Each layer has a thickness that is equal to
a fourth of the wavelength of radiation in the corresponding material; a material
(refractive index n1) has the thickness �=.4n1/ and the other material (n2) has
the thickness �=.4n2/. With increasing number of quarter-wavelength layers (of
two materials in turn), the reflectivity increases and can reach a value very near
unity. A Bragg reflector can have a high reflectivity R over nearly one octave of
the spectrum (Fig. 25.3, right) around a central frequency �Bragg. The transmissivity
T of the Bragg reflector is T D 1 � R. Radiation incident on a Bragg reflector
is either reflected or transmitted. Bragg reflectors are essential for operation of
vertical-cavity surface-emitting lasers (VCSELs). A Bragg reflector can consist of
quarter-wavelength layers of two semiconductors — for instance, of GaAs and AlAs
for red and infrared lasers.

Bragg reflectors ( D dielectric mirrors) consisting of other materials (e.g., layers
of two glass types with different refractive indices) can be used as reflectors and as
partial reflectors of almost all types of lasers (Chaps. 14–19).

25.8 Photonic Crystal

A medium that has a spatially periodic dielectric constant is a photonic crystal.
A medium consisting of a periodic metal structure with holes or dielectric inclusions
can be a photonic crystal too. All photonic crystals have in common that the light
propagation is anisotropic and that there can be a photonic bandgap — radiation of
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Fig. 25.4 Photonic crystals without and with a defect

a frequency that lies in the bandgap cannot propagate in a photonic crystal. There
are three types of photonic crystals (Fig. 25.4, upper row):

• 1D (one-dimensional) photonic crystal. A 1D photonic crystal is, with respect
to the optical properties, periodic in one direction and has no structure along the
two other directions; the 1D photonic crystal is a three-dimensional medium. The
frequency spectrum !.k/ can have a gap for electromagnetic waves propagating
along the direction of periodicity (Sect. 25.14).

• 2D (two-dimensional) photonic crystal. The 2D photonic crystal is periodic in
two directions and has no structure along the third direction; the 2D photonic
crystal is a three-dimensional medium. The frequency spectrum !.k/ can show
gaps for electromagnetic waves with wave vectors along the plane, which
contains the two directions of periodicity.

• 3D (three-dimensional) photonic crystal. The 3d photonic crystal is periodic in
three directions. The frequency spectrum !.k/ can show gaps for electromag-
netic waves in all directions of propagation.

A photonic crystal of finite length can act as a partial reflector: radiation of a
photon energy in the photonic gap that is incident on a photonic crystal is partly
reflected and partly transmitted.

If a single layer of a one-dimensional crystal is missing (Fig. 25.4, lower row), the
photonic crystal contains a defect (d�). A photonic crystal with a defect represents
a resonator — it is a Fabry–Perot resonator. A two-dimensional photonic crystal
with a defect can act as a light guide. A three-dimensional crystal with a defect
represents a cavity-like resonator. In all the three cases (1D, 2D or 3D photonic
crystal), a defect can also consist in the modification of more than one structural
element.

Common to all photonic crystals (assumed to have infinite extensions in all three
directions) is the translational symmetry. A 1D photonic crystal contains a structural
element that periodically repeats in one direction. There is no structure in the lateral
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Fig. 25.5 Elementary cells of 2D photonic crystals

Fig. 25.6 Photonic crystal fiber

directions. A 2D photonic crystal has two axes of periodicity and a 3D photonic
crystal has three axes of periodicity.

A 2D photonic crystal can have one of the five different types of lattices
(Fig. 25.5): square lattice; rectangular lattice; centered rectangular lattice; hexagonal
lattice and parallelogram lattice.

A 3d photonic crystal can have one of the 14 different lattice types. The simplest
three-dimensional lattice is the (primitive) cubic lattice.

25.9 Photonic Crystal Fiber

A photonic crystal fiber (Fig. 25.6) can consist of a fiber with an internal two-
dimensional photonic crystal (e.g., a hexagonal two-dimensional lattice). The
structure is composed of two different glass materials, one with a higher dielectric
constant than the other. A defect allows for propagation of light (along the defect).
A photonic bandgap for propagation of radiation along a direction perpendicular
to the axis of the two-dimensional photonic crystal avoids spreading of the
radiation.



25.11 Plane-Wave Transfer Matrix Method Characterizing an Optical Interface 451

25.10 Remark About Photonic Crystals

In 1887, Lord Rayleigh explained an experiment, which indicated that a periodic
dielectric multilayer stack showed a spectral range of high reflectivity [217],
corresponding to a stop-band of radiation. Such multilayer stacks (later called
Bragg reflectors or photonic crystals) are widely studied and applied as reflectors
or partial reflectors. The term “photonic crystal” describing inhomogeneous but
periodic structures was introduced by Eli Yablonovitch [218] in 1987.

Reflectors of the two-dimensional photonic crystal type were first used as
reflectors of microwave Fabry–Perot interferometers in 1957 [219] and of far
infrared Fabry–Perot interferometers up to frequencies of several THz in 1962
[220]; a far infrared reflector consisted of a thin metal mesh and a Fabry–Perot
interferometer of two meshes in parallel.

25.11 Plane-Wave Transfer Matrix Method Characterizing
an Optical Interface

We consider the interface of two optically isotropic, nonabsorbing and nonmagnetic
materials (Fig. 25.7). The refractive indices of the two media are n1 and n2. We study
the special case that monochromatic radiation (frequency !) propagates along the
x or �x direction. The field in medium 1 is

E1 D EC
1 C E�

1 D A1ei.!t�k1x/ C B1ei.!tCk1x/; (25.1)

and the field in medium 2 is

E2 D EC
2 C E�

2 D A2 ei.!t�k2x/ C B2 ei.!tCk2x/: (25.2)

A1, B1, k1, �k1 and A2, B2, k2, �k2 are the amplitudes and the wave vectors of the
waves in medium 1 and medium 2 in x and �x direction, respectively.

We assume that the electric field is oriented along the y axis and that, according
to Maxwell’s equations, H is therefore oriented along the z direction. It follows
from Maxwell’s equation

H D i

�0!
r � E ; (25.3)

Fig. 25.7 Amplitudes of
electromagnetic plane waves
at an interface
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that the magnetic field strength is given by

Hn D i

�0!

dE

dx
: (25.4)

The boundary conditions for the electromagnetic fields (continuity of Et and Hn)
require that E and dE=dx are continuous at the boundary (x D 0/,

E1 D E2 at x D 0; (25.5)

dE1=dx D dE2=dx at x D 0; (25.6)

or
A1 C B1 D A2 CB2; (25.7)

k1A1 � k1B1 D k2A2 � k2B2: (25.8)

We can write

M1

 
A1

B1

!

D M2

 
A2

B2

!

; (25.9)

where, with l D 1 or, 2,

Ml D
�
1 1

kl �kl
�
; (25.10)
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; (25.11)

and

M12 D
 
1
2
.1C k2=k1/

1
2
.1 � k2=k1/

1
2
.1 � k2=k1/

1
2
.1C k2=k1/

!

: (25.12)

The matrix M12 is the plane-wave transfer matrix. It relates the amplitudes of
electromagnetic plane waves in medium 1 and the amplitudes of electromagnetic
plane waves in medium 2.

25.12 Thin Film Between Two Media

A thin film (thickness a) located between two media (Fig. 25.8) has two boundaries.
The boundary conditions lead to

 
A1

B1

!

D M�1
1 M2

�
A0
2

B 0
2

�
D M12

�
A0
2

B 0
2

�
; (25.13)
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Fig. 25.8 Thin film (refractive index n2, thickness a) between two extended media

�
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B 0
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�
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; (25.14)
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�
; (25.15)

where '2 D k2a and k2 D n2!=c. The matrix

P2 D
�

ei'2 0

0 ei'2

�
(25.16)

is the propagation matrix taking into account the phase change due to propagation.

25.13 Dielectric Multilayer

We study a dielectric multilayer system (Fig. 25.9, upper part) for radiation prop-
agating along the axis (x axis) that is perpendicular to the layers. We consider a
system of N layers (nl D refractive index and dl D thickness of the lth layer) on a
substrate (refractive index ns). The multilayer system is covered with a medium of
refractive index n0. We apply the matrix method and find

 
A0

B0

!

D
�
M11 M12

M21 M22

��
A0
l

B 0
l

�
; (25.17)

�
M11 M12

M21 M22

�
D M�1

0
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NY

lD1
MlPlM

�1
l

#

Ms; (25.18)

Pl D
�

ei'l 0

0 e�i'l

�
; (25.19)

'l D klal : (25.20)
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Fig. 25.9 Dielectric multilayer reflector (Bragg reflector) and reflectivity

Making use of the dispersion relations

kl D nl!=c; (25.21)

and with Bs D 0, we can determine the reflectivity and the transmissivity of the
multilayer system:

R D .B0=A0/
2; (25.22)

T D .As=A0/
2: (25.23)

In the special case that the multilayer system consists of a sequence of two
layers (refractive indices n1 and n2) that have quarter-wavelength thicknesses d1 D
�0=.4n1/ and d2 D �0=.4n2/ for radiation of wavelength �0, the reflectivity at �0 is
given by

R D
�
1� .ns=n0/.n2=n1/

2N

1C .ns=n0/.n2=n1/2N

�2
; (25.24)

where N is the number of double-layers. The reflectivity approaches unity if N
becomes very large.

Figure 25.9 (lower part) shows the reflectivity of a GaAs/AlAs Bragg reflector.

25.14 One-Dimensional Photonic Crystal

We consider a stratified periodic medium consisting of a series of double layers
(Fig. 25.10). A double layer consists of a layer 1 (refractive n1, thickness a1) and a
layer 2 (refractive n2, thickness a2). The stratified medium is spatially periodic, the
spatial period is
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Fig. 25.10 One-dimensional photonic crystal

a D a1 C a2: (25.25)

The unit cell consists of a double layer. We assume that we have an infinite number
of cells, numbered l D : : : � 1; 0; 1; : : : .

We study the propagation of a monochromatic plane wave (frequency !). Our
goal is to find the dispersion relation !.k/. We use the ansatz:

E.x/ D Ak.x/ ei.!t�kx/; (25.26)

where k is the wave vector and Ak.x/ an amplitude that is a periodic function,

Ak.x C a/ D Ak.x/: (25.27)

The field E.x/ is a Bloch wave. The amplitude varies within a periodicity interval.
However it is, for a particular k, lattice-periodic. The propagation of the plane wave
over the distance x causes, as it is typical for plane waves, a change kx. The wave
vector k of the plane wave depends on the frequency, k D k.!/, or

! D !.k/: (25.28)

The field in the lth cell is

E.x/ D Ale
�ik1.x�la/ C Ble

ik1.x�la/ in layer 1 of cell l ; (25.29)

E.x/ D Cle�ik2.x�la/ CDleik2.x�la/ in layer 2 of cell l ; (25.30)

with k1 D n1!=c and k2 D n2!=c.
We relate, in a first step, the electric fields in three neighboring cells (see

Fig. 25.10):

 
Al

Bl

!

D M�1
1 M2P1

 
Cl

Dl

!

; (25.31)
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Cl

Dl

!

D M�1
2 M1P2

�
AlC1

BlC1

�
; (25.32)

P1 D
�

eik1a1 0

0 e�ik1a1

�
; (25.33)

P2 D
�

eik2a2 0

0 e�ik2a2

�
: (25.34)

P1 is the propagation matrix of layer 1 and P2 is the propagation matrix of layer 2.
Matrix multiplication yields

 
Al

Bl

!

D 1

2

�
eik2a2 .1C k2=k1/ e�ik2a2.1 � k2=k1/
eik2a2 .1 � k2=k1/ e�ik2a2.1C k2=k1/

� 
Cl

Dl

!

(25.35)

and
 
Cl

Dl

!

D 1

2

�
eik1a1.1C k1=k2/ e�ik1a1 .1 � k1=k2/
eik1a1.1 � k1=k2/ e�ik1a1 .1C k1=k2/

��
AlC1
BlC1

�
: (25.36)

We write  
Al

Bl

!

D
�
A B

C D

��
AlC1
BlC1

�
; (25.37)

where

A D eik1a1

�
cosk2a2 C 1

2
i

�
k2

k1
C k2

k2

�
sin k2a2

	
; (25.38)

B D e�ik1a1

�
1

2
i

�
k2

k1
� k1

k2

�
sin k2a2

	
; (25.39)

C D eik1a1

�
�1
2

i

�
k2

k1
� k1

k2

�
sin k2a2

	
; (25.40)

D D e�ik1a1

�
cosk2a2 � 1

2
i

�
k2

k1
C k1

k2

�
sin k2a2

	
: (25.41)

We have the relation
AD � BC D 1: (25.42)

It follows that the amplitude in the l th cell and the amplitude in the zeroth cell are
related:  

Al

Bl

!

D
�
A B

C D

��l  
A0

B0

!

(25.43)

or



25.14 One-Dimensional Photonic Crystal 457

 
Al

Bl

!

D
�
D �B
�C A

�l  
A0

B0

!

: (25.44)

If we specify A0 and B0, all amplitudes can be calculated.
We make use of the periodicity of the multilayer system and write

�
AlC1
BlC1

�
D e�ika

 
Al

Bl

!

; (25.45)

leading to �
A B

C D

��
AlC1
BlC1

�
D eika

�
AlC1
BlC1

�
: (25.46)

The phase factor exp.ika/ is the eigenvalue of the matrix ABCD. We find

eika D 1

2
.ACD/˙

r
1

4
.ACD/2 � 1: (25.47)

The sum A + D is real. It follows, with

eika D coska C i sin ka; (25.48)

that

cos ka D 1

2
.ACD/ (25.49)

and

sin ka D ˙1

2

r

1 � 1

4
.ACD/2: (25.50)

We obtain, with
� D k1=k2 D n1=n2; (25.51)

the dispersion relation

cos ka D cos.k1a1/ cos.k2a2/� 1

2

�
� C 1

�

�
sin.k1a1/ sin.k2a2/ (25.52)

or

coska D cos


n1
!

c
a1

�
cos



n2
!

c
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�
� 1
2

�
n2

n1
C n1

n2

�
sin


n1
!

c
a1

�
sin


n2
!

c
a2

�
:

(25.53)
We discuss the dispersion relation in the special case that the optical paths in

layer 1 and layer 2 are equal,
n1a1 D n2a2: (25.54)

The dispersion relation has the form
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coska D cos2


n1
!

c
a1

�
� 1

2

�
n2

n1
C n1

n2

�
sin2



n1
!

c
a1

�
(25.55)

or

k D 1

a
cos�1

�
cos2.n1

!

c
a1/ � 1

2

�
n2

n1
C n1

n2

�
sin2.n1

!

c
a1/

	
: (25.56)

The frequency increases proportionally to the wave vector k at long waves
(ka � 1):

k D neff
!

c
; (25.57)

where
neff D p

n1n2 (25.58)

is an effective refractive index. The appearance of an effective refractive index with
a value between n1 and n2 is a consequence of the reflection of the radiation at the
interfaces. There are frequency gaps for

k D ˙�

a
; ˙3�

a
; ::: : (25.59)

Because of the periodicity,

!

�
k C 2�

a

�
D !.k/; (25.60)

we can restrict the k values to the first Brillouin zone,

� �

a
< k � �

a
: (25.61)

The values ��=a and �=a are the Brillouin zone boundaries.
The curve k D neff!=c reaches the Brillouin zone boundary at the Bragg

frequency

!Bragg D �c

neffa
; (25.62)

that corresponds to the Bragg wavelength

�Bragg D 2neffa: (25.63)

For radiation of this wavelength, the multilayer system represents a stack of quarter-
wavelength layers. We can conclude that the Bragg reflections of the radiation at
wavelengths around �Bragg are responsible for the occurrence of frequency gaps.

It follows that the field in layer 1 of the l th cell is given by

E.x/ D �
A0 e�in1.!=c/.x�la/ C B0 ein1.!=c/.x�la/� ei.!t�lka/: (25.64)
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Fig. 25.11 One-dimensional photonic crystal: dispersion relation of radiation, with the propaga-
tion direction parallel to the axis of a periodic multilayer structure

Example. Dispersion relation for radiation in a GaAs/AlAs photonic crystal
(Fig. 25.11); n1 D 3.3; n2 D 2.9; a1 D 152 nm; a2 D 173 nm; a D 325 nm; n1a D
n2b; neff D 3.09.

25.15 Bragg Reflection as Origin of Energy Gaps

The occurrence of energy gaps is a consequence of the ability of radiation to
undergo Bragg reflection. Bragg reflection occurs for radiation with discrete values
of the wave vector, namely for k D kBragg. In the case of a one-dimensional
crystal, kBragg D �=a. A two-dimensional photonic crystal has Bragg vectors that
lie in a plane. A two-dimensional photonic crystal can show a photonic bandgap
for radiation of all k vectors on this plane. A three-dimensional photonic crystal
has Bragg vectors in the three-dimensional k space. A three-dimensional photonic
crystal can have energy gaps for k vectors of all spatial directions.

We come back to Fig. 25.11. The speed of light is equal to c=neff for long
wavelengths, i.e., for small frequencies. The speed of light is almost constant at
small wave vectors, decreases at large wave vectors and becomes zero for k D �=a.
A photonic crystal is thus able to slow an electromagnetic wave.

REFERENCES [26, 28, 177, 207–220]
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Problems

25.1. Bragg reflection. Formulate the conditions for the occurrence of Bragg
reflection of electromagnetic radiation in different systems.
(a) 1D photonic crystal, (b) 2D photonic crystal, (c) 3D photonic crystal.

25.2. Bragg reflection of X-rays.

(a) Formulate the conditions for the occurrence of Bragg reflection of X-rays.
(b) Why are Bragg peaks at X-rays extremely sharp?
(c) Estimate the width of an energy gap expected for X-rays. [Hint: estimate the

refractive index of X-rays — it is slightly smaller than unity — and describe a
crystal (e.g., with respect to the 100 direction) as a 1D photonic crystal with the
electrons distributed in thin layers perpendicular to the propagation direction of
the X-rays.]

25.3. One-dimensional photonic crystal.

(a) Estimate the widths of forbidden frequency bands in the case that n2 �n1 � 1.
(b) Estimate, for radiation of the vacuum wavelength 1�m, the widths of forbidden

frequency bands in the case that the photonic crystal consists of a stack of
GaAs/AlAs quarter-wavelength films.

25.4. One-dimensional photonic crystal consisting of freestanding plates.

(a) Determine the effective refractive index, the Bragg frequency, and the Bragg
wavelength of thin freestanding silicon plates (thickness 1 �m), refractive index
n D 4) separated by air under the assumption that the plates and the space
between two plates have the same optical thickness.

(b) Calculate the dispersion relation of radiation in such a one-dimensional pho-
tonic crystal.

25.5. How many quarter-wavelength films of GaAs and AlAs films on a GaAs
substrate are necessary to obtain the reflectivities R � 70%, 80%, 90% or, 95%,
99%, 99.9%?

25.6. Antireflecting coating.

(a) Show, by use of the matrix method, that the reflectivity of the surface of an
optical substrate (refractive index ns) covered with a quarter-wavelength film,
thickness �=.4n/, is zero if the refractive index n of the film satisfies the
condition ns � n2 D 0. [Hint: assume that the substrate has infinite thickness,
so that no reflection from the end surface of the substrate occurs.]

(b) Show that the multiple beam method (introduced in Sect. 3.5) yields the same
result. [Hint: add all beams reflected by the two surfaces of the film, taking
multiple reflection into account.]

25.7. Determine the Airy formula (Sect. 3.5) by use of the matrix method.
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25.8. Double-resonator. We consider a double-resonator (Fabry–Perot resonator)
with three lossless mirrors of equal reflectivity R. The distance between mirror 1
and mirror 2 is L1 and the distance between mirror 2 and mirror 3 is L2. Derive, by
the use of the matrix method, the transmission curve of a double-resonator for (a)
L1 DL2; (b) L2 � L1, (c) L1 D�=2. (d) Choose R D 0:95 and � D 1 �m for a
discussion of the results.

25.9. Boundary between two dielectric media.

(a) Show that the boundary conditions for normal incidence are consistent with the
requirement that the energy flux density is the same in medium 2 as in medium
1. [Hint: describe the energy flux density by the Poynting vector P D E � H .]

(b) Derive the Fresnel coefficient of reflection for normal incidence by the use of
the matrix method.

25.10. Bloch theorem. Derive the Bloch theorem for the one-dimensional photonic
crystal, i.e., justify the ansatz (25.26). [Hint: make use of periodic boundary
conditions.]

25.11. Propagation of radiation in a one-dimensional crystal. Discuss the
dependence of group and phase velocity on the wave vector of radiation belonging
to the two lowest branches of the dispersion curves shown in Fig. 25.11.

25.12. Determine, by use of the matrix method, the halfwidth of the resonance
curve of a Fabry–Perot resonator (Sect. 3.6) that has a reflector of a reflectivity of
unity and a partial reflector.

25.13. Derive the Airy formula for a Fabry-Perot resonator containing an active
medium (Sect. 3.7) by use of the matrix method. [Hint: assume that one of the
mirrors has a reflectivity of unity.]

25.14. Reflection of radiation by a perfect conductor.

(a) Show that the reflectivity of a perfect conductor is 1.
(b) The radiation penetrates into the conductor. Derive an expression for the

penetration depth of the electric field and of the radiation energy.
(c) Calculate the penetration depth of radiation reflected by a perfect conductor,

which contains electrons of a concentration N D 1028 m3, for radiation of of
1 mm and of 0.5 �m wavelength.

25.15. A perfect mirror. A thin film consisting of a perfectly conducting material
can act as a partial mirror. [Hint: a perfect conductor for currents at microwave fre-
quencies is superconducting lead at a temperature well below the superconducting
transition temperature of 7 K.]

(a) Determine the complex transmission coefficient Qt , the complex reflection
coefficient Qr , the phase ' of the reflected beam, the phase 't of the transmitted
beam, the transmissivity T and the reflectivityR (see Sect. 3.4). [Hint: make use
of the matrix method; treat the film as a free-standing film surrounded by air.]
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(b) Design partial mirrors that have reflectivities R � 70%, 80%, 90%, 95%,
99% or 99.9% for radiation of 1 mm wavelength, assuming that the mirror is
perfectly conducting and contains electrons of a concentrationN D 1028 m3.

(c) Calculate, for a Fabry-Perot resonator resonator formed by two (perfect) partial
mirrors as reflectors, the change of phase per round trip transit of radiation of
1 mm wavelength in the case that the reflectivity of each mirror is R D 0.9.

25.16. Methods for describing the field in a resonator. Show that the three
methods for describing a field in a resonator lead to the same result:

(a) The method of multiple reflection (Sect. 3.5).
(b) The method directly based on the boundary conditions (this chapter).
(c) A method directly based on the boundary conditions, but that immediately

introduces the complex transmission coefficient Qt DB1=A1 and the complex
reflection coefficient Qr DB2=A1 of a mirror; use this method to derive the Airy
formula.

25.17. Bulk metal. Study the optical properties of a metal, like copper (free
electron concentrationN D 1028 m�3, relaxation time � D 10�13 s).

(a) Determine, by use of the complex optical constants, the frequency dependence
of the reflectivity.

(b) Compare the reflectivity of the metal with the reflectivity of a perfect conductor
that contains electrons of the same density.

(c) Determine the optical constants and the reflectivity of a metal for radiation of
long wavelengths (i.e., for ! � !p Dp

Ne2=�0m0 D plasma frequency).

25.18. Metal film. Study optical properties of a metal film (e.g., a copper film).
Restrict the discussion to long wavelengths.

(a) Determine the dependence of transmissivity T , reflectivity R and absorptivity
A of a metal film on the thickness of the film by use of the matrix method.

(b) Show that there is a film thickness where T DR D 0.25 and A D 0.5 and that
T � A for thicker films.



Chapter 26
More About the Quantum Well Laser

We continue the discussion of subbands with a description of wave functions
and energy bands of electrons in a quantum well. We also show how light holes
modify the gain profile. Furthermore, we discuss the influence of inhomogeneous
broadening on the properties of a quantum well laser.

26.1 Electron Subbands

Electrons can move freely in the GaAs plane (y,z plane) of a GaAs quantum film
(Fig. 26.1, left). The motion perpendicular to the plane, along the x direction, is
spatially limited. The potential energy Epot.x; y; z/ of electrons (Fig. 26.1, center)
is equal to the conduction band profile Ec.x; y; z/.

We treat the GaAs layer as an infinitely extended layer. The Schrödinger equation
of an electron in the GaAs quantum layer has the form

�
� „2
2me

r2 CEpot.x/

	
� D i„@�

@t
: (26.1)

We assume that the effective mass of an electron in a quantum well is the same as
for bulk GaAs (me D 0.07m0). To determine the wave function� , we use an ansatz
of stationary states,

�.x; y; z; t/ D  .x; y; z/e�i.E=„/t : (26.2)

E is the energy of a stationary state. We obtain

�
� „2
2me

r2 C Epot.x/

	
 D E : (26.3)
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Fig. 26.1 Quantum well

The ansatz
 D �.x/ �.y; z/; (26.4)

leads to the differential equation

�
� „2
2me
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@x2
C Epot.x/

	
�� � „2

2me

�
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@y2
C @2

@z2

�
�� D Etot ��: (26.5)

After division by ��, we obtain

1

�

�
� „2
2me

@2

@x2
C Epot.x/

�
�C 1

�

�
� „2
2me

��
@2

@y2
C @2

@z2

�
� D Etot: (26.6)

The two terms on the left side must have constant values. The total energy is equal to

Etot D E? C Ejj; (26.7)

where

• E? is the energy of electron motion perpendicular to the layer and
• Ejj is the energy of electron motion along the film plane.

The Schrödinger equation describing motion parallel to the layer plane is

� „2
2me

�
@2

@y2
C @2

@z2

�
� D Ejj�: (26.8)

As a solution, we obtain the wave function

� D C eik
jj

r
jj : (26.9)

C is a constant and

• kjj D .ky; kz/ D k is the wave vector parallel to the film plane, and
• r jj D .y; z/ is a location in the plane of the quantum layer.

The differential equation yields the energy
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Ejj D „2
2me

k2: (26.10)

The Schrödinger equation of the electron motion perpendicular to the quantum
layer, �

� „2
2me

@2

@x2
C Epot.x/

	
�.x/ D E?�.x/; (26.11)

is the equation of an electron in a one-dimensional square well potential. The energy
eigenvalues of a quantum well with infinitely high walls are given by

E.n/
c D �2„2

2mes2
n2I n D 1; 2; :::; (26.12)

where s is the thickness of the quantum film. The quantized motion leads to discrete
energy eigenvaluesE1

c ,E2
c , ... The energyE1

c is the zero point energy of the electron
in the quantum well. The wave functions �n.x/ are cosine and sine functions within
the film, and are zero at the borders of the film and outside the film.

The energy values of wells with walls of finite height are smaller than in the
case that the potential walls are infinitely high. The wave functions are cosine and
sine shaped within the well and decrease exponentially outside the quantum well
(Fig. 26.1, right).

The zero point energy of a quantum well with infinitely high walls varies as
1=s2 (Fig. 26.2, solid line). A quantum well, like GaAs quantum well, has walls
of finite height. Therefore, the zero point energy is smaller (Fig. 26.2, dashed) but
decreases also strongly with increasing layer thickness. A calculation of the zero
point energy in the case that the potential walls have finite height is possible by
applying appropriate boundary conditions taking into account the different effective
masses of GaAs and AlAs (Sect. 30.5).

The energy of an electron is

E D E.n/
c CEjj; (26.13)

where n is the number of a subband. The conduction band of a quantum layer
consists of electron subbands. Figure 26.3 (left) shows the zero point energy and
the first and the second electron subband. The energy of the motion perpendicular
to the layer is discrete while the motion within the quantum layer corresponds to the

Fig. 26.2 Zero point energy
of an electron
(me D 0:07 m0) in a
one-dimensional square well
potential
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Fig. 26.3 Subbands of electrons in a quantum film

motion of a free electron. The density of states in a subband (Fig. 26.3, right) is a
constant (Problem 27.1):

D2D
c .�/ D me

�„2 : (26.14)

The total density of states is the sum of the densities of states in the different
subbands.

That the density of states of electrons in a quantum film is independent of the
thickness of the film is plausible: the film thickness determines the zero point energy,
which is due to the lateral confinement of an electron, while the dispersion relation
for electrons in a two-dimensional semiconductor determines the propagation along
the plane.

The quantum confinement of an electron in a quantum film has consequences:

• Subbands.
• Discrete energy values for motion perpendicular to the quantum layer.
• Zero point energy (E.1/

c ); the value of E.1/
c depends on the thickness s of the

quantum film.
• The electrons move freely along the plane of the quantum film.
• The depth of the quantum well depends on the composition of the GaAlAs layers.
• The wave functions �1, �2 have cosine and sine shapes within the GaAs film

material and extend into the confinement material GaAlAs. Their amplitudes
decrease exponentially with the distance from the GaAs film.

26.2 Hole Subbands

GaAs and other group III-V semiconductors have three hole bands (Fig. 26.4):
the heavy hole band; the light hole band; and the split-off band. In a laser diode,
the split-off band is completely populated and does not play any role. However, the
light holes (mlh � 0.08m0) influence the gain coefficient curves.
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Fig. 26.4 Energy bands of electrons in GaAs: conduction band; heavy hole band; light hole band;
split off band

In a quantum well, the zero point energy of a heavy hole,

E.1/
v D �2„2

2mhs2
; (26.15)

is by the factor mh=me smaller than the zero point energy of an electron in the
conduction band while the zero point energy E.1/

v;lh of the light hole is comparable
with the zero point energy of a conduction band electron sincemlh �me. There is an
energy range, between E.1/

v and E.1/
v;lh, without light hole energy levels. The density

of states of light holes is much smaller than that of heavy holes.
The conduction band states of GaAs have their origin in s-like hybrid states

composed of s-states of Ga and As atoms. The s-like hybrid states overlap spatially.
This leads to electron waves extended over the whole crystal and to the conduction
band (Sect. 30.2); the dispersion relation E.k/ characterizes the states of the
conduction band. The valence band states stem from hybrid states composed of
p-states (i.e., px; py; pz states) of Ga and As atoms. The three p-state components
give rise to three different energy bands and dispersion relations — i.e., a wave
function of a valence band state can assume, for the same k vector, three different
energy values. At the Brillouin zone center (k D 0), two of the dispersion curves
have the same energy value indicating energy degeneracy; however, the two dis-
persion curves have completely different shapes described by the different effective
masses,

mh 
 mhh D .d2Ehh=d2k/kD0; (26.16)

mlh D .d2Elh=d2k/kD0: (26.17)

The third band, the split off band, is shifted to smaller energies relative to the two
other valence bands due to spin-orbit interaction.
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Fig. 26.5 Occupation
number difference for a GaAs
quantum well at room
temperature

26.3 Modification of the Gain Characteristic by Light Holes

The quasi-Fermi energy of the electrons in the conduction band is determined by
the density of nonequilibrium electrons in the electron subband. The quasi-Fermi
energy of the electrons in the hole subbands follows from the condition

Z
f1.D

2D
v CD2D

v;lh/dE D N 2D; (26.18)

where D2D
v is the density of states of heavy holes, D2D

v;lh is the density of states
of light holes, and f1 is the Fermi function of the electrons in the heavy hole and
light hole subbands. The equation yields the quasi-Fermi energy of the valence band
electrons.

In our earlier treatment of quantum wells, we ignored the light hole band. Now,
we discuss, qualitatively, the modification of a quantum well laser at room tempera-
ture that is due to the light hole band. Figure 26.5 shows (qualitatively) the occupa-
tion number difference f2 � f1 for a GaAs quantum well at room temperature, with
N 2D D 2 � 1016 m�2. In comparison with the case of a single hole subband, we
have a different situation:

• There are two peaks in the gain characteristic H 2D, which is proportional to
f2 � f1.

• The gain curve has a larger width and the maximum of the gain characteristic has
a smaller value.

• The actual threshold current density is larger because the holes are distributed
over two subbands. Since the density of states of the light holes is smaller than
the density of states of the heavy holes, the increase of the threshold current
density for laser oscillation is less than a factor of two.

The theoretical expressions presented in Chap. 21 are suited to perform a quantita-
tive analysis. However, we do not deepen the discussion of the gain characteristic.

26.4 Gap Energy of a Quantum Well

Taking into account the zero point energy of electrons and holes, we find that the
gap energy of a quantum well of infinitely high potential walls is equal to
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E2D
g D Eg C �2„2

2mrs2
: (26.19)

Example. GaAs quantum film (thickness s D 10 nm) at room temperature
(„ D 1.04 � 10�34 J s; m0 D 0.9 � 10�30 kg).

• Eg D 1.42 eV D gap energy of bulk GaAs.
• E2D

g D Eg + 61 meV; energy gap of a GaAs quantum well in the case of infinitely
high walls.

• �g D 344 THz; �g D 872 nm.
• �2D

g D 358 THz; �2D
g D 838 nm.

The actual zero point energy is smaller because of the finite height of the walls.
Through the choice of the composition of the quantum film and of the barrier
materials, as well as of s, different values of the gap energy E2D

g .> Eg/ can be
realized.

26.5 Temperature Dependence of the Threshold Current
Density of a GaAs Quantum Well Laser

The electrons occupy energy levels in the electron subband in the range from E2D
c

to EFc, with a spread of kT . The holes in the heavy hole subband occupy energy
levels betweenE2D

v andEFv. With increasing temperature, the energy distribution of
the electrons in the electron subband broadens. The energy distribution of the holes
in the heavy hole subbands broadens too. It follows that the threshold current of a
quantum well laser operating at room temperature is much larger than the threshold
current of a quantum well laser operating at low temperature.

26.6 Gain Mediated by a Quantum Well of Inhomogeneous
Well Thickness

When the thickness of a quantum film is different at different positions of the film,
interband transitions are inhomogeneously broadened. Both the zero point energies
E
.1/
c and E.1/

v show variations. We obtain an energy gap distribution of a width
�E2D

g that is given by the relation

�E2D
g

E
.1/
c C E

.1/
v

D � 2�s

s
; (26.20)

where�s is an average variation of the thickness.
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Example. GaAs quantum well of thickness s D 10 nm and an inaccuracy of the
well thickness of 0.1 nm. We obtain E.1/

c C E
.1/
v � 49 meV and �E2D

g � 1 meV.
This is, for a GaAs quantum well at room temperature, smaller than the broadening
(10 meV) that is due to inelastic scattering of the electrons at phonons.

26.7 Tunability of a Quantum Well Laser

A single-mode quantum well laser operating at room temperature emits radiation
at a laser frequency that is determined by the gain characteristic and the resonance
frequency of the laser resonator. The position of the energy gap, the frequency of
the maximum of the gain characteristic, and the refractive index of a semiconductor
depend on temperature. Therefore, the frequency of laser oscillation depends on
temperature. The temperature of a laser diode changes if the temperature of the
surrounding or if the current through the diode is varied. A shift of several percent
of the frequency of a quantum well laser can be achieved. Tuning over a small
frequency range is possible by the use of an external resonator (Sect. 25.3).

26.8 Anisotropy of a Quantum Well

The quantum theory of the optical transitions in a quantum well shows that
transitions in which heavy holes are involved are only allowed if the electric field
vector of the electromagnetic field lies in the plane of the quantum well. If light
holes are involved, transitions for the field vector perpendicular to the quantum well
are allowed too.

REFERENCES [187–192]

Problems

26.1. Two-dimensional density of states. Determine the density of states of a two-
dimensional electron gas.

26.2. Subpicosecond quantum well laser. Is it possible to generate subpicosecond
pulses with a quantum well laser? Divide the procedure of answering this question
into three parts.
(a) Is it in principle possible to generate subpicosecond pulses with a quantum well
laser?
(b) Is it possible to use a quantum well laser of 1 mm length, supposed that the
reflector on one side is a SESAM reflector?
(c) Discuss a semiconductor laser that uses an external broadband reflector.



Chapter 27
Quantum Wire and Quantum Dot Laser

The next steps of spatial restriction of free motion of electrons in a semiconductor
lead to quantum wire lasers and to quantum dot lasers.

A quantum wire is a carrier of electrons, which can move freely in one dimension
only. The electronic levels form subbands. The density of states of electrons and of
holes are now characteristic of a one-dimensional semiconductor. We study gain
mediated by quantum wires and the quantum wire laser.

In a quantum dot, electrons cannot perform a free motion. The motion of
an electron is limited by a potential, which is formed by the boundary of a
semiconductor material. (A comparison with electrons in an atom shows: the
electrons in an atom cannot perform a free motion; the limitation of the motion
is due to the atomic potential.) We discuss the energy levels of radiative electron-
hole pairs in a quantum dot and their use in quantum dot lasers. A quantum dot laser
contains a large number of quantum dots. A single quantum dot in a photonic crystal
(at low temperature) could be the basis of a nanolaser.

27.1 Quantum Wire Laser

In the quantum wire laser (Fig. 27.1a), the active medium consists of a quantum
wire, with a one-dimensional conduction band (the electron subband) and a one-
dimensional valence band (the hole subband). Stimulated transitions of electrons
in the conduction band to empty levels in the valence band are the origin of gain.
The quantum wire (Fig. 27.1b) is embedded in an undoped semiconductor layer,
which itself is sandwiched between an n-doped layer and a p-doped layer. The
undoped layer serves as light guide. Under the action of a static voltage, electrons
migrate from the n-doped layer through the undoped layer into the quantum wire.
Correspondingly, holes migrate from the p-doped layer into the quantum wire. The
direction of the quantum wire is perpendicular to the propagation direction of the
electromagnetic field.

The use of a series of parallel quantum wires leads to an enhancement of gain.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 27, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 27.1 Quantum wire laser. (a) Principle. (b) Arrangement

27.2 Quantum Wire

We write the wave function of an electron in a quantum wire of rectangular cross
section in the form

 D �.x/ �.y/ �.z/: (27.1)

The wave function

�.x/ D C exp .i.�c=„/t � ikx/ (27.2)

characterizes the free electron motion along the direction x (direction of the wire);
k is the wave vector for propagation along the wire. The wave functions �.y/ and
�.z/ describe the electron states of the two other degrees of freedom of an electron.
If infinitely high walls limit the quantum wire, the wave functions perpendicular to
the wire are standing waves and the energy of an electron is

En1n2
c C �c D �2„2

2me

�
n21
s21

C n22
s22

�
C �c: (27.3)

En1n2
c is the energy due to the confinement (n1 D 1; 2; :::; n2 D 1; 2; :::), s1 and s2

are the widths of the quantum wire and

�c D „2
2me

k2 (27.4)

is the energy of free motion of a conduction band electron. We assume, for
simplicity, that the quantum wire is infinitely long and introduce periodic boundary
conditions,

�.x C Lp/ D �.x/: (27.5)
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Lp is the periodicity interval. We obtain discrete k values,

k D 0; ˙ 2�=Lp; ˙ 4�=Lp; ::: : (27.6)

The one-dimensional density of states (per unit of length) in k space is equal to

D1D
c .k/ D 1

2�
: (27.7)

Taking into account that each orbital state can contain two electrons of opposite
spin, we find, with 2D1D

c .k/dk D D1D
c .�c/d�,

D1D
c .�c/ D 1

�„

s
2me

�c
: (27.8)

The one-dimensional density of states is independent of the lateral extensions of the
quantum wire. The density of states of electrons in a quantum wire varies as 1/

p
�c.

It becomes infinitely large for �c D 0.
The energy of a level in the valence band is given by

En1n2
v � �v D �„2

2mh

�
n21
s21

C n22
s22

�
� �v; (27.9)

where �v D „2k2=2mh is the energy of free motion of a hole. The density of states
in the valence band is

D1D
v .�v/ D 1

�„

s
2mh

�v
: (27.10)

The reduced density of states is given by

D1D
r .�/ D 1

�„

r
2mr

�
; (27.11)

where

� D �c C �v D „2k2
2mr

(27.12)

is the sum of the energies of free motion of the electron and the hole belonging to
a radiative electron-hole pair and mr is the reduced mass. The energy separation
between the levels belonging to the k D 0 state is

En1n2 D Eg C En1n2 C En1n2
v D Eg C �2„2

2mr

�
n21
s21

C n22
s22

�
: (27.13)
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Eg is the gap energy of the bulk. The energy difference between the lowest level of
the conduction band and the highest level of the valence band is the gap energy of
the one-dimensional semiconductor,

E1D
g D Eg C �2„2

2mr

�
1

s21
C 1

s22

�
: (27.14)

It is the sum of the gap energy of the bulk, the zero point energy of the electron and
the zero point energy of the hole.

We now discuss radiative transitions. We assume that we have an ideal quantum
wire (without a variation of the thicknesses s1 and s2). We consider a quantum wire
cooled to low temperature and assume that the only level broadening is due to
spontaneous radiative transitions. A radiative transition between a particular level
of the electron subband and a level of the hole subband results in a broadened
luminescence line. The linewidth is the natural linewidth �Enat ( D��nat/. The
largest number of states within an energy interval��nat lies in the energy interval 0,
��nat. Making use of the integral

R
dx=

p
x D 2

p
x, we obtain the density of

radiative pair levels within the interval 0,��nat,

n1D
nat;0 D

Z ��nat

0

D1D
r .�/d� D 2

�„
p
2mr��nat: (27.15)

The density of radiative pair levels within the natural linewidth ��nat has a
maximum value for � D 0, i.e., for h� D E1D

g . The maximum density is n1D
nat;0.

Toward higher energies, the density of levels within the natural linewidth decreases.

Example. Subband of a GaAs quantum wire, in the limit of infinitely high potential
walls.

• mr D 0:06 m0.
• s1 D s2 D 10 nm.
• E11 D 122 meV D zero point energy (of electrons and holes together).
• E21 D 305 meV.
• E1D

g D Eg C E11 D (1.42 + 0.12) eV D 1.54 eV.
• �g D E1D

g =h D 373 THz.
• �g D c=�g D 804 nm.
• �sp D 1=A21 D 3 � 10�10 s; spontaneous lifetime (at low temperature).
• A21 D 3 � 109 s�1.
• ��nat D .2��sp/

�1 D 6 � 108 Hz; natural linewidth (due to spontaneous
recombination of radiative pairs).

• �Enat D h��nat D 3:6�10�25 J D 2 �eV; natural linewidth on the energy scale.
• n1D

nat;0 D 1:3 � 106 m�1.

Because of the finite height of the walls, the actual zero point energy of electrons
in a quantum wire and the value of E21 are smaller than we calculated for infinitely
high potential walls.
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27.3 Gain Mediated by a Quantum Wire

The average electron density in a disk of light (height a2, length ız) crossing a
quantum wire (see Fig. 27.1b) is equal to

Nav D N 1D

a2ız
: (27.16)

The temporal change of the photon density is given by

ıZ

ıt
D �ıNav

ıt
D .n=c/H 1D

a2ız
Z; (27.17)

where

ıZ

ıt
D �ıNav

ıt
D n

c

H 1D=a2

ız
Z; (27.18)

is the one-dimensional gain characteristic. The gain is, with ıt D n
c
ız, equal to

G � 1 D ıZ

Z
D H 1D

a2
D n

c
h� NB21

n1D
nat;0

a2��nat
.f2 � f1/: (27.19)

The gain increases with decreasing height of the photon mode.

Example. GaAs quantum wire embedded in GaAlAs with an ideal quantum wire at
zero temperature.

• �1D
g D 373 THz.

• f2 � f1 D 0:1.
• a1 D 0:2 �m; n D 3.5.
• B21 D 2.2 � 1021 m3 J�1 s�2; NB21 D hB21.
• G1 � 1 D 7 � 10�2.

Figure 27.2a shows the reduced density of states of a quantum wire at energies near
the bandgap (� D 0). Figure 27.2b exhibits the gain mediated by a laser with a
quantum wire at zero temperature. The gain G – 1 is drawn versus the energy �. The
photon energy is equal to h� D E1D

g C �. In the case that � D 0, the frequency is
equal to the one-dimensional gap frequency �1D

g . The gain bandwidth has a width
(2 �eV) that is due to natural line broadening.

The electrons and holes in a quantum wire at room temperature have quasither-
mal energy distributions. The energy levels are broaden due to inelastic scattering.
We choose as inelastic scattering time a value (�in D 10�12 s), which is by an order
of magnitude smaller than that for a quantum well; a smaller value is expected
because of the smaller density of states of the electrons, leading to a smaller
probability of inelastic scattering of electrons at phonons. The corresponding
halfwidth �Ein � 1 meV is 500 times larger than ��nat. The density of radiative



476 27 Quantum Wire and Quantum Dot Laser

Fig. 27.2 GaAs quantum wire. (a) Density of states of radiative pair levels. (b) Gain mediated by
a quantum wire at zero temperature. (c) Modal gain coefficient of a multi-quantum wire device at
room temperature

pair levels, which contribute to transitions within the energy rangeE1D
g ; E1D

g C�Ein

is equal to n1D
in;0 D .�Ein=��nat/

1=2n1D
nat;0. It follows that the gain in a multi-quantum

wire laser at room temperature, for f2 � f1 D 0:1, is G1 � 1 D 3 � 10�3.

27.4 Multi-Quantum Wire Laser

A much larger gain is obtainable for a series of quantum wires (Fig. 27.3), arranged
in parallel (within a plane). The average electron density in a photon mode is

Nav D n1D
nat;0

pa2
; (27.20)

where p is the period of the quantum wires, i.e., the distance between neighboring
quantum wires, arranged in parallel in a plane. The modal gain coefficient at the gap
frequency (�1D

g ) is, for T D 0, given by

˛nat.�
1D
g / D n

c
h�1D

g
NB21

n1D
nat;0

pa2��nat
.f2 � f1/: (27.21)

Example. For p D 100 nm, a2 D 200 nm; and zero temperature, the modal gain
coefficient is ˛.�1D

g / D 7 �105 m�1. It follows, with f2 � f1 D 0.1, that the
modal gain coefficient of the quantum wires at room temperature is ˛.�1D

g / D
3:1 � 103 m�1.
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Fig. 27.3 Multi-quantum
wire laser

If the wire thickness varies along a quantum wire, the zero point energy varies
too. This causes inhomogeneous broadening of the interband transitions. The
relative broadening (for s1 D s2 D s) is equal to

�E1D
g =E11 D 4�s=s; (27.22)

where �s=s is the relative variation of the wire thickness. Taking into account
inhomogeneous broadening, we find the modal gain coefficient

˛inh.v
1D
g / D n

c
hv1D

g
NB21 n1D

inh

pa2�"inh
.f2 � f1/: (27.23)

A variation �s=s D 5% causes an energy variation of �E1D
g =E11

g � 20%, which
corresponds to an inhomogeneous width ��inh D �E1D

g � 4 meV. This value,
which is larger than the broadening due to inelastic scattering at room temperature,
leads (with the parameters we have chosen in the last example) to ˛.�1D

g / D
1.5 � 103 m�1 (for f2 � f1 D 0:1).

If f2 � f1 � 1, then the threshold density is only slightly larger than the
one-dimensional transparency density. Then, the laser threshold current is (approx-
imately) equal to

Ith D L

p

N 1D
th a1e

�sp
; (27.24)

where a1 is the width of the resonator (that is equal to the length of the quantum
wires). The threshold current density is

jth D N 1De

p�sp
: (27.25)

Example. GaAs multi-quantum wire laser at room temperature.

• � D 373 THz.
• a1 D 100 �m; a2 D 200 nm; L D 1 mm.
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• p D 100 nm.
• �Einh D 4 meV.
• n1D

inh D .�Einh=�Enat/
1=2N 1D

0 D 3 � 107 m�1.
• f2 � f1 D 0.1.
• N 1D

tr � 108 m�1.
• B21 D 2.2 � 1021 m3 J�1 s�2; NB21 D hB21.
• ˛.�1D

g / D 1.5 � 103 m�1.
• G1 D 4.5.
• �sp D 10�9 s.
• Ith D 160 �A; jth D 1.6 � 105 A m�2.

Figure 27.2c shows the modal gain coefficient. According to our estimate, the
gain coefficient is large enough for operation of a quantum wire laser at room
temperature as an edge-emitting laser (without special coatings on the surfaces).

Because of the anisotropy of a quantum wire, the orientation must be parallel
to the field; the Einstein coefficient B21 and the gain coefficient are larger (by a
factor 3) than we estimated. (For the orientation of the quantum wire perpendicular
to the field, transitions that involve higher subbands or light holes can occur.)

27.5 Quantum Dot

Quantum dot lasers are currently being developed and may become important in
optical communications (by the use of laser radiation at the wavelengths 1.32 �m
and 1.55 �m) and in other applications.

To prepare quantum dots (Fig. 27.4, left), one can make use of the mismatch
between two materials. The deposition of a small amount of GaInAs on a plane
GaAs surface results in formation of GaInAs islands. Further deposition of GaAs
fills up the space between the islands and the GaAs surface becomes plane again.
The result is a layer with a large number of quantum dots. By further deposition
of the two materials, it is possible to obtain further layers with quantum dots. A
quantum dot can have a pyramidal shape (Fig. 27.4, center) of extensions of the
order of 10 nm. The motion of electrons and holes is restricted with respect to all
three spatial directions. Therefore, the energy levels are discrete.

Fig. 27.4 Quantum dot
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To understand the main properties of a quantum dot laser, we make a few
simplifications:

• We consider a quantum dot of rectangular shape; si is the side length of the ith
side of the dot (i D 1, 2, 3).

• We treat the quantum dot as a three-dimensional quantum box with infinitely
high walls.

The energy levels of an electron are

En1n2n3
c D �2„2

8me

�
n21

s21
C n22

s22
C n23

s23

�
; (27.26)

where n1 D 1; 2; :::I n2 D 1; 2; :::I n3 D 1; 2; ...
The lowest conduction band energy level is, for s1 D s2 D s3 D s, equal to

E111
c D 3�2„2

2mes2
: (27.27)

The next higher level is E211
c D 1:7E111

c . The energy levels of electron as well as of
holes are discrete (Fig. 27.4, right).

The lowest energy of a radiative electron-hole pair (for s1 D s2 D s3 D s) is the
gap energy of the zero-dimensional system,

E0D
g D Eg C 3�2„2

2mrs2
; (27.28)

wheremr is the reduced mass.

Example. GaAs quantum dot with s1 D s2 D s3 D 20 nm. E111
c � 45 meV; E211

c
� 90 meV; E111

v � 7 meV; E211
v � 14 meV; E0D

g D EgC 52 meV.

27.6 Quantum Dot Laser

In the quantum dot laser (Fig. 27.5), electrons migrate from an n-doped region via
an undoped region into the dots. Holes migrate from a p-doped region via the
undoped region into the dots. Stimulated recombination of radiative electron-hole
pairs within the quantum dots is the source of laser radiation. It is possible to prepare
a quantum dot laser as an edge-emitting laser or as a surface-emitting laser. In the
following, we treat the edge-emitting laser.

We consider an array of quantum dots. The number of dots per unit of area is
1/.p1p2/, where p1 and p2 are the periods in x and y direction. Transitions between
the electron sublevel 111 and the hole sublevel 111 lead to the modal gain coefficient

˛ D 2N 2D
dot

a1c=n
h� NB21g.h� �E21/ .f2 � f1/: (27.29)
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Fig. 27.5 Quantum dot laser

N 2D
dot is the two-dimensional density of quantum dots ( D number of dots per m2).

The factor 2 accounts for the possibility that two electrons of opposite spin
orientation occupy a level.

Example. GaAs quantum dot laser at room temperature.

• B21 D 2.2 � 1021 m3 J�1 s�2; NB21 D hB21.
• a1 D 100 �m; a2 D 200 nm; n D 3.5.
• � D 3.5 � 1014 Hz.
• p1 D p2 D 100 nm; N 2D

dot D 1014 m�2.
• �s1=s1 D �s2=s2 D �s3=s3 D 5%.
• �Einh D 8 meV.
• g.h� �E21/ D 2�=�Einh for h� D E0D

g .
• f2 � f1 D 0:5.
• ˛ D 1000 m�1.
• L D 2 mm.
• ˛L � 2.
• G1V1 D 1.4.

The threshold current is given by

Ith D 2N 2D
dota1Le=�sp: (27.30)

We find, with �sp D 10�9 s, the threshold current Ith � 6mA.

27.7 One-Quantum Dot Laser

We deposit a single quantum dot in a defect of a photonic crystal (Fig. 27.6), which
serves as high-Q resonator. The size of the resonator is a1a2L. What is the threshold
condition?
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Fig. 27.6 One-quantum dot
laser

The photon generation rate has to be equal to the photon loss rate,

2

a1a2L
.f2 � f1/h� NB21g.h� �E21/Z D Z

�p
: (27.31)

Laser oscillation at the line center (h� D E21), where g.h� � E21/ D 2�=�E21, is
possible if f2 � f1 > .f2 � f1/th, where

.f2 � f1/th D �a1a2L�E21

4h� NB21�p
(27.32)

is the threshold population difference. If .f2 � f1/th is given, then the minimum
lifetime of a photon necessary to reach the threshold condition is equal to

�p;th D �a1a2L�E21

4h� NB21.f2 � f1/th
: (27.33)

Example. One-quantum dot laser at 4 K.

• a1 D a2 D L D 0:5 �m.
• � D 3.5 � 1014 Hz; n D 3.5.
• �sp D 0.6 ns DA�1

21 .
• �Enat D „=�sp D 2 � 10�24 J � 1 �eV.
• B21 D 1.1 � 1021 m3 J�1 s�2; NB21 D hB21.
• .f2 � f1/th D 0:2.
• �p;th D 2 � 10�12 s.
• Qmin D 2���p;th D 4,000.

Operation of a one-quantum dot laser at 4 K requires a Q factor of the order of ten
thousand.

A one-quantum dot laser at low temperature (2K or 4K) operates by the use of a
naturally broadened transition line. The laser oscillation involves two levels only.

REFERENCES [221, 222]
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Problems

27.1. Density of states of electrons in a quantum wire. Derive the density of
states of electrons in a quantum wire.

27.2. Absorption by a quantum wire. Estimate the maximum modal absorption
coefficient in the case that monochromatic light propagates in an optical waveguide
of 0.2 �m height and 10 �m width along a quantum wire (n D 3.5). [Hint: assume
that the cross section of the GaAs quantum wire shows no variation and that the
quantum wire has a low temperature (near 0 K); transitions occur if heavy holes are
involved.]

27.3. Calculate the threshold current of a nanolaser that contains one quantum dot
and operates (at low temperature) at an occupation number difference f2�f1 D 0:8.

27.4. Bipolar semiconductor laser as a two-level laser. We can describe a bipolar
semiconductor laser as a two-level laser. The ground state is the vacuum level
Evac;pair of pairs and the excited states are radiative pair states. The pair levels are
populated by injection of electrons and holes into the active medium.

(a) Characterize the density of states of radiative pairs.
(b) Determine the gain.
(c) Formulate the condition of gain.
(d) Apply the bipolar picture to a single radiative pair level in a quantum dot (at

low temperature) that is continuously pumped. Determine the lineshape of the
radiation emitted by spontaneous electron-hole recombination.

27.5. Laser operating on a naturally broadened line.

(a) Why is the quantum dot laser (operated at low temperature) so special with
respect to line broadening? Is there any other cw laser operating by use of a
naturally broadened transition between two laser levels?

(b) Determine the gain cross section of a quantum dot at low temperature for
radiation at a frequency � D 350 THz.



Chapter 28
A Comparison of Semiconductor Lasers

The simplest heterostructure laser is the double-heterostructure laser. A GaAs
double-heterostructure consists of three layers: n-doped GaAlAs; GaAs; p-
doped GaAlAs. It corresponds to two heterostructures, a GaAlAs/GaAs and a
GaAs/GaAlAs heterostructure that have in common the GaAs layer. The GaAs
layer forms a well — not a quantum well. The well width is so large that the
electrons and the holes can, in principle, move freely in all three dimensions. The
double-heterostructure also acts as a light guide. The successful realization of the
double-heterostructure laser initiated the development of the semiconductor lasers
with the more complex heterostructures that we discussed.

The junction laser (D homostructure laser D homojunction laser) was the first
semiconductor laser type. A GaAs junction laser consists of an n-doped GaAs layer
in direct contact to a p-doped GaAs layer. Without applied voltage, the contact
(D junction) region is a depletion layer. The contact region does not contain free
electrons or free holes. A voltage applied across the junction causes a drift of
electrons from the n-doped GaAs into the depletion layer and, at the same time,
a drift of holes from the p-doped GaAs into the depletion layer. Recombination of
electrons and holes in the depletion layer by stimulated optical transitions is the
origin of laser radiation. The junction laser makes use of free electron motion in
three dimensions. The gain region provides a weak light guiding effect. Junction
lasers, cooled to liquid nitrogen temperature, are available in the infrared spectral
range up to wavelengths of about 30 �m. However, quantum cascade lasers are
taking over the tasks of infrared junction lasers.

We show how the laser threshold decreased since the realization of the first
semiconductor lasers.

Finally, we will present a comparison of different types of semiconductor lasers,
including the quantum cascade laser (that we will discuss in the next chapter). In a
spectral range — called the terahertz gap — semiconductor lasers (quantum cascade
lasers) are presently in development.

Heterostructures made it possible to design artificial, spatially varying energy
bands, which is the basis of the many different types of semiconductor lasers.
In 1874, Ferdinand Braun introduced the contact between two materials — together

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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with the properties of the material — as an important physical object. He found
that the strength of current flowing in one direction through a contact between a
metal and a conducting crystal was different from the strength of current flowing in
the other direction at opposite voltage across the contact. This effect led to the first
device suitable for rectification of high frequency radiation. A junction between
n-doped germanium and p-doped germanium was the basis of semiconductor
junction transistors discovered by Bardeen, Brattain and Shockley. Making use of
heterostructures instead of contacts represented an essential change in semiconduc-
tor laser physics. This change began by 1960 and resulted in a miniaturization of
electronic devices.

28.1 Gain of Radiation in a Bulk Semiconductor

In the double-heterostructure laser and the junction laser, the extensions of the active
medium are large in all three dimensions. The electrons form a three-dimensional
electron gas and the holes a three-dimensional hole gas.

The density of states of a three-dimensional electron gas, including the spin
degeneracy, is equal to

Dc.�c/ D 1

2�2

�
2me

„2
�3=2

�1=2c : (28.1)

The quasi-Fermi energy of a three-dimensional electron gas follows from the
relation

1

2�2

�
2me

„2
�3=2 Z 1

0

�1=2d�

exp Œ.� � �Fc/=kT C 1
D N: (28.2)

N is the density of electrons in the conduction band. For T D 0, we have the relation

Z �Fc

0

�1=2c d� D 2

3
�
3=2
Fc (28.3)

and the quasi-Fermi energy is given by

�Fc.T D 0/ D „2
2me

.3�2N /2=3: (28.4)

The reduced density of states,

Dr.�/ D 1

2�2

�
2mc

„2
�3=2

�1=2; (28.5)
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Fig. 28.1 Reduced density of states and absorption coefficient of bulk GaAs

is proportional to
p
E �Eg. The absorption coefficient for T D 0 is

˛abs D n

c
h� NB21Dr.E21/: (28.6)

Figure 28.1 shows the reduced density of states and the absorption coefficient of
GaAs at T D 0 on the energy scale, with h� D E21 and h�g D Eg. The gain
coefficient of a crystal containing nonequilibrium electrons and holes is equal to

˛ D n

c
h� NB21Dr.E21/.f2 � f1/; (28.7)

where f2 D f .E2/, f1 D f1.E1/ and E2 � E1 D E21. Injection of electrons
into the conduction band (and of holes into the valence band) of a crystal at room
temperature has to be sufficiently strong to reach the transparency density. The
maximum gain coefficient of GaAs at T D 300K is

˛max D �eff.N �Ntr/; (28.8)

where Ntr � 2 � 1024 m�3 is the transparency density and �eff D 1:5 � 10�20 m2

the effective gain cross section [6]. Already a small increase of N above Ntr results
in a large gain coefficient.

Example. Gain coefficient of GaAs at 300 K.

• Ntr D 2 � 1024 m�3.
• �eff D 1:5 � 10�20 m2.
• N �Ntr D 0:1 � 1024 m3.
• ˛max D 1:5 � 103 m�1.

The differenceN �Ntr is chosen so that the gain coefficient ˛max corresponds to the
threshold gain coefficient of GaAs in an edge-emitting laser. The data show that a
large electron density is necessary to reach transparency. A slightly larger density is
sufficient to operate a laser.
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28.2 Double-Heterostructure Laser

As a double-heterostructure laser we discuss a GaAs/GaAlAs double-heterostructure
laser (Fig. 28.2, left). The active zone is a GaAs well (thickness 0.2–1 �m)
embedded in n-doped GaAlAs and p-doped GaAlAs. Under the action of a voltage
(U ), electrons migrate from the n-doped side and holes from the p-doped side into
the well. This results in nonequilibrium populations of electrons in the conduction
band of holes in the valence band. Stimulated recombination of radiative electron-
hole pairs leads to laser radiation.

A double-heterostructure laser diode (Fig. 28.2, right) consists of different layers
forming an n GaAlAs/GaAs/p GaAlAs heterostructure grown on a highly doped
GaAs substrate (doped with silicon; electron concentration 2�1024 m�3). The GaAs
layer, with a larger refractive index than the neighboring GaAlAs material, acts as a
light guide. The crystal surfaces perpendicular to the light guide serve as reflectors.
The threshold current is, for N 	 Ntr,

Ith 	 Ntra1a2Le=�sp: (28.9)

Example. Double-heterostructure GaAs laser.

• a1 D 100�m; a2 D 0:2 �m; L D 0:5mm.
• G1V D 1.
• �sp � 3 ns.
• Ith � 2.1 A; jth � 2.1 � 107 A m�2.

The critical current is much larger than that of a quantum well laser. Below thresh-
old, the double-heterostructure emits luminescence radiation (electro-luminescence
radiation). Above laser threshold, the quasi-Fermi energies of electrons and holes
remain at their threshold values. Accordingly, the luminescence spectrum remains
unchanged when the current exceeds the threshold current (Sect. 21.7).

Fig. 28.2 Double-heterostructure laser
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28.3 GaAs Junction Laser

The junction laser (D homostructure junction laser D homojunction laser) contains
nonequilibrium electrons and holes in a junction within a homogeneous semicon-
ductor material.

The GaAs junction laser (Fig. 28.3a,b) consists of a GaAs crystal, with n-doped
GaAs adjacent to p-doped GaAs. A voltage (U ) causes a current flow (strength I ).
Electrons move from one side and holes from the other side into the junction region
where they recombine by emission of laser radiation. The emission wavelength of a
GaAs junction laser lies in the near infrared (860 nm). Without applied voltage, the
Fermi energy EF has everywhere within the crystal the same value (Fig. 28.3c). In
the junction region, there is a depletion zone (thickness �1 �m for carrier densities
of 1023 m�3 in the n-doped and the p-doped regions) in which no free carriers are
present. EFc lies aboveEc in n GaAs and EFv lies below Ev in p GaAs.

Example. GaAs junction laser at 300 K.

• a1 D 100 �m; a2 D 1 �m; L D 1mm.
• G1V D 1 at ˛ � 1.5 � 103 m�1.
• �sp � 3 ns.
• Ith � 10 A.
• jth � 108 A m�2.

A junction laser operating at room temperature requires strong cooling.

In the junction laser, the active layer has a slightly larger refractive index than
the surrounding n-doped GaAs and p-doped GaAs; the difference of the refractive
indices is about 0.02. Therefore, there is a (weak) light guiding effect.

Fig. 28.3 GaAs junction laser. (a) Principle. (b) Device. (c) An n GaAs/pGaAs junction without
applied voltage
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28.4 Junction Lasers in the Infrared

Infrared junction lasers (Fig. 28.4) consist of mixed crystals of lead salts. Lead salts
have small energy gaps (PbS, Eg � 270meV; PbTe, 170 meV; PbSe, 130 meV).
Mixed crystals of lead salts and tin salts can have still smaller gap energies. The
lead salt lasers operate at low temperature, at the temperature of liquid nitrogen or at
lower temperature. In principle, it is possible to build a lead salt laser that generates
radiation at any wavelength in a large range (4-30 �m). Nonradiative relaxation due
to electron-hole recombination via phonons and absorption of radiation by lattice
vibrations limit the wavelength range of lead salt lasers at large wavelengths.

A lead salt laser is tunable on a single mode over a very small frequency range
by changing the current and the temperature.

Infrared lasers are especially suitable for detection of spurious gases (e.g., NO,
NO2) in environmental gases. Today, lead salt lasers cannot compete quantum
cascade lasers.

28.5 Bipolar Semiconductor Lasers: A Comparison

We have seen that all types of bipolar laser media are in principle suitable as active
media of edge-emitting lasers operating at room temperature. But there are great
differences:

• The junction laser requires a large total number of electrons to reach the
transparency density. Therefore, the threshold current is very large.

• The double-heterojunction laser also requires a large total number of electrons.
The light guiding effect is more favorable than for the junction laser.

• The quantum well laser requires a much lower total number of electrons.
Preparation of quantum well lasers is possible by mass production: quantum well
lasers of high reliability are available.

• The quantum wire laser is in an early state of development.
• The quantum dot laser is being developed. The quantum dot lasers can at present

not yet compete with the quantum well lasers.

We perform a quantitative comparison of different bipolar lasers operating at
room temperature (Fig. 28.5). We ask how many excited electrons are necessary to

Fig. 28.4 Frequency regions of lead salt lasers
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Fig. 28.5 A comparison of different bipolar semiconductor lasers at 300 K

drive a bipolar laser in an edge-emitting arrangement that is the same for each of the
laser types (a1a2L D 100 �m � 200 nm � 1mm D 10�14 m3). The arrows indicate
the total number Ntot D Ntra1a2L of electrons necessary to reach the transparency
density; the total number of electrons at laser threshold,Nth;tot, is only slightly (10%)
larger than Ntot. We take into account the main broadening mechanisms. The figure
shows, for each type of laser, the shape of the reduced density of states curves
Dr.h�/ and the ˛.h�/ curves. All ˛.h�/ curves have the same ˛ scale and the same
h� scale. The maximum of the gain coefficient curve is equal to the threshold gain
coefficient. An increase of the number of excited electrons (for example, to ten times
the total number at transparency) allows laser oscillation to occur at frequencies
belonging to the whole gain bandwidths (D halfwidts of the gain coefficient curves).
The survey indicates the following:

• Double-heterostructure laser. Because of the three-dimensionality, a large num-
ber of electrons is necessary for the band filling.

• Quantum wire laser. A large reduced density of states (at h� D E1D
g ) is very

favorable. However, inhomogeneous broadening caused by variation of the wire
thickness distroys this advantage. The gain coefficient curve has a small width
(compared to the gain curve of the junction laser and the double-heterostructure
laser) because the reduced density of states decreases with increasing photon
energy.

• Quantum dot laser. The gain coefficient increases with frequency because the
multiplicity of the energy levels increases with increasing quantum number of
the energy levels. The gain curve is smeared out because of inhomogeneous
broadening.
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Table 28.1 Semiconductor lasers (at a frequency around 400 THz)

Laser Ntot Ntr Nth=Ntr � 1 N 2D
dot [N 2D

wire] ��g (meV) (THz)

Qu well 106 1.4 � 1016 m�2 0.1 30 7
Qu dot 108 0.1 1 � 1014 m�2 22 5
Qu wire 108 1 � 108 m�1 0.1 [5 � 106 m�2] 17 4
Bulk 1010 2 � 1024 m�3 0.1 40 9

• Quantum well laser. The quantum well laser operates with the smallest number
of electrons. Because of the constant two-dimensional density of states, the
inhomogeneous broadening is much less effective than for the quantum wire laser
and the quantum dot laser.

Table 28.1 shows data used to compare different bipolar semiconductor lasers
(frequency 400 THz; length L D 1mm; crystal surfaces as reflectors; width of the
active medium 100 �m; height of the photon mode 200 nm); the data have been
estimated in the preceding sections or chapters. The table lists the quantities:

• Ntot D total number of excited electrons necessary to fulfill the threshold
condition.

• Ntr D transparency density.
• (Nth � Ntr/=Ntr D threshold density minus transparency density, divided by the

transparency density.
• N 2D

dot D two-dimensional density of quantum dots in a layer of quantum dots.

• N2D
wire D density of quantum wires in a layer of quantum wires.

• ��g D gain bandwidth.

28.6 Development of Semiconductor Lasers

The threshold current of semiconductor lasers (Fig. 28.6) has been strongly reduced
since the first operation of a semiconductor laser in 1970. The junction laser
needs the largest threshold current and has to be cooled (with few exceptions)
to low temperature (100 K or lower) in order to suppress relaxation via phonons.
The double-heterostructure laser (since 1980) operates at room temperature. The
threshold current lies in the range of 10 mA to 100 mA. The quantum well laser
reached a further remarkable decrease of the threshold current.

Together with the development of lasers of small threshold current, the reliability
increased. Already in 1995, the monthly production rose to about one million laser
diodes.

The development of the current-driven semiconductor lasers (Fig. 28.7) began
with the junction laser. After the operation in the near infrared, the range was
extended by the use of lead salt compounds into the far infrared up to a wavelength
near 30 �m. In the near infrared, the junction laser, then the double-heterostructure
laser and the quantum well laser were introduced. The wavelength range of the
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Fig. 28.6 Threshold current
of bipolar semiconductor
lasers operated at room
temperature

Fig. 28.7 Development of semiconductor lasers

quantum well laser was extended up to the near UV. In the far infrared, the junction
lasers are in a large part of the spectrum replaced by the quantum cascade lasers,
which generate radiation in the range from about 2–30 �m. Quantum cascade
lasers, cooled to liquid nitrogen temperature, generate far infrared radiation (see
next section).

Current-driven semiconductor lasers cover different spectral regions:

• Near UV, visible, near infrared (from about 0.3–2 �m); quantum well laser.
• Infrared (2–25 �m); quantum cascade laser (QCL).
• Terahertz gap (about 25 �m to 1 mm; 0.3 to 10 THz); in this range (that includes

the sub-THz range from 0.3–1 THz), there is a gap with respect to semiconductor
laser oscillators and to quasiclassical semiconductor oscillators operating at room
temperature (or more general: between solid state electronic devices and solid
state photonic devices). Quantum cascade lasers working at 80 K cover a part
(60–300 �m; 1–5 THz) of the terahertz gap.
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28.7 Terahertz Gap

Semiconductor oscillators (Figs. 28.7 and 28.8) — including both laser oscillators
and quasiclassical microwave oscillators — are available from the microwave range
up to the ultraviolet, however, with the exception of the terahertz gap, a frequency
range that extends from a sub-THz frequency of about 300 GHz (wavelength 1 mm)
to about 30 THz. Cooled quantum cascade lasers are partly covering the range of
the terahertz gap.

Why are room-temperature quantum cascade lasers not available in the range
between 4 and 30 THz? There are several reasons. The energy differenceE2 �E1 is
of the order of kT or smaller so that the population difference is smaller than at low
temperature. Relaxation via phonons is stronger at high temperatures than at low
temperatures. If the energy difference E2 � E1 coincides with the energy of polar
optic phonons, relaxation by one-phonon processes occurs, resulting in very short
lifetimes of electrons in the upper subband (subband 2); the energy of a polar optic
phonon of GaAs is 36 meV (corresponding to a frequency of 8.6 THz).

Another type of unipolar semiconductor laser should be mentioned here, the p
germanium laser. This is a unipolar semiconductor laser pumped by a current. It
operates at temperatures below liquid nitrogen temperature. A current pulse applied
to a p germanium crystal in a magnetic field gives rise to a nonequilibrium hole pop-
ulation with a population inversion. By feedback with a resonator, laser oscillation
occurs. The laser is tunable over a very wide frequency range (0.3–3 THz). Tuning
is possible by varying the strength of the magnetic field.

Fig. 28.8 Terahertz gap
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There are, furthermore, CO2 laser pumped semiconductor lasers emitting far
infrared radiation; these require cooling to temperatures below liquid nitrogen
temperature. The laser transitions occur between discrete energy levels of impurity
ions in semiconductor crystals.

We mention semiconductor oscillators of the range of electronics at frequencies
above 100 GHz (see Fig. 28.8).

• Gunn oscillator (Sect. 31.2). Gunn oscillators are commercial microwave oscil-
lators, available up to about 200 GHz.

• Semiconductor superlattice oscillator (Sect. 31.3). Semiconductor superlattice
oscillators (up to 200 GHz) are being developed.

• Resonant-tunneling diode oscillator (Sect. 31.7). Operation of resonant-
tunneling diode oscillators has been demonstrated up to 700 GHz; however,
the output power was very small.

Radiation at frequencies above 100 GHz up to 10 THz can be generated by
frequency multiplication of microwave radiation.

Backword wave oscillators are continuous wave oscillators operating in the range
from 200 GHz to �1:5THz.

REFERENCES [187–192]

Problems

28.1. Efficiency of bipolar lasers. Compare the efficiency � of different types of
GaAs bipolar lasers (double-heterostructure laser, quantum wire laser, quantum dot
laser and quantum well laser) driven at a current that is ten times larger than the
threshold current. Assume, for simplicity, that the quantum efficiency is unity.

28.2. Explain qualitatively why the refractive index in the active region of a GaAs
junction laser is smaller than in the adjacent n-doped GaAs and p-doped GaAs
regions.

28.3. Estimate the intensity of luminescence radiation (emitted into the whole
space) of the lasers mentioned in Fig. 28.5.
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Quantum Cascade Laser

A quantum cascade laser contains active regions and conducting regions in turn. An
active region contains three electron subbands. An electron injected into the upper
subband undergoes a stimulated transition to the lower subband and reaches, after a
nonradiative relaxation process, the lowest subband. The electron leaves the lowest
subband by spatial escape to the neighboring conducting region. Then, the electron
is injected into another upper subband, undergoes another stimulated emission
process, relaxes, escapes, and so on. Passing, for example, through a hundred gain
regions, an electron can produce a hundred photons by stimulated transitions. A
single gain region is in principle a three-level system. An electron performs a
cascade of stimulated emission processes in subsequent three-level systems.

How can we obtain a gain region in a quantum cascade laser and how can we
inject an electron into a gain region and extract an electron from a gain region?

We can realize a gain region by the use of coupled quantum wells. Tunnel
splitting of energy levels leads to appropriate subbands. Superlattices connect next-
near gain regions. Injection of electrons into a gain region and extraction of electrons
from a gain region are due to tunneling processes under the action of a static electric
field.

The quantum cascade laser operating at room temperature is a radiation source
of the infrared; it is available at wavelengths just beyond the wavelengths of bipolar
lasers, from about 2–28�m (11–150 THz). Quantum cascade lasers cooled to liquid
nitrogen temperature operate in the frequency range of about 1–5 THz.

It is expected that terahertz radiation may be of importance for applications
in the areas of communications, the environment, medicine, and security. Pio-
neering work is done in infrared and millimeter wave astronomy through the
use of oscillators as local oscillators of heterodyne detectors (that are most
sensitive).

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 29, © Springer-Verlag Berlin Heidelberg 2012

495



496 29 Quantum Cascade Laser

29.1 Principle of the Quantum Cascade Laser

The quantum cascade laser (QCL) is a three-level laser. The three levels (Fig. 29.1a)
belong to subband 0, subband 1 and subband 2. Under the action of a static field
Es, electrons are injected into the subband 2 and perform stimulated transitions to
subband 1. The subband 1 is depopulated by relaxation via the emission of phonons,
and the subband 0 is depopulated by the spatial extraction of electrons. In principle,
an electron passing through a subband system with 100 periods can produce 100
photons! Injection occurs by means of a conducting superlattice. In the superlattice
region, the energy of an electron is energetically constrained to a miniband, i.e., to
an energy band that is much smaller than an energy band of a bulk semiconductor.
Extraction occurs to another superlattice. A spatial period is repeated about 100
times or more (Fig. 29.1b).

An external voltage, leading to a voltage U1 per period, drives the electron
through the cascade system. The voltage per period is approximately

U1 	 E2 � E0; (29.1)

where E2;E1 and E0 are levels belonging to the three subbands. The quantum
efficiency �q 	 .E2 � E1/=.E2 � E0/ can have a value near 1. The overall power
efficiency can be larger than 0.5.

Fig. 29.1 Quantum cascade laser. (a) Single period and (b) three periods (out of a hundred
periods)
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Under the action of a static field, an electron propagates through a miniband, then
through a tunnel barrier into the active region with the three subbands and, after an
optical transition and relaxation, into another miniband. The active region contains
two coupled quantum wells. A narrow tunnel barrier between the wells provides the
coupling.

A minigap (a gap between two minibands) prevents the tunneling of electrons
out of the subband 2. Perpendicular to the heterostructure, the electrons can move
freely. The injector consists of a miniband, with a continuously decreasing miniband
width, realized by quantum film layers and quantum well layers in turn (Sect. 29.3).

The heterostructure of a quantum cascade laser can be grown by molecular
epitaxy.

29.2 Infrared Quantum Cascade Laser

The infrared quantum cascade laser (Fig. 29.2) consists of a quantum cascade
heterostructure on a conducting substrate (GaP or GaAs). The heterostructure
contains conduction electrons (�1022 m�3), introduced into the heterostructure
during its preparation by doping with silicon. An electric power of the order of 1
W (voltage 5 V; current 0.2 A) leads (in a structure of 1 mm length; 100 �m width;
10 �m thickness) to radiation of a power of several mW.

Room temperature QCLs and low temperature QCLs cover different wavelength
regions:

• 2–28 �m; InGaAs/InAlAs heterostructure grown on a GaP substrate; operation
at room temperature; power 1–100 mW.

• 60–360 �m; GaAs/GaAlAs heterostructures grown on a GaAs substrate; opera-
tion at the temperature of liquid nitrogen; power 1–10 mW.

Before discussing the far infrared quantum cascade laser, we introduce superlat-
tices and minibands.

Fig. 29.2 Quantum cascade laser
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29.3 Semiconductor Superlattice and Minibands

Semiconductor superlattices with minibands play an important role in a quantum
cascade lasers. We describe here properties of a GaAs/AlAs superlattice.

A GaAs/AlAs superlattice (Fig. 29.3) consists of a periodic sequence of GaAs
layers and AlAs layers. An electron propagating along the superlattice axis experi-
ences the AlAs layers as potential barriers. The periodic potential leads to minibands
separated by minigaps. We characterize the dispersion relation of electrons in the
lowest miniband by:

� D �m

�
1

2
� 1

2
cos kxa

�
; (29.2)

where � is the energy, �m is the miniband width, and kx the wave vector along the
superlattice axis. The dispersion curve is periodic in kx . Therefore, we can restrict
the wave vector kx to the mini-Brillouin zone ��=a < kx � �=a. The calculation
of minibands is possible by the use of a Kronig–Penney model (Chap. 31).

The motion perpendicular to the superlattice axis, within the GaAs layers,
corresponds to a free motion of a conduction electron. The energy of a miniband
electron is given by

E D Ec CEzp C �m

�
1

2
� 1

2
coskxa

�
C „2.k2y C k2z /

2me
: (29.3)

Ec is the energy of an electron at the minimum of the conduction band and Ezp the
zero point energy of a miniband electron. The last term corresponds to the energy of
motion perpendicular to the superlattice axis;me is the effective mass of an electron
in the minimum of the conduction band of GaAs.

The value of �m of a GaAs/AlAs superlattice is adjustable by the choice of
the period a of the superlattice and of the width of the AlAs barrier layers. The
largest value of the miniband width of a GaAs/AlAs superlattice is �m � 0.14 eV,

Fig. 29.3 GaAs/AlAs superlattice and minibands
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which corresponds to ten percent of the gap energy of GaAs. InGaAs/InGaAlAs
superlattices can have larger miniband widths (up to 0.3 eV) because the effective
mass of InAs is smaller than the effective mass of GaAs.

29.4 Transport in a Superlattice

We discuss the electric transport in a superlattice (miniband transport). A static
electric field Es oriented along the superlattice axis accelerates the electrons.
Relaxation gives rise to an ohmic conductivity (Fig. 29.4). The ohmic conductivity
is given by

� D N0e
2�

m� : (29.4)

N0 is the density of electrons in a superlattice,m� the effective mass of an electron at
the bottom of the miniband (at kx 	 0) and � is the intraminiband relaxation time; �
� 10�13 s of an electron in a GaAs/AlAs superlattice at room temperature. The value
of the effective mass m� depends on the period of the superlattice and the barrier
width. Ohmic conductivity is limited to not too strong static fields (Sect. 32.3).

In a superlattice used in a quantum cascade laser as injector (and as extractor),
the layer thicknesses of GaAs and AlAs — or of InGaAs and InGaAlAs — are
varying along the superlattice axis. Accordingly, the zero point energy, the widths
of the minibands and the widths of the minigaps are varying as well. An applied
voltage leads to a static field along the superlattice axis. The upper boundary of the
miniband limits the maximum energy an electron can reach in the static field. The
first minigap prevents escape of excited electrons from the gain region as already
mentioned.

Miniband transport will be treated in more detail in Chap. 31.

29.5 Far Infrared Quantum Cascade Laser

In a far infrared quantum cascade laser (Fig. 29.5), the energy separation between
sublevel 2 and sublevel 1 corresponds to a frequency in the far infrared. The energy
difference between the laser levels is of the order of kT at room temperature.

Fig. 29.4 Ohmic transport in
a superlattice
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Fig. 29.5 Far infrared quantum cascade laser

To reach the threshold population difference, a far infrared QCL has to be cooled,
for instance to the temperature (77 K) of liquid nitrogen.

REFERENCES [223–225]

Problems

29.1. Determine the frequency (and the wavelength) of laser radiation at which
cooling of the active medium is favorable.

29.2. Estimate the gain (gain coefficient and gain factor per round trip) of radiation
propagating in the active medium of a quantum cascade laser. [Hint: assume that the
Einstein coefficient of stimulated emission is the same as for interband transitions.]



Chapter 30
Electron Waves in Semiconductor
Heterostructures

We study electron waves in one-dimensional potentials and in semiconductor
heterostructures.

We will begin with the discussion of the one-dimensional square potential, then
describe the origin of energy bands for electrons in a one-dimensional periodic
potential. We make use of the tight binding method.

We will introduce the plane-wave transfer matrix method to describe, for an
interface of two semiconductors, how a wave function of a semiconductor continues
in the other semiconductor. The requirement that the energy flux through a boundary
is steady provides the boundary conditions for electron waves at an interface
of two different semiconductors. The plane-wave transfer matrix method allows
for determination of the energy bands (minibands) of a superlattice for electrons
propagating along the superlattice axis. Finally, we will treat the quantum well and
the double quantum well.

The plane-wave transfer matrix method is the same we used to describe
electromagnetic plane waves in layered systems (Sect. 25.11). The difference of
the results comes from the different dispersion relations: the wave vector of a free
electron wave in vacuum (or in a semiconductor) varies with the square root of
the energy while the wave vector of an electromagnetic wave in vacuum (or in a
homogeneous medium) shows a linear dependence on the frequency.

30.1 Electron in a One-Dimensional Square Well Potential

An electron wave with the wave vector k obeys the dispersion relation

E D „2k2
2m0

: (30.1)

E is the energy of an electron and m0 the electron mass. The energy E increases
quadratically with k. We describe free electrons propagating in x direction by the
use of the time-independent Schrödinger equation

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 30, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 30.1 One-dimensional square well potential (a) with infinitely high walls and (b) with walls
of finite height

� „2
2m0

d2'

dx2
D E'; (30.2)

where '.x/ is the wave function. A solution is

'.x/ D Aeikx I k D C
p
2m0E=„2: (30.3)

We consider an electron in a one-dimensional square well potential (width a)
with rigid walls (Fig. 30.1a). The Schrödinger equation for jxj < a=2,

� „2
2m0

d2'

dx2
D E'; (30.4)

has the general solution

'.x/ D A sin kx C B coskzI k D C
p
2m0E=„2: (30.5)

The boundary conditions require that '.˙a=2/ D 0 or

A sin.ka=2/C B cos.ka=2/ D 0; (30.6)

�A sin.ka=2/C B cos.ka=2/ D 0: (30.7)

Solutions are

• A D 0 and cos.ka=2/ D 0 leading to

'.x/ D B cos
n�x

a
; n D 1; 3; ::: (even solution)I (30.8)

• B D 0 and sin.ka=2/ D 0 leading to

'.x/ D A sin
n�x

a
; n D 2; 4; ::: (odd solution): (30.9)
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The energy eigenvalues are

En D �2„2n2
2m0a2

: (30.10)

In the case of a square well potential with finite potential steps (Fig. 30.1b), the
Schrödinger equation is unaltered for jxj < a=2. The wave equation for jxj > a=2,

� „2
2m0

d2'

dx2
C U0' D E'; (30.11)

has the solution

'.x/ D C e�
x CDe
x I 
 D C
p
2m0.U0 �E/=„2: (30.12)

The boundary conditions require that '.x/ and d'=dx are continuous for x D
˙a=2. The application of the boundary conditions would allow for determination
of A, B, C, D and of the eigenvalues. Instead, we make use of the symmetry of the
potential. The ansatz of the even solutions

'.x/ D B coskx for jxj < a=2; (30.13)

'.x/ D C e�
x for jxj > a=2; (30.14)

and the condition of continuity of ' and d'=dx for jxj D a=2 lead to

B cos.ka=2/ D C e�
a=2; (30.15)

kB sin.ka=2/ D 
C e�
a=2 (30.16)

or

k tan.ka=2/ D 
: (30.17)

The odd solutions are

'.x/ D A sin kx for jxj < a=2; (30.18)

'.x/ D C e�
x for jxj > a=2: (30.19)

The boundary conditions for the odd solutions require that

k cot.ka=2/ D 
: (30.20)

The conditions k tan.ka=2/ D 
 and k cot.ka=2/ D 
 provide a finite number of
discrete energy eigenvaluesEn.
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30.2 Energy Bands of Electrons in a Periodic Square
Well Potential

We describe a model (tight binding model) that illustrates the occurrence of energy
bands and of dispersion of electron waves in a periodic potential.

A single isolated square well potential at position xl (Fig. 30.2, upper part) is
characterized by the wave equation

�
� „2
2m0

d2

dx2
C Ul.x � xl/

	
'l.x � xl / D E0 'l.x � xl /: (30.21)

We regard E0 as the energy E1 of the lowest state in a square well potential
(Sect. 30.1) and 'l D 'l.x � xl / as the corresponding wave function. The wave
function is normalized,

Z 1

�1
'�
l .x � xl/'l .x � xl /dx D 1: (30.22)

The wave equation of a periodic sequence of identical square well potentials
(Fig. 30.2, center) is

�
� „2
2m0

d2

dx2
C U.x/

�
 .x/ D E .x/: (30.23)

The potential energy is a periodic function,

U.x C a/ D U.x/; (30.24)

Fig. 30.2 A single square well potential, an infinite series of square well potentials and the
difference between the two potentials
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where a is the period. We describe the wave function of the periodic system by a
linear combination of the wave functions of the single wells,

 .x/ D
X

l

cl 'l .x � xl /: (30.25)

Making use of the periodicity, we write

 .x/ D 1p
N

N�1X

lD0
eikla 'l .x � la/: (30.26)

N is the number of quantum wells in a periodicity interval. We apply periodic
boundary conditions,  .x CNa/ D  .a/, and find

k D 2�l

Na
I l D 0; 1; : : : N � 1: (30.27)

We can restrict the k values to the first Brillouin zone,

� �

a
< k � �

a
: (30.28)

Inserting  .x/ into the wave equation provides

X

l

eikla ŒU.x/ �E	 'l D �
X

l

eikla
�

� „2
2m0

d2

dx2

�
'l : (30.29)

We add on both sides the term .�U0 C E0/'l and obtain

X

l

eikla ŒU.x/ � Ul.x � xl /� E C E0	 'l

D �
X

l

eikla

�
� „2
2m0

d2

dx2
� Ul.x � xl /C E0

	
'l : (30.30)

The right side is zero. We find

.E � E0/
X

l

eikla'l D
X

l

eikla ŒU.x/� Ul.x � xl /	 'l : (30.31)

We multiply the equation by

 �.x/ D 1p
N

N�1X

mD0
e�ikma'�

m.x �ma/ (30.32)
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and integrate over the length L of the periodicity interval. We obtain

.E �E0/
X

l;m

eik.l�m/a
Z L

0

'�
m'ldx D

X

l;m

eik.l�m/a
Z
'�
mŒU.x/ �Ul.x � xl /	'ldx:

(30.33)

Neglecting the weak overlap of '�
l and 'l for l ¤ m, we obtain for the term on

the left side N.E � E0/. Because of the large values of U � Ul (Fig. 30.2, lower
part) at positions of the cellsm ¤ l , we cannot neglect the terms withm ¤ l on the
right side of the equation. We assume that 'l.xl � la/ decreases strongly at large
distance jx � xl j. Then we can restrict the double sum to terms that correspond to
neighboring cells. We obtain

N � .E � E0/ D N �
Z
'�
l ŒU.x/ � Ul.x � xl/	'ldx

CN � e�ika
Z
'�
l�1ŒU.x/ � U.x � xl /	'ldx

CN � eika
Z
'�
lC1ŒU.x/ � U.x � xl /	'ldx: (30.34)

It follows, with

˛ D
Z
'�
l ŒUl .x � xl / � U.x/	'ldx (30.35)

and

� D
Z
'�
l�1ŒUl.x�xl /�U.x/	'ldx D

Z
'�
lC1ŒUl .x�xn/�U.x/	'ldx; (30.36)

that the energy is equal to

E D E.k/ D E0 � ˛ � � cos ka: (30.37)

We introduce

�.k/ D E0 � E.k/C ˛ D 2� coska (30.38)

and

�m D 2�; (30.39)

and write

�.k/ D �m

�
1

2
� 1

2
cos ka

�
: (30.40)

We obtain the lowest energy band (Fig. 30.3), with a minimum at k D 0 (width "m),
then an energy gap, and a second band (maximum at k D 0 since � < 0). We can
interpret E0 � ˛ � � as zero point energy of an electron in the periodic potential.
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Fig. 30.3 Energy bands

30.3 Plane-Wave Transfer Matrix Method Characterizing
a Semiconductor Interface

We consider (Fig. 30.4) propagation of an electron wave through an interface of
two semiconductor materials (for instance GaAs and AlAs). At the interface, the
potential energy and the effective mass of an electron change abruptly. We describe
an electron wave propagating in x direction (perpendicular to the interface) by the
time-independent Schrödinger equation

�
� „2
2m.x/

d2

dx2
C U.x/

�
 .x/ D E  .x/; (30.41)

where m.x/ is the effective mass and U.x/ the potential energy. We look for wave
functions  .x/ and energies E that satisfy this equation. We describe the wave
functions in medium 1 and medium 2 by the ansatz:

 1 D A1eik1x C B1e�ik1x; (30.42)

 2 D A2 eik2x C B2 e�ik2x; (30.43)

with

k1 D C
p
2m1E=„2; (30.44)

k2 D C
p
2m2.E � U0/=„2; (30.45)

being the wave vectors of the waves in medium 1 and medium 2, respectively. A1
andB1 are amplitudes of the waves of opposite directions. We restrict the discussion
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Fig. 30.4 Electron wave at
an interface of two
semiconductors

to the case that E < U0. Then k2 is imaginary and  2 describes a wave with an
increasing term (amplitude A2) and a decreasing term (amplitude B2). We use the
boundary conditions

 1 D  2 at x D 0; (30.46)

1

m1

d 1
dx

D 1

m2

d 2
dx

for x D 0: (30.47)

The amplitudes are related to each other,

M1

 
A1

B1

!

D M2

 
A2

B2

!

; (30.48)

where

Ml D
�
1 1

kl �kl
�

I l D 1; 2: (30.49)

We find the relation
 
A1

B1

!

D M�1
1 M2

 
A2

B2

!

D M12

 
A2

B2

!

: (30.50)

The matrix

M12 D
 
1
2
.1C k2=k1/

1
2
.1 � k2=k1/

1
2
.1� k2=k1/

1
2
.1C k2=k1/

!

(30.51)

is the transfer matrix. It has the same shape as the transfer matrix of plane
electromagnetic waves (Sect. 25.11).

The continuity conditions we used follow from the requirements that the
probability density �.x/ D  �.x/ .x/ and the probability current density @�=@t
are continuous. The first condition is satisfied if  .x/ is continuous. To discuss the
second condition, we replace in the time-dependent Schrödinger equation

� „
i

@

@t
 .x/ D

�
� „2
2m0

r2 C V.x/

�
 .x; t/ (30.52)
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the first term on the right side:

� „2
2m0

@2

@x2
 .x/ ! „2

2

@

@x

�
1

m.x/

@ .x/

@x

�
: (30.53)

Then

@

@t
. ��/ D i„

2

@

@x

�
1

m.x/

@

@x
 

�
 

D i„
2

�
@

@x

�
 � 1

m.x/

@

@x
 

�
�  

1

m

@

@x
��
	

D 0: (30.54)

This condition is satisfied at an interface (at x D 0) between two semiconductors if

1

m1

@ 

@x
D 1

m2

@ 

@x
for x D 0: (30.55)

30.4 Minibands

The potential energy of an electron in a superlattice is a periodic function,

U.x C a/ D U.x/; (30.56)

where a is the period. We describe the wave function of an electron in the periodic
system as a linear combination of the wave functions of the single wells,

 .x/ D
X

l

cl 'l .x � xl /: (30.57)

Making use of the periodicity, we write

 .x/ D 1p
N

N�1X

lD0
eikla'l .x � la/: (30.58)

N is the number of quantum wells in a periodicity interval. We apply periodic
boundary conditions,  .x CNa/ D  .x/, and find

k D 2�l

Na
I l D 0; 1; : : : N � 1: (30.59)

We restrict the k values to the first Brillouin zone

� �

a
< k � �

a
: (30.60)



510 30 Electron Waves in Semiconductor Heterostructures

We make use of the transfer matrix method. We described in the preceding
section the transfer matrix of an electron wave at a boundary. Taking account of
propagation, we find the same equations, (25.31)-(25.34), as for electromagnetic
plane waves in a one-dimensional photonic crystal. The equations lead, as shown in
Sect. 25.14, to the dispersion relation

cos ka D cosk1a1 cosk2a2 � 1

2

�
� C 1

�

�
sin k1a1 sin k2a2: (30.61)

Now, the dispersion relation holds for a miniband electron. We find:

k1 D C
p
2mE=„2I (30.62)

� D k1

k2

m2

m1

D �i
k1




m2

m1

; 
 D C
p
2m.U0 � E/=„2: (30.63)

We can write the dispersion relation of a miniband electron in the form

cos ka D cosk1a1 cosh 
a2� 1
2

�
j�j C 1

j�j
�

sin k1a1 sinh 
a2 D f .E/: (30.64)

This equation, cos kaDf .E/, cannot be solved analytically. However, we can
obtain an approximate solution. We expand f .E/ around the eigenvalue E0;n of
an isolated quantum well,

f .E/ 	 f .E0;n/C
�

df

dE

�

EDE0
� .E �E0/: (30.65)

We find

E.k/ D E0 C ˛ C 2� cos ka; (30.66)

˛ D �f .E0/=.df=dE/EDE0; (30.67)

2� D Œ.df=dE/�1	EDE0 : (30.68)

It follows, with 2� D �m, that

�.k/ D �m

�
1

2
� 1

2
cos ka

�
: (30.69)

Taking into account the free motion perpendicular to the superlattice axis, we
obtain, with k D kx , the total energy

�.k/ D �m

�
1

2
� 1

2
coskxa

�
C „2
2me

.k2y C k2z /; (30.70)
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Fig. 30.5 Minibands

where me is the effective mass of an electron in GaAs and k D .kx; ky; kz/. The
energy dispersion (Fig. 30.5) shows minibands (and minigaps) for electron wave
vectors oriented along the superlattice axis. There is no gap for electrons that have
wave vectors with components (ky ,kz) perpendicular to the superlattice axis. The
energy E D 0 is equal to energy of the minimum of the conduction band of bulk
GaAs.

The widths of the minibands and of the minigaps depend on the superlattice
parameters:

• a1 D thickness of a quantum well layer.
• a2 D thickness of a barrier layer.
• a D a1 C a2 D superlattice period.

It is possible to design superlattices for a great range of values of �m, namely
�m D 5meV ... 140 meV for GaAs superlattices, and �m up to 300 meV for
GaInAs/GaAlInAs superlattices.

If we neglect the difference of the effective masses of the superlattice materials,
the matrix method yields the same result as obtained via the superposition of the
wave functions of the single wells (Sect. 30.2).

A remark. The method of superposition of elementary wave functions (tight
binding method) was introduced by Felix Bloch in 1928 [251]. Ralph Kronig and
William Penney [231] introduced (in 1931) the square well potential (Kronig-
Penney potential) and derived the dispersion relation (30.40). Gerard Bastard
[232,233] extended the model (extended Kronig–Penney model) to describe energy
bands of semiconductor superlattices — with different effective masses of an
electron in different layers of a superlattice.
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Fig. 30.6 Double-well potential

30.5 Quantum Well

Knowing the boundary conditions for wave functions at the interface of two semi-
conductors, we find the expression that allows for determination of the eigenvalues
of electronic states of a quantum well (Problems):

k tan.ka=2/ D �˛ m2=m1 for even solutions; (30.71)

k cot.ka=2/ D �˛ m2=m1 for odd solutions: (30.72)

30.6 Double-Quantum Well

The energy levels of electrons in a double-well potential (Fig. 30.6) are doublets.
The energy level E1 of the lowest state of isolated potential wells splits into two
levels EC

1 and E�
1 . Correspondingly, the level E2 splits into two levels (E�

2 and
EC
2 ); see Problem 13.2.

REFERENCES [31, 178, 186, 226–233, 251]

Problems

30.1. Quantum well.
Estimate the eigenvaluesE1 and E2 of an electron in an AlAs/GaAs/AlAs quantum
well (barrier height 2.2 eV;mGaAs D 0:07 m0; mAlAs � 3mGaAs) if the well consists
of films of different thickness.

(a) Film thickness = 14 GaAs monolayers.
(b) Film thickness = 2 GaAs monolayers.
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30.2. Double-quantum well.

(a) Determine the eigenvalues of a one-dimensional double well, which correspond
to the two lowest energy levels (sD 1, 2) of a single one-dimensional double
well. [Hint: make use of the symmetry.]

(b) Determine the energy level splitting E�
1 � EC

1 for the two lowest levels.
(c) Sketch the wave functions that correspond to the four lowest levels.
(d) Calculate the level splitting occurring in an AlAs/GaAs/AlAs/GaAs/AlAs

double quantum well (Fig. 30.6) for a1 D 10 nm and a2 D 2 nm.

30.3. Dispersion for electrons in a periodic potential.
Derive the dispersion relation for electrons in a periodic potential by the use of the
matrix method.

30.4. Interface.

(a) Electrons (energy �) propagate toward a GaAs/AlAs interface and are reflected.
Determine the average penetration depth of an electron. [Hint: take into account
the difference between the penetration depth of the wave function and of the
electrons.]

(b) Determine the penetration depth for � D 10meV and 100 meV.
(c) Show that the reflectivity is R D jk1 � i
j=jk1 � i
1j.
(d) Explain the electron total reflector used in a GaN quantum well laser (Sect. 24.3,

Fig. 24.3a).

30.5. Tunneling.

(a) Determine the transmissivity of an AlAs barrier in a GaAs/AlAs/GaAs het-
erostructure for electrons of energy �.

(b) Determine the transmissivity for electrons of energy � D 10meV and 100 meV
for a barrier width of 2 monolayers of AlAs, and for a barrier of 10 monolayers
of AlAs.

30.6. Resonance state.

(a) Given is a GaAs/AlAs/GaAs/AlAs/GaAs heterostructure. Determine the energy
dependence of the transmissivity for electron waves of different energies.

(b) Design a heterostructure that is transparent for electrons of � D 10meV.
(c) Design a heterostructure that is transparent for electrons of � D 100meV.

30.7. Injector of a quantum cascade laser.

(a) Design a quantum cascade laser of AlAs/GaAs/AlAs/GaAs/AlAs heterostruc-
tures embedded in chirped GaAs/AlAs superlattices for a quantum cascade laser
that may be able to generate radiation at a frequency of 4 THz.

(b) Estimate the thicknesses of the different layers.
(c) Discuss the role of the superlattice, especially in view of the result of the

preceding problem.
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30.8. Semiconductor superlattice.

(a) Determine the effective massm� of an electron in a superlattice (for propagation
along the superlattice axis) for an electron with k � 0.

(b) Determine m� of a GaAs/AlAs superlattice with 14 monolayers GaAs and 2
monolayers AlAs (�m � 140 meV).

(c) Determine m� of a GaAs/AlAs superlattice with 4 monolayers GaAs and 2
monolayers AlAs (�m � 40 meV).

(d) Determine the effective massm� of an electron in a superlattice (for propagation
along the superlattice axis) for arbitrary k and discuss the slope m�.k/ and
m�.�/.

(e) Determine the group velocity vg.k/ and the peak group velocity.
(f) Sketch the wave functions of the lowest miniband for k � 0 and k D �=a.
(g) Sketch the wave functions of the second miniband for k � 0 and k D �=a.



Chapter 31
A Comparison of Laser Oscillators
and Quasiclassical Solid State Oscillators

We present three types of quasiclassical oscillators that are able to generate
microwave radiation of high frequency: Gunn oscillator (used as source of radiation
up to �200 GHz); superlattice oscillator (in development, up to 200 GHz); and
resonant-tunneling diode oscillator (demonstrated up to 700 GHz). These oscillators
are solid state oscillators, driven by active can be media. An active medium of
a solid state oscillator makes use of the nonlinear transport in a semiconductor
(Gunn oscillator) or in a semiconductor heterostructure (superlattice oscillator and
resonant-tunneling diode oscillator). The nonlinear transport is due to a negative
mobility of conduction electrons. The origin of a negative differential mobility is of
quantum mechanical nature. However, the transport can be described classically.

A laser oscillator and a quasiclassical solid state oscillator have in common
that gain is mediated by a high frequency polarization of an active medium and,
additionally, that the active medium experiences a change during the buildup of an
oscillation.

What makes the difference between a laser oscillator and a quasiclassical
solid state oscillator? In a laser oscillator, polarization occurs via interaction of
a high frequency field with single particles (atoms, molecules, free electrons).
In a quasiclassical solid state oscillator, polarization occurs via interaction of a
high frequency field with charge density domains, i.e., with collectives of free
electrons. The formation of domains and thus of the polarization is due to nonlinear
transport properties of the active medium — and not by a population inversion.
A quasiclassical solid state oscillator shows an upper frequency limit that is
determined by a relaxation time; this is the time it takes the electrons to establish
a collective. Oscillation is only possible if the period of the high frequency field is
larger than the relaxation time.

There is, beside the mechanism of interaction of radiation with a medium, a
difference in the techniques used to couple radiation to a medium. The active
medium of a laser fills a resonator partly or completely. A solid state diode that
drives a quasiclassical solid state oscillator can have extensions that are small
compared to the wavelength of the radiation. An antenna serves for coupling of
the active medium to the radiation. It is possible to use an active medium of small

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 31, © Springer-Verlag Berlin Heidelberg 2012
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volume because the gain of classical active media can be much larger than the gain
of laser media.

According to Kroemer, there are two types of domains and therefore two modes
of operation of a quasiclassical solid state oscillator — the pure charge accumulation
mode and the propagating dipole domain mode. Here, we treat the pure charge
accumulation mode, which is rarely described in textbooks, and we present an
experiment that demonstrates the occurrence of the pure charge accumulation mode
in a quasiclassical solid state oscillator.

We will, furthermore, discuss a classical oscillator model — the van der
Pol oscillator. The model describes an equivalent circuit containing a nonlinear
resistance that drives a self-excited oscillation in the circuit. The resistance of a van
der Pol oscillator does not undergo a change during the buildup of an oscillation.

The chapter provides a connection to textbooks that treat microwave oscillators.

31.1 Interaction of Radiation with an Active Medium
of a Laser or a Quasiclassical Oscillator

A comparison of a laser oscillator and a quasiclassical solid state oscillator shows
the following.

• A laser oscillator and a quasiclassical oscillator have in common: interaction
of an active medium with a high frequency field results in a high frequency
polarization, which is synchronized to the field; mutual interaction of field and
polarization leads to the buildup of both field and polarization.

• An active medium of a laser is, with respect to the charge distribution �,
homogeneous (Fig. 31.1a). The corresponding material equation has the form
r � D D 0. An active medium of a laser contains high frequency dipole moments
carried by atomic excitations or by free-electron oscillations. Interaction of these
single-particle excitations with a high frequency electromagnetic field leads to
gain for the high frequency field.

• In the active medium of a solid state oscillator, the charge distribution is
inhomogeneous, r � D ¤ 0 (Fig. 31.1b). The periodic buildup and destruction of
charge density domains gives rise to a high frequency polarization of the active
medium. A quasiclassical solid state oscillator shows an upper frequency limit
that is determined by the relaxation time of the electrons, which constitute a

Fig. 31.1 Active media. (a) Laser medium. (b) Active medium of a solid state oscillator
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domain. The material properties responsible for the occurrence of charge density
domains are based on quantum mechanical properties of a semiconductor (or a
semiconductor heterostructure).

31.2 Solid State Oscillators

There are various types of solid state oscillators for generation of microwave
radiation. We mention three types:

• Gunn oscillator. The active device (active medium and electrodes together) of a
Gunn oscillator is a Gunn diode. We describe a GaAs Gunn diode. The active
device consists of a doped GaAs embedded in highly doped GaAs carrying
metallic contacts. Nonlinearity is due to transfer of conduction electrons from
a high-mobility state to a low-mobility state of electrons in GaAs. The electron
transfer, which is of quantum mechanical nature, gives rise to a negative differen-
tial mobility for voltages larger than a critical voltage. The negative differential
mobility causes formation of charge density domains. Gunn oscillators are avail-
able as microwave oscillators up to frequencies of �200 GHz. Gunn oscillators
are described in many textbooks and survey articles; see, for instance, [234–239].

• Semiconductor superlattice oscillator. The basis of the nonlinearity of a
semiconductor superlattice oscillator is the miniband transport. At voltages
across a superlattice that are larger than a critical voltage, miniband electrons
show a negative differential mobility. The negative differential mobility causes
formation of charge density domains.

• Resonant-tunneling diode oscillator. The active medium is a resonant-tunneling
diode (Sect. 31.7).

There are two modes of operation of a Gunn oscillator or of a superlattice
oscillator:

• Pure charge accumulation mode [239] (Fig. 31.2a). Under the action of a
static field, a negative differential mobility medium extracts electrons from the
cathode. The excess electrons in the medium and the positive charges at the

Fig. 31.2 Dipole domains in an active medium of a solid state oscillator. (a) Dipole domain caused
by pure charge accumulation. (b) Propagating dipole domain
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cathode represent a dipole domain connected with a quasistatic polarization of
the medium. Under the action of both a static field and a high frequency field, the
number of excess electrons within the medium (and thus the density of positive
charge at the cathode) increases and decreases periodically at the frequency of the
high frequency field. The corresponding high frequency polarizationP mediates
gain. In the pure charge accumulation mode of operation of an oscillator, negative
charge flows periodically from the cathode into the negative differential mobility
medium and back to the cathode while the positive charge is bound to the
cathode.

• Propagating dipole domain mode [239] (Fig. 31.2b). Under the action of a static
field and of a high frequency field, negative and positive charges within the
negative differential mobility medium separate giving rise to dipole domains.
A dipole domain is formed near the cathode, travels through the medium, and
disappears at the anode. The periodic formation and destruction of domains at the
frequency of the high frequency field is joined with a high frequency polarization
P of the active medium. The polarization mediates gain. The formation of
propagating domains requires special boundary conditions for the field at the
boundary between cathode and the negative differential mobility medium.

We will consider a particular solid state oscillator, namely a semiconductor super-
lattice oscillator that operates in a pure charge accumulation mode.

31.3 Semiconductor Superlattice Oscillator

In a semiconductor superlattice oscillator (Fig. 31.3a), a superlattice in a cavity
resonator drives the oscillation. The superlattice is electromagnetically coupled to
the field in the resonator via an antenna (a metal whisker). The antenna is also
connected to a bias circuit containing a voltage source (voltage U ), which provides
a direct current I . A filter in the bias circuit avoids loss of radiation to the bias
circuit. Radiation is coupled out from the resonator via an output port that contains
a diaphragm. The oscillator is suited to generate microwave radiation. The emission
spectrum (Fig. 31.3b), of an oscillator generating radiation near a frequency of
64 GHz, shows a bandwidth (200 kHz) that is determined by the spectrum analyzer
used to register the spectrum. The emission line is, as indicated by the slope in the
far wings, a Lorentzian line; a small deviation is due to background of the spectrum
analyzer. For description of a superlattice oscillator, we follow [246].

Figure 31.3c (points and solid line) shows the output power Pout of the oscillator
for different strengths � of output coupling loss; a measure of the output coupling
loss � is the ratio of the aperture area and the area of the completely open output
port. At small �, with radiation stored in the resonator,Pout is small. With increasing
�, Pout increases, shows a maximum corresponding to optimum output coupling at
�opt and then decreases to zero at the threshold loss �th. A solid state oscillator shows
an oscillation threshold behavior as a laser oscillator does.
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Fig. 31.3 Semiconductor superlattice oscillator. (a) Arrangement. (b) Emission spectrum. (c)
Threshold behavior

Fig. 31.4 Principle of the semiconductor superlattice oscillator. (a) I–V curve and time-
dependent current and voltage. (b) I–V curve without and with feedback from radiation

To illustrate the principle of a superlattice oscillator, we consider the current-
voltage (I–V ) curve of a superlattice (Fig. 31.4a). With increasing voltage, the
current increases linearly at small voltage, then less than linearly, reaches a peak
value Ip at a critical voltage Uc and remains constant for Us > Uc. A static voltage
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Us > Uc causes the buildup of a high frequency current I.t/ and voltage U.t/.
The active medium experiences feedback from the high frequency field stored in the
resonator, which results in a reduction ıI of the direct current. The current reduction
is equal to the amplitude of the high frequency current (Fig. 31.4b). The current
reduction occurs stepwise: for increasing Us, the direct current shows plateau-like
slopes. A current reduction, indicating oscillation, can occur already for U < Uc.

We conclude from the occurrence of oscillations that the high frequency current
and high frequency voltage contain components of opposite phases, i.e., that the
high frequency resistance of the superlattice is negative, which is a condition of
gain. The high frequency resistance is equal to

Rneg D � OU= OI : (31.1)

OU is the amplitude of the high frequency voltage and OI the amplitude of the high
frequency current.

Example. A particular GaAs superlattice (diameter 4 �m; length 0.6 �m; electron
density N0 D 5� 1022 m�3) has a critical voltage of 0.6 V and a peak current of
10 mA. Oscillation at 65 GHz results in a reduction of the current amplitude of
ıI D OI D 2mA. The amplitude of the high frequency voltage is OU D 0:9 V (for
Us D 2 Uc). Thus, the negative resistance is equal to Rneg D �450 ˝ . The experi-
mental output power at optimum output coupling is �0.5 mW corresponding to an
efficiency of 4% for conversion of electric power to power of microwave radiation.

31.4 Model of a Solid State Oscillator

We follow [234]. We characterize a (quasiclassical) solid state oscillator by an
equivalent resonance circuit. The resonance circuit can be a parallel or series
resonance circuit. We choose a parallel resonance circuit.

The equivalent circuit (Fig. 31.5a) describes a high frequency circuit containing
an active device with a negative resistance Rneg, a capacitance C , an inductance L,
and a resistance R, which accounts for loss due to emission of radiation. The active
device (i.e., the active medium together with the electrodes) itself has an inductance
Ld and a capacitanceCd. To illustrate the principle of a negative resistance oscillator,
we make use a simplified circuit (Fig. 31.5b):

Fig. 31.5 Negative
resistance oscillator.
(a) Equivalent circuit and
(b) simplified equivalent
circuit
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Fig. 31.6 Dependence of the
magnitude of a negative
resistance on the current
amplitude

• If the total resistance is negative, an initial high frequency current in the loop will
grow; this is the oscillation condition.

• At steady state oscillation, the sum of the resistances is zero; during onset of
oscillation, the magnitude of the negative resistance decreases from a small-
signal value to a large-signal value.

• If the total resistance is positive, an initial high frequency current will be damped
and oscillation will not start.

The magnitude of the negative resistance depends on the amplitude of the high
frequency current (Fig. 31.6). The absolute value ofRneg is largest for a small current
amplitude OI and is zero at maximum current amplitude OImax obtained for R D 0.
The resistance R determines the point of steady state oscillation.

The output power of the oscillator is

Pout D .1=2/R OI 2 (31.2)

if the condition

Rneg CR D 0 (31.3)

is satisfied. An appropriate choice of the value of R — for instance, by an
appropriate choice of the output coupling aperture of the resonator — leads to
optimum output coupling. In the description of an equivalent parallel circuit, the
threshold condition for a solid state oscillator is given by

R < jRthjI (31.4)

the loss resistance R must be smaller than the absolute value of the threshold
resistance Rth.

To maintain a steady state oscillation, the high frequency voltage across the loop
described by the more complete equivalent circuit (see Fig. 31.5a) must be zero
according to Kirchhoff’s rules of voltages and currents in an electrical circuit,

I0 .Rneg C iXd/C I0 .RC iX/ D 0: (31.5)
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Xd is the reactance of the device and X D !L � 1=.!C / the reactance of the
resonance circuit.Rneg C iXd is the device impedance. The real part of the equation
leads to (31.3) and the imaginary part to

X CXd D !.LC Ld/� 1

!

�
1

C
C 1

Cd

�
D 0: (31.6)

This condition provides the oscillation frequency at steady state oscillation.
We consider an oscillator with an active element carrying a high frequency

current (frequency !) of amplitude OI ,

I.t/ D OI cos!t: (31.7)

The voltage across the active device is given by

U.t/ D Rneg OI cos!t �Xd OI sin!t I (31.8)

we neglect higher harmonics. Voltage and current have a phase shift of

tan' D �Xd=Rneg: (31.9)

Without loss (R D Rneg D 0), the phase shift between current and voltage is �=2.
We can write the oscillator equation in the form

L
dI

dt
CRI C 1

C

Z
Idt C U D 0: (31.10)

Inserting (31.7) and (31.8) in (31.10) leads to the conditions of steady state
oscillation, Rneg CR D 0 and !L � 1=.!C /CXd D 0.

A negative resistance device based on nonlinear properties of conduction elec-
trons in a semiconductor has internal degrees of freedom: the charge density
distribution in an active device (D active medium and electrodes together) can be
inhomogeneous. The degree of inhomogeneity depends nonlinearly on the voltage
across the device. The value of Rneg depends therefore on the internal dynamics.

We consider an oscillator operated at a fixed R D jRnegj, i.e., at a fixed static
voltage. In the case that the oscillator is submitted to a small additional time
dependent voltage U1.t/, the oscillator equation is given by

L
dI

dt
CRI C 1

C

Z
Idt C U D U1.t/: (31.11)

We solve the equation by use of the ansatz:

I.t/ D OI .t/ cosŒ!t C '.t/	; (31.12)
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where higher harmonic currents are neglected. It follows that the high frequency
voltage is equal to

U.t/ D Rneg OI cosŒ!t C '.t/	 � Xd OI sinŒ!t C '.t/	: (31.13)

We assume that OI .t/ and '.t/ do not vary appreciably over one cycle of the oscilla-
tion (slowly varying envelope approximation) and find the differential equations

dI

dt
D � OI

�
! C d'

dt

�
sin.!t C '/C d OI

dt
cos.!t C '/ (31.14)

Z
Idt D

 OI
!

�
OI
!2

d'

dt

!

sin.!t C '/C 1

!2
d OI
dt

cos.!t C '/: (31.15)

Using (31.12) and (31.13), multiplying by cos.!t C '/ and sin.!t C '/ and
integrating over a period T D 2�=!, we find from (31.13) an (31.15) two oscillator
equations

�
LC 1

!2C

�
d OI
dt

C �
Rneg CR

� OI D 2

T

Z t

t�T
U1.t/ cos.!t C '/dt (31.16)

and

�
�!LC 1

!C
� NX

�
�
�
LC 1

!2C

�
d'

dt
D 2

OIT
Z t

t�T
U1.t/ sin.!t C '/dt:

(31.17)

If an external voltage is absent, these differential equations describe a self-excited
oscillation of a quasiclassical solid state oscillator. The description of onset of
oscillation and steady state oscillation of a specific oscillator requires knowledge
about the parameters R, L, C of the passive elements and the parameters Rneg. OI /,
Cd. OI / andLd. OI / of the active device. If an external voltage is present, the equations
describe phase locking of a classical oscillator to an external (weak) high frequency
voltage (that is provided, for instance, by a highly stabilized oscillator).

In comparison with a laser oscillator coupled to an external field – characterized
by five differential equations of first order (Sect. 9.8) – the quasiclassical solid state
oscillator coupled to an external field can be characterized by only two differential
equations of first order, an equation for the amplitude of the current, and another
equation for the phase between current and external field. The equations depend
from each other via the parameters of the active device.

We can describe the superlattice oscillator as a regenerative amplifier with a
resonator mediating feedback. Amplification of thermal radiation leads to phase and
amplitude fluctuations and therefore to a noise bandwidth of the oscillator radiation.
The spectral distribution of the radiation has a Lorentzian lineshape (Sect. 3.7).
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The quality factor for radiation generated by a single mode oscillation is equal to
(Sect. 8.9)

Qrad D QresZ=Z0: (31.18)

Qres is the quality factor of the resonator, Z the average occupation number of
photons in the resonator mode at steady state oscillation and Z0 the average
occupation number of thermal photons in the resonator mode without oscillation.Z
follows from the relation Pout D Zh�=�p, where �p D Qres=! is an average lifetime
of a photon in the resonator. The thermal occupation number is Z0 D kT=h�; k is
Boltzmann’s constant and T the temperature.

Example. Superlattice oscillator with a superlattice described in the preceding and
the following example. Frequency � D 6:5 � 1010 Hz; Qres D 30; output power
Pout D 0:5mW; Z0 � 100; Z D 2 � 108; Qrad � 108.

A more detailed treatment of noise in solid state oscillators can be found, for
example, in [244, 245].

31.5 Dynamics of Gain Mediated by a Semiconductor
Superlattice

We describe a particular superlattice (Fig. 31.7a). It consists of layers of GaAs and
of AlAs in turn. The superlattice is doped and contains free electrons. Adjacent to
the superlattice are, on both ends, highly doped GaAs layers (electron concentration
2 � 1024 m�3). One of these layers connects the superlattice to a highly doped GaAs
substrate and the other layer is covered with a metallic contact layer.

Fig. 31.7 Semiconductor
superlattice. (a) Geometric
structure. (b) Drift
velocity-field characteristic
for a homogeneous field
along the superlattice axis.
(c) Experimental I–V curve
(simplified)
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The drift velocity-field characteristic (Fig. 31.7b) is expected to have the form of
an Esaki-Tsu characteristic:

vET D vET;m
2 Es=Ec

1C .Es=Ec/2
: (31.19)

Es is the static field, vET;m the maximum drift velocity reached at the critical fieldEc.
The differential mobility � D dvET=dEs is equal to the ohmic mobility �ohm D
2vET;m=Ec for fields around Es D 0 and is negative for Es > Ec. The negative
differential mobility has the largest absolute value for E D 1:7 Ec, where � D
��ohm=8. We will derive the Esaki–Tsu characteristic in Sect. 32.3. We will show
that the critical field is determined by the superlattice period a and a relaxation time
� according to Ec D „=ea� ; the relaxation time indicates how fast an equilibrium
is established in an ensemble of free electrons in a superlattice.

If the field along the superlattice axis is homogeneous even if the field exceeds
the critical field, we obtain the Esaki–Tsu characteristic I–V characteristic is given
by

IET D Ip
2 Us=Uc

1C .Us=Uc/2
: (31.20)

Us D Esl is the static voltage across the superlattice,Uc D Ecl is the critical voltage
and

Ip D �r2N0evET;m; (31.21)

is the peak current; r is the radius of the superlattice and N0 the electron density.
The ohmic resistance around Us D 0 is equal to

Rohm D Uc

2Ip
: (31.22)

Example of a superlattice (radius r D 2 �m; l D 0:6 �m; electron densityN0 D
5:5 � 1022 m�3); vET;m D 105 m s�1; Ip D 11mA; Ec D 106 V m�1; Uc D 0:6V;
� � 1.5 � 10�13 s; ohmic resistance Rohm D 27 ˝ (around Us D 0) and ohmic
mobility �ohm D 0:20m2 V�1 s�1; ohmic conductivity �ohm D 1:8 � 103 ˝�1 m�1.

Now, the experimental I–V curve (Fig. 31.7c) shows a constant current (peak
current Ip D N0evET;m) at voltages above Uc. The origin of the excess current
Iexc.U / D Ip �N0evET.E/, with U D El , are excess electrons extracted from the
cathode.

A constant current (I D Ip) corresponds to an excess electron density n

(Fig. 31.8a) that increases with Us (> Uc) according to

n.Us/ D N0

�
vET;m

vET.Us/
� 1

�
D N0

.1� Us=Uc/
2

2Us=Uc
: (31.23)

The excess electron density is zero for Us D Uc, equal to N0 for Us D 3:7

Uc, and increases linearly with Us for Us=Uc � 1. For Us=Uc � 1, the excess
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Fig. 31.8 Superlattice biased with a static voltage. (a) I–V curve and excess current at a static
voltage Us. (b) Charge density and polarization

electron density increases linearly with the static voltage, n D .1=2/N0Us=Uc. We
assume that the positive charges form an area charge (at the cathode) adjacent to
the superlattice boundary. The excess charge within the superlattice is equal to the
positive charge at the cathode (Fig. 31.8b, upper part). The density of the excess
charge in the superlattice is -ne and the area density of the charge at the cathode is
nel . The excess charge in the superlattice together with the positive charge at the
cathode form a dipole domain (Fig. 31.8b, lower part). It consists of a charge density
domain within the superlattice and a positive area charge bound to the cathode. In
the absence of current oscillations, a dipole domain is associated with a quasistatic
polarization P.Us/ D �n.Us/el=2. The direction of polarization is opposite to the
direction of the direct current Ip.

The density n.Us/ increases with increasing Us (Fig. 31.9a). If the voltage across
the superlattice suddenly changes from Us to Us C U1, additional excess electrons
flow into the superlattice until the excess charge density is equal to n.Us C U1/ in
the whole superlattice. If the voltage suddenly changes from Us CU1 to Us �U1, all
excess electrons escape from the superlattice. For Us D 2 Uc and U1 D 1:5 Uc, the
characteristic time of a cycle of filling of the superlattice with excess electrons and
their escape is tc � 2 � l=.0:8vET;m/. The critical rate of generation of a full domain
and of its destruction is

�c D 0:4 vET;m=l: (31.24)

The critical rate is �70 GHz for a superlattice of a length l D 0:6 �m .
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Fig. 31.9 Dynamics of gain. (a) I–V curve. (b) Voltage, polarization and current during an
oscillation cycle

Under the influence of both a static and a high frequency voltage, the high
frequency voltage causes a periodic change of polarization. The temporal change
of polarization is equal to a polarization-current density. A high freqency voltage
(frequency �c) of a rectangular shape (Fig. 31.9b) produces a polarization that has,
in a simplified picture, a triangular shape and is phase-shifted by �=2. The current
has a rectangular shape and is phase-shifted by � relative to the voltage. A Fourier
transformation yields the amplitude OU D .4=�/ U1 of the high frequency voltage
U D OU cos!t and the amplitude OP D nel=2� of the high frequency polarization
P D OP sin!t . The high frequency polarization current is equal to I D � OI cos!t ,
where OI D �r2! OP D r2l�ne is the amplitude of the current; the high frequency
polarization-current is continued outside the superlattice by a high frequency current
(flowing through the antenna). For static voltages that are noticeably larger than Uc,
the electrons are not fast enough to follow the high frequency voltage. Therefore,
the effective length leff of an excess charge domain is shorter than l . We write
leff D lv=.0:8vET;m/. The product nleff .D 1:2 N0l/ and thus OP are independent
of Us. We obtain a constant current amplitude

OI D 1:2 r2�lN0e: (31.25)

A constant amplitude of the high frequency current results in a plateau in the
I � V curve for the superlattice in the oscillating state. This is in accord with the
experimental result.
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Fig. 31.10 Differential resistances of a superlattice; Racc;0, small-signal negative differential
resistance of a superlattice operating in the pure charge accumulation mode; Racc, large-signal
negative differential resistance of a superlattice in an oscillator operating in the pure charge
accumulation mode; RET;0, Esaki–Tsu small-signal differential resistance

An analysis of the large-signal behavior of the amplitude of the high frequency
voltage and the amplitude of the high frequency current leads to a negative
differential resistance of the superlattice operating in the accumulation mode,
Racc D � OU= OI , is equal to

Racc D � 2�vET;m

� l

OU
Uc

2


Us=Uc C .�=4/ OU=Uc

�



j1 � Us=Uc � .�=4/ OU=Ucj

�2 Rohm (31.26)

for Us � Uc and

Racc D � 1:6�vET;m

� l

OU
Uc
Rohm (31.27)

for U 2
s � U 2

c . This analysis is oriented at the I–V curve (see Fig. 31.9a). It is
taken into account that the flow of excess charge takes time and it was made use of
(31.20)–(31.22) and (31.24).

We estimateRacc (Fig. 31.10, solid line), using the values: OU D 0:2 Uc; Us � Uc;
OU D Us � 0.5 Uc for Us > 1.2 Uc. The absolute value ofRacc is largest for Us � Uc,

has a minimum for Us � 2 Uc and then increases with increasing Us.
A superlattice without feedback of radiation has, for Us > Uc, a small-signal

negative differential resistance. A high frequency voltage U D OU cos!t of small
amplitude OU causes the high frequency polarization P D �.el=2/n. This leads,
with dn=dt D .dn=dUs/dUs=dt , to the current amplitude

OI D �r2.el=2/! OUdn=dUs; (31.28)

where

dn

dUs
D N0

Uc

U 2
s =U

2
c � 1

2U 2
s =U

2
c

: (31.29)
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It follows that the small-signal differential resistance of the superlattice operating in
a pure charge accumulation mode, Racc;0 D � OU= OI , is given by

Racc;0 D � 2vET;m

�� l

2U 2
s =U

2
c

U 2
s =U

2
c � 1

Rohm: (31.30)

Racc;0 (Fig. 31.10, dashed dotted) is equal to �1 for Us D Uc and assumes the
constant value �.2vET;m=��l/.U

2
s =U

2
c /Rohm for U 2

s � U 2
c .

Thermal radiation in a resonator is amplified according to the small-signal
negative resistance Racc;0. Due to fluctuations of amplified thermal radiation, a
superlattice can be promoted into a state of larger negative resistance. If this
resistance reachesRacc, stable oscillation can occur. The resistanceRacc corresponds
to the threshold resistance Rth since, for R < jRthj, feedback is strong enough to
start oscillation. Then at steady state oscillation, the superlattice resistance jRaccj
assumes the value R. Because of fluctuations of the field, oscillation can occur also
for Us < Uc.

It follows from (31.19) that the small-signal Esaki-Tsu differential resistance
RET;0 D 1=.dI=dUs/ is equal to

RET;0 D .1C U 2
s =U

2
c /
2

1 � U 2
s =U

2
c

Rohm: (31.31)

RET;0 (Fig. 31.10, dashed) is equal to the ohmic resistance Rohm near Us D 0, then
increases and becomes infinitely large for U ! Uc. RET;0 is negative for Us � Uc,
varies from �1 at Us D Uc to a value of �8Rohm for Us � 2Uc, and is equal to
�.U 2

s =U
2
c /Rohm for U 2

s =U
2
c � 1.

In the voltage range of oscillation, the small-signal Esaki–Tsu resistanceRET;0 is
comparable with the large-signal resistanceRacc. However, the absolute value of the
large-signal Esaki–Tsu negative resistance RET is smaller than the absolute value
of RET;0 according to the shape of the Esaki–Tsu I–V curve. Therefore, jRaccj is
larger than jRETj. This means that the interaction of the high frequency field with an
electron collective in a pure charge accumulation mode is associated, with respect
to the negative resistance, with a larger nonlinearity than the interaction of the high
frequency field with single electrons in the case that the field in the superlattice is
homogeneous.

31.6 Balance of Energy in a Superlattice Oscillator

The electric field associated with a domain has a triangular shape, with a low-field
value E1 at the anode and a high-field value E2 at the cathode;E1 (<Ec) is also the
field immediately after domain destruction. From the Poisson equation

r � D D �; (31.32)
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we obtain the relation ne=2 D ��0.E2 � E1/=l . A fully developed dipole domain
carries the field energy �r2l��0.E2 � E1/

2=2. The field energy of a domain stems
from the high frequency field in the resonator. During a half cycle of the field, the
domain transfers its field energy to the high frequency field and during the following
half cycle, energy of the high frequency field is used to build up the field of the
domain.

Energy balance requires that the power delivered by the voltage source is equal
to the sum of the losses (we modify a discussion in [236]):

�r2l�N0eUs D �r2l�N0eE1l C Pout C Pdom: (31.33)

The loss terms concern:

• �r2l�N0eE1l D loss due to the current carried by the electrons (of density N0).
• Pout D loss due to output coupling of radiation.
• Pdom D loss due to dissipation caused by relaxation processes during domain

formation and destruction.

We find

Us D E1l C Urad C Udom; (31.34)

where Urad D Pout=.�r
2l�N0e/ and Udom D Pdom=.�r

2l�N0e/. The static voltage
across the superlattice is equal to the sum of three terms: the voltage necessary to
drive the normal electrons at the field E1; the voltage Urad necessary to compensate
loss of radiation and the voltage Udom necessary for compensation of energy of
dissipation associated with domains. The normal electrons drift with the average
velocity v.E1/ through the superlattice. The domains, with the positive charges
bound to the cathode, appear and disappear at the repetition rate �.

Example (for the superlattice already discussed). For Us D 2 Uc .D 1:2 V/ and
Prad D Pout at optimum output, the analysis yields the data: E1 D 0:7 Ec; E2 D 4

Ec;E1l D 0:5 V; Urad D 0:25V; Udom D 0:5V. Accordingly, the dissipation energy
is, for Us D 2 Uc, equal to half the field energy of a fully developed domain. The
direct current strength is determined by the drift velocity at the lower field and is
given by the expression Idc=Ip D N0ev.E1/=Ip .�0.8).

The upper limit frequency �limit is determined by the intraminiband relaxation
of the electrons in a superlattice. It follows from the intraminiband relaxation time
(1.5 � 10�13 s) that �limit is �1THz. The appropriate superlattice length, according
to the relation �c D 0:4 �ET;m=l has a value of �10 nm. This means that we are no
longer dealing with a superlattice but with a resonant-tunneling diode like structure
(next section).

A more detailed discussion of the pure charge accumulation mode observed
for superlattice oscillators can be found in [246]. The study presents a method
that is suited to investigate the mechanism of gain in a solid state oscillator. Such
studies may contribute to an improvement of the efficiency of microwave oscillators,
particularly in the range above 100 GHz.
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31.7 Resonant-Tunneling Diode Oscillator

The resonant-tunneling diode oscillator [234, 247] is a quasiclassical solid state
oscillator that reaches very high oscillation frequencies. Because of small radiation
power, resonant-tunneling diode oscillators are not in use.

A resonant-tunneling diode (Fig. 31.11a) consists, for instance, of two AlAs
layers separated by a GaAs layer, embedded in n GaAs. The layers form a quantum
well with a discrete energy level for electron motion perpendicular to the layers.
Under the action of a static voltage Us, electrons tunnel through the quantum well
from one n GaAs region to the other n GaAs region, which results in a current.
If the energy of the tunneling electrons coincides with the energy of the discrete
energy level (Fig. 31.11b), the tunnel current has a maximum as indicated in the
I–V curve (Fig. 31.11c). The I–V curve has, for a voltage above a critical voltage
Uc, a negative slope, which corresponds to a negative differential resistance. The
I–V curve is a hypothetical curve: because of the negative differential resistance,
the charge distribution in the range of the double-heterostructure is inhomogeneous.

The negative differential resistance gives rise to a self-excited oscillation if
the active element is coupled to a resonance circuit; the oscillation frequency is
determined by the resonator. Radiation generated in first order has been observed
in frequency ranges from 10 GHz up to several hundred GHz. The power decreased
strongly at frequencies above 100 GHz. The highest frequency of radiation emitted
by a GaAs/AlAs resonant-tunneling diode oscillator was near 400 GHz [247] and
near 700 GHz for an InAs/AlSb resonant-tunneling diode oscillator [248].

Fig. 31.11 Resonant-tunneling diode. (a) Quantum well. (b) Voltage-biased quantum well.
(c) Hypothetical I–V curve. (d) I–V curve in the case of occurrence of feedback from a high
frequency field
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Example. InAs/AlAs resonant-tunneling diode [249]. Double barrier structure with
1.5 nm thick undoped barriers separated by a 6.4 nm thick undoped InAs quantum
well; diameter 1.8 �m; current 5 mA; voltage 1.3 V; Ropt � �50 ˝; power 0.3 �W
at 712 GHz.

The resonant-tunneling diode oscillators operated most likely in the pure charge
accumulation mode.

31.8 Van der Pol Oscillator

We discuss a model of a classical electric oscillator namely the van der Pol oscillator.
The active device is a resistance that shows a negative differential resistance above a
critical voltageUc (Fig. 31.12a); the I–V curve resembles the hypothetical I–V curve
of the resonant-tunneling diode. Under the action of a static voltage (bias voltage
U0), with the resistance coupled to a resonant circuit, a self-excited oscillation can
occur. The classical oscillator model assumes that the current through the active
device and the voltage across the device always follow the I–V curve, and that the
curve does not change during buildup of an oscillation.

To study basic properties of a classical oscillator, we introduce an I–V curve
(Fig. 31.12b) that has, around the range of negative slope, a similar shape as the
hypothetical I–V curve of the resonant-tunneling diode and can be described by an
analytical expression,

I.U / D I0 � a .U � U0/C b .U � U0/3; (31.35)

Fig. 31.12 Classical oscillator. (a) Hypothetical I–V curve of a tunnel diode. (b) I–V curve of a
van der Pol oscillator
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Fig. 31.13 Equivalent circuit of a negative resistance oscillator of the van der Pol type

where a > 0 and b > 0 are constants. The I–V curve has the largest negative slope
for U D U0. The slope of the I–V curve is unrealistic for voltages U � U0 and
U � U0. In the range around U0, it shows for appropriate parameters a, b, U0 and
I0, the hypothetical characteristic of a tunnel diode.

We make use of a parallel equivalent circuit (Fig. 31.13) containing an inductance
L, a capacitance C , and a loss resistance R, which describes loss due to emission
of radiation. The high frequency currents through the capacitance (Ic), through the
inductance (IL), and through the resistance (IR) are related to the high frequency
voltage UHF between the points 1 and 2,

IC D C
dUHF

dt
I IL D 1

L

Z
UHFdt I IR D UHF

R
: (31.36)

The sum of the total current in point 1 of the circuit must be zero,

IC C IL C IR C Id D 0: (31.37)

Id is the current through the nonlinear device. The signs follow from Kirchhoff’s
rules for the voltages and the currents in a circuit take into account that the
instantaneous voltage UHF.t/ across the active element has a sign that is opposite
to the sign of the high frequency current flowing through the resistance. The sum
of all currents through a knot is zero and the sum of all voltages in a loop is zero
according to Kirchhoff’s rules. By differentiation, we obtain

CL
d2UHF

dt2
C UHF C L

R

dUHF

dt
D �L dId

dt
: (31.38)

The current, i.e., the derivative of the current with respect to time, is the source of
the high frequency voltage.

We can write

dId

dt
D dId

dU

dU

dt
D df

dU

dU

dt
: (31.39)
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Then (31.38) assumes the form

CL
d2U

dt2
C L

�
1

R
C f 0.U0 C U /

�
dU

dt
C U D 0: (31.40)

We omitted the subscript HF. We find, with !20 D 1=LC , the differential equation

1

!20

d2U

dt2
C .�� C 
/

dU

dt
C U D 0; (31.41)

where

� D �.U / D L

�
@Id

@U

�

U

(31.42)

is the growth coefficient and


 D L=R (31.43)

the damping coefficient. In the active element of a classical oscillator, the growth
coefficient � depends on the instantaneous voltage U.t/ at time t .

Using the analytical form (31.35) of the I–V curve, we can write

IHF D �aUHF C bU 3
HF: (31.44)

It follows that
�
@I

@U

�

U

D �aC 3bU 2I (31.45)

we again omitted the subscript HF. We find the growth coefficient

� D a

L
� 3b

L
U 2 (31.46)

and obtain the differential equation (van der Pol equation) for the high frequency
voltage

d2U

dt2
C
�

��0 C 
 C 3b

C
U 2

�
dU

dt
C !20U D 0: (31.47)

The differential equation describes a self-excited oscillator with the small-signal
growth coefficient

�0 D a

L
(31.48)

and two damping terms. The first damping term, 
, characterizes output coupling of
electromagnetic radiation and the second term intrinsic loss in the active element.
This loss is zero for U D 0 and increases proportionally to the square of U . The
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van der Pol equation describes an oscillation that is strongly nonlinear, except in the
case that the net gain is small,

�0 � 
 � !0: (31.49)

In this case the van der Pol equation has a solution that corresponds to a nearly
harmonic oscillation. With the ansatz

U D A.t/ cos!0t; (31.50)

where A.t/ is a slowly varying function, �0 � 
 � !0, we obtain

dU

dt
D dA

dt
cos!0t � !0A sin!0t; (31.51)

d2U

dt2
D �2!0 dA

dt
sin!0t � !20A cos!0t: (31.52)

The differential equation leads, with .�0 � 
/ ˇ̌ dA
dt

ˇ̌ � !0
ˇ̌

dA
dt

ˇ̌
, to

�2!0 dA

dt
sin!0T �.��0C
/!0A sin!0t� 3b!0

C
A3 cos2 !0t sin!0t D 0: (31.53)

Using the relation

cos2 ˛ sin ˛ D 1

2
.1C cos 2˛/ sin ˛ D �1

4
sin ˛ C 1

4
sin 3˛ (31.54)

and neglecting the higher order term sin 3˛, we find

dA

dt
C 1

2
.��0 C 
/AC 3b

8C
A3 D 0: (31.55)

This differential equation has exactly the same form as the differential equation that
we derived for the amplitude of the field in a laser oscillator. The solution is

A.t/ D A1p
1C .A1=A0/2 e�.�0�
/t

: (31.56)

A0 D A.t D 0/ is the initial amplitude of the voltage and

A1 D 2
p
.�0 � 
/C=3b (31.57)

is the amplitude of the high frequency voltage at steady state oscillation. After a
sudden turning on of the active element, a small high frequency voltage initiates the
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Fig. 31.14 The van der Pol oscillator at a small net gain

buildup of an oscillation. The initial high frequency voltage stems from noise in the
resonance circuit.

The van der Pol oscillator of small net gain �0 � 
 is driven in a range of the
voltage amplitude that corresponds to the range of almost constant negative slope of
the I–V curve (Fig. 31.14). At small amplitude of the voltage, the intrinsic damping
is negligibly small. At large amplitude and steady state oscillation, the intrinsic
damping becomes efficient during each cycle at instantaneous voltages in the ranges
U 	 ˙A. This leads, as our analysis shows, to the same form of the first-order
differential equation for the amplitude of the voltage in the classical oscillator as we
found for the amplitude of the field in a laser oscillator, although the nonlinearities
have completely different origins.

The van der Pol oscillator is discussed in many textbooks; see, for instance, [250].

REFERENCES [234–250]

Problems

31.1. Equivalent circuit.

(a) Replace the equivalent circuit of Fig. 31.5 by a parallel resonant circuit; the
active device has the negative admittanceGd and the loss resistor the admittance
G.

(b) Derive the differential equation for the high frequency voltage.
(c) Discuss the dependence of the negative admittance of the device on the voltage

across the device.
(d) Show that the output power of the oscillator is Pout D .1=2/G OU 2, where G C

Gneg D 0 is the condition of steady state oscillation.
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31.2. Electric polarization.

(a) Determine the electric polarization of a dipole domain consisting of a positive
area charge �le at x D 0 and a negative charge of density � in the range 0; l .

(b) Determine the polarization of a dipole domain consisting of a negative charge
of area density �le at x D x0 and a positive charge of density � in the range
x0; x0 C l .

31.3. Van der Pol oscillator.

(a) Evaluate for a van der Pol oscillator (with the data: a D 10�2 ��1; b D 10�2
��1 V�2; !0 D 2� � 1010 Hz; C D 1 pF; andG D 1��1) the small-signal net
growth coefficient and show that it is small compared to !0.

(b) Determine the voltage amplitude for the steady state oscillation.
(c) Determine the current amplitude for the steady state oscillation. [Hint: make

use the relation cos3 ˛ D 3
4

cos˛ C 1
3

cos 3˛ and neglect the term with 3˛.]

31.4. Van der Pol equation.

(a) Show that the van der Pol equation can be written in dimensionless units,

d2y

d�2
C �.�1C y2/

dy

d�
C y D 0;

where y is the voltage in dimensionless units, � D !0t the dimensionless time
and � the small-signal net gain coefficient in dimensionless units.

(b) Solve the van der Pol equation for � � 1 at steady state oscillation. [Hint: make
use of the relation cos3 � D 3

4
cos �C 1

3
cos 3� and neglect the term with cos 3� .]



Chapter 32
Superlattice Bloch Laser: A Challenge

The superlattice Bloch laser (also called Bloch oscillator) exists only as an idea.
We discuss this type of laser for two reasons. First, a superlattice Bloch laser would
provide a semiconductor source of coherent radiation in the 1–10 THz range —
with operation at room temperature. Second, there are, with respect to the formal
description of a Bloch laser medium, many similarities to a free-electron laser
medium, although the origin of gain is completely different.

In a superlattice Bloch laser, free electrons are drifting, under the action of a static
field, through a periodic electric potential. Due to the electric forces, the electrons
perform oscillations (Bloch oscillations). A high frequency field modulates the
oscillations. Phase relaxation of the frequency-modulated oscillations leads to
synchronization of the oscillations to the high frequency field. The synchronized
oscillations mediate gain; gain corresponds to transfer of energy of translation of
the electrons to energy of the high frequency field. Relaxation is due to electron-
phonon interaction. The resonance frequency increases linearly with the strength
of the static field. Frequency tuning over a large range is possible by changing the
static field strength, that is, the voltage across a superlattice. The amplitude of the
high frequency field in an active medium of a Bloch laser medium is limited; even
if the high frequency field in the laser resonator has no loss, the field cannot exceed
a saturation field — conventional lasers do not have such a limitation.

Suitable as an active medium is a semiconductor superlattice submitted to a
homogeneous static electric field Es of a strength that is larger than a critical
field Ec. However, under this condition, the electrons tend to form charge density
domains, which destroy the homogeneity of the field. We will mention methods that
may be suited to avoid domains.

We study transport properties of a superlattice in a homogeneous electric
field — assuming that the field remains homogeneous even ifEs>Ec. We character-
ize Bloch oscillations and derive the current-voltage characteristic of a superlattice.
We derive the small-signal gain coefficient and the saturation field amplitude. Gain
can occur up to the resonance frequency (Bloch frequency �B). The gain coefficient
curve is antisymmetric with respect to �B; the Bloch frequency is a transparency
frequency.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8 32, © Springer-Verlag Berlin Heidelberg 2012
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We also present an energy-level description of the superlattice Bloch laser. The
energy levels of an electron, which executes Bloch oscillations, form a Wannier-
Stark ladder: the energy levels are equidistant and have a next-near energy distance
of h�B. Stimulated transitions between next-near energy levels are the origin of laser
radiation.

32.1 Principle of a Superlattice Bloch Laser

Figure 32.1 illustrates the principle of a superlattice Bloch laser. A voltage source
(voltage Us) produces a direct current (I ) that flows as electron current through an
n-doped semiconductor superlattice. In the superlattice, miniband electrons carry
the current. The miniband electrons execute — under the action of the static field
along the superlattice axis — free-electron oscillations ( D Bloch oscillations). The
resonance frequency of a free-electron oscillator is the Bloch frequency

�B D eaEs

h
: (32.1)

Es is the strength of the static field within the superlattice and a the superlattice
period. The Bloch frequency is proportional to Es and to a.

We assume that a superlattice fills a resonator, which is formed by the metallic
anode, the metallic cathode and four free surfaces of the superlattice. Radiation
(power Pout) is coupled out via free surfaces of the superlattice.

The small-signal gain coefficient is, approximately, given by (Sect. 32.4):

˛.�/ D ˛p NgL;disp.�/; (32.2)

where

˛p D f .T /
N0e

2

4�.c=n/�0m��B
(32.3)

is a peak gain coefficient, f .T / � 1 a temperature parameter, N0 the electron
density, c=n the speed of light in the superlattice, n the refractive index at the laser
frequency,m� the effective mass of an electron at the bottom of the miniband of the
superlattice

Fig. 32.1 Principle of a
superlattice Bloch laser
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NgL;disp.�/ D �0 � �

��B=2
NgL;res.�/ (32.4)

is the Lorentz dispersion function, and

NgL;res.�/ D ��2B=4

.�B � �/2 C��2B=4
(32.5)

the corresponding Lorentz resonance function; it has the halfwidth �vB D 1=.��/,
where � is the phase relaxation time of the Bloch oscillations.

The gain curve (Fig. 32.2) is antisymmetric with respect to the Bloch frequency
�B. The gain coefficient is positive if � < �B. The maximum small-signal gain
coefficient is equal to

˛m D ˛p

2
D f .T /

N0e
2

8�.c=n/�0m��B
: (32.6)

The distance between the frequency of the maximum and the frequency of the
minimum of the gain coefficient curve is equal to ��B. The maximum of the gain
coefficient occurs at the frequency �B � ��B=2. The maximum gain coefficient
is proportional to the electron density and inversely proportional to the Bloch
frequency. The gain bandwidth �vg is about twice the halfwidth of the Lorentz
resonance curve,�vg 	 2�vB.

The amplitude of the field in a Bloch laser is limited. The saturation field
amplitude is equal to (Sect. 32.5)

A1 D 1:8
h�B

ea
: (32.7)

It follows that the output power is given by

Pout D .2.c=n/�0=4/.1�R/A21a1a2I (32.8)

Fig. 32.2 Calculated gain coefficient of a semiconductor superlattice
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we assume that emission occurs mainly via the two areas opposite to the long axis
of a 101 rectangular resonator.

Table 32.1 shows data used for calculation of the gain coefficient of a specific
GaAs/AlAs superlattice; a superlattice with 14 monolayers of GaAs and 2 mono-
layers of AlAs per period (a D 4.2 nm). A superlattice with these data can be
prepared with high quality by the use of molecular beam epitaxy. It has the largest
miniband width �m ( D 0.14 eV) that can be achieved for a GaAs/AlAs superlattice;
the effective massm� of a superlattice with these data is almost the same as for bulk
GaAs. The table lists data that concern different quantities:

• Superlattice data: period; miniband width; effective mass; relaxation time of the
Bloch oscillations; resonance bandwidth ��B; quality factor; gain bandwidth;
critical field.

• Data of a Bloch laser for a particular frequency (� D 4.7 THz): refractive index
of the superlattice material; Bloch frequency leading to maximum gain and the
corresponding static field strength Es; drift velocity of an electron at the field
Es; time (�d) it takes an electron to drift through the superlattice; saturation
field amplitude; LSL D length; and a1 D width of superlattice; L D length of
resonator.

• Extensions of the superlattice; output power for an output coupling loss 1�R for
a reflectivityR D 0.9; photon emission rate; time between subsequent stimulated
emission processes; ratio �stim=� .

• Electron density; current; rate of electron transits through the superlattice;
number of photons generated by an electron.

• Voltage across the superlattice; electric power; power efficiency.
• Temperature parameter (Sect. 32.9) f .T / D J0.�m=kT /=J1.�m=kT /; J0, Bessel

function of zeroth order and J1, of first order; small-signal gain coefficient of the
superlattice medium; gain cross section of an electron; small-signal gain factor
at the maximum of the gain curve.

We will show:

• Gain is due to modulation of the Bloch oscillations by the high frequency field.
• A saturation field limits the gain at steady state oscillation.
• Synchronization of the Bloch oscillations to the field is due to k-space bunching

caused by phase relaxation of the Bloch oscillations.
• An oscillating electron is describable as an energy-ladder system and the active

medium of a Bloch laser as an ensemble of energy-ladder systems.

32.2 Bloch Oscillation

Figure 32.3a shows the dispersion curve �.kx/ for a miniband electron,

� D .1=2/�m.1 � coskxa/I (32.9)
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Table 32.1 Data of a GaAs/AlAs superlattice Bloch laser

Quantity Value

a 4.2 nm Superlattice period
�m 140 meV Miniband width
m� D 2„2=�ma

2 6 � 10�32 kg Effective mass
� 5 � 10�13 Hz Relaxation time
��B D 1=�� 6 � 1011 Hz Width of resonance
QB D �B=��B 8 Quality factor
��g � 2 ��B 1.2 � 1012 Hz Gain bandwidth
Ec 3 � 105 V m�1 Critical voltage
v 4.7 � 1012 Hz Laser frequency
�B 5 � 1012 Hz Bloch frequency
h�B 20 meV
n 3.7 Refractive index
Es 3 � 106 V m�1 Static field strength
v 2.7 � 104 m s�1 Drift velocity
�d DLSL=v 4.5 � 10�11 s Drift time
A

1

D 1.8h�B=ea 4 � 106 V m�1 Saturation field amplitude
a1 9 �m Width of resonator
a2 D LSL D 1.2 � 103 a 5 �m Height of resonator
a3 D L 20 �m Length of resonator
Pout D
.2c=4n/.1� R/ A2

1

a1a2 40 mW Output power
rph DPout=h� 6 � 1020 s�1 Photon emission rate
�stim D �d=�q 1.5 � 10�13 s Time between two stimulated

emission processes
�stim=� 0.25
N0 3 � 1022 m�3 Electron density
I DN0eva1a3 23 mA Current
rel D I=e 2 � 1018 s�1 Electron transit rate
rph=rel 300 Photons per electron
U DLSLEs 15 V Voltage across superlattice
Pel DUI 350 mW Electric power
�P DPout=Pel 12% Power efficiency
f .300K/ 0.6 Temperature parameter
˛m D
f .300K/N0e2n=8�c�0m��B 7 � 104 m�1 Small-signal gain coefficient

�21 D˛m=N0 2 � 10�18 m2 Gain cross section
G1 D exp .˛ma3/ 4 Small-signal gain factor

� is the energy of propagation along the superlattice axis, �m the maximum energy
in the miniband and kx the wave vector along the superlattice axis. Around the
minimum, � D 0, where kxa � 1, the dispersion relation is approximately given by

� D „2k2x
2m� ; (32.10)
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Fig. 32.3 Bloch oscillation of an electron. (a) Dispersion curve and Bragg reflection in the k
space. (b) Group velocity

where

m� D 2„2
�ma2

(32.11)

is the effective mass of an electron at the bottom of the miniband.
We describe an electron propagating in x direction as a one-dimensional wave

packet. The wave packet is composed of waves of different wave vectors kx and
has a central wave vector kx;c. The central wave vector corresponds to a de Broglie
wavelength �dB D 2�=kx;c. In the following, we consider the temporal change of
the central wave vector under the influence of a force. We omit, for convenience, the
subscript “c”.

We first study the motion of an electron under the action of a static electric field
Es along the x axis. The field leads to acceleration of an electron (charge q D �e)
according to the equation of motion

„dkx=dt D qEs: (32.12)

In this semiclassical equation of motion, „kx plays the role of the classical
momentum [179]. The equation (also called acceleration theorem) corresponds to
Newton’s equation of motion in classical physics. The solution is

kx D .qEs=„/.t � t0/; (32.13)

where t0 is the time at which the electron starts with the wave vector kx D 0. The
wave vector increases linearly with time. Multiplying kx by a, we find that the phase

kxa D .qaEs=„/ .t � t0/ (32.14)
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increases linearly with time. The group velocity is

vg D 1

„
@�

@k
D v0 sinŒ!B.t � t0/	; (32.15)

where
v0 D �ma

2„ (32.16)

is the maximum group velocity and!B the Bloch frequency ( D resonance frequency
of the Bloch oscillation), which is given by the relation

!B D eaEs=„: (32.17)

The maximum group velocity increases proportionally to �m. The Bloch frequency
is proportional to the strength of the static field. The energy „!B is the energy an
electron can gain in the field Es when it travels over of a superlattice period a. An
electron executes Bloch oscillations with the period TB D 2�=!B.

An electron starting with k.t0/ D 0 is accelerated, reaches the mini-Brillouin
zone boundary after TB=2 (Fig. 32.3a), experiences a Bragg reflection, is decelerated
until it begins a new oscillation cycle. The group velocity of the electron wave packet
(Fig. 32.3b) varies harmonically with the period TB.

The spatial coordinate � D R t
0 vg.t

0/dt 0 also varies periodically (Fig. 32.4a),

� D .1=2/ �m .1 � cosŒ!B.t � t0/	/ ; (32.18)

Fig. 32.4 Bloch oscillation of an electron in space. (a) Displacement. (b) Bragg reflection
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where
�m D �m

eEs
D �m

„!B
a (32.19)

is the length of the trajectory. The Bloch oscillation thus corresponds to a periodic
motion of an electron wave packet in space around �m=2. We assume that �m �
„!B, i.e., that the trajectory extends over many superlattice periods (Fig. 32.4b,
upper part). The electron wave packet, periodically accelerated and decelerated, has
a large spatial extension at small central wave vectors and a small extension at large
central wave vectors. The de Broglie wavelength of the electron

�dB D 2�

kx
(32.20)

is infinitely large at the bottom of the miniband and reaches the value 2a at the mini-
Brillouin zone boundary (Fig. 32.4b, lower part). The electron wave undergoes a
Bragg reflection when the de Broglie wavelength is equal to twice the spatial period
of the superlattice.

An electron oscillates around a fixed position. A static field does therefore not
lead to a direct current. Relaxation, however, gives rise to a direct current, as we
will see in the next section.

Example of a Bloch oscillation. 14/2 GaAs/AlAs superlattice (14 monolayers of
GaAs and 2 monolayers of AlAs); a D 14 monolayers (� 4.2 nm); �m D 140 meV;
Es D 10 kV/cm; �B D !B=2� D 1 THz; �m � 30 a (� 120 nm).

32.3 Esaki–Tsu Characteristic

A drift of an oscillating electron arises due to intraminiband relaxation. In a
relaxation process, an electron loses energy and reaches another trajectory. The
trajectory is, relative to the original trajectory, shifted along the direction of the
electric force (Fig. 32.5a). The drift velocity is given by

Fig. 32.5 Electron drift of an
oscillating electron in a static
electric field. (a) Electron
drift. (b) Drift velocity-field
curve
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v D 1

�

Z 0

�1
e�t0=�vg dt0: (32.21)

The exponential is equal to the probability that an electron starting a Bloch
oscillation at time t0 does not undergo a relaxation process in the time interval
t0,0. The integration takes into account that the starting time can have a value
between �1 and 0. The contribution for starting times t0 � �� is small in
comparison with the contributions for starting times t0 � �� . This model supposes
that an electron relaxes in an intraminiband relaxation process to the bottom of the
miniband. Integration yields the Esaki–Tsu drift velocity

vET D vET;m
2!B�

1C !2B�
2
; (32.22)

where
vET;m D v0

2
D �ma

4„ (32.23)

is the maximum drift velocity. The drift velocity (Fig. 32.5b) varies linearly with the
electric field around zero field and shows a maximum at a critical field

Ec D „
ea�

; (32.24)

which corresponds to !B� D 1. For E � Ec, the drift velocity decreases inversely
proportional to Es. With increasing Es (> Ec), the number of Bragg reflections per
unit of time increases and therefore the drift velocity decreases.

For Es � Ec, we obtain the ohmic conductivity of a superlattice,

�ohm D N0e
2�

m� : (32.25)

Ohmic conductivity takes place only if the relaxation time � has a finite value, i.e.,
if energy relaxation occurs.

An intraminiband relaxation process is an inelastic scattering process: an electron
loses energy via electron–phonon scattering. With respect to the Bloch oscillation,
an intraminiband relaxation process is a phase relaxation process. It corresponds to
a change of the phase:

• Of the intraminiband energy � (Fig. 32.6, upper part).
• Of the group velocity vg (Fig. 32.6, lower part).
• Of the displacement � (not shown).

After a phase relaxation process, an electron continues to oscillate with the Bloch
frequency. The time between two relaxation processes is the phase relaxation time
( D intraminiband relaxation time) � . The intraminiband relaxation is mainly due to
emission of longitudinal optical phonons (energy 37 meV for GaAs).
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Fig. 32.6 Phase relaxation of an oscillating free electron. (a) Time dependence of the intramini-
band energy. (b) Time dependence of the group velocity

We assumed that the superlattice has a temperature near T D 0. The thermal
distribution of miniband electrons in a superlattice at temperatureT reduces the drift
velocity. The shape of the Esaki–Tsu curve remains unchanged but the maximum
drift velocity is reduced,

vET;m.T / D f .T /
�ma

4„ ; (32.26)

where f .T / (< 1) is a temperature parameter (Sects. 32.1 and 32.9 and [255]).
Example. GaAs superlattice (at room temperature) with the data of the last

example; � � 1.5 � 10�13 s; !B� D 1 occurs for !B=2� D 1 THz.

32.4 Bloch Gain

Under the influence of both a static field Es and a high frequency field (amplitude
A, frequency !),

E D A cos!t; (32.27)

applied along the superlattice axis, a miniband electron is accelerated according to
the equation of motion

„dkx
dt

D qEs C qA cos!t: (32.28)

Integration yields the phase

kxa D !B.t � t0/C qaA

„! .sin!t � sin!t0/; (32.29)

where t0 is the time at which a Bloch oscillation starts. It follows that the phase kxa
is phase-modulated with the modulation degree
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m D eAa

„! : (32.30)

The instantaneous group velocity is equal to

vg D v0 sinŒ!B.t � t0/Cm.sin!t � sin!Bt0/	: (32.31)

We write vg D v0 sin .t/ and find the instantaneous frequency

!inst D d

dt
D !B C 
A sin!.t � t0/; (32.32)

where

 D ea=„ (32.33)

is the coupling strength of the frequency coupling. The coupling strength is
proportional to the superlattice period. The high frequency field causes frequency
modulation of the Bloch oscillation.

The interaction of a high frequency electric field with an electron that executes
an undamped Bloch oscillation does not lead to a net exchange of energy since the
product vgA cos!t averaged over time is zero.

We now take account of relaxation. The probability that an electron does not
undergo a relaxation process in the time interval t � t0; t is

p.t; t0/ D e�.t�t0/=� : (32.34)

The average over all starting times yields an instantaneous drift velocity

vinst.t/ D 1

�

Z t

�1
p.t; t0/vg.t; t0/dt0: (32.35)

The instantaneous drift velocity varies periodically with the period T D 2�=! of
the high frequency field. A Fourier transformation [15] yields the amplitude of the
real part of the velocity:

v1 D v0

C1X

nD�1
Jn.m/

.!B C n!/�

.!B C n!/2�2 C 1
: (32.36)

Jn is the Bessel function of nth order. The terms for n D �1;�2;�3; ... describe
resonances at which n! D !B.

In the following, we will discuss the case n D ˙ 1. Making use of the relation
J�1 D �J1, we obtain

v1 D �v0J1.m/

�
.!B � !/�

.!B � !/2�2 C 1
� .!B C !/�

.!B C !/2�2 C 1

�
: (32.37)
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We can write, with �!0 D 2=� , the last expression in the form

v1 D �v0J1.m/ Œ NgL;disp.!/ �K.!/	; (32.38)

where

NgL;disp.!/ D !B � !

�!B=2
NgL;res (32.39)

is the Lorentz dispersion function and

NgL;res D �!2B=4

.!B � !/2 C�!2B=4
(32.40)

the corresponding Lorentz resonance function. The halfwidth of the Lorentz reso-
nance function is equal to�!B D 2=� . The quality factor of the Bloch resonance is

QB D !B�=2 D ��B: (32.41)

The term

K.!/ D !B C !

�!B=2

�!2B=4

.!B C !/2 C�!2B=4
(32.42)

contributes strongly to v1 if !B� has a value that is not much larger than 1.
We consider the limit of small modulation degree, where J1.m/ D m=2. We

find, with v0 D �ma=2„, m D eAa=„!, and m� D 2„2=�ma
2, the amplitude of the

velocity:

v1 D � eA

2m�!
Œ NgL;res.!/�K.!/	: (32.43)

The real part of the high frequency mobility is equal to

�1 D v1
A

D � e

2m�!
Œ NgL;res.!/ �K.!/	 D � e

2m�!B

!B

!
Œ NgL;res.!/ �K.!/	:

(32.44)
The factor 1/! reflects the dependence of the modulation degree on the frequency.

It follows that the high frequency conductivity is given by

�1.!/ D ��p
2!B�.1C !2�2 � !2B�

2/

1C 2!2�2 C !4�4 C 2!2B�
2 � 2!2�2!2B�

2 C !4B�
4
; (32.45)

where

�p D N0e
2

2m�!B
(32.46)

is a peak conductivity.
Figure 32.7 shows �1=�p for a particular Bloch frequency (�B D 5 THz) and

two different values of the relaxation time. At the smaller relaxation time, the
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Fig. 32.7 High frequency conductivity of a superlattice in a static electric field corresponding to
a Bloch frequency of 5 THz

transparency frequency is slightly smaller than the Bloch frequency; the shift of
the transparency frequency is due to the term K.!/.

The small-signal gain coefficient is equal to

˛.!/ D �1.!/

.c=n/�0
: (32.47)

In Sect. 32.1 (see Fig. 32.2) we already discussed the absorption coefficient ˛.!/
for �B D 5 THz and � D 5 � 10�13 s.

For !B� � 1 and ! � !B, we can neglect K.!/ and obtain the high frequency
conductivity

�1.!/ D ��p NgL;disp.!/: (32.48)

In Sect. 9.9, we mentioned the Kramers–Kronig relations, which relate the real
part of a physical response function and the imaginary part. If the shape of the
imaginary part of a response function is given by a Lorentz resonance function,
the shape of real part of the response function is a Lorentz dispersion function. The
Kramers–Kronig relations have been derived for systems in thermal equilibrium. We
now assume that the Kramers–Kronig relations are also valid for a nonequilibrium
system. We assume: if the shape of the imaginary part of a response function is given
by a Lorentz dispersion function, the shape of real part of the response function
is a Lorentz resonance function. Accordingly, we find that the imaginary part of
the high frequency conductivity is given, for frequencies around the resonance
frequency, by

�2.!/ D ��p NgL;res.!/: (32.49)

(The same result of the small-signal conductivities �1 and �2 has been obtained by
a direct analysis of the response of miniband electrons [258].)
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Fig. 32.8 Bloch gain for !B� � 1. (a) High frequency conductivities. (b) Gain coefficient

The response function of the current density is the complex conductivity

Q�.!/ D � �p
�!B=2

i .!B � !/C�!B=2
: (32.50)

The shape of the real part of the conductivity corresponds to a Lorentz dispersion
function and the shape of the imaginary part to a Lorentz resonance function
(Fig. 32.8a). The extrema of j�2j are determined by the peak conductivity �p. The
extrema of �1 have the values � �p=2. The small-signal gain curve (Fig. 32.8b) is
antisymmetric with respect to !B.

In case of finite temperature, the frequency dependences are the same as for the
low temperature case. However, the peak conductivity is reduced by the temperature
factor (Sects. 32.1 and 32.9),

�p.T / D f .T /
N0e

2

2m�!B
: (32.51)

It follows that the small-signal gain coefficient for !B� � 1, and thereforeK.!) �
0, is given by

˛.!/ D ˛p NgL;disp.!/I (32.52)

˛p D f .T /
N0e

2

2.c=n/�0m�!B
: (32.53)

A comparison indicates the following. The real part of the polarization-
conductivity of an atomic system with population inversion shows a resonance and
the imaginary part a dispersion like behavior; gain occurs at frequencies around the
resonance frequency. But the real part of the conductivity of a system of oscillating
free electrons shows a dispersion-like behavior and the imaginary part a resonance;
gain occurs at frequencies below the resonance frequency.
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32.5 Saturation Field of a Bloch Laser

We discuss the saturation behavior. We assume, for simplicity, that !B� � 1.
Therefore, we can neglect K.!/. According to (32.38), the amplitude of the high
frequency velocity is equal to

Ov D jv1j D v0J1.m/: (32.54)

The Bessel function J1 has a maximum at m D 1.8 (and then decreases to zero and
becomes negative). The amplitude of the high frequency velocity cannot exceed the
corresponding maximum velocity Ov1 (Fig. 32.9, upper part) because dOv=dm D 0
at the maximum. The maximum amplitude Ov1 corresponds to a saturation field
amplitude A1. We find the saturation field amplitude

A1 D 1:8 h�B

ea
: (32.55)

In the range of the nonlinear dependence of Ov.A/, gain is determined by the
differential gain coefficient (Fig. 32.9, lower part)

˛d D N0e
2

2.c=n/�0m�!B

dOv
dA
: (32.56)

The velocity Ov1 will be reached if no radiation is coupled out from the Bloch laser.
Then the gain coefficient is zero,

˛d.A1/ D 0I (32.57)

without output coupling loss (and without other loss of radiation), the transverse
velocity and the high frequency field have a phase of �=2 relative to each other. If
output coupling loss is present, the gain coefficient assumes a value necessary to
maintain oscillation.

Fig. 32.9 Saturation behavior of a Bloch laser medium: dependence of the amplitude of the high
frequency velocity (upper part) on the modulation degree, and dependence of the gain coefficient
on the amplitude of the high frequency field (lower part)
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The saturation field amplitude does not depend on the length of the Bloch laser
medium. Doubling of the length of the Bloch laser medium results in a shortening
of the oscillation onset time.

The output power of a Bloch laser,

Pout D .1=2/.1� R/.c=n/�0A
21a1a2; (32.58)

is determined by A1, the reflectivity, and the area a1a2 of the output coupling
surfaces.

32.6 Synchronization of Bloch Oscillations to a High
Frequency Field

We illustrate the result of the gain calculation. Electrons in a static field perform
Bloch oscillations at the Bloch frequency. The oscillations of different electrons
are uncorrelated to each other (Fig. 32.10, left). The average high frequency current
at the Bloch frequency is zero. A high frequency field (frequency !) forces the
electrons to oscillate with the same average phase relative to the phase of the field
(Fig. 32.10, right). For ! D !B, the phase between the current and the field is �/2.
There is, in the time average, no net exchange of energy. For ! < !B, the phase is
larger than �/2 and gain occurs while for ! > !B, the phase is smaller than �/2,
which corresponds to absorption.

In a static field along the superlattice axis, the wave vector of an electron
increases linearly with time. We restrict the wave vector to the mini-Brillouin zone
(Fig. 32.11a). An electron (with a path represented by the dotted line) that starts
with the initial wave vector k.t0/ D 0 experiences a Bragg reflection after half a
period, and then after each further period TB D 2�=!B of the Bloch frequency. An
electron with the initial wave vector k.t0/ D ��=a (solid line) undergoes the first
Bragg reflection after one temporal period, the second after two periods, and so on.
The k-space trajectories are straight lines.

Modulation of the Bloch oscillations causes a change of the trajectories.
Figure 32.11b shows the trajectories of the two electrons if a high frequency field
(dashed in the lower part of the figure), which has the same period as the Bloch
oscillation (T D TB), is applied in addition to the static field. The electron starting
with the initial wave vector k.t0/ D 0 traverses the range of large wave vector
(kx � ˙�=a/ slower than without modulation while the electron starting with

Fig. 32.10 Bloch oscillations
of miniband electrons under
the action of a static field
(left), and of both a static and
a high frequency field (right)
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Fig. 32.11 k-space bunching. (a) k-space trajectories of two electrons in a static field. (b) k-space
trajectories of two electrons submitted to both a static and a high frequency field

the initial wave vector k.t0/ D ��=a traverses the range of large wave vector
faster. Relaxation processes occur preferably when an electron has a wave vector
near the minizone boundary: due to its large energy, a zone boundary electron
can lose energy by interaction with phonons (particularly optical phonons). The
“most stable trajectory” is the trajectory of the electron with the initial wave
vector k.t0/ D ��=a. Electrons starting with other initial wave vectors relax
by phonon emission (vertical waved lines) toward the most stable trajectory.
The electrons experience k-space bunching. The k-space bunching corresponds
to synchronization of the Bloch oscillations to the high frequency field.

The k-space bunching causes gain or loss, depending on the frequency of the
high frequency field:

• ! D !B. Velocity v1 and high frequency field have a phase of �=2 to each other.
The Bloch oscillations of all miniband electrons are perfectly synchronized to
the field.

• ! < !B. The phase between velocity and high frequency field lies between �=2
and 3�=2. The electron oscillations mediate transfer of potential energy to the
high frequency field. The average drift velocity of an electron is increased. Since
the frequencies are slightly different, synchronization of the Bloch oscillation of
an electron is possible during a certain time. Due to phase relaxation processes,
synchronization occurs again and again.

• ! > !B. The phase between velocity and high frequency field lies between 0
and �=2 or between 3�=2 and 2� . The electron oscillations mediate transfer
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of radiation energy to potential energy of the electrons. The average drift
velocity of an electron is decreased. Since the frequencies are slightly different,
synchronization of the Bloch oscillation of an electron is possible during a certain
time. Due to phase relaxation processes, synchronization occurs again and again.

In all three cases, the high frequency polarization and the high frequency current are
synchronized to the field.

32.7 Energy-Level Description of the Superlattice
Bloch Laser

An electron in a superlattice submitted to a static field occupies a level in an energy-
ladder system (Fig. 32.12a):

El D l E0; (32.59)

where l is an integer and where E0 Dh�B is the energy separation between
next-near energy levels ( D transition energy). Electronic dipole transitions between
next-near levels are allowed transitions. Electromagnetic radiation interacts via
spontaneous emission, absorption and stimulated emission according to the Einstein
coefficients. However, absorption and stimulated emission processes have the
same transition probability (Fig. 32.12b). Therefore, the average rate of absorption
processes is the same as the average rate of stimulated emission processes if the
frequency of the radiation is exactly equal to the resonance frequency, i.e., if � D �B.
The description as a frequency modulation (Sect. 19.8) indicates that stimulated

Fig. 32.12 Energy levels of an electron in a superlattice submitted to a static field and optical
transitions. (a) Energy ladder. (b) Absorption and stimulated emission. (c) Two-photon transitions.
(d) Stimulated emission. (e) Absorption
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emission prevails if � < �B and absorption if � > �B. Accordingly, the gain curve is
a Lorentz dispersion curve rather than a Lorentz resonance curve.

In a strong electromagnetic field, transitions between next-near levels are also
allowed as multiphoton transitions (Fig. 32.12c) according to the condition

nh� D E0 D h�BI n D 1; 2; ::: : (32.60)

This corresponds to transverse velocity components of higher order according to
(32.36).

Whether a radiation field experiences a population inversion in the Bloch laser
medium, depends on the frequency of the field.

• If h� < E0, a radiation field experiences a population inversion (see Fig. 32.12d).
In a stimulated emission process by an l ! l �1 transition, the transition energy
E0 is converted to photon energy h� and distortion energyEdist,

E0 D h� CEdist: (32.61)

A stimulated transition in an energy-ladder system leads to a distortion. Absorp-
tion does not occur as long as the states of distortion are not populated, i.e., as
long as the upper laser level has an occupation number of nearly unity, f2 	
1, and the lower laser level of nearly zero, f1 	 0, at small distortion. At large
distortion, absorption processes compensate stimulated emission processes: this
corresponds to the saturation field amplitude A1 and to .f2 � f1/1 D 0.

• If h� > E0 (Fig. 32.12e), a photon is converted into excitation energy E0 and
energy of distortion,

h� D E0 CEdist: (32.62)

The reverse process, namely stimulated emission by an l C 1 ! l process, does
not occur as long as the states of distortion are not populated, i.e., as long as the
upper level has the occupation number of nearly zero, f2 	 0, and the lower laser
level of nearly unity, f1 	 1. At large distortion, stimulated emission processes
compensate the absorption processes at the saturation field amplitudeA1, which
corresponds to .f1 � f2/1 D 0.

• If h� DE0, upward and downward transitions are equally strong and there is
no net energy transfer from the field to the electrons and vice versa. A high
frequency field excites a transverse high frequency current that has a phase of
�/2 relative to the field.

In the energy-level description, a limitation of the field amplitude A1 is caused
by a distortion of the energy-ladder systems and corresponds to a saturation of the
average population difference at steady state oscillation, .f2 � f1/1 D 0.

We make use of the following quantities:

• E0 D transition energy D energy difference between next-near Wannier-Stark
levels.

• �B D E0=h D transition frequency D resonance frequency D Bloch frequency.
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Fig. 32.13 Principle of the Bloch laser in an energy-level description

• � D laser frequency (slightly smaller than the transition frequency).
• � D phase relaxation time of the Bloch oscillations D intraminiband relaxation

time D time between two inelastic scattering events.
• �stim D time between two subsequent stimulated emission processes.

Figure 32.13 illustrates, in the energy-level description, the principle of the
superlattice Bloch laser. An electron of energy Eel;0 injected into a superlattice
forms an energy-ladder system. A nonradiative relaxation process (intraminiband
relaxation time �) leads to formation of a new energy ladder system. A stimulated
transition occurs to a disturbed state. A further relaxation process leads to a further
energy-ladder system. Relaxation processes and stimulated emission processes go
on until the electron reaches the cathode. The time between two relaxation processes
is shorter than the time between two stimulated emission processes. The electron
leaves the superlattice with energy Eel;1. The relaxation processes are associated
with a drift. During the drift of an electron through the superlattice, the potential
energy Us D (Eel;0 � Eel;1/LSL is converted to energy of radiation plus energy of
relaxation.

We determine the Einstein coefficients of stimulated emission and of absorption
from the expression for the gain coefficient

˛.�/ D ˛p NgL;disp.�/; (32.63)

by comparison with an expression derived earlier (in Sect. 7.7),
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˛.�/ D .n=c/h�0B21
2

���0
Ng.�/.N1 CN2/.f2 � f1/: (32.64)

We replace the Lorentz dispersion function gL;disp by the Lorentz resonance function
gL;res and obtain, with N1 C N2 DN0, f2 � f1 D 1, and �0 D �B, the Einstein
coefficient of stimulated emission

B21 D e2

8�0h�BQBm� : (32.65)

The Einstein coefficient of stimulated emission is inversely proportional to the
effective mass m� of a miniband electron, to the photon energy h�B and to the
quality factor

QB D �B

��B
(32.66)

of the Bloch oscillation. The Einstein coefficient of absorption is equal to the
Einstein coefficient of stimulated emission, B12 D B21.

Table 32.2 shows values of Einstein coefficients. We determined the Einstein
coefficient of spontaneous emission by use of the expression

A21 D 8�h�3

.c=n/3
B21 D �e2�2B

.c=n/3�0QBm� : (32.67)

The Einstein coefficient of spontaneous emission is proportional to the square of
the Bloch frequency and to B21. It is inversely proportional to the effective mass
m�and to the quality factor of the Bloch oscillation. The spontaneous lifetime is
�sp D 1=A21. The Einstein coefficient of stimulated emission has a value that is of
the same order of magnitude as for a quantum cascade lasers of the same frequency
range.

The energy-ladder we introduced is a Wannier–Stark ladder. The energy distance
between next-nearest levels is h�B. The wave functions are Wannier functions. A
Wannier function (Fig. 32.14) is spatially localized in the range �m of a spatial

Table 32.2 Einstein coefficients of transitions between Wannier–Stark levels of
electrons in a superlattice

Value

�B 5 � 1012 Hz Bloch frequency
��B 6 � 1011 Hz Width of resonance
A

1

4 � 106 V m�1 Amplitude of saturation
� 5 � 10�13 Hz Relaxation time
QB D �B=��B 8 Quality factor
m� 6 � 10�32 kg Effective mass
B21 D e2=.8�0h�BQBm

�/ 2 � 1023 m3 J�1 s�2 Einstein coefficient
A21 D (8�h�3Bn

3=c3/B21 4 � 109 s�1 Einstein coefficient
�sp 2 � 10�10 s Spontaneous lifetime
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Fig. 32.14 Wannier state

trajectory of a Bloch oscillation. The wave function decreases exponentially outside
this range.

32.8 Possible Arrangements of a Bloch Laser

A possible arrangement of a Bloch laser, already discussed in Sect. 32.1, is shown in
Fig. 32.15a. A large-area superlattice fills out a resonator completely. The resonance
frequency is determined by the length L, the width a1 of the resonator, and the
optical properties of the superlattice material. Superlattices with extensions LSL up
to �10 �m can be grown by molecular epitaxy. The laser frequency is expected to
correspond to the lowest order of the resonance of the resonator. Bias oscillations
should be avoidable by the use of filters in the bias circuit. The output power is
determined by the saturation field amplitude, the output coupling strength, and the
area of two opposite output surfaces; the mismatch between the superlattice and air
should provide sufficient feedback.

Another possible arrangement is shown in Fig. 32.15b. The superlattice is
coupled to a resonator via an antenna. In this case, the resistance of the superlattice
has to be matched to the resonator. The frequency is determined by the geometry
of the resonator and the resistance of the superlattice in the active state. In this
arrangement, superlattices with much smaller extensions and thus less heating
would be appropriate. However, the preparation of the resonator and the filter would
require more effort.

32.9 References to the Bloch Laser and Discussion

In 1928, Felix Bloch (then a PhD student of Werner Heisenberg) described [251]
a one-dimensional quantum theory of the electric conductivity of crystals and
introduced a number of basic concepts that allow for a description of properties
of conduction electrons in a crystal:



32.9 References to the Bloch Laser and Discussion 561

Fig. 32.15 Possible arrangements of a superlattice Bloch laser. (a) Large-area superlattice in a
resonator. (b) Superlattice coupled to a resonator via an antenna

• The (one-dimensional) tight binding method.
• Energy bands.
• The acceleration theorem for conduction electrons.

Bloch also found that energy relaxation via phonons is a necessary condition
for the occurrence of electric conduction in a crystal. Without energy relaxation,
a conduction electron interacting with a static electric field is accelerated and
decelerated in turn, but it is, on average, not able to transfer energy from a field to an
electron and vice versa. Clarence Zener [252] introduced the term Bloch oscillations
for the motion of a free electron subject to both a periodic potential and a static field.

Leonid Keldysh [253] proposed to prepare superlattices by means of very-high-
frequency ultrasonic waves (that have wavelenghths of the order of 10 nm). Esaki
and Tsu [254] made the proposal to prepare composite semiconductor superlattices
and to study transport properties of doped superlattices. Ktitorov et al. [255] were
the first to predict Bloch gain. In their theory, based on one-dimensional Boltzmann
transport equations, they included elastic scattering of the electrons and thermal
distribution of electrons in a miniband of a superlattice at finite temperature, leading
to the temperature parameter f .T /; see also [256,257]. Kroemer [258] showed that
Bloch gain is a consequence of k-space bunching. Bloch gain and k-space bunching
have also been treated in gain calculations using a three-dimensional Monte–Carlo
technique [259, 260].

The method of molecular beam epitaxy made it possible to prepare semiconduc-
tor superlattices, to study transport properties of doped superlattices [261], and to
investigate response of oscillating electrons to a terahertz field [262,263]. Evidence
of Bloch gain of THz radiation has been reported by Allen et al. [264].

It is an open question whether it is possible to avoid formation of space charge
domains in a superlattice in order to realize a THz Bloch laser. Proposals concern
the use of weakly doped superlattices [264, 265] and the use of an additional THz
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radiation source [266]. A microwave-terahertz double oscillator is another proposal
[246]. The idea is to operate a superlattice as a microwave oscillator (for instance,
at a frequency near 65 GHz) based on domains as described in Sects. 31.3–31.6.
The use of a lossless microwave resonator may lead, during a certain time during
each microwave period, to a homogeneous field distribution that may be associated
with Bloch gain at THz fields. If a superlattice is coupled, at the same time, to a
microwave resonator and to a resonator for a THz field, a THz field may be amplified
during a part of each cycle of a microwave oscillation.

Bloch oscillations of miniband electrons have been observed by the use of
femtosecond optical techniques [267, 268]; for surveys, see [269, 270].

Wannier–Stark ladders and Bloch oscillations are discussed in [271]. Willenberg
et al. [272] introduced intermediate states (distorted states) in Wannier-Stark ladders
for calculation of the small-signal gain coefficient. Johannes Stark (1874-1957; born
in Freihung, Bavaria) predicted and observed the Stark effect [273], namely the
splitting of energy levels of atoms and molecules in electric fields. In 1919, he
received the Nobel Prize in Physics. Gregory Wannier (1911–1983; born in Basel,
Switzerland) developed the Wannier functions [274, 275].

Finally, we discuss the question of the upper limit frequency of a Bloch laser.
The limit is determined by the condition that the length of the trajectory of a Bloch
oscillation should be larger than a superlattice period. This leads to a limit frequency,
where � D 2a, of �15 THz for a GaAs/AlAs superlattice (with a maximum mini-
band width of 140 meV) and of �30 THz for an InGaAs/InAlAs superlattice. Gain
can also occur at larger frequencies via stimulated transitions between Wannier–
Stark states that are localized within a few superlattice periods or within one period
[270]. In the range of infrared active phonons (near 8 THz for GaAs) intrinsic
absorption caused by an infrared active lattice vibration can be stronger than gain.

The occurrence of Bloch oscillations of electrons in semiconductor superlattices
is well documented. It is an open question whether it is possible to observe Bloch
oscillations of electrons in a bulk crystal.

REFERENCES [177, 178, 251–275]

Problems

32.1. High frequency limit frequency of a Bloch laser.

(a) Give a general condition that determines of the high frequency limit of a Bloch
laser.

(b) Determine the high frequency limit of a Bloch laser based on a GaAs/AlAs
superlattice with a miniband of a width of 140 meV.

32.2. Large-signal amplitude.
Estimate the large-signal amplitude of a semiconductor superlattice Bloch laser and
compare it with Ec,
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(a) for � D 1 THz and (b) � D 5 THz. [Hint: choose data of the superlattice
described in the text.]

32.3. Estimate the Bloch frequency of a conduction electron in an energy band
of GaAs in the case that a static field is applied along the (100) crystal direction
and compare it with the Bloch frequency of a miniband electron in a GaAs/AlAs
superlattice. [Hint: Bloch oscillations are not observable for bulk GaAs by various
reasons: intervalley scattering of electrons and impact ionization are extremely
strong for electrons submitted to a strong electric field; furthermore, electrons can
reach higher conduction bands.]

32.4. Determine the absolute number of electrons in an active medium of a
superlattice Bloch laser described in Sect. 32.1.

32.5. Design a resonator for a superlattice Bloch laser oscillating at 6 THz.

32.6. Estimate the change of the refractive index at the Bloch frequency of the
superlattice of a Bloch laser if the laser is switched on.

32.7. Determine the time of onset of laser oscillation of a Bloch laser.

32.8. Relate the high frequency peak-conductivity �p and the ohmic conductivity
of a superlattice.
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Laser Related Topics



Chapter 33
Optical Communications

An important field of application of lasers is optical communications by means of
glass fibers.

To transfer information over very large distances (e.g., around the world),
radiation of a wavelength of 1.55 �m is most suitable by two reasons. First, glass
fibers have the smallest loss of radiation in a wavelength band around 1.55 �m.
Second, a glass fiber amplifier — the erbium-doped fiber amplifier — allows for
amplification of laser radiation at 1.55 �m. A glass fiber with integrated light
amplifier (installed every 100 km) can transport information over any distance on
earth.

The transfer of optical waves over shorter distances (up to about 50 km) is
possible with radiation at wavelengths around 1.32 �m. At this wavelength, the
absorptivity of glass fibers is also small and the dispersion is zero (resulting in less
distortion of optical pulses in comparison to pulses of 1.55-�m radiation). However,
there is no efficient light amplifier available for 1.32-�m radiation.

In the past, the transfer rate increased more and more. The use of radiation at
many wavelengths at the same time — corresponding to many frequency bands
available for information transfer — and increase of the modulation bandwidth
enhanced the transfer rate. For long-distance transfer of information via fiber-optic-
cable networks, a frequency band of about 5 THz is available; the width of the
band corresponds to about 2.5 percent of an average frequency (about 200 THz)
of radiation of the 1.55-�m band.

33.1 Principle of Optical Communications

The basis of optical communications is the guidance of light by means of optical
fibers. The principle of optical communications is illustrated in Fig. 33.1. Light,
coupled by means of a transmitter into a fiber, propagates through the fiber to a
receiver. For long-distance transfer, the fiber contains laser amplifiers. The following
components belong to an optical transfer system.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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Fig. 33.1 Optical communications (principle) and glass fiber

• Transmitter. Laser C modulator C coupler.
• Laser. Quantum well laser, a heterostructure of GaxIn1�xAsyP1�y material on

n-type or p-type InP, lattice matched for y D 1:2x. The laser wavelengths are
1.55 �m (x D 0:42) for long distance transmittance and 1.32 �m (x D 0:27) for
transmittance up to about 50 km.

• Receiver. Photodetector C demodulator.

Of course, communication with free light waves is also possible. On earth, it is
restricted because of damping of light in the atmosphere and because of the effort
that is necessary for changing the propagation direction of light.

33.2 Glass Fiber

Glass fibers can be prepared with high accuracy from quartz glass. A glass fiber
(Fig. 33.1) consists of two parts.

• Core. Diameter about 10 �m; SiO2 doped with germanium; refractive index
n0 D 1.52.

• Cladding (Mantle). Diameter about 80 �m; SiO2; n1 D 1.48.

The basis of the guidance of light is the total reflection. The light is propagating in
the 00 mode of a fiber (monomode fiber). The field distribution is Gaussian like.
The amplitude of the field is large within the core and decreases exponentially in
the mantle. Accordingly, a portion of the light is propagating in the core, another
portion in the mantle. While a Gaussian beam in free space is always divergent, a
Gaussian like beam in a fiber remains confined.
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Fig. 33.2 Damping,
dispersion, and refractive
index for light in a glass fiber

Light in a glass fiber experiences damping (Fig. 33.2, upper part). The damping
has two minima at slightly different wavelengths:

• 1.32 �m; damping 0.4 dB/km.
• 1.55 �m; damping 0.2 dB/km.

Toward small wavelengths, the damping increases because of Rayleigh scattering.
This is a consequence of small irregularities at the interface between core and
mantle. Toward large wavelengths, the damping increases due to absorption caused
by lattice vibrations (phonons) in glass. OH impurities in glass are responsible for
an absorption line near 1.4 �m. The OH concentration (5 ppm) in a glass fiber
corresponds to 1 OH group per 2 � 108 SiO2 molecules.

33.3 Pulse Distortion due to Dispersion

A light pulse propagating in a fiber is damped and changes its shape. This is due
to dispersion (Fig. 33.2, center). The dispersion is zero at 1.32 �m. It has a value
of about 15 ps per km and nm at 1.55 �m. The dispersion relation of light in an
isotropic medium (refractive index n) is

! D vphk D c

n
k; (33.1)

where ! is the angular frequency, vph the phase velocity and k the wave vector. The
refractive index of SiO2 glass (Fig. 33.2, lower part) shows in the near infrared a
weak decrease with increasing wavelength and a point of inflection at 1.32 �m. We
can write the dispersion relation in the form

k D n

c
! D !

c
n: (33.2)
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To determine the influence of dispersion of glass on the propagation of light pulses,
we calculate the group velocity

vg D d!

dk
D 1

dk=d!
D c

nC !dn=d!
: (33.3)

Propagation of a pulse over a distance L takes the time

�g D L=vg: (33.4)

A light pulse has a frequency width d! (determined by the pulse duration). Because
of dispersion, the relative difference of the time of flight of light of a frequency
difference d! is

ˇ2 D 1

L

d�g

d!
D d

d!

�
1

vg

�

D d

d!

�
n

c
C !

c

dn

d!

�
D 2

c

dn

d!
C !

c

d2n

d!2
: (33.5)

The first term of ˇ2 describes a delay of a pulse and the second term a distortion of
the shape of the pulse. The unit of ˇ2 is m�1.

33.4 Erbium-Doped Fiber Amplifier

In a long distance fiber cable, an erbium-doped fiber amplifier (EDFA) compensates
damping of radiation.

Light is amplified (Fig. 33.3) by stimulated transitions in Er3C ions that are
pumped with radiation of a semiconductor laser (wavelength 1,480 nm or 980
nm). The erbium-doped glass amplifier can amplify radiation in the range of
1,520–1,560 nm. The relative bandwidth (ı�=��2:6%) corresponds to a bandwidth

Fig. 33.3 Erbium-doped fiber amplifier (EDFA)
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ı� � 5 THz at the frequency � � 2�1014 Hz. Thus, the band available near 200 THz
for optical communications has a width of about 5 THz. The mechanism of gain of
radiation in an erbium fiber is discussed in Chap. 18.

A fiber amplifier consists of an erbium-doped region of a long glass fiber
cable. Pump radiation from a semiconductor laser is coupled into a fiber via an
optocoupler. An amplifier (length 30 m) has a gain factor of the order of 1,000 (gain
30 dB). In parallel to a long-distance fiber cable, there is a current carrying cable
delivering the electric energy necessary to operate the pump laser of the erbium-
doped fiber amplifier.

33.5 Detector

Photodiodes are suitable as detectors of radiation in optical communication systems.
A silicon pin photodiode (Fig. 33.4) consists of a thin p-doped silicon layer, an
intrinsic silicon layer and an n-doped silicon layer on an n-doped silicon substrate.
A transparent metallic anode film on the p-doped silicon layer and a metal cathode
on the backside of the substrate serve as metallic contacts. A light pulse traversing
the anode film creates electron-hole pairs in the intrinsic layer. A static voltage
across the photodiode accelerates electrons and holes created by a light pulse giving
rise to an electric pulse that is registered electronically.

33.6 Transfer Rates

The transfer rates of large-distance communication systems increased permanently:

• Before 1996, a copper cable in the ocean reached a transfer rate of 280 Mbit/s
(about 4,000 phone calls at the same time).

• 1996. An optical cable in the ocean (all-optical cable) reached 2.5 Gbit/s.
• Since 1999. Faster networks are in operation.

Transfer rates reached in the laboratory are:

• 1993. 10 Gbit/s. Limitation by the conversion of a light signal in an electric signal
and vice versa. TDM, time division mulitiplexing.

Fig. 33.4 Silicon pin
photodiode
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• 2000. 1 Tbit/s; 16 channels (i.e., radiation at 16 wavelengths in parallel).
• 2001. 25 Tbit/s; 1,000 channels (D 1;000wavelengths in parallel); optical broad-

band fiber (DWDM, dense wavelength division multiplexing).

In comparison with copper cables (used in the ISDN, Integrated Services Digital
Network; transfer rate 100 kHz) and coaxial cables (transfer rate 300 MHz), the
glass fiber has a much larger bandwidth (5 THz) and allows therefore for a much
larger transfer rate. A fiber with a transfer rate of 40 Gbit per second of light of
a single frequency is presently the basis of the global network (i.e., the global
system of mobile communication). Every year, the number of bytes transferred by
the Internet doubles.

REFERENCES [208–210, 276–282]

Problems

33.1. Estimate the electric power needed to maintain an optical fiber cable with 10
fibers that extends around the earth.



Chapter 34
Light Emitting Diode and Organic Laser

The development of semiconductor lasers is accompanied by the development
of light emitting diodes (LEDs). An LED, based on spontaneous electron-hole
recombination, does not require a cavity and can therefore have a simpler design
than a laser. We discuss properties of diodes and mention various areas of appli-
cations. There is a growing market of LEDs as lighting sources. Superluminescent
semiconductor diodes can reach high efficiencies. Stimulated emission just below
laser threshold is favorable for a high efficiency.

Beside the LED, the organic LED (OLED) is being developed. The basis of
the OLED is the spontaneous recombination of electrons and holes in molecular
crystals or polymers. Production of OLEDs is possible at low costs as large-area
films, suitable for outdoor lighting of large areas.

We will also mention organic lasers.

34.1 LED Preparation and Market

An LED converts electric power into light. Most efficient are LEDs based on direct
semiconductors.

In an LED, electrons and holes recombine giving rise to spontaneous emission
of radiation at frequencies near the gap frequency of a semiconductor. An LED is
easier to prepare than a laser diode. Antireflecting coatings ensure that the active
medium of an LED experiences almost no feedback or only a weak feedback from
radiation reflected at the crystal surfaces. Thus, the light is incoherent. An LED
emits the light into a large solid angle.

Of great importance for the development of the LED market was the discovery
of the blue LED (in 1992). The lifetime of an industrial LED lies in the range of
10,000 to 100,000 h of operation. Already in 2006, about 25 billion LEDs (about
60% InGaN LEDs, 38% AlInGaP LEDs and 2% LEDs of other materials) have
been prepared, mainly by metal oxide chemical vapor deposition (MOCVD). The
size of a chip is typically 250 �m � 250 �m.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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Fig. 34.1 Superluminescent
LED

The luminous efficiency of LEDs was (by 2006) about 50 lm/W (lumen per
watt electric power). The record in the laboratory was 100 lm/W. The goal of the
development is a further increase of efficiency. The luminous flux (in units of
lm) is a measure of power of light perceived by the human eye. The power of
broadband visible radiation (e.g., from a blackbody source) of 1 mW corresponds
to about 15 lm.

A superluminescent LED is based on stimulated emission below laser threshold.
Figure 34.1 shows the principle of the superluminescent LED ( D high-power
LED D laser diode operating below threshold). Under the action of a voltage U
(current I ), electrons migrate from the n-doped material into quantum wells and
holes migrate from p-doped material into the quantum wells. Radiation is generated
by electron-hole recombination in the quantum wells. Antireflecting coatings on the
surfaces avoid cavity resonances. The superluminescent LED has a broad output
spectrum, like an LED. The power can be as large as that of a corresponding laser
diode. The light has a higher directionality than the light of a normal diode and
shows only weak interference effects.

The market is permanently growing. More than 100 firms are worldwide active
in the LED industry. In 2005, the LED market had a turnover of 4 billion U.S. $. The
main portion was in the range of mobile phones. Although prices of LEDs steadily
decrease, it is expected that the turnover would double every five years. The growth
rate of the LED market with respect to the number of LEDs was (2010) � 50%
per year. The largest growth is expected in various fields — illumination; full color
displays; television and monitor screens; outdoor large-area screens; and projectors.

34.2 Illumination

Beside the use of LEDs for color applications (screens, traffic lights), the generation
of white light is of great importance. We compare different illumination elements:

• Light bulb. Radiative efficiency about 20 lm/W (efficiency of conversion of
electric power into light �4 %); 1,000 h of operation; for 1 U.S. $, one obtains
800 lm.

• Energy-saving lamp. Radiative efficiency �50 lm/W. An energy-saving lamp
contains mercury, which should be avoided in future. In the energy-saving lamp
(Fig. 34.2, left), a gas discharge excites Hg atoms by collisions with electrons.
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Fig. 34.2 Energy-saving lamp and LED based white light source

Excited Hg atoms emit UV radiation (at a wavelength of 254 nm). The UV
radiation is absorbed by a phosphor giving rise to luminescence radiation in the
visible.

• LED. 50 lm/W (future 200 lm/W). 10,000–100,000h of operation; for 1 U.S. $,
one obtains 20 lm. [Problem: power supplies have short lifetimes.]

• LED-based white light lamps. A blue LED (Fig. 34.2, right) illuminates a
phosphor on the inner surface of a glass plate.

LED-based illumination should lead to an energy saving of hundreds of billions
U.S. $ per year in 2025. Worldwide, the generation of light consumes about 20% of
the total electric power. The replacement of light bulbs is a worldwide task.

A great yet unsolved problem concerns the quality of the white light produced
with LEDs. Many people have the feeling that the light is cold. This feeling has a
physical background. The light emitted by a phosphor, irradiated by an LED, does
not have the same spectrum as the radiation of a light bulb. If white light is generated
by three LEDs emitting radiation in the red, yellow and blue spectral regions, the
radiation is, of course, also quite different from white light of a light bulb.

34.3 Organic LED

It is possible to produce organic LEDs of large areas at a low price per square meter.
The luminous efficiency is about 30 lm/W. There are worldwide efforts to increase
the efficiency and to improve the reproducibility.

The center of an organic LED (OLED) is a molecular layer or a polymer layer
sandwiched between electric contact layers. The organic LED (Fig. 34.3a) consists
in principle of 3 layers on a substrate:

• Metal contact.
• Organic layer.
• Transparent conductor (e.g., indium tin oxide) as a metallic contact.
• Transparent polymer substrate.

Under the action of a static field produced by a voltage (U ) between the metal
contacts, electrons migrate into the organic layer from one side and holes from the
other side. Electron-hole recombination generates light.
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Fig. 34.3 Organic LED (OLED). (a) Arrangement. (b) Energy levels of an organic molecular film
and principle of the organic LED

In the organic LED, molecular levels (Fig. 34.3b) play an essential role. The
organic layer, which is undoped and isolating, contains �-conjugated molecules
or polymers. The electron states are molecular orbitals. An organic molecule of
an organic LED has occupied energy levels that have a broad energy distribution
and, separated by a gap, empty levels that have also a broad energy distribution. An
electron excited in a molecule migrates via a hopping process to another molecule.
The holes migrate via hopping processes too. Characteristic energy levels are:

• E1;max D highest energy of occupied energy levels.
• E2;min D lowest energy of empty molecular energy levels.
• E2;min � E1;max D energy gap.

The voltage U forces electrons to drift from the cathode and holes from the anode
through the molecular film. Electron-hole recombination leads to generation of
luminescence radiation. The voltage is equal to the energy difference between the
Fermi energy EF;c of the cathode material and the Fermi energy EF;a of the anode
material, eU D EF;c �EF;a.

Special emphasis lies in the choice of the cathode and anode materials. The
cathode material has a work function Wcathode that has a similar value as E2;min

(related to the vacuum levelEvac). The anode material has a work functionWanode �
E1;max. Appropriate materials are the following:

• Cathode materials. Calcium, lithium, magnesium or alloys of these materials.
• Anode materials. Indium tin oxide (InSnO2) film; this is transparent for visible

radiation.

Without voltage, there is a built-in potential, establishing a constant Fermi level over
the whole device. By application of a sufficiently large voltage, a nonequilibrium
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state with electrons and holes gives rise to electron-hole recombination and to
luminescence radiation.

34.4 Organic and Polymer Lasers

Operation of optically pumped organic lasers and optically pumped polymer
lasers has been demonstrated for wavelengths in the whole visible spectral range
[285–296]. Organic and polymer lasers are bipolar lasers (Fig. 34.4). We can
describe a polymer laser (or an organic laser) as a two-quasiband laser, with an upper
quasiband and a lower quasiband. The upper quasiband consists of energy levels
of excited molecules. An excited molecule can transfer its excitation energy to an
nonexcited, neutral molecule. Energy transfer is possible via the Förster mechanism
and other energy transfer processes (Sect. 18.2). Intramolecular relaxation leads to
a quasithermal population in the upper quasiband. The density of states D2.E/ D
D2.�2/ of the levels in the upper quasiband depends on the molecular properties
of a polymer; �2 D E � E2;min is the energy within the upper quasiband.
Injection of electrons leads to band filling, characterized by the quasi-Fermi energy
E2;F (�2;F).

Extraction of electrons from nonexcited molecules results in a nonequilibrium
distribution of empty levels in the lower quasiband. Energy transfer is again possible
via energy transfer processes. Intramolecular relaxation processes are responsible
that the occupied levels if the lower quasiband have also a quasithermal distribution.
The density of states,D1.E/ D D1.�1/, of the levels in the lower quasiband depends
on the molecular properties too; �1 D E1;max � E is the energy within the lower
quasiband. Extraction of electrons leads to empty levels in the lower quasiband,
characterized by the quasi-Fermi energyE1;F (�1;F).

Fig. 34.4 Organic laser (principle)
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Fig. 34.5 Organic laser (arrangement)

Optical pumping creates electrons in the upper quasiband and holes in the lower
quasiband. Stimulated electron-hole recombination is the origin of generation of
laser radiation.

A polymer laser (Fig. 34.5) can consist of a polymer film (thickness of the order
of a wavelength). A distributed Bragg reflector (Sect. 25.4) can be used to produce
feedback.

A challenge is the development of an organic laser driven by a current.

REFERENCES [31, 283–296]

Problems

34.1. Estimate the quantum efficiency of an OLED.

34.2. The actual efficiency of an OLED can be enhanced if three organic layers are
used instead of one. In this case, the third layer is embedded in two organic layers.
The third layer (e.g., a layer with a dye) has two energy levels in the gap of the
organic layers. The upper level is a trap for electrons and the lower level is a trap
for holes. Electron-hole recombination gives rise to fluorescence radiation. Illustrate
the principle of the three-layer system in a sketch.

34.3. Treat the organic laser as a two-quasiband laser. Assume that the density of
states in the upper band as well as the density of states in the lower band have
Gaussian distributions and that the widths of the distributions are equal.

(a) Determine the Fermi energy as a function of the density of excited molecules.
(b) What is the condition of gain?
(c) Estimate the gain coefficient of a system of molecules (N0 D 1024 m�3);

spontaneous lifetime of excited molecules D 10ms.



Chapter 35
Nonlinear Optics

The polarization of a dielectric medium depends nonlinearly on the amplitude of
the electromagnetic field. Nonlinear dielectric media are suitable for frequency
conversion of radiation. Nonlinear media can be crystals, glasses, liquids or vapors.
We discuss: frequency multiplication; difference frequency generation; parametric
oscillation; four-wave mixing; and stimulated Raman scattering. In connection with
four-wave mixing, we show how the frequencies of a frequency comb can be
determined.

We will present only a very narrow view on the fascinating field of Nonlinear
Optics. Our main aspect concerns the question: how can we convert coherent
radiation of one frequency to coherent radiation of other frequencies?

35.1 Optics and Nonlinear Optics

In Maxwell’s theory, the matter equations that describe the electric properties of
a dielectric medium can be expressed by the relationship between the dielectric
polarization P of the medium and the electric field E in the medium,

P D P.E/: (35.1)

In Optics (Linear Optics), the relation is

P D �0�
.1/E ; (35.2)

where �.1/ is the (complex) dielectric susceptibility. The susceptibility of an
optically isotropic medium is a scalar. It is a tensor if a medium is anisotropic. The
polarization has the same frequency as the electromagnetic field. The susceptibility
�.1/.!/ characterizes optical properties of a material. The study of �.1/.!/ leads to
an understanding of basic microscopic properties of matter.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
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Fig. 35.1 Nonlinear
polarization

The basis of nonlinear optics is the nonlinearity of the polarization at large
amplitudes of the electric field (Fig. 35.1). We characterize the polarization by the
relation

P D �0�
.1/E C �0�

.2/E2 C �0�
.3/E3 C ::: (35.3)

We make use of two simplifications. We neglect the vector character of E and
P as well as the tensor properties of �.1/, �.2/, �.3/ etc. We assume that the
field is spatially homogeneous in the direction of a light beam — we ignore that
the field changes the phase during propagation. Thus, we neglect phase effects,
which can be of great importance. Nevertheless, the simplified representation of
the relation between polarization and field allows for developing an understanding
of the principle of generation of radiation by means of the nonlinear polarization.
Nonlinear polarization is applicable, for instance, to convert monochromatic radia-
tion to radiation of other frequencies.

The electric field that causes a polarization can consist of fields of different
frequencies. We can write, instead of (35.3),

P D �0�
.1/E C �0�

.2/E1E2 C �0�
.3/E1E2E3 C :::; (35.4)

where E1;E2, ... are fields of different frequencies and where E D E1 + E2 + ... is
the sum of the fields.

35.2 Origin of Nonlinear Polarization

At which amplitude of an electromagnetic field do we expect a nonlinear polariza-
tion? We consider a hydrogen atom in a static electric field. We describe the H atom
by Bohr’s atomic model. In a distance of the Bohr radius (a0 D 0:053 nm) from the
nucleus (proton), an electron experiences the field strength

jEatj D e

4��0a
2
0

	 1011 V/m: (35.5)
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A static external field polarizes an H atom. The center of the positive charge and the
center of the negative charge do not coincide with each other. Therefore, the H atom
represents an electric dipole. The dipole moment increases with the field strength.
At large field strength, the dipole moment depends nonlinearly on the field strength.
The nonlinearity is extremely large when the field strength is of the order of the
internal field produced by the proton at the site of the electron.

A strong high frequency field with a sinusoidal time dependence applied to a
nonlinear medium leads to a time dependent polarization

P.t/ D �0�
.1/ E.t/C �0�

.2/E2.t/C ::: : (35.6)

We describe the nonlinear polarization by use of the classical model of an atom
(Sect. 4.6). Under the action of a strong high frequency electric field, an electron
oscillates unharmonically — leading to a nonlinear dipole moment. Accordingly, the
polarization of a medium depends nonlinearly on the amplitude of the electric field.
The time-dependent polarization, which depends nonlinearly on the electric field,
contains frequency components not only at the driving frequency but also at other
frequencies. Therefore, the nonlinear polarization is the source of electromagnetic
radiation at frequencies that differ from the driving frequency.

Atoms, ions or molecules in gases, liquids, and solids show nonlinear polariza-
tion. The strength of the nonlinearity strongly depends on the specific material.
Especially large nonlinear susceptibilities are known for a variety of crystals
(e.g., KDP, LiNbO3).

We will now discuss applications that are based on the nonlinear polarization.

35.3 Optical Frequency Doubler

A frequency doubler (Fig. 35.2a) converts radiation of frequency � to radiation at
the doubled frequency (2�). A filter blocks the radiation of frequency � that is not
converted. Frequency doubling makes use of the quadratic term of the polarization,

P D �0�
.1/E.!/C �0�

.2/E2.!/: (35.7)

An electric field
E D A cos!t (35.8)

causes a polarization

P D �0�
.1/A cos!t C �0�

.2/A2 cos2 !t: (35.9)

Fig. 35.2 Optical frequency
doubler. (a) Principle. (b)
Elementary process
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It follows, with cos2 !t D 1
2

C 1
2

cos.2!t/, that

P D �0�
.1/A cos!t C 1

2
�0�

.2/A2 C 1

2
�0�

.2/A2 cos 2!t: (35.10)

We obtain a polarization at the frequency 2! that is the source of radiation at the
frequency 2!. The additional term corresponds to a static polarization (optical recti-
fication). In an elementary process of frequency doubling (Fig. 30.2b), two photons
of the quantum energy h� are annihilated and a photon of energy 2h� is created.

Examples.

• A frequency doubler converts infrared radiation to green radiation. As nonlinear
crystals, LiNbO3 or KDP are suitable: the conversion efficiency can reach 40%.

• In a titanium–sapphire laser, a frequency doubler located within the laser res-
onator produces frequency-doubled radiation in the violet and green (according
to the tunability of the laser).

• Frequency doubling of blue radiation leads to UV radiation.

35.4 Difference Frequency Generator

In a difference frequency generator (Fig. 35.3a), two sinusoidal fields of different
frequencies (!1 and !2; with !1 > !2) produce a nonlinear polarization in a
nonlinear crystal. The nonlinear polarization is the source of an electromagnetic
field at the difference frequency (beat frequency)

!3 D !1 � !2: (35.11)

An electric field of frequency !1 (amplitude A1)

E1 D A1 cos!1t (35.12)

and another field
E2 D A2 cos!2t (35.13)

superimposed to each other lead to the field

E D E1 C E2: (35.14)

Fig. 35.3 Difference frequency generator. (a) Principle. (b) Elementary process
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This produces the polarization

P D �0�
.1/.A1 cos!1t C A2 cos!2t/

C �0�
.2/.A1 cos!1t C A2 cos!2t/2: (35.15)

The polarization contains the term

P!1�!2 D 1

2
�0�

.2/A1A2 cos.!1 � !2/t (35.16)

that is the source of the field at the difference frequency. The polarization and,
accordingly, the field at the difference frequency !1 � !2 are proportional to the
product of the amplitudes A1 and A2. In an elementary process of difference
frequency generation, a photon (energy h�1) is annihilated, a photon at the energy
h�2 and another photon at the energy h�3 D h�1 � h�2 are created (Fig. 35.3b).

The frequency difference generation obeys the Manley-Rowe rule. A photon
of the quantum energy h�1 can only produce one photon of energy h�3. This
corresponds to the energy conservation law of the elementary process. Thus, the
efficiency of conversion of radiation at frequency �1 to radiation of frequency �3 is

�diff D �3=�1: (35.17)

If the frequency �3 is much smaller than �1 (and �2), only a small portion of the
power of radiation at the frequency �1 is converted to power of radiation at the
difference frequency.

Application. Superposition of two visible or near infrared laser fields of different
frequencies can lead to generation of far infrared radiation.

35.5 Optical Parametric Oscillator

An optical parametric oscillator (OPO) converts radiation of a pump frequency
.�p/ to tunable radiation at two other frequencies (�1 and �2). Radiation of one
of the frequencies �1 or �2 (or of both frequencies) is stored in a resonator
in order to produce a feedback to the nonlinear crystal (Fig. 35.4a). The OPO
shows threshold behavior. Above a threshold amplitude of the pump field, optical
parametric oscillation sets in. The oscillation frequency �1 depends on the resonator.
Changing the eigenfrequency of the resonator results in a variation of �2 and �3.

(Together with the change of the resonance frequency, it has to be taken care of
phase matching of the fields of different frequencies. The phase matching can be
achieved by the choice of an appropriate orientation of the nonlinear crystal, e.g.,
of an LiNbO3 crystal; changing the frequency of the signal wave then requires a
rotation of the crystal. Another possibility is the change of the crystal temperature,
suitable for KDP.)
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Fig. 35.4 Optical parametric oscillator; OPO. (a) Principle. (b) Elementary process

In the photon picture (Fig. 35.4b), the elementary process in the OPO crystal
corresponds to the decay of a photon into two photons of smaller quantum energy.
The energy conservation law holds,

h�p D h�1 C h�2: (35.18)

An optical parametric oscillator, pumped with radiation near 1 �m, is suitable for
generation of tunable infrared radiation with frequencies in the range from 1 THz
to 15 THz; the threshold pump power of a parametric oscillator is of the order of
1 MW/cm2 (for LiNbO3 as the nonlinear crystal).

The notations — �p D pump frequency, �1 D �s D signal frequency and
�2 D �i D idler frequency — have originally been introduced in the fields of
high frequency technique and of microwave technique. “Parametric” means that the
pump field modulates a parameter and that the parameter gives rise to a frequency
converting process. In the OPO, the parameter is the refractive index of the nonlinear
medium.

35.6 Third-Order Polarization

As an example of third-order polarization P .3/ D �.3/E3, we consider the effect of
a harmonic field E D A cos!t and find

P .3/ D 1

4
�.3/A3 cos 3!t C 3

4
�.3/A3 cos!t: (35.19)

The third-order polarization due to a monochromatic field causes two different
effects, frequency tripling and a change of the refractive at the frequency !.

The first term is the source of an electric field at the frequency 3� (Fig. 35.5a).
Radiation of frequency � is converted to radiation of frequency 3�. In an elementary
process, three photons of energy h� are annihilated and a photon of energy 3h� is
created (Fig. 35.5b).

The polarization at the frequency ! can be written in the form:

P D �0�
1A cos!t C 3

4
�.3/A3 cos!t D �0

�
�.1/ C 3

4
�.3/A2

�
A cos!t

D �0�
.1/

�
1C 3�.3/

�.1/
A2
�
A cos!t: (35.20)
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Fig. 35.5 Frequency tripler.
(a) Principle. (b) Elementary
process

Fig. 35.6 Self-focusing

Fig. 35.7 Four-wave mixing. (a) Principle. (b) Elementary process

It follows, with n D p
1C �.1/, that n D n0 Cn2I , where n0 is the refractive index

and

n2 D 3�.3/

2�.1/c
(35.21)

is a factor that accounts for the change of the refractive index due to third-order
nonlinearity (Problems 35.2 and 35.3). The intensity-dependent refractive index
gives rise to self-focusing (Fig. 35.6; the Kerr lens mode locking (Sect. 13.2) makes
use of self-focusing.

35.7 Four-Wave Mixing and Optical Frequency Analyzer

In a four-wave mixing experiment (Fig. 35.7a), two fields (frequency �1 and �2)
produce fields at two other frequencies (�3 and �4). The polarization

P D �0�
.3/E1E2E3; (35.22)

with E1 D A1 cos!1t , E2 D A2 cos!2t and E3 D A3 cos!3t , is responsible for
the mixing process. The polarization P is the source of a field E4 D A4 cos !4t .
The nonlinear medium can be a crystal or a glass. The elementary process of the
four-wave mixing (Fig. 35.7b) corresponds to the conversion of two photons (energy
h�1 and h�2) to two other photons (energy h�3 and h�4). Four-wave mixing is
a stimulated process. It occurs at strengths above appropriate threshold fields of
E1 and E2.

Four-wave mixing has many applications (see books on nonlinear optics). Here,
we discuss as an example the role of four-wave mixing in the optical frequency
analyzer.
Example: four-wave mixing of radiation consisting of an optical frequency comb.
In our earlier treatment of the optical frequency analyzer, we have seen that the
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Fig. 35.8 Four-wave mixing of a frequency comb

pulses emitted by a femtosecond laser are not exactly multiples of the round trip
frequency fr of the radiation pulses in the laser, but that the frequencies are shifted
by a frequency offset fo. The frequency of the nth line of the optical frequency
comb is equal to

fn D nfr C fo: (35.23)

We now discuss how the frequencies fr and fo can be determined (Fig. 35.8). A
frequency comb generated by a titanium–sapphire laser is strongly focused to a
glass fiber (inner diameter � 1 �m). In a four-wave mixing process, the frequency
comb broadens and all lines show the same frequency shift fo. This follows from
an analysis of the polarization. The term cos!1t cos!2t cos!3t of the polarization
contains the angular frequency!1C!2�!3 and is the source of a field of frequency

f4 D f1 C f2 � f3 D n4fr � fo; (35.24)

where n4 D n1 C n2 � n3 is an integer. By the mixing of radiation of different
frequencies f1, f2 and f3, the frequency comb becomes very broad. The optical
frequency analyzer involves the following frequencies:

• fr D repetition rate of the femtosecond pulses D number of pulses per second,
measured by counting the pulses.

• fo D offset frequency; measured by mixing of frequency-doubled radiation.
• 2fn D 2nfr C 2fo D frequencies of frequency-doubled radiation. The mixing of

the frequency-doubled radiation with radiation generated by four-wave mixing
provides the difference frequencies

2fn � fm D .2n�m/fr � fo; (35.25)

where n and m are integers. For 2n D m, the difference frequency is fo.
By measuring different combinations of .2n � m/, also fr can be determined
by a mixing experiment: a photodiode serves as nonlinear device and provides
microwaves at the difference frequencies.

In an optical frequency analyzer, the frequency fo is kept constant. For this purpose,
the laser resonator of the titanium–sapphire laser is stabilized: the distance between
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Fig. 35.9 Raman scattering

the resonator mirrors is piezoelectrically controlled. After starting a femtosecond
titanium–sapphire laser and reaching stable operation, the offset frequency fo is
kept constant.

35.8 Stimulated Raman Scattering

An efficient way of converting monochromatic radiation into coherent radiation of
another frequency is the stimulated Raman scattering.

In a Raman scattering process (Fig. 35.9), the energy „!1 of a photon is converted
to energy „!2 of another photon and internal excitation energy Eint of a medium.
The Raman scattered light is incoherent. Above a threshold pump field, stimulated
Raman scattering results in generation of a coherent field. Internal excitations can
be phonons in crystals, phonons in glasses, vibrational-rotational excitations, or
rotational excitations in molecular gases.

Example. Stimulated Raman scattering of radiation of a CO2 laser at molecules
(e.g., CH3F molecules in a gas) can lead to coherent far infrared radiation; the
internal excitation is a vibrational-rotational state in a molecular gas (Sect. 14.9).

REFERENCES [12, 297–307]

Problems

35.1. Two monochromatic optical waves (wavelengths near 600 nm) are focused on
a photodetector. The photodetector generates a microwave signal at beat frequen-
cies. The smallest beat frequency is 200 MHz. Calculate the wavelength difference
of the two optical waves.

35.2. Nonlinear polarization.

(a) Show that a strong electric field applied to a hydrogen atom gives rise to
nonlinear polarization of any order. [Hint: make use of the Taylor expansion
of .1C x/�2].
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(b) Estimate the values of �.2/, �.3/ and �.4/; �.1/ is of the order of unity. [Hint: the
lowest-order correction term P .2/ would be comparable to P .1/ if the amplitude
A of the field is of the order of the strength of field acting on an electron in an
H atom.]

35.3. Show that (35.21) follows from (35.20). Estimate the value of n2. [Hint: make
use of the estimate of �.3/ in the preceding problem.]



Solutions to Selected Problems

Problems of Chap. 1

1.1 Physical constants

(a) c D 2.99792458 � 108 m s�1 (exact).
(b) hD 6.6261 � 10�34 J s.
(c) „ D 1.0545 � 10�34 J s.
(d) e D 1.6022 � 10�19 C.
(e) m0 D 0.9109 � 10�30 kg.
(f) �0 D 4�� 10�7 V s A�1 m�1.
(g) �0 D 1=.�0c

2/ D 0.8854 � 10�11 A s V�1 m�1.
(h) k D 1.3807 � 10�23 J K�1.
(i) NA D 6.022 � 1026 molecules per Mole.
(j) R D kNA D 8.315 � 103 J K�1 per Mole.
(k) L0 D 2.687 � 1025 molecules per m3 at 0 ıC and normal pressure.

1.2 Frequency, wavelength, wavenumber and energy scale

(a) 1 �m; 300 THz; 104 cm�1; 1.9878 � 10�20 J; 1.2407 eV.
(b) 300 �m; 1 THz; 3300 m�1 D 33.33 cm�1; 6.626 � 10�23 J; 4.136 meV.
(c) 1 nm; 300 PHz; 2.0 � 10�17 J; 1.240 keV.
(d) 1 m�1; 1 m; 300 MHz; 1.24 �eV.
(e) 1.2407 �m; 241.8 THz; 1.6022 � 10�19 J; 1 eV.

1.3

(a) T D 300K 
 kT D 4:142 � 10�21J 
 kT=e D 25:85meV 
 � D kT=h D
6:625THz 
 kT=.hc/ D 208 cm�1 
 hc=.kT / D 48 �m.

(b) 1 meV 
 8.06 cm�1 
 0.2418 THz.
(c) 1 cm�1 
 30 GHz.
(c) 10 cm�1 
 1.2408 meV.

1.4 Power of the sun light and laser power

(a) 140 mW. (b) 1.8 kW/cm2. (c) 1.3 kW/cm2.

K.F. Renk, Basics of Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23565-8, © Springer-Verlag Berlin Heidelberg 2012

589



590 Solutions to Selected Problems

Problems of Chap. 2

2.1 5:6 � 1022 m�3; 5:6 � 1025 m�3; 5:6 � 1028 m�3.

2.2 Field amplitude

(a) �0A2=2 D u; A D p
2u=�0; �0 D 0.89 � 10�11 A s V�1 m�1; A D 4.7 �

105 V m�1.
(b) Z D 106 m�3; A D p

2h�Z=�0 D 6.3 � 10�2 V m�1; u D 2 � 10�14 J m�3.
(c) Z D 2 � 1013 m�3; A D 180 V m�1; u D 1 �J m�3.

2.3 Occupation number

(b) kT D 4.14 � 10�21 J D 25.8 meV; f Boltz
1 � f Boltz

2 � 1.8 � 10�35.
(c) f Boltz

1 � f Boltz
2 � 0.54–0.46 D 0.08.

2.4 Oscillation condition

(a) In one case, the condition is G1G1V u=2 D u=2 and in an other case,
VG1G1u=2 D u=2. Show that both cases lead to GV D 1.

(b) For both directions, we obtain the productGV and the same sum of the phases.

2.5 Brewster angle

(a) 54:4ı. (b) 56:3ı. (c) 61:2ı. (d) 60:4ı.

Problems of Chap. 3

3.1 ı�=.c=2L/D 2 � 105.

3.2 V D R1R2; seff D 10; �p D 6.7 ns; lp D 2 m; Q D 63.

3.3 Resonator with air

(a) �1 D c=.2nL/.
(b) ı� D c=.2L/�.c=n/=.2L/ D c=.2L/.1�1=n/ D 160 kHz; ı�=� � 3 � 10�9.

3.4 Energy D �0a1T
�1 R L

0

R T
0
E2.z; t/dzdt D �0a1a2A

2T �1 R L
0

R T
0

sin2 kz sin2 !t
dzdt D �0a1a2LA

2=4; u D �0A
2=4.

3.5 V D R1R2I �p D 1=.1� V /.
3.6 Photon density

(a) ZFP=�p D Z=T ; ZFP D Q=.2�/Z; Q D 2�l=.1 �R/.
(b) We obtain the same result, but Q D �l=.1 �R/.
3.7 RFP D 1 � TFP D 4R.1� R/�2 sin2 ı=2

�
1C 4R.1� R/�2 sin2 ı=2

��1
.

3.8 TFP D 1
ı �
1C 4R.1� R/�2 sin2 ı=2

�
, where R D p

R1R2.
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3.9 Fabry–Perot interferometer with absorbing mirrors

(a) TFP D .1 C .A2m=T
2

m/
�1.1 C 4R.1 � R/�2 sin2 ı=2/�1; TFP;max D .1 C

A2m=T
2
m/

�1.
(b) 1=.1CA2m=T

2
m/ < 0:98; Am=Tm < 0:1.

3.10 Fabry–Perot interferometer for obliquely incident radiation

(a) ı D k � 2L cos � C 2'.
(b) ' D 0; ı D k � 2L cos � D zl � 2�; 2L cos � D zl � �.

Problems of Chap. 4

4.2 Absolute number of two-level systems

(a) Ntot D 1015. (b) Ntot D 1010. (c) Ntot D 104.

Problems of Chap. 5

5.1 LC .n � 1/L0 D 57:6 cm.

5.2 Photon density

(a) The laser beam has only a slightly larger diameter at 10 m distance from the
laser and the laser power is of the order of 1 W.

(b) Assuming that the luminescence radiation is emitted isotropically, the power
reaching an area of 1 cm diameter is Pfluor D P0 � 2� sin2.˛=2/, where ˛ is the
angle corresponding to the area. It follows that ˛ � 5 � 10�4; Pfluor � P0 � 2
� � ˛2=2 � 0.4 �W.

5.3 g.�/d� D g.�/d�; g.�/ D g.�/=jd�=d�j; � D c=�; d�=d� D �c=�2; g.�/ D
�2g.�/=c.

5.4 Population of the upper laser level

(a) r D N2=�
�
rel D 3.3 � 1029 m�3 s�1; volume D �r2L0 D 7:9 � 10�10 m3;

Ppump D 1:5 � 3:3 � 1029 � 7:9 � 10�10 � 2:4 � 10�19 W D 9.4 W; the factor
1.5 takes account of the quantum efficiency.

(b) Ntot D 1024 � 7.9 � 10�10 D 7.9 � 1014.
(c) Energy D 1024 � 7.9 � 10�10 � 1.5 � 1.6 � 10�19 J D 190�J; energy density D

energy/volume D .Ntot/volume) �h� D 240 kJ/m3 D 240 J per liter.
(d) Ppump D 94 W. [The reason is the stimulated emission (Sect. 8.8).]

Problems of Chap. 6

6.1 Photon density

(a) Z D D.�/d� Nn D .8��2=c3/kT=h� � 6 � 107 m�3.
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(b) Z D 6 � 1010 m�3.
(c) Z D .8��2=c3/d� exp.�h�=kT / D 4 � 10�34 m�3.

6.2 Number of thermal photons in a laser resonator

(a) Nn D exp.�h�=kT / � 2 � 10�29.
(b) Nn D 1= Œexp.h�=kT / � 1	 � 0.25.
(c) Nn D kT=h� � 6.

Problems of Chap. 7

7.1 Amplification of radiation in titanium–sapphire

(a) ˛ D 8 m�1. (b) G1 � 1 D 0.5.
(c) ˛(1 �m)/ ˛.�0/ � 0.5; ˛(1 �m) � 4 m�1; G1 � 1 D 0.25.

7.2 �nat D .�=n/2=2� D 3.2 � 10�14 m2; �sp D 3.8 �s; ��nat D 1=2��sp D
4:2 � 104 Hz; ��0 D 1.1 � 1014 Hz; �21=�nat D 1.5 ��nat=��0 D 5.7 � 10�10;
�21 D 1:8 � 10�23 m2.

7.3 Two-dimensional gain medium

(a) ˛ D 2,000 m�1 D 20 cm�1. (b) G1 � 1 D 1:5 � 10�3.

Problems of Chap. 8

8.1 �p D .2nL=c/.1 � R/�1 D 6 � 10�8 s; lp D .c=n/�p D 10 m; .N2 � N1/th D
1=lp�21 D 3 � 1021 m�3.

8.2 rth D .N2 �N1/th=��
rel D 8 � 1026 m�3 s�1;

Z1 D (10 rth � rth/�p D 9 rth�p D 4:3 � 1019 m�3; Pout D Z1a1a2Lh�=�p D 9 W;
rout=r D Z1=.�pr/ D 9rth=10rth D 0:9.

8.3 .N2 � N1/0 D 10 � .N2 � N1/th D 3 � 1022 m�3; �0 D b21.N2 � N1/0 D
1:3�108 s�1; 
 D 1=�p D 1:6�107 s�1;Z0 D 1=a1a2L D 2�107 m�3; ton D 18 ns.

8.4 If the active medium has a smaller length than the resonator, the threshold
condition is .N2 � N1/1 D � lnV=.2nL0�21/, where L0 is the length of the active
medium. It follows for that case that the gain coefficient ˛ D .N2 � N1/�21 has
to be larger than the reciprocal of the effective photon path length in the crystal,
l 0p D lpL

0=L, ˛ � 1=l 0p D � lnV=.2nL0/ or 2˛L0 � � lnV . We find, with G D
exp .2˛L0/, that the condition of gain, GV � 1, is fulfilled.

Problems of Chap. 10

10.1 �110 D �101 D �011 D c=.
p
2a/ D 21:2GHz; �111 D p

3c=.2a/ D 26GHz.
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10.2 Degeneracy of modes of a rectangular cavity resonator

(a) 3. (b) 2. (c) No degeneracy. (d) 2.

10.3 Density of modes of a cavity resonator

(a) D.�/ D 8�n3�2=c3 D 1:7 � 105 m�3 Hz�1 for � D 4:3 � 1014 Hz; n D 1.
(b) 1.0 �106 m�3 Hz�1.
(c) 8.3 �106 m�3 Hz�1.

10.5 Mode density on different scales

(a) D.�/d� D D.h�/d.h�/; D.h�/ D D.�/d�=d.h�/ D D.�/=h.
(b) D.�/d� D D.!/d!; D.!/ D D.�/d�=d! D D.�/=.2�/.
(c) D.�/d� D D.�/d�; D.�/ D D.�/ � d�=d� D cD.�/=�2.

10.6 � D .c=2/

q
a�2
1 CL�2 D c=.2a1/

q
1C a21=L

2 � c=.2a1/Œ1 C a1=.2L
2/	;

d�=dL � �.ca1=.2L3/; d�=� � .a21=L
2/dL=L.

10.7 Density of modes in free space
We consider a propagating wave E D A expŒi.!t � kr/	. We apply periodic
boundary conditions: E.x C L; y C L; z C L/ D E.x; y; z/ for each value of t ; L
is the length of the periodicity interval assumed to be equal in all spatial directions.
This leads to the conditions: exp .ikxL/ D 1; exp .ikyL/ D 1; exp.ikzL/ D 1.
It follows that: kx D l � 2�=L; ky D m � 2�=L; kz D n � 2�=L; k2 D
.2�=L/2.l2 Cm2 C n2/, with l; m; n D 0;˙1;˙2; :::. We find, with ! D ck, that
!2 D .2�c=L/2.l2Cm2Cn2/. The mode density in k space isD.k/ D .L3=�2/k2

and in ! space D�.!/ D !2L3=.�2c3/. With D�.!/d! D D�.�/d�, we obtain
D�.�/ D .8��2=c3/L3.

Problems of Chap. 11

11.1 Gaussian beam

(b) The ratio of the intensity of the radiation within the beam radius r0 to the total
intensity is

Z r0

0

2�r exp.�r2=r20 /dr=
Z 1

0

2�r exp.�r2=r20 /dr D 1 � 1=e D 0:63:

We used
R
2xe�x2dx D � exp.�x2/.

(c) rp D Ip=Itot D 1 � exp .�r2p=r20 /I rp=r0 D p� ln.1 � p/.
(d) rp D 1:52 r0.
(e) rp D 1:73 r0.
(f) A Taylor expansion of p.rp/ with respect to rp yields p � 1� r2p=r

2
0 .
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11.2 �0;u D p
2�=.�r0/ D 1:3 � 10�3 (D 4:5 arc minutes).

11.3 The angle of divergence is � D 0:1.
p
2=�/�=r0 D 2 � 10�6.

11.4 Density of photons in a Gaussian beam. The number of photons emitted per
second by the laser is Pout=.h�/D 6 � 1014 s�1. A detector of diameterD monitors
radiation within the angle # D D=d , where d is the distance from the laser. The
portion of radiation within the angle # is sin2 #= sin �2 � #2=�2. It follows for the
number of photons per second:

(a) # D 10�7I #2=�2 D 2 � 10�3I 3 � 1011 s�1.
(b) # D 7 � 10�11; #2=�2 � 10�9; �106 s�1.

Problems of Chap. 13

13.1 Ultrashort pulses

(a) tp � 1=��0 � 0.3 ps. (b) tp � 10 ps. (c) tp D 30 as.

13.2 Excited Ti3C ions are collected during the round trip time T D 10�8 s. The
density of excited Ti3C is rT D 3 � 1020 m�3. Accordingly, the energy in a pulse
is rTa1a2L0 � h� D 19 nJ and the pulse power D 1:9 MW. The average power
is 1.9 W.

13.3 2 � 107 W.

Problems of Chap. 14

14.1 Helium–neon laser: line broadening and gain cross section

(a) ��D D 1.5 � 109 Hz. (b) ��c � 106 Hz. (c) ��nat D 1.6 � 106 Hz.
(d) ��0 D 1.6 � 107 Hz. (e) �21.�0/ D .1=c/h�B21gG.�0/D 1.0 � 10�16 m2.

14.2 Helium–neon laser: threshold condition, output power and oscillation
onset time

(a) �p D T=.1 � R1R2/ D 1.5 � 10�7 s; lp D c�p D 45 m. .N2 � N1/th D
1=.�21lp/ D 2 � 1014 m�3.

(b) .N2 �N1/th � a1a2L D 2 � 108; number of excited neon atoms in the laser.
(c) rth D .N2 �N1/th � a1a2L=��

rel D 2� 1015 s�1; rout �a1a2L D 9rtha1a2L D 2

� 1016 s�1; Pout D rout � a1a2Lh� D 13mW.
(d) Z0 D .a1a2L/

�1 D 5 � 105 m�3; Z1 D rout�p D 2:7 � 109 m�3; ˛th D
.N2 � N1/th� �21 D 0:02m�1; �th D c˛th D 6 � 106 s�1; 
 D 6 � 106 s�1
(because 
 D �th at threshold); �0 D 10 �th D 6 � 107 s�1; ton D ln .Z1=Z0/=
.�0 � 
/ D 160 ns.
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14.3 Doppler effect

(a) � D �0.1˙ v=c); ı� D .2v=c/�0 D 3 � 109 Hz.
(b) The homogeneous width of the line due to 2 ! 1 spontaneous transitions is

�� D 1=.2��rel/ D 1:6 � 108 Hz, where �rel is the lifetime of the lower laser
level. This corresponds to a velocity range �v; v or to jvj D cı�=�0 D 100m s�1.

(c) The gain curve has a minimum of a halfwidth of 160 kHz. In the line center, the
gain is smaller than outside because outside (80 kHz away from the center) ions
of the velocity Cv contribute to gain in half a round trip and ions of the velocity
�v contribute during the other half round trip. The Lamb dip can be used for
frequency stabilization of a helium–neon laser.

14.4 CO2 laser

(a) ��D D 2�0
p
.2kT=mc2/ ln 2 D 5.6 � 107 Hz; m D mC C 2mO D 44 mp D

7:3 � 10�26 kg; mp D proton mass. �21.�0/ D 0:94c2A21=.8��
2��D/ D 1 �

10�21 m2. GthV D 1; V D 0:7; Gth D 1:43; Gth D expŒ˛th � 2L]; ˛th D
ln.Gth/=2L D 0:18m�1. .N2 � N1/th D ˛th=�21 D 1:8 � 1020 m�3. rth D
.N2�N1/th=��

rel D 4:5�1019 m�3 s�1;P D ra1a2Lh�; r D P=a1a2Lh�/D 3�
1025 m�3 s�1; r � 106 rth; the pump rate is about 106 times larger than the
threshold pump rate.

(b) Because of the extremely long lifetime of the upper laser level with respect
to spontaneous emission, the oscillation builds up as soon as the population
difference exceeds .N2 � N1/th. Stronger pumping then leads to generation
of laser radiation. By collisions of the CO2 molecules with each other, a
quasithermal distribution of the populations of the different rotational levels
of the excited state is maintained and the pump energy is converted to laser
radiation (and energy of relaxation).

(c) We treat, for simplicity, the CO2 gas as an ideal gas. At 273 K and normal
pressure, an ideal gas (mole volume 22.4 l) contains 6 � 1023 molecules. This
corresponds to about 3 � 1025 m�3. We use this number for CO2 at room
temperature and normal pressure (1 bar). At a pressure of 10 mbar, the density
of available CO2 molecules is 3 � 1022 m�3. At room temperature, excited CO2

molecules are in different rotational states. About 1% of the molecules are in a
particular rotational state. Thus, about 3 � 1021 molecules per m3 are available
for laser transitions. Assuming that half of the molecules are in an excited state
we find that the density of molecules in a vibrational-rotational state is 1.5 �
1021 m�3. This leads to ˛ � 8 � ˛th � 1:4m�1 and to a single path gain of
G1 D exp .˛L/ D 4.

(d) For a collision-broadened line, the gain cross section is �21 D c2A21=.8��
2/

g.�/. With increasing pressure g.�/ broadens and the cross section in the line
center, �21.�0/ D c2A21=.8��

2/ � 2=.���c/, is inversely proportional to the
gas pressure p. It follows that ˛.�0/ is independent of pressure above a pressure
of about 10 mbar. At this pressure, 2��c � ��D, the gain coefficient we
calculated is the maximum gain coefficient for the TEA and the high-pressure
CO2 laser.
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In a TEA laser, the pulse duration of the radiation is about 200 ns. It is much
larger than the duration (20 ns) of the electrical excitation pulse. During
about 20 round trip transits of the radiation through the active medium, a
fast redistribution occurs for the population of the levels involved in a laser
oscillation. If we assume that about 1% of the excited molecules contribute to
the laser oscillation, we find the pulse energyEpulse D 0:3 J and the pulse power
Epulse=tpulse � 1 MW.

(e) Z0 D .a1a2L/
�1 D 104 m�3; �p D .2L=c/=.1 � R/ D 2:2 � 10�8 s; Z1 D

Pout�p=.a1a2Lh�/ D 1:1 � 1021 m�3; ton D T ln .Z1=Z0/=.GV / D 24 ns.

Problems of Chap. 15

15.2 �21(YAG)/�21(TiS) D ��0(TiS)/��0(YAG) � �sp(TiS)/�sp(YAG) � �2(YAG)/
�2(TiS) � 10.

15.3 An N2 molecule consists of two atoms, a molecule has a single vibrational
frequency (and all molecules in an N2 gas have the same frequency) while the Ti3C
ions in Al2O3 belong to a system with a large number of atoms (ions), namely of
N � 1025 m�3, with 3N vibrational frequencies.

15.4 Laser tandem pumping

(a) � D �1 � �2 � �3 � �4 � 25%; �1 � 0.8 (efficiency of a semiconductor
laser); �2 � 0.8 (Nd3C:YVO4 laser); �3 D 0.5 (frequency doubling); �4 D 0.53
�m/0.68 �m D 0.78.

(b) The Nd3C:YVO4 laser produces a laser beam with a small angle of aperture.
Therefore, a column of a small diameter can be excited in titanium–
sapphire allowing generation of a narrow laser beam. Direct pumping with
a semiconductor laser beam, which has a large divergence, leads to excitation
of the whole titanium–sapphire crystal. This results in strong heating.

Problems of Chap. 16

16.1 Dye laser

(a) GV ; V D 0.7; Gth D 1.43; Gth D exp.˛thL
0/; ˛th D .1=L0/ lnGth D 350 m�1;

.N2 �N1/th D ˛th=�21 D 3.5 � 1021 m�3.
(b) rth D .N2 � N1/th=�

�
rel D 7 � 1029 m�3 s�1; rtha1a2L

0 D 3 � 1019 s�1; Pout D
9rtha1a2L

0h� D 0.8 W.

16.2 Ppulse D 190 MW; P D 1.9 mW.
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Problems of Chap. 19

19.1 Acceleration energies

(a) E D p
�w=� m0c

2 D 2.9 MeV. (b) E D 500 MeV.

19.2 E D p
�w.1C 
2/8m0c2/=2=

p
�; dE=d� D p

:::.�1/=.2�3=2/; d�=� D
�d�=� D 2dE=E.

Problems of Chap. 20

20.1 �deBroglie D h=.mv). The ratio is m0=me D 1/0.07 D 14.

20.2 Number of states

(a) � D 26 meV D 4.2 � 10�21 J; d� D 1.6 �10�22 J; D.�/d� D 1.5 � 1023 m�3.
(b) D2D.�/d� D 1.0 � 1016 m�2.
(c) D1D.�/d� D 7.6 � 107 m�1.

20.3 ı� D c=.2nL/ D 41.6 GHz.

Problems of Chap. 21

21.1 Wave vector of nonequilibrium electrons in GaAs
k D .1=„/p2me� D 4.3 � 108 m�1; 1.4 � 108 m�1; 4.3 � 107 m�1; �g D hc=

Eg D 870 nm; gap wavelength (vacuum wavelength); qp D 2n�=�g D 2.6 �
107 m�1. It follows that qp is small compared to k for the first two values of k.
(b) qp D k for � D „2q2p=.2me/ D 0:4meV.

21.2 qp � k1 D .1=„/p2me�c; �c � „2q2p=.2me/ D 0.4 meV; qp � k2 D
.1=„/p2mh�v; �v � „2q2p=.2mh/ D 0.4/6 meV.

21.3 Electron and holes in an undoped GaAs quantum film in thermal
equilibrium

(a) EFe D EFh D EF.
(b) Since EFe D Ec C �Fe D EF and EFv D EV � �Fh D EF, it follows that

Ec C �Fe D Ev � �Fh and ��Fe � �Fh D Eg. The gap energy is positive because
�Fe and �Fh have negative signs for small electron and hole densities.

(c) N 2D
thermal D

q
D2D

e D2D
h kT exp Œ�E2D

g =.2kT /	 D 2 � 104 m�2; with kT D
26 meV; E2D

g D 1.4 eV; N 2D
thermal is by many orders of magnitude smaller than

N 2D
tr D 1:4 � 1016 m�2.
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Problems of Chap. 22

22.1 N 2D � 3:3 � 1016 m�2; �Fv � 6 meV; �Fc � 84 meV; EFc � EFv � 78 meV.

22.2 Quantum well laser
Average photon path length lp D 0.9 L D 0.45 mm; N 2D

th � N 2D
tr D (1/3) � 1.3

.�efflp=a1/
�1 D 1.3 � 1015 m�2: j D 3 N 2D

th e=�sp D 3.1 � 106 Am�2; I D 0.3 A.

22.3 Photons in a quantum well laser

(a) h� D 1:42 eV D 2.3 � 10�19 J; �p D 5 � 10�12 s; Za1a2Lh�=�p D 2Pout; Z
D 2.0 � 1018 m�3.

(b) Ztot D Za1a2L D 105.
(c) Ntot � N 2D

tr a2L D 1.2 � 109; Ztot is much smaller than Ntot.

Problems of Chap. 23

23.1 qp D 2�n=�g D 2:6 � 107 m�1; �=.a=2/ D 1:1 � 1010 m�1 � qp.

23.2 Indirect gap semiconductor

(a) h� D E ind
g C „!phonon; 0 D 2�=aC qphonon.

(b) E ind
g D h� C „!phonon; 2�=a D qphonon.

Problems of Chap. 24

24.1 GaN quantum well

(a) D2D (GaN) = 3 � D2D (GaAs).
(b) To obtain the same occupation number difference, the nonequilibrium electron

density has to be larger by a factor of three. If the Einstein coefficient B21 has
the same value, the gain is by a factor �2=�1 larger for GaN (�2 D frequency of
a laser with a GaN-based quantum well and �1 D frequency of a laser with a
GaAs-based quantum well).

Problems of Chap. 26

26.1 We consider a two-dimensional plane wave,

� D �0eiŒkr�.E=„/t 	;
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where k and r are two-dimensional vectors within the plane. We apply periodic
boundary conditions for the x and y direction, kxL D m � 2� and kyL D
n � 2� , where m and n are integers and L is the periodicity length (for the
directions along x and y). In k space, the area of a ring of radius k and width
dk is 2�kdk. The area containing one k point is .2�=L/2. The density of k states is
ND2D.k/ D kdk=.2�/L2. The density of states in the energy space follows from the

relation ND2D.�/d� D 2 ND2D.k/dk, where the factor 2 takes into account that there
are two spin directions for an electron. Making use of the dispersion relation � D
„2k2=.2m/ and of d�=dk D „2k=mwe find ND2D D 2 ND2D.k/dk=d� D m=.�„2/L2
andD2D.�/ D m=.�„2/ (D density of states per unit of energy and unit of area).

26.2 Subpicosecond quantum well laser

(a) Yes. It is in principle possible to have a gain profile of a halfwidth of about
50 meV. The necessary frequency width is ��0 D �E0=h D 12THz; tpulse �
1=��0 � 10�13 s D 100 fs.

(b) The pulse separation is T D 2nL=c D 2 � 10�11 s. Most likely, the number of
photons available in a pulse is not sufficient for the saturation of a semiconduc-
tor reflector.

(c) If an external reflector is used, an active Q-switching technique should be
applicable and the generation of subpicosecond pulses should be possible.

Problems of Chap. 27

27.1 The periodic boundary condition for a one-dimensional system yields the k
values k D s � 2�=L. The density of states in k space is ND1D.k/ D 2 � L=.2�/

because there are two states (˙k/ in an interval 2�=L.
� D „2k2=2m; d�=dk D .„=m/k D „p2�=m; ND1D.�/d� D 2 ND1D.k/dk;
ND1D.�/ D .2L=�/dk=d� D L=.�„/p2m=� andD1D D .�=„/p2m=�.

27.2 f2 D 0; f1 D 1; G � 1 D .n=a2c/h
2�B21n

1D
0;nat=��nat D 0:26.

27.3 Ith D 0:8 �Ne=�sp D 0:75 nA.

27.4 Bipolar laser as two-level laser

(a) Dr.E/; E D Eg C � D pair level energy; � D �2 C �1; �2 and �1 are the
energies of the electron and the hole that constitute a radiative pair. Dr.�/ is
the 3D, 2D, 1D or 0D density of states, depending on the dimensionality of the
semiconductor.

(b) The gain characteristicH21 is proportional to fp� Nfp, where fp is the probability
that the pair level is occupied and Nfp is the probability that the pair level is
empty; fp � Nfp D 2fp.
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(c) fp � Nfp > 1=2, since the absorption coefficient is proportional to Nf and the
stimulated emission to f .
The condition must correspond to the condition f2 � f1 D 0 or f2 � f1 D
fe � .1�fh/ D 0. It follows that fp � Nfp D f2 �f1C 1=2 D fe Cfh � 1=2. f2
and f1 are the occupation numbers for the electrons in the conduction band and
the valence band and fe and fh are, in the electron-hole picture, the occupation
numbers for the electrons and holes, respectively (see Sect. 21.10).

27.5 Laser operated with a gain medium with a naturally broadened line

(a) To the knowledge of the author: no.
An electron-hole pair can be considered as an occupied single electron pair
level (D occupied upper laser level). The lower laser level is the vacuum level.
The lifetime of the vacuum level is infinitely large (or large compared to the
spontaneous lifetime of the pair). Thus, we have no lifetime broadening of the
lower laser level, supposed that the population of the levels of the electron and
the hole, which constitute a radiative electron-hole pair, occurs sufficiently fast.

(b) �21 D .�=n/2=2� D 9 � 10�15 m2 for n D 3:6.

Problems of Chap. 31

31.3 (a) A1 D 0:18V.

(b) �0 D a=C D 10 � 109 s�1; 
 D G=C D 0:77 � 109 s�1; �0 � 
 D 2:3 �
108 s�1 � !0 D 6 � 1010 s�1.

31.4 Van der Pol equation

(a) The equation follows from (31.47) by introducing � D .�0 � 
/=!0 and y D
U
p
.3!0b=C /.�0 � 
/�1:

(b) The ansatz y D A cos � leads to A D 2.



References

1. A. E. Siegman, Lasers (University Science 1986)
2. W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge University Press 2003)
3. O. Svelto, Principles of Lasers, 5th ed. (Plenum Press 2010)
4. S. Hooker, C. Webb, Laser Physics (Oxford University Press 2010)
5. P. W. Milonni, J. H. Eberly, Lasers, 1st ed. (Wiley 1998)
6. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehort & Winston 1985)
7. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer 2005)
8. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall 1995)
9. C. C. Davis, Lasers and Electro-Optics (Cambridge University Press 1996)
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78. D. Bäuerle, Laser Processing and Chemistry, 3rd. ed. (Springer 2000)
79. M. W. Berns, K. O. Greulich (Ed.), Laser manipulation of cells and tissues (Elsevier 2007)
80. A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press 1993)
81. A. N. Chester, S. Martucelli, A.M. Scheggi, Laser Systems for Photobiology and Pho-

tomedicine (Plenum Press 1991)
82. H. Niemz, Laser-Tissue Interactions (Springer 1996)
83. J. Eichler, G. Ackermann, Holographie (Springer 1993)
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127. A. Klein, W. Bäumler, M. Landthaler, P. Babilas, Laser and IPL treatment of port-wine stains:

therapy, options, limitations, and practical aspects, Lasers Med Sci 26, 845 (2011)
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Differential gain coefficient, 354, 553
Diffraction, 181

loss, 215
Diffusion, 275, 276
Dipole

matrix element, 92
moment, 141, 347
oscillator, 68

Direct gap semiconductor, 377, 434
Disk

laser, 8, 286, 292
of light, 19, 99, 110–112

Dispersion, 146, 243, 245–248, 569, 570
relation of electromagnetic radiation, 18,

27, 569
relation of electrons, 373, 434, 467, 501,

504, 510, 511
Displacement current, 137
Distributed

Bragg reflector, 447, 578
feedback laser, 8, 447

Divergence, 198
D2O laser, 272
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Doppler broadening, 259–261
Double-heterostructure laser, 374, 379, 380,

484, 486, 488–490
Drude theory, 168
Dye, 230, 231, 298

laser, 297–299

Echelette grating, 271
EDFA. See Erbium-doped fiber amplifier

(EDFA)
Edge-emitting laser, 8, 44, 445
Effective

gain cross section, 105, 327, 394, 402, 403
growth rate constant, 394, 423
mass, 373, 430
refractive index, 458
wavelength, 211
wave vector, 211

Effusion cells, 433
Eigenfrequency, 27, 68
Eigenvalue problem, 27, 200, 219
Eigenvalues, 503
Einstein

coefficients, 85–92, 322, 360, 363, 377,
385–387, 396, 417, 556, 558

relations, 86–88, 92, 385–387
Electric

current, 140
dipole moment, 141
susceptibility, 144, 145, 252

Electro-luminescence, 486
Electron

bunching, 356–359
collisions, 263
gas, 72, 374, 384, 385
subband, 412, 463–466

Electron-hole
pair, 406, 407, 473, 571
recombination, 406, 488, 574, 576, 578

Electron-phonon scattering, 60, 384, 393–395,
397, 475, 547

Energy
band, 372, 434, 466, 504
band engineering, 381
degeneracy, 467
density of an electromagnetic field, 19, 29
flux density, 19, 461
gap, 372
level broadening, 322, 389
relaxation, 70, 561
transfer, 289, 290, 317, 577
-ladder based laser, 56, 61
-ladder system, 334, 364

Environmental gas, 488
Erbium-doped

fiber amplifier (EDFA), 313–331, 570
fiber laser, 61, 288, 289, 315, 330

Er:YAG laser, 285
Esaki–Tsu characteristic, 525, 546
Etalon, 227
Excimer laser, 267, 268
Extended Kronig–Penney model, 511

Fabry-Perot
interferometer, 48, 52
resonator, 26–35, 38, 39, 43, 45–53, 151,

205, 377
resonator containing a gain medium, 52, 53

Far-field range, 197
Far infrared

laser, 272, 273, 488
quantum cascade laser, 499

Far infrared laser, 488
Feedback, 32
FEL, 333
Femtochemistry, 250
Femtosecond laser, 235–254
Fermi energy, 386
Fermi-Dirac distribution, 319, 329, 386, 413
Fiber

amplifier, 290, 302, 313–331, 570
laser, 5, 8, 44, 103, 106, 287, 288, 292, 330,

331
Filling factor, 320, 326
Finesse, 49
Flash lamp, 280
Fluorescence, 58, 78, 329, 330
Focused Gaussian beam, 220, 221
Forbidden mode, 178
Förster mechanism, 317, 577
Four-level laser, 57
Four-wave mixing, 585–587
Fourier transform, 240
Franck-Condon principle, 267, 269, 281, 297,

307, 308
Fraunhofer range, 197
Free electron, 61, 371, 380, 466, 483

in a crystal, 374
laser, 10, 61, 201, 333–366
laser medium, 334
oscillation, 335, 380
wave, 372

Free spectral range, 49, 50
Frequency

comb, 236, 243–248, 251, 585, 586
doubler, 581
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gap, 458
locking, 162, 163
modulation, 308–311, 349, 350, 361, 549
multiplication, 493
of laser oscillation, 34
tripling, 584

Fresnel
coefficients, 40, 41, 252, 461
number, 178, 181, 182, 215
range, 197

Frustrated total reflection, 447
FWHM, 6
Füchtbauer–Ladenburg relation, 114

GaAlAs mixed crystal, 431
GaAs, 436

crystal, 431
crystal lattice, 431
monolayer, 432
quantum well, 412

GaAs/GaAlAs heterostructure, 432, 433
Gain, 31, 52, 100, 484

bandwidth, 107
characteristic, 107, 111
coefficient, 21, 99–101, 104–108, 110, 128,

153, 314, 324–327, 348, 354, 393,
402, 485

cross section, 101–103, 105, 364, 394, 423,
424

factor, 21, 32, 100
mediated by a quantum well, 399–403,

418
mediated by a quantum wire, 475
profile, 107, 109, 422, 468
saturation, 114, 128
units, 303

GaN, 441, 442
Gap energy, 372, 468
GaSe, 252
Gaussian

beam, 187–217, 220–222, 568
distribution of energy levels, 318
line, 66, 67, 102
pulse, 241
wave, 187–217, 219–221, 568

Generalized conductivity, 139
Generalized dielectric constant, 139
Germanium, 271
Giant pulse laser, 225
Glass

fiber, 569
laser, 286, 287
structure model, 316

Gold vapor laser, 266
Gouy

frequency, 206, 213, 214, 243
phase, 34, 194, 197, 198, 200, 201, 204,

206, 208, 210–214, 243
Gravitational wave detector, 233
Green laser diode, 442
Group

II-VI semiconductors, 429, 430, 442
III-V semiconductors, 429, 441

Group velocity, 191, 214, 248, 570
Growth

coefficient, 98, 109, 324, 393, 401, 418,
423, 534

rate constant, 97, 153, 405
Gunn oscillator, 493, 517

Halfwidth, 6
HCN laser, 272
Heat, 58, 80, 84
Heavy hole band, 466
Helium-neon laser, 5, 36, 39, 67, 102, 105,

124, 130, 133, 157, 159, 202, 227,
261–265

Helmholtz equation, 190–192, 210, 215, 220,
224

Hermite
polynomials, 207
-Gaussian modes, 208

Hertzian dipole, 68, 253
Heterostructure, 433
High frequency

electric current, 136, 140, 348, 358, 534,
556

mobility, 349
polarization, 136, 348

High temperature superconductor, 169
High-power semiconductor laser, 424
High-pressure CO2 laser, 272
History of the laser, 11, 13, 165, 166, 366
Hohlraum resonator, 173
Hole subband, 412, 466, 468
Holmium-doped fiber laser, 289
Holography, 13, 225, 265
Homogeneous line broadening, 62, 67, 76,

108, 109, 140, 143, 146, 228, 229,
240, 262, 294, 312, 481

Homojunction laser, 487
Homostructure laser, 487
Host crystals, 290
Huygens’ principle, 215
H wave, 182
Hybrid states, 467
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Ideal conductor, 174
Ideal mirror, 44
Idler frequency, 584
Impedance of free space, 183
InAs, 441
Indirect gap semiconductor, 436
Industrial lasers, 7, 8, 10, 259, 267, 269, 284
Inelastic scattering of electrons, 390, 393–395,

397, 418, 475, 547
Inhomogeneous line broadening, 62, 67, 109,

229, 261, 275, 286, 294, 469, 477
Injection locking, 162, 163
InN, 441
Intensity, 19
Interband relaxation, 60
Intermediate coupling, 265
Intraband relaxation, 59, 60, 315, 323, 324,

394
Intraminiband relaxation, 547
Ions in solids, 292

Jahn-Teller effect, 309
Jamin interferometer, 167
Joint density of states, 392
Junction, 483
Junction laser, 372, 374, 379, 380, 483, 484,

486–490

K-space bunching, 555
KDP, 230, 248, 581, 583
Kerr

cell, 230
lens, 241, 585
lens mode locking, 241

Kirchhoff’s
diffraction theory, 215
rules, 521, 533

Kramers degeneracy, 293
Kramers–Kronig relations, 164, 165, 352,

551
Kronig-Penney potential, 511
Krypton ion laser, 267

Laguerre–Gaussian mode, 210
Lamb dip, 274
Lambert-Beer law, 99
Large-signal gain

coefficient, 128
factor, 34

Laser
amplifier, 301, 302, 314, 567

equations, 118, 119, 127, 154–164,
396–398, 404, 405

fusion, 302
linewidth, 131–133
market, 6
mirror, 44, 47, 48, 445–450
oscillator, 31, 152–160
resonator, 18, 26–35, 38, 39, 43, 45–53,

188–190, 199–212, 214–216, 334,
338, 345, 355, 377, 378, 397, 398,
402, 423, 426, 446, 447, 449

safety, 6
tandem, 301

Lattice
constants, 431
vibrations, 80, 108, 282, 307, 562

Lead, 169
Lead salt laser, 488
LED, 573
Level

broadening, 397
density, 374

Light hole band, 466
LiNbO3, 581, 583
Line broadening, 61, 64, 67–70, 259–262,

294
Linear response function, 136
Lineshape function, 62
Linewidth, 67
Littrow arrangement, 228
Longitudinal

mode, 189, 190, 208, 215, 226
pumping, 77, 231
relaxation, 70

Lorentz
dispersion function, 63, 145, 150, 351, 365,

550
model of an atom, 68
parameter, 335
resonance function, 51, 63–66, 71, 143,

145, 150, 262, 322, 351, 352, 363,
365, 389, 552, 559

Lorentzian function. See Lorentz resonance
function

Lorentzian line, 71, 102, 143, 294, 518,
523

Lorenz-Haken equations, 164
Loss, 31
Low-dimensional

medium, 71
semiconductor, 382

Luminescence, 58, 395, 398, 427,
486

Luminous efficiency, 574
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M factor, 217
Magnetic wave, 182
Manley–Rowe rule, 583
Maser, 4
Master oscillator, 162
Material

equation, 136, 516
gain coefficient, 417
processing, 235, 269, 279, 284, 286, 287

Maxwellian velocity distribution, 259
Maxwell’s equations, 136, 174
Medicine, 9, 225, 249, 266, 269, 279, 284, 287,

312, 495
Metal

mirror, 44
oxide chemical vapor deposition

(MOCVD), 433, 439, 573
vapor laser, 265, 266

Michelson interferometer, 233
Microbunches, 355, 357, 358
Microwave

cavity, 173
oscillator, 517, 518

Mini-Brillouin zone, 498
Miniband, 496, 498, 509–511

transport, 499, 524
width, 498

Mirror parameters, 203
Mirrorless laser, 300, 338
Mobility of an electron, 349
MOCVD. See Metal oxide chemical vapor

deposition (MOCVD)
Modal gain coefficient, 111, 417, 476, 479
Mode

density, 90, 179–181
locking, 236–248, 287
selection, 227
volume, 201

Modulation degree, 310, 350, 548
Molecular beam epitaxy, 433, 439, 561
Monte-Carlo technique, 561
Multi-mode laser, 272
Multi-quantum well laser, 424, 477
Multilayer

coating, 36, 448
reflector, 448

NaCl, 271
Natural line broadening, 69, 70, 474,

481
Nd:YAG laser, 5, 67, 102, 105, 284
Nd:YLF laser, 286
Nd:YVO4 laser, 286, 287

Near-field range, 197
Near-planar resonator, 204
Negative

absorption, 165
gain coefficient, 21
resistance oscillator, 52

Neoclassical laser equations, 161
Neodymium

YAG laser, 36
-doped glass laser, 286

Nitrobenzene, 230
Nitrogen laser, 268
Nonlinear

dispersion, 168, 248
polarization, 580, 581

Nonradiative
relaxation, 58, 76, 77, 80, 263, 270, 280,

281, 297, 315, 316, 323, 394, 488,
496

transition, 230

Occupation number, 23, 25
difference, 24–26, 98, 124, 125, 133, 315,

318, 323, 361, 387, 557
Offset frequency, 245, 247, 586
OLED. See Organic LED (OLED)
One-dimensional

active medium, 72
density of states, 375, 473

One-quantum dot laser, 480
Onset

of laser oscillation, 34, 38, 122, 159, 354,
554

time, 33, 34, 122, 123, 157–160, 231, 354,
554

Open resonator, 26, 189
Optic phonons, 394
Optical

communications, 8, 441, 478, 567–572
constants, 252
damage, 302
fiber, 567
frequency analyzer, 50, 251, 585–587
frequency comb, 236, 243–248, 251, 585,

586
parametric oscillator, 583
pumping, 18, 76
radar, 275
ray, 217
rectification, 252, 582
tweezers, 231

Optically pumped gas laser, 272
Optimum output coupling, 125–127
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Optocoupler, 571
Organic

laser, 577, 578
LED (OLED), 575

Oscillation frequency, 35, 522
Oscillation onset time, 34, 38, 39, 122, 123,

157–160, 231, 354, 554
Oscillator equations, 523
Oscillator strength, 113, 165
Output coupling, 18, 125–127, 345, 518, 520,

521, 534
Output power, 18, 127, 159

Paraxial
electromagnetic wave, 190
ray, 217

Partial reflector, 18
Paschen notation, 264
Pauli principle, 319, 388
Perfect conductor, 168, 461
Periodic boundary conditions, 472, 505,

509
P germanium laser, 492
Phase

locking, 162, 163, 523
relaxation, 261, 350, 547
velocity, 191, 248

Phonon Raman scattering, 294
Phonon-assisted energy transfer, 290, 294, 313,

318, 322
Phonons, 60, 80, 84, 253, 282, 290, 294, 308,

310, 317, 390, 394, 418, 435, 488,
492, 496, 555, 561, 562, 569, 587

Photodiode, 571, 586
Photodynamic therapy, 266
Photoluminescence, 58
Photometric quantity, 222
Photon

density, 19, 120
lifetime, 31
number, 46

Photonic
bandgap, 459
crystal, 448–450

Physical constants, 589
Planck’s radiation law, 84, 386
Plane

parallel plate, 226
wave, 191
-wave transfer matrix method, 451–453,

507–509
Pockels cell, 229

Poisson equation, 529
Polarization, 136, 140, 142–145, 147, 148,

347, 358, 518, 556, 579
current, 137, 149, 150

Population difference, 22, 24
Population inversion, 23, 24, 361, 557
Potential well, 305, 465
Poynting vector, 461
Pressure broadening, 261
Probability

current density, 508
density, 508

Propagating dipole domain mode, 518
Propagation

matrix, 453
of a Gaussian beam, 220

Pr:YAG laser, 285
Pulse distortion due to dispersion, 570
Pulse duration-bandwidth product, 241
Pulse repetition rate, 238
Pulsed laser, 225
Pump

band, 79
laser, 440, 441
rate, 57
-probe method, 250

Pumping a laser, 18, 231, 371
Pure charge accumulation mode, 518

Q factor, 45, 46, 51, 53, 133, 225, 226, 229,
351, 447, 481

Q-switched laser, 229, 230
Quantum

cascade laser, 6, 103, 107, 379,
495–500

dot, 478, 479
dot laser, 479
efficiency, 58, 309
layer, 463
well, 399, 403, 412–419, 463–469, 574
well laser, 379, 404, 405, 411–427,

463–470
wire, 472–474
wire laser, 379, 471–478

Quarter-wavelength film, 460
Quartz glass, 568
Quasi-Fermi energy, 72, 319, 320, 385–388,

399, 413–416, 422, 468, 484, 577
Quasiband, 60, 294, 315–321

laser, 60, 315, 577
Quasiclassical oscillator, 53, 516, 521, 523
Quasiequilibrium, 384
Quasiparticle, 60, 315, 318–332, 406
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Quasiplane wave, 18, 26
Quasithermal equilibrium, 323, 394

Rabi oscillation, 169
Racah notation, 264
Radiance, 198, 199, 221
Radiation pressure, 304
Radiationless transition, 58
Radiative

electron-hole pair, 406, 407
pair level, 391
transition, 321, 385

Radiometric quantity, 222
Random laser, 301
Rare earth ions, 292
Ray optics, 217–222
Rayleigh

range, 196, 197
scattering, 569

Recombination, 483
Reduced

density of states, 390, 392, 484
mass, 391, 473

Reflector, 18, 445–459
Refractive index, 143, 421
Regenerative amplifier, 34, 523
Relative occupation number, 23, 24, 318
Relativistic Doppler effect, 339
Relaxation

oscillation, 129–131
time, 57

Resolving power, 50
Resonance frequency, 27, 35, 362, 557
Resonant energy transfer, 289, 290
Resonant-tunneling diode, 493, 531, 532
Resonator, 9, 26–35, 38, 39, 43, 45–53, 173,

174, 176–183, 189, 190, 199–212,
214–216, 377, 446

boundary conditions, 28, 201
eigenvalue problem, 27, 34, 200, 209, 212
mode, 28, 176
stability diagram, 203, 218

Response function, 136, 252, 352, 552
Rod laser, 8, 292
Round trip transit time, 27, 236, 239
Ruby

laser, 59, 279
laser type, 58, 286, 330

Russel-Saunders coupling, 265

SASE free-electron laser, 338
Saturable absorber, 230

Saturation field, 334, 344–346, 349, 353–355,
361, 362, 365, 541, 552–554, 557,
560

Saturation of absorption, 115
Schawlow–Townes formula, 132
Schrödinger equation, 305, 463, 501
Seed laser, 162
Self-amplified spontaneous emission, 338
Self-excited oscillator, 31, 162, 534
Self-focusing, 242, 585
Self-terminating laser, 266, 269
Semiclassical

equation of motion, 544
laser equations, 161

Semiconductor superlattice, 498, 499
oscillator, 493, 517–530

SESAM, 287
Single mode laser, 226
Slave oscillator, 162
Slowly varying envelope approximation

(SVEA), 141, 153, 154, 161, 162,
523, 535

Small-signal gain
coefficient, 99, 128
factor, 34

Snell’s law, 37, 218
Solid state

lasers, 279–295
oscillator, 517, 520–524

Spatial
frequency, 14, 191
hole burning, 275

Spectral hole burning, 229, 317
Spectrum analyzer, 518
Speed of light, 4, 191, 214
Spherical wave, 191
Spin

-lattice relaxation, 316, 319
-orbit interaction, 264, 265, 292, 293, 467

Split-off band, 466
Spontaneous

emission, 70, 85, 88, 96, 395, 400
lifetime, 70, 76, 85, 395

Square well potential, 465, 502, 511
Stability diagram of resonators, 203, 218
Stable resonator, 216
Standing wave, 26, 28, 177, 199
Stark effect, 292, 294
Stimulated

emission, 22, 86, 91, 96
Raman scattering, 273, 587

Stratified medium, 454
Subband, 463–468
Superconductor, 169
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Superlattice, 498, 499, 511, 517, 540
Bloch laser, 10, 57, 380, 539–562
oscillator. See Semiconductor superlattice

oscillator
Surgery, 235, 284
Survey of

lasers, 5, 6, 102, 105, 381
semiconductor lasers, 378–381, 488–493

Susceptibility, 144, 145, 579
SVEA. See Slowly varying envelope

approximation (SVEA)
Symmetric confocal resonator, 199
Synchronization, 142, 148, 347, 355, 358, 359,

542, 555, 556

Tailoring of semiconductors, 381
Tapered wiggler, 339
TEA laser, 268, 269, 271, 272, 299
Telecommunication, 8
Terahertz

gap, 380, 483, 493
radiation, 252

TE waves, 182
Thin film dye laser, 299
Three-dimensional active medium, 72
Three-level laser, 58, 330
Threshold

condition, 34, 46, 120–122, 226, 397, 404,
422, 424–426, 518, 521

current, 397, 405, 423, 486
pump rate, 120, 121
resistance, 521

Thulium fiber laser, 289, 330
Tight binding model, 504, 511
Time domain spectroscopy, 252
Titanium-sapphire, 146

laser, 5, 75–79, 103, 106–108, 280–283,
307–312, 587

TM waves, 182
Total reflection, 568
Transfer matrix method, 451–453, 507–510
Transition

energy, 22, 65, 119, 362, 557
frequency, 56, 68, 362, 557

Transition metal ions, 292
Transparency

condition, 23, 24
density, 25, 58, 105, 326, 328, 375, 388,

390, 398, 415, 485
frequency, 21, 61, 325, 326, 363, 420, 551
region, 356

Transverse
electric wave, 182

magnetic wave, 182
mode, 189, 190, 206–209, 215, 226
pumping, 77, 231
relaxation, 70, 160

Tunable
laser, 76–78, 228, 280–284, 338
semiconductor laser, 446, 470

Two-band laser, 59
Two-dimensional

active medium, 72, 109–112
density of states, 374
gain characteristic, 111, 401, 416, 417
reduced density of states, 400
semiconductor, 374

Two-level
atomic system, 22
based laser, 56
laser, 59

Two-quasiband laser, 577

Ultrashort snapshot, 250
Undulator, 336
Unipolar semiconductor laser, 377, 492
Upconversion, 289, 290
UV laser diode, 441

Valence band, 373
Van der Pol

equation, 534
oscillator, 532–536

VCSEL, 425
Vertical-cavity surface-emitting laser, 8, 44,

425, 426, 448
V factor, 30–36, 45, 46, 122, 378
Vibronic

energy levels, 75, 282, 307–310
laser, 75, 76, 268, 282–284, 292,

305–312
states, 282, 307–310

Voigt profile, 109, 276

Wannier
function, 559
-Stark ladder, 562

Wave
equation, 174, 190, 502
function, 373, 463, 464, 472, 502
packet, 238, 239
vector, 18, 19, 191, 211

Waveguide, 185
Fabry-Perot resonator, 377



620 Index

Wavelength, 4, 183, 191, 211
Whispering gallery mode,

447
White light continuum, 248
Wiggler, 336
Work function, 576

X-ray
free-electron laser, 339
laser, 300

YAG lasers, 284, 285
Y:YAG laser, 285
Ytterbium-doped fiber laser, 288, 330

Zero
point energy, 465
-dimensional active medium, 72
-phonon line, 311

ZnSe, 442
ZnTe, 252
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