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Preface

For many years neutrino was considered a massless particle. The theory of a
two-component neutrino, which played a crucial role in the creation of the theory of
the weak interaction, is based on the assumption that the neutrino mass is equal to
Zero.

We now know that neutrinos have nonzero, small masses. In numerous exper-
iments with solar, atmospheric, reactor and accelerator neutrinos a new phe-
nomenon, neutrino oscillations, was observed. Neutrino oscillations (periodic
transitions between different flavor neutrinos v, v, v;) are possible only if neutrino
mass-squared differences are different from zero and small and flavor neutrinos are
“mixed”.

The discovery of neutrino oscillations opened a new era in neutrino physics:
an era of investigation of neutrino masses, mixing, magnetic moments and other
neutrino properties. After the establishment of the Standard Model of the elec-
troweak interaction at the end of the seventies, the discovery of neutrino masses
was the most important discovery in particle physics. Small neutrino masses
cannot be explained by the standard Higgs mechanism of mass generation. For
their explanation a new mechanism is needed. Thus, small neutrino masses is
the first signature in particle physics of a new beyond the Standard Model
physics.

It took many years of heroic efforts by many physicists to discover neu-
trino oscillations. After the first period of investigation of neutrino oscillations,
many challenging problems remained unsolved. One of the most important is the
problem of the nature of neutrinos with definite masses. Are they Dirac neu-
trinos possessing a conserved lepton number which distinguish neutrinos and
antineutrinos or Majorana neutrinos with identical neutrinos and antineutrinos?
Many experiments of the next generation and new neutrino facilities are now
under preparation and investigation. There is no doubt that exciting results are
ahead.

This book is intended as an introduction to the physics of massive and mixed
neutrinos. It is based on numerous lectures which I gave at different Universities and
at CERN and other schools. I have tried to explain how many of the main results
were derived. The details of the derivation can be easily followed by the reader.

vii



viii Preface

I hope that this book will be useful for the physicists working in neutrino physics,
for students and young physicists who plan to enter into this exciting field and to
many scientists who are interested in the history of neutrino physics and its present
status.

Dubna, Russia, Vancouver, Canada Samoil Bilenky
October 2009



Acknowledgements

I am very happy to express my deep gratitude to my colleagues and collaborators
W. Alberico, J. Bernabeu, A. Bottino, A. Faessler, F. von Feilitzsch, C. Giunti,
A. Grifols, W. Grimus, J. Hosek, C.W. Kim, M. Lindner, M. Mateev, T. Ohlsson,
S. Pascoli, S. Petcov, W. Potzel, F. Simkovic and T. Schwetz for numerous fruitful
discussions of different aspects of neutrino physics. I am very grateful to Walter
Potzel for his careful reading of the manuscript and many useful remarks. I am
thankful to the theoretical department of TRIUMF for hospitality and, especially, to
Kai Hebeler for his kind help in the arrangement of the computer layout of the book.



Contents

1 Introduction .......... ... . ... .. . 1
2 Weak Interaction Before the Standard Model .................... 9
2.1 Pauli Hypothesis of Neutrino . .............................. 9
2.2 FermiTheory of B-Decay...........ccooiiuiiiniiininn... 11
2.3 Fermi-Gamov-Teller Hamiltonian of §-Decay................. 12
2.4  Violation of Parity in f-Decay ................... .. ... ... 13
2.5 Two-Component Neutrino Theory........................... 14
2.6 pu-e Universal Charged Current. Currentx Current Theory . . ... .. 16
2.7 Theory with Vector W Boson. .............................. 19
2.8  First Observation of Neutrinos. Lepton Number Conservation ... 20
2.9  Discovery of Muon Neutrino. Electron and Muon Lepton Numbers 22
2.10  Strange Particles. Quarks. Cabibbo Current ................... 24
2.11  Charmed Quark. Quark and Neutrino Mixing ................. 26
2.12 Summary and Outlook ......... ... ... . i 27
3 The Standard Model of the Electroweak Interaction .............. 29
3.1 Introduction ......... ... 29
3.2 SU (2) Yang-Mills Local Gauge Invariance ................... 30
33 Spontaneous Symmetry Breaking. Higgs Mechanism. .......... 35
3.4 The Standard Model for Quarks............................. 39
3.5  The Standard Model for Leptons . . . ......................... 52
3.6 Summary and Outlook ......... ... ... ... .. ... 60
4 NeutrinoMassTerms .......... ... ... ... i i, 61
4.1 Introduction ........ ... i 61
4.2 DiracMass Term .......... ... 62
43  MajoranaMass Term ............ouiiiiiiiiiiiiiiinan. 63
44  Dirac and MajoranaMass Term......................oooon. 68
4.5 Neutrino Mass Term in the Simplest Case of Two Neutrino Fields 70
4.6 Seesaw Mechanism of Neutrino Mass Generation. ............. 73
4.7 Summary and Outlook ............ .. ... .. ... .. ..., 76

xi



xii

10

Contents

Neutrino Mixing Matrix ............. ... ... .. ... ... ..., 79
5.1 Introduction ......... ..o 79
5.2 The Number of Angles and Phases in the Matrix U ............ 79
5.3 CP Conservation in the Lepton Sector ....................... 82
54 Standard Parametrization of 3x3 Mixing Matrix .............. 86
5.5 On Models of Neutrino Masses and Mixing . .................. 89
Neutrino Oscillations in Vacuum ................................ 95
6.1 Introduction ........ ... 95
6.2  Flavor Neutrino States .................ccoiiiiiiiiinnnn... 95
6.3 Oscillations of Flavor Neutrinos ............... ... ......... 99
6.4  Two-Neutrino Oscillations ............... ... ... 107
6.5  Three-Neutrino Oscillations. CP Violation in the Lepton Sector .. 110
6.6  Three-Neutrino Oscillations in the Leading Approximation. . . ... 114
Neutrinoin Matter ............... ... ... i 121
7.1 Introduction ......... ... 121
7.2 Evolution Equation of Neutrino in Matter .................... 121
7.3 Propagation of Neutrino in Matter with Constant Density ....... 127
7.4 Adiabatic Neutrino Transitions in Matter . .................... 131
Neutrinoless Double Beta-Decay ................................ 139
8.1 Introduction ......... ... 139
8.2  Basic Elements of the Theory of OvgB-Decay ................. 143
8.3 Effective Majorana Mass ............oviineirnnennnennnnn. 152
8.4 On the Nuclear Matrix Elements of the Ov8B-Decay ........... 156
8.5 Data of Experiments on the Search for OvBg-Decay. Future
EXperiments . ..........ooouuieii i 157
On absolute Values of Neutrino Masses .......................... 159
9.1 Masses of Muon and Tau Neutrinos ......................... 159
9.2 Neutrino Masses from the Measurement of the High-Energy
Part of the B-Spectrum of Tritium ....................... ... 160
Neutrino Oscillation Experiments ............................... 165
10.1  Introduction . .............ooieunnneit e 165
10.2  Solar Neutrino Experiments . ................. ..., 167
10.2.1  Introduction ..............cc.ooiiininiinneennnenn.. 167
10.2.2  Homestake Chlorine Solar Neutrino Experiment . . . . . . 170

10.2.3  Radiochemical GALLEX-GNO and SAGE Experiments 171
10.2.4  Kamiokande and Super-Kamiokande Solar Neutrino
Experiments.......... ..., 173
10.2.5  SNO Solar Neutrino Experiment ................... 175
10.2.6  Borexino Solar Neutrino Experiment. ............... 178



Contents xiii

10.3  Super-Kamiokande Atmospheric Neutrino Experiment . ........ 179

10.4 KamLAND Reactor Neutrino Experiment . ................... 184

10.5 Long-Baseline Accelerator Neutrino Experiments ............. 187

10.5.1  K2K Accelerator Neutrino Experiment . ............. 187

10.5.2  MINOS Accelerator Neutrino Experiment ........... 188

10.6  MiniBooNE Accelerator Neutrino Experiment ................ 190

10.7 CHOOZ Reactor Neutrino Experiment....................... 191

10.8  Future Neutrino Oscillation Experiments ..................... 193

11 Neutrino and Cosmology ........ ... ... ... . ... ... 195

I1.1  Introduction .................iiiiiiiiiniiiiiinnnn 195

11.2  Standard Cosmology . ........... ...t 195

11.3  Early Universe; Neutrino Decoupling . ....................... 205

11.4  Gerstein-Zeldovich Bound on Neutrino Masses ............... 210

11.5 Big Bang Nucleosynthesis and the Number of Light Neutrinos. .. 212

11.6  Large Scale Structure of the Universe and Neutrino Masses ... .. 216

11.7  Cosmic Microwave Background Radiation ................... 220

11.8  Supernova Neutrinos . . . . ......ouetuneine e 222

11.9  Baryogenesis Through Leptogenesis......................... 225

12 Conclusion and Prospects ........... ... ... . ... ... ... ..., 231
Appendices

A Diagonalization of a Hermitian Matrix. The Case2 x 2 ............ 237

B Diagonalization of a Complex Matrix ............................ 241

C Diagonalization of a Complex Symmetrical Matrix ................ 243

References. . ... ... 245

Index .. ... o 253



Chapter 1
Introduction

The idea of neutrino was put forward by W. Pauli in 1930. This was a dramatic
time in physics. After it was established in the Ellis and Wooster experiment that
the average energy of the electrons produced in the B-decay is significantly smaller
than the total released energy, only the existence of neutrino, a neutral particle with
a small mass and a large penetration length (much larger then the penetration length
of the photon), which is emitted in the S-decay together with the electron, could
save the fundamental law of the conservation of energy.

At the time when the neutrino hypothesis was proposed the only known elemen-
tary particles were electron and proton. In this sense neutrino (more exactly electron
neutrino) is one of the “oldest” elementary particles. However, the existence of the
neutrino was established only in the middle of the fifties when neutron, muon, pions,
kaons, A and other strange particles were discovered.

We know at present that the twelve fundamental fermions exist in nature: six
quarks u, d, c, s, t, b, three charged leptons e, i, T and three neutrinos ve, vy, v;.
They are grouped in the three families, which differ in masses of particles but have
universal electroweak interaction with photons and vector W=, Z bosons. In the
Lagrangian of the electroweak interaction, neutrinos enter on the same footings
as the quarks and charged leptons. In spite of this similarity of the electroweak
interaction neutrinos are special particles. There are two basic differences between
neutrinos and other fundamental fermions.

e At all available at present energies, cross section of the interaction of neutrinos
with matter is many order of magnitude smaller than the cross section of the
electromagnetic interaction of leptons with matter (via the exchange of the virtual
y-quanta). This is connected with the fact that neutrinos interact with matter via
the exchange of the heavy virtual W* and Z bosons.

e Neutrino masses are many order of the magnitude smaller than the masses of
leptons and quarks.

Because of the extreme smallness of the neutrino cross section, special methods
of the detection of neutrino processes must be developed. However, after such meth-
ods were developed the observation of neutrino processes allows us to obtain unique
information:

Bilenky, S.: Introduction. Lect. Notes Phys. 817, 1-8 (2010)
DOI 10.1007/978-3-642-14043-3_1 © Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

1. The measurement of the cross section of the deep inelastic processes v, (V,) +
N — = (uh)+X) led to the establishment of the quark structure of the nucleon.

2. The detection of the solar neutrinos allowed us to establish the thermonuclear
origin of solar energy and to obtain information about the central invisible part
of the sun where the energy is produced.

3. The detection of neutrinos from the Supernova explosion allows us to investigate
a mechanism of the gravitational collapse, etc.

The measurement of small neutrino masses is a difficult and challenging problem.
This problem is still not solved. The observation of a new phenomenon-neutrino
oscillations (the transitions between different flavor neutrinos) led to the determina-
tion of two neutrino mass-squared differences. From neutrino oscillation data and
data of the B-decay experiments on the direct measurement of the neutrino mass it
is possible to conclude that

e Neutrino masses are different from zero.
e Neutrino masses are smaller than ~2 eV, i.e. many order of magnitude smaller
than masses of leptons and quarks.

The unified theory of the weak and electromagnetic interactions (the Standard
Model (SM)) describes all existing experimental data. However, existence of the
Dark matter and internal problems of the Standard Model (the hierarchy problem)
tell us that a more general, beyond the SM theory must exist. After the establishment
of the SM at the end of the seventies, many experiments on the search for beyond
the SM effects were done.

The first signature of a new beyond the SM physics was obtained in the neutrino
oscillation experiments. In the framework of the SM small neutrino masses cannot
be explained in a natural way. It is a common opinion that a new mechanism of the
mass generation is required.

Discovery of neutrino oscillations signifies not only that neutrino mass-squared
differences are different from zero but also that the states of flavor neutrino are
superpositions (“mixture”) of states of neutrinos with definite masses. Flavor neu-
trino states are connected with states of neutrinos with definite masses by the unitary
mixing matrix which is characterized by three mixing angles and one phase.

The phenomenon of the neutrino mixing is similar to the well established quark
mixing. However, the quark mixing angles are small and satisfy a hierarchy. The
neutrino mixing angles are completely different: two angles are large and one is
small (only upper bound is known at the moment). This is also an indication that
quark and neutrino mixing have different origin.

The most common general explanation of the smallness of the neutrino mass is
based on the assumption that the total lepton number is violated at a large scale
(about (1012 — 10'©) GeV). If this assumption is correct, neutrinos with definite
masses are truly neutral Majorana particles. The leptons (and quarks) are Dirac
particles. The leptons and antileptons (quarks and antiquarks) are different particles.
They have the same masses but their electric charges differ in sign. If neutrino are
Majorana particles in this case neutrinos and antineutrinos are identical. Observation
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of the neutrinoless double S-decay (A, Z) — (A, Z +2) + e~ + e~ would be a
proof that neutrinos are Majorana particle.

The first rather long period of the investigation of neutrino masses, mixing and
oscillations is practically finished. Neutrino oscillations were discovered. Four neu-
trino oscillation parameters (two mass-squared differences and two mixing angles)
are determined with accuracies of about 10% or better. Strong bounds on the half-
lives of the neutrinoless double B-decay of different nuclei were obtained. In 2009—
2010 a new precision era of the investigation of the problem of neutrino masses,
mixing and nature started. The main problems which will be addressed are the fol-
lowing

1. Are neutrinos with definite masses Majorana or Dirac particles?

2. What is the value of the third mixing angle 613?

3. Is the C P invariance violated in the lepton sector? What is the value of the C P
phase?

4. What is the character of the neutrino mass spectrum? Is it normal with smaller

mass-squared difference between lighter neutrinos or inverted with smaller mass-

squared difference between heavier neutrinos?

What are the absolute values of the neutrino masses?

6. Is the number of massive neutrinos equal to the number of the flavor neutrinos
(three) or larger than three? In other words do so called sterile neutrinos exist?

b

Many neutrino experiments of the next generation with neutrinos from accel-
erators and reactors have started or will be started in the near future. New large
detectors of atmospheric, solar and supernova neutrinos are under development.
Technologies for new neutrino facilities (Super-beam, S-beam, Neutrino Factory)
are being developed. There is no doubt that a new exciting era of neutrino physics
is ahead.

In this book, I intend to give an introduction to the physics of massive and mixed
neutrinos. I start with a brief review of the development of the phenomenological
V — A currentx current theory of the weak interaction starting from Pauli’s hypoth-
esis of the neutrino and Fermi’s theory of the S-decay. In the next chapter we will
consider the Standard Model. The Higgs mechanism of the generation of masses or
quarks and leptons is discussed in some details. Then we consider mass terms for
neutrinos in the Dirac and Majorana cases. We will describe in detail the procedure
of the diagonalization of the mass terms in both these cases. Next chapter is devoted
to the detailed consideration of the general properties of the neutrino mixing matrix.
We obtain here the standard parametrization of the 3x3 mixing matrix. Then we
present the theory of neutrino oscillations in vacuum. The three-neutrino oscillations
are considered in detail. In the next chapter flavor neutrino transitions in matter are
discussed. First, we derive Wolfenstein equation for neutrino evolution in matter.
Then we consider in some detail the adiabatic solution of this equation and the reso-
nance MSW effect. The next chapter is dedicated to the neutrinoless double S-decay
of even—even nuclei. Basic elements of the theory of the decay are presented. Then
we briefly discuss neutrino oscillation experiments and the data obtained. In the next
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chapter we discuss S-decay experiments on the measurement of the neutrino mass.
In the last chapter we will consider neutrino in cosmology.

It is impossible in a book to give a full list of references. Taking into
account a limited number of pages available for this book, I give here refer-
ences only to some pioneer neutrino papers, relevant reviews and books. I would
further recommend the web site by C. Giunti and M. Laveder (the Neutrino
Unbound, http://www.nu.to.infn.it/) where it is possible to find many references
to the neutrino literature (theory and experiment).

I conclusion I would like to enumerate some principal neutrino events.

1930. W. Pauli suggested in a letter addressed to the participants of the nuclear
conference in Tuebingen that there exists a new neutral, spin 1/2, weakly interacting
particle which is produced together with the electron in the S-decay of nuclei. Pauli
called the new particle “neutron”. Later E. Fermi proposed the name neutrino for
this particle.

1934. E. Fermi proposed the first theory of the 8-decay. Fermi considered the -
decay as four-fermion process in which a neutron is transformed into a proton with
the emission of a electron-neutrino pair. He proposed the following Hamiltonian of
the B-decay

H; = Gpr py®n eyyv + hc., (1.1)

where G  is the Fermi constant.

1934. Bethe and Peierls estimated the interaction cross section of neutrino with
nuclei. The estimated value of the cross section was so small that for many years the
neutrino was considered as an “undetectable particle”.

1946. B. Pontecorvo proposed the radiochemical method of neutrino detection
which is based on the observation of

v+37Cl = e +37 Ar

and other similar processes. As possible intensive sources of neutrinos Pontecorvo
suggested reactors and the sun.

1947-1948. Pontecorvo, Puppi, Klein, Tiomno and Wheeler proposed the idea
of the i — e universality of the weak interaction.

1956. In the Reines and Cowen experiments the (anti)neutrino was discovered. In
these experiments antineutrinos from a reactor were detected in a large scintillator
counter via the observation of the reaction

D+p—et +n.
1957. In the Davis experiment no production of 37 Ar in the process

5 +37Cl — e~ +37 Ar
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with antineutrinos from a reactor was observed. This was the first indication in favor
of the existence of the conserved lepton number which distinguishes the neutrino
and the antineutrino.

1957. In the Wu et al. experiment with polarized %°Co a large effect of the parity
violation in the B-decay was discovered.

1957. Landau, Lee and Yang and Salam proposed the theory of the massless
two-component neutrino. According to this theory the neutrino is the left-handed
(or right-handed) particle and the antineutrino is the right-handed (or left-handed)
particle. Under the inversion of the coordinate system the state of the left-handed
(right-handed) particle is transformed into the state of the right-handed (left-handed)
particle. In the two-component theory in which the neutrino is a particle with definite
helicity (projection of the spin on the direction of momentum) parity is violated
maximally.

1958. The helicity of the neutrino was determined in the Goldhaber, Grodzins and
Sunyar experiment from the measurement of the circular polarization of y-quanta
in the chain of the reactions

e +Eu— v+ Sm*

|
Sm +vy

It was established that the neutrino is the left-handed particle.

1958. Pontecorvo suggested that neutrinos have small masses, the total lepton
number is violated and neutrino oscillations similar to K* < K© oscillations could
take place. He considered effects of neutrino oscillations in experiments with reactor
antineutrinos.

1958. Feynman and Gell-Mann, Marshak and Sudarshan proposed the
current x current theory of the weak interaction. The Hamiltonian of this theory has
the form

GF . .
Hi=—j¢ - 1.2
! ﬁ] J (1.2)

Here

Jo =2 (PLYanL +VLYaeL + VL ValiL) (L.3)

is the w — e universal weak charged current (CC).

1962. In the Brookhaven neutrino experiment, the first experiment with acceler-
ator high-energy neutrinos, it was established that neutrino which take part in CC
weak interaction together with electron and neutrino which take part in CC weak
interaction together with muon are different particles. They were called electron
neutrino v, and muon neutrino v,,. In order to explain the data of the Brookhaven
and other experiments it was necessary to introduce two separately conserved lepton
numbers: the electron L, and the muon L ,. The weak charged current take the form
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Ja =2 (PLVaNL + VeLVaeL + 1_);LLJ/OllfLL)~ (1.4)

1962. Maki, Nakagawa and Sakata assumed that neutrinos have small masses and
the fields of electron and muon neutrinos are connected with the fields of massive
neutrinos v; and v, by the mixing relations

Ver, = c0S6O viz + sinf vy,

v = —siné vy +cosf vy, (1.5)

where 6 is a mixing angle.

1967. Glashow (1961), S. Winberg and A. Salam (1967) proposed the unified
theory of the electromagnetic and weak interactions (The Standard Model)

1970. In the pioneer experiment by Davis et al solar neutrinos were detected. In
this experiment solar v,’s were detected by the Pontecorvo radiochemical Cl — Ar
method via the observation of the reaction

Ve +7Cl - e +¥ Ar.

The threshold of this reaction is 0.81 MeV. Thus, only high-energy solar neutrinos,
mainly from the decay 8B — ®Be+et +1,, were detected in the Davis experiment.
The observed rate was 2-3 times smaller that the rate predicted by the Standard
Solar Model (SSM). This discrepancy was called solar neutrino problem.

1973. In the experiment with high energy accelerator neutrinos at CERN a new
class of the weak interaction, the so called neutral currents (NC), was discovered. In
addition to CC deep inelastic processes

V) + N = u”(wh) + X (1.6)
also NC processes
V() + N — v, (v,) + X (1.7)

were observed in the bubble chamber “Gargamelle”. The discovery of the neutral
currents was the decisive confirmation of the Glashow-Weinberg-Salam unified the-
ory of the electroweak interaction.

1980s. In CDHS and CHARM experiments on the study of the deep inelastic
scattering of neutrinos and antineutrinos on nucleons (CERN) the quark structure of
nucleons was investigated in detail.

1978 Wolfenstein and Mikheev and Smirnov (1986) showed that for solar neutri-
nos, which are born in the central region of the sun and pass a large amount of matter
on the way to the earth, matter effects due to the mixing and coherent scattering on
electrons are important.

1987. Neutrinos from the gravitational collapse of a star were observed for the
first time. Neutrinos from the supernova SN1987A in the Large Magellanic Cloud
were detected in the Kamiokande, IMB and Baksan detectors.
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1988. Solar neutrinos were detected in the experiment Kamiokande. In this
experiment the flux of the solar B® neutrinos was determined through the detection
of the recoil electrons in the scattering process

v+e—>v+e (1.8)

The existence of the solar neutrino problem was confirmed.

1988. L. Lederman, M. Schwartz and J. Steinberger were awarded the Nobel
Prize for “the discovery of the muon neutrino leading to classification of particles in
families”.

1991. In the GALLEX and SAGE experiments solar electron neutrinos were
detected by the radiochemical method via the observation of the process

ve +71 Ga — ¢~ +7! Ge. (1.9)

Because of the law threshold (0.23 MeV), in the GALLEX and SAGE experiments
neutrinos from all reactions of the pp-cicle, including the main reaction p + p —
d+et+v,, were detected. The flux of solar neutrinos measured in these experiments
was about two times smaller that the flux predicted by the SSM.

1990s. It was proven by experiments on the measurement of the width of the
decay Z — v + v at LEP (CERN) that three flavor neutrinos exist in Nature. This
measurement allowed to establish that only three families of leptons and quarks
exist.

1995. For the detection of the (anti)neutrino F. Reines was awarded the Nobel
Prize.

1998. In the Super-Kamiokande experiment a large azimuth angle asymmetry
of high-energy atmospheric muon neutrino events was observed. This was the first
model-independent evidence for neutrino oscillations driven by a neutrino mass-
squared difference Am%3 ~25-1073 eV

2000. In the experiment DONUT at Fermilab the first direct evidence of the exis-
tence of the third neutrino v; was obtained.

2002. In the solar neutrino experiment SNO solar neutrinos were detected
through the observation of not only the CC reaction

Ve+d—>e +p+p (1.10)
but also the NC reaction
v+d—>v+n+p. (1.11)
This experiment solved the solar neutrino problem in a model-independent way: it
was proven that solar v,’s on the way from the cental part of the sun to the earth are
transformed into other types of neutrinos.

2002 R. Davis and M. Koshiba were awarded the Nobel Prize for “pioneering
contributions to astrophysics, in particular for the detection of cosmic neutrinos”.
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2002. In the reactor experiment KamLAND, v,’s from 57 reactors in Japan were
detected through the observation of the reaction

be+p—et+n (1.12)

The average distance between reactors and detector was about 180 km. In this exper-
iment, a model-independent evidence for neutrino oscillations driven by a neutrino
mass-squared difference Am%2 ~ 8.1077 eV? was obtained.

2004. In the long-baseline accelerator neutrino experiment K2K the evidence
for neutrino oscillations obtained in the atmospheric neutrino experiment Super-
Kamiokande was confirmed. In this experiment, neutrinos from the accelerator
at KEK were detected by the Super-Kamiokande detector at a distance of about
250 km.

2006. In the long-baseline neutrino experiment MINOS, the Super-Kamiokande
atmospheric neutrino evidence for neutrino oscillations was additionally confirmed.
In the MINOS experiment, neutrinos from the accelerator at Fermilab were detected
by the detector in the Soudan mine at a distance of 735 km. An accuracy of about
10% in the measurement of the mass-squared difference Am%3 was achieved.

2007. A new solar neutrino experiment BOREXino started. In this experiment
monochromatic ’Be solar neutrinos with the energy 0.86 MeV were detected in real
time.

2010. The observation of neutrino oscillations in the atmospheric Super-
Kamiokande, solar SNO, reactor KamLLAND and other neutrino oscillation exper-
iments is the most important recent discovery in particle physics. Small neutrino
masses cannot be naturally explained by the standard Higgs mechanism of mass
generation. New physics and a new mechanism of neutrino mass generation beyond
the Standard Model are required. To reveal new physics various high-precision
experiments (T2K, Double CHOOZ, Daya Bay, RENO, NOvVA and others) started
or will be started during the next years.



Chapter 2
Weak Interaction Before the Standard Model

All existing present data are in perfect agreement with the unified theory of the
electromagnetic and weak interactions (Standard Model). Before this theory was
created, there was a long phenomenological period of the development of the theory
of the weak interaction. In this introductory chapter we will briefly consider this
period.

2.1 Pauli Hypothesis of Neutrino

The only weak process which was known in the twenties and thirties was the -
decay of nuclei. In 1914 Chadwick discovered that the energy spectrum of electrons
from B-decay is continuous. If B-decay is a process of the transition of a nucleus
(A,Z) into a nucleus (A,Z+1) and the electron (as it was believed at that time),
from conservation of energy and momentum follows that the electron must have a
fixed kinetic energy approximately equal to Q =~ ma z — ma z4+1 — m, (where
ma,z (ma z+1) is the mass of the initial (final) nucleus and m, is the mass of the
electron).

For many years continuous f spectra were interpreted as the result of the loss of
energy of electrons in the target. However, in 1927 Ellis and Wooster performed a
crucial calorimetric S-decay experiment. They measured the total energy released
in a RaE (>'°Bi) source which was put inside of a calorimeter. For the S-decay of
210B; the total energy release is Q = 1.05MeV. In the Ellis and Wooster experiment
it was found that the average energy per one B-decay is equal to (344 4 34) KeV
which is in an agreement with the average energy of the electrons (390 KeV). Thus,
it was demonstrated that continuous B spectra cannot be explained by the energy
loss of electrons in a target.

There were two possibilities to explain this experimental data

1. To assume that in B-decay together with the electron a neutral penetrating parti-
cle, which is not detected in experiments, is produced. The total released energy
is shared between the electron and the new particle. As a result, electrons pro-
duced in B-decay, will have a continuous spectrum

2. To assume that in S-decay the energy is not conserved.

Bilenky, S.: Weak Interaction Before the Standard Model. Lect. Notes Phys. 817, 9-28 (2010)
DOI 10.1007/978-3-642-14043-3_2 © Springer-Verlag Berlin Heidelberg 2010
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The idea of new particle was proposed by W. Pauli. The second point of view
was advocated by N. Bohr.

Pauli wrote about his idea in a letter to Geiger and Meitner who participated
in a nuclear conference at Tiibingen (December 4, 1930). Pauli asked Geiger and
Meitner to inform the participants of the conference on his proposal.

Pauli called the new particle “neutron”. He assumed that the “neutron” has spin
1/2, small mass (of the same order of magnitude as the mass of the electron) and
large penetration length. Pauli assumed that the “neutron” is emitted together with
the electron in the B-decay of nuclei. Later E. Fermi and E. Amaldi proposed to call
the Pauli particle neutrino (from Italian, neutral, small).

Below there is Pauli’s letter translated into English.

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain
to you in more detail, how because of the “wrong” statistics of the N and Li6 nuclei
and the continuous beta spectrum, I have hit upon a desperate remedy to save the
“exchange theorem” of statistics and the law of conservation of energy. Namely,
the possibility that there could exist in the nuclei electrically neutral particles, that
I wish to call neutrons, which have spin 1/2 and obey the exclusion principle and
which further differ from light quanta in that they do not travel with the velocity of
light. The mass of the neutrons should be of the same order of magnitude as the elec-
tron mass and in any event not larger than 0.01 proton masses. The continuous beta
spectrum would then become understandable by the assumption that in beta decay
a neutron is emitted in addition to the electron such that the sum of the energies of
the neutron and the electron is constant.

I agree that my remedy could seem incredible because one should have seen
those neutrons very earlier if they really exist. But only the one who dare can win
and the difficult situation, due to the continuous structure of the beta spectrum, is
lighted by a remark of my honored predecessor, Mr Debye, who told me recently in
Brussels: “Oh, It’s well better not to think to this at all, like new taxes”. From now
on, every solution to the issue must be discussed. Thus, dear radioactive people,
look and judge. Unfortunately, I cannot appear in Tiibingen personally since I am
indispensable here in Ziirich because of a ball on the night of 6/7 December. With
my best regards to you, and also to Mr Back.

Your humble servant W. Pauli

At the time when Pauli proposed the idea of the existence of the “neutron”,
nuclei were considered as bound states of protons and electrons. As it is seen from
Pauli’s letter he assumed that his new particle “exists in the nuclei”. This assumption
allowed him to solve the problem of the spin-statistic theorem for some nuclei. Let
us consider the nucleus "Nj4. According to the proton-electron model this nucleus is
a bound state of 14 protons and 7 electrons. Because spins of protons and electrons
are equal to 1/2 the spin of "N4 must be half-integer. However, from the analysis
of the spectrum of 7N 4 molecules it was found that nucleus "Ny4 satisfies Bose—
Einstein statistics and, according to the spin-statistic theorem, the spin of the this
nucleus must be integer. An odd number of “neutrons” in N4 would make its spin
integer.
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After the discovery of the neutron (Chadwick, 1932) E. Majorana, W. Heisenberg
and D. Ivanenko assumed that the constituents of nuclei are protons and neutrons.
This assumption (which, as we know today, is the correct one) explained all nuclear
data.

The problem of the spin of N4 and other nuclei disappeared. What about
B-decay and continuous S-spectrum? This problem was solved by quantitatively
E. Fermi in 1934 on the basis of Pauli’s hypothesis of the neutrino in the framework
of the proton-neutron model of nuclei.

2.2 Fermi Theory of f-Decay

Fermi proposed the first Hamiltonian of the S-decay. He assumed that electron-
neutrino pair is produced in the transition of a neutron into a proton

n—p+e+v. 2.1)

Fermi built the Hamiltonian of the process (2.1) in analogy with the Hamiltonian of
the electromagnetic interaction.

The Hamiltonian of the electromagnetic interaction has the form of a scalar

product of the electromagnetic current and the electromagnetic field A* (x). For the
Hamiltonian of the electromagnetic interaction of protons we have

HEM (x) = ¢jEM A (x), (2.2)

where e is the electric charge of the proton and the electromagnetic current is given
by the expression

i) = p)yap ) (2.3)
where p(x) is the proton field, p(x) = pT(x)y? and y, are the Dirac matrices.

Fermi suggested that the Hamiltonian of the process (2.1) is the product of the
neutron-proton current

Ja C() = p)yan(x), (2.4)
which provides the transition n — p and a vector which provides the emission of
the electron-neutrino pair. Assuming that there are no derivatives of the fields in the

Hamiltonian, Fermi came to the following expression for the Hamiltonian of the
B-decay

H'IB(x) =Gr p(X)yun(x) e(x)y*v(x) + h.c., (2.5)

where G g is an interaction constant.



12 2 Weak Interaction Before the Standard Model

Let us stress an important difference between the Hamiltonians (2.2) and (2.5).
The Hamiltonian (2.2) describes the interaction of two fermions and a boson while
the Hamiltonian (2.5) describes the interaction of four fermions. As a consequence
of that, the Fermi constant Gy and the electromagnetic charge e have different
dimensions. In the system of the units # = ¢ = 1, which we are using, e is a
dimensionless quantity whereas the Fermi constant G r has the dimension [M 172
We will return to a discussion of this point later.

The Fermi Hamiltonian (2.5) allowed to describe only such S-decays, in which
spins and parities of the initial and final nuclei are the same (Fermi selection rule)

Al =0 m; =my

However, it was also observed such B-decays of nuclei which satisfy the Gamov-
Teller selection rule:

Al =%£1,0 m; =7y,

The observation of such decays meant that in addition to the Fermi Hamiltonian the
total Hamiltonian of the S-decay must include additional terms.

2.3 Fermi-Gamov-Teller Hamiltonian of g-Decay

The Fermi Hamiltonian is the product of vector x vector term. If we assume that in
the Hamiltonian of the S-decay there are no derivatives of the fields, for the most
general four-fermion Hamiltonian we obtain the sum of the products of scalar (S),
vector (V), tensor (T), pseudovector (A) and pseudoscalar (P) terms:

HE (x) = > Gipk) Oinx) éx) O'v(x) +he. (2.6)
i=S,V.T,A,P
Here
O — 1, Yu, Oup, YaV5, V5- 2.7

and G; are coupling constants, which have the dimensions [M 172. This Hamiltonian
was proposed by Gamov and Teller in 1936. The Hamiltonian (2.6) could describe
all B-decay data. Transitions, which satisfy the Fermi selection rules, are due to V
and S terms and transitions, which satisfy the Gamov-Teller selection rules, are due
to A and T terms.

The Hamiltonian (2.6) contains five arbitrary coupling constants G;. It was, how-
ever, general belief that the number of the fundamental constants in the Hamiltonian
of the B-decay must be smaller. For many years the aim of experiments on the
investigation of the fS-decay was to find the dominant terms in the Hamiltonian
(2.6). The situation was, however, uncertain until 1957. The data on the measure-
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ments of the §-spectra were in favor of the combination of S and T terms or V and
A terms. However, the measurements of the electron-neutrino angular correlation,
which could distinguish these two possibilities, gave contradictory results. In 1957—
1958 understanding of the §-decay and other weak processes drastically changed.
This was connected with the discovery of the nonconservation of parity in the weak
interaction.

The Fermi and Gamov-Teller Hamiltonians are invariant under space inversion,
i.e. these Hamiltonians conserve parity. There was a general belief at that time that
parity is conserved in all interactions. However, from the study of the weak decays
of kaons in the fifties, there were indications that this assumption was incorrect.

2.4 Violation of Parity in f-Decay

In 1956 Lee and Yang analyzed existing experimental data and came to the conclu-
sion that there were no data contradicting the assumption that parity is not conserved
in the weak interaction. They proposed different experiments that would check this
possibility.

The first experiment, in which violation of parity was discovered was performed
by Wu et al. in 1957. In this experiment the dependence of the probability of the
B-decay of the polarized nuclei Co%” on the angle between the (pseudo)vector of
the polarization and the vector of the momentum of the electron was measured.
From the invariance under rotation (conservation of the angular momentum) for the
probability of the emission of the electron with momentum p by a nucleus with the
polarization P we have the following general expression

wp(K) = wo(1 + @ P-K) = wo(l +aP cosb), (2.8)

where k = % is the unit vector in the direction of the momentum of the electron and
o is the asymmetry parameter. If the parity is conserved we have

wp (k) = wp(—k). (2.9)

Therefore, in this case the pseudoscalar term in the probability (2.8) must be equal
to zero (@ = 0). In the experiment Wu et al. was found that |«| is not equal to
zero and large (¢ >~ —0.7). Thus, it was proven that in the B-decay parity is not
conserved.

From the discovery of the nonconservation of parity followed that the Hamilto-
nian of the S-decay is the sum of scalar and pseudoscalar terms. The most general
four-fermion Hamiltonian which does not conserve parity was proposed by Lee and
Yang. It has the form

Hj)= Y px) Om(x) &) 0'(Gi — Giys)v(x) +he.  (2.10)
i=S,V,T,A, P



14 2 Weak Interaction Before the Standard Model

The constants G; and G; characterize the scalar and pseudoscalar terms of the
Hamiltonian. The Wu et al. experiment suggested that the constants G; and G/ are
of the same order.

The interaction (2.10) is characterized by 10 (!) coupling constants. In 1957—
1958 there were two fundamental steps which brought us to the modern effective
Hamiltonian of the B-decay and other weak processes.

2.5 Two-Component Neutrino Theory

The first step was the theory of the massless two-component neutrino, proposed by
Landau, Lee and Yang and Salam.

A method of the measurement of the neutrino mass was proposed by Fermi and
Perrin in 1934 . This method is based on the measurement of the high-energy part
of B-spectrum in which the neutrino has a small energy. At the time of the discovery
of the violation of parity, from experiments on the measurement of the neutrino
mass m was found the following upper bound: m < 200 eV. Thus, it was found
that neutrino mass is much smaller than the mass of the electron. The authors of the
two-component neutrino theory assumed that neutrino mass is equal to zero.

Any fermion field can be presented in the form of the sum of left-handed and
right-handed components. We have

v(x) = vr(x) + vr(x), (2.11)
where

LFys

v(x) (2.12)

vy R(x) =

are left-handed and right-handed components of the field v(x). Notice that vy, (x)
and vg (x) have the same Lorenz-transformation properties as v(x).
The authors of the two-component neutrino theory assumed that

neutrino field is vz (x) (or vg(x)).

This is possible if the neutrino mass is equal to zero. In fact, the mass term of the
neutrino with mass m has the form

L7 (x) = —m v(x)v(x) = —m (VL (X)VR(x) + VRr(X)vL (X)) (2.13)
If the neutrino field is vz (x) (or vg(x)) in this case the mass term (2.13) cannot be

built (and, consequently, m = O)1
If we assume that the neutrino field is vy (x) (or vg(x)) in this case

I'This is correct for the Dirac neutrino. As we will see later for the Majorana neutrino the mass
term can be built also in the case of a vy (x) (or vg(x)) field.
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1. G; = G} (or G; = —G) and the parity in the S-decay is violated maximally.
This corresponds to the results of the Wu et al. experiment.

2. The neutrino helicity is equal to —1 (41) and the antineutrino helicity is equal
to +1 (—1).

In fact, for the neutrino field v(x) we have the following expansion

v(x) = / Np | D2 wper(pye ™ + Y u' (=p)df(p)e?™ | p. (2.14)

r=+1 r==+1

Here ¢, (p) (d;r (p) is the operator of the absorption of a neutrino (creation of
an antineutrino) with momentum p and helicity » and N, = T T is the

normalization factor.
The Dirac equation for the massless neutrino has the form

pu(p) =0, (2.15)

where p = y,p®. The spinor u” (p) describes a particle with helicity equal to
r(r = £1). We have

X -ku'(p)=r u (p), (2.16)

where X' is the operator of the spin and k is the unit vector in the direction of the
momentum p. For the operator of the spin we have

3 = ysa = y5y"y. (2.17)
From (2.15) and (2.17) we have
Y -ku"(p)=ysu" (p). (2.18)

Thus, for a massless particle operator ys is the operator of the helicity. From (2.16)
we find

ysu' (p) =ru"(p). (2.19)

Similarly, for the spinor u” (— p) which describes the state with negative energy — p°
and momentum —p we have

ys u' (—=p) = —r u"(—p). (2.20)

From (2.19) we find that 1—2;/5 is the projection operator:
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L—ys

—1 _ 1 — 75 1 _
5 U (p)=u(p), 7 (p) =0. (2.21)
From (2.20) we have
1— 1—
P up=ul=p. SR u =p =0, (2.22)

From these relations for the left-handed neutrino field we find
_ -1 —ipx 1 T ipx 3
0 = [Ny (47 ) rp) il p) df ) P 23

Analogously, for the right-handed neutrino field we have

vR(x) = / Np (') 1 e +u =) d () e™) dp. (224)

The neutrino helicity was measured in 1958 in a spectacular experiment by Gold-
haber, Grodzins and Sunyar. In this experiment the helicity of the neutrino was
determined from the measurement of the circular polarization of y-quanta in the
chain of reactions

e~ +Eu— v+ Sm*

\
Sm +y (2.25)

It was found that the helicity of neutrino is negative:

h=-1%£03 (2.26)
The experiment by Goldhaber et al. confirmed the theory of the two-component neu-
trino. It was established that the neutrino is the left-handed particle and the neutrino
field is vz (x).2
2.6 p-e Universal Charged Current. Current x Current Theory
The next decisive step in the construction of the Hamiltonian of the B-decay

and other weak processes was done by Feynman and Gell-Mann, Marshak and
Sudarshan in 1957-1958. Generalizing the theory of the two-component neutrino,

2L et us stress that the experiment by Goldhaber et al. does not exclude that the neutrino has a
small mass. In fact, if in the Hamiltonian of the B-decay enters vy (x) and the neutrino mass is
not equal to zero in this case the longitudinal polarization of the neutrino for m < E is equal to

PHZ—I-F%Z—I.
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Feynman and Gell-Mann, Marshak and Sudarshan assumed that in the Hamiltonian

of the weak interaction enter only left-handed components of fields. In this case the
most general four-fermion Hamiltonian of the S-decay has the form

HP = Z G; pLOiny e10'vy +h.c., (2.27)

where O; are Dirac matrices (see (2.7)).

We have
2Oy = - J;”S 0,1 _2’/5 (2.28)
It is obvious that
lJ;VS (15 0ap: v5) _2”5 —0. (2.29)

Therefore, S, T and P terms do not enter into the Hamiltonian (2.27). Moreover A
and V terms are connected by the relation:

I+ys l—ys  1+ys 1—ys
B YaVs 5 = 5 Yo 5

(2.30)

Thus, if we assume that only left-handed components of the fields enter into the
four-fermion Hamiltonian , we come to the unique expression for the Hamiltonian
of the B-decay

GFr

B =~ =
H = —4 LYol €[ vy + h.c.
I ﬁ p VOZ y
_or pva(l —ys)ney*(1 —ys)v +hc (2.31)
\/5 o .C. .

The Hamiltonian (2.31) is the simplest possible four-fermion Hamiltonian of the
B-decay which takes into account large violation of parity. Like the Fermi Hamilto-
nian (2.5), it is characterized by only one interaction constant.?

The theory proposed by Feynman and Gell-Mann, Marshak and Sudarshan was a
very successful one: the Hamiltonian (2.31) allowed to describe all existing 8-decay
data. We know today that (2.31) is the correct effective Hamiltonian of the S-decay,
of the process b + p — n + e™, and other connected processes.

Until now we have only considered the Hamiltonian of the B-decay. At the
time when parity violation was discovered other weak processes involving a muon-
neutrino pair were known:

31n order to keep the numerical value of the Fermi constant the coefficient —= was introduced in

72
2.31).



18 2 Weak Interaction Before the Standard Model

u +A,Z2)y>v+(A,Z—-1) (u— capture) (2.32)
ut = et +v+v  (u— decay). (2.33)

In 1947 B. Pontecorvo suggested the existence of a i —e universal weak interaction,
which is characterized by the same Fermi constant G . He compared the probability
of the p-capture (2.32) with the probability of the K-capture

e +A,Z)->v+(A,Z-1) (2.34)

and found that the constant of the interaction of the muon-neutrino pair with nucle-
ons is of the same order as the Fermi constant G r. The idea of a © — e universal
weak interaction was also proposed by Puppi, Klein, Tiomno and Wheeler.

In order to build a . — e universal theory of the weak interaction, Feynman and
Gell-Mann introduced the notion of the charged weak current*

J*=2pry*nr + vury®er + very®mnr) (2.35)

and assumed that the Hamiltonian of the weak interaction has the current x current
form?®

G
Hy = —L jo i+ (2.36)

ﬁj Ja >

where G g is the Fermi constant.
There are two types of terms in the Hamiltonian (2.36): nondiagonal and diago-
nal. The nondiagonal terms are given by

GFr

H = 7

4{[(pLy*nr)(eryaver) +h.c] +

[(pLy*nr)(firYavur) +hec] +
[@Ly*ver)(VurYair) +h.cl} (2.37)

The first term of this expression is the Hamiltonian of 8-decay of the neutron (2.1),
of the process v, + p — e + n and other connected processes. The second term
of (2.37) is the Hamiltonian of the process = + p — v, + n and other connected
processes. Finally the third term of (2.37) is the Hamiltonian of the p-decay (2.33)
and other processes.

4We denoted the fields of neutrinos which enter into the current together with the fields of electron
and muon, correspondingly, by v, and v,,. At this point, this is simply a notation. We will see later
that in fact v, and v, are different particles.

5The current j¢ changes the charge by one. This is the reason, why this current is called a charged
current. Notice also that the hadron current has the form j* = v* — a%, where v* = py“n and
a® = py“ysn are vector and axial currents. The Feynman-Gell-Mann theory is called the V — A
theory.
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The diagonal terms of the Hamiltonian (2.36) are given by

GFr _ _ _ _ _ _
H = 7 H(Tery er)@LYaver) + Gury® o) (ALYaver) + (Pry*n)@ryvepr)]

(2.38)

The first term of the (2.38) is the Hamiltonian of the processes of elastic scattering
of neutrino and antineutrino on an electron

Vet+e— v, +e (2.39)
and
Ve +e— v, + e, (2.40)

of the process e¥ + e~ — v, + v, and other processes. Such processes were not
known in the fifties. Their existence was predicted by the current x current theory.
The cross sections of the processes (2.39) and (2.40) are very small. The obser-
vation of such processes was a challenge. After many years of efforts, the cross
section of the process (2.40) was measured by F. Reines et al. in an experiment
with antineutrinos from a reactor. At that time the Standard Model already existed.
According to the Standard Model, to the matrix elements of the processes (2.39) and
(2.40) contributes also an additional (neutral current) Hamiltonian. The result of the
experiment by F. Reines et al. was in agreement with the Standard Model.

2.7 Theory with Vector W Boson

Feynman and Gell-Mann considered a possible origin of the current x current inter-
action (2.36). Let us assume that a charged vector boson W= exists and the
Lagrangian of the weak interaction (analogously to the Lagrangian of the electro-
magnetic interaction) has the form of a scalar product of the current and the vector
field

Lr=——5_j, W +he (2.41)
2V2

where g is a dimensionless constant and the current j, is given by Eq. (2.35).
In the theory with W-boson Feynman diagram of the 8-decay of the neutron is
presented in Fig. 2.1. If

0% < mj, (2.42)
where Q is the momentum of the virtual W-boson and my is the mass of W-boson,

the matrix element of the §-decay of the neutron can be obtained from the Hamilto-
nian (2.36) in which the Fermi constant is given by the relation
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Fig. 2.1 Feynman diagram of the process n — p + e~ + b in the theory with the W*-boson

Gr _ s
V2 Sm%[,

It is easy to verify that in the theory with W-boson the effective Hamiltonian of all
weak processes with the virtual W-boson and Q% <« m%v has current x current form
(2.36), in which the Fermi constant is given by the relation (2.43).

Thus, the theory with a charged vector W-boson could explain the
current X current structure of the weak interaction Hamiltonian and the fact that the
Fermi constant has the dimension [M]2. As we will see later, (2.41) is a part of the
total Lagrangian of the electroweak interaction of the Standard Model.®

(2.43)

2.8 First Observation of Neutrinos. Lepton Number
Conservation

The first proof of the existence of neutrino was obtained in the mid-fifties in the
experiment by F. Reines and C.L. Cowan. In this experiment (anti)neutrinos from
the Savannah River reactor were detected through the observation of the process

Ve +p— et +n. (2.44)

Antineutrinos are produced in a reactor in a chain of S-decays of neutron-rich nuclei,
products of the fission of uranium and plutonium. The energies of antineutrinos from
a reactor are less than approximately 10 MeV. About 2.3 - 10%° antineutrinos per
second were emitted by the Savannah River reactor. The flux of v,’s in the Reines
and Cowan experiment was about 103 cm=2 5!,

In the theory of the two-component neutrino, the cross section of the process
(2.44) is connected with the life-time 7, of the neutron by the relation

6Tt is interesting to note that the idea of the charged vector W-boson was proposed by O. Klein at
the end of the thirties.
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2

T
- p.E., 245
mgftnpe e (2.45)

0 (Vep — e+n) =

where E, >~ Ej — (m, — m,) is the energy of the positron, p, is the positron
momenta, f'=1.686 is the phase-space factor, m,, m ,, m, are masses of the neutron,
proton and electron, respectively. From (2.45) for the cross section of the process
(2.44), averaged over antineutrino spectrum, the value

&(@Dep — etn) ~9.5-107* cm? (2.46)

was found.

A liquid scintillator (1.4 - 1031) loaded with CdCl, was used as a target in the
experiment. Positron, produced in the process (2.44), slowed down in the scintilla-
tor and annihilated with electron, producing two y- quanta with energies >~ 0.51
MeV and opposite momenta. A neutron, produced in the process was captured
by Cd within about 5 ws, producing y-quantum. The y-quanta were detected by
110 photomultipliers. Thus, the signature of the v-event in the Reines and Cowan
experiment was two y-quanta from the e™ — e~ -annihilation in coincidence with a
delayed y-quantum from the neutron capture by cadmium. For the cross section of
the process (2.44) the value

oy = (11 £2.6) 107* c¢m? (2.47)

was obtained in the experiment. This value is in agreement with the predicted value
(2.46).

The particle which is produced in the S-decay together with electron is called
antineutrino. It is a direct consequence of the quantum field theory that antineutrino
can produce a positron in the inverse S-decay (2.44) and other similar processes.
Can antineutrinos produce electrons in weak processes of interaction with nucleons?
The answer to this question was obtained from an experiment which was performed
in 1956 by Davis et al. with antineutrinos from the Savannah River reactor. In this
experiment 3’ Ar from the process

5470l = e+ Ar (2.48)

was searched for. The process (2.48) was not observed in the experiment. It was
shown that the 37Ar production rate was about five times smaller than the rate
expected if antineutrinos could produce electrons via the weak interaction.

Thus, it was established that antineutrinos from a reactor can produce positrons
(the Reines-Cowan experiment) but cannot produce electrons. In order to explain
this fact we assume that exist conserving lepton number (charge) L, the same for v
and e™. Let us put L(v) = L(e™) = —1. According to the quantum field theory the
lepton charges of the corresponding antiparticles are opposite: L(v) = L(e™) = 1.
We also assume that the lepton numbers of proton, neutron and other hadrons are
equal to zero. Conservation of the lepton number explain the negative result of the
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Davis experiment. According to the law of conservation of the lepton number a
neutrino is produced together with e in the 8T -decay

(A,2) > (A, Z =1 +e"+v (2.49)

2.9 Discovery of Muon Neutrino. Electron and Muon
Lepton Numbers

In the expression (2.35) the fields of neutrinos, which enter into the charged current
together with electron and muon fields, were denoted by v, and v, correspond-
ingly. Are v, and v,, the same or different particles? The answer to this fundamental
question was obtained in the famous Brookhaven neutrino experiment in 1962.

The first indication that v, and v,, are different particles was obtained from an
analysis of the © — ey data. The probability of the decay 1 — ey was calculated
by Feinberg in the theory with W-boson and a cutoff. It was found that if v, and v,
are identical particles and the cut-off is given by the mass of the W-boson the ratio
R of the probability of the decay u — ey to the probability of the decay u — e v v
is given by

o —4
R~ —~10 (2.50)
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The decay u — ey was not observed in experiment. At the time of the Brookhaven
experiment, for the upper bound of the ratio R was found the value

R <1078, (2.51)

which is much smaller than (2.50).

A direct proof of the existence of the second (muon) type of neutrino was
obtained by L.M. Lederman, M. Schwartz, J. Steinberger et al. in the first exper-
iment with accelerator neutrinos in 1962. The idea of the experiment was proposed
by B.Pontecorvo in 1959.

A beam of 77’s in the Brookhaven experiment was obtained by the bombard-
ment of Be target by protons with an average energy of about 15 GeV. In the decay
channel (about 21 m long) practically all 7’s decay. After the channel there was
shielding (13.5m of iron), in which charged particles were absorbed. After the
shielding there was the neutrino detector (aluminium spark chamber, 10 tons) in
which the production of charged leptons was observed.

The dominant decay channel of the 7 T -meson is

at = ut 4. (2.52)

According to the universal V — A theory, the ratio R of the width of the decay
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7T > et 4, (2.53)

to the width of the decay (2.52) is equal to

2
2 (11— 2¢)?
R="¢ M~ 121074, (2.54)
i (1= 25)?
l’ﬂﬂ

Thus, the decay ™ — e, is strongly suppressed with respect to the decay 7+ —
w4+ v,L.7 From (2.54) follows that the neutrino beam in the Brookhaven experiment
was practically a pure v, beam (with a small about 1% admixture of v, from decays
of muons and kaons).

Neutrinos, emitted in the decay (2.52), produce p~ in the process

v+ N = pu” +X. (2.55)

If v, and v, would be the same particles, neutrinos from the decay (2.52) would
produce also e~ in the reaction

v+ N—e +X. (2.56)

Due to the . — e universality of the weak interaction one could expect to observe in
the detector practically equal number of muons and electrons.

In the Brookhaven experiment 29 muon events were detected. The observed six
electron candidates could be explained by the background. The measured cross sec-
tion was in agreement with the V — A theory. Thus, it was proved that v, and v, are
different particles.®

The results of the Brookhaven and other experiments suggested that the total
electron L, and muon L, lepton numbers are conserved:

> LY =const; Y LY = const (2.57)
i i

7The reason for this suppression can be easily understood. Indeed, let us consider the decay (2.53)
in the rest frame of the pion. The helicity of the neutrino is equal to —1. If we neglect the mass
of the e*, the helicity of the positron will be equal to 41 (the helicity of the positron will be
the same in this case as the helicity of the antineutrino). Thus, the projection of the total angular
momentum on the neutrino momentum will be equal to —1. The spin of the pion is equal to zero
and consequently the process (2.53) in the limit m, — 0 is forbidden. These arguments explain
the appearance of the small factor (;‘—;)2 in (2.54).

81n 1963 in the CERN with the invention of the magnetic horn the intensity and purity of neutrino
beams were greatly improved. In the more precise 45 tons spark-chamber experiment and in the
large bubble chamber experiment the Brookhaven result was confirmed.
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Table 2.1 Lepton numbers of particles

Lepton number Ve €7 Ve 1 Hadrons, y
L, 1 0 0
L, 0 1 0

The lepton numbers of particles are given in Table 2.1. The lepton numbers of
antiparticles are opposite to the lepton numbers of the corresponding particles.

For many years all experimental data were in an agreement with (2.57). At
present it is established that (2.57) is an approximate phenomenological rule. It is
violated in neutrino oscillations due to small neutrino masses and neutrino mixing.
Later we will discuss neutrino oscillations in details.

2.10 Strange Particles. Quarks. Cabibbo Current

The currentx current Hamiltonian (2.36) with CC current (2.35) is the effective
Hamiltonian of such processes in which leptons, neutrinos and nonstrange hadrons
are participating. The first strange particles were discovered in cosmic rays in the
fifties. Decays of strange particles were studied in details in accelerator experiments.
From the investigation of the semi-leptonic decays

KT — /L++UH, A—=>n+e +v,,
YT —>n+e +V, E = A+u +yy
and others the following three phenomenological rules were formulated.
I. The strangeness S in the decays of strange particles is changed by one
|AS| = 1.
II. In the decays of the strange particles the rule
AQ = AS
is satisfied. Here AQ = Q¢ — Q; and AS = §¢ — §;, where S; and S are the
initial and final total strangeness of the hadrons and Q; and Q s are the initial
and final total electric charges of hadrons (in the unit of the proton charge).
III. The decays of strange particles are suppressed with respect to the decays of non
strange particles.
In 1964 Gell-Mann and Zweig proposed the idea of three quarks u, d , s, con-

stituents of strange and nonstrange hadrons. The quantum numbers of the quarks are
presented in Table 2.2 Let us build the hadronic charged currents from the quark
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Table 2.2 Quantum numbers of quarks (Q is the charge, S is the strangeness, B is the baryon
number)

Quark (0] S B
u 2/3 0 1/3
d —1/3 0 1/3

s —1/3 -1 1/3

fields. The current (2.35) changes the charge by one. If we accept the Feynman-
Gell-Mann, Marshak-Sudarshan prescription (into the weak current enter only left-
handed components of the fermion fields) there are only two possibilities to build
such currents from the fields of u, d and s quarks:

urved; and ULYaSL- (2.58)

The first current changes the charge by one and does not change the strange-
ness (AQ =1, AS = 0). The second current changes the charge by one and the
strangeness by one (AQ =1, AS =1). The matrix elements of these currents auto-
matically satisfy rules I and II. Notice that this was one of the first arguments in
favor of quark structure of the hadron current.

The weak interaction of the strange particles was included into the
current x current theory by N. Cabibbo in 1962. He assumed that the charged cur-
rent which does not change strangeness and the charged current which changes the
strangeness by one are, correspondingly, the 1 + i2 and 4 4 {5 components of the
SU (3) octet current. In order to take into account the suppression of the decays with
the change of the strangeness with respect to the decays in which the strangeness
is not changed (the rule III) Cabibbo introduced a parameter which is called the
Cabibbo angle 6¢. From the analysis of the experimental data on the investigation
of the decays of strange particles he found that sin 8¢ >~ 0.2.

In terms of quark currents (2.58) the Cabibbo current has the form

JSMIOPO () = 2 (cos O L (X) e di(x) + sinbc il (¥)ye sL(x)  (2.59)
The total weak charged current takes the form

Ja () =2 (Per, (0 Va €2, () + Dy (0 Ve wL () + il ()Y dy (1), (2.60)
where

dy (x) = cos b dp.(x) + sinfc sz (x). 2.61)

Notice that there is an asymmetry between quark and lepton terms in (2.60). Namely,
in this expression there are two lepton terms and one quark term.
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2.11 Charmed Quark. Quark and Neutrino Mixing

It was shown in 1970 by Glashow, Illiopulos and Maiani (GIM) that the charged
current (2.59) induces a neutral current which does not change electric charge
(AQ = 0) and change the strangeness by one (|AS| = 1). As a result, the decays
like

KT >at+v+0p. (2.62)

become possible in such a theory. In the theory with the current (2.60) the width of
the decay (2.62) is many orders of magnitude larger than the upper bound of the
width of the decay obtained in experiments.

Glashow, Illiopulos and Maiani assumed that there exists a fourth “charmed”
quark ¢ with charge 2/3 and that there is an additional term in the weak current into
which enters the field of the new quark ¢ and the combination of dy and sy, fields
orthogonal to the Cabibbo combination (2.61). The weak currents took the form

Jo () = 2 (er (X) Ve €1 (X) + D, (X) Ve 141 (X) + 8 (X) Ve dy (X) +E1(X) Ve 57 (X)),
(2.63)

where

dy (x) = cosfcdy (x) + sinfcsy (x)

sy (x) = —sinfOcdp (x) + cos fcsy (x) . (2.64)

As we will see in the next section, in the theory with the charged current (2.63)
neutral current which changes the strangeness does not appear.

The relations (2.64) mean that the fields of d and s quarks enter into the charged
current in the mixed form. The phenomenon of mixing is perfectly confirmed by
experiment.

We make the following remark. In the current (2.63) lepton and quark terms enter
symmetrically. It will be, however, full lepton-quark symmetry of the current if the
neutrino masses are different from zero and the fields of neutrinos with definite
masses, like the fields of quarks, enter into the CC in the mixed form

VL (x) = cos O vyp(x) +sin6 vy (x)
Ver (x) = —sinf vig (x) + cosb vy (x), (2.65)

where v;(x) and vo(x) are the fields of the neutrinos with masses m | and m», cor-
respondingly.

The existence of the c-quark means the existence of a new family of “charmed”
particles. This prediction of the theory was perfectly confirmed by experiment. In
1974 the J /¥ particles, bound states of ¢ — ¢, were discovered. In 1976 the D0
mesons, bound states of charmed and nonstrange quarks, were discovered, etc. All
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data on the investigation of the weak decays and neutrino reactions were in agree-
ment with the current x current theory with the current given by (2.63).

In 1975 the third charged lepton t was discovered in experiments at et — ¢~
colliders. In the framework of the Standard Model, which we will consider in the
next chapter, the existence of the third charged lepton requires the existence of the
corresponding third type of neutrino v, and an additional pair of quarks: the 7 (top)
quark with electric charge 2/3 and the b (bottom) quark with electric charge —1/3.
All these predictions of the SM were perfectly confirmed by numerous experiments.

The modern charged current has the form

JEC () = 2(Per () Ve € (x) + DL (X) Vo 1L (X) + Do (X) Ve TL(X)
+ i () e dy (X) 4 EL(X) Ve 57 (X) + L) Ye by (1), (2.66)

Here

3
wL(x) =) Ui vit@) l=ep.t (2.67)

i=1

and

dyx)= Y Vaugqr(). s, ()= Y Vegqr(x), bpx)= Y Vigqr(x).
q=u,s,b q=u,s,b q=u,s,b
(2.68)

Here U is an unitary 3 x 3 neutrino mixing matrix and V is an unitary 3 x 3 quark
mixing matrix.

We know today that the vector W*-boson exists and that the Lagrangian of the
CC weak interaction has the form

£5%) = ——5_ S0 wo(x) + he. (2.69)
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2.12 Summary and Outlook

The theory of the weak interaction started with the famous Fermi paper “An attempt
of a theory of beta radiation”. The Fermi theory was based on (1) The Pauli hypoth-
esis of the existence of the neutrino. (2) The proton-neutron structure of nuclei. (3)
The assumption that an electron-neutrino pair is produced in the process of transition
of a neutron into a proton. (4) The assumption that in analogy with electromagnetic
interaction the weak interaction is the vector one. Later in accordance with exper-
imental data this last assumption was generalized and other terms (scalar, tensor,
axial and pseudoscalar) were included.

The discovery of the parity violation in the B-decay and other weak processes
played a revolutionary role in the development of the theory of the weak interac-
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tion. Soon after this discovery the two-component theory of massless neutrino was
proposed. According to this theory in the Hamiltonian of the weak interaction the
left-handed (or right-handed) component of the neutrino field enters. In less than
one year this theory was confirmed by experiment. It was proved that neutrino is a
left-handed particle.

The next fundamental step was the currentxcurrent, V-A theory of the weak
interaction which was based on the assumption that only left-handed components of
the fields enter into charged current.

The electron neutrino was discovered in the fifties in the first reactor neutrino
experiment. A few years later in the first accelerator neutrino experiment the muon
neutrino was discovered.

After the hypothesis of quarks was proposed, the weak charged current started
to be considered as quark and lepton current. One of the fundamental ideas which
was put forward in the process of the phenomenological development of the theory
was the idea of the quark mixing. At the very early stage of the development of the
theory the idea of the existence of the charged heavy vector intermediate W+ boson
was proposed.

It was a long (about 40 years) extremely important period of the development
of the physics of the weak interaction with a lot of bright, courageous ideas.® The
theory which was finally proposed allowed to describe data of a huge number of
experiments. The Standard Model of the weak interaction could not appear without
the phenomenological V-A theory.

9 And also many wrong ideas which we did not discussed here.



Chapter 3
The Standard Model of the Electroweak
Interaction

3.1 Introduction

We will consider here the Glashow-Weinberg-Salam theory of the weak and electro-
magnetic interactions, which usually is called the Standard Model (SM). This theory
is one of the greatest achievements of particle physics of the twentieth century. This
theory predicted the existence of families of new particles (charmed, bottom, top),
a new class of the weak interaction (Neutral currents), W= and Z° vector bosons
and masses of these particles, the existence of the third type of neutrino (v;), the
existence of the scalar Higgs boson, etc. All predictions of the Standard Model are in
perfect agreement with existing experimental data. The search for the Higgs boson
is one of the major aim of experiments at the LHC accelerator in CERN.

The currentx current theory of the weak interaction, which we considered in the
previous chapter, was a very successful theory. In the lowest order of the pertur-
bation theory this theory allowed to describe all experimental data existing at the
sixties. However, the currentx current theory and also the theory with the W+ vec-
tor boson were unrenormalizable theories: the infinities of the higher orders of the
perturbation theory could not be excluded in these theories by the renormalization
of the masses and other physical constants.

This was the main reason why, in spite of big phenomenological success, these
theories for many years were not considered as satisfactory ones. The Standard
Model was born in the end of the sixties in an attempt to build a renormalizable
theory of the weak interaction. The only renormalizable physical theory, that was
known at that time, was quantum electrodynamics. The renormalizable theory of
the weak interaction was build in the framework of the unification of the weak and
electromagnetic (electroweak) interactions. This theory was proposed by Glashow,
Weinberg and Salam. It was proved by t"Hooft and Veltman that the SM is a renor-
malizable theory.

The Standard Model is built in two stages. The first stage is based on the local
gauge invariance of massless fields. Mass terms of all fields, except the electro-
magnetic field, appear as a result of the spontaneous violation of the symmetry (the
second stage).

In the first two introductory sections we will consider two major ingredients of
the Standard Model

Bilenky, S.: The Standard Model of the Electroweak Interaction. Lect. Notes Phys. 817, 29-60
(2010)
DOI 10.1007/978-3-642-14043-3_3 © Springer-Verlag Berlin Heidelberg 2010
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1. SU(2) Yang-Mills local gauge invariance.
2. Spontaneous violation of the symmetry and the Higgs mechanism.

3.2 SU(2) Yang-Mills Local Gauge Invariance

Let us assume that

+1
wu>:(zﬁg), 3.1)

where ¥+ (x) are spin 1/2 fields, is the doublet of a SU (2) group. If the masses of
wil (x) fields are the same and equal to m, the free Lagrangian of the field ¥ (x) is
given by the expression

Lo(x) = ¥ (x) Gy +m) P (x). (3.2)
The Lagrangian (3.2) is invariant under the global gauge SU (2) transformations
YO =Uyx), '@ =vxU" (3.3)
Here
U=ez74, (3:4)

where - A = Z?:l T; A;, T; are the Pauli matrices and A; are arbitrary constants.
Let us stress that the Lagrangian Ly(x) is invariant under the transformation (3.3)
because the derivative 9, ¥ (x) is transformed in the same way as the field ¥ (x).

From the invariance under the transformation (3.3) follows that the isovector
current

JE@) =¥ @) p® % T Y (x) 3.5)
satisfies the equation
8 ji' (1) = 0 (3.6)
and the total isotopic spin T; = [ jl.0 (x)d3x is conserved.

We will build now the theory which is invariant under the local gauge SU (2)
transformations

V) =U® yx), ¥ =y U x). (3.7)

Here

Ux) = el 7 7AW, (3.8)
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where A; (x) are arbitrary functions of x.!
For the derivative d, ¥ (x) we have

I Y (x) = Ut () U(x) 9 UT ()Y (x) =
U™ (x) (3 + U (x) 0 UT (x)) ¥/ (x). (3.9)
It is obvious from (3.9) that the free Lagrangian (3.2) is not invariant under the
transformation (3.7).

Let us consider an infinitesimal SU (2) transformations, i.e. we will assume that
A; are small and in all expansions over A; we keep only linear terms. We have

U(x):l—l—i%rA(x), U*(x):l—i%r-A(x). (3.10)

From (3.9) and (3.10) we find

B ¥ (x) = U (x) <8a —1 % T - 0y A(x)) ¥ (x). (3.1D)
From (3.7) follows that

Y(x) =U"(x) ¥ (x). (3.12)

Comparing (3.11) and (3.12) we conclude that the field ¥ (x) and the derivative
dq ¥ (x) are transformed differently. This is the reason why the free Lagrangian (3.2)
in not invariant under local gauge transformations (3.7).

In order to build a theory which is invariant under local gauge transformations me
must assume that the field 1 (x) interacts with a vector field. In fact, let us consider
the covariant derivative

Dy ¥ (x) = <3a +ig % T 'Aa(x)) v (x), (3.13)

where g is a dimensionless constant and Afx (x) is a vector field.
It is obvious that the following equality is valid

Dy ¥ (x) = UT(x) U(x) Dy U™ (x) ' (x). (3.14)

Let us consider the term U (x) Dy U™ (x). Using (3.10) we find

I'The operator U is the operator of rotation in the three-dimensional isotopic space around the
vector A by the angle | A|. Thus, global gauge invariance is the invariance under rotations which are
the same in all space-time points. The local gauge invariance is the invariance under the rotations
in the isotopic space which are different at different space-time points.
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+ 1 . 1 4
Ux)Dy,U (x)=8a—1§r~8aA(x)+lgU(x)Er~Aa(x)U (x). (3.15)

For the last term of (3.15) we have

UX) 3T -Aa() Ut (x) = %1: A (x) +i Er.A(x), %1~Aa(x)i|
=%1-Aa(x)—%t~(Aan(x)), (3.16)

where we take into account that [%n, %rk] = iejk %n. From (3.15) and (3.16) we
obtain

U(x) Dy U*(x)zaa—i—ig%rA(’x(x):D(;. (3.17)
Here
A;(x) =A,(x) — é Og A(x) — A(x) X Ay (x). (3.18)

Thus, from (3.14) and (3.17) we have
Dy ¥ (x) = U™ (x) Dy ' (x) (3.19)

Comparing (3.12) and (3.19) we conclude that under the local gauge SU (2) transfor-
mations, which include the phase transformation (3.7) of the spinor field ¥ (x) and
the gauge transformation (3.18) of the vector field A, (x), the covariant derivative
Dy, ¥ (x) and the field ¥ (x) are transformed in the same way.

Thus, if in the free Lagrangian (3.2) we will make the change

9o ¥ (x) = Do ¥ (x) (3.20)

we obtain the Lagrangian

L1(x) =Y (x) ( y* Do +m) ¥ (x) (3.21)

which is invariant under the local gauge transformations (3.7) and (3.18).

The Lagrangian £ (x) is the sum of the free Lagrangian of the field ¢ (x) and the
Lagrangian of the interaction of the field v (x) and the vector field A, (x). The total
Lagrangian must include also the free Lagrangian of the field A, (x), which is invari-
ant under the gauge transformation (3.18). In order to build the free Lagrangian of
the field A, (x) we will consider the commutator [D,, Dg]. We have

1
[Do. Dpl = ig =7 - Fap(x), (3.22)
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where
Fop(x) = 04 Ag(x) — 0 A (x) — g Ag(x) X Ag(x) (3.23)
is the generalized stress tensor. From (3.17) we find the following relation
U Do, DglUT = [D,,, Dpl. (3.24)
Further, from (3.22) and (3.24) we have
1 1
U (x) 5T Fop(x) UT (x) = 3T Fl5(x), (3.25)
where
F(;ﬂ (x) = 0y Ajg (x) — g AL (x) — g A, (x) x Aig(x). (3.26)

Finally, from (3.10) from (3.25) we find that the tensor Fyg(x) is transformed as an
isotopic vector:

Flp(x) = Fup(x) — A(x) x Fop(x). (3.27)

Thus, the scalar product Fgg - F*8 is invariant.
The free Lagrangian of the vector field A, (x), which is invariant under the trans-
formation (3.18), can be chosen in the form

Lo(x) = —i Fyp(x) - F (x). (3.28)

The total Lagrangian of the spinor field 1 (x) and the vector field A, (x), which
is invariant under the transformations (3.7) and (3.18), is given by the following
expression

- 1 1
L(x) =¥ (x) (i Y (0a +ig 3T “Aq (X)) + m) V) = 5 Fop )F (x). (3.29)

Thus, the requirement of the local gauge SU(2) invariance can be satisfied if the
spinor doublet field ¥ (x) interacts with the vector field Afx (x). The vector field
Aé (x) is called gauge field. Under the SU(2) global gauge transformation (A =
const) the field A (x) is transformed as an isotopic vector:

AL(x) = Ag(x) — A x Ag(x). (3.30)

From (3.29) we obtain the following expression for the Lagrangian of the interaction
of the field ¥ (x) and the gauge vector field A, (x)
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3
L1(x) = —gja(x) A%(x) = —g Y _ jL(x) A% (x), (3.31)
i=1

where

i - 1
Ja () =Y (X) Ya AR (3.32)

is the isovector current.
The Lagrangian of the interaction £ (x) can be written in the form

Li(x) = (—2% Jo () W (x) + h.c.> — 8 Ja(x) A% (). (3.33)
Here
Ja(X) =2 jy P (x), Welx) = % Ay P (), (3.34)
where
Jo P =atija. AZP = AL £iA] (3.35)

For the current j, (x) we have

_ 1 _
Ju(0) =29 (@) v 5 (0 +iT) Yx) = 29 ) v v (), (3.36)

where ¥ +!(x) and ¥~ (x) are components of the isotopic doublet with the third
projections of the isotopic spin I3 equal to % and —%, correspondingly. According
to the Gell-Mann and Nishijima I3 and the electric charge Q are connected by the
relation

1
Q=5+ (3.37)

Here Q is the electric charge in the unit of the proton charge and Y is the hyper-
charge. From (3.36) and (3.37) follows that the current j,(x) changes the charges
of particles by one (AQ = 1). Thus, the field W*(x) (due to the conservation of
the total electric charge) is the field of the particles W+ with electric charges equal
to £1.

For the current j3 (x) we have

_ 1 1 - _
Jo0) = ¥ () va 3TV = 5(1/f+1(x> Ya 0T ) — 7 ) v ).
(3.38)



3.3 Spontaneous Symmetry Breaking. Higgs Mechanism 35

The current js (x) does not change the electric charges of particles and hence Ag (x)
is the field of neutral, vector particles.

Thus, we have built the SU(2) local gauge invariant Yang-Mills theory with
gauge fields which include charged as well as neutral vector fields. Such a theory
will be used as a basis for the theory of the weak and electromagnetic interactions
(The Standard Model).

In conclusion we make the following remarks.

1. After the change

0o ¥ (x) — <3a +ig % T-Aq (X)) v(x) (3.39)

in the free Lagrangian of the spinor field ¥ (x) we came to the interaction
Lagrangian (3.31), which and is characterized by the interaction constant g and
has the form of the product of the isovector current j, (x) and the isovector field
A% (x). It is necessary, however, to stress that the requirements of the local gauge
invariance do not fix the form of the interaction Lagrangian. For example, to the
expression (3.31) we can add a tensor term

_ 1 N
L] = 1 ¥ () 0up 57 Y (@) Fop, (3.40)

which is invariant under the transformations (3.7) and (3.18). However, in order
to “absorb” the term 0, A(x) in the transformation of the derivative of the
fermion field (see (3.11)) and to provide the local gauge SU(2) invariance we
must make the change (3.39) which induces the interaction (3.31). In this sense
the interaction (3.31) is the minimal gauge invariant interaction of the spinor and
vector fields.

2. The mass term of the vector field —% mi Ay (x) A%(x) is not invariant under
the transformation (3.18). Thus, local gauge invariance requires that W, (x) and
Az (x) are fields of massless particles. This is the reason why in a realistic theory
the local SU (2) gauge symmetry is violated. In the next section we will discuss
the mechanism of the spontaneous violation of the gauge symmetry.

3.3 Spontaneous Symmetry Breaking. Higgs Mechanism

We will consider the scalar complex field ¢ (x) and assume that the Lagrangian of
the field is given by the expression

L=20,9" 0% — Vg’ ¢). (3.41)

Here
VipTd)=—12¢" ¢+ 10" $)2, (3.42)

where 12 and A are positive constants.
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The first term of the Lagrangian (3.41) is the kinetic term. The second term
V(¢T ¢) is the so called potential. Let us notice that the term —u? ¢t ¢ is not a
mass term (it differs from a mass term by the sign).

The Lagrangian (3.41) is invariant under the global gauge transformation

¢'(x) =" p(x), (3.43)

where A is a constant arbitrary phase.
Let us find the minimum of the potential. Equation (3.42) can be written in the
form

2

2 4
Vg g) =1 (qﬂ ¢ — %) = % (3.44)

From this expression it is evident that the potential reaches its minimum at the value
of the field which satisfies the condition

F_ W
= —. 3.45
?o %o 7 (3.45)
Thus, the potential reaches the minimum (V((l)g ¢o) = —%) at
¢ =¢y = > e'% = const (3.46)
V2
Here « is a real, constant phase and we have used the standard notation
2
2 M
= 3.47
v . (3.47)
The Hamiltonian of the system is given by the following expression
3
H=000"dop+ Y _ 06" 0o+ V($'§). (3.48)

i=1

From this expression follows that at ¢ = ¢¢ the energy of the field is minimal.
Thus, in the case of the complex scalar field with potential (3.42):

e The energy is minimal at different from zero constant (vacuum) values of the field.
e The minimum of the Hamiltonian is reached at an infinite number of vacuum
values given by (3.47).

Let us put = 0. We have

$o = (3.49)

S -
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With this choice we violate the symmetry of the Lagrangian. Such a violation is
called spontaneous.?

We introduce now two real fields x; and x; which are connected with the field
¢ (x) by the following relation

V.o xitix
o) = — + 22
V2 V2
The fields x 2 are determined in such a way that their vacuum values are equal to
zero. From (3.41) and (3.50) we obtain the following expression for the Lagrangian
of the system

(3.50)

1 A 2
L=5 Z‘Mf X = 7 ((v + X0+ xF - v2) . 3.51)
1
This expression can be rewritten in the form
! ! 2,2 2 2 1 2 2,2
L= 3 Zi:aa)(i % xi — 52/4 Xi —Avxi (xi +x5) — ZMX] +xH% (3.52)

Lagrangian (3.52) is the Lagrangian of the two interacting real fields x; and x». The
second term in (3.52) is the mass term of the field x;. There are no mass term of the
field x in (3.52).

In quantum theory the quanta of the field x; are neutral particles with mass
m,, = ~/2 w and the quanta of the field x, are neutral massless particles (m,, = 0).
These massless particles are called Goldstone bosons. Their appearance is a general
consequence of the spontaneous violation of a continuous symmetry.

The appearance of Goldstone bosons is a problem for theories with spontaneous
symmetry violation: massless scalar bosons were not observed in experiments. In
local gauge invariant theories, discussed in the previous section, all vector gauge
bosons are massless and this is another problem for a realistic theory. Higgs showed
that in the theory based on local gauge invariance and spontaneous violation of the
symmetry Goldstone scalar bosons will not appear and gauge bosons are massive.

We will consider now the scalar complex field ¢ (x) and the real vector gauge
field Ay (x) and assume that the Lagrangian of the system has the form

21n quantum theory ¢o = (0|¢|0), where (0|¢|0) is the vacuum expectation value (vev) of the
field ¢. If (0]¢(0)|0) = % the symmetry is spontaneously broken. Spontaneous symmetry break-
ing is a well known phenomenon in physics. A typical example is ferromagnetism. The Hamilto-
nian of a system of electron spins above the magnetic ordering temperature is invariant under space
rotation. This invariance means that all directions in space are equivalent. In the ground state of a
ferromagnet the electron spins are aligned, however, in one direction which means that rotational
symmetry was spontaneously broken. After the spontaneous symmetry breaking, the system is
invariant under the subgroup of the rotations around the magnetic moment.
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L) = (0 +ig Au(x)) () (3% +ig A%(x)) p(x))
— V') o) - i Fap(x) FP (x). (3.53)
Here
Fop(x) = 0y Ag(x) — 0g A (x), (3.54)

g is a real dimensionless constant and the potential V (¢7 ) is given by (3.42).
The Lagrangian (3.53) is invariant under the local gauge transformations

¢'(x) =4 p(x), AL(x) = Ag(x) — éaa Ax), (3.55)

where A(x) is an arbitrary function of x.
The potential (3.44) has the minimum at the value of the scalar field which satis-
fies the condition

+ v2
by b0 = IR (3.56)

where the constant v is given by (3.47). Thus, we have

V. ia
po = E e, (3.57)
where « is an arbitrary phase. If we choose
v
b0 = % (3.58)

we will spontaneously violate the symmetry.
The complex field ¢ (x) can be presented in the form

v+ x(x) o1 00)

V2

where x (x) and 0(x) are real functions. The vacuum values of these functions are
equal to zero.

Due to the local gauge invariance of the Lagrangian (3.53) the phase 6 (x) has no
physical meaning. It can be removed by the choice of the gauge A(x). In this case
we have (unitary gauge)

¢ (x) = (3.59)

(3.60)
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From (3.53) and (3.60) for the Lagrangian of the real scalar field x (x) and the real
vector field A, (x) we obtain the following expression

1 1 1
L= §8ax3“x+§g2V2AaA“—§2M2x2

+ %gz(ZVx +x%) Ag A* — %X(4Vx3 +xH - % Fug F*P. (3.61)
The first and the last terms of (3.61) are the kinetic terms of the scalar and vector
fields. The second and the third terms of this expression are mass terms of the vector
and the scalar fields. These terms are generated by the spontaneous violation of the
symmetry and come from the covariant derivative and the potential, correspond-
ingly. Other terms of (3.61) describe interactions of the fields.

The masses of the vector and scalar particles, the quanta of the fields A, (x) and
x (x), are given, correspondingly, by the relations

mg =gv, my = \/E[L. (3.62)

This mechanism of the generation of the mass of the vector field is called Higgs
mechanism. The field ¢ (x) is called Higgs field.

Thus, from the local gauge invariant theory of the interacting complex massless
scalar field and the real massless vector gauge field, after spontaneous violation of
symmetry we came to the theory of a massive neutral vector field and a massive
scalar Higgs field. The massless vector field is characterized by two degrees of
freedom (two projections of the spin) while the massive vector field is characterized
by three degrees of freedom (three projections of the spin). Hence, as a result of
the spontaneous violation of the symmetry, the Goldston degree of freedom of the
complex scalar field became an additional degree of freedom of the vector field
(242 degrees of freedom became 14-3).

3.4 The Standard Model for Quarks

We will now consider the unified theory of the weak and electromagnetic (elec-
troweak) interactions (The Standard Model). The Standard Model is based on the
following principles:

1. The local gauge SU (2) x U(1) invariance of the Lagrangian of massless fields.
2. The unification of the weak and electromagnetic interactions.
3. The Higgs mechanism of the generation of masses of particles.

The SM is the theory of spin 1/2 quarks and leptons, spin 1 gauge vector bosons
and spin 0 Higgs bosons. The Lagrangian of the theory is built in such a way to
include the Lagrangian of the V — A charged current interaction, which describes the
B-decay of nuclei, u-decay, -decay, decay of strange particles, neutrino processes
and many other processes. In order to insure local gauge invariance we must assume
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that W*-bosons exist. In this case the Lagrangian of the charged current interaction
has the form (2.69).

In this section we will consider the Standard Model for the quarks. As we have
seen in the first chapter, into the charged current enter left-handed components of
the fields. Let us assume that?

Vi = (Zf) Yo = (ji) Vi = (;LL> (3.63)

are doublets of the SU (2) group and the right-handed components of the quark
fields g (x) (g = u,d, ...) are singlets of the group. The kinetic term of the free
Lagrangian of the quark fields can be presented in the form

3
Lo= Variy®Qavar+ Y igiv uthg+ Y digiy“dudig.
a=1 uy=u,c,t dy=d,s,b
(3.64)
In order to ensure the invariance of the Lagrangian under the local gauge SU (2)
transformations we will make the change

1
o Yar > (0o +ig 5T Ad) VaL, (3.65)

where A (x) is the vector gauge field.
For the Lagrangian of the interaction of the quark and vector fields we obtain the
following expression

L1(x) = —g ja(x) A%(x). (3.66)
Here
S 1
Jo = ; Var () Va3 T Yar (). (3.67)

Let us separate the charged and neutral parts in the Lagrangian (3.66). We have

_(_ & .cCyua i3 A3
L= ( _2\/5 P 4 +h.c.) gAY (3.68)
Here
JSC =2 M2 =2 @) vy d) +C) vu 5| 1) va b)) (3.69)

3 The meaning of primes will be clear later.
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is the charged current and

1 .
Wy = — AL (3.70)
V2

is the field of the charged W™ -bosons. The current jg is given by the following
expression

3

. - 1 1 _ 1 -

]3: E YalL VaETS waLZE E ”/IL Ya u/lL_E § d{L Yo iL' (3.71)
a=1 d

U =u,c,t 1=d,s,b

The first term of the expression (3.68) is the CC Lagrangian. The last term of this
expression cannot be identified, however, with the Lagrangian of the electromag-
netic interaction: in the current jo% enter only left-handed components of the quark
fields while in the electromagnetic quark current enter quark fields which are sum
of left-handed and right-handed components . Thus, the CC weak interaction which
violates a parity and the electromagnetic interaction which conserve a parity cannot
be unified on the basis of the local SU (2) group.

In order to build an unified theory of the weak and electromagnetic interactions
it is necessary to enlarge the symmetry group. A new interaction Lagrangian must
include the CC Lagrangian and the Lagrangian of the electromagnetic interaction.
The minimal group of this type is the direct product

SU2) x U(1),

where U (1) is the group of the hypercharge. We will assume that the hypercharge
Y is connected to the electric charge Q by the Gell-Mann-Nishijima relation

1
Q=5+ (3.72)

Here Q is the electric charge (in the units of the proton charge) and /5 is the third
projection of the isotopic spin. For the doublets ¥/,;, we have

2 1 1 1 1 1
QUP — g = 5 + E YgOUb Qdown = _§ = —5 —|— 5 Ygoub. (373)

Thus, for the hypercharge of the left-handed doublets we find

1
yjloub — 3 (3.74)

For the right-handed singlets we have

YRl =20 =4/3, vy =3 gl = /3 (3.75)
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In order to build the theory invariant under the local gauge SU (2) x U(1) trans-
formations in the free Lagrangian of the quark fields (3.64) we have to change the
derivatives of the doublet and singlet fields by the covariant derivatives

1 1
Oq VarL — (aoz +lg§1' “Ay +lg/§ goub Ba) Yar,

|
O Uy g — <8a +ig 3 Y;p Ba> uhp Wig =ug, ch,tp),
1
do dp — (aa +ig' 5 y down Ba) diy (i =dy, sk, b, (3.76)

where A, and B, are SU(2) and U(1) vector gauge fields and g and g’ are the
corresponding coupling constants.

For the Lagrangian of the (minimal) interaction of the quarks and vector fields
we will find the following expression

. 1.
,c,:_gJaAO‘—g/Ejg B%, (3.77)

where the isovector current j, is given by (3.67) and for the hypercurrent j! we
have

3
1 1 , 1 i}
_-]C)t/ = _YLdOUb ZwaL VawaL‘i‘EY]l;p Z u/]RVau/lR

2
a=1 ur=u,c,t

1 _
+3 YR DT dig vadi (3.78)
di=d,s,b

It is a direct consequence of the Gell-Man-Nishijima relation (3.72) that the hyper-
current j) is connected to the electromagnetic current and the third component of
the isovector current by the following relation

L, . .
Sda =i = - (3.79)
Here
.EM 2 ~/ l 1 7/ /
BM=500 dren+(—5) X divd (3-80)
ui=u,c,t dy=d,s,b

is the electromagnetic current of the quarks. The Lagrangian of the interaction (3.77)
takes the form

Lr=—-gju AY — ¢ GEM - ) B®. (3.81)
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The local gauge SU(2) x U(1) symmetry can be satisfied only if A* and B are
massless gauge fields. The Standard Model is based on the Higgs mechanism of the
spontaneous symmetry breaking. Thus, we must include scalar Higgs fields in the
system. In order for the theory to be invariant under SU (2) x U (1) transformations
the Higgs fields must have definite SU(2) x U (1) transformation properties.

Let us assume that the Higgs field ¢ (x) is the SU (2) doublet

= "”) 3.82
¢ (¢0 ' (9.82)

where ¢ is the scalar complex field of particles with electric charges equal to £1
and ¢o(x) is the complex field of particles with electric charge equal to zero. From
the Gell-Mann-Nishijima relation (3.72) follows that the hypercharge of the field
¢(x)isequaltoone (Yp =1+0=1).

For the free Lagrangian of the Higgs doublet we have

Lo=3.0"3%— V(' o). (3.83)

Here the potential V (¢ ¢) is given by the expression

2 4
Foy 2 N2 P M _
V@' '¢d)=—pn" o' ¢+r(@' ¢d)" =2 <¢> ¢ _ZA) w (3.84)

where ;2 and A are positive constants.

In order to ensure SU(2) x U (1) invariance of the theory in (3.83) we must
change the derivative d,¢ by the covariant derivative:

1 1
Do) — <3a+ig§r-Aa+ig/§Ba> ¢. (3.85)
where Ay, and By, are SU (2) and U (1) gauge fields. The Lagrangian takes the form
. 1 - . 1 T o . 1 o ./ 1 o
L=|[0,+ig=T Ay +ig =By)¢ 0 +ig—1t-A"+ig = B* | ¢
2 2 2 2
—Vip' o). (3.86)

The potential (3.84) reaches a minimum at such values of the Higgs field which
satisfy the relation

2

@' ¢ = V? (3.87)

where

2

2 w
= —. 3.88
v . (3.88)
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Because of the conservation of the electric charge the vacuum expectation value of
the charged field ¢ is equal to zero. From (3.87) follows that we can choose ¢q in

the form
0
¢y = ( v ) (3.89)
2

The complex scalar doublet ¢ (x) can be presented as follows

. 0
Pp(x)=¢é' 3700 (VJ:[—}(X) ) , (3.90)
2

where 0;(x) (i = 1,2,3) and H(x) are real functions. The parametrization (3.90)
was chosen in such a way that the vacuum values of the functions 6; (x) and H (x)
are equal to zero.

The Lagrangian of the system we are considering, is invariant under the SU (2) x
U (1) local gauge transformations. Let us choose the gauge in such a way that

0

¢(x) = | v+H® ) . (3.91)
V2

With this choice of the gauge (which is called unitary gauge) we find the following

expression for the Lagrangian (3.86)

1 (8 g g g
=0, HOH+¢ [S7 Ay +2 B, )[27-A2+2B*)p—V. (3.92
L 28a 0 + ¢ (2r o,+2 a)<2r +2 ¢ —V. (3.92)

Let us consider the different terms of this expression. Taking into account that
T Tk =0ik +ienT (3.93)

we have
T-AgT-AY = A, AY =2 W) W% 4 A3 A3, (3.94)

where W is the field of the charged W* bosons given by Eq. (3.70).
Further, from (3.91) we find

: 1 5 3
' Aug =2 (v H) AL (3.95)

From (3.84), (3.91), (3.94) and (3.95) we obtain the following expression for the
Lagrangian (3.92)

1 2 . 2 72 A
L=3 0.H 8"‘H+gZ V+H)? W) W“+% (+H)? Zq 25 QVH+HP,

(3.96)
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where

/

8 3 8

/g2+g/2A°‘ B /&% + g7 Ba

The combination of the fields Ag and By, which is orthogonal to Z,, we will call
Aq. We have

Zy =

(3.97)

/

8 3 8

/g2+g/2A“ * /e + g7 Be

The Lagrangian (3.96) includes the mass terms of the vector W* and Z* fields and
the mass term of the scalar field H:

Ay =

(3.98)

1 1
—m% Zy 7% — 3 m3, H>. (3.99)

,cm:m%,,W;W“+2

Here

1 1
my, = 1 @V om = 2 &2+ gHV:, my =2xv =22 (3.100)
Thus, after spontaneous symmetry breaking W% (x) became the field of the charged
vector W+ bosons with the mass my = %gv, Z%(x) became the field of neutral

vector Z° bosons with the mass m; = %\/gz + g"2v. The field A4 (x) remained
massless. Three Goldston degrees of freedom of the Higgs doublet provided the
masses of the W* and Z° bosons. The fourth degree of freedom is the neutral scalar
field H (x) of particles with the mass my = V2 and spin equal to zero.

Let us now consider the Lagrangian (3.81) of the interaction of the quark and
vector fields. This Lagrangian can be written in the form

Lr=-—= ,SCW“+hc>—£°, 3.101
! ( 22 (3100

where the first term is the Lagrangian of the CC interaction of the quarks and W+
bosons and the second term

. 1.

L£9=—gjd A3 — g 3 jr B® (3.102)
is the Lagrangian of the interaction of the quarks and neutral vector fields. Tak-
ing into account (3.97) and (3.98), for the Lagrangian L(l) we find the following

expression

1 /
L) =—3\e2+¢” JNCZ“—\/%JEMA“, (3.103)
g +¢g
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where

. . g* .
Ne=2j3-2 o JEM, (3.104)
and ng is the electromagnetic current of the quarks (see (3.80)).

The first term of (3.103) is the Lagrangian of the interaction of quarks and mas-
sive neutral vector Z° bosons. The weak current (3.104), which does not change
the electric charges of quarks, is called the neutral current (NC). Before the SM
appeared, the NC interaction was unknown. The unification of the CC weak and
electromagnetic interactions on the basis of the local gauge SU(2) x U (1) group
allowed fo predict the existence of the massive neutral vector Z°-boson and a new
type of the weak interaction (NC). All predictions of the Standard Model were per-
fectly confirmed by numerous experiments.

The second term of the Lagrangian (3.103) is a product of the electromagnetic
current and the massless vector field A*(x). It can be identified with the Lagrangian
of the electromagnetic interaction if the constant g and g’ satisfy the following con-
dition

/

58 _.. (3.105)

NeErC

where e is the charge of the proton. The massless vector field A% is the electro-
magnetic field in this case. After the spontaneous breaking of the SU(2) x U(1)
symmetry the Lagrangian of the system is invariant under the transformations of the
local Ugm (1) group.

It is convenient to introduce the weak angle 6y,. We have

/

& — tan6y. (3.106)
g

From (3.97) and (3.98) we find that
Zy =cosby A3 —sinfy By, Ay =sinfy A2 + cosOy By. (3.107)

The condition of the unification of the weak and electromagnetic interactions
(3.105) takes the form

g sinfy = e. (3.108)

From (3.101), (3.102) and (3.103) follows that the Lagrangian of the interaction of
the quarks and vector bosons is the sum of the CC Lagrangian, the NC Lagrangian
and the electromagnetic Lagrangian:
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8 NC ~a .EM 4«
Lr=-——=“W*+he.)|-—>—;NCZ A%, 3.109
! (2\/_‘1 + C) 2cos€wja e ( )
Here
$E=2j =2 Y il ved, (3.110)
ul—u d’ =d’

M= ey i vad (3.111)
q'=d, ..
is the electromagnetic current (eu/1 =2/3, eq = —1/3) and
JNC =23 — 2 sin? gy jEM (3.112)

is the neutral current.

The relations (3.100) are based on the assumption that the Higgs field is trans-
formed as the SU(2) doublet. We will show now that in the SM with the Higgs
doublet masses of W+ and Z° bosons can be predicted. The SM also allows to
calculate the vacuum expectation value v. In fact, the Fermi constant G r, which
characterizes the effective four-fermion weak interaction induced by the exchange
of the virtual W-boson at Q% < m%v is given by the relation

% _ %, (3.113)
The value of the Fermi constant is well known. The most precise value
Gr =1.16637(1) - 107> GeV 2
was obtained from the investigation of the u-decay.
From (3.100) and (3.113) we easily find
v=(V2Gp) V2 ~246GeV. (3.114)

This value characterizes the scale of the breaking of the electroweak symmetry.
From (3.100) and (3.106) we obtain the following relation between the masses
of the W and Z bosons

W cos by (3.115)
mz
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Finally, taking into account the unification condition (3.108), we find the following
expressions for the masses of the W and Z bosons

Ta 172 1 T 172 1 (3.116)
my = . mz = . , -
v V2Gr sin Oy z V2Gp sin Oy cos Oy

2,
where o = j—ﬂ is the fine structure constant. We have

ra \1/2
= 37.2895(2) - GeV (3.117)
<«/§GF> (

The parameter sin? Ow characterizes the neutral current (see (3.112)). The value
of this parameter was determined from the data of numerous experiments on the
investigation of NC processes. From the existing data it was found that

sin? By = 0.23122(15) (3.118)

If we take into account radiative corrections, the relation (3.116) for the mass of the
W boson is modified. We have in this case

12
T o 1
_ , 3.119
mw <ﬁGF) sinfy (1 — Ar) (3.119)

where the term Ar is due to the radiative corrections. For this term the value Ar =
0.06969 + 0.00004 £ 0.00014 was obtained. From existing data for the masses of
the W+ and Z° bosons the following values were found

myz = (91.1874 £ 0.0021) - GeV  my = (89.403 £ 0.029) - GeV.  (3.120)

These values are in a perfect agreement with the prediction of the Standard Model.*
We will now turn to the consideration of the generation of the quark masses. The
mass term of the quark field g (x) has the form

Lm=—-mgqq=—mgqrqr+hec., (3.121)

where m is the mass of the g-quark. In the SM left-handed fields are components
of SU (2) doublets and right-handed fields are SU (2) singlets. Thus, the quark mass
terms are not invariant under the SU (2) x U (1) transformations.

Masses (and mixing) of the quarks are generated in the SM via the mechanism of
the spontaneous symmetry breaking. We will see, however, that unlike the case of

4 The precise values of the fundamental parameters of the Standard Model can be found in the
review “Electroweak model and constraints on new physics” published by the Particle Data Group
in C. Amsler et al. [168].
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the masses of W and Z bosons the standard Higgs mechanism does not put any con-

straints on the masses of quarks. In the SM, masses of quarks are free parameters.
Let us assume that in the total Lagrangian of the Standard Model there is the

following Lagrangian of the Yukawa interaction of the quark and Higgs fields

Vi
o ==L S G the,  Ga2)
a.q

where MS;)”“ is a complex 3 x 3 matrix. Because v, and ¢ are the SU (2) doublets

and g} are singlets, it is obvious that the Lagrangian E‘)if’w" is the SU(2) scalar.
Let us also require U (1) invariance, i.e. the conservation of the hypercharge. The
hypercharges of the quark and Higgs doublets are equal to 1/3 and 1, correspond-
ingly. The Lagrangian (3.122) conserves the hypercharge if Zeq}e + 1 = 1/3. Thus,
a = —1/3, i.e. the right-handed fields ¢} in (3.122) are the fields of the “down”
quarks dj, s, bg.

From (3.89) and (3.122) after the spontaneous symmetry breaking we find

e

— H
E(}i/own _ _D’L Mydown D;{ (1 + 7) +h.c. (3.123)
Here
dy g
D,L,R = S/L,R (3.124)
/
bL,R

The first term of (3.123) is the mass term of the down quarks and the second term is
the Lagrangian of the interaction of the down quark and the Higgs boson field.

In order to obtain the mass term of up quarks we will use the conjugated Higgs
doublet

¢ =ind*. (3.125)

The hypercharge of the doublet b is equal to —1. From (3.89) and (3.125) we have

v+H
b= ( JOQ ) (3.126)

We will assume that in addition to (3.122) the following Lagrangian of the Yukawa
interaction of quarks and Higgs bosons enters in the total Lagrangian

V2 —— -
£ = - Y VY My qr ¢+he, (3.127)
a,.q
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where M"P is a complex 3 x 3 matrix. From the conservation of the hypercharge
we have Zeq;Q 4+ (=1) = 1/3. Thus, eqr = 2/3 and the index ¢’ in (3.127) runs
over u'p, i, . After the spontaneous symmetry breaking we find from (3.126)
and (3.127)

— H
ﬁ‘;pz—UL M™ Uy (1+7)+h.c., (3.128)
where
M/L,R
ULR = c’L’R . (3.129)
R

The first term of (3.128) is the mass term of the up quarks and the second term is
the Lagrangian of the interaction of the up quarks and the scalar Higgs field.

Let us now bring the mass terms of up and down quarks to the diagonal form.
The complex matrices M"P and M9°"™ can be diagonalized by the biunitary trans-
formations (see Appendix B). We have

MU — VLUP mUP V;;PT pydown _ Vgown pdown VEOWHT~ (3.130)
Here VLupR and Vgol‘é’“ are unitary 3 x 3 matrices and m"P and m9oW™
matrices with positive diagonal elements.
From (3.123), (3.128) and (3.130) we find the following expressions for the quark
mass terms

are diagonal

Ly =—Um™U, L2 =_Dmip, (3.131)
Here
u
U=U,+Ug=|c]|, D=D,+Dg=|s]. (3.132)
t b
my 0 0 mg 0 0
mP=[0m 0|, m"=| 0m 0 |. (3.133)
0 0 ny 0 0 mp
and
ULr=V,"k Up x. Drr=Vi%" D} s (3.134)

From (3.131), (3.132) and (3.133) we obtain the standard mass terms of up and
down quarks

L) =— Y myii@ux), L") =— Y madx)dx).
uy=u,c,t dy=d,s,b

(3.135)
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Thus, g (x) is the field of the g-quark with the mass m; (¢ = u,d, c, s, t, D).

The left-handed and right-handed fields of quarks with definite masses and
primed quark fields, which have definite SU (2) x U (1) transformation properties,
are connected by the unitary transformations (3.134).

Let us consider now the charged current of the quarks. From (3.110), (3.124) and
(3.129) we find

-CC 7/ /
Jo () =2Up(x) Yu Dy (x) (3.136)

We will write down the charged current in terms of the fields of quarks with definite
masses. From (3.134) and (3.136) we find

JE€@) =2UL(x) yu V DL(x). (3.137)
Here
V = (VP yfown (3.138)

From (3.132) and (3.137) follows that the CC can be presented in the following
form

JSC) = 2 [in (x) Yo dP(x) + E1(x) Yo ST (x) + 7L (X) Ya BP*(0)], (3.139)
where

dMX(x) = Z Vua, dir(x)

di=d,s,b

SPR) = Y Ve dir(x)
di=d,s,b

M@ =Y Vig din(v). (3.140)
di=d,s,b

From (3.138) follows that V' is a unitary matrix
viv=1. (3.141)

We came to an important conclusion: the left-handed components of fields of the
down quarks dp (x), sy (x), by (x) enter into the CC of the SM in “mixed form”
ernix (x), sLmix (x), baniX (x). The unitary 3x3 mixing matrix V is called the Cabibbo
-Kobayashi-Maskawa (CKM) mixing matrix. Let us stress that the mixing of quarks
is due to the fact that the unitary matrices V; P and Vf"wn, which connect left-handed
primed and physical fields of up and down quarks, are different. It follows from
(3.139) and (3.140) that the charged current changes the flavor of quarks (d — u,
s — u,c— s, etc).
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Let us now express the electromagnetic current through the fields of physical
quarks. From (3.111) we have

' 2 - - 1 - -
JEM — 3 (U} ya Uy + Ug yo Ug) — 3 (D} ya D; + Dy ya D). (3.142)

Taking into account the unitarity of the matrices VEPR and Vf"[‘gv“ we find

M _ 2 1
Jo =§Uyo,U—§DyaD. (3.143)
From (3.132) and (3.143) we have
M=) e ) vaq(), (3.144)
g=u,d,c,...
where ¢, .; = % and eq 5p = —%. Thus, we come to the standard expression for

the electromagnetic current of quarks, which is diagonal in quark flavors.
Let us consider the neutral current of the Standard Model. From (3.112) we find

J&€ =0} vo U, — D} yo D} — 2 sin® Oy j3™ (3.145)

In order to come to the fields of the physical quarks we will use the relations (3.134).
Taking into account that Vzp and Vf"w“ are unitary matrices we find

JNC = Uy vy UL — Dy, ye D — 2 sin® 6y jEM. (3.146)

Finally from (3.146) we find that the neutral current is given by the following expres-
sion

B = Y W e m@ = Y dix) yadi(x) =2 sin® Oy jEM ().
uy=u,c,t di=d,s,b
(3.147)
From this expression we conclude that the neutral current of the SM is diagonal in
quark flavors.

3.5 The Standard Model for Leptons

The Standard Model for neutrinos and charged leptons is based on the same SU (2) x
U (1) local gauge group as the SM for the quarks we have considered in the previous
section. We assume that the left-handed fields are transformed as doublets of the
SU(2) group
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_ (Ve _ (VL _ (v
wEL_<e/L)7¢ML_(M2)3wa_<;£ (3148)

and the right-handed lepton and neutrino fields I, and v/, (I = e, i1, 7) are singlets
of the group.

In order to obtain the Lagrangian of the interaction of the leptons and gauge
vector bosons which satisfy the requirements of the local SU (2) x U(1) invariance
we will change in the free Lagrangian the derivatives of the fields by the covariant
derivatives. In the case of the lepton doublets (3.148) the following change must be
performed

1 1
3 Y1 — (ao, +ig 3T Ay +ig 3 YfPBa(x)) Yip l=e u,t. (3.149)

Let us stress that the coupling constant g must be the same in (3.76) and (3.149).
This is connected with the fact that SU(2) is a nonabelian group and the constant
g enters into the field strength (see (3.23)). There is no such requirement for the
abelian U (1) group. This allow us to choose the hypercharges of all fields in such
a way that the Gell-Mann-Nishigima relation (3.37) is satisfied. According to this
relation

P =—1, YP=-2 v/ =0, (3.150)

where YII‘ep is the hypercharge of the lepton doublets and Y};P and Yy are hyper-
charges of the right-handed lepton and neutrino fields, respectively. Thus, in the
right-handed part of the kinetic term of the free Lagrangian we must make the fol-
lowing change

1
Ol — <aa +ig 3 (—2)Ba> Ig. (3.151)

The SU(2) x U(1) invariant Lagrangian of the minimal interaction of lepton and
vector boson fields is given by

1
L7 = —gJu A" — g5 i) B”. (3.152)
Here
- S Ly e
ja= ) Vwves i, 50l =i - (3.153)
l=e,u,T
where
M= Dyl (3.154)
l

is the electromagnetic current of the charged leptons.
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Repeating now transformations that were performed in the previous section we
come to the following Lagrangian of the interaction of the charged leptons and neu-
trinos with the W+ and Z° bosons and photons

lep 8 .cC o 8 NC »a EM 4o
L7 =——= w he )] — —— z% — A%, 3.155
! ( zﬁ]“ + C) 2 cos Oy Ja € Jo ( )
Here
$E=2j =2 3" vl (3.156)
l[=e,u,T

is the leptonic charged current,

JNC =232 sin? oy jPM = Z ViL Ya Vi — Z i1 Yol —2 sin® Oy jg™
I=e,,T I=e,u,T
(3.157)
is the neutral current. The leptonic electromagnetic current is given by expression
(3.154).
We will now come to the spontaneous violation of symmetry. Let us consider first
charged leptons. The SU(2) x U(1) invariant Lagrangian of the Yukawa interaction
of lepton and Higgs fields has the form

lep «/z —_ lep ;/
LyP = _T;w“ My ligé +hie, (3.158)
I

where M'®P is a 3 x 3 complex matrix and ¢ is the doublet of Higgs fields. If we
choose for the field ¢ (x) the expression (3.91) the symmetry will be spontaneously

broken and for the Lagrangian E];’p we find the following expression

_ H
Elsp =L, ML, (1 + —) +h.c. (3.159)
\
Here
e/L,R
e P b (3.160)
/
TL.R

Let us now diagonalize the matrix M'°P. We have (see Appendix B)

M =y m"® U (3.161)
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where Uy, g are unitary matrices and m'°P is the diagonal matrix with positive diag-
onal elements. From (3.159) and (3.161) we find

_ H
L =T mLg (1 + —) +h.c., (3.162)
\4

where
Lp=U] L, Lr=U} L. (3.163)

From (3.162) we obtain the following expression for the Lagrangian

_ H
LY =—-ImL (1 + —). (3.164)
v
Here
e m, 0 O
L=L,+Lg=|pn], m®=|0m 0]. (3.165)
T 0 0 m;

The Lagrangian Ll;fp (x) has the form

Ly’ (x) = > mlx) 1(x) (1 + H\(Ix)). (3.166)

I=e,u,T

The first term of the Lagrangian (3.166) is the standard mass term of the charged
leptons. The field /(x) is the field of the leptons /T with the mass m; (I = e, u, 7).
The second term of (3.166) is the Lagrangian of the interaction of the lepton and
Higgs fields.

Let us express now the lepton charged current through the fields of physical lep-
tons. The expression (3.156) can be written in the following matrix form

JSC () = 295 (%) yo Ly (1), (3.167)

where
v’L= v’L . (3.168)

Taking into account (3.163), we have for the leptonic charged current

JECW =20 ) va L) =2 Y 0iL() ya lL (). (3.169)
l=e,u,T
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Here I(x) is the field of lepton [ with the mass m; and
vl =uiv, = v |- (3.170)

Let us consider now the electromagnetic current of leptons. Taking into account the
unitarity of the matrices Uy, g we find from (3.154)

JEM () = =L} (0) yo Ly (x) — Ly (¥) v LR (x) = —=L(x) v L(x).  (3.171)

From (3.171) and (3.165) we obtain the following standard expression for the elec-
tromagnetic current of the leptons

M@ = ) (DI yu ). (3.172)

l=e,u,T
For the lepton neutral current we have from (3.157)
Ja ) = L) vy (1) = L () ya Ly (x) = 2 sin” Oy jp ' (0. (3.173)

In terms of the flavor neutrino fields and fields of physical leptons from (3.173) we
find the following expression for the neutral current

RSOy = Y L@ e () = Y 100 vl () =2 sin Oy jM (),
l=e,u,T I=e,u,t
(3.174)
where jEM(x) is given by (3.172).
Finally it is easy to see that the kinetic term of the Lagrangian of the charged
leptons takes the standard form

c}f"(x)zi’(x)iy“aau(x)z Z I(x)i y% g 1(x). (3.175)
l=e,u,t

For the kinetic term of the Lagrangian of the neutrino fields we find

Lo(x) = ) (X) i y%0 v}, (x) = 5] (¥) i %0 v] (x) = D BL() iy oy v (x).
l=e,pu,t

(3.176)
The Standard Model proposed by Glashow, Weinberg and Salam was based on the
two-component neutrino theory. Thus, only left-handed neutrino fields enter into
the Lagrangian of the original SM. If the Higgs field is transformed as doublet it is
impossible to generate neutrino masses. Thus, the original SM was built for massless
neutrinos.
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For the massless neutrinos the total Lagrangian is invariant under the global
gauge transformations

v ) =e M), ) =€), ¢'@)—q0), (=epn1)
(3.177)
where A; are arbitrary constant phases. From the invariance under the transforma-

tions (3.177) follows that the total electron L., muon L, and tau L, lepton numbers
are conserved :

Z Li = const Z LL = const Z Li = const. (3.178)
i i i

The lepton numbers of the particles are presented in Table 3.1. The lepton numbers

of the antiparticles are opposite to the lepton numbers of the corresponding particles.
The conservation of the total lepton numbers means that in the CC decays together
with a ™ a muon neutrino v, is produced, in the process of the CC interaction
of an electron antineutrino v, with a nucleon a e* is produced, etc. We know at
present (see below) that the law of the conservation of electron, muon and tau lepton
numbers is an approximate one. It is violated in neutrino oscillations due to the small
neutrino masses and the neutrino mixing.

In the original (minimal) Standard Model, neutrino masses are equal to zero.
We will now show that formally neutrino masses can be generated by the Standard
Higgs mechanism. However, as we will see later, it is very unlikely that the SM
mechanism of the mass generation is responsible for the observed neutrino masses.
A new mechanism of neutrino mass generation is needed.

In order to generate neutrino masses we assume that in the total Lagrangian
enters the following SU (2) x U (1) invariant Lagrangian of the Yukawa interaction
of lepton and Higgs fields

V2~ .
Ly =~ IZ;WL My, vigé +he., (3.179)

where the right-handed fields v; are singlets of the SU(2) group, M’ is a complex

3 x 3 matrix and ¢ is the conjugated Higgs doublet given by (3.125).
After the spontaneous symmetry braking we find from (3.126) and (3.179)

/ H / H
Vo= — O My Ve 1+— )+hec. = b, M v [ 1+—= )+h.c., (3.180
Y IZZ:VIL szIR(+V)+ c VL VR<+V)+ c., (3.180)

Table 3.1 Lepton numbers of the particles

Ve, €7 Vi, U Ve, T Quarks, W, Z,y
L, 1 0 0 0
L, 0 1 0 0

L, 0 0 1 0
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where
VoL Vor
vy = U;/LL Ve = v;LR . (3.181)
VL ViR
With the help of (3.170) we find
H
Ly == —v] Mvj (1 + 7) +he., (3.182)

where M = Uz M'’. The first term of (3.182) is the neutrino mass term

L" = 5] Ml +he. == by Myyvip +he. (3.183)
Lr

For the complex matrix M we have
M=UmV", (3.184)

where U and V are unitary matrices and m;x = m; 8, m; > 0.
For the neutrino mass term from (3.183) and (3.184) we find the following
expression

3
LM(x) =—v(x)mv(x) = — Zm,- Vi (X)v; (x). (3.185)
i=1
Here
UW[:VL, Vivh =vr, v =1L+ g (3.186)
and
V1 ni 0 0
v=|wm], m=| 0m 0 |]. (3.187)
V3 0 0 ms

Thus, v; (x) is the field of the neutrino with the mass m;. From (3.186) follows that
the flavor neutrino fields v;z (x), which enter into the leptonic charged and neutral
currents (3.169) and (3.174), are connected with the left-handed components of the
massive neutrino fields v;z (x) by the mixing relation

3
() =Y Ui vie(x), (=e,p,7) (3.188)
i=1
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where U is the unitary mixing matrix. For the right-handed fields we have

3
Vip@) =) Viivir@). (I =e.p 1) (3.189)
i=1

We have seen that in the case the massless neutrinos the electron L., muon L
and tau L, lepton numbers are conserved. In the case of the massive and mixed
neutrinos the total Lagrangian is not invariant under the transformations (3.177)
and L., L, and L. are not conserved. However, from (3.166), (3.169), (3.174) and
(3.183) follows that the total Lagrangian is invariant under the following global
gauge transformation

wL(x) = e ML), V() = e Apx), 1x) > e x) (=eu, 1),
(3.190)

where A is an arbitrary constant phase, the same for all lepton flavors. The invari-
ance under the transformation (3.190) means that the total lepton number

L=L,+L,+ L, (3.191)
is conserved

Z L' = const. (3.192)
i

The mass term (3.183) is called Dirac mass term. The fields of the massive neu-
trinos v;(x) are fields of the neutrinos v; and antineutrinos v;. Neutrinos and
antineutrinos have the same mass and differ by the conserved total lepton number:
L(v;))=1, L) =-1.

Thus, we have shown that the Dirac neutrino masses can be generated by the
Standard Higgs mechanism. There are, however, no theoretical constraints on the
Yukawa couplings in the Lagrangians (3.122), (3.123), (3.158), (3.179). Thus, the
Standard Model cannot predict the masses of the fermions.

In Table 3.2 we presented the masses of quarks and leptons. As is seen from
Table 3.2, the mass of the electron is comparable with the masses of the u and d
quarks. The mass of the muon (tau) differs from the masses of the quarks of the
second (third) family by one (two) orders of magnitude. The absolute values of the
neutrino masses are unknown at present. From the data of the tritium experiments,
which we will discuss later, only the upper bound (m; < 2.2 eV) was obtained. From
Table 3.2 we see that the masses of the neutrinos are many orders of magnitude
smaller than the masses of the quarks and leptons. For example, in the third family
m3 <1072 me, m3 < 107° myp, mz < 1071 m,.

It is very unnatural to assume that the same standard Higgs mechanism is respon-
sible for the generation of the masses of the charged leptons, quarks and the neutri-
nos. It is common opinion that the neutrino masses are generated by a new, beyond
the SM mechanism. We will consider such mechanisms later.
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Table 3.2 Masses of quarks and leptons
I m, =(1.5-33)MeV mg = (3.5—-6.00MeV m, =0.511MeV v <2.2eV

I me = (1.277997) Gev ms = (10573)MeV  m,, = 105.658 MeV v < 2.2eV
I m, = (1713 £ 1.1 £ 1.2) GeV mj, = (4.207007)GeV m, = 1.777GeV 13 < 2.2eV

3.6 Summary and Outlook

The unified theory of the weak and electromagnetic interactions (The Standard
Model) is based on the following basic principles

1. Local SU(2) x U (1) invariance of the Lagrangian of massless quark, lepton and
vector fields with left-handed doublets and right-handed singlets.

2. Higgs mechanism (with Higgs doublet) of the generations of the masses of W=
and Z° bosons, the quarks and the charged leptons.

3. Minimal interaction.

The SM Lagrangian contains as a low-energy limit the effective classical
currentx current Lagrangian of the CC weak interaction. The SM predicts a new
type of the weak interaction (NC), the existence of the vector W* and Z° bosons
and the values of the masses of these particles.

In order that the Standard Model will be a renormalizable theory it is necessary
that the sum of the electric charges of the particles, the fields of which are compo-
nents of the doublets, is equal to zero:

2 1
3 (5 4 (— 5)) NI 4 0+ (=1) NP™ =0 (3.193)
Here N4"*™ and N'P°™ are the numbers of the quark and lepton families. We took

into account in (3.193) that there exist three colored quarks of each type. Thus, we
have

uarks leptons
N;i = pr . (3.194)
After the t-lepton was discovered (1975) , the SM allowed to predict the existence
of v;-SU(2) partner of 7 and in accordance with (3.194) to predict the existence
of the third family of quarks (b and 7). All predictions of the Standard Model were
perfectly confirmed by numerous experiments.

The minimal SM can be built for massless neutrinos. We have seen that Dirac
neutrino masses can be generated in the framework of the SM with the Higgs
doublet. However, it is highly unlikely that the standard Higgs mechanism is the
mechanism of the generation of small neutrino masses. It is a common point of view
that small neutrino masses are an evidence in favor of a beyond the SM mechanism
of neutrino mass generation.



Chapter 4
Neutrino Mass Terms

4.1 Introduction

The neutrino mass term is the central object of the theory of massive and mixed neu-
trinos. It determines neutrino masses, neutrino mixture and neutrino nature (Dirac
and Majorana). The possibility of the existence of so-called sterile neutrinos is also
determined by the neutrino mass term.

In modern theories mass terms of fermions appear in the Lagrangian as a result
of the braking of underlying symmetries. We have seen in the previous chapter how
the neutrino mass term could appear in the SM with right-handed neutrino singlets.

Here we will consider all possible types of neutrino mass terms. Our discussion
will be general, based only on Lorentz invariance. We will only use the fact that
a mass term of any spin-1/2 field is a sum of Lorentz-invariant products of left-
handed and right-handed components of the field.! It was established by the LEP
experiments at CERN that three flavor neutrinos v, v, v; exist in nature. These
flavor neutrinos take part in CC and NC weak processes due to the electroweak
interaction via the standard leptonic charged and neutral currents”

SCO =2 )" M vale), 3= Y @ yeve). @1

l=e,u,T I=e,u,T

Here I(x) is the operator of physical charged leptons /* with mass m;.
The fields vz, (x) (I = e, u, T) must enter into the neutrino mass term. The struc-
ture of mass term depends on

e other fields (if any) which enter into the mass term,
e the conservation of the total lepton number L = L, + L, + L.

'We remind that a fermion field ¥ (x) can be presented in the form ¥ (x) = Y1 (x) + ¥ g (x), where
left-handed ¥, (x) and right-handed ¥ (x) components of the field ¥ (x) are determined by the
relations ¥y g(x) = ]?T” ¥ (x). From these relations follows that y5s Y1 g (x) = FYr r(x).
2The left-handed flavor fields vir (I = e, u, 7) are often called active fields. Right-handed fields
are called sterile: they do not enter into the standard charged and neutral currents.

Bilenky, S.: Neutrino Mass Terms. Lect. Notes Phys. 817, 61-77 (2010)
DOI 10.1007/978-3-642-14043-3_4 © Springer-Verlag Berlin Heidelberg 2010
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4.2 Dirac Mass Term

Let us assume that in addition to the flavor left-handed fields v,z (x) three right-
handed neutrino fields v;g (x) enter into the mass term. In this case the most general
neutrino mass term will have the form

LP(x) == Ty (x) M vig(x) + hec. (4.2)
Ul

Here the indexes [ and !’ run over e, u, T and M Disa3d x3 complex matrix.
It is easy to check that if the mass term £P enters into the total Lagrangian,
invariance under the following global gauge transformations

v (x) =MoL (x),  vp(x) = e ur(x)
I'(x) =elx), ¢q'x)=qx), (4.3)

holds. Here A is an arbitrary constant phase. From the invariance under the trans-
formations (4.3) follows that the total lepton number L, which is the same for all
charged leptons and all flavor neutrinos, is conserved.

The procedure of diagonalization of the mass term (4.2) was performed in details
in Chap. 3. The complex matrix MP can be diagonalized by the biunitary transfor-
mation (see Appendix B)

MP =U"mvV. (4.4)

Here U and V are unitary matrices and m;x = m;8;x, m; > 0. From (4.2) and (4.4)
we find

3
wL() =) Ui vit@) (=e p.1) (4.5)
i=1
and
3
wr@) =) Viivir@) (L =e.p 7). (4.6)
i=1

Here U and V are unitary matrices.
The mass term (4.2) takes the form

3
LP) ==Y mi b (x)vi (x). 4.7)

i=1
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From (4.7) and (4.5) we conclude that

e ;(x) is the field of the neutrino with mass m; (i=1,2,3).
e The left-handed flavor fields v;z (x), which enter into the standard charged and
neutral currents, are “mixed” fields.

The unitary 3x3 mixing matrix U in (4.5) is called Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix.

From (4.3), (4.5) and (4.6) follows that the total Lagrangian is invariant under
the transformations

vi(x) = e vix), U'(x)=etIx), ¢ ) =qx). (4.8)

This invariance means that v; (x) is the Dirac field of neutrinos and antineutrinos,
particles with the same mass m;. Lepton numbers of neutrino and antineutrinos are
opposite: L(v;) = 1, L(v;) = —1. The mass term (4.2) is called the Dirac mass
term.

4.3 Majorana Mass Term

A mass term is a sum of Lorentz-invariant products of left-handed and right-handed
components of fields. We will show now that the conjugated fields

(L) =Cvy and (vg)° = Cily (4.9)

are, correspondingly, right-handed and left-handed fields. Here C is the unitary
matrix of the charge conjugation, which satisfies the relations

cylc'=—y, c'=-c. (4.10)
We have
Y5 VIL = —ViL, Y5 VIR = VR. 4.11)

From these relations by hermitian conjugation and multiplication by y° from the
right we find

ViLYs =VIL, VIRY5= —VIR. 4.12)

Further, from (4.12) by transposition and multiplication from the left by the matrix
C we obtain

ys i) = (i), vs (r) = —(vR)". (4.13)

In (4.13) we took into account that
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Cyl ¢! =ys. (4.14)

From (4.13) follows that (v;7)¢ is the right-handed and (v;g)¢ the left-handed com-
ponent. From (4.9) and (4.10) we find

i) =—vfp €71 (g =—vpCc (4.15)
Taking into account that (v;)¢ is the right-handed component we can easily build

a neutrino mass term in which only flavor (active) left-handed neutrino fields enter.
The most general mass term of this type has the form

M=—— > B M) () +he = —% > b MY Cvf +he.,
U'l=e,u,t U l=e,u,t
(4.16)
where MM is a complex non diagonal matrix.
The mass term (4.16) can be written in the following matrix form

1 ,
M= —5 0 MM (v)¢ + hee., (4.17)
where MM is a 3% 3 matrix and
VL = VML . (4.18)
We will show now that MM is a symmetric matrix. In fact, taking into account (4.9)
and (4.10), we find
oy MM () =0, MM C B = -5, (MM T 5] =5, (MMT (). (4.19)

Notice that the minus sign in the third term is due to the anticommutation properties
of fermion fields. From (4.19) we have

MM = (uMT, (4.20)

We will now present the mass term (4.17) in the diagonal form. The symmetric
complex matrix MM can be presented in the form (see Appendix C)

MM =umuT, (4.21)

where U is an unitary matrix and m;; = m; §jx, m; > 0. From (4.17) and (4.21)
we find
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1 l— . l— .
M= —5 UmUT Co!l he. = -3 Utvy m (UM)L)C—5 (Utvp)em Utvy.

(4.22)
From (4.22) we find the following expression for the mass term
1
M= -3 Mmoo, (4.23)
Here
V1 m; 0 O
WM =vUtv, + W)= w|, m=] 0m 0|, (4.24)
V3 0 0 mj3
From (4.23) and (4.24) we have
13
M = Z m; i v;. (4.25)

Thus, v; (x) is the field of the neutrino with mass m;. From (4.24) we obviously have
WM (x)¢ = vM(x). (4.26)

Thus, the field of neutrinos with definite mass v; (x) satisfy the condition
Vi (x) = v (x). (4.27)

The condition (4.27) is called Majorana condition. In the general case we have the
following expansion for the neutrino field v(x)

v = [ Ny (e e 4 i1l py ) By @28)

Here ¢, (p) (dT( p)) is the operator of the absorption of a neutrino (creation of a

antineutrino) with momentum p and helicity r, the spinor u” (p) describes the state
T 1

with momentum p and helicity r, u" (—p) = C (u"(p))" and N, m is

the standard normalization factor. If the field v(x) satisfies the Majorana condition
(4.27) we have

cr(p) =dr(p). (4.29)
Thus, if the neutrino field satisfies the Majorana condition in this case

neutrino = antineutrino
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and v;(x) is the field of purely neutral Majorana neutrinos with the mass m; and
helicities +1.
The field v¥ (x) is the sum of the left-handed and right-handed components:
M) = v (x) + vl (x). (4.30)
Comparing (4.24) and (4.30), we find
vl @) = UM, g 0 = U 4.31)

We conclude from (4.31) that right-handed and left-handed components of the
Majorana field are connected by the relation

v (x) = WX (). (4.32)
From (4.24) and (4.32) we have
vir(x) = (vip (x))°. (4.33)

This relation is a direct consequence of the Majorana condition. In fact we have

L—ys \¢ 1+yI_ 1+ ys 1+ ys
(v,-L)C=<Tyv,-> —C 25vl-T= 2" Ve = 2)’ v =g (4.34)

Vice versa it is obvious that if left-handed and right-handed components are con-
nected by the relation (4.33) the field v; satisfies the Majorana condition. Notice
that the relation (4.33) represents the difference between the Dirac and Majorana
fields: in the case of the Dirac field right-handed and left-handed components are
independent while in case of the Majorana field they are connected by the relation
(4.33). Let us consider the global gauge transformation

V) (x) = e Mg (x), (4.35)
where A is an arbitrary constant. For the conjugated field we have
L)) = e () (). (4.36)

It is obvious that the mass term (4.17) is not invariant under the gauge transforma-
tions (4.35). Thus, in the case of the Majorana mass term there is no global gauge
invariance and there is no conserved lepton number which allow to distinguish neu-
trinos and antineutrinos. This is the reason why after the diagonalization of LM we
came to the fields of the Majorana neutrinos.

Finally from (4.24) we find

vp(x) = U v (x). (4.37)
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From this relation we have

3
vL(x) =Y Ui vir(x), (4.38)
i=1

where U is the unitary 3x3 mixing matrix. Thus, in the case of the Majorana mass
term the left-handed flavor fields v;;,, which enter into CC and NC of the Standard
Model, are connected with the left-handed components of the Majorana fields v;,
by the relation (4.38).3

In conclusion let us consider the neutrino kinetic term of the Lagrangian. We
have

£0=Z\71Liy“8a viL =Ly, vL. (4.39)
l

Taking into account the unitarity of the mixing matrix U we find from (4.31) and
(4.39)

Lo=viy 0 v =) ViLiy*daviL. (4.40)
i

It is easy to see that
DL i Yad vip = =3 i vy vl = =% (Win)i Ve (Wir)" (4.41)
Further we have
= 0% iL) 1 Yo (L) = = (i) 1 ve (0iL)) + (iL) i yo 8% (i), (442)
A Lagrangian is determined up to a divergence of a vector. So, the first term of

(4.42) can be omitted. For the kinetic term of the Lagrangian of the neutrino fields
we find the following expression

1 1 — 1
Lo = 3 ZE‘L iy* oy vir. + 3 Z WiL)iye 3% (Vi) = 3 ZE’ iy 0y vi,
i i i
(4.43)

where
vi = vir + (vip)€ (4.44)

is the Majorana field.

3 Majorana mixing was considered for the first time by Gribov and Pontecorvo. Before this paper
there was a belief that in the case of the left-handed neutrino fields neutrino masses are equal to
zero. This is correct if the total lepton number L is conserved. As we have shown here, if only
left-handed neutrino fields enter into the Lagrangian, neutrinos can have Majorana masses.
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Finally from (4.25) and (4.43) we obtain the following expression for the total
free Lagrangian of the neutrino fields

3
IR
Lo=5 Y Tiliy®oa —mi)v; (4.45)

i=1

Notice that from (4.43) and (4.45) it is evident why we introduced the factor % in
(4.23) and other expressions.

Let us stress that the case of the Majorana mass term only active left-handed
neutrino fields vy, enter into the total Lagrangian.

4.4 Dirac and Majorana Mass Term

The most general mass term, in which left-handed active flavor fields v;; and right-
handed sterile fields v;r enter, has the form

1 L 11—
LDM — —3 0 MM () — 5, MP vg — 5 W) MMvg +hec., (4.46)

where M 2/[ and M %I are complex non-diagonal symmetrical 3 x3 matrices, MP is a
complex non-diagonal 3 x3 matrix, column vy, is given by (4.18) and

VR = UMR . (447)

The mass term (4.46) is the sum of the left-handed Majorana mass term, the Dirac
mass term and right-handed Majorana mass term. It is called the Dirac and Majorana
mass term. It is obvious that the mass term is not invariant under the global gauge
transformations. Thus, in the theory with the Dirac and Majorana mass term the
lepton number L is not conserved. We must expect, therefore, that the fields of
neutrinos with definite masses are Majorana fields.

Let us perform the procedure of the diagonalization of the Dirac and Majorana
mass term. The mass term £P*™ can be written in the following matrix form

1 :
LPM — —5 7 MP™M@)¢ +he. (4.48)

Here

VL
= 4.49
ng ((vR)C> (4.49)

and
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(4.50)

( - MD)
MOHM

(MP)T MY

is a symmetrical 6 x6 matrix. Notice that in (4.48) we took into account the follow-
ing relation

i MPvg = —op)" MP)T 6" = e M) W) @S
The matrix MP+M can be presented in the following diagonal form
MPM —pynmuT, (4.52)

where U is an unitary 6 x 6 matrix and m;; = m; §;j; (i, k = 1,...6).
From (4.48) and (4.52) we have

6
] — X 1_ 1 _
LPM — ) Utngm U np)¢ +he. = ) M moM = ) E m; v vj.
i=1

(4.53)
Here
Vi
VM = \}2/[ + (vl/l‘/l)c = s 4.54)
V6
where
From (4.54) we have
WMy =vM and V= (i=1,2,...6). (4.56)

From (4.53) and (4.56) follow that v; (x) is the field of Majorana particles with mass
m;. It is obvious from (4.55) that v;; and (v;g)¢ are connected with left-handed
components of the Majorana fields v;; by an unitary transformation. In fact, we
have

np=Uv. (4.57)

From (4.57) we obtain the following relations

6 6
vL() = Y Uivip(x),  (ur(x)* =Y Upvir(x), (4.58)
i=1 i=1
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where U is the unitary 6x6 mixing matrix. Thus, in the case of the Dirac and
Majorana mass term, flavor field vz is a “mixture” of the six left-handed fields
of Majorana particles with mass m;. The sterile field (v;g)¢ is a “mixture” of the
same components.

Let us notice that the most popular seesaw mechanism of the neutrino mass gen-
eration, which allows to explain the smallness of neutrino masses, is based on the
Dirac and Majorana mass term. We will discuss this mechanism later.

4.5 Neutrino Mass Term in the Simplest Case
of Two Neutrino Fields

It is instructive to consider a neutrino mass term in the simplest case of two neu-
trino fields. Let us consider the Dirac and Majorana mass term in the case of one
generation. We have

1 _ _ 1 —
£D+M = _E myp vy (V)¢ —mpvp vp — E mpg (VR)¢ vg + h.c. (4.59)

We will assume C P invariance in the lepton sector. In this case my, mp and mg are
real parameters.
The mass term £P™™ can be presented in the following matrix form

1 .
LPM — —5 MP™M@n )¢ +he. (4.60)
Here
v
= 4.61
np <(vR)C> (4.61)
and
MDM _ <mL mp ) (4.62)
mp meg.

It is convenient to present the matrix MP™™ in the form
1
MP™ — 5 Tr MP™ 4 um, (4.63)
where Tr M = 0. We have

M= (_% (mg—my) ~ mp ) (4.64)
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The matrix M can be easily diagonalized by orthogonal transformation. We have

M=0mor’. (4.65)
Here
cosf sinf
0= < —sinf cos 6 ) (4.66)
is an orthogonal matrix and
_ 1
iina =¥ tng —mu)? + 4, (4.67)

From (4.65), (4.66) and (4.67) we find

2mD mpr —myp,

tan20 = ———, cos26 = . (4.68)
MR L \/(mR —mp)? +4mj,
For the matrix MP*™ from (4.63), (4.65) and (4.67) we have
MP™M = om' o7, (4.69)
where
, 1 1 5 5
m1,2=§(mR +mL):F§ (mg —mp)? +4m7y, (4.70)

are eigenvalues of the matrix MP™™ . These quantities can be positive or negative.
Let us write down

m; = m; n; 4.71)
where m; = Im;| and n; = 1. From (4.70) and (4.71) we have
MPM=0O0myol =umuT, (4.72)

where U = O '/? is an unitary matrix.
From (4.60) and (4.72) we obtain the following expression for the mass term

11—+ 1
£D+M:—§ VvaMZ_E Z m; v; v;. 4.73)
i=1,2
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Here

WM = Ut 4+ W n ) = (”1>. (4.74)
v

It is obvious from (4.74) that

Vi = ;. (4.75)
Thus, vy and v, are fields of Majorana neutrino with masses m and m», respectively.

From (4.61), (4.66) and (4.74) we obtain the following mixing relations in the
case of the Dirac and Majorana mass term for one neutrino family

v, = cosf./nyvir +sinb./navar
(V) = —sinf. /1 viL + cosO./m vaL. (4.76)

The neutrino masses m and m, and the mixing angle 6 are determined by three
real parameters my, mg and mp (see relations (4.70) and (4.68)). The parameter 7;
(i =1, 2) determines the C P parity of the Majorana neutrino v; (see next section).

Let us consider now the Majorana mass term in the case of two flavor fields (say,
v, and vz ). The mass term is given in this case by the following expression

1
M = -3 v MM ()€ + hec. 4.77)

Here
v = ("“L> (4.78)

VrL
and
MM = (’"W m,”) (4.79)
My Meg. )’

where m,, my¢, m; are real parameters (C P invariance is assumed).

It is obvious that if we change m,,, — mp, m¢; — mg, my; — mp we can
use the corresponding relations obtained for the Dirac and Majorana mass term. For
the masses of the Majorana neutrinos v; and v, we have

1 1 5 5
mip = E(m”—l—m,m)qzz\/(mn—m,m) +4mw . (4.80)

The flavor fields v, and vy, are given by the relations
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VL = cosf.y/nivip +sinf/n vy
Ve = —sinf./ny vy +cosf/nyvar, (4.81)

where for the mixing angle 6 we have

2
tan26 = L, cos26 =

Mre = Mup \/(mrr _mMM)2+4m121r

Mg — Mpup

(4.82)

4.6 Seesaw Mechanism of Neutrino Mass Generation

The seesaw mechanism, proposed at the end of the seventies, is based on the Dirac
and Majorana mass term. It is apparently the most natural and viable mechanism of
neutrino mass generation.

In order to expose the main idea of the mechanism let us consider the simplest
case of one family. The Dirac and Majorana mass term is given in this case in the
previous section (see expression (4.59)). The three parameters my, mp and mg
characterize, correspondingly, left-handed Majorana, Dirac and right-handed Majo-
rana mass terms. Particles with definite masses are Majorana particles. Their masses
are given by the expressions (4.70) and the mixing angle is given by (4.68). We will
now formulate the main assumptions of the seesaw mechanism.

1. We assume that there is no left-handed Majorana mass term, i.e. that
mjp = 0

2. We assume that the Dirac mass term is generated by the Standard Higgs mecha-
nism, i.e. that m p is of the order of a mass of quark or lepton.

3. The right-handed Majorana mass term breaks conservation of the lepton number.
We assume that the lepton number is violated at a scale which is much larger than
the electroweak scale,” i.e. that

mgp = Mg > mp. (4.83)

From (4.70) and (4.83) follows that the masses of the Majorana particles are given
by the expressions

2

m
m~—L <mp, my>~Mg>mp. (4.84)
Mg

4 Majorana mass term is allowed only for particles with equal to zero electric charges such as
neutrinos. For charged particles such as quarks and leptons the Majorana mass term is forbidden
by the conservation of the electric charge. We also notice that because vg is SU(2) singlet with
equal to zero hypercharge, there are no constraints on m g. It can be arbitrarily large.
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For the mixing angle from (4.68) and (4.83) we find

mp
0~ — «1. 4.85
Mx < (4.85)
We also have n; = —1 and 1, = 1. From (4.76) and (4.85) we obtain the following
mixing relations

. mp
vp =1vi +— WL
Mg

m
(vR)¢ = —i M—’; viL + var. (4.86)

In the framework of the seesaw mechanism, smallness of neutrino masses with
respect to masses of quarks and leptons is connected with violation of the total
lepton number at a large scale given by Mg. The suppression factor (§2) is char-
acterized by the ratio of the electroweak scale and the scale of the violation of the
Iepton number. Notice that if we put mp ~ m; >~ 170 GeV and m; ~ 5 - 1072
(the mass2 of the heaviest neutrino in the case of neutrino mass hierarchies) we find
Mg = 72 ~10'% GeV.
In the case of three families the seesaw mass matrix has the form

M=< 0 mD), (4.87)

T
mp Mg

where mp and Mg are 3x3 matrices and Mr = MI€. We will assume that M >
mp. Let us introduce the matrix m by the relation

UrMU =m, (4.88)

where U is a unitary matrix.
By analogy with the one family case we will choose the matrix U in the form

Tyi (g—1\i
U= ( 1, D)t (M) ) (4.89)
—Mp my, 1
It is easy to check that in the linear over ’A';—Z approximation UTU = 1. From (4.88)
and (4.89) follows that up to the terms linear in rA'fI—Z the matrix m takes a block-
diagonal form
-1_T
o (—mpMg mp O 4
m >~ ( 0 Mg (4.90)

Thus, the Majorana neutrino mass matrix is given by



4.6 Seesaw Mechanism of Neutrino Mass Generation 75

m, = —mp Mgl mg. 4.91)

The mass matrix of the heavy Majorana particles is Mg.

Values of neutrino masses and neutrino mixing angles are determined by the
concrete form of matrices mp and Mg. The structure of the relation (4.91) with
large Mg in denominator ensure the smallness of neutrino masses with respect to
masses of leptons and quarks.

Thus, if the seesaw mechanism is realized in nature then:

e Neutrinos are Majorana particles.
e Neutrino masses are much smaller than lepton and quark masses.
e Heavy Majorana particles, the seesaw partners of neutrinos, must exist.>

We have discussed the standard seesaw mechanism of the generation of small
neutrino masses. Other approach which allows to explain the smallness of neutrino
masses is based on the assumption that the total Lagrangian of the theory is the sum
of the SM Lagrangian with massless neutrinos and non renormalizable effective
Lagrangian

1
Lo = =22 31 WL 02$) CH @ oa ) +hee. (4.92)
'l
Here
JF
=) e=emn. o=(%) (4.93)

are lepton and Higgs doublets and o7 is the Pauli matrix. The Lagrangian Lesr
preserve the SU(2) x U(1) symmetry but violate the conservation of the lepton
number L.

The field operator in Eq. (4.92) is a dimension-five operator. Because a
Lagrangian is the dimension-four operator, the coefficient in (4.92) has a dimension
of a mass. We will assume that y;; are dimensionless coefficients. Thus, M has
a dimension of a mass. The parameter M characterizes a large scale at which the
Standard Model is violated.

After the spontaneous violation of the electroweak symmetry we have

0
o(x) =\ v+H®E (4.94)
ﬁ 9

5 CP-violating decays of heavy Majorana particles in the early Universe is widely considered as a
possible source of the barion asymmetry of the Universe. We will consider baryogenesis through
leptogenesis in Chap. 11.
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where v ~~ 246 GeV is the electroweak vacuum expectation value and H (x) is the
Higgs field.
From (4.92) and (4.94) we obtain the left-handed Majorana mass term

1
M= 3 > v M) v+ hee. (4.95)
'l

where the Majorana matrix MM is given by the seesaw expression

2
v
Mlj,"l’ =" (4.96)

Let us notice that the effective Lagrangian Legr can be induced by three different
beyond the SM interactions:

1. An interaction of lepton-Higgs pairs with a heavy Majorana singlet fermion Ng
(My > v). The Lagrangian L is induced in this case by the diagrams with
exchange of a virtual Ny between lepton-Higgs pairs.

2. An interaction of lepton pairs and Higgs pair with triplet heavy scalar boson
A% The effective Lagrangian Lo is induced in this case by the diagrams with
exchange of a virtual A between lepton and Higgs pairs.

3. An interaction of lepton-Higgs pairs with heavy Majorana triplet fermion X'g.
The diagrams with exchange of a virtual X'r between the lepton-Higgs pairs
induce in this case the effective Lagrangian L.

The standard seesaw mechanism is due to the lepton-Higgs-Ng interaction. It is
called type I seesaw mechanism. Models with interactions 2 and 3 are called type 11
and type III seesaw models, respectively.

4.7 Summary and Outlook

We have considered all possible neutrino mass terms in the case of three flavor
neutrino fields v,r,, v, 1, v and three sterile fields veg, Vg, VeR.

Neutrinos with definite masses can be Majorana or Dirac particles. Neutrinos
are the Majorana particles if the mass term is not invariant under the global gauge
transformations and, therefore, there are no conserved lepton numbers. Neutrinos
are the Dirac particles if the total lepton number L = L, + L, + L is conserved.

If neutrino mass matrix is non-diagonal the fields of the flavor neutrinos v,
are mixtures of the left-handed components of the fields of neutrinos with definite
masses. In the case of the Dirac or Majorana mass term we have

6 Notice that because the projection of the isotopic spin of the neutrino field is equal to 1/2 a singlet
scalar boson cannot be produced in neutrino—neutrino interaction.
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3
VL = Z UiiviL (4.97)

i=1

where U is an unitary 3x3 mixing matrix. In the case of Dirac and Majorana mass
term we have

6 6
v =Y Uivie, r)= Y Upvi, (4.98)

i=1 i=1

where U is an unitary 6x6 mixing matrix.

The minimal number of the massive neutrinos is equal to the number of the flavor
neutrinos (three). If more than three neutrino masses are small, sterile neutrinos must
exist. As we will see later, in this case left-handed flavor neutrinos v,, v, and vy will
transfer into the sterile neutrinos which cannot be produced in weak processes and
cannot be detected via the standard weak interaction. For the mixing in the most
general case we have

341, 3+ng

v = Z Uivie, vsL = Z Usi viL. (4.99)
i=1 i=1

Here U is (3 + n5) x (3 + ny) unitary mixing matrix, / = e, i, 7, the index s takes
the values s1, 52, .. . Sy, , 1y being the number of the sterile neutrinos.



Chapter S
Neutrino Mixing Matrix

5.1 Introduction

In the previous section we have considered possible neutrino mass terms. We have
shown that if in the total Lagrangian there is a neutrino mass term neutrinos are
massive particles and the flavor neutrino fields v,y (x), v, (x), ve£ (x), which enter
into the interaction Lagrangian of the Standard Model, are mixtures of left-handed
components of the fields of neutrinos with definite masses v;z (x):

viL(x) =Y Uy vir(x). (5.1)

Here U is unitary mixing matrix and v;(x) is the field of the neutrino (Dirac or
Majorana) with mass m;.

The mechanism of the generation of the neutrino mass term at present is
unknown. We also do not know if neutrinos with definite masses are Dirac or
Majorana particles. However, as we will see later, it was established by all existing
experimental data that neutrino mixing takes place. The unitary mixing matrix U is
the object of central interest of theory and experiment. Here we will consider the
general properties of the matrix U in the Dirac and Majorana cases. We will also
introduce the standard parametrization of the 3 x3 mixing matrix.

5.2 The Number of Angles and Phases in the Matrix U

Let us consider a unitary mixing matrix U in the general n x n case. The unitary
matrix can be presented in the form U = ¢!/, where H is a hermitian n x n matrix.
Such a matrix is characterized by n(diagonal elements) +2 (#) (non-diagonal
elements) = n” real parameters.

The number of angles which characterizes a unitary n x n matrix coincides with
the number of parameters which characterizes a real orthogonal n x n matrix O
which satisfies the condition

Bilenky, S.: Neutrino Mixing Matrix. Lect. Notes Phys. 817, 79-93 (2010)
DOI 10.1007/978-3-642-14043-3_5 © Springer-Verlag Berlin Heidelberg 2010
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oTo=1. (5.2)

An orthogonal matrix can be presented in the form O = ¢4, where AT = —A.
The diagonal elements of the matrix A are equal to zero. The number of real non
diagonal elements is equal to @ Thus, the number of angles which characterize
a unitary matrix U is equal to

nn—1)

5 (5.3)

ng =

Other parameters of the matrix U are phases. The number of phases is equal to

s, n(n—1) nm+1)
ng =n- — = .
2 2

(5.4)

The number of physical phases, which characterize the mixing matrix, is smaller
than ng. This is connected with the fact that the mixing matrix enters into the
charged current together with fields of charged leptons and neutrinos.

We will consider first the case of Dirac neutrinos. From the reasons which will be
clear below we denote the field of neutrino with definite masse by v;(x), the charged
lepton field by /’(x) and the mixing matrix by U’.

Taking into account neutrino mixing for the leptonic charged current j(SCT we
have the following expression

ST =2 1) va v () =2 1 () va Up vipg (). (5.5)
I 1,i

The unitary matrix U’ can be written in the form

U =S"(B) U S(a). (5.6)
Here S;/(B) = €'P 8y, Six(at) = € 8 and

U=SB) U S (). (5.7)
The unitary phase matrix S(«) can be presented in the form

ei(al_an)
S(a) = ' : (5.8)
1

There are n + (n — 1) = 2n — 1 free parameters (8; — o, «; — o) in the right-hand
side of the relation (5.7). These parameters can be chosen in such a way to make
2n — 1 phases in the matrix U equal to zero. Thus, the number of phases in the
matrix U is equal to
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p nn+1) n—1Dn-=-2)
Ny 5 (2n—1) ) (5.9
Let us introduce the fields
vi(x) = e vl(x), I(x) =P I(x). (5.10)

It is obvious that the free Lagrangian of the neutrino and lepton fields and the
Lagrangians of the electromagnetic and NC interactions are invariant under the
transformation (5.10). The leptonic charged current takes the form

JSCT ) =2 1L (x) va Ui vir (x). (5.11)
Li

The phases of the fermion fields are arbitrary, unmeasurable quantities. Thus, the
fields vlf (x) (I’(x)) and v; (x) (I(x)) are physically equivalent. The number of phys-
ical phases characterizing the mixing matrix in the case of the Dirac neutrinos is
given by n ¢D , which is the number of phases that cannot be removed from the mixing
matrix by the transformation (5.7) with arbitrary f; — o, and o; — vy,

From (5.3) and (5.9) follows that in the simplest case of the mixing of two Dirac
neutrinos the 2x2 mixing matrix is real. It is characterized by one mixing angle. In
the case of the mixing of three Dirac neutrinos the 3 x3 mixing matrix is character-
ized by three mixing angles and one phase.

Let us consider now the case of the Majorana neutrinos. We will denote the field
of the Majorana neutrino with definite mass by v; (x), the lepton field by ’(x) and
the mixing matrix by U’. The lepton charged current has the form

ST =2 1 () ve Ufy win (), (5.12)
i

where v; (x) satisfy the Majorana condition
i (x) = v (x) (5.13)

and the matrix U’ is given by the relation (5.6). Now, n phases which enter into the
matrix e "% S(fB), can be included into the fermion Dirac fields [’ (x). The Majorana
condition (5.13), however, fixes phases of the neutrino fields. For the charged current
we have in the Majorana case the following expression

JC0) =2 1L (x) v U vip(x). (5.14)
i

Here

UM =uU sM(@a), (5.15)
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where
SM(@) = e S(). (5.16)

All non-diagonal elements of the matrix S (&) are equal to zero. For the diagonal
elements we have

SM@)=e%, i#n, SM@ =1, @ =a; —ay,. (5.17)

The phase matrix S™ (&) is characterized by n — 1 phases. The total number of
phases which characterize the Majorana mixing matrix Uy, is equal to

u @—=1DHn-=2) nn—1)
— - = )= —~. 5.18
nl > +n—1) 5 (5.18)
We conclude from (5.3) and (5.18) that in the case of mixing of two Majorana
neutrinos, the 2x2 mixing matrix is characterized by one mixing angle and one
phase. In the case of mixing of three Majorana neutrinos the 3 x3 mixing matrix is
characterized by three mixing angles and three phases.

5.3 CP Conservation in the Lepton Sector

In this section we will obtain constraints on the unitary mixing matrix which follow
from the assumption of the CP conservation in the lepton sector. Let us consider
first the case of Dirac neutrinos with definite masses. From the assumption of the
CP invariance follows that the CC Lagrangian satisfies the following condition

Vep L5C0) Vi = L5, (5.19)
Here Vp is the operator of the CP conjugation and x’ = (x°, —x) and

£5600) = =5 S T 00 yo Ui vin 0 W = 23" 5100 v U 1) W2

V243 V243
(5.20)

Let us consider a lepton field /(x). Under the CP transformation the field //(x) is
transformed as follows

Vep I'(x) Vg = e 2P0 c TT (). (5.21)

Here B, is an phase and C is the matrix of the charge conjugation, which satisfies
the conditions

cylc'=—y,, cl=—c. (5.22)
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Taking into account that phases of fermion fields are arbitrary, we can include the
phase factor e’# into the field //(x). We have

Vep 1(x) Vp =0 C TN (1), (5.23)

where [(x) = ¢! I'(x). Thus, by a redefinition of arbitrary phases of the lepton
fields we can put the CP phase factors of the fields equal to one. The CP phase
factors of the Dirac neutrino fields can also be put equal to one:

Vep vi(x) Vap =0 C 5] (). (5.24)

Let us consider the left-handed components of the fields. If we multiply (5.23) by
]777’5 from the left and take into account (5.22) we find

_ 1+yd
Vep IL(x) Vg =y° C TS 7'y =y° C I (). (5.25)
Analogously, for the neutrino field we have
-1 _ 0 =T ./
Vep vit(x) Vep =y C v (x). (5.26)
From (5.25) and (5.26) we easily find

VeplL(x) Vep = =15 () €70, Vep Bin(x) Vip = —vi (x)) €71y
(5.27)

We will consider now the interaction Lagrangian (5.20). Using relations (5.22),
(5.25), (5.26) and (5.27), we have

Ver IL(x) vo Ui vin(0) Vg = =11 () €'y 0 o Ui y° € 9] ()
= —8 ViL (x") vo Uy IL(x"). (5.28)
Here § = (1, —1, —1, —1) is the sign factor. Notice that in (5.28) we took into
account the anticommutator properties of the fermion fields.

Under the CP transformation the field of the vector W= bosons is transformed as
follows

Vep Wo(x) Vap = —e 2PV 5, Wix'), (5.29)
where By is a phase. Taking into account that the phase of the non-hermitian W, (x)

field is arbitrary, we can include the phase factor ¢/#" into the W field. In this case
we have

Vep Wo(x) Vip = —84 W(x)). (5.30)

With the help of (5.28) and (5.30) we find
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Vep L5600 Ve = =523 00 () v Un 1L () W)

\/_ l,i
v Zlm ) Yo Ujp i () W), (5.31)

From (5.19), (5.20) and (5.31) we conclude that in the case of CP invariance the
mixing matrix U for the Dirac neutrinos is real:

Ui =Uj;. (5.32)
More exactly this result can be formulated as follows: if arbitrary CP phase factors
of the lepton, Dirac neutrino and W fields are chosen to be equal to one, then from
CP invariance follows that the neutrino mixing matrix is real.

Let us comment the condition (5.32). The second term of the CC Lagrangian
(5.20) is responsible for the transition

[T —=v+W. (5.33)

The amplitude of this transition is given by U:. The first term of the Lagrangian
(5.20) is responsible for the CP-conjugated transition

It =5+ Wt (5.39)
The amplitude of this transition is given by Uj;. In the case of CP invariance the
amplitudes of the transitions (5.33) and (5.34) are equal.

We will consider now the Majorana mixing matrix. The CP transformation of the
Majorana field has the form

Vep vi(0) Vep =1 v® €] &) = nf y* mi (&), (5.35)

where we take into account the Majorana condition
vi(x) = C vl (x) = vi (x). (5.36)
In the case of Majorana fields the CP phase factors are not arbitrary as in the case
of the Dirac fields. We will show now that the Majorana CP phase factors can take

the values =i. In fact, from (5.35) by hermitian conjugation and multiplication from
the right by the matrix y° we find

Vep 1 (x) Ve = i vi(x)) y°. (5.37)
From this relation we have

Vep C o] (x) Vg =m €T ¢ o] (v). (5.38)
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Finally from (5.36) and (5.22) we obtain the following relation
Vep vi(@) Vep = —mi y? vi(x). (5.39)

If we now compare (5.35) and (5.39) we conclude that

n=—n. (5.40)
Thus, we have
n?=—1, and n; ==+i. (5.41)
From (5.35) we have
Vep ai(pi) Vi = nf ai(p)). (5.42)

Here a; (p;) (a;( plf)) is the operator of the absorption of the Majorana neutrino with

mass m; and momentum p; = (,/p? +m12, p (P = ((p? +ml.2, —p)). From

(5.42) we find for the creation operators
Ver @l (pi) Ve =i @ (p)). (5.43)

The vector |p;) = a;f (pi) 10) describes the state of the Majorana neutrino with
momentum p; (]0) is the vacuum state). From (5.43) we have

Vep Ipi) = ni |p;) (5.44)
Thus, 7; is the CP parity of the Majorana neutrino with mass m; .
We will find now conditions on the Majorana mixing matrix which can be
obtained from the assumption of CP invariance in the lepton sector. It will be con-
venient to choose arbitrary CP phase factors of the lepton fields equal to —i:

Vep l(x) Vop = —i y? CIT(x)), (5.45)

From (5.27), (5.35), (5.22) and (5.45) we have

- - . 1 —ys
Ver 1L () yo Ui vin() Vep = =0 1L () Cy0 yo U —= i)
= —8u o i () va U 11X, (5.46)
where the parameter p; is determined as follows

ni=1ipi, pi==xl (5.47)

Let us notice that in (5.46) we take into account that
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- _ T —1
vi(x) =—v; (x) C™". (5.48)

Now, taking into account (5.30), we find
Ver £5C) V) = —% Z pi i () vo UM 1Ly W)
-7 Zpl IL() o U™ vin(2) WP (). (5.49)

From (5.19), (5.20) and (5.49) we finally find the following condition of the CP
invariance in the case of the mixing of the Majorana neutrinos

o UM = U, (5.50)

Let us stress that we have chosen the arbitrary CP phase factors of the lepton fields
equal to —i and the W field equal to one.

5.4 Standard Parametrization of 3 x3 Mixing Matrix

We will consider here the unitary 3 x3 mixing matrix for Dirac neutrinos and intro-
duce the standard parameters (three mixing angles and one phase) which character-
izes it. Let us consider three orthogonal and normalized vectors

iy (=123 (ilk)= 8. (5.51)

In order to obtain three general “mixed” vectors we will perform three Euler rota-
tions. The first rotation will be performed at the angle 61, around the vector |3). The
new orthogonal and normalized vectors are

DD = cp 1) +s12 12)
12D = —sp2 [1) +c12 12)
13y = 13), (5.52)

where ¢1» = cos 81 and s1» = sin#;3. In the matrix form, (5.52) can be written as
follows

Wy =y ). (5.53)
Here
11y 1)

WO =20 ], =112 (5.54)
13y 13)
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and
ci2 5120
v = —s12¢c120 1. (5.55)
0 01

Let us perform now the second rotation at the angle 613 around the vector 2y, At
this step we will introduce the CP phase §, connected with the rotation of the vector
of the third family |3). We will obtain the following three orthogonal vectors:

NP = cp3 [1)D + 51377 3)D
|2>(2) — 12)(M
13)® = —s13¢" D 4 ¢1313)D. (5.56)

In the matrix form we have

@ =U® o, (5.57)
Here
c13 Os13e”"S
U® = 0 1 0 ) (5.58)

—513¢° 0 ci3

Finally, let us perform the rotation around the vector |1)(® at the angle 6,3. The new
orthogonal vectors are

12)M = 03] 2)@ 4 503 [3)@
13)™ = =523 12 + €23 13)). (5-59)
‘We have
|vmix> —y® |\1)(2)- (5.60)
Here
1 0 O
o 5.61
= 23 523 |- (5.61)
0 —s23 €23

From (5.53), (5.57) and (5.60) we find

Xy = U |v), (5.62)
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where
U=U0®u®yb, (5.63)

From (5.55), (5.58) and (5.61) we have

1 0 0 ci3 0 Slge_is cr2 s12 0
U=10 c3 s23 0 1 0 —s1pc12 0 ). (5.64)
0 —S823 €23 —513618 0 C13 0 01

From (5.64) we find that the unitary 3x3 Dirac mixing matrix has the following
form
cicn ' cizsia sz
U= —casi2 —soaciasize’® exsern — soasinsize  cizsoz | (5.65)
523512 — e3cips1ze’’ —sazcin — exzsipsize’® cizens

This is the so called standard parametrization of the 3 x 3 mixing matrix. This matrix
is characterized by three mixing angles 612, 63 and 03 and the phase §.

As we have seen in the previous section, in the case of CP conservation in the
lepton sector U* = U. Thus, the phase § is responsible for effects of the CP viola-
tion: if CP is conserved, § = 0. The mixing angles are parameters which can take
values in the ranges 0 < 01p < 7w, 0 <6013 <7m,0 <63 < 7! and the phase § can
take values in the range 0 < § < 2.

The 3 x3 Majorana mixing matrix has the form (see previous section)

UM =UsM@a) (5.66)

where the phase matrix S™ (@) is characterized by two Majorana phases and has the
form

eiél
sM@) = | e |. (5.67)
1

and the matrix U is given by (5.65).
In the case of CP invariance the mixing matrix satisfies the condition (5.50). Let
us consider the elements U e’t” of the mixing matrix. From (5.50) and (5.65) we find

! Under the change 0 — 7 + 6, the 2x2 mixing matrix

cosf® siné
—sinf cosf
changes sign. Only squares of the mixing matrix enter into observable quantities. Thus, angles 0

and 7 4 0 cannot be distinguished. From (5.64) it is obvious that this argument is applicable to the
general 3 x3 matrix.
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that in the case of CP invariance

= (i=1,2), e 2 = p;. (5.68)

5.5 On Models of Neutrino Masses and Mixing

The discovery of neutrino oscillations and the measurement of the neutrino oscil-
lation parameters Am%z, Am%3, sin? 6}, sin? 6»3 as well as the determination of
the upper bound of the parameter sin’ ;3 inspired a lot of models of neutrino
masses and mixing. We will discuss existing neutrino oscillation data later. From
their global analysis follows that the neutrino mixing angles are in the following 1o
ranges

0.29 < sin?6;5 < 0.33, 0.41 <sin’6r; <0.54, sin’O;3 < 0.05.  (5.69)

Thus the following values of the mixing parameters
sin“ 61, = 3 sin” 63 = > sin“ 613 = 0. (5.70)

are in agreement with experimental data. If we choose these values of the parameters
we find from the general expression (5.65) that the neutrino mixing matrix has the
form

L 1. (5.71)

Notice that the elements of the second column of the matrix (5.71) are equal. We
have

1
v = E(VeL + VL + vep). (5.72)

The matrix (5.71) is called tri-bimaximal matrix.
Let us consider the equation for the eigenstates and eigenvalues of a real sym-
metrical matrix M:

M uj =m; u;. (5.73)

Here u; are normalized eigenstates and m; are eigenvalues of the matrix M. We
have
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> i (1) ugl) = i (5.74)
1

From (5.73) and (5.74) we find

My =Y iy mi ui(') = Upy mi Uy = W m U )y, (575)

1

where the mixing matrix U is given by the relation
Ui = u;i(l). (5.76)

In the case of the tri-bimaximal matrix (5.71) we have

1 (2 (1 1 (0
G\ 7 N
From (5.75), (5.71) and (5.76) we find
o422\ (111 (00 0
Megy="20 21 1 | +22 111 ]+ 73 01 -1 (5.78)
6\ 21 1 3 \111 0—1 1

From (5.78) follows that the mass matrix in the tri-bimaximal case has the form

X oy y
Mmpy=|xx+vy—v|, (5.79)
yy—vx+v
where
—2 +1 = ! +1 = ! +1 (5.80)
x_3m1 3m2, y = Sml 3m2, v = 2m1 2m3. .

Many models of neutrino masses and mixing, which lead to the tri-bimaximal mix-
ing, were proposed. They are based on different symmetries. We briefly discuss here
a model based on the discrete alternating A4 group.

The group A4 is the group of even permutations of four objects. All elements of
the group are products of two generators S and 7" which satisfy the relations

§2=T3=(ST)’ = 1. (5.81)
The number of elements in the A4 group is equal to % = 12. Taking into account

(5.81) we can easily see that all possible products of S and T (elements of the A4
group) are given by
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1,T,S,ST, TS, T> T?>S, TST, ST?, STS, T>ST, TST>. (5.82)
The group A4 has four irreducible representations: one triplet and three singlets
3,1, 1,17 (5.83)
For one-dimensional unitary representations we can choose § = 1, T = ¢!%. From
the relations (5.81) follows that 3« = 2mn, where n is an integer number. Thus, we
have
1:5=1T=1; I":S=1T=0*: 1":5=1T=o, (5.84)
where w = 37 It is obvious that
=1, l+o+o’ =0. (5.85)

In the basis in which the matrix 7 is diagonal, the 3x 3 unitary matrix 7 is given by

€40 0
T=| 0 2 0 |, (5.86)
0 0 ¢
where «; is a real phase. From (5.81) follows that «; = %”n,-. We can choose the

three-dimensional unitary representation of the generator 7" in the form

100
T=|0w?0]. (5.87)
00 w
The real unitary matrix S satisfies the condition ST S = 1. Taking into account

that S> = 1 we have ST = S. We can check that the three-dimensional unitary
symmetrical matrix

(-1 22
s=x(2-12 . (5.88)
2 2 -1

satisfies the relations (5.81).
We will assume that the lepton doublets

L = (‘ZZLL> l=e, 1, T (5.89)

are A4 triplets. Further, we will assume the existence of the scalar triplets ¢, ¢s and
scalar singlet & (flavon fields) which enter into the A4 invariant Yukawa interaction
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with lepton doublets. After spontaneous symmetry breaking, the charged-lepton and

neutrino mass terms are generated.
With the vacuum alignment

< ¢r >= (v7,0,0) (5.90)

we come to the diagonal charged lepton mass matrix and symmetrical neutrino mass
matrix

Xy Z
M=y x1 y—v (5.91)
Zy—v Xx2

We assume that the matrix M is real. In this case it is characterized by six real
parameters.
With the alignment

< ¢ps >= (vs,vs,Vs5), <E&E>=u (5.92)

the A4 symmetry is broken down to the G g symmetry generated by the operator S.
The mass matrix M satisfies the relation

SMS =M, (5.93)

where S is given by (5.88). From (5.93) we find that the mass matrix M is given by

X y Z
M=|yx+v+y—z w . (5.94)
4 w x+v

This matrix is characterized by four real parameters. It is obvious that it does not
have the tri-bimaximal form (5.79).

We will come to the tri-bimaximal mixing if we assume p — v symmetry of the
neutrino mixing matrix?

SueMSur =M, (5.95)
where
100
Sue=1(1001]). (5.96)
010

2 1t is obvious that from this relation follows: Vie = Ve = Vee = Ver, Vip = Viro
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In fact, from (5.95) and (5.96) we find that
z=Y. (5.97)

With the relation (5.97) we come to the tri-bimaximal neutrino mixing matrix(5.79).
In order to implement u — T symmetry we need to assume that there are no 1’ and
1” scalar flavon fields in the Yukawa interaction.

Thus, spontaneously broken A4 symmetry with alignments (5.90) and (5.92)
allows to obtain the tri-bimaximal mixing. This mixing is in good agreement with
experimental data and can be considered as the leading approximation. Existing
experimental data do not exclude, however, some corrections to the tri-bimaximal
values (5.70) (see (5.69)). In the model, we are discussing, corrections from higher-
dimensional operators to all mixing angles are of the same order. Taking into
account that the corrections to the angle 61, can be of the order of 5% we can predict
that the departure of the angle 6,3 from 7 can also be of the same order and that
the value of the angle 63 can be close to the present CHOOZ bound (~ 5 - 1072).
These predictions will be checked in T2K, DOUBLE CHOOQOZ, Daya Bay, RENO
and other experiments.

We have briefly discussed a model based on the spontaneously broken A4 group.
The observed pattern of neutrino mixing and masses can be accommodated in
different A4 models (with different alignments, in extra dimensions, with five-
dimensional effective operators, etc.) and models based on many other groups. It is
not excluded, however, that the tri-bimaximal mixing is accidental. An established
theory of neutrino (and quark) masses and mixing does not exist at present. The
creation of such a theory requires further experimental and theoretical efforts.



Chapter 6
Neutrino Oscillations in Vacuum

6.1 Introduction

The observation of neutrino oscillations in the atmospheric Super Kamiokande,
solar SNO, reactor KamLLAND, solar Homestake, GALLEX-GNO, SAGE and
accelerator K2K and MINOS neutrino experiments was one of the most impor-
tant recent discoveries in elementary particle physics. We will discuss experimental
results later. In this section we will consider in some detail the theory of neutrino
oscillations in vacuum. Neutrinos and antineutrinos are emitted in weak decays of
pions and kaons, which are produced at accelerators and in the processes of inter-
action of cosmic ray protons in the atmosphere, in decays of muons, products of
decays of pions and kaons, in 8-decays of nuclei, products of the fission of uranium
and plutonium in reactors, in nuclear reactions in the sun, etc. The first question
which we will address here will be the following: what are the states of neutrinos,
produced in weak interaction processes, in the case of neutrino mixing.

6.2 Flavor Neutrino States
Let us consider a charged current weak decay
a—>b+1T4+vy (=e u 1) (6.1)

(a and b are some hadrons). The leptonic part of the standard Lagrangian of the CC
interaction has the form

8 .cC o
L€ =—_2_ W¢ + h.c., 6.2)
! 227
where the leptonic CC is given by the expression
i€=2 3" Uvale 6.3)
l=e,u,T

Bilenky, S.: Neutrino Oscillations in Vacuum. Lect. Notes Phys. 817, 95-120 (2010)
DOI 10.1007/978-3-642-14043-3_6 © Springer-Verlag Berlin Heidelberg 2010
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and vy, is the mixed field

3
vip =Y UiviL. (6.4)
i=1

Here U is a unitary mixing matrix and v; is the field of neutrino (Dirac or Majorana)
with mass m;.

In the case of neutrino mixing the flavor lepton numbers L., L, and L, are not
conserved. The neutrino, which is produced together with the lepton /™ in a CC
weak process is called flavor neutrino v; (I = e, ju, 7).!

The vector of the state of the final particles in the decay (6.1) is given by

3

1F) =Y 1) 1Y) IB) (vi IF bS] a). (6.5)

i=1

Here |v;) is the normalized state of the neutrino v; with momentum p;, |IT) is the
state of /™ with momentum p;, |a) and |b) are the states of the initial and final
hadrons with momenta p, and p; and (v; [T b |S| a) is the element of the S-matrix.

From existing experimental data on the measurement of the high-energy part of
the B-spectrum of 3H follows that m; < 2.2 eV (we will discuss these data in the
Chap. 9.) The neutrino energy E in neutrino experiments = 1 Mev (in the solar
and reactor experiments £ > 1 MeV, in atmospheric and accelerator experiments
E 2 1GeV,etc.)

We will assume that p; = p;k (k is a unit vector) and p; — p = E at m; — O.
We have

~p ol (6.6)
pPi=p—a 2E .
where « ~ O(1) depends on the process in which neutrinos are produced.
Neglecting in the matrix element (v; [t b |S| a) terms of the order of?

2
m:
S<i0h 6.7)

we have

! Let us stress that this is a phenomenological definition of a flavor neutrino ( v, vy, v¢) in the
case of the nonconservation of the flavor lepton numbers.

2 In the end-point part of the S-spectrum of 3H the neutrino energies (a few eV) are comparable
with the neutrino masses. Thus, in this part of the B-spectrum neutrino masses cannot be neglected.
The measurement of the end-point part of the S-spectrum of >H allows to obtain an information
about neutrino masses.
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Wi It b|S|la) ~ U} (vt b|S|a)su. (6.8)

Here (v;IT b |S|a)spy is the matrix element of the process (6.1) calculated in the
SM with massless neutrino v;. We have

G
(T bIS|aysy = —i 7% N 2ii(p) Yo ur(—p 1) (b] J%(0) |a) 2m)* (P’ — P).
6.9)

Here P and P’ are the total initial and final momenta, J* is the hadronic charged
current and N is the product of the standard normalization factors.
From (6.8) we find for the final state (6.5)

1) = ) 115) 1b) (w1 bISla)swm, (6.10)

where the neutrino state |v;) is given by the expression

3
) =Y Uk v (6.11)
i=1

From the unitarity of the mixing matrix follows that the states |v;) are orthogonal
and normalized

3
(wrlvr) = Upi Ujs = 8y (6.12)
i=l1

We come to the following important conclusion. Flavor neutrinos v;, which are
produced in a CC weak decays (together with leptons /1), are described by the
normalized states (6.11), which are coherent superpositions of states of neutrinos
with different masses. If we assume that the interaction of neutrinos is given by
the Lagrangian (6.2), the amplitudes of the production of flavor neutrinos v; (up to

negligible terms of the order of 'Z—z < 1) are given by the Standard Model. Notice
that in this approximation the helicity of the flavor neutrino v; is equal to —1.

Analogously, the normalized state of the flavor antineutrino v;, which is produced
in a CC weak process together with a lepton /™

ad—-b+1"+y (I=e pn1) (6.13)

in the case of Dirac neutrinos is given by the expression

3
o) =Y Ui |9). (6.14)
i=1
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Here |v;) is the state of an antineutrino with momentum p; and positive helicity. In
the case of Majorana neutrinos we have

3
o) =) Ui [vi), (6.15)
i=1

where |v;) is the state of a Majorana neutrino with momentum p; and positive
helicity.

The relations (6.11), (6.14) and (6.15) are basic relations of the theory of neutrino
oscillations. We obtain them assuming that small neutrino masses can be neglected
in matrix elements of weak processes in which flavor neutrinos are produced. This
assumption can only be valid if it is impossible to distinguish the emission of neu-
trinos with different masses in weak processes. We will demonstrate now that this
is really the case.

Let us consider as an example the decay 7+ — u™ + v;. In the pion rest frame
the neutrino momentum p; is given by the relation

2
pi~FE—« 3E (6.16)
2 2
where a = m’;r;"“ ~ 0.8 and
mﬂ
2 2
ms —m
E = % (6.17)
b

For the difference of momenta of neutrinos with different masses we find

2
[Am |

°E (6.18)

|[Apikl = |pk — pil =

where Aml.zk = m,% — m,2
On the other side from the Heisenberg uncertainty relation for the quantum

mechanical uncertainty of neutrino momenta we have

1
(Ap)ow = — (6.19)

where a characterizes the size of the wave packet of the pion.
From analysis of the data of neutrino oscillation experiments, which we will
discuss later, for the largest neutrino mass-squared difference the value

Am3y ~2.4.1073 eV? (6.20)

was obtained. From (6.20) we find (for E >~ 1GeV)
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2F
Am%3

~ 1.7 - 10% km. (6.21)

This value is many orders of magnitude larger than the microscopic length of the
wave packet: From (6.18), (6.19) and (6.21) we conclude that

Aprz L (Ap)oM- (6.22)

Thus, due to the Heisenberg uncertainty principle it is impossible to distinguish the
emission of neutrinos with different masses in the pion decay.

6.3 Oscillations of Flavor Neutrinos

Neutrino oscillations are periodic transitions between different flavor neutrinos in
neutrino beams. We will consider a beam of neutrinos which was produced in CC
weak decays (77 — ut +v,, ut —>et+v.+v,, (A, Z) > (A, Z+ 1)+
e~ + Ve, etc.) at an accelerator or at a reactor or at a Neutrino Factory or in decays
of radioactive nuclei (8-beam), etc.

In the quantum field theory the dependence of states on the time is given by the
Schrodinger equation

AW (1))
Jt

= H|¥ (1)), (6.23)

i
where H is the total Hamiltonian. We will consider here the evolution of states in
vacuum. In this case H is the free Hamiltonian. The general solution of Eq. (6.23)
has the form

W () = e 1w (0), (6.24)
where |W (0)) is the state at the initial time (¢t = 0).

We will apply now this general formalism to a neutrino beam. The initial state is
the state of the flavor neutrino v; (I = e, u, t) given by Eq. (6.11). Thus, we have
1Y (0)) = |vr). (6.25)
Taking into account that

H |vi) = E; |v;), (6.26)

where

E; =/p? +m? (6.27)
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from (6.11) and (6.24) we find for the state of the left-handed neutrino at the time
t > 0 the following expression

3
), = e P H )y = Z e TETUE ). (6.28)

i=1

Similarly, for state of the right-handed antineutrino at the time ¢ we have

o) =7 M) =) e E Uy ). (6.29)
i=1

In general the neutrino energies E; (i = 1,2, 3) are different. This means that |v;),
is a nonstationary state. In other words during the time ¢ different mass-components
of the coherent neutrino state acquire different phases.

Neutrinos are detected via the observation of weak CC and NC processes. At the
time ¢ the state of the neutrino is the superposition (6.28) of the states |v;). Let us
consider the production of a lepton I’ in the CC inclusive process

vi+N =1 +X. (6.30)

Neglecting small neutrino masses in the matrix element of the process (6.30) we
find

("X |S|viN) = ("X |S|vy N)sm Ui, (6.31)
where (I’ X | S| vy N )sp is the SM matrix element of the process
wH+N-=>U+X (6.32)

calculated for massless neutrinos v;;. We have

G
= N2 (pr) vaur(p) (X J%(0) IN) @m)* §(P' — P),

("X |S|vy N)sy = —i
V2 (6.33)

where py is the momentum of the lepton, p is the neutrino momentum, P and P’
are the initial and final total momenta.

From (6.28) and (6.31) we obtain the following expression for the amplitude of
the transition v; — vy during the time ¢

3
A = vp) =Y Upe B U} (6.34)
i=1

Analogously, for the amplitude of the transition v; — vy during the time ¢ we find
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3
A — o)=Y Ui e Bl uy. (6.35)
i=1

It is useful to obtain these results in another way. Taking into account that flavor
states |v7) form a complete system, we have

e = e )y = jop) v le ™ H ), (6.36)
l/

where (vy|e~" H#|v;) is the amplitude of the probability to find at the time ¢ the
flavor neutrino vy in the beam of neutrinos which originally at # = 0 was a beam of
v;. From (6.11) we find

3

rle™ Hu) = " Upir (e ™ T ) Uit = > Ui e F1 U = A — wp).
— ~

e ' (6.37)

Let us consider the matrix element of the process
w+N-=>U"+X (6.38)

Neglecting neutrino masses we have

("X S|y Ny=> ("X |S|vi N) U,
i
~ ("X |S|vy NYsu Y Ul Ui =8y (U X [Slvp N)sy (6.39)

1

Thus, we have demonstrated that a flavor neutrino vy interacting with a nucleon
produces lepton I’ (and X). We can conclude that in the approximation m; — 0 the
lepton flavor numbers L., L, and L. are effectively conserved in weak processes.
In this approximation the matrix elements of weak processes are given by the SM.

The amplitude A(v; — vp), given by Eq. (6.34), has a simple meaning: the factor
U}; is the amplitude of the transition from the initial flavor state |v;) into the state of
a neutrino with definite mass |v;); the factor e~ / describes the propagation in the
state with definite mass; the factor Uy; is the amplitude of the transition from the
state |v;) into the state |vy). The coherent sum over all states with definite masses is
performed.

It is obvious that if all E; are the same, due to unitarity of the mixing matrix we
have

A(l)[ — Ul/) = (Sl/l, A(l_)] — 1_)1/) = 81/1. (640)
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Thus, transitions between different flavor neutrinos (antineutrinos) can take place
only in the case if at least one phase difference is not equal to zero.
The probabilities of the transitions v; — vy and v; — vy are equal, respectively,

3 2
P(v — vp) =Y Upie ' ' U}, (6.41)
i=1
and
3 ) 2
P(i, — y) = Z Ui e Bty (6.42)

i=1

From (6.41) and (6.42) the following general relations between transition proba-
bilities can easily be obtained:

1.
Y Py =1. Y P — i) =1,
I 14

ZP(W — ) =1, Zp(a, — o) = 1. (6.43)
1 I

These relations are a consequence of the unitarity of the mixing matrix. In fact,
we have

—i (E;—Ep)t
ZP(UI — ) = Z Ul’iU;;k e (Ei—ED) U;;Ulk =
4 Uik

D e M ETEI Uy = U U = 1. (6.44)
ik i
2.
P(vi = vp) = P(yy — vp). (6.45)
This relation is a consequence of the C PT invariance of the theory and can easily
be obtained by direct comparison of (6.41) and (6.42).
From (6.45) follows that the probabilities of the transitions v; — v; and v; — V;
are equal
P(vi — v)) =Py — v)), (6.46)
3.

Pvi = vpy) =P — vp) (6.47)
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This relation is valid in the case of CP invariance in the lepton sector. In fact, we
have in this case (see Sect. 5.3)

Uji = U}; (Dirac neutrinos), p; U = Uj; (Majorana neutrinos),  (6.48)

where p; = £1. From (6.41), (6.42) and (6.48) we easily obtain relation (6.47).
The probabilities of the transitions v; — v; and v; — v; are equal due to CPT
invariance. Thus, in order to check whether CP is conserved in the lepton sector
we need to test the relations (6.47) at I’ # [. Let us also notice that in the case of
CP invariance, from (6.45) and (6.47) follows that

P(vi = vy) =P(vpy — v)), PO — vy) =Plyy — vp). (6.49)

These relations are a consequence on the invariance under time reversal (7)
which obviously holds if both CP invariance and CPT invariance take place.

We have considered the case of three flavor neutrinos (ve, vy, v¢) and three flavor
antineutrinos (v, vy, V). Let us discuss now the most general case of active and
sterile neutrinos. For neutrino mixing we have in this case

34ny 3+ny

VL = Z Ujvip I=e,,7), v = Z Usivip (s = $1,82,...5,). (6.50)
i=1 i=1

Here v; is the field of neutrinos (Dirac or Majorana) with mass m;. If all neutrino
masses are much smaller than the neutrino energy, the neutrino masses can be
neglected in the matrix elements of the processes in which neutrinos are produced
and for the states of flavor left-handed neutrinos we will have

3+le

vy =Y Ui |vi), 6.51)
i=1

where |v;) is the state of neutrinos with mass m; and momentum p;. Sterile fields
vy do not enter into the SM Lagrangian of the weak interaction. We determine
states of sterile left-handed neutrino vy as follows

34-n,
ve) = Y U [vi). (6.52)
i=1

From the unitarity of the (3 + n5) x (3 + ny) mixing matrix U we find that

(vs|vr) = 0. (6.53)
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The total system of active and sterile left-handed states

3+ng
[Ve) = Z vy, a=e, 1, T,51,52,...8, (6.54)
i=1
satisfies the conditions
3+Vlv
(Vo V) = Z Uwi U ; = S/ (6.55)

i=1

If the initial neutrino state at + = 0 is |vy ), for the neutrino state at the time ¢t > 0
we have

va)r = e | Z Var) (vl €7 HE ). (6.56)
Here
. 3+ny )
(varl €7 Jug) = Awy = Vo) = Y Ugie BT UL, (6.57)

i=1

is the amplitude of the transition v, — v, during the time ¢.
Analogously, for the amplitude of the transition v, — v, we have

34ny
Ay = Vy) = (| e |D,) = Z Uk e Bt Uy,. (6.58)
i=1
From (6.57) and (6.58) we find the following expressions for the probabilities of
the transitions v, — v, and Vg — Vg

3+ng

Y Ugie B U,

i=1

3+4ng
> Ukie B Uy

i=1
(6.59)
It is easy to check that the transition probabilities are correctly normalized. In fact,
taking into account the unitarity of the (3 4+ ny) x (3 + ny) mixing matrix U, we find

2

P(vy — vy) = i Py — ‘_)a’) =

ZP(UC,HVO,,)— D Ui Ul eV EEONUZ Uy = Uil = 1 (6.60)

o'ik i

Sterile neutrinos cannot be detected in the standard weak processes. One of the
possibilities to obtain an information about transitions into sterile states can be based
on the unitarity relation (6.60). In fact, from (6.60) we have
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Y P v)=1- > Py (6.61)

l'=e,u,t S=81,52,.+-Sng

The left-handed part of this relation is the total probability of the transition of
a flavor neutrino v; into all possible flavor active neutrinos (v, vy, vz). This
probability can be measured if neutrinos are detected at some distance from the
source by the observation of a NC process. If it would occur that the probability
> V= u.r P = vp) is less than one it would be a proof of the transition of an
active neutrino into sterile states.

Let us return back to the expression (6.59) for the neutrino transition probabil-
ity. Taking into account that a common phase cannot be observed, the transition
probability can be presented in the form

3+ng 2
> Ui BB Uy, 6.62)

i=1

P(vgy = vy) =

(j 1s fixed). Thus, the transition probability depends on the elements of the neutrino
mixing matrix and 2 4 ng phase differences.

In quantum field theory states of particles are characterized by their momenta,
helicities, masses, barion numbers, etc. We will assume that a mixed neutrino state
is characterized by momentum p, masses m; (and also elements of the mixing matrix
Uy; and helicity equal to —1). In other words we will assume that

pi =P. (6.63)

2
Taking into account that r’% « 1, we have

m? Am3;
Ei2p+5, and E; —E; ~ E (6.64)

where E =~ p is the neutrino energy and

Am3; = m} —m?. (6.65)

In (6.62) ¢ is the difference of neutrino production time and detection time. For the
ultrarelativistic neutrino

t~ L, (6.66)

where L is the distance between neutrino production and detection points. Thus, in
the expression (6.62) for the transition probability the oscillation phase is equal to

2

Amﬂ.
(E; — Ej) >~ 2E L. (6.67)
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Taking into account unitarity condition

> Ui Uy = bt (6.68)
i

from (6.62) and (6.68) we find the following convenient expression for the neutrino
transition probability

Amz.. 2
P(vy = Vo) = |8 + »_ Uwi (e_’ w L 1) U, (6.69)
i#j
Analogously, antineutrino transition probability is given by the expression
. Am?i 2
P(iy = o) = |Sara + P _ Ul (e’ w L 1) Ugi (6.70)

i#j

The expression (6.62) for the transition probability v, — v, can be also presented
in the form
- Am,
P(vy = Vo) = Y Ui Ul Ui U™ 2 F
ik
2 2 * * —i AL]%i L
=Y |Uyil* |Uail* +2Re Y " Uy Ul Uk Uage™ 22 10 (6.71)

i i>k

Further, from the unitarity relation (6.68) we easily obtain the following relation

D Ui P Uai* = 8wra — 2Re Y Uyri Uy Uzi Uk (6.72)
i

i>k

Combining now (6.71) and (6.72) we have

. Amzl.
P(vy — Vo) = wra — 2Re Y Uy Uy Ul Uak (1 i L). (6.73)

i>k
Finally, taking into account that for any complex a and b

Rea b = Rea Reb — Ima Imb

from (6.73) for the transition probability we obtain the following expression
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Am?.,
P(Vy — Vg) =8y — 2 Z Re (Uy; Uk, Uk Ugk) (1 — cos 2E’“ L>
i>k
. Am?,
+2) " Im (Ui Uy Uy Uag) sin 2E’“ L. (6.74)

i>k

Analogously, for the probability of the transition v, — v, we find

Am?.
P(l = Vo) =8aa =2 ) Re (Uai Ugy Uz Uat) (1 — 2Ekl L)

i>k
. Am?Z,
—2) Im Uy U}y Ui Ua) sin 2E’” L (6.75)

i>k

From these expressions we conclude that neutrino and antineutrino transition prob-
abilities depend on the parameter % They are determined by the elements of the
neutrino mixing matrix Uy; and 2+-n; independent mass-squared differences Am%i.

6.4 Two-Neutrino Oscillations

In this section we will consider the simplest case of the oscillations between two
neutrinos

Vo 2 vy o, =e, 1, T,51,... (6.76)

which are driven by the two neutrino mixing

VoL = Z Uyi ViL, (6.77)
i=1,2

where U is an unitary 2x2 matrix.
We will label neutrino masses in such a way that m < m;. From (6.69) and (6.70)
for j = 1 we have

+ 1112
P(vy — Vo) == [8qrq + Uga (7 T L — 1) U, 2 (6.78)

and

_ - « i 2
P(Py — V) == [8ure + Uy (67 F L — 1) Upa . (6.79)

2 2 _ 2 2
Here Am = Am{, = m5 —mj.



108 6 Neutrino Oscillations in Vacuum

Let us consider the case o’ # «. From (6.78) and (6.79) we find

2

_ — 2 2 Am
P(vy = vy) =Py — Vo) = 2|Ug2|" |Uy2] 1 — cos

Y L) (' #a).

(6.80)

If v; and v; are Dirac particles, the neutrino mixing matrix is real (see Sect. 5.3). In
this case the CP invariance in the lepton sector takes place automatically. If v; and
vy are Majorana particles there is one CP phase in the mixing matrix. However, it is
easy to see that the Majorana CP phase does not enter into transition probabilities.
This is the reason why in the case of the transitions between two types of neutrinos
the relation (6.47) is always valid.

A real orthogonal 2x2 mixing matrix has the form

cosf sinf
U= (—sin@ c0s9,>’ ©.81)

where 6 is a mixing angle. From (6.80) and (6.81) we obtain the following standard
expression for the probability of the transition between two types of neutrinos

| - Am? .9 .9 m? ,
P(vy — vy) = 3 sin” 260 (1 — cos ¥ L) = sin“ 26 sin ﬁL (¢ #a).
(6.82)
It is obvious from (6.80) that in the two-neutrino case probabilities of all possible
non diagonal transitions are equal

P(vy = Vy) = P(hy = Vy) =Py — Vo) =P(Dy — Vo) (a #'). (6.83)
From these relations and conditions of the conservation of the probability (6.44)
for probabilities of neutrino and antineutrino to survive we obtain the following
relations

P(vy = vg) = P(vy = vy) = P(Vy — Vy) = P(Vy — V) (a # ). (6.84)
Finally, from (6.78) we find

2

| Am
Plvy > vy) =1 =Py = vy) =1— 2 sin“26 | 1 — cos °F L). (6.85)

Thus, all possible transitions between two types of neutrinos and antineutrinos are
described by two oscillation parameters: sin” 26 and Am?.

The expressions (6.82) and (6.78) are written in the standard units 4 = ¢ = 1.
If we introduce % and c for the transition probability we will find the following
expression
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2 4

r ., Am* ¢
P(vy — Va')=§ sin“ 26 | 1—cos Ehe

Am? c*
L ) =sin®26 sin’ L .
) sin sin AEhc (x #a)
(6.86)
If we use ic >~ 1.97 - 107! MeV cm the expression for the transition probability

takes the form

2

1 A Am?
P(vy — vy) = = sin226 [ 1 — c0s2.54 2 ) = sin226 sin® 1.27 — L.
2 E

(6.87)
Here Am? is the neutrino mass-squared difference in eV2, E is the neutrino energy
in MeV (GeV) and L is the distance between neutrino source and neutrino detector
in m (km).
We will now introduce the oscillation length. The expression (6.82) can be writ-
ten in the form

1 L
P(vy = vy) = 3 sin’ 20 (1 —cos27 ) (a #d), (6.88)

0sc
where

E
Loge =471 —— 6.89
osc s Am? ( )

is the oscillation length. Introducing 7 and c, for the oscillation length we obtain the
following expression

Ehc

Low =471 ———. 6.90
osc T Am2 4 ( )
From this expression we find
E
Logc >~ 2.47 m m. (6.91)

where E is the neutrino energy in MeV and Am? is the neutrino mass-squared
difference in eV?2.

The two-neutrino transition probabilities given by the expressions (6.82) and
(6.85) are standard formulas which are usually used in the analysis of experimental
data. Below we will present arguments why these formulas are good approximations
in the case of oscillations between three neutrinos.

In Fig. 6.1 the transition probability P(v, — v;) as a function of % (in units
%) is plotted. We assumed that sin?20 = 1 (as we will see later, this value is in
agreement with experimental data). At the points

1
L 27 n L 2”(”+§)
= and Z=——=— (n=0,1,2,...)
E 254 Am? E~ 254Am?



110 6 Neutrino Oscillations in Vacuum

P(I/M*H/e)

R

0 — 2 L/E
2.54 Am? 2.54 Am?

Fig. 6.1 Transition probability P(v, — v;) as a function of %

only v, or, correspondingly, v; can be observed. At other values of % both v, and v,
can be found. The probability to find v, is given by P(v, — v;). A muon neutrino
v, can be found with the probability 1 —P(v, — v;) = P(v, — v,). From Fig. 6.1
it is clear why phenomenon, we are considering, is called neutrino oscillations.

6.5 Three-Neutrino Oscillations. CP Violation
in the Lepton Sector

All existing data are well described if we assume that the number of massive neutri-
nos is equal to the measured number of the flavor neutrinos (three). In this section we
will consider neutrino oscillations in vacuum in the case of three mixed neutrinos.
In this case the flavor field v;y (x) is given by the expression

3
L) =) Uivit) l=ep.. (6.92)

i=1

Here U is a unitary 3x3 Pontecorvo-Maki-Nakagava-Sakata (PMNS) matrix, and
v; (x) is the field of neutrino with the mass m;. The field v;(x) can be a Dirac field
of neutrinos and antineutrinos or a Majorana field of neutrinos. We will show now
that by the investigation of flavor neutrino oscillations it is impossible to distinguish
these two fundamentally different possibilities. In fact, Dirac and Majorana mixing
matrices differ by the number of CP phases (one in the Dirac case and three in the
Majorana case). The Majorana mixing matrix has the form

UM = Uy . (6.93)
Here oy = 0, a2 3 are Majorana phases and the matrix U has the form of the Dirac

mixing matrix. Let us consider the amplitude of the transition v; — vy. Taking into
account the relation (6.93), we have
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3 3
AM (v — ) = Z U% e kit U%’* = Z Up; e 'Eit Uy, = AP (v = vp).
i=1 '
(6.94)
It is obvious that the same relation is valid for the amplitude of the transition
v; — vp. Thus, additional Majorana phases do not enter into flavor neutrino and
antineutrino transition amplitudes. This means that the study of flavor neutrino oscil-
lations does not allow to reveal the nature of the massive neutrinos. For that, as we
will discuss later, it is necessary to study processes, like neutrinoless double 8 decay
of nuclei, in which the total lepton number is not conserved. When we will consider
neutrino oscillations we will use the Dirac matrix U, which is characterized by three
mixing angles and one CP phase.
In the previous section we have shown that the neutrino and antineutrino transi-
tion probabilities are given by the expressions

1 _ _ 1
P(vi — vp) =8 + Ry + > ASP. P — By) =8 + Ry — 3 AGP, (6.95)

where
* * Am/%i
Ry = -2 Z Re (Uy; Ujiy, Uji Upe) [ 1 — cos g L (6.96)
i>k
and
Aml%i
AL =4 Im (Uy; Ujs, U Upg) sin g L 6.97)
i>k
From (6.95) we have
1 _ _
Ry = E(P(w = ) + P — vp)) — (6.98)
and
ASP =P = vp) — P(5 — ). (6.99)

Thus, Ry; and AI%P are the CP-even and CP-odd parts of the transition probabilities.

Let us consider AIC/;D The C PT invariance implies that

AT = —ACT. (6.100)

From this relation follows that AICZP = (. If CP invariance holds, we have
AIC/;D = 0 (I’ # I). Thus, Alc,f is the CP asymmetry. If the asymmetry is not
equal to zero, it is a signature of the violation of the CP invariance in the lepton
sector.
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It follows from the relation (6.100) that in the case of three flavor neutrinos

there are three different from zero CP asymmetries: ASY, ASY, ASP . These three

CP asymmetries are connected by the following cyclic relations

ASY = AS = —AT, (6.101)
In fact, from the conservation of the probabilities we have
Y P v)=1 Y P =1 (6.102)
I'=e, .t I'=e,u,t
If we now subtract from the first relation the second one, we obtain
> Aff =o. (6.103)
I'=e,p,t
From (6.103) we find the following relations
AL+ A =0, ASE + AP =0, AP + AL =0. (6.104)

From (6.104) we easily obtain the relations (6.101). Thus, in the case of three-
neutrino mixing there exists only one independent CP asymmetry.

We will consider now the expression (6.97) for the CP asymmetry. Let us intro-
duce the quantity

Tk = Im (Uy; Ugs, Uft Upe). (6.105)

It is obvious that J;,kl #0onlyifi #kandl’ #1.
We will show now that

Jj,kl =41, I'#1, i#k, (6.106)
where
=1, (6.107)
In fact, from (6.105) we obtain the following symmetry relations
ik =gk gk = —Jik (6.108)
Further, from the unitarity of the 3 x 3 mixing matrix U we find

3
DOV =8 Im U Up) =0, Y Tk =68y Im (Uj; U) = 0. (6.109)

i=1 I'=e,pu,t
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From (6.108) and the first Eq. (6.109) we obtain the following relations
21 31 12 32 13 23
Iy +1,;, =0, 1,7 +1;=0, J; +J; =0. (6.110)
From (6.110) and (6.108) we easily find the following cycle relations
21 13 32
Further, from (6.108) and the second Eq. (6.109) we have
ik ik ik ik ik ik
JL6+JIW =0, Jleu +J’m =0T —}-J;” =0. (6.112)
From (6.112) and (6.108) we obtain the following cycle relations
ik ik ik
J’e” :J;” =T (6.113)
It is evident from (6.111) and (6.113) that all nonzero elements of J;,kl are equal
to +J.

From (6.97) and (6.111) for the CP asymmetry AIC,IP we find the following
expression

Am? Am?2 Am?
12 1 + sin ZEB L —sin 2E13 ) (6.114)

AGP =442 <sin

This expression can be written in a more compact and convenient form. In fact, it is
obvious that

Amiy = Am3y + Ams. (6.115)

Further, for any a and b we have the following relation

sina + sinb — sin(a + b) = 2sin

(a+b)( (a —b) (a—l—b))
cos — cos
2 2 2

b b
=4sinz sin — sin @+ ). (6.116)
2 2 2

From (6.114), (6.115), (6.116) and (6.107) we find the following expression

2 2 2 2
el L sin A, L sin (Amlz + Am23) L
AE AE ’

ASl =161 sin (6.117)

Other asymmetries are connected with Aflf by the relations (6.101). The quantity
J, which determines the CP asymmetries in all channels, is usually called Jarlskog
invariant. It is invariant under the transformation
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U, = e P uy e, (6.118)

where «; and f; are arbitrary constant phases. In fact, we have
1% =TIm(Up; Upy, Ujs Ug) = Im(U),; Uy Ut Up) = (%Y (6.119)

It is easy to see that (for Dirac neutrinos) the mixing matrices U and U’ are equiva-
lent. In fact, let us consider the lepton charged current. We have

JS€=2) iLUiyel =2 )9 Ujfvaly, (6.120)
1,i L

where the primed fields are determined as follows
vi(x) = e y(x), I'(x)=ePl(x) (6.121)

The fields vlf (x) and [’(x) cannot be distinguished from v;(x) and /(x). Thus, the
mixing matrix (in the Dirac case) is determined up to the phase transformation
(6.118) and the transition probabilities must be invariant under this transformation.

In the standard parametrization of the mixing matrix U (see previous chapter) for
the Jarlskog invariant we obtain the following expression

J = —C12C23C%3S12S23S13 sin §. (6.122)

6.6 Three-Neutrino Oscillations in the Leading Approximation

In the general case of the three-neutrino mixing the v; — vy and v; — vy transition
probabilities depend on six parameters (two mass-squared differences Am%2 and
Am§3, three mixing angles 612, 63 and 613 and the CP-phase §) and have rather
complicated form. However, from the analysis of the neutrino oscillation data it was
found that one mass-squared difference is much smaller that the other one:

Am3y ~2.4.1073eV? Am?, ~ 3107 Am3; ~ 8- 107 %eV? (6.123)

where Amizk = m,% — ml2 If we take into account (6.123), the transition proba-
bilities are given by very simple two-neutrino type formulas, which are valid with
accuracies of a ~ a few %.

In fact, from the general expression (6.70), in the three-neutrino case, we have

. Amz’,
St + ) Uri <e_’ 7L 1> Ui

)

2

P(vi — vy) = (6.124)
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Let us consider neutrino oscillations driven by the “large” neutrino mass-squared
difference Am%3 (atmospheric, long baseline accelerator and reactor experiments).
In such experiments the condition

A 2
% L>1 (6.125)

must be satisfied. For the values of the parameter % which satisfy this condition the
phase difference due to Am%2 is small

2 2 2
Ami, I Ami, Am23 L
2F Am% 2F

2
~3.1024M5 oy 6.126
~3- SE < 1. (6. )

and can be neglected. In this approximation, we obtain the following expressions
for the neutrino and antineutrino transition probabilities

2

. Am?
P(vi = vp) >~ |6 + Ups <€l =L _ l) Ul*3 (6.127)

and

2

A Am?
P(vy — vy) = |8 + U;B (e’ =L _ 1) Urs (6.128)

It is obvious that only the modules of the elements of the neutrino mixing matrix
enter into these expressions. Thus, if we neglect a few-% contribution of a small
phase difference to the transition probabilities we have

P(v; = vp) @ P(v; — vp), (6.129)
i.e. the relations (6.47) are satisfied in this case independently from the CP invari-
ance in the lepton sector.

Let us consider the appearance probabilities P(v; — vy) with I’ # [. From
(6.127) we have

1 L
Py — v) = 5 A (1 — cos Améﬁ) (' £1), (6.130)

where
_ 2 2
App =4 Ups|” U3 (6.131)

is the oscillation amplitude.
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For the v;-survival probability we find

Py —>v)=1- ZP(W —vy)=1—By|1—cos Am? i (6.132)
& 23 k) .

where
By=Y Ap=4|Usl> (1—|Us. (6.133)
I'#1

Let us consider the v, — vy transitions (! = e, u, 7). For the oscillation amplitudes
in the standard parametrization of the mixing matrix (see Sect. 5.4) we have the
following expressions

Ay = sin® 63 sin? 2013, A¢y = sin? 2673 cos? 013,
B, = 4sin’ 63 cos? H13(1 — sin® 63 cos® 6;3). (6.134)

For the v, — v, survival probability from (6.132) and (6.133) we obtain the expres-
sion

1 L
P(ve = Vo) =P(D, = 1) = 1 — 3 sin’ 203 <1 — cos Am%ﬁ). (6.135)

In the reactor CHOOZ experiment v, — v, neutrino oscillations, driven by Am%3,
were searched for. No positive signal for the v, disappearance was found in the
experiment. From the analysis of the data of the CHOOZ experiment the following
upper bound was obtained for the parameter sin” 63 (see Sect. 10.7)

sin? 613 <5-1072. (6.136)

If we neglect the contribution to the transition probabilities not only the small phase

. Am? . S .
difference sz” L but also the small parameter sin® 613 we have in this approxima-
tions

Aep 0. (6.137)

Thus, if we neglect contribution to the transition probability of the small parameters

Am? . . . S .

% and sin? 013, driven by Am%3 the leading oscillations are the v, & v; oscil-
23

lations. For the probability of v, (V) to survive we obtain, in this approximation,
from (6.132) and (6.133) the following standard two-neutrino expression

1 L
P = ) =Py = ) = 1 = 5 sin® 26,3 (1 - cosAm§3ﬁ>. (6.138)
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The existing data of atmospheric and long baseline accelerator neutrino oscillation
experiments are perfectly described by (6.138) (see Chap. 10). Several future high
precision neutrino experiments are in preparation in order to see beyond the leading
approximation effects of the three-neutrino mixing (see Sect. 10.8).

We will now consider vacuum neutrino oscillations driven by the small neutrino
mass difference Am%z, i.e. neutrino oscillation experiments with the such values of

the parameter % which satisfy the inequality

A 2
;?2L5L (6.139)

This condition is satisfied in the reactor KamLAND experiment (see Sect. 10.4).
If the condition (6.125) is satisfied we have

Am? Am2, Am?
B =B 1213 (6.140)
2F Am%2 2F

Due to averaging over the energy resolution, over the distances between neutrino
production and detection points etc. the effect of the large phase difference in the
transition probabilities is averaged.

The v, — v, (v, — V,) transition probability is given by the following general
expression

P(ve = ve) =P(ve — v,) = (6.141)

3 Am.22 2
3 1
> |Ueil? e 22 E
i

From (6.141) for the averaged probabilities we find the following expression

_ _ . Amiz 2
P(be — be) = P(v, — ) = ' S Uil T 4 UsE (6.142)

i=1,2

The first term of this expression can be presented in the form

2 AmZ
= D (Ueil* + 21Ut [Ueal® cos ——2 L. (6.143)
i=1,2

Am?

i 2
)Z Uei? &' 22

i=1,2

Further, from the unitarity of the mixing matrix we have

D Ueil* = 1= |Uesl*. (6.144)
i=1,2

From this relation we find
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DUl = (1 = U = 2|Ua|* U2 (6.145)
i=1,2

Combining (6.142), (6.143) and (6.145) the averaged survival probabilities can be
presented in the form

P(ve = ve) = P(0, = o) = U3 |* + (1 = [Us31))? P2 (v, — ve).  (6.146)

Here

1 Am?
PUD (v, — ) = 1 = 3 sin’ 201, <1 _ cos 2”;12 L) (6.147)

is the two-neutrino v, — v, survival probability driven by Amﬁ.

If we neglect |U,3|> = sin” 013 < 5 - 1072, we obtain the following expression
for the v, survival probability in vacuum

— . . 4
Ue — Ue sin 1 COS

This expression was used for the analysis of the data of the KamLAND reactor
neutrino experiment in which neutrino oscillations, driven by Am%z, were observed
(see Sect. 10.4).

From the conservation of the probability we have

P(Ve — Ve) = 1 — P(, — D) — P(Ve — Vy). (6.149)
We will show now that
P(V, — ¥y) = tan® 6p3 P(Ve — vy,). (6.150)

From (6.70), in the approximation |U.3|> — 0, we find the following expression for
the probability of the transition P(v, — v;) (I =e, u, 1)

. Am?
P(Be — ) ~ |8 + Uy (6 22 L — 1) Uy 2. (6.151)

Thus, in the approximation |U,3|> — 0 only one neutrino mass-squared difference
(Am%z) enters into the transition probabilities of v, — v;. It is easy to check that
from (6.151) we obtain the expression (6.148) for v, survival probability.

For the v, — v, and v, — v; transition probabilities we find from (6.151),
respectively, the following expressions

- - 2 2 Am%z
P(5e — D) = 20U [Uer) (1= cos — 2 L (6.152)
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and

- - 2 2 Am%z
P — be) = 2|Us1 P [Uet ) (1 —cos ——2 L ). (6.153)

Further, in the approximation |U,3|> — 0 we have
Uy1 = —sinfp cosbr3, Ugp =sinfyn sinbs. (6.154)

From (6.152), (6.153) and (6.154) we obtain the following expressions

- - L., 2 Amﬁ
P(ve — V) = = sin” 2602 cos” O3 | 1 — cos L (6.155)
2 2E
and
- - .5 .2 Ami,
P, — v;) = 3 sin“ 261 sin” 623 | 1 — cos B . (6.156)

From (6.155) and (6.156) follows that the v, — v; and v, — Vv, transition proba-
bilities are connected by the relation (6.150). Notice also the relations

P(ve = vy) = cos? 63 (1 — P(D, — 1,)) (6.157)
and

P(D, — ¥r) = sin? 63 (1 — P(D, — De)), (6.158)
which can be easily obtained from (6.149) and (6.150). From the data of the atmo-

spheric and accelerator long baseline experiments follows that 6,3 ~ /4 (see
Chap. 10). We have

P(v, — ir) > P(b, — y,). (6.159)

Thus, the disappearance of reactor antineutrinos, observed in the KamLAND exper-
iment, is due to transitions the v, — V; and vV, — V.

Let us summarize the results of this section. From the analysis of the data of
neutrino oscillation experiments follows that one neutrino mass-squared difference
is much smaller than the other one and the mixing angle ;3 is small:

Am}y =3-107% Am3;, sin?6;3 <5-1072 (6.160)

If we neglect a few-% contribution of these small parameters to the transition prob-
abilities a simple picture of neutrino oscillations emerges in this approximation:
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1. In the atmospheric and accelerator long baseline experiments the leading oscil-
lations are v, = v (v, & V) oscillations; the v, (v,) survival probability
depends on the parameters Am%3 and sin? 263 and is given by the expression
(6.138).

2. The leading neutrino oscillations observed in the reactor KamLAND experiment
are v, — V; and Vv, — v, oscillations; the v, survival probability depends on
the parameters Am%2 and sin® 261, and has two-neutrino form (6.148).

Existing neutrino oscillation data are in a good agreement with this approxi-
mation. One of the major purpose of the future high precision neutrino oscillation
experiments is to find beyond the leading approximation effects of the three-neutrino
mixing.



Chapter 7
Neutrino in Matter

7.1 Introduction

Up to now we have considered the propagation of massive neutrinos in vacuum. We
have seen that the flavor content of the neutrino beam in vacuum is determined by
the neutrino mass-squared differences Am?1 and elements of the neutrino mixing
matrix Uj;. As was first shown by Wolfenstein , in the case of matter not only neu-
trino masses and mixing but also the coherent scattering of neutrinos in matter must
be taken into account. The contribution of the coherent scattering into the Hamilto-
nian is determined by the electron number-density. If the electron density depends
on the distance (as in the case of the sun) the transitions probabilities between dif-
ferent flavor neutrinos in matter can have resonance character (MSW effect). We
will consider here in some detail the propagation of neutrino in matter.

7.2 Evolution Equation of Neutrino in Matter

We will first obtain the vacuum evolution equation for neutrino with momentum p in
flavor representation. The state vector |¥ (¢)) of neutrino with momentum p satisfies
the Schrodinger equation

0¥
i% = Ho |¥ (1)), (7.1)

where Hy is the free Hamiltonian. The state |¥ (¢)) can be expanded over the total
system of states of the flavor neutrinos v; with momentum p. We have

W @) = a) |v). (7.2)
1

Here
) =Y Ui [vi), (7.3)
i

Bilenky, S.: Neutrino in Matter. Lect. Notes Phys. 817, 121-137 (2010)
DOI 10.1007/978-3-642-14043-3_7 © Springer-Verlag Berlin Heidelberg 2010
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where

2
m
Hy |vi) = E; |vi), Ei=\/l?2+m —P+ﬁ- (7.4)

and a; (t) = (v;|W¥ (¢)) is the amplitude of the probability to find v; in the state which
is described by ¥ (¢)).
From (7.1) and (7.2) we obtain the following equation for the function g;(z)

Cdap(r)
i == Dt | Holw) an @), (7.5)
]
From (7.3) it is obvious that
(vilvi) = Upi,  (vilv) = Uj;. (7.6)

Taking into account this relation, for the free Hamiltonian in the flavor representa-
tion we have the following expression

(v | Ho| vi) Z Upi E; U ~ p+ ZUI/ U (7.7)

x Iﬁw

From (7.5) and (7.7) we obtain neutrino evolution equation in the flavor representa-
sl
tion :

daw _ o m?

This equation can be easily solved. In fact, let us introduce the function?
a()=U"a@). (7.9)

From (7.8) we find that the function a’(r) satisfies the following equation

L0d'(t)  m?
"ot T 2E

It is obvious that the solution of this equation has the form

a'(1). (7.10)

)
a'(t) = e 2070 g/ (1), (7.11)

where a’(t() is the wave function at the initial time fg.

! The unit matrix p - I can be excluded from the Hamiltonian by a redefinition of a common phase
of the wave function.

2 1t is obvious that al =, Ul (¥ (1)) = (vi|¥(1)). Thus, a] is the amplitude of the probability
to find a neutrino in the state with momentum p, mass m; and energy E;.
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From (7.9) and (7.11) we find that the solution of Eq. (7.8) is given by

2
a(t) =U e 22070 U7 q(1). (7.12)

Let us assume that the initial state |¥ (fg)) is the state of the flavor neutrino v;:
¥ (10)) = |vi). (7.13)

In this case ay, (fo) = &;,; and from (7.12) we obtain the standard expression for the
v — vy transition probability in vacuum (see Sect. 6.3)

L

Py — ) = | Y Upj e 4"i3E U 2, (7.14)
i

where Am%i = ml.z—

and detection points.

Let us now consider the evolution equation of a neutrino with momentum p
in matter. For the propagation of neutrinos in matter the most important effect is
coherent elastic scattering of neutrinos in forward direction, which does not change
the state of the matter. We will first consider the CC interaction. This interaction
can give contribution only to the process of the elastic scattering of v, on electrons
(Ve +e — v, +e), which is due to W+ exchange. From the standard CC Lagrangian

m% and L ~ (t—typ) is the distance between neutrino production

£5€ = — 8 5, yyer W +hec. (7.15)

NG

for the low-energy effective Hamiltonian of the CC v, — e interaction we find the
following expression’

GF

2

An effective Hamiltonian of the neutrino interaction, which is determined by the
coherent v, — e scattering, can be obtained from the diagonal matrix element

HEC(X) = —=2 Der (X) Y Ver (%) €(X) y*(1 — 5) e(X). (7.16)

(p mat| HS€(x) |p mat), (7.17)
where the vector
[p mat) = [p) |mat) (7.18)

describes the left-handed neutrino with momentum p and the matter.

3 We use here the Schrodinger representation.
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It is obvious that the pseudovector (mat| e(x) y“y5 e(x) |mat) is equal to zero for
unpolarized matter. For the vector (mat| e(x) y“ e(x) |mat) we have in the matter
rest frame

(mat| (x) y* e(x) |mat) = (mat|eT(x) e(x) |mat) 840 = ne(X) 60, (7.19)
where n,(x) is the electron number density at the point x. Further we have

(Pl Ver (X) Yo ver (%) |p) = 1. (7.20)

From (7.16), (7.19) and (7.20) we obtain the following expression for the effective
CC interaction Hamiltonian of neutrinos in matter in the flavor representation

HM™Y (1) =2 Grn,(t) B. (7.21)

Here B,,.,, = 1, all other elements of the matrix B are equal to zero. Notice that we
take into account that for ultra-relativistic neutrinos

x~1, (7.22)

where x = x - Kk, k being the unit vector in the direction of the neutrino momentum.
Let us now consider the NC interaction. Induced by the Z° exchange, the Hamil-
tonian of the NC interaction of neutrinos with electrons and nucleons has the form

G
HTC<x>=7‘;2 D ey v ), (7.23)

l=e, T

where jgc (x) is the sum of the electron and quark (nucleon) neutral currents. Only
the vector part of the NC can give a contribution to the effective Hamiltonian of
neutrinos in matter. For the vector part of the electron neutral current we have

oY@ (x) = <_ % + 2 sin? 9W> e(x) v e(X), (7.24)

where Oy is the weak angle. For the vector part of the effective hadron neutral
current we have

vy M (x) = %1\7@ Yo T3 N(X) — 2sin® Oy p(X) yo p(X), (7.25)

_(r
N = <n> (7.26)

is a SU(2) doublet (p and n are proton and neutron fields).

where
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We will consider the propagation of neutrino in a neutral medium of electrons,
protons and neutrons. From (7.25) and (7.26) we find the following expressions for
the vector part of the proton and neutron NC

up e (x) = (% — 2sin’ ew> PX) e p(X) (7.27)
vgc(")(x) = <— %) n(x) Yo n(x). (7.28)

For the corresponding matter matrix elements we have

1
(mat| vY© (x) |mat) = ( -5+ 2 sin? 9W> Ne(X) 800, (7.29)
1
(mat| VNP (x) |mat) = (5 — 2sin? 9W> 0p(X) 840, (7.30)
and
NC(n) 1
(mat| v, (x) |mat) = ) Pn(X) 840- (7.31)

Here n.(x), n,(x) and n,(x) are the number densities of electrons, protons and
neutrons, respectively.

For the neutral matter n.(x) = n,(x). From (7.29) and (7.30) we conclude that
the contributions of the electron and proton NC to the effective Hamiltonian cancel
each other. Thus, we have

(mat] j'“(x) |mat) = —% Pn(X) 800 (7.32)

The NC interaction (7.23) is v, — v, — v; universal. This means that the effective NC
Hamiltonian in the flavor representation will be proportional to the unit matrix. Such
an interaction cannot change the flavor content of the neutrino beam. In fact, pro-
portional to the unit matrix interaction can be removed from the total Hamiltonian
by the following transformation of the wave function

a'(t) = e*Da(r), (7.33)

where «(¢) is an unphysical common phase.

Thus, in the case of three flavor neutrinos only the v, — e CC interaction gives
a contribution to the effective Hamiltonian.* The evolution equation of neutrino in
matter has the form

4 Letus notice, however, that if sterile neutrinos exist, both CC and NC effective Hamiltonians of
the neutrino interaction with matter must be taken into account.
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9 2
i calit) - (U ;n_E U+ V2G rne(r) /3) a(n). (7.34)

‘We have obtained the effective CC Hamiltonian of the interaction of the left-handed
electron neutrinos and electrons. Let us consider right-handed electron antineutri-
nos. Taking into account the relations (5.22) we have

- T T T T =10 T =10 5T ¢ ¢
VeL Ya VeL = —Vop Vg Ver = —Vor, C~ C ¥y CTC v,y = —V,p Vo Veg- (7.35)

From (7.35) and (7.16) we conclude that the effective Hamiltonian of the v, — e
interaction differs in sign from the effective Hamiltonian of the v, — e interaction.
It is given by the expression

——mat

H; (1) = =2 Grne(1) B. (7.36)

In order to see the connection of the effective Hamiltonian with coherent scattering
of electron neutrinos on electrons it is instructive to obtain the expression (7.21) in
another way.

The index of refraction of a particle with the momentum p is given by the fol-
lowing classical expression

2
n@ =145 D a0 (). (7.37)

Here f,(0) is the amplitude of the elastic scattering on particles of the type a in the
forward direction and n, is the number density of particles a. The second term of
the relation (7.37) is due to coherent scattering in matter.

If p > m, the energy of a particle in matter is connected with its momentum by
the relation

E >~ pn. (7.38)

If we subtract from (7.38) the energy of the particle in vacuum E ~ p we will
obtain, determined by the coherent scattering, an effective potential of the particle
in matter. We have

2
Ver() = () =1 p =~ 3 fo(0) ma(x). (739

In the case of neutrinos the amplitude of the process vp,e — vee is different from
the amplitudes of the processes v, ;e — v, re. This is connected with the fact that
to the matrix element of the process v.e — v.e the diagrams with the exchange of
W and Z bosons give a contribution, while to the matrix elements of the processes
vy re — v, e only the diagram with the exchange of the Z boson contributes.
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Thus, the refraction indices of v, and v, ; are different. In the case of neutrino mix-
ing, this difference of refraction indices leads to important effects for the neutrino
transitions in matter.
Due to the v, — v, — v, universality of the NC we have

NC NC NC

Vel—> Vel (0) = fvﬂeevue(o) = v,e—)v,e(o)' (740)
From (7.37) and (7.40) follows that the contribution of the NC to effective potential
of the neutrinos in matter is proportional to the unit matrix. Thus, the NC interaction
does not change the flavor content of the neutrino beam and can be excluded from

the Hamiltonian.> For the contribution of the CC to the amplitude of the process
ve.e — Ve in the electron rest frame we have

_Gpp
«/zn'

From (7.37) and (7.41) we obtain the following expression for the effective interac-
tion of neutrino with matter

()

(7.41)

H™ =2 Gpn, B. (7.42)

This expression coincides with (7.21).

7.3 Propagation of Neutrino in Matter with Constant Density

We will consider first the case of a constant electron number density. The total

o . 2 . . . .
Hamiltonian of neutrino in matter H = U % U'+2G Fhe B is a hermitian matrix.
It can be diagonalized by the unitary transformation:

H=U™E™y™, (7.43)

Here E" are eigenvalues of the matrix / and U™ is a unitary matrix. The evolution
equation is given by

.da()

P == U™ E™ U™ a(r). (7.44)

In an analogy with the vacuum case considered before let us introduce the function
a'(t) = U™a@). (7.45)

From (7.44) and (7.45) we obtain

5 We assume that there are no sterile neutrinos.
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aa’ (1)

5 = Emd . (7.46)

i

It is obvious that the solution of this equation has the form
a'(t) = e TET=10) g/ 40y (7.47)

where a’(to) is the wave function at the initial time fy. From (7.45) and (7.47)we
obtain for the wave function in the flavor representation the following expression

a(t) = U™ e P E" =0 ymf 4 (4. (7.48)

Let us assume that at ¢y the flavor neutrino v; was produced. From (7.48) we find
that the probability of the v; — vy transition in matter with the constant density is
given by the expression

P — vp) = | Y U™ B0 gine 2, (7.49)

1

If we compare (7.49) with (6.41) we come to the conclusion that the probability
of the v; — vy transition in matter with a constant density has the same form as
the probability of the v; — vy transition in vacuum. Equation (7.49) has a simple
meaning: U} is the amplitude of the transition from the state of the initial neutrino
vy to the state of the neutrino with energy E" in matter, the factor e E (t=10)
describes the propagation in matter of the state with the energy E}" and U} is the
amplitude of the transition from the state of the neutrino with energy E}" to the
state of the final flavor neutrino vy. A coherent sum over the states of neutrino with
definite energies is performed in (7.49).% Let us now consider the simplest case of
two flavor neutrinos: v, — v, ;. For the vacuum mixing we have

Ver, = c0S6O viz + sinf vy,
VL = —sin6 vy +cos6 vyy, (7.50)

where x = w or t and vy and v are the neutrino fields with masses m and m,.
Thus, the vacuum mixing matrix U is a 2 x 2 real orthogonal matrix

61t is instructive to obtain the same result in an arbitrary representation. The state with def-

inite energy in matter is the eigenstate of the total Hamiltonian: H |v;)™ = Elm [vi)™. Fur-
ther, we have (vy [H|v;) = ) (vpr|vi))™E™ ™(v;|v;). Comparing this relation with (7.43) we
conclude that (v;|v;)™ = U['l?‘. For the flavor neutrino state we obtain the following relation

lvi) = >; U™ |v;)™. If at the time 7o a flavor neutrino v; was produced, at the time 7 we have
_ipmys_ _iEM(f—

) = Zi Ull?* e iEN( to)lvi)m — Zl’ |V1’)(Zi Ull;r:e iEM(1—19) Ulrln*) Thus, A(yy — vy) =

> Un ¢ ~TEMt=10) ym+ i the amplitude of the 1, — vy transition in matter.
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(U Up\ _ [ cos@ sin®
U= (le Ux2> - (—sin@ cos@) ' (7.51)

It is convenient to present the total effective Hamiltonian in the form

1
H:ETrH—i-Hm. (7.52)
Here
1 m2+m2 1
TrH=—-1"_"24,_./2 7.
ST 5 +2\/_Gpne (7.53)

and H™ is the traceless part of the Hamiltonian. We have’

1 —Am?cos20 +A  Am?sin20
m _ —_
B =4E < Am?sin20  Am®cos20 — A )’ 759
where
A=2V2Gpn. E (7.55)

and Am? = m% —m%. We will label the neutrino masses in such a way that m, > m.

Thus, Am? > 0.

The first term of (7.52) is proportional to the unit matrix and we can exclude it
from the Hamiltonian. The real symmetrical 2 x 2 matrix H"” can be diagonalized
by the orthogonal transformation (see Appendix A). We have

H™ =U™E™ U™, (7.56)
Here
m__ [ cosé™ sing™
vr= (— sin ™ cos 4™ (.57
and
E™ 0
m _ 1
E™ = ( | El;) (7.58)
where
1
EP, = q:E\/(Amz 0820 — A)2 + (Am? sin 20)2 (7.59)

are eigenvalues of the matrix H™at,

7 Let us notice that for Ve — Vsterile case the effective Hamiltonian can be obtained from (7.54) by
the change A — A* = 2/2GF (ne — %nn) E.
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From (7.54), (7.56), (7.57), (7.58) and (7.59) we find that the mixing angle O™ is
given by the following relations

Am?cos20 — A

cos20™ = ,
V(Am2 cos 20 — A)?2 + (Am? sin 26)2
m Am?sin 26
sin26™ = (7.60)
V(Am? cos 26 — A)2 + (Am? sin26)2
For tan 20™ we find from these relations
Am? sin 26
tan2o™ = =" MY (7.61)
Am?cos20 — A

From (7.49) and (7.57) for the probability of the v; — vy (vy — ;) transition in
matter we find the following expression

1
Py — vp) =Py — 1)) = > sin?20™ (1 — cos AE™ L), (€' #¢).  (7.62)

Here I’ # 1, (Il or I’ is equal to e), L >~ (¢ — 1) is the distance, which the neutrino
passes in matter and

1
AE™ = Ef — Ef' = V(Am? cos20 — A)2 + (AmZsin 20)2.  (7.63)

The probability of v; (vy) to survive can be obtained from the condition of the con-
servation of the probabilities. We have

1
Py = v) =Py = vp) =1-— > $in?20™ (1 — cos AE™ L). (7.64)

The expression (7.62) can be written in the form

| L
P(vi = vpy) =Py — 1)) = =sin“20™ ( 1 — cos 2w , (7.65)
2 L%
where
47 E
Lm = i (7.66)

V(Am? cos26 — A)2 + (Am? sin 26)?

is the oscillation length of neutrino in a matter with a constant density.

It is obvious from (7.59) and (7.63) that at n, = O we have 6™ = 0, AE™ = Am?
and expressions (7.62), (7.64) and (7.66) coincide with the vacuum two-neutrino
transition probabilities and oscillation length, correspondingly.
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If n, # 0 the neutrino mixing angle can be significantly different from the vac-
uum value. Let us assume that at some energy E the following equality

Am?*cos 20 = A=2~2Gp p. E (7.67)

is satisfied. It follows from (7.67) that in this case 0™ = m/4 independently on
the value of the vacuum angle 6. Thus, if the condition (7.67) is satisfied, the mix-
ing angle and the oscillation amplitude in matter become maximal. The condition
(7.67) is called MSW resonance condition. We will return to the discussion of this
condition later.

If the resonance condition is satisfied, the oscillation length in matter can also be
significantly different from the oscillation length in vacuum. In fact we have in this
case

L
m 0sc
O%¢ " sin 26

(7.68)

where Lo = 41 ﬁ is the vacuum oscillation length.

7.4 Adiabatic Neutrino Transitions in Matter

We will consider here neutrino transitions in the sun’s matter. The electron density
in the sun is not constant. It is maximal in the center of the sun and decreases prac-
tically exponentially to its periphery. Let us consider the general evolution equation
of neutrino in matter

. da(r)
i

5 = Hh0a), (7.69)

where H™ (1) = Ho+ H;(¢) and a(t) are the total effective Hamiltonian and neutrino
wave function in the flavor representation.

The hermitian Hamiltonian H™(¢) can be diagonalized by the unitary transfor-
mation

H™@t) = U™(@t) E™() U™ (1), (7.70)

where U™ (t) is an unitary matrix and E lm () is the eigenvalue of the Hamiltonian.
Let us introduce the function

a@t)=Ut)a@). (7.71)

From (7.69), (7.70) and (7.71) we obtain the following equation for the function
a'(t)
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8“3?) <Em(t) Fumi(py U0 m()> da' () (1.72)

The derivative BU; @) is determined by the derivative of the electron density 7, (?).
We will assume that the function n,(f) depends on ¢ so weakly that the second term
in Eq. (7.72) can be neglected. In this approximation, which is called the adiabatic
approximation, the solution of the evolution equation can be easily found. We have

al(t) = eI EFOU gLy, (7.73)

where f( is the time of neutrino production. Thus, in the adiabatic approximation
the neutrino remains on the same energy level during evolution.® From (7.71) and
(7.73) we find the following adiabatic solution of the evolution equation in the flavor
representation

E d
ay, (1) = Y Um @y e o EON yme ) a (o). (7.74)
il

From this expression follows that in the adiabatic approximation the probability of
the transition v; — vy during the time # — #( is given by the expression

et EM(1)d
PP — w) = | YUy e o TOUgme a2 = 3 umo P ao)
i i

" (EMN6—EP(1))dt

+ Y UR@O U D Jio
i#k

i (t0) Ui (o). (7.75)

Because in the adiabatic approximation the neutrino remains on the same energy
level, the transition amplitude has a very simple structure (similar to the structure of
the transition amplitudes in the case of a matter with a constant density and vacuum):
U™ (to) is the amplitude of the transition from the state of the initial v; to the state

R
with energy E;(tp) ; the factor e i fip BN Ot describes the propagation in the state

with energy E}"; U7 (¢) is the amplitude of the transition from the state with energy
E™(2) to the state of the final vy. The coherent sum over i is performed.

In the case of solar neutrinos, the transition probability must be averaged over
the central region of the sun, in which solar v, are produced (~ 10° km), over
the energy resolution etc. After integration over many periods of oscillations, the

8 In fact, for the state of a neutrino with definite energy at the time 7 we have: H () |v;(1))™ =
E{(t) |vi(t))™. Further, we find (vy |[H()|v) = Z[(v1/|v,-(t)>mEim(t) M(v; ()|vr). Compar-
ing this relation with (7.70) we conclude that (v;|v;(t))™ = U} (t). Taking into account this
relation we have a;(t) = (¥ (@) = Y (vlvi())™ ™ O¥ (@) = Uit () alf(t)A Thus,
alf(t) =" (v (1)|W¥(t)) is the amplitude of the probability to find the neutrino in the state with
the energy E;(t) at the time ¢.
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oscillatory terms in the transition probability disappear . From (7.75) we find the
following expression for the probability of the solar v, to survive in this case

P(ve = ve) = Y [UR ) UL (x0) %, (7.76)

where xo =~ t is the point where neutrino was produced and x = ¢ is the final
point. Thus, in the adiabatic approximation the averaged transition probability is
determined only by the elements of the mixing matrix at the initial and final points.
Let us consider now the simplest case of two-neutrino v, < v, ; transitions in
matter. In this case the matrix U™(¢) is real, orthogonal 2 x 2 matrix:

(7.77)

UM () = ( cos 0™ (1) sinGm(t)>

—sin0™(¢) cos O™ (r)

It is obvious that the eigenvalues of the Hamiltonian Emz(t) and the mixing
angle 0™ (¢) are given by Egs. (7.59) and (7.60) in which A is equal to A(t) =
2V2Grn.(t)E.

Taking (7.77) into account from (7.72) for the function a’(¢) we find the follow-
ing evolution equation

,0d'(1)
l

5 = HdO. (7.78)

where the 2 x 2 matrix H is given by

_(E™(t) —if™(1)
H= <iélr“(t) EP ) ) (7.79)

We will present the matrix H in the usual form

1 —NED@® - EM@1) —i0™ (1)
— _(EMm m 2\ X 1
H = 2(E1 )+ Ey (1) + ( 16 (1) %(Egl(t) _ E?(t)).) (7.80)
Let us introduce the parameter of adiabaticity
(Ey'(x) — ET'(x)) (7.81)

J/(x) = |d0m(x)|

where x =~ t. The solution of the evolution Eq. (7.78) is adiabatic if nondiagonal
elements of the second matrix in (7.80) are much smaller than the diagonal elements,
i.e. if the parameter of adiabaticity is much larger than one:

yx) > 1. (7.82)



134 7 Neutrino in Matter
From (7.59) and (7.60) we find

1 [(Am? cos20 — A(x))? + (Am? sin 29)2]3/2
2E Am?sin 26 |40

When neutrino, produced in the central region of the sun, is traveling towards the
surface it could pass through the point x = xg where the condition

Am? cos20 = A(xg) (7.84)

is satisfied. This condition is called MSW resonance condition. At the point x = xg,
the mixing in matter is maximal and the difference of the neutrino energies is mini-
mal

b Am? sin 20
om ==, AE™ =—" = 7.85
(xRr) 2 (xR) °E (7.85)

The resonance region is the most important one for neutrino transitions. Let us esti-
mate the neutrino energies at which the resonance condition (7.84) is satisfied. We
have

E px) E
A(x) =2v26G E~2V2GrY, — ~1.1-107"eV?
(x) F1e(x) FYe ) 3 <o VeV
(7.86)
Here p is the matter density and Y, = T is the ratio of the electron and nucleon

number densities. In (7.86) we used the Standard Solar Model value Y, >~ 2/3.
The density p(x) is well described by the exponential function

px) = po e /"0, (7.87)
Here
R 4
ro = —— =~ 6.6-10% km, (7.88)
10.54

where R is the solar radius and pg ~ 150 g/cm?>.

From the global analysis of the data of the solar neutrino experiments and of the
data of the KamLAND reactor experiment for the neutrino oscillation parameters
the following best-fit values were found

Am* = Am3, =7.94-107% eV?,  tan’6 = tan’ 01 = 0.447. (7.89)
From these values we have

Am?cos26 ~3.107° eV2. (7.90)
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From (7.83) we find for the value of the parameter of the adiabaticity at the reso-
nance point xp the following expression

) Am? sin® 260 (7.91)
Y(XR) = d Inn, . .
2E cos 20 | =77 |1y
Taking into account (7.87) we have
Am? sin? 20 70
Y(XR) = —(—F7— (7.92)

2F cos 20

Now, using the best-fit values (7.89) of the neutrino oscillation parameters and the
value (7.88) of the parameter rg for y (xg) we obtain the following expression

y(xg) =~ 3-10* < (7.93)

MeV )
In the solar neutrino experiments neutrinos with energies in the range (0.2-16) MeV
are detected. From (7.93) follows that in the whole interval of the detected solar
neutrino energies ¥ (xg) > 1. If the parameter of the adiabaticity is large at the
resonance point it will also be large in all other points. We come to the conclusion
that solar neutrino transitions are adiabatic. Taking into account that 0™ (x) = 6 (0 is
the vacuum mixing angle) we obtain from (7.57) and (7.76) the following expression
for the v, survival probability

P(v, — 1,) = cos> 6 cos” 0™ (xp) + sin” @ sin® 6™ (xp)

1
= 5(1 4 cos 26 cos 20™(xp)) . (7.94)

Notice that in the general two-neutrino case for the averaged v, survival probability
in matter we have

P(ve = vo) = Y [UR()[* Py [UR (o) (7.95)
i,k

where Py; is the probability of the transition from the state with energy E}" to the
state with energy E}"'. From the conservation of the total probability we have

Pii=1-Py; Pun=1-Pp. (7.96)

Further, we have P»; = Pj. From (7.95) and (7.96) we easily find the following
general expression for the v, — v, survival probability

1 1
P(v, = v,) = 3 + (E — P]z) cos 26 cos 20" (xp) (7.97)
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In the adiabatic approximation Pj» = 0 and the expression (7.97) coincides with
(7.94).

In the literature exist different approximate expressions for the transition proba-
bility Pj». In Landau-Zenner approximation, which is based on the assumption that
transitions occur mainly in the resonance region, we have

P =e 2VORF (7.98)

where y (xg) is the parameter of the adiabaticity at the resonance point, given by the
expression (7.91), and the factor F depends on the electron number density. If the
electron density is exponential, F = 1 — tan? 6.

From (7.98) follows that for

y(xg) >> 1 (7.99)

we have Pj 2~ 0. Thus, we come to the same conclusion as before: if the inequality
(7.99) is satisfied, neutrino transitions in matter are adiabatic.

In the adiabatic approximation transition probability depends on vacuum param-
eters Am? and 0 and on the electron number density at the production point. Let us
determine the neutrino energy at which A(xg) = Am? cos 26. Taking into account
(7.86) and (7.90) we have

Am? cos 26

Eh= —  ~2MeV. (7.100)
T 232G n.0)

In the region of neutrino energies significantly larger than E( from (7.60) we find
that cos 260™ (xg) >~ —1 (0™ (xp) =~ 7 /2). Thus, in the high energy region the survival
probability is given by the expression

1
P(v, — V) =~ 5 (1 — cos26) = sin 6. (7.101)

From (7.89) and (7.101) we obtain the following value of the v, survival probability
in the high-energy region:

P(v, = v,) >~ 0.31. (7.102)
In the region of neutrino energies significantly smaller than Eq from (7.60) we find

that 6™ (xp) ~ 6. Thus, in this region the v, survival probability is given by the
vacuum expression

1
P(v, —> v,) >~ 1 — 5 sin 20, (7.103)

Using (7.89) we find

P(ve — v,) ~ 0.57. (7.104)
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In every of the two neutrino energy regions, we considered, the v, transition prob-
abilities practically do not depend on energy and differ approximately by the factor
two. In the transition region a strong energy dependence must be exhibited. Detailed
calculations show that the transition region between high-energy and low-energy
regimes lies in the interval (2-5) MeV.

In the recent BOREXINO experiment the 'Be neutrinos with energy E = 0.87
Mev was detected. For the v, — v, transition probability the value

P(ve = v.) =0.56 £0.10 (7.105)

was found. In this experiment the v, — v, transition probability in the high energy
region at effective neutrino energy E = 8.6 MeV was also determined. It was found

P(ve = v.) =0.35£0.10 (7.106)

The values (7.105) and (7.106) are in a good agreement with the predictions (7.104)
and (7.102).

Up to now we have considered two-neutrino transition probabilities. In the three-
neutrino case the average probability for v, — v, transitions of solar neutrinos in
matter is given by the following expression’

P(ve = ve) = [Ues|* + (1 = [Us)* P2 (Amiy, tan® 612) . (7.107)

Ve—> Ve

where Pv(elizve(Am%Z, tan? 012) is the two-neutrino transition probability driven by

Am%z. From the data of the CHOOZ reactor experiment it follows that |U,3|* <

5.1072. Thus, with an accuracy of a few % the v, — v, transition probability for

solar neutrinos in the three-neutrino case is given by the two neutrino expression
P(ve — ve) = P2 (Am7,, tan® 612). (7.108)

The two-neutrino v, — v, transition probability, which we considered before, is

usually used in the analysis of the solar neutrino data.

9 The same expression is valid for the vacuum neutrino oscillations driven by Am%2 (such as neu-
trino oscillations observed in the KamLAND reactor experiment). We derived the corresponding
vacuum three-neutrino v, survival probability in Sect. 6.6.



Chapter 8
Neutrinoless Double Beta-Decay

8.1 Introduction

As we have seen in the previous sections, there are two fundamentally different
possibilities for the massive neutrinos v;: they can be Dirac particles, if the total
lepton number L = L, + L, + L. is conserved, or truly neutral Majorana particles
if there are no conserved leptons numbers. The problem of the nature of massive
neutrinos v; (Dirac or Majorana?) is one of the most fundamental problem of neu-
trino physics. The solution of this problem will have an important impact on the
understanding of the origin of neutrino masses and mixing. If it will be proved
that 