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Preface

For many years neutrino was considered a massless particle. The theory of a
two-component neutrino, which played a crucial role in the creation of the theory of
the weak interaction, is based on the assumption that the neutrino mass is equal to
zero.

We now know that neutrinos have nonzero, small masses. In numerous exper-
iments with solar, atmospheric, reactor and accelerator neutrinos a new phe-
nomenon, neutrino oscillations, was observed. Neutrino oscillations (periodic
transitions between different flavor neutrinos νe, νμ, ντ ) are possible only if neutrino
mass-squared differences are different from zero and small and flavor neutrinos are
“mixed”.

The discovery of neutrino oscillations opened a new era in neutrino physics:
an era of investigation of neutrino masses, mixing, magnetic moments and other
neutrino properties. After the establishment of the Standard Model of the elec-
troweak interaction at the end of the seventies, the discovery of neutrino masses
was the most important discovery in particle physics. Small neutrino masses
cannot be explained by the standard Higgs mechanism of mass generation. For
their explanation a new mechanism is needed. Thus, small neutrino masses is
the first signature in particle physics of a new beyond the Standard Model
physics.

It took many years of heroic efforts by many physicists to discover neu-
trino oscillations. After the first period of investigation of neutrino oscillations,
many challenging problems remained unsolved. One of the most important is the
problem of the nature of neutrinos with definite masses. Are they Dirac neu-
trinos possessing a conserved lepton number which distinguish neutrinos and
antineutrinos or Majorana neutrinos with identical neutrinos and antineutrinos?
Many experiments of the next generation and new neutrino facilities are now
under preparation and investigation. There is no doubt that exciting results are
ahead.

This book is intended as an introduction to the physics of massive and mixed
neutrinos. It is based on numerous lectures which I gave at different Universities and
at CERN and other schools. I have tried to explain how many of the main results
were derived. The details of the derivation can be easily followed by the reader.
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viii Preface

I hope that this book will be useful for the physicists working in neutrino physics,
for students and young physicists who plan to enter into this exciting field and to
many scientists who are interested in the history of neutrino physics and its present
status.

Dubna, Russia, Vancouver, Canada Samoil Bilenky
October 2009
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Chapter 1
Introduction

The idea of neutrino was put forward by W. Pauli in 1930. This was a dramatic
time in physics. After it was established in the Ellis and Wooster experiment that
the average energy of the electrons produced in the β-decay is significantly smaller
than the total released energy, only the existence of neutrino, a neutral particle with
a small mass and a large penetration length (much larger then the penetration length
of the photon), which is emitted in the β-decay together with the electron, could
save the fundamental law of the conservation of energy.

At the time when the neutrino hypothesis was proposed the only known elemen-
tary particles were electron and proton. In this sense neutrino (more exactly electron
neutrino) is one of the “oldest” elementary particles. However, the existence of the
neutrino was established only in the middle of the fifties when neutron, muon, pions,
kaons, Λ and other strange particles were discovered.

We know at present that the twelve fundamental fermions exist in nature: six
quarks u, d, c, s, t, b, three charged leptons e, μ, τ and three neutrinos νe, νμ, ντ .
They are grouped in the three families, which differ in masses of particles but have
universal electroweak interaction with photons and vector W ±, Z bosons. In the
Lagrangian of the electroweak interaction, neutrinos enter on the same footings
as the quarks and charged leptons. In spite of this similarity of the electroweak
interaction neutrinos are special particles. There are two basic differences between
neutrinos and other fundamental fermions.

• At all available at present energies, cross section of the interaction of neutrinos
with matter is many order of magnitude smaller than the cross section of the
electromagnetic interaction of leptons with matter (via the exchange of the virtual
γ -quanta). This is connected with the fact that neutrinos interact with matter via
the exchange of the heavy virtual W ± and Z bosons.

• Neutrino masses are many order of the magnitude smaller than the masses of
leptons and quarks.

Because of the extreme smallness of the neutrino cross section, special methods
of the detection of neutrino processes must be developed. However, after such meth-
ods were developed the observation of neutrino processes allows us to obtain unique
information:

Bilenky, S.: Introduction. Lect. Notes Phys. 817, 1–8 (2010)
DOI 10.1007/978-3-642-14043-3_1 c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

1. The measurement of the cross section of the deep inelastic processes νμ(ν̄μ) +
N → μ−(μ+)+X) led to the establishment of the quark structure of the nucleon.

2. The detection of the solar neutrinos allowed us to establish the thermonuclear
origin of solar energy and to obtain information about the central invisible part
of the sun where the energy is produced.

3. The detection of neutrinos from the Supernova explosion allows us to investigate
a mechanism of the gravitational collapse, etc.

The measurement of small neutrino masses is a difficult and challenging problem.
This problem is still not solved. The observation of a new phenomenon-neutrino
oscillations (the transitions between different flavor neutrinos) led to the determina-
tion of two neutrino mass-squared differences. From neutrino oscillation data and
data of the β-decay experiments on the direct measurement of the neutrino mass it
is possible to conclude that

• Neutrino masses are different from zero.
• Neutrino masses are smaller than ∼2 eV, i.e. many order of magnitude smaller

than masses of leptons and quarks.

The unified theory of the weak and electromagnetic interactions (the Standard
Model (SM)) describes all existing experimental data. However, existence of the
Dark matter and internal problems of the Standard Model (the hierarchy problem)
tell us that a more general, beyond the SM theory must exist. After the establishment
of the SM at the end of the seventies, many experiments on the search for beyond
the SM effects were done.

The first signature of a new beyond the SM physics was obtained in the neutrino
oscillation experiments. In the framework of the SM small neutrino masses cannot
be explained in a natural way. It is a common opinion that a new mechanism of the
mass generation is required.

Discovery of neutrino oscillations signifies not only that neutrino mass-squared
differences are different from zero but also that the states of flavor neutrino are
superpositions (“mixture”) of states of neutrinos with definite masses. Flavor neu-
trino states are connected with states of neutrinos with definite masses by the unitary
mixing matrix which is characterized by three mixing angles and one phase.

The phenomenon of the neutrino mixing is similar to the well established quark
mixing. However, the quark mixing angles are small and satisfy a hierarchy. The
neutrino mixing angles are completely different: two angles are large and one is
small (only upper bound is known at the moment). This is also an indication that
quark and neutrino mixing have different origin.

The most common general explanation of the smallness of the neutrino mass is
based on the assumption that the total lepton number is violated at a large scale
(about (1015 − 1016)GeV). If this assumption is correct, neutrinos with definite
masses are truly neutral Majorana particles. The leptons (and quarks) are Dirac
particles. The leptons and antileptons (quarks and antiquarks) are different particles.
They have the same masses but their electric charges differ in sign. If neutrino are
Majorana particles in this case neutrinos and antineutrinos are identical. Observation
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of the neutrinoless double β-decay (A, Z) → (A, Z + 2) + e− + e− would be a
proof that neutrinos are Majorana particle.

The first rather long period of the investigation of neutrino masses, mixing and
oscillations is practically finished. Neutrino oscillations were discovered. Four neu-
trino oscillation parameters (two mass-squared differences and two mixing angles)
are determined with accuracies of about 10% or better. Strong bounds on the half-
lives of the neutrinoless double β-decay of different nuclei were obtained. In 2009–
2010 a new precision era of the investigation of the problem of neutrino masses,
mixing and nature started. The main problems which will be addressed are the fol-
lowing

1. Are neutrinos with definite masses Majorana or Dirac particles?
2. What is the value of the third mixing angle θ13?
3. Is the C P invariance violated in the lepton sector? What is the value of the C P

phase?
4. What is the character of the neutrino mass spectrum? Is it normal with smaller

mass-squared difference between lighter neutrinos or inverted with smaller mass-
squared difference between heavier neutrinos?

5. What are the absolute values of the neutrino masses?
6. Is the number of massive neutrinos equal to the number of the flavor neutrinos

(three) or larger than three? In other words do so called sterile neutrinos exist?
7. . . .

Many neutrino experiments of the next generation with neutrinos from accel-
erators and reactors have started or will be started in the near future. New large
detectors of atmospheric, solar and supernova neutrinos are under development.
Technologies for new neutrino facilities (Super-beam, β-beam, Neutrino Factory)
are being developed. There is no doubt that a new exciting era of neutrino physics
is ahead.

In this book, I intend to give an introduction to the physics of massive and mixed
neutrinos. I start with a brief review of the development of the phenomenological
V − A current×current theory of the weak interaction starting from Pauli’s hypoth-
esis of the neutrino and Fermi’s theory of the β-decay. In the next chapter we will
consider the Standard Model. The Higgs mechanism of the generation of masses or
quarks and leptons is discussed in some details. Then we consider mass terms for
neutrinos in the Dirac and Majorana cases. We will describe in detail the procedure
of the diagonalization of the mass terms in both these cases. Next chapter is devoted
to the detailed consideration of the general properties of the neutrino mixing matrix.
We obtain here the standard parametrization of the 3×3 mixing matrix. Then we
present the theory of neutrino oscillations in vacuum. The three-neutrino oscillations
are considered in detail. In the next chapter flavor neutrino transitions in matter are
discussed. First, we derive Wolfenstein equation for neutrino evolution in matter.
Then we consider in some detail the adiabatic solution of this equation and the reso-
nance MSW effect. The next chapter is dedicated to the neutrinoless double β-decay
of even–even nuclei. Basic elements of the theory of the decay are presented. Then
we briefly discuss neutrino oscillation experiments and the data obtained. In the next
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chapter we discuss β-decay experiments on the measurement of the neutrino mass.
In the last chapter we will consider neutrino in cosmology.

It is impossible in a book to give a full list of references. Taking into
account a limited number of pages available for this book, I give here refer-
ences only to some pioneer neutrino papers, relevant reviews and books. I would
further recommend the web site by C. Giunti and M. Laveder (the Neutrino
Unbound, http://www.nu.to.infn.it/) where it is possible to find many references
to the neutrino literature (theory and experiment).

I conclusion I would like to enumerate some principal neutrino events.
1930. W. Pauli suggested in a letter addressed to the participants of the nuclear

conference in Tuebingen that there exists a new neutral, spin 1/2, weakly interacting
particle which is produced together with the electron in the β-decay of nuclei. Pauli
called the new particle “neutron”. Later E. Fermi proposed the name neutrino for
this particle.

1934. E. Fermi proposed the first theory of the β-decay. Fermi considered the β-
decay as four-fermion process in which a neutron is transformed into a proton with
the emission of a electron-neutrino pair. He proposed the following Hamiltonian of
the β-decay

HI = G F p̄γ αn ēγαν + h.c., (1.1)

where G F is the Fermi constant.
1934. Bethe and Peierls estimated the interaction cross section of neutrino with

nuclei. The estimated value of the cross section was so small that for many years the
neutrino was considered as an “undetectable particle”.

1946. B. Pontecorvo proposed the radiochemical method of neutrino detection
which is based on the observation of

ν +37 Cl → e− +37 Ar

and other similar processes. As possible intensive sources of neutrinos Pontecorvo
suggested reactors and the sun.

1947–1948. Pontecorvo, Puppi, Klein, Tiomno and Wheeler proposed the idea
of the μ− e universality of the weak interaction.

1956. In the Reines and Cowen experiments the (anti)neutrino was discovered. In
these experiments antineutrinos from a reactor were detected in a large scintillator
counter via the observation of the reaction

ν̄ + p → e+ + n.

1957. In the Davis experiment no production of 37Ar in the process

ν̄ +37 Cl → e− +37 Ar
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with antineutrinos from a reactor was observed. This was the first indication in favor
of the existence of the conserved lepton number which distinguishes the neutrino
and the antineutrino.

1957. In the Wu et al. experiment with polarized 60Co a large effect of the parity
violation in the β-decay was discovered.

1957. Landau, Lee and Yang and Salam proposed the theory of the massless
two-component neutrino. According to this theory the neutrino is the left-handed
(or right-handed) particle and the antineutrino is the right-handed (or left-handed)
particle. Under the inversion of the coordinate system the state of the left-handed
(right-handed) particle is transformed into the state of the right-handed (left-handed)
particle. In the two-component theory in which the neutrino is a particle with definite
helicity (projection of the spin on the direction of momentum) parity is violated
maximally.

1958. The helicity of the neutrino was determined in the Goldhaber, Grodzins and
Sunyar experiment from the measurement of the circular polarization of γ -quanta
in the chain of the reactions

e− + Eu → ν + Sm∗

↓
Sm + γ

It was established that the neutrino is the left-handed particle.
1958. Pontecorvo suggested that neutrinos have small masses, the total lepton

number is violated and neutrino oscillations similar to K 0 � K̄ 0 oscillations could
take place. He considered effects of neutrino oscillations in experiments with reactor
antineutrinos.

1958. Feynman and Gell-Mann, Marshak and Sudarshan proposed the
current×current theory of the weak interaction. The Hamiltonian of this theory has
the form

HI = G F√
2

j α j†
α. (1.2)

Here

jα = 2 ( p̄LγαnL + ν̄LγαeL + ν̄LγαμL) (1.3)

is the μ− e universal weak charged current (CC).
1962. In the Brookhaven neutrino experiment, the first experiment with acceler-

ator high-energy neutrinos, it was established that neutrino which take part in CC
weak interaction together with electron and neutrino which take part in CC weak
interaction together with muon are different particles. They were called electron
neutrino νe and muon neutrino νμ. In order to explain the data of the Brookhaven
and other experiments it was necessary to introduce two separately conserved lepton
numbers: the electron Le and the muon Lμ. The weak charged current take the form
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jα = 2 ( p̄LγαnL + ν̄eLγαeL + ν̄μLγαμL). (1.4)

1962. Maki, Nakagawa and Sakata assumed that neutrinos have small masses and
the fields of electron and muon neutrinos are connected with the fields of massive
neutrinos ν1 and ν2 by the mixing relations

νeL = cos θ ν1L + sin θ ν2L

νμL = − sin θ ν1L + cos θ ν2L , (1.5)

where θ is a mixing angle.
1967. Glashow (1961), S. Winberg and A. Salam (1967) proposed the unified

theory of the electromagnetic and weak interactions (The Standard Model)
1970. In the pioneer experiment by Davis et al solar neutrinos were detected. In

this experiment solar νe’s were detected by the Pontecorvo radiochemical Cl − Ar
method via the observation of the reaction

νe +37 Cl → e− +37 Ar.

The threshold of this reaction is 0.81 MeV. Thus, only high-energy solar neutrinos,
mainly from the decay 8B → 8Be+e+ +νe, were detected in the Davis experiment.
The observed rate was 2–3 times smaller that the rate predicted by the Standard
Solar Model (SSM). This discrepancy was called solar neutrino problem.

1973. In the experiment with high energy accelerator neutrinos at CERN a new
class of the weak interaction, the so called neutral currents (NC), was discovered. In
addition to CC deep inelastic processes

νμ(ν̄μ)+ N → μ−(μ+)+ X (1.6)

also NC processes

νμ(ν̄μ)+ N → νμ(ν̄μ)+ X (1.7)

were observed in the bubble chamber “Gargamelle”. The discovery of the neutral
currents was the decisive confirmation of the Glashow-Weinberg-Salam unified the-
ory of the electroweak interaction.

1980s. In CDHS and CHARM experiments on the study of the deep inelastic
scattering of neutrinos and antineutrinos on nucleons (CERN) the quark structure of
nucleons was investigated in detail.

1978 Wolfenstein and Mikheev and Smirnov (1986) showed that for solar neutri-
nos, which are born in the central region of the sun and pass a large amount of matter
on the way to the earth, matter effects due to the mixing and coherent scattering on
electrons are important.

1987. Neutrinos from the gravitational collapse of a star were observed for the
first time. Neutrinos from the supernova SN1987A in the Large Magellanic Cloud
were detected in the Kamiokande, IMB and Baksan detectors.
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1988. Solar neutrinos were detected in the experiment Kamiokande. In this
experiment the flux of the solar B8 neutrinos was determined through the detection
of the recoil electrons in the scattering process

ν + e → ν + e (1.8)

The existence of the solar neutrino problem was confirmed.
1988. L. Lederman, M. Schwartz and J. Steinberger were awarded the Nobel

Prize for “the discovery of the muon neutrino leading to classification of particles in
families”.

1991. In the GALLEX and SAGE experiments solar electron neutrinos were
detected by the radiochemical method via the observation of the process

νe +71 Ga → e− +71 Ge. (1.9)

Because of the law threshold (0.23 MeV), in the GALLEX and SAGE experiments
neutrinos from all reactions of the pp-cicle, including the main reaction p + p →
d+e++νe, were detected. The flux of solar neutrinos measured in these experiments
was about two times smaller that the flux predicted by the SSM.

1990s. It was proven by experiments on the measurement of the width of the
decay Z → ν + ν̄ at LEP (CERN) that three flavor neutrinos exist in Nature. This
measurement allowed to establish that only three families of leptons and quarks
exist.

1995. For the detection of the (anti)neutrino F. Reines was awarded the Nobel
Prize.

1998. In the Super-Kamiokande experiment a large azimuth angle asymmetry
of high-energy atmospheric muon neutrino events was observed. This was the first
model-independent evidence for neutrino oscillations driven by a neutrino mass-
squared difference Δm2

23 � 2.5 · 10−3 eV2.
2000. In the experiment DONUT at Fermilab the first direct evidence of the exis-

tence of the third neutrino ντ was obtained.
2002. In the solar neutrino experiment SNO solar neutrinos were detected

through the observation of not only the CC reaction

νe + d → e− + p + p (1.10)

but also the NC reaction

ν + d → ν + n + p. (1.11)

This experiment solved the solar neutrino problem in a model-independent way: it
was proven that solar νe’s on the way from the cental part of the sun to the earth are
transformed into other types of neutrinos.

2002 R. Davis and M. Koshiba were awarded the Nobel Prize for “pioneering
contributions to astrophysics, in particular for the detection of cosmic neutrinos”.
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2002. In the reactor experiment KamLAND, ν̄e’s from 57 reactors in Japan were
detected through the observation of the reaction

ν̄e + p → e+ + n (1.12)

The average distance between reactors and detector was about 180 km. In this exper-
iment, a model-independent evidence for neutrino oscillations driven by a neutrino
mass-squared difference Δm2

12 � 8 · 10−5 eV2 was obtained.
2004. In the long-baseline accelerator neutrino experiment K2K the evidence

for neutrino oscillations obtained in the atmospheric neutrino experiment Super-
Kamiokande was confirmed. In this experiment, neutrinos from the accelerator
at KEK were detected by the Super-Kamiokande detector at a distance of about
250 km.

2006. In the long-baseline neutrino experiment MINOS, the Super-Kamiokande
atmospheric neutrino evidence for neutrino oscillations was additionally confirmed.
In the MINOS experiment, neutrinos from the accelerator at Fermilab were detected
by the detector in the Soudan mine at a distance of 735 km. An accuracy of about
10% in the measurement of the mass-squared difference Δm2

23 was achieved.
2007. A new solar neutrino experiment BOREXino started. In this experiment

monochromatic 7Be solar neutrinos with the energy 0.86 MeV were detected in real
time.

2010. The observation of neutrino oscillations in the atmospheric Super-
Kamiokande, solar SNO, reactor KamLAND and other neutrino oscillation exper-
iments is the most important recent discovery in particle physics. Small neutrino
masses cannot be naturally explained by the standard Higgs mechanism of mass
generation. New physics and a new mechanism of neutrino mass generation beyond
the Standard Model are required. To reveal new physics various high-precision
experiments (T2K, Double CHOOZ, Daya Bay, RENO, NOvA and others) started
or will be started during the next years.



Chapter 2
Weak Interaction Before the Standard Model

All existing present data are in perfect agreement with the unified theory of the
electromagnetic and weak interactions (Standard Model). Before this theory was
created, there was a long phenomenological period of the development of the theory
of the weak interaction. In this introductory chapter we will briefly consider this
period.

2.1 Pauli Hypothesis of Neutrino

The only weak process which was known in the twenties and thirties was the β-
decay of nuclei. In 1914 Chadwick discovered that the energy spectrum of electrons
from β-decay is continuous. If β-decay is a process of the transition of a nucleus
(A,Z) into a nucleus (A,Z+1) and the electron (as it was believed at that time),
from conservation of energy and momentum follows that the electron must have a
fixed kinetic energy approximately equal to Q � m A,Z − m A,Z+1 − me (where
m A,Z (m A,Z+1) is the mass of the initial (final) nucleus and me is the mass of the
electron).

For many years continuous β spectra were interpreted as the result of the loss of
energy of electrons in the target. However, in 1927 Ellis and Wooster performed a
crucial calorimetric β-decay experiment. They measured the total energy released
in a RaE (210Bi) source which was put inside of a calorimeter. For the β-decay of
210Bi the total energy release is Q = 1.05 MeV. In the Ellis and Wooster experiment
it was found that the average energy per one β-decay is equal to (344 ± 34) KeV
which is in an agreement with the average energy of the electrons (390 KeV). Thus,
it was demonstrated that continuous β spectra cannot be explained by the energy
loss of electrons in a target.

There were two possibilities to explain this experimental data

1. To assume that in β-decay together with the electron a neutral penetrating parti-
cle, which is not detected in experiments, is produced. The total released energy
is shared between the electron and the new particle. As a result, electrons pro-
duced in β-decay, will have a continuous spectrum

2. To assume that in β-decay the energy is not conserved.

Bilenky, S.: Weak Interaction Before the Standard Model. Lect. Notes Phys. 817, 9–28 (2010)
DOI 10.1007/978-3-642-14043-3_2 c© Springer-Verlag Berlin Heidelberg 2010
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The idea of new particle was proposed by W. Pauli. The second point of view
was advocated by N. Bohr.

Pauli wrote about his idea in a letter to Geiger and Meitner who participated
in a nuclear conference at Tübingen (December 4, 1930). Pauli asked Geiger and
Meitner to inform the participants of the conference on his proposal.

Pauli called the new particle “neutron”. He assumed that the “neutron” has spin
1/2, small mass (of the same order of magnitude as the mass of the electron) and
large penetration length. Pauli assumed that the “neutron” is emitted together with
the electron in the β-decay of nuclei. Later E. Fermi and E. Amaldi proposed to call
the Pauli particle neutrino (from Italian, neutral, small).

Below there is Pauli’s letter translated into English.

Dear Radioactive Ladies and Gentlemen,
As the bearer of these lines, to whom I graciously ask you to listen, will explain

to you in more detail, how because of the “wrong” statistics of the N and Li6 nuclei
and the continuous beta spectrum, I have hit upon a desperate remedy to save the
“exchange theorem” of statistics and the law of conservation of energy. Namely,
the possibility that there could exist in the nuclei electrically neutral particles, that
I wish to call neutrons, which have spin 1/2 and obey the exclusion principle and
which further differ from light quanta in that they do not travel with the velocity of
light. The mass of the neutrons should be of the same order of magnitude as the elec-
tron mass and in any event not larger than 0.01 proton masses. The continuous beta
spectrum would then become understandable by the assumption that in beta decay
a neutron is emitted in addition to the electron such that the sum of the energies of
the neutron and the electron is constant.

I agree that my remedy could seem incredible because one should have seen
those neutrons very earlier if they really exist. But only the one who dare can win
and the difficult situation, due to the continuous structure of the beta spectrum, is
lighted by a remark of my honored predecessor, Mr Debye, who told me recently in
Brussels: “Oh, It’s well better not to think to this at all, like new taxes”. From now
on, every solution to the issue must be discussed. Thus, dear radioactive people,
look and judge. Unfortunately, I cannot appear in Tübingen personally since I am
indispensable here in Zürich because of a ball on the night of 6/7 December. With
my best regards to you, and also to Mr Back.
Your humble servant W. Pauli

At the time when Pauli proposed the idea of the existence of the “neutron”,
nuclei were considered as bound states of protons and electrons. As it is seen from
Pauli’s letter he assumed that his new particle “exists in the nuclei”. This assumption
allowed him to solve the problem of the spin-statistic theorem for some nuclei. Let
us consider the nucleus 7N14. According to the proton-electron model this nucleus is
a bound state of 14 protons and 7 electrons. Because spins of protons and electrons
are equal to 1/2 the spin of 7N14 must be half-integer. However, from the analysis
of the spectrum of 7N14 molecules it was found that nucleus 7N14 satisfies Bose–
Einstein statistics and, according to the spin-statistic theorem, the spin of the this
nucleus must be integer. An odd number of “neutrons” in 7N14 would make its spin
integer.
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After the discovery of the neutron (Chadwick, 1932) E. Majorana, W. Heisenberg
and D. Ivanenko assumed that the constituents of nuclei are protons and neutrons.
This assumption (which, as we know today, is the correct one) explained all nuclear
data.

The problem of the spin of 7N14 and other nuclei disappeared. What about
β-decay and continuous β-spectrum? This problem was solved by quantitatively
E. Fermi in 1934 on the basis of Pauli’s hypothesis of the neutrino in the framework
of the proton-neutron model of nuclei.

2.2 Fermi Theory of β-Decay

Fermi proposed the first Hamiltonian of the β-decay. He assumed that electron-
neutrino pair is produced in the transition of a neutron into a proton

n → p + e + ν. (2.1)

Fermi built the Hamiltonian of the process (2.1) in analogy with the Hamiltonian of
the electromagnetic interaction.

The Hamiltonian of the electromagnetic interaction has the form of a scalar
product of the electromagnetic current and the electromagnetic field Aα(x). For the
Hamiltonian of the electromagnetic interaction of protons we have

HEM
I (x) = ejEM

α Aα(x), (2.2)

where e is the electric charge of the proton and the electromagnetic current is given
by the expression

jEM
α (x) = p̄(x)γα p(x) (2.3)

where p(x) is the proton field, p̄(x) = p†(x)γ 0 and γα are the Dirac matrices.
Fermi suggested that the Hamiltonian of the process (2.1) is the product of the

neutron-proton current

jCC
α (x) = p̄(x)γαn(x), (2.4)

which provides the transition n → p and a vector which provides the emission of
the electron-neutrino pair. Assuming that there are no derivatives of the fields in the
Hamiltonian, Fermi came to the following expression for the Hamiltonian of the
β-decay

Hβ
I (x) = G F p̄(x)γαn(x) ē(x)γ αν(x)+ h.c., (2.5)

where G F is an interaction constant.
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Let us stress an important difference between the Hamiltonians (2.2) and (2.5).
The Hamiltonian (2.2) describes the interaction of two fermions and a boson while
the Hamiltonian (2.5) describes the interaction of four fermions. As a consequence
of that, the Fermi constant G F and the electromagnetic charge e have different
dimensions. In the system of the units h̄ = c = 1, which we are using, e is a
dimensionless quantity whereas the Fermi constant G F has the dimension [M]−2.
We will return to a discussion of this point later.

The Fermi Hamiltonian (2.5) allowed to describe only such β-decays, in which
spins and parities of the initial and final nuclei are the same (Fermi selection rule)

ΔI = 0 πi = π f

However, it was also observed such β-decays of nuclei which satisfy the Gamov-
Teller selection rule:

ΔI = ±1, 0 πi = π f ,

The observation of such decays meant that in addition to the Fermi Hamiltonian the
total Hamiltonian of the β-decay must include additional terms.

2.3 Fermi-Gamov-Teller Hamiltonian of β-Decay

The Fermi Hamiltonian is the product of vector×vector term. If we assume that in
the Hamiltonian of the β-decay there are no derivatives of the fields, for the most
general four-fermion Hamiltonian we obtain the sum of the products of scalar (S),
vector (V), tensor (T), pseudovector (A) and pseudoscalar (P) terms:

Hβ
I (x) =

∑

i=S,V,T,A,P

Gi p̄(x) Oi n(x) ē(x) Oiν(x)+ h.c. (2.6)

Here

O → 1, γα, σα β, γαγ5, γ5 . (2.7)

and Gi are coupling constants, which have the dimensions [M]−2. This Hamiltonian
was proposed by Gamov and Teller in 1936. The Hamiltonian (2.6) could describe
all β-decay data. Transitions, which satisfy the Fermi selection rules, are due to V
and S terms and transitions, which satisfy the Gamov-Teller selection rules, are due
to A and T terms.

The Hamiltonian (2.6) contains five arbitrary coupling constants Gi . It was, how-
ever, general belief that the number of the fundamental constants in the Hamiltonian
of the β-decay must be smaller. For many years the aim of experiments on the
investigation of the β-decay was to find the dominant terms in the Hamiltonian
(2.6). The situation was, however, uncertain until 1957. The data on the measure-
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ments of the β-spectra were in favor of the combination of S and T terms or V and
A terms. However, the measurements of the electron-neutrino angular correlation,
which could distinguish these two possibilities, gave contradictory results. In 1957–
1958 understanding of the β-decay and other weak processes drastically changed.
This was connected with the discovery of the nonconservation of parity in the weak
interaction.

The Fermi and Gamov-Teller Hamiltonians are invariant under space inversion,
i.e. these Hamiltonians conserve parity. There was a general belief at that time that
parity is conserved in all interactions. However, from the study of the weak decays
of kaons in the fifties, there were indications that this assumption was incorrect.

2.4 Violation of Parity in β-Decay

In 1956 Lee and Yang analyzed existing experimental data and came to the conclu-
sion that there were no data contradicting the assumption that parity is not conserved
in the weak interaction. They proposed different experiments that would check this
possibility.

The first experiment, in which violation of parity was discovered was performed
by Wu et al. in 1957. In this experiment the dependence of the probability of the
β-decay of the polarized nuclei Co60 on the angle between the (pseudo)vector of
the polarization and the vector of the momentum of the electron was measured.
From the invariance under rotation (conservation of the angular momentum) for the
probability of the emission of the electron with momentum p by a nucleus with the
polarization P we have the following general expression

wP(k) = w0(1 + α P · k) = w0(1 + αP cos θ), (2.8)

where k = p
p is the unit vector in the direction of the momentum of the electron and

α is the asymmetry parameter. If the parity is conserved we have

wP(k) = wP(−k). (2.9)

Therefore, in this case the pseudoscalar term in the probability (2.8) must be equal
to zero (α = 0). In the experiment Wu et al. was found that |α| is not equal to
zero and large (α � −0.7). Thus, it was proven that in the β-decay parity is not
conserved.

From the discovery of the nonconservation of parity followed that the Hamilto-
nian of the β-decay is the sum of scalar and pseudoscalar terms. The most general
four-fermion Hamiltonian which does not conserve parity was proposed by Lee and
Yang. It has the form

Hβ
I (x) =

∑

i=S,V,T,A,P

p̄(x) Oi n(x) ē(x) Oi (Gi − G
′
iγ5)ν(x)+ h.c. (2.10)
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The constants Gi and G
′
i characterize the scalar and pseudoscalar terms of the

Hamiltonian. The Wu et al. experiment suggested that the constants Gi and G ′
i are

of the same order.
The interaction (2.10) is characterized by 10 (!) coupling constants. In 1957–

1958 there were two fundamental steps which brought us to the modern effective
Hamiltonian of the β-decay and other weak processes.

2.5 Two-Component Neutrino Theory

The first step was the theory of the massless two-component neutrino, proposed by
Landau, Lee and Yang and Salam.

A method of the measurement of the neutrino mass was proposed by Fermi and
Perrin in 1934 . This method is based on the measurement of the high-energy part
of β-spectrum in which the neutrino has a small energy. At the time of the discovery
of the violation of parity, from experiments on the measurement of the neutrino
mass m was found the following upper bound: m � 200 eV. Thus, it was found
that neutrino mass is much smaller than the mass of the electron. The authors of the
two-component neutrino theory assumed that neutrino mass is equal to zero.

Any fermion field can be presented in the form of the sum of left-handed and
right-handed components. We have

ν(x) = νL(x)+ νR(x), (2.11)

where

νL ,R(x) = 1 ∓ γ5

2
ν(x) (2.12)

are left-handed and right-handed components of the field ν(x). Notice that νL(x)
and νR(x) have the same Lorenz-transformation properties as ν(x).

The authors of the two-component neutrino theory assumed that

neutrino field is νL(x) (or νR(x)).

This is possible if the neutrino mass is equal to zero. In fact, the mass term of the
neutrino with mass m has the form

Lm(x) = −m ν̄(x)ν(x) = −m (ν̄L(x)νR(x)+ ν̄R(x)νL(x)) (2.13)

If the neutrino field is νL(x) (or νR(x)) in this case the mass term (2.13) cannot be
built (and, consequently, m = 0)1

If we assume that the neutrino field is νL(x) ( or νR(x)) in this case

1 This is correct for the Dirac neutrino. As we will see later for the Majorana neutrino the mass
term can be built also in the case of a νL (x) (or νR(x)) field.
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1. Gi = G ′
i (or Gi = −G ′

i ) and the parity in the β-decay is violated maximally.
This corresponds to the results of the Wu et al. experiment.

2. The neutrino helicity is equal to −1 (+1) and the antineutrino helicity is equal
to +1 (−1).

In fact, for the neutrino field ν(x) we have the following expansion

ν(x) =
∫

Np

⎛

⎝
∑

r=±1

ur (p)cr (p) e−ipx +
∑

r=±1

ur (−p)d†
r (p) eipx

⎞

⎠ d3 p. (2.14)

Here cr (p) (d†
r (p) is the operator of the absorption of a neutrino (creation of

an antineutrino) with momentum p and helicity r and Np = 1
(2π)3/2

1√
2 p0

is the

normalization factor.
The Dirac equation for the massless neutrino has the form

�p ur (p) = 0, (2.15)

where �p = γα pα . The spinor ur (p) describes a particle with helicity equal to
r (r = ±1). We have

Σ · k ur (p) = r ur (p), (2.16)

where Σ is the operator of the spin and k is the unit vector in the direction of the
momentum p. For the operator of the spin we have

Σ = γ5α = γ5γ
0γ. (2.17)

From (2.15) and (2.17) we have

Σ · k ur (p) = γ5 ur (p). (2.18)

Thus, for a massless particle operator γ5 is the operator of the helicity. From (2.16)
we find

γ5 ur (p) = rur (p). (2.19)

Similarly, for the spinor ur (−p)which describes the state with negative energy −p0

and momentum −p we have

γ5 ur (−p) = −r ur (−p). (2.20)

From (2.19) we find that 1−γ5
2 is the projection operator:
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1 − γ5

2
u−1(p) = u−1(p),

1 − γ5

2
u1(p) = 0. (2.21)

From (2.20) we have

1 − γ5

2
u1(−p) = u1(−p),

1 − γ5

2
u−1(−p) = 0. (2.22)

From these relations for the left-handed neutrino field we find

νL(x) =
∫

Np

(
u−1(p) c−1(p) e−ipx + u1(−p) d†

1 (p) eipx
)

d3 p. (2.23)

Analogously, for the right-handed neutrino field we have

νR(x) =
∫

Np

(
u1(p) c1(p) e−ipx + u−1(−p) d†

−1(p) eipx
)

d3 p. (2.24)

The neutrino helicity was measured in 1958 in a spectacular experiment by Gold-
haber, Grodzins and Sunyar. In this experiment the helicity of the neutrino was
determined from the measurement of the circular polarization of γ -quanta in the
chain of reactions

e− + Eu → ν + Sm∗

↓
Sm + γ (2.25)

It was found that the helicity of neutrino is negative:

h = −1 ± 0.3 (2.26)

The experiment by Goldhaber et al. confirmed the theory of the two-component neu-
trino. It was established that the neutrino is the left-handed particle and the neutrino
field is νL(x).2

2.6 μ-e Universal Charged Current. Current×Current Theory

The next decisive step in the construction of the Hamiltonian of the β-decay
and other weak processes was done by Feynman and Gell-Mann, Marshak and
Sudarshan in 1957–1958. Generalizing the theory of the two-component neutrino,

2 Let us stress that the experiment by Goldhaber et al. does not exclude that the neutrino has a
small mass. In fact, if in the Hamiltonian of the β-decay enters νL (x) and the neutrino mass is
not equal to zero in this case the longitudinal polarization of the neutrino for m � E is equal to

P‖ � −1 + m2

2E2 � −1.
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Feynman and Gell-Mann, Marshak and Sudarshan assumed that in the Hamiltonian
of the weak interaction enter only left-handed components of fields. In this case the
most general four-fermion Hamiltonian of the β-decay has the form

Hβ
I =

∑

i=S,V,T,A,P

Gi p̄L Oi nL ēL OiνL + h.c., (2.27)

where Oi are Dirac matrices (see (2.7)).
We have

ēL OiνL = ē
1 + γ5

2
Oi

1 − γ5

2
ν. (2.28)

It is obvious that

1 + γ5

2

(
1; σα β; γ5

) 1 − γ5

2
= 0 . (2.29)

Therefore, S, T and P terms do not enter into the Hamiltonian (2.27). Moreover A
and V terms are connected by the relation:

1 + γ5

2
γαγ5

1 − γ5

2
= −1 + γ5

2
γα

1 − γ5

2
. (2.30)

Thus, if we assume that only left-handed components of the fields enter into the
four-fermion Hamiltonian , we come to the unique expression for the Hamiltonian
of the β-decay

Hβ
I = G F√

2
4 p̄LγαnL ēLγ

ανL + h.c.

= G F√
2

p̄γα(1 − γ5)n ēγ α(1 − γ5)ν + h.c. (2.31)

The Hamiltonian (2.31) is the simplest possible four-fermion Hamiltonian of the
β-decay which takes into account large violation of parity. Like the Fermi Hamilto-
nian (2.5), it is characterized by only one interaction constant.3

The theory proposed by Feynman and Gell-Mann, Marshak and Sudarshan was a
very successful one: the Hamiltonian (2.31) allowed to describe all existing β-decay
data. We know today that (2.31) is the correct effective Hamiltonian of the β-decay,
of the process ν̄ + p → n + e+, and other connected processes.

Until now we have only considered the Hamiltonian of the β-decay. At the
time when parity violation was discovered other weak processes involving a muon-
neutrino pair were known:

3 In order to keep the numerical value of the Fermi constant the coefficient 1√
2

was introduced in

(2.31).
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μ− + (A, Z) → ν + (A, Z − 1) (μ− capture) (2.32)

μ+ → e+ + ν + ν̄ (μ− decay). (2.33)

In 1947 B. Pontecorvo suggested the existence of aμ−e universal weak interaction,
which is characterized by the same Fermi constant G F . He compared the probability
of the μ-capture (2.32) with the probability of the K -capture

e− + (A, Z) → ν + (A, Z − 1) (2.34)

and found that the constant of the interaction of the muon-neutrino pair with nucle-
ons is of the same order as the Fermi constant G F . The idea of a μ − e universal
weak interaction was also proposed by Puppi, Klein, Tiomno and Wheeler.

In order to build a μ − e universal theory of the weak interaction, Feynman and
Gell-Mann introduced the notion of the charged weak current4

jα = 2 ( p̄Lγ
αnL + ν̄μLγ

αeL + ν̄eLγ
αμL) (2.35)

and assumed that the Hamiltonian of the weak interaction has the current×current
form5

HI = G F√
2

jα j+α , (2.36)

where G F is the Fermi constant.
There are two types of terms in the Hamiltonian (2.36): nondiagonal and diago-

nal. The nondiagonal terms are given by

Hnd
I = G F√

2
4 {[( p̄Lγ

αnL)(ēLγανeL) + h.c.] +
[( p̄Lγ

αnL)(μ̄LγανμL) + h.c.] +
[(ēLγ

ανeL)(ν̄μLγαμL) + h.c.]} (2.37)

The first term of this expression is the Hamiltonian of β-decay of the neutron (2.1),
of the process ν̄e + p → e+ + n and other connected processes. The second term
of (2.37) is the Hamiltonian of the process μ− + p → νμ + n and other connected
processes. Finally the third term of (2.37) is the Hamiltonian of the μ-decay (2.33)
and other processes.

4 We denoted the fields of neutrinos which enter into the current together with the fields of electron
and muon, correspondingly, by νe and νμ. At this point, this is simply a notation. We will see later
that in fact νe and νμ are different particles.
5 The current jα changes the charge by one. This is the reason, why this current is called a charged
current. Notice also that the hadron current has the form jα = vα − aα , where vα = p̄γ αn and
aα = p̄γ αγ5n are vector and axial currents. The Feynman-Gell-Mann theory is called the V − A
theory.
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The diagonal terms of the Hamiltonian (2.36) are given by

Hd = GF√
2

4[(ν̄eLγ
αeL)(ēLγανeL) + (ν̄μLγ

αμL)(μ̄LγανμL ) + ( p̄Lγ
αnL)(n̄Lγα pL)]

(2.38)
The first term of the (2.38) is the Hamiltonian of the processes of elastic scattering

of neutrino and antineutrino on an electron

νe + e → νe + e (2.39)

and

ν̄e + e → ν̄e + e, (2.40)

of the process e+ + e− → ν̄e + νe and other processes. Such processes were not
known in the fifties. Their existence was predicted by the current×current theory.

The cross sections of the processes (2.39) and (2.40) are very small. The obser-
vation of such processes was a challenge. After many years of efforts, the cross
section of the process (2.40) was measured by F. Reines et al. in an experiment
with antineutrinos from a reactor. At that time the Standard Model already existed.
According to the Standard Model, to the matrix elements of the processes (2.39) and
(2.40) contributes also an additional (neutral current) Hamiltonian. The result of the
experiment by F. Reines et al. was in agreement with the Standard Model.

2.7 Theory with Vector W Boson

Feynman and Gell-Mann considered a possible origin of the current×current inter-
action (2.36). Let us assume that a charged vector boson W ± exists and the
Lagrangian of the weak interaction (analogously to the Lagrangian of the electro-
magnetic interaction) has the form of a scalar product of the current and the vector
field

LI = − g

2
√

2
jα Wα + h.c. (2.41)

where g is a dimensionless constant and the current jα is given by Eq. (2.35).
In the theory with W -boson Feynman diagram of the β-decay of the neutron is

presented in Fig. 2.1. If

Q2 � m2
W (2.42)

where Q is the momentum of the virtual W -boson and mW is the mass of W -boson,
the matrix element of the β-decay of the neutron can be obtained from the Hamilto-
nian (2.36) in which the Fermi constant is given by the relation
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n

e−

νe

p

W −

Fig. 2.1 Feynman diagram of the process n → p + e− + ν̄ in the theory with the W ±-boson

GF√
2

= g2

8 m2
W

. (2.43)

It is easy to verify that in the theory with W -boson the effective Hamiltonian of all
weak processes with the virtual W -boson and Q2 � m2

W has current×current form
(2.36), in which the Fermi constant is given by the relation (2.43).

Thus, the theory with a charged vector W -boson could explain the
current×current structure of the weak interaction Hamiltonian and the fact that the
Fermi constant has the dimension [M]−2. As we will see later, (2.41) is a part of the
total Lagrangian of the electroweak interaction of the Standard Model.6

2.8 First Observation of Neutrinos. Lepton Number
Conservation

The first proof of the existence of neutrino was obtained in the mid-fifties in the
experiment by F. Reines and C.L. Cowan. In this experiment (anti)neutrinos from
the Savannah River reactor were detected through the observation of the process

ν̄e + p → e+ + n. (2.44)

Antineutrinos are produced in a reactor in a chain of β-decays of neutron-rich nuclei,
products of the fission of uranium and plutonium. The energies of antineutrinos from
a reactor are less than approximately 10 MeV. About 2.3 · 1020 antineutrinos per
second were emitted by the Savannah River reactor. The flux of ν̄e’s in the Reines
and Cowan experiment was about 1013 cm−2 s−1.

In the theory of the two-component neutrino, the cross section of the process
(2.44) is connected with the life-time τn of the neutron by the relation

6 It is interesting to note that the idea of the charged vector W -boson was proposed by O. Klein at
the end of the thirties.
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σ(ν̄e p → e+n) = 2π2

m5
e f τn

pe Ee, (2.45)

where Ee � Eν̄ − (mn − m p) is the energy of the positron, pe is the positron
momenta, f =1.686 is the phase-space factor, mn,m p,me are masses of the neutron,
proton and electron, respectively. From (2.45) for the cross section of the process
(2.44), averaged over antineutrino spectrum, the value

σ̄ (ν̄e p → e+n) � 9.5 · 10−44 cm2 (2.46)

was found.
A liquid scintillator (1.4 · 103 l) loaded with CdCl2 was used as a target in the

experiment. Positron, produced in the process (2.44), slowed down in the scintilla-
tor and annihilated with electron, producing two γ - quanta with energies � 0.51
MeV and opposite momenta. A neutron, produced in the process was captured
by Cd within about 5 µs, producing γ -quantum. The γ -quanta were detected by
110 photomultipliers. Thus, the signature of the ν̄-event in the Reines and Cowan
experiment was two γ -quanta from the e+ − e−-annihilation in coincidence with a
delayed γ -quantum from the neutron capture by cadmium. For the cross section of
the process (2.44) the value

σν = (11 ± 2.6) 10−44 cm2 (2.47)

was obtained in the experiment. This value is in agreement with the predicted value
(2.46).

The particle which is produced in the β-decay together with electron is called
antineutrino. It is a direct consequence of the quantum field theory that antineutrino
can produce a positron in the inverse β-decay (2.44) and other similar processes.
Can antineutrinos produce electrons in weak processes of interaction with nucleons?
The answer to this question was obtained from an experiment which was performed
in 1956 by Davis et al. with antineutrinos from the Savannah River reactor. In this
experiment 37Ar from the process

ν̄ +37 Cl → e− +37 Ar (2.48)

was searched for. The process (2.48) was not observed in the experiment. It was
shown that the 37Ar production rate was about five times smaller than the rate
expected if antineutrinos could produce electrons via the weak interaction.

Thus, it was established that antineutrinos from a reactor can produce positrons
(the Reines-Cowan experiment) but cannot produce electrons. In order to explain
this fact we assume that exist conserving lepton number (charge) L , the same for ν̄
and e+. Let us put L(ν̄) = L(e+) = −1. According to the quantum field theory the
lepton charges of the corresponding antiparticles are opposite: L(ν) = L(e−) = 1.
We also assume that the lepton numbers of proton, neutron and other hadrons are
equal to zero. Conservation of the lepton number explain the negative result of the
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Davis experiment. According to the law of conservation of the lepton number a
neutrino is produced together with e+ in the β+-decay

(A, Z) → (A, Z − 1)+ e+ + ν (2.49)

2.9 Discovery of Muon Neutrino. Electron and Muon
Lepton Numbers

In the expression (2.35) the fields of neutrinos, which enter into the charged current
together with electron and muon fields, were denoted by νe and νμ, correspond-
ingly. Are νe and νμ the same or different particles? The answer to this fundamental
question was obtained in the famous Brookhaven neutrino experiment in 1962.

The first indication that νe and νμ are different particles was obtained from an
analysis of the μ → eγ data. The probability of the decay μ → eγ was calculated
by Feinberg in the theory with W -boson and a cutoff. It was found that if νe and νμ
are identical particles and the cut-off is given by the mass of the W -boson the ratio
R of the probability of the decay μ → eγ to the probability of the decay μ → e ν ν̄
is given by

R � α

24π
� 10−4 (2.50)

The decay μ → eγ was not observed in experiment. At the time of the Brookhaven
experiment, for the upper bound of the ratio R was found the value

R < 10−8, (2.51)

which is much smaller than (2.50).
A direct proof of the existence of the second (muon) type of neutrino was

obtained by L.M. Lederman, M. Schwartz, J. Steinberger et al. in the first exper-
iment with accelerator neutrinos in 1962. The idea of the experiment was proposed
by B.Pontecorvo in 1959.

A beam of π+’s in the Brookhaven experiment was obtained by the bombard-
ment of Be target by protons with an average energy of about 15 GeV. In the decay
channel (about 21 m long) practically all π+’s decay. After the channel there was
shielding (13.5 m of iron), in which charged particles were absorbed. After the
shielding there was the neutrino detector (aluminium spark chamber, 10 tons) in
which the production of charged leptons was observed.

The dominant decay channel of the π+-meson is

π+ → μ+ + νμ. (2.52)

According to the universal V − A theory, the ratio R of the width of the decay
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π+ → e+ + νe (2.53)

to the width of the decay (2.52) is equal to

R = m2
e

m2
μ

(1 − m2
e

m2
π
)2

(1 − m2
μ

m2
π
)2

� 1.2 · 10−4. (2.54)

Thus, the decay π+ → e+νe is strongly suppressed with respect to the decay π+ →
μ++νμ.7 From (2.54) follows that the neutrino beam in the Brookhaven experiment
was practically a pure νμ beam (with a small about 1% admixture of νe from decays
of muons and kaons).

Neutrinos, emitted in the decay (2.52), produce μ− in the process

νμ + N → μ− + X. (2.55)

If νμ and νe would be the same particles, neutrinos from the decay (2.52) would
produce also e− in the reaction

νμ + N → e− + X. (2.56)

Due to the μ− e universality of the weak interaction one could expect to observe in
the detector practically equal number of muons and electrons.

In the Brookhaven experiment 29 muon events were detected. The observed six
electron candidates could be explained by the background. The measured cross sec-
tion was in agreement with the V − A theory. Thus, it was proved that νμ and νe are
different particles.8

The results of the Brookhaven and other experiments suggested that the total
electron Le and muon Lμ lepton numbers are conserved:

∑

i

L(i)e = const;
∑

i

L(i)μ = const (2.57)

7 The reason for this suppression can be easily understood. Indeed, let us consider the decay (2.53)
in the rest frame of the pion. The helicity of the neutrino is equal to −1. If we neglect the mass
of the e+, the helicity of the positron will be equal to +1 (the helicity of the positron will be
the same in this case as the helicity of the antineutrino). Thus, the projection of the total angular
momentum on the neutrino momentum will be equal to −1. The spin of the pion is equal to zero
and consequently the process (2.53) in the limit me → 0 is forbidden. These arguments explain
the appearance of the small factor ( me

mμ
)2 in (2.54).

8 In 1963 in the CERN with the invention of the magnetic horn the intensity and purity of neutrino
beams were greatly improved. In the more precise 45 tons spark-chamber experiment and in the
large bubble chamber experiment the Brookhaven result was confirmed.



24 2 Weak Interaction Before the Standard Model

Table 2.1 Lepton numbers of particles

Lepton number νe e− νμ μ
− Hadrons, γ

Le 1 0 0
Lμ 0 1 0

The lepton numbers of particles are given in Table 2.1. The lepton numbers of
antiparticles are opposite to the lepton numbers of the corresponding particles.

For many years all experimental data were in an agreement with (2.57). At
present it is established that (2.57) is an approximate phenomenological rule. It is
violated in neutrino oscillations due to small neutrino masses and neutrino mixing.
Later we will discuss neutrino oscillations in details.

2.10 Strange Particles. Quarks. Cabibbo Current

The current×current Hamiltonian (2.36) with CC current (2.35) is the effective
Hamiltonian of such processes in which leptons, neutrinos and nonstrange hadrons
are participating. The first strange particles were discovered in cosmic rays in the
fifties. Decays of strange particles were studied in details in accelerator experiments.
From the investigation of the semi-leptonic decays

K + → μ+ + νμ, Λ → n + e− + ν̄e,

Σ− → n + e− + ν̄e, Ξ− → Λ+ μ− + ν̄μ

and others the following three phenomenological rules were formulated.

I. The strangeness S in the decays of strange particles is changed by one

|ΔS| = 1.

II. In the decays of the strange particles the rule

ΔQ = ΔS

is satisfied. Here ΔQ = Q f − Qi and ΔS = S f − Si , where Si and S f are the
initial and final total strangeness of the hadrons and Qi and Q f are the initial
and final total electric charges of hadrons (in the unit of the proton charge).

III. The decays of strange particles are suppressed with respect to the decays of non
strange particles.

In 1964 Gell-Mann and Zweig proposed the idea of three quarks u, d , s, con-
stituents of strange and nonstrange hadrons. The quantum numbers of the quarks are
presented in Table 2.2 Let us build the hadronic charged currents from the quark
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Table 2.2 Quantum numbers of quarks (Q is the charge, S is the strangeness, B is the baryon
number)

Quark Q S B

u 2/3 0 1/3
d −1/3 0 1/3
s −1/3 −1 1/3

fields. The current (2.35) changes the charge by one. If we accept the Feynman-
Gell-Mann, Marshak-Sudarshan prescription (into the weak current enter only left-
handed components of the fermion fields) there are only two possibilities to build
such currents from the fields of u, d and s quarks:

ūLγαdL and ūLγαsL . (2.58)

The first current changes the charge by one and does not change the strange-
ness (ΔQ = 1, ΔS = 0). The second current changes the charge by one and the
strangeness by one (ΔQ = 1, ΔS = 1). The matrix elements of these currents auto-
matically satisfy rules I and II. Notice that this was one of the first arguments in
favor of quark structure of the hadron current.

The weak interaction of the strange particles was included into the
current×current theory by N. Cabibbo in 1962. He assumed that the charged cur-
rent which does not change strangeness and the charged current which changes the
strangeness by one are, correspondingly, the 1 + i2 and 4 + i5 components of the
SU (3) octet current. In order to take into account the suppression of the decays with
the change of the strangeness with respect to the decays in which the strangeness
is not changed (the rule III) Cabibbo introduced a parameter which is called the
Cabibbo angle θC . From the analysis of the experimental data on the investigation
of the decays of strange particles he found that sin θC � 0.2.

In terms of quark currents (2.58) the Cabibbo current has the form

jCabibbo
α (x) = 2 (cos θC ūL(x)γα dL(x)+ sin θC ūL(x)γα sL(x) (2.59)

The total weak charged current takes the form

jα(x) = 2 (ν̄eL(x)γα eL(x)+ ν̄μL(x)γα μL(x)+ ūL(x)γα d
′
L(x), (2.60)

where

d
′
L(x) = cos θC dL(x)+ sin θC sL(x). (2.61)

Notice that there is an asymmetry between quark and lepton terms in (2.60). Namely,
in this expression there are two lepton terms and one quark term.
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2.11 Charmed Quark. Quark and Neutrino Mixing

It was shown in 1970 by Glashow, Illiopulos and Maiani (GIM) that the charged
current (2.59) induces a neutral current which does not change electric charge
(ΔQ = 0) and change the strangeness by one (|ΔS| = 1). As a result, the decays
like

K + → π+ + ν + ν̄. (2.62)

become possible in such a theory. In the theory with the current (2.60) the width of
the decay (2.62) is many orders of magnitude larger than the upper bound of the
width of the decay obtained in experiments.

Glashow, Illiopulos and Maiani assumed that there exists a fourth “charmed”
quark c with charge 2/3 and that there is an additional term in the weak current into
which enters the field of the new quark cL and the combination of dL and sL fields
orthogonal to the Cabibbo combination (2.61). The weak currents took the form

jα(x) = 2 (ν̄eL(x)γα eL(x)+ ν̄μL(x)γα μL(x)+ ūL(x)γα d
′
L(x)+ c̄L(x)γα s

′
L(x)),
(2.63)

where

d
′
L(x) = cos θC dL(x)+ sin θC sL(x)

s
′
L(x) = − sin θC dL(x)+ cos θC sL(x) . (2.64)

As we will see in the next section, in the theory with the charged current (2.63)
neutral current which changes the strangeness does not appear.

The relations (2.64) mean that the fields of d and s quarks enter into the charged
current in the mixed form. The phenomenon of mixing is perfectly confirmed by
experiment.

We make the following remark. In the current (2.63) lepton and quark terms enter
symmetrically. It will be, however, full lepton-quark symmetry of the current if the
neutrino masses are different from zero and the fields of neutrinos with definite
masses, like the fields of quarks, enter into the CC in the mixed form

νμL(x) = cos θ ν1L(x)+ sin θ ν2L(x)

νeL(x) = − sin θ ν1L(x)+ cos θ ν2L(x), (2.65)

where ν1(x) and ν2(x) are the fields of the neutrinos with masses m1 and m2, cor-
respondingly.

The existence of the c-quark means the existence of a new family of “charmed”
particles. This prediction of the theory was perfectly confirmed by experiment. In
1974 the J/Ψ particles, bound states of c − c̄, were discovered. In 1976 the D±,0
mesons, bound states of charmed and nonstrange quarks, were discovered, etc. All
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data on the investigation of the weak decays and neutrino reactions were in agree-
ment with the current×current theory with the current given by (2.63).

In 1975 the third charged lepton τ was discovered in experiments at e+ − e−
colliders. In the framework of the Standard Model, which we will consider in the
next chapter, the existence of the third charged lepton requires the existence of the
corresponding third type of neutrino ντ and an additional pair of quarks: the t (top)
quark with electric charge 2/3 and the b (bottom) quark with electric charge −1/3.
All these predictions of the SM were perfectly confirmed by numerous experiments.

The modern charged current has the form

jCC
α (x) = 2(ν̄eL(x)γα eL(x)+ ν̄μL(x)γα μL(x)+ ν̄τ L(x)γα τL(x)

+ ūL(x)γα d
′
L(x)+ c̄L(x)γα s

′
L(x)+ t̄L(x)γα b

′
L(x)). (2.66)

Here

νl L(x) =
3∑

i=1

Uli νi L(x) l = e.μ, τ (2.67)

and

d
′
L(x) =

∑

q=u,s,b

Vuq qL(x), s
′
L(x) =

∑

q=u,s,b

VcqqL(x), b
′
L(x) =

∑

q=u,s,b

Vtq qL(x).

(2.68)

Here U is an unitary 3 × 3 neutrino mixing matrix and V is an unitary 3 × 3 quark
mixing matrix.

We know today that the vector W ±-boson exists and that the Lagrangian of the
CC weak interaction has the form

LCC
I (x) = − g

2
√

2
jCC
α (x) Wα(x)+ h.c. (2.69)

2.12 Summary and Outlook

The theory of the weak interaction started with the famous Fermi paper “An attempt
of a theory of beta radiation”. The Fermi theory was based on (1) The Pauli hypoth-
esis of the existence of the neutrino. (2) The proton-neutron structure of nuclei. (3)
The assumption that an electron-neutrino pair is produced in the process of transition
of a neutron into a proton. (4) The assumption that in analogy with electromagnetic
interaction the weak interaction is the vector one. Later in accordance with exper-
imental data this last assumption was generalized and other terms (scalar, tensor,
axial and pseudoscalar) were included.

The discovery of the parity violation in the β-decay and other weak processes
played a revolutionary role in the development of the theory of the weak interac-
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tion. Soon after this discovery the two-component theory of massless neutrino was
proposed. According to this theory in the Hamiltonian of the weak interaction the
left-handed (or right-handed) component of the neutrino field enters. In less than
one year this theory was confirmed by experiment. It was proved that neutrino is a
left-handed particle.

The next fundamental step was the current×current, V-A theory of the weak
interaction which was based on the assumption that only left-handed components of
the fields enter into charged current.

The electron neutrino was discovered in the fifties in the first reactor neutrino
experiment. A few years later in the first accelerator neutrino experiment the muon
neutrino was discovered.

After the hypothesis of quarks was proposed, the weak charged current started
to be considered as quark and lepton current. One of the fundamental ideas which
was put forward in the process of the phenomenological development of the theory
was the idea of the quark mixing. At the very early stage of the development of the
theory the idea of the existence of the charged heavy vector intermediate W ± boson
was proposed.

It was a long (about 40 years) extremely important period of the development
of the physics of the weak interaction with a lot of bright, courageous ideas.9 The
theory which was finally proposed allowed to describe data of a huge number of
experiments. The Standard Model of the weak interaction could not appear without
the phenomenological V-A theory.

9 And also many wrong ideas which we did not discussed here.



Chapter 3
The Standard Model of the Electroweak
Interaction

3.1 Introduction

We will consider here the Glashow-Weinberg-Salam theory of the weak and electro-
magnetic interactions, which usually is called the Standard Model (SM). This theory
is one of the greatest achievements of particle physics of the twentieth century. This
theory predicted the existence of families of new particles (charmed, bottom, top),
a new class of the weak interaction (Neutral currents), W ± and Z0 vector bosons
and masses of these particles, the existence of the third type of neutrino (ντ ), the
existence of the scalar Higgs boson, etc. All predictions of the Standard Model are in
perfect agreement with existing experimental data. The search for the Higgs boson
is one of the major aim of experiments at the LHC accelerator in CERN.

The current×current theory of the weak interaction, which we considered in the
previous chapter, was a very successful theory. In the lowest order of the pertur-
bation theory this theory allowed to describe all experimental data existing at the
sixties. However, the current×current theory and also the theory with the W ± vec-
tor boson were unrenormalizable theories: the infinities of the higher orders of the
perturbation theory could not be excluded in these theories by the renormalization
of the masses and other physical constants.

This was the main reason why, in spite of big phenomenological success, these
theories for many years were not considered as satisfactory ones. The Standard
Model was born in the end of the sixties in an attempt to build a renormalizable
theory of the weak interaction. The only renormalizable physical theory, that was
known at that time, was quantum electrodynamics. The renormalizable theory of
the weak interaction was build in the framework of the unification of the weak and
electromagnetic (electroweak) interactions. This theory was proposed by Glashow,
Weinberg and Salam. It was proved by t’Hooft and Veltman that the SM is a renor-
malizable theory.

The Standard Model is built in two stages. The first stage is based on the local
gauge invariance of massless fields. Mass terms of all fields, except the electro-
magnetic field, appear as a result of the spontaneous violation of the symmetry (the
second stage).

In the first two introductory sections we will consider two major ingredients of
the Standard Model

Bilenky, S.: The Standard Model of the Electroweak Interaction. Lect. Notes Phys. 817, 29–60
(2010)
DOI 10.1007/978-3-642-14043-3_3 c© Springer-Verlag Berlin Heidelberg 2010
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1. SU (2) Yang-Mills local gauge invariance.
2. Spontaneous violation of the symmetry and the Higgs mechanism.

3.2 SU(2) Yang-Mills Local Gauge Invariance

Let us assume that

ψ(x) =
(
ψ+1(x)
ψ−1(x)

)
, (3.1)

where ψ±1(x) are spin 1/2 fields, is the doublet of a SU (2) group. If the masses of
ψ±1(x) fields are the same and equal to m, the free Lagrangian of the field ψ(x) is
given by the expression

L0(x) = ψ̄(x) (i γ α∂α + m) ψ(x). (3.2)

The Lagrangian (3.2) is invariant under the global gauge SU (2) transformations

ψ ′(x) = U ψ(x), ψ̄ ′(x) = ψ̄(x) U+. (3.3)

Here

U = ei 1
2 τ ·Λ, (3.4)

where τ · Λ = ∑3
i=1 τi Λi , τi are the Pauli matrices andΛi are arbitrary constants.

Let us stress that the Lagrangian L0(x) is invariant under the transformation (3.3)
because the derivative ∂α ψ(x) is transformed in the same way as the field ψ(x).

From the invariance under the transformation (3.3) follows that the isovector
current

jαi (x) = ψ̄(x) γ α
1

2
τi ψ(x) (3.5)

satisfies the equation

∂α jαi (x) = 0 (3.6)

and the total isotopic spin Ti = ∫
j0
i (x)d

3x is conserved.
We will build now the theory which is invariant under the local gauge SU (2)

transformations

ψ ′(x) = U (x) ψ(x), ψ̄ ′(x) = ψ̄(x) U+(x). (3.7)

Here

U (x) = ei 1
2 τ ·Λ(x), (3.8)
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where Λi (x) are arbitrary functions of x .1

For the derivative ∂α ψ(x) we have

∂α ψ(x) = U+(x)U (x) ∂α U+(x)ψ ′(x) =
U+(x) (∂α + U (x) ∂α U+(x)) ψ ′(x). (3.9)

It is obvious from (3.9) that the free Lagrangian (3.2) is not invariant under the
transformation (3.7).

Let us consider an infinitesimal SU (2) transformations, i.e. we will assume that
Λi are small and in all expansions over Λi we keep only linear terms. We have

U (x) � 1 + i
1

2
τ · Λ(x), U+(x) � 1 − i

1

2
τ · Λ(x). (3.10)

From (3.9) and (3.10) we find

∂α ψ(x) = U+(x)
(
∂α − i

1

2
τ · ∂α Λ(x)

)
ψ ′(x). (3.11)

From (3.7) follows that

ψ(x) = U+(x) ψ ′(x). (3.12)

Comparing (3.11) and (3.12) we conclude that the field ψ(x) and the derivative
∂αψ(x) are transformed differently. This is the reason why the free Lagrangian (3.2)
in not invariant under local gauge transformations (3.7).

In order to build a theory which is invariant under local gauge transformations me
must assume that the field ψ(x) interacts with a vector field. In fact, let us consider
the covariant derivative

Dα ψ(x) =
(
∂α + ig

1

2
τ · Aα(x)

)
ψ(x), (3.13)

where g is a dimensionless constant and Ai
α(x) is a vector field.

It is obvious that the following equality is valid

Dα ψ(x) = U+(x)U (x) Dα U+(x) ψ ′(x). (3.14)

Let us consider the term U (x) Dα U+(x). Using (3.10) we find

1 The operator U is the operator of rotation in the three-dimensional isotopic space around the
vectorΛ by the angle |Λ|. Thus, global gauge invariance is the invariance under rotations which are
the same in all space-time points. The local gauge invariance is the invariance under the rotations
in the isotopic space which are different at different space-time points.
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U (x) Dα U+(x) = ∂α − i
1

2
τ · ∂α Λ(x)+ ig U (x)

1

2
τ · Aα(x)U+(x). (3.15)

For the last term of (3.15) we have

U (x) 1
2 τ · Aα(x)U+(x) = 1

2
τ · Aα(x)+ i

[
1

2
τ · Λ(x) ,

1

2
τ · Aα(x)

]

= 1

2
τ · Aα(x)− 1

2
τ · (Λ × Aα(x)), (3.16)

where we take into account that [ 1
2τi ,

1
2τk] = ieikl

1
2τl . From (3.15) and (3.16) we

obtain

U (x) Dα U+(x) = ∂α + ig
1

2
τ · A′

α(x) = D′
α. (3.17)

Here

A′
α(x) = Aα(x)− 1

g
∂α Λ(x)− Λ(x)× Aα(x). (3.18)

Thus, from (3.14) and (3.17) we have

Dα ψ(x) = U+(x) D′
α ψ

′(x) (3.19)

Comparing (3.12) and (3.19) we conclude that under the local gauge SU (2) transfor-
mations, which include the phase transformation (3.7) of the spinor field ψ(x) and
the gauge transformation (3.18) of the vector field Aα(x), the covariant derivative
Dα ψ(x) and the field ψ(x) are transformed in the same way.

Thus, if in the free Lagrangian (3.2) we will make the change

∂α ψ(x) → Dα ψ(x) (3.20)

we obtain the Lagrangian

L1(x) = ψ̄(x) (i γ αDα + m) ψ(x) (3.21)

which is invariant under the local gauge transformations (3.7) and (3.18).
The Lagrangian L1(x) is the sum of the free Lagrangian of the field ψ(x) and the

Lagrangian of the interaction of the field ψ(x) and the vector field Aα(x). The total
Lagrangian must include also the free Lagrangian of the field Aα(x), which is invari-
ant under the gauge transformation (3.18). In order to build the free Lagrangian of
the field Aα(x) we will consider the commutator [Dα, Dβ ]. We have

[Dα, Dβ ] = ig
1

2
τ · Fαβ(x), (3.22)
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where

Fαβ(x) = ∂α Aβ(x)− ∂β Aα(x)− g Aα(x)× Aβ(x) (3.23)

is the generalized stress tensor. From (3.17) we find the following relation

U [Dα, Dβ ] U+ = [D′
α, D′

β ]. (3.24)

Further, from (3.22) and (3.24) we have

U (x)
1

2
τ · Fαβ(x)U+(x) = 1

2
τ · F′

αβ(x), (3.25)

where

F′
αβ(x) = ∂α A′

β(x)− ∂β A′
α(x)− g A′

α(x)× A′
β(x). (3.26)

Finally, from (3.10) from (3.25) we find that the tensor Fαβ(x) is transformed as an
isotopic vector:

F′
αβ(x) = Fαβ(x)− Λ(x)× Fαβ(x). (3.27)

Thus, the scalar product Fαβ · Fαβ is invariant.
The free Lagrangian of the vector field Aα(x), which is invariant under the trans-

formation (3.18), can be chosen in the form

L0(x) = −1

4
Fαβ(x) · Fαβ(x). (3.28)

The total Lagrangian of the spinor field ψ(x) and the vector field Aα(x), which
is invariant under the transformations (3.7) and (3.18), is given by the following
expression

L(x) = ψ̄(x)

(
i γ α(∂α + ig

1

2
τ · Aα(x))+ m

)
ψ(x)− 1

4
Fαβ(x)Fαβ(x). (3.29)

Thus, the requirement of the local gauge SU (2) invariance can be satisfied if the
spinor doublet field ψ(x) interacts with the vector field Ai

α(x). The vector field
Ai
α(x) is called gauge field. Under the SU (2) global gauge transformation (Λ =

const) the field Aα(x) is transformed as an isotopic vector:

A′
α(x) = Aα(x)− Λ × Aα(x). (3.30)

From (3.29) we obtain the following expression for the Lagrangian of the interaction
of the field ψ(x) and the gauge vector field Aα(x)
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LI (x) = −g jα(x) · Aα(x) = −g
3∑

i=1

j i
α(x) Aαi (x), (3.31)

where

j i
α(x) = ψ̄(x) γα

1

2
τi ψ(x) (3.32)

is the isovector current.
The Lagrangian of the interaction LI (x) can be written in the form

LI (x) =
(

− g

2
√

2
jα(x)Wα(x)+ h.c.

)
− g j3

α(x) Aα3(x). (3.33)

Here

jα(x) = 2 j1+i2
α (x), Wα(x) = 1√

2
A1−i2
α (x), (3.34)

where

j1±i2
α = j1

α ± i j2
α, A1±i2

α = A1
α ± i A2

α. (3.35)

For the current jα(x) we have

jα(x) = 2 ψ̄(x) γα
1

2
(τ1 + iτ2) ψ(x) = 2 ψ̄+1(x) γα ψ

−1(x), (3.36)

where ψ+1(x) and ψ−1(x) are components of the isotopic doublet with the third
projections of the isotopic spin I3 equal to 1

2 and − 1
2 , correspondingly. According

to the Gell-Mann and Nishijima I3 and the electric charge Q are connected by the
relation

Q = I3 + 1

2
Y. (3.37)

Here Q is the electric charge in the unit of the proton charge and Y is the hyper-
charge. From (3.36) and (3.37) follows that the current jα(x) changes the charges
of particles by one (ΔQ = 1). Thus, the field Wα(x) (due to the conservation of
the total electric charge) is the field of the particles W ± with electric charges equal
to ±1.

For the current j3
α(x) we have

j3
α(x) = ψ̄(x) γα

1

2
τ3 ψ(x) = 1

2
(ψ̄+1(x) γα ψ

+1(x)− ψ̄−1(x) γα ψ
−1(x)).

(3.38)
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The current j3
α(x) does not change the electric charges of particles and hence A3

α(x)
is the field of neutral, vector particles.

Thus, we have built the SU (2) local gauge invariant Yang-Mills theory with
gauge fields which include charged as well as neutral vector fields. Such a theory
will be used as a basis for the theory of the weak and electromagnetic interactions
(The Standard Model).

In conclusion we make the following remarks.

1. After the change

∂α ψ(x) →
(
∂α + ig

1

2
τ · Aα(x)

)
ψ(x) (3.39)

in the free Lagrangian of the spinor field ψ(x) we came to the interaction
Lagrangian (3.31), which and is characterized by the interaction constant g and
has the form of the product of the isovector current jα(x) and the isovector field
Aα(x). It is necessary, however, to stress that the requirements of the local gauge
invariance do not fix the form of the interaction Lagrangian. For example, to the
expression (3.31) we can add a tensor term

LT
I = μ ψ̄(x) σαβ

1

2
�τ ψ(x) Fαβ, (3.40)

which is invariant under the transformations (3.7) and (3.18). However, in order
to “absorb” the term ∂αΛ(x) in the transformation of the derivative of the
fermion field (see (3.11)) and to provide the local gauge SU (2) invariance we
must make the change (3.39) which induces the interaction (3.31). In this sense
the interaction (3.31) is the minimal gauge invariant interaction of the spinor and
vector fields.

2. The mass term of the vector field − 1
2 m2

A Aα(x)Aα(x) is not invariant under
the transformation (3.18). Thus, local gauge invariance requires that Wα(x) and
A3
α(x) are fields of massless particles. This is the reason why in a realistic theory

the local SU (2) gauge symmetry is violated. In the next section we will discuss
the mechanism of the spontaneous violation of the gauge symmetry.

3.3 Spontaneous Symmetry Breaking. Higgs Mechanism

We will consider the scalar complex field φ(x) and assume that the Lagrangian of
the field is given by the expression

L = ∂αφ
† ∂αφ − V (φ† φ). (3.41)

Here

V (φ† φ) = −μ2 φ† φ + λ (φ† φ)2, (3.42)

where μ2 and λ are positive constants.
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The first term of the Lagrangian (3.41) is the kinetic term. The second term
V (φ† φ) is the so called potential. Let us notice that the term −μ2 φ† φ is not a
mass term (it differs from a mass term by the sign).

The Lagrangian (3.41) is invariant under the global gauge transformation

φ′(x) = ei Λ φ(x), (3.43)

where Λ is a constant arbitrary phase.
Let us find the minimum of the potential. Equation (3.42) can be written in the

form

V (φ† φ) = λ

(
φ† φ − μ2

2 λ

)2

− μ4

4 λ
. (3.44)

From this expression it is evident that the potential reaches its minimum at the value
of the field which satisfies the condition

φ
†
0 φ0 = μ2

2 λ
. (3.45)

Thus, the potential reaches the minimum
(

V (φ†
0 φ0) = −μ4

4 λ

)
at

φ = φ0 = v√
2

ei α = const. (3.46)

Here α is a real, constant phase and we have used the standard notation

v2 = μ2

λ
. (3.47)

The Hamiltonian of the system is given by the following expression

H = ∂0φ
† ∂0φ +

3∑

i=1

∂iφ
† ∂iφ + V (φ† φ). (3.48)

From this expression follows that at φ = φ0 the energy of the field is minimal.
Thus, in the case of the complex scalar field with potential (3.42):

• The energy is minimal at different from zero constant (vacuum) values of the field.
• The minimum of the Hamiltonian is reached at an infinite number of vacuum

values given by (3.47).

Let us put α = 0. We have

φ0 = v√
2
. (3.49)
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With this choice we violate the symmetry of the Lagrangian. Such a violation is
called spontaneous.2

We introduce now two real fields χ1 and χ1 which are connected with the field
φ(x) by the following relation

φ(x) = v√
2

+ χ1 + iχ2√
2

. (3.50)

The fields χ1,2 are determined in such a way that their vacuum values are equal to
zero. From (3.41) and (3.50) we obtain the following expression for the Lagrangian
of the system

L = 1

2

∑

i

∂αχi ∂
αχi − λ

4

(
(v + χ1)

2 + χ2
2 − v2

)2
. (3.51)

This expression can be rewritten in the form

L = 1

2

∑

i

∂αχi ∂
αχi − 1

2
2μ2 χ2

1 − λ vχ1 (χ
2
1 + χ2

2 )− 1

4
λ (χ2

1 + χ2
2 )

2. (3.52)

Lagrangian (3.52) is the Lagrangian of the two interacting real fields χ1 and χ2. The
second term in (3.52) is the mass term of the field χ1. There are no mass term of the
field χ2 in (3.52).

In quantum theory the quanta of the field χ1 are neutral particles with mass
mχ1 = √

2μ and the quanta of the field χ2 are neutral massless particles (mχ2 = 0).
These massless particles are called Goldstone bosons. Their appearance is a general
consequence of the spontaneous violation of a continuous symmetry.

The appearance of Goldstone bosons is a problem for theories with spontaneous
symmetry violation: massless scalar bosons were not observed in experiments. In
local gauge invariant theories, discussed in the previous section, all vector gauge
bosons are massless and this is another problem for a realistic theory. Higgs showed
that in the theory based on local gauge invariance and spontaneous violation of the
symmetry Goldstone scalar bosons will not appear and gauge bosons are massive.

We will consider now the scalar complex field φ(x) and the real vector gauge
field Aα(x) and assume that the Lagrangian of the system has the form

2 In quantum theory φ0 = 〈0|φ|0〉, where 〈0|φ|0〉 is the vacuum expectation value (vev) of the
field φ. If 〈0|φ(0)|0〉 = v√

2
the symmetry is spontaneously broken. Spontaneous symmetry break-

ing is a well known phenomenon in physics. A typical example is ferromagnetism. The Hamilto-
nian of a system of electron spins above the magnetic ordering temperature is invariant under space
rotation. This invariance means that all directions in space are equivalent. In the ground state of a
ferromagnet the electron spins are aligned, however, in one direction which means that rotational
symmetry was spontaneously broken. After the spontaneous symmetry breaking, the system is
invariant under the subgroup of the rotations around the magnetic moment.
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L(x) = ( (∂α + ig Aα(x)) φ(x))
† ( (∂α + ig Aα(x)) φ(x)

)

− V (φ†(x) φ(x))− 1

4
Fαβ(x) Fαβ(x). (3.53)

Here

Fαβ(x) = ∂α Aβ(x)− ∂β Aα(x), (3.54)

g is a real dimensionless constant and the potential V (φ† φ) is given by (3.42).
The Lagrangian (3.53) is invariant under the local gauge transformations

φ′(x) = eiΛ(x) φ(x), A′
α(x) = Aα(x)− 1

g
∂α Λ(x), (3.55)

where Λ(x) is an arbitrary function of x .
The potential (3.44) has the minimum at the value of the scalar field which satis-

fies the condition

φ
†
0 φ0 = v2

2
, (3.56)

where the constant v is given by (3.47). Thus, we have

φ0 = v√
2

ei α, (3.57)

where α is an arbitrary phase. If we choose

φ0 = v√
2

(3.58)

we will spontaneously violate the symmetry.
The complex field φ(x) can be presented in the form

φ(x) = v + χ(x)√
2

ei θ(x), (3.59)

where χ(x) and θ(x) are real functions. The vacuum values of these functions are
equal to zero.

Due to the local gauge invariance of the Lagrangian (3.53) the phase θ(x) has no
physical meaning. It can be removed by the choice of the gauge Λ(x). In this case
we have (unitary gauge)

φ(x) = v + χ(x)√
2

. (3.60)
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From (3.53) and (3.60) for the Lagrangian of the real scalar field χ(x) and the real
vector field Aα(x) we obtain the following expression

L = 1

2
∂α χ ∂

α χ + 1

2
g2 v2 Aα Aα − 1

2
2μ2 χ2

+ 1

2
g2(2vχ + χ2) Aα Aα − 1

4
λ(4vχ3 + χ4)− 1

4
Fαβ Fαβ. (3.61)

The first and the last terms of (3.61) are the kinetic terms of the scalar and vector
fields. The second and the third terms of this expression are mass terms of the vector
and the scalar fields. These terms are generated by the spontaneous violation of the
symmetry and come from the covariant derivative and the potential, correspond-
ingly. Other terms of (3.61) describe interactions of the fields.

The masses of the vector and scalar particles, the quanta of the fields Aα(x) and
χ(x), are given, correspondingly, by the relations

m A = gv, mχ = √
2μ. (3.62)

This mechanism of the generation of the mass of the vector field is called Higgs
mechanism. The field φ(x) is called Higgs field.

Thus, from the local gauge invariant theory of the interacting complex massless
scalar field and the real massless vector gauge field, after spontaneous violation of
symmetry we came to the theory of a massive neutral vector field and a massive
scalar Higgs field. The massless vector field is characterized by two degrees of
freedom (two projections of the spin) while the massive vector field is characterized
by three degrees of freedom (three projections of the spin). Hence, as a result of
the spontaneous violation of the symmetry, the Goldston degree of freedom of the
complex scalar field became an additional degree of freedom of the vector field
(2+2 degrees of freedom became 1+3).

3.4 The Standard Model for Quarks

We will now consider the unified theory of the weak and electromagnetic (elec-
troweak) interactions (The Standard Model). The Standard Model is based on the
following principles:

1. The local gauge SU (2)× U (1) invariance of the Lagrangian of massless fields.
2. The unification of the weak and electromagnetic interactions.
3. The Higgs mechanism of the generation of masses of particles.

The SM is the theory of spin 1/2 quarks and leptons, spin 1 gauge vector bosons
and spin 0 Higgs bosons. The Lagrangian of the theory is built in such a way to
include the Lagrangian of the V −A charged current interaction, which describes the
β-decay of nuclei, μ-decay, π -decay, decay of strange particles, neutrino processes
and many other processes. In order to insure local gauge invariance we must assume
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that W ±-bosons exist. In this case the Lagrangian of the charged current interaction
has the form (2.69).

In this section we will consider the Standard Model for the quarks. As we have
seen in the first chapter, into the charged current enter left-handed components of
the fields. Let us assume that3

ψ1L =
(

u′
L

d ′
L

)
ψ2L =

(
c′

L
s′

L

)
ψ3L =

(
t ′L
b′

L

)
(3.63)

are doublets of the SU (2) group and the right-handed components of the quark
fields q ′

R(x) (q = u, d, . . . ) are singlets of the group. The kinetic term of the free
Lagrangian of the quark fields can be presented in the form

L0 =
3∑

a=1

ψ̄aL i γ α∂α ψaL +
∑

u1=u,c,t

ū′
1R i γ α∂α u′

1R +
∑

d1=d,s,b

d̄ ′
1R i γ α∂α d ′

1R .

(3.64)

In order to ensure the invariance of the Lagrangian under the local gauge SU (2)
transformations we will make the change

∂α ψaL → (∂α + ig
1

2
τ · Aα) ψaL , (3.65)

where Aα(x) is the vector gauge field.
For the Lagrangian of the interaction of the quark and vector fields we obtain the

following expression

LI (x) = −g jα(x) Aα(x). (3.66)

Here

jα =
3∑

a=1

ψ̄aL(x) γα
1

2
τ ψaL(x). (3.67)

Let us separate the charged and neutral parts in the Lagrangian (3.66). We have

LI =
(

− g

2
√

2
jCC
α Wα + h.c.

)
− g j3αA3α. (3.68)

Here

jCC
α = 2 j1+i2

α = 2 (ū′
L γα d ′

L + c̄′
L γα s′

L + t̄ ′L γα b′
L) (3.69)

3 The meaning of primes will be clear later.
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is the charged current and

Wα = 1√
2

A1−i2
α (3.70)

is the field of the charged W ±-bosons. The current j3
α is given by the following

expression

j3
α =

3∑

a=1

ψ̄aL γα
1

2
τ3 ψaL = 1

2

∑

u1=u,c,t

ū′
1L γα u′

1L − 1

2

∑

d1=d,s,b

d̄ ′
1L γα d ′

1L . (3.71)

The first term of the expression (3.68) is the CC Lagrangian. The last term of this
expression cannot be identified, however, with the Lagrangian of the electromag-
netic interaction: in the current j3

α enter only left-handed components of the quark
fields while in the electromagnetic quark current enter quark fields which are sum
of left-handed and right-handed components . Thus, the CC weak interaction which
violates a parity and the electromagnetic interaction which conserve a parity cannot
be unified on the basis of the local SU (2) group.

In order to build an unified theory of the weak and electromagnetic interactions
it is necessary to enlarge the symmetry group. A new interaction Lagrangian must
include the CC Lagrangian and the Lagrangian of the electromagnetic interaction.
The minimal group of this type is the direct product

SU (2)× U (1),

where U (1) is the group of the hypercharge. We will assume that the hypercharge
Y is connected to the electric charge Q by the Gell-Mann-Nishijima relation

Q = I3 + 1

2
Y. (3.72)

Here Q is the electric charge (in the units of the proton charge) and I3 is the third
projection of the isotopic spin. For the doublets ψaL we have

Qup = 2

3
= 1

2
+ 1

2
Y doub

L Qdown = −1

3
= −1

2
+ 1

2
Y doub

L . (3.73)

Thus, for the hypercharge of the left-handed doublets we find

Y doub
L = 1

3
. (3.74)

For the right-handed singlets we have

Y up
R = 2 Qup = 4/3, Y down

R = 2 Qdown = −2/3. (3.75)
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In order to build the theory invariant under the local gauge SU (2) × U (1) trans-
formations in the free Lagrangian of the quark fields (3.64) we have to change the
derivatives of the doublet and singlet fields by the covariant derivatives

∂α ψaL →
(
∂α + ig

1

2
τ · Aα + ig′ 1

2
Y doub

L Bα

)
ψaL ,

∂α u′
1R →

(
∂α + ig′ 1

2
Y up

R Bα

)
u′

1R (u′
1R = u′

R, c′
R, t ′R),

∂α d ′
1R →

(
∂α + ig′ 1

2
Y down

R Bα

)
d ′

R (d ′
1R = d ′

R, s′
R, b′

R), (3.76)

where Aα and Bα are SU (2) and U (1) vector gauge fields and g and g′ are the
corresponding coupling constants.

For the Lagrangian of the (minimal) interaction of the quarks and vector fields
we will find the following expression

LI = −g jα Aα − g′ 1

2
jY
α Bα, (3.77)

where the isovector current jα is given by (3.67) and for the hypercurrent jY
α we

have

1

2
jY
α = 1

2
Y doub

L

3∑

a=1

ψ̄aL γα ψaL + 1

2
Y up

R

∑

u1=u,c,t

ū′
1R γα u′

1R

+ 1

2
Y down

R

∑

d1=d,s,b

d̄ ′
1R γα d ′

1R . (3.78)

It is a direct consequence of the Gell-Man-Nishijima relation (3.72) that the hyper-
current jY

α is connected to the electromagnetic current and the third component of
the isovector current by the following relation

1

2
jY
α = jEM

α − j3
α. (3.79)

Here

jEM
α = 2

3

∑

u1=u,c,t

ū′
1 γα u′

1 +
(

− 1

3

) ∑

d1=d,s,b

d̄ ′
1 γα d ′

1 (3.80)

is the electromagnetic current of the quarks. The Lagrangian of the interaction (3.77)
takes the form

LI = −g jα Aα − g′ ( jEM
α − j3

α) Bα. (3.81)
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The local gauge SU (2) × U (1) symmetry can be satisfied only if Aα and Bα are
massless gauge fields. The Standard Model is based on the Higgs mechanism of the
spontaneous symmetry breaking. Thus, we must include scalar Higgs fields in the
system. In order for the theory to be invariant under SU (2)× U (1) transformations
the Higgs fields must have definite SU (2)× U (1) transformation properties.

Let us assume that the Higgs field φ(x) is the SU (2) doublet

φ =
(
φ+
φ0

)
, (3.82)

where φ+ is the scalar complex field of particles with electric charges equal to ±1
and φ0(x) is the complex field of particles with electric charge equal to zero. From
the Gell-Mann-Nishijima relation (3.72) follows that the hypercharge of the field
φ(x) is equal to one (Yφ = 1 + 0 = 1).

For the free Lagrangian of the Higgs doublet we have

L0 = ∂αφ
† ∂αφ − V (φ† φ). (3.83)

Here the potential V (φ† φ) is given by the expression

V (φ† φ) = −μ2 φ† φ + λ (φ† φ)2 = λ

(
φ† φ − μ2

2λ

)2

− μ4

4λ
, (3.84)

where μ2 and λ are positive constants.
In order to ensure SU (2) × U (1) invariance of the theory in (3.83) we must

change the derivative ∂αφ by the covariant derivative:

∂αφ →
(
∂α + ig

1

2
τ · Aα + ig′ 1

2
Bα

)
φ. (3.85)

where Aα and Bα are SU (2) and U (1) gauge fields. The Lagrangian takes the form

L =
((
∂α + ig

1

2
�τ · Aα + ig′ 1

2
Bα

)
φ

)† ((
∂α + ig

1

2
τ · Aα + ig′ 1

2
Bα
)
φ

)

− V (φ† φ). (3.86)

The potential (3.84) reaches a minimum at such values of the Higgs field which
satisfy the relation

(φ† φ)0 = v2

2
, (3.87)

where

v2 = μ2

λ
. (3.88)
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Because of the conservation of the electric charge the vacuum expectation value of
the charged field φ+ is equal to zero. From (3.87) follows that we can choose φ0 in
the form

φ0 =
(

0
v√
2

)
. (3.89)

The complex scalar doublet φ(x) can be presented as follows

φ(x) = ei 1
2 τ ·θ(x)

(
0

v+H(x)√
2

)
, (3.90)

where θi (x) (i = 1, 2, 3) and H(x) are real functions. The parametrization (3.90)
was chosen in such a way that the vacuum values of the functions θi (x) and H(x)
are equal to zero.

The Lagrangian of the system we are considering, is invariant under the SU (2)×
U (1) local gauge transformations. Let us choose the gauge in such a way that

φ(x) =
(

0
v+H(x)√

2

)
. (3.91)

With this choice of the gauge (which is called unitary gauge) we find the following
expression for the Lagrangian (3.86)

L = 1

2
∂αH ∂αH + φ†

(
g

2
τ · Aα + g′

2
Bα

)(
g

2
τ · Aα + g′

2
Bα
)
φ − V . (3.92)

Let us consider the different terms of this expression. Taking into account that

τi τk = δik + i eikl τl (3.93)

we have

τ · Aα τ · Aα = Aα Aα = 2 W †
α Wα + A3

α A3α, (3.94)

where Wα is the field of the charged W ± bosons given by Eq. (3.70).
Further, from (3.91) we find

φ† τ · Aα φ = −1

2
(v + H)2 A3

α. (3.95)

From (3.84), (3.91), (3.94) and (3.95) we obtain the following expression for the
Lagrangian (3.92)

L= 1

2
∂αH ∂αH+g2

4
(v+H)2 W †

α Wα+g2 + g′2

8
(v+H)2 Zα Zα−λ

4
(2vH+H2)2,

(3.96)
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where

Zα = g√
g2 + g′2 A3

α − g′
√

g2 + g′2 Bα. (3.97)

The combination of the fields A3
α and Bα , which is orthogonal to Zα , we will call

Aα . We have

Aα = g′
√

g2 + g′2 A3
α + g√

g2 + g′2 Bα. (3.98)

The Lagrangian (3.96) includes the mass terms of the vector Wα and Zα fields and
the mass term of the scalar field H :

Lm = m2
W W †

α Wα + 1

2
m2

Z Zα Zα − 1

2
m2

H H2. (3.99)

Here

m2
W = 1

4
g2 v2, m2

Z = 1

4
(g2 + g′2) v2, m2

H = 2 λ v2 = 2μ2. (3.100)

Thus, after spontaneous symmetry breaking Wα(x) became the field of the charged
vector W ± bosons with the mass mW = 1

2 gv, Zα(x) became the field of neutral

vector Z0 bosons with the mass m Z = 1
2

√
g2 + g′2v. The field Aα(x) remained

massless. Three Goldston degrees of freedom of the Higgs doublet provided the
masses of the W ± and Z0 bosons. The fourth degree of freedom is the neutral scalar
field H(x) of particles with the mass m H = √

2μ and spin equal to zero.
Let us now consider the Lagrangian (3.81) of the interaction of the quark and

vector fields. This Lagrangian can be written in the form

LI =
(

− g

2
√

2
jCC
α Wα + h.c.

)
− L0

I , (3.101)

where the first term is the Lagrangian of the CC interaction of the quarks and W ±
bosons and the second term

L0
I = −g j3

α A3α − g′ 1

2
jY
α Bα (3.102)

is the Lagrangian of the interaction of the quarks and neutral vector fields. Tak-
ing into account (3.97) and (3.98), for the Lagrangian L0

I we find the following
expression

L0
I = −1

2

√
g2 + g′2 jNC

α Zα − gg′
√

g2 + g′2 jEM
α Aα, (3.103)



46 3 The Standard Model of the Electroweak Interaction

where

jNC
α = 2 j3

α − 2
g′2

g2 + g′2 jEM
α . (3.104)

and jEM
α is the electromagnetic current of the quarks (see (3.80)).

The first term of (3.103) is the Lagrangian of the interaction of quarks and mas-
sive neutral vector Z0 bosons. The weak current (3.104), which does not change
the electric charges of quarks, is called the neutral current (NC). Before the SM
appeared, the NC interaction was unknown. The unification of the CC weak and
electromagnetic interactions on the basis of the local gauge SU (2) × U (1) group
allowed to predict the existence of the massive neutral vector Z0-boson and a new
type of the weak interaction (NC). All predictions of the Standard Model were per-
fectly confirmed by numerous experiments.

The second term of the Lagrangian (3.103) is a product of the electromagnetic
current and the massless vector field Aα(x). It can be identified with the Lagrangian
of the electromagnetic interaction if the constant g and g′ satisfy the following con-
dition

gg′
√

g2 + g′2 = e, (3.105)

where e is the charge of the proton. The massless vector field Aα is the electro-
magnetic field in this case. After the spontaneous breaking of the SU (2) × U (1)
symmetry the Lagrangian of the system is invariant under the transformations of the
local UEM(1) group.

It is convenient to introduce the weak angle θW . We have

g′

g
= tan θW . (3.106)

From (3.97) and (3.98) we find that

Zα = cos θW A3
α − sin θW Bα, Aα = sin θW A3

α + cos θW Bα. (3.107)

The condition of the unification of the weak and electromagnetic interactions
(3.105) takes the form

g sin θW = e. (3.108)

From (3.101), (3.102) and (3.103) follows that the Lagrangian of the interaction of
the quarks and vector bosons is the sum of the CC Lagrangian, the NC Lagrangian
and the electromagnetic Lagrangian:
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LI =
(

− g

2
√

2
jCC
α Wα + h.c.

)
− g

2 cos θW
jNC
α Zα − e jEM

α Aα. (3.109)

Here

jCC
α = 2 j1+i2

α = 2
∑

u′
1=u′..;d ′

1=d ′..
ū′

1L γα d ′
1L (3.110)

is the charged current,

jEM
α =

∑

q ′=d ′,..u′..
eq ′ q̄ ′ γα q ′ (3.111)

is the electromagnetic current (eu′
1

= 2/3, ed ′
1

= −1/3) and

jNC
α = 2 j3

α − 2 sin2 θW jEM
α (3.112)

is the neutral current.
The relations (3.100) are based on the assumption that the Higgs field is trans-

formed as the SU (2) doublet. We will show now that in the SM with the Higgs
doublet masses of W ± and Z0 bosons can be predicted. The SM also allows to
calculate the vacuum expectation value v. In fact, the Fermi constant G F , which
characterizes the effective four-fermion weak interaction induced by the exchange
of the virtual W -boson at Q2 � m2

W , is given by the relation

G F√
2

= g2

8 m2
W

. (3.113)

The value of the Fermi constant is well known. The most precise value

G F = 1.16637(1) · 10−5 GeV−2

was obtained from the investigation of the μ-decay.
From (3.100) and (3.113) we easily find

v = (
√

2 G F )
−1/2 � 246 GeV. (3.114)

This value characterizes the scale of the breaking of the electroweak symmetry.
From (3.100) and (3.106) we obtain the following relation between the masses

of the W and Z bosons

mW

m Z
= cos θW . (3.115)
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Finally, taking into account the unification condition (3.108), we find the following
expressions for the masses of the W and Z bosons

mW =
(

π α√
2 G F

)1/2 1

sin θW
, m Z =

(
π α√
2 G F

)1/2 1

sin θW cos θW
, (3.116)

where α = e2

4π is the fine structure constant. We have

(
π α√
2 G F

)1/2

= 37.2895(2) · GeV (3.117)

The parameter sin2 θW characterizes the neutral current (see (3.112)). The value
of this parameter was determined from the data of numerous experiments on the
investigation of NC processes. From the existing data it was found that

sin2 θW = 0.23122(15) (3.118)

If we take into account radiative corrections, the relation (3.116) for the mass of the
W boson is modified. We have in this case

mW =
(

π α√
2 G F

)1/2 1

sin θW (1 −Δr)
, (3.119)

where the term Δr is due to the radiative corrections. For this term the value Δr =
0.06969 ± 0.00004 ± 0.00014 was obtained. From existing data for the masses of
the W ± and Z0 bosons the following values were found

m Z = (91.1874 ± 0.0021) · GeV mW = (89.403 ± 0.029) · GeV. (3.120)

These values are in a perfect agreement with the prediction of the Standard Model.4

We will now turn to the consideration of the generation of the quark masses. The
mass term of the quark field q(x) has the form

Lm = −mq q̄ q = −mq q̄L qR + h.c., (3.121)

where mq is the mass of the q-quark. In the SM left-handed fields are components
of SU (2) doublets and right-handed fields are SU (2) singlets. Thus, the quark mass
terms are not invariant under the SU (2)× U (1) transformations.

Masses (and mixing) of the quarks are generated in the SM via the mechanism of
the spontaneous symmetry breaking. We will see, however, that unlike the case of

4 The precise values of the fundamental parameters of the Standard Model can be found in the
review “Electroweak model and constraints on new physics” published by the Particle Data Group
in C. Amsler et al. [168].
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the masses of W and Z bosons the standard Higgs mechanism does not put any con-
straints on the masses of quarks. In the SM, masses of quarks are free parameters.

Let us assume that in the total Lagrangian of the Standard Model there is the
following Lagrangian of the Yukawa interaction of the quark and Higgs fields

Ldown
Y = −

√
2

v

∑

a,q

ψ̄aL Mdown
aq ′ q ′

R φ + h.c., (3.122)

where Mdown
aq ′ is a complex 3×3 matrix. Because ψaL and φ are the SU (2) doublets

and q ′
R are singlets, it is obvious that the Lagrangian Ldown

Y is the SU (2) scalar.
Let us also require U (1) invariance, i.e. the conservation of the hypercharge. The
hypercharges of the quark and Higgs doublets are equal to 1/3 and 1, correspond-
ingly. The Lagrangian (3.122) conserves the hypercharge if 2eq ′

R
+ 1 = 1/3. Thus,

eq ′
R

= −1/3, i.e. the right-handed fields q ′
R in (3.122) are the fields of the “down”

quarks d ′
R, s′

R, b′
R .

From (3.89) and (3.122) after the spontaneous symmetry breaking we find

Ldown
Y = −D

′
L Mdown D′

R

(
1 + H

v

)
+ h.c. (3.123)

Here

D′
L ,R =

⎛

⎝
d ′

L ,R
s′

L ,R
b′

L ,R

⎞

⎠ (3.124)

The first term of (3.123) is the mass term of the down quarks and the second term is
the Lagrangian of the interaction of the down quark and the Higgs boson field.

In order to obtain the mass term of up quarks we will use the conjugated Higgs
doublet

φ̃ = i τ2φ
∗. (3.125)

The hypercharge of the doublet φ̃ is equal to −1. From (3.89) and (3.125) we have

φ̃ =
( v+H√

2

0

)
. (3.126)

We will assume that in addition to (3.122) the following Lagrangian of the Yukawa
interaction of quarks and Higgs bosons enters in the total Lagrangian

Lup
Y = −

√
2

v

∑

a,q

ψaL Mup
aq ′ q ′

R φ̃ + h.c., (3.127)
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where Mup is a complex 3 × 3 matrix. From the conservation of the hypercharge
we have 2eq ′

R
+ (−1) = 1/3. Thus, eq ′

R
= 2/3 and the index q ′ in (3.127) runs

over u′
R, c′

R, t ′R . After the spontaneous symmetry breaking we find from (3.126)
and (3.127)

Lup
Y = −U

′
L Mup U ′

R (1 + H

v
)+ h.c., (3.128)

where

U ′
L ,R =

⎛

⎝
u′

L ,R
c′

L ,R
t ′L ,R

⎞

⎠ . (3.129)

The first term of (3.128) is the mass term of the up quarks and the second term is
the Lagrangian of the interaction of the up quarks and the scalar Higgs field.

Let us now bring the mass terms of up and down quarks to the diagonal form.
The complex matrices Mup and Mdown can be diagonalized by the biunitary trans-
formations (see Appendix B). We have

Mup = V up
L mup V up†

R Mdown = V down
L mdown V down†

R . (3.130)

Here V up
L ,R and V down

L ,R are unitary 3 × 3 matrices and mup and mdown are diagonal
matrices with positive diagonal elements.

From (3.123), (3.128) and (3.130) we find the following expressions for the quark
mass terms

Lup
m = −Ū mup U, Ldown

m = −D̄ mdown D. (3.131)

Here

U = UL + UR =
⎛

⎝
u
c
t

⎞

⎠ , D = DL + DR =
⎛

⎝
d
s
b

⎞

⎠ , (3.132)

mup =
⎛

⎝
mu 0 0
0 mc 0
0 0 mt

⎞

⎠ , mdown =
⎛

⎝
md 0 0
0 ms 0
0 0 mb

⎞

⎠ . (3.133)

and

UL ,R = V up†
L ,R U ′

L ,R, DL ,R = V down†
L ,R D′

L ,R . (3.134)

From (3.131), (3.132) and (3.133) we obtain the standard mass terms of up and
down quarks

Lup
m (x) = −

∑

u1=u,c,t

mu1 ū1(x) u1(x), Ldown
m (x) = −

∑

d1=d,s,b

md1 d̄1(x) d1(x).

(3.135)
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Thus, q(x) is the field of the q-quark with the mass mq (q = u, d, c, s, t, b).
The left-handed and right-handed fields of quarks with definite masses and

primed quark fields, which have definite SU (2) × U (1) transformation properties,
are connected by the unitary transformations (3.134).

Let us consider now the charged current of the quarks. From (3.110), (3.124) and
(3.129) we find

jCC
α (x) = 2 Ū ′

L(x) γα D′
L(x) (3.136)

We will write down the charged current in terms of the fields of quarks with definite
masses. From (3.134) and (3.136) we find

jCC
α (x) = 2 ŪL(x) γα V DL(x). (3.137)

Here

V = (V up
L )† V down

L (3.138)

From (3.132) and (3.137) follows that the CC can be presented in the following
form

jCC
α (x) = 2 [ūL(x) γα dmix

L (x)+ c̄L(x) γα smix
L (x)+ t̄L(x) γα bmix

L (x)], (3.139)

where

dmix
L (x) =

∑

d1=d,s,b

Vud1 d1L(x)

smix
L (x) =

∑

d1=d,s,b

Vcd1 d1L(x)

bmix
L (x) =

∑

d1=d,s,b

Vtd1 d1L(x). (3.140)

From (3.138) follows that V is a unitary matrix

V †V = 1. (3.141)

We came to an important conclusion: the left-handed components of fields of the
down quarks dL(x), sL(x), bL(x) enter into the CC of the SM in “mixed form”
dmix

L (x), smix
L (x), bmix

L (x). The unitary 3×3 mixing matrix V is called the Cabibbo
-Kobayashi-Maskawa (CKM) mixing matrix. Let us stress that the mixing of quarks
is due to the fact that the unitary matrices V up

L and V down
L , which connect left-handed

primed and physical fields of up and down quarks, are different. It follows from
(3.139) and (3.140) that the charged current changes the flavor of quarks (d → u,
s → u, c → s, etc).
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Let us now express the electromagnetic current through the fields of physical
quarks. From (3.111) we have

jEM
α = 2

3
(Ū ′

L γα U ′
L + Ū ′

R γα U ′
R)− 1

3
(D̄′

L γα D′
L + D̄′

R γα D′
R). (3.142)

Taking into account the unitarity of the matrices V up
L ,R and V down

L ,R we find

jEM
α = 2

3
Ū γα U − 1

3
D γα D. (3.143)

From (3.132) and (3.143) we have

jEM
α (x) =

∑

q=u,d,c,...

eq q̄(x) γα q(x), (3.144)

where eu,c,t = 2
3 and ed,s,b = − 1

3 . Thus, we come to the standard expression for
the electromagnetic current of quarks, which is diagonal in quark flavors.

Let us consider the neutral current of the Standard Model. From (3.112) we find

jNC
α = Ū ′

L γα U ′
L − D′

L γα D′
L − 2 sin2 θW jEM

α (3.145)

In order to come to the fields of the physical quarks we will use the relations (3.134).
Taking into account that V up

L and V down
L are unitary matrices we find

jNC
α = ŪL γα UL − DL γα DL − 2 sin2 θW jEM

α . (3.146)

Finally from (3.146) we find that the neutral current is given by the following expres-
sion

jNC
α (x) =

∑

u1=u,c,t

ū1(x) γα u1(x)−
∑

d1=d,s,b

d̄1(x) γα d1(x)− 2 sin2 θW jEM
α (x).

(3.147)
From this expression we conclude that the neutral current of the SM is diagonal in
quark flavors.

3.5 The Standard Model for Leptons

The Standard Model for neutrinos and charged leptons is based on the same SU (2)×
U (1) local gauge group as the SM for the quarks we have considered in the previous
section. We assume that the left-handed fields are transformed as doublets of the
SU (2) group
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ψeL =
(
ν′

eL
e′

L

)
, ψμL =

(
ν′
μL
μ′

L

)
, ψτ L =

(
ν′
τ L
τ ′

L

)
(3.148)

and the right-handed lepton and neutrino fields l ′R and ν′
l R (l = e, μ, τ) are singlets

of the group.
In order to obtain the Lagrangian of the interaction of the leptons and gauge

vector bosons which satisfy the requirements of the local SU (2)× U (1) invariance
we will change in the free Lagrangian the derivatives of the fields by the covariant
derivatives. In the case of the lepton doublets (3.148) the following change must be
performed

∂α ψl L →
(
∂α + ig

1

2
τ · Aα + ig′ 1

2
Y lep

L Bα(x)

)
ψl L l = e, μ, τ. (3.149)

Let us stress that the coupling constant g must be the same in (3.76) and (3.149).
This is connected with the fact that SU (2) is a nonabelian group and the constant
g enters into the field strength (see (3.23)). There is no such requirement for the
abelian U (1) group. This allow us to choose the hypercharges of all fields in such
a way that the Gell-Mann-Nishigima relation (3.37) is satisfied. According to this
relation

Y lep
L = −1, Y lep

R = −2, Y νL = 0, (3.150)

where Y lep
L is the hypercharge of the lepton doublets and Y lep

R and Y νR are hyper-
charges of the right-handed lepton and neutrino fields, respectively. Thus, in the
right-handed part of the kinetic term of the free Lagrangian we must make the fol-
lowing change

∂α l ′R →
(
∂α + ig′ 1

2
(−2)Bα

)
l ′R . (3.151)

The SU (2) × U (1) invariant Lagrangian of the minimal interaction of lepton and
vector boson fields is given by

Llep
I = −g jα Aα − g′ 1

2
jY
α Bα. (3.152)

Here

j�α =
∑

l=e,μ,τ

ψ̄l L γα
1

2
�τ ψl L ,

1

2
jY
α = jEM

α − j3
α (3.153)

where

jEM
α =

∑

l

(−1) l̄ ′ γα l ′ (3.154)

is the electromagnetic current of the charged leptons.
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Repeating now transformations that were performed in the previous section we
come to the following Lagrangian of the interaction of the charged leptons and neu-
trinos with the W ± and Z0 bosons and photons

Llep
I =

(
− g

2
√

2
jCC
α Wα + h.c.

)
− g

2 cos θW
jNC
α Zα − e jEM

α Aα. (3.155)

Here

jCC
α = 2 j1+i2

α = 2
∑

l=e,μ,τ

ν̄′
l L γα l ′L (3.156)

is the leptonic charged current,

jNC
α = 2 j3

α−2 sin2 θW jEM
α =

∑

l=e,μ,τ

ν̄′
l L γα ν

′
l L −

∑

l=e,μ,τ

l̄ ′l L γα l ′l L −2 sin2 θW jEM
α

(3.157)
is the neutral current. The leptonic electromagnetic current is given by expression
(3.154).

We will now come to the spontaneous violation of symmetry. Let us consider first
charged leptons. The SU (2)×U (1) invariant Lagrangian of the Yukawa interaction
of lepton and Higgs fields has the form

Llep
Y = −

√
2

v

∑

l, l1

ψ l L M lep
ll ′1

l ′1R φ + h.c., (3.158)

where M lep is a 3 × 3 complex matrix and φ is the doublet of Higgs fields. If we
choose for the field φ(x) the expression (3.91) the symmetry will be spontaneously
broken and for the Lagrangian Llep

Y we find the following expression

Llep
Y = −L

′
L M lep L ′

R

(
1 + H

v

)
+ h.c. (3.159)

Here

L ′
L ,R =

⎛

⎝
e′

L ,R
μ′

L ,R
τ ′

L ,R

⎞

⎠ . (3.160)

Let us now diagonalize the matrix M lep. We have (see Appendix B)

M lep = UL mlep U †
R . (3.161)
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where UL ,R are unitary matrices and mlep is the diagonal matrix with positive diag-
onal elements. From (3.159) and (3.161) we find

Llep
Y = −L L mlep L R

(
1 + H

v

)
+ h.c., (3.162)

where

L L = U †
L L ′

L , L R = U †
R L ′

R . (3.163)

From (3.162) we obtain the following expression for the Lagrangian

L lep
Y = −L mlep L

(
1 + H

v

)
. (3.164)

Here

L = L L + L R =
⎛

⎝
e
μ

τ

⎞

⎠ , mlep =
⎛

⎝
me 0 0
0 mμ 0
0 0 mτ

⎞

⎠ . (3.165)

The Lagrangian L lep
Y (x) has the form

L lep
Y (x) =

∑

l=e,μ,τ

ml l̄(x) l(x)

(
1 + H(x)

v

)
. (3.166)

The first term of the Lagrangian (3.166) is the standard mass term of the charged
leptons. The field l(x) is the field of the leptons l± with the mass ml (l = e, μ, τ ).
The second term of (3.166) is the Lagrangian of the interaction of the lepton and
Higgs fields.

Let us express now the lepton charged current through the fields of physical lep-
tons. The expression (3.156) can be written in the following matrix form

jCC
α (x) = 2 ν̄′

L(x) γα L ′
L(x), (3.167)

where

ν′
L =

⎛

⎝
ν′

eL
ν′
μL
ν′
τ L

⎞

⎠ . (3.168)

Taking into account (3.163), we have for the leptonic charged current

jCC
α (x) = 2 ν̄ f

L (x) γα L L(x) = 2
∑

l=e,μ,τ

ν̄l L(x) γα lL(x). (3.169)
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Here l(x) is the field of lepton l with the mass ml and

ν
f
L = U †

L ν
′
L =

⎛

⎝
νeL

νμL

ντ L

⎞

⎠ . (3.170)

Let us consider now the electromagnetic current of leptons. Taking into account the
unitarity of the matrices UL ,R we find from (3.154)

jEM
α (x) = −L̄ ′

L(x) γα L ′
L(x)− L̄ ′

R(x) γα L ′
R(x) = −L̄(x) γα L(x). (3.171)

From (3.171) and (3.165) we obtain the following standard expression for the elec-
tromagnetic current of the leptons

jEM
α (x) =

∑

l=e,μ,τ

(−1) l̄(x) γα l(x). (3.172)

For the lepton neutral current we have from (3.157)

jNC
α (x) = ν̄′

L(x) γα ν
′
L(x)− L̄ ′

L(x) γα L ′
L(x)− 2 sin2 θW jEM

α (x). (3.173)

In terms of the flavor neutrino fields and fields of physical leptons from (3.173) we
find the following expression for the neutral current

jNC
α (x) =

∑

l=e,μ,τ

ν̄l L(x) γα νl L(x)−
∑

l=e,μ,τ

l̄L(x) γα lL(x)− 2 sin2 θW jEM
α (x),

(3.174)
where jEM

α (x) is given by (3.172).
Finally it is easy to see that the kinetic term of the Lagrangian of the charged

leptons takes the standard form

Llep
0 (x) = L̄ ′(x) i γ α∂α L ′(x) =

∑

1=e,μ,τ

l̄(x) i γ α∂α l(x). (3.175)

For the kinetic term of the Lagrangian of the neutrino fields we find

L0(x) = ν̄′
L(x) i γ α∂α ν

′
L(x) = ν̄

f
L (x) i γ α∂α ν

f
L (x) =

∑

1=e,μ,τ

ν̄l L(x) i γ α∂α νl L(x).

(3.176)
The Standard Model proposed by Glashow, Weinberg and Salam was based on the
two-component neutrino theory. Thus, only left-handed neutrino fields enter into
the Lagrangian of the original SM. If the Higgs field is transformed as doublet it is
impossible to generate neutrino masses. Thus, the original SM was built for massless
neutrinos.
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For the massless neutrinos the total Lagrangian is invariant under the global
gauge transformations

ν′
l L(x) = ei Λl νl L(x), l ′(x) = ei Λl l(x), q ′(x) → q(x), (l = e, μ, τ)

(3.177)
where Λl are arbitrary constant phases. From the invariance under the transforma-
tions (3.177) follows that the total electron Le, muon Lμ and tau Lτ lepton numbers
are conserved :

∑

i

Li
e = const

∑

i

Li
μ = const

∑

i

Li
τ = const. (3.178)

The lepton numbers of the particles are presented in Table 3.1. The lepton numbers
of the antiparticles are opposite to the lepton numbers of the corresponding particles.
The conservation of the total lepton numbers means that in the CC decays together
with a μ+ a muon neutrino νμ is produced, in the process of the CC interaction
of an electron antineutrino ν̄e with a nucleon a e+ is produced, etc. We know at
present (see below) that the law of the conservation of electron, muon and tau lepton
numbers is an approximate one. It is violated in neutrino oscillations due to the small
neutrino masses and the neutrino mixing.

In the original (minimal) Standard Model, neutrino masses are equal to zero.
We will now show that formally neutrino masses can be generated by the Standard
Higgs mechanism. However, as we will see later, it is very unlikely that the SM
mechanism of the mass generation is responsible for the observed neutrino masses.
A new mechanism of neutrino mass generation is needed.

In order to generate neutrino masses we assume that in the total Lagrangian
enters the following SU (2)× U (1) invariant Lagrangian of the Yukawa interaction
of lepton and Higgs fields

LνY = −
√

2

v

∑

l ′, l
ψ l ′L M

′
l ′ l ν

′
l R φ̃ + h.c., (3.179)

where the right-handed fields ν′
l R are singlets of the SU (2) group, M ′ is a complex

3 × 3 matrix and φ̃ is the conjugated Higgs doublet given by (3.125).
After the spontaneous symmetry braking we find from (3.126) and (3.179)

LνY = −
∑

l ′, l
ν̄′

l ′L M
′
l ′ l ν

′
l R

(
1+ H

v

)
+h.c. = −ν̄′

L M
′
ν′

R

(
1+ H

v

)
+h.c., (3.180)

Table 3.1 Lepton numbers of the particles

νe, e− νμ, μ
− ντ , τ

− Quarks,W,Z,γ

Le 1 0 0 0
Lμ 0 1 0 0
Lτ 0 0 1 0
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where

ν′
L =

⎛

⎝
ν′

eL
ν′
μL
ν′
τ L

⎞

⎠ ν′
R =

⎛

⎝
ν′

eR
ν′
μR
ν′
τ R

⎞

⎠ . (3.181)

With the help of (3.170) we find

LνY == −ν̄ f
L M ν′

R

(
1 + H

v

)
+ h.c., (3.182)

where M = U †
L M ′. The first term of (3.182) is the neutrino mass term

Lm = −ν̄ f
L M ν′

R + h.c. = −
∑

l,l ′
ν̄l ′L Ml ′;l ν′

l R + h.c. (3.183)

For the complex matrix M we have

M = U m V †, (3.184)

where U and V are unitary matrices and mik = mi δik, mi > 0.
For the neutrino mass term from (3.183) and (3.184) we find the following

expression

Lm(x) = −ν̄(x)m ν(x) = −
3∑

i=1

mi ν̄i (x)νi (x). (3.185)

Here

U †ν
f
L = νL , V †ν′

R = νR, ν = νL + νR . (3.186)

and

ν =
⎛

⎝
ν1
ν2
ν3

⎞

⎠ , m =
⎛

⎝
m1 0 0
0 m2 0
0 0 m3

⎞

⎠ . (3.187)

Thus, νi (x) is the field of the neutrino with the mass mi . From (3.186) follows that
the flavor neutrino fields νl L(x), which enter into the leptonic charged and neutral
currents (3.169) and (3.174), are connected with the left-handed components of the
massive neutrino fields νi L(x) by the mixing relation

νl L(x) =
3∑

i=1

Uli νi L(x), (l = e, μ, τ) (3.188)
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where U is the unitary mixing matrix. For the right-handed fields we have

ν′
l R(x) =

3∑

i=1

Vli νi R(x). (l = e, μ, τ) (3.189)

We have seen that in the case the massless neutrinos the electron Le, muon Lμ
and tau Lτ lepton numbers are conserved. In the case of the massive and mixed
neutrinos the total Lagrangian is not invariant under the transformations (3.177)
and Le, Lμ and Lτ are not conserved. However, from (3.166), (3.169), (3.174) and
(3.183) follows that the total Lagrangian is invariant under the following global
gauge transformation

νl L(x) → ei Λ νl L(x), ν
′
l R(x) → ei Λ ν′

l R(x), l(x) → ei Λ l(x) (l = e.μ, τ ),
(3.190)

where Λ is an arbitrary constant phase, the same for all lepton flavors. The invari-
ance under the transformation (3.190) means that the total lepton number

L = Le + Lμ + Lτ (3.191)

is conserved
∑

i

Li = const. (3.192)

The mass term (3.183) is called Dirac mass term. The fields of the massive neu-
trinos νi (x) are fields of the neutrinos νi and antineutrinos ν̄i . Neutrinos and
antineutrinos have the same mass and differ by the conserved total lepton number:
L(νi ) = 1, L(ν̄i ) = −1.

Thus, we have shown that the Dirac neutrino masses can be generated by the
Standard Higgs mechanism. There are, however, no theoretical constraints on the
Yukawa couplings in the Lagrangians (3.122), (3.123), (3.158), (3.179). Thus, the
Standard Model cannot predict the masses of the fermions.

In Table 3.2 we presented the masses of quarks and leptons. As is seen from
Table 3.2, the mass of the electron is comparable with the masses of the u and d
quarks. The mass of the muon (tau) differs from the masses of the quarks of the
second (third) family by one (two) orders of magnitude. The absolute values of the
neutrino masses are unknown at present. From the data of the tritium experiments,
which we will discuss later, only the upper bound (mi < 2.2 eV) was obtained. From
Table 3.2 we see that the masses of the neutrinos are many orders of magnitude
smaller than the masses of the quarks and leptons. For example, in the third family
m3 � 10−9 mτ , m3 � 10−9 mb, m3 � 10−11 mt .

It is very unnatural to assume that the same standard Higgs mechanism is respon-
sible for the generation of the masses of the charged leptons, quarks and the neutri-
nos. It is common opinion that the neutrino masses are generated by a new, beyond
the SM mechanism. We will consider such mechanisms later.
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Table 3.2 Masses of quarks and leptons

I mu = (1.5 − 3.3)MeV md = (3.5 − 6.0)MeV me = 0.511 MeV ν1 ≤ 2.2 eV

II mc = (1.27+0.07
−0.11)GeV ms = (105+25

−35)MeV mμ = 105.658 MeV ν2 ≤ 2.2 eV

III mt = (171.3 ± 1.1 ± 1.2)GeV mb = (4.20+0.17
−0.07)GeV mτ = 1.777 GeV ν3 ≤ 2.2 eV

3.6 Summary and Outlook

The unified theory of the weak and electromagnetic interactions (The Standard
Model) is based on the following basic principles

1. Local SU (2)× U (1) invariance of the Lagrangian of massless quark, lepton and
vector fields with left-handed doublets and right-handed singlets.

2. Higgs mechanism (with Higgs doublet) of the generations of the masses of W ±
and Z0 bosons, the quarks and the charged leptons.

3. Minimal interaction.

The SM Lagrangian contains as a low-energy limit the effective classical
current×current Lagrangian of the CC weak interaction. The SM predicts a new
type of the weak interaction (NC), the existence of the vector W ± and Z0 bosons
and the values of the masses of these particles.

In order that the Standard Model will be a renormalizable theory it is necessary
that the sum of the electric charges of the particles, the fields of which are compo-
nents of the doublets, is equal to zero:

3

(
2

3
+
(

− 1

3

))
N quarks

f + (0 + (−1)) N leptons
f = 0. (3.193)

Here N quarks
f and N leptons

f are the numbers of the quark and lepton families. We took
into account in (3.193) that there exist three colored quarks of each type. Thus, we
have

N quarks
f = N leptons

f . (3.194)

After the τ -lepton was discovered (1975) , the SM allowed to predict the existence
of ντ -SU (2) partner of τ and in accordance with (3.194) to predict the existence
of the third family of quarks (b and t). All predictions of the Standard Model were
perfectly confirmed by numerous experiments.

The minimal SM can be built for massless neutrinos. We have seen that Dirac
neutrino masses can be generated in the framework of the SM with the Higgs
doublet. However, it is highly unlikely that the standard Higgs mechanism is the
mechanism of the generation of small neutrino masses. It is a common point of view
that small neutrino masses are an evidence in favor of a beyond the SM mechanism
of neutrino mass generation.



Chapter 4
Neutrino Mass Terms

4.1 Introduction

The neutrino mass term is the central object of the theory of massive and mixed neu-
trinos. It determines neutrino masses, neutrino mixture and neutrino nature (Dirac
and Majorana). The possibility of the existence of so-called sterile neutrinos is also
determined by the neutrino mass term.

In modern theories mass terms of fermions appear in the Lagrangian as a result
of the braking of underlying symmetries. We have seen in the previous chapter how
the neutrino mass term could appear in the SM with right-handed neutrino singlets.

Here we will consider all possible types of neutrino mass terms. Our discussion
will be general, based only on Lorentz invariance. We will only use the fact that
a mass term of any spin-1/2 field is a sum of Lorentz-invariant products of left-
handed and right-handed components of the field.1 It was established by the LEP
experiments at CERN that three flavor neutrinos νe, νμ, ντ exist in nature. These
flavor neutrinos take part in CC and NC weak processes due to the electroweak
interaction via the standard leptonic charged and neutral currents2

jCC
α (x) = 2

∑

l=e,μ,τ

ν̄l L(x) γα lL(x), jNC
α =

∑

l=e,μ,τ

ν̄l L(x) γα νl L(x). (4.1)

Here l(x) is the operator of physical charged leptons l± with mass ml .
The fields νl L(x) (l = e, μ, τ ) must enter into the neutrino mass term. The struc-

ture of mass term depends on

• other fields (if any) which enter into the mass term,
• the conservation of the total lepton number L = Le + Lμ + Lτ .

1 We remind that a fermion field ψ(x) can be presented in the form ψ(x) = ψL (x)+ψR(x), where
left-handed ψL (x) and right-handed ψR(x) components of the field ψ(x) are determined by the
relations ψL ,R(x) = 1∓γ5

2 ψ(x). From these relations follows that γ5 ψL ,R(x) = ∓ψL ,R(x).
2 The left-handed flavor fields νl L (l = e, μ, τ ) are often called active fields. Right-handed fields
are called sterile: they do not enter into the standard charged and neutral currents.

Bilenky, S.: Neutrino Mass Terms. Lect. Notes Phys. 817, 61–77 (2010)
DOI 10.1007/978-3-642-14043-3_4 c© Springer-Verlag Berlin Heidelberg 2010
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4.2 Dirac Mass Term

Let us assume that in addition to the flavor left-handed fields νl L(x) three right-
handed neutrino fields νl R(x) enter into the mass term. In this case the most general
neutrino mass term will have the form

LD(x) = −
∑

l ′,l
ν̄l ′L(x)MD

l ′l νl R(x)+ h.c. (4.2)

Here the indexes l and l ′ run over e, μ, τ and MD is a 3 × 3 complex matrix.
It is easy to check that if the mass term LD enters into the total Lagrangian,

invariance under the following global gauge transformations

ν′
l L(x) = eiΛνl L(x), ν′

l R(x) = eiΛνl R(x)

l ′(x) = eiΛ l(x), q ′(x) = q(x), (4.3)

holds. Here Λ is an arbitrary constant phase. From the invariance under the trans-
formations (4.3) follows that the total lepton number L , which is the same for all
charged leptons and all flavor neutrinos, is conserved.

The procedure of diagonalization of the mass term (4.2) was performed in details
in Chap. 3. The complex matrix MD can be diagonalized by the biunitary transfor-
mation (see Appendix B)

MD = U † m V . (4.4)

Here U and V are unitary matrices and mik = miδik,mi > 0. From (4.2) and (4.4)
we find

νl L(x) =
3∑

i=1

Uli νi L(x) (l = e, μ, τ) (4.5)

and

νl R(x) =
3∑

i=1

Vli νi R(x) (l = e, μ, τ). (4.6)

Here U and V are unitary matrices.
The mass term (4.2) takes the form

LD(x) = −
3∑

i=1

mi ν̄i (x)νi (x). (4.7)
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From (4.7) and (4.5) we conclude that

• νi (x) is the field of the neutrino with mass mi (i=1,2,3).
• The left-handed flavor fields νl L(x), which enter into the standard charged and

neutral currents, are “mixed” fields.

The unitary 3×3 mixing matrix U in (4.5) is called Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix.

From (4.3), (4.5) and (4.6) follows that the total Lagrangian is invariant under
the transformations

ν′
i (x) = eiΛ νi (x), l ′(x) = eiΛ l(x), q ′(x) = q(x). (4.8)

This invariance means that νi (x) is the Dirac field of neutrinos and antineutrinos,
particles with the same mass mi . Lepton numbers of neutrino and antineutrinos are
opposite: L(νi ) = 1, L(ν̄i ) = −1. The mass term (4.2) is called the Dirac mass
term.

4.3 Majorana Mass Term

A mass term is a sum of Lorentz-invariant products of left-handed and right-handed
components of fields. We will show now that the conjugated fields

(νl L)
c = C ν̄T

l L and (νl R)
c = C ν̄T

l R (4.9)

are, correspondingly, right-handed and left-handed fields. Here C is the unitary
matrix of the charge conjugation, which satisfies the relations

C γ T
α C−1 = −γα, CT = −C. (4.10)

We have

γ5 νl L = −νl L , γ5 νl R = νl R . (4.11)

From these relations by hermitian conjugation and multiplication by γ 0 from the
right we find

ν̄l L γ5 = νl L , ν̄l R γ5 = −νl R . (4.12)

Further, from (4.12) by transposition and multiplication from the left by the matrix
C we obtain

γ5 (νl L)
c = (νl L)

c, γ5 (νl R)
c = −(νl R)

c. (4.13)

In (4.13) we took into account that
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C γ T
5 C−1 = γ5. (4.14)

From (4.13) follows that (νl L)
c is the right-handed and (νl R)

c the left-handed com-
ponent. From (4.9) and (4.10) we find

(νl L)c = −νT
l L C−1, (νl R)c = −νT

l R C−1. (4.15)

Taking into account that (νl L)
c is the right-handed component we can easily build

a neutrino mass term in which only flavor (active) left-handed neutrino fields enter.
The most general mass term of this type has the form

LM = −1

2

∑

l ′,l=e,μ,τ

ν̄l ′L MM
l ′l (νl L)

c + h.c. = −1

2

∑

l ′,l=e,μ,τ

ν̄l ′L MM
l ′l CνT

l L + h.c.,

(4.16)
where MM is a complex non diagonal matrix.

The mass term (4.16) can be written in the following matrix form

LM = −1

2
ν̄L MM (νL)

c + h.c., (4.17)

where MM is a 3×3 matrix and

νL =
⎛

⎝
νeL

νμL

ντ L

⎞

⎠ . (4.18)

We will show now that MM is a symmetric matrix. In fact, taking into account (4.9)
and (4.10), we find

ν̄L MM (νL)
c = ν̄L MM C ν̄T

L = −ν̄L (M
M)T CT ν̄T

L = ν̄L (M
M)T (νL)

c. (4.19)

Notice that the minus sign in the third term is due to the anticommutation properties
of fermion fields. From (4.19) we have

MM = (MM)T . (4.20)

We will now present the mass term (4.17) in the diagonal form. The symmetric
complex matrix M M can be presented in the form (see Appendix C)

MM = U m U T , (4.21)

where U is an unitary matrix and mik = mi δik, mi > 0. From (4.17) and (4.21)
we find
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LM = −1

2
ν̄L U m U T C ν̄T

L + h.c. = −1

2
U †νL m (U †νL)

c − 1

2
(U †νL)c m U †νL .

(4.22)
From (4.22) we find the following expression for the mass term

LM = −1

2
ν̄M m νM . (4.23)

Here

νM = U †νL + (U †νL)
c =

⎛

⎝
ν1
ν2
ν3

⎞

⎠ , m =
⎛

⎝
m1 0 0
0 m2 0
0 0 m3

⎞

⎠ , (4.24)

From (4.23) and (4.24) we have

LM = −1

2

3∑

i=1

mi ν̄i νi . (4.25)

Thus, νi (x) is the field of the neutrino with mass mi . From (4.24) we obviously have

(νM (x))c = νM (x). (4.26)

Thus, the field of neutrinos with definite mass νi (x) satisfy the condition

νc
i (x) = νi (x). (4.27)

The condition (4.27) is called Majorana condition. In the general case we have the
following expansion for the neutrino field ν(x)

ν(x) =
∫

Np

(
cr (p) ur (p) e−i p x + d†

r (p) ur (−p) ei p x
)

d3 p. (4.28)

Here cr (p) (d†
r (p)) is the operator of the absorption of a neutrino (creation of a

antineutrino) with momentum p and helicity r , the spinor ur (p) describes the state
with momentum p and helicity r , ur (−p) = C (ūr (p))T and Np = 1

(2π)3/2
√

2 p0
is

the standard normalization factor. If the field ν(x) satisfies the Majorana condition
(4.27) we have

cr (p) = dr (p). (4.29)

Thus, if the neutrino field satisfies the Majorana condition in this case

neutrino ≡ antineutrino
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and νi (x) is the field of purely neutral Majorana neutrinos with the mass mi and
helicities ±1.

The field νM (x) is the sum of the left-handed and right-handed components:

νM (x) = νM
L (x)+ νM

R (x). (4.30)

Comparing (4.24) and (4.30), we find

νM
L (x) = U †νL(x), νM

R (x) = (U †νL(x))
c. (4.31)

We conclude from (4.31) that right-handed and left-handed components of the
Majorana field are connected by the relation

νM
R (x) = (νM

L (x))
c. (4.32)

From (4.24) and (4.32) we have

νi R(x) = (νi L(x))
c. (4.33)

This relation is a direct consequence of the Majorana condition. In fact we have

(νi L)
c =

(
1 − γ5

2
νi

)c

= C
1 + γ T

5

2
ν̄T

i = 1 + γ5

2
νc

i = 1 + γ5

2
νi = νi R (4.34)

Vice versa it is obvious that if left-handed and right-handed components are con-
nected by the relation (4.33) the field νi satisfies the Majorana condition. Notice
that the relation (4.33) represents the difference between the Dirac and Majorana
fields: in the case of the Dirac field right-handed and left-handed components are
independent while in case of the Majorana field they are connected by the relation
(4.33). Let us consider the global gauge transformation

ν′
L(x) = eiΛ νL(x), (4.35)

where Λ is an arbitrary constant. For the conjugated field we have

(ν′
L)

c(x) = e−iΛ (νL)
c(x). (4.36)

It is obvious that the mass term (4.17) is not invariant under the gauge transforma-
tions (4.35). Thus, in the case of the Majorana mass term there is no global gauge
invariance and there is no conserved lepton number which allow to distinguish neu-
trinos and antineutrinos. This is the reason why after the diagonalization of LM we
came to the fields of the Majorana neutrinos.

Finally from (4.24) we find

νL(x) = U νM
L (x). (4.37)
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From this relation we have

νl L(x) =
3∑

i=1

Uli νi L(x), (4.38)

where U is the unitary 3×3 mixing matrix. Thus, in the case of the Majorana mass
term the left-handed flavor fields νl L , which enter into CC and NC of the Standard
Model, are connected with the left-handed components of the Majorana fields νi L

by the relation (4.38).3

In conclusion let us consider the neutrino kinetic term of the Lagrangian. We
have

L0 =
∑

l

ν̄l L i γ α∂α νl L = νL i γ α∂α νL . (4.39)

Taking into account the unitarity of the mixing matrix U we find from (4.31) and
(4.39)

L0 = νM
L i γ α∂α ν

M
L =

∑

i

ν̄i L i γ α∂α ν1L . (4.40)

It is easy to see that

ν̄i L i γα∂
ανi L = −∂ανT

i L i γ T
α ν̄

T
i L = −∂α(νi L)c i γα (νi L)

c. (4.41)

Further we have

− ∂α(νi L)c i γα (νi L)
c = −∂α((νi L)c i γα (νi L)

c)+ (νi L)c i γα ∂
α(νi L)

c. (4.42)

A Lagrangian is determined up to a divergence of a vector. So, the first term of
(4.42) can be omitted. For the kinetic term of the Lagrangian of the neutrino fields
we find the following expression

L0 = 1

2

∑

i

νi L i γ α∂α νi L .+ 1

2

∑

i

(νi L)c i γα ∂
α(νi L)

c = 1

2

∑

i

νi i γ α∂α νi ,

(4.43)

where

νi = νi L + (νi L)
c (4.44)

is the Majorana field.

3 Majorana mixing was considered for the first time by Gribov and Pontecorvo. Before this paper
there was a belief that in the case of the left-handed neutrino fields neutrino masses are equal to
zero. This is correct if the total lepton number L is conserved. As we have shown here, if only
left-handed neutrino fields enter into the Lagrangian, neutrinos can have Majorana masses.
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Finally from (4.25) and (4.43) we obtain the following expression for the total
free Lagrangian of the neutrino fields

L0 = 1

2

3∑

i=1

νi ( i γ α∂α − mi ) νi (4.45)

Notice that from (4.43) and (4.45) it is evident why we introduced the factor 1
2 in

(4.23) and other expressions.
Let us stress that the case of the Majorana mass term only active left-handed

neutrino fields νl L enter into the total Lagrangian.

4.4 Dirac and Majorana Mass Term

The most general mass term, in which left-handed active flavor fields νl L and right-
handed sterile fields νl R enter, has the form

LD+M = −1

2
ν̄L MM

L (νL)
c − ν̄L MD νR − 1

2
(νR)c MM

R νR + h.c., (4.46)

where MM
L and MM

R are complex non-diagonal symmetrical 3×3 matrices, MD is a
complex non-diagonal 3×3 matrix, column νL is given by (4.18) and

νR =
⎛

⎝
νeR

νμR

ντ R

⎞

⎠ . (4.47)

The mass term (4.46) is the sum of the left-handed Majorana mass term, the Dirac
mass term and right-handed Majorana mass term. It is called the Dirac and Majorana
mass term. It is obvious that the mass term is not invariant under the global gauge
transformations. Thus, in the theory with the Dirac and Majorana mass term the
lepton number L is not conserved. We must expect, therefore, that the fields of
neutrinos with definite masses are Majorana fields.

Let us perform the procedure of the diagonalization of the Dirac and Majorana
mass term. The mass term LD+M can be written in the following matrix form

LD+M = −1

2
n̄L MD+M(nL)

c + h.c. (4.48)

Here

nL =
(
νL

(νR)c

)
(4.49)

and
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MD+M =
(

MM
L MD

(MD)T MM
R

)
(4.50)

is a symmetrical 6×6 matrix. Notice that in (4.48) we took into account the follow-
ing relation

ν̄L MD νR = −(νR)
T (MD)T (ν̄L)

T = (νR)c (M
D)T (νL)

c. (4.51)

The matrix MD+M can be presented in the following diagonal form

MD+M = U m U T , (4.52)

where U is an unitary 6 × 6 matrix and mik = mi δik (i, k = 1, . . . 6).
From (4.48) and (4.52) we have

LD+M = −1

2
U †nL m (U † nL)

c + h.c. = −1

2
ν̄M m νM = −1

2

6∑

i=1

mi ν̄i νi .

(4.53)

Here

νM = νM
L + (νM

L )
c =

⎛

⎜⎝
ν1
...

ν6

⎞

⎟⎠ , (4.54)

where

νM
L = U † nL . (4.55)

From (4.54) we have

(νM )c = νM and νc
i = νi (i = 1, 2, . . . 6). (4.56)

From (4.53) and (4.56) follow that νi (x) is the field of Majorana particles with mass
mi . It is obvious from (4.55) that νl L and (νl R)

c are connected with left-handed
components of the Majorana fields νi L by an unitary transformation. In fact, we
have

nL = U νM
L . (4.57)

From (4.57) we obtain the following relations

νl L(x) =
6∑

i=1

Uli νi L(x), (νl R(x))
c =

6∑

i=1

Ul̄i νi L(x), (4.58)
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where U is the unitary 6×6 mixing matrix. Thus, in the case of the Dirac and
Majorana mass term, flavor field νl L is a “mixture” of the six left-handed fields
of Majorana particles with mass mi . The sterile field (νl R)

c is a “mixture” of the
same components.

Let us notice that the most popular seesaw mechanism of the neutrino mass gen-
eration, which allows to explain the smallness of neutrino masses, is based on the
Dirac and Majorana mass term. We will discuss this mechanism later.

4.5 Neutrino Mass Term in the Simplest Case
of Two Neutrino Fields

It is instructive to consider a neutrino mass term in the simplest case of two neu-
trino fields. Let us consider the Dirac and Majorana mass term in the case of one
generation. We have

LD+M = −1

2
mL ν̄L (νL)

c − m D ν̄L νR − 1

2
m R (νR)c νR + h.c. (4.59)

We will assume C P invariance in the lepton sector. In this case mL , m D and m R are
real parameters.

The mass term LD+M can be presented in the following matrix form

LD+M = −1

2
n̄L MD+M(nL)

c + h.c. (4.60)

Here

nL =
(
νL

(νR)c

)
(4.61)

and

MD+M =
(

mL m D

m D m R .

)
(4.62)

It is convenient to present the matrix MD+M in the form

MD+M = 1

2
Tr MD+M + M, (4.63)

where Tr M = 0. We have

M =
(− 1

2 (m R − mL) m D

m D
1
2 (m R − mL)

)
(4.64)
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The matrix M can be easily diagonalized by orthogonal transformation. We have

M = O m̄ OT . (4.65)

Here

O =
(

cos θ sin θ
− sin θ cos θ

)
(4.66)

is an orthogonal matrix and

m̄1,2 = ∓1

2

√
(m R − mL)2 + 4 m2

D (4.67)

From (4.65), (4.66) and (4.67) we find

tan 2 θ = 2m D

m R − mL
, cos 2 θ = m R − mL√

(m R − mL)2 + 4 m2
D

. (4.68)

For the matrix MD+M from (4.63), (4.65) and (4.67) we have

MD+M = O m′ OT , (4.69)

where

m′
1,2 = 1

2
(m R + mL)∓ 1

2

√
(m R − mL)2 + 4 m2

D (4.70)

are eigenvalues of the matrix MD+M. These quantities can be positive or negative.
Let us write down

m′
i = mi ηi (4.71)

where mi = |m′
i | and ηi = ±1. From (4.70) and (4.71) we have

MD+M = O m η OT = U m U T , (4.72)

where U = O η1/2 is an unitary matrix.
From (4.60) and (4.72) we obtain the following expression for the mass term

LD+M = −1

2
νM m νM = −1

2

∑

i=1,2

mi ν̄i νi . (4.73)
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Here

νM = U † nL + (U † nL)
c =

(
ν1

ν2

)
. (4.74)

It is obvious from (4.74) that

νc
i = νi . (4.75)

Thus, ν1 and ν2 are fields of Majorana neutrino with masses m1 and m2, respectively.
From (4.61), (4.66) and (4.74) we obtain the following mixing relations in the

case of the Dirac and Majorana mass term for one neutrino family

νL = cos θ
√
η1 ν1L + sin θ

√
η2 ν2L

(νR)
c = − sin θ

√
η1 ν1L + cos θ

√
η2 ν2L . (4.76)

The neutrino masses m1 and m2 and the mixing angle θ are determined by three
real parameters mL , m R and m D (see relations (4.70) and (4.68)). The parameter ηi

(i = 1, 2) determines the C P parity of the Majorana neutrino νi (see next section).
Let us consider now the Majorana mass term in the case of two flavor fields (say,

νμ and ντ ). The mass term is given in this case by the following expression

LM = −1

2
ν̄L MM(νL)

c + h.c. (4.77)

Here

νL =
(
νμL

ντ L

)
(4.78)

and

MM =
(

mμμ mμτ

mμτ mττ .

)
, (4.79)

where mμμ,mμτ ,mττ are real parameters (C P invariance is assumed).
It is obvious that if we change mμμ → mL , mττ → m R, mμτ → m D we can

use the corresponding relations obtained for the Dirac and Majorana mass term. For
the masses of the Majorana neutrinos ν1 and ν2 we have

m1,2 =
∣∣∣∣
1

2
(mττ + mμμ)∓ 1

2

√
(mττ − mμμ)2 + 4 m2

μτ

∣∣∣∣. (4.80)

The flavor fields νμL and ντ L are given by the relations
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νμL = cos θ
√
η1 ν1L + sin θ

√
η2 ν2L

ντ L = − sin θ
√
η1 ν1L + cos θ

√
η2 ν2L , (4.81)

where for the mixing angle θ we have

tan 2 θ = 2mμτ

mττ − mμμ

, cos 2 θ = mττ − mμμ√
(mττ − mμμ)2 + 4 m2

μτ

. (4.82)

4.6 Seesaw Mechanism of Neutrino Mass Generation

The seesaw mechanism, proposed at the end of the seventies, is based on the Dirac
and Majorana mass term. It is apparently the most natural and viable mechanism of
neutrino mass generation.

In order to expose the main idea of the mechanism let us consider the simplest
case of one family. The Dirac and Majorana mass term is given in this case in the
previous section (see expression (4.59)). The three parameters mL , m D and m R

characterize, correspondingly, left-handed Majorana, Dirac and right-handed Majo-
rana mass terms. Particles with definite masses are Majorana particles. Their masses
are given by the expressions (4.70) and the mixing angle is given by (4.68). We will
now formulate the main assumptions of the seesaw mechanism.

1. We assume that there is no left-handed Majorana mass term, i.e. that

mL = 0

2. We assume that the Dirac mass term is generated by the Standard Higgs mecha-
nism, i.e. that m D is of the order of a mass of quark or lepton.

3. The right-handed Majorana mass term breaks conservation of the lepton number.
We assume that the lepton number is violated at a scale which is much larger than
the electroweak scale,4 i.e. that

m R ≡ MR � m D. (4.83)

From (4.70) and (4.83) follows that the masses of the Majorana particles are given
by the expressions

m1 � m2
D

MR
� m D, m2 � MR � m D. (4.84)

4 Majorana mass term is allowed only for particles with equal to zero electric charges such as
neutrinos. For charged particles such as quarks and leptons the Majorana mass term is forbidden
by the conservation of the electric charge. We also notice that because νR is SU (2) singlet with
equal to zero hypercharge, there are no constraints on m R . It can be arbitrarily large.
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For the mixing angle from (4.68) and (4.83) we find

θ � m D

MR
� 1. (4.85)

We also have η1 = −1 and η2 = 1. From (4.76) and (4.85) we obtain the following
mixing relations

νL = i ν1L + m D

MR
ν2L

(νR)
c = −i

m D

MR
ν1L + ν2L . (4.86)

In the framework of the seesaw mechanism, smallness of neutrino masses with
respect to masses of quarks and leptons is connected with violation of the total
lepton number at a large scale given by MR . The suppression factor ( m D

MR
) is char-

acterized by the ratio of the electroweak scale and the scale of the violation of the
lepton number. Notice that if we put m D � mt � 170 GeV and m1 � 5 · 10−2

(the mass of the heaviest neutrino in the case of neutrino mass hierarchies) we find

MR � m2
D

m1
� 1015 GeV.

In the case of three families the seesaw mass matrix has the form

M =
(

0 m D

mT
D MR

)
, (4.87)

where m D and MR are 3×3 matrices and MR = MT
R . We will assume that MR �

m D . Let us introduce the matrix m by the relation

U T M U = m, (4.88)

where U is a unitary matrix.
By analogy with the one family case we will choose the matrix U in the form

U =
(

1 (mT
D)

† (M−1
R )†

−M−1
R mT

D 1

)
(4.89)

It is easy to check that in the linear over m D
MR

approximation U †U = 1. From (4.88)
and (4.89) follows that up to the terms linear in m D

MR
the matrix m takes a block-

diagonal form

m �
(−m D M−1

R mT
D 0

0 MR

)
(4.90)

Thus, the Majorana neutrino mass matrix is given by
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mν = −m D M−1
R mT

D. (4.91)

The mass matrix of the heavy Majorana particles is MR .
Values of neutrino masses and neutrino mixing angles are determined by the

concrete form of matrices mD and MR . The structure of the relation (4.91) with
large MR in denominator ensure the smallness of neutrino masses with respect to
masses of leptons and quarks.

Thus, if the seesaw mechanism is realized in nature then:

• Neutrinos are Majorana particles.
• Neutrino masses are much smaller than lepton and quark masses.
• Heavy Majorana particles, the seesaw partners of neutrinos, must exist.5

We have discussed the standard seesaw mechanism of the generation of small
neutrino masses. Other approach which allows to explain the smallness of neutrino
masses is based on the assumption that the total Lagrangian of the theory is the sum
of the SM Lagrangian with massless neutrinos and non renormalizable effective
Lagrangian

Leff = − 1

M

∑

l ′l
yl ′l (ψ

T
l ′L σ2 φ)C−1 (φT σ2 ψ

T
l L)+ h.c. (4.92)

Here

ψl L =
(
νl L

lL

)
(� = e, μ, τ) , φ =

(
φ+
φ0

)
(4.93)

are lepton and Higgs doublets and σ2 is the Pauli matrix. The Lagrangian Leff
preserve the SU (2) × U (1) symmetry but violate the conservation of the lepton
number L .

The field operator in Eq. (4.92) is a dimension-five operator. Because a
Lagrangian is the dimension-four operator, the coefficient in (4.92) has a dimension
of a mass. We will assume that yl ′l are dimensionless coefficients. Thus, M has
a dimension of a mass. The parameter M characterizes a large scale at which the
Standard Model is violated.

After the spontaneous violation of the electroweak symmetry we have

φ(x) =
(

0
v+H(x)√

2
,

)
(4.94)

5 CP-violating decays of heavy Majorana particles in the early Universe is widely considered as a
possible source of the barion asymmetry of the Universe. We will consider baryogenesis through
leptogenesis in Chap. 11.
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where v � 246 GeV is the electroweak vacuum expectation value and H(x) is the
Higgs field.

From (4.92) and (4.94) we obtain the left-handed Majorana mass term

LM = 1

2

∑

l ′l
νT

l ′L C−1 M M
l ′l νl L + h.c. (4.95)

where the Majorana matrix M M is given by the seesaw expression

M M
l ′l = yl ′l v2

M
(4.96)

Let us notice that the effective Lagrangian Leff can be induced by three different
beyond the SM interactions:

1. An interaction of lepton-Higgs pairs with a heavy Majorana singlet fermion NR

(MN � v). The Lagrangian Leff is induced in this case by the diagrams with
exchange of a virtual NR between lepton-Higgs pairs.

2. An interaction of lepton pairs and Higgs pair with triplet heavy scalar boson
Δ.6 The effective Lagrangian Leff is induced in this case by the diagrams with
exchange of a virtual Δ between lepton and Higgs pairs.

3. An interaction of lepton-Higgs pairs with heavy Majorana triplet fermion ΣR .
The diagrams with exchange of a virtual ΣR between the lepton-Higgs pairs
induce in this case the effective Lagrangian Leff.

The standard seesaw mechanism is due to the lepton-Higgs-NR interaction. It is
called type I seesaw mechanism. Models with interactions 2 and 3 are called type II
and type III seesaw models, respectively.

4.7 Summary and Outlook

We have considered all possible neutrino mass terms in the case of three flavor
neutrino fields νeL , νμL , ντ L and three sterile fields νeR , νμR , ντ R .

Neutrinos with definite masses can be Majorana or Dirac particles. Neutrinos
are the Majorana particles if the mass term is not invariant under the global gauge
transformations and, therefore, there are no conserved lepton numbers. Neutrinos
are the Dirac particles if the total lepton number L = Le + Lμ + Lτ is conserved.

If neutrino mass matrix is non-diagonal the fields of the flavor neutrinos νl L

are mixtures of the left-handed components of the fields of neutrinos with definite
masses. In the case of the Dirac or Majorana mass term we have

6 Notice that because the projection of the isotopic spin of the neutrino field is equal to 1/2 a singlet
scalar boson cannot be produced in neutrino–neutrino interaction.
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νl L =
3∑

i=1

Uli νi L (4.97)

where U is an unitary 3×3 mixing matrix. In the case of Dirac and Majorana mass
term we have

νl L =
6∑

i=1

Uli νi L , (νl R)
c =

6∑

i=1

Ul̄i νi L , (4.98)

where U is an unitary 6×6 mixing matrix.
The minimal number of the massive neutrinos is equal to the number of the flavor

neutrinos (three). If more than three neutrino masses are small, sterile neutrinos must
exist. As we will see later, in this case left-handed flavor neutrinos νe, νμ and ντ will
transfer into the sterile neutrinos which cannot be produced in weak processes and
cannot be detected via the standard weak interaction. For the mixing in the most
general case we have

νl L =
3+ns∑

i=1

Uli νi L , νsL =
3+ns∑

i=1

Usi νi L . (4.99)

Here U is (3 + ns)× (3 + ns) unitary mixing matrix, l = e, μ, τ , the index s takes
the values s1, s2, . . . sns , ns being the number of the sterile neutrinos.



Chapter 5
Neutrino Mixing Matrix

5.1 Introduction

In the previous section we have considered possible neutrino mass terms. We have
shown that if in the total Lagrangian there is a neutrino mass term neutrinos are
massive particles and the flavor neutrino fields νeL(x), νμL (x), ντ L(x), which enter
into the interaction Lagrangian of the Standard Model, are mixtures of left-handed
components of the fields of neutrinos with definite masses νi L(x):

νl L(x) =
∑

i

Uli νi L(x). (5.1)

Here U is unitary mixing matrix and νi (x) is the field of the neutrino (Dirac or
Majorana) with mass mi .

The mechanism of the generation of the neutrino mass term at present is
unknown. We also do not know if neutrinos with definite masses are Dirac or
Majorana particles. However, as we will see later, it was established by all existing
experimental data that neutrino mixing takes place. The unitary mixing matrix U is
the object of central interest of theory and experiment. Here we will consider the
general properties of the matrix U in the Dirac and Majorana cases. We will also
introduce the standard parametrization of the 3×3 mixing matrix.

5.2 The Number of Angles and Phases in the Matrix U

Let us consider a unitary mixing matrix U in the general n × n case. The unitary
matrix can be presented in the form U = ei H , where H is a hermitian n × n matrix.

Such a matrix is characterized by n(diagonal elements) +2 ( n2−n
2 ) (non-diagonal

elements) = n2 real parameters.
The number of angles which characterizes a unitary n × n matrix coincides with

the number of parameters which characterizes a real orthogonal n × n matrix O
which satisfies the condition

Bilenky, S.: Neutrino Mixing Matrix. Lect. Notes Phys. 817, 79–93 (2010)
DOI 10.1007/978-3-642-14043-3_5 c© Springer-Verlag Berlin Heidelberg 2010
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OT O = 1. (5.2)

An orthogonal matrix can be presented in the form O = eA, where AT = −A.
The diagonal elements of the matrix A are equal to zero. The number of real non
diagonal elements is equal to n(n−1)

2 . Thus, the number of angles which characterize
a unitary matrix U is equal to

nθ = n(n − 1)

2
. (5.3)

Other parameters of the matrix U are phases. The number of phases is equal to

nφ = n2 − n(n − 1)

2
= n(n + 1)

2
. (5.4)

The number of physical phases, which characterize the mixing matrix, is smaller
than nφ . This is connected with the fact that the mixing matrix enters into the
charged current together with fields of charged leptons and neutrinos.

We will consider first the case of Dirac neutrinos. From the reasons which will be
clear below we denote the field of neutrino with definite masse by ν′

i (x), the charged
lepton field by l ′(x) and the mixing matrix by U ′.

Taking into account neutrino mixing for the leptonic charged current jCC†
α we

have the following expression

jCC†
α (x) = 2

∑

l

l̄ ′L(x) γα ν′
l L(x) = 2

∑

l,i

l̄ ′L(x) γα U ′
li ν

′
i L(x). (5.5)

The unitary matrix U ′ can be written in the form

U ′ = S†(β) U S(α). (5.6)

Here Sll ′(β) = eiβl δll ′ , Sik(α) = eiαi δik and

U = S(β) U ′ S†(α). (5.7)

The unitary phase matrix S(α) can be presented in the form

S(α) = eiαn

⎛

⎜⎝
ei(α1−αn)

...

1

⎞

⎟⎠ (5.8)

There are n + (n − 1) = 2n − 1 free parameters (βl −αn , αi −αn) in the right-hand
side of the relation (5.7). These parameters can be chosen in such a way to make
2n − 1 phases in the matrix U equal to zero. Thus, the number of phases in the
matrix U is equal to
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nD
φ = n(n + 1)

2
− (2n − 1) = (n − 1)(n − 2)

2
(5.9)

Let us introduce the fields

νi (x) = eiαi ν′
i (x), l(x) = eiβl l ′(x). (5.10)

It is obvious that the free Lagrangian of the neutrino and lepton fields and the
Lagrangians of the electromagnetic and NC interactions are invariant under the
transformation (5.10). The leptonic charged current takes the form

jCC†
α (x) = 2

∑

l,i

l̄L(x) γα Uli νi L(x). (5.11)

The phases of the fermion fields are arbitrary, unmeasurable quantities. Thus, the
fields ν′

i (x) (l ′(x)) and νi (x) (l(x)) are physically equivalent. The number of phys-
ical phases characterizing the mixing matrix in the case of the Dirac neutrinos is
given by nD

φ , which is the number of phases that cannot be removed from the mixing
matrix by the transformation (5.7) with arbitrary βl − αn and αi − αn .

From (5.3) and (5.9) follows that in the simplest case of the mixing of two Dirac
neutrinos the 2×2 mixing matrix is real. It is characterized by one mixing angle. In
the case of the mixing of three Dirac neutrinos the 3×3 mixing matrix is character-
ized by three mixing angles and one phase.

Let us consider now the case of the Majorana neutrinos. We will denote the field
of the Majorana neutrino with definite mass by νi (x), the lepton field by l ′(x) and
the mixing matrix by U ′. The lepton charged current has the form

jCC†
α (x) = 2

∑

l,i

l̄ ′L(x) γα U ′
li νi L(x), (5.12)

where νi (x) satisfy the Majorana condition

νc
i (x) = νi (x) (5.13)

and the matrix U ′ is given by the relation (5.6). Now, n phases which enter into the
matrix e−iαn S(β), can be included into the fermion Dirac fields l ′(x). The Majorana
condition (5.13), however, fixes phases of the neutrino fields. For the charged current
we have in the Majorana case the following expression

jCC
α (x) = 2

∑

l,i

l̄L(x) γα U M
li νi L(x). (5.14)

Here

U M = U SM (ᾱ), (5.15)
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where

SM (ᾱ) = e−iαn S(α). (5.16)

All non-diagonal elements of the matrix SM (ᾱ) are equal to zero. For the diagonal
elements we have

SM
ii (ᾱ) = ei ᾱi , i �= n, SM

nn(ᾱ) = 1, ᾱi = αi − αn . (5.17)

The phase matrix SM (ᾱ) is characterized by n − 1 phases. The total number of
phases which characterize the Majorana mixing matrix UM is equal to

nM
φ = (n − 1)(n − 2)

2
+ (n − 1) = n(n − 1)

2
. (5.18)

We conclude from (5.3) and (5.18) that in the case of mixing of two Majorana
neutrinos, the 2×2 mixing matrix is characterized by one mixing angle and one
phase. In the case of mixing of three Majorana neutrinos the 3×3 mixing matrix is
characterized by three mixing angles and three phases.

5.3 CP Conservation in the Lepton Sector

In this section we will obtain constraints on the unitary mixing matrix which follow
from the assumption of the CP conservation in the lepton sector. Let us consider
first the case of Dirac neutrinos with definite masses. From the assumption of the
CP invariance follows that the CC Lagrangian satisfies the following condition

VC P LCC
I (x) V −1

C P = LCC
I (x ′). (5.19)

Here VCP is the operator of the CP conjugation and x ′ = (x0,−x) and

LCC
I (x) = − g√

2

∑

l,i

l̄L(x) γα Uli νi L(x) Wα† − g√
2

∑

l,i

ν̄l L(x) γα U∗
li lL(x) Wα.

(5.20)

Let us consider a lepton field l ′(x). Under the CP transformation the field l ′(x) is
transformed as follows

VCP l ′(x) V −1
CP = e−2iβl γ 0 C l̄

′T (x ′). (5.21)

Here βl is an phase and C is the matrix of the charge conjugation, which satisfies
the conditions

C γ T
α C−1 = −γα, CT = −C. (5.22)
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Taking into account that phases of fermion fields are arbitrary, we can include the
phase factor eiβl into the field l ′(x). We have

VCP l(x) V −1
CP = γ 0 C l̄T (x ′), (5.23)

where l(x) = eiβl l ′(x). Thus, by a redefinition of arbitrary phases of the lepton
fields we can put the CP phase factors of the fields equal to one. The CP phase
factors of the Dirac neutrino fields can also be put equal to one:

VCP νi (x) V −1
CP = γ 0 C ν̄T

i (x
′). (5.24)

Let us consider the left-handed components of the fields. If we multiply (5.23) by
1−γ5

2 from the left and take into account (5.22) we find

VCP lL(x) V −1
CP = γ 0 C

1 + γ T
5

2
l̄ T (x ′) = γ 0 C l̄T

L (x
′). (5.25)

Analogously, for the neutrino field we have

VCP νi L(x) V −1
CP = γ 0 C ν̄T

i L(x
′). (5.26)

From (5.25) and (5.26) we easily find

VCP l̄L(x) V −1
CP = −lT

L (x
′) C−1γ 0, VCP ν̄i L(x) V −1

CP = −νT
i L(x

′) C−1γ 0.

(5.27)

We will consider now the interaction Lagrangian (5.20). Using relations (5.22),
(5.25), (5.26) and (5.27), we have

VCP l̄L(x) γα Uli νi L(x) V −1
CP = −lT

L (x
′) C−1γ 0 γα Uli γ

0 C ν̄T
i L(x

′)
= −δα ν̄i L(x

′) γα Uli lL(x
′). (5.28)

Here δ = (1,−1,−1,−1) is the sign factor. Notice that in (5.28) we took into
account the anticommutator properties of the fermion fields.

Under the CP transformation the field of the vector W ± bosons is transformed as
follows

VCP Wα(x) V −1
CP = −e−2iβW δα W †

α(x
′), (5.29)

where βW is a phase. Taking into account that the phase of the non-hermitian Wα(x)
field is arbitrary, we can include the phase factor eiβW into the W field. In this case
we have

VCP Wα(x) V −1
CP = −δα W †

α(x
′). (5.30)

With the help of (5.28) and (5.30) we find



84 5 Neutrino Mixing Matrix

VCP LCC
I (x) V −1

CP = − g√
2

∑

l,i

ν̄i L(x
′) γα Uli lL(x

′) Wα(x ′)

− g√
2

∑

l,i

l̄L(x
′) γα U∗

li νi L(x
′) Wα†(x ′). (5.31)

From (5.19), (5.20) and (5.31) we conclude that in the case of CP invariance the
mixing matrix U for the Dirac neutrinos is real:

Uli = U∗
li . (5.32)

More exactly this result can be formulated as follows: if arbitrary CP phase factors
of the lepton, Dirac neutrino and W fields are chosen to be equal to one, then from
CP invariance follows that the neutrino mixing matrix is real.

Let us comment the condition (5.32). The second term of the CC Lagrangian
(5.20) is responsible for the transition

l− → νi + W −. (5.33)

The amplitude of this transition is given by U∗
li . The first term of the Lagrangian

(5.20) is responsible for the CP-conjugated transition

l+ → ν̄i + W +. (5.34)

The amplitude of this transition is given by Uli . In the case of CP invariance the
amplitudes of the transitions (5.33) and (5.34) are equal.

We will consider now the Majorana mixing matrix. The CP transformation of the
Majorana field has the form

VCP νi (x) V −1
CP = η∗

i γ
0 C ν̄T

i (x
′) = η∗

i γ
0 νi (x

′), (5.35)

where we take into account the Majorana condition

νc
i (x) = C ν̄T

i (x) = νi (x). (5.36)

In the case of Majorana fields the CP phase factors are not arbitrary as in the case
of the Dirac fields. We will show now that the Majorana CP phase factors can take
the values ±i . In fact, from (5.35) by hermitian conjugation and multiplication from
the right by the matrix γ 0 we find

VCP ν̄i (x) V −1
CP = ηi ν̄i (x

′) γ 0. (5.37)

From this relation we have

VCP C ν̄T
i (x) V −1

CP = ηi C γ 0T C−1 C ν̄T
i (x

′). (5.38)
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Finally from (5.36) and (5.22) we obtain the following relation

VCP νi (x) V −1
CP = −ηi γ

0 νi (x
′). (5.39)

If we now compare (5.35) and (5.39) we conclude that

η∗
i = −ηi . (5.40)

Thus, we have
η2

i = −1, and ηi = ±i. (5.41)

From (5.35) we have

VCP ai (pi ) V −1
CP = η∗

i ai (p
′
i ). (5.42)

Here ai (pi ) (ai (p′
i )) is the operator of the absorption of the Majorana neutrino with

mass mi and momentum pi = (

√
p2 + m2

i ,p) (p′
i = (

√
p2 + m2

i ,−p)). From
(5.42) we find for the creation operators

VCP a†
i (pi ) V −1

CP = ηi a†
i (p

′
i ). (5.43)

The vector |pi 〉 = a†
i (pi ) |0〉 describes the state of the Majorana neutrino with

momentum pi (|0〉 is the vacuum state). From (5.43) we have

VCP |pi 〉 = ηi |p′
i 〉 (5.44)

Thus, ηi is the CP parity of the Majorana neutrino with mass mi .
We will find now conditions on the Majorana mixing matrix which can be

obtained from the assumption of CP invariance in the lepton sector. It will be con-
venient to choose arbitrary CP phase factors of the lepton fields equal to −i :

VCP l(x) V −1
CP = −i γ 0 C l̄T (x ′), (5.45)

From (5.27), (5.35), (5.22) and (5.45) we have

VCP l̄L(x) γα U M
li νi L(x) V −1

CP = −η∗
i lT

L (x
′) C−1γ 0 γα U M

li
1 − γ5

2
γ 0νi (x

′)

= −δα ρi ν̄i L(x
′) γα U M

li lL(x
′), (5.46)

where the parameter ρi is determined as follows

ηi = i ρi , ρi = ±1. (5.47)

Let us notice that in (5.46) we take into account that
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ν̄i (x) = −νT
i (x) C−1. (5.48)

Now, taking into account (5.30), we find

VCP LCC
I (x) V −1

CP = − g√
2

∑

l,i

ρi ν̄i L(x
′) γα U M

li lL(x
′) Wα(x ′)

− g√
2

∑

l,i

ρi l̄L(x
′) γα U M∗

li νi L(x
′) Wα†(x ′). (5.49)

From (5.19), (5.20) and (5.49) we finally find the following condition of the CP
invariance in the case of the mixing of the Majorana neutrinos

ρi U M
li = U M∗

li . (5.50)

Let us stress that we have chosen the arbitrary CP phase factors of the lepton fields
equal to −i and the W field equal to one.

5.4 Standard Parametrization of 3×3 Mixing Matrix

We will consider here the unitary 3×3 mixing matrix for Dirac neutrinos and intro-
duce the standard parameters (three mixing angles and one phase) which character-
izes it. Let us consider three orthogonal and normalized vectors

|i〉 (i = 1, 2, 3) 〈i |k〉 = δik . (5.51)

In order to obtain three general “mixed” vectors we will perform three Euler rota-
tions. The first rotation will be performed at the angle θ12 around the vector |3〉. The
new orthogonal and normalized vectors are

|1〉(1) = c12 |1〉 + s12 |2〉
|2〉(1) = −s12 |1〉 + c12 |2〉
|3〉(1) = |3〉, (5.52)

where c12 = cos θ12 and s12 = sin θ12. In the matrix form, (5.52) can be written as
follows

|ν〉(1) = U (1) |ν〉. (5.53)

Here

|ν〉(1) =
⎛

⎝
|1〉(1)
|2〉(1)
|3〉(1)

⎞

⎠ , |ν〉 =
⎛

⎝
|1〉
|2〉
|3〉

⎞

⎠ (5.54)
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and

U (1) =
⎛

⎝
c12 s12 0

−s12 c12 0
0 0 1

⎞

⎠ . (5.55)

Let us perform now the second rotation at the angle θ13 around the vector |2〉(1). At
this step we will introduce the CP phase δ, connected with the rotation of the vector
of the third family |3〉. We will obtain the following three orthogonal vectors:

|1〉(2) = c13 |1〉(1) + s13e−iδ |3〉(1)
|2〉(2) = |2〉(1)
|3〉(2) = −s13eiδ |1〉(1) + c13 |3〉(1). (5.56)

In the matrix form we have

|ν〉(2) = U (2) |ν〉(1). (5.57)

Here

U (2) =
⎛

⎝
c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞

⎠ . (5.58)

Finally, let us perform the rotation around the vector |1〉(2) at the angle θ23. The new
orthogonal vectors are

|1〉mix = |1〉(2)
|2〉mix = c23| 2〉(2) + s23 |3〉(2)
|3〉mix = −s23 |2〉(2) + c23 |3〉(2). (5.59)

We have

|νmix〉 = U (3) |ν〉(2). (5.60)

Here

U (3) =
⎛

⎝
1 0 0
0 c23 s23
0 −s23 c23

⎞

⎠ . (5.61)

From (5.53), (5.57) and (5.60) we find

|νmix〉 = U |ν〉, (5.62)
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where

U = U (3) U (2) U (1). (5.63)

From (5.55), (5.58) and (5.61) we have

U =
⎛

⎝
1 0 0
0 c23 s23
0 −s23 c23

⎞

⎠

⎛

⎝
c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞

⎠

⎛

⎝
c12 s12 0

−s12 c12 0
0 0 1

⎞

⎠ . (5.64)

From (5.64) we find that the unitary 3×3 Dirac mixing matrix has the following
form

U =
⎛

⎝
c13c12 c13s12 s13e−iδ

−c23s12 − s23c12s13eiδ c23c12 − s23s12s13eiδ c13s23

s23s12 − c23c12s13eiδ −s23c12 − c23s12s13eiδ c13c23

⎞

⎠ . (5.65)

This is the so called standard parametrization of the 3×3 mixing matrix. This matrix
is characterized by three mixing angles θ12, θ23 and θ13 and the phase δ.

As we have seen in the previous section, in the case of CP conservation in the
lepton sector U∗ = U . Thus, the phase δ is responsible for effects of the CP viola-
tion: if CP is conserved, δ = 0. The mixing angles are parameters which can take
values in the ranges 0 ≤ θ12 ≤ π , 0 ≤ θ13 ≤ π , 0 ≤ θ23 ≤ π1 and the phase δ can
take values in the range 0 ≤ δ ≤ 2π .

The 3×3 Majorana mixing matrix has the form (see previous section)

U M = U SM (ᾱ) (5.66)

where the phase matrix SM (ᾱ) is characterized by two Majorana phases and has the
form

SM (ᾱ) =
⎛

⎝
ei ᾱ1

ei ᾱ2

1

⎞

⎠ . (5.67)

and the matrix U is given by (5.65).
In the case of CP invariance the mixing matrix satisfies the condition (5.50). Let

us consider the elements U M
ei of the mixing matrix. From (5.50) and (5.65) we find

1 Under the change θ → π + θ , the 2×2 mixing matrix
(

cos θ sin θ
− sin θ cos θ

)

changes sign. Only squares of the mixing matrix enter into observable quantities. Thus, angles θ
and π + θ cannot be distinguished. From (5.64) it is obvious that this argument is applicable to the
general 3×3 matrix.
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that in the case of CP invariance

e2i ᾱi = ρi (i = 1, 2), e−2iδ = ρ3. (5.68)

5.5 On Models of Neutrino Masses and Mixing

The discovery of neutrino oscillations and the measurement of the neutrino oscil-
lation parameters Δm2

12, Δm2
23, sin2 θ12, sin2 θ23 as well as the determination of

the upper bound of the parameter sin2 θ13 inspired a lot of models of neutrino
masses and mixing. We will discuss existing neutrino oscillation data later. From
their global analysis follows that the neutrino mixing angles are in the following 1σ
ranges

0.29 ≤ sin2 θ12 ≤ 0.33, 0.41 ≤ sin2 θ23 ≤ 0.54, sin2 θ13 ≤ 0.05. (5.69)

Thus the following values of the mixing parameters

sin2 θ12 = 1

3
, sin2 θ23 = 1

2
, sin2 θ13 = 0. (5.70)

are in agreement with experimental data. If we choose these values of the parameters
we find from the general expression (5.65) that the neutrino mixing matrix has the
form

UTBM =

⎛

⎜⎜⎝

√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞

⎟⎟⎠ . (5.71)

Notice that the elements of the second column of the matrix (5.71) are equal. We
have

ν2L = 1√
3
(νeL + νμL + ντ L). (5.72)

The matrix (5.71) is called tri-bimaximal matrix.
Let us consider the equation for the eigenstates and eigenvalues of a real sym-

metrical matrix M :

M ui = mi ui . (5.73)

Here ui are normalized eigenstates and mi are eigenvalues of the matrix M . We
have
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∑

l

ui (l) uk(l) = δik . (5.74)

From (5.73) and (5.74) we find

Ml ′l =
∑

i

ui (l
′) mi ui (l

′) = Ul ′i mi U T
l ′i = (U m U T )l ′l , (5.75)

where the mixing matrix U is given by the relation

Uli = ui (l). (5.76)

In the case of the tri-bimaximal matrix (5.71) we have

u1 = 1√
6

⎛

⎝
2

−1
−1

⎞

⎠ u2 = 1√
3

⎛

⎝
1
1
1

⎞

⎠ u3 = 1√
2

⎛

⎝
0

−1
1

⎞

⎠ (5.77)

From (5.75), (5.71) and (5.76) we find

MTBM = m1

6

⎛

⎝
4 −2 −2

−2 1 1
−2 1 1

⎞

⎠+ m2

3

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠+ m3

2

⎛

⎝
0 0 0
0 1 −1
0 −1 1

⎞

⎠ (5.78)

From (5.78) follows that the mass matrix in the tri-bimaximal case has the form

MTBM =
⎛

⎝
x y y
x x + v y − v

y y − v x + v

⎞

⎠ , (5.79)

where

x = 2

3
m1 + 1

3
m2, y = −1

3
m1 + 1

3
m2, v = −1

2
m1 + 1

2
m3. (5.80)

Many models of neutrino masses and mixing, which lead to the tri-bimaximal mix-
ing, were proposed. They are based on different symmetries. We briefly discuss here
a model based on the discrete alternating A4 group.

The group A4 is the group of even permutations of four objects. All elements of
the group are products of two generators S and T which satisfy the relations

S2 = T 3 = (ST )3 = 1. (5.81)

The number of elements in the A4 group is equal to 4!
2 = 12. Taking into account

(5.81) we can easily see that all possible products of S and T (elements of the A4
group) are given by
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1, T, S, ST, T S, T 2, T 2S, T ST, ST 2, ST S, T 2ST, T ST 2. (5.82)

The group A4 has four irreducible representations: one triplet and three singlets

3, 1, 1′, 1′′. (5.83)

For one-dimensional unitary representations we can choose S = 1, T = eiα . From
the relations (5.81) follows that 3α = 2πn, where n is an integer number. Thus, we
have

1 : S = 1 T = 1; 1′ : S = 1 T = ω2 : 1′′ : S = 1 T = ω, (5.84)

where ω = e
2π
3 i . It is obvious that

ω3 = 1, 1 + ω + ω2 = 0. (5.85)

In the basis in which the matrix T is diagonal, the 3×3 unitary matrix T is given by

T =
⎛

⎝
eiα1 0 0

0 eiα2 0
0 0 eiα3

⎞

⎠ , (5.86)

where αi is a real phase. From (5.81) follows that αi = 2π
3 ni . We can choose the

three-dimensional unitary representation of the generator T in the form

T =
⎛

⎝
1 0 0
0 ω2 0
0 0 ω

⎞

⎠ . (5.87)

The real unitary matrix S satisfies the condition ST S = 1. Taking into account
that S2 = 1 we have ST = S. We can check that the three-dimensional unitary
symmetrical matrix

S = 1

3

⎛

⎝
−1 2 2
2 −1 2
2 2 −1

⎞

⎠ . (5.88)

satisfies the relations (5.81).
We will assume that the lepton doublets

Ll L =
(
νl L

lL

)
l = e, μ, τ (5.89)

are A4 triplets. Further, we will assume the existence of the scalar triplets φT , φS and
scalar singlet ξ (flavon fields) which enter into the A4 invariant Yukawa interaction
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with lepton doublets. After spontaneous symmetry breaking, the charged-lepton and
neutrino mass terms are generated.

With the vacuum alignment

< φT >= (vT , 0, 0) (5.90)

we come to the diagonal charged lepton mass matrix and symmetrical neutrino mass
matrix

M =
⎛

⎝
x y z
y x1 y − v

z y − v x2

⎞

⎠ (5.91)

We assume that the matrix M is real. In this case it is characterized by six real
parameters.

With the alignment

< φS >= (vS, vS, vS), < ξ >= u (5.92)

the A4 symmetry is broken down to the GS symmetry generated by the operator S.
The mass matrix M satisfies the relation

SMS = M, (5.93)

where S is given by (5.88). From (5.93) we find that the mass matrix M is given by

M =
⎛

⎝
x y z
y x + v + y − z w

z w x + v

⎞

⎠ . (5.94)

This matrix is characterized by four real parameters. It is obvious that it does not
have the tri-bimaximal form (5.79).

We will come to the tri-bimaximal mixing if we assume μ − τ symmetry of the
neutrino mixing matrix2

Sμτ M Sμτ = M, (5.95)

where

Sμτ =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ . (5.96)

2 It is obvious that from this relation follows: Vμe = Veμ = Vτe = Veτ , Vμμ = Vττ .
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In fact, from (5.95) and (5.96) we find that

z = y. (5.97)

With the relation (5.97) we come to the tri-bimaximal neutrino mixing matrix(5.79).
In order to implement μ − τ symmetry we need to assume that there are no 1′ and
1′′ scalar flavon fields in the Yukawa interaction.

Thus, spontaneously broken A4 symmetry with alignments (5.90) and (5.92)
allows to obtain the tri-bimaximal mixing. This mixing is in good agreement with
experimental data and can be considered as the leading approximation. Existing
experimental data do not exclude, however, some corrections to the tri-bimaximal
values (5.70) (see (5.69)). In the model, we are discussing, corrections from higher-
dimensional operators to all mixing angles are of the same order. Taking into
account that the corrections to the angle θ12 can be of the order of 5% we can predict
that the departure of the angle θ23 from π

4 can also be of the same order and that
the value of the angle θ13 can be close to the present CHOOZ bound (� 5 · 10−2).
These predictions will be checked in T2K, DOUBLE CHOOZ, Daya Bay, RENO
and other experiments.

We have briefly discussed a model based on the spontaneously broken A4 group.
The observed pattern of neutrino mixing and masses can be accommodated in
different A4 models (with different alignments, in extra dimensions, with five-
dimensional effective operators, etc.) and models based on many other groups. It is
not excluded, however, that the tri-bimaximal mixing is accidental. An established
theory of neutrino (and quark) masses and mixing does not exist at present. The
creation of such a theory requires further experimental and theoretical efforts.



Chapter 6
Neutrino Oscillations in Vacuum

6.1 Introduction

The observation of neutrino oscillations in the atmospheric Super Kamiokande,
solar SNO, reactor KamLAND, solar Homestake, GALLEX-GNO, SAGE and
accelerator K2K and MINOS neutrino experiments was one of the most impor-
tant recent discoveries in elementary particle physics. We will discuss experimental
results later. In this section we will consider in some detail the theory of neutrino
oscillations in vacuum. Neutrinos and antineutrinos are emitted in weak decays of
pions and kaons, which are produced at accelerators and in the processes of inter-
action of cosmic ray protons in the atmosphere, in decays of muons, products of
decays of pions and kaons, in β-decays of nuclei, products of the fission of uranium
and plutonium in reactors, in nuclear reactions in the sun, etc. The first question
which we will address here will be the following: what are the states of neutrinos,
produced in weak interaction processes, in the case of neutrino mixing.

6.2 Flavor Neutrino States

Let us consider a charged current weak decay

a → b + l+ + νl (l = e, μ, τ) (6.1)

(a and b are some hadrons). The leptonic part of the standard Lagrangian of the CC
interaction has the form

LCC
I = − g

2
√

2
jCC
α Wα + h.c., (6.2)

where the leptonic CC is given by the expression

jCC
α = 2

∑

l=e,μ,τ

ν̄l L γα lL (6.3)

Bilenky, S.: Neutrino Oscillations in Vacuum. Lect. Notes Phys. 817, 95–120 (2010)
DOI 10.1007/978-3-642-14043-3_6 c© Springer-Verlag Berlin Heidelberg 2010
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and νl L is the mixed field

νl L =
3∑

i=1

Uliνi L . (6.4)

Here U is a unitary mixing matrix and νi is the field of neutrino (Dirac or Majorana)
with mass mi .

In the case of neutrino mixing the flavor lepton numbers Le, Lμ and Lτ are not
conserved. The neutrino, which is produced together with the lepton l+ in a CC
weak process is called flavor neutrino νl (l = e, μ, τ ).1

The vector of the state of the final particles in the decay (6.1) is given by

| f 〉 =
3∑

i=1

|νi 〉 |l+〉 |b〉 〈νi l+ b |S| a〉. (6.5)

Here |νi 〉 is the normalized state of the neutrino νi with momentum pi , |l+〉 is the
state of l+ with momentum pl , |a〉 and |b〉 are the states of the initial and final
hadrons with momenta pa and pb and 〈νi l+ b |S| a〉 is the element of the S-matrix.

From existing experimental data on the measurement of the high-energy part of
the β-spectrum of 3H follows that mi � 2.2 eV (we will discuss these data in the
Chap. 9.) The neutrino energy E in neutrino experiments � 1 Mev (in the solar
and reactor experiments E � 1 MeV, in atmospheric and accelerator experiments
E � 1 GeV, etc.)

We will assume that pi = pi k (k is a unit vector) and pi → p = E at mi → 0.
We have

pi � p − α
m2

i

2E
, (6.6)

where α ∼ O(1) depends on the process in which neutrinos are produced.
Neglecting in the matrix element 〈νi l+ b |S| a〉 terms of the order of2

m2
i

E2
≤ 10−12 (6.7)

we have

1 Let us stress that this is a phenomenological definition of a flavor neutrino ( νe, νμ, ντ ) in the
case of the nonconservation of the flavor lepton numbers.
2 In the end-point part of the β-spectrum of 3H the neutrino energies (a few eV) are comparable
with the neutrino masses. Thus, in this part of the β-spectrum neutrino masses cannot be neglected.
The measurement of the end-point part of the β-spectrum of 3H allows to obtain an information
about neutrino masses.
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〈νi l+ b |S| a〉 � U∗
li 〈νl l+ b |S| a〉SM . (6.8)

Here 〈νl l+ b |S| a〉SM is the matrix element of the process (6.1) calculated in the
SM with massless neutrino νl . We have

〈νl l+ b |S| a〉SM = −i
GF√

2
N 2 ūL(p) γα uL(−p l) 〈b| Jα(0) |a〉 (2π)4 δ(P ′ − P).

(6.9)
Here P and P ′ are the total initial and final momenta, Jα is the hadronic charged
current and N is the product of the standard normalization factors.

From (6.8) we find for the final state (6.5)

| f 〉 � |νl〉 |l+〉 |b〉 〈νl l+ b |S| a〉SM, (6.10)

where the neutrino state |νl〉 is given by the expression

|νl〉 =
3∑

i=1

U∗
li |νi 〉. (6.11)

From the unitarity of the mixing matrix follows that the states |νl〉 are orthogonal
and normalized

〈νl ′ |νl〉 =
3∑

i=1

Ul ′i U∗
li = δl ′l (6.12)

We come to the following important conclusion. Flavor neutrinos νl , which are
produced in a CC weak decays (together with leptons l+), are described by the
normalized states (6.11), which are coherent superpositions of states of neutrinos
with different masses. If we assume that the interaction of neutrinos is given by
the Lagrangian (6.2), the amplitudes of the production of flavor neutrinos νl (up to

negligible terms of the order of
m2

i
E2 � 1) are given by the Standard Model. Notice

that in this approximation the helicity of the flavor neutrino νl is equal to −1.
Analogously, the normalized state of the flavor antineutrino ν̄l , which is produced

in a CC weak process together with a lepton l−

a′ → b′ + l− + ν̄l (l = e, μ, τ) (6.13)

in the case of Dirac neutrinos is given by the expression

|ν̄l〉 =
3∑

i=1

Uli |ν̄i 〉. (6.14)
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Here |ν̄i 〉 is the state of an antineutrino with momentum pi and positive helicity. In
the case of Majorana neutrinos we have

|ν̄l〉 =
3∑

i=1

Uli |νi 〉, (6.15)

where |νi 〉 is the state of a Majorana neutrino with momentum pi and positive
helicity.

The relations (6.11), (6.14) and (6.15) are basic relations of the theory of neutrino
oscillations. We obtain them assuming that small neutrino masses can be neglected
in matrix elements of weak processes in which flavor neutrinos are produced. This
assumption can only be valid if it is impossible to distinguish the emission of neu-
trinos with different masses in weak processes. We will demonstrate now that this
is really the case.

Let us consider as an example the decay π+ → μ+ + νi . In the pion rest frame
the neutrino momentum pi is given by the relation

pi � E − α
m2

i

2E
, (6.16)

where α = m2
π+m2

μ

2m2
π

� 0.8 and

E = m2
π − m2

μ

2mπ

. (6.17)

For the difference of momenta of neutrinos with different masses we find

|Δpik | = |pk − pi | � |Δm2
ik |

2E
. (6.18)

where Δm2
ik = m2

k − m2
i .

On the other side from the Heisenberg uncertainty relation for the quantum
mechanical uncertainty of neutrino momenta we have

(Δp)QM � 1

a
, (6.19)

where a characterizes the size of the wave packet of the pion.
From analysis of the data of neutrino oscillation experiments, which we will

discuss later, for the largest neutrino mass-squared difference the value

Δm2
23 � 2.4 · 10−3 eV2 (6.20)

was obtained. From (6.20) we find (for E � 1GeV)
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2E

Δm2
23

� 1.7 · 102 km. (6.21)

This value is many orders of magnitude larger than the microscopic length of the
wave packet: From (6.18), (6.19) and (6.21) we conclude that

Δp23 � (Δp)QM. (6.22)

Thus, due to the Heisenberg uncertainty principle it is impossible to distinguish the
emission of neutrinos with different masses in the pion decay.

6.3 Oscillations of Flavor Neutrinos

Neutrino oscillations are periodic transitions between different flavor neutrinos in
neutrino beams. We will consider a beam of neutrinos which was produced in CC
weak decays (π+ → μ+ + νμ, μ+ → e+ + νe + ν̄μ, (A, Z) → (A, Z + 1) +
e− + ν̄e, etc.) at an accelerator or at a reactor or at a Neutrino Factory or in decays
of radioactive nuclei (β-beam), etc.

In the quantum field theory the dependence of states on the time is given by the
Schrodinger equation

i
∂|Ψ (t)〉
∂t

= H |Ψ (t)〉, (6.23)

where H is the total Hamiltonian. We will consider here the evolution of states in
vacuum. In this case H is the free Hamiltonian. The general solution of Eq. (6.23)
has the form

|Ψ (t)〉 = e−i Ht |Ψ (0)〉, (6.24)

where |Ψ (0)〉 is the state at the initial time (t = 0).
We will apply now this general formalism to a neutrino beam. The initial state is

the state of the flavor neutrino νl (l = e, μ, τ ) given by Eq. (6.11). Thus, we have

|Ψ (0)〉 = |νl〉. (6.25)

Taking into account that

H |νi 〉 = Ei |νi 〉, (6.26)

where

Ei =
√

p2
i + m2

i (6.27)
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from (6.11) and (6.24) we find for the state of the left-handed neutrino at the time
t ≥ 0 the following expression

|νl〉t = e−i Ht |νl〉 =
3∑

i=1

e−i Ei t U∗
li |νi 〉. (6.28)

Similarly, for state of the right-handed antineutrino at the time t we have

|ν̄l〉t = e−i Ht |ν̄l〉 =
3∑

i=1

e−i Ei t Uli |ν̄i 〉. (6.29)

In general the neutrino energies Ei (i = 1, 2, 3) are different. This means that |νl〉t

is a nonstationary state. In other words during the time t different mass-components
of the coherent neutrino state acquire different phases.

Neutrinos are detected via the observation of weak CC and NC processes. At the
time t the state of the neutrino is the superposition (6.28) of the states |νi 〉. Let us
consider the production of a lepton l ′ in the CC inclusive process

νi + N → l
′ + X. (6.30)

Neglecting small neutrino masses in the matrix element of the process (6.30) we
find

〈l ′ X |S| νi N 〉 � 〈l ′ X |S| νl ′ N 〉SM Uli , (6.31)

where 〈l ′ X |S| νl ′ N 〉SM is the SM matrix element of the process

νl ′ + N → l ′ + X (6.32)

calculated for massless neutrinos νl ′ . We have

〈l ′ X |S| νl ′ N 〉SM = −i
G F√

2
N 2 ūL(pl ′) γα uL(p) 〈X | Jα(0) |N 〉 (2π)4 δ(P ′ − P),

(6.33)

where pl ′ is the momentum of the lepton, p is the neutrino momentum, P and P ′
are the initial and final total momenta.

From (6.28) and (6.31) we obtain the following expression for the amplitude of
the transition νl → νl ′ during the time t

A(νl → νl ′) =
3∑

i=1

Ul ′i e−i Ei t U∗
li . (6.34)

Analogously, for the amplitude of the transition ν̄l → ν̄l ′ during the time t we find
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A(ν̄l → ν̄l ′) =
3∑

i=1

U∗
l ′i e−i Ei t Uli . (6.35)

It is useful to obtain these results in another way. Taking into account that flavor
states |νl〉 form a complete system, we have

|νl〉t = e−iHt |νl〉 =
∑

l ′
|νl ′ 〉〈νl ′ |e−i Ht |νl〉, (6.36)

where 〈νl ′ |e−i Ht |νl〉 is the amplitude of the probability to find at the time t the
flavor neutrino νl ′ in the beam of neutrinos which originally at t = 0 was a beam of
νl . From (6.11) we find

〈νl ′ |e−i Ht |νl〉 =
∑

i,i ′
Ul ′i ′ 〈νi ′ |e−i Ht |νi 〉U∗

li =
3∑

i=1

Ul ′i e−i Ei t U∗
li ≡ A(νl → νl ′).

(6.37)

Let us consider the matrix element of the process

νl ′ + N → l ′′ + X (6.38)

Neglecting neutrino masses we have

〈l ′′ X |S| νl ′ N 〉 =
∑

i

〈l ′′ X |S| νi N 〉 U∗
l ′i

� 〈l ′ X |S| νl ′ N 〉SM

∑

i

U∗
l ′′i Ul ′i = δl ′l ′′ 〈l ′ X |S| νl ′ N 〉SM (6.39)

Thus, we have demonstrated that a flavor neutrino νl ′ interacting with a nucleon
produces lepton l ′ (and X ). We can conclude that in the approximation mi → 0 the
lepton flavor numbers Le, Lμ and Lτ are effectively conserved in weak processes.
In this approximation the matrix elements of weak processes are given by the SM.

The amplitude A(νl → νl ′), given by Eq. (6.34), has a simple meaning: the factor
U∗

li is the amplitude of the transition from the initial flavor state |νl〉 into the state of
a neutrino with definite mass |νi 〉; the factor e−iEi t describes the propagation in the
state with definite mass; the factor Ul ′i is the amplitude of the transition from the
state |νi 〉 into the state |νl ′ 〉. The coherent sum over all states with definite masses is
performed.

It is obvious that if all Ei are the same, due to unitarity of the mixing matrix we
have

A(νl → νl ′) = δl ′l , A(ν̄l → ν̄l ′) = δl ′l . (6.40)
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Thus, transitions between different flavor neutrinos (antineutrinos) can take place
only in the case if at least one phase difference is not equal to zero.

The probabilities of the transitions νl → νl ′ and ν̄l → ν̄l ′ are equal, respectively,

P(νl → νl ′) =
∣∣∣∣∣

3∑

i=1

Ul ′i e−i Ei t U∗
li

∣∣∣∣∣

2

(6.41)

and

P(ν̄l → ν̄l ′) =
∣∣∣∣

3∑

i=1

U∗
l ′i e−i Ei t Uli

∣∣∣∣
2

. (6.42)

From (6.41) and (6.42) the following general relations between transition proba-
bilities can easily be obtained:

1.

∑

l ′
P(νl → νl ′) = 1,

∑

l ′
P(ν̄l → ν̄l ′) = 1,

∑

l

P(νl → νl ′) = 1,
∑

l

P(ν̄l → ν̄l ′) = 1. (6.43)

These relations are a consequence of the unitarity of the mixing matrix. In fact,
we have

∑

l ′
P(νl → νl ′) =

∑

l ′,i,k
Ul ′iU

∗
l ′k e−i (Ei −Ek ) t U∗

liUlk =
∑

i,k

δik e−i (Ei −Ek ) t U∗
liUlk =

∑

i

U∗
liUli = 1. (6.44)

2.

P(νl → νl ′) = P(ν̄l ′ → ν̄l). (6.45)

This relation is a consequence of the C PT invariance of the theory and can easily
be obtained by direct comparison of (6.41) and (6.42).
From (6.45) follows that the probabilities of the transitions νl → νl and ν̄l → ν̄l

are equal

P(νl → νl) = P(ν̄l → ν̄l), (6.46)

3.

P(νl → νl ′) = P(ν̄l → ν̄l ′) (6.47)
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This relation is valid in the case of CP invariance in the lepton sector. In fact, we
have in this case (see Sect. 5.3)

Uli = U∗
li (Dirac neutrinos), ρi Uli = U∗

li (Majorana neutrinos), (6.48)

where ρi = ±1. From (6.41), (6.42) and (6.48) we easily obtain relation (6.47).
The probabilities of the transitions νl → νl and ν̄l → ν̄l are equal due to CPT
invariance. Thus, in order to check whether CP is conserved in the lepton sector
we need to test the relations (6.47) at l ′ �= l. Let us also notice that in the case of
CP invariance, from (6.45) and (6.47) follows that

P(νl → νl ′) = P(νl ′ → νl), P(ν̄l → ν̄l ′) = P(ν̄l ′ → ν̄l). (6.49)

These relations are a consequence on the invariance under time reversal (T )
which obviously holds if both CP invariance and CPT invariance take place.

We have considered the case of three flavor neutrinos (νe, νμ, ντ ) and three flavor
antineutrinos (ν̄e, ν̄μ, ν̄τ ). Let us discuss now the most general case of active and
sterile neutrinos. For neutrino mixing we have in this case

νl L =
3+ns∑

i=1

Uliνi L (l = e, μ, τ), νsL =
3+ns∑

i=1

Usiνi L (s = s1, s2, . . . sns ). (6.50)

Here νi is the field of neutrinos (Dirac or Majorana) with mass mi . If all neutrino
masses are much smaller than the neutrino energy, the neutrino masses can be
neglected in the matrix elements of the processes in which neutrinos are produced
and for the states of flavor left-handed neutrinos we will have

|νl〉 =
3+ns∑

i=1

U∗
li |νi 〉, (6.51)

where |νi 〉 is the state of neutrinos with mass mi and momentum pi . Sterile fields
νsL do not enter into the SM Lagrangian of the weak interaction. We determine
states of sterile left-handed neutrino νs as follows

|νs〉 =
3+ns∑

i=1

U∗
si |νi 〉. (6.52)

From the unitarity of the (3 + ns)× (3 + ns) mixing matrix U we find that

〈νs |νl〉 = 0. (6.53)
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The total system of active and sterile left-handed states

|να〉 =
3+ns∑

i=1

U∗
αi |νi 〉 , α = e, μ, τ, s1, s2, . . . sns (6.54)

satisfies the conditions

〈να′ |να〉 =
3+ns∑

i=1

Uα′i U∗
αi = δα′α. (6.55)

If the initial neutrino state at t = 0 is |να〉, for the neutrino state at the time t ≥ 0
we have

|να〉t = e−i Ht |να〉 =
∑

α′
|να′ 〉 〈να′ | e−i Ht |να〉. (6.56)

Here

〈να′ | e−i Ht |να〉 = A(να → να′) =
3+ns∑

i=1

Uα′i e−i Ei t U∗
αi (6.57)

is the amplitude of the transition να → ν′
α during the time t .

Analogously, for the amplitude of the transition ν̄α → ν̄α′ we have

A(ν̄α → ν̄α′) = 〈ν̄α′ | e−i Ht |ν̄α〉 =
3+ns∑

i=1

U∗
α′i e−i Ei t Uαi . (6.58)

From (6.57) and (6.58) we find the following expressions for the probabilities of
the transitions να → να′ and ν̄α → ν̄α′

P(να → να′) =
∣∣∣∣

3+ns∑

i=1

Uα′i e−i Ei t U∗
αi

∣∣∣∣
2

; P(ν̄α → ν̄α′) =
∣∣∣∣

3+ns∑

i=1

U∗
α′i e−i Ei t Uαi

∣∣∣∣
2

.

(6.59)
It is easy to check that the transition probabilities are correctly normalized. In fact,
taking into account the unitarity of the (3+ns)× (3+ns)mixing matrix U , we find

∑

α′
P(να → να′) =

∑

α′,i,k
Uα′i U∗

α′k e−i (Ei −Ek ) t U∗
αi Uαk =

∑

i

|Uαi |2 = 1 (6.60)

Sterile neutrinos cannot be detected in the standard weak processes. One of the
possibilities to obtain an information about transitions into sterile states can be based
on the unitarity relation (6.60). In fact, from (6.60) we have
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∑

l ′=e,μ,τ

P(νl → νl ′) = 1 −
∑

s=s1,s2,...sns

P(νl → νs) (6.61)

The left-handed part of this relation is the total probability of the transition of
a flavor neutrino νl into all possible flavor active neutrinos (νe, νμ, ντ ). This
probability can be measured if neutrinos are detected at some distance from the
source by the observation of a NC process. If it would occur that the probability∑

l ′=e,μ,τ P(νl → νl ′) is less than one it would be a proof of the transition of an
active neutrino into sterile states.

Let us return back to the expression (6.59) for the neutrino transition probabil-
ity. Taking into account that a common phase cannot be observed, the transition
probability can be presented in the form

P(να → να′) =
∣∣∣∣

3+ns∑

i=1

Uα′i e−i (Ei −E j ) t U∗
αi

∣∣∣∣
2

(6.62)

( j is fixed). Thus, the transition probability depends on the elements of the neutrino
mixing matrix and 2 + ns phase differences.

In quantum field theory states of particles are characterized by their momenta,
helicities, masses, barion numbers, etc. We will assume that a mixed neutrino state
is characterized by momentum p, masses mi (and also elements of the mixing matrix
Uαi and helicity equal to −1). In other words we will assume that

pi = p. (6.63)

Taking into account that
m2

i
p2 � 1, we have

Ei � p + m2
i

2p
, and Ei − E j � Δm2

j i

2E
, (6.64)

where E � p is the neutrino energy and

Δm2
j i = m2

i − m2
j . (6.65)

In (6.62) t is the difference of neutrino production time and detection time. For the
ultrarelativistic neutrino

t � L , (6.66)

where L is the distance between neutrino production and detection points. Thus, in
the expression (6.62) for the transition probability the oscillation phase is equal to

(Ei − E j ) t � Δm2
j i

2E
L . (6.67)
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Taking into account unitarity condition

∑

i

Uα′i U∗
αi = δα′α (6.68)

from (6.62) and (6.68) we find the following convenient expression for the neutrino
transition probability

P(να → να′) =
∣∣∣∣δα′α +

∑

i �= j

Uα′i

(
e−i

Δm2
j i

2E L − 1

)
U∗
αi

∣∣∣∣
2

(6.69)

Analogously, antineutrino transition probability is given by the expression

P(ν̄α → ν̄α′) =
∣∣∣∣δα′α +

∑

i �= j

U∗
α′i

(
e−i

Δm2
j i

2E L − 1

)
Uαi

∣∣∣∣
2

(6.70)

The expression (6.62) for the transition probability να → να′ can be also presented
in the form

P(να → να′) =
∑

i,k

Uα′i U∗
α′k U∗

αi Uαke−i
Δm2

ki
2E L

=
∑

i

|Uα′i |2 |Uαi |2 + 2 Re
∑

i>k

Uα′i U∗
α′k U∗

αi Uαke−i
Δm2

ki
2E L . (6.71)

Further, from the unitarity relation (6.68) we easily obtain the following relation

∑

i

|Uα′i |2 |Uαi |2 = δα′α − 2 Re
∑

i>k

Uα′i U∗
α′k U∗

αi Uαk . (6.72)

Combining now (6.71) and (6.72) we have

P(να → να′) = δα′α − 2 Re
∑

i>k

Uα′i U∗
α′k U∗

αi Uαk

(
1 − e−i

Δm2
ki

2E L
)
. (6.73)

Finally, taking into account that for any complex a and b

Re a b = Rea Reb − Ima Imb

from (6.73) for the transition probability we obtain the following expression
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P(να → να′) = δα′α − 2
∑

i>k

Re (Uα′i U∗
α′k U∗

αi Uαk)

(
1 − cos

Δm2
ki

2E
L

)

+ 2
∑

i>k

Im (Uα′i U∗
α′k U∗

αi Uαk) sin
Δm2

ki

2E
L . (6.74)

Analogously, for the probability of the transition ν̄α → ν̄α′ we find

P(ν̄α → ν̄α′) = δα′α − 2
∑

i>k

Re (Uα′i U∗
α′k U∗

αi Uαk)

(
1 − cos

Δm2
ki

2E
L

)

− 2
∑

i>k

Im (Uα′i U∗
α′k U∗

αi Uαk) sin
Δm2

ki

2E
L (6.75)

From these expressions we conclude that neutrino and antineutrino transition prob-
abilities depend on the parameter L

E . They are determined by the elements of the
neutrino mixing matrix Uαi and 2+ns independent mass-squared differencesΔm2

ki .

6.4 Two-Neutrino Oscillations

In this section we will consider the simplest case of the oscillations between two
neutrinos

να � να′ α, α′ = e, μ, τ, s1, . . . (6.76)

which are driven by the two neutrino mixing

ναL =
∑

i=1,2

Uαi νi L , (6.77)

where U is an unitary 2×2 matrix.
We will label neutrino masses in such a way that m1<m2. From (6.69) and (6.70)

for j = 1 we have

P(να → να′) == |δα′α + Uα′2 (e
−i Δm2

2E L − 1)U∗
α2|2 (6.78)

and

P(ν̄α → ν̄α′) == |δα′α + U∗
α′2 (e

−i Δm2
2E L − 1)Uα2|2. (6.79)

Here Δm2 = Δm2
12 = m2

2 − m2
1.
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Let us consider the case α′ �= α. From (6.78) and (6.79) we find

P(να → να′) = P(ν̄α → ν̄α′) = 2 |Uα′2|2 |Uα2|2
(

1 − cos
Δm2

2E
L

)
(α′ �= α).

(6.80)

If ν1 and ν2 are Dirac particles, the neutrino mixing matrix is real (see Sect. 5.3). In
this case the CP invariance in the lepton sector takes place automatically. If ν1 and
ν2 are Majorana particles there is one CP phase in the mixing matrix. However, it is
easy to see that the Majorana CP phase does not enter into transition probabilities.
This is the reason why in the case of the transitions between two types of neutrinos
the relation (6.47) is always valid.

A real orthogonal 2×2 mixing matrix has the form

U =
(

cos θ sin θ
− sin θ cos θ,

)
, (6.81)

where θ is a mixing angle. From (6.80) and (6.81) we obtain the following standard
expression for the probability of the transition between two types of neutrinos

P(να → να′) = 1

2
sin2 2θ

(
1 − cos

Δm2

2E
L

)
= sin2 2θ sin2 m2

4 E
L (α �= α′).

(6.82)
It is obvious from (6.80) that in the two-neutrino case probabilities of all possible

non diagonal transitions are equal

P(να → να′) = P(ν̄α → ν̄α′) = P(να′ → να) = P(ν̄α′ → ν̄α) (α �= α′). (6.83)

From these relations and conditions of the conservation of the probability (6.44)
for probabilities of neutrino and antineutrino to survive we obtain the following
relations

P(να → να) = P(να′ → να′) = P(ν̄α → ν̄α) = P(ν̄α′ → ν̄α′) (α �= α′). (6.84)

Finally, from (6.78) we find

P(να → να) = 1 − P(να → να′) = 1 − 1

2
sin2 2θ

(
1 − cos

Δm2

2E
L

)
. (6.85)

Thus, all possible transitions between two types of neutrinos and antineutrinos are
described by two oscillation parameters: sin2 2θ and Δm2.

The expressions (6.82) and (6.78) are written in the standard units h̄ = c = 1.
If we introduce h̄ and c for the transition probability we will find the following
expression
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P(να → να′)= 1

2
sin2 2θ

(
1−cos

Δm2 c4

2E h̄ c
L

)
=sin2 2θ sin2 Δm2 c4

4E h̄ c
L (α �= α′).

(6.86)
If we use h̄ c � 1.97 · 10−11 MeV cm the expression for the transition probability
takes the form

P(να → να′) = 1

2
sin2 2θ

(
1 − cos 2.54

Δm2

E
L

)
= sin2 2θ sin2 1.27

Δm2

E
L .

(6.87)
Here Δm2 is the neutrino mass-squared difference in eV2, E is the neutrino energy
in MeV (GeV) and L is the distance between neutrino source and neutrino detector
in m (km).

We will now introduce the oscillation length. The expression (6.82) can be writ-
ten in the form

P(να → να′) = 1

2
sin2 2θ

(
1 − cos 2π

L

Losc

)
(α �= α′), (6.88)

where

Losc = 4π
E

Δm2
(6.89)

is the oscillation length. Introducing h̄ and c, for the oscillation length we obtain the
following expression

Losc = 4π
E h̄ c

Δm2 c4
. (6.90)

From this expression we find

Losc � 2.47
E

Δm2
m. (6.91)

where E is the neutrino energy in MeV and Δm2 is the neutrino mass-squared
difference in eV2.

The two-neutrino transition probabilities given by the expressions (6.82) and
(6.85) are standard formulas which are usually used in the analysis of experimental
data. Below we will present arguments why these formulas are good approximations
in the case of oscillations between three neutrinos.

In Fig. 6.1 the transition probability P(νμ → ντ ) as a function of L
E (in units

m
MeV ) is plotted. We assumed that sin2 2θ = 1 (as we will see later, this value is in
agreement with experimental data). At the points

L

E
= 2π n

2.54Δm2
and

L

E
=

2π
(

n + 1
2

)

2.54Δm2
(n = 0, 1, 2, . . . )



110 6 Neutrino Oscillations in Vacuum

Fig. 6.1 Transition probability P(νμ → ντ ) as a function of L
E

only νμ or, correspondingly, ντ can be observed. At other values of L
E both νμ and ντ

can be found. The probability to find ντ is given by P(νμ → ντ ). A muon neutrino
νμ can be found with the probability 1−P(νμ → ντ ) = P(νμ → νμ). From Fig. 6.1
it is clear why phenomenon, we are considering, is called neutrino oscillations.

6.5 Three-Neutrino Oscillations. CP Violation
in the Lepton Sector

All existing data are well described if we assume that the number of massive neutri-
nos is equal to the measured number of the flavor neutrinos (three). In this section we
will consider neutrino oscillations in vacuum in the case of three mixed neutrinos.
In this case the flavor field νl L(x) is given by the expression

νl L(x) =
3∑

i=1

Uli νi L(x) l = e, μ, τ. (6.92)

Here U is a unitary 3×3 Pontecorvo-Maki-Nakagava-Sakata (PMNS) matrix, and
νi (x) is the field of neutrino with the mass mi . The field νi (x) can be a Dirac field
of neutrinos and antineutrinos or a Majorana field of neutrinos. We will show now
that by the investigation of flavor neutrino oscillations it is impossible to distinguish
these two fundamentally different possibilities. In fact, Dirac and Majorana mixing
matrices differ by the number of CP phases (one in the Dirac case and three in the
Majorana case). The Majorana mixing matrix has the form

U M
li = Uli ei ᾱi . (6.93)

Here ᾱ1 = 0, ᾱ2,3 are Majorana phases and the matrix U has the form of the Dirac
mixing matrix. Let us consider the amplitude of the transition νl → νl ′ . Taking into
account the relation (6.93), we have
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AM (νl → νl ′) =
3∑

i=1

U M
l ′i e−i Ei t U M∗

l ′i =
3∑

i=1

Ul ′i e−i Ei t U∗
l ′i = AD(νl → νl ′).

(6.94)
It is obvious that the same relation is valid for the amplitude of the transition
ν̄l → ν̄l ′ . Thus, additional Majorana phases do not enter into flavor neutrino and
antineutrino transition amplitudes. This means that the study of flavor neutrino oscil-
lations does not allow to reveal the nature of the massive neutrinos. For that, as we
will discuss later, it is necessary to study processes, like neutrinoless double β decay
of nuclei, in which the total lepton number is not conserved. When we will consider
neutrino oscillations we will use the Dirac matrix U , which is characterized by three
mixing angles and one CP phase.

In the previous section we have shown that the neutrino and antineutrino transi-
tion probabilities are given by the expressions

P(νl → νl ′) = δl ′l + Rl ′l + 1

2
ACP

l ′l , P(ν̄l → ν̄l ′) = δl ′l + Rl ′l − 1

2
ACP

l ′l , (6.95)

where

Rl ′l = −2
∑

i>k

Re (Ul ′i U∗
l ′k U∗

li Ulk)

(
1 − cos

Δm2
ki

2E
L

)
(6.96)

and

ACP
l ′l = 4

∑

i>k

Im (Ul ′i U∗
l ′k U∗

li Ulk) sin
Δm2

ki

2E
L . (6.97)

From (6.95) we have

Rl ′l = 1

2
(P(νl → νl ′)+ P(ν̄l → ν̄l ′))− δl ′l (6.98)

and

ACP
l ′l = P(νl → νl ′)− P(ν̄l → ν̄l ′). (6.99)

Thus, Rl ′l and ACP
l ′l are the CP-even and CP-odd parts of the transition probabilities.

Let us consider ACP
l ′l . The C PT invariance implies that

ACP
l ′l = −ACP

l l ′ . (6.100)

From this relation follows that ACP
ll = 0. If CP invariance holds, we have

ACP
l ′l = 0 (l ′ �= l). Thus, ACP

l ′l is the CP asymmetry. If the asymmetry is not
equal to zero, it is a signature of the violation of the CP invariance in the lepton
sector.
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It follows from the relation (6.100) that in the case of three flavor neutrinos
there are three different from zero CP asymmetries: ACP

eμ ,ACP
τμ ,ACP

τe . These three
CP asymmetries are connected by the following cyclic relations

ACP
eμ = ACP

τe = −ACP
τμ , (6.101)

In fact, from the conservation of the probabilities we have

∑

l ′=e,μ,τ

P(νl → νl ′) = 1,
∑

l ′=e,μ,τ

P(ν̄l → ν̄l ′) = 1. (6.102)

If we now subtract from the first relation the second one, we obtain

∑

l ′=e,μ,τ

ACP
l ′l = 0. (6.103)

From (6.103) we find the following relations

ACP
μe + ACP

τe = 0, ACP
eμ + ACP

τμ = 0, ACP
eτ + ACP

μτ = 0. (6.104)

From (6.104) we easily obtain the relations (6.101). Thus, in the case of three-
neutrino mixing there exists only one independent CP asymmetry.

We will consider now the expression (6.97) for the CP asymmetry. Let us intro-
duce the quantity

Jik
l ′l = Im (Ul ′i U∗

l ′k U∗
li Ulk). (6.105)

It is obvious that Jik
l ′l �= 0 only if i �= k and l ′ �= l.

We will show now that

Jik
l ′l = ±J, l ′ �= l, i �= k, (6.106)

where

J = J21
eμ. (6.107)

In fact, from (6.105) we obtain the following symmetry relations

Jik
l ′l = −Jki

l ′l , Jik
l ′l = −Jik

ll ′ . (6.108)

Further, from the unitarity of the 3 × 3 mixing matrix U we find

3∑

i=1

Jik
l ′l = δl ′l Im (U∗

l ′k Ulk) = 0,
∑

l ′=e,μ,τ

Jik
l ′l = δik Im (U∗

li Ulk) = 0. (6.109)
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From (6.108) and the first Eq. (6.109) we obtain the following relations

J21
l ′l + J31

l ′l = 0, J12
l ′l + J32

l ′l = 0, J13
l ′l + J23

l ′l = 0. (6.110)

From (6.110) and (6.108) we easily find the following cycle relations

J21
l ′l = J13

l ′l = J32
l ′l . (6.111)

Further, from (6.108) and the second Eq. (6.109) we have

Jik
μe + Jik

τe = 0, Jik
eμ + Jik

τμ = 0 Jik
eτ + Jik

μτ = 0. (6.112)

From (6.112) and (6.108) we obtain the following cycle relations

Jik
eμ = Jik

μτ = Jik
τe. (6.113)

It is evident from (6.111) and (6.113) that all nonzero elements of Jik
l ′l are equal

to ±J.
From (6.97) and (6.111) for the CP asymmetry AC P

l ′l we find the following
expression

AC P
l ′l = 4J 21

l ′l

(
sin

Δm2
12

2E
L + sin

Δm2
23

2E
L − sin

Δm2
13

2E
L

)
. (6.114)

This expression can be written in a more compact and convenient form. In fact, it is
obvious that

Δm2
13 = Δm2

12 +Δm2
23. (6.115)

Further, for any a and b we have the following relation

sin a + sin b − sin(a + b) = 2 sin
(a + b)

2

(
cos

(a − b)

2
− cos

(a + b)

2

)

= 4 sin
a

2
sin

b

2
sin

(a + b)

2
. (6.116)

From (6.114), (6.115), (6.116) and (6.107) we find the following expression

ACP
eμ = 16 J sin

Δm2
12

4E
L sin

Δm2
23

4E
L sin

(Δm2
12 +Δm2

23)

4E
L . (6.117)

Other asymmetries are connected with ACP
eμ by the relations (6.101). The quantity

J, which determines the CP asymmetries in all channels, is usually called Jarlskog
invariant. It is invariant under the transformation
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U ′
li = e−iβl Uli eiαl , (6.118)

where αi and βl are arbitrary constant phases. In fact, we have

Jik
l ′l = Im(Ul ′i U∗

l ′k U∗
li Ulk) = Im(U ′

l ′i U
′∗
l ′k U

′∗
li U ′

lk) = (Jik
l ′l)

′ (6.119)

It is easy to see that (for Dirac neutrinos) the mixing matrices U and U ′ are equiva-
lent. In fact, let us consider the lepton charged current. We have

jCC
α = 2

∑

l,i

ν̄i LU∗
liγαlL = 2

∑

l,i

ν̄′
i LU ′∗

li γαl ′L , (6.120)

where the primed fields are determined as follows

ν′
i (x) = e−iαi νi (x), l ′(x) = e−iβl l(x) (6.121)

The fields ν′
i (x) and l ′(x) cannot be distinguished from νi (x) and l(x). Thus, the

mixing matrix (in the Dirac case) is determined up to the phase transformation
(6.118) and the transition probabilities must be invariant under this transformation.

In the standard parametrization of the mixing matrix U (see previous chapter) for
the Jarlskog invariant we obtain the following expression

J = −c12c23c2
13s12s23s13 sin δ. (6.122)

6.6 Three-Neutrino Oscillations in the Leading Approximation

In the general case of the three-neutrino mixing the νl → νl ′ and ν̄l → ν̄l ′ transition
probabilities depend on six parameters (two mass-squared differences Δm2

12 and
Δm2

23, three mixing angles θ12, θ23 and θ13 and the CP-phase δ) and have rather
complicated form. However, from the analysis of the neutrino oscillation data it was
found that one mass-squared difference is much smaller that the other one:

Δm2
23 � 2.4 · 10−3eV2 Δm2

12 � 3 · 10−2 Δm2
23 � 8 · 10−5eV2 (6.123)

where Δm2
ik = m2

k − m2
i . If we take into account (6.123), the transition proba-

bilities are given by very simple two-neutrino type formulas, which are valid with
accuracies of a ∼ a few %.

In fact, from the general expression (6.70), in the three-neutrino case, we have

P(νl → νl ′) =
∣∣∣∣δl ′l +

∑

i �=2

Ul ′i

(
e−i

Δm2
2i

2E L − 1

)
U∗

li

∣∣∣∣
2

(6.124)
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Let us consider neutrino oscillations driven by the “large” neutrino mass-squared
difference Δm2

23 (atmospheric, long baseline accelerator and reactor experiments).
In such experiments the condition

Δm2
23

2E
L � 1. (6.125)

must be satisfied. For the values of the parameter L
E which satisfy this condition the

phase difference due to Δm2
12 is small

Δm2
12

2E
L = Δm2

12

Δm2
23

Δm2
23

2E
L � 3 · 10−2 Δm2

23

2E
L � 1. (6.126)

and can be neglected. In this approximation, we obtain the following expressions
for the neutrino and antineutrino transition probabilities

P(νl → νl ′) �
∣∣∣∣δl ′l + Ul ′3

(
e−i

Δm2
23

2E L − 1

)
U∗

l3

∣∣∣∣
2

(6.127)

and

P(ν̄l → ν̄l ′) �
∣∣∣∣δl ′l + U∗

l ′3

(
e−i

Δm2
23

2E L − 1

)
Ul3

∣∣∣∣
2

(6.128)

It is obvious that only the modules of the elements of the neutrino mixing matrix
enter into these expressions. Thus, if we neglect a few-% contribution of a small
phase difference to the transition probabilities we have

P(νl → νl ′) � P(ν̄l → ν̄l ′), (6.129)

i.e. the relations (6.47) are satisfied in this case independently from the CP invari-
ance in the lepton sector.

Let us consider the appearance probabilities P(νl → νl ′) with l ′ �= l. From
(6.127) we have

P(νl → νl ′) = 1

2
Al ′l

(
1 − cosΔm2

23
L

2E

)
(l ′ �= l), (6.130)

where

Al ′l = 4|Ul ′3|2 |Ul3|2 (6.131)

is the oscillation amplitude.
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For the νl -survival probability we find

P(νl → νl) = 1 −
∑

l ′ �=l

P(νl → νl ′) = 1 − Bll

(
1 − cosΔm2

23
L

2E

)
, (6.132)

where

Bll =
∑

l ′ �=l

Al ′l = 4 |Ul3|2 (1 − |Ul3|2). (6.133)

Let us consider the νμ → νl transitions (l = e, μ, τ ). For the oscillation amplitudes
in the standard parametrization of the mixing matrix (see Sect. 5.4) we have the
following expressions

Aeμ = sin2 θ23 sin2 2θ13, Aτμ = sin2 2θ23 cos4 θ13,

Bμμ = 4 sin2 θ23 cos2 θ13(1 − sin2 θ23 cos2 θ13). (6.134)

For the νe → νe survival probability from (6.132) and (6.133) we obtain the expres-
sion

P(νe → νe) = P(ν̄e → ν̄e) = 1 − 1

2
sin2 2θ13

(
1 − cosΔm2

23
L

2E

)
. (6.135)

In the reactor CHOOZ experiment ν̄e → ν̄e neutrino oscillations, driven by Δm2
23,

were searched for. No positive signal for the ν̄e disappearance was found in the
experiment. From the analysis of the data of the CHOOZ experiment the following
upper bound was obtained for the parameter sin2 θ13 (see Sect. 10.7)

sin2 θ13 � 5 · 10−2. (6.136)

If we neglect the contribution to the transition probabilities not only the small phase

difference
Δm2

12
2E L but also the small parameter sin2 θ13 we have in this approxima-

tions

Aeμ � 0. (6.137)

Thus, if we neglect contribution to the transition probability of the small parameters
Δm2

12
Δm2

23
and sin2 θ13, driven by Δm2

23 the leading oscillations are the νμ � ντ oscil-

lations. For the probability of νμ (ν̄μ) to survive we obtain, in this approximation,
from (6.132) and (6.133) the following standard two-neutrino expression

P(νμ → νμ) = P(ν̄μ → ν̄μ) � 1 − 1

2
sin2 2θ23

(
1 − cosΔm2

23
L

2E

)
. (6.138)
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The existing data of atmospheric and long baseline accelerator neutrino oscillation
experiments are perfectly described by (6.138) (see Chap. 10). Several future high
precision neutrino experiments are in preparation in order to see beyond the leading
approximation effects of the three-neutrino mixing (see Sect. 10.8).

We will now consider vacuum neutrino oscillations driven by the small neutrino
mass difference Δm2

12, i.e. neutrino oscillation experiments with the such values of
the parameter L

E which satisfy the inequality

Δm2
12

2E
L � 1. (6.139)

This condition is satisfied in the reactor KamLAND experiment (see Sect. 10.4).
If the condition (6.125) is satisfied we have

Δm2
23

2E
L = Δm2

23

Δm2
12

Δm2
12

2E
L � 1 (6.140)

Due to averaging over the energy resolution, over the distances between neutrino
production and detection points etc. the effect of the large phase difference in the
transition probabilities is averaged.

The ν̄e → ν̄e (νe → νe) transition probability is given by the following general
expression

P(ν̄e → ν̄e) = P(νe → νe) =
∣∣∣∣

3∑

i

|Uei |2 ei
Δm2

i2
2E L

∣∣∣∣
2

. (6.141)

From (6.141) for the averaged probabilities we find the following expression

P(ν̄e → ν̄e) = P(νe → νe) =
∣∣∣∣
∑

i=1,2

|Uei |2 ei
Δm2

i2
2E L

∣∣∣∣
2

+ |Ue3|4. (6.142)

The first term of this expression can be presented in the form

∣∣∣∣
∑

i=1,2

|Uei |2 ei
Δm2

i2
2E L

∣∣∣∣
2

=
∑

i=1,2

|Uei |4 + 2 |Ue1|2 |Ue2|2 cos
Δm2

12

2E
L . (6.143)

Further, from the unitarity of the mixing matrix we have

∑

i=1,2

|Uei |2 = 1 − |Ue3|2. (6.144)

From this relation we find
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∑

i=1,2

|Uei |4 = (1 − |Ue3|2)2 − 2 |Ue1|2 |Ue2|2. (6.145)

Combining (6.142), (6.143) and (6.145) the averaged survival probabilities can be
presented in the form

P(νe → νe) = P(ν̄e → ν̄e) = |Ue3|4 + (1 − |Ue3|2)2 P(12)(νe → νe). (6.146)

Here

P(12)(νe → νe) = 1 − 1

2
sin2 2 θ12

(
1 − cos

Δm2
12

2E
L

)
(6.147)

is the two-neutrino νe → νe survival probability driven by Δm2
12.

If we neglect |Ue3|2 = sin2 θ13 � 5 · 10−2, we obtain the following expression
for the ν̄e survival probability in vacuum

P(ν̄e → ν̄e) = 1 − 1

2
sin2 2 θ12

(
1 − cos

Δm2
12

2E
L

)
. (6.148)

This expression was used for the analysis of the data of the KamLAND reactor
neutrino experiment in which neutrino oscillations, driven by Δm2

12, were observed
(see Sect. 10.4).

From the conservation of the probability we have

P(ν̄e → ν̄e) = 1 − P(ν̄e → ν̄μ)− P(ν̄e → ν̄τ ). (6.149)

We will show now that

P(ν̄e → ν̄τ ) � tan2 θ23 P(ν̄e → ν̄μ). (6.150)

From (6.70), in the approximation |Ue3|2 → 0, we find the following expression for
the probability of the transition P(ν̄e → ν̄l) (l = e, μ, τ)

P(ν̄e → ν̄l) � |δle + U∗
l1 (e

i
Δm2

12
2E L − 1)Ue1|2. (6.151)

Thus, in the approximation |Ue3|2 → 0 only one neutrino mass-squared difference
(Δm2

12) enters into the transition probabilities of ν̄e → ν̄l . It is easy to check that
from (6.151) we obtain the expression (6.148) for ν̄e survival probability.

For the ν̄e → ν̄μ and ν̄e → ν̄τ transition probabilities we find from (6.151),
respectively, the following expressions

P(ν̄e → ν̄μ) = 2|Uμ1|2 |Ue1|2)
(

1 − cos
Δm2

12

2E
L

)
(6.152)
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and

P(ν̄e → ν̄τ ) = 2|Uτ1|2 |Ue1|2)
(

1 − cos
Δm2

12

2E
L

)
. (6.153)

Further, in the approximation |Ue3|2 → 0 we have

Uμ1 = − sin θ12 cos θ23, Uτ1 = sin θ12 sin θ23. (6.154)

From (6.152), (6.153) and (6.154) we obtain the following expressions

P(ν̄e → ν̄μ) = 1

2
sin2 2 θ12 cos2 θ23

(
1 − cos

Δm2
12

2E
L

)
(6.155)

and

P(ν̄e → ν̄τ ) = 1

2
sin2 2 θ12 sin2 θ23

(
1 − cos

Δm2
12

2E
L

)
. (6.156)

From (6.155) and (6.156) follows that the ν̄e → ν̄τ and ν̄e → ν̄μ transition proba-
bilities are connected by the relation (6.150). Notice also the relations

P(ν̄e → ν̄μ) = cos2 θ23 (1 − P(ν̄e → ν̄e)) (6.157)

and

P(ν̄e → ν̄τ ) = sin2 θ23 (1 − P(ν̄e → ν̄e)), (6.158)

which can be easily obtained from (6.149) and (6.150). From the data of the atmo-
spheric and accelerator long baseline experiments follows that θ23 � π/4 (see
Chap. 10). We have

P(ν̄e → ν̄τ ) � P(ν̄e → ν̄μ). (6.159)

Thus, the disappearance of reactor antineutrinos, observed in the KamLAND exper-
iment, is due to transitions the ν̄e → ν̄τ and ν̄e → ν̄μ.

Let us summarize the results of this section. From the analysis of the data of
neutrino oscillation experiments follows that one neutrino mass-squared difference
is much smaller than the other one and the mixing angle θ13 is small:

Δm2
12 � 3 · 10−2 Δm2

23, sin2 θ13 ≤ 5 · 10−2. (6.160)

If we neglect a few-% contribution of these small parameters to the transition prob-
abilities a simple picture of neutrino oscillations emerges in this approximation:
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1. In the atmospheric and accelerator long baseline experiments the leading oscil-
lations are νμ � ντ (ν̄μ � ν̄τ ) oscillations; the νμ (ν̄μ) survival probability
depends on the parameters Δm2

23 and sin2 2θ23 and is given by the expression
(6.138).

2. The leading neutrino oscillations observed in the reactor KamLAND experiment
are ν̄e → ν̄τ and ν̄e → ν̄μ oscillations; the ν̄e survival probability depends on
the parameters Δm2

12 and sin2 2θ12 and has two-neutrino form (6.148).

Existing neutrino oscillation data are in a good agreement with this approxi-
mation. One of the major purpose of the future high precision neutrino oscillation
experiments is to find beyond the leading approximation effects of the three-neutrino
mixing.



Chapter 7
Neutrino in Matter

7.1 Introduction

Up to now we have considered the propagation of massive neutrinos in vacuum. We
have seen that the flavor content of the neutrino beam in vacuum is determined by
the neutrino mass-squared differences Δm2

i1 and elements of the neutrino mixing
matrix Uli . As was first shown by Wolfenstein , in the case of matter not only neu-
trino masses and mixing but also the coherent scattering of neutrinos in matter must
be taken into account. The contribution of the coherent scattering into the Hamilto-
nian is determined by the electron number-density. If the electron density depends
on the distance (as in the case of the sun) the transitions probabilities between dif-
ferent flavor neutrinos in matter can have resonance character (MSW effect). We
will consider here in some detail the propagation of neutrino in matter.

7.2 Evolution Equation of Neutrino in Matter

We will first obtain the vacuum evolution equation for neutrino with momentum p in
flavor representation. The state vector |Ψ (t)〉 of neutrino with momentum p satisfies
the Schrödinger equation

i
∂ |Ψ (t)〉
∂t

= H0 |Ψ (t)〉, (7.1)

where H0 is the free Hamiltonian. The state |Ψ (t)〉 can be expanded over the total
system of states of the flavor neutrinos νl with momentum p. We have

|Ψ (t)〉 =
∑

l

al(t) |νl〉. (7.2)

Here

|νl〉 =
∑

i

U∗
li |νi 〉, (7.3)

Bilenky, S.: Neutrino in Matter. Lect. Notes Phys. 817, 121–137 (2010)
DOI 10.1007/978-3-642-14043-3_7 c© Springer-Verlag Berlin Heidelberg 2010
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where

H0 |νi 〉 = Ei |νi 〉, Ei =
√

p2 + m2
i � p + m2

i

2 E
. (7.4)

and al(t) = 〈νl |Ψ (t)〉 is the amplitude of the probability to find νl in the state which
is described by |Ψ (t)〉.

From (7.1) and (7.2) we obtain the following equation for the function al(t)

i
∂ al ′(t)

∂t
=
∑

l

〈νl ′ |H0| νl〉 al(t). (7.5)

From (7.3) it is obvious that

〈νl |νi 〉 = Uli , 〈νi |νl〉 = U∗
li . (7.6)

Taking into account this relation, for the free Hamiltonian in the flavor representa-
tion we have the following expression

〈νl ′ |H0| νl〉 =
∑

i

Ul ′i Ei U∗
li � p +

∑

i

Ul ′i
m2

i

2 E
U∗

li . (7.7)

From (7.5) and (7.7) we obtain neutrino evolution equation in the flavor representa-
tion1:

i
∂ a(t)

∂t
= U

m2

2 E
U † a(t). (7.8)

This equation can be easily solved. In fact, let us introduce the function2

a′(t) = U † a(t). (7.9)

From (7.8) we find that the function a′(t) satisfies the following equation

i
∂ a′(t)
∂t

= m2

2 E
a′(t). (7.10)

It is obvious that the solution of this equation has the form

a′(t) = e−i m2
2 E (t−t0) a′(t0), (7.11)

where a′(t0) is the wave function at the initial time t0.

1 The unit matrix p · I can be excluded from the Hamiltonian by a redefinition of a common phase
of the wave function.
2 It is obvious that a′

i = ∑
l U∗

li 〈νl |Ψ (t)〉 = 〈νi |Ψ (t)〉. Thus, a′
i is the amplitude of the probability

to find a neutrino in the state with momentum p, mass mi and energy Ei .
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From (7.9) and (7.11) we find that the solution of Eq. (7.8) is given by

a(t) = U e−i m2
2 E (t−t0) U † a(t0). (7.12)

Let us assume that the initial state |Ψ (t0)〉 is the state of the flavor neutrino νl :

|Ψ (t0)〉 = |νl〉. (7.13)

In this case al1(t0) = δl1l and from (7.12) we obtain the standard expression for the
νl → νl ′ transition probability in vacuum (see Sect. 6.3)

P(νl → νl ′) = |
∑

i

Ul ′i e−iΔm2
1i

L
2 E U∗

li |2, (7.14)

whereΔm2
1i = m2

i −m2
1 and L � (t−t0) is the distance between neutrino production

and detection points.
Let us now consider the evolution equation of a neutrino with momentum p

in matter. For the propagation of neutrinos in matter the most important effect is
coherent elastic scattering of neutrinos in forward direction, which does not change
the state of the matter. We will first consider the CC interaction. This interaction
can give contribution only to the process of the elastic scattering of νe on electrons
(νe +e → νe +e), which is due to W ± exchange. From the standard CC Lagrangian

LCC
I = − g√

2
ν̄eL γα eL Wα + h.c. (7.15)

for the low-energy effective Hamiltonian of the CC νe − e interaction we find the
following expression3

HCC
I (x) = G F√

2
2 ν̄eL(x) γα νeL(x) ē(x) γ α(1 − γ5) e(x). (7.16)

An effective Hamiltonian of the neutrino interaction, which is determined by the
coherent νe − e scattering, can be obtained from the diagonal matrix element

〈p mat| HCC
I (x) |p mat〉, (7.17)

where the vector

|p mat〉 = |p〉 |mat〉 (7.18)

describes the left-handed neutrino with momentum p and the matter.

3 We use here the Schrödinger representation.
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It is obvious that the pseudovector 〈mat| ē(x) γ αγ5 e(x) |mat〉 is equal to zero for
unpolarized matter. For the vector 〈mat| ē(x) γ α e(x) |mat〉 we have in the matter
rest frame

〈mat| ē(x) γ α e(x) |mat〉 = 〈mat|e†(x) e(x) |mat〉 δα0 = ne(x) δα0, (7.19)

where ne(x) is the electron number density at the point x. Further we have

〈p| ν̄eL(x) γ0 νeL(x) |p〉 = 1. (7.20)

From (7.16), (7.19) and (7.20) we obtain the following expression for the effective
CC interaction Hamiltonian of neutrinos in matter in the flavor representation

Hmat
I (t) = √

2 G F ne(t) β. (7.21)

Here βνe;νe = 1, all other elements of the matrix β are equal to zero. Notice that we
take into account that for ultra-relativistic neutrinos

x � t, (7.22)

where x = x · k, k being the unit vector in the direction of the neutrino momentum.
Let us now consider the NC interaction. Induced by the Z0 exchange, the Hamil-

tonian of the NC interaction of neutrinos with electrons and nucleons has the form

HNC
I (x) = G F√

2
2
∑

l=e,μ,τ

ν̄l L(x) γ α νl L(x) jNC
α (x), (7.23)

where jNC
α (x) is the sum of the electron and quark (nucleon) neutral currents. Only

the vector part of the NC can give a contribution to the effective Hamiltonian of
neutrinos in matter. For the vector part of the electron neutral current we have

vNC(e)
α (x) =

(
− 1

2
+ 2 sin2 θW

)
ē(x) γα e(x), (7.24)

where θW is the weak angle. For the vector part of the effective hadron neutral
current we have

vNC(N )
α (x) = 1

2
N̄ (x) γα τ3 N (x)− 2 sin2 θW p̄(x) γα p(x), (7.25)

where

N =
(

p
n

)
(7.26)

is a SU (2) doublet (p and n are proton and neutron fields).
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We will consider the propagation of neutrino in a neutral medium of electrons,
protons and neutrons. From (7.25) and (7.26) we find the following expressions for
the vector part of the proton and neutron NC

vNC(p)
α (x) =

(
1

2
− 2 sin2 θW

)
p̄(x) γα p(x) (7.27)

vNC(n)
α (x) =

(
− 1

2

)
n̄(x) γα n(x). (7.28)

For the corresponding matter matrix elements we have

〈mat| vNC(e)
α (x) |mat〉 =

(
− 1

2
+ 2 sin2 θW

)
ne(x) δα0, (7.29)

〈mat| vNC(p)
α (x) |mat〉 =

(
1

2
− 2 sin2 θW

)
ρp(x) δα0, (7.30)

and

〈mat| vNC(n)
α (x) |mat〉 = −1

2
ρn(x) δα0. (7.31)

Here ne(x), n p(x) and nn(x) are the number densities of electrons, protons and
neutrons, respectively.

For the neutral matter ne(x) = n p(x). From (7.29) and (7.30) we conclude that
the contributions of the electron and proton NC to the effective Hamiltonian cancel
each other. Thus, we have

〈mat| jNC
α (x) |mat〉 = −1

2
ρn(x) δα0. (7.32)

The NC interaction (7.23) is νe −νμ−ντ universal. This means that the effective NC
Hamiltonian in the flavor representation will be proportional to the unit matrix. Such
an interaction cannot change the flavor content of the neutrino beam. In fact, pro-
portional to the unit matrix interaction can be removed from the total Hamiltonian
by the following transformation of the wave function

a′(t) = eiα(t)a(t), (7.33)

where α(t) is an unphysical common phase.
Thus, in the case of three flavor neutrinos only the νe − e CC interaction gives

a contribution to the effective Hamiltonian.4 The evolution equation of neutrino in
matter has the form

4 Let us notice, however, that if sterile neutrinos exist, both CC and NC effective Hamiltonians of
the neutrino interaction with matter must be taken into account.
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i
∂ a(t)

∂t
=
(

U
m2

2 E
U † + √

2G F ne(t) β

)
a(t). (7.34)

We have obtained the effective CC Hamiltonian of the interaction of the left-handed
electron neutrinos and electrons. Let us consider right-handed electron antineutri-
nos. Taking into account the relations (5.22) we have

ν̄eL γα νeL = −νT
eL γ

T
α ν̄T

eL = −νT
eL C−1C γ T

α C−1C ν̄T
eL = −ν̄c

eR γα ν
c
eR . (7.35)

From (7.35) and (7.16) we conclude that the effective Hamiltonian of the ν̄e − e
interaction differs in sign from the effective Hamiltonian of the νe − e interaction.
It is given by the expression

H
mat
I (t) = −√

2 G F ne(t) β. (7.36)

In order to see the connection of the effective Hamiltonian with coherent scattering
of electron neutrinos on electrons it is instructive to obtain the expression (7.21) in
another way.

The index of refraction of a particle with the momentum p is given by the fol-
lowing classical expression

n(x) = 1 + 2π

p2

∑

a

fa(0) na(x). (7.37)

Here fa(0) is the amplitude of the elastic scattering on particles of the type a in the
forward direction and na is the number density of particles a. The second term of
the relation (7.37) is due to coherent scattering in matter.

If p � m, the energy of a particle in matter is connected with its momentum by
the relation

E � p n. (7.38)

If we subtract from (7.38) the energy of the particle in vacuum E � p we will
obtain, determined by the coherent scattering, an effective potential of the particle
in matter. We have

Veff(x) � (n(x)− 1) p = 2π

p

∑

a

fa(0) na(x). (7.39)

In the case of neutrinos the amplitude of the process νee → νee is different from
the amplitudes of the processes νμ,τ e → νμ,τ e. This is connected with the fact that
to the matrix element of the process νee → νee the diagrams with the exchange of
W and Z bosons give a contribution, while to the matrix elements of the processes
νμ,τ e → νμ,τ e only the diagram with the exchange of the Z boson contributes.
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Thus, the refraction indices of νe and νμ,τ are different. In the case of neutrino mix-
ing, this difference of refraction indices leads to important effects for the neutrino
transitions in matter.

Due to the νe − νμ − ντ universality of the NC we have

f NC
νee→νee(0) = f NC

νμe→νμe(0) = f NC
ντ e→ντ e(0). (7.40)

From (7.37) and (7.40) follows that the contribution of the NC to effective potential
of the neutrinos in matter is proportional to the unit matrix. Thus, the NC interaction
does not change the flavor content of the neutrino beam and can be excluded from
the Hamiltonian.5 For the contribution of the CC to the amplitude of the process
νee → νee in the electron rest frame we have

f CC
νee→νee(0) = G F p√

2π
. (7.41)

From (7.37) and (7.41) we obtain the following expression for the effective interac-
tion of neutrino with matter

Hmat
I = √

2 G F ne β. (7.42)

This expression coincides with (7.21).

7.3 Propagation of Neutrino in Matter with Constant Density

We will consider first the case of a constant electron number density. The total

Hamiltonian of neutrino in matter H = U m2

2 E U † +√
2G F neβ is a hermitian matrix.

It can be diagonalized by the unitary transformation:

H = U m Em U m†. (7.43)

Here Em
i are eigenvalues of the matrix H and U m is a unitary matrix. The evolution

equation is given by

i
∂ a(t)

∂t
= U m Em U m† a(t). (7.44)

In an analogy with the vacuum case considered before let us introduce the function

a′(t) = U m†a(t). (7.45)

From (7.44) and (7.45) we obtain

5 We assume that there are no sterile neutrinos.
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i
∂a′(t)
∂t

= Em a′(t). (7.46)

It is obvious that the solution of this equation has the form

a′(t) = e−i Em (t−t0) a′(t0) , (7.47)

where a′(t0) is the wave function at the initial time t0. From (7.45) and (7.47)we
obtain for the wave function in the flavor representation the following expression

a(t) = U m e−i Em (t−t0) U m† a(t0). (7.48)

Let us assume that at t0 the flavor neutrino νl was produced. From (7.48) we find
that the probability of the νl → νl ′ transition in matter with the constant density is
given by the expression

P(νl → νl ′) = |
∑

i

U m
l ′i e−i Em

i (t−t0) U m∗
li |2. (7.49)

If we compare (7.49) with (6.41) we come to the conclusion that the probability
of the νl → νl ′ transition in matter with a constant density has the same form as
the probability of the νl → νl ′ transition in vacuum. Equation (7.49) has a simple
meaning: U m∗

li is the amplitude of the transition from the state of the initial neutrino
νl to the state of the neutrino with energy Em

i in matter, the factor e−i Em
i (t−t0)

describes the propagation in matter of the state with the energy Em
i and U m

l ′i is the
amplitude of the transition from the state of the neutrino with energy Em

i to the
state of the final flavor neutrino νl ′ . A coherent sum over the states of neutrino with
definite energies is performed in (7.49).6 Let us now consider the simplest case of
two flavor neutrinos: νe − νμ,τ . For the vacuum mixing we have

νeL = cos θ ν1L + sin θ ν2L

νx L = − sin θ ν1L + cos θ ν2L , (7.50)

where x = μ or τ and ν1 and ν2 are the neutrino fields with masses m1 and m2.
Thus, the vacuum mixing matrix U is a 2 × 2 real orthogonal matrix

6 It is instructive to obtain the same result in an arbitrary representation. The state with def-
inite energy in matter is the eigenstate of the total Hamiltonian: H |νi 〉m = Em

i |νi 〉m. Fur-
ther, we have 〈νl ′ |H | νl 〉 = ∑

i 〈νl ′ |νi 〉m Em
i

m〈νi |νl 〉. Comparing this relation with (7.43) we
conclude that 〈νl |νi 〉m = U m

li . For the flavor neutrino state we obtain the following relation
|νl 〉 = ∑

i U m∗
li |νi 〉m. If at the time t0 a flavor neutrino νl was produced, at the time t we have

|νl 〉t = ∑
i U m∗

li e−i Em
i (t−t0)|νi 〉m = ∑

l ′ |νl ′ 〉(∑i U m
l ′i e

−i Em
i (t−t0) U m∗

li ). Thus, A(νl → νl ′ ) =∑
i U m

l ′i e
−i Em

i (t−t0) U m∗
li is the amplitude of the νl → νl ′ transition in matter.
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U =
(

Ue1 Ue2
Ux1 Ux2

)
=
(

cos θ sin θ
− sin θ cos θ

)
. (7.51)

It is convenient to present the total effective Hamiltonian in the form

H = 1

2
Tr H + Hm . (7.52)

Here

1

2
Tr H = m2

1 + m2
2

4E
+ 1

2

√
2 G F ne (7.53)

and Hm is the traceless part of the Hamiltonian. We have7

Hm = 1

4E

(−Δm2 cos 2θ + A Δm2 sin 2θ
Δm2 sin 2θ Δm2 cos 2θ − A

)
, (7.54)

where

A = 2
√

2 G F ne E (7.55)

andΔm2 = m2
2−m2

1. We will label the neutrino masses in such a way that m2 > m1.
Thus, Δm2 > 0.

The first term of (7.52) is proportional to the unit matrix and we can exclude it
from the Hamiltonian. The real symmetrical 2 × 2 matrix Hm can be diagonalized
by the orthogonal transformation (see Appendix A). We have

Hm = U m Em U m†. (7.56)

Here

U m =
(

cos θm sin θm

− sin θm cos θm

)
(7.57)

and

Em =
(

Em
1 0

0 Em
2

)
(7.58)

where

Em
1,2 = ∓ 1

4E

√
(Δm2 cos 2θ − A)2 + (Δm2 sin 2θ)2 (7.59)

are eigenvalues of the matrix Hmat.

7 Let us notice that for νe − νsterile case the effective Hamiltonian can be obtained from (7.54) by
the change A → As = 2

√
2 G F (ne − 1

2 nn) E .
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From (7.54), (7.56), (7.57), (7.58) and (7.59) we find that the mixing angle θm is
given by the following relations

cos 2θm = Δm2 cos 2θ − A√
(Δm2 cos 2θ − A)2 + (Δm2 sin 2θ)2

,

sin 2θm = Δm2 sin 2θ√
(Δm2 cos 2θ − A)2 + (Δm2 sin 2θ)2

(7.60)

For tan 2θm we find from these relations

tan 2θm = Δm2 sin 2θ

Δm2 cos 2θ − A
. (7.61)

From (7.49) and (7.57) for the probability of the νl → νl ′ (νl ′ → νl ) transition in
matter we find the following expression

P(νl → νl ′) = P(νl ′ → νl) = 1

2
sin2 2θm (1 − cosΔEm L), (e′ �= e). (7.62)

Here l ′ �= l, (l or l ′ is equal to e), L � (t − t0) is the distance, which the neutrino
passes in matter and

ΔEm = Em
2 − Em

1 = 1

2E

√
(Δm2 cos 2θ − A)2 + (Δm2 sin 2θ)2. (7.63)

The probability of νl (νl ′ ) to survive can be obtained from the condition of the con-
servation of the probabilities. We have

P(νl → νl) = P(νl ′ → νl ′) = 1 − 1

2
sin2 2θm (1 − cosΔEm L). (7.64)

The expression (7.62) can be written in the form

P(νl → νl ′) = P(νl ′ → νl) = 1

2
sin2 2θm

(
1 − cos 2π

L

Lm
osc

)
, (7.65)

where

Lm
osc = 4π E√

(Δm2 cos 2θ − A)2 + (Δm2 sin 2θ)2
(7.66)

is the oscillation length of neutrino in a matter with a constant density.
It is obvious from (7.59) and (7.63) that at ne = 0 we have θm = θ ,ΔEm = Δm2

and expressions (7.62), (7.64) and (7.66) coincide with the vacuum two-neutrino
transition probabilities and oscillation length, correspondingly.
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If ne �= 0 the neutrino mixing angle can be significantly different from the vac-
uum value. Let us assume that at some energy E the following equality

Δm2 cos 2θ = A = 2
√

2 G F ρe E (7.67)

is satisfied. It follows from (7.67) that in this case θm = π/4 independently on
the value of the vacuum angle θ . Thus, if the condition (7.67) is satisfied, the mix-
ing angle and the oscillation amplitude in matter become maximal. The condition
(7.67) is called MSW resonance condition. We will return to the discussion of this
condition later.

If the resonance condition is satisfied, the oscillation length in matter can also be
significantly different from the oscillation length in vacuum. In fact we have in this
case

Lm
osc = Losc

sin 2θ
(7.68)

where Losc = 4π E
Δm2 is the vacuum oscillation length.

7.4 Adiabatic Neutrino Transitions in Matter

We will consider here neutrino transitions in the sun’s matter. The electron density
in the sun is not constant. It is maximal in the center of the sun and decreases prac-
tically exponentially to its periphery. Let us consider the general evolution equation
of neutrino in matter

i
∂a(t)

∂t
= Hm(t) a(t), (7.69)

where Hm(t) = H0+HI (t) and a(t) are the total effective Hamiltonian and neutrino
wave function in the flavor representation.

The hermitian Hamiltonian Hm(t) can be diagonalized by the unitary transfor-
mation

Hm(t) = U m(t) Em(t)U m†(t), (7.70)

where U m(t) is an unitary matrix and Em
i (t) is the eigenvalue of the Hamiltonian.

Let us introduce the function

a′(t) = U m†(t) a(t) . (7.71)

From (7.69), (7.70) and (7.71) we obtain the following equation for the function
a′(t)
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i
∂a′(t)
∂t

=
(

Em(t)− i U m†(t)
∂U m(t)

∂t

)
a′(t) (7.72)

The derivative ∂U m(t)
∂t is determined by the derivative of the electron density ne(t).

We will assume that the function ne(t) depends on t so weakly that the second term
in Eq. (7.72) can be neglected. In this approximation, which is called the adiabatic
approximation, the solution of the evolution equation can be easily found. We have

a′
i (t) = e−i

∫ t
0 Em

i (t)dt , a′
i (t0), (7.73)

where t0 is the time of neutrino production. Thus, in the adiabatic approximation
the neutrino remains on the same energy level during evolution.8 From (7.71) and
(7.73) we find the following adiabatic solution of the evolution equation in the flavor
representation

aνl′ (t) =
∑

i,l ′′
U m

l ′i (t) e
−i
∫ t

t0
Em

i (t)dt
U m∗

l ′′i (t0) aνl′′ (t0). (7.74)

From this expression follows that in the adiabatic approximation the probability of
the transition νl → νl ′ during the time t − t0 is given by the expression

Pm(νl → νl ′) = |
∑

i

U m
l ′i (t) e

−i
∫ t

t0
Em

i (t)dt
U m∗

li (t0)|2 =
∑

i

|U m
l ′i (t)|2 |U m

li (t0)|2

+
∑

i �=k

U m
l ′i (t)U m∗

l ′k (t)e
−i
∫ t

t0
(Em

i (t)−Em
k (t))dt

U m∗
li (t0) U m

lk (t0). (7.75)

Because in the adiabatic approximation the neutrino remains on the same energy
level, the transition amplitude has a very simple structure (similar to the structure of
the transition amplitudes in the case of a matter with a constant density and vacuum):
U m∗

li (t0) is the amplitude of the transition from the state of the initial νl to the state

with energy Ei (t0) ; the factor e
−i
∫ t

t0
Em

i (t)dt
describes the propagation in the state

with energy Em
i ; U m

l ′i (t) is the amplitude of the transition from the state with energy
Em

i (t) to the state of the final νl ′ . The coherent sum over i is performed.
In the case of solar neutrinos, the transition probability must be averaged over

the central region of the sun, in which solar νe are produced (∼ 105 km), over
the energy resolution etc. After integration over many periods of oscillations, the

8 In fact, for the state of a neutrino with definite energy at the time t we have: H(t) |νi (t)〉m =
Em

i (t) |νi (t)〉m. Further, we find 〈νl ′ |H(t)| νl 〉 = ∑
i 〈νl ′ |νi (t)〉m Em

i (t)
m〈νi (t)|νl 〉. Compar-

ing this relation with (7.70) we conclude that 〈νl |νi (t)〉m = U m
li (t). Taking into account this

relation we have al (t) = 〈νl |Ψ (t)〉 = ∑
i 〈νl |νi (t)〉m m〈νi (t)|Ψ (t)〉 = U m

li (t) a′
i (t). Thus,

a′
i (t) =m 〈νi (t)|Ψ (t)〉 is the amplitude of the probability to find the neutrino in the state with

the energy Ei (t) at the time t .
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oscillatory terms in the transition probability disappear . From (7.75) we find the
following expression for the probability of the solar νe to survive in this case

P(νe → νe) =
∑

i

|U m
ei (x)|2 |U m

ei (x0)|2, (7.76)

where x0 � t0 is the point where neutrino was produced and x � t is the final
point. Thus, in the adiabatic approximation the averaged transition probability is
determined only by the elements of the mixing matrix at the initial and final points.
Let us consider now the simplest case of two-neutrino νe � νμ,τ transitions in
matter. In this case the matrix U m(t) is real, orthogonal 2 × 2 matrix:

U m(t) =
(

cos θm(t) sin θm(t)
− sin θm(t) cos θm(t)

)
. (7.77)

It is obvious that the eigenvalues of the Hamiltonian Em
1,2(t) and the mixing

angle θm(t) are given by Eqs. (7.59) and (7.60) in which A is equal to A(t) =
2
√

2 G F ne(t) E .
Taking (7.77) into account from (7.72) for the function a′(t) we find the follow-

ing evolution equation

i
∂a′(t)
∂t

= H a′(t), (7.78)

where the 2 × 2 matrix H is given by

H =
(

Em
1 (t) −i θ̇m(t)

i θ̇m(t) Em
2 (t)

)
. (7.79)

We will present the matrix H in the usual form

H = 1

2
(Em

1 (t)+ Em
2 (t))+

(− 1
2 (E

m
2 (t)− Em

1 (t)) −i θ̇m(t)
i θ̇m(t) 1

2 (E
m
2 (t)− Em

1 (t)).

)
(7.80)

Let us introduce the parameter of adiabaticity

γ (x) = (Em
2 (x)− Em

1 (x))

2| dθm(x)
dx | , (7.81)

where x � t . The solution of the evolution Eq. (7.78) is adiabatic if nondiagonal
elements of the second matrix in (7.80) are much smaller than the diagonal elements,
i.e. if the parameter of adiabaticity is much larger than one:

γ (x) � 1 . (7.82)
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From (7.59) and (7.60) we find

γ (x) = 1

2E

[(Δm2 cos 2θ − A(x))2 + (Δm2 sin 2θ)2]3/2

Δm2 sin 2θ | d A(x)
dx | . (7.83)

When neutrino, produced in the central region of the sun, is traveling towards the
surface it could pass through the point x = xR where the condition

Δm2 cos 2θ = A(xR) (7.84)

is satisfied. This condition is called MSW resonance condition. At the point x = xR ,
the mixing in matter is maximal and the difference of the neutrino energies is mini-
mal

θm(xR) = π

4
, ΔEm(xR) = Δm2 sin 2θ

2E
. (7.85)

The resonance region is the most important one for neutrino transitions. Let us esti-
mate the neutrino energies at which the resonance condition (7.84) is satisfied. We
have

A(x) = 2
√

2 G F ne(x) E � 2
√

2 G F Ye ρ(x)
E

Mp
� 1.1 · 10−7eV2 ρ(x)

g/cm3

E

MeV
.

(7.86)
Here ρ is the matter density and Ye = ne

nN
is the ratio of the electron and nucleon

number densities. In (7.86) we used the Standard Solar Model value Ye � 2/3.
The density ρ(x) is well described by the exponential function

ρ(x) � ρ0 e−x/r0 . (7.87)

Here

r0 = R

10.54
� 6.6 · 104 km, (7.88)

where R is the solar radius and ρ0 � 150 g/cm3.
From the global analysis of the data of the solar neutrino experiments and of the

data of the KamLAND reactor experiment for the neutrino oscillation parameters
the following best-fit values were found

Δm2 ≡ Δm2
12 = 7.94 · 10−5 eV2, tan2 θ ≡ tan2 θ12 = 0.447. (7.89)

From these values we have

Δm2 cos 2θ � 3 · 10−5 eV2. (7.90)
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From (7.83) we find for the value of the parameter of the adiabaticity at the reso-
nance point xR the following expression

γ (xR) = Δm2 sin2 2θ

2E cos 2θ | d lnne
dx |xR

. (7.91)

Taking into account (7.87) we have

γ (xR) = Δm2 sin2 2θ r0

2E cos 2θ
(7.92)

Now, using the best-fit values (7.89) of the neutrino oscillation parameters and the
value (7.88) of the parameter r0 for γ (xR) we obtain the following expression

γ (xR) � 3 · 104
(

MeV

E

)
. (7.93)

In the solar neutrino experiments neutrinos with energies in the range (0.2–16) MeV
are detected. From (7.93) follows that in the whole interval of the detected solar
neutrino energies γ (xR) � 1. If the parameter of the adiabaticity is large at the
resonance point it will also be large in all other points. We come to the conclusion
that solar neutrino transitions are adiabatic. Taking into account that θm(x) = θ (θ is
the vacuum mixing angle) we obtain from (7.57) and (7.76) the following expression
for the νe survival probability

P(νe → νe) = cos2 θ cos2 θm(x0)+ sin2 θ sin2 θm(x0)

= 1

2
(1 + cos 2θ cos 2θm(x0)) . (7.94)

Notice that in the general two-neutrino case for the averaged νe survival probability
in matter we have

P(νe → νe) =
∑

i,k

|U m
ek(x)|2 Pki |U m

ei (x0)|2 (7.95)

where Pki is the probability of the transition from the state with energy Em
i to the

state with energy Em
k . From the conservation of the total probability we have

P11 = 1 − P21; P22 = 1 − P12 . (7.96)

Further, we have P21 = P12. From (7.95) and (7.96) we easily find the following
general expression for the νe → νe survival probability

P(νe → νe) = 1

2
+
(

1

2
− P12

)
cos 2θ cos 2θm(x0) (7.97)
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In the adiabatic approximation P12 = 0 and the expression (7.97) coincides with
(7.94).

In the literature exist different approximate expressions for the transition proba-
bility P12. In Landau-Zenner approximation, which is based on the assumption that
transitions occur mainly in the resonance region, we have

P12 = e− π
2 γ (xR) F , (7.98)

where γ (xR) is the parameter of the adiabaticity at the resonance point, given by the
expression (7.91), and the factor F depends on the electron number density. If the
electron density is exponential, F = 1 − tan2 θ .

From (7.98) follows that for

γ (xR) >> 1 (7.99)

we have P12 � 0. Thus, we come to the same conclusion as before: if the inequality
(7.99) is satisfied, neutrino transitions in matter are adiabatic.

In the adiabatic approximation transition probability depends on vacuum param-
eters Δm2 and θ and on the electron number density at the production point. Let us
determine the neutrino energy at which A(x0) = Δm2 cos 2θ . Taking into account
(7.86) and (7.90) we have

E0 = Δm2 cos 2θ

2
√

2 G F ne(0)
� 2 MeV. (7.100)

In the region of neutrino energies significantly larger than E0 from (7.60) we find
that cos 2θm(x0) � −1 (θm(x0) � π/2). Thus, in the high energy region the survival
probability is given by the expression

P(νe → νe) � 1

2
(1 − cos 2θ) = sin2 θ. (7.101)

From (7.89) and (7.101) we obtain the following value of the νe survival probability
in the high-energy region:

P(νe → νe) � 0.31. (7.102)

In the region of neutrino energies significantly smaller than E0 from (7.60) we find
that θm(x0) � θ . Thus, in this region the νe survival probability is given by the
vacuum expression

P(νe → νe) � 1 − 1

2
sin2 2θ. (7.103)

Using (7.89) we find

P(νe → νe) � 0.57. (7.104)
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In every of the two neutrino energy regions, we considered, the νe transition prob-
abilities practically do not depend on energy and differ approximately by the factor
two. In the transition region a strong energy dependence must be exhibited. Detailed
calculations show that the transition region between high-energy and low-energy
regimes lies in the interval (2–5) MeV.

In the recent BOREXINO experiment the 7Be neutrinos with energy E = 0.87
Mev was detected. For the νe → νe transition probability the value

P(νe → νe) = 0.56 ± 0.10 (7.105)

was found. In this experiment the νe → νe transition probability in the high energy
region at effective neutrino energy E = 8.6 MeV was also determined. It was found

P(νe → νe) = 0.35 ± 0.10 (7.106)

The values (7.105) and (7.106) are in a good agreement with the predictions (7.104)
and (7.102).

Up to now we have considered two-neutrino transition probabilities. In the three-
neutrino case the average probability for νe → νe transitions of solar neutrinos in
matter is given by the following expression9

P(νe → νe) = |Ue3|4 + (1 − |Ue3|2)2 P(12)
νe→νe

(Δm2
12, tan2 θ12) , (7.107)

where P(12)
νe→νe(Δm2

12, tan2 θ12) is the two-neutrino transition probability driven by
Δm2

12. From the data of the CHOOZ reactor experiment it follows that |Ue3|2 �
5 · 10−2. Thus, with an accuracy of a few % the νe → νe transition probability for
solar neutrinos in the three-neutrino case is given by the two neutrino expression

P(νe → νe) � P(12)
νe→νe

(Δm2
12, tan2 θ12). (7.108)

The two-neutrino νe → νe transition probability, which we considered before, is
usually used in the analysis of the solar neutrino data.

9 The same expression is valid for the vacuum neutrino oscillations driven by Δm2
12 (such as neu-

trino oscillations observed in the KamLAND reactor experiment). We derived the corresponding
vacuum three-neutrino νe survival probability in Sect. 6.6.



Chapter 8
Neutrinoless Double Beta-Decay

8.1 Introduction

As we have seen in the previous sections, there are two fundamentally different
possibilities for the massive neutrinos νi : they can be Dirac particles, if the total
lepton number L = Le + Lμ + Lτ is conserved, or truly neutral Majorana particles
if there are no conserved leptons numbers. The problem of the nature of massive
neutrinos νi (Dirac or Majorana?) is one of the most fundamental problem of neu-
trino physics. The solution of this problem will have an important impact on the
understanding of the origin of neutrino masses and mixing. If it will be proved
that νi are Majorana particles, it will be a strong argument in favor of the seesaw
mechanism of neutrino mass generation which is commonly considered as the most
natural explanation of the smallness of neutrino masses.

Neutrino oscillations is an interference phenomenon sensitive to very small val-
ues of neutrino mass-squared differences. However, as we have shown before, by
the investigation of neutrino oscillations it is impossible to decide on the nature of
neutrinos with definite masses: are they Dirac or Majorana particles.

In order to reveal the nature of neutrinos with definite masses it is necessary to
study processes in which the total lepton number L is violated.

We will demonstrate first that for massless neutrinos and the left-handed SM
neutrino interaction, theories with Dirac and Majorana neutrinos are equivalent. In
the case of the Majorana field νi (x), right-handed and left-handed components are
not independent. They are connected by the relation (see Sect. 4.3)

νiR(x) = (νiL(x))
c (8.1)

In the Dirac case, right-handed and left-handed components are independent. If
mi = 0, the right-handed fields do not enter into the Lagrangian. Hence, there is
no way to distinguish Dirac and Majorana fields in this case.

We will show now that in the case of massless neutrinos helicities play the role
of the conserved lepton numbers. Let us consider the CC Lagrangian

LCC
I = − g√

2

∑

l

ν̄lLγαlL Wα − g√
2

∑

l

l̄LγανlL Wα† (8.2)

Bilenky, S.: Neutrinoless Double Beta-Decay. Lect. Notes Phys. 817, 139–158 (2010)
DOI 10.1007/978-3-642-14043-3_8 c© Springer-Verlag Berlin Heidelberg 2010
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in the general case mi �= 0. Taking into account neutrino mixing we have

LCC
I = − g√

2

∑

i,l

U∗
li ν̄i LγαlL Wα − g√

2

∑

i,l

Uli l̄LγανiL Wα†. (8.3)

In the matrix elements of the processes of production of l+ and a neutrino (due to
the first term of (8.3)) or absorption of neutrino with production of l− (due to the
second term of (8.3)) enters the spinor 1−γ5

2 ur (pi ) (pi is the neutrino momentum).
For the spinor ur (pi ) we have

γ · pi ur (pi ) = mi ur (pi ), Σ ur (pi ) = rur (pi ), (8.4)

where Σ is the helicity operator. We have

Σ = γ5γ · s, (8.5)

where the vector sα satisfies the condition s · p = 0. In the rest frame we have
sα0 = (0, k), k being the unit vector in the momentum direction. In the system
where the neutrino momentum is equal to pi = pi k, we have sα = 1

mi
(pi , k p0

i ).
Taking into account terns linear in mi

2E , we find from (8.4)

1 − γ5

2
ur (pi ) � 1 − r

2
ur (pi )+ r

mi

2E
γ 0ur (pi ) . (8.6)

In the matrix elements of the processes of production of l− and an (anti)neutrino
(due to the second term of (8.3)) or absorption of an (anti)neutrino with the produc-
tion of l+ (due to the first term of (8.3)) enters the spinor 1−γ5

2 vr (pi ) (vr (pi ) =
ur (−pi ) = C (ūr (pi ))

T ). Taking into account terms linear in mi
2E we have

1 − γ5

2
vr (p) = 1 + r

2
vr (p)+ r

mi

2E
γ 0vr (p) . (8.7)

From (8.6) and (8.7) follows that in the case of massless neutrinos in weak processes
together with l+ a (strictly) left-handed neutrino νl is produced. This neutrino can
produce only l− (due to the second term of (8.3)). Analogously, due to the second
term of (8.3) in weak processes together with l− a right-handed (anti)neutrino ν̄l

is produced. This (anti)neutrino in weak interaction processes can produce only l+
(due to the first term of (8.3)). Thus, we came to the conclusion that for massless
neutrinos the conserved helicity ensure the conservation of the lepton charges inde-
pendently of the Dirac or Majorana nature of fields νi .

This conservation is a consequence of the global gauge invariance which holds in
the case of massless neutrinos. In fact, if mi = 0 the field νl L(x) satisfies the Dirac
equation

iγ α∂α νl L(x) = 0 (8.8)
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and canonical commutation relations (independently on the nature of νi L(x)). The
total Lagrangian is invariant under the global gauge transformations

l ′(x) = eiΛl l(x), ν′
l L(x) = eiΛl νl L(x) (l = e, μ, τ). (8.9)

From this invariance follows that flavor lepton numbers Le, Lμ and Lτ are con-
served.

We now will assume that νi (x) are Majorana fields with mi �= 0. In this case,
processes in which the total lepton number is violated become possible.

The Majorana operator νi L(x) is the sum of the operators of absorption and cre-
ation of neutrinos. Thus, neutrinos which are produced in a weak decay together
with, say, l+ (due to the first term of the Lagrangian (8.3)) can produce l

′+ in a
process of interaction with a nucleon (due to the same first term of the Lagrangian).
For example, the chain of the processes π+ → μ+ + νi , νi + N → μ+ + X )
becomes possible in the case of massive Majorana neutrinos. However, the chain of
such processes is strongly suppressed with respect to a chain of usual processes in
which the total lepton number is conserved (such as π+ → μ+ + νμ due to the first
term of the Lagrangian (8.3) and νμ + N → μ− + X due to the second term of the
Lagrangian (8.3)).

In fact, from (8.6) follows that in the neutrino-production process together with
l+ mainly left-handed neutrinos are produced. From (8.7) we see that in the cross
section of the absorption of such neutrinos with the production of l

′+ the small
factors (mi

E )
2 enter. The probability of the production of right-handed neutrinos,

which have a “large” weak absorption cross section, is also suppressed by the factors
(

mi
E )

2. Thus, a chain of the processes, of production and absorption of a neutrino,
induced by the first term of the Lagrangian (8.3), in which l+ and l ′+ are produced,
is suppressed by the factors (mi

E )
2 with respect to the chain of usual neutrino pro-

cesses, induced by the first and the second terms of the Lagrangian (8.3). Taking into
account that neutrino energies in neutrino processes are larger than ∼1 MeV and
neutrino masses are smaller than ∼1 eV we conclude that the suppression factor for
neutrino processes in which the total lepton number is changed by two is extremely
small:

m2
i

E2
� 10−12. (8.10)

Thus, in a foreseeable future it does not seem possible to reveal the nature of massive
neutrinos via the observation of the violation of the total lepton number in neutrino
experiments.

We will consider weak interaction processes with virtual Majorana neutrinos in
which the total lepton number is changed by two. Such processes are induced by the
first (or second) term of the Lagrangian (8.3). Examples are

1. Neutrinoless double β-decay (0νββ-decay) of even-even nuclei

(A, Z) → (A, Z + 2)+ e− + e− . (8.11)
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2. Decays of kaons

K + → π−+μ++μ+; K + → π−+e++e+, K + → π−+μ++e+ . (8.12)

3. The process

μ− + (A, Z) → (A, Z − 2)+ e+ . (8.13)

4. Decays of τ -leptons

τ− → e+ +π− +π−, τ− → μ+ +π− +π−, τ− → e+ +π− + K − . (8.14)

etc.

Matrix elements of such processes contain propagator 〈0| T (νl L(x1) ν
T
l ′L(x2))

|0〉. It will be shown later that neutrino masses enter into this propagator in the form

∑

i

Uli Ul ′k
1 − γ5

2

(γ · q + mi )

q2 − m2
i

1 − γ5

2
C � mll ′

1

q2

1 − γ5

2
C , (8.15)

where

mll ′ =
∑

i

Uli Ul ′i mi (8.16)

and we took into account that m2
i � q2. Thus, the matrix element of a lepton

number violating process with virtual Majorana neutrinos and the emission of two
leptons l− and l ′−, is proportional to mll ′ . It is easy to see that the matrix element of a
process, in which l+ and l ′+ are produced, is proportional to

∑
i U∗

li U∗
l ′i mi = m∗

ll ′ .
Let us consider |mll ′ |. Taking into account the Cauchy-Schwarz inequality and

the unitarity of the mixing matrix, we find

|mll ′ | ≤
√∑

i

|Uli |2m2
i

√∑

i

|Ul ′i |2 ≤ mmax, (8.17)

where mmax is the mass of the heaviest neutrino. From the data of experiments on
the measurement of neutrino masses through the investigation of the high-energy
part of the β-spectrum of tritium it was found: mmax ≤ 2.2 eV (see Sect. 9.2). Thus,
we have

|mll ′ | ≤ 2.2 eV . (8.18)

The probabilities of the processes (8.11), (8.12), (8.13) and others, in which the lep-
ton number is changed by two and the Majorana neutrinos are virtual particles, are
extremely small. First, they are processes of the second order in the Fermi constant
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G F . And, second, they are helicity-suppressed processes. In the probabilities of such

processes enter very small helicity suppression factor |ml′l |2
<Q2>

, where < Q2 > is an

average momentum-transfer squared (typically � 10 MeV2).
The sensitivities to the parameter |mll ′ | of experiments on the search for the pro-

cesses (8.12), (8.13), (8.14) and other similar processes are much worse than the
upper bound (8.18). For example, from the experiment on the search for the process
μ−Ti → e+Ca the following upper bound was obtained

Γ (μ−Ti → e+Ca)

Γ (μ−Ti → all)
≤ 1.7 · 10−12. (8.19)

For the probability of the decay K + → π−μ+μ+ it was found:

Γ (K + → π−μ+μ+)
Γ (K + → all)

≤ 3 · 10−9. (8.20)

From these results the following bounds were obtained, correspondingly

|mμe| ≤ 82 MeV, |mμμ| ≤ 4 · 104 MeV. (8.21)

The exceptional process, which is sensitive to the expected Majorana neutrino
masses, is neutrinoless double β-decay of some even-even nuclei. The possibilities
to use large targets (in present-day experiments tens of kg, in future experiments
about 1 ton and maybe more), to reach small background and high energy resolution
make experiments on the search for this decay a unique source of information about
the nature of massive neutrinos νi . In the next sections we will consider this process
in detail.

8.2 Basic Elements of the Theory of 0νββ-Decay

We will consider here the elements of the theory of neutrinoless double β-decay.
Let us consider an even-even nucleus (A, Z) with mass MA,Z . The mass of odd-odd
nucleus (A, Z + 1) with the same atomic number is larger than MA,Z . Thus, (A, Z)
nucleus cannot have usual β-decay (A, Z) → (A, Z + 1) + e− + ν̄e. If, however,
exist even-even nucleus (A, Z+2)with mass smaller than MA,Z , the nucleus (A, Z)
can decay into (A, Z + 2) with emission of two electrons. An example is even-even
nucleus 76Ge. The decay 76Ge →76 As + e− + ν̄e is forbidden because the 76As
nucleus is heavier than 76Ge. However, the transition of 76Ge into lighter even-even
nucleus 76Se and two electrons is allowed.

We present in Table 8.1 several even-even nuclei, the ββ decay of which has been
searched for (or is planned to be searched for) in different experiments.

Two types of ββ decays are possible

1. Two-neutrino double β decay (2νββ-decay)
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Table 8.1 ββ candidate nuclei. In the first column nuclei transitions are indicated; in the second
column Q-values are shown; in the third column element abundances are presented

Transition T0 = Qββ (KeV) Abundance (%)
76Ge →76 Se 2, 039.6 ± 0.9 7.8
100Mo →100 Ru 3, 934 ± 6 9.6
130Te →130 Xe 2, 533 ± 4 34.5
136Xe →136 Ba 2, 479 ± 8 8.9
150Nd →150 Sm 3, 367.1 ± 2.2 5.6
82Se →82 Kr 2, 995 ± 6 9.2
48Ca →48 Ti 4, 271 ± 4 0.187

(A, Z) → (A, Z + 2)+ e− + e− + ν̄e + ν̄e . (8.22)

2. Neutrinoless double β decay (0νββ-decay)

(A, Z) → (A, Z + 2)+ e− + e−. (8.23)

Two-neutrino double β decay is a process of the second order in the Fermi constant
G F , which is governed by the standard CC Hamiltonian of the weak interaction.
This decay was observed in more than ten different nuclei with half-lifes in the range
(1018 − 1020) years. The largest statistics was obtained in the NEMO-3 experiment.
For half-life of the 2νββ-decay of 100Mo in this experiment was obtained

T 2ν
1/2 = (7.72 ± 0.02 (stat)± 0.54 (syst)) · 1018 y. (8.24)

The neutrinoless double β decay (8.23) is allowed only in the case if the total lepton
number is not conserved. We will consider this process assuming that neutrinos have
the SM interaction and the lepton number is violated due to a Majorana neutrino
mass term.

For the effective Hamiltonian of the process we have

HI (x) = G F√
2

2
∑

i

ēL(x)γα Uli νi L(x) jα(x)+ h.c. (8.25)

Here G F is the Fermi constant, jα(x) is the hadronic charged current and the field
νi (x) satisfies the condition

νc
i (x) = C ν̄T

i (x) = νi (x). (8.26)

The neutrinoless double β-decay is the second order in G F process with the virtual
neutrinos. The matrix element of the process is given by the following expression
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〈 f |S2|i〉 = 4
(−i)2

2 !
(

G F√
2

)2
Np1 Np2

∫ ∑

i

ūL (p1)e
ip1x1γα Uei 〈0|T (νi L (x1) ν

T
i L (x2)|0〉

×γ T
β Uei ūT

L (p2)e
ip2x2 〈N f |T (Jα(x1)J

β(x2))|Ni 〉 d4x1d4x2−(p1 � p2). (8.27)

Here p1 and p2 are electron momenta, Jα(x) is the weak charged current in the
Heisenberg representation,1 |Ni 〉 and |N f 〉 are the states of the initial and the
final nuclei with 4-momenta Pi = (Ei ,pi) and Pf = (E f ,pf), respectively, and
Np = 1

(2π)3/2
√

2p0
is the standard normalization factor. The diagram of 0νββ-decay

is presented in Fig. 8.1.
Let us consider the neutrino propagator. From the Majorana condition (8.26) we

find

〈0|T (νiL(x1)ν
T
iL(x2)|0〉 = −1 − γ5

2
〈0|T (νi (x1)ν̄i (x2))|0〉 1 − γ5

2
C. (8.28)

Further, we have

〈0|T (νi (x1)ν̄i (x2))|0〉 = i

(2π)4

∫
e−iq (x1−x2)

γ · q + mi

q2 − m2
i

d4q (8.29)

Thus, for the neutrino propagator we find the following expression2

〈0|T (νiL(x1)ν̄iL(x2))|0〉 = − i

(2π)4

∫
e−iq (x1−x2)

mi

q2 − m2
i

d4q
1 − γ5

2
C.

(8.30)
The neutrino propagator is proportional to mi . It is obvious from (8.29) that this is
connected with the fact that only left-handed neutrino fields enter into the Hamilto-

Fig. 8.1 Feynman diagram of
the neutrinoless double
β-decay

n

n

p

p

ν i

e−

e−

1 Thus, in (8.27) the strong interaction are taking into account.
2 Notice that in the case of the Dirac neutrinos 〈0|νiL (x1)ν

T
iL (x2)|0〉 = 1−γ5

2 〈0|νi (x1)

νT
i (x2)|0〉 1−γ T

5
2 = 0. The neutrinoless double β-decay is obviously forbidden in the Dirac case.
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nian of the weak interaction. In the case of massless neutrinos (mi = 0, i = 1, 2, 3),
in accordance with the theorem on the equivalence of the theories with massless
Majorana and Dirac neutrinos, the matrix element of the neutrinoless double β-
decay is equal to zero.

Let us consider the second term of the matrix element (8.27). It is easy to show
that

ūL(p1)γα(1 − γ5)γβCūT
L (p2) = ūL(p2)C

T γ T
β (1 − γ T

5 )γ
T
α ūT

L (p1)

= −ūL(p2)γβ(1 − γ5)γαCūT
L (p1) . (8.31)

If we take into account (8.31) and the relation

T (Jβ(x2)J
α(x1)) = T (Jα(x1)J

β(x2)) (8.32)

we can show that the second term of the matrix element (8.27) is equal to the first
one. For the matrix element we obtain the following expression

〈 f |S2|i〉=−4

(
G F√

2

)2

Np1 Np2

∫
ūL(p1)e

ip1x1γα
i

(2π)4
∑

i

U 2
ei mi

∫
e−iq (x1−x2)

p2 − m2
i

d4q

×1 − γ5

2
γβC ūT

L (p2)e
ip2x2〈N f |T (Jα(x1)J

β(x2))|Ni 〉 d4x1d4x2 (8.33)

Initial nuclei in 0νββ-decay are heavy nuclei like 76Ge, 136Xe, 130Te, 100Mo and
others. The calculation of the nuclear part of the matrix element of the 0νββ-decay
is a complicated nuclear problem. In such a calculation different approximations are
used. We will present now the matrix element of the 0νββ-decay in a form which is
appropriate for such approximate calculations.

Let us perform in (8.33) the integration over the time variables x0
2 and x0

1 . The
integral over x0

2 can be presented in the form

∫ ∞

−∞
. . . dx0

2 =
∫ x0

1

−∞
. . . dx0

2 +
∫ ∞

x0
1

. . . dx0
2 . (8.34)

After the integration over q0 in the neutrino propagator, in the region x0
1 > x0

2 we
find3

i

(2π)4

∫
e−iq (x1−x2)

q2 − m2
i

d4q = 1

(2π)3

∫
e−iq0

i (x
0
1−x0

2 )+iq (x1−x2)

2 q0
i

d3q , (8.35)

where

3 It is assumed that in the propagator m2
i = m2

i − iε.
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q0
i =

√
q2 + m2

i . (8.36)

In the region x0
1 < x0

2 we have

i

(2π)4

∫
e−iq (x1−x2)

q2 − m2
i

d4q = 1

(2π)3

∫
e−iq0

i (x
0
2−x0

1 )+iq (x2−x1)

2 q0
i

d3q. (8.37)

For the operators Jα(x) from the invariance under the translations we have

Jα(x) = ei H x0
Jα(x)e−i H x0

, (8.38)

where H is the total Hamiltonian. From this relation we find

〈N f |Jα(x1)J
β(x2)|Ni 〉 =

∑

n

ei(E f −En)x0
1 ei(En−Ei )x0

2 〈N f |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni 〉, (8.39)

where |Nn〉 is the vector of the state of the intermediate nucleus with 4-momentum
Pn = (En,pn). In (8.39) the sum over the total system of the states |Nn〉 is assumed.

Taking into account that at ±∞ the interaction is turned off we have

∫ 0

−∞
eiax0

2 dx0
2 →

∫ 0

−∞
ei(a−iε)x0

2 dx0
2 = lim

ε→0

−i

a − iε
(8.40)

and

∫ −∞

0
eiax0

2 dx0
2 →

∫ ∞

0
ei(a+iε)x0

2 dx0
2 = lim

ε→0

i

a + iε
. (8.41)

From (8.40) and (8.41) we find

∫ ∞

−∞
dx0

1

∫ x0
1

−∞
dx0

2

∑

n

〈N f |Jα(x1)|Nn〉〈Nn|Jβ(x2)|Ni 〉ei(E f −En)x0
1+i(En−Ei )x0

2

ei(p0
1 x0

1+p0
2 x0

2 ) × eiq0
i (x

0
2−x0

1 ) = −i
∑

n

〈N f |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni

En + p0
2 + q0

i − Ei − iε
2πδ

(E f + p0
1 + p0

2 − Ei ) (8.42)

Taking into account all these relations, for the matrix element of the neutrinoless
double β-decay we find the following expression
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〈 f |S2|i〉=2i

(
G F√

2

)2

Np1 Np2 ū(p1)γαγβ(1+γ5)CūT (p2)

∫
d3x1d3x1e−ip1x1−ip2x2 ×

∑

i

U 2
ei mi

1

(2π)3

∫
eiq (x1−x2)

q0
i

d3q

[∑

n

〈N f |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni 〉
En + p0

2 + q0
i − Ei − iε

+
∑

n
〈N f |Jβ(x2)|Nn〉〈Nn|Jα(x1))|Ni 〉

En + p0
1 + q0

i − Ei − iε

]
2πδ(E f + p0

1 + p0
2 −Ei ) (8.43)

Equation (8.43) is the exact expression for the matrix element of 0νββ-decay in the
second order of the perturbation theory. We will consider major 0+ → 0+ tran-
sitions of even-even nuclei. For such transitions the following approximations are
standard.

1. Small neutrino masses can be safely neglected in q0
i .

The averaged momentum of the virtual neutrino is given by the relation q � 1
r ,

where r is the average distance between two nucleons in nucleus. Taking into
account that r � 10−13 cm, we have q � 100 MeV. Neutrino masses are smaller

than 2.2 eV. Thus, we have q0
i =

√
q2 + m2

i � q
2. Long-wave approximation.

We have pk xk ≤ pk R, where R � 1.2 A1/3 · 10−13 cm is the radius of nucleus
(k = 1, 2). Taking into account that pk � 1 Mev, we have pk xk � 1. Thus,
we put e−ip1x1−ip2x2 � 1 i.e. we assume that two electrons are emitted in the
S-states.

3. Closure approximation.
Energy of the virtual neutrino q � 100 MeV is much larger than the excita-
tion energy (En − Ei ) of states |Nn〉. Thus, we can change the energy of the
intermediate states En by average energy E . In this (closure) approximation we
have

〈N f |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni 〉
En + p0

2 + q0
i − Ei − iε

� 〈N f |Jα(x1)Jβ(x2))|Ni 〉
E + p0

2 + q − Ei − iε
, (8.44)

where E is the average energy of the exited states.
4. The impulse approximation for the hadronic charged current Jα(x).

Taking into account the major terms, the hadronic charged current takes the
form4

Jα(x) �
∑

n

δ(x − rn) τ
n+[ gV (q

2)gα0 + gA(q
2)σ n

i gαi ] . (8.45)

4 The pseudoscalar term in the one-nucleon matrix element of the hadronic charged current induces
a tensor term. From numerical calculations follow that its contribution to the matrix element can
be significant.
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Here gV (q2) and gA(q2) are vector and axial form factors , σi and τi are Pauli
matrices, τ+ = 1

2 (τ1 + iτ2) and index n runs over all nucleons in a nucleus. We
have gV (0) = 1, gA(0) = gA � 1.27.

It is obvious that τ n+ τ n+ = 0 Thus, in the impulse approximation the hadronic
currents satisfy the relation

Jα(x1) Jβ(x2) = Jβ(x2) Jα(x1). (8.46)

Further, the matrix γαγβ in the leptonic part of the matrix element (8.43) can be
presented in the form

γαγβ = gαβ + 1

2
(γαγβ − γβγα). (8.47)

It follows from (8.46) that the second term of (8.47) does not give contribution to
the matrix element. From (8.45) we have

Jα(x1)Jα(x2) =
∑

n,m

τ n+τm+ δ(x1−rn) δ(x2−rm)(g
2
V (q

2)−g2
A(q

2) σ n ·σm) , (8.48)

Neglecting nuclei recoil, we obtain in the laboratory frame

Mi = M f + p0
2 + p0

1,

where Mi and M f are masses of the initial and final nuclei. From this relation we
find

q + p0
1,2 + E − Mi = q ±

(
p0

1 − p0
2

2

)
+ E − Mi + M f

2
(8.49)

The term (
p0

1−p0
2

2 ), is much smaller than all other terms in the right-hand side of this
relation. Neglecting this term, we have

q + p0
1,2 + E − Mi � q + E − Mi + M f

2
(8.50)

Further, taking into account that gV (q2) � 1

1+ q2

0.71 GeV2

and gA(q2) � 1

1+ q2

M2
A

, where

MA � 1 GeV2, we can neglect q2-dependence of the formfactors. After the integra-
tion in the matrix element (8.43) over x1 and x2, for the neutrino propagator we find
the following expression

1

(2π)3

∫
eiq rnm d3q

q(q + E − 1
2 (Mi + M f ))

= 1

4πR
H(rnm, E), (8.51)
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where

H(r, E) = 2R

πr

∫ ∞

0

sin qr dq

q + E − 1
2 (Mi + M f )

. (8.52)

Here R is the nuclei radius and rnm = rn − rm .
Taking into account all these relations, from (8.43) for the matrix element of

0νββ-decay we obtain the following expression

〈 f |S2|i〉 = −i

(
G F√

2

)2 1

(2π)3
1√

p0
1 p0

2

mββ g2
A

1

R
ū(p1)(1 + γ5)CūT (p2)

×M0ν δ(p0
1 + p0

2 + M f − Mi ), (8.53)

where

mββ =
∑

i

U 2
ei mi (8.54)

is the effective Majorana mass and

M0ν = M0ν
GT − 1

g2
A

M0ν
F (8.55)

is the nuclear matrix element. Here

M0ν
F = 〈Ψ f |

∑

n,m

H(rn,m, E) τ n+τm+ |Ψi 〉 (8.56)

is the Fermi matrix element and

M0ν
GT = 〈Ψ f |

∑

n,m

H(rn,m, E) τ n+τm+ σ n · σm)|Ψi 〉 (8.57)

is the Gamov-Teller matrix element. In (8.56) and (8.57) |Ψi, f 〉 are wave function
of the initial and final nuclei.

From (8.53) we conclude that matrix element of 0νββ-decay is a product of
the effective Majorana mass mββ , the electron matrix element and the nuclear
matrix element which includes neutrino propagator (neutrino potential). Taking into
account that E − 1

2 (Mi + M f ) is much smaller than q̄ for the neutrino propagator
we obtain the following approximate relation

H(r) � 2R

π

∫ ∞

0

sin qr

qr
dq = R

r
. (8.58)
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Using the standard rules, from (8.53) we can easily obtain the decay rate of the
0νββ-decay. The electron part of the decay probability is given by the trace

Tr(1 + γ5)(γ · p2 − me)(1 − γ5)(γ · p1 + me) = 8p1 p2 . (8.59)

Taking into account the final state electromagnetic interaction of the electrons and
nucleus for the decay rate of the 0νββ-decay we find the following expression

dΓ 0ν = |mββ |2 |M0ν |2 1

(2π)5
G4

F
1

R2
g4

A(E1 E2 − p1 p2 cos θ)×
F(E1, (Z + 2)) F(E2, (Z + 2)) p1 p2 sin θdθ d E2, (8.60)

where E1,2 ≡ p0
1,2 is electron total energy (E2 = Mi − M f − E1), θ is the angle

between electron momenta p1 and p2 and

F(Z) � 2πη

1 − e−2πη
, (8.61)

is the Fermi function (η = Zα me
p ).

From (8.60) follows that for the ultra relativistic electrons θ -dependence of the
decay rate is given by the factor (1 − cos θ). Thus, ultra relativistic electrons cannot
be emitted in the same direction. This is connected with the fact that the helicity
of the high energy electrons, produced in the weak interaction, is equal to −1. If
electrons are emitted in the same direction, the projection of their total angular
momentum on the direction of the momentum is equal to −1. It is obvious that
such electrons cannot be produced in O+ → O+ transition.

From expression (8.60) for the total decay rate we obtain the following
expression

Γ 0ν = 1

T 0ν
1/2

= |mββ |2 |M0ν |2 G0ν(Q, Z), (8.62)

where5

G0ν(Q, Z) = 1

2(2π)5
G4

F
1

R2
g4

A

∫ Q

0
dT1

∫ π

0
sin θdθ (E1 E2 − p1 p2 cos θ)p1 p2 ×

F(E1, (Z + 2)) F(E2, (Z + 2)). (8.63)

Here T1 = E1 − me, Q = Mi − M f − 2me is the total released kinetic energy and
T 0ν

1/2 is the half-life of the 0νββ-decay. In Table 8.2 we present numerical values of

G0ν(Q, Z) for some nuclei . The total rate of the 0νββ-decay is the product of three
factors:

5 An additional factor 1
2 is due to the fact that in the final state we have two identical electrons.
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Table 8.2 The values of the factor G0ν(Q, Z) for some nuclei

Nucleus G0ν(Q, Z) in units 10−25y−1eV−2

76Ge 0.30
100Mo 2.19
130Te 2.12
136Xe 2.26

1. The modulus squared of the effective Majorana mass.
2. Square of nuclear matrix element.
3. The known factor G0ν(Q, Z).

The effective Majorana mass is given by the relation mββ = ∑
i U 2

ei mi . An
information about the neutrino mixing angles θik and neutrino mass-squared dif-
ferences Δm2

ik was obtained from the data of the neutrino oscillation experiments.
Taking into account these data, we will consider now possible values of the effective
Majorana mass.

8.3 Effective Majorana Mass

From neutrino oscillation data follows that one mass-squared difference (solar) is
much smaller than the other one (atmospheric). For three massive neutrinos two
types of neutrino mass spectra are possible in this case.

1. Normal spectrum

m1 < m2 < m3; Δm2
12 � Δm2

23 (8.64)

2. Inverted spectrum6

m3 < m1 < m2; Δm2
12 � |Δm2

13| (8.65)

In the case of the normal spectrum the neutrino masses m2,3 are connected with the
lightest mass m1 and two neutrino mass-squared differences Δm2

12 and Δm2
23 by

the following relations

6 In order to have the same notation Δm2
12 for the solar-KamLAND neutrino mass-squared dif-

ference and to determine this quantity as a positive one the neutrino masses are usually labeled
differently in the cases of the normal and inverted neutrino mass spectra. In the case of the normal
spectrumΔm2

23 > 0 and in the case of the inverted spectrumΔm2
13 < 0. Thus, with such a notation

the character of the neutrino mass spectrum is determined by the sign of the larger (atmospheric)
neutrino mass-squared difference. It clear, however, that the sign of the atmospheric mass-squared
difference has no physical meaning: it is a convention based on the labeling of the neutrino masses
and the way how the neutrino mass-squared difference is determined (Δm2

ik = m2
k − m2

i ). In both
cases of the neutrino mass spectrum for the mixing angles the same notations can be used.
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m2 =
√

m2
1 +Δm2

12, m3 =
√

m2
1 +Δm2

12 +Δm2
23 (8.66)

In the case of the inverted spectrum we have

m1 =
√

m2
3 + |Δm2

13|, m2 =
√

m2
3 + |Δm2

13| +Δm2
12 (8.67)

It is obvious that effective Majorana mass is determined not only by the lightest
neutrino mass and neutrino mass-squared differences but also by the character of
the neutrino mass spectrum.

Usually the following three typical neutrino mass spectra are considered7

1. Hierarchy of the neutrino masses

m1 � m2 � m3. (8.68)

2. Inverted hierarchy of the neutrino masses

m3 � m1 < m2 (8.69)

3. Quasi-degenerate neutrino mass spectrum

m1 � m2 � m3, m1(m3) �
√
Δm2

23 (

√
|Δm2

13|). (8.70)

We will discuss now the possible values of the effective Majorana mass in the case
of these three neutrino mass spectra.

I. Hierarchy of the neutrino masses

In this case we have

m1 �
√
Δm2

12, m2 �
√
Δm2

12, m3 �
√
Δm2

23. (8.71)

Thus, in the case of neutrino mass hierarchy the neutrino masses m2 and m3 are
determined by the neutrino mass-squared differencesΔm2

12 andΔm2
23, correspond-

ingly, and the lightest mass is very small. Neglecting the contribution of m1 to the
effective Majorana mass and using the standard parametrization of the neutrino mix-
ing matrix we find

7 Let us notice that these three neutrino mass spectra correspond to different mechanisms of neu-
trino mass generation. Masses of quarks and charged leptons satisfy hierarchy of the type (8.68).
Hierarchy of neutrino masses is a typical feature of GUT models (like SO(10)) in which quarks and
leptons are unified. Inverted spectrum and quasi-degenerate spectrum require specific symmetries
of the neutrino mass matrix.
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|mββ | �
∣∣∣∣ sin2 θ12

√
Δm2

12 + e2i α sin2 θ13

√
Δm2

23

∣∣∣∣ . (8.72)

Here α is (unknown) Majorana phase difference.
The first term in Eq.(8.72) is small because of the smallness of Δm2

12. The con-
tribution of the “large” Δm2

23 to |mββ | is suppressed by the small factor sin2 θ13.
Using the values (6.123) and the CHOOZ bound (6.136), we have

sin2 θ12

√
Δm2

12 � 2.8 · 10−3 eV, sin2 θ13

√
Δm2

23 � 2.5 · 10−3eV. (8.73)

Thus, if the value of the parameter sin2 θ13 is close to the CHOOZ bound, the first
term and the modulus of the second term of (8.72) are approximately equal and at
α � π/2 the terms in the expression (8.72) practically cancel each other. In this
case the Majorana mass |mββ | will be close to zero.

Even without this possible cancelation the effective Majorana mass in the case
of the neutrino mass hierarchy is very small. In fact, from (8.72) and (8.73) we have
the following upper bound

|mββ | ≤
(

sin2 θ12

√
Δm2

12 + sin2 θ13

√
Δm2

23

)
� 5.3 · 10−3 eV. (8.74)

This bound is significantly smaller that the expected sensitivity of the future exper-
iments on the search for 0νββ-decay (see later).

II. Inverted hierarchy of the neutrino masses

For the neutrino masses we have in this case

m3 �
√

|Δm2
13|, m1 �

√
|Δm2

13|, m2 �
√

|Δm2
13|

(
1 + Δm2

12

2 |Δm2
13|

)
. (8.75)

In the expression for the effective Majorana mass |mββ | the lightest mass m3 is
multiplied by the small parameter sin2 θ13. Neglecting the contribution of this term

and also neglecting the small term
Δm2

12
2 |Δm2

13|
in (8.75) we find

|mββ | �
√

|Δm2
13| (1 − sin2 2 θ12 sin2 α)

1
2 , (8.76)

where α is the difference of the Majorana phases of the elements Ue2 and Ue1. The
phase difference α is the only unknown parameter in the expression for |mββ | in the
case of the inverted hierarchy. From (8.76) we find

cos 2 θ12

√
|Δm2

13| ≤ |mββ | ≤
√

|Δm2
13|, (8.77)
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where the upper bound corresponds to α = 0, π and the lower bound corresponds
to α = ±π

2 . From (6.123) we find the following range of the possible values of the
effective Majorana mass

1.8 · 10−2 ≤ |mββ | ≤ 4.9 · 10−2 eV (8.78)

It is important that in the case of the inverted hierarchy of the neutrino masses the
lower bound of the effective Majorana mass is different from zero.

The anticipated sensitivities to the effective Majorana mass of the next genera-
tion of the experiments on the search for the 0νββ-decay are in the range (8.78)
(see below). Thus, the future 0νββ-decay experiments will probe the inverted hier-
archy of the neutrino masses.

III. Quasi-degenerate neutrino mass spectrum

Neglecting the small contribution of sin2 θ13, for the effective Majorana mass
we obtain in the case of the quasi-degenerate neutrino mass spectrum the following
expression

|mββ | � mmin (1 − sin2 2 θ12 sin2 α)
1
2 , (8.79)

where mmin is the lightest neutrino mass and α is the Majorana phase difference.
Thus, |mββ | depends in this case on two unknown parameters: mmin and α. From
(8.79) we obtain the following range for the effective Majorana mass:

cos 2 θ12 mmin ≤ |mββ | ≤ mmin. (8.80)

If 0νββ-decay will be observed and the effective Majorana turn out to be relatively

large (|mββ | �
√
Δm2

23|) it would be an evidence that neutrinos are Majorana
particles and the spectrum of their mass is quasi-degenerate. In this case we could
conclude that

|mββ | ≤ mmin ≤ 2.8 |mββ | (8.81)

An information about the lightest neutrino mass can be obtained from experi-
ments on the measurement of the end-point part of the β-spectrum of tritium. From
existing data of the Mainz and Troitsk tritium experiments it was found the upper
bound

mmin < 2.2 eV. (8.82)

The expected sensitivity of the future KATRIN experiment is equal to

mmin � 0.2 eV (8.83)



156 8 Neutrinoless Double Beta-Decay

Fig. 8.2 Effective Majorana
mass for the normal and
inverted neutrino mass
spectra as a function of mmin

We have considered three neutrino mass spectra with special values of the lightest
neutrino mass mmin. In Fig. 8.2 the effective Majorana mass for the normal and
inverted neutrino mass spectra as a function of mmin is presented. Uncertainties of
the parametersΔm2

12,Δm2
23 and tan2 θ12 and possible values of the Majorana phase

difference α are taken into account in Fig. 8.2. In conclusion let us notice that if
in the KATRIN (or other) experiments the neutrino mass will be measured and in
the 0νββ-decay experiments, sensitive to the effective Majorana mass in the range
(8.80), a positive signal will not be observed it would be an evidence that neutrinos
with definite masses are Dirac particles.

8.4 On the Nuclear Matrix Elements of the 0νββ-Decay

Effective Majorana mass |mββ | is not a directly measurable quantity. From the
measurement of the half-life of the 0νββ-decay only the product of the effective
Majorana mass and nuclear matrix element can be obtained (see relation (8.62). In
order to determine mββ we must know nuclear matrix elements (NME).

The calculation of NME is a complicated nuclear problem. Two different
approaches are used for the calculation of NME: the Nuclear Shell Model (NSM)
and the Quasiparticle Random Phase Approximation (QRPA). The latest QRPA cal-
culations of NME of different nuclei are in an agreement with each other. However,
NME calculated in the NSM are approximately two times smaller than the QRPA
nuclear matrix elements. Further improvements of the NSM and QRPA approaches
and new methods of the calculations are definitely needed.

Notice that if the 0νββ-decays of different nuclei will be observed, from the
ratios of the half-lifes the ratios of the corresponding NME can be obtained. The
comparison of such ratios with the predictions of the models would allow to test
models.
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8.5 Data of Experiments on the Search for 0νββ-Decay. Future
Experiments

At present there exist data of many experiments on the search for 0νββ-decay. The
most stringent lower bounds on the half-life of 0 νββ-decay were obtained in the
Heidelberg-Moscow and IGEX 76Ge experiments and in the CUORICINO 130Te
experiment.

In the Heidelberg-Moscow experiment five crystals of 86 % enriched 76Ge with
a total mass 10.96 kg were used as a source (and detector). The released kinetic
energy in the 0+ → 0+ transition 76Ge →76 Se + e− + e− is equal to Qββ =
2, 039.06 ± 0.05 KeV. For the half-life of 76Ge the following lower bound was
obtained in the experiment8

T 0 ν
1/2(

76Ge) ≥ 1.9 · 1025y (90% CL) (8.84)

Taking into account uncertainties in NME calculations, the following bounds were
obtained from this result for the effective Majorana mass

|mββ | ≤ (0.3 − 1.2) eV. (8.85)

In the IGEX experiment the following lower bound was found for the half-life of
the 0νββ-decay of 76Ge

T 0 ν
1/2(

76Ge) ≥ 1.6 · 1025 y (90% CL) (8.86)

From this data was obtained

|mββ | ≤ (0.3 − 1.3) eV. (8.87)

In the cryogenic experiment CUORICINO the search for 0νββ decay of natural
130Te was performed. An array of 62 TeO2 crystals with a total mass of 40.7 kg
was placed in a cryostat at the temperature T = 8 mK. Since the heat capacity is
proportional to T 3, an increase of the temperature due to a tiny energy release can
be recorded in the experiment. 130Te has a large natural abundance (33.8%) and a
relatively large Qββ -value (Qββ = 2, 528.8 ± 1.3 keV). No signal in the region of
the 0νββ decay of 130Te was found in the experiment. For the half-life the following
lower bound was obtained

T 0 ν
1/2(

130Te) ≥ 3.0 · 1024 y (90% CL) (8.88)

8 Some participants of the Heidelberg-Moscow collaboration claim that they obtained an evidence
for the 0νββ-decay of 76Ge with the following 3 σ range for the half-life of 76Ge: 0.69 · 1025 ≤
T 0 ν

1/2(
76Ge) ≤ 4.18 · 1025 y. This claim is going to be checked by the GERDA collaboration.
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For the upper bound of the effective Majorana mass the following range of values
was inferred

|mββ | ≤ (0.19 − 0.68) eV. (8.89)

Several future experiments on the search for 0 νβ β-decay are in preparation at
present. Detectors in these experiments will be much larger than in today’s exper-
iments (about hundreds of kg and even ∼1 ton). All groups plan to significantly
decrease the background and to improve the energy resolution. The aim of future
experiments is to reach a sensitivity of

|mββ | � a few 10−2 eV, (8.90)

which will allow to test the Majorana nature of neutrinos in the case of the inverse
hierarchy of the neutrino masses. The future CUORE experiment will use the same
cryogenic technique as the CUORICINO experiment. An array of 988 TeO2 crystals
with a total mass of 741 kg of natural Te will be used. Significant reduction of the
background and improvement of the energy resolution are planned to be reached.

The new 76Ge experiment GERDA started at the Gran Sasso Laboratory with
17.9 kg enriched Ge source (detector). At the next step an additional 22 kg of
enriched Ge will be added. At this stage the existing claim of the observation of
the 0νββ-decay will be checked. Later, a large (about 1 ton) GERDA-Majorana
experiment is envisaged which will allow to test the Majorana nature of massive
neutrinos in the case of the inverted mass hierarchy.

In the future EXO experiment, the 0νββ-decay 136Xe →136 Ba++ + e− + e−
will be searched for. A new feature of the EXO experiment is a possibility to detect
the daughter nuclei Ba++. This ion will be neutralized to 136Ba+ and localized.
Then 136Ba+ ion will be optically detected through the irradiation by photons from
two lasers. It is expected that about 107 photons/s will be emitted by one ion. If
this method of detection of 136Ba+ will be realized it will drastically reduce the
background. At the first stage of the experiment (without Ba tagging) ∼ 200 kg of
80% enriched 136Xe will be used. After two years of running it is planned to reach
T 0 ν

1/2(
136Xe) > 6.4 · 1025 y and |mββ | � 1.5 · 10−1 eV.

The tracking detector NEMO is able to identify e−, e+, γ, α. Neutrinoless double
β-decays of different nuclei can be searched for in the experiment. With 13.3 kg.y
exposure for 100Mo, T 0 ν

1/2(
100Mo) > 5.8 · 1023 y (90% CL) was found. From this

result the bound |mββ | < (0.6 − 1.3) eV was obtained.
In the future Super-NEMO experiment, the search for the 0νββ-decays of 82Se

or 150Nd with ∼ 100 kg source is planned. It is expected to reach the sensitivity
T 0 ν

1/2 ∼ 2.0 · 1026 y which corresponds to |mββ | � (5 − 9) 10−2 eV.



Chapter 9
On absolute Values of Neutrino Masses

9.1 Masses of Muon and Tau Neutrinos

We have seen in the previous sections that neutrino oscillation experiments allow
us to obtain the values only of the neutrino mass-squared differences. Information
about the absolute value of the neutrino mass can be inferred from experiments
which are based on the measurement of the neutrino mass via the kinematics of a
decay.

The most precise upper bound on the “mass” of the muon neutrino was obtained
from the measurement of the muon momentum in the decay

π+ → μ+ + νμ. (9.1)

The state of the muon neutrino is the superposition of states of neutrinos with defi-
nite masses

|νμ〉 =
∑

i

U∗
μi |νi 〉. (9.2)

From the energy-momentum conservation for the mass of νi , produced in the decay
π+ → μ+νi , we find the following expression

m2
i = m2

π + m2
μ − 2mπ

√
m2
μ + (pi

μ)
2. (9.3)

Here mπ and mμ are masses of the pion and muon and pi
μ is the momentum of the

muon (in the pion rest frame).
In the most precise PSI experiment for the muon momentum the value

pμ = (29.79200 ± 0.00011) MeV (9.4)

Bilenky, S.: On absolute Values of Neutrino Masses. Lect. Notes Phys. 817, 159–163 (2010)
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was found. From the PSI data for the square of the neutrino mass was obtained1

m2
νμ

= (−0.016 ± 0.023) MeV. (9.5)

From this result for the upper bound of the muon mass was found

mνμ < 190 keV. (9.6)

The upper bound for the mass of the tau neutrino was obtained from a study of the
decays

τ− → 2π− + π+ + ντ , τ− → 3π− + 2π+ + (π0)+ ντ (9.7)

in the ALEPH experiment. From this experiment was found

mντ < 18.2 MeV. (9.8)

9.2 Neutrino Masses from the Measurement of the High-Energy
Part of the β-Spectrum of Tritium

The most stringent upper bound on the absolute value of the neutrino mass was
obtained from the detailed investigation of the high-energy part of the electron spec-
trum in the decay

3H →3He + e− + ν̄e. (9.9)

The effective Hamiltonian of the decay is given by the expression

HI = G F√
2

2ēLγανeL jα, (9.10)

where jα is the hadronic charged current and

νeL =
∑

i

Ueiνi L . (9.11)

For the electron spectrum in the decay (9.9) we obtain the following expression

1 We have pμ = ∑
i |Uμi |2 pi � 1

2 mπ (1 − r) − 1+r
1−r

m2
νμ

2mπ
, where r = m2

μ

m2
π

. The effective mass-

squared of νμ is given by the relation m2
νμ

= ∑
i |Uμi |2m2

i .
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dΓ

d E
=
∑

i

|Uei |2 dΓi

d E
, (9.12)

where

dΓi

d E
= Cp(E + me)(E0 − E)

√
(E0 − E)2 − m2

i F(E) θ(E0 − E − mi ). (9.13)

Here E is the kinetic energy of the electron, E0 � 18.6 keV is the energy released in
the decay, and F(E) is the Fermi function, which describes the Coulomb interaction
of the final particles. The constant C is given by the expression

C = G2
F m5

e

2π3
|M |2, (9.14)

where M is the (constant) nuclear matrix element.
Let us notice that the neutrino mass mi enters in (9.13) through the neutrino

momentum pi =
√
(E0 − E)2 − m2

i and the step function θ(E0 − E −mi ) provides
the condition E ≤ E0 − mi .

As is seen from (9.13), the largest distortion of the electron spectrum has to be
observed in the region (Emax − mi ) � E � Emax, where Emax = E0 − mi .
However, if mi � 1 eV only about 10−11 decays of tritium give a contribution to
this region. In order to increase the luminosity of the experiments a much larger part
of the β-spectrum has to be used for the analysis of the effect of the neutrino mass.
The best upper bounds on neutrino masses were obtained in the recent Mainz and
Troitsk tritium experiments. In the Mainz experiment ∼70 eV of the end-point part
of the spectrum was used. Taking into account that in the large part of the measured
spectrum (E0 − E)2 � m2

i the electron spectrum can be presented in the form

dΓ

d E
� Cp(E + me)(E0 − E)

√
(E0 − E)2 − m2

β F(E), (9.15)

where the effective mass mβ is given by the expression

mβ =
√∑

i

|Uei |2m2
i . (9.16)

In the Mainz experiment, frozen molecular tritium condensed on the graphite sub-
strate was used as a tritium source. The electron spectrum was measured by an
integral spectrometer with a retarding electrostatic filter. The resolution of the spec-
trometer was 4.8 eV. The data of the experiment were fitted with four free parame-
ters: normalization C , background B, released energy E0 and the effective neutrino
mass-squared m2

β . From the fit of the data E0 = 18.575 eV was found.
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From the combined analysis of all Mainz data, for the parameter m2
β was inferred

m2
β = (−1.2 ± 2.2 ± 2.1) eV2. (9.17)

From this value the following upper bound for the neutrino mass was obtained

mβ < 2.2 eV (95% CL). (9.18)

In the Troitsk tritium experiment a gaseous molecular source was used. The electron
spectrum was measured by an integral electrostatic spectrometer of the same type
as in the Mainz experiment. The resolution of the spectrometer was (3.5–4) eV. A
step function superimposed on the integral continuous spectrum was observed in
the Troitsk experiment. This step function corresponds to a peak in the differential
spectrum at a distance of a few eV from the end of the spectrum. The origin of this
peak is unknown. Such an anomaly was not observed in the Mainz experiment.

In analysis of the Troitsk data six free parameters were used: C , B, E0, m2
β , the

position of the step and its height.
From the analysis of the data, for the parameter m2

β was found

m2
β = (−2.3 ± 2.5 ± 2.0) eV2. (9.19)

From (9.19) the following upper bound was obtained

mβ < 2.2 eV (95% CL). (9.20)

From the data of the Mainz and Troitsk experiments a bound on the lightest neutrino
mass can be obtained. For example, in the case of the normal mass spectrum (m1 <

m2 < m3) we have

m2
β = m2

1 + (1 − |Ue1|2) Δm2
12 + |Ue3|2 Δm2

23. (9.21)

From neutrino oscillation data follows that the sum of the last two terms in the
right-hand side of (9.21) is smaller than 2 · 10−4 eV2. Thus, from the data of the
Mainz and Troitsk experiments we have

m1 < 2.2 eV.

Similarly, for the inverted neutrino mass spectrum (m3 < m1 < m2) we obtain
m3 < 2.2 eV.

The experiment of the next generation on the measurement of the neutrino mass
will be the Karlsruhe Tritium Neutrino Experiment (KATRIN). In this experiment
two tritium sources will be used: a gaseous T2 source and a frozen tritium source.
The integral MAC-E-Filter spectrometer (Magnetic Adiabatic Collimator combined
with an Electrostatic Filter) will have two parts: the pre-spectrometer, which will
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select electrons in the last ∼ 100 eV part of the spectrum, and the large main spec-
trometer. It has high luminosity, low background and high energy resolution (1 eV).

It is planned that after five years of running, a sensitivity to the effective neu-
trino mass of 0.2 eV at 95% CL will be reached (upper bound in the case if no
positive signal will be found). The mass mβ = 0.35 eV can be measured with 5 σ
significance and the mβ = 0.30 eV can be measured with 3 σ significance.

In conclusion we would like to mention that in addition to the measurement of
the tritium β-spectrum there exist an alternative approach to the determination of the
neutrino mass through the investigation of the β-decay. The groups in Genova and
Milano developed the low-temperature cryogenic technique for the measurement
of the β-decay of 187Re. The energy release in the β-decay of this element is the
lowest-known (E0 = 2.5 keV). This means that the study of the β-decay of 187Re is
a very sensitive way for the investigation of the effects of the neutrino mass. The best
upper bound that was reached in the MIBETA Rhenium experiment is mβ < 15 eV.
A new cryogenic experiment MARE with a sensitivity to the neutrino mass of 2 eV
(and in the second phase of 0.2 eV) is now under preparation.



Chapter 10
Neutrino Oscillation Experiments

10.1 Introduction

The long period of the discovery of neutrino oscillations started in 1970 with the
pioneer Homestake solar neutrino radiochemical experiment by Davis et al. In this
experiment, the observed rate of solar νe was found to be significantly smaller that
the rate, predicted by the Standard Solar Model (SSM). This discrepancy was called
the solar neutrino problem (puzzle).

Even before the Homestake experiment started, B. Pontecorvo suggested that
because of neutrino oscillations the observed flux of the solar neutrinos might be
two times smaller than the predicted flux.1 After the Davis results were obtained
the idea of neutrino oscillations as a possible reason for the solar neutrino puzzle
became more and more popular.

In the eighties, the second solar neutrino experiment Kamiokande was per-
formed. In this direct-counting experiment a large water-Cherenkov detector was
used. The solar neutrino rate measured by the Kamiokande experiment was also
smaller than the rate predicted by the SSM.

In the Homestake and Kamiokande experiments high-energy solar neutrinos,
produced mainly in the decay of 8B, were detected. The flux of these neutrinos
is much smaller than the total solar neutrino flux (about 10−4 of the total flux) and
its predicted value strongly depends on the model.

In the nineties the new radiochemical solar neutrino experiments SAGE and
GALLEX started. In these experiments neutrinos from all reactions of the pp and
CNO cycles, including low-energy neutrinos from the reaction pp → de+νe, were
detected. This reaction gives the largest contribution to the flux of the solar neutri-
nos. The flux of the pp neutrinos can be predicted in a practically model indepen-
dent way. The event rates measured in the SAGE and GALLEX experiments were
approximately two times smaller than the predicted rates. Thus, in these experiments
important evidence was obtained in favor of the disappearance of solar νe on the way
from the central region of the sun, where solar neutrinos are produced, to the earth.

1 Only two types of neutrinos were known at that time.

Bilenky, S.: Neutrino Oscillation Experiments. Lect. Notes Phys. 817, 165–194 (2010)
DOI 10.1007/978-3-642-14043-3_10 c© Springer-Verlag Berlin Heidelberg 2010
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Another indications in favor of neutrino oscillations were obtained in the nineties
in the Kamiokande and IMB neutrino experiments in which atmospheric muon
and electron neutrinos were detected. These neutrinos are produced in decays of
pions and kaons, created in interactions of cosmic rays with nuclei in the atmo-
sphere, and also in decays of muons, which are produced in the decays of pions and
kaons. It was found in these experiments that the ratio of the numbers of νμ and
νe events is significantly smaller than the (practically model independent) predicted
ratio.

On the other side, no indications in favor of neutrino oscillations were found
in the eighties and nineties in numerous reactor and accelerator short baseline
experiments.

The situation with the search for neutrino oscillations drastically changed in 1998
when in the water-Cherenkov Super-Kamiokande experiment a significant up-down
asymmetry of the high-energy atmospheric neutrino muon events was observed. It
was discovered in this experiment that the number of up-going high-energy muon
neutrinos, passing through the earth, is about two times smaller than the number of
the down-going muon neutrinos coming directly from the atmosphere.

Indications in favor of a disappearance of solar νe became evidence in 2002 with
the solar neutrino SNO experiment in which solar neutrinos were detected through
the observation of CC and NC reactions. A Model independent evidence of the dis-
appearance of solar νe was obtained in this experiment. It was shown that the flux
of the solar νe is approximately three times smaller than the flux of νe, νμ and ντ .

In 2002 in the KamLAND reactor neutrino experiment was found that the number
of reactor ν̄e events at the average distance of ∼ 170 km from the reactors is about
0.6 of the number of the expected events. A significant distortion of the ν̄e spectrum
was observed in the experiment in 2004.

Neutrino oscillations were observed also in the accelerator long-baseline K2K
and MINOS experiments. These experiments perfectly confirm the results obtained
in the atmospheric Super-Kamiokande experiment.

Two important reactor neutrino experiments CHOOZ and Palo Verde were per-
formed in which neutrino oscillations were not found. In the CHOOZ experiment
was shown that the element |Ue3|2, which determines the size of such effects of the
three-neutrino mixing as C P violation, is less than ∼ 5 · 10−2.

For many years existed an additional indication in favor of neutrino oscillations
which was obtained in the accelerator short-baseline LSND experiment. The expla-
nation of the LSND result would require an existence of sterile neutrinos. The recent
MiniBooNE experiment does not confirm LSND indication.

All these experiments complete the first period of the brilliant discovery of neu-
trino oscillations. It was proven that neutrinos have small masses and that the fla-
vor neutrinos νe, νμ, ντ are “mixed particles”. All observed data can perfectly be
described if we assume three-neutrino mixing. The values of four neutrino oscilla-
tion parameters (two-mass squared differences and two mixing angles) were deter-
mined.

In this chapter we will briefly discuss the major neutrino oscillation experiments.
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10.2 Solar Neutrino Experiments

10.2.1 Introduction

Solar electron neutrinos are produced in reactions of the thermonuclear pp and CNO
cycles in which the energy of the sun is generated. The thermonuclear reactions are
going on in the central, most hot region of the sun. In this region the temperature is
about 15 ·106 K. At such a temperature the major contribution to the energy produc-
tion is given by the pp cycle. The estimated contribution of the C N O cycle to the
sun’s energy production is about 1%.2 In the beginning of the pp cycle, deuterium
is produced in the reactions

p + p → d + e+ + νe and p + e− + p → d + νe. (10.1)

The first pp reaction gives the dominant contribution to the deuterium production
(99.71%). The contribution of the second pep reaction is 0.23%.

Deuterium and proton produce 3He in the reaction

p + d →3 He + γ. (10.2)

The produced 3He disappears due to three reactions

3He +3 He →4 He + p + p (84.82%). (10.3)
3He + p →4 He + +e+ + νe (about 10−5%) (10.4)

3He +4 He →7 Be + γ (15.08%) (10.5)

In the first two reactions 4He is produced. Nuclei 7Be take part in two chains of
reactions terminated with the production of 4He nuclei

7Be + e− →7 Li + νe
7Li + p →4 He +4 He. (10.6)

p +7 Be →8 B + γ 8B →8 Be∗ + e+ + νe
8Be∗ →4 He +4 He. (10.7)

Positrons, produced in different reactions, annihilate with electrons. Thus, the
energy of the sun is produced in the transition3

2 In stars significantly heavier than the sun the central temperatures are higher and the C N O cycle
gives the dominant contribution to the energy production.
3 The C N O cycle is the following chain of reactions: p + 12C → 13N + γ , 13N → 13C +
e+ + νe, p + 13C → 14N + γ , p + 14N → 15O + γ , 15O → 15N + e+ + νe. There are two
branches of reactions with nuclei 15N, terminated with the production of 4He: p+15N → 12C+4He
or p + 15N → 16O + γ , p + 16O → 17F + γ , 17F → 17O + e+ + νe, p + 17O → 14N + 4He.
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4p + 2e− → 4He + 2νe + Q, (10.8)

where

Q = 4m p + 2me − m4He � 26.73 MeV (10.9)

is the energy per production of a 4He nucleus.
From (10.8) follows that the production of solar energy equal to 1

2 Q � 13.36
MeV is accompanied by the emission of one neutrino. The energy, produced by the
sun, is emitted in the form of photons (about 98%) and neutrinos (about 2%). Let us
consider neutrinos with an energy E . The emission of such neutrinos is accompanied
by the production of luminous energy equal to 1

2 Q − E . If φr (E) is the flux on the
earth of neutrinos from the source r (r = pp,7 Be,8 B, . . . ) we have the following
relation

∫ ∑

r

(
1

2
Q − E

)
φr (E) d E = L�

4πR2
, (10.10)

where L� is the luminosity of the sun and R is the sun-earth distance. The relation
(10.10) is called luminosity relation. It is a general constraint on the fluxes of solar
neutrinos. The luminosity relation is based on the following assumptions

1. The solar energy is of thermonuclear origin.
2. The sun is in a stationary state.

The last assumption is connected with the fact that neutrinos observed in a detec-
tor were produced about 8 min before the detection. On the other side it takes about
105 years for photons produced in the central region of the sun to reach the surface
of the sun.

We can rewrite the luminosity relation in the form

∑

r

(
Q

2
− Er

)
Φr = L�

4πR2
. (10.11)

Here

Er = 1

Φr

∫
E φr (E) d E (10.12)

is the average neutrino energy from the source r and Φr = ∫
φr (E) d E is the total

flux of neutrinos from the source r . For the calculation of neutrino fluxes it is nec-
essary to use a solar model. Usually the results of the calculations in the framework
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Table 10.1 Solar reactions, in which neutrinos are produced, and neutrino fluxes predicted by the
SSM
Abbreviation Reaction SSM flux (cm−2 s−1) Neutrino energy (MeV)

pp p + p → d + e+ + νe 6.05 · 1010 ≤ 0.42

pep p + e− + p → d + νe 1.45 · 108 1.44

7Be e− + 7Be → 7Li + νe 4.38 · 109 0.86

8B 8B → 8Be∗ + e+ + νe 4.59 · 106 � 15

hep 3He + p → 4He + e+ + νe 8.23 · 103 ≤ 18.8

13N 13N → 13C + e+ + νe 2.03 · 108 ≤ 1.20

15O 15O → 15N + e+ + νe 1.47 · 108 ≤ 1.73

17F 17F → 17O + e+ + νe 3.31 · 106 ≤ 1.74

of the so-called Standard Solar Model (SSM) are used.4 In Table 10.1 we present
the predicted by SSM fluxes of νe from different reactions. In this table we included
also predicted fluxes from three reactions of the CNO cycle: 13N → 13C + e+ + νe,
15O → 15N + e+ + νe and 17F → 17O + e+ + νe. In the last column of Table 10.1
neutrino energies from different reactions are given.

As we will see later, the main contributions to the event rates measured in modern
solar neutrino experiments give

1. low energy pp neutrinos,
2. medium energy monochromatic 7Be neutrino,
3. high energy 8B neutrinos.

It is evident from Table 10.1 that the second term of the luminosity relation
(10.11) is much smaller than the first one. If we neglect this term, we find the
following expression for the total flux of neutrinos

Φ =
∑

r

Φr � L�
2πR2 Q

. (10.13)

4 The Standard Solar Model is based on the assumption that the sun is a spherically symmetric
plasma sphere in hydrostatic equilibrium. The effects of rotation and of the magnetic field are
neglected.
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Fig. 10.1 Spectra of solar neutrinos from different reactions predicted by the Standard Solar Model

Taking into account that L� = 2.40 · 1039 MeV s−1 and R = 1.496 · 1013 cm we
find

Φ � 6.4 · 1010 cm−2 s−1 . (10.14)

In Fig. 10.1 spectra of neutrinos from different reactions, predicted by the SSM, are
presented.

10.2.2 Homestake Chlorine Solar Neutrino Experiment

The first experiment, in which solar electron neutrinos were detected, was the
Homestake experiment by R. Davis et al.5 The experiment continued from 1968
till 1994. In the Davis experiment radiochemical chlorine-argon method, proposed
by B. Pontecorvo in 1946, was used. Solar electron neutrinos were detected through
the observation of the reaction

νe + 37Cl → e− + 37Ar . (10.15)

The threshold of this process is equal to 0.814 Mev. The 37Ar atoms are radioactive.
They decay via electron-capture with emission of Auger electrons. The half-life of
the decay is 34.8 days.

5 For this experiment R. Davis was awarded with the Nobel Prize in 2002.
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A tank filled with 615 tons of liquid perchloroethylene (C2Cl4) was used as an
detector in the Davis experiment. In order to decrease the cosmic ray background,
the experiment was performed in the Homestake mine (USA) at depth of about
1,480 m (4,100 m of water equivalent).

The radioactive 37Ar atoms, produced by solar νe via the reaction (10.15) during
the exposure time (about two months), were extracted from the tank by purging
with 4He gas. The gas with radioactive 37Ar atoms was put in a low-background
proportional counter in which the signal from Auger electrons was detected. An
important feature of the experiment was the measurement of the rise time of the
signal. This allowed to suppress the background. About 16 atoms of 37Ar were
extracted during one exposure run.

The energy threshold of the Cl-Ar reaction is larger than the upper bound for
energies of pp neutrinos, constituting the major part of the solar neutrinos (see
Table 10.1). At high 8B energies, the transition to an excited state of 37Ar sig-
nificantly increase the cross section of the process (10.15). As a result, the main
contribution to the counting rate give the high energy 8B neutrinos. According to the
SSM the contribution of the 8B neutrinos to the event rate is equal to 5.76 SNU.6 The
predicted contribution of 7Be neutrinos is equal to 1.15 SNU. Other much smaller
contributions to the event rate come from pep and C N O neutrinos.

The event rate measured in the Homestake experiment, averaged over 108 runs
between 1970 and 1994, is equal to

RCl = (2.56 ± 0.16 ± 0.16) SNU (10.16)

The measured event rate is significantly smaller than the rate predicted by the SSM
(assuming that there are no neutrino oscillations):

RSSM = 8.1 ± 1.3 SNU (10.17)

10.2.3 Radiochemical GALLEX-GNO and SAGE Experiments

Neutrinos from all solar neutrino reactions including low-energy neutrinos from
pp reaction were detected in the radiochemical gallium GALLEX-GNO and SAGE
experiments. In these experiments neutrinos were detected by the radiochemical
method through the observation of the reaction

νe + 71Ga → e− + 71Ge, (10.18)

in which radioactive 71Ge was produced. The threshold of this reaction is equal to
0.233 MeV. The half-life of 71Ge is equal to 11.43 days.

6 One solar neutrino unit (SNU) is determined as follows: 1 SNU = 10−36events atom−1 s−1.
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The detector in the GNO-GALLEX experiment was a tank containing 100 tons
of a water solution of gallium chloride (30.3 tons of 71Ga). The experiment was
done in the underground Gran Sasso Laboratory (Italy). During 1991–2003 there
were 123 GALLEX and GNO exposure runs. The duration of one run was about 4
weeks. About 10 atoms of 71Ge were produced during one run. Radioactive 71Ge
atoms were extracted from the detector by a chemical procedure and introduced
to a small proportional counter in which Auger electrons, produced in the capture
e− + 71Ge → 71Ga + νe, were detected.

The measured event rate averaged over 123 runs is equal to

RGa = (67.5 ± 5.1) SNU. (GALLEX − GNO) (10.19)

The event rate predicted by the SSM

(RGa)SSM = (128 +9
−7) SNU. (10.20)

is about two times larger than the measured rate.
The major contribution to the predicted event rate comes from the pp neutrinos

(69.7 SNU). Contributions of 7Be and 8B neutrinos to the predicted event rate are
equal to 34.2 SNU and 12.1 SNU, respectively. Combining the GALLEX-GNO
results with the results of SNO and BOREXINO experiments from which the fluxes
of the 8B and 7Be neutrinos can be obtained, it is possible to determine the average
probability of the low-energy pp neutrinos to survive. It was found that Ppp(νe →
νe) = 0.52 ± 0.12.

In another gallium experiment SAGE about 50 tons of 71Ga in the form of liq-
uid metal are used. The experiment is doing in the Baksan Neutrino Observatory
(Caucasus mountains, Russia) in a hall with an overburden of 4,700 m water equiv-
alent. Neutrinos are detected through the observation of the reaction (10.18). An
exposure time in this experiment is about 4 weeks. The 71Ge atoms, produced by
the solar neutrinos, are chemically extracted from the target and are converted to
GeH4. Auger electrons, produced in decay of germanium, are detected in a tiny
proportional counter.

The germanium production rate, measured in the SAGE experiment, averaged
over 92 runs during 1990–2001 is equal to

RGa = (70.8+5.3
−5.2(stat)+3.7

−3.2(syst)) SNU. (SAGE) (10.21)

As it is seen from (10.19) and (10.21), the rates measured in the SAGE and in the
GALLEX-GNO experiments are in a good agreement.

Both GALLEX and SAGE Collaborations performed tests (source) experiments
in which intense 51Cr neutrino sources (in two GALLEX and one SAGE experi-
ments), a 37Ar neutrino source (in the SAGE experiment) and 71As source (in the
GALLEX experiment) were used. They found agreement between observed and
predicted 71Ge production rates. This agreement is an additional confirmation of
the reliability of the experiments.
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10.2.4 Kamiokande and Super-Kamiokande Solar Neutrino
Experiments

In radiochemical experiments the neutrino direction cannot be determined. The first
experiment in which the neutrino direction was measured was Kamiokande. It was
proved that the detected neutrinos were coming from the sun.

In the Kamiokande experiment a 2,140 ton water-Cherenkov detector was used.
The experiment was done in the Kamioka mine (Japan) at a depth of about 1,000 m
(2,700 m water equivalent).

In the Kamiokande experiment the solar neutrinos were detected through the
observation of recoil electrons from the elastic neutrino-electron scattering

νx + e → νx + e. (x = e, μ, τ) (10.22)

All types of flavor neutrinos are observed in the experiment. However, because
σ(νμ,τ e → νμ,τ e) � 0.16 σ(νee → νee) the Kamiokande experiment allowed
to determine mainly the flux of the solar νe’s on the earth.

Electron neutrinos from the process (10.22) were detected via the observation of
the Cherenkov radiation in water. 1,000 large (50 cm in diameter) photomultipliers.
which covered about 20% of the surface of the detector, were utilized in the exper-
iment. Because of the contamination of Rn in the water it was necessary to apply a
7.5 MeV energy threshold for the recoil electrons.

At high energies recoil electrons are emitted in a narrow (about 15◦) cone around
the initial neutrino direction. In the experiment a strong correlation between the
direction of recoil electrons and the direction to the sun was observed This corre-
lation was an important signature which allowed to suppress background. It was
proved that the observed events were due to neutrinos from the sun.

Because of the high threshold only 8B neutrinos could be detected in the
Kamiokande experiment.7 The total flux of high energy 8B neutrinos obtained from
the results of the Kamiokande experiment is equal to

ΦK
ν = (2.80 ± 0.19 ± 0.33) · 106 cm−2 s−1. (10.23)

The ratio of the measured solar neutrino flux to the flux predicted by the SSM under
the assumption that there are no neutrino oscillations is equal to RK = 0.51±0.04±
0.06.

The result of the Kamiokande experiment was an important confirmation of the
existence of the solar neutrino problem, discovered in Davis et al. in the Homestake
experiment.8

7 According to the SSM the contribution of hep neutrinos is negligible.
8 In 1987 the Kamiokande Collaboration (and also the IMB and Baksan Collaborations) observed
neutrinos from the explosion of the supernova SN1987A. This was the first observation of
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The Kamiokande experiment was running during 9 years from 1987 till 1995. In
1996 the experiment of the next generation (Super-Kamiokande) was started. In this
experiment a huge 50 kiloton water-Cherenkov detector (fiducial volume 22.5 kilo-
tons) was used. There were three phases of the Super-Kamiokande experiment. The
SK-I phase started in 1996 and finished in 2001. In this phase 11,000 photomultipli-
ers were used. In 2001 an accident happened in which many of the photomultipliers
were destroyed. After about a year, half of the photo-tubes were restored and SK-II
started. In July 2006 after restoring the total number of photo-tubes SK-III started.

There were many improvements in the Super-Kamiokande experiment with
respect to Kamiokande. An important one was the energy calibration at a 2%
level in the whole energy range. During 1,496 days of SK-I the large number of
22, 404±226+784

−717 neutrino-electron scattering events was observed. During the first
280 days the threshold was 6.5 MeV. For the remaining days the threshold was 5
MeV. The total flux of the solar 8B neutrinos was determined in SK-I experiment
with a ∼1% statistical accuracy:

ΦSK-I
ν = (2.35 ± 0.02 ± 0.08) · 106 cm−2 s−1. (10.24)

No distortion of the spectrum of recoil electrons with respect to the expected spec-
trum was observed.9 The high statistics of the events allowed the Super-Kamiokande
Collaboration to determine the dependence of the number of events on the zenith
angle and to measure a day-night asymmetry which could give an information on
the earth matter effects. No significant zenith angle dependence was found. For the
day-night asymmetry a value

AD-N = −1.7% ± 1.6% ± 1.3% (10.25)

was obtained.
The SK-II phase of the Super-Kamiokande experiment started in December

2002 and finished in October 2005. There was a reduced number of photo-tubes
(protected against possible blast) in this run. The energy threshold was 7 MeV.
7, 212.8 +152.9

−150.9(stat) +483.3
−461.6(syst) neutrino-electron events were observed. The total

flux of the solar 8B neutrinos determined in the SK-II experiment

ΦSK-II
ν = (2.38 ± 0.05 ± 0.16) · 106 cm−2 s−1 (10.26)

is in a perfect agreement with the flux (10.24) measured in the SK-I experiment.

supernova neutrinos. The experiment confirmed the general theory of the gravitational collapse
(see Sect. 11.8).
9 The initial 8B solar neutrino spectrum is determined by the weak decay 8B → e+ +νe +2α. This
spectrum can be obtained from the measurement of the α-spectrum in a laboratory. The fact that
the electron spectrum, measured in the Super-Kamiokande experiment, is in an agreement with
the expected spectrum means that in the high-energy 8B region the probability of the solar νe to
survive is constant.
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10.2.5 SNO Solar Neutrino Experiment

The fluxes of solar neutrinos, measured in the Homestake, GALLEX-GNO, SAGE,
Kamiokande and Super-Kamiokande experiments, were significantly smaller than
the fluxes, predicted by the Standard Solar model. From the analysis of the data
of these experiments, strong indications in favor of neutrino transitions driven by
neutrino masses and mixing were obtained.

The first model-independent evidence for transitions of solar νe into νμ,τ was
obtained in the SNO solar neutrino experiment. The experiment was done in the
Creighton mine (Sudbury, Canada) at a depth of 2,092 m (6,010 m water equiva-
lent). The target in the SNO experiment was 1,000 tons of pure heavy water D2O
contained in a 12 m diameter acrylic vessel. Cherenkov light was detected by 9,456
photo-multipliers of 20 cm in diameter.

A new, crucial feature of the SNO experiment was the observation of solar neu-
trinos via three different processes.

1. The CC process

νe + d → e− + p + p . (10.27)

2. The NC process

νx + d → νx + p + n (x = e, μ, τ) (10.28)

3. Elastic neutrino-electron scattering (ES)

νx + e → νx + e . (10.29)

The CC and ES processes were observed through the detection of the Cherenkov
light produced by electrons in the heavy water. The NC process was observed via
the detection of neutrons. There were three phases of the SNO experiment in which
different methods of the detection of neutrons were used.

• D2O phase (306 days). During this phase neutrons from the NC process (10.28)
were detected through the observation of γ -quanta produced in the process n +
d → t + γ .

• Salt phase (391 days). In the heavy water about 2 tons of NaCl were dissolved.
Neutrons were detected through the observation of γ -quanta from the capture
n + 35Cl → 35Cl + γ . For thermal neutrons the cross section of this process
(�44 b) is much higher than the cross section of the process nd → tγ (�0.5 mb).
Thus, the addition of the salt significantly enhanced the NC signal.

• 3He proportional counter phase (385 days). During this phase neutrons were
detected through the observation of the process n + 3He → p + t in counters
deployed in the heavy water detector.
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The SNO Collaboration started to collect data in 1999. The last phase was fin-
ished in 2006. We will present results obtained during the salt and the 3He propor-
tional counter phases.

During the salt phase (2, 176 ± 78) CC events, (2, 010 ± 85) NC events and
(279±26) ES events were observed. The threshold for the detection of the electrons
from the CC and the ES processes was equal to Tthr = 5.5 MeV. The neutrino energy
threshold for NC process is 2.2 MeV (the deuterium bounding energy). Thus, in the
SNO experiments mostly high energy solar 8B neutrinos can be detected.

The initial spectrum of νe from the 8B decay is known. It was obtained from the
measurement of α-spectrum from the 8B decay. From the analysis of all existing
solar neutrino data follows that in the high-energy region νe → νe survival prob-
ability is a constant. Thus, the CC and ES electron spectra can be predicted. The
electron CC and ES spectra measured in the SNO experiment are in good agreement
with this prediction.

Assuming the undisturbed 8B neutrino spectrum from the observation of the CC
events for the flux νe the following value was obtained in the SNO experiment

ΦCC
νe

= (1.68 ± 0.06+0.08
−0.09) · 106 cm−2 s−1. (10.30)

Because of the νe − νμ − ντ universality of the NC neutrino-hadron interaction the
observation of NC events allows to determine the total flux of all flavor neutrinos.
In the SNO experiment was found that the total flux of all flavor neutrinos is equal
to

ΦNC
νe,μ,τ

= (4.94 ± 0.21+0.38
−0.34) · 106 cm−2 s−1 . (10.31)

Finally, for the neutrino flux determined from the observation of the ES events it
was found

ΦES
ν = Φνe + 0.16 Φνμ,τ = (2.35 ± 0.22 ± 0.15) · 106 cm−2 s−1. (10.32)

The SNO experiment provides the solution of the solar neutrino problem. If we
compare the flux of νe with the total flux of νe, νμ and ντ , we come to the model
independent conclusion that solar νe on the way from the sun to the earth are trans-
formed into νμ and ντ . From an analysis of the data of the SNO and other solar
neutrino experiments follows that these transitions are due to neutrino masses and
mixing. For the ratio of the fluxes of νe and νe, νμ and ντ we have

ΦCC
νe

ΦNC
νe,μ,τ

= 0.340 ± 0.023+0.029
−0.031. (10.33)

The ratio of the νe flux and the ES flux is equal to

ΦCC
νe

ΦES
= 0.712 ± 0.075+0.045

−0.044. (10.34)
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The value (10.31) of the total flux of all flavor neutrinos is in agreement with the flux
of the 8B neutrinos predicted by the Standard Solar Model (see Table10.1). Thus,
no indications in favor of a transition of the solar neutrinos into sterile states were
obtained in the SNO experiment.

In the SNO experiment the day-night asymmetries were also measured. Values
compatible with zero were found. For the CC events was found

ACC = −0.015 ± 0.058 ± 0.027. (10.35)

From the two-neutrino analysis of the SNO data the following values were obtained
for the neutrino oscillation parameters

Δm2
12 = (5.0+6.2

−1.8) · 10−5 eV2, tan2θ12 = (0.45+0.11
−0.10). (10.36)

From an analysis of the SNO data and the data of all other solar neutrino experiments
it was found

Δm2
12 = (6.5+4.4

−2.3) · 10−5 eV2, tan2θ12 = (0.45+0.09
−0.08). (10.37)

Finally, from an analysis of the data of the solar neutrino experiments and the data
of the KamLAND reactor experiment the following values were inferred for the
neutrino oscillation parameters

Δm2
12 = (8.0+0.6

−0.4) · 10−5 eV2, tan2θ12 = (0.45+0.09
−0.07). (10.38)

In 2004, in the SNO heavy water detector, 36 strings of 3He proportional counters
were deployed. Neutrons from NC events are detected in the 3He counter through
the observation of the process n + 3He → 3H + p in which a kinetic energy of
764 keV is released. During the 3He phase of the experiment (983+77

−76) NC events,

(1, 867+91
−101) CC events and (171+24

−22) ES events were observed.
For the fluxes of νe, of νe,μ,τ and of ES neutrinos the following values were

obtained

ΦCC
νe

= (1.67+0.05
−0.04

+0.07
−0.08) · 106 cm−2 s−1, (10.39)

ΦNC
νe,μ,τ

= (5.54+0.33
−0.31

+0.36
−0.34) · 106 cm−2 s−1, (10.40)

ΦES = (1.77+0.24
−0.21

+0.09
−0.10) · 106 cm−2 s−1. (10.41)

The value (10.40) for the total flux of all active neutrinos, which was obtained via
the detection of neutrons by the 3He proportional counters, is in agreement with the
values which were obtained by the other methods for the detection of neutrons.

From the two-neutrino analysis of all solar neutrino data, including the 3He SNO
and the Borexino data, and the data of the KamLAND experiment, the following
values were obtained for the neutrino oscillation parameters
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Δm2
12 = (7.94+0.42

−0.26) · 10−5 eV2, θ12 = (33.8+1.4
−1.3) degrees. (10.42)

10.2.6 Borexino Solar Neutrino Experiment

After many years of preparation in 2007 the new solar neutrino experiment Borexino
started. In this experiment, monochromatic 7Be neutrinos with energy 0.862 MeV
are observed in real time.

The Borexino detector is a scintillator with a mass of 278 tons (fiducial mass 78.5
tons) contained in a thin nylon vessel. The solar neutrinos are observed through the
detection of recoil electrons from the elastic neutrino-electron scattering

νx + e → νx + e. (10.43)

The scintillation light is detected by 2,212 photomultipliers uniformly distributed on
the inner surface of the detector. The measurement of the scintillation light allows
to determine the energy of the electrons. There is no information about the direction
of the electrons. Because the energy threshold in the Borexino experiment must be
low, the major requirement is an extremely low radioactive contamination of the
scintillator.

The recoil electrons produced by monochromatic neutrinos have a characteristic
spectrum with a Compton-like edge at 665 keV. This important feature allow the
Borexino Collaboration to separate the signal from background from the decay of
85Cr , 210Bi , 11C, etc. From results of the running of the experiment during 192
days for the interaction rate of the 7Be neutrinos is found the value

RBorexino = (49 ± 3 ± 4) counts/(day 100 ton). (10.44)

Assuming that the flux of the 7Be neutrinos is given by the SSM (Φ(7Be) = (5.08±
0.25) · 109 cm−2 s−1) and that there are no neutrino transitions we find for the rate

RSSM = (74 ± 4) counts/(day 100 ton). (10.45)

Assuming the SSM 7Be flux and using the values of the neutrino oscillation param-
eters Δm2

12 and tan2 θ12 obtained from the global fit of the data of all solar neutrino
experiments (except Borexino), the interaction rate was found to be in good agree-
ment with (10.44):

Rglob.fit = (48 ± 4) counts/(day 100 ton). (10.46)

Finally, for the νe survival probability at the 7Be energy of 0.862 MeV the value
P(νe → νe) = 0.56 ± 0.10 was found which is in good agreement with the νe

survival probability P(νe → νe) = 0.541 ± 0.17 obtained from the global fit of the
solar and KamLAND data.
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10.3 Super-Kamiokande Atmospheric Neutrino Experiment

The water-Cerenkov Super-Kamiokande detector is a multi-purpose detector. In the
previous subsection we discussed the Super-Kamiokande solar neutrino experiment.
In this subsection we will consider the Super-Kamiokande experiment on the detec-
tion of atmospheric neutrinos.

In the Super-Kamiokande atmospheric neutrino experiment the first model inde-
pendent evidence in favor of neutrino oscillations was obtained (1998). This finding
opened a new era in the study of neutrino oscillations.

There were three stages in the Super-Kamiokande atmospheric neutrino experi-
ment (as in the solar neutrino experiment). The SK-I run started in April 1996 and
finished in November 2001 after the accident with photo-tubes happened. The SK-II
run with only half of the photo-tubes operating continued for 800 days. In June 2006
after the total number of photo-tubes was restored, the SK-III run started.

The Super-Kamiokande detector consists of two optically separated water-
Cherenkov cylindrical detectors with a total mass of 50 kilotons of water. The inner
detector with 11,146 photo-tubes has a radius of 16.9 m and a height of 36.2 m. The
outer detector is a veto detector. It allows to reject cosmic ray muons. The fiducial
mass of the detector is 22.5 kilotons.

In the Super-Kamiokande atmospheric neutrino experiment neutrinos are
detected in a wide range of energies from about 100 MeV to about 10 TeV. At
smaller energies from 100 MeV to 10 GeV, neutrinos are detected through the obser-
vation of electrons and muons produced in the following process of the interaction
of neutrinos and antineutrinos with the nuclei in the detector:

νl(ν̄l)+ N → l−(l+)+ X. (l = e, μ) (10.47)

There are two types of events of this category. If all energy is deposited in the
inner detector such an event is called fully content event (FC). If a high energy muon
escapes the inner detector and deposits its energy in the outer veto detector such an
event is called a partially contained event (PC).

In the Super-Kamiokande detector high energy muons are observed which are
produced in the processes of the interaction of muon neutrinos with the nuclei of
the rock surrounding the detector. Down-going muons produced in such processes
cannot be distinguished from cosmic ray muons. Up-going muons are of neutrino
origin. There are two categories of such events. Upward stopping muons are those
muons of neutrino origin which come to rest in the detector. Upward through-going
muons are those muons which pass the whole detector.

FC events are produced by neutrinos with energies of a few GeV. PC events are
produced by neutrinos with energies about an order of magnitude higher. The ener-
gies of neutrinos which produce upward stopping muons is about 10 GeV. Upward
through-going muons are produced by neutrinos with an average energy of about
100 GeV.

In the processes of interaction of cosmic rays with nuclei of the atmosphere,
pions and kaons are produced. Atmospheric neutrinos originate from the decays of
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such pions and kaons and consequent decays of muons. Neutrinos with energies �5
GeV are produced mainly in the decays of pions and muons

π+ → μ+ + νμ, μ+ → e+ + νe + ν̄μ (10.48)

and

π− → μ− + ν̄μ, μ− → e− + ν̄e + νμ. (10.49)

In the region E � 1 GeV both pions and muons decay in the atmosphere. It is
evident that in this region the ratio r of the fluxes of νμ + ν̄μ and νe + ν̄e is equal
to two.10 However, muons which could produce neutrinos with energies larger than
about 1 GeV can reach the earth surface before decay. Thus, at E � 1 GeV neutrino
fluxes from muon decay decrease and the ratio r increases. At neutrino energies ≤5
GeV, the ratio r is known with an accuracy of 3%. At higher energies the contribu-
tion of kaons becomes more important. In this region, the uncertainty of the ratio r
becomes larger (because of the rather poor knowledge of the K/π production ratio)
and at E � 102 GeV it is about 10%.

A first model-independent evidence in favor of neutrino oscillations was obtained
by the Super-Kamiokande Collaboration through the investigation of the zenith-
angle dependence of the atmospheric electron and muon events. The zenith angle θ
is determined in such a way that neutrinos going vertically downward have θ = 0
and neutrinos coming vertically upward through the earth have θ = π . Because of
the geomagnetic cutoff at small energies (0.3–0.5 GeV) the flux of downward going
neutrinos is lower than the flux of upward going neutrinos. At neutrino energies
E ≥ 0.9 GeV the fluxes of muon and electron neutrinos are symmetric under the
change θ → π − θ . Thus, if there are no neutrino oscillations at high energies the
numbers of electron and muon events must satisfy the relation

Nl(cos θ) = Nl(− cos θ) l = e, μ. (10.50)

We will see later that a significant violation of this relation was discovered in the
Super-Kamikande experiment.

The characteristic feature of atmospheric neutrinos is an enhancement of the hor-
izontal neutrino flux with respect to the vertical flux. This enhancement cannot be
observed at neutrino energies below 1 GeV because at such energies the angular cor-
relation between the neutrino and lepton directions is rather poor. At higher energies
a cos θ -dependence of the numbers of the events can be measured.

For the study of flavor neutrino oscillations it is crucial to distinguish electrons
and muons produced in the processes (10.47). In the Super-Kamiokande experiment
leptons are observed through the detection of the Cherenkov radiation. The shapes
of the Cherenkov rings of electrons and muons are completely different. In the case

10 The Super-Kamiokande detector does not allow to determine the charges of the leptons.
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of electrons the Cherenkov rings exhibit a more diffuse light than in the muon case.
The probability of a misidentification of electrons and muons is below 2%. Fully
contained events are divided into two samples: sub-GeV events are events with vis-
ible energy less than 1.3 GeV and multi-GeV events are events with visible energy
more than 1.3 GeV.

An indication in favor of neutrino oscillations came from the measurement of the
ratio r of the (νμ + ν̄μ) and (νe + ν̄e) fluxes. This ratio can be predicted with an
accuracy of about 3%. In the SK-I run, for the double ratio R = rmeas

rMC
(rmeas is the

measured and rMC is the predicted μ
e ratios) following value was obtained in the

sub-GeV region

Rsub-Gev = 0.658 ± 0.016 ± 0.035. (10.51)

In the multi-GeV region was found

Rmulti-Gev = 0.702 ± 0.032 ± 0.101. (10.52)

It is obvious that if there are no neutrino oscillations the double ratio R must be
equal to one.11

We will discuss now the most important Super-Kamiokande result: the zenith-
angle distribution of the electron and muon events. The results of the measurements
of these distributions are presented in Fig. 10.2. As is seen from Fig. 10.2, the
distributions of sub-GeV and multi-GeV electron events are in agreement with the
expected distributions. In the distributions of the muon events at energies larger than
400 MeV a significant deficit of upward-going muons is observed.

This result can naturally be explained by the disappearance of muon neutrinos
due to neutrino oscillations. As we have seen before, in the case of neutrino oscil-
lations the probability of νμ to survive depends on the distance between neutrino
source and neutrino detector. Downward going neutrinos (θ � 0) pass a distance of
about 15–20 km. On the other side upward going neutrinos (θ � π ) pass a distance
of about 13,000 km (earth diameter). The measurement of the dependence of the
numbers of the electron and muon events on the zenith angle θ allows to span the
whole region of distances from about 15 km to about 13,000 km.

From the data of the Super-Kamiokande experiment for multi-GeV electron
events was found

(
U

D

)

e
= 0.961+0.086

−0.079 ± 0.016. (10.53)

For multi-GeV and PC muon events was obtained the value

11 In the Kamiokande atmospheric neutrino experiment was found that the double ratio R is about
06. This was a first indication in favor of neutrino oscillations of atmospheric neutrinos.
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Fig. 10.2 Zenith angle dependence of the numbers of electron and muon events measured in the
Super-Kamiokande atmospheric neutrino experiment. Box histograms show expected numbers of
events in the case of no oscillations. The best-fit two-neutrino oscillation curve is also plotted
(arXiv:hep-ex/0501064)

(
U

D

)

μ

= 0.551+0.035
−0.033 ± 0.004. (10.54)

Here U is the total number of upward going leptons (−1 < cos θ < −0.2 ) and D
is the total number of downward going leptons (0.2 < cos θ < 1).

In the SK-I run (1996–2001) about 15,000 atmospheric neutrino events in the
energy range 100 MeV–10 TeV and the distance range (15–13,000) km were col-
lected. These wide ranges of energies and distances allow the Super-Kamikande
Collaboration to study neutrino oscillations in details. From the two-neutrino analy-
sis of all data, obtained in the SK-I run, the following ranges for neutrino oscillation
parameters were obtained (90% CL)

1.5 · 10−3 < Δm2
23 < 3.4 · 10−3 eV2, sin2 2θ23 > 0.92. (10.55)

The best-fit values of the parameters are
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Δm2
23 = 2.1 · 10−3 eV2, sin2 2θ23 = 1 (χ2

min/dof = 174.8/177). (10.56)

The Super-Kamiokande data can be explained by νμ � ντ oscillations. Let us notice
that because the threshold of τ production in ντ − N processes is about 3.5 GeV and
the majority of the atmospheric neutrinos have energies which are below this thresh-
old, νμ � ντ oscillations manifest themselves in the Super-Kamiokande experiment
mainly in the disappearance of muon neutrinos.12

The two-neutrino νμ survival probability depends on L
E and is given by the well

known expression

P(νμ → νμ) = 1 − sin2 2θ23 sin2Δm2
23

L

4E
. (10.57)

This probability reaches the first minimum at

(
L

E

)

min
= 2π

Δm2
23

. (10.58)

In the standard Super-Kamiokande analysis of the data the dependence of the prob-
ability on L

E is practically washed out because of the poor resolution. In order to
reveal the oscillatory behavior of the probability the Super-Kamiokande Collabora-
tion made a special analysis. A subset of events with high resolution in the variables
L and E was chosen for the analysis. This allowed to determine the νμ survival
probability as a function of L

E and to reveal the first minimum of the survival proba-
bility (see Fig. 10.3). From analysis of this selected data the following ranges were
obtained for the neutrino oscillation parameters (90% CL)

1.9 · 10−3 < Δm2
23 < 3.0 · 10−3 eV2, sin2 2θ23 > 0.90. (10.59)

It is seen from Fig. 10.3 that the minimum of the survival probability corresponds to( L
E

)
min � 500 km

GeV . It is easy to estimate from this number the value of the neutrino
mass-squared difference Δm2

23. In fact, taking into account that sin2 2θ23 � 1 we
obtain the value

Δm2
23 = 2π h̄ c

( L
E

)
min

� 2.5 · 10−3 eV2, (10.60)

which is in agreement with (10.59).

12 The long baseline experiment OPERA is aimed at the study of νμ → ντ transitions. In this
experiment the production of τ in ντ -nuclei processes will be observed in an emulsion. The dis-
tance between the source of νμ (CERN, Switzerland) and the detector (Gran Sasso Laboratory,
Italy) is about 730 km.
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Fig. 10.3 Values of the probability P(νμ → νμ) as a function of the parameter L
E , determined from

the data of the Super-Kamiokande atmospheric neutrino experiment. The best-fit two-neutrino
oscillation curve is also plotted (arXiv:hep-ex/0404034)

10.4 KamLAND Reactor Neutrino Experiment

Compelling evidence in favor of oscillations of reactor ν̄e was obtained in the Kam-
LAND experiment. The experiment was done in the Kamioka mine (Japan) at a
depth of about 1 km. In the KamLAND detector, 1 kiloton of high-purity liquid
scintillator is used. The scintillator is contained in a 13 m-diameter transparent nylon
balloon, suspended in 1,800 m3 non-scintillating buffer oil. Balloon and buffer oil
are contained in an 18 m-diameter stainless-steel vessel. On the inner surface of the
vessel 1,879 photomultipliers are mounted. Outside the steel container is a tank with
3.2 kiloton of water and 225 phototubes. This water-Cherenkov detector allows to
eliminate muons of cosmic-ray origin.

In the KamLAND experiment, electron antineutrinos from 55 Japanese reactors
situated at an average distance of 180 km (175 ± 35 km) from the Kamioka mine
are detected.

Reactor ν̄e’s are produced in decays of nuclei, which are products of fission of
235U (57%), 238U (7.8%), 239Pu (29.5%) and 241Pu (5.7%). Each fission, in which
about 200 MeV is produced, is accompanied by the emission of 6 ν̄e. A reactor with
power about 3 GWth emits � 6 · 1020 ν̄e/s.

The ν̄e spectrum of a reactor is well known. It was determined from the measure-
ments of β-spectra, resulting from fission of uranium and plutonium.

Antineutrinos are detected in the KamLAND experiment through the observation
of the inverse β-decay

ν̄e + p → e+ + n. (10.61)

Two γ -quanta from the annihilation of e+ (prompt signal) and a γ -quantum from
the process n + p → d + γ (delayed signal) are detected in the experiment. The
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signature of the event in the KamLAND experiment (and in other reactor neutrino
experiments) is a coincidence between the prompt signal and the delayed signal.

The energy of the delayed γ -quantum is � 2.2 MeV and the neutron capture
time is (207.5 ± 2.8) µs. The threshold neutrino energy is equal to 1.8 MeV. The
prompt energy E p is connected with the neutrino energy E by the relation

E � E p + Ēn + 0.8 MeV. (10.62)

where Ēn is average neutron recoil energy (�10 keV. The prompt energy includes
the kinetic energy of the positron and the annihilation energy (2 me).

In the KamLAND experiment not only ν̄e from reactors but also electron antineu-
trinos which are produced in decay chains of 238U and 232Th in the interior of the
earth (geo-neutrinos) are detected. The prompt energy released in the interaction of
geo-neutrinos with protons is less than 2.6 MeV. The expected flux of geo-neutrinos
is calculated in a reference geological model.

The average energy of the reactor antineutrinos is 3.6 MeV. It is easy to see that
for such energies, distances of about �100 km are appropriate to study neutrino
oscillations driven by the solar neutrino mass-squared difference Δm2

12. In fact, for
the oscillation length we have

L12 � 2.5
E

Δm2
12

m, (10.63)

where E is the neutrino energy in MeV and Δm2
12 is the neutrino mass-squared

difference in eV2. For E = 3.6 MeV andΔm2
12 � 8 · 10−5 eV2 we have L12 � 120

km.
In the case of the oscillations driven by small Δm2

12 the averaged three-neutrino
probability of ν̄e to survive in vacuum is given by the expression

P(ν̄e → ν̄e) = |Ue3|4 + (1 − |Ue3|2)2 P12(ν̄e → ν̄e), (10.64)

where

P12(ν̄e → ν̄e) = 1 − sin2 2θ12 sin2Δm2
12

L

4E
(10.65)

is the two-neutrino survival probability. The small quantity |Ue3|2 < 5 ·10−2 can be
neglected. Thus, for the analysis of the KamLAND data the two-neutrino survival
probability (10.65) can be used.

We will discuss here the KamLAND data collected from March 2002 till May
2007. If there are no ν̄e oscillations, 2, 179±89 events from reactor antineutrinos are
expected. In the reactor antineutrino energy region the background is 276.1 ± 23.5.
The observed number of events is equal to 1,609 events.

The prompt energy spectrum is presented in Fig. 10.4.
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Fig. 10.4 Prompt event energy spectrum measured in the KamLAND experiment. The dashed line
shows the predicted spectrum in the case of no oscillations. Best-fit oscillation curve is presented.
In the shaded areas different backgrounds are shown (arXiv:0801.4589)

From the two-neutrino analysis of the KamLAND data, which include geo-
neutrinos and background, the following values were obtained for neutrino oscil-
lation parameters

Δm2
12=(7.58+0.14

−0.13(stat)+0.15
−0.15(syst))·10−5 eV2, tan2 θ12 =0.56+0.10

−0.07(stat)+0.10
−0.06(syst).

(10.66)
From the analysis of reactor neutrino events (with the cut E p > 2.6 Mev applied)
for the neutrino oscillation parameters was found the values

Δm2
12 = (7.66+0.22

−0.20) · 10−5 eV2, tan2 θ12 = 0.52+0.16
−0.10, (10.67)

which are in agreement with (10.66).
From a joint analysis of the data of the KamLAND experiment and the data of

the solar neutrino experiments a much better accuracy for the parameter tan2 θ12 can
be inferred13:

Δm2
12 = (7.59+0.21

−0.21) · 10−5 eV2, tan2 θ12 = 0.47+0.06
−0.05. (10.68)

The KamLAND Collaboration obtained from their data values for the ν̄e survival
probability at different values of the parameter L0

E , where L0 = 180 km is a
flux-weighted average distance between the reactors and the detector. In Fig. 10.5
the probability P(ν̄e → ν̄e) as a function of L0

E is presented (geo-neutrino and

13 This analysis is based on the assumption of the C PT invariance.
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Fig. 10.5 Ratio of ν̄e spectrum measured in the KamLAND experiment to the spectrum, expected
in the case of no oscillations as a function of L0

E (L0 = 180 km is flux-weighted average distance
from reactors to the detector). The expected ratio calculated with the values of the oscillation
parameters obtained by the KamLAND collaboration is also shown (arXiv:0801.4589)

background events were subtracted). The oscillatory behavior of the probability is
evident from Fig. 10.5.

10.5 Long-Baseline Accelerator Neutrino Experiments

10.5.1 K2K Accelerator Neutrino Experiment

Neutrino oscillations driven by the atmospheric neutrino mass-squared difference
Δm2

23 were studied in the long baseline accelerator experiments K 2K and MINOS.
For a neutrino energy of � 1 GeV andΔm2

23 � 2.5 ·10−3 eV2 the oscillation length
L23 is given by

L23 � 2.5
E

Δm2
23

m � 103 km. (10.69)

In the first long baseline K2K experiment the distance between the neutrino source
(KEK accelerator, Japan) and the neutrino detector (Super-Kamiokande) is 250 km.

Protons with an energy of 12 GeV from the KEK-PS accelerator bombard an
aluminum target in which secondary particles were produced. Positively charged
particles (mainly π+) were focused in horns and decay in a 200 m-long decay pipe.
After a beam dump in which all hadrons and muons were absorbed a neutrino beam
was produced (there were 97.3% of νμ , 1.3% of νe and 1.4% of ν̄μ in the beam).
The neutrinos had energies in the range (0.5–1.5) GeV.
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At a distance of about 300 m from the pion production target there were
near detectors: a one kiloton water-Cherenkov detector (similar to the Super-
Kamiokande detector) and a fine-grained detector system. The measurement of
the neutrino energy spectrum in the near detectors allowed to predict the neutrino
spectrum in the Super-Kamiokande detector for the case if there are no neutrino
oscillations.

The disappearance of muon neutrinos was searched for in the K2K experiment.
The two-neutrino survival probability has the familiar form

P(νμ → νμ) = 1 − sin2 2θ23 sin2
(

1.27 Δm2
23

L

E

)
, (10.70)

where E is the neutrino energy in GeV, L is the source-detector distance in km and
Δm2

23 is the neutrino mass-squared difference in eV2.
The disappearance of muon neutrinos manifests itself in the suppression of the

total flux and in the distortion of the neutrino spectrum in the Super-Kamiokande
detector. For the measurement of the total flux all observed events were used. For
the measurement of the distortion of the neutrino spectrum a subset of one-ring
contained muon events which are due to the quasi-elastic process

νμ + n → μ− + p (10.71)

was utilized. The measurement of the energy of μ− and the angle between the neu-
trino and the μ− directions allow to determine the neutrino energy.

From 1999 till 2004 in the K2K experiment 112 neutrino events were detected.
The number of expected events in the case if there are no neutrino oscillations is
equal to 158+9.2

−8.6. The distortion of the neutrino spectrum in the low energy region
was observed in the K2K experiment.

From the two-neutrino analysis of the K2K data for the parameter Δm2
23 at

sin2 2θ23 = 1, the following 90% CL range

1.9 < Δm2
23 < 3.5 · 10−3 eV2. (10.72)

was obtained. The best-fit value of the parameter is Δm2
23 = 2.8 eV2.

The K2K experiment was the first experiment with artificially produced neutrinos
which confirmed the existence of neutrino oscillations discovered in the atmospheric
Super-Kamiokande neutrino experiment.

10.5.2 MINOS Accelerator Neutrino Experiment

In the long baseline MINOS experiment muon neutrinos produced at the Fermilab
Main Injector facility are detected in the Sudan mine at a distance of 735 km. Pro-
tons with an energy of 120 GeV from the Main Injector bombard a graphite target
and produce pion and kaons. Positively charged particles are focused in magnetic



10.5 Long-Baseline Accelerator Neutrino Experiments 189

horns and decay in a 675 m long decay pipe. After the pipe there is an absorber for
hadrons and 300 m of rock in which muons are stopped. Neutrinos pass through
the absorber and the rock to neutrino detectors. A change of the distance between
the graphite target and the horn system allows to change the neutrino spectrum.
The majority of the MINOS data was obtained with the low-energy neutrino beam
configuration (1 � E � 5 GeV). Some data was obtained with the medium-energy
beam configuration (5 � E � 10 GeV). The initial neutrino beam consists of νμ
(92%), ν̄μ (5.8%), νe (1.2%) and ν̄e (0.1%).

There are two identical neutrino detectors in the MINOS experiment. The near
detector (ND) with a mass of 1 kiloton is at a distance about 1 km from the target
and about 100 m underground. The far detector (FD) with a mass of 5.4 kilotons is
at a distance of 735 m from the target and about 700 m underground. The detectors
are steel (2.54 cm thick)-scintillator (1 cm thick) calorimeters magnetized to 1.3 T.
The measurement of the curvature of the muon tracks allows to distinguish νμ from
6% admixture of ν̄μ and to measure energy of muons which leave the detector. The
energies of the muons which are stopped in the detector are determined by their
ranges.

Muon neutrinos are detected in the MINOS experiment via the observation of the
process

νμ + Fe → μ− + X (10.73)

The neutrino energy is given by the sum of the muon energy and the energy of
hadronic shower.

The νμ-survival probability as a function of the neutrino energy is measured in
the MINOS experiment. The two-neutrino νμ-survival probability is given by Eq.
(10.70).

In the near detector the initial neutrino spectrum (before neutrino oscillations
could take place) is measured. This measurement allows to predict the expected
spectrum of the muon neutrinos in the far detector in the case if there were no
neutrino oscillations.

We will discuss here the results of the analysis of the data collected from May
2005 till July 2007. During this time, in the far detector 848 muon events were
observed. The number of the events expected in the case if there were no neutrino
oscillations is 1, 065 ± 60 (syst). The spectrum of the muon neutrinos measured in
the FD is presented in Fig. 10.6. A strong distortion of the spectrum is observed
in the low-energy region. From the two-neutrino analysis of the MINOS data the
following values were found for the neutrino oscillation parameters

Δm2
23 = (2.43 ± 0.13) · 10−3 eV2, sin2 2θ12 > 0.90 (90% CL). (10.74)

Thus, in the long-baseline MINOS experiment convincing evidence in favor of neu-
trino oscillations in the atmospheric neutrino mass-squared difference range was
obtained. The value of the parameterΔm2

23 was measured in the MINOS experiment
with an accuracy which at the moment is better than in all other measurements.
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Fig. 10.6 Muon neutrino energy spectrum measured in the MINOS experiment. The dashed curve
shows the expected spectrum in the case of no oscillations. The neutrino oscillation best-fit spec-
trum is also shown (arXiv:0806.2237)

10.6 MiniBooNE Accelerator Neutrino Experiment

In the MiniBooNE experiment at Fermilab LSND indications in favor of neutrino
oscillations with Δm2 � 1 eV2 were checked.

The LSND experiment was performed at the Los Alamos Meson Physics Facility
(LAMPF). This was a short-baseline neutrino oscillation experiment with a distance
between neutrino source and detector about 30 m. The LAMPF proton beam with
a kinetic energy of 800 MeV produced pions by hitting a 30 cm long water target.
Most of the π+’s were stopped in the target and decay dominantly via π+ →μ++νμ.
Muons came to rest in the target as well and decay via μ+ → e+ + ν̄μ++νe. In the
detector (cylindrical tank 8.3 m long by 5.7 m in diameter, filled with a scintillator)
ν̄e’s were searched for through the observation of the reaction

ν̄e + p → e+ + n (10.75)

The ν̄e signature was a coincidence between e+ and a delayed 2.2 MeV γ from the
capture n+ p → d +γ . In the LSND experiment an excess of 87±22.4±6.0 events
with e+ energy in the range 20–60 MeV above the expected neutrino-induced back-
ground was observed. This excess could be explained by ν̄μ → ν̄e transitions and
corresponds to the transition probability P(ν̄μ → ν̄e) = (0.264±0.067±0.045)%.
From the analysis of the LSND data for the parameter Δm2 the following range

0.2 < Δm2 < 10 · eV2 (10.76)

was found.
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As we have discussed before, from the analysis of the data of the solar, Kam-
LAND, atmospheric and LBL accelerator experiments follows that two neutrino
mass-squared differences (Δm2

12 � 8 · 10−5eV2 and Δm2
23 � 2.4 · 10−3eV2)

are responsible for neutrino oscillations. In order to have two independent neutrino
mass-squared differences we must have three neutrinos with definite masses. These
three massive neutrinos correspond to the three flavor neutrinos νe, νμ, ντ . If the
LSND result is correct we have to assume that exist at least four massive neutrinos
and in addition to the three flavor neutrinos at least one sterile neutrino. The exis-
tence of sterile neutrinos would be an important ingredient for our understanding of
the origin of neutrino masses and mixing. The check of the LSND claim was a very
important problem.

In the MiniBooNE experiment the neutrino beam, produced at the Fermilab
Booster facility, was used. 8 GeV protons bombarded a 71 cm-long beryllium target.
Positively charged pions and kaons, produced in the target, were focused by a horn
and decayed in a 50 m-long pipe. The neutrino energy spectrum had a maximum at
the energy about 700 MeV. The distance between the target and a neutrino detector
in the MiniBooNE experiment was about 540 m. This distance is comparable with
the oscillation length which corresponds to Δm2 � 1 eV2.

The MiniBooNE detector is a spherical tank with an inner radius of 610 cm
filled with 800 tons of pure mineral oil. Charged particles were detected through the
observation of directional Cherenkov radiation and isotropic scintillation light. 380
candidates for CC quasielastic events

νe + n → e− + p, (10.77)

were observed.
No significant excess over the expected background was observed in the neutrino

energy range 475 < E < 1, 250 MeV (22 ± 19 ± 35 excess events). However, in
the small-energy region E < 475 MeV an excess of 96 ± 17 ± 20 events was
found. These events cannot be explained by neutrino oscillations. The exclusion
region in the plane of the parameters Δm2 and sin2 2θ which was obtained from
the two-neutrino analysis of the MiniBooNE data fully covers the LSND-allowed
region. The authors came to the conclusion that their data excludes, at 98% CL, an
existence of neutrino oscillations in the LSND region of parameters.

10.7 CHOOZ Reactor Neutrino Experiment

In the CHOOZ experiment the disappearance of reactor ν̄e’s due to neutrino oscil-
lations, driven by the atmospheric neutrino mass-squared difference Δm2

23, was
searched for. Though in this experiment (and also in the similar experiment Palo
Verde) no indications in favor of neutrino oscillations were found, its results are
extremely important for the neutrino mixing.

The two-neutrino ν̄e-survival probability is given by the expression
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P(ν̄e → ν̄e) = 1 − sin2 2θ13 sin2
(

1.27 Δm2
23

L

E

)
. (10.78)

Here Δm2
23 is the neutrino mass-squared difference in eV2, L is the source-detector

distance in m and E is the antineutrino energy in MeV. The average energy of the
reactor electron antineutrinos is equal to 3.6 MeV. The corresponding oscillation
length is equal to 3.6 km.

In the CHOOZ experiment the detector was at a distance of about 1 km from
each of the two reactors of the CHOOZ power station (8.5 GWth). The detector had
300 m water equivalent of rock overburden which reduced the cosmic muon flux.

The CHOOZ detector comprised 5 tons of Gd-loaded liquid scintillator con-
tained in an acrylic vessel (neutrino target), the intermediate region with 17 tons
of unloaded liquid scintillator which was viewed by 192 photomultipliers and the
optically separated veto region with 90 tons of unloaded liquid scintillator and 48
photomultipliers. The antineutrinos were detected through the observation of the
classical reaction

ν̄e + p → e+ + n. (10.79)

A prompt signal from the annihilation of the positron and a delayed signal from the
capture of the neutron by Gd (in this process γ ’s with a total energy of �8 MeV are
produced) were recorded in coincidence.

From April 1997 till July 1998, in the CHOOZ experiment 3,600 antineutrino
events were recorded. The observed dependence of the number of events on the
prompt energy is in good agreement with prediction. For the ratio R of the total
number of detected ν̄e events to the expected events was found

R = 1.01 ± 2.8% (stat)± ±2.7% (syst). (10.80)

The data of the experiments were analyzed in the framework of two-neutrino oscil-
lations with the ν̄e-survival probability given in Sect. 6.4. From the exclusion plot
in the plane of the oscillation parameters Δm2

23 and sin2 2 θ13 the following upper
bound

sin2 2 θ13 � 2 · 10−1. (10.81)

can be inferred.
As we have seen before, in neutrino oscillation experiments two mixing angles

θ23 and θ12 were measured. It occurred that these angles are large: θ23 � 45◦,
θ12 � 30◦. The angle θ13 is unknown. We have only the CHOOZ upper bound
(10.81) from which follows that the angle θ13 is small.

The parameter sin θ13 characterizes the element Ue3 of the PMNS mixing matrix.
It enters into the mixing matrix together with the C P phase δ (Ue3 = sin θ13 e−iδ).
The value of the parameter sin2 θ13 determine the possibilities to study C P-violation
in the lepton sector and to reveal the type of the neutrino mass spectrum (normal or
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inverted). The measurement of the parameter sin θ13 is one of the major problems
of future neutrino oscillation experiments.

10.8 Future Neutrino Oscillation Experiments

With the neutrino oscillation experiments we have discussed before, the first dis-
covery stage of neutrino masses and mixing was finished. Now the second stage
of the investigation of this new beyond the Standard Model phenomenon started. It
includes the preparation of neutrino oscillation experiments of the next generation,
the study of the possibilities of the construction of such new neutrino facilities as
the Super-beam, β-beam, Neutrino factory, etc.

The main goal of future neutrino oscillation experiments is:

1. to determine the value of the parameter sin2 2θ13 (or significantly improve the
CHOOZ upper bound);

2. if the parameter sin2 θ13 is not too small,

• to investigate effects of C P violation in the lepton sector and to determine the
phase δ,

• to establish the character of the neutrino mass spectrum;

3. to measure the neutrino oscillation parameters Δm2
23, Δm2

12, sin2 2θ23 and
tan2 θ12 with accuracies which are much better than those achieved at present;

4. to search for sterile neutrinos, etc.

We will briefly discuss future reactor and accelerator experiments in which the
fundamental parameter sin2 2θ13 will be measured.

Three new reactor experiments (Double CHOOZ (France), Daya Bay and RENO
(South Korea) will start to run in 2010–2011.

In the CHOOZ experiment there was only one detector. In all future reactor neu-
trino experiments there will be a far and an identical near detector. This will allow to
make relative measurements and to minimize systematic errors related to reactors. In
all future reactor experiments detectors, larger than in the CHOOZ experiment, will
be used. In the Double CHOOZ experiment two 10 ton liquid scintillator neutrino
detectors will be used. In the Daya Bay experiment there will be eight detectors.
Each detector will comprise a 20 ton target of Gd-loaded liquid scintillator. Two
16.5 ton Gd-loaded liquid scintillators will be used in the RENO experiment. In the
Double CHOOZ, Daya Bay and RENO experiments electron antineutrinos will be
detected, correspondingly, from two reactors with a thermal power of 8.7 GWth,
four reactors with thermal power 11.6 GWth (after 2010 six reactors with a thermal
power of 17.4 GWth), six reactors with a thermal power of 17.4 GWth.

In Table 10.2 we present some features of these three experiments. In the second
column distances in meters from reactors to the near and far detectors are shown..
In the third column overburdens of detectors in meters of the water equivalent are
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Table 10.2 Future reactor experiments aiming at the measurement of the parameter sin2 2θ13

Experiment Distances near/far (m ) Depth near/far (mwe) Sensitivity to sin2 2θ13

Double CHOOZ 280/1,050 60/300 3 · 10−2

Daya Bay 360(500)/1,985(1,613) 260/910 1 · 10−2

RENO 290/1,380 120/450 2 · 10−2

indicated. In the last column the projected sensitivities to the parameter sin2 2θ13 to
be achieved after three years of running time are presented.

In the long-baseline accelerator T2K experiment neutrinos produced at the new
JPARC facility in Japan will be detected at a distance of 295 km by the water-
Cherenkov Super-Kamiokande detector. Protons with an energy of 30 GeV from
the synchrotron at JPARC will bombard a 90 cm-long graphite target producing
pions and kaons. After the decay pipe (110 m-long) and the shielding, the beam of
νμ’s with about 0.4% admixture of νe’s will be produced.

T2K will be an off-axis neutrino experiment: the angle between the direction to
the detector and the direction of the parent π+’s will be 2.5◦. This allows to obtain a
narrow-band neutrino beam with a maximal intensity at E � 0.7 GeV. This energy
is close to the energy E0( E0 = 2.54

π
Δm2

23L) which at the distance of L = 295 km
corresponds to the maximum of oscillations, driven by Δm2

23 � 2.5 · 10−3eV2.
At a distance of about 280 m from the target it will be several detectors in a

0.2 T uniform magnetic field. Near detectors will be used for the measurement of
the neutrino spectrum and flux and also for the measurement of cross sections of
different CC and NC processes.

The major aim of the T2K experiment is a high-precision measurement of
neutrino oscillation parametersΔm2

23 and sin2 2θ23 by the investigation of νμ → νμ
transitions (through the detection of νμ’s in Super-Kamiokande) and the determina-
tion of the parameter sin2 2θ13 by the search for νμ → νe appearance (through the
detection of νe’s in Super-Kamiokande). It is anticipated that after 5 years of running
time the parameters Δm2

23 and sin2 2θ23 will be measured with the accuracies

δ(Δm2
23) < 1 · 10−4 eV2, δ(sin2 2θ23) � 10−2. (10.82)

The T2K sensitivity to the parameter sin2 2θ13 is equal to14

sin2 2θ13 � 0.008. (10.83)

Thus, by about a factor of 20 an improvement with respect to the CHOOZ sensitivity
is planned to be reached.

The neutrino oscillation experiments, we discussed, will be performed in the next
years. There are many new, ambitious projects of neutrino oscillation experiments
which are in a research and development stage. Information about these projects can
be found in the arXiv, the proceedings of neutrino conferences, etc.

14 Assuming that the CP phase δ is equal to 0 or π .



Chapter 11
Neutrino and Cosmology

11.1 Introduction

Photons and neutrinos are the most abundant particles in the Universe. Neutrinos
played a very important role in the evolution of the Universe. Modern high preci-
sion cosmological data allow to obtain strong bounds on neutrino properties. In this
section we will discuss neutrino decoupling in the Early Universe, the Big Bang
nucleosynthesis and the number of the light neutrinos, the limit on the sum of the
neutrino masses which can be inferred from the large-scale structure of the Universe
and Cosmic Microwave Background radiation data. We will also consider supernova
neutrinos.

We will start with a brief discussion of the standard cosmology. The standard
cosmology is based on the Cosmological Principle and Einstein equations of the
General Theory of Relativity. According to the Cosmological Principle the Universe
observed from any spacial position is isotropic and homogeneous at large scales.
One of the major evidence in favor of the isotropy of the Universe was obtained from
the measurement of the temperatures of the cosmic microwave background radiation
(CMB): the relative difference of the temperatures measured by antennas directed
in different directions is not more than ∼ 10−5. It is a general consequence of the
cosmological principle that the space-time metric of the Universe is the Robertson-
Walker metric.

11.2 Standard Cosmology

Let xα = (x0, x) be the time-space coordinate of a point in some coordinate system.
The square of the element of length (interval) has the following general form

ds2 = gαβ dxαdxβ. (11.1)

In Euclidian space we have

ds2 = ηαβ dxαdxβ, (11.2)

Bilenky, S.: Neutrino and Cosmology. Lect. Notes Phys. 817, 195–229 (2010)
DOI 10.1007/978-3-642-14043-3_11 c© Springer-Verlag Berlin Heidelberg 2010
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where ηαβ = (1,−1,−1,−1). As well known, the interval ds2 in the Euclidian
space is invariant under the Lorentz transformation.

In the general case of a non-Euclidean space the metric tensor gαβ depends on x .
It determines the geometry of the space. The metric of the isotropic and homo-
geneous space is the Robertson-Walker metric which we will discuss now. Let us
consider the space part of the metric tensor. In the Euclidean space we have

dl2 =
3∑

i=1

dxi2. (11.3)

The Cartesian coordinates x1, x2, x3 are connected with the spherical coordinates
ρ, θ and φ by the relations

x1 = ρ sin θ cosφ, x2 = ρ sin θ sinφ, x3 = ρ cos θ. (11.4)

In spherical coordinates we obviously have

dl2 = dρ2 + ρ2(dθ2 + sin2 θdφ2). (11.5)

In the general case of the isotropic Universe we have

dl2 = dρ2 + f 2(ρ) (dθ2 + sin2 θdφ2). (11.6)

The condition of isotropy allows to determine possible functions f (ρ). Let us con-
sider Fig. 11.1. Assuming that angles α and β are infinitesimally small, we have

CB = f (2ρ)α = f (ρ)β, DE = f (ρ − x)α + f (x)β = f (ρ + x)α. (11.7)

From these relations we find

f (ρ − x)+ f (x)
f (2ρ)

f (ρ)
= f (ρ + x) (11.8)

Now if we take the derivative over x and put x = 0 we find the following relation
from (11.8)

Fig. 11.1 Robertson-Walker
geometry of a homogeneous
and isotropic space 0 H B

G

D

C

x
α

β

α
ρ E
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d f (ρ)

dρ
= f (2ρ)

2 f (ρ)
. (11.9)

In deriving (11.9) we took into account that f (ρ) � ρ at ρ → 0.
It is obvious that

f1(ρ) = sin ρ, f0(ρ) = ρ, f−1(ρ) = sinh ρ (11.10)

are solutions of Eq. (11.9). It is possible to show that there are no other solutions of
this equation.

It follows from the cosmological principle that the most natural reference sys-
tem in cosmology is the comoving system. The comoving system is the system in
which the matter is at rest. Because comoving observers see the same sequence of
events they have the same time which is called cosmic time. In the comoving system
the cosmic time is the proper time. In the comoving system the Robertson-Walker
metric has the form1

ds2 = dt2 − a2(t)(dρ2 + f 2
k (ρ) (dθ

2 + sin2 θ dφ2)), (11.11)

where the functions fk(ρ) are given by (11.10). The function a(t) cannot be deter-
mined from the requirements of isotropy. It has the dimension of time and is called
the scale factor.

The Robertson-Walker metric can be presented in another form. Let us introduce
the variable r = f (ρ). We have

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2 (dθ2 + sin2 θdφ2)

)
, k = 1, 0,−1. (11.12)

At k=1 the space is a sphere with radius a. In fact, let us consider a sphere of radius
a in a four-dimensional Euclidean space. We have

4∑

i=1

(xi )2 = a2. (11.13)

The metric on the sphere is given by

dl2 =
4∑

i=1

(dxi )2. (11.14)

On the surface of the sphere one of the coordinates (say x4) is determined by the
other three. From (11.13) follows that

1 From isotropy it is obvious that g0i = 0, i = 1, 2, 3.
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dx4 = −
∑3

i=1 xi dxi

√
a2 −∑3

i=1(x
i )2
. (11.15)

Let us introduce the spherical coordinates

x1 = r ′ sin θ cosφ, x2 = r ′ sin θ sinφ, x3 = r ′ cos θ. (11.16)

For the metric we have

dl2 = dr
′2+r

′2(dθ2+sin2 θdφ2)+ r
′2dr

′2

a2 − r ′2 = a2

a2 − r ′2 dr
′2+r

′2(dθ2+sin2 θdφ2).

(11.17)
Finally, introducing the dimensionless variable r = r ′

a , for the metric of the three-
dimensional sphere we find the following expression

dl2 = a2(t)

(
dr2

1 − r2
+ r2 (dθ2 + sin2 θdφ2)

)
. (11.18)

The case k = 0 in (11.12) corresponds to the flat space. The case k = −1 can be
obtained from the expression (11.17) if we make the change a → ia. It corresponds
to the space with negative curvature (hyperboloid in the four-dimensional space).
Let us consider the transformation of the coordinates

xα = xα(x ′). (11.19)

We have

dxα = ∂xα

∂x ′ρ dx
′ρ. (11.20)

The contravariant vector Aα is transformed as dxα:

Aα = ∂xα

∂x ′ρ A
′ρ. (11.21)

For the interval we have

ds2 = gαβ dxαdxβ = dxβdxβ, (11.22)

where dxβ = gβα dxα . From (11.20) we find

ds2 = dxβ
∂xβ

∂x ′ρ dx
′ρ. (11.23)

Now taking into account that ds2 is invariant, we have

ds2 = dx ′
ρdx

′ρ, (11.24)
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where

dx ′
ρ = ∂xβ

∂x ′ρ dxβ. (11.25)

If we multiply this relation by ∂x
′ρ

∂xα , sum over ρ and take into account the relation

∂xβ

∂x ′ρ
∂x

′ρ

∂xα
= ∂xβ

∂xα
= δβα (11.26)

we find

dxα = ∂x
′ρ

∂xα
dx ′

ρ. (11.27)

The covariant vector Bα is transformed as dxα:

Bα = ∂x
′ρ

∂xα
B ′
ρ. (11.28)

It is easy to show that BαAα is invariant. In fact, we have

BαAα = B ′
ρ

∂x
′ρ

∂xα
∂xα

∂x ′σ A
′σ = B ′

ρ

∂x
′ρ

∂x ′σ A
′σ = B ′

ρ A
′ρ. (11.29)

We have

Bα = gαβ Bβ. (11.30)

Let us introduce the tensor gαβ by the relation

Bα = gαβ Bβ. (11.31)

If we multiply this relation by gαρ we find

Bαgαρ = Bρ = gαβgαρ Bβ. (11.32)

Thus, the tensor gαρ must satisfy the relation

gαβgαρ = δβρ . (11.33)

Let us also remark that tensors are transformed as products of vectors. For example,
for the tensor Aαβ we have
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Aαβ = ∂xα

∂x ′ρ
∂x

′σ

∂xβ
A

′ρ
σ . (11.34)

We have seen that the metric of an isotropic and homogeneous Universe is charac-
terized by the scale function a(t). The function a(t) determines the important cos-
mological Hubble parameter H(t). In fact, at relatively small distances two Galaxies
are separated by the radial distance Δl(t) = a(t) Δr . Thus, for the relative velocity
we obtain the following expression

Δv = dΔl

dt
= da

dt
Δr = H(t) Δl, (11.35)

where

H(t) = ȧ(t)

a(t)
(11.36)

is the Hubble parameter. The relation (11.35) is the famous Hubble law which con-
nects the relative velocity of any two Galaxies with the distance between them. This
law is in perfect agreement with experiment. From experimental data follows that
the Universe is expanding.

Let us determine the parameter

z = λo − λe

λe
, (11.37)

where λo is the wavelength of the light observed at the time to and λe is the wave-
length of the light emitted at the time te (te < to). The cosmological change in time
of all lengths is determined by the scale factor a(t). We have

λo

λe
= a(to)

a(te)
= z + 1. (11.38)

All light spectra observed from different Galaxies are red-shifted: λo > λe. Thus,
we have a(to) > a(te). The observation of red shifts of the light emitted by Galaxies
is the direct evidence in favor of the expansion of the Universe. The evolution
of the scale factor is determined by the Einstein equation of the General Theory
of Relativity. The Einstein equation is based on the assumption that the curvature of
the space is determined by the energy-momentum tensor. It has the following tensor
form

Gμν −Λgμν = 8πGTμν. (11.39)

Here

Gμν = Rμν − 1

2
R (11.40)



11.2 Standard Cosmology 201

is the conserved Einstein tensor, Tμν is the conserved energy-momentum tensor, G
is the gravitational constant and Λ is the cosmological constant. In the units h̄ =
c = 1 the constant G has the dimension M−2 and the constant Λ has the dimension
M2. We have 1√

G
= MP , where MP � 1.2·1019 GeV is the Planck mass. In (11.40)

Rμν is the Ricci curvature tensor which is determined by the metric tensor and its
first and second derivatives and R = Rμνgμν is the scalar curvature.

The standard cosmology is based on the assumption that the Universe can be
considered as a perfect fluid. In this case the energy-momentum tensor Tμν is given
by the expression

Tμν = (ρ + p)uμuν − p gμν. (11.41)

Here ρ, p and uμ are energy density, pressure and velocity. In the comoving system
u = (1, 0, 0, 0) and ρ, p can depend only on t . From the Einstein equation (11.39)
and (11.41) we obtain the Friedman equations

(
â

a

)2

= H2 = 8πG

3
ρ − k

a2
+ Λ

3
(11.42)

and

ä

a
= −4πG

3
(ρ + 3p)+ Λ

3
. (11.43)

We can present the Einstein equation in the form

Gμν = 8πG

(
Tμν + Λ

8πG
gμν

)
(11.44)

and interpret theΛ-term as an additional contribution to density and pressure. From
(11.41) and (11.44) we have

pΛ = − Λ

8πG
, ρΛ = −pΛ = Λ

8πG
. (11.45)

If we calculate the derivative of (11.42) and with the help of (11.43) exclude ä we
come to the equation

ρ̇ = −3H(ρ + p) (11.46)

in which the curvature k and the cosmological constant Λ do not enter.
It is easy to see that Eq. (11.46) is the consequence of the first law of thermody-

namics

dE = T d S − p dV, (11.47)
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where E , T , S and V are the total energy, temperature, entropy and volume of the
system.

In the case of adiabatic expansion, S = 0. Thus, we have

ρ̇ = −(ρ + p)
dV

dt

1

V
, (11.48)

where we used the relation E = ρV . Now, taking into account that V ∼ a3 we find

ρ̇ = −3(ρ + p)
ȧ

a
. (11.49)

Because ȧ
a = H , Eq. (11.49) coincides with (11.46).

Let us consider the first Friedman equation (11.42). Taking into account (11.45),
we can write this equation in the form

H2 = 8πG

3
ρtot − k

a2
, (11.50)

where

ρtot = ρ + ρΛ. (11.51)

Further, we have

k

a2
= H2

(
ρtot

ρc
− 1

)
, (11.52)

where

ρc = 3H2

8πG
. (11.53)

Let us introduce the quantity

Ωtot = ρtot

ρc
. (11.54)

The relation (11.52) takes the form

k

a2
= H2(Ωtot − 1). (11.55)

The case Ωtot = 1 (ρtot = ρc) corresponds to k = 0 (the flat Universe). If Ωtot > 1,
k = 1 (closed Universe). If Ωtot < 1, k = −1 (open Universe).
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The density ρc is called the critical density. Let us determine the dimensionless
quantity2

h = H

100 km s−1 Mpc−1
. (11.56)

The critical density is given by

ρc = 1.88 h2 10−29g cm−3. (11.57)

Let us introduce the dimensionless deceleration parameter

q = −aä

ȧ

2

, (11.58)

which characterizes the slowing down (or acceleration) of the expansion of the Uni-
verse. From the second Friedman equation (11.43) we find

q = 1

2ρc

(
ρ + 3p − Λ

4πG

)
. (11.59)

In the case of Λ = 0 the deceleration parameter is positive and the expansion of the
Universe is slowing down. It is obvious that this effect is due to gravitational attrac-
tion. From modern data follows, however, that q < 0. Thus, the expansion of the
Universe is accelerating. This means that the negative term in the right-handed part
of (11.59) (cosmological constant or more generally, dark energy (see below)) gives
dominant contribution. We will now consider solutions of the Friedman equation.
Let us write down the equation of state in the form

p = w ρ. (11.60)

In the case of non-relativistic matter or dust wmat = 0. For the radiation wr = 1
3 .

From (11.45) we conclude that in the case of the cosmological constant w� = −1.
From (11.49) and (11.60) we have

ρ̇ = −3(1 + w)ρ
ȧ

a
. (11.61)

This equation can easily be solved. We find

ρ ∝ a−3(1+w). (11.62)

Thus, in the case of matter we have

ρmat ∝ a−3. (11.63)

2 1 pc= 3.26 light years=3.26 c · year.
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This result is obvious: for matter ρmat ∝ 1
V and V ∝ a3.

In the case of radiation

ρr ∝ a−4. (11.64)

This behavior is due to the fact that the density of radiation is proportional to ω
V ∝

1
aV .

For the case of the cosmological constant w = −1 and we find from (11.61)

ρΛ = const. (11.65)

From (11.63), (11.64) and (11.65) we conclude that radiation dominates at the
beginning of the Universe and the cosmological constant dominates at late times.
Let us consider the solutions of the Friedman equation (11.42) for the early Universe
at the time when the first term of the right-hand side of the equation dominates (we
assume that w > − 1

3 ). In this case we have

ȧ ∝ a− 3
2 (1+w)+1. (11.66)

Taking into account the initial condition a(0) = 0 we easily find that the solution of
this equation has the form

a
3
2 (1+w) ∝ t. (11.67)

Finally, we have

a(t) ∝ t
2

3(1+w) . (11.68)

In the case of matter

a(t) ∝ t
2
3 and H(t) = ȧ

a
= 2

3t
. (11.69)

For radiation (relativistic particles) we have

a(t) ∝ t
1
2 and H(t) = ȧ

a
= 1

2t
. (11.70)

If the cosmological constant dominates, the Friedman equation has the form

(
â

a

)2

= H2 � Λ

3
= const. (11.71)

The solution of this equation is given by

a(t) ∝ eHt . (11.72)
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11.3 Early Universe; Neutrino Decoupling

In this section we briefly consider the early Big Bang Universe. In the early Universe
the particles were in thermal equilibrium. The equilibrium number density of Fermi
(Bose) particles of the type i is given by the expression

ni = g

2π2

∫ ∞

0

√
E2 − m2

i E dE

e
E−μi

kTi ± 1
. (11.73)

Here g is the number of the internal degrees of freedom, mi is the mass of the
particle i , μi is the chemical potential, Ti is the temperature and k � 1.38 ·
10−16 erg/grad is the Boltzmann constant. For the equilibrium energy density we
have

ρi = g

2π2

∫ ∞

0

√
E2 − m2

i E2 dE

e
E−μi

kTi ± 1
. (11.74)

In the ultra-relativistic case kTi � mi , kTi � μi and from (11.73) we find

ni = ζ(3)

π2
gi (kTi )

3 (Bose), ni =
(

3

4

)
ζ(3)

π2
gi (kTi )

3 (Fermi), (11.75)

where ζ(3) = 1.202 (ζ(n) is the Riemann zeta function). The energy densities are
given by the expressions

ρi = π2

30
gi (kTi )

4 (Bose), ρi =
(

7

8

)
π2

30
gi (kTi )

4 (Fermi). (11.76)

The total energy density can be presented in the form

ρ =
∑

i

ρi = π2

30
g∗(kT )4. (11.77)

Here T is the photon temperature and

g∗ =
∑

bosons

gi

(
Ti

T

)4

+
(

7

8

) ∑

fermions

gi

(
Ti

T

)4

. (11.78)

is the effective number of degrees of freedom of ultra-relativistic particles.
At 1 eV � T � 1 MeV the only relativistic particles are the photon (g = 2),

three neutrinos and three antineutrinos (gν = 6). Taking into account that Tν =(
4

11

)1/3
Tγ (see later) we have, at such temperatures, g∗ = 3.36. At 1 MeV ≤
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T ≤ 100 MeV electrons and positrons are also relativistic particles (four additional
degrees of freedom). Taking into account that in this range Tν = Te = Tγ we have
g∗ = 2 + 7

8 (10) = 10.75.
In the case of non-relativistic particles T � m the distribution functions both for

bosons and fermions are given by the Boltzmann factor

f (p) = 1

(2π)3
e

−(E−μ)
kT . (11.79)

Taking into account that E � m + p2

2m we find for the number density

n = g
∫ ∞

0
f (p)4πp2dp = g

(2π)3/2
(m kT )3/2 e

−(m−μ)
kT . (11.80)

For the energy density in the non-relativistic case we have

ρ = mn (11.81)

Let us consider now the entropy of the Universe. The second law of thermodynamics
has the form

T d S = d(ρV )+ p dV = d((ρ + p)V )− V dp (11.82)

From (11.82) we find the relation

dp = (ρ + p)

T
dT, (11.83)

which follows from the condition ∂2 S
∂V ∂T = ∂2 S

∂T ∂V . We have

d S = 1

T
d((ρ + p)V )− ρ + p

T 2
V dT = d

(
ρ + p

T
V

)
(11.84)

Thus, for the total entropy of a system the following expression can be chosen

S = (ρ + p)

kT
V . (11.85)

Further, for the system in thermal equilibrium the total entropy is conserved:

S = const. (11.86)

In the case of ultra-relativistic particles we have pi = 1
3ρi . From (11.76) we find

the following expression for the entropy
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S = 2π2

45
g∗s(kT )3V, (11.87)

where

g∗s =
∑

bosons

gi

(
Ti

T

)3

+
(

7

8

) ∑

fermions

gi

(
Ti

T

)3

. (11.88)

It is obvious that at Ti = T we have g∗s = g∗.
Because V ∝ a3, from (11.86) and (11.87) we find the following relation

between the temperature and the scale factor

T ∝ g−1/3∗s a−1(t). (11.89)

Thus, with expansion of the Universe the temperature drops as a−1(t).
From (11.63) and (11.64) we have for the ratio of energy densities of matter and

relativistic particles

ρmat

ρr
∝ a(t). (11.90)

Taking into account that a(t) → 0 at t → 0 we conclude from (11.90) that in the
early Universe ultra-relativistic particles dominate. At this stage the contribution of
the curvature term and the cosmological constant term in the Friedman equation can
be neglected. For the Hubble parameter we have in this case

H =
√

8πG

3
ρ =

√
4π3

45
g1/2∗

(kT )2

MP
, (11.91)

where MP = 1√
G

� 1.2 · 1019 GeV is the Planck mass. From (11.91) we obtain

H = 0.21 g1/2∗
(

kT

MeV

)2

s−1. (11.92)

From (11.91) and (11.70) we find that the time of expansion t is connected with the
equilibrium temperature T by the following relation

t = 1

2H
= 2.38 g−1/2∗

(
MeV

kT

)2

s. (11.93)

The thermodynamic equilibrium takes place if the interaction rates of reactions
which are responsible for the equilibrium are larger than the Hubble parameter H
which characterizes the expansion rate. When the Universe expands the temperature
drops and at some temperatures the interaction rates of reactions which provide
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thermodynamical equilibrium become comparable with the expansion rate. At such
temperatures the equilibrium will not be maintained (the particles decouple with
freeze-out abundance). In order to determine the interaction rate let us consider the
reaction a + b → a′ + b′. The cross section of the reaction is given by the relation

σ f i = w f i

j
, (11.94)

where w f i is the number of transitions in unit volume during unit time and j = na

nbv (na(nb) being the number density of the particles a (b) and v is the relative
velocity). The interaction rate is determined by the relation

Γ = σ f ivnb = w f i

na
. (11.95)

It is obvious that Γ has the dimension [M] (or s−1 in usual units). Let consider
the decoupling of neutrinos. In early Universe neutrino equilibrium is kept by the
reactions

e+ + e− � νl + ν̄l , νl(ν̄l)+ e � νl(ν̄l)+ e (l = e, μ, τ) (11.96)

We will now estimate the neutrino freeze-out temperature. Thermally averaged cross
sections of the weak processes (11.96) are of the order

σ � G2
F (kT )2. (11.97)

Taking into account that the number density of the ultra-relativistic particles is given
by n � (kT )3 we have for the neutrino interaction rate

Γ � G2
F (kT )5. (11.98)

The Hubble parameter is given by

H � G1/2 (kT )2 = (kT )2

MP
. (11.99)

The freeze-out temperature can be estimated from the relation

Γ

H
� 1. (11.100)

From (11.98) and (11.99) we have3

Γ

H
� G2

F MP(kT )3 �
(

kT

1 MeV

)3

. (11.101)

3 We take into account that in the units h̄ = c = 1 the Fermi constant is equal to G F � 1.026 ·
10−5 1

m2
p

.
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Thus, neutrinos decouple at temperatures of the order 1 MeV. At such temperatures
the Universe is transparent for neutrinos and the neutrino temperature is proportional
to a−1.

At kT � 1 MeV γ ’s and e± are in thermal equilibrium. When the temperature
drops, e± begin to annihilate. The released energy heats up only γ ’s because neutri-
nos are decoupled. Thus, after the decoupling of photons their temperature will be
higher than the neutrino temperature.

In fact, the effective number of degrees of freedom of γ ’s and e± is equal to
g∗ = 2 + 7

8 · 4 = 11
2 . After the annihilation of electrons and positrons we have

g∗ = 2. Taking into account that the entropy is conserved we find

11

2
(T a)3before = 2(T a)3after. (11.102)

Thus, we have

(T )after

(T )before
=
(

11

4

)1/3
(a)before

(a)after
. (11.103)

From the conservation of the entropy of the decoupled neutrinos analogously we
find analogously

(Tν)after

(Tν)before
= (a)before

(a)after
. (11.104)

From (11.103) and (11.104) we find

(T )after

(T )before
=
(

11

4

)1/3
(Tν)after

(Tν)before
. (11.105)

Now taking into account that (Tν)before = (T )before we come to the conclusion
that after decoupling of the photons the temperatures of neutrinos and photons are
connected by the relation

Tν =
(

4

11

)1/3

T . (11.106)

This relation between the neutrino and photon temperatures holds also at present.
From the study of the cosmic microwave background radiation (CMB) it was found
that T =2.725 K. Thus, the neutrino temperature at present is equal to Tν = 1.945 K
and kTν = 1.676 · 10−4 eV.

The value of the lightest neutrino mass at present is unknown. Using the existing
neutrino oscillation data we have
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m2 =
√

m2
1 +Δm2

12 � 8.7 · 10−3eV, m3 =
√

m2
1 +Δm2

12 +Δm2
23 � 5 · 10−2eV

(11.107)
Thus, at least two neutrinos satisfy the condition m2,3 � kT and are non-
relativistic.4

11.4 Gerstein-Zeldovich Bound on Neutrino Masses

After e+ − e− annihilation, the number density of γ ’s is given by the expression

nγ = ζ(3)

π2
gγ (kT )3, gγ = 2. (11.108)

The number density of all types of neutrinos and antineutrinos at the temperatures
when neutrinos are still ultra-relativistic is equal to

nν = 3

4

ζ(3)

π2
gν(kTν)

3, gν = 6. (11.109)

Taking into account (11.106), we obtain the following relation

nν = 9

11
nγ . (11.110)

Because neutrinos are decoupled this relation is also valid at present. Taking into
account that the photon temperature at present is equal to T = 2.725 K we find
from (11.108) for the present photon number density

nγ = 410.5 cm−3. (11.111)

From (11.110) follows that neutrino density at present is equal to

nν = 336 cm−3. (11.112)

These numbers can be compared with the number density of baryons in the Universe

nB = 2.5 · 10−7 cm−3. (11.113)

Thus, photons and neutrinos are the most abundant particles in the Universe.
Because the neutrino number density is so large it is possible to obtain a limit

on neutrino masses directly from the measurement of the cosmological param-
eters. (Gerstein and Zeldovich). Let us assume that all neutrinos at present are

4 We assumed the normal neutrino mass spectrum. It is obvious that in the case of the inverted
spectrum this conclusion is also valid.
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non-relativistic and neutrino mass spectrum is quasi-degenerate (m1 � m2 � m3 �
1
3

∑
i mi ). We have

Ων =
∑

i mi ni

ρc
�
∑

i mi nν
3 ρc

, (11.114)

where ρc = 3H2

8πG is the critical density. From (11.113) we find5

Ων �
∑

i mi

94 h2 eV
. (11.115)

Neutrinos can be a part of the dark matter. It is obvious, however, that

Ων ≤ ΩDM. (11.116)

From the analysis of the existing data follows thatΩDM � 0.20 and h � 0.73. Thus,
from (11.115) and (11.116) we find

∑

i

mi ≤ 10 eV. (11.117)

From (11.117) we have for one neutrino mass mi ≤ 3.3 eV. Notice that from
the measurement of the tritium β-spectrum (Troitsk, Meinz) the comparable bound
(mi ≤ 2.2 eV) was found. We will see later that from CMB data and from data on
the investigation of the large scale structure of the Universe bounds of about one
order of magnitude better than (11.117) can be derived. Unlike the relic photons,
the relic neutrinos have not been observed. Their observation is the extremely chal-
lenging problem. The cross section of the neutrino-nucleon scattering is so small
(∼ 10−62 cm2) that the observation of this process does not look possible.

In principle there exist a possibility to reveal the existence of the relic neutrinos
through the observation of the effect of the resonance production of Z0-bosons in
the interaction of ultra-high energy cosmic neutrinos with relic neutrinos

ν(ν̄)+ ν̄i (νi ) → Z0. (11.118)

The cross section of the process (11.118) averaged over the resonance is large and
it is given by the expression

σR � 4πG F√
2

= 4.2 · 10−32 cm2. (11.119)

The effect of relic neutrinos can be observed as dips in the spectrum of ultra-high
energy neutrinos at resonance energies

5 In fact, we have ρc
1
3 nν

= 1.054·104eV cm−3 h2

112 cm−3 � 94 h2 eV.
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E R
i = m2

Z

2mi
� 4

1

mi/eV
1021eV. (11.120)

This relation follows from the condition: (k + ki )
2 = m2

Z where k and ki are the
momenta of cosmic and relic neutrinos, respectively.

The dips in the spectrum could be observed by the Auger, ANITA, EUSO, Ice-
Cube and other detectors for ultra-high energy neutrinos. However, the existence of
sources of neutrinos of such high energy is an open problem.

11.5 Big Bang Nucleosynthesis and the Number of Light
Neutrinos

The measurement of the abundances of the light elements D, 3He, 4He and 7Li pro-
duced in the end of the first three minutes of the evolution of the Universe provides
one of the most important confirmations of the Big Bang theory. The detailed study
of the primordial nucleosynthesis allows to obtain information about the number of
light neutrinos. We will discuss here briefly the primordial nucleosynthesis.

The thermodynamic equilibrium between protons and neutrons in the early Uni-
verse is due to the neutrino processes

νe + n � e− + p (11.121)

and

ν̄e + p � e+ + n. (11.122)

Let us estimate the temperature at which neutrons and protons decouple. The n � p
conversion rate due to the weak processes (11.121) and (11.122) is determined by
the square of the Fermi constant and is given by

Γn�p � G2
F (k T )5. (11.123)

The decoupling temperature can be estimated from the condition Γn�p � H . We
have

G2
F (k Tdec)

5 � (k Tdec)
2

MP
, (11.124)

where MP is the Planck mass. From this relation we have

k Tdec � 1 MeV. (11.125)

This temperature corresponds to t � 1 s.



11.5 Big Bang Nucleosynthesis and the Number of Light Neutrinos 213

The equilibrium number densities of protons and neutrons are equal to (see
(11.80))

n p,n = 2

(2π)3/2
(m p,nkT )3/2 e

−(m p,n−μp,n )
kT . (11.126)

Taking into account that μp,n
kT � 1 we obtain for the ratio nn

n p
= n

p at the temperature
of decoupling

n

p
� e

− Δm
kTdec , (11.127)

where Δm = mn − m p = 1.293 MeV is the neutron-proton mass difference. We
have

n

p
� 1

6
. (11.128)

Before discussing the nucleosynthesis let us determine the quantity

η = nB

nγ
, (11.129)

where nγ is the number density of γ ’s and

nB = n p + nn + An A (11.130)

is the baryon number density (n A is the number density of nuclei with atomic num-
ber A). From experimental data follows that (see later)

η � 6 · 10−10. (11.131)

For the nucleosynthesis to start it is necessary that deuterium will be produced.
Deuterium is produced in the process

n + p → d + γ. (11.132)

However, at kT � 1 MeV because of the large number density of γ ’s (see 11.131)
and the small bounding energy of D (εD � 2.23 MeV) deuterium is dissociated due
to the reaction

γ + d → n + p. (11.133)
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Nucleosynthesis starts at the time when the temperature drops to kT � 0.1 MeV.6

When nucleosynthesis starts, practically all neutrons will be bound in 4He, a light
nucleus with the largest binding energy (ε4He � 28.3 MeV) through the chain of
reactions

n + p → d + γ, p + d →3 He + γ, d +3 He →4 He + p and others (11.134)

Due to the decay of neutrons (τn = 885.7 ± 0.8 s) during the time from the
decoupling of neutrons till the beginning of the nucleosynthesis the ratio n

p drops

from ∼ 1
6 to

n

p
� 1

7
. (11.135)

It is easy to estimate the mass fraction of 4He produced during the nucleosynthesis.
Taking into account that n4He � nn

2 we find

Yp = 4n4He

nN
� 2 n

p

1 + n
p

= 0.25. (11.136)

When the reaction rates of nucleosynthesis are smaller than the expansion rate (at
the small number density of deuterium) the abundances of D and 3He are frozen
out. The predicted abundances of D and 3He are decreased with the increase of η
and are in the range (10−5 − 10−4).

In the primordial nucleosynthesis a small amount of 7Li is produced in the
reactions

3H +4 He →7 Li + γ, 3He +4 He →7 Be + γ, 7Be + e− →7 Li + νe. (11.137)

The predicted abundance of 7Li depends on η and lies in the range (10−10 − 10−9).
Light elements were produced in the Big Bang nucleosynthesis during the time

from 1 to 3 min after the Big Bang. Due to effects of the following stellar nucle-
osynthesis, the estimation of the systematic errors in the present-day measurements
of primordial abundances of light elements is a complicated problem. For the abun-
dances of D,4 He and 7Li the values were found

D

H
= (2.84 ± 0.26) 10−5, Yp = 0.249 ± 0.009,

Li

H
= (1.7+1.2

−0.02) 10−10.

(11.138)

6 The temperature of the nucleosynthesis can be estimated from the condition n̄γ � nN , where

n̄γ � e− εD
kT nγ is the number of γ ’s above the threshold of the reaction (11.133). From this

condition we have kT � − εD
ln η � 0.1 MeV.
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Notice that the value for the primordial abundance of 4He is in good agreement with
the estimate (11.136). No reliable data for the primordial abundance of 3He exists
at the moment.

In the framework of the Standard Model with three types of neutrinos the primor-
dial abundances of the light elements depend only on the parameter η. The values
presented in (11.138) are compatible at the 95% level if the parameter η lies in the
range

4.7 · 10−10 ≤ η ≤ 6.5 · 10−10. (11.139)

From (11.139) we have for relative baryon density ΩB = m N nB
ρc

0.017 ≤ ΩBh2 ≤ 0.024. (11.140)

The parameter η and, consequently ΩBh2, was determined from the WMAP mea-
surements of the temperature fluctuations of the cosmic microwave background
radiation. It was found

η = (6.11 ± 0.19) · 10−10 and ΩBh2 = 0.0223 ± 0.0007. (11.141)

The agreement of (11.139), (11.140) and (11.141) manifests a success of the theory
of the Big Bang nucleosynthesis. The agreement of the theory of the Big Bang
nucleosynthesis with the measurements allows to limit the number of possible addi-
tional light neutrino types. At temperatures kT � 1 Mev the energy density of the
Universe is determined by photons, e±, neutrinos and antineutrinos. The effective
number of the relativistic degrees of freedom can be written as

g∗ = 5.5 + 2
7

8
Nν, (11.142)

where Nν is the number of neutrino types. In the Standard Model Nν = 3. If Nν > 3
the expansion rate

H =
√

8π

3
Gg∗ (k T )2 (11.143)

will be larger and, as a result, the decoupling temperature will also be larger than
in the standard case. If the decoupling temperature will be larger the ratio n

p will

be larger and the primordial abundance of 4He will be larger than in the case of
Nν = 3. From the primordial abundance of 4He together with the CMB value of the
parameter η the value

Nν = 3.14+0.70
−0.65 (11.144)
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was found for the number of neutrino types. The value (11.144) is in an agreement
with the number of neutrino types measured via investigation of the decay Z0 →
ν + ν̄ at LEP:

Nν = 2.9840 ± 0.0082. (11.145)

11.6 Large Scale Structure of the Universe and Neutrino Masses

Information about the sum of neutrino masses
∑

i mi can be inferred from the study
of the Large Scale Structure (LSS) of the Universe. There are two recent galaxy
surveys: the 2dF Galaxy Redshift Survey (220,000 galaxies) and the Sloan Digital
Sky Survey (SDSS) (about one million galaxies). From these surveys it is possible
to obtain the so-called power spectrum.

The density fluctuation δ(x) is given by the relation

δ(x) = ρ(x)− < ρ >

< ρ >
, (11.146)

where < ρ > is the average density. The Fourier component of the function δ(x) is
given by

δ(k) = 1

(2π)3

∫
e−ikxδ(x) d3x . (11.147)

The power spectrum P(k) is determined as follows

P(k) =< |δ(k)|2 >= P(k). (11.148)

The primordial spectrum P(k) is determined by the initial conditions at early times.
It is usually assumed that the primordial spectrum has a power-law form

P(k) = A kn, (11.149)

where A is a constant. From experimental data follows that the primordial power
spectrum is of the Harrison-Zeldovich form, i.e. n � 1.

The power spectrum at present is given by the relation

P(k, t0) = T 2(k) P(k), (11.150)

where the transfer function T (k) is determined by the evolution of initial perturba-
tions. This function can be obtained from calculations which must take into account
complicated physics and mathematics connected with the growth of the original
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density perturbations (such as nonlinear effects at a later stage of galaxy structure
formation, etc.).

The measurement of the LSS of the Universe allows us to determine the power
spectrum Pg(k, t0) of visible matter. It follows from calculations that the power
spectrum of all matter (visible and dark) Pm(k, t0) is different from the power spec-
trum of visible galaxies. Thus, for the comparison of the measurements and theory
we need to know the bias parameter

b2(k) = Pg(k, t0)

Pm(k, t0)
. (11.151)

Notice that this parameter, in principle, can be determined from higher order
correlations.

Although the contribution of neutrinos to the matter density of the Universe is
small ( Ων

Ωm
< 7%) the analysis of the modern high precision cosmological data

allow to obtain rather stringent limits on the sum of neutrino masses
∑

i mi . We
will present here a qualitative argument in favor of the high sensitivity of the LSS
data to neutrino masses.

The growth of density fluctuations induced by the gravitational attraction is given
by the relation

δρ � a p. (11.152)

If all matter is able to cluster, p = 1 and δρ is proportional to a. In general

p = Ω
3/5∗ , (11.153)

where Ω∗ is fraction of matter which can cluster. On the scale where neutrinos are
not clustering we have

Ω∗ = Ωm −Ων

Ωm
= 1 − fν, (11.154)

where Ωm is the density of all matter, Ων is the neutrino density and

fν = Ων

Ωm
. (11.155)

Density fluctuations start growing at the beginning of the mater dominated era (scale
factor aM ) and they stop growing at the time when the dark energy dominated era
starts (scale factor aΛ). The growth of the fluctuations during this time is given by
the factor

(
aΛ
aM

)Ω3/5∗
�
(

aΛ
aM

)
e
− 3

5 fν ln aΛ
aM , (11.156)
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where the exponent gives the suppression of the growth of the fluctuations due to
neutrino non-clustering. For the suppression of the power spectrum at a scale where
neutrinos do not cluster we have

P(k,
∑

mi )

P(k, 0)
� e

− 6
5 fν ln aΛ

aM . (11.157)

For the fraction of neutrinos fν we have (see (11.115))

fν =
∑

mi

94 eV Ωmh2
. (11.158)

From analysis of CMB data it was found that Ωmh2 � 0.15 . Thus, we have

fν �
∑

mi

14 eV
. (11.159)

If
∑

mi � 1 eV in this case fν � 0.07. High sensitivity of LSS data to the parameter
∑

mi is connected with the fact that the ratio
(

aΛ
aM

)
is large. It was found from

calculations that

P(k,
∑

mi )

P(k, 0)
� e−8 fν . (11.160)

At
∑

mi � 1 eV, the suppression factor is about two.
The large velocities of neutrinos prevent their clustering with matter at scales

smaller that the free-streaming wave length λ which is determined by the distance
that neutrino can pass during the Hubble time 1

H . The free-streaming wave length is
determined as

λ = 2π

√
2

3

v

H
, (11.161)

where v is the neutrino velocity. For non-relativistic neutrinos with mass m we have

v � p̄

m
� 3

kT

m
. (11.162)

In order to estimate v we will take into account that T � a−1 and that the neutrino
temperature T is connected with the photon temperature Tγ by the relation T =
( 4

11 )
1/3Tγ . We have T = (1 + z)( 4

11 )
1/3T 0

γ , where T 0
γ = 2.73 K is the temperature

of the cosmic microwave background radiation and z is red-shift (z = a0

a ). We have

v � 150 (1 + z)

(
1 eV

m

)
. (11.163)
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For the wave number we have

k = 2π
a

λ
=
√

4πGρa2

v
(11.164)

The minimal wave length, which corresponds to the time when neutrinos became
non relativistic, is given by the relation

knr � 2 · 10−2Ω
1/2
m

( m

1 eV

)
h Mpc−1, (11.165)

which can be obtained from the condition p̄ � m.
At k > knr the power-spectrum suppression due to neutrino masses can be

observed. In the region k < knr, corresponding to scales larger than the horizon,
there is no suppression of the power spectrum.

At Fig. 11.2 the power spectrum is presented. If
∑

mi � 1 eV the spectrum is
suppressed by a factor of two (with respect to the

∑
mi = 0 spectrum) at k > knr.

From the analysis of cosmological data many different bounds on the sum of
the neutrino masses in the interval

∑
mi ≤ (0.4–1.7) eV were inferred. From the

analysis made by the SDSS collaboration a conservative bound

Fig. 11.2 Power spectrum of the distribution of Galaxies in the Universe. The solid curve was
calculated for the values of matter density, Hubble parameter and barion fraction equal to Ωm =
0.28, h = 0.72, and Ωb

Ωm
= 0.16 , correspondingly. The dashed curve was calculated under the

assumption that neutrinos constitute 7% of the dark matter. This assumption corresponds to the
value of the sum of neutrino masses equal to

∑
mi = 1 eV (arXiv: hep-ph/0503257)



220 11 Neutrino and Cosmology

∑
mi ≤ 1.72 eV (11.166)

was obtained.
The bound on the sum of neutrino masses depends on the values of other cosmo-

logical parameters. For example, a change of the spectral index n in the primordial
power spectrum (11.149) can partially mimic the effect of neutrino masses. The
joint analysis of the SDSS data and the Cosmic Microwave Background radiation
data, which strongly constrain the values of the cosmological parameters, allows to
obtain more stringent and reliable bound on the parameter

∑
mi . We will briefly

discuss these data in the next section.
We mentioned before that one of the problems of the determination of the param-

eter
∑

mi from cosmological data is connected with the fact that the existing LSS
surveys give information about the distribution of luminous mater which is only
about 15% of all matter. Let us notice that future weak gravitational lensing mea-
surements will allow us to obtain information about the power spectrum of the dis-
tribution of all matter including the dark matter.

11.7 Cosmic Microwave Background Radiation

The measurements of anisotropies of the Cosmic Microwave Background (CMB)
radiation provide a profound confirmation of the Big Bang cosmology. These mea-
surements allow one to obtain the most precise values of cosmological parameters.

The spectrum of the CMB radiation is an ideal Planck spectrum which is char-
acterized by the temperature. The mean measured temperature is T̄ = (2.275 ±
0.001) K. Starting from the pioneering COBE satellite observation, in different
experiments the measurement of the temperature variation of the CMB radiation
at the level of 10−5 was performed. The most precise recent results were obtained
by the Wilkinson Microwave Anisotropy Probe (WMAP).

The cosmic microwave background radiation (relic radiation) consists of pho-
tons which were emitted at the time when protons and electrons produced hydrogen
atoms (recombination era). The temperature at that time (about 380,000 years after
the Big Bang) dropped to 3,000 K. Produced during the recombination era photons
decouple from matter and freely propagate in the Universe.

Anisotropies of the CMB are due to the Sachs-Wolfe effect (the fluctuation of
temperature due to perturbations of the gravitational potential), due to fluctuations
of the matter density and other effects.

Let us denote by δT (n) the temperature fluctuation in the direction characterized
by the vector n (δT = T − T̄ ). The two-point correlation function is determined as
follows

C(θ) =< δT (n) δT (n′) >, (11.167)

where n·n′ = cos θ and averaging over all pairs separated by the angle θ is assumed.
Notice that because of the isotropy of the space the correlation function depends
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only on the angle θ . The correlation function can be expanded over Legendre poly-
nomials. We have

C(θ) =
∑

l

(2l + 1)

4π
Cl Pl(cos θ). (11.168)

The power spectrum is determined as follows

Δl = l(l + 1)

2π
Cl . (11.169)

At large l a spherical harmonic analysis becomes a Fourier analysis in two dimen-
sions; l becomes the Fourier wave number and

θ ∼ 2π

l
. (11.170)

The measured power spectrum has a characteristic peak structure.7 The position of
the first, main peak is determined by the curvature of space:

l1 � 200√
1 −Ωk

. (11.171)

From existing data follows that Ωk = 0, i.e. that out Universe is flat.
From the analysis of the latest WMAP data, collected during 5 years, the follow-

ing values were obtained for the basic cosmological parameters :

Hubble parameter : H0 = 71.9+2.6
−2.7 kms−1Mpc−1, (11.172)

Baryon density : Ωb = 0.0441 ± 0.0030, (11.173)

Dark matter density : Ωc = 0.214 ± 0.027, (11.174)

Dark energy density : ΩΛ = 0.742 ± 0.030. (11.175)

From the analysis of the WMAP data the following bound was obtained for the
neutrino density

Ωνh2 < 0.014. (11.176)

Taking into account that
∑

i mi/94 eV = Ωνh2 we have the following upper bound
for the sum of the neutrino masses

7 In the early Universe baryons and photons can be treated as a fluid. The combination of effects
of gravity and pressure of radiation creates longitudinal acoustic oscillations in the photon-baryon
fluid. The sound wave can be decomposed into a superposition of modes with different wave num-
bers k � 1

λ
. The wave length λ corresponds to an observable angle θ . As follows from (11.170),

the observed peaks are relevant to characteristic distances.
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∑

i

mi < 1.3 eV. (11.177)

Thus, the existing CMB data allow to obtain only a rather moderate restriction on the
neutrino masses. This is connected with the fact that at the epoch of the recombina-
tion, neutrino energies are at 1 eV level. In fact, at this epoch the temperature of γ ’s
was equal to Tγ � 3, 000 K and kTγ � 0.26 eV. For the average neutrino energy we

have < E >= 3.15 kTν = 3.15
(

4
11

)1/3
kTγ � 0.6 eV. Therefore, if the neutrino

masses are much less than ∼ 0.6 eV, neutrinos are ultra-relativistic particles and the
effect of neutrino masses cannot be revealed through the observation of the CMB
radiation.

Bound on the sum of neutrino masses stronger than (11.177) can be obtained if
WMAP data are analysed together with other cosmological data. From the analysis
of the WMAP 5-year data together with the baryonic acoustic oscillation data and
supernova data it was found

∑

i

mi < 0.61 eV. (11.178)

Notice that from WMAP data some constraint on the effective number of neutrinos
can be obtained. From the WMAP 5-year data was found

Nν = 4.4 ± 1.5. (11.179)

11.8 Supernova Neutrinos

Neutrinos play an extremely important role in gravitational collapse of some stars
(supernovae explosion). The observation of solar neutrinos and observation of neu-
trinos from the explosion of the supernovae SN1987A opened a new field in astron-
omy, neutrino astronomy. In 2002 M. Koshiba and R. Davis were awarded with
Nobel Prize for the discovery of this new field .

The supernova explosion is a very complicated phenomenon. Its understanding
is in the process of permanent improvement. Here we will discuss briefly main
stages of the gravitational collapse of a supernova with a mass larger than eight
solar masses (type II supernova) in which a large number of neutrinos are produced.
Such a star evolves through nuclear fusion of hydrogen, helium, carbon and other
nuclei and takes an onion-like structure with an iron core surrounded by shells of
hydrogen, helium, carbon, neon, oxygen and silicon. Since iron nuclei are the most
tightly bound nuclei, production of iron is the final stage of the chains of reactions
of nuclear fusion.

The iron core typically has a mass of about one solar mass, a radius of a few
thousand kilometer, a central density of about 1010 g cm−3 and a central temperature
of about 1 MeV.

The gravitational contraction of the iron core is equilibrated by the electron
degeneracy pressure. When the iron core grows to about the Chandrasecar mass
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(1.44 solar mass) an electron degeneracy pressure cannot prevent the gravitational
contraction and the core collapses.

During the collapse a huge amount of energy is released. The released gravita-
tional energy is given by the binding energy of the core

ΔE � 3

5

G M2

R
, (11.180)

where M and R are mass and radius of the core. At M � M⊙ and R � 10 km
the energy � 3 · 1053 erg is released. About 99% of this energy is carried away by
neutrinos.

At an earlier stage of the collapse, photodissociation of iron nuclei

γ +56 Fe → 13α + 4n (11.181)

(due to increase of the temperature) and electron capture processes

e− + (A.Z) → νe + (A, Z − 1), (11.182)

and

e− + p → νe + n (11.183)

reduce the core energy and the electron density and accelerate the collapse.
When the density of the core reaches a value of ∼ 1012 g cm−3 neutrinos become

trapped because their mean free path at such a density is much smaller than the
radius of the core. At this stage, the inner part of the core (∼ 0.8M⊙) collapses with
subsonic velocities proportional to the radius ( homologous collapse). The outer part
of the core collapses with supersonic free-fall velocities.

When the density of the core reaches nuclear density of ∼ 1014 g cm−3 the
pressure of the degenerate nucleons stops the collapse of the inner part of the core.
The radius of the core at this stage is about 10 km.

The stop of the collapse of the inner core creates shock wave which propagates
outward through the outer part of the core.

The shock wave propagating through infalling matter of the outer part of the core
dissociates nuclei into protons and neutrons. The capture rate of electrons on protons
(e− p → νe + n) is larger than on nuclei. As a result protons will be transferred into
neutrons with the emission of νe’s. When the shock reaches the region with a density
of ∼ 1011 g cm−3 neutrinos produced behind the shock leave the star (neutroniza-
tion burst). Emitted νe’s carry away about 1051 erg during a few milliseconds.

Because of the loss of energy through photodisintegration of nuclei and neutrino
emission the shock at a 100–200 km radius is weakened, stalled and turned into
an accretion disc. A remnant begins to form by accretion of infalling material. The
remnant evolves to a neutron star or a black hole depending on the mass of the
progenitor star.
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It is a standard assumption, confirmed by supernova simulations, that the stalled
shock is revived by neutrinos streaming off the hot core of the proto-neutron star.
These neutrinos carry out most of the released energy. The energy input by neutrinos
drives the shock outward leading to the supernova explosion in about 0.5 s after the
bounce.

Neutrinos are produced in the hot core via the NC reactions

e− + e+ → νl + ν̄l , e± + N → e± + N + νl + ν̄l

N + N → N + N + νl + ν̄l , γ + e± → e± + νl + ν̄l , . . . (11.184)

where l = e, μ.τ .
Neutrinos are trapped in the inner high-density part of the proto-neutron star. It

takes a fraction of a second for the trapped neutrinos to diffuse out to the neutrino-
sphere where the density is about ∼ 1011 g cm−3. Neutrinos can leave the star
from this region. Because νe and ν̄e have both CC and NC interactions and νμ,τ and
ν̄μ,τ have only (universal) NC interaction there are three different energy-dependent
neutrino-spheres with radii from about 50 to 100 km. Neutrinos are emitted from
the neutrino-spheres with black-body spectrum and average energies in the range
(10–20) MeV. The emission of thermal neutrinos of all flavors continues for a few
second. These neutrinos carry out practically all energy produced in the supernova
explosion (∼ 3 · 1053 erg).

On 23 February 1957 in the Large Magellanic Claud (a nearby galaxy) at a
distance of about 51.4 kpc from the earth a supernova explosion was observed.
This supernova was named SN1987A. In three big underground neutrino detectors
Kamiokande II, IMB and Baksan at the same time (up to uncertainties in time cal-
ibrations) neutrino bursts with neutrino energies of about 15 MeV were observed.
The neutrino events were detected about three hours before the first optical obser-
vation of SN1987A was done.8 The observed neutrino bursts lasted about 10 s.

In all three underground detectors antineutrinos were observed via the reaction

ν̄e + p → e+ + n. (11.185)

The cross section of this reaction

σ � 8.5 · 10−44
(

E

MeV

)2

cm2 (11.186)

is much larger than the cross sections of other possible reactions. Eleven antineu-
trino events were observed in the Kamiokande II detector, eight events in the IMB
detector and five candidate-events in the Baksan detector.

8 This corresponds to the general theory of the supernova explosion: neutrinos are produced in
about 10 s after core collapse and visible light is produced later after the shock reaches the surface
of the star.
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The first observation of supernova neutrinos opened a new era in astronomy.
Although only about twenty neutrino events were detected, these observations con-
firm general features of a core-collapse supernova explosion we discussed before.

From one to three core-collapse supernovae per century is expected in our galaxy.
When this happens, in modern and future neutrino detectors thousands of supernova
neutrino events will be detected. The detailed investigation of supernova neutrinos
will be very important for the study of the mechanism of supernova explosions and
for obtaining (because of the MSW matter effects) information about the mixing
angle θ13 and the character of neutrino mass spectrum. Recently some new collective
nonlinear matter effects due to neutrino–neutrino interaction were studied in details.
A discussion of all these subjects is out of the scope of this book.

11.9 Baryogenesis Through Leptogenesis

The existing data represent evidence that our Universe predominantly consists of
matter. Thus, the baryon-antibaryon asymmetry of the Universe determined by the
ratio

ηB = nB − nB̄

nγ
(11.187)

(nB(nB̄) is the baryon (antibaryon) number density, nγ is the photon number den-
sity) practically coincide with the ratio

η = nB

nγ
= (6.11 ± 0.19) · 10−10, (11.188)

determined from measurements of the primordial abundances of D, 3He, 4He and
7Li and from the measurement of the anisotropy of the Cosmic Microwave Back-
ground Radiation.

In the Big Bang Universe there was no initial baryon asymmetry. The explanation
of the baryon asymmetry of the Universe is a big problem for modern cosmology.
There are several approaches to the solution of this problem. During the last years,
the idea of the generation of the baryon asymmetry of the Universe through the lep-
ton asymmetry, produced by C P violating decays of heavy Majorana particles, has
actively been developing. This approach was inspired by the discovery of nonzero
neutrino masses and by the seesaw mechanism of the neutrino mass generation.

In this section we will briefly consider the main ideas of leptogenesis. In order
that in the evolution of the Universe, the baryon asymmetry was created, the follow-
ing three conditions, formulated by Saharov, must be satisfied:

• The baryon number has to be violated at some stage of the evolution.
• C and C P must be violated.
• Departure from thermal equilibrium must take place.
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In fact, if the baryon number is conserved and invariance under C and C P trans-
formation holds, the baryon asymmetry cannot be generated if the initial state is
a state with B = 0 and definite C and C P values. Due to the C PT invariance,
the masses of a baryon and an antibaryon are equal. This means that in the case of
thermal equilibrium, the number densities of baryons and antibaryons are the same.

In the Standard Model, C and C P are not conserved. Because left-handed and
right-handed fields enter differently in the Lagrangian of the interaction of the
fermion and vector fields, baryon and lepton currents in the SM are also not con-
served. It can be shown that the SM allows processes with

ΔB = ΔL = ±3. (11.189)

From (11.189) follows that in the SM, the sum (B+L) is violated and the difference
(B − L) is conserved.

The baryon and lepton numbers are not conserved in processes of transitions
between different vacua which have different topological charges and are separated
by a potential barrier. The heights of the barriers are given by the sphaleron energy
(a saddle point of the energy of gauge and Higgs fields). At T � 100 GeV the rate of
such tunnel transitions is determined by the instanton action and is negligibly small

(Γ � e− 4π
α � 10−165). At temperatures higher than �100 GeV, transitions over

the barrier due to thermal fluctuations become important and the rate of (B + L)-
violating processes can be significant. However, the SM cannot explain the baryon
asymmetry of the Universe.

• In the Standard Model the C P asymmetry is different from zero only if all three
families are involved. This means that masses of all quarks and all mixing angles
must enter into the C P asymmetry. As a result, the C P asymmetry in the SM is
suppressed by the smallness of masses of light quarks with respect to the scale
of the electroweak breaking and by the smallness of the product s12s23s13. The
estimated value of the asymmetry (∼ 10−18) is too small for the explanation of
the baryon asymmetry of the Universe.

• The departure from equilibrium can be satisfied if the mass of the Higgs boson
m H is less than ∼ 70 GeV. From the data of the LEP experiments follows that
m H > 115 GeV.

• The conservation of (B − L) prevents the generation of the baryon asymmetry
(sphaleron processes wash out the baryon asymmetry).

Thus, the baryon asymmetry of the Universe can only be explained in the frame-
work of physics beyond the SM. This new physics must insure: (1) a new source of
C P violation; (2) (B − L) violation; (3) out of equilibrium processes.

The leptogenesis is a scenario in which new physical processes generate a lepton
asymmetry of the Universe which is partially converted into a baryon asymmetry
through sphaleron processes.

Let us assume that there exist Majorana particles Ni with masses Mi much larger
than the electroweak vacuum expectation value v � 246 GeV and that the fields
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Ni (x) (Ni (x) = N c
i (x)) are singlets of the electroweak SU (2) × U (1) group. The

mass term of Ni and the Lagrangian of the Yukawa interaction have the form

L = −1

2

∑

i

N̄i Mi Ni − (
∑

l,i

L̄l L φ̃ Yil N + h.c.). (11.190)

Here

L L =
(
ν1L

lL

)
and φ̃ = iτ2φ

∗ =
(
φ∗

0−φ∗+

)

are lepton and Higgs doublets and Yli are Yukawa coupling constants.
It is obvious that the Lagrangian (11.190)

• does not conserve the lepton number L ,
• conserves the baryon number (thus, it does not conserve (B − L)).
• violates C P in the case of a complex Y .

In the region of energies much smaller than Mi in second order of Y the
Lagrangian (11.190) generates the following effective Lagrangian for processes
with virtual Ni

L = −
∑

l ′,l,i
L̄l ′L φ̃ Yil ′

1

Mi
YilCφ̃

T L̄T
l L + h.c. (11.191)

After the spontaneous symmetry breaking in the unitary gauge we have

φ̃ =
(
v+H√

2
0

)
. (11.192)

From (11.191) and (11.192) we obtain the Majorana neutrino mass term

LM = −1

2

∑

l ′,l
ν̄l ′L MM

l ′l C ν̄
T
l L + h.c. (11.193)

with the seesaw mass matrix

MM = Y T 1

M
Y v2. (11.194)

Thus, if we assume the existence of heavy Majorana particles with masses Mi � v

which have the Yukawa interaction (11.190), we come to the seesaw mechanism of
neutrino mass generation.

The leptogenesis started in the Early Universe at T � Mi . Majorana particles Ni

can decay into both C P-conjugated final states L H and L̄ H̄ . The C P asymmetry
is defined as follows
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εi = Γ (Ni → L H)− Γ (Ni → L̄ H̄)

Γ (Ni → L H)+ Γ (Ni → L̄ H̄)
. (11.195)

In the tree approximation the phases of Y do not enter into the expression for the
decay probability and Γ0(Ni → L H) = Γ0(Ni → L̄ H̄). In order to reveal C P
violation we must take into account loop diagrams. The C P phases enter into the
interference between the tree and loop diagrams. In the case of the hierarchical
spectrum of Ni the most important contribution to the leptogenesis give decays of
the lightest Majorana particles N1. For the C P asymmetry we have

ε1 = 3

16π

∑

i

Im(Y Y †)21i

(Y Y †)11

M1

Mi
(11.196)

It is obvious from this expression that the C P asymmetry is due to phases of the
nondiagonal elements Y1lY ∗

il (i �= 1). The decays of N1’s are out of equilibrium if
the decay rate is smaller than the expansion rate at the time of the leptogenesis, i.e.
the condition

ΓN1 � H(T � M1). (11.197)

is satisfied.
Taking into account that ΓN1 � 1

8π (Y Y †)11 M1 and that the Hubble constant is

given by the relation H(T ) = 1.66 g1/2∗ T 2

MP
, from (11.197) we obtain the condition

m̃1 = (Y Y †)11v
2

M1
� 10−3 eV. (11.198)

The baryon asymmetry ηB is the product of the C P asymmetry ε1, a wash out
parameter η9 and a factor which takes into account the sphaleron conversion of the
lepton asymmetry into the baryon asymmetry. It was found that

ηB = − 1

103
ε1η. (11.199)

Agreement with observations requires

M1 ≥ 109 GeV. (11.200)

If we consider a one-flavor lepton asymmetry for the lightest neutrino mass we have
the bound

9 The calculation of the parameter η requires the numerical solution of the Boltzmann equation for

leptogenesis. Approximately we have η � 10−3eV
m̃1

.
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m1 ≤ 10−1 eV. (11.201)

We know, however, from neutrino oscillation experiments that lepton mixing can be
large. So it is natural to include all three flavors in the leptogenesis. Large flavor
effects are possible. In particular, the estimate (11.201) is not valid in this case.

Let us also notice that in the case of the quasidegenerate spectrum of masses
of heavy Majorana particles the picture of the leptogenesis becomes completely
different. If M2 − M1 � ΓN the lepton asymmetry is enhanced resonantly. The
baryon asymmetry of the Universe could be explained for Mi � 1 TeV.

In conclusion let us stress the following. The leptogenesis is an attractive possi-
bility for the explanation of the puzzle of the baryon asymmetry of the Universe. It
is a natural consequence of the seesaw mechanism of the neutrino mass generation
which is commonly considered as the most plausible possibility of the explanation
of the smallness of the neutrino masses. However, masses of heavy Majorana par-
ticles and Yukawa coupling constants are unknown parameters. Processes induced
by the interaction (11.190), which drive leptogenesis, cannot be observed in a lab-
oratory. Thus, it does not look possible to test leptogenesis in a model independent
way.

The observation of the neutrinoless double β-decay would prove that massive
neutrinos are Majorana particles. This observation will be a strong argument in favor
of the seesaw mechanism and, consequently, leptogenesis.
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Conclusion and Prospects

After the discovery of neutrino oscillations and a very intensive period of studying
this new phenomenon we can now formulate a clear program of future investigations
of the neutrino mass and mixing problem. Future experiments are aimed to address
the following fundamental problems:

1. What is the value of the angle θ13?
2. Is CP invariance violated in the lepton sector? What is the value of the CP phase
δ?

3. What is the character of the neutrino mass spectrum? Is it normal or inverted?
4. Are neutrinos with definite masses Majorana or Dirac particles?
5. What are the absolute values of the neutrino masses?
6. Do sterile neutrinos exist?

For the solution of the problem of C P violation and the problem of the neutrino
mass spectrum the key-question is the value of the angle θ13. Because this angle is
small, as established by the CHOOZ experiment, we need to investigate very small
effects beyond the leading approximation in order to measure the phase δ and to
reveal the character of the neutrino mass spectrum. This will require many years of
research, new technologies and challenging efforts.

We will start with a brief description of the neutrino program at the Japan Pro-
ton Accelerator Research Complex (J-PARC). J-PARC’s high-intensity proton syn-
chrotron is designed to accelerate protons up to an energy of 50 GeV. The initial
proton energy is 30 GeV.

The first accelerator neutrino experiment at the J-PARC facility T2K (Tokai to
Kamioka, distance 295 km) started in 2009. The major goal of the experiment is
to determine the value of the parameter sin2 θ13. This parameter will be measured
through the observation of the oscillations νμ � νe. High precision measurements
of the parameters Δm2

23 and sin2 θ23 will also be performed in the experiment via
the standard investigation of the disappearance channel νμ → νμ. It is planned that
the values of these parameters will be determined with the accuracies δ(Δm2

23) <

10−4eV2 and δ(sin2 θ23) � 10−2.
The major background in the experiment on the search for the νμ → νe transition

comes from π0 produced in the NC processes νμ + N → νμ + π0 + . . . and from

Bilenky, S.: Conclusion and Prospects. Lect. Notes Phys. 817, 231–236 (2010)
DOI 10.1007/978-3-642-14043-3_12 c© Springer-Verlag Berlin Heidelberg 2010
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the intrinsic νe’s in the neutrino beam originating from decays of kaons and muons.
These backgrounds will be studied in near detectors at a distance of 280 m from the
target.

The T2K is an off-axis experiment with an off-axis angle of 2.5◦. This allows to
obtain a narrow-band beam1 with an energy of about 0.7 GeV corresponding to the

first oscillation maximum (E1m = Δm2
23 L

2π ). It is planned that the T2K experiment
will run for five years with a beam power of the accelerator of 0.75 MW.2 During
this time an integrated proton power of 0.75 MW × 5 · 105 s will be accumulated.

Within the first years of running the experiment, the data based on (1–2)MW ×
107s integrated power could guide the future research plans. During this time the 3
σ sensitivity to the parameter sin2 2θ13 will be equal to (5 − 3) · 10−2, much lower
than the CHOOZ upper bound (sin2 2θ13 � 2 · 10−1). If significant evidence in
favor of the νμ → νe transition will be found, the preparation of an experiment on
the search for the C P violation in the lepton sector would have highest priority. The
C P violation can be investigated via

• a precise study of the energy spectrum of νe produced in the νμ → νe transition,
• a comparison of probabilities of the νμ → νe and ν̄μ → ν̄e transitions.

The experiment on the investigation of the C P violation in the lepton sector will
require

• to increase the intensity of the neutrino beam,
• to build a new neutrino detector.

According to the KEK Roadmap the beam power of the J-PARC accelerator will
be increased from 0.75 to 1.66 MW.

There are three different proposals for an experiment on the search for the C P
violation at the J-PARC facility.

The Okinoshima long baseline experiment. In this experiment a huge 100 kiloton
liquid Argon time projection chamber is planned to be used as a neutrino detector.
This detector has a very good energy and spatial resolution which would allow to
suppress the π0 background (from the NC process νμ + N → νμ + π0 + X ). The
idea of the experiment is to measure the νe spectrum in the region of the first and
the second oscillation maxima. In order to satisfy this requirement the baseline of
the experiment has to be longer than 600 km. The experiment must be practically
on-axis (in order to cover a wide energy range).

The Okinoshima island (658 km from J-PARC, off-axis angle 0.8◦) is an ideal
place for the detector. Another option is South Korea (1,000 km baseline, off-axis
angle 1◦). If sin2 θ13 ≥ 2 · 10−2 the phase δ can be measured in the proposed

1 Due to the kinematics of the decay π+ → μ+ + νμ, the energy of neutrinos emitted at a certain
angle between the pion and the neutrino directions in the laboratory system depends rather weakly
on the pion energy. The larger the off-axis angle the more monochromatic (and less intensive) a
neutrino beam can be produced.
2 MW = 106 V · A � 6.24 · 1015 GeV s−1.
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experiment with an accuracy of (20–30)◦. The suggested duration of the experiment
with νμ beam is 5 years. The antineutrino run can be considered as a next step.

The second proposal is the J-PARC to Kamioka long baseline experiment. This
experiment is similar to T2K but with a Water Cerenkov detector much larger than
Super-Kamiokande. This new detector will have a fiducial volume of 570 kiloton.
The baseline of the experiment is 295 km and the off-axis angle 2.5◦. Neutrino oscil-
lations in the region of the first oscillation maximum will be studied. The effect of
C P violation will be investigated by the measurement of the difference of neutrino
oscillations in the νμ → νe and ν̄μ → ν̄e channels. An option with 2.2 years of νμ
and 7.8 years of ν̄μ running times is considered.

The third proposal is the J-PARC to Kamioka and Korea long baseline experi-
ment. In this experiment, two 270 kiloton Water Cerenkov detectors, one in Kamioka
(295 km baseline, 2.5◦ off-axis angle) and another one in Korea (1,000 km baseline,
1◦ off-axis angle) will be utilized. This will allow to study neutrino oscillations in
the region of the first and the second oscillation maxima. It is planned to operate the
experiment with a νμ beam (5 years) and with a ν̄μ beam (5 years). Effects of the
C P violation and neutrino mass hierarchy will be studied.

Another accelerator long baseline neutrino experiment of the next generation is
the NOvA experiment at Fermilab. In this experiment, a neutrino beam from the
Main Injector (120 GeV protons, beam power 0.7 MW) will be utilized. NOvA is
an off-axis experiment (14 mrad off-axis) with a distance of 810 km between the
neutrino source and the far neutrino detector. Two detectors will be used. The far
detector (14 kiloton) is a liquid-scintillator detector with good electron identification
and energy resolution. The near detector is a 222 ton detector.

In the NOvA experiment, νμ → νe and ν̄μ → ν̄e neutrino oscillations will be
investigated. The inclusive channels νμ → νμ and ν̄μ → ν̄μ will also be studied
in detail. It is planned to reach a sensitivity of sin2 2θ13 � (1 − 2) · 10−2. At the
next step of the experiment, C P violation will be investigated and the neutrino mass
hierarchy is planned to be revealed (via the matter effect).

The first data in the NOvA experiment with a 2.5 kiloton detector are expected
in 2012. The full detector will be ready in 2014.

The major aim of neutrino oscillations experiments in the coming years will be
the solution of the problem of the value of the parameter sin2 2θ13. This problem
will be attacked by the T2K and NOvA long baseline accelerator experiments and
new reactor experiments.

The Double Chooz reactor experiment is planned to start in 2010 with one detec-
tor (8.3 ton fiducial mass) at a distance of about 1 km from two reactors (8.6 GWth).
After a running time of 1.5 years the 90% CL limit sin2 2θ13 < 6 · 10−2 will be
reached (if no neutrino oscillations will be observed). In 2011, phase II of the
experiment with the far and near detectors will be started. After a running time
of 3 years with two detectors the sensitivity limit sin2 2θ13 < 3 · 10−2 (90% CL)
will be reached. In the Daya Bay reactor experiment, ν̄e from six reactors in China
(17.4 GWth) will be detected. The fiducial mass of the detectors is 80 ton. Two near
detectors will be installed. It is planned that in 2011 the Daya Bay experiment will
start data taking with all detectors. After 3 years of running time the sensitivity limit
sin2 2θ13 < 1 · 10−2 (90% CL) will be reached.
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In the RENO reactor experiment, ν̄e from six reactors in Korea (16.4 GWth) will
be detected. Two detectors at distances of 150 and 1,500 m will be utilized. The
fiducial mass of the far detector is 15.4 ton. It is planned to start the experiment in
2010. After three years of running time the sensitivity limit of the experiment will
be sin2 2θ13 < 2 · 10−2 (90% CL).

Thus, during 3–5 years after the start of a new generation of reactor and long
baseline accelerator experiments, a sensitivity of a few 10−2 for the parameter
sin2 2θ13 is expected. During these years a decision on a new neutrino facility pre-
sumably will be taken. There are three options for the future neutrino facility: Super-
beams, Neutrino Factory and Beta Beams. We will describe briefly these facilities.
Superbeams are high intensity neutrino beams from pion decays. The technology for
a multi-MW proton accelerator, the source of the superbeam, is the most developed
one. There are, however, several problems concerning experiments searching for
νμ � νe and ν̄μ � ν̄e oscillations with beams from pion decays:

• Detection of electrons require huge low density underground detectors.
• Background from admixture of electron neutrinos produced in kaon and muon

decays and background from π0 produced in NC neutrino processes.
• In order to have comparable neutrino and antineutrino statistics, the antineu-

trino run must last much longer than the neutrino run. In fact, the intensity of
an antineutrino beam (produced in π−-decays) is significantly lower than the
intensity of a neutrino beam (produced in π+-decays); the cross section of the
interaction of antineutrinos with nucleons is about two times smaller than the
neutrino cross section.

At a Neutrino Factory the phase space of muons, produced in decays of low-
energy pions, will be compressed in order to create a muon beam. Then muons
will be accelerated up to a proper energy and injected into a storage ring with long
straight sections. Neutrinos produced in the decay μ− → e− + νμ + ν̄e or in the
decay μ+ → e+ + ν̄μ + νe will be detected. With neutrinos produced in μ+-
decay (μ−-decay), it is possible to investigate the transition νe → νμ (ν̄e → ν̄μ)
(assuming that it is possible to distinguish μ− (μ+) produced in the CC process
νμ+ N → μ− + X (ν̄μ+ N → μ+ + X ) from μ+ (μ−) produced by non-oscillated
ν̄μ’s (νμ’s) in the process ν̄μ+N → μ++ X (νμ+N → μ−+ X )). The comparison
of the probabilities of the transitions νe → νμ and ν̄e → ν̄μ is a direct way to study
the C P violation in the lepton sector.

A Neutrino Factory requires a few-GeV proton accelerator with a very high (∼4
MW) beam power. The construction of the Neutrino Factory is a challenge for accel-
erator physics. Several R&D projects aiming to develop a cooling system, to study
target problems, the problems of a high beam power proton accelerator, etc., are
going on all over the world. A Neutrino Factory presumably is the best choice for
the determination of precise values of the parameter sin2 2θ13 and of the C P phase
δ and the best facility for the determination of the character of the neutrino mass
spectrum. In the Beta Beam facility, electron neutrinos and antineutrinos will be
produced in decays in flight of β-radioactive ions. It was proposed to use beams
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of radioactive 6He and 18Ne ions as sources of ν̄e and νe, respectively (in another
proposal it was proposed to use 8Li and 8B ions). Beta Beams are pure sources of
νe and ν̄e. These beams are an ideal tool for the study of the C P violation in the
lepton sector. Like in the case of the Neutrino Factory there are no systematic errors
connected with the source. However, neutrino energies at the Beta Beam facility are
typically much lower than neutrino energies in the case of the Neutrino Factory. The
most difficult problem of the Beta Beam facility is the problem of the ion-production
yield.

Up to now we have discussed prospects for neutrino oscillation experiments.3 In
conclusion, we will make a few remarks on future measurements of the absolute
neutrino masses and on the search for neutrinoless double β-decay. The Mainz
and Troitsk experiments on the measurement of the endpoint part of the electron
spectrum of the 3H-decay obtained the bound

mβ < 2.2 eV. (12.1)

The next-generation experiment KATRIN (Karlsruhe Tritium Neutrino Experiment)
is under preparation and is expected to start in 2011/2012. The sensitivity of the
experiment to the neutrino mass mβ after a running time of about 5–6 years will be
0.2 eV. If no effect of the neutrino mass will be observed this sensitivity corresponds
to the upper bound

mβ < 0.2 eV (90% CL). (12.2)

In the case that an effect of the neutrino mass will be found, this sensitivity corre-
sponds to mβ = 0.3(0.35) eV at 3(5) σ significance.

The present cosmological bound on the sum of neutrino masses from WMAP
and SDSS observations is

∑

i

mi ≤ 0.7 eV. (12.3)

In the future, with a more precise CMB temperature measurement (PLANCK satel-
lite), with measurements of the weak gravitational lensing and with other data the
sensitivity to the sum of the neutrino masses will be improved to 0.1 eV. This sensi-
tivity is much better than the sensitivity of the terrestrial experiments. It is necessary,
however, to stress that cosmological bounds are model dependent.

New experiments on the search for neutrinoless double β-decay are under prepa-
ration. The crucial issue for these experiment is to reach the required background
suppression. The GERDA experiment with 18 kg of enriched 76Ge will start in 2010.
After a running time of 2 years, the limit T1/2(

76Ge) > 2 · 1025 y (90% CL) will

3 For a detailed discussion of future neutrino facilities and future neutrino oscillation experiments,
see Proceedings of the workshop “European Strategy for Future Neutrino Physics” CERN, Yellow
Report 2009.
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be reached. In the next phase of the experiment with 40 kg of enriched 76Ge, a
sensitivity of T1/2(

76Ge) � 2.5 · 1026 y is expected. A third phase of the experiment
with 500–1,000 kg of enriched 76Ge is considered.

The cryogenic experiment CUORE is presently under construction at the Gran
Sasso laboratory. The detector will consist of 988 cubic natural TeO2 crystals (750 g)
arranged in 19 towers. The completion of the setup is expected in 2012. After a
running time of 5 years, a sensitivity of T1/2(

130Te) � 2.1 · 1026 y is expected.
EXO is a large challenging project (1–10 ton of enriched 136Xe). The tagging

of Ba produced in the decay 136Xe →136 Ba + e + e would allow to suppress
background. The prototype experiment with 200 kg of enriched 136Xe (without
Ba tagging) is under preparation at present. It is expected to reach a sensitivity of
T1/2(

136Xe) � 1 · 1026 y after two years of running.
In the Super-NEMO experiment, the 0νββ-decay of 82Se (100 kg of 82Se spread

among 20 modules) will be searched for. In 2011 the run with one module will be
completed.

In the SN O+ experiment, the 0νββ-decay of enriched 150Nd (50–500 kg in low-
activity scintillator) will be searched for.

In the KamLAND detector, the search for the 0νββ-decay will start in 2011 with
200–400 kg of enriched 136Xe and will be continued in 2013 with 1 ton of enriched
136Xe. After a running time of 5 years, a sensitivity of T1/2(

136Xe) � 1026 y is
expected.

In these new experiments on the search for the 0νββ-decay it is planned to reach
the sensitivity to the effective Majorana mass mββ � a few 10−2 eV. Such values
correspond to the inverted hierarchy of neutrino masses.



Appendix A
Diagonalization of a Hermitian Matrix.
The Case 2 × 2

Let us consider a hermitian operator H . Eigenstates and eigenvalues of the operator
H are given by the equation

H |i〉 = Ei |i〉 . (A.1)

We will assume that the states |i〉 are normalized. We have

〈i |k〉 = δik . (A.2)

Let |α〉 be a full system of normalized and orthogonal states:

〈α′|α〉 = δα′α. (A.3)

In the α-representation we have

∑

α

〈α′|H |α〉 〈α|i〉 = Ei 〈α′|i〉 (A.4)

Equation (A.4) has nonzero solution if the condition

Det(H − E) = 0 (A.5)

is satisfied. This equation determines the eigenvalues of the matrix H.
It is obvious from (A.2) and (A.3) that

∑

α

〈i |α〉 〈α|k〉 = δik (A.6)

and

∑

i

〈α′|i〉 〈i |α〉 = δα′α . (A.7)

From (A.7) and (A.4) we find

Bilenky, S.: Appendix. Lect. Notes Phys. 817, 237–256 (2010)
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〈α′|H |α〉 =
∑

i

〈α′|i〉 Ei 〈i |α〉. (A.8)

Let us determine a matrix U by the following relation

Uαi = 〈α|i〉. (A.9)

From (A.6) and (A.7) follows that U is a unitary matrix:

U U † = 1, U † U = 1. (A.10)

Equation (A.4) in the matrix form can be written as follows

H = U E U †, (A.11)

where Eik = Ei δik .
Two sets of basic vectors |α〉 and |i〉 are connected by the unitary transformation.

In fact we have

|α〉 =
∑

i

|i〉 〈i |α〉 =
∑

i

U∗
αi |i〉, |i〉 =

∑

α

|α〉 〈α|i〉 =
∑

α

|α〉 Uαi . (A.12)

Let us now consider 2 × 2 real, symmetrical matrix H with trace equal to zero. We
have

H =
(−a b

b a

)
, (A.13)

where a and b are real quantities. For the eigenstates and the eigenvalues of the
matrix H we have the following equation

H ui = Ei ui . (A.14)

For the eigenvalues Ei from (A.5) we find from (A.5)

E1,2 = ∓
√

a2 + b2. (A.15)

Further we have

H = O E OT , (A.16)

where O is a real orthogonal 2 × 2 matrix (OT O = 1) and

E =
√

a2 + b2

(−1 0
0 1

)
. (A.17)
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The matrix O has the following general form

O =
(

cos θ sin θ
− sin θ cos θ

)
. (A.18)

From (A.16), (A.17) and (A.18) we find the following equations for the angle θ

a =
√

a2 + b2 cos 2θ, b =
√

a2 + b2 sin 2θ . (A.19)

From these relations we find

tan 2 θ = b

a
, cos 2 θ = a√

a2 + b2
. (A.20)

Let us notice two extreme cases

1. The nondiagonal element b is equal to zero.
In this case θ = 0 (there is no mixing) and E1,2 = ∓ a

2. The diagonal element a is equal to zero.
In this case θ = π/4 (maximal mixing) and E1,2 = ∓ b



Appendix B
Diagonalization of a Complex Matrix

Let us consider a complex n × n matrix M . It is obvious that M M† is the hermitian
matrix with positive eigenvalues. In fact, we have

M M† |i〉 = ai |i〉, (B.1)

where

ai = 〈i | M M†|i〉 =
∑

k

|〈i | M |k〉|2 > 0. (B.2)

Let us put ai = m2
i . We have

M M† = U m2 U †, (B.3)

U is a unitary matrix and (m2)ik = m2
i δik .

The matrix M can be presented in the form

M = U m V †, (B.4)

where m = +√
m2 and1

V † = m−1 U † M (B.5)

The matrix V is an unitary matrix. In fact, from (B.5) we find

V = M† U m−1. (B.6)

From (B.3), (B.5) and (B.6) we have

1 We assumed that all eigenvalues of the matrix M M† are different from zero. Thus, the diagonal
matrix m−1 does exists.
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V † V = m−1 U † M M† U m−1 = m−1 U † U m2 U † U m−1 = 1 (B.7)

Thus, we have shown that a complex n × n nonsingular matrix M can be diagonal-
ized by the bi-unitary transformation (B.4). Equation (B.4) is used in the procedures
for the diagonalization of quark, lepton and neutrino mass terms.



Appendix C
Diagonalization of a Complex Symmetrical
Matrix

Let us consider a complex matrix M which satisfies the condition

M = MT . (C.1)

We have shown in Appendix B that any complex matrix M can be presented in
the form

M = V m W †, (C.2)

where V and W are unitary matrices and mik = mi δik, mi > 0. From (C.2) we
obtain the relation

MT = W † T m V T . (C.3)

From (C.2) and (C.3) we have

M M† = V m2 V †, MT MT † = W † T m2 W T . (C.4)

Taking into account that M is a symmetrical matrix, we obtain the following relation

V m2 V † = W † T m2 W T . (C.5)

From this relation we find

W T V m2 = m2 W T V . (C.6)

Thus, the commutator of the matrix W T V and the diagonal matrix m2 is equal to
zero. We assume that mi �= mk for all i �= k. From (C.6) it follows in this case
that the matrix W T V is diagonal. Taking also into account that W T V is a unitary
matrix we conclude that W T V is a diagonal phase matrix

W T V = S(α), (C.7)

243



244 Appendix C

where

Sik(α) = ei αi δik . (C.8)

From (C.8) we obtain the following relation

W † = S∗(α) V T . (C.9)

Finally from (C.2) and (C.9) we find

M = U m U T , (C.10)

where U = V S∗ (α
2

)
is an unitary matrix.

Thus, we have proved that any symmetrical n × n matrix can be presented in the
form (C.10). The relation (C.10) is used in the procedure of the diagonalization of
the Majorana mass terms.
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