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Preface

These notes are based on lecture courses at Heidelberg University in the Summer
2009 and in the Winter 2010/2011 and on many topical lectures for graduate
students, written up in coffee shops around the world. Its target audience are
students who know at least some field theory and are starting their diploma or
master thesis; carefully studying these notes should put you into a position to start
actual research in LHC physics.

One thing to keep in mind when reading is that the Heidelberg lecture course
includes four hours a week without exercises. This means I calculate everything in
detail on the blackboard. This is why the notes look the way they look. When
reading these notes, take a break here and there, get a coffee and think about the
physics behind the calculation you just followed.

The text is divided into three distinct parts:

• In the first part I focus on Higgs physics and collider searches. To understand
what we are looking for I start with the most minimalistic and not renormal-
izable models describing massive gauge bosons. I then slowly advance to the
usual fundamental Higgs scalar we are really searching for. At the end of this
part what everybody should understand is the usual set of ATLAS or CMS
graphs shown in Fig. 1.6, where many colored lines represent different search
channels and their discovery potential. Many QCD issues affecting Higgs
searches I will skip in the Higgs part and postpone to the…

• …QCD part. Here, I am taking at least one step back and study the theory which
describes Higgs production and everything else at the LHC. Two core discus-
sions shape this part: first, I derive the DGLAP equation by constructing the
splitting kernels. This leads us to the parton shower and to the physical inter-
pretation of resumming different logarithms in the QCD perturbation series.
Second, there are two modern approaches combining parton shower and matrix
element descriptions of jet radiation, which I introduce at least on the level of
simplified models. Throughout the QCD discussion I avoid the more historically
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interesting deep inelastic scattering process and instead rely on the Drell–Yan
process or its inverted R ratio process for motivation and illustration.

• Finally, there are many aspects of LHC physics we need to take into account
simulating LHC events. Some of them, like old fashioned and fat jets, helicity
amplitudes, or missing transverse energy I cover in the third part. This part
should expand in an earlier online version (arXiv:0910.4182), where I will keep
these lecture notes up to date with actual discussions of LHC data.

What is almost entirely missing in this review is an introduction to searches for
new physics completing the Standard Model of particle physics beyond the weak
scale. Covering this topic appropriately would at least double the length of these
notes. For the structure of such models and their signatures I instead refer to our
review article Ref. [1] and in particular to its second chapter.

Last, but not least, the literature listed at the end of each part is not meant to cite
original or relevant research papers. Instead, I collected a set of review papers or
advanced lecture notes supplementing these lecture notes in different directions.
Going through some of these mostly introductory papers will be instructive and
fun once the basics have been covered by these lecture notes.

Heidelberg, June 2011 Tilman Plehn

Reference

1. Morrissey, D.E., Plehn, T., Tait, T.M.P.: New physics at the LHC. arXiv:0912.3259 [hep-ph]
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Chapter 1
Higgs Physics

Understanding the nature of electroweak symmetry breaking—or slightly more
specifically deciphering the Higgs mechanism—is the main goal of the ATLAS and
CMS experiments at the LHC. Observing some kind of Higgs boson and studying its
properties involves many experimental and theoretical issues focused around under-
standing hadron collider data and QCD predictions to unprecedented precision. The
latter will be the main topic of the second half of this lecture.

On the other hand, before we discuss the details of Higgs signatures, backgrounds,
and related QCD aspects we should start with a discussion of electroweak symmetry
breaking. Higgs physics at the LHC might well mean much more than just finding
a light fundamental Higgs boson as predicted by the Standard Model of particle
physics. Therefore, we prefer to follow an effective theory approach. This means
we do not start by writing down the Higgs potential and deriving the measured gauge
boson and fermion masses. Instead, we step by step include gauge boson and fermion
masses in our gauge theories, see what this means for the field content, and show
how we can embed this mechanism in a renormalizable fundamental gauge theory.
Only this last step will lead us to the Standard Model and the Higgs potential.

1.1 Electroweak Symmetry Breaking

As a starting point, let us sketch the Standard Model Lagrangian and what we need
to do to accommodate mass terms for gauge bosons and fermions. As a matter of
fact, in a first step in Sect. 1.1.1 we will try to make our gauge bosons massive
without introducing a physical Higgs field. Even for the SU(2) gauge theory of the
electroweak Standard Model we might get away without a fundamental Higgs boson,
as we will show in Sect. 1.1.2. Only when we worry about quantum fluctuations of
the relevant degrees of freedom we are led to the usual picture of the Higgs potential,
the Higgs boson, and the symmetries related to its implementation.

T. Plehn, Lectures on LHC Physics, Lecture Notes in Physics 844, 1
DOI: 10.1007/978-3-642-24040-9_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Higgs Physics

1.1.1 Massive Photon

Even though this is not the physical problem we are interested in, we start by breaking
electrodynamics, i.e. giving a mass to the (massless) photon of our usual locally
U (1)Q-symmetric Lagrangian. To its kinetic F · F term we would like to add a
photon mass m2 A2/2, which we know is forbidden by the gauge symmetry. The
way around is also adding an innocent looking real (uncharged) scalar field without
a mass and without a coupling to the photon, but with a scalar-photon mixing term
and a non-trivial gauge transformation. The result is called the Boulware–Gilbert
model

L = −1

4
Fμv Fμv + 1

2
e2 f 2 A2

μ +
1

2
(∂μφ)2 − e f Aμ∂

μφ

= −1

4
Fμv Fμv + 1

2
e2 f 2

(
Aμ − 1

e f
∂μφ

)2

, (1.1)

where f is a common mass scale for the photon mass and the mixing. It ensures that
all terms in the Lagrangian have mass dimension four—remembering that bosonic
fields like Aμ and φ have mass dimension one. The additional factor e will become
the usual electric charge, but at this stage it is a dimensionless number without any
specific relevance in this interaction-less Lagrangian. Because all terms in Eq. 1.1
have mass dimension four our theory should be renormalizable.

We can define a simultaneous gauge transformation of both fields in the Lagrangian

Aμ −→ Aμ + 1

e f
∂μχ φ −→ φ + χ, (1.2)

under which the Lagrangian is indeed invariant: the kinetic term for the photon we
leave untouched, so it will be gauge invariant just as it was before. The simultaneous
gauge invariance is then defined to keep the second term in Eq. 1.1 invariant. If we
now re-define the photon field as Bμ = Aμ−∂μφ/(e f )we need to compare the new
and the old kinetic terms

Fμv

∣∣∣
B
= ∂μBv − ∂v Bμ = ∂μ

(
Av − 1

e f
∂vφ

)
− ∂v

(
Aμ − 1

e f
∂μφ

)

= ∂μAv − ∂v Aμ = Fμv

∣∣∣
A
, (1.3)

and then rewrite the Lagrangian of Eq. 1.1 as

L = −1

4
Fμv Fμv + 1

2
e2 f 2 B2

μ = −
1

4
Fμv Fμv + 1

2
m2

B B2
μ . (1.4)

This Lagrangian effectively describes a massive photon field Bμ,which has absorbed
the real scalar φ as its additional longitudinal component. This is because a massless
gauge boson Aμ has only two on-shell degrees of freedom, namely a left handed
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and a right handed polarization, while the massive Bμ has an additional longitudinal
polarization degree of freedom. Without any fundamental Higgs boson appearing, the
massive photon has ‘eaten’ the real scalar field φ. Of course, the new field Bμ is not
simply a photon with a mass term, because this is still forbidden by gauge invariance.
Our way out is to split the massive photon field into the transverse degrees of freedom
Aμ and the longitudinal mode φ with their different gauge transformations given by
Eq. 1.2.

What kind of properties does this field φ need to have, so that we can use it
to provide a photon mass? From the combined gauge transformation in Eq. 1.2 we
immediately see that any additional purely scalar term in the Lagrangian, like a scalar
potential V (φ), needs to be symmetric under the linear shift φ → φ + χ, not to
spoil gauge invariance. This means that we cannot write down polynomial terms φn,

like a mass or a self coupling of φ. An interaction term φAA would not be possible,
either. Only derivative interactions proportional to ∂φ coupling to conserved currents
are allowed. In that case we can absorb the shift by χ into a total derivative in the
Lagrangian.

This example illustrates a few vital properties of Nambu–Goldstone bosons
(NGB). Such massless physical states appear in many areas of physics and are
described by Goldstone’s theorem:

If a global symmetry group is spontaneously broken into a group of lower rank, its
broken generators correspond to physical Goldstone modes. These fields transform
non-linearly under the larger and linearly under the smaller group. They are mass-
less and cannot form a potential, because the non-linear transformation only allows
derivative terms in the Lagrangian. If the smaller symmetry is also broken, the NGBs
become pseudo-NGBs and acquire a mass of the size of this hard-breaking term.

In the special case that the spontaneously broken symmetry is a gauge symmetry
and its breaking induces gauge boson masses, these massive degrees of freedom are
made out of ‘eaten’ Goldstone modes. The gauge boson mass is given by the vacuum
expectation value (VEV) breaking the larger symmetry.

1.1.2 Standard Model Doublets

One of the complications of the Standard Model is its SU(2) doublet structure. In the
last section we have chosen not to introduce a charged SU(2) doublet, which is why
there are no degrees of freedom left after the photon gets its mass. This means that
our toy model is not going to be well suited to provide the three degrees of freedom
needed to make SU(2) gauge bosons massive. What it illustrates is only how by
introducing a neutral scalar particle without an interaction but with a mixing term
we make gauge bosons heavy, in spite of gauge invariance.

Fermion fields have mass dimension 3/2, so we know how mass and interaction
terms in the renormalizable dimension-4 Lagrangian have to look. For example, the
interaction of fermions with gauge bosons is most easily written in terms of covariant
derivatives. The terms
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LD4 = QLi/DQL + Q Ri/DQ R + L Li/DL L + L Ri/DL R − 1

4
Fμv Fμv · · · (1.5)

describe electromagnetic interactions introducing a covariant derivative Dμ = ∂μ+
ieq Aμ with the photon field also appearing in the field strength tensor Fμv = ∂μAv−
∂v Aμ. The same form works for the weak SU(2) interactions, except that the weak
interaction knows about the chirality of the fermion fields, so we have to distinguish
/DL and /DR . The covariant derivatives we write in terms of the SU(2) basis matrices
τ1,2,3 or τ+,−,3, with τ± = (τ1 ± iτ2)/2.

DLμ = ∂μ + ig′
(

q − τ3

2

)
Bμ + igW a

μ

τa

2

= ∂μ + ieq Aμ + igZ

(
−qs2

w +
τ3

2

)
Zμ + i

g√
2

(
τ+W+μ + τ−W−μ

)

DRμ = DLμ

∣∣∣∣
τ=0

τ+ =
(

0 1
0 0

)
τ− =

(
0 0
1 0

)

τ1 =
(

0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)
, (1.6)

The fields Bμ and W a
μ are the new gauge bosons. In the second line we re-write

the covariant derivative in the mass eigenstates, i.e. the photon Aμ and the Z boson.
At this level the two weak couplings g and gZ do not necessarily coincide, but we
will get back to this issue in Sect. 1.1.5.

Before we generalize the Boulware–Gilbert model to the weak gauge symmetry
of the Standard Model it is instructive to review the form of the mass term for massive
gauge bosons following from Eq. 1.6. In particular, there will appear a relative factor
two between the two bases of the Pauli matrices, i.e. in terms of W 1,2 and W±,which
often causes confusion.

Products of the Pauli matrices τ1,2,3 satisfy the relation τiτ j = δi j + iεi jkτk or
the commutator relation [τi , τ j ] = 2iεi jkτk . Summing over indices we see that

∑
i, j

τiτ j =
∑
i, j

(
δi j + iεi jkτk

)
=
∑

δi j + i
∑
i �= j

εi jkτk

=
∑

δi j + i
∑
i< j

(
εi jk + ε j ik

)
τk

=
∑

δi j . (1.7)

The basis of three Pauli matrices we can write in terms of τ1,2,3 as well as in terms
of τ+,−,3. The latter form of the generators corresponds to the two charged and one
neutral vector bosons. While the usual basis is written in terms of complex numbers,
the second set of generators reflects the fact that for SU(2) as for any SU(N) group
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we can find a set of real generators of the adjoint representation. When we switch
between the two bases we only have to make sure we get the factors

√
2 right

√
2
(
τ+W+μ + τ−W−μ

) = √2

(
0 W+μ
0 0

)
+√2

(
0 0

W−μ 0

)

!= τ1W 1
μ + τ2W 2

μ =
(

0 W 1
μ

W 1
μ 0

)
+
(

0 −iW 2
μ

iW 2
μ 0

)

⇔ W±μ =
1√
2

(
W 1
μ ∓ iW 2

μ

)
. (1.8)

To track these numbers of two in the definitions of the weak gauge field we have a
close look at is the dimension-2 mass term for charged and neutral gauge bosons

LD2 = m2
W

2

(
W 1,μW 1

μ +W 2,μW 2
μ

)
+ m2

Z

2
ZμZμ = m2

W W+,μW−μ +
m2

Z

2
ZμZμ.

(1.9)

The relative factor two in front of the W mass corresponds to the factors 1/
√

2 in the
SU(2) generators τ±.

Of course, in the complete Standard Model Lagrangian there are many additional
terms, e.g. kinetic terms of all kinds, but they do not affect our discussion of U (1)Y
and SU (2)L gauge invariance.

Guessing the form of the fermion masses the one thing we have to ensure is that we
combine the left handed and right handed doublets (QL , L L) and singlets (Q R, L R)

properly:

LD3 = −QLm Q Q R − L LmL L R + · · · (1.10)

Following our labeling scheme by mass dimension fermion masses will be included
as LD3. Dirac mass terms simply link SU(2) doublet fields for leptons and quarks
with right handed singlets and give mass to all fermions in the Standard Model. This
helicity structure of mass terms we can easily derive by introducing left handed and
right handed projectors

ψL = 1− γ5

2
ψ ≡ PLψ ψR = 1+ γ5

2
ψ ≡ PRψ, (1.11)

where ψ is a generic Dirac spinor and PL ,R are projectors in this 4 × 4 Dirac space.
At this stage we do not need the explicit form of the gamma matrices which we will
introduce in Eq. (2.106). The mass term for a Dirac fermion reads

ψ1ψ = ψ (PL + PR) ψ

= ψ
(
P

2
L + P

2
R

)
ψ

= ψ†γ0

(
P

2
L + P

2
R

)
ψ with ψ = ψ†γ 0

= ψ†
(
PRγ

0
PL + PLγ

0
PR

)
ψ with {γ5, γμ} = 0

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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= (PRψ)
†γ 0(PLψ)+ (PLψ)

†γ 0(PRψ) with γ
†
5 = γ5,P

†
L ,R = PL ,R

= (PRψ)1(PLψ)+ (PLψ)1(PRψ)

= ψ R1ψL + ψ L1ψR,

(1.12)
while the kinetic term stays diagonal

ψ∂ψ = ψi ∂
(
P

2
L + P

2
R

)
ψ

= ψ (PR∂PL + PL ∂PR) ψ

= (PLψ)∂(PLψ)+ (PRψ)∂(PRψ)

= ψ L ∂ψL + ψ R∂ψR . (1.13)

In general, these mass terms can be matrices in generation space, which implies
that we might have to rotate the fermion fields from an interaction basis into the mass
basis where these mass matrices are diagonal. Flavor physics dealing with such 3 × 3
mass matrices is its own field of physics with its own reviews and lecture notes, so
we will omit this complication here. For our discussion of electroweak symmetry
breaking it is sufficient to study one fermion generation at a time.

The well-known problem with the mass terms in Eq. 1.10 is that they are not
gauge invariant. To understand this issue of fermion masses we check the local weak
SU (2)L transformation

U (x) = exp
(
−iαa(x)

τa

2

)
≡ e−i(α·τ)/2, (1.14)

which only transforms the left-handed fermion fields and leaves the right-handed
fields untouched

L L
U→ U L L QL

U→ U QL

L R
U→ L R Q R

U→ Q R . (1.15)

It is obvious that there is no way we can make left-right mixing fermion mass terms
as shown in Eq. 1.10 invariant under this left handed SU(2) gauge transformation,
where one of the fermion field picks up a factor U and the other is unchanged,

QLm Q Q R
U→ QLU−1m Q Q R �= QLm Q Q R . (1.16)

In analogy to the massive photon case, to write a gauge-invariant Lagrangian for
massive fermions we have to add something else to our minimal Standard Model
Lagrangian. Note that this addition does not have to be a fundamental scalar Higgs
field, dependent on how picky we are with the properties of our new Lagrangian
beyond the issue of gauge invariance.
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To see what we need to add let us also look at the local U(1) transformations
involved. We start with a slightly complicated-looking way of writing the abelian
hypercharge U (1)Y and electric charge U (1)Q transformations, making it more
obvious how they mix with the neutral component of SU(2) to give the electric
charge.

Let us start with the neutral component of the SU(2) transformation, i.e.
V = exp (iβτ3/2). Acting on a field with an SU(2) charge this it not a usual U(1)
transformation. What we can do is combine it with another, appropriately chosen
transformation. This hypercharge transformation is proportional to the unit matrix
and hence commutes with all other matrices

exp(iβq) V † = exp(iβq) exp

(
− i

2
βτ3

)

= exp

(
iβ

y1+ τ3

2

)
exp

(
− i

2
βτ3

)
with q ≡ y1+ τ3

2

= exp

(
i
β

2
y1

)
,

(1.17)

The hypercharge values are yQ = 1/3 and yL = −1. This relation between the
charges is called the Gell–Mann–Nishijima formula. Acting on a left handed field the
factor τ3 above is replaced by its eigenvalue±1 for up-type and down-type fermions.
The U (1)Y charges or quantum numbers y are the quark and lepton hypercharges
of the Standard Model. As required by the above argument, properly combined
with the isospin they give the correct electric charges qQ,L . Since τ3 and the unit
matrix commute with each other the combined exponentials have no additional factor
a la Baker–Campbell–Hausdorff eAeB = eA+Be[A,B]/2. In analogy to Eq. 1.15
left handed and right handed quark and lepton fields transform under this U (1)Y
symmetry as

L L → exp (iβqL) V †L L = exp

(
i
β

2
yL1

)
L L

QL → exp
(
iβqQ

)
V † QL = exp

(
i
β

2
yQ1

)
QL

L R → exp (iβqL) L R

Q R → exp
(
iβqQ

)
Q R . (1.18)

Under a combined SU (2)L and U (1)Y transformation the left handed fermions see
the hypercharge, while the right handed fermions only see the electric charge. Just as
for the SU(2) transformation U we do not even have to compute anything to see that
such different transformations of the left handed and right handed fermion fields do
not allow for a Dirac mass term.
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1.1.3 Sigma Model

One way of solving this problem which at this point really looks like a cheap trick
is to introduce an additional field Σ(x). This field will in some way play the role of
the real scalar field we used for the photon mass generation. Its physical properties
will become clear piece by piece from the way it appears in the Lagrangian and from
the required gauge invariance. The equation of motion for theΣ field will also have
to follow from the way we introduce it in the Lagrangian.

Following the last section, we first introduce Σ into the fermion mass term to
see what it takes to make this mass term gauge invariant under the weak SU(2)
transformation

QLΣm Q Q R
U→ QLU−1Σ(U )m Q Q R

!= QLΣm Q Q R

⇔ Σ → Σ(U ) = UΣ.
(1.19)

If the result should be a dimension-4 Lagrangian the mass dimension ofΣ has to be
m0 = 1. The same we can do for the U (1)Y transformation V

QLΣm Q Q R
V→QLexp

(
−i
β

2
y1

)
Σ(V )m Qexp (iβq) Q R

= QLΣ
(V )exp

(
−i
β

2
y1

)
exp (iβq)m Q Q R

= QLΣ
(V )V m Q Q R

!= QLΣm Q Q R ⇔ Σ → Σ(V ) = ΣV †. (1.20)

where in the second line we use the fact that exp (iβy1/2) always commutes. Together
with Eq. 1.19 this gives us the transformation property we need

Σ → UΣV † . (1.21)

For anyΣ with this property theLD3 part of the Lagrangian has the required U (1)Y ×
SU (2)L symmetry, independent of what this field really means. From the way it
transforms we see that Σ is a 2 × 2 matrix with mass dimension zero. In other
words, including a Σ field in the fermion mass terms gives a U (1)Y and SU (2)L -
invariant Lagrangian, without saying anything about possible representations of Σ
in terms of physical fields

LD3 = −QLΣm Q Q R − L LΣmL L R + h.c.+ · · · (1.22)

In the second step, we worry about the gauge boson masses, starting with the left
handed covariant derivative

DLμ = ∂μ + ig′
(

q − τ3

2

)
Bμ + igW a

μ

τa

2
= ∂μ + ig′ y

2
Bμ + igW a

μ

τa

2
. (1.23)
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Instead of deriving the gauge transformation of Σ let us start with a well-chosen
ansatz and work backwards step by step, as to check that we indeed arrive at the
correct masses.

First, we consistently require that the covariant derivative acting on theΣ field in
the gauge-symmetric Lagrangian reads

DμΣ = ∂μΣ − ig′ΣBμ
τ3

2
+ igW a

μ

τa

2
Σ. (1.24)

If we introduce the abbreviations Vμ ≡ Σ(DμΣ)† and T ≡ Στ3Σ
† we claim we

can write the gauge boson mass terms as

LD2 = −v2

4
Tr[VμVμ] +Δρ v2

8
Tr[T Vμ] Tr[T Vμ] . (1.25)

The trace acts on the 2 × 2 SU(2) matrices. The parameter Δρ is conventional and
will be the focus of Sect. 1.1.5. What we need to show is that this form is gauge
invariant and gives the correct gauge boson masses.

Another question is what additional terms of mass dimension four we can write
down using the dimensionless fieldΣ and which are gauge invariant. Our first attempt
of a building block

Σ†Σ
U,V→ (UΣV †)†(UΣV †) = VΣ†U †UΣV † = VΣ†ΣV † �= Σ†Σ (1.26)

is forbidden by gauge invariance according to the SU(2) transformation of the
sigma field, Eq. 1.20. On the other hand, a circularly symmetric trace Tr(Σ†Σ)→
Tr(VΣ†ΣV †) = Tr(Σ†Σ) changes this into a gauge invariant combination, which
allows for the additional potential terms, meaning terms with no derivatives

LΣ = −μ
2 v2

4
Tr(Σ†Σ)− λ v4

16

(
Tr(Σ†Σ)

)2 + · · · , (1.27)

with properly chosen prefactors μ, v, λ. This fourth term finalizes our construction
of the relevant weak Lagrangian

L = LD2 +LD3 +LD4 +LΣ, (1.28)

organized by mass dimension.
As rule of thumb we will later notice that once we express this potential in terms

of the usual Higgs doublet |φ|2, the prefactors will just be μ and λ. The parameter μ
and the factor v appearing with every power of Σ have mass dimension one, while
λ has mass dimension zero. Higher dimensional terms in a dimension-4 Lagrangian
are possible as long as we limit ourselves to powers of Tr(Σ†Σ).However, they lead
to higher powers in v which we will see makes them higher-dimensional operators
in our complete quantum theory.
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To check for the correct masses in the Standard Model we start with Tr(Σ†Σ)

and assume it acquires a finite (expectation) value after we properly deal with Σ.
The definitely simplest way to achieve this is to assume

Σ(x) = 1 . (1.29)

This choice is called unitary gauge. It looks like a dirty trick to first introduce
Σ(x) = 1 and then use this field for a gauge invariant implementation of gauge
boson masses. Clearly, a constant does not exhibit the correct transformation property
under the U and V symmetries, but we can always work in a specific gauge and only
later check the physical predictions for gauge invariance. Even the way the sigma
field breaks our gauge symmetry we can schematically see from

Σ → UΣV † = U1V † = U V † != 1, (1.30)

which requires U = V to be the remaining U(1) gauge symmetry after including
the Σ field. Certainly, Σ = 1 gives the correct fermion masses in LD3 and makes
the potential LΣ an irrelevant constant. What we need to check is LD2 which is
supposed to reproduce the correct gauge boson masses. Using the covariant derivative
from Eq. 1.24 acting on a constant field we can compute the auxiliary field Vμ in
unitary gauge

Vμ = Σ(DμΣ)† = −igW a
μ

τa

2
+ ig′Bμ

τ3

2

= −igW+μ
τ+√

2
− igW−μ

τ−√
2
− igW 3

μ

τ3

2
+ ig′Bμ

τ3

2

= −i
g√
2

(
W+μ τ+ +W−μ τ−

)− igZ Zμ
τ3

2
(1.31)

with Zμ= cwW 3
μ−sw Bμ and the two coupling constants gZ = g/cw and g′ = gsw/cw.

What is not obvious from this argument is that we can actually write the ratio g′/g
in terms of a rotation angle, which implicitly assumes that we can rotate the B and
W 3 fields into the physical mass-eigenstate photon and Z fields

(
Aμ
Zμ

)
=
(

cw sw

−sw cw

)(
Bμ
W 3
μ

)
. (1.32)

The result in Eq. 1.31 gives us the first of the two terms in the gauge boson mass
Lagrangian LD2

Tr[VμVμ] = −2
g2

2
W+μ W−μTr(τ+τ−)− g2

Z

4
ZμZμTr(τ 2

3 )

= −g2W+μ W−μ − g2
Z

2
ZμZμ, (1.33)



1.1 Electroweak Symmetry Breaking 11

using τ 2± = 0, Tr(τ3τ±) = 0, Trτ±τ∓ = 1, and Tr(τ 2
3 ) = Tr1 = 2. The second

mass term in LD2 proportional to Δρ is equally simple in unitary gauge

T = Στ3Σ
† = τ3

⇒ Tr(T Vμ) = Tr

(
−igZ Zμ

τ 2
3

2

)
= −igZ Zμ

⇒ Tr(T Vμ) Tr(T Vμ) = −g2
Z ZμZμ. (1.34)

Inserting both terms into Eq. 1.25 yields the complete gauge boson mass term

LD2 = −v2

4

(
−g2W+μ W−μ − g2

Z

2
ZμZμ

)
+Δρ v2

8

(
−g2

Z ZμZμ
)

= v2g2

4
W+μ W−μ + v2g2

Z

8
ZμZμ −Δρ v2g2

Z

8
ZμZμ

= v2g2

4
W+μ W−μ + v2g2

Z

8
(1−Δρ) ZμZμ. (1.35)

Identifying the masses with the form given in Eq. 1.9 and assuming universality of
neutral and charged current interactions (Δρ = 0) we find

mW = gv

2
m Z =

√
1−Δρ gZ v

2
Δρ=0= gZ v

2
= gv

2cw
(1.36)

The role of a possible additional and unwanted Z-mass contribution Δρ we will
discuss in Sect. 1.1.5 on custodial symmetry. Given that we know the heavy gauge
boson masses (mW ∼ 80 GeV) and the weak coupling (g ∼ 0.7) from experiment,
these relations experimentally tell us v ∼246 GeV.

Let us just recapitulate what we did until now—using this Σ field and its finite
constant valueΣ = 1 in unitary gauge we have made the fermions and electroweak
gauge boson massive. Choosing this constant finite field value for Σ is not the only
and not the minimal assumption needed to make the gauge bosons heavy, but it leads
to the most compact Lagrangian. From the photon mass example, however, we know
that there must be more to this mechanism. We should for example be able to see
the additional degrees of freedom of the longitudinal gauge boson modes if we step
away from unitary gauge.

If a finite expectation value of the terms in the potential LΣ should be linked to
electroweak symmetry breaking and the gauge boson masses we can guess that the
minimal assumption leading to finite gauge boson masses is 〈Tr(Σ†(x)Σ(x))〉 �= 0
in the vacuum. Every parameterization ofΣ with this property will lead to the same
massive gauge bosons, so they are all physically equivalent—as they should be given
that they are only different gauge choices. In the canonical normalization we write
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1

2
〈Tr(Σ†(x)Σ(x))〉 = 1 ∀x, (1.37)

which instead of our previous Σ(x) = 1 we can also fulfill through

Σ†(x)Σ(x) = 1 ∀x . (1.38)

This means that Σ(x) is a unitary matrix which like any 2 × 2 unitary matrix can
be expressed in terms of the Pauli matrices. Even though this solution still forbids
fluctuations which in the original condition on the expectation value only vanish on
average, in contrast to Σ(x) = 1 it allows a non-trivial x dependence. The unitary
matrix can be parameterized as

Σ(x) = exp

(
− i

v
�w(x)

)
with �w(x) = wa(x)τa, (1.39)

where �w(x) has mass dimension one which is absorbed by the mass scale v. These
fields are a set of scalar Nambu–Goldstone modes. From the photon mass example for
Goldstone’s theorem we know that they will become the missing degrees of freedom
for the three now massive gauge bosons W± and Z. The normalization scale v fixes
the relevant energy scale of our Lagrangian. Because the relation between Σ and �w
is not linear, this is referred to as a non-linear representation of the Σ field. Using
the commutation properties of the Pauli matrices we can expand Σ as

Σ = 1− i

v
�w+ 1

2

(−1)

v2 waτawbτb + 1

6

i

v3 waτawbτbwcτc + O(w4)

= 1− i

v
�w− 1

2v2 wawa1+ i

6v3 wawa �w+ O(w4) using Eq. 1.7

=
(

1− 1

2v2 wawa + O(w4)

)
1− i

v

(
1− 1

6v2 wawa + O(w4)

)
�w. (1.40)

From this expression we can for example read off Feynman rules for the longitudinal
gauge fields �w, which we will use later.

Yet another way of parameterizing the unitary fieldΣ in terms of the Pauli matrices
is the properly normalized expression

Σ(x) = 1√
1+ wawa

v2

(
1− i

v
�w(x)

)
. (1.41)

The different ways of writing the Σ field in terms of the Pauli matrices cannot have
any impact on the physics.

Before we move on and introduce a physical Higgs boson we briefly discuss
different gauge choices and the appearance of Goldstone modes. If we break
SU (2)L × U (1)Y → U (1)Q we expect three Goldstone bosons which become
part of the weak gauge bosons and promote those from massless gauge bosons (with



1.1 Electroweak Symmetry Breaking 13

two degrees of freedom each) to massive gauge bosons (with three degrees of freedom
each). This is the point of view of the unitary gauge, in which we never see Goldstone
modes.

In the general (R − ξ) gauge we can actually see these Goldstone modes appear
in the gauge boson propagators

Δ
μv
V V (q) =

−i

q2 − m2
V + iε

[
gμv + (ξ − 1)

qμqv

q2 − ξm2
V

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−i

q2 − m2
V + iε

[
gμv − qμqv

m2
V

]
unitary gauge ξ →∞

−i

q2 − m2
V + iε

gμv Feynman gauge ξ = 1

−i

q2 − m2
V + iε

[
gμv − qμqv

q2

]
Landau gauge ξ = 0

(1.42)

Obviously, these gauge choices are physically equivalent. However, something has
to compensate, for example, for the fact that in Feynman gauge the whole Goldstone
term vanishes and the polarization sum looks like a massless gauge bosons, while in
unitary gauge we can see the effect of these modes directly. The key is the Goldstone
propagator, i.e. additional propagating scalar degrees of freedom

ΔV V (q
2) = −i

q2 − ξm2
V + iε

, (1.43)

for both heavy gauge bosons (V = Z ,W+). The Goldstone mass
√
ξmV depends

on the gauge: in unitary gauge the infinitely heavy Goldstones do not propagate
(ΔV V (q2)→ 0), while in Feynman gauge and in Landau gauge we have to include
them as particles. From the form of the Goldstone propagators we can guess that
they will indeed cancel the second term of the gauge boson propagators.

These different gauges have different Feynman rules and Green’s functions, even
a different particle content, so for a given problem one or the other might be the most
efficient to use in computations or proofs. For example, the proof of renormalizability
was first formulated in unitary gauge. Loop calculations might be more efficient in
Feynman gauge, because of the simplified propagator structure, while many QCD
processes benefit from an explicit projection on the physical external gluons. Tree-
level helicity amplitudes are usually computed in unitary gauge, etc.

1.1.4 Higgs Boson

At this stage we have defined a perfectly fine electroweak theory with massive gauge
bosons. All we need is a finite vacuum expectation value for Σ, which means this
field spontaneously breaks the electroweak symmetry not by explicit terms in the
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Lagrangian but via the vacuum and relying on an unknown origin of this finite VEV.
If we are interested in physics at or above the electroweak energy scale E ∼ v some
kind of ultraviolet completion of this Σ model should tell us what the Σ field’s
properties as a quantum object are.

If we consider our Σ model itself the fundamental theory and promote the Σ
field to a quantum field like all other Standard Model fields, we need to allow for
quantum fluctuations of Tr(Σ†Σ) around the vacuum value TrΣ†Σ = 2. We can
parameterize these new degrees of freedom as a real scalar field

Σ →
(

1+ H

v

)
Σ , (1.44)

as long as this physical field H has a vanishing vacuum expectation value and therefore

1

2
〈Tr(Σ†Σ)〉 =

〈(
1+ H

v

)2
〉
= 1 (1.45)

The factor in front of the fluctuation term H/v is not fixed until we properly define
the physical Higgs field and make sure that its kinetic term does not come with an
unexpected prefactor different from unity. On the other hand, if we assume that the
neutral Goldstone mode w3 has the correct normalization, the Higgs field should be
added to Σ such that it matches this Goldstone, as we will see later in this section
and then in more detail in Sect. 1.2.

The non-dynamical limit of this Higgs ansatz is indeed our sigma model in unitary
gaugeΣ†Σ = 1, equivalent to H = 0. Interpreting the fluctuations around the non-
trivial vacuum as a physical Higgs field is the usual Higgs mechanism, named after
one of The University of Edinburgh’s most famous sons.

For this new Higgs field LΣ defines a potential following the original form
Eq. 1.27

LΣ = −μ
2v2

2

(
1+ H

v

)2

− λv4

4

(
1+ H

v

)4

+ · · · (1.46)

The dots stand for higher-dimensional terms which might or might not be there.
We will have a look at them in Sect. 1.2.1. Some of them are not forbidden by any
symmetry, but they are not realized at tree level in the Standard Model either. The
minimum of this potential occurs at H = 0 . But as mentioned already, we will have
the entire Sect. 1.2.1 on the Higgs potential.

Let us recall one last time how we got to the Higgs mechanism from a static
gauge invariant theory, the Σ model. From an effective field theory point of view
we can introduce the Goldstone modes and with them gauge boson masses without
introducing a fundamental Higgs scalar. All we need is the finite vacuum expecta-
tion value for Σ to spontaneously break electroweak symmetry. For this symmetry
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breaking we do not care about quantum fluctuations of the Σ field, i.e. we do not
distinguish between the invariant TrΣ†Σ and its expectation value. Any properties
of the Σ field as a quantum field are left to the ultraviolet completion, which has to
decide for example if Σ is a fundamental or composite field. This way, the Higgs
field could just be one step in a ladder built out of effective theories. Such a non-
fundamental Higgs field is the basis for so-called strongly interacting light Higgs
models where the Higgs field is a light composite field with a different canonical
normalization as compared to a fundamental scalar.

Counting degrees of freedom we should be able to writeΣ as a complex doublet
with four degrees of freedom, three of which are eaten Goldstones and one is the
fundamental Higgs scalar. For example, we can write

Σ →
(

1+ H

v

)
1− i

v
�w = 1

v

(
v+ H − iw3 −w2 − iw1

w2 − iw1 v+ H + iw3

)
=
√

2

v
(φ̃φ). (1.47)

The last step is just another way to write the 2 × 2 matrix as a bi-doublet in terms of
the two SU(2) doublets containing the physical Higgs field and the Goldstone modes
for the massive vector bosons W and Z

φ̃ = 1√
2

(
v+ H − iw3

w2 − iw1

)
φ = 1√

2

( −w2 − iw1
v+ H + iw3

)
. (1.48)

The vacuum expectation value v appearing in the φ and φ̃ doublets corresponds
to 〈Σ〉 = 1. In this form the normalization of the two real scalars w3 and H is
indeed the same, so their kinetic terms will be of the same form. The over-all factors
1/
√

2 in the definition of the doublets are purely conventional and sometimes lead
to confusion when for some people v= 246 GeV while for others v= 174 GeV. The
latter choice is a little less common but has the numerological advantage of v ∼ mt .

In the Standard Model the two Higgs doublets φ and φ̃ give mass to up-type and
down-type fermions.

Apart from problems arising when we ask for higher precision and quantum
corrections, the effective sigma model clearly breaks down at large enough energies
which can excite the fluctuations of the sigma field and for example produce a Higgs
boson. This is the job of the LHC, which is designed and built to take us into an
energy range where we can observe the structure of electroweak symmetry breaking
beyond the effective theory and the Goldstone modes.

A last side remark—instead of deriving both relevant doublets for up and down-
type fermion masses from one physical Higgs field φ and φ̃ we can include two sigma
fields in the fermion-mass terms

LD3 = −QLm QuΣu
1+ τ3

2
Q R − QLm QdΣd

1− τ3

2
Q R + · · · (1.49)

with the isospin projectors (1 ± τ3)/2. In the gauge boson mass terms they appear
as

LD2 = v2
u

2
Tr
[
V (u)
μ V (u)μ

]
+ v2

d

2
Tr
[
V (d)
μ V (d)μ

]
. (1.50)
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Each of the two Σ fields we can express in the usual representation

Σ(u,d) = 1+ H (u,d)

vu,d
− i �w(u,d)

vu,d
�w(u,d) = w(u,d)a τa . (1.51)

From the gauge-boson masses we know that

v2
u + v2

d = v2 ⇔ vu = v sin β and vd = v cosβ, (1.52)

which means that the longitudinal vector bosons are

�w = cosβ �w(u) + sin β �w(d). (1.53)

This two-Higgs doublet model is for example the minimal choice in supersymmetric
extensions of the Standard Model. The ratio of its two vacuum expectation values
tan β = vu/vd is one of the most important new physics parameters for example in B
physics. But type-II two-Higgs doublet models where one Higgs doublet gives mass
to up-type and another one to down-type fermions are much more general than that.

1.1.5 Custodial Symmetry

Analyzing the appearance ofΔρ in Eqs. 1.25 and 1.36 we will see that not only higher
energies, but also higher precision leads to a breakdown of the effective sigma model.
At some point we start seeing how the relative size of the W and Z masses are affected
by quantum fluctuations of the sigma field, i.e. the Higgs boson.

From the construction in Sect. 1.1.3 we know that electroweak symmetry breaking
by a sigma field or Higgs doublet links the couplings of neutral and charged currents
firmly to the masses of the W and Z bosons. On the other hand, the general renormal-
izable Lagrangian for the gauge boson masses in Eq. 1.25 involves two terms, both
symmetric under SU (2)L ×U (1)Y and hence allowed in the electroweak Standard
Model. The mass values coming from Tr[VμVμ] give mW and m Z proportional to
g ≡ gW and gZ . Their relative size can be expressed in terms of the weak mixing
angle θw, together with the assumption that G F or g universally govern charged
current (W±) and neutral-current (W 3) interactions. At tree level this experimen-
tally very well tested relation is

m2
W

m2
Z

= g2

g2
Z

= cos2 θw ≡ c2
w. (1.54)

In general, we can introduce a free parameter ρ which breaks this relation

g2
Z → g2

Z ρ m Z → m Z
√
ρ, (1.55)

which from measurements is very strongly constrained to be unity. In LD2 the
Z-mass term proportional to Δρ precisely predicts such a deviation ρ �= 1.
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To bring our Lagrangian into agreement with measurements we better find a reason
to constrainΔρ to zero, and the SU (2)×U (1) gauge symmetry unfortunately does
not do the job.

Looking ahead, we will find that in the Standard Model ρ = 1 is actually violated
at the one-loop level. This means we are looking for an approximate symmetry
of the Standard Model. What we can hope for is that this symmetry is at least a
good symmetry in the SU (2)L gauge sector and slightly broken elsewhere. One
possibility along those lines is to replace the SU (2)L × U (1)Y symmetry with a
larger SU(2)L × SU(2)R symmetry. At this stage this extended symmetry does not
have to be a local gauge symmetry, a global version of SU (2)L combined with a
global SU (2)R is sufficient. This global symmetry would have to act like

Σ → UΣV † U ∈ SU (2)L V ∈ SU (2)R

Tr(Σ†Σ)→ Tr
(

VΣ†U †UΣV †
)
= Tr(Σ†Σ). (1.56)

In this setup, the three components of Wμ form a triplet under SU (2)L and a singlet
under SU (2)R . If we cannot extract τ3 as a special generator of SU (2)L and combine
it with the U(1) hypercharge the W and Z masses have to be identical, corresponding
to cw = 1 at tree level.

In the gauge boson and fermion mass terms computed in unitary gauge the Σ
field becomes identical to its vacuum expectation value1.On the symmetry breaking
VEV the combined global SU(2) transformations act as

〈Σ〉 → 〈UΣV †〉 = 〈U1V †〉 = U V † != 1. (1.57)

The last step, i.e. the symmetry requirement for the Lagrangian can only be satisfied
if we require U = V . In other words, the vacuum expectation value for Σ breaks
SU (2)L × SU (2)R to the diagonal subgroup SU (2)L+R . The technical term is
precisely defined this way—the two SU(2) symmetries reduce to one remaining
symmetry which can be written as U = V . Depending on if we look at the global
symmetry structure in the unbroken or broken phase the custodial symmetry group
is either SU (2)R or SU (2)L+R . Its effect should nevertheless be the same.

Beyond tree level the global SU (2)L × SU (2)R symmetry structure can protect
the relation between the gauge boson masses shown in Eq. 1.54. In other words, the
custodial symmetry structure protects the tree-level value of ρ= 1.

From Eq. 1.56 we immediately see that it allows all terms in the Higgs potential
LΣ, but it changes the picture not only for gauge boson but also for fermion masses.
If fermions reside in SU (2)L as well as SU (2)R doublets we cannot implement any
difference between up-type and down-type fermions in the Lagrangian. The custodial
symmetry is only intact in the limit for example of identical third generation fermion
masses mb = mt .

The measured masses mt � mb affect the protected tree-level value ρ = 1: self
energy loops in the W propagator involve a mixture of the bottom and top quark, while
the Z propagator includes pure bottom and top loops. Skipping the loop calculation
we quote their different contributions to the gauge boson masses as
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Δρ ⊃ 3G F

8
√

2π2

(
m2

t + m2
b − 2

m2
t m2

b

m2
t − m2

b

log
m2

t

m2
b

)

= 3G F

8
√

2π2

(
2m2

b + m2
bδ − 2m2

b
1+ δ
δ

log (1+ δ)
)

m2
t = m2

b(1+ δ)

= 3G F

8
√

2π2

(
2m2

b + m2
bδ − 2m2

b

(
1

δ
+ 1

)(
δ − δ

2

2
+ δ

3

3
+ O(δ4)

))

= 3G F

8
√

2π2
m2

b

(
2+ δ − 2− 2δ + δ + δ2 − 2

3
δ2 + O(δ3)

)

= 3G F

8
√

2π2
m2

b

(
1

3
δ2 + O(δ3)

)

= G F m2
W

8
√

2π2

((
m2

t − m2
b

)2
m2

W m2
b

+ · · ·
)

(1.58)

In the Taylor series above the assumption of δ being small is of course not realistic,
but the result is nevertheless instructive: the shift vanishes very rapidly towards the
chirally symmetric limit mt ∼ mb. The sign of the contribution of a chiral fermion
doublet to Δρ is always positive. In terms of realistic Standard Model mass ratios it
scales like m2

t /m2
W .

We have already argued that hypercharge or electric charge break custodial
symmetry. From the form of the covariant derivative DμΣ including a single τ3
we can guess that the SU (2)R symmetry will not allow B field interactions which
are proportional to sw ∼ √1/4. A second contribution to the ρ parameter therefore
arises from Higgs loops in the presence of g′ �= 0

Δρ ⊃ −11G F m2
Z s2

w

24
√

2π2
log

m2
H

m2
Z

. (1.59)

The sign of this contribution implies that larger Higgs masses give negative contri-
butions to the ρ parameter.

There is another parameterization of the same effect, namely the T parameter.
It is part of an effective theory parameterization of deviations from the tree-level rela-
tions between gauge boson masses, mixing angles, and neutral and charged current
couplings. In general, for example the mass ratio mW /m Z depends on all three para-
meters S,T,U. Typical experimental constraints form an ellipse in the S vs T plane
along the diagonal. However, for example the leading contribution from the different
bottom and top masses can be translated into a contribution αΔT ∼ Δρ, centered
around T = 0.

There are two reasons to discuss these loop contributions breaking the custo-
dial symmetry in the Standard Model. First, Δρ is experimentally very strongly
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Fig. 1.1 Allowed range of
Higgs masses in the Standard
Model after taking into
account electroweak
precision data, most notably
the ρ parameter contribution
from the Higgs itself, Eq.
1.59. Figure from the LEP
electroweak working group,
with updates available under
http://lepewwg.web.cern.
ch/LEPEWWG

mH [GeV]

July 2010 158 GeV

constrained by electroweak precision measurements, which means that alterna-
tive models for electroweak symmetry breaking usually include the same kind of
approximate custodial symmetry by construction. As a matter of fact, this constraint
is responsible for the almost death of (technicolor) models which describe the Higgs
boson as a bound state under a new QCD-like interaction.

Even more importantly, in the Standard Model we can measure the symmetry
violations from the heavy quarks and from the Higgs sector shown in Eqs. 1.58 and
1.59 in electroweak precision measurements. Even though the Higgs contributions
depend on the Higgs mass only logarithmically, we can then derive an upper bound
on the Higgs mass of the order of O(200 GeV), as shown in Fig. 1.1. This strongly
suggests that if we are faced (mostly) with the Standard Model at the weak scale the
Tevatron and at the LHC will be looking for a fairly light Higgs boson—or something
that very much looks like a light fundamental Higgs boson.

However, we should firmly keep in mind that the ρ parameter only points to a
light fundamental Higgs boson if we assume the Standard Model Higgs mechanism.
For any other model it might point to something similar to a light Higgs field, but
does not have to be fundamental. Including additional fields in a model can even turn
around this prediction and prefer a heavy Higgs state.

One last question is: how do physical modes which we introduce as Σ(x) =
exp(−i �w/v) transform under the different global SU(2) symmetries which make up
the custodial symmetry and can we construct a model of electroweak symmetry
breaking around the custodial symmetry? This brings us back to the example of the
photon mass, where we first saw Goldstone’s theorem at work.

http://lepewwg.web.cern.ch/LEPEWWG
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Under the usual SU (2)L symmetry we know the transformation readsΣ → UΣ
with U = exp(−iα · τ/2). The transformation properties of the Goldstone modes �w
follow from the infinitesimal transformations

1− i
w · τ

v
→
(
1− i

α · τ
2

) (
1− i

w · τ
v

)

= 1− i

v

(
w · τ + v

2
α
)
+ · · ·

!= 1− i
w′ · τ

v
implying w→ w′ = w+ v

2
α , (1.60)

so U is a non-linear transformation, since w′a is not proportional to wa . The
same structure we find for the SU (2)R transformation. This model of electroweak
symmetry breaking we call a non-linear sigma model. When we construct a
Lagrangian this non-linear symmetry transformation forbids mass terms, gauge inter-
actions, Yukawa couplings, and quadratic potential terms for these modes in Σ. As
discussed in Sect. 1.1.1 only derivative terms like the kinetic term and derivative
couplings are allowed under the SU (2)L and SU (2)R symmetries.

Similarly, we can evaluate the transformation of these physical modes under the
diagonal symmetry group SU (2)L+R with Σ → UΣU † and instead find

1− i
w · τ

v
→
(
1− i

α · τ
2

) (
1− i

w · τ
v

) (
1+ i

α · τ
2

)

=
(
1− i

α · τ
2

) ([(
1− i

w · τ
v

)
,
(
1+ i

α · τ
2

)]

+
(
1+ i

α · τ
2

) (
1− i

w · τ
v

))

=
(
1− i

α · τ
2

) [
−i

w · τ
v
, i
α · τ

2

]
+
(
1− i

w · τ
v

)
+ · · ·

=
(
1− i

α · τ
2

) 1

2v
2iτ(α × w)+

(
1− i

w · τ
v

)
+ · · ·

= 1− i
w · τ

v
+ i

τ(α × w)

v
+ · · ·

implying wi → w′i = wi − εi jkα j wk , (1.61)

which is a linear transformation. In the fourth line we have used the commutator

[τi , τ j ] = 2iεi jkτk ⇒ (α · τ)(w · τ) = α · w+ iτ(α × w) using Eq. 1.7

⇒ [(α · τ), (w · τ)] = 2iτ(α × w).
(1.62)

In other words, when we transform the physical modes corresponding to the broken
generators in Σ by the larger symmetry SU (2)L × SU (2)R we find a non-linear
transformation, while the approximate symmetry SU (2)L+R leads to a linear trans-
formation. This is precisely what Goldstone’s theorem predicts for the spontaneous
breaking of a global electroweak symmetry.



1.2 The Standard Model 21

1.2 The Standard Model

Before we discuss all the ways we can look for a Higgs Boson at the LHC we briefly
review the Higgs mechanism in the Standard Model. In the last sections we have
seen that there does not really need to be such a fundamental scalar, but electroweak
precision data tells us whatever it is the Higgs should look very similar to a light
fundamental scalar, unless we see some seriously new states and effects around the
weak scale.

To make it a little more interesting and since we are already in the mood of not
taking the Standard Model Higgs sector too literally, in Sect. 1.2.1 we include higher
dimensional operators on top of the usual renormalizable (dimension-4) operators
in the Higgs potential. Such operators generally occur in effective theories based on
ultraviolet completions of our Standard Model, but their effects are often small or
assumed to be small.

Once we want to analyze the behavior of the Higgs sector over a wide range of
energy scales, like we will do in Sects. 1.2.2 and 1.2.3, we need to take the Standard
Model seriously and in turn find constraints on the structure and the validity of our
Standard Model with a fundamental Higgs boson.

1.2.1 Higgs Potential to Dimension Six

In the renormalizable Standard Model all terms in the Lagrangian are defined to be
of mass dimension four, like mf ψ̄ψ or ψ̄∂μψ or Fμv Fμv. This mass dimension is
easy to read off if we remember that for example scalar fields or vector-boson fields
contribute mass dimension one while fermion spinors carry mass dimension 3/2.
The same renormalizability assumption we usually make for the Higgs potential,
even though from the previous discussion it is clear that higher dimensional terms—
stemming from higher powers of Tr(Σ†Σ)—can and should exist.

Starting from the Higgs doublets introduced in Eq. 1.48 and for now ignoring the
Goldstone modes the simplified doublet

φ = 1√
2

( −w2 − iw1
v+ H + iw3

)
∼ 1√

2

(
0

v+ H

)
(1.63)

leaves us with only two renormalizable potential terms in Eq. 1.46, now written in
terms of the Higgs doublet and with μ2 and λ as prefactors

−LΣ = VSM = μ2|φ|2 + λ|φ|4 + const. (1.64)

To emphasize that renormalizability is a strong and not necessarily very justified
theoretical assumption in LHC Higgs physics, we allow for more operators in the
Higgs potential. If we expand the possible mass dimensions and the operator basis,
there are exactly two gauge-invariant operators of dimension six we can write down
in terms of the Higgs doublet |φ|2, i.e. before electroweak symmetry breaking
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O1 = 1

2
∂μ(φ†φ) ∂μ(φ†φ) O2 = −1

3
(φ†φ)3. (1.65)

The prefactors in the Lagrangian are conventional, because to construct a Lagrangian
we have to multiply these operators with general coefficients of mass dimension
minus two, parameterized in terms of an unknown mass scale Λ

LD6 =
2∑

i=1

fi

Λ2 Oi . (1.66)

As long as the typical energy scale E in the numerator in our matrix element is small
(E � Λ), the corrections from the additional operators are small as well.

There is in principle one more possible operator (∂μφ)†(φ†φ)(∂μφ),but it violates
the custodial symmetry and leads to a very large contribution to the electroweak
precision parameter ΔS = − f3v2/(2Λ2). Such large contributions to S are firmly
ruled out by electroweak precision data, so we ignore this operator in our analysis.

Before we compute the Higgs potential including O2 we look at the effects of
the dimension-6 operator O1. It contributes to the kinetic term the Higgs field in the
Lagrangian, before or after symmetry breaking

O1 = 1

2
∂μ(φ†φ) ∂μ(φ†φ)

= 1

2
∂μ

(
(H̃ + v)2

2

)
∂μ
(
(H̃ + v)2

2

)

= 1

2
(H̃ + v)2 ∂μ H̃ ∂μ H̃ . (1.67)

We use the symbol H̃ for the Higgs field as part of φ, because from the formula
above it is likely that there will be a difference between H̃ and the physical Higgs
field H at the end of the day. The contribution from O1 leaves us with a combined
kinetic term

Lkin = 1

2
∂μ H̃∂μ H̃

(
1+ f1v2

Λ2

)
!= 1

2
∂μH ∂μH

⇔ H =
√

1+ f1v2

Λ2 H̃ ≡ N H̃ . (1.68)

This is a simple rescaling to define the canonical kinetic term in the Lagrangian, but
it also means we have to make sure we replace H̃ with H in the entire Higgs sector.

Taking into account the additional dimension-6 operator O2 we can write the
Higgs potential as

V = μ2|φ|2 + λ|φ|4 + f2

3Λ2 |φ|6 . (1.69)
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The positive sign in the last term of the potential V ensures that for f2 > 0 the potential
is bounded from below for large field values φ. The non-trivial minimum at φ �= 0
is given by

∂V

∂|φ|2 = μ
2+2λ|φ|2+ 3 f2

3Λ2 |φ|4
!= 0 ⇔ |φ|4+2λΛ2

f2
|φ|2+μ

2Λ2

f2

!= 0, (1.70)

defining the minimum position |φ|2 = v2/2. The two solutions of the quadratic
equation for v2/2 are

v2

2
= −λΛ

2

f2
±
[(

λΛ2

f2

)2

− μ
2Λ2

f2

] 1
2

= λΛ2

f2

⎡
⎣−1 ±

√
1− μ2 f2

Λ2λ2

⎤
⎦

= λΛ2

f2

[
−1 ±

(
1− f2μ

2

2λ2Λ2 −
f 2
2 μ

4

8λ4Λ4 + O(Λ−6)

)]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−μ

2

2λ
− f2μ

4

8λ3Λ2 + O(Λ−4) = v2
0

2

(
1+ f2v2

0

4λΛ2 + O(Λ−4)

)

−2λΛ2

f 2
2

+ O(Λ0)

(1.71)

The first solution we have expanded around the Standard Model minimum,
v2

0= − μ2/λ. The second, high-scale solution is not the vacuum relevant for our
Standard Model. Note that from the W, Z masses we know that v = 246 GeV so v is
really our first observable in the Higgs sector, sensitive to the higher-dimensional
operators.

To compute the mass of the Higgs state we could study the second derivative of
the potential in the different directions, but we can also simply collect all quadratic
terms contributing to the Lagrangian by hand. The regular dimension-4 contributions
in terms of the shifted Higgs field H̃ are

VSM = μ2 (H̃ + v)2

2
+ λ(H̃ + v)4

4
= μ2

2

(
H̃2 · · ·

)
+ λ

4

(
· · · 6H̃2v2 · · ·

)
. (1.72)

Only the terms in the parentheses contribute to the Higgs mass in terms of μ, v and
λ. Including the additional potential operator in terms of H̃ gives

O2 = −1

3
(φ†φ)3

= −1

3

(H̃ + v)6

8

= − 1

24

(
H̃6 + 6H̃5v+ 15H̃4v2 + 20H̃3v3 + 15H̃2v4 + 6H̃v5 + v6

)
.

(1.73)
Combining both gives us the complete mass term to dimension six
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Lmass = −μ
2

2
H̃2 − 3

2
λv2 H̃2 − f2

Λ2

15

24
v4 H̃2

= −1

2

(
μ2 + 3λv2 + 5

4

f2v4

Λ2

)
H̃2

= −1

2

(
−λv2

(
1+ f2v2

4λΛ2

)
+ 3λv2 + 5

4

f2v4

Λ2

)
H̃2 Eq. 1.71 twice

= −1

2

(
2λv2 − f2v4

4Λ2 +
5

4

f2v4

Λ2

)(
1+ f1v2

Λ2

)−1

H2 using Eq. 1.68

= −1

2

(
2λv2 + f2v4

Λ2

)(
1− f1v2

Λ2 + O(Λ−4)

)
H2

= −λv2
(

1+ f2v2

2λΛ2

)(
1− f1v2

Λ2 + O(Λ−4)

)
H2

= −λv2
(

1− f1v2

Λ2 +
f2v2

2Λ2λ
+ O(Λ−4)

)
H2 != −m2

H

2
H2

m2
H = −2λv2

(
1− f1v2

Λ2 +
f2v2

2Λ2λ

)
.

(1.74)
Including dimension-6 operators the relation between the vacuum expectation value,
the Higgs mass and the factor in front of the |φ|4 term in the potential changes. Once
we measure the Higgs mass at the LHC, we can compute the trilinear and quadrilinear
Higgs self couplings by collecting the right powers of H in the Higgs potential, in
complete analogy to the Higgs mass above. We find

Lself =− m2
H

2v

[(
1− f1v2

2Λ2 +
2 f2v4

3Λ2m2
H

)
H3 − 2 f1v2

Λ2m2
H

H∂μH∂μH

]

− m2
H

8v2

[(
1− f1v2

Λ2 +
4 f2v4

Λ2m2
H

)
H4 − 4 f1v2

Λ2m2
H

H2∂μH∂μH

]
. (1.75)

This gives the Feynman rules

(1.76)

and

(1.77)
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From this discussion we see that in the Higgs sector the Higgs self couplings as
well as the Higgs mass can be computed from the Higgs potential and depend on the
operators we take into account. As mentioned before, in the Standard Model we use
only the dimension-4 operators which appear in the renormalizable Lagrangian and
which give us for the Higgs mass and self couplings

m2
H = 2λv2 = −2μ2 and Lself = −m2

H

2v
H3 − m2

H

8v2 H4, (1.78)

with v = v0 = 246 GeV.When the Higgs sector becomes more complicated, not the
existence but the form of such relations between masses and couplings will change.

With this information we could now start computing Higgs observables at the
LHC, but let us first see what else we can say about the Higgs potential from a
theoretical point of view.

1.2.2 Unitarity

If we want to compute transition amplitudes at very high energies the Goldstone
modes become very useful. In the V rest frame we can write the three polarization
vectors of a massive gauge boson as

ε
μ
T,1 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ε

μ
T,2 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ε

μ
L =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. (1.79)

If we boost V into the z direction, giving it a four-momentum pμ = (E, 0, 0, | �p|),
the polarization vectors become

ε
μ
T,1 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ε

μ
T,2 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ε

μ
L =

1

mV

⎛
⎜⎜⎝
| �p|
0
0
E

⎞
⎟⎟⎠ E�mV−→ 1

mV

⎛
⎜⎜⎝
| �p|
0
0
| �p|

⎞
⎟⎟⎠ ≡ 1

mV
pμ.

(1.80)
Very relativistic gauge bosons are dominated by their longitudinal polarization
|εμL | ∼ E/mV � 1. This longitudinal degree of freedom is precisely the Gold-
stone boson. This means that at high energies we can approximate the complicated
vector bosons Z ,W± as scalar Goldstone bosons w0,w±. This comes in handy for
example when we next talk about unitarity as a constraint on the Higgs sector. This
relation between Goldstones and gauge bosons at very high energies is called the
equivalence theorem.

Based on the equivalence theorem we can compute the amplitude for W+W− →
W+W− scattering at very high energies (E � mW ) in terms of scalar Goldstones
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bosons. Three diagrams contribute to this processes: a four-point vertex, the s-channel
Higgs exchange and the t-channel Higgs exchange:

For that we need some basic Feynman rules, for example the Goldstone couplings
to the Higgs boson and the four-Goldstone couplings. We start with the Higgs doublet,
now including the Goldstone modes

φ = 1√
2

(−w2 − iw1
v+ H + iw3

)

φ†φ = 1

2

(
w2

1 + w2
2 + w2

3 + (v+ H)2
)

(
φ†φ

)2 = 1

4

(∑
i

w2
i

)2

+ 1

2
(v+ H)2

∑
i

w2
i +

1

4
(v+ H)4

= 1

4

(∑
i

w2
i

)2

+
(

vH + v2

2
+ H2

2

)∑
i

w2
i + O(w0), (1.81)

where in the last step we neglect all terms without the Goldstone fields. For the poten-
tial we then get, only keeping the relevant terms contributing to the four-Goldstone
and Higgs–Goldstone–Goldstone couplings at dimension four

V = μ2|φ|2 + λ|φ|4 ⊃ λ|φ|4 = m2
H

2v2 |φ|4

= m2
H

2v2

⎡
⎣1

4

(∑
i

w2
i

)2

+ vH
∑

i

w2
i + O(w0)

⎤
⎦

= m2
H

8v2

(∑
i

w2
i

)2

+ m2
H

2v
H
∑

i

w2
i + O(w0) (1.82)

Focussing on the scattering of charged Goldstones w±w±→w±w± we use the corre-
sponding fields w± = (w1 ± iw2)/

√
2. They appear in the above expression as

w2
1 + w2

2 = 2w+w−, so we find the terms

V = m2
H

8v2 4(w+w−)2 + m2
H

2v
H2w+w− + · · ·

= m2
H

2v2 w+w−w+w− + m2
H

v
Hw+w− + · · · , (1.83)



1.2 The Standard Model 27

which fix the two Feynman rules we need. Linking the Lagrangian to a Feynman rule
involves one complication: for each positively charged Goldstone in the vertex there
are two ways we can identify them with the Lagrangian fields. In addition, there are
also two choices to identify the two negatively charged Goldstones, which implies
an additional combinatorial factor four in the Feynman rule. Including a common
factor (−i) the two Feynman rules then become −2im2

H/v
2 and −im2

H/v.
The amplitude is given in terms of the Mandelstam variables s and t which describe

the momentum flow p2 through the two Higgs propagators and which we will prop-
erly introduce in Sect. 2.1.1

A = −2im2
H

v2 +
(
−im2

H

v

)2
i

s − m2
H

+
(
−im2

H

v

)2
i

t − m2
H

= − im2
H

v2

[
2+ m2

H

s − m2
H

+ m2
H

t − m2
H

]
. (1.84)

For this process we want to test the unitarity of the S matrix, which we write
in terms of a transition amplitude S = 1 + i A. The S matrix should be unitary to
conserve probability

1
!=S†S = (1− i A†)(1+ i A) = 1+ i(A − A†)+ A† A

⇔ A† A = −i(A − A†). (1.85)

If we sandwich (A− A†) between identical asymptotically free fields, which means
that we are looking at forward scattering with a scattering angle θ → 0, we find in
the high-energy limit or for massless external particles

−i〈 j |A − A∗T | j〉 = −i〈 j |A − A∗| j〉 = 2ImA(θ = 0)

⇒ σ ≡ 1

2s
〈 j |A† A| j〉 = 1

s
ImA(θ = 0) . (1.86)

Assuming that our Lagrangian is hermitian this imaginary part corresponds only to
absorptive terms in the scattering amplitude. This is the usual formulation of the
optical theorem reflecting unitarity in terms of the transition amplitude A.

To include the dependence on the scattering angle θ we decompose the transition
amplitude into partial waves

A = 16π
∞∑

l=0

(2l + 1)Pl(cos θ)al with
∫ 1

−1
dx Pl(x)Pl ′(x) = 2

2l + 1
δll ′ ,

(1.87)
ordered by the orbital angular momentum l. Pl are the Legendre polynomials of
the scattering angle θ, which obey an orthogonality condition. The scattering cross
section including all prefactors and the phase space integration is then given by

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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σ =
∫

d�
|A|2

64π2s

= (16π)2

64π2s
2π
∫ 1

−1
d cos θ

∑
l

∑
l ′
(2l + 1)(2l ′ + 1) ala

∗
l ′ Pl(cos θ)Pl ′(cos θ)

= 8π

s

∑
l

2(2l + 1) |al |2 = 16π

s

∑
l

(2l + 1) |al |2.
(1.88)

The relation between the integral over the scattering angle θ and the Mandelstam
variable t we will discuss in more detail in Sect. 2.1.1. Applied to this perturbative
series in partial waves the optical theorem requires

16π

s
(2l + 1) |al |2 != 1

s
16π(2l + 1) Im al ⇔ |al |2 != Im al . (1.89)

using Pl(cos θ = 1) = 1. This condition we can rewrite as

(Re al)
2 +

(
Im al − 1

2

)2

= 1

4
⇒ |Re al | < 1

2
(1.90)

once we recognize that the condition on Im al and on Re al is a unit cycle around
al = (0, 1/2) with radius 1/2.

It is important to remember that in the above argument we have formulated the
constraint for each term in the sum over the Legendre polynomials. Mathematically,
this is well justified, but of course there might be physics effects which lead to
a systematic cancellation between different terms. This is why the constraint we
compute is referred to as perturbative unitary. For Goldstone scattering we compute
the supposedly leading first term in the partial wave expansion from the amplitude

a0 = 1

16πs

∫ 0

−s
dt |A| = 1

16πs

∫ 0

−s
dt

m2
H

v2

[
2+ m2

H

s − m2
H

+ m2
H

t − m2
H

]

= m2
H

16πv2

[
2+ m2

H

s − m2
H

− m2
H

s
log

(
1+ s

m2
H

)]

= m2
H

16πv2

[
2+ O

(
m2

H

s

)]
. (1.91)

In the high-energy limit s � m2
H this translates into an upper limit on the Higgs

mass which in Eq. 1.84 enters as the Goldstone coupling in the numerator

m2
H

8πv2 <
1

2
⇔ m2

H < 4πv2 = (870 GeV)2 . (1.92)

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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This is the maximum value of m H maintaining perturbative unitarity for W W →
W W scattering. Replacing the Higgs mass by the self coupling we can formulate
the same constraint as λ < 2π. In this form we see that perturbative unitarity goes
right to the limitations of perturbation theory, which means that we should include
higher order effects as well as higher dimensional operators to get a reliable numerical
prediction in the range of m H � 1 TeV. In the following section we will have another
less perturbatively limited look at the behavior of large λ.

Of course, if we limit s to a finite value this bound changes, and we can compute
a maximum scale smax which leaves W W → W W perturbatively unitary for fixed
m H : for m H � v this typically becomes

√
smax ∼ 1.2 TeV. This number is one of

the motivations to build the LHC as a high energy collider with a partonic center-of-
mass energy in the few-TeV range. If something should go wrong with the Standard
Model Higgs sector we can expect to see something else curing unitarity around the
TeV scale.

One last but very important comment we need to make: this unitarity argument
only works if the WWH coupling is exactly what it should be. While perturbative
unitarity only gives us a fairly rough upper limit on m H , it also uniquely fixes gW W H

to its Standard Model value. Any sizeable deviation from this value again means new
physics appearing at the latest around the mass scales of Eq. 1.92.

Looking at processes like W W → f f̄ or W W → W W H or W W → H H H we
can exactly the same way fix all Higgs couplings in the Standard Model, including
gH f f , gH H H , gH H H H . The most important result of the unitarity test is probably
not the upper bound on the Higgs mass, but the underlying assumption that the
unitarity test only works in the presence of one Higgs boson if all Higgs couplings
look exactly as predicted by the Standard Model.

1.2.3 Renormalization Group Analysis

Two additional theoretical constraints we can derive from the renormalization group
equation of the Higgs potential, specifically from the renormalization scale depen-
dence of the self coupling λ(Q2). Such a scale dependence arises automatically when
we encounter ultraviolet divergences and absorb the 1/ε poles into a minimal counter
term. We will discuss this running of couplings in more detail in Sect. 2.2.1 for the
running QCD coupling αs . In the case of a running quartic Higgs coupling λ the
relevant s, t and u-channel diagrams only depending on λ itself are

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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Skipping the calculation we quote the complete renormalization group equation
including diagrams with the Higgs boson, the top quark and the weak gauge bosons
inside the loops

dλ

dlogQ2 =
12λ2 + 6λλ2

t − 3λ4
t − 3

2λ
(
3g2

2 + g2
1

)+ 3
16

(
2g4

2 + (g2
2 + g2

1)
2
)

16π2 ,

(1.93)
with λt =

√
2mt/v. This formula will be the basis of the discussion in this section.

The first regime we study is where the Higgs self couplingλ becomes strong. Fixed
order perturbation theory as we use it in the unitarity argument runs into problems in
this regime and the renormalization group equation is the appropriate tool to describe
this region. The leading term in Eq. 1.93 reads

dλ

dlogQ2 =
1

2Q

dλ

d Q
= 1

16π2 12λ2 + O(λ) = 3

4π2 λ
2 + O(λ). (1.94)

Because of the positive sign on the right-hand side the quartic coupling will
become stronger and stronger and eventually diverge for larger scales Q2.Obviously,
this divergence should not happen in a physical model and will give us a constraint on
the maximum value of λ allowed. The approximate renormalization group equation
we can solve by replacing λ = g−1

dλ

d logQ2 =
d

d logQ2

1

g
= − 1

g2

dg

d logQ2
!= 3

4π2

1

g2

⇔ dg

d logQ2 = −
3

4π2 ⇔ g(Q2) = − 3

4π2 logQ2 + C. (1.95)

A boundary condition λ(Q2 = v2) = λ0 fixes the integration constant C

g0 = 1

λ0
= − 3

4π2 log v2 + C ⇔ C = g0 + 3

4π2 log v2

⇒ g(Q2) = − 3

4π2 logQ2 + g0 + 3

4π2 log v2 = − 3

4π2 log
Q2

v2 + g0

⇔ λ(Q2) =
[
− 3

4π2 log
Q2

v2 +
1

λ0

]−1

= λ0

[
1− 3

4π2 λ0log
Q2

v2

]−1

.

(1.96)

Starting from scales Q∼ v where the expression in brackets is close to one and
moving towards larger scales the denominator becomes smaller until λ actually hits
a pole at the critical value Qpole
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Fig. 1.2 Triviality or Landau
pole (upper) and stability
bounds (lower) for the
Standard Model Higgs boson
in the m H − Q plane.
Similar figures first appeared
in Ref. [1], involving this
kind of physics argument
from Ref. [2]

1− 3

4π2 λ0 log
Q2

pole

v2
!= 0 ⇔ 3

4π2 λ0 log
Q2

pole

v2 = 1

⇔ log
Q2

pole

v2 = 4π2

3λ0

⇔ Qpole = v exp
2π2

3λ0
= v exp

4π2v2

3m2
H

(1.97)

Such a pole is called a Landau pole and gives us a maximum scale beyond which we
cannot rely on our perturbative theory to work. In the upper line of Fig. 1.2 we show
Qpole versus the Higgs mass, approximately computed in Eq. 1.97. As a function of
the Higgs mass Qpole gives the maximum scale were our theory is valid, which means
we have to reside below the upper line in Fig. 1.2. Turning the argument around, for
given Qpole we can read off the maximum allowed Higgs mass which in the limit of
large cutoff values around the Planck scale 1019 GeV becomes m H � 180 GeV.

This limit is often referred to as the triviality bound, which at first glance is
precisely not what this theory is—trivial or non-interacting. The name originates
from the fact that if we want our Higgs potential to be perturbative at all scales, the
coupling λ can only be zero everywhere. Any finite coupling will hit a Landau pole
at some scale. Such a theory with zero interaction is called trivial.

After looking at the ultraviolet regime we can go back to the full renormalization
group equation Eq. 1.93 and ask a completely different question: how long will
λ > 0 ensure that our Higgs potential is bounded from below?

This bound is called the stability bound. On the right hand side of Eq. 1.93 there
are two terms with a negative sign which in principle drive λ through zero. One
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of them vanishes for small λ ∼ 0, so we can neglect it. In the small-λ regime we
therefore encounter two finite competing terms

dλ

dlogQ2 ∼
1

16π2

[
−3

4m4
t

v4 +
3

16

(
2g4

2 +
(

g2
2 + g2

1

)2
)]

⇔ λ(Q2) ∼ λ(v2)+ 1

16π2

[
−12m4

t

v4 + 3

16

(
2g4

2 +
(

g2
2 + g2

1

)2
)]

log
Q2

v2 .

(1.98)
The usual boundary condition at λ(v2) = m2

H/(2v2) is the starting point from which
the top Yukawa coupling drives λ to zero at another critical scale λ(Q2

stable) = 0
which depends on the Higgs mass m H . The second (smaller) contribution from the
weak gauge coupling ameliorates this behavior

λ(v2) = m2
H

2v2
!= − 1

16π2

[
−12m4

t

v4 + 3

16

(
2g4

2 +
(
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1
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)]

log
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v2
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1

8π2
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12m4

t

v4 − 3

16

(
2g4

2 +
(

g2
2 + g2

1

)2
)]

log
Q2

stable

v2

⇔ m H =
{

70 GeV for Qstable = 103 GeV
130 GeV for Qstable = 1016 GeV

. (1.99)

From Eq. 1.98 we see that only for energy scales below Qstable(m H ) the Higgs
potential is bounded from below and our vacuum stable. For a given maximum
validity scale Qstable this stability bound translates into a minimum Higgs mass
balancing the negative slope in Eq. 1.98 for which our theory is then well defined.
In Fig. 1.2 we show Qstable as the lower curve, above which our consistent theory
has to reside.

Summarizing what we know about the Higgs mass in the Standard Model we
already have indirect experimental as well as theory constraints on this otherwise
undetermined parameter.

Strictly in the Standard Model, electroweak precision data points to the mass range
m H � 200 GeV. This means at the LHC we are either looking for a light Higgs boson
or we should expect some drastic modifications to our Standard Model which could
alter this picture significantly and would be hard to miss and even more exciting to
observe.

From the renormalization group we have two pieces of information on the Higgs
mass, again in the renormalizable Standard model: the Landau pole or triviality bound
gives an upper limit on m H as a function of the cutoff scale. Vacuum stability gives
a lower bound on m H as a function of the cutoff scale. Running both cutoff scales
towards the Planck mass Qpole, Qstable → 1019 GeV, we see in Fig. 1.2 that only
Higgs mass values around m H = 130 · · · 180 GeV are allowed for a fundamental
Standard Model.
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Fig. 1.3 Branching ratios of
the Standard-Model Higgs
boson as a function of its
mass, computed with
HDECAY. Off-shell effects
in the decays to WW and ZZ
are taken into account.
Figure found for example in
Refs. [3, 4]

1.3 Higgs Decays

Signatures for new particles at colliders consist of a production process and a decay
pattern. Both, the production and the decay can contribute to unique kinematic
features which we can use to extract signal from background events. The actual
new particle is then described by a Breit–Wigner propagator for unstable particles
which we will discuss in detail in Sect. 2.1.2. Since the Higgs boson is a scalar
there are no correlations between production and decay process, which simplifies
the calculation and simulation of Higgs signatures.

Unlike the production processes the Higgs decay pattern is as simple as it can
be. At tree level all decay rates are determined by the Higgs coupling to Standard
Model particles, which are fixed by unitarity. The rule for different Higgs decays is
simple; because by definition the Higgs field couples to all particles (including itself)
proportional to their masses it will preferably decay to the heaviest states allowed by
phase space. This goes back to the condition 〈Σ〉 = 1 translated into the exclusive
appearance of the combination (v + H) in the Higgs field φ and in the Lagrangian.

This behavior we see in Fig. 1.3. Starting at low masses this first applies to decays
to ττ and bb̄. The relative size of their branching ratios around 10 : 90% is given by
their Yukawa couplings in the appropriate renormalization scheme (yb/yτ ∼ 1.4)
times an additional color factor Nc = 3 for the bottom quarks. Once the (off-shell)
decays to WW open, they very soon dominate. The dominant decays to bottom pairs
and W pairs become equal for Higgs masses around 130 GeV.

Because of the small mass difference between the W and Z bosons the decay
to ZZ is not as dominant, compared to the WW decay which has two degrees of
freedom (W+W− and W−W+) in the final state. In particular in the region where
the W decays first becomes on-shell we see a drop of in the still off-shell Z decays.
For large Higgs masses the ratio of H → W W and H → Z Z decays is fixed by the
relative factor of two, corresponding to the number of degrees of freedom forming

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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the final state. Above the top threshold the t t̄ decay becomes sizeable, but never
really dominant.

Because the bottom Yukawa coupling is so small, mb/mW � 1/30, one-loop
induced couplings can almost compete with it. In particular the loop-induced decay
to two photons plays an important role in LHC phenomenology. It proceeds via a
top and a W triangle which enter with opposite signs in the amplitude, i.e. interfering
destructively. The larger W contribution fixes the sign of the loop-induced coupling.

The structure of the γ γ H coupling is similar to the production via the loop-
induced ggH coupling which we will discuss in Sect. 1.4. The reason for considering
this decay channel are the LHC detectors. To extract a Higgs signal from the back-
grounds we usually try to measure the four-momenta of the Higgs decay products
and reconstruct their invariant mass. The signal should then peak around m H while
the backgrounds we expect to be more or less flat. The LHC detectors, in particular
CMS, are designed to measure the photon momentum and energy particularly well.
The resolution on mγ γ will at least be a factor of 10 better than for any other decay
channel, except for muons. Moreover, photons do not decay, so we can use all photon
events in the Higgs search, while for example hadronically decaying W/Z → 2 jets
are not particularly useful at the LHC. These enhancement factors make the Higgs
decay to two photons a promising signature, in spite of its small branching ratio
around 2 · 10−3.

Because an observed Higgs sector can deviate from the minimal Standard Model
assumptions in many ways the LHC or other future colliders will study the different
Higgs decays and, as a function of m H , answer the questions

• Are gauge-boson couplings proportional to mW,Z ?
• Are these couplings dimension-3 operators?
• Are fermion Yukawa couplings proportional to m f ?
• Is there a Higgs self coupling, i.e. a remnant of the Higgs potential?
• Do λH H H and λH H H H show signs of higher-dimensional operators?
• Are there any other unexpected effects, like a Higgs decay to invisible particles?

But before we decay the Higgs we need to produce it . . .

1.4 Higgs Production in Gluon Fusion

Looking for the Higgs boson at hadron colliders starts with bad news: at tree level
the Higgs hardly couples to light-flavor quarks and has no coupling to gluons. This
is because the Higgs boson couples to all Standard Model particles proportional to
their mass—this is the same operator they get their mass from. Because the SU (3)C
symmetry of QCD is not broken there is no coupling to gluons at all.

On the other hand, the protons at the LHC contain a lot of gluons, again something
we will talk about in more detail in Chap. 2, so the question is if we can find and use a
loop-induced coupling of two gluons to the Higgs. In spite of the expected suppression

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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Fig. 1.4 Left production cross section for a Standard-Model Higgs boson at the LHC, as a function
of the Higgs mass. Figure from Ref. [3]. Right updated version including higher order corrections

of the corresponding cross section by a one-loop factor (g2/(16π2))2 we would hope
to arrive at an observable production cross-section pp → H. Numerically, it will
turn out that the production of Higgs bosons in gluon fusion is actually the dominant
process at the LHC, as shown in Fig. 1.4.

1.4.1 Effective Gluon–Higgs Coupling

If an effective ggH coupling should be mediated by a closed Standard Model particle
loop the top is the perfect candidate: on the one hand it has a strong coupling to gluons,
and on the other hand it has the largest of all Standard Model couplings to the Higgs
boson, mt/v ∼ 0.7. The corresponding Feynman diagram is

We construct this effective coupling in three steps, starting with the Dirac trace
occurring the top loop. All momenta are defined as incoming with k2

1 = k2
2 = 0 and

p2 = m2
H .The Dirac indices of the two gluons areμ, v and the loop momentum is q,

so in the first step we need to compute

Tμv = Tr
[
(/q + mt )γ

μ(/q + /k1 + mt )γ
v(/q + /k1 + /k2 + mt )

]
. (1.100)
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The calculational problem is the tensor structure of this trace. Because of gauge
invariance we can neglect terms proportional to kμ1 and kv

2; they would not survive
the multiplication with the transverse gluon polarization (k · ε = 0). In a so-called
axial gauge we could also get rid of the remaining terms proportional to kv

1 and kμ2 .
However, there is a better way to compute this trace. We know that there is

no tree-level Higgs coupling of the Higgs to two gluons, which would correspond
to the fields H GμGμ with mass dimension three in the Lagrangian. So we need
to find another operator mediating such a coupling, keeping in mind that it is loop
induced and can therefore include a mass suppression by powers of the top mass.
The Higgs can also couple to the field strength in the invariant form H GμvGμv

with Gμv ≡ ∂μAv − ∂v Aμ + O(A2). This operator has mass dimension five
and arises from the dimension-6 gauge-invariant object φ†φGμvGμv after breaking
SU (2)L .

The factor in front of this term is the effective coupling we are going to compute
in this section. Before that it pays to briefly look at the operator itself. Switching
from position space and its momentum operator into momentum space ∂ → ik

GμvGμv = −
(
k1μA1v − k1v A1μ

) (
k2μA2v − k2v A2μ

)+ O(A3)

= −2 [(k1k2)(A1 A2)− (k1 A2)(k2 A1)]+ O(A3)

= −2(k1k2)A1μA2v

[
gμv − kv

1kμ2
k1k2

]
+ O(A3)

= −m2
H A1μA2v

[
gμv − kv

1kμ2
k1k2

]
+ O(A3) (1.101)

shows that the gauge invariant operator linking exactly two gluon fields to a Higgs
field has to be proportional to the transverse tensor

Pμv
T =

1√
2

(
gμv − kv

1kμ2
(k1k2)

)

with Pμv
T PTμv = 1 and Pμv

T k1μ = 0 = Pμv
T k2v. (1.102)

Using this known tensor structure of Tμv as defined in Eq. 1.100 we can extract the
scalar form factor F from the Dirac trace using

Tμv = F Pμv
T ⇔ PTμvTμv = PTμv Pμv

T F = F. (1.103)

This way we project out the relevant gluon tensor structure or the relevant degrees of
freedom of the two gluons contributing to this effective coupling. Terms involving a
larger number of gluon fields are related to this ggH coupling by non-abelian SU(3)
gauge invariance.

One thing to admit at this stage is that nobody in the world really computes Dirac
traces by hand anymore. There are powerful programs, like FORM, which do this
job for us. Using it we find
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PTμvTμv = 4mt√
2

(
−m2

H + 3m2
t −

8

m2
H

(k1q)(k2q)− 2(k1q)+ q2

)
. (1.104)

Inside this trace there appears the loop momentum q, which we in our second step
we have to consider as part of the loop integration. The effective ggH vertex includes
the loop integral

∫
d4q

iπ2

Tμv

[q2 − m2
t ][(q + k1)2 − m2

t ][(q + k1 + k2)2 − m2
t ]
. (1.105)

The non-trivial qμ dependence of the numerator observed in Eq. 1.104 we can
take care of using a few tricks. For example, we use the relation q2/(q2 − m2

t ) =
1+m2

t /(q
2−m2

t ) and then shift q, knowing that the final result for this integral will
be finite. This is non-trivial piece of information, because most loop calculations
lead to ultraviolet divergences, which need to be removed by first regularizing the
integral and then renormalizing the parameters. The reason why we do not see any
divergences in this process is that for a renormalization we would need something
to renormalize, i.e. a leading order process which receives quantum corrections.
However, we only compute this one-loop amplitude because there is no tree-level
vertex, i.e. nothing to renormalize, which means no ultraviolet divergences.

While these tricks help a little, we still do not know how to remove the (k1q)(k2q)
term in Eq. 1.104. The method of choice is a Passarino-Veltman reduction which
turns tensor integrals into scalar integrals, where a scalar integral does not have
powers of the loop momentum in the numerator. For example, the scalar three-point
function is given by

C(k2
1 , k2

2 ,m2
H ;mt ,mt ,mt ) ≡

∫
d4q

iπ2
1

[q2 − m2
t ][(q + k1)

2 − m2
t ][(q + k1 + k2)

2 − m2
t ]
.

(1.106)
Combining our Dirac trace in Eq. 1.104 with the tensor integral in Eq. 1.105 and the
applying a reduction algorithm gives us

∫
d4q

iπ2

PTμvTμv

[...][...][...] =
4mt√

2

[
2+

(
4m2

t − m2
H

)
C(0, 0,m2

H ;mt ,mt ,mt )
]
.

(1.107)
The first term not proportional to any scalar integral has a curious origin. It comes
from a combination of O(ε) terms from the Dirac trace in n = 4 − 2ε dimensions
and a two-point function which for the integration measure 1/ iπ2 always includes
the ultraviolet divergence 1/ε.

Scalar integrals we can for example calculate using the Feynman parameterization

1

A1 A2 · · · An
=
∫ 1

0
dx1 · · · dxnδ

(∑
xi − 1

) (n − 1)!
(x1 A1 + x2 A2 + · · · + xn An)n

,

(1.108)
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but we usually obtain shorter analytical expressions using the Cuskosky cutting rule
which links the imaginary part of a diagram or a scalar integral to the sum of all cut
Feynman graphs.

The cut rule is directly related to the unitarity of the S matrix and the optical
theorem discussed in Sect. 1.2.2. Limiting ourselves to scalar amplitudes/integrals,
the cut rule tells us that the sum of all cut one-loop or squared scalar diagrams
has to vanish, including the two external cuts which correspond to the untouched
amplitude A and its complex conjugate A∗. This gives us a very useful expression
for the imaginary part of the amplitude

−i
(

A − A∗
) = 2ImA

!= 16π2
∑

cut graphs

A. (1.109)

The factor 16π2 corresponds to the integral measure in the scalar integrals which can
be arranged such that d4q/(iπ2) gives a typical prefactor of one. Cutting diagrams
means replacing all internal propagators by 1/(q2 − m2) → 2πθ(q0)δ(q2 − m2).

From this imaginary part we compute the complete amplitude or scalar integral. If
we know the pole or cut structure of the amplitude, we can make use of the Cauchy
integral for a complex analytic function A(z)

A(z) = 1

2π i

∮
counter-clockwise

dz′ A(z′)
z′ − z

, (1.110)

and compute the unknown real part of A(q2) integrating such that the kinematic cut
for real values to the right of q2 = m2

1 + m2
2 is outside the integration path

ReA(q2) = 1

2π i

∮
dq ′2 i ImA(q ′2)

q ′2 − q2

= 1

2π

∫ ∞
(m2

1+m2
2)

dq ′2 ImA(q ′2 + iε)− ImA(q ′2 − iε)

q ′2 − q2

≡ 1

π

∫ ∞
(m2

1+m2
2)

dq ′2 Im+A(q ′2)
q ′2 − q2

. (1.111)

This step assumes a sufficiently fast convergence on the integration contour for large
momenta. This method of computing for example scalar integrals is known to produce
the most compact results.

The finite scalar three point function which appears in our effective coupling
Eq. 1.107 has the form
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C(0, 0,m2
H ;mt ,mt ,mt ) = 1

m2
H

∫ 1

0

dx

x
log

(
m2

H x(1− x)− m2
t

(−m2
t )

)

= 1

m2
H

∫ 1

0

dx

x
log

(
1− x(1− x)

m2
H

m2
t

)

= 1

2m2
H

log2

⎡
⎣−1+

√
1− 4m2

t /m2
H

1−
√

1− 4m2
t /m2

H

⎤
⎦ 4m2

t

m2
H

≡ τ < 1.

(1.112)
For general top and Higgs masses it reads

C(0, 0,m2
H ;mt ,mt ,mt ) = −2 f (τ )

m2
H

with f (τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
sin−1

√
1

τ

]2

τ > 1

− 1
4

[
log

(
1+√1− τ
1−√1− τ

)
− iπ

]2

τ < 1

, (1.113)

including imaginary or absorptive terms for τ < 1. The dimensionless variable
τ is the appropriate parameter to describe the behavior of this scalar integral. For
example the low-energy limit of the scalar integral, i.e. the limit in which the top
loop becomes heavy and cannot be resolved by the external energy of the order of
the Higgs mass, will be given by τ � 1 which means m H < 2mt . In contrast to what
many people who use such effective vertices assume, the expression in Eq. 1.113 is
valid for arbitrary Higgs and top masses not just in the heavy top limit.

Expressing our Dirac trace and loop integral in terms of this function f (τ ) we
find for our effective coupling in Eq. 1.107

∫
d4q

iπ2

PTμvTμv

[...][...][...] =
4mt√

2

(
2−

(
4m2

t − m2
H

) 2 f (τ )

m2
H

)

= 4mt√
2
(2− 2 (τ − 1) f (τ ))

= 8mt√
2
(1+ (1− τ) f (τ )). (1.114)

Using this result we can as the third and last step of our calculation collect all
factors from our Feynman diagram and compute the effective ggH coupling
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F = − i3 (−igs)
2 imt

v
Tr(T aT b)

iπ2

16π4

8mt√
2
(1+ (1− τ) f (τ ))

= g2
s mt

v

δab

2

i

16π2

8mt√
2
(1+ (1− τ) f (τ ))

= g2
s

v

δab

2

i

16π2

8√
2

m2
H τ

4
(1+ (1− τ) f (τ ))

= ig2
s δ

ab 1

16
√

2π2

m2
H

v
τ (1+ (1− τ) f (τ ))

= iαs δ
ab 1

4
√

2π

m2
H

v
τ (1+ (1− τ) f (τ )), (1.115)

where the numerical factors originate from the closed fermion loop, the three top
propagators, the two top-gluon couplings, the top Yukawa coupling, the color trace,
the unmatched loop integration measure, and finally the result computed in Eq. 1.114.

Based on Eq. 1.101 which including prefactors reads

F Pμv
T A1μA2v = F

−GμvGμv√
2m2

H

, (1.116)

we can include the complete form factor in the effective Lagrangian. This finally
defines the Feynman rule we are interested in

LggH ⊃ gggH

v
H GμvGμv with gggH = −i

αs

8π
τ [1+ (1− τ) f (τ )],

(1.117)
dropping the δab. It is important to notice that the necessary factor in front of the
dimension-5 operator is 1/v and not 1/mt .This is a particular feature of this coupling,
which does not decouple for heavy top quarks because we have included the top
Yukawa coupling in the numerator. Without this Yukawa coupling, the heavy top
limit τ →∞ of the expression would be zero, as we will see in a minute.

Of course, just like we have three-gluon and four-gluon couplings in QCD we
can compute the gggH and the ggggH couplings from the ggH coupling simply
using gauge invariance. This set of n-gluon couplings to the Higgs boson is again
not an approximate result in the top mass. Gauge invariance completely fixes the
n-gluon coupling to the Higgs via one exact dimension-5 operator in the Lagrangian.
These additional gluon field arise from the commutator of two gluon field in the field
strength tensor, so they only exist in non-abelian QCD and cannot be generalized to
the photon-photon-Higgs coupling.

1.4.2 Low-Energy Theorem

The general expression for gggH is not particularly handy, but for light Higgs bosons
we can write it in a more compact form. We start with a Taylor series for f (τ ) in the
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heavy-top limit τ � 1

f (τ ) =
[

sin−1 1

τ 1/2

]2

=
[

1

τ 1/2 +
1

6τ 3/2 + O(τ−5/2)

]2

= 1

τ
+ 1

3τ 2 + O(τ−3)
τ→∞−→ 0, (1.118)

and combine it with all other τ -dependent terms from Eq. 1.117

τ [1+ (1− τ) f (τ )] = τ
[

1+ (1− τ)
(

1

τ
+ 1

3τ 2 + O(τ−3)

)]

= τ
[

1+ 1

τ
− 1− 1

3τ
+ O(τ−2)

]

= τ
[

2

3τ
+ O(τ−2)

]

= 2

3
+ O(τ−1), implying gggH = −i

αs

12π
. (1.119)

In this low-energy or heavy-top limit where we have decoupled the top quark from
the set of propagating Standard Model particles. The ggH coupling does not depend
on mt anymore and gives a finite result. Computing this finite result in Eq. 1.115
we included the top Yukawa coupling in the numerator. We emphasize again that
while this low-energy approximation is very compact to analytically write down
the effective ggH coupling, it is not necessary to numerically compute processes
involving the effective ggH coupling.

In this low-energy limit we can easily add more Higgs bosons to the loop.
Attaching an external Higgs leg to the gluon self energy diagram simply means
replacing one of the two top propagators with two top propagators and adding a
Yukawa coupling

1

/q − mt
�→ 1

/q − mt

√
2mt

v

1

/q − mt
. (1.120)

This we can compare to a differentiation with respect to mt

√
2mt

v

∂

∂mt

1

/q − mt
∼ −
√

2mt

v

−1

(/q − mt )(/q − mt )
∼ 1

/q − mt

√
2mt

v

1

/q − mt
.

(1.121)
This treatment including a gamma matrix in /q = γμqμ is, strictly speaking, nonsense.
However, it gives us an idea how we can in the limit of a heavy top derive the ggHn

couplings from the gluon self energy or the ggH coupling

gggHn+1 = m2
t
∂

∂mt

(
1

mt
gggHn

)
. (1.122)
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The first two effective couplings with one or two external Higgs legs are the triangular
form factor gggH = −iαs/(12π) and the box form factor gggH H = +iαs/(12π). To
obtain the correct mass dimension each external Higgs field appears as H/v . Using
log(1 + x) = −∑n=1(−x)n/n we can eventually re-sum this series of effective
couplings in the form

LggH = GμvGμv
αs

π

(
H

12v
− H2

24v2 + · · ·
)
= αs

12π
GμvGμv log

(
1+ H

v

)
.

(1.123)

In Sect. 1.2.2 we note that there should be a relative factor between the Lagrangian
and the Feynman rule accounting for more than one way to identify the external legs
of the Feynman rule with the fields in the Lagrangian. For n neutral Higgs fields the
effective coupling has to include a factor of 1/n which is precisely the denominator
of the logarithm’s Taylor series.

Such a closed form of the Lagrangian is very convenient for simple calculations
and gives surprisingly exact results for the gg→ H production rate at the LHC, as
long as the Higgs mass does not exceed roughly twice the top mass. However, for
example for gg → H+ jets production its results only hold in the limit that all jet
momenta are much smaller than mt . It also becomes problematic for example in the
gg → H H process close to threshold, where the momenta of slow-moving Higgs
bosons lead to an additional scale in the process. We will come back to this process
later.

1.4.3 Signatures

To discuss the Higgs production for example in gluon fusion we would normally
need to know how to deal with gluons inside the incoming protons, how to parame-
terize the phase space of the Higgs decay products, and how to kinematically distin-
guish interesting events from others. All of this we will piece by piece introduce in
Sect. 2.1. In contrast, throughout the following sections on Higgs production at the
LHC we will limit ourselves to some very basic phenomenological features and
postpone any discussion on how to compute these features.

Without knowing any theoretical particle physics we can discuss the main feature
or problem of hadron collider physics: there is no such thing as a signal without
a background. More precisely, there is no kinematic configuration which is unique
to a signal event and cannot appear as an unlucky combination of uninteresting
Standard Model or QCD processes and detector effects. This implies that any LHC
measurement will always be a statistics exercise in some kind of event counting
combined with a probability estimate on the signal nature of a given event.

The first quantity we can compute and analyze at colliders is the total number
of events expected from a certain production process in a given time interval. This

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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number of events is the product of the proton–proton LHC luminosity measured in
inverse femtobarns, the total production cross section measured in femtobarns, and
the detection efficiency measured in per-cent. In other words, a predicted event event
rate it is split into a collider-specific number describing the initial state, a process-
specific number describing the physical process, and a detector-specific efficiency
for each particle in the final state.

The latter is the easiest number to deal with: over the sensitive region of the
detector, the fiducial volume, the detection efficiency is a set of numbers depending
on the nature of the detected particle and its energy. This number is very good for
muons, somewhere between 90 and 100%, and less than 1/3 for tau leptons. Other
particles typically range somewhere in between.

For theorists luminosity is simply a conversion number between cross sections
which we compute for a living and event numbers. People who build colliders use
units involving seconds and square meters, but for us inverse femtobarns work better.
Typical numbers are: a typical year of LHC running at design luminosity could deliver
up to 10 inverse femtobarns per year in the first few years and three to ten times that
later. At the end of 2011 one inverse femtobarn is a realistic estimate. The key
numbers and their orders of magnitude for typical signals are

Nevents = σtot ·L L = 10 · · · 300 fb−1 σtot = 1 · · · 104 fb. (1.124)

Different cross sections for Tevatron and LHC processes are shown in Fig. 1.5.
Finally, talking about cross sections and how to compute them we need to

remember that at the LHC there exist two kinds of processes. The first involves
all particles which we know and love, like old-fashioned electrons or slightly more
modern W and Z bosons or most recently top quarks. All of these processes we call
backgrounds. They are described by QCD, which means QCD is the theory of the
evil. Top quarks have an interesting history, because when I was a graduate student
they still belonged to the second class of processes, the signals. These either involve
particles we have not seen before or particles we want to know something about.
Such new particles are usually produced via QCD effects as well, so QCD as we will
discuss it in Chap. 2 is not entirely evil. If we actually see new particles someone gets
the Nobel prize, while for the rest of the community the corresponding processes
instantly turn into backgrounds.

Because signals are things we had not seen before they are rare compared to
much more rare that backgrounds. Digging out signal events from a large number
of background events is what the remaining Higgs section will be about. Figure 1.5
shows that at the LHC the production cross section for a pair of bottom quarks is
larger than 105 nb or 1011 fb, the typical production rate for W or Z bosons ranges
around 200 nb or 2× 108 fb, the rate for a pair of 500 GeV supersymmetric gluinos
is 4× 104 fb, and the Higgs rate can be as big as 2 × 105 fb. To extract such signals
from huge backgrounds we need to describe the backgrounds with an incredible
precision, at least those background events which populate the signal region in phase
space. The high-energy community has agreed that we call a five sigma excess over
the known backgrounds a signal discovery

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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Fig. 1.5 Production rates for
signal and background
processes at hadron
colliders. The discontinuity
is due to the Tevatron being a
proton–antiproton collider
while the LHC is a
proton–proton collider. The
two colliders correspond to
the x–axis values of 2 TeV
and something between 7
and 14 TeV. Figure from
Ref. [5]
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Never trust anybody who wants to sell you a three sigma evidence as a discovery,
because everyone who has been around for a few years has seen a great number of
those go away. People usually have some kind of reason to advertize such effects,
but all they are really saying is that their errors do not allow them to make a conclu-
sive statement. On the other hand, in the Gaussian limit the statistical significance
improves with

√
L . So all we need to do is wait for the significance to hit five sigma.

One last aspect we have to at least mention is the trigger. Because of the sheer
mass of data at the LHC, we will not be able to write every LHC event on tape. As a
matter of fact, we could not even write every top pair event on tape. Instead, we have
to decide very fast if an event has the potential of being interesting in the light of the
physics questions we are asking at the LHC. Only these events we keep. Before there
is a mis-understanding: while experimentalists are reluctant to change triggers these
are not carved in stone, so as a functioning high energy physics community we will
not miss great new physics just because we forgot to include it in the trigger menu.
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For now we can safely assume that above an energy threshold we will keep all events
with leptons or photons, plus as much as we can events with missing energy (i.e.
neutrinos in the Standard Model and dark matter particles in new-physics models)
and jets with high energy coming from resonance decays. This trigger menu reflects
the general attitude that the LHC is not built to study QCD, and that very soft final
states for example from bottom decays are best studied in the LHCb experiment
instead of ATLAS and CMS.

With this minimal background of collider phenomenology we can look at Higgs
production in gluon fusion, combined with different Higgs decays. The total Higgs
production cross section through the loop induced ggH coupling we show in
Fig. 1.4. For a reasonably light Higgs boson the cross section ranges around at least
30 pb, which for relevant luminosities starting around 30 fb−1 means 106 events. The
question is: after multiplying with the relevant branching ratio and detection efficien-
cies, which of the decays can be distinguished from the Standard Model background
statistically? Since gluon fusion really only produces the Higgs boson the details
of the production process do not help much with the background suppression. The
results of experimental simulations, for example by the ATLAS collaboration, are
shown in Fig. 1.6. The complete list of possible Higgs decays, ordered by decreasing
branching ratio according to Fig. 1.3, is:

• gg → H → bb̄ is hopeless, because of sheer size of the QCD continuum back-
ground gg→ bb̄, which according to Fig. 1.5 exceeds the signal by roughly eight
orders of magnitude. There is little to cut on except for the invariant mass of the
bb̄ pair with an O(10%) mass resolution. What makes things worse, this channel
will as it stands not be triggered on.

• gg→ H → τ+τ− is problematic, because of the low velocity of the Higgs which
makes the reconstruction of mττ ∼ m H hard. We will discuss this decay and its
reconstruction in detail in Sect. 1.5.3. It is widely assumed that Higgs production
in gluon fusion is too close to threshold to see the decay to tau leptons, but this
might still change.

• gg→ H → γ γ is, in spite of the small rate, very promising. Because mγ γ can be
reconstructed to O(1%) this observable has incredibly precise side bins to the left
and the to right of the Higgs peak. This is what for example the electromagnetic
calorimeter of CMS has been designed for. The main problem is backgrounds for
example from pions mistaken for photons, while theory input will play no role in
this analysis. Moreover, the peak in the invariant mass of the photons is great to
measure the Higgs mass: once we see a Gaussian peak we can determine its central
value with a precision of Γdetector/

√
S (in a signal dominated sample with S signal

events), i.e. at the per-mille level.
• gg → H → W+W− has a large rate, but once one of the W bosons decays

leptonically the Higgs mass is hard to reconstruct. All we can do is reconstruct
a transverse mass variable, which we discuss in Sect. 3.3. On the other hand, the
backgrounds are electroweak and therefore small. The most promising analysis
relies on angular correlations—if the two gauge bosons come from a spin-zero
resonance they have to have opposite polarization; because the W coupling to

http://dx.doi.org/10.1007/978-3-642-24040-9_3
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Fig. 1.6 Simulated statistical significance for different Higgs production and decay channels for
an integrated luminosity of 30 fb−1 (left ATLAS [6]; right CMS [7]). Five standard deviations over
the backgrounds are required for discovery

fermions is purely left handed this implies that the two leptons prefer to move into
the same direction as opposed to back-to-back. Because there is not much more to
cut on the expected significance drops sharply with the decreasing branching ratio
once we require off-shell W decays.

• gg→ H → Z Z works great for ZZ to four leptons, in particular muons, because
of the fully reconstructed m4L Ll ∼ m Z Z ∼ m H . Of all Higgs channels it requires
the least understanding of the LHC detectors. Therefore it is referred to as golden
channel. Its limitation are the leptonic Z branching ratio and the sharp drop in the
off-shell Higgs branching ratio towards smaller Higgs masses. The semi-leptonic
decay of the Z pair might work once we ask for a boosted hadronically decaying
Z, as we will discuss in Sect. 3.1.2.

• gg → H → Zγ is a little like γ γ, but with a smaller rate and a further reduced
branching ratio of Z → μ+μ− or Z → e+e−. Instead of combining the advan-
tages of H → Z Z and H → γ γ this channel combines more of the disadvantages,
so it is not likely to be helpful. Of course, as for any channel seeing it will give us
more information on the Higgs boson, so we should not give up.

• gg→ H → invisible is not predicted in Standard Model; it is obviously hopeless
if only the Higgs is produced, because we would be trying to extract a signal of
missing energy and nothing else. ‘Absolutely nothing’ in addition to some QCD
remnant is not a good signature for the trigger.

http://dx.doi.org/10.1007/978-3-642-24040-9_3
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1.5 Higgs Production in Weak Boson Fusion

Going back to Fig. 1.4 we see that while gluon fusion gives the largest Higgs produc-
tion rate at the LHC, there are other promising channels to study. In the Standard
Model the Higgs has sizeable couplings only to the W and Z bosons and to the top
quark, so instead of via the top Yukawa coupling we can produce Higgs bosons via
their gauge boson couplings. This induces two channels, the larger of which is weak
boson fusion qq → qq H: two incoming quarks each radiate a W or Z boson which
merge and form a Higgs. Because the LHC is a pp collider and because the proton
mostly contains the valence quarks (uud) and low-x gluons it is important that this
process can proceed as ud → du H, where the u radiates a W+ and the d radiates a
W−. The Feynman diagram for this process is

If the Higgs were a Z boson, it could also bremsstrahlung off the incoming or outgoing
quarks, but for Higgs production at colliders we safely assume that the first two
generation fermions are massless. That is at least unless we discuss a muon collider
as a specific way to produce Higgs bosons.

In a way, weak boson fusion looks like double deep inelastic scattering, one from
each of the protons. This is one of the key observations which in Sect. 1.5.2 we will
use for background suppression via the central jet veto. The double deep inelastic
scattering approximation is also a good way to compute corrections to the weak
boson fusion production rate, at least provided we neglect kinematic distributions

1.5.1 Production Kinematics

In the Feynman diagrams for weak-boson fusion Higgs production we encounter
intermediate massive gauge boson propagators. They induce a particular shape of
the kinematic distributions of the final state jet. First, we need to quote the exact
calculation showing that in the matrix element squared we will usually find one
power of pT in the numerator. With this information we can look for the maximum
in the pT, j = pT,W spectrum as a function of the momentum in the beam direction,
p3, and the absolute value of the two-dimensional transverse momentum pT
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for some number C < 1. This admittedly hand-waving argument shows that in
weak-boson-fusion Higgs production the transverse momenta of the outgoing jets
peak at values below the W mass. In reality, the peak occurs around pT ∼ 30 GeV.
This transverse momentum scale we need to compare to the longitudinal momentum
given by the energy scale of valence quarks at the LHC, i.e. several hundreds of GeV.

These two forward jets are referred to as tagging jets. They offer a very efficient
cut against QCD backgrounds: because of their back-to-back geometry and their very
large longitudinal momentum, their invariant mass m j j will easily exceed a TeV. For
any kind of QCD background this will not be the case. Compared to Higgs production
in gluon fusion the tagging jets are an example how features of the production
process which have little or nothing to do with the actual Higgs kinematics can
help reduce backgrounds—the largest production rate does not automatically yield
the best discovery prospects.

Moving on to the Higgs kinematics, in contrast to the jets the Higgs and its decay
products are expected to hit the detector centrally. So we are looking for two forward
jets and for example two τ leptons or two W bosons in the central detector. Last but
not least, the Higgs is produced with finite transverse momentum which is largely
determined by the kinematic and the acceptance cuts on the forward jets and their
typical transverse momentum scale pT H ∼ mW .

Compared to the Higgs production in gluon fusion we buy this distinctive signa-
ture and its efficient extraction from the background at the expense of the rate.
Let us start with the partonic cross sections: the one-loop amplitude for gg → H
is suppressed by αs yt/(4π) ∼ (1/10)(2/3)(1/12) = 1/180. For the production
cross section this means a factor of (1/180)2 ∼ 1/40000. The cross section for
weak boson fusion is proportional to g6, but with two additional jets in the final
state. Including the additional phase-space for two jets this roughly translates into
(2/3)61/(16π)2 = (64/729)(1/2500) ∼ 1/25000. These two numbers governing
the main LHC production cross sections roughly balance each other.
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The difference in rate which we see in Fig. 1.4 instead arises from the quark
and gluon luminosities. In weak boson fusion the two forward jets always combine
to a large partonic center-of-mass energy x1x2s > (p j,1 + p j,2)

2 = 2(p j,1 p j,2),

with the two parton momentum fractions x1,2 and the hadronic center of mass energy√
s = 14 TeV.Producing a single Higgs in gluon fusion probes the large gluon parton

density at typical parton momentum fractions x ∼ m H/
√

s ∼ 10−3. This means
that each of the two production processes with their specific incoming partons probes
its most favorable parton momentum fraction: low-x for gluon fusion and high-x for
valence quark scattering. Looking at typical LHC energies, the gluon parton density
grows very steeply for x � 10−2. This means that gluon fusion wins: for a 150 GeV
Higgs the gluon fusion rate of ∼ 30 pb clearly exceeds the weak boson fusion rate
of ∼ 4 pb. On the other hand, these numbers mean little when we battle an 800 pb
t t̄ background relying on kinematic cuts either on forward jets or on Higgs decay
products.

In Fig. 1.6 we see that for large Higgs mass the weak boson fusion rate approaches
the gluon fusion rate. The two reasons for this behavior we mentioned already in this
section: first of all, for larger x values the rate for gg→ H decreases steeply with the
gluon density, while in weak boson fusion the already huge partonic center of mass
energy due to the tagging jets ensures that an increase in m H makes no difference
anymore. Even more importantly, there appear large logarithms because the low-pT

enhancement of the quark-W splitting. If we neglect mW in the weak boson fusion
process the pT, j distributions will diverge for small pT, j like 1/pT, j , as we will see
in Sect. 2.3.3. After integrating over pT, j this yields a logpmax

T, j /pmin
T, j dependence

of the total rate. With the W mass cutoff and a typical hard scale given by m H this
logarithm becomes

σWBF ∝
(

log
pmax

T, j

pmin
T, j

)2

∼
(

log
m H

mW

)2

. (1.127)

For m H = O(TeV) this logarithm gives us an enhancement by factors of up to 10,
which makes weak boson fusion the dominant Higgs production process.

Motivated by such logarithms, we will talk about partons inside the proton and
their probability distributions for given momenta in Sect. 2.3.3. In the effective W
approximation we can resum the logarithms appearing in Eq. 1.127 or compute
such a probability for W bosons inside the proton. This number is a function of the
partonic momentum fraction x and can be evaluated as a function of the transverse
momentum pT . Because the incoming quark inside the proton has negligible trans-
verse momentum, the transverse momenta of the W boson and the forward jet are
identical. These transverse momentum distributions in pT,W = pT, j look different
for transverse and longitudinal gauge bosons

http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
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The couplings gA,V describe the gauge coupling of the W bosons to the incoming
quarks. Looking at large transverse momenta pT � mW the radiation of longitudinal
W bosons falls off sharper than the radiation of transverse W bosons. This different
behavior of transverse and longitudinal W bosons is interesting, because it allows us
to gain information on the centrally produced particle and which modes it couples to
just from the transverse momentum spectrum of the forward jets and without looking
at the actual central particle.

The problem with the effective W approximation is that it is a poor description
of Higgs production at the LHC. The simple reason is that the Higgs mass is of the
order of the W mass, as are the transverse momenta of the W and the final state jets,
and none of them are very small. Neglecting for example the transverse momentum
of the W bosons or the final-state jets will not give us useful predictions for the
kinematic distributions, neither for the tagging jets nor for the Higgs. For the SSC,
the competing design to the LHC in Texas which unfortunately was never built, this
might have been a different story, but at the LHC we should not describe W bosons
(or for that matter top quarks) as essentially massless partons inside the proton.

1.5.2 Jet Ratios and Central Jet Veto

From the Feynman diagram for weak boson fusion we see that the diagram describing
a gluon exchange between the two quark lines multiplied with the Born diagram is
proportional to the color factor TrT aTrT bδab = 0. The only way to avoid this
suppression is the interference of two identical final-state quarks, for example in ZZ
fusion. First, this does not involve only valence quarks and second, this assumes a
phase space configuration where one of the two supposedly forward jets turns around
and goes backwards, so the interfering diagrams contribute in the same phase spare
region. This means that virtual gluon exchange in weak boson fusion is practically
absent.

In Chap. 2 we will see that virtual gluon exchange and real gluon emission are
very closely related. Radiating a gluon off any of the quarks in the weak boson
fusion process will lead to a double infrared divergence, one because the gluon can
be radiated at small angles and one because the gluon can be radiated with vanishing
energy. The divergence at small angles is removed by redefining the quark parton

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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densities in the proton. The soft divergence has to cancel between real gluon emission
and virtual gluon exchange. However, if virtual gluon exchange does not appear, non-
collinear gluon radiation cannot appear either. This means that additional QCD jet
activity as part of the weak boson fusion process is limited to collinear radiation,
i.e. radiation along the beam line or at least in the same direction as the far forward
tagging jets. Gluon radiation into the central detector is suppressed by the color
structure of the weak boson fusion process.

While it is not immediately clear how to quantify such a statement it is a very
useful feature, for example looking at the top pair backgrounds. The W W bb̄ final
state as a background to qq H, H → W W searches includes two bottom jets which
can mimic the signal’s tagging jets. At the end, it turns out that it is much more likely
that we will produce another jet pp → t t̄ +jet so only one of the two bottom jets
from the top decays needs to be forward. In any case, the way to isolate the Higgs
signal is to look at additional central jets.

As described above, for the signal additional jet activity is limited to small-angle
radiation off the initial-state and final-state quarks. For background like top pairs this
is not the case, which means we can reduce all kinds of background by vetoing jets
in the central region above pT, j � 30 GeV. This strategy is referred to as central
jet veto or mini-jet veto. Note that it has nothing to do with rapidity gaps at HERA
or pomeron exchange, it is a QCD feature completely accounted for by standard
perturbative QCD.

From QCD we then need to compute the probability of not observing additional
central jets for different signal and background processes. Postponing the discussion
of QCD parton splitting to Sect. 2.3.2 we already know that for small transverse
momenta the pT, j spectra for massless states will diverge, as shown in Eq. 1.127.
Looking at some kind of n-particle final state and an additional jet radiation we
can implicitly define a reference point pcrit

T at which the diverging rate for one jet
radiation σn+1 starts to exceed the original rate σn, whatever the relevant process
might be

σn+1(p
crit
T ) =

∫ ∞
pcrit

T

dpT, j
dσn+1

dpT, j

!= σn . (1.129)

This condition defines a point in pT below which our perturbation theory in αs, i.e.
in counting the number of external partons, breaks down. For weak boson fusion
Higgs production we find pcrit

T ∼ 10 GeV, while for QCD processes like t t̄ produc-
tion it becomes pcrit

T = 40 GeV. In other words, jets down to pT = 10 GeV are
perturbatively well defined for Higgs signatures, while for the QCD backgrounds
jets below 40 GeV are much more frequent than they should be looking at the pertur-
bative series in αs . This fixes the pT range where a central jet veto will be helpful to
reject backgrounds

pT, j > 30 GeV and η
(tag 1)
j < η j < η

(tag 2)
j . (1.130)

The second condition reminds us of the fact that only central jets will be rare in weak
boson fusion. The smaller the pT threshold the more efficient the central jet veto

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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becomes, but at some point experimental problems as well as non-perturbative QCD
effects will force us to stay above 20 or 30 or even 40 GeV.

If we assign a probability pattern to the radiation of jets from the core process we
can compute the survival probability of such a jet veto. If we assume that we can
describe successive jet radiation using Poisson statistics the probability of observing
exactly n jets given an expected n0 jets is

f (n; n0) = nn
0e−n0

n! ⇒ f (0; n0) = e−n0 . (1.131)

This defines the so-called exponentiation model. We consistently fix the expectation
value in terms of the inclusive cross sections producing at least zero or at least
one jet,

n0 = σ1(pmin
T )

σ0
. (1.132)

This ensures that the inclusive jet ratio σ1/σ0 is reproduced by the ratio of the corre-
sponding Poisson distributions. In Sect. 2.3.4 we will see why such inclusive cross
sections for the production of a certain final state together with an unspecified number
of jets is an appropriate observable. Only in Sect. 2.5.3 we will actually be able to
formulate observables for final states with a fixed number of jets. Including this expec-
tation value n0 into Eq. 1.131 returns a veto survival probability of exp(−σ1/σ0).

This comes out roughly as 88% for the weak boson fusion signal and as 24% for
the t t̄ background. For the signal-to-background ratio this is an increase by a factor
three.

An alternative model starts from a constant probability of radiating a jet, which
in terms of the inclusive cross sections σ j , i.e. the production rate for the radiation
of at least j jets, reads

σ j+1(pmin
T )

σ j (pmin
T )

= Prad(p
min
T ). (1.133)

The expected number of jets is then given by

n0 = 1

σ0

∑
j=1

j (σ j − σ j+1) = 1

σ0

⎛
⎝∑

j=1

jσ j −
∑
j=2

( j − 1)σ j

⎞
⎠ = 1

σ0

∑
j=1

σ j

= σ1

σ0

∑
j=1

P j
rad =

Prad

1− Prad
,

(1.134)
which, assuming the series converges, turns into a requirement on pmin

T .Radiating jets
with a constant probability has been observed at many experiments, including most
recently the LHC, and is in the context of W+jets referred to as staircase scaling.
Some advanced simulational results we will discuss in Sect. 2.5.3. Even without

http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
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saying anything on how to calculate exclusive processes with a fixed number of jets
we can derive a particular property of the constant probability of staircase scaling:
the ratios of the (n + 1)-jet rate to the n-jet rate for inclusive and exclusive jet rates
are identical. We can see this by computing the inclusive Prad in terms of exclusive
jet rates

Prad = σn+1

σn
=

∑∞
j=n+1 σ

(excl)
j

σ
(excl)
n +∑∞j=n+1 σ

(excl)
j

= σ
(excl)
n+1

∑∞
j=0 P j

excl

σ
(excl)
n + σ (excl)

n+1

∑∞
j=0 P j

excl

with Pexcl =
σ
(excl)
n+1

σ
(excl)
n

=
Pexclσ

(excl)
n

1−Pexcl

σ
(excl)
n + Pexclσ

(excl)
n

1−Pexcl

= Pexcl

1− Pexcl + Pexcl

= Pexcl. (1.135)

Using this result we can check the validity of the Poisson ansatz from Eq. 1.131 for
staircase scaling

σ
(excl)
n+1

σ
(excl)
n

Poisson= nn
0(n + 1)!
n!nn+1

0

= n + 1

n0
= (n + 1)

1− Prad

Prad
�= Prad, (1.136)

so the exponentiation model does not correspond to a constant probability of radiating
jets, i.e. to staircase scaling.

To show that the exponentiation model and staircase scaling are not the only
assumptions we can make to compute jet rates we show yet another, but similar
ansatz which tries to account for an increasing number of legs to radiate jets off.
Based on

σ j+1(pmin
T )

σ j (pmin
T )

= j + 1

j
Prad(p

min
T ), (1.137)

the expectation for the number of jets radiated gives, again following Eq. 1.134

n0 = 1

σ0

∑
j=1

σ j = 1

σ0
σ0

∑
j=1

j P j
rad

= Prad

∑
j=1

j P j−1
rad =

Prad

(1− Prad)2
. (1.138)

All of these models are more or less well motivated statistical approximations.
The do not incorporate experimental effects or the non-perturbative underlying event,
i.e. additional energy dependent but process independent jet activity in the detectors
from many not entirely understood sources. For many reasons none of them is guar-
anteed to give us the correct numbers. By the time we get to Sect. 2.5.3 we will be
able to more accurately describe the central jet veto in QCD.

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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1.5.3 Decay Kinematics and Signatures

The sizeable transverse momentum of the decaying Higgs boson in the weak boson
fusion process allows us to reconstruct the invariant mass of a ττ system in the
collinear approximation: if we assume that a τ with momentum �p decays into a
lepton with the momentum x �p and a neutrino, both moving into the same direction
as the tau, we can write the two-dimensional transverse momentum of the two taus
from the Higgs decay in two ways

�p1 + �p2 ≡
�k1

x1
+ �k2

x2

!= �k1 + �k2 + �/k. (1.139)

The missing transverse momentum �/k is the measured vector sum of the two neutrino
momenta. This equation is useful because we can measure the missing energy vector
at the LHC in the transverse plane, i.e. as two components, which means Eq. 1.139
is really two equations for the two unknowns x1 and x2. Skipping the calculation of
solving these two equations for x1x2 we quote the result for the invariant ττ mass

mττ = 2(p1 p2) = 2
(k1k2)

x1x2
, (1.140)

which for the signal has to correspond to the Higgs mass. From the formula above
it is obvious that this approximation does not only require a sizeable pi � mτ , but
also that back-to-back taus will not work—the two vectors contributing to �k then
largely cancel and the computation fails. This is what happens for the production
channel gg→ H → ττ, where the Higgs boson is essentially produced at rest.

Again, we can make a list of signatures which work more or less well in connection
to weak boson fusion production. These channels are also included in the summary
plot by ATLAS, shown in Fig. 1.6.

• qq H, H → bb̄ is problematic because of large QCD backgrounds and because of
the trigger in ATLAS. The most worrisome background is overlapping events, one
producing the two tagging jets and the other one two bottom jets. This overlapping
scattering gives a non-trivial structure to the background events, so a brute force
side-bin analysis will not work.

• qq H, H → ττ can be a discovery channel for a light Higgs boson with m H �
130 GeV. The approximate mass reconstruction might be as good as ∼5 GeV.
This channel is particularly useful in scenarios beyond the Standard Model,
like its minimal supersymmetric extension. It guarantees the discovery of one
Higgs boson over the entire supersymmetric parameter space without a dedicated
SUSY search.

• qq H, H → γ γ should be compatible with gg → H → γ γ with its smaller
rate but improved background suppression. It is included in inclusive H → γ γ

analyses, and for neural net analyses zooming in on large Higgs transverse
momenta it will dominate the inclusive analysis.
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• qq H, H → Zγ is difficult due to a too small event rate and no apparent experi-
mental advantages.

• qq H, H → W W is a discovery channel for m H � 135 GeV. In contrast to
gg → H → W W it also works for off-shell W decays, i.e. for Higgs masses
below 150 GeV. This is where a multitude of background rejection cuts and a
better signal-to-background ratio win over the large rate in gluon fusion.

• qq H, H → Z Z is likely to work in spite of the smaller rate compared to gluon
fusion. It might even be possible with one hadronic Z decay, but there are not many
detailed studies available.

• qq H, H → invisible is the only discovery channel for an invisible Higgs which
really works at the LHC. It relies on the pure tagging-jet signature, which means
it is seriously hard and requires a very good understanding of the detector and of
QCD effects.

Just a side remark for younger LHC physicists: weak boson fusion was essentially
unknown as a production mode for light Higgses until around 1998 and started off
as a very successful PhD project. This meant that for example the Higgs chapter in
the ATLAS TDR had to be re-written. While it sometime might appear that way,
there is no such thing as a completely understood field of LHC physics. Every aspect
of LHC physics continuously moves around and your impact only depends on how
good your ideas and their technical realizations are.

1.6 Associated Higgs Production

In Fig. 1.4 there appears a third class of processes at smaller rates: associated Higgs
production with heavy Standard Model particles, like W or Z bosons or t t̄ pairs.
Until the summer of 2008 the Higgs community at the LHC was convinced that
(a) we would not be able to make use of WH and ZH production at the LHC and
(b) we would not be able to see most of the light Higgs bosons produced at the LHC,
because H → bb̄ is no promising signature in gluon fusion or weak boson fusion
production.

One key to argument (a) are the two different initial states for signal and back-
ground: at the Tevatron the processes qq̄ → Z H and q ′q̄ → W H arise from valence
quarks. At the LHC with its proton-proton beam this is not possible, so the signal rate
will suffer when we go from Tevatron to LHC. The QCD background at leading order
is qq̄ → Zg∗ → Zbb̄ production, with an off-shell gluon splitting into a low mass
bottom quark pair. At next-to-leading order, we also have to consider the t-channel
process qq̄ → Zb̄bg and its flipped counter part qg → Zb̄bq. This background
becomes more dangerous for larger initial state gluon densities. Moving from Teva-
tron to LHC the Higgs signal will decrease while the background increases—not a
very promising starting point.

With Ref. [8] the whole picture changed. We will discuss this search strategy in
detail in Sect. 3.1.2 in the context of jets and jet algorithms at the LHC. It turns out

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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that searches for boosted Higgs bosons are not only promising in the V H, H → bb̄
channel, but might also resurrect the t t̄ H, H → bb̄ channel. These new channels
are not yet included in the ATLAS list of processes shown in Fig. 1.6 because the
simulations are still at an early stage. But we can expect them to play a role in LHC
searches for a light Higgs boson.

This is another example of what is possible and what not in LHC phenomenology:
it all really depends only on how creative you are; that even applies to a field like
Standard Model Higgs searches, which is supposedly studied to death.

1.7 Beyond Higgs Discovery

The prime goal of the LHC is to discover a new light scalar particle which we
would suspect to be the Higgs boson. However, the Standard Model makes many
predictions concerning the properties of a Higgs boson; as a matter of fact, all its
properties except for its mass are fixed in the minimal one-doublet Higgs sector of
the Standard Model. The question is, can we test at least some of these predictions?

In this section we will briefly touch on two interesting questions relevant to LHC
Higgs physics and to determining if what we might see at the LHC is really a
Higgs boson. This is where we have seen the most progress in LHC Higgs physics
over recent years: not only will we be able to see a light Higgs boson simultane-
ously in different production and decay channels, as discussed in Sects. 1.4 and 1.5,
we can also study many of its properties. In a way this section ties in with the effective
theory picture we use to introduce the Higgs mechanism: the obvious requirements
to include massive gauge bosons in an effective electroweak gauge theory leads us
towards the Standard Model Higgs boson only step by step, and at any of these steps
we could have stopped and postulated some alternative ultraviolet completion of our
theory.

1.7.1 CP Properties

One question for the LHC is: once we see a Higgs boson at the LHC, how do we test
its quantum numbers? One such quantum number is its spin. A spin-one Higgs boson
would not couple to two photons, so we only need to look at angular distributions
for example in weak boson fusion to distinguish spin zero from spin two.

Once we know that we are talking about a scalar field we still need to measure
its CP properties. The fundamental CP-even Standard-Model Higgs bosons couples
to the W and Z bosons proportional to gμv. For general CP-even and CP-odd Higgs
bosons there are two more gauge invariant ways to couple to W bosons, which
altogether give us the three coupling tensor structures
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Fig. 1.7 Distribution for the
azimuthal angle between the
two forward jets in WBF
production with a subsequent
decay H → ττ. The signal
and the leading Z
background are simulated at
parton level. All signal rates
are normalized to the
Standard-Model value.
Figure from Ref. [11] 0
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These are the only gauge invariant dimension-5 couplings of two gauge bosons to a
(pseudo-) scalar field. The second one appears in the effective one-loop gluon-gluon-
Higgs coupling in Eqs. 1.117 and 1.123. This second tensor is not orthogonal to gμv,

but we can replace it with any linear combination with gμv. On the other hand, these
two coupling structures nicely correspond to the gauge-invariant forms WμvWμv and
WμvW̃μv in the electroweak Lagrangian, so we leave them like this.

Going back to the transverse momentum spectra for the tagging jets shown in Eq.
1.128 we already know one way of telling apart these couplings: by construction,
the dimension-3 WWH coupling proportional to gμv comes out of the Higgs poten-
tial as a side product of the W mass term, i.e. it couples the longitudinal Goldstone
modes in the W boson to the Higgs. In contrast, the CP-even dimension-6 oper-
ator is proportional to the transverse tensor, which means it couples the transverse
W polarizations to the Higgs and therefore produces a harder pT spectrum of the
tagging jets.

A very useful observable is the azimuthal angle between the two tagging jets
in weak boson fusion, i.e. the angle separating the two jets in the transverse plane.
For the three gauge-invariant coupling structures shown in Eq. 1.141 we find three
distinctly different normalized distributions of the azimuthal angle Δφ, shown in
Fig. 1.7.

The tree-level coupling should in principle show no dependence of Δφ at all.
The decrease towards larger angular separation is an effect of kinematic cuts against
the Z background which prefers large angular separation. Therefore, the signal is
depleted in the background-rich region. The CP-odd and therefore antisymmetric
εμvρσ coupling vanishes once two momenta contracted by the Levi–Civita tensor
are equal. This explains the zeros at φ = 0, π,where the two transverse jet momenta
are no more linearly independent. To explain the opposite shape of the CP-even Higgs
we use the low transverse momentum limit of the tagging jets. In that case the Higgs
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production matrix element becomes proportional to the scalar product (ptag 1
T ptag 2

T )

which vanishes for a relative angle Δφ = π/2.
A related method of telling apart the gμv structure and the CP-odd coupling is

looking at the decay kinematics. Each of the decaying Z bosons defines a plane
opened by the two lepton momenta. If the angle between these two planes in the
Higgs rest frame is φ, its distribution can be written as

dσ

dφ
∝ 1+ a cos(φ)+ b cos(2φ). (1.142)

For the CP-odd Higgs coupling to WμvW̃μv we find a = 0 and b = 1/4,while for the
CP-even Higgs coupling gμv we find a > 1/4 depending on m H . This method only
works if we observe the decay H → Z Z → 4 � with a good signal-to-background
ratio S/B . Both methods of determining the Higgs coupling structure are equivalent,
as we can see from their Feynman diagrams: starting from the Feynman diagram for
H → Z Z → 4 � we can switch two fermion legs from the final state into the initial
state

and read the diagram right-to-left. The same information which we can find in the
angular correlation of the tagging jets is encoded in the decay plane correlation. The
advantage of the first is that a production-side correlation in weak boson fusion is
independent of the Higgs decay and can be used for all Higgs masses and decay
signatures.

1.7.2 Higgs Self Coupling

If we should ever observe a scalar particle at the LHC, the crucial question will be
if this is indeed our Higgs boson arising from electroweak symmetry breaking. In
other words, Does this observed scalar field have a potential with a minimum at a
non-vanishing vacuum expectation value?

Of course we could argue that a dimension-3 Higgs coupling to massive W bosons
really is a Higgs–Goldstone self coupling, so we see it by finding a Higgs in weak
boson fusion. On the other hand, it would be far more convincing to actually measure
the self coupling of the actual Higgs field. This trilinear coupling we can probe at
the LHC studying Higgs pair production, for example in gluon fusion via the usual
top quark loop
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Following exactly the same argument as presented in Sect. 1.4.1 we can derive
the two tensor structures contributing to Higgs pair production for transverse gluons

√
2Pμv

T = gμv − kv
1kμ2

(k1k2)

√
2Pμv

2 = gμv + k2
3kv

1kμ2
k2

T (k1k2)
− 2(k2k3)kv

1kμ3
k2

T (k1k2)
− 2(k1k3)k

μ
2 kv

3

k2
T (k1k2)

+ kv
3kμ3
k2

T

with k2
T = 2

(k1k3)(k2k3)

(k1k2)
− k2

3 . (1.143)

The third momentum is one of the two Higgs momenta, so k2
3 = m2

H . In this repre-
sentation the two tensors are orthonormal, which means P2

T = 1, P2
2 = 1 and

PT · P2 = 0. The second tensor structure is missing in single Higgs production,
so it only appears in the continuum (box) diagram and turns out to be numerically
sub-leading over most of the relevant phase space.

From Sect. 1.4.2 on the effective Higgs-gluon coupling we know that in the low-
energy limit we can compute the leading form factors associated with the triangle
and box diagrams, both multiplying the transverse tensor gμv − kμ1 kv

2/(k1k2) for the
incoming gluons

gggH = −gggH H = −i
αs

12π
+ O

(
m2

H

4m2
t

)
. (1.144)

Close to the production threshold s ∼ (2m H )
2 the leading contribution to the

loop-induced production cross section for gg → H H involving the two Feynman
diagrams above and the Higgs self coupling derived in Sect. 1.2.1 is then proportional
to

[
3m2

H
gggH

s − m2
H

+ gggH H

]2

= gggH

[
3m2

H
1

s − m2
H

− 1

]2

∼ gggH

[
3m2

H
1

3m2
H

− 1

]2

→ 0, (1.145)

so the triangle diagram and the box diagram cancel.
In this argument we assume that the Higgs self coupling in the Standard Model

is proportional to m H . To see deviations from this self coupling in the first term
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Fig. 1.8 The (parton-level)
sensitivity limits for Higgs
pair production and a
measurement of the Higgs
self coupling. The analysis is
based on the decay
H H → W W. Figure from
Ref. [13]

of Eq. 1.145 we can look at something like the m H H distribution and measure the
threshold behavior. In the absence of any self coupling this threshold cancellation
of the self coupling contribution with the continuum should be absent as well. The
threshold contribution to Higgs pair production would be huge. This way a shape
analysis of the threshold behavior will allow us to experimentally exclude the case
of λH H H = 0 which predicts an unobserved large enhancement of the production
cross section at threshold. At this point it is still under study if such a measurement
will work at the LHC and what kind of LHC luminosities would be required.

Of course, the Higgs self coupling sticks out of the Higgs parameters, but all
Higgs couplings would be interesting to measure. If the Higgs is light and if all the
of gluon fusion and weak boson fusion channels are indeed observed with sufficient
luminosity, a numerical fit of all couplings to all Higgs observables will be possible,
for example using the SFitter reconstruction tool [10]. As you can see in the orig-
inal paper, for integrated luminosities around 30 fb−1 the accuracy on the extracted
couplings ranges from 30 to 70% error bands. Contrasting more specific hypotheses,
like a strongly interacting light Higgs, with the Standard Model reduces these errors
bars, possibly to O(10%).

1.8 Further Reading

At this point we are done with our brief review of the Higgs sector in the Standard
Model and of contemporary Higgs phenomenology. From the discussions it should
be clear that we have to move on to QCD, to understand the strengths and weaknesses
of these searches and what distinguishes a good from a bad search channel (Fig. 1.8).

Before moving on we mention a few papers where you can learn more about
Higgs phenomenology at the LHC. Luckily, for Higgs searches there are several
very complete and useful reviews available:
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• You can look at the original articles by Higgs [12, 13] or Brout and Englert [14],
but they are rather short and not really on top of the phenomenological aspects of
the topic. Other papers for example by Guralnik, Hagen, Kibble [17] tend to be
harder to read for phenomenologically interested students.

• Wolfgang Kilian’s book [16] on the effective field theory approach to the Higgs
mechanism is what the corresponding sections in these lecture notes are largely
based on it. The underlying symmetry structure, including the custodial symmetry
is nicely described in Scott Willenbrock’s TASI lectures [17].

• Abdelhak Djouadi’s compilation on ‘absolutely everything we know about Higgs
phenomenology’ is indeed exhaustive. It has two volumes, one on the Standard
Model [4] and another one on its minimal supersymmetric extension [18].

• For more experimental details you might want to have a look at Karl Jakobs’ and
Volker Büscher’s review of LHC Higgs physics [19].

• As a theory view on LHC Higgs physics, mostly focused on gluon fusion production
and its QCD aspects, there is Michael Spira’s classic [3]. This is where you can
find more information on the low-energy theorem. Michael and his collaborators
also published a set of lecture notes on Higgs physics [20]. Watch out for how
Michael summarizes the state of the art concerning weak boson fusion production
of light Higgs bosons.

• As always, there is a TASI lecture on the topic. TASI lecture notes are generally
what you should look for when you are interested in an area of high energy physics.
Dave Rainwater did not only write his thesis on Higgs searches in weak boson
fusion [21], he also left us all he knows about Higgs phenomenology at the LHC
in his TASI notes [22].

• Tao Han wrote a very comprehensible set of TASI lecture notes on basic LHC
phenomenology, in case you need to catch up on this [23].

• For some information on electroweak precision data and the ρ parameter, there are
James Wells’ TASI lectures [24].

• If you are interested in Higgs production in association with a W or Z boson and
the way to observe boosted H → bb̄ decays you need to read the original paper
[9]. The same is true for the t t̄ H analysis.

• For cut rules and scalar integrals the best writeup I know is Wim Beenakker’s PhD
thesis. Unfortunately, I am not sure where to get it from except from the author by
request.
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Chapter 2
QCD

Just as Chap. 1 is not meant to be a complete introduction to electroweak symmetry
breaking but is aimed at introducing the aspects of Higgs physics most relevant to
the LHC this section cannot cover the entire field of QCD. Instead, we will focus on
QCD as it impacts LHC physics and searches for new physics at the LHC, like for
example the Higgs searches discussed in the first part of the lecture.

In Sect. 2.1 we will introduce the most important process at the LHC, the Drell–
Yan process or lepton pair production. This process will lead us through all of
the introduction into QCD. Ultraviolet divergences and renormalization we will
only mention in passing, to get an idea how much of the treatment of ultraviolet
and infrared divergences works the same way. After discussing in detail infrared
divergences in Sects. 2.3–2.5 we will spend some time on modern approaches on
combining QCD matrix element calculations at leading order and next-to-leading
order in perturbative QCD with parton showers. This last part is fairly close to
current research with the technical details changing rapidly. Therefore, we will rely
on toy models to illustrate the different approaches.

2.1 Drell–Yan Process

Most text books on QCD start from a very simple class of QCD processes, namely
deep inelastic scattering. These are processes with the HERA initial state e± p.
The problem with this approach is that for the LHC era such processes are not
very useful. What we would like to understand instead are processes of the kind
pp → W+ jets, pp → H+ jets, pp → t t̄+ jets, or the production of new parti-
cles with or without jets. These kind of signal and background processes and their
relevance in an LHC analysis we already mentioned in Sect. 1.4.3.

From a QCD perspective such processes are very complex, so we need to step back
a little and start with a simple question: we know how to compute the production rate
and distributions for photon and Z production for example at LEP, e+e− → γ, Z →

T. Plehn, Lectures on LHC Physics, Lecture Notes in Physics 844, 63
DOI: 10.1007/978-3-642-24040-9_2, © Springer-Verlag Berlin Heidelberg 2012
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�+�−.What is the production rate for this final state at the LHC, how do we account
for quarks inside the protons, and what are the best-suited kinematic variables to use
at a hadron collider?

2.1.1 Gauge Boson Production

The simplest question we can ask at the LHC is: How do we compute the production
of a weak gauge boson? This process is referred to as Drell–Yan production. In our
first attempts we will explicitly not care about additional jets, so if we assume the
proton to consist of quarks and gluons and simply compute the process qq̄ → γ, Z
under the assumption that the quarks are partons inside protons. Gluons do not couple
to electroweak gauge bosons, so we only have to consider valence quark versus sea
anti-quark scattering in the initial state. Modulo the SU (2) and U (1) charges which
describe the Z f f̄ and γ f̄ f couplings in the Feynman rules

−iγ μ (�PL + rPR) with � = e
swcw

(
T3 − 2Qs2

w

)
r = �

∣∣∣
T3=0

(Zf f̄ )

� = r = Qe (γ f f̄ ),
(2.1)

with T3 = ±1/2, the matrix element and the squared matrix element for the partonic
process

qq̄ → γ,Z (2.2)

will be the same as the corresponding matrix element squared for e+e− → γ,Z ,
with an additional color factor. The general amplitude for massless fermions is

M = −i v̄(k2)γ
μ (�PL + rPR) u(k1)εμ. (2.3)

Massless fermions are a good approximation at the LHC for all particles except for
the top quark. For the bottom quark we need to be careful with some aspects of this
approximation, but the first two generation quarks and all leptons are usually assumed
to be massless in LHC simulations. Once we will arrive at infrared divergences in
LHC cross sections we will specifically discuss ways of regulating them without
introducing masses.

Squaring the matrix element in Eq. 2.3 means adding the same structure once
again, just walking through it in the opposite direction. Luckily, we do not have to
care about factors of (−i) since we are only interested in the absolute value squared.
Because the chiral projectors PLr = (1∓ γ5)/2 are real and γ T

5 = γ5 is symmetric
the left and right-handed gauge boson vertices described by the Feynman rules in
Eq. 2.1 do not change under transposition, so for the production of a massive Z boson
we obtain
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|M |2 =
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Z (2.4)

The momenta are k1 and k2 for the massless incoming (anti-) fermions and
q = − k1 − k2 for the outgoing gauge boson. The color factor Nc accounts for
the number of SU (3) states which can be combined to form a color singlet like the Z.

An interesting aspect coming out of our calculation is that the 1/m Z -dependent
terms in the polarization sum do not contribute—as far as the matrix element squared
is concerned the Z boson could as well be transverse. This reflects the fact that the
Goldstone modes do not couple to massless fermions, just like the Higgs boson.
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It also means that the corresponding matrix element squared for the photon production
simply means not replacing q2 → m2

Z in the last step.
What is still missing is an averaging factor for initial-state spins and colors, only

the sum is included in Eq. 2.4. For incoming electrons as well as incoming quarks
this factor Ki j includes 1/4 for the spins. Since we do not observe color in the
initial state, and the color structure of the incoming qq̄ pair has no impact on the Z–
production matrix element, we also average over the color. This means another factor
1/N 2

c in the averaged matrix element, which altogether becomes (in four space–time
dimensions)

Ki j = 1

4N 2
c

(2.5)

In spite of our specific case in Eq. 2.4 looking that way, matrix elements we compute
from our Feynman rules are not automatically numbers with mass unit zero.

If for the invariant mass of the two quarks we introduce the Mandelstam variable
s = (k2 + k2)

2 = 2(k1k2) momentum conservation implies s = q2 = m2
Z . In four

space–time dimensions (this detail will become important later) we can compute a
total cross section from the matrix element squared, for example as given in Eq. 2.4,
as

s
dσ

dy

∣∣∣∣
2→1

= π

(4π)2
Ki j (1− τ) |M |2 τ = m2

Z

s
. (2.6)

The mass of the final state appears in τ , with τ = 0 for a massless photon.
It would be replaced to include mW or the Higgs mass or the mass of a Kaluza–
Klein graviton if needed.

From LEP we know that such a heavy gauge boson we do not actually observe
at colliders. What we should really calculate is the production for example of a pair
of fermions through an s-channel Z and γ, where the Z might or might not be on
its mass shell. The matrix element for this process we can derive from the same
Feynman rules in Eq. 2.1, now for an incoming fermion k1, incoming anti-fermion
k2, outgoing fermion p1 and outgoing anti-fermion p2. To make it easy to switch
particles between initial and final states, we can define all momenta as incoming, so
momentum conservation means k1+ k2+ p1+ p2 = 0. The additional Mandelstam
variables we need to describe this (2 → 2) process are t = (k1 + p1)

2 < 0 and
u = (k1+ p2)

2 < 0, as usually with s + t + u = 0 for massless final state particles.
The (2 → 2) matrix element for the two sets of incoming and outgoing fermions
becomes

M = (−i)2ū(p1)γ
v (�′PL + r ′PR

)
v(p2)

× v̄(k2)γ
μ (�PL + rPR) u(k1)

i

q2 − m2
Z

(
−gμv + qμqv

m2
Z

)
. (2.7)
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The coupling to the gauge bosons are � and r for the incoming quarks and �′ and
r ′ for the outgoing leptons. When we combine the four different spinors and their
momenta correctly the matrix element squared factorizes into twice the trace we have
computed before. The corresponding picture is two fermion currents interacting with
each other through a gauge boson. All we have to do is combine the traces properly.
If the incoming trace includes the indices μ and v and the outgoing trace the indices
ρ and σ, the Z bosons link μ and ρ as well as v and σ.

To make the results a little more compact we continue computing this process for
a massless photon instead of the Z boson, i.e. for the physical scenario where the
initial-state fermions do not have enough energy to excite the intermediate Z boson.
The specific features of an intermediate massive Z boson we postpone to Sect. 2.1.2.
The assumption of a massless photon simplifies the couplings to (�2+ r2) = 2Q2e2

and the polarization sums to −gμv:

|M |2 = 4Nc(2Q2e2)(2Q′2e2)
1

q4

[
kμ1 kv

2 + kv
1kμ2 − (k1k2)g

μv] (−gμρ
)

× [pρ1 pσ2 + pσ1 pρ2 − (p1 p2)g
ρσ
]
(−gvσ )

= 16Nc Q2 Q′2e4

q4

[
k1ρkv

2 + kv
1k2ρ − (k1k2)g

v
ρ

] [
pρ1 p2v + p1v pρ2 − (p1 p2)g

ρ
v

]

= 16Nc Q2 Q′2e4

q4

[
2(k1 p1)(k2 p2)+ 2(k1 p2)(k2 p1)

− 2(k1k2)(p1 p2)− 2(k1k2)(p1 p2)+ 4(k1k2)(p1 p2)
]

= 32Nc Q2 Q′2e4

q4 [(k1 p1)(k2 p2)+ (k1 p2)(k2 p1)]

= 32Nc Q2 Q′2e4

s2

[
t2

4
+ u2

4

]

= 8Nc Q2 Q′2e4

s2

[
s2 + 2st + 2t2]

= 8Nc Q2 Q′2e4
[

1+ 2
t

s
+ 2

t2

s2

]
(2.8)

We can briefly check if this number is indeed positive, using the definition of the
Mandelstam variable t for massless external particles in terms of the polar angle
t = s(−1 + cos θ)/2 = −s · · · 0: the upper phase space boundary t = 0 inserted
into the brackets in Eq. 2.8 gives [· · · ] = 1, just as the lower boundary t = −s with
[· · · ] = 1 − 2 + 2 = 1. For the central value t = −s/2 the minimum value of the
brackets is [· · · ] = 1− 1+ 0.5 = 0.5.

The azimuthal angle φ plays no role at colliders, unless you want to compute
gravitational effects on Higgs production at ATLAS and CMS. Any LHC Monte
Carlo will either random-generate a reference angle φ for the partonic process or
pick one and keep it fixed.
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The two-particle phase space integration for massless particles then gives us

s2 dσ

dt

∣∣∣∣
2→2

= π

(4π)2
Ki j |M |2 t = s

2
(−1+ cos θ). (2.9)

For our Drell–Yan process we then find the differential cross section in four space–
time dimensions, using α = e2/(4π)

dσ

dt
= 1

s2

π

(4π)2
1

4Nc
8Q2 Q′2(4πα)2

(
1+ 2

t

s
+ 2

t2

s2

)

= 1

s2

2πα2

Nc
Q2 Q′2

(
1+ 2

t

s
+ 2

t2

s2

)
, (2.10)

which we can integrate over the polar angle or the Mandelstam variable t to compute
the total cross section

σ = 1

s2

2πα2

Nc
Q2 Q′2

∫ 0

−s
dt

(
1+ 2

t

s
+ 2

t2

s2

)

= 1

s2

2πα2

Nc
Q2 Q′2

[
t + t2

s
+ 2t3

3s2

]0

−s

= 1

s2

2πα2

Nc
Q2 Q′2

(
s − s2

s
+ 2t s

3s2

)

= 1

s

2πα2

Nc
Q2 Q′2 2

3
⇒ σ(qq̄ → �+�−)

∣∣∣∣
QED

= 4πα2

3Ncs
Q2
�Q2

q (2.11)

As a side remark—in the history of QCD, the same process but read right-to-
left played a crucial role, namely the production rate of quarks in e+e− scattering.
For small enough energies we can neglect the Z exchange contribution. At leading
order we can then compute the corresponding production cross sections for muon
pairs and for quark pairs in e+e− collisions. Moving the quarks into the final state
means that we do not average of the color in the initial state, but sum over all
possible color combinations, which in Eq. 2.9 gives us an averaging factor Ki j = 1/4.
Everything else stays the same as for the Drell–Yan process

R ≡ σ(e+e− → hadrons)

σ (e+e− → �+�−)
=
∑

quarks
4πα2 Nc

3s Q2
e Q2

q

4πα2

3s Q2
e Q2

�

= Nc

(
3

1

9
+ 2

4

9

)
= 11Nc

9
,

(2.12)
for example for five quark flavors where the top quark is too heavy to be produced
at the given e+e− collider energy. For those interested in the details we did take one
short cut: hadrons are also produced in the hadronic decays of e+e− → τ+τ− which
we strictly speaking need to subtract. This way, R as a function of the collider energy
is a beautiful measurement of the weak and color charges of the quarks in QCD.
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2.1.2 Massive Intermediate States

Before we move on to describing incoming quarks inside protons we should briefly
consider the second Feynman diagram contributing to the Drell–Yan production rate
in Eq. 2.11, the on-shell or off-shell Z boson

|M |2 = |Mγ +MZ |2 = |Mγ |2 + |MZ |2 + 2ReMZMγ . (2.13)

Interference occurs in phase space regions where for both intermediate states
the invariant masses of the muon pair are the same. For the photon the on-shell
pole is not a problem. It has zero mass, which means that we hit the pole 1/q2 in the
matrix element squared only in the limit of zero incoming energy. Strictly speaking
we never hit it, because the energy of the incoming particles has to be large enough
to produce the final state particles with their tiny but finite masses and with some
kind of momentum driving them through the detector.

A problem arises when we consider the intermediate Z boson. In that case, the
propagator contributes as |M |2 ∝ 1/(s−m2

Z )
2 which diverges for on-shell Z bosons.

Before we can ask what such a pole means for LHC simulations we have to recall
how we deal with it in field theory. There, we encounter the same issue when we solve
for example the Klein–Gordon equation. The Green function for a field obeying this
equation is the inverse of the Klein–Gordon operator

(
	
 + m2

)
G(x − x ′) = δ4(x − x ′). (2.14)

Fourier transforming G(x − x ′) into momentum space we find

G(x − x ′) =
∫

d4q

(2π)4
e−iq·(x−x ′)G̃(q)

(
	
 + m2

)
G(x − x ′) =

∫
d4q

(2π)4

(
	
 + m2

)
e−iq·(x−x ′)G̃(q)

=
∫

d4q

(2π)4

(
(iq)2 + m2

)
e−iq·(x−x ′)G̃(q)

=
∫

d4q

(2π)4
e−iq·(x−x ′)

(
−q2 + m2

)
G̃(q)

!=δ4(x − x ′) =
∫

d4q

(2π)4
e−iq·(x−x ′)

⇔ (−q2 + m2)G̃(q) = 1 ⇔ G̃(q) ∼ − 1

q2 − m2 . (2.15)
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The problem with the Green function in momentum space is that as an inverse it is
not defined for q2 = m2.We usually avoid this problem by slightly shifting this pole
following the Feynman i ε prescription to m2 → m2− iε, or equivalently deforming
our integration contours appropriately. The sign of this infinitesimal shift we need to
understand because it will become relevant for phenomenology when we introduce
an actual finite decay width of intermediate states.

In the Feynman iε prescription the sign is crucial to correctly complete the q0
integration of the Fourier transform in the complex plane

∫ ∞
−∞

dq0
e−iq0x0

q2 − m2 + iε

= (θ(x0)+ θ(−x0))

∫ ∞
−∞

dq0
e−iq0x0

q2
0 − (ω2 − iε)

with ω2 = �q2 + m2

= (θ(x0)+ θ(−x0))

∫ ∞
−∞

dq0
e−iq0x0

(q0 −
√
ω2 − iε)(q0 +

√
ω2 − iε)

=
(
θ(x0)

∮
C2

+θ(−x0)

∮
C1

)
dq0

e−iq0x0

(q0 − ω(1− iε′))(q0 + ω(1− iε′))
, (2.16)

defining ε′ = ε/(2ω2). In the last step we close the integration contour along the real
q0 axis in the complex q0 plane. Because the integrand has to vanish for large q0,

we have to make sure the exponent −i x0iImq0 = x0Imq0 is negative. For x0 > 0
this means Imq0 < 0 and vice versa. This argument forces C1 to close for positive
and C2 for negative imaginary parts in the complex q0 plane.

The contour integrals we can solve using Cauchy’s formula, keeping in mind that
the integrand has two poles at q0 = ±ω(1 − iε′). They lie in the upper (lower)
half plane for negative (positive) real parts of q0. The contour C1 through the upper
half plane includes the pole at q0 ∼ −ω while the contour C2 includes the pole at
q0 ∼ ω, all assuming ω > 0:

∫ ∞
−∞

dq0
e−iq0x0

q2 − m2 + iε
= 2π i

[
θ(x0)

(−1)e−iωx0

ω + ω(1− iε′)
+ θ(−x0)

eiωx0

−ω − ω(1− iε′)

]

ε′→0= −i
π

ω

[
θ(x0)e

−iωx0 + θ(−x0)e
iωx0

]
. (2.17)

The factor (−1) in the C2 integration arises because Cauchy’s integration formula
requires us to integrate counter-clockwise, while going from negative to positive
Req0 the contour C2 is defined clockwise. Using this result we can complete the
four–dimensional Fourier transform from Eq. 2.15



2.1 Drell–Yan Process 71

G(x) =
∫

d4qe−i(q·x)G̃(q)

=
∫

d4q
e−i(q·x)

q2 − m2 + iε

= −iπ
∫

d3 �qei �q �x 1

ω

[
θ(x0)e

−iωx0 + θ(−x0)e
iωx0

]

= −iπ
∫

d4qei �q �x 1

ω

[
θ(x0)e

−iq0x0δ(q0 − ω)+ θ(−x0)e
−iq0x0δ(qo + ω)

]

= −iπ
∫

d4qe−i(q·x) 1

ω
[θ(x0)δ(ω − q0)+ θ(−x0)δ(ω + q0)]

= −iπ
∫

d4qe−i(q·x) 1

ω
2ω
[
θ(x0)δ(ω

2 − q2
0 )+ θ(−x0)δ(ω

2 − q2
0 )
]

= −2π i
∫

d4qe−i(q·x) [θ(x0)+ θ(−x0)] δ(q
2
0 − ω2)

= −2π i
∫

d4qe−i(q·x) [θ(x0)+ θ(−x0)] δ(q
2 − m2),

(2.18)
with q2

0 −ω2 = q2 −m2. This is exactly the usual decomposition of the propagator
function ΔF (x) = θ(x0)Δ

+(x) + θ(−x0)Δ
−(x) into positive and negative energy

contributions.
Let us briefly recapitulate what would have happened if we instead had chosen

the Feynman parameter ε < 0. All steps leading to the propagator function in Eq.
2.18 we summarize in Table 2.1. For the wrong sign of iε the two poles in the
complex q0 plane would be mirrored by the real axis. The solution with Re q0 > 0
would sit in the quadrant with Im q0 > 0 and the second pole at a negative real and
imaginary part. To be able to close the integration path in the upper half plane in the
mathematically positive direction the real pole would have to be matched up with
θ(−x0). The residue in the Cauchy integral would now include a factor +1/(2ω).
At the end, the two poles would give the same result as for the correct sign of iε,
except with a wrong over-all sign.

When we are interested in the kinematic distributions of on-shell massive states the
situation is a little different. Measurements of differential distributions for example
at LEP include information on the physical width of the decaying particle, which
means we cannot simply apply the Feynman iε prescription as if we were dealing
with an asymptotic stable state. From the same couplings governing the Z decay, the
Z propagator receives corrections, for example including fermion loops:

Such one-particle irreducible diagrams can occur in the same propagator repeat-
edly. Schematically written as a scalar they are of the form
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Table 2.1 Contributions to the propagator function Eq. 2.18 for both signs of iε
1

q2 − m2 + iε

1

q2 − m2 − iε

Pole q0 = ω(1− iε) q0 = −ω(1− iε) q0 = ω(1+ iε) q0 = −ω(1+ iε)
Complex quadrant (+,−) (−,+) (+,+) (−,−)
Convergence: x0 Im q0 < 0 x0 > 0 x0 < 0 x0 < 0 x0 > 0
Part of real axis θ(x0) θ(−x0) θ(−x0) θ(x0)

Closed contour Im q0 < 0 Im q0 > 0 Im q0 > 0 Im q0 < 0
Direction of contour −1 +1 +1 −1

Residue + 1

2ω
− 1

2ω
+ 1

2ω
− 1

2ω
Fourier exponent e−iωx0 e+iωx0 e+iωx0 e−iωx0

All combined − e−iωx0

2ω
θ(x0) − e+iωx0

2ω
θ(−x0) + e+iωx0

2ω
θ(−x0) + e−iωx0

2ω
θ(x0)

i

q2 − m2
0 + iε

+ i

q2 − m2
0 + iε

(−i M2)
i

q2 − m2
0 + iε

+ i

q2 − m2
0 + iε

(−i M2)
i

q2 − m2
0 + iε

(−i M2)
i

q2 − m2
0 + iε

+ · · ·

= i

q2 − m2
0 + iε

∑
n=0

(
M2

q2 − m2
0 + iε

)n

= i

q2 − m2
0 + iε

1

1− M2

q2 − m2
0 + iε

summing the geometric series

= i

q2 − m2
0 + iε − M2

, (2.19)

where we denote the loop as M2 for reasons which will become obvious later.
Requiring that the residue of the propagator be unity at the pole we renormalize
the wave function and the mass in the corresponding process. For example for a
massive scalar or gauge boson with a real correction M2(q2) this reads

i

q2 − m2
0 − M2(q2)

= i Z

q2 − m2 for q2 ∼ m2 , (2.20)

including a renormalized mass m and a wave function renormalization constant Z.
The important step in our argument is that in analogy to the effective ggH coupling

discussed in Sect. 1.4.1 the one-loop correction M2 depends on the momentum
flowing through the propagator. Above a certain threshold it can develop an imaginary
part because the momentum flowing through the diagram is large enough to produce
on-shell states in the loop. Just as for the ggH coupling such absorptive parts appear

http://dx.doi.org/10.1007/978-3-642-24040-9_1
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when a real decay like Z → �+�− becomes kinematically allowed. After splitting
M2(q2) into its real and imaginary parts we know what to do with the real part:

the solution to q2 − m2
0 − ReM2(q2)

!= 0 defines the renormalized particle mass
q2 = m2 and the wave function renormalization Z. The imaginary part looks like the
Feynman iε term discussed before

i

q2 − m2
0 + iε − ReM2(q2)− iImM2

= i Z

q2 − m2 + iε − i Z ImM2

≡ i Z

q2 − m2 + imΓ

⇔ Γ = − Z

m
ImM2(q2 = m2), (2.21)

for ε → 0 and finite Γ �= 0. The link between the self energy matrix element
squared M2 and the partial width we can illustrate remembering one way to compute
scalar integrals or one-loop amplitudes by gluing them together using tree-level
amplitudes. The Cuskosky cutting rule discussed in Sect. 1.4.1 tells us schematically
written Im M2 ∼ M2|cut ≡ Γ because cutting the one-loop bubble diagram at the
one possible place is nothing but squaring the two tree-level matrix element for the
decay Z → �+�−.One thing that we need to keep track of, apart from the additional
factor m due to dimensional analysis, is the sign of the imΓ term which just like the
iε prescription is fixed by causality.

Going back to the Drell–Yan process qq̄ → �+�− we now know that for massive
unstable particles the Feynman epsilon which we need to define the Green function
for internal states acquires a finite value, proportional to the total width of the unstable
particle. This definition of a propagator of an unstable particle in the s channel is
what we need for the second Feynman diagram contributing to the Drell–Yan process:
qq̄ → Z∗ → �+�−. The resulting shape of the propagator squared is a Breit–Wigner
propagator

σ(qq̄ → Z → �+�−) ∝
∣∣∣∣∣

1

s − m2
Z + imΓ

∣∣∣∣∣
2

= 1
(s−m2

Z )
2+m2Γ 2 . (2.22)

When taking everything into account, the (2 → 2) production cross section also
includes the squared matrix element for the decay Z → �+�− in the numerator.
In the narrow width approximation, the (2→ 2) matrix element factorizes into the
production process times the branching ratio for Z → �+�−, simply by definition
of the Breit–Wigner distribution

lim
Γ→0

Γ��

(s − m2
Z )

2 + m2Γ 2
tot
= Γ�� π

Γtot
δ(s − m2

Z ) ≡ πBR(Z → ��)δ(s − m2
Z ).

(2.23)
The additional factor π will be absorbed in the different one-particle and two-particle
phase space definitions. We immediately see that this narrow width approximation

http://dx.doi.org/10.1007/978-3-642-24040-9_1
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is only exact for scalar particles. It does not keep information about the structure of
the matrix element, e.g. when a non-trivial structure of the numerator gives us the
spin and angular correlations between the production and decay processes.

Equation 2.23 uses a mathematical relation we might want to remember for life,
and that is the definition of the one-dimensional Dirac delta distribution in three
ways and including all factors of 2 and π

δ(x) =
∫

dq

2π
e−i xq = lim

σ→0

1

σ
√
π

e−x2/σ 2 = lim
Γ→0

1

π

Γ

x2 + Γ 2 . (2.24)

The second distribution is a Gaussian and the third one we would refer to as a
Breit–Wigner shape while most other people call it a Cauchy distribution.

Now, we know everything necessary to compute all Feynman diagrams
contributing to muon pair production at a hadron collider. Strictly speaking, the
two amplitudes interfere, so we end up with three distinct contributions: γ exchange,
Z exchange and the γ − Z interference terms. They have the properties

• For small energies the γ contribution dominates and can be linked to R.
• On the Z pole the rate is regularized by the Z width and Z contribution dominates

over the photon.
• In the tails of the Breit–Wigner distribution we expect Z − γ interference.
• For large energies we are again dominated by the photon channel.
• Quantum effects allow unstable particles like the Z to decay off-shell, defining a

Breit–Wigner propagator.
• In the limit of vanishing width the Z contribution factorizes into σ · BR.

2.1.3 Parton Densities

At the end of Sect. 2.1.1 the discussion of different energy regimes for R experi-
mentally makes sense—at an e+e− collider we can tune the energy of the initial
state. At hadron colliders the situation is very different. The energy distribution of
incoming quarks as parts of the colliding protons has to be taken into account. If we
assume that quarks move collinearly with the surrounding proton, i.e. that at the LHC
incoming partons have zero pT , we can define a probability distribution for finding
a parton just depending on the respective fraction of the proton’s momentum. For
this momentum fraction x = 0 · · · 1 the parton density function (pdf) is denoted as
fi (x), where i denote the different partons in the proton, for our purposes u,d,c,s,g
and depending on the details b. All incoming partons we assume to be massless.

In contrast to so-called structure functions a pdf is not an observable. It is a
distribution in the mathematical sense, which means it has to produce reasonable
results when integrated over together with a test function. Different parton densities
have very different behavior—for the valence quarks (uud) they peak somewhere
around x � 1/3,while the gluon pdf is small at x ∼ 1 and grows very rapidly towards
small x. For some typical part of the relevant parameter space (x = 10−3 . . . 10−1) it
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roughly scales like fg(x) ∝ x−2. Towards smaller x values it becomes even steeper.
This steep gluon distribution was initially not expected and means that for small
enough x LHC processes will dominantly be gluon fusion processes.

While we cannot actually compute parton distribution functions fi (x) as a function
of the momentum fraction x there are a few predictions we can make based on
symmetries and properties of the hadrons. Such arguments for example lead to sum
rules:

The parton distributions inside an anti-proton are linked to those inside a proton
through CP symmetry, which is an exact symmetry of QCD. Therefore, for all partons
we know

f p̄
q (x) = fq̄(x) f p̄

q̄ (x) = fq(x) f p̄
g (x) = fg(x) (2.25)

for all values of x.
If the proton consists of three valence quarks uud, plus quantum fluctuations from

the vacuum which can either involve gluons or quark–antiquark pairs, the contribution
from the sea quarks has to be symmetric in quarks and antiquarks. The expectation
values for the signed numbers of up and down quarks inside a proton have to fulfill

〈Nu〉 =
∫ 1

0
dx ( fu(x)− fū(x)) = 2 〈Nd〉 =

∫ 1

0
dx
(

fd(x)− fd̄(x)
) = 1.

(2.26)
Similarly, the total momentum of the proton has to consist of sum of all parton

momenta. We can write this as the expectation value of
∑

xi

〈∑
xi

〉
=
∫ 1

0
dxx

⎛
⎝∑

q

fq(x)+
∑

q̄

fq̄(x)+ fg(x)

⎞
⎠ = 1 (2.27)

What makes this prediction interesting is that we can compute the same sum only
taking into account the measured quark and antiquark parton densities. We find that
the momentum sum rule only comes to 1/2. Half of the proton momentum is carried
by gluons.

Given the correct definition and normalization of the pdf we can now compute
the hadronic cross section from its partonic counterpart, like the QED result in
Eq. 2.11, as

σtot =
∫ 1

0
dx1

∫ 1

0
dx2

∑
i j

fi (x1) f j (x2)σ̂i j (x1x2S) , (2.28)

where i,j are the incoming partons with the momentum factions xi, j . The partonic
energy of the scattering process is s = x1x2S with the LHC proton energy of even-
tually

√
S = 14 TeV. The partonic cross section σ̂ corresponds to the cross sections

σ computed for example in Eq. 2.11. It has to include all the necessary θ and δ func-
tions for energy–momentum conservation. When we express a general n-particle
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cross section σ̂ including the phase space integration, the xi integrations and the
phase space integrations can of course be interchanged, but Jacobians will make life
hard when we attempt to get them right. In Sect. 2.1.5 we will discuss an easier
way to compute kinematic distributions instead of the fully integrated total rate in
Eq. 2.28.

2.1.4 Hadron Collider Kinematics

Hadron colliders have a particular kinematic feature in that event by event we do
not know the longitudinal velocity of the initial state, i.e. the relative longitudinal
boost from the laboratory frame to the partonic center of mass. This sensitivity to
longitudinal boosts is reflected in the choice of kinematic variables. The first thing
we can do is consider the projection of all momenta onto the transverse plane. These
transverse components are trivially invariant under longitudinal boosts because the
two are orthogonal to each other.

In addition, for the production of a single electroweak gauge boson we remember
that the produced particle does not have any momentum transverse to the beam
direction. This reflects the fact that the incoming quarks are collinear with the protons,
i.e. they have zero transverse momentum. Such a gauge boson not recoiling against
anything else cannot develop a finite transverse momentum. Of course, once we
decay this gauge boson, for example into a pair of muons, each muon will have
transverse momentum, only their vector sum will be zero:

∑
final state

�pT, j = �0. (2.29)

This is a relation between two-dimensional, not three-dimensional vectors. For
several particles in the final state we can define an azimuthal angle in the plane
transverse to the beam direction. While differences of azimuthal angles, e.g. two
such differences between three particles in the final state, are observables the over-
all angle is a symmetry of the detector as well as of our physics.

In addition to the transverse plane we need to parameterize the longitudinal
momenta in a way which makes it easy to implement longitudinal boosts. In
Eq. 2.28 we integrate over the two momentum fractions x1,2 and can at best deter-
mine their product x1x2 = s/S from the final state kinematics. Our task is to replace
both, x1 and x2 with more physical variables which should be well behaved under
longitudinal boosts.

A longitudinal boost for example from the rest frame of a massive particle reads

(
E
pL

)
= exp

[
y

(
0 1
1 0

)](
m
0

)

=
[
1+ y

(
0 1
1 0

)
+ y2

2
1+ y3

6

(
0 1
1 0

)
· · ·
](

m
0

)
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=
⎡
⎣1 ∑

jeven

y j

j ! +
(

0 1
1 0

)∑
jodd

y j

j !

⎤
⎦(m

0

)

=
[
1 cosh y +

(
0 1
1 0

)
sinh y

](
m
0

)
= m

(
cosh y
sinh y

)
. (2.30)

In the first line we already see that the combination of two such exponentials involving
y1 and y2 is additive y = y1 + y2. The rapidity y as defined in Eq. 2.30 we can re-
write in a way which allows us to compute it from the four-momentum for example
in the LHC lab frame

1

2
log

E + pL

E − pL
= 1

2
log

cosh y + sinh y

cosh y − sinh y
= 1

2
log

ey

e−y
= y. (2.31)

We can explicitly check that the rapidity is indeed additive by applying a second
longitudinal boost to (E, pL) in Eq. 2.30

(
E ′
p′L

)
= exp

[
y′
(

0 1
1 0

)](
E
pL

)
=
[
1 cosh y′ +

(
0 1
1 0

)
sinh y′

](
E
pL

)

=
(

E cosh y′ + pL sinh y′
pL cosh y′ + E sinh y′

)
,

(2.32)
which gives for the combined rapidity, following its extraction in Eq. 2.21

1

2
log

E ′ + p′L
E ′ − p′L

= 1

2
log

(E + pL )(cosh y′ + sinh y′)
(E − pL )(cosh y′ − sinh y′)

= 1

2
log

E + pL

E − pL
+ y′ = y + y′.

(2.33)
This combination of several longitudinal boosts is important in the case of massless
particles. They do not have a rest frame, which means we can only boost them from
one finite-momentum frame to the other. For such massless particles we can simplify
the formula for the rapidity Eq. 2.31, instead expressing the rapidity in terms of the
polar angle θ. We use the fact that (only) for massless particles E = | �p|

y = 1

2
log

E + pL

E − pL
= 1

2
log
| �p| + pL

| �p| − pL
= 1

2
log

1+ cos θ

1− cos θ
= 1

2
log

1

tan2 θ
2

= − log tan
θ

2
≡ η (2.34)

This pseudo-rapidity η is more handy, but coincides with the actual rapidity only
for massless particles. To get an idea about the experimental setup at the LHC—
in CMS and ATLAS we can observe particles to polar angles of 10 or even 1.3◦,
corresponding to maximum pseudo-rapidities of 2.5–4.5. Because this is about the
same range as the range of the azimuthal angle [0, π ] we define a distance measure
inside the detector
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(ΔR)2 = (Δy)2 + (Δφ)2
= (Δη)2 + (Δφ)2 massless particles

=
(

log
tan θ+Δθ

2
θ
2

)2

+ (Δφ)2

= (Δθ)2

sin2 θ
+ (Δφ)2 + O((Δθ)3) (2.35)

The angle θ is the polar angle of one of the two particles considered and in our
leading approximation can be chosen as each of them without changing Eq. 2.35.

Still studying the production of a single gauge boson at the LHC we can express
the final state kinematics in terms of two parameters, the invariant mass of the final-
state particle q2 and its rapidity. The transverse momentum we already know is zero.
The two incoming and approximately massless protons have the momenta

p1 = (E, 0, 0, E) p2 = (E, 0, 0,−E) S = (2E)2, (2.36)

which for the momentum of the final-state gauge boson in terms of the parton
momentum fractions means, when we include the definition of the rapidity in
Eq. 2.30

q = x1 p1 + x2 p2 = E

⎛
⎜⎜⎝

x1 + x2
0
0

x1 − x2

⎞
⎟⎟⎠ !=

√
q2

⎛
⎜⎜⎝

cosh y
0
0

sinh y

⎞
⎟⎟⎠ = 2E

√
x1x2

⎛
⎜⎜⎝

cosh y
0
0

sinh y

⎞
⎟⎟⎠

⇔ cosh y = x1 + x2

2
√

x1x2
= 1

2

(√
x1

x2
+
√

x2

x1

)

⇔ ey =
√

x1

x2
.

(2.37)
This result can be combined with x1x2 = q2/S to obtain

x1 =
√

q2

S
ey x2 =

√
q2

S
e−y . (2.38)

These relations allow us to for example compute the hadronic total cross section
for lepton pair production in QED

σ(pp→ �+�−)
∣∣∣∣
QED

= 4πα2 Q2
�

3Nc

∫ 1

0
dx1dx2

∑
j

Q2
j f j (x1) f j̄ (x2)

1

q2 , (2.39)

instead in terms of the hadronic phase space variables x1,2 in terms of the kinematic
final state observables q2 and y. Remember that the partonic or quark–antiquark
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cross section σ̂ is already integrated over the (symmetric) azimuthal angle φ and the
polar angle Mandelstam variable t. The transverse momentum of the two leptons is
therefore fixed by momentum conservation.

The Jacobian for this change of variables reads

∂(q2, y)

∂(x1, x2)
=
∣∣∣∣ x2S x1S
1/(2x1) −1/(2x2)

∣∣∣∣ = S = q2

x1x2
, (2.40)

which inserted into Eq. 2.39 gives us

σ(pp→ �+�−)
∣∣∣∣
QED

= 4πα2 Q2
�

3Nc

∫
dq2dy

x1x2

q2

1

q2

∑
j

Q2
j f j (x1) f j̄ (x2)

= 4πα2 Q2
�

3Nc

∫
dq2dy

1

q4

∑
j

Q2
j x1 f j (x1)x2 f j̄ (x2). (2.41)

In contrast to the original form of the integration over the hadronic phase space
this form reflects the kinematic observables. For the Drell–Yan process at leading
order the q2 distribution is the same as m2

��, one of the most interesting distributions
to study because of different contributions from the photon, the Z boson, or extra
dimensional gravitons. On the other hand, the rapidity integral still suffers from the
fact that at hadron colliders we do not know the longitudinal kinematics of the initial
state and therefore have to integrate over it.

2.1.5 Phase Space Integration

In the previous example we have computed the simple two-dimensional distribution,
by leaving out the double integration in Eq. 2.41

dσ(pp→ �+�−)
dq2dy

∣∣∣∣
QED

= 4πα2 Q2
�

3Ncq4

∑
j

Q2
j x1 f j (x1)x2 f j̄ (x2). (2.42)

This expression we can numerically evaluate and compare to experiment. However,
the rapidity y and the momentum transfer q2 are by no means the only distribution
we would like to look at. Moreover, over the parton densities f (x) we will have
to integrate numerically, so we will have to rely on numerical integration tools no
matter what we are doing. Looking at a simple (2 → 2) process we can write the
total cross section as

σtot =
∫

dφ
∫

d cos θ
∫

dx1

∫
dx2 FPS|M |2 =

∫ 1

0
dy1 · · · dy4 JPS(�y)|M |2,

(2.43)
with an appropriate function FPS. In the second step we have re-written the phase
space integral as an integral over the four-dimensional unit cube, with the appropriate
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Jacobian. Like any integral we can numerically evaluate this phase space integral by
binning the variable we integrate over

∫ 1

0
dy f (y) −→

∑
j

(Δy) j f (y j ) ∼ Δy
∑

j

f (y j ). (2.44)

Without any loss of generality we assume that the integration boundaries are 0 · · · 1.
The integration variable y we can divide into a discrete set of points y j , for example
equidistant in y and by choosing a chain of random numbers y jε[0, 1]. In the latter
case we need to keep track of the bin widths (Δy) j . When we extend the integral
over N dimensions we can in principle divide each axis into bins and compute the
functional values for this grid. For not equidistant bins generated by random numbers
we again keep track of the associated phase space volume for each random number
vector. However, once we know these phase space weights for each phase space point
there is no reason to consider the set of random numbers as in any way linked to the N
axes. All we need is a chain of random points with an associated phase space weight
and their transition matrix element, to integrate over the phase space in complete
analogy to Eq. 2.24.

The obvious question arises how such random numbers can be chosen in a smart
way; but before we discuss how to best evaluate such an integral numerically, let
us first illustrate how this integral is much more useful than just providing the total
cross section. If we are interested in the distribution of an observable, like for example
the distribution of the transverse momentum of a muon in the Drell–Yan process,
we need to compute dσ/dpT as a function of pT . In terms of Eq. 2.23 any physical
y1 distribution is given by

σ =
∫

dy1 · · · dyN f (�y) =
∫

dy1
dσ

dy1

dσ

dy1

∣∣∣∣
y0

1

=
∫

dy2 · · · dyN f (y0
1 ) =

∫
dy1 · · · dyN f (�y)δ(y1 − y0

1 ). (2.45)

Numerically we can compute this distribution in two ways: one way corresponds to
the first line in Eq. 2.45 and means numerically evaluating the y2 · · · yN integrations
and leaving out the y1 integration. The result will be a function of y1 which we then
evaluate at different points y0

1 .

The second and much more efficient option corresponds to the second line of
Eq. 2.45, with the delta distribution defined for discretized y1. First, we define an
array with the size given by the number of bins in the y1 integration. Then, for each y1
value of the complete y1 · · · yN integration we decide where the value y1 goes in this
array and add f (�y) to the corresponding column. Finally, we print these columns
as a function of y1 to see the distribution. This set of columns is referred to as a
histogram and can be produced using publicly available software. This histogram
approach does not sound like much, but imagine we want to compute a distribution
dσ/dpT , where pT (�y) is a complicated function of the integration variables and
kinematic phase space cuts. We then simply evaluate
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dσ

dpT
=
∫

dy1 · · · dyN f (�y)δ
(

pT (�y)− p0
T

)
(2.46)

numerically and read off the pT distribution as a side product of the calculation of
the total rate. Histograms mean that computing a total cross section numerically we
can trivially extract all distributions in the same process.

The procedure outlined above has an interesting interpretation. Imagine we do
the entire phase space integration numerically. Just like computing the interesting
observables we can compute the momenta of all external particles. These momenta
are not all independent, because of energy–momentum conservation, but this can be
taken care of. The tool which translates the vector of integration variables �y into
the external momenta is called a phase space generator. Because the phase space is
not uniquely defined in terms of the integration variables, the phase space generator
also returns the Jacobian JPS, called the phase space weight. If we think of the
integration as an integration over the unit cube, this weight needs to be combined
with the matrix element squared |M |2. Once we compute the unique phase space
configuration (k1, k2, p1 · · · ) j corresponding to the vector �y j , the combined weight
W = JPS|M |2 is the probability that this configuration will appear at the LHC. This
means we do not only integrate over the phase space, we really simulate LHC events.
The only complication is that the probability of a certain configuration is not only
given by the frequency with which it appears, but also by the explicit weight. So when
we run our numerical integration through the phase space generator and histogram
all the distributions we are interested in we generate weighted events. These events,
i.e. the momenta of all external particles and the weight W, we can for example store
in a big file.

This simulation is not yet what experimentalists want—they want to represent the
probability of a certain configuration appearing only by its frequency. Experimentally
measured events do not come with a variable weight, either they are recorded or they
are not. This means we have to unweight the events by translating the event weight
into frequency.

There are two ways to do that. On the one hand, we can look at the minimum event
weight and express all other events in relative probability to this event. Translating
this relative event weight into a frequency means replacing an event with the relative
weight W j/Wmin by W j/Wmin events in the same phase space point. The problem
with this method is that we are really dealing with a binned phase space, so we
would not know how to distribute these events in the given bin. Alternatively, we can
start from to the maximum weight Wmax and compute the ratio W j/Wmax ∈ [0, 1].
Keeping an event with a given probability means we can generate a flat random
number r ∈ [0, 1] and only keep it if W j/Wmax > r. The challenge in this translation
is that we always lose events. If it was not for the experimentalists we would hardly
use such unweighted events, but they have good reasons to want such unweighted
events which feed best through detector simulations.

The last comment is that if the phase space configuration (k1, k2, p1 · · · ) j can be
measured, its weight W j better be positive. This is not trivial once we go beyond
leading order. There, we need to add several contributions to produce a physical
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event, like for example different n-particle final states, and there is no guarantee for
each of them to be positive. We have to ensure that after adding up all contributions
and after integrating over any kind of unphysical degrees of freedom we might have
introduced, the probability of a physics configuration is positive. From this point of
view negative values for parton densities f (x) < 0 are in principle not problematic,
as long as we always keep a positive hadronic rate dσpp→X > 0.

Going back to the numerical phase space integration for many particles, it faces
two problems. First, the partonic phase space for n on-shell particles in the final
state has 3(n + 2)− 3 dimensions. If we divide each of these directions in 100 bins,
the number of phase space points we need to evaluate for a (2 → 4) process is
10015 = 1030, which is not realistic.

To integrate over a large number of dimensions we use Monte Carlo integration. In
this approach we define a distribution pY (y) such that for a one-dimensional integral
we can replace the binned discretized phase space integral by a discretized version
based on a set of random numbers Y j over the integration variables y

〈g(Y )〉 =
∫ 1

0
dypY (y)g(y) −→ 1

N

∑
j

g(Y j ). (2.47)

All we have to make sure is that the probability of returning Y j is given by pY (y) for
y < Y j < y+ dy. As mentioned above, also Eq. 2.47 has the advantage that we can
naively generalize it to any number of N dimensions, just by organizing the random
numbers Y j in one large chain instead of an N-dimensional array. Our N-dimensional
phase space integral shown in Eq. 2.43 we can re-write in the same manner

∫ 1

0
d N y f (y) =

∫ 1

0
d N y

f (y)

pY (y)
pY (y) =

〈
f (Y )

pY (Y )

〉
→ 1

N

∑
j

f (Y j )

pY (Y j )
. (2.48)

To compute the integral we have to average over all phase space values of f/pY . In
the ideal case where we exactly know the form of the integrand and can map it into our
random numbers, the error of the numerical integration will be zero. So what we have
to find is a way to encode f (Y j ) into pY (Y j ).This task is called importance sampling
and you can find some documentation for example on the standard implementation
VEGAS to look at the details.

Technically, VEGAS will call the function which computes the weight W =
JPS|M |2 for a number of phase space points and average over these points, but
including another weight factor WMC representing the importance sampling. If we
want to extract distributions via histograms we have to add the total weight W =
WMC JPS|M |2 to the columns.

The second numerical challenge is that the matrix elements for interesting
processes are by no means flat. We would therefore like to help our adaptive or
importance sampling Monte Carlo by defining the integration variables such that
the integrand becomes as flat as possible. For example for the integration over the
partonic momentum fraction we know that the integrand usual falls off as 1/x .
In that situation we can substitute
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∫
δ

dx
C

x
=
∫

log δ
d log x

(
d log x

dx

)−1 C

x
=
∫

log δ
d log xC, (2.49)

to obtain a flat integrand. There exists an even more impressive and relevant example:
intermediate particles with Breit–Wigner propagators squared are particularly painful
to integrate over the momentum s = p2 flowing through it

P(s,m) = 1

(s − m2)2 + m2Γ 2 . (2.50)

For example, a Standard-Model Higgs boson with a mass of 120 GeV has a width
around 0.005 GeV, which means that the integration over the invariant mass of the
Higgs decay products

√
s requires a relative resolution of 10−5. Since this is unlikely

to be achievable what we should really do is find a substitution which produces the
inverse Breit–Wigner as a Jacobian and leads to a flat integrand—et voilà

∫
ds

C

(s − m2)2 + m2Γ 2 =
∫

dz

(
dz

ds

)−1 C

(s − m2)2 + m2Γ 2

=
∫

dz
(s − m2)2 + m2Γ 2

mΓ

C

(s − m2)2 + m2Γ 2

= 1

mΓ

∫
dzC with tan z = s − m2

mΓ
. (2.51)

This is the most useful phase space mapping in LHC physics. Of course, any adaptive
Monte Carlo will eventually converge on such an integrand, but a well-chosen set of
integration parameters will speed up simulations very significantly.

2.2 Ultraviolet Divergences

From general field theory we know that when we are interested for example in
cross section prediction with higher precision we need to compute further terms in
its perturbative series in αs . This computation will lead to ultraviolet divergences
which can be absorbed into counter terms for any parameter in the Lagrangian. The
crucial feature is that for a renormalizable theory like our Standard Model including
a Higgs boson the number of counter terms is finite, which means once we know all
parameters including their counter terms our theory becomes predictive.

In Sect. 2.3 we will see that in QCD processes we also encounter another kind of
divergences. They arise from the infrared momentum regime. Infrared divergences
is what this lecture is really going to be about, but before dealing with them it is very
instructive to see what happens to the much better understood ultraviolet divergences.
In Sect. 2.2.1 we will review how such ultraviolet divergences arise and how they
are removed. In Sect. 2.2.2 we will review how running parameters appear in this
procedure, i.e. how scale dependence is linked to the appearance of divergences.
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Finally, in Sect. 2.2.3 we will interpret the use of running parameters physically
and see that in perturbation theory they re-sum classes of logarithms to all orders
in perturbation theory. Later in Sect. 2.3 we will follow exactly the same steps for
infrared divergences and develop some crucial features of hadron collider physics.

2.2.1 Counter Terms

Renormalization, i.e. the proper treatment of ultraviolet divergences, is one of the
most important things to understand about field theories; more detailed discussions
you can find in any book on advanced field theory. The aspect of renormalization
which will guide us through this section is the appearance of the renormalization
scale.

In perturbation theory, scales automatically arise from the regularization of
infrared or ultraviolet divergences. We can see this writing down a simple scalar
loop integral, corresponding to two virtual scalars with masses m1,2 and with
the external momentum p flowing through a diagram similar to those summed in
Sect. 2.1.2

B(p2;m1,m2) ≡
∫

d4q

16π2

1

q2 − m2
1

1

(q + p)2 − m2
2

. (2.52)

Such two-point functions appear for example in the gluon self energy, with massless
scalars for ghosts, with a Dirac trace in the numerator for quarks, and with massive
scalars for supersymmetric scalar quarks. In those cases the two masses are identical
m1 = m2. The integration measure 1/(16π2) is dictated by the usual Feynman rules
for the integration over loop momenta. Counting powers of q in Eq. 2.52 we see
that the integrand scales like 1/q in the ultraviolet, so it is logarithmically divergent
and we have to regularize it. Regularizing means expressing the divergence in a
well-defined manner or scheme allowing us to get rid of it by renormalization.

One regularization scheme is to introduce a cutoff into the momentum inte-
gral Λ, for example through the so-called Pauli–Villars regularization. Because the
ultraviolet behavior of the integrand or integral cannot depend on any parameter
living at a small energy scales, the parameterization of the ultraviolet divergence in
Eq. 2.52 cannot involve the mass m or the external momentum p2. The scalar two-
point function has mass dimension zero, so its divergence has to be proportional to
log(Λ/μR) with a dimensionless prefactor and some scale μ2

R which is an artifact
of the regularization of such a Feynman diagram.

A more elegant regularization scheme is dimensional regularization. It is designed
not to break gauge invariance and naively seems to not introduce a mass scale μR .

When we shift the momentum integration from 4 to 4 − 2ε dimensions and use
analytic continuation in the number of space–time dimensions to renormalize the
theory a renormalization scale μR nevertheless appears once we ensure the two-
point function and with it observables like cross sections keep their correct mass
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dimension

∫
d4q

16π2 · · · −→ μ2ε
R

∫
d4−2εq

16π2 · · · =
iμ2ε

R

(4π)2

[
C−1

ε
+ C0 + C1ε + O(ε2)

]
.

(2.53)
At the end, the scale μR might become irrelevant and drop out after renormalization
and analytic continuation, but to be on the save side we keep it. The constants Ci

in the series in 1/ε depend on the loop integral we are considering. To regularize
the ultraviolet divergence we assume ε > 0 and find mathematically well-defined
poles 1/ε. Defining scalar integrals with the integration measure 1/(iπ2) will make
for example C−1 come out as of the order O(1). This is the reason we usually find
factors 1/(4π)2 = π2/(2π)4 in front of the loop integrals.

The poles in 1/εwill cancel with the universal counter terms once we renormalize
the theory. Counter terms we include by shifting parameters in the Lagrangian and
the leading order matrix element. They cancel the poles in the combined leading
order and virtual one-loop prediction

|MLO(g)+Mvirt|2 = |MLO(g)|2 + 2Re MLO(g)Mvirt + · · ·
→ |MLO(g + δg)|2 + 2Re MLO(g)Mvirt + · · ·

with g→ gbare = g + δg and δg ∝ αs/ε. (2.54)

The dots indicate higher orders in αs, for example absorbing the δg corrections in the
leading order and virtual interference. As we can see in Eq. 2.54 the counter terms do
not come with a factor μ2ε

R in front. Therefore, while the poles 1/ε cancel just fine,
the scale factor μ2ε

R will not be matched between the actual ultraviolet divergence
and the counter term.

We can keep track of the renormalization scale best by expanding the prefactor
of the regularized but not yet renormalized integral in Eq. 2.53 in a Taylor series in
ε, no question asked about convergence radii

μ2ε
R

[
C−1

ε
+ C0 + O(ε)

]
= e2ε logμR

[
C−1

ε
+ C0 + O(ε)

]

=
[
1+ 2ε logμR + O(ε2)

] [C−1

ε
+ C0 + O(ε)

]

= C−1

ε
+ C0 + C−1 logμ2

R + O(ε)

→ C−1

ε
+ C0 + C−1 log

μ2
R

M2 + O(ε).

(2.55)
In the last step we have by hand corrected for the fact that logμ2

R with a mass
dimension inside the logarithm cannot appear in our calculations. From somewhere
else in our calculation the scale dependence logarithm will be matched with a log M2

where M2 is the typical mass or energy scale in our process. This little argument
shows that also in dimensional regularization we introduce a mass scale μR which
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appears as log(μ2
R/M2) in the renormalized expression for our observables. There is

no way of removing ultraviolet divergences without introducing the renormalization
scale if we keep track of the mass dimensions of our regularized result.

In Eq. 2.54 there appear two contributions to a given observable, the expected
C0 and the renormalization induced C−1. Because the factors C−1 are linked to the
counter terms in the theory we can often guess them without actually computing the
loop integral, which is very useful in cases where they numerically dominate.

Counter terms as they schematically appear in Eq. 2.54 are not uniquely defined.
They need to include a given divergence, to return finite observables, but we are free
to add any finite contribution we want. This opens many ways to define a counter
term for example based on physical processes where counter terms do not only cancel
the pole but also finite contributions at a given order in perturbation theory. Needless
to say, such schemes do not automatically work universally. An example for such a
physical renormalization scheme is the on-shell scheme for masses, where we define
a counter term such that external on-shell particles do not receive any corrections to
their masses. For the top mass this means that just like in Eq. 2.54 we replace the
leading order mass with the bare mass, for which we then insert the expression in
terms of the renormalized mass and the counter term

mbare
t = mt + δmt

= mt + mt
αsCF

4π

(
3

(
−1

ε
+ γE − log(4π)− log

μ2
R

M2

)
− 4+ 3 log

m2
t

M2

)

≡ mt + mt
αsCF

4π

(
−3

ε̃
− 4+ 3 log

m2
t

M2

)

⇔ 1

ε̃
(
μR
M

) ≡ 1

ε
− γE + log

4πμ2
R

M2 .

(2.56)
The convenient scale dependent pole 1/ε̃ includes the universal additional terms like
the Euler gamma function and the scaling logarithm. This logarithm is the big problem
in this universality argument, since we need to introduce the arbitrary energy scale
M to separate the universal logarithm of the renormalization scale and the parameter-
dependent logarithm of the physical process.

A theoretical problem with this on-shell renormalization scheme is that it is not
gauge invariant. On the other hand, it describes for example the kinematic features
of top pair production at hadron colliders in a stable perturbation series. This means
that once we define a more appropriate scheme for heavy particle masses in collider
production mechanisms it better be numerically close to the pole mass. For the
computation of total cross sections at hadron colliders or the production thresholds
at e+e− colliders the pole mass is not well suited at all, but as we will see in Chap. 3
this is not where at the LHC we expect to measure particle masses, so we should do
fine with something very similar to the pole mass.

Another example for a process dependent renormalization scheme is the mixing
of γ and Z propagators. There we choose the counter term of the weak mixing angle

http://dx.doi.org/10.1007/978-3-642-24040-9_3
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such that an on-shell Z boson cannot oscillate into a photon, and vice versa. We can
generalize this scheme for mixing scalars as they for example appear in supersym-
metry, but it is not gauge invariant with respect to the weak gauge symmetries of
the Standard Model either. For QCD corrections, on the other hand, it is the most
convenient scheme keeping all exchange symmetries of the two scalars.

To finalize this discussion of process dependent mass renormalization we quote
the result for a scalar supersymmetric quark, a squark, where in the on-shell scheme
we find

mbare
q̃ = mq̃ + δmq̃

= mq̃ + mq̃
αsCF

4π

(
− 2r

ε̃
− 1− 3r − (1− 2r) log r

− (1− r)2 log

∣∣∣∣1r − 1

∣∣∣∣− 2r log
m2

q̃

M2

)
(2.57)

with r = m2
g̃/m2

q̃ . The interesting aspect of this squark mass counter term is that
it also depends on the gluino mass, not just the squark mass itself. The reason why
QCD counter terms tend to depend only on the renormalized quantity itself is that
the gluon is massless. In the limit of vanishing gluino contribution the squark mass
counter term is again only proportional to the squark mass itself

mbare
q̃

∣∣∣∣
mg̃=0

= mq̃ + δmq̃ = mq̃ + mq̃
αsCF

4π

(
−1

ε̃
− 3+ log

m2
q̃

M2

)
. (2.58)

One common feature of all mass counter terms listed above is δm ∝ m, which
means that we actually encounter a multiplicative renormalization

mbare = Zmm = (1+ δZm)m =
(

1+ δm
m

)
m = m + δm, (2.59)

with δZm = δm/m linking the two ways of writing the mass counter term. This
form implies that particles with zero mass will not obtain a finite mass through
renormalization. If we remember that chiral symmetry protects a Lagrangian from
acquiring fermion masses this means that on-shell renormalization does not break
this symmetry. A massless theory cannot become massive by mass renormalization.
Regularization and renormalization schemes which do not break symmetries of the
Lagrangian are ideal.

When we introduce counter terms in general field theory we usually choose a
slightly more model independent scheme—we define a renormalization point. This
is the energy scale at which the counter terms cancels all higher order contributions,
divergent as well as finite. The best known example is the electric charge which we
renormalize in the Thomson limit of zero momentum transfer through the photon
propagator
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e→ ebare = e + δe. (2.60)

Looking back at δmt as defined in Eq. 2.56 we also see a way to define a completely
general counter term: if dimensional regularization, i.e. the introduction of 4 − 2ε
dimensions does not break any of the symmetries of our Lagrangian, like Lorentz
symmetry or gauge symmetries, we should simply subtract the ultraviolet pole and
nothing else. The only question is: do we subtract 1/ε (MS scheme) or do we subtract
1/ε̃ in the M S scheme. In the MS scheme the counter term is then scale dependent.

Carefully counting, there are three scales present in such a scheme. First, there is
the physical scale in the process. In our case of a top self energy this is for example
the top mass mt appearing in the matrix element for the process pp → t t̄ . Next,
there is the renormalization scaleμR, a reference scale which is part of the definition
of any counter term. And last but not least, there is the scale M separating the counter
term from the process dependent result, which we can choose however we want,
but which as we will see implies a running of the counter term. The role of this
scale M will become clear when we go through the example of the running strong
coupling αs . Of course, we would prefer to choose all three scales the same, but
in a complex physical process this might not always be possible. For example, any
massive (2 → 3) production process naturally involves several external physical
scales.

Just a side remark for completeness: a one loop integral which has no intrinsic
mass scale is the two-point function with zero mass in the loop and zero momentum
flowing through the integral: B(p2 = 0; 0, 0). It appears for example in the self
energy corrections of external quarks and gluons. Based on dimensional arguments
this integral has to vanish altogether. On the other hand, we know that like any massive
two-point function it has to be ultraviolet divergent B ∼ 1/εUV because setting all
internal and external mass scales to zero is nothing special from an ultraviolet point
of view. This can only work if the scalar integral also has an infrared divergence
appearing in dimensional regularization. We can then write the entire massless two-
point function as

B(p2 = 0; 0, 0) =
∫

d4q

16π2

1

q2

1

(q + p)2
= iπ2

16π2

(
1

εUV
− 1

εIR

)
, (2.61)

keeping track of the divergent contributions from the infrared and the ultraviolet
regimes. For this particular integral they precisely cancel, so the result for B(0; 0, 0)
is zero, but setting it to zero too early will spoil any ultraviolet and infrared finiteness
tests in practical calculations. Treating the two divergences strictly separately and
dealing with them one after the other also ensures that for ultraviolet divergences we
can choose ε > 0 while for infrared divergences we require ε < 0.
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2.2.2 Running Strong Coupling

To get an idea what these different scales which appear in the process of renormal-
ization mean let us compute such a scale dependent parameter, namely the running
strong coupling αs(μ

2
R). The Drell–Yan process is one of the very few relevant

process at hadron colliders where the strong coupling does not appear at tree level,
so we cannot use it as our toy process this time. Another simple process where we can
study this coupling is bottom pair production at the LHC, where at some energy range
we will be dominated by valence quarks: qq̄ → bb̄. The only Feynman diagram is
an s-channel off-shell gluon with a momentum flow p2 ≡ s.

At next-to-leading order this gluon propagator will be corrected by self energy loops,
where the gluon splits into two quarks or gluons and re-combines before it produces
the two final state bottoms. Let us for now assume that all quarks are massless. The
Feynman diagrams for the gluon self energy include a quark look, a gluon loop, and
the ghost loop which removes the unphysical degrees of freedom of the gluon inside
the loop.

The gluon self energy correction or vacuum polarization, as propagator corrections
to gauge bosons are usually labelled, will be a scalar, i.e. all fermion lines close
and the Dirac trace is computed inside the loop. In color space the self energy will
(hopefully) be diagonal, just like the gluon propagator itself, so we can ignore the
color indices for now. In unitary gauge the gluon propagator is proportional to the
transverse tensor Tμv = gμv− pv pμ/p2.As mentioned in the context of the effective
gluon-Higgs coupling, the same should be true for the gluon self energy, which we
therefore write as Πμv ≡ ΠTμv. A useful simple relation is TμvT ρv = Tμρ and
Tμvgρv = Tμρ . Including the gluon, quark, and ghost loops the regularized gluon
self energy with a momentum flow p2 reads
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− 1

p2Π

(
μ2

R

p2

)
= αs

4π

(
−1

ε̃
+ log

p2

M2

)(
13

6
Nc − 2

3
n f

)
+ O(log m2

t )

≡ αs

(
−1

ε̃
+ log

p2

M2

)
b0 + O(log m2

t )

with b0 = 1

4π

(
11

3
Nc − 2

3
n f

)
. (2.62)

The minus sign arises from the factors i in the propagators, as shown in Eq. 2.19.
The number of fermions coupling to the gluons is n f . From the comments on
B(p2; 0, 0) we could guess that the loop integrals will only give a logarithm log p2

which is then matched by the logarithm log M2 implicitly included in the definition
of ε̃. The factor b0 arises from the one-loop corrections to the gluon self energy,
i.e. from diagrams which include one additional factor αs . Strictly speaking, this
form is the first term in a perturbative series in the strong coupling αs = g2

s /(4π).
Later on, we will indicate where additional higher order corrections would enter.

In the second step of Eq. 2.62 we have sneaked in additional contributions to
the renormalization of the strong coupling from the other one-loop diagrams in
the process, replacing the factor 13/6 by a factor 11/3. This is related to the fact
that there are actually three types of divergent virtual-gluon diagrams in the physical
process qq̄ → bb̄: the external quark self energies with renormalization factors Z1/2

f ,

the internal gluon self energy Z A, and the vertex corrections Z A f f . The only phys-
ical parameters we can renormalize in this process are the strong coupling and, if
finite, the bottom mass. Wave function renormalization constants are not physical.
The entire divergence in our qq̄ → bb̄ process which needs to be absorbed in the
strong coupling Zg is given by the combination

Z A f f = Zg Z1/2
A Z f ⇔ Z A f f

Z1/2
A Z f

≡ Zg. (2.63)

We can check this definition of Zg by comparing all vertices in which the strong
coupling gs appears, namely the gluon coupling to quarks, ghosts as well as the triple
and quartic gluon vertex. All of them need to have the same divergence structure

Z A f f

Z1/2
A Z f

!= Z Aηη

Z1/2
A Zη

!= Z3A

Z3/2
A

!=
√

Z4A

Z2
A

. (2.64)

If we had done the same calculation in QED, i.e. looked for a running electric charge,
we would have found that the vacuum polarization diagrams for the photon do account
for the entire counter term of the electric charge. The other two renormalization
constants Z A f f and Z f cancel because of gauge invariance.

In contrast to QED, the strong coupling diverges in the Thomson limit because
QCD is confined towards large distances and weakly coupled at small distances.
Lacking a well-enough motivated reference point we are tempted to renormalize αs



2.2 Ultraviolet Divergences 91

in the MS scheme. From Eq. 2.62 we know that the ultraviolet pole which needs to
be cancelled by the counter term is proportional to the function b0

gbare
s = Zggs =

(
1+ δZg

)
gs =

(
1+ δgs

gs

)
gs

(g2
s )

bare = (Zggs)
2 =

(
1+ δgs

gs

)2

g2
s =

(
1+ 2

δgs

gs

)
g2

s =
(

1+ δg
2
s

g2
s

)
g2

s

αbare
s =

(
1+ δαs

αs

)
αs

!=
(

1− Π

p2

∣∣∣∣
pole

)
αs(M

2) =
(

1− αs

ε̃
(
μR
M

)b0

)
αs(M

2). (2.65)

Only in the last step we have explicitly included the scale dependence of the counter
term. Because the bare coupling does not depend on any scales, this means that αs

depends on the unphysical scale M. Similar to the top mass renormalization scheme
we can switch to a more physical scheme for the strong coupling as well: we can
absorb also the finite contributions ofΠ(μ2

R/p2) into the strong coupling by simply
identifying M2 = p2. This implies based again on Eq. (6.62)

αbare
s = αs(p

2)

(
1− αsb0

ε̃
+ αsb0 log

p2

M2

)
(2.66)

This formula defines a running coupling αs(p2), because the definition of the
coupling now has to account for a possible shift between the original argument
p2 and the scale M2 coming out of the MS scheme. Since according to Eqs. 2.65
and 2.66 the bare strong coupling can be expressed in terms of αs(M2) as well as in
terms of αs(p2) we can link the two scales through

αs(M
2) = αs(p

2)+ α2
s b0 log

p2

M2

⇔ dαs(p2)

d log p2 = −α2
s b0 + O(α3

s ) (2.67)

To the given loop order the argument of the strong coupling squared in this formula
can be neglected—its effect is of higher order.

In this first formula for the running coupling constant we see that b0 is positive in
the Standard Model. This means that for p2 > M2 the ultraviolet limit of the strong
coupling is zero. This makes QCD an asymptotically free theory. We can compute
the function b0 in general models by simply adding all contributions of strongly
interacting particles in this loop

b0 = − 1

12π

∑
colored states

D j TR, j , (2.68)
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where we need to know some kind of counting factor D j which is −11 for a vector
boson (gluon), +4 for a Dirac fermion (quark), +2 for a Majorana fermion (gluino),
+1 for a complex scalar (squark) and +1/2 for a real scalar. The color charges are
TR = 1/2 for the fundamental representation of SU(3) and CA = Nc for the adjoint
representation. The masses of the loop particles are not relevant in this approximation
because we are only interested in the ultraviolet regime of QCD where all particles
can be regarded massless. When we really model the running of αs we need to
take into account threshold effects of heavy particles, because particles can only
contribute to the running of αs at scales above their mass scale. This is why the R
ratio computed in Eq. 2.12 is so interesting once we vary the energy of the incoming
electron–positron pair.

We can do even better than this fixed order in perturbation theory: while the
correction to αs in Eq. 2.66 is perturbatively suppressed by the usual factor αs/(4π)
it includes a logarithm of a ratio of scales which does not need to be small. Instead of
simply including these gluon self energy corrections at a given order in perturbation
theory we can instead include chains of one-loop diagrams with Π appearing many
times in the off-shell gluon propagator. This series of Feynman diagrams is identical
to the one we sum for the mass renormalization in Eq. 2.19. It means we replace the
off-shell gluon propagator by (schematically written without the factors i)

Tμv

p2 →
Tμv

p2 +
(

T

p2 · (−TΠ) · T

p2

)μv

+
(

T

p2 · (−TΠ) · T

p2 · (−TΠ) · T

p2

)μv

+ · · ·

=Tμv

p2

∞∑
j=0

(
−Π

p2

) j

= Tμv

p2

1

1+Π/p2 . (2.69)

To avoid indices we abbreviate TμvT ρv = T · T which make sense because of
(T · T · T )μv = TμρT σρ T v

σ = Tμv. This re-summation of the logarithm which
appears in the next-to-leading order corrections to αs moves the finite shift in αs

shown in Eqs. 2.62 and 2.66 into the denominator, while we assume that the pole
will be properly taken care off in any of the schemes we discuss

αbare
s = αs(M

2)− α
2
s b0

ε̃
≡ αs(p2)

1− αs b0 log p2

M2

− α
2
s b0

ε̃
. (2.70)

Just as in the case without re-summation, we can use this complete formula to relate
the values of αs at two reference points, i.e. we consider it a renormalization group
equation (RGE) which evolves physical parameters from one scale to another in
analogy to the fixed order version in Eq. 2.67

1

αs(M2)
= 1

αs(p2)

(
1− αs b0 log

p2

M2

)
= 1

αs(p2)
− b0 log

p2

M2 + O(αs).

(2.71)
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The factor αs inside the parentheses we can again evaluate at either of the two scales,
the difference is going to be a higher order effect. When we differentiate αs(p2)

with respect to the momentum transfer p2 we find, using the relation d/dx(1/αs) =
−1/α2

s dαs/dx

1

αs

dαs

d log p2 = −αs
d

d log p2

1

αs
= −αsb0 + O(α2

s )

p2 dαs

dp2 ≡
dαs

d log p2 = β = −α2
s

∑
n=0

bnα
n
s (2.72)

This is the famous running of the strong coupling constant including all higher order
terms bn .

It is customary to replace the renormalization point of αs in Eq. 2.70 with a
reference scale where the denominator of the re-summed running coupling crosses
zero and the running coupling itself should diverge. This is the Landau pole of the
strong coupling, as discussed for the Higgs self coupling in Sect. 1.2.3. At one loop
order this reads

1− αs b0 log
Λ2

QCD

M2
!= 0 ⇔ log

Λ2
QCD

M2 =
1

αs(M2)b0

log
p2

M2 = log
p2

Λ2
QCD

+ 1

αs(M2)b0

1

αs(p2)
= 1

αs(M2)
+ b0 log

p2

M2

= 1

αs(M2)
+ b0 log

p2

Λ2
QCD

− 1

αs(M2)
= b0 log

p2

Λ2
QCD

αs(p2) = 1

b0 log
p2

Λ2
QCD

(2.73)

This scheme can be generalized to any order in perturbative QCD and is not that
different from the Thomson limit renormalization scheme of QED, except that with
the introduction of ΛQCD we are choosing a reference point which is particularly
hard to compute perturbatively. One thing that is interesting in the way we introduce
ΛQCD is the fact that we introduce a scale into our theory without ever setting it.
All we did was renormalize a coupling which becomes strong at large energies and
search for the mass scale of this strong interaction. This trick is called dimensional
transmutation.

In terms of language, there is a little bit of confusion between field theorists and
phenomenologists: up to now we have introduced the renormalization scale μR as
the renormalization point, for example of the strong coupling constant. In the MS

http://dx.doi.org/10.1007/978-3-642-24040-9_1
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scheme, the subtraction of 1/ε̃ shifts the scale dependence of the strong coupling to
M2 and moves the logarithm log M2/Λ2

QCD into the definition of the renormalized
parameter. This is what we will from now on call the renormalization scale in the
phenomenological sense, i.e. the argument we evaluate αs at. Throughout this section
we will keep the symbol M for this renormalization scale in the MS scheme, but from
Sect. 2.3 on we will shift back to μR instead of M as the argument of the running
coupling.

2.2.3 Re-Summing Scaling Logarithms

In the last Sect. 2.2.2 we have introduced the running strong coupling in a fairly
abstract manner. For example, re-summing diagrams and changing the running of αs

from Eqs. 2.67 to 2.72 we did not yet link to any physics. In what way does the re-
summation of the one-loop diagrams for the s channel gluon improve our prediction
of the bottom pair production rate at the LHC?

To illustrate those effects we best look at a simple observable which depends on
just one energy scale, namely p2. The first observable coming to mind is again the
Drell–Yan cross section σ(qq̄ → μ+μ−), but since we are not really sure what to
do with the parton densities which are included in the actual hadronic observable,
we better use an observable at an e+e− collider. Something that will work and
includes αs at least in the one-loop corrections is the R parameter given in Eq. 2.12

R = σ(e+e− → hadrons)

σ (e+e− → μ+μ−)
= Nc

∑
quarks

Q2
q =

11Nc

9
. (2.74)

The numerical value at leading order assumes five quarks. Including higher order
corrections we can express the result in a power series in the renormalized strong
coupling αs . In the MS scheme we subtract 1/ε̃(μR/M) and in general include a
scale dependence on M in the individual prefactors rn

R

(
p2

M2 , αs

)
=
∑
n=0

rn

(
p2

M2

)
αn

s (M
2) r0 = 11Nc

9
. (2.75)

The rn we can assume to be dimensionless—if they are not, we can scale R appro-
priately using p2. This implies that the rn only depend on ratios of two scales, the
externally fixed p2 on the one hand and the artificial M2 on the other.

At the same time we know that R is an observable, which means that including
all orders in perturbation theory it cannot depend on any artificial scale choices M.
Writing this dependence as a total derivative and setting it to zero we find an equation
which would be called a Callan–Symanzik equation if instead of the running coupling
we had included a running mass
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0
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)
α3

s + O(α4
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(2.76)
In the second line we have to remember that the M dependence of αs is already
included in the appearance of β, so αs should be considered a variable by itself.
This perturbative series in αs has to vanish in each order of perturbation theory.
The non-trivial structure, namely the mix of rn derivatives and the perturbative terms
in the β function we can read off theα3

s term in Eq. 2.76: first, we have the appropriate
NNNLO corrections r3. Next, we have one loop in the gluon propagator b0 and two
loops for example in the vertex r2. And finally, we need the two-loop diagram for
the gluon propagator b1 and a one-loop vertex correction r1. The kind-of Callan–
Symanzik equation Eq. 2.76 requires

∂r1

∂ log M2 = 0

∂r2

∂ log M2 = r1b0

∂r3

∂ log M2 = r1b1 + 2r2(M
2)b0

· · · (2.77)

The dependence on the argument M2 vanishes for r0 and r1. Keeping in mind that
there will be integration constants cn independent of M2 and that another, in our
simple case unique momentum scale p2 has to cancel the mass units inside log M2

we find

r0 = c0 = 11Nc

9
r1 = c1

r2 = c2 + c1b0 log
M2

p2
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r3 =
∫

d log
M ′2

p2

(
c1b1 + 2

(
c2 + c1b0 log

M ′2

p2

)
b0

)
log

M ′2

p2

= c3 + (c1b1 + 2c2b0) log
M2

p2 + c1b2
0 log2 M2

p2

· · · (2.78)

This chain of rn values looks like we should interpret the apparent fixed-order pertur-
bative series for R in Eq. 2.75 as a series which implicitly includes terms of the order
logn−1 M2/p2 in each rn . They can become problematic if this logarithm becomes
large enough to spoil the fast convergence in terms ofαs ∼ 0.1, evaluating the observ-
able R at scales far away from the scale choice for the strong coupling constant M.

Instead of the series in rn we can use the conditions in Eq. 2.78 to express R in
terms of the cn and collect the logarithms appearing with each cn . The geometric
series we then resum to

R =
∑

n

rn
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p2

M2

)
αn

s (M
2)

= c0 + c1

(
1+ αsb0 log
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p2 + α2
s b2

0 log2 M2

p2 + · · ·
)
αs(M
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+ c2

(
1+ 2αsb0 log
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p2 + · · ·
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α2

s (M
2)+ · · ·

= c0 + c1
αs(M2)

1− αsb0 log M2

p2

+ c2

⎛
⎝ αs(M2)

1− αsb0 log M2

p2

⎞
⎠

2

+ · · ·

≡
∑

cn α
n
s (p

2). (2.79)

In the last step we use what we know about the running coupling from Eq. 2.71. Note
that in contrast to the rn integration constants the cn are by definition independent
of p2/M2 and therefore more suitable as a perturbative series in the presence of
potentially large logarithms.

This new organization of the QCD perturbation series for R can be interpreted
as re-summing all logarithms of the kind log M2/p2 in the new organization of the
perturbative series and absorbing them into the running strong coupling evaluated
at the scale p2. In this manner, all scale dependence in the perturbative series for
the dimensionless observable R is moved into αs . In Eq. 2.79 we also see that this
series in cn will never lead to a scale-invariant result when we include a finite order
in perturbation theory.

Before moving on we collect the logic of the argument given in this section: when
we regularize an ultraviolet divergence we automatically introduce a reference scale
μR . Naively, this could be a ultraviolet cutoff scale, but even the seemingly scale
invariant dimensional regularization in the conformal limit of our field theory cannot
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avoid the introduction of a scale. There are several ways of dealing with such a
scale: first, we can renormalize our parameter at a reference point. Secondly, we can
define a running parameter, i.e. absorb the scale logarithm into the MS counter term.
In that case introducingΛQCD leaves us with a compact form of the running coupling
αs(M2;ΛQCD).

Strictly speaking, at each order in perturbation theory the scale dependence should
vanish together with the ultraviolet poles, as long as there is only one scale affecting
a given observable. However, defining the running strong coupling we sum one-loop
vacuum polarization graphs. Even when we compute an observable at a given loop
order, we implicitly include higher order contributions. They lead to a dependence
of our perturbative result on the artificial scale M2, which phenomenologists refer
to as renormalization scale dependence.

Using the R ratio we see what our definition of the running coupling means in
terms of re-summing logarithms: reorganizing our perturbative series to get rid of the
ultraviolet divergence αs(p2) re-sums the scale logarithms log p2/M2 to all orders in
perturbation theory. We will need this picture once we introduce infrared divergences
in the following section.

2.3 Infrared Divergences

After this brief excursion into ultraviolet divergences and renormalization we can
return to the original example, the Drell–Yan process. Last, we wrote down the
hadronic cross sections in terms of parton distributions at leading order in Eq. 2.39.
At this stage particle distributions (pdfs) are only functions of the collinear momentum
fraction of the partons inside the proton about which from a theory point of view we
only know a set of sum rules.

The perturbative question we need to ask for μ+μ− production at the LHC is:
what happens if together with the two leptons we produce additional jets which for
one reason or another we do not observe in the detector. Such jets could for example
come from the radiation of a gluon from the initial state quarks. In Sect. 2.3.1 we
will study the kinematics of radiating such jets and specify the infrared divergences
this leads to. In Sects. 2.3.2 and 2.3.3 we will show that these divergences have a
generic structure and can be absorbed into a re-definition of the parton densities,
similar to an ultraviolet renormalization of a Lagrangian parameter. In Sects. 2.3.4
and 2.3.5 we will again follow the example of the ultraviolet divergences and specify
what absorbing these divergences means in terms logarithms appearing in QCD
calculations.

Throughout this writeup we will use the terms jets and final state partons synony-
mously. This is not really correct once we include jet algorithms and hadronization.
On the other hand, in Sect. 3.1.2 we will see that the purpose of a jet algorithm is to
take us from some kind of energy deposition in the calorimeter to the parton radiated
in the hard process. The two should therefore be closely related.

http://dx.doi.org/10.1007/978-1-4471-2194-7_3
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2.3.1 Single Jet Radiation

Let us get back to the radiation of additional partons in the Drell–Yan process. We can
start for example by computing the cross section for the partonic process qq̄ → Zg.
However, this partonic process involves renormalization of ultraviolet divergences
as well as loop diagrams which we have to include before we can say anything
reasonable, i.e. ultraviolet and infrared finite.

To make life easier and still learn about the structure of collinear infrared diver-
gences we instead look at the crossed process qg → Zq. It should behave similar
to any other (2→ 2) jet radiation, except that it has a different incoming state than
the leading-order Drell–Yan process and hence does not involve virtual corrections.
This means we do not have to deal with ultraviolet divergences and renormaliza-
tion, and can concentrate on parton or jet radiation from the initial state. Moreover,
let us go back to Z production instead of a photon, to avoid confusion with massless
particles which are not radiated jets.

The amplitude for this (2→ 2)process is—modulo charges and averaging factors,
but including all Mandelstam variables

|M |2 ∼ − t

s
− s2 − 2m2

Z (s + t − m2
Z )

st
. (2.80)

The Mandelstam variable t for one massless final state particle can be expressed as
t = −s(1−τ)y in terms of the rescaled gluon-emission angle y = (1−cos θ)/2 and
τ = m2

Z/s. Similarly, we obtain u = −s(1 − τ)(1 − y), so as a first check we can
confirm that t + u = −s(1− τ) = −s + m2

Z . The collinear limit when the gluon is
radiated in the beam direction is given by y → 0, corresponding to negative t → 0
with finite u = −s + m2

Z . In this limit the matrix element can also be written as

|M |2 ∼ s2 − 2sm2
Z + 2m4

Z

s(s − m2
Z )

1

y
+ O(y). (2.81)

This expression is divergent for collinear gluon radiation or splitting, i.e. for small
angles y. We can translate this 1/y divergence for example into the transverse
momentum of the gluon or Z

sp2
T = tu = s2(1− τ)2 y(1− y) = (s − m2

Z )
2 y + O(y2) (2.82)

In the collinear limit our matrix element squared in Eq. 2.81 becomes

|M |2 ∼ s2 − 2sm2
Z + 2m4

Z

s2

(s − m2
Z )

p2
T

+ O(p0
T ). (2.83)

The matrix element for the tree-level process qg → Zq has a leading divergence
proportional to 1/p2

T . To compute the total cross section for this process we need to
integrate the matrix element over the entire two-particle phase space. Starting from
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Eq. 2.41 and using the appropriate Jacobian this integration can be written in terms
of the reduced angle y. Approximating the matrix element as C ′/y or C/p2

T ,we then
integrate

∫ ymax

ymin
dy

C ′

y
=
∫ pmax

T

pmin
T

dp2
T

C

p2
T

= 2
∫ pmax

T

pmin
T

dpT pT
C

p2
T

� 2C
∫ pmax

T

pmin
T

dpT
1

pT
= 2C log

pmax
T

pmin
T

(2.84)

The form C/p2
T for the matrix element is of course only valid in the collinear limit;

in the non-collinear phase space C is not a constant. However, Eq. 2.84 describes
well the collinear divergence arising from quark radiation at the LHC.

Next, we follow the same strategy as for the ultraviolet divergence. First,
we regularize the divergence for example using dimensional regularization. Then,
we find a well-defined way to get rid of it. Dimensional regularization means writing
the two-particle phase space in n = 4 − 2ε dimensions. Just for reference, the
complete formula in terms of the angular variable y reads

s
dσ

dy
= π(4π)−2+ε

Γ (1− ε)

(
μ2

F

m2
Z

)ε
τ ε(1− τ)1−2ε

yε(1− y)ε
|M |2 ∼

(
μ2

F

m2
Z

)ε |M |2
yε(1− y)ε

.

(2.85)
In the second step we only keep the factors we are interested in. The additional factor
1/yε regularizes the integral at y → 0, as long as ε < 0 by slightly increasing the
suppression of the integrand in the infrared regime. After integrating the leading
collinear divergence 1/y1+ε we are left with a pole 1/(−ε). This regularization
procedure is symmetric in y ↔ (1 − y). What is important to notice is again the
appearance of a scale μ2ε

F with the n-dimensional integral. This scale arises from the
infrared regularization of the phase space integral and is referred to as factorization
scale. The actual removal of the infrared pole—corresponding to the renormalization
in the ultraviolet case—is called mass factorization and works exactly the same way
as renormalizing a parameter: in a well-defined scheme we simply subtract the pole
from the fixed-order matrix element squared.

2.3.2 Parton Splitting

From the discussion of the process qg → Zq we can at least hope that after taking
care of all other infrared and ultraviolet divergences the collinear structure of the
process qq̄ → Zg will be similar. In this section we will show that we can indeed
write all collinear divergences in a universal form, independent of the hard process
which we choose as the Drell–Yan process. In the collinear limit, the radiation of addi-
tional partons or the splitting into additional partons will be described by universal
splitting functions.
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Infrared divergences occur for massless particles in the initial or final state, so
we need to go through all ways incoming or outgoing gluons and quark can split
into each other. The description of the factorized phase space, with which we will
start, is common to all these different channels. The first and at the LHC most
important case is the splitting of one gluon into two, shown in Fig. 2.1, where the
two daughter gluons are close to mass shell while the mother has to have a finite
positive invariant mass p2

a � p2
b, p2

c .We again assign the direction of the momenta
as pa = −pb − pc, which means we have to take care of minus signs in the particle
energies. The kinematics of this approximately collinear process we can describe in
terms of the energy fractions z and 1− z defined as

z = |Eb|
|Ea | = 1− |Ec|

|Ea | , (2.86)

which means for the four momentum of the splitting particle

p2
a = 2(pb pc) = 2z(1− z)(1− cos θ)E2

a = z(1− z)E2
aθ

2 + O(θ4)

⇔ θ ≡ θb + θc � 1

|Ea |

√
p2

a

z(1− z)
, (2.87)

in the collinear limit and in terms of the opening angle θ between �pb and �pc.Because
p2

a > 0 we call this final state splitting configuration time-like branching. For this
configuration we can write down the so-called Sudakov decomposition of the four-
momenta

−pa = pb + pc = (−zpa + βn + pT ) + (−(1− z)pa − βn − pT ). (2.88)

It defines an arbitrary unit four-vector n, a component orthogonal to the mother
momentum and n, i.e. pa(pa pT ) = 0 = (npT ), and a free factor β. This way,
we can specify n such that it defines the direction of the pb − pc decay plane.
In this decomposition we can set only one invariant mass to zero, for example that
of a radiated gluon p2

c = 0. The second final state will have a finite invariant mass
p2

b �= 0.
Relative to �pa we can split the opening angle θ for massless partons according to

Fig. 2.1

θ = θb + θc and
θb

θc
= pT

|Eb|
(

pT

|Ec|
)−1

= 1− z

z

⇔ θ = θb

1− z
= θc

z
(2.89)

Using this specific phase space parameterization we can divide an (n + 1)-particle
process into an n-particle process and a splitting process of quarks and gluons. First,
this requires us to split the (n+1)-particle phase space alone into an n-particle phase
space and the collinear splitting. The general (n+1)-particle phase space separating
off the n-particle contribution
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Fig. 2.1 Splitting of one
gluon into two gluons.
Figure from Ref. [1]

dΦn+1 = · · · d3 �pb

2(2π)3|Eb|
d3 �pc

2(2π)3|Ec|
= · · · d3 �pa

2(2π)3|Ea |
d3 �pc

2(2π)3|Ec|
|Ea |
|Eb| at fixedpa

= dΦn
dpc,3dpT pT dφ

2(2π)3|Ec|
1

z

= dΦn
dpc,3dp2

T dφ

4(2π)3|Ec|
1

z
(2.90)

is best expressed in terms of the energy fraction z and the azimuthal angle φ.
In other words, separating the (n+1)-particle space into an n-particle phase space

and a (1→ 2) splitting phase space is possible without any approximation, and all
we have to take care of is the correct prefactors in the new parameterization. The
third direction of pc we can translate into z in a convenient reference frame for the
momenta appearing in the Sudakov decomposition

pa =

⎛
⎜⎜⎝
|Ea |

0
0

pa,3

⎞
⎟⎟⎠ = |Ea |

⎛
⎜⎜⎝

1
0
0

1+ O(θ)

⎞
⎟⎟⎠ n =

⎛
⎜⎜⎝

1
0
0
−1

⎞
⎟⎟⎠ pT =

⎛
⎜⎜⎝

0
pT,1
pT,2

0

⎞
⎟⎟⎠ . (2.91)

This choice has the special feature that n2 = 0 which allows us to derive β from
the momentum parameterization shown in Eq. 2.88 and the additional condition that
p2

c = 0

p2
c = (−(1− z)pa − βn − pT )

2

= (1− z)2 p2
a + p2

T + 2β(1− z)(npa)

= (1− z)2 p2
a + p2

T + 4β(1− z)|Ea |(1+ O(θ))
!= 0

⇔ β � − p2
T + (1− z)2 p2

a

4(1− z)|Ea | .

(2.92)
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Starting from Eq. 2.88 for the z component of pc, expressing pa and pT following
Eq. 2.91 and inserting this value for β gives us

dpc,3

dz
= d

dz
[−(1− z)|Ea |(1+ O(θ))+ β]

= d

dz

[
−(1− z)|Ea |(1+ O(θ))− p2

T + (1− z)2 p2
a

4(1− z)|Ea |

]

= |Ea |(1+ O(θ))− p2
T

4(1− z)2 Ea
+ p2

a

4|Ea |
= |Ec|

1− z
(1+ O(θ))− θ2z2 E2

c

4(1− z)2 Ea
+ z(1− z)E2

aθ
2 + O(θ4)

4|Ea |
= |Ec|

1− z
+ O(θ) ⇔ dpc,3

|Ec| �
dz

1− z
. (2.93)

In addition to substituting dpc,3 by dz in Eq. 2.90 we also replace dp2
T with dp2

a
according to

p2
T

p2
a
= E2

bθ
2
b

z(1− z)E2
aθ

2 =
z2(1− z)2 E2

aθ
2

z(1− z)E2
aθ

2 = z(1− z). (2.94)

This gives us the final result for the separated collinear phase space

dΦn+1 = dΦn
dzdp2

adφ

4(2π)3
= dΦn

dzdp2
a

4(2π)2
, (2.95)

where in the second step we assume a spherical symmetry.
Adding the transition matrix elements to this factorization of the phase space

and ignoring the initial-state flux factor which is common to both processes we can
now postulate a full factorization for one collinear emission and in the collinear
approximation

dσn+1 = |Mn+1|2 dΦn+1

= |Mn+1|2 dΦn
dp2

adz

4(2π)2

= 2g2
s

p2
a

P̂(z) |Mn|2 dΦn
dp2

adz

16π2 assuming |Mn+1|2 = 2g2
s

p2
a

P̂(z) |Mn|2 .

(2.96)

This last step is an assumption we will now proceed to show step by step by
constructing the appropriate splitting kernels P̂(z) for all different quark and gluon
configurations. If Eq. 2.96 holds true it means we can compute the (n + 1) particle
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amplitude squared from the n-particle case convoluted with the appropriate splitting
kernel. Using dσn ∼ |Mn|2 dΦn and g2

s = 4παs we can write this relation in its
most common form

σn+1 =
∫
σn

dp2
a

p2
a

dz
αs

2π
P̂(z) . (2.97)

Reminding ourselves that relations of the kind |Mn+1|2 = p|Mn|2 can typically
be summed, for example for the case of successive soft photon radiation in QED,
we see that Eq. 2.97 is not the final answer. It does not include the necessary phase
space factor 1/n! from identical bosons in the final state which leads to the simple
exponentiation.

As the first parton splitting in QCD we study a gluon splitting into two gluons,
shown in Fig. 2.1. To compute its transition amplitude we parameterize all gluon
momenta and polarizations. With respect to the scattering plane opened by �pb and
�pc all three gluons have two transverse polarizations, one in the plane, ε‖, and one
perpendicular to it, ε⊥. In the limit of small scattering angles, the three parallel as
well as the three perpendicular polarization vectors are aligned. The perpendicular
polarizations are also orthogonal to all three gluon momenta, while the polarizations
in the plane are only proportional to their corresponding momenta, which altogether
means for the three-vectors

(ε
‖
i ε
‖
j ) = −1+ O(θ) (ε⊥i ε⊥j ) = −1 (ε⊥i ε

‖
j ) = O(θ)

(ε⊥i p j ) = 0 (ε
‖
j p j ) = 0, (2.98)

with general i �= j and exactly one and zero for i = j. The finite combinations
between polarization vectors and momenta which we need are, in terms of the three-
dimensional opening angles ∠(�ε, �p)

(ε‖a pb) = −Eb cos ∠(�ε‖a, �pb) = −Eb cos
(π

2
− θb

)
= +Eb sin θb

� +Ebθb = z(1− z)Eaθ

(ε
‖
b pc) = −Ec cos ∠(�ε‖b, �pc) = −Ec cos

(π
2
+ θ

)
= −Ec sin θ

� −Ecθ = −(1− z)Eaθ

(ε‖c pb) = −Eb cos ∠(�ε‖c , �pb) = −Eb cos
(π

2
− θ

)
= +Eb sin θ

� +Ebθ = zEaθ. (2.99)

Using these kinematic relations we can tackle the actual splitting amplitude. For
three gluons the splitting amplitude will be proportional to the vertex, now switching
back to the symmetric definition of all incoming momenta
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Vggg= ig f abc εαa ε
β
b ε
γ
c [gαβ(pa − pb)γ

+ gβγ (pb − pc)α + gγα(pc − pa)β ]
= ig f abc εαa ε

β
b ε
γ
c [gαβ(−pc − 2pb)γ

+ gβγ (pb − pc)α + gγα(2pc + pb)β ] with pa = −pb − pc

= ig f abc [−2(εaεb)(εc pb)+ (εbεc)(εa pb)

− (εbεc)(εa pc)+ 2(εcεa)(εb pc)] with (εj pj ) = 0

=− 2ig f abc [(εaεb)(εc pb)− (εbεc)(εa pb)

− (εcεa)(εb pc)] with (εa pc) = −(εa pb)

= − 2ig f abc
[
(εaεb)(ε

‖
c pb)− (εbεc)(ε

‖
a pb)

− (εcεa)(ε
‖
b pc)

]
with (ε⊥i pj ) = 0.

(2.100)
Squaring the splitting matrix element to compute the (n + 1) and n particle matrix
elements squared for the unpolarized case gives us

|Mn+1|2 = 1

2

(
1

p2
a

)2

4g2
s

1

N 2
c − 1

1

Na

[ ∑
3 terms

± f abc (ε · ε)(ε · p)

]2

|Mn|2

= 2g2
s

p2
a

f abc f abc

N 2
c − 1

1

Na

[∑ (ε · ε)2(ε · p)2

p2
a

]
|Mn|2,

(2.101)

where the sum originally includes the three terms in the brackets of Eq. 2.100.
Each term in this sum is symmetric in two indices but gets multiplied with the anti-
symmetric color factor. The final result will only be finite if we square each term
individually as a product of two symmetric and two anti-symmetric terms. In other
words, the sum over the external gluons becomes an incoherent polarization sum.

Going through all possible combinations we know what can contribute inside the
brackets of Eq. 2.100: (ε‖aε‖b) as well as (ε⊥a ε⊥b ) can be combined with (ε‖c pb); (ε‖bε‖c )
or (ε⊥b ε⊥c ) with (ε‖a pb); and last but not least we can combine (ε‖aε‖c ) and (ε⊥a ε⊥c )
with (ε‖b pc). These six combinations contribute to the splitting matrix element as

εa εb εc ±(ε · ε)(ε · p) (ε·ε)2(ε·p)2
p2

a‖ ‖ ‖
⊥ ⊥ ‖ (−1)(−z)Eaθ

z
1−z

‖ ‖ ‖
‖ ⊥ ⊥ −(−1)(−z)(1− z)Eaθ z(1− z)
‖ ‖ ‖
⊥ ‖ ⊥ −(−1)(1− z)Eaθ

1−z
z

These six cases correspond to four different polarizations of the three external gluons.
For the coherent sum in Eq. 2.101 we find
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|Mn+1|2 = 2g2
s

p2
a

Nc
1

Na

[∑ (ε · ε)2(ε · p)2

p2
a

]
|Mn |2 with f abc f abd = Ncδ

cd

= 2g2
s

p2
a

Nc

[
z

1− z
+ 1− z

z
+ z(1− z)

]
|Mn |2 with Na = 2

≡ 2g2
s

p2
a

P̂g←g(z) |Mn |2

⇔ P̂g←g(z) = CA

[
z

1− z
+ 1− z

z
+ z(1− z)

]
, (2.102)

using CA = Nc and averaging over the color (N 2
c − 1) and polarization Na

of the mother particle a. The factor 1/2 in the first line takes into account that
for two final state gluons the (n + 1)-particle phase space is only half its usual
size. The form of the splitting kernel is symmetric when we exchange the two
gluons z and (1 − z). It diverges if either of the gluons become soft. The nota-
tion P̂i← j ∼ P̂i j is inspired by a matrix notation which we can use to multiply the
splitting matrix from the right with the incoming parton vector to get the final parton
vector. Following the logic described above, with this calculation we prove that the
factorized form of the (n + 1)-particle matrix element squared in Eq. 2.96 holds for
gluons only.

The same kind of splitting kernel we can compute for a gluon into two quarks and
a quark into a quark and a gluon

g(pa)→ q(pb)+ q̄(pc) and q(pa)→ q(pb)+ g(pc). (2.103)

Both splittings include the quark–quark–gluon vertex, coupling the gluon current to
the quark and antiquark spinors. The spinors of the massless quark u(pb) and the
massless antiquark v(pc) we can write in terms of two-component spinors

u(p) = √E

(
χ±
±χ±

)
with χ+ =

(
1
θ/2

)
(spin up)

χ− =
(−θ/2

1

)
(spin down). (2.104)

For the massless antiquark we need to replace θ → −θ and take into account the
different relative spin–momentum directions (σ p̂), leading to the additional sign in
the lower two spinor entries. The antiquark spinors then become

v(p) = −i
√

E

(∓εχ±
εχ±

)
with χ+ =

(
1
−θ/2

)
εχ+ =

(−θ/2
−1

)
(spin up)

χ− =
(
θ/2
1

)
εχ− =

(
1
−θ/2

)
(spin down).

(2.105)
Our calculations we again limit to the leading terms in the small scattering angle θ.
In addition to the fermion spinors, for the coupling to a gluonic current we need the
Dirac matrices which we can conveniently express in terms of the Pauli matrices
defined in Sect. 1.1.2

http://dx.doi.org/10.1007/978-1-4471-2194-7_1
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γ 0 =
(
1 0
0 −1

)
γ j =

(
0 σ j

−σ j 0

)
⇒ γ 0γ 0 = 1 γ 0γ j =

(
0 σ j

σ j 0

)

(2.106)

In the notation introduced in Eq. 2.102 we first compute the splitting kernel P̂q←g,

sandwiching the qqg vertex between an outgoing quark ū±(pb) and an outgoing
antiquark v±(pa) for all possible spin combinations. We start with all four gluon
polarizations, i.e. all four gamma matrices, between two spin-up quarks and their
spinors written out in Eqs. 2.104 and 2.105

ū+(pb)γ
0v−(pc)

−i E
=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
1

1
1

1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−θc/2

1
−θc/2

⎞
⎟⎟⎠

=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
1
−θc/2

1
−θc/2

⎞
⎟⎟⎠ = 2

ū+(pb)γ
1v−(pc)

−i E
=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
1

1
1

1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−θc/2

1
−θc/2

⎞
⎟⎟⎠

=
(

1,
θb

2
, 1,

θb

2

)
⎛
⎜⎜⎝
−θc/2

1
−θc/2

1

⎞
⎟⎟⎠ = θb − θc

ū+(pb)γ
2v−(pc)

−i E
=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
−i

i
−i

i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
−θc/2

1
−θc/2

⎞
⎟⎟⎠

= i

(
1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
θc/2

1
θc/2

1

⎞
⎟⎟⎠ = i(θb + θc)

ū+(pb)γ
3v−(pc)

−i E
=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
1
−1

1
−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−θc/2

1
−θc/2

⎞
⎟⎟⎠

=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
1
θc/2

1
θc/2

⎞
⎟⎟⎠ = 2, (2.107)
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Somewhat surprisingly the unphysical scalar and longitudinal gluon polarizations
seem to contribute to this vertex. However, after adding the two unphysical degrees
of freedom they cancel because of the form of our metric. For transverse gluons we
can compute this vertex factor also for the other diagonal spin combination

ū−(pb)γ
1v+(pc)

−i E
=
(
−θb

2
, 1,

θb

2
,−1

)⎛⎜⎜⎝
1

1
1

1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
θc/2

1
−θc/2
−1

⎞
⎟⎟⎠

=
(
−θb

2
, 1,

θb

2
,−1

)⎛⎜⎜⎝
−1
−θc/2

1
θc/2

⎞
⎟⎟⎠ = θb − θc

ū−(pb)γ
2v+(pc)

−i E
=
(
−θb

2
, 1,

θb

2
,−1

)⎛⎜⎜⎝
−i

i
−i

i

⎞
⎟⎟⎠

⎛
⎜⎜⎝
θc/2

1
−θc/2
−1

⎞
⎟⎟⎠

= i

(
−θb

2
, 1,

θb

2
,−1

)
⎛
⎜⎜⎝

1
−θc/2
−1
θc/2

⎞
⎟⎟⎠ = −i(θb + θc). (2.108)

Before collecting the prefactors for this gluon-quark splitting, we also need the same-
spin case

ū+(pb)γ
1v+(pc)

−i E
=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
1

1
1

1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
θc/2

1
−θc/2
−1

⎞
⎟⎟⎠

=
(

1,
θb

2
, 1,

θb

2

)⎛⎜⎜⎝
−1
−θc/2

1
θc/2

⎞
⎟⎟⎠ = 0

ū+(pb)γ
2v+(pc)

−i E
=
(

1,
θb

2
, 1,

θb

2

)
⎛
⎜⎜⎝

−i
i

−i
i

⎞
⎟⎟⎠

⎛
⎜⎜⎝
θc/2

1
−θc/2
−1

⎞
⎟⎟⎠

= i

(
1,
θb

2
, 1,

θb

2

)
⎛
⎜⎜⎝

1
−θc/2
−1
θc/2

⎞
⎟⎟⎠ = 0, (2.109)

which vanishes. The gluon current can only couple to two fermions via a spin flip.
For massless fermions this means that the gluon splitting into two quarks involves
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two quark spin cases, each of them coupling to two transverse gluon polarizations.
Keeping track of all the relevant factors our vertex function for the splitting g→ qq̄
becomes for each of the two quark spins

Vqqg= −igs T a ū±(pb)γμε
μ
a v∓(pc) ≡ −igs T a ε

j
a F( j)
±

|F(1)+ |2
p2

a
= |F

(1)
− |2
p2

a
= Eb Ec(θb − θc)2

p2
a

= E2
a z(1− z)(1− z − z)2θ2

E2
a z(1− z)θ2

= (1− 2z)2

|F(2)+ |2
p2

a
= |F

(2)
− |2
p2

a
= Eb Ec(θb + θc)2

p2
a

= E2
a z(1− z)(1− z + z)2θ2

E2
a z(1− z)θ2

= 1,

(2.110)
omitting irrelevant factors i and (−1) which will drop out once we compute the
absolute value squared. In complete analogy to the gluon splitting case we can
factorize the (n + 1)-particle matrix element into

|Mn+1|2 =
(

1

p2
a

)2
g2

s
TrT a T a

N 2
c − 1

1

Na

[
|F(1)+ |2 + |F(1)− |2 + |F(2)+ |2 + |F(2)− |2

]
|Mn |2

= g2
s

p2
a

TR
N 2

c − 1

N 2
c − 1

[
(1− 2z)2 + 1

]
|Mn |2 with TrT a T b = TRδ

ab, Na = 2

= 2g2
s

p2
a

TR

[
z2 + (1− z)2

]
|Mn |2

≡ 2g2
s

p2
a

P̂q←g(z)|Mn |2

⇔ P̂q←g(z) = TR

[
(z2 + (1− z)2

]
, (2.111)

with TR = 1/2. In the first line we implicitly assume that the internal quark prop-
agator can be written as something like uū/p2

a and we only need to consider the
denominator. This splitting kernel is again symmetric in z and (1− z) because QCD
does not distinguish between the outgoing quark and the outgoing antiquark.

The third splitting we compute is gluon radiation off a quark, i.e. q(pa) →
q(pb)+ g(pc), sandwiching the qqg vertex between an outgoing quark ū±(pb) and
an incoming quark u±(pa). From the splitting of a gluon into a quark-antiquark pair
we already know that we can limit our analysis to the physical gluon polarizations
and a spin flip in the quarks. Inserting the spinors from Eq. 2.104 and the two relevant
gamma matrices gives us

ū+(pb)γ
1u+(pa)

E
=
(

1,
θ∗b
2
, 1,

θ∗b
2

)⎛⎜⎜⎝
1

1
1

1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
θ∗a /2

1
θ∗a /2

⎞
⎟⎟⎠

= i

(
1,
θ∗b
2
, 1,

θ∗b
2

)⎛⎜⎜⎝
θ∗a /2

1
θ∗a /2

1

⎞
⎟⎟⎠ = θ∗b + θ∗a
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ū+(pb)γ
2u+(pa)

E
=
(

1,
θ∗b
2
, 1,

θ∗b
2

)
⎛
⎜⎜⎝

−i
i

−i
i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
θ∗a /2

1
θ∗a /2

⎞
⎟⎟⎠

= i

(
1,
θ∗b
2
, 1,

θ∗b
2

)⎛⎜⎜⎝
−θ∗a /2

1
−θ∗a /2

1

⎞
⎟⎟⎠ = i(θ∗b − θ∗a ), (2.112)

with the angles θ∗b and θ∗a relative to the final state gluon direction �pc. Comparing to
the situation shown in Fig. 2.1 for the angle relative to the scattered gluon we find
θ∗b = θ while for the incoming quark θ∗a = −θc = −zθ.As expected, the spin-down
case gives the same result, modulo a complex conjugation

ū−(pb)γ
1u−(pa)

E
=
(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)
⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−θ∗a /2

1
θ∗a /2
−1

⎞
⎟⎟⎠

=
(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)
⎛
⎜⎜⎝
−1
θ∗a /2

1
−θ∗a /2

⎞
⎟⎟⎠ = θ∗a + θ∗b

ū−(pb)γ
2u−(pa)

E
=
(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)⎛⎜⎜⎝
−i

i
−i

i

⎞
⎟⎟⎠
⎛
⎜⎜⎝
−θ∗a /2

1
θ∗a /2
−1

⎞
⎟⎟⎠

= i

(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)⎛⎜⎜⎝
1

θ∗a /2
−1
−θ∗a /2

⎞
⎟⎟⎠ = i(θ∗a − θ∗b ). (2.113)

The vertex function for gluon radiation off a quark then becomes

Vqqg = −igs T a ū±(pb)γμε
μ
a u±(pc) ≡ −igs T a ε

j
a F ( j)
±

|F (1)+ |2
p2

a
= |F

(1)
− |2
p2

a
= Ea Eb(θ

∗
a + θ∗b )2
p2

a
= E2

a z(z − 1)2θ2

E2
a z(1− z)θ2 = (1− z)

|F (2)|2+
p2

a
= |F

(2)|2−
p2

a
= Ea Eb(θ

∗
b − θ∗a )2
p2

a
= E2

a z(1+ z)2θ2

E2
a z(1− z)θ2 =

(1+ z)2

1− z
,

(2.114)

again dropping irrelevant prefactors. The factorized matrix element for this channel
reads
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|Mn+1|2 =
(

1

p2
a

)2
g2

s
TrT a T a

Nc

1

Na

[
|F(1)+ |2 + |F(1)− |2 + |F(2)+ |2 + |F(2)− |2

]
|Mn |2

= g2
s

p2
a

N 2
c − 1

2Nc

(1+ z)2 + (1− z)2

1− z
|Mn |2

= 2g2
s

p2
a

CF
1+ z2

1− z
|Mn |2

≡ 2g2
s

p2
a

P̂q←g(z)|Mn |2

⇔ P̂q←q (z) = CF
1+ z2

1− z
.

(2.115)
The averaging factor 1/Na = 2 now is the number of quark spins in the intermediate
state. Just switching z ↔ (1 − z) we can read off the kernel for a quark splitting
written in terms of the final state gluon

P̂g←q(z) = CF
1+ (1− z)2

z
. (2.116)

This result finalizes our calculation of all QCD splitting kernels P̂i← j (z) between
quarks and gluons. As alluded to earlier, similar to ultraviolet divergences which get
removed by counter terms these splitting kernels are universal, i.e. they do not depend
on the hard n-particle matrix element which is part of the original (n + 1)-particle
process. The four results we show in Eqs. 2.102, 2.111, 2.115, and 2.116. This means
that by construction of the kernels P̂ we have shown that the collinear factorization
Eq. 2.97 holds at this level in perturbation theory.

Before using this splitting property to describe QCD effects at the LHC we need
to look at the splitting of partons in the initial state, meaning |p2

a |, p2
c � |p2

b| where
pb is the momentum entering the hard interaction. The difference to the final state
splitting is that now we can consider the split parton momentum pb = pa − pc as
a t-channel diagram, so we already know p2

b = t < 0 from our usual Mandelstam
variables argument. This space-like splitting version of Eq. 2.88 we can solve for p2

b

t ≡ p2
b = (−zpa + βn + pT )

2

= p2
T − 2zβ(pan) with p2

a = n2 = (pa pT ) = (npT ) = 0

= p2
T +

p2
T z

1− z
using Eq. 2.92

= p2
T

1− z
= − p2

T,1 + p2
T,2

1− z
< 0.

(2.117)

The calculation of the splitting kernels and matrix elements is the same as for the
time-like case, with the one exception that for splitting in the initial state the flow
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factor has to be evaluated at the reduced partonic energy Eb = zEa and that the
energy fraction entering the parton density needs to be replaced by xb → zxb.

The factorized matrix element for initial state splitting then reads just like Eq. 2.97

σn+1 =
∫
σn

dt

t
dz

αs

2π
P̂(z). (2.118)

How to use this property to make statements about the quark and gluon content in
the proton will be the focus of the next section.

2.3.3 DGLAP Equation

What we now know about collinear parton splitting we can use to describe incoming
partons. For example in pp → Z production incoming partons inside the protons
transform into each other via collinear splitting until they enter the Z production
process as quarks. Taking Eq. 2.118 seriously the parton density we insert into
Eq. 2.28 then depends on two parameters, the final energy fraction and the virtuality
f (xn,−tn)where the second parameter t is new compared to the purely probabilistic
picture in Eq. 2.28. It cannot be neglected unless we convince ourselves that it is
unphysical. As we will see later it corresponds exactly to the artificial renormaliza-
tion scale which appears when we re-sum the scaling logarithms which appear in
counter terms.

More quantitatively, we start with a quark inside the proton with an energy fraction
x0, as it enters the hadronic phase space integral shown in Sect. 2.1.4. Since this quark
is confined inside the proton it can only have small transverse momentum, which
means its four-momentum squared t0 is negative and its absolute value |t0| is small.
The variable t we call virtuality because for the incoming partons which if on-shell
have p2 = 0 it gives the distance to the mass shell. Let us simplify our kinematic
argument by assuming that there exists only one splitting, namely successive gluon
radiation q → qg off an incoming quark, where the outgoing gluons are not relevant

In that case each collinear gluon radiation will decrease the quark energy x j+1< x j

and through recoil increase its virtuality |t j+1| = −t j+1 > −t j = |t j |.
From the last section we know what the successive splitting means in terms of

splitting probabilities. We can describe how the parton density f (x,−t) evolves in
the (x − t) plane as depicted in Fig. 2.2. The starting point (x0, t0) is at least prob-
abilistically given by the energy and kind of the hadron, for example the proton.
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Fig. 2.2 Path of an incoming
parton in the (x − t) plane.
Because we define t as a
negative number its axis is
labelled |t |

0

1

x0

δx

|t0| δt |t|

For a given small virtuality |t0| we start at some kind of fixed x0 distribution.
We then interpret each branching as a step strictly downward in x j → x j+1 where
the t value we assign to this step is the ever increasing virtuality |t j+1| after the
branching. Each splitting means a synchronous shift in x and t, so the actual path in
the (x− t) plane really consists of discrete points. The probability of such a splitting
to occur is given by P̂q←q(z) ≡ P̂(z) as it appears in Eq. 2.118

αs

2π
P̂(z)

dt

t
dz. (2.119)

In this picture we consider this probability a smooth function in t and z. At the end
of the path we will probe this evolved parton density, where xn and tn enter the hard
scattering process and its energy-momentum conservation.

When we convert a partonic into a hadronic cross section numerically we need
to specify the probability of the parton density f (x,−t) residing in an infinitesimal
square [x j , x j + δx] and, if this second parameter has anything to do with physics,
[|t j |, |t j | + δt]. Using our (x, t) plane we compute the flow into this square and out
of this square which together defines the net shift in f in the sense of a differential
equation, similar to the derivation of Gauss’ theorem for vector fields inside a surface

δ fin − δ fout = δ f (x,−t). (2.120)

The incoming and outgoing flow we compute from the history of the (x, t) evolu-
tion. At this stage our picture becomes a little subtle; the way we define the path
between two splittings in Fig. 2.2 it can enter and leave the square either vertically
or horizontally, but we have to decide which we choose. If we define a splitting as
a vertical drop in x at the target value t j+1 an incoming path hitting the square at
some value t can come from any x value above the square. Using this convention and



2.3 Infrared Divergences 113

following the fat solid lines in Fig. 2.2 the vertical flow into (and out of) the square
(x, t) square is proportional to δt

δ fin(−t) = δt
(
αs P̂

2π t
⊗ f

)
(x,−t) = δt

t

∫ 1

x

dz

z

αs

2π
P̂(z) f

(
x

z
,−t

)

= δt

t

∫ 1

0

dz

z

αs

2π
P̂(z) f

(
x

z
,−t

)
assuming f (x ′,−t) = 0 for x ′ > 1,

(2.121)
where δt is the size of the interval covered by the virtuality value t. We use the
definition of a convolution

( f ⊗ g)(x) =
∫ 1

0
dx1dx2 f (x1)g(x2) δ(x − x1x2)

=
∫ 1

0

dx1

x1
f (x1)g

(
x

x1

)
=
∫ 1

0

dx2

x2
f

(
x

x2

)
g(x2). (2.122)

The outgoing flow we define in complete analogy, again leaving the infinitesimal
square vertically. Following the fat solid line in Fig. 2.2 the outgoing flow is also
proportional to δt

δ fout(−t) = δt
∫ 1

0
dy
αs P̂(y)

2π t
f (x,−t) = δt

t
f (x,−t)

∫ 1

0
dy

αs

2π
P̂(y).

(2.123)
The y integration, unlike the z integration for the incoming flow is not a convolution.
This integration appears because we do not know the normalization of P̂(z) distri-
bution which we interpret as a probability. The reason why it is not a convolution is
that for the outgoing flow we know the starting condition and integrate over the final
configurations; this aspect will become important later. Combining Eqs. 2.121 and
2.123 we can compute the change in the parton density of the quarks as

δ f (x,−t) = δt

t

[∫ 1

0

dz

z

αs

2π
P̂(z) f

(
x

z
,−t

)
−
∫ 1

0
dy

αs

2π
P̂(y) f (x,−t)

]

= δt

t

∫ 1

0

dz

z

αs

2π

[
P̂(z)− δ(1− z)

∫ 1

0
dy P̂(y)

]
f

(
x

z
,−t

)

≡ δt

t

∫ 1

x

dz

z

αs

2π
P̂(z)+ f

(
x

z
,−t

)

⇔ δ f (x,−t)

δ(−t)
= 1

(−t)

∫ 1

x

dz

z

αs

2π
P̂(z)+ f

(
x

z
,−t

)
,

(2.124)
again assuming f (x) = 0 for x > 1, strictly speaking requiring αs to only depend
on t but not on z, and using the specifically defined plus subtraction scheme

F(z)+ ≡ F(z)− δ(1− z)
∫ 1

0
dy F(y) , (2.125)
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or equivalently

∫ 1

0
dz

f (z)

(1− z)+
=
∫ 1

0
dz

(
f (z)

1− z
− f (1)

1− z

)
. (2.126)

For the second definition we choose F(z) = 1/(1− z),multiply it with an arbitrary
test function f (z) and integrate over z. In contrast to the original z integral the plus-
subtracted integral is by definition finite in the limit z → 1 where some of the
splitting kernels diverge. For example the quark splitting kernel including the plus
prescription becomes of this form CF ((1 + z2)/(1 − z))+. At this stage the plus
prescription is simply a convenient way of writing a complicated combination of
splitting kernels, but we will see that it also has a physics meaning.

We can check that the plus prescription indeed acts as a regularization technique
for the parton densities. Obviously, the integral over f (z)/(1− z) is divergent at the
boundary z → 1, which we know we can cure using dimensional regularization.
The special case f (z) = 1 illustrates how dimensional regularization of infrared
divergences in the phase space integration Eq. 2.85 works

∫ 1

0
dz

1

(1− z)1−ε
=
∫ 1

0
dz

1

z1−ε =
zε

ε

∣∣∣∣
1

0

= 1

ε
with ε > 0, (2.127)

for 4 + 2ε dimensions. This change in sign avoids the analytic continuation of the
usual value n = 4 − 2ε to ε < 0. The dimensionally regularized integral we can
write as

∫ 1

0
dz

f (z)

(1− z)1−ε
=
∫ 1

0
dz

f (z)− f (1)

(1− z)1−ε
+ f (1)

∫ 1

0
dz

1

(1− z)1−ε

=
∫ 1

0
dz

f (z)− f (1)

1− z
(1+ O(ε))+ f (1)

ε

=
∫ 1

0
dz

f (z)

(1− z)+
(1+ O(ε))+ f (1)

ε
by definition

∫ 1

0
dz

f (z)

(1− z)1−ε
− f (1)

ε
=
∫ 1

0
dz

f (z)

(1− z)+
(1+ O(ε)).

(2.128)
The dimensionally regularized integral minus the pole, i.e. the finite part of the dimen-
sionally regularized integral, is the same as the plus-subtracted integral modulo terms
of the order ε. The third line in Eq. 2.128 shows that the difference between a dimen-
sionally regularized splitting kernel and a plus-subtracted splitting kernel manifests
itself as terms proportional to δ(1− z). Physically, they represent contributions to a
soft-radiation phase space integral.

Before we move on introducing a gluon density we can slightly reformulate the
splitting kernel P̂q←q in Eq. 2.115. If the plus prescription regularizes the pole at
z → 1, what happens when we include the numerator of the regularized function,
e.g. the quark splitting kernel, as compared to leaving it out? The finite difference
between these results is
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(
1+ z2

1− z

)
+
− (1+ z2)

(
1

1− z

)
+
= 1+ z2

1− z
− δ(1− z)

∫ 1

0
dy

1+ y2

1− y

− 1+ z2

1− z
+ δ(1− z)

∫ 1

0
dy

1+ z2

1− y

= −δ(1− z)
∫ 1

0
dy

(
1+ y2

1− y
− 2

1− y

)

= δ(1− z)
∫ 1

0
dy

y2 − 1

y − 1

= δ(1− z)
∫ 1

0
dy (y + 1) = 3

2
δ(1− z).

(2.129)
We can therefore write the quark’s splitting kernel in two equivalent ways

Pq←q(z) = CF

(
1+ z2

1− z

)
+
= CF

[
1+ z2

(1− z)+
+ 3

2
δ(1− z)

]
. (2.130)

The infinitesimal version of Eq. 2.124 is the Dokshitzer–Gribov–Lipatov—
Altarelli–Parisi or DGLAP integro-differential equation which describes the scale
dependence of the quark parton density. As we already know quarks do not only
appear in q → q splitting, but also in gluon splitting. Therefore, we generalize Eq.
2.124 to include the full set of QCD partons, i.e. quarks and gluons. This general-
ization involves a sum over all allowed splittings and the plus-subtracted splitting
kernels. For the quark density on the left hand side it is

d fq(x,−t)

d log(−t)
= −t

d fq(x,−t)

d(−t)
=
∑

j=q,g

∫ 1

x

dz

z

αs

2π
Pq← j (z) f j

(
x

z
,−t

)
,

(2.131)
with Pq← j (z) ≡ P̂q← j (z)+. Going back to Eq. 2.124 we add all relevant parton
indices and splittings and arrive at

δ fq(x,−t) = δt

t

[∫ 1

0

dz

z

αs

2π
P̂q←q(z) fq

(
x

z
,−t

)
+
∫ 1

0

dz

z

αs

2π
P̂q←g(z) fg

(
x

z
,−t

)

−
∫ 1

0
dy

αs

2π
P̂q←q(y) fq(x,−t)

]
.

(2.132)
Of the three terms on the right-hand side the first and the third together define
the plus-subtracted splitting kernel Pq←q(z), just following the argument above.
The second term is a proper convolution and the only term proportional to the gluon
parton density. Quarks can be produced in gluon splitting but cannot vanish into
it. Therefore, we have to identify the second term with Pq←g in Eq. 2.131 without
adding a plus-regulator
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Pq←g(z) ≡ P̂q←g(z) = TR
[
z2 + (1− z)2

]
. (2.133)

In principle, the splitting kernel P̂g←q also generates a quark, in addition to the final
state gluon. However, comparing this to the terms proportional to P̂q←q they both
arise from the same splitting, namely a quark density leaving the infinitesimal square
in the (x − t) plane via the splitting q → qg. Including the additional P̂g←q(y)
would be double counting and should not appear, as the notation g ← q already
suggests.

The second QCD parton density we have to study is the gluon density. The
incoming contribution to the infinitesimal square is given by the sum of four splitting
scenarios each leading to a gluon with virtuality −t j+1

δ fin(−t) = δt

t

∫ 1

0

dz

z

αs

2π

[
P̂g←g(z)

(
fg

(
x

z
,−t

)
+ fg

(
x

1− z
,−t

))

+ P̂g←q(z)

(
fq

(
x

z
,−t

)
+ fq̄

(
x

z
,−t

))]

= δt

t

∫ 1

0

dz

z

αs

2π

[
2 P̂g←g(z) fg

(
x

z
,−t

)

+ P̂g←q(z)

(
fq

(
x

z
,−t

)
+ fq̄

(
x

z
,−t

))]
,

(2.134)
using Pg←g(1−z) = Pg←g(z).To leave the volume element in the (x,t) space a gluon
can either split into two gluons or radiate one of n f light-quark flavors. Combining
the incoming and outgoing flows we find

δ fg(x,−t) =δt
t

∫ 1

0

dz

z

αs

2π

[
2 P̂g←g(z) fg

(
x

z
,−t

)

+ P̂g←q(z)

(
fq

(
x

z
,−t

)
+ fq̄

(
x

z
,−t

))]

− δt
t

∫ 1

0
dy

αs

2π

[
P̂g←g(y)+ nf P̂q←g(y)

]
fg(x,−t)

(2.135)
Again, for the gluon density there exists a contribution to δ fin proportional to fq or
fq̄ which is not matched by the outgoing flow. On the other hand, from the quark
case we already know how to deal with it, namely by defining without a second plus
subtraction

Pg←q(z) ≡ P̂g←q(z) = CF
1+ (1− z)2

z
. (2.136)

This ensures that the off-diagonal contribution to the gluon density is taken into
account following Eq. 2.131.
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Three regularized splitting kernels entering the DGLAP equation we give in
Eqs. 2.130, 2.133 and 2.136. The generic structure of the DGLAP equation implies
that the two off-diagonal splitting kernels do not include any plus prescription
P̂i← j = Pi← j . We could have expected this because these off-diagonal kernels
are finite in the soft limit z → 0, 1. Applying a plus prescription would only have
modified the splitting kernels at the isolated (zero-measure) point y = 1 which for a
finite value of the integrand does not affect the integral on the right-hand side of the
DGLAP equation.

The final splitting kernel Pg←g from the diagonal relation on the right-hand side
of Eq. 2.135 requires some more work. The y integral not involving the gluon parton
densities we can explicitly carry out for the gluon splitting into a quark pair

−
∫ 1

0
dy

αs

2π
nf P̂q←g(y) = − αs

2π
nf TR

∫ 1

0
dy

[
1− 2y + 2y2

]

= − αs

2π
nf TR

[
y − y2 + 2y3

3

]1

0

= −2

3

αs

2π
nf TR . (2.137)

The second y integral for gluon radiation has to consist of a finite term and a term
we can use to define the plus prescription for P̂g←g

∫ 1

0
dy
αs

2π
P̂g←g(y) = αs

2π
CA

∫ 1

0
dy

[
y

1− y
+ 1− y

y
+ y(1− y)

]

= αs

2π
CA

∫ 1

0
dy

[
2y

1− y
+ y(1− y)

]

= αs

2π
CA

∫ 1

0
dy

[
2(y − 1)

1− y
+ y(1− y)

]
+ αs

2π
CA

∫ 1

0
dy

2

1− y

= αs

2π
CA

∫ 1

0
dy

[
−2+ y − y2

]
+ δ(1− z)

αs

2π
2CA

∫ 1

0
dy

z

1− y

= αs

2π
CA

[
−2+ 1

2
− 1

3

]
+ δ(1− z)

αs

2π
2CA

∫ 1

0
dy

z

1− y

=− αs

2π

11

6
CA + δ(1− z)

αs

2π
2CA

∫ 1

0
dy

z

1− y
.

(2.138)
The contribution proportional to δ(1 − z) is necessary to give a finite result and is
absorbed into the plus prescription of the convoluted P̂g←g(z), including the factor
two in front. This defines the last remaining regularized splitting kernel

Pg←g(z) = 2CA

(
z

(1−z)+ + 1−z
z + z(1− z)

)
+ 11CA

6 δ(1− z)+ 2n f TR
3 δ(1− z)

(2.139)
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and concludes our computation of all four regularized splitting functions which
appear in the DGLAP equation Eq. 2.131.

Before discussing and solving the DGLAP equation, let us briefly recapitulate:
for the full quark and gluon particle content of QCD we have derived the DGLAP
equation which describes a (so-called factorization) scale dependence of the quark
and gluon parton densities. The universality of the splitting kernels is obvious from
the way we derive them—no information on the n-particle process ever enters the
derivation.

The DGLAP equation is formulated in terms of four splitting kernels of gluons
and quarks which are linked to the splitting probabilities, but which for the DGLAP
equation have to be regularized. With the help of a plus-subtraction the kernels
Pi← j (z) are all finite, including in the soft limit z → 1. However, splitting kernels
are only regularized when needed, so the finite off-diagonal quark-gluon and gluon-
quark splittings are unchanged. This means the plus prescription really acts as an
infrared renormalization, moving universal infrared divergences into the definition
of the parton densities. The original collinear divergence has vanished as well.

The only approximation we make in the computation of the splitting kernels is that
in the y integrals we implicitly assume that the running coupling αs does not depend
on the momentum fraction. In its standard form and in terms of the factorization
scale μ2

F ≡ −t the DGLAP equation reads

d fi (x,μF )

d logμ2
F
=∑ j

∫ 1
x

dz
z

αs
2π Pi← j (z) f j

(
x
z , μF

)
= αs

2π

∑
j

(
Pi← j ⊗ f j

)
(x, μF ) .

(2.140)

2.3.4 Parton Densities

Solving the integro-differential DGLAP equation Eq. 2.140 for the parton densities is
clearly beyond the scope of this writeup. Nevertheless, we will sketch how we would
approach this. This will give us some information on the structure of its solutions
which we need to understand the physics of the DGLAP equation.

One simplification we can make in this illustration is to postulate eigenvalues in
parton space and solve the equation for them. This gets rid of the sum over partons
on the right hand side. One such parton density is the non-singlet parton density,
defined as the difference of two parton densities f NS

q = ( fu − fū). Since gluons
cannot distinguish between quarks and antiquarks, the gluon contribution to their
evolution cancels, at least in the massless limit. This will be true at arbitrary loop
order, since flavor SU (3) commutes with the QCD gauge group. The corresponding
DGLAP equation with leading order splitting kernels now reads

d f NS
q (x, μF )

d logμ2
F

=
∫ 1

x

dz

z

αs

2π
Pq←q(z) f NS

q

(
x

z
, μF

)
= αs

2π

(
Pq←q ⊗ f NS

q

)
(x, μF ).

(2.141)



2.3 Infrared Divergences 119

To solve it we need some kind of transformation which disentangles the convolution,
namely a Mellin transform. Starting from a function f (x) of a real variable x we
define the Mellin transform into moment space m

M [ f ](m) ≡
1∫

0

dxxm−1 f (x) f (x) = 1

2π i

∫ c−i∞

c−i∞
dn

M [ f ](m)
xn

.

(2.142)

The integration contour for the inverse transformation lies to the right of all singular-
ities of the analytic continuation of M [ f ](m), which fixes the offset c. The Mellin
transform of a convolution is the product of the two Mellin transforms, which gives
us the transformed DGLAP equation

M [Pq←q ⊗ f NS
q ](m) =M

[∫ 1

0

dz

z
Pq←q

(
x

z

)
f NS
q (z)

]
(m)

=M [Pq←q ](m) M [ f NS
q ](m, μF )

dM [ f NS
q ](m, μF )

d logμ2
F

= αs

2π
M [Pq←q ](m) M [ f NS

q ](m, μF ) (2.143)

and its solution

M [ f NS
q ](m, μF ) =M [ f NS

q ](m, μF,0) exp

(
αs

2π
M [Pq←q ](m) log

μ2
F

μ2
F,0

)

=M [ f NS
q ](m, μF,0)

(
μ2

F

μ2
F,0

) αs
2π M [Pq←q ](m)

≡M [ f NS
q ](m, μF,0)

(
μ2

F

μ2
F,0

) αs
2π γ (m)

, (2.144)

defining γ (m) = M [P](m). Instead of assuming a fixed αs in the transformed
DGLAP equation Eq. 2.143 we can include αs(μ

2
R) in the running of the DGLAP

equation, identifying the renormalization scale μR of the strong coupling with the
factorization scale μF = μR ≡ μ. This allows us to replace logμ2 in the DGLAP
equation by αs, including the leading order Jacobian

d

d logμ2 =
d logαs

d logμ2

d

d logαs
= 1

αs

dαs

d logμ2

d

d logαs
= −αsb0

d

d logαs
.

(2.145)

This additional factor of αs on the left-hand side will cancel the factor αs on the right
hand side of the DGLAP equation Eq. 2.143
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dM [ f NS
q ](m, μ)

d logαs
= − 1

2πb0
γ (m) M [ f NS

q ](m, μ)

M [ f NS
q ](m, μ) =M [ f NS

q ](m, μ0) exp

(
− 1

2πb0
γ (m) log

αs(μ
2)

αs(μ
2
0)

)

=M [ f NS
q ](m, μF,0)

(
αs(μ

2
0)

αs(μ2)

) γ (m)
2πb0

. (2.146)

Among other things in this derivation we neglect that some splitting functions have
singularities and therefore the Mellin transform is not obviously well-defined. Our
convolution is not really a convolution either, because we cut it off at Q2

0, etc.; but
the final structure in Eq. 2.146 really holds.

Because we will need it in the next section we emphasize that the same kind of
solution appears in pure Yang–Mills theory, i.e. in QCD without quarks. Looking at
the different color factors in QCD this limit can also be derived as the leading terms
in Nc. In that case there exists also only one splitting kernel defining an anomalous
dimension γ, and we find in complete analogy to Eq. 2.146

M [ fg](m, μ) =M [ fg](m, μ0)

(
αs (μ

2
0)

αs (μ2)

) γ (m)
2πb0

. (2.147)

To remind ourselves that in this derivation we unify the renormalization and factor-
ization scales we denote them just as μ. This solution to the DGLAP equation is
not completely determined: as a solution to a differential equation it also includes an
integration constant which we express in terms of μ0. The DGLAP equation there-
fore does not determine parton densities, it only describes their evolution from one
scale μF to another, just like a renormalization group equation in the ultraviolet.

The structure of Eq. 2.147 already shows something we will in more detail
discuss in the following Sect. 2.3.5: the splitting probability we find in the exponent.
To make sense of such a structure we remind ourselves that such ratios of αs values
to some power can appear as a result of a re-summed series. Such a series would
need to include powers of (M [P̂])n summed over n which corresponds to a sum over
splittings with a varying number of partons in the final state. Parton densities cannot
be formulated in terms of a fixed final state because they include effects from any
number of collinearly radiated partons summed over the number of such partons. For
the processes we can evaluate using parton densities fulfilling the DGLAP equation
this means that they always have the form

pp→ μ+μ− + X where X includes any number of collinear jets (2.148)

Why is γ is referred to as the anomalous dimension of the parton density? This is
best illustrated using a running coupling with a finite mass dimension, like the grav-
itational coupling GPlanck ∼ 1/M2

Planck.When we attach a renormalization constant
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Z to this coupling we first define a dimensionless running bare coupling g. In n
dimensions this gives us

gbare = Mn−2 GPlanck gbare = Mn−2 GPlanck → Zg(M2). (2.149)

For the dimensionless gravitational coupling we can compute the running

dg(M2)

d log M
= d

d log M

(
1

Z
Mn−2 GPlanck

)

= GPlanck

(
1

Z
M

d Mn−2

d M
− 1

Z2

d Z

d log M
Mn−2

)

= g(M) (n − 2+ η) with η = − 1

Z

d Z

d log M
(2.150)

Hence, there are two sources of running for the renormalized coupling g(M2): first,
there is the mass dimension of the bare coupling n − 2, and secondly there is η, a
quantum effect from the coupling renormalization. For obvious reasons we call η the
anomalous dimension of GPlanck.

This is similar to the running of the parton densities in Mellin space, as shown
in Eq. 2.143 with γ (m) defined in Eq. 2.144, so we refer to γ as an anomalous
dimension as well. The entire running of the transformed parton density arises from
collinear splitting, parameterized by a finite γ. There is only a slight stumbling step
in this analogy: usually, an anomalous dimension arises through renormalization
involving a ultraviolet divergence and the renormalization scale. In our case we are
discussing an infrared divergence and the factorization scale dependence.

2.3.5 Re-Summing Collinear Logarithms

Remembering how we arrive at the DGLAP equation we notice an analogy to the
case of ultraviolet divergences and the running coupling. We start from universal
infrared divergences. Those we describe in terms of splitting functions which we
regularize using the plus prescription. The DGLAP equation plays the role of a
renormalization group equation for example for the running coupling. It links parton
densities evaluated at different scales μF .

In analogy to the scaling logarithms considered in Sect. 2.2.3 we now test if we
can point to a type of logarithm the DGLAP equation re-sums by reorganizing our
perturbative series of parton splitting. To identify these re-summed logarithms we
build a physical model based on collinear splitting but without using the DGLAP
equation. We then solve it to see the resulting structure of the solutions and compare
it to the structure of the DGLAP solutions in Eq. 2.147.

We start from the basic equation defining the physical picture of parton splitting
in Eq. 2.97. Only taking into account gluons in pure Yang–Mills theory it precisely
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corresponds to the starting point of our discussion leading to the DGLAP equation,
schematically written as

σn+1 =
∫
σn

dt

t
dz

αs

2π
P̂g←g(z). (2.151)

What we now need is an exact physical definition of the virtuality variable t
describing initial-state splitting. If we remember that t = p2

b < 0 we can follow
Eq. 2.117 and introduce a positive transverse momentum variable �p2

T such that

−t = − p2
T

1− z
= �p2

T

1− z
> 0 ⇒ dt

t
= dp2

T

p2
T

= d �p2
T

�p2
T

. (2.152)

From the definition of pT in the Sudakov decomposition Eq. 2.88 we see that �p2
T is

really the transverse three-momentum of the parton pair after splitting.
If beyond the single parton radiation discussed in Sect. 2.3.1 we consider a ladder

of successive splittings of one gluon into two and we for a moment forget about the
actual parton densities we can write the hadronic cross section in the collinear limit
including the appropriate convolution as

σn+1(x, μF ) =
∫ μ2

F

μ2
0

d �p2
T,n

�p2
T,n

αs(μ
2
R)

2π

∫ 1

x0

dxn

xn
P̂g←g

(
x

xn

)
σn(xn, μ0)

=
∫ 1

x0

dxn

xn
P̂g←g

(
x

xn

)
σn(xn, μ0)

∫ μ2
F

μ2
0

d �p2
T,n

�p2
T,n

αs(μ
2
R)

2π
. (2.153)

The dz in Eq. 2.151 we replace by the proper convolution P̂ ⊗ σn, evaluated at the
momentum fraction x. Because the splitting kernel is infrared divergent we cut off the
convolution integral at x0. Similarly, the transverse momentum integral is bounded
by an infrared cutoff μ0 and the physical external scale μF . For the split of the two
integrals in Eq. 2.153 it is crucial that μ0 is the only scale the final matrix element
σ1 depends on.

Identifying μF with the upper boundary of the transverse momentum integration
for collinear splitting is the first assumption we make for our model. The recursion
in Eq. 2.153 we can then apply iteratively

σn+1(x, μF ) ∼
∫ 1

x0

dxn

xn
P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, μ0)

×
∫ μF

μ0

d �p2
T,n

�p2
T,n

αs(μ
2
R)

2π
· · ·

∫ μF

μ0

d �p2
T,1

�p2
T,1

αs(μ
2
R)

2π
. (2.154)

The two sets of integrals in this equation we will solve one by one, starting with the
�pT integrals.

The crucial physics assumption in our multiple-splitting model concerns the inte-
gration boundaries, in addition to the global upper limitμF : as the second assumption
the transverse momenta of the splittings should be strongly ordered; the first splitting
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integrated over �p2
T,1 is bounded from above by the next external scale �p2

T,2, which

is then bounded by �p2
T,3, etc. For the n-fold �p2

T integration this means

μ2
0 < �p2

T,1 < �p2
T,2 < · · · < μ2

F (2.155)

The transverse momentum integrals in Eq. 2.154 then become

∫ μF

μ0

d �p2
T,n

�p2
T,n

αs( �p2
T,n)

2π
· · ·

∫ pT,3

μ0

d �p2
T,2

�p2
T,2

αs( �p2
T,2)

2π

∫ pT,2

μ0

d �p2
T,1

�p2
T,1

αs( �p2
T,1)

2π
· · ·

=
∫ μF

μ0

d �p2
T,n

�p2
T,n

1

2πb0 log
�p2

T,n

Λ2
QCD

· · ·
∫ pT,3

μ0

d �p2
T,2

�p2
T,2

1

2πb0 log
�p2

T,2

Λ2
QCD

×
∫ pT,2

μ0

d �p2
T,1

�p2
T,1

1

2πb0 log
�p2

T,1

Λ2
QCD

· · ·

= 1

(2πb0)n

∫ μF

μ0

d �p2
T,n

�p2
T,n

1

log
�p2

T,n

Λ2
QCD

· · ·
∫ pT,3

μ0

d �p2
T,2

�p2
T,2

1

log
�p2

T,2

Λ2
QCD

×
∫ pT,2

μ0

d �p2
T,1

�p2
T,1

1

log
�p2

T,1

Λ2
QCD

· · · .

(2.156)
Note that just as in Eq. 2.146 as our third assumption we identify the scale of the
strong coupling αs with the transverse momentum scale of the splitting μ2

R = �p2
T .

These integrals we can solve by switching variables, for example in the last integral

∫ pT,2

μ0

d �p2
T,1

�p2
T,1

1

log
�p2

T,1

Λ2
QCD

=
∫ pT,2

μ0

d log log
�p2

T,1

Λ2
QCD

with
d(ax)

(ax) log x
= d log log x

=
∫ pT,2

μ0

d

(
log log

�p2
T,1

Λ2
QCD

− log log
μ2

0

Λ2
QCD

)

=
[

log log
�p2

T,1

Λ2
QCD

− log log
μ2

0

Λ2
QCD

] �p2
T,1= �p2

T,2

�p2
T,1=μ2

0

= log
log �p2

T,2/Λ
2
QCD

logμ2
0/Λ

2
QCD

.

(2.157)
In the second line we shift the integration variable by a constant. To simplify the nota-
tion we throughout keep the integration boundaries in terms of | �pT, j |. The chain of
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integrals over �p2
T, j we can solve, provided the integrand does not have any additional

�p2
T, j dependence. This gives us

∫ μF

μ0

d log
log �p2

T,n/Λ
2
QCD

logμ2
0/Λ

2
QCD

∫ pT,n

μ0

d log
log �p2

T,n−1/Λ
2
QCD

logμ2
0/Λ

2
QCD

· · ·

×
∫ pT,3

μ0

d log
log �p2

T,2/Λ
2
QCD

logμ2
0/Λ

2
QCD

∫ pT,2

μ0

d log
log �p2

T,1/Λ
2
QCD

logμ2
0/Λ

2
QCD

=
∫ μF

μ0

d log
log �p2

T,n/Λ
2
QCD

logμ2
0/Λ

2
QCD

∫ pT,n

μ0

d log
log �p2

T,n−1/Λ
2
QCD

logμ2
0/Λ

2
QCD

· · ·

×
∫ pT,3

μ0

d log
log �p2

T,2/Λ
2
QCD

logμ2
0/Λ

2
QCD

(
log

log �p2
T,2/Λ

2
QCD

logμ2
0/Λ

2
QCD

)

=
∫ μF

μ0

d log
log �p2

T,n/Λ
2
QCD

logμ2
0/Λ

2
QCD

∫ pT,n

μ0

d log
log �p2

T,n−1/Λ
2
QCD

logμ2
0/Λ

2
QCD

· · ·

× 1

2

(
log

log �p2
T,3/Λ

2
QCD

logμ2
0/Λ

2
QCD

)2

=
∫ μF

μ0

d log
log �p2

T,n/Λ
2
QCD

logμ2
0/Λ

2
QCD

(
1

2
· · · 1

n − 1

)(
log

log �p2
T,n/Λ

2
QCD

logμ2
0/Λ

2
QCD

)n−1

= 1

n!

(
log

logμ2
F/Λ

2
QCD

logμ2
0/Λ

2
QCD

)n

= 1

n!

(
log

αs(μ
2
0)

αs(μ
2
F )

)n

. (2.158)

This is the final result for the chain of transverse momentum integrals in
Eq. 2.154. Again, we see that the strong coupling is evaluated at the factorization
scale μF , which means we identify μR ≡ μF following our third assumption.

To compute the convolution integrals over the momentum fractions in the same
equation

σn+1(x, μ) ∼ 1

n!

(
1

2πb0
log

αs(μ
2
0)

αs(μ2)

)n

×
∫ 1

x0

dxn

xn
P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, μ0),

(2.159)
we again Mellin transform the equation into moment space
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M [σn+1](m, μ) ∼ 1

n!

(
1

2πb0
log

αs(μ
2
0)

αs(μ2)

)n

×M

[∫ 1

x0

dxn

xn
P̂g←g

(
x

xn

)
· · ·
∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, μ0)

]
(m)

= 1

n!

(
1

2πb0
log

αs(μ
2
0)

αs(μ2)

)n

γ (m)nM [σ1](m, μ0)

= 1

n!

(
1

2πb0
log

αs(μ
2
0)

αs(μ2)
γ (m)

)n

M [σ1](m, μ0), (2.160)

where we define γ (m) ≡M [P](m).We can now sum the production cross sections
for n collinear jets and obtain

∞∑
n=0

M [σn+1](m, μ) =M [σ1](m, μ0)
∑

n

1

n!

(
1

2πb0
log

αs(μ
2
0)

αs(μ2)
γ (m)

)n

=M [σ1](m, μ0) exp

(
γ (m)

2πb0
log

αs(μ
2
0)

αs(μ2)

)
. (2.161)

This way we can write the Mellin transform of the (n + 1) particle production rate
as the product of the n-particle rate times a ratio of the strong coupling at two scales

∞∑
n=0

M [σn+1](m, μ) =M [σ1](m, μ0)

(
αs(μ

2
0)

αs(μ2)

) γ (m)
2πb0

. (2.162)

This is the same structure as the DGLAP equation’s solution in Eq. 2.147.
It means that we should be able to understand the physics of the DGLAP equation
using our model calculation of a gluon ladder emission, including the generically
variable number of collinear jets in the form of pp → μ+μ− + X, as shown in
Eq. 2.148.

We should remind ourselves of the three assumptions we need to make to arrive at
this form. There are two assumptions which concern the transverse momenta of the
successive radiation: first, the global upper limit on all transverse momenta should
be the factorization scaleμF ,with a strong ordering in the transverse momenta. This
gives us a physical picture of the successive splittings as well as a physical interpreta-
tion of the factorization scale. Second, the strong coupling should be evaluated at the
transverse momentum or factorization scale, so all scales are unified, in accordance
with the derivation of the DGLAP equation.

Bending the rules of pure Yang–Mills QCD we can come back to the hard process
σ1 as the Drell–Yan process qq̄ → Z . Each step in n means an additional parton
in the final state, so σn+1 is Z production with n collinear partons On the left hand
side of Eq. 2.162 we have the sum over any number of additional collinear partons;
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on the right-hand side we see fixed order Drell–Yan production without any additional
partons, but with an exponentiated correction factor. Comparing this to the running
parton densities we can draw the analogy that any process computed with a scale
dependent parton density where the scale dependence is governed by the DGLAP
equation includes any number of collinear partons.

The logarithms which are re-summed by scale dependent parton densities we can
also identify. Going back to Eq. 2.84 reminds us that we start from the divergent
collinear logarithms log pmax

T /pmin
T arising from the collinear phase space integra-

tion. In our model for successive splitting we replace the upper boundary byμF . The
collinear logarithm of successive initial state parton splitting diverges for μ0 → 0,
but it gets absorbed into the parton densities and determines the structure of the
DGLAP equation and its solutions. The upper boundary μF tells us to what extent
we assume incoming quarks and gluons to be a coupled system of splitting partons
and what the maximum momentum scale of these splittings is. Transverse momenta
pT > μF generated by hard parton splitting are not covered by the DGLAP equation
and hence not a feature of the incoming partons anymore. They belong to the hard
process and have to be consistently simulated, as we will see in Sects. 2.5.3 and 2.6.
While this scale can be chosen freely we have to make sure that it does not become too
large, because at some point the collinear approximation C � constant in Eq. 2.84
ceases to hold and with it our entire argument. Only if we do everything correctly,
the DGLAP equation re-sums logarithms of the maximal transverse momentum size
of the incoming gluon. They are universal and arise from simple kinematics.

The ordering of the splittings we have to assume is not relevant unless we simulate
this splitting, as we will see in the next section. For the details of this we have
to remember that our argument follows from the leading collinear approximation
introduced in Sect. 2.3.1. Therefore, the strong pT ordering can in practice mean
angular ordering or rapidity ordering as well, just applying a linear transformation.

2.4 Scales in LHC Processes

Looking back at Sects. 2.2 and 2.3 we introduced the factorization and renormaliza-
tion scales step by step completely in parallel: first, computing perturbative higher
order contributions to scattering amplitudes we encounter ultraviolet and infrared
divergences. Both of them we regularize using dimensional regularization with
n = 4−2ε < 4 for ultraviolet and n > 4 for infrared divergences, linked by analytic
continuation. For both kinds of divergences we notice that they are universal, i.e. not
process or observable dependent. This allows us to absorb ultraviolet and infrared
divergences into a re-definition of the strong coupling and the parton density. This
nominally infinite shift of parameters we refer to as renormalization for example of
the strong coupling or as mass factorization absorbing infrared divergences into the
parton distributions.

After renormalization as well as after mass factorization we are left with a scale
artifact. Scales arise as part of a the pole subtraction: together with the pole 1/ε we
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have a choice of finite contributions which we subtract with this pole. Logarithms of
the renormalization and factorization scales will always be part of these finite terms.
Moreover, in both cases the re-definition of parameters is not based on fixed order
perturbation theory. Instead, it involves summing logarithms which otherwise can
become large and spoil the convergence of our perturbative series in αs . The only
special feature of infrared divergences as compared to ultraviolet divergences is that
to identify the resummed logarithms we have to unify both scales to one.

The hadronic production cross section for the Drell–Yan process or other LHC
production channels, now including both scales, reads

σtot(μF , μR) =
∫ 1

0
dx1

∫ 1

0
dx2

∑
i j

fi (x1, μF ) f j (x2, μF )σ̂i j (x1x2S, αs(μ
2
R), μF , μR).

(2.163)
The Drell–Yan process has the particular feature that at leading order σ̂qq̄ only
involves weak couplings, it does not include αs with its implicit renormalization
scale dependence at leading order. Strictly speaking, in Eq. 2.163 the parton densi-
ties also depend on the renormalization scale because in their extraction we identify
both scales. Carefully following their extraction we can separate the two scales if we
need to. Lepton pair production and Higgs production in weak boson fusion are the
two prominent electroweak production processes at the LHC.

The evolution of all running parameters from one renormalization/factorization
scale to another is described either by renormalization group equation in terms of
a beta function in the case of renormalization and by the DGLAP equation in the
case of mass factorization. Our renormalization group equation for αs is a single
equation, but in general they are sets of coupled differential equations for all relevant
parameters, which again makes them more similar to the DGLAP equation.

There is one formal difference between these two otherwise very similar
approaches. The fact that we can absorb ultraviolet divergences into process-
independent, i.e. universal counter terms is called renormalizability and has been
proven to all orders for the kind of gauge theories we are dealing with. The univer-
sality of infrared splitting kernels has not (yet) in general been proven, but on the
other hand we have never seen an example where is fails for sufficiently inclusive
observables like production rates. For a while we thought there might be a problem
with factorization in supersymmetric theories using the MS scheme, but this issue
has been resolved. A summary of the properties of the two relevant scales for LHC
physics we show in Table 2.2.

The way we introduce factorization and renormalization scales clearly labels
them as an artifact of perturbation theories with divergences. What actually happens
if we include all orders in perturbation theory? For example, the re-summation of
the self energy bubbles simply deals with one class of diagrams which have to be
included, either order-by-order or rearranged into a re-summation. Once we include
all orders in perturbation theory it does not matter according to which combination of
couplings and logarithms we order it. An LHC production rate will then not depend
on arbitrarily chosen renormalization or factorization scales μ.



128 2 QCD

Table 2.2 Comparison of renormalization and factorization scales appearing in LHC cross sections

Renormalization scale μR Factorization scale μF

Source Ultraviolet divergence Collinear (infrared) divergence

Poles cancelled Counter terms Parton densities
(renormalization) (mass factorization)

Summation Re-sum self energy bubbles Re-sum parton splittings
Parameter Running coupling αs(μ

2
R) Running parton density f j (x, μF )

Evolution RGE for αs DGLAP equation

Large scales Decrease of σtot Increase of σtot for gluons/sea quarks

Theory background Renormalizability Factorization
Proven for gauge theories Proven all orders for DIS

Proven order-by-order DY...

Practically, in Eq. 2.163 we evaluate the renormalized parameters and the parton
densities at some scale. This scale dependence will only cancel once we include
all implicit and explicit appearances of the scales at all orders. Whatever scale we
choose for the strong coupling or parton densities will eventually be compensated
by explicit scale logarithms. In the ideal case, these logarithms are small and do
not spoil perturbation theory. In a process with one distinct external scale, like the
Z mass, we know that all scale logarithms should have the form log(μ/m Z ). This
logarithm vanishes if we evaluate everything at the ‘correct’ external energy scale,
namely m Z . In that sense we can think of the running coupling as a proper running
observable which depends on the external energy of the process. This dependence
on the external energy is not a perturbative artifact, because a cross section even to
all orders does depend on the energy. The problem in particular for LHC analyses is
that after analysis cuts every process will have more than one external energy scale.

We can turn around the argument of vanishing scale dependence to all orders
in perturbation theory. This gives us an estimate of the minimum theoretical error
on a rate prediction set by the scale dependence. The appropriate interval of what
we consider reasonable scale choices depends on the process and the taste of the
people doing this analysis. This error estimate is not at all conservative; for example
the renormalization scale dependence of the Drell–Yan production rate or Higgs
production in weak boson fusion is zero because αs only enters are next-to-leading
order. At the same time we know that the next-to-leading order correction to the Drell–
Yan cross section is of the order of 30%, which far exceeds the factorization scale
dependence. Moreover, the different scaling behavior of a hadronic cross section
shown in Table 2.2 implies that for example gluon-induced processes at typical
x values around 10−2 show a cancellation of the factorization and renormalization
scale variation. Estimating theoretical uncertainties from scale dependence therefore
requires a good understanding of the individual process and the way it is affected by
the two scales.
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Guessing the right scale choice for a process is hard, often impossible. For example
in Drell–Yan production at leading-order there exists only one scale, m Z . If we set
μ = m Z all scale logarithms vanish. In reality, LHC observables include several
different scales. Some of them appear in the hard process, for example in the produc-
tion of two or three particles with different masses. Others enter through the QCD
environment where at the LHC we only consider final state jets above a certain
minimal transverse momentum. Even others appear though background rejection
cuts in a specific analysis, for example when we only consider the Drell–Yan back-
ground for mμμ > 1 TeV to Kaluza–Klein graviton production. Using likelihood
methods does not improve the situation because the phase space regions dominated by
the signal will introduce specific energy scales which affect the perturbative predic-
tion of the backgrounds. This is one of the reasons why an automatic comparison of
LHC events with signal or background predictions is bound to fail once it requires
an estimate of the theoretical uncertainty on the background simulation.

All that means that in practice there is no way to define a ‘correct’ scale. On the
other hand, there are definitely poor scale choices. For example, using 1, 000×m Z

as a typical scale in the Drell–Yan process will if nothing else lead to logarithms of
the size log 1, 000 whenever a scale logarithm appears. These logarithms eventually
have to be cancelled to all orders in perturbation theory, inducing unreasonably large
higher order corrections.

When describing jet radiation, we usually introduce a phase-space dependent
renormalization scale, evaluating the strong coupling at the transverse momentum
of the radiated jet αs( �p2

T, j ). This choice gives the best kinematic distributions for
the additional partons because in Sect. 2.3.5 we have shown that it re-sums large
collinear logarithms.

The transverse momentum of a final state particle is one of scale choices allowed
by factorization; in addition to poor scale choices there also exist wrong scale
choices, i.e. scale choices violating physical properties we need. Factorization or
the Kinoshita–Lee–Nauenberg theorem which ensures that soft divergences cancel
between real and virtual emission diagrams are such properties we should not
violate—in QED the same property is called the Bloch–Nordsieck cancellation.
Imagine picking a factorization scale defined by the partonic initial state, for example
the partonic center-of-mass energy s = x1x2S. We know that this definition is not
unique: for any final state it corresponds to the well defined sum of all momenta
squared. However, virtual and real gluon emission generate different multiplicities
in the final state, which means that the two sources of soft divergences only cancel
until we multiply each of them with numerically different parton densities. Only
scales which are uniquely defined in the final state can serve as factorization scales.
For the Drell–Yan process such a scale could be m Z , or the mass of heavy new-
physics states in their production process. So while there is no such thing as a correct
scale choice, there are more or less smart choices, and there are definitely very poor
choices, which usually lead to an unstable perturbative behavior.
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2.5 Parton Shower

In LHC phenomenology we are usually less interested in fixed-order perturbation
theory than in logarithmically enhanced QCD effects. Therefore, we will not deepen
our discussion of hadronic rates as shown in Eq. 2.163 based on fixed-order partonic
cross sections convoluted with parton densities obeying the DGLAP equation.
In Sect. 2.3.5 we have already seen that there exist more functions with the same
structure as solutions to the DGLAP equation. In this section we will look for other
structures which obey the DGLAP equation, leading us to Sudakov form factors and
the parton shower. In Sect. 2.5.2 we will discuss some of the physical properties of the
parton shower. Per se it is not clear how jet radiation described by the parton shower
and jet radiation described by fixed-order QCD processes are linked. In Sect. 2.5.3
we will discuss ways to combine the two approaches in realistic LHC simulations,
bringing us very close to contemporary research topics.

2.5.1 Sudakov Form Factor

The splitting kernels P̂i← j (z) we introduce as something like splitting probabilities,
but we never apply a probabilistic approach to parton splitting. The basis of such an
interpretation are Sudakov form factors describing the splitting of a parton i into any
of the partons j based on the factorized form Eq. 2.97

Δi (t) ≡ Δi (t, t0) = exp

⎛
⎝−∑

j

t∫
t0

dt ′

t ′

1∫
0

dy
αs

2π
P̂j←i (y)

⎞
⎠ . (2.164)

Before we check that such a function can obey the DGLAP equation we confirm
that such exponentials appear in probabilistic arguments, similar to our discussion
of the central jet veto in Sect. 1.5.2. Using Poisson statistics for something expected
to occur p times, the probability of observing it n times is given by

P(n; p) = pne−p

n! P(0; p) = e−p. (2.165)

If the exponent in the Sudakov form factor in Eq. 2.164 describes the integrated
splitting probability of a parton i this means that the Sudakov itself describes a
non-splitting probability of the parton i into any final state j.

Based on such probabilistic Sudakov factors we can use a Monte Carlo (i.e. a
Markov process without a memory of individual past steps) to compute a chain
of parton splittings as depicted in Fig. 2.2. This will describe a quark or a gluon
propagating forward in time. Starting from a point (x1, t1) in momentum-virtuality
space we step by step move to the next splitting point (x j , t j ). Following the original
discussion t2 is the target virtuality at x2, and for time-like final state branching the

http://dx.doi.org/10.1007/978-3-642-24040-9_1
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virtuality is positive t j > 0 in all points j. The Sudakov factor is a function of
t, so it gives us the probability of not seeing any branching between t1 and t2 as
Δ(t1)/Δ(t2) < 1. The appropriate cutoff scale t0 drops out of this ratio. Using a flat
random number rt the t2 distribution is implicitly given by the solution to

Δ(t1)

Δ(t2)
= rt ∈ [0, 1] with t1 > t2 > t0 > 0. (2.166)

Beyond the absolute cutoff scale t0 we assume that no resolvable branching occurs.
In a second step we need to compute the matching energy fraction x2 or the ratio

x2/x1 describing the momentum fraction which is kept in the splitting at x2. The
y integral in the Sudakov factor in Eq. 2.164 gives us this probability distribution
which we can again implicitly solve for x2 using a flat random number rx

∫ x2/x1
0 dy αs

2π P̂(y)∫ 1
0 dy αs

2π P̂(y)
= rx ∈ [0, 1] with x1 > x2 > 0. (2.167)

For splitting kernels with soft divergences at y = 0 or y = 1 we should include a
numerical cutoff in the integration because the probabilistic Sudakov factor and the
parton shower do not involve the regularized splitting kernels.

Of the four momentum entries of the radiated parton the two equations Eqs. 2.166
and 2.167 give us two. The on-shell mass constraint fixes a third, so all we are left
is the azimuthal angle distribution. We know from symmetry arguments that QCD
splitting is insensitive to this angle, so we can generate it randomly between zero and
2π . For final state radiation this describes probabilistic branching in a Monte Carlo
program, just based on Sudakov form factors.

The same statement for initial state radiation including parton densities we will
put on a more solid or mathematical footing. The derivative of the Sudakov form
factor Eq. 2.164

1

Δi (t)

dΔi (t)

dt
= −

∑
j

1

t

∫ 1

0
dy
αs

2π
P̂j←i (y) (2.168)

is precisely the second term in d f (x, t)/dt for diagonal splitting, as shown in Eq.
2.124

d fi (x, t)

dt
= 1

t

∑
j

[∫ 1

0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t

)
−
∫ 1

0
dy

αs

2π
P̂j←i (y) fi (x, t)

]

= 1

t

∑
j

∫ 1

0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t

)
+ fi (x, t)

Δi (t)

dΔi (t)

dt
. (2.169)

This relation suggests to consider the derivative of the fi/Δi instead of the Sudakov
factor alone to obtain something like the DGLAP equation
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d

dt

fi (x, t)

Δi (t)
= 1

Δi (t)

d fi (x, t)

dt
− fi (x, t)

Δi (t)2
dΔi (t)

dt

= 1

Δi (t)

⎛
⎝1

t

∑
j

∫ 1

0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t

)
+ fi (x, t)

Δi (t)

dΔi (t)

dt

⎞
⎠

− fi (x, t)

Δi (t)2
dΔi (t)

dt

= 1

Δi (t)

1

t

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t

)
.

(2.170)
In the last step we cancel what corresponds to the plus prescription for diagonal
splitting, i.e. we remove the regularization of the splitting kernel at z→ 1.Therefore,
we need to modify the upper integration boundary by a small parameter ε which can
in principle depend on t. The resulting equation is the diagonal DGLAP equation with
unsubtracted splitting kernels, solved by the ratio of parton densities and Sudakov
factors

t
d

dt

fi (x, t)

Δi (t)
= d

d log t

fi (x, t)

Δi (t)
=
∑

j

∫ 1−ε

0

dz

z

αs

2π
P̂i← j (z)

f j

(
x

z
, t

)

Δi (t)
.

(2.171)
We can study the structure of these solutions of the unsubtracted DGLAP equation

by integrating f/Δ between appropriate points in t

fi (x, t)

Δi (t)
− fi (x, t0)

Δi (t0)
=
∫ t

t0

dt ′
t ′
∑

j

∫ 1−ε
0

dz

z

αs

2π
P̂i← j (z)

f j

(
x
z , t ′

)
Δi (t ′)

fi (x, t) = Δi (t)

Δi (t0)
fi (x, t0)+

∫ t

t0

dt ′
t ′

Δi (t)

Δi (t ′)
∑

j

∫ 1−ε
0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t ′
)

= Δi (t) fi (x, t0)+
∫ t

t0

dt ′
t ′

Δi (t)

Δi (t ′)
∑

j

∫ 1−ε
0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t ′
)

≡ Δi (t, t0) fi (x, t0)+
∫ t

t0

dt ′
t ′ Δi (t, t ′)

∑
j

∫ 1−ε
0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t ′
)
,

(2.172)
where we choose t0 such that Δ(t0) = 1 and introduce the notation Δ(t1, t2) =
Δ(t1, t0)/Δ(t2, t0) for the ratio of two Sudakov factors in the last line. This formula
for the dependence of the parton density fi (x, t) on x and t has a suggestive inter-
pretation: corresponding to Eq. 2.165 the first term can be interpreted as ‘nothing
happening to f between t0 and t ′ because it is weighted by the Sudakov no-branching
probabilityΔi . The second term includes the ratio of Sudakov factors which just like
in Eq. 2.166 means no branching between t ′ and t. Integrating this factor times the
splitting probability over t ′ ∈ [t0, t] implies at least one branching between t0 and t.
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The issue of this interpretation of the Sudakov form factor in conjunction with the
parton densities is its numerical usability in a probabilistic approach: starting from
a parton density somewhere in (x − t) space we need to evolve it to a fixed point
(xn, tn) given by the hard subprocess, e.g. qq̄ → Z with m Z giving the scale and
energy fraction of the two quarks. Numerically it would be much easier to simulate
backwards evolution where we start from the known kinematics of the hard process
and the corresponding point in the (x − t) plane and evolve towards the partons
in the proton, ideally to a point where the probabilistic picture of collinear, stable,
non-radiating quarks and gluons in the proton holds. This means we need to define
a probability that a parton evolved backwards from a space-like t2 < 0 to t1 < 0
with |t2| > |t1| does not radiate or split.

For this final step we define a probability measure for the backwards evolution
of partons Π(t1, t2; x). Just like the two terms in Eq. 2.172 it links the splitting
probability to a probability of an undisturbed evolution. For example, we can write
the probability that a parton is generated by a splitting in the interval [t, t + δt],
evaluated at (t2, x), as d F(t; t2). The measure corresponding to a Sudakov survival
probability is then

Π(t1, t2; x) = 1−
∫ t2

t1
d F(t; t2). (2.173)

Comparing the definition of dF to the relevant terms in Eq. 2.172 and replacing
t → t2 and t ′ → t we know what happens for the combination

fi (x, t2)d F(t; t2) = dt

t

Δi (t2)

Δi (t)

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂i← j (z) f j

(
x

z
, t

)

= dt Δi (t2)
1

t

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂i← j (z)

f j

(
x
z , t
)

Δi (t)

= dt Δi (t2)
d

dt

fi (x, t)

Δi (t)
using Eq. 2.171. (2.174)

This means

Π(t1, t2; x) = 1− fi (x, t)Δi (t2)

fi (x, t2)Δi (t)

∣∣∣∣
t2

t1

= fi (x, t1)Δi (t2)

fi (x, t2)Δi (t1)
, (2.175)

and gives us a probability measure for backwards evolution: the probability of
evolving back from t2 to t1 is described by a Markov process with a flat random
number as

fi (x, t1)Δi (t2)

fi (x, t2)Δi (t1)
= r ∈ [0, 1] with |t2| > |t1|. (2.176)

While we cannot write down this procedure in a closed form, it shows how we can
algorithmically generate initial state as well as final state parton radiation patterns
based on the unregularized DGLAP equation and the Sudakov factors solving this
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equation. One remaining issue is that in our derivation of the collinear re-summation
interpretation of the parton shower we assume some a strong ordering of the radiated
partons which we will discuss in the next section.

2.5.2 Soft Gluon Emission

To this point we have built our parton shower on collinear parton splitting or radia-
tion and its universal properties indicated by Eq. 2.97. Deriving the diagonal splitting
kernels in Eqs. 2.102 and 2.115 we encounter an additional source of infrared diver-
gences, namely soft gluon emission corresponding to energy fractions z → 0, 1. Its
radiation pattern is also universal, just like the collinear case. One way to study this
soft divergence without an overlapping collinear pole is gluon radiation off a massive
quark with momentum q + k and mass m, which could be attached to some hard
process as a splitting final state. The initial quark momentum q + k splits into a hard
quark q and a soft gluon k with k2 � q2 = m2

Mn+1 = gs T a ε∗μ(k) ū(q)γ μ
q + k + m

(q + k)2 − m2 Mn

= gs T a ε∗μ(k) ū(q)
[−qγ μ + 2qμ + mγ μ − γ μ k

] 1

2(qk)+ O(k2)
Mn

= gs T a ε∗μ(k) ū(q)
qμ + O(k)

(qk)+ O(k2)
Mn Dirac equation ū(q)(q − m) = 0

∼ gs T a ε∗μ(k)
qμ

(qk)
ū(q) Mn

→ gs ε
∗
μ(k)

⎛
⎝∑

j

T̂ a
j

qμj
(q j k)

⎞
⎠ ū(q) Mn (2.177)

The conventions are similar to Eq. 2.102, Mn includes all additional terms except
for the spinor of the outgoing quark with momentum q + k. Neglecting the gluon
momentum altogether defines the leading term of the eikonal approximation.

In the last step we simply add all possible sources j of gluon radiation. This defines
a color operator which we insert into the matrix element and which assumes values
of +T a

i j for radiation off a quark, −T a
ji for radiation off an antiquark and −i fabc for

radiation off a gluon. For a color neutral process like our favorite Drell–Yan process
adding an additional soft gluon qq̄ → Zg it returns

∑
j T̂ j = 0.

The matrix element in Eq. 2.177 we need to square. It includes a polarization
sum and will therefore depend on the gauge. We choose the general axial gauge for
massless gauge bosons

∑
pol

ε∗μ(k)εv(k) = −gμv + kμnv + nμkv

(nk)
− n2 kμkv

(nk)2
= −gμv + kμnv + nμkv

(nk)
,

(2.178)
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with a light-like reference vector n obeying n2 = 0. The matrix element squared
then reads

|Mn+1|2 = g2
s

(
−gμv + kμnv + nμkv

(nk)

) ⎛
⎝∑

j

T̂ a
j

qμj
(q j k)

⎞
⎠

† ⎛
⎝∑

j

T̂ a
j

qv
j

(q j k)

⎞
⎠ |Mn |2

= g2
s

⎛
⎜⎝−

⎛
⎝∑

j

T̂ a
j

qμj
(q j k)

⎞
⎠

†⎛
⎝∑

j

T̂ a
j

q jμ

(q j k)

⎞
⎠

+ 2

(nk)

⎛
⎝∑

j

T̂ a
j

⎞
⎠

†⎛
⎝∑

j

T̂ a
j
(q j n)

(q j k)

) ⎞
⎠ |Mn |2

= −g2
s

⎛
⎝∑

j

T̂ a
j

qμj
(q j k)

⎞
⎠

†⎛
⎝∑

j

T̂ a
j

q jμ

(q j k)

⎞
⎠ |Mn |2.

(2.179)
The insertion operator in the matrix element has the form of an insertion current
multiplied by its hermitian conjugate. This current describes the universal form of
soft gluon radiation off an n-particle process

|Mn+1|2 ≡ −g2
s (J

† · J ) |Mn|2 with J aμ(k, {q j }) =
∑

j

T̂ a
j

q j

(q j k)
. (2.180)

The squared current appearing in the matrix element squared, Eq. 2.179, we can
further simplify to

(J † · J ) =
∑

j

T̂ a
j T̂ a

j

q2
j

(q j k)2
+ 2

∑
i< j

T̂ a
i T̂ a

j
(qi q j )

(qi k)(q j k)

=
∑

j

T̂ a
j

⎛
⎝−∑

i �= j

T̂ a
i

⎞
⎠ q2

j

(q j k)2
+ 2

∑
i< j

T̂ a
i T̂ a

j
(qi q j )

(qi k)(q j k)

= −
⎛
⎝∑

i< j

+
∑
i> j

⎞
⎠ T̂ a

i T̂ a
j

q2
j

(q j k)2
+ 2

∑
i< j

T̂ a
i T̂ a

j
(qi q j )

(qi k)(q j k)

= 2
∑
i< j

T̂ a
i T̂ a

j

(
(qi q j )

(qi k)(q j k)
− q2

i

2(qi k)2
− q2

j

2(q j k)2

)
massive case

= 2
∑
i< j

T̂ a
i T̂ a

j
(qi q j )

(qi k)(q j k)
massless partons

= 2
∑
i< j

T̂ a
i T̂ a

j
(qi q j )

(qi k)+ (q j k)

(
1

(qi k)
+ 1

(q j k)

)
.

(2.181)
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In the last step we only bring the eikonal factor into a different form which sometimes
comes in handy because it separates the two divergences associated with qi and
with q j .

At this point we return to massless QCD partons, keeping in mind that the ansatz
Eq. 2.177 ensures that the insertion currents only model soft, not collinear radiation.
Just as a side remark at this stage—our definition of the insertion current J aμ in Eq.
2.180 we can generalize to colored processes, where the current becomes dependent
on the gauge vector n to cancel the n dependence of the polarization sum

J aμ(k, {p j }) =
∑

j

T̂ a
j

(
p j

(p j k)
− n

(nk)

)
(2.182)

This dipole radiation term in Eqs. 2.180 and 2.182 we can study to see how
successive soft gluon radiation will be organized for example in terms of emission
angles. Given that in the interpretation of the DGLAP equation and its solutions the
ordering of the collinear emissions plays a crucial role this is an important question.
As it will turn out, the soft emission case will help us understand this feature.

At this stage, calling the terms in Eq. 2.182 a dipole is a little bit of a stretch if we
compare it to a multi-pole series. To see the actual dipole structure we would need to
look at the color structure. We start by symmetrizing the soft radiation dipole with
respect to the two hard momenta in a particular way

(J † · J )i j ∼ Wi j =
(qi q j )

(qi k)(q j k)

= 1− cos θi j

(1− cos θig)(1− cos θ jg)
in terms of opening angles θ

= 1

2

(
1− cos θi j

(1− cos θig)(1− cos θ jg)
+ 1

1− cos θig
− 1

1− cos θ jg

)
+ (i ↔ j)

≡ W [i]i j +W [ j]i j .

(2.183)
Each of the two terms we need to integrate over the gluon’s phase space, including
the azimuthal angle integration

∫ 2π

0
dφigW [i]i j =

1

2

∫ 2π

0
dφig

(
1− cos θi j

(1− cos θig)(1− cos θ jg)
+ 1

1− cos θig
− 1

1− cos θ jg

)

= 1

2

∫ 2π

0
dφig

[
1

1− cos θig
+ 1

1− cos θ jg

(
1− cos θi j

1− cos θig
− 1

)]
.

(2.184)
To disentangle the different angular integrations we express the three parton vectors
in polar coordinates where the initial parton i propagates into the x direction, the
interference partner j in the (x − y) plane, and the soft gluon in the full three-
dimensional space
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�ni = (1, 0, 0) hard parton

�n j = (cos θi j , sin θi j , 0) interference partner

�ng = (cos θig, sin θig cosφig, sin θig sin φig) soft gluon

1− cos θ jg ≡ (�n j �ng) = 1− cos θi j cos θig + sin θi j sin θig cosφig, (2.185)

From the scalar product between these four-vectors we see that of the terms appearing
in Eq. 2.184 only the opening angle θ jg is related to φig, which for the azimuthal
angle integration means

∫ 2π

0
dφig W [i]i j =

π

1− cos θig
+ 1

2

(
1− cos θi j

1− cos θig
− 1

) ∫ 2π

0
dφig

1

1− cos θ jg

= 1

1− cos θig

[
π + cos θig − cos θi j

2

∫ 2π

0
dφig

1

1− cos θ jg

]
.

(2.186)

The azimuthal angle integral in this expression for W [i]i j we can solve

∫ 2π

0
dφig

1

1− cos θ jg
=
∫ 2π

0
dφig

1

1− cos θi j cos θig + sin θi j sin θig cosφig

=
∫ 2π

0
dφig

1

a − b cosφig

=
∮

unit circle
dz

1

i z

1

a − b z+1/z
2

= 2

i

∮
dz

1

2az − b − bz2

= 2i

b

∮
dz

(z − z−)(z − z+)
with z± = a

b
±
√

a2

b2 − 1

= 2i

b
2π i

1

z− − z+
z− inside contour

= 2π√
a2 − b2

= 2π√
(cos θig − cos θi j )2

= 2π

| cos θig − cos θi j | .

(2.187)

The crucial coordinate transformation is z = exp(iφig) and cosφig = (z + 1/z)/2
in the third line. For the entire integral in Eq. 2.184 this gives us
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∫ 2π

0
dφig W [i]i j =

1

1− cos θig

[
π + cos θig − cos θi j

2

2π

| cos θig − cos θi j |
]

= π

1− cos θig

[
1+ sign(cos θig − cos θi j )

]

=
⎧⎨
⎩

π

1− cos θig
if θig < θi j

0 else.
(2.188)

The soft gluon is only radiated at angles between zero and the opening angle of
the initial parton i and its hard interference partner or spectator j. The same integral
over W [ j]i j gives the same result, with switched roles of i and j. After combining the
two permutations the probability of radiating a soft gluon at an angle larger than
the earlier branching is zero; successive emission of soft gluons obeys an angular
ordering.

Going back to collinear radiation, we know from Eqs. 2.83 and 2.152 that the
different variables describing parton splitting, namely the angle θ, the transverse
momentum pT , or the virtuality

√
t, are equivalent as long as we are only interested

in the leading logarithm arising from the collinear phase space integration. They can
be transformed into each other by a simple linear transformation.

Different implementations of the parton shower order their jet radiation by
different variables: historically, of the two most widely used event generators
PYTHIA uses the virtuality or the transverse momentum while HERWIG uses the
angle. Once we re-sum the collinear logarithms the finite shifts which appear in the
transformation between the ordering parameters are also re-summed, so the under-
lying variable in the parton shower does matter in the comparison to data. This is
even more true for the matching of the parton shower and the matrix element which
we will discuss in the next section.

In this section we have learned an argument for using the angle to order parton
radiation: soft radiation is ordered in the angle θ , and a parton shower would be well
advised to match this behavior. On the other hand, in Sect. 2.3.5 we have learned
that the physical interpretation of the collinear logarithms re-summed by the parton
shower is based on a transverse momentum ordering. If theory does not define the
golden way to order parton radiation we will have to rely on Tevatron or LHC
measurements to tell us which implementation works best. This includes the new
SHERPA parton shower which is not based on the collinear splitting kernels but on
the soft-collinear QCD dipoles introduced in this section.

2.5.3 CKKW and MLM Schemes

The main problem with QCD at the LHC is the range of energy scales of the jets we
encounter. Collinear jets with their small transverse momenta are well described by a
parton shower. From Sect. 2.3.5 we know that strictly speaking the parton shower only
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fills the phase space region up to a maximum transverse momentum pT < μF . In
contrast, hard jets with large transverse momentum are described by matrix elements
which we compute using the QCD Feynman rules. They fill the non-collinear part
of phase space which is not covered by the parton shower. Because of the collinear
logarithmic enhancement we discussed in Sect. 2.3.5 we expect many more collinear
and soft jets than hard jets at the LHC.

The natural question then becomes: what is the range of ‘soft’ or ‘collinear’ and
what is ‘hard’? Applying a consistency condition we can define collinear jet radiation
by the validity of the collinear approximation in Eq. 2.84. The maximum pT of a
collinear jet is the upper end of the region for which the jet radiation cross section
behaves like 1/pT or the point where the distribution pT dσ/dpT leaves its plateau.
For harder and harder jets we will at some point become limited by the partonic
energy available at the LHC, which means the pT distribution of additional jets
will start dropping faster than 1/pT . Collinear logarithms will become numerically
irrelevant and jets will be described by the regular matrix element squared without
any re-summation.

Quarks and gluons produced in association with gauge bosons at the Tevatron
behave like collinear jets for pT � 20 GeV, because quarks at the Tevatron are
limited in energy. At the LHC, jets produced in association with tops behave like
collinear jets to pT ∼ 150 GeV, jets produced with 500 GeV gluinos behave like
collinear jets to pT scales larger than 300 GeV. This is not good news, because
collinear jets means many jets, and many jets produce combinatorial backgrounds
and ruin the missing momentum resolution of the detector: if we are looking for
example for two jets to reconstruct an invariant mass you can simply plot all events
as a function of this invariant mass and remove the backgrounds by requiring all event
to sit around a peak in m j j . If we have for example three jets in the event we have to
decide which of the three jet-jet combinations should go into this distribution. If this
is not possible we have to consider two of the three combinations as uncorrelated
‘background’ events. In other words, we make three histogram entries out of each
signal or background event and consider all three background events plus two of the
three signal combinations as background. This way the signal-to-background ratio
decreases from NS/NB to NS/(3NB+2NS).A famous victim of such combinatorics
was for a long time the Higgs discovery channel pp→ t t̄ H with H → bb̄.

For theorists this means that at the LHC we have to reliably model collinear and
hard jets. For simplicity, in this section we will first limit our discussion to final
state radiation, for example off the R-ratio process e+e− → qq̄ from Sect. 2.1.1.
Combining collinear and hard jets in the final state has to proceed in two steps. The
first of them has nothing to do with the parton shower: the problem we need to solve
is that the parton shower by construction generates a definitive number of jets. We
can categorize the generated events by counting the number of jets in the final state,
i.e. the parton shower events are jet-exclusive. On the other hand, the total rate for
the hard process we compute as e+e− → qq̄ + X , with any number of collinear
jets in the final state denoted by X. Predictions involving parton densities and the
DGLAP equation are jet-inclusive. Any scheme combining the parton shower and
hard matrix elements has to follow the path



140 2 QCD

1. Define jet-exclusive events from the hard matrix elements and the parton shower
2. Combine final states with different numbers of final state particles
3. Reproduce matrix element results in high-pT and well separated phase space

region
4. Reproduce parton shower results for collinear and soft radiation
5. Interpolate smoothly and avoid double counting of events.

For specific processes at the Tevatron the third and fourth point on this list have
actually been tackled by so-called matrix element corrections in the parton shower
Monte Carlos PYTHIA and HERWIG.

For example the final state of the process e+e− → qq̄+X often involves more than
two jets due to final state splitting. Even for the first step of defining jet-exclusive
predictions from the matrix element we have to briefly consider the geometry of
different jets. To separate jet-inclusive event samples into jet-exclusive event samples
we have to define some kind of jet separation parameter. As a start, we radiate a gluon
off one of the quark legs, which gives us a qq̄g final state. This additional gluon can
either be collinear with and hence geometrically close to one of the quarks or not. Jet
algorithms which decide if we count such a splitting as one or two jets we describe
in detail in Sect. 3.1.1. They are based on a choice of collinearity measure yi j which
we can for example construct as a function of the distance in R space, introduced in
Eq. 2.35, and the transverse momenta. We define two jets as collinear and hence as
one jet if yi j < yresol where yresol we give to the algorithm. As a result, the number
of jets in an event will of course depend on this resolution parameter yresol.

For the second step of combining hard and collinear jet simulation the same
resolution parameter appears in a form where it becomes a collinear vs hard matching
parameter ymatch, i.e. it allows us to clearly assign each hadron collider event a
number of collinear jets and a number of hard jets. Such an event with its given
number of more or less hard jets we can then describe either using matrix elements
or using a parton shower, where ‘describe’ means computing the relative probability
of different phase space configurations. The parton shower will do well for jets with
yi j < ymatch. In contrast, if for our closest jets we find yi j > ymatch, we know that
collinear logarithms did not play a major role, so we should use the hard matrix
element. If we assign the hard process a typical energy or virtuality scale thard we can
translate the matching parameter ymatch into a virtuality scale tmatch = y2

matchthard,
below which we do not trust the hard matrix element. For example for the Drell–Yan
process the hard scale would be something like the Z mass.

The CKKW jet combination scheme first tackles the problem of defining jet-
exclusive final states. While an exclusive rate requires a process to have exactly a
given number of jets, an inclusive rate is defined as the number of events in which
we for example identify n jets and ignore everything else appearing in the event. For
example, additional collinear jets which we usually denote as ‘ + X’ will be included.

The main ingredient to translating one into the other are non-splitting probabilities,
i.e. Sudakov factors. They can transform inclusive n-particle rates into exact n-particle
rates, with no additional final state jet outside a given resolution scale. Analytically
we can compute integrated splitting probabilities Γ j (thard, t) which for quarks and

http://dx.doi.org/10.1007/978-3-642-24040-9_3
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gluons are implicitly defined through the Sudakov factors which we introduce in Eq.
2.164

Δq(thard, tmatch) = exp

(
−
∫ thard

tmatch

dt

t

∫ 1

0
dy
αs

2π
P̂q←q(y)

)

≡ exp

(
−
∫ thard

tmatch

dt Γq(thard, t)

)

Δg(thard, tmatch) ≡ exp

(
−
∫ thard

tmatch

dt
[
Γg(thard, t)+ Γ f (t)

])
. (2.189)

For final state radiation t corresponds to the original
√

p2
a and, moving forward in

time, is ordered according to thard > t > tmatch. The resolution of individual jets
we identify with the matrix element-shower matching scale tmatch. The y integration
in the original definition we can carry out in the leading logarithm approximation,
giving us

Γq(thard, t) ≡ Γq←q(thard, t) = CF

π

αs(t)

t

(
1

2
log

thard

t
− 3

4

)

Γg(thard, t) ≡ Γg←g(thard, t) = CA

π

αs(t)

t

(
1

2
log

thard

t
− 11

12

)

Γ f (t) ≡ Γq←g(t) = n f

6π

αs(t)

t
. (2.190)

The virtualities thard > t correspond to the incoming (mother) and outgoing
(daughter) parton. Unfortunately, this formula is somewhat understandable from
a probabilistic picture of parton splitting, but not quite. Terms arising from next-
to-leading logarithms spoil the limit tmatch → thard, where the probability of no
splitting should approach unity. Technically, we can deal with the finite terms in
the Sudakov factors by requiring them to be positive semi-definite, i.e. by replacing
Γ (thard, tmatch) < 0 by zero. For the general argument this problem with the analytic
expressions for the splitting functions is irrelevant; to avoid unnecessary approxima-
tions in the y integration more recent CKKW implementations integrate the splitting
kernels numerically.

To get a first idea how to transform inclusive into exact n-jet rates we compute the
probability to see exactly two jets in the process e+e− → qq̄.Looking at Fig. 2.3 this
means that none of the two quarks in the final state radiate a resolved gluon between
the virtualities thard (given by the qqZ vertex) and tmatch < thard. As will become
important later we specify that this no-radiation statement assumes a jet resolution
as given by end point of the external quark and gluon legs. The probability we have
to multiply the inclusive two-jet rate with is then

[
Δq(thard, tmatch)

]2
, once for each

quark. Whatever happens at virtualities below tmatch will be governed by the parton
shower and does not matter anymore. Technically, this requires us to define a vetoed
parton shower which we will describe in Sect. 2.6.3.
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Fig. 2.3 Vetoed showers on two-jet and three-jet contributions. The scale at the gauge boson vertex
is thard. The two-jet (three-jet) diagram implies exactly two (three) jets at the resolution scale tmatch,
below which we rely on the parton shower. Figure from Ref. [2]

Next, what is the probability that the initially two-jet final state evolves exactly into
three jets, again following Fig. 2.3? We know that it contains a factorΔq(thard, tmatch)

for one untouched quark.
After splitting at tq with the probability Γq(tq , thard) the second quark survives to

tmatch, giving us a factor Δq(tq , tmatch). If we assign the virtuality tg to the radiated
gluon at the splitting point we find the gluon’s survival probability Δg(tg, tmatch).

So together we find

Δq(thard, tmatch) Γq(thard, tq) Δq(tq , tmatch) Δg(tg, tmatch) · · · (2.191)

That is all there is, with the exception of the intermediate quark. If we label the quark
virtuality at which the second quark radiates a gluon by tq there has to appear another
factor describing that the quark, starting from thard, gets to tq untouched. Naively we
would guess that this probability is given by Δq(thard, tq). However, this implies no
splittings resolved at the fixed lower scale tq , but what we really mean is no splitting
between thard and tq resolved at a third scale tmatch < tq given by the quark leg hitting
the parton shower regime. We therefore better compute the probability of no splitting
between thard and tq , namelyΔq(thard, tmatch), but under the condition that splittings
from tq down to tmatch are explicitly allowed.

If zero splittings gives us a probability factorΔq(thard, tmatch), to describe exactly
one splitting from tq on we add a factor Γ (tq , t) with an unknown splitting point t.
This point t we integrate over between the resolution point tmatch and the original
splitting point tq . This is the same argument as in our physical interpretation of the
Sudakov factors solving the DGLAP equation Eq. 2.172. For an arbitrary number of
possible splittings between tq and tmatch we find the sum

Δq(thard, tmatch)

[
1+

∫ tq

tmatch

dt Γq(tq , t)+more splittings

]

= Δq(thard, tmatch) exp

[ ∫ tq

tmatch

dt Γq(tq , t)

]
= Δq(thard, tmatch)

Δq(tq , tmatch)
.

(2.192)
The factors 1/n! in the Taylor series appear because for example radiating two

jets in the same t interval can proceed ordered in two ways, both of which lead to the
same final state. Once again: the probability of nothing happening between thard and
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tq we compute from the probability of nothing happening between thard and tmatch
times any number of possible splittings between tq and tmatch.

Collecting all factors from Eqs. 2.191 and 2.192 gives us the probability to find
exactly three partons resolved at tmatch as part of the inclusive sample

Δq(thard, tmatch) Γq(thard, tq) Δq(tq , tmatch) Δg(tg, tmatch)
Δq(thard, tmatch)

Δq(tq , tmatch)

= Γq(thard, tq) [Δq(thard, tmatch)]2 Δg(tg, tmatch).

(2.193)
This result is what we expect: both quarks go through untouched, just like in the
two-parton case. In addition, we need exactly one splitting producing a gluon, and
this gluon cannot split further. This example illustrates how we can compute these
probabilities using Sudakov factors: adding a gluon corresponds to adding a splitting
probability times the survival probability for this gluon, everything else magically
drops out. At the end, we only integrate over the splitting point tq .

This discussion allows us to write down the first step of the CKKW algorithm,
combining different hard n-jet channels into one consistent set of events. One by
one we turn inclusive n-jet events into exact n-jet events. We can write down the
slightly simplified algorithm for final state radiation. As a starting point, we compute
all leading-order cross sections for n-jet production with a lower jet radiation cutoff
at tmatch. This cutoff ensures that all jets are hard and that all corresponding cross
sections σn,i are finite. The second index i describes different non-interfering parton
configurations for a given number of final state jets, like qq̄gg and qq̄qq̄ for n = 4.
The purpose of the algorithm is to assign a weight (probability, matrix element
squared,...) to a given phase space point, statistically picking the correct process and
combining them properly. It proceeds event by event:

1. For each jet final state (n, i) compute the relative probability Pn,i = σn,i/∑
k, j σk, j

2. Select a final state (n, i) with its probability Pn,i

3. Assign the momenta from the phase space generator to, assumed, hard external
particles

4. Compute the transition matrix element |M |2 including parton shower below tmatch
5. Use a jet algorithm to compute the shower history, i.e. all splitting virtualities t j

in each event
6. Check that this history corresponds to possible Feynman diagrams and does not

violate any symmetries
7. For each internal and external line compute the Sudakov non-splitting probability

down to tmatch
8. Re-weight the αs values of each splitting using the kT scale from the shower

history
9. Combine matrix element, Sudakovs, and αs into a final weight
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This final event weight we can use to compute distributions from weighted events
or to decide if to keep or discard an event when producing unweighted events. The
construction ensures that the relative weight of the different n-jet rates is identical to
the probabilities we initially computed. In step 4 the CKKW event generation first
chooses the appropriate hard scale in the event; in step 5 we compute the individual
starting scale for the parton shower applied to each of the legs. Following our example,
this might be thard for partons leaving the hard process itself or tg for a parton
appearing via later splitting.

In a second step of the CKKW scheme we match this combined hard matrix
element with the parton shower, given the matching point tmatch. From the final
experimental resolution scale tresol up to a matching scale tmatch we rely on the
parton shower to describe jet radiation while above the matching scale jet radiation
is explicitly forbidden by the Sudakov non-splitting probabilities. Individually, both
regimes consistently combine different n-jet processes. All we need to make sure is
that there is no double counting.

From the discussion of Eq. 2.192 we know that Sudakovs describing the evolution
between two scales and using a third scale as the resolution are going to be the
problem. Carefully distinguishing the scale of the actual splitting from the scale
of jet resolution is the key. The CKKW scheme starts each parton shower at the
point where the parton first appears, and it turns out that we can use this argument
to keep the resolution regimes y > ymatch and y < ymatch separate. There is a
simple way to check this, namely if the ymatch dependence drops out of the final
combined probabilities. The answer for final state radiation is yes, as proven in
the original paper, including a hypothetical next-to-leading logarithm parton shower.
The CKKW scheme is implemented in the publicly available SHERPA and MadEvent
event generators.

An alternative to the CKKW scheme which has been developed independently but
incorporates essentially the same physics is the MLM scheme, for example imple-
mented in ALPGEN or MadEvent. Its main difference to the CKKW scheme is that
it avoids computing the survival properties using Sudakov form factors. Instead, it
vetos those events which CKKW removes by applying the Sudakov non-splitting
probabilities. This way MLM avoids problems with splitting probabilities beyond
the leading logarithms, for example the finite terms appearing in Eq. 2.190, which can
otherwise lead to a mismatch between the actual shower evolution and the analytic
expressions of the Sudakov factors. In addition, the veto approach allows the MLM
scheme to combine a set of independently generated n-parton events, which can be
convenient.

In the MLM scheme we veto events which are simulated the wrong way after the
hard matrix element and the parton shower have defined a set of complete events.
This avoids double counting of events which on the one hand are generated with n
hard jets from the matrix element and on the other hand appear for example as (n−1)
hard jets with an additional jet from the parton shower. After applying a jet algorithm
(which in the case of ALPGEN is a cone algorithm and in case of MadEvent is a
kT algorithm) we compare the showered event with the un-showered hard event by
identifying each reconstructed showered jet with the partons we started from. If all
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jet–parton combinations match and there exist no additional resolved jets we know
that the showering has not altered the hard structure of the event. This corresponds
to adding the Sudakov non-splitting probabilities in the CKKW scheme. If there is a
significant change between the original hard parton event and the showered event this
event has to go. The only exception to this rule is the set of events with the highest jet
multiplicity for which additional jets can only come from the parton shower. After
defining the proper exclusive n-jet event sets we can again use the parton shower to
describe more collinear jet radiation between tmatch and tresol.

After combining the samples we still need a backwards evolution of a generated
event to know the virtuality scales which fix αs(Q2).As a side effect, if we also know
the Feynman diagrams describing an event we can check that a certain splitting with
its color structure is actually possible. For the parton shower or splitting simulation
we need to know the interval of virtualities over which for example the additional
gluon in the previous two-jet example can split. The lower end of this interval is
universally given by tmatch, but the upper end we cannot extract from the record
event by event. Therefore, to compute the αs values at each splitting point we start
the parton shower at an universal hard scale, chosen as the hard(est) scale of the
process.

Aside from such technical details all merging schemes are conceptually similar
enough that we should expect them to reproduce each others’ results, and they largely
do. But the devil is in the details, so experiment will tell which scheme as part of
which event generator produces the most usable results to understand LHC data.

To summarize, we can use the CKKW and MLM schemes to first combine n-jet
events with variable n and then consistently add the parton shower. In other words, we
can for example simulate Z+n jets production at the LHC to arbitrarily large numbers
of jets, limited only by computational resources and the physical argument that at
some point any additional jet radiation will be described by the parton shower. This
combination will describe all jets correctly over the entire collinear and hard phase
space. In Fig. 2.4 we show the number of jets expected to be produced in association
with a pair of top quarks and a pair of heavy new states at the LHC. The details of
these heavy scalar gluons are secondary for the basic features of these distributions,
the only parameter which matters is their mass, i.e. the hard scale of the process
which sets the factorization scale and defines the upper limit of collinearly enhanced
initial-state radiation. We see that heavy states come with many jets radiated at
pT � 30 GeV, where most of these jets vanish once we require transverse momenta
of at least 100 GeV. This figure tells us that an analysis which asks for a reconstruction
of two W-decay jets may well be swamped by combinatorics.

Looking at the individual columns in Fig. 2.4 there is one thing we have to keep in
mind: each of the merged matrix elements combined into this sample is computed at
leading order. The emission of real particles is included, virtual corrections are not.
In other words, the CKKW and MLM schemes give us all jet distributions, but only to
leading order in the strong coupling. When we combine the different jet multiplicities
to evaluate total rates, jet merging improves the rate prediction because it includes
contributions from all orders in αs, provided they come with a potentially large
logarithm from jet emission. From all we know, these leading logarithms dominate
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Fig. 2.4 Number of additional jets with a transverse momentum of at least 30, 50 or 100 GeV
radiated off top pair production and the production of heavy states at the LHC. An example for
such heavy states are scalar gluons with a mass of 300 or 600 GeV, pair-produced in gluon fusion.
Figures from Ref. [3]

the higher order QCD corrections for most LHC processes, but it is not obvious
how general this feature is and how we can quantify it. This is certainly true for all
cases where higher order effects appear unexpectedly large and can be traced back
to new partonic processes or phase space configurations opening up at higher jet
multiplicities. Systematically curing some of this shortcoming (but at a prize) will
be the topic of the next section.

Before moving on to an alternative scheme we will illustrate why Higgs or exotics
searches at the LHC really care about progress in QCD simulations: one way to look
for heavy particles decaying into jets, leptons and missing energy is the variable

meff = /ET +
∑

j

ET, j +
∑
�

ET,�

= /pT +
∑

j

pT, j +
∑
�

pT,� (for massless quarks, leptons) (2.194)

This variable and its relatives we will discuss in detail in Sect. 3.3.2. For gluon-
induced QCD processes the effective mass should be small while the new physics
signal’s effective mass scale will be determined by the heavy masses.

For QCD jets as well as for W and Z plus jets backgrounds we can study the
production of many jets using the CKKW scheme. Figure 2.5 shows the two critical
distributions. First, in the number of hard jets we see the so-called staircase scaling
behavior, namely constant ratios of exclusive (n + 1)-jet and n-jet rates σn+1/σn .

Such a scaling is closely related to the pattern we discuss in Eq. 2.133, in the context
of the central jet veto of Sect. 1.5.2. The particularly interesting aspect of staircase
scaling is that the constant ratio is the same for jet-inclusive and jet-exclusive cross
sections Pincl = Pexcl, as shown in Eq. 2.134.

The consistent variation of αs gives a small parametric uncertainty on these rates.
A common scaling factor μ/μ0 for all factorization, renormalization and shower
scales in the process following our argument of Sect. 2.4 is strictly speaking not

http://dx.doi.org/10.1007/978-3-642-24040-9_3
http://dx.doi.org/10.1007/978-3-642-24040-9_1
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Fig. 2.5 Exclusive number of jets and effective mass distributions for pure QCD jet events at
the LHC with a center-of-mass energy of 7 TeV and pT, j > 50 GeV. The curves including the αs
uncertainty and a scale variation (tuning parameter) are computed with SHERPA and a fully merged
sample including up to six hard jets. These distributions describe typical backgrounds for searches
for jets plus missing energy with fake missing energy, which could originate from supersymmetric
squark and gluino production. Figures from Ref. [4]

fixed by our physical interpretation in terms of resummation; such a factor as part
of the leading logarithm can be factored out as a subleading finite term, so it should
really be considered a tuning parameters for each simulation tool. Using the same
simulation we also show the effective mass and observe a drop towards large values
of meff . However, this drop is nowhere as pronounced as in parton shower predic-
tions. This analysis shows that the naive parton shower is not a good description
of QCD background processes to the production of heavy particles. Using a very
pragmatic approach and tune the parton shower to correctly describe LHC data even
in this parameter region will most likely violate basic concepts like factorization, so
we would be well advised to use merging schemes like CKKW or MLM for such
predictions.

2.6 Next-to-Leading Orders and Parton Shower

As we know for example for the R ratio from Sect. 2.1.1 the precision of a leading
order QCD calculation in terms of the strong coupling constant αs is not always
sufficient to match the experimental accuracy. In such a case we need to compute
observables to higher order in QCD. On the other hand, in Sect. 2.3.5 we have seen
that the parton shower does not respect a fixed order perturbation theory. With its
collinear logarithm it sums particular terms to all orders in αs . So how can we on
the one hand compute higher order corrections to for example the Drell–Yan cross
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section and distributions and in addition consistently combine them with the parton
shower?

Such a combination would remove one of the historic shortcomings of parton
shower Monte Carlos. Apart from the collinear approximation for jet radiation they
were always limited by the fact that in the words of one of the authors they ‘only
do shapes’. In other words, the normalization of the simulated event sample will
always be leading order in perturbative QCD and hence subject to large theo-
retical uncertainties. The reason for this shortcoming is that collinear jet radia-
tion relies on a hard process and the corresponding production cross section and
works with splitting probabilities, but never touches the total cross section it started
from.

As a solution we compute higher order cross sections to normalize the total
cross section entering the respective Monte Carlo simulation. This is what we call
a K factor: K = σ improved/σMC = σ improved/σLO. It is crucial to remember that
higher order cross sections integrate over unobserved additional jets in the final state.
So when we normalize the Monte Carlo we assume that we can first integrate over
additional jets and obtain σ improved and then just normalize the Monte Carlo which
puts back these jets in the collinear approximation. Obviously, we should try to do
better than that, and there are two ways to improve this traditional Monte Carlo
approach, the MC@NLO scheme and the POWHEG scheme.

2.6.1 Next-to-Leading Order in QCD

When we compute the next-to-leading order correction to a cross section, for example
to Drell–Yan production, we consider all contributions of the order GFαs . There are
three obvious sets of Feynman diagrams we have to square and multiply, namely
the Born contribution qq̄ → Z , the virtual gluon exchange for example between
the incoming quarks, and the real gluon emission qq̄ → Zg. An additional set of
diagrams we should not forget are the crossed channels qg → Zq and q̄g → Zq̄.
Only amplitudes with the same external particles can be squared, so we find the
matrix-element-squared contributions

|MB |2 ∝ G F

2Re M ∗
V MB ∝ G Fαs |MZg|2 ∝ G Fαs |MZq |2, |MZq̄ |2 ∝ G Fαs . (2.195)

Strictly speaking, we have to include counter terms, which following Eq. 2.54 are
a modification of |MB̂|∈. These counter terms we add to the interference of Born
and virtual gluon diagrams to remove the ultraviolet divergences. However, this is
not the issue we want to discuss.

Infrared poles arise from two sources, soft and collinear divergences. To avoid
the complication of overlapping collinear and soft divergences we will follow a toy
model by Bryan Webber. It describes simplified particle radiation off a hard process:
the energy of the system before radiation is xs and the energy of the outgoing particle
(call it photon or gluon) is x, so x < xs < 1. When we compute next-to-leading
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order corrections to a hard process, the different contributions, neglecting crossed
channels, are

dσ

dx

∣∣∣
B
= Bδ(x)

dσ

dx

∣∣∣
V
= αs

(
− B

2ε
+ V

)
δ(x)

dσ

dx

∣∣∣
R
= αs

R(x)

x
. (2.196)

The constant B describes the Born process and the factorizing poles in the virtual
contribution. The coupling constant αs ignores factors 2 and π or color factors. We
immediately see that the integral over x in the real emission rate is logarithmically
divergent in the soft limit, similar to the collinear divergences we know. From factor-
ization which we have illustrated based on the universality of the leading splitting
kernels we know that in the collinear and soft limits the real emission has to follow
the Born matrix element

lim
x→0

R(x) = B . (2.197)

An observable computed beyond leading order includes contributions from real gluon
emission and virtual gluon exchange. If the observable is infrared safe it will have a
smooth limit towards vanishing gluon energy O(x)→ O(0). The virtual corrections
alone diverge, but the expectation value including virtual and real gluon contribu-
tions after dimensional regularization is finite. Because we are interested in infrared
divergences we choose n = 4 + 2ε dimensions with ε > 0, just like in Sect. 2.3.3,
and schematically obtain the two divergent contributions

〈O〉 ∼
∫ 1

0
dx

O(x)

x1−2ε −
O(0)

2ε
. (2.198)

This kind of combination has a finite limit for ε → 0. However, for numerical
applications and event simulation we need to implement this cancellation differently.

The expectation value of any infrared safe observable over the entire phase space,
including Born terms, virtual corrections and real emission, is given by

〈O〉 ≡ 〈O〉B + 〈O〉V + 〈O〉R = μ−2ε
F

∫ 1

0
dx

O(x)

x−2ε

[
dσ

dx

∣∣∣
B
+ dσ

dx

∣∣∣
V
+ dσ

dx

∣∣∣
R

]
.

(2.199)
The same way the renormalization and factorization scales appear, dimensional regu-
larization now yields an additional factor 1/x−2ε. Because we know its structure, we
will omit this factorization scale factor in the following.

When we compute for example a distribution of the energy of one of the heavy
particles in the process, we can extract a histogram from of the integral for 〈O〉
in Eq. 2.199 and obtain a normalized distribution. The problem is that we have to
numerically integrate over x, and the individual parts of the integrand in Eq. 2.199
are not integrable.

There exist two methods to combine the virtual and real contributions to an observ-
able and produce a finite physics result. The first way historically introduced by the
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Dutch loop school for example to compute QCD corrections to top pair production
is the numerically highly efficient phase space slicing: we divide the divergent phase
space integral into a finite part and a pole, by introducing a small parameterΔ,which
acts like

〈O〉R + 〈O〉V =
∫ 1

0
dx

O(x)

x−2ε

dσ

dx

∣∣∣
R
+ 〈O〉V

=
(∫ Δ

0
+
∫ 1

Δ

)
dx αs

R(x)O(x)

x1−2ε + 〈O〉V

=αs R(0) O(0)
∫ Δ

0
dx

1

x1−2ε + αs

∫ 1

Δ

dx
R(x)O(x)

x
+ 〈O〉V

=αs B O(0)
Δ2ε

2ε
+ αs

∫ 1

Δ

dx
R(x)O(x)

x
+ 〈O〉V

=αs
B O(0)

2

2ε logΔ+ O(ε2)

ε
+ αs

∫ 1

Δ

dx
R(x)O(x)

x
+ αs V O(0)

=αs BO(0) logΔ+ αs

∫ 1

Δ

dx
R(x)O(x)

x
+ αs V O(0)+ O(ε).

(2.200)

The two sources of logΔ dependence have to cancel in the final expression, so we
can evaluate the integral at finite but small values of Δ. An amusing numerical trick
is to re-write the explicit logΔ contribution into a NLO-type phase space integral. If
the eikonal approximation is given in terms of a Mandelstam variable δ(s4) and the
cut-off has mass dimension two we can write

log
Δ

μ2 =
∫ smax

4

0
ds4 log

Δ

μ2 δ(s4) =
∫ smax

4

0
ds4

⎡
⎣ log

smax
4
μ2

smax
4 −Δ −

1

s4

⎤
⎦ (2.201)

and similarly for log2Δ. This representation we can integrate along with the real
emission phase space. The result will be a finite value for the next-to-leading order
rate in the limit Δ→ 0 and exactly ε = 0.

The fundamental shortcoming of phase space slicing is that it requires an analyt-
ical integration to produce sensible observable distributions. To avoid cancella-
tions between integrals and replace them by cancellations among integrands we
use a subtraction method to define integrable functions under the x integral in Eq.
2.199. While our toy model appears more similar to the Frixione–Kunszt–Signer
subtraction scheme than to the Catani–Seymour scheme, both of them really are
equivalent at the level of the soft-collinear toy model. Starting from the individ-
ually divergent virtual and real contributions we first subtract and then add again
a smartly chosen term, in this toy model identical to a plus-subtraction following
Eq. 2.125
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〈O〉R + 〈O〉V =
∫ 1

0
dx αs

R(x)O(x)

x1−2ε + 〈O〉V

=
∫ 1

0
dx

(
αs R(x)O(x)

x1−2ε − αs R(0)O(0)

x1−2ε

)
+
∫ 1

0
dx
αs BO(0)

x1−2ε + 〈O〉V

=αs

∫ 1

0
dx

R(x)O(x)− BO(0)

x
+ αs

B O(0)

2ε
+ 〈O〉V

=αs

∫ 1

0
dx

R(x)O(x)− BO(0)

x
+ αs V O(0) using Eq. 2.196.

(2.202)

In the subtracted real emission integral we take the limit ε→ 0 because the asymp-
totic behavior of R(x → 0) regularizes this integral without any dimensional regu-
larization required. The first integral precisely cancels the divergence from the virtual
correction. We end up with a perfectly finite x integral for the sum of all three contri-
butions, even in the limit ε = 0, i.e. there is no numerically small parameter in the
expression

〈O〉 = 〈O〉B + 〈O〉V + 〈O〉R = B O(0)+ αs V O(0)+ αs

∫ 1

0
dx

R(x) O(x)− B O(0)

x

=
∫ 1

0
dx

[
O(0)

(
B + αs V − αs

B

x

)
+ O(x) αs

R(x)

x

]
. (2.203)

This subtraction procedure is a standard method to compute next-to-leading order
corrections involving one-loop virtual contributions and the emission of one addi-
tional parton.

As a side remark, we can numerically improve this expression using a distribution
relation
∫ 1

0
dx

f (x)

x1−2ε =
∫ 1

0
dx

f (x)− θ(xc − x) f (0)

x1−2ε + f (0)
∫ xc

0
dx x−1+2ε

=
∫ 1

0
dx

f (x)− θ(xc − x) f (0)

x

(
1+ 2ε log x + O(ε2)

)+ f (0)
x2ε

c

2ε

=
∫ 1

0
dx

(
f (x)− θ(xc − x) f (0)

x

+ 2ε
f (x)− θ(xc − x) f (0)

x
log x + x2ε

c

2ε
f (x)δ(x)

)
.

(2.204)
In terms of appropriately defined distributions we can write this relation as

1

x1−2ε =
x2ε

c

2ε
δ(x)+

(
1

x

)
c
+ 2ε

(
log x

x

)
c
. (2.205)

This c-subtraction first introduced as part of the Frixione–Kunszt–Signer subtraction
scheme is defined as
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∫ 1

0
dx f (x) g(x)c =

∫ 1

0
dx ( f (x)g(x)− f (0)g(x)θ(xc − x)), (2.206)

and is a generalization of the plus subtraction defined in Eq. 2.125 which we reproduce
choosing xc = 1. Linking the delta distribution to the divergent integral over 1/x it
is also reminiscent of the principal value integration, but for an endpoint singularity
and a dimensionally regularized phase space. Effectively combining phase space
subtraction Eq. 2.202 and phase space slicing Eq. 2.200, we include a cutoff in the
integrals holding the subtraction terms

〈O〉R = αs

∫ 1

0
dx

R(x)O(x)

x1−2ε

= αs

∫ 1

0
dx

R(x)O(x)− θ(xc − x)B O(0)

x
(1+ 2ε log x)

+ αs B O(0)
x2ε

c

2ε
+ O(ε2).

(2.207)

The dependence on the finite cutoff parameter xc drops out of the final result. The
numerical behavior, however, should be improved if we subtract the infrared diver-
gence only close to the actual pole where following Eq. 2.197 we understand the
behavior of the real emission amplitude.

The formula Eq. 2.203 is, in fact, a little tricky: usually, the Born-type kinematics
would come with an explicit factor δ(x), which in this special case we can omit
because of the integration boundaries. We can re-write the same formula in a more
appropriate way to compute distributions, possibly including experimental cuts

dσ

d O
=
∫ 1

0
dx

[
I (O)LO

(
B + αs V − αs

B

x

)
+ I (O)NLO αs

R(x)

x

]
.

(2.208)
The transfer function I (O) is defined in a way that formally does precisely what we
require: at leading order we evaluate I (O) using the Born kinematics x = 0 while
for the real emission kinematics it allows for general x = 0 . . . 1.

2.6.2 MC@NLO Method

For example in Eq. 2.199 we integrate over the entire phase space of the additional
parton. For a hard additional parton or jet the cross section looks well defined and
finite, provided we fully combine real and virtual corrections. An infrared divergence
appears after integrating over small but finite x → 0 from real emission, and we
cancel it with an infrared divergence in the virtual corrections proportional to a
Born-type momentum configuration δ(x). In terms of a histogram in x we encounter
the real emission divergence at small x, and this divergence is cancelled by a negative
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delta distribution at x = 0.Obviously, this will only give a well behaved distribution
after integrating over at least a range of x values just above zero.

This soft and collinear subtraction scheme for next-to-leading order calculations
leads us to the first method of combining or matching next-to-leading order calcula-
tions with a parton shower. Instead of the contribution from the virtual corrections
contributing at δ(x) what we would rather want is a smeared virtual corrections
pole which coincides with the justified collinear approximation and cancels the real
emission over the entire low-x range. This contribution we can view as events with a
negative weight, i.e. counter-events. Negative events negative reactions with experi-
mentalists, because they cause problems in a chain of probabilistic statements like a
detector simulation. Fundamentally, there is really no problem with them as long as
any physical prediction we make after adding all leading order and next-to-leading
order contributions gives a positive cross section.

Because we know they describe collinear jet radiation correctly such a modifica-
tion will make use of Sudakov factors. We can write them as a function of the energy
fraction z and find dP = αs P(z)/zdz. Note that we avoid the complicated proper
two-dimensional description of Eq. 2.164 in favor of the simpler picture just in terms
of particle energy fractions as introduced in the last section.

Once we integrate over the entire phase space this modified subtraction scheme
has to give the same result as the next-to-leading order rate. Smearing the integrated
soft-collinear subtraction term using the splitting probabilities entering the parton
shower means that the MC@NLO subtraction scheme has to be adjusted to the parton
shower we use.

Let us consider the perturbatively critical but otherwise perfectly fine observable,
the radiated photon spectrum as a function of the (external) energy scale z. We know
what this spectrum looks like for the collinear and hard kinematic configurations

dσ

dz

∣∣∣
LO
= αs

B P(z)

z

dσ

dz

∣∣∣
NLO
= αs

R(z)

z
. (2.209)

The first term describes parton shower radiation from the Born diagram at order αs,

while the second term is the hard real emission defined in Eq. 2.196. The transfer
functions we would have to include in the general form of Eq. 2.208 to arrive at this
equation are

I (z, 1)
∣∣∣
LO
= αs

P(z)

z

I (z, xM )

∣∣∣
NLO
= δ(z − x)+ αs

P(z)

z
θ(xM (x)− z). (2.210)

The second term in the real radiation transfer function arises because at the next order
in perturbation theory the parton shower also acts on the real emission process. It
requires that enough energy to radiate a photon with an energy z be available, where
xM is the energy available at the respective stage of showering, i.e. z < xM .
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These transfer functions we can include in Eq. 2.208

dσ

dz
=
∫ 1

0
dx

[
I (z, 1)

(
B + αs V − αs

B

x

)
+ I (z, xM ) αs

R(x)

x

]

=
∫ 1

0
dx

[
αs

P(z)

z

(
B + αs V − αs

B

x

)
+ (δ(x − z)+ O(αs)) αs

R(x)

x

]

=
∫ 1

0
dx

[
αs

B P(z)

z
+ αs

R(z)

z

]
+ O(α2

s )

= αs
B P(z)+ R(z)

z
+ O(α2

s ). (2.211)

All Born terms proportional to δ(z) vanish because their contributions would be
unphysical. This already fulfills the first requirement for our scheme, without having
done anything except for including a transfer function. Now, we can integrate over z
and calculate the total cross section σtot with a cutoff zmin for consistency. However,
Eq. 2.211 includes an additional term which spoils the result: the same kind of jet
radiation is included twice, once through the matrix element and once through the
shower. This is precisely the double counting which we avoid in the CKKW scheme.
So we are still missing something.

We also knew we would fall short, because our strategy includes a smeared virtual
subtraction term which for finite x should cancel the real emission. This subtraction
is not yet included. Factorization tells us how to write such a subtraction term using
the splitting function P as defined in Eq. 2.209 to turn the real emission term into a
finite contribution

R(x)

x
−→ R(x)− B P(x)

x
. (2.212)

Because this is an ad hoc subtraction term we also have to add it to the Born-type
contribution. This leads us to a modified version of Eq. 2.208, now written for general
observables

dσ
d O =

∫ 1
0 dx

[
I (O, 1)

(
B + αs V − αs B

x + αs B P(x)
x

)
+ I (O, xM )αs

R(x)−B P(x)
x

]
.

(2.213)
Looking back at different methods of removing ultraviolet divergences this modi-
fication from the minimal soft and collinear subtraction in Eq. 2.208 to a phys-
ical subtraction term corresponding to the known radiation pattern reminds us of
different renormalization schemes. The minimal MS scheme will always guarantee
finite results, but for example the on-shell scheme with its additional finite terms
has at least to a certain degree beneficial properties when it comes to understanding
its physical meaning. This is the same for the MC@NLO method: we replace the
minimal subtraction terms by physically motivated non-minimal subtraction terms
such that the radiation pattern of the additional parton is described correctly.



2.6 Next-to-Leading Orders and Parton Shower 155

So when we use this form to compute the z spectrum to order αs it will in addition
to Eq. 2.211 include an integrated subtraction term contributing to the Born-type
kinematics

dσ

dz
−→

∫ 1

0
dx

[
αs

B P(z)

z
+ αs δ(x − z)

(
R(x)

x
− B P(x)

x

)]
+ O(α2

s )

=
∫ 1

0
dx αs

B P(z)+ R(z)− B P(z)

z
+ O(α2

s )

= αs
R(z)

z
+ O(α2

s ).

(2.214)
This is exactly the distribution we expect.

Following the above argument the subtraction scheme implemented in the Monte
Carlo generator MC@NLO describes hard emission just like a next-to-leading order
calculation. This includes the next-to-leading order normalization of the rate as
well as the next-to-leading order distributions for those particles produced in the
original hard process. For example for W+jets production such corrections to the
W and leading jet distributions matter, while for the production of heavy new
particles their distributions hardly change at next-to-leading order. The distribu-
tion of the first radiated parton is included at leading order, as we see in Eq. 2.214.
Finally, additional collinear particle emissions is simulated using Sudakov factors,
precisely like a parton shower.

Most importantly, it avoids double counting between the first hard emission and
the collinear jets, which means it describes the entire pT range of jet emission for the
first and hardest radiated jet consistently. Those additional jets, which do not feature
in the next-to-leading order calculation, are added through the parton shower, i.e. in
the collinear approximation. As usually, what looked fairly easy in our toy example
is much harder in QCD reality, but the setup is the same.

2.6.3 POWHEG Method

As described in Sect. 2.6.2 the MC@NLO matching scheme for a next-to-leading
order correction and the parton shower is based on an extended subtraction scheme.
It starts from a given parton shower and avoids double counting by modifying the
next-to-leading corrections. An interesting question is: can we also combine a next-
to-leading order calculation by keeping the next-to-leading order structure and apply
a modified parton shower? The main ingredient to this structure are Sudakov factors
introduced in Sect. 2.5.1 and used for the CKKW merging scheme in Sect. 2.5.3.

In contrast to the MC@NLO scheme the POWHEG (Positive Weight Hardest
Emission Generator) scheme does not introduce counter events or subtraction terms.
It considers the next-to-leading order calculation of a cross section a combination of
an m-particle and an (m+1)-particle process and attempts to adjust the parton shower
attached to each of these two contributions such that there is no double counting.
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Our starting point is the next-to-leading order computation of a cross section
following Eq. 2.196. We can combine it with appropriate soft and collinear
subtraction terms C in the factorized (m+1)-particle phase space where for simplicity
we assume that the integrated subtraction terms exactly cancel the divergences from
the virtual corrections:

dσ = B dφm + αs

(
− B

2ε
+ V

)
dφm + αs R dz dt ′dφm

= B dφm + αs V dφm + αs (R − CP) dφmdzdt ′ soft-collinearly subtracted

= [αs V + αs(R − C)P dz dt] dφm + B dφm

[
1+ αs R

B
(1− P) dz dt ′

]
.

(2.215)
The (m + 1)-particle phase we factorize into the m-particle phase space and the
azimuthally symmetric remainder dz dt ′, as suggested by Eq. 2.97. With these two
proper integration variables we cannot assume a toy form R/x for the real emission,
so we denote the real emission as R alone. The projector P maps the nominal (m+1)-
particle phase space of the real emission onto the m-particle phase space of the leading
order process.

The first term in Eq. 2.215 is suppressed by one power ofαs , so we can add a parton
shower to it without any worry. The second term consists of the Born contribution
and the hard emission of one parton, so we have to avoid double counting when
defining the appropriate Sudakov factors. Moreover, a serious problem appears in
Eq. 2.215 when we interpret it probabilistically: nothing forces the combination of
virtual and subtracted real emission in the first brackets to be positive. To cure this
shortcoming we can instead combine all m-particle contributions into one term

dσ = [B + αs V + αs(R − C)P dz dt ′
]

dφm

[
1+ αs R

B
(1− P) dz dt ′

]
+ O(α2

s )

≡ B dφm

[
1+ αs R

B
(1− P) dz dt ′

]
+ O(α2

s )

= B dφm

[
1+ αs R

B
θ
(

pT (t
′, z)− pmin

T

)
dz dt ′

]
+ O(α2

s ),

(2.216)
where the combination B can only become negative if the regularized next-to-leading
contribution over-compensates the Born term which would indicate a breakdown of
perturbation theory. The second term in the brackets needs to project the real emission
onto the hard (m + 1)-particle phase space. If we replace the symbolic projection
(1−P) by a step function in terms of the transverse momentum of the radiated parton
pT (t ′, z) we can ensure that it really only appears for hard radiation above pmin

T and
at the same time keep the integral over the radiation phase space finite.

From CKKW jet merging we know what we have to do to combine an m-particle
process with an (m + 1)-particle process, even in the presence of the parton shower:
the m-particle process has to be exclusive, which means we need to attach a Sudakov
factorΔ to veto additional jet radiation to the first term in the brackets of Eq. 2.216.
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In the CKKW scheme the factor in the front of the brackets would be B and not B.
The introduction of B is nothing but a re-weighting factor for the events contributing
to the m-particle configuration which we need to maintain the next-to-leading order
normalization of the combined m-particle and (m + 1)-particle rates. The second
factor αs R/B is essentially the multiplicative PYTHIA or HERWIG matrix element
correction used for an improved simulation for example of W+jet events.

The appropriate Sudakov factor for the real emission has to veto only hard jet
radiation from an additional parton shower. This way we ensure that for the (m+1)-
particle contribution the hardest jet radiation is given by the matrix element R, i.e. no
splitting occurs in the hard regime pT > pmin

T . Such a vetoed shower we can define
in analogy to the (diagonal) Sudakov survival probability Eq. 2.164 by adding a step
function which limits the unwanted splittings to pT > pmin

T

Δ(t, pmin
T ) = exp

(
−
∫ t

t0

dt ′

t ′

∫ 1

0
dz

αs

2π
P̂(z) θ

(
pT (t

′, z)− pmin
T

))
, (2.217)

omitting the resolution t0 in the argument. This modified Sudakov factor indicates
that in contrast to the MC@NLO method we now modify the structure of the parton
shower which we combine with the higher order matrix elements.

For the vetoed Sudakov factors to make sense we need to show that they obey a
DGLAP equation like Eq. 2.172, including the veto condition in the splitting kernel

f (x, t) = Δ(t, pmin
T ) f (x, t0)

+
∫ t

t0

dt ′

t ′
Δ(t, t ′, pmin

T )

∫ 1

0

dz

z

αs

2π
P̂(z) θ

(
pT (t

′, z)− pmin
T

)
f

(
x

z
, t ′
)
,

(2.218)

where we again show the diagonal case to simplify the notation. The proof of
this formula starts from Eq. 2.172 with the modification of an explicit veto. Using
1 = θ(g) + (1 − θ(g)) we find Eq. 2.218 more or less straight away. The bottom
line is that we can consistently write down vetoed Sudakov probabilities and build a
parton shower out of them.

Inserting both Sudakov factors into Eq. 2.216 gives us for the combined next-to-
leading order exclusive contributions

dσ = B dφm

[
Δ(t, 0)+Δ(t ′, pmin

T )
αs R

B
θ
(

pT (t ′, z)− pmin
T

)
dt ′dz

]
+ O(α2

s ) .

(2.219)
The first Sudakov factor is not vetoed which means it is evaluated at pmin

T = 0.
Based on the next-to-leading order normalization of the integrated form of Eq.

2.219 we can determine the form of the splitting probability entering the Sudakov
factor from the perturbative series: the term in brackets integrated over the entire
phase space has to give unity. Starting from Eq. 2.218 we first compute the derivative
of the Sudakov factor with respect to one of its integration boundaries, just like in
Eq. 2.168
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dΔ(t, pmin
T )

dt
= d

dt
exp

(
−
∫ t

t0

dt ′

t ′

∫ 1

0
dz
αs

2π
P̂(z) θ

(
pT (t

′, z)− pmin
T

))

= Δ(t, pmin
T )

(−1)

t

∫ 1

0
dz
αs

2π
P̂(z) θ

(
pT (t, z)− pmin

T

)
.

(2.220)
Using this relation we indeed find for the integral over the second term in the brackets
of Eq. 2.219

∫ t

t0
dt ′dzΔ(t ′, pmin

T )
αs R

B
θ
(

pT (t
′, z)− pmin

T

)

= −
∫ t

t0
dt ′

dΔ(t ′, pmin
T )

dt ′

∫
dz αs R

B θ
(

pT (t ′, z)− pmin
T

)
∫

dz αs
2π t ′ P̂(z) θ

(
pT (t ′, z)− pmin

T

)

= −
∫ t

t0
dt ′

dΔ(t ′, pmin
T )

dt ′

= −Δ(t, pmin
T ) ⇔ αs R

B
= αs

2π t ′
P̂(z) .

(2.221)

Looking back at Eq. 2.97 this corresponds to identifying B = σn andαs R = σn+1.

In the POWHEG scheme the Sudakov factors are based on the simulated splitting
probability αs R/B instead of the splitting kernels. This replacement is nothing new,
though. We can already read it off Eq. 2.97.

A technical detail which we have not mentioned yet is that the POWHEG scheme
assumes that our Sudakov factors can be ordered in such a way that the hardest
emission always occurs first. Following the discussion in Sect. 2.5.2 we expect any
collinear transverse momentum ordering to be disrupted by soft radiation, ordered by
the angle. The first emission of the parton shower might well appear at large angles
but with small energy, which means it will not be particularly hard.

For the POWHEG shower this soft radiation has to be removed or moved to a lower
place in the ordering of the splittings. The condition to treat soft emission separately
we know from CKKW merging, namely Eq. 2.192: the scale at which we resolve
a parton splitting does not have to identical with the lower boundary of simulated
splittings. We can construct a parton shower taking into account such splitting kernels,
defining a truncated shower. This modified shower is the big difference between the
MC@NLO scheme and the POWHEG scheme in combining next-to-leading order
corrections with a parton shower. In the MC@NLO scheme we modify the next-to-
leading order correction for a given shower, but the shower stays the same. In the
POWHEG scheme the events get re-weighted according to standard building blocks
of a next-to-leading order calculation, but the shower has to be adapted.

In Sects. 2.5.3, 2.6.2 and 2.6.3 we have introduced different ways to simulate
jet radiation at the LHC. The main features and shortcomings of the matching and
merging approaches we summarize in Table 2.3.

At this stage it is up to the competent user to pick the scheme which describes their
analysis best. First of all, if there is a well defined and sufficiently hard scale in the
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Table 2.3 Comparison of the MC@NLO and CKKW schemes combining collinear and hard jets

MC@NLO/POWHEG matching CKKW/MLM merging

Hard jets First jet correct All jets correct
Collinear jets All jets correct, tuned All jets correct, tuned
Normalization Correct to NLO Correct to LO plus real emission
Implementations MC@NLO, POWHEG, SHERPA, HERWIG SHERPA, Alpgen, MadEvent,...

process, the old-fashioned Monte Carlo with a tuned parton shower will be fine, and
it is by far the fastest method. When for some reason we are mainly interested in one
hard jet we can use MC@NLO or POWHEG and benefit from the next-to-leading
order normalization. This is the case for example when a gluon splits into two bottoms
in the initial state and we are interested in the radiated bottom jet and its kinematics.
In cases where we really need a large number of jets correctly described we will end
up with CKKW or MLM simulations. However, just like the old-fashioned parton
shower Monte Carlo we need to include the normalization of the rate by hand. Or we
are lucky and combined versions of CKKW and POWHEG, as currently developed
by both groups, will be available.

I am not getting tired of emphasizing that the conceptual progress in QCD
describing jet radiation for all transverse momenta is absolutely crucial for LHC
analyses. If I were a string theorist I would definitely call this achievement a revo-
lution or even two, like 1917 but with the trombones and cannons of Tchaikovsky’s
1812. In contrast to a lot of other progress in theoretical physics jet merging solves
a problem which would otherwise have limited our ability to understand LHC data,
no matter what kind of Higgs or new physics we are looking for.

2.7 Further Reading

Just like the Higgs part the QCD part of these lecture notes is something in between a
text book chapter and a review of QCD and mostly focused on LHC searches. Some
corners I cut, in particular when calculations do not affect the main topic, namely the
resummation of logarithms in QCD and the physical meaning of these logarithms.
There is no point in giving a list of original references, but I will list a few books and
review articles which should come in handy if you would like to know more:

• I started learning high energy theory including QCD from Otto Nachtmann’s book.
I still use his appendices for Feynman rules because I have not seen another book
with as few (if not zero) typos [5].

• Similar, but maybe a little more modern is the Standard Model primer by Cliff
Burgess and Guy Moore [6]. At the end of it you will find more literature.
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• The best source to learn QCD at colliders is the pink book by Keith Ellis, James
Stirling, and Bryan Webber. It includes everything you ever wanted to know about
QCD [1] and more. This QCD section essentially follows its Chap. 5.

• A little more phenomenology you can find in Günther Dissertori, Ian Knowles and
Michael Schmelling’s book [7]. Again, I borrowed some of the discussions in the
QCD section from there.

• If you would like to learn how to for example compute higher order cross sections
to Drell–Yan production, Rick Field works it all out [8].

• For those of you who are now hooked on QCD and jet physics at hadron colliders
there are two comprehensive reviews by Steve Ellis [9] and by Gavin Salam [10].

• Aimed more at perturbative QCD at the LHC is the QCD primer by John Campbell,
Joey Huston, and James Stirling [11].

• Coming to the usual brilliant TASI lectures, there are Dave Soper’s [12] and George
Sterman’s [13] notes. Both of them do not exactly use my kind of notations and are
comparably formal, but they are a great read if you know something about QCD
already. More on the phenomenological side there are Mike Seymour’s lecture
notes [14].

• The only review on leading order jet merging is by Michelangelo Mangano and
Tim Stelzer [15]. The original CKKW paper beautifully explains the general idea
for final state radiation, and I follow their analysis [2]. For other approaches there
is a very concise discussion included with the comparison of the different models
[16].

• To understand MC@NLO there is nothing like the original papers by Bryan Webber
and Stefano Frixione [17].

• The POWHEG method is really nicely described in the original paper by Paolo
Nason [18]. Different processes you can find discussed in detail in a later paper by
Stefano Frixione, Paolo Nason, and Carlo Oleari [19].

• Even though they are just hand written and do not include a lot of text it might be
useful to have a look at Michael Spira’s QCD lecture notes [20] to view some of
the topics from a different angle.
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Chapter 3
LHC Phenomenology

While the first two parts of these lecture notes focus on Higgs physics and on QCD,
biased towards aspects relevant to the LHC, they do not yet justify the title of the
lecture notes. In addition, both introductions really are theoretical physics. The third
section will reflect what many theorists working on LHC topics need to know. It goes
beyond what you find in theoretical physics text books and is usually referred to as
‘phenomenology’.1

This terms indicate that these topics are not really theoretical physics in the
sense that they rely on for example field theory. They are not experimental physics
either, because they go beyond understanding the direct results of the LHC detectors.
Instead, they lie in between the two fields and need to be well understood to allow
theorists and experimentalists to interact with each other.

Sometimes, phenomenology has the reputation of not being proper theoretical
physics. From these lecture notes it is clear that LHC physics is field theory, either
electroweak symmetry breaking, QCD, or—not covered in these notes—physics
models describing extensions of our Standard Model at the TeV scale. This chapter
supplements the pure theory aspects and links them to experimental issues of the
ATLAS and CMS experiments. In Sect. 3.1 we start by filling in some blanks from
Sects. 1.4.3, 1.6 and 2.5.3. We first discuss jets and how to link the asymptotic final
states of QCD amplitudes, partons, to experimentally observed QCD objects, jets.
Then, we turn to a current field of research, so-called fat jets. In Sect. 3.2 we intro-
duce a particularly efficient way of computing transition amplitudes from Feynman
rules, the helicity method. Most professional tools for the computation of LHC cross
sections or for simulating LHC events use this method instead of squaring ampli-
tudes analytically. Section 3.3 discusses how to reconstruct particles which interact
too weakly to be observed in LHC detectors. In the Standard Model those would

1 The term ‘phenomenology’ is borrowed from philosophy where it means exactly the opposite
from what it means in physics. Originally, phenomenology is a school based on Edmund Husserl.
Unlike other fields of philosophy their main interest are not observations but the actual nature of
things. Doing exactly the opposite, physicist phenomenologists are theorists who really care about
measurements.

T. Plehn, Lectures on LHC Physics, Lecture Notes in Physics 844, 163
DOI: 10.1007/978-3-642-24040-9_3, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-24040-9_1
http://dx.doi.org/10.1007/978-3-642-24040-9_1
http://dx.doi.org/10.1007/978-3-642-24040-9_2


164 3 LHC Phenomenology

be neutrinos, but as part of the LHC program we hope to find dark matter candi-
dates that way. Finally, in Sect. 3.4 we very briefly discuss LHC uncertainties from a
theory point of view. In the public arXiv version more sections will follow, hopefully
triggered by LHC measurements challenging theorists and their simulations.

3.1 Jets and Fat Jets

Throughout Chap. 2 we pretend that quarks and gluons produced at the LHC are
actually what we observe in the LHC detectors. In perturbative QCD those parti-
cles are the final states, even though they cannot exist individually because QCD
is asymptotically free. For example, in Eq. 2.63 we apply wave function renormal-
ization factors to them. On the other hand, in Sect. 2.2.2 we see that the strong
coupling explodes at low energy scales around ΛQCD which means that something
has to happen with quarks and gluons on their way through the detectors. Indeed, the
gluon and all quarks except for the top quark hadronize before they decay and form
bunches of baryons and mesons which in turn decay in many stages. These particles
carry a lot of energy, around the typical energy scales O(m H ) we are interested in
at the LHC. Relativistic kinematics then tells us that these baryons and mesons are
strongly boosted together to form jets. Those jets we measure at hadron colliders and
link to the partons produced in the hard interaction.

Consequently, in Chap. 2 we use the terms parton and jet synonymously, essen-
tially assuming that each parton at the LHC turns into a jet and that the measured
jet four-momentum can be linked to the parton four-momentum. The way we
usually define jets are so-called recombination algorithms including for example the
Cambridge–Aachen or (anti-) kT algorithms. Imagine we observe a large number
of energy depositions in the ATLAS or CMS calorimeter which we would like to
combine into jets. We know that they come from a small number of partons which
originate in the hard QCD process and which since have undergone a sizeable number
of splittings, hadronized and decayed to stable particles. Can we try to reconstruct
the original partons?

The answer is yes, in the sense that we can combine a large number of proto-jets
into smaller numbers, where unfortunately nothing tells us what the final number
of jets should be. We know from Chap. 2 that in QCD we can produce an arbitrary
number of hard jets in a hard matrix element and another arbitrary number via soft
or collinear radiation. Therefore, we need to tell the jet algorithm either how many
jets it should arrive at or what should be the resolution of the smallest proto-jets we
consider partons, whatever the measure for this resolution might be. In the coming
section we will therefore discuss what criteria exist for a proto-jet recombination to
correspond to an assumed physical jet.

3.1.1 Jet Algorithms

The basic idea of recombination algorithms is to ask if a given proto-jet has a soft or
collinear partner. This follows from the physics arguments in Chap. 2 from which we

http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
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http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
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know that partons produced in a hard process preferably turn into collinear pairs of
partons as approximately described by the parton shower. To decide if two proto-jets
have arisen from one parton leaving the hard process we have to define a collinearity
measure. This measure will on the one hand include the distance in R space as
introduced in Eq. 2.35 and on the other hand the transverse momentum of one proto-
jet with respect to another or to the beam axis. Explicit measures are, weighted by
the relative power of the two ingredients

kT yi j = ΔRi j

D
min

(
pT,i , pT, j

)
yi B = pT,i

C/A yi j = ΔRi j

D
yi B = 1

anti-kT yi j = ΔRi j

D
min

(
p−1

T,i , p−1
T, j

)
yi B = p−1

T,i . (3.1)

The parameter D is a measure of the angular size of the jet and can range anywhere
between 0.4 and 1.5. It balances the jet–jet and jet-beam criteria; small values of D
increase yi j , so yi j > yi B becomes more likely. Because of the power dependence on
the transverse momenta the three algorithms start with soft constituents (kT ), purely
geometric (Cambridge–Aachen C/A) or hard constituents (anti-kT ) to form a jet. All
of them have in common that they link physical objects, namely calorimeter towers,
to other more or less physical objects, namely partons from the hard process. As we
can see from the different choices in Eq. 3.1 we have all the freedom in the world to
weight the angular and transverse momentum distances relative to each other. While
for the kT and the C/A algorithms it is fairly clear that the intermediate steps have a
physical interpretation, this is not clear at all for the anti-kT algorithm.

We define two proto-jets as coming from one jet if yi j < ycut, where ycut is the
scale we give to the algorithm. The jet algorithm proceeds as

(1) for all combinations of two proto-jets in the event find the minimum ymin =
mini j (yi j , yi B)

(2a) if ymin = yi j < ycut merge proto-jets i and j and their momenta, go back to (1)
(2b) if ymin = yi B < ycut remove proto-jet i, call it beam radiation, go back to (1)
(2c) if ymin > ycut keep all proto-jets, done

The result of the algorithm will of course depend on the resolution ycut.Alternatively,
we can give the algorithm the minimum number of physical jets and stop there. The
technical question is what ‘combine jets’ means in terms of the four-momentum of
the new jet. The three-momentum vectors we simply add �ki + �k j → �ki . For the
zero component we can assume that the new physical jet have zero invariant mass,
which is inspired by the massless parton we are usually looking for. If instead we
add the four-momenta we can compute the invariant mass of the jet constituents, the
jet mass. As we will see in the next section this allows us to extend the concept of
jet algorithms to massive particles like a W or Z boson, the Higgs boson, or the top
quark.

From Chap. 2 and the derivation of the collinear splitting kernels it is obvious
why theorists working on perturbative QCD often prefer the kT algorithm: we know

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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that the showering probability or the collinear splitting probability is best described
in terms of virtuality or transverse momentum. A transverse momentum distance
between jets is therefore best suited to combine the correct proto-jets into the original
parton from the hard interaction, following a series of actual physical intermediate
splittings. Moreover, this transverse momentum measure is intrinsically infrared safe,
which means the radiation of an additional soft parton cannot affect the global struc-
ture of the reconstructed jets. For other algorithms we have to ensure this property
explicitly, and you can find examples in QCD lectures by Mike Seymour.

The problem of the kT algorithm arises with pile-up or underlying event, i.e.
very soft QCD activity entering the detectors undirectionally. Such noise is easiest
understood geometrically in a probabilistic picture. Basically, the low-energy jet
activity is constant all over the detector, so we subtract it from each event. How
much energy deposit we have to subtract from a reconstructed jet depends on the
area the jet covers in the detector. Therefore, it is a major step that even for the
kT algorithm we can compute an IR-safe geometric jet size. The C/A and anti-kT

algorithms are more compact and easier to interpret experimentally.

3.1.2 Fat Jets

Starting from the way the experiments at the Tevatron and the LHC search for bottom
jets, including several detailed requirements on the content of such jets, the question
arises if we can look for other heavy objects inside a jet. Such jets involving heavy
particles and (usually) a large geometrical size are referred to as fat jets. Three main
motivations lead us into the direction of fat jets: first, dependent on our physics
model heavy objects like W bosons or top quarks might be boosted enough to fit
into a regular jet of angular size R � 0.7. Secondly, a jet algorithm might include
hadronic decay products which we would not trust to include in a regular mass
reconstruction based on reconstructed detector objects. And finally, even if only a
fraction of the heavy particles we are searching for are sufficiently boosted such an
algorithm automatically resolves signal combinatorics known to limit LHC analyses.

At the LHC, we are guaranteed to encounter the experimental situation pT /m � 1
for electroweak gauge bosons, Higgs bosons, and top quarks. The more extreme case
of pT � m, for example searching for top quarks with a transverse momentum in
excess of 1 TeV is unlikely to appear in the Standard Model and will only become
interesting if we encounter very heavy resonances decaying to a pair of top quarks.
This is why we focus on the moderate scenario.

Historically, fat jet searches were first designed to look for strongly interacting W
bosons. Based on the kT algorithm they look for structures in the chain of y values
introduced in Eq. 3.1, which define the kinematics of each jet. For such an analysis of
y values it is helpful but not crucial that the intermediate steps of the jet algorithm have
a physics interpretation. More recent fat jet algorithms looking for not too highly
boosted heavy particles are based on the C/A algorithm which appears to be best
suited to extract massive splittings inside the jet clustering history. A comparison
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of different jet algorithms can be found in the original paper on associated Higgs
and gauge boson production. Using a C/A algorithm we can search for hadronically
decaying boosted W and Z bosons. The problem is that for those we only have one
hard criterion based on which we can reject QCD backgrounds: the mass of the
W/Z resonance. Adding a second W/Z boson and possibly the mass of a resonance
decaying to these two, like a heavy Higgs boson, adds to the necessary QCD rejection.
For Higgs and top decays the situation is significantly more promising.

Starting with the Higgs tagger we search for jets which include two bottom quarks
coming from a massive Higgs boson with m H � 120 GeV. First, we run the C/A
algorithm over the event, choosing a large geometric size R = 1.2 estimated to cover

Rbb̄ ∼
1√

z(1− z)

m H

pT,H
>

2m H

pT,H
, (3.2)

in terms of the transverse momentum of the boosted Higgs and the momentum
fractions z and 1− z of the two bottom jets.

We then uncluster again this fat jet, searching for a drop in jet mass indicating
the decay of the massive Higgs to two essentially massless quarks. The iterative
unclustering we start by undoing the last clustering of the jet j, giving two subjets
j1, j2 ordered such that m j1 > m j2 . If the mass drop between the original jet and
its more massive splitting product is small, i.e. m j1 > 0.8 m j , we conclude that j2
is soft enough to come from the underlying event or soft-collinear QCD emission
and discard j2 while keeping j1; otherwise we keep both j1 and j2; each surviving
subjet ji we further decompose recursively until it reaches some minimum value,
e.g. m ji < 30 GeV ensuring it does not involve heavy states. This way we obtain
a splitting pattern which should only include massive splittings and which for the
Higgs jet uniquely identifies the H → bb̄ decay. Making use of the scalar nature
of the Higgs boson we can add an additional requirement on the balance based on
min(p2

T j1
, p2

T j2
)ΔR2

j1 j2
. Of course, all actual numbers in this selection are subject

to experimental scrutiny and can only be determined after testing the algorithm on
LHC data.

Experimentally, the goal of such a Higgs search is a distribution of the invariant
mass of the bottom quarks which gives us a signal peak and side bins to esti-
mate the background. However, applying jet algorithms with very large R size
makes us increasingly vulnerable to underlying event, pile-up, or even regular initial
state radiation as described in Sect. 2.3.2. Therefore, we cannot simply use the
mass of a set of constituents of the fat jet. Instead, we apply a filtering procedure
looking at the same constituent with a higher resolution which can for example be
Rfilt = min(0.3, Rbb̄/2). This filtering significantly reduces the y − φ surface area
of the relevant constituents and thereby the destructive power of the underlying event
and pile-up. The invariant mass we include in the histogram is the mass of the three
hardest constituents, the two bottom quarks and possibly a radiated gluon.

In a busy QCD environment another problem arises: errand jets from initial state
radiation or other particles in the final state enter the fat jet algorithm and give

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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Fig. 3.1 Invariant mass distributions for Higgs searches using fat jets from H → bb̄ decays. For a
Standard Model Higgs boson the production mechanisms are pp→ W H/Z H (left) and pp→ t t̄ H
(center). In cascade decays of supersymmetric squarks and gluinos we can apply the same search
for the light Higgs boson (right). Figures from Refs. [1–3] (left to right)

us several mass drops in the fat jet history. To avoid shaping the background side
bins we can include several (filtered) subjet combinations, ordered in the modified
Jade distance pT,1 pT,2(ΔR12)

4—the original Jade distance includes is given by
pT,1 pT,2(ΔR12)

2. Examples for the invariant mass distributions for different Higgs
search channels we show in Fig. 3.1. They include Standard Model Higgs searches
in WH/ZH production, in t t̄ H production, and light supersymmetric Higgs searches
in the decays of squarks and gluinos.

From the above discussion we see that Higgs taggers rely only on one kinematic
criterion the mass of the bb̄ pair. In terms of background rejection this is not much,
so we usually add two bottom tags on the constituents which according to detector
simulations can be very efficient. The two combined add to a QCD rejection of at
least 10−4, which might even allows us to run a Higgs tagger over any kind of event
sample and see if we find any Higgs bosons for example in new physics decays.

While fat jet Higgs searches are targeted mostly at the Standard Model, looking
for other boosted heavy particles is usually motivated by new physics scenarios.
Looking for massive particles decaying to heavy quarks top taggers should be the
next step. Starting from a C/A jet of size up to R = 1.5 we again search for mass
drops, this time corresponding to the top and W masses. After appropriate filtering
we apply these two mass windows conditions; the entire fat jet has to reproduce the
top mass. Next, we require a mass drop corresponding to the W decay and effectively
constrain a second combination of two decay jets evaluating the helicity angle of
the left handed W decay. Instead of these two distinct steps we can also apply a
two-dimensional condition on the kinematics of the three top decay products which
avoids assigning the two W decay jets in cases where two combinations of decay jets
give similar invariant masses. On the simulation level both methods give equivalent
results.

Applying these three kinematic conditions for example in the HEPTopTagger
implementation gives a QCD rejection of a few per-cent. If this should not be suffi-
cient for a given analysis we can increase the rejection rate by requiring a bottom tag
which as a bonus also tells us which of the three top decay jets should reconstruct the
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W mass. When we use top taggers to look for new particles decaying to top quarks
we are not only interested in finding boosted top quarks, but we would like to know
their invariant mass. This means we would like to reconstruct their direction and
their energy. Such a reconstruction is possible in a reasonably clean sample without
too many QCD jets, i.e. provided the top quarks have large enough energy to boost
all three decay jets into a small enough cone.

While it seems like the C/A jet algorithm with its purely geometric selection
has the best potential to search for massive particles in its jet history there exists
a multitude of algorithms searching for boosted top quarks. Once the top quarks
have very large transverse momenta the two-step mass drop criterion becomes less
critical because the three decay jets are too close to be cleanly resolved. In this
situation analyses based on the kT or anti-kT algorithms can be very promising,
as could be event shapes which do not involve any jet algorithm.

3.2 Helicity Amplitudes

When we simulate LHC events we do not actually rely on the approach usually
described in text books. This is most obvious when it comes to the computation
of a transition matrix elements in modern LHC Monte Carlo tools, which you will
not even recognize when looking at the codes. In Sect. 2.1 we compute the cross
section for Z production by writing down all external spinors, external polarization
vectors, interaction vertices and propagators and squaring the amplitude analytically.
The amplitude itself inherits external indices for example from the polarization
vectors, while |M |2 is a real positive number with a fixed mass dimension depending
on the number of external particles.

For the LHC nobody calculates gamma matrix traces by hand anymore. Instead,
we use powerful tools like Form to compute traces of Dirac matrices in the calcula-
tion of |M |2 . Nevertheless, a major problem with squaring Feynman diagrams and
computing polarization sums and gamma matrix traces is that once we include more
than three particles in the final state, the number of terms appearing in |M |2 soon
becomes very large. Moreover, this approach requires symbolic computer manipu-
lation instead of pure numerics. In this section we illustrate how we can transform
the computation of |M |2 at the tree level into a purely numerical problem.

As an example, we consider our usual toy process

uū → γ ∗ → μ+μ−. (3.3)

The structure of the amplitude M with two internal Dirac indices μ and v involves
one vector current on each side (ū f γμu f ) where f = u, μ are massless fermions,
so we do not have to be careful with the different spinors u and v. The entries in the
external spinors are given by the spin of the massless fermions obeying the Dirac
equation. For each value of μ = 0 · · · 3 each current is a complex number, computed
from the four component of each spinor and the respective 4× 4 gamma matrix γ μ

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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shown in Eq. 2.106. The intermediate photon propagator has the form gμv/s, which
is a real number for each value of μ = v. Summing over μ and v in both currents
forms the matrix element. To square this matrix element we need to sum M ∗ ×M
over all possible spin directions of the external fermions.

Instead of squaring this amplitude symbolically we can follow exactly the steps
described above and compute an array of numbers for different spin and helicity
combinations numerically. Summing over the internal Dirac indices we compute the
matrix element; however, to compute the matrix element squared we need to sum
over external fermion spin directions or gauge boson polarizations. The helicity basis
we have to specify externally. This is why this method is called helicity amplitude
approach. To explain the way this method works, we illustrate it for muon pair
production based on the implementation in the MadGraph/Helas package.

MadGraph as part of the event generator MadEvent is a tool to compute matrix
elements this way. Other event generators have corresponding codes serving the
same purposes. In our case, MadGraph automatically produces a Fortran routine
which then calls functions to compute spinors, polarization vectors, currents of all
kinds, etc. These functions are available as the so-called Helas library. For our toy
process Eq. 3.3 the MadGraph output reads

The input to this function are the external four-momenta p(0 : 3, 1 : 4) and
the helicities of all fermions nhel(1 : 4) in the process. Remember that helicity and
chirality are identical only for massless fermions because chirality is defined as the

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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eigenvalue of the projectors (1 ± γ5)/2, while helicity is defined as the projection
of the spin onto the momentum direction, i.e. as the left or right handedness. The
entries of nhel will be either +1 or −1. For each point in phase space and each
helicity combination the MadGraph subroutineSUUB_MUPMUM computes the matrix
element using standard Helas routines.

• IXXXXX(p,m, nhel, nsf , F) computes the wave function of a fermion with
incoming fermion number, so either an incoming fermion or an outgoing anti-
fermion. As input it requires the four-momentum, the mass and the helicity of this
fermion. Moreover, nsf = +1 marks the incoming fermion u and nsf = −1 the
outgoing anti-fermion μ+, because by convention MadGraph defines its particles
as u and μ−.

The fermion wave function output is a complex array F(1 : 6). Its first two
entries are the left-chiral part of the fermionic spinor, i.e. F(1 : 2) = (1−γ5)/2 u
or F(1 : 2) = (1− γ5)/2 v for nsf = ±1. The entries F(3 : 4) are the right-chiral
spinor. These four numbers can directly be computed from the four-momentum if
we know the helicity. The four entries correspond to the size of one γ matrix, so
we can compute the trace of the chain of gamma matrices. Because for massless
particles helicity and chirality are identical our quarks and leptons will only have
finite entries F(1 : 2) for nhel = −1 and F(3 : 4) for nhel = +1.

The last two entries of F contain the four-momentum in the direction of the
fermion flow, namely F(5) = nsf(p(0)+ i p(3)) and F(6) = nsf(p(1)+ i p(2)).

• OXXXXX(p,m, nhel, nsf , F) does the same for a fermion with outgoing fermion
flow, i.e. our incoming ū and our outgoing μ−. The left-chiral and right-chiral
components now read F(1 : 2) = ū(1− γ5)/2 and F(3 : 4) = ū(1+ γ5)/2, and
similarly for the spinor v̄. The last two entries are F(5) = nsf(p(0)+ i p(3)) and
F(6) = nsf(p(1)+ i p(2)).

• JIOXXX(Fi , Fo, g,m, Γ, Jio) computes the (off-shell) current for the vector boson
attached to the two external fermions Fi and Fo.The coupling g(1 : 2) is a complex
array with the interaction of the left-chiral and right-chiral fermion in the upper
and lower index. For a general Breit–Wigner propagator we need to know the mass
m and the width Γ of the intermediate vector boson. The output array Jio again
has six components which for the photon with momentum q are

Jio(μ+ 1) = − i

q2 FT
o γ μ

(
g(1)

1− γ5

2
+ g(2)

1+ γ5

2

)
Fi

Jio(5) = −Fi (5)+ Fo(5) ∼ −pi (0)+ po(0)+ i (−pi (3)− po(3))

Jio(6) = −Fi (6)+ Fo(6) ∼ −pi (1)+ po(1)+ i (−pi (2)+ po(2)).
(3.4)

The first four entries in Jio correspond to the index μ or the dimensionality of the
Dirac matrices in this vector current. The spinor index is contracted between FT

o
and Fi .

As two more arguments Jio includes the four-momentum flowing through the
gauge boson propagator. They allow us to reconstruct qμ from the last two entries
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qμ = (ReJio(5),ReJio(6), ImJio(6), ImJio(5)). (3.5)

• IOVXXX(Fi , Fo, J, g, V ) computes the amplitude of a fermion–fermion–vector
coupling using the two external fermionic spinors Fi and Fo and an incoming
vector current J which in our case comes from JIOXXX. Again, the coupling
g(1 : 2) is a complex array, so we numerically compute

FT
o J

(
g(1)

1− γ5

2
+ g(2)

1+ γ5

2

)
Fi . (3.6)

All spinor and Dirac indices of the three input arguments are contracted in the final
result. Momentum conservation is not enforced by IOVXXX, so we have to take
care of it by hand.

Given the list above it is easy to follow how MadGraph computes the amplitude
for uū → γ ∗ → μ+μ−. First, it calls wave functions for all external particles and
puts them into the array W (1 : 6, 1 : 4).The vectors W (∗, 1) and W (∗, 3) correspond
to Fi (u) and Fi (μ

+), while W (∗, 2) and W (∗, 4) mean Fo(ū) and Fo(μ
−).

The first vertex we evaluate is the incoming quark-photon vertex. Given the wave
functions Fi = W (∗, 1) and Fo = W (∗, 2) JIOXXX computes the vector current
for the massless photon in the s channel. Not much changes if we instead choose a
massive Z boson, except for the arguments m and Γ in the JIOXXX call. Its output
is the photon current Jio ≡ W (∗, 5).

The last step combines this current with the two outgoing muons coupling
to the photon. Since this number gives the final amplitude, it should return a
complex number, not an array. MadGraph calls IOVXXX with Fi = W (∗, 3) and
Fo = W (∗, 4), combined with the photon current J = W (∗, 5). The result AMP
is copied into JAMP without an additional sign which could have come from the
relative ordering of external fermions in different Feynman diagrams contributing to
the same process.

The only remaining sum left to compute before we square JAMP is the color
structure, which in our simple case means one color structure with a color factor
Nc = 3.

As an added bonus MadGraph produces a file with all Feynman diagrams in which
the numbering of the external particles corresponds to the second argument of W and
the numbering of the Feynman diagrams corresponds to the argument of AMP. This
helps us identify intermediate results W, each of which is only computed once, even
if is appears several times in the different Feynman diagrams.

As mentioned above, to calculate the transition amplitude MadGraph requires
all masses and couplings. They are transferred through common blocks in the file
coupl.inc and computed elsewhere. In general, MadGraph uses unitary gauge for all
vector bosons, because in the helicity amplitude approach it is easy to accommodate
complicated tensors, in exchange for a large number of Feynman diagrams.

The function UUB_MUPMUM described above is not yet the full story. When we
square M symbolically we need to sum over the spins of the outgoing states to
transform a spinor product of the kind uū into the residue or numerator of a fermion
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propagator. To obtain the full transition amplitude numerically we correspondingly
sum over all helicity combinations of the external fermions, in our case 24 = 16
combinations.
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The important part of this subroutine is the list of possible helicity combinations
stored in the array nhel(1 : 4, 1 : 16). Adding all different helicity combinations
means a loop over the second argument and a call of UUB_MUPMUM with the respec-
tive helicity combination. Because of the naive helicity combinations many are not
allowed the array GOODHEL keeps track of valid combinations. After an initializa-
tion to all ‘false’ this array is only switched to ‘true’ if UUB_MUPMUM returns a finite
value, otherwise MadGraph does not waste time to compute the matrix element. At
the very end, a complete spin-color averaging factor is included as IDEN and in our
case given by 2× 2× N 2

c = 36.
Altogether, MadGraph provides us with the subroutine SUUB_MUPMUM and the

function UUB_MUPMUM which together compute |M |2 for each phase space point,
i.e. for each external momentum configuration. This helicity method might not seem
particularly appealing for a simple (2 → 2) process, but it makes it possible to
compute processes with four and more particles in the final state and typically up
to 10,000 Feynman diagrams which we could never square symbolically, no matter
how many graduate students’ live times we throw in.

3.3 Missing Transverse Energy

Some of the most interesting signatures at the LHC involve dark matter particles.
From cosmological constraints we know that dark matter definitely interacts gravita-
tionally and that it cannot carry electromagnetic or color charges. Weak interactions
are allowed because of their limited reach. It turns out that a weakly interacting
particle with a mass around the electroweak scale typically gives the observed relic
density in the universe. This is called the WIMP miracle. It is the reason why in
modern TeV-scale model building every model (and its dog) predict a stable WIMP.
From supersymmetry we know that this is not hard to achieve: all we need is a Z2
symmetry, i.e. a multiplicative quantum number for (a sector of) newly introduced
particles. In supersymmetry this is called R parity, in Little–Higgs models T parity,
and in extra dimensional models Kaluza–Klein parity.

At the LHC we typically produce strongly interacting new particles, provided they
exist. If a conserved dark matter quantum number exists we will always produce them
in pairs. Each of them decays to the weakly interacting sector which includes a stable
dark matter agent. On the way, the originally produced particles have to radiate quarks
or gluons to get shed their color charge. If in some kind of cascade decays they also
radiate leptons or photons those can be very useful to trigger on and to reduce QCD
backgrounds, but this depends on the details of the weakly interacting new physics
sector. The decay steps ideally are two body decays from on-shell particle to on-shell
particle, but they do not have to be. What we therefore look for is jets in association
with pairs of only weakly interacting, hence invisible particles in the ATLAS and
CMS detectors.
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Fig. 3.2 Left Missing energy distribution from the early running phase of the DZero experiment
at the Tevatron. Figure from Beate Heinemann. Right Corrected missing energy distribution in
QCD events at ATLAS using only data from April/May 2010 at 7 TeV collider energy. Figure from
Ref. [4]

From Eq. 2.28 and the discussion of parton densities we remember that at hadron
colliders we do not know the kinematics of the initial state. In beam direction we only
know its boost statistically, whereas in the transverse plane by definition the incoming
partons have zero momentum. The way to look for invisible particles therefore is a
mis-balance of three-momentum in the transverse plane. The actual observable is the
missing transverse momentum i.e. the vector sum of the transverse momenta of all
invisible particles. We can convert it into a missing transverse energy which in the
absence of any information on particle masses is defined as the absolute value of the
two-dimensional missing momentum vector. LHC events including dark matter are
characterized by a high jet multiplicity and large missing transverse energy.

At the end of Sect. 2.5.3 we focus on the proper simulation of W + jets and Z + jets
samples, which are the Standard Model backgrounds to such signals. It will turn
out that jet merging is needed to reliably predict the missing transverse momentum
distributions in Standard Model processes. After all our studies in Chap. 2 we are at
least theoretically on safe ground. However, this is not the whole story of missing
transverse momentum.

3.3.1 Measuring Missing Energy

The left panel of Fig. 3.2 is a historic missing transverse energy distribution from
DZero. It nicely illustrates that by just measuring missing transverse energy, Tevatron
would have discovered supersymmetry based on two beautiful peaks around 150 GeV
and around 350 GeV. However, this preliminary experimental result has nothing to
do with physics, it is purely a detector effect.

The problem of missing energy we can illustrate using a simple number: to identify
and measure a lepton we need around 500 out of 200,000 calorimeter cells in an

http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_2
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experiment like ATLAS, while for missing transverse energy we need all of them.
To cut on a variable like missing transverse momentum we need to understand our
detectors really well, and for this level of understanding we need time.

There are several sources of missing energy which we have to understand before
we get to search for new physics:

• First, we have to subtract bad runs. They happen if for a few hours parts of the
detector does not work properly. We can identify them by looking at the detector
response and its correlation. One example is a so-called ring of fire where we see
coherent effects in detector modules of circular shape around the beam axis.

• Next, there will be coherent noise in the calorimeter. With 200,000 cells we know
that some of them will individually fail or produce noise. Some sources of noise,
like leaking voltage or other electronic noise can be correlated geometrically and
lead to beautiful missing momentum signals. The way to get rid of such noise
event by event is to again look for usual detector response. Combined with bad
runs such events can constitute O(0.1%) of all events and get removed from the
data sample.

• In addition, there might be particles crossing our detector, but not coming from
the interaction point. They can be cosmic rays and lead to unbalanced energy
deposition as well. Such events will have reconstructed particle tracks which are
not compabible with the measured primary vertex.

• Another source of fake missing energy is failing calorimeter cells, like continuously
hot cells or dead cells. ATLAS for example has developed such a hole by 2010.
Events where missing energy points into such a region can often be removed once
we understand the detector.

• While not really a detector fake the main source of missing energy at hadron
colliders are mis-measured QCD jets. If parts of jets point into regions with poor
calorimetry, like support structures, the jet energy will be wrongly measured, and
the corresponding QCD event will show missing transverse energy. One way to
tackle this problem is to require a geometric separation of the missing momentum
vector and hard jets in the event. ATLAS detector studies indicate that up to
O(0.1−1%) of all hard QCD events at the LHC lead to more than 100 GeV of
well separated fake missing transverse energy. Figure 1.5 in Sect. 1.4.3 shows that
this is not at all a negligible number of events.

Once we understand all sources of fake missing momentum we can focus on
real missing momentum. This missing transverse momentum we compute from the
momenta of all tracks seen in the detector. This means that any uncertainty on these
measurements, like the jet or lepton energy scale will smear the missing momentum.
Moreover, we know that there is for example dead matter in the detector, so we have
to compensate for this. This compensation is a global correction to individual events,
which means it will generally smear the missing energy distribution. The right panel
of Fig. 3.2 shows a very early missing transverse energy distribution of ATLAS after
some of the corrections described above.

To simulate a realistic missing transverse momentum distribution at the LHC we
have to smear all jet and lepton momenta, and in addition apply a Gaussian smearing

http://dx.doi.org/10.1007/978-3-642-24040-9_1
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of the order

Δ 	ET

GeV
∼ 1

2

√∑
ET

GeV
� 20. (3.7)

While this sounds like a trivial piece of information I cannot count the number of
papers where people forget this smearing and discover great channels to look for
Higgs bosons or new physics. They fall apart when experimentalists take a careful
look. The simple rule is: phenomenological studies are right or wrong based on if
they can be reproduced by real experimentalists and real detectors or not.

3.3.2 Missing Energy in the Standard Model

In the Standard Model there exists a particle which only interacts weakly: the
neutrino. At colliders we produce them in reasonably large numbers in W decays.
This means that in W+ jets production we can learn how to reconstruct the mass of
a leptonically decaying W, i.e. one observed and one missing particle. We construct
a transverse mass in analogy to an invariant mass, but neglecting the longitudinal
momenta of the decay products

m2
T =

(
ET,miss + ET,�

)2 − ( �pT,miss + �pT,�
)2

= m2
� + m2

miss + 2
(
ET,�ET,miss − �pT,� · �pT,miss

)
, (3.8)

in terms of a transverse energy E2
T = �p2

T +m2. Since the transverse mass is always
smaller than the actual W mass and reaches this limit for realistic phase space regions
we can extract mW from the upper edge in the mT,W distribution. Obviously, we can
define the transverse mass in many different reference frames. However, its value
is invariant under—or better independent of—longitudinal boosts. Moreover, given
that we construct it as the transverse projection of an invariant mass it is also invariant
under transverse boosts. By construction we cannot analyze the transverse mass event
by event, so this W mass measurement only uses the fraction of events which populate
the upper end of the transverse mass distribution.

Alternatively, from single top production and the production of mixed leptoni-
cally and hadronically decaying top pairs we know another method to conditionally
reconstruct masses and momenta involving one invisible particle: from a leptonically
decaying top quark we only miss the longitudinal momentum of the neutrino. On the
other hand, we know at least for the signal events that the neutrino and the lepton
come from an on-shell W boson, so we can use this on-shell condition to reconstruct
the longitudinal neutrino momentum under the assumption that the neutrino have
zero mass. Recently, we have seen that sufficiently boosted top quarks with leptonic
decays can be fully reconstructed even without using the measured missing energy
vector. Instead, we rely on the W and t on-shell conditions and on an assumption
about the neutrino momentum in relation to the bottom-lepton decay plane.
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From Higgs searches we know how to extend the transverse mass to two leptonic
W decays, i.e. two neutrinos in the final state. The definition of this transverse mass

m2
T,W W =

(
ET,miss + ET,��

)2 − ( �pT,miss + �pT,��
)2

= m2
�� + m2

miss + 2
(
ET,��ET,miss − �pT,�� · �pT,miss

)
(3.9)

is not unique because it is not clear how to define mmiss, which also enters
the definition of ET,miss. From Monte Carlo studies it seems that identifying
mmiss ≡ m��, which is correct at threshold, is most strongly peaked. On the other
hand, setting mmiss = 0 to define a proper bounded-from-above transverse mass
variable seems to improve the Higgs mass extraction.

For an unspecified number of visible and invisible particles in the final state
there also exist global observables we can rely on. The visible mass is based on the
assumption that we are looking for the decay of two heavy new states where the
parton densities will ensure that these two particles are non-relativistic. We can then
approximate the partonic energy

√
ŝ ∼ m1 + m2 by some kind of visible energy.

If the heavy states are produced with little energy, boost invariance is not required
for this construction. Without taking into account missing energy and adding leptons
� and jets j the visible mass looks like

m2
visible =

⎡
⎣∑
�, j

E

⎤
⎦

2

−
⎡
⎣∑
�, j

�p
⎤
⎦

2

. (3.10)

Similarly, the Tevatron experiments have for a long time used an effective transverse
mass scale which is usually evaluated for jets only, but can trivially be extended to
leptons:

HT =
∑
�, j

ET =
∑
�, j

pT , (3.11)

where the last step assumes that all final state particles are massless. In an alternative
definition of HT we sum over a number of jets plus the missing energy and skip the
hardest jet in this sum.

When combining such a measure with missing transverse momentum the question
arises: Do we want to pair up the missing transverse momentum with the visible
transverse momenta or with the complete visible momenta? For example, we can
use the scalar sum of all transverse momenta in the event, now including the missing
transverse momentum

meff =
∑

�, j,miss

ET =
∑

�, j,miss

pT. (3.12)

This effective mass is known to trace the mass of the heavy new particles decaying for
example to jets and missing energy. This interpretation relies on the non-relativistic
nature of the production process and our confidence that all jets included are really
decay jets.
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Fig. 3.3 Feynman diagram
for the long decay chain
shown in Eq. 3.13
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3.3.3 Missing Energy and New Physics

The methods described in the last section are well studied for different Standard
Model processes and can be applied in new physics searches for various lengths
of decay chains. However, there is need for one significant modification, namely
to account for a finite unknown mass of the carrier of the missing energy. This
is a problem of relativistic kinematics and at leading order does not require any
knowledge of QCD or new physics models.

The chain of three successive three-body decays shown in Fig. 3.3 is the typical
left handed squark cascade decay in supersymmetry. The same topology we can
interpret in extra-dimensional models (universal extra dimensions or UED) as the
decay of a Kaluza–Klein quark excitation

q̃L → χ̃0
2 q → �̃±�∓q → χ̃0

1 �
+�−q Q(1)L → Z (1)q → �(1)

±
�∓q → γ (1)�+�−q.

(3.13)

In both cases the last particle in the chain, the lightest neutralino or the Kaluza–Klein
photon excitation pass the detectors unobserved. The branching ratio for such decays
might not be particularly large; for example in the supersymmetric parameter point
SPS1a with a mass spectrum we will discuss later in Fig. 3.7 the long squark decay
ranges around 4%. On the other hand, strongly interacting new particles should be
generously produced at the LHC, so we usually assume that there will be enough
events to study. The question is how we can then extract the four masses of the new
particles appearing in this decay from the three observed external momenta.

The proposals to solve this problem can be broadly classified into four classes.
While all of them should in principle work and would then differ mostly by statistics,
only for the first strategy we know how QCD and detector smearing affect them.

1. Endpoint methods extract masses from lower (threshold) and upper (edge) kine-
matic endpoints of invariant mass distributions of visible decay products. This
method is best suited for long decay chains, where the number of independent
endpoint measurements in one leg at least matches the number of unknown masses
in the cascade. An implicit assumption of these endpoint techniques is that the form
of the matrix element populates the phase space close to the endpoint well. Other-
wise, the endpoint will be soft and difficult to identify on top of the continuum
background.
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The squark decay Eq. 3.13 has a particular kinematic feature: the invariant mass
distributions of the two leptons m��. Looked at from the rest frame of the interme-
diate slepton it is a current–current interaction, similar to the Drell–Yan process
computed in Eq. 2.11. Because in the s channel there now appears a scalar
particle there cannot be any angular correlations between the two currents, which
means the m�� distribution will have a triangular shape. Its upper limit, called the
dilepton edge, we can compute: in the rest frame of the scalar lepton the three-
momenta of the incoming and outgoing pair of particles have the absolute values
| �p| = |m2

χ̃0
1,2
−m2

�̃
|/(2m

�̃
). The lepton mass we set to zero. The invariant mass of

the two lepton reaches its maximum if the two leptons are back-to-back, i.e. the
scattering angle is cos θ = −1

m2
�� = (p�+ + p�−)

2

= 2 (E�+E�− − | �p�+|| �p�−| cos θ)

< 2 (E�+E�− + | �p�+|| �p�−|)

= 4
m2
χ̃0

2
− m2

�̃

2m
�̃

m2
�̃
− m2

χ̃0
1

2m
�̃

using E2
�± = �p2

�± . (3.14)

This kinematic statement is independent of the shape of the m�� distribution. For
the particle assignments shown in Eq. 3.13 the kinematic endpoint are given by

0 < m2
��<

(m2
χ̃0

2
− m2

�̃
)(m2

�̃
− m2

χ̃0
1
)

m2
�̃

0 < m2
�� <

(m2
Z (1)
− m2

�(1)
)(m2

�(1)
− m2

γ (1)
)

m2
�(1)

.

(3.15)
A problem in realistic applications of endpoint methods is combinatorics.
We need to either clearly separate the decays of two heavy new states, or we
need to combine a short decay chain on one side with a long chain on the other
side. In supersymmetry this is naturally the case for associated squark and gluino
production. A right handed squark often decays directly to the lightest neutralino
which is the dark matter candidate in the model. The gluino has to radiate two
quark jets to reach the weakly interacting sector of the model and can then further
decay in many different ways. In other models this feature is less generic. The
impressive potential of endpoint methods in the case of supersymmetry we will
illustrate later in this section.
When looking at long cascade decays for example with two leptons we usually
cannot tell which of the two leptons is radiated first. Therefore, endpoint tech-
niques will always be plagued with combinatorial background from the mapping
of the particle momenta on the decay topology. The same applies to QCD jet
radiation vs decay jets. In this situation it is useful to consider the correlation
of different invariant masses and their endpoints. The endpoint method can be
extended to use invariant mass distributions from both sides of the event (hidden
threshold techniques), and correlations between the distributions from each leg
(wedgebox techniques).

http://dx.doi.org/10.1007/978-3-642-24040-9_2
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Fig. 3.4 Example for the mass relation method using three successive two-body decays on both sides
of the events (left). After detector smearing we can reconstruct the masses for the supersymmetric
parameter point SPS1a with the squark decay chain shown in Eq. 3.13 (right). Figure from Ref. [5]

2. Mass relation methods generalize the single-top example in Sect. 3.3.2 and
completely reconstruct the kinematics event by event. For each event this construc-
tion provides a set of kinematic constraints. While for one event the number of
parameters can be larger than the number of measurements, adding signal events
increases the number of measurements while keeping the number of unknowns
constant. Eventually, the system of equations will solve, provided all events are
really signal events. Implicitly, we always assume that all decaying particles are
on-shell, but we do not expect off-shell effects to have a huge effect on the results
at the LHC.
In Fig. 3.4 we show the general topology of a three-step cascade decay on each
side of the event, like we expect it for a pair of left handed squarks following Eq.
3.13. To extract the masses of the new particles we need to solve the system of
equations

(p1 + p2 + p3 + p4)
2 = m2

Z

(p2 + p3 + p4)
2 = m2

Y

(p3 + p4)
2 = m2

X

p2
4 = m2

N (3.16)

for each side of the event. For each event there are eight unknown masses and
six unknown missing momentum components of which we measure two combi-
nations as the missing transverse momentum. All of these 12 unknowns we can
determine if we add a sufficiently large number of events.
One way to solve this starts with eight test masses m = (m2

Z ,m2
Y ,m2

X ,m2
N , ...),

uses the three first equations in Eq. 3.16 for each event plus the two missing trans-
verse momentum components to determine both missing four-momenta, and tests
the consistency of this solution using the last line of Eq. 3.16 for each of the two
legs. In this consistency test we combine the information from several events.
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The first three lines in Eq. 3.16 we can conveniently solve for the missing
momentum

−2(p1 p4) ≡ s1 = m2
Y − m2

Z + 2(p1 p2)+ 2(p1 p3)

−2(p2 p4) ≡ s2 = m2
X − m2

Y + 2(p2 p3)

−2(p3 p4) ≡ s3 = m2
N − m2

X , (3.17)

for simplicity assuming massless Standard Model decay products. Similarly, we
define the measured combinations s5,6,7 from the opposite chain. In addition, we
measure the two-dimensional missing transverse momentum, so we can collect
the two missing four-momenta into pmiss = ( �p4, E4, �p8, E8) and define two
additional e ntries of the vector s in terms of measured quantities and masses like

(x̂ p4)+ (x̂ p8) = s4

(ŷ p4)+ (ŷ p8) = s8. (3.18)

Combining the first equal signs of Eqs. 3.17 and 3.18 for both halves of the events
reads A · pmiss = s, where the matrix A includes only components of measured
momenta and is almost block diagonal, so it can be inverted. Following the second
equal sign in Eq. 3.17 we can then write s = B ·m + c, where the matrix B only
contains non-zero entries ±1 and the vector c consists of measured quantities.
Together, this gives us

pmiss = A−1s = A−1 Bm + A−1c. (3.19)

The result for all masses in the decay chain using 25 events per set and including
all combinatorics we show in Fig. 3.4. The mass relation method has also been
successfully applied to single legs as well as in combination with kinematic
endpoints.

3. MT2 methods are based on a global variable mT 2. It generalizes the transverse
mass known from W decays to the case of two massive invisible particles, one
from each leg of the event. The observed missing energy in the event we can
divide into two scalar fractions pT,miss = q1 + q2. Given the two fractions q j

we can construct a transverse mass for each side of the event, assuming we know
the invisible particle’s mass mT, j (q j ; m̂miss); the second argument is an external
assumption, i.e. m̂miss is an assumed value for mmiss.

Inspired by the usual transverse mass we are interested in a mass variable with a
well-defined upper edge, so we need to construct some kind of minimum of mT, j

as a function of the splitting of pT,miss. Naively, this minimum will simply be the
zero transverse momentum limit of mT on one leg, which is not very interesting.
On the other hand, in this case the transverse mass from the other leg reaches a
maximum, so we can instead define

mT 2(m̂miss) = min
pT,miss=q1+q2

[
max

j
mT, j (q j ; m̂miss)

]
(3.20)
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Fig. 3.5 Simulations for
different mTX, for the decay
χ̃+1 → χ̃0

1π or
χ̃+1 → χ̃0

1 e+v. The blue mT 2
line applies to the two-body
decay. Figure from Ref. [6]
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as a function of the unknown missing particle mass. There are a two properties
we know by construction

mlight + m̂miss < mT 2(m̂miss)

mlight + mmiss < mT 2(mmiss) < mheavy.
(3.21)

The first line means that each of the mT, j lie between the sum of the two decay
products’ masses and the mass of the decaying particle, so for massless Stan-
dard Model decay products there will be a global mT 2 threshold at the missing
particle’s mass.
Moreover, for the correct value of mmiss the mT 2 distribution has a sharp edge at
the mass of the parent particle. In favorable cases mT 2 may allow the measure-
ment of both the parent particle and the LSP based on a single-step decay chain.
These two aspects for the correct value m̂miss = mmiss we can see in Fig. 3.5: the
lower threshold is indeed given by mT 2 − mχ̃0

1
= mπ, while the upper edge of

mT 2 − mχ̃0
1

coincides with the dashed line for mχ̃+1
− mχ̃0

1
.

An interesting aspect of mT 2 is that it is boost invariant if and only if
m̂miss = mmiss.For a wrong assignment of mmiss it has nothing to do with the
actual kinematics and hence with any kind of invariant, and house numbers are not
boost invariant. This aspect we can exploit by scanning over mmiss and looking for
so-called kinks, i.e. points where different events kinematics all return the same
value for mT 2.

Similar to the more global meff variable we can generalize mT 2 to the case where
we do not have a clear assignment of the two decay chains involved. This modifi-
cation MT Gen again has an upper edge, which unfortunately is not as sharp as the
one in mT 2. Similarly, the procedure can be generalized to any one-step decay,
for example a three-body decay with either one or two missing particles on each
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Fig. 3.6 Invariant mass of
two leptons after selection
cuts for the SPS1a parameter
point: SUSY signal Opposite
Sign Same Flavor (OS-SF):
full line; SUSY signal
Opposite Sign Opposite
Flavor (OS-OF): dotted line;
Standard Model background:
grey. Figure from Giacomo
Polesello (ATLAS)
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side of the event. Such MT X distributions are useful as long as they have a sharp
enough edge, as illustrated in Fig. 3.5.

4. Extreme kinematics can also give us a handle on mass reconstruction from an
incomplete set of observables. One such phase space region are points close
kinematic endpoints where particles are produced at rest. Other examples are the
approximate collinear Higgs mass reconstruction in a decay to boosted tau pairs
described in Sect. 1.5.3 or the boosted leptonic top decays mentioned before.

The way mass measurements can lead to proper model reconstruction we sketch
for one scenario. The classic example for the endpoint method is the long super-
symmetric left handed squark decay chain shown in Eq. 3.13 and in Fig. 3.3. When
we use such kinematic endpoints or other methods to extract mass parameters it is
crucial to start from a signal-rich sample to avoid combinatorics and washed out
endpoints vanishing in a fluctuating or even sculptured background. For jets, leptons
and missing energy a major background will be top pairs. The key observation is that
in long cascade decays the leptons are flavor-locked, which means the combination
e+e−+μ+μ−− e−μ+− e+μ− becomes roughly twice μ+μ− for the signal, while
it cancels for top pairs. Using such a combination for the endpoint analysis means
the top background is subtracted purely from data, as illustrated in Fig. 3.6.

The long squark decay in SPS1a-like parameter points with squark masses in
the 500 to 600 GeV range has an important advantage: for a large mass hierarchy
we should be able to isolate the one decay jet just based on its energy. In complete
analogy to the dilepton edge shown in Eq. 3.15, but with somewhat reduced elegance
we can measure the threshold and edge of the �+�−q distribution and the edges of
the two �±q combinations. Then, we solve the system for the intermediate masses
without any model assumption, which allows us to even measure the dark matter

http://dx.doi.org/10.1007/978-3-642-24040-9_1
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Fig. 3.7 Masses extracted from the gluino-sbottom decay chain, including estimated errors. The
faint blue lines indicate wrong solutions when inverting the endpoint-mass relations. The super-
symmetric mass spectrum is given by the SPS1a parameter point. Figure from Ref. [7]

mass to O(10%). The limiting factors will likely be our chances to observe enough
endpoints in addition to mmax

�� and the jet energy scale uncertainty. An interesting
question is how well we will do with tau leptons, where the edge is softened by
neutrinos from tau decays.

Provided the gluino or heavy gluon is heavier than the squarks or heavy quarks
we can measure its mass by extending the squark chain by one step: g̃ → qq̃. This
measurement is hard if one of the two jets from the gluino decay is not very hard,
because its information will be buried by the combinatorial error due to QCD jet
radiation. The way around is to ask for two bottom jets from the strongly interacting
decay: g̃ → bb̃∗ or G(1) → bB̄(1). The summary of all measurements in Fig. 3.7
shows that for example the gluino mass we can extract at the per-cent level, a point at
which we might have to start thinking about off-shell propagators and at some point
even define what exactly we mean by ‘masses as appearing in cascade decays’.

A generic feature or all methods relying on decay kinematics is that it is easier to
constrain the differences of squared masses than the absolute mass scale. This is also
visible in Fig. 3.7. It is due to the form of the endpoint formulas which involve the
difference of mass squares m2

1 − m2
2 = (m1 + m2)(m1 − m2). This combination is

much more sensitive to (m1−m2) than it is to (m1+m2). Experimentally, correlated
jet and lepton energy scale uncertainties do not make life easier either. Nevertheless,
the common lore that kinematics only constrain mass differences is obviously not
true for two body decays.

Alternatively, we can use the same gluino decay to first reconstruct the interme-
diate neutralino or Kaluza–Klein Z momentum for lepton pairs residing near the m��

edge. In that case the invisible heavy state is produced approximately at rest, and the
momenta are correlated as

�pχ̃0
2
=

(
1−

mχ̃0
1

m��

)
�p�� �pZ (1) =

(
1− mγ (1)

m��

)
�p�� (3.22)
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If both neutralino masses (or the Kaluza–Klein photon and Z masses) are known
we can extract the sbottom (Kaluza–Klein bottom) and gluino (Kaluza–Klein gluon)
masses by adding the measured bottom momenta to this neutralino (Kaluza–Klein
photon) momentum. Again, for the mass spectrum shown in Fig. 3.7 we can measure
the gluino mass to few per-cent, depending on the systematic errors.

For a complete analysis, kinematic endpoints can be supplemented by any other
method to measure new physics masses. For short decay chains mT 2 is best suited
to measure the masses of particles decaying directly to the dark matter agent. In
supersymmetry, this happens for right handed sleptons or right-handed squarks. The
issue with short decay chains is that they often require on some kind of jet veto,
which following Sects. 2.5.3 and 1.5.2 is problematic for low-pT jets.

Keeping in mind that endpoint analyses only use a small fraction of the events,
namely those with extreme kinematics, an obvious way to improve their precision is to
include the complete shape of the invariant mass distributions. However, this strategy
bears a serious danger. Invariant masses are just an invariant way of writing angular
correlations between outgoing particles. Those depend on the spin and quantum
numbers of all particles involved. For example, in the case of the m�� endpoint the
triangular shape implies the absence of angular correlations, because the intermediate
particle is a scalar. This means that we should be careful when extracting information
for example from kinematic endpoints we do not observe. Depending on the quantum
numbers and mixing angles in the new physics scenario, kinematic endpoints can for
example be softened, so they vanish in the background noise.

This argument we can turn around. Measuring discrete quantum numbers, like the
spin of new particles, is hard in the absence of fully reconstructed events. The usual
threshold behavior is not observable at hadron colliders, in particular when the final
state includes missing transverse energy. Instead, we rely on angular correlation in
decays. For the squark decay chain given in Eq. 3.13 there exists a promising method
to simultaneously determine the spin of all new particles in the chain:

1. Instead of trying to measure spins in a general parameterization we start from the
observation that cascade decays radiate particles with known spins. This is most
obvious for long gluino decays where we know that the radiated bottom quarks as
well as muons are fermions. The spins inside the decay chain can only alternate
between fermions and bosons. Supersymmetry switches this fermion/boson nature
compared to the corresponding Standard Model particle, so we can contrast it with
another hypothesis where the spins in the decay chain follow the Standard Model
assignments. Such a model are Universal Extra Dimensions, where each Standard
Model particle acquires a Kaluza–Klein partner from the propagation in the bulk
of the additional dimensions.

2. Thresholds and edges of all invariant masses of the radiated fermions are
completely determined by the masses inside the decays chain. Kinematic endpoints
cannot distinguish between supersymmetry and universal extra dimensions. In
contrast, the shape of the distribution between the endpoints is nothing but an
angular correlation in some reference frame. For example, the m j� distribution
in principle allows us to analyze spin correlations in squark decays in a Lorentz

http://dx.doi.org/10.1007/978-3-642-24040-9_2
http://dx.doi.org/10.1007/978-3-642-24040-9_1
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Fig. 3.8 Asymmetry in
m j�/mmax

j� for
supersymmetry (dashed) and
universal extra dimensions
(solid). The spectrum is
assumed to be hierarchical,
typical for supersymmetric
theories. Figure taken from
Ref. [8]

invariant manner. The only problem is the link between �± and their ordering in
decay chain.

3. A proton–proton collider like the LHC produces considerably more squarks than
antisquarks in the squark-gluino associated channel. For the SPS1a spectrum at
14 TeV collider energy their ratio ranges around 2:1. A decaying squark radiates
a quark while an antisquark radiates an antiquark, which means that we can
define a non-zero production-side asymmetry between m j�+ and m j�− . Such an
asymmetry we show in Fig. 3.8, for the SUSY and for the UED hypotheses.
Provided the masses in the decay chain are not too degenerate we can indeed
distinguish the two hypotheses.

This basic idea has since been applied to many similar situations, like decays
including gauge bosons, three-body decays, gluino decays with decay-side asymme-
tries, cascades including charginos, weak-boson-fusion signatures, etc. They show
that the LHC can do much more than just discover some kind of particle beyond the
Standard Model. It actually allows us to study underlying models and symmetries.

3.4 Uncertainties

As we argue in the very beginning of the lecture, LHC physics always means
extracting signals from often large backgrounds. This means, a correct error esti-
mate is crucial. For LHC calculations we are usually confronted with three types of
errors.

The first and easiest one are the statistical errors. For small numbers of events
these experimental errors are described by Poisson statistics, and for large numbers
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they converge to the Gaussian limit. In that limit the number of standard deviations
in terms of the number of signal and background events is nσ = Nsig/

√
Nback. The

two event numbers are proportional to the integrated luminosity L which means that
the statistical significance in the Gaussian limit increases with

√
L . In high energy

physics five standard deviations above a known background we call a discovery,
three sigma is often referred to as an evidence. The Poisson region is the only
complication we encounter for statistical errors. It means that for small number
of signal and background events we need more luminosity than the Gaussian limit
suggests.

The second set of errors are systematic errors, like the calibration of the jet and
lepton energy scales, the measurements of the luminosity, or the efficiencies to for
instance identify a muon as a muon. Some readers might remember a bunch of
theorists mistaking a forward pion for an electron—that happened right around my
TASI in 1997 and people not only discovered supersymmetry but also identified its
breaking mechanism. Of course, our experimentalist CDF lecturer told us that the
whole thing was a problem of identifying a particle in the detector with an efficiency
which does not have to be zero or one.

Naively, we would not assume that systematic errors follow a Gaussian distribu-
tion, but experimentally we determine efficiencies and scaling factors largely from
well understood background processes. Such counting experiments in background
channels like Z → leptons and their extracted parameters also follow a Gaussian
distribution. The only caveat is the shape of far-away tails, which often turn out to
be higher than the exponentially suppressed Gaussian tails.

Systematic errors which do not follow a Gaussian distribution we quantify in terms
of nσ = Nsig/Nback which means they do not improve with increasing luminosity.
Again, five standard deviations are required to claim a discovery, and once we are
systematics dominated waiting for more data does not help.

The third source of errors are theoretical errors. They are hardest to model because
they are often dominated by higher-order QCD effects in fixed order perturbation
theory. From Chap. 2 we know that higher order corrections for example to LHC
production rates do not follow a naive power counting in αs but are enhanced by
large logarithms. If we can compute or reliably estimate some higher order terms
in the perturbative QCD series we call this a prediction. In other words, once we
consider a statement about perturbative QCD a statement about its uncertainty we
are probably only giving a wild guess.

To model theoretical uncertainties it is crucial to realize that higher order effects
are not any more likely to give a K factor of 1.0 than 0.9 or 1.1. In other words,
likelihood distributions accounting for theoretical errors do not have a peak and are
definitely not Gaussian. There is a good reason to choose the Gaussian short cut,
which is that folding three Gaussian shapes for statistical, systematic and theoretical
errors gives us a Gaussian distribution altogether, which makes things numerically
much easier. But this approach assumes that we know much more about QCD than
we actually do which means it is not conservative at all.

On the other hand, we also know that theoretical errors cannot be arbitrarily large.
Unless there is a very good reason, a K factor for a total LHC cross section should

http://dx.doi.org/10.1007/978-3-642-24040-9_2


3.4 Uncertainties 189

not be larger than something like two or three. If that happens we need to conclude
that perturbative QCD breaks down, and the proper description of error bars is our
smallest problem. In other words, the centrally flat theory probability distribution
for an LHC observable has to go to zero for very large deviations from the currently
best value.

In the Bayesian picture we define individual likelihood distributions for the
different errors and integrate over the corresponding uncertainties. This is where
the convolution of several Gaussians comes from. The same thing we can do for a
Gaussian experimental error and a flat theory errors. The integral returns a two-sided
error distribution which still has a peak.

An intuitively better solution which gives a centrally flat likelihood distributions
for the combined errors is the Rfit scheme, used for example by CKMfitter or SFitter.
It is a frequentist of profile likelihood construction marginalizing the unknown errors.
Such a marginalization of an unwanted direction in the parameter space of our likeli-
hood is a mathematical problem: to keep the mathematical properties of a likelihood
as a probability measure we prefer to integrate over unwanted directions. This is what
the Bayesian pictures does. The downside is that any integration needs a measure,
and a measure in model space or error space is not defined by physics. We therefore
assume such a prior and have to test our final result by varying this prior in what we
consider a reasonable range.

A profile likelihood instead projects the best fitting point of the unwanted
direction onto the new parameter space; for each binned parameter point in the
(n − 1)-dimensional space we explore the nth direction which is to be removed
L (x1,...,n−1, xn). Along this direction we pick the best value and it with the lower-
dimensional parameter point L (x1,...,n−1) ≡ L max(n)(x1,...,n−1, xn). Such a projec-
tion avoids defining a measure but it does not maintain for example the normalization
of the likelihood distribution.

The Rfit scheme projects away a flat theory error as well as a Gaussian exper-
imental error. For the center of the distribution this means we need to cut open
the experimental Gaussian distribution and insert a flat theory piece. For the log-
likelihood χ2 = −2 log L given a set of measurements �d and in the presence of a
general correlation matrix C this gives us

χ2 = �χT
d C−1 �χd

χd,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 |di − d̄i | < σ
(theo)
i

di−d̄i+σ (theo)
i

σ
(exp)
i

di − d̄i < −σ (theo)
i

di−d̄i−σ (theo)
i

σ
(exp)
i

di − d̄i > σ
(theo)
i .

(3.23)

This distribution implies that for very large deviations there will always be tails from
the experimental errors, so we can neglect the impact of the theoretical errors on
this range. In the center the distribution is flat, reflecting our ignorance of the theory
prediction. The impact of the size of the flat box we need to test.
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3.5 Further Reading

Again, there exist several good review articles with more in-depth discussions of
different aspects touched in this section:

• As mentioned in Chap. 2 two very useful reviews of jet physics are available by
Steve Ellis and collaborators [9] and by Gavin Salam [10].

• For the general phenomenology of the heaviest Standard Model particles, the top
quark, have a look at Sally Dawson’s TASI lectures [11].

• If you use MadGraph/HELAS to compute helicity amplitudes there is the original
documentation which describes every routine [12].

• A lot of experimental knowledge on new physics searches well described and
theoretically sound you can find in the CMS technical design report. Some key
analyses are described in detail while most of the documentation focuses on the
physics expectations [13].

• More on the magical variable mT 2 you can find in an article by Alan Barr, Chris
Lester and Phil Stephens [6]. Chris Lester’s thesis [14] is a good point to start with.
Recently, Alan Barr and Chris Lester published a broad review on techniques to
measure masses in models with dark matter particles [15].

• As mentioned in the introduction, there is our more advanced review on new
physics at the LHC which includes an extensive chapter on LHC signatures [16].

• A lot of insight into new physics searches at the LHC and at a linear collider you
can find in a huge review article collected by Georg Weiglein [17].

• The pivotal work on determining spins in cascade decays is Jennifer Smillie’s
Ph.D. thesis [8]. On the same topic there exists a nicely written review by Liantao
Wang and Itay Yavin [18].

• Many useful pieces of information on mass extraction, errors, and the statistical
treatment of new-physics parameter spaces you can find in the big SFitter publica-
tion [19]. The SFitter analysis of the Higgs sector [20] is very similar in structure,
but different in the physics application.
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Callan–Symanzik equation, 94
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Cauchy distribution, 74
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Collinear divergence, 98
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Covariant derivative, 4
Cross section
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total 2 ?, 3, 66
total 2 ?, 3, 68

Cuskosky cutting rule, 38

D
Dark matter, 44
WIMP miracle, 176
Derivative interaction, 3
Detector smearing, 181
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parton shower, 130
solutions, 119

Dimensional regularization, 84, 111
Dimensional transmutation, 93
Dipole radiation, 137
Dirac delta distribution, 73
Dirac matrices, 105

E
Effective W approximation, 49
Eikonal approximation, 135
Electric charge, 7
Electroweak precision measurements

q parameter, 18
Higgs mass, 18–19

Equivalence theorem, 25
Error

RFit scheme, 191
statistical error, 189
systematic error, 190
theoretical error, 129, 190

Event generators
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MadEvent, 172
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negative weights, 145
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E (cont.)
PYTHIA, 138, 140, 157
SHERPA, 138, 144, 147

F
Factorization, 102, 110, 126
FORM, 36

G
Gauge transformation

linear transformation, 20
non-linear transformation, 20

Gaussian distribution
Goldstone boson, 3, 12, 25

Feynman rules, 26
non-linear representation, 12

Goldstone’s theorem, 3

H
Helicity amplitudes, HELAS, 171, 173, 175
Higgs boson

branching ratios, 33
collinear decay, 53
LHC cross sections, 34

Higgs coupling, 29
dimension-6 CP basis, 57
form factor, 36
loop induced, 33
self coupling, 24, 57

Higgs field, 14
quantum fluctuations, 14

Higgs mass
experimental upper bound
stability bound, 31
triviality bound, 31

Higgs potential, 14, 24
dimension-6 operators

Histogram, 80
Hypercharge, 7

I
Infrared safety, 149

J
Jet

Cambridge–Aachen algorithm, 165
fat jet, 166
Higgs tagger, 168

jet mass, 170
top tagger, 170

K
K factor, 149
Kinematic endpoint, 182
Klein–Gordon equation, 69

L
Landau pole, 31
Likelihood, 190
Luminosity, 42, 189, 190

M
Mandelstam variable, 66
Mass

fermion mass, Dirac mass, 5–6, 8
gauge boson mass, 8
MT2 construction, 179
transverse mass, 179
visible mass, 180

Mass factorization, 99
Massive photon, 2
Mellin transform, 119
Mini-jet veto, 50
Monte Carlo

importance sampling, 82
Markov process, 131
Monte Carlo generator, 156
Monte Carlo integration, 82

N
Next-to-leading order corrections, 92, 150, 152

O
Optical theorem, 27

P
Particle width, 69

Breit–Wigner propagator, 73
narrow width approximation, 73

Parton densities, 74
Parton shower

backwards evolution, 133
truncated shower, 160
vetoed shower, 143, 158

Pauli matrices, 4
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Perturbative unitarity, 28, 31
Phase space

phase space generator, 79
phase space mapping, 83
phase space slicing, 151
phase space subtraction, 153
Sudakov decomposition, 100

Plus subtraction, 114, 152
Propagator

Breit–Wigner propagator, 73
cutting, 38
Feynman ie, 69
gauge boson, 12
gluon, 87
Goldstone boson, 12
residue, 71
spinor, 105

Pseudo-rapidity, 77

Q
QCD field strength, 35
QCD perturbative series, 89
QCD sum rules, 74

R
R ratio, 73, 96
Rapidity, 76
Renormalizable operators, 21
Renormalization

MS scheme, 87
mass, 72
squark mass, 87
strong coupling, 88
Thomson limit, 87
top quark mass, 84
wave function, 72

Renormalization group equation
Higgs self coupling, 30
strong coupling, 91

Resummation
collinear logarithms, 122
scaling logarithms, 93

Running coupling, 91, 128

S
Scalar-photon mixing, 2
Scale artifact, 127
Scales

factorization scale, 99, 118–119, 125
renormalization scale, 29, 84, 120

Soft gluon emission, 135
Splitting

no-splitting probability, 131
phase space, 99
space-like branching, 110
time-like branching, 100

Splitting kernel, 102, 104–105, 108, 110,
121, 159

subtracted Pg/g, 114, 115
unsubtracted P̂g/g, 133

Spontaneous symmetry breaking, 13
Staircase scaling, 52, 147
Sudakov factor, 130, 141, 154
Supersymmetry, 16, 44, 54, 84, 170,

176, 182

T
Tagging jet, 47–48, 50, 56–57
Transfer function, 154
Transverse momentum ordering, 122
Transverse momentum size, 123
Transverse tensor, 36, 56
Trigger, 44, 176
Two Higgs doublets model, 15

U
Unitary gauge, 10, 13, 17, 174

V
Virtuality, 111

W
Weak interaction, 4, 18, 176

charged current, 11
neutral current, 11
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