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NON-LINEAR FAR-FIELD THEORIES IN RELAXING GAS FLOWS
by
P.A. Blythe

(Lehigh - University )

Summary

In the introduction the small amplitude non-linear
far-field theory for one-dimensional isentropic wave propagation
is briefly reviewed. The extension to non-equilibrium
situations is then discussed for both high frequency and
low frequency disturbances and the limitations of these
classical theories are examined. It is shown that a suitable
small-energy approach can be used both to remove these
limitations and to provide a simplified description over

the whole frequency range.
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1. Introduction: isentropic far-field theory

The purpose of this lecture is to present a unified
non-linear far-field theory* for relaxing or reacting gas
flows. Attention will be restricted to small amplitude
one-dimensional progressing waves and, for simplicity,
only rate processes which involve a single internal mode
or reaction will be considered.

The corresponding far-field signalling problem in
an inviscid gas which is in thermodynamic equilibrium has
been well understood for some time. (Whitham 1950, Lighthill
1955). It is useful first to briefly review this problem
before discussing the non-equilibrium situations which are
of interest here.

In general the mass-conservation, momentum and energy

equations take the form (adiabatic flow)

atp+pux =0 (1.1)
a.usp™lp = 0 (1.2)
t X
3,e+pd, (p™1) = 0 (1.3)
t t

where p is the density, p is the pressure, u is the particle
speed, e is the internal energy and 9, is the convective

operator
(1.4)

)l
|

9
5t Y

®
i.e., the theory must be capable of providing a

valid result for 'large' time.
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Here t is the time and x is a spatial co-ordinate measured
from some fixed reference point.
In thermodynamic equilibrium e=e(p,p) and (1.3)

can be re-written

2 -
3tp-a atp =0 (1.5)
where
2, m) c (pp~2e )t
a (aps (pe ep)ep (1.6)

and the entropy s is defined, in equilibrium, by

H. (1.7)

where 6 is the translational temperature.
It is sometimes convenient to replace the system

6ds = de+pd(p”

(1.1) to (1.3) by (1.5) and the characteristic forms

3+pipaaty =0 (1.8)
where the operators
), = 72+ (ura)ge (1.9)
are associated with the characteristic directions
- (1.10)

It is assumed that the disturbance is set up by the

motion of a piston whose path is described by
X = xpf(wt), t>0 (1.11)

(with the origin chosen such that £(0)=0) and for t<0
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u=0, p=p, p=0p,. (1.12)
If, in addition,
£1(0) =0, (1.13)

though £"(0) is finite, the disturbance is usually termed an
acceleration wave. Unless explicitly stated otherwise these
conditions on f will be assumed to hold in the subsequent
analysis.

Appropriate non-dimensional variables are

ep
P' =p/p,, p' =0/p,, €' =

ofeeoff

t' = wt and x' =

_o

5; .
The relations (1.1) to (1.10) are invariant under this
transformation and it is convenient to omit the primes and

to regard (1.1) through (1.10) as dimensionless. Corresponding

boundary conditions , again omitting primes, are
u=0, p=op=1, t<0, (1.15)
and

u = 6f'(t) on x = xpf(t), t>0. (1.16)

The dimensionless amplitude parameter ¢, which is a measure
of the ratio of the piston speed to the ambient sound speed,

is given by
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§ = wxp/po/p0 (1.17)

and the particular aim of the present discussion is to
obtain solutions which are valid in the limit §6-+0.

Substitution of the regular expansion

u(x,t;s8) = Gul(x,t)+..
(1.18)
p(x,t;8) = 1+dp, (x,t)+..

etc, into (1.1) to (1.3) shows that the first order perturbation

quantities satisfy the linear wave equation
2 =
— "3 —5* 0. (1.19)

and, in particular, that the piston cendition on u, is (see 1.16)

1

u (0,8) = £1(8) . (1.20)

Hence the appropriate solution, £=t-x/a°>0, is

u = £, (1.21)

In addition 5

p, = asp; = au. (1.22)
However, evaluation of the second order approximation shows
that the solution contains secular terms of the form tg(£).
It is apparent that the expansion (1.18) is not uniformly
valid as t+» and that difficulties arise, for §£=0(1), when

6t=0(1).
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These secular terms are, in fact, due to the displacement

of the exact characteristics from their position as predicted
by linearized theory (Whitham, 1950). This is easily seen
for acceleration waves since the exact solution of the full
equations, over a certain time interval, is a simple wave.

In the present case it is more useful, with a view to later
application, to construct the solution in the small amplitude

limit by means of the far field expansions,
u(x,t;8) = 68U, (g,n)+.., l
P(X,t;6) = 1+6P (§,n)+.., J‘ (1.23)

p(x,ti8) = 1+6R_(E,m)+..,

where
n = §t . (1.24)

Substitution in (1.8) and (1.5) shows that, as in linearized

theory,
P, = a%R, = a U (1.25)

but Ul now satisfies

au ol

1 b 1 _
W a U g =0, (1.26)
where
_ 1.9
b = [E{s-a pa} S]O (1.27)

and the suffix o denotes evaluation at the initial conditions.
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The appropriate solutionof (1.26), subject to the

matching condition
U (E,0) = £'(8), (1.28)
is
U, = £(¢) (1.29)
where the characteristic lines ¢=constant are given by
- b .
=0 -0 £'(o)n (1.30)
0
(choosing ¢=£ on n=0). Obviously (1.29) and (1.30) are the
small amplitude limit of the exact simple wave solution.
If this solution is unique in x-t space then it does

represent a uniformly valid result for all n. However, in

general the solution will not be single valued where

or
n = ao/bf"(¢). (1.31)

Since, for a gas, b>0 equation (1.31) is satisfied for
some n>0 if f'">0. It is then necessary to insert a
discontinuity or shock in order to make the solution unique.
The jump conditions across the shock are defined by the
Rankine-Hugoniot relations for the conservation of mass,
momentum and energy.

It is convenient to note here the form that these

relations take for weak shocks. Correct to first order



- 10 -
P.A. Blythe
in 8 it follows that

[p) = a2(pf = a[u] (1.32)

and the shock path bisects the characteristics that meet
on the shock. This latter condition, in the current

notation, becomes

_ b + -
Us = ao+§6[Ul+Ul] (1.33)

where the superscripts -,+ correspond to conditions ahead
of and behind the shock respectively.

These relations can be used to evaluate the shock
path and they become particularly simple when the shock
propagates into an undisturbed region for which U1=0.

In that case it follows from (1.33) that if £=€S(¢s,n)
on the shock,then ES satisfies the differential equation
dg
S 1b
& " za L) (1.34)
0
from which, together with (1.30), the solution is easily

found. This solution is defined parametrically by

3 2
n = g2 £(0)/£12(0)
(1.35)
£ = ¢-2£(¢)/f"'(¢)

The relations (1.29), (1.30) and (1.35) summarize the main
results in the small amplitude non-linear far-field limit

for equilibrium isentropic flows.



- 11 -
P.A. Blythe

2. Relaxation processes

In general the excitation of any of the internal
degrees of freedom, e.g. vibration, molecular dissociation
etc., will take a certain finite time (number of collisions)
in which the mode adjusts to some new equilibrium state,
although the excitation (relaxation) times for the various
modes may differ considerably from each other. In fact,
it is known that the time scales for the adjustment of the
translational and rotational degrees of freedom are usually
much less than those for the other internal modes (Herzfeld
Litovitz, 1959) and it will be implicitly assumed
in the subsequent analysis that the translational and
rotational degrees of freedom remain in a local equilibrium
state.

It is further assumed that in any situation of
interest only one rate dependent process will be of significance.

Hence
e =e(p,p,0) (2.1)

where o is some relaxation variable. For convenience ¢ can
be identified as a measure of the internal energy in the
lagging mode. For vibrational excitation in a pure diatomic
gas e(p,p,0) depends linearly on ¢, but in more complex
situations this is not necessarily true.

It is supposed that the rate of adjustment of ¢ is

described by an equation of the form
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9.0 = AF(p,p,0) (2.2)

where the rate function F depends only on the local values of
p,p and o and perhaps some initial parameters. The dimensionless
rate parameter A is the ratio of the time scale defined by

the piston to some characteristic relaxation time T, i.e.
- -1
A= (w1) (2.3)

[Equation (2.2) is to be regarded as dimensionless with o and
F both normalized by pop;l.]

In an equilibrium state, which is identified by the
singular limit A+, F=0. The corresponding equilibrium path

is denoted by
o =0(p,p) . (2.4)

In this limit the problem reduces to the isentropic case
discussed earlier.

A second isentropic limit is defined by A=0. For this
case the internal energy o remains frozen at its initial
value, Obviously this limit is also included in the analysis
of §1 .

There is,however, an important distinction that must
be drawn between the two limits. In the former equilibrium
case the appropriate sound speed is defined by

-1

- (%%Js,c=g= (po'e-ep)ep (2.5)

where e=e(p,p,5), whereas in the latter frozen case
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2 _ (gg\ o2 -1

a~ = = (pp “-e_ e (2.6)
30/ ¢ g P’ p

with e = e(p,p,0). It can be shown that in general

a%>a°, 2.7

For the general non-equilibrium situation the relation

3 p-a 3 p "CAI (2.8)
t t

where a is the frozen sound speed,

€=- GEQ e,p (2.9

and (2.2) has been used to replace Btc. Moreover, the

characteristic relations (1.8) become
9,ptpad u = -cAF (2.10)

and the characteristic operators are defined by (1.9)
with a interpreted as the frozen sound speed. The influence
of the rate process on the energy equation and the characteristic
relations introduces a source term, -cAF, which depends on
the local values of p,p and o.
The linearized signalling problem associated with
this system of equations has been considered several times

in the literature (Chu, 1957). The regular expansion

u(x,t;8) = dul(x,t)+..

p(x,t;8) 1+6pl(x,t)+.. (2.11)

o(x,t;8) Eo+601(x,t)+..
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yields
3 azul 5 82ul agul - 32ul
-8, —5 ) (— -3, —) =0 (2.12)
ot 09X ot X

where

A = A(-F_c&h) (2.13)

o 0

is a modified rate parameter. (1.20) again defines the
boundary condition on x=0 [Note that it is assumed in (2.11)
that the initial conditions correspond to an equilibrium
state.]

@.12) obviously reduces to the standard linearized
result in both the frozen '(high frequency) limit A~+0 and
the equilibrium (low frequency) limit A+~, For arbitrary
values of A (2.12) suggests that for tA<<l the effective
propagation speed is a, but for tA>>1 it is Eo' This
latter statement can be made more precise. The formal
solution of (2.12), subject to (1.20) and (1.15), can be
obtained by Laplace transforms. An asymptotic evaluation,

t,x+» but sufficiently far behind the front, shows that (Clarke,

o«

1965 L
) U f%z J £1(Vexp{-Dt™H(E-y)?)dy (2.14)

0
where

D = A(e®-1)73, (2.15)
o =a/a (2.16)

and
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£ = t-x/Eo (2.17)

is the linearized-characteristic associated with the low
frequency (equilibrium) signal. The main disturbance is
now apparently centered on these latter wavelets.

It is easily verified that according to (2.12) any
plane wave is distorted both by dispersion,so that the
wave speed depends on the frequency, and by
absorption in which the amplitudes of the high frequency
components are much more rapidly attenuated than those of
the low frequency ones.

However, as in the isentropic case, it can be shown
that the regular expansion (2.11) is not necessarily
uniformly valid in the far field, and secular terms may
again appear in higher order solutionms.

The remainder of the lecture will be devoted to
a discussion of the modifications that are required in

order to obtain a valid far-field result.

3. The high frequency limit

A simple extension of the classical isentropic far-
field approach can be used in the high-frequency (near-
frozen) limit A+0(see Varley and Rogers, 1967). For
ease of discussion it will be assumed that A and ¢ are of

a similar magnitude. The corresponding expansion is

u(x,t;6) = GUl(E,n)+..

P(X,136) = 1+6P (E,n)+.. (3.1)

o(x,t;d) 50+5222(€,n)+--
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etc. Note that 0-30 is a second order quantity (more
strictly its magnitude is 0(Ad)). This expansion procedure
would appear to be appropriate for large times at distances
behind the front which are comparable with the length

scale defined by the piston signal but which are much

less than the relaxation length. Substitution in (2.10),
(2.8) and (2.2) shows that

oU oU

1. b 1
‘an_‘a—o-ulgf—*kul=0 (3.2)
where
k= (- Py =0, (3.3)
o

and b corresponds to (1.27) with the derivative evaluated
both at constant S and o.
The first order perturbation quantities are again

related, as in frozen linearized theory, by
P. =aR =al (3.4)

Equations (3.4) and (3.2) ahould be compared with (1.25)
and (1.26) respectively. The attenuation factor kUl
plays a dominant role in the asymptotic behavior of
(3.2) as n+w,

The inner near-field solution for A=0(68), with

x,t = 0(1), is given by the usual frozen linearized result
uy = £1(8) (3.5)

which defines the inner matching condition for UR
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Subject to (3.5) and the condition at the front, the solution

of (3.2) is defined by
Uy = £'(9)e™" (3.6)
with
£=¢ - -%E £1(9) [1-¢7K1]. (3.7)

Again this solution is not single valued in physical

space at points where

or

N - g log (- g (3.8)

However, in contrast to the isentropic solution shocks

will not form even for compressive piston motions if

m%—> 1 (3.9)

(Varley and Rogers 1967, Rarity 1967) .

If a shock does form its path can be determined, in
principle, by the approach outlined in §1. Conditions
(1.32) and (1.33) again hold for a weak shock, with a
interpreted as the frozen sound speed, together with the

additional statement
[0] =0 (3.10)

In writing down (3.10) it is implicitly assumed that the

shock thickness, across which the translational mode
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adjusts to a new equilibrium state, is neglibibly thin in
comparison with the relaxation length a,T.
For a shock propagating into an undisturbed region

it can be shown that its path is described by

1 Zaok s
n=-oglog - —- £(¢)/£'7(4))
(3.11)
€ = ¢-2£(9)/f' (9)

Although (3.11) reduces to (1.35) as k>0, it follows from
(3.6) and (3.11) that for any finite k the amplitude of
the shock is exponentially weak as n+», even for pistons
whose speed is asymptotically constant.

Moreover, it is apparent,both from physical reasoning
and by directly computing higher order terms in (3.1), that
this high frequency expansion will break down as £+,
or,more precisely, at distances behind the front which are
comparable with the relaxation length. It is easily shown
that for £=0(6'l), n=0(1) the dominant behavior is described
by the linear equation (2.12) (Blythe, 1969) though this
result does not necessarily in itself give a uniformly
valid description of the limiting asymptotic behavior. Before
discussing further this particular difficulty for high
frequency disturbances, it is relevant to return to the

asymptotic description for A=0(1).
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4. The low frequency far-field limit, A=0(1).

The dominant asymptotic signal according to linear
(near-field) theory is defined by (2.14). If u=0(4(6))
in this region it appears that the only non-trivial

stretching of the independent variables is
T = a%(8)t, X =A% (4.1)

together with

=]
Il

= BV, (D).

1+A(6)nl(Y,T)+.. (4.2)

e =]
[}

€= 0-0 Az(s)EQ(i,T)+..

This last relation, which follows directly from the rate
equation , implies that the departure from an equilibrium
state is small. In this sense the expansion (4.1) and (4.2)
defines a low frequency far-field limit. The magnitude of
A(8) is defined implicitly by (2.14) (see below).

Before substituting these expansions into (2.5),
(2.10) and (2.2) it is better to replace o by € as a basic
dependent variable.

It can be shown that Vl satisfies

2
3Vl 5 BVl . ) Vl
R (4.3)
3 X ax

where 1. 2 Ll
u o= ff(a -1)= A_b (4.4)
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(4.3) is Burger's equation., It has been suggested many
times that this provides a satisfactory asymptotic description
of the flow field (Lighthill 1956, Jones 1964, Lick 1967).
This equation can be transformed into the diffusion equation
and it is easily verified that its solution will match with
the outer behavior of (2.12) given in (2.14).

In deriving (4.3) it has been assumed that Vl = 0(1):
the magnitude of A(6), as noted above, is defined by (2.14).
However, it appears that this stretching is not permissible
for all piston motions. In fact, if tf'(t)+0as t+o, V1=0(5)
and the non-linear term in (4.3) is negligible in this
particular far field region. For piston paths whose decay

is slower, e.g.

frot™l, 0<n<l,
1
A= 0(6%Ry,

In the high frequency limit discussed in §3 it is
apparent that the solution in the intermediate linearized
regime, where xt=0(6'l), will break down in the same way.

Appropriate far field (low-frequency) variables are then
T. = 68°t, X, = 6AF (4.5)
1 ’ 1 ’

However, this asymptotic solution is always shock
free. (Even if any shock forms at the front its strength
will become exponentially weak for all bounded piston speeds.)
In particular, when the piston speed attains a constant

limiting value the associated steady state profile is fully-
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dispersed: all convective steepening can be balanced
solely by the dissipative nature of the rate process. Yet,
it is well known that stable steady partly dispersed wave
forms, in which the relaxation region is preceeded by a
Rankine-Hugoniot shock, do exist and it is informative to
discuss this limitation in these asymptotic solutions.
Throughout the analysis so far it has been assumed
that the energy o is of a similar magnitude to the total

internal energy e, or equivalently that
a/Es-l = 0(1). (4.6)

This latter restriction, for steady state waves, always
implies that UV-EQ = o(1), where U_ is the wave speed,

but for partly dispersed waves to exist
U8, - (4.7)

This latter condition cannot hold for small amplitude

waves (8+0) if (4.6) is satisfied.

S. The small energy limit

Situations in which both «-1 and u are "small"
are obviously of some interest. In this limit it is
possible to obtain a simplified description of the far
field in which both fully-dispersed and partly-dispersed
wave-profiles can be discussed in a unified manner.

For ease of discussion, the magnitude parameter §

will also be used as a characteristic measure of ¢.
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This statement should not be taken to imply any relation
between the internal energy and the piston speed. If

necessary a second parameter §., with o=0(dl), can be

10
introduced and the subsequent analysis will hold provided
terms 0(8,8.) etc. are retained.

The appropriate far-field expansion is again of
the type outlined in §2,with a slight modification in the

energy term, & and n are used as independent variables and

\

u = 8U, (&,n)+..
p = 1+6P, (E,n)+.. (5.1)
o = 6(e +8e, (E,n)%.. )
Note that
e =06t =0(1) , (5.2)

Substitution in (2.2), (2.8) and (2.10) gives

= 2%R =
Pl = aoRl aOUl (5.3)
which are the usual linearized relations but,Ul and e, now
satisfy
Egl Y igl .o e (5.4)
an a, 13t a 9t .
ael a,
= = 2 — kU.-)\e (5.5)
Here 9 ¢, 11
=1 - 42
k=0 - =35
o

is to be regarded as 0(1).
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In this first order approximation the rate equation
(5.5) is linear, though it now contains both 'forward' and
'backward' terms. The only non-linear convective term
occurs in (5.4).

In the near-frozen limit A+0 (A,k+0) equation (5.4)
reduces to the expected result (1.26), and iteration
using (5.5) gives the Varley-Rogers limit (3.2). In the
low frequency or near-equilibrium limit, A+e(A,k+®),
equations (5.4) and (5.5) give

90, Uy

b k
"G r)sz—

Since
k_(!-l _B-
=5t 008), b= 5
this last result reduces to
U - oU
= - LU 2.0 (5.6)
a‘o of

neglecting terms 0(8). (5.6) is the classical equilibrium
result also defined by (1.26). By including terms O(A'l)

it can be shown that U, satisfies Burger's equation (4.3)
when only the dominant terms with respect to & are retained.

Under the transformation

2
_k a5 k 2 2a 3
L=xg " 172y E
(5.7)
E=¥/A, n=Y/k

(5.4) and (5.5) reduce to
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ow oW _ oE
'g'Y— - W W = - W (5.8)
3E _
e w-E (5.9)

and are free of parameters. The piston condition on Y=0 becomes
=0 g (¥
W f (}\) . (5.10)

Although for geometrically similar paths the solutions will
in general be similar only for fixed values of the parameters
A and ka /b, a considerable simplification occurs in one
particular case. For a centered expansion wave the condition

at the origin is

a
0 X
urop Uogd

which re-expressed in far field variables gives

wo-p/Y. (5.11)

The differential equations (5.8) and (5.9), the front
condition and the initial condition (5.11) are now independent
of all parameters. This similarity form has been discussed

in Blythe (1969) where a numerical solution, using a

characteristics method, was presented

It is sometimes convenient to eliminate E from (5.8)

and (5.9) . The resulting second order equation is

TG LI RO (5.12)

The structure of this equation should be compared with that

of the classical linearized result (2.12). Here the linear
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operators of (2.12),6associated with the high and low

frequency sound speeds respectively, are replaced by
corresponding non-linear convective operators. The linearized

form of (5.12),

W, W 0, (5.13)

Yy My Ty =

is the telegraph equation. Moore and Gibson (1960)

deduced (5.13) from the usual linearized form (2.12) in

the limit a-1<<1, In Moore and Gibson's derivation t=0((a-l)'l)
but it is apparent that in order for this equation to be

applicable in this domain
§71 (a-1)>>1.

The simplest solutions of (5.8) and (5.9) are those

of steady state form

w(¥+CY),

=
"

(5.14)

[27]
n

E(v+CY),

where the wave speed associated with C, in (x,t) space, is

Ck (5.15)

U = a°[1+6—x]zao[1+(a-1)C]

Solutions of this form correspond to the asymptotic state
due to a compressive piston moving at constant speed.

The differential equations satisfied by w and E are

(C-w)w' = -E' = E-w . (5.16)
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whose non-trivial solution is defined by
By pHe-(CH1)usK
w' =  — (5.17)
C-w C-w
Since w'=w=0 at upstream infinity apparently
K=0 (5.18)

However, solutions of (5.17) are unique only if

C<0 (5.19)

with the piston speed given by
v, = 2(C+1)>0. (5.20)

((5.17) cannot be used to study expansion waves with wn<0.
It is easily shown that the overall entropy change would
be negative for this case).

Note from (5.15), that the restrictions (5.19) and
(5.20) impl

i ao>Uw>§o (5.21)

which is the usual condition for a fully-dispersed wave
(Lighthill, 1956).

If C>0, (5.17), with K=0, does not represent a single
valued solution. For compression waves a Rankine-Hugoniot
shock must be inserted at the front. From the weak shock

relations it follows that

(5.22)
w = 2C

immediately behind the shock. Hence from (5.17), with E=0,
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it again follows that K=0.
Apart from an arbitrary constant, (5.17) integrates
to give
-(1+8)

ey = S logdEen - T C

(5.23)

For centered expansion waves it is expected that

the asymptotic disturbance will be the equilibrium solution
W= -p/Y = 1-p/Y+0(8). (5.24)

It is easily verified, neglecting terms 0(6), that (5.24)
is an exact solution of the full equation (5.12).

Although other exact analytical solutions of (5.4)
and (5.5) are not readily found, it is apparent that these
equations do provide a uniform small amplitude far-field
limit with respect to the rate parameter A. In addition,
they will describe the structure of both partly-dispersed
and fully-dispersed wave forms., Some further discussion
of the properties of these equations can be found in Blythe

(1969) (see also Spence & Ockendon 1969).
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1. General remarks on the state of thermodynamics

It is now a little over a hundred years that the conceptual basis
of thermostatics has been laid, Clausius introduced the entropy concept
and obtained the laws of thermostatics for fluids which are in internal
equilibrium, Not much later, i.e. 94 years ago, Gibbs completed the
formal mathematical structure of thermostatics and developed the mini-
mum and maximum principles and the stability conditions for fluids.
There came many applications of thermostatics, of which chemical rea-
ctions, blackbody radiation and the thermostatics of surface tension

may be mentioned.

Thermostatics of solid deformable materials has been restricted
to small strains and stresses for a long time, It is ‘'only through the last
few decades that thermostatics of large deformations has found attention.
And there are still some important problems which as yet have not found
a satisfactory solution, The thermostatics of plastic deformation is, in
my opinion ,still in a very primitive state, But even if we confine our
attention, as we shall do here, to defrrmations where plasticity does
not yet occur, or more precisely, to simple deformable materials, no
full thermostatic stability condition is known, It goes without saying
that such stability conditions must exist, But none of the many inequa-

lities in mechanics of deformable materials which have been postu-

1) On Leave of absence from Rheinisch~Westfélische Technische Hochschule,
Aachen,
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lated or motivated can be considered as such (or as the mechanical
part thereof ) because ,when applied to fluids, they do not go over into
the well-established stability conditions for fluids,

Thermodynamics proper, which deals with irreversible processes
(to avoid confusion with the usual usage of the word thermodynamics
we shall speak of thermodynamics of processes) has found attention
during the centuries, and its first law has been given 300 years ago;
it is Newton's viscosity law, Fourier's law of heat conduction was gi-
ven in 1835, Some decades later we had Fick's law of diffusion, The
beginning of a systematic theory of thermodynamics of processes should

be credited to Jaumann and Natanson (from 1910) .

But it was not before 1940 that thermodynamics of processes
came to life again, and there was an enormous growth of literature,
but also a conflict of approaches and of ideas. What started in 1941 and
was developed mainly during the following decade 1 shall in the
following call classical thermodynamics of irreversible processes
(classical TIP for short) . Main contributers were C.Eckart (1940);
myself (from 1941), Prigogine (since 1947), de Groot (since 1945) and
Mazur and Wergeland, But I should not forget to mention Onsager's
work of 1931 which gave an important contribution to the classical

Tip*

The value of classical TIP has been completely denied by another

group of scientists of which Truesdell, Coleman and Noll are perhaps the

*
) Presentations of classical TIP including bibliographies of the rele-
1) 2) 3)

vant Literature are given in
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most important representatives, Coleman 4-) %) has developed

a new thermodynamics which is partly founded on ideas which have grown
and been used in the non-equilibrium mechanics of large deformations

during the past 15 years *) . It is now in such a state that it has

joined, as Truesdell remarks, "the older science of mechanics and the

younger science of electromagnetism as a fully formulated mathematical

discipline™ and it is also, as Truesdell says, so simple that it can

7)

be taught to beginners

A new thermodynamics of processes has been developed during
the last five years") . It started from the analysis of very special but
on the whole also very well understood thermodynamic systems,
namely electrical networks. There was one point which , for good reasons,
has not been paid much attention to by the network engineers nor the
network mathematicians, This was the question how the entropy of a net-
work in a given state should be defined if the network is to be contained
in a black box which means that we derive information about the network
only be operating and measuring at the terminals, in other words that
we describe th‘e network by its impedance matrix with respect to the

accessible terminals, It turned out, that the entropy of a network, if it can

be defined at all, has not a unique value, but that there exists an infi-

* . : .
)A ver%( comprehensive presentation of this development up to 1964 has been
given in ), Most of the more recent literature on this subject is found in
the "Archive of Rational Mechanics and Analysis" and in the "International

Journal of Engineering Sciencel,

8)11)

* .
*)Some earlier papers prepared the ground, The main ideas

have been given and worked out in 12)-17)
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nite number of network realizations for a given black box
behavior or for a given impedance matrix and that
they have , except for an impedance matrix of the reactance type, with
the same applied voltage histories, many numerically different entropy
histories, This is, of course, only true if there are actual processes,
i.e. voltage histories which are not constant in time, An escape from
this disturbing finding would be possible if one could exclude electrical
networks from the set of thermodynamic systems, Since this would
contradict general physical ideas, the conclusion is unavoidable : If elec-
trical networks cannot be assigned a unique value of the entropy in a
non-equilibrium state, then a unique value of the entropy in other
thermodynamic systems should not exist either in a non-equilibrium

state,

In such a situation the best thing to do is to go back to the
original sources, What we find there is, indeed, quite pugzling, Clausiusls)

states the second part of the second law in the form

B
(1.1) S(B) - S(A) > / —51-9
A

which is to hold for any process without exchange of matter and which
leads in course of time from an equilibrium state A to an equili-
brium state B, By JQ we understand the supplied heat during an
interval of the process while S(A) and S(B) are the thermostatic
entropies in the equilibrium states A and B. Clausius himself empha-
sizes quite strongly that A and B must be equilibrium states

in order that (1) hold.
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.19
Some ten years later, Clausius ) gives without motivation much

less a proof the inequality

dQ

T

(1.2) ds 2

meaning that S ist the entropy difference of two adjacent non-equili-
brium states, Thereby he assumes that an entropy can be defined also
for non-equilibrium states and that (1, 2) can be considered in a way as
a differential formulation of the inequality (1,1). This is in complete
contrast to his earlier statements about the entropy concept and the

Second Law,

So we see that an entropy in non-eaquilibrium states has no founda-
tion in Clausius' work.

Up to the present time the inequality (1,2) has been taken over from
Clausius without much criticism and, as far as we know, without an
attempt to remove the deficiency in the definition of a non-equilibrium
entropy. Classical TIP as well as Coleman's thermodynamics are ba-
sed on the inequality (1, 2) which, for fields, is usually transformed into

the Clausius-Duhem inequality

ds
fdt t+ V. g>0

where p s, g are the density, the specific entropy and the heat flow,

respectively.

Although kinetic theories seem to prove the existence of an entropy
also during a process, this proof is open to criticism, In Boltzmann's
kinetic theory of gases the H-theorem is proved for the one particle
distribution functions, But one can derive other H-theoremsfor 2-parti-

cle distribution functions etc, and each such H-theorem defines
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an entropy, That is to say, that quite a multitude of entropy values
can be defined for a material which has been brought, within an irrever-
sible process, to a well-defined non-equilibrium state, In other words,

no unique entropy value exists in an non-equilibrium state,

It is therefore necessary to develop the laws of thermodynamics
of processes without taking recourse to the doubtful concept of a non-equi-

librium entropy. The main ideas of such a theory will be developed in

the following sections,

2. Thermostatics of deformable materials

We introduce at first a few kinematic concepts., Consider a homo-
geneous deformable body at rest in an equilibrium state of vanishing stres-
ses, Assume that it undergoes after time to a deformation without diffu-
sion which will always be excluded in the following. We define the velocity
v(x,t) through the average linear momentum of the atomic constituents
which are at time t within a sufficiently small element of volume
with the point x as its center of gravity . When we solve the diffe-
rential equation

(2.1) X = (g

&la

with the initial condition x(to) = X, we obtain

(2.2) x=x(X,t)
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This is called the trajectory of a material point X which is defined
by its coordinates at time to and which is not to be confused with
atoms, The equation (2,2) is a mapping of the material points X in

the unstressed equilibrium state into their positions x at time t,

In this section we are interested in equilibrium states only and the-
refore assume that t in (2.2) refers tosuch a state, We usually
omit, therefore, t in the argument, The deformation gradient of this
mapping is defined as

r)xi(X b
(2.3) Fio( (X) = _-5_—Xo(
it assumes the value

(2. 4) F. - d

it io

if x X . The density p in the state x is expressed by

(2.5) PY = P et ’Fixl

+
where p is the density in the state X .

There are unique factorizations®

(2.6)

=

n
=
ne

=Y R

with an orthogonal matrix R , det R =1 and with symmetric ma-

trices U, ;/: which have the same positive eigenvalues,

We also introduce the right and left Cauchy-Greern stretch tensors

2 2

'B:Fu

=2
2

—

(2.7) C-

tI“:
=

| fen}

?:l
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where the tilde means the adjoint tensor,

We assume now that the material under consideration has a uni-
que static specific entropy St which depends on the specific energy
u, on the deformation gradient F and on some scalar internal varia-
bles 51""' ;n which need no specification, Then

= F cees .
(2.8) st "5l w E v 5o §))

Therefrom we obtain

st

(2.9) ds_ = dF, + Hid'é’i .

st i
Here and in the following the summation oonvention is adopted. Tst
is the temperature of the static state, The Hi are the affinities in the
entropy representation, In order to identify the coefficient of d Fioc ,
we have to evaluate the work done in an infinitesimal reversible tran-
sformation without heat supply (dsst = 0) and with frozen internal varia-

bles., Thus one obtains

(2.10) st

A slight simplification of (2.8) is possible if we note that Sgt
is a scalar invariant and that it should not change its value if we apply a

further deformation Q which is a pure rotation, Then we have

(2.11) sl L, g ms 0 QEL 8
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-1
and choosing § =R = (see (2.6)), we see that s is a function of U,

or equivalently of C. So

(2.12) Sei T Sgt (u. g, §'i)

and

2.13) ds_ == du - Trace F -0 Fldg +H d§

(2.19) dsg = 7 2pT = Tst'= 9%
st st

We have added the subscript st to the entropy s, to T and g
in order to emphasize that these quantities refer to an equilibrium sta-
te, It is clear that TSt and __c_'st are functions of wu, F(or C) and
gi as well as sSt is. These functions will also play a part in the
non-equilibrium theory where they are understood just as the same func-
tions of u, E, gi but not implying that they can be identified with the

non-equilibrium temperature or the non-equilibrium stress tensor.

3. The balance equations and the fundamental inequality

The conservation laws for mass, linear and angular momentum

and energy are expressed by balance equations,

The balance equation for mass, also called continuity equation,

can be written in various forms, They are

(3.1) f = det

=
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dap dp 1.
(3.2) - * pVey =0, T+9Trace(£ F)=0

The d/dt and the dot over I denote the material derivative

d _ 3
—_—=— 1t .
3.3 T YRR
The balance equation forlinear momentum is
5 4 v 3%,
(3.4) P dt SXk

if external forces are ignored,

We assume for simplicity that there is no exchange between angu-
lar momentum of motion and intrinsic angular momentum due to internal

rotation of molecules or of spins, Then the stress tensor is symmetric

o2

(3.5) g-

The energy balance equation can be changed into a balance equa-
tion for the internal energy alone if proper use of the balance equation
(3.4) is made, It reads

du * -1
(3.6) P—'—dT=TI‘0"'FF - Va.q

By q, the heat flow vector is understood,

These balance equations indicate a first hand choice of parameters
of state, They contain u but not T, q but not VT ., We shall,

therefore , prefer to use wu(t) and q(t) as independent variables when
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setting up constitutive equations,

From the balance equations (3,2) and (3,6) and from the entropy

differential (2,9) one infers the identity

ds ) 1
st .
P _d_ 'V.(_. (.1): (_.__..__)Pu
(3.7 t T TSt T
1 -4 st .
+VT_3+ Tr(?"air“‘)ggl

if internal variables are from now on ignored, In this identity T is

quite an arbitrary function of x, t.

If we assume T = Tst and understand by Sst (u, E) the speci-
fic entropy during the process, which may be reasonable for small
departures from an equilibrium state, then (3.7) is the entropy balance
equation of classical TIP as applied to deformable materials with inter-
nal equilibrium, Iu this case the Clausius-Duhem inequality (1.3) would
require that the right member of (3.7) is non-negative and can therefore

be interpreted as entropy production,

Without these assumptions nothing can be said about the sign of
the right member of (3,7). However, we obtain an interesting statement
if we integrate the equation (3.7) for a fixed small mass element along
its motion for a process which starts at to = - o from an equilibrium
state and leads at t =+ o again to an equilibrium state, Since P dv,
with dV being the volume element, is a constant during the motion,

we ohtain by integrating the left member of (3.7) from - o to
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with m being the mass of the mass element, and if we understand by
T the temperature during the process, or the temperature in the
Clausius inequality (1.1) we arrive at the conclusion that the expression

(3.8) is non-negative, Therefore the same is true for

3 i

1 s 1 1 1 _Q_" -
j[ -TU+VT.?E+?TP -—,I—,—==ldt)
provided T = . If it is permitted to go to the limit of infinitesimal
mass elements this inequality remains true for any finite T because one
can continue the process after any time T in such a fashion that the
integral from t = T to t=ow goes to zero as the mass element tends to

zero, It is only to be assumed that for fixed values of u and F

and with g =0 after t = T the material element approaches a unique

thermostatic equilibrium state,

This inequality will be called the fundamental inequality,

4, Constitutive equations

Besides the balance equations which hold for all materials at all
times we have now to introduce laws which distinguish one material from
another, In thermostatics we have the equations of state, In thermodyna-

mics we have to introduce an appropriate definition of the state at
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time t before setting up something like equations of state, The problem
is to give as much information on the state at time t as is necessary
to make predictions on the behavior of the thermodynamic system at
later times, It is, for that purpose, irrelevant what kind of information
we invoke if it is only complete, There are two extremes: knowledge
and suitable internal va-

of a sufficient set of state variables (u, q,

F
F only at time t and at

riables) at time t, or knowledge of u, g,
all previous times, i .e, the history of these variables with respect

to time t. If we adopt the second point of view, then we characterize
the state at time t by explaining the treatment in -0 <s gt by

which it has been produced., Of course, we permit here a loss of genera-
lity because one might admit that the state in a mass element depend
also on the hystory of its neighborhood. Thus we single out a special
class of materials which we call simple materials, For such materials

all quantities depend on the histories u(s), q(s), F(s) in - w<sgw

and consequently there exist constitutive equations
1 1 .
(4.1) T (1) T(t) / {},

l -
(4.2) vV — = '31 {}

g gstlt
(4.3) 3’2 {}

T(t i
(t) Ist(t)
with

(4.4) {...}:{u(s) L q(s), I(s); -00\5\'1}
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with functionals '}i which must satisfy the fundamental inequality for

all admissible thermodynamic processes,

These functionals can be somewhat simplified by applying the
principle of material frame indifference, Further simplifications are pos-
sible for isotropic materials , But on the whole a description of the
material properties in processes by such functionals is not very satis-
factory. For one thing one would need a whole library to put down these
properties for a single material considering the big manifold of possible
histories. And it also seems that the contents of such libraries
for two pieces of a material which are produced under the same techni-
cal condition would not quite agree, So if one must use such a library in
a technical application, one would also need data on the fluctuations of the
entries in the library which exist for materials produced under the same

technical conditions,

Although the practical value of such constitutive equations seems
to be relatively small, the theory as such is pretty good, And it per-
mits sbecialization to special classes of materials which are simpler than
the simple materials and also to special conditions, For instance the
functionals reduce to linear functionals if only small departures from
a reference state are to be considered, Then the powerful superposition
principle is available and the material is characterized by three after
effect functions associated with each equilibrium reference state in the

relevant domain,

Simplifications of a different kind occur if the processes are slow
on some time scale T , If we assume some kind of fading memory,

which roughly means that the previous values wu(s), q(s), F(s) enter
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the functionals with decreasing weight when S decreases , then) it may
suffice for slow processes to know u(t), E(t) only, or in a better ap-
proximation u(t), £‘(t) , q(t) in-addition in order to know the values
of all other variables, Then the functionals reduce to functions of wu(t),
F(t)or wu(t), F(t); a(t), q(t), E(t). If the functionals % are
exactly of this form, then we speak of a material of the differ;ntial
type and of complexity 0 or 1, respectively, Otherwise, the mate-
rial is approximated by a material of the differential type and of com-

plexity 0 or 1 for sufficiently slow processes.

The materials of differential type and of complexity one are of
particular interest, They satisfy the fundamental inequality trivialy becau -
se not only the integral in (3.9) is non-negative but already the inte-
grand itself ¥) . As a consequence the left member in (3.7) is non-nega-
tive and the static entropy function Sst(u’ F) satisfies the Clausius-
-Duhem-inequality (1.3) . In this case the constitutive equations are just
the same as those given in classical TIP . This result explains clearly,
also in more general cases, the position of classical TIP within the

framework of the new thermodynamics of processes,

5, Discussion

We try to clarify somewhat the notion of memory , Of course, the

material itseif has no memory and we cannot consult it at time f for

i'E)The proof has been given by Jiirgen Keller (Aachen) and is contained in
the Appendix of 16)
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its past treatment at times t -s (0 <s <) . Although the state at
time t is determined by the histories- u(t-s), q(t-s), E(t-s) in

£ 5 <o the converse need not be true, There may be families of
histories with an infinite number of specimens which lead to the same
state at time t and the most one can infer from the present state
about the past treatment is that it is one specimen of such a family,
We illustrate this by a simple example which is the well-known dyvnami-

cal equation of state

de de

T 49 . de
(-1 Crl o T E BT, )

Here ¢ is the one-dimensional stress and € is the one-dimensional
strain, The coefficient E0 >0 1is the elastic modulus in equilibrium
and Tl, ‘7.’2 are the relaxation times at constant strain or stress,
respectively, with “Cz > Tl >0 , The stress can be written as a
linear functional of the strain by integrating (5.1) with appropriate

initial conditions, €—0 and 6° bounded as t = - « ., The result

is
T2 Lh s-t
(5.2) ()= E p-E(t)-E —s— exp () €(s) ds.
o ‘1 o T2 o 1
1 d

It is easily seen that the solution of (5.1) with prescribed € (1)
int 2t and given G‘(to) is unique, The past history E(s) in
0
- <s ¢ to has then to satisfy (5,2) with t = t( . If €(s)and E‘(s)
)

are two solutions of (5,2), then one obtains

x .
(5.3) j exp ( - f—r-) [E*(to - s) -e(to-s)] ds =0,
1

0O
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If €(s)in- o in=~-ow <sg to is one possible history leading to

o-'(to) , € (to) , then it is obvious from (5.3) that there is an infinite

number of other possible histories E*(s) leading to O'(to) , E(t).
o

We can say that the histories are parametrized by the "state

parameter"
t
(5.4) () - f exp (539 €(s) ds
- @ 1
Then Tz T- ,rl
(5.5) 6 (t) =E0 7: £(t) - E0 'rz E(t)
1
(5.6) EM+T E() = T EM .

The memory can therefore not be considered as an objective
property of the material; it is rather the knowledge of the past-treat-
ment that the experimenter needs if he wishes to make predictions
on the future behavior of the material under given external action, and
it has therefore subjective character, This is the more so because the
experimenter can at will use additional information about the state
of the material at time t, for instance the value of an internal variable

g(t) . Apparently, this together with the histories u(t-s), q(t-s),
F(t-s) would give redundant information on the state at time t. This
fact enables one to ignore part of the "memory" , Practically this
works out so that the original memory function may be reduced to a
shorter range memory function,

We speak of the lowest level of description if the information

about the state at time t is contained in the knowledge of the

histories u(t-s), q(t-s), E(t-s)in 0< s <o . Assume that practical-
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1y the memory reaches back to time t - T(O) so that the histories be-
fore this time have a negligible influence in the functionals (4.1) to
(4.3) . A higher level of description would consist in the introduction

of internal variables gk and their histories ¥k(t~s) with k=1,2,..
...,n . Then there would be additional functional equations for the in-
ternal variables of which (5.6) is a very special case, But the memo-
ry in-all the functionals would reach back practically only to time

t - T(n) with "C(O) > ’C(l) > ... T(n) If we now consider processes
which are slow on the time scale T(n) - they can be much faster than
processes which are slow on the time scale T(O) - it is possible to re-
place the memory by the values of u(t), E(t), gk(t) and of  U(t),

q(t) , E(t) gk(t); that is to approximate the material on this higher level
of description by a material of differential type and of complexity one,

16)

Then one can again prove by Keller's theorem that the integrand
of a modified fundamental inequality, which has additional terms pertai-
ning to the internal variables, is itself non-negative, Therefrom it is
concluded that (2.8) is a possible entropy function during the process

and the laws of classical TIP are recovered,
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0. Introduction

These lectures will consist of a sequence of problems, mainly
from the theories of large elastic deformation and viscoelastic
flow. In these theories, properties of materials are described by
equations that are not linear. They are usually so badly non-
linear that it is just as well to regard the functions that appear
in them as almost arbitrary.

The prospect of a non-linear problem 1s frightening because
the standard methods based on superposition are inapplicable. The
fright is psychological; no one solves linear problems elther, by
pencil and paper, unless the problem has a great deal of symmetry.
The use of symmetry is usually not acknowledged. It 1is regarded
as cheating.

All of the problems to be considered here are highly symmetrical.
The symmetries most easily recognized are translational or rotational.
Scale invariance is still important in non-linear problems, but less
easy to perceive., Invariance that removes a varlable before you
even thought of it is of course not recognized, but it doesn't need
to be.

Symmetry 1s used in solving problems by invoking the fact that
the complete solution must have all of the symmetry that the
statement of the problem has. In the ideal case, only one candidate
has all of the necessary symmetries, so it is the soiution. Often,

a stronger hypothesis is used: we claim that the problem has only
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one solution, so that particular solution by itself has all the
symmetries of the data. The phrase, "By symmetry", means "By
symmetry, assuming uniqueness".

Even this stronger hypothesis is ordinarily not enough to
single out just one possibility. Constraints are useful. Anything
that limits the class of candidates makes it easier to pick out
the solution. In continuum mechanics, the constraint of incompres-
sibility is widely applicable.

Linearization is, of course, the main way of solving less
symmetrical problems (by pencil and paper). I will not say much
about perturbation methods in spite of their obvious importance,
because the equations are usually too long to remember or to work
out in the midst of a short lecture.

I will also say little about numerical methods. When
material properties are given in terms of empirically determined
functions, it goes without saying that solving problems requires
numerical work. The task of the analyst is to reduce this to a
minimum, not to avoid it entirely.

With apologies to all whose work I have stolen, I give
no references except to the most recent literature. References to
most of the original sources can be found in several books [1,2,3,
4]%, Whatever is original will be easy to recognize: the mistakes

are all mine.

¥
Numbers in square brackets indicate references listed at the end
of the paper. '
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1. Elementary Problems of Finite Elastic Deformation

The theory of finite elastic deformations 1s a relatively
simple non-linear theory because all relevant material properties
are bound up in a single scalar function W, the elastic stored
energy density. This gives the theory a great deal of coherence
compared to, say, the theory of large viscoelastic deformations.
It also makes possible the use of energy methods to simplify the
analysis and to give a neater picture of what is involved in a
problem,

Treloar's [5] book is the best reference on physical aspects
of the subject. There are several fine books [1,2,3,4] on the
mathematical theory. These books rightly emphasize the general
theory and the techniques used in solving hard problems. To try
to dispel the idea that finite elasticity is a very difficult

subject, I will confine attention to dead easy problems.

1.1. Strings
Many of the basic notiors of finite elasticity theory can

be illustrated in terms of its simplest special case, the theory

of elastic strings. A string resists extension but has no bending
stiffness. Its mechanical behavior is described by a function
f(\), the tensile force f required to stretch the string to A times
its initial, unstressed length. The elastic stored energy w(}),
measured per unit of initial length, is related to f(A) through

the assumption that the stored energy is equal to the work done

in stretching the string; dw = fdi, or f(A) = w'(A).
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If a string i1s stretched inhomogeneously, so that a
particle initially at a distance X from one end moves to a
distance x(X) from that end (measured along the string), then
the stretch at the particle X is A = dx/qx. We assume that the
tensile force there is f[A(X)], just as if the string were
stretched uniformly,

Let us determine the equilibrium configuration of a
string that is stretched out between two points A and B on the
surface of a smooth, rigid, convex body. Let Lo be the unstretched

length., The total energy of the stretched string is
Lo
f wix'(X)Jdx . (1.1.1)

o
(Notice the convenience of specifying w as energy per unit initial

E

length.)

To find the configuration that minimizes E, first choose
any admissible path.from A to B, and vary the function x(X), which
describes how the string is stretched along that path. The Euler

equation characterizing the minimizing function is

g—xg‘;—,=o : (1.1.2)

Thus, since dw/dx' is the tensile force f, the tension is constant.
Under loose assumptions, X must be constant if f is

constant. Then if L is the length of the path considered, X is

equal to L/LO at every particle, and the energy is E = w(L/LO)LO.
Now consider variations of the path. Under obvious

assumptions, E (or w) is minimized by choosing the shortest path,
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which minimizes the stretch.

Thus, in equilibrium, the string lies along a geodesic
from A to B, and it is stretched uniformly. We can say that the
problem is solved, although neither the solution nor even the
problem itself has been described in all detail.

Notice that nothing could have been gained by specifying
the form of w(X), and that we concelvably might even have failled
to understand the solution if confused by a complicated specific

function, or a specific surface shape.

1.2. Membranes

The two-dimensional analog of the string is the membrane.
Consider a patch of membrane, initlally a unit square. Suppose
that it 1s stretched into a rectangle of dimensions Al and A2.
If the membrane is homogeneous and lsotropic, this can be done by
applying uniformly distributed normal forces to its edges. Let

fl and f, be their resultants; fl acts on the edge of length A2.

2

If w(A Az) is the stored energy, and 1t 1s equal to the work done

1)
in deforming the membrane, then

dw = fldkl+f2dA2 . (1.2.1)

Hence, f = dw/3Ay. The principal tensions, or forces per unit
current length, are t1 = fl/x2 = Alfl/A and t2 = A2f2/A, where A
is the area per unit initial area.

Consider the inflation of a spherical balloon from an

initial radius R to a final radius r We wish to find the relation
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between r and the excess internal pressure A4p.

Each element of membrane is stretched equally in
orthogonal directions, the extension ratios being Al = A2 =r/R =
X (say). The energy of the inflated balloon is w(A,)A) per unit
of initial area, so its total energy is MwRew(A,A). By setting
the change of energy equal to the work Ap 4V done in increasing

the enclosed volume V, we obtain

5 5 (1.2.2)
Ap U4mr©dr = 4mR%aw .
With r = RA and dr = RdA, this gives
_ 1 d
bp = g;g X w(A,A) (1.2.3)

For a soap bubble, w is proportional to the area AE (per
unit initial area), so the pressure drops like 1/A as the radius
grows. Rubber behaves this way at moderate extensions. As A
increases from unity, the pressure at first increases, but then
at larger A the energy w 1s roughly proportional to A2, so the
pressure begins to decrease., It i1s a matter of common experience
that it takes more pressure to inflate a balloon a little than to
enlarge it further after it is started. At very large stretches,
the pressure increases again as the long-chain rubber molecules
approach their maximum extensibility.

Two balloons connected by a pipe, and thus under the same
pressure excess Ap, need not be equally inflated. Experience
indicates that under more than slight inflation, unequal inflation
i1s more stable than equal inflation. This is a minor example of

the non-uniqueness that can be expected 1n non-linear problems.
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1.3. Blocks
Let w()\1 kz,k3) be the elastic stored energy of a body,
initially a unit cube, that is stretched into a block of
dimensions Al,A2,x3. If the block 1s homogeneous and isotropic,
this deformation will require normal forces only. Let fa be their

resultants. The work-energy relation is

dW= f_dir.+f_dr +f,dA

A RRPL AL LTI (1.3.1)

Thus, the nominal stresses, or englneering stresses, are given
in terms of W by fa = BW/aAa. The true stresses Oyo the forces

per unit current area, are

= fl/A2A3 = Alfl/J , (1.3.2)

%
and so on. J is equal to A1k2x3, the volume per unit initial
volume.

Since it 1is much easier to change the shape of a plece
of rubber than to change its volume, in many problems 1t is
permissible to wuse the idealization that the material is
incompressible. For the block considered here, this means that
A1A2A3 equals unity in all admissible deformations. With the
increments dku then subject to the constraint dea/ka = 0, it no
longer follows from (1.3.1) that fa is equal to aW/aAa. Instead,
by introducing the constraint with a Lagrange multiplier p, we
obtain

W
A RN (1.3.3)
a o

and, since J=1,
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-p. (1.3.4)

The multiplier p represents the reaction pressure arising from
the constraint.
Analytically simple forms of W that are often used for

qualitative illustrations are the neo-Hookean form

=1 _
W= 5 G(I;-3) (1.3.5)
and the Mooney form
where
- 12 oy =2
Il = Zka and 12 = Zka . (1.3.7)

Neither makes any sense unless the material is incompressible.
If it is, both yield a minimum energy W=0 at Aa =1, provided that
the constants are positive,

In isotropic materials, W is a symmetric function of the

stretches, and thus a function of, say, 11,12, and J, or just I1

and I, if the material is incompressible. With the notation

2
3W/3Ia = wa , (1.3.4) becomes
2

0, = 2W1Xa - 2W2Aa

2 -pP . (1.3.8)

1.4, Strings, Membranes, and Blocks

The energy functions w()) and w(Al,Ae), for strings and
membranes, are, of course, related to the energy density for a

three-dimensional body of the same material.
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The membrane energy w(kl,xz) is related to w(Al,Az,A3)

by
w(Al,A2) = hW(Al,Az,l/Alkz) s (1.4.1)

where h is the initial thickness of the membrane; provided, that
the material is incompressible, so that the stretch x3 is equal to
1/A1A2.

Similarly, for a string of incompressible material, initially

of cross-sectional area A, the energy per unit initial length is

Wa) = aWG T2 012y (1.4.2)

With the neo-Hookean form of W, w(i) is
_ 2 -1
w(r) = (AG/2)(A"+2077=3) , (1.4.3)

and the force-stretch relation is

£(A) = w'(A) = AG(A—A-2). (1.4.1)

The modulus G can be adjusted to agree with data near A=1. If
this 1s done, agreement with data for rubber is still reasonably
good up to A=2 (100% stretch). The linear increase of f for large
A is not observed; the force actually increases sharply when the
rubber approaches 1its maximum extensibility at A of the order of

5 or 10.

1.5, Stability of a Block

If a block of incompressible material is stable in the

undeformed state Aa = 1 when no forces are applied to it, it remains
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stable under arbitrarily large positive or negative pressure
loading. For, the total energy of the block and the loading
system is W-pV; but the second term is irrelevant because V
cannot vary if the block is incompressible.

In contrast, consider a block under equal normal dead
loads; the force resultants fa are maintained at the value f,
however the block may deform. We admit no deformations ekcept
homogeneous deformations, which are described by the stretches Xu'
Then for sufficiently large loads f, the undeformed state Aa=1
is unstable, if the material is incompressible.

To see why, consider the energy, including that of the

loads: E = w_fzxa_ (1.5.1)

Let values at an equilibrium state Ag be marked with a zero

superscript, and let AAa = Aa-xg. Then near equilibrium,

E=©E°+5E%) + & 5zE°
o o [¢]

5 BX DAy + e, (1.5.2)

B B

where Ea = BE/BAG. The constraint condition A1A2A3 = 1 gives

= 0 - 0 1 0,2
0 = ILn H(Au+AAa) z(Axa/Aa) -5 z(Axa/Aa) +

(1.5.
Hence, with a Lagrange multiplier u , 5.3)

0

0 o 1 0 0,0
-E° = + + = -
E-E Z(Ea p/Aa)Axa 5 ZZ(EaB udae/AaAB)AAaAA + ...

B
(1.5.4)
Since E must be stationary at equilibrium, the sum linear in Axu

must vanish:



- 63 -

A, C.Pipkin
0 o _
Ea + U/Aa =0 . (1.5.5)
Then, with this value of y,
0 _ 1 0
E-E~ = 5 ZZ(Ea adas/x YA AAB+ cen e (1.5.6)

The equilibrium is stable (toward homogeneous alternatives)
if the quadratic form 1s strictly positive, and unstable if it can
be negative. If E has the form (1.5.1), and Ag = 1, the matrix

of coefficlents 1s

0 0
E +Eaéaeﬂh wdﬁ+ (wa_f)das' (1.5.7)

Whatever values w and WQ may have, this is negative definite

B

for sufficiently large f, and the undeformed state is unstable.
Now consider the alternative, stable, equilibrium state

that must exist when the undeformed state is unstable. The equi-

librium equations, obtained by eliminating u from (1.5.5), are

If we take A2 = A3, the latter of these two equations 1s satisfied
since W is a symmetric function of the stretches. In that case,
N =, say, and A, = Ag = \"Y/2 Then

d -1/2 ,-1/2, _ -3/2

o W(A, A S A ) = wl-x w2 s (1.5.9)

and the first equation in (1.5.8) can be written as
d/ar = (1-3"32)p (1.5.10)

The left-hand member is the force f(X) in a "string" of unit

initial cross-sectional area. If it grows without bound as A
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increases, (1.5.10) surely has a solution A , provided that f is
so large that the right-hand member initially (at A=1) grows more
rapldly than the left-hand member does.

Without doubt, this artificial example is a little silly,
but I do think that it shows again that little or nothing can be
gained by stating the form of W at the outset. It seems that we
must know what function W is in order to solve (1.5.10), but I
doubt that I could have reached that stage of the analysis if I
had known W in the first place.

It should also be pointed out that it is trivial to solve
(1.5.10) graphically, given experimental values of dW/dA.
Analytical solution of (1.5.10) is neither necessary nor even'

desirable.

1.6. Expansion of a Spherical Shell

For an example of an inhomogeneous deformation of a three-
dimensional body, let us consider the expansion of a spherical
shell, initlally of internal radius RO and external radius Rl’
under internal and external pressures pO and pl, respectively.

We take the material to be incompressible. Notice how the
Symmetry and the constraint, taken together, make the problem
trivial.

Since the material is incompressible, the final radius r(R)
of a membrane initially of radius R is determined by the conditior
that the volume of the shell between r(R) and ro = r(R_) is the

0

same as that between R and RO:
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3._...3 3 3
r -I'O+R -Ro. (1.6.1)

We are mainly interested in determining the relation between ro
and P, -Py-

We treat the shell as a set of nested membranes, each of
initial thickness dR. The energy per unit initial area of each
such membrane is w(A,\) = W(A,A,A'g)dR, where A = r/R. We know

that the pressure drop across one such membrane 1is

1 d -2
-dp = ——5 ai W(A,X,A )dR . (1.6.2)
RA
Hence, the total inflation pressure is
R
1
_ 1 dw
P,-Py = I = a &R . (1.6.3)
RA
R
0
By using r = AR in (1.6.1), we obtain
R3(3-1) = R303-). (1.6.4)

By using this relation to express R in terms of A in the integral,

we obtain
P,-py = POA)-P(A)) (1.6.5)
where
A
PU)=J%—§Tqur%m. (1.6.6)
1 A -1

The function P(A) 1s the excess pressure required to stretch the
internal radius of a spherical cavity in an infinite body by the

amount A .
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The function P(A) is the same for all spheres of a given
material., If it is determined empirically by tests on one sphere,
results for all other spheres (all values of Ro and Rl) are given
by (1.6.5). This is an example of modelling, which usually |
cannot be carried out purely by dimensional analysis if the theory

is highly non-linear.

1.7 Tube Forming

As another elementary example, let us consider a particularly
simple speclal case of the problem of flexure. A slab is bent
around until opposite edges meet, whereupon they are joined so
that a cylindrical tube is formed, and the tube 1s left in a state
of self stress. The problem is to determine the dimensions of the
tube from those of the slab.

Let the slab be bounded by the planes X = tH, with the ends
that are to be joined at Y= +L., We will suppose that the slab
is very long in the Z-direction, and, to make the example simpler,
ignore that coordinate.

Symmetry suggests that the deformation should carry planes
Y= constant onto planes © = constant, in cylindrical coordinates,
and that planes X = constant should be bent into cylinders r=
constant. We suppose that the Z-coordinate of each particle is
unaltered. The relation between r and X is determined by the
incompressibility condition; the volume of material initially
between the planes X=0 and X=const. must be the same as that
between cylinders of radii r, =r(0) and r = r(X) after the deforma-

tion. Thus, the final cylindrical coordinates of a particle are
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given in terms of its original cartesian coordinates by

n(rz-rg) =2LX, 8 =TY/L,z=2 . (1.7.1)

Symmetry and the constraints (incompressibility and the stipulation
of no elongation in the Z-direction) have determined the deformation
to within an unknown parameter o The parameter r, is to be
determined by minimizing the energy.

An elementary cube initially bounded by coordinate
surfaces 1is stretched into a brick-shaped element bounded by the

cylindrical coordinate surfaces. The stretch ratios are
A= dr/dX = L/qr, xz = rde/dy = mr/L, X3 = dz/dz = 1. (1.7.2)

Let us write A for A,. Then Al is A'l, and the energy per unit of

initial volume is W(A,X'l,l). From (1.7.1), the variation of A

with X is given by
A8 = xg + 2TX/L . (1.7.3)

The total energy, per unit of length in the Z-direction,
is

E = 2L J Wax . (1.7.4)

This is to be minimized with respect to r , or A, (=nro/L). By

treating W as a function of xz, for convenience, we obtain

H 2

aA%)

j Qﬂ—g— —dX =0, (1.7.5)
_1 403 30d)
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2 2
But 3(A )/a(xo) is unity. Now, also,
oW aw  2r
w5 T . (1.7.6)
X d(X2) L

Hence, the integrand in (1.7.5) is proportional to 3W/3X.
Integration gives

wlx:}{ = wlx:_H ’ (1-7-7)

and this is the equation that must be solved for r, (or AOY.
Now, since W(A,X'l,l) depends symmetrically on X and \71

if the material is isotropic, (1.7.7) is satisfied if the value

of A at X=H is the same as the value of A1 at X=-H. Thus, with

(1.7.3) we obtain

(Ag+2nH/L)(A§-2nH/L) = 1. (1.7.8)
Hence,
xg = 1+(2nH/L)2 . (1.7.9)

Thus, the desired information is obtained without knowing anything

at all about W, except its symmetry.

1.8 Tensor Stress-Strain Relations

In any deformation, homogeneous or not, through each particle
there are three fibers that are perpendicular both before and

after the deformation. We call them principal fibers, and their

directions are called principal directions of strain. In isotropic

elastic materials, the stresses on surface elements perpendicular

to such directions are purely normal stresses (by symmetry).
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In some simple problems, such as the inflation of a
spherical shell, the principal directions can be located by
inspection. More often this 1s not the case, even when the
deformation is completely specified. To avold the ingenuity or
work required to compute principal directions, we use stress-
strain relations in tensor form.

Let gl,gz, and 33 be unit vectors along the principal
directions. With principal stresses o  glven by (1.3.8), the

total stress ¢ is
o = zo u"u® = 2w g-2WgT - pl, (1.8.1)

where

g = inggua ’ 5?1 = ZlngFBF, L= ZEFEF . (1.8.2)

The usefulness of this relation lies in the fact that the
strain, g, can be computed directly, without first finding Aa and
u®. Let x(X) be a deformation carrying the particle initially at
X to the place x. A fiber whose initial span is dX is mapped
onto

dx = F dX . (1.8.3)
If the three principal fibers initially lie along the orthogonal

directions ga, then the deformation gradient F must have the form

P =t (1.8.4)

Hence, we see that

FET = o eyt s Iutu® = g (1.8.5)



- 70 -
A, C, Pipkin

Now, F can be computed directly; 1n cartesian coordinates, its
components are

F =

TN axi/axA . (1.8.6)

Thus, the components of g are

=F, F.,, =x . 1.8.
815 = Fia¥yn = *4,0%5,0 (1.8.7)
1.9. Shear
Even in such a trivial deformation as simple shear,
x=X+tkY, y=Y, z=12, (1.9.1)

the principal directions in the x,y plane are not obvious.
However, the deformation gradient F and strailn g can be written

down at sight:

e}
n

Ux = V(X+c¥i) = I+cji , (1.9.2)

FFT = (Iteif) (I+ejl)

0’
1}

I+ k(ij+ji) + K2 ii . (1.9.3)

The matrix of components of gfl is the matrix of cofactors of g,
since g is symmetric and its determinant is unity:

571 =1 - «x(ij+Ji) + Kgil . (1.9.4)

Thus, from (1.8.1), the stress 1is

2

0 = 200+, )k (1 +]1)+2W kP11-20 k1 J-p'T (1.9.5)

' = o -
where p P 2(W1 Ws).
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If w1 and w2

a simple shearing deformation requires, in addition to the shear-

are positive, which is the case for rubber,

ing stress, an extra tension along the direction of shear and
an extra pressure on the slip surfaces y=const. We see that in

fact,

017709y = K01p > (1.9.6)

so the stresses ¢ and O5n cannot possibly be equal when k and

11

g,, are different from zero. The value of W2 is typlcally 20%,
say, of the value of w1 (in rubber), so the second normal stress

difference, o = =20 K2, is not large in comparison to the

227933 2
first normal stress difference, 011705, = 2(wl+w2)m2. Thus, the
effect of normal stress differences is mainly an extra tension
along the direction of shear. Similar normal stress differences
arise in shearing flows of viscoelastic fluids, such as solutions
of the high polymers that elasticity theory treats in bulk, cross-
linked form, Of course, in flulds the stresses are not connected
through a strain-energy function, but the state of stress pro-
duced by shearing 1s qualitatively like that for elastic shear.

Since the principal stretch in the z-direction is unity,
the other two are reciprocal, say A and 1/A. Thus I1 and 12 are
equal:

2,,=2

I =1, = 34k = 142°407°2 (1.9.7)

1

This is true for any plane deformation, and it simplifies their

analysis. The apparent shear modulus, 012/K, is
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dw
d(x°)

b(e%) = 0p/ = 200 ) = 2 (1.9.8)

Since a large shear, say k=1, corresponds to only a moderate
stretch A , the shear modulus can be considered roughly constant
over a feasible range of k .
1.10, Torsion

The torsion of a right circular cylindrical rod maps the

particle initially at R,0,Z to the place r,0,z given by
r=R, 0 =0+1Z, z=2. (1.10.1)
Let V be the gradient with respect to R,0,Z. Then

FL

n
<1
>

Vx = V[ri (8)+z1 ]

1
=¥r i, +rih 1.(6) + 9z 1)

= ip it (grRLIL * 1gl, (1.10.2)
and, writing « = 1R,

+ K2i i

T )
0 9= °*

g=FfF" = £+K(_i.eiz+lz£ (1.10.3)

We see that the strain has the same general form as for simple

shearing. The stress, then, like that for shear, is

- 2 2
o = 2(W HW, )k (g1 +1,10) + 2W K11 =201 4, - p I. (1.10.4)

It is easy to see by symmetry that the axial and azimuthal
components of the equilibrium equation Divg = 0 are satisfied
trivially if the reaction pressure p 1s constant over each membrane

r=constant. The radial component is satisfied by a suitable
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adjustment of p(r).

Because of the extra tension along the direction of
shearing, the 6-direction, azimuthal circles act as if they were
stretched strings. The reaction pressure 1s largest at the axis
of the rod because of this squeezing. If, instead of a solid
rod, we twisted a hollow cylindrical shell, the cylinder would
contract unless it were put under internal pressure., With rod
or shell, compressive forces must be applied to the ends
Z=const. to prevent extension.

The torsional moment M is related to the twist per unit

length, 1, through the work-energy relation
R
0
Mdt = d J 27RW dR . (1.10.5)
0

Here Ro is the radius of the rod. W is a function of I1 and 12,
both of which are equal to 3+K2, where ¢k = 1R. Hence,

R

0
M= om J R W 2:R% aR
a(x?)
0
%
=on | R 2442 . (1.10.6)
3 2
12 d(k™)
0
Here Ky = TRO. Introducing the shear modulus U(K2), we obtain
2
0
T3M =7 u(K2)K2 d(K2) . (1.10.7)

OY—— =

The modelling rule for this case shows that T3M is express-
ible as a single function of (TRO)2 for all rods of the same

material.
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1.11. Small Superposed Deformations

The main analytical technique for solving problems that do
not have a high degree of symmetry is linearization, the staple
of the applied mathematician. A reasonably simple state of
deformation that is probably close to the desired solution is
guessed. It may be an equilibrium state, but need not be. The
unknown deformation is then treated, hopefully, as a small
perturbation on the guess. I don't want to get involved with the
details of any such problem, but I would like to discuss a simple
qualitative idea that i1s helpful in thinking about perturbations.

When a small additional deformation is superposed on some
existing state of large deformation, stresses are changed because
of the additional distortion. But also, the stress field is
changed because the additional deformation rotates the stress that
was already present. In some cases the former effect is entirely
negligible in comparison to the latter. When this 1s true, the
apparent modull of the material are determined by the forces
acting on 1t, rather than by anything that we would regard as a
material property.

Small deflection of a stretched string is an example
everyone 1s famlliar with. The change in length of the string is
quadratic in the deflection, and the resulting change of tension
is negligible. The restoring force 1s due to the change in
direction of the string tension when the string is deflected.

As another example, consider a small shear of a slab that
has been mashed to A times 1ts initial thickness. The deformation

1s described by the mapping
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1/2

x =2 Yz, y=a V%, g=az. (1.11.1)

A short calculation shows that the strain invariants are

I, = 22en 1A% ang I, ="

Zeontcn . (1.11.2)

Thus, a small amount of shear k produces no first-order change in
the invariants, or no first-order change in the principal stretches.
The small shear merely rotates the stress fileld already present.

Let A be the initial area (before mashing) of a face

z=const., let F be the total normal force on it, and let S be the

total shearing force. Then,

Fax + S(Adk) = AdW . (1.11.3)

When k=0, the force F is

F = A(x-x‘z)(zwl+x‘lzw2) . (1.11.4)
For any k , the shearing force S is
S = A(2W1+A_12W2)AK . (1.11.5)

Hence, the apparent shear modulus S/Ak 1s given at k=0 by

= F__§_ ) (1.11.6)
=0 A(1-277)

S_
Ax
K
If the original force and deformation are known, the modulus is
known, independent of any knowledge of the form of W.
The same effect governs the torsional modulus of an initially

stretched rod. With a deformation of the form
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1/2

r=) "R, 8 =0+1AZ , z =1L, (1.11.7)

the invariants have the form (1.11.2), with k =tr = TA'l/zR:

e la(m)?, 1, =272 )2

I, =2 5

1 +2)+ (1R

. (1.11.8)

The extending force F and twisting moment M satisfy
Ro
FdA + M(AdT) = d I 2TWR dR . (1.11.9)
)

Since W 1is independent of R when 1=0, the force is
. nl -2 -1
F = mR (A=) )(2W +a772w,) (1.11.10)

when there is no twist., Similarly, the torsional modulus at

=0 is
R
0 2 ll
M _2m [ W =1 -1
=5 J 32 R4dR = 3 Ro(2w1+x 2w2) (1.11.11)
o]
Thus, -
2
REF
g% = ___9~:§_ . (1.11.12)
2(A=1"°)
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2. Viscoelastic Flow

The solution of viscoelastic flow problems is complicated by
the lack of any single, simple form of constitutive equation that
will describe all of the material behavior that is easy to observe,
The reason is not difficult to find. It is not entirely a matter
of our ignorance, although there is much that we do not know about
viscoelastic properties. The real difficulty is inherent in the
1dea of a viscoelastic fluid. We call a material a fluld if it
will flow under easily accessible experimental conditions, and
call it elastic i1f it shows solid-1like behavior under other,
equally accessible, conditions. There is a natural desire to

describe all of the behavior that is easy to observe within one

equation, and an understandable hope that this equation should turn
out to be reasonably simple. These aims are contradictory when

we can observe large elastic deformations and steady shearing flows
in the same material.

There are various tractably simple forms of stress-deformation
relations, each valid in some specified range of flow conditions.
These narrow-range descriptions can be viewed as approximations to
the ideal omnibus equation that would describe every aspect of the
material's behavior. Determining whichapproximation is relevant
in a given problem is an integral part of the process of solving
the problem.

2.1. Simplest Properties of Viscoelastic Fluids

A fluid is called viscoelastic 1f it exhibits elasticity in

shear. Suppose that a thin (inertialess) layer of fluid is sheared
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instantaneously by the amount k¢ and then held motionless. Accord-
ing to the Navier-Stokes (Newtonian) approximation, the shearing
stress o required to do this would vary in time in proportion to
k'(t) = k8(t), being enormously large at the instant of shearing
but relaxing to zero immediately. Under the elastic approximation,
o(t) rises to some value depending on k and then remains constant,
never relaxing at all. In viscoelasticity theory we recognize that
the stress actually has an intermediate kind of time behavior.
For small k, the stress has the form o(t) = xpu(t). The stress-
relaxation modulus u(t) may rise to a very large value at t=0, but
it dies out to negligible values within some time of order T, say.
If times as short as T are not easily accessible to observation,
we are content with the Newtonlan approximation; if T is a time
too long to wait, we call the material elastic. We recognize
viscoelastic behavior when T has a convenient size such as one
second.

If the amount of shear is varied a little as time
progresses, we can approximate the shearing stress by a super-

position of the stresses due to each elementary step dk(t):
t
o(t) = j L(b-t)de(t") . (2.1.1)

- 00

This is the one-dimensional form of the constitutive equation of
linear viscoelasticity theory.

This approximation is appliqable to steady simple shearing
k(t) = yt, if the amount of shear in one relaxation time, YT, is

small, The stress is ¢ = noYs this is the Newtonlan approximation,
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The viscosity coefficient is
Ny = J u(tlate . (2.1.2)
(0]
The mean relaxation time T can be defined by
-
n T = J p(t)t dat . (2.1.3)
o

In the case of a variable shearing, «'(t) = y(t), the Newtonian
approximation is valid when yT is small and relatively constant
over intervals of the order of T.

In an oscillatory shearing k(t) = Ko exp(iwt), the linear
viscoelastic approximation is valid if Ko is small, regardless of
how large w may be. The stress 1s equal to n¥(w)k'(t) (real part),

where the complex viscosity n* is defined by

00

) = [ a0 -tnyw) L 200
o]

If wT is small, the viscosity is approximately

¥ = -
n N, inno . (2.1.5)
On the other hand, when wT is very large, the viscosity 1s
n¥ ~ u(0)/iw , (2.1.6)

and the response is approximately that of an elastic material,
o = u(0)k(t).
In steady shearing motions for which yT is not small, it

cannot be expected that the linear approximation will be valid.
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The stress is some non-linear function of the shear rate. For a
polymer melt or solution, the apparent viscosity n(y), equal to
o(y)/y , descends rapidly from 1ts zero shear rate value o toward
a much lower 1limiting value for large YT. The mean relaxation
time T can be estimated crudely from measurements of the apparent
viscosity function; the viscosity 1s relatively constant when the
rate of shear is below 1/T.

At the opposite extreme from steady shearing motion, we
can conslder sudden, large-amplitude shearing. At times small in
comparison to T, before any perceptible stress-relaxation has
taken place, the stress is some function of the amount of shear:

g = Kue(nz). The linear elastic shear modulus ue(O) is equal to

the value of the linear relaxation modulus u(t) at time zero

(see(2.1.6)).

2.2, Flow Diagnosis

To visualize the relations among the material properties
that have been mentioned and the regions of validity of various
approximations, i1t 1s useful to characterize flows in an over-
simplified way by the values of two dimensionless parameters, the
shear amplitude A and the frequency wT. Both are to be defined
only loosely. We plot these parameters on distorted scales so
that all values from zero to infinity He in a square (Fig. 1).

In problems of forced vibration, the meaning of the frequency
w 1s obvious. More generally, we use high wT to mean sudden

motions and low wT to mean smooth motions. The edge wT = = on the
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flow diagnosis diagram 1s the region of elastic response;
interpreting v as 1/to, where to is the total time of obser-
vation, the limiting case T/to = » is that in which there is

no stress relaxation within the period of observation. In this
domain, the parameter A stands for a typical amount of shear,
as estimated from boundary or initial conditions.

The edge A = 0 1s the domain of linear viscoelasticity
theory. Its intersection with the edge wT = » is the domain of
linear elasticity theory, and its intersection with the edge
wT = 0 is the domain of Newtonian (Navier-Stokes) fluid dynamics.

The edge wT = 0 corresponds to viscometric flows and
other absolutely steady shearing motions. On this edge, A is
equal to yT, the amount of shear in one relaxation time.

The interior region in which A is large and wT is
neither large nor small is an area of real ignorance. Flows
corresponding to such values are usually handled by optomistic
guess-work, based on extrapolations from the edges. However,
there is hope for the future. To every palr of values of A
and wT there corresponds some materially steady motion, and
some of these motions are accessible to observation in the

othogonal rheometer, a relatively recent invention (see Sec. 5).

2.3 Relative Strain Historles

Let's turn to some matters of notation that will
occasionally be needed for three-dimensional problems. Let x

be the position of a particle at a reference time t, and let
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1(s,t,x) be the position of that particle at time s. A fiber
cf fluld along dx at time t lies along dp at time s; the mapping
dp = F dx (2.3.1)

defines the deformation gradient F(s,t). F 1s also a function
of the particle x, but, with the understanding that we are deal-
ing with a Lagrangian description, we omit x to save writing.

F defines the local rotation and stretching of fibers.
To get a measure of stretching alone, we observe that

T

dp-dp = dx+F'F dx (2.3.2)
and define the strain by
G(s,t) = F1(s,t)F(s,t). (2.3.3)

In problems in which the strain does not change much
over an interval of the order of T preceding the reference time
t, it may be possible to approximate the strain history by a

few terms of its expansion in powers of s-t:

6(s,t) = I3 A (£)(s-0)". (2.3.4)
The derivatives,
Dn
A (t) = I~ 6(s,t) g (2.3.5)

are called the Rivlin-Ericksen tensors. Ao is I, the identity,
and A, 1s twice the classical strain-rate tensor. The higher
derivatives can be calculated, in terms of the velocity u, from

the recursion relation

(n#1) _ D p(n) y 4(0)y (0], (2.3.6)

Aty 7 F e Py ik Y5 b Ak Yt

The operation giving An+ from én is called Oldroyd differentiation.

1
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2.4 Linear Viscoelastic Approximation

In the linear viscoelastic approximation, the stress

has the form t
o= -pL+ f u(e-s)2 (s, 0)as. (2.4.1)

We assume that the fluid is incompressible; p is the reaction
pressure. The strain history is non-linear in the velocity, so
this approximation includes terms that are negligible when the
approximation is valid at all. However, precisely which terms
are negligible depends on the problem, and it is not always
immediately obvious.

Walters has used this equation more than anyone else,
I believe. His analysis of the balance rheometer [6], with
Joﬁes, is a recent application of 1it.

As an exercise, consider steady simple shearing motion,

with velocity u = yyi. Then, in quick order, we obtaln

p(s,t,x) = x + (s-t)yiy, (2.4.2)
E(S,t,.)_() = l + (S—t)Yj;J_, (2-"‘-3)
G(s,t,x) = I + (s-t) 2Y2
G(s,t,x) = I+ (s=t)y(1J+j1) + (s-t)"Y ]
= I+ (s-t)A, + 3(s-1)°h,, (2.4.4)
Boa(s,6,0) = &) + (s-t)Ay, (2.4.5)

and, with the definitions of LS and T given earlier,
g =-pl tn Ay - n Thy. (2.4.6)

Notice the peculiarity that although the acceleration is zero,

the straln-acceleration A, 1s not.
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Now, the term TA, is of order YT in comparison to Ays
and so it is negligible when the linear approximation is valid.
As we shall see later (Sec. Y4), (2.4.6) does not correctly ac-
count for all second-order terms; a term proportional to Ai is
also needed. Thus, to the extent that (2.4.6) is valid, the

correct expression for the stress is the Navier-Stokes approxi-

mation: g = -pL + nA. (2.4.7)

As a second example, consider the plane steady motion

with velocity u = Nx, where

1=

= (i1 - 3) + w(ji - 1)) (2.4.8)

Being unused to Lagrangian fluid dynamics, and assuming too much
from the result of the preceding exercise, I would have guessed
that the strain-rate ¢ should be small in comparison to 1/T in
order for the linear viscoelastic approximation to be valid,
and that 1t would reduce to the Navier-Stokes equation again.
In fact, € can be arbitrarily large provided that w is still
larger, and the stress is then nothing like what the Navier-
Stokes approximation would give.

To see why, it is necessary (or rather, sufficient)

to carry out the computation of G. From

.

pi,A = ui,ij,A’ or F(s,t) = NF(s,t), (2.4.9)

with the Initlal condition F(t,t) = 1 we obtain
F(s,t) = e(S-t)E = Zﬁy(S-t)nEﬁ. (2.4.10)

Since
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32 = _(w2 - 52)(3; + 3 = -925 (say) (2.4.11)

it follows that

g2n - (_1)n 2n 2n+l - (_l)nﬂ2n+1

QA and N (N/@). (2.4.12)

The case N? = I is an exception. Hence,

F(s,t) = kk + A cos @(s-t) + (N/@)sin a(s-t). (2.4.13)
Thus,

G(s,t) = kk + A cos? a(s-t) + (H?N/ﬂ)sinz a(s-t)

+ Q_l(ﬂfﬂ?)sin Q(s-t)cos Q(s-t). (2.4.14)

We see that G is close to I at all times, which is suf-
ficient for the linear approximation to be valid, if e/w is small.

In that case, by neglecting terms of order (E/w)2 we obtain Q@ = w

and
NIN/e% = 4 - (2e/w)(1y + J1). (2.4.15)
Then,
G(s,t) = I ~ (e/w)(if + J1)[1 - cos 2u(s-t)]
and + (e/w) (i1 - JJ)sin 2u(s-t), (2.4.16)

D a(s,t) = 2e(1f + j1)sin 2u(t-s)

+ 2e(41 - J})cos 2u(t-s). (2.4.17)

By using this expression in (2.4.1) and recalling the

definition (2.1.4) of the complex viscosity, we obtain
g = -pL + 2e(1] + J1)ny(20) + 2e(11 = 33)n (20). (2.4.18)

The result is surprising in many ways. Flrst, the

linear approximation is valid even for arbitrarily large values
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of the strain-rate, provided that it is small in comparison to
the vorticity. Second, the Newtonian approximation is nqt
necessarily valid even when €T 1s small; we recover the Navier-
Stokes equation only if wT 1s also small. Third, the stress
depends on the vorticity, and in the oddest conceivable way,
wrapped up inside some highly non-linear functions. Fourth,
although the flow 1s absolutely steady in every usual sense,
the relevant material properties are ones that we think of in
connection with oscillatory motions. The explanation is simple
enough. When €/w is small, the flow has elliptical, nearly
circular streamlines. Radial fibers stretch and contract al-
ternately, twice in each revolution. So far as such a fiber
1s concerned, the motion is indeed a small oscillation.

For any values of ¢ and w, the stress components must
be time-independent functions of ¢ and w, since there 1s nothing
else for the stress to depend upon, These motions are materially
steady (Sec. 5).

They are also controllable flows, which satisfy the
momentum equation no matter what the stress components may turn
out to be. Here, this is true because the extra stress (pro-
duced by the deformation) 1is constant in space, so its divergence
vanishes trivially; and, the inertial term p(B'Z)E is pgzg, and
§2 is symmetric, so this can be balanced by the gradient of a

reaction pressure,

p = -(p/2)x.N%%. (2.4.19)
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3. Viscometric Flow

Flows in which each material element undergoes steady
uniaxial shearing are called viscometric. They are particu-
larly simple to discuss because there are no transient effects
of stress-relaxation, the stress having reached a steady state.
The stress response 1s completely characterized by the response
in plane steady simple shearing motion, one of the simplest
concelvable flows.

3.1 Slip Surfaces, Shear Axes, and Shear Rate

Let us first consider some kinematically admissible ex-
amples of viscometric flow, without regard to their dynamical
admissibility. All viscometric flows can be visualized as the
relative sliding motion of a sheaf of inextensible material
surfaces, which we call slip surfaces. In the more important
cases, each slip surface moves as 1if it were rigid. The simpler
cases are steady motions with straight, circular, or helical
streamlines. In these cases, each slip surface slides tangential-

ly and always occuples the same locus in space.

In the case of steady parallel flows, u = u(x,y)k, the

slip surfaces are the general cylinders u(x,y) = constant. The

flow is a relative sliding motion of these cylinders. The di-
rection of relative sliding, which we call a, coincides with the
direction of motion in these cases. The direction normal to the
slip surfaces, which we call b, 1is parallel to Vu. We add a
third unit vector ¢ so that a, b, and ¢ form an orthonormal
system at each particle, and call these the shear axes. The

shear rate Yis equal to |Vu|. The velocity gradient has the
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form Yu = Vu k =yba. At any glven particle, y 1s constant in
time, and the motion in the vicinity of that particle looks
like a steady plane shearing motion.

Flows with velocity fields of the form
u=u(z)i + v(z)] (3.1.1)

have parallel plane slip surfaces z = constant moving in skew
directions. In these flows b = k. The direction of relative

sliding, a, and the shear rate, Y, are given together by
ya = u'(z2)i + v'(2)]. (3.1.2)

Then Vu = Yba. Since y is a function of z, it is constant in
time at each particle. Notice that the direction of relative
sliding is not the same as the direction of motion.

In steady flows with coaxial circular streamlines, for
which u = ru(r,z)i,, the slip surfaces are the surfaces of
constant angular velocity w. They form a nested set of surfaces
of revolution, each one rotating as if it were rigid. The
direction of relative sliding is the azimuthal direction, as 10,
and b is parallel to Vw. The velocity gradient 1is

Ju = rleig + (i iy - igip)' (3.1.3)

The second term corresponds to rigid rotation. The first term
has the form yba if we identify y as r|Vuw|. Then y is constant
in time at each particle, and the motion in the vicinity of that
particle, as seen from the rotating axes a, b, ¢, is a steady

simple shearing motion.
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Slip surfaces that are coaxial circular cylinders can
translate in the axial direction and rotate about it simultane-

ously, producing a motion with helical streamlines:
u = ru(r)ig + u(r)i . (3.1.4)
The direction b 1s radial. Since the velocity gradient is

Tu= 1 (re'ig + w'i) 4 (L dg - 1), (3.1.5)

by identifying the first term as yba we find that
- 1
va = ro'(r)ig + u'(r)i,. (3.1.6)

There is another class of viscometric flows with helical
streamlines, which we call helicoidal after the shapes of their

slip surfaces. They have velocity fields of the form

u = (r'_i_g + clz)m(r,z - ¢8). (3.1.7)

Pearson was the first person who ever mentioned such a flow to
me. In these flows, all streamlines have the same rise per turn,
2nc. The slip surfaces are the helicolds w = constant, so b 1s
parallel to Yw. The direction of relative sliding 1s parallel
to u. To find the shear rate, we first write out the velocity

gradient:

Yu = YW(PEQ + ciz) + “(ipig - lgip)' (3.1.8)

The first term has the form yba 1if we take 72 to be

v = (r% + c2)lw-ﬁw . (3.1.9)

We verify that this 1s constant along streamlines.
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The preceding examples by no means exhaust all of the
kinematically admissible possibilities [7], but they include

all of the physically more important cases.

3.2 Stress

In a steady simple shearing motion u = vyi, the stress
components are functions of y because they have nothing else to
depend upon. In saying that the motion is steady, I mean that
the shear rate y has been constant for so long that the stress
has reached a steady state.

Assuming that the fluid is isotropic, it follows from
symmetry that the zx and zy components of stress must be zero.
The shearing stress °xy 1s some odd function of y, and the normal
stress differences are even functions of y that vanish if there

has never been any motion:

o, 2,2 2,2
%y = m(y%), S%x = gy T Y Nl(Y )s Opy = Oz = Y Ny (v%).

(3.2.1)
The apparent viscosity n and the normal stress coefficients Nl
and N2 are called the viscometric functions. In polymer solutions,
n and Nl have roughly the same form. If there were a complete
analogy with elasticity theory, they would differ only by a
constant of proportionality. Again by analogy with elasticity,
I expect that N2 1s small in comparison to N1 and that, with the
sign convention shown, N2 is positive. Thus, in addition to the

shearing stress, there are normal stresses that are roughly

equivalent to an extra tension in the direction of shearing
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(the g—direction). At high shear rates, this extra tension
can be much larger than the shearing stress.

In simple shearing, the shear axes a, b, ¢ are the co-
ordinate axes i, j, k. The stress can be written all together

as

o = -pL + yn(gb + ba) + v (N -N,)aa - YN, Bb.  (3.2.2)
Here p is a reaction pressure; we consider only incompressible
fluids.

This expression for the stress is immediately applicable
to all of the more complicated shearing motions discussed pre-
viously. For example, in the parallel motions u = u(x,y)k, for
which a = k and yb = Vu, the stress 1is

0= -pI + n(kVu + Vuk) + 1u~zu(Nl-N2)55 - NZZuzu. (3.2.3)

In the circular motions u = r”ig: for which a = 19 and yb = riu,

the stress is
g = -pL + rn(ig%u + Vuig) + rzgw-gw(Nl-N2)gggg
- N,rggmgu. (3.2.4)

The stress for all of the other cases can be written down just

as easily.

3.3 Controllable Flows

Of course, whether or not such a stress field satisfies
the momentum equation depends on exactly what the velocity is,

and what forms the viscometric functions have. There are a
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very few special cases in which the velocity field can be fully
specified in advance, and the momentum equation is then satisfied
trivially, no matter what forms the viscometric functions may
have. The prototype u=yyl 1s such a case; the stress produced
by this motion is constant in space, if the reaction pressure

is constant, so the momentum equation is automatically satisfied.

We call such flows completely controllable.

Completely controllable flows would be ideal for use
in the experimental determination of the viscometric functions,
since the analysis of data would not be complicated by a simul-
taneous determination of an unknown velocity field. They would
be, if 1t were not for the fact that all completely controllable
flows involve some practical impossibility such as infinite parallel
plates.

All comp}etely controllable flows are known [7,8,9].
One is the flow u = cOEZ corresponding to shearing between non-
parallel plates, one fixed and the other moving parallel to the
line where they would intersect. Another is the circular flow
with angular velocity Y Ln(r/ro), for which the shear rate ru'
is uniform. This flow requires an azimuthal pressure gradient,
so 1t cannot be maintained in a full circular annulus. And that's
all there are, aside from motions obtained by superposing global
rigid motions on the preceding ones.

There are a few flows that would be completely con-
trollable if it were not for inertial effects. This is true

of the special helicoidal flows that have the form
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u = (mo/h)(z—cg)(r_i_g + clz)- (3.3.1)

The degenerate case ¢ = 0 is the well known torsional flow pro-
duced by a rotating disc viscometer (approximately). The slip
surfaces are the parallel planes z = constant, rotating with
angular velocity woz/h about the z-axis. Centrifugal force is
suppressed by reducing the gap h between fixed plate and ro-
tating disec.

The only other flow that is completely controllable
with neglect of inertia is a wierd case with slip surfaces that
curl up until they overlap; the motion is not steady with respect
to any frame of reference, although the motion near each particle
is steady with respect to the shear axes at that particle. This
case was turned up by working from a strict, legalistic definition

of controllability [7,8].

3.4 Partially Controllable Flows

The flows that are actually used for measuring the

viscometric functlions are partially controllable, either exactly

or to a good approximation. Partially controllable flows are
those in which normal stress differences do not influence the
motion. The velocity field depends on the form of the apparent
viscosity function, but the flow is so highly symmetrical that
normal stresses are automatically equilibrated by the reaction

pressure, whatever forms the normal stress functions may have.

As-an example, consider plane Poiseuille flow, the

flow in a channel with walls at y = +L, produced by a pressure
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gradient 3o /3x = G. With u = u(y)i, the momentum equation

is satisfied i1f the reaction pressure has the form

p = -Gx - y2N2 + const., (3.4.1)

where y = u'(y), and if the shearing stress balances the

pressure gradient:
yn = -Gy. (3.4.2)

The velocity 1s found from the latter equation; the former
merely gives p when u 1s already known. Thus, the motion is
partially controllable; the veloclty field is not affected by
normal stress differences.

Let's complete this problem. Let y = r'(o) be the
inverse of ¢ = yn(yz); r(o) is odd in o. Then (3.4.2) gives

u'(y) =y = -r(@y), (3.4.3)

and an integration, with u(-L) = 0, glves u(y). The flux is of

interest:

O
n

L L L
I udy = yu|_L - [ yu' dy
=L -L

L 2 GL
I yr(ay)dy =(2/G%) f or(o)do. (3.4.4)
L 0

This is the analog, for channel flow, of the Weissenberg-
Rabinowitsch-Mooney formula for pipe flow, which dates from
around 1930. It shows that G2Q is a function of GL, and
plotting data in this way will show what function I' (o), or
ultimately n, may be.

People have been measuring apparent viscosities for

a long time, without always being aware of the presence of
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normal stress differences. It was possible to interpret ex-
perimental data correctly, without knowing about normal stresses,
because the flows used in shear viscosity measurements are,
ordinarily, partially controllable,

Poiseuille and Couette flows are partially controll-
able, and so are the helical flows with coaxial circular cylindri-
cal slip surfaces that one might produce in the annular region
between two cylinders, with or without an axial pressure gradient.
The only other partially controllable flows are those with parallel
plane slip surfaces moving in skew directions, which can be re-
garded as small-gap approximations to motions between cylinders.
The flow in a cone-and-plate viscometer is partially controll-
able to the same degree of approximation that the shear rate is

uniform, but not exactly.

3.5 Nearly Viscometric Flows

If a viscometric flow is not at least partially con-
trollable, then it is not likely to be dynamically admissible
at all. The form of the apparent viscosity function determines
the velocity field; then either the normal stresses turn out
to be equilibrated automatically, or, by some curious accident
the forms of the normal stress functions might be such that
equilibrium occurs. However, the latter possibility is remote.

Thus, if we were interested only in exact solutions,
the theory of viscometric flow would be only a neat correlation

of data from various kinds of viscometers. But, of course, we

hope and expect that viscometric data can be used predictively
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in the approximate analysis of flows that are not exactly
viscometric. Let me discuss a few examples in qualitative

terms.

3.6 Tube Flows

Parallel flows are kinematically admissible in tube
flow problems, but they are partially controllable only if the
tube cross-section 1s cireular (or annular). Unequilibrated
normal stresses should produce transverse flow. The normal
stress difference that is relevant is 72N2. If this were zero,
rectilinear flow would be dynamically admissible. The assumption
N2 = 0 is called the Weissenberg hypothesis. Now, in fact, no
one has ever seen any transverse flow, so far as I know. We
might regard this as a clear confirmation of the Welssenberg
hypothesis, and thus be led to an essential simplification in
the form of the viscometric constitutive equation. We might,
if we belleved too much in the relevance of exact solutions.

Let us suppose that the motion is rectilinear, u =
u(x,y)g, and see where the inconsistency arises. The stress

would have the form (3.2.3). The momentum equation, with no

acceleration, becomes
¥p = ¥-(n¥u)k - 9+ (N,7uvu). (3.6.1)

For the right-hand member to be irrotational, as the left-hand

member is, the z component must be constant:

v-(n7u) = -G. (3.6.2)
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With u = 0 on the tube wall, this determines u. Then,

p = -Gz + P(x,y), (3.6.3)

where P must satisfy

9P = -v-(N,7uvu)
= =7 (N,7u)%u - N,yTy. (3.6.4)
Thus,
Y
p = -Gz - [O N,(yyay + Py(x,y),  (3.6.5)

where P1 must satisfy

9P, = =9 (N,Tu)Tu. (3.6.6)

1

Since the right-hand side is parallel to Vu, the surfaces Pl

constant must coincide with surfaces u = constant. Thus, P1

Pl(u), and
Pi(u) = -¥-(N,7u). (3.6.7)

Now, unless the right-hand side is also constant over surfaces
u = constant, we have a contradiction. An easy way out is to
suppose that N2 = 0, but it is not the only way.

Suppose that N2 is roughly proportional to n. Whether
it is or not, we can write N2 = Tzn(y2) + n(y2), and choose the
time constant T2 so as to make n(yz) vanish at the largest shear
rate involved. Then neglecting n, and recalling that u satisfies

(3.6.2), we obtain

Pi(u) = -T,¥-(nTu) = GT,. (3.6.8)

2
Thus,
Y

N2(Y2)Y dy + GTEu(x,y) + const. (3.6.9)
0

p = -Gz - J
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Only the error n(yz) is left over to produce transverse flow.
This should be small in comparison to N2, which, in turn, is
probably small in comparison to Nl' The extra tension along
streamlines, ygNl, will tend to hold them straight. Consequently,
it should not be surprising if the transverse flow were too small

to notice.
3.7 Flow in Tilted Troughs

As a variation on the preceding problem, consider the
flow under gravity down a trough inclined at an angle @ to the
horizontal. In Newtonian flow, the free surface conditions are
satisfied on a flat free surface, y = 0, say, and the flow is
the same as in a tube formed from the trough and its mirror
image in the free surface (as Stokes observed, in the first
paper on viscous flow).

We can try the same trick for viscoelastic flow. We
take the trough flow to be half of the flow in a tube symmetrical
in the plane y = 0. The axial pressure gradient G is replaced
by pg sin a, and the pressure (3.6.9) is modified by deleting
-Gz and adding a hydrostatic part - pgy cos a (taking y negative

in the fluid):
p = -ogy cos a + pgTy(sin «)ulx,y)

v
- JON2(72)Y dy + const. (3.7.1)

In the case of a trough of semi-circular cross-section, the full
Poiseuille flow is partially controllable, and the approximate
term involving T2 can be replaced by an exact expression. The

same is true for a deep channel with sides at x = L, say. In

the latter tase, the pressure 1is
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p = -pgy CcOS & - N272 + const. (3.7.2)

However, this is not exact for flow in a trough in
any case, because the condition of constant pressure on the
free surface is not met. On y = 0, the normal direction is

the ¢ - dlrection, so the normal stress °yy 1s equal to -p.

This is constant over the surface y = 0 only if N2 =0,

The unequilibrated normal stress will cause the free
surface to warp until the extra weight of fluid above y = 0
supplies the extra normal stress. A first approximation to the
shape of the warped surface 1is obtalned by setting p = constant

in (3.7.2) (for deep channels):
y = _(N2y2/pg cos a) + const. (3.7.3)

The solution 1s only approximate because on this new free surface,
the tangential stress i1s not exactly zero.

R. I. Tanner told me about these results, and also
showed me photographs of the warped free surface. For the fluid
involved, polyisobutylene in cetane, there is a pronounced up-
ward bulge in the free surface. With y zero at the center and
large at the walls, (3.7.3) shows that the free surface stands
highest at the center if N2 is positive. For that one fluid,

at least, it is visibly evident that N, is positive.

3.8 Anti-Centrifugal Effects

Circular viscometric flows are kinematically admissible

in problems involving steady rotation of an immersed body of
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revolution, but usually not exactly dynamically admissible.
Within Newtonlian fluid dynamics, departures from circular
flow are caused by centrifugal force. Viscoelastic fluids can
show striking anti-centrifugal effects, in which the direction
of transverse flow 1s directly opposite to the direction that
would be produced by centrifugal force.

The extra tension along the direction of shearing
causes the (nearly) circular streamlines to act as 1if they
were stretched fibers, with tension highest where the shear
rate is largest. This tension causes the fibers to contract,
producing radially inward motion where the shear rate is largest.

For example, in the flow produced by a rotating sphere,
centrifugal force would cause a transverse flow outward at the
equator, where the speed is high, and inward at the poles. How-
ever, the shear rate 1s also highest at the equator, and thus so
is the extra tension in azimuthal circles. The tendency for such
fibers to contract can pfoduce inward motion in the equatorial
plane, with outward motion at the poles. Giesekus [10] has made
beautiful pictures of this effect, for cones as well as spheres,
by injJecting dye with a hypodermic. A recent paper by Griffiths,
Jones, and Walters [11] analyzes this effect in the case of a
rotating disec.

The flow produced by a rotating cylinder would be a
partially controllable viscometric flow in the absence of a
free surface. With a free surface, and a vertical rotating

cylinder, the extra tension forces fluid upward near the rod,
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producing the well known climbing effect. This, and other
effects that can be interpreted in terms of an extra tension
in the direction of shearing, first became well known through

the work of Weissenberg.

3.9 Laminar Drag Reduction

In flow in curved pipes, circular or helicoidal visco-
metric flows are kinematically admissible. Unlike the case with
straight pipes, in which the streamlines are straight in the
viscometric approximation, the extra tension along the direction
of shearing produces a net sideways force when the pipe is curved.
Whether as a centrifugal (inertial) effect or an anti-centrifugal
(viscoelastic) effect, there is a pronounced transverse flow.

This produces a very interesting effect, which has been
observed and explained by Barnes and Walters [12]. The trans-
verse flow decreases the apparent vlscosity by increasing the
over-all shear rate. Hence, the pressure gradient that is re-
quired in order to produce a given flux is lower than it would
be if there were no transverse flow; under the right circumstances
it 1s easier to pump fluid through a curved pipe than through a
straight pipe.

At first this sounds impossible, because the higher
shear rate produced by the transverse flow necessarily lmplies
larger energy dissipation, even if the viscosity is lowered.
However, the rate of work is GQ, where Q is the flux and G is
the mean axial pressure gradient, so an increase of Q at flxed

G automatically supplies the extra work.
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3.10 Boundary Layers

Although I have been speaking of global viscometric
flows, the viscometric character of a strain history is a
local property of the history of a material element, and it
is possible for some particles in a flow to be undergoing visco-
metric motion even though others are not.

For example, in any steady flow with no slip at solid
boundaries, the flow at each boundary point is exactly visco-
metric. For, the tangential components of the gradient of
velocity are zero, and thus Vu = n(n-V)u at the boundary, n
being the normal to the boundary. This has the viscometric
form yba with b = n and ya = (n-V)u. The shear rate at a bound-
ary particle never changes because the particle stays put. Thus,
whatever the flow may be like away from the boundary, provided
that 1t is steady, the stress at the boundary is given exactly

by the viscometric constitutive equation:

o = -pI + n(n du/dn + du/an n)

+ (Nl—Nz)(ag/an)(aE/an) - N2[39/8n|2 nn. (3.10.1)

Since the flow in a boundary layer is nearly a steady
parallel flow, we can presume that the stress will be nearly
of the viscometric form throughout the boundary layer, as it
is, exactly, at the wall. Certain qualitative effects are
easy to see, If the apparent viscosity goes down as the shear
rate goes up, the boundary layer will be thinner than in the

Newtonian approximatlon, which uses the apparent viscosity at
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zero shear rate. The "pressure" that is constant through the
thickness 1s p + 72N2, and the "pressure" whose variation along
the boundary direction drives the flow is p - y2(N1—N2). The
former is the outside pressure D,e The latter, which is the
forcing term, is then P, - Y2N1, the outside pressure modified
by the extra tension along the direction of shearing. Since
Y2Nl can be very large, its variation should be taken into
account. The affect of an adverse pressure gradient is magni-
fied by this extra tension, and it appears that separation

should occur sooner than predicted by the Newtonian approximation.

3.11 Analytical Treatment of Nearly Viscometric Flows

Flows that are nearly viscometric can be treated by
perturbation methods. However, there are some complications
that should be mentioned.

The first is that if the velocity field is not exactly
viscometric, the shear axes and shear rate are not well defined.
To get around this difficulty, we first notice that in flows
that are exactly viscometric, the first two Rivlin-Ericksen
tensors are

A; = y(ab + ba) and A, = 272h9 (3.11.1)

-1 =2
(and all others vanish). Then, also,

aa +bb) and y° = L or gl (3.11.2)

2
( 2

2 _
él-v
Consequently, the stress is

= 1 2
_q_ = 'p£ + nél = § Nlé2 + (Nl—N2)A1’ (3-11-3)
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with 72 equal to half of tr 52 For a flow that 1s not visco-

1°
metric, we can still calculate él and 52 unambiguously, and then
use this expression for the stress.

This procedure is rather arbitrary. Even if we stipulate
that an approximation in terms of A, and A, alone will be tried,
and that i1t must reduce to the exact stress when the flow is
viscometric,(3.11.3) is far from being the only possible choice.

However, (3.11.3) has been used very widely, although
under a different interpretation. Later we will consider the
second-order slow-motion approximation for perturbations on
Newtonian flow. It has the form (3.11.3), with constant coef-
ficlents (the values of the viscometric functions at zero shear
rate). Solutions based on the second-order approximation often
agree well with observations even when there is not the least
doubt that the experimental conditions are far outside the range
in which the second-order approximation could be valid.

Apparently, what happens is that if the flow is actu-
ally nearly viscometric, the relation (3.11.3) is a good approxi-
mation to the stress, and not bad even when the viscometric
functions are treated as constants. Of course, the values used
for these constants should be the values of the viscometric
functions at a shear rate appropriate to the problem; the values
at the highest shear rate involved would give good accuracy where
accuracy is most important. Giesekus [10] has used this kind of
extrapolation effectively to explain even rather complicated

flows.
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More accurate treatment of nearly viscometric flows
involves the consideration of material properties not embodied
in the viscometric functions, since transient effects of stress
relaxation and steady effects of blaxlal or triaxial shearing,
or stretching motions, can come into play. For example, even
in uniaxial shearing at a nearly constant rate y(t), the shearing

stress is of the form

a(t) = Y(t)n(YZ(t)) + Jt u[72(t); t-s]y(t-s) - y(¢t)] ds,

- (3.11.4)
to first order in the difference history y(t-s) - y(t). Notice
that the perturbation stress relaxation modulus is a function
of the shear rate for the main motion. Indeed, (3.11.4) is not

even internally consistent unless
d(yn)/dy = I u(Yz;t)dt. (3.11.5)
0

Since the left-hand member is a function of y, so is u. The
fact that u depends on y is borne out by experimental evidence
[13-17]. The generalization of (3.11.4) to three-dimensional
form is fairly complicated [18,19]. So far, the relatively
little work that has been done on this more accurate treat-
ment of nearly viscometric flow problems has been directed
toward experimental determination of the relaxation moduli,

or has foundered on the lack of data.
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4, Slow Viscoelastic Flow

In a motion with characteristic velocity U and charac-
teristic length L, shear rates are of the order of U/L, and the
amount of shear in time T is of the order of A = TU/L. To
estimate T, suppose that it is appropriate to estimate the
jerkiness of the motion in terms of a frequency w -~ D/Dt, and
suppose that the material derivative of any function is of the
order of U/L in comparison to that function. Then for a charac-
teristic frequency oT we obtain TU/L again.

We use the term slow viscoelastic flow for flows in

which both A and wT are small. Since the slowness is with re-
spect to a time scale defined by the material, the motion might
be extremely rapid by some other standard. In particular, the
Reynolds number may be either large or small in a slow visco-
elastic flow. Boundary-layer flow of a material with a very
short relaxation time, such as air or water (T - lO"8 sec) 1is

a slow viscoelastic flow. The beginning of a creeping flow
(zero Reynolds number) is not, because the difference between

motion and no motion is too jerky.

k.1 Stress

The stress at a given time is mainly determined by
the strain history over an immediately preceding interval of
the order of the mean relaxatidn time T. Suppose that the
motion is smooth enough that the strain at time t-s relative
to the state at time t can be represented by a Taylor series

in the lag s:



- 107 -

A, C, Pipkin

6(t-s,8) = £ =r(-s)" 4 (t). (4.1.1)

If An is of order (U/L)n, then the n-th term of the series is
of order (TU/L)n, over the interval that matters. If TU/L is
small, the strain history is approximately determined, over
this interval, by Al alone. It is determined a 1little more
exactly by 51 and 52 together, and so on. Consequently, the
same 1s true of the stress.
The stress, ¢ = -pl + S, is in part a reaction to the

constraint of incompressibllity. The extra stress S is the
part to be described by a constitutive equation. We assume

that S can be expanded as

S=35,+8,+8,+ (4.1.2)

1 2 30 0
where § is of order (Tu/L)" in the parameter. The terms of
various orders that are smooth, isotropic functions of the

n e
tensors An ar

0(U/L): Ay,

0 /L%): Ay, AT, (4.1.3)
3,13y, 2

0(U=/L7): Ay A tr Al’ AjA, + AR,

and so on, to list only those that cannot be eliminated by
using algebraic identities or the constraint condition. Hence,
for §1 we take

81 = nAp (4.1.4)

the Navier-Stokes arproximation. 82 has the form
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2

l]. (4.1.5)

= - *
Sy = ny[-TA, + (T + T*H)A

=2
The coefficients LS and nOT are the zeroth and first mo-

ments of the linear stress-relaxation modulus, as defined earlier.

The coefficient of éi is written in such a curious way because

it is convenient later. The coefficients appearing so far are

related to the viscometric functions by
= = * = -
o n(0), 2nOT Nl(O), no(T+T ) Nl(O) NZ(O)' (4.1.6)

Since N2 is probably positive and smaller than Nl’ T*# is prob-
ably positive and a little smaller than T.

In the third order, the coefficient of 33 is propor-
tional to the second moment of the linear stress-relaxation
modulus. If the other two third-order terms are recombined
as their sum and difference, the coefficient of the sum is
proportional to the value of dn(yz)/d(yz) at y = 0. The co-
efficient of the difference is a material property that is not
related either to the linear stress-relaxation modulus or to

the viscometric functions.

4.2 Solution of Problems

. The expression of the stress as, effectively, a power
series in the parameter TU/L carries with it a method of solution
of flow problems that is not only convenient but obligatory.
Solutions must be obtained by ordinary perturbation methods,
so far as the parameter TU/L is concerned, beginning with

Newtonlan flow as the lowest approximation. Higher-order
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approximations are obtained by iteration or an equivalent
power-series expansion method.

To simplify the exposition, let us restrict attention
to creeping flow (zero Reynolds number). Then the equations

of motion are

veu=0 and ¥p = Div S. (4.2.1)
Let us write the velocity and pressure as

us=u tu, o and P=pp +pyt .y (4.2.2)

1
where the n-th term is of order n in the parameter TU/L. Then

vou, = 0, and the momentum equation yields

u =
Ypy = nVy =0,
= Div 8,(u,), (4.2.3)

= Div 8,(u;,u,) + Div §3(gl),

and so on. Here §2(gl) means §2, evaluated with the velocity
field uw), while 5,(u;,u,) stands for the third-order terms that
arise when S, is evaluated with u; tou,.

It might appear more elegant to truncate the approxi-
mation to S at some point and then solve the resulting equation
exactly, rather than by a boring perturbation procedure. Of
course, nothing would be gained in the way of accuracy by doing
this, but that is no objection. What is an objection to such
a procedure is that spurious solutions which are not perturba-
tions of Newtonian flow can arise. For motions that are not small

perturbations of Newtonian flow, the constitutive equations used
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here have no justification, and "solutions" that are far from
Newtonian are meaningless.

In spite of the fact that we must not stray far from
Newtonian flow, it is possible to find interesting results.
Second or third-order effects can be interesting if they are
qualitatively unlike Newtonian flow. For example, transverse
flows cdue to normal stress effects are interesting by theilr
existence, even when they are only small perturbations on the

main motion.

4.3 Tanner's Theorem

What i1s more surprising is that there are interesting,
even valuable, results to be obtained in cases in which the

Newtonian flow u, 1s still correct to second order, i.e. u, = 0

1 2 T 2
From (4.2.3) we see that this can be the case only when Div S,(u,)
is the gradient of a scalar, f, say. If it is, the second-order
momentum equation is satisfied by u, = 0 and P, = f.

Let me simplify the notation by writing u, = u, A, =4,

1 =1
and A, = B, with the understanding that A and B are evaluated

in terms of u (=u Then,

-

§,(u)) = =n T(B - A%) + n_T*A°. (4.3.1)

Whether or not §2(gl) is irrotational, the following
modification of a result essentially due to Tanner [20] is
useful:

Div (Q-Az) is irrotational whenever Div A is irro-

tational and ¥.u = 0. If P is the potential for Div A, so that
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Div A = VP, then

p1v(B - 4%) = v+ 1 44). (4.3.2)

Here y is the absolute shear rate, deflned by
2y¢ = tr A, (4.3.3)

The proof requires only a manipulation of the messy

expression for Div B. Since A and B are defined by

AiJ =y + Uy 4 (4.3.4)
and
B1J = DAiJ/Dt + Aikuk,j + Ajkuk,i s (4.3.5)
we obtain
B = D(A Dt + u, .A,., + (A, U
1,5 % DAgg, /08 * U ghiy it Rty p),
+ A u + A, U . 4.3.6
sed,t Ak, 1 (4.3.6)
The second and third terms combine to yield Div 52, if Veu=20
as assumed. The final term is equal to 1y2/2. With Div A = VP,

the first and fourth terms combine to give ¥ (DP/Dt). Rearrange-
ment yields (4.3.2).
In creeping flow, the potential P 1s pl/"o’ and the

second-order momentum equation takes the form
®1,
Dt

2

1 2 2. .
Wp, + T 5 NIy ) = n Wuy = n T¥ Div A", (4.3.7)

There are several important cases in which Div 52 is also

irrotational.
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4.4 Plane Flow

Plane flow is the simplest and broadest case. In
plane flow, A 1s essentially a 2 x 2 matrix, and since tr A =
0 (v.u=0) it follows that 52 reduces to an isotropic pressure
in the plane of flow:

2

A= v2(1 - k). (4.4.1)

Thus, Div 52 is equal to 172. Consequently, the second-order
momentum equation is satisfied if u, = 0 and

Dp

= 1 1 2
p2 = =T T + HO(T* -3 T)Y . (ll.lt.2)

As an application, consider a shearing flow over a
plane wall y = 0, and the disturbance that is produced in it by
a deep, narrow slot in the wall. Let x = 0 be the slot center-
line, and let x = +L, for y negative, be the walls of the slot.
We specify that the velocity 1s asymptotic to Yoy; far from
the slot mouth for y positive, and that the velocity approaches
zero deep in the slot.

First consider the Newtonian approximation. If the
Reynolds number defined by p(yoL)L/no is small, the creeping
flow approximation is applicable to the analysis of the dis-
turbance. Since creeping flow is reversible, the streamlines
are symmetrical about the slot axis x = 0., Thus, the y-component
of velocity, v, 1s an odd function of x, so v, Vex? and v__ all

yy
vanish on x = 0. From dpl/dy = novzv, we conclude that Py is
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constant along the slot axis. Thus, the pressure deep in the
slot, pl(O,-w), is the same as the undisturbed pressure
p, = pl(O,m). It follows that the undisturbed pressure can
be measured by measuring, instead, the pressure in the hole.
The error, an inertial effect, can be made as small as desired
by decreasing the hole width to such an extent that the creeping
flow approximation is good.

But now consider the second-order approximation. The
stress 1s

Dp
= 1 v - 1.2 e
9= -[py = T g~ * n(T* = 5T)Y"]L - n TB + n (T+T¥)A". (4.4.3)

Far from the slot, where the shearing motion is undisturbed and

Py = Puws the stress component oyy is

_ = _n _ 1 2
-p, = Ogy * Py - 3 noTyo . (4.b.y)
We write Py, for the undisturbed value of '°yy’ which is the un-
disturbed pressure of the fluid against the wall. The gauge

pressure Pg is the value of -oyy (or -o_.) deep in the slot.

XX

Since y = 0 and Py = Py there, we obtain pg = p,- Hence,

-p, = - 30Ty (4.4.5)

Y o'

g
The gauge reading 1s lower than the pressure that the fluid
would exert against the wall if no hole were present, and the

error 1s not diminished by making the hole smaller.

In terms of the normal stress coefficient Nl’ the
error 1s

Py =P, = - Ny (4.4.6)
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Although we have deduced this result only for y so small that

the limiting value Nl(O) can be used, it is found experimentally
that the error is still approximated well by -Nl(yg)yz/u at

large shear rates [21]. I mentioned earlier that the second-
order equation often gives results that are better than they
should be, if the flow 1s nearly viscometric; this is an example.

The connection of the pressure error with the extra
tension along the direction of shearing, leg, suggests a quali-
tative explanatim of the error, which Tanner [21] has pointed out.
Streamlines dip in slightly as they pass the mouth of the hole.
The extra tension, roughly along streamlines, exerts an upward
force that partly balances the downward thrust Py

Although the analysis was carried out for the simplest
possible geometry, of course the geometry of the exterior flow
has nothing to do with it. The disturbance is localized near
the mouth of the hole, and the shear rate that determines the
pressure error 1s the wall shear rate that would exist where
the hole is, if there were no hole. The error is, so to speak,

a property of the material, so it will be perfectly consistent
from one viscometer to another.

Since normal stress measurements are often made with
the use of pressure holes, and the measurements are always inter-
preted under the assumption that pg =Py for a small enough hole,
much of what we though we knew about normal stress differences
1s quantitatively inaccurate. The effect was only recently
discovered; suspicions were first raised by Broadbent, Kaye,

Lodge, and Vale [22].
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4,5 Parallel Flows

In connection with viscometric flows it was pointed
out that if N2 were a constant multiple of n, flow in tubes could
be rectilinear. In the second-order approximation both n and N2
are constant, so N2 is trivially a multiple of n. This is another
case in which Div 52 is irrotational and the Newtonian velocity
field is still accurate to second order. The approximation

(3.6.9) for the pressure becomes
- 1 2
p = -Gz - §(T-T*)(noy - 2Gu) + const. (4.5.1)

The normal thrust against the wall of the tube is

-negn = p - nondn + o MBn - n (T+T-A%, (4.5.2)

where n 1s the normal to the wall. This reduces to

-n-on = -Gz + %(T - T*)noY2 + const., (4.5.3)

where y is the Newtonian shear rate at the place considered.
The value of T-T* can be deduced from measurements of
the thrust at two places where the shear rates are different.

The difference of the undisturbed values 1s

_ 1 2 2
pul - pu2 = §(T-T*)HO(Y1 - Yz)’ (uns.u)

if z is the same at each place. If pressure holes are used, and
the pressure error is evaluated by using the plane flow result,

the different in gauge pressures will be
N A K (C F 7
Pg1 = Pg2 T Py1 ~ P2 T3 N1 T M2

1 2 2
- 50 Ty - vy (4.5.5)
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If the pressure-hole effect were not known, we would interpret
T*# as T*#-T, The error in interpretation of data could be quite
sizable. (See note below.)
4,6 Potential Flow

Bruce Caswell has pointed out to me that potential
flow is another case in which Div 52 is irrotational. With

2 2

u, = 74, and 726 = 0, then Div A° = 7y°. Since Div A is zero,

-1
its potential P can be taken to be zero as well. Then the second-
order pressure is

1

b, = = 3 0 (T - 2T%)y°, (4.6.1)

A reason for looking at this is to see whether or not the outside
pressure used in boundary-layer theory should be modified. The
first order pressure, given by Bernoulli's equation, is of order
pU2. Then pe/p1 is of the order of

n T(U/L)2

0 _1 TU
—UF-— = ﬁg L_ . (U.6.2)
p

Thus, even if we retain 0(TU/L) terms, we would omit p, as 0(1/Re).

Note added in proof: Kearsley [36] has considered the difference
between the undistgrbed pressure and the pressure deep in a slot

that is parallel to the directlion of flow. In this case, the tension
across the mouth of the slot, which produces the pressure error, is
caused by the second normal stress difference rather than the first.
The pressure error has the form (U.5.4), with station 1 deep in the
slot (whence Y, = 0) and station 2 at the slot mouth (where Y, is

approximately the wall shear rate in the absence of a slot).
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5. Materially Steady Motions

The history of motion of a material element is

materially steady if the velocity gradient is constant in time

at the particle considered. The axes with respect to which the
velocity gradient appears constant need not be the axes of an
inertial frame, nor need they be the same for different par-
ticleé. Viscometric flows are materially steady. In them,

the velocity gradient as viewed from the shear axis system has
the form Vu = yba, with y constant in time. Couette flow is an
example in which the shear axes rotate with respect an inertial
frame, and the velocity gradient with respect to an inertial
frame does not have constant components.

The steady, homogeneous, plane motions u = N} that
were considered in Sec. 2.4 are materially steady, trivially.
The axes with respect to which the velocity gradient is steady
are the same at all particles and do not rotate. In connection
with those motions, recall that the material response was de-
scribed in certain cases by the dynamic viscosity at arbitrary
values of the frequency. The complete time-independence of the
velocity gradient N did not by any means prevent oscillatory
motions of material fibers.

The particular simplicity of materially steady motions,
with regard to material response, lies in the fact that if the
velocity gradient N (where du = N dx) is constant in time, then
the extra stress is also constant and simply a function of N.
This function, S(N), embodies not only the viscometric functions

but also such information as the dynamic viscosity.
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It appears that the idea of materially steady motions
provides a framework within which a large amount of information
can be organized. Indeed, there are materially steady motions
with arbitrary values of the flow diagnosis parameters A and wT.
Complete knowledge of the stress response in all materially steady
motions would by far exceed what we know about any fluid.

However, it is not certain that the stress response
in all such cases can actually be observed. I am not referring
to the infinite amount of work involved, but to the question of
whether or not a flow with a specified value of N can be produced,
physically. Homogeneous motions are not that easy to produce.

The task of the problem-solver at this stage is to
discover materially steady flows with experimentally feasible

configurations. So far, very few are known.

5.1 Stress: The Reiner-Rivlin Paradox

Let me say a little about the relation between stress
and velocity gradient. To simplify matters, suppose that the
velocity gradient is constant in space as well as time. Then,
wherever a particle may have been in the past, it always ex-
perienced the same velocity gradient N. Consequently, there
1s nothing else for the extra stress to depend upon, in the way

of kinematical variables:

g + pl = S(N). (5.1.1)
According to classical ideas, superposition of a ro-

tation, with velocity gradient o = -QT, cannot affect the ’
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stress. For, whether or not such a superposed rotation is seen
depends as much on the motion of the observer as on that of

the fluid. Hence,

S(N) = S(N + w), (5.1.2)
for all antisymmetric w. This holds in particular when -u is
the antisymmetric part of N, so

S(N) = S(e), (5.1.3)
where ¢ is the strain-rate, the symmetric part of N. Conversely,
it is also sufficient for the extra stress to be a function of
the strain-rate, since every such function satisfies the assump-
tion (5.1.2) identically, for all antisymmetric w.

If the fluid is isotropic, S(e) is an isotropic function,

so the stress has the representation

o = -pl + 2ng + ng. (5.1.4)

This is the Reiner-Rivlin equation. It is well known that it
does not agree with data. In fact, it yields the value zero for
the first normal stress difference, lez, in viscometric flow.
There must be something wrong with the argument.

The original assumption, (5.1.1), was made air-tight
by postulating a situation with nothing for the stress to depend
upon except N. Indeed, the relative deformation history is found
immediately from the equation

B R(s,t) = N E(s,t), (5.1.5)

with the initial condition F(t,t) = I, to be

F(s,t) = exp[(s-t)N], (5.1.6)

and this is completely determined by N.
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The difficulty is with the innocent invariance as-
sumption (5.1.2). That assumption would be correct if we
were assuming that the stress is determined in every motion
by the concurrent value of the velocity gradient. However,
we are not now doing so. Instead, we are assuming that the
stress depends on the deformation history, and restricting
attention to cases in which the whole history is characterized
by the constant tensor N. In this context, (5.1.2) means that
the stress is the same for the two deformation histories with
constant velocity gradients N + w and N. A glance at (5.1.6)
shows that these two histories need have little in common.
There is no reason why they should produce the same stress.
Giesekus [23] has worked out a correct canonical form,
replacing the Reiner-Rivlin equation, for the stress in materi-
ally steady motions. It does, of course, involve the rotation
as well as the strain-rate. It is fairly complicated, so I

won't reproduce it here,

5.2 Motions with Flakes

Let us return to the problem of discovering materi-
ally steady motions that can be produced experimentally. The
condition of no slip at solld boundaries is a limiting factor.

It can be avoided when the fluid is so stiff that boundaries
are not needed to support it. However, it may be profitable
to seek flows that can be compatible with a no-slip condition.

The velocity variation du = N dx in the neighborhood
of a point of a solid boundary must be such that the neighboring

part of the boundary is mapped onto itself by the motion. Let
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a, b, ¢ be axes with b normal to the boundary. The neighboring
flake of boundary can rotate about the b-axis with constant
angular velocity w, say. We can specify that the a-direction
is parallel to b-Vu. Then the velocity gradient in the a, b, ¢

system has the form
N =w(ac - ca) + vab. (5.2.1)

Although it 1is not necessary for the velocity gradient
to have this form away from the boundary, flows in which it does
so should be particularly simple. Through each particle there
would be a segment, or flake, of material that moves rigidly,
and it seems probable that these flakes would have to fit together
to form material surfaces that would move without stretching.
This has been proved [7] for the special case of viscometric
flows, for which w = 0; the surfaces in question are the slip
surfaces.

No motions with a velocity gradient of the form (5.2.1)
and w # 0 are known except homogeneous motions. Fortunately,
there exists a device that can produce homogeneous motions of

this kind.

5.3 The Maxwell-Chartoff Rheometer

Huigol [24] has shown that the flow in Maxwell and
Chartoff's [25] orthogonal rheometer is materially steady and
not viscometric. This rheometer involves a pair of parallel
discs, rotating with equal angular velocities about axes that

are parallel but not coincident. Let one disc be in the plane
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y = 0, and let it rotate about the y-axls; let the other be in
the plane y = h, rotating about the axis x = 0, z = -k. It 1is
kinematically admissible for the fluid on a plane y = constant
to rotate about an axis x = 0, z = -ky/h, so that the velocity
field is

u= oz +ay), v=0, w=-ux C(a=km). (53.1)
The velocity gradient ui,j = NiJ is

N = w(}E - E}) + awlj. (5.3.2)

Since this is constant, so is the extra stress. The momentum
equation is satisfied with neglect of centrifugal force, which
can be suppressed by making the gap h small enough.

The extra stress has the form
S =il Sll(u,w) + 33 S22(a,w) + kk 833(a,w)

+ (4] + J1)8,,(a,0) + (Jk + 51)323(a,w)

+ (ki + 25)813(a,w)- (5.3.3)

It is possible to learn a 1little about the functions
Sij by symmetry considerations. Any transformation that does
not alter the strain history must not alter S, either. Such
transformations include those that do not alter N.

Changing o to -a and j to -j does not alter N, so
the same transformation must leave S unaltered. It follows that
5110 5220

23 must be odd. It is also evident that changing the signs

of both ¢ and i does not change N. For the same to be true of

833, and 813 must be even functions of a, while 812

and S

S, S must be even functions of u, and S,

Q
11° 822, S33s and 823
and 813 must be odd.
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Since only normal stress differences are determinate
if the fluid is incompressible, we can arbitrarily set 333
equal to zero.

There 1s no motion if w = 0, and only a pure rotation
if « = 0, so S must vanish in both of these cases.

To summarize these observations, we write

2 2 2 2
w

S11 = aw fll’ op T @ S

|72}
[]

£ =0,

(5.3.4)
- 23
23 313 = aw fl?

22° 33

S., = auwf S 2 f

12 12° 23 C A

where the functions f,. are functions of a2 and w2. The coeffi-

1
23

3 is written as o w” instead of azm for convenience

cient of fl

later, to make f13 finite in the viscometric limit.

It is conceivable that the strain history, G, could
have more symmetry than N, for example invariance under inter-
change of axes; further conclusions about S could then be drawn.

However, it does not. By using the same methods that were em-

ployed in Sec. 2.4, we find that

G(s,t) = I+ (1] + ji) a sin w(s-t)

+ [a(gk + kj) + 20211][1 - cos w(s-t)]. (5.3.5)

The functions in (5.3.4) can be related to the visco-
metric functions. In the limiting case in which w + 0 and o« + =
with wa fixed at the value y, N takes the viscometric form yab,
with a =1 and b = j. Hence, in this limit, S,; must approach

2 2 o
Y (Nl-N2), S,, must approach -y“N,, 8., must approach yn, and

both Sl3 and 823 must vanish. If we write the functions fiJ as

functions of w2 and u2m2, i.e.
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f., = f (w2,a2w2), (5.3.6)

1J

then the limiting values of these functions are

2 2 2 2 2
2 2
£15(0,¥%) = n(x%). (5.3.7)
It 1s sufficient for f13 and f23 to be finite.
The functions f,. can also be connected with the

i
complex viscosity n*(w) of the linear viscoelastic approximation.
From (5.3.5) we find that G is always close to I, and thus the
linear approximation is valid, provided that o is small. Then
on linearizing with respect to a, we obtain
%g G(s,t) = (1] + ji)aw cos w(t-s) - (Jk+kj)ew sin w(t-s).

Then (5.3.8)
E D
I-w u(t-s)gs G(s,t)ds = (1 + §1) awn,(w)

- (Jk + kj)awn,(w). (5.3.9)
Thus, Sll, 322, 833
to o when o 1s small, while 812 and 823 must be asymptotic to

, and 813 must vanish in comparison

awn , and —awn,, respectively. For the former to be true, it is

1

sufficient that f f22, and f13 remain finite in the limit.

11°
The latter conditions give

2

ST

0) = ny(w) and f23(w2,0) = ony(w)/u. (5.3.10)

As a check, notice that N and n, are by definition respectively
even and odd functions of w.
2
The fact that £),(0,4°) 1s n(v*), wnile £,(u",0) 1is

ﬂl(m), is tantalizing since plots of n versus y and n, versus
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w usually have pretty much the same shape.
Except in these limiting cases, there is no data

yet, so far as I know.

5.4 Steady Simple Extension

Steady simple extension is a non-viscometric,

materially steady motion. The velocity gradient is

N = edl - (e/2)(§ + kk). (5.4.1)
By symmetry, the xy, yz, and zx components of the extra stress
are zero, and the yy and zz components are equal. The normal
stress difference oxx' cyy’ divided by e, is called the Trouton
viscosity, or extensional viscosity. Some data for polystyrene
[26] indicates that the extensional viscosity can be several
hundred times as large as n, because it remains relatively
constant while n decreases at higher shear rates. Of course,
at zero shear rate, where the Newtonian approximation is valid,
the extensional viscosity is only three times as large as the
shear viscosity.

This result suggests that fluids will avoid extensional
motions when an alternative of the viscometric shearing kind is
kinematically admissible. As an example, consider the flow into
a pipe or channel from a reservoir. In the usual Newtonian
picture, fluid in the reservoir would approach the outlet from
all directions. However, this requires squeezing in the direc-
tion perpendicular to the direction of flow, and extension along
the flow direction. Less extension would occur if the fluid

were relatively motionless except in a slender cone approaching
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the outlet. There would be shearing between this upstream

jet and the surrounding fluid, rather than extension throughout
the whole fluid. Metzner, Uebler, and Chan Man Fong [27] have

observed this effect. I am not sure that they would agree with
my explanation of it, but I believe that it is essentially the

same as theirs.
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6. Controllability

In order to determine the strain energy function of
an elastic material, or, equivalently, its stress-deformation
relation, one can subject the material to known deformations
and measure the forces required to produce them. A theoretical
difficulty in this procedure is in producing deformations that
can be regarded as completely known. An assumed deformation,
compatible with the observed surface displacements, may very
well fail to produce an equilibrium stress field. One needs
some assurance that the assumed deformation is actually the
one produced.

In most problems of elastic deformation with pre-
scribed surface displacements, there is no way to determine
what the interior deformation may be until the stress-deforma-
tion relation has been specified. However, there are some
problems with such a high degree of symmetry that only one
state of deformation has all of the symmetries of the data.

In such cases, the symmetrical deformation is the solution,
unless the problem has more than one solution,

Of course, homogeneous deformations (translation-
invariant in all directions) are suitable in homogeneous
materials (properties translation-invariant), because the
resulting stress field will be homogeneous, and thus an equi-
librium field repardless of the specific values of the stresses.
llowever, homogeneous deformations are not always experimentally

convenient,
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We say that a deformation is controllable for all
materials in a given class if it can be supported in equilib-
rium with surface tractions alone, in every material in that
class. Thus, for example, any given homogeneous deformation
is controllable in homogeneous, elastic materials. Conversely,
no deformation is controllable for this very broad class of
materials except homogeneous ones.

An inhomogeneous deformation can be controllable only
for some more narrowly defined class of materials. For example,
expansion of a spherical shell and torsion of a circular cylind-
rical rod (Sec. 1) are controllable in homogeneous, isotropic,
incompressible elastic materials. In these cases, and others,
two kinds of restrictions on the class of materials are useful:
symmetries, and constraints. Constraints reduce the number
of kinematically admissible deformations, and symmetries reduce
the number that have all of the symmetry of the data.

The idea of controllability is useful in other areas
as well. Controllable viscometric flows [7,8,9] have been men-
tioned in Sec. 3. In such flows, a velocity field is prescribed
in advance, and it is found to satisfy the momentum equations
for any homogeneous, isotropic, incompressible, viscoelastic
fluid. 1In problems of heat flux, we seek temperature fields
that will produce a solenoidal field of heat flux in every ma-
terial in some specified class. In any area, we call a field
of some sort controllable if it leads to an exact solution of

all relevant equations, for all materials in a prescribed class.
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6.1 An Example of the Use of Constraints

To begin with an extreme example of the usefulness of
constraints, let us consider homogeneous isotropic elastic
materials that are both incompressible and reinforced with a
family of parallel, inextensible fibers. Every plane deforma-
tion of such a material is controllable.

We consider only plane deformations, x = x(X,Y),

y = y(X,Y), (and z = Z). Let the X-direction be the initial
direction of the inextensible fibers. To pose a definite
problem, consider a block of material with two of its edges
initially along the X-axis and the Y-axis, and suppose that
these two edges are mapped onto intersecting curves Cl and 02.
Curiously enough, the problem is well-set, or at least it has
no more than one solution. The constraints require that a fiber
initially along Y = Yo map onto a curve that is parallel to Cl’
at a distance YO from it. The position of the fiber along this
curve is determined by the condition that the end X = 0 lies on
Cy.
Because there is only one deformation that is even kine-
matically admissible, it doesn't matter what the relation between
extra stress and deformation may be. The stress field that is
produced will automatically be an equilibrium field. The re-
actions to the eonstraints will adjust themselves to equi-
librate the extra stress produced by the deformation, whatever

it may be.
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To see how this happens within the mathematics, con-

sider the expression for the stress:
o = -pl + Ttt + S. (6.1.1)

Here -pI 1s the reaction to incompressibility, Ttt is the
reaction to inextensibility, and S is the extra stress. The
unit vector t is tangent to the fiber direction, and Ttt is a
tensile stress along the fiber direction. The equilibrium equa-
tion 1is

Yp = t B(Tt) + T(£-9)t + Div S. (6.1.2)

By separating this into components in the fiber direction, the

normal direction n, and the z-direction k, we obtain

t+9p = t-UT + TV.t + (Div 8)-t,
n-yp = Tn-(t-9)t + (Div S)-n, (6.1.3)
ke¥p = 0.

(The z-component of Div S is zero since SZX and Szy must vanish,
by symmetry.) No matter what function of x and y Div S may be,
there are functions p and T that satisfy these equations, and

we can determine them by 4ntegrating along characteristics.

6.2. Controllable Heat Conduction

It is possible to seek out controllable states systematic-
ally, rather than waiting to discover them as solutions of definite-
ly prescribed problems. To illustrate the methods that are used,
we consider problems of controllable heat conduction, which have

been discussed by Petroski and Carlson [28] and Laws [29].
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The materials to be considered are isotropic, and it
is assumed that the heat flux q 1s determlined by the temperature
T and the temperature gradient, VT In isotropic materials, q

and YT must be (anti-) parallel, so

g = -K(T,VT*VT)VT. (6.2.1)
In a steady state, V.q = 0, and thus

2

KV“T + K V19T + K,9(9T-¥T)-IT = 0. (6.2.2)

1

Here K1 is the derivative of K with respect to its i-th argument.
We say that a temperature field 1s controllable if it

satisfies (6.2.2) no matter what form the function

K has. At a given point, the Qalues of K, Kl, and K2 can be

assigned arbitrarily by a suitable choice of the form of K.

Hence, the coefficients of K, Kl’ and K2 must all vanish at

that point if T 1s controllable. But the point 1s arbitrary,

so a controllable field T must satisfy

v2T = YT-9T = ¥(VT-VT)-VT = 0, (6.2.3)

everywhere. Since |VT| vanishes, T must be uniform. Thus, in
the class of materials described by constitutive equations of
the form (6.2.1), there are no controllable temperature fields
except constant fields [28].

This does not mean that all controllable states are
trivial, as Laws [29] has pointed out. Suppose that g, rather
than T, is to be controlled. In that case it is more convenient

to use a constitutive equation of the form

-9T = R(T,g-9)q. (6.2.4)



- 132 - A, C.Pipkin

Now, the right-hand side must be irrotational, since the left-
hand side 1s:

RYx g + R,VT x g + R,¥(g°g) x g = 0. (6.2.5)
For this to be true no matter what function R 1s, g must satisfy

Yxgq=79rxgq=7Ygqg xg=0, (6.2.6)
as well as V.q = 0.

The first equation implies that g has a potential,

q = -0, say, and thus q is normal to a family of surfaces 8 =
const. Let us also write q = qn, where n is the unit normal
to a @-surface. The third equation states that VYq is parallel

to g, so q is constant over each @-surface, i.e. g = q(@)n. The

condition V.q = 0 ylelds

qV:n = -n-9q(8) = -q'(8)n-¥6 = qq"'. (6.2.7)

Thus, for q # 0, V:n is also a function of @, q'(@). But V.n

is the mean curvature of the @-surface. Thus, €ach 8-surface has
constant mean curvature. Now, we recall that |V8| 1is constant
over each 8-surface, so they are parallel surfaces. We now save
work by quotihg a theorem: parallel surfaces of constant mean
curvature are parallel planes, coaxial circular cylinders, or
concentric spheres. Thus, @ is a function of x in an appropriate
carteslan system, or of radius in a cylindrical or spherical
system. The flux g is 1n parallel straight lines or is radial,
and its magnitude depends only on x, or r, and it is solenoidal,

so 1t has one of the forms

g = const., q = (cylindrical),

slo

i
-r

(6.2.8)

q = i, (spherical).

"SMIQ

T
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From the second equation in (6.2.6), T is a function
of x, or r, as the case may be. It is determined by solving
(6.2.4). For example, with g constant, in which case T = T(x),

we obtain
-T'(x) = R(T,q%)q, (6.2.9)

which yields

T
X = XO - I LQ . (6.2.10)
T, aR(T,q")

6.3 Controllable States of Dielectrics

The equations governing the electric field strength
E and the dielectric displacement field D in electrostatics have
the same form as those governing -VT and g in heat conduction.

E is irrotational, and D is solenoldal:
E=-W, v:D = 0. (6.3.1)

However, in an isotropic dielectric the constitutive equation

would have the form

D = f(E‘E)E or E = g(D-D)D, (6.3.2)
with no explicit V-dependence of f or g to match the T-dependence
of the analogous functions in heat conduction.

If D is to be controlled, the possibilities are the
same as those listed in (6.2.8) for g; the T-dependence of the
resistivity was not used in obtaining (6.2.8). Thus, the di-
electric displacement is controllable in parallel-plate, cylindrical
and spherical condensers.

If E, or rather V, 1s to be controlled, in place of

the three controllability conditions (6.2.3) for the analogous
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heat conduction case, there are only two:

PV = IVR(TVeTV). (6.3.3)

It is much too hard for me to prove, but these equations imply

that V can be represented in an appropriate cylindrical system

by
V = -a@ - bz, (6.3.4)
Then
E=81, 401, (6.3.5)
and
g=ﬂ§+b%@;g+@g. (6.3.6)

The lines of flux are helical, in general, and the magnitude of
the flux i1s constant over each of the cylinders on which these

helices lie, so the flux is obviously divergence-free.

6.4 Electrical Conduction, Diffusion through Porous Media,

Magnetism

There are several theories that involve the steady-
state flux of some conserved quantity under the action of a con-

servative driving force. The forces and fluxes for a few cases

are

Force Flux
Heat conduction -VT q
Electrostatics E=-W D
Magnetostatics H B
Electrical conduction E=-JV J

Diffusion through porous media -Vp

Is
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In each case, the force F is irrotational, V x F = 0, and the

flux f 1s solenoidal, V'f = 0, in appropriate problems. In
isotropic materials, the flux is controllable if it is a radial
field, in one, two, or three dimensions, of the form (6.2.8),

and the force 1s controllable if it is a helical field of the

form (6.3.5) (except in heat conduction with temperature-sensitive

conductivity).

6.5 Controllable Elastic Deformations

The preceding problems 1llustrate the methods of analysis
used in seeking controllable solutions. Instead of boundary con-
ditions and well-set problems, there are additional equations.

The over-determined system is solved by geometrical methods.

In the theory of finite deformations of homogeneous,
isotropic, incompressible, elastic materials, most of the known
controllable deformations were first obtalned as solutions of
definite problems of technological interest. The remainder have
been found by systematic search. The search has not been com-
pleted because the analysis 1s much too hard in certaln degenerate
cases.,

The known examples are the following:

0. Homogeneous (isochoric) deformations.
1, Expansion of a spherical shell, or a shell first turned
inside out:

r=+®-R +r)?3, e=0, 410 (6.5.1)
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2. Certaln deformations of right circular cylindrlcal rods and
tubes:

v = AR? + B, O =00+ Dz, z=EO+ FL (6.5.2)

3. Bending and assoclated deformations:

r® = 2AX + B, @ =CY+DZ, z-=EY+FZ, (6.5.3)

4, Straightening and associated deformations:

248, y=CO+DI, z=EO+FI, (6.5.4)

x = 3 AR
5. Azimuthal shearing and associated deformations:

r=AR, O=B log R+ CO, z= z/8°C. (6.5.5)
In families 2, 3, and 4, the condition of no volume change requires
that

A(CF - DE) = 1, (6.5.6)

The coordinates are cartesian or cylindrical, except in family 1.
Big letters are initial coordinates, and little letters are final
coordinates.

There are many classes of materials that include homo-
geneous, isotropic, incompressible, elastic materials as special
cases. A deformation can be controllable in one of these wider
classes only if it is contfollable in each special case, so the
families listed above turn up over and over again.

To understand how changes in the class of materials
may affect the 1list of controllable deformations, let us consider,
first, some geometrical features of the deformations previously

listed.
One of the three fields of principal directions of

strain 1s normal to a family of surfaces, which we call
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principal membranes., Accordingly, in isotropic materials there is

no shearing stress between principal membranes. Next, the three
principal extension ratios are constant over each pmincipal mem-
brane. For the class of materials considered, this implies that
the principal stresses (apart from the reaction pressure) are
also constant over each principal membrane.

In Family 1 the principal membranes are spherical. The
analysis of thls deformation in Sec. 1.6 made explicit use of the
principal membranes.

In Family 2, they are cylindrical both before and after
the deformation, but possibly with different radii. Families 3
and 4 are limiting cases of Family 2, with principal membranes
that are parallel planes, cylinders with infinite radii, either
before the deformation or after it. In all of these cases, the
two flelds of principal directions tangential to the principal
membranes form two orthogonal families of geodesics on them, and
in consequence, the fleld of extra stress 1s so highly symmetrical
that it 1s self-equilibrating in the tangential directions. Equi-
librium in the normal direction is produced by a sultable reaction
pressure, which is constant over each principal membrane.

In Families 0 and 5 the principal stretches are the
same everywhere, so there are three orthogonal famililes of
principal membranes. In Family 0, each is a set of parallel

planes. In Family 5, the planes z = constant are the obvious
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set. The fields of principal directions tangential to these
planes have constant components in polar coordinates, so the
same is true of the extra stress, and this 1s enough symmetry

to guarantee equilibrium.

6.6 Fiber-reinforced Materials

A deformation can be controllable in some class of
anisotropic materials only if it is controllable in isotropic
materials, because a material with specified point symmetry
might accidentally have more symmetry than is demanded.

Consider, for example, transversely isotropic materials
(that are homogeneous, incompressible, and elastic). For a
definite physical picture, think of an isotropic matrix rein-
forced with parallel elastic fibers. Now, to find controllable
deformations of such a material, we examine the 1list in Sec. 6.5.
We seek cases in which the fiber direction does not spoil the
symmetry of the problem. For this to be true, the fiber direction
must be either parallel or perpendicular to the principal membrane
at each point.

Family 1, the spherical case, is ruled out because
straight, parallel fibers cannot be normal to the spheres every-
where, or tangential everywhere.

In Families 2 and 4, the principal membranes are co-
axial cylinders initially. No symmetry is lost if the fibers
lie along the axial direction initially, so, if they do, these

deformations are all controllable.
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In Family 3, the principal membranes are parallel planes
initially, and they are bent into coaxial circular cylinders.
If the preferred direction is initially perpendicular to the
principal membranes, or in any tangential direction, no relevant
symmetry is lost, and these deformations are controllable.
Homogeneous deformations, Family 0, are all controllable
in any homogeneous material, so the fiber direction is irrelevant.
The deformations in Family 5 remain controllable in fiber-
reinforced materials if the fibers lie along the axial direction.
Since these lectures are about problem-solving, rather
than the theory of anything, I should claim that a large number
of problems involving fiber-reinforced materials have just been
solved. Of course, 1t remains to write down the extra stress
and determine the reaction pressure, and to look for features
of the solutions that may be particularly interesting or valuable.
A1l of thils requires agreat deal of work, but the work will not

involve any worries about solving partial differential equations.

6.7 Layered Materials

Instead of relaxing the requirement that the material be
isotropic, as in the preceding section, consider the possibility
of relaxing the homogeneity requirement. The picture in terms
of principal membranes makes it clear that only layered materials
can be considered, with properties constant over principal membranes.
Conversely, it is easy to see that Families 0 to 4 remain con-
trollable if the lamination coincides with the principal membranes.

Family 5 doesn't work. The trouble is that in this family, unlike
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the others, the reaction pressure is not constant over the
principal membranes z =const., so letting properties be z -

dependent spolls ‘the symmetry.

6.8 Viscoelastic Materials

Now consider relaxing the requirement that the material
be elastic. When we take into account the stress relaxation
that occurs in real materials, we must be concerned with con-
trollable motions, rather than single deformations.

Since elastic materials are a special case of visco-
elastic materials, a motion that is controllable in viscoelastic
materials must at each instant be a controllable elastic deform-
ation. However, this 1s not sufficient.

In all cases except homogeneous deformations, controll-
abillity depends upon the fact that there 1s no shearing stress
between principal membranes. This requires that the normal
direction be a principal direction of stress. In isotropic
elastic materials, this requirement is met because the principal
directions of stress coincide with the principal directions of
straln, and the direction normal to a principal membrane is a
principal direction of strain by definition.

However, in isotropic viscoelastic materials it is no
longer true that the principal directions of stress and strain
always coincide. The stress depends on past deformations as
well as on the present state, and the principal directions of
Stress might well be closer to fibers that were principal
fibers previously, than to those that are principal fibers

presently.
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Nevertheless, there is no real difficulty. For, 1if
a given fiber is a principal fiber of strain at all times, then
by symmetry it must also be a principal direction of stress at
all times. Thus, to assure that there is no shearing stress
between principal membranes, it 1s necessary and sufficient
that the material surfaces which are principal membranes at
one instant are also principal membranes at every other instant.
This requirement is automatically satisfied if the motion is
generated by varying the parameters within one of the listed
families of elastic deformations. In general it rules out
changing from one family to another during the course of the
motion, although there are exceptions.

Thus, for example, time-dependent radial expansion
of a spherical shell is controllable in viscoelastic materlals
because the same spherical membranes are principal menbranes
at all times. Eversion is not controllable, because inter-
mediate states in the process of turning the shell inside out
are not controllable elastic deformations.

Families 2 and 4 should be considered together. The
principal membranes are generally cylindrical, with time-varying
radii. Family 4 describes the deformation at instants when the
cylinders happen to be completely flattened out into parallel
planes. It is considered as distinct from Family 2 only because
of notational difficulty.

In Family 3, the principal membranes are parallel
planes initially, and by varying the parameters we obtain
motions that include flexing the membranes variably in time.

Motions generated by varying the parameters in Family 5 have
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planes z = constant as principal membranes at all times.

In all of these cases, the principal directions of
strain tangential to the membranes generally involve different
fibers at different times, so there i1s no way to tell where
the tangential principal directions of stress may be. However,
controllability involves only the symmetry of these fields of
principal stresses, and does not rely on knowing their directions
exactly. Time-dependent variation of parameters does not spoil
the symmetry.

Quasi-static motions of the kinds described are, ac-
cordingly, controllable. A closer look would be required to
see which cases might remain controllable if inertia is taken
into account.

These motions have been examined in more detail by
Carroll [30,31] and Wineman [32]. Carroll has also considered
transversely isotropic materials [31] and orthotropic materials

(33].

6.9 Flux Through Highly Deformable Materials

Theories of flux, such as those listed in Sec. 6.4,
can be combined with the theory of large elastic deformation.
For example, one might consider heat conduction in deformed
materials, as Petroskl and Carlson [34] and Laws [29] have done.
That theory is formally identical to the theory of electrical
conduction in deformable materials, aside from the temperature-

dependence of the conductivity or resistivity and the stress.
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Rubber loaded with carbon black is a good electrical
conductor, and the conductivity 1s strongly dependent on the
state of deformation, so let us consider that case. When the
material is deformed, the relation between current density J
and field strength E 1s like that for an undeformed orthotropic
material. The three principal planes of strain at a point act
as planes of reflectional symmetry for the conductivity. If E
lies along a principal direction, so does J, by symmetry. If
E is orthogonal to a principal direction, so is J, although 1t
need not be parallel to E. When E does not lie in any principal
plane, symmetry gives no conclusion about the direction of J.

Just as the deformation affects the conductivity, the
electric field may affect the stress. However, let us leave such
electrostrictive effects aside for the time being.

If a state of deformation and flux is to be controllable,
then in particular, the flux must be controllable even when the
deformation has no effect on i1t. Hence, controllable states must
involve elther a (generally) helical electric field, of the form
(6.3.5), or a field of current density that is uniform, or radial
in two or three dimensions, of the form (6.2.8).

For a given field of one of these forms to remain con-
trollable when the deformation does affect the conductivity, it
1s necessary that the field and the deformation can be combined
without spoiling the symmetry of either one. Let us consider

each family of controllable elastic deformations in turn.
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A uniform field, E or J, can of course be combined
with any homogeneous deformation to give a controllable state.

In the case of radial expansion of a spherical shell,
a radial field of current can be fitted in without spoiling
the symmetry.

In families 2 and 3, principal membranes are coaxial
cylinders in the deformed state. Radial current, along a prin-
cipal direction of strain, gives a controllable state, and so
do helical electric fields with lines of force lying tangential
to the principal membranes.

In Family 4, the principal membranes are parallel
planes in the deformed state. Uniform currents perpendicular
to these planes and uniform electric fields in any tangential
direction produce controllable states.

Family 5 can be combined with uniform electric field
and uniform current in the axial direction.

6.10 Electrostriction

In problems involving polarization and electrostriction
in deformed materials, the dielectric displacement D plays the
role that J did in electrical conduction. However, it is necessary
to take into account the effect of the fields on the stress, which
we omitted to do in discussing conduction.

When E, or D, lies along a princioal direction of strain,
then the principal directions of stress must still coincide with
the principal directions of strain. If the fleld lies orthogonal

to a principal direction of strain, that particular principal
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direction must be a principal direction of stress, although
the symmetry is spolled within the prineipal plane in which
the field 1lies.

With these observations, examination of the controll-
able states listed in Sec. 6.9 (reading D for J) shows that
each one is still controllable under electrostrictive stresses.

For this particular theory, it has been proved [35]
that the preceding list includes all states that are controll-
able. Thus, although we do not know that the 1list of controll-
able elastic deformations listed in Sec. 6.5 is complete, we
do know that there are noothers that remain controllable under
electrostriction. The proof was not direct; it involved system-
atically searching out all possible controllable cases, using
methods similar to those employed in Secs. 6.2 and 6.3. The

curious Family 5 was turned up in the course of this search.
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Chapter 1

INTRODUCTION

Since the Second World War there has been a consid-
erable interest in the development of phenomenological theor-
ies describing the relation between force and deformation in
bodies of material which do not obey either the linear laws of
the classical theories of elasticity and the hydrodynamics of
viscous fluids, or the simple and explicit non-linear laws of

gas dynamics.

During the first half of the present century much
effort has been devoted to the elaboration of these classical
theories and their application to specific problems of impor-
tance in - or at any rate suggested by - some area of science
and technology. During this period the development of non-
linear theories in the same rational spirit as inspired the
development of the classical theories in the nineteenth cen-
tury was, in large measure, neglected. This was undoubtedly
due, at any rate in part, to a preoccupation with the more
developed theories which were nearer the point at which they
might provide some insight into technological or scientific

problems.
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In addition, advances may well have been inhibited
by a conviction that no progress could be made in developing
non-linear theories unless some completely explicit constitu-
tive equation could be written down for the material. This
was usually chosen on the basis of an alleged simplicity -
the "simplest" constitutive equation which could yield the
type of phenomena of interest - or on the basis of some micro-
scopic or molecular model of a particular material. One of
the difficulties with the former approach lay in the fact that
simplicity is very much a subjective matter, depending consider-
ably on the choice of the variables in terms of which the rela-
tion is expressed. Moreover, there is usually no special rea-
son why any particular material should obey the simplest law.
The main difficulty with the second approach is that even if the
microscopic or molecular structure is well understood, the
passage to the constitutive equation, expressed in phenomeno-
logical terms, is usually very difficult and cannot be made at
all without so many idealizations of both the model and the
mathematics as to leave the significance of the result in ser-

ious question.

The more modern approach stems largely from the
realization that it is possible to write down rather gencral
constitutive equations in canonical form from purely phenomeno-

logical considerations. This realization is already involved
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in the theory of finite elasticity as it existed at the end

of the last century. There, the constitutive equation is given
by a statement that the strain-energy function must depend on
the nine deformation gradients and it is shown (§5.2) that this
dependence must be through the six independent components of
the strain-energy function, further restriction of form result-
ing if the material has some symmetry. In the case when the
material is isotropic, the latter dependence is through only
three specified functions of these strain components (§5.6).
Much of the development of non-linear continuum mechanics has
consisted of the extension of this principle to dissipative
materials in which the constitutive equation takes the form of
an expression for the stress tensor in terms of one or more
kinematic tensors (see Chapter 7 below). In this development
the main considerations which are introduced are twofold. One
is that the superposition on the deformation of the body of a
rigid rotation results in the rotation of the stress tensor by
an equal amount. The other is that in physical and engineer-
ing problems the material with which one is concerned has some
symmetry and this enables one, in all cases, to write the con-
stitutive equation in canonical form. The mathematical tech-
nique for doing this stems from the classical theory of invar-
iants, but considerable development of the theory has been

necessary for this purpose. This development is discussed in

Chapter 6.
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The question of the application of the theories
developed here to specific problems is taken up in the lec-
tures of Professor Pipkin. The technique he has used for
presenting the essential content of the various problems is
very largely that used in papers by Rivlin, and Green and
Rivlin*, although not that by which the problems were origin-
ally solved - the direct -application of the constitutive
equations and equations of motion developed here. The latter
procedure is, of course, of much wider applicability although
it may present less feel for the physical content of the

calculations.

* R.S. Rivlin, Large Elastic Deformations, Chapter 10, in
"Rheology", Vol.1l, ed. F.R. Eirich, (publ. Academic Press,
New York, 1956); R.S. Rivlin, Proc. First Intcrnational
Conference on llemorhcology, Reykjavik, Iceland, 1966,
p.157 (publ. Pergamon, Oxford, 1967); W.A. Green and R.S.
Rivlin, Acta Mechanica, 5, 254 (1968).
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Chapter 2

KINEMATICS OF DEFORMATION

1. Description of the deformation

As a body undergoes deformation, the vector positions
of the particles of the body with respect to a fixed origin
change. We denote by x the vector position at time t of a
generic particle with respect to a fixed origin 0. Let X be
the vector position of this particle with respect to O at some
reference time T (say). Then, we can use X as a means of
identifying the particles of the body. If now we specify the

dependence of the vector x on X and t, thus
x = x(X,t) , (z.1.1)

then we have a complete description of the deformation of the
body.

We now consider that at each instant t, x is a con-
tinuous, differentiable function of X except possibly at a
finite number of points or on a finite number of lines and
surfaces. We also assume that the relation (2.1.1) between
x and X is uniquely invertible for all values of t except
possibly at a finite number of points or on a finite number

of lines and surfaces.
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We shall use a rectangular cartesian reference system
x in which the components of X are denoted X, and the components
of x are denoted x,. We shall use an analogous notation for the
components in this system of other vectors. In this notation we

can rewrite (2.1.1) as

X, =% (X,,t) (2.1.2)

in which X5 is differentiable with respect to X,, except pos-

A’
sibly at a finite number of points, or on a finite number of
lines and surfaces. The nine spatial derivatives axi/axA are

called the deformation gradients.
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2. The Cauchy strain

Consider two neighboring particles Pl and P2 whose

R. S. Rivlin

vector positions at the reference time T are X and X + dX,

Let their vector positions be x and x + dx at time t.

and d& be the distances between the particles at times T and

t respectively. Then,

(dL)? = dX.dX = dX,dX,
and
(d0)? = dx.dx = dx,dx;.
Now*,
dxi = xi,AdXA .

Introducing this into (2.2.1)2, we obtain

(d2)®

CppdX dX;

where

CaB ™ Xi,A%i,B °

If we take a second rectangular cartesian system

lall

=<

; respectively, we have

2 — — —
()® = TpodXpdXy

*Throughout we shall use the notation
8 JA

the notation i to denote a/Bxi.
b

in which the components of the vectors X and x are XA and

to denote a/aXA and

Let dL

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)
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where
9X. 93X.
.= = = (2.2.6)
P
QA ¥y
It is easy to show that
CPQ = XP,AXQ,BCAB . (2.2.7)

CAB and EAB are thus the components in the systems x and X
respectively of a second-order cartesian tensor. This is called

the Cauchy strain tensor. We note from its definition by (2.2.4)

that it is a symmetric tensor.
Let L and g be unit vectors in the direction of the
linear element from P1 to PZ at times T and t respectively.

Then,
L = dX/dL and § = dx/d2 . (2.2.8)

In cartesian notation, these expressions may be written as
LA = dXA/dL y Ay o= dxi/dl . (2.2.9)
Introducing (2.2.9) into (2.2.2), we obtain

dL
WU (2.2.10)

=
]

Since

=
=
n
o
oS
1]
—

(2.2.11)

we have, from (2.2.9) and (2.2.10),

2
(%%) = Capbalp - (2.2.12)
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This result can also be obtained directly from (2.2.3) by

dividing throughout by (dL)®.
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3. The volume change

Consider an elementary tetrahedron in the body which
at time T has a vertex located at the point P, with vector
position X relative to the fixed origin O, and three edges
PQl,PQQ,PQ3 parallel to the axes of the rectangular cartesian
system x. Let us suppose that the vector positions of Ql’Qz’Q3
relative to P are dg(l),dg(e),d§(3). We denote the components
in the system x of these three vectors by (Xm,0,0),
(O,dXQ,O), (O,O,dXB) respectively. The volume dV of the
tetrahedron PQngQ3 is given by

av = trax't),ax(®) ax3)y -

N =

ax X, dx, (2.3.1)

where the square brackets denote the scalar triple product of
the three vectors.

In the deformation P,Ql,Qz,Q3 move to, say,
P»dy,4,,4, respectively. The vector positions at time t of
dq0,,95 with respect to p are given by g,lXm, g’edxe,
1(’3d)(3 respectively. The components of these three vectors

in the system x are

x. dX. , x. .dX_, xi’3dx3

respectively. The volume dv of the tetrahedron Pq,4,4, is
given by

=1
dv 6[5 ax,, x .dX,_, §’3dx3]

, 1000 2 0%

1
3 Eijk xi,lxj,zxk,B XmdXQdX3 . (2.3.2)
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From (2.3.2) and (2.3.1) we have

dv _
v = eijkxi,lxj,exk,3 . (2.3.3)

This provides a formula for the ratio between the volume of

an element of the material at times t and T respectively.

It may also be written as the Jacobian determinant of x with

respect to X, thus:

dv _ X _
av-a—x-- le,A[ . (2.3.4)

We can express dv/dV in terms of the Cauchy strain
tensor. We see from the definition of Cpp 8iven in (2.2.4)

that

2
|CAB| = ]xi,A| . (2.3.5)
With (2.3.4), we obtain

TN EL (2.3.6)
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4, The unit normal to a surface

We consider a surface drawn in a material and deform-
ing with it; i.e. particles which are on the surface at time T
remain on it as it deforms. Let the equation of the surface

in the system x at time T be
¢(XA) =0 . (2.4.1)
Then its equation at time t is
o(x;) =0, (2.4.2)
where ¢(xi) is defined by
o(x3) = o[X, (x)] . (2.4.3)

Conversely, we may consider ¢(XA) to be defined in terms of

o(x;) by
o(X)) = olx; (X1 . (2.4.4)

Let N be the outward-drawn normal to the surface
(2.4.1) at the particle P, i.e. at X,and let n be the out-
ward-drawn normal to the surface (2.4.2) at the same particle

P, i.e. at x. Then the components N, and n., in the system x,
~ A 1’

2

of N and n respectively are given by

and n, = Py i (2.4.5)

)

,A
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where*
h= @ 072 and a = (o
From (2.4.4), we obtain

¢, = - X .
A ¢,1 i,A

Using (2.4.5) we obtain from (2.4.7)

o=
[}

> =
=
>

i*i A

*Our taking A and A as the inverses of the

R. S. Rivlin
,j¢’j)'l’2 . (2.4.6)
(2.4.7)
(2.4.8)

ositive square roots,
defines essentially what we mean by the outward-drawn normal in

each case.
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5. The Finger strain

We now consider a second particle P neighboring the
particle P, but not lying on the surface. Let X - dX and
X - dx be the position vectors of P at times T and t respec-
tively. Let dN and dn denote the perpendicular distances from
P to the tangent planes at P at times T and t respectively.
Then, dN is the distance from X - dX to the tangent plane to

(2.4.1) at X. We thus have

dN = NAdXA

Similarly dn is the distance from x - dx to the tangent plane

to (2.4.2) at x. Thus,

dn = nidxi = )\¢,idxi . (2.

With (2.4.7), we obtain from (2.5.1) and (2.5.2)

5t :

From (2.5.3) and (2.4.8) we have

dn _
NA N *© nixi,A . (2.

Since NANA =1, (2.5.4) yields

dn ? = C..Nn (2
aN ijtify o

where

X. X, . (2.

€35 T *i,a%5,A

= A<I>’AdXA . (2.

5.1)

5.2)

.5.3)

5.4)

.5.5)

5.6)
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If we take a second rectangular cartesian system X
in which the components of the vectors X and x are KA and Ki

respectively, we have

an\? - - -
w) - Cij inj , (2.5.7)
where
9X. 9X.
A TA

It is easily seen that

. =% X c . 2.5.9
‘i 7 *1,p%5,4%q ( )

cij and Eij are thus the components in the system x and X

respectively of a second-order cartesian tensor. This is

called the Finger strain tensbor. We note from its definition

by (2.5.6) that it is a symmetric tensor.
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6. The element of area

We define the vector element of area of the surface
in the usual manner as the product of the (scalar) area and the
unit vector in the direction of the outward-drawn normal to the
element. Let dA and da be corresponding vector elements of
area of the surface at the particle P at times T and t respec-
tively. Let dA and da be the corresponding scalar areas of

these elements. Then,

dA = NdA and da = nda . (2.6.1)

We consider a conical element of volume of the ma-
terial which has the particle P as vertex and the elements of
area dA and da as bases at times T and t respectively. Let
dV and dv be the volumes of these elements at times T and t

respectively. Then,

v = %deA and dv = %dnda ) (2.6.2)

From (2.3.4) we have

dv _ 3% _d
L R (2.6.3)

Introducing this result into (2.5.4) and (2.5.5),

we obtain
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A 1
NA @@ © 3x/ax "iti,A (2.6.4)
and
2
dAY _ 1
(33) * Gxan? (i (2.6.5)
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Chapter 3

FORCES ACTING ON A BODY

1. Description of the forces

We consider a body to be acted upon by forces of two
kinds--forces distributed throughout the body, which are called
body forces, and forces acting on the surface of the body,
which are called surface forces.

We consider an element of the body which has mass
dm, say. We denote by ¢dm the force acting on this mass and

we assume that the force system acting is such that ¢ is

~

everywhere finite, ¢ is called the body force per unit mass.

The forces acting on an element of surface of the
body are specified per unit area of the surface element. Since
the area of a surface element changes during the deformation,
it is necessary to be explicit as to the instant at which this
area is measured. Two methods of specifying surface forces
are commonly used. In one of these the force is specified per
unit area of the surface measured at the reference time T. In
the other the force is specified per unit area of the surface
meésured at time t. We note that in both cases the force is
that existing at time t.

Thus, let dA and da be the areas of a surface ele-

ment measured at times T and t respectively. We denote by
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FdA or by fda the force acting on this surface element at time

t, so that, by definition,

FdA = fda. (3.1.1)

F is called the surface force at time t per unit
area of surface measured at time T, and f is called the sur-
face force at time t per unit area of surface measured at time

t.
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2. Newton's second law

We consider a body to undergo a deformation described
by (2.1.1). We assume that the body forces ¢ per unit mass and
surface forces F per unit area measured at the reference time
T are acting on the body.

Newton's second law, expressed in the form that the
resultant force on the body is equal to the rate of change of

linear momentum of the body, implies that

JEE /ljdA - & [xan (3.2.1)
m A m

where the dot denotes differentiation with respect to time.
The first and last integrals in (3.2.1) are taken over the
whole mass of the body and represent respectively the re-
sultants of the body forces acting on the body and of the
linear momentum. The second integral, which is taken over
the surface of the body measured at time T, is the resultant
of the surface forces acting on the body at time t.

Let P denote the density of the material measured
at time T and let dV be the volume at time T of the material

element of mass dm. Then,
dm = podv . (3.2.2)

Introducing this into (3.2.1), we obtain

/OOQdV + /gdA = /pog’dv . (3.2.3)
v A v
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Fla. L,
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3. The definition of stress

We apply the formula (3.2.3) to an infinitesimal
element of the body which has, at time T, the form of a tetra-
hedron OP1P2P3 with its edges OP1,0P2,0P3 parallel to the

axes Xx x_ respectively of the rectangular cartesian refer-

1%20%3
ence system x, as shown in Fig.1(a). We consider that 0 is at
point § and that the outward-drawn normal to the face PleP3
of the tetrahedron is in the direction of the unit normal N.
At time t, the edges opl,op2,op3 of the tetrahedron oplp2p3
into which OP1P2P3 is deformed will, in general, no longer be
parallel to the axes of the reference system x, as shown in
Fig.1(b). We denote by n the unit normal to the face plpgp3
of this tetrahedron.

Let o be the area of the face P1P2P3 of the tetra-

hedron OPlPﬁP3 and let a, be the area of the face which is
c

perpendicular to the xA-axis, i.e. of the face OP2P3. Then

= aN (3.3.1)

%A A
Also, let A be the volume of the tetrahedron OP1P2P3.

We shall apply the formula (3.2.3) to a body con-
sisting of the infinitesimal material tetrahedron which occu-
pies the region OP1P2P3 at time T and OP,P,P, at time t. We
denote by F the force acting at time t on the face P,P,P, of

the tetrahedron, measured per unit area of the face PlPQPB.
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Thus, oF is the resultant surface force acting on PyP,P5- We

denote by 7. the force acting at time t on the face oP, P4 of

1
the tetrahedron, measured per unit area of the face 0P2P3. Thus,
@ is the resultant surface force acting on OP,Psg at time t.
We attach analogous meanings to m, and Ty-

Applying (3.2.3) to the elementary material tetra-

hedron, we obtain, with this notation,
Po9a ¥ (GF'GAEA) = 0pxb -

Introducing (3.3.1), this becomes
(F-N,m,) + p _(¢-X) 8. 0 (3.3.2)
~ TAYA o'~ ~7 a : e

We now consider the limit as the linear dimensions of the
tetrahedron tend to zero, the orientations of the faces of the
tetrahedron remaining fixed. Then A/0+0 and equation (3.3.2)

becomes

F=Na, - (3.3.3)

The three vectors Ta have nine components in the reference
system x. We denote the components of Ta by YT In terms of
the components of F and TA in the cartesian reference system

X, the relation (3.3.3) may be written

F. = N,m,. . (3.3.4)
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We now define three vectors EA and their nine compo-
nents EAi in an analogous manner with respect to another rectan-
gular cartesian reference system x. Let Nl be the unit vector
in the direction of the axis fl of this system and let ge and
N, be unit vectors in the directions of §2 and §3. Let NlA be
the components in the system x of the unit vector §l and, more
generally, let NBA be the components in the system x of the
unit vector NA’

We note that 7. is the force at time t acting on an

1
element of area which was normal to Nl at time T, measured per

unit area at time T. Thus, from (3.3.3), we obtain

m o= NlAHA . (3.3.5)

More generally, we have

N

Tp = NpaTa - (3.3.6)

We have already introduced the notation ?Bi for the

components of the vector 7, in the system X. We now introduce

the notation ?gi for the components of this vector in the system

x. Then,
To. = N..Th (3.3.7
"Bi - Nij"Bj ¢ +3.7)
From (3.3.6) we have
_%
nBj = NBA“Aj (3.3.8)
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Introducing this result into (3.3.7), we obtain
i = NpaNi s - (3.3.9)

We note that Tai and myy 2Te the components of a

cartesian tensor in the coordinate systems x and x

respectively. This is called the Kirchoff-Piola stress

tensor.
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4. Equations of motion

We now return to the equation (3.2.3) which expresses
Newton's second law for a body of arbitrary magnitude on which
body forces ¢ and surface forces F are acting. We have seen
that the relation (3.3.3) must be valid at every point of the
body and consequently at its surface. Substituting for F in
(3.2.3), we obtain

/pogdv+ jNBerdA = /poiidv. (3.4.1)

v A v

We use the Divergence Theorem to convert the sur-
face integral in this equation into a volume integral and thus

obtain

/(00@+HB,B-OOX)d\/ =0 . (3.4.2)
v

This equation may now be applied to an infinitesimal material

element, yielding

IrB B + po? - OOX =0 . (3.4.3)

This is the Kirchoff-Piola equation of motion. In terms of

components in the system x, we may write it as

"Bi,B N T 0X; = 0 . (3.4.4)
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5. The moment equation

We now apply the law that the moment about a point
of the forces acting on a body is equal to the rate of change

of angular momentum about that point. We obtain

[woqnav+ [pa - T [ogna . (3.5.1)
v A v

Introducing (3.3.3) into the second integral in (3.5.1) and

using the divergence theorem, we obtain

/ (x<F)dA = / (xx7p)NgdA = f () pdV
A A v

’f(i‘,BX’IB*i"“JB,B)dV ' (3.5.2)
v

We also have
4 /(Z(Xpolc)dv - /‘chpog)dv. (3.5.3)
v v

Introducing these results into (3.5.1) and applying the re-
sulting equation to an infinitesimal material element, so that

we may omit the integral signs, we obtain

xx(1g p*PodPoX) * X pxmp = 0 . (3.5.4)

Using the result (3.4.3), we obtain

X oxme =0 . (3.5.5)
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In terms of the components in the coordinate system

X, this result may be written

Eijkxj,Ban =0 . (3.5.6)

To clarify the significance of this result we write down

one of the components in this vector equation, say that with

i = 1. We have

X, B3 = X3 pTpp - (3.5.7)

Thus, (3.5.5), or (3.5.6), is a statement that Xj B"BKk is

symmetric with respect to interchange of j and k.
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6. The Cauchy equations

It may be noted that so far T is an arbitrary refer-
ence time, not necessarily fixed, which may be chosen in any
manner we please. As a particular choice, we may take it to
coincide with the instant t at which the forces are measured.

In this section we explore the consequences of making
this choice. Firstly, in (3.1.1) F becomes f and A becomes a,
so that the equation is satisfied identically. Also the posi-
tion X to which the equations apply becomes the same as Xx.

Equation (3.2.3) then becomes

/p?dv s /;fda - /pgdv , (3.6.1)
v a v

since the volume V now becomes the volume v of the body at time
t and 0 becomes the material density p at time t. In §3 the
tetrahedron OP1P2P3 becomes identical with the tetrahedron

0P, P,P4 and the unit vector normal to itsslant surface becomes
n. Thus, the vector T, is now the force at time t acting on
the face O0P,P4 measured per unit area of 0p,Ps- We shall de-

3
shall denote them by ¢, and g,. MWe shall denote these collec-

note it by g,- Analogous meanings attach to m and 7, and we

tively by gj and their components in the cartesian reference
system x by Oji' The nine quantities oji are the components

of a tensor which is called the Cauchy stress tenser.
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Making these substitutions in (3.3.3), we obtain

In terms of the components of f and Gj in the cartesian

reference system this equation may be written

In the same way the equations of motion (3.4.3) yield

0. .+ -pX=0.
%5,5 T PEPd

These are called the Cauchy equations of motion. They may

be written in alternative form as

Gji,j + p¢i T PXy = 0 .
Again applying the same procedure to equation (3.5.7) we

obtain

This expresses the fact that the Cauchy stress tensor is

symmetric.

(3.6.2)

(3.6.3)

(3.6.4)

(3.6.5)

(3.6.6)
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7. Relation between the Kirchoff-Piola and Cauchy stress

From (3.1.1) we note that the Kirchoff-Piola stress

vector F and Cauchy stress vector f are related by
FdA = fda , (3.7.1)

where dA and da are the areas at time T and t respectively
of an element of a surface drawn in the body and deforming
with it. Introducing (3.3.4) and (3.6.3) into (3.7.1), we

obtain

NAnAidA = njcjida . (3.7.2)

Using (2.6.4), we obtain

= 1 .
[1j0'ji = anxj’AnAi . (3.7.3)

This result is valid for arbitrary orientation of the surface
element considered, i.e. for arbitrary orientation of the unit
vector n. Taking nj = djl’ i.e. the unit vector n is parallel

to the x-axis, we obtain

21
Oli = le’ATI'Ai . (3.7.4)
We obtain analogous results by taking nj = Gje and 6j3‘ The

three results may be written

-1
OJl = W Xj’ATIAi . (375)
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The converse relation

T T (XX, os (3.7.6)

follows immediately.
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8. The Piola stress

We now define yet another stress tensor, the Piola
stress tensor. We denote its components in the rectangular

cartesian system x by PAB and define it by

PAB = XB,i"Ai . (3.8.1
With (3.7.6), we have
PAB = (af/ag)XA,ij,icji . (3.8.2)
From (3.8.1) and (3.8.2), we obtain the inverse relations
Tai = Xi,BPAB R (3.8.3)
and
0.. = 1 X. ,X. P (3.8.4)
ji 35735 i,A"j,B AB ° U



- 190 -

R. S. Rivlin

9. Constitutive equations

In continuum mechanics we usually wish to solve
problems in which a body of material is acted on by specified
forces, or certain parts of its boundary are subjected to
specified displacements, or in which combinations of these
conditions are imposed.

A complete solution of the problem posed then in-
volves a complete description of the resulting deformation
and a complete determination of the stress components in the
body. (We note that if the deformation is determined, then
any of the stresses--whether Cauchy, Kirchoff-Piola, or Piola--
suffices for the determination of the remaining components.)
Let us consider the Cauchy equations (3.6.3), (3.6.5) and
(3.6.6). Equation (3.6.6) tells us that of the nine compo-
nents of the Cauchy stress, only six are independent. Equation
(3.6.5) then provides three differential equations for the
determination of these six independent stress components, even
if we consider the body force 95 and the deformation X5 known.

Plainly, we cannot determine the stress in the body

without some further information. This is provided by the

constitutive equations for the material of the body. Through-

out these lectures we shall consider the materials, with which
we are concerned, to be such that the stress at a particle of

the body is determined by the deformation gradients at the
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particle, although the stress at time t may depend on the
deformation gradients at the particle at times prior to t as
well as on those at time t. Materials for which the stress
at a particle depends on the deformation gradients at the
particle (and not on their values at other particles or on
their spatial derivatives) are sometimes called simple
materials*,

When expressions for the stress in terms of the defor-
mation gradients are introduced into (3.6.5) we obtain three
equations for the three components X These may, in particular
cases, be differential equations, or differential-functional

equations.

*The nomenclature appears to have originated with Noll (Arch.
Rat'l. Mech. Anal. 2, 197 (1958)).
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Chapter 4

THERMODYNAMIC CONSIDERATIONS

1. Description of the thermal state

So far we have been concerned only with the action
of forces on the body. In so doing it has not been necessary
to discuss the thermal conditions which prevail in the body
under consideration.

In this chapter, however, we shall explore the
implications of the first and second laws of thermodynamics
when they are applied to a body which undergoes deformation*.
In order to do this, we cannot avoid introducing the conditions
of temperature and heat flux existing in the body.

We consider a body to undergo a deformation described
by equation (2.1.1). We consider that at the generic particle
P, which is at X at the reference time T, the temperature at an
arbitrary time t is 6. If the dependence of 6 on X and t is

specified, thus

6= 8(X,t) , (4.1.1)

*The approach adopted here is essentially that of Green and
Rivlin, which was originally used by them in somewhat wider
contexts (Arch. Rat'l. Mech. Anal. 16, 325 (1964); ibid. 17,
113 (1964)). It was used in the present context in a later
note (Z.AM.P. 15, 290 (1964)). The presentation here differs
from those previously given in its use of the Clausius in-
cquality instead of the much more doubtful Clausius-Duhem
inequality.
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then the temperature distribution is given throughout the body
at all times. We denote the temperature at the reference time

T by 6, so that
o(X) = 6(X,T) . (4.1.2)

The flow of heat into the body is described in a
manner which to some extent parallels the description in §3.1
of the system of forces applied to the body. We consider that
heat enters the body in two ways--by generation throughout the
volume of the body and by flow across the surface of the body.

We denote by xdm the rate at which heat is generated
in an element of the body of mass dm at time t. x is called

the rate of heat generation per unit mass.

The rate at which heat enters the body across its
surface is specified per unit area of the surface. Since the
area changes during the deformation, it is necessary to be
explicit as to the instant at which this area is measured. As
in the case of the description of surface forces, we use two
methods of specifying the rate of heat flow across the surface.
In each of these we specify, for historical reasons, the rate
of heat flow out of the body rather than into it. The rate of
heat flow into the body is then given by the negative of this
quantity.

We denote by QdA, or qda, the rate at which heat

flows out of the body at time t across an element of surface
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whose area at time T was dA and whose area at time t is da. By

this definition
QdA = qda . (4.1.3)
With (2.6.5), this equation yields

q = gylgx(cijninj)l/% . (4.1.4)

We note that with these definitions, the total rate

Q (say) at which heat enters the body is given by

Q= fxdm - deA- (4.1.5)
m A

In equation (4.1.5) we may replace the integration
over the mass of the body by integration over its volume V at

time T. The equation then becomes

Q=fpode - /QdA- (4.1.6)
m A
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2, The energy balance equation

The first law of thermodynamics tells us that when a
body undergoes deformation, the sum of the work done by the ap-
plied forces and the heat flowing into the body (measured in
energy units) is equal to the total change of energy in the
body. It is assumed that the latter may be written as the sum
of the change in kinetic energy and a term called the change
in internal energy which is unaltered by the superposition on
the assumed deformation of a rigid body motion.

Applying this law to the changes occurring in an
infinitesimal time interval we see that the sum of the rate R
(say) at which work is done by the forces applied to the body
and the rate Q at which heat is entering the body is equal to
the sum of the rate of change of the kinetic energy and the
rate of change of the internal energy. We denote the kinetic
energy and internal energy by 7 and U respectively and their
rates of change are, therefore, T and U respectively. We thus

have

R+Q=T+1U. (4.2.1)

At time t, the rate at which work is done by the

applied forces is given by

R = /pog.gdv ' flj.gdA : (4.2.2)
v

A
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The first term represents the rate at which work is done by
the body forces and the second that at which it is done by the
surface forces.

The kinetic energy T is given by
1 ..
T=f2- poX-XdV . (4.2.3)
\

We now assume that the internal energy is a dis-
tributive property of the body, i.e. to each element of mass
dm we can assign an internal energy Udm such that the total

internal energy of the body U is given by

u =/Udm =[poUdV . (4.2.4)
m \

U is then the internal energy per unit mass at time t.
Introducing the expressions (4.2.2), (4.2.3), (4.2.4)
and (4.1.6) into (4.2.1), we obtain

/pog.gdv + /g.gdA +/pode - /QdA

v A v A

=fpog.gdv +fpot'1dv . (4.2.5)
v

v

This is the energy balance equation.
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3. The heat flux vector

If we examine the various quantities occurring in
equation (4.2.5) we note that ¢, F, x, Q and U are unaltered
if we superpose on the assumed deformation a rigid motion.
This fact can be used to derive from (4.2.5) the fundamental
mechanical equations (3.3.3), (3.4.3) and (3.5.5) together
with additional equations which must be satisfied by the
heat flux,

We first apply the energy balance equation (4.2.5)
to a body consisting of the material tetrahedron described
in §3.3, which occupies the regions OPleP3 and OP;P,P3 at
times T and t respectively (see Fig.l). We adopt the same
notation as that introduced in §3.3 and we introduce the
further notation Ql for the rate at which heat leaves the
tetrahedron at time t across the face 0p,Pss Per unit area of
OP2P3. Analogous meanings are attached to Q2 and Q3.

Taking the volume V in (4.2.5) to be the elementary

tetrahedron 0P1P2P3, we obtain

P (8% + X - %.x - U)
+ (oF - aAgA).g - (aQ - @4Qy) =0 . (4.3.1)

Here we have preserved the notation Q for the rate at which
heat leaves the tetrahedron at time t across the face PiPP s

measured per unit area of P)P,Ps. Introducing (3.3.1) and



- 198 -

R. S. Rivlin
allowing A/a>0, as in §3.3, we obtain

(E-NyTp) X - (QNpQy) = 0 . (4.3.2)

We now consider the effect of superposing on the
assumed deformation a uniform translational velocity of
arbitrary magnitude, i.e. the effect of changing g by a
constant vector ¢ (say). Evidently, (EA-NAEA) and (Q—NAQA)

are left unchanged and equation (4.3.2) becomes

(E-Nyzp) - (Be) - (@NyQy) = 0 . (4.3.3)

Subtracting (4.3.2) from (4.3.3), we obtain

(F-Nymy) . = 0 . (4.3.4)

Since equation (4.3.4) is valid for an arbitrary value of

vector ¢, we obtain equation (3.3.3), viz.

. = 4.3.5
F NAEA 0 . ( )

Introducing this result into (4.3.2), we obtain

Q-NyQ, = 0 . (4.3.6)

We bear in mind that equations (4.3.5) and (4.3.6)

are valid at each point of the body.
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4. The equations of motion and the dissipation equation

We now return to equation (4.2.5). We note, using

(4.3.5) and applying the divergence theorem, that

/g.gdA ﬁngB.gdA =/(EB.3)’de
v

A A

= /(EB,B'i‘ + 1peX plAv . (4.4.1)
v

Similarly using (4.3.6) and applying the divergence theorem,

we obtain

ﬁdA - fNBQBdA - [QB’de . (4.4.2)
v

A A

Introducing these results into (4.2.5) and applying the re-
sulting equation to an infinitesimal material element, we

obtain
(Tp,B * Pod = PoX).X + 00X - Qg - PoU
+MpX =0 . (4.4.3)
We again consider the effect of superposing on the
assumed deformation a uniform translational velocity of arbi-

trary magnitude c, say. We obtain the Kirchoff-Piola equations

of motion (cf. equation (3.4.3))
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"
o

Tg,B ¥ Pod - PoX

and the equation
U * X - Qg g * Tp-X =0,

which is called the dissipation equation.

Equation (3.5.5) can be derived from (4.4.5) by
considering the effect of superposing on the assumed defor-
mation a time-dependent rigid rotation. We assume this to
be such that the positions of the various particles of the
body at time t are unaltered, but the angular velocity of
the body at time t is changed by @, say. The velocity at
time t of the particle which is at x is thereby changed to
X+ xxq.

Replacing x by this vector in (4.4.5), we obtain
'DOU + PoX - QB,B + !B‘()-$+?.(x9]’]3 =0 .

Subtracting (4.4.5) from (4.4.6), we obtain, bearing in mind

that @ is constant throughout the body,
Tpe (xxQ) g = Tp.(x px@) = -Q.(x px1p) = 0 .

This relation is valid for arbitrary @ and consequently the

relation (3.5.5) follows, i.e.

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)
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5. The second law of thermodynamics

In classical thermodynamics the difference in the
entropy of a body in two states of equilibrium A and B, say,
is defined in the following way. Let SA and SB denote the
entropies in the states of equilibrium A and B respectively.
It is considered that the body is taken from state B to state
A by a reversible path. The path is assumed to be such that
at each point of it the absolute temperature 6 throughout the
body is independent of position. 6 may, however, vary as the
body is taken from state B to state A. Let dHf denote the
amount of heat added to the body at the point on the path at

which the temperature is 8. Then S,-Sg is defined by

A

s, -8, = [ (4.5.1)

A B [ 0

B .
We now consider that the body is taken from the

state of equilibrium B to the state of equilibrium A by some

other path, which is not necessarily reversible. At each

point of this path the temperature is not necessarily constant

throughout the body. We now form the ratio of the amount of

heat entering an element of the body to the absolute temperature

of the element at the instant at which it enters. We then in-

tegrate this over the whole body and over the path from state B

to state A.
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Let x and 6 be the vector position and absolute
temperature respectively at time t at a particle of the body
which was at vector position X at some reference time T. We
adopt the notation x for the rate per unit mass at which heat
enters the body throughout its volume and Q for the rate at
which heat leaves the body across its surface, per unit area
measured at time T. Then the ratio of the amount of heat
entering the body in time dt to the absolute temperature at

the point of entry, integrated over the body, is

(fé dm - f% dA)dt . (4.5.2)
m A

Using dm = podV, we see that the integral of this quantity

over the path from state B to state A is

taf [PoX
j"[ - fg dA] dt . (4.5.3)
v A

t, and tg are the times at which the body reaches the states
B and A respectively.

The second law of thermodynamics tells us that the
quantity (4.5.3) is less than or equal to the increase in
entropy, AS, say, in passing from the state of equilibrium B to

the state of equilibrium A, thus:
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t
A

AS af [f polxdv ; f%d/\]dt . (4.5.4)
ty LV

A

The incquality (4.5.4) is called the Clausius incquality.
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6. Implications of the Clausius inequality

We introduce into the Clausius inequality expressed

by (4.5.4) the relation (4.3.6). Using the divergence theorem,

N
[Hea- () o
A v ’

\

we note that

[

1 Q
(6 %,5 " 2 e’B)dv . (4.6.1)

We now assume that the entropy of the body in any
state of equilibrium is an extensive property, so that Sa

and SB and hence AS may be expressed as integrals over the

AS = fASdm = /pOASdV , (4.6.2)
vV

m

body, thus:

where AS is the change of entropy per unit mass. Equations

(4.6.1) and (4.6.2) are introduced into (4.5.4) and the body
considered is taken to be an infinitesimal element, so that

the integral signs over V may be omitted. We thus obtain

t

A 1 ; QB
poAS > J. E(poX'QB,B) + gE e’B dt . (4.6.3)
t
B

The dissipation equation (4.4.5) is now used to substitute for

(DOX-QB g) in (4.6.2). This yields
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t
A 1 - . QB
pOAS > s g(pou - EB'f,B) + 55 G’B dt . (4.6.4)

We now consider the special case when the tempera-
ture is independent of time. In this case the inequality

(4.6.4) yields

t
Mo

po(AU—eAS) < j Tg-Xp = 7 e’B dt , (4.6.5)
tg

where AU denotes the increase in internal energy per unit
mass in passing from state B to state A. The quantity U-6S
is usually called the Helmholtz free energy. We shall use
the symbol W to denote the Helmholtz free energy per unit

mass, thus:
W = y-6S . (4.6.6)

The increase AW in the Helmholtz free energy in passing from
state B to state A, when the temperature of the material ele-

ment is the same in the two states, is given by
AW = AU - 8AS . (4.6.7)

Then, (4.6.5) becomes

t
S
bW J’ 1p-% g - g 0 gJdt . (4.6.8)
t
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7. Elastic materials

We now apply the inequality (4.6.4) to the situation
in which the states B and A are neighboring states, each of
which is an equilibrium state, attained at times t and t + dt
respectively. The increases in S, U and W in the passage
from state B to state A are infinitesimal and will be denoted
dS, dU and dW respectively. The inequality (4.6.4) yields,

when applied to this situation,

p,(dU-04S) € T15.dx dt, (4.7.1)

,B % °,B
where x and x + dx are the vector positions of the particle

considered at times t and t + dt respectively. Equation (4.7.1)
may be rewritten in terms of the components of T3 and dx in the

rectangular cartesian system x, thus:

Qg
po(dU-GdS) < "Bidxi,B ST e,B dt . (4.7.2)
From (4.6.6) we have
dU - 6dS = dW + Sde . (4.7.3)
With (4.7.2), this yields
Qg
po(dW+Sde) < "Bidxi,B " T e’B dt . (4.7.4)

We define an elastic material as one for which the

Helmholtz free energy and the Kirchoff-Piola stress depend
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on the deformation gradients only, i.e.
W= W(xj’P,e) and Tpi = "Bi(xj,P’e) . (4.7.5)
From (4.7.5) we have
dw = g‘:l - dx; Mo . (4.7.6)
’

Introducing (4.7.6) into (4.7.4), we obtain

an oW
(°o g "Bi) dx; B * 0 (S * a‘e‘) dé
’

Q i
-5 e,B t . (4.7.7)
Since the coefficients of dxi B’ d® and dt in
’

(4.7.7) are independent of dxi B’ d6 and dt, with the assump-
’
tion that the inequality (4.7.7) is valid for all infinitesimal

values of these quantities, we obtain

_ oW _ oW .
TTB1 = po r , S = (w) , B’B 0 . (4.7.8)
i,B 0 xi,B

We have written the first two of these results in forms which
emphasize the independent variables which are kept constant

in the derivation. The last of the relations (4.7.8) expresses
the fact that a temperature gradient cannot exist in a body in

thermodynamic equilibrium.
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We may also express the Kirchoff-Piola stress in
terms of the internal energy U per unit mass. U and W may be

regarded either as functions of X g and 6, or of X; B and S.

’ ?

Thus,
_[3W W
dw = X dxi’B + (a—e) de
1,8/ Xi,B
_[3W oW
“\ 3x; dxi,B + (55) ds . 4.7.9)
1,8/s Xi B
From this it follows immediately, with (4.7.8),
that

W _ [oW a6
T i Er + S T . (4.7.10)
i,B 0 i,B S i,B S

From (4.6.6), it follows that

L - (au ) -2 (4.7.11)
X. 0X. 0X.
i,B g i,B g i,B g

From (4.7.10), (4.7.11) and (4.7.8), we obtain

N (N Ny 1
"Bi ~ Pol 3x; = Polax, (4.7.12)
i,B 0 i,B S

Using (3.7.5), we obtain immediately an expression

for the Cauchy stress

P p
. 0 oW . _O aU -
Oji 3x/0X xj,B(ax_ ) 3x/ 3% xj,B X . (4.7.13)
~ ~ 1’B 0 ~ ~ l,B S
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If we are considering isothermal deformations of a
body, it is preferable to regard the thermodynamic potentials

as functions of x. and 6. We then characterize the material

i,B
by expressing the Helmholtz free energy as a function of Xi B
and 6 and use the first expression in (4.7.12) or (4.7.13) to
determine the stress. On the other hand, if we are considering
isentropic deformations, it is preferable to regard the thermo-
dynamic potentials as functions of Xi B and S. The material
is then characterized by expressing the internal energy as a
function of xi,B and S and we use the last expression in (4.7.12)
or (4.7.13) to determine the stress.
Care must be exercised in interpreting equation

(4.7.12), for it might at first sight appear that the stress
associated with specified deformation gradients is independent
of whether these are attained under isothermal or isentropic
conditions. That this is not correct can be seen in the
following way. Let 60 and S0 denote the values of 6 and S
respectively at the reference time T. Then, for an isothermal
deformation

(X ,0,)
Ty * -—sgli-%— X (4.7.14)

while for an isentropic deformation

oU(x_ ~,S.)

B = | —2) . (4.7.15)

1,8 /s

m
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The values of i given by (4.7.14) and (4.7.15) are not the
same notwithstanding equation (4.7.12). The latter, applied

to an isothermal deformation, states that

oW ,0 U »S
ip_&ﬂ_) - _ER&_) (4.7.16)

’
;B i,
where S is the entropy which corresponds to the state in
which the deformation gradients are X 3 and the temperature
’
is 0, On the other hand, when applied to an isentropic

deformation, equation (4.7.12) states that

aW(x_ ,,6)

U (x S)
p,Q - _8.%9’_0_ , (4.7.17)
%i,B 6 i,B

where 6 is the temperature which corresponds to the state
in which the deformation gradients are xi,B and the entropy
is So’

The expressions for the stress in an elastic material
in terms of thermodynamic potential functions, given by (4.7.12)
and (4.7.13), depend on the assumption that the body is in
equilibrium. The formulae may, however, be applied when the
body is not in equilibrium if we make a further assumption re-
garding the material and are careful to define appropriately
what we mean by entropy in a non-equilibrium situation. We
shall call a material for which these further assumptions are

valid a perfectly elastic material.
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We define the entropy and internal energy at any
instant in a perfectly elastic material which is not in equil-
ibrium as the entropy and internal energy the body would have
if held in equilibrium in precisely the same state of defor-
mation and temperature as it instantaneously occupies. With
this definition we assert the validity of the second law of
thermodynamics in the form (4.5.4), and the argument leading
to the results (4.7.12) and (4.7.13) remains unchanged.
Whether or not the argument can be applied to a particular
material is a matter which can be decided either by experi-
ment or by an understanding of the physical structure of the
material and of the physical significance of entropy and in-
ternal energy. It should be borne in mind, also, that the
nature of the departures from equilibrium for which the stress
may still be derived from thermodynamic potential functions may

vary from material to material.
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8. Constraints

In passing from (4.7.7) to (4.7.8) it was assumed
that the variations dxi,B’ d6 and dt may be chosen independently.
If the material is such that the deformations to which it can
be subjected are restricted by some constraint, this assumption
is not necessarily correct.

For example, if the material is incompressible, then
only isochoric deformations (i.e. deformations in which each
material element remains unchanged in volume) are possible. It
follows from (2.3.3) that the deformations to which the material

can be subjected are restricted by the constraint

ox/03X = 1. (4.8.1)

€ike*i,1%k,2%e,3 ~
It follows that the quantities dxi,B in (4.7.7) are subject to
the constraint
€ika(Xg 1% 2Xp 3+ dXg X5 1%y 5
+ dx2’3xi,lxk,2)= 0 . (4.8.2)

The method of Lagrange undetermined multipliers can be used

to relax this constraint in (4.7.7). From (4.7.7) we have

p on - omgs)dx. o - opesy . (dX: x, X
0 Exi’B BiJ™"i,B iket""1,17k,274,3

Pl X X A% XX )

Q
+ pO<S + %g>de <20 g dt, (4.8.3)
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where p is arbitrary. This relation is now valid for all
infinitesimal values of dxi B? d6 and dt. We therefore obtain,
b
in place of (4.7.8)1,
mT,. = oW - pe X 4.8.4
1 ° Polm) O PEikek, 25,3 (4.8.4)
0

i,1

)

with analogous equations for m,. and e We also obtain, as

before, equations (4.7.8)2 and (4.7.8)3. It follows that

i = po(ggfjg)e - 7 P€ix2fBPQYk,P 1,Q (4.8.5)
Introducing (4.8.5) into (3.7.5), and bearing in

mind (4.8.1), we obtain an expression for the Cauchy stress

Oji = poxj,B (%gf__) - pGij . (4.8.6)

i,B 6

This expression replaces, for an incompressible material, the
expression (4.7.13) for the Cauchy stress which is valid when
there is no constraint on the deformations which the material
can undergo. We notice that in the latter case, if the expres-
sion for the Helmholtz free energy W as a function of the defor-
mation gradients is known, the Cauchy stress can be calculated
explicitly. However, in the case when the material is incom-
pressible and the Cauchy stress is given by (4.8.6), if W is
known as a function of the deformation gradients, the Cauchy
stress is still undetermined to the extent of a term pdij;

this has the nature of an arbitrary hydrostatic pressure.
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As another example of a constraint, we have the
possibility that there is, in the material, a direction of
inextensibility, say linear elements of the material which
are parallel to the l-axis at time T cannot change in length.

From (2.2.12), this implies that

C =

1 xi,lxi,l =1, (4.8.7)

From (4.8.7) we have

X dx, o6,. =0 . (4.8.8)

dxi, i,B"B1

i,0%i,0 7 %1

Introducing this constraint on dxi B into (4.7.7) by means
’

of a Lagrange undetermined multiplier t, say, we obtain

oW

MTn: = P 70—
Bi 0 axi,B

Txi,lGBl . (4.8.9)
If the possible deformations are subject to more

than one constraint, then more than one undetermined multiplier

must be introduced, one for each constraint. Suppose there are

o independent constraints on the deformation gradients

folx; p) =0 (B=1,...,0) . (4.8.10)

We obtain

de

dx. , =
Hxi’B i,B

]
o

(4.8.11)

Let TB(B = 1,...,a) be a undetermined multipliers. Then, we
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obtain from (4.7.7),

Q
o
Fh

= B
’ITB1 = Qo m + ET - . (4.8.12)
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9. Cauchy elastic materials

In deriving, from (4.7.7), the expression (4.7.8)1,
we make the assumption that the Helmholtz free energy W, the
entropy S and the Kirchoff-Piola stress m,. depend only on the
deformation gradients Xi,A and the absolute temperature 6. A
material for which this assumption is valid is called an
elastic material*,

In contrast, a Cauchy elastic material is defined as
a material for which the stress at any instant depends only on
the deformation gradients and temperature existing at that in-
stant, while the Helmholtz free energy and internal energy do

not depend solely on these quantities.

We thus have
Taj = “Ai(xp,Q’e) . (4.9.1)

It can be shown that, from a physical standpoint,
the concept of a Cauchy elastic material is somewhat
artificial,

We first note that the rate at which work is done
by the body force ¢ per unit mass and surface forces F, per

unit area measured at time T, acting on a body at time t is

/pog.isdv + /E.gdA , (4.9.2)
v A

*The term hyperelastic material has been used for such a ma-
terial to distinguish it from a Cauchy elastic material. In
view of the implications of the discussion in this section,
it does not seem worthwhile to introduce a new ternm.

given by
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where V is the domain occupied by the body at time T and A
is the surface of the body at time T. Introducing (3.4.3)

and (3.3.3) and using the divergence theorem, we obtain

/904%’.'5““/ + fE~$dA ,
v A

/(°o¢i*“Bi,B)xidV * /"Bixi,de
v v

-/poxixidv + /nBixi,BdV . (4.9.3)
v

v

The work done by the forces acting on the body in a deforma-

tion taking place in the time interval t, tot is thus

2
t
2 . .
f dt[fpof.)fdv +/§.§dA]
t

1 v A
L L1 [ .
= - [2- poxixi] + I dt/"Bixi,BdV . (4.9.4)
tl tl \

In the case when this deformation is cyclic, in the sense

that
X(tort) = x(t +1), 8(t,+1) = 8(t +1), X(ty*1) = k(t;+1), (4.9.5)

equation (4.9.4) becomes
t

2 ) .
f dt[/oog.gdv+[lj.§dA]
t, Ly A
t2
—f dt[“Bixi,BdV ; (4.9.6)
t v

1
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i.e. the stress work done in a cyclic deformation is equal to
the work done by the external forces.

Now, for any cycle of deformation, the work done by
the external forces is positive, negative, or zero. If it is
positive, then we consider the inverse cycle of deformation in
which a particle which is at X, at the reference time T moves
to ii(t) at time t, the temperature at this time being §(t),
where

ii(t) = xi(tl+t2-t) , B8(t) = o(t,+t, -t) . (4.9.7)

1 72

Using the dissipation equation (4.4.5) together with
(4.9.6) and (4.4.2), we see that the work done by the body in

the time interval tl to t2 is

[l [ffoamn- [ fn

i.e. in the cycle considered internal energy and heat are
converted into useful work with an efficiency of 100 percent.
If we exclude this unlikely, if not impossible, class of ma-
terials, we must conclude that the work done by the external
forces in all cyclic deformations is zero. From this it

follows that the stress is derivable from a potential function.
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Chapter 5

FINITE ELASTICITY THEORY

1. Introduction

It has been seen in §4.7 that the Piola-Kirchoff
stress m,., referred to a rectangular cartesian system x, at
time t is given in terms of W, the Helmholtz free energy per

unit mass of the material, by

oW
Tps = P. ao— (5.1.1)
Bi 0 axi,B ’

where o is the material density at the reference time T.

W is regarded as a function of the deformation gradients

X; B and the absolute temperature 6. The Cauchy stress is
’

then obtained by using the formula (3.7.5) as

.. = i X L (5.1.2)
ji T R 3,8 By -
’

Since, as was seen in §2.3, 3x/9X is the ratio between the
volumes of a material element at times t and T, we have
p = py/(3x/3%) , (5.1.3)

where p is the material density at time t. Equation (5.1.2)

may then be rewritten as



- 220 -

R. S. Rivlin

oW
0.. = pX; n =0 . 5.1.4
ji P j,B axi’B ( )

The form of W as a function of the deformation
gradients is not entirely arbitrary, but is subject to cer-
tain restrictions. These arise in two ways. Firstly, the
superposition on the assumed deformation of a rigid rotation
leaves the Helmholtz free energy W unchanged and this restricts
the manner in which W can depend on the deformation gradients.
Secondly, the material may possess some symmetry and this
provides a further restriction on the form of W. It will be
seen that the problem of determining explicitly the resulting
limitations on the form of W can be reduced to a problem in

the theory of invariants.
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2. Restrictions due to effect of a superposed rotation

(i) Formulation of the problem

Consider a deformation in which a particle located
at X at the reference time T moves to x at time t. The defor-
mation is then described in a rectangular cartesian coordinate

system x by

x; = xi(xB,t) . (5.2.1)

We call this deformation A. We suppose further that the
Helmholtz free energy W per unit mass of a body which undergoes

deformation is a function of the deformation gradients, thus:
W= F(xi,B) . (5.2.2)

We now consider a second deformation--deformation
B--which differs from A by a rigid rotation. We suppose that
in this deformation the particle which is at X at time T
moves to X at time t. In the reference system x, this defor-

mation is described by

X, = xi(XB,t) (5.2.3)
Since deformation B differs from deformation A by
a rigid rotation, we may write
X, = S..X: , (5.2.4)
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where $ij is a proper orthogonal transformation, i.e.

$i3%ik = SjiSki ~ 8ik |sij| =1. (5.
The Helmholtz free energy W associated with this deformation
is, from (5.2.2), given by
W= F(xi,B) . (5.
We assume that the conditions of the system are such
that
W=W. (5.
Then, from (5.2.2), (5.2.6) and (5.2.4),
F(Sijxj,B) = F(xi,B) , (5.

and this relation must be satisfied for all proper orthogonal
Sij’ i.e. for all sij satisfying (5.2.5).

Equation (5.2.8) implies a restriction on the manner
in which F can depend on the deformation gradients X; B This
restriction is, however, given by (5.2.8) in implicit form and
our next problem is to make the restrictjon explicit. We shall

give two different methods by which this can be done.*

*Although the main results here, contained in equation (5.2.9),

2.5)

2.6)

2.7)

2.8)

are classical, the first method of deriving them stems from that

used by Green and Rivlin (Arch. Rat'l. Mech. Anal. 1, 1 (1957)
in a more general context. The second method stems from that
used by Noll (Arch. Rat'l. Mech. Anal. 2, 197 (1958)) in this
same more general context (see also §7.2).

)
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(ii) Method 1
We recognize that equation (5.2.8) expresses the
fact that W is a scalar invariant under the proper orthogonal
group of transformations of the three vectors xi,l’ xi,z,

X: 5.
i,3

We now make use of a theorem due to Cauchy which
states that any scalar invariant under the proper orthogonal
group of transformations of u vectors gi,yg,...,y may be
expressed as a function of the % u(p+1) inner products

Ya'YB(a'B =1,...,0) and % u(u-1)(u-2) scalar triple products

[YG’YB’YY] (o,B,y = 1,2,...,1; 0,8 ,Y all unequal),

This theorem implies that W must be a function of
the six inner products xi,A xi,B (A,B =1,2,3) and the scalar
triple product of the three vectors Xi,l’ xi,2’ xi’3. This
may be expressed as eijkxiJXj;fk,3’ We recognize that xi,Axi,B
are the components in the system x of the Cauchy strain and
we have already seen in §2.3 that for deformations possible in
a real body this scalar triple product may be expressed as
(det 9)1/2, where C is the Cauchy strain matrix referred to

the system x. It follows that W must be expressible as a

function of the components of the Cauchy strain tensor, i.e.

W= W(C (5.2.9)

AB) )
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{iii) Method 2
Another method by which the restrictions on W implied
by (5.2.8) may be made explicit is the following. Since (5.2.8)
must be valid for all proper orthogonal Sij’ i.e. for all Sij

satisfying (5.2.5), it must be valid for*

- (12
sij (g )ipxj’p . (5.2.10)

Introducing this expression for sij into (5.2.8), we see,

with (2.2.4), that

-1/2
Flxi,p) - (‘5 )iij.ij,B§

_ elfe-1re
= F ( )iPCPB§

o fe1r2
- F (g )iBE . (5.2.11)

Thus W must be expressible in the form (5.2.9). Since CAB’

]
e o]

o

?

regarded as a function of X; p» satisfies the condition
(5.2.8) for all proper orthogonal sij’ it is evident that any

W of the form (5.2.9) must do so.

*We have already seen that $;; defined in this way is proper
orthogonal. J
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(iv) The stress
Introducing the expression (5.2.9) for W into (5.1.1),

we obtain
_ oW oW
"Bi T Po¥i,P (iq; * icg) * (5.2.12)

Similarly, from (5.1.2), we obtain

L N CL I | (5.2.13)
ji T 7K 5,840 (30, 50,5 ) 2.

PB
These are the restrictions on the forms of the Kirchoff-Piola
and Cauchy stress tensors, which result from the fact that W
is unchanged by the superposition on the assumed deformation
of a rigid rotation,
Employing the definition (3.8.1) for the Piola stress
PAB’ we see from (5.2.12) that

oW oW
P,n=0p + . (5.2.14)
AB 0 (GCBA aCAB)

In the case when the material is incompressible
these equations have to be modified slightly, since the ex-
pressions for the Kirchoff-Piola and Cauchy stresses are given
by (4.8.5) and (4.8.6) respectively. Introducing (5.2.9) into
these equations, we obtain for an incompressible elastic

material



rs o x W,
Bi - Po*i,p |3C, © 3T
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W
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W
PB

oW

26 -

.. = . . + - pS.. .
0]1 poxJ,Bxl,P (5CBP ECPB) P ij
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1
) 7 P&ike®BPQ*R,P*1,Q

From the definition (3.8.1) for the Piola stress

PAB and (5.2.15), we see that

Ppp = °o(

We note that

PAB =P (

oW

aCBA

oW

* "‘—acAB) - Py %5

_ -1
X,i%8,1 ° (Q )AB ,

so that (5.2.17) may be rewritten

oW

:BA

+ oW
AB

) o€

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)

(5.2.19)
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3. Restrictions imposed by material symmetry

Most materials of practical interest possess some
symmetry. Most commonly they are isotropic. Otherwise they
may possess fiber symmetry, or have the symmetry of one or
other of the crystal classes.

It is convenient to describe the symmetry of a ma-
terial in terms of equivalent coordinate systems. Let x and
X be two fixed rectangular cartesian coordinate systems with
a common origin. We consider two deformations A and B. A

is described by

x; = £, (Xg,t) , (5.3.1)

where XB and X, are the coordinates in the system x of a

particle at times T and t respectively. B is described by

X, = £, (5,0, (5.3.2)

where iB

particle at times T and t respectively. We note that we have

and ii are the coordinates in the system X of a

taken the functions to be the same in both cases. This means
that the deformation B viewed from the coordinate system X
looks precisely the same as the deformation A viewed from the
coordinate system x.

The Helmholtz free energy per unit mass W associated
with the deformation A is, of course, a function of the defor-

mation gradients axi/axA and, as we have seen in §5.2, depends
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depends on these through the six independent components CAB

in the reference system x of the Cauchy strain; thus:

W= F(CAB) , (5.3.3)
where
axi Bxi
CAB = ﬂ;gx—B— . (5.3.4)

The Helmholtz free energy per unit mass W associated with

the deformation B is, of course, a function of the deforma-
tion gradients ai&/aik, and again it follows from §5.2 that
W depends on these through the six components EAB in the ref-
erence system x of the Cauchy strain associated with the de-

formation 8, thus:

W= i(EAB) , (5.3.5)
where
- 3X. X.
Chp = — —= (5.3.6)
AB - . o Jde
QXA 9 B

We note that the functions F and F which occur in
(5.3.3) and (5.3.5) are not, in general, the same. If they
are then the two coordinate systems x and X are said to be
equivalent*. In this case W is given by (5.3.3) and we may

write (5.3.5) as

AB) - (5.3.7)

W= F(

*Here we imply equivalence only from the point of view of
finite elasticity theory.
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We note that if we take

X, =X, and XA = XA , (5.3.8)

i.e. we choose the deformation B so that it is related to the
reference system X in precisely the same way as the deforma-

tion A is related to the reference system x, then
W=W. (5.3.9)

Since the reference systems x and X are both rectangular
cartesian systems, they are related by an orthogonal trans-
formation, which we shall denote by Sij' Let points with co-
ordinates x; and X, in the system X have coordinates xi and

XA in the system x, where

. = S..X. X, X

A = SAB (5.3.10)

B .
From (5.3.10)

1
9X.: Bxi

S'X_A = SlJSAB EX—B- . (5.3.11)

We denote by CAB the components in the system x of the Cauchy

strain tensor associated with the deformation B. Then,
Cap = =T 337 - (5.3.12)

Introducing (5.3.11) into (5.3.12) and recalling that the

transformation sij is a proper orthogonal transformation, we
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obtain

Cl

AB C SAPSBQCPQ . (5.3.13)

From (5.3.3) we see that the Helmholtz free energy per unit
mass associated with the deformation B is F(CAB) and from

(5.3.6) we see that it is given by F(EAB). Thus
-
F(Cyp) = F(Cyp) - (5.3.14)

Now, from (5.3.8), (5.3.4) and (5.3.6), we have

Cap = Cap - (5.3.15)
Introducing (5.3.13) and (5.3.15) into (5.3.14), we obtain
F(SAPSBQCPQ) = F(CAB) (5.3.16)

Equation (5.3.16) is valid for all transformations
s relating equivalent coordinate systems and represents, in
implicit form, a restriction on the manner in which F (and
hence W) can depend on Cyp- The manner in which this implicit
restriction can be made explicit will be explained in the
following two sections. It will be seen that the details of
the problem and the explicit form which can be given to the
dependence of W on C,p depend very much on the precise nature

of the material symmetry.
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4. Symmetry groups

The symmetry of a material can be described by specify-
ing all the rectangular cartesian coordinate systems which are
equivalent to a given rectangular cartesian system. The set of
transformations relating every pair of these equivalent coordi-

nate systems forms a group of transformations. This is the

symmetry group of the material. Since each transformation of
the group relates two rectangular cartesian coordinate systems,
it is an orthogonal transformation. The symmetry group for
the material is, therefore, either the full orthogonal group
or a subgroup of it.

If the symmetry group is the full orthogonal group
then every pair of rectangular cartesian coordinate systems,
whether right or left handed (i.e. which can be brought into
parallelism by a rigid rotation or rotation-reflection), are

equivalent. The material is then isotropic and centrosymmetric.

If the symmetry group is the proper orthogonal group, only
rectangular cartesian coordinate systems of the same hand (i.e.
which can be brought into parallelism by a rigid rotation) are

equivalent. The material is then a non-centrosymmetric iso-

tropic material.
Other symmetry groups which have particular interest

in mechanics are the transverse isotropy groups and the

crystallographic groups.
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In a transversely isotropic material there is a
single direction of rotational symmetry. Let this be the
direction of the x3-axis of a rectangular cartesian coordi-
nate system x. Then, every rectangular cartesian coordinate
system of the same hand which has its 3-axis in this direc-
tion is equivalent to x. We denote by 6 the angle by which
the system x has to be rotated about the x3-axis in order to

bring it into coincidence with. an equivalent system Xx. Then,

fi X.cos® + x,.sinb

1 2 ’
X5 =-x151n9 + x2cose ,
X3 = X3,

where Xy and ii are the coordinates of a generic point, fixed

in space, in the systems x and X respectively. We note that

as far as the 1- and 2-coordinates are concerned, the trans-
formation group is the two-dimensional proper orthogonal group.
As far as the 3-cdgdinate is concerned, the transformation group
is the identity group. In addition, the transversely isotropic group
may or may not possess one or both of the following symmetries--
reflection symmetry in a plane normal to the axis of rotational
symmetry (i.e. the x3-axis) and reflection symmetry in a plane
containing the axis of rotational symmetry. There are thus

four possible types of transversely isotropic material. Un-
fortunately there does not appear to be any generally accepted

nomenclature for distinguishing between them.
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There are thirty-two possible crystal symmetries--

the so-called crystal classes, or crystallographic point groups.

Each of these crystal classes can be characterized by a group
of transformations which is a subgroup of the full orthogonal
group. In each case it is a finite group. In order to define
the group, it is not generally necessary to specify all the
transformations of the group. Certain of these, called the

generating transformations, suffice. The generating transfor-

mations of a group is a set of transformations of the group
which has the property that each of the transformations of the
group can be obtained by forming products from the generating
transformations. For a specified group the generating trans-
formations are not necessarily unique. We take an example.

Consider the group

1 0 0 (1 0o 0

1= flo 1 of, p,= flo -1 of,
0 0 1 0 0 -1
.1 0 0 -1 0 0
D, = ffo 1 o0 D= [lo -1 0
0 0 -1 0 0 1

We note that Ql and 92 are generating transformations,
since
I =D° and Dy = DD
i ~1 <3 ~1z2-
Alternatively D, and D3 can be taken as the generating trans-

formations, or D, and D,.

3
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The following transformations are adequate for the

description of all thirty-two crystal classes*:

L= (171’1) ’ g= (-1"1,'1) ’
Bl = ('1’1’]-’) ’ 8,2 = (1:_1,1) ’ 8,3 = (lal,'l) ’
D*l = (1)'1)'1) ’ Q2=('111;'1) ’ D.3 = ('l"l’l) ’
1 0 0 0 0 1 0- 1 0
To=fl0 o 1f, T, 0 1 oof, T, 0 o
0 1 0 1 0 0 0 0 1
0 1 0 0 0 1
Ml =[]0 0 1y, ME = |1 0 oy ,
1 0 0 0 1 0
-1/2 Y3/2 0 -1/2 /3/2 0
s, =|l-312 w2 of, s, = |32 -2 0
0 0 1 0 0 1

We note that I is the identity transformation, C denotes a

central inversion and Bl’ 82, 83 denote reflections in the

23, 31 and 12 planes respectively. Ql, 92 and 93 denote

rotations through 180° about the 1, 2 and 3 directions re-

spectively. Ildenotes a reflection in the 13-plane followed

*The notation (a,b,c) is used to denote the diagonal matrix

a 0 o0
b 0
0 0 c¢
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by a rotation through 90° about the 1-axis; 12 denotes a re-
flection in the 21-planc followed by a rotation through 90°
about the 2-axis; I3 denotes a reflection in the 32-plane
followed by a rotation through 90° about the 3-axis. M, and
ME denote rotations of 120° and 240° respectively about the
tetrahedral direction (i.e. the direction making equal angles
with the positive senses of the 1, 2 and 5 directions). S,
and §2 denote rotations of 120° and 240° respectively about

the 3-direction.
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5. The invariant-theoretical problem posed by material symmetry

We have seen in §5.3 that for an elastic material the
Helmholtz free energy must depend on the deformation gradients
through the six components of the Cauchy strain CAB‘ This re-
sults from the fact that the superposition on the assumed defor-
mation of a rigid rotation leaves the Helmholtz free energy

unaltered. We thus have (cf. (5.3.3))

W= F(C (5.5.1)

AB) -

We have also seen that if the material has some
symmetry, this may be characterized by a group of transforma-
tions which relate a rectangular cartesian coordinate system
to equivalent rectangular cartesian coordinate systems. Let
s be a transformation of this group, then we have seen (cf.

(5.3.16)) that F must satisfy the relation

E(s = F(C (5.5.2)

ApSBQCpQ) AB)
This relation must be satisfied for every transformation of
the symmetry group of the material, {s} say.

Equation (5.5.2) states that F is a scalar invari-
ant of the symmetric second-order tensor under the group of
transformations {s}. It follows from results in the theory

of invariants, which will be discussed later in §6.1, that

F must be expressible as a function of a finite set of
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invariants which depends on the group {s}. This set of in-
variants is called a function basis for invariants of the
symmetric second-order tensor CAB under the group {s}. If
F is a polynomial function of C,g then it must be expressible
as a polynomial function of a finite set of polynomial invari-
ants which again depends on the group {s}. This set of poly-
nomial invariants is called an integrity basis for invariants
of the symmetric second-order tensor CAB under the group {s}.
If Fl’Fz""’FN are the elements of a function basis
for invariants of the symmetric second-order tensor Cap under
the group {s}, then any function F satisfying (5.5.2) must be

expressible as a funetion of Fl,F2,...,FN, thus:
F = F(Fl,Fz,...,FN) . (5.5.3)

We note that the function § in (5.5.3) is understood in a
generic sense and is not, in general, the same function F as
occurs in (5.5.2). Now, if one of the elements of the function
basis,FN say, is expressible as a function of the others, we
can express F as a function of the elements of the smaller
function basis Fl’Fe""’FN-l‘ When all the redundant ele-

ments of the function basis have been eliminated in this way,

we arrive at a minimal or irreducible function basis.

Analogously, if 11,12,...,IN are the elements of
an integrity basis for invariants of the symmetric second-

order tensor CAB under the group {s}, then any polynomial
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function F satisfying (5.5.2) must be expressible as a poly-
nomial function of 11,12,...,IN. If one of the elements of
this integrity basis, Iy say, is expressible as a polynomial
in the others, then F may be expressed as a polynomial in
11,12,...IN_1 only, 11,12,...,IN_l then constitutes an in-
tegrity basis consisting of fewer elements than the original
one. When all the redundant elements of the integrity basis
have been eliminated in this way, we arrive at a minimal or
irreducible integrity basis.

It can be shown fairly readily that an integrity
basis necessarily forms a function basis, but it is not neces-
sarily true that an irreducible integrity basis forms an
irreducible function basis.

An irreducible integrity basis for the second-order
symmetric tensor C,p under the proper erthogonal group is

formed by the three quantities

trc, trc®, trc, (5.5.4)

~ ~ ~

where C is the matrix formed by the components CAB of the
Cauchy strain tensor. Alternatively, the set of three

quantities 11,12 and I3 defined by

2 2
L=tr¢, I=zf(tr 0% - tr 1, Iy =det ¢, (5.5.5)

also forms an irreducible integrity basis. The relation between

the integrity bases (5.5.4) and (5.5.5) can be easily appreciated
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from the identity
det CEFl(tr 0 -3trctrcd+2tr ¢,  (5.5.6)

which can be easily established in the following way. We

first note that

-1
det C = z EKLMePQRCKPCLQCMR , (5.5.7)

where EKLM is the alternating symbol. Now, we use the result

$ 6 Y

KP °kQ °KR

p S1q 8

é

€xLMEPQR © LR| - (5.5.8)

$ 8

Mp SMg Smr

Expanding the determinant on the right-hand side of (5.5.8)
and using the expression for EKLMEPQR so obtained in (5.5.7),
we readily obtain the identity (5.5.6).

We can use the relations (5.5.5) and (5.5.6) to ob-

tain expressions for tr C, tr Qz, tr g3 in terms of Il, I

2’
13 thus:
2 _ 2 _
tr C Il’ tr C Il ZI2 ,
(5.5.9)
3
tr C7 = 313 - 31112 + Il

It is evident that (5.5.5) may be used instead of (5.5.4) as
an irreducible integrity basis since if tr C, tr 92 and tr C3
are given, I,, I, and I; are determined uniquely by the poly-

nomial relations (5.5.5) with (5.5.6). Conversely, if I, I
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and I3 are given, tr C, tr 92 and tr g3 are determined uniquely

by the polynomial relations (5.5.9).

We note that tr C, tr 92 and tr g3--and hence Il’ I2

and I3--are unaltered by a central inversion. Since any improper
orthogonal transformation is the resultant of a central inversion
and a proper orthogonal transformation, it follows that tr C,

tr g2 and tr 93--and hence I 12 and 13--forms an irreducible

1’
integrity basis for the symmetric second-order tensor CAB under
the full orthogonal group.

09 I3 are integrity
bases for the symmetric second-order tensor under the full, or

Since tr C, tr 92, tr g3 and Il’ I

proper, orthogonal group, they are also function bases. It can,
in fact, be shown in each case that they are irreducible
function bases.

For transversely isotropic materials*, for which the
x3-axis is the axis of rotational symmetry, an irreducible in-
tegrity basis for the symmetric second-order tensor Cap is formed

by the three invariants Il’ I I3, defined by (5.5.5) and also

2’
C33 and C3BCB3’ These five quantities form an irreducible

integrity basis for each of the four types of transverse isot-
ropy described in §5.4. Again, these five quantities also form
a function basis and it can be shown that this function basis

is irreducible.

*The result, specifically in its application to elasticity
theory, is due to a development of Ericksen and Rivlin (J.
Rat'l, Mech. Anal. 3, 281 (1954)) and Adkins (Arch. Rat'l.
Mech. Anal. 4, 193 T1960)). As a result in invariant theory
it was probably known long before.
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Irreducible integrity bases have been found for the
second-order symmetric tensor C,p for each of the crystal
classes, by Smith and Rivlin*. These are given below. In
each case the Schoenflies and Hermann-Mauguin nomenclatures
for the crystal class are given, together with the generating
transformations for the group. The notation for these trans-

formations is given in §5.4.

Crystal class

Generating
Schoen- Hermann- transform-
flies Mauguin tions Integrity basis

Triclinic system

c, 1 I Cyp(A,B = 1,2,3)
s, 1 C
Monoclinic system
2 - 2
¢ 2 D C11’C22’C33’C23’C31 G
Cip M Ry C12C31
Cop 2/m C,Ry
Orthorhombic system
2 2 2
v 222 D):Dp €119C221033:C03 505, 0000
Cov 2mm DoRy €23¢31%10
hooommo CRR,

Tetragonal system

Sh 4 p1I3 Cll * C22’C33’C232 ' C312’C122’

Cy 4 LS C11C000Cp(Cyq - Cppds

Cop ~ 4/m ¢8I Co3b3 Gy - € 2)’C23C3§C12’ ,
C12(C312 " Cos )’C11C23 *Cty %

*G. F. Smith and R. S. Rivlin, Trans. Amer. Math. Soc. 88, 175
(1958). -
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2 2 2
D, 422 R T3,D; €1 * Cpp »C33,Cp3" * C3;7,Cy5%,
Vd 42m 9113’91 c11C22;C23C31C12; P
Chy 4mm BlI3,Bl C11Cp3" * CppC377,C557Cqy

Dyn 4/mmm - C,R LR, T,

Hexagonal system
C3 i
C3i 3

2

33,011 *+ Cpp ’C%lc22 - Cip s
2 2,0 2
C12Cyg + 3Cpp)"- 12C;5°],C5,7+Cy55%,

C31(C51% 3Cp39), (€11 - Cp2)C3y -
2C19Cp3, (Cop- C13)Cp3 - 2C315C3y,
3C15(Ch1- Cpp)® - 40157, C,5(Co5™
3C319),C200 317 C11C53%- 255310
C3yL(C)1* Cpp)? + 4(C;,%Cpp")] -
811012003 Cp3l (Cyy Cop)” +

4(Cp5° - Cpp®)] + 8Cy1CyoC3s,

(Cy1 - Cpp)Ca3lyy *+ Crp(Coy’- C5%)

Y Wn
W€n -

2 2 2
Dq 32 $1:Dy €300 * CppsCy7Cp-CipsCayt Cpsy

Cv 3m S0k C1p[(Cyq + 3C5p)2- 12C1,52],Cp3(Co52-

3d 52/m R, ,CS) 3C5; )’(211‘ Cyp)Cp3* 2C12C31’C11C312
+ Cpplog™+ 2C53057Cy5,Cp3[(Cypt Cpp)

2 2
“4(Cy7- €701+ 8C5C 04

2

2 . 2
S * CppiCyiCpp €57 0C0 %% €3

B3~1 C33’011 22°711722° Y12 ?
2 2
D38, CppL(Cyy+ 3C55)° - 12C1,°],
2.2 2
Cen 6/m CS; .k, Cyp (C5y - 3C,5°)7,C +

llC23
C,uCoy2- 2C,.Cy CrpyCn (Co2- C %) +
22 "31 237317122712 V731 23

g o 2
(Gp- € 1)C31Cp3,3C5(Chy - Cyp)

3 2. 2 -
4C12 ,C31C23[3(C31 C23 )

w
=
o o
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465G, 21,0y (Cyp*+ 3C,5%) +
2050307 (C3y2+ 3C, %) - 8C1,Co5C5)°,
C3p? [(Cqp* Cpp)? - 4(Cyf - Cp2)]

- 205, [(C)3* 3Cop) (€517 + Cp5)

- 4Cp3031C15],Cp3C51 [(Cp* Copl -
4(c222- 0122)] * 4‘311(312“232'(:312)’
Cral(C32+ Crf P+ 4Co 2 (C32 - Cpf)]

-4c. 3¢, (C

31 “23VU11 022)

D3h 6m2
D6 622
6mm

D6h 6/ mmm

R3S1,Ry
P3§1’Pl
DS ,R
~391%~1

DS 5R,,C

2 . 2 2
335011 % C22,C11Cpp- C575C3;7+ Cpq,
2 2
€y [(Cyy *3C,5)% - 12C) .7,

2o 2. 242 2 2
€317 (€337~ 3C,57)7,Cy,Cp57+ €ypCq5

- L L
2053C370105Cy(Cqy 7+ 3C,57) +

3.2 2 3
2€55C3," (C3y"+ 3C537) - 8C1,Cp5C5,7,
2 2 2 >
C3p7 [(Cyy + Cpp)° - 4(Cyy - Cy57)]
2 2
= 2C1;[(Cq 3C55) (C3p7+ Cp57)

N 4C23C31012]

Cubic system
T 23

Th m3

Pl’Ml

C,Dy,M,

£C11,2C22C33,2C25% ,C11C0oC33,

20 2 2
C3C31C12, 20317 C1 7, 100 57 s

2 2 2 L
2C33C3)" , 2033055 , IC; 5% C5p7

20 2 >
2C11C31° G157 5 26557 Cpplss

2 20 2
ICy3 C33Cy;, 257 €397 Cpp

Td 43m
0 432
0h m3m

Dy M, Ty

R3TyHM,

[}

R3T) My,

2
20115 %ppCq3,2C, 2 ,C;1CpnC

11%22%33°
2 2 2
Cy3C31Cyp, 1657 €55 26,5C 7
2 2 2
213317 Cy 7 536, CopCsy
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6. Constitutive equations of finite elasticity theory for iso-

tropic materials

We have seen in §5.5 that the manner in which W, the
Helmholtz free energy for an elastic material which has some
symmetry, can depend on the components CaB of the Cauchy strain

tensor is restricted. Thus, if
W=F(Cyp) » (5.6.1)
then the function F must satisfy the relation

F(SAPSBQCPQ) = F(CAB) (5.6.2)

for every transformation of the symmetry group of the material
{s} say. This states that F is a scalar invariant of the sym-
metric second-order tensor Cap under the group {s}. F, and
hence W, may therefore be expressed as a function of the ele-
ments of an irreducible integrity basis*.

In the case when the material is isotropic, whether
centrosymmetric or not, it has been seen in §5.5 that such an
integrity basis is formed by the quantities L, I and I3 de-

fined by (5.5.5). We therefore write
W= W(Il,12,13), (5.6.3)

where (cf. equations (5.5.5) and (5.5.6))

*We have already pointed out that an integrity basis is
necessarily a function basis.
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I, = fl(tr 0F - er ¢,

det C = %[(tr g)3 -3trCtr 92 + 2 tr §3].

Introducing (5.6.3) into (5.2.13), we obtain

where the notation

is used,

% 3 2, AL
0.. = X. pX. w + ,
ji ~ &x/&X %j,B%i,P a \3C aC
%oz et BP PB
Wa = Z)W/BIu
We note from (5.6.4) that
ol ol
o = O+ 30~ = Loap - Chp s
AB AB
813
3,y 208 " TaCa * Caglen

the definition of the Cauchy strain C

(5.6.4)

(5.6.5)

(5.6.6)

(5.6.7)

Introducing (5.6.7) into (5.6.5) and bearing in mind

Zp

_ 0
%51 T 3X7oX HURSSLASPLIVES

where cij denotes the Finger strain defined by (cf. equation

(2.5.6))

ij

=X

- (

+ W_c.

X

371

i,A%,A

AB’

we obtain
Wor T W) CiyCy;

ka2’ 2

(5.6.8)

(5.6.9)
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Equation (5.6.8) may be written slightly more succintly in

matrix notation thus:

Zp
= 0 _
g = 3273X {(W +1 W +I w3)C (W +1 w3)c + W C } (5.6.10)

<

We can easily verify that

tr C tr c®=trc® and tr 93 = tr 53, (5.6.11)

~ ~ ~ ~

n
ot
—-
(o]

-

so that 11,12,13 may be expressed in terms of tr c,tr gz,tr 93

by (cf. equations (5.6.4))

1 2 2
I, =trc, 12 = Z[(tr c)” -trc],

(5.6.12)
3

—
[l

= det ¢ = %[(tr 9)3 -3trctr 92 +2trc

If we apply the well known Hamilton-Cayley theorem

to the matrix c, we obtain, with (5.6.12)

2
¢3 - Le + Tc- I,1=0 . (5.6.13)
Using this result to substitute‘for 53 in (5.6.10), we obtain*
2p0
g = W {(Wl"'Ile)g - WQS + 1 W3I} . (5.6.14)

Yet another form for ¢ can be obtained in the follow-

ing way. Dividing (5.6.13) throughout by c, we obtain

2 -1
¢ - Lic+ LI- I,e " =0. (5.6.15)

*This result was first obtained by Finger (Sitzungsber. Akad.
Wiss. Wien 103, 1073 (1894)).
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2 .
Using this result to substitute for ¢ in (5.6.14), we obtain

20
. o -1
9= X Wog - TWoe &+ (I W +I N )T) . (5.6.16)

~ ~

Equations (5.6.14) and (5.6.16) are alternative forms for the
Cauchy stress in an isotropic elastic material.
An expression for the Piola stress can be obtained by

introducing (5.6.3) into (5.2.14). We obtain

S (31u 31, )
P,pn =0 + . (5.6.17)
AB o - 5la ECBA 5CAB
a=1
Employing the expressions (5.6.7), this yields

P = 2p {(W . 2
13 oA ( l+IlW2+12W3)£ (w2+11w3)9 + w39 }

, (5.6.18)

where P is the matrix ”PABI' An alternative expression for P
is obtained by using an expression for C analogous to (5.6.15),

derived from the Hamilton-Cayley theorem for the matrix C. We

have
-1.Cc+1,1-1Ct=0 (5.6.19)
< 1% 2~ 3= : U
Employing (5.6.19) in (5.6.18), we obtain
- -1
P o= 20 {(W+T,W,)T - W,C + IW.CT} . (5.6.20)

The corresponding expression for the Kirchoff-Piola

stress can be obtained by using (3.8.3), viz,

Tai T %5 3PAB - (5.6.21)

or (3.7.6), viz.

=2
1

= (85/8§)XA 0. .

%1 (5.6.22)

Ai
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7. Constitutive equations of finite elasticity for incompressible

isotropic materials

If the material is incompressible, the volume of each
material element remains unchanged in the deformation so that

(cf. (2.3.4) and (2.3.5))

ax/8X = (det ©)1/2 =1 . (5.7.1)

It has been seen that in this case the expression for the
Cauchy stress is given by (5.2.16) and that for the Kirchoff-
Piola stress by (5.2.15).

We note from (5.6.4) that the constraint condition

(5.7.1) may be expressed in the form
I,=1. (5.7.2)

It follows from (5.6.3) that for an incompressible isotropic
material the Helmholtz free energy is expressible as a function

of the two variables I1 and 12 thus:
W= W(Il’le) . (5.7.3)

Introducing this form for W into (5.2.16) and (5.2.17), we
obtain, following a procedure similar to that used in deriving

(5.6.14), (5.6.16) and (5.6.20)*%,

*R. S. Rivlin, Phil. Trans. A 241, 379 (1948).
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o = 20,{(W*1 W, )e - Wefg} - pl
=~2p,tW ¢ - Weg'l} - pl (5.7.4)
and
P = 2p {(W+I W) - W,C) - pgt .

2
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Chapter 6

SOME RESULTS IN THE THEORY OF INVARIANTS

1. Definitions

Let vgl? . v&z) y ey Vé*?.n be the components

in a rectangular cartesian coordinate system x of the N tensors
Viseeor Yy which are not necessarily of the same order. As

a special case, one or more of the N tensors may be a tensor of
zero order (i.e. a scalar) or of first order (i.e. a vector).
Moreover, they may be absolute tensors or relative tensors.

Let Fg%?,j’ Vﬁ??'m, cees Vﬁ??.n be the components of the
tensors V,,...y¥y
system X.

in the rectangular cartesian coordinate

Now, suppose that y is a scalar function of the com-
ponents in the system x and that y is the same function of the

components in the system X, thus:

y = B v g

and (6.1.1)
= =(1 =(2 =(N
ATURNIE SRR L

Let the coordinate systems x and X be related by the orthogonal

transformation s, so that, in vector notation,

tad!
]
)
tad

(6.1.2)
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or, in indicial notation,
X; = sg% (6.1.3)
Then,
ng?.j = sip"'squéf?.q ¢
vﬁ??.l = skr"‘szsv£?3.s ’ (6.1.4)

=(N) _ (N)
Vo...n T Smte e SnuVt...u 2

provided that the tensors v,,...yy are absolute tensors. If one
of the tensors vy, say, is a relative tensor, then the appropri-
ate transformation relating its components in the systems X and
X is

(1) . (1) 6.1
Vi...j (det gl)sip...squp.._q , (6.1.5)

instead of (6.1.4),.
If y and y, defined by (6.1.1), are equal for all
transformations s belonging to a group {s}, then F is said to

be a scalar invariant of the tensors.y

1»+++¥y under the group

{s}. If F is a polynomial function of its arguments, then it
follows from gotheorem of Hilbert (the First Main Theorem of
the Theory of Invariants) that there must exist a finite set
of polynomial invariants Il’Ie"“’Iu’ say, of JAERERT) A in

terms of which F may be expressed as a polynomial, thus:
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F=P(Iy...,I) . (6.1.6)

Such a set of polynomial invariants is called an integrity
basis. Thus, the First Main Theorem asserts the existence
of a finite integrity basis. If we omit all elements of an
integrity basis which may be expressed as polynomials in the
remaining ones, the remaining set of elements formsan irre-
ducible integrity basis. We shall consider that Il’Iz""’Iu
form an irreducible integrity basis.

We now consider the case when F is a single-valued
function of its arguments rather than a polynomial function.
It has been shown by Pipkin and Wineman (1963)*that, in this
case, F may be expressed as a single-valued function of
11’12""’Iu'

More generally suppose that Fl’Fz""’Fv is a set
of single-valued functions of the tensors Yys+e+s¥y, Which are
invariant under the group {s}. Suppose further that an arbi-
trary single-valued invariant function of Viseeo,Vy is ex-
pressible as a single-valued function of Fl’Fe""’Fv' Then
Fl'Fz""'Fv is called a function basis for invariants of the
tensors v,,...,vy under the group {s}. The result of Pipkin
and Wineman then implies that an integrity basis is also a
function basis. It does not, however, follow that an irreduc-

ible integrity basis is also an irreducible function basis,

since one element of the irreducible integrity basis 11,12,...,Iv

* A.C. Pipkin and A.S. Wineman, Arch. Rat'l. Mech. Anal. 12
420 (1963)
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may be a single-valued function, but not a polynomial function,
of the others. This may arise in the following manner.

If ISTRERTY is an irreducible integrity basis, al-
though none of the elements is expressible as a polynomial
function of the remaining ones, there may nevertheless exist
one or more implicit polynomial relations between the invari-

ants I,,...,I Such a relation is called a syzygy. Suppose

v

one of these syzygies takes the form

LQU,ee s Iy o ggpneeenly)

SPRTIUS SRS SURTRRINS &) I (6.1.7)

where Q and R are polynomials in the indicated arguments.
Then this relation may be used to express Ia as a single-

valued function of the remaining I's, thus
Ia = R/Q, (6.1.8)
provided Q # 0. If Q = 0 for some values of Il,.. I

‘P a-1?

I then, for these values, the expression (6.1.8) must

a+1""’1v
be replaced by some other expression for I, as a function of
11""’Ia-1’1a+1""’1v‘ Thus, in principle, Ia may be omitted
from the function basis.

However, the resulting expression for an invariant
function must be used with considerable caution, since its

continuity and differentiability properties, when it is regarded
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e lgid

from those when it is regarded as a function of the tensors

I

as a function of I at1? oLy

may be very different

Vise+es¥y. For example, suppose F is an invariant function,

so that

F= (I I I 1), (6.1.9)

120 g1 el 0y

and we wish to calculate aF/avﬁl) j by means of the expression

\Y
ol
F 3F 78 _ (6.1.10)
av[lj B=1 §TE av(lj
o = i...
B#a

It may well be that although F is differentiable with respect

to vfl) i the derivatives aF/alB may not exist,
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2. Integrity bases for vectors under the full and proper

orthogonal groups

Irreducible integrity bases have been found for a
number of choices of the tensors Vis...,Vy and of the group
{s}. For example, in the case when {g} is the full orthogonal
group and Vyseeo¥y are polar (i.e. absolute) vectors, an irre-

ducible integrity basis is formed by the %N(N+1) inner products
YP’YP(P =1,...,N) and Yp‘YQ(P=Q =1,...,N; P<Q . (6.2.1)

Again, when {s} is the proper orthogonal group and
Vi,..-¥y are either polar or axial (i.e. relative) vectors,
an irreducible integrity basis is formed by the %N(N+1) terms
(6.2.1) and, in addition, the gN(N-1)(N-2) scalar triple

products
[YP’YQ’YR] (P,Q,R=1,...N; P<Q<R). (6.2.2)

The integrity basis (6.2.1) can be presented in a
slightly different form. Let a and b be two polar vectors.
Then, (6.2.1) is equivalent to the set of quantities we obtain

from a.a and §-§ (6.2.3)

by making the following replacements:
(i) in a.a replace a by VisVoseeesVy in turn;
(ii) in a.b replace a by Yl—and b by VoseeosVy in turn,
replace a by v, and b by VaseeosVy in turn,

replace a by VN-1 and b by Vye
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Consequently (6.2.3) is called a table of typical invariants

for a set of N vectors under the full orthogonal group. We note
that if N = 1 (i.e. we are considering the invariants of only

one vector), the table of typical invariants (6.2.3) reduces to
a.a (6.2.4)

and the integrity basis is vy (i.e. the square of the magni-
tude of the vector y,). If N = 2, the table of typical invari-
ants is (6.2.3) and the irreducible integrity basis consists of

the terms

V..V (6.2.5)

Yi¥yr Yor¥ar Up-Yo

(i.e. the squares of the magnitudesof the vectors and their
inner product). We note from (6.2.1) that for N(>Z) vectors,
no further types of terms are introduced into the integrity
basis, which consists simply of the squares of the magnitudes
of the vectors and the inner product of each pair which can be
chosen from the N vectors. Indeed, we see that the integrity
basis for N(>2) polar vectors under the full orthogonal group
consists of the integrity bases for every pair of vectors which
can be selected from the N vectors.

Again, a table of typical invariants for an irreduc-
ible integrity basis of N vectors under the proper orthogonal

group 1is

I
R
™
I

[a,b,c] , (6.2.6)
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where a, b, and ¢ are vectors. The integrity basis for one

vector v. is then v as before. The intcgrity basis for

1 1Y

two vectors v, and v, consists of the three terms (6.2.5).

1
It is only when we comc to the intcgrity basis [or three vectors

Yl’ v

v, and V3, say, that a new type of term is introduced into

the integrity basis. The integrity basis for N(>3) vectors in-
volves no new types of term and consists of the integrity bases
for cach sct of three vectors which can be sclected (rom the

four vectors VisVoseee, Yy
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3. Integrity basis for symmetric second-order tensors under
the full or proper orthogonal group

Finally the table of typical invariants for an irreduc-
ible integrity basis under the full orthogonal (or proper ortho-
gonal) group of an arbitrary number of symmetric second-order
tensors V,,Vp,...,Yy May be written down in terms of the six
symmetric second-order temsors 3, b, ¢, d, e, f. It consists

of the traces of the products formed from g, b, ¢, d, e, f given

in the following table*:

2 3
1) g, 3, 2,
(2) ab, ab°, a°b, a°b%,
(5) 2be, gbe”, bea®, cab®,
ab®c?, be’a®, ca’d®
abed, abde,
abcd?, achd?, dabc?, dbac?,
4y Sdab®, cadh®, beda®, bdca®,
abc®d?, ach®d?®, adb®c?,
bea®d?, bda®c?, cda®p?, (6.3.1)
bacda®, cbdab?, dcabc?, adbed?,

NN NN ~ RN N

5) acdbe, acbed, adbce,

podi-v s RORR VRV
NRNNN MR NN ~NauNwSN Y AR

~~~~~

*This result results from a development in a number of papers by
Rivlin, Spencer and G. F. Smith. (R. S. Rivlin, J. Rat'l. Mech.
Anal. 4, 681 (1955); A, J. M. Spencer and R. S. Rivlin, Arch.
Rat'l. Mech. Anal. 2, 309 (1959), 2 435 (1959), 4, 214 (1959);
A. J. M. Spencer, ibid. 7, 64 (1961); G. F. Smith, ibid. 18, 282
(1965)). The results of these papers have been summarized and
their derivation streamlined by R. S. Rivlin and G. F. Smith,
Contributions to Mechanics, ed. D. Abir, publ. Pergamon (1969).
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~ARRNS NN vnvRana? RN AR

(6) ~2dfbece, adfche, aehdcf

E R R P AR AmY IXIARIN

We note that the traces of the elements in the above
table of typical invariants, listed under (1), involve one tensor
only, those listed under (2) involve two tensors, those listed
under (3) involve three tensors, and so on. None of them in-
volves more than six tensors.

An irreducible integrity basis for one symmetric
second-order tensor, Vv, say, is obtained by taking the traces

of the terms (1), with a replaced by v, We thus obtain

tr v3 (6.3.2)

tr y2 10

tr v 1

1’

in agreement with the result given in (5.5.4).
An irreducible integrity basis for two symmetric second-

order tensors, v, and v, say, is obtained by taking the traces of

1
the terms (1), with a replaced successively by v, and v, and the

traces of the terms (2) with a and b replaced by v, and v, re-
spectively. The elements obtained from the terms (1) form, of
course, irreducible integrity bases for v, and for Vy-

An irreducible integrity basis for three symmetric

second-order tensors Vi, ¥,, Vg say, may be analogously obtained

by taking the traces of the products listed in (3) with a,b,c¢

replaced by v respectively and irreducible integrity bases

l’Ye’Y3

for the pairs of tensors vy, and v,, v, and V3o Vg and v, .
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Irreducible integrity bases for four, five and six

symmetric second-order tensors Vv +»Yg may be analogously

10
obtained. Thus for six symmetric second-order tensors an irre-
ducible integrity basis is formed by taking the traces of the
products listed in (6) with a,b,...,f replaced by A SYREEI -
respectively and irreducible integrity bases for all possible
selections of five matrices from the six matrices VisVoseeer Vg

An irreducible integrity basis for N(>6) symmetric

second-order matrices VisVos

ey is formed by the irreducible
bases for all possible selections of six matrices from the N

matrices VioVosee ol
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4, Invariant tensor-valued functions

We suppose now that each of the components of a tensor,
t say, in a rectangular cartesian coordinate system x is a function
of the components of N tensors Vis¥os e esly in the same coordinate
system. Then, in any other coordinate system, the components of t
are also functions (but not necessarily the same functions) of the

components of y t is said to be a tensor-valued (or

~17~ 2’ "’YN'

tensor) function of the tensors y v We denote this by

VioVpseees Yy
.. t = E(gl,yg,...,yN) . (6.4.1)
1 2 N
If to i vﬁ‘?. , v( ) YRR Vé.?.q are the components of t,
Vis¥pseeesly respectively in the system x, then we can write the

relation (6.4.1) in the system x as

. (1) (2) (N)
Y. 7 F ( K...o> Vm...n? t0o Vp...q) : (6.4.2)

We note that each of the components in the system x of t is a

function of all of the components of v

VisVaseesVy in the system

X.
If X is another rectangular cartesian coordinate system

. £ 50
related to x by the transformation s, and tg i’ Vi g e
the components of t,v,,... in this system, then the relation (6.4.1)

are

may be cxpressed in the system X as

f. . -F S o (N ,
U U ( : L @ Rl ).q) : (6.4.3)
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In general the functions Fi 3 in (6.4.2) and Fi j

in (6.4.3) are different. However, if they are the same, then
t is said to be an invariant tensor-valued function of VsYos
-»+,Vy under the transformation s and if they are the same for
a group of transformations {s}, then t is said to be an invari-

ant tensor-valued function of VY Sy under the group {s}.

2’
In this case (6.4.3) becomes

G Fi...j(vlsl) %’ 7(2) n’ e V;EN)q) (6.4.4)

and this is valid for all choices of X related to x by a trans-
formation of the group {s}. We bear in mind that the components

of the tensors in the systems X and x are related by the equations

ti...j N Sir"’sjstr...s ’

) (6.4.5)
=(1) . 1
VKoot T Skut e SevVu. L.y 0 tC

From (6.4.2), (6.4.4) and (6.4.5)1, we obtain

(1) —(2) 7(N)
Fi...J( L vm n? ot Vp.,.;)

e (1) 2 N
= Sir"'sjsFr...S( % é.%.n’ " é ) ) (04

This relation is, of course, valid for all s belonging to the

group {s}. It expresses, in implicit form, the restrictions on
the tensor-valued function Fi...j which result from its invari-
ance under the group {s}. Various procedures are available for

obtaining thesc restrictions in explicit form.
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Let ¥ be an arbitrary tensor of the same order as t.

Its components wi . in the system x and Ei j in the system

x are related by
" =S, 5. T .. (6.4.7)

Multiplying equation (6.4.6) throughout by $i j and using

(6.4.7), we obtain

m 71 #(2) s(N
wi...j Fi...j (Vk...l’ Vm...n? Vp.,.q

- (1) (2) (N)
= Vi B (Vk.;.x’ Vm.L.on? e vp...q)

F (say). (6.4.8)

We see that by introducing the arbitrary tensor ¢, we have
changed the tensor equation (6.4.6) into a scalar equation
(6.4.8). This equation expresses the fact that F.is an invari-
ant scalar function under the group {s} of the tensors YaVise s Vys
linear in y. For the moment, we will consider that Fi...j is a
polynomial function of its arguments. Then, F must be expressible
as a polynomial in the elements of an irreducible integrity basis

for the tensors YoVysees under the group {s}. Furthermore,

’YN
since F is linear in y, it must, when so expressed, be linear in
those elements of the integrity basis which are themselves lincar
in y. Let K »Ky, ..,k be the elements of the irreducible integ-

rity basis which are lincar in ¢ and let 11’12""’Iv be the
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elements which are independent of ¢. (The latter are, of course,
the elements of an irreducible integrity basis for ViaVosee sy

only.) Then

F = AK (6.4.9)

where the A's are polynomials in Il""’Iv only.

Using (6.4.8), we can remove the tensor y, which is

really extraneous to our problem, by differentiation, thus*:

oF ] aKa
R E Ay o - (6.4.10)
1...] ool i...]

So far we have assumed, in deriving the result (6.4.10),
that Fi...j is a polynomial function of its arguments. It follows
from a result of Pipkin and Wineman** that if Fi...j is a single-
valued function of its arguments, the same result applies but now
the A's in (6.4.9) and (6.4.10) are single-valued, rather than

polynomial functions of the I's.

*The device used here of converting a tensor equation into a
scalar equation and then using the integrity basis to obtain

a canonical form appears to have been first used, at any rate
'in connection with the formulation of constitutive equations
by G. F. Smith and R. S. Rivlin (Arch. Rat'l. Mech. Anal. 1,
107 (1957)). The same device was used in a more general con-
text by A. C. Pipkin and R. S. Rivlin (Arch. Rat'l. Mech. Anal.
4, 129 (1959)).

**A, C. Pipkin and A. S. Wineman, Arch. Rat'l. Mech. Anal. 12,
420 (1963).
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As an example, we take the case when the tensors
t,vy,...,Vy are symmetric second-order tensors. Then, y is also
a symmetric second-order tensor. In equation (6.4.9), the K's
are now the elements in the irreducible integrity basis for
N+1 symmetric second-order tensors ?’Yl""’YN which are linear
in ¢ and the A's are functions of those elements of this integ-
rity basis which are independent of y. It is then a simple
matter to obtain a canonical form for tij(=Fij) from the rela-

tion (6.4.10), which now becomes

F,. = 3F . A N 6.4.11)
ij = W o Wl (6.4.
i o ij

However, as a result of the symmetry of the tensors, the ex-
pression obtained will be formally ambiguous. It will, for ex-
ample, not be symmetric for interchange of the subscripts i and

j unless we write the expression Fij in a form which is symmetric
for such interchange. (This can always be done by making use of
the symmetry of the tensors yl,...,yN.) We can ensure that we
obtain an expression for tij which is symmetric under interchange

of i and j, by using the expression

A 3K 3K
_1[sF F \_ 1 a a
Fij = 7|3 * w0 'ZZAa<W+W) (6.4.12)
iy i) T ij i

instead of (6.4.11).
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As a special case, we assume that the symmetric second-
order tensor t depends on only two symmetric second-order tensors,
vy and v, say, and the group {s} is the full or proper orthogonal
group. We can read off from the table of typical invariants

(6.3.1) the elements of an irreducible integrity basis for vy and

V,. These are:
try, trv5 try’
t 2 3 6.4.13
TV, tr ¥, tr ¥, (6.4.13)
2 2
tr YIYZ’ tr Yl%.lgs tr yl.‘{z! ;r YIZYQ *

Again, we can read off from the same table the elements of an

irreducible integrity basis for VY and y, where  is a symmetric

2
second-order tensor, which are linear in . These are:

tr ¢

~

tr ?yl, tr gylz,

5 (6.4.14)
tr yv,, tryyv,,
2 2 2. 2
tr v V,, tT YV Vo, tT VbV T, tro v TV,

The element in the first line of (6.4.14) is obtained by taking
a =1V in the elements (1) of (6.3.1) which are linear in a. The
elements in the second line of (6.4.14) are obtained by taking

a=yandb =y, in the elements (2) in (6.3.1) which are linear

1
in a. Again, the elements in the third line of (6.4.14) are

obtained by taking a = y and b=v

v, in the same elements. Finally,



- 267 -
R. S. Rivlin

the elements in the last line of (6.4.14) are obtained by taking

a=19y,bs= Vi» €=V in the elements (3) in (6.4.14) which are

2
linear in a. The elements (6.4.14) are the elements Ka(a=l,...,x)
in (6.4.12). Introducing them and carrying out the differenti-

ations, we obtain*

IR UT1 It A ® e A,

* A5322 ¥ % {Ag(V1Vo*V,oy) + Ay (Y1322+Y22Y1)
A

* A )+ A " " A0t (6:4.15)
where the a's are single-valued functions of the invariants
(6.4.14). If we take as our initial assumption that Fij is a
polynomial function of its argument tensors, then the A's in
(6.4.15) are polynomial functions of the invariants (6.4.13).

In the particular case when t depends only on one

symmetric second-order tensor, v, say, we obtain, by taking

¥, = 0 in (6.4.15) and (6.4.13),

2

t=F=AT+ Azyl + A3Y1 R (6.4.16)
where Al’ A2 and A3 are single-valued functions of tr Vs
2 3
tr y,” and tr y,”.

More generally, if t depends on the yu tensors
Viseo sV then the appropriate expressions for the K's in
(6.4.12) are the elements in the integrity basis under the

*R. S. Rivlin, J. Rat'l. Mech. Anal. 4, 681 (1955).
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orthogonal group for the p+l symmetric second-order tensors
y,yl,...,yu which are linear in y. These are obtained from
(6.3.1) in the following manner. The tensor a is replaced by
Y. Then, in the elements (2), b is replaced by Yl’Ye""’Yu
in turn; in the elements (3), b, ¢ are replaced in turn by
every selection of two tensors which can be made from

VY v ; in the elements (4), b, c, d are replaced in

CERRRE AN

turn by every selection of three tensors which can be made

from VsV Vo and so on, The traces of the products so

PERRE
obtained, which are linear in y, are the K's in (6.4.12). It

is evident that the terms aKa/a¢ij in (6.4.12) may be obtained
by differentiating with respect to a the traces of the products

in (6.3.1) which are linear in a and replacing b,c,...,f in

,+..,V . The

the products so obtained by selections from vy y

table of products obtained is

1 I
(2) b, b°
(3) be, be®, b, b3¢?
bed, bde, bed®, cbd?, be’d, cPd,
(4) bicd, db%c, be’d®, cb%d?, el (6.4.17)
b cbd, be’de, dbed?
bede, bdec, becd,
cdbe, cbed, dbce,
bede?, bdce®, dcbe®, dceb
(5) 259€ » wgg » 4cbe , dce b,
bPcde, eb’cd, edb®c, bidee,
be’de, c’deb, ec’dh, beled,
bed®e, cbd’e, d°ech, ebed”
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NNN~~ NRNIRS NN~

(6) SiREE, SIERE, RRELL

pVRVEVR ~ o~~~ ~ o~~~

YRRV PR

Equation (6.4.12) may, of course, be rewritten as

_1 t
F = 7; AT ), (6.4.18)

where
To © IaKa/awij"

and g; is the transpose of Ty Then the products T, may be
obtained from the terms (6.4.17) in the following way. We first
take the term in line (1). Then, in the terms (2), b is replaced
by VisYoseens¥y in turn; in the terms (3), b, ¢ are replaced in
turn by every selection of two tensors which can be made from

; in the terms (4), b, ¢, d are replaced in turn by

LI YRR

prees¥y
every selection of three tensors which can be made from ViVos

TR AP and so on. We note that since each of the tensors
Visee ¥y is symmetric, g; may be obtained from T, by writing
its factors in reverse order, e.g. if Mo = V1¥oVss it is easily
seen that EZ = VaVoVy.

The a's in (6.4.18) are functions of the elements of

an irreducible integrity basis under the orthogonal group for
the y tensors VisYpseens¥ye These are, of course, obtained from

(6.3.1) in the ‘manner described in §6.3.
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5. Invariants of functionals

Let y(t1) be a tensor-valued function of a variable 7.
Let x and X be two fixed rectangular cartesian coordinate systems

related by the transformation s, thus:

Ry

= sX . (6.5.1)

The components of v(t) in these systems are denoted vy j(T)

and Vi j(T) respectively and are related by

S. V () . (6.5.2)

V. ..j(r) = Sip"’ id'p...q

1.

Let y now be a scalar functional of the components
in the system x of the tensor-valued function v(t) over the
range T = 1';1" thus:

™

y = :,[Vi.

..j(T)] . (6.5.3)
Let y be the same functional of the components of v(t) in the
system x. Then,

"

- T
y = :'[Vi.”j(r)] (6.5.4)

If y and y, defined by (6.5.3) and (6.5.4),are equal for all
transformations s of a group {s}, then y is said to be a scalar
functional of y(t) over [t',t"], invariant under the group {s}.

We may write

-

y = F [v(d] . (6.5.5)

-
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In a loose sense we may regard y as a scalar invariant function
of an infinite number of tensors--the values of g(t) for all
values of t between 1' and 1".

It follows from a development due primarily to Green
and Rivlin, and Wineman and Pipkin that y may be expressed in
canonical form in the following manner*.

We form the table of typical invariants for the in-
tegrity basis for the N tensors y(rl),y(rg),...,y(TN) under the
group {s}. We write this down in terms of as many of the tensors
Y(Tl),Y(TE),... as may be required. We denote the elements of
the table so obtained by IP(P =1,2,...). We note that some of
the elements IP involve Y(Tl) only, others involve y(tl) and
Y(Tg) only, yet others involve y(rl), g(re) and g(r3) only, and

so on. IP(P = 1,2,...) are called the basic invariants of the

history y(t) under the group {s}. Then, y may be expressed as
a function of linear functionals of Il, of linear functionals of

12, and so on.

Example 1. Suppose v(t) is a polar vector and the
group {s} is the full orthogonal group. Then, the basic in-

variants of the history v(t) are (cf. §6.2)

v(t)).v(ry) ,
(6.5.6)
y(rl).y(rz) .

*A. E. Green and R. S. Rivlin; Arch Rat'l. Mech. Anal., 1, 1
1957); A. S. Wineman and A. C. Pipkin, ibid. 17, 184 (T964).
(See also, A. E. Green, R, S. Rivlin and A, J. M. Spencer,
Arch. Rat'l. Mech. Anal. 3, 82 (1959); A. E. Green and R. S.
Rivlin, ibid. 4, 387 (1960); R. S. Rivlin, ibid. 4, 262 (1960))
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y is then a function of linear functionals of Y(Tl).y(rl) and
of linear functionals of y(rl).y(rz). We note that !(Tl).Y(Tl)
is itself a linear functional of Y(Tl).Y(Tz). It follows that
y must be expressible as a function of linear functionals of

v(t).v(t,).

Example 2. Suppose that v(t) is a symmetric second-
order tensor and {s} is again the full orthogonal group. The
required table of typical invariants is obtained from (6.3.1)
by replacing a,b,...,f by Y(Tl)’Y(Tz)""’Y(TG) and taking the
traces of the products so obtained. We note that any of the
elements so obtained may be expressed as a linear functional of
one of the multilinear elements. For example, tr{y(Tl)}2 is a
linear functional of tr y(rl)!(rz) and tr[y(Tl){y(Te)}q is a
linear functional of tr Y(Tl)Y(TQ)Y(T3)' It follows that y
may be expressed as a function of functionals of each of the
elements in the table discussed which is multilinear in one or
more of the tensors y(rl),y(rg),...,y(r6). Also, we note that
if 1 is a multilinear product in the first R of these tensors,
then any functional of tr m may be expressed as a functional
of tr y(rl)y(Te)...y(rR). It follows that y may be expressed
as a function of functionals of tr y(Tl), functionals of
tr Y(Tl)Y(Te), functionals of tr y(rl)y(rz)y(r3),..., and

functionals of tr y(tl)...y(r6).
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6. Invariant tensor-valued functionals*

We now suppose that each of the components of a tensor
t, say, in a rectangular cartesian coordinate system x is a
functional of the components in the system x of the tensor-

valued function v(t) over the range 1 = t',1", thus
"

t . = F. v

| T}...J ..q(T)] . (6.6.1)

pP.

If X is another rectangular cartesian coordinate system

related to x by the transformation s and Ei j and Vh q(T)

are the components of t and v(t) in the system X, then

T"

.57 F:;L,,_j[vp“‘q('l')] : (6.6.2)
T

where, in general, the functionals Fi j and Fi j are dif-

ferent. However, if they are the same, then t is said to be an
invariant tensor-valued functional of the tensor-valued function

V(1) under the transformation s. In this case,

El- i ;i...j[vp...q(T)] ’ (6.6.3)
!
where
Vb...q(r) = Spne+Sqn'm. . .n(7)
and (6.6.4)
G TSk Siptel. g

*See references given in previous section.
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If (6.6.3) holds for all transformations of a group {§}, then
t is said to be an invariant tensor-valued functional under

the group {s}. From (6.6.1), (6.6.3) and (6.6.4)2, we obtain

" "

t — T
Fij T q = SipeeeSin Py nlVp, g(D] - (6.6.5)
T' !

This relation is, of course, valid for all s belonging to the
group {s}. It expresses, in implicit form, the restrictions
on the tensor-valued functional Fi...j which result from its
invariance under the group {s}. These restrictions may be put
in explicit form in a manner similar to that adopted in §6.4
in discussing the corresponding problem for invariant tensor
functions.

We introduce an arbitrary tensor y of the same order

as t, which has components vy and $i j respectively in the

.

/J
systems x and X. Then,

wm...n = sim"’sjnwi...j : (6.6.6)

Multiplying (6.6.5) throughout by Wi jo we obtain with

(6.6.6)
_ 'l'" _ ‘l'"
Vi R g =y s Fy 5L (D]
T! ' t!
= F, say. (6.6.7)
From (6.6.7), we have
_ oF
Fi...j[vp. 'q(r)] = 557??—— . (6.6.8)
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Equation (6.6.7) expresses the fact that the functional F is

a scalar invariant functional under the group {§} of the tensor-
valued function Y(T) and the tensor v, its dependence on the
latter being linear. The manner in which F can be expressed

in canonical form follows from the development of Green and

Rivlin (1957) and Wineman and Pipkin (1964).

We form the table of typical invariants for a tensor
Y and an arbitrary number of tensors y(rl),y(rz),...,y(rN)
under the group {s}. We write this down in terms of y and as
many of the tensors Y(Tl),v(re),... as may be required. We
denote the elements of the table which are linear in y by

K,(P = 1,2,...). We note that some of these elements involve

p(
) and y(rl), others involve Y, y(Tl) and y(re), others involve
¥, y(rl), Y(Tz) and Y(T3)' and so on. Then, F, defined by
(6.6.7), may be expressed as the sum of linear functionals
L(l),L(e),... of Kl’K2"" respectively, each of which is a

scalar functional of v(t) invariant under the group {§}, thus:

F=). L(”)[Ku] . (6.6.9)
Y

Example 1. Suppose v(r) and y are polar vectors and
the group {s} is the full orthogonal group. In the table of
typical invariants (6.2.3) for an arbitrary number of polar

vectors under the full orthogonal group, we take a=y, b = v(1).
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Then, there is only one element linear in Py i.e., there is
only one K in (6.6.9). This is @.y(r).

It follows that
F=Ly.v(D] , (6.6.10)

where L is a linear scalar functional of its indicated argument
function and, from example 1 in §6.5, a scalar functional of

y(rl), Y(Tg). Introducing (6.6.10) into (6.6.8), we obtain

Fy = %%i = L [v(0)], say . (6.6.11)

Example 2. Suppose that v(t) and y are symmetric
second-order tensors and the group {§} is the full orthogonal
group. The table of typical invariants for an arbitrary number
of symmetric second-order tensors y,y(rl),y(Ta),...,Y(TN) under
the full orthogonal group is obtained by taking the traces of
the products listed in (6.3.1). In this table we take a=1y,

p = y(rl), c= Y(Te),..., e = V(TS). We write down the ele-
ments in this tablé of typical invariants which are linear in
Y, omitting from the list certain elements, each of which has
the property that it can be expressed as a linear functional of

some element retained in the list. For example,
tr y{y(rl)}2 is a linear functional of tr wv(rl)v(rz) and

tr ?Y(Tl)Y(TB)Y(T2) is equal to tr @y(Tl)y(Tz)y(T3), so that
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any linear functional of tr ?{Y(Tl)}g can be expressed as a
linear functional of tr yy(rl)y(Te) and any linear functional
of tr yy(Tl)y(r3)y(T2) can be expressed as a linear functional
of tr ?Y(Tl)Y(Tg)Y(T3). It then follows, using (6.3.1) in the
way described, that the K's in (6.6.9) are, for the present

case,

tr y, tr yv(t,), tr yv(t)v(c,) ,
(6.6.12)

., tr yy(Tl)y(re)...y(rs) .

Introducing these into (6.6.9), we obtain the canonical form

for F as

Fe O [ery) +j§ LW er gr(e). ()1, (6.6.13)
u=1

where the L's are linear scalar functionals of the indicated
argument functions and scalar functionals of v(T) invariant
under the full orthogonal group. We note that we may, without
loss of generality, take L(O)[tr y] = a, tr ¢, where L is a
scalar functional of v(t) invariant under the full orthogonal
group. Also, from example 2 of §6.5 it follows that any scalaf
functional of v(t) invariamt under the full orthogonal group
may be expressed as a scalar function of linear scalar function-

*

als of tr y(Tl), linear scalar functionals of tr V(Tl)v(rq),..
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and linear scalar functionals of tr y(Tl)...y(r6). Hence g
and the L's in (6.6.13) are of this form, in addition to being
linear scalar functionals of the indicated arguments. Intro-
ducing (6.6.13) into (6.6.8) we see that
N | S Y +}§: LW vy v )], (say)  (6.6.14)
ij '~ ~

ij 0°1j &

. ) 40
where Gij is the Kronecker delta and Lij al /awij .

In order to preserve formally, as well as factually, the symmet-

ric character of Fij’ we can use, instead of (6.6.8),

(ap + 3’_‘) . (6.6.15)

Introducing (6.6.13) into (6.6.15), we obtain

5
5 = agdy; }"_, 7 e

+ y(Tu)...Y(Tl)]. (6.6.16)
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Chapter 7

VISCOELASTIC MATERIALS

1. Introduction

We now pass to a much more general class of materials
than the elastic materials discussed in Chapter 5. These are
materials for which the stress may depend not only on the values
of the deformation gradients at the instant t, say, at which the
stress is measured, but also on their values at all times prior
to t, from the infinite past onwards. It is of little signifi-
cance whether we make this assumption with respect to the Cauchy
stress, the Kirchoff-Piola stress, or the Piola stress. Since
they are related by the formulae (3.7.5), (3.8.3) and (3.8.4),
if the assumption is valid for any one of them, it is valid for
all of them.

In mathematical language we express our assumption
regarding the kinematic variables on which is assumed that the
stress may depend by saying that the Piola stress tensor P,
say, at time t is a tensor functional of the deformation gradi-

ents X, Q(T) for all values of 1 in the interval -o<tgt: i.e,
)

t
Pap = PAB[xk,Q(T)] . (7.1.1)

= -0
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From (3.8.4), (3.8.3) and (7.1.1), it follows that

t
1 x. X P [x (T)]
%i = TaR/aX i,A%j,B"AB 1;;900 (7.1.2)
and
t
Thy xi,BPAB[xk’Q(T)] ) (7.1.3)

For succinctness, we have used Oji’ PAB and xi,A to denote the
values of oji(r), PAB(T) and xi,A(T) at time t and we shall
continue to use this notation. (We note, in connection with
equation (7.1.2), that xi,A is a functional of'xk’Q(T) defined
over the range -«<t<t, since il the argument functions xk,Q(T)
are given over this range, xi,A is surely uniquely determined,

in conformity with the definition of a functional.)
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2. Restrictions due to effect of a superposed rotation

(i) Formulation of the problem

In §5.2 we placed restrictions on the manner in which
the Helmholtz free-energy for an elastic material can depend on
the deformation gradients, which result from the assumption that
a rigid rotation superposed on the assumed deformation of the
body leaves the Helmholtz free energy unchanged. The physical
consideration underlying this assumption was the absence of ex-
ternal fields, e.g. gravitational, electric, etc., which might
lead to a change in the Helmholtz free energy when a rigid rota-
tion is superposed on the assumed deformation.

A similar underlying physical consideration leads us
to analyze the restrictions which can be placed on the form of
the tensor functional PAB in (7.1.1), as a result of the assump-
tion that the superposition on the assumed deformation of an
arbitrary time-dependent rigid rotation is associated with a
corresponding rigid rotation of the applied force system.

Thus, suppose the body is subjected to a deformation
Xi(T) = xi(XA,r) , (7.2.1)

and suppose that at time t the Kirchoff-Piola stress associated
with this deformation is nBi(r). We now consider a new defor-

mation

% (1) =X (X,,1) (7.2.2)
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which results from the superposition on the deformation (7.2.1)

of an arbitrary rigid rotation, so that
xi(r) = aij(t)xj(r) , (7.2.3)

where aij(t) is a proper orthogonal transformation and accord-

ingly satisfies a relation of the form
aij(t)aik(T) = aji(T)aki(I) = ij, |aij(T)| =1, (7.2.4)

From our assumption that the force system associated with the
second deformation is rotated from that associated with the first
deformation by the proper orthogonal transformation aij(T)’ it
follows that the Kirchoff-Piola stress FBi(T) associated with

deformation (7.2.2) is given by

FBi(t) = aij(r)nBj(r) . (7.2.5)

The Piola stresses ﬁkB(T) and PAB(T) corresponding to the

Kirchoff-Piola stresses Ai('r) and nAi(T) respectively are

given, from (3.8.1), by

_ Xy _
Ppg(®) = EAO) mpi (T)

and (7.2.6)
8XB
Pap(?) = wx ey ")

It follows from (7.2.3), (7.2.5) and (7.2.6) that
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Pyp(1) = Pyal) 5 (7.2.7)

the Piola stresses associated with the deformations (7.2.1)
and (7.2.2) are equal. In accordance with our convention
(cf. §7.1) we use the notation PAB = PAB(t) and PAB = PAB(t).
Then, from (7.1.1),

AB = PAB[XR,Q(T)] ’

and (7.2.8)
Pap = Pl q(1)]

We note that the form of the functional dependence on the argu-
ment functions is the same in both cases. Introducing (7.2.8)
into (7.2.7), and using (7.2.3), we obtain

PAB[akJL(TJXR,Q(T)] = PAB[xk,Q(T)] ’ (7.2.9)

and this relation must be satisfied for all proper orthogonal
aij(T), i.e. for all aij(T) satisfying (7.2.4).

Equation (7.2.9) implies a restriction on the manner
in which PAB can depend on the nine functions Sk’Q(T]. This
restriction is, however, given by (7.2.9) in implicit form.
Our next problem is to make this restriction explicit. We

shall give two different methods by which this can be done.*

*Method 1 given below is essentially that due to A. E. Green
and R. S. Rivlin (Arch. Rat'l. Mech. Anal. 1, 1 (1957)).
Method 2 is essentially that due to W. Noll™ (Arch. Rat'l,
Mech. Anal. 2, 197 (1958)). In the latter paper, equation
(7.2.12) below is regarded as being valid for all orthogonal
ajj(s) instead of merely proper orthogonal a;.(s). Although
thls procedure leads to the same result in the present in-
stance, it has been criticized by R. S. Rivlin (Inelastic Be-
havior of Solids, e.d. W. F. Adler, R. I. Jaffee and M. F.
Kanninen), publ. McGraw-Hill (in the press)).
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These parallel the two methods used in discussing the corresponding
problem for an elastic material in §5.2. In order to avoid any
difficulty which may arise from the fact that the functions Xk’P(T)
are defined over an infinite range, we shall change the variable
so that this range is mapped onto the finite range 0<sgl. We do

this by defining the new time-like variable s by

_ 1
S = T+l (7.2.10)
Then,
1
Prp " PAB[xk’Q(s),t] , (7.2.11)
s=0

the functionals PAB in (7.2.11) not, in general, being the
same as those in (7.1.1). PAB is, of course, the value of

PAB(S) at s=1. Now, the restriction on PAB in (7.2.9) becomes

PaB [akg(s)xl,q(s) ,t] = PAB[Xk,Q(S) ,t] (7.2.12)

and this must be valid for all akl(s) satisfying the orthogo-

nality condition

aij(s)aik(s) = aji(s)aki(s) = 6jk , |aij(s)l= 1.(7.2.13)

(ii) Method 1

We recognize that equation (7.2.12) expresses the
fact that for each value of AB, PAB is an invariant scalar

functional of the three argument vector functions of
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S__xk,l(s)’ xk’e(s), xk,3(s). Since (7.2.12) is valid for

arbitrary proper orthogonal aij(s), we may choose

aij(s) = 6ij’ unless s = s (some fixed value).

The functional equation then becomes a statement that P,y is
an invariant function under the proper orthogonal group of

the three vectors xk’l(§), xk’z(g), Xk,3(§)' Bearing in mind
the fact that ka’A(E)I is positive for a real deformation, we
see, by an argument similar to that of §5.2 in which we dis-
cussed the form of the strain-energy function for an elastic
material, that the dependence of Py, on the deformation gradi-
ents at "time" s must be through the six components of the
Cauchy strain at "time" 5, i.e. on CPQ(§). We repeat this
argument for each value of s in the interval 0<s<l, and arrive
at the result that PAB must depend on the nine deformation
gradient functions Xi,A(S) through the six components of the

Cauchy strain CAB(s), over the interval 0O<s<l. Thus,

Pap = PaplCpg(s),tl - (7.2.14)

(iii) Method 2
Another method by which the restrictions on PAB im-
plied by (7.2.12) may be made explicit is the following. Since
(7.2.12) must be valid for all time-dependent proper orthogonal

aij(s), i.e. for all aij(s) satisfying (7.2.13), it must be
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(7.2.15)

It is easily seen that aij(s), defined in this way, satisfies

the conditions (7.2.13) and is therefore a proper orthogonal

transformation. Introducing

Pagl%y ()] = Pag [{C(s)}‘*ﬁkpcpq(s)]

It follows that PAB must

] pAB[{C(s)}*kQ ]

be expressible as a functional of

(7.2.15) into (7.2.12), we obtain

(7.2.16)

{g(s)};5 and hence of C(s), in accord with the result (7.2.14).

As the final step in our argument, we note that if Ppp is ex-

pressible in the form (7.2.14), it automatically satisfies the

relation (7.2.12) for all proper orthogonal aij(s), not only

for aij(s) given by (7.2.15).

(iv) The Cauchy and Kirchoff-Piola stresses

Using the formulae (7.1.2) and (7.1.3) and making use

of the fact that x. is itself a functional of x. ,(s), we
1,A i,AM7

obtain

ji

and

Tad

= X; 2%y, 8 aB[Cpo(s) 1]

= xi,BPAB[CPQ(S)’t] .

(7.2.17)

(7.2.18)
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We note that the functionals PAB in (7.2.17) and (7.2.18) are
not necessarily the same.
We can, of course, rewrite equations (7.2.14),

(7.2.18) and (7.2.17) in the forms
Pag = Papllpq ()] (7.2.19)

Tay = Xi,BPAB[CPQ(T)] (7.2.20)

and

0ji = Xi,AXj,BPAB[CPQ(T)] . (7.2.21)
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3. Hereditary materials

We may consider an important sub-class of the visco-
elastic materials so far discussed. We see, from (7.2.11),
that for a specified deformation gradient history, i.e. for
specified functions xk’Q(s), the stress may depend on the
actual time at which the history is carried out. For example,
if we take two identical test-pieces and perform identical
experiments on them on two different days, the results of the
experiments may be different. We define a hereditary material
as one for which the stress depen&s on the deformation gradi-
ent history only and not on the time at which it is carried
out. This means that for a hereditary material, pAB in
equation (7.2.11) is independent of t and, consequently, so
are P

AR’ Oji and Tai in equations (7.2.14), (7.2.17) and

(7.2.18) respectively, so that

0]1 = xi,AxJ,BPAB[CPQ(S)] ’ (7'
and
i T X5 pPaplCp()] (7

the functionals PAB in these three equations not necessarily
being the same.

Essentially the assumption that a material is a
hereditary material is an assumption that the material does

not change its properties '"on the shelf",

3.

3.

.1)

2)

3)
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4, Constitutive equations of the differential type*

We now suppose that the deformation is such that CPQ(r)

is expressible as a Taylor series about t, i.e. about the time

at which the stress is measured. We then have

i da%c
- 1 0 P
Cpo(®) = z L (1) —dzaﬂ FR, (7.4.1)

a=0

where Ru denotes the remainder after p+l terms and the

notation
a a
d CPQ = d CPQ(r) 7.4.2)
at® dt® _
1=t
is used.
For certain deformations, Ru = 0. In this case,
substitution of (7.4.1) in (7.2.19) yields
- M Hy .
PAB FAB(CPQ’ dCPQ/dt, eey, d CPQ/dt ) (7.4.3)

i.e. the functional dependence on the tensor-valued function
CPQ(T) may be replaced by function dependence on the u+l tensors
CPQ,...,duCPQ/dtu. This replacement is, of course, valid irre-
spective of the form of the functional P,..

For certain other classes of deformation, the replace-
ment of the functional in (7.2.19) by a function may be made
approximately, usually with some limitation on the nature of

the functional PAB‘

*The ideas contained in this section are, in essence, contained
in a paper by A. E. Green and R. S. Rivlin, Arch. Rat'l. Mech.
Anal. 1, 1 (1957).
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The result (7.4.3) can also be obtained from a con-
stitutive assumption that the Kirchoff-Piola stress P,, at
time t, in the material considered, is a function of the de-
formation gradients xp,Q’ the velocity gradients XP,Q’ the
acceleration gradients ip,Q’ the second acceleration gradients

., the (u-1)th acceleration gradients(k) all of

*p,Q" " p,Q’

these being measured at time t, thus:

W

P ’Xp,Q) ’

as = Fan (0% g0 (7.4.4)

the function dependence in (7.4.4) not necessarily being the
same as that in (7.4.3). In order to obtain (7.4.3) from
(7.4.4), we have, of course, to make use of the consideration
that if we superpose on the assumed deformation a rigid time-

dependent rotation Pyp is unaltered.
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5. The Rivlin-Ericksen tensors

In this section, we define a set of tensors which are
H H
related to the tensors CPQ’ dCPQ/dt, veey d CPQ/dt and are
useful in formulating constitutive equations of the differential
type,particularly when the materials considered are isotropic.
We denote these tensors by A§9), Agl), ceny Ai?) and define

J g
them by the relations

(0) _ 1
Aiy” = 7 835
(7.5.1)
Al -1

o o, _
ij 7 xP,ixQ,jd CPQ/dt (a=1,...,4) .

The tensors Aﬁ?),...,Aﬁ?) defined in this way are usually

called the Rivlin-Ericksen tensors. We note that the relation

(7.5.1) may be written in inverse form as

a%c
PQ
i in,pxj,QAi(?) (0=0,1,...,1) , (7.5.2)

a oL _
where d CPQ/dt is interpreted as CpQ when a=0.

We can easily obtain a formula by means of which
A%?*l) can be calculated in terms of A%?) Thus, differenti-

ating equation (7.5.2) with respect to t, we obtain
d**1c aa (%)
PQ _ i (a)
il ST oA PSR

s xi’ij’QA£?)) , (7.5.3)
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= : : 1
where v, = dxi/dt. Multiplying (7.5.3) throughout by 7 xP,me,n

and using (7.5.1)2 with o replaced by a+1l, we obtain the desired

result®
(@)
(1) _ %mn (o) @ (o
A, = gt Vi,mAin + vi,nAmi (a=0,1,...,u) . (7.5.4)

Taking a=0 in (7.5.4) and using (7.5.1), we note that

An(ull) -7 (Vg n*Vn, ) (7.5.5)

i.e. (i) is the usual strain-velocity tensor.

*R. S. Rivlin and J. L. Ericksen, J. Rat'l. Mech. Anal. 4, 323
(1955). -
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6. Restrictions imposed by material symmetry on constitutive

equations of the functional type

If a viscoelastic material possesses some symmetry,
restrictions can be imposed on the form of the constitutive equa-
tion for the material. As in the case of an elastic material
(cf. §5.3) the symmetry of the material may be described by a
group of transformations relating equivalent coordinate systems.

We consider two rectangular cartesian coordinate
systems x and X with a common origin. We consider two defor-

mations A and B described by (cf. equations (5.3.1) and (5.3.2))
x; (1) = £,(X,,1) and X, (1) = fi(iA,r) (7.6.1)

respectively.

Let PAB and ﬁAB be the components at time t of the
Piola stress in the systems x and X respectively associated
with the deformations A and B respectively. Then, from (7.2.19),

P,p may be expressed in the form

P (7.6.2)

AB ~ PAB[CPQ(T)] ’

where CPQ(T) are the components in the system x of the Cauchy
strain at time T associated with the deformation A; i.e.
axi(T) axi(t)

CPQ(T) = —ax—p— Wé—— . (7.6.3)

Similarly ﬁAB may be expressed in the form
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P = EAB[EbQ(T)] , (7.6.4)

where EbQ(T) are the components in the system X of the Cauchy

strain at time T associated with the deformation B; 1i.e.,

afi(r) Bii(r)

5¥§ aib

CPQ(T) = (7.6.5)
In general the functionals PAB and FAB are different.

If they are the same then the coordinate systems x and X are

said to be equivalent and equation (7.6.4) may be written as

P

B - PAB[EéQ(T)] (7.6.6)

The fact that (7.6.2) and (7.6.6) are simultaneously
valid for all coordinate systems X equivalent to x implies
(cf. §6.6) that the Piola stress tensor PAB is a symmetric
tensor-valued functional of the symmetric tensor function
CPQ(T), invariant wunder the group {§} describing the symmetry
of the material. The results of §6.6 can now be used to write
PAB in canonical form. For example*, if the material consid-
ered is isotropic, whether or not it possesses a center of

symmetry, replacing Y(T) by C(1) & CPQ(T)] and Fij[Y(T)] by

t
PAB[Q(T)] in (6.6.16), we obtain the canonical form for PAB:

T=-00

* See example 2 of §6.6.
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2
1
~
=
o
‘S
~
P}
—
—

AB ~

"
(=
(o)

5
1§ ()
2 Wica. et
0%AB u;z{AB [Clry)...Clry
(CRRRCRI (7.6.7)

where Lﬁg) is an isotropic symmetric second-order tensor-
valued functional, linear in its indicated argument and depen-
dent also on scalar functions of linear functionals of the
elements tr g(rl), tr g(rl)g(r2),..., tr g(Tl)...g(T6). oy
is, of course, also a scalar function of such linear function-
als, since it is a scalar functional of g(r) invariant under
the full orthogonal group. From (7.6.7) we can easily obtain

the Piola-Kirchoff and Cauchy stresses by using the formulae

(3.8.3) and (3.8.4).
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7. Restrictions imposed by material symmetry on constitutive
equations of the differential type*

Instead of being a functional of the history of the
Cauchy strain, we now consider the Piola stress to be a function
of the Cauchy strain and its time derivatives at the instant at
which the Piola stress is measured, as expressed by equation

(7.4.3). 1In this case we have, instead of (7.6.2) and (7.6.6),

p /dt, ... /dt*)

= H
A = Fag(Cpgr9Cpq »4"Cpq

and (7.7.1)

= u
PAB = FAB( /dth)

— u—
TperCpg/dt, - -, d"C

Q PQ
where CPQ and EPQ’ defined by (7.6.3) and (7.6.5) respectively,
are the components of the Cauchy strain tensor C and P,; and
PAB are the components of the Piola stress tensor P in the
equivalent coordinate systems x and X respectively. We note

u u B U= u
that dCP /dt,...,d CP /dt" and dCPQ/dt,...,d CP /dt" are the

Q Q Q
components in the systems x and X respectively of the tensors
dg/dt,...,dg“/dt“. Equations (7.7.1) are, of course, valid for
all choices of X equivalent to the system x. This expresses
the fact that P is a tensor-valued function of C,dC/dt,...,
dg“/dtu, invariant under the symmetry group {s} for the
material.

For example, if the material considered is isotropic,

whether or not it possesses a center of symmetry, P must be a

*See also R. S. Rivlin and J. L. Ericksen, J. Rat'l. Mech. Anal.
4, 323 (1955).
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tensor-valued function of g,dg/dt,...,dgu/dtu invariant under
the full (or proper) orthogonal group. (We note that it does
not matter whether the full or proper orthogonal group is used,
i.e. whether we consider the material to possess a center of
symmetry or not, since all the tensors involved are symmetric
tensors and therefore are unchanged by a central inversion.)

The canonical form for P is then obtained from (6.4.18) as

M>—‘

By (1,418 (7.7.2)

(=]
n

1

where the products T, are obtained in the manner described

in §6.4, with VysVos ool replaced by g,dg/dt,...,dgu/dtu

and the B's are functions of the elements of an irreducible
integrity basis under the orthogonal group for the tensors

C,dc/dt,...,d*c/dtH.

From (7.7.2), we obtain, with (3.8.4),

A
1 = =(t
A TTE) S 2;; Fg(na+zé M, ‘ (7.7.3)
where
(a)
= JFi,a%," 1(\3)" II"Ag | - (7.7.4)

Bearing in mind that T is a product formed from C,dC/dt,...,
d“g/dt“, it is easily seen that ia is a product formed from the

Finger strain tensor c and the Rivlin-Ericksen tensors él""’éu'
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This follows immediately from the definitions of ¢ and

Ql,...,éu in (2.5.6) and (7.5.2) respectively. For example,

suppose T = C dC/dt. We then have, from (7.7.4),
=) _ ()
Tij© = Xi,A%j,B"AB" = *i,a%j,8Cap 9Cpp/dt - (7.7.5)

with (7.5.2) and (2.5.6), equation (7.7.5) becomes

=(0) _ (1)
"ij = 20 Ckafgn © mj °’ (7.7.6)

which, with the notation

“A(a)" €= "CIJ” (aql 7.7.7
may be rewritten as
T, S 2 Ac . (7.7.8)

We note that fu is of higher degree in ¢ than is L in C,

Consequently, although in (7.7.2) T is of degree 5 or lower

in C,d¢/dt,...,d"c/dt", T in (7.7.3) may be of degree higher
than 5 in C’Al’ .. éu. We can, however, express each of the

terms f& and hence ¢ in canonical form by recognizing that

each i& and hence 0 is a tensor-valued function of C’Al""’Au’

invariant under the orthogonal group*. It follows that g may be
expressed in the form (7.7.3), where now the products Fa are

obtained in the manner described in §6.4, with Vs Vv

VoseoosV

~H

*We note that X/ X = (det c)l/g.
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replaced by E’él""’éu' The B's in (7.7.3) are functions of
the elements of an irreducible integrity basis under the
orthogonal group of the tensors E’él""’éu' Wé note that
ax/ X = (det 9)1/2 and we may therefore absorb the factor
1/(3x/3X) in (7.7.3) into the B's, without loss of generality.
For example, in the case when p=1 in (7.7.1), so

that our starting point is the relation
Pip = FAB(CPQ’ dCPQ/dt) , (7.7.9)

we find (cf. equation (6.4.15)) that equation (7.7.2) becomes

> dc dc\?
I:.2[1315”329”339 “ Bt Bo\ar

¢ dc dc)\? (d92
*B\CaE A )t BrS\ar) *\at) ¢
d¢ 2, 2 dC 2(dC ey o
+ B8 aTt'g +g a? + ngg a-t- + a-? (.:, ) (7.7.10)

where the B's are functions of the following quantities

tr C, tr 92, tr Q3,

(7.7.11)
dc dg ey
tr 9 Io tr C aT, tr g a—f ’
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In the same case, equation (7.7.3) becomes

.1 = w = 2, = =, 2
¢ " 5xX {Z[Bll * Bt Bycm + BA) ¢ BoA) ]

= T 2 2
+ Bg(cA *A ) + Bo(cA "+, “¢)

=Y 2, .2 = 2, 2 2.2
+ Bylac®hc®hy) + By (cPh Pen 2 (7.7.12)

where the B's are functions of

tr ¢, trc?, trcd,

~ ~ ~

tr él’ tr 412, tr 513,

(7.7.13)

tr Sél’ tr 9251, tr 9512,

2, 2
tr ¢ él .

As has already been remarked we may, without loss of generality,

absorb the factor 1/(3x/3X) into the B's.
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8. Constraints

We have already seen in the discussion of elastic
materials in 84.8 that if the deformations to which an elastic
material can be subjected are restricted by some constraint,
then the stress is no longer determined by the deformation,
but is subject to an indeterminacy, the exact nature of which
depends on the character of the constraint.

For example, if the material is incompressible, then

the constraint takes the form, cf. (4.8.1),

3x/0X = 1 . (7.

From this it follows, cf. (4.8.2), that
€ike (Xi,1%K,2%0,3 * Rk, 2%i,1%0,3 * Xn,3%4,1%,2)
=l e ko x ox
7 “1ke"ABC7i,A"k,B"4,c

Now from (4.4.5) we see that the dissipation equation may be

written

PoU X - Qg gt mpiX; p =0 (7.

From (7.8.2) and (7.8.3), we obtain

. 1 -
00 X - Qg g * (Tai*7 PEiyEARCK,BYs, )% A

=0 . (7.

=0, (7.

8.1)

8.2)

8.3)

8.4)

where p is an arbitrary quantity. Thus the addition of the term

% PEL 1€ ARCXk pXe ¢ to the Kirchoff-Piola stress leaves the
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stress-power unaltered. For an incompressible material, we
accordingly make a constitutive assumption for ("Ai + % Py
EABka,Bxl,C) instead of for Tai Alternatively, bearing in
mind the relation (3.7.5), we may make a constitutive assump-
tion for Gij + péij instead of for 95 Thus, for an in-

compressible material with memory, we may make a constitutive

assumption in the form

1 =

Tai ¥ 7 PEika®ABCXk,B¥e,c T Fail¥k (7]
or (7.8.5)

oij + pdij = Fij[xk,Q(T)] s
the’ tensor-valued functionals FAi and Fij being different in
the two cases.

Similarly, for an incompressible material, bearing in
mind the relation (3.8.4), we may replace the constitutive as-

sumption (7.4.4) by the assumption

(u)

.. +pb.. = F.. X e . 7.8.6
9 * POy = Fiy (% %p,00 00 %p,Q) ( )

Other constraints than incompressibility can be intro-

duced in an analogous manner.
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9. Viscoelastic fluids

While there is no clear general criterion which
differentiates a solid from a fluid, we have certain loose
criteria by which we recognize fluid-like behavior. One of
these is that in a fluid the stress does not necessarily in-
Crease as the amount of deformation increases; the magnitude
of the stress is associated with the rate at which the de-
formation changes rather than with the magnitude of the de-
formation itself, apart possibly for a dependence on the
density of the fluid.

In accord with these concepts we may make the assump-
tion that the components of the Cauchy stress in some rectangular
cartesian system x depend on the density of the fluid and on the
gradients of the velocity, acceleration, second acceleration and
so on, all of these gradients being taken with respect to the
configuration of the body at the time t at which the stress is

measured., Thus,

o= F ey v @)y 7.9.1
%5 = Figloavp qoVpiqrVpLgre ) ( )

where v
¢, v -

X is the velocity of a particle situated at X at time
X is its acceleration, Y(z) is its second acceleration,
and so on, and p denotes the density of the fluid. For an in-
compressible fluid the density is constant and the constitutive

assumption (7.9.1) is replaced by*

*This is the assumption made by R. S. Rivlin and J. L. Ericksen,
J. Rat'l. Mech. Anal. 4, 323 (1955).
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i S

0.. =F..(v Vol 7.9.2
ij = Fi30,0"p0 ( )

- péij ’

where p is undetermined if the deformation is prescribed.

We notice that the constitutive assumption (7.9.2) is equiva-
lent to the assumption (7.8.6) if in this relation the refer-
ence configuration is taken to be the configuration at time

t (i.e. T =t). We note that in this case the Piola and
Cauchy stresses become identical.

We have already remarked that (7.4.3) may be ob-
tained from (7.4.4) by making use of the consideration that
if we superpose on the assumed deformation a rigid time-
dependent rotation, the Piola stress remains unchanged. In
a similar fashion we see, with the relation (7.5.2), that

the constitutive assumption (7.9.1) leads to

(1) 4(2)

. 7.9.3
pq *Apq v ) ( )

Oij = Fij(p’A

and the constitutive assumption (7.9.2) leads to

o.. = F,. (A} A(3)

15 7 Fij (g Apq r--e) - POy - (7.9.4)

J

We note that the functions Fij in (7.9.1) and (7.9.3) are not
generally the same. Also the functions Fij in (7.9.2) and
(7.9.4) are not generally the same.

We reiterate that the assumption (7.9.1) is made in
a particular rectangular cartesian coordinate system x. In

general, the functions Fij in (7.9.1) depend on the rectangular
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cartesian coordinate system in which (7.9.1) is written. If
the fluid is isotropic, then the Fij in (7.9.1) are the same
for all choices of the rectangular cartesian reference system.
It follows that Fij in (7.9.3) are also the same for all
choices of the rectangular cartesian reference system. Then
¢ may be expressed in canonical form in terms of A;,A,,...
in a manner similar to that employed in §7.7. Similar con-
siderations apply to the incompressible case when the rele-
vant equations are (7.9.2) and (7.9.4).

An analogous procedure was adopted by Noll* in
specializing the constitutive equation (7.2.19) to the case
when the material is a fluid.

Noll defined a simple material as one for which the

Cauchy stress depends on the history of the deformation gradi-
ents; i.e. as a material satisfying the constitutive assumption

O35 = Fij[xp,Q(T)] . (7.9.5)

He then defined a simple fluid as a simple material for which

oij is independent of the reference configuration with respect

to which the gradients are measured, except insofar as the
volume (or density) of a material element is changed in the
passage between these configurationsf Noting that we may re-

write (7.9.5) as -
Oij Fij[xp,q(T)xq,Q] R (7.9.6)

*W. Noll, Arch. Rat'l. Mech. Anal., 2, 197 (1958).

+ Substantially the same idea for differentiating between a solid
and a fluid had been previously exEressed by J.G. 0ldroyd,

(Proc. Roy. Soc. A 200, 523 (1950)
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it follows that for a simple fluid we. may write, in accordance

with Noll's concept,

.. = F.. 7.9.7
%5 = Fij0%,q (0 Ixg,ql] (7.9.7)
or

oij = Fij[xp,q(T)’ po/p] . (7.9.8)
We note here that |xq Ql = p,/p where p and p_ are the material

densities at times t and T respectively.
If the constitutive assumption (7.9.8) is made in-
stead of (7.9.5), it is easy to see that oij nust be expressible

in the form

= qclt)
Oij Fij[Cpq (1),p] (7.9.9)

where Cé;)(r) is the Cauchy strain at time T with respect to the

configuration at time t, i.e.
(t) -
Cpq (1) xk,p(T)xk,q(T) . (7.9.10)

This result is easily obtained from (7.2.21) by noting that
now we may replace X by x and X5 A by GiA' For the incompress-
b

ible case, we have analogously

- (t) .
035 = Fi;(Cpq’ (D - P85 . (7.9.11)

In a certain sense, merely writing down the expression
(7.9.8) instead of (7.9.5) does not effect any change, for we

note that
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X; = IG(T-T)xi(T)dT : (7.9.12)

- 00

where §(t-T) is a Dirac delta function. Here we bear in mind

that T < t. Also,

!
Xq,ali,4 = 7 ®1x%anc®s,5%c,k - (7.9.13)

Combining (7.9.12) and (7.9.13), we see that X; a may be re-
?
garded as a functional of X5 j(r). Thus, making use of the
)

relation
xi’A(T) = xi,j(T)xj,A , (7.9.14)

we may consider any functional of X5 A(T) to be a functional
’

of x.

i j(T). The converse statement that we may consider any
)

functional of Xi’j(T) to be a functional of Xi,A(T) is evidently
also valid.

In order to embody in (7.9.9) the concept that Oij is
independent of any initial state (apart, possibly, through its
dependence on the density at time t) we must add the proviso
that Fij does not involve any fixed reference time. This is
difficult to present in explicit form while F.1j is left as a

general functional. We can, however, see the meaning of this

more clearly by taking an artificial example. Suppose

t
- oye(t)
I % ipq (TN Cpq (14T - (7.9.15)

- 00

..
1)
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If this is to represent a simple fluid, then % ipq must be in-
dependent of any reference time T (other, of course, than the
time t at which the stress is measured). As an example of

what may occur if this is not the case, suppose

(t-T) = B.. 68(1-T) (7.9.16)

%ijpq ijpq

where B. is constant. Then,

ijpq

(t
.. = B.. C T 9.
013 B1JPq qu ) (7.9.17)

and we have a material which behaves as an elastic solid rather
than as one having fluid-like behavior.

Returning to (7.9.9) and assuming the deformation to
be such that Cés)(T) may be expanded as a Taylor series about

the time t, we have (cf. §7.4)

®) U . dac(t)
= 1 (z- P9
Cpq (1) apq +Za_f (t-t) o + Ru s (7.9.18)
o=1
where
a~(t) o _ q0.(t) a
d Cpq /dt d Cpq (t)/dr ir=t’ (7.9.19)

Ru is the usual Taylor remainder and we have used the result from

(7.9.10) that Cég)(t) - Subject to the condition that R

pq’
be small enough, we see by introducing (7.9.17) into (7.9.9) that

oij may be expressed in the form

= (t) 2c(t) He (1)
055 = Fyj(p,dC o /de,d%C, 2/dt, ... d°Cp /dt) . (7.9.20)
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In (7.5.2), we now take the reference configuration to be the

configuration at time t; i.e. we take T = t and X, = Xy, We
then obtain 4%
RN (7.9.21)
it ij
Introducing this relation into (7.9.19) we see that oij is
expressible in the form (cf. (7.9.3))
= (1) ,(2) (W)
oij Fij(p’Aij ,Aij ""’Aij ) . (7.9.22)

Analogously, for an incompressible fluid, we obtain from
(7.9.11), tbe relation (7.9.4).

Noll's concept of a simple fluid as a simple ma-
terial for which Oij is independent of the reference configura-
tion with respect to which the gradients are measured (apart
from possible dependence on the density) implies, of course,
that the material is isotropic. This is immediately evident
from the consideration that, as a special case, we can change
the reference configuration by a rigid rotation, without alter-
ing the stress. This does not, however, imply, as is sometimes
supposed, that a simple material which has generally properties
which we recognize as fluid-like is necessarily a simple fluid.
This fact has been pointed out by Green*., In this respect the
nomenclature introduced by Noll is highly misleading. It has,
for example, led to the erroneous notion that a simple material

which is a fluid cannot be anisotropic.

*A. E. Green, Proc. Roy. Soc. A 279, 437 (1964).
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1. Introduction

We consider constitutive relations of the form
W= P(g,...,z) (1.1)

where W is a scalar and where P is a polynomial function.

The symmetry properties of the material considered impose
restrictions on the form of P. Thus, let e, denote the base
vectors associated with a rectangular cartesian coordinate
system x whose orientation relative to the preferred directions

(if any) in the material is specified. Let

=(k) _ (k) Cal
gi = Aij gj (1,3—11213) (1.2)

denote the vectors into which the e, are carried by the various

(k)

symmetry transformations of the material. The Ei form the

base vectors for the rectangular cartesian coordinate systems

e Bgks Bgksee (2.3)
which are referred to as the set of equivalent coordinate
systems associated with the material considered. The reference

frames (1.3) are specified by listing the set of orthogonal
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matrices

i (k)]

A = (A

A ” ; :} (1.4)
where Ay = I. The set of matrices (1l.4) forms a group which

we denote by {é} and refer to as the symmetry group of the
material. Let Bi and (Ak B)i,..., Yj and (Ak Y)j denote the
incdependent components of 8,..., y when referred to the
eguivalent reference frames x and Ax respectively. These

quantities are related by the equations

— mlk) _ (k)
(BB =15 850 ees (1), =500y, (1.5)

We require that the response function (1.1) shall have the
same functional form when referred to any of the set of
equivalent reference frames ékf (k=1,2,...) associated with

the material. Thus, the function P must satisfy the equations

R(3,,00e,) = P [T:.(Li)Bn,..., sgi)Ym} (k=1,2,...) (1.6)
or

P(Breeasy) = BT Breee 8, 7) (k12,0000 (1.7)

The function P is then said to be invariant under the group
of transformations {aA} = A /Ay, ... . The problem of concern

here is to find the general form of the polynomial function
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P(B,..., Y) consistent with the restrictions (1.6) or (1.7).
The solution to this problem is given by determining a

minimal integrity basis for polynomial functions of

8, ..., y which are invariant under {a}. A minimal integrity
basis is comprised of the smallest set of polynomial functions
I. (Breeer Yy eees Ip (@, ey X)’ each of which is invariant
under {A}, such that any polynomial function P(8, ..., y) which
is invariant under {g} is expressible as a polynomial in the

I eeey I

1’ D
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2. The generation of integrity bases

We consider the problem of determining the elements
of the integrity basis for polynomial functions of N absolute
vectors Yir Yor eeen Yy which are invariant under the group
{é} associated with the crystal class D2. This crystal class
is characterized by the presence of three mutually orthogonal
two-fold axes of rotation. If we take the xl, x2 and x3 axes
to lie along these two-fold axes of rotation, the symmetry
transformations are the rotations through 180 degrees about
each of the coordinate axes. The set of matrices defining the

symmetry properties of the material are then given by

1.. 1 . . -1. . -1 ..

§I’§E'§3'§h= Lol e =T o - .=, (2.1)

Let ' and (Aky)i denote the components of the
absolute vector Y when referred to the reference frames x and
§k§ respectively. These components are related by the

equations

_ mlk)
Ay, =75y, (2.2)
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are given by

The restrictions of the form (1.7) given by

Py ""'XN) = P(Tkgl,...,?kxN)(k=l,...

=<1

may be written more explicitly as

P(yil)IYél)lygl)l'"IY§N)IY£N)IygN))

= P(Ygl)/-y(l),-ygl),---,y§N),-y£N).

(1) (1) _ (1) (m) (

= P(-yl D P CURVEREY e SRS £

= P(—Yil)l-Yél)IYél)l'"I-Y§N)

N)

r4)

-v{")

,-Y3

I—YéN)

(W)

4

-1

)

3

(%)) |

In order to determine the integrity basis, we

employ the following obvious theorem.

Theorem 1. Let P be a polynomial function of the real

quantities Uy eees Gy Bl’ cony Sm which satisfies the

(2.3)

(2.4)

(2.5)
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relation

P(al, ceer Oy Bl, ey Bm) = P(al, ey an, =By eeey —Bm).(2.6)

Then P is expressible as a polynomial in the quantities
ai(i=l,...,n) and BjBk(j,k=1,...,m). (2.7)

With (2.5) and theorem 1, we then readily see that
an integrity basis for polynomial functions of Yoo oeeer Yy
which are invariant under the group {A} defined by (2.1) is
formed by the quantities
y§i)y§j), yéi)yéj), ygi>y(33), y:(Li)yéj)ygk)(i’jlkzllzl.“’N).(2.8)

There are a number of theorems such as theorem 1
above which enable us in principle to determine the integrity
basis for a wide variety of problems. However, the integrity
bases which are obtained upon application of such theorems
will generally contain a number of redundant terms which
must be eliminated. This may prove to be a matter of some
difficulty. 1In order to avoid such difficulties, we may employ
an iterative procedure. We outline below the application

of this procedure to the generation of the multilinear elements
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of the integrity basis for functions of N vectors Yir seer ¥y

~

which are invariant under the group (2.1).

We first determine the number Pn of linearly inde-

pendent invariants which are multilinear in n vectors Yyr seer Yoo

The transformation properties of the 3" quantities

yil)yée)

are described by the Kronecker nth power T

. yin)(i,j,k=l,2,3) under change of reference frames

[n]
X

The number Pn is obtained by taking the mean value over

[n]
K "
trace of the Kronecker nth power of a matrix Tk is equal to

of the matrices

Ty

the group {A} of the trace of the matrices T Since the

the nth power of the tr Tk' we have

o
]
=

n
(tr )", (2.9)

it~ =

From (2,3), we see that

(tr Tys tr T, tr 23, tr Th) = (3, -1, -1, -1). _ (2.10)

With (2.9) and (2.10), we then have

We now proceed to generate the multilinear elements
of the integrity basis. From (2.1l), we see that there are

no invariants of degree 1 in yl and three linearly independent

p. =0, P, =3, P, =6, Ph =21, «.. . (2.11)
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invariants of degree 1, 1 in Yir Yoo With (2.5), we readily
see that

y(Bg@), yyla) -yl (2.12)
are invariant under {A}. They are obviously linearly
independent. The multilinear elements of the integrity basis
of degree two are then comprised of the (g) sets of invariants
obtained by replacing Yir Yo in the set of invariants (2.12)
by all possible sets of two different vectors chosen from
Yor ceer Yoo From (2.11), we see there are six linearly
independent invariants of degree 1, 1, 1 in Y10 Yor Y- With

(2.5), we readily see that these are given by

y§l)y§2)yl£3)(ijk = 123, 132, 213, 231, 312, 321). (2.13)
The multilinear elements of the integrity basis of degree

three are then comprised of the (2) sets of invariants obtained
by replacing Y17 ¥Yor Y3 in (2.13) by all possible sets of three
different vectors chosen from Yyir Ypr ever ¥yo From (2.11),

we see that there are 21 linearly independent invariants of
degree' 1, 1, 1, 1 in Y17 Yoo ¥3"¥h' However, we readily

verify that there are also 21 linearly independent invariants

o0f this degree which may be obtained as products of invariants

of the form (2.12). Hence there are no invariants of degree

1,1,1,1in Yl’ y2, Y, yh which are required as elements
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of the integrity basis.

This iteration process must be terminated at some
stage and it is necessary to determine by one means or another
an upper bound on the degree of the elements of the integrity
basis. For the case under consideration, we may employ a
result which says that since the group {é} is comprised of
four transformations, the elements of the integrity basis must
be of degree four or less. This enables us to state that the
typical multilinear elements of the integrity basis for
polynomial functions of N vectors invariant under the group
(2.1) are given by (2.12) and (2.13). The determination of
the non-linear elements of the integrity basis may be carried

out in a similar fashion.

In the iterative procedure described above, we know
the number P of linearly independent invariants of degree
n. We determine by inspection the invariants of degree n
which may be obtained as products of invariants of degree less
than n. Suppose there are Rn such invariants. They are not
necessarily all linearly independent. Suppose then that Qn
of these Rn invariants are linearly independent. We must
determine these Q‘1 invariants and then determine Pn - Qn

additional invariants Il’ 12, ... such that the Il, I2' -

together with the Qn invariants which are products of lower
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order invariants form a set of P linearly independent invariants.

The Il’ 12, .. are then elements of the integrity basis.
This can be a very formidable problem when Pn and Qn are

large. In sections 3 and 5, we discuss methods which essentially
reduce this problem to a number of smaller problems which may

usually be solved much more readily.



- 323
G.F. Smith

3. Invariants of symmetry type (nlng...nr).
Let Il’ ceey Iv1 be a set of linearly independent

invariants which are multilinear in the quantities Al, eees A .

~M

We choose as an example the invariants (2.13). Let

(1) (2) (3) = (1), (3) (2) = (2),(3),(1)
Il = yl y2 Y3 ! I2 = Yl YQ Y3 ’ 13 = Yl YQ Y3 ’

(3.1)

Yie)yél)YgB)' 1, = y§3)yél)y(32)’ I = Y§3)Y£2)Ygl)'

I,
Let s be that permutation of the numbers 1, ..., M which

carries 1 into i., ..., Minto i The permutation s applied

1’ M°
to the subscripts on the tensors Al, . AM transforms the

o Ay) into the invariant
~

invariant Ij(él, .
sI.(Ql, ceey QM) = Ij(éil, ceey éiM). (3.2)

We assume that the space spanned by Il’ ooy In is invariant
under the group §M of all M! permutations of L, ceer M, 1.e.,
the invariants st (él, ey éM) are expressible as linear
combinations of I., ..., In. Thus,

1

st =1ID .(s). (3.3)

For example, consider the transformation properties of the
quantities (3.1) under permutation of the vectors yl, Y, y3

among themselves. The symmetric group S, is comprised of

3
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six permutations

e, (12), (13), (23), (123), (132). (3.4)

In table 1 below, we list the quantities st(yl, Yo y3)

for 3 =1, ..., 6 and for all permutations s belonging to the

set (3.4).
Table 1

I, I, Ig I I I

e I I, 13 I, I5 16

(12) Ik 13 I2 Il 16 I5

(13) 16 I5 I,+ 13 12 Il

(23) I, I, I6 I5 Ih 13

(123) 13 I, IS I6 Il I2

(132) 15 I I I, 13 Ih
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The matrices D(s) appearing in (3.3) are then seen to be given

by
{'1 - e R
P 1
De)=1]. .1 . . .|, pay=).1
1 1
1. .. 1
. . 1 |
I 1 L.
. 1. 1. . .
D(13) = 1. .| ., b3 = . 1,6
1 1
1 . 1
1 .1
1 1
1 1
p(123) = 1 . . . . . o =f . . . .1
1 .. 1
1 1. . -
1 R SR
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The matrices D(s) given by (3.5) which describe the trans-
formation properties of the invariants (3.1) under the

permutations of S, are said to form a matrix representation of

3
degree 6 of the symmetric group S3. Thus, to every element

s of S, there corresponds a matrix D(s) such that to the

3
product u = ts of two permutations corresponds the matrix

D(u) = D(t) D(s). (3.6)
For example,

(13) (23) = ( 132) (3.7)
and we see from (3.5) that

D(13) D(23) = D(132). (3.8)

The invariants (3.1) are said to form the carrier space of

the representatioh

I = {D(e), D(12), ..., D(132)}. (3.9)
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Consider now the invariants defined by

<
]

I, + I2 + I3 + Ih + Is + 16,

1 1l
J2=Il+1h-Is-I6,J3=13+-I6-II-I2,
(3.10)
Jh=Il+I6-I3-Ih,J5=Ih+Is-Il-I2,
J6 = Il + I3 + IS - I2 - Ih - I6o

From table 1, we readily obtain the transformation properties
of the invariants Jl, ooyt J6 under the permutations of Y10 Yo

and y

3 We list the quantities sJi in table 2.

Table 2
[
J, I, | Jq J), J5 Jg

e Il 9, Js 9y J5 Jg
(12) I | 9, -J2-J3 JS J), =Jg
(13) Iy | I, J, J, -Jh-J5 -J¢
(23) J, -J2-J3 J3 -Ju-Js J5 -J6
(123) Jl J3 'J2-33 -Jh-Js Jh J6
(132) 3, | =0,70, J, JS -Jh-Js J¢
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We thus have

= H (s 3.11
s Jp Jq qp( ) ( )
where the matrices H (s) form a matrix representation of

§3 which is said to be equivalent to the representation D (s).
From table 2, we see that the matrices H (s) are all of the

form
K (s)

H (s) =

|
|
: (3.12)
|
|
|

where K, L, Mand Nare 1 x1, 2x2, 2 x2and lx 1 matrices
respectively and where all of the non-zero components of H
appear in the matrices K, L, M and N. The sets of matrices

K (8)) ooy N (s) are listed in table 3.

Table 3
1 5
s | e | (12) (13) | (23) | (123) (132)
K (s) | 1 1 1 1 1 1
L(s){10] 1-2]0 1|-1 0| 0 -1|-1 1

0l{0=-1j1 0]=-11 1 -1 /-1

M(s){l0j0 1|1 -1]-10}=-1 1 0 -1
01|11 0}0 -1|-11{f=-1 0 1 -1

I(z

(8)| 1| -1 -1 -1 1 1
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The sets of matrices K (s), ..., N (s) also form representations

of the symmetric group $ The invariants Jl, (Ja, J3),

3
(Jh’ J5) and J6 form the carrier spaces for the representations

I, = {&(s)}, I, = {L(s)}, T, = M(s)}, T = {N(s)} (3.13)

respectively. We say that the representation I = {Q(s)} has
been decomposed into the direct sum of the representations
zl’ cery Eh' If a matrix representation can be decomposed in
this fashion, it is said to be reducible. If not, it is said
to be irreducible. Each of the representations (3.13) are

irreducible representations of the symmetric group §3.

The quantity
char {K(s)} = l:tr K(e), tr K(12), tr K(13), tr X(23),
tr K(123), tr 15(132)] (3.14)

is referred to as the character of the representation
r. = {K(s)}. There are only three inequivalent irreducible

representations associated with the symmetric group §3.

These are denoted by

(3), (21), (111). (3.15)
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The characters of these irreducible representations are given
[1] by
char (3) = }l,l,l,l,l,lJ , ¢char (21) = [2,0,0,0,-1,-1} p

[

(3.16)
char (111) = ;'1,-1,-1,-1,1,1] .

We see from table 3 that

char (3), char {E(s)} = char {@(s)} = char (21),

char {g(s)}

char (111). (3.17)

char {g(s)}

This reflects the fact that the character of any irreducible
representation of §3 must equal either char (3), char (21) or
char (111).

The invariant Jy defined by (3.10) forms the carrier
space for the irreducible representation {K(s)} for which
char {K(s)} is equal to char (3). We then refer to J, as a
set of invariants of symmetry type (3). The invariants Iy
and J3 defined by (3.10) form the carrier space for the
representation {L(s)}. Since char {L(s)} = char (21), we

refer to Iy and J, as a set of invariants of symmetry type (21).

3
Similarly the invariants Jh’ JL and J6 defined by (3.10) are
referred to as sets of invariants of symmetry types (21) and

(111) respectively.
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The number of inequivalent irreducible representations
of the symmetric group §M is equal to the number of partitions of
M, i.e., the number of solutions in positive integers of the
equation

>n,> ...>n_. (3.18)

nl+n2+...+n =M, n 2n.

r 1-"2

For example, the partitions of 4 are given by 4,31,22,211,1111
and the inequivalent irreducible representations of §), are

denoted by
(4), (31), (22),(211), (1111). (3.19)

Similarly, the partitions of 5 are given by 5,41,32,311,221,
2111,11111 and the inequivalent irreducible representations of

S_ are denoted by

5

(5), (41), (32), (311), (221), (2111), (111l1l). (3.20)

The characters of the various irreducible representations of
S,, may be found in the literature for M<15 (see [1l] for M=1,

., 8). If a set of invariants Jl’ ooy Jp forms the carrier
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space for an irreducible representation T of Sy for which
char ¢ = char (nlne...nr), we say that the invariants Jl’ ey

Jv form a set of invariants of symmetry type (nln2...nr).

In the next section, we give an example to show
how we may employ the notion of a set of invariants of
symmetry type (nlne...nr) to ease the burden of computation
involved in determining the multilinear elements of an integrity

basis.
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4. Integrity basis for N symmetric second-order traceless

tensors A,, ..., Ay - the proper orthogonal group.

We outline the computation yielding the multilinear
elements of this integrity basis. We borrow from the discussion

of Spencer and Rivlin [2] the following results,

(i) Every multilinear element of the integrity basis involves

at most six tensors and is. 'of the form

tr é'%j"'ﬁk’ (4.1)
(ii) The trace of a matrix product formed from symmetric
3 x 3 matrices is unaltered by cyclic permutation of the
factors in the product and is also unaltered if the order of

the factors in the product is reversed.

For example, we have

tr BB AL = tr AAA) = tr AAR,

(4.2)

=t ARAA = tr AAA, = tr AA AL
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We may readily compute (see [3]) the number p . y of
.llzl.-

sets of linearly independent invariants of symmetry type

(nlno...nr). These quantities are listed in table 4.
Table 4

(nyn,...) (2) (3) (4) (22) (5) (41) (32) (221) (11111)

P 1 1 1 2 1 1 1 1 1
(njny..e)

q 0 0 1 1 1 1 1 0 0
(nn,...)

N 1 1 1 2 1 4 5 5 1
(n;n, .)

(n,n,...) (6) (42) (321) (3111) (222)

172
p 2 3 1 1 2
(nln2 )
q 2 3 1 0o 2
(nlng. )
N(n n ) 1 9 16 10 5
12

In table 4, N(n n ) denotes the number of invariants comprising
PR

a set of invariants of symmetry type (n.n,...) and q )
12 (nlne...

denotes the number of sets of invariants which may be obtained

as products of lower order invariants. The computation then
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proceeds as follows.

(i) Invariants linear in Al'
Since tr A 0, there are no linearly independent

invariants of degree one in A

(ii) Invariants multilinear in él’ 52.
There is only a single linearly independent invariant

of this degree which is given by

tr AA,. (4.3)

We see that
e tr §1A2 tr §1§2’ (12) tr A A = tr §2A1 = tr élAz (4.4)
Thus, tr A1 forms the carrier space for a matrix representation

D(s) of degree one which is given by
per = i) . pua = faf - .5)
From (4.5) and the character tables for 82 given in [1], we see

that char {P(S)} = [1,1] = char (2). Hence the invariant

tr A A, forms a set of invariants of symmetry type (2).
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(iii) Invariants multilinear in Al’ 52, 63.
There is only a single linearly independent invariant
of this degree which is given by
tr A AR, (4.6)

With (4.2), we see that

e tr A AAy = tr A AsAg,

(12) tr §l§2§3 = tr 526163 = tr §l§2§3’ ooy (4.7)
(132) tr AjA Ay = tr AA B, = tX A)A As.
Thus, tr A;A A is readily seen to form the carrier space for

a representation {E(s)} of S, such that char {E(s)} = char (3).

Hence, tr A,A

253 forms a set of invariants of symmetry type (3).

(iv) Invariants multilinear in 51’ @2, §3, §h'

From table 4, we see that there are five linearly
independent invariants of this degree which form one set of
invariants of symmetry type (4) and two sets of invariants of
symmetry type (22). We may obtain three invariants as

products of invariants of the form (4.3). These are given by

tr BiA, tr AGA), tr AjAg tr AR, tr AjA) tr AjAs. (4.8)
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We may upon investigating the manner in which the invariants

(+.8) behave under permutations of the tensors Al, oo, A
establish that the invariants (4.8) may be split into a set
of invariants of symmetry type (4) and a set of invariants
of symmetry type (22). Thus, q(h) = q(22) = 1. We then see
that we require one set of invariants of symmetry type (22)

as elements of the integrity basis (since P(op) = 2 and

9(p0) = 1). This set is given by

12
I (BB Rgdy) =Y || trARRR,
(4.9)
I.(A.,A ,A_A) =Y 13 tr A.AAA , (22)
2By rBorRaidy, - A RoRqhy

where Y (...) denotes a Young symmetry operator (see [3] for a
discussion of the properties of Y(...) and further references).

For example, we have

Y b= {e+ (12)) {e + (34)}He - (13)}He - (24)}. (4.10)

(v) Invariants multilinear in A,, ..., AS'

There are 10 invariants of this degree which may be

obtained as products of the invariants (4.3) and (4.6). These
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are given by

€ B3, € AghAs, € Ay 6 ANAg e B BB €8 BiRRs. (411

s 3 PR

The ten invariants (4.11) form the carrier space for a repres-
entation which is denoted by (2).(3) and is referred to as

the direct product of the representations (2) and (3). The
decomposition of representations (nln2...).(mlm2...) has been
considered by Murnaghan [4]. We see from tables given in

[4] that

(2).(3) = (5) + (41) + (32) (4.12)

and hence

9s) = (k1) = 9(32) = 1 (4.13)

Then from table 4 we see that one set of invariants of symmetry
types (11111) and (221) are required as elements of the

integrity basis. These will be given by

(4.14)

and
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tr A A AR A, ... (4.15)

(5]
ACA VDR 5
1o
~——

(vi) Invariants multilinear in él' ey 56'

There are 15 + 30 + 10 = 55 invariants of this
degree which may be obtained as products of lower order
invariants. These are given by

1. tr élé tr §3§h tr 5556, ..., 15 invariants,

2
(6) + (42) + (222);

2. tr 6162 I (63’§h’55’§6) (3=1,2), ..., 30 invariants,

J (4.16)
(42) + (321) + (222);
3. tr 516253 tr §h§5§6’ «e+; 10 invariants,
(6) + (42).
In (4.16), we have listed on the right the irreducible
representations into which the representations for which the
invariants (4.16)1, ooy (4.16)3 form the carrier spaces may
be decomposed. We then see from (4.16) that
= (4.17)

9(202) = %0 G(uz) = 3 9(z21) = L

€(6)
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From table 4, we see that

Py = Paza) = 20 Pyp) = 31 P(3py) T landprgyyyy = 1. (4.18)

With (4.17)and (4.18), we see that there must be a single
set of 10 invariants of symmetry type (311l) present in the

integrity basis. This is given by

€ ARARARG (4.19)

o\ =

We thus see that the typical multilinear elements
of the integrity basis are given by the invariants (4.3),
(4.6), (4.9), (4.14), (4.15) and (4.19). The non-linear
elements of the integrity basis are readily obtained once the
multilinear elements have been determined. Details of the
procedure involved in obtaining the non-linear elements from

the multilinear are given by Smith [3].



- 341 -
G.F. Smith

5. Reduction of invariant - theoretic problems to standard

form - the crystallographic groups.

We consider the problem of determining the general
form of the polynomial P(§, ceey X) which is subject to the

restrictions
P(8, ...,y) =P [?ﬁ’ ey §kY] (k=1, ..., N). (5.1)

The set of matrices

SEETORN R)

forms a matrix representation T of the crystallographic group
{a} = Al’ «..s A and describes the transformation properties
of the components Bl, ooey Bp of B. The Bl’ ooy Bp form the

carrier space for the representation I'. We may in some cases

be able to determine p quantities

9; =Q;;8; (1,3=1, -..s P) (5.3)

where det Qij* 0 such that the matrices

kag'l (k=1, +.., N) (5.4)



- 342 -

G.F. Smith

which describe the transformation properties of the components

Q1, ey @ of @ are all expressible in the form
- ° &

&

o, 07t = E . (k=1, ..., N). (5.5)

In (5.5), the only non-zero elements of the matrices
QT‘Q'l appear in the matrices Dk' «eey F . The representation
~K

~~vKa ~

E = {?k} is then said to be reducible. If no such decomposition
is possible, the representation r is said to be irreducible.

If the decomposition process (5.5) has been carried out as

far as possible, then the representation E is said to have

been decomposed into the direct sum of irreducible repres-

entations rl, re, ey rr. This is denoted by

~ ~

= 5.6
E El + 22 + ..t Er ( )
where
T. = = = .7
il {Pk}’EE {gk}' teet Er {gk}' (5.7)
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The quantities

Z\z (¢l’ cesey q)q), ?7- (¢q+ll ceey ¢m)' coey

(5.8)
.)..( = (¢s+l' st q>r)

whose components form the carrier spaces for the irreducible
representations T, = {Qk}, r, = {gk}, ceer T= {§k} are
referred to as the basic quantities associated with the

irreducible representations Pl, T2, ey Pr respectively.

If the matrices . = ?(A ) form a representation
T of the group {A}, then the matrices QTkQ'l also form a
representation of {A} which is said to be eguivalent to the

—, e

representation I'. Associated with a crystallographic group

which is a finite group, there is only a finite number of
inequivalent irreducible representations 21,22, cees Er.

Any representation [ of {é} can be decomposed into the direct
sum of the irreducible representations El’ Ez' cenr Er. This
says that we may always split an arbitrary quantity

§ = (Sl, ey BD) which forms the carrier space for E into
sets of the basic quantities @1’ ?2’ coer Ugr Yo e

X1rXor oon associated with the various irreducible representations

El' ~2l

integrity basis for polynomial functions P(B, ...,y ) of any

...,Tr of {é}. Thus, the problem of determining the
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nurber of quantities 8, ..., Y of arbitrary type which are

~

invariant under {A} is always reducible to the problem of
determining the integrity basis for polynomial functions

P*(Ql' ®2I ceey E}l’ L"Jel ceny Z(l’ -)~(2’ ...) of the basic

&

quantities associated with the irreducible representations

r

51' Tor eees Er of {é}.

Example. The crystal class D2.

The set of matrices {A} = Ay «o.s By defining
the symmetry properties of the material are given by (2.1).
The irreducible representations associated with the group

{al =1, ..., A, are all of degree one ard are listed in

ll
table 5. The quantities which form the carrier spaces for

representations equivalent to Fl, ves

os dl, d2, ... respectively.

’ Th will be denoted by

a5s ay, .

Table 5
{%} él 92 A3 Ah Basic Quantities
I 1l 1 1 1 ajs a2, .
22 1 1 -1 -1 bl' b2, .o
53 1 -1 1 -1 Cir Cpoi
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Let Y, and <Aky)i’ Gij and (AkG)ij denote the
components of an absolute vector y and an absolute second-
order symmetric tensor G when referred to the reference
frames X and §k§ respectively. We may readily compute the
(Aky)i and (AkG)i from tensor transformation rules. The

J
results are listed in table 6.

Table 6
i3] A, s A,
(B¥)y ST S S T S
(A ¥), Y, ¥, Y, Y,
(A,¥) 5 Yy ¥y Yy Yy
(A Gy 61 G G O
(3,6 5p 6o CGop G Cpp
(36) 33 G33 G335  CG33  Gs3
(A6 10 6o G2 G Cpp
(BG g 613 613 CG3 i3
(A6 53 63 Gz “Cp3 Gy

With table 5 and 6, we see that Yy and G23, Y, and G3l’
Y3 and G, are basic quantities associated with the irreducible

representations Tz, 23

117 622 and G33 are basic quantities associated wita the

and I, of {A} respectively. Also

G
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irreducible representation I, of {a}. Let us now employ the

notation
al = Gll’ a2 = G22, a3 = G33,
by = ¥ys by = Gyqs
_ _ (5.9)
) = ¥pr Cy = Ggys
d) = ¥3r dy = Gppe

Then the problem of determining the general form of the
function P(y;, Gij) which is invariant under {A} may be reduced
to the problem of determining the general form of the poly-

nomial function
P(ai, bj, Cpr dm) (i=1,2,3; 3=1,2; k=1,2; n=1,2) (5.10)
which is subject to the restrictions

P(ai, bj, Cpr dm) = P(ai, bj, =Cpr —dm)

(5.11)
= P(ai, -bJ, Cy -dm) = P(ai, -bj, =C,.,» 4 ).
Also the problem of determining the general form of the
polynomial P(§, ""I) which is invariant under the group
{é} defined by (2.1) and where the quantities appearing as

arguments of P may be arbitrary in number and in type is then
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readily seen to be reducible to the form (5.10) and (5.11).
The only difference would be that the range of the subscripts
i, j, k, m would differ from that of (5.10).

The above example is a particularly simple case.
For the less tractable of the crystal classes, we proceed
as follows. Let Alr eeer By denote the crystallographic

group and let

E . E(-ﬁ-l)t “sey E‘(éﬂ) (5.12)
denote the representation which gives the relation between the
components Bi and.(AkB)i of 8 in the various equivalent refer-
ence frames X, ..., Ayx associated with the crystal class

considered. Then, I' may be decomposed .into the direct sum

r= “151 + 0, ot nrfr {5.13)
where gﬂ, weng gr are .the irreducible representations assoc-
iated with the crystallographic group {g} and where n, denotes
the number of times 51 appears in the decomposition of r.

The number n, appearing in (5.13) may be computed [5] from

the formula
1 ¥ _
0, =5 Z_ tr g(%k) tr F(ﬁk) . (5.14)
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where the matrices g(éi) are those defining the irreducible
representation Ei and where tr E denotes the complex conjugate
of the trace of the matrix F. The components ¢,, ¢,, ...

of the quantity Q which form the carrier space for the
irreducible representation Ei are linear combinations of the

components Bl, cent Sp of B and may be obtained [5] upon

application of the formula
N
- -1
=1 gl(‘fk JTpq () By (5.15)

The application of (5.15) may become very tedious. A computer
program is being written which should routinely produce the
¢j. Thus, for any crystallographic group we may always reduce
the problem of determining the form of a function P(g, ooy Z)
of any number of quantities §' ceer Y of any arbitrary type

to that of determining the general form of a function

P(Ql, 92, cees in v Vyr Ypr eeey gnz, ...) where the
¢i, vi, ... are basic quantities associated with the various

irreducible representations of the group {Al.
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6. Results available in the literature

If we apply the procedure of section 5, we find
that application of theorem 1 (see section 2) and a
generalization of this theorem suffice to give complete
results for all of the crystal classes except the cubic
crystal classes. These results are given in [5]. Complete
results for the cubic crystal classes may be obtained upon
application of a method discussed in [3] which is a general-
ization of the procedure outlined in sections 3 and 4. Results
for the full orthogonal group and the proper orthogonal group
are confined mainly to cases. involving only vectors and
second-order tensors. We list some references below where the
integrity bases for many cases of interest may be found. 1In

this list, tensor means a symmetric second-order tensor.

(see next page)
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Svametry Variables Reference
Cryvstal classes 1 vector, 1 tensor (6]
Crystal classes M vectors [7]
Crystal classes
(except cubic crystals)  Arbitrary [5]

Transverse isotropy M vectors, N tensors (8]
Hemihedral isotropy M vectors, N tensors (21,91
Holohedral isotropy M polar vectors, [10]

N axial vectors

P tensors

We note that it has been shown by Wineman and Pipkin
[11] that the assumption that the functions P(8, ..., Y) are

polynomials may be removed.
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