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Preface

During the 1960s, the public face of plasma physics was almost exclusively
represented by plasma confinement, with the goal of developing a reactor
to produce electricity by thermonuclear fusion. Such a reactor is still being
developed, without any guarantee as to its successful achievement, but since
then the applications of plasma physics have increased and diversified: one
of the best known, besides lighting, is etching in the fabrication of micro-
electronic computer chips, for which plasma is indispensable. At present, the
use of plasmas continues to expand and, from recent research publications,
a seemingly limitless number of applications will eventually see the light of
day. In this development, plasmas created by radiofrequency and microwave
fields play a particularly important role.

The present text is basically concerned with plasma physics of interest
for laboratory research and industrial applications, with emphasis on the
understanding of the physical mechanisms involved, rather than on minute
details and high-level theoretical analysis. At the introductory level to this
discipline, it is very important to assimilate its characteristic physical phe-
nomena, before addressing the ultimate formalism of kinetic theory, with its
microscopic, statistical mechanics approach. In this textbook, the physical
phenomena have been translated into more tractable equations, using the
hydrodynamic model; this treats the plasma as a fluid, in which the macro-
scopic physical parameters are the statistical averages of the microscopic
(individual) parameters. This textbook is intended for students in their early
years at the graduate level, and for engineers who are interested in applica-
tions. Its level of difficulty lies somewhat below that of JL Delcroix and A
Bers (from Université Paris XI, Orsay and Supélec, Gif-sur-Yvette, France,
and MIT, Cambridge, MA, USA, respectively), which provides a series of
complementary and interesting theoretical treatments.

This book is divided into four chapters.
Chapter 1 is the introductory part of the textbook. It begins with a de-

scription of the plasma, an ionised gas, as a collective and electrically neutral
gaseous medium, followed, for illustrative purposes, by a few selected scien-
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tific and industrial applications. Then, the fundamental concepts of plasma
physics are introduced, with progressively increasing detail: the chapter aims
to present the basic parameters required to reach a starting knowledge of the
plasma medium, such as the Debye length, the electron plasma frequency,
the various types of collision between particles and their description through
specific cross-sections. The concepts presented in this introduction will be
developed as a first approach, i.e. as the first step in an iterative process, to
be completed by the detailed and quantitative presentations in the remaining
chapters.

Chapter 2 is a thorough examination of the trajectory of a single charged
particle (assuming no interaction whatsoever with other particles), subject
to an electric field E, a magnetic field B or both. In the case of electric fields
E, special attention will be paid to those at RF and microwave frequencies,
designated jointly as high-frequency (HF) fields, in preparation for the mod-
elling of HF discharges developed in Chap. 4. The presence of a magnetic
field B results in a cyclotron motion, encountered for example in electron
cyclotron-resonance discharges (Chap. 4). The combination of E and B fields
in different spatial configurations, and then the inclusion of the spatial inho-
mogeneity of the B field, reveals the so-called drift velocities, which have to
be “tamed” for an efficient operation of Tokomaks, nowadays investigated as
possible controlled-fusion reactors.

In contrast to Chap. 2, collisions between particles are taken into account
in Chapter 3, to establish the hydrodynamic description of the plasma, con-
sidered as a fluid. Such a description is obtained from the macroscopic quan-
tities calculated from the distribution function of the (microscopic) velocities
of individual particles. The transport equations, i.e. the equations describing
the space-time evolution of these quantities, are obtained from integration
of the Boltzmann equation over the distribution function of velocities. The
concepts of mobility (of charged particles) and diffusion of particles are then
introduced, where free mobility and diffusion tensors are deduced from the
(momentum transport) Langevin equation. Further, it is shown that, under
sufficiently dense plasma conditions, the space-charge electric field makes elec-
trons and ions diffuse together in the so-called ambipolar diffusion regime.
Finally, toward the end of the chapter, a first example of a scaling law in
plasmas is developed. Then, in the last section, the formation of sheaths lo-
cated at the interface between the plasma and the walls is described, together
with a straightforward and original derivation of the Bohm Criterion, which
provides the velocity of the ions as they enter the sheath.

Chapter 4, the last chapter, is dedicated to the mechanisms involved in
HF sustained discharges, which are developed based on an entirely new and
original approach. The key element is θl, the average power lost by an elec-
tron through its collision with heavy particles, in this way supplying power
to the plasma. It is shown that θa, the power taken on average per electron
from the HF field, adjusts so that θl = θa = θ, i.e. to compensate for the
loss of charged particles. This implies, for instance, that the intensity of the
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E field in the plasma is not set by the operator, but by this balance re-
quirement. A further consequence is that, for given operating conditions and
HF power density, whatever the means of supplying the HF field to achieve
the discharge, the θ value should be the same in all cases. The parameter θ
is also instrumental in demonstrating that, contrary to common belief, the
E-field intensity goes through a minimum at electron cyclotron resonance.
The influence of varying the field frequency on the EEDF, and ultimately
on plasma properties, is documented both theoretically and experimentally,
in the case of low-pressure (< 10 torr) plasmas. The case of high-pressure
plasmas (including atmospheric pressure) is centred on the phenomena of
discharge contraction and filamentation in rare gases with low thermal con-
ductivity, emphasising the role of molecular ions in these monoatomic gas
discharges. Interrupting the kinetic cycle leading to dissociative recombina-
tion (of molecular ions) by introducing traces of rare gases with an ionisation
potential lower than that of the carrier gas leads to the disappearance of
discharge contraction and filamentation.

In addition to the content of the main text, there are a large number of
remarks and footnotes, for clarification, or to qualify certain points more pre-
cisely. Forty five problems, with detailed solutions, which are an indispensable
complement to this book, are distributed at the end of the first three chap-
ters. A set of Appendices provides clarifications of the subjects treated in the
main text, together with a number of mathematical developments, and use-
ful mathematical formulae. Finally, an alphabetic index of important terms
is supplied, with a page reference to their first appearance in the text given
in bold type.

Montréal and Grenoble, Michel Moisan
January 2012 Jacques Pelletier
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Chapter 1

The Plasma State: Definition and
Orders of Magnitude of Principal
Quantities

1.1 Definition and essential nature of plasma

Plasma is a medium composed of electrons and ions, free to move in all
spatial directions; this gaseous medium is distinguished from a classical gas,
composed exclusively of electrically neutral particles, by the nature of the
interaction between charged particles.

In a classical gas, the interaction between electrically neutral particles is
short range and, provided the gas pressure is not greatly in excess of an
atmosphere, the interactions generally involve only two particles (binary in-
teractions). In this case, if two particles are travelling toward each other and
separated by a distance r, the interaction is at first attractive (proportional to
1/r7, referred to as the Van der Waals force) then, immediately before “con-
tact”, this force abruptly changes to repulsive (sometimes represented by a
force ∼ 1/r13, Sect. 1.7.9)1. To the contrary, the interaction between charged
particles (attractive or repulsive, depending on the charges involved) is long
range, because the Coulomb force between particles is ∼ 1/r2 (Sect. 1.7.1),
which implies that each charged particle interacts simultaneously with a large
number of other charged particles. As a result:

1.1.1 A plasma behaves as a collective medium

Consider, as an example, a plasma in which the particles are, to a first approx-
imation, stationary (very small thermal motion) and suppose that the ions
and electrons do not recombine to form neutral atoms: the result is a station-
ary state where, spatially, the positive and negative charges are distributed

1 This interaction is often described in a simplified fashion as a collision between “billiard
balls”, neglecting the (initial) attractive phase of the interaction.
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alternately and almost uniformly; the charge distribution in two dimensions
is illustrated very schematically in Fig. 1.1.

Fig. 1.1 (Highly) idealised
spatial distribution of pos-

itive and negative charges,
in the case where the par-

ticles in the plasma are
(almost) at rest.

A uniform distribution of charges implies, in particular, that there is no
significant local variation in the electric field intensity. However, if a hypothet-
ical perturbation occurs, which displaces only one charge, all the neighbouring
charges will move to compensate the local deviation from equilibrium thus
created. This demonstrates that a plasma consists of particles which may
behave collectively.

1.1.2 A plasma is a macroscopically neutral medium

Consider a given volume of plasma. The charged particles are moving ran-
domly (thermal motion) but, the Coulomb forces they exert on each other,
may induce relative displacements, such as to create a significant change
in the local charge distribution: the (average) displacement of the particles
increases with thermal energy, but decreases with the density of charged par-
ticles. From Poisson’s equation2:

∇ ·E = ρ/ε0 , (1.1)

where E is the (local) electric field intensity, ρ is the net (local) density of
charges (positive or negative), and ε0 is the permittivity of vacuum; the inten-
sity of E increases as ρ increases3, and consequently the neutrality restoring
forces induced by the charge separation become important4. For this reason,
and provided the volume of the plasma considered is much greater than the
typical distance between the particles, the volume will contain, statistically,
an equal number of positive and negative charges. The (average) maximum
distance of non-neutrality is called the Debye length, designated by λD; the
dependence of λD on charge density and average (thermal) energy will be
considered in Sect. 1.6. We can therefore assert that a plasma contained in

2 This is a variation of Maxwell’s equation, ∇·D = ρ, where D is the vector displacement
(electric induction).
3 Equation (1.1) in one dimension leads to E = ρx/ε0.
4 For a given ρ, the restoring force |eE| increases with x, the distance to the neutrality
position (x = 0).
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a volume V which is much greater than the Debye sphere, 4
3πλ

3
D, is macro-

scopically neutral.
In general, we can say that a plasma is a quasi-neutral medium (that is,

neutral in a volume much greater than a Debye sphere) and, in fact, we can
write n = ne = ni, where n is the plasma density, and ne and ni represent
the electron and ion density respectively, assuming that the ions are singly
and positively charged.

1.1.3 First examples of plasmas

Before continuing, consider, as well-known examples, two very different types
of plasma:

- the Sun: this is a completely ionised medium, where there are no electri-
cally neutral atoms; at the centre of the sun, the atoms have even lost
all their electrons. Astrophysicists have shown that 99.9% of the (visible)
material in the Universe is in the form of plasma, which is thus the most
common state of matter.

- the light emitting region of a fluorescent lamp: the bulb is filled with a
rare gas (typically argon) at about 3 torr (≈ 400Pa)5 and a small drop of
mercury with a partial vapour pressure of the order of a few mtorr at the
operating temperature of about 40◦C. An electric field (typically at 50 or
60Hz AC) of sufficient strength is applied to the gas with the aid of two
electrodes mounted as shown in Fig. 1.2, which renders the gas electrically
conducting, producing what is called an electric discharge in the gas; part
of this discharge emits light. In the case of a fluorescent lamp, the principal
emission is UV radiation from mercury atoms (Hg I 254 nm line), which
is converted to visible light by a phosphor deposited on the tube wall. The
gas, in this case, is only partially ionised, and “cold” (≈ 400K), whereas
it is “hot” in the case of a star.

Fig. 1.2 Schematic showing the principle of an electric discharge with an alternating

current as, for example, in the tube of a fluorescent lamp. For alternating current, R is a
reactance (a resistance for continuous current), which is necessary for a stable discharge.

5 The torr is a practical unit of pressure, used in a large number of experimental mea-
surements, while the corresponding unit in the International System (SI) is the pascal

(1 torr ≈ 133Pa). The advent of pressure gauges giving the value in pascal should, in
future, result in the disappearance of the torr.
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General remarks:

1. Terminology: the difference between ionised gas and plasma. The majority
of laboratory discharges are not really plasmas, because they contain not
only charged particles, but also electrically neutral atoms and molecules,
creating, more correctly, an ionised gas. Strictly speaking, the name plasma
should be reserved for a gas that only contains charged particles, but in
practice, the two terms plasma and ionised gas are often confused; the
term cold plasma necessarily refers to an ionised gas.
The difference between a plasma and an ionised gas may be characterised
by defining the degree of ionisation αi of the medium,

αi =
ni

ni +N
, (1.2)

where N is the density of the electrically neutral molecules (atoms). For
αi < 10−4, one should really refer to an ionised gas, rather than a plasma
because, in this case, the majority of interactions are electron-neutral colli-
sions, which are short range. However, even in such a situation, it is possi-
ble to propagate an electromagnetic wave (EM) through the (few) charged
particles, but the attenuation is, in this case, linked to the electron-neutral
collisions, rather than the Coulomb interactions.

2. Plasma is the fourth state of matter. The sequence “solid-liquid-gas-
plasma” corresponds to increasing average energy of the constituents,
plasma being the state with the highest energy. Thus, if the average energy
of the electrons reaches 5 to 10% of the ionisation energy level of the atoms
(molecules) (Sect. 1.7.9), an ionised gas is formed, but only partially; when
the average energy is close to, or exceeds, the ionisation energy, the gas ap-
proches complete ionisation. In the laboratory, this “heating” is obtained
by means of an electric field, or by photons.

3. Plasmas, radiating media. A plasma is a thermodynamic system which
(Sect. 1.4.2), in addition to charged particles (and electrically neutral
atoms, in the case of an ionised gas), contains photons which are emit-
ted and absorbed by the particles.
It should be noted, however, that a medium need not be a plasma or an
ionised gas to emit photons: it is sufficient for the atoms to be excited
without being ionised.

4. Presence of negative ions. In addition to positive ions, with charge Ze
where e is the absolute value of the elementary charge on an electron, many
gas discharges (particularly in those gases referred to as electro-negative,
for example SF6) contain negative ions (with a single negative charge, for
example H−, O−, O−

2 , Cl
−, SF−

x ), which are formed by the capture of an
electron by an atom. Nevertheless, one always has quasi-neutrality, such
that:

− (nee+ ni−e) +
∑

z

nzZe = 0 , (1.3)
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where nz is the density of positive ions of charge Ze (so called multi-
charged ions) and ni− the density of negative ions, with charge −e.
It should also be noted that some plasmas, such as those containing nitro-
gen, mercury and rare gases, do not contain negative ions.

5. Origin of the term “plasma”. This term was first introduced into the lit-
erature by Tonks and Langmuir in 1929 to describe the “positive column”
(Chap. 4) of certain electric gas discharges. Taken from the Greek πλασμα,
this word means “modelled shape” (for example of wax or clay), but can
also mean fiction, false appearance! The connection between the etymo-
logical sense and the physical phenomenon that it describes is rather slim.

1.2 Areas of research and applications (examples)

Although most research work in plasma physics has been motivated by ap-
plications, this discipline, due to the large variety of observable phenomena
in plasmas, has made important contributions to a number of different areas
of fundamental physics, for example non-linear effects.

Plasma physics is a field that calls for electromagnetism, hydrodynamics,
statistical mechanics, and atomic and molecular physics. In order to provide
an overview of the vast domain of plasma physics, we will examine some of
its branches, with emphasis on applications.

1.2.1 Controlled thermonuclear fusion

In the hope, in the future, of replacing energy currently produced by fossil
fuels as well as by nuclear fission reactors, fusion reactions of the type:

D + T → 4He + neutron + 17.6MeV6 ,

D + D → T + proton + 4.0MeV ,

have been considered, where deuterium (D) and tritium (T) are isotopes
of hydrogen. Theoretically, 1 kg of D-T could provide the same energy as
107 litres of fuel oil. These reactions are possible if the nuclei of deuterium
and tritium can come sufficiently closely in “contact”; this requires minimum
incident energies of 10 keV to overcome the repulsive Coulomb potential be-
tween the positive charges. Two methods of heating and confinement are
currently being pursued: magnetic confinement , which is close to a hypo-
thetical reactor that could be coupled to an electricity network, and inertial
confinement , which is currently at a fundamental study stage, and which uses

6 1MeV = 106 × 1.6× 10−19 J (see Sect. 1.4.2 for details).
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a completely different approach. At present, in both cases, it has not been
possible to obtain a positive balance from fusion (energy produced greater
than the energy required to achieve the reactions), since the loss phenomena
have yet to be controlled. Let us briefly examine the two approaches:

- Magnetic confinement devices
The confinement of charged particles in a magnetic field (Sect. 2.2) is
essential to avoid the energy losses to the walls, and their destruction7.
The type of reactor generally used has a toroidal configuration (forming a
system closed on itself), introduced at the Kurchatov Institute in Moscow,
under the direction of Academician L.A. Artsimovitch, and is called a
tokamak8. It consists of a main magnetic field, referred to as toroidal, and
a number of other magnetic fields of less intensity (further details will be
given at the end of Chap. 2). The plasma is initially heated by induction,
using the principle of the transformer, the secondary being the plasma.
Extra current and energy are added to the plasma, for example, by high
frequency (HF) fields corresponding to the normal modes of the system (for
example cyclotron resonance) or to plasma waves. However, the impurities
emerging from the walls as a result of their bombardment by particles from
the plasma absorb a large fraction of the energy required to overcome
the repulsive nuclear potential between the elements, preventing fusion
reactions to continue; this problem has yet to be completely resolved.
Further, several types of instabilities may occur, which lead to the plasma
being “extinguished” or to touch the walls.
Commencing in the early 1950s by the military, part of the research on
fusion was made public in 1958, which led to important civilian financial
investments by a number of countries. However, towards the middle of the
1990s, some governments became more critical with regard to this work,
and reduced their budgets (the Tokamak in Varennes, Québec, was shut
down by the Canadian Government, for example), arguing that it was still
too far from a commercial reactor; in fact, at the time of writing (2010),
the condition of self-maintenance in such reactors has yet to be achieved.
Nevertheless, this research has continued in several installations in Europe,
including the Joint European Torus (JET) in Culham, England, and Tore
Supra in Cadarache, France. The main purpose of JET is to study trans-
port instabilities, while Tore Supra has utilised super-conducting coils,
which allows the machine to operate with increased toroidal magnetic field
intensity, while minimizing ohmic losses. These various studies have led
to the ITER Project, a large-scale tokamak using super-conducting coils
and financed by the international community (Fig. 1.3). This installation
should begin operation in Cadarache in 2019.

7 The idea of magnetic confinement was first suggested by A. D. Sakharov and I. E. Tamm.
8 Russian acronym for a toroidal chamber and magnetic coils: TOROIDAL�NA�
KAMERA and MAGNITNA� KATUXKA.



1.2 Areas of research and application 7

Fig. 1.3 Schematic view, in section, of the ITER reactor. The minor horizontal and
vertical radii are 2m and 3.7m respectively, whereas on JET they are only 1.25m and

2.10m respectively. The major radius of ITER is 6.2m, compared to 2.96m for JET. The
electric power required for continuous operation is 110MW (ITER EDA Documentation

Series No. 24, published by IAEA, Vienna, 2002).

- Inertial confinement systems
The principle of inertial confinement is to fire an intense UV laser beam
into a deuterium pellet, “peeling” it and inciting the compression of the
extracted material towards the centre of the pellet; in order to generate
fusion, the transfer of energy to the material must be faster than the
subsequent expansion in the reactor chamber, which requires a high power,
short pulse laser.

1.2.2 Astrophysics and environmental physics

Stars and the flux of plasma emitted by the sun, called the solar wind , are
two distinct examples of plasma (in the strict sense), the first being extremely
dense, the second, to the contrary, very dilute, and effectively collisionless.

Closer to the surface of the Earth, the ionospheric layers are ionised by
the solar wind. The charged particles in these layers (the F layer, for exam-
ple: ne ≈ 5 × 106 cm−3, TeV = 50 eV, where TeV is the temperature of the
electrons in electron-volt) are confined by the Earth magnetic field, which
forces them to oscillate between the Earth’s two poles. These ionospheric
layers play an important role in the transmission of low frequency waves
(f ≤ 20–30MHz). Effectively, they serve as mirrors for these waves, allowing



8 1 Definition and orders of magnitude of principal quantities

them to be transmitted from one point to another around the world; on the
contrary, for higher frequencies, there is no reflection, and the waves “travel”
in a straight line, and so it is necessary for the emitting and receiving an-
tennae to be opposite each other to establish communication (for example,
Earth-satellite communication). A wave will reflect from the ionospheric layer
if its frequency f satisfies f < fpe, where fpe is the electron plasma frequency
(Sect. 1.5), a characteristic frequency for electrons in the gas. Thus, for the
ionospheric F layer, where ne ≈ 105–106 cm−3, fpe = 2.8–9MHz.

Still in the field of communication, it is also interesting to consider the
effects of a thermonuclear explosion in the upper atmosphere, which would
produce a very high density plasma, preventing communication from fre-
quencies of a few MHz up to very high frequencies, notably communication
with satellites (≈ 4–12GHz); such a plasma, because of the electromagnetic
(EM) energy generated, could completely destroy communication systems.
In the same way, this phenomena of reflection or opacity of waves was the
origin of the loss of radio contact with the first space capsule, at the moment
it returned to the terrestrial atmosphere: heating of the vehicle, by friction
with the ambient air (even though the air density is extremely small at that
altitude) resulted in the formation of a plasma surrounding it.

1.2.3 Laser pumping

One of the necessary conditions for obtaining the laser effect is that the den-
sity of atoms in the upper energy state of the radiative transition should be
greater than that of the lower state, the opposite situation to that occurring
in thermodynamic equilibrium (Sect. 1.4.2). In order to achieve this popula-
tion inversion, one can irradiate the atoms with an intense luminous source
(optical pumping; for example, by a lamp radiating in the UV), as well as us-
ing the properties of the gaseous plasma containing the atomic or molecular
radiators (plasma pumping). The He-Ne laser is an example of laser pumping
by a plasma: the helium and neon atoms are excited by electron collisions in
the He-Ne discharge; this leads to an energy transfer from one excited level
of helium to an excited level of neon at almost the same energy (referred to
as resonance transfer), the neon level corresponding to the upper level of a
radiative transition for laser emission, for example at 632.8 nm. This transfer
of energy is particularly efficient because the excited state of helium that
feeds the corresponding level in neon is a metastable state, i.e. it has a much
longer lifetime than a radiative state, which makes it more susceptible to
transfer its internal energy directly to another atom (molecule).
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1.2.4 Plasma chemistry

Recall that electrons play a dominant role in the formation or rupture of
chemical bonds. In an electric discharge at reduced gas pressure (meaning
below atmospheric pressure), one generally finds9 that Te 	 Ti ≥ Tg, where
Te, Ti and Tg are the electron, ion and gas temperatures10, respectively.
Thus, one can give sufficient energy to the electrons, which favour chemical
reactions, without the need to heat the ions and atoms from which, in prin-
ciple, one can obtain an energy efficiency and reaction yield superior to that
produced by conventional chemistry in thermal equilibrium (Sect. 1.4.2).

A particularly convincing example of this chemistry in a non-equilibrium
plasma is the formation of ozone from O2, in discharges referred to as corona
or dielectric barrier discharges at high-pressure. These discharges have the
property of being cold, that is the atoms and molecules are at ambient tem-
perature while Te is several eV. This is an energetically efficient method,
used throughout the world for treatment in waste-water plants, ozone being
a strong oxidant and destructive to bacteria.

One can also use an electric discharge to destroy the effluent emitted from
industrial processes, atoms and molecules that are toxic for people, danger-
ous for the ozone layer or contributing to the greenhouse effect. After these
particles have been passed through a discharge formed in a different gas (re-
ferred to as the carrier gas), or even creating a discharge directly with the
molecules to be destroyed, it is possible in some cases to obtain a destruction
efficiency or detoxification close to 100%: these processes are fast and often
less expensive than conventional techniques, such as in very high tempera-
ture furnaces which, in addition, contribute to pollution of the environment.
These developments have led to the use of microwave plasma systems11 which
can eliminate effluent gases, notably the (per)fluorides (SF6, CF6, C2F6. . . .)
produced by the microelectronics industry. The same non equilibrium tech-
nique can be used to purify rare gases such as xenon and krypton, obtained
beforehand by cryogenic distillation of air, removing in particular fluoride
impurities (e.g. CF4) and hydrocarbons (e.g. CH4) originating in the envi-
ronment and having condensation temperatures close to those of krypton and
xenon.

9 The electric field in the discharge principally accelerates the electrons, because of their
very small inertia compared to that of ions: thus the energy “enters” the discharge through
the electrons (exercise 2.1). Since, in addition, the transfer of energy between electron-

neutral and electron-ion during a collision is very small (Sect. 1.7.2), because of the mass
ratio (in contrast to ion-neutral and ion-ion collisions) and under the condition that the

number of these electron collisions is not very high, one obtains Te � Ti.
10 The concept of temperature to characterise the energy of a group of particles assumes

that their energy distribution function is Maxwellian (Sect. 1.4.2 and Appendix I).
11 These discharges are, however, warmer than those using the corona effect, and accord-
ingly are closer to thermal equilibrium.
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1.2.5 Surface treatment

Plasma surface treatment consists of modifying the state of a surface by one
of the following generic methods:

- deposition of a thin film of a given material (metal; semi-conductor; di-
electric; polymer) on the surface;

- chemical reaction with the surface itself (oxidation; nitriding) or physico-
chemical transformation of the surface (modification of adherence, surface
energy);

- erosion of the surface, either by a chemical reaction, which involves the
formation of a volatile molecule, from one or more atoms from the surface
and atoms or radicals provided by the plasma, or a physical action, sput-
tering by ion bombardment, such that ions eject atoms from the surface
by a mechanical process, or by a chemical reaction assisted (induced) by
ion bombardment, which combines chemical and physical actions.

Thus, a plasma produced from the gas CF4 creates, in the volume, atoms
(such as F), radicals (such as CFx) as well as ions (such as CF+

y ) and more
complex species necessary for interactions with the surface that, under suit-
able operating conditions, can equally well lead to etching of materials (Si,
W, SiO2) as is illustrated in Fig. 1.4, or deposition of teflon-like thin films by
plasma-induced polymerisation. In the fabrication of micro-electronic chips,
due to the requirements of smaller and smaller miniaturisation, the use of
plasma continues to expand its range of applications: surface cleaning, etching
(production of “patterns” in the substrate by surface erosion), deposition, ion
implantation (doping by introducing ions deep in the material), lithography
(impression and “photographic” development of resins allowing the transfer
of patterns to define electric circuits), oxidation and thermal treatments.

Fig. 1.4 Example of
anisotropic etching of SiO2

(courtesy of CORIAL,
France).

Of the multitude of elementary steps required for the fabrication of inte-
grated circuits, the operations uniquely realised by plasmas represented, at
the beginning of the 2000s, close to 50% of the total number of these steps.
The introduction of plasma equipment for micro-electronics, and more gener-
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ally for the micro/nanotechnology industries, constitutes an important outlet
and a great impetus for plasma physicists and engineers.

An example of plasma deposition is the fabrication of polycrystalline dia-
mond thin films.

Fig. 1.5 Diamond crystals

at the beginning of deposi-
tion on a silicon substrate.

Once the first layer is com-
pleted, the growth rapidly

progresses vertically.

Diamond’s interesting hardness, heat transport and dielectric properties
make it the material of choice in power electronics, as well as for cutting
different materials. It is possible, using a plasma, to deposit thin films of
polycrystalline diamond, i.e. an assemblage of small crystals of diamond.
Their size can vary from 20 nm to a few microns (Fig. 1.5), depending on the
operating conditions. The crystals unite, during their growth, through the
formation of grain junctions, mostly consisting of amorphous carbon. Such
a layer is typically 1 to 5μm thick. In general, the plasma which is used
for this process contains about 1% of a carbon containing material (such
as CH4), the remainder being hydrogen; the operating pressure is between
10 and 100 torr (≈ 1.3–13 kPa) and the deposition takes place on a heated
substrate (≈ 500–1000◦C). The dissociation of hydrogen molecules in the
plasma supplies the atomic hydrogen, necessary to prevent the growth of
graphite, an allotropic phase of carbon whose formation would otherwise be
thermodynamically favoured with respect to the growth of diamond under
these operating conditions.

1.2.6 Sterilisation of medical devices

Deactivation of micro-organisms can be achieved by direct exposure to a
discharge in a gaseous mixture, or in a flowing discharge-afterglow12 of such
a gaseous mixture, as shown in Fig. 1.6.

12 A flowing discharge-afterglow (remote plasma) is obtained from a gas that has been

excited and ionised by a discharge and then rapidly drawn into an adjacent vessel, called
the afterglow chamber, where there is no longer an electric field. To achieve this, it is

necessary for the gas feed to have a sufficiently high flow rate, since the species created in
the discharge have a limited lifetime (≤ 1–100ms).
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Fig. 1.6 Schematic of the principle of a cold-plasma steriliser of the flowing afterglow

type (Université de Montréal).

The biocide species, in the case of the afterglow from a mixture of N2-O2

are, on one hand, UV photons from excited NO molecules and, on the other
hand, atomic oxygen. Excited NO molecules are formed by collisions between
nitrogen atoms and oxygen atoms, both originating from the dissociation of
N2 and O2 molecules by the discharge in such a gas mixture. Under conditions
in which the fraction of O2 in the N2-O2 mixture yields a maximum in the
emitted UV radiation, the exposed micro-organisms (bacterial spores in this
case) are completely deactivated as a result of multiple lesions caused by
the UV photons on their genetic material. Further, atomic oxygen, which
is highly reactive, absorbs on the surface of the micro-organisms to form
chemically volatile substances, resulting in the removal of material (erosion)
of the micro-organism, such that it reduces their size and further facilitates
its deactivation by UV photons13.

1.2.7 Elemental analysis (analytical chemistry)

In order to find the atomic composition of a sample, it must first be atomised:
by ion bombardment, in the case of a solid, or by dissociation (fragmentation)
of molecules in the case of liquids (previously transformed to an aerosol) and
in gases; in the third case, this is achieved with the help of a plasma, usually
formed from argon or helium. The atoms present can then be detected, by
optical spectroscopy, due to the characteristic radiation of those that have
been brought to an excited state, or by mass spectrometry. Their concentra-
tion can be obtained by reference to standard samples containing the same
atoms, preferably in a molecular matrix (ensemble) that is not very different
from the sample to be analysed. This highly sensitive method permits the
analysis of doses referred to as ultra-traces (of the order of one nanogram, or
even one picogram, per gram of sample). The plasmas used to achieve this
are sustained, for example, by high frequency electric fields (microwave and
radio frequency).

13 Probably, atomic oxygen can also diffuse into the interior of the micro-organisms and
induce lethal lesions.
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1.2.8 Lighting

Ionized gases have many applications for lighting, where they generally oper-
ate in the arc regime (thermionic cathodes)14: these comprise: i) low-pressure
mercury vapour lamps (household fluorescent lamps, Fig. 1.2) and sodium
vapour lamps (outdoor lighting); ii) high-pressure mercury-vapour based
lamps, taking advantage of a high plasma density provided by sodium io-
dide and metal-halide salts (outdoor lighting).

Lighting is an important market which, however, has not seen spectacular
advances in recent years. There have been some attempts to activate certain
lamps using high frequency (HF) discharges, with the aim of prolonging life
and providing a more energy efficient discharge. The first lamp to be intro-
duced for domestic purposes using a high frequency electric field (∼ 2.6MHz,
a band authorized for lighting) was by General Electric in 1994; a transistor
placed in a cavity inside the lamp provided the high frequency power, which
allowed the lamp to be directly substituted for an incandescent (tungsten-
halogen) lamp (with a factor 4 improvement in energy efficiency, and 10 times
the life, but at a much higher cost to the consumer). Environmental concerns
have led lighting companies to investigate ways of eliminating mercury from
discharge lamps, and this is currently an active field of research.

1.2.9 Plasma display panels

In plasma display panels, the image is obtained as a result of electric dis-
charges created in a number of cells (pixels) of a few hundred microns assem-
bled into large surface panels (more than a million cells for a 42” (1.07m)
diagonal panel). The cells are filled with a mixture of gases, mainly xenon,
at a pressure below atmospheric. The UV photons emitted in each micro-
discharge excite luminescent phosphors, which re-emit visible photons in one
of the three fundamental colours, red, blue and green, depending on the cell.
Using this technique, it is possible to construct extremely large screens, with
exceptional image quality, good contrast and high brightness. Plasma screens
have an important place in the global television market throughout the world.

14 DC and low-frequency AC discharges can be operated in two distinct modes, the glow

regime (high-voltage cathode fall) and the arc regime (low-voltage cathode fall). In the glow
regime, the emission of electrons is principally by ion bombardment on the (cold) cathode

whereas in the arc regime the electrons are provided by thermoionic emission from the
cathode (which can be moderately hot (1000K–1400K) when covered with an emissive

coating, but much hotter otherwise, easily exceeding 2000K). By this reckoning, standard
fluorescent lamps are arcs, but a cold cathode lamp is a glow. The transition from glow

to arc regime is characterised by a substantial decrease of the operating voltage and an
increase of discharge current (Cathode fall measurements in fluorescent lamps, [27]).
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1.2.10 Ion sources

Positive ion sources are used for a number of applications, including strongly
assisted ion surface treatment (e.g. etching by ion machining), microelectron-
ics (doping by ion implantation), nuclear and subatomic physics (mono- and
multi-charged ions for accelerators), and spatial (Hall effect sources for ionic
propulsion, spaceflight experiments).

Negative ion sources are an efficient method for obtaining high-energy
neutral beams. This is the case, for example, for D− ions which are neutralised
into neutral D0 beams: the interest in D− negative ions is due to the fact
that, after they have been accelerated to energies of MeV, their ion-neutral
rate of conversion by charge exchange to neutral D0 is much higher than that
for D+ positive ions. A beam of very high-energy neutrals D0 can be used
to greatly increase the plasma temperature in a tokomak, since it can be
introduced into the vessel without being affected by the confining magnetic
field.

1.2.11 Ion propulsion thrusters

These engines obtain their propulsive force from the ejection of heavy, high-
speed particles, following the action-reaction principle (conservation of mo-
mentum), resulting in a momentum created in the opposite direction to the
ejection of the particles. In an ion thruster, the heavy particles are usually
xenon atoms which have been ionised once: xenon is used because it is a rare
gas, thus only weakly chemically reactive (the engine lifetime is expected to
be of order 15 to 20 years), with the highest atomic mass if one excludes ra-
dioactive radon (the propulsive force increases with the mass released). The
xenon ions are accelerated in an electric field such that they attain a sufficient
ejection velocity, but they must be neutralised before leaving the engine in
order for the system to remain electrically neutral.

The electrical energy required to ensure the ionisation of heavy atoms (the
“fuel”) is provided by solar panels, which is extremely economical compared
with a classical combustion engine. It is envisaged to increase the ejected ions
energy by using a nuclear reactor. A number of telecommunication satellites
orbiting the Earth use such ion thrusters. They are utilised to reposition the
satellites daily to ensure optimum communication with the Earth, correcting
for perturbations in position (altitude, directional position) due to the vari-
able interaction forces exerted on them by the sun and the moon. Moving
and stopping them is easy, and they can be positioned very accurately.

Current ion thruster motors, with their weak power, cannot be used for
launchings from the Earth, but they are very effective in the spatial environ-
ment. They can impart a high speed to a spacecraft, but it takes notably more
time than a conventional chemical launcher, which provides a considerable
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acceleration on ignition. The space probe SMART-I from the European Space
Agency (ESA) has travelled more than a million km, and only consumed 60
standard litres (with respect to atmospheric pressure) of xenon.

1.2.12 Further applications

This brief overview of applications and studies of plasmas shows that this
field of physics has already obtained some remarkable successes in many
areas, including the domestic sphere, and it is equally rich in possibilities
for future applications (for example fusion, sterilisation). In order to have
an even wider view of the applications of plasmas, the reader is referred, for
example, to A. Bogaerts et al (2002).

1.3 Different types of laboratory plasmas

The development and optimization of plasma applications require utilizing
and, even, designing adequate plasma sources. This objective can be generally
met via one of the three following main generic techniques.

1.3.1 Discharges with continuous current or
alternative current at low frequency

In this case, the electrodes which are used to create the discharge are directly
in contact with the plasma (Fig. 1.2). The plasma is formed, in a transition
stage, by a process of electron multiplication called the avalanche (or break-
down) due to the application of a potential difference: the few electrons ini-
tially present, accelerated by the electric field, ionise the atoms (molecules) of
the gas by collisions, thus augmenting the number of electrons. This growth
in the number of electrons ceases after a few hundred micro-seconds, when a
stationary state is attained.

In periodic low frequency discharges, the frequency of the maintenance
current is assumed to be sufficiently small, such that all the electrical pa-
rameters of the plasma are in equilibrium with the applied field. In other
words, at each instant in the period of the oscillating field, the plasma can
be considered as having attained its stationary state.
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1.3.2 High frequency (HF) discharges

Radiofrequencies (RF) and microwaves (MW) are jointly designated as high
frequencies (HF). Microwave engineers generally consider that the microwave
(MW) frequency domain starts at 300MHz whereas, when it comes to sus-
taining a discharge with an electromagnetic field, the lower MW frequency,
on practical grounds, is rather 100MHz. This is because it is possible to
make impedance matching circuits based on distributed components (as op-
posed to lumped components, e.g. constituting LC “matchboxes”) at fre-
quencies as low as 100MHz. Furthermore, discharges can be sustained un-
der electron-cyclotron resonance conditions (Sect. 4.2.3) at frequencies also
as low as 100MHz, although it is commonly thought to require frequencies
above 1GHz. Worldwide ISM authorized MW frequencies are 433.92MHz,
2.45GHz and 5.80GHz. The RF range extends from approximately 1MHz
to 100MHz, where the worldwide industrial, scientific and medical (ISM)
authorized frequencies mostly used are: 13.56, 27.12, and 40.68MHz.

The electrodes carrying the RF field can be placed inside the vessel (for
example, two parallel conducting plates, in which case the discharge is said
to be capacitive), or exterior to the vessel (for example, the coils of an induc-
tive discharge (Fig. 4.4)), in which case the vessel must be constructed from
a dielectric material transparent to RF radiation. MW plasmas are gener-
ally maintained by a field applicator15. The operating field frequency of the
discharge can be chosen so as to optimise the plasma properties for certain
applications: examples are given in Chap. 4.

1.3.3 Laser induced discharges

There are two distinct regimes, depending on the incident power of the laser:

- if the photon flux is weak, the wavelength of the laser should be such that
it corresponds to the difference in energy between two atomic or molecular
levels (this type of transition is referred to as absorption) such that they are
raised to an excited state. Following this, a collision between two excited
atoms can result in one of them becoming ionised. Direct (single-step)
ionization is also possible.

- if the photon flux is strong, the multi-photonic effect (where several pho-
tons “sum” their energy) becomes important and allows direct ionisation
of the gas, without having recourse to collisions.

15 A field applicator designates electrodes or, more specifically, any kind of device that
serves to impose the EM field configuration creating the discharge.
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1.4 Electron density and temperature of a plasma

These are the two principal characteristics of a plasma, considered from the
point of view of the particles.

1.4.1 Range of electron density values in a plasma

These values cover a range which is so large that it is preferable to use a
logarithmic scale to classify them. In Tab. 1.1 below, in addition to gaseous
plasmas, we have included “dense matter” plasmas, because they have anal-
ogous physical properties.

Table 1.1 Different types of plasma, with their corresponding electron densities

Gaseous plasmas log10 ne (cm−3)

Strongly ionised gases

Interstellar gasa 0
Solar windb 0.5

Ionosphere, F layer (250 km altitude) 5.7
Solar corona 7

Tokamak (fusion experiments) 14
Plasma produced by a laser in a solid target 19–23
Nuclear explosion 20

Weakly ionised gas

Ionosphere, D layer (70 km altitude) 3
Laboratory discharge, low-pressure 10–12
Laboratory discharge, atmospheric pressure 14–15

Dense matter plasmas

Electrons in metals 23
Interior of stars 27
Interior of white dwarves 32

a Few interactions between the particles (plasmas said to be col-
lisionless), but large influence of external fields.
b The solar wind is essentially composed of protons and electrons.

1.4.2 Definition of plasma “temperature” and the
concept of thermodynamic equilibrium (TE)

The temperature, T , is a parameter by which the global energy of a medium
can be characterised, notably the energy of thermal motion of the particles,
since this relates to the average energy (Appendix I (I.11)). It is only possible
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to speak of a particle temperature if the distribution in energy (velocity) is
Maxwellian (short for a Maxwell-Boltzmann distribution); if not, in addition
to the average energy of the particles, it is necessary to know the distribution
in energy of these particles. We will see that, in a system in thermodynamic
equilibrium, a single value T is sufficient to characterise the distribution of
photons and particles at the same time. A system in TE is completely char-
acterised by its temperature T and the density Nn of its heavy constituent
particles. More exactly, the density Nn includes neutral atoms (molecules)
and ions, both in ground state and excited states: it is preferable to refer
to Nn as the total density of nuclei, to avoid ambiguity (see problems 1.3
and 1.4).

Consider a system consisting of atoms (neutral and ionised) together with
EM radiation (photons), this radiation being linked to the excited states of
the atoms and ions as well as to the Coulomb interactions between charged
particles (Bremsstrahlung, Sect. 1.7.1). This ensemble is in complete thermo-
dynamic equilibrium if there are sufficient interactions between the various
components of the system, such that each type of energy exchange process in
a given energy direction (for example, increase of energy of the “particle” dur-
ing the interaction) is statistically rigorously compensated by the same type
of process in the inverse direction (loss of energy by the same type of particle
in our example): this requirement of compensation (detailed balance) is called
the principle of microscopic reversibility, or more simply, micro-reversibility.

Examples of reversible processes

Elastic collision processes are clearly reversible: an atom or an electron un-
dergoing a collision has an equal probability, statistically, of either gaining or
losing energy.

On the contrary, inelastic collisions are not always easily reversible: to
ensure their reversibility, the medium needs to be denser than for elastic
collisions and, in the case where three particles are involved instead of only
two, extremely dense. For example, consider the following:

- a superelastic collision, or collision of the second kind

e + A(0) → A(j) + e ⇔ A(j) + e → A(0) + e . (1.4)

The symbol e denotes a high energy electron and e denotes a lower energy
electron; A(0) designates the ground state of the atom and A(j) indicates
an excited state of the same atom: the double arrow ⇔ separates the
two energy directions for the process considered. If the atom in the state j
emits a photon before experiencing a collision, reversibility is not satisfied.
A medium in which the number of collisions is sufficiently high, such that
the mean time between collisions is smaller than the deexcitation time of
the level considered, is therefore required.
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- collisional recombination

e + A(0) → e + A+(j) + e ⇔ A+(j) + e + e → A(0) + e . (1.5)

In this case, we see that reversibility requires a three-body interaction,
which means that it is difficult to obtain complete thermodynamic equi-
librium (TE) unless the medium is sufficiently dense to ensure that the
three components interact simultaneously.

- emission and absorption of photons

A(i) + hν → A(j) ⇔
{

A(j) → A(i) + hν spontaneous emission

A(j) + hν → A(i) + 2hν stimulated emission

(1.6)
absorption

where h is the Planck constant, ν, the frequency of the emitted or absorbed
photon; j and i denote the upper and lower energy levels of the transition
respectively (j > i).

Consequences of complete TE

Complete thermodynamic equilibrium is obtained when the four equilibrium
laws described below are simultaneously satisfied. To characterise the system,
it is only necessary to know the temperature T and the density of nuclei Nn.

1. Maxwell-Boltzmann distribution of the microscopic velocities w
For electrons, for the case of an isotropic distribution, we have (Ap-
pendix I):

f(w) =

(
me

2πkBT

)3/2

exp

(
−mew

2

2kBT

)
, (1.7)

where kB is the Boltzmann constant, me is the electron mass, and the
temperature T is measured in kelvin. The most probable velocity of a
particle in the Maxwell-Boltzmann distribution, vth, is given by:

vth =

(
2kBT

me

)1/2

, (1.8)

which can be used to write (1.7) in a form which is simpler and easier to
remember:

f(w) =
π−3/2

v3th
exp

(
−w2

v2th

)
. (1.9)

Remark: A sufficient condition for the velocity distribution of particles
to be Maxwellian is that the plasma is in thermodynamic equilibrium.
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2. Boltzmann’s law relating the population of the excited states to the ground
state

nj

n0
=

(
gj
g0

)
exp

[
− (Ej − E0)

kBT

]
, (1.10)

where n0 is the density of atoms in the ground state with energy E0 and
nj the density of atoms in the excited state of energy Ej , with g0 and gj
the corresponding statistical weights (or degeneracies)16.

3. Planck’s law, or black body radiation, relating the spectral intensity distri-
bution of the EM radiation. This intensity, at frequency ν, is given by:

Iν =
2hν3

c2

[
exp

(
hν

kBT

)
− 1

]−1

, (1.11)

where c is the speed of light in vacuum.
4. The Saha’s equation describes the equilibrium between ionisation pro-

cesses (creation of charged particles) and volume recombination (disap-
pearance of charged particles by neutralisation of an ion by an electron
(Sect. 1.8.1). This law allows us to calculate the density ni of singly ionised
(positive) ions, relative to the density n0 of neutral atoms, from the plasma
temperature. Assuming that the ions and neutral atoms are in their ground
state17, this equation takes the simple form:

neni

n0
=

2gi
g0

(2πmekBT )
3/2

h3
exp

(
−Ei − E0

kBT

)
, (1.12)

where gi and g0 are the respective quantum degeneracies of the energy
levels i and the ground state, ne the electron density and Ei the energy
level (at threshold) of the first ionisation.
To calculate the density relation between ions of charge Z (that is, those
having lost Z electrons) and those of charge (Z − 1), we use the relation:

neni[Z]

ni[Z − 1]
=

2gi[Z]

gi[Z − 1]

(2πmekBT )
3/2

h3
exp

(
−Ei[Z]− Ei[Z − 1]

kBT

)
,

(1.13)
where this time, Ei is the energy of ionisation of the Zth electron with
respect to the atom ionised (Z − 1) times; the symbol [ ] indicates the
dependence on Z and Z−1 of ni, gi and Ei; the values ni[Z] and ni[Z−1]
are the densities of the ground states of the two types of ions.

16 The degeneracy in energy of an atomic level is given by 2J +1, where J is the quantum

number of the total angular momentum of the level considered.
17 To obtain, on the one hand, the total density of (singly and positively charged) ions,
which includes not only those in the ground state but also those of all the excited states

and, on the other hand, the total density of neutral atoms, including ground state and
excited states, see Appendix II.
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1.4.3 Different levels of departure from complete
thermodynamic equilibrium

In most laboratory plasmas, the micro-reversibility of processes is not perfect,
and the information then required to characterise the system increases, as the
number of non-reversible processes increases18. We will examine this matter
by describing situations in which micro-reversibility is less and less satisfied.

Local thermal equilibrium (LTE)

In an inhomogeneous plasma in which there is a density gradient of particles
(inducing them to diffuse) or a temperature gradient (created, for example
by a thermal flux to a wall), or in a homogeneous plasma from which photons
are escaping (at least for certain lines or spectral regions), there is a net flux
of energy across the system: the local decrease (or increase) of the energy of
the system implies that micro-reversibility is not complete. However, if this
local loss of energy is small with respect to the total energy at that point,
or, equivalently, if the difference in energy between two neighbouring points
in the system is small, then one can say it is in LTE.

The most common example of LTE is that of a plasma whose particle den-
sity is not large enough, or its volume is too small, to reabsorb the majority
of the photons emitted: these photons, frequently limited to a given spectral
region, thus escape from the system. This situation is often not deleterious to
the equilibrium of the system, because additional processes occur to compen-
sate for these reactions that, in complete TE, normally require the absorption
of the photons.

Consider, for example, the reaction A(j) → A(0) + hν, although not re-
versible in this case, is replaced by A(0) + e → A(j) + e; this is called an
improper detailed balance, in contrast to the proper balance under perfect
micro-reversibility. The radiation in such a system does not obey Planck’s
law, but the flux which escapes is weak, and the three other equilibrium laws
for TE apply locally: Maxwell-Boltzmann for the particle distribution func-
tion, Boltzmann for the densities of excited states of atoms (molecules) and
Saha for ionisation-recombination: a single temperature T (r), defined locally
at r, together with the densities Nn(r) of the atomic (molecular) nuclei is
sufficient to characterise the system.

In the case where a net particle flux traverses the system (diffusion, con-
vection), the concept of LTE is applicable on condition that the time (referred
to as the relaxation time) necessary for a constituent particle of a (thermo-
dynamic) sub-system at temperature T1(r), at point r1, to reach equilibrium
with the sub-system at temperature T2(r) at point r2, is very short. In this
case, LTE is sustained locally.

18 Recall that the TE system is simply and completely determined by its temperature T
and density Nn of the atomic (molecular) nuclei.
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Plasmas not in LTE: the particular case of a two-temperature
plasma

When the plasma medium is less dense than was considered in the previous
paragraph, the number of collisions between electrons and heavy particles
is reduced. Since an electron transfers at most 4me/M of its energy to an
ion or atom of mass M (demonstrated in Sect. 1.7.2), the collisional trans-
fer of energy between electrons and heavy particles is insufficient for these
particles to all have the same average energy. However, if the interactions
between particles of the same type are sufficiently numerous, there is equi-
partition of energy within this population of particles, and these particles still
have a Maxwell-Boltzmann distribution. In such a case, each species can be
characterised by an appropriate temperature: electron temperature Te, ion
temperature Ti, and neutral particle temperature (or gas temperature) Tg.

A particular case of interest is that in which the electron temperature is
much greater than that of the other particles in the plasma, in which case it
is the electrons which introduce the energy into the system19. A frequently
observed situation is that in which Te > Ti ≈ Tg (called a two-temperature
plasma). In such a two-temperature plasma, the population density of the
different energy levels of neutral atoms (and ions) cannot be described by the
Boltzmann equation (1.10). In fact, the time between two successive electron-
neutral collisions for excitation or de-excitation of those levels close to the
ground state is much longer than their radiative lifetime: these levels therefore
populate and depopulate radiatively rather than by electron collisions, and
their control by the electron kinetics is lost. On the other hand, the higher-
lying levels, which are situated just below the ionisation energy (Fig. III.1
in Appendix III), are usually in collisional equilibrium, and the Boltzmann
energy law gives their population density according to Texc � Te. Such a
system is said to be in local partial equilibrium (Appendix III) because the
upper levels are in Boltzmann equilibrium with the electrons. To describe
the system, it is therefore necessary to define many “temperatures” (the
term “characteristic parameters” would be more correct) to distinguish it
from LTE.

No thermodynamic equilibrium characteristics,
but a stationary state

The energy distribution of particles are no longer Maxwellian: for example,
inelastic collisions can strongly depopulate certain energy intervals which
would be found in a Maxwell-Boltzmann distribution. In this case, we can
no longer speak of a temperature, but only of an average energy, and it is

19 When there is a preferred path for the introduction of energy, this raises the problem

of the repartition of energy in the plasma. If there are insufficient interactions between the
different types of particles, their average energy will not be the same.
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again necessary to know the exact form of the distribution function in order
to characterise the system.

In conclusion, the further from LTE, the greater the necessity to provide
data to characterise the system.

1.5 Natural oscillation frequency of electrons
in a plasma

1.5.1 Origin and description of the phenomenon

If a plasma, whose dimensions are much greater than the Debye length λD

(the average distance below which there is no charge neutrality, Sect. 1.6),
experiences a local perturbation from neutrality (resulting, for example, from
the random movement of particles), this equilibrium will be re-established by
a collective movement of charges (Sect. 1.1). If there are few or no collisions,
this return to equilibrium will take the form of a pendular oscillation about
the point where the initial disturbance occurred.

In order to understand this phenomenon, consider Fig. 1.7, which is an
idealised representation of the distribution of ions and electrons in a plasma.
Initially, the charges are distributed alternately and equidistant such that
the electric field is zero at each point: the charged particles (supposedly with
no thermal energy to set them in motion!) must remain immobile, in their
state of equilibrium. Displacing a group of electrons by a distance x with
respect to their initial equilibrium position will result in an electric field
(this field is given by Poisson’s equation (1.1) and is called the space charge
field) which draws the electrons back to their original position, a motion
which tends at the same time to reduce the electric field intensity. However,
the accelerated electrons are unable to stop at their equilibrium position,
but continue their motion from this point, thus creating a new departure
from charge neutrality, with an electric field in the opposite direction to the
initial field. The electrons thus continue their pendular motion about their
equilibrium position, provided such a motion is not damped by collisions.

This collective motion of electrons produces a local oscillatory motion
whose angular frequency (see following proof) is given by:

ωpe =

(
n̄ee

2

meε0

)1/2

, (1.14)

where n̄e is the unperturbed electron density, ε0 is the permittivity of vacuum;
fpe = ωpe/2π is the natural frequency of oscillation of electrons in a plasma
(also referred to as Langmuir oscillation), or more commonly, the electron
plasma frequency.
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Fig. 1.7 (Highly) idealised representation of ions and electrons in a plasma, showing that

a slight non-uniformity in the distribution, resulting from a displacement of a group of
electrons by a distance x, creates an electric field in this region (referred to as the space

charge field). The return of the displaced electrons to their initial positions, due to the
electric field, leads to an oscillatory motion about their equilibrium position.

During these oscillations, the ions, which are much heavier than the elec-
trons, remain practically immobile: they barely start to move in one direction,
under the influence of the space charge field, when they are forced to move
in the opposite direction.

1.5.2 Calculation of the electron plasma frequency

A simple hydrodynamic model, which describes the collective oscillatory mo-
tion of electrons as a fluid, allows us to obtain a value for the angular fre-
quency ωpe. The following approximations are made:

1. The ions are immobile, hence their density n̄i remains unperturbed and
uniform.

2. The thermal motion of the electrons is negligible: their velocity ve due to
the space charge field is such that ve 	 vth (cold plasma approximation).

3. The electron-neutral collision frequency for momentum transfer ν is the
most important collision frequency, but remains such that ν  ωpe, in
order to maintain the collective motion of the plasma.

4. The amplitude of the plasma oscillations is small.
5. There is no applied external magnetic field.

In terms of the hydrodynamic model (Sect. 3.5), we can describe the fluid
electrons by the two following equations:

- Equation of conservation of particles:

∂ne

∂t
+∇ · (neve) = 0 . (1.15)
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- Equation of conservation of momentum transport20:

neme

(
∂

∂t
+ ve ·∇

)
ve = −neeE , (1.16)

where E is the space charge field.

We can linearise the equations (approximation 4) by writing:

ne(r, t) = n̄e + ñe(r, t) , (1.17)

where ñe(r, t) is a perturbation on the density n̄e, uniform and constant in the
absence of fluctuations (ñe  n̄e). We assume in addition, that the physical
quantities vary with time, to first order, with a frequency ω/2π which we
wish to calculate: thus we assume that E = E0 exp(iωt), ve = ve0 exp(iωt)
and ñe(r, t) = ñe0(r) exp(iωt). Equation (1.15) becomes (after cancelling the
time-dependent exponential):

iωñe0 + n̄e∇ · ve0 = 0 , (1.18)

where we have ignored the term ∇ · ñeve0, a second order term in a first
order equation. From (1.16), we obtain:

n̄emeiωve0 = −n̄eeE0 , (1.19)

where ve0 · ∇ve0 ≈ 0, because it is also a second order term. To these two
equations, we add Poisson’s equation (1.1) which, for the present case, can
be written:

∇ ·E =
n̄ie− nee

ε0
≈ − ñee

ε0
(1.20)

because charge neutrality requires n̄e = n̄i.
We can use Eqs. (1.18) to (1.20) to eliminate ve0 and ne0. From (1.19):

ve0 = −
(

e

iωme

)
E0 , (1.21)

and inserting (1.21) into (1.18), we obtain:

ñe0 = − n̄ee

ω2me
∇ ·E0 . (1.22)

Using the value of ne0 obtained simultaneously from (1.22) and (1.20),
we find:

ñe0 = − n̄ee

ω2me
∇ ·E0 = −ε0

e
∇ ·E0 , (1.23)

20 We have neglected the collisional interaction terms (approximation 3) and used the cold
plasma approximation (2); the field E is that of the space charge.
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such that:

∇ ·E0

(
n̄e2

meε0ω2
− 1

)
= 0 (1.24)

and, for ∇ ·E0 �= 0, implying:

ω = ωpe , (1.25)

where ωpe ≡
(
n̄e0e

2/ε0me

) 1
2 as in (1.14).

Remarks:

1. In the cold plasma approximation (Te = 0)21, the collective oscillation of
the plasma is restricted to the neighborhood of the perturbation which
caused it; it does not propagate, nor is it a wave. In order for an electro-
magnetic wave to exist22, we must be able to define a group velocity vg

23,
which is obtained from the dispersion equation. In the present case, from
(1.25) where ωpe is a constant, vg ≡ ∂ω/∂β = 0.
However, if we take into account the scalar pressure exerted by the ther-
mal motion of the electrons under their own motion, (Sect. 3.5), whose
average value is determined by their temperature, we obtain, for the same
oscillatory motion (Quémada, Sect. 6.4.1):

ω2 = ω2
pe + γβ2 kBTe

me
, (1.26)

where vg = γβ2kBTe/meω is non zero if Te �= 0. In this equation, γ is the
ratio cp/cv of the specific heats of the gas. For an adiabatic transformation,
γ = (2+ δ̄)/δ̄, where δ̄ is the number of degrees of freedom for the gaseous
species; in the case of a monoatomic gas, δ̄ = 1 or γ = 3 (Sect. 3.6).

2. In a bounded plasma, i.e., where the boundaries must be taken into ac-
count, the oscillation frequency is:

ω = ωpe/
√
2 for cylindrical geometry, (1.27)

ω = ωpe/
√
3 for spherical geometry. (1.28)

21 The cold plasma approximation neglects the thermal velocity compared to another

characteristic velocity of the plasma, in this case ve, by assuming Te = 0.
22 In order to propagate an electromagnetic wave, it is necessary to have a transport of

energy from one point in space to another, i.e. the Poynting vector S = E ∧H should be
non-zero.
23 In a propagating medium without attenuation, the modulus of the wave vector is ex-

pressed as β ≡ λ/2π (also called the wavenumber), and the group velocity is given by
vg ≡ ∂ω/∂β.
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3. A numerical approximation to the natural frequency for electrons is:

fpe(Hz) � 9000
√
ne(cm−3) . (1.29)

4. One can calculate the natural frequency for ions in the plasma in the same
way as for electrons, obtaining:

ωpi =

(
nie

2

miε0

) 1
2

, (1.30)

where it should be noted that the ion plasma frequency, because it is a
function of the inverse of the ion massmi, is much smaller than the electron
plasma frequency.

1.6 Debye length: effect of screening in the plasma

1.6.1 Description of the phenomenon

If we introduce conducting electrodes into the plasma to create a source of
potential, the electrons will be attracted to the positive terminal and the
(positive) ions to the negative terminal. The excess of charges of a given sign
thus created is concentrated, however, in a small region around the electrode,
called the sheath, the rest of the plasma remaining macroscopically neutral.
The sheath acts as a screen, spatially limiting the influence of the prevailing
electric field on the plasma24.

A similar screening mechanism is also found in the main body of the
plasma itself, where the potential of any given particle is not felt beyond a
distance λD, the Debye length. We will show that the electrostatic potential
of a positive singly-charged ion in a plasma at a distance r from this ion is
given by:

φ(r) =
e

4πε0r
exp

(
− r

λD

)
, (1.31)

where the exponential term represents the screening effect , which strongly
reduces the range of the potential of the ion compared to that in vacuum. In
fact, for r = λD, the potential of the ion will have decreased by a factor 1/e
compared to its value in vacuum (e is used here, exceptionally, to denote the
base of the natural logarithm). The range of the screening depends on the
energy of the thermal motion of the particles and their density, as we will see.

24 In fact, if we introduce an object into a plasma which is made of dielectric or conducting
material (which does not, however, act as an electrode) a sheath forms (Sect. 3.14) around

this object, because its surface charges negatively; as we will see, this effect is due to the
higher mobility of the electrons, relative to that of the ions.
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1.6.2 Calculation of the potential exerted by an ion
in a two-temperature plasma:
definition of the Debye length

Consider the ion in question as a test-particle (positive): such a particle,
hypothetically, acts on the other particles without being influenced by them.
Placed in the plasma at the origin of a system of spherical coordinates, it will
create a perturbation by its electrostatic field. We wish to know the potential
φ(r) produced by the ion at a distance r, taking into account the cloud of
electrons and ions which surround it. The electron and ion densities ne(r)
and ni(r) at the origin of the system are different, but not at infinity, where
they are equal, ne∞ = ni∞ (the perturbation is not felt there).

We will suppose that, at a sufficient distance r, to be specified below, the
electron and ion populations have a Maxwell-Boltzmann distribution, char-
acterised, for greater generality, by different electron and ion temperatures,
Te and Ti respectively (two-temperature plasma, Sect. 1.4.3). The electron
and ion densities, for such distributions, in the presence of a potential φ(r),
satisfy the relation (I.15) (Appendix I), namely:

nα(r) = nα∞ exp

(
− Φ(r)

kBTα

)
, (1.32)

where the potential energy Φ(r) = +eφ(r) for the case of a positive ion. For
the two types of particles, we then have:

ni(r) = ni∞ exp

(
−eφ(r)

kBTi

)
, (1.33)

ne(r) = ne∞ exp

(
eφ(r)

kBTe

)
. (1.34)

Certainly, as other authors have noted [14], in taking account of the pertur-
bation created by the test-particle, the hypothesis of a Maxwell-Boltzmann
distribution is not valid in the immediate vicinity of this perturbation. We do
not need to be concerned in the case of the present demonstration, because we
suppose that such a distribution only occurs after a distance r sufficiently far
from the test particle, such that its potential is strongly screened by the sur-
rounding particles, or more exactly when eφ(r)/kBT  1. These conditions
allow us to expand Eqs. (1.33) and (1.34) to first order, to obtain:

ni(r) = n

(
1− eφ(r)

kBTi

)
, (1.35)

ne(r) = n

(
1 +

eφ(r)

kBTe

)
, (1.36)

since ne∞ = ni∞ = n.
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Formulation of the differential equation defining φ(r)

The local charge density at r is thus:

ρ(r) = en

(
1− e

φ(r)

kBTi

)
− en

(
1 + e

φ(r)

kBTe

)
,

i.e.: ρ(r) = −
(
e2φ(r)

kBTi
+

e2φ(r)

kBTe

)
n . (1.37)

Poisson’s equation allows us to obtain a differential equation for φ(r) since:

∇ ·E = ρ/ε0 (1.38)

leads to: ∇ ·∇φ = −ρ/ε0 . (1.39)

Hence, using (1.37):

∇2φ = φ(r)

(
ne2

ε0kBTi
+

ne2

ε0kBTe

)
. (1.40)

Denoting: λ2
Dα ≡ ε0kBTα

ne2
, (1.41)

the term in parenthesis in (1.40) can be written:

1

λ2
D

=
1

λ2
De

+
1

λ2
Di

, (1.42)

and (1.40) then becomes: ∇2φ =
φ(r)

λ2
D

, (1.43)

where λDe and λDi are the Debye lengths for electrons and ions respectively,
and λD is the global Debye length, or simply the Debye length.

Since (1.43) only depends on r, it is spherically symmetric and it can be
written in spherical coordinates as:

1

r2
d

dr

[
r2

d

dr
φ(r)

]
=

φ(r)

λ2
D

. (1.44)

Solution to the differential equation (1.44)

We will expand the potential φ(r) as a product of two contributions: φc(r) is
applicable in the neighbourhood of the test particle, while f(r) describes the
behaviour at long distance.

- Solution for r ≈ 0
In this region, the test-ion potential is the most important, and it has
spherical symmetry. After integrating Poisson’s equation for this (+) ion
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alone, we obtain:

∫

V

∇ ·E dV =

∫

V

(ρ/ε0) dV ≡ e/ε0 , (1.45)

where the volume V is sufficiently small, such that it only contains the
test-ion.
In addition, applying Gauss’s law (an application of Green’s theorem):

∫

V

∇ ·E dV =

∫

S=∂V

E · dS , (1.46)

where S is the surface delimiting V . Spherical symmetry allows us to
readily integrate across the surface:

∫

S

E · dS = 4πr2Er(r) (1.47)

and from (1.45), (1.46) and (1.47) we obtain:

E(r) =
e

4πε0r2
(1.48)

and since: E(r) = −dφ(r)

dr
, (1.49)

we get the expected result for the potential φ(r) in the immediate vicinity
of the test-ion, φc(r):

φc(r) =
e

4πε0r
, (1.50)

the potential of a positive ion in vacuum.

- Solution for large r
We can write φ(r) in (1.44) in the form

φ(r) = φc(r)f(r) , (1.51)

where, a priori, we require f(r) → 1 as r → 0 and f(r) → 0 as r → ∞. In
this case, substituting (1.51) in (1.44), we obtain the equation:

d2f

dr2
=

(
1

λD

)2

f(r) , (1.52)

which has two possible solutions:

f1(r) = exp

(
− r

λD

)
and f2(r) = exp

(
+

r

λD

)
, (1.53)
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where f2(r) is rejected, because we require f(r) → 0 as r → ∞. Insert-
ing (1.50) and (1.53) in (1.51), we finally arrive at the expression for the
potential of a test particle, at distance r, when it is immersed in a plasma:

φ(r) =
e

4πε0r
exp

(
− r

λD

)
. (1.31)

Remarks:

1. The screening factor, expressed by the exponential factor in (1.31), is
independent of the sign of the charge of the test particle.

2. The Debye length becomes shorter as the plasma density increases (1.41):
i.e., the potential of the test particle is more rapidly screened as the
density of charged particles surrounding it becomes more important.

3. In non-LTE plasmas, the temperature of the ions Ti being in general
much smaller than that of the electrons Te (Ti  Te), the Debye length
in the plasma can be approximated by the ion Debye length, which is
much shorter than the electron Debye length, i.e. λD ≈ λDi  λDe: the
screening effect, in this case, is governed principally by the ions.

4. For plasmas in thermodynamic equilibrium, ions and electrons have the
same temperature (Ti = Te), and the electron and ion Debye lengths are
equal (λDi = λDe). The Debye length is then given by λD = λDe/

√
2.

5. Numerical expressions for λDα:

λDα(cm) = 6.9 (Tα/n)
1/2 for n in cm−3, and Tα in K, (1.54)

λDα(cm) = 740 (Tα/n)
1/2 for n in cm−3, and Tα in eV. (1.55)

6. The Debye length can also be written in the form:

λDe =

√
kBTeε0
ne2

=

√
1

2

meε0
ne2

v2th =

√
2

2

vth
ωpe

≈ vth
ωpe

, (1.56)

which shows that an electron with the most probable thermal velocity,
travels an electron Debye length λDe in a time of the order of one period
of the plasma electron oscillations. This relation summarises, to some
extent, the way in which the collective motion of the electrons ensures
macroscopic neutrality in the plasma.

7. The present derivation of the Debye length is idealised, because of the
numerous hypotheses used, notably the test-particle concept, in which
it is assumed that this particle is not influenced by other particles. It
supposes, in addition, that electrons and ions which are situated at a
sufficient distance form the test particle, have returned to a Maxwell-
Boltzmann distribution.



32 1 Definition and orders of magnitude of principal quantities

8. In plasmas where the ions are considered solely as a continuous back-
ground to ensure charge neutrality (with the assumption, used in numer-
ous calculations, that they do not deviate from a Maxwell-Boltzmann
distribution), (1.35) reduces to ni(r) ≈ n, such that the screening of the
electron (or ion) potential is due, in this case, uniquely to the electrons,
i.e. λD ≈ λDe. This assumption is adopted in Appendix V, and also in
problem 1.5, which proposes an alternative interpretation of the Debye
length.

9. One condition for plasma neutrality to be restored following a perturba-
tion (by a collision, for example), and for the different charged particles in
the plasma to resume a Maxwell-Boltzmann distribution, is that the time
between two collisions should be much longer than their natural oscilla-
tion period, i.e. ν  ωpα. This condition is easier to realise with electrons
than with ions ωpe 	 ωpi), which justifies, in a number of cases, the as-
sumption of a continuous background of ions to ensure plasma neutrality.

10. Conditions for the existence of a plasma

- in order for macroscopic neutrality to be realised inside the plasma,
it is necessary that L, the smallest dimension defining the volume
occupied by the plasma, be much larger than the Debye length, i.e
L 	 λD. Another condition, already mentioned in Sect. 1.5.2, is that
ν  ωpe.

- The number of charges ND in a Debye sphere should be much larger
than 1, otherwise this is a “non-ideal” plasma, in which there is no
screening effect: this condition can be written:

ND ≡ n

(
4

3
πλ3

D

)
	 1 . (1.57)

1.7 Collision phenomena in plasmas

As we have observed in Sect 1.4.2, the repartition of energy between the
different constitutive elements in a plasma is established by an ensemble
of particle-particle and particle-photon interactions. We will use the term
“collision” in future in a more general sense than simply an impact between
two more or less rigid spheres, leading to an exchange of kinetic energy. In
effect, the long range interaction (Coulomb force), as well as those interactions
leading to the excitation of an atom by an electron collision (non-conservation
of kinetic energy) lead us to consider, in the most general way, that there is
a collision if the path or internal state of a particle has been modified by the
presence of one or many other particles in its vicinity.
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1.7.1 Types of collision

We can distinguish two main categories of collision, depending on whether
the Coulomb force is directly involved, or not.

Collisions not involving the Coulomb force

These concern collisions between two neutral particles, and most collisions
between a neutral particle and a charged particle. We can differentiate, in
this case, elastic and inelastic collisions.

Elastic collisions

These can be represented by an impact between two hard spheres, with con-
servation of total kinetic energy. They are principally low energy electron-
neutral collisions, for example, below the energy threshold of the first excited
atomic (molecular) level.

Inelastic collisions

There is no conservation of total kinetic energy. For example, still consider-
ing electron neutral collisions, an inelastic collision can occur provided the
electron energy is above the threshold for excitation or ionisation of atoms,
dissociation of molecules, or even for chemical ion-molecule reactions25. The
processes of charge capture are equally inelastic in nature, because the inter-
nal energy of the participating atoms (molecules) will be modified (see also
Sect. 1.7.9).

Examples of inelastic collisions

1. Superelastic collisions (or collisions of the 2nd kind)
An atom in an excited state can transfer its internal energy, either totally
or in part, in the form of kinetic energy to an atom or an electron, by
means of a collision. When the atom (molecule) A in an excited state j
above the ground state collides with an electron, we have:

A(j) + e → A(0) + e . (1.58)

25 Ion-molecule (and molecule-molecule) reactions produce the numerous chemical species
present in certain reactive gas plasmas, for example in hydrocarbon plasmas.
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This collision mechanism is especially favourable when the excited atom
is in a state referred to as metastable, in which the lifetime26 is much
longer than for radiative states that undergo an electric-dipole transition.
As an example, the impact between an electron and a mercury atom in a
metastable state can result in an atom in the ground state and provide an
energy of 4.7 or 5.6 eV (there are two possible metastable states) to the
incident electron.

2. Transfer of charge (charge exchange)
During a collision between a neutral atom B with an ion A+, there is a
strong probability that the neutral gives an electron to the ion, which is
then neutralised:

A+ +B → A+ B+ . (1.59)

Thus, an ion A+ previously accelerated in a high electric field can be con-
verted to a high energy neutral atom, unaffected by the presence of electric
or magnetic fields.

3. Electron capture (attachment process)
Negative ions are created by the capture of an electron by a neutral species.
One very effective process is dissociative attachment:

AB + e → A+ B− , (1.60)

where the electron attaches to one of the fragments of the molecule disso-
ciated during the collision.

Coulomb collisions

The interaction between charged particles is governed by the Coulomb force
which, in the case of a “collision” between an ion (with Z positive charges)
and an electron, may be expressed by:

F =
Ze2

4πε0r2
. (1.61)

As in the case of non-Coulomb collisions, we can differentiate between elastic
and inelastic collisions.

Elastic collisions

This is the case of electron-electron, electron-ion and ion-ion collisions when
the electron energy is too low (TeV < 100 eV) for the emission or absorp-
tion of EM radiation. Elastic Coulomb collisions are discussed in detail in
Appendix V.

26 The lower the pressure of the carrier gas, the longer the life of the metastable states

(≈ μs to several hours). The lifetime of the electric-dipole radiative states is independent
of pressure (≈ 10−7–10−8 seconds).
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Inelastic Coulomb collisions

Coulomb’s collisions can also be inelastic, and lead to either recombination
processes, or emission and absorption of EM radiation as mentioned earlier.

- Examples of recombination processes

1. Electron-ion recombination
An electron and a positive ion can neutralise each other. This is the
case for radiative recombination:

e + A+ → A+ hν (1.62)

and for dissociative recombination of a molecular ion:

e + AB+ → A+ B . (1.63)

As in the case of charge exchange, the process of dissociative recombi-
nation is extremely effective.

2. Mutual neutralisation
In plasmas rich in negative ions, there is a very strong probability that
a negative ion will give an electron to a positive ion. There is thus a
mutual neutralisation:

A+ + B− → A+ B . (1.64)

Positive or negative ions, previously accelerated in a high electric field,
can thus be converted to high-energy neutrals, unaffected by electric
or magnetic fields.

3. Electron detachment
Negative ions can also lose their electron during a collision with an
electron, by electron detachment :

e + A− → A+ 2e . (1.65)

With mutual neutralisation, electron detachment is the most effective
mechanism for the loss of negative ions.

- Examples of the emission or absorption of radiation

1. Bremsstrahlung
The emission or absorption of radiation can result from electron-
electron, electron-ion and ion-ion collisions when the energies of the
charged particles are sufficiently high (TeV > 100 eV). We encounter
this type of interaction, for example, in high flux laser plasmas, in
the case where the electron penetrates the electron shells, without dis-
placing any of the electrons. We distinguish Bremsstrahlung (braking
radiation) of the direct type (emission of energy in the form of photons)
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from inverse Bremsstrahlung (absorption of photons). This radiation
is distributed in the continuum across a spectral band, which is quite
broad, generally in the X-ray region.

2. Inner-shell atomic line emission
Consider again the case of an electron-neutral interaction. This time,
let the energy of the electron be such that it reaches the innermost shell
(K shell) of the atom (heavy) and dislodges an electron there, which
generates an X-ray on returning to its shell. The spectral emission is
in the form of line radiation, which generally dominates the continuum
spectral band of Bremsstrahlung radiation.

Remark:

The probability of these different collisions occurring can be characterised
by a reaction coefficient . We will see (Sect. 1.7.9, remark 2) that this coeffi-
cient, written kij

27, equal to 〈σ̂ij(wαβ)wαβ〉 where σ̂ij(wαβ) is the effective
cross-section of the reaction considered, wαβ is the modulus of the relative
velocity of the particles α and β in the interaction; the symbol 〈 〉 repre-
sents an average taken over the velocity (or energy) distribution function of
the particles. Henceforth, it is convenient to define the concept of effective
collision frequency explicitly (Sect. 1.7.3 and after).

1.7.2 Momentum exchange and energy transfer
during a collision between two particles

The considerations and results from this section will allow us to subsequently
quantify the physical significance of the dependence of the effective cross-
section for momentum transfer with respect to the angle of deflection of the
particles after collision (Sect. 1.7.4). It also enables us to better understand
the collisional term in the momentum transport equation.

We assume that all collisions are binary, including those between charged
particles, on the understanding that in the last case, this is only a first ap-
proximation. Furthermore, as is commonly the case in the kinetic theory of
gases, we consider that the trajectory of a particle can be separated into
two parts: the part of the trajectory occurring between two collisions, dur-
ing which each particle individually experiences the external forces, and that
part of the trajectory which is principally affected by the (mutual) collisional
interaction, during which the external forces are ignored.

27 The subscripts i and j indicate that this involves either an interaction between particles

of type i and those of type j, or that the particle (atom, molecule, ion) which experiences
a collision moves from state i to state j.
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Conservation equations and identification of independent
variables (not determined by the conservation equations)

Consider two particles α and β, whose velocities wα and wβ are known, a
priori, before the collision28. Following the assumption noted above that no
external force is present for the duration of the collision, there is conservation
of momentum and total energy29:

p ≡ pα + pβ ≡ mαwα +mβwβ = mαw
′
α +mβw

′
β ≡ p′ , (1.66)

mαw
2
α

2
+

mβw
2
β

2
=

mαw
′2
α

2
+

mβw
′2
β

2
+ΔE , (1.67)

where the “prime” indicates the values after the collision. The energy termΔE
allows us to include inelastic collisions; this quantity represents the difference
in internal energy of the particles after the collision:

- ΔE = 0 for inelastic collisions
- ΔE > 0 for collisions of the 1st kind: excitation and ionisation
- ΔE < 0 for collisions of the 2nd kind: superelastic de-excitation

It should be noted that radiative phenomena (absorption and emission of
photons) are not included in the present context.

For a given value of ΔE (we use the published energy levels for excita-
tion and ionisation), we have four equations: (1.66) is vectorial and (1.67) is
scalar. Since we require six components to completely characterise the veloc-
ity vectors after the collision, w′

α and w′
β , we are left with two components

which are not determined by the conservation equations (1.66) and (1.67):
these two quantities are determined by the law of interaction governing the
type of collision considered, taking into account the initial relative position
of the particles.

We will now introduce a change of reference frame, in order to express
the kinetic quantities in the centre of mass frame, in place of the laboratory
frame. This leads us to expressions that better describe the physics of the
collisional interactions.

Relative velocity of two particles and velocity of their centre
of mass

By definition, the position r0 of the centre of mass (CM) (of two particles α
and β, with positions rα and rβ in the laboratory frame, is given by:

28 Thus making the supposition that the plasma particles are distinguishable and can

therefore be described in a non quantum manner, which is generally correct.
29 The contents of this section is a classical development of kinetic theory, which can be
found, for example, in V.E. Golant et al.
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r0 =
mαrα +mβrβ

mα +mβ
(1.68)

from which: w0 =
mαwα +mβwβ

mα +mβ
, (1.69)

where w0 is the velocity of the CM frame. The CM is in uniform motion
during the interaction, because total momentum is conserved (see (1.69))
throughout the collision, hence:

w0 = w′
0 . (1.70)

The fact that the CM is in uniform motion allows us to use it to describe the
motion of the particles during the interaction: their velocities in this frame,
denoted by wα0 and wβ0 before the collision and w′

α0 and w′
β0 after collision,

are obtained by setting w0 = 0 in (1.69), where we have replaced wα and
wβ by wα0 and wβ0. This leads us to the following simple relations:

wβ0 = −mα

mβ
wα0 , w′

β0 = −mα

mβ
w′

α0 , (1.71)

which shows that the velocities of the two particles, both before and after
the collision, are anti-parallel in the CM frame (see also Appendix IV). This
property suggests that we should introduce their relative velocity wαβ in the
calculations:

wαβ ≡ wα −wβ = wα0 −wβ0 (1.72)

from which we can write the expression for the velocities of the particles in
the CM frame:

wα0 =

(
mβ

mα +mβ

)
wαβ , wβ0 = −

(
mα

mα +mβ

)
wαβ . (1.73)

These various transformations allow us to completely determine the motion
of the particles in the laboratory frame as the superposition of the rectilinear
motion of the CM and the relative motion of the particles in this frame. In
effect:

wα ≡ w0 +wα0 = w0 +

(
mβ

mα +mβ

)
wαβ , (1.74)

wβ ≡ w0 +wβ0 = w0 −
(

mα

mα +mβ

)
wαβ . (1.75)

Remark: As we will see below, the CM is the frame in which we can describe
binary collisions “naturally” (effective cross sections, collision frequencies,
mean free paths are best introduced in this frame), the use of the relative
velocity of particles experiencing a collision being an essential element of this
description.
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Expression for the conservation of total energy as a function of
relative velocity only

Taking account of (1.74) and (1.75), we can write:

mαw
2
α

2
+

mβw
2
β

2
≡
(
mα +mβ

2

)
w2

0 +
μαβw

2
αβ

2
, (1.76)

where μαβ is the reduced mass: μαβ ≡ mαmβ

mα +mβ
(1.77)

and μαβw
2
αβ/2 is the kinetic energy related to the relative motion.

The conservation equation (1.67) can thus be written:

(
mα +mβ

2

)
w2

0 +
μαβw

2
αβ

2
=

(
mα +mβ

2

)
w′2

0 +
μαβw

′2
αβ

2
+ΔE (1.78)

and since w0 = w′
0 (1.70), we find finally:

μαβw
2
αβ

2
=

μαβw
′2
αβ

2
+ΔE . (1.79)

Only the kinetic energy with respect to the relative motion can be transferred
into internal energy (potential energy); the individual velocities do not enter
into such a transfer.

Particular case of an electron-atom collision

The atom (particle β) is assumed to be at rest with respect to the electron
(particle α): wαβ = wα −wβ ≈ wα. Taking account of the fact that mβ 	
mα, we have μαβ ≈ mα and equation (1.79) then reduces to:

mα

2

(
w2

α − w′2
α

)
≡ ΔEcα = ΔE , (1.80)

which signifies that the change of internal energy of an atom during an in-
elastic collision is equal to the change of kinetic energy of the electron, the
kinetic energy of the atom remaining essentially unchanged.

Change of momentum of a particle following an elastic collision
(ΔE = 0)

For the particle α, by definition:

Δpα ≡ mαw
′
α −mαwα = mαw

′
α0 −mαwα0 , (1.81)
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and this can be expressed uniquely (following (1.73)) as a function of the
difference in the relative velocities of particles α and β before and after the
collision as30:

Δpα =
mαmβ

mα +mβ
(w′

αβ −wαβ) (1.82)

and setting: w′
αβ −wαβ ≡ Δwαβ , (1.83)

we obtain: Δpα = μαβΔwαβ , (1.84)

a remarkable result that we will exploit next by developing the vector Δwαβ

in an appropriate frame of reference.
As we have seen at the beginning of the derivation of Eqs. (1.66) and

(1.67), two components out of six of the velocity vectors after the collision
depend on the laws of interaction. These two unknowns can be expressed,
taking into account the relative direction of the velocities wαβ and w′

αβ , by
means of the angles θ and φ of a spherical coordinate system, as shown in
Fig. 1.8.

Fig. 1.8 Schematic of the relative velocities before and after collision, wαβ and w′
αβ , in

a spherical coordinate system (θ, φ) tied to the centre of mass, with wαβ directed along

the z axis.

In this spherical coordinate system, φ is the angle made with the interac-
tion plane (that is to say, the plane containing wαβ and w′

αβ), with a fixed
plane (somewhere in space) including wαβ . The angle θ, between wαβ and
w′

αβ , is the scattering angle of the particles in the CM frame. The angle θ
depends only on the force law and the impact parameter (the distance of
closest approach of the two particles if there is no interaction, Fig. IV.1 of
Appendix IV). In the laboratory frame, the scattering angle θαL is defined
by the velocity of the “incident” particle before and after the collision, wα

and w′
α (see Fig. IV.2 of Appendix IV).

30 Obviously Δpα = −Δpβ .



1.7 Collision phenomena in plasmas 41

We will now project Δwαβ on the three axes of the coordinate system in
Fig. 1.8:

- Along wαβ (z axis of the chosen frame):

(Δwαβ)z = |w′
αβ | cos θ − |wαβ | , (1.85)

but |wαβ | = |w′
αβ | due to the conservation of kinetic energy ((1.79), with

ΔE = 0), hence:
(Δwαβ)z = |wαβ |(cos θ − 1) . (1.86)

- Along the directions perpendicular to wαβ (x and y axes):

(Δwαβ)x = |wαβ | sin θ cosϕ (1.87)

because the projection of Δwαβ in the x direction, Prx(Δwαβ), is by defi-
nition equal to Prx(w

′
αβ)−Prx(wαβ) where here, Prx(wαβ) = 0 such that:

Prx(Δwαβ) = |w′
αβ | sin θ cosϕ = |wαβ | sin θ cosϕ . (1.88)

For the same reason:

(Δwαβ)y = |wαβ | sin θ sinϕ . (1.89)

In the case of a central force, all values of φ are statistically equally prob-
able; we therefore say that the particle scattering is isotropic (isotropic in φ).
From this fact, if we have a sufficient number of particles, the average values
of cosφ (1.87) and sinφ (1.89) are zero, and we can write:

Δwαβ = −(1− cos θ)wαβ , (1.90)

where, finally, the explicit form of equation (1.84) is:

Δpα = − mαmβ

mα +mβ
(1− cos θ)(wα −wβ) . (1.91)

This expression for the change in momentum of the particle α during an
elastic collision with the particle β introduces a dependence on (1 − cos θ)
with scattering angle θ.

Particular case of an electron-atom collision

The atom (particle β) is assumed to be at rest relative to the electron (particle
α) such that wβ  wα in (1.91), from which:

Δpα

pα
= − mβ

mα +mβ
(1− cos θ) . (1.92)
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Since the incident particle α is much lighter than the particle β, we have:

Δpα

pα
= −(1− cos θ), (1.93)

such that, for θ = π, we obtain:

Δpα

pα
= −2 , (1.94)

or alternatively:
p′
α = −pα . (1.95)

This result corresponds simply to a change in sign of the impulse of the inci-
dent particle, while the target particle remains immobile (assumingmβ ≈ ∞);
this is the largest possible value of Δ|pα|.

Change in the kinetic energy of a particle following an elastic
collision (ΔE = 0)

In the case of the particle α, its change in kinetic energy is given by:

ΔEcα =
mαw

′2
α

2
− mαw

2
α

2
=

mα

2

[
(w′

0 +w′
α0)

2 − (w0 +wα0)
2
]

=
mα

2

[
2w0 · (w′

α0 −wα0) + w′2
α0 − w2

α0

]
(1.96)

since w0 = w′
0 (1.70).

Furthermore, w′
α0 = wα0. In effect, since wα0 = wαβmβ/(mα + mβ)

(see (1.73)), we can write:

w2
α0 =

(
mβ

mα +mβ

)2

w2
αβ and w′2

α0 =

(
mβ

mα +mβ

)2

w′2
αβ (1.97)

and, since w2
αβ = w′2

αβ from (1.79) with ΔE = 0, we therefore have:

w′2
α0 = w2

α0 . (1.98)

The expression (1.96) then reduces to:

ΔEcα = mαw0 · (w′
α0 −wα0) = w0 ·Δpα (1.99)

such that, from (1.69) and (1.91):

ΔEcα = −
(
mαwα +mβwβ

mα +mβ

)
mαmβ

mα +mβ
(1− cos θ) · (wα −wβ) (1.100)
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or alternatively:

ΔEcα = − mαmβ

(mα +mβ)2
(1− cos θ)

[
mαw

2
α −mβw

2
β + (mβ −mα)(wβ ·wα)

]
,

(1.101)
where the average of the scalar wβ · wα is zero, if all the initial relative
orientations of the particles have the same probability density31. We can
finally write (still in the CM frame):

ΔEcα = −2
mαmβ

(mα +mβ)2
(1− cos θ)

[
mαw

2
α

2
−

mβw
2
β

2

]
. (1.102)

Remarks:

1. In (1.102), the term 2
mαmβ

(mα +mβ)2
≡ δ (1.103)

is called the energy transfer coefficient . This coefficient has a maximum
value of 1/2 for mα = mβ . Note that the cumulative value of the difference
(1− cos θ) over the ensemble of values of the scattering angle θ (0 to π) is
equal to unity.
For an electron colliding with an atom, δ ≈ 2me/M , which is a very weak
transfer of energy during the collision. In this case, the maximum transfer of
energy from the electron to the atom, assuming that the atom (particle β)
is at rest relative to the electron, occurs for a scattering angle θ = π. The
maximum fraction of energy transferred from the electron to the atom is
then:

ΔEce
Ece

= −4me

M
, (1.104)

the minus sign indicating an energy transfer from the electron to the atom.
2. The transfer of kinetic energy from one particle to another is, according to

(1.102), proportional to the difference in kinetic energy between the two
particles involved in the collision.

3. Expressed in the CM frame, the change of kinetic energy and momentum
following a collision has the same dependence on the scattering angle, i.e.
(1− cos θ): we will use this result in the definition of certain cross-sections
(Sect. 1.7.4).

4. In the laboratory frame, the relations we have just developed are much
more complicated. For instance, the fraction of energy lost by the incident
particle following a collision is given by:

31 Do not confuse this property (before collision) with that of isotropy in ϕ (angle after
interaction) of interactions in the presence of central forces.
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ΔEcα
Ecα

= −2rα/β

[
1− cos θαL(1− r2α/β sin θαL)

1/2 + rα/β sin
2 θαL

]

(1 + rα/β)2
(1.105)

where rα/β ≡ mα/mβ (Heald and Wharton). We can verify that, for
mα  mβ (i.e. rα/β ≈ 0), this expression becomes −2rα/β(1− cos θαL),
the laboratory frame thus coinciding with the CM (see also Appendix IV).

1.7.3 Microscopic differential cross-section

In practice, it is impossible to determine all the kinetic parameters of a col-
lision occurring in a plasma: there are too many particles involved, and their
motion, before collision, is random. To overcome this difficulty, we use a
statistical description. One such description leads us to the concept of a
cross-section.

Characterisation of the angular dispersion of a mono-energetic
beam of particles by one scattering centre

Laboratory frame

Consider a mono-energetic beam of particles incident on a unique scattering
centre at rest (Fig. 1.9)32. The flux of these particles, with velocity w is given
by Γ = nw, where n is the number of particles per unit volume: this flux is
a number of particles per unit surface area per second. As Fig. 1.9 suggests,
the number of particles dNd/dt deviated by the scattering centre, per unit
time and in the solid angle dΩ(θL, ϕ), is:

- proportional to the solid angle dΩ, where dΩ = sin θLdθLdφ in spherical
coordinates,

- proportional to the flux Γ of the incident particles,

such that we can set:
dNd

dt
= σ̂(w, θL)|Γ | dΩ , (1.106)

where the proportionality factor,σ̂, referred to as the microscopic scattering
cross-section, depends on θL and, in general33, on the modulus of the particle
velocity w.

Note that σ̂ has the units of area (cm2 are commonly used in plasma
physics), as determined by comparing the dimensional analysis of the terms
on the left and on the right side of (1.106):

32 This is an idealised description, which isolates a particle as a unique target and, in

addition, assumes that it is at rest.
33 In the so called “billiard ball” model, where particles are assumed to be rigid spheres,
the cross-sections do not depend on the velocity of the particles (see exercise 1.10).
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Fig. 1.9 Incident flux of particles with velocity w, deviated by a scattering centre initially

at rest at point O (laboratory frame).

dNd

dt
≡ number of particles (scattered)/s ,

σ̂|Γ | dΩ ≡ σ̂

[
number of particles

cm2 s

]
[dimensionless] .

From the physics standpoint, σ̂ does not represent the real surface of the
scattering centre, but rather that “seen” by the incident particles, depending
on their velocity, for example, hence the term effective scattering surface or
cross-section; the larger this value, the more probable the interaction.

Centre of mass frame

The situation described above corresponds perfectly to the case of a beam
of electrons directed towards an atom (scattering centre) assumed at rest
with respect to the electrons.

Due to the small mass of the electron, the description in the CM frame
coincides with the laboratory frame (Appendix IV). In the general case, how-
ever, the study of binary collisions (Sect. 1.7.2) is more effectively treated in
the CM frame. In effect, the description of the collisions is simplified (for ex-
ample, a single angle θ is sufficient to characterise the scattering of particles,
while in the laboratory frame it is necessary to include the angles θαL and θβL,
as shown in Appendix IV) and more general (for example, the dependence
on the individual velocities is replaced, in the centre of mass frame, by the
relative velocities (modulus) of the particles before and after the collision).

Consider again the case of a mono-energetic beam of particles α with veloc-
ity wα and a scattering centre of initial velocity wβ = 0 (laboratory frame).
Since the velocity wα is equal to the relative velocity wαβ in the laboratory
frame, in the CM frame (Fig. 1.10), the particle flux can be expressed as
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Γ = mwαβ
34. The number of particles deviated by the scattering centre in

the centre of mass frame can be expressed in an analogous fashion to (1.106):

dNd

dt
= σ̂(wαβ , θ)|Γ | dΩ , (1.107)

where σ̂ depends on wαβ , the modulus of the relative velocity of the parti-
cles α and β. The relation thus obtained is of a completely general nature,
precisely because the reference frame is the CM.

Fig. 1.10 Description in the centre of mass frame of an incident flux of particles α with

velocity wα, deviated by a scattering centre β initially at rest at point O (wβ = 0) in
the laboratory frame. The relative velocity wαβ before the collision, identical in the two

frames, leads, in the present case, to wαβ = wα.

Remark: The differential cross-section can be expressed not only as a func-
tion of the relative velocity wαβ , but also as a function of the kinetic energy
μαβw

2
αβ/2 linked to the relative motion (1.79). In the case of electrons, we

have μαβ ≈ me, such that the energy linked to the relative motion:

μαβw
2
αβ

2
� mew

2
e

2
(1.108)

is equal to the kinetic energy of the electrons.

Example of the measurement of a differential cross-section

Figure 1.11 shows the schematic view of an apparatus used to determine
the angular dependence of the scattering of a beam of electrons by a gas.

34 Note that in the centre of mass frame, the scattering centre is, in general, never at rest
(wβ0 �= 0, see (1.73)).
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Figure 1.12 shows the result of such a measurement for the case of elastic
scattering by neon atoms, for different values of energy of the electron beam.
The current obtained as a function of the scattering angle θ is proportional
to the differential cross-section.

Fig. 1.11 Apparatus for measuring the differential cross-section of elastic collisions of
electrons with a gas (from [31]).

Fig. 1.12 Collected current (un-normalised differential cross section) in the case of elastic

scattering of a beam of electrons of different energies by neon atoms (after [31]).
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Remarks:

1. If the incident flux is sufficiently uniform and mono-energetic, and on con-
dition that the scattering medium (interaction zone) is not favourable for
multiple collisions of the same incident particle, the angular distribution
of the scattered particles simply reflects the force law between the incident
particles and the scattering particle at that energy.
In the case of a Coulomb interaction, for example, we have (Rutherford
scattering, see Appendix V):

σ̂(wαβ , θ) =
(e2/8πε0μαβw

2
αβ)

2

sin4(θ/2)
. (1.109)

2. Recalling that Γ is a flux, relation (1.107) allows us to regard σ̂dΩ as the
element of oriented surface (see Fig. 1.10) which, traversed by this flux,
leads to dNd/dt. This “effective” surface for capturing scattered particles
varies with wαβ and θ, as shown in Fig. 1.12.

3. An incident beam of mono-energetic electrons can be represented in a
quantum way by a planar monochromatic wave, partially dispersed by the
target-particle during the interaction.

4. Some authors choose to define the differential cross-section as σ̂dΩ rather
than σ̂. On the other hand, we could equally regard our σ̂ as being dσ̂′/dΩ,
to emphasise the differential nature of this cross-section.

1.7.4 Total (integrated) microscopic cross-section

When integrating the microscopic (scattering by a single target) differential
cross-section for collision σ̂ over all the values of the scattering angle dΩ, we
obtain the total microscopic cross-section; thus, assuming the scattering is
isotropic in ϕ:

σ̂tc(wαβ) = 2π

π∫

0

σ̂(wαβ , θ) sin θ dθ . (1.110)

The total cross-section (1.110) is often divergent (this is the case for Ruther-
ford scattering35). Note, in addition, that the value of σ̂tc simply accounts for
the number of particles scattered, while not taking into account the value of
their momentum exchange; in fact, a collision in which θ = π will have zero
contribution, while its contribution will be a maximum for θ = π/2, for exam-
ple, although in reality the change in momentum is a maximum for θ = π. In

35 In the case of Coulomb collisions, σ̂(θ) is proportional to sin−4(θ/2) (see remark 1 in

the previous section) and the integral (1.110) is therefore divergent for θ = 0. This signifies
that as θ → 0, there is a large probability of observing small deflections.
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order to characterise the transfer of momentum, we use the following relation
instead36:

σ̂tm(wαβ) = 2π

π∫

0

σ̂(wαβ , θ)(1− cos θ) sin θ dθ . (1.111)

The weighting introduced by the factor (1− cos θ) takes, in effect, account of
the influence of the scattering angle in the exchange of momentum between
particles (Sect. 1.7.2) during collisions; thus, the term ensures that the con-
tribution to the integral (1.111) practically disappears for scattering in which
θ ≈ 0.

The integral (1.111) converges for electron-neutral and ion-neutral colli-
sions, but still diverges for Coulomb interactions (Appendix V): this diver-
gence comes from the large contribution of long range collisions, which are
very weak interactions in terms of transfer of energy (θ ≈ 0). These inter-
actions, however, do not have any physical significance for distances longer
than the Debye length (due to the effect of electrostatic screening), and it
is therefore adequate to terminate the integral when the impact parameter
becomes greater than the Debye length (Appendix V).

Remarks:

1. All total microscopic cross-sections will be designated by σ̂tx, where x can
represent, inter alia, either c or m.

2. Experimental microscopic cross-sections are most often expressed in units
of πa20 = 0.88 × 10−16 cm2, where a0 is the radius of the first orbit of the
Bohr hydrogen atom.

3. Although in defining the concept of cross-section, we have considered an
elastic collision, as we have remarked in (Sect. 1.7.1) above, we can also
use the same concept to characterise all types of binary interaction: charge
transfer, excitation, collisional de-excitation. . .

1.7.5 Total macroscopic cross-section

We have just defined the microscopic cross-section, where we have assumed
the existence of a unique scattering centre, which is not truly realistic, but
necessary to introduce the concept of a cross-section since it has only a phys-
ical meaning at the microscopic level. To measure a cross-section implies, in
effect, that we consider an incident flux on a very large number of scattering

36 Recall that, for two particles of given reduced mass μαβ and relative velocity wαβ , the

factor (1−cos θ) characterises the magnitude of the momentum exchange during a collision
(1.91).
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centres per unit volume. This leads us to define a cross section, referred to as
macroscopic, and experimentally measurable, from which the corresponding
microscopic cross-section can be deduced. In the following, we will establish
the connection between the total microscopic and macroscopic cross-sections,
starting with the formalism developed for the total microscopic cross-section
(Sect. 1.7.4).

Consider a beam of particles with flux Γ = nw, incident on a semi-infinite
medium (in y and z) this time containing not one but N scattering centres
per unit volume, which are assumed to be at rest. We wish to calculate the
remaining incident flux after it has traversed a distance x in the medium,
under the assumption that the total microscopic cross-section is known. This
may be schematically represented in the following manner (see Fig. 1.13):

- N : density of scattering centres
- A: surface of the slice considered, whose thickness is dx, such that NAdx

is the number of scattering centres in the slice and (NAdx)σ̂tx their total
effective surface.

Fig. 1.13 Flux Γ of inci-
dent particles on a volume

element of thickness dx and
surface A, containing N
target particles per unit

volume.

The fraction |dΓ |/|Γ | of the flux intercepted by the scattering centres in
the slice of thickness dx is equal to the ratio of the total effective surface over
the surface A of the slice, i.e.:

|dΓ |
|Γ | = −NAσ̂txdx

A
(1.112)

from which, after integration between x = 0 and x with Γ (x = 0) ≡ Γ 0:

Γ (x) = Γ 0 exp (−Nσ̂txx) = Γ 0 exp(−Pxx) , (1.113)

with:
Nσ̂tx = Px , (1.114)

where Px is the corresponding total macroscopic cross-section. Thus, if the
subscript x ≡ c, then Pc represents the total cross-section for a simple
collision:

Pc = Nσ̂tc (1.115)

while x ≡ m refers to the total cross-section for momentum transfer:
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Pm = Nσ̂tm . (1.116)

From (1.114), Px is expressed37 in cm−1. Further, Px represents the probabil-
ity of collision in units of length. To demonstrate this, consider the expression
(1.112):

(N σ̂txA) dx

A
≡

total cross-section of scattering centres
in a slice of thickness dx

surface of the slice

=
(
probability of a collision

over a distance dx

)
≡ Pxdx . (1.117)

Relation between Px and its standard value

By convention, the published values of Px are given for a reference pressure
pR, corresponding to 1 torr and 0◦C, and denoted by:

Pxo = N0 σ̂tx , (1.118)

where N0 is the density of targets under these conditions (3.5377×1016 atoms
or molecules per cm−3). Knowing Px0, we can calculate Px at a particular
temperature TC (◦C) and pressure p (torr). Consider N as the density of
targets at TC and p, by definition:

Px ≡ N σ̂tx =
N

N0
(N0 σ̂tx) =

N

N0
Px0 . (1.119)

Value of Px at a particular pressure and temperature

It would be useful to replace the ratio N/N0 in (1.119) by an expression that
includes TC and p directly, parameters which are easily measurable. From
the perfect gas law, we have N = p/(kBTK) and N0 = pR/(kB × 273), from
which:

N

N0
=

p× 273

pRTK
=

p× 273

pR(273 + TC)
, (1.120)

where the subscripts K and C designate the temperatures expressed in kelvin
and degrees Celsius respectively.

37 According to the International System (SI), it would be more correct to express the
density of particles in m−3, but the cm−3 is well established as a practical unit, in particular

in plasma physics. This leads to the microscopic cross-section being expressed in cm−2 and
the macroscopic cross-section in cm−1.
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By convention, we write:

p

pR
≡ p̂ and

N

N0
≡ p0 , (1.121)

where p0 is the reduced pressure (note that this is a dimensionless quantity,
as well as p̂, and not really a pressure), and for the expression (1.120):

p0 =
p̂× 273

273 + TC
, (1.122)

and we can verify that, for p̂ = 1 and TC = 0◦C, we have p0 = 1 (without
units) such that we can write (1.119) and (1.121) in a practical form:

Px(T, p) = p0Px0 . (1.123)

The flux of particles experiencing no collision over a distance x in the plasma
(1.113) can now be expressed with the help of the macroscopic cross-section
at standard conditions and the reduced pressure in the form:

Γ (x) = Γ 0 exp(−p0Px0x) . (1.124)

Examples of cross-sections

Figure 1.14 compares the macroscopic electron-neutral collision cross sec-
tion for momentum transfer Pm, and that for simple collisions Pc (i.e. only
accounting for the number of collisions), for discharges in three rare gases.
In general, we observe that Pc > Pm (the behaviour of these cross-sections
will be more fully discussed in Sect. 1.7.8). Note that, in these examples,
the cross-sections are expressed as a function of the energy of the incident
particles, rather than their velocity.

Remark:

The macroscopic cross-section for a simple collision Pc is obtained directly
by measuring the attenuation of a beam of electrons (1.113): the value of Pc

takes no account at all of the amount of momentum transfer, but of only the
total number of collisions taking place in contrast to Pm. On the other hand,
the macroscopic cross-section for Pm is determined by integrating the exper-
imentally measured differential (macroscopic) cross-section over θ, following
(1.111), shown, for example in Fig. 1.12. One can deduce the microscopic dif-
ferential cross-section by a suitable normalisation of the macroscopic value.
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Fig. 1.14 Elastic electron-neutral cross-sections in three rare gases for standard condi-

tions. The values of the macroscopic cross sections Pc (simple collision: dashes) and Pm

(momentum transfer: full lines) are expressed in cm−1, while the corresponding values for

microscopic cross-sections are expressed in cm2 (after Massey and Burhop, 1952).

1.7.6 Expression for the temperature of a plasma
in electron-volt

The temperature T characterising the Maxwell-Boltzmann distribution for
particles is normally expressed in kelvin (K). However, in plasma physics, this
temperature is preferably expressed in electron-volt, TeV . T can be converted
to TeV using the relation kBT/e = TeV , where kB = 1.38× 10−23 JK−1 and
e = 1.6×10−19 C. Since kBT is an energy, kBT/e ≡ TeV is an energy per unit
charge (J/C) and should strictly be expressed in volt. Further, it should be
noted that TeV only represents 2/3 of the average energy of the particles in
the plasma, 3

2kBT . Thus, for TeV = 1 eV, the temperature in kelvin is about
11600 for an average energy which is really 1.5 eV.

This convention permits, inter alia, a quick estimation38 of the values of
the different cross sections participating in the various collision processes. We
will show this by examining the case of electron collisions.

Velocity of an electron with energy of 1 eV

The velocity of an electron accelerated along the x direction, starting from a
position of rest, by a potential difference U , obeys the expression:

38 The cross-section evaluated at energy TeV gives only an approximate value, for instance,

of the average collision frequency (Sect. 1.7.8): the exact value is obtained by actually
integrating this cross-section over the energy distribution function of the particles.
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1

2
mew

2
x = eU (1.125)

or:

wx =

(
2eU

me

)1/2

. (1.126)

For U = 1volt, the electron acquires an energy of 1 electron-volt (1.6 ×
10−19 J) corresponding to a velocity:

wx = 5.93× 105 m/s . (1.127)

The relation (1.126) remains valid for a beam of electrons provided that it is
mono-energetic. It is also valid for a singly charged ion, replacing me by mi.

Estimation of the value of a cross-section in a plasma

In a plasma, the motion of electrons is in three spatial directions and is not
mono-energetic, which is different from the conditions of the measurement
of a cross-section. If we wish nevertheless to estimate the value taken by
a cross-section in a given plasma, one can imagine an “enlarged” beam of
electrons with velocity vth, the most probable velocity of the electrons in the
plasma (Appendix I). The relation 1

2mev
2
th = kBTe, since it expresses the

most probable kinetic energy of the electron, demonstrates the usefulness of
the relation TeV = kBTe/e to obtain a good approximation of the value of
the cross-section expressed as a function of energy, rather than velocity.

1.7.7 Collision frequency and mean free path between
two collisions

Collision frequency

For a mono-energetic beam of particles with velocity w, the distance travelled
by each particle in time t is x = wt, which allows us to write (1.124), with
Γ = nw, in the form:

n(t) = n(0) exp [−(p0Px0w)t] . (1.128)

n(t) being the density of particles in the beam at time t and n(0) its value
at t = 0.

The characteristic decay-time of the exponential (1.128):

τ = (p0Px0w)
−1

(1.129)
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represents the time taken by the beam to decay, as a result of collisions
experienced, to 1/e (e being in the present case the base of natural logarithms)
of its initial value.

To define the collision frequency, note from (1.128) that:

dn

dt
= −n

τ
(1.130)

and introducing τ = ν−1
x :

dn

dt
= −νxn , (1.131)

where dn/dt represents the number of incident particles which exit the beam
(as a result of collisions with the target particles) per unit volume per second:
dn/dt is thus, in its most general form, the total number of collisions per unit
volume per second experienced by the incident particles. Dividing dn/dt by
n in (1.131) shows that νx is the number of collisions per second per incident
particle (subscripts x = c: simple collision; x = m: collision for momentum
transfer), in other words the collision frequency of a particle. From (1.129),
(1.130) and (1.131), for a beam of particles with velocity w incident on targets
at rest, we can identify:

νx = p0Px0w = Nσ̂txw . (1.132)

For incident electrons whose energy is expressed in eV, eU ≡ UeV , from
(1.126) and (1.132) we have the numerical expression:

νx(s
−1) = 5.93× 107

√
UeV p0Px0 (cm−1) . (1.133)

Remark: Note that νx refers to the collision frequency for a given velocity
of incident particles: only the average frequency (defined in the following
section) correctly represents the number of collisions per second in a medium
in which there is a velocity distribution.

Free path between two collisions

Taking account of the meaning of νx, τ appears as the time between two
collisions, so that the probable free path between two collisions �x is clearly:

�x = wτ =
w

νx
. (1.134)

From (1.132) and (1.134) and, taking account of (1.118) and (1.119), we find:

�x =
1

p0Px0
=

1

Nσ̂tx
. (1.135)
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Knowing that τ is also the time necessary for the number of particles in the
beam to decrease to 1/e of their initial value, �x is thus the distance that
must be traversed by a beam for its flux to be attenuated to 1/e of its initial
value as a result of collisions.

1.7.8 Average collision frequency and mean free path

Average collision frequency

In general, cross-sections vary, often greatly, as a function of the energy of the
incident particles, depending on the type of collisions which they represent.

As an example, consider the electron-neutral collision cross-section in a
rare gas with high mass such as argon (Fig. 1.14). For this gas (as for krypton
and xenon), the value of the energy has a great influence on the collision
probability; thus, we observe a pronounced minimum in Px for an energy
a little less than 1 eV: this is the so called Ramsauer’s minimum, a purely
quantum effect resulting from the diffraction of the wave function of the
incident electron on the outer electrons of the target atom, with destructive
(minimum) or constructive (maximum) interference after interaction. For an
incident electron having an energy UeV of 1 eV, the de Broglie wavelength is
close to the diameter of the atom, hence the diffraction. On the other hand,
for UeV → ∞, σ̂tx → 0, because the fraction of time the particles are close
together approaches zero (to give a picture of this small probability, consider
the case of a car crossing a red light at extremely high speed: the probability
of an accident, proportional to the crossing time, is extremely small).

Particles in a plasma are not mono-energetic, their velocity w forming a
distribution f(w). Knowing that the cross-section σ̂tx varies with w, how
do we define a collision frequency representative of what is occurring in the
plasma? In this case, it is necessary to consider the average collision frequency
〈νx〉, defined by:

〈νx〉 =

N

∫

w

σ̂tx(w) n wf(w) dw

∫

w

n f(w) dw

. (1.136)

In effect, while for an incident particle with velocityw we have νx = Nσ̂txw
(1.132), for an ensemble of incident particles for which the velocity is in the
interval 〈w,w + dw〉, the number of collisions per second per unit volume,
assuming the normalisation condition (I.4), is νxf(w) dw. The denominator
in (1.136) corresponds to the density n of incident particles, including all
velocities (again normalisation condition (I.4)). The ratio of the total number
of collisions per unit volume (nominator) to the total number of particles per
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unit volume (denominator) gives an average number of collisions, per unit
volume, per electron. The expression (1.136) can equally be written in a
condensed form:

〈νx〉 = N〈σ̂tx(w)w〉 , (1.137)

where the brackets symbolically represent an integration over the distribution
function (in velocity or energy) of the particles.

Example:

In an argon plasma with an electron temperature TeV = 4 eV (assuming
a Maxwell-Boltzmann distribution) vth = 1.19 × 106 ms−1 (〈w〉 = 1.34 ×
106 ms−1), the integration of the distribution over the electron-neutral
momentum transfer cross-section (Fig. 1.14) gives 〈νm〉 = 4 × 109 s−1 at
1 torr, 0◦C. At 0.1 torr and 0◦C, we obviously have 〈νm〉 = 4× 108 s−1. In
the following, to simplify the notation, ν will denote the average value of
the electron momentum transfer frequency and νc that for simple collisions
(related to σ̂tc).

We have defined the average collision frequency of particles in a plasma,
satisfying a distribution f(w), with the other particles assumed to be initially
at rest (1.137). In the more general case of collisions between particles α and
particles β (both moving)39 and correlated among themselves (Sect. 3.2), the
expression for the average collision frequency 〈ναβ〉 of particles α on particles
β can be written, in the centre of mass frame:

〈ναβ〉 =

∫

wα

∫

wβ

σ̂αβ(|wα −wβ |)|wα −wβ | nαnβ fαβ(wα,wβ) dwαdwβ

∫

wα

nαfα(wα) dwα

,

(1.138)
where the function fαβ(wα,wβ) is a pair (two-point) correlation function
in the velocities wα and wβ , expressing a correlated binary interaction
(Sect. 3.2). Note the explicit presence of the modulus of the relative velocity
of the two particles, a characteristic of the description in the centre of mass
frame. The denominator in (1.138) corresponds to the density of incident
particles α, including all velocities. The expression (1.138) is a generalisation
of the relation (1.136).

If there is no correlation between the particles (Sect. 3.2), we can re-
place the pair correlation function by two functions depending separately on
the velocity of each of the two kinds of species, by setting fαβ(wα,wβ) =
fα(wα)fβ(wβ), such that:

39 When the target particles are considered at rest, their density is denoted by N but nβ

when both particles α and β are moving.
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〈ναβ〉 =

nβ

∫

wα

∫

wβ

σ̂αβ(wαβ)wαβfα(wα)fβ(wβ) dwαdwβ

∫

wα

fα(wα) dwα

. (1.139)

The average value 〈ναβ〉 can be written:

〈ναβ〉 = nβ〈σ̂αβ(wαβ)wαβ〉 , (1.140)

where the brackets symbolically represent an integration over the distribu-
tion function (in velocity or energy) of the particles α and β. Note that the
frequency ναβ is, as a rule, different from νβα (see, for instance, (3.126)).
One can see again that (1.140) is a generalisation of the frequency 〈νx〉 given
by (1.137).

Mean free path

Following an analogous method to that which allowed us to define 〈�αβ〉, the
mean free path of particles α for collisions with particles β can be expressed,
in the more general case, as the average value of the quotient of the relative
velocity wαβ on the collision frequency ναβ , i.e.:

〈�αβ〉 =
〈
wαβ

ναβ

〉
=

1

nβ

〈
1

σ̂αβ(wαβ)

〉
. (1.141)

Returning to the preceding numerical example (TeV = 4 eV at 0.1 torr, 0◦C
in argon), we obtain an electron-neutral mean free path for electrons of
〈�m〉 ≈ 3mm. Henceforth, the mean free path for momentum transfer will
be simply denoted by �.

1.7.9 Examples of collision cross-sections

In the preceding section, to establish our ideas, we started by considering
elastic electron-neutral collisions. As we have already remarked, the con-
cept of cross-sections is more general. In the following sections, we will con-
sider the cases of inelastic electron-neutral collisions (ionisation, excitation,
dissociation) and those of elastic and inelastic ion-neutral collisions (charge
exchange).
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Electron-neutral collisions leading to the ionisation of an atom
(molecule)

In laboratory plasmas, ionisation of a gas usually occurs as a result of electron
impact. The probability of impact ionisation by atom-atom collisions is, in
fact, small in plasmas with less than a few atmospheres pressure. If we take an
argon atom, its step-wise ionisation through the metastable states as a relay,
which is the lowest energy pathway to achieve ionisation, requires a minimum
energy of 11.5 eV (Appendix VI). Thus, assuming a Maxwell-Boltzmann par-
ticle energy distribution function, this would require that the most energetic
atoms in the plasma reach a temperature of more than 100,000K, which is
not realistic in laboratory plasmas.

The ionisation cross-section for electron-neutral collisions generally ex-
hibits the following characteristics (Fig. 1.15):

- a very precise energy threshold Ei, below which the cross-section is zero.
For atoms, the ionisation threshold corresponds to the ionisation potential .
For molecules, a number of ionisation thresholds co-exist (dissociative and
non dissociative ionisation).

- immediately above the energy threshold Ei, an (almost) linear growth of
the cross-section as a function of the energy UeV of the electron40,

- then the cross-section passes through a maximum for an energy Em, fol-
lowed by a slow diminution.

Fig. 1.15 General form of

the ionisation cross-section
of an atom by electron

collisions.

The dashed line in Fig. 1.15, with slope ai, drawn from the energy thresh-
old Ei of the cross-section, represented by the expression:

Pi = ai(UeV − Ei) for UeV ≥ Ei , (1.142)

is a good approximation for the initial portion (Ei < UeV < Em) of the
ionisation cross-section.

40 Since the target-particles are not compelled to be at rest, it is more correct to speak of
their relative energy (velocity) at the moment of collision. In the case of electron-neutral

interactions, this distinction is generally negligible above a fraction of an electron volt in
the case where the gas is not very warm (see also remark 2 at the end of this section).
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Electron-neutral collisions leading to the excitation
of an atom (molecule)

For ionisation processes, there is an energy threshold Ej below which the
cross-section is zero. Its growth after Ej is almost linear with UeV before
passing through a maximum, as illustrated in Fig. 1.16.

Fig. 1.16 General form of
a cross-section for excita-

tion of level j of an atom
by electron collisions.

Electron-neutral collisions leading to the dissociation
of a molecule

Here also, there is an energy threshold Ed below which the cross-section is
zero. For a complex molecule, many dissociation thresholds may coexist, de-
pending on the nature of the fragments resulting from the collision.

Elastic ion-atom collisions

Cross-sections for the scattering of ions by their own atoms (molecules) all
have exactly the same form: interaction is more probable at low velocity.
Figure 1.17 shows, as an example, the case for different hydrogen ions incident
on H2 molecules, after having been accelerated by a potential difference U
(1.126).

Ion-atom collisions leading to a transfer of charge

Consider an atomic or molecular ion A+ and an atom or a molecule B. During
their interaction, there can be an exchange of an electron, which gives rise to
the reaction41:

A+ +B → A+ B+ . (1.143)

41 This represents an inelastic collision: the internal energy of the atom (molecule) is
modified when losing or recovering an electron.
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Fig. 1.17 Cross-sections for elastic collisions of different hydrogen ions of energy eU with

H2 (after [37] and [38]).

One interesting case is that of resonant transfer (A = B) where an atomic
ion has a collision with an atom of the same species. Fig. 1.18 shows that this
cross-section (denoted by t) reaches its greatest value for very low energies
(general rule).

Fig. 1.18 Cross-section

for charge exchange (index
x = t) of a helium atom

and its ion with energy
eU , and the resulting total

cross-section (x = T ) (after
[9], with permission of

the American Institute of
Physics).

To complete the comparison, the elastic interaction between the ion A+

and the atom A is also shown. The value of the scattering cross section (de-
noted by e) always has a lower value than for resonant transfer: this difference
is large in helium and neon, for example, but small for argon.
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Atom-atom collisions

Although difficult to measure experimentally, because they involve the inter-
action between neutral particles, these cross-sections can be calculated from
the analytical expressions for the interaction potential between two atoms.
They enable the thermal conductivity of the gas to be calculated. As an exam-
ple, this type of interaction can be modelled by the Lennard-Jones potential,
illustrated in Fig. 1.19:

Fig. 1.19 Lennard-Jones

potential to model atom-
atom interaction.

φ(r) = 4εJ
[
(r0/r)

12 − (r0/r)
6
]
, (1.144)

where the first term represents the repulsive potential when the two particles
are sufficiently in contact and the second term, the long distance attractive
potential, r0 being the value of r (internuclear distance) for which φ(r) = 0
and εJ is the depth of the potential well.

Remarks:

1. In the case of excitation and ionisation by electron collisions, the amount
of energy lost by the electron and transferred to the internal energy of
the atom is quantified, whatever the energy of the electron at the moment
of interaction: the energy of the electron after the collision is its initial
energy minus the threshold energy of the excited level (Franck and Hertz
experiment, 1914).

2. Reaction coefficient: definition and general expression
Consider a particular reaction, symbolically represented by:

A + B −−→
kAB

C+D , (1.145)

where A and B are the particles before collision and C and D are the
particles after collision. The probability of this occurring is characterised
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by a reaction coefficient (expressed at 0◦C, 1 torr) given by the expression:

kAB = 〈σ̂AB(wAB) wAB〉 units: cm3 s−1 , (1.146)

where wAB = |wA −wB| is the modulus of the difference in velocity before
collision (see problem 1.9 and footnote 40). The use of the reaction coeffi-
cient, instead of a “reaction frequency” νAB, is more general because it does
not involve the density of targets NB, which varies according to the oper-
ating conditions. We know, in fact, that νAB = NBkAB and the published
values are those of kAB (in place of a more detailed cross-section).

3. Hydrodynamic momentum equation and nature of the collision term
Consider a weakly ionised plasma (dominated by electron-neutral colli-
sions) submitted to an oscillating electric field E0 exp (iωt), whose fre-
quency is sufficiently high for the motion of ions to be neglected. Suppose
also that the velocity of thermal motion of the electrons is negligible com-
pared to its speed dx/dt in the HF field (cold plasma approximation)).23

These considerations lead us to the momentum equation for an electron in
an HF field (in one dimension)42:

me
d2x

dt2
= −eE0 exp(iωt)− νme

dx

dt
. (1.147)

Since the term νmedx/dt has the dimensions of a force, νmevdt represents
the change in momentum during dt and νmev its variation per second;
furthermore, a dimensional analysis shows that ν is in numbers per second.
In this context, the term −νmedx/dt ≡ −νpe represents the number of
times per second that an electron loses its momentum. The frequency ν thus
appears as the (average) collision frequency for the transfer of momentum
from the electron to the atom (ion). The solution of the differential equation
(1.147) gives the (complex) amplitude of the electron in the HF field as:

x0 =
eE0

meω(ω − iν)
, (1.148)

where we note that ν has the same units as the angular frequency ω of the
HF field.

In (1.147), νme appears as the classic hydrodynamic coefficient of viscosity,
generally assumed independent of the velocity of the particles. The influence
of ions and atoms on the motion of electrons under the influence of an HF
field can be regarded as a viscosity term impeding the electron motion.

42 We will obtain the relation (1.143) in the framework of the Lorentz hydrodynamic model
for plasma electrons (Sect. 3.7).
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1.8 Mechanisms for creation and loss of charged
particles in a plasma and their conservation equation

1.8.1 Loss mechanisms

We can distinguish two principal loss mechanisms of charged particles through
neutralisation (also called recombination).

Diffusion to the walls, where the charge particles are neutralised

Diffusion is a collisional process that occurs if the medium is inhomogeneous
in density or in (charged or neutral) particle energy. The role of collisions in
this process is to randomise the directions of the particles after equi-probable
collisions. However, in a medium of inhomogeneous density, there are more
particles in the regions of high density than in the regions of low density so
this will create a net flux towards the low-density region.

Diffusion of charged particles from the centre of the plasma to the walls
can constitute an extremely efficient method for removing these particles, by
their recombination at the walls into neutral particles. Such a “sink” at the
walls, as it provides a much lower density than on the axis, gives rise to a flux
of charged particles Γ = nv where v, the diffusion velocity, is directed from
the centre towards the walls. The value of this flux is given by the relation43:

Γ = −D∇n , (1.149)

which indicates that the flux of particles to the wall increases with the density
gradient of the particles ∇n; the factor D is called the diffusion coefficient ,
free or ambipolar, depending on whether the plasma density is low or high,
as we shall see in Sect. 3.8.

Volume recombination

Charged particles can also be neutralised in the plasma volume itself, by
collision, and not at the walls.

The recombination of an atomic ion, assuming that its radiative recombi-
nation (1.62) is negligible, requires the presence of a third particle (three-body
recombination), in this case an electron, to ensure the conservation of energy
and momentum for the interaction. This reaction can be written:

A+ + e + e → A+ e . (1.150)

43 Generally, the diffusion coefficient D depends on position and then one should write
Γ = −∇(Dn): see Sect. 3.8, Remark 4.
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Note that this is an inverse reaction, in the sense of micro-reversibility
(Sect. 1.4.2), for the ionisation process of atom A. This is the process of charge
recombination that occurs in the ionisation-recombination equilibrium gov-
erned by the Saha equation. The number of atomic ions which recombine per
unit volume per second in the plasma, is thus proportional to ni1n

2
e, where

ni1 is the density of atomic ions and ne is that of the electrons. In the case
where there is only one type of atomic ion, ni1 = ne, and the number of ions
that have recombined per unit volume per second (cm−3 s−1) can be writ-
ten αarn

3
e, where αar, a reaction coefficient, is the three body recombination

coefficient (units: cm6 s−1).
By formally writing:

αarn
3
e ≡ νarne , (1.151)

we can define νar, the corresponding atomic recombination frequency.
The recombination of a molecular ion (two-body recombination)

follows as:
A+

2 + e → A+A . (1.152)

This recombination is referred to as dissociative recombination. If the en-
ergy liberated during this neutralisation is greater than that of the first ex-
cited state of the atom A, one of these atoms will be in an excited state,
unless the excess energy is transformed into kinetic energy of the atoms44.
The number of molecular ions recombining per unit volume per second is
therefore proportional to ni2ne, where ni2 is the density of molecular ions. If
there is only one kind of molecular ion (ni2 = ne), in an analogous fashion
to (1.151):

αmrn
2
e ≡ νmrne , (1.153)

where αmr is the molecular dissociative recombination coefficient and νmr

the corresponding frequency.
In the case of plasmas rich in negative ions, the recombination of positive

ions with negative ions follows the reaction:

A+ +B− → A+ B (1.154)

referred to as mutual recombination. This type of interaction is independent
of whether the ions are atomic or molecular. The number of positive (and
negative) ions recombining per unit volume per second is proportional to
nini−, where ni is the density of positive ions (atomic or molecular) and ni−
is that of the negative ions. In an analogous fashion to (1.151) and (1.153),
we can write, for example:

αr±nini− ≡ νr±ni− , (1.155)

44 In the case of rare gas atoms, one of the two atoms is necessarily excited into a metastable
state.
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where αr± is the mutual recombination coefficient for a negative ion and a
positive ion, and νr± is the corresponding frequency.

The order of magnitude of αr± is 10−7 cm3 s−1, a value which only weakly
varies with the nature of the ions and their relative energy. It should also be
noted that the value of αr± is lower by a factor of 2 or 3 than the coefficient
αmr for dissociative recombination of molecular ions.

Predominance of the removal mechanism for charged particles
according to their pressure region (plasmas without negative ions)

As a general rule, in the pressure interval between 10mtorr (∼ 1Pa) and
around 10 torr (≈ 103 Pa) and for a discharge in an atomic gas, diffusion
dominates, provided the smallest dimension (e.g. the radius for a long plasma
column) is sufficiently small for the volume losses to be negligible: in the
same pressure interval, but for a molecular gas, volume recombination pre-
dominates. At higher pressures, volume recombination becomes the dominant
mechanism for the loss of charges, even for atomic gases.

1.8.2 Creation mechanisms

When ionisation results from a single electron collision with an atom in
its ground state (direct ionisation), the corresponding ionisation frequency
(number of ions created per second per electron) νid, can be written (Sect.
1.7.8):

νid = 〈Pi(we)we〉 ≡ N0〈σ̂ti(we)we〉 , (1.156)

where Pi is the macroscopic cross-section and σ̂ti, the total microscopic cross-
section, both corresponding to direct ionisation, and N′ the density of the
ground state of the atom.

However, when the electron density is sufficiently high, direct ionisation
is no longer the only path possible. Ionisation can then take place in steps,
using the excited states of the atom as relay states. This ionisation process is
advantageous, because it can take place with electrons of lower energy than
for direct ionisation. A frequent case of collisional ionisation in two steps is
that where successively:

e + A(0) → A(j) + e , (1.157)

e + A(j) → A+ + e + e , (1.158)

the excited state A(j) being metastable (a state weakly susceptible to radia-
tive de-excitation between two collisions: see footnote 26). In this case, the
number of atoms ionised per unit volume per electron, taking into account
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de-excitation of the intermediate levels by electron collisions45 (losses pro-
portional to ne) and collision-free losses (by diffusion, therefore independent
of ne) can be written in the form (Appendix VI):

νie =
ρiene

1 + ηne
, (1.159)

where the coefficients ρie and η characterise ionisation in two steps and the
effect of the intermediate steps respectively. When ne is very large (satura-
tion), (1.159) reduces to:

νie � ρie/η . (1.160)

1.8.3 Conservation equation for charged particles

If we take into account the two loss mechanisms we have just discussed,
together with ionisation, the conservation equation for particles can be most
generally written as (Sect. 3.5):

∂n

∂t
+∇ · nv = (νi − νr)n , (1.161)

where νi = νie + νid and νr = νar + νim. The term on the right-hand side
of the equation includes the number of particles created by ionisation and
the number lost by volume recombination, per unit volume per second re-
spectively, the diffusion losses being taken into account in the term on the
left-hand side ∇ · nv.

In the stationary state, and in the absence of volume recombination46,
(1.161), including (1.149), reduces to:

∇ · (−D∇n) = νin (1.162)

and, provided D does not depend on position, we have:

∇2n = (−νi/D)n . (1.163)

In the case where νi and D are independent of n, this is an eigenvalue
problem47 (Sect. 3.8), fixed by the boundary conditions (imposed by the
geometry of the discharge chamber): for a cylindrical tube, by symmetry

45 The de-excitation (quenching) of metastable atoms by collision with heavy particles
(ground state and metastable state atoms) becomes significant in discharges with a low

degree of ionisation (Appendix VI).
46 In the stationary state and in the absence of diffusion losses, (1.161) obviously reduces

to νi = νr .
47 This is not so, for example, for a two-step ionisation where the problem is non-linear
(1.159).
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(dn/dr)r=0 = 0, and we often take n(r = R) = 0, where R is the internal
radius of the tube. In the case of a very long cylindrical tube (L 	 R) and
for n(r = R) = 0, we have n(r) = n(0)J0(2.405 r/R), where J0 is the Bessel
function of the first kind and of order zero (Fig. 3.4).

Problems

1.1.

a)Find the vertical distribution, in equilibrium, of the density and velocity
of neutral particles of mass M , in the terrestrial atmosphere, under the
influence of gravity. Take the origin of the vertical coordinate z to be
the surface of the Earth, where the density of particles is n̂0. Assume
that the particles have a Maxwell-Boltzmann velocity distribution and,
to a first approximation, that the temperature T of the particles and the
gravitational constant g do not vary vertically.

b)Calculate the average velocities 〈w〉, 〈w〉 and the average kinetic energy as
functions of the height z.

It will be useful here to refer to Appendix I and the table of formulae and
integrals (see Appendix XX).

Answer

a)The system is subjected to a conservative force (F = −∇Φ) since the grav-
itational force F = −Mg is the derivative of a potential (more correctly a
potential energy), in this case Φ(z) = Mgz. Assuming, to a first approxi-
mation, that the particles have a Maxwell-Boltzmann velocity distribution,
then for the present system (1.17):

f(z, w) = n̂0 exp

(
−Mgz

kBT

)
f(w) , (1.164)

where the scalar function:

f(w) =

(
M

2πkBT

) 3
2

exp

(
−Mw2

2kBT

)
(1.165)

represents an isotropic distribution in velocity (remark 2 below). Clearly:

f(z, w) = n(z)f(w) , (1.166)

and the vertical distribution of the particle density is then given by:



Problems 69

n(z) = n̂0 exp

(
−Mgz

kBT

)
. (1.167)

Remarks:

1. Since we can write f(z, w) = n(z)f(w), the function f(z, w) is said to
be separable (Sect. 3.3).

2. The fact that we have assumed ∂T/∂z � 0 allows us, in effect, to
assume that there is no significant loss of particles or energy in any
given direction, such that the velocity distribution function is isotropic

b)Generally speaking (see Sect. 3.3 for further details), the average value
of a variable A(r, w) taken over the distribution function f(r,w) can be
written:

〈A(r,w)〉 =

∞∫

−∞

A(r,w)f(r,w) d3w

∞∫

−∞

f(r,w) d3w

. (1.168)

Because the function f(r,w) is separable and isotropic (1.166), expression
(1.168) as a function of z becomes:

〈A(z,w)〉 = n(z)

∞∫

−∞

A(z,w)f(w) d3w

n(z)

∞∫

−∞

f(w) d3w

=

∞∫

−∞

A(z,w)f(w) d3w , (1.169)

where the denominator, as we can verify, is equal to unity since the function
f(w) (1.165) is normalized:

∞∫

−∞

f(w) d3w =

∞∫

0

(
M

2πkBT

) 3
2

exp

(
−Mw2

2kBT

)
4πw2 dw = 1 . (1.170)

Finally, from (1.169), 〈w〉, the average scalar velocity has the value:

〈w〉 ≡
∞∫

0

wf(w) 4πw2 dw =

√
8kBT

πM
, (1.171)

and thus is independent of z.
To obtain the average vector velocity 〈w〉, we can calculate its components,
for example in the x direction:
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〈wx〉 =
(

M

2πkBT

) 3
2

∞∫

−∞

wx exp

(
−Mw2

x

2kBT

)
dwx

︸ ︷︷ ︸
odd integrand

∞∫

−∞

exp

(
−
Mw2

y

2kBT

)
dwy · · ·

(1.172)
Since the integrand over wx is odd, its integral from −∞ to +∞ is zero,
and 〈wx〉 = 0.
This is the same for the velocity components in y and z, such that 〈w〉 = 0.
Finally, the average value of 〈w2〉 can be expressed as:

〈w2〉 ≡
∞∫

−∞

w2f(w) d3w =

∞∫

0

4πw4f(w) dw =
3kBT

M
, (1.173)

and the average kinetic energy is given by:

〈Ec〉 =
3

2
kBT . (1.174)

Remark:

Since there are neither sources or sinks of particles, it is not possible to
have a net movement of particles in a given direction, from which, inter
alia, 〈wz〉 = 0. The density gradient in the z direction was established
as the gravitational force “was applied”, before the stationary state was
reached!

1.2.

a)The random particle flux is defined as the average value of the flux crossing
a surface in one single direction (in the positive z direction, for example)
thus:

Γz = 〈nwz〉 . (1.175)

Calculate this flux of particles of mass m and density n, assuming ther-
modynamic equilibrium at a temperature T . Perform the calculation in
Cartesian coordinates, then in spherical coordinates (“useful” integrals can
be found in Appendix XX).

b)Calculate the corresponding random energy flux. Perform the calculation
in Cartesian coordinates, then in spherical coordinates.

Answer

a)In the case in which the velocity distribution function is Maxwellian and
isotropic (necessary conditions for thermodynamic equilibrium), the ran-
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dom flux of particles is written, in Cartesian coordinates (remember, in
this context, that n is independent of position):

Γz = n

(
m

2πkBT

) 3
2

∞∫

0

wz exp

(
− mw2

z

2kBT

)
dwz

∞∫

−∞

exp

(
− mw2

x

2kBT

)
dwx

×
∞∫

−∞

exp

(
−

mw2
y

2kBT

)
dwy . (1.176)

Therefore:

Γz = n

(
m

2πkBT

) 3
2

× 1

2

(
2kBT

m

)
×
√
π

(
2kBT

m

) 1
2

×
√
π

(
2kBT

m

) 1
2

,

Γz =
n

4

√
8kBT

πm
=

n〈w〉
4

. (1.177)

Expressing the velocities in spherical coordinates, where wz = w cos θ and
d3w = w2dw sin θ dθ dϕ:

Γz = n

(
m

2πkBT

) 3
2

2π∫

0

dϕ

π
2∫

0

sin θ cos θ dθ

∞∫

0

w3 exp

(
− mw2

2kBT

)
dw ,

(1.178)
thus:

Γz = n

(
m

2πkBT

) 3
2

× 2π × 1

2
× 1

2

(
2kBT

m

)2

=
n〈w〉
4

. (1.179)

Comparing (1.177) and (1.179), the value of Γz is clearly independent of
the coordinate system in which the velocities are expressed.

Remark:

If n is the particle density, only half of this density will contribute to the
random flux in a given direction! We can therefore write the random flux
in the form:

Γz =
n

2
〈wz(wz > 0)〉 , (1.180)

from which we obtain, based on (1.177) or (1.179):

〈wz(wz > 0)〉 =
〈w〉
2

. (1.181)



72 1 Definition and orders of magnitude of principal quantities

This example illustrates the difficulty of separating the different contribu-
tions to an average quantity when the molecular properties themselves are
the product (here: n times wz) or quotient of different quantities.

b)The random kinetic energy flux along z, in Cartesian coordinates, can be
written:

Pz =

〈
nwz

(
mw2

2

)〉
, (1.182)

and:

Pz = n

(
m

2πkBT

) 3
2

∞∫

−∞

∞∫

−∞

∞∫

0

mwzw
2

2
exp

(
− mw2

2kBT

)
dwxdwydwz ,

(1.183)
which, after decomposing the terms, becomes:

Pz =
nm

2

(
m

2πkBT

) 3
2

×
⎡

⎣
∞∫

−∞

w2
x exp

(
− mw2

x

2kBT

)
dwx

∞∫

−∞

exp

(
−

mw2
y

2kBT

)
dwy

∞∫

0

wz exp

(
− mw2

z

2kBT

)
dwz

+

∞∫

−∞

exp

(
− mw2

x

2kBT

)
dwx

∞∫

−∞

w2
y exp

(
−

mw2
y

2kBT

)
dwy

∞∫

0

wz exp

(
− mw2

z

2kBT

)
dwz

+

∞∫

−∞

exp

(
− mw2

x

2kBT

)
dwx

∞∫

−∞

exp

(
−

mw2
y

2kBT

)
dwy

∞∫

0

w3
z exp

(
− mw2

z

2kBT

)
dwz

⎤

⎦ ,

(1.184)

from which we obtain:

Pz = 2kBT
n〈w〉
4

= 2kBT Γz . (1.185)

In spherical coordinates, the random flux is written:

Pz =
nm

2

(
m

2πkBT

) 3
2

2π∫

0

dϕ

π
2∫

0

sin θ cos θ dθ

∞∫

0

w5 exp

(
− mw2

2kBT

)
dw ,

(1.186)
thus:

Pz =
nm

2

(
m

2πkBT

) 3
2

× 2π × 1

2
×
(
2kBT

m

)3

, (1.187)
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Pz = 2kBT Γz . (1.188)

Once again, we have verified that the value of Pz is independent of the
coordinate system in which the velocities are expressed.

Remarks:

1. Pz has the dimensions of an energy flux or, equally, of a power density
per unit surface (Wm−2).

2. We know that the average kinetic energy of these particles is given by
3
2kBT . However, the random energy flux introduces the factor 2kBT
and not 3

2kBT . This difference is due to the much greater weight of
the velocities appearing in the calculation of the random energy flux
(w3 d3w than in the calculation of average kinetic energy (w2 d3w).

1.3. Consider a helium plasma, in which the density of nuclei is 1020 m−3.
Calculate the density of neutral atoms, of electrons and of both singly and
doubly ionised atoms, when the plasma temperature is:

- TeV = 1 eV
- TeV = 10 eV

assuming thermodynamic equilibrium. The energy threshold for ionisation of
helium, with respect to the ground state of the neutral atom, is Ei1 = 24.59 eV
for the first ionisation and Ei2 = 54.4 eV for the second. Perform the calcula-
tion analytically and not using the computer.

Answer

The equations for conservation of nuclei48 and of charges are respectively:

Nn = n0 + ni1 + ni2 , (1.189)

ne = ni1 + 2ni2 , (1.190)

where Nn, n0, ni1, ni2 and ne denote the densities of nuclei, neutral atoms,
singly (Z = 1) and doubly charged (Z = 2) ions and electrons respectively.
The assumption of thermodynamic equilibrium allows us to apply the Saha
equation for the two ionisation levels (see Sect. 1.4.2):

48 The conservation of nuclei expresses the way helium atoms at 0K become distributed
into neutral atoms and ions when subjected to a temperature T �= 0.
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neni1

n0
=

2gi1
g0

(2πmekBT )
3
2

h3
exp

(
− Ei1
kBT

)
, (1.191)

neni2

ni1
=

2gi2
gi1

(2πmekBT )
3
2

h3
exp

(
− (Ei2 − Ei1)

kBT

)
. (1.192)

We thus have four equations to resolve a problem with four unknowns. The
quantum degeneracy g[Z] (statistical weights) of the three electronic states
of helium, given by 2J+1, are listed in the table below (L is the total orbital
angular momentum and S the total spin under ground state conditions; J the
total angular momentum, is the modulus of the vectorial sum (in a quantum
sense) of L and S).

L S J g[Z] = 2J + 1

He 0 0 0 1

He+ 0 1
2

1
2 2

He++ 0 0 0 1

a)TeV = 1 eV
Although an analytical calculation is possible (see b), we will proceed by
successive approximation (iterative method) to solve the first part of the
problem. In the first iteration, we will neglect the number of doubly charged
ions with respect to those that are singly charged. This can be justified by
the large gap between the thermal energy of the particles (1 eV) and the
energy of the second ionisation of helium (54.4 eV). In consequence, the
conservation equations for charges (1.190) and nuclei (1.189) reduce to:

ne � ni1 , (1.193)

Nn � n0 + ni1 . (1.194)

Let us write the relevant Saha equation for the equilibrium of the singly
charged ions with respect to the neutral state, and the equilibrium of the
doubly charged ions with respect to singly charged ones with TeV = 1 eV:

neni1

n0
=

2× 2

1
× 3.02× 1027 × e−24.5

= 2.76× 1017 m−3 = A1 , (1.195)

neni2

ni1
=

2× 1

2
× 3.02× 1027 × e−(54.4−24.5)

= 3.12× 1014 m−3 = A2 . (1.196)

Combining equations (1.193), (1.194) and (1.195), we obtain a second order
equation in ni1:
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n2
i1 +A1ni1 −NnA1 = 0 (1.197)

from which:

ni1 = −A1

2
±

√(
A1

2

)2

+NnA1 . (1.198)

Only the case ni1 > 0 is physically realistic, so we deduce ni1 = 5.12 ×
1018 m−3.
Knowing ni1, we can then deduce ne and n0 with the help of Eqs. (1.193)
and (1.194): ne = 5.12× 1018 m−3 and n0 = 9.49× 1019 m−3.
A second iteration, using equation (1.196) with the ne and ni1 values just
determined, gives ni2 = 3.12× 1014 m−3

b)TeV = 10 eV
This time we will calculate the exact solution, by solving a 3rd order equa-
tion in ne. Writing the relevant Saha equation for the equilibrium of the
singly charged ions with respect to the neutral state, and the equilibrium
of the doubly charged ions with respect to singly charged helium ions with
TeV = 10 eV:

neni1

n0
=

2× 2

1
× 9.55× 1028 × e−2.45

= 3.29× 1028 m−3 = B1 , (1.199)

neni2

ni1
=

2× 1

2
× 9.55× 1028 × e−(5.44−2.45)

= 4.79× 1027 m−3 = B2 . (1.200)

Equations (1.190) and (1.189) can be written in the form:

ni1 = 2(Nn − n0)− ne , (1.201)

ni2 = ne − (Nn − n0) . (1.202)

Introducing expressions for ni1 and ni2 in (1.199) and (1.200), we find:

B1 =
ne(2(Nn − n0)− ne)

n0
(1.203)

from which:

n0 =
ne(2Nn − ne)

B1 + 2ne
, (1.204)

and:

B2 =
ne(ne − (Nn − n0))

2(Nn − n0)− ne
, (1.205)

hence:

n0 =
ne(Nn − ne) +B2(2Nn − ne)

2B2 + ne
. (1.206)
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We can eliminate n0, using relations (1.204) and (1.206), which results in
a third degree polynomial in ne:

n3
e + (B1)n

2
e + [B1(B2 −Nn)]ne − 2B1B2Nn = 0 . (1.207)

Retaining the positive real root of this equation, we obtain ne � 2.00 ×
1020 m−3. The density of the neutrals can be obtained from either equation
(1.204) or equation (1.206): n0 � 2.53× 104 m−3. Finally, using equations
(1.201) and (1.202), we have ni1 = 4.17 × 1012 m−3 and ni2 = 1.00 ×
1020 m−3, and we observe that, this time, ni1  ni2.

1.4. Calculate the electron density in an oven containing sodium vapour at
2000K. The density of sodium nuclei is 1028 m−3.

Energy threshold of the first ionisation of sodium: Ei1 = 5.14 eV
Energy threshold of the second ionisation of sodium (with respect to neu-
tral ground state): Ei2 = 47.29 eV
Statistical weights: g0 = 2, gi1 = 1, gi2 = 4.

Answer

Assuming the system is in thermodynamic equilibrium, we can use the Saha
equation (see Sect. 1.4.2). In this case, for the singly charged sodium ion with
respect to neutral sodium:

ni1ne

n0
=

(2πmekBT )
3
2

h3
2
B′(T )

B(T )
exp

(
− Ei1
kBT

)
, (1.208)

where n0 is the density of neutral atoms (in the ground state), ni1 is the
density of singly charged ions (in the ground state) and ne, the electron
density; B(T ) is the partition function (Appendix II), defined by:

B(T ) =
∑

k

g0k exp

(
− E0k
kBT

)
, (1.209)

where the summation is over the different excited states of the neutral atom
(k = 0 designates the ground state) and:

B′(T ) =
∑

j

gi1j exp

(
− Ei1j
kBT

)
, (1.210)

where the summation is over the different excited states of the singly
charged ion (j = 0 designates its ground state); g0k, gi1j represent the level
degeneracies; E0k, Ei1j are the threshold energies of the excited levels with
respect to the ground state of the atom and the ground state of the singly
charged ion, respectively.
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It is easy to see that when kBT is small compared to E0k and Ei1j , the
partition functions reduce to B(T ) � g0 and B′(T ) � gi10 respectively
(Appendix II).
If the atom loses another electron, the density of the doubly charged ions will
be linked to that of the singly charged ions by the Saha equation:

ni2ne

ni
=

(2πmekBT )
3
2

h3
2
gi2
gi1

exp

[
−Ei2 − Ei1

kBT

]
, (1.211)

where ni2 is the density of the doubly charged ions.
It is obvious, in the present case, that since the particle temperature is
2000K (i.e. in eV 2000/11600 � 0.17 eV) and the energy threshold of the
first ionisation is 5.14 eV, the gas will be very weakly ionised and we can
set n2i = 0 (in effect, the value of exp(−5.14/0.17) in (1.208) relative to
that of exp[−(47.29− 5.14)/0.17] in (1.211) results in a comparison between
1.13×10−13 and a number 10−100!) Finally, because ne � ni, the Saha equa-
tion (1.208) reduces to:

n2
e

n0
=

(2πmekBT )
3
2

h3
2
1

2
exp−5.14

0.17
. (1.212)

The additional equation for conservation of nuclei, in the case where ni2 � 0,
can be written:

n0 + ni1 ≡ n0 + ne = Nn , (1.213)

where Nn is the density of the sodium nuclei. Thus from (1.212) and (1.213),
expressing the energies in Joule:

n2
e = (Nn − ne)

[
(2π × 9.11× 10−31 × 1.38× 10−23 × 2000)

3
2

(6.62× 10−34)3

]

× exp

[
− 5.14× 1.6× 10−19

1.38× 10−23 × 2000

]
, (1.214)

or:
n2
e = (Nn − ne)A , (1.215)

where we have set:

A =
6.28× 10−74

290× 10−102
(1.13× 10−13) = 2.4× 1013 (m−3) . (1.216)

We now need to resolve a quadratic equation of the form:

n2
e +Ane −NnA = 0 , (1.217)

hence:
ne =

−A±
√
A2 + 4NnA

2
= 4.9× 1015 m−3 . (1.218)

The degree of ionisation ni1/(ni1 + n0) is extremely small: 0.5%.
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1.5.

a)Consider a plasma at a given instant (one dimensional configuration, see
figure) with an electron density ne that is 1% higher than the ion density
ni, in a slice of the plasma from x = −�/2 to x = +�/2. Derive the
expressions for E(x), the electric field and for V (x), the potential in the
region of non-neutrality.
Assume:

– that the field E is zero in the plasma surrounding the slice (because it
is uniform and macroscopically neutral);

– that the potential at x = −�/2 and x = +�/2 (the plasma potential)
is taken as the potential reference (V (−�/2) = V (+�/2) = 0).

Determine the direction of the space charge field.
Evaluate the electric field intensity at the borders of the region of non-
neutrality at x = −�/2 and x = +�/2 for ni = 1016 m−3 and for a slice
width of � = 2 cm. Analyse this relation dimensionally, then calculate the
potential at x = 0.

Fig. 1.20 One dimensional representation of a slice of non-neutrality of width � in a

plasma.

b)What is the energy (in eV) necessary for an electron, incident at x = −�/2
(from x < −�/2) to overcome the potential barrier (imposed by the non-
neutral field) and cross the non-neutral zone to arrive at x = +�/2?

c)Using the preceding relations, derive an expression for the maximum dis-
tance that an electron with average thermal energy (kBT/2 in one dimen-
sion) can travel away from its position of neutrality in the macroscopically
neutral region, due to its thermal motion. We assume that the ions are
immobile. Evaluate this distance for kBT/e = 1 eV and ne = 1016 m−3.

d)Knowing that the electrostatic potential energy of an ensemble of charges
in a volume V is:

WE =
1

2
ε0

∫

V

E2 dV , (1.219)
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derive an expression for the electrostatic energy (or potential energy) as-
sociated with the presence of charges in the zone extending from x = −�/2
to x = +�/2. Evaluate this potential for the conditions given in a).

Answer

a)This type of problem can be treated with the Poisson equation∇·E = ρ/ε0
(1.1), a self-consistent relation since the density of charges ρ is the source
of the field E, ε0 being the permittivity of vacuum.
In the case in which the non-neutrality of charges is to be resolved in
a single dimension x, as illustrated in the figure above, we have, from
Poisson’s equation:

dE

dx
=

ρ

ε0
, (1.220)

∫
dE =

∫
ρ

ε0
dx , (1.221)

E(x) =
ρ

ε0
x+ C1 . (1.222)

Further, the potential φ, defined by E = −∇φ, can be written in one
dimension:

dφ

dx
= −E(x) (1.223)

and: ∫
dφ =

∫
−E dx , (1.224)

which, by substituting (1.222), becomes:

∫
dφ =

∫
−
(

ρ

ε0
x+ C1

)
dx , (1.225)

φ(x) = − ρ

ε0

x2

2
− C1x+ C2 . (1.226)

Because of symmetry, φ(x) = φ(−x), so C1 = 0, and:

E(x) =
ρ

ε0
x (1.227)

in the interval −�/2 ≤ x ≤ �/2. Further, since φ(−�/2) = φ(�/2) = 0, the
expression for C2 is:

C2 =
ρ

2ε0

�2

4
, (1.228)

hence:



80 1 Definition and orders of magnitude of principal quantities

φ(x) = +
ρ

2ε0

(
�2

4
− x2

)
. (1.229)

The variations of the electric field and the potential φ(x) are drawn below,
as a function of x, for ρ < 0. There is a discontinuity in the electric field
E(x) and the derivative dφ(x)/dx of the potential at x = ±�/2 due to the
discontinuity of the space charge at each side of the boundary x = ±�/2.
For ρ < 0 (ne > ni), according to (1.227), the space charge electric field
is positive (directed to the right, Sect. 2.2.1) for negative values of x such
that −�/2 ≤ x ≤ 0 and it is negative (directed to the left) for positive
values of x such that 0 ≤ x ≤ �/2. The direction of the electric field is
such that the field tends to attract the ions into the space charge region
and repel the electrons. Consequently, the non-neutrality cannot remain
for very long, at most a time of order ω−1

pe .

In the present case, ρ ≡ (ni − ne)e = (Δn)e. Therefore, from (1.227) the
local field intensity at x is:

E =
(Δn)e

ε0
x , (1.230)

where |Δn| is, from the initial assumptions, 0.01ni.
We can make the dimensional analysis at the same time as we continue
the numerical calculation, x = �/2 = 10−2 m, Δn = 1014 m−3, ε0 = 8.85×



Problems 81

10−12 Fm−1, e = 1.6× 10−19 C, where the coulomb C is linked, as a unit,
to the farad F by the relation C = FV.
From equation (1.230), at x = −�/2:

E =
1014 1.6× 10−19 10−2

8.85× 10−12
=

Cm

m3(Fm−1)
=

FV

mF
=

V

m
= 18 kVm−1 ,

(1.231)
the units Vm−1 being those of the electric field.
In the same manner, the potential at x = 0 becomes, from (1.229):

φ(0) = −eΔn�2

8ε0
, (1.232)

giving φ(0) = −90V.
b)In order for an electron coming from x < −�/2 to cross the space charge

region, it is necessary for the initial kinetic energy U in the direction x to
be greater than the energy necessary to break through the potential due
to the space charge (caused by electrons!), which is:

U = eφ(0) = −90 eV . (1.233)

c)We will show that the maximum distance x over which an electron with
average thermal energy can travel from its neutral position in a macro-
scopically neutral region, due to this thermal energy, is the Debye length
(Sect. 1.6). This maximum distance is fixed by the equality between the
thermal energy of this “average” electron, and the potential energy linked
to the space charge electric field produced by the deviation of the electron
with respect to its neutral position, namely:

1

2
kBT = |U | . (1.234)

However, the work exerted by the electric field E on an electron is given
by the expression (Sect. 2.1):

dU = F dx = −|E|e dx , (1.235)

Hence from (1.227) and since the electron is moving from x = 0 to x:

|U | =
x∫

0

|E|e dx =
eρx2

2ε0
. (1.236)

Assuming that the ions are at rest49, only the electrons move into the space
charge field, and we obtain, following (1.236):

49 Delcroix and Bers (Sect. 1.4.1), in their case, assumed a complete absence of ions.
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|U | ≡ nee
2x2

2ε0
, (1.237)

then, making use of (1.234):

nee
2x2

2ε0
=

1

2
kBT , (1.238)

and finally:

x =

√
ε0kBT

e2ne
, (1.239)

which is, in effect, the expression for λDe (1.41).
Application: for TeV = 1 eV and ne = 1016 m−3, we find λDe = 74μm.

d)If we express an element of volume as dV = S dx where S is a surface, the
general expression for the electrostatic potential energy being:

WE =
1

2
ε0

∫

V

E2 dV , (1.219)

we can write:

WE =
1

2
ε0

�/2∫

−�/2

E2S dx . (1.240)

We can then deduce the electrostatic energy density per unit surface:

WE

S
=

1

2
ε0

�/2∫

−�/2

E2 dx =
(eΔne)

2

24ε0
l3 . (1.241)

For the conditions indicated in a), we find numerically:

WE

S
= 9.6× 10−6 Jm−2 . (1.242)

1.6. Consider two parallel conducting plates extending to infinity in y and
z, and placed at x = ±d. Their potential φ is assumed to be zero. The space
between the plates is occupied by a gas of charged particles of one single
type, of uniform density n and charge q.
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a)Show that the potential distribution between the plates is given by:

φ(x) =
nq

2ε0
(d2 − x2) . (1.243)

b)Assuming that the distance d is greater than the Debye length λD, what is
the probability of finding a particle with a kinetic energy sufficiently high
to overcome the potential energy E and travel from one plate to the mid-
distance between the plates? Consider that the particles have a Maxwell-
Boltzmann velocity distribution and discuss to what extent the hypothesis
that a particle has such an energy is generally acceptable?

c)Calculate the Debye length in the case of an electric discharge in which the
plasma density is 1016 m−3 and the temperature is 2 eV.

Answer

a)Poisson’s equation ∇ · E = ρ/ε0 and the relation E = −∇φ allows us to
write the equation for the potential φ in the form:

∇2φ = − ρ

ε0
(1.244)

and, in the present case, since there is only one type of charged particle,
ρ = nq, we can thus write:

∇2φ = −nq

ε0
. (1.245)

In the present configuration (one single dimension), a first integration gives:

∇φ = −nqx

ε0
+ C1 . (1.246)

The position x = 0 represents the axis of symmetry of the system, such
that:

∇φ(x = 0) = 0 , (1.247)

therefore C1 = 0.
A second integration leads to:

φ(x) = −nqx2

2ε0
+ C2 , (1.248)

but φ(x = ±d) = 0, from which C2 = nqd2/2ε0 and, finally:

φ(x) =
nq

2ε0
(d2 − x2) , (1.249)

recalling that we have assumed that n is independent of position.
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b)The potential difference between the axis and one of the plates is, following
(1.249):

φ(0)− φ(±d) =
nqd2

2ε0
, (1.250)

and the energy given to the particle in moving from x = d to x = 0 is
obtained by multiplying the potential difference by q:

E =
nq2d2

2ε0
. (1.251)

Assuming that d > λD, we then have:

E =
nq2d2

2ε0
>

nq2

2ε0
λ2
D ≡ nq2

2ε0

kBTε0
nq2

=
kBT

2
, (1.252)

i.e. the electrostatic energy of the particles would be higher than their aver-
age kinetic energy (Maxwell-Boltzmann velocity distribution), m〈w2

x〉/2 =
kBT/2. In such a situation, is it possible to find a particle with a kinetic
energy higher than the potential energy E? To answer this question, we first
consider the case where d is equal to or slightly larger than λD (d ≥ λD),
and then the case where d is much larger than λD (d 	 λD).
Since the velocity distribution of the particles is Maxwellian, and as long as
d remains of the order of λD, there are particles with velocities such that
their kinetic energy is much higher than the average kinetic energy (see
Fig. I.2 in Appendix I). However, in the case where d 	 λD, considering,
on the one hand, that the electrostatic energy E increases with the square
of d, and, on the other hand, that the number of high energy particles
decreases exponentially with velocity in a Maxwell-Boltzmann distribution,
the proposed hypothesis of finding a particle with enough energy to travel
from one plate to the mid-distance between the plates becomes unrealistic.

c)We have the numerical relation (Sect. 1.6):

λD = 740

(
TeV

n

) 1
2

, (1.55)

where λD is in cm and n in cm−3. In the present case, n is 1010 cm−3 and
TeV = 2 eV, from which:

λD = 740

(
2

1010

) 1
2

= 740
√
210−5 cm � 1.05·10−2 cm = 105μm . (1.253)

1.7.

a)In a plasma, charged particles move randomly due to their thermal energy.
One of the conditions for the existence of a plasma is that the energy
of the thermal motion of the charged particles (characterised here by a
temperature Te = Ti = T ) should be much greater than the average energy
of Coulomb attraction exerted between ions (Z = 1) and electrons.
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Show that this assumption leads to the relation:

neλ
3
D 	 1 , (1.254)

an inequality expressing the neutrality condition in a plasma with electron
density ne and Debye’s length λD.
N.B. The average distance d between an electron and an ion can be de-
duced from the trivial relation

(
4
3πd

3
)
ne = 1, where d is the radius of the

sphere.
b)Transform the equilibrium equation for ionisation (Saha’s equation) to the

form:

ne

n0
=

25/2gi
g0

(
neλ

3
D

)
√

nea30
exp

(
− Ei
kBT

)
, (1.255)

where:

a0 =
4πε0�

2

mee2
(1.256)

is the radius of the first orbit of the Bohr hydrogen atom, n0 the density
of neutrals. gi, g0 the statistical weights of the singly-charged ion (ground
state) and neutral atom (ground state), respectively, and Ei, the threshold
energy for the first ionisation of helium.

c) Show that (1.254) is neither a sufficient, nor a necessary condition for ne/n0

to be large (high degree of ionisation).

Constant: a0 = 0.05 nm. Application: Ei = 24.59 eV (energy threshold of
the first ionisation of the helium atom).

Answer

a)The energy of interaction between an electron and an ion can be written:

φ(d) =
e2

4πε0d
, (1.257)

where d is the average distance between the two types of charged particles.
The assumption stated above implies that:

e2

4πε0d
 kBTe . (1.258)

To estimate the average distance d, we turn to the obvious relation:

(
4

3
πd3

)
ne = 1 , (1.259)
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which states that the spherical volume around an ion, of radius d, only
contains one particle (on average). From (1.259) and (1.257), we obtain:

(
4

3
πne

) 1
3 e2

4πε0

1

kBTe
 1 . (1.260)

From the definition (1.41):

λDe =

(
ε0kBTe

ne2

) 1
2

, (1.261)

we obtain the inequality (1.260) raised to the cubic power:

4πne

3

(
nee

2

4πε0kBTe

)3
1

n3
e

 1 , (1.262)

from which:
4π

3(4π)3
1

n2
e

1

λ6
D

 1 . (1.263)

The factor 1/3(4π)2 simply reinforces the fact that:

neλ
3
D 	 1 . (1.264)

b)The Saha relation, for singly ionised atoms, from Sect. 1.4.2, is:

neni

n0
=

2gi
g0

(2πmekBT )
3
2

h3
exp

(
− Ei
kBT

)
. (1.12)

Noting ne = ni (the helium ion is assumed to be singly ionised) and intro-
ducing λD in (1.12) via a ratio equal to unity:

n2
e

n0
=

2gi
g0

(2πmekBT )
3
2

h3

(
λ2
Dnee

2

ε0kBT

) 3
2

exp

(
− Ei
kBT

)
, (1.265)

such that:

n2
e

n0
=

2gi
g0

n2
e

n
1
2
e

λ3
D

(
2πmee

2

h2ε0

) 3
2

exp

(
− Ei
kBT

)
, (1.266)

ne

n0
=

2gi
g0

neλ
3
D√

ne

(
2mee

2

4π�2ε0

) 3
2

exp

(
− Ei
kBT

)
, (1.267)

and finally:
ne

n0
=

2
5
2 gi
g0

neλ
3
D√

nea30
exp

(
− Ei
kBT

)
. (1.268)
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c) In the case where T is low, for ne/n0 to be large, the relation (1.268)
requires that n0 be small, that is to say the gas pressure should be low.
For this, neλ

3
D 	 1 is, a priori, insufficient.

In the case where T is high, ne/n0 is a priori large: the exponential decay
is weak and nea

3
0  1 (which is the case when ne ≈ 1015 cm−3, a0 =

5× 10−9 cm, from which nea
3
0: 10

15(5)310−27, clearly an expression always
 1). It is therefore not necessary for neλ

3
D 	 1 to achieve a high degree

of ionisation.

1.8.

a)Consider a lithium ion with kinetic energy Ec = 60 eV, colliding with a
helium atom at rest. Will the helium be ionised? If this is the case, indicate
if it will produce a single or double ionisation.

b)What would happen if the incident lithium ions were replaced by an elec-
tron with the same energy.

Mass of lithium: � 6.9mp

Mass of helium: � 4.0mp

Mass of proton: mp = 1.67× 10−27 kg
Energy threshold for single ionisation of helium: 24.59 eV
Energy threshold for second ionisation of helium: 54.4 eV

Answer

This concerns a collision between an ion and an atom. The laws of conser-
vation of energy and momentum indicate (Sect. 1.7.2) that only the kinetic
energy linked to the relative motion can be transferred into internal energy.
The expression for conservation of energy can be effectively written (1.79) as:

μhlw
2
hl

2
=

μhlw
′2
hl

2
+ΔE (1.269)

withw andw′ the relative helium-lithium velocities before and after collision,
and μhl the reduced mass:

μhl =
mlmh

ml +mh
, (1.270)

where ml and mh are the masses of the lithium and helium atom respectively.
For a given initial relative velocity w, the maximum energy that can be
transferred into internal energy, from (1.269), is obtained for w′ = 0, i.e.:

ΔEmax =
μhlw

2
hl

2
. (1.271)

Given that the helium atom is at rest, the initial relative velocity whl is equal
to wl, the initial velocity of the lithium ion, whose kinetic energy is:
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Ec =
mlw

2
l

2
. (1.272)

Explicitly, (1.306) can be written:

ΔEmax = Ec
(

mh

mh +ml

)
. (1.273)

Remarks:

1. If the kinetic energy linked to the relative motion is completely trans-
ferred to internal energy (in other words, there is complete equality be-
tween the energy threshold of the inelastic reaction and the transferable
kinetic energy), then w′

hl = 0 (w′
h = w′

l). Following (1.74) and (1.75) and
including (1.70):

w′
h = w′

l = w′
0 = w0 . (1.274)

Since wh = 0, we find from (1.75):

w0 = wl
ml

ml +mh
. (1.275)

Equation (1.274) shows that, after the collision, the helium and lithium
nuclei both follow a uniform, straight path, with a velocity equal to that
of the centre of mass w0 and given by (1.275).
If the energy threshold of the inelastic reaction is below the maximum
transferable energy, the remaining energy will be repartitioned as elastic
energy between the helium and the lithium. If the relative velocity after
collision is w′

hl, the velocities w′
h and w′

l are given by (1.74) and (1.75).
2. Assuming that the kinetic energy linked to the relative motion is integrally

transferred into internal energy, we have w′
hl = 0. In this case, from (1.274)

and (1.275), the velocity wl of the lithium particle before collision and the
velocities w′

l and w′
h of the lithium and helium particles after collision are

all co-linear; the collision is thus necessarily frontal.

Numerical application:

a)The mass of the lithium ion being � 6.9mp, and that of the helium atom
� 4.0mp, the numerical value of (1.273) is then:

ΔEmax = Ec
4.0mp

6.9mp + 4.0mp
= 60

4.0

6.9 + 4.0
= 22.02 eV .

This energy is not sufficient to induce even a single ionisation of the helium
atom.
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b)If the lithium ion is replaced by an electron as incident particle, we obtain
from (1.273):

ΔEmax = 60
4.0mp

me + 4.0mp
= 59.99 eV .

In this case, we can achieve a double ionisation of helium.

Another solution

We could also derive the solution directly from the conservation equations:

1. Conservation of kinetic energy (1.67):

mlw
2
l

2
+

mhw
2
h

2
=

mlw
′2
l

2
+

mhw
′2
h

2
+ΔE , (1.276)

where ml is the mass of the lithium ion, wl its velocity before collision,
w′

l its velocity after collision, mh is the mass of the helium atom, wh

its velocity before collision, w′
h its velocity after collision, andΔE is the

internal energy of the helium atom after collision.
2. Conservation of momentum (1.66):

mlwl +mhwh = mlw
′
l +mhw

′
h . (1.277)

In the present case, the helium ion is at rest before the collision: wh = 0.
Using the law of conservation of momentum (1.277), the velocity of the
helium atom after collision reduces to:

w′
h =

ml(wl −w′
l)

mh
, (1.278)

and the law of conservation of total energy can be written in the following
form:

mlw
2
l

2
=

mlw
′2
l

2
+

m2
l

2mh
(wl −w′

l)
2 +ΔE . (1.279)

Under these conditions, the initial velocity of the lithium is known (the
kinetic energy Ec being given), the change of internal energy Ec is simply
a function of w′

l, the velocity of the lithium ion after collision.
3. Calculation of the maximum possible ΔE (to be compared with the ioni-

sation energy thresholds).
The energy available for transfer to internal energy will be a maximum
when:

d(ΔE)
dw′

l

= 0 , (1.280)

which allows us to determine the maximum value of ΔE .
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From (1.279):

ΔE =
mlw

2
l

2
− mlw

′2
l

2
− m2

l

2mh
(wl −w′

l)
2 , (1.281)

ΔE =
mlw

2
l

2
− mlw

′2
l

2
− m2

l

2mh
w2

l +
m2

l

mh
wl ·w′

l −
m2

l

2mh
w′2

l . (1.282)

This becomes:

d(ΔE)
dw′

l

= −mlw
′
l +

m2
l

mh
wl −

m2
l

mh
w′

l = 0 , (1.283)

w′
l

(
ml +

m2
l

mh

)
= wl

m2
l

mh
, (1.284)

and finally:

w′
l = wl

ml

ml +mh
, (1.285)

which shows that the maximum occurs for a frontal collision (use (1.91)
with θ = π and wh = 0).
In this case, the value of ΔEmax, starting from (1.279) and using (1.285), is:

ΔEmax =
mlw

2
l

2
− m3

lw
2
l

2(ml +mh)2
− m2

l

2mh
w2

l

(
1− ml

ml +mh

)2

, (1.286)

ΔEmax =
mlw

2
l

2
− mlw

2
l

2

m2
l

(ml +mh)2
− mlw

2
l

2

ml

mh

(
mh

ml +mh

)2

, (1.287)

and:

ΔEmax = Ec
(
1− m2

l

(ml +mh)2
− ml

mh

m2
h

(ml +mh)2

)
, (1.288)

which finally leads to:

ΔEmax = Ec
(

mh

ml +mh

)
, (1.289)

and we recover the numerical implementation already treated above.

A further solution

Instead of looking for the maximum possible value ofΔE , we can calculate the
velocities after the collision as a function of ΔE . If the value of ΔE does not
satisfy the conservation laws, then the values of the velocities after collision
so obtained will be either negative or imaginary.
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In (1.282) of variant 1 of the solution, ΔE is a maximum when the scalar
product wl ·w′

l is a maximum, that is when wl and w′
l are colinear (frontal

collision) and in the same direction (see (1.285)). Thus we have:

ΔE = Ec −
mlw

′2
l

2
− Ec

ml

mh
+

m2
l

mh

√
2Ec
ml

w′
l −

mlw
′2
l

2

ml

mh
, (1.290)

ΔE = Ec
(
1− ml

mh

)
− mlw

′2
l

2

(
1 +

ml

mh

)
+

m2
l

mh

√
2Ec
ml

w′
l , (1.291)

mlw
′2
l

2

(
1 +

ml

mh

)
− m2

l

mh

√
2Ec
ml

w′
l +

[
ΔE − Ec

(
1− ml

mh

)]
= 0 , (1.292)

and finally:

w′
l =

−B ±
√
B2 − 4AC
2A , (1.293)

where (Ec and ΔE are now in eV and B2 in kg J):

A =
ml

2

(
1 +

ml

mh

)
(kg) , (1.294)

B = −m2
l

mh

√
2eEc
ml

, (1.295)

C =

[
eΔE − eEc

(
1− ml

mh

)]
(J) . (1.296)

The velocity of the ion after collision w′
l (1.293), must be a real quantity.

In addition, the law of conservation of momentum should give a single value
for the velocity of the lithium ion after the collision. Under these conditions,
the value of ΔE that leads to a single root of equation (1.293) will be the
portion of energy transferred by the lithium ion to the helium atom during
the collision.
To allow a single root, the discriminant of the quadratic equation is neces-
sarily zero:

D = B2 − 4AC = 0 . (1.297)

From (1.297) we obtain:

m4
l

m2
h

2eEc
ml

= 4
ml

2

(
1 +

ml

mh

)[
eΔE − eEc

(
1− ml

mh

)]
, (1.298)

m2
l

mh

Ec
(mh +ml)

+ Ec
(mh −ml)

mh
= ΔE . (1.299)
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Thus:

ΔE = Ec
(

m2
l

mh(mh +ml)
+

(mh −ml)(mh +ml)

mh(mh +ml)

)
, (1.300)

ΔE = Ec
(
m2

l +m2
h −m2

l

mh(mh +ml)

)
, (1.301)

and finally:

ΔE = Ec
(

mh

mh +ml

)
, (1.302)

the numerical application for which has already been treated above.
If we choose to give ΔE in (1.276) a value equal to the first ionisation of
helium (ΔE = 24.59 eV), we obtain from (1.297):

A =
6.9mp

2

(
1 +

6.9mp

4.0mp

)
= 1.57× 10−26 (kg) ,

B = −6.92mp

4

√
2

6.9

1.6× 10−19 60

1.67× 10−27
= −8.11× 10−22 (B2 in kg J) ,

C =

[
1.6× 10−19

(
24.59− 60

(
1− 6.9mp

4.0mp

))]
= 1.089× 10−17 (J) ,

D = B2 − 4AC = 6.58× 10−43 − 6.84× 10−43 = −2.6× 10−44 < 0 ,

which is an unacceptable solution, because it would require an imaginary
value for the velocity of the lithium ion after the collision, w′

l (1.293).
For ΔE = 22.02 eV,

A = 1.57× 10−26 (kg) ,

B = −8.11× 10−22 (B2 en kg J) ,

C =

[
1.6× 10−19

(
22.02− 60

(
1− 6.9mp

4.0mp

))]
= 1.048× 10−17 (J) ,

D = B2 − 4AC = 6.58× 10−43 − 6.58× 10−43 = 0 ,

and:

w′
l =

1

2

1.81× 10−22

1.57× 10−26
= 2.58× 104 ms−1 . (1.303)

The solution is valid (satisfying the conservation laws), but the internal en-
ergy is less than the energy threshold for the first ionisation of helium, as was
shown in the original solution.

1.9. Consider two populations of particles, α and β, with masses mα and mβ ,
whose velocity distribution functions fα(wα) and fβ(wβ) are isotropic, with
temperatures Tα and Tβ , respectively.
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a)Calculate the average value 〈|wα − wβ |〉 of the modulus of the relative
velocities between particles α and β, using the following steps:

1. Write the relation expressing the average of the modulus of the relative
velocities by integration over the distribution functions fα and fβ .

2. Introduce the following change of variables:

wαβ = wα −wβ and w0 =
awα + bwβ

a+ b
(1.304)

and calculate the coefficients a and b such that the product of the
distribution functions fαfβ can be written in the form:

fα(wα)fβ(wβ) = fαβ(wαβ)f0(w0) . (1.305)

For this, express wα and wβ as functions of w0 and wαβ , and proceed
by identification.

3. Verify that the Jacobian of the transformation of coordinates is equal
to unity and thus d3wα d3wβ = d3wαβ d3w0. Then integrate over w0

and wαβ to obtain the average value of 〈|wα −wβ |〉.

b)Calculate vαβ , the most probable relative velocity.

Answer

a)

1. To obtain the average value of |wα −wβ |, it is necessary to integrate
this term over the velocities of the population ensemble of the particles
α and β, i.e.:

〈|wα −wβ |〉 =
∫

wα

∫

wβ

|wα −wβ | fαfβ d3wαd
3wβ (1.306)

with:

fαfβ =
(

mα

2πkBTα

) 3
2
(

mβ

2πkBTβ

) 3
2

exp

[
−
(
mαw

2
α

2kBTα
+

mβw
2
β

2kBTβ

)]
. (1.307)

Equation (1.306) is justified by considering the general definition of a
hydrodynamic quantity (3.39) where the function fαβ(wα,wβ) is an
uncorrelated pair-correlation distribution function (Sect. 3.2) such that
fαβ(wα,wβ) = fα(wα)fβ(wβ).
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2. The calculation of wα and wβ as a function of the new coordinates
wαβ and w0 given by (1.74) and (1.75) is:

wα = w0 +
bwαβ

a+ b
, (1.308)

wβ = w0 −
awαβ

a+ b
. (1.309)

Substituting wα and wβ by wαβ and w0 in the exponential term of
(1.307), we obtain:

mαw
2
α

2kBTα
+

mβw
2
β

2kBTβ
=

mα

2kBTα

[
w2

0 +
b2

(a+ b)2
w2

αβ +
2b

a+ b
w0 ·wαβ

]

+
mβ

2kBTβ

[
w2

0 +
a2

(a+ b)2
w2

αβ − 2a

a+ b
w0 ·wαβ

]
. (1.310)

To eliminate the cross terms in (1.310) by addition, a and b must be
chosen such that:

a

b
=

mαTβ

mβTα
, (1.311)

and we will take a = mαTβ and b = mβTα.
The argument of the exponential given by equation (1.310) can thus
be written:

mαw
2
α

2kBTα
+

mβw
2
β

2kBTβ
= w2

0

(mα +mβ)(mαTβ +mβTα)

2kBTαTβ(mα +mβ)

+w2
αβ

mαmβ

mα +mβ

mα +mβ

2kB(mαTβ +mβTα)

=
m0w

2
0

2kBT0
+

μαβw
2
αβ

2kBTαβ
(1.312)

after setting:

m0 = mα +mβ , T0 =
TαTβ

Tαβ
,

μαβ =
mαmβ

mα +mβ
, Tαβ =

mαTβ +mβTα

mα +mβ
.

Further, noting that the product mαmβ/TαTβ in the pre-exponential
terms of equation (1.307) can be written in the form:

mαmβ

TαTβ
=

mαmβ

mα +mβ

(mα +mβ)Tαβ

TαβTαTβ
=

μαβm0

TαβT0
. (1.313)
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We can thus verify that:

fα(wα)fβ(wβ) = fαβ(wαβ)f0(w0) , (1.314)

where fαβ , characterising the relative velocity distribution, and f0 the
velocity distribution for w0 are defined by:

fαβ =

(
μαβ

2πkBTαβ

) 3
2

exp

(
−
μαβw

2
αβ

2kBTαβ

)
, (1.315)

f0 =

(
m0

2πkBT0

) 3
2

exp

(
−m0w

2
0

2kBT0

)
. (1.316)

3. Consider the change of frame for the velocities defined by (1.308) and
(1.309). The Jacobian J for this transformation has the value:

J ≡

∣∣∣∣∣∣∣

1 − a

a+ b

1
b

a+ b

∣∣∣∣∣∣∣
= 1 . (1.317)

Since dwαdwβ = J dwαβ dw0, we finally have:

dwαdwβ = dwαβ dw0 . (1.318)

The average value of the modulus of the relative velocities can thus be
written:

〈|wα −wβ |〉 = 〈|wαβ |〉 =
∫

wαβ

∫

w0

|wαβ |fαβf0 dwαβdw0 , (1.319)

hence:
∫

wαβ

|wαβ |fαβ dwαβ

∫

w0

f0 dw0

︸ ︷︷ ︸
1

=

∫

wαβ

|wαβ |fαβ dwαβ . (1.320)

The function fαβ being isotropic, using (1.315) we can develop (1.320)
in the following way:

〈|wα −wβ |〉 = 4π

∞∫

0

w3
αβ

(
μαβ

2πkBTαβ

) 3
2

exp

(
−
μαβw

2
αβ

2kBTαβ

)
dwαβ ,

(1.321)
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〈|wα −wβ |〉 = 4π

(
μαβ

2πkBTαβ

) 3
2

× 1

2

(
2kBTαβ

μαβ

)2

, (1.322)

=
2√
π

(
μαβ

2kBTαβ

) 3
2
(
2kBTαβ

μαβ

)2

, (1.323)

〈|wα −wβ |〉 =
2√
π

(
2kBTαβ

μαβ

) 1
2

=

√
8kBTαβ

πμαβ
, (1.324)

=

√
8kB(mαTβ +mβTα)(mα +mβ)

π(mα +mβ)mαmβ
, (1.325)

〈|wα −wβ |〉 =

√
8kB
π

(
Tβ

mβ
+

Tα

mα

)
. (1.326)

Remarks:
a. If one of the temperatures is zero (Tβ = 0), we recover the value of

the average particle velocity for temperature Tα (Tα �= 0) because

〈|wα − 0|〉 = 〈|wα|〉 = (8kBTα/πmα)
1
2 .

b. If α = β, 〈|wα −w′
α|〉 =

√
2〈wα〉. This second case corresponds to

a collision between two particles from the same population.
c. If the cross-section σ̂αβ(|wα − wβ |) is a simple analytic function

of |wα − wβ |, it is then possible to calculate the reaction coeffi-
cient kαβ = 〈σ̂αβ(|wα−wβ |)|wα−wβ |〉 (1.146) by using the same
method.

b)Assuming that the distribution functions are isotropic, the distribution
function fαβ(wαβ) is described in spherical coordinates by:

g(wαβ) ≡ 4πw2
αβfαβ(wαβ) ,

hence:

g(wαβ) ≡ 4πw2
αβ

(
μαβ

2πkBTαβ

) 3
2

exp

(
−
μαβw

2
αβ

2kBTαβ

)
. (1.327)

The most probable velocity vαβ is obtained when:

∂g

∂wαβ
= 0 . (1.328)

The derivation of (1.327) shows that relation (1.328) is satisfied when:

w2
αβ =

2kBTαβ

μαβ
. (1.329)
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The expression for the most probable velocity is then:

vαβ =

√
2kBTαβ

μαβ
,

which, when we expand Tαβ and μαβ as before, is:

vαβ =

√
2kBTα

mα
+

2kBTβ

mβ
,

which is the square root of the sum of the most probable velocity of each
type of particle.

1.10. Consider “billiard ball” binary elastic collisions, where the species α
and β are rigid spheres of radius rα and rβ .

a)Draw the geometric representation of a collision in the centre of mass frame
at the moment of impact: indicate the particle velocities before and after
the collision, the impact parameter s and the scattering angle θ.

b)Calculate the microscopic differential scattering cross-section σ̂(wαβ , θ).
c)Deduce the total microscopic scattering cross-sections σ̂tc(wαβ) and

σ̂tm(wαβ).
d)Consider ion-neutral and electron-neutral cross-sections in a “billiard ball”

model, assuming that the electron radius is zero (rα = 0) and that the
radius of the ions is equal to the radius rβ of the neutrals. Deduce the
relationship of the cross-sections. Compare this relation with that obtained
for collisions of electrons and helium ions on helium atoms:

〈σ̂en(w)〉(TeV = 2 eV, Tn = 300K) = 5× 10−16 cm2 ,

〈σ̂in(w)〉(Ti = Tn = 300K) = 3.5× 10−15 cm2 .

Answer

a)The geometry of an elastic “billiard ball” collision, whose interaction is by
nature repulsive, is represented in the figure below. The velocities wα0 and
wβ0, and w′

α0 and w′
β0, are the velocities of the particles α and β before

and after collision respectively. The distance s between the two pairs of
asymptotes is the impact parameter (the distance of closest approach in
the absence of an interaction). The scattering angle θ is related to the
angle χmax, the maximum angle between r (the relative position of the
centre of the particles) and the relative velocity wαβ = wα0 −wβ0 before
collision by:

2χmax + θ = π . (1.330)
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Fig. 1.21 Geometric representation of a “billiard ball” interaction in the centre of
mass frame.

b)The differential relation between the total microscopic cross-section σ̂tc and
the microscopic differential scattering cross section σ̂(wαβ , θ) is deduced
from (1.110):

dσ̂tc = 2πσ̂(wαβ , θ) sin θ dθ . (1.331)

The microscopic cross-section element dσ̂tc can be expressed in a simple
way as a function of the impact parameter s (V.34), as:

dσ̂tc = 2πs ds . (1.332)

It is therefore sufficient to determine the relation between s and θ, then to
deduce the corresponding differential cross-section and finally to identify
(1.332) with (1.331).
From the figure, we have:

s = (rα + rβ) sinχmax , (1.333)

then, taking account of (1.330):

s = (rα + rβ) cos
θ

2
, (1.334)

and thus:

ds = −rα + rβ
2

sin
θ

2
dθ . (1.335)
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The (−) sign signifies that an increase in the impact parameter results in a
reduction in the scattering angle θ. Including (1.334) and (1.335), (1.332)
can be written:

2πs ds = − (rα + rβ)
2

4
sin θ dθ (1.336)

and, by identification with (1.331), we obtain:

σ̂(wαβ , θ) =

∣∣∣∣−
(rα + rβ)

2

4

∣∣∣∣ . (1.337)

This verifies that, for the hard sphere “billiard ball” model, the microscopic
differential cross-section depends neither on the relative velocities, nor on
the scattering angle.

Remark: Relation (1.333) can also be obtained by integration of (V.18)
from r = ∞ to rmin = rα + rβ , by considering the interaction potential
φ(r) to be zero between r = ∞ and rmin and becoming infinite for r less
than rmin. The integral (V.18) can then be written:

χmax =

rmin∫

∞

s dr

r2

√
1 +

(s
r

)2 , (1.338)

and by change of variable:

u =
s

r
, (1.339)

we obtain:

χmax =

s/(rα+rβ)∫

0

− du√
1− u2

, (1.340)

hence:
χmax = arcsin

s

rα + rβ
(1.341)

and finally:

s = (rα + rβ) sinχmax . (1.333)

c)The total microscopic collision cross-section (1.110) can be written:

σ̂tc = 2π

π∫

0

(rα + rβ)
2

4
sin θ dθ (1.342)

and, after integration:
σ̂tc = π(rα + rβ)

2 , (1.343)



100 1 Definition and orders of magnitude of principal quantities

which is a value corresponding to a tangential collision (s = rα + rβ) and
which can be obtained directly by multiplying (1.337) by 4π steradian, the
solid angle over a sphere.
The total microscopic momentum transfer cross-section (1.111) can be
written:

σ̂tm = 2π

π∫

0

(rα + rβ)
2

4
sin θ(1− cos θ) dθ , (1.344)

σ̂tm =
π

2
(rα + rβ)

2

π∫

0

(1− cos θ) d(− cos θ) , (1.345)

then, after integration:

σ̂tm = π(rα + rβ)
2 , (1.346)

which is identical to the value obtained for the total microscopic cross
section for simple collisions (1.343).

d)In the case of ion-neutral collisions rα = rβ , such that:

σ̂in = 4πr2β , (1.347)

while for electron-neutral collisions (rα = 0):

σ̂en = πr2β . (1.348)

Therefore, within the billiard-ball model, the cross-section for electron-
neutral collisions is a factor 4 times smaller than the cross section for
ion-neutral collisions. For helium, from experiments this time, there is a
factor of 7 between these two cross-sections but they were not determined
for the same relative velocities or relative energies.



Chapter 2

Individual Motion of a Charged
Particle in Electric and Magnetic
Fields

There are three distinct levels of modelling of the action of E and B fields
on the charged particles in a plasma. Starting with the simplest and moving
to the most complicated, we have:

The single trajectory model

In this description, the fields E and B are given, imposed from the exte-
rior: no account is taken of the fields created by the motion of the particles.
Further, collisions are completely neglected, including Coulomb interactions:
this model only describes the motion of an isolated particle.

The hydrodynamic model

In this case, the plasma consists either of two fluids (that of the electrons and
that of the ions), or of a single fluid (for instance, that of the electrons, the ions
remaining at rest and forming a continuous background, providing an effective
viscosity to the electron motion). The motion of each fluid is characterised
locally by an average velocity v whose value results from an integration of
the velocity distribution of the particles contained in the volume element
considered (Sect. 3.3). The motion of the charged particles creates the fields
E and B (for which the average local value is retained (macroscopic fields))
which are included in a self-consistent manner in the equations of motion50.
In addition, the model includes collisions, which modify the pre-determined
motion defined by the superposition of the external and induced fields.

In order to establish self-consistency between the charged particle motion
and the fields they produce, we need to consider first the velocity of the

50 The coupling of the E and B fields with the charged particles is said to be self-consistent

because the motion of the particles creating the fields E and B is itself influenced by the
fields that it produces.

M. Moisan, J. Pelletier, Physics of Collisional Plasmas,
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fluid elements. This is obtained from the equation of motion, in which the
Lorentz’ force (Sect. 2.1) is included, assuming values for the E and B fields
for the first iteration. Once v has been determined, we can calculate the total
current density J from the component fluids involved (J =

∑
α nαqαvα). We

can then complete the loop in two ways to obtain iterated values forE and B:

- from J , recover E from the electromagnetic relation:

J = σE , (2.1)

where σ is the electrical conductivity from the fluids involved, and from the
known value of E, calculate B by one or other of Maxwell’s curl equations:

∇ ∧E = −∂B

∂t
, (2.2)

∇ ∧B = μ0ε0
∂E

∂t
+ μ0J , (2.3)

- from the density J , calculate the charge density ρ from the continuity
equation (for example ∂ρ/∂t + ∇ · J = 0) and obtain E from Poisson’s
equation:

∇ ·E = ρ/ε0 , (1.1)

then, determine B through (2.2) or (2.3).

Remark: Note that the conductivity σ, which relates J and E, plays a key
role in obtaining field-particle self-consistence: we shall calculate the expres-
sion for σ in the framework of various models.

The kinetic or microscopic model

This is the description with the highest resolution. It uses the individual ve-
locity distributions of the particles: this allows us to include certain phenom-
ena that escape the hydrodynamic model, such as, for example, the Landau
damping (resonance effect between a wave propagating in the plasma and par-
ticles with velocities within a certain interval). This model includes the fields
and collisions self consistently, this time on the microscopic scale (individual
particles), a more refined approach than that provided by the macroscopic
values (average values over the velocity distribution of the particles).

The present chapter is devoted to the study of the individual motion of
a charged particle in given E and B fields. This model gives a first glimpse
of the complex phenomena taking place at the heart of a plasma, with the
assumption that there are no collisions in the body of the plasma or at the
walls. In the first place, we will examine the solution of the equation of
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motion through a series of particular cases, to finally determine the general
solution51.

2.1 The general equation of motion of a charged particle
in E and B fields and properties of that equation

Suppose qa is the charge of a particle of mass ma, moving with a velocity w =
dr/dt and suppose E(r, t) and B(r, t) are the external fields: the particle is
subject to the action of the Lorentz’ force that, in the non-relativistic case,
takes the form52:

F ≡ qa [E(r, t) +w ∧B(r, t)] . (2.4)

This equation is the result of observation. It is valid if the particle is suffi-
ciently small to be taken as a point (this therefore avoids the need to consider
the problem of repartition of charges in the particle volume).

2.1.1 The equation of motion

From (2.4), we can write:

mα
d2r

dt2
= qα

[
E(r, t) +

dr

dt
∧B(r, t)

]
. (2.5)

This equation leads to a second order differential equation for each axial
component of the coordinate system. For example, in Cartesian coordinates:

mα
d2x

dt2
= qα

[
Ex +

(
Bz

dy

dt
−By

dz

dt

)]
, (2.6)

mα
d2y

dt2
= qα

[
Ey +

(
Bx

dz

dt
−Bz

dx

dt

)]
, (2.7)

mα
d2z

dt2
= qα

[
Ez +

(
By

dx

dt
−Bx

dy

dt

)]
. (2.8)

51 The principal reference for this section is Electrodynamics of Plasmas by Jancel and
Kahan, Chap. 4. See also Delcroix, Physique des plasmas, Vol. I, Sect. 12.3, Delcroix and

Bers, Physique des plasmas, Vol. I, Sect. 2.3, and Allis, Motions of Ions and Electrons [2].
52 The relativistic equation is:

ma
dw

dt
= qa

(
1− w2

c2

) 1
2
[
E(r, t) +w ∧B(r, t)− w2

c2
(w ·E)

]
,

where c is the speed of light in vacuum.



104 2 Motion of a charged particle in E and B fields

2.1.2 The kinetic energy equation

Taking the scalar product of (2.5) with w = dr/dt, we obtain the kinetic
energy equation:

mα

2

d

dt

∣∣∣∣
dr

dt

∣∣∣∣
2

= qαE(r, t) · dr
dt

+ qα

(
dr

dt
∧B(r, t)

)
· dr
dt

, (2.9)

where the second term on the RHS vanishes, since (A ∧ B) · A = 0: the
resulting equation is in scalar form and constitutes an invariant in any frame
of reference. After integration of the equation over time t from t0 to t (in
position, from r0 to r), we have:

mα

2

[∣∣∣∣
dr

dt

∣∣∣∣
2

r

−
∣∣∣∣
dr

dt

∣∣∣∣
2

r0

]
= qα

t∫

t0

E · dr , (2.10)

where the RHS of the equation represents the work done on the particle by
the electric field. From this, we can draw the following important conclusions:

1. The magnetic field does “no work” because the force it exerts on the par-
ticle is perpendicular to its velocity53. It follows that the magnitude of the
velocity of a charged particle is not affected by the presence of a magnetic
field. However, the magnitudes of the velocity components perpendicular
to B can vary, as we will show for the cyclotron motion (Sect. 2.2.2).
Supposing that B is directed along Ox, this implies that:

w2
⊥ = w2

y0 + w2
z0 = w2

y(t) + w2
z(t) , (2.11)

where the subscript 0 denotes the velocity at t = 0: in other words, a mag-
netic field can only change the direction of the velocity, not its magnitude.
However, the application of a magnetic field to a plasma makes it possi-
ble, among other things, to conserve the energy of the system by reducing
the diffusion losses of the charged particles to the walls, as we shall see
(Sect. 3.8).

2. Only the electric field can “heat” the charged particles, i.e., give them
energy.

2.2 Analysis of particular cases of E and B

We will successively treat the following cases: only an electric field acting
on the particle (Sect. 2.2.1); the particle is subjected to a constant, uniform

53 Heating by magnetic pumping, where B varies periodically, can be considered as result-
ing from the action of the E field through the Maxwell equation ∇∧E = −∂B/∂t.
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magnetic field, with or without an electric field E (Sect. 2.2.2); and finally,
the most complex situation, the particle moves in a magnetic field that is
(slightly) non uniform or (slowly) varying in time (Sect. 2.2.3). We will see
that the different solutions obtained for the particular cases can be included
in a general equation describing the particle motion in such E and B fields.

2.2.1 Electric field only (B = 0)

From (2.6), (2.7) and (2.8), we obtain:

d2x

dt2
=

qa
ma

Ex(r, t) ,
d2y

dt2
=

qa
ma

Ey(r, t) ,
d2z

dt2
=

qa
ma

Ez(r, t) . (2.12)

We can now treat the following cases.

Constant and uniform electric field E

By direct integration of (2.12) in vectorial form, we deduce:

w =
qα
mα

Et+w0 , (2.13)

r =
qα
mα

E
t2

2
+w0t+ r0 , (2.14)

which describe uniformly accelerated motion.

Remarks:

1. From (2.13), one can see that the component of motion along a direction
perpendicular to E is not affected by the presence of this field; this can be
shown by decomposing w in directions parallel and perpendicular to E.
The situation is completely different with B, because the corresponding
force acts perpendicularly to B (and to w) (2.4).

2. Since the field E selectively accelerates the component of velocity parallel
to it, we could say that it tends, if not to confine, at least to orient the
particle in this direction.

3. From (2.13) and (2.14), we can conclude that the velocity, as well as the
distance travelled by an ion of mass mi under the effect of a field E during
a given time is me/mi times smaller than that of an electron of mass me

in the same field, which justifies the commonly used assumption that the
ion is at rest with respect to the electron.
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Conservative field E(r, t)

Since the electric field is conservative, we can write:

E = −∇φ(r, t) , (2.15)

where φ is the potential acting on the particle. The vectorial equation of
motion:

mα
d2r

dt2
= −qα∇φ , (2.16)

scalar multiplied by dr/dt shows, after integration over time t, that the vari-
ation of kinetic energy is equal to the (negative) variation of the potential
energy, such that the total energy is, of course, conserved:

mα

2

[∣∣∣∣
dr

dt

∣∣∣∣
2

r

−
∣∣∣∣
dr

dt

∣∣∣∣
2

r0

]
= −qα[φ(r, t)− φ(r0, t0)] . (2.17)

Equation (2.17) is a variant of (2.10).

Application to the case where φ is time independent

The motion of an electron in an electrostatic potential is similar to the prop-
agation of a luminous wave in a medium of refractive index nr, as shown
below.

Consider the case of two media where φ, moreover, does not depend on r,
thus E is zero (2.15). The crossing of a discontinuity in potential (φ1 �= φ2,
Fig. 2.1) determines the existence of a field E (at the interface only) and, as
a result, the particle experiences an instantaneous acceleration (or decelera-
tion), the velocity thus changing from w1 to w2.

However, the components of the velocities parallel to the interface between
the two media remain the same from one side to the other, because the electric
fieldE is perpendicular to this interface (Remark 1 above) from which, noting
p = mew:

|p1| sin θ1 = |p2| sin θ2 , (2.18)

which, when written in the form:

|p1|
|p2|

=
sin θ2
sin θ1

, (2.19)

appears as the well known geometrical optics law of Descartes, if θ1 and
θ2 are considered as the angle of incidence and refraction respectively, and
where the momentum pi of the particle is proportional to the index of the
medium54.

54 Doing this, one finds that nr = A
√
E − qαφ, where A is a constant and E the total

energy of the particle.
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Fig. 2.1 Description of the

refraction path in optical
electronics.

The field E is uniform, but oscillates periodically
as a function of time

This case corresponds to that in which the charged particles are present either
in a plasma created by a high frequency field (HF), or in a plasma produced
by other means (for example, a continuous current discharge) onto which a
significant HF field has been superimposed.

The equation of motion is, in this case:

d2r

dt2
=

qα
mα

E0e
iωt (2.20)

and, after successive integrations from t = 0 to t, and supposing that the
initial velocity of the particle is w0 (taking w0 �= 0, to remain completely
general), we obtain:

w =
dr

dt
=

1

iω

[
qαE0

mα
eiωt − qαE0

mα

]
+w0 , (2.21)

or:

w =
qαE0

imαω
eiωt +

(
w0 −

qαE0

iωmα

)
, (2.22)

and:

r = − qαE0

mαω2
eiωt +

(
w0 −

qαE0

iωmα

)
t+ rc , (2.23)

where rc is a constant of integration, the initial position of the particle being

r0 = − qαE0

mαω2
+ rc . (2.24)

Examination of the relative phases of E, w and r

We consider a charged particle (taken to be a positive ion), with zero initial
velocity, in an electric field E0 cosωt of period T , and examine the detailed
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behaviour of its velocity and trajectory55 as a function of time, with the aid
of Fig. 2.2. To simplify this presentation, we ignore the non-periodic term in
velocity in (2.22).

Fig. 2.2 Velocity and trajectory of a positive ion (full curve) and of an electron (dotted)

in an alternating electric field of period T .

1. Velocity: the velocity of the charged particle is in phase with the field E.
From t = 0 to t = T /4, the positive ion is accelerated in the positive
direction of the field: its velocity increases during the entire quarter period
and reaches its maximum value at t = T /4, when the electric field passes
through zero.
Between t = T /4 and T /2, the field E is in the opposite direction to the
velocity of the positive ion, so it can only be retarded. The velocity passes
through zero at the same time as the electric field reaches its maximum,
the situation being symmetric to t = 0: in order to return to zero velocity,
a field of the same amplitude but in the opposite direction is required.
Between t = T /2 and 3T /4, by symmetry, the velocity of the particle
reaches its maximum opposite to its initial direction at the same time as

55 By convention, the electric field existing between a positive charge and a negative charge

is directed towards the negative charge. As a result, a positive ion is accelerated in the
direction of the field (see Fig. 2.2).
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the electric field passes through zero, just before changing sign, and so
on. The velocity of the ion is then π/2 behind the phase of the field E.
This de-phasing with respect to the field E, as we shall see, is such that
the transfer of energy from the field to the charged particle is zero over a
complete period.

2. Trajectory: in the case of a positive ion, the phase of the trajectory lags
by π behind that of the electric field (in opposite phase), while an electron
is in phase with the field. The amplitude of motion of a charged particle
in a HF field E is referred to as the extension of the periodic motion and
denoted by xE .
For a positive ion (initial position xE(0) in Fig. 2.2), since the initial
velocity is assumed to be zero, the direction of motion, according to our
convention, is in the direction of the field and only changes direction when
the velocity wE passes through zero (at t = T /2): at this time, the field
has its maximum in the opposite direction: there is clearly a lag in phase
of π in the motion of the ion in the field.
In contrast, the spatial oscillation of the electron motion is in phase with
the HF field (following the convention of the direction of the field that we
have adopted).

Transfer of energy from an oscillating electric field E
to a charged particle

The kinetic energy resulting from the work done by an electric field E on the
charge, in the time interval t0 to t can be written (see (2.10)):

W ≡ mα

2
w2
∣∣∣
r

r0
= qα

r∫

r0

E · dr = qα

t∫

t0

E ·wdt , (2.25)

and, following (2.22):

W = �

⎡

⎣qα
t∫

t0

E0e
iωt ·

(
qαE0

mαiω
eiωt +w0 −

qαE
2
0

iωmα

)
dt

⎤

⎦ ,

= �

⎡

⎣ q2αE
2
0

imαω

t∫

t0

ei2ωtdt+

(
qαE0 ·w0 −

q2αE
2
0

imαω

) t∫

t0

eiωtdt

⎤

⎦ ,

= �
[
− q2αE

2
0

2mαω2
ei2ωt

∣∣∣∣
t

t0

+

(
qαE0 ·w0

iω
+

q2αE
2
0

mαω2

)
eiωt

∣∣∣∣
t

t0

]
,

= − q2αE
2
0

2mαω2
cos 2ωt

∣∣∣∣
t

t0

+
q2αE

2
0

mαω2
cosωt

∣∣∣∣
t

t0

+
qαE0 ·w0

ω
sinωt

∣∣∣∣
t

t0

, (2.26)
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where �(A) denotes the real part of a complex quantity A. In the scalar
product under the integral, w reduces to wE (2.22), the component of the
velocity parallel to E (there is no work done in the direction perpendicular
to E).

The value of the integral (2.26) over a period T = 2π/ω, i.e. between the
times t0 and t0 + 2π/ω, is zero. The total kinetic energy acquired during a
period is actually zero, because during the first half-period the work is done
in one direction and in the opposite direction during the second half-period.

However, if the oscillatory motion of the particle is interrupted by a colli-
sion before the repetition of a complete period starting from t0, when the field
has been applied, the integral (2.26) is non-zero and the corresponding energy
taken from the field will be acquired by the particle56. In order to demon-
strate this, we must leave the very simplified model of individual trajectories
(collisionless plasma model) for a moment and consider the hydrodynamic
model including collisions.

Transfer of energy from an oscillating field E to electrons via
collisions: power absorbed by the electrons and plasma
permittivity (a digression from individual trajectories)

Consider an electron fluid, coupled to ions and neutrals via collisions. As-
suming that the thermal motion of electrons is negligible compared to their
motion resulting from the field E (vth  vE , cold plasma approximation), the
corresponding hydrodynamic equation for momentum transport (Sect. 3.7)
can then be written:

me
dv

dt
= −eE0e

iωt −meνv , (2.27)

where v is the (macroscopic) velocity of electrons and ν the average electron-
neutral momentum transfer collision frequency. The physical meaning of this
equation has already been discussed (1.147).

In fact, we are not very far from the context of individual trajectories in
the sense that we can consider that (2.27) describes the motion of a single
particle in a medium where it is subject to a friction force.

In the cold plasma approximation, the electron velocity is purely periodic,
such that:

v = v0e
iωt , (2.28)

and, substituting v in (2.27), we obtain:

56 The particle “acquires” this energy at the moment of collision, this energy being totally
or partially shared with the particle with which it interacts. Recall that in the case of an

electron-neutral collision, the electron only partially transfers its energy; more exactly, a
fraction of the order of me/M of that energy (Sect. 1.7.2).
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v = − eE(t)

me(ν + iω)
, (2.29)

which determines v0.
Since dr/dt ≡ v, again neglecting thermal motion, we have:

r =
v

iω
, (2.30)

that is:

r =
eE(t)

meω(ω − iν)
. (2.31)

- Average HF power absorbed per electron
The work per unit time and per electron in the field E can be written:

− eE · v , (2.32)

which thus represents the instantaneous power taken from the field. The
average value of the product of two complex variables A and B over a
period, each varying sinusoidally with the same frequency, is �(AB∗)/2
(B∗ is the complex conjugate of B). The power taken from the field over
a period, or the average power, per electron, is then:

θa ≡ �
(
−eE · v∗

2

)
= �

[
e2E2

0

2me

1

(ν − iω)

]
=

e2

me

ν

ν2 + ω2
E2 , (2.33)

where
√
E2 = E0/

√
2 is the mean squared value of the electric field.

If ν/ω  1 (HF discharge approximation), we have (2.33):

θa ≈ e2

me

ν

ω2
E2 , (2.34)

and we can verify that, for ν = 0, the transfer of energy from the field E
is zero, θa = 0, conforming to the result we have already obtained above
in the case of individual trajectories.
In the opposite case of ν/ω 	 1 (low-frequency discharge approximation),
we obtain:

θa ≈ e2

me

E2

ν
. (2.35)

Expressions (2.34) and (2.35) are essential to the understanding of HF
plasmas (Sect. 4.2).

- Electrical conductivity and permittivity in the presence of collisions
The motion of charged particles in the field E creates a current, called the
conduction current. For an electron density ne, the current density can be
written:

J = −neev (2.36)
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and in complex notation, following (2.29):

J =
nee

2

me(ν + iω)
E(t) . (2.37)

Since from electromagnetism:

J = σE , (2.38)

where σ is the (scalar) electrical conductivity of electrons, we find by
identification from (2.37) and (2.38):

σ =
nee

2

me(ν + iω)
. (2.39)

Note that in the case where there are no collisions (ν = 0), σ is purely
imaginary and the plasma then behaves as a perfect dielectric.
The permittivity εp of the plasma relative to vacuum in a field E0e

iωt is
related to the conductivity σ (demonstrated in Remark 2 below):

εp = 1 +
σ

iωε0
, (2.40)

where ε0 is the permittivity of vacuum. Substituting σ from (2.39), we
find:

εp = 1−
ω2
pe

ω(ω − iν)
, (2.41)

which, in the absence of collisions, reduces to:

εp = 1−
ω2
pe

ω2
, (2.42)

an expression which shows that the exact case where ω = ωpe represents
a singular value for the propagation of a wave, since εp = 0.

Remarks:

1. Note that the value of θa (2.33) is inversely proportional to the mass of the
particles, which means that we can usually neglect the power transferred
to the ions in assessing the HF-particle power balance. We can also verify
that for constant ω, θa passes through a maximum when ν = ω57; this is
the case in which the transfer of energy is the most efficient.

2. The use of the conductivity σ in the preceding pages corresponds to the
representation of charges in vacuum, as distinct from the dielectric descrip-
tion expressed by εp where, from the beginning, we prefer to consider the

57 Recall that the collision frequency ν depends on the average energy of the electrons
(and on the energy distribution function) and gas pressure (Sect. 1.7.8).
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displacement current rather than the conduction current to describe the
motion of charged particles in a HF field.

In effect, in the case of a purely dielectric description of the plasma, (2.3) can
be expressed in the form:

∇ ∧B = μ0
∂D

∂t
≡ μ0ε0εp

∂E

∂t
. (2.43)

Assuming a periodic variation eiωt in the electromagnetic field with angular
frequency ω, we obtain the terms on the RHS of (2.3) and (2.43) respectively:

μ0ε0
∂E

∂t
+ μ0J = μ0ε0iωE0e

iωt + μ0σE0e
iωt , (2.44)

μ0ε0εp
∂E

∂t
= μ0ε0εpiωE0e

iωt , (2.45)

which, by identification, leads to:

iωε0εp = iωε0 + σ , (2.46)

from which we obtain the complex relative permittivity of the plasma given
by (2.40).

2.2.2 Uniform static magnetic field

MAGNETIC FIELD ONLY (E = 0)

The study of this simple case will allow us to introduce the concepts of
cyclotron gyration and helical motion. Cyclotron motion of particles produces
a magnetic field B′, in the opposite direction to the externally applied field
B, giving the plasma a diamagnetic character.

We will use Cartesian coordinates, such that Ox is oriented in the di-
rection of B. From the general equations of motion (2.6) and (2.8), setting
E = (0, 0, 0) and B = (B, 0, 0), we obtain:

d2x

dt2
= 0 , (2.47)

d2y

dt2
=

qαB

mα

dz

dt
, (2.48)

d2z

dt2
= −qαB

mα

dy

dt
. (2.49)
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These equations can be rewritten by introducing the cyclotron (angular)
frequency :

ωcα = −qαB

mα
, (2.50)

the sign convention being such that ωcα is positive for electrons58.
Ignoring the subscript α for simplicity, (2.47) to (2.49) take the form:

ẍ = 0 , (2.51)

ÿ = −ωcż , (2.52)

z̈ = ωcẏ . (2.53)

We will solve these equations, using the initial conditions (t = 0): x =
y = z = 0 (the particle is initially at the origin of the coordinate system),
ẋ = wx0 = w‖0, ẏ = wy0 and ż = wz0: for complete generality, the compo-
nents of the initial velocity parallel and perpendicular to B are non zero.
Integrating (2.53), we obtain:

ż = ωcy + C1 = ωcy + wz0 , (2.54)

where the constant of integration C1, in view of our initial conditions, is equal
to wz0. Introducing this value of ż into (2.52) for ÿ;

ÿ = −ω2
cy − ωcwz0 . (2.55)

This equation can be rearranged such that the LHS is homogeneous in y:

ÿ + ω2
cy = −ωcwz0 , (2.56)

which has the form of a “forced” harmonic oscillator. The solution to this
equation is given by the sum of the general solution without the RHS, and a
particular solution of the differential equation including the RHS, thus:

y = A1 cosωct+A2 sinωct−
wz0

ωc
. (2.57)

We will now determine the constants A1 and A2 in (2.57):

y(t = 0) ≡ A1 −
wz0

ωc
= 0 from which A1 =

wz0

ωc
, (2.58)

ẏ(t = 0) ≡ wy0 = A2ωc from which A2 =
wy0

ωc
. (2.59)

We now need to calculate z(t): from (2.54) with (2.57)–(2.59),

58 Some authors prefer to write ωcα = |qα|B/mα, but it is still necessary to define the

direction in which the respective positively and negatively charged particles rotate around
a line of force of the field B.



2.2 Analysis of particular cases of E and B 115

ż = ωc

[
wz0

ωc
cosωct+

wy0

ωc
sinωct−

wz0

ωc

]
+ wz0 , (2.60)

and, after integrating over t:

z =
wz0

ωc
sinωct−

wy0

ωc
cosωct+ C2 , (2.61)

and since z(t = 0) = 0, we find C2 = wy0/ωc.
The three equations describing the orbit of a charged particle can finally be
written:

x = wx0t = w‖0t , (2.62)

y =
wz0

ωc
cosωct+

wy0

ωc
sinωct−

wz0

ωc
, (2.63)

z =
wz0

ωc
sinωct−

wy0

ωc
cosωct+

wy0

ωc
. (2.64)

In the yOz plane, the particle motion describes a circle59, for which the centre
is fixed by the constants of integration, in this case Y, Z = −wz0/ωc,−wy0/ωc.
To demonstrate this, we will write the equation of the corresponding circular
trajectory:

(y − Y )2 + (z − Z)2 ≡
(
y +

wz0

ωc

)2

+

(
z − wy0

ωc

)2

=
w2

z0

ω2
c

cos2 ωct+
w2

y0

ω2
c

sin2 ωct+
2wz0wy0

ω2
c

cosωct sinωct

+
w2

z0

ω2
c

sin2 ωct+
w2

y0

ω2
c

cos2 ωct−
2wz0wy0

ω2
c

cosωct sinωct

=
w2

z0 + w2
y0

ω2
c

≡ w2
⊥0

ω2
c

= r2B , (2.65)

from which we can define a radius whose value is:

rB =
w⊥0

ωc
=

me

eB
w⊥0 . (2.66)

In summary, in the plane perpendicular to B, we observe a periodic cir-
cular motion with an angular frequency ωc, the cyclotron frequency60, whose

59 The relations (2.63) and (2.64) which describe a periodic motion have the same ampli-
tude and the same frequency, with a difference of phase π/2. In the framework of Lissajous

curves, this gives rise to a circle. Note that, in English, the distinction between frequency
and angular frequency is often ignored.
60 Equivalently, the gyro-frequency of particles α (α = e, i).
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radius rB is called the Larmor radius61, w⊥0 being the initial speed of the
particle in the yOz plane. To determine the direction of rotation of particles
of mass mα and of charge qα, we ignore the constant, initial velocity of the
particle in the yOz plane. For the electron, since by convention ωce > 0, we
see from (2.63) and (2.64) that for ωct = 0, y = wz0/ωc and z = −wy0/ωc,
while for ωct = π/2 (t = Tc/4, where Tc is the cyclotron period), y = wy0/ωc

and z = wz0/ωc. It follows that, for a field B away from the reader, the
gyration of the electron is in the clockwise direction (towards the right), as is
shown in Fig. 2.3a, while the positive ion rotates in the anti-clockwise direc-
tion (towards the left). In the direction parallel to B, the velocity is constant,
equal to w‖0, and the motion is uniform, since this velocity is not modified
by B. The combination of the cyclotron motion and uniform motion gives
rise to a trajectory in the form of a helix (Fig. 2.3b), which rotates around
the magnetic field line (referred to as the guiding centre).

Fig. 2.3 a Cyclotron motion of an electron in the plane perpendicular to B, the field
directed along the Ox axis, away from the reader. The points on the circle show the

position of the electron at t = 0 and t = Tc/4. b Helical motion of the electron along the
B field.

Interesting particular cases:

- If w‖0 = 0, the helical trajectory degenerates into a circular orbit. The
radius of the orbit is then dependent on the total velocity w0 of the particle,
and rB = w0me/eB.

- If w⊥0 = 0, the trajectory is rectilinear and parallel to B.

Remarks:

1. The decrease in the diameter of the helix with increasing B results in a
confinement of charged particles in the direction perpendicular to B. In
fact, as B tends to infinity, rB → 0, such that transverse motion is not

61 Equivalently, the cyclotron radius or radius of gyration.
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possible: we will see in Sect. 3.8 that this effect reduces the particle diffu-
sion perpendicular to B, towards the walls.

2. A uniform fieldB cannot affect w‖ so w‖(t) = w‖0 where the subscript zero
corresponds to the time t = 0: this is a property of the Lorentz force in the
case E = 0. If E = 0, from conservation of kinetic energy: w2

⊥(t)+w2
‖(t) ≡

w2(t) = w2
0. Since we have just seen that w‖ = w‖0, then w2

⊥ = w2
⊥0 and,

thus w2
⊥(t) ≡ w2

y(t)+w2
z(t) = w2

⊥0. Thus, in a field B, the components wy

and wz can vary, as was mentioned in Sect. 2.1 (Remark 1).
3. The pitch of the helix is obtained by calculating the axial distance travelled

during one revolution. If this pitch is ph, and Tc is the cyclotron period,
then ph = w‖0Tc = w‖0/fc = 2πw‖0/ωc, and we obtain:

ph = 2π

(
w‖0

w⊥0

)
rB . (2.67)

4. A useful way to represent the helical motion is:

w = w‖0 + ωc ∧ rB , (2.68)

where w‖0 describes the motion of the guiding centre and the second term,
the circular cyclotron motion of the particle; the vector ωc is directed along
B and defines the axis of rotation and its direction; the vector rB , the orbit
radius, has its origin at the guiding centre.

5. Since the Larmor radius is proportional to the mass of the particles, (see
(2.66)), it follows that for ions of massmi, rBi = rBemi/me, i.e. rBi 	 rBe.

6. The cyclotron frequency (2.50) or gyration frequency does not depend
on the velocity of the particles, but only on their mass and charge. This
property allows energy to be given uniquely to particles of a given mass and
charge by means of an electric field oscillating at ω = ωcα, independently
of their velocity distribution: we can therefore obtain a form of selective
heating by means of cyclotron resonance, which will be treated in detail
later (2.146).

7. A usefull numerical relation to calculate the cyclotron frequency for elec-
trons is:

fce(Hz) = 2.799× 1010B (tesla) . (2.69)

Thus for B = 0.1T (103 gauss), fce = 2.8GHz. The corresponding fre-
quency for ions of mass mi is mi/me times smaller.

8. The diamagnetic field created by the circulating cyclotron current is given
by the Biot-Savart Law (Lorrain et al):

B′ =
μ0

4π

∫

V

J ∧ r

r3
dV . (2.70)

In this expression, r points from the source (charge) towards the guiding
centre axis (Fig. 2.4). Note that B and B′ are calculated at the same r
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position for comparison purposes. The diamagnetic field B′ points in the
same direction for electrons and ions: particles of opposite charge revolve
in opposite directions around B, such that their respective currents rotate
in the same direction, as is shown in Fig. 2.4. The vectorial product J ∧
r from (2.70) indicates that B′ is in the opposite direction to the field
B responsible for the cyclotron motion (this cannot be otherwise!). The
magnetic field in the plasma is given by the vectorial sum of B and B′

(see exercise 2.2).

Fig. 2.4 Determining the orientation of the diamagnetic field B′ created by the cy-

clotron motion in a field B imposed into the page: B′ comes out of the page towards
the reader.

STATIC UNIFORM ELECTRIC AND MAGNETIC FIELDS

In this section, we will show that the effect of uniform, constant fields E and
B leads to a motion, called the electric field drift (also known as the E ∧B
drift), of ions and electrons in the plasma, perpendicular to both E and B.
After this, we will derive an equation that incorporates all the fundamental
motions studied to date. As a further application, we will calculate the electric
conductivity, for the same E and B fields, and show that it is a tensor.

In the first case, the superposition of electric and magnetic fields modifies
the magnitude of the velocity, such that the part of the Lorentz force tied
to the magnetic field, qαw ∧ B, is continuously varying. It is noteworthy
that, since the two fields are uniform and constant in time, the orbits can be
calculated analytically and are easily represented graphically.
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The case where E and B are arbitrarily oriented (with w0 = 0)

The Cartesian frame is once again constructed such that B is directed along
the Ox axis. Since the orientation of E in this frame is independent of B, the
E field has a component along each of the axes. We suppose that the charged
particle, at t = 0, is situated at the origin of the frame x = y = z = 0, and,
in contrast to the previous case (B only), at rest ẋ = ẏ = ż = 0. This last
condition implies that w⊥0 = 0, removing the contribution of the cyclotron
motion to the particle trajectory entirely, allowing us to examine the effect of
the electric field drift alone (the case w⊥0 �= 0 is treated further in the text,
for E perpendicular and parallel to B.)

1. The equations of motion
From (2.6)–(2.8), we obtain:

ẍ =
qα
mα

Ex , (2.71)

ÿ =
qα
mα

Ey − ωcż , (2.72)

z̈ =
qα
mα

Ez + ωcẏ . (2.73)

2. Calculation of the trajectories
The equations of motion are integrated analogously to the previous case.
Calculation of y: Integration of (2.73) gives:

ż =
qα
mα

Ezt+ ωcy . (2.74)

Substituting ż in (2.72):

ÿ =
qα
mα

Ey − ωc

[
qα
mα

Ezt+ ωcy

]
. (2.75)

This equation can be rearranged such that the LHS is homogeneous:

ÿ + ω2
cy = −ωcqα

mα
Ezt+

qα
mα

Ey , (2.76)

for which the solution is:

y = A1 cosωct+A2 sinωct−
qα

mαωc
Ezt+

qα
mαω2

c

Ey . (2.77)

The constants A1 and A2 are fixed by the initial conditions.
Since y(t = 0) = 0, (2.77) yields:

A1 +
qα

mαω2
c

Ey = 0 , (2.78)
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from which:
A1 = − qα

mαω2
c

Ey (2.79)

and since ẏ(t = 0) = 0, A2ωc − (qα/mαωc)Ez = 0, such that:

A2 =
qα

mαω2
c

Ez . (2.80)

Calculation of z. Substituting the value of y obtained from (2.77), together
with (2.79) and (2.80), in (2.74):

ż =
qαEzt

mα
+ ωc

[
− qαEy

mαω2
c

cosωct+
qαEz

mαω2
c

sinωct−
qαEzt

mαωc
+

qαEy

mαω2
c

]
,

(2.81)
and, after integrating:

z = − qαEy

ω2
cmα

sinωct−
qαEz

ω2
cmα

cosωct+
qαEyt

ωcmα
+ C3 . (2.82)

Since z(t = 0) = 0 = −(qα/ω
2
cmα)Ez + C3:

C3 =
qαEz

mαω2
c

. (2.83)

Calculation of x. Two successive integrations of (2.71) lead to:

x =
qα
mα

Ex
t2

2
. (2.84)

Finally, the equations for the trajectory as a function of time (for B ‖ êx)
can be written:

x =
qα
mα

Ex
t2

2
, (2.85)

y = − qα
ω2
cmα

Ey cosωct+
qα

ω2
cmα

Ez sinωct−
qα

ωcmα
Ezt+

qα
ω2
cmα

Ey ,

(2.86)

z = − qα
ω2
cmα

Ey sinωct−
qα

ω2
cmα

Ez cosωct+
qα

ωcmα
Eyt+

qα
ω2
cmα

Ez .

(2.87)

3. Study of the motion described by (2.85) to (2.87)
The presence of the uniform and constant fields E and B results in a drift
motion (called the electric field drift) of the charged particle perpendicular
to B and E⊥, the component of E perpendicular to B. In fact, if w0 = 0,
as is the case here, the non-periodic part of the motion in the plane yOz is
as follows: the particle initially moves in the direction of E⊥ (for a positive
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ion, Fig. 2.5) or in the opposite direction (electron). Due to the velocity
w⊥ thus acquired, the magnetic part of the Lorentz’ force FLm produces
a motion perpendicular to E⊥ and B, precisely in the direction of the
drift motion, since FLm = qαw⊥ ∧B.

Fig. 2.5 Cycloidal motion

of the drift for a positive
ion (the field B is out of the

page). The ion is initially
(t = 0) at the origin of the

frame and at rest, then it
moves, on average, along

the drift axis represented
by the dotted line.

The projection of the motion in the yOz plane (the plane perpendicular
to B) is thus a cycloidal trajectory, as is shown in Fig. 2.5: the non-
periodic terms (qα/mαωc)Eit [i = y, z] push the particle in a direction
perpendicular to E⊥ and B along a virtual straight line, whose parametric
equation is given by:

yd = − qα
mαωc

Ezt , (2.88)

and:
zd =

qα
mαωc

Eyt . (2.89)

These relations can be combined to give:

zd = −Ey

Ez
yd . (2.90)

The average velocity of this shifting motion, called the electric field drift
velocity, taken from (2.88) and (2.89), is:

wde =

√(
qαEz

mαωc

)2

+

(
qαEy

mαωc

)2

=
E⊥
B

. (2.91)
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This velocity is independent of the mass of the particle, and of its charge.
Further, because the motion is directed perpendicular62 to E (to both E⊥
and E‖ components, see Fig. 2.5), the particle in its drift motion does no
work in the field E: the drift velocity thus remains constant.
A uniformly accelerated motion in the direction perpendicular to the yOz,
plane, following the Ex component of the electric field, must be added to
the motion in the yOz plane.

4. Comparative study of the cycloidal motion of electrons and ions.
We will ignore the motion due to E‖. Recall the convention: the motion of
positive ions is in the direction of the electric field. At t = 0, the electron
and the ion are at the origin of the frame, with zero velocity. Immediately
afterwards, the ion starts to move in the direction of E⊥ but its trajectory
is instantly curved, by the magnetic component of the Lorentz force, fol-
lowing wde (Fig. 2.5). The electron is initially accelerated in the opposite
direction, but the Lorentz force leads it to follow the same drift direction
as the ion because of the opposite sign of its charge (FLm = −ewe ∧B):
the two trajectories (if we ignore the influence of E‖) are confined in the
plane (wde,E⊥), as is shown in Fig. 2.6.
In (2.86) where y = −(qαEy/ω

2
cαmα) cosωcαt + · · · , the amplitude of the

periodic motion of the particle is proportional to mα (ω2
cαmα ∝ m−1

α ):
the electrons describe much smaller arcs than those of the ions but their
number per second is much larger (Fig. 2.6) since the ratio of the masses
mi/me 	 1 leads to ωce/ωci 	 1.

Fig. 2.6 Schematic repre-
sentation of the motion of

electrons and ions in the
electric field drift, showing

that the arcs described by
the electrons have much

smaller amplitudes but are
more numerous.

62 To see that wde is perpendicular to E, note that the slope of the trajectory describing

the particle motion z = f(y) is given by Δx/Δy = −Ey/Ez (2.90) while the orientation of
E⊥ in the same frame (y, z) is expressed by Ez/Ey : these slopes are therefore orthogonal.

To distinguish it from the present drift velocity, the drift in a field E including collisions
(Sect. 3.8.2) will be called the collisional drift velocity .
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Remarks:

1. E⊥/B has the units of velocity (the proof is left to the reader)
2. The maximum amplitude ρα of the cycloid of a particle of type α with re-

spect to the drift axis is proportional to E⊥/B
2 (Fig. 2.5). The calculation

of this expression is also left to the reader.

The preceding discussion can be treated in a more complete manner by
considering more generally that w0 �= 0: then the influence of the cyclotron
gyration is superimposed on the drift velocity in the total motion of the
particle. Nonetheless to simplify the calculation, we will assume E ⊥ B.

Perpendicular E and B fields with w0 �= 0: combined drift and
cyclotron motion

The B field is still along Ox but this time E is entirely along Oz. This leads
to the following equations for the trajectory of the charged particle:

x = w‖0t , (2.92)

y =
wz0

ωc
cosωct+

(
wy0

ωc
+

qαE

mαω2
c

)
sinωct−

qαE

mαωc
t− wz0

ωc
, (2.93)

z =
wz0

ωc
sinωct−

(
wy0

ωc
+

qαE

mαω2
c

)
cosωct+

(
wy0

ωc
+

qαE

mαω2
c

)
. (2.94)

To illustrate the various forms of the trajectories, one needs to consider the
ratio wy0/wde, where wde = E⊥/B (we will assume wy0 = wz0) and distin-
guish three particular cases.
To do this, consider the term:

wy0

ωc
+

qαE

mαω2
c

appearing in the expressions (2.93) and (2.94) for y and z. Taking into account
the convention on the sign of ωcα (2.50), this term can be transformed in
terms of the ratio wy0/wde such that:

1

ωc

[
wy0 −

qαE

mα

mα

qαB

]
=

1

ωc

[
wy0 −

E

B

]
=

1

ωc
[wy0 − wde] . (2.95)

If wde 	 wy0, then wy0 � 0 and wz0 � 0 (no cyclotron motion because
w⊥0 � 0) and Eq. (2.93) for y reduces to:

y = − qαE

mαω2
c

(ωct− sinωct) , (2.96)
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which obviously leads to (2.86) in the case where Ey = 0.
For the same approximation (wy0 � 0 and wz0 � 0), Eq. (2.94) for z becomes:

z =
qαE

mαω2
c

(1− cosωct) , (2.97)

the expression obtained when Ey = 0 in (2.87).
We will now consider the three following typical cases:

- wy0/wde = 100 (Fig. 2.7a)
- wy0/wde = 2 (Fig. 2.7b)
- wy0/wde ≤ 1 (Fig. 2.7c)

Fig. 2.7 Trajectory of a positive ion in uniform static E and B fields, with the respective
components Ez and Bx, for different values of the ratio wy0/wde where wz0 = wy0 (the
B field is directed towards the reader).

Figure 2.7a shows that the cyclotron motion is hardly affected by a weak E
field, the guiding centre being slightly displaced in the direction of the electric
field drift. Figure 2.7b describes what happens to the cyclotron motion when
it is strongly modified by the drag along y due to the electric field drift.
Finally, Fig. 2.7c shows that all traces of cyclotron motion disappear when
wde ≥ wy0.

To obtain a simple analytic form for the resulting trajectories, suppose
wz0 = 0 (in Fig. 2.7, note that wz0 = wy0 �= 0). The resultant trajectory
for wy0/wde = 2 is that of a quasi trochoid63, for which the mathematical
expression is:

y = aτ − b sin τ z = b(cos τ − 1) (2.98)

with, following (2.93) and (2.94) and assuming wz0 = 0:

a =
E

Bωc
, b = − 1

ωc

[
wy0 −

E

B

]
and τ = ωct .

63 A true trochoid requires y = aτ − b sin τ and z = a− b cos τ .
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In the case wy0/wde < 1 (a � b), the trajectory is that of a cycloid (with a
sign inversion):

y = a(τ − sin τ) z = a(cos τ − 1) with a =
E

Bωc
. (2.99)

Note that setting wz0 = 0 while wy0/wde = 1 (Eqs. (2.93) and (2.94)) sup-
presses all periodic motion in the y and z (b = 0) directions: all that remains
is a rectilinear trajectory along y due to the electric field drift.

Remark: In the case wde  w⊥0 = ωcrB (weak E⊥ field), as shown in
Fig. 2.7a, the trajectories are quasi cyclotronic, with a weak drift velocity
of their guiding centres in the direction perpendicular to B and E⊥. The
guiding centre of the cyclotron trajectory of a positive ion moves slowly in
the direction of the drift, because the cyclotron curvature is smaller when
the ion moves in the direction of E⊥ (w⊥ increases, as does rB) than when
it moves in the opposite direction to E⊥. This deformation of the cyclotron
motion leads to a shift of the guiding centre and, accordingly, to the particle
drift.

Parallel E and B fields: no drift motion

Assume the Ox axis is in the direction of the fields: It is then useful to
distinguish two cases:

- The initial velocity is zero.
From (2.85) to (2.87), we find:

x(t) =
qα
mα

Ext
2

2
, (2.100)

y(t) = 0 , (2.101)

z(t) = 0 . (2.102)

The motion is only along Ox and uniformly accelerated: since theB field is
in the direction of motion, it plays no role on the trajectory of the particle
(FLm ≡ qαw ∧B = 0 since w ‖ B).

- The initial velocity normal to B is non zero (wy0 �= 0, wz0 �= 0).
Under these conditions, we can resume the development from (2.71)–(2.73).
We then obtain a helical trajectory, as in the previous case of a magnetic
field only, but the pitch of the helix increases (or decreases) because the
Ex field gives rise to a velocity component wx:

ph = w‖Tc =
2π

|ωc|
w‖ =

2π

qαB
mαw‖ =

2πmα

qαB

(
qα
mα

Ext

)
=

2π

B
Ext .

(2.103)
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The general solution

By combining the results of the preceding cases, it is possible to obtain the
general characteristics of the motion of a charged particle in uniform, static
fields, E and B. The charged particle describes a trajectory which, in the
most general form, consists of:

1. A cyclotron gyration in the plane perpendicular to B, provided that
w⊥0 �= 0. If in addition w‖0 �= 0, the particle motion develops in three
dimensions, leading to a helical motion, with constant pitch if E = 0 or
increasing (decreasing) pitch if the E field has a component parallel to the
B field.

2. A net motion perpendicular to both E and B, referred to as the electric
field drift trajectory, which is independent of both mα and qα, and has a
constant velocity wde = E⊥/B.

Examination of the general equation of motion (2.5) will enable us to
recover these results. For that purpose, we regroup the terms homogenous in
w on the LHS:

ẇ − qα
mα

w ∧B =
qα
mα

E , (2.104)

The solution of this differential equation consists of the general solution w1

of the homogeneous equation without the RHS (helical motion with constant
pitch) to which is added a particular solution w2 that includes the RHS. We
want to determine w such that:

w = w1 +w2 . (2.105)

- General solution without the RHS (E = 0)
The value of w1 has already been obtained (2.68) in the form:

w1 = w‖0 + ωc ∧ rB , (2.106)

describing a helical motion, where w‖0 is the initial velocity parallel to B.
Therefore, we only need to calculate w2.

- Particular solution including the RHS: the expression for w2

We can construct this solution in a completely arbitrary way, provided that
the result obtained is a true solution. To guide us in this process, we know
that this particular solution must reproduce the drift motion. Because of
this, we express w2 in a trihedral coordinate system, whose Cartesian axes
are defined (Fig. 2.8) such that:

êz ‖ B , êy ‖ E⊥ , êx ‖ (E⊥ ∧B) .

This method was proposed by J.L. Delcroix.
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Fig. 2.8 Trihedral coordi-
nate system used to calcu-

late the particular solution
(after J.L. Delcroix).

We are thus looking for a solution of the form:

w2 = aE‖ + bE⊥ + c(E⊥ ∧B) , (2.107)

ẇ2 = ȧE‖ + ḃE⊥ + ċ(E⊥ ∧B) , (2.108)

which we can substitute in the equation of motion (2.5) including the RHS:

ȧE‖ + ḃE⊥ + ċ(E⊥ ∧B) =
qα
mα

[
aE‖ + bE⊥ + c(E⊥ ∧B)

]
∧B

=
qα
mα

(E‖ +E⊥) . (2.109)

Noting that64 (E⊥ ∧B) ∧B = −E⊥B
2 and regrouping the terms along

the different axes:
(
ȧ− qα

mα

)
E‖ +

(
ḃ+

qαcB
2

mα
− qα

mα

)
E⊥ +

(
ċ− bqα

mα

)
E⊥ ∧B = 0 ,

(2.110)
we obtain:

ȧ =
qα
mα

, ḃ =
qα
mα

− qαcB
2

mα
, ċ =

qα
mα

b , (2.111)

for which a particular solution is obviously ȧ = qα/mα and ḃ = ċ = 0 such
that:

a =
qαt

mα
, b = 0 , c =

1

B2
. (2.112)

This shows that we have actually chosen as particular solution that for
which the initial velocity of the particle in the plane (B, E⊥) is zero. We
then have:

w2 =
qαt

mα
E‖ +

E⊥ ∧B

B2
, (2.113)

where the first term on the RHS is a uniformly accelerated motion alongB,
the second term represents the electric drift in the direction perpendicular
to both E⊥ and B, for which the modulus of the velocity is E⊥/B.

64 Double vectorial product rule: A ∧ (B ∧C) = B(C ·A)−C(A ·B).
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- Solution of the general equation of motion
By adding w1 (2.106) (noting that ωc ∧ rB = −(qα/mα)B ∧ rB and w2

(2.113), we obtain the full general solution:

w = w‖0 +
qα
mα

rB ∧B

︸ ︷︷ ︸
Helical motion

+
qαt

mα
E‖

︸ ︷︷ ︸
↑

Uniformly
accelerated motion

along E‖

+
E⊥ ∧B

B2
︸ ︷︷ ︸
Electric drift

. (2.114)

Electrical conductivity in the presence of a magnetic field:
the need for a tensor representation (a digression from
individual trajectories)

In Sect. 2.2.1, we calculated the electrical conductivity of charged particles
in a periodic electric field (B = 0). We now want to obtain an expression for
the conductivity when the particles are subjected to uniform, static magnetic
and electric fields.

In order to calculate the current created by the charged particles in the E
an B fields, we will move from the trajectory of one particle to an ensemble of
individual particle trajectories per unit volume. For this ensemble of particles,
we will again make the assumption that their initial velocities are isotropic,
such that on average, at t = 0, there is no directed motion: 〈w⊥0〉 = 0,
〈w‖0〉 = 0. In (2.114), it follows that w‖0 = 0 and rB∧B = 0, (rB ∝ w⊥0)

65.
The current density Jα of charged particles of type α then reduces to:

Jα ≡ nαqαwα =
nαq

2
αt

mα
E‖ +

nαqα
B2

(E⊥ ∧B) . (2.115)

In the following discussion, until equation (2.121), we shall omit the index α
in J and σ.

Conductivity is now a tensor quantity: we will show that, if it is consid-
ered a priori as a scalar, it cannot satisfy (2.115). In fact, in the case where
J = σE, we would have the following components:

J = σExêx + σEyêy + σEz êz , (2.116)

but in developing (2.115), and since E⊥ = Exêx + Eyêy (B is taken to be
along z)66, we obtain:

65 The value of rB , initially fixed by w⊥0 in the case of the solution to (2.104) without the
RHS (E = 0), is not affected by the inclusion of the particular solution (E �= 0) because

w2⊥ = 0 (b = 0 in (2.112)).
66 We have not decomposed equation (2.115) following the trihedral coordinate system of
Fig. 2.8 because this, being vectorial, can be developed in any chosen coordinate system.



2.2 Analysis of particular cases of E and B 129

J =
nαqα
B2

(B) Eyêx − nαqα
B2

(B) Exêy +
nαq

2
α

mα
t Ez êz , (2.117)

because:

E⊥ ∧B =

∣∣∣∣∣∣∣

êx êy êz

Ex Ey 0

0 0 B

∣∣∣∣∣∣∣
. (2.118)

Note that in (2.117) there is no Ex component along êx and no Ey component
along êy, as is required by (2.116). In fact, in (2.117), for example Jx has the
form:

Jx =
(nαqα

B

)
Ey , (2.119)

from which we can conclude that σ cannot be a scalar in the presence of B.
We will now seek to write the components of a tensor σ explicitly, suppos-

ing it to be of order 2 (see Appendix VII for a brief introduction to tensors
and Appendix VIII for tensor operations), defined by the relation:

J = σ ·E , (2.120)

which can be written explicitly as:

J i = σijEj , (2.121)

where σij is a tensor element with two (order 2) superscript (contravariant)
indices. Note that the vector J is also contravariant but that E is (by nature)
covariant: by convention, there is a summation over the same index when it
appears in both the covariant and contravariant positions, and this index is
said to be mute. In the following, however, we will not distinguish between
the variance of the quantities. Expanding (2.121), we find:

J = (σxxEx + σxyEy + σxzEz)êx + (σyxEx + σyyEy + σyzEz)êy

+(σzxEx + σzyEy + σzzEz)êz . (2.122)

By identification of (2.122) with (2.117),

σxy =
nαqα
B

, σyx = −nαqα
B

, σzz =
nαq

2
αt

mα
, (2.123)

such that the tensor can be represented by the matrix:

σ = nαqα

⎛

⎜⎜⎝

0 1/B 0

−1/B 0 0

0 0 qαt/mα

⎞

⎟⎟⎠ . (2.124)
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In the present case, and assuming a macroscopically neutral plasma
(ne = ni), the total electric current due to the positive ions and the elec-
trons (subscripts i and e respectively) is such that only its component
along the direction of the B field is non zero, because along x and y,
σi
xy+σe

xy = (eni/B)−(ene/B) = 0, etc. In fact, the electric field drift motion
cannot give rise to a net current because the drift of the ions and electrons
takes place in the same direction, so that the net transport of charge is zero67.

Remarks:

1. In (2.121), the element σij of the tensor σ expresses the fact that the
component Ej of the electric field (a force) in a given direction induces a
current J i (an action) in another direction.

2. The reader can calculate the corresponding relative permittivity tensor
corresponding to σ and introduce therein the electron plasma frequency,
by generalising (2.40):

εp = I +
σ

iωε0
, (2.125)

where I is the unit tensor (represented by the unit matrix).

UNIFORM STATIC MAGNETIC FIELD AND UNIFORM
PERIODIC ELECTRIC FIELD

The problem to be resolved is not very different from that of Eq. (2.104),
which led to the general solution of the preceding case (E constant) because
now:

ẇ − qα
mα

(w ∧B) =
qα
mα

E0e
iωt . (2.126)

We are left to find a particular solution including the RHS68, still with the
trihedral coordinate system of Fig. 2.8, but this time setting:

w2 = aE0‖e
iωt + bE0⊥e

iωt + c(E0⊥ ∧B)eiωt . (2.127)

Substituting this expression into (2.126), we obtain:

[
ȧE0‖ + ḃE0⊥ + ċ(E0⊥ ∧B)

]
eiωt

+iω
[
aE0‖ + bE0⊥ + c(E0⊥ ∧B)

]
eiωt

− qα
mα

[(
aE0‖ + bE0⊥ + c(E0⊥ ∧B)

)
∧B

]
eiωt =

qα
mα

[
E0‖ +E0⊥

]
eiωt .

(2.128)

67 It constitutes a neutral beam of charged particles!
68 Remember that this solution w2 is related to the drift motion in E⊥ and B.
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Noting that E0‖ ∧B = 0, we obtain, along the different base vectors of the
trihedral coordinate system, by identification:

E0‖

(
ȧ+ iωa− qα

mα

)
= 0 → ȧ+ iωa =

qα
mα

, (2.129)

E0⊥

(
ḃ+ iωb+

qαcB
2

mα
− qα

mα

)
= 0 → ḃ+ iωb = −qαB

2

mα
c+

qα
mα

, (2.130)

E0⊥ ∧B

(
ċ+ iωc− qαb

mα

)
= 0 → ċ+ iωc =

qαb

mα
. (2.131)

To find the solution, we must distinguish two situations:

1. Off-resonance case (ω �= ωc)

- Solution of (2.129)–(2.131)
A simple particular solution is then ȧ = ḃ = ċ = 0; the value of the
coefficients in this case are:

a =
qα

iωmα
, b =

qα
iωmα

(1−B2c) and c =
qαb

iωmα
, (2.132)

such that:

b =
qα

iωmα

(
1− B2qαb

iωmα

)
, i.e. b

(
1− q2αB

2

m2
αω

2

)
=

qα
iωmα

, (2.133)

where again:

b = − iqα
ωmα

1(
1− ω2

c

ω2

) . (2.134)

Note that the coefficient b is finite on condition that ω �= ωc. Finally:

a = − iqα
ωmα

, b =
iqα
mα

ω

(ω2
c − ω2)

and c =
q2α
m2

α

1

(ω2
c − ω2)

, (2.135)

such that the general motion, off cyclotron resonance, can be written:

w = w1 +

(
− iqα
ωmα

E0‖ +
iωqα

mα(ω2
c − ω2)

E0⊥

↑ ↑ ↑
Helical motion
+ all initial
conditions

(−i) (+i)

(+1)

↓

+
q2α

m2
α(ω

2
c − ω2)

(
︷ ︸︸ ︷
E0⊥ ∧B)

)
eiωt .

(2.136)
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Because this describes a periodic motion with the same frequency along
the 3 axes and because of the particular phase relations between the
three components of w2, namely (for a positive ion) −π/2 for E0‖
and π/2 for E0⊥ with respect to the axis (E0⊥ ∧B) in the case where
ωc > ω, the trajectory obtained from (2.136) is closed on itself, corre-
sponding to a helical motion, depending on the initial conditions super-
imposed on a three dimensional elliptical motion (which is difficult to
represent graphically!).
In the particular case where ω = 0 (constant field E), we have seen that
the velocity w2 describes the motion (axial and lateral) of the guiding
centre69. In the presence of a harmonically varying E field, the drift
motion does not occur: the term containing E0⊥ ∧B in (2.136) is not
constant and when integrated, cannot yield a linear dependence on t,
as is the case in (2.86) and (2.87) where E is constant. This drift is
in fact “annihilated”, because the E0⊥ component and, as a result the
drift velocity, oscillate periodically. On the other hand, if ω tends to
zero, the term E0⊥ in (2.136) disappears and the term in E0‖ reduces
to (qα/mα)E0‖t because sinωt → ωt, in complete agreement with the
expression (2.113) for w2 obtained for constant E.

Fig. 2.9 Orientation of w2⊥ with respect to the reference frame (E0⊥ ∧B, E0⊥,
B) for the case of a non-resonant electron cyclotron frequency. See Appendix IX

for details.

- Representation of the w2⊥ component of the particular solution of
(2.136)
Returning to the coordinate frame in Fig. 2.8, we find, in the plane
perpendicular to B, an ellipse whose major axis varies according to
E0⊥ or E0⊥ ∧B, depending on whether ω > ωc or ω < ωc (Fig. 2.9).
To show this, we rewrite the two corresponding components of w2 in
(2.136) in the form:

69 In fact, for constant E, w2 (2.114) includes the drift motion (perpendicular to E⊥ and

B) and the uniformly accelerated motion along B, which together describe the cyclotron
motion around the guiding centre.



2.2 Analysis of particular cases of E and B 133

qα
mα(ω2

c − ω2)

{
iωE0⊥ − ωc

(E0⊥ ∧B)

B

}
eiωt , (2.137)

noting that the term E0⊥ ∧ B/B has the same modulus as E0⊥. We
can then conclude that for ω > ωc, the velocity w2⊥ is mainly70 in
phase quadrature (in advance for electrons because qα = −e) with the
field E⊥ while for ω < ωc, w2⊥ is principally in phase: this leads to the
representation in Fig. 2.9.

2. Resonant case (ω = ωc)
The particular solution can no longer have ḃ = ċ = 0 because, follow-
ing (2.135), the coefficients b and c would then tend to infinity. We can,
however, retain the solution that corresponds to ȧ = 0, from (2.132):

a =
qα

iωmα
. (2.138)

To find the value of the coefficient c, we substitute the value of b given by
(2.130) in (2.131) and obtain:

ċ+ iωc =
qα
mα

[
−qαB

2c

mα
+

qα
mα

− ḃ

]
1

iω
(2.139)

and, to eliminate ḃ, we differentiate (2.131), and rearrange the result to
write ḃ in the form:

ḃ = (c̈+ iωċ)
mα

qα
, (2.140)

which, substituted into (2.139), gives:

iω(ċ+ iωc) =
qα
mα

[
−qαB

2c

mα
+

qα
mα

− (c̈+ iωċ)
mα

qα

]
. (2.141)

By regrouping the terms in (2.141), we obtain:

c̈+ 2iωċ =
q2α
m2

α

− ω2
cc+ ω2c , (2.142)

such that for resonance (ω = ωc):

c̈+ 2iωċ =
q2α
m2

α

. (2.143)

A valid particular solution for (2.143) is c̈ = 0, which leads to ċ =
q2α/2iωm

2
α, from which finally:

70 The adverb mainly is used to emphasise that the weakest amplitude in (2.137) is not
completely negligible, depending on the ratio ω/ωc.
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c =
q2αt

2iωm2
α

. (2.144)

The expression (2.144) for c substituted into (2.131) gives for b:

b =
mα

qα

[
q2α

2iωm2
α

+
q2αt

2m2
α

]
=

qα
2mαω

[ωt− i] . (2.145)

Ultimately, the particular solution can be written:

w2 =

[
− iqα
mαω

E0‖ +
qα

2mαω
(ωt− i)E0⊥ − iq2αt

2ωm2
α

(E0⊥ ∧B)

]
eiωt .

(2.146)
Discussion of the solution

- the motion parallel to B is the same as that for non-resonance (and it
is obviously independent of B).

- the motion in the plane perpendicular to B is completely different. The
terms involving E0⊥ and (E0⊥∧B) increase indefinitely with time, and
this motion tends towards an infinite amplitude: this is the phenomenon
of gyro-magnetic resonance or cyclotron resonance.

The motion in the plane perpendicular to B can, in fact, be decomposed
into 2 parts:

- a motion along E0⊥, purely oscillatory, with limited amplitude;
- a motion along E0⊥ and a motion along E0⊥ ∧ B, π/2 out of phase

with respect to each other and with increasing amplitude: the result
is a spiral of increasing radius rB, as can readily be verified, but with
constant rotation frequency (because ωcα = −qαB/mα is independent
of the particle velocities).

Remarks:

1. If the E⊥ component of the electric field rotates in the opposite direction
to the particle cyclotron motion, and at the same frequency, i.e. ω = −ωc,
there can be no resonance (see exercise 2.7).

2. It is obvious that the amplitude of the cyclotron motion cannot increase
indefinitely because:

- collisions can interrupt the electron (ion) motion, limiting the gain in
energy,

- in any case, the increase of the electron (ion) gyro-radius is limited by
the dimensions of the vessel.
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2.2.3 Magnetic field either (slightly) non uniform or
(slightly) varying in time

The treatment of the equations of motion until now has been purely analyti-
cal, with no approximation. To deal with cases where particles are subjected
to magnetic fields which are no longer uniform or no longer static, we must
limit ourselves to B fields which are only slightly spatially non uniform, or
slowly varying in time. This restriction allows us to consider a helical tra-
jectory about an initial line of force, which imperceptibly modifies the orbit
during a cyclotron rotation: in other words, a number of complete gyrations
are required before the axial velocity of the guiding centre or its initial posi-
tion in the direction perpendicular to B is significantly modified71. This slow
variation of the guiding centre motion allows us to introduce the guiding cen-
tre approximation, also called the adiabatic approximation (in the sense that
the particle energy varies very slowly), this concept being developed using a
perturbation method.

Characteristics of the guiding centre approximation

- To zeroth order in this approximation, the trajectory in the plane perpen-
dicular to B is circular. At a given point on the line of the field B defining
the guiding centre axis, the field B is assumed to be uniform both in
the plane containing the cyclotron trajectory and axially: this is the local
uniformity approximation. At another point on this field line, the field B
can be different, but it is once again assumed to be uniform transversely
and axially. In the absence of an applied electric field, the motion in the
direction of B is uniform. The complete trajectory is helical.

- To first order, the “inhomogeneties” (spatial or temporal) introduce vari-
ations in the guiding centre motion in both the direction of B (we are
looking in particular for the axial velocity) and that perpendicular to B
(of particular interest is the lateral position). These inhomogeneities oc-
cur locally, transversally as well as axially, as perturbations in the B field,
assumed to be uniform to zeroth order.

The orbital magnetic moment associated with the cyclotron
motion as a constant of motion defining the guiding centre
approximation

The local uniformity approximation method that we have just introduced can
be justified physically, and developed using a simple mathematical method,

71 Recall that the guiding centre axis is defined instantaneously by the line of force of the
field B around which the cyclotron motion occurs.
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making use of the orbital magnetic moment , an invariant associated with the
cyclotron component of the helical motion of the charged particles.

Definition: The magnetic moment μ of a current loop of intensity I bounding
a surface S is equal to SI. In the context of our approximation, to order
zero, we have S = πr2B and I = qαNTc , where NTc is the number of turns
per second which are effected by the charged particle on its cyclotron orbit.
Since NTc ≡ fc = ωc/2π, the modulus of μ is given by:

|μ| = πr2B
qα|ωc|
2π

(2.147)

and:

|μ| = π

(
w2

⊥
ω2
c

)
qα|ωc|
2π

=
w2

⊥qα
2|ωc|

=
1

2

mαw
2
⊥

B
=

Ekin⊥
B

, (2.148)

where Ekin⊥ is the kinetic energy of the particle in the plane perpendicu-
lar to B. Since the magnetic field created by the cyclotron motion of the
particle tends to oppose the applied field B (see p. 117, and the remark on
diamagnetism), μ is a vector anti-parallel to B.

The magnetic moment is a constant of motion (to order zero)

Consider the case where the variation in B is simply a function of time72.
From Maxwell’s equations, this leads to the appearance of an electric field:

∇ ∧E = −∂B

∂t
, (2.149)

which can accelerate (decelerate) the particles (without modifying the total
kinetic energy). Thus, in the direction perpendicular toB, we can write (2.10)
such that:

d

dt

(
1

2
mαw

2
⊥

)
≡ qαE ·w⊥ , (2.150)

where E is the field induced by the variation of B with time (∂B/∂t). In
this case, the variation in kinetic energy over a period 2π/ωc is given by:

δ

(
1

2
mαw

2
⊥

)
=

2π/ωc∫

0

qαE · d	
dt

dt , (2.151)

72 We could equally define the adiabaticity of μ considering a spatial inhomogeneity: this

is a question of reference frame. If B is inhomogeneous in the laboratory frame, in the
frame of the particle, B varies with time.
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where d	/dt is the instantaneous curvilinear velocity vector, tangent to the
trajectory at each point. If we now suppose that the velocity parallel to
B is not very large and that the guiding centre is only slightly displaced
perpendicular to B, notably because the field B does not greatly vary (the
basic assumption for this calculation method), we can replace the integral
over the helical trajectory by a line integral along the circular orbit (not
perturbed by the inhomogeneity). Then, calling on Stokes theorem, which
states that “the line integral of a vector along a closed contour is equal to the
rotational flux of this vector traversing any surface bounded by this contour”,
we obtain:

δ

(
1

2
mαw

2
⊥

)
=

∮
qαE · d	 = qα

∫∫

S

(∇ ∧E) · dS (2.152)

and:

δ

(
1

2
mαw

2
⊥

)
= −qα

∫∫

S

∂B

∂t
· dS = ±qα

∂B

∂t
πr2B , (2.153)

since ∂B/∂t is a flux perpendicular to the plane of the cyclotron motion (adi-
abatic approximation) and therefore to the surface element dS. The sign of
the cosine of the angle between the direction of the normal to the elementary
surface and the vector ∂B/∂t determines the sign of the integrand.

The variation of the kinetic energy per unit time then takes the form
(Tc being the period of gyration):

d

dt

(
1

2
mαw

2
⊥

)
= ±qα

∂B

∂t

πr2B
Tc

≡ ∂B

∂t

πr2Bqα|ωc|
2π

(2.154)

and from (2.49), by definition, we find simply that:

d

dt

(
1

2
mαw

2
⊥

)
= μ

∂B

∂t
. (2.155)

Also, following (2.148), it is equally possible to write:

d

dt

(
1

2
mαw

2
⊥

)
=

d

dt
(μB) ≡ ∂μ

∂t
B + μ

∂B

∂t
, (2.156)

such that, by comparing (2.155) and (2.156), it is obvious that ∂μ/∂t = 0,
which shows that the moment μ is a constant in time.

This constant of motion is called the first adiabatic invariant . Remember
that the magnetic moment is strictly constant only if B is completely uniform
and w0‖ = 0; it is constant, to a first approximation, if the change in B is
slow, that is to say adiabatic.
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Remark: In so far as one can consider the moment μ to be constant, the
corresponding ratio Ekin⊥/B also remains constant and therefore whenever
B varies, Ekin⊥ should also vary in the same way and proportionally. Since
the total kinetic energy is conserved (in the absence of an applied field E),
the values of w‖ and w⊥ will be modified in such a way that w⊥ decreases
and w‖ increases and vice versa.

Static magnetic field, but non uniform
in the direction parallel to B (E = 0)

We will continue to suppose that there is no applied field E 73. A priori, we
are led to represent the magnetic field as being purely axial:

B = B(z)êz , (2.157)

which will be proved to be incorrect: the gradient in B along z necessarily
requires the existence of a component Br. To see this, we assume a field B
which is axially symmetric, as is shown, as an example, in Fig. 2.10.

Fig. 2.10 Approximate representation of the lines of force in the case where the field B is

axially symmetric and axially non uniform. The contraction of the lines of force indicates
an increase in the intensity of B.

We need simply to consider the Maxwell equation:

∇ ·B = 0 (2.158)

(which signifies that the magnetic field lines should close) and to expand it
in cylindrical coordinates as suggested by the symmetry of the problem. The
units of local length are e1 = 1, e2 = 1 et e3 = r, for the coordinates z, r, ϕ
respectively74. We then obtain:

73 Since B is constant in the laboratory frame, ∇ ∧E = −∂B/∂t is zero and there is no

electric field, which is not the case in the frame of the particle!
74 Quite generally, the divergence of a vector can be expressed as (see Appendix XX):

∇ ·B =
1

e1e2e3
[∂1(e2e3B1) + ∂2(e1e3B2) + ∂3(e1e2B3)] ,

where ∇ ·B is in fact a pseudo-scalar (see Appendix VII).
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∇ ·B =
∂

∂z
Bz +

1

r

∂

∂r
(rBr) +

1

r

∂

∂ϕ
Bϕ = 0. (2.159)

By construction, Fig. 2.10 shows an axial symmetry of the B field, that is to
say ∂Bϕ/∂ϕ = 0, such that‘:

1

r

∂

∂r
(rBr) = − ∂

∂z
Bz , (2.160)

which implies that the inhomogeneity of the field B in its own direction
cannot exist without the presence of a transverse component, which is Br in
the present case.

1. The expression for B in the neighbourhood of its axis of symmetry, for a
weakly non-uniform field
Assume that we know a priori the expression for Bz(z) and its gradient
(∂Bz/∂z)r=0 at r = 0. In addition, we can use Fig. 2.10 to see that Bz

passes radially through a maximum on the axis of symmetry and that at
r = 0, ∂Bz/∂r = 0. Based on this, we assume that in the region close to the
axis, (∂B/∂z)r	0 � constant, such that the Bz component is independent
of r to second order. Under these conditions, by integration of (2.160) over
r in the neighbourhood of the axis:

rBr ≈ −
r∫

0

r′
(
∂Bz

∂z

)

r′=0

dr′ = −1

2
r2
(
∂Bz

∂z

)

r=0

. (2.161)

The complete and correct expression for the field B when it is non uniform
in its own direction, and with the assumption of axial symmetry, is not
(2.157), but rather:

B = êzBz(z)− êr
r

2

(
∂Bz

∂z

)

r=0

. (2.162)

Note that the correction introduced by the Br component becomes more
important when the axial gradient is large, and as we move away from the
axis. Under the basic assumptions of our calculation, this correction is of
first order, and is in fact linear in r in the vicinity of the axis.
Because the Bϕ component is zero, and therefore B = êrBr + êzBz, we
can express B in Cartesian coordinates in the following way:

B = −1

2
x

(
∂Bz

∂z

)

x=y=0

êx − 1

2
y

(
∂Bz

∂z

)

0,0

êy +Bzêz . (2.163)

2. The trajectory of a charged particle in the calculated field B
We must solve:

mαẇ = qα(w ∧B) . (2.164)
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From our assumptions, the component of velocity perpendicular to B can
be obtained, to first approximation, by supposing that the cyclotron mo-
tion takes place in a locally uniform field. All that remains is to calcu-
late w‖.

3. The equation of motion in the direction of Bz

Since the field B is not completely uniform along z, the velocity of the
guiding centre in the same direction does not remain constant.
To calculate this, set w = wxêx + wyêy + wz êz, and consider (2.164):

mαẇ‖ = êzqα[Bywx −Bxwy] . (2.165)

The variation of the guiding centre axial velocity described by (2.165)
stems from the first order of our calculation method. It is therefore correct
to use the zero order velocities in the plane perpendicular to the z axis to
develop (2.165):

mαẇ‖ ≈ êzqα

[
−1

2
y

(
∂Bz

∂z

)

0,0

wx +
1

2
x

(
∂Bz

∂z

)

0,0

wy

]
, (2.166)

where the term (∂Bz/∂z)0,0 is, by assumption, of first order while x, y,
wx and wy are of order zero; the term on the RHS of (2.166) is thus of
first order.

4. Solution of the equation of motion
The expressions for the position and velocity in the plane perpendicular to
B are, from the assumptions of the approximation method, those already
obtained in a uniform field B (Sect. 2.2.2, E = 0). They can be written
more succinctly:

wx = A sin(ωct− ϕ) , x = − A

ωc
cos(ωct− ϕ) , (2.167)

wy = A cos(ωct− ϕ) , y =
A

ωc
sin(ωct− ϕ) . (2.168)

Setting wx(0) = 0 and wy(0) = wy0, which leads to ϕ = 0 and A = wy0,
respectively, we obtain:

wx = wy0 sinωct , x = −wy0

ωc
cosωct , (2.169)

wy = wy0 cosωct , y =
wy0

ωc
sinωct . (2.170)

This solution is such that, with ωc > 0 and B entering the page, the
electrons are seen to rotate in the anti-clockwise direction; to check it,
consider the values of x and y at t = 0 and t = π/2ωc. There is thus a
change in convention, and to re-establish the motion in the true direction,
we need to set ωce = −eB/m instead of ωce = eB/m.
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In order to come back to our initial conventions (Sect. 2.2.2, E = 0), we
must take wx = A cos(ωct − ϕ) and wy = A sin(ωct − ϕ) with wy(0) = 0
and wx(0) = wx0 at t = 0. This yields:

wx = wx0 cosωct , x =
wx0

ωc
sinωct , (2.171)

wy = wx0 sinωct , y = −wx0

ωc
cosωct . (2.172)

We can easily verify that (2.169) and (2.170) lead to x2+y2 = (wy0/ωc)
2 =

r2B . Thus, by substituting (2.169) and (2.170) into (2.166):

mαẇ‖ = êz
qα
2

(
∂Bz

∂z

)

0,0

[
−
w2

y0

ωc
sin2 ωct−

w2
y0

ωc
cos2 ωct

]
, (2.173)

mαẇ‖ = −qα
2

(
∂Bz

∂z

)

0,0

(
w2

y0

ωc

)

= −qα
2

(
∂Bz

∂z

)

0,0

(
r2Bω

2
cmα

qαB‖

)
, (2.174)

where, to allow for the sign of ωc, we have chosen, exceptionally, ωc =
(qα/mα)B‖

75. Simplifying:

ẇ‖ = −1

2

r2Bω
2
c

B‖

(
∂Bz

∂z

)

0,0

(2.175)

from which, finally, after integration:

w‖(t) = w‖(0)−
êz
2
r2Bω

2
c

1

B‖

(
∂Bz

∂z

)

0,0

t . (2.176)

This is the velocity, entirely parallel to B, of the guiding centre in the case
where the gradient in B is principally in the direction of the field.
From (2.174), we can also derive an expression that will be useful later:

Fz = mαẇ‖ = −1

2
mαw

2
⊥0

1

B‖

(
∂Bz

∂z

)

0,0

≡ −μ

(
∂Bz

∂z

)

0,0

. (2.177)

Appendix X suggests another demonstration of expression (2.177). In ad-
dition, Appendix XI uses (2.177) to show, with a different method than
that developed from (2.149) to (2.156), that μ is a constant of motion in
the guiding centre approximation.

75 B‖ represents the value of Bz(z) along z = 0 (region of uniform B).
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5. Analysis of the motion w‖: retardation or acceleration of charged particles
along an axial gradient in B
Following (2.176), the gradient ∂Bz/∂z subjects the charged particles to:

- either a retardation if ∂Bz/∂z > 0 because in this case w‖(t) slows
down as a function of time, and finally changes the sign of the RHS
of (2.176) with respect to the LHS. If B0 is the value in the uniform
B region and Bmax the maximum value of B (Fig. 2.11), the region
B0 < B < Bmax where the particles are subject to reflection is called
a magnetic mirror.

- or an acceleration if ∂Bz/∂z < 0, as is the case after reflection by a
mirror, for example.

Fig. 2.11 a Magnetic

field for the confinement of
charged particles showing

the mirror zone where they
are reflected. b The value

of B increases as the lines
of force (figure a) get closer

together.

The type of action exercised by ∂Bz/∂z on the velocity depends neither
on the charge of the particle or its mass, because from (2.176):

w‖ = w‖0 −
êz
2

w2
⊥

B‖

(
∂Bz

∂z

)

0,0

t , (2.178)

and there is thus the possibility of confining all the charged particles. The
efficiency of the confinement depends, finally, on the ratio w‖(0)/w⊥(0): if
it is too large, the mirror cannot play its role, as we will show below.

Remark: The role of the magnetic mirror (Fig. 2.11) can also be understood
from the fact that, in the absence of an applied E field and within our
guiding centre approximation, the total kinetic energy of the particle is
conserved:

W⊥ +W‖ = constant (2.179)
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and only the ratio W‖/W⊥ can vary, thus:

dW‖ = −dW⊥ . (2.180)

In addition, from (2.177), we can write the infinitesimal element of work
effected by the particle on the fieldB in terms of the kinetic energy parallel
to B76:

Fdz ≡ dW‖ = −μdB‖ . (2.181)

Inserting (2.180) in (2.181) and because μ = W⊥/B (2.148), we have:

dW⊥ = μdB‖ =
W⊥
B‖

dB‖ (2.182)

or also:
dW⊥
dB‖

=
W⊥
B‖

≡ μ . (2.183)

This result signifies that if B‖ increases, W⊥ must increase, such that the
ratio W⊥/B‖ remains constant. When the particle enters into the mirror
zone, its energy W‖ will decrease, if need be to zero, after which it will
increase again after being “reflected”. Since W⊥ increases in the mirror
neck (Fig. 2.11a), and because rB = W⊥/B, the question is whether the
value of rB could become so large that the particle reaches the wall. In
fact, the value of rB in the mirror zone decreases because the value of B
increases more rapidly77 than W⊥.

6. The loss cone in the magnetic mirror of a linear machine
Consider the typical configuration of a linear magnetic confinement ma-
chine, with a mirror at each extremity such as that shown in Fig. 2.12. We
are looking for the conditions such that the incident particles “cross the
mirror”, i.e. are lost.
Consider a particle traversing the uniform zone with a velocityw0 (making
an angle α0 with B), as is shown in Fig. 2.13a. Let us now separate the
velocity of this particle into parallel and perpendicular components with
respect to the field B. Thus in the region of uniform field (Fig. 2.13b),
w0 = w0‖ + w0⊥ (the subscript 0 indicates that the particle is in the
homogeneous field region of the machine) where:

76 In (2.177), we found F = −μ∂Bz/∂z, from which Fdz � −μdB‖.
77 To verify this assertion, it is sufficient to differentiate r2B = w2

⊥/ω2
c . Taking (2.182) into

account, we find

drB = − mαW⊥
rBq2αB

2
‖

(
dB‖

B‖

)
.

In consequence, if the gradient of B‖ is positive (mirror zone), the Larmor radius effectively
decreases when B‖ increases (drB is negative).
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w0‖ = w0 cosα0 , (2.184)

w0⊥ = w0 sinα0 , (2.185)

with w0 =
√
w2

0‖ + w2
0⊥.

Fig. 2.12 Typical configuration of the confining magnetic field of a linear discharge
in which each extremity is closed by a magnetic mirror (a configuration referred to as

“minimum B”).

Fig. 2.13 a Orientation

of the velocity vector with
respect to the z axis in the
zone of uniform B (α0)

and the mirror zone (α).
b Decomposition of the

velocity w0 along the z axis
(w0‖) and perpendicular to

it (w0⊥).

In the absence of an applied E field and with the assumption that B varies
slowly along z, we know that mαw

2
0/2 = constant (where only the ratio

w⊥/w‖ can vary) and that the magnetic moment μ is constant to first
order.
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We can thus establish a relation between the velocity in the uniform field
region and that in the mirror, noting that from (2.168):

μ =
1
2mαw

2
0 sin

2 α0

B0
=

1
2mαw

2
0 sin

2 α

B
, (2.186)

where w⊥ = w0 sinα in the mirror region, such that:

sinα = sinα0

√
B

B0
. (2.187)

There is a reflection of the particle in the case when α > π/2. Equation
(2.187) shows that if α0 is sufficiently small (corresponding to a large
enough “parallel” component of velocity of the particle in the homogeneous
field region), the value of B/B0 cannot be large enough to reach at least
α = π/2 (sinα = 1); it is certainly true for α0 = 0! When this is the case,
the particle will cross the mirror and be neutralised on the end walls, and
it will be “lost” for the plasma. We will denote α0m as the minimum angle
of α0 for which there is still a reflection of particles at the maximum of
the field Bmax. If we define the mirror ratio by:

R ≡ Bmax/B0 , (2.188)

the value α0m is obtained for sinα = 1 in (2.187):

1 = sinα0m

√
Bmax

B0
(2.189)

and finally: sinα0m =
1√
R

. (2.190)

The angle α0m defines a cone, in the interior of which the particles leave the
plasma at the end of the machine. Note that the efficiency of a magnetic
mirror to reflect charged particles is independent of the modulus of the
velocity of the particles (w0) as well as their charge and mass.

7. The percentage of incident particles reflected by a magnetic mirror
We will consider the preceding magnetic field configuration (Fig. 2.13a)
and suppose that the angular distribution of the particle velocities is
isotropic in the uniform region: in other words, the density n(α0) of parti-
cles with an angle α0 is the same for each value of α0. We wish to calculate
Cr = Γr/Γinc, the fraction of incident flux Γinc reflected by the mirror,
knowing that there is a reflection if α0 > α0m.
To do this, we must calculate the number of particles per second that are
directed towards the mirror, Γinc, and then subtract the number of them
for which α0 < α0m (and which are not reflected), which will lead us to
Γr. It is sufficient to establish such a balance for each value of α0 on an
elementary solid angle dΩ, independently of the value of the azimuthal
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angle ϕ owing to axial symmetry. We therefore consider the solid angle
dΩ(α0, ϕ) in which the particles enter (Fig. 2.14). To this angle dΩ(α0, ϕ),
there corresponds an elementary surface dσ(α0) directed along α0, whose
projection perpendicular to the mirror axis, dσ(α0) cosα0

78, constitutes
the effective surface traversed by the incident flux in the direction of the
mirror.

Fig. 2.14 Elementary

surface dσ(α0) collecting
particles of velocity w0

directed along α0 and
entering the solid angle dΩ.

We then have:
Γinc(α0) = nw0 dσ(α0) cosα0 , (2.191)

where, as we have seen, n does not depend on α0.
By definition dσ = r2dΩ where dΩ can be expressed in spherical coordi-
nates (r, cα0, ϕ) as:

dΩ = sinα0 dα0 dϕ . (2.192)

The axial symmetry implies that the integration over ϕ yields 2π. We can
then write:

Cr ≡ Γr

Γinc
=

nw0r
2(2π)

∫ π/2

α0m
cosα0 sinα0dα0

nw0r2(2π)
∫ π/2

0
cosα0 sinα0dα0

. (2.193)

The result is independent of the magnitude of the velocity, thus it is valid
for all particle energy distributions.
Simplifying, and after a trigonometric transformation:

Cr ≡
∫ π/2

α0m
sin 2α0dα0

∫ π/2

0
sin 2α0dα0

=
−cos 2α0

∣∣∣
π/2

α0m

−cos 2α0

∣∣∣
π/2

0

, (2.194)

which gives:

Cr =
1 + cos 2α0m

2
=

[
1 + (1− 2 sin2 α0m)

]

2
= 1− sin2 α0m

= 1− B0

Bmax
, (2.195)

78 Recall that a flux is by definition always evaluated normal to the surface that it traverses.
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from which, finally:

Cr = 1− 1

R . (2.196)

Remarks:

1. The fraction of reflected particles becomes larger as R increases, that is
to say as Bmax becomes more important relative to B0.

2. Satellite measurements have provided evidence for the existence of belts
(layers) of high energy charged particles surrounding the earth. These
particles, essentially electrons and protons from the solar wind, are trapped
in the earth magnetic field and reflected at the poles: the lines of force of
the B field become tighter at the poles, forming a mirror.

3. The particles confined in a system with a mirror at each extremity will
oscillate between the two mirrors (see exercises 2.15 and 2.16).

Constant magnetic field, but non uniform in the direction
perpendicular to B

The following section is divided into two parts: 1) the field lines are assumed
rectilinear; 2) the curvature of the field lines is taken into account.

1. Field lines assumed rectilinear
We consider B entirely directed along the z axis and uniform along this
axis. The gradient which affects it is, by hypothesis, perpendicular to it and
uniquely directed along the y axis:∇B = (∂B/∂y)êy and thus ∂B/∂x = 0.
In this case, we will assume that B increases slowly with y such that B
can be expressed by:

B(y) = êzB0(1 + βy) , 0 < β  1 . (2.197)

Fig. 2.15 (Trochoidal)

trajectory of an electron in
the plane perpendicular to

the field Bêz , which is non
uniform in the direction Oy

(2.197). There is a magnetic
field drift along x.
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If the field were uniform (β = 0), we would have a cyclotron gyration of
constant radius in the plane xOy (the dotted trajectory in Fig. 2.15). Due
to the inhomogemeity of the field in this plane (β �= 0), the trajectory is
no longer an exact circle, and it does not close on itself, as is shown in
Fig. 2.1579: this is due to the fact that the Larmor radius decreases, and
with it, the radius of curvature of the trajectory, whenever the particle is
moving towards increasing values of y (in the example considered), with the
result that the guiding centre shifts. The guiding centre drifts, on average,
along increasing x if the particle rotates in the clockwise direction as shown
in Fig. 2.15; this average motion (over many periods) is called the magnetic
field drift. It occurs in the direction perpendicular toB and to∇|B|, hence
its alternative designation as the ∇|B| drift. We will now calculate the
velocity wdm of this magnetic field drift.

- The instantaneous velocity of the guiding centre
To find dRg/dt, where Rg is the instantaneous position of the guid-
ing centre (Fig. 2.16), we will call on our adiabatic approximation:
the motion of the particle is determined to zeroth order by the cy-
clotron gyration in the field B, when the effects of its non-uniformity
are ignored: this motion is perturbed, to first order, by the magnetic
field drift.

Fig. 2.16 The vector R

describes the position of the
guiding centre in the frame

of the particle (in this
case an electron), which

itself is at position r in the
laboratory frame. Note that

R is perpendicular to the
cyclotron trajectory at the

point considered and that
Rg = r +R.

Zeroth order motion: calculation of R

The radius of the gyration vector R gives the position of the guiding
centre with respect to the particle, as illustrated in Fig. 2.16, and we
will show that:

R =
mα

qαB2
(w ∧B) . (2.198)

To demonstrate this expression, we need only recall that, in general,
for a particle situated at r′ with respect to the axis about which it is

79 According to our adiabatic approximation, many complete gyrations are required for
this phenomenon to manifest itself.
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rotating with a frequency ω, the tangential velocity obeys w = ω ∧ r′.
In the present case, this translates into:

w = +
qαB

mα
∧R . (2.199)

Multiplying this expression vectorially on the right by B, yields:

w ∧B =
qα
mα

(B ∧R) ∧B . (2.200)

Recalling that the double vectorial product obeys the following rule:

P ∧ (Q ∧ T ) = Q(T · P )− T (P ·Q) , (2.201)

hence:
(Q ∧ T ) ∧ P = T (P ·Q)−Q(T · P ) , (2.202)

we find that:

w ∧B =
qα
mα

[R(B ·B)−B(R ·B)] , (2.203)

where the term R ·B is zero, because to zeroth order the vector radius
of gyration R is necessarily perpendicular to the guiding axis. Then
(2.203) leads to (2.198)80:

R =
mα

qαB2
(w ∧B) . (2.198)

First order motion: calculation of Rg

We have assumed till now that the lines of force are rectilinear. In order
to avoid repeating the calculation when tackling point 2) where the lines
are curvilinear, we set B = BêB rather than B = Bêz, where êB is
the unit vector tangent to the field line, which takes into account the
possible curvature of these lines.
Following Fig. 2.16:

Rg = r +R , (2.204)

where R describes the guiding centre motion in the frame of the parti-
cle, which is itself at position r in the laboratory frame. We can then
rewrite R (2.198) in the form:

R =
mα

qαB
(w ∧ êB) . (2.205)

80 In fact, it is sufficient to note that |R| = mαw⊥/qαB (|R| = rB) and that R is
perpendicular to w and B.
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The derivative of (2.204), taking (2.205) into account, gives81:

dRg

dt
=

dr

dt
+

dR

dt
= w − mα

qαB2

dB

dt
(w ∧ êB)

+
mα

qαB

(
dw

dt
∧ êB

)
+

mα

qαB

(
w ∧ dêB

dt

)
,

(2.206)

where dêB/dt = 0 when we assume that B is directed parallel to the
z axis (case 1). In the context of point 2) which follows, where we
make the assumption of a weak field curvature, we will neglect the term
comprising dêB/dt

82. We can therefore take B = êzB and (2.206)
reduces to:

dRg

dt
= w − mα

qαB3

dB

dt
(w ∧B) +

mα

qαB2

(
dw

dt
∧B

)
. (2.207)

In order to modify the third term on the RHS, we will take the equa-
tion of motion mαdw/dt = qα(w ∧ B) and multiply it on the right
vectorially by B:

mα
dw

dt
∧B = qα(w ∧B) ∧B . (2.208)

Owing to the properties of the double vectorial product (2.199):

(w ∧B) ∧B = B(B ·w)−w(B ·B) ≡ B(Bw‖)−wB2 , (2.209)

we obtain:

mα
dw

dt
∧B = qα(w‖ −w)B2 . (2.210)

This expression can be substituted in the third term on the RHS of
(2.207), which after some reorganisation, becomes:

dRg

dt
= w +

1

qαB2

[
qα(−w +w‖)B

2
]
− mα

qαB3

dB

dt
(w ∧B) . (2.211)

After simplification, we find an expression for the (instantaneous) ve-
locity of the guiding centre in the laboratory frame:

dRg

dt
= w‖ −

mα

qαB3

dB

dt
(w⊥ ∧B) , (2.212)

81 If B is spatially non-uniform in the laboratory frame, it varies with time in the frame

of the particle, as already mentioned.
82 If we include the term dêB/dt, its contribution will be of second order in an expression
which is of first order. In effect, dêB/dt = (∂êB/∂y)∂y/∂t is a second order term.
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where the first term represents the guiding centre velocity along the
lines of force of the field B (zeroth order expression) and the second
term is that in the direction perpendicular to w⊥ and B (first order
expression), a motion that varies with time as a result of the cyclotron
trajectory of the particle.

- The average velocity of the guiding centre in the plane perpendicular
to w⊥ and to B: the gradient of the magnetic field drift velocity
In order to calculate the temporal average of the second term on the
RHS of (2.212), we rearrange it in the following form:

−mα

qαB3

dB

dt
(w ∧B) =

−mα

qαB3

∂B

∂y
wy (wxêx + wyêy + wz êz) ∧Bz êz

=
−mα

qαB3

∂B

∂y
wy(êxwyBz − êywxBz) , (2.213)

where the RHS is now expressed in the laboratory frame. Since the
temporal average of wxwy is zero83 and that:

w2
y =

1

2
w2

⊥ , (w2
⊥ ≡ w2

x + w2
y) , (2.214)

the velocity associated with the average motion of the magnetic field
drift finally reduces to:

wdm =
−mα

qαB2

∂B

∂y

w2
⊥
2

êx . (2.215)

This expression can be transformed, since in a direct trihedral coordi-
nate system (contrary to a indirect one) −êx = êz ∧ êy, into:

wdm = mα
w2

⊥
2

1

qαB3
(B ∧∇B) (2.216)

or, equivalently:

wdm =
μ

qα

(B ∧∇B)

B2
, (2.217)

which is the magnetic field drift velocity of a particle in the presence
of a gradient in the field perpendicular to B and assumed to have no
curvature84.
The relation (2.217) could have been obtained directly from the gen-
eral expression giving the drift velocity of charged particles subjected
to a magnetic field in the presence of a given force, as is shown in Ap-

83 Larmor motion: if wx is proportional to sinωct and wy is proportional to cosωct, since
these two functions are orthogonal, the time integral of wxwy over a period is zero.
84 In fact, this gradient is related to the lines of force because β � 1/ρ (XIII.18).
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pendix XII. Appendix XIII allows us, in addition, to write (2.217) in
the form:

wdm = − 1

ωcB

w2
⊥
2

(
ρ

ρ2
∧B

)
, (2.218)

where ρ is the radius of curvature (see Fig. XIII.1). It will be useful to
compare this expression with that of the curvature drift velocity, which
we will now calculate.

2. Accounting for the curvature of the field lines
The magnetic field drift, for which we have just established the equations
of motion, cannot exist alone, because the lines of force of B which we
have supposed to be rectilinear by setting:

B = êzB0(1 + βy) , (2.219)

where β  1, are not really so! In fact, although Maxwell’s equation for
the divergence of B:

∇ ·B ≡ ∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 (2.220)

can be trivially verified, in contrast to Maxwell’s equation ∇ ∧B = 085,
since the curl operates on (2.219). It requires that the field B be in the
form:

B = êy(βB0z) + êz[B0(1 + βy)] , (2.221)

as is shown in (XIII.7). Note that the component along y is of first order
(β  1). These field lines, which we find in a toroidal configuration, are
schematically drawn in Fig. 2.17: the greater the distance from the origin
of the frame, the more the contribution from By becomes important.

Fig. 2.17 Lines of force
y(z) in the presence of a

gradient in B in the direc-
tion perpendicular to B.

85 In general ∇∧H = J + ε0∂E/∂t: however, in the context of the individual trajectories
model, we neglect the current associated with the charged particle motion, J = 0, as well

as the corresponding displacement current ε0∂E/∂t. This last term is non zero in the case
of a variable electric field E applied from outside.
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The expression (2.221) represents a fieldB with lines of force characterised
by a local curvature ρ. Recalling that the radius of curvature at a given
point A of a curve is the distance between that point and the point of
intersection of two normal vectors to the curve situated immediately on
either side of A (Fig. XIII.1 of Appendix XIII), one can show that ρ is
approximately 1/β (XIII.18).

- Magnetic curvature drift velocity
This field curvature is associated with a particular drift motion, per-
pendicular to the lines of force (hence a velocity perpendicular to B,
as with the other drift velocities already defined). We will determine
the average temporal velocity of this drift called the magnetic cur-
vature drift , by resorting to the general expression for the drift of a
charged particle subject to a given force FD in a magnetic field B
(Appendix XII).
For this, we need to know the expression for the force exerted on the
particle by the curvature of the lines: during its helical motion around
the lines of force, the particle experiences a centrifugal force, for which
the corresponding inertia term is of the classical form:

F cd = −
mαw

2
‖

ρ
êy , (2.222)

where w‖ is the velocity parallel to the line of B at a given point and
êy is the base vector linked to the coordinate system of the particle and
directed towards the “instantaneous centre of rotation”: we then have
ρ = −ρ êy. Following (XII.2), the drift velocity in the curved magnetic
field is then:

wdc =
mαw

2
‖

qαρ2B2
ρ ∧B (2.223)

or equivalently:

wdc = −
w2

‖

ωc

ρ ∧B

ρ2B
. (2.224)

- Total drift velocity due to the presence of a gradient in B in the direction
perpendicular to B
From (2.218) and (2.224), we obtain finally:

wdm +wdc = − ρ ∧B

Bωcρ2

[
1

2
w2

⊥ + w2
‖

]
.

↑ ↑ ↑
Charge
sign

Magnetic
field drift

Magnetic
curvature drift

(2.225)

Remark: These two contributions to the drift motion are in the same
direction, defined by the vector −ρ ∧ B, but whose sense depends
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on the sign of the charged particle. This drift can therefore create a
separation of charges in the plasma, generating an electric field86. This
effect causes a loss of charged particles in tokomaks, because they are
directed to the walls, as we see in the following.

- The evolution of the drift motion tied to the magnetic field in a tokomak
Figure 2.18a is a schematic representation of the configuration of the
coils producing the toroidal field in a tokomak: this magnetic field,
imposed by the machine, is directed along the z axis. Because the coils
are closer towards the central axis of the torus, than at the outer radius,
the B field is inhomogeneous as a function of x87 and, due to this, it
acquires a curvature. We will examine the different effects to which the
particles are subjected in the presence of this toroidal field by referring
to Fig. 2.18b.

Fig. 2.18 a Schematic representation, showing the positioning of some magnetic

field coils around a toroidal vessel: because they become closer towards the central
axis of the torus, the field B increases along x. b Section of the toroidal vessel

showing the charge separation created by the particle drifts in the toroidal magnetic
field.

- The two magnetic drifts create a separation of charges along y
(electrons downwards, ions upwards: the direction of the drift is that
of qα in (2.217)).

- This separation of charges creates a field E (perpendicular to z
and x), directed downwards, opposed to the magnetic field drift cur-
rent, giving rise to a weak current.

- The fields E and B then create an electric field drift, which is ori-
ented according to E ∧B (crossed-field case, (2.222)). In the electric
field drift, positive ions and negative electrons are displaced in the
same direction: in the present case, they are directed towards the
external wall of the torus (the vector product rule applied to the

86 Except in structures where the magnetic configuration is closed on itself (a magnetic
structure with rotational symmetry, for example).
87 Note: direction designated by y in the previous discussion.
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right trihedral coordinate system yields −êy ∧ êz = −êx). These
charged particles are then “lost” to the fusion plasma: they recom-
bine at the wall losing their energy, additionally inflicting damage
on the wall.

Remark: The plasma particles subjected to a simple toroidal magnetic
field do not remain confined, as we have just seen, and a supplemen-
tary magnetic field, called a “poloidal” field, is used to reduce the drift
effects. This second magnetic field provides a slight azimuthal variation
to the toroidal magnetic field line configuration, forming a helix around
the minor axis of the torus, in order to prevent particles from traveling
to the walls.

Problems

2.1. Consider electrons and ions, of mass me and mi respectively, subject
to a constant electric field. Assuming that the average time τ between two
collisions is the same for electrons and ions, show that the (average) kinetic
energy acquired by an electron in the time τ is mi/me times greater than
that acquired by an ion in the same time.

Answer

We know that:

F ≡ |q|E = me
dwe

dt
= mi

dwi

dt
. (2.226)

The same force, with opposite sign, acts on the ion and the electron. From
this, for a time τ between two collisions:

τ∫

0

F dt = me[we(τ)− we(0)] , (2.227)

= mi[wi(τ)− wi(0)] , (2.228)

and, to simplify the problem, setting we(0) = wi(0) = 0, we obtain:

we =
mi

me
wi . (2.229)

The ratio of the kinetic energy of the electron to that of the ion is then:
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Ece
Eci

=
mew

2
e/2

miw2
i /2

=

me

(
mi

me

)2

w2
i

miw2
i

=
mi

me
! (2.230)

2.2. Consider the motion of an electron (α = e) or that of an ion (α = i) in
the plane perpendicular to a magnetic field B = Bêz present in the plasma,
as shown in Fig. 2.4.

a) Calculate the direction and amplitude of the magnetic moment μα of an
electron and an ion in cyclotron rotation about B.

b) Calculate the macroscopic magnetisation Mα (magnetic moment per unit
volume, expressed in A/m) induced by the electron (α = e) and ion (α = i)
populations rotating in the field B:

Mzα =

∫
μzαfα(w) dw . (2.231)

Assume that the velocity distributions fα(w) for the electrons and ions
are Maxwellian, with temperatures Te and Ti, respectively.

c) Calculate the total macroscopic magnetisation M and discuss the respec-
tive contributions of the electron and ion populations to the plasma dia-
magnetism.

d) Assuming that ne = ni = n and Te = Ti = T , deduce the magnetic in-
duction B resulting from both the applied magnetic induction B0 = B0êz
and the component μ0M due to the diamagnetism of the plasma. Write
the condition for which the intensity of the field B in the plasma becomes
equal to half B0.

Numerical application: B0 = 2× 10−2 tesla (200 gauss), Te = Ti = 35000K.

Answer

a) The cyclotron motion of an electron and an ion in the plane perpendicular
to the magnetic induction B can be described by equation (2.68):

wα = ωcα ∧ rBα (2.232)

where:

ωcα = −qαB

mα
. (2.233)

For the electrons, ωce and B are collinear with the same sign, i.e. the
same direction, while for the ions, ωci and B have opposite sign. On the
other hand, the currents ie and ii associated with the cyclotron motion
of electrons and ions are in the same direction, because of their opposite
charge, as shown in the Fig. 2.4. They induce a magnetic field B′ in the
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Fig. 2.19 Characteristic parameters of the cyclotron motion of an electron (left) and

an ion (right) in a magnetic field.

direction opposite to B (Biot-Savart Law (2.70)); for the same reasons, μi

and μe are anti-parallell to B, as shown in Fig. 2.19.
The modulus of the magnetic moment μ is defined as the product of a
current density i circulating in a closed loop with surface S. In the case of
a cyclotron gyration:

μzα = πr2Bαiα . (2.234)

The current induced by the rotational motion is then:

iα =
qαωcα

2π
, (2.235)

such that (2.148):

μzα =
mαw

2
⊥α

2B
. (2.236)

b) For an ensemble of particles of type α, the average value Mz of the macro-
scopic magnetisation (in the hydrodynamic sense) is given by (3.39):

Mzα =

∫

w

μzfα(w) dw , (2.231)

i.e. (neglecting the subscript α):

Mz =
1

B

∫

w

mw2
⊥

2
n

(
m

2πkBT

) 3
2

exp

(
− mw2

2kBT

)
dw , (2.237)

which can be expanded:
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Mz =
nm

2B

(
m

2πkBT

) 3
2

⎡

⎣
∞∫

−∞

w2
x exp

(
− mw2

x

2kBT

)
dwx

×
∞∫

−∞

exp

(
−

mw2
y

2kBT

)
dwy

∞∫

−∞

exp

(
− mw2

z

2kBT

)
dwz

+

∞∫

−∞

exp

(
− mw2

x

2kBT

)
dwx

∞∫

−∞

w2
y exp

(
−

mw2
y

2kBT

)
dwy

×
∞∫

−∞

exp

(
− mw2

z

2kBT

)
dwz

⎤

⎦ (2.238)

and this reduces to:

Mzα =
nαkBTα

B
. (2.239)

In vector form, taking account of the sense of the induced magnetisation
Mα with respect to B:

Mα = −nαkBTα

B2
B . (2.240)

c) The total magnetisation is the sum of those induced by the ions and the
electrons, i.e.:

M = − B

B2
(nekBTe + nikBTi) . (2.241)

If Ti  Te, M is induced solely by the electrons.
If Ti = Te, the contribution from the ions is equal to that from the elec-
trons.

d) For ne = ni = n and Te = Ti = T , we have from (2.241):

M = −2nkBT

B2
B = − 2p

B2
B , (2.242)

where p is the pressure exerted by the charged particles, referred to as the
(scalar) kinetic pressure (p. 205).
B is the magnetic induction in the plasma and results from the vector
addition of the applied field B0 (which exists in the absence of the plasma)
and the field created by the motion of charged particles, i.e. μ0M (the
magnetisation M giving the magnetic field, the corresponding magnetic
induction is thus obtained by multiplying the field M by μ0, the vacuum
magnetic permeability). We then have:
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B = B0 + μ0M =B0 −
p

B2/2μ0
B , (2.243)

B

(
1 +

p

B2/2μ0

)
=B0 . (2.244)

The diamagnetism of the plasma causes a reduction of the applied mag-
netic field, due to the motion of the charged particles in the same field.
The diamagnetism can be neglected (B � B0) if:

p  B2

2μ0
, (2.245)

i.e. the kinetic pressure p remains much smaller than themagnetic pressure
B2/2μ0.
The magnetic induction in the plasma is half the applied magnetic field
(B = B0/2) if:

p =
B2

2μ0
, (2.246)

that is:

n =
B2

2μ0kBT
. (2.247)

Numerical application

From (2.247), we obtain:

n =
10−4

2× 4π × 10−7 × 1.38× 10−23 × 35000
= 8.24× 1019 m−3 ,

= 8.24× 1013 cm−3 . (2.248)

Remark: Maxwell’s Law for the curl of H applied to the field M leads to
JM = ∇ ∧M. Since M is uniform in the plasma:

∇ ∧M = 0 , (2.249)

thus JM = 0: no macroscopic current is induced. On the other hand, in
regions with gradients in M (boundaries of enclosed plasmas), the diamag-
netism of the plasma actually induces magnetisation currents (JM �= 0).

2.3. Consider a particle of charge q subject to uniform, static magnetic and
electric fields which are perpendicular to each other. The particle velocity w
can be decomposed according to w = wD+w′, where wD is the electric field
drift. From the equation of motion, show analytically that w′ represents the
motion the particle would have in the magnetic field alone.
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Answer

The equation of motion can be written (2.5):

m
dw

dt
= q [E⊥ +w ∧B] (2.250)

in which we substitute wD +w′ for w knowing that:

wD =
E⊥ ∧B

B2
, (IX.2)

noting that dwD/dt = 0 because E and B are constant in time. We find:

m
dw′

dt
= q

[
E⊥ +

(
E⊥ ∧B

B2

)
∧B +w′ ∧B

]
. (2.251)

From the double vector product:

(Q ∧ T ) ∧ P = T (P ·Q)−Q(T · P ) , (2.252)

this becomes:
(
E ∧B

B2

)
∧B =

B(B ·E)−E(B2)

B2
= −E

B2

B2
(2.253)

from the assumption that E is perpendicular to B.
Finally:

dw′

dt
= q(w′ ∧B) , (2.254)

which is precisely the motion of a particle in a magnetic field alone.

2.4. Consider the motion of a charged particle in a uniform and static mag-
netic field B, and a uniform electric field E, directed perpendicular to B and
slowly varying in time. The velocity of the particle is denoted by w.

a) Show, by expressing the velocity w in terms of the following three velocity
components:

w = wD +w′ +wp , (2.255)

where wD is the electric field drift velocity and:

wp =
m

qB2

∂E

∂t
, (2.256)

that w′ and wp then obey the equation of motion:

mẇ′ +mẇp = q(w′ ∧B) , (2.257)

where m is the mass of the particle and q its charge.
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b) Consider a periodically varying field E(t), with an angular frequency ω.
Show that if the frequency of the field oscillation is small compared to ωc

for the cyclotron gyration, then the w′ component describes the cyclotron
motion of the particle in the B field alone.

c) Show that there is no net current (ions and electrons) associated with wD

while, on the other hand, wp leads to a current which is referred to as the
polarisation current:

Jp =
ρm
B2

Ė , (2.258)

where ρm = (me +mi)n is the mass density of the electrons and ions (of
masses me and mi respectively) and n, the charged particle density. The
velocity wp is called the polarisation drift velocity.

d) By considering the total charge current (the conduction current and the
displacement current ∂D/∂t), show that the relative permittivity of the
medium with respect to vacuum is given by:

εp = 1 +
ρm
ε0B2

. (2.259)

To do this, recall from (2.45) that:

JT =
∂D

∂t
+ Jc =

∂D′

∂t
, (2.260)

where D′ = ε0εpE is the displacement current in the dielectric description
(see (2.43)).

Answer

a) Equation (2.257) signifies that the presence of the field E does not quali-
tatively modify the helical motion (described by w′: to be shown in b) of
the particle.
We know that the equation of motion is linked to the Lorentz force by:

mẇ = q[E +w ∧B] , (2.261)

independent of the form of E and B.
In the present case, we make the assumption that the total velocity can
be expressed in terms of the three vectors given by (2.255). Developing
(2.261) in terms of these different velocities, we obtain:

mẇD +mẇ′ +mẇp = q[E + (wD ∧B) + (w′ ∧B) + (wp ∧B)] (2.262)

and, replacing wp on the RHS by equation (2.256) and wD by its vector
form:

wD =
E ∧B

B2
, (2.263)
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we obtain:

mẇD +mẇ′ +mẇp = q

⎧
⎨

⎩E +

⎡

⎣
(
E ∧B

B2

)
∧B

︸ ︷︷ ︸

⎤

⎦+ (w′ ∧B)

double vector product
−E

+
m

q

d

dt

(
E ∧B

B2

)

︸ ︷︷ ︸

⎫
⎬

⎭ . (2.264)

= mẇD

From the double vector product (see problem 2.3), this becomes:

mẇD +mẇ′ +mẇp = q {E −E + (w′ ∧B)}+mẇD (2.265)

and finally:

mẇ′ +mẇp = q(w′ ∧B) . (2.257)

b) We need to show, starting from (2.256) and (2.257), that
∣∣ẇp/ẇ

′∣∣ 1.
Setting E = E0e

iωt, we can write:

∣∣∣∣
mẇp

mẇ′ +mẇp

∣∣∣∣ =
∣∣∣∣
m2ω2

qB2
E0

∣∣∣∣

∣∣∣∣
1

qw′B

∣∣∣∣

=

∣∣∣∣
ω2

ω2
c

∣∣∣∣

∣∣∣∣
E0

Bw′

∣∣∣∣ =
∣∣∣∣
ω2

ω2
c

∣∣∣∣
∣∣∣
wD

w′

∣∣∣ , (2.266)

which indicates that we require not only ω/ωc ≤ 1 but also, preferably,
wD � w′, which is an acceptable hypothesis.

c) Since the velocity wD does not depend on the charge of the particles, the
corresponding conduction current density is zero, because:

JD =
∑

α

nαqαwD = nwD(e− e) = 0 . (2.267)

For the conduction current referred to as the polarisation current, we have:

Jp ≡
∑

α

nαqαwpα =
Ė

B2

[
ne(−e)me

−e
+

ni(e)mi

e

]

=
Ė

B2
n(mi +me) , (2.268)

=
Ė

B2
ρm . (2.269)
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d) The conduction current Jc reduces to Jp, as we have just shown. In addi-
tion, because quite generally:

JT ≡ ∂D

∂t
+ Jc =

∂D′

∂t
, (2.260)

in the present case this reduces to:

JT ≡ ε0Ė + Jp = εpε0Ė (2.270)

and from (2.269):

JT ≡ ε0Ė +
Ė

B2
ρm = εpε0Ė , (2.271)

such that we obtain, as required:

εp = 1 +
ρm
B2ε0

. (2.259)

2.5. Consider a plasma subject to a high frequency electric field E0e
iωt, di-

rected arbitrarily with respect to a static magnetic field of intensity B, both
fields being spatially uniform. In the framework of the “individual motion
of charged particles” description, calculate the conductivity and permittivity
tensors for electrons whose motion is associated with the particular solution
of the non-resonant equation of motion. Assume B is directed along the Oz
axis and express E⊥ in terms of the Cartesian coordinates x and y. The mul-
tiplying factor for the tensor σ should be such that it reduces to a unitary
matrix for B = 0.

Answer

In order to obtain w2, the particular solution to this problem (see Sect. 2.2.2,
p. 123), we used the frame of Fig. 2.10, which led us to the expression:

w2 =
[
aE0‖ + bE0⊥ + c(E0⊥ ∧B)

]
eiωt . (2.127)

To transpose this result into Cartesian coordinates (x, y, z), as posed by the
question, we write:

w2 = êz(aE0‖) + êx(bE0x) + êy(bE0y) + c(êxE0x + êyE0y) ∧ êzB , (2.272)

where we have set E0⊥ = êxE0x+êyE0y and have canceled, for simplicity, the
dependence on eiωt. After regrouping the terms along the three base vectors,
we find:

w2 = êx[bE0x + cE0yB] + êy[bE0y − cE0xB] + êz[aEz] . (2.273)

Including the coefficients a, b and c for the non-resonance solution from
Sect. 2.2.2 (Eq. (2.135)), we obtain:
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w2 = êx

[
iq

mα

ω

ω2
c − ω2

E0x +
q2

m2
α

B

ω2
c − ω2

E0y

]

+ êy

[
iq

mα

ω

ω2
c − ω2

E0y −
q2

m2
α

B

ω2
c − ω2

E0x

]
+ êz

[
− iq

ωmα
Ez

]
. (2.274)

To develop the electrical conductivity tensor, recall that J i = σijEj

(2.121). By definition, the current density J i = nqwi and we have, after
introducing the factor −inq2/mαω:

J = − inq2

mαω

{
êx

[(
− ω2

ω2
c − ω2

E0x

)
+

iq

mα

ωB

ω2
c − ω2

E0y

]

+ êy

[
− ω2

ω2
c − ω2

E0y −
iqBω

mα(ω2
c − ω2)

E0x

]
+ êzEz

}
. (2.275)

There are two components of σ along êx, and recalling that qB/mα = −ωc,
we find:

σxx =
ω2

ω2 − ω2
c

, σxy =
iωcω

ω2 − ω2
c

, (2.276)

then, along êy:

σyy =
ω2

ω2 − ω2
c

, σyx = − iωcω

ω2 − ω2
c

, (2.277)

and, finally, along êz:
σzz = 1 . (2.278)

The tensor σ, represented as a 3× 3 matrix, has the value:

σ = − inq2

mαω

⎛

⎜⎜⎜⎜⎜⎜⎝

ω2

ω2 − ω2
c

iωcω

ω2 − ω2
c

0

− iωcω

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.279)

and we can verify that if B = 0 (ωc = 0), the matrix becomes unitary: the
plasma is no longer anisotropic.

For the relative permittivity tensor εp, we have for E0e
iωt:

εp = I +
σ

iωε0
, (2.125)

such that:
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εp =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− nq2

mε0ω2

ω2

ω2 − ω2
c

− nq2

mε0ω2

iωcω

ω2 − ω2
c

0

nq2

mε0ω2

iωcω

ω2 − ω2
c

1− nq2

mε0ω2

ω2

ω2 − ω2
c

0

0 0 1− nq2

mε0ω2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.280)

from which, finally:

εp =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
ω2
pe

ω2 − ω2
c

−
iω2

pe

ω2 − ω2
c

ωc

ω
0

iω2
pe

ω2 − ω2
c

ωc

ω
1−

ω2
pe

ω2 − ω2
c

0

0 0 1−
ω2
pe

ω2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.281)

2.6. Consider a uniform, alternating electric field of the form E0e
−iωt, to-

gether with a uniform, static magnetic field B along the z axis (entering into
the page). We wish to study the phenomenon of cyclotron resonance using
the coordinate frame rotating in the plane perpendicular to B. Expressing
the field E in the laboratory Cartesian frame in the form:

E = êxEx + êyEy + êzEz , (2.282)

the same field in the rotating coordinates frame is written:

E =ê+E+ + ê−E− + êzEz

=
(êx + iêy)√

2
E+ +

(êx − iêy)√
2

E− + êzEz . (2.283)

a) Express the components E+ and E− in terms of the components Ex and
Ey. Determine which of the two unit vectors, ê+ or ê−, rotate in the same
direction as the electrons during their cyclotron motion around B.

b) The conductivity tensor, expressed in the laboratory frame, for ω �= ωc,
and E0e

−iωt, has the following elements (exercise 2.5):

σ = σ0

⎛

⎜⎜⎜⎜⎜⎝

ω2

ω2 − ω2
c

−iωωc

ω2 − ω2
c

0

iωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1

⎞

⎟⎟⎟⎟⎟⎠
. (2.284)
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Show, by calculating the corresponding terms σ+ and σ−, that this tensor
is diagonalised in the rotating frame.

c) Show that electron cyclotron resonance leads to an increase in velocity of
the particles as a function of time, according to the relation:

w2 =
q

m
E+t . (2.285)

In other words, the electrons in their own frame “see” a continuous electric
field (ω = 0) which accelerates them continuously between two collisions.
For this, develop the relation (2.146) in the laboratory frame.

Answer

a) We can develop (2.283) by regrouping the terms along the unit vectors in
the laboratory frame:

E =
1√
2
êx[E+ + E−] +

i√
2
êy[E+ − E−] + êzEz , (2.286)

which must be equal to the same vector E expressed in the laboratory
frame:

E = êxEx + êyEy + êzEz , (2.287)

from which:

Ex =
1√
2
[E+ + E−] , (2.288)

Ey =
i√
2
[E+ − E−] . (2.289)

By combining (2.288) and (2.289), we obtain the components of the field
E in the rotating frame:

E+ =
Ex − iEy√

2
(2.290)

and, similarly:

E− =
Ex + iEy√

2
. (2.291)

The components E+ and E−, in terms of the components Ex and Ey,
thus correspond to the concept of a rotating field: the superposition of two
oscillating fields with the same frequency, perpendicular to each other and
in phase quadrature.
Since the rotating field E+ can be written:

E+ =
êx + iêy√

2
E+e

−iωt , (2.292)
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taking the real part, we obtain:

E+ =
E+√
2
(êx cosωt+ êy sinωt) , (2.293)

from which it is easy to verify, in the xOy plane, that the vector ê+ (and
thus the field E+) rotates in the clockwise direction, thus, according to our
convention (field B entering the page and ωc > 0), in the same direction as
the electrons, as shown in the figure. Note that the intensity in expression
(2.293) originating from (2.290), is constant in the rotating frame.
Make sure that the orientation of the axes x and y is such that the field
along z enters into the page (right-handed frame).

b) Equation (2.284) gives us the components of the tensor in the laboratory
frame. Note that σxx = σyy and σxy = −σyx. Thus, by expanding the
current density J = σ ·E in the laboratory frame, we can write:

σ ·E = σxxêxEx + σxyêxEy − σxyêyEx + σxxêyEy + σzz êzEz . (2.294)

Replacing the components of the fields in the laboratory frame with those
of the rotating frame ((2.288) and (2.289)), we have:

σ ·E = σxxêx
1√
2
[E+ + E−] + σxyêx

i√
2
[E+ − E−] (2.295)

− σxyêy
1√
2
[E+ + E−] + σxxêy

i√
2
[E+ − E−] + σzz êzEz .

Regrouping the terms in E+ and those in E−:

E+√
2
[êx σxx + iêx σxy − êy σxy + iêy σxx] , (2.296)

E−√
2
[êx σxx − iêx σxy − êy σxy − iêy σxx] , (2.297)

and introducing the base vectors ê+ and ê−, we find:

E+

[
êx + iêy√

2
σxx + i

êx + iêy√
2

σxy

]
+

E−

[
êx − iêy√

2
σxx − i

êx − iêy√
2

σxy

]
. (2.298)

Finally, we obtain:

σ ·E = E+ê+σxx+iE+ê+σxy+E−ê−σxx−iE−ê−σxy+σzz êzEz . (2.299)

We can now introduce the elements of the tensor σ in the rotating frame:
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σ ·E =
[
E+ê+(σxx + iσxy︸ ︷︷ ︸

σ+

) + E−ê−(σxx − iσxy︸ ︷︷ ︸
σ−

)
]
+ σzz êzEz , (2.300)

which is an expression showing that, in the rotating frame, the tensor has
been diagonalised (there are no mixed components E+ê− or E−ê+). The
matrix can now be represented by:

σ = σ0

⎛

⎜⎜⎝

ω

ω − ωc
0 0

0
ω

ω + ωc
0

0 0 1

⎞

⎟⎟⎠ , (2.301)

where the base vectors are ê+, ê− and êz, respectively.
We can thus verify that the electron resonance is indeed directed along ê+
(ω = ωc).

c) Consider (2.146):

w2 =

[
− iqα
mαω

E0‖ +
qα

2mαω
(ωt− i)E0⊥ − iq2αt

2ωm2
α

(E0⊥ ∧B)

]
eiωt ,

(2.302)
where we have replaced the dependence eiωt of the field E by e−iωt, as
indicated in the introduction.
We will replace i by −i in (2.302). Since we are only interested in the
resonance phenomenon, we will ignore the term in the êz direction and the
second term in E0⊥, which is time independent (which rapidly becomes
negligible). Writing this in Cartesian coordinates:

E0⊥ = êxE0x + êyE0y , (2.303)

this becomes:

w20⊥ =
qt

2m
(êxE0x + êyE0y) +

iq2Bt

2ωm2
(êxE0y − êyE0x) . (2.304)

Knowing that at resonance, −qB/m = ωc and ω = ωc, from (2.304):

w20⊥ =
qt

2m
[(êxE0x + êyE0y)− i(êxE0y − êyE0x)] , (2.305)

w20⊥ =
qt

2m
[êx(E0x − iE0y) + êy(E0y + iE0x)] , (2.306)

w20⊥ =
qt

m

[(
êx + iêy

2

)
(E0x − iE0y)

]
, (2.307)

such that, from (2.283) and (2.290), and multiplying by e−iωt:

w2⊥ =
qt

m
E+

(
êx + iêy√

2

)
e−iωt =

qt

m
ê+E+e

−iωt =
qt

m
E+ . (2.308)



Problems 169

2.7. Consider a homogeneous, static magnetic field B = êzB0 and a homo-
geneous alternating electric field E = êxE0 cosωt (êx, êy and êz are the unit
vectors along the Cartesian axes x, y and z).

a) Show that at cyclotron resonance, the contribution of this effect to the
velocity of particles of mass m is given by:

w =
q

2m
E0t [cos(ωt)êx + sin(ωt)êy] +

q

2mω
E0 sin(ωt)êx . (2.309)

b) Write the form of this motion at resonance explicitly. What does it repre-
sent?

c) In an alternating electric field E directed instead along êy:

E = E0 sin(ωt)êy , (2.310)

show that the contribution to the particle velocity at cyclotron resonance
can be written in the form:

w′ =
q

2m
E0

(
t− π

2ω

)
[sin(ωt)êy + cos(ωt)êx]−

q

2mω
E0 cos(ωt)êy .

(2.311)
d) A rotating electric field is applied in the xOy plane with an amplitude such

that Ex = Ey = E0. Following the chosen direction of rotation, we have:

E+ = E0 [cos(ωt)êx + sin(ωt)êy] (2.312)

or:
E− = E0 [cos(ωt)êx − sin(ωt)êy] . (2.313)

Based on the expressions for w and w′, calculate the resultant velocity
for a particle at cyclotron resonance ωc > 0 in a field rotating to the right
(E+) and then a field rotating to the left (E−). What can you conclude?

Answer

a) In the presence of a magnetic field:

B = B0êz (2.314)

and in a periodic electric field perpendicular to it:

E = E0e
iωtêy , (2.315)

the particular solution (2.146) of the equation of motion at ω = ωc repre-
sents the effect of the cyclotron resonance on the particle velocity. We will
ignore the contribution to the velocity in the direction parallel to the field
B, since it is not affected by the field E, because it is perpendicular to B.
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In the xOy plane (2.142) we have:

w2 =

[
q

2mω
(ωt− i)E0êx − iq2t

2ωm2
(E0êx ∧B0êz)

]
eiωt . (2.316)

We can then take the real part of this expression (knowing that eiωt =
cos(ωt) + i sin(ωt)), from which:

w2 =
q

2mω
ωtE0 cos(ωt)êx +

q

2mω
E0 sin(ωt)êx

+
q2t

2ωm2
E0 sin(ωt)(êx ∧ êz)B0 . (2.317)

Since êx ∧ êz = −êy (right-handed frame) and ω = ωc ≡ −qB0/m, this
becomes:

w2 =
q

2m
E0t

[
cos(ωt)êx − qm

(−1)qB0m
sin(ωt)B0êy

]

+
q

2mω
E0 sin(ωt)êx . (2.318)

By setting w2 = w, we obtain the relation from statement a):

w =
q

2m
E0t[cos(ωt)êx + sin(ωt)êy] +

q

2mω
E0 sin(ωt)êx . (2.309)

b) The third term on the RHS of (2.309) describes a periodic motion in the
direction of the field E (this is normal: it would also exist in the absence
of B) while the first and the second conjugate terms represent a periodic
rotational motion, of frequency ωc, whose amplitude continuously increases
with time: in other words, the particle describes a spiral. The modulus of
the corresponding velocity of this motion is w0 = qE0t/2m, because the
contribution to the periodic motion along êx rapidly becomes negligible.
This increase in amplitude comes precisely from the resonance between ω
and ωc, called cyclotron resonance.

c) We use equation (2.317), in which the direction of the field E is along êy
rather than êx. Since êy ∧ êz = êx, we have:

w′ =
qt

2m
E0 cos(ωt)êy +

q

2mω
E0 sin(ωt)êy +

q2t

2ωm2
E0B0 sin(ωt)êx

=
q

2m
E0t [cos(ωt)êy − sin(ωt)êx] +

q

2ωm
E0 sin(ωt)êy . (2.319)

We now change the time origin by replacing t by t−π/2ω: as cos (ωt− π/2)
= sin(ωt) and sin (ωt− π/2) = − cos(ωt), we obtain from (2.319):
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w′ =
q

2m
E0

(
t− π

2ω

)
[sin(ωt)êy + cos(ωt)êx]

− q

2mω
E0 cos(ωt)êy . (2.311)

d) To get the resulting particle velocity in the field E+ (defined by (2.312)),
we simply add the velocities w +w′ from equations (2.309) and (2.311):

wTOT+ =
q

2m
E0t[2 cos(ωt)êx + 2 sin(ωt)êy] (2.320)

−qE0π

4mω
[sin(ωt)êy + cos(ωt)êx] +

qE0

2mω
[sin(ωt)êx − cos(ωt)êy] .

To obtain the resulting particle velocity in the field E−, we add the velocity
w with w′′, where w′′ = −w, since then E = −E0 sin(ωt)êy. This yields:

wTOT– ≡ w −w′

=
q

2m
E0t [

= 0︷ ︸︸ ︷
cos(ωt)êx + sin(ωt)êy − sin(ωt)êy − cos(ωt)êx ]

+
q

4m

π

ω
E0[sin(ωt)êy + cos(ωt)êx]

+
q

2mω
E0[sin(ωt)êx + cos(ωt)êy] . (2.321)

We can conclude that if the field turns in the positive direction of ωc (i.e.
if the particle velocity is not in the direction of the rotating field), the
velocity of the particle does not increase linearly in time and, therefore,
there is no cyclotron resonance.

2.8. Consider a magnetic field of the form:

B = B0(1− ε cos kx)êx , (2.322)

where ε is a parameter smaller than unity and k is a constant. This field
is used to axially confine charged particles at each end of a linear machine
whose centre is at x = 0.

a) Find the expression for w‖ as a function of w‖(0), w⊥(0), ε and k.
b) Show that particles will be effectively trapped if:

w2
‖(0) ≤ w2

⊥(0)
2ε

1− ε
. (2.323)

c) Assuming an isotropic velocity distribution at x = 0, calculate the number
of trapped particles as a fraction of the total number of particles.
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Answer

a) This is a case in which the magnetic field has a (weak) non uniformity in
its own direction, which corresponds to the situation treated in Sect. 2.2.3
(page 138); note that we are using here the x axis as the direction of B
rather than z. We know that the expression:

B = B0(1− ε cos kx)êx (2.324)

is not complete, because the component of B (of order 1), required to sat-
isfy Maxwell’s equation ∇ ·B = 0, is missing. Nevertheless, this correction
does not appear in the calculation of the w‖ component. Finally, note that
the minimum value of |B|, |B| = B0(1 − ε) is found at x = 0 and thus
corresponds to the region situated between the mirrors: correctly speak-
ing, there is no region of uniform field in this machine, only two mirrors
at each end with a minimum in the magnetic field in between.
By transposing equation (2.176) along êx and setting B‖ = B(x = 0),
we have:

w‖(t) = w‖(0)−
êx
2
r2Bω

2
c

1

B(x = 0)

(
∂Bx

∂x

)

y=z=0

t , (2.325)

where ωc corresponds to the value at B(x = 0). Since ∂Bx/∂x =
B0εk sin kx and r2Bω

2
c = w2

⊥(0), we find:

w‖(t) = w‖(0)−
êx
2
w2

⊥(0)
εk sin kx

1− ε
t (2.326)

(we could neglect the parameter ε compared to 1 in the denominator).
b) We have shown in Sect. 2.2.3 (p. 138) that the particles coming from

the central region of the machine (x = 0) are reflected by the magnetic
mirror if the angle α0 of their vector velocity with respect to the axis
(of components w0‖ = w0 cosα0 and w0⊥ = w0 sinα0) in the section of
uniform field (the region of the weakest field between the two mirrors) has
a value greater than α0m, defined by (2.189):

sinα0m =

√
B(x = 0)

Bmax
. (2.327)

Bmax is reached for cos kx = −1, from which Bmax = 1 + ε and B(x =
0) = 1− ε, such that (2.327) gives:

sin2 α0m =
1− ε

1 + ε
. (2.328)

Noting that the ratio of the velocities w⊥(x = 0)/w(x = 0) corresponds to
sinα0m, we have:
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w2
⊥(0)

w2(0)
=

1− ε

1 + ε
, (2.329)

such that:
w2

⊥(0)(1 + ε) = (w2
⊥(0) + w2

‖(0))(1− ε) , (2.330)

w2
⊥(0)[(1 + ε) + (ε− 1)] = w2

‖(0)(1− ε) , (2.331)

and finally:

w2
‖(0) = w2

⊥(0)
2ε

1− ε
. (2.332)

The condition for reflection is defined by the inequality:

w2
‖(0) ≤ w2

⊥(0)
2ε

1− ε
. (2.333)

c) The reflection coefficient Cr of particles in a magnetic mirror (2.196)
leads us to:

Cr ≡ Γr

Γinc
= 1− 1

R = 1− 1

Bmax/B(x = 0)
= 1− 1− ε

1 + ε
=

2ε

1 + ε
. (2.334)

2.9. Consider a magnetic field directed principally along z but subject to a
slight curvature, represented by the term ∂Bx/∂z (we suppose that the cur-
vature is in two dimensions only, in the plane xz). The origin of the Cartesian
frame is chosen such that the field B is directed along the z axis while, on
each side of the origin, there is a contribution from the x and z components
of the field, as shown in the figure. The radius of curvature ρ of this field line
is assumed to be much greater than the particle Larmor radius (of charge q
and mass m).

a) Show that, in the immediate region of the
origin, B is described by:

B = B0

(
êx

z

ρ
+ êz

)
, (2.335)

where B0 is the intensity of the field at z =
0 and êx, êz are the unit base vectors in the
Cartesian frame (x, y, z); ρ−1 = d2x/dz2 in
the case that dx/dz is not too large.

b) Assume w is the particle velocity. Using the field given by (2.335), express
the components of ẇ to first order, in Cartesian coordinates.

c) Determine, to order zero, the three components of velocity and position,
using the following initial conditions:

x0 = y0 = z0 = 0 , (2.336)

w0 = w⊥0êx + wz0êz , (2.337)
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(the zero superscript in A0 signifies that the quantity A is expressed to
order zero).

d) Show that the calculation to first order leads to:

wx =

(
w2

z0

ρ

)
t+ w⊥0 cosωct , (2.338)

wy = −
(
w2

z0

ρωc

)
+ w⊥0 sinωct , (2.339)

where the constants of integration are fixed such that if we set ρ−1 = 0,
we will recover the zeroth order solution. In this first order calculation,
we have replaced the values of wz and z, which appear in the expressions
obtained for wx and wy in b), by their values approaching z = 0, i.e. to
order zero, namely wz0 and wz0t respectively.

e) Finally, show that the position of the guiding centre satisfies the expres-
sion:

x =

(
1

2ρ

)
z2 . (2.340)

Answer

a) The magnetic field is directed, at the origin of the system, along the z axis
and is affected by a (symmetric) curvature of the lines of force in the xOz
plane. Equation (2.335) in the terms of the problem suggests that the Bx

component is a correction term for Bz in the neighbourhood of z = 0. A
similar question was treated in Sect. 2.2.3, p. 147 and p. 152 (2.221) with
the inhomogeneity along êy instead of êx. Achieving this transposition
yields:

B = êx(βB0z) + êz[B0(1 + βx)] . (2.341)

The principal component Bz is subject to a first order correction, which
we can neglect in comparison to B0, of order zero; the correction along
the x axis introduces a (small) term β, where β � ρ−1 (XIII.18): equation
(2.335) of the question is therefore demonstrated.
We can also treat the problem from the beginning, without recourse to
the results of Sect. 2.2.3 as we have just done. Since Bx is a first order
correction, a development in series, limited to first order, is justified:

Bx = Bx(z = 0)︸ ︷︷ ︸
=0

+
∂Bx

∂x
x+

∂Bx

∂y
y +

∂Bx

∂z
z � ∂Bx

∂z
z , (2.342)

the Bx component depending only on z (see figure). Since B = êxBx +
êzBz and Bz = B0, we obtain:
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B = êx
∂Bx

∂z
z + êzB0 . (2.343)

To calculate ∂Bx/∂z, we consider a magnetic field line whose slope dx/dz
is, as a general rule, equal to the ratio Bx/Bz of the local magnetic field
components:

dx

dz
=

Bx

Bz
. (2.344)

From (2.344), we have:

d2x

dz2
=

∂Bx

∂z

1

Bz
− ∂Bz

∂z

Bx

B2
z

, (2.345)

where the second term on the RHS is negligible compared to the first term
because it is of order 2: from (2.341) and (2.342), ∂Bx/∂z and Bx are both
non zero only to order 1.
By assumption, dx/dz is not too large in the neighbourhood of the origin,
then (XIII.2):

d2x

dz2
� 1

ρ
. (2.346)

Finally, from (2.345) and (2.346):

∂Bx

∂z
=

B0

ρ
, (2.347)

from which, following (2.343), we have thus demonstrated the validity
of (2.335).

b) We simply return to the general equations shown in Sect. 2.1, which we
can write, taking −qB0/m = ωc and setting E = 0 (Eqs. (2.6)–(2.8)) in
the form:

ẇx =
q

m
[Bzwy −Bywz] =

q

m
[B0wy] = −ωcwy , (2.348)

ẇy =
q

m
[Bxwz −Bzwx] =

q

m

[
B0z

ρ
wz −B0wx

]

= −ωc

[
z

ρ
wz − wx

]
, (2.349)

ẇz =
q

m
[Bywx −Bxwy] = − q

m

[
B0z

ρ
wy

]
= ωc

[
z

ρ
wy

]
, (2.350)

where the underlined terms are of first order, because they tend to zero if
the radius of curvature tends to infinity (rectilinear lines of force).

c) To obtain the expression for the components of ẇ to order zero, we only
need to set ρ → ∞ in (2.348)–(2.350). We then get:
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ẇx = −ωcwy , (2.351)

ẇy = ωcwx , (2.352)

ẇz = 0 . (2.353)

We can start by calculating the expressions for wx and x. To do this, we
differentiate (2.351):

ẇx = −ωcẇy (2.354)

and substituting ẇy from (2.352) gives:

ẇx = −ωc(ωcwx) , (2.355)

from which:
ẇx + ω2

cwx = 0 , (2.356)

for which the solution is clearly:

wx = A1 cosωct+A2 sinωct , (2.357)

where A1 and A2 are constants, depending on the initial conditions (equa-
tions (2.336) and (2.337)). This leads to:

wx = w⊥0 cosωct (2.358)

and:
x =

w⊥0

ωc
sinωct . (2.359)

To calculate the expressions for wy and y, we will take (2.352) and substi-
tute therein the value of wx from (2.358). After integration, and application
of initial conditions, we obtain:

wy = w⊥0 sinωct (2.360)

and:
y =

w⊥0

ωc
(1− cosωct) . (2.361)

As for wz and z, we deduce from (2.353):

wz = wz0 and z = wz0t . (2.362)

d) The system (2.348)–(2.350) can be resolved quite easily provided that, in
the terms in 1/ρ (terms of first order), the expressions for velocity and
position along êz are those of (2.362), which are of order zero. Note that,
as a result, these terms remain of order one. Then from (2.349), we write
down:

ẇy = −ωc

[
w2

z0t

ρ
− wx

]
. (2.363)
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To obtain wx, we start by differentiating (2.348):

ẇx = −ωcẇy , (2.364)

which we can render homogeneous in wx by substituting the expression
for ẇy from (2.363):

ẇx = ω2
c

[
w2

z0t

ρ
− wx

]
, (2.365)

from which:

ẇx + ω2
cwx =

ω2
cw

2
z0t

ρ
. (2.366)

The solution is the general solution with no RHS, namely (2.358), to which

must be added a particular solution (of first order): w
(1)
x = w2

z0t/ρ (fol-
lowing (2.366)), from which, in total:

wx = w⊥0 cosωct+
w2

z0t

ρ
. (2.367)

For wy, differentiate (2.363) and we have:

ẇy = −ωc

[
w2

z0

ρ
− ẇx

]
, (2.368)

an expression in which we can replace ẇx by its expression in (2.348), such
that:

ẇy = −ωc

[
w2

z0

ρ
+ ωcwy

]
, (2.369)

from which:
ẇy + ω2

cwy = −ωc

ρ
w2

z0 , (2.370)

whose solution, following the method of (2.367), is:

wy = w⊥0 sinωct−
1

ρωc
w2

z0 . (2.371)

e) To calculate the guiding centre velocity, we simply ignore the sinusoidal
terms in (2.367) and (2.371), such that:

wx =
w2

z0t

ρ
, (2.372)

wy = −w2
z0

ρωc
, (2.373)

and, clearly (E = 0):
wz = wz0 . (2.374)
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The position of the guiding centre is then described by:

x =
w2

z0t
2

2ρ
, (2.375)

y = −w2
z0t

ρωc
, (2.376)

z = wz0t . (2.377)

Combining (2.375) and (2.377) for x and z, we obtain:

x =
z2

2ρ
. (2.378)

This guiding centre motion is due to the magnetic curvature drift (Sect.
2.2.3, p. 147). To obtain the contribution from the magnetic drift, as was
shown in that section, we need to include the correction terms (to first
order) inBz, which we have neglected in our calculation so far (see (2.363)).

Remark: We can also obtain (2.378) by recalling that the motion of the
guiding centre due to the curvature drift is effected along the lines of force
B. It is sufficient to use the parameterisation of the lines of force calculated
in Appendix XIII. From equation (XIII.7), we have dy/dz = z/ρ which,
adapted to the direction of curvature in the present exercise, becomes
dx/dz = z/ρ, from which x = z2/2ρ, since the constant of integration is
zero, because at z = 0, Bx = 0.

2.10. Consider an axial, linear magnetic confinement machine whose mag-
netic field in the homogeneous region has a magnitude B0. This machine is
fitted with a magnetic mirror situated at z ≥ 0 such that the value of the
magnetic field is:

B = êzB0

[
1 +

(z
a

)2]
, (2.379)

where a is a constant. Find an expression giving the position z, in the mirror
zone, at which a particle is reflected if its vector velocity makes an angle α0

with the direction of the magnetic field in the homogeneous region.

Answer

The position at which a particle is reflected in the mirror zone is indepen-
dent of the magnitude of the velocity, but depends on the angle α0 (in the
homogeneous field region) of its vector velocity with respect to the axis of
the machine. More exactly, we have seen that:
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sinα = sinα0

√
B(z)

B0
, (2.187)

where the angle α is the angle of its vector velocity with respect to the axis
of the machine in the mirror region at the position z, where the magnetic
field is B(z) (see Fig. 2.15). The value of z at which the particle is reflected
is simply obtained by setting sinα = 1 in the preceding equation. Since:

B(z) = B0

[
1 +

(z
a

)2]
, (2.379)

we then obtain:

1 = sinα0

√√√√√B0

[
1 +

(z
a

)2]

B0
(2.380)

from which: (
1

sinα0

)2

= 1 +
(z
a

)2
, (2.381)

i.e.:

z = a

[(
1

sinα0

)2

− 1

] 1
2

= ±a cotα0 . (2.382)

Remark: Although the field B has components Bx and By, which are nec-
essary to satisfy ∇ ·B = 0, the important component for the mirror effect is
Bz (remember that in the adiabatic approximation, only Fz enters into the
conservation of μz).

2.11. Consider the motion of an electron in a uniform magnetic field B di-
rected along the z axis and symmetric about this axis. This magnetic field
varies slowly as a function of time, such that Bz = B0(1 − αt), where the
intensity B0 is constant and α is a very small parameter.

a) Verify that the field B satisfies Maxwell’s equations
b) Show that, in a Cartesian frame, the equation of motion of the electron

can be written in the form:

ẇx = −ωce

[
wy(1− αt)− αy

2

]
, (2.383)

ẇy = ωce

[
wx(1− αt)− αx

2

]
, (2.384)

ẇz = 0 , (2.385)

wherew = (wx, wy, wz) is the velocity of the electron, and ωce its cyclotron
frequency in the field B0.
In this calculation, why is it important that α be small?
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Answer

a) Conformity of the field B with Maxwell’s equations.
Due to the fact that the magnetic field varies with time, it creates an
associated electric field E, described by Maxwell’s equation:

∇ ∧E = −∂B

∂t
, (2.386)

and this field E is perpendicular to B. Since B = êzB0(1−αt), expanding
equation (2.386) gives:

êx

(
−∂Ey

∂z

)
+ êy

(
∂Ex

∂z

)
+ êz

(
∂Ey

∂x
− ∂Ex

∂y

)
= αB0êz . (2.387)

This requires that ∂Ey/∂z = ∂Ex/∂z = 0 and ∂Ey/∂x− ∂Ex/∂y = αB0,
i.e. that Ex and Ey are independent of z. Under these conditions, due to
the axial symmetry with respect to z, we can infer that the rotational term
along the z axis can be written:

Ex = −y

2
(αB0) , (2.388)

Ey =
x

2
(αB0) . (2.389)

In fact, the vector E describes a circle in the xOy plane.
For the equation ∇ ·D = ρ, where ρ = 0 in the framework of individual
trajectories, following (2.388) and (2.389), we have ∂Ex/∂x+∂Ey/∂y = 0,
and this equation is verified.
The verification of ∇ ·B = 0 is trivial, since B is independent of position.
Finally, for ∇ ∧ H = J + ∂D/∂t, where J = 0 (individual trajectory),
∇ ∧H = 0 because H is uniform, and the term ∂D/∂t = ε0∂E/∂t = 0.

b) Equation of motion. Following (2.6)–(2.8), we have:

me
d2x

dt2
= qe

[
Ex +Bz

dy

dt

]
= −qe

αB0

2
y + qeB0(1− αt)ẏ , (2.390)

me
d2y

dt2
= qe

[
Ey −Bz

dx

dt

]
= qe

αB0

2
x− qeB0(1− αt)ẋ , (2.391)

me
d2z

dt2
= 0 . (2.392)

Since the motion is uniform along z, setting ωce = −qeB/m and wx ≡
dx/dt, wy ≡ dy/dt, we have then verified (2.383) and (2.384):
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ẇx = −ωce

[
(1− αt)wy −

αy

2

]
, (2.393)

ẇy = ωce

[
(1− αt)wx − αx

2

]
, (2.394)

ẇz = 0 . (2.395)

The parameter α must be chosen to be small in order to keep a positive
intensity of B with time (αt < 1).

2.12. Consider the motion of an electron near the origin of a given frame.
The electron is subject to a magnetic field which is constant in time, but
slightly inhomogeneous along the field lines. Its equation is given by:

B = êzB0(1 + αz) , (2.396)

where α is sufficiently small, such that αz  1. Assume that the field is
axially symmetric about the z axis. The initial conditions are as follows:
x(0) = −x0, y(0) = 0, z(0) = 0, wx(0) = 0, wy(0) = w⊥0, wz(0) = wz0.

a) Show that the x, y and z components of the equation of motion due to
the Lorentz force are described by the following equations:

ẍ = −ωce

[
ẏ + α

(
zẏ +

1

2
yż

)]
, (2.397)

ÿ = ωce

[
ẋ+ α

(
zẋ+

1

2
xż

)]
, (2.398)

z̈ = −ωce

(α
2

)
[xẏ − yẋ] . (2.399)

b) Supposing that the initial velocity is given by:

w0 = w⊥0êy + wz0êz , (2.400)

show that:

ż ≡ wz = −1

2
αw2

⊥0t+ wz0 . (2.401)

Answer

a) The field we are considering has a slight inhomogeneity in its own direction.
Under these conditions, and due to the axial symmetry of B, we know
(Sect. 2.2.3, p. 138) there is, in fact, a component Br (of order 1 with
respect to the component Bz, of order zero) which has been ignored in
(2.396).
Including an expression for this in Cartesian coordinates (2.163), the com-
plete expression for the field B is now:
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B = −1

2
x

(
∂Bz

∂z

)

x=y=0

êx − 1

2
y

(
∂Bz

∂z

)

0,0

êy +B0(1 + αz)êz , (2.402)

where ∂Bz/∂z is calculated from (2.396), and finally:

B = −1

2
xB0 αêx − 1

2
yB0 αêy +B0(1 + αz)êz . (2.403)

Developing the equation of motion along the three axes of the Cartesian
frame, and setting E = 0, we have:

along x: ẋ =
qe
me

(Bz ẏ −By ż) =
qe
me

[
B0(1 + αz)ẏ +

B0

2
αyż

]

= −ωce

[
ẏ + α

(
zẏ +

yż

2

)]
, (2.404)

along y: ẏ = ωce

[
ẋ+ α

(
zẋ+

xż

2

)]
, (2.405)

and along z: ż = −ωce
α

2
(xẏ − yẋ) . (2.406)

b) To calculate the velocity along the guiding axis, we can observe, following
(2.406), that it is of order 1, due to the presence of the small parameter α
(assuming αz  1), which agrees with the assumption of the guiding cen-
tre approximation. We therefore simply need to replace the positions and
velocities of the cyclotron motion appearing in (2.406) by their expansion,
limited to order zero.
The equations describing the zeroth order motion in the perpendicular
plane are obtained by setting α = 0 in (2.404) and (2.405):

ẋ = −ωceẏ , (2.407)

ẏ = ωceẋ . (2.408)

Now we must resolve the system of 2 equation in 2 unknowns.
To calculate the motion along y, we perform a first integration of (2.407)
over time:

ẋ = −ωcey + C1 , (2.409)

where the constant C = 0, because ẋ(0) = 0 and y(0) = 0, such that:

ẋ = −ωcey . (2.410)

Substituting this equation in (2.408), we obtain:

ẏ + ω2
cey = 0 , (2.411)

for which the solution is:
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y = A1 cosωcet+A2 sinωcet . (2.412)

To determine the constants A1 and A2, we note that:

y(0) ≡ 0 = A1 , (2.413)

such that:
wy = A2ωce cosωcet , (2.414)

with the initial condition wy(0) = w⊥0.
Finally:

wy = w⊥0 cosωcet (2.415)

and:
y =

w⊥0

ωce
sinωcet . (2.416)

To calculate the motion along the x axis, we continue in an analogous
fashion. Integrating (2.408), we obtain:

ẏ = ωcex+ C2 , (2.417)

where, because of the initial conditions, the constant of integration C2 =
w⊥0 − ωcex0 .
Substituting (2.417) in (2.407):

ẋ+ ω2
cex = −ωcew⊥0 + ω2

cex0 , (2.418)

whose complete solution has the form:

x = A1 cosωcet+A2 sinωcet−
w⊥0

ωce
− x0 . (2.419)

Using the initial conditions x(0) = −x0 and wx(0) = 0, we find successively
A1 = w⊥0/ωce, from which:

x =
w⊥0

ωce
cosωcet (2.420)

and A2 = 0, from which:

wx = −w⊥0 sinωcet . (2.421)

To calculate the motion along z, we substitute the values for the motion
along x and y in (2.406):

ż = −ωceα

2

[
w2

⊥0

ωce
cos2 ωcet+

w2
⊥0

ωce
sin2 ωcet

]
= −α

2
w2

⊥0 , (2.422)

which, on integration gives:
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ż = −α

2
w2

⊥0t+ C3 , (2.423)

where ż(0) ≡ wz0 = C3, which indeed leads us to (2.401):

ż = −α

2
w2

⊥0t+ wz0 .

Remark: The choice of x(0) = −x0 rather than x(0) = 0 as initial condi-
tion enables us to obtain simpler expressions for the components of velocity
and position!

2.13. In the context of the individual trajectories model, consider an applied
magnetic field:

B = B0h(t)êz , (2.424)

where B0 is a constant and h(t) is a slowly varying function of time.

a) Verify that Maxwell’s equations are satisfied if the field E induced by
dB/dt is expressed by:

E =
1

2
B0ḣ(yêx − xêy) , (2.425)

where ḣ = dh(t)/dt. Specify the restrictions, if necessary.
b) Using the values of the fields E and B, show that:

d

dt

(
1

2
mw2

⊥

)
= −1

2
mωcḣ(ywx − xwy) , (2.426)

where w⊥ = wxêx+wyêy, and ωc is the cyclotron frequency of the charged
particle.

c) Find the solutions for x, y, wx, wy, to zeroth order (initial conditions
x = y = z = 0; wx(0) = wx0, wy(0) = wy0, wz(0) = wz0).

d) Show that the quantity mw2
⊥/2B remains constant to order zero in h.

Answer

a) We want to check whether the field E induced by the time variation of B
and the field B itself obey Maxwell’s four equations:

1. ∇ ∧E = −∂B

∂t
. (2.427)

The calculation of the LHS gives:
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∇ ∧E ≡ ∇ ∧
[
1

2
B0ḣ(yêx − xêy)

]
=

1

2
B0ḣ

∣∣∣∣∣∣∣∣

êx êy êz
∂

∂x

∂

∂y

∂

∂z
y −x 0

∣∣∣∣∣∣∣∣
,

≡ 1

2
B0ḣêz(−1− 1) = −B0ḣêz , (2.428)

but:

−B0ḣêz ≡ −∂B

∂t
, (2.429)

which corresponds to the RHS of (2.427): this equation is therefore
satisfied.

2. ∇ · ε0E = 0 . (2.430)

From Poisson’s equation ∇ ·D ≡ ∇ · ε0E = ρ, where ρ = 0 in the indi-
vidual trajectories model; in effect, the assumption in this description
is that there are no charges to induce the field E. Equation (2.430) is
effectively verified since:

∇ · ε0E ≡ ∇ ·
[
ε0B0ḣ(yêx − xêy)

]
(2.431)

= ε0B0ḣ

[
∂

∂x
(y) +

∂

∂y
(−x) +

∂

∂z
(0)

]
≡ 0 .

3. ∇ ∧B = ε0μ0
∂E

∂t
+ μ0J .

(2.432)
where J , the conduction current, is zero in the framework of individual
trajectories. Expanding the LHS of this equation gives:

∇ ∧B ≡

∣∣∣∣∣∣∣∣∣

êx êy êz

∂

∂x

∂

∂y

∂

∂z

0 0 B0h(t)

∣∣∣∣∣∣∣∣∣

(2.433)

≡ ∂

∂y
(B0h(t))êx − ∂

∂x
(B0h(t))êy ≡ 0 ,

since B0h(t) is independent of position.
It remains to show that the RHS, ∂E/∂t, is also zero. From (2.425), we
have:
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∂E

∂t
=

∂

∂t

[
1

2
B0ḣ(yêx − xêy)

]

=
B0

2

[
ḣ(wyêx − wxêy) + ḣ(yêx − xêy)

]
. (2.434)

This expression is zero to zeroth order (ḣ � ḣ � 0), but not to first
order.

Remark: We cannot set a priori, ∂E/∂t = 0 because this requires us,
in the present case, to neglect the field E induced by ∂B/∂t. On the
other hand, the field E induced by the particle motion (J = σE) is
effectively zero in the framework of individual particles since J = 0.

4. ∇ ·B = 0 . (2.435)

This equation is trivially verified because B0 and h(t) are independent
of position. In effect:

∂

∂x
(0) +

∂

∂y
(0) +

∂

∂z
(B0h(t)) = 0 . (2.436)

The four Maxwell equations are satisfied, but only to order zero
(ḣ = ḣ = 0) for ∇ ∧B = ∂D/∂t.

b) We know that only the electric field affects the work done (Sect. 2.1); in
the present case, the actual electric field is that induced by the variation
of B. The component of the kinetic energy perpendicular to the field B is
given by:

d

dt

(
1

2
mw2

⊥

)
= qE ·w⊥ , (2.437)

but this is also the total work effected because E is entirely in the plane
perpendicular to B.
We then have:

d

dt

(
1

2
mw2

⊥

)
= q

1

2
B0ḣ(yêx − xêy) · (wxêx + wyêy) ,

=

(
qB0

m

)
mḣ

2
(ywx − xwy) (2.438)

and, noting ωc = −qB0/m, we then retrieve:

d

dt

(
1

2
mw2

⊥

)
= −1

2
mωcḣ(ywx − xwy) . (2.426)

c) The equations of motion in Cartesian coordinates (Sect. 2.1) are:
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ẇx =
q

m

[
1

2
B0ḣy +B0h(t)wy

]
, (2.439)

ẇy =
q

m

[
−1

2
B0ḣx−B0h(t)wx

]
, (2.440)

ẇz =
q

m
[0] . (2.441)

To integrate these equations, we will use the guiding centre approximation,
and consider that there are two timescales, that of the cyclotron motion,
and that of the much slower motion due to h(t): thus h(t) will be a constant
to zeroth order and we will then put ḣ = 0 in Eqs. (2.439) and (2.440).
Setting −qB0h/m = Ω, we can, by identification, use the solutions for a
constant field B, taken from Sect. 2.2.2, p. 113.
However, in this case, B is along êx while here it needs to be along êz:
exchanging x ↔ z and recalling that, to maintain a right-handed frame,
we must have êx ∧ êy = êz, it is necessary to replace z by −x in such a
permutation.
Finally:

x = −wx0

Ω
sinΩt+

wy0

Ω
cosΩt− wy0

Ω
, (2.442)

y =
wx0

Ω
cosΩt+

wy0

Ω
sinΩt− wx0

Ω
, (2.443)

z = wz0t , (2.444)

wx = −wx0 cosΩt− wy0 sinΩt , (2.445)

wy = −wx0 sinΩt+ wy0 cosΩt , (2.446)

wz = wz0 . (2.447)

We can easily verify that the initial conditions are respected: we recover
x = y = z = 0 at t = 0 and wx(0) = wx0, wy(0) = wy0, wz(0) = wz0.

Another solution

The initial conditions are the same except for wx(0) = 0. The expressions
are then much simpler:

x =
wy0

Ω
cosΩt− wy0

Ω
, (2.448)

y =
wy0

Ω
sinΩt , (2.449)

z = wz0t , (2.450)
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wx = −wy0 sinΩt , (2.451)

wy = wy0 cosΩt , (2.452)

wz = wz0 . (2.453)

d) We need to verify that the first adiabatic invariant is, in effect, constant
to zeroth order, in the present configuration.
We will consider the temporal variation of the magnetic moment:

d

dt
μ ≡ d

dt

(
mw2

⊥
2B

)
=

1

B

d

dt

(
mw2

⊥
2

)
− 1

B2

(
dB

dt

)(
mw2

⊥
2

)
. (2.454)

The derivative appearing in the first term on the RHS is given by (2.426),
while the second term is calculated by making use of the zeroth order
velocities ((2.445) and (2.446)), conforming to the concept of adiabatic
invariance:

d

dt
μ =

1

B

d

dt

[
−1

2
mωcḣ(ywx − xwy)

]

− 1

B2
0h

2
B0ḣ

[
1

2
m(w2

x0 + w2
y0)

]
. (2.455)

It is clear that the RHS, due to the presence of ḣ, is of first order, therefore
zero to zeroth order, which leads to the fact that μ is indeed a constant to
order zero.

2.14. Consider a static magnetic field (toroidal field):

B = êxB0αz + êzB0(1 + αx) , (2.456)

where α is a constant much less than unity.

a) Express the equation of motion of an individual particle in Cartesian co-
ordinates. Underline the terms which are linked to the curvature of the
lines of force of the magnetic field B.

b) Find the solutions of the motion to zeroth order, knowing that the initial
conditions are:

wx(0) = 0 x(0) = rB

wy(0) = wy0 y(0) = 0 (2.457)

wz(0) = wz0 z(0) = 0

with rB = wy0/ωc, where ωc is the cyclotron frequency and rB , the cy-
clotron gyro-radius.

c) Then show that to order one, the following equation is obtained for wx.
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ẅx + ω2
cwx � αω2

c

(
3

2
rBwy0 sin 2ωct+ w2

z0t

)
. (2.458)

d) Find the solution for wx from (2.458).

Answer

a) This problem corresponds to the case studied in Sect. 2.2.3, p. 152. The
component of B in the direction of êx is that responsible for the curvature
of the field lines of B. The field already satisfies Maxwell’s equations, since
∇ ·B = 0 (Sect. 2.2.3, p. 138) and clearly from (2.457), ∇ ∧B = 0.
The equation of motion in Cartesian coordinates, with E = 0, By = 0 and
ωc = −qB/m, is obtained from (2.6)–(2.8):

ẇx =
q

m
[Bzwy] =

q

m
[B0(1 + αx)wy] = −ωcwy(1 + αx) , (2.459)

ẇy =
q

m
[Bxwz −Bzwx] =

q

m
[B0αzwz −B0(1 + αx)wx]

= ωc

[
wx + α(xwx − zwz)

]
, (2.460)

ẇz =
q

m
[−Bxwy] = − q

m
[B0αzwy] = ωcαzwy , (2.461)

where the first order quantities underlined are related to the curvature of
the field (contribution from the Bx component).

b) In order to reduce (2.459)–(2.461) to order zero, we only need to set α = 0:

ẇx = −ωcwy , (2.462)

ẇy = ωcwx , (2.463)

ẇz = 0 . (2.464)

To calculate the wx component, we start by differentiating equation (7),
to introduce ẇy:

ẇx = −ωcẇy , (2.465)

then use (2.463) to obtain:

ẇx + ω2
cwx = 0 , (2.466)

which has the (harmonic oscillator) solution:

wx = A1 sinωct+A2 cosωct , (2.467)

where the constants A1 and A2 must be determined from the initial con-
ditions. Since wx(0) = 0, A2 = 0. For A1, we have, by integrating (2.467):
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x = −A1

ωc
cosωct (2.468)

and since x(0) = rB , A1 = −rBωc:

wx = −rBωc sinωct , (2.469)

x = rB cosωct . (2.470)

wy, it is found by the same method:

wy = A1 sinωct+A2 cosωct , (2.471)

which leads to:
wy = wy0 cosωct (2.472)

and:
y = rB sinωct . (2.473)

Finally, for the wz component, since ẇz = 0 (2.461), we obtain:

wz = wz0 (2.474)

and:
z = wz0t . (2.475)

c) By substituting the values of the zero order components of w and r in the
terms involving α ((2.459)–(2.461)), we find:

ẇx = −ωc

[
wy + αwy0rB cos2 ωct

]
, (2.476)

ẇy = ωc

[
wx + α(−r2Bωc sinωct cosωct− w2

z0t)
]
, (2.477)

ẇz = αωcwy0wz0t cosωct . (2.478)

To obtain an homogeneous equation for wx, we proceed in the same fashion
as b), differentiating (2.476) with respect to time t, then replacing ẇy by
its value taken from (2.477):

ẇx = −ωc [ẇy − 2αwy0rBωc cosωct sinωct] ,

ẇx = −ωc

{
ωc

[
wx + α

(
−rBwy0

2
sin 2ωct− w2

z0t
)]}

+ω2
cαwy0rB sin 2ωct ,

i.e.:

ẇx + ω2
cwx = αω2

c

[
3

2
rBwy0 sin 2ωct+ w2

z0t

]
. (2.479)
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d) The solution of the differential equation (2.479) is the sum of the general
solution without the RHS:

wx = A1 cosωct+A2 sinωct (2.480)

and a particular solution with the RHS (not obvious!):

wx = −1

2
αrBwy0 sin 2ωct+ αw2

z0t . (2.481)

We can verify that (2.481) is indeed a particular solution of (2.479). From
(2.479) and (2.480),

ẇx + ω2
cwx ≡ 2αω2

crBwy0 sin 2ωct−
ω2
c

2
αrBwy0 sin 2ωct+ ω2

cαw
2
z0t

≡ 3

2
αω2

crBwy0 sin 2ωct+ ω2
cαw

2
z0t ,

which corresponds exactly to the RHS of (2.479).
We can fix the constants A1 and A2 in (2.480) by the values they have
at t = 0. Since wx(0) = 0, then A1 = 0. To obtain A2, we integrate the
complete solution to obtain x:

x = −A2

ωc
cosωct+

1

2

αrBwy0

2ωc
cos 2ωct+

αw2
z0t

2

2
, (2.482)

from which:

x(0) = −A2

ωc
+

1

4

αrBwy0

ωc
= rB (2.483)

and, thus, since rB =
w0⊥
ωc

=
w0y

ωc
:

A2 =

(
1

4

αrBwy0

ωc
− rB

)
ωc =

1

4
αrBwy0 − wy0 = wy0

(αrB
4

− 1
)

,

(2.484)
i.e.:

wx = wy0

(αrB
4

− 1
)
sinωct−

1

2
αrBwy0 sin 2ωct+ αw2

z0t . (2.485)

2.15. Consider a linear magnetic confinement machine, limited at each end
by magnetic mirrors. We can arrange for the two mirrors to be displaced with
respect to each other, each being given a velocity vM in the laboratory frame.
We will consider a particle of charge q and massm which, in the homogeneous
magnetic field region of the machine, is characterised initially by a velocity
w0, such that w0⊥ = w0‖, and by its kinetic energy Ei.
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a) Show that at each reflection by the mirrors, the magnitude of the parallel
velocity of the particle is increased by 2vM .

b) Explain why the particle will eventually leave the mirror.
c) Calculate the energy Ep of the particle when it leaves the mirror: express

Ep as a function of the initial energy Ei and the mirror ratio R = Bmax/B0.
d) Find the expression giving the number of reflections n that the particle

experiences before leaving the system, as a function of vM , Ei, R, and m.

Answer

a) In the laboratory frame, the particle with
velocity w0‖ is directed towards the mirror
M, which is itself in motion, with a velocity
vM , in the direction of the incident parti-
cle, as illustrated in the figure. The veloc-
ity of the particle along the z axis, in this
frame, is:

wz = w0‖ , (2.486)

taking the positive sign as the direction to the mirror.
An observer tied to the mirror sees the particle coming towards him with
an increased velocity:

wzM = w0‖ − vM , (2.487)

since vM is negative.
In the same frame, after reflection, the particle returns with the opposite
velocity:

w′
zM = −(w0‖ − vM ) . (2.488)

Returning to the laboratory frame, we must, this time, add vM to the
particle velocity (inverse operation as for (2.487):

w′
z = −(w0‖ − vM ) + vM = −(w0‖ − 2vM ) . (2.489)

The speed of the particle after reflection is thus augmented by |2vM | (com-
pare (2.486) and (2.489)).
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Another solution for a)

We can consider the reflection of the particle on the mirror as a head-on
elastic collision between a light particle of mass m and a moving wall, i.e.
a heavy particle with a quasi-infinite mass M (m  M).
The relative velocity wmM of the two particles, independent of the frame,
is expressed by:

wmM = w‖0 − vM . (1.70)

After reflection, considering an elastic collision, the relative velocity is
opposite and with the same modulus (after (1.79)):

w′
mM = −wmM = −(w‖0 − vM ) . (2.490)

In the laboratory frame, the velocity w′
‖0 of the light particle after reflec-

tion becomes (1.74):

w′
‖0 = w′

CM +

(
M

m+M

)
w′

mM , (2.491)

where w′
CM is the velocity of the center of mass after reflection. Then,

from (1.69) and (1.70):

w′
CM = wCM =

mw‖0 +MvM

m+M
. (2.492)

From (2.491) and (2.492), we obtain:

w′
‖0 =

mw‖0 +MvM +MvM −Mw‖0

m+M
, (2.493)

which, assuming M 	 m, gives:

w′
‖0 = −w‖0 + 2vM . (2.494)

b) We have just shown in a) that w‖, the component of the particle velocity
parallel to the field B, is increased at each reflection, while the component

w⊥ remains unchanged, with w
(n)
⊥ = w

(0)
⊥ after a number of reflections n.

As a result, assuming that in the uniform region before the first reflection
we have:

w
(0)
0⊥ = w0 sinα0 , (2.495)

then after the first reflection, this becomes:

w
(1)
0⊥ ≡ w

(1)
0 sinα

(1)
0 = w

(0)
0 sinα

(0)
0 . (2.496)

Since w0, the modulus of w, increases, the angle α
(1)
0 must decrease, for

w0⊥ to remain constant: after n reflections, the angle α
(n)
0 will be smaller

than α0m and, following (2.189), the particle will find itself in the loss cone.
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c) By assumption, initially:

Ei =
1

2
m(w2

0⊥ + w2
0‖) = mw2

0‖ (2.497)

and, as discussed in b), the particle will leave the machine when α0 is
sufficiently small, i.e. when:

w0⊥

w
(n)
0

≤ sinα0m =
1√
R

. (2.498)

Setting the equality in (2.498), where w0 is increased at each reflection,
such that after n reflections:

w
(n)
0 =

[
w2

0⊥ + (w0‖ + 2n vM )2
] 1

2 . (2.499)

Owing to our initial assumption w0‖ = w0⊥, from (2.498) we have:

w
(n)
0 = w0⊥

√
R = w0‖

√
R , (2.500)

such that, by multiplying the square of equation (2.499) by m/2 and sub-
stituting (2.500), we have:

Ep ≡
[
mw2

0⊥
2

+
mw2

0‖

2
+ 2mnw0‖vM + 2mn2v2M

]
=

1

2
mw2

0‖R , (2.501)

thus:

Ep = Ei
R
2

.

d) We can calculate n from its quadratic expression in (2.501):

n2 +
w0‖

vM
n− Ei

(
R
2

− 1

)
1

2mv2M
= 0 , (2.502)

from which we obtain:

n = −
w0‖

2vM
+

1

2

√(
w0‖

vM

)2

+ 2Ei
(
R
2

− 1

)
1

mv2M
, (2.503)

because the solution with a negative sign in front of the square root would
give a negative value for n. Continuing the development further, we have:
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n = −
w0‖

2vM
+

1

2

√(
w0‖

vM

)2

+ 2

(
w0‖

vM

)2(R
2

− 1

)
, (2.504)

n = −
w0‖

2vM
+

w0‖

2vM

√
1 +R− 2 , (2.505)

n =
w0‖

2vM

[
(R− 1)

1
2 − 1

]
=

(
Ei
m

) 1
2 1

2vM

[
(R− 1)

1
2 − 1

]
, (2.506)

of which we will take the nearest upper integer value!

Another solution for d)

We have:
wf‖ = w0‖ + 2nvM , (2.507)

where wf‖ is the parallel velocity of the particle on leaving the machine,
defined by:

sinα0m ≥ w0⊥

(w2
f‖ + w2

0⊥)
1
2

. (2.508)

Considering equality (2.508), we have:

sinα2
0m =

w2
0⊥

w2
f‖ + w2

0⊥
=

1

R , (2.509)

which becomes:
w2

0⊥(R− 1) = w2
f‖ . (2.510)

From (2.507), we can then write (with, by assumption, w0‖ = w0⊥ in the
present case):

n =
wf‖ − w0⊥

2vM
=

w0‖[(R− 1)
1
2 − 1]

2vM

and, using (2.497):

n =

(
Ei
m

) 1
2 1

2vM

[
(R− 1)

1
2 − 1

]
. (2.506)

2.16. A magnetic mirror is situated at each end of a machine, and its axis is
along the z axis. The magnetic configuration of these mirrors is symmetric
with respect to the plane z = 0. The planes of the mirrors are situated at zM
and −zM .
The magnetic field has been constructed such that, along the z axis, we have:

B(z) = B0

[
1 +

(z
a

)2]
, (2.511)

where a is a constant.
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a) Show that the period of oscillation of a particle of mass m between the two
mirrors is given by:

Tp = 2πa

[
m

2μB0

] 1
2

, (2.512)

where μ is the orbital magnetic moment. Assume the adiabatic approxi-
mation is valid along the whole trajectory.

b) Calculate the particle velocity along z (the particle is assumed to remain
within the machine) and show that:

wz =

(
2B0μ

m

) 1
2 zM

a
cos

(
2πt

Tp

)
(2.513)

and finally:

wz =

(
2μ

m

) 1
2

[B(zM )−B(z)]
1
2 . (2.514)

Answer

a) To the extent that the magnetic field is only slightly non uniform (adiabatic
condition) in its own direction, we can write (2.177):

mẇ = μ ·∇B (2.515)

because μ = −μêz (p. 136). Along z, in the present case:

mẇz = −μ
∂Bz

∂z
= −2μB0z

a2
, (2.516)

where equivalently:
d2z

dt2
= −2μB0

ma2
z , (2.517)

which has a permissible solution, for z = 0 at t = 0:

z = zM sin

(
2μB0

ma2

) 1
2

t , (2.518)

from which the period:

Tp = 2πa

√
m

2μB0
. (2.519)

b) At z = ±zM , due to the assumption that the particle does not leave the
mirror, we must have w‖(zM ) = 0, that is:

1

2
mw2

‖(zM ) = 0 . (2.520)
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The conservation of kinetic energy gives:

1

2
mw2

‖(z) +
1

2
mw2

⊥(z) =
1

2
mw2

⊥(zM ) . (2.521)

Knowing that μ is a constant of the motion, we have:

μ =
1

2

mw2
⊥(z)

B(z)
= constant , (2.522)

such that, from (2.521) and (2.522):

1

2
mw2

‖(z) = μ[B(zM )−B(z)] , (2.523)

from which:

w‖(z) =

√
2μ

m
[B(zM )−B(z)] . (2.524)

If we now replace B(zM ) and B(z) by their respective values:

w‖(z) =

√
2μB0

m

[
1 +

(zM
a

)2
− 1−

(z
a

)2] 1
2

, (2.525)

=

√
2μB0

m

zM
a

[
1−

(
z

zM

)2
] 1

2

, (2.526)

then, from (2.518) with (2.519):

w‖(z) =

√
2μB0

m

zM
a

[
1− sin2

(
2πt

Tp

)] 1
2

=

√
2μB0

m

zM
a

cos

(
2πt

Tp

)
. (2.527)

2.17. The Hamilton-Jacobi formalism of classical mechanics allows us to in-
troduce the concept of an adiabatic invariant I as the average of an action
integral (LHS of (2.528) below). In the case where the particle is subject to
a periodic motion, this integral takes a constant value:

1

2π

∮
pdq = I , (2.528)

where q is a generalised canonical coordinate88 (for example a position vari-
able) and p is the conjugate canonical moment (for example, the momentum

88 Do not confuse the variables p and q of the Hamilton-Jacobi formalism with pressure
and charge.
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corresponding to the position q). Given the kinetic energy Ec of the system,
the value of p is obtained from the equation:

p =
∂Ec
∂q̇

. (2.529)

Consider a linear discharge, confined by a static magnetic field B, directed
axially, and terminated at its two ends by magnetic mirrors.

a) Show that the action integral taken over the cyclotron motion of a charged
particle leads, within a constant coefficient, to a constant value of the
orbital magnetic motion μ of the particle. Specify the assumptions used
for your calculation.

b) Show that the charged particle oscillates between the mirrors with a period
T , given by:

T =

∮
dz

[(
2
m

)
(Ec − μB)

] 1
2

. (2.530)

Specify your assumptions.
c) Calculate the second invariant I2, linked to the axial motion, to show that:

I2 =
1

2π

∮
[2m(Ec − V )]

1
2 dz , (2.531)

where we have introduced the pseudo potential V ≡ μB, to give the inte-
gral a more general aspect.

d) Consider the case where the discharge is confined by a magnetic field:

B = B0

[
1 +

(z
a

)2]
êz , (2.532)

where a is a constant such that ∂B/∂z varies very slowly along z: calculate
the period of oscillation of a particle in such a linear machine.

Answer

a) Since this concerns cyclotron motion, we will describe the system in cylin-
drical coordinates (r, ϕ, z). We then have x = rB cosϕ, y = rB sinϕ, where
rB is the Larmor radius, which we assume to be constant because B varies
slowly along the axis.
Since:

Ec =
1

2
m(ẋ2 + ẏ2 + ż2) , (2.533)

this can be written in cylindrical coordinates as:

Ec =
1

2
m(r2Bϕ̇

2 + ż2) . (2.534)
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Because ẋ2 + ẏ2 = (−rB sinϕ ϕ̇)2 + (rB cosϕ ϕ̇)2 and setting q = ϕ, we
obtain for pϕ:

pϕ =
∂Ec
∂ϕ̇

= mr2Bϕ̇ , (2.535)

where ϕ̇ ≡ dϕ/dt = ωc, and then:

I1 ≡ 1

2π

∮
pϕdϕ =

1

2π

∫

cyclotron
period

mr2Bϕ̇ dϕ =
1

2π
mr2Bωc

∫
dϕ =

mw2
⊥

ωc
,

(2.536)
recalling that ωc = w⊥/rB. Knowing that μ ≡ mw2

⊥/2B and ωc = |q|B/m,
we obtain:

I1 =

(
2m

|q|

)
μ . (2.537)

b) The period of oscillation T along the axis of the discharge is found by
integrating the closed (cyclic) motion along z:

T =

∮
dz

w‖
=

∫
dz

ż
. (2.538)

In addition, we have from (2.534):

Ec =
1

2
mr2Bω

2
c +

1

2
mż2 =

1

2
mw2

⊥ +
1

2
mż2 = μB +

1

2
mż2 , (2.539)

which allows us to calculate the axial velocity ż:

dz

dt
= ż =

[
2

m
(Ec − μB)

] 1
2

, (2.540)

thus, over a cycle back and forth, the period of oscillation of the particle is:

T ≡
T∫

0

dt =

∮
dz

[
2

m
(Ec − μB)

] 1
2

. (2.541)

c) Taking advantage of the definition (2.528), we can introduce the adiabatic
invariant linked to the axial motion, by setting q = z and p = pz:

I2 =
1

2π

∮
pz dz . (2.542)

Since pz ≡ mż, we obtain:

I2 =
1

2π

∮
mż dz , (2.543)
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which can be evaluated from (2.540), giving:

I2 =
1

2π

∮
m

[
2

m
(Ec − μB)

] 1
2

dz ,

=
1

2π

∮
[2m(Ec − μB)]

1
2 dz . (2.544)

d) We know from (2.177) that:

Fz = −μ
∂Bz

∂z
, (2.545)

such that, in the present case:

Fz = −μ
B02z

a2
(2.546)

and, since Fz = mż, this leads to:

ż +
μ

m

B02

a2
z = 0 , (2.547)

which is the equation of periodic motion. Its oscillation frequency ω is
given by:

ω =

(
2B0μ

m

) 1
2 1

a
(2.548)

and since ω = 2π/T :

T = 2πa

(
m

2B0μ

) 1
2

. (2.549)

See also problem 2.16.

2.18. Calculate the current density of ions and electrons in the ionosphere,
due to the gravitational gradient in the terrestrial magnetic field at an altitude
of 300 km. Assume that the magnetic induction vector B is perpendicular to
the terrestrial gravitational field.
The general relation for the gravitational force exerted on a mass m due to
a mass M , when the masses are separated by a distance r, is:

F g = −GMm

r2
, (2.550)

where G is the universal gravitational constant. By definition, at the surface
of the earth, of mass M , a mass m is subject to a force:

F gt = −GMm

R2
= −g0m , (2.551)
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where R is the radius of the earth (the mass M is localised at the centre of
the earth!).
Numerically, consider the O+ ions to have a density, 1.8×1012 m−3, equal to
that of the electrons; |B| = 10−4 tesla (1 gauss). The mass me of the electrons
is 9.11× 10−28 g and that of O+, is mi = me× 1836× 16. The earth radius is
4× 107/2πmetres and g0, the gravitational field at the surface of the earth,
is 9.8m s−2.

Answer

a) The expression for the drift velocity in the gravitational field
It has been shown (Appendix XII) that the drift velocity of a charged
particle in a magnetic field B due to an arbitrary force FD is given by:

wD =
FD ∧B

qB2
, (2.552)

where FD is the gravitational force, in the present case.
For the electrons FDe = −GMme/r

2 and for the ions FDi = −GMmi/r
2.

As can be seen from (2.552), the two types of particles, because of the
opposite sign of their charge, drift in opposite directions: there will be a
net current.

b) Calculation of the gravitational force at an altitude of 300 km with respect
to the surface of the earth
At a given altitude z with respect to the surface of the earth such that
z  R (which is the case here: (300/40000)2π � 0.05), we can develop
(2.550) to first order with respect to the surface of the earth (z = 0):

F g = − GMm

(R+ z)2
= − GMm

R2
(
1 +

z

R

)2 � −GMm

R2

(
1− 2z

R

)
. (2.553)

Since, at the surface of the earth:

F gt = −GMm

R2
= −mg0 , (2.551)

then from (2.551) and (2.553):

Fg = −mg0

(
1− 2z

R

)
(2.554)

and finally, because B ⊥ F g, the expression of drift velocity ((2.551) and
(2.552)) is:

wD =

mg0

(
1− 2z

R

)

qB
. (2.555)



202 2 Motion of a charged particle in E and B fields

c) The current density of the gravitational drift is due to the contribution of
the ions and the electrons which, moving in opposite directions (contrary
to the electric field drift in electric and magnetic fields), creates a net
current:

J = nevDi − nevDe , (2.556)

where vDi and vDe are the drift velocities of the ions and electrons re-
spectively. This leads to:

J = ne

(
1− 2z

R

)[
mig0
eB

− meg0
−eB

]
, (2.557)

J =
ng0
B

(
1− 2z

R

)
(mi +me) (2.558)

and, because mi 	 me:

J � ng0
B

(
1− 2z

R

)
mi . (2.559)

This drift is perpendicular to the direction of the earth radius and to B.
d) Numerical application:

J �
1.8× 1012 × 9.8

(
1− 2× 300× 103 × 2π

4× 107

)

10−4
1837× 16× 9.11× 10−31

= 4.3× 10−9 Am−2 � 4 nAm−2 !



Chapter 3

Hydrodynamic Description
of a Plasma

In Chapter 2, we analysed the motion of an isolated charged particle, sub-
jected to externally applied electric (E) and magnetic (B) fields, ignoring the
interaction with other particles. In this chapter, we will introduce a model
that considers an ensemble of particles; the motion of these charged particles
self consistently produces magnetic and electric fields, referred to as induced
fields, which are superimposed on the external fields applied to the plasma.
A further difference from Chap. 2 is that we will also account for collisions.
This model is hydrodynamic in nature, such that the parameters describing
the plasma (density, particle diffusion, fluid velocity v, temperature, kinetic
pressure. . . ) are average values taken over a velocity distribution in a volume
element. These values are said to be macroscopic.

The hydrodynamic model concept: assumption of a continuous
medium

In this description, we follow the motion of small volume elements in the
plasma, without taking account of the microscopic phenomena taking place
therein. This assumes:

1. That there are enough particles in the volume for the fluctuations around
the average values to be negligible, leading to well centred average values.
In the same way, we assume that the effect of electric and magnetic micro-
fields produced by the charged particles in the volume element considered
is taken account of on the macroscopic scale by average fields assumed to
be acting globally on this same volume element.

2. That the volume elements are sufficiently small to provide an accurate
spatial description.

These conditions are generally realised in laboratory plasmas: for example,
a cube of gas with sides of length 10μm at atmospheric pressure contains
2.7× 1010 molecules.

M. Moisan, J. Pelletier, Physics of Collisional Plasmas,
DOI 10.1007/978-94-007-4558-2 3,
© Springer Science+Business Media Dordrecht 2012
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This macroscopic description of a plasma is analogous to that of ordinary
fluids; the particles in the same volume element move together89, forming a
continuous medium although it is discontinuous on the molecular scale.

Relationship between the hydrodynamic model
and the kinetic description of a plasma

The hydrodynamic description of a plasma introduces macroscopic quantities
such as the temperature, the pressure, the mobility of charged particles, the
diffusion coefficient of different types of particles, etc: these values are aver-
ages, calculated from the distribution function f(r,w, t) of the microscopic
velocities w of the particles (Sect. 3.3). This distribution function is obtained
in the framework of the kinetic theory of gases.

The hydrodynamic model enables us to describe all the physical phenom-
ena taking place in the plasma in a relatively complete way, by performing
calculations which are much simpler than those from kinetic theory, which
are much more difficult and complex to derive and interpret.

A plasma is not an ordinary fluid

The charged particles in a plasma constitute one or more fluids, whose motion
results in a current density J : this motion involves the coupling of the E and
B external fields with the particles, through the terms J ∧B in the equation
of motion and J · E in the energy balance equation90. The study of fluid
conductors subjected to electromagnetic fields has given birth to a branch of
plasma physics called magneto-hydrodynamics (MHD).

The term MHD is also used to designate a particular technology, related
to this area of plasma physics: this term can also be used to refer to ion
propulsion or MHD electricity converters, for example.

Cold plasma and warm plasma: two levels of approximation
of the hydrodynamic model

In the framework of the hydrodynamic model, if we neglect all thermal motion
of the particles (T = 0), we obtain what is conveniently referred to as a cold
plasma; if, on the other hand, we take account of the random motion of the

89 In fact, particles pass from one volume element to another, but the average number of

particles in each element remains almost constant, or varies slowly.
90 The term J ∧ B, the magnetic part of the Lorentz force F = q(E + v ∧ B), is also
referred to as the Laplace force. The term J ·E describes the transfer of energy from the

field E to the charged particles, and is related to Ohm’s Law (P = V I). From the fact
that J = σE, we obtain J ·E = σE2; this term is referred to as the Joule heating effect.
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particles, but assume an isotropic scalar pressure91, pα = nαkBTα, we call
this the warm plasma approximation.

Description of the plasma by one, two or many fluids

- In the case of a weak interaction between the different particle species
(electrons, ions, neutrals), each type of particle is generally characterised
by a different temperature Tα. We can thus describe the motion of elec-
trons, ions and neutrals separately, knowing however that these fluids are
partially coupled by their collisional interaction terms. Moreover, since the
neutrals do not react with the E and B fields, we usually do not include
their equation of motion (for example, in the case of propagation of a
wave), but we take account of their influence through the collision terms
in the fluid equations of the charged particles; we can thus reduce the
model to two fluids (electrons and ions).
A particularly interesting case of weak coupling is that in which we limit
ourselves to a single fluid, that of the electrons, neglecting the motion of
the ions, which are much heavier. In this case, the ions are assumed to form
a stationary and continuous background, ensuring macroscopic neutrality
and influencing the collisional interaction term of the electron fluid. This is
the Lorentz plasma model, used in particular to describe plasmas produced
by HF fields.

- In the case of a strong interaction between the different types of particles,
as is the case in a plasma in LTE, the different fluids are so well coupled
that they can be considered as a single fluid possessing, a single and equal
temperature, that is sufficient to describe the plasma.

3.1 Fundamental aspects of the Boltzmann equation

Before giving a detailed description of the hydrodynamic approach, we will
discuss some rudimentary kinetic theory.

3.1.1 Formal derivation of the Boltzmann equation

The Boltzmann equation is derived rigorously from Liouville’s theorem (see
for example Delcroix and Bers, Sect. 10.2). We can, however, obtain this
equation simply, but in a purely formal way, by initially assuming there are
no collisions between the particles, and in a further calculation, including the

91 When there is no isotropy, it is convenient to use the (hydrodynamic) kinetic pressure
tensor, Ψ ,which is a 2nd order tensor (Sects. 3.3 and 3.5).
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effect of collisions. Consider the particles of a particular type that, at time t,
occupy a volume element dr dw in phase space, centred at the values r, w.
By definition, the number of particles is given by:

f(r,w, t) dr dw , (3.1)

where f(r,w, t) is the velocity distribution function of the particles. In the
absence of collisions, the flow in phase space is that of an incompressible fluid
(Liouville’s theorem), such that at a later time t + dt, the same particles of
the volume element dr dw will, under the influence of the forces present,
be situated at the point r + w dt, w + (dw/dt)dt in phase space, where
dw/dt = F /m represents the acceleration produced by the fields imposed
externally on the plasma and those induced by the micro-fields. Expanding
the distribution function at the new point with respect to the initial point,
using a first order Taylor expansion, we obtain92:

f(r+wdt,w+
F

m
dt, t+dt) ≈ f(r,w, t)+

3∑

i=1

∂f

∂xi
widt+

3∑

i=1

∂f

∂wi

Fi

m
dt+

∂f

∂t
dt

(3.2)
and we can then express the total variation, df/dt, of f between the two
points, in the time step dt, in the form:

df

dt
≈

3∑

i=1

wi
∂f

∂xi
+

3∑

i=1

Fi

m

∂f

∂wi
+

∂f

∂t
= w ·∇rf +

F

m
·∇wf +

∂f

∂t
, (3.3)

where ∇r and ∇w are the differential operators in spatial coordinate space
and velocity space respectively.

In the absence of collisions, the number of particles contained in a volume
element in phase space is conserved and the distribution function is therefore
not modified, such that df/dt = 0, from which:

∂f

∂t
+w ·∇rf +

F

m
·∇wf = 0 . (3.4)

This is the Vlasov equation (or the collisionless Boltzmann equation), an
equation that is particularly useful for providing a simple treatment of wave
propagation in a plasma: the field of the wave acts on the charged particles
in the plasma, and these, in their turn, modify the field of the wave. This
effect is self consistently accounted for by the force term F /m. We can set
∂f/∂t = 0 if we wish to study the stationary solution, which however is not
applicable in the case of an alternating electric field, such as HF discharges.

92 Recall that f(x+Δx) � f(x) + (∂f/∂x)Δx, where Δx is very small (this development
is limited to first order).
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For the second step of our formal derivation, we will consider the influence
of binary collisions. Without further justification, therefore, we will suppose
that, for species α:

df

dt
≡ ∂f

∂t
+w ·∇rf +

F

m
·∇wf =

(
∂f

∂t

)

coll.

, (3.5)

where (∂f/∂t)coll. is the collision (or interaction) term in the Boltzmann
equation: it expresses the variation of the number of particles in the volume
element of phase space, centred about r,w, due to elastic and inelastic col-
lisions. To avoid any confusion in notation, we will replace (∂f/∂t)coll. by
S(f), where S denotes the global collision operator :

∂f

∂t
+w ·∇rf +

F

m
·∇wf = S(f) . (3.6)

Equation (3.6) is the Boltzmann equation. It describes the evolution of the
particle distribution function in phase space under the influence, on the one
hand, of the gradients affecting this distribution, and on the other hand, the
forces and the presence of collisions.

In the case of elastic collisions, the collision operator can be expressed
in the form of an integral (assuming binary collisions, as well as weak
correlations):

S(fα) =
∑

β 
=α

S(fα)β =
∑

β 
=α

∫

wβ

∫

Ω

(
f ′
αf

′
β − fαfβ

)
|wα −wβ | σ̂αβ(Ω) dΩ dwβ

(3.7)
where f ′

α, f
′
β and fα, fβ are the distribution functions after and before col-

lisions, respectively; wβ is the velocity of the target molecule before the
collision, wα, that of the incident molecule; σ̂αβ(Ω) is the microscopic dif-
ferential cross-section (Sect. 1.7.3) for elastic collisions and dΩ = sin θ dθdϕ
is the solid angle element. Note that these collisions are characterised by the
usual parameters, in particular the scattering angle θ. The integral (3.7) is
the elastic collision integral for species α93. Since (3.6) includes the collision
term in the form of (3.7), is also referred to as Boltzmann’s integro-differential
equation.

Remarks:

1. In (3.7), the assumption of weak correlation enables us to replace the
double distribution functions fαβ and f ′

αβ by the product of the single
functions fαfβ and f ′

αf
′
β (see Sect. 3.2 for details).

2. It is interesting to compare the composition of the term (3.7) with that of
the binary collision frequency 〈ναβ〉 (1.139).

93 For a demonstration, see Golant et al. (Sect. 6.2).
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3. The Boltzmann equation applies to neutral gases whose density is not too
large, and to weakly ionised plasmas that are essentially governed by short-
range binary interactions between neutrals and charged particles (ions and
electrons).
If the assumption of weak correlation is not valid, the Lenard-Balescu equa-
tion, in which the distribution function fαβ is decomposed into a correlated
part and an uncorrelated part, enables us to take account of both collec-
tive and individual phenomena simultaneously. Finally, the Fokker-Planck
equation can be considered as an extension of the Boltzmann equation for
plasmas in which the long range Coulomb interactions (but screened at
the Debye length) predominate.

3.1.2 Approximation to the Boltzmann elastic collision
term: relaxation of the distribution function
towards an isotropic state

In a plasma subjected to a force F resulting from a field E, particles are
accelerated along F . Elastic collisions will, however, tend to reduce this di-
rected velocity; in other words, they reduce the anisotropy in the velocity
distribution function f(r,w, t).

To express this physical mechanism, we introduce the collision operator:

S(f) ≡ −ν(w)[f(r,w, t)− f0(r, w)] , (3.8)

which, in this form, is called the relaxation operator to the isotropic distribu-
tion function f0(r, w), where w is a scalar velocity; f0 represents the velocity
distribution function in the absence of the force F and f(r,w, t) describes
the distribution function at time t, in the presence of F or shortly after F
has been suppressed, ν(w) being the microscopic collision frequency.

- Evolution of the time dependent function f(w, t) towards the isotropic
function f0(w)
To simplify this calculation, we will assume that the plasma is spatially
uniform, such that ∇rf = 0 and f(r,w, t) = f(w, t). We will then follow
the development for t ≥ 0 when F is zero after t = 0. The Boltzmann
equation then reduces to:

∂f

∂t
= −ν[f(w, t)− f0(w)] . (3.9)

Since ∂f0(w)/∂t = 0, (3.9) is equivalent to:

∂

∂t
[f(w, t)− f0(w)] = −ν [f(w, t)− f0(w)] , (3.10)
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which has the solution:

f(w, t)− f0(w) = [f(w, 0)− f0(w)] exp(−νt) . (3.11)

The difference f(w, t)−f0(w), which appears in the collisional term (3.8),
decreases exponentially, such that the function f(w, t) tends towards the
isotropic function f0(w), with a time constant equal to 1/ν.

- The collisional relaxation operator applied to a steady state Boltzmann
equation (∂f/∂t = 0)
We have, from (3.6) and (3.8):

w ·∇rf +
F

m
·∇wf = −ν[f(r,w, t)− f0(r, w)] , (3.12)

and this leads to the following expression:

f(r,w, t)− f0(r, w) = −1

ν

[
w ·∇rf +

F

m
·∇wf

]
, (3.13)

which shows that relaxation to isotropy occurs if the RHS of (3.13) tends
to zero, i.e. if the value of F is not too high and collisions are sufficiently
numerous.

Solution of (3.13) by an iterative method

In the case of weak anisotropy, (3.13) can be resolved by an iterative method,
where the zeroth order approximation of the distribution function is given
by f (0)(r,w, t) = f0(r, w). The first order approximation for the distribution
function is obtained by substituting f0(r, w) for f(r,w, t) in the terms ∇rf
and ∇wf in (3.13):

f (1)(r,w, t) = f0(r, w)−
1

ν

[
w ·∇rf0 +

F

m
·∇wf0

]
. (3.14)

The 2nd order approximation is:

f (2)(r,w, t) = f0(r, w)−
1

ν

[
w ·∇rf

(1) +
F

m
·∇wf

(1)

]
(3.15)

= f0(r, w) (3.16)

−1

ν

[
w ·∇r

(
f0(r, w)−

1

ν

{
w ·∇rf0 +

F

m
·∇wf0

})

+
F

m
·∇w

(
f0(r, w)−

1

ν

{
w ·∇rf0 +

F

m
·∇wf0

})]
,

and so on until the kth order approximation.
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Remark: It can be shown that, in the present case, the collision frequency
ν(w) is the momentum transfer frequency.

3.1.3 Two classical methods to find an analytic
solution to the Boltzmann equation

Chapman Enskog

We assume that the function we are seeking is not far from a Maxwell-
Boltzmann distribution fM (r, w, t); the difference is characterised by a pa-
rameter η  1, by setting:

f(r,w, t) = fM (r, w, t) + ηf1(r,w, t) + η2f2(r,w, t) + · · · . (3.17)

This form of solution enables us to treat the deviations from isotropy with
respect to fM . However, in all cases, it is necessary that f(r,w, t) is not very
far from a Maxwell-Boltzmann distribution.

Development in spherical harmonics in velocity space94

The presence of an electric field renders the distribution f anisotropic. The
degree of anisotropy remains weak as long as the directed velocity created
by the electric field is small with respect to the mean velocity of thermal
motion. The method proposed by W.P. Allis consists of developing f(r,w, t)
in spherical harmonics (Legendre polynomials, see Appendix XIV), such that:

f(r,w, t) = f0(r, w, t)+f1(r, w, t) cos θ+f2(r, w, t)
3 cos2 θ − 1

2
+· · · , (3.18)

where f0 is isotropic, but not necessarily Maxwellian (Golant et al. Sect. 5.2).
The angle θ is that of the spherical coordinate system, where z is in the
direction of the anisotropy: thus, we write wz = w cos θ (see the example in
Sect. 3.4). The development (3.18) assumes symmetry in ϕ (otherwise, see
Delcroix and Bers Sect. 12.3).

94 We obtain spherical harmonics Y (θ, ϕ) in the form Y (θ, ϕ) = Θ(θ)Φ(ϕ), when we apply
a separation of variables to the Schrödinger equation for a one-electron atom.
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3.2 Velocity distribution functions and the concept
of correlation between particles

We wish to define a distribution function f(r,w, t) that is valid at each point
in phase space and which characterises each point in that space individually,
i.e. without there being any relation between that point and the other points
in this space. Such a function is said to be a single-point distribution function,
in contrast to a two-point distribution function, a three-point distribution
function. . . functions, which introduce a dependence between pairs of points,
triplets of points. . . of this space. We will initially consider this question,
starting with the phase-space joint probability of an ensemble of completely
correlated particles, and then examine how and under what conditions, it is
possible to partially or fully neglect these correlations. Correlations are due to
the interactions between particles; in general, all particles have an influence
on each of the others, so there is total correlation.

3.2.1 Probability density of finding a particle
in phase space

- The probability that, at the same time, (distinguishable) particle 1 is at
r1,w1

95, particle 2 is at r2,w2, particle 3 at is at r3,w3 · · · , is expressed
symbolically by:

D(r1,w1, · · · , rN,wN) dr1 dw1 · · · drN dwN , (3.19)

where D designates the probability density of presence in the 6N dimen-
sional phase space, and N is the total number of particles. The probability
density D obeys the Liouville equation; it contains all the information
necessary to completely characterise the system of N particles.

- The probability of finding the N particles in a given state in phase space
is obtained by integrating the probability density D over the ensemble of
volume elements in phase space:

∫
D(r1,w1, · · · , rN,wN) dr1 dw1 dr2 dw2 · · · drN dwN = 1 . (3.20)

This integral is unity because, statistically, it includes a summation over
all the possibilities, and is therefore certain.

- The probability of finding (distinguishable) particle 1 at r1,w1, indepen-
dently of the positions and velocities of the other particles, is found by
integrating (3.19) over all the volume elements except dr1dw1:

95 More exactly, in a volume element dr1dw1 in phase space centred at r1,w1 . . .
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[∫
D(r1,w1, · · · , rN,wN) dr2 dw2 · · · drN dwN

]
dr1 dw1 . (3.21)

Clearly, the result of this integration then depends only on r1, w1.
Since, in reality, the particles are indistinguishable, expression (3.21) rep-
resents the probability of finding any of the N particles at r1,w1 in dr1dw1

at time t.
- The probable number [dN ] of (indistinguishable) particles found at r1,w1

is thus given by the probability of finding a particular particle at that po-
sition in phase space (3.21), multiplied by the total number, N, of particles
in the system which can be written:

[dN ] = N

[∫
D(r1,w1, · · · , rN,wN) dr2 dw2 · · · drN dwN

]
dr1 dw1 .

(3.22)

Remark: The actual number dN of particles located in a volume element dr1,
dw1 centred at r1,w1, can be replaced by the probable number of particles
[dN ], if the number of particles is sufficiently large for statistical fluctuations
to be negligible.

3.2.2 Single-point distribution function
(the case of correlated particles)

The actual number of particles in the volume element dr dw centred at r,w
is, by definition, given by:

dN = f1(r,w, t) dr dw , (3.23)

where f1 is referred to as the single-point (in phase space) velocity distri-
bution function. If, as we have noted, the number of particles is very large,
[dN ] = dN, so from (3.22) and (3.23):

f1(r1,w1, t) dr1 dw1 =

N

[∫
D(r1,w1, · · · , rN,wN) dr2 dw2 · · · drN dwN

]
dr1 dw1 , (3.24)

which is the expression for the single-point distribution function obtained for
complete correlation of particles. Because the particles are indistinguishable
(a quantum property), we will remove the “labels” from them. The function
enables us to calculate the number of particles present at a given point in
phase space independently of particles at another point, or other points in
this space.
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The integration of (3.23) over dr1 dw1 leads, by definition, to:

∫
f1(r,w, t) dr dw = N . (3.25)

3.2.3 Single-point distribution function
(uncorrelated particles)

Contrary to the previous case, in complete absence of correlations (permanent
state of molecular chaos), the total probability density D is the product of
individual probability densities Di (i = 1, 2, 3 . . .N), and we can write:

D = D1D2D3 . . .DN , (3.26)

Suppose, once again, that the particles are indistinguishable, in which case
the individual probability densities are all equal, so that:

D = (D0)
N . (3.27)

Inserting (3.27) into (3.20), the decomposition of D leads to:

[∫
D0 dr dw

]N
= 1 ,

such that: ∫
D0 dr dw = 1 . (3.28)

In this case, from (3.24) and (3.28):

f1(r,w, t) = ND0

[∫
D0 dr dw

]N−1

= ND0 . (3.29)

To calculate f1(r,w, t), we will thus use either (3.24) for completely cor-
related particles, or (3.29) for completely uncorrelated particles.

3.2.4 Two-point distribution function
(correlated particles)

The two-point distribution function f12(r1,w1, r2,w2, t), by definition, con-
siders pairs of particles which are found simultaneously, at time t, at two
distinct points r1, w1 and r2, w2 in phase space. The probability that parti-
cle 1 is at r1, w1, while particle 2 is at r2, w2 (at the same time t), according
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to the formalism developed above, is given by:

[∫
D(r1,w1, · · · , rN,wN) dr3dw3 · · · drNdwN

]
dr1 dw1 dr2 dw2 . (3.30)

Since the particles are indistinguishable, the total number of pairs of particles
which can occupy two given points in space is found, analogously with (3.22),
by multiplying (3.30) by the total number of ordered pairs that it is possible
to form with N particles, namely N (N− 1):

f12(r1,w1, r2,w2, t) dr1dw1 dr2 dw2 = (3.31)

N (N− 1)

[∫
D(r1,w1, · · · , rN,wN) dr3 · · · dwN

]
dr1 dw1 dr2 dw2 ,

where, from the normalisation (3.20):

∫
f12 dr1 dw1 dr2 dw2 = N (N− 1) (3.32)

giving the total number of (ordered) pairs of particles that can be formed96.
The two-point function is used in particular used to describe binary colli-

sions: in this case, the pairs of particles travelling with velocities wα and wβ

before collision enter into the collisional term through the double function fαβ
(see Remark 1 following (3.7)). The recourse to a pair of ordered particles is
arbitrary, but reasonable in a number of problems where the two points play
different roles, for example, due to different physical environments (presence
of forces, spatial inhomogeneity).

3.2.5 Two-point distribution function
(uncorrelated particles)

If we completely neglect the correlation between particles, we can, from
(3.27), express the two-point function in the form:

f12 = N (N− 1)D2
0

[∫
D0(r,w) dr dw

]N−2

= (ND0)(ND0)
N− 1

N
, (3.33)

which, from (3.29) for f1, gives f12 = f1(r,w, t)f2(r,w, t)(N − 1)/N, such
that for very large values of N :

f12 ≈ f1(r,w, t)f2(r,w, t) . (3.34)

96 For example, for N = 3, there are 6 possible ordered pairs; 12, 21, 13, 31, 23 and 32.
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Thus, in the case of uncorrelated particles, the two-point function, which leads
to the number of pairs of particles for which one is situated at r1,w1 while
the other is at r2,w2, is simply expressed as the product of two single-point
(in phase space) functions, as expected.

3.2.6 N-point distribution functions

From the generalisation of (3.31), we know how to write these functions, so
in the case of correlated particles:

f12···N(r1,w1, · · · rN, wN) = N !D(r1,w1, · · · rN, wN) (3.35)

and in the complete absence of correlation:

f12···N ≈ f1f2 · · · fN . (3.36)

In the following sections, we will mainly consider single-point distribution
functions. We will, however, encounter two-point functions in the binary colli-
sion integral of the hydrodynamic equation for momentum transfer. More gen-
erally, the multiple-point distribution functions appear in the kinetic BBGKY
hierarchy (Sect. 3.6).

3.3 Distribution functions and hydrodynamic quantities

The single-point velocity distribution function enables us to calculate the
mean value of certain molecular properties, also referred to as corpuscular or
microscopic properties, for each position r and time t. As a result, these are
called hydrodynamic (or macroscopic) quantities. For any particular molec-
ular property Υ (r,w, t) (Υ is the Greek capital letter upsilon), the most
general definition of the mean value, denoted by 〈Υ (r, t)〉, is given by the
expression:

〈Υ (r, t)〉 =

∫

w

Υ (r,w, t)f(r,w, t) dw

∫

w

f(r,w, t) dw

(3.37)

in which the denominator represents the particle density per unit volume97:

97 Consider, in this regard, that the term
[∫

w
f(r,w, t) dw

]
dr represents the number of

particles, for all velocities, in the volume element dr in position space.
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n(r, t) =

∫

w

f(r,w, t) dw . (3.38)

Equation (3.38) is the normalisation condition on f(r,w, t), the un-separated
distribution function in r and w.
We then find:

〈Υ (r, t)〉 ≡

∫

w

Υ (r,w, t)f(r,w, t) dw

n(r, t)
. (3.39)

Definition of some typical hydrodynamic quantities

The mean velocity :

v(r, t) =
1

n(r, t)

∫

w

wf(r,w, t) dw , (3.40)

the mean kinetic energy :

Ēcin =
mα

2n(r, t)

∫

w

w2f(r,w, t) dw (3.41)

and the kinetic pressure tensor98:

Ψ (r,v, t) = mα

∫

w

(w − v)⊗ (w − v)f(r,w, t) dw , (3.42)

where the operator ⊗ represents the tensorial product of two vectors.

Hydrodynamic quantities in the particular case where the
distribution function f(r, w, t) is separable

The distribution function f is separable if we can write:

f(r,w, t) = n(r, t)h(w, t) (3.43)

or, when time-independent:

f(r,w) = n(r)h(w) . (3.44)

98 The significance of this parameter is discussed further in Sect. 3.5. Note that (w−v)⊗
(w−v) represents a tensorial product which results in a 2nd order tensor (see Appendix VII

for tensor notation). Note also that the density n(r, t) does not appear explicitly in the
definition of Ψ(r, t) (3.42).
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In this case, the normalisation condition on the distribution function depend-
ing only on velocity (cf. (3.38) for comparison) is by definition:

∫

w

h(w) dw = 1 . (3.45)

The mean values (3.40), (3.41) and (3.42) then take the form:

v =

∫

w

wh(w) dw , (3.46)

Ēcin =
mα

2

∫

w

w2h(w) dw , (3.47)

Ψ = mαn(r)

∫

w

(w − v)⊗ (w − v)h(w) dw . (3.48)

Remarks:

1. In the following, we will use the notation f to denote the velocity distri-
bution function, whether it is separable or not: if the argument of f does
not contain the position vector r, the function is assumed to be separable,
i.e. f(w) ≡ h(w).

2. A sufficient condition for the function f to be separable is that the plasma
has uniform density.

Calculation of a hydrodynamic quantity from a distribution
function expanded in spherical harmonics (separable function)

The normalisation condition (3.45), expanded in spherical coordinates (3.18),
leads to: ∫

w

f(w, t) dw = 4π

∫

w

f0(w, t) w
2 dw = 1 . (3.49)

The RHS only contains the isotropic contribution from the spherical har-
monic expansion (3.18), as we will show. The second term of the expan-
sion (3.18) is proportional to cos θ, and since the volume element dw ≡
d3w = w2 sin θ dθ dϕ dw contains the term sin θ, the integral of sin θ cos θdθ
over θ from 0 to π, of odd parity, is zero! Writing cos θ = τ and noting
that sin θ dθ = −d(cos θ), the integral of cos θ sin θ dθ over θ from 0 to π is

(τ2/2)
∣∣1
−1

. The contribution from the third term in the expansion (3.18) is

proportional to 3 cos2 θ− 1: since these two terms have the same parity in τ ,
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they cancel after evaluation over (1,−1), and this is true for all higher order
terms of the expansion.

Applied example: calculation of the mean velocity in the direction of
anisotropy z in velocity space. The coordinate system in this space is
wx = w sin θ cosϕ, wy = w sin θ sinϕ and wz = w cos θ. Since symmetry
in ϕ has been assumed in the expansion (3.18), we have (recalling that f is
a separable distribution function in the present case!):

vz = −
π∫

θ=0

∞∫

w=0

2π(w cos θ)f(w, t)w2 d(cos θ) dw . (3.50)

Replacing f(w, t) by its expansion (3.18), and once again choosing τ = cos θ
as variable of integration, we find:

vz =

∞∫

0

[
1

2
τ2
]1

−1︸ ︷︷ ︸
0

2πw3f0(w, t)dw+

∞∫

0

[
τ3

3

]1

−1︸ ︷︷ ︸
2/3

2πw3f1(w, t)dw+· · · . (3.51)

The isotropic terms and the terms of order higher than 1 do not contribute
to v, and we obtain:

vz =
4π

3

∞∫

0

w3f1(w, t) dw . (3.52)

3.4 Kinetic and hydrodynamic conductivities
of electrons in a plasma in the presence
of a HF electromagnetic field

The electrical conductivity is an essential parameter in the description of a
plasma, because it enables us to establish a link between the motion of the
charged particles and the electric field, or fields, with which they interact,
including both externally applied fields and those created by the charged
particles themselves. The electrical conductivity will be found in both the
kinetic model and the hydrodynamic model.

We will start by deriving the expression for the conductivity of electrons
in its kinetic form, which requires the electron velocity distribution function.
We will use this expression to deduce the hydrodynamic conductivity, in
which the relationship with the kinetic conductivity introduces the concept
of effective collision frequency. These various expressions for the conductivity
will be developed in the presence of a high frequency (HF) field, as a preview
to the treatment of HF discharges in Chap. 4.
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3.4.1 Kinetic form of the electrical conductivity
due to electrons in an HF field

Solution to the Boltzmann equation
with a weakly anisotropic velocity

Consider a uniform plasma99 subjected to a small amplitude HF electromag-
netic field (i.e. the field does not introduce non-linear effects or contribute to
the plasma ionisation), directed along z. The Boltzmann equation for elec-
trons is then written in terms of the distribution function f(w, t):

∂f

∂t
− eE0

me
eiωt ∂f

∂wz
= S(f) . (3.53)

In (3.53), we have neglected the effect of the field H of the electromagnetic
wave on the electrons and we have assumed that the wavelength is much
larger than the plasma dimensions: this is the electrostatic approximation,
allowing us to neglect the term e−iβz in the phase term e−i(βz−ωt) of the HF
field. In addition, we will make the approximation that, in the absence of
the field E , the particle distribution function, created by a mechanism other
than that of the HF field, f0(w), is an isotropic function, but not necessarily
Maxwellian.

To resolve (3.53), including the anisotropy due to E, assumed to be small,
we expand the velocity distribution function in spherical harmonics. Limiting
the expansion to first order, we have:

f(w, t) = f0(w) +
wz

w
f1(w)e

iωt (3.54)

because cos θ = wz/w. Note that the dependence of the function f(w, t) on t,
explicitly expressed in the second term of the expansion, reflects the periodic
variation of the HF field. In accord with our assumption of a small amplitude
field, hence of weak isotropy, we can express the collision operator in the
form of a collisional relaxation term (3.8), associated with the microscopic
collision frequency ν(w). To first order in the spherical harmonics expansion
of f(w, t), we find from (3.8):

S(f) = −ν(w)
[wz

w
f1(w)e

iωt
]
. (3.55)

We wish to obtain the expression for the function f1(w), which charac-
terises the departure from isotropy induced by the field E (3.53). We must
first show that:

∂f

∂wz
=

wz

w

∂f

∂w
. (3.56)

99 One can treat the case of an inhomogeneous plasma in the same way, provided that the
function f is separable.
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This comes from:

∂

∂wz
=

∂

∂w

∂w

∂wz
and w = (w2

x + w2
y + w2

z)
1
2 , thus

∂w

∂wz
=

1

2

2wz

w
=

wz

w
.

Importing (3.54) and (3.55) in (3.53) and taking account of (3.56), and can-
celing the factor eiωt appearing on all terms, we obtain:

wz

w
f1(w)iω − eE0

me

wz

w

∂

∂w

[
f0(w) +

wz

w
f1(w)e

iωt
]
= −ν(w)

wz

w
f1(w) , (3.57)

where the second order term ∂/∂w [f1(w)wz/w], is neglected compared to
the other terms, which are all of first order. Regrouping, we have:

f1(w)
[
ν(w) + iω

]
=

eE0

me

∂f0
∂w

, (3.58)

from which:

f1(w) =
eE0/me

ν(w) + iω

∂f0
∂w

. (3.59)

Electron conductivity in the HF field

- Current density of electrons due to the field E
Since f(w, t) is a separable distribution function, we have:

J ≡ −nevz = −ne

∫

w

wzf(w, t) dw . (3.60)

Using (3.52), which gives vz specifically for a separable function f , it
follows that:

J = −ne
4π

3

∞∫

0

w3f1(w, t) dw , (3.61)

where in the present case, f1(w, t) = f1(w)e
iωt.

Finally, including (3.59), we arrive at:

J = −4π

3

ne2

me
E0e

iωt

∞∫

0

1

ν(w) + iω

∂f0
∂w

w3 dw . (3.62)

- Expression for the conductivity
Setting J = σE, we obtain, by identification from (3.62):
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σ = −4π

3

ne2

me

∞∫

0

1

ν(w) + iω

∂f0
∂w

w3 dw , (3.63)

referred to as the Boltzmann conductivity or kinetic conductivity . After
integration by parts, we find the following equivalent form:

σ =
4π

3

ne2

me

∞∫

0

∂

∂w

[
w3

ν(w) + iω

]
f0(w) dw (3.64)

because f0(∞) = 0 and the contribution from the limit w = 0 is zero.
- Dielectric permittivity of the plasma (relative to that of vacuum)

From (2.40), we know that for E = E0e
iωt:

εp = 1− iσ

ωε0
, (3.65)

(Note: εp = 1 + iσ/ωε0 if E = E0e
−iωt) then from (3.63):

εp = 1 +
ω2
pe

ω

4π

3

∞∫

0

1

ω − iν(w)

∂f0(w)

∂w
w3 dw . (3.66)

3.4.2 Hydrodynamic form of the electrical conductivity
due to electrons in an HF field

Noteworthy expressions for the electrical conductivity

Collision frequency, independent of the velocity w100

In this case, ν(w) = ν, and from (3.64):

σ =
4

3

πne2

me(ν + iω)

∞∫

0

f0(w) 3w
2 dw =

ne2

me(ν + iω)

⎡

⎣4π
∞∫

0

f0(w)w
2 dw

⎤

⎦

︸ ︷︷ ︸
=1 (see (3.49))

(3.67)
from which:

σ =
ne2

me(ν + iω)
, (3.68)

which is the (hydrodynamic) Lorentz conductivity.

100 Since ν(w) = σ̂(w)wN , this is only true if ν(w) does not depend on w, for example, if
σ̂(w) ≈ w−1.
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Remark: We have already encountered this expression for the conductivity
σ in Chap. 2 (2.39), by considering the electrons to be moving in a vis-
cous hydrodynamic medium (viscosity term −νv in the equation of motion
(2.27)). We can see that the true condition allowing us to obtain (3.68) is
ν(w) = constant, ν(w) being the electron-neutral microscopic collision fre-
quency for momentum transfer. Recall that, under the same conditions, the
permittivity of the plasma is given by (2.41):

εp = 1−
ω2
pe

ω(ω − iν)
. (3.69)

Maxwell velocity distribution function

We have (Appendix I):

f0(w) =

(
me

2πkBTe

)3/2

exp−
(
mew

2

2kBTe

)
, (I.1)

and thus:

σ =
8

3π1/2

ne2

me

∞∫

0

1

ν(ue) + iω
u4
e exp(−u2

e) due , (3.70)

where ue ≡ w/(2πkBTe/me)
1/2. We can then calculate σ, provided ν(ue)

is known.

Expression for the effective collision frequency

We can preserve the Lorentz form of the conductivity (3.68), even in the
case where ν depends on w, by substituting an effective frequency νeff for ν
in (3.63), which we will now define. This approximation leads to relatively
simple expressions in two limit cases:

1. The field E is constant (ω = 0) or the angular frequency ω is such that
ω  ν. In this limit, the continuous current (CC) limit, the Lorentz con-
ductivity takes the (purely real) form:

σ =
ne2

meν
, (3.71)

while the Boltzmann conductivity (3.63), in the same limit, is written:

σ = −4π

3

ne2

me

∫
1

ν(w)

∂f0(w)

∂w
w3 dw . (3.72)

Equation (3.72) can be expressed in the form (3.71) provided we can in-
troduce an effective collision frequency νeff(cc), such that:
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1

νeff(cc)
≡ −4π

3

∫
1

ν(w)

∂f0(w)

∂w
w3 dw . (3.73)

2. The field E varies periodically, but rapidly enough that ω 	 ν, called the
high frequency (HF) approximation. In this case, the Lorentz conductivity
(3.68) can be written:

σ =
ne2

me ω
( ν
ω
+ i
) =

ne2

me ω

( ν
ω
− i
) 1

1 +
( ν
ω

)2 , (3.74)

which leads, in the present limit case, to:

σ ≈ ne2

me

(
ν

ω2
− i

ω

)
. (3.75)

Furthermore, the Boltzmann conductivity (3.63), expressed with the help
of the function f0, in the same limit gives:

σ = −4π

3

ne2

me

∫ [
ν(w)

ω2
− i

ω

]
∂f0
∂w

w3 dw , (3.76)

such that, in comparing (3.76) and (3.75), leads us to define:

νeff(HF) = −4π

3

∫
ν(w)

∂f0
∂w

w3 dw . (3.77)

This finally enables us to express the conductivity, in this limit, in its
Lorentzian form as:

σ =
ne2

me

(
νeff(HF)

ω2
− i

ω

)
. (3.78)

To show that the term:

− 4

3
π

∫ (
−i

ω

)
∂f0
∂w

w3 dw (3.79)

in (3.76) actually reduces to −i/ω in (3.75), it is sufficient to realise that
the term:

− 4π

3

∫
∂f0
∂w

w3 dw (3.80)

is unity, which we show by integrating the expression by parts and then
applying the normalisation condition (3.49):

− 4π

3

∫
∂f0
∂w

w3 dw =
4π

3
3

∫
f0w

2 dw = 4π

∫
f0w

2 dw = 1 . (3.81)
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3.5 Transport equations

In the hydrodynamic model, for each microscopic variable (Υ (r,w, t) = 1,
mw, mw2/2, m(w−v)⊗ (w−v), · · · ), there is a corresponding macroscopic
flux due to gradients in these quantities in phase space, which is described
by a set of so called transport equations (hydrodynamic equations).

To obtain these equations, we multiply the Boltzmann equation (3.6) for
the single-point distribution function fα(r,w, t), by the variable Υ , then in-
tegrate over all velocities:

∫

w

Υ
∂fα
∂t

dw+

∫

w

Υw·∇rfαdw+

∫

w

Υ
F

mα
·∇wfαdw =

∫

w

ΥS(fα)dw . (3.82)

In the following, for reasons of simplicity, we will ignore the subscript α
of the species of particles considered, the subscript r attached to the differ-
ential operator in the spatial coordinates, and the symbol ⊗ for the tensorial
product (w ⊗ w ≡ ww). Examination of the different terms of the LHS of
(3.82) enables us to obtain mean values (3.39) of a given microscopic variable
Υ explicitly, as we will now show.

The time dependent term (1st term)

This can be written in the form:
∫

w

Υ
∂f

∂t
dw =

∂

∂t

∫

w

Υf dw −
∫

w

f
∂Υ

∂t
dw , (3.83)

such that: ∫

w

Υ
∂f

∂t
dw =

∂

∂t
[n〈Υ 〉]− n〈∂Υ

∂t
〉 , (3.84)

where the brackets 〈 〉 designate an average taken over the (un-separated)
distribution function.

The term including the spatial gradient of f (2nd term)

Knowing that 101:

∇ ·
∫

w

wΥf dw =

∫

w

Υw ·∇f dw +

∫

w

fw ·∇Υ dw , (3.85)

we can write:

101 See Appendices VII and VIII for details.
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∫

w

Υw ·∇f dw = ∇ · n〈wΥ 〉 − n〈w ·∇Υ 〉 . (3.86)

The term including the gradient of f in velocity space (3rd term)
∫

w

Υ
F

m
·∇wf dw ≡

∫

wx

∫

wy

∫

wz

Υ
Fx

m

∂f

∂wx
dwx dwy dwz

+

∫

wx

∫

wy

∫

wz

Υ
Fy

m

∂f

∂wy
dwx dwy dwz (3.87)

+

∫

wx

∫

wy

∫

wz

Υ
Fz

m

∂f

∂wz
dwx dwy dwz .

Integrating, for instance, the first term on the RHS by parts along wx,
we obtain:

∫

wx

∫

wy

∫

wz

Υ
Fx

m

∂f

∂wx
dwxdwydwz =

∫

wy

∫

wz

dwydwz

{[
Υ
Fx

m
f

]+∞

wx=−∞
−
∫

f
∂

∂wx

(
Υ
Fx

m

)
dwx

}
, (3.88)

where the first term on the RHS of (3.88) is zero because f(±∞) = 0. The
second term is easily calculated if we suppose that:

∂Fx

∂wx
=

∂Fy

∂wy
=

∂Fz

∂wz
= 0 . (3.89)

This condition is satisfied for the two types of force that we will encounter:

- the force due to an electric field E. This force, which acts on the charged
particles, is independent of their velocities.

- the force due to a magnetic field B. The component of this force in a given
direction depends only on the components of the velocity in the other two
directions.

According to (3.89), since Fx is a constant with respect to wx, we can exclude
it from the derivative in (3.88), and the term containing the force F (3.87)
can be written: ∫

w

Υ
F

m
·∇wf dw = −n〈F

m
·∇wΥ 〉 . (3.90)

By substituting (3.84), (3.86) and (3.90) in (3.82), we obtain the evolution
of the macroscopic parameters of the microscopic property Υ :
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∂

∂t
[n〈Υ 〉]− n〈∂Υ

∂t
〉+∇ · [n〈wΥ 〉]− n〈w ·∇Υ 〉 − n〈F

m
·∇wΥ 〉

=

∫

w

ΥS(f) dw . (3.91)

We will now use this relationship to obtain the different hydrodynamic mo-
ments.

3.5.1 The continuity equation (1st hydrodynamic
moment, of zero order in w)

This equation describes particle transport (their flux), taking account of the
various influences affecting their motion (field of force F and collisions). It
corresponds to the microscopic variable:

Υ = 1 , (3.92)

so that:
∂Υ

∂t
= 0, ∇Υ = 0, ∇wΥ = 0 . (3.93)

Equation (3.91) then reduces to:

∂n

∂t
+∇ · nv =

∫

w

S(f) dw . (3.94)

This scalar (zero order tensor) equation is called the equation for conservation
of particles or the continuity equation102.

Collisional term: assumptions required

The term S(f)dw represents the net number of particles entering (or leaving,
if negative) the intervalw, w+dw in velocity space as a result of collisions103.
In the case of elastic collisions, there is neither creation nor disappearance
of particles in the plasma volume. These collisions only modify the velocity
distribution of the particles, whose total number does not change locally, and
the integral over all velocities is then necessarily zero.

102 By multiplying (3.94) by mα, the mass of the species α, or by qα, the charge of species

α, we obtain the law of conservation of mass or the law of conservation of electric charge
respectively, the latter being ∂ρ/∂t+∇ · J = qα

∫
w

S(f) dw.
103 Writing the collision operator S(f) in the form (∂f/∂t)col. has the advantage that it
describes the variation in f as a function of time, resulting from collisions (see (3.5)).
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Thus:
∂n

∂t
+∇ · (nv) = 0 . (3.95)

However, in general, creation of charged particles occurs in the discharge
volume (for example, by electron-neutral collisions) and destruction of these
particles takes place, either by volume recombination or by recombination as
a result of diffusion of these particles to the wall (Sect. 1.8). When there is
volume recombination, the integral of the collision term takes the following
complete form: ∫

w

S(f) dw = (ν̄i − ν̄r)n , (3.96)

where ν̄i is the mean ionisation frequency and ν̄r, that of volume recombina-
tion. In the case where losses only occur due to volume recombination, in the
stationary state (∂n/∂t = 0), we have ν̄i = ν̄r, and the term ∇ · nv in (3.94)
becomes zero. On the other hand, if diffusion is the predominant mechanism
for the loss of charged particles, the ionisation term dominates the volume
recombination term and the integral (3.96) is non zero (for a more detailed
discussion, see Delcroix and Bers, Appendix A9-1).

We are now in a position to interpret (3.94) in more depth: the variation
of the number of particles of species α in a volume V as a function of time is
equal to the net number of these particles resulting from creation and volume
loss, less the flux of this species leaving the volume V by diffusion. Equation
(3.94) can thus be written in integral form:

∫

V

∂n

∂t
dV =

∫

V

∫

w

S(f) dw dV −
∫

V

∇ · nv dV , (3.97)

and applying the Ostrogradski theorem:

∫

V

∂n

∂t
dV =

∫

V

∫

w

S(f) dw dV −
∫

S=∂V

nv · dS , (3.98)

where S is the limiting surface of the volume V , and dS is a surface element
normal to the surface S and directed outwards from the volume.

3.5.2 The momentum transport equation
(2nd hydrodynamic moment, 1st order in w)

This moment corresponds to the microscopic variable:

Υ = mw , (3.99)

a vector which satisfies:
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∂mw

∂t
= 0 , ∇rmw = 0 , ∇wmw = mI , (3.100)

as well as:
∂Υ

∂t
= 0 , ∇Υ = 0 , ∇wΥ = mI , (3.101)

where I is the second order unit tensor; this tensor has components δij ,where
δij is the Kronecker delta (δij = 1 if i = j, δij = 0 if i �= j). Equation (3.91)
can then be written:

∂

∂t
[nm〈w〉] +∇ · [nm〈ww〉]− n〈F · I〉 =

∫

w

mwS(f) dw , (3.102)

which is a vector equation (1st order tensor).
To evaluate the dyad 〈ww〉 (2nd order tensor), set:

w = v + u , (3.103)

where u is the velocity of a particle relative to the mean velocity 〈w〉 = v
of the ensemble of particles. The velocity u thus has a mean value of zero
(〈u〉 = 0). In statistical terminology, u is a centred quantity with respect to
its mean value. We can use (3.103) to obtain:

nm〈ww〉 = nm〈uu+ 2uv + vv〉 . (3.104)

Since 〈uv〉 = 〈u〉v = 0, and 〈vv〉 = vv, (3.104) can be written:

nm〈ww〉 = Ψ + nmvv , (3.105)

where, from (3.39) and (3.42):

Ψ = nm〈uu〉 (3.106)

is the kinetic pressure tensor104 (of order 2).
Equation (3.102) thus takes the form:

∂

∂t
(nmv) +∇ · Ψ +∇ · (nmvv)− n〈F 〉 =

∫

w

mwS(f) dw . (3.107)

However, knowing that:

∇ · (nvv) = (nv ·∇)v + v(∇ · nv) , (3.108)

104 The term (nm)〈ww〉 represents a total “agitation” density (due to n), while (nm)vv
is a convective (directed) “agitation” density and (nm)〈uu〉 is a purely thermal (random

in direction) “agitation” density. Agitation is a quantity with dimensions of energy, whose
tensorial nature takes account of the anisotropies of the medium.
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we obtain from (3.107):

∂

∂t
(nmv)+∇·Ψ+nm(v·∇)v+mv(∇·nv)−n〈F 〉 =

∫

w

mwS(f)dw . (3.109)

From the continuity equation (3.95) (the particular case where the collision
term is zero), and noting that ∂(nmv)/∂t = mv∂n/∂t + nm∂v/∂t, (3.109)
leads to the following well known expression:

nm

(
∂

∂t
+ v ·∇

)
v +∇ · Ψ − n〈F 〉 =

∫

w

mwS(f) dw . (3.110)

We will now successively examine the different terms of this equation, to
clarify their physical significance and give more details on some of them:

1. The convective term v · ∇v is non linear in v, which complicates the
solution of (3.110). Fortunately, its contribution is often negligible in com-
parison to the other terms: this term obviously becomes important when
v or its gradient is large.

2. The kinetic pressure tensor appears above in its completely general form
(the dyad 〈uu〉 being anisotropic, see (3.114), further in the text). The
term ∇ ·Ψ appears as a force per unit volume (it has the same dimensions
as the term n〈F 〉), referred to as the kinetic pressure force.
To clarify the significance of Ψ , consider the corresponding total force
acting on the given volume V . The Ostrogradski relation (a particular
case of the Stokes-Cartan theorem) enables us to write:

∫

V

∇ · Ψ dV =

∫

S=∂V

Ψ · dS , (3.111)

introducing a force Ψ ·dS, exerted on a surface element on the boundary of
the volume. Then, noting that Ψ ·dS = Ψ · ês dS, where ês is a unit vector
perpendicular to the surface element dS, we can conclude that Ψ · ês is a
force 105 per unit area, i.e. a pressure!
Still with the aim of clarifying the meaning of Ψ (3.106), we will now
consider the dyad 〈uu〉. Since this is a 2nd order tensor, we can represent
it by the matrix:

〈uu〉 =

⎛

⎜⎜⎝

〈u2
x〉 〈uxuy〉 〈uxuz〉

〈uyux〉 〈u2
y〉 〈uyuz〉

〈uzux〉 〈uzuy〉 〈u2
z〉

⎞

⎟⎟⎠ . (3.112)

105 Since Ψ is a second order tensor, the contracted product Ψ · ês is therefore a vector, as
it must be the case for a force.
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The non diagonal terms are zero since
∫
wi

uif dwi = 0 (i = x, y, z) 106,
implying for example:

〈uxuy〉 =
1

n

∫

wz

∫

wx

ux

⎡

⎢⎣
∫

wy

uyf dwy

⎤

⎥⎦ dwx dwz = 0 . (3.113)

Hence the tensor reduces to a diagonal matrix:

〈uu〉 =

⎛

⎜⎝
〈u2

x〉 0 0

0 〈u2
y〉 0

0 0 〈u2
z〉

⎞

⎟⎠ . (3.114)

Particular case: the distribution of velocities u is isotropic (ux = uy = uz).
Making the further assumption of a Maxwell-Boltzmann distribution, we
obtain:

〈u2
x〉 = 〈u2

y〉 = 〈u2
z〉 =

〈u2〉
3

=
kBT

m
. (3.115)

With these two assumptions, and taking account of (3.106), we can write:

∇ · Ψ ≡ ∇ · [(nkBT ) I ] , (3.116)

where I is the 2nd order unit tensor. Therefore, introducing the partial
pressure pα = nαkBTα associated with the particles of species α, we finally
obtain:

∇ · Ψ = ∇pα . (3.117)

With these assumptions, the momentum transport equation (3.110), for
particles of species α, takes the form:

nαmα

(
∂

∂t
+ vα ·∇

)
vα +∇pα − nαqα [E + vα ∧B] =

∫

wα

mαwαS(fα) dwα , (3.118)

where, in general, the fields E and B denote both the externally applied
fields and the (macroscopic) induced fields; the collision operator S(fα)β
is defined by (3.7).

106 In fact, since u is, by definition, a centred velocity with mean value zero, we have

∫∫
wywz

⎡
⎣∫
wx

uxf(w) dwx

⎤
⎦ dwy dwz = n〈ux〉 = 0 ,

and the same for 〈uy〉 and 〈uz〉, then more generally
∫
wi

uif(w) dwi = 0.



3.5 Transport equations 231

3. The collision term appearing on the RHS of (3.110), the second hydro-
dynamic moment, represents the total momentum “gained” or “lost” by
particles α, as a result of elastic and inelastic interactions, with other types
of particles only: collisions between particles of the same species can nei-
ther lead to a net gain nor net loss of momentum! The collision term can
then be written formally as:

Pα =
∑

β 
=α

Pαβ , (3.119)

where:

Pαβ =

∫

wα

mαwαS(fα)β dwα . (3.120)

In order to obtain an expression describing the net transfer of momen-
tum from one group of particles to another (for example, from electrons
to neutrals), we will first take a phenomenological approach (with an ap-
proximate expression for Pαβ) then, in a second step, we will calculate its
exact value.

- Approximate expression for Pαβ for elastic collisions
We have already shown (Sect. 1.7.2) that the momentum Δpαβ trans-
ferred from one particle to another during a collision depends on the
relative velocities of the two particles before collision:

Δpαβ = − mαmβ

mα +mβ
(1− cos θ)(wα −wβ) . (1.91)

To characterise the net transfer of momentum per unit volume, ΔPαβ ,
from particles of type α, density nα, to particles of type β (β �= α),
density nβ , over their entire velocity distribution, we will make use
of the mean velocities vα and vβ rather than the integrals over the
velocities wα and wβ (this assumes that the microscopic collision fre-
quencies ναβ are independent of the relative velocity wαβ). Then, the
momentum Pα lost by particles α to the benefit of particles β, per
unit time, per unit volume, is of order:

number of momentum
transfers per second, per
volume unit

↓︷ ︸︸ ︷

Pα =
ΔPαβ

Δt
=
∑

β 
=α

Pαβ ≈ −
∑

β 
=α

mαmβ

mα +mβ
ναβnα(vα − vβ) . (3.121)

↑
decrease of average
momentum to the
benefit of particle β

↑
number of momentum
transfer per second
per particle α
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Supposing that the particles of type α are electrons:

Pαβ � −ναβnαmα(vα − vβ) , (3.122)

because the reduced mass μαβ ≡ mαmβ/(mα +mβ) ≈ mα.
This relatively simple relation, obtained for the case of elastic collisions,
can also be applied to inelastic collisions, to the extent that ναβ is
the sum of the elastic and inelastic collision frequencies expressed in
an appropriate fashion, and that the velocity distribution is isotropic
(Golant et al., Sect. 6.3).

- Exact expression for Pαβ for elastic collisions
The rigorous expression for Pαβ is given by Golant et al., Sect. 6.3:

Pαβ =
mαmβ

mα +mβ

∫

wα

∫

wβ

(wβ −wα)
ναβ
nβ

fα(wα)fβ(wβ) dwα dwβ ,

(3.123)
where the functions fα(wα) and fβ(wβ) are the single-point, unsepa-
rated, velocity distribution functions for particles α and β (the depen-
dence on r has been omitted for convenience of notation). The (micro-
scopic) collision frequency of particles α on particles β, ναβ is written
(from (1.140)):

ναβ = nβwαβ

π∫

0

2πσ̂(θ)(1− cos θ) sin θ dθ , (3.124)

where wαβ is the modulus of the relative velocity, |wα − wβ |, of the
particles α and β, and where the integral corresponds to the total mi-
croscopic momentum transfer cross-section (1.111).
Remember that ναβ is different from νβα because:

νβα = nαwαβ

π∫

0

2πσ̂(θ)(1− cos θ) sin θ dθ , (3.125)

so that, combining (3.124) and (3.125), we obtain:

ναβ
nβ

=
νβα
nα

. (3.126)

This results in:
Pαβ = −Pβα (3.127)

and, in particular:
Pαα = −Pαα = 0 . (3.128)

There is therefore conservation of global momentum during elastic col-
lisions between particles (Pα = 0).
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In the general case, ναβ depends on the modulus of the relative ve-
locities wαβ , and the calculation of the integral (3.123) is not straight
forward. On the other hand, if one can make the approximation that
ναβ has no such dependence107, Eq. (3.123) is simple to integrate and
we obtain:

Pαβ = −μαβnαναβ(vα − vβ) , (3.129)

which is identical to (3.121).

Remark: In the case of inelastic collisions, the calculation is much
more complex, because the variation in kinetic energy of the particle
α is equal to the sum of the variation in both internal (potential) en-
ergy and kinetic energy of the particle β. However, the problem is con-
siderably simplified if the relative kinetic energy μαβw

2
αβ/2 is entirely

converted to potential energy ΔE in the course of the collision108, i.e.
from (1.79):

μαβw
′2
αβ = 0 . (3.130)

The variation in momentum Δpαβ of the particle α (1.81) can thus be
simplified by taking account of (1.82):

Δpαβ ≡ −μαβ(wαβ −w′
αβ) = −μαβwαβ . (3.131)

Under these conditions, the inelastic collision term, after integration,
can be written:

Pαβ = −μαβnαναβ(vα − vβ) , (3.132)

an identical equation to that for elastic collisions (3.129).

4. We can now reunite the different terms of the momentum equation of
order 1 in w. To do this, we set:

d

dt
≡ ∂

∂t
+ v ·∇ , (3.133)

where d/dt is the total derivative operator109. It is used when the observer
follows the motion of a volume element (Lagrange description). On the
other hand, the RHS of (3.133) can be considered as describing the motion
of a volume element in the laboratory frame: this motion depends, on

107 The effective collision frequency ναβ is independent of the relative velocity if the

momentum transfer collision cross-section σ̂αβ is inversely proportional to the relative
velocity. One can show that this case corresponds to an interaction potential in 1/r4, that

is approximately valid for collisions between charged and neutral species.
108 With this assumption, the collision is by definition head-on because w′

αβ = 0 (3.130)

and wαβ , wα0 and wβ0 are collinear (1.73).
109 Note that, in the stationary regime, the total derivative is non zero because the con-
vective term v ·∇ remains: only the term ∂/∂t cancels.
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the one hand, on the time variation of the local velocity, and on the other
hand, on the ensemble motion (convection) of the fluid (Euler description).
Finally, by substituting (3.129) and (3.133) in (3.118), we obtain the well
known form110:

mα
d

dt
vα = qα [E + vα ∧B]− 1

nα
∇pα −

∑

β 
=α

μαβναβ [vα − vβ ] . (3.134)

This is the 2nd moment equation (first order moment in w) or the mo-
mentum transport equation for particles of species α, having an isotropic
distribution function, and colliding elastically with particles β that are
different from α. This equation is also called the Langevin equation.
Equation (3.134) determines the acceleration of the fluid under the influ-
ence of different forces, including electric and magnetic forces, the pressure
gradient and collisional viscosity.

Remark: It is interesting to compare (3.134) with the hydrodynamic
Navier-Stokes equation for the transfer of momentum in an incompressible
(in this case, ρM , the mass per unit volume is constant, and the continuity
equation leads to ∇ ·v = 0) and viscous fluid. Under these conditions, the
equation can be expressed as (see Landau and Lifschitz):

ρM

[
∂v

∂t
+ (v ·∇)v

]

︸ ︷︷ ︸
↑

Force per volume unit

= −∇p+ ηvΔv︸ ︷︷ ︸
↑

Interaction term
(viscosity)

+ nF , (3.135)

where ηv is the coefficient of fluid viscosity.

3.5.3 Moment equations of second order in w

We can distinguish two cases, in which the second order moment is either w2

or ww.

Transport equation for kinetic energy

This equation is also called the energy balance equation. This moment corre-
sponds to the microscopic variable:

Υ =
1

2
mαw

2 , (3.136)

110 Remember that Eq. (3.118), taken from (3.110), is obtained from (3.95), the continuity
equation without a RHS term.
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which leads to111:

∂Υ

∂t
= 0 , ∇Υ = 0 , ∇wΥ = mαw . (3.137)

Equation (3.91) can then be written:

∂

∂t

(
1

2
nαmα〈w2〉

)
+∇ ·

[
1

2
nαmα〈ww2〉

]
− nα〈F ·w〉

=

∫
1

2
mαw

2S(f) dw , (3.138)

which is a scalar equation (zero order tensor).
Noting that 〈w2〉 = 〈u2〉 + v2 and assuming the velocities are isotropic,

with 〈u2〉 = 3kBTα/mα, we obtain, for the species α:

∂

∂t

(
1

2
nαmαv

2
α

)

︸ ︷︷ ︸
kinetic energy
directed
(convection)

+
∂

∂t

(
3

2
nαkBTα

)

︸ ︷︷ ︸
kinetic energy
random

= −∇ · qα +nαqαE · vα +Rα , (3.139)

where:
qα =

nαmα

2
〈wαw

2
α〉 (3.140)

is the vector-flux112 of the total kinetic energy of the particles of species α,
and where the term:

Rα =
∑

β 
=α

Rαβ (3.141)

represents the total energy “gained” or “lost” by particles α, following elastic
and inelastic collisions with other types of particles only: collisions between
particles of the same species cannot lead to either a loss or gain of kinetic
energy.

The variation of the density of the total kinetic energy of the fluid of par-
ticles α (LHS of (3.139)) occurs due to three mechanisms, represented by the
three terms on the RHS: 1st term: transport of kinetic energy from one point
to another in the plasma due to a spatial gradient113; 2nd term: deposition
of energy (heating) in the plasma by the current of particles moving in the
field E (Ohm’s law): 3rd term: variation of kinetic energy of the particles α
due to their collisions with other types of particles.

111 Note that (3.136) can also be written in the form Υ = (mαw · w)/2, and therefore
∇wΥ = mαw: the gradient of a scalar must be a vector.
112 In general, the vector nwΥ (w) is the vector flux of the molecular property Υ (w).
113 For example, in the case of a temperature gradient, the heat flux can be expressed by
qα = −λα∇Tα, where λα is the thermal conductivity of species α.
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The collision term Rαβ , resulting from the elastic collision of particles α
with particles β, can be written in the same way as for the first order moment,
if the collision frequency ναβ is independent of the velocity (Golant et al.
Sect. 6.4):

Rαβ = − 2mαmβ

(mα +mβ)2
nαναβ

[
mα〈w2

α〉
2

−
mβ〈w2

β〉
2

+
mβ −mα

2
(vα · vβ)

]
.

(3.142)

Knowing that:

mα〈w2
α〉 = mα

[
〈u2

α〉+ v2α
]
= 3kBTα +mαv

2
α , (3.143)

and using the energy transfer coefficient δ (1.103), Eq. (3.142) can now be
written:

Rαβ = −δnαναβ

[
mαv

2
α

2
−

mβv
2
β

2
+

3

2
kB(Tα − Tβ) +

(mβ −mα)

2
(vα · vβ)

]
.

(3.144)

It should be noted that Rαα = 0. Although this can be easily verified in
(3.144), it is not necessary to assume that ναβ is independent of the velocity
to obtain this result, because the kinetic energy is a collisional invariant.
In many cases, the gas has no directed velocity (vα = vβ = 0), or all the par-
ticles have the same velocity (vα = vβ). In these cases, the terms containing
vα and vβ disappear and we are left with:

Rαβ = −δnαναβ

(
3

2
kBTα − 3

2
kBTβ

)
, (3.145)

which clearly illustrates the exchange of kinetic energy during elastic colli-
sions.
Remark: In the case of inelastic collisions, the calculation is much more
complex, because the change in kinetic energy of particle α is equal to the
sum of the change in internal energy and in kinetic energy of particle β.
However, the problem is considerably simplified if we suppose that the change
in kinetic energy of particle β is negligible in comparison to the change in
internal energy, which is generally the case for collisions with electrons (1.80).
With this assumption, for a collision frequency ναβ , the collision term Rαβ

resulting from inelastic collisions of particles α (electrons) with particles β is
then:

Rαβ = −nαναβEk , (3.146)

where Ek represents the energy threshold of the inelastic collision considered.
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The transport equation for the kinetic pressure tensor Ψ

This tensor Ψ leads to the true second order moment.
The kinetic pressure tensor Ψ (3.42) corresponds to the microscopic

property:
Υ = mα(w − v)(w − v) (3.147)

in which v = v(r, t). Writing w = v + u, we obtain:

∂Υ

∂t
= −mα

(
u
∂v

∂t
+

∂v

∂t
u

)
, (3.148)

∇Υ = −mα∇vu−mα∇uv = −mα∇vu− (mα∇vu)T , (3.149)

∇wΥ = mα(uI + Iu) , (3.150)

where I is the second order unit tensor and the suffix T indicates the trans-
pose of the matrix representing the tensor114. All the terms are 2nd order
tensors. Equation (3.91) can then be written:

∂

∂t
[nαmα〈(w − v)(w − v)〉] + nαmα〈u

∂v

∂t
+

∂v

∂t
u〉

+∇ · [nαmα〈w(w − v)(w − v)〉] + nαmα〈w ·∇vu+w · (∇vu)T 〉

− nα〈F · (uI + Iu)〉 =
∫

w

mα(w − v)(w − v)S(f) dw , (3.151)

which is a 2nd order tensorial equation.
Rewriting (3.151), again with w = v+u, and suppressing the terms whose

mean value is zero, we obtain:

∂

∂t
nαmα〈uu〉+∇ · nαmα〈vuu+ uuu〉+ nαmα〈u ·∇vu+ (u ·∇vu)T 〉

− nα〈F · (uI + Iu)〉 = Rα , (3.152)

where:
Rα =

∑

β 
=α

Rαβ (3.153)

is the collision term (Appendix XV). Expanding (3.152), we obtain:

114 The tensor AT , with elements αT
ij is the transpose of the tensor of the same order A,

with elements αij such that αT
ij = αji.

Hence: ∇Υ = −mα(∇vu+∇uv) = −mα∇vu− (mα∇vu)T .
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∂

∂t
〈nαmαuu〉+ (∇ · v)〈nαmαuu〉+ (v ·∇)〈nαmαuu〉

+∇ · nαmα〈uuu〉+ nαmα〈uu〉 ·∇v + (nαmα〈uu〉 ·∇v)T

− nα〈F · (uI + Iu)〉 = Rα . (3.154)

It should be noted that the last term of the LHS of (3.154) is zero if the
force F is independent of velocity (e.g. in the case F = qαE): F can then be
removed from the expression between brackets, which is then zero.

We can then transform (3.154) to the form:

[
∂

∂t
+ v ·∇+ (∇ · v)

]
Ψ+∇ ·Q+Ψ ·∇v+(Ψ ·∇v)T −M = Rα , (3.155)

where Ψ is the kinetic pressure tensor (3.106) andM , which is also a 2nd order
tensor, results from the action of an external magnetic field (Appendix XV);
on the other hand, Q is a 3rd order tensor, defined by:

Q = mα

∫

w

(w − v)(w − v)(w − v)f(r,w, t) dw , (3.156)

known as the thermal energy flux tensor : this is a third order, centred moment
of velocities with respect to the mean velocity of the distribution function
f(r,w, t).

We would like to rearrange the first term of (3.155). To do this, we note
that the continuity equation (3.28) with RHS zero can be expanded as:

∂n

∂t
+ (v ·∇)n+ n∇ · v = 0 , (3.157)

from which, including the total derivative (3.133):

∇ · v = − 1

n

dn

dt
. (3.158)

We can then transform the first three terms of (3.155), to obtain:

(
∂

∂t
+ v ·∇+∇ · v

)
Ψ ≡ d

dt
Ψ − Ψ

n

dn

dt
≡ n

d

dt

(
Ψ

n

)
. (3.159)

This equation then reduces to:

n
d

dt

(
Ψ

n

)
+∇ ·Q+ (Ψ ·∇)v + [(Ψ ·∇)v]

T −M = Rα . (3.160)
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Remark: The kinetic pressure tensor:

Ψ = mα

∫

w

(w − v)(w − v)f(r,w, t) dw

appears as a centred moment (with respect to v) of order 2 and is related
to a variance115 calculated with respect to an average value which, in the
present case, is the velocity v.

We can see this by noting that:

Ψ = mα

∫

w

wwf dw −mα

∫

w

vvf dw = nmα〈ww〉 − nmαvv , (3.161)

which is of the form E[X2]− E[X]2, where E[X] is the mathematical expec-
tation of the variable X. In summary, we have discussed four aspects of the
kinetic pressure tensor:

- ∇ · Ψ represents a force per unit volume.
- Ψ · ês (Ψ projected normal to a unit surface) is a force per unit area,

the kinetic pressure. It is the generalisation of the scalar pressure in an
anisotropic gas.

- Ψ is the second order, centred moment of the velocity distribution function
with respect to the average value v: it is related to the variance of the
microscopic velocities.

- Ψ has the dimensions of momentum flux: in fact, while nv is a particle
flux, nv(mv) in (3.161) represents a momentum flux.

3.5.4 Higher order moment equations

We can write the transport equation for the thermal energy flux Q (3.156),

yielding a 3rd order moment in w, and so on for the higher moments, which
leads to an infinite number of hydrodynamic equations.

Remark: In general, we require a set of hydrodynamic equations for each
type of particle. However, in some cases, the single fluid of electrons is ade-
quate for our purposes (Sect. 3.7).

115 The variance D of a random variable X is expressed as a function of the mathematical

expectation E according to:

D[X] ≡ E[(X −m)2] = E[X2]− E[X]2

where E(X) = m. This characterises the importance of the deviation of the ensemble of
values of the distribution, with respect to their average value m.
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3.6 Closure of the transport equations

The transport equations of the parameters n,mv,Ψ ,Q · · · provide a good

description of the evolution of a plasma at the macroscopic level, but unfor-
tunately they constitute an indeterminate system:

- the equation for the conservation of the number of particles n contains v,
- the equation describing the evolution of v introduces a second order

tensor Ψ ,
- the equation describing the evolution of the kinetic pressure tensor Ψ

introduces a third order tensor Q,

- and so on. . .

In summary, the evolution of a given variable is always dependent on a
further variable whose tensorial order is one order higher. Such a system is
called a hierarchy. In general, we use only the first 2 or 3 transport equations.
In order to break this hierarchical dependence, it is necessary to make a
simplifying assumption on the highest order tensor appearing in the highest
order equation we wish to consider. This procedure is commonly referred to
as closure of the transport equations (see the following examples for methods
of closure).

Remark: An analogous problem, but different in its physical meaning, is
found in kinetic theory. The integration of the Liouville equation dD/dt = 0
(D is the probability density defined in Sect. 3.3) over all positions ri,wi in
phase space except r1,w1, leads to:

∂f1
∂t

+w ·∇rf1 +
F

m
·∇wf1 = S1(f12) . (3.162)

This equation (the Boltzmann equation), which describes the evolution
of the single-point function f1 (3.24), introduces a binary interaction term
between particles in the form of the two-point function f12 (3.30). Integrating
the Liouville equation in the same way, but this time over all variables except
r1,w1 and r2,w2, we obtain:

∂f12
∂t

+w ·∇rf12 +
F

m
·∇wf12 = S12(f123) , (3.163)

where the term S(f123) represents the ternary interactions between particles,
and so on for f123,f1234. . . Once again, we have an indeterminate system of
equations, called the BBGKY116 hierarchy. In order to use (3.162) indepen-
dently of (3.163), we set, as conditions of closure, the assumption of weak
binary correlations between particles (3.34), such that S(f12) � S(f1f2).

116 The names of the physicists Born, Bogolioubov, Green, Kirkwood, Yvon are in alpha-
betic order, and apparently the exact inverse of the historical order.
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Note that the BBGKY hierarchy is constructed from the collision operator,
while the hierarchy of hydrodynamic equations has a completely different
origin. It results from the existence of gradients in real space, and appears
in the form of a divergence of a tensor of one order higher than the order
of the hydrodynamic equation considered. Note, furthermore, that the set of
hydrodynamic equations we have just developed proceed from the calculation
of mean values, taken uniquely over the Boltzmann equation, the very first
equation of the BBGKY hierarchy.

Method of closure

We can limit the hydrodynamic description to k equations by “simplifying”
the tensor Υ of order k+1 that generally appears, as we have just indicated,
in the form ∇·Υ : this is usually achieved by assuming that Υ can be replaced
by a tensor quantity of one order lower. Among the simplifying assumptions
for closure of the hydrodynamic equations, we will consider two that are most
commonly used:

1. Cold plasma. We completely neglect thermal motion, and assume that
T = 0, which allows us to write Ψ = 0 in the equation for momentum
transport. The hydrodynamic equations for n and v then form a two-
equation determinate system, to which we can add Maxwell’s equations.
This approximation is particularly applicable to:

- the description of the properties of an electron beam
- wave phenomena in plasmas (for a phase velocity much greater than

the mean velocity of the thermal motion of the particles).

2. Warm plasma. This approximation, which is less restrictive than the pre-
ceding one, has the advantage of accounting for the thermal motion, which
is assumed to obey a Maxwell-Boltzmann law. This approximation there-
fore enables us to describe a larger number of observed phenomena, being
particularly applicable to the following cases:

- neutral gases: since the electric field E cannot transfer energy into the
system and set particles in motion, it is thus essential to include their
thermal motion,

- plasmas for which the “cold plasma” approximation is regarded as too
crude, when it comes, for instance, to describing the propagation of
waves with low phase velocity.

In the warm plasma approximation, various assumptions are possible, the
main ones being:

a. Isothermal approximation. In this case, we assume that the kinetic
pressure tensor is no longer zero but has the form Ψ = nkBT , a sim-
plified form of this tensor, where the temperature values Tij of the
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tensor T are independent of the spatial coordinates (Tij = constant).
Under this assumption, two situations can be envisaged:
- isotropic plasma. The kinetic pressure tensor then reduces to the sole

isotropic and scalar pressure p = nkBT . Then, according to (3.116)
and (3.117), we can substitute ∇p for ∇ · Ψ , both a tensorial term
also of order one (a vector) in which, from our assumptions we can
deduce:

∇kBT = 0 . (3.164)

As in the case of the cold plasma approximation, the closure of the
system of equations is achieved for the first order moment in w,
i.e. we are left with only two hydrodynamic equations for the fluid
considered.

- anisotropic plasma. The kinetic pressure tensor, following (3.116),
takes the form Ψ = nkBT , where this time the components Tii are
different for different values of i. Since by hypothesis, the components
of T do not depend on position, ∇ · kBT = 0. The closure of the
equation of moment of order 1 in w is written as:

∇ ·Ψ = ∇ ·nkBT = kBT ·∇n+n(∇ · kBT ) = kBT ·∇n . (3.165)

b. Adiabatic approximation117. The perturbing system (for example a
wave) does not have the time to exchange energy with its environment.
To determine the equation of state p(n), we need to consider the first
three hydrodynamic equations. The closure condition is applied to the
transport equation for Ψ (moment in Ψ ) by setting R = 0 and requir-
ing ∇ ·Q = 0: there cannot be transfer of energy between particles nor

transport of thermal energy by the particles because the compression
is adiabatic. If, under these conditions, we require that Ψ reduces to
the scalar kinetic pressure p, we can show (Appendix XVI) that the
transport equation for the kinetic pressure tensor leads to the following
purely scalar equation:

n
d

dt

3

2

p

n
+ p∇ · v = 0 . (3.166)

Then, taking account of the expression ∇ · v = − 1

n

dn

dt
(3.138),

Eq. (3.166) finally reduces to:

n
d

dt

(
3

2

p

n

)
=

p

n

dn

dt
(3.167)

117 A change of state of a system is adiabatic if there is neither a gain, nor a loss of thermal
energy of the system. Two situations are possible: 1) the system is isolated; 2) the process

considered (for example, compression of the plasma exerted by a wave) is so rapid that
there is no time to transfer energy by conduction.
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for which the solution is:

pn−γ = constant , (3.168)

where γ = 5/3 (perfect gas). This is the adiabatic relation. In the
case where the fluid considered is isotropic (for example, electrons in
the absence of a magnetic field B) and resembling a perfect gas with
density n, the adiabatic constant γ (ratio of specific heats cp/cv) is
effectively 5/3.
Other values for γ are possible. For instance, for a (linear) one dimen-
sional flow in the presence of a fieldB0 (the medium is thus anisotropic),
we use γ = 3 for compression parallel to B0 and γ = 1 for compression
perpendicular to B0. More generally, if the molecules have δ̄ degrees
of freedom (vibration, rotation, translation), then γ = 1 + 2/δ̄. Thus,
δ̄ = 2 in the case of azimuthal symmetry and δ̄ = 3 for a three di-
mensional, spherically symmetric compression, for which, γ = 5/3. The
case γ = 5/3 is also referred to as the Euler or scalar approximation
(because the compression is spherically symmetric).
In summary, the assumption of an adiabatic gas flow is used, for exam-
ple, in situations where the particles take part in the propagation of a
sound wave or when the fluid flows extremely fast. Assuming a perfect
gas where p = nkBT , the adiabatic equation can also be expressed as:

Tn1−γ = constant , (3.169)

illustrating that in this case, since n is spatially varying, T also varies
spatially.

3.7 The Lorentz electron plasma model

This model can be regarded as a first application of the hydrodynamic equa-
tions and closure methods to the case of an electron fluid. Consider a plasma
composed of electrons, ions and neutral atoms. We will treat the case in
which the degree of ionisation is weak (ne  n0): the electron-electron,
ion-ion and electron-ion collisions can then be neglected in comparison to
the electron-neutral collisions, which are much more numerous and therefore
are the dominant mechanism in the momentum exchange through collisions.
From this fact, the energetic exchanges between the electron fluid and that
of the ions (but not the interaction for the space charge electric field) are
negligible, leading to Ti < Te: we can thus consider that we are dealing with
an electron gas and an ion gas which are quasi independent of each other.

Furthermore, because Te > Ti (or more commonly Te 	 Ti), and the mass
of the electrons is much smaller than the mass of the ions and neutrals, we
can assume the ions and neutrals to be at rest compared to the motion of
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electrons. The situation finally reduces to one in which we can consider a
single fluid, that of electrons, which moves in contact with a continuous
fluid of ions and neutral atoms at rest, providing an effective viscosity to the
electron motion. Furthermore, in addition to the “viscosity” just invoked, the
interaction between electrons and ions also manifests itself in creating a space-
charge electric field (Poisson’s equation) affecting the motion of electrons.

The Lorentz equation for plasma electrons

If we neglect the convection term in the Langevin equation (3.134)118, and
since ve 	 vi and vn in the collisional term, this equation can be simplified
to give:

me
∂ve

∂t
= qe[E + ve ∧B]− 1

ne
∇pe −meve(νen + νei) , (3.170)

where we set νen + νei � ν (νei  νen). Assuming that pe = nekBTe, with
Te independent of position, (3.170) reduces to:

me
∂ve

∂t
= qe[E + ve ∧B]− kBTe

∇ne

ne
−meνve . (3.171)

The gradient ∇pe expresses the spatial evolution of the thermal pressure due
to the electrons (isothermal assumption, Sect. 3.6): it is not related to a fluid
compression.

A particular case of the Lorentz plasma

Cold electron plasma (Te = 0) subjected to a periodic field E = E0e
iωt.

We will consider such a plasma, in one dimension and without a magnetic
field. Then, relation (3.171) becomes:

me
d2x

dt2
= −eE0e

iωt −meν
dx

dt
, (3.172)

which is an equation we have proposed earlier, without proof (see Sect. 1.7.9,
Eq. (1.147)) and we are now in a position to better understand its physical
content. Recall that in a cold plasma, the movement of particles is uniquely
created by the field E0e

iωt, so v(t) = v0e
iωt, then from (3.172):

meiωv0e
iωt = −eE0e

iωt −meνv0e
iωt (3.173)

and finally:

118 We consider that v < vth.
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v0 =
−eE0

me(ν + iω)
, (3.174)

so that the expression for the electron current density is:

J ≡ nqv0 =
ne2

me(ν + iω)
E0 , (3.175)

from which we obtain the expression for the scalar conductivity:

σ =
ne2

me(ν + iω)
. (3.176)

This result has been obtained previously, by integrating the velocity dis-
tribution function, assuming that ν(w) = constant. This expression for σ
was then termed the Lorentz conductivity (3.68): we now see the origin of
this name.

3.8 Diffusion and mobility of charged particles

3.8.1 The concepts of diffusion and mobility

The mobility and diffusion of charged particles are two hydrodynamic quan-
tities, intrinsically linked to the presence of collisions in a plasma.

Diffusion

Diffusion stems from the kinetic pressure gradient in the Langevin equation
(3.134). In the case where ∇p ≡ ∇(nkBT ), diffusion results from either a
gradient in particle density, or a gradient in their mean energy (temperature),
or both. We will consider the two cases successively:

The case of a particle density gradient

Collisions between particles at any given point are random, and in the absence
of strong fields, isotropic: there is then an equal probability for the directions
of the scattered particles, after a sufficient number of collisions. We will con-
sider, in one dimension, two points A and B in space, such that the density
n of the gas at A is greater than that at B. Due to the equi-partition of colli-
sions at each point in space, the flux in both possible directions at the point
A is greater than that in both directions at point B. This means that the
gas flux from A towards B is greater than that moving from B to A. There
is therefore a net flux nv from A to B, where the mean velocity v is that of
the fluid circulating from A to B.
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The case of a temperature gradient

In this case, there is a flux of energy from the region of high temperature to
that at low temperature, the energy transported by the high energy particles
being larger! This energy flux is associated with the flux of particles.

Mobility

This parameter characterises the mean progression, or drift, of charged par-
ticles of a given type subjected to an electric field E, when the motion is
retarded by collisions.

Combined diffusion and mobility

In the case of a plasma that is both inhomogeneous and subjected to an (ex-
ternal or induced) field E, there will be a combined diffusion and drift of the
charged particles of type α, characterised by a total directed (mean) veloc-
ity vα. We will study these two phenomena, with the help of the Langevin
equation (3.134), considering a stationary state and neglecting the convec-
tive term vα ·∇vα. In the case where there is no temperature gradient, this
equation reduces to:

vα =
1

mαναβ

{
qα(E + vα ∧B)− kBTα

∇nα

nα

}
. (3.177)

3.8.2 Solution of the Langevin equation
with zero total derivative (dv/dt = 0)

We can rewrite (3.177) in a form such that the LHS is homogeneous in v:

mαναβvα − qα(vα ∧B) = qαE − kBTα
∇nα

nα
. (3.178)

In the following, to simplify the notation, we will suppress the indices α
and β.

The general solution to this equation without the RHS is v = 0, because v
and v ∧B are orthogonal. The particular solution of the equation including
the RHS will be the sum of two solutions obtained separately:

1. that with ∇n = 0 (drift velocity only),
2. that with qE = 0 for ∇n �= 0 (diffusion velocity only).
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The proposed method of solution implies that the two following conditions
are satisfied:

1. The convective term (v ·∇)v appearing in the Langevin equation (3.135)
can be assumed negligible, which is the case if the total directed velocity
v has a small absolute value. This condition ensures that the sum of the
drift velocity and the diffusion velocity is equal to the combined velocity
of these two phenomena.

2. In order for the scalar pressure approximation in the Langevin equation
to be valid, the velocity distribution must be isotropic, which implies that
the diffusion and drift velocities are small compared to vth.

Expression for the drift velocity

Setting ∇n = 0 in (3.177) in order to eliminate the contribution due to
diffusion, and choosing êz to be along B, we have:

vx =
q

mν
[Ex + vyBz] , (3.179)

vy =
q

mν
[Ey − vxBz] , (3.180)

vz =
q

mν
Ez . (3.181)

We will first define the mobility in the absence of B:

μ ≡ q

mν
, (3.182)

which is the mobility of a charged particle in a constant field E (note that μ
is completely determined, if we know ν). This mobility enables us to rewrite
(3.181) in the form:

vz = μEz , (3.183)

which defines the mean velocity or drift velocity of one type of particle subject
to an electric field E in a collisional plasma (remember that, by convention,
and in contrast to ions, the electrons will drift in the opposite direction to
that of the field E: the value of μe is negative). The mobility thus defined is
called the linear mobility , to signify that μ does not depend upon Ez. In the
presence of a magnetic field B, we find, for vx and vy respectively:

vx =
μ‖ν

2

ν2 + ω2
c

Ex +
μ‖νωc

ν2 + ω2
c

Ey , (3.184)

vy = −
μ‖νωc

ν2 + ω2
c

Ex +
μ‖ν

2

ν2 + ω2
c

Ey , (3.185)
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where ωc = −qB/m is the cyclotron frequency (Sect. 2.2.2). We can conclude
that the drift velocities along êx and êy becomes weaker as the magnetic field
increases (ν  ωc).

The mobility tensor

The previous results can be expressed in tensor notation, by writing:

μ⊥ =
μ‖ν

2

ν2 + ω2
c

, μH =
μ‖νωc

ν2 + ω2
c

, (3.186)

where μ⊥ and μH are the mobility perpendicular to the magnetic field and
the Hall mobility respectively. These two coefficients allow us to define the
2nd order mobility tensor, μ, by the general relation:

v = μ ·E , or vi =
∑

i

μijEj (3.187)

with, as its representative matrix:

μ =

⎛

⎜⎝
μ⊥ μH 0

−μH μ⊥ 0

0 0 μ‖

⎞

⎟⎠ . (3.188)

We can also relate it to the electrical conductivity tensor. Knowing that
J = nqv, where v is the drift velocity of the particles in the field E, we can
write from (3.187):

J = nqμ ·E (3.189)

and since J = σ ·E (Sect. 2.2.2), the relation between the conductivity and
mobility tensors is then given by:

σ = nqμ . (3.190)

Remarks:

1. The expressions for the mobility and conductivity of electrons parallel to
a magnetic field B (or in the absence of a magnetic field) are:

μe = − e

meν
, (3.191)

σe =
ne2

meν
, (3.192)

where ν is the average electron-neutral collision frequency for momentum
transfer. If the assumptions in the Lorentz model are valid, this electri-



3.8 Diffusion and mobility of charged particles 249

cal conductivity describes the electrical conductivity of the ensemble of
particles in the plasma.

2. Ion mobility. We can define the ion mobility analogously to that for
electrons:

μi =
e

miνin
, (3.193)

where νin is the ion-neutral collision frequency. Note that the mobility of
a positive ion is positive, whilst the mobility of an electron is negative;
note also that some authors define mobility to be always positive.

3. Note that if ωc → 0, the mobility tensor reduces to the scalar mobility
coefficient, as expected.

4. Reduced mobility. For a given type of particle, μ‖ varies only with ν. Then,
for a given electron (ion) temperature (mean energy), the value of ν de-
pends only on N , the number of atomic targets per unit volume, the neu-
tral atoms, in the present case. Therefore, it is practical to record the
values of μ at one reference pressure and one reference temperature of
the neutral atoms: these references have been fixed at pA = 760 torr and
0◦Celsius. The corresponding mobility is referred to as the reduced mobility,
μe0: the neutral density in this case refers to the Lochsmidt number ,
NL = 2.69× 1019 atoms cm−3. The mobility at any particular pressure p
(torr) and temperature TC (degrees Celsius) with respect to the reference
pressure pA and temperature 0◦C, can be written:

μe = μe0
NL

Np
=

μe0 pA
273 p

(273 + Tc) =
μe0 (273 + Tc)

273 p′
, (3.194)

where Np is the density of neutrals at the (dimensionless) “pressure”
p′ = p/pA and at the temperature Tc (◦C).

5. Mobility in a periodic electric field. Recalling that the Lorentz conductivity
in a periodic electric field is given by:

σe =
nee

2

me(ν + iω)
(3.176)

(see (3.176)), we can define the corresponding electron mobility, knowing
that σ = nqμ (3.190), such that:

μe = − e

me(ν + iω)
. (3.195)

Setting ω = 0, we obtain the expression for the mobility in a continuous
electric field E (3.182).
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Expression for the diffusion velocity

By setting the field E to zero in (3.177), we obtain the diffusion velocity in
the direction of the magnetic field:

vz = − kBTα

mαναβ

1

nα

∂nα

∂z
, (3.196)

which enables us to define the diffusion coefficient parallel to the direction of
B (or in the absence of a magnetic field) for particles of type α:

D‖ =
kBTα

mαναβ
. (3.197)

For the components of v in the plane perpendicular to B, we obtain, from
(3.177) (where the subscript α is retained solely for the temperature):

vx =
q

mν
(vyBz)−

kBTα

mν

1

n

∂n

∂x
, (3.198)

vy = − q

mν
(vxBz)−

kBTα

mν

1

n

∂n

∂y
, (3.199)

and, as in the case of mobility, we introduce the two coefficients of diffusion
relative to the plane perpendicular to B:

D⊥ =
D‖ν

2

ν2 + ω2
c

, DH =
D‖νωc

ν2 + ω2
c

, (3.200)

which enables us to rewrite the three components of the diffusion velocity as:

vx = −D⊥
1

n

∂n

∂x
−DH

1

n

∂n

∂y
, (3.201)

vy = DH
1

n

∂n

∂x
−D⊥

1

n

∂n

∂y
, (3.202)

vz = −D‖
1

n

∂n

∂z
, (3.203)

whence finally the representative matrix of the diffusion tensor :

D =

⎛

⎜⎝
D⊥ DH 0

−DH D⊥ 0

0 0 D‖

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

D‖ν
2

ν2 + ω2
c

D‖νωc

ν2 + ω2
c

0

−
D‖νωc

ν2 + ω2
c

D‖ν
2

ν2 + ω2
c

0

0 0
kBTα

mναβ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.204)
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and the diffusion velocity vector :

v = −D · ∇n

n

⎛

⎝vi = −
∑

j

Dij
∂jn

n

⎞

⎠ (3.205)

resulting from the plasma density gradient.

Remarks:

1. We have just defined in (3.205) the free diffusion tensor D, so named
because the electron (ion) diffusion occurs completely independently of
all (collective) interactions with ions (electrons): in this case (low plasma
density), the space charge field between the different species of charged
particles is not large enough for any important coupling of the two different
species to occur.

2. Note that as ωc → 0, we recover the scalar diffusion coefficient, as expected.
3. We can associate a particle flux to the density gradient, by noting that:

Γ ≡ nv = −D ·∇n . (3.206)

Γ is also called the particle current because, when multiplied by the charge
e, it becomes a current density.

4. In the general case, where D depends on position and given any mi-
croscopic velocity distribution function, it can be shown that (Delcroix,
Sect. 13.2):

Γ = −1

3
∇
[
n〈w2/ν(w)〉

]
, (3.207)

where the brackets denote an average taken over the distribution function.
From this expression, we extract the most general form of the diffusion co-
efficient in the absence of a magnetic field B and for a velocity distribution
function that is independent of position:

D =
1

3
〈w2/ν(w)〉 . (3.208)

Moreover, if ν is independent of w, and the distribution function f(r,w)
is Maxwellian, then:

D =
1

3

{
1

2
m〈w2〉

}
2

mν
=

1

3

{
3

2
kBTα

}
2

mν
=

kBTα

mν
, (3.209)

in agreement with (3.197).
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Total particle current and total current density
(complete solution)

If the above mentioned assumptions on the vector v are valid (velocity v
sufficiently weak for the convective term to be neglected, absence of temper-
ature gradient, stationary state) and provided that the electron density is
sufficiently small, such that there is no coupling with the ions through the
space charge field, the solutions obtained from (3.187) and (3.205) can be
added to obtain the total flux of charged particles of one given species, and
the corresponding current density:

Γ = −D ·∇n+ nμ ·E , (3.210)

J = −qD ·∇n+ σ ·E . (3.211)

Remark: The ratio of the coefficients Dα and μα leads to:

Dα

μα
=

(
kBTα

mαναβ

)(
mαναβ
qα

)
=

kBTα

qα
, (3.212)

referred to as the Einstein relation. It is usual to set De/|μe| ≡ uk, where uk
is the characteristic electron energy (expressed in eV).

The effect of a magnetic field on the diffusion coefficient:
confinement of charged particles

- Spatial orientation of the confinement with respect to B
The field B = êzB0 only affects the mobility and diffusion in the plane
perpendicular to it (B does not appear in the expressions for μ‖ and D‖).
This effect depends on the ratio ν/ωc. For the simple case where E = 0,
with ∂n/∂y = 0 in the equation for vx (3.201); the expression for Γx takes
the form:

Γx = −D⊥
∂n

∂x
=

−D‖ν
2

ν2 + ω2
c

∂n

∂x
=

−D‖

1 + (ωc/ν)
2

∂n

∂x
, (3.213)

which clearly shows that, when ν � ωc, the particle flux in the direction
perpendicular to B is smaller than the flux Γz in the direction of B; in the
case where ν  ωc, the componentsD⊥ ≈ (ν/ωc)

2D‖ andDH ≈ (ν/ωc)D‖
are even more strongly reduced.

Remark: The reduction in the motion perpendicular to B in the case of
individual trajectories (ν = 0, E⊥ = 0, B = êzB0, p. 117, remark 1) is due
to the fact that the gyration radius of the particle becomes smaller as B0
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increases. When there is particle diffusion, the cyclotron gyration can be
seen as retarding the diffusion perpendicular to B.

- Diffusion losses in a long plasma column, subjected to a stationary, axially
directed magnetic field B
In a plasma column, with radius small compared to its length, the diffu-
sion losses of the charged particles (by recombination at the walls) takes
place mainly in the radial direction. A magnetic field, directed axially, can
however greatly reduce this diffusion.
Consider the vector:

∇n =

(
∂n

∂r
,
1

r

∂n

∂ϕ
,
∂n

∂z

)

in cylindrical coordinates. The plasma column being cylindrically sym-
metric, ∂n/∂ϕ = 0; in addition ∂n/∂z ≈ 0 if the column is very long with
respect to its radius119. The radial flux then reduces to120:

Γrêr = −D·(∇n)r = −D·êr
∂n

∂r
= −êrD⊥

∂n

∂r
= −êr

D‖ν
2

ν2 + ω2
c

∂n

∂r
(3.214)

and for ν  ωc,

Γ ≈ −kBTα

mν

ν2

q2B2
m2 ∂n

∂r
= −

(
kBTαmν

q2B2

)
∂n

∂r
∝ 1

B2
, (3.215)

which shows that the magnetic field strongly reduces diffusion losses.
Remark: The diffusion of charged particles perpendicular toB often gives
rise to a much larger transport of particles than that predicted by the hy-
drodynamic model: this type of diffusion is referred to as anomalous diffu-
sion (with respect to the hydrodynamic model). See further in Sect. 3.11.

3.9 Normal modes of diffusion and spatial density
distribution of charged particles

The ultimate goal of the present section is to show how the diffusion of
charged particles to the walls (where the ions recombine with the electrons)
determines n(r), the spatial distribution of charged particles.

119 The axial density profile n(z)/n(0) for a direct current (DC) discharge has only a weak

dependence on the length of the column, such that, in this case ∂n/∂z is small.
120 Since only one of the three components of ∇n is non zero, in this case ∂n/∂r, we can
conclude that only the coefficient D⊥ plays a role in the radial flux causing diffusion losses;

the azimuthal diffusion flux within the plasma, Γϕ = DH∂n/∂r, does not contribute to
these losses. Note that the (Hall) diffusion coefficient in this relation is −DH (see (3.204)).
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This being obviously a problem of particle transport, it is natural to try
solving it by considering the continuity equation, written this time with a
non zero source term S121:

∂n

∂t
+∇ · (nv) = S , (3.216)

where ∂n/∂t describes the particle density variation as a function of time and
∇ · (nv) represents the variation of the particle flux as a function of position.
This flux results from the diffusion and drift of the charged particles. The term
S takes account of the variations in particle density as a result of volume
collisions, principally ionisation and recombination.

In the absence of an electric field (applied or from space charge)122, the
particle flux can be written Γ ≡ nv = −D∇n. Equation (3.216), in steady
state, is then simply:

∇ · (−D∇n) = S . (3.217)

In the case where the diffusion losses are greater than those due to volume
recombination, the collisional interaction term (see Sect. 1.8, and Eq. (3.96) in
Sect. 3.5) reduces to that for volume ionisation. If, in addition, the coefficient
D is independent of position (isothermal approximation), we finally obtain
the relation:

−D∇2n = νin , (3.218)

where νi is the mean ionisation frequency for the gas considered (Sect. 1.8.3).
This equation expresses the fact that the particles, created in the volume, are
dragged towards the walls under the influence of their gradient density. We
can rewrite (3.218) in the form of an eigen-value equation:

∇2n = −
(νi
D

)
n . (3.219)

The results that we will now obtain are of major importance in the establish-
ment of the maintenance conditions of the discharge, particularly as to the
value of the E field intensity within the discharge as opposed to the exter-
nally applied field. In Chap. 4 (Sect. 4.2) we will establish the fact that this
intensity, in the case of a plasma subject to diffusion, is independent of that
of the externally applied electric field.

To completely understand the solution to (3.218), we need to introduce
the concept of normal modes of diffusion, which is more readily demonstrated
in the case of a time varying post-discharge (also called time-afterglow): it
refers to a plasma in which, at t = 0, we delete the source term, for example
the HF field.

121 The term S results from the integration of the collision operator S(f) over wα.
122 If there is no coupling between the electrons and ions through the space charge electric
field ED, D is the free diffusion coefficient. If coupling is important, the particle flux, which

includes a contribution from the drift of the particles in the field E, takes an identical form,
but the value of the diffusion coefficient must be modified (Sect. 3.10).
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3.9.1 Concept of normal modes of diffusion:
study of a time varying post-discharge

We will examine the evolution of the spatial electron density distribution,
as a function of time, in a post-discharge in the diffusion regime. Equation
(3.216) then reduces to:

∂n

∂t
+∇ · (nv) = 0 . (3.220)

Assuming that the mean particle energy is spatially uniform (isothermal ap-
proximation) and setting Γ ≡ nv = −D∇n, (3.220) becomes:

∂n

∂t
−D∇2n = 0 . (3.221)

To solve this equation, we need to know how the plasma density decreases as
a function of time in the diffusion regime: it can be shown that, with certain
exceptions, the density at any given point decreases exponentially, i.e.:

n(r, t) = n(r, t = 0) exp(−νDt) for t ≥ 0 , (3.222)

where νD is the characteristic frequency for diffusion loss (τD = ν−1
D is the

characteristic time for the decrease of plasma density by diffusion). Equation
(3.221) then becomes:

∇2n = −
(νD
D

)
n , (3.223)

where n = n(r, t), and D is the diffusion coefficient for the particles con-
sidered123. The second order differential equation (3.223) has eigenvalues of
the form ∇2n = −λpn (characteristic equation). In the case of a cylindrical
column of internal radius R, the boundary conditions are (dn/dr)r=0 = 0
and n(r = R) = 0, where this latter condition must be considered as an
approximation124.

123 Note that (3.223) is not limited to charged particles, but can be applied to all the
species in the plasma created in the volume and lost to the walls, such as excited neutral

species, as well as atoms (O, N, H. . . ), molecules or radicals.
124 The value n(r = R) is always much smaller than n(r = 0), because in the diffusion
regime, the walls constitute a region where the charged particles as well as the neutral

species (some excited) are lost: by neutralisation for charged particles and through de-
excitation, recombination or absorption for neutral species. However, if there is a “reflec-

tion” of part of the particle flux at the walls, the condition n(r = R) = 0 is not valid. This
is the case for rare gases atoms and gaseous molecules (O2, N2, H2. . . ) in their ground

state, for which the coefficient of reflection is 100% (no losses at the wall, n(R) = n(0)).
For excited or dissociated neutral species, the de-excitation or recombination may not be

complete at the walls, and one part of the species flux is thus reflected. In this case, it is
necessary to think of the loss of species in terms of flux rather than density.
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To simplify the solution of the characteristic equation, set:

1

Λ2
≡ νD

D
. (3.224)

We will show later that Λ, the characteristic diffusion length, depends only
on the geometric configuration and plasma dimensions. Consequently, an in-
crease in D translates into a proportional increase in νD.

Planar configuration

This situation corresponds to the case of a plasma confined between two
parallel plates (conductors or dielectrics), separated by a distance L (x axis),
but extending to infinity in the other dimensions (y and z axes), as illustrated
in Fig. 3.1.

Fig. 3.1 One dimensional
representation of a plasma

confined between two par-
allel plates, extending to

infinity and separated by a
distance L.

The solution of (3.223) is then:

n(x, t) =

∞∑

k=1

nk(t = 0) exp(−νDkt) cos(x/Λk) , (3.225)

where:
1

Λ2
k

≡ νDk

D
, (3.226)

and including the general condition that the density is zero at the wall:

L

2Λk
= (2k − 1)

π

2
, (3.227)

where k is always positive.

Remarks:

1. The solution sin(x/Λk) is not acceptable, because it is not symmetric with
respect to the axis (x = 0), as is required by the diffusion process.

2. Considered one by one, only the fundamental mode (k = 1) in (3.225) has a
physical significance, because the higher modes result in negative densities
along x. However, their sum according to (3.225) constitutes a physical
solution (without negative values).
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Characteristic frequency νDk of the different modes:
relative values compared to that of the fundamental mode

We wish to evaluate the relative contributions to electron density of the
various diffusion modes appearing in the sum (3.225); to do this, we ex-
tract from Eqs. (3.226) and (3.227) for k = 1, νD1 = Dπ2/L2; for k = 2,
νD2 = 9Dπ2/L2; for k = 3, νD3 = 25 Dπ2/L2, such that νD2/νD1 = 9,
νD3/νD1 = 25, etc. Then, it is clear that the fundamental mode decays the
least rapidly in (3.225): no matter what the initial spatial density distribution
was (obtained, for example, as a result of a laser pulse focussed at a point
inside the discharge vessel), after a certain time, it will take the shape of
the fundamental mode, with the other terms in (3.225) making no significant
contribution, as is illustrated in Fig. 3.2.

Fig. 3.2 Approximate
time evolution of the elec-

tron density, in the diffusion
regime, of a plasma created

locally (⊗) at time t0.

Diffusion length

For the fundamental mode (k = 1), we have
L

2Λ
=

π

2
, from which:

Λ = L/π , (3.228)

where Λ appears as a characteristic diffusion length in the planar confi-
guration.

Cylindrical configuration

We will consider a cylindrical vessel, closed at each end by planar surfaces
(Fig. 3.3).
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Fig. 3.3 Two dimensional
representation of a cylin-

drical plasma vessel, with
its axis z, radius R and

length h.

For the fundamental mode, the eigenvalue solution to (3.223) gives the par-
ticle density at the point r, z:

n(r, z) = n0 cos(az)J0(br) , (3.229)

where J0 is the zero order Bessel function of the first kind (Fig. 3.4): the
coefficients a and b obey the relation:

a2 + b2 =
νD1

D
. (3.230)

Fig. 3.4 Plot of the zero

order Bessel function of the
first kind.

Diffusion length

By requiring that the density of the particles be zero at the walls (at r = R
and z = ±h/2), we find a = π/h and b = 2.405/R, from which:

1

Λ2
= a2 + b2 =

(π
h

)2
+

(
2.405

R

)2

. (3.231)

In a long cylindrical column, by definition h 	 R, from which:

Λ =
R

2.405
. (3.232)
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The diffusion is thus principally in the radial direction, such that:

n(r, z) � n(r) = n0J0(2.405 r/R) . (3.233)

3.9.2 Spatial distribution of charged particle density in
the stationary diffusion regime

The source term (ionisation)

In the case of a weakly ionised plasma (ne  N , where N is the density of
neutrals), the electron-neutral collisions dominate, but they are not sufficient
to equalise the mean energy of the different particles; the mean energy of
electrons in electric discharges is, in fact, greater than that of the ions and
neutrals (Sect. 1.4.3). Moreover, the mean energies of the heavy particles, in
this case, remain well below the ionisation threshold: only electrons are able
to ionise through impact collisions with atoms. In the following, we assume
that the atoms are initially in their ground state, before being ionised by a
single electron collision: we will neglect multi-step ionisation, where atoms
in excited states serve as a relay to ionisation (Appendix VI). This assumes
that the intermediate states are not highly populated.

The “source” term S of the continuity equation (3.216) represents a num-
ber of particles per unit volume per second. Since we assume the plasma is in
the diffusion regime, the source term includes ionisation only. Because ionisa-
tion occurs through a single electron impact on a neutral atom in the ground
state, we can simply write the “source” term of the continuity equation as
S = Si ≡ νin where νi = N0〈σ̂ti(we)we〉 (1.152).

The charged particle balance equation

We know, from the conditions just described, that the conservation equation
for particles in a diffusion plasma can be written:

−D∇2n = νin , (3.218)

where the diffusion losses of charged particles are exactly balanced by the
volume ionisation.

Very often, we can assume that the frequency νi is independent of position.
However, in plasmas produced by HF fields, νi is a function of the spatial
variation of the field E, but in most cases where diffusion clearly dominates
volume recombination, the effect of this dependence on the particle distribu-
tion function is minimal due to the global nature (leveling effect), as opposed
to the local nature, of the diffusion mechanism.
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Note that (3.218) has the same form as (3.223), describing the spatial
electron density distribution subject to diffusion in a time dependent post-
discharge: it is therefore an eigenvalue equation (the boundary conditions are
the same as in Sect. 3.9.1). Thus, by analogy with Sect. 3.9.1, for a long
cylindrical column (3.232), we have:

ni(r) ≈ ne(r) = n(0)J0(2.405 r/R) , (3.234)

which describes the radial density distribution corresponding to the funda-
mental diffusion mode125. Following the solution to (3.223), we set this time:

νi
D

=
1

Λ2
, (3.235)

which can be rewritten in the form:

νi =
D

Λ2
(3.236)

or again, from (3.132):
νi = νD , (3.237)

and we obtain the equilibrium equation, in a steady-state discharge, between
the number of charged particles created and the number of those escaping
by diffusion. This equation is also referred to as the charged particle balance
equation.

Remarks:

1. In the case where the charged particles disappear (in part or in total) by
volume recombination, we must add a term to the ionisation term Si. For
example, in the case of atomic ions of the same charge, this would be:

Sr = −αarn
3 , (3.238)

where αar is the three-body volume-recombination coefficient.
A more general form of the particle equilibrium equation can thus be
written:

−D∇2n = νin− αarn
3 , (3.239)

where αar and νi can be spatially dependent.
In a time dependent post-discharge, where volume recombination exceeds
the loss of charged particles by diffusion (see (3.222)), in the specific case
of a three-body recombination (3.238), the decrease in n is given by:

125 This solution once again assumes that the contribution from higher modes is not im-

portant: they disappear once the transitory breakdown regime of the discharge terminates,
analogous to what happens in a post-discharge.



3.10 The ambipolar diffusion regime 261

1

n2(t)
=

1

n2(0)
+ 2αart . (3.240)

It is then straightforward, in principle, to distinguish a volume recombi-
nation regime from a diffusion regime by examining the time evolution of
the post-discharge, unless the charged particle losses for both mechanisms
are comparable in importance.

2. Density conditions at the walls
As we have already indicated124, the simplifying condition n(r = R) = 0
at the walls is not always valid. In fact, at low-pressures (typically below
100mtorr (13.3Pa) in argon), there is a plasma-wall interface in the form
of a narrow ion sheath, corresponding to a few λDe (Sect. 3.14). In this
case, the losses at the walls are expressed in terms of the flux traversing
this ion sheath. At higher pressures, the plasma can often be considered as
extending completely to the walls (negligible sheath), and the assumption
n(r = R) = 0 is then acceptable.

3.10 The ambipolar diffusion regime

The assumption of a free diffusion of electrons, i.e. independent of ions, im-
plied in Sect. 3.8, is only valid if the charged particle density is low. In reality,
the electrons have a diffusion coefficient which is much larger than that of
the ions (compare De ∝ Te/me with Di ∝ Ti/mi), which implies that their
escape to the walls is more rapid126. This leads to a departure from neutrality
(charge separation) and therefore to the creation of an electric field ED (the
space charge field). This electric field acts to slow the diffusion of electrons
and accelerate the diffusion of ions. Above a certain plasma density (of order
108 cm−3), the space-charge field intensity becomes important to the point
that the ions and electrons diffuse with a common velocity, the charge sepa-
ration and, thus, the actual electric field intensity adjusting accordingly: this
is ambipolar diffusion (in its pure or perfect form), characterised by a single
diffusion coefficient Da for the two species of particle, for which we will now
derive the expression.

126 To see this, write the diffusion flux of the two types of particles (not accounting for
the space charge), in the x direction:

Γex ≡ nevex = −De∂ne/∂x and Γix ≡ nivix = −Di∂ni/∂x .

Since me � M and Te ≥ Ti, although νen � νin, one has De � Di. Knowing that

ne � ni, we obtain ∂ne/∂x ≈ ∂ni/∂x, and, finally vex � vix, hence there is a much larger
electron flux.
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3.10.1 Assumptions required for a completely analytic
description of the ambipolar diffusion regime

1. We set the flux of electrons and ions to be equal:

Γ e = Γ i = Γ . (3.241)

This is only a first order approximation because, rigorously, we should
rather write:

∇ · Γ e = ∇ · Γ i . (3.242)

In fact, the equation of continuity in the stationary state gives, for all
regimes:

∇ · Γ e = Se , (3.243)

∇ · Γ i = Si , (3.244)

where Se = Si, because the charged particles appear and disappear as
electron-ion pairs127.
Equation (3.241) is therefore only an approximation (except in one dimen-
sion); it is called the congruence approximation.

2. We assume spatial independence of the diffusion coefficient :

Dk(r) = constant, (3.245)

where k = e, i or a (a standing for ambipolar).
3. We assume that in general:

ni(r)

ne(r)
= C , (3.246)

where C is a spatially independent parameter, whose value depends on
the space charge. In the presence of a particle flux, in the stationary state,
the intensity of the space-charge electric field ED grows, starting from
zero for free diffusion, gradually increasing into the ambipolar regime then
decreasing again, without ever being completely zero at the perfect am-
bipolar diffusion limit (see below (3.270)). The proportionality condition
(3.246) will enable us to treat the transition between free diffusion and
perfect ambipolar diffusion. We can verify the validity of this relation in
two extreme cases of the transition regime:

- Low plasma density: free diffusion regime (ED = 0)
The two species of particle diffuse freely, thus a priori C �= 1. To
determine the value of C, we use the exact relation (3.242), where
Γ α = −Dα∇nα, and Dα is spatially independent. Since Se = Si, this

127 Assuming that there are only positive ions in the discharge, and that each of them
carries only a single positive charge.
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leads to:
−De∇ ·∇ne = −Di∇ ·∇ni , (3.247)

or equivalently:

∇2ne = +
Di

De
∇2ni , (3.248)

such that, from (3.246):
C = De/Di , (3.249)

which quantifies (3.246) by giving the parameter C a precise value.
In the free diffusion regime, the ion and electron diffusion fluxes are
therefore equal provided that ni/ne = De/Di.

- High plasma density (perfect ambipolar diffusion regime: no charge sep-
aration)
In this case, C = 1 (ne(r) = ni(r) = n(r)) and from the congruence
approximation (3.241):

ve(r) = vi(r) = v(r) , (3.250)

which requires that the diffusion is governed by a single diffusion coef-
ficient Da, common to both species, as will be shown in the following
section.

3.10.2 Equations governing the ambipolar diffusion
regime and the transition from the free
diffusion to the ambipolar regime

In the absence of external fields, the fluxes resulting from diffusion, as well
as that from the drift due to the space charge electric field ED, are given by
(3.210):

Γ i = −Di∇ni + μiniED , (3.251)

Γ e = −De∇ne + μeneED , (3.252)

where the field ED is related to the departure from neutrality through Pois-
son’s equation (1.1):

∇ ·ED = −(ne − ni)e/ε0 . (3.253)

Perfect ambipolar regime (ne(r) = ni(r))

If we multiply (3.252) by μini and (3.251) by μene and take the dif-
ference (3.252) - (3.251), including the congruence approximation (3.241)
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(Γ e = Γ i = Γ ), we obtain:

(μini − μene)Γ =−Deμini∇ne + μeμineniED

+Diμene∇ni − μeμineniED . (3.254)

In the present case, ne = ni = n, so:

Γ =
−(Deμi −Diμe)∇n

μi − μe
, (3.255)

which leads to the definition of the ambipolar diffusion coefficient Da
128:

Da ≡ Deμi −Diμe

μi − μe
, (3.256)

so the electron and ion fluxes ((3.251) and (3.252)) can both be represented
by the same single expression:

Γ = −Da∇n . (3.257)

Note, in (3.256), that Da is positive because the value of μe is negative.
By analogy with the expression obtained for free diffusion (3.235), in the

stationary state, the creation-loss equilibrium condition for particles in the
ambipolar diffusion regime is:

νi =
Da

Λ2
. (3.258)

For a long, cylindrical column, the expression for the radial distribution of
the electron and ion densities following the development of (3.233) is thus:

n(r) = n(0)J0(2.405 r/R) . (3.259)

The transition region between the ambipolar (ne = ni)
and free diffusion (ni = Cne) regimes

We start from (3.254), where the congruence approximation (Γ e = Γ i) is
used, but this time we consider that ne �= ni and ve �= vi. The proportionality
condition (3.246) can be expressed in the form:

ni∇ne = ne∇ni , (3.260)

and then, from (3.254), we can extract:

128 The expression for Da remains the same if an external electric field Eext is added to

ED (even if their orientation is different): Eext can be eliminated in equation (3.254) in
the same way as ED.
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Γ = −
[
(Deμi −Diμe)ni

μini − μene

]
∇ne ≡ −Ds∇ne , (3.261)

where Ds is the effective diffusion coefficient . Although the expression for
Ds contains ne and ni, which are functions of position, Ds is not, because
we have assumed that the constant C is spatially independent.

We require an expression forDs as a function ofDa, in which the difference
ni−ne (determining the intensity of the field ED coupling the particles with
each other) appears explicitly. Recall the expressions for the total electrical
conductivity:

σ = (μini − μene)e (3.262)

(because μe is negative, σ > 0, as it should be) and the total charge density:

ρ = (ni − ne)e . (3.263)

We can then write:

1− μeρ

σ
≡ 1− μe(ni − ne)e

(μini − μene)e
≡ μini − μene − μeni + μene

μini − μene

=
(μi − μe)ni

μini − μene
(3.264)

and, further, that:

Da

(
1− μeρ

σ

)
=

(
Deμi −Diμe

μi − μe

)
(μi − μe)ni

μini − μene

=
(Deμi −Diμe)ni

μini − μene
≡ Ds . (3.265)

The expression:

Ds = Da

(
1− μeρ

σ

)
(3.266)

shows that Ds depends explicitly on the electrical conductivity and the de-
viation from charge neutrality. Since the coefficient μe is negative, Da is the
minimum value of Ds(ρ � 0).

3.10.3 The value of the space-charge electric
field intensity

From (3.210), we know that the expression for the electron particle flux is:

Γ e = −De∇ne + μeneED . (3.267)



266 3 Hydrodynamic description of a plasma

Moreover, the effective diffusion coefficient Ds enables us to write the ion
and electron fluxes (3.251) and (3.252) in the same form Γ = −Ds∇ne.
From (3.267) and (3.261), we then have:

ED =
(De −Ds)

μe

∇ne

ne
. (3.268)

We can study this equation in two interesting limits:

- ED = 0 (strictly zero)
This case corresponds to free diffusion, as shown in (3.268), because then
Ds = De (we can find the same result by comparing (3.267) with ED = 0
and (3.261))

- Perfect ambipolar diffusion field EDa

Setting Ds = Da in (3.268) gives:

EDa =
1

μe

[
De −

(Deμi −Diμe)

μi − μe

]
∇ne

ne

=
1

μe

[
Deμi −Deμe −Deμi +Diμe

μi − μe

]
∇ne

ne
(3.269)

and finally:

EDa = − (De −Di)

μi − μe

∇ne

ne
. (3.270)

This field can become very weak, but never exactly zero, in the ambipo-
lar diffusion regime. More exactly, this means that we can set the strict
equality ne = ni in order to calculate the ambipolar diffusion coefficient,
but not in Poisson’s equation. In the latter case, ρ must be different from
zero, even if only slightly, for the space charge to exist. Note also that the
space charge electric field on the axis of a plasma column must be zero,
because of cylindrical symmetry129 and thus the charge density ρ0 on the
axis must also be zero.
Since, in general,De 	 Di and |μe| 	 μi, a commonly used approximation
for the expression (3.270) for EDa is:

EDa ≈ De

μe

∇ne

ne
≡ uk

∇ne

ne
, (3.271)

where uk is the characteristic energy of the electrons (3.212).

129 There is no reason for the field ED on the axis to be pointing in any specific radial

direction. As a matter of fact, we use the condition ∇ne = 0 as a boundary condition on
the axis.
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3.10.4 The expression for the charge density ρ0

on the axis: limits to the validity
of the analytic calculation

The charge density ρ can be obtained explicitly from Poisson’s equation
∇ ·ED = ρ/ε0, where the expression for ED is from its general relation
(3.268):

ρ = −ε0(Ds −De)

μe
∇ ·

[
∇ne

ne

]

=
ε0(Ds −De)

μe

[(
∇ne

ne

)2

− ∇2ne

ne

]
. (3.272)

The value ρ0 of ρ on the axis is obtained by noting that the plasma density is
symmetric with respect to this axis, so that ∇ne = 0130; furthermore, since
∇2ne/ne = −1/Λ2 (Sect. 3.9.2), one gets from (3.272):

ρ0 =
ε0(Ds −De)

μeΛ2
. (3.273)

In the case of free diffusion (Ds = De), we do have ρ0 = 0 (negligible
space charge). Knowing that De ≥ Ds ≥ Da

131 (and μe < 0, according to
our convention), ρ0 increases from 0 to ρ0max as Ds decreases from De to Da

while we should have ρ0 = 0 on the axis, whatever the diffusion regime: the
field E on the axis is always zero due to cylindrical symmetry. The analytic
calculation is therefore only approximate, which is not surprising, given the
rather restrictive assumptions (notably ni = Cne) that we have used.

The more exact description of the regime is better treated numerically.
In order to compare analytic and numerical calculations, we will express the
effective diffusion coefficient as a function of the conductivity on the axis, σ0.
To do so, we substitute (3.273) into (3.266), which gives:

Ds = Da

[
De + Λ2σ0/ε0
Da + Λ2σ0/ε0

]
. (3.274)

Assuming that the conductivity σ0 is primarily due to the electrons, and
introducing the electron Debye length (1.42), we obtain:

130 Note that we set ∇ne = 0 in (3.272) only in the RHS, i.e. once the divergence has

been expanded: the fact that the first derivative of ne is zero at a point does not require
that the second derivative also be zero at this point (consider y = x2 at x = 0). In the

present case ∇2ne < 0 and ne passes through a maximum on the axis.
131 And Di ≤ Da, because in the ambipolar diffusion regime, the space charge field
accelerates the flux of ions. To see this, use (3.256) for example, with |μe| � |μi|.
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Fig. 3.5 Comparison of the analytic solution (dashed line) with that obtained by a nu-
merical calculation (solid line) from the diffusion equations, for the case Te = Ti (after [1],

American Physical Society, all rights reserved).

Ds = Da

[
1 + (Λ/λDe)

2

(Da/De) + (Λ/λDe)
2

]
, (3.275)

where (Λ/λDe)
2 is a parameter characterising the transition from free dif-

fusion (Ds = De) to ambipolar diffusion (Da/De  1). Figure 3.5 shows
that the analytic solution (3.275) underestimates the value of Ds obtained
by the numerical solution of the diffusion equations, which does not require
the aforementioned approximations. In particular, the value of Ds obtained
analytically only tends to that of the numerical calculation for large values
of (Λ/λDe)

2.
Figure 3.6 shows that, for a planar discharge configuration, the plasma

situated in the neighbourhood of the axis can be in the ambipolar regime,
but tends to the free diffusion regime near the walls.

3.10.5 Necessary conditions for a discharge
to be in the ambipolar regime

Provided the discharge is effectively governed by diffusion, to determine
whether the regime is ambipolar or not we can use either one of the following
two criteria:
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Fig. 3.6 Numerically calculated values of Γe and ne as functions of spatial position
x in planar geometry, compared to those obtained when assuming a constant ambipolar

diffusion coefficient: the calculated diffusion coefficient changes from truly ambipolar on
the axis (x = 0) to that of the transition regime as density decreases towards the wall

(after Brown).

Density – diffusion length criterion

We can generally say that the field intensity ED required for ambipolar dif-
fusion is reached when Λ2σ0 is sufficiently large (see (3.274)), or more specif-
ically when:

ne0Λ
2 > 107 cm−1 , (3.276)

where ne0, the electron density on the axis, is expressed in cm−3 and Λ in
cm. For values of ne0Λ

2 less than 105 cm−1, the plasma is in the free diffusion
regime, provided that the conditions are actually those of a diffusion regime
(collision mean free path < R) and not that of free fall (the definition of free
fall will be discussed later, in Sect. 3.12).

Remarks:

1. The average electron density (over the cross-section) of a classical fluo-
rescent lamp tube, maintained by an alternating current, varies between
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1010 and 1011 cm−3 in the course of a period of 60Hz; its radius is 12mm.
This discharge is manifestly in the ambipolar diffusion regime, except near
the walls, where it can be in the free diffusion regime, as we have already
underlined (Fig. 3.6).

2. For values of ne0Λ
2 	 107 cm−1, the plasma density can be sufficiently

large for volume recombination to be significant, or even dominant. It
is then necessary to compare the losses of charged particles by volume
recombination and by diffusion, in order to know which loss mechanism is
the most important.

Debye length – diffusion length criterion

Recalling that λ2
De = ε0kBTe/nee

2 and from the Einstein relation (3.212)
De/μe = −kBTe/e, we can write:

λ2
De = − ε0De

neeμe
. (3.277)

The departure from charge neutrality on the axis as a function of λ2
De can be

obtained from (3.273), by substituting therein μe from (3.277), which gives:

ρ0 ≡ (ni0 − ne0)e = ε0
(Ds −De)

Λ2μe
= −ε0

(Ds −De)

Λ2

λ2
Dene0e

ε0De
,

and finally:
ni0 − ne0

ne0
=

(De −Ds)

De

λ2
De

Λ2
. (3.278)

We can then distinguish two cases depending on the ratio λDe/Λ:

- λDe 	 Λ: free diffusion
A Debye length longer than Λ implies a departure from macroscopic neu-
trality over the distance Λ. This means that the intensity of the space-
charge field is manifestly insufficient to couple the ions and electrons. In
other words, there is free diffusion, ions and electrons moving indepen-
dently of each other. Moreover, λDe 	 Λ implies, from (3.278), that the
density ne0 should be small132.

- λDe  Λ: ambipolar diffusion
This condition corresponds to high electron density (1/ne0 is small in
(3.278)) and the space charge field will have an intensity such that the
motion of the ions and electrons are coupled. These conditions correspond
precisely to the ambipolar diffusion regime (Ds = Da in (3.275)).

132 This condition is similar to the first condition of remark 10 of Sect. 1.6 to the extent
that L � Λ.
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Remarks:

1. A commonly used approximate value for the coefficient Da. It is easy to
see that:

Diμe

Deμi
=

kBTi

miνin

meνen
kBTe

−e

meνen

miνin
e

= −Ti

Te
. (3.279)

Since, as a rule, |μe| 	 μi, the general expression (3.256) for Da can be
written:

Da ≈ Di −De(
μi

μe
)

and equivalently

Da ≈ Di

[
1− De

Di

μi

μe

]
.

Substituting (3.279), this becomes:

Da ≈ Di

[
1 +

Te

Ti

]
. (3.280)

Finally, since generally Te 	 Ti (non LTE electric discharges):

Da ≈ Di
Te

Ti
=

kBTi

miνin

Te

Ti
=

(
kBTe

e

)
μi . (3.281)

Da can thus be expressed as the product of the electron temperature
(in eV) and the ion mobility.

2. The initial regime (or breakdown) of a discharge is necessarily governed by
free diffusion, due to the fact that the densities at the beginning are small
(ne0Λ

2 → 0, on condition that it is not in free fall regime, Sect. 3.12), but
the resulting stationary regime can be governed by ambipolar diffusion. In
practice, the breakdown of the discharge requires a much greater electric
fieldE than that required to maintain the discharge, as is shown in Fig. 3.7.

3.11 Ambipolar diffusion in a static magnetic field

We would like to study the effect of an axial magnetic field on the ambipolar
diffusion regime in a long plasma column133 in the absence of an external
electric field.

As in the case for free diffusion, a field B cannot produce an effect in its
own direction. On the other hand, the influence in the perpendicular direction
can be significant.

133 If R/h is not much less than 1, see Chen, Sect. 5.5.1.
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Fig. 3.7 Field intensity E (normalised to the pressure p) as a function of the parameter
pΛ in a microwave discharge in H2 (after [32]). The values of the product ne0Λ2 are

expressed in cm−1.

Coefficient Da⊥

In a long cylindrical column, diffusion is principally radial. The corresponding
ion and electron fluxes in the presence of a magnetic field can be obtained by
analogy with the Γ e and Γ i fluxes in the absence of a magnetic field, using
(3.251) and (3.252):

Γir = −Di⊥
∂ni

∂r
+ μi⊥niEDr , (3.282)

and:

Γer = −De⊥
∂ne

∂r
+ μe⊥neEDr , (3.283)

where EDr is the radial component of the space-charge field (designated as the
ambipolar field). The expressions for De⊥ and Di⊥ follow the definition of D⊥
in (3.200), and those of μe⊥ and μi⊥ those of μ⊥ in (3.186). Supposing that
the diffusion is ambipolar (Γer = Γir = Γr), then by analogy with (3.257),
we can write a common expression for electrons and ions, in the form:

Γ r = −Da⊥∇rn , (3.284)

where Da⊥ is given by:

Da⊥ =
De⊥μi⊥ −Di⊥μe⊥

μi⊥ − μe⊥
. (3.285)
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Analysis of the relative values of De⊥ and Di⊥

The calculation of the ratio of the two values leads to:

De⊥
Di⊥

=
De‖ν

2
en

ω2
ce + ν2en

ω2
ci + ν2in
Di‖ν

2
in

=
Te

Ti

mi

me

νin
νen

ν2en
ν2in

(
ω2
ci + ν2in

ω2
ce + ν2en

)
. (3.286)

Consider the particular case of a field B0, which is sufficiently large such that
ωci 	 νin. Since a fortiori ωce 	 νen (because ωce 	 ωci and νen � νin),
(3.286) can be simplified:

De⊥
Di⊥

=
mi

me

ω2
ci

ω2
ce

Te

Ti

νen
νin

=
me

mi

Te

Ti

νen
νin

. (3.287)

Although Teνen is in general greater than Tiνin
134, the mass ratio dominates

to the extent that De⊥ ≤ Di⊥. The ions diffuse faster, and the electrons
retard the ions in the ambipolar process, in contrast to the situation without
a magnetic field.

Remarks:

1. If we assume νen ≈ νin, in the case where the field B is sufficiently large
(νin  ωci), we find a useful approximate form for Da⊥:

Da⊥ ≈ De⊥[1 + Ti/Te] , (3.288)

a result worthy of comparison with the diffusion coefficient without mag-
netic field (3.280), for which Da = Di[1 + Te/Ti]: the role of electrons and
ions in the diffusion process is thus reversed.

2. The congruence approximation for the derivation of Da⊥, the ambipolar
diffusion coefficient in the presence of a magnetic field B, is in general not
valid if the vessel walls are conductors [39]. In the direction perpendicular
to B, the electrons diffuse more slowly than the ions when B is sufficiently
large (De⊥ ≤ Di⊥, (3.287)), while the electrons diffuse much more rapidly
than the ions along the lines of B (De 	 Di). Thus the walls (at the
ends) which cut the field lines mainly receive electrons, while the walls
parallel to B will mainly collect the ions. There is therefore no ambipolar
diffusion, because Γ e �= Γ i. On the other hand, if the walls of the vessel
are insulated, they do impose the ambipolar diffusion regime (Γ e = Γ i).

134 In fact, νen � νin and Te/Ti ≥ 1.
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3.12 Diffusion regime or free fall regime

Free fall: definition

When the dominant collision frequency between particles is sufficiently small,
such that the corresponding mean free path is longer than the diffusion length,
i.e, � > Λ, the plasma is in the free fall regime.

These conditions are opposite to those for diffusion because collisions
mainly occur at the walls of the vessel, rather than in the volume: the phe-
nomenon of directed velocity resulting in a density gradient cannot occur,
because this requires a very large number of collisions between charged par-
ticles over their diffusion length.

Diffusion criterion

Consequently, there is diffusion if the time τD to move a charged particle to
the walls is much greater than the time between two collisions in the volume
(mostly electron-neutral collisions in a weakly ionised gas), i.e. τD 	 1/νen.
We wish to express this condition as a function of the mean free path � of
electrons, and the radius R, for the case of a long cylindrical vessel.

Recall that νD = D/Λ2, such that τD ≡ 1/νD = Λ2/D ≈ R2/D. Further-
more, we know (Sect. 1.7.7) that � ≈ vth/νen. We can then write:

τDνen ≈ R2

D

(vth
�

)
. (3.289)

Since D = kBTe/meνen ≈ v2th/νen = vth �, we obtain from (3.289):

τDνen ≈ R2

vth

vth
�2

=
R2

�2
. (3.290)

The condition τDνen 	 1 leads to R/� 	 1 as a diffusion criterion.
In conclusion, before using any particular set of diffusion equations, it is

imperative to verify that the characteristic dimensions for diffusion are much
larger than the predominant mean free path. If this is the case, it is then
necessary to determine if this is a free diffusion regime or an ambipolar dif-
fusion regime, or a transition between the two, which can be determined, for
instance, by examining the ratio between the Debye length and the diffusion
length (Sect. 3.10.5).

Remarks:

1. In the free fall regime, the radial distribution of the electron density in a
cylindrical column is parabolic: n(r) = n(0)(1 − ᾱr2/R2): the parameter
ᾱ depends on λDe, as illustrated in Fig. 3.8.
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Fig. 3.8 Radial profile of electron density in the free fall regime: R is the internal radius of
the discharge tube and ne0 the value of the electron density on the tube axis. λ2

De represents

the average value of λ2
De over the radius of the plasma (adapted with permission from [28],

all rights reserved, American Physical Society).

2. Summary of conditions for ambipolar diffusion (B = 0)

- �  R: we have diffusion and not free fall
- λDe  Λ: the diffusion is ambipolar, if volume recombination is small

with respect to recombination at the walls (Sect. 1.8).

3.13 Electron temperature of a long plasma column
governed by ambipolar diffusion:
scaling law Te(pR)

In this section, we will derive the relation for the electron temperature Te

as a function of the product cpR, where p is the gas pressure, R the plasma
radius, and c, a specific constant for a given gas. This dependence as a func-
tion of pR is called a scaling law : such a law is one that regroups the product
(or quotient) of two (or more) variables. The present scaling law, formulated
by Von Engel and Steenbeck for the positive column (Sect. 4.2.1), has been
largely confirmed experimentally, particularly in rare gases for both the pos-
itive column of a DC discharge and HF discharges.

The equation we are seeking is based on the equation for particle charge
balance (3.236) in the ambipolar diffusion regime:

〈νi〉 = Da/Λ
2 , (3.291)
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where the mean ionisation frequency135 〈νi〉 depends on the electron velocity
distribution function, as indicated by the 〈〉 symbols. In the following, we will
assume that this function is Maxwellian. In such a case, the diffusion coeffi-
cient Da can be written explicitly as a function of Te (see (3.281)); however,
Te only appears implicitly in the expression defining the mean frequency 〈νi〉,
so (3.291) cannot be used to express Te explicitly.

From (3.291), we will derive an analytic expression, as a first approxima-
tion, for the dependence of Te as a function of N , the neutral atom den-
sity, and Λ, the characteristic diffusion length. For a more practical applica-
tion, we will obtain a function Te(p0R), where p0 is the reduced gas pressure
(Sect. 1.7.5) and R, the internal radius of the discharge vessel, assumed to
be long and cylindrical.

3.13.1 Assumptions of the model

To obtain an analytic solution, the following assumptions are required:

- The plasma is stationary (sufficient time has elapsed since the breakdown
of the discharge).

- The discharge tube is a long cylinder: the charged particles escape by radial
ambipolar diffusion to the walls, where they fully recombine (n(R) = 0).

- The intensity of the electric field sustaining the discharge is weak enough
for the velocity distribution to be isotropic, and it does not vary radially.

- The electron velocity distribution function is Maxwellian.
- The plasma is far from LTE (Te 	 Ti).
- Ionisation results from electron-neutral collisions (degree of ionisation

≤ 10−4).
- The ionisation of each atom occurs as a result of a single electron collision

with an atom in the ground state, such that 〈νi〉 = N0〈σ̂tiw〉.

Remark: The assumption that the charged particles are lost solely by am-
bipolar diffusion, together with the assumption of ionisation exclusively due
to electron impact with atoms in the ground state, are referred to as Schottky
conditions (see also Sect. 4.2.4).

3.13.2 Derivation of the relation Te(p0R)

We will calculate successively the LHS and the RHS of (3.291) for the balance
of particles, which will finally lead to the Te(p0R) scaling law.

135 We have returned to our initial notation (Sect 1.7.8) for the mean collision frequencies,
writing 〈νi〉 explicitly rather than νi.
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Expression for the ionisation frequency as a function
of the mean electron energy

In general, the number of ionising collisions is small compared to the num-
ber of elastic collisions, because the energy threshold Ei for ionisation is high
compared to the mean electron energy 3kB/2Te: this implies that most elec-
trons have energy smaller than the corresponding threshold energy and do
not contribute to ionisation of the plasma. The calculation of the ionisation
frequency 〈νi〉 will be undertaken in stages.

1. The expression for the mean ionisation frequency
For a separable and isotropic velocity distribution function (Sect. 3.3)136,
we obtain:

〈νi〉 =
∫

w

νi(w)f(w) 4πw
2 dw , (3.292)

where:
νi(w) ≡ N0σ̂ti(w)w . (1.152)

Note that 〈νi〉 is the average number of ionising collisions experienced by
one electron.

2. The expression for 〈νi〉 in terms of the electron energy expressed in eV

- The velocity distribution function, assumed to be Maxwellian, can be
written (Appendix I):

f(w) =

(
me

2πkBTe

)3/2

exp

(
−w2

v2th

)
. (3.293)

To translate the electron kinetic energy into eV, UeV , we set:

UeV =
mew

2

2e
, (3.294)

from which:

w =

√
2eUeV

me
. (3.295)

Since:

ŪeV =
3

2

kBTe

e
, (3.296)

where we have used ŪeV ≡ 〈UeV 〉 to simplify the notation, and since
1
2mev

2
th = kBTe, then:

vth =

√
4

3

e

me
ŪeV (3.297)

136 We can use the modulus of the velocity because we have made the assumption that
the electron energy is only weakly anisotropic, despite the presence of the field E.
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and after some calculation (Appendix XVII):

f

(√
2eUeV

me

)
=

(
3

4π

me

e

)3/2
1

Ū
3/2
eV

exp

(
−3

2

UeV

ŪeV

)
. (3.298)

- Conversion of 〈νi(w)〉 to 〈νi(UeV )〉
Substituting (3.294) and (3.298) in (3.292), and noting that Pi(w) =
Nσ̂ti(w), where Pi(w) is the total macroscopic (Sect. 1.7.5) ionisation
cross-section (Sect. 1.7.9), 〈νi〉 can be expressed as a function of the
energy UeV , i.e.:

〈νi〉 =
∫

Ei

3

√
3e

meπ

UeV

Ū
3/2
eV

Pi(UeV ) exp

(
−3

2

UeV

ŪeV

)
dUeV , (3.299)

where the lower limit of integration is the ionisation threshold Ei.

3. Analytic approximation for Pi(u)
Experimentally, Pi(UeV ) is observed to be linear in the domain UeV ≤ 2Ei,
and since Pi(UeV ) = 0 for UeV < Ei, to a very good approximation
(Sect. 1.7.9), Pi(UeV ) can be written as:

Pi(UeV ) = ai(UeV − Ei) for UeV ≥ Ei (1.142)

where ai is the ionisation coefficient , a specific constant for each gas con-
sidered.
Substituting (1.142) in (3.299), we obtain:

〈νi〉 = 3

√
3e

meπ

1

Ū
3/2
eV

∞∫

Ei

ai(UeV − Ei)UeV exp

(
−3

2

UeV

ŪeV

)
dUeV . (3.300)

Recalling that in Sect. 1.7.5 we introduced the reduced “pressure” p0 such
that Pi = p0Pi0, where Pi0 is the total macroscopic ionisation cross-section
at 0◦C and 1 torr, we proceed in similar fashion by setting ai = p0ai0, a
parameter which is expressed with respect to the reference conditions of
the cross-sections; the units are cm−1 V−1. We then obtain:

〈νi〉 = 3

√
3e

meπ

p0

Ū
3/2
eV

ai0

∞∫

Ei

(UeV −Ei)UeV exp

(
−3

2

UeV

ŪeV

)
dUeV . (3.301)

4. Normalisation of the energy with respect to the mean energy ŪeV , which
simplifies the integration of (3.301)
Setting:

U ≡ 3

2

UeV

ŪeV
, Ui ≡

3

2

Ei
ŪeV

, (3.302)
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then (3.301) can be replaced by (Appendix XVII):

〈νi〉 =
(
4

3

)3/2√
e

meπ
ai0 p0 Ū

3/2
eV

∞∫

Ui

(U − Ui)U exp(−U) dU . (3.303)

Integration by parts of (3.303) is easily achieved and, when returning to
the initial quantities, it yields:

〈νi〉 = 2

(
4

3

)3/2√
e

meπ
ai0p0Ū

3/2
eV

[
3

4

Ei
ŪeV

+ 1

]
exp

(
−3

2

Ei
ŪeV

)
. (3.304)

We can therefore conclude that 〈νi〉 is highly sensitive to the value
of the mean energy ŪeV , because it appears in the argument of the
exponential term.

Charged particle balance in the discharge

We will now evaluate the RHS of equation (3.291), which describes the bal-
ance of charged particles. In a long cylindrical discharge, we know, from
(3.226), that Λ ≈ R/2.405. In addition, because μi  |μe|, and assuming
that Te 	 Ti (valid for plasmas at reduced pressure, which is the case in the
present model), we can write (from (3.281)):

Da ≈ kBTe

e
μi =

2

3
ŪeV μi , (3.305)

such that:
Da

Λ2
=

2

3
ŪeV μi

(
2.405

R

)2

(3.306)

and from (3.291):

〈νi〉 =
2

3
ŪeV μi

(
2.405

R

)2

. (3.307)

Equating expressions (3.304) and (3.307) for 〈νi〉, we can obtain a com-
pletely analytic equation for the loss-creation balance of charged particles in
the plasma.

An expression for TeV /Ei as a function of p0R

The von Engel and Steenbeck approximation

The need to find an expression which is easier to evaluate (at the time, there
were no computers) led von Engel and Steenbeck to make the approximation:
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3

4

Ei
ŪeV

	 1 (3.308)

in (3.304) (it is a fact that ŪeV  Ei, except when the pressure becomes so
low that the plasma is in the free fall regime where, in any case, the present
model is not valid). In the context of this approximation, the RHS of (3.304)
and (3.307) may be equated to give:

2

3
ŪeV μi

(2.405)2

R2
=

2

(
4

3

)3/2√
e

meπ
ai0 p0 Ū

3/2
eV

(
3

4

Ei
ŪeV

)
exp

(
−3

2

Ei
ŪeV

)
, (3.309)

and, returning to the variable Ui from (3.302), this becomes (Appendix XVII):

U−1/2
i expUi =

2

(2.405)2

√
2e

meπ
c20 p

2
0 R

2 , (3.310)

where the coefficient c0, specific for each gas, is defined by:

c20 ≡ ai0
√
Ei

μip0
. (3.311)

Note that the product μip0, because of p0, appears as a reduced mobility
relative to 0◦C and 1 torr; remember, however, that the reference values for
mobility are usually given at 0◦C and 760 torr (3.194).

Finally, we can extract the numerical value of TeV /Ei from (3.310) as a
function of c0p0R, where p0 is the dimensionless reduced “pressure” with
respect to 0◦C and 1 torr, and Ei the ionization energy threshold. The units
of c20 are (kg/coulomb)1/2 m−2 or V1/2 sm−3, while the units of c0p0R are
(V1/2 sm−1)1/2.

Exact expression

Expanding (3.304) and (3.307) in terms of the reduced ionization energy Ui

leads to an exact expression in a useful form:

expUi

3
√

2
3U

1/2
i + 4

√
3
2U

−1/2
i

=
2

(2.405)2

√
e

3meπ
c20 p

2
0 R

2 . (3.312)

The numerical evaluation of (3.312) with (3.302) defining Ui = eEi/kBTe

enables us to plot TeV /Ei as a function of c0p0R (Fig. 3.9).
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Fig. 3.9 Variation of electron temperature (normalised to the ionisation energy threshold
of the gas considered) as a function of the operating conditions (type of gas (through the

coefficient c0) and its (reduced) pressure p0, and radius R of the (long) cylindrical plasma
column, assumed to be in the ambipolar regime). The dashes indicate the range where
the application of (3.312) is no longer valid. R is in metres, and the value of c0 is that of

Tab. 3.1, with appropriate units.

Consequences

Figure 3.9 demonstrates that the electron temperature Te of a discharge,
in the ambipolar diffusion regime, depends only on the dimensions of the
vessel (radius R for a long plasma column), the type of gas (ionisation energy
threshold Ei and coefficient c0) and the pressure (expressed as a reduced
pressure p0).

Value of the coefficient c0

The value of ai0 appearing in the expression for c0 can be obtained from the
published ionisation cross-sections Pi0(UeV ) as the slope of the linear section
near the threshold. The value of the ion mobility μi in (3.307) corresponds
to the actual pressure and temperature of the gas considered; because it is
multiplied by p0 in (3.311), it takes the form of a reduced mobility at 0◦C,
1 torr, although the reference values are given at 0◦C and 1 atmosphere: it is
necessary to make the appropriate conversion. Moreover, the published values
of μi0 depend on the ratio of E/p (another scaling law); usually, the value of
μi0 used in the calculation of c0 is that extrapolated for E/p → 0.

Table 3.1 gives the values of c0 obtained for rare gases by different authors,
the most recent (1980) being that of Zakrzewski, which are our recommended
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values. The units of c0 allow us to use the graph of TeV /Ei as a function of
c0p0R in Fig. 3.9 directly, where the internal radius of the discharge R is in
metres; Ei, the ionisation threshold energy, is given in Tab. 3.2.

Table 3.1 Values of c0 obtained (chronologically from left to right) for different rare gases

(to be used with Fig. 3.9 where R is expressed in m). The units of c20 are in V1/2 C1/2 m−3 s.

Von Engel Browna Moisan Zakrzewski

Helium 4 3.93 5.3 4.68
Neon 6 5.9 9.0 7.94

Argon 40 53 48 50.1
Krypton 68 68.2
Xenon 111 113

a Brown, Chap. 14, Sect. 2.2.

Table 3.2 Energy threshold Ei (eV) of the first ionisation state of rare gas atoms.

Helium 24.58
Neon 21.56

Argon 15.756
Krypton 13.996

Xenon 12.127

Example of the calculation of TeV : for R = 2 cm and p0 = 1, we have
c0p0R = 1 for argon. From Fig. 3.9, TeV /Ei = 7.54 × 10−2 (dimensionless).
Since Ei = 15.76 eV, we obtain TeV = 1.2 eV.

Remark: The parameters of the discharge, fixed by the operator, are the
type of gas and its pressure, the dimensions of the discharge vessel and, when
applicable, the frequency of the HF field maintaining the discharge. These
constitute the operating conditions of the plasma.

3.14 Formation and nature of sheaths at the
plasma-wall interface: particle flux to the walls
and the Bohm criterion

In a non-ionised gas, the flux of particles incident on a wall, per unit area of
the surface, is equal to the random flux (Appendix I):

Γ =
1

4
nv , (3.313)



3.14 Formation and nature of sheaths at the plasma-wall interface 283

where v ≡ 〈w〉 is the mean velocity of the Maxwell-Boltzmann distribution
function. In an ionised gas, the situation is different in the vicinity of a wall
(or a probe) because the surface can be brought to a given potential by the
operator, but it can also become charged electrically due to the sole presence
of the plasma particles: in addition, these charged particles can recombine on
it (Sect. 1.8). A transition zone then forms between the plasma and the wall,
called a sheath, which we will now study. In the following, we will consider
a plasma far from LTE, such that Te 	 Ti � 0 (with a background of
stationary ions) and we will assume that there are no collisions in the sheath
that develops at the plasma-wall interface.

3.14.1 Positive wall-potential with respect to the
plasma potential: electron sheath

This case is simple, compared to that of a wall at a negative potential. The
variation of the potential is illustrated in Fig. 3.10.

Fig. 3.10 Variation of the potential φ(x), the ion density ni(x) and the electron density

ne(x) at the plasma-wall interface in the case of an electron sheath (x is the distance to the
wall, les the thickness of the electron sheath, φp the plasma potential and φ0 the potential

applied on the wall).

We can distinguish two regions: on the right part of the figure, the plasma,
characterised by its macroscopic neutrality (ne = ni), a zero space-charge
electric field and a plasma potential φp, and on the left side, a pure electron
sheath where ions, with low energy (kBTi � 0), are completely reflected
towards the plasma by the repulsive field which develops naturally at the



284 3 Hydrodynamic description of a plasma

plasma-wall interface. The boundary separating the macroscopically neutral
plasma and the electron sheath, completely free of ions, is called the sheath
boundary : departure from charge neutrality starts at this location. In the
case of a planar surface, the electron flux at the wall is equal to the flux
reaching the sheath edge (conservation of flux in the collisionless sheath), i.e
from (3.313):

Γes =
1

4
neve (3.314)

or, explicitly:

Γes = ne

(
kBTe

2πme

) 1
2

. (3.315)

An approximate value for the sheath thickness les can be deduced from
the Child-Langmuir law137, which stipulates that the current density that a
planar diode can provide is limited by the space charge due to the electrons

and varies as φ
3/2
0 , where φ0 is the potential difference between the two plates.

In the case of a plasma, the sheath thickness adjusts to the current density j
carried by the plasma, and to the potential difference φ0−φp. For an electron
sheath, the Child-Langmuir law leads to:

je = −4ε0
9

(
2e

me

) 1
2 (φ0 − φp)

3
2

l2es
, (3.316)

i.e. an electron sheath thickness:

les =
2
√
2π

1
4

3
λDe

[
e(φ0 − φp)

kBTe

] 3
4

. (3.317)

Remark: In (3.315), the electron flux to the wall is fixed by the plasma (Te

and ne): it is independent of the potential applied to the wall (planar wall).

3.14.2 Negative wall-potential with respect to the
plasma potential: ion sheath

The second case is much more complicated because, unlike the ions, electrons
have a much higher mean energy (kBTe 	 kBTi � 0). It follows, therefore,
that if the wall has a potential which attracts ions from the plasma, this

137 For a planar diode, the electron current density je that can be extracted from the

emitting surface (for example a tungsten ribbon) is given by:

je = 2.34× 10−6φ
3/2
0 /d2 (A/m2)

where d is the distance between the two plates and φ0 the corresponding potential
difference.
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potential is only partially repulsive for the electrons. However, the higher the
potential barrier to be crossed by the electrons, the less important the electron
flux collected by the walls. In the case of a Maxwell-Boltzmann distribution,
the effective electron current collected by the wall (φ0 < φp) can be written:

Γes =
1

4
neve exp

e(φ0 − φp)

kBTe
. (3.318)

It is clear, therefore, that in the case of an ion sheath, a considerable
number of electrons, depending on their energy, penetrate the ion sheath
that forms at the plasma-wall interface. This time, the boundary where the
departure from neutrality between the plasma and the wall occurs is less well
defined and extends over quite a large thickness, as is shown in Figure 3.11.
To overcome this difficulty, the transition zone can be divided in two sections,
the true ion sheath, where departure from charge neutrality occurs, and the
pre-sheath which, as the name indicates, precedes the sheath, and begins at
the point where the ions start to be accelerated by the space charge electric
field. This purely artificial division enables us to define the sheath boundary,
as the location between a region of quasi-neutrality (the pre-sheath) in which
only a small number of electrons are reflected, and a non neutral region (the
ion sheath), where the ions are in the majority.

The evolution of the potential φ(x) is governed by Poisson’s equation:

∂2φ

∂x2
=

e

ε0
(ne − ni) . (3.319)

We denote by ng, vi, and φg the plasma density, the velocity of the ions and
the potential at the sheath edge, respectively. The electron density in the
sheath is given by the Boltzmann equation (I.14):

ne(x) = ng exp

[
e(φ(x)− φg)

kBTe

]
. (3.320)

The velocity of the ions vi(x) as a function of vg, the velocity with which
they enter the sheath, can be deduced from the conservation of total energy
over the distance travelled in the sheath:

mi

2

(
v2i (x)− v2g

)
= e(φg − φ(x)) . (3.321)

The conservation of flux in the sheath can be written:

ni(x)vi(x) = ngvg . (3.322)

From (3.321), we obtain the ion density in the sheath:

ni(x) = ng

[
1− 2e(φ(x)− φg)

miv2g

]− 1
2

. (3.323)
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Fig. 3.11 Variation of the potential φ(x), the ion density ni(x) and the electron density
ne(x) at the plasma-wall interface in the case of an ion sheath (x is the distance to the

wall, lis the thickness of the ion sheath, φp the plasma potential and φ0 the potential
applied on the wall while φg and ng are the potential and plasma density at the sheath

edge, respectively).

At each point of the ion sheath, we require:

ni(x) > ne(x) , (3.324)

and this condition must be fulfilled, in particular, in the region near the
sheath edge, i.e for small values of φ(x) − φg. A second order Taylor series
expansion of (3.323) and (3.320) yields:

ni(x) = ng

[
1 +

e(φ(x)− φg)

miv2g
+

3

2

e2(φ(x)− φg)
2

(miv2g)
2

+ · · ·
]
, (3.325)

ne(x) = ng

[
1 +

e(φ(x)− φg)

kBTe
+

e2(φ(x)− φg)
2

2(kBTe)2
+ · · ·

]
. (3.326)

Since φ(x) − φg is negative, condition (3.324) implies, to first order of the
expansion:

vg ≥ vB ≡
(
kBTe

mi

) 1
2

. (3.327)
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This criterion is known as the Bohm criterion. It means that the border
between the macroscopically neutral zone (pre-sheath) and the zone where
there is departure from neutrality (sheath) is situated at the point where
the velocity of the ions, accelerated in the pre-sheath, is equal138 to the ion
acoustic velocity vB , also called the Bohm velocity . Assuming a collisionless
pre-sheath139 and applying equation (3.321) between the plasma (vi(φp) = 0)
and the sheath edge, the potential φg then becomes140:

e(φp − φg) =
1

2
mi(v

2
g) =

kBTe

2
, (3.328)

from which:

φg = φp −
kBTe

2e
. (3.329)

From (3.320) and (3.328), we can extract the ion density at the sheath edge:

ng = n exp

(
−1

2

)
(3.330)

and the value of the ion flux, ngvg = Γis, collected at the wall:

Γis = n

(
kBTe

mi

) 1
2

exp

(
−1

2

)
. (3.331)

In applying the Child-Langmuir law (3.316) to the ion current, we can
calculate the thickness of the ion sheath (assuming the space charge due to
the electrons to be negligible), i.e.:

lgi =
2

5
4

3 exp(−1
4 )

λDe

[
e(φp − φ0)

kBTe

] 3
4

. (3.332)

Remark: In most texts, the Bohm criterion is deduced from a mathematical
condition resulting from the integration of the Poisson equation (3.319), an
operation that calls for simplified boundary conditions (∂φg/∂x = 0). In the
development presented here, the Bohm criterion is defined uniquely from the
conditions at which departure from neutrality occurs.

138 For vg = vB , it is easy to verify, from the second order expansion of (3.325) and (3.326),

that the condition (3.324) is fulfilled.
139 In reality, the pre-sheath is collisional because its thickness corresponds to a fraction

of the ion mean free path in the presence of neutrals.
140 Note that the potential at the sheath edge is sufficient to repel all electrons having an
energy 1

2
mew2

x < kBTe/2.
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3.14.3 Floating potential

The floating potential corresponds to the equality of ion and electron currents
collected on a surface. This is the potential taken by an isolated surface
(dielectric or conductor) in contact with the plasma. In fact, if these surfaces
were to receive more charges of one sign or another, their potential would
increase indefinitely. In the stable regime, this potential adjusts such that
the surface collects an equal number of positive and negative charges. This
potential φf , called the floating potential , is obtained by equating (3.318) and
(3.331), i.e.:

φf − φp = −kBTe

2e

(
1 + ln

mi

2πme

)
. (3.333)

The floating potential adjusts to a negative value with respect to the
plasma potential, such that a sufficient number of electrons are repelled, to
equilibrate the ion and electron currents.

Remarks:

1. The directed energy acquired by the ions in the sheath is used in many
surface treatment processes (etching, deposition, chemical modification).
The ion bombardment energy can be increased by applying a voltage φ0,
referred to as the bias voltage, at the surface in contact with the plasma. If
φ0 = φf (ion sheath without an applied bias or natural sheath), lis � λDe.
On the other hand, if φp − φ0 	 kBTe, then lis 	 λDe.

2. From the point of view of a wave, the sheath can appear as a region of
vacuum if the electron density is sufficiently weak, such that ωpe  ω, for
then εp � 1 (3.69).

Problems

3.1. There are two main methods for depicting a plasma: the kinetic model
and the hydrodynamic model. Indicate the origin of these two models, their
relationship and their respective domain of interest. Pose the problem of
closure of the system of hydrodynamic equations and suggest how this can
be resolved; give a concrete example of closure.
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Answer

Kinetic model

This model treats, within a statistical framework, the individual motion of
particles, the micro-fields induced by the motion of the charged particles and
the collisions of particles.

The model is based on the Boltzmann equation (itself the result of integrat-
ing the Liouville equation), which describes the evolution of the single-point
velocity distribution function f1 for particles of a given species. This differ-
ential equation, which includes binary collisions between particles that are
expressed through a two-point function, f12, can be solved (assuming only
weak correlations between particles) by replacing f12 by the product of the
single-point functions f1and f2, for particles of species 1 and 2 respectively.

The Boltzmann differential equation is the basis for describing the physics
of low-density plasmas (binary interactions).

Hydrodynamic model

The continuous fluid model makes use of the average values of molecular
properties, induced fields and collisional interactions. These average values
are obtained from the velocity distribution function, the evolution of which
is described by the Boltzmann equation of the kinetic model. The hydrody-
namic model provides a good approximation for describing most of the plasma
properties, notably those concerned with the motion of charged particles, and
the characteristics of the great majority of propagating waves.

The kinetic description is more exact and more complete (although there
are only few phenomena which cannot be treated using the hydrodynamic
model), but much more mathematically demanding and more complicated to
interpret than the hydrodynamic model.

Structure of the hydrodynamic equations and need for their
closure

The hydrodynamic equations are, in principle, infinite in number, as shown
in Sect. 3.5. This series of equations, ordered according to the increasing mo-
ment of order m in wm, lead to a set of equations of increasing tensor order
m: thus the continuity equation (moment of order zero in w0) is a zeroth
order tensor, or scalar equation; the momentum transport equation (moment
w1) is a first order tensor equation, while the kinetic pressure equation (mo-
ment w2) is a second order tensor equation (see Appendix VII for more on
tensors). Each of these equations contains a variable, whose variation is de-
scribed by the hydrodynamic equation of the next order moment, and thus
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this variable is a tensor of one order higher than that of the equation being
considered. However, since this higher order tensor appears under a diver-
gence operator in the equation under consideration, the tensor order of the
equation itself is preserved. This is the case of the velocity v (a vector, i.e. a
first-order tensor) that appears in the continuity equation, which is a zeroth
order tensor equation: the quantity v actually appears in the term ∇ · nv,
which is of zeroth order. In terms of tensor formalism, this corresponds to a
two-index contraction (generalized scalar product) between the components
of the gradient operator (a vector) and the corresponding ones of the velocity
vector, yielding a scalar (more details are given in Appendix VII).

Taking account of the underlying elements of the physical problem we are
treating, we generally retain only the first two or three hydrodynamic equa-
tions. We must make sure, therefore, that the last equation considered does
not include a variable depending on the next order moment equation. This
process, referred to as closure of the system, is particularly well illustrated
in the limit cases of the warm plasma and cold plasma approximations. Con-
sider the hydrodynamic equation for the second order moment (of tensor
order unity), which contains the term ∇ ·Ψ , where Ψ is the kinetic pressure
tensor, a 2nd order tensor. This term, representing the contraction of Ψ with
the divergence operator, is of order 1. In the warm plasma approximation,
∇ ·Ψ is replaced by ∇pα, where pα is the (scalar) kinetic pressure of particles
of species α: ∇pα is a first order tensor, and the link with the moment w2

describing the variation of Ψ is cut. We can also neglect all thermal motion
Tα = 0 by setting either Ψ = 0 directly, or pα = 0; this is the cold plasma ap-
proximation. In both these approximations, we only need to retain the first
two hydrodynamic equations, the continuity equation and the momentum
transport equation.

3.2. Consider the two following hydrodynamic equations:

mev̇e = −eE −meν(ve − vi) , (3.334)

miv̇i = eE −meν(vi − ve) , (3.335)

where me and mi are the mass of the electrons and ions respectively, ve and
vi their respective velocities and ν, the collision frequency for momentum
transfer, assumed constant.

a) For the case of a cold plasma, show that, for a periodic electric field
E = E0e

−iωt, the total current density, can be written in the form:

J =
ne2E

meν

1 +me/mi

(1 +me/mi)− i(ω/ν)
, (3.336)

where n = ne = ni = n represents the density of the charged particles and
of the plasma.
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b) Calculate the relative permittivity of the medium and obtain approxi-
mations corresponding to the cases where me/mi  1, and then for
me/mi  1 with the particular case ν/ω  1; draw conclusions.

c) Can you justify the origin and the form of the collision term in (3.334)
and (3.335)?

Answer

a) In a cold plasma subjected to a periodic electric field, we assume that the
particle fluid velocity is purely periodic such that (2.28) ve = v0ee

−iωt and
vi = v0i e

−iωt. Taking this into account, and adding (3.334) and (3.335),
we obtain:

− iω(meve +mivi) = 0 , (3.337)

so that, for ω �= 0:

ve = −mi

me
vi . (3.338)

Substituting (3.338) in (3.334), we can eliminate one of the two charged
particle velocities, which, in this case, leads to:

miiωvi = −eE + vi(miν +meν) , (3.339)

from which:

vi = − eE

miiω −miν −meν
=

eE

miν

[
1 +

me

mi
− iω

ν

] . (3.340)

Substituting (3.338) into (3.335) this time, we find:

ve = − eE

meν

[
1 +

me

mi
− iω

ν

] . (3.341)

The total current density can therefore be written:

J ≡ −neve + nevi =
ne2E

ν

[
1 +

me

mi
− iω

ν

]−1(
1

me
+

1

mi

)
(3.342)

and:

J =
ne2E

meν

1 +me/mi

1 +me/mi − iω/ν
. (3.343)

b) From (3.343), by identification from J = σE, we can extract the total
conductivity:
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σ =
ne2

meν

1 +me/mi

1 +me/mi − iω/ν
. (3.344)

Knowing that the expression for the relative permittivity in vacuum of a
fluid of charged particles in a field E0 e

−iωt is given by:

εp = 1 +
σ

iωε0
, (2.40)

we obtain from (3.344):

εp = 1−
ω2
pe

ων

1 +me/mi

i(1 +me/mi − iω/ν)
, (3.345)

where we have set ne2/meε0 = ω2
pe. Moreover, since ω2

pe/ω
2
pi = mi/me,

this becomes:

εp = 1−
ω2
pe

ων

1 + ω2
pi/ω

2
pe

ω/ν + i(1 + ω2
pi/ω

2
pe)

, (3.346)

which can be decomposed into its real and imaginary parts, i.e. εp = εr+iεi.

Interesting approximations:

1. For me/mi  1 (ω2
pi/ω

2
pe � 0), from (3.346):

εp = 1−
ω2
pe

ων

1

ω/ν + i
= 1−

ω2
pe

ω(ω + iν)
, (3.347)

which is equivalent to (2.41) for the case where the field E varies
as e−iωt.

2. For me/mi  1 and ν/ω  1, from (3.347):

εp = 1−
ω2
pe

ω2
, (3.348)

i.e. (2.42), which is purely real, in contrast to (3.347)

c) In (3.334) and (3.335), only the relative velocity of the fluids of electrons
and ions, ve−vi, appears. This means that only electron-ion collisions are
taken into account: there are no collisions with neutral atoms, which are
in effect neglected.
Consider the collisional term (3.121) from the momentum transport equa-
tion:

Pα = −
∑

β 
=α

ναβnαμαβ(vα − vβ) = −
∑

β 
=α

Pαβ . (3.349)

In the case where the particles α are electrons and the particles β are
ions, the reduced mass μαβ is approximately mα (me/mi  1). Setting
ni = ne = n, then νei = νie = ν and we can then write (3.349), for
electron-ion collisions:
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Pei = −νnme(ve − vi) . (3.350)

Since Pei = −P ie (3.127):

P ie = −νnme(vi − ve) , (3.351)

which are the collisional terms of (3.334) and (3.335) respectively. Equa-
tions (3.334) and (3.335) are, in fact, the momentum transport equations
for electrons and ions, respectively, in which the convective term and the
term containing ∇pα have been neglected. The density n, which appears
explicitly in these equations (for example (3.118)), is a common factor that
can be cancelled out.

3.3. Consider an electron fluid, subject to a static magnetic field B and in
which there is a pressure gradient ∇p.

a) Show that this results in a current density J , perpendicular to the field
B, given by:

J =
B ∧∇p

B2
. (3.352)

b) Consider the case of a cylindrical plasma subjected to a magnetic field
directed along the axis of the cylinder (the z axis), which is uniform in this
direction and axially symmetric. For a pressure gradient directed radially
towards the axis of the cylinder, show that:

B(r)−B(a) = μ0

a∫

r

1

B(r′)

dp

dr′
dr′ , (3.353)

where a is the plasma radius. To do this, make use of the Maxwell equation
∇ ∧B = μoJ + μ0ε0∂E/∂t, where ∂E/∂t = 0 in the present case.

c) Show that (3.353) is equivalent to:

B2(r)

2μ0
+ p(r) = C1 , (3.354)

where C1 is a constant with respect to r.

Answer

a) The Lorentz model for plasma electrons (Sect. 3.7) leads to the momentum
transport equations for the fluid of electrons, with velocity ve and density
ne, of the form:
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me
∂ve

∂t
= F ≡ qe[E + ve ∧B]− ∇pe

ne
−meνve . (3.170)

This equation shows that the term −∇pe/ne is a component of the total
force F acting on the fluid, thus it has the nature of a force.
Furthermore, we have seen, in the context of the study of particle tra-
jectories, that the expression for the drift velocity wD due to the ac-
tion of a force FD, acting on a charged particle subjected to a field B is
(Appendix XII):

wD =
FD ∧B

qB2
. (XII.2)

Using this equation to describe the drift velocity vD of the electron fluid
subject to a force FD = −∇pe/ne, we obtain:

vD = −∇pe ∧B

neqeB2
=

B ∧∇pe
neqeB2

. (3.355)

The drift current density, J ≡ nqvD, is then given by the equation:

J ≡ neqevD =
B ∧∇pe

B2
, (3.352)

where the drift velocity responsible for J is perpendicular to B and ∇pe.
b) The non uniformity of the field B in the direction perpendicular to it is

such that the Bz component depends on the different components perpen-
dicular to the axis, as was shown in Sect. 2.2.3. This leads us to consider
the following Maxwell equation:

∇ ∧H = J + ε0
∂E

∂t
, (3.356)

which, written in terms of B instead of H, gives (μ0ε0 = 1/c2):

∇ ∧B = μ0J +
1

c2
∂E

∂t
. (3.357)

Since we are not in the framework of individual trajectories, the RHS of
this equation is, in general, non zero. In the present case, since we are
dealing with a constant field B, (3.352) implies that J is constant and, so
is E since J = σE. Therefore, ∂E/∂t = 0 and only μ0J remains on the
RHS of (3.357).
Expanding the different components of ∇ ∧ B in cylindrical coordinates
(Appendix XX):

1

r

(
∂Bz

∂ϕ
− ∂(rBϕ)

∂z

)
êr +

(
∂Br

∂z
− ∂Bz

∂r

)
êϕ +

1

r

(
∂(rBϕ)

∂r
− ∂Br

∂ϕ

)
êz ,

(3.358)
since B is directed along êz, the Bϕ and Br components are zero (Sect.
2.2.3). Furthermore, from axial symmetry, ∂Bz/∂ϕ = 0, so that finally
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there remains only:

∇ ∧B = êϕ

(
−∂Bz

∂r

)
. (3.359)

Then, multiplying (3.352) by μ0, we obtain:

μ0J = μ0
B ∧∇p

B2
. (3.360)

From (3.357), with ∂E/∂t = 0, and (3.360):

∇ ∧B =
μ0B ∧∇p

B2
(3.361)

and, after the scalar multiplication of (3.359) by êϕ, we find:

− ∂Bz

∂r
=

(
μ0B ∧∇p

B2

)
· êϕ ≡ μ0Bz

B2
z

dp

dr
, (3.362)

since ∇p = −êrdp/dr in this b) section.
Integrating (3.362) over r′ from a to r indeed reproduces (3.353):

[Bz(r)−Bz(a)] =

r∫

a

μ0

Bz

dp

dr′
dr′ . (3.353)

c) Equation (3.354) can be validated by differentiating it, which leads to:

Bz

μ0

dBz

dr
= −dp

dr
, (3.363)

which after rearrangement leads to (3.362) and to (3.353) by integration
from a to r.

3.4. Assume a Maxwell-Boltzmann velocity distribution function for the elec-
trons, modified in the following way:

f(w) = ne

(
me

2πkBT⊥

)(
me

2πkBT‖

)1/2

exp

{
− me

2kB

[
w2

x + w2
y

T⊥
+

w2
z

T‖

]}
,

(3.364)

where w = (wx, wy, wz) is the velocity vector for individual electrons of
density ne and of mass me, and kB is Boltzmann’s constant.

a) Verify that, in this equation, ne represents the electron density, which in
the present case, is assumed independent of time and position.

b) Calculate the components of the kinetic pressure tensor:

Ψ ≡ neme〈uu〉 (3.365)
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in the case of a separable distribution function, where u = w−v with v(r)
is the mean electron velocity, and uu represents the tensor product of the
individual velocities of the electrons, which are strictly thermal (random)
in nature.

c) Give a physical significance to (3.364) by suggesting how such a distribu-
tion might be reproduced in the laboratory.

Answer

a) Recall firstly the equations defining the hydrodynamic parameters, also
called the macroscopic parameters 〈Υ (r, t)〉:

〈Υ (r, t)〉 ≡ 1

ne(r, t)

∫

w

Υ (r,w, t)f(r,w, t) d3w , (3.39)

where the brackets 〈 〉 represent the mean value of the microscopic property
Υ (r,w, t) taken over the distribution function f(w, r, t). By setting Υ = 1,
we therefore obtain the expression for the density:

ne(r, t) =

∫

w

f(r,w, t) d3w . (3.38)

Remember that the function f(r,w, t) is separable if we can express it in
the following form (Sect. 3.3):

f(r,w, t) = n(r, t)g(w) . (3.366)

The form of (3.364) indicates that the function f has been separated and
we know, in addition, from our assumption in the present case, that ne

is independent of r. Therefore, we need to verify that the function g(w),
defined by f(w)/ne, integrated over all velocities, i.e.:

∫

w

(
me

2πkBT⊥

)(
me

2πkBT‖

) 1
2

exp

{
− me

2kB

[
w2

x + w2
y

T⊥
+

w2
z

T‖

]}
d3w

(3.367)
is really equal to 1 (normalisation condition: (3.45)).
We can evaluate the term:

∞∫

−∞

exp

{
−
[
me

2kB

w2
x

T⊥

]}
dwx (3.368)

by setting:
mew

2
x

2kBT⊥
= x2 , (3.369)

such that:
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2mewxdwx

2kBT⊥
= 2xdx (3.370)

and:

dwx =
x

(me/2kBT⊥)
1
2

1

(me/2kBT⊥)
1
2

dx

wx

=
xdx

(me/2kBT⊥)
1
2 x

. (3.371)

The term (3.368) can then be rewritten:

(
2kBT⊥
me

) 1
2

∞∫

−∞

exp(−x2) dx = 2

(
2kBT⊥
me

) 1
2

∞∫

0

exp(−x2) dx . (3.372)

Knowing that (Appendix XX):

∞∫

0

exp(−x2) dx =
1

2

√
π , (3.373)

then (3.372) becomes:

(
2kBT⊥
me

) 1
2

∞∫

−∞

exp(−x2) dx = 2

(
2kBT⊥
me

) 1
2
√
π

2
. (3.374)

In a similar fashion, we find that:

∞∫

−∞

exp

{
− me

2kB

w2
y

T⊥

}
dwy =

√
π

(
2kBT⊥
me

) 1
2

, (3.375)

∞∫

−∞

exp

{
− me

2kB

w2
z

T‖

}
dwz =

√
π

(
2kBT‖

me

) 1
2

, (3.376)

such that the expression (3.367) is indeed unity.
b) In the presence of a directed electron velocity v, it is necessary to con-

sider a Maxwell-Boltzmann distribution centred about this velocity v
(Appendix I). In this case, the distribution function can be written:

f(w) = ne

(
me

2πkBT⊥

)(
me

2πkbT‖

) 1
2

× exp

{
− me

2kB

[
(wx − vx)

2 + (wy − vy)
2

T⊥
+

(wz − vz)
2

T‖

]}
. (3.377)
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By introducing the change of variable u = w − v, we can write for the
component i = x, y, z:

ui = wi − vi , (3.378)

and since the fluid velocity is constant:

dui = dwi (3.379)

from which:

f(w) = ne

(
me

2πkBT⊥

)(
me

2πkbT‖

) 1
2

exp

{
− me

2kB

[
u2
x + u2

y

T⊥
+

u2
z

T‖

]}
.

(3.380)

Firstly consider the off diagonal components of Ψ , for example Ψxy. Fol-
lowing (3.365), this term can be written:

Ψxy = me

∫
uxuyf(r,w, t)d3w , (3.381)

then, taking account of the fact that the function f(r,w, t) is separable
(3.364):

Ψxy = neme

∫
uxuyf(w)d3w . (3.382)

After the change of variable w = u+ v:

Ψxy = neme

∫
uxuyf(u)d

3u , (3.383)

Ψxy = neme

(
me

2πkBT⊥

)(
me

2πkBT‖

) 1
2

(3.384)

×
∞∫

−∞

∞∫

−∞

∞∫

−∞

exp

{
− me

2kB

[
u2
x + u2

y

T⊥
+

u2
z

T‖

]}
uxuy duxduyduz .

This integral is zero, because the integrand is odd in ux and uy, and that
these velocity values extend from −∞ to +∞. Similarly, this is true of all
the other off diagonal elements.
For the diagonal elements of the matrix representing the tensor Ψ , con-
sider, for example:

Ψxx = nme

(
me

2πkBT⊥

)(
me

2πkBT‖

) 1
2

(3.385)

×
∞∫

−∞

∞∫

−∞

∞∫

−∞

exp

{
− me

2kB

[
u2
x + u2

y

T⊥
+

u2
z

T‖

]}
u2
x duxduyduz .
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The calculation of the term:

∞∫

−∞

exp

[
− meu

2
x

2kBT⊥

]
u2
x dux (3.386)

can be performed in an analogous fashion to that of (3.368) by setting
meu

2
x/2kBT⊥ = x2, such that this term can be rewritten:

2

(
2kBT⊥
me

) 1
2

∞∫

0

(
2kBT⊥
me

)
exp(−x2)x2 dx

= 2

(
2kBT⊥
me

) 3
2

∞∫

0

exp(−x2)x2 dx . (3.387)

From Appendix XX:

∞∫

0

exp(−x2)x2 dx =

√
π

4

such that the expression (3.386) becomes:

∞∫

−∞

exp

[
− me

2kBT⊥
u2
x

]
u2
x dux = 2

(
2kBT⊥
me

) 3
2
√
π

4
, (3.388)

and finally, from (3.385) and taking account of (3.375) and (3.376):

Ψxx = neme

(
me

2πkBT⊥

)(
me

2πkBT‖

) 1
2

2

(
2kBT⊥
me

) 3
2
√
π

4

×
(
2kBT⊥
me

) 1
2 √

π

︸ ︷︷ ︸
after integration

over uy

×
(
2kBT‖

me

) 1
2 √

π

︸ ︷︷ ︸
after integration

over uz

(3.389)

and:

Ψxx =
neme

2

2kBT⊥
me

= nekBT⊥ . (3.390)

We then find for the other two diagonal terms:

〈Ψyy〉 = nekBT⊥ (3.391)

and:
〈Ψzz〉 = nekBT‖ (3.392)
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such that we can write (Appendix VII):

Ψ = nkBT⊥(êxêx + êyêy) + nkBT‖(êz êz) . (3.393)

c) We know that, for electrons satisfying a Maxwell-Boltzmann distribution,
characterised by a temperature Te, the scalar pressure along each axis of
the coordinate system is given by:

px = py = pz = p = nekBTe . (3.394)

In the present case, the velocity distribution is anisotropic, since the mean
energy along the z axis is described by a temperature T‖ that is different
from T⊥, along x and y. Such anisotropy can be obtained with the aid of
a magnetic field.
In a long cylindrical vessel (L 	 R), the radial diffusion is less important
if we apply a homogeneous, axial magnetic field (along z) (Sect. 3.8). The
radial diffusion then depends on the temperature T⊥ rather than T‖, the
temperature that prevails in the absence of a magnetic field. Let us show
that T⊥ < T‖.
The diffusion coefficients, in the presence of a magnetic field, are given by
(3.197) and (3.200) respectively:

D‖ =
kBT‖

meν
, (3.395)

D⊥ =
D‖ν

2

ν2 + ω2
c

. (3.396)

Then, in analogy with (3.395), we only need to set D⊥ = kBT⊥/meν,
hence:

T⊥ = T‖
ν2

ν2 + ω2
c

, (3.397)

such that T⊥ � T‖, provided that ωce � ν.

3.5. Consider a plasma immersed in a uniform magnetic field directed along
the z axis (Cartesian coordinates), B = êzB, and subject to a uniform HF
electric field E0e

iωt, in an arbitrary direction. The plasma is cold and colli-
sionless, and the field B is off cyclotron-resonance conditions.

a) Calculate the dielectric permittivity tensor εp (relative to vacuum) of the
electron fluid, by introducing the electron plasma and cyclotron frequencies
ωpe and ωce.

b) Calculate the tensor εp describing both the electron and ion (singly ionised)
fluids introducing explicitly the ion plasma and cyclotron frequencies ωpi

and ωci.
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Answer

a) We know that the permittivity tensor εp is related to the conductivity

tensor σ by the 2nd order tensor relation:

εp = I +
σ

iωε0
, (3.398)

where I is the unit tensor (unit matrix). The conductivity σ can be ob-
tained from the current density J = nqv, since J = σ ·E.
We can describe the motion of the electron fluid by assuming that its
motion is that of an individual electron (see (2.6)–(2.8)), thereby merely
using the velocity components of an individual electron, i.e.:

iωvx = − e

me
Ex − ωcevy , (3.399)

iωvy = − e

me
Ey + ωcevx , (3.400)

iωvz = − e

me
Ez . (3.401)

Eliminating vy from (3.399) by substituting into it its value taken from
(3.400), then successively:

iωvx = − e

me
Ex − ωce

iω

[
− e

me
Ey + ωcevx

]
, (3.402)

vx = − e

meiω
Ex − ωce

ω2

e

me
Ey +

ω2
ce

ω2
vx , (3.403)

vx =

− e

me

[
− iω

ω2
Ex +

ωce

ω2
Ey

]

1− ω2
ce

ω2

=

e

me

[
iωEx − ωceEy

ω2

]

ω2 − ω2
ce

ω2

, (3.404)

from which, finally:

vx =
e

me

[
iωEx − ωceEy

ω2 − ω2
ce

]
. (3.405)

Similarly, we would find:

vy =
e

me

[
iωEy + ωceEx

ω2 − ω2
ce

]
(3.406)

and:

vz =
i

ω

e

me
Ez . (3.407)
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The component Jx of the electron current (2.122) can now be expressed as:

Jx ≡ −neevx = −nee
2

me

[
iωEx − ωceEy

ω2 − ω2
ce

]
= σxxEx + σxyEy + σxzEz .

(3.408)
The component σxx of the tensor σ is the one which, in the expansion
of Jx ≡ −neevx, comprises the Ex component of the electric field, hence,
from (3.405) and (3.408):

σxx = −ne2

me

[
iω

ω2 − ω2
ce

]
, (3.409)

then the corresponding component of the permittivity (3.398) is given by:

εpxx = 1 +
σxx

iωε0
= 1− nee

2

meε0

1

ω2 − ω2
ce

= 1−
ω2
pe

ω2 − ω2
ce

. (3.410)

For the σxy component (the term in the expansion of Jx containing Ey),
we obtain, from (3.405) and (3.408):

σxy =
nee

2

me

[
ωce

ω2 − ω2
ce

]
= ε0

[
ω2
pe ωce

ω2 − ω2
ce

]
(3.411)

and from (3.398), remembering that the off-diagonal elements of I are
zero:

εpxy = −i

[
ωce

ω

ω2
pe

ω2 − ω2
ce

]
. (3.412)

Similarly we would find that εpyy = εpxx and εpyx = −εpxy. For εpzz, since
from (3.407):

σzz = − ine2

ωme
, (3.413)

then:

εpzz = 1−
ω2
pe

ω2
. (3.414)

The matrix representing εp has the form:

εp =

⎛

⎜⎝
εpxx εpxy 0

−εpxy εpxx 0

0 0 εpzz

⎞

⎟⎠ . (3.415)

This symmetry is quite general ( Onsager relations) for a plasma subjected
to a uniform field B, directed axially (along z). By substituting the values
of the components of εp in (3.415), we obtain:



Problems 303

εp =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1−
ω2
pe

ω2 − ω2
ce

−i

[
ωce

ω

ω2
pe

ω2 − ω2
ce

]
0

+i

[
ωce

ω

ω2
pe

ω2 − ω2
ce

]
1−

ω2
pe

ω2 − ω2
ce

0

0 0 1−
ω2
pe

ω2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (3.416)

where we have introduced the electron and cyclotron frequencies ωpe and
ωce, respectively.

b) To calculate the combined electrical conductivity from both electrons and
ions, σtotal, we simply need to remember that the ion and electron currents
are additive. In the equations for the components of the current density,
the charge appears in the form e2 (see (3.408), for example) so that the
two currents actually add. Then, with ne = ni = n:

σxx = −ne2

me

[
iω

ω2 − ω2
ce

]
− ne2

mi

[
iω

ω2 − ω2
ci

]
, (3.417)

where ωci = −eB/mi, so that finally:

εpxx = 1−
ω2
pe

ω2 − ω2
ce

−
ω2
pi

ω2 − ω2
ci

. (3.418)

3.6. From the equation for conservation of particles, for a stationary plasma
containing only one kind of ions, we have ∇ · Γ e = ∇ · Γ i, where Γ e and
Γ i denote the flux of electrons and ions respectively. Consider the case of a
discharge in the ambipolar regime with no applied magnetic field:

a) Show that:
∇ ∧ Γ e = μe∇φ ∧∇n (3.419)

and:
∇ ∧ Γ i = μi∇φ ∧∇n , (3.420)

where μe and μi denote the electron and ion mobilities, ne and ni the
electron and ion densities (ne = ni = n) and φ is the potential induced by
the space charge.

b) Assuming that
∇φ ∧∇n = 0 , (3.421)

show that the flux difference Γ e − Γ i is independent of position.
c) Consider the particular case in which the particle density satisfies a Boltz-

mann distribution:

n(r) = n0 exp

[
qφ(r)

kBT

]
, (3.422)

where the temperature is assumed to be independent of r. Show that the
assumption in (3.421) is then valid.
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Answer

a) For ambipolar diffusion, we know that the electron particle flux can be
written as (3.267):

Γ e = μeneED −De∇ne . (3.423)

Taking the curl of this equation, we obtain:

∇ ∧ Γ e = μe∇ ∧ (neED)−De∇ ∧∇ne , (3.424)

where we have taken account of the assumption, implicit in (3.423), that
De is independent of position. The termDe∇∧∇n is, in fact, zero, because
the curl of a gradient is always zero (Appendix XX). The term∇∧(neED),
with ED = −∇φ(r), can be expanded to:

∇ ∧ Γ e = μe(ne∇ ∧ED +∇ne ∧ED)

= −μe(ne∇ ∧∇φ+∇ne ∧∇φ) . (3.425)

Finally, since the term ∇ ∧∇φ is also zero, this becomes:

∇ ∧ Γ e = −μe∇ne ∧∇φ , (3.426)

and since ne = ni = n, we obtain:

∇ ∧ Γ e = μe∇φ ∧∇n . (3.419)

Similarly for the ions, we have:

∇ ∧ Γ i = μi∇φ ∧∇n . (3.420)

b) Returning to assumption (3.421), Eqs. (3.419) and (3.420) give:

∇ ∧ Γ e = ∇ ∧ Γ i = 0 (3.427)

from which:
∇ ∧ (Γ e − Γ i) = 0 (3.428)

therefore, Γe − Γi = constant (spatially).

c) From (3.422):

∇n(r) = ∇φ

(
q

kBT

)
n(r) , (3.429)

so that:

∇φ ∧∇n =

[(
q

kBT

)
n(r)

]
∇φ ∧∇φ = 0 , (3.430)

from the definition of the vector product.

3.7. Consider a cold plasma, represented by an electron fluid, subjected to a
periodic electric field E = E0e

iωt. The momentum equation for the fluid is
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given by:

me
dv

dt
= −eE −meνv , (3.431)

where me is the mass of the electron, e its charge in absolute units and v its
mean velocity, and ν is the mean collision frequency for momentum transfer;
the quantities v and E are expressed as complex quantities, but E0, the
amplitude of the field, is real.

a) Show that the mean velocity of this fluid, and its displacement in the
periodic field, are given respectively (within a constant) by:

v = −eE0

me

1

ν + iω
eiωt , (3.432)

r =
eE0

me

1

ω(ω − iν)
eiωt . (3.433)

b) Find the expression for the complex electrical conductivity of this fluid.
c) Show that the real part of (3.432) can be written in the form:

v(t) = −eE0

m

1

(ν2 + ω2)
1
2

cos(ωt+ ϕ) , (3.434)

where:
ϕ = arctan

(
−ω

ν

)
. (3.435)

d) Calculate Ēkin, the mean kinetic energy over a period of the field E.
e) Finally, show that θa, the average power absorbed per electron from the

field E, is given by:

θa =
1

2

e2E2
0

me

ν

ν2 + ω2
= 2νĒkin . (3.436)

Answer

a) The cold plasma approximation (Sect. 3.6) assumes that the electrons only
move under the influence of the field E = E0e

iωt, such that:

v = v0e
iωt . (3.437)

The solution to (3.431) is trivial, since (3.437) substituted into (3.431)
gives:

(mev0iω)e
iωt = −eE0e

iωt −meνv , (3.438)
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i.e.:

v = −eE0

me

1

ν + iω
eiωt . (3.432)

Integrating (3.432), we have, to within a constant:

r = − eE0

iωme

1

ν + iω
eiωt =

eE0

meω

1

ω − iν
eiωt . (3.433)

b) By definition, the current density is J = nqv = σE where q = −e for
electrons. From (3.432), we find directly:

J =
ne2E0

me

1

ν + iω
eiωt , (3.439)

where the expression for the complex conductivity is:

σ =
ne2

me

1

ν + iω
. (3.440)

c) Multiplying the numerator and denominator of (3.432) by (ν − iω), we
obtain:

v = −eE0

me

ν − iω

ν2 + ω2
eiωt . (3.441)

Since a complex number z can be written in the form:

z = |z|eiϕ = |z|(cosϕ+ i sinϕ) , (3.442)

this suggests that, in order to demonstrate the validity of (3.434), we

should write the term (ν − iω)/(ν2 + ω2)
1
2 in the form:

1

(ν2 + ω2)
1
2

[
ν

(ν2 + ω2)
1
2

− iω

(ν2 + ω2)
1
2

]
, (3.443)

where, by identification from (3.442), cosϕ = ν/(ν2 + ω2)
1
2 and sinϕ =

−ω/(ν2 + ω2)
1
2 , so that v can be re-written:

v = −eE0

m

1

(ν2 + ω2)
1
2

ei(ϕ+ωt) , (3.444)

where:
ϕ = arctan

(
−ω

ν

)
. (3.445)

The expression for the real part of v is then:

�(v) = − eE0

me(ν2 + ω2)
1
2

cos(ϕ+ ωt) . (3.446)
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Remark: Eqs. (3.445) and (3.446) show that, in the absence of collisions
(ν = 0), v and E are π/2 out of phase. This de-phasing tends to zero when
ν is large with respect to ω, i.e. ω/ν → 0.

d) The mean kinetic energy Ēkin, in the case where the velocity is varying
periodically in time (3.437), can be calculated, using complex algebra, in
the form:

Ēkin ≡ 1

2
mev2 =

me

4
�(vv∗) = 1

4
mevv

∗ . (3.447)

From (3.432), this then becomes:

Ēkin =
me

4

[
e2E2

0

m2
e

1

ν2 + ω2

]
=

1

4

e2E2
0

me

[
1

ν2 + ω2

]
. (3.448)

e) Since the instant power is F · v, the average power transferred from the
field E to an electron is (2.33):

θa =
1

2
�(−eE · v∗) =

1

2
�
[
e2E2

0

me

1

ν − iω

]
=

1

2

e2E2
0

me

ν

ν2 + ω2
, (3.449)

and comparing (3.449) with (3.448), we thus have:

θa = 2νĒcin . (3.436)

Remark: Equation (3.436) is only valid for ν = constant with respect to v.

3.8. Consider the conductivity tensor σ of the plasma electrons. Show, for the
case where E is a periodic electric field, that this field transfers an energy per
unit volume to the electrons, averaged over a period of oscillation, given by:

W̄ =

[
1

2
�(σ) ·E0

]
·E0 , (3.450)

where �(σ) denotes the real part of σ and E0 is the amplitude of the field.

Answer

The work per unit time and per electron in the field E is F · v, where
F = −eE. The average value of the work over a period of the alternating
field E = E0e

iωt is (2.33):

θa = −�
2
[eE · v∗] . (3.451)

The average energy transferred to the electrons per unit volume is then:

W̄ = −�
2
[eE · v∗]ne , (3.452)

where ne is the electron density.
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Remembering that, by definition:

J = −neev , (3.453)

we can express (3.452) in the form:

W̄ =
1

2
�[E · J∗] =

1

4
[E · J∗ +E∗ · J ] (3.454)

since the sum of two conjugated complex quantities is real. Then:

W̄ =
1

4
[E · σ∗ ·E∗ +E∗ · σ ·E] =

1

4
[E · σ∗ ·E∗ +E · σ ·E∗]

=
1

4
[E · (σ∗ + σ) ·E∗] =

1

4
[E · 2�(σ) ·E∗] . (3.455)

Since E = E0e
iωt, E∗ = E0e

−iωt, then:

W̄ =

[
1

2
�(σ) ·E0

]
·E0 . (3.450)

Note in (3.450) that there are two scalar products in a row: starting from
a 2nd order tensor, this leads to W , a scalar. This operation is known as a
double contraction (see Appendix VII).

3.9. Consider a long, stationary, cylindrical plasma column in the perfect
ambipolar diffusion regime, containing positive (singly ionised) and negative
ions, with local densities ni(r) and n−(r) respectively, and electrons with
density ne(r).

a) Show that the diffusion fluxes of the three charged species are linked by
the relation:

neve + n−v− = nivi . (3.456)

b) Show the physical significance of the assumption of proportionality which
is, in the present case:

∇ni

ni
=

∇n−
n−

=
∇ne

ne
. (3.457)

Is there a link between this relationship and particle charge neutrality?
Draw the radial profiles for the case of a long plasma column with zero
species densities at the wall. This assumes that there is no ion sheath at
the wall.

c) Show that the positive ion ambipolar diffusion coefficient is given by:

Dai =
ne [Diμe −Deμi] + n− [Diμ− −D−μi]

μene + μ−n− − μini
, (3.458)
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where Dk is the free diffusion coefficient and μk is the mobility of the
various particles (k = e, i,−).

Answer

a) In the stationary state, the continuity equation for each type of particle is
written ((3.243)–(3.234)):

∇ · (neve) = Se , (3.459)

∇ · (nivi) = Si , (3.460)

∇ · (n−v−) = S− , (3.461)

where the Sk are source terms representing the net number of charged
particles of species k (k = e, i,−) created per second, per unit volume.
The ions and electrons are generally created by electron-neutral collisions
with atoms (molecules) and negative ions are created by attachment of
an electron to a neutral particle (Sect. 1.7.1). Whatever the mechanisms
for creation (and for volume losses, if they occur), the source terms are
related such that there is an equal number of negative and positive charges
created, i.e. that Se + S− = Si, so from (3.459) and (3.461):

neve + n−v− = nivi . (3.456)

b) The assumption of proportionality (Sect. 3.10) in the present case implies:

ni = C1ne , (3.462)

ni = C2n− (3.463)

at each point r, the constants Cj being independent of r. It then follows
that:

∇ni

ni
=

∇ne

ne
=

∇n−
n−

. (3.457)

The radial density profile is the same for the three charged species: in fact,
each of the terms ∇nk/nk in (3.457) is equal to the same constant C, and
we thus have three equations in the form ∇nk = Cnk, with the same eigen
value C (Sect. 3.9).
In a long cylindrical column with zero densities at the wall, the density
profiles can be approximated by the following curves:
In addition, macroscopic charge neutrality requires:

ni = ne + n− , (3.464)

and from (3.462), (3.463) and (3.464) we have:

ni =
ni

C1
+

ni

C2
(3.465)
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Fig. 3.12 Approximate

profile of the density of
charged species in the

presence of positive and
negative ions, assuming

nk(R) = 0.

from which:

1 =
C2 + C1

C2C1
, (3.466)

which shows that the assumption of proportionality is not sufficient to
calculate the distribution of negative charges into electrons and negative
ions. At each point r, the absolute values of the three densities, which are
indeterminate in the present problem, must satisfy macroscopic neutrality.

Remark: Remember that the previous results have been obtained for the
case of perfect ambipolar diffusion and the assumption that the density of
each species at the wall is zero (no ion sheath). In the case where an ion
sheath is established, only the most energetic electrons can escape from the
plasma to the walls. In contrast, under these conditions (kBT− = kBTi 
kBTe), the negative ions are confined in the plasma.

c) From (3.456), we know that the positive ion flux must be equal to the
total electron and negative ion flux, from which, if the common value is
designated Γ (3.252):

Γ ≡ nivi = −Di∇ni + μiniED , (3.467)

Γ = −De∇ne + μeneED −D−∇n− + μ−n−ED , (3.468)

where ED is the space-charge ambipolar field.
After multiplying (3.467) by μene +μ−n− and (3.468) by −μini and then
adding these two expressions, we obtain:

Γ (μene + μ−n− − μini) =

−Diμene∇ni −Diμ−n−∇ni +Deμini∇ne +D−μini∇n− . (3.469)

Then, making use of (3.457), we obtain from (3.469):

Γ (μene + μ−n− − μini) =

− {ne [Diμe −Deμi] + n− [Diμ− −D−μi]}∇ni (3.470)
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from which, by setting:
Γ = −Dap∇ni , (3.471)

we find the expression for Dap:

Dap =
ne[Diμe −Deμi] + n−[Diμ− −D−μi]

μene + μ−n− − μini
. (3.458)

3.10. Consider a plasma composed of electrons, neutral atoms and ions (with
a single positive charge). The electrons and ions are in the perfect ambipolar
diffusion regime and move, therefore, under the influence of the space charge
field as two fluids, each described by the corresponding Langevin equation.

a) In the framework of this description, which assumes that the collision
frequencies are independent of the particle velocities, the collisional term
for particles of type α and density nα, is given by (3.134):

Pα

nα
=
∑

β 
=α

Pαβ

nα
= −

∑

β 
=α

μαβναβ(vα − vβ) , (3.472)

where μαβ is the reduced mass of the particles of species α and β, ναβ
is the collision frequency, α, β = e, i, n, for electrons, ions and neutral
atoms). Show that, to a first approximation, this term can be reduced to:

Pe

ne
= −μenνenve , (3.473)

P i

ni
= −μinνinvi , (3.474)

for the electron and ion fluids respectively.
b) In the stationary regime, in the absence of a magnetic field, but with a

(macroscopic) electric field E, show that the existence of spatial gradients
in the density nα and temperature Tα of species α introduces a directed
velocity of the particles, that can be written in the form:

vα = μαE − Dα

nα
∇nα − DT

α

Tα
∇Tα , (3.475)

where the particle mobility is μα = qα/μαnναn, their diffusion coeffi-
cient Dα = kBTα/μαnναn and their thermal diffusion coefficientDT

α =
kBTα/μαnναn (the equality Dα = DT

α assumes that ναβ is independent of
the particle velocities), and kB is Boltzmann’s constant.

c) For the case of perfect ambipolar diffusion, calculate the value of the space
charge field ED as a function of the coefficients in (3.475).
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Answer

a) For the fluid of electrons, the collision term (3.472) can be expanded
to give:

Pe

ne
= −μenνen(ve − vn)− μeiνei(ve − vi) . (3.476)

In the perfect ambipolar diffusion regime, ions and electrons diffuse with
exactly the same velocity, such that the second term in the RHS of (3.476)
is zero. Moreover, the neutral atom fluid is not influenced by the space
charge field, and has no directed velocity (vn = 0). It follows that (3.476)
actually reduces to:

Pe

ne
= −μenνenve . (3.473)

For the fluid of ions, the expression for the collision term is:

P i

ni
= −μinνin(vi − vn)− μieνie(vi − ve) . (3.477)

For reasons already mentioned, ve − vi = 0, and vn = 0, such that the
collisional term for the ion fluid leads to:

P i

ni
= −μinνinvi . (3.474)

We can then write the collision terms for the electron and ion fluids as a
common term for the two fluids:

Pαn

nα
= −μαnναnvα , (3.478)

where α = e or i.
b) The stationary Langevin equation for particles of species α (3.134), taking

account of (3.478) and neglecting the convective term (!), can be written:

qαE =
1

nα
∇pα + μαnναnvα , (3.479)

where pα = nαkBTα. Substituting pα explicitly in (3.479), with nα and
Tα both depending on position, and after rearrangement of the terms, we
obtain:

vα =
1

μαnναn

[
qαE − kB∇Tα − kBTα

nα
∇nα

]
. (3.480)

In Sect. 3.8, we treated the case of mobility and diffusion of charged par-
ticles when ∇Tα = 0. We then found two particular solutions. All that
is needed now is to find the particular contribution to be added to this
solution (3.210) by the term ∇Tα, which, from (3.480) (with E = 0 and
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∇nα = 0, can be written:

vαT = − kBTα

μαnναn

∇Tα

Tα
= −DT

α

Tα
∇Tα . (3.481)

c) In sum, we then have:

vα = μαE − Dα

nα
∇nα − DT

α

Tα
∇Tα . (3.475)

To calculate the value of the space charge electric field (E = ED), we
follow the same procedure as in Sect. 3.8. From (3.475), the respective
electron and ion fluxes are given by:

Γ e = −De∇ne −
DT

e

Te
ne∇Te + μeneED , (3.482)

Γ i = −Di∇ni −
DT

i

Ti
ni∇Ti + μiniED . (3.483)

The congruence approximation enables us to set Γ e = Γ i = Γ , and the
assumption of proportionality, in the perfect ambipolar regime, leads to
ne = ni = n. Subtracting (3.483) from (3.482) and dividing by n gives:

− (De −Di)
∇n

n
−DT

e

∇Te

Te
+DT

i

∇Ti

Ti
+ (μe − μi)ED = 0 (3.484)

such that:

ED =
De −Di

μe − μi

∇n

n
+

DT
e

μe − μi

∇Te

Te
− DT

i

μe − μi

∇Ti

Ti
. (3.485)

3.11. To describe a long, cylindrical plasma column in the ambipolar diffusion
regime, we have used the following hydrodynamic equations:

∇ · (nvr) = νin , (3.486)

vr = −μeED − 1

n
∇(Den) , (3.487)

(vr ·∇)vr + νivr =
e

mi
ED − kBTi

mi

∇n

n
− νinvr , (3.488)

where the indices e, i and n represent the electrons, ions and neutral atoms
respectively; n = ne = ni, vr is the radially directed velocity, νi is the
ionisation frequency, μe is the absolute value of the electron mobility and
De is the electron free diffusion coefficient; νin is the ion-neutral collision
frequency for momentum transfer, mi is the mass of the ions and Ti is their
temperature. kB is Boltzmann’s constant and ED is the space charge electric
field associated with the ambipolar diffusion.
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a) Indicate what each of these equation represents and which species of par-
ticle they refer to.

b) Obtain equation (3.488) by judiciously using the hydrodynamic transport
equations.

Answer

a) From the fact that the plasma is cylindrical and assumed to be infinitely
long, the system is described in cylindrical coordinates (reduced to êr) and
the drift and diffusion phenomena in the axial direction are neglected.
Equation (3.486) is the stationary continuity equation ((3.95) and (3.96)),
describing both electrons and ions: indeed, under ambipolar diffusion,
there is macroscopic charge neutrality (n = ne = ni), such that the radial
diffusion velocity vr is the same for the electron and ion fluids, conforming
with perfect ambipolar diffusion. The term νin represents the ionisation
frequency per unit volume, for electron-neutral collisions with atoms in
the ground state (Sect 1.8).
The first term of the RHS of (3.487) describes the radial drift of the elec-
tron fluid in the ambipolar field ED. The second term comprises of the
radial diffusion of electrons, due to the gradient in n(r) and the radial
transport of energy, because the electron temperature Te(r) appears in
the expression for the coefficient De under the gradient operator. Equa-
tion (3.487) allows us to calculate vr. Note that here, μe is positive, in
contrast to our usual convention (compare with (3.210) for the sign before
μe in (3.487)).
Equation (3.488) is the stationary momentum transport equation for singly
charged ions, where the convective term ((vr ·∇)vr (3.134)) has been re-
tained. We will explain the reason for the presence of the volume ionisation
term in b) below. There are no external fields (E or B) to act on the par-
ticles, but only the ambipolar field ED.

b) To recover (3.488), return to Sect. 3.5, where the momentum transport
equation for particles of species α (3.134) can be written:

mα
d

dt
vα = qα[E + vα ∧B]− 1

nα
∇pα −

∑

β 
=α

μαβναβ [vα − vβ ] . (3.489)

In the absence of external fields E and B, but including the ambipolar
electric field ED, assuming that the ion mass mi is equal to that of the
neutrals, we obtain:

mi

[
∂

∂t
+ vr ·∇

]
vr =

eED − 1

n
∇(nkBTi)−meνie(vr − vr)−

mi

2
νin(vr − vn) , (3.490)
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where, if there is no time dependence (as can be seen from (3.486)), we
can set:

∂vr

∂t
= 0 . (3.491)

Assuming that Ti is independent of position and that vn = 0 (the fluid of
neutrals is not influenced by the field ED, therefore it is stationary), we
obtain from (3.490), after dividing by mi:

(vr ·∇) vr =
e

mi
ED − kBTi

mi

∇n

n
− νin

2
vr , (3.492)

where the term νivr in (3.488) is missing.
The absence of this term comes from the fact that, in the derivation of
(3.489) in Sect. 3.5, the continuity equation was written in the form:

∂n

∂t
+∇ · (nv) = 0 , (3.493)

i.e. without any RHS. In contrast, (3.486), which is the stationary conti-
nuity equation, includes a term for volume ionisation, and this is the only
term in the RHS because there is no volume recombination.
To obtain (3.488), we must thus return to the 1st order moment equation
in w (3.109) which, assuming that ∇ · Ψ reduces to ∇p, can be written:

mα
∂

∂t
(nαvα) +mαvα(∇ · nαvα) + nαmα(vα ·∇)vα +∇pα − nF α =

−
∑

β 
=α

ναβnαμαβ(vα − vβ) . (3.494)

Applying this equation to ions, assuming mi = mn, we have μin = mi/2,
and making the same assumptions as for (3.492), we obtain, after dividing
by mi:

vr(∇ · nvr) + n(vr ·∇)vr +
kBTi

mi
∇n− n

e

mi
ED = −νin

2
vrn . (3.495)

Then, this time taking account of the continuity equation (3.486), we ob-
tain from (3.495), after dividing by n:

νivr + vr ·∇vr =
e

mi
ED − kBTi

mi

∇n

n
− νin

2
vr , (3.488’)

which is the same as (3.488), except for the factor 1/2, associated with νin.

Remark: The difference in the factor associated with νin comes from the
fact that the value of this frequency in (3.488) is not defined by (3.124), but
rather by:
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ν∗αβ = nβwαβ
mβ

mα +mβ

π∫

0

2πσ̂(θ)(1− cos θ) sin θ dθ , (3.496)

the effective collision frequency, which allows us to write the collisional term
Pαβ in the form:

Pαβ = mα

∫

wα

∫

wβ

(wβ −wα)
ν∗αβ
nβ

fα(wα)fβ(wβ) dwαdwβ , (3.123)

or alternatively (making the same assumptions as for (3.124)):

Pαβ = −mαnαν
∗
αβ(vα − vβ) . (3.497)

Within this formalism, the collision term in (3.488) may effectively be written:

P in = −miniν
∗
invi . (3.498)

where the mass of the neutrals does not appear explicitly.

3.12. Using the spherical harmonics expansion in velocity space for the un-
separated distribution function f(r,w), show that the electron diffusion coef-
ficientDe and the mobility μe, in a continuous current discharge, are given by:

De =
1

ne(r)

∞∫

0

w2

3ν(w)
f0(r, w) 4πw

2dw , (3.499)

μe =
1

ne(r)

∞∫

0

ew

3meν(w)

∂f0(r, w)

∂w
4πw2dw , (3.500)

where ne(r) is the electron density, w the velocity of individual electrons,
ν(w) the microscopic electron-neutral collision frequency for momentum
transfer, f0(r, w) the zero order (isotropic) term of the distribution func-
tion in spherical harmonics, e and me, the charge and mass of the electron.
Describe the approximations used in developing this calculation. Limit the
expansion to second order.

Answer

1. The general expression for De, the electron diffusion coefficient, is (3.208):

De =
1

3

〈
w2

ν(w)

〉
, (3.501)
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where the brackets 〈 〉 represent the average over the distribution function
in velocity space. Remembering that the mean value of a molecular variable
represented by the function Υ (r,w, t) is defined, in the hydrodynamic
description, by:

〈Υ (r, t)〉 = 1

n(r, t)

∫

w

Υ (r,w, t)f(r,w, t) dw (3.39)

in which we use the complete function f(r,w, t) (rather than the separated
function f(w, t)). In the present case, De which is an average parameter,
is given by:

De =
1

3ne(r)

∫

w

w2

ν(w)
f(r,w) dw , (3.502)

where w2 ≡ w ·w is a scalar.
We use an expansion in spherical harmonics, in a spherical coordinate
system in velocity space, with the z axis along the direction of anisotropy
resulting either from the diffusion gradient of the particles or from the field
E inducing the particle drift. We set dw = 2πw2 sin θdθdw, which implies
that we have already integrated over the angle ϕ (assuming of isotropy
about the z axis). Limiting the expansion to second order, the expression
for f(r,w) is:

f(r,w) = f0(r, w) + f1(r, w) cos θ + f2(r, w)
3 cos2 θ − 1

2
. (3.503)

Substituting (3.503) in (3.502) gives:

De =
1

3ne(r)

∞∫

0

w2

ν(w)

[
f0(r, w) + f1(r, w) cos θ

+ f2(r, w)
3 cos2 θ − 1

2

]
2πw2 sin θ dθdw . (3.504)

Of the different terms in the expansion of f(r,w), only that containing
the function f0 contributes to the integral for De, because the 1st order
term in θ vanishes since:

−
π∫

0

cos θ d(cos θ) = − 1

2
sin2 θ

∣∣∣∣
π

0

= 0 , (3.505)

and similarly for the 2nd order terms, because:

−
π∫

0

3 cos2 θ − 1

2
d(cos θ) =

1

2

[
cos3 θ − cos θ

]π
0
= 0 , (3.506)
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from which, finally:

De =
1

n(r)

∞∫

0

w2

3ν(w)
f0(r, w) 4πw

2 dw . (3.499)

2. The mobility is related to the electrical conductivity σ by (3.190):

σ = nqμ , (3.507)

where q = −e for electrons.
We have already calculated σ for electrons in a HF electric field, but for
the case of a separable distribution function f(r,w), i.e. one which can be
written as the product of a function in r and a function in w (3.43):

f(r,w) = n(r)f(w) . (3.508)

We then obtained (Sect 3.4)141:

σe = −4πnee
2

3me

∞∫

0

1

ν(w) + iω

∂f0(w)

∂w
w3 dw . (3.63)

To obtain the expression for σe that depends on the complete distribution
function f(r,w), we use the inverse of (3.508) to replace f0(w) by f(r, w).
Then, setting ω = 0 for the case of a continuous current discharge, we find:

σe = −4πe2

3me

∞∫

0

w3

ν(w)

∂f0(r, w)

∂w
dw . (3.509)

To obtain μe from σe, from (3.507), we only need to divide (3.509) by
−ne(r)e, i.e.:

μe =
4πe

3mene(r)

∞∫

0

w3

ν(w)

∂f0(r, w)

∂w
dw , (3.510)

such that, after rearrangement:

μe =
1

ne(r)

∞∫

0

we

3meν(w)

∂f0(r, w)

∂w
4πw2 dw . (3.500)

Remark: The electrical conductivity, for either electrons or ions, is always
positive. The fact that (3.509) is preceded by a minus sign comes from the

141 f0(w) is the zeroth order (isotropic) term in the spherical harmonics expansion of the
separated function f(w).
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fact that the mobility μe defined by (3.510) is negative, in accord with our
usual convention.

3.13. Consider a long column of helium plasma, with radius R = 1 cm and
pressure p = 0.4 torr. The electron temperature Te is 1 eV, while the tem-
perature of the gas, Tg, and that of the ions, Ti, are both about 300K. The
plasma is weakly ionised and, for these values of Te and p, the mean electron-
neutral collision frequency νen is 109 s−1 and the reduced ion mobility μi0,
i.e. at 760 torr and Tg = 273K, is 10.4 cm2 V−1 s−1. The plasma density on
axis is 1016 particlesm−3. At t = 0, the source driving the discharge is cut
off.

a) Derive the temporal development of the plasma for t > 0, assuming that
Te is constant, and estimate the characteristic time τD for the decay of
the plasma density.

b) Extend your calculations to the case where a stationary axial magnetic
field of 0.1T is applied.

c) Continue with the same data and operating conditions as in a), except for
a pressure of 0.1mtorr, assuming that the collision frequency ν is simply
proportional to pressure.

Answer

a) In Sect. 3.9, we examined the mechanism for the decay of the post-
discharge. If this occurs in the diffusion regime, the decay of the density is
exponential, and it is eventually controlled by the fundamental diffusion
mode, which for a long plasma column, corresponds to the characteristic
diffusion length Λ = R/2.405. The characteristic exponential decay time
τ is related to Λ and the diffusion coefficient D (3.224). Therefore, we
only need to determine whether the coefficient D is that of free or am-
bipolar diffusion. Note that when the mean free path is small compared
to Λ, the volume recombination regime is equally possible but, since the
plasma density is relatively small, we will see that this possibility has to
be eliminated in the present case. On the other hand, if the mean free path
of electrons, �, is larger than Λ, the decay will be that of a plasma in free
fall, a situation not considered in Sect. 3.9 and that needs to be verified.
The plasma at 0.4 torr is not in the free fall regime. Recalling that
� = vth/ν (1.134) and, numerically for the present case, vth/ν = 5.9 ×
105 ms−1 (for 1 eV)/109 s−1, we find � = 6×10−4 m, which is much smaller
than R (10−2 m), and therefore the free fall regime is excluded.
The plasma is actually in the ambipolar diffusion regime by verifying that
the criterion ne0Λ

2 ≥ 107 cm−1 is satisfied. From the input parameters of
the problem, ne0 = 1010 cm−3, Λ = R/2.405 such that ne0Λ

2 = 1.7× 109.
The diffusion remains in the ambipolar regime, even after the density has
decreased to 1/e (37%) of the initial density.
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We will now calculate the characteristic decay time of the plasma, τD,
which appears in the expression for the decay:

n(r, t) = n(r, 0) exp−(νD1t) (3.222)

with τD ≡ ν−1
D1, where νD1 is the diffusion-loss frequency in the fundamen-

tal mode:

νD1 =
Da

Λ2
. (3.511)

We must now calculate Da: since Te 	 Ti, we will use the simplified
expression:

Da � kBTe

e
μi , (3.281)

and, numerically:

μi =
760 (torr)

p (torr)

Tg (K)

273 (K)
μi0 = 2.2m2 V−1s−1 , (3.512)

Da =
1.38× 10−23(m

2
kg s−2 K−1)× 11600 (K)× 2.2 (C kg

−1
s)

1.6× 10−19 (C)
(3.513)

= 2.2m2 s−1 ,

such that (3.511) becomes:

τD =
Λ2

Da
=

(
10−2

2.405

)2

(m2)
1

2.2(m2 s−1)
= 7.9μs . (3.514)

b) We are still in the ambipolar diffusion regime. This time, we need to cal-
culate Da⊥:

Da⊥ =
De⊥μi⊥ −Di⊥μe⊥

μi⊥ − μe⊥
. (3.285)

We have ωce = 2πfce, where fce(Hz) = 2.8 × 106B0 (gauss) = 2.8GHz,
fci = ωceme/mi = 3.8× 105 Hz = 0.38MHz, from which ωce = 1.76 ×
1010 s−1 and ωci =2.4×106 s−1, so, taking (3.186) and (3.200) into account:

De⊥ � kBTe

meν

[
ν2

ω2
ce

]
(3.515)

=
1.38× 10−23 × 11600× 109

9.11× 10−31 × (1.76× 1010)2
= 0.58m2 s−1 ,

Di⊥ � kBTi

e
μi (3.516)

=
1.38× 10−23 × 300× 2.2

1.6× 10−19
= 5.7× 10−2 m2 s−1 ,



Problems 321

μe⊥ � − e

meν

ν2

ω2
ce

(3.517)

=
−1.6× 10−19 × 109

9.11× 10−31 × (1.76× 1010)2
� −0.57m2 V−1 s−1 ,

μi⊥ = μi = 2.2m2 V−1 s−1 , (3.518)

from which:

Da⊥ =
0.58× 2.2 + 5.7× 10−2 × 0.57

2.2 + 0.57
(3.519)

� 1.28 + 0.03

2.77
� 0.47m2 s−1 .

We can conclude that the inclusion of the magnetic field results in a value
of Da⊥, smaller than Da by a factor 4. This result is consistent with the
fact that ωce > ν.

c) The particles are in the free fall regime at 0.1mtorr. To show this, we must
recalculate the mean free path � for electrons by determining the value for
ν at 0.1mtorr. Since:

ν = N〈σ̂(w)w〉, (1.132)

where N is proportional to the pressure, the collision frequency will be
reduced by the same factor as the pressure, i.e. a factor of 4000. We then
obtain ν(0.1mtorr) = 2.5 × 105 s−1, and � = 6 × 10−4 m × 4000 = 2.4m,
i.e. indeed � 	 Λ.

3.14. Consider an argon plasma with an electron density 1018 m−3, an elec-
tron temperature 10 eV, a temperature of the ions and neutrals of 300K and
a 10−4 torr gas pressure. The cylindrical plasma column (along the z axis) is
contained in a machine limited at both ends by magnetic mirrors.

The plasma (already created by other means) is to be heated by applying
electron cyclotron resonance (ECR) in the uniform region of the magnetic
field. To do this, an electromagnetic field with frequency ω/2π is applied,
such that ω/2π = 10fpe, where fpe is the electron plasma frequency. Assume
that the individual trajectory description can be applied to the electron fluid.

a) Calculate the magnetic field intensity required to enable plasma heating
by ECR in the region where the field is uniform.

b) Calculate the initial Larmor radius of electrons in the same region, before
the application of the HF field.

c) Calculate the mirror ratio R for which the loss of particles is less than
20%, assuming that the velocity distribution is initially isotropic.

d) Draw an approximate schematic of B(z), taking c) into account.
e) A non-linear effect (parametric instability), due to the action of the HF

electric field, can occur if xE , the amplitude of oscillation of the electrons in
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the HF field (also called the excursion parameter), exceeds one tenth of the
electron Debye length. Calculate the threshold of the electric field intensity
for this non linearity to occur (neglect collisions in this calculation).

f) Make an approximate calculation of the initial electron-neutral collision
frequency in the plasma. Does this type of collision hinder the cyclotron
heating?

Answer

a) From (1.27), fpe(Hz) � 9000
√
ne(cm−3), so that, in the present case,

fpe = 9000× 106 Hz = 9GHz, from which fce = 90GHz. From (2.69),
fce(Hz) = 2.8 × 106B(gauss), so that B = 9 × 1010/2.8 × 106 = 32.1 kG
(3.2 tesla).

b) Recall that rB = v⊥0/ωc (see (2.66)). In the present case TeV = kBTe/e =
10 eV, and since the velocity v⊥ of the electron fluid is the same along
both axes perpendicular to B, we have:

1

2
mev

2
⊥0 = kBTe . (3.520)

We obtain:

v⊥ =

√
2× 10× e

me
= 1.87× 106 ms−1 . (3.521)

Finally:

rB =
v⊥0

ωce
=

1.87× 106

9× 1010 × 2π
= 3.3× 10−3 mm . (3.522)

c) The reflection coefficient of a magnetic mirror is given by (2.196):

Cr = 1−R−1 . (3.523)

Since we require Cr ≥ 0.8:

R =
1

0.2
= 5 . (3.524)

Knowing that:

R ≡ Bmax

B0
, (2.188)

we need to have Bmax = 5 × 32(kG) = 160 kG (16T); superconducting
coils will be required.



Problems 323

d)

Fig. 3.13 Approximate distribution of the magnetic field intensity for confinement in
a linear machine (Sect. 2.2.3).

e) The excursion parameter, in the absence of collisions (ω 	 ν), is given
by (2.31):

xE =
|e|E0

meω2
(3.525)

and the Debye length, from (1.55), is:

λDe(cm) = 740

[
T (eV)

ne(cm−3)

] 1
2

= 740

[
10

1012

] 1
2

= 2.3× 10−3 cm = 2.3× 10−5 m . (3.526)

Since the threshold for the appearance of instabilities is assumed to be:

xE ≥ 0.1λDe , (3.527)

the threshold intensity of the HF electric field (in V/m) is found to be:

E0 ≥ meω
2(2.3× 10−5)× 0.1

e
= 4.2MV/m . (3.528)

f) The (microscopic) electron-neutral collision frequency for momentum trans-
fer is given by (1.132):

νx � N0σ̂tx(10 eV)w = p0Px0w . (3.529)

We will use this approximation, instead of calculating the mean value
〈ν〉. From Fig. 1.14, at 10 eV, Px0 = 53 cm−1. The value of the reduced
pressure p0 is:

p0 =
p(torr)273

273 + TC
=

10−4 273

300
= 9.1× 10−5 (no units) . (3.530)
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We will take vth, which defines the plasma energy as kBTe, as the value
for v (Sect. 1.4.3). In the present case, vth = v⊥ (3.521) and:

ν = 9.1× 10−5 × 53× 1.87× 108 = 0.64× 106 s−1 . (3.531)

Given that ω = 90× 109 × 2π (Hz), we obtain:

ν

ω
= 1.1× 10−6 . (3.532)

A large number of periods of the HF field will occur before there is a
collision, so they will not significantly hinder the ECR heating.

3.15. Consider a continuous-current electric discharge in helium at a pres-
sure of 1 torr. The plasma parameters of the (long) positive column, with a
discharge current density of 200mA/cm2, are the following:

- temperatures: TeV = 2 eV, Ti = Tn = 300K,
- densities (uniform): nn = 3.2× 1016 cm−3, ne = ni = 1010 cm−3,

where the indices n, e and i denote the neutral atoms, electrons and ions
respectively. The internal radius R of the discharge tube is 12 cm.

The total microscopic cross-sections for momentum transfer by collisions
between electrons and neutrals and between ions and neutrals, under the
present conditions, have average values respectively given by:

〈σ̂en(w)〉(TeV = 2 eV, Tn = 300K) = 5× 10−16 cm2 ,

〈σ̂in(w)〉(Ti = Tn = 300K) = 1× 10−14 cm2 .

a) Calculate the electric field intensity along the positive column.
b) Calculate the value of the diffusion coefficient.

Explain your reasoning and clearly indicate the underlying assumptions. It
is unnecessary to develop the equations shown in the book, but you must
justify their use.
Remark: Two significant figures are adequate for the present calculations.

Answer

a) The electric field E in a discharge is related to the total current density J
through the electrical conductivity σ, which, in the absence of a magnetic
field imposed on the discharge, is a scalar: we then have the well-known
expression (2.38):

J = σE . (3.533)

Since Te 	 Tn = Ti and the degree of ionisation is small and given by:
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ne

(nn + ni)
� 2× 10−7 , (3.534)

we can apply the “Lorentz plasma” model (Sect. 3.7), i.e. a single fluid,
that of electrons, can be used to describe all the plasma properties. For
these conditions, we only need to calculate the (real part of the) electron
conductivity (2.39):

σ =
nee

2

meν
(3.535)

to determine |E|.
In order to calculate (3.521), it is necessary to evaluate ν. We can do this
by setting:

ν � nn〈σ̂en〉〈w〉 , (3.536)

where 〈w〉 is the mean electron velocity. Equation (3.536) is then an ap-
proximation for the exact relation (1.140):

ν = nn〈σ̂en(w)w〉 , (3.537)

where the brackets 〈 〉 denote the average over the velocity distribution
function. Since we are using temperatures to characterise the energy of
the particles, this implies a Maxwell-Boltzmann velocity distribution.
The value of 〈w〉 is then:

〈w〉 =
√

8

π

kBTe

me
, (I.9)

where kB is Boltzmann’s constant, and me is the electron mass; 〈w〉 =
1.13vth where vth is the most probable value of the velocity for a Maxwell-
Boltzmann velocity distribution (Appendix I):
We know from (1.127) that, numerically:

vth(2 eV) =
√
2× 5.93× 105 ms−1 , (3.538)

from which:

〈w〉 ≡ 1.13vth = 9.5× 105 ms−1 . (3.539)

Then from (3.536), expressing everything in cm:

ν � 3.2×1016(cm−3)×5×10−16(cm2)×9.5×107(cm s−1) = 1.5×109 s−1 .
(3.540)

Finally, from (3.533) and (3.535), we obtain (this time in MKS units):

E =
J

σ
=

200× 10−3 × 104 (A/m
2
)× 9.1× 10−31 (kg)× 1.5× 109 (s−1)

1016 (m−3)× (1.6× 10−19)2 (C2)

= 11 kVm−1 . (3.541)
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Remarks:

1. Units: the volt V = m2kg s−3A−1 and the coulomb C = A s, hence from
(3.541):

A kg m3

m2 s C2 =
(m2kg s−3A−1)A2s2

m A2 s2
= Vm−1 ,

which is the usual unit for an electric field.
2. We can verify that the ion conductivity is effectively very much smaller

than the electron conductivity (σi  σe) because, even if νin is much
smaller than ν in (3.535) (compare (3.540) and (3.548)), me  mHe.

b) Diffusion regime

We need to verify that the charged particle losses are governed by diffusion,
i.e. that the plasma is sufficiently collisional that it is not in the free fall
regime.
The mean free path � is given by:

� =
〈w〉
ν

(1.141)

because the electron-neutral collisions dominate (compare (3.540) and
(3.548)) and from (3.538) and (3.540):

�(cm) � 9.5× 107 cm/s

1.5× 109 s−1
= 0.06 cm , (3.542)

which demonstrates that �  R: thus the plasma is indeed in the diffusion
regime.

Ambipolar diffusion

To determine whether the plasma is in the free or ambipolar regime, we
need to examine the product ne(0)Λ

2 (3.276): if it is greater than 107 cm−1,
the diffusion is ambipolar. We find:

ne(0)Λ
2 = 1010 cm−3

(
12 cm

2.405

)2

	 107 cm−1 , (3.543)

confirming that the diffusion is ambipolar.
Remark: We could use another equivalent criterion, λDe  Λ, to verify
that the diffusion is ambipolar. Evaluating (1.55) numerically, we obtain:
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λDe = 740

[
Te(eV)

ne(cm−3)

] 1
2

� 0.01 cm , (3.544)

such that λDe  Λ, and the diffusion is ambipolar.

Calculation of the value of the coefficient Da

Since Te 	 Ti, we can use the approximate expression (3.281):

Da � kBTe

miνin
. (3.545)

To evaluate νin, we can set, as for ν in (3.536):

νin � nn〈σ̂in〉〈win〉 . (3.546)

From (1.12) modified to describe the ions, we have:

〈wi〉 =
√

8× 1.38× 10−23 × 300

4π × 1.7× 10−27
= 1.2× 103 ms−1 (3.547)

and, expressing everything in cm:

νin = 3.2× 1016 × 1× 10−14 × 1.2× 105 = 3.8× 107 s−1 , (3.548)

so that, from (3.545):

Da � 1.38× 10−23 × 2× 11600

4× 1.7× 10−27 × 3.8× 107
= 1.24

[
JK−1K

kg s−1

]
, (3.549)

and knowing that J is expressed in m2 kg s−1, we obtain:

Da � 1.2m2 s−1 , (3.550)

which are the usual units for a diffusion coefficient.

3.16. Consider a long, cylindrical plasma column of helium with a diameter
of 20mm and gas pressure 0.9 torr. The temperature of the ions and neutral
atoms, obtained from Doppler broadening of emission spectral lines, is 500K.
The electron density, measured on the axis, is 1017 electrons m−3.

a) Assuming that the electron velocity distribution function is Maxwellian
and the diffusion is ambipolar, estimate the electron temperature Te.

b) To what extent is the assumption of ambipolar diffusion, implicit in the
calculation of part a), justified?

c) Calculate the approximate values for the electron free diffusion coefficient
(De) and that of ambipolar diffusion (Da) (don’t forget their units), then
compare them and discuss.
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d) At time t = 0, the electric field maintaining the discharge is suppressed.
Describe the evolution of the plasma for time t > 0. Calculate the charac-
teristic decay time for the electron density on the axis (assuming that Te

does not decay significantly during this period of time).

Data:

1. The approximate mean electron-neutral collision frequency for momentum
transfer in helium, at the reduced pressure p0, is:

ν

p0
= 2.4× 109 s−1 . (3.551)

2. The reduced ion mobility, i.e. referring to the standard conditions of
760 torr and 273K, namely for 2.69× 1025 atomsm−3, of He+ in He is:

μi0 = 10.4× 10−4 m2 V−1 s−1 . (3.552)

Answer

a) To calculate Te, we will make use of the results developed for this pur-
pose in Sect. 3.13, for a long cylindrical plasma column, assumed to be in
the ambipolar diffusion regime: we will verify in b) that this condition is
satisfied.
Let us first determine p0, the “reduced pressure” associated with the pres-
sure and temperature of the gas Tg through the relation (1.122):

p0 =
273

Tg(K)
p(torr) (3.553)

from which, in the present case:

p0 =
273

500
0.9 = 0.49 . (3.554)

For helium, the constant c0 of the model (Tab. 3.1) is 4.68, and hence the
product c0p0R gives:

c0p0R = 4.68× 0.49× 10−2 = 2.3× 10−2 . (3.555)

This value of c0p0R, from Fig. 3.9, corresponds to:

TeV /Ei � 0.2 (no units) (3.556)

and, since Ei = 24.9 eV for helium (Tab. 3.2), TeV = 4.9 eV, or alternatively
Te (K) = TeV e/kB = 56500K.



Problems 329

b) Diffusion regime
We will first verify that the plasma is in this regime and not in free fall,
i.e. that the mean free path, �, is smaller than the radius of the discharge

R. We know that � � vth/ν (Sect. 1.7.8) where vth = (2kBTe/me)
1
2 (1.9).

The collision frequency ν is given by (3.551). We can then calculate �:

� �
√

2kBTe

me

1

ν
=

√
2× 1.38× 10−23 × 4.9× 11600

9.1× 10−31

1

2.4× 109 × 0.49

= 1.1× 10−3 m , (3.557)

such that �  R: the plasma is indeed in the diffusion regime.

Ambipolar diffusion
To find whether the diffusion is ambipolar rather than free diffusion, we will
use one of the two criteria given in Sect. 3.10. We will use the requirement
that n(0)Λ2 should be greater than 107 (cm−1) for the diffusion to be
ambipolar. Since the electron density on the axis is ne0 = 1011 cm−3 and
Λ = R/2.405 � 0.42 cm:

ne0Λ
2 = 1.7× 1010 cm−1 > 107 cm−1 , (3.558)

and the criterion is verified (except possibly very close to the wall, where
n is much smaller than on the axis).

Remark: It can be shown that volume recombination in helium is no
longer negligible if the pressure is greater than 5 torr and ne0 > 1012 cm−3.

c) Calculation of the coefficient De

The expression for De is given by (3.197):

De =
kBTe

meν
=

1.38× 10−23 × 56500

9.1× 10−31 × 2.4× 109 × 0.49

= 728.6 � 730m2 s−1 . (3.559)

Calculation of the coefficient Da

We know from a) that Te 	 Ti, the ion temperature, because Te = 56500K
and Ti = 500K. For these conditions, a simple, approximate expression
for Da is:

Da � kBTe

e
μi . (3.281)

The ion mobility, μi, for an atom density N , is obtained from the reduced
mobility μi0, i.e. for the reference conditions (760 torr, 0◦C) according to:

μi = μi0
NL

N
, (3.185)
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where NL, the Lochsmidt number, is equal to 2.69 × 1025 atm−3, for the
reference conditions. In addition, the perfect gas law:

N =
p

kBT
, (3.560)

allows us to calculate N for the operating conditions (p, Tg), from NL =
pA/kB 273 (pA = 760 torr, T = 273K). Finally, from (3.194) and (3.560),
we obtain:

μi = μi0
pA

kB 273

kBT

p
, (3.561)

which is, numerically:

μi =
10.4× 10−4 × 760× 500

0.9× 273
= 1.6m2 s−1 V−1 (3.562)

from which:

Da =
kBTe

e
μi =

1.38× 10−23 × 56500

1.6× 10−19
× 1.6 = 7.8m2 s−1 , (3.563)

and thus Da  De, as expected: the free diffusion of electrons is faster
than when the ions and electrons diffuse together.

d) This situation corresponds to the case of a time-dependent post discharge
in the diffusion regime (Sect. 3.9). Then, the charged particle density at a
given point decays exponentially with time, according to the relation:

n(r, t) = n(r, t = 0) exp(−νDt) , (3.222)

where τD = ν−1
D is the characteristic decay time of the plasma density due

to diffusion (ambipolar in the present case). This regime persists roughly
until the density has decayed to 1/e of its initial value (the required time
for our present analysis), since the initial density is sufficiently high. We
must first calculate νDa. We know, from (3.236), that:

νi =
Da

Λ2
, (3.564)

and since:
νDa = νi , (3.565)

then:

νDa =
Da

Λ2
=

7.8

(10−2/2.405)
2 = 451× 103 s−1 , (3.566)

from which ν−1
Da = τD � 2.2μs. We can conclude that over a period of 10

to 20 times τD, i.e. 20 to 40μs, the charged particle density has become
negligible.
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3.17. In general, the characteristic diffusion length Λ of a plasma is related
to plasma dimensions by coefficients that depend on the plasma geometry,
(see Sect. 3.9.1), but also on the boundary conditions chosen. Therefore,
we would like to calculate the characteristic diffusion length in a plasma for
different geometrical configurations (planar and cylindrical) in the case where
the assumption n(r = R) = 0 is no longer valid, i.e. when the losses to the
walls of the experiment are through a flux across an ion sheath. Assume
that the plasma is in the ambipolar diffusion regime and that the neutrality
condition (ni = ne) is applicable up to the edge of the collisionless ion sheath,
whose thickness can be neglected when compared to the plasma dimensions.

a) Calculate the characteristic diffusion length Λ = L/a (where a is a dimen-
sionless coefficient) of a planar configuration that is infinite along y and
z, and with a width along x of L = 2 cm, for the two following cases:

1. Argon plasma, p = 0.5 torr, TeV = 1.7 eV, Tg = 300K, mobility of Ar+

ions in Ar: μi0 = 1.52 cm2 V−1 s−1 at 760 torr and 273K.
2. Helium plasma, p = 0.5 torr, TeV = 5.8 eV, Tg = 700K, mobility of He+

ions in He: μi0 = 10.4 cm2 V−1 s−1 at 760 torr and 273K.

To calculate a, use the graph a tan a = f(a).

Fig. 3.14 Variation of the function f(a) = a tan a with a.

b) Calculate the characteristic diffusion length Λ = L/b (where b is a di-
mensionless coefficient) of an infinite cylindrical plasma column of radius
R = 1 cm for the two sets of plasma conditions defined above.
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To calculate b, use the graph bJ1(b)/J0(b) = f(b). The derivative of the
zeroth order Bessel function of the first kind is:

J ′
0(z) = −J1(z) , (3.567)

where J1 is the first order Bessel function of the first kind.

Fig. 3.15 Variation of the function f(b) = bJ1(b)/J0(b) with b.

Answer

In the ambipolar diffusion regime, the plasma is described by the equations
of continuity (3.216):

∂n

∂t
+∇ · nv = νin (3.568)

and of the diffusion flux (3.257):

Γ = nv = −Da∇n , (3.569)

such that in the stationary state:

∇2n = −
(

νi
Da

)
n (3.570)

or, alternatively:

∇2n = − 1

Λ2
n . (3.571)
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a) In the case of an infinite plane-plasma configuration along y and z, the
solution of (3.570) in Cartesian coordinates:

∂2n

∂x2
= − 1

Λ2
n (3.572)

is given by:

n(x) = n(0) cos
( x
Λ

)
= n(0) cos

(ax
L

)
. (3.573)

The boundary conditions at the wall suppose, for x = ±L/2, that the
electron and ion fluxes are equal and that the ion velocity at the sheath
edge is:

v = vB , (3.574)

where vB is the Bohm velocity of scalar value (3.328):

vB =

√
kBTe

mi
. (3.575)

Taking account of (3.569), the conservation of ion flux at the sheath edge
can then be written:

−Da

(
∂n

∂x

)

±L
2

= n

(
x = ±L

2

)
vx . (3.576)

For x = +L/2,
vx = + vB (3.577)

so that, from (3.573), (3.576) can be written:

(
∂n

∂x

)

+L
2

= − a

L
n(0) sin

(a
2

)
= − vB

Da
n(0) cos

(a
2

)
(3.578)

from which:
LvB
2Da

=
a

2
tan

a

2
, (3.579)

where an approximate value for Da is given by (3.281):

Da � kBTe

e
μi , (3.580)

where μi depends on the pressure.

Remark: In contrast to the usual boundary conditions n(x = ±L/2) = 0,
where the characteristic length is independent of the geometric configura-
tion and dimensions of the plasma, the diffusion length also depends, in
the present case, on the operating conditions of the plasma, namely the
type of gas and the pressure.
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Numerically, we obtain:

1. For argon:

vB =

(
1.7 (V)× 1.6× 10−19 (C)

9.1× 10−31 (kg)× 1836× 40

) 1
2

= 2.03× 103 ms−1 ,

μi = μi0
760 Tg (K)

p (torr) 273
=

1.52× 760× 300

0.5× 273

= 2.54× 103 cm2 V−1 s−1 = 25.4× 10−2 m2 V−1 s−1 ,

Da =
kBTe

e
μi = 1.7 (V)× 25.4× 10−2 (m

2
V−1 s−1)

= 43.2× 10−2 m2 s−1 ,

a

2
tan

a

2
=

LvB
2Da

=
2× 10−2 × 2.03× 103

2× 43.2× 10−2
= 47 .

We can find a from the graph of a tan a, i.e.:

a

2
� 1.54 ,

from which: Λ � L/3.08.
The numerical value thus obtained is close to the value of Λ = L/π
resulting from the boundary conditions n(x = ±L/2) = 0.

2. For helium:

vB =

(
5.8 (V)× 1.6× 10−19 (C)

9.1× 10−31 (kg)× 1836× 4

) 1
2

= 11.8× 103 ms−1 ,

μi = μi0
760 Tg (K)

p (torr) 273
=

10.4× 760× 300

0.5× 273

= 17.4× 103 cm2 V−1 s−1 = 1.74m2 V−1 s−1 ,

Da =
kBTe

e
μi = 5.8 (V)× 1.74 (m

2
V−1 s−1) = 10.1m2 s−1 ,

a

2
tan

a

2
=

LvB
2Da

=
2× 10−2 × 11.8× 103

2× 10.1
= 11.7 .

We can find a from the a tan a graph, i.e.:

a

2
� 1.45 ,

from which: Λ � L/2.9, which is a slightly different value compared to
Λ = L/π.
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b) In the case of an infinitely long cylindrical configuration, the solution to
(3.570) in cylindrical coordinates:

1

r

∂

∂r
nr = − 1

Λ2
, (3.581)

is given by:
n(r) = n(0)J0

( r

Λ

)
= n(0)J0

(
br

R

)
, (3.582)

where J0 is the zeroth order Bessel function of the first kind. Since:

∂J0(br)

∂r
= −bJ1(br) , (3.583)

where J1 is the first order Bessel function of the first kind, the boundary
conditions at r = R can this time be written, taking account of (3.582):

(
∂n

∂r

)

R

= − b

R
n(0)J1(b) = − vB

Da
n(0)J0(b) , (3.584)

from which:
RvB
Da

= b
J1(b)

J0(b)
. (3.585)

Numerically, we obtain:

1. For argon:

b
J1(b)

J0(b)
=

RvB
Da

= 47 .

We can find b from the graph bJ1(b)/J0(b), i.e.:

b � 2.36 ,

from which:

Λ � R

2.36
.

The value obtained is close to the value Λ = R/2.405 resulting from the
boundary condition n(R) = 0.

2. For helium:

b
J1(b)

J0(b)
=

RvB
Da

= 11.7 .

We can find b from the graph bJ1(b)/J0(b), i.e.:

b � 2.21 ,

from which:

Λ =
R

2.21
,

which is a slightly different value compared to Λ = R/2.405.



Chapter 4

Introduction to the Physics
of HF Discharges

4.1 Preamble

This chapter discusses plasmas produced by a high frequency (HF) periodic
electric field, at both radio (∼= 1–300MHz) and microwave (0.3–300GHz)
frequencies. These discharges, originally used mainly in research laborato-
ries, have only comparatively recently found a very important place in in-
dustrial applications (e.g., micro-electronics, destruction of greenhouse gases
Sect. 1.2). Thus, an understanding of the mechanisms that sustain them and
a knowledge of the physico-chemical phenomena that are specific to these
discharges (for example, the influence of the HF frequency on the plasma
properties), can lead to improved designs for HF devices and more efficient
processes.

For a number of reasons, the most commonly used HF plasmas operate at
low-pressure (< 10–20 torr):

- the implementation of a plasma source is, in this case, much simpler than
at atmospheric pressure, due to much lower gas temperatures;

- the modelling of HF plasmas has now attained maturity, which is not yet
the case for plasmas at atmospheric pressure [22,26].

Our discussion will distinguish between low-pressure plasmas and high
(essentially atmospheric) pressure plasmas, the latter being characterised, as
we shall see, by specific phenomena such as the contraction and filamentation
of the discharge.

In order to better understand the physics of HF discharges, where the
electric field varies periodically in time, we will also consider direct current
discharges (DC), in which the electric field intensity is constant in time. This
entire group of discharges is designated by the term electric discharges.

Compared to DC discharges, HF discharges present a number of advan-
tages. This is particularly true if the discharge vessel is made from a dielectric
material, because its transparency to electromagnetic (EM) waves allows the
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electric field to penetrate from the exterior and to ionise the gas it contains.
In such cases, in contrast to DC discharges, there are no electrodes in contact
with the gas: electrodes constitute a source of gas contamination and lead to
deposits on the walls of the discharge tube and, more generally, they limit
the life of the discharge tube. The device used to impose the EM field on the
discharge vessel is called an HF field applicator . Another advantage of HF
discharges, with respect to DC discharges, is the possibility of modifying the
plasma parameters by tuning the frequency of the EM field: varying the field
frequency, in certain cases, modifies the electron energy distribution function
(EEDF), which can be used to optimise the kinetics of a process. With re-
gard to the cost of apparatus, DC discharges are, in general, less expensive,
although now the reduced cost of magnetron microwave generators operating
at 2450MHz142 has made them competitive. In addition, the advance of HF
generators based on power transistors encourages us to believe that, in the
near future, more compact designs, with improved security (no high voltage
in the circuit) and improved reliability, will become available.

In the preceding chapters, we have developed the basic rudiments of plasma
physics, with a view to their application to HF discharges. In the follow-
ing sections, we will make abundant use of these fundamentals, to describe
and model HF plasmas. This chapter contains three sections that consider
successively:

1. the power transfer from the electric field E to the discharge. To this end,
we will use the power θa absorbed per electron as the characteristic param-
eter, for both collisional and non collisional (electron cyclotron resonance,
Sect. 4.2) energy transfer.

2. the influence of the frequency of theE field on the properties of the plasma,
with some examples of the application of this effect (Sect. 4.3). This study
will be principally applied to low-pressure plasmas.

3. the phenomena of contraction and filamentation encountered in high-
pressure plasmas (Sect. 4.4). To take account of the contraction effect, we
need to examine the ionisation-recombination kinetics of molecular ions.

142 A certain number of frequencies from the EM spectrum are reserved for industrial,
medical and scientific applications (ISM frequencies). To this effect, the earth is subdi-

vided in three regions: region 1 (Europe, Africa, the Middle-East, the former USSR and
Mongolia), region 2 (The Americas, Greenland), region 3 (Asia, outside the former USSR,

Oceania). In all regions, the frequencies 13.56, 27.12 and 40.68MHz, as well as 2.45 and
5.8GHz, are authorised [26]. The frequency 433MHz is only authorised in region 1, and

915MHz only in region 2. In addition to these ISM frequencies, the 2.65MHz frequency is
a standard for RF lighting devices.
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4.2 Power transfer from the electric field
to the discharge

Traditionally, the transfer of power in a DC discharge is characterised by the
ratio E/p where E is the field intensity and p the gas pressure. In the follow-
ing, we will use the parameter θa (or θa/p)

143, the average power absorbed
per electron (2.39), instead. On one hand, this enables us to unify the DC
and HF descriptions of the plasma and, on the other hand, it emphasises a
fundamental aspect, which is generally ignored, namely that the intensity of
the electric field sustaining the electric discharge is not set by the operator,
but depends on the loss mechanisms for the charged particles (the parameter
θl, defined by (4.1)).

4.2.1 Direct current discharges

Figure 4.1 is a schematic of a discharge referred to as a cold cathode discharge
(without a thermo-electric emitting filament). The constant voltage U , ap-
plied to the leads of the two electrodes, creates an electric field of intensity
E, which acts on the electrons initially present in the gas, either from cosmic
rays or natural radiation, or from external excitation, for example, produced
by a spark from a Tesla coil, or a piezo-electric gas lighter directed against
the dielectric walls of the vessel. These initial electrons are accelerated by a
force F = −eE, where e is the absolute value of the electronic charge, and
they continue to gain energy until they experience a collision with another
electron, or with an atom (molecule). At the instant of impact, the “incident”
electron either gains or loses energy (Sect. 1.7.2). The collision can always be
elastic (conservation of energy), but can only lead to an excitation or ioni-
sation if the energy of the electron is equal to or greater than the threshold
energy Vj for excitation of the atom into the state j, or the threshold ionisa-
tion energy Vi of the atom (Sect. 1.7.9); following an inelastic collision, the
internal energy of the atom is increased, depending on the case, by an energy
Vj or Vi released by the electron. The energy transferred to the ions from the
electric field is negligible compared to that of the electrons, due to the mass
ratio of these two types of particles (Sect. 2.2).

After a transition stage, in which the density of the charged particles
increases, the stationary state is reached. As shown in Fig. 4.2, we can observe
different luminous and dark zones along the discharge tube; the intensity E
now varies axially, in contrast to the situation before ignition (the horizontal
dashed line in the figure). Macroscopic electron-ion neutrality is found only
in the zone referred to as the positive column, which thus corresponds to the
definition of a plasma.

143 In discharges, the ratio E/p is a fundamental parameter, entering into the scaling laws
governing the plasma. Its relation to θa/p will be elaborated in Sect. 4.3.3.
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Fig. 4.1 Schematic of an electric discharge maintained at constant current, usually re-
ferred to as a direct current (DC) discharge. The resistance R (ballast) ensures the stability

of the discharge.

Fig. 4.2 a Representation of the different dark and luminous zones in a direct current
discharge, together with b the qualitative variation of the electric field intensity E in the

stationary state, along the length of the discharge. The horizontal dashed line indicates
the electric field intensity E before ignition.

To characterise the transfer of power from the field E to the positive col-
umn plasma by means of the electrons, we will establish the balance between
the power taken (on average) by an electron from the electric field, referred
to as the absorbed power θa (Sect. 2.2.1), and the power that the electron
(on average) transfers to the heavy particles as a result of collisions, referred
to as the power lost θl.

The average power θl lost per electron, and transferred to the plasma
following the various types of collision of electrons with heavy particles 144

can be written [26]:

144 Equation (4.1) can be obtained from the homogeneous Boltzmann equation by consid-
ering the isotropic part F0(U) of the EEDF. This equation is then multiplied by U and

integrated over all values of U . The integral of F (U) is described in Appendix XVII (see
note at the bottom of the page).
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θl(〈UeV 〉) =
2me

M
〈ν(UeV )UeV 〉+

∑

j

〈νj(UeV )〉Vj + 〈νi(UeV )〉Vi , (4.1)

where me/M is the mass ratio of the electron to that of the atom (molecule),
ν(UeV ) represents the microscopic collision frequency for an electron of en-
ergy UeV , which results in a transfer of momentum (Sect. 1.7.7), νj and νi
are the collision frequencies (also microscopic) for the excitation to the level
j (threshold energy Vj) or ionisation (threshold energy Vi) respectively; fi-
nally, the symbol 〈 〉 represents the average taken over the EEDF. In the case
where the EEDF is Maxwellian, the average values in (4.1) are completely
determined by the electron temperature Te and the gas pressure.

In general, θl(〈UeV 〉) is an increasing function of 〈UeV 〉, as is shown in
Fig. 4.3, for the case of argon and a Maxwellian EEDF (32 〈UeV 〉 = TeV ).
We observe that, if TeV ≥ 1 eV, the value of θl is essentially determined by
inelastic collisions for excitation and ionisation, while if TeV < 1 eV, the value
of θl is due to elastic collisions. Furthermore, we know that the value of TeV is
less than 1 eV in an argon plasma at atmospheric pressure, whilst it is equal
or greater than 1 eV at low-pressure145. Clearly, collisions at atmospheric
pressure are much more numerous than at low-pressure, and it is necessary
to take multi-step ionisation processes into account in order to calculate θl
(which is not the case in Fig. 4.3), as we will see in Sect. 4.2.4.

The charged particles, which are thus created in the volume, tend to dis-
appear from the discharge by two main mechanisms (Sect. 1.8):

- by diffusion towards the walls of the vessel, on which ions and electrons
readily recombine to form neutral atoms;

- by electron-ion recombination in the volume of the plasma.

In the following treatment, for simplification, we will assume that only diffu-
sion is responsible for the loss of charged particles (Sect. 3.10–3.12), which is
generally the case for low-pressure rare-gas discharges (0.5–10 torr).

The average power θa absorbed per electron, taken from the field E, is
related to the work effected by the electron in the field. In the absence
of collisions, the energy of the electron will increase during its entire path
from the cathode to the anode, its velocity evolving with time according to
(Sect. 2.2.1):

w =
eE

me
t . (4.2)

Of course, if there are no collisions, then there is no transfer of energy to the
plasma, hence no discharge. In the presence of collisions, the motion of the
electrons is hindered by electron-neutral collisions: this results in an average
velocity for progression in the field E, called the electric drift (Sect. 3.8.2):

vd = μeE (4.3)

145 The value of Te above which elastic collisions dominate depends on the discharge gas
and the threshold energy Vj for excitation of the first excited level.
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Fig. 4.3 Value of the power per electron θl, normalised to the density N of neutral atoms,
as a function of TeV , calculated for a Maxwellian distribution in the case of an argon

discharge. We assume direct excitation from the ground state (no stepwise excitation or
ionisation).

where, as we have seen, μe = −e/meν is the electron mobility and ν the
electron-neutral mean collision frequency for momentum transfer. The power
Pa taken from the field E by the electrons, per unit volume, in the case of a
plasma with a uniform electron density ne, is given by (Sect. 2.2.1):

Pa ≡ neθa = J ·E , (4.4)

which constitutes a generalisation of Ohm’s Law. We know that the expres-
sion for J , the current density vector of the electron fluid, is given by:

J = −neevd . (4.5)

Thus, combining (4.3), (4.4) and (4.5), we obtain:

θa(E) =
e2

meν
E2 . (4.6)

In the stationary state, the power absorbed θa adjusts to compensate for the
power lost θl and:

θa(E) = θl(〈UeV 〉) . (4.7)

In fact, if the power θa was less than θl, the discharge would extinguish.
If, on the contrary, θa was greater than θl, the plasma density would in-
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crease, contradicting the assumption of a stationary state. Equation (4.7)
thus constitutes the equation of the electron power balance in the plasma.
Their common value will be designated from now on by θ. It is important
to note that (4.7) implies that the electric field intensity E in the plasma146

(connected to θa by (4.6)) adapts to exactly compensate for the power lost θl.
In the particular case where the charged particles disappear from the

plasma by diffusion to the walls where they recombine, these losses increase
with the average energy of the electrons, hence, in the case of a Maxwellian
EEDF, with the electron temperature: the diffusion coefficients (given by
(3.284) or (3.308)) increase with Te. The value of θl(〈UeV 〉), which increases
with the average electron energy (Fig. 4.3), will therefore increase when the
charged particle losses increase.

In the ambipolar diffusion regime, the electron temperature of the dis-
charge is only a function of the vessel dimensions, the type of gas and the
pressure (Sect. 3.13), i.e. it entirely depends on the operating conditions (4.7).
As a result, θl, relative to θa, is the dominant quantity in the electron power
balance, θa adjusting to the value of θl. Therefore, once the stationary state
is reached the field intensity E present in the positive column is not related
to the potential difference applied between the two electrodes, an observa-
tion confirmed by experiment. The “surplus” from this potential difference is
found in the cathode and anode falls and other zones bordering the positive
column (Fig. 4.2).

4.2.2 HF discharges

To set the scene, we will consider an HF discharge that is simple to imple-
ment. An HF power generator feeds an EM field applicator consisting of a
conducting coil wound around a discharge tube147, as is shown in Fig. 4.4.

In the case of an HF discharge, the question of energy transfer must be
posed differently than in DC discharges, because the electric field is periodic.
At the beginning of the cycle, the electron is accelerated in one direction under
the influence of the field for the first half of the cycle, then in the opposite

146 This field is called the maintenance field (meaning that of the discharge) in contrast to

the applied field set by the operator (for example, that applied between the two electrodes
in a DC discharge just before ignition).
147 The material of the discharge tube is chosen such that it absorbs the least possible of the

HF power. From this point of view, fused silica (incorrectly called quartz) is particularly
advantageous if the gas temperature is not too high (≤ 900 oC) and in the absence of

reactions with by-products from the discharge, such as fluorine. Ceramics, such as Al2O3

and AlN, are more resistant to temperature but absorb more of the HF power than silica.
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Fig. 4.4 Schematic of an HF discharge, referred to as an inductively coupled plasma (ICP).

The excitation frequencies are generally much lower than 100MHz, the most commonly
used being the ISM frequencies of 13.56MHz and 27.12MHz142.

direction148: on average over a cycle, the work effected by an electron in an
HF field is zero (Sect. 2.2.1). Only collisions can interrupt the periodic motion
and allow the electron to take energy from the HF electric field, as we have
seen in considering a cold plasma (Sect. 2.2.1). We then obtain (2.37):

θa =
e2

me

ν

ν2 + ω2
E2 , (4.8)

where E2, the average quadratic value of the electric field intensity, is equal
to E2

0/2, E0 being the maximum amplitude of the field in the course of a
period of oscillation, and ω the angular frequency of the field. Equation (4.8)
reduces to (4.6) for ω = 0.

The loss of charged particles is influenced by the same mechanisms as
in the positive column. On the other hand, in contrast to a DC discharge,
the electric field intensity E in an HF plasma is not radially constant, but
decreases from the tube walls to the axis: this phenomenon is analogous to
the attenuation of an EM wave entering a conductive material (skin effect).
Under these conditions, the integration of θa (4.8) across a transverse section
of the discharge should lead to an average value of θa, such that θa = θl.

Since it is easier to measure θa than E in an HF discharge149, the pa-
rameter θ appears as the natural reference parameter for comparing electric
discharges. This consideration reinforces the preeminence, mentioned earlier,
of θ over E (Sect. 4.2.1): the electric field intensity E adjusts to satisfy the

148 We make the implicit assumption that the amplitude of oscillation (or excursion) of

the electron in an HF field (2.34) is smaller than the discharge vessel dimensions (for
example, the radius R in a long cylindrical column). This is generally the case for fields

with frequencies above 1MHz.
149 The measurement of the electric field in an HF discharge is generally very imprecise
because of the perturbations caused by the measurement antenna. On the other hand, the

value of θ can be simply deduced from the power absorbed per unit volume, knowing the
value of the average electron density in the plasma (4.4).
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value of θl. This dominance of θl over θa and hence, on E, will be confirmed
in the later treatment of HF magnetised plasmas.

Remark: The characteristic penetration depth δc of an HF field in a con-
ductive medium is defined as the distance over which the field intensity of
a plane EM wave reduces to 1/e of its initial value (e is used, exceptionally
here, to denote the base of the natural logarithm). This value is given by (see
Appendix XVIII):

δc =
(c/ω)

�
(
−ε

1/2
p

) , (4.9)

where c is the speed of light in vacuum, �(A) denotes the imaginary part
of a complex quantity A and εp the permittivity of the plasma relative to
vacuum (2.41). In the case of a non-collisional plasma (ω 	 ν and ωpe > ω),
the skin depth δc takes the value c/ωpe. On the other hand, for a collisional
plasma (ν 	 ω and ωpe 	 ω), it can be shown (Appendix XVIII) that

δc = (c/ωpe)(2ν/ω)
1
2 .

4.2.3 HF discharges in the presence of a static
magnetic field

For certain kinds of plasma applications, it can be advantageous to operate at
the lowest possible gas pressure, in order to minimise the collision frequency
in the discharge. This is the case for anisotropic etching , where the goal is
to use ion bombardment to “excavate” perfectly vertical trenches in a given
material (Fig. 1.4). The acceleration of the ions, obtained by polarisation
of the substrate holder or the material itself, leads to an ion flux directed
perpendicular to the surface being treated: the less the trajectory is modified
by collisions, the more perfectly anisotropic (vertical) the etching. However,
how can we create an HF plasma with a sufficiently low collision frequency
when, as we have noted in the previous section, the existence of collisions
is essential for sustaining the HF discharge? In this case, it is necessary to
subject the plasma to a static magnetic field B0, as we will now demonstrate.

Two principal phenomena characterise the action of a static field B0 on
an HF discharge: reduction of the diffusion losses of the charged particles to
the walls and, when applicable, resonant transfer of the energy of the HF
field to the electrons at ωce = ω.

Reduction of charged particle diffusion losses to the walls

In the case of a field B0 directed axially in a cylindrical vessel, the charged
particles are trapped in either a purely cyclotron motion, or a helicoidal
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motion, about the field lines of B0, depending on whether the axial velocity
is zero or non zero (Sect. 2.2.2). The radial diffusion of charged particles,
hence their loss to the walls, is found to be the more reduced the smaller is the
cyclotron gyration radius imposed upon them is small (much smaller than the
vessel radius), i.e., as the magnetic field intensity is increased sufficiently. For
the magnetic confinement of the electrons to be efficient, it is necessary that
there be several cyclotron gyrations between two collisions, which imposes
ν  ωce (Sect. 3.11)150. Note that the reduction of charged particle losses
means that Te and, hence, θl

151 decrease such that, for the same value of
absorbed power Pa (cf. to (4.4)), a larger value of electron density is obtained.

Furthermore, for constant B0, θl increases as the pressure decreases, be-
cause as diffusion losses increase, the mean electron energy increases (Fig. 3.9)
and, as a result, the value of θl also increases. There is a maximum value of
θl after which the power θa becomes less than θl (see further, in Fig. 4.5, the
non-resonant regime). This maximum value of θl corresponds to a minimum
pressure, below which it is impossible to maintain the discharge.

In the following, in order to examine the influence of electron cyclotron
resonance (ECR) on the maintenance of the discharge, we will consider two
cases in succession: a discharge in an infinite medium in which a planar
EM wave propagates in the same direction as the magnetic field B0, then a
discharge in a bounded medium, in this case a plasma column maintained by
an EM surface wave, which also propagates in the direction of B0.

The case of a planar wave in an infinite medium

Comparison of the regime of power absorption by collisions with that of elec-
tron cyclotron resonance (ECR): variation of the value of θa as a function of
pressure, for an assumed constant field E0

The method of calculating θa in HF plasmas in the ECR regime is analo-
gous to that used in the purely collisional regime. It is sufficient to introduce
the term B0 in the hydrodynamic equation for momentum transfer (Sect.
3.7), which can be written, in the cold plasma approximation (Te = 0):

me
∂v

∂t
= q[E + v ∧B0]−meνv , (4.10)

where the electron velocity, in this context, is purely periodic, i.e.:

vx = v0x exp(iωt) , (4.11)

vy = v0y exp(iωt) . (4.12)

150 To put this in context, in argon at 1 torr, for TeV = 2 eV, ν � 2× 109 s−1. Also, recall
that ωce/2π(Hz) = 2.8× 1010B0 (tesla).
151 Remember that Fig. 4.3 shows that θl grows monotonically with Te.
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The static magnetic field B0 and the planar wave are directed along z while
the HF electric field of the wave E = E0e

iωt is taken along y. Following the
coordinates x and y in the Cartesian frame, we then have:

iωv0x =
qB

me
v0y − νv0x , (4.13)

iωv0y =
q

me
E0 −

qB

me
v0x − νv0y . (4.14)

Eliminating v0x between (4.13) and (4.14), we obtain:

v0y = −eE0

me

(ν + iω)[ω2
ce − ω2 + ν2 − 2iων]

(ω2
ce − ω2 + ν2)2 + 4ω2ν2

, (4.15)

which gives, after factorising the real and imaginary terms:

v0y = −eE0

me

ν
(
ν2 + ω2 + ω2

ce

)
− iω

(
ν2 + ω2 − ω2

ce

)
[
(ω − ωce)

2
+ ν2

] [
(ω + ωce)

2
+ ν2

] . (4.16)

The average power (over a period) per unit volume, Pa, absorbed by the
electrons, is given, in general (Eqs. (2.37) and (2.40)), by:

Pa =
1

2
�(J ·E∗) , (4.17)

where � represents the real part of the product in parenthesis and the asterisk
indicates the complex conjugate of a given quantity. This expression can also
be written in terms of the conductivity tensor σ (Eqs. (2.124) to (2.126)), i.e.:

Pa =
1

2
[(σ ·E) ·E∗] . (4.18)

Since Ey is the only non-zero component of the electric field, and the com-
ponent σzy of σ is zero (see (3.189) and (3.191)), the expression developed
for the current density (2.126) reduces to:

J = σxyEyêx + σyyE
∗
y êy . (4.19)

However, only the component of J along y contributes to the contracted
(scalar) product with E = êyEy in (4.17). Resorting to complex algebra, we
can represent the absorbed power per unit volume, averaged over a period of
the HF field, in the form:

Pa =
1

2
�(JyE∗

y) . (4.20)

Since Jy = −neev0ye
−iωt and Ey = E0e

−iωt, the average power absorbed
per electron can be expressed as:
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θa ≡ Pa

ne
= −e

2
�
[
vyE

∗
y

]

=
e2E2

0

2νme

[
1

2

ν2

(ω − ωce)
2
+ ν2

+
1

2

ν2

(ω + ωce)
2
+ ν2

]
. (4.21)

From (4.20) and (4.21), we can also write that:

θa ≡ Pa

ne
=

1

2ne
�
(
σyyE

2
0

)
, (4.22)

or equivalently:

θa =
E2

0

2ne
�(σyy) . (4.23)

The result expressed in (4.21) can be interpreted in a relatively simple fashion
if we allow, on the one hand, that the oscillating field E decomposes into a
field Er of a right circular wave and a field El of a left circular wave, with
equal and constant amplitude, rotating about the magnetic field lines, and,
on the other hand, that the electrons, under the influence of the magnetic
field, revolve around the same magnetic field lines with a rotating motion
to the right (with respect to the direction of the magnetic field). The right
circular component of the electric field then turns in the same direction as
the electrons in their cyclotron motion. The result is that an electron, in its
own frame of reference, “sees” the electric field Er oscillating at a reduced
frequency ωr = ω−ωce, whereas it “sees” the electric field El oscillating at an
increased frequency ωl = ω+ωce. Equation (4.21) includes both contributions:
the first term of the RHS corresponds to the right circular wave and the
second to that of the left circular wave. It should be noted that the presence
of collisions prevents the occurrence of a singularity at ω = ωce.

In the case ωce = 0, we recover the expression given by (4.8). On the other
hand, if we adjust the magnetic field intensity such that ω = ωce, we then
obtain the condition of electron cyclotron resonance, and the electrons, in
their own frame of reference, “see” a constant electric field intensity which
accelerates them continuously. The energy thus acquired by the electrons is
transferred by elastic and inelastic collisions to the heavy particles in the
discharge (4.1).

The mechanism of electron heating by ECR is fundamentally different
from the mechanism of collisional transfer (4.8). In the case of collisional
transfer, the energy imparted at the instant of collision is that acquired during
only a fraction of the HF period, because the work done by the electron in
the electric field over one or more complete periods is zero. In other words,
for collisional transfer, the longer the time between two collisions (i.e. the
smaller the collision frequency ν), the less efficient the transfer of energy to
the discharge: for ν  ω, the term ν/(ν2 + ω2), appearing in the definition
of θa (4.8) reduces to ν/ω2, which decreases as ν decreases. In contrast, for
resonant transfer by ECR, the energy taken from the electric field increases
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continuously between two collisions, such that the mechanism becomes more
effective as the time between collisions increases, which requires ν  ω.
Resonant transfer, in fact, reduces to collisional transfer for a static electric
field (ω = 0). Indeed, at ECR (ω = ωce), the expression for θa (4.21), when
ω 	 ν > 0, reduces to the form obtained in the case of a static electric field
(4.6), within a factor 1/2 152.

The interest in ECR and the disappearance of this effect when the plasma
becomes more and more collisional are illustrated in Fig. 4.5, which shows
the variation, for a constant amplitude field E0, of the power absorbed per
electron, successively, from ωce = 0, to the resonance condition ωce = ω and
above at ωce = 1.5ω, as a function of ν/ω (we can assume, to put things in
context, that ν, and hence the ratio ν/ω, is proportional to pressure). We also
observe that, with respect to the case ωce = 0, confining the plasma even with
a strong field B0 (ωce = 1.5ω) does not result in a significant increase in the
power which can be taken by an electron from the HF field. We also see that,
for ECR at low-pressure, the power θa absorbed per electron is many orders of
magnitude greater than that obtained by simple collisional transfer, which is
the reason for the interest in ECR for plasma applications at low and very low-
pressures (typically below 20mtorr) because only ECR leads to a sufficiently
large value of θa to attain θa = θl. Such a scheme is implemented, for example,
in multi-charged ion sources, where the pressures are even less than 10−5

torr, permitting the heating of the electrons to average energies of a few keV.
Figure 4.6 illustrates the variation of θa as a function of ωce/ω, still for a
constant amplitude field E0, for different values of the parameter ν/ω (to put
this in context, in argon at 1 torr and for a Maxwellian electron distribution
function with temperature T = 2 eV, we have ν = 2×109 s−1). Here again, we
can verify that resonance is strongly damped for higher collision frequencies,
or when moving away from the resonance condition.

Variation of the electric field intensity E0 around the resonance condition
ωce = ω

All the preceding calculations and reasoning have been done under the as-
sumption of a constant amplitude electric field. In fact, as was indicated at
the beginning of this chapter (Sect. 4.2.1), the electric field intensity consti-
tutes an adjustable parameter, allowing the power balance per electron in
the plasma, θa = θl to be satisfied. It is thus important to understand how
this adjustable parameter varies in passing from ECR to non-resonance.

152 The factor 2 results from the decomposition (in the magnetic field) of the planar wave

into a right and a left circular wave, only the right circular wave contributing (significantly)
to the transfer of power to electrons. In the opposite approximation to that of ECR, namely

that ν � ω (collisional power transfer), each circular wave contributes equally to the power
transfer and the result is exactly (4.6).
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Fig. 4.5 Variation of θa as a function of ν/ω, assuming a constant amplitude field E0,
calculated from (4.21) for three values of the angular cyclotron frequency: ωce = 0, ωce =

1.5ω and ωce = ω. Recall that the stationary state requires that θa = θl (for a given
ν/ω), which supposes that θa can reach values such that θa ≥ θl. In the opposite case, the

discharge cannot exist.

Fig. 4.6 Variation of θa (cf. Eq. (4.21)) as a function of ωce/ω, for constant amplitude

field E0, at four values of the ratio ν/ω.
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In extending the reasoning developed above to a stationary discharge in
the diffusion regime (Sect. 4.3.3), to which is added a field B0, we claim,
for the same reasons, that the parameter θl cannot depend on the E field
intensity, nor a fortiori on the characteristics of the wave generating the field,
but solely on the mechanism for the loss of charged particles. In other words,
the value of θl does not pass through an extremum at ωce/ω = 1, which is
confirmed by experiment: θa, which is equal to θl, decreases progressively
and slowly when the magnetic field increases, as is shown in Fig. 4.14 below.
On the other hand, we demonstrate in the next paragraph that the electric
field intensity E in the discharge, as a function of ωce/ω, both in the ignition
stage and stationary state, shows a minimum at ωce = ω, precisely because
the efficiency of the resonant transfer of energy, in contrast to collisional
transfer, is a maximum in these conditions.

Considering first (4.21), we see that the expression within brackets for
θa passes through a maximum at ω = ωce, the corresponding variation of
the electron density ne, as observed experimentally, being small. The terms
within the brackets are, within a constant factor, equal to σyy in (4.22)–
(4.23). As already mentioned, θa decreases experimentally very slowly and
monotonically with increasing B0, including at ECR it must be concluded
that E2

0 goes through a minimum at ECR. This is contrary to the accepted
idea that the intensity E passes through a maximum, which naturally comes
to mind when dealing with a “resonance”153.

In addition, Fig. 4.5 suggests that, at low-pressure, since the value of ν/ω
is smaller at 2.45GHz than at 100MHz, it might not be possible to ignite the
plasma away from resonance for 2.45GHz, while it is possible at 100MHz,
due to collisional absorption: this is confirmed by experiment. The preceding
discussion shows that, when the power lost per electron is very large and
ν/ω is small, only ECR enables us to reach a sufficiently high value of θa to
establish the equilibrium θa = θl.

The case of a plasma column maintained by an EM surface wave

Conductivity of a plasma in a bounded medium

The preceding development considered a wave propagating in an infinite,
uniform medium. The same type of calculation can be performed in a finite
medium for a guided wave, in this case an EM surface wave said to be “gener-
alised” [19]. Fig. 4.7 shows that the effective conductivity154 passes through a

153 Some authors, such as W. P. Allis [2], claimed that at ECR, the value of the electric
field intensity in the plasma should be amplified, although in fact, it passes through a

minimum.
154 Due to the presence of B0, the plasma is an anisotropic medium, and the conductivity
is therefore a second-order tensor and no longer a scalar (2.124) to (2.126). The concept of

effective electrical conductivity [19] allows this difficulty to be overcome, for a given wave
mode, by a scalar representation.
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maximum at ECR, such that the electric field intensity E then passes through
a minimum.

Fig. 4.7 Effective electrical conductivity (taking account of the wave polarisation) due to

electrons, calculated for the fundamental mode HE0, for different values of the frequency
of the surface wave field [19].

4.2.4 Variation of the value of θ as a function of n̄e

for different plasma conditions

In the preceding discussion of the power θ we have adopted, for reasons of
simplicity, the approximation that ionisation of the atom is due to a single
electron impact on it in the ground state (direct ionisation), although we
know that stepwise ionisation (using, for example, the metastable states as
relays (Sect. 1.8)) cannot be neglected, if the plasma density is sufficiently
high. In addition, we have assumed that the loss of particles is effected solely
by diffusion (ambipolar), an assumption that is not necessarily valid when
the density of charged species is sufficiently large for the recombination of
charged species to take place in the plasma volume (Sect. 1.8) (rather than
by diffusion to the walls). These two initial assumptions impose the Schottky
condition.

Equation (4.24) represents the balance of losses and gains of charged par-
ticles in a more general form than the Schottky condition, which only retains
the two first terms (the notation is that of Sect. 1.8) [16]:

∇ · (Da∇ne) + νidne +
ρien

2
e

1 + ηne
− αran

3
e = 0 (4.24)
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The first term represents the loss of charged particles by ambipolar dif-
fusion and the second, that of their creation through direct ionisation of an
atom from its ground state. The third term takes account of two-step ionisa-
tion (numerator), but also of the possibility of saturation of the corresponding
relay states (denominator), while the fourth term, in the absence of molec-
ular and negative ions, represents the volume recombination of atomic ions
(a three-body recombination, Sect. 1.8.1). With regard to the third term, we
can conclude that when the value of ne is sufficiently high, the number of
available relay states per second decreases (characterised by the term η in the
denominator) such that, finally, the frequency of two-step ionisation reaches
a maximum, constant value, independent of ne (1  ηne), since in this case:

νie ≡
ρiene

1 + ηne
� ρie

η
. (1.159)

In (4.24), we have represented the volume recombination by a three-body
recombination. However, it should be noted that, in order for three-body
recombination to manifest itself (dependence on n3

e), very high electron den-
sities are required and, from this fact, is less probable than the dissociative
recombination of molecular ions (Sect. 1.8.1) formed in the discharge (depen-
dence on n2

e)
155. Thus, although the density of molecular ions156, for example

in a rare gas discharge, might be less than that of atomic ions, their recom-
bination frequency is many orders of magnitude larger than that for atomic
ions, such that for ne ≤ 1014 cm−3, it is more correct to write the charged
particle balance equation in the form:

∇ · (Da∇ne) + νidne +
ρien

2
e

1 + ηne
− αrmn2

e = 0 . (4.25)

By taking account of the losses both by ambipolar diffusion and by disso-
ciative recombination, the calculation of the power θ as a function of n̄e, the
average density across a radial section of the discharge tube, leads to Fig. 4.8
[16,17,36]. For low electron density (region I), the Schottky condition applies,
and the value of θ is that determined from the horizontal dotted line in Fig.
4.8: the loss of charged particles and their creation are, in effect, both linear
in n̄e, such that their corresponding frequencies are independent of n̄e.

For values of n̄e that are slightly larger (region II), the charged particles
continue to be lost by ambipolar diffusion, but multi-step ionisation supple-
ments the direct ionisation, thus reducing the power taken from the field to
produce an electron-ion pair, hence the decrease in θ. For even larger values
of n̄e (region III), the loss regime is still ambipolar diffusion, but multi-step

155 In general, a three-body recombination is always less probable than a two body re-
combination, hence the importance of the dissociative recombination of molecular ions

according to the reaction (1.152).
156 The kinetics of molecular ions is only considered in the high-pressure section of this
chapter (Sect. 4.4).
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Fig. 4.8 Variation of θ as a function of n̄e, the average electron density across the radial
section of the discharge tube, according to (4.25), calculated for p = 0.5 torr and R =

1.4 cm, in argon [16,17,36].

ionisation no longer allows the electron density to grow faster than n̄e, be-
cause the saturation regime (1.159) has been reached, so that the value of θ
remains constant as a function of n̄e.

Finally, for even larger electron densities (region IV), the loss of charged
particles results from both ambipolar diffusion and volume recombination, the
latter progressively taking over from the former as n̄e increases. Regarding
the creation of these particles, it occurs in the saturated regime of multi-
step ionisation, and the frequency νie is independent of n̄e. In total, the
frequency of charged particle loss increases with n̄e, and θ increases, as can
be demonstrated, as the square root of n̄e [17].

4.3 Influence of the frequency of the HF field on some
plasma properties and on particular processes

One of the specific advantages of HF plasmas compared to DC discharges is
the ability to vary the plasma properties considerably (notably the EEDF)
by adjusting the frequency of the applied EM field. We will make use of
a theoretical approach to describe this frequency effect, confirmed by some
experimental examples.
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4.3.1 Posing of the problem

Generally speaking, plasmas at reduced pressure are not in thermal equilib-
rium. In practical terms, the average electron energy is much greater than
that of the ions and neutrals (Sect. 1.4.3). From this, we conclude that the
electron collisions, and not those due to the heavy particles, are primar-
ily responsible for the ionisation of atoms and molecules, so that the form
of the electron energy distribution function F0(U) (EEDF)157 determines158

the relative repartition of the densities Nj of the different excited states of
the atoms and molecules in the discharge. To see this, we will consider a
simple but common case, where the excited or ionised species are produced
by a single electron impact on an atom (molecule) in the ground state. The
density of species thus formed, per second, in the state j (excited or ionised)
is then given by:

dNj

dt
≡ Ṅj = 〈νj〉ne ≡ k0jN0ne , (4.26)

where N0 is the density of the neutral atoms in the ground state. The ex-
pression for the excitation coefficient k0j is:

k0j =

(
2

me

)1/2
∞∫

Vj

σ̂j(U)F0(U)U
1
2 dU , (4.27)

where σ̂j is the total microscopic excitation cross-section (Sect. 1.7.4), which
is a function of the electron energy U , above the energy threshold Vj . Equa-
tion (4.27) shows that, depending on the shape of F0(U), the value of the
coefficient k0j changes, which leads to the different coefficients varying rela-
tive to each other. For certain applications (see Sect. 4.3.7 for examples), this
permits an increase in the population of a specific excited or ionised level,
thus optimising a process.

The reader should note that we are particularly interested in HF discharges
where the angular frequency ω = 2πf is sufficiently large that the ions cannot
respond to the periodic variation of the HF field, so only the electrons can take
energy from the field (see Sect. 4.2.1). The ions effectively remain stationary
if ω 	 ωpi, where ωpi is the ion plasma frequency (Sect. 1.5); for example, in

157 See Appendix XVII for the distinction between F0(U) and f0(U). The normalisation
condition for F0(U) is:

∞∫
0

F0(U)
√
U dU = 1 .

The zero-subscript implies an isotropic distribution (which, in the present case, is the first
term of the development of the distribution function in spherical harmonics (Sect. 3.1)).
158 Electron collisions completely determine the population of an excited state only if the

population and depopulation of these levels by (electric dipole) radiative transitions are
negligible.
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low-pressure argon discharges (ne � 1010 cm−3), this occurs when the applied
frequency f is greater than a few MHz.

In the following, the effect of the frequency of the field on the EEDF will
lead us to distinguish between two typical cases, one in which the EEDF
is stationary and the other where, on the contrary, it oscillates, totally or
partially, as a function of the period of the HF field. For the EEDF to vary
with the period of the field, it is necessary for the frequency of transfer of
energy from an electron (of energy U) to the heavy particles159:

νu(U) ≡ 2me

M
ν(U) +

∑

j

νj(U) (4.28)

to be such that νu(U) 	 ω. In this case, the total number of elastic160 and
inelastic collisions is so large during an HF period that the transfer of energy
from the electric field to the heavy particles via the electrons takes place
at each instant of the period of the HF field: the EEDF is thus subject to
the instantaneous value of the amplitude of the HF field and therefore
varies as a function of time over the period duration T = ∈π/ω (this effect
typically manifests itself for frequencies below 100MHz). On the contrary,
for νu(U)  ω, the EEDF is stationary because the collisions, one or none
during a period, occur at different times during the period, from one period
to the next.

In the case of discharges in atomic gases, the value of νu(U) increases
abruptly above the energy of the first excitation level, while for molecular
gases, νu(U) reaches a high value already at low energies as a result of the
transfer of energy through ro-vibrational states, as shown in Fig. 4.9.

4.3.2 The EEDF in the non-stationary regime

The transition from the non-stationary regime to the stationary regime is
achieved, at constant pressure, by increasing ω. The EEDF becomes pro-
gressively more stationary, starting with the lowest energy electrons, be-
cause the condition νu(U)  ω is first satisfied for low values of U , as
can be seen in Fig. 4.9. When the angular frequency ω is sufficiently large,
such that νu(U) < ω for all values of U , the EEDF becomes stationary.
To put this in context, in order to determine the value of ω for which

159 The total power transferred from an electron of energy U to heavy particles can be
obtained by multiplying the first term on the RHS of (4.28) by U and the second term

by Vj (excitation and ionisation). The corresponding mean total power value 〈νu(U)U〉
transferred to heavy particles is then, according to (4.1), equal to θl.
160 In the expression for νu(U), the number of elastic collisions is weighted by the factor

2me/M , the maximum fraction of kinetic energy which an electron can transfer to a heavy
particle as the result of an elastic collision (1.100).
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Fig. 4.9 Frequency νu(U) for the transfer of energy from electrons to heavy particles in

the case of neon and of molecular hydrogen (following [42]). The gas pressure p is expressed
at 0◦C.

the EEDF becomes stationary, we can take max[νu(U)] = ω as a practi-
cal criterion for the lower bound of the stationary regime, such that from
Fig. 4.9 for neon161, 162 ω/p = 108 s−1 torr−1. According to this criterion, at
p = 0.2 torr, the EEDF in neon would be stationary for f > 3MHz, while for
H2 (ω/p = 1.5×109 s−1 torr−1) this requires f > 48MHz [12]: the stationary
state is attained for a much lower value of ω in the case of an atomic gas.

Fig. 4.10 corresponds to an intermediate case of the ratio νu(U)/ω, such
that the bulk of the EEDF, comprising the low energy electrons, is stationary
while the tail of the EEDF, comprising the electrons with energies above the
first excitation threshold (Vj = 16.6 eV for neon) is not; the tail of the EEDF
varies significantly as a function of time within the period of the HF field.
It can, however, be demonstrated [34] that the density of the electrons is, in
practice, stationary because, as is suggested by Fig. 4.10, there are relatively

161 Detailed calculations show that, for ω/p = π × 105 s−1 torr−1, the EEDF is already
stationary (see [41]).
162 The pressure p is expressed relative to 0◦C.
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few (rapid) electrons affected by the periodic motion of the tail when the
angular frequency ω is not too low: for argon, ne is already stationary when
f > 100 kHz!

Fig. 4.10 Isotropic part of the energy distribution function of electrons calculated in the

case of neon for ω/p = 2π105 s−1 torr−1 at different fractions of the period duration T of
the HF field; t̄ = pt is the reduced time and p the gas pressure expressed at 0◦C (from [41]).

4.3.3 EEDF in the stationary regime

In order to understand the essential features of this problem, we will assume
the EEDF is stationary, and also homogeneous. This EEDF can be obtained
from the stationary, homogeneous Boltzmann equation, which can be written
in the form [2]:

− 2

3

d

dU

[
U3/2ν(U)Uc(U)

dF0

dU

]
= S0(F0) , (4.29)

where the collision operator S0(F0) represents the influence of the collisions
between electrons and other particles in the plasma; the quantity:
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ν(U)Uc(U) ≡ e2

me

ν(U)

ν2(U) + ω2
E2 , (4.30)

which has the units of energy per second (see (4.8)), represents the power
transferred (on average over a period) from the HF electric field to an elec-
tron of energy U163. This transfer is a function both of U and ω: it is a
maximum for the energy U of an electron such that ν(U) = ω (from the
derivative of (4.30) with respect to U). Thus, when the frequency maintain-
ing the discharge is varied, the maximum power transfer occurs at an energy
U which varies with the value of ω, so that it influences the LHS of (4.29),
and modifies the form of the EEDF, unless it is Maxwellian and remains so
for all values of ν(U)/ω. For a fixed value of ω (non-Maxwellian case), the
EEDF depends on ν(U), which depends, in turn, on the collision cross-section
for momentum transfer, a property specific to each gas. Some of these cross
sections vary strongly as functions of the energy of electrons: this is the case,
for example, for argon, and much less so for neon (Fig. 1.14). The case of
helium is particularly interesting because the product wPm(w) = ν(w), i.e.
ν(U), is almost constant164. Therefore, for any frequency value ω, the power
transferred from the HF electric field to an electron (4.30) is independent of
its energy U and, consequently, the power density transferred to the electrons
is independent of the EEDF: the effect of frequency on the EEDF of helium
plasmas is expected to be negligible.

In the following sections, we will illustrate the influence of ω on the EEDF,
for the case of an argon discharge. We will see that we can distinguish three
limit cases, giving rise to three completely different EEDFs.

Remark: Since both the collision operator S(F0) and ν(U) are proportional
to N [11], both sides of (4.29) can be divided by N , and if ν 	 ω, the LHS
of (4.29) depends on the ratio E2/N2, thereby defining a microscopic scaling
law . Varying E and N such that E/N is constant will lead to the same
solution of the Boltzmann equation. As ν is also proportional to p (1.130),
E/N and E/p thus constitute two variants of this scaling law.

Peforming an integration of (4.29) over the EEDF leads to the expres-
sion for θ (4.8), so that θ/p also constitutes a scaling law, this time in the
macroscopic domain. Note that θ/p is proportional to (E/ν)2, or equivalently
(E/N)2, in the case where ν 	 ω (see, for example, Fig. 4.13).

163 Unlike (4.8), where the value of ν is an average value taken over the EEDF, ν(U) is
here a microscopic frequency, as indicated by its explicit dependence on U .
164 This allows us to write in addition, for the case of helium, that ν/p0 � 2.4× 109 s−1.
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4.3.4 Three limit cases of the influence of ω
on a stationary EEDF

As was shown in equations (4.29) and (4.30), the influence of ω on the EEDF
occurs more exactly through the ratio ν(U)/ω. For this effect to be man-
ifested, however, it is necessary that the number of electron-electron colli-
sions be sufficiently small, such that the EEDF is non Maxwellian. Excluding
therefore the case of a Maxwellian EEDF, there are two possible limit cases:
ν/ω = 0, referred to as the microwave (MW) regime, and ν/ω → ∞, referred
to as the direct current (DC) regime, which corresponds effectively to the DC
discharge condition (ω = 0), but also to an HF discharge at sufficiently low
frequency that ν/ω → ∞ (recall that if the angular frequency ω is too low,
the EEDF is not stationary)165.

Figure 4.11 shows a comparison, for the same value of the product pR,
of the EEDFs calculated in the two limits (DC and MW), together with a
Maxwellian EEDF (M). We can see that the three EEDFs are completely
different from each other. In particular, we can distinguish the electrons in
the bulk of the distribution from those in the tail. Figure 4.11 shows that the
section of the tail between V1, the energy threshold for the first excited state,
and Vi, the energy threshold for ionisation, i.e. the region bounded by the
vertical lines in Fig. 4.11, is more populated in a discharge in the DC regime
than when the EEDF is Maxwellian (M) or when it is in the MW regime. This
signifies that the excitation coefficient k0j (4.25) and hence Nj , the density of
atoms in excited state j, at constant electron density166, are larger in the
DC regime; in consequence, there are relatively fewer low-energy electrons
in a DC discharge. This translates into a higher average electron energy in
the DC limit, which is supported by calculations which, in the present case,
yield 〈UeV 〉 = 6.8, 2.35 and 3.15 eV, for the DC and MW cases, and for the
Maxwellian EEDF, respectively [24].

Figure 4.12 shows the behaviour of the EEDF in the DC and MW cases
of Fig. 4.11 if account is taken of electron-electron collisions: as one might
expect, the difference between the DC and MW regimes is reduced when the
electron density increases (because the electron-electron collisions increase).
The difference vanishes for sufficiently high values of ne. Once again, for the
frequency to have a significant effect on an HF discharge, the electron density

165 In the following, since this concerns limit cases ν/ω → 0 or ν/ω → ∞, we can simply

consider the average value of ν rather than the microscopic value ν(U).
166 The EEDFs in Fig. 4.11 are normalised (the same area under each curve), the normal-
isation condition (see note 188 at the bottom of the page of Appendix XVII) being:

∞∫
0

F (U)U
1
2 dU = 1 .
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Fig. 4.11 Electron energy distribution function for an argon plasma in a long cylindrical
tube of radius R, resulting from calculations using a self-consistent model assuming an
ambipolar diffusion regime and direct ionisation from the ground state only (pR = 0.15 torr-

cm) [24]. The curve M is for a Maxwellian EEDF (sufficiently numerous electron-electron
collisions), while the curves DC and MW correspond to the limits ν/ω � 1 (direct current

regime) and ν/ω � 1 (microwave regime) described in the text.

should not be too large. From a practical point of view, these calculations
show that this is the case in most gases for167 ne/N < 10−4.
Remark: In the case of a Maxwellian distribution, the average energy (in
this case related to Te) depends on the configuration and the dimensions of
the discharge vessel, and the type and pressure of gas (Sect. 3.13). However,
in the more general case, from Fig. 4.11, it is necessary to add the angular
frequency ω of the field168 to the set of operating conditions. More generally,
we can say that the form and the mean energy of the EEDF are fixed by these
operating conditions, but also by the absorbed power density in the discharge:
although the power density is not included in the operating conditions, raising

167 Thus, at ne/N = 10−3, in an argon discharge, the electron-electron collisions are such
that the EEDF is almost Maxwellian, although the number of these collisions is often less

than that of the electron-neutral collisions. This is because the electron-neutral collisions
are less efficient in transferring energy, limited to a factor of me/M on each collision,

while electron-electron collisions can transfer all of the energy of one electron to another
(Sect. 1.7.2).
168 This explains why the values of 〈U〉, for a given value of pR, can be different.
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Fig. 4.12 Electron energy distribution functions calculated in argon, in the DC (ν/ω = ∞)
and MW (ν/ω � 0.1) limit cases for ne/N = 0 (full curves) and ne/N = 10−4 (dashed

curves) with direct ionisation from the ground state [33].

it increases the plasma density (see (4.4)), hence the electron-electron collision
frequency [43].

4.3.5 Influence of ω on the power θ

We have seen that the values of 〈U〉 and θ in a low-pressure discharge depend
only on the operating conditions and the absorbed HF power density, but we
have not yet discussed the role of the power density. Increasing the power
density, and hence the electron density ne, not only increases the number of
electron-electron collisions, but also the importance of multi-step ionisation
with respect to direct ionisation from the ground state of the atom: this
increase in ne thus corresponds to a reduction in the average energy of the
electrons, and hence of θ (Sect. 4.2.4). We will not consider this effect in the
following sections, but only the effect of ω on the EEDF.

Figure 4.13 shows the theoretical dependence of θ (in fact θl) on pR for
decreasing values of the ν/ω ratio, going from ν/ω = ∞ (DC case, curve A)
to ν/ω = 0 (MW case, curve H) in the absence of electron-electron collisions,
in argon: we can observe that, for a given pressure, the value of θ decreases
when ω increases [24]. The curve M corresponds to the case when the electron-
electron collisions are sufficiently numerous for the EEDF to be Maxwellian.
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Fig. 4.13 Calculated values of θ/p as a function of pR for decreasing values of ν/ω, going

from ν/ω = ∞ (DC case, curve A) to ν/ω = 0 (MW case, curve H) and for a Maxwellian
EEDF (M) in the ambipolar diffusion regime and with direct ionisation from the ground

state only [24].

4.3.6 Density of species produced per second
for a constant absorbed power density:
energy efficency of the discharge

In Sect. 4.3.4, we have seen that the excitation coefficient k0j is the high-
est in the case of the DC discharge regime, and hence the density Nj of
atoms (molecules) in the state j, produced per second, is also the largest,
for discharges with a given electron density. Of the three limit cases exam-
ined, which is the one that, for a given power density Pa, leads to the
largest value of Nj? To answer this question on the energy efficiency of the

discharge, recall that Ṅj = (k0jN0)ne, where ne is given by Pa = neθ ((4.26)
and (4.4) respectively) and consider the group of curves in Fig. 4.13. We
can see that the smallest value of θ is attained for a Maxwellian EEDF,
provided pR ≥ 0.1 torr-cm. Thus, for a given absorbed power density Pa in
the plasma, a greater number of electron-ion pairs (assuming the atoms and
molecules are ionised only once) is obtained in the MW case than in the DC
case, and even a little more with a Maxwellian EEDF, when the product pR
is sufficiently large. This signifies, among other things, that one should not
use a DC discharge to operate an ion source in which one expects the best
possible energy efficiency (highest ion density at a given Pa), at least when
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the electron density in this discharge is not sufficiently large for the EEDF
to be Maxwellian.

The calculation of θ/p in Fig. 4.13 has been made for argon as the main
(carrier) gas in the discharge. If we add another gas, assuming that this is at
the trace level, such that the properties of the gas remain that of the carrier
gas [24], we can use a perturbative approach to calculate k0j′ , the direct
excitation coefficient for the state j′ of the trace gas with energy threshold
Vj′ , with Vi the ionisation threshold energy of the main gas. We can draw
the following conclusions:

- the DC regime (ν/ω = ∞) gives the lowest value of Ṅj′ for a given
power Pa,

- the excitation to the state j′ is generally more effective when the EEDF
is Maxwellian, with some exceptions in favour of the microwave case for
certain values of energy Vj′ < Vi (for more details, see [24]).

The influence of ω on the EEDF depends, as we have seen, on the gas con-
sidered. The example of argon treated above can thus be considered as a
particular case, but nevertheless it shows the general characteristics required
for understanding the influence of frequency (Sect. 4.3.3).

4.3.7 Experimental and modelling results

In the next section, we will report experimental measurements of the effect
of a magnetic field B0 on the value of θa (recalling that θa = θl), which
has strongly inspired our modelling of the ECR (Sect. 4.2.1). In a second
part, we will firstly examine the influence of the frequency of the HF field on
the intensity of the UV light emitted from a hydrogen discharge, and then
on the coating and etching rates of polymers. We will endeavour to explain
these experimental results within the theoretical framework that we have
developed.

Influence of a stationary magnetic field on the value of θ

We consider an HF discharge in a cylindrical vessel subject to a magnetic
field B0, directed axially169. Figure 4.14 shows that, for a given pressure, the
value of θa decreases when ωce/ω increases; this effect is however reduced
when the pressure increases, due to the corresponding increase in ν (see
(4.8) and (4.21)), and disappears, in the present case, for pR > 1 torr-cm.
In addition, we can see that the values of θa/p as a function of pR in the
case where ωce/ω = 1 (the ECR condition) are hardly distinguishable from

169 In the present case, this discharge is maintained by means of an electromagnetic surface

wave (see [25] or Appendix XIX), but the results obtained, for these values of plasma
density, are independent of the method used to create the discharge [23].
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those for ωce/ω �= 1: the evolution of θa/p as a function of ωce is monotonic.
This result is in agreement with the model that we have developed above
(Sect. 4.2.3): the value of θa is fixed by the loss of charged particles and is
independent of the method of introducing the HF power into the discharge,
which can be through resonant or collisional absorption [20].

Fig. 4.14 Measured values of θa/p, as a function of pR, for different values of the mag-
netic field B0 (argon discharge sustained by the HF field from an EM surface wave with

azimuthal symmetry (m = 0) [20], ω/2π = 600MHz, R = 13mm).

Problems encountered when trying to show the influence of the
frequency of the field E on the properties of the HF plasma

The existence of an optimum frequency for the efficiency of a given process
has been observed experimentally, but in order to explain this in terms of
the basic mechanisms that we have described, it is necessary to know some
plasma parameters that are often difficult to measure (limits to plasma acces-
sibility by the diagnostics, perturbations in the HF field due to the measuring
probes). Furthermore, to conduct an experiment in which only the frequency
is varied and the other operating parameters remain constant is difficult [20].
For example, it is usually impossible to generate HF plasmas with the same
configuration of electric field E at radio and then at microwave frequencies.
Only plasmas produced by electromagnetic surface waves allow such a para-
metric study (Appendix XIX). A further difficulty in interpreting the results
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occurs when the EEDF oscillates (non-stationary EEDF) combined with the
variation in shape of the EEDF due to the effect of ν/ω (Sects. 4.3.2 and
4.3.3). The following experimental results show that it is possible to optimise
a process by tuning ω.

Effect of the transition from a non-stationary EEDF to a stationary EEDF
on the intensity of UV emission from a plasma

Figure 4.15 shows the influence of the field frequency on the intensity of
emission of the Lyman α (Lyα) line and the Hβ , Hγ and Hδ lines of the Balmer
series in a pure H2 discharge [12]. The aim of this exercise is to maximise the
UV radiation intensity, for a given absorbed HF power, of the Lyα transition
(N = 1 → N = 2, N being the principal quantum number of the hydrogen
atom), for irradiation of polymers. Examination of the 3 Balmer transitions
as functions of the field frequency indicates that they behave similarly to
the Lyα line. The calculations in [12] show that the transition from the low
intensity regime to the high intensity regime takes place for f ≥ 80MHz,
in other words, when the EEDF reaches a stationary state. This increase in
intensity could be related to the increase in the number of electrons in the
tail of the distribution, which are the only electrons capable of dissociating
H2 molecules and exciting hydrogen atoms.

Fig. 4.15 Frequency dependence of the intensities of atomic hydrogen lines from the hy-
drogen plasma (Pt = 50W, p = 0.5 torr, R = 13mm): � Lyα (121.5 nm), ♦ Hδ (410.2 nm),◦ Hγ (434.1 nm), � Hβ (486.1 nm) [12].
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Effect of the transition from a non stationary EEDF to a stationary EEDF
on polymer deposition

Figure 4.16 shows the variation of the deposition rate of thin films on
polymers, normalised to Pt, the total HF power absorbed170, as a function
of the frequency of the applied HF field. These coatings have been obtained
from C4H8 (isobutylene) or C4F8 (perfluorocyclobutane) using argon as the
carrier gas, the supply of the monomer being (under standard temperature
and pressure conditions) 3 standard cubic centimeter/sec (sccm) and that
of argon 10 sccm, with a total pressure of 0.2 torr [8]. The transition to the
upper plateau for f ≥ 100MHz corresponds to the transition, for a stationary
EEDF, from the DC case to that of a Maxwellian [24]. However, taking into
account the presence of molecules in the discharge (which cause the stationary
EEDF to be reached at a higher frequency than for atomic gases), one might
then think that this involves the transition from a non-stationary EEDF to
a stationary EEDF (DC case). Since we do not have such calculations on the
EEDF at our disposal, it appears difficult to answer this question.

Fig. 4.16 Growth rate of polymer films, normalised to the total absorbed power Pt, as a

function of the frequency of the applied HF field, R = 30.5mm (◦ C4F8, • and × C4H8,
for two values of Pt) [8].

170 Since we are unable to maintain a constant power density in the present case, we
normalise the deposition rate to Pt, the total power absorbed in the discharge.
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An increased deposition rate is an obvious industrial objective. In the
present case, the resulting optimisation allows not only a reduction in the
power density used, but of the gas temperature in the discharge, which in the
present case leads to a better quality of deposition.

Effect of frequency on etching rate

Figure 4.17 describes the etching rate of a polymer (polyamide), nor-
malised to the total absorbed power Pt, as a function of the frequency f
of the HF field. The etching takes place without intentional biasing of the
substrate (that is, at the floating potential Sect. 3.14), in a plasma of O2-
CF4 at 0.2 torr and with a total gas flow of 0.1 sccm [35]. In contrast to
the preceding case (Figs. 4.15 and 4.16), the etching rate does not switch
from one plateau to another, but goes through a maximum. This suggests
that competitive phenomena take place simultaneously, making the interpre-
tation more complicated. These effects are related to the characteristics of
the EEDF. Thus, when f increases:

1. The EEDF becomes stationary, and a maximum number of electrons is
obtained in the tail of the aforesaid EEDF, leading to a corresponding
increase in the dissociation of the O2-CF4 molecules.

2. The EEDF (ν/ω effect) tends towards the MW case, giving rise to a re-
duction in θ (Fig. 4.13) and a correlated increase in the plasma density,
leading finally to a Maxwellian EEDF.

3. If θ decreases, 〈U〉 (Te in the case of a Maxwellian EEDF) also decreases
(see Fig. 4.3), then the potential difference Vp−Vf of the substrate sheath
decreases (Sect. 3.14).

Consequently, when f increases, the energy of the ion bombardment on the
surface to be etched decreases (3), although the flux of ions (2) and reactive
species (1 and 2) increases, hence the possibility of finding a maximum in the
etching rate.

4.3.8 Summary of the properties of low-pressure
HF plasmas

The average power lost per electron through collisions with heavy particles is
seen to be an essential parameter in the description of low-pressure (≤ 15 torr
in argon) electric discharges (we could equally show that this is also true for
high-pressure discharges, including atmospheric). The operating parameters
of these discharges can be chosen such that the frequency of the HF field mod-
ifies the shape of the EEDF, or produces either a stationary or non-stationary
EEDF, allowing the optimisation of the kinetics of a given process. As a par-
ticular case of interest, we have seen that, under Schottky conditions, for a
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Fig. 4.17 Etching rate of a polyamide, normalised to the total absorbed power Pt, for two

series of values of Pt [35]. Discharge in O2 containing 6% CF4 (total pressure 200mtorr,
total gas flow of 0.1 sccm, R = 26mm).

given power density absorbed by the plasma, microwave discharges produce
a greater number of electron-ion pairs than DC discharges (if the electron
density is not sufficiently high for the EEDF to be Maxwellian). Finally, the
parameter θ is also instrumental in explaining how the electron cyclotron
resonance favours the maintenance of HF discharges at gas pressures that
are notably smaller than in the absence of the magnetic field.

4.4 High-pressure HF sustained plasmas

High-pressure plasmas are distinguished from low-pressure plasmas, not by
their method of production171, but by the mechanisms by which they lose
charged particles. These mechanisms involve two specific factors: the increase
in the gas temperature Tg due to the increase in elastic electron-neutral col-
lisions and the formation of molecular ions, which may dominate over the
atomic ions in determining the creation and loss of charged particles. This
results in phenomena such as contraction and filamentation of the plasma.

171 In both cases, ionisation results from electron collisions on the atom. At low pressure,

ionisation is mainly achieved through a single collision on the atom in the ground state
while at high pressure, it results from stepwise processes.
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High-pressure plasmas are produced by DC discharges, by inductively-
coupled discharges (ICP) in the radio-frequency domain, and by MW dis-
charges (for instance, by surface waves). Compared to low-pressure plasmas,
the modelling of high-pressure plasmas is more complex, taking account of
the more varied thermal and kinetic phenomena occurring in these discharges
and, for these reasons, is not so well established as at low pressures. In the
following, we will firstly illustrate experimentally the phenomena of contrac-
tion and filamentation, which are characteristic of high-pressure HF plasmas.
Then, we will establish the various hypotheses that are part of our model on
contraction, in which inhomogeneous gas heating and molecular ion kinetics
play key roles. Finally, we will show both experimentally and theoretically
how and why a contracted discharge expands when traces of a rare gas with
a lower ionisation potential is added to the carrier gas.

4.4.1 Experimental observation of contraction and
filamentation at atmospheric pressure

If the gas pressure exceeds a few tens of torr (� 1 kPa), the radial cross-
section of the plasma in a cylindrical discharge may contract as the pressure
increases, or the discharge may become filamentary. These phenomena, re-
ferred to as contraction and filamentation, affect all electric discharges in
most rare (noble) gases, namely neon, argon, krypton and xenon or certain
molecular gases, particularly those which are electronegative. In the case of
rare gases such as neon and argon, these phenomena begin at pressures as
low as a few torr.

Figure 4.18 shows the light emitted by discharges produced by an EM
surface wave in different gases, at atmospheric pressure, in a tube of 6mm
inner diameter. In such discharges, the electron density decreases (almost
linearly) from the gap of the surface wave launcher (EM field applicator)
toward the end of the column (Appendix XIX). We observe that the diameter
of the discharges in helium and N2 does not vary, to a first approximation, as
a function of the distance from the launching gap. In contrast, the diameter
of the plasma column is clearly reduced in the case of krypton and argon, but
much less in neon. The contraction phenomenon is characterised by the fact
that the plasma column shrinks radially, producing a dense, bright filament,
oriented, generally speaking, along the direction of the electric field in the
discharge [30]. In surface-wave discharges, the main E-field component is
directed along the tube axis. Then, provided the tube is mounted vertically,
the filament is directed along the tube axis and centred on it, as can be seen
in Fig. 4.18172. Comparing the observed degree of contraction with the value

172 When the discharge tube is oriented horizontally, natural convection pushes the filament
above the axis, towards the top.
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of the thermal conductivity κ of the gas at the temperature of the gas in the
discharge (Tab. 4.1), we see that the weaker κ, the more pronounced is the
contraction phenomenon.

Fig. 4.18 Photograph of the upper part (with respect to the plane of the microwave field

applicator, in this case a surfaguide) of a vertically oriented surface wave discharge in
different gases, for a tube of 6mm inner diameter (the tube walls are represented by the

white lines) and a frequency of 2450MHz. The black band, which cuts each of the three
longest discharges, is due to the structure of the Faraday cage shielding the MW radiation

coming from the discharge [15].

Table 4.1 Thermal conductivity κ (in 10−2 Wm−1K−1) of gases calculated at the ambient
temperature and at the discharge temperature, which is that measured on the axis of the

discharge.

Temperature (K) He N2
173 Ne Ar Kr Xe

300 20.67 2.62 3.4 1.72 1 0.55

Tg (K) (2700) (5200) (2000) (2100) (1900) (1700)
82 88.7 11.5 6.45 2.5 2.27

173 The thermal conductivity of the discharge in N2 increases considerably when the tem-

perature of the gas is sufficiently high to dissociate N2 into atomic nitrogen, N atoms being
much lighter (hence more mobile) than the N2 molecule.
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Filamentation is the breaking up of a single filament into two or many
filaments. In Fig. 4.18, the plasma columns in krypton and argon, close to
the wave launcher where the HF power flow is the highest, are separated
into two filaments: this effect is observed to disappear when the intensity of
the electric field becomes radially more homogeneous, which occurs when ne

decreases and ν/ω increases (towards the end of the column: upper part of
the photograph)174.

Variation of the apparent radius of the discharge as a function
of the tube radius

We define the apparent radius of the filament, which we will regard as the
plasma radius, as the radial position rp at which the luminous intensity has
reduced to half of the maximum filament intensity (on the axis): the degree
of contraction can then be defined as the ratio R/rp , where R is the internal
radius of the discharge tube. Figure 4.19 shows the way rp increases when R
increases in an argon discharge. When contraction occurs, i.e. above a partic-
ular value of R, which is 3mm in the present case, the filament radius ceases
to increase. On the contrary, in the N2 discharge, not only R/rp remains con-
stant when R increases, but the radial profile of the emitted light intensity
remains the same, as can be seen in Fig. 4.20: this discharge is clearly not
contracted (at least for the small values of R considered). The contraction of
a discharge is accompanied by important changes in the radial profile of the
plasma parameters, such as electron density and gas temperature as shown
in Fig. 4.26 below [15].

Figure 4.21 shows that when the tube diameter is not too large and the
field frequency not too high, there is contraction while, otherwise, the dis-
charge is filamentary. The figure also indicates that both the contraction and
filamentation effects can be progressively reduced by the addition to the car-
rier gas of traces of a rare gas with a lower ionisation potential than that of
the carrier gas. Contraction and filamentation abruptly vanish when a spe-
cific percentage of the trace gas is reached [6], as shown for contraction in Fig.
4.22. At this optimum percentage value, the light emitted from the plasma
is that of the added gas, not of the carrier gas. For larger percentages of the
added gas, contraction/filamentation starts to reappear.

Remarks:

1. Electric (meaning DC and HF) discharges maintained at reduced pres-
sure (p <1–10 torr) are relatively homogeneous and entirely fill the vessel
containing them. They are generally designated as luminous discharges or
diffuse discharges (to distinguish them from contracted discharges). In the

174 The phenomenon of filamentation is related to the weak penetration of the HF field in
the plasma. Its mechanism is not discussed further herein.
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Fig. 4.19 Variation of the apparent radius of the plasma filament (see text) in a

surface-wave argon discharge as a function of the internal radius R of the discharge
tube, at the same distance z from the end of the column, at atmospheric pressure and

915 MHz (after [15]).

Fig. 4.20 Radial profile of the luminous intensity emitted as a function of the nor-
malised radial position, in N2 discharge for tubes of different radii (after [15]), showing

that this discharge is not contracted: the radial profile appears independent of R.
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Fig. 4.21 Photographs of the upper section (with respect to the plane of the microwave
field applicator, which is perpendicular to the tube axis) of a vertically oriented surface

wave discharge in different noble gases at atmospheric pressure under a 0.5 slm gas
flow: a for a tube of 12mm inner diameter and a field frequency of 915MHz, showing

contraction in pure Ne and pure Ar. As traces of Ar are added to Ne and traces of
Xe to Ar, there is a progressive expansion of the discharge; b for a tube of 20mm
inner diameter and a field frequency of 2450MHz, showing filamentation. Progressively

adding traces of Kr to Ne reduces filamentation, which ultimately vanishes [7].

case of a cylindrical discharge, the plasma, determined by its luminous
section, occupies the total radial cross-section of the tube. This is related
to the fact that the loss of charged particles (electrons and ions) takes place
through diffusion to the walls of the tube where they recombine. Under
these conditions, the radial distribution of electrons is determined only by
the pressure and the radius of the discharge tube (Sect. 3.13). In contrast
to the diffuse case, the electrons in a contracted discharge are confined to
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the filament region and the loss of charged particles occurs principally by
volume recombination, as we will see (Sect. 4.4.2).

2. The transition from the diffuse regime to the contracted regime, which
is particularly easy to observe in a DC discharge [15], leads to a large
increase in the electron density and gas temperature, while the electron
temperature decreases. However, the transition from the diffuse state to
the contracted state, which is much more dense, does not necessarily imply
a transition of the discharge towards a state of thermal equilibrium (Sect.
1.4.3): Te remains generally higher than Tg. These contracted discharges
are, in fact, in an intermediate state, between the state far from thermal
equilibrium in a diffuse discharge and that of thermal equilibrium in a
thermal arc or an ICP discharge at high power density. Thus, the properties
of contracted discharges are neither those of cold luminous discharges nor
those of thermal arcs.

Fig. 4.22 Experimental radial profiles of the emitted-light total intensity in a discharge of

pure Ne, and when adding to it traces of either Ar, Kr or Xe (R = 6mm, f = 915MHz at
a fixed axial position z = 70mm from the column end). The displayed percentages of the
added rare gas correspond to the maximum radial expansion of the plasma. The recorded

intensities are normalised at unity at the axis [6].
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4.4.2 Modelling contraction at atmospheric pressure

The inhomogeneous heating of the discharge in the radial direction (resulting
from the finite thermal conductivity of the gas) and the control of the creation
and loss of charged particles by the molecular ions formed in high-pressure
discharges are the basis of the contraction effect [6].

Inhomogeneous gas heating

Figure 4.23 shows the radial variation of the gas temperature Tg, ob-
tained from optical emission spectroscopy,175 in neon, helium and nitrogen
discharges. We can observe that the gradient in the gas temperature is rela-
tively steep in neon (contracted discharge), while it is relatively weak in N2

discharges (not contracted). Nevertheless, although the helium discharge is
not contracted (see Fig. 4.18), there is a large gradient in Tg. To understand
the influence of the gradient in Tg on the contraction, we must additionally
consider the influence of the molecular ion kinetics on the charged particle
balance. Thus, at this point, the results in Fig. 4.23 suggest that the inho-
mogeneous heating of the gas is a necessary, but not sufficient condition for
the contraction to occur.

Kinetics of molecular ions at atmospheric pressure

Charged-particle loss and creation through molecular ions
The loss of charged particles occurs by dissociative recombination of the

molecular ions X+
2 with electrons:

X+
2 + e → Xm +X , (4.31)

where Xm and X represent metastable176 and ground state atoms of rare
gases, respectively.

The creation of charged particles occurs through stepwise ionisation of the
metastable state Xm:

Xm + e → X+ + e + e . (4.32)

175 From a ro-vibrational band of the OH molecule (from water vapour introduced as a
trace into the discharge), one can, with the help of a Boltzmann diagram (Appendix III),

determine the rotational temperature Trot from the recorded spectral intensity. In a dis-
charge at atmospheric pressure with a sufficiently high electron density, the ro-vibrational

energy of the thermometric molecule (OH) is in equilibrium with the translational energy
of the carrier gas, from which Trot = Tg .
176 In the case of rare gas atoms, with Tg in the range 300–2000K, the dissociative re-

combination yields one atom in the np6 atomic ground state and the second atom in the
np5(n + 1)s orbital configuration: two out of four of these energy levels are metastable

states. For example in argon, less than ≈ 30% is in the Ar(4p) compared to the Ar(4s)
configuration [29].
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Fig. 4.23 Radial distribution of the gas temperature Tg , observed in neon, helium and
nitrogen discharges at 2450MHz in a tube of inner radius R = 3mm (after [15]).

The metastable relay-state for ionisation can either follow directly from the
dissociative recombination (4.31) of the molecular ions, or result from an
electron collision on the ground state atom X:

e + X → e + Xm . (4.33)

However, in contracted discharges, this process contributes less to the forma-
tion of Xm than dissociative recombination, as shown in Fig. 4.27a below for
He, Ne and Ar [37].

Creation and loss of molecular ions (without affecting the number
of charged particles)

The atomic ions X+ created by stepwise ionisation (4.32) are converted
into molecular ions according to (atomic-ion association):

X+ +X+X → X+
2 +X , (4.34)

where the third body serves to absorb part of the excess kinetic energy pro-
duced by the formation of the molecular ion X+

2 .
The loss of molecular ions can also occur by spontaneous thermal dissoci-

ation:
X+

2 → X+ +X , (4.35)
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by collisions with electrons (electron impact dissociation), yielding atomic
ions:

X+
2 + e → X+ +X+ e (4.36)

and by collision with atoms (atomic impact dissociation):

X+
2 +X → X+ +X+X . (4.37)

This process is also a thermal dissociation process, as its rate increases with
the gas temperature Tg.

In summary, the molecular ions clearly control the creation and loss of
charged particles in such discharges. The predominance of any one process
for the loss of molecular ions depends mainly on the gas temperature Tg (see
Fig. 4.24).

Fig. 4.24 Electron density ne (full curve), atomic-ion density Ar+ (dashed curve), and
molecular-ion density Ar+2 (dotted curve) as functions of the gas temperature Tg , at a fixed

value of the electron temperature Te, at atmospheric pressure [4].

Discharge contraction: nonuniform gas heating and molecular ions

We have already mentioned that inhomogeneous gas heating plays an es-
sential role in the discharge radial contraction. To show this, the electron
density ne as well as the atomic and molecular ion densities are calculated
as functions of the gas temperature Tg in an argon discharge. This requires
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solving a balance equation for each type of charged particles as a function
of Tg for a fixed value of Te (in contracted discharges, the radial variation of
Te is much less important than the radial variation of Tg, and Te can thus
be considered, to a first approximation, constant radially). The reactions in-
cluded in the balance equations are those given above, to which are added
less important reactions under our conditions: ionisation of the atom in the
ground state by electrons (X + e → X+ + e + e), three-body atomic-ion re-
combination (X+ + e + e → X+ e) and diffusion of all charged particles and
metastable-state atoms. The kinetics of the radiative states of the 4p orbital
configuration has been neglected, because at pressures higher than 1 kPa,
their density is lower than that of the metastable and resonant (4s) states.

Figure 4.24 shows the dependence of the electron and atomic- and mole-
cular-ion densities on Tg, for an argon plasma sustained at atmospheric pres-
sure, with Te = 10500K [31]. Even though Te is kept constant, as Tg varies
between 1500 and 3000K, the electron density ne increases by two orders of
magnitude, while the density of atomic ions increases by more than three or-
ders of magnitude. On the other hand, the molecular ion density decreases by
almost an order of magnitude over the 500–3000K gas temperature interval.
The increase of atomic-ion density with Tg is due to the strong (exponential)
increase of molecular-ion dissociation ((4.35) and (4.37)). In such a case, since
the density of molecular ions decreases, the charged-particle loss through dis-
sociative recombination decreases (4.31) and, as a result, ne increases. The
increase of ne with increasing Tg is further enhanced by the decrease of the
density of molecular ions through electron impact (4.36) and the increasing
contribution of step-wise ionisation (4.32). Due to the gas temperature gra-
dient from the discharge axis to the wall (for example, Ne in Fig. 4.23), there
is a significant decrease of electron density (Fig. 4.25) that leads to the radial
contraction of the discharge.

4.4.3 Validation of the basic assumptions of
contraction at atmospheric pressure,
using a self-consistent model

Using a self consistent model, described in [4], applied to different gases (He,
Ne, Ar), radial profiles of the parameters (Tg, Te, ne) in the plasma have been
obtained. The modelling results show the existence of an inhomogeneous gas
heating in the three gases studied (Fig. 4.26a). However, only discharges in
argon and neon show a contraction (Fig. 4.26b), in agreement with experi-
mental observations.

The model also enables us to compare: a) the frequency at which charged
particles are created (direct ionisation νid, multi-step ionisation νie1, where
the relay states are populated from the ground state (4.33), and multi-step
ionisation νie2, where the metastable relay states are populated by disso-
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Fig. 4.25 Radial distribution of electron density (obtained through Stark broadening of
the Hβ line) in a 915 MHz neon surface-wave discharge sustained at atmospheric pressure,

at axial position z = 110 mm from the plasma end, and in a 3 mm inner radius tube [5].

Fig. 4.26 Radial profiles a of the gas temperature and b the electron density in surface-

wave discharges in helium, neon and argon at atmospheric pressure.

ciative recombination (4.32)): b) the frequency at which charged particles
are lost (ambipolar diffusion νD (Sect. 3.12), dissociative recombination νrm
(4.32) and three-body recombination νra (1.151) of the charged particles).
These results are shown in Fig. 4.27. Analysis of these various mechanisms of
charged-particle loss and creation indicates that contraction only manifests
itself in gases for which the kinetics of loss and gain of charged particles is
completely controlled by molecular ions. Figure 4.27 shows that in argon and
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neon, the frequency for multi-step ionisation νie2 (process (4.32) involving
molecular ions at the origin) and the frequency for dissociative recombina-
tion νrm (4.31) predominate for creation and loss repectively. In helium, the
kinetics of molecular ions is not as important as in Ar and Ne: neither the
creation nor the loss of charged particles are controlled by molecular ions
in helium. Consequently, there is no non-linear dependence of ne on Tg in
the He discharge, and the presence of a gradient in Tg does not induce its
contraction (Fig. 4.26b).

Fig. 4.27 Calculated frequencies a for the creation of charged particles (direct ionisation
νid from the ground state, multi-step ionisation νie1, where the relay states are populated

from the ground state (4.33) and multi step ionisation νie2, where the relay-states are
populated by dissociative recombination (4.31)); b for the loss of charged particles (am-

bipolar diffusion νD (Sect. 3.12), dissociative recombination νrm (4.31) and three-body
recombination νra (1.151)).

Agreement between experiment and theory

Figure 4.28 compares experimental and theoretical results for the case of a
neon discharge at atmospheric pressure. We can see, in the first place, the
excellent fitting of the experimental ne profile to exp(−(r/rp)

2). The theo-
retical profile is obtained from numerical calculations, also for neon, using a
self-consistent plasma model similar to that developed for the argon discharge
[4]. The theoretical curve shown is for Tg(r = R) = 1200K, at the same axial
position z with respect to the end of the column, as in the experimental case.

In summary, we have seen that contraction manifests itself by a ne profile
that exponentially decreases towards the walls. This rapid decrease in ne

results from a strong radial reduction in Tg: it takes place because the kinetics
of the loss-creation of charged particles is dominated by the molecular ions.
On the other hand, when Tg is sufficiently high for the atomic ions to govern
these kinetics, then ne hardly varies as a function of Tg (Fig. 4.24), and
contraction is not possible. This seems to be the case in discharges with very
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Fig. 4.28 Radial distribution of the electron density obtained (•) experimentally,

from Stark broadening of the Hβ line, smoothing by exp(−(r/rp)2) (—) and by
calculations (. . . )[4].

high electron densities (ne > 1015 cm−3) such as, for example, ICP discharges
(Fig. 4.4) at atmospheric pressure. The calculations show, in addition, that
the slope of rapid variation in ne as a function of Tg in argon (Fig. 4.24) is
less pronounced in the neon discharge, but very abrupt in the case of xenon:
experimentally, the argon discharge is effectively more contracted than that
of neon but less contracted than that of xenon. The good agreement between
experiment and theory validates the model proposed for the contraction of
atmospheric pressure discharges.

4.4.4 Kinetics of expanded discharges at atmospheric
pressure as a result of adding traces of rare
gases with a lower ionisation potential

The kinetics of the expanded discharge is characterised by the fact that the
molecular ions of both the carrier gas and the added gas cease controlling the
charged-particle loss and creation mechanisms (in contrast to the contracted
discharge case, as we have just seen): their concentration is too low as we
will show further on. Instead, the charged-particle creation of the discharges
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is governed, as expansion progresses, by Penning ionisation177 of the ground-
state atoms of the added gas colliding with metastable-state atoms of the
carrier gas. When the discharge has fully expanded, the creation of charged
particles is ensured by step-wise ionisation of the added gas atoms, through
the relay of metastable-state atoms of this gas (4.33). Losses are controlled
by ambipolar diffusion of the trace-added gas atomic ions and no longer by
volume (dissociative) recombination. Changing from a volume recombination
regime to one of diffusion causes the plasma to expand radially [6].

Molecular ion formation

Under expanded discharge conditions, the carrier and added gas molecular
ions are not controlling the discharge kinetics because their density is too
low. Recall that molecular ions are formed through a 3-body reaction (4.34).
In the case of the carrier gas, this reaction is no longer efficient, because the
density of its atomic ions, essential for creating molecular ions, has decreased
significantly (due to quenching of the Xm metastable-state atoms); as for the
added gas, the atomic-ion conversion into molecular ions is also inefficient
because there are too little additional neutral atoms.

Ion density calculations for a Ne/Ar mixture

The preceding explanations are supported by a global (0-D) calculation of
the atomic and molecular ion densities, reported below for Ne as the carrier
gas and Ar as the added gas, as an example. The kinetics considered for the
charged particles is that developed in [4], with further inclusion of Ar Penning
ionisation from the neon metastable atoms:

Nem +Ar → Ne + Ar+ + e , (4.38)

where Nem indicates a metastable-state Ne atom [13], and charge transfer
from Ne+2 to Ar+ is included. The ion densities are obtained by solving a
set of balance equations for Ne+, Ne+2 and Ar+, together with the charge
neutrality relation. The input parameters of the model are the electron den-
sity ne and gas temperature Tg, taken from experiments (through the Hβ

line Stark broadening and a N+
2 ro-vibrational Boltzmann plot respectively)

at the discharge axis, and electron temperature Te calculated using the two-
temperature Saha equation. Figure 4.29 presents the calculated ion densities
as functions of the percentage of Ar added to Ne, when varied from 0 to
1%: experiments show that, over this interval, ne and Tg can be considered

177 Penning ionisation can be obtained when the energy level Em of the metastable state

atoms (e.g. Em = 16.60 eV for Ne) of the carrier gas is higher than the energy threshold
Ei for ionisation of the atoms of the added gas (e.g. Ei = 15.756 eV for Ar).
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constant at the discharge axis (ne = 5 × 1013 cm−3 and Tg = 2300K at
ω/2π = f = 915MHz, R = 6mm, z = 110mm). As Ar is added to Ne, Ar+

rapidly becomes the dominant ion: the concentration of Ne+ and Ne+2 de-
creases by more than three orders of magnitude, while that of Ar+2 increases,
but nonetheless remains very low compared to that of Ar+.

Fig. 4.29 Ne+, Ne+2 , Ar+ and Ar+2 densities calculated for a Ne/Ar mixture discharge
at atmospheric pressure. The values of ne and Tg are those obtained experimentally at

the discharge axis of the Ne/Ar mixture (over the 0–1%Ar range) with f = 915MHz,
R = 6mm and z = 110mm [6].

In a pure Ne or Ar contracted discharge, the density of molecular ions
can be up to 100 times lower than that of atomic ions and still control the
discharge kinetics, because of the high coefficient rate of the dissociative
recombination. In the Ne/Ar expanded discharge (0.3 < %Ar < 1), the Ne+2
and Ar+2 molecular ion concentrations are much lower than in a pure rare
gas, at least four orders of magnitude lower than that of Ar+, i.e. much too
low for molecular ions to control the discharge charged-particle kinetics.

In the case of maximum expansion (Ne + 1%Ar), the reaction rate of
Ar+ ambipolar diffusion is more than two orders of magnitude higher than
the reaction rates of dissociative and three-body recombinations, indicating
that the loss of charged particles is controlled by (ambipolar) diffusion. As a
result, the charged particles can diffuse to the discharge-tube wall, ensuring
the radial expansion of the plasma.
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The modelling of the atmospheric pressure expansion is a further proof of
the crucial role played by molecular ions in high-pressure plasmas, this time
by showing what happens when their formation is hindered.

4.4.5 Summary of the properties of high-pressure
HF plasmas

The fact that molecular ions control the creation and loss of charged particles
is certainly an essential characteristic of high-pressure plasmas. In atomic rare
gases, this feature remains valid even though the density of molecular ions can
be as low as two orders of magnitude below that of the atomic ions. The disso-
ciative recombination of rare-gas molecular ions provides a metastable-state
atom, that ensures an efficient step-wise (re)ionisation process, another dis-
tinctive feature of high-pressure plasmas compared to low-pressure plasmas,
where ionisation results from a single collision on the ground-state atom. In
further contrast to low-pressure discharges, the electron-neutral collisions in
high-pressure discharges are so numerous that they heat the gas to the point
that, in discharge columns, a radial gradient of the gas temperature Tg ap-
pears: the lower the thermal conductivity κ of the discharge gas, the steeper
is the radial gradient of Tg. This inhomogeneous heating of the discharge gas,
combined with the dissociative recombination of molecular ions, have been
found to be the two features responsible for discharge contraction: these are
two necessary conditions for the occurrence of discharge contraction (and
filamentation). As a matter of fact, expansion of a contracted discharge is
obtained by breaking up the molecular-ion cycle of charged particle creation
and loss. The model presented for the expansion phenomenon provides strong
support to the explanations provided for the discharge contraction, empha-
sising the key role played by molecular ions in high-pressure discharges.



Appendix I

Some Properties of the
Maxwell-Boltzman (M-B) Velocity
Distribution

This distribution is related to the stationary state of a system with tempera-
ture T , provided the interactions between particles are sufficiently numerous.
If the thermodynamic system is not in complete equilibrium, the minimum
requirement is that collisions between particles of the same type be numer-
ous enough for the Maxwell-Boltzmann distribution (in short a Maxwellian
distribution) to be established.

M-B distribution in the absence of external fields

In one dimension, using the electrons as an example, the distribution function
is given by the expression (Fig. I.1):

f(w) =

(
me

2πkBT

)1/2

exp

[
−mew

2

2kBT

]
, (I.1)

where me is the electron mass, T their temperature, kB the Boltzmann con-
stant, and w, the microscopic (individual) electron velocity of thermal origin.

In three dimensions, for the case where the particles have a collective
motion with velocity v, the microscopic velocity distribution depends on the
orientation of w with respect to v:

f(w) =

(
me

2πkBT

)3/2

exp

[
− me

2kBT
(w − v)2

]
, (I.2)

where (w − v)2 ≡ w2 + v2 − 2w · v.
Unless otherwise stated, the normalisation condition used here is:

∞∫

−∞

f(w) d3w = 1 (I.3)

with d3 w = dwx dwy dwz in Cartesian coordinates.
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Fig. I.1 Maxwell-

Boltzmann distribution
in one dimension.

We could also have chosen the normalisation in terms of the electron density:

∞∫

−∞

f(w) d3w = ne . (I.4)

In this case, ne must be included as a factor in (I.2): this is discussed further
in Sect. 3.3.

If the group velocity v = 0, the distribution is isotropic:

f(w) =

(
me

2πkBT

)3/2

exp

[
−mew

2

2kBT

]
, (I.5)

i.e. it is independent of the direction of the velocity w. In this case, the
isotropy leads to d3w = 4πw2 dw in spherical coordinates, and the distribu-
tion of particles, travelling with a scalar (positive) velocity in the interval w,
w + dw, is then given by:

g(w) ≡ 4πw2f(w) (I.6)

from which:

g(w) =

√
2

π

(
me

kBT

)3/2

w2 exp

[
−mew

2

2kBT

]
, (I.7)

which is illustrated in Fig. I.2. The normalisation condition under these con-
ditions is:

∞∫

0

g(w) dw =

∞∫

0

4πw2f(w) dw = 1. (I.8)

Characteristic velocities of the M-B distribution with zero group
velocity (〈w〉 ≡ v = 0)

- the most probable speed

vth =

(
2kBT

me

)1/2

, (1.8)
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Fig. I.2 Isotropic
Maxwell-Boltzmann dis-

tribution, represented in
scalar form, showing char-

acteristic velocities.

- the average speed

〈w〉 =
(
8kBT

πme

)1/2

= 1.128 vth , (I.9)

- the mean square speed (related to the average energy):

√
〈w2〉 =

(
3kBT

me

)1/2

= 1.225 vth , (I.10)

- the average kinetic energy

1

2
m〈w2〉 = 3

2
kBT , (I.11)

- the random flux , defined as the flux of particles traversing a surface in a
single direction (in the positive z direction, for example, see exercise 1.2):

〈nwz〉 =
n〈w〉
4

. (I.12)

M-B distribution in a conservative force field

If a conservative force field F acts on the particles, a prerequisite for a
Maxwell-Boltzmann distribution is that this force obeys the relation:

F = −∇Φ(r) (I.13)

where Φ(r) is the potential energy. The distribution function f(r, w) can
then be written in the form:

f(r,w) = n̂(r) exp

[
−Φ(r)

kBT

]
f(w) (I.14)

where n̂(r) is the density of particles in the absence of applied or space-charge
field E.
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Writing:

n(r) = n̂(r) exp

[
−Φ(r)

kBT

]
, (I.15)

we obtain:
f(r,w) = n(r)f(w) , (I.16)

which shows that the function f(r,w) is separable (Sect. 3.3). Including the
normalisation (I.3) for the function f(w), this leads to the normalisation
condition for f(r,w):

∫

w

f(r,w) d3w = n(r)

∫

w

f(w) d3w = n(r) . (I.17)

Note that we use the notation f for the velocity distribution function, whether
it is separated or not: if the argument of f does not contain the position
vector, we can conclude that it has been separated.

Druyvesteyn electron distribution

This distribution is often used in plasma physics, notably because it can be
expressed in analytic form. Used conjointly with the M-B distribution func-
tion, it allows us to determine the conditions for which certain hydrodynamic
parameters depend on the form of the electron energy distribution function
(EEDF).

The Druyvesteyn distribution can be considered as an adequate description
of the EEDF when the electrons satisfy the four following assumptions [10]:

1. Elastic electron-heavy particle collisions predominate: inelastic collisions
(excitation and ionisation) are thus negligible;

2. Electron-electron collisions are negligible;
3. The total microscopic cross-sections for electron-neutral collisions are in-

dependent of electron energy for all types of collision;
4. The average electron energy is higher than that of heavy particles (Te >Tg).

For an isotropic distribution, the Druyvesteyn EEDF may be written:

fD(w) =
1.04π

1
2

2

(
me

2πkBTe

) 3
2

exp

[
−0.55

(
mew

2

2kBTe

)2
]

. (I.18)

Figure I.3 compares the Druyvesteyn distribution with that of Maxwell-
Boltzmann’s for the same average electron energy and the same electron den-
sity: the Druyvesteyn distribution contains much fewer high energy electrons
than the M-B distribution.
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Fig. I.3 Comparison of

isotropic Druyvesteyn’s
and Maxwell-Boltzmann’s

EEDFs with the same
average energy.

M-B electron energy distribution

In Appendix XVII, we show that the Maxwell-Boltzmann distribution func-
tion in electron energy UeV can be written:

F (UeV ) =
2

π
1
2 (kBTe)

3
2

exp

(
−eUeV

kBTe

)
, (I.19)

where ŪeV =
3

2

kBTe

2e
is the average energy.

Fig. I.4 Distribution func-
tion for Maxwellian elec-

trons of energy UeV with an
average energy ŪeV = 1 eV.



Appendix II

The Complete Saha Equation

The complete Saha equation can be written in the form:

nitne

n0t
=

(2πmekBT )
3/2

h3
2
B′(T )

B(T )
exp

[
− eφi

kBT

]
(II.1)

where φi is the first ionisation potential of the neutral atoms, n0t and nit are
the total density of neutral atoms and the total density of ions respectively
(total density includes the ground state and all the respective excited states
of the neutral atoms and of the ions), ne is the electron density (ne = ni

because the ions are only singly ionised); B(T ) and B′(T ) are the partition
functions given by:

B(T ) =
∞∑

k=0

gk exp

[
− eφk

kBT

]
(II.2)

where the sum over k includes all of the excited states of the atom (k = 0
represents the ground state) and:

B′(T ) =
∞∑

j=0

gj exp

[
− eφj

kBT

]
(II.3)

where the sum over j includes the excited states of the singly-ionised (posi-
tive) ion (j = 0 is the ion ground state), gk and gj represent the degeneracies
of the neutral atom and ion levels, respectively, and φk and φj are the po-
tentials (value at threshold, see Sect. 1.7.9) corresponding to the excitation
levels (measured with respect to the ground state of the neutral atom or that
of the ion, whence φk(k = 0) = 0 and φj(j = 0) = 0).
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Significance of the partition function

The density nm of the excited levelm with respect to the density of its ground
state (subscript zero) is given by (Boltzmann’s law):

nm

n0
=

gm
g0

exp

[
− (Em − E0)

kBT

]
. (1.10)

One would like to express nm as a function of the total density of the neutral
atoms n0t (or the ions nit). From the Boltzmann law, the cumulative density
n0t becomes:

n0t ≡
∞∑

k=0

nk

=
n0

g0

(
g0 + g1 exp

[
− (E1 − E0)

kBT

]
+ · · ·+ gm exp

[
− (Em − E0)

kBT

]
+ · · ·

)
.

(II.4)

Substituting the definition of the partition function (II.2), the ratio nm/n0t

can be written:
nm

n0t
=

gm
B(T )

exp

[
− (Em − E0)

kBT

]
. (II.5)

Comparing (II.1), the exact form of the Saha law, with its simplified form
(1.12), we note that this approximation assumes that B(T ) � g0. It actually
takes no account of the excited neutral atoms in the assessment of the total
neutral atom density. This is possible in the case where T is sufficiently low;
in this case, the density of the ground state is very large compared to the
cumulative density of all the excited atoms.



Appendix III

Partial Local Thermodynamic
Equilibrium

When introducing the concept of a two-temperature plasma (Sect. 1.4.3), we
have shown that the population of the different energy levels of the neutral
atoms are not, in this case, governed by the Boltzmann law (1.10): the neigh-
bouring levels to the ground state have radiative lifetimes sufficiently short
compared to the time between electron-neutral collisions, such that they de-
populate radiatively rather than by electron-neutral collisions, and therefore
fail to satisfy the electron kinetics (Saha’s law and Boltzmann’s law); on
the contrary, the higher levels, those situated beneath the first level of the
ionised atom, are in collisional equilibrium with the electrons, and satisfy the
Boltzmann law because they experience a much greater number of inelastic
collisions than the lower levels178; setting Texc = Te, enables us to determine
their population concentrations. On the other hand, the gas temperature
(principally that of the atoms in the ground state, because they are more
numerous), denoted by Tg, is such that Tg  Te.

This situation is illustrated in Fig. III.1, where we have reproduced the
diagram of the energy levels of the neutral argon atom; to simplify the dis-
cussion, these levels have been regrouped according to the orbital electronic
configuration to which they belong. In this notation, for the ground state
level we have 1s2 2s2 3s2 3p6, although in Fig. III.1 we have retained only the
last term, for simplicity. The first excited configuration, denoted 4s, contains
4 levels (see the inset) that will be treated as a block.

To verify the applicability of the Boltzmann law, we can draw the loga-
rithm of the population concentration of the neutral atom levels as a function
of their energy, with reference to the ground state (1.10), which is called a
Boltzmann curve. If the law is satisfied, a straight line is obtained, propor-
tional to T−1

exc. Fig. III.2, obtained by optical emission spectroscopy in an
argon plasma sustained by a microwave discharge at atmospheric pressure,

178 The electron energy distribution (Sect. 1.4.2 and Appendix I) contains more low energy
electrons than high energy electrons, while the collisional excitation of the first levels of

the argon atom from the ground state, for example, requires very high energy electrons
(above 11.55 eV).
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396 III Partial local thermodynamic equilibrium

shows that the orbital electronic configurations 5p and above are in Boltz-
mann equilibrium among themselves, while the concentrations of the 4p con-
figuration fall below this line: the Boltzmann equilibrium is thus only partial
with Tg  Te (Sect. 1.4.3).

Fig. III.1 Energy diagram of the neutral argon atom, up to the first level of the ionised

atom. The energy states have been regrouped according to the orbital electronic configu-
ration to which they belong.

Fig. III.2 Diagram, referred to as a Boltzmann diagram, observed in a microwave-
discharge in argon (surface wave plasma). The population concentration of the levels is

proportional to the intensity I of the radiation emitted at the energy of the levels, ex-
pressed in eV, and referenced to the ground state energy; the coefficient Aqp represents

the frequency of the spontaneous electric-dipolar radiation transition, from the state q to
the state p [3].



Appendix IV

Representation of Binary Collisions
in the Centre of Mass
and Laboratory Frames

In the laboratory frame

Fig. IV.1 Schematic of
a binary collision in the

laboratory frame, with
impact parameter s: the

particle β is assumed to be
initially at rest.

In the center of mass frame

Fig. IV.2 Schematic of a

binary collision in the cen-
tre of mass frame, showing

the scattering angle θ. The
distance s between the two

pairs of asymptotes is the
impact parameter.
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The velocities before and after the collision are parallel and anti-parallel
respectively. The representation of the interaction in the centre of mass (CM)
frame greatly simplifies the description of the collisional interaction, since a
single angle θ completely describes the scattering process.

Relationship between the two frames

From Fig. IV.3, we find:

tan θαL =
w′

α0 sin θ

w′
α0 cos θ + w0

. (IV.1)

Fig. IV.3 Description, in
the most general case, of
the velocity of the particle

α before and after collision,
in the laboratory frame and

that of the centre of mass,
showing the relationship

between the two frames.

The case where particle β is initially at rest:

- If mα  mβ , the velocity of the CM in the laboratory frame is the same
as the velocity of the particle β (1.69). Since it is assumed at rest, then
from (1.67) w0 � 0. In this case (IV.1):

θαL = θ . (IV.2)

- If mα = mβ and since wβ = 0 in the present case, then from (1.72)
wαβ = wα. The velocity of the CM in the laboratory frame is given by
(1.69) and can be written:

w0 =
1

2
wα =

1

2
wαβ . (IV.3)

Similarly, according to (1.73), the velocity wα0 of the particle α in the CM
frame is given by:

wα0 =
1

2
wαβ . (IV.4)

Since w′
α0 = wα0 in the case of an elastic collision (1.98), (IV.3) and (IV.4)

give w′
α0 = w0 and finally, from the trigonometric relation (IV.1):

θαL =
θ

2
. (IV.5)



Appendix V

Limiting the Range of the Coulomb
Collisional Interactions:
the Coulomb Logarithm

The ultimate objective of this Appendix is to calculate the collision fre-
quencies of the Coulomb interactions, knowing that weak interactions (small
scattering angles θ) prevent the corresponding integrals taken over θ from
converging (Sect. 1.7.4). These weak interactions have, in fact, no physical
importance, when their radius of influence is greater than the Debye length,
λD: there is electrostatic screening. Accounting for this allows us to reduce
the range of integration in θ and thus ensure the convergence of the integrals
by introducing the concept of the Coulomb logarithm. To reach this goal, we
will first determine the value of θ during a binary elastic collision due to an
unspecified central force F .

General study of the trajectories of two particles
(binary interactions) subjected to a central force field

Here, we only consider binary, elastic, electromagnetic179 interactions. This is
the case for Van Der Waals interactions between neutrals180 (potential varies
as r−6), between neutral and charged particles181 (potential varies as r−4)
and the Coulomb interactions between charged particles182 (potential varies
as r−1). These electromagnetic interactions induce a conservative central field

179 The use of the term “electromagnetic interaction” is justified in the two following notes

at the foot of this page. On the other hand, the interactions are quantum in nature if the
particles approach within a minimum distance that is of the same order of magnitude as

the particle dimensions.
180 Interaction between the instantaneous electric dipole of one of the particles, and the
dipole that it induces in the second particle.
181 Interaction between the charge of one particle, and the electric dipole that it induces
in the neutral particle.
182 We assume that the velocities of the charged particles are sufficiently small, such that

the radiation due to the particle deceleration, when deflected by another charged particle
(braking radiotion: bremsstrahlung) can be neglected.
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400 V Coulomb collisional interactions

of force F (see Appendix I), collinear with r, such that F = −∇Φ(r) (1.16),
where Φ(r) is the potential energy of the interaction between the particles
separated by a distance r.

The geometry of the elastic interaction between two particles α and β is
described in Fig. V.1a for a repulsive interaction and in Fig. V.1b for the
case of an attractive interaction. In the centre of mass frame (where the
centre of gravity G of α and β moves at a constant velocity in the laboratory
frame, Sect. 1.7.2), the trajectories of α and β approaching from infinity are
two similar curves with respect to G (hyperbola in the particular case of
a Coulomb interaction183), each having two asymptotes (trajectories a long
time before and a long time after the collision). The distance s between the
two pairs of asymptotes is the impact parameter (see Fig. V.1). This is also
the distance of closest approach in the abscence of interaction.

Fig. V.1 Geometric representation of a binary interaction in the barycentric frame (cen-
tre of mass): a repulsive interaction; b attractive interaction. The polar coordinates r

and χ describe the position of the particle α with respect to particle β. The value χmax

corresponds to the minimum value of the distance r.

183 In the case of 1/r2 interaction forces (gravitation and Coulomb forces), the trajectories
are either elliptic or hyperbolic.
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The study of the motion of the particles is conducted in the centre of mass
frame in polar coordinates, with r the distance between the particles α and
β (one of the particles taken to be at the origin) and χ the angle between the
vector r and the relative velocity wαβ = wα0 −wβ0 of the particles α and
β before the interaction: the velocities wα0 and wβ0 of the particles α and
β before collision are collinear with wαβ (1.71) and the velocities w′

α0 and
w′

β0 of the particles α and β after collision are collinear with w′
αβ . In this

system of coordinates, the components of the relative velocity w during the
interaction (before the interaction w = wαβ , after the interaction w = w′

αβ)
are expressed respectively by:

wr =
dr

dt
, wχ = r

dχ

dt
, wz = 0 , (V.1)

where the z axis is perpendicular to the plane (r,χ) containing the trajectories.
In the centre of mass frame, the total kinetic energy related to the sole

relative motion of the particles α and β is simply expressed by:

Ec =
μαβw

2

2
, (1.79)

or as a function of the different components of the relative velocity:

Ec =
μαβ

2

[(
dr

dt

)2

+ r2
(
dχ

dt

)2
]

. (V.2)

We can easily verify that the kinetic moment of the relative motion, defined by:

L = r ∧ μαβw (V.3)

is an invariant of the motion. In fact:

∂L

∂t
= w ∧ μαβw︸ ︷︷ ︸

0

+r ∧ μαβ
dw

dt
, (V.4)

or again:
∂L

dt
= r ∧ F ≡ 0 , (V.5)

since r and F are collinear. The calculation of the vector product of the
relative kinetic moment L shows that the sole non-zero component is Lz:

Lz = μαβr
2 dχ

dt
(V.6)

which, from (V.5), is therefore constant during the motion (first invariant of
the motion). The value of Lz:

Lz = (r ∧ μαβw)z (V.7)
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is then easily obtained from the initial conditions at infinity in (V.3),
such that:

Lz = sμαβwαβ = sμαβ(wα0 − wβ0) , (V.8)

where wαβ is the modulus of the relative velocity w at infinity and, following
(V.7), where s, the impact parameter, is the projection of r perpendicularly
to wαβ in the plane containing the trajectories.

A second invariant of the motion is the total energy E (kinetic energy plus
potential energy) which is conserved during the course of the interaction, i.e.:

E = Ec(r) + Φ(r) = constant . (V.9)

The value of E is given by the initial conditions before the interaction, when
the potential energy is zero, thus:

E =
μαβ

2
w2

αβ . (V.10)

The equation for the trajectory χ = χ(r), which we will now calculate, can
be simply deduced from the two invariants. From (V.2) and (V.6), we can
write:

E =
μαβ

2

(
dr

dt

)2

+
L2
z

2μαβr2
+ Φ(r) , (V.11)

from which:

dr

dt
= ±

√
2

μαβ

[
E − Φ(r)

]
−
(

Lz

μαβr

)2

. (V.12)

Since:
dr

dt
=

dr

dχ

dχ

dt
, (V.13)

the differential equation for the trajectory can be directly deduced from (V.6)
and (V.12), such that:

dχ

dr
= ±

Lz

μαβr2√
2

μαβ

[
E − Φ(r)

]
−
(

Lz

μαβr

)2
(V.14)

or, by replacing E and Lz by their values ((V.8) and (V.10)):

dχ

dr
= ± s

r2

√
1− s2

r2
− 2Φ(r)

μαβw2
αβ

. (V.15)
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The equation of the trajectory can be obtained by a simple integration over
r, provided that the form of the potential energy Φ(r) of the interaction is
known.

The domain of possible values for r is defined by the quantity under the
square root, which must remain positive. In particular, the minimum dis-
tance rmin between the particles during their interaction is obtained when
dr/dχ = 0, i.e., when the quantity under the square root in (V.15) is zero:

Φ(rmin) =
μαβw

2
αβ

2

(
1− s2

r2min

)
. (V.16)

The minimum value rmin corresponds to the maximum angle χ, χmax. In
fact, during the motion, while r decreases from infinity to the minimum
value rmin, the angle χ increases from 0 to χmax. The angle χmax is half the
angle between the asymptotes before and after the collision. In the case of a
repulsive interaction (Fig. V.1a), the angle χmax is linked to θ by the relation:

θ = π − 2χmax , (V.17)

where the scattering angle θ, together with the impact parameter s, is one of
the important characteristics of a binary collision. The angle χmax is obtained
by integration of (V.15) along r from infinity to rmin:

χmax =

rmin∫

∞

s dr

r2

√
1−

(s
r

)2
− 2Φ(r)

μαβw2
αβ

. (V.18)

We have now established the general relations describing the trajectories
(repulsive and attractive) of the interaction in the case of any central force.
To apply these results to specific cases, we need to know the expression for
the central force, or Φ(r), which will allow us to calculate χmax(s, wαβ), then
finally the scattering angle θ.

Remark: All the preceding calculations have been performed in the centre
of mass frame. However, the trajectory in the laboratory frame is almost the
same as that calculated in the centre of mass frame if mα  mβ . In this case,
the centre of mass is practically indistinguishable from the case in which the
particle β is assumed to be stationary and the scattering angle θ remains
unchanged from one frame to the other. On the other hand, if the masses mα

and mβ are similar, the scattering angle approaches θ/2 in the laboratory
frame (see Appendix IV).

We will now calculate the angle θ explicitly for the case of a Coulomb
interaction.
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Scattering angle θ for the specific case of a Coulomb interaction

The electrostatic interaction potential created by the particle β of charge
Zβ is:

φ(r) =
1

4πε0

eZβ

r
(V.19)

and the potential energy for the interaction of particle α of charge Zα with
the particle β has the value:

Φ(r) = eZαφ(r) , (V.20)

hence:

Φ(r) =
ZαZβ e2

4πε0r
. (V.21)

We can then define the critical impact parameter s0 (the significance of which
will become apparent later) such that:

s0
r

=
Φ(r)

2E ≡ Φ(r)

μαβw2
αβ

. (V.22)

For Zα = Zβ = 1, the repulsive case resulting from two positive charges, we
have:

s0 =
e2

4πε0μαβw2
αβ

. (V.23)

Substituting (V.22), (V.18) can be written explicitly:

χmax =

rmin∫

∞

s dr

r2

√
1 +

(s0
s

)2
−
(s
r
+

s0
s

)2 . (V.24)

By a change of variable:

ξ =

s

r
+

s0
s√

1 +
(s0
s

)2 , (V.25)

Eq. (V.24) takes the form:

χmax =

1∫

ξ∞

−dξ√
1− ξ2

, (V.26)

where ξ∞ is the value of ξ when r tends to infinity, such that:

ξ∞ =
s0/s√

1 + (s0/s)2
. (V.27)
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It should be noted that the upper limit of integration rmin in (V.24) corre-
sponds to dr/dt = 0, i.e. when the quantity under the square root in (V.12)
ia zero, corresponding to ξ = 1 in (V.26). The integration of (V.26) thus
leads to:

χmax = arc cos
s0/s√

1 + (s0/s)
2
, (V.28)

hence:

cosχmax =
s0/s√

1 + (s0/s)
2
. (V.29)

Substituting (V.17), we obtain:

sin(θ/2) = cosχmax . (V.30)

Finally, knowing that:

sin2(θ/2) =
1

1 + cot2(θ/2)
=

(s0/s)
2

1 + (s0/s)
2 , (V.31)

we arrive at the formula:
cot(θ/2) = s/s0 , (V.32)

which gives the expression for the scattering angle θ for a Coulomb collision.
This deflection value is a function of the impact parameter s, of s0 (V.23),
of the relative velocity wαβ of the particles α and β before their interaction.
Note that θ = π/2 if s = s0, while θ = π if s = 0, and the collision is head-
on. It follows that if s < s0, the deflection, i.e. the interaction, is important
(θ > π/2), and weak if s > s0 (θ < π/2). We now begin to see the importance
of the parameter s0 for Coulomb interactions.

Total microscopic cross-section for a Coulomb interaction

The differential relation between the total microscopic collision cross-section
σ̂tc and the microscopic differential scattering cross-section σ̂(θ) can be de-
duced from (1.110), i.e.:

dσ̂tc = 2πσ̂(θ) sin θ dθ , (V.33)

where dσ̂tc is the microscopic cross-section element . From Fig. V.2, this can
be expressed as a function of the impact parameter, to give:

dσ̂tc = 2πs ds . (V.34)

In order to make use of σ̂(θ), we can express the microscopic cross-section
element 2πsds as a function of the solid angle element 2π sin θdθ from (V.32).
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Fig. V.2 Schematic description of the geometric relation between the impact parameter

s and the scattering angle θ for a Coulomb binary interaction, where the shaded surface
represents the microscopic cross-section element dσ̂tc = 2πs ds.

After squaring of (V.32), and differentiating, we find:

2s ds

s20
= −

[
cos(θ/2) sin3(θ/2) + cos3(θ/2) sin(θ/2)

]
dθ

sin4(θ/2)
, (V.35)

hence:
2s ds

s20
= −1

2

sin θ dθ

sin4(θ/2)
. (V.36)

By comparing (V.36) with (V.33) and (V.34), we deduce that:

σ̂(θ) =

∣∣∣∣−
s20

4 sin4(θ/2)

∣∣∣∣ . (V.37)

The negative sign in (V.37) simply implies that the scattering angle θ de-
creases as the impact parameter s increases, (V.32), but we shall use the
absolute value of the RHS as an expression for the microscopic differential
cross-section. Substituting (V.23) into (V.27), for Coulomb collisions, leads
to the expression:

σ̂(θ, w∞) =

(
e2/8πε0μαβw

2
αβ

)2

sin4(θ/2)
, (V.38)

which allows us, a priori, to calculate the effective total microscopic collision
cross-section:

σ̂tc =
πs20
2

π∫

0

sin θ dθ

sin4(θ/2)
(V.39)

and the momentum transfer cross-section (1.111):

σ̂tm =
πs20
2

π∫

0

(1− cos θ) sin θ dθ

sin4(θ/2)
. (V.40)



V Coulomb collisional interactions 407

Unfortunately, it is easy to verify that the integral in (V.39) diverges at
θ = 0. This is due to the fact that Coulomb forces are very long range, and
in consequence, the distant particles, whose scattering angles approach θ = 0
(un-deviated particles) all contribute to this integral, hence its divergence.
The same is true for the integral in (V.40) which, as will be shown in the
following calculation, also diverges for θ = 0.

Total microscopic momentum cross-section for Coulomb’s
interactions

Concept of the Coulomb logarithm

The total cross-section for transfer of momentum (V.40) can also be written
as a function of θ/2, in the form:

σ̂tm = 4πs20

π∫

0

d
[
sin(θ/2)

]

sin(θ/2)
, (V.41)

such that, after integration:

σ̂tm = 4πs20 ln
[
sin(θ/2)

]∣∣∣
π

0
. (V.42)

We can verify that, as in the case of σ̂tc, the cross-section σ̂tm diverges since
the innumerable long-range collisions for which θ � 0, are taken into account.
However, in a plasma, the range of the electric field created by a charged par-
ticle is reduced by the screening effect of the neighbouring charged particles
and is, in fact, limited by the Debye sphere (Sect. 1.6). Consequently, any
two charged particles in a plasma, separated by a distance r > λD, neither
“sees” the field of the other particle, and therefore should not be included in
the Coulomb interaction. The integration must therefore be limited to par-
ticles having an impact parameter s that is smaller than the Debye length
(s < λD), i.e. to scattering angles θ greater than the minimum value θmin

(θ < θmin) defined by:

cot
θmin

2
=

λD

s0
, (V.43)

that is, since θmin is small:
θmin

2
� s0

λD
. (V.44)

Applying this new limit of integration to (V.42), and setting:

Λc ≡
λD

s0
, (V.45)
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we obtain the well known expression for the total microscopic momentum
transfer cross-section:

σ̂tm = 4πs20 lnΛc , (V.46)

where the parameter lnΛc is referred to as the Coulomb logarithm.

Remark: Using the same integration limits as for σ̂tm, the total microscopic
collision cross-section can be written:

σ̂tc = πλ2
D . (V.47)

This result reflects the fact that all Coulomb interactions should be taken
into account, provided they are within the Debye sphere (s ≤ λD).

Coulomb logarithms for particles satisfying a Maxwellian distribution

The expression for the total microscopic momentum transfer cross-section
in (V.46) requires the values of λD and s0, which can be obtained by as-
suming that the population of charged particles α and β satisfy Maxwellian
distributions, with temperatures Tα and Tβ .

The Debye length λD is, in principle, the global Debye length defined
by (1.41). In fact, following Delcroix (1959), the duration of a collision is too
short for the screening action of the ions to have an effect, and it is preferable
to use λD = λDe, the electronic Debye length, in the expression for Λc, i.e.:

λDe =

(
ε0kBTe

ne2

) 1
2

. (1.41)

This expression is also consistent with the assumption that the ions constitute
a neutralizing background for the electrons (see remark 8, Sect. 1.6).

For the critical impact parameter s0, we need to calculate 〈s0〉, its mean
averaged value μαβw

2
αβ , i.e.:

〈μαβw
2
αβ〉 = μαβ〈(wα0 −wβ0)

2〉 , (V.48)

knowing that:

wα0 −wβ0 = wαβ . (1.69)

It follows that:

〈μαβw
2
αβ〉 = μαβ〈w2

α0 + w2
β0 − 2wα0 ·wβ0〉 , (V.49)

where the average of wα0 ·wβ0 is zero since all the initial relative directions
of the particles in the laboratory frame are equally probable. For Maxwellian
distributions, we find, following (I.11):

〈μαβw
2
αβ〉 =

mαmβ

mα +mβ

(
3kBTα

mα
+

3kBTβ

mβ

)
. (V.50)
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If Te = Ti = T , 〈s0〉 takes a unique value, independent of the nature of the
collisions, electron-electron, ion-ion or ion-electron:

〈s0〉 =
e2

12πε0kBT
. (V.51)

On the other hand, if Te �= Ti, we can distinguish three mean critical impact
parameters:

- for electron-electron collisions:

s0ee =
e2

12πε0kBTe
, (V.52)

- for ion-ion collisions:

s0ii =
e2

12πε0kBTi
, (V.53)

- and, for ion-electron collisions:

s0ei = s0ie =

e2
(

1

me
+

1

mi

)

12πε0

(
kBTe

me
+

kBTi

mi

) . (V.54)

There are three corresponding Coulomb logarithms, lnΛcee , lnΛcii and
lnΛcei . These can be written as functions of Λcee , from the expressions for
s0αβ

(me  mi):

lnΛcii = lnΛcee + ln
Ti

Te
, (V.55)

and since:
s0ei � s0ee , (V.56)

then:
lnΛcei � lnΛcee . (V.57)

Coulomb collision frequencies and mean free paths

Collision frequencies for particles satisfying a Maxwellian distribution

Rigorously speaking, the average collision frequency of the species α with the
(target) species β is defined by (1.140):

〈ναβ(wαβ)〉 = nβ〈σ̂αβ(wαβ)wαβ〉 (V.58)

where σ̂αβ is the total microscopic momentum transfer cross-section. How-
ever, in the present case of Coulomb collisions, the cross sections calculated
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above are already the result of an average taken over the relative velocities,
and thus cannot be used to determine the exact expression for (V.58). To do
this, it would be necessary to integrate (V.58) over the ensemble of velocities
of the populations α and β (in the same way as in exercise 1.9), which leads
to a very complex calculation. On the other hand, the collision frequency can
be obtained, within an order of magnitude, from the approximate expression:

〈σ̂αβwαβ〉 � 〈σ̂αβ〉〈wαβ〉 , (V.59)

where 〈wαβ〉 is the mean velocity.
In fact, it is preferable to define what is called the individual average

collision frequency, which corresponds to the most probable relative velocity
vαβ (distinct from the mean relative velocity). The expression for vαβ is given
by (exercise 1.9):

vαβ =

√

2kB

(
Tα

mα
+

Tβ

mβ

)
. (V.60)

The collision frequency is then written:

ναβ(vαβ) = nβ σ̂αβ(vαβ) vαβ , (V.61)

where σ̂αβ is calculated from (V.46), substituting vαβ for wαβ in s0 (V.23):

s0αβ
=

e2

4πε0μαβv2αβ
. (V.62)

Assuming Te 	 Ti, the collision frequencies can then be written:

νee = 4πns20ee

√
4kBTe

me
ln

(
λDe

s0ee

)
, (V.63)

νei = νie � 4πns20ee

√
2kBTe

me
ln

(
λDe

s0ee

)
, (V.64)

νii = 4πns20ii

√
4kBTi

mi
ln

(
λDe

s0ii

)
. (V.65)

It is possible to extract a number of simple relations from (V.63), (V.64) and
(V.65). Thus, a first obvious relation:

νee �
√
2 νei (V.66)

shows that the electron-electron and electron-ion collision frequencies are of
the same order of magnitude. The second relation, obtained from (V.63):

νee = ωpe
lnΛcee

Λcee

(V.67)



V Coulomb collisional interactions 411

allows us to relate the electron-electron collision frequency to the plasma
electron angular frequency ωpe.

Mean free paths for particles satisfying a Maxwellian distribution

Generally speaking, the mean free path of a particle α colliding with particles
β can be defined by (1.39):

�αβ =
1

nβ

〈
wα

σ̂αβ(wαβ)wαβ

〉
. (V.68)

We define the average mean free path for Coulomb collisions, for the most
probable velocities, in the same way as previously used for the collision fre-
quency, i.e:

�αβ(vα) =
vα

nβσ̂αβvαβ
. (V.69)

The different mean free paths can then be written (Te 	 Ti):

�ee =

√
2kBTe

me

νee
, (V.70)

�ei =

√
2kBTe

me

νei
, (V.71)

�ie =

√
2kBTi

mi

νei
, (V.72)

�ii =

√
2kBTi

mi

νii
. (V.73)

The mean free path for electrons colliding with all charged particles (electrons
and ions) can be written:

�e =

√
2kBTe

me

νee + νei
. (V.74)

Remark: It is important to note that the Coulomb collision frequencies and
the corresponding average mean free paths are independent of the density of
the gas.



Appendix VI

Stepwise Ionisation

Two-step, and more generally, multi-step ionisation constitute mechanisms
for creating charged particles, which become important whenever the gas
pressure exceeds a few torr (a few hundred pascal). Such stepwise processes
increase with increasing pressure and electron density to such an extent that
they can supersede direct ionisation.

Stepwise ionisation starts with the excitation by an electron collision with
the atom in its ground state:

e + A → A(j) + e . (VI.1)

A second electron collision with this atom, which is now excited in the state
j, can ionise the atom:

e + A(j) → A+ + e + e . (VI.2)

The excited atom thus serves as an intermediate stage, allowing ionisation
with electrons of lower energy than that required for direct ionisation.

Population balance of intermediate (relay) state(s)

The ionisation frequency from the excited state is, by definition:

νie = Nj〈σ̂ji(w)w〉 , (VI.3)

where Nj is the density of atoms in the excited state (the targets for the
electrons), σ̂ji is the total microscopic cross-section for ionisation from the
excited state j, and the square brackets refer to an integration conducted over
the velocity distribution function of the particles. To calculate the stepwise
ionisation frequency, one needs the density of the atoms excited in state j,
which can be determined from the balance of the processes of creation and
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Fig. VI.1 Three-level energy diagram of the argon atom to characterise, in the present

case, the two-step ionisation process: these levels are the ground state of the neutral atom,
the intermediate state j (the 4 energy states 3p5 4s orbital configuration are effectively

considered as a single level) and the first level of the ionised atom. The 3P0 and 3P2

levels are metastable states, i.e. they have a comparatively lower probability of de-exciting

through a (dipolar electric) radiative transition than the 1P1 and 3P1 levels, which are
termed resonance radiation states (also referred to as quasi-metastable states).

loss of atoms in the intermediate state j. This can be established with the
help of the three-level energy diagram shown in Fig. VI.1.

In the stationary state, the balance of creation and loss obviously requires
that:

dNj

dt
= 0 , (VI.4)

where dNj/dt, in the present case, can be written in the following form:

dNj

dt
= N0〈σ̂0j(w)w〉ne −Nj〈σ̂j0(w)w〉ne

−Nj〈σ̂ji(w)w〉ne −
Dj

Λ2
Nj . (VI.5)

The first term on the RHS represents the way the intermediate state is popu-
lated by electron collisions on the atom in the ground state (reaction (VI.1)).
The other terms correspond to the depopulation of the intermediate states,
successively, as a result of their de-excitation by electron collision to the
ground state (the inverse process to reaction (VI.1), by ionisation described
by (VI.2), and by diffusion of the atoms to the walls. In equation (VI.5), N0

is the density of the atoms in the ground state; k0j ≡ 〈σ̂0j(w)w〉 is the elec-
tron excitation coefficient from ground state to the state j; kj0 ≡ 〈σ̂j0(w)w〉
is the electron de-excitation coefficient from the state j to the ground state
and kji ≡ 〈σ̂ji(w)w〉 is the ionisation coefficient from the excited state j. Dj
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is the diffusion coefficient for excited atoms in the plasma and Λ is the char-
acteristic diffusion length (Λ = R/2.405 in cylindrical geometry, where R is
the tube radius; this is described in more detail in Sect. 3.8). The processes
included in (VI.5) are represented in Fig. VI.1, where the notation j defines
the intermediate state. The diffusion of the atoms in the intermediate stage
is represented in the same diagram by their characteristic diffusion time τj
where (Sect. 3.8):

Dj

Λ2
=

1

τj
. (VI.6)

Two-step ionisation generally occurs from atoms in metastable states as
the intermediate stage, because their radiative de-excitation time is very long,
such that the depopulation is governed by electron collisions and by diffusion.
We obtain the density of the intermediate states in a stationary plasma from
equation (VI.5):

Nj =
N0〈σ̂0j(w)w〉ne

τ−1
j + (〈σ̂j0(w)w〉+ 〈σ̂ji(w)w〉)ne

. (VI.7)

The rate of depopulation of the intermediate stages by diffusion is principally
determined by the gas pressure: as gas density increases, the diffusion time
τj for these atoms also increases, reducing the loss by this mechanism (the
two metastable states in Fig. VI.1 are considered as forming one single inter-
mediate stage). When the depopulation of these states by diffusion is much
smaller than that due to collisions (i.e. τ−1

j  (〈σ̂j0(w)w〉+ 〈σ̂ji(w)w〉)ne),
Eq. (VI.7) shows that the value of Nj is independent of the electron density:
this effect also manifests itself when the electron density is extremely high.

Ionisation frequency

Equation (VI.3), defining the two-step ionisation frequency, with the substi-
tution of Nj from (VI.7), leads to:

νie =
N0〈σ̂0j(w)w〉〈σ̂ji(w)w〉τjne

1 + (〈σ̂j0(w)w〉+ 〈σ̂ji(w)w〉) τjne
. (VI.8)

Setting:
ρie = N0〈σ̂0j(w)w〉〈σ̂ji(w)w〉τj , units: cm3 s−1 (VI.9)

which we call the two-step ionisation coefficient , and:

η = (〈σ̂j0(w)w〉+ 〈σ̂ji(w)w〉) τj , units: cm3 (VI.10)

which we refer to as the saturation coefficient of intermediate states. The
two-step ionisation frequency can then be written in the form (1.159):



416 VI Stepwise ionisation

νie =
ρiene

1 + ηne
. (VI.11)

The case where the value of νie remains constant when ne increases is referred
to as saturation; two-step ionisation then clearly exceeds direct ionisation.
This situation occurs when the diffusion time τj is very large (large value of
η) or when the value of ne is very large. In these conditions, Eq. (VI.11) no
longer depends on ne, since:

νie �
ρie
η

. (1.160)



Appendix VII

Basic Notions of Tensors

A tensor is characterised by the transformation required to express it in
another frame.

- A scalar s is an invariant quantity with respect to a change of frame. It is
a tensor of rank (or order) zero.

- A vector w can be written as:

w = wxêx + wyêy + wz êz , (VII.1)

where êx, êy and êz are the basis vectors in a given frame, which we will
refer to as the old frame. Following a change of frame, the components
(wx, wy, wz) of w are related to the components in a new frame by a
transformation matrixA with elements αi

j . WritingW I for the components

of w in the new coordinate system, we then have184:

W I = αI
1w1 + αI

2w2 + αI
3w3 = αI

iw
i (VII.2)

where, in order to apply the Einstein summation convention (to avoid us-
ing the summation sign), we have written the indices for the components
of w on the RHS of the equation as superscripts. This rule is such that
the same index, repeated as subscript and superscript, implies a summa-
tion over all its values: the index is said to be dummy because its name
can be arbitrarily changed. Following this notation, the vector w can be
represented in compact fashion by w = wiêi.
The inverse transformation (from the new frame into the old) is made
using the matrix B with elements βi

j , which is the inverse of matrix A of

elements (αi
j); this implies that (A)(B) = (I), where (I) is the identity

matrix. Hence, the components of w in the old coordinate system can be
written:

184 If we designate the basis vectors in the new frame by Êx, Êy, Êz , these can be obtained
from the basis vectors in the old frame through the relation ÊI = αk

I êk.
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wi = βi
IW

I . (VII.3)

The vector w is a first-rank tensor.
- A second-rank tensor T can be expressed in a given frame as:

T = txxêxêx + txyêxêy + txz êxêz + · · · , (VII.4)

i.e. it requires two basis vectors for each component (written as such, T
is also termed a dyadic tensor): there are 9 components in total. In conse-
quence, during a change of frame, it is necessary to use the transformation
matrix twice. Thus the components of T in the new frame are given by:

T IJ = αI
iα

J
j t

ij . (VII.5)

We can generalise the definition of T to any particular rank by noting
that the number of indices in a tensor, i.e. the number of transformation
matrices required during a change of frame, defines the rank of the tensor.

Tensor products

- The tensor product of two vectors A and B, written as A⊗B, is defined
by its elements:

Tij = AiBj , (VII.6)

where the indices i and j can take the values 1, 2 or 3. This creates
a second-rank tensor. The tensor product can be generally applied to a
product of two tensors of any order: the rank of the resulting tensor is the
sum of the ranks of the tensors which form the product.

- The scalar product or internal product is, in tensor formalism, a contrac-
tion, reducing the order of the initial tensors by two units185. Thus, for
two vectors A and B, this gives (using the implicit summation rule):

A ·B =
(
Aiêi

)
·
(
Bj êj

)
= AiBj êi · êj = AiBjδij =

∑

i

AiBi (VII.7)

where δij is the Kronecker delta (δij = 1 if i = j and δij = 0 if i �= j). To
continue to use the implicit summation rule, we must write (VII.7) in the
form:

A ·B = AiBi . (VII.8)

The result is a scalar, i.e. a zero order tensor.
- The vector product of two vectors A and B is considered as a vector, but

in fact it is a pseudovector. When we move from a right-handed triad to

185 The scalar product of two vectors can be seen as a tensor product followed by a
contraction.
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a left-handed one, the pseudovector changes its direction in space, which
is contrary to the notion of a true vector (also called a polar vector). In
reality, the vector product should be represented by an antisymmetric,
second-order tensor, i.e Tij = −Tji, which implies that the diagonal ele-
ments on the matrix T should be zero. This tensor comprises only three
independent elements, allowing the vector product to be represented by a
vector in 3-dimension space.

Operators

- The gradient is an operator that produces a tensor one order higher than
that on which it operates. Thus, starting with a scalar s:

∇s =
∂s

∂x
êx +

∂s

∂y
êy +

∂s

∂z
êz =

∑

i

∂is êi , (VII.9)

we obtain a vector.
The convention of dummy indices cannot be applied here, since the op-
erator “spatial derivative” is, strictly speaking, covariant186 (yielding a
subscript index), hence the necessity of writing explicitly the summation
sign.

- The divergence is the result of the action of a gradient operator followed
by a contraction. Thus, the divergence of a vector w, ∇ · w, is a scalar
(see note 74, p. 138): the result is a tensor of one rank lower than the one
that is operated on.

- The curl acts on a covariant vector with components ai and produces a
covariant, antisymmetric, second-rank tensor with elements bij :

bij =
∂aj
∂xi

− ∂ai
∂xj

. (VII.10)

This creates a tensor of one order higher than the initial tensor, due to
the action of the spatial operator ∂/∂xi.

Example of the proof of a tensor identity

We wish to show that:

∇r · (wwf) = w(w ·∇rf) . (VII.11)

Developing the LHS:

186 The concept of a covariant derivative is beyond the scope of the present plasma treatise.
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∇r ·wwf =
∑

i

∂i (êi · (wpwqêpêq) f) , (VII.12)

where f is a scalar and ∂i a derivative operator in position space (which
therefore does not act on the microscopic velocities). Note that there is no
implicit summation over index i because the two elements carrying this index
are covariant. Expanding the product êi · êp = δip in (VII.12), which imposes
i = p (VII.7), we have:

∂i (êi · (wpwqêpêq) f) = ∂i
(
wiwqêqf

)
= ∂i

(
fwi

)
wqêq , (VII.13)

where there is a summation (contraction) over the index i, such that:

∂i
(
fwi

)
w = (∇rf ·w)w . (VII.14)

Finally, because ∇rf ·w is a scalar, we can write:

(∇rf ·w)w = w(∇rf ·w) , (VII.15)

which is the RHS of (VII.11), as required: QED.
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Operations on Tensors

The fundamental properties of tensors were presented in Appendix VII. We
will now give the rules for tensor operations, without recourse to the implicit
summation (dummy indices) defined in Appendix VII.

Product of two vectors

Consider two vectors A and B, with components Ai and Bi, with i = x, y, z
or i = 1, 2, 3.

Scalar product of two vectors: A · B

The result is a scalar C:

A ·B =

3∑

i=1

AiBi = B ·A = C . (VIII.1)

The scalar product of two vectors is commutative.

Vector product of two vectors: A ∧ B

The result is a vector C (in reality, a pseudovector, Appendix VII) with
components:

Ci = Ai+1Bi−1 −Ai−1Bi+1 (VIII.2)

where, if i = x, then x+ 1 = y and x− 1 = z. It follows that:

A ∧B = −B ∧A = C , (VIII.3)
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The vector product is not commutative.
Note the important rule for the double vector product :

A ∧ (B ∧C) = (A ·C)B − (A ·B)C . (VIII.4)

Tensor product of two vectors: A ⊗ B

The result is a second-order tensor T , with its components Tij being the
algebraic product of the components Ai and Bj :

Tij = AiBj . (VIII.5)

It follows that:
A⊗B = (B ⊗A)T . (VIII.6)

The product is not commutative, unless the vectors are parallel. The super-
script symbol T indicates that the tensor is transposed (Tij becomes Tji).

Remark: In the main text, for simplicity, we have represented the tensor
product of two vectors A and B in the form AB rather than A⊗B.

Product of two tensors

Consider two second-order tensors S and T .

Tensor product: S ⊗ T

The result is a 4th order tensor:

S ⊗ T = U (VIII.7)

whose components are:
Uijkl = SijTkl . (VIII.8)

Singly-contracted product: S · T

The result is a 2nd order tensor:

S · T = U (VIII.9)

whose components are:

Uij =
∑

k

SikTkj (VIII.10)
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and if both tensors are symmetric:

S · T = (T · S)T = (U)T = U . (VIII.11)

Doubly-contracted product: S : T

The result is a scalar:

S : T =
∑

i

∑

j

SijTji = U (VIII.12)

with:
S : T = T : S . (VIII.13)

Product between a vector and a tensor

Consider A, a vector, and T , a second-order tensor.

Tensor product of a vector with a 2nd order tensor

The result is a 3rd order tensor:

A⊗ T = Q (VIII.14)

whose components are:
Qijk = AiTjk . (VIII.15)

Contracted product of a vector with a 2nd order tensor

The result is a vector:
T ·A = D (VIII.16)

whose components are:

Di =
∑

j

TijAj . (VIII.17)

Similarly, the product A · T is a vector:

A · T = D′ (VIII.18)

whose components are:

D′
i =

∑

j

AjTji . (VIII.19)
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Thus, if T is a symmetric tensor (Tij = Tji), the product is commutative:

T ·A = A · T . (VIII.20)

If T is obtained from the tensor product of two vectors:

T = B ⊗C (VIII.21)

then:
A · (B ⊗C) = D , (VIII.22)

with components:

Di =
∑

j

AjBjCi = (A ·B)Ci , (VIII.23)

from which:
D = A · (B ⊗C) = (A ·B)C (VIII.24)

and since the product is commutative:

D = (A⊗B) ·C = A(B ·C) . (VIII.25)

Contracted product of a vector with a 3rd order tensor

Consider Q, a 3rd order tensor. The result is a 2nd order tensor T :

A ·Q = T (VIII.26)

whose components are:

Tij =
∑

k

AkQkij . (VIII.27)

Similarly:
Q ·A = T ′ (VIII.28)

is a 2nd order tensor whose components are:

T ′
ij =

∑

k

QijkAk . (VIII.29)

Vector product of a vector with a 2nd order tensor

The result is a 2nd order tensor:

A ∧ T = U (VIII.30)

whose components are:
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Uij = Ai+1Ti−1,j −Ai−1Ti+1,j . (VIII.31)

The vector column j of the tensor U is the vector product of the vector A
by the column vector j of the tensor T .

Operations involving the differential operator
(Cartesian coordinates)

The differential operator ∇ (or ∂/∂r) can be considered as a vector, whose
components in Cartesian coordinates are:

∇i =
∂

∂xi
. (VIII.32)

Divergence of a vector

The result is a scalar:

∇ ·A =
3∑

i=1

∂Ai

∂xi
= C . (VIII.33)

Divergence of a 2nd order tensor

The result is a vector:
∇ · T = A (VIII.34)

whose components are:

Ai =
∑

j

∂Tji

∂xj
. (VIII.35)

The divergence is the contracted product of the differential operator ∇ with
a vector or a tensor.

Gradient of a scalar

The result is a vector:
∇C = A (VIII.36)

whose components are:

Ai =
∂C

∂xi
. (VIII.37)
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Gradient of a vector or a tensor

In general, the gradient is the tensor product of the differential operator ∇
with a scalar, a vector or a tensor.
Thus, operating on a vector A, the result is a 2nd order tensor:

∇A ≡ ∇⊗A = T (VIII.38)

whose components are:

Tij =
∂Aj

∂xi
. (VIII.39)

Note that ∇B is a vector while ∇B is a 2nd order tensor.

Curl of a vector

The curl is the vector product of the differential operator ∇ with a vector.
We obtain a (pseudo) vector:

∇ ∧A = C (VIII.40)

with the components:

Ci =
∂Ai−1

∂xi+1
− ∂Ai+1

∂xi−1
. (VIII.41)

Laplacian of a scalar

This is a scalar:

ΔC =
∑

i

∂2C

∂x2
i

. (VIII.42)

Since: ∑

i

∂2C

∂x2
i

=
∑

i

∂

∂xi

(
∂C

∂xi

)
= ∇ · (∇C) , (VIII.43)

thus:
ΔC = ∇ · (∇C) = ∇2C . (VIII.44)

Laplacian of a vector

This is a vector:
ΔA = C (VIII.45)

with the components:
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Ci =
∑

j

∂2Ai

∂x2
j

. (VIII.46)

Since:

ΔA =
∑

j

∂2Ai

∂x2
j

=
∑

j

∂

∂xj

(
∂Ai

∂xj

)
= ∇ · (∇⊗A) , (VIII.47)

thus:
ΔA = ∇ · (∇⊗A) = ∇2A . (VIII.48)

Remark: One should not forget that ∇ is a differential operator, and that,
as a consequence, when it is applied to a product, it is applied on each of the
terms. For instance: ∇ · (B ⊗C) = (∇ ·B)C + (B ·∇)C.



Appendix IX

Orientation of w2⊥ in the Reference
Triad with Cartesian Axes
(E0⊥ ∧ B, E0⊥, B)

We will make use of the reference triad shown in Fig. 2.8 and of the represen-
tation of the velocity w2⊥ in Fig. 2.9. From (2.137), for an electron (q = −e
and ωc = ωce), we then have:

w2⊥ = − e

me(ω2
ce − ω2)

{
iωE0⊥ − ωce

B
(E0⊥ ∧B)

}
eiωt (IX.1)

1. The case ω > ωce: major axis along E0⊥
From (IX.1), we have:

�(w2⊥) =
e

me(ω2 − ω2
ce)

�
{
iω(cosωt+ i sinωt)E0⊥

− ωce

B
(cosωt+ i sinωt)(E0⊥ ∧B)

}

= −A1ω(sinωt)E0⊥ −A2ωce(cosωt)(E0⊥ ∧B) (IX.2)

where A1 and A2 are constants.

At t = 0, we have E⊥ = E0⊥, w2⊥ = −A2ωce(E0⊥∧B)
and at t = T /2, E⊥ = −E0⊥, w2⊥ = A2ωce(E0⊥ ∧B),
as shown in Fig. 2.9.

2. The case ω < ωce: major axis along E0⊥ ∧B
From (IX.1), we have:

�(w2⊥) = A1ω(sinωt)E0⊥ +A2ωce(cosωt)(E0⊥ ∧B) . (IX.3)

At t = 0, we have E⊥ = E0⊥, w2⊥ = A2ωce(E0⊥ ∧B) and at t = T /2,
E⊥ = −E0⊥, w2⊥ = −A2ωce(E0⊥ ∧ B) (Fig. 2.9). Note that, in the
present case, the velocity is out of phase by a factor π with respect to the
case ω > ωce.
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Appendix X

Force Acting on a Charged Particle in
the Direction of a Magnetic Field B
Weakly Non-uniform Axially:
Variant of (2.177)

The Lorentz force due to B along the z axis can be written Fz = q(w∧B)·êz.
In cylindrical coordinates, due to the helical motion (components along êz
and êϕ), we have:

w ∧B =

∣∣∣∣∣∣

êr êϕ êz
0 w⊥ w‖
Br 0 Bz

∣∣∣∣∣∣
. (X.1)

This leads to:
Fz = −qw⊥Br . (X.2)

However, we also know that close enough to the axis of symmetry of the field
B, we can write:

rBr ≈ −
r∫

0

r′
(
∂Bz

∂z

)

r′=0

dr′ = −1

2
r2
(
∂Bz

∂z

)

r=0

. (2.161)

Assuming that the particle moves about the guiding centre, defined by the
axis of symmetry of the field B, with a Larmor radius rB , we can then set
r = rB in the expression for Br, from which:

Fz = qw⊥
rB
2

∂Bz

∂z
(X.3)

and

Fz = qw⊥
w⊥
2ωc

∂Bz

∂z
= q

w2
⊥
2

(
mα

−qBz

)
∂Bz

∂z

= −1

2

mαw
2
⊥

Bz

∂Bz

∂z
= −μ

(
∂Bz

∂z

)
(2.177)

since μ = Ekin⊥/Bz (2.148).
The axial non uniformity of the field B gives rise to a force proportional

to the gradient of the field.
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Appendix XI

The Magnetic Moment, an Invariant
in the Guiding Centre Approximation

We will consider the case where there is no applied electric field E. We will
also neglect the field E induced by the inhomogeneity ofB in the frame of the
particle: this is consistent with the zero-order guiding centre approximation.
Under these conditions, the total particle kinetic energy, WT = W⊥ +W‖ is
constant (2.179). It follows that:

d

dt
(W‖) ≡

d

dt

(
1

2
mαw

2
z

)
= − d

dt
(W⊥) (XI.1)

and, furthermore:

d

dt
(W⊥) ≡

d

dt

(
W⊥B

B

)
=

W⊥
B

dB

dt
+B

d

dt

(
W⊥
B

)
. (XI.2)

Knowing that:

Fz = −μ
∂Bz

∂z
, (2.177)

by multiplying each side of (2.177) by wz, and since μ =
W⊥
B

:

wzmα
dwz

dt
≡ d

dt

(
1

2
mαw

2
‖

)
= −W⊥

B

∂Bz

∂z

dz

dt
= −W⊥

B

dBz

dt
, (XI.3)

then, applying (XI.1), the LHS of (XI.3) can be written:

− d

dt

(
1

2
mαw

2
⊥

)
= −W⊥

B

dBz

dt
. (XI.4)

Taking account of (XI.2) and replacing the LHS of equation (XI.4) leads to:

W⊥
B

dBz

dt
+B

d

dt

(
W⊥
B

)
=

W⊥
B

dBz

dt
, (XI.5)
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434 XI The magnetic moment

which clearly imposes that:

d

dt

(
W⊥
B

)
≡ dμ

dt
= 0 , (XI.6)

i.e. the magnetic moment μ is independent of t. We obtained the same result
in the introduction of Sect. 2.2.3 (p. 137).



Appendix XII

Drift Velocity wd of a Charged Particle
Subjected to an Arbitrary Force Fd

in a Field B: the Magnetic Field Drift

Generalisation of the expression for the drift velocity in
a field B from the expression for the electric field drift

For the electric field drift, we found (2.114):

wde =
E⊥ ∧B

B2
, (XII.1)

which is an expression that can be generalised by setting qE⊥ = F de, where
the meaning of F de can be extended to include an arbitrary force F d, which
leads us to the general expression:

wd =
F d ∧B

qB2
. (XII.2)

Application to the case of the magnetic field drift
(rectilinear field lines) in a weakly inhomogeneous
field B

Since the field B is weakly inhomogeneous, to zeroth order μ is a constant
of the motion and, following (2.177), which we generalise in three dimensions
by writing:

F dm = μ ·∇B . (XII.3)

In the case of rectilinear magnetic field lines, let B be directed along êz and
the inhomogeneity along y; then μ, which is connected to the diamagnetic
field, is directed along −êz:

μ = −μz êz and B = Bz(y)êz , (XII.4)
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436 XII Drift velocity of a charged particle subjected to F d ∧B

we then have:

F dm ≡ −μz êz ·
(
∂Bz

∂y
êyêz

)
= −μz

∂Bz

∂y
êy . (XII.5)

Substituting the expression for the force generating the magnetic-field drift
(XII.5) in (XII.2), we obtain:

wdm ≡ −μz
∂Bz

∂y

êy ∧Bêz
qB2

=
μ

q

(B ∧∇B)

B2
, (XII.6)

which is exactly the same equation we obtained in (2.217): this result supports
our hypothesis that (XII.2) is valid for an arbitrary force F d.



Appendix XIII

Magnetic-Field Drift Velocity wdm

in the Frenet Frame Associated with
the Lines of Force of a Magnetic Field
with Weak Curvature

To first order, the particle follows a cyclotron motion around a line of force,
which constitutes the axis of its helical motion.

Frenet-(Serret) frame

At each point on a magnetic field line of force (Fig. XIII.1), we can construct
a Cartesian frame such that:

1. The unit vector êz is directed along the tangent to the magnetic field line
of B at each point,

2. êy is normal to this tangent, and directed along the radius of curvature
ρ187, this second vector pointing towards the field line, i.e. in the opposite
direction to êy, and

3. êx is along the binormal, i.e. in the direction perpendicular to the two
other unit vectors, such as to form a right-handed triad.

The Frenet frame is also, to a first approximation, the natural frame of
the particle in the present case.

Frenet relations

Classical mechanics teaches us that on a trajectory s connected to a Frenet
frame:

dêz
ds

=
êy
ρ

= − ρ

ρ2
, (XIII.1)

187 The radius of curvature at a point A on a curve is the distance between that point

and the intersection of two normals to the curve, situated immediately on either side of
the point A.
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438 XIII Magnetic-field drift velocity in the Frenet frame

Fig. XIII.1 A Frenet

frame, constructed on a
magnetic field line with

radius of curvature ρ. The
unit vector êx is directed

into the page. The unit
vector êz + dêz , at point Q

is transported, in parallel,
to the point P in order to

show the direction of dêz .

where the radius of curvature ρ is obtained from the derivative of the local
tangents, as suggested in Fig. XIII.1. In the case where y(z) describes the
line of force, one can show that, provided dy/dz is not too large:

d2y

dz2
=

1

ρ
. (XIII.2)

Further, the components of the vector ρ can be written (Jancel and Kahan):

ρx
ρ2

= − 1

B

∂Bx

∂z
, (XIII.3)

ρy
ρ2

= − 1

B

∂By

∂z
, (XIII.4)

ρz
ρ2

= 0 . (XIII.5)

Components of ∇B

The Maxwell equation ∇ ∧ B = 0 (without the RHS, in the framework of
individual particle trajectories85) leads to:

êx

(
∂Bz

∂y
− ∂By

∂z

)
+ êy

(
∂Bx

∂z
− ∂Bz

∂x

)
+ êz

(
∂By

∂x
− ∂Bx

∂y

)
= 0 . (XIII.6)

Further, from the assumption that the inhomogeneity in B is independent of

y, we have
∂Bz

∂y
�= 0, such that (XIII.6) requires:
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∂Bz

∂y
=

∂By

∂z
. (XIII.7)

The other terms in (XIII.6) are zero. Equations (XIII.3) and (XIII.4) then
become:

ρx = 0 , (XIII.8)

ρy
ρ2

= − 1

Bz

∂Bz

∂y
, (XIII.9)

such that ρy = ρ.

Parameterisation of a curved field line

In our case, B = Bzêz + Byêy, where |By|  |Bz| is a first order correction
to Bz, provided the curvature of the field is not too large. We are seeking a
relation y(z) to characterise this line of force.

We can perform a limited Taylor series development of the component By,
with By(0) = 0, since this quantity is of order one, and:

By ≈ ∂By

∂x
dx+

∂By

∂y
dy +

∂By

∂z
dz , (XIII.10)

where, according to (XIII.6) and (XIII.7), only the component
∂By

∂z
is non

zero, so that:

By ≈ ∂By

∂z
dz , (XIII.11)

which, from (XIII.7), becomes:

By � ∂Bz

∂y
dz , (XIII.12)

hence, for z small, from (2.221):

By � B0βz . (XIII.13)

Further, by definition, locally (see Fig. 2.17):

By

Bz
=

dy

dz
, (XIII.14)

where:
By

Bz
=

B0βz

B0(1 + βy)
� βz , (XIII.15)
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hence:
dy

dz
= βz . (XIII.16)

Integrating (XIII.2), we have (since y = 0 at z = 0):

dy

dz
=

z

ρ
, (XIII.17)

so we can deduce that:
β ≈ 1/ρ . (XIII.18)

The equation for wdm in the Frenet frame

We have already shown that:

wdm = mα
w2

⊥
2

1

qαB3
(B ∧∇B) . (2.216)

If we now set ωc = −qαB/mα, this can be written explicitly:

wdm = − 1

ωcB2

w2
⊥
2

(
B ∧ ∂Bz

∂y
êy

)
. (XIII.19)

From (2.221) and (XIII.18), we obtain:

∂Bz

∂y
=

Bz

ρ
, (XIII.20)

and from (XIII.15):

wdm =
1

ωcB2

w2
⊥
2

(
Bz

ρ
êy ∧B

)
. (XIII.21)

By introducing ρ, directed opposite to êy, we finally arrive at:

wdm = − 1

ωcB

w2
⊥
2

(
ρ

ρ2
∧B

)
. (XIII.22)

This expression, in contrast to (2.216), includes the (weak) curvature of the
field lines.



Appendix XIV

Spherical Harmonics

Fig. XIV.1 Spherical co-
ordinate system in velocity

space.

If the velocity w is expressed in spherical coordinates, the electron distribu-
tion function can be developed in spherical harmonics:

Clm = wlPlm(cos θ) cosmϕ , (XIV.1)

Slm = wlPlm(cos θ) sinmϕ , (XIV.2)

where Plm(cos θ) is the mth order Legendre function, defined for l ≥ 1 and
0 ≤ m ≤ l by:

Plm(μ) = (1− μ2)
m
2

dm

dμm
Pl(μ) , (XIV.3)

and Pl is the Legendre polynomial of degree l. Note that for m = 0,

Plm(μ) = Pl(μ) . (XIV.4)

The first Legendre polynomials Plm(μ) are:
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442 XIV Spherical harmonics

P0(μ) = 1 , P1(μ) = μ , P11(μ) = (1− μ2)
1
2 ,

P2(μ) =
1

2

(
3μ2 − 1

)
, P21(μ) = 3μ(1− μ2)

1
2 , P22(μ) = 3(1− μ2) ,

P3(μ) =
1

2

(
5μ3 − 3μ

)
. . . (XIV.5)

The first spherical functions, for μ = cos θ, are therefore:

C00 = 1 , C10 = w cos θ = wz , C11 = w sin θ cosϕ = wx ,

S11 = w sin θ sinϕ = wy , C20 = w2

(
3 cos2 θ − 1

2

)
. (XIV.6)

Assuming that the system is symmetrical in ϕ, the distribution function
f(r, w, t) can be expanded in terms of Ci0 yielding:

f(r,w, t) =

f0(r, w, t) + f1(r, w, t) cos θ + f2(r, w, t)

(
3 cos2 θ − 1

2

)
+ . . .

(3.18)



Appendix XV

Expressions for the Terms M and Rα

in the Kinetic Pressure Transport
Equation (3.155)

Relationship between M and the magnetic force

To calculateM from (3.155) when the particles α are subjected to a magnetic
field B (Laplace force90), it is sufficient to write (VIII.31):

Mij = nαqα〈(wi+1Bi−1 − wi−1Bi+1)uj + (wj+1Bj−1 − wj−1Bj+1)ui〉 .
(XV.1)

Reordering the terms, we obtain:

Mij = nαqα〈(ui+1 + vi+1)Bi−1uj − (ui−1 + vi−1)Bi+1uj〉

+ nαqα〈(uj+1 + vj+1)Bj−1ui − (uj−1 + vj−1)Bj+1ui〉 , (XV.2)

hence:
Mij =

qα
mα

[Bi−1Ψi+1, j −Bi+1Ψi−1, j ]

+
qα
mα

[Bj−1Ψj+1, i −Bj+1Ψj−1, i] , (XV.3)

which can be written in tensor form (VIII.6):

M = − qα
mα

[
B ∧ Ψ + (B ∧ Ψ )T

]
. (XV.4)

Expression for the collision tensor Rα

Recall that:

Rα =
∑

β 
=α

Rαβ (3.141)

where:
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444 XV Kinetic pressure transport equation

Rαβ =

∫
mα(wα − vα)(wα − vα)S(fα)β dwα . (XV.5)

The tensor Rαβ can be written, after expansion:

Rαβ =

∫
mα(wαwα − vαwα −wαvα + vαvα)S(fα)β dwα , (XV.6)

hence:

Rαβ =

∫
mα(wαwα)S(fα)β dwα − vα

∫
mαwαS(fα)β dwα

−
[
vα

∫
mαwαS(fα)β dwα

]T
+ vαvα

∫
mαS(fα)β dwα . (XV.7)

If the number of particles is conserved during collisions, the last term in
(XV.7) is zero. Including (3.120), which defines Pαβ (XV.7), we obtain the
final form:

Rαβ =

∫
mαwαwαS(fα)β dwα − vαPαβ − [vαPαβ ]

T
. (XV.8)



Appendix XVI

Closure of the Hydrodynamic
Transport Equation for Kinetic
Pressure in the Case of Adiabatic
Compression

We will consider the transport equation for kinetic pressure Ψ (3.160), with
the assumption of adiabatic compression (see main text): ∇ · Q = 0 and

R = 0. The equation then simplifies to give:

n
d

dt

(
Ψ

n

)
+ (Ψ ·∇)v + [(Ψ ·∇)v]

T −M = 0 . (XVI.1)

The structure of the tensor M (XV.2) is such that the off-diagonal terms are
zero.

The equation (XVI.1), comprising second-order tensors, can lead to a
scalar solution if we apply a contraction (Appendix VII) on the two indices
of the various 2nd order tensors in the equation. Since a tensor A can be
expressed as A = êiêjAij , contracting the two indices (i = j) is equivalent
to calculating the trace of A. The result of such a contraction on indices of
the same variance (subscripts here) leads to a scalar, provided the coordinate
systems considered are Cartesian.

Taking account of (3.115), the value of the trace Tr of the first term of
(XVI.1) is:

Tr

[
n
d

dt

Ψ

n

]
= n

d

dt

3p

n
, (XVI.2)

while the traces of the second and third terms give:

Tr [(Ψ ·∇)v] + Tr [(Ψ ·∇)v]
T
= 2p∇ · v , (XVI.3)

where we have set Ψ = nkBT (I) (as in the warm plasma approximation).
Finally, the complete trace of (XVI.1) is given by:

n
d

dt

3

2

p

n
+ p∇ · v = 0 . (XVI.4)

This scalar equation thus replaces a 2nd order tensor equation, for which
closure has been achieved by setting ∇ ·Q = 0.
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Appendix XVII

Complementary Calculations to the
Expression for Te(pR) (Sect. 3.13)

Maxwellian velocity distribution function expressed in
terms of energy (eV)

188

The following expression for the distribution function:

f(w) =

(
me

2πkBTe

) 3
2

exp

(
−w2

v2th

)
, (3.293)

by its scalar velocity dependence, emphasises that we have neglected the
anisotropy induced by the external field E.

Introducing UeV , the microscopic electron energy, expressed in eV:

UeV =
mew

2

2e
, (3.294)

we obtain:

w =

√
2eUeV

me
(3.295)

188 Substitution of the energy UeV for w in f(w) (isotropic) leads to the function f(UeV ),

which is referred to as the velocity distribution function expressed in terms of energy. By
the same token, we define an energy distribution function F (UeV ), by setting:

F (UeV )U
1
2
eV dUeV = f(w)4πw2 dw .

Thus, we have F (UeV ) = 4
√
2π(e/me)3/2f(w), hence:

F (UeV ) =
2

π
1
2 (kBTe)

3
2

exp

(
− eUeV

kBTe

)
,

the normalisation condition being:

∞∫
0

F (UeV )U
1
2
eV dUeV = 1 .
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448 XVII Calculations of the Expression for Te(pR)

and since:

1

2
mev

2
th = kBTe =

2

3

(
3

2
kBTe

)
=

2

3
eŪeV , (XVII.1)

where ŪeV = 3kBTe/2e is the electron mean energy, we finally have:

vth =

√
4

3

e

me
ŪeV . (3.297)

After substitution in (3.293), we obtain:

f

(√
2eUeV

me

)
=

1

(2π)
3
2

(
3me

2eŪeV

) 3
2

exp

(
−2eUeV

me

/ 4eŪeV

3me

)
, (XVII.2)

where:

f

(√
2eUeV

me

)
=

(
3

4π

me

e

) 3
2 1

Ū
3
2

eV

exp

(
−3

2

UeV

ŪeV

)
. (3.298)

The ionisation frequency in terms of the reduced
energies U and Ui

As a starting point, we have equation (3.301)

〈νi〉 = 3

√
3e

meπ

p0

Ū
3
2

eV

ai0

∞∫

Ei

(UeV − Ei) UeV exp

(
−3

2

UeV

ŪeV

)
dUeV . (3.301)

Introducing the change of variable required for the energies to be normalised
to the average energy (so-called reduced energies):

3

2

UeV

ŪeV
= U ,

3

2

Ei
ŪeV

= Ui , (3.302)

it follows that:

〈νi〉 = 3

√
3e

meπ

p0ai0

Ū
3
2

eV

∞∫

Ei

2

3
ŪeV (U−Ui)

2

3
ŪeV U exp (−U) 2

3
ŪeV dU , (XVII.3)

from which:

〈νi〉 =
8

9

√
3e

meπ
p0ai0 Ū

3
2

eV

∞∫

Ui

(U − Ui)U exp (−U) dU . (3.303)
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Equation (3.309) expressed as a function of the reduced
energies U and Ui

This equation reads:

2

3
ŪeV μi

(
2.405

R

)2

= 2

(
4

3

) 3
2
√

e

meπ
ai0p0 Ū

3
2

eV

(
3

4

Ei
ŪeV

)
exp

(
−3

2

Ei
ŪeV

)
.

(3.309)

Since 3Ei/2ŪeV ≡ Ui, we can write:

ŪeV μi

(
2.405

R

)2

= 2

√
2e

meπ

ai0
p0

p20 E
1
2
i U

1
2
i exp−Ui (XVII.4)

and then:

U− 1
2

i (expUi) =
2

(2.405)2

√
2e

meπ

(
ai0E

1
2
i

μip0

)

︸ ︷︷ ︸
c20

p20R
2 , (XVII.5)

where μip0 is the reduced ion mobility at 0◦C, 1 torr (note the reference
pressure here is 1 torr, rather than 760 torr).
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Propagation of an Electromagnetic
Plane Wave in a Plasma
and the Skin Depth

The propagation conditions of an electromagnetic (EM) wave in a plasma are
governed by the four Maxwell equations, namely:

1. The Maxwell-Faraday equation:

∇ ∧E = −∂B

∂t
, (2.2)

2. The Maxwell-Ampère equation:

∇ ∧B = μ0J + μ0ε0
∂E

∂t
, (2.3)

3. The Poisson (or Maxwell-Gauss) equation:

∇ ·E =
ρ

ε0
, (1.1)

4. The Maxwell-Thomson equation:

∇ ·B = 0 . (2.144)

Assuming that the plasma is neutral on the macroscopic scale (ρ = 0),
and for the case of a dielectric description of the plasma (Sect. 2.2.1), (2.3)
and (1.1) can be written, respectively:

∇ ·E = 0 (XVIII.1)

and:

∇ ∧B = μ0ε0εp
∂E

∂t
, (2.45)

where εp represents the complex permittivity of the plasma relative to vac-
uum. The equation for the propagation of the EM wave is obtained by con-
sidering the rotational of (2.2):

∇ ∧∇ ∧E = ∇(∇ ·E)−ΔE = −∂∇ ∧B

∂t
, (XVIII.2)
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and then by taking account of (XVIII.1) and (2.45):

ΔE = μ0ε0εp
∂2E

∂t2
. (XVIII.3)

In the simple case of a plane EM wave (in the x, y plane) with angular
frequency ω and propagating along the Oz axis, the electric field E can be
written in the form:

E = E0e
i(ωt−kzz) , (XVIII.4)

where kz, the complex component along Oz of k, the propagation vector
(wavenumber23), can be written:

kz = β + iα . (XVIII.5)

Then from (XVIII.3) in Cartesian coordinates, we obtain the dispersion equa-
tion of a plane wave in an infinite homogeneous medium:

k2z = μ0ε0ω
2εp = εp

(ω
c

)2
, (XVIII.6)

where c is the speed of light in vacuum. In the general case, the permittivity
εp of the plasma relative to vacuum can be written:

εp = 1 +
σ

iωε0
, (2.40)

or, taking account of the electric conductivity σ of electrons (2.39):

εp = 1−
ω2
pe

ω(ω − iν)
. (2.41)

From (XVIII.4) and (XVIII.5)), the electric field can be expressed as:

E = E0e
i(ωt−βz)eαz , (XVIII.7)

which shows that the propagation of the wave is governed by β, the real part
of kz, while its attenuation is governed by α, the imaginary part of kz. If
kz is strictly real (α = 0), the wave propagates without any attenuation; if
kz includes a negative imaginary part (α < 0), the wave is attenuated (a
positive α value (α > 0) would correspond to an amplification of the wave,
which cannot be considered here as an acceptable physical solution). In the
case of wave attenuation (α < 0), the characteristic penetration depth δc of
the HF field in the plasma is defined as the distance over which the field
intensity of the plane EM wave reduces to 1/e (e is used exceptionally here
for the base of the natural logarithm) of its initial value, i.e.:

δc =
1

�(−kz)
= − 1

α
=

(c/ω)

�
(
−ε

1/2
p

) . (XVIII.8)



XVIII Propagation of an EM plane wave and the skin depth 453

The calculation of the skin depth can then be performed in a simple way for
two particular cases:

Non-collisional plasmas: ν  ω

In this case (ν  ω), the value of the plasma permittivity (2.41), to a first
approximation, is purely real:

εp = 1−
ω2
pe

ω2
. (XVIII.9)

If the value of the permittivity is positive (ωpe < ω), the wavenumber kz
is purely real (kz = β) and the wave propagates without attenuation. If
the value of the permittivity is negative (ωpe > ω), the wavenumber kz is
totally imaginary (kz = iα) and the wave cannot propagate in the plasma.
In this latter case, the EM wave is reflected by the plasma (the plasma can
be considered as a highly conductive medium) at the same time that there
is attenuation of the HF field in the plasma along the z axis, related to the
skin depth obtained from (XVIII.8):

δc =
c

(ω2
pe − ω2)1/2

� c

ωpe
. (XVIII.10)

Remark: The transition from the condition of propagation to that of no
propagation of the EM plane wave (wave propagation cut-off) in a non-
collisional plasma is obtained for the singular value εp = 0 (or kz = 0)
resulting from the equality ωpe = ω. The corresponding electron density nc,
the so-called critical density above which there is no propagation of a plane
wave in a non-collisional plasma, is given by:

nc =
ε0meω

2

e2
. (XVIII.11)

Collisional plasmas: ν 	 ω

In this opposite case (ν 	 ω), the plasma permittivity of a high density
plasma (ωpe 	 ω) can be obtained from (2.41) as:

εp = 1−
iω2

pe

νω
� −

iω2
pe

νω
. (XVIII.12)

The complex square root of εp that corresponds to a physical solution for kz
can be written as:
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ε1/2p � (1− i)

(
ω2
pe

2νω

)1/2

. (XVIII.13)

From (XVIII.8), the skin depth then takes the form:

δc =
c

ωpe

(
2ν

ω

)1/2

, (XVIII.14)

which, this time, depends on the collision frequency ν of the electrons and the
angular frequency ω of the HF field. The wavenumber, derived from (XVIII.6)
and (XVIII.14), can be expressed in the form:

kz =
1− i

δc
,

which implies that, in a high density collisional plasma (ωpe and ν 	 ω), the
EM wave can propagate over a distance equal to the skin depth even though
ωpe > ω.

Remark: The electric conductivity of electrons:

σ =
n2
e

me(ν + iω)
(2.39)

in a collisional plasma (ν 	 ω), takes the purely real value:

σ =
n2
e

meν
. (XVIII.15)

In this case, the skin depth (XVIII.14) can be written in the form:

δc =

(
2

σωμ0

)1/2

, (XVIII.16)

which is an expression that exactly corresponds to the well-known penetration
depth formula of a plane wave in metallic conductors.



Appendix XIX

Surface-Wave Plasmas (SWP)

This class of HF plasma has played a determining role in the understanding
and modelling of the plasmas generated by RF and microwave fields, and
even for the positive column of DC discharges. This is due, on one hand, to
the great flexibility of the operating conditions for SWP and, on the other
hand, to their intrinsic properties. The following brief overview of SWP will
aid the reader to better comprehend how some of the results presented in
Chap. 4 have been obtained.

Figure XIX.1 shows schematically the way in which an SWP is generated
in a cylindrical dielectric tube (planar or flat SWPs can also be created).
Note that the HF field applicator, in this case a wave launcher, covers only
a small length of the plasma column which is produced. This is because the
discharge is sustained, at each point along the column, by the propagation
of an electromagnetic (EM) wave, which is excited from the launching gap
(typically a few mm wide) of the field applicator. The propagating medium
of the wave consists of the plasma, the dielectric tube containing it, the
air surrounding the tube and, in some cases, a hollow cylindrical conductor
enclosing the whole system and coaxial to it. The EM wave is referred to as
a surface wave, because the intensity of its field E is a maximum, radially, at
the plasma-tube interface of the discharge, such that the wave seems to cling
to the discharge tube and, in fact should the case arise, follows the variations
in its diameter and curvature, if they are not too abrupt.

A surface wave is excited in both the forward and backward directions
from the launching gap, as shown in Fig. XIX.1. With some types of launchers
(for example, a surfaguide), the forward column is symmetric to the back-
ward column, with respect to the gap, while in contrast, with some other
launchers (for example, a surfatron), the plasma is almost exclusively that of
the forward column. The power flow P (z) emerging from the launching gap
attenuates along the discharge vessel as the wave transfers its energy to the
gas in the discharge that it creates.

One particular property of SWP is that the power lost by the wave
dP (z)/dz between z and z + dz is absorbed by the discharge over the same
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Fig. XIX.1 Schematic of the principle of formation of a plasma column generated by
an electromagnetic surface wave in a dielectric tube, from the launching gap of a field

applicator.

axial range z and z + dz (this is not true of HF plasmas in general), which
simplifies the modelling.

The result of the progressive reduction in power flow P (z) from the launch-
ing gap is a decrease, usually linear, in the electron density, as shown in Fig.
XIX.2. In this figure, we further note that the slope of the curves becomes
steeper as the wave frequency increases. In the low pressure case (ν/ω  1),
the wave ceases to propagate, and hence does not maintain a discharge, when
ne is below a certain value189, while in the high pressure case, the wave ceases
to propagate when the power flow is no longer sufficient to maintain the dis-
charge, which determines, in both cases, the end of the plasma column.

Another remarkable property of SWPs, at least at pressures much below
atmospheric pressure, is that an increase in the HF power delivered to the field
applicator produces an increase in the length of the plasma column, without
modifying the pre-existing segment of plasma with respect to the end of the
column, this plasma segment being simply pushed away as a whole from
the launching gap. Figure XIX.2 at 100MHz is a good illustration of this
behaviour of SWPs. The arrow indicating 36 W represents the axial position
occupied by the applicator with respect to the end of the column (z � 0)
and we can see, as noted above, that the segment of the plasma column is
not modified when the HF power is increased to 58 W. The average electron
density n̄e across a radial section of the plasma:

ne(z) =
1

πR2

R∫

0

ne(r, z) 2πrdr (XIX.1)

189 The minimum value of n̄e in this case is n̄e � 1.2 × 104(1 + εv)f2 (cm−3) where εv is

the relative permittivity of the discharge tube (for example, 3.78 for fused silica) and f is
the wave frequency, expressed in MHz.
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of the additional segment is higher, but its gradient dn̄e/dz remains the same.
Note that, for a frequency of 27MHz and a pressure of 30mtorr (4Pa), the
plasma column in argon extends to 4.5m with less than 40W transmitted to
the surfatron.

Fig. XIX.2 Axial distribution of the electron density observed along a plasma column,

produced by a surface wave, at different excitation frequencies (tube radius R = 6.4 cm in
free air, surfatron, argon 30mtorr).

Figure XIX.3 shows that the value of n̄e and its gradient dn̄e/dz increase
as the tube diameter is increased. This property is true for plasmas from
atmospheric pressure (Fig. XIX.3) down to a few mtorr, and is related to
the axial variation of the attenuation coefficient α of the surface wave [25].
This emphasises the fact that, given a plasma column along which n̄e and
P (z) vary, we are able to perform a self-consistent study of the wave and
plasma properties at each axial position z, without the need to modify the
operating conditions. Having access to such a tremendous amount of data
(from experiment and model) is another important and unique feature of
SWP.

The range of possible operating conditions is the largest of all HF plas-
mas, and this makes it an instrument of choice for modelling, allowing ready
comparison between experiment and theory, during which only one operating
parameter can be modified at a time. As a matter of fact, it is possible to
create these plasmas at frequencies from as low as 150 kHz to at least 2.45
GHz190, producing a surface wave with the same azimuthal symmetry, i.e. the
same EM configuration; we believe that this is not possible with any other

190 SWPs have been achieved at 40GHz. However, it is not clear whether the discharge
was sustained on the m = 0 (azimuthally symmetric) surface wave mode [40].
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type of HF discharges, since it would require changing the tube diameter or
the type of field applicator, i.e. the EM field configuration, to cover such a
large frequency domain. The range of pressures can extend from a few mtorr
(much less even, in the presence of a confining magnetic field at ECR) up to
at least 7 times atmospheric pressure, which we have been able to achieve,
with the same EM field configuration. The diameter of the discharge tubes
can range from less than 1 mm, up to 300mm, for frequencies that are not
too high (some restrictions apply, in effect, to the maximum discharge diam-
eter, to avoid higher EM modes of the surface wave when the wave frequency
is increased [18]. Due to this extreme adaptability of the operating condi-
tions, we can say that the main application of SWPs is the modelling of HF
plasmas, although there are now numerous industrial applications of SWPs.

Fig. XIX.3 Axial distribution of the average electron density across a section of the
discharge tube, for two values of internal radius (3 and 6mm) in a neon plasma at 915MHz,

at atmospheric pressure.



Appendix XX

Useful Integrals and Expressions for
the Differential Operators in Various
Coordinate Systems

Useful integrals

Γ Function

Γ (x) =

∞∫

0

tz−1e−t dt , �(z) > 0 (XX.1)

For z = n, where n is an integer:

Γ (n) = (n− 1)! , Γ (n+ 1) = nΓ (n) .

Noteworthy values for the Γ function:

Γ

(
1

2

)
=

√
π , Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
, Γ (1) = 1 .

Other integrals
∞∫

−∞

e−y2

dy =
√
π (XX.2)

E(n) =

∞∫

−∞

e−ax2

xn dx a > 0 , (XX.3)

E(n) = 0 for n odd,

E(n) = 2

∞∫

0

e−ax2

xn dx =
Γ
(
n+1
2

)

a(
n+1
2 )

for n even.
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Noteworthy values

E(n) =
1

2
Γ

(
n+ 1

2

)
a−

n+1
2 ,

E(0) =
1

2
Γ

(
1

2

)
a−

1
2 =

√
π

2
a−

1
2 , E(1) =

1

2
Γ (1) a−1 =

1

2
a−1 ,

E(2) =
1

2
Γ

(
3

2

)
a−

3
2 =

√
π

4
a−

3
2 , E(3) =

1

2
Γ (2) a−2 =

1

2
a−2,

E(4) =
1

2
Γ

(
5

2

)
a−

5
2 =

3
√
π

8
a−

5
2 , E(5) =

1

2
Γ (3) a−3 = a−3 .

Expression for the differential operators in an arbitrary
coordinate system (orthogonal, rectilinear and
curvilinear coordinates)

If x1, x2 and x3 are the system coordinates and e1, e2, and e3 are the (lo-
cal) scale factors, we can express the differential operators in the following
manner:

- The gradient

∇ =

(
1

e1
∂1,

1

e2
∂2,

1

e3
∂3

)
, (XX.4)

where ∂i ≡ ∂/∂xi.

- The curl of a vector

∇ ∧A =

(
1

e2e3
(∂2e3A3 − ∂3e2A2),

1

e3e1
(∂3e1A1 − ∂1e3A3),

1

e1e2
(∂1e2A2 − ∂2e1A1)

)
. (XX.5)

- The divergence of a vector

∇ ·A =
1

e1e2e3
(∂1e2e3A1 + ∂2e3e1A2 + ∂3e1e2A3) . (XX.6)

- The Laplacian of a scalar

Δφ =
1

e1e2e3

(
∂1

e2e3
e1

∂1φ+ ∂2
e3e1
e2

∂2φ+ ∂3
e1e2
e3

∂3φ

)
. (XX.7)
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- The Laplacian of a vector in Cartesian coordinates

ΔA = ΔA1ê1 +ΔA2ê2 +ΔA3ê3 . (XX.8)

Quite generally:
ΔA = ∇(∇ ·A)−∇ ∧∇ ∧A . (XX.9)

These operators have the following properties:

- The curl of a gradient is zero

(∇ ∧∇φ)1 =
1

e2e3

(
∂2e3

1

e3
∂3φ− ∂3e2

1

e2
∂2φ

)
=

1

e2e3
(∂2∂3 − ∂3∂2) = 0 ,

(XX.10)
and similarly for the two other components.

- The divergence of the curl of a vector is zero

(∇ ·∇ ∧A) =
1

e1e2e3

(
∂1e2e2

1

e2e3
(∂2e3A3 − ∂3e2A2)

+ ∂2e3e1
1

e3e1
(∂3e1A1 − ∂1e3A3) + ∂3e1e2

1

e1e2
(∂1e2A2 − ∂2e1A1)

)
= 0 .

(XX.11)

- The divergence of the gradient of a scalar is equal to the Laplacian

∇ ·∇φ =
1

e1e2e3

(
∂1

e2e3
e1

∂1φ+ ∂2
e3e1
e2

∂2φ+ ∂3
e1e2
e3

∂3

)
φ = Δφ .

(XX.12)

Curvilinear, orthogonal, coordinate systems
and scale factors

Cartesian coordinates

The variables are x1 = x, x2 = y and x3 = z and the scale factors are
e1 = e2 = e3 = 1.

∇φ =
∂φ

∂x
êx +

∂φ

∂y
êy +

∂φ

∂z
êz (XX.13)

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(XX.14)

∇ ∧A =

(
∂Az

∂y
− ∂Ay

∂z

)
êx +

(
∂Ax

∂z
− ∂Az

∂x

)
êy +

(
∂Ay

∂x
− ∂Ax

∂y

)
êz

(XX.15)
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Δφ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
(XX.16)

ΔA =

(
∂2Ax

∂x2
+

∂2Ax

∂y2
+

∂2Ax

∂z2

)
êx +

(
∂2Ay

∂x2
+

∂2Ay

∂y2
+

∂2Ay

∂z2

)
êy

+

(
∂2Az

∂x2
+

∂2Az

∂y2
+

∂2Az

∂z2

)
êz (XX.17)

(A ·∇)B =

(
Ax

∂Bx

∂x
+Ay

∂Bx

∂y
+Az

∂Bx

∂z

)
êx

+

(
Ax

∂By

∂x
+Ay

∂By

∂y
+Az

∂By

∂z

)
êy

+

(
Ax

∂Bz

∂x
+Ay

∂Bz

∂y
+Az

∂Bz

∂z

)
êz (XX.18)

Cylindrical coordinates

The variables are x1 = r, x2 = θ and x3 = z and the scale factors are e1 = 1,
e2 = r, e3 = 1.

∇φ =
∂φ

∂r
êr +

1

r

∂φ

∂θ
êθ +

∂φ

∂z
êz (XX.19)

∇ ·A =
1

r

∂(rAr)

∂r
+

1

r

∂Aθ

∂θ
+

∂Az

∂z
(XX.20)

∇ ∧A =

(
1

r

∂Az

∂θ
− ∂Aθ

∂z

)
êr +

(
∂Ar

∂z
− ∂Az

∂r

)
êθ

+
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
êz (XX.21)

Δφ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
+

∂2φ

∂z2
(XX.22)

ΔA =

(
ΔAr −

2

r2
∂Aθ

∂θ
− Ar

r2

)
êr

+

(
ΔAθ −

2

r2
∂Ar

∂θ
− Aθ

r2

)
êθ +ΔAz êz (XX.23)
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(A ·∇)B =

(
Ar

∂Br

∂r
+

Aθ

r

∂Br

∂θ
+Az

∂Br

∂z
− AθBθ

r

)
êr

+

(
Ar

∂Bθ

∂r
+

Aθ

r

∂Bθ

∂θ
+Az

∂Bθ

∂z
+

AθBr

r

)
êθ

+

(
Ar

∂Bz

∂r
+

Aθ

r

∂Bz

∂θ
+Az

∂Bz

∂z
+

)
êz (XX.24)

Spherical coordinates

The variables are x1 = r, x2 = θ and x3 = ϕ and scale factors are e1 = 1,
e2 = r, e3 = r sin θ.

∇φ =
∂φ

∂r
êr +

1

r

∂φ

∂θ
êθ +

1

r sin θ

∂φ

∂ϕ
êϕ (XX.25)

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(Aθ sin θ)

∂θ
+

1

r sin θ

∂Aϕ

∂ϕ
(XX.26)

∇ ∧A =
1

r sin θ

(
∂(Aϕ sin θ)

∂θ
− ∂Aθ

∂ϕ

)
êr +

1

r

(
1

sin θ

∂Ar

∂ϕ
− ∂(rAϕ)

∂r

)
êθ

+
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
êϕ (XX.27)

Δφ =
1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
(XX.28)

ΔA =

(
ΔAr −

2Ar

r2
− 2

r2
∂Aθ

∂θ
− 2Aθ cot θ

r2
− 2

r2 sin θ

∂Aϕ

∂ϕ

)
êr

+

(
ΔAθ +

2

r2
∂Ar

∂θ
− Aθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂Aϕ

∂ϕ

)
êθ

+

(
ΔAϕ − Aϕ

r2 sin2 θ
+

2

r2 sin θ

∂Ar

∂ϕ
+

2 cos θ

r2 sin2 θ

∂Aθ

∂ϕ

)
êϕ (XX.29)
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(A ·∇)B =

(
Ar

∂Br

∂r
+

Aθ

r

∂Br

∂θ
+

Aϕ

r sin θ

∂Br

∂ϕ
− AθBθ +AϕBϕ

r

)
êr

+

(
Ar

∂Bθ

∂r
+

Aθ

r

∂Bθ

∂θ
+

Aϕ

r sin θ

∂Bθ

∂ϕ
+

AθBr

r
− AϕBϕ cot θ

r

)
êθ

+

(
Ar

∂Bϕ
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CNRS, 1994)
- Held, B., Physique des plasmas froids (Masson, 1994)
- Moisan, M., Pelletier, J., Physique des plasmas collisionnels (EDP Sciences,

2006)
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saturation of intermediate states, 415
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recombination, 19

Column

positive, 339

Complete thermal equilibrium, 19

Compression

adiabatic, 445

Conduction current, 111

Conductivity

Boltzmann, 221

kinetic, 221

Lorentz, 221, 245

thermal, 235

Confinement

inertial, 5

magnetic, 5

Congruence approximation, 262

Conservation equation, 37, 67

Conservation of particles

equation, 226

Continuity equation, 226

Continuous medium, 204

Contracted

discharge, 374, 378

Contraction, 370, 372, 376

Convective term, 229

Coordinates

cartesian, 461

cylindrical, 462

spherical, 463

Coulomb

force, 34

interaction, 399, 404

logarithm, 407

Critical density, 453

Cross-section

collision, 58

macroscopic

total, 50

microscopic, 405

differential, 44

scattering, 44

total, 48

Curl, 460

vector, 426

Curvature, 173

radius, 437

Cyclotron

frequency, 114, 115, 117

resonance, 117, 134, 165, 169, 321

Cylindrical coordinates, 462

Debye

length, 2, 27, 29

Degree of ionisation, 4

Density

critical, 453

Density of presence

probability, 211

Deposition, 10

Depth

skin, 451

Description

charges in vacuum, 112

dielectric, 112

Detachment

electron, 35

Detoxification, 9

Diamagnetic field, 117

Diamond

polycrystalline, 11

Dielectric description, 112

Diffuse

discharge, 372

Diffusion, 245

ambipolar, 261, 264, 326, 329

anomalous, 253

coefficient, 64

effective, 265

free, 251
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electric velocity, 121

magnetic, 148, 435

magnetic curvature, 153

magnetic velocity, 151

velocity, 247
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Function
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Gradient, 460
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Hydrodynamic equation
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Ionisation

coefficient, 278

degree of, 4
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energy, 4
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Joule
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Kinetic
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energy

average, 389

equation, 104

mean, 216
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pressure

force, 229

tensor, 216

transport equation, 443

Laboratory frame, 44

Lagrange

description, 233

Langevin

equation, 234, 311

Laplacian, 460

scalar, 426

vector, 426

Larmor

radius, 116

Laser pumping, 8

Law

Boltzmann, 20
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function, 441
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equation, 208

Length
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Linear mobility, 247
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Local partial equilibrium, 22
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Local uniformity
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number, 249

Long range

interaction, 1

Lorentz

conductivity, 221, 245
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Low-frequency discharge

approximation, 111

Luminous
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Magnetic
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moment, 433

pressure, 159

Magnetic drift, 148, 435
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velocity, 151

Maintenance field, 343

Maxwell equation, 2, 138
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Maxwell-Ampère

equation, 451

Maxwell-Boltzmann

distribution, 19, 387
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equation, 451

Maxwell-Gauss

equation, 451
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equation, 451

Mean free path, 58, 58

average, 411

collision, 56

Mean kinetic energy, 216

Mean velocity, 216

Micro-reversibility, 18

Microscopic model, 102

Microscopic scaling law, 359

Microwave regime, 360
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magnetic, 142

ratio, 145

Mobility, 246

linear, 247

reduced, 249

tensor, 248

Model

hydrodynamic, 203

self-consistent, 101

Moment

magnetic, 433

Momentum exchange, 36

Multi-photonic effect, 16

Multi-step ionisation, 259

Mutual

neutralisation, 35
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Natural oscillation frequency

of electrons, 23

Navier-Stokes

equation, 234

Negative ion

source, 14

Neutralisation

mutual, 35

Non-collisional

plasma, 453

Non-ideal plasma, 32

Normalisation condition, 216, 387, 390

Onsager

relation, 302

Operating condition, 282, 361

Orbital

magnetic moment, 136

Parallel fields, 125

Particle transport, 226

Partition function, 393

Penetration depth, 345

Penning

ionisation, 383

Permittivity, 112

Perpendicular fields, 123

Photon

absorption, 19

emission, 19

Physico-chemical

transformation, 10

Planck

law, 20

Plane wave, 451

Plasma, 4

applications, 5

atmospheric pressure, 376

chemistry, 9

cold, 4, 204, 241

collisional, 453

display panel, 13

high-pressure HF sustained, 369

inductively coupled, 344

Lorentz, 205

non-collisional, 453

non-ideal, 32

operating condition, 282

potential, 283

remote, 11

surface-wave, 455

two-temperature, 22

warm, 205, 241

Poisson

equation, 2, 25, 29, 79, 451

Polarisation current, 162

Polycrystalline diamond, 11

Polynomial

Legendre, 441

Population inversion, 8

Positive column, 339

Positive ion

source, 14

Potential

floating, 288

ionisation, 59

Power

absorbed per electron, 341

lost per electron, 340

Pre-sheath, 285

Pressure

reduced, 52

Probability density
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Proportionality

condition, 262

Radiation

black body, 20

Radiative recombination, 35

Radius

of curvature, 153, 437

Ramsauer

minimum, 56

Reaction coefficient, 36, 63

Recombination

collisional, 19

dissociative, 35, 65, 353

mutual, 65

radiative, 35

three-body, 64

Reduced mass, 39

Reduced pressure, 52

Relation

adiabatic, 243

Relaxation operator

distribution function, 208

Remote plasma, 11

Reversible processes, 18

Saha

equation, 20, 393

Saturation

of relay states, 353

Scalar

gradient, 425

Laplacian, 426
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Scaling law, 275
Scattering

angle, 40, 397, 399
centre, 44

microscopic cross-section, 44
Schottky

condition, 276
Screening effect, 27

Self-consistent model, 101
Sheath, 27, 283

boundary, 284
ion, 285

thickness, 284
Single trajectory model, 101

Single-point
distribution function, 211, 212

Skin depth, 451
Skin effect, 344

Solar wind, 7
Space-charge field, 23, 25, 78

Specific heat ratio, 26
Speed

average, 389
mean square, 389

most probable, 388
Spherical

coordinates, 463

harmonics, 441
Sputtering, 10

State
intermediate, 413

saturation coefficient, 415
Steenbeck

approximation, 279
Sterilisation, 11

Strong interaction, 205
Superelastic

collision, 18, 33
Surface

cleaning, 10
treatment, 10

Surface-wave plasma, 455

Temperature, 17, 53

Tensor, 417, 421
operator, 419, 421

product, 418, 422

Termonuclear fusion, 5

Thermal conductivity, 235

Thermal energy

flux tensor, 238

Thermodynamic

equilibrium, 18, 21

system, 4

Three-body

recombination, 64

Threshold

ionisation, 59

Total derivative, 233

Transfer of charge, 60

resonant, 61

Transport

particle, 226

Transport equation

closure, 240

kinetic pressure tensor, 237

Two steps ionisation, 353

Two-point

distribution function, 213

Two-temperature plasma, 22

Vector

curl, 426

divergence, 425

flux, 235

Laplacian, 426

product, 421

Velocity

Bohm, 287

distribution, 19, 387

distribution function, 206, 222

drift, 247

ion acoustic, 287

mean, 216

von Engel
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