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Preface

This textbook had its origin in several courses taught for two decades (1965–
1985) at Brown University by one of the authors (JJQ). The original assigned
text for the first semester course was the classic “Introduction to Solid State
Physics” by C. Kittel. Many topics not covered in that text were included in
subsequent semesters because of their importance in research during the 1960s
through the 1980s. A number of the topics covered were first introduced in a
course on “Many Body Theory of Metals” given by JJQ as a Visiting Lecturer
at the University of Pennsylvania in 1961–1962, and later included in a course
at Purdue University when he was a Visiting Professor (1964–1965). A sojourn
into academic administration in 1984 removed JJQ from teaching for 8 years.
On returning to a full time teaching–research professorship at the University
of Tennessee, he again offered a 1 year graduate course in Solid State Physics.
The course was structured so that the first semester (roughly the first half
of the text) introduced all the essential concepts for students who wanted
exposure to solid state physics. The first semester could cover topics from the
first nine chapters. The second semester covered a selection of more advanced
topics for students intending to do research in this field. One of the co-authors
(KSY) took this course in Solid State Physics as a PhD student at Brown
University. He added to and improved the lecture while teaching the subject
at Pusan National University from 1984. The text is a true collaborative effort
of the co-authors.

The advanced topics in the second semester are covered briefly, but thor-
oughly enough to convey the basic physics of each topic. References point the
students who want more detail in the right direction. An entirely different
set of advanced topics could have been chosen in the place of those in the
text. The choice was made primarily because of the research interests of the
authors.

In addition to Kittel’s classic Introduction to Solid State Physics, 7th edn.
(Wiley, New York, 1995), other books that influenced the evolution of this
book are: Methods of Quantum Field Theory in Statistical Physics ed. by
A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinsky (Prentice-Hall, Englewood,
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NJ, 1963); Solid State Physics ed. by N.W. Ashcroft, N.D. Mermin
(Saunder’s College, New York, 1975); Introduction to Solid State Theory ed.
by O. Madelung (Springer, Berlin, Heidelberg, New York, 1978); and Fun-
damentals of Semiconductors ed. by P.Y. Yu, M. Cardona (Springer, Berlin,
Heidelberg, New York, 1995).

Many graduate students at Brown, Tennessee, and Pusan have helped to
improve these lecture notes by pointing out sections that were difficult to
understand, and by catching errors in the text. Dr. Alex Tselis presented
the authors with his carefully written notes of the course at Brown when
he changed his field of study to medical science. We are grateful to all the
students and colleagues who have contributed to making the lecture notes
better.

Both the co-authors want to acknowledge the encouragement and support
of their families. The book is dedicated to them.

Knoxville and Pusan, John J. Quinn
August 2009 Kyung-Soo Yi
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2.3 Mössbauer Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Optical Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Lattice Vibrations in Three Dimensions . . . . . . . . . . . . . . . . . . . 50

2.5.1 Normal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Heat Capacity of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.1 Einstein Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.2 Modern Theory of the Specific Heat of Solids . . . . . . 57
2.6.3 Debye Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



X Contents

2.6.4 Evaluation of Summations over Normal Modes
for the Debye Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6.5 Estimate of Recoil Free Fraction in Mössbauer Effect 62
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Part I

Basic Concepts in Solid-State Physics



1

Crystal Structures

1.1 Crystal Structure and Symmetry Groups

Although everyone has an intuitive idea of what a solid is, we will consider
(in this book) only materials with a well-defined crystal structure. What we
mean by a well-defined crystal structure is an arrangement of atoms in a lattice
such that the atomic arrangement looks absolutely identical when viewed from
two different points that are separated by a lattice translation vector. A few
definitions are useful.

Lattice

A lattice is an infinite array of points obtained from three primitive transla-
tion vectors a1, a2, a3. Any point on the lattice is given by

n = n1a1 + n2a2 + n3a3. (1.1)

Translation Vector

Any pair of lattice points can be connected by a vector of the form

Tn1n2n3 = n1a1 + n2a2 + n3a3. (1.2)

The set of translation vectors form a group called the translation group of the
lattice.

Group

A set of elements of any kind with a set of operations, by which any two
elements may be combined into a third, satisfying the following requirements
is called a group:

• The product (under group multiplication) of two elements of the group
belongs to the group.
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Fig. 1.1. Translation operations in a two-dimensional lattice

• The associative law holds for group multiplication.
• The identity element belongs to the group.
• Every element in the group has an inverse which belongs to the group.

Translation Group

The set of translations through any translation vector Tn1n2n3 forms a group.
Group multiplication consists in simply performing the translation operations
consecutively. For example, as is shown in Fig. 1.1, we have T13 = T03 +
T10. For the simple translation group the operations commute, i.e., TijTkl =
TklTij for, every pair of translation vectors. This property makes the group
an Abelian group.

Point Group

There are other symmetry operations which leave the lattice unchanged. These
are rotations, reflections, and the inversion operations. These operations form
the point group of the lattice. As an example, consider the two-dimensional
square lattice (Fig. 1.2). The following operations (performed about any lattice
point) leave the lattice unchanged.

• E: identity
• R1, R3: rotations by ±90◦

• R2: rotation by 180◦

• mx,my: reflections about x-axis and y-axis, respectively
• m+,m−: reflections about the lines x = ±y
The multiplication table for this point group is given in Table 1.1. The oper-
ations in the first column are the first (right) operations, such as m+ in
R1m+ = my, and the operations listed in the first row are the second (left)
operations, such as R1 in R1m+ = my.
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Fig. 1.2. The two-dimensional square lattice

Table 1.1. Multiplication table for the group 4mm. The first (right) operations,
such as m+ in R1m+ = my, are listed in the first column, and the second (left)
operations, such as R1 in R1m+ = my, are listed in the first row

Operation E R1 R2 R3 mx my m+ m−

E−1 = E E R1 R2 R3 mx my m+ m−
R−1

1 = R3 R3 E R1 R2 m+ m− my mx

R−1
2 = R2 R2 R3 E R1 my mx m− m+

R−1
3 = R1 R1 R2 R3 E m− m+ mx my

m−1
x = mx mx m+ my m− E R2 R1 R3

m−1
y = my my m− mx m+ R2 E R3 R1

m−1
+ = m+ m+ my m− mx R3 R1 E R2

m−1
− = m− m− mx m+ my R1 R3 R2 E

12

3 4

Fig. 1.3. Identity operation on a two-dimensional square

The multiplication table can be obtained as follows:

• Label the corners of the square (Fig. 1.3).
• Operating with a symmetry operation simply reorders the labeling. For

example, see Fig. 1.4 for symmetry operations of m+, R1, and mx.

Therefore, R1m+ = my. One can do exactly the same for all other prod-
ucts, for example, such as myR1 = m+. It is also very useful to note what hap-
pens to a point (x, y) under the operations of the point group (see Table 1.2).
Note that under every group operation x→ ±x or ±y and y → ±y or ±x.



6 1 Crystal Structures

+

1

y

π
2

Fig. 1.4. Point symmetry operations on a two-dimensional square

Table 1.2. Point group operations on a point (x, y)

Operation E R1 R2 R3 mx my m+ m−

x x y −x −y x −x y −y
y y −x −y x −y y x −x

Fig. 1.5. The two-dimensional rectangular lattice

The point group of the two-dimensional square lattice is called 4mm. The
notation denotes the fact that it contains a fourfold axis of rotation and two
mirror planes (mx and my); the m+ and m− planes are required by the exis-
tence of the other operations. Another simple example is the symmerty group
of a two-dimensional rectangular lattice (Fig. 1.5). The symmetry operations
are E,R2,mx,my, and the multiplication table is easily obtained from that
of 4mm. This point group is called 2mm, and it is a subgroup of 4 mm.

Allowed Rotations

Because of the requirement of translational invariance under operations of the
translation group, the allowed rotations of the point group are restricted to
certain angles. Consider a rotation through an angle φ about an axis through
some lattice point (Fig. 1.6). If A and B are lattice points separated by a
primitive translation a1, then A′ (and B′) must be a lattice point obtained
by a rotation through angle φ about B (or −φ about A). Since A′ and B′
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φ−φ

Fig. 1.6. Allowed rotations of angle φ about an axis passing through some lattice
points A and B consistent with translational symmetry

Table 1.3. Allowed rotations of the point group

p cos φ φ n (= |2π/φ|)
−1 1 0 or 2π 1

0
1

2
±2π

6
6

1 0 ±2π

4
4

2 −1

2
±2π

3
3

3 −1 ±2π

2
2

are lattice points, the vector B′A′ must be a translation vector. Therefore, we
have

|B′A′| = pa1, (1.3)

where p is an integer. But |B′A′| = a1 + 2a1 sin
(
φ− π

2

)
= a1 − 2a1 cosφ.

Solving for cosφ gives

cosφ =
1 − p

2
. (1.4)

Because −1 ≤ cosφ ≤ 1, we see that p must have only the integral values -1,
0, 1, 2, 3. This gives for the possible values of φ listed in Table 1.3.

Although only rotations of 60◦, 90◦, 120◦, 180◦, and 360◦ are consistent
with translational symmetry, rotations through other angles are obtained
in quasicrystals (e.g., fivefold rotations). The subject of quasicrystals, which
do not have translational symmetry under the operations of the translation
group, is an interesting modern topic in solid state physics which we will not
discuss in this book.

Bravais Lattice

If there is only one atom associated with each lattice point, the lattice is called
Bravais lattice. If there is more than one atom associated with each lattice
point, the lattice is called a lattice with a basis. One atom can be considered
to be located at the lattice point. For a lattice with a basis it is necessary to
give the locations (or basis vectors) for the additional atoms associated with
the lattice point.
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a

a

cos   = a2
a

b

Fig. 1.7. Construction of the Wigner–Seitz cell of a two-dimensional centered
rectangular lattice. Note that cos φ = a1/2a2

Primitive Unit Cell

From the three primitive translation vectors a1, a2, a3, one can form a paral-
lelepiped that can be used as a primitive unit cell. By stacking primitive unit
cells together (like building blocks) one can fill all of space.

Wigner–Seitz Unit Cell

From the lattice point (0, 0, 0) draw translation vectors to neighboring lat-
tice points (to nearest, next nearest, etc., neighbors). Then, draw the planes
which are perpendicular bisectors of these translation vectors (see, for exam-
ple, Fig. 1.7). The interior of these intersecting planes (i.e., the space closer
to (0, 0, 0) than to any other lattice point) is called the Wigner–Seitz unit
cell.

Space Group

For a Bravais lattice, the space group is simply the product of the operations
of the translation group and of the point group. For a lattice with a basis,
there can be other symmetry operations. Examples are glide planes and screw
axes ; illustration of each is shown in Figs. 1.8 and 1.9, respectively.

Glide Plane

In Fig. 1.8, each unit cell contains six atoms and T1/2mx is a symmertry
operation even though neither T1/2 nor mx is an operation of the symmetry
group.
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Fig. 1.8. Glide plane of a two-dimensional lattice. Each unit cell contains six atoms

Fig. 1.9. Screw axis. Unit cell contains three layers and T1 is the smallest
translation. Occupied sites are shown by solid dots

Screw Axis

In Fig. 1.9, T1/3R120◦ is a symmetry operation even though T1/3 and R120◦

themselves are not.

Two-Dimensional Bravais Lattices

There are only five different types of two-dimensional Bravais lattices.

1. Square lattice: primitive (P) one only
It has a = b and α = β = 90◦.

2. Rectangular: primitive (P) and centered (C) ones
They have a �= b but α = β = 90◦.
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3. Hexagonal: primitive (P) one only
It has a = b and α = 120◦(β = 60◦).

4. Oblique: primitive (P) one only
It has a �= b and α �= 90◦.

Three-Dimensional Bravais Lattices

There are 14 different types of three-dimensional Bravais lattices.

1. Cubic: primitive (P), body centered (I), and face centered (F) ones.
For all of these a = b = c and α = β = γ = 90◦.

2. Tetragonal: primitive and body centered (I) ones.
For these a = b �= c and α = β = γ = 90◦. One can think of them as cubic
lattices that have been stretched (or compressed) along one of the cube
axes.

3. Orthorombic: primitive (P), body centered (I), face centered (F), and base
centered (C) ones.
For all of these a �= b �= c but α = β = γ = 90◦. These can be thought
of as cubic lattices that have been stretched (or compressed) by different
amounts along two of the cube axes.

4. Monoclinic: primitive (P) and base centered (C) ones.
For these a �= b �= c and α = β = 90◦ �= γ. These can be thought of as
orthorhombic lattices which have suffered shear distortion in one direction.

5. Triclinic: primitive (P) one.
This has the lowest symmetry with a �= b �= c and α �= β �= γ.

6. Trigonal:
It has a = b = c and α = β = γ �= 90◦ < 120◦. The primitive cell is a
rhombohedron. The trigonal lattice can be thought of as a cubic lattice
which has suffered shear distortion.

7. Hexagonal: primitive (P) one only.
It has a = b �= c and α = β = 90◦, γ = 120◦.

1.2 Common Crystal Structures

1. Cubic
(a) Simple cubic (sc): Fig. 1.10

For simple cubic crystal the lattice constant is a and the volume per
atom is a3. The nearest neighbor distance is also a, and each atom has
six nearest neighbors. The primitive translation vectors are a1 = ax̂,
a2 = aŷ, a3 = aẑ.

(b) Body centered cubic (bcc): Fig. 1.11
If we take a unit cell as a cube of edge a, there are two atoms
per cell (one at (0, 0, 0) and one at

(
1
2 ,

1
2 ,

1
2

)
). The atomic volume

is 1
2a

3, and the nearest neighbor distance is
√

3
2 a. Each atom has
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Fig. 1.10. Crystallographic unit cell of a simple cubic crystal of lattice constant a

Fig. 1.11. Crystallographic unit cell of a body centered cubic crystal of lattice
constant a

eight nearest neighbors. The primitive translations can be taken as
a1 = 1

2a (x̂+ ŷ + ẑ), a2 = 1
2a (−x̂+ ŷ + ẑ), and a3 = 1

2a (−x̂− ŷ + ẑ).
The parallelepiped formed by a1, a2, a3 is the primitive unit cell (con-
taining a single atom), and there is only one atom per primitive unit
cell.

(c) Face centered cubic (fcc): Fig. 1.12
If we take a unit cell as a cube of edge a, there are four atoms per cell;
1
8 of one at each of the eight corners and 1

2 of one on each of the six
faces. The volume per atom is a3

4 ; the nearest neighbor distance is a√
2
,

and each atom has 12 nearest neighbors. The primitive unit cell is the
parallelepiped formed from the primitive translations a1 = 1

2a (x̂+ ŷ),
a2 = 1

2a (ŷ + ẑ), and a3 = 1
2a (ẑ + x̂).

All three cubic lattices have the cubic group as their point group.
Because the primitive translations are different, the simple cubic, bcc,
and fcc lattices have different translation groups.
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Fig. 1.12. Crystallographic unit cell of a face centered cubic crystal of lattice
constant a

Fig. 1.13. Crystallographic unit cell of a simple hexagonal crystal of lattice
constants a1, a2, and c

2. Hexagonal
(a) Simple hexagonal: See Fig. 1.13.
(b) Hexagonal close packed (hcp):

This is a non-Bravais lattice. It contains two atoms per primitive unit
cell of the simple hexagonal lattice, one at (0,0,0) and the second
at

(
1
3 ,

2
3 ,

1
2

)
. The hexagonal close packed crystal can be formed by

stacking the first layer (A) in a hexagonal array as is shown in Fig. 1.14.
Then, the second layer (B) is formed by stacking atoms in the alternate
triangular holes on top of the first layer. This gives another hexagonal
layer displaced from the first layer by

(
1
3 ,

2
3 ,

1
2

)
. Then the third layer

is placed above the first layer (i.e., at (0,0,1)). The stacking is then
repeated ABABAB . . .. If one stacks ABCABC . . ., where C is the
hexagonal array obtained by stacking the third layer in the other set
of triangular holes above the set B (instead of the set A), one gets
an fcc lattice. The closest possible packing of the hcp atoms occurs
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Fig. 1.14. Stacking of layers A and B in a hexagonal close packed crystal of lattice
constants a1, a2, and c

when c
a =

√
8/3 ≈ 1.633. We leave this as an exercise for the reader.

Zn crystalizes in a hcp lattice with a = 2.66 Å and c = 4.96 Å giving
c
a ≈ 1.85, larger than the ideal c

a value.
3. Zincblende Structure This is a non-Bravais lattice. It is an FCC with two

atoms per primitive unit cell located at (0,0,0) and
(

1
4 ,

1
4 ,

1
4

)
. The structure

can be viewed as two interpenetrating fcc lattices displaced by one fourth
of the body diagonal. Examples of the zincblende structure are ZnS (cubic
phase), ZnO (cubic phase), CuF, CuCl, ZnSe, CdS, GaN (cubic phase),
InAs, and InSb. The metallic ions are on one sublattice, the other ions on
the second sublattice.

4. Diamond Structure This structure is identical to the zincblende structure,
except that there are two identical atoms in the unit cell. This struc-
ture (unlike zincblende) has inversion symmetry about the point

(
1
8 ,

1
8 ,

1
8

)
.

Diamond, Si, Ge, and gray tin are examples of the diamond structure.
5. Wurtzite Structure This structure is a simple hexagonal lattice with

four atoms per unit cell, located at (0,0,0),
(

1
3 ,

2
3 ,

1
2

)
,
(
0, 0, 3

8

)
, and

(
1
3 ,

2
3 ,

7
8

)
.

It can be pictured as consisting of two interpenetrating hcp lattices sepa-
rated by

(
0, 0, 3

8

)
. In the wurtzite phase of ZnS, the Zn atoms sit on one hcp

lattice and the S atoms on the other. ZnS, BeO, ZnO (hexagonal phase),
CdS, GaN (hexagonal phase), and AlN are materials that can occur in the
wurtzite structure.

6. Sodium Chloride Structure It consists of a face centered cubic lattice with
a basis of two unlike atoms per primitive unit cell, located at (0,0,0) and(

1
2 ,

1
2 ,

1
2

)
. In addition to NaCl, other alkali halide salts like LiH, KBr, RbI

form crystals with this structure.
7. Cesium Chloride Structure It consists of a simple cubic lattice with two

atoms per unit cell, located at (0,0,0) and
(

1
2 ,

1
2 ,

1
2

)
. Besides CsCl, CuZn

(β-brass), AgMg, and LiHg occur with this structure.
8. Calcium Fluoride Structure It consists of a face centered cubic lattice with

three atoms per primitive unit cell. The Ca ion is located at (0,0,0), the F
atoms at

(
1
4 ,

1
4 ,

1
4

)
and

(
3
4 ,

3
4 ,

3
4

)
.
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Fig. 1.15. Stacking of layers A and B in a graphite structure

9. Graphite Structure This structure consists of a simple hexagonal lat-
tice with four atoms per primitive unit cell, located at (0,0,0),

(
2
3 ,

1
3 , 0

)
,(

0, 0, 1
2

)
, and

(
1
3 ,

2
3 ,

1
2

)
. It can be pictured as two interpenetrating HCP lat-

tices separated by
(
0, 0, 1

2

)
. It, therefore, consists of tightly bonded planes

(as shown in Fig. 1.15) stacked in the sequence ABABAB . . .. The individ-
ual planes are very tightly bound, but the interplanar binding is rather
weak. This gives graphite its well-known properties, like easily cleaving
perpendicular to the c-axis.

Miller Indices

Miller indices are a set of three integers that specify the orientation of a crystal
plane. The procedure for obtaining Miller indices of a plane is as follows:

1. Find the intercepts of the plane with the crystal axes.
2. Take the reciprocals of the three numbers.
3. Reduce (by multiplying by the same number) this set of numbers to the

smallest possible set of integers.

As an example, consider the plane that intersects the cubic axes at A1, A2, A3

as shown in Fig. 1.16. Then xiai = OAi. The reciprocals of (x1, x2, x3)
are

(
x−1

1 , x−1
2 , x−1

3

)
, and the Miller indices of the plane are (h1h2h3) =

p
(
x−1

1 , x−1
2 , x−1

3

)
, where (h1h2h3) are the smallest possible set of integers(

p
x1
, px2

, px3

)
.

Indices of a Direction

A direction in the lattice can be specified by a vector V = u1a1 +u2a2 +u3a3,
or by the set of integers [u1u2u3] chosen to have no common integral factor. For
cubic lattices the plane (h1h2h3) is perpendicular to the direction [h1h2h3],
but this is not true for general lattices.

Packing Fraction

The packing fraction of a crystal structure is defined as the ratio of the volume
of atomic spheres in the unit cell to the volume of the unit cell.
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Fig. 1.16. Intercepts of a plane with the crystal axes

Examples

1. Simple cubic lattice:
We take the atomic radius as R = a

2 (then neighboring atoms just touch).
The packing fraction p will be given by

p =
4
3π

(a
2

)3

a3
=
π

6
≈ 0.52

2. Body centered cubic lattice:
Here, we take R = 1

2

(√
3

2 a
)
, i.e., half the nearest neighbor distance. For

the non-primitive cubic cell of edge a, we have two atoms per cell giving

p =
2 × 4

3π
(
a
√

3
4

)3

a3
=
π

8

√
3 ≈ 0.68

1.3 Reciprocal Lattice

If a1, a2, a3 are the primitive translations of some lattice, we can define the
vectors b1,b2,b3 by the condition

ai · bj = 2πδij , (1.5)

where δij = 0 if i is not equal to j and δii = 1. It is easy to see that

bi = 2π
aj × ak

ai · (aj × ak)
, (1.6)
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where i, j, and k are different. The denominator ai · (aj × ak) is simply the
volume v0 of the primitive unit cell. The lattice formed by the primitive trans-
lation vectors b1,b2,b3 is called the reciprocal lattice (reciprocal to the lattice
formed by a1, a2, a3), and a reciprocal lattice vector is given by

Gh1h2h3 = h1b1 + h2b2 + h3b3. (1.7)

Useful Properties of the Reciprocal Lattice

1. If r = n1a1 + n2a2 + n3a3 is a lattice vector, then we can write r as

r =
∑

i

(r · bi)ai. (1.8)

2. The lattice reciprocal to b1,b2,b3 is a1, a2, a3.
3. A vector Gh from the origin to a point (h1, h2, h3) of the reciprocal lattice

is perpendicular to the plane with Miller indices (h1h2h3).
4. The distance from the origin to the first lattice plane (h1h2h3) is
d (h1h2h3) = 2π |Gh|−1. This is also the distance between neighboring
{h1h2h3} planes.

The proof of 3 is established by demonstrating that Gh is perpendicular to
the plane A1A2A3 shown in Fig. 1.16. This must be true if Gh is perpendic-
ular to both A1A2 and to A2A3. But A1A2 = OA2 − OA1 = p

(
a2
h2

− a1
h1

)
.

Therefore,

Gh · A1A2 = (h1b1 + h2b2 + h3b3) · p
(

a2

h2
− a1

h1

)
, (1.9)

which vanishes. The same can be done for A2A3. The proof of 4 is established
by noting that

d(h1h2h3) =
a1

h1
· Gh

|Gh| .

The first factor is just the vector OA1 for the situation where p = 1, and
the second factor is a unit vector perpendicular to the plane (h1h2h3). Since
a1 · Gh = 2πh1, it is apparent that d(h1h2h3) = 2π |Gh|−1.

1.4 Diffraction of X-Rays

Crystal structures are usually determined experimentally by studying how
the crystal diffracts waves. Because the interatomic spacings in most crystals
are of the order of a few Ås (1 Å = 10−8 cm), the maximum information
can most readily be obtained by using waves whose wave lengths are of that
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order of magnitude. Electromagnetic, electron, or neutron waves can be used
to study diffraction by a crystal. For electromagnetic waves, E = hν, where
E is the energy of the photon, ν = c

λ is its frequency and λ its wave length,
and h is Planck’s constant. For λ = 10−8 cm, c = 3 × 1010 cm/s and h =
6.6 × 10−27 erg · s, the photon energy is equal to roughly 2 × 10−8 ergs or
1.24 × 104 eV. Photons of energies of tens of kilovolts are in the X-ray range.
For electron waves, p = h

λ � 6.6 × 10−19 g · cm/s when λ = 10−8 cm. This
gives E = p2

2me
, where me � 0.9 × 10−27g, of 2.4 × 10−10 ergs or roughly

150 eV. For neutron waves, we need simply replace me by mn = 1.67×10−24 g
to obtain E = 1.3 × 10−13 ergs � 0.08 eV. Thus neutron energies are of the
order of a tenth of an eV. Neutron scattering has the advantages that the low
energy makes inelastic scattering studies more accurate and that the magnetic
moment of the neutron allows the researcher to obtain information about
the magnetic structure. It has the disadvantage that high intensity neutron
sources are not as easily obtained as X-ray sources.

1.4.1 Bragg Reflection

We have already seen that we can discuss crystal planes in a lattice structure.
Assume that an incident X-ray is specularly reflected by a set of crystal planes
as shown in Fig. 1.17. Constructive interference occurs when the difference in
path length is an integral number of wave length λ. It is clear that this occurs
when

2d sin θ = nλ, (1.10)

where d is the interplane spacing, θ is the angle between the incident beam
and the crystal planes, as is shown on the figure, and n is an integer. Equation
(1.10) is known as Bragg’s law.

1.4.2 Laue Equations

A slightly more elegant discussion of diffraction from a crystal can be obtained
as follows:

θ

θ

INCIDENT
WAVE

REFLECTED
WAVE

Fig. 1.17. Specular reflection of X-rays by a set of crystal planes separated by a
distance d
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Fig. 1.18. Scattering of X-rays by a pair of atoms in a crystal

1. Let ŝ0 be a unit vector in the direction of the incident wave, and ŝ be a
unit vector in the direction of the scattered wave.

2. Let R1 and R2 be the position vectors of a pair of atoms in a Bravais
lattice, and let r12 = R1 − R2.

Let us consider the waves scattered by R1 and by R2 and traveling different
path lengths as shown in Fig. 1.18. The difference in path length is | R2A −
BR1 |. But this is clearly equal to |r12 · ŝ− r12 · ŝ0|. We define S as S = ŝ− ŝ0;
then the difference in path length for the two rays is given by

Δ = |r12 · S| . (1.11)

For constructive interference, this must be equal to an integral number of
wave length. Thus, we obtain

r12 · S = mλ, (1.12)

where m is an integer and λ is the wave length. To obtain constructive inter-
ference from every atom in the Bravais lattice, this must be true for every
lattice vector Rn. Constructive interference will occur only if

Rn · S = integer × λ (1.13)

for every lattice vector Rn in the crystal. Of course there will be different
integers for different Rn in general. Recall that

Rn = n1a1 + n2a2 + n3a3. (1.14)

The condition (1.13) is obviously satisfied if

ai · S = phiλ, (1.15)

where hi is the smallest set of integers and p is a common multiplier. We can
obviously express S as

S = (S · a1)b1 + (S · a2)b2 + (S · a3)b3. (1.16)
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θ
θ

Fig. 1.19. Relation between the scattering vector S = ŝ− ŝ0 and the Bragg angle θ

Therefore, condition (1.13) is satisfied and constructive interference from every
lattice site occurs if

S = p (h1b1 + h2b2 + h3b3)λ, (1.17)

or

S
λ

= pGh, (1.18)

where Gh is a vector of the reciprocal lattice. Equation (1.18) is called the
Laue equation.

Connection of Laue Equations and Bragg’s Law

From (1.18) S must be perpendicular to the planes with Miller indices
(h1h2h3). The distance between two planes of this set is

d(h1h2h3) =
2π
|Gh| = p

λ

|S| . (1.19)

We know that S is normal to the reflection plane PP′ with Miller indices
(h1h2h3). From Fig. 1.19, it is apparent that |S| = 2 sin θ. Therefore, (1.19)
can be written by

2d(h1h2h3) sin θ = pλ,

where p is an integer. According to Laue’s equation, associated with any
reciprocal lattice vector Gh = h1b1 +h2b2 +h3b3, there is an X-ray reflection
satisfying the equation λ−1S = pGh, where p is an integer.

1.4.3 Ewald Construction

This is a geometric construction that illustrates how the Laue equation works.
The construction goes as follows: See Fig. 1.20.

1. From the origin O of the reciprocal lattice draw the vector AO of length
λ−1 parallel to ŝ0 and terminating on O.

2. Construct a sphere of radius λ−1 centered at A.
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λ2 λ1

λ1

λ2

Fig. 1.20. Ewald construction for diffraction peaks

If this sphere intersects a point B of the reciprocal lattice, then AB = ŝ
λ is

in a direction in which a diffraction maximum occurs. Since A1O = ŝ0
λ1

and
A1B1 = ŝ

λ1
, S
λ1

= ŝ−ŝ0
λ1

= OB1 is a reciprocal lattice vector and satisfies the
Laue equation. If a higher frequency X-ray is used, λ2, A2, and B2 replace λ1,
A1, and B1. For a continuous spectrum with λ1 ≥ λ ≥ λ2, all reciprocal lattice
points between the two sphere (of radii λ−1

1 and λ−1
2 ) satisfy Laue equation

for some frequency in the incident beam.

Wave Vector

It is often convenient to use the set of vectors Kh = 2πGh. Then, the Ewald
construction gives

q0 + Kh = q, (1.20)

where q0 = 2π
λ ŝ0 and q = 2π

λ ŝ are the wave vectors of the incident and
scattered waves. Equation (1.20) says that wave vector is conserved up to 2π
times a vector of the reciprocal lattice.

1.4.4 Atomic Scattering Factor

It is the electrons of an atom that scatter the X-rays since the nucleus is so
heavy that it hardly moves in response to the rapidly varying electric field of
the X-ray. So far, we have treated all of the electrons as if they were localized
at the lattice point. In fact, the electrons are distributed about the nucleus of
the atom (at position r = 0, the lattice point) with a density ρ(r). If you know
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Fig. 1.21. Path difference between waves scattered at O and those at r

the wave function Ψ (r1, r2, . . . , rz) describing the z electrons of the atom, ρ(r)
is given by

ρ(r) =

〈
z∑

i=1

δ (r − ri)

〉

=

〈

Ψ(r1, . . . , rz)

∣
∣∣
∣
∣

z∑

i=1

δ(r − ri)

∣
∣∣
∣
∣
Ψ(r1, . . . , rz)

〉

.

(1.21)
Now, consider the difference in path length Δ between waves scattered at O
and those scattered at r (Fig. 1.21).

Δ = r · (ŝ− ŝ0) = r · S. (1.22)

The phase difference is simply 2π
λ times Δ, the difference in path length.

Therefore, the scattering amplitude will be reduced from the value obtained
by assuming all the electrons were localized at the origin O by a factor z−1f ,
where f is given by

f =
∫

d3r ρ(r) e
2πi
λ r·S. (1.23)

This factor is called the atomic scattering factor. If ρ(r) is spherically sym-
metric we have

f =
∫ ∞

0

∫ 1

−1

2πr2dr d(cosφ)ρ(r)e
2πi
λ Sr cosφ. (1.24)

Recall that S = 2 sin θ, where θ is the angle between ŝ0 and the reflecting
plane PP′ of Fig. 1.19. Define μ as 4π

λ sin θ; then f can be expressed as

f =
∫ ∞

0

dr4πr2ρ(r)
sinμr
μr

. (1.25)

If λ is much larger than the atomic radius, μr is much smaller than unity
wherever ρ(r) is finite. In that case sinμr

μr � 1 and f → z, the number of
electrons.
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1.4.5 Geometric Structure Factor

So far we have considered only a Bravais lattice. For a non-Bravais lattice the
scattered amplitude depends on the locations and atomic scattering factors
of all the atoms in the unit cell. Suppose a crystal structure contains atoms
at positions rj with atomic scattering factors fj . It is not difficult to see that
this changes the scattered amplitude by a factor

F (h1, h2, h3) =
∑

j

fje
2πi
λ rj ·S(h1h2h3) (1.26)

for the scattering from a plane with Miller indices (h1h2h3). In (1.26) the
position vector rj of the jth atom can be expressed in terms of the primitive
translation vectors ai

rj =
∑

i

μjiai. (1.27)

For example, in a hcp lattice r1 = (0, 0, 0) and r2 = (1
3 ,

2
3 ,

1
2 ) when expressed

in terms of the primitive translation vectors. Of course, S(h1h2h3) equal to
λ
∑

i hibi, where bi are primitive translation vectors in the reciprocal lattice.
Therefore, 2πi

λ rj · S(h1h2h3) is equal to 2πi (μj1h1 + μj2h2 + μj3h3), and the
structure amplitude F (h1, h2, h3) can be expressed as

F (h1, h2, h3) =
∑

j

fje2πi
∑

i μjihi . (1.28)

If all of the atoms in the unit cell are identical (as in diamond, Si, Ge, etc.)
all of the atomic scattering factors fj are equal, and we can write

F (h1, h2, h3) = fS(h1h2h3). (1.29)

The S(h1h2h3) is called the geometric structure amplitude. It depends only
on crystal structure, not on the atomic constituents, so it is the same for all
hcp lattices or for all diamond lattices, etc.

Example

A useful demonstration of the geometric structure factor can be obtained by
considering a bcc lattice as a simple cubic lattice with two atoms in the simple
cubic unit cell located at (0,0,0) and (1

2 ,
1
2 ,

1
2 ). Then

S(h1h2h3) = 1 + e2πi( 1
2h1+

1
2h2+ 1

2h3). (1.30)

If h1 +h2+h3 is odd, eiπ(h1+h2+h3) = −1 and S(h1h2h3) vanishes. If h1+h2 +
h3 is even, S(h1h2h3) = 2. The reason for this effect is that the additional
planes (associated with the body centered atoms) exactly cancel the scattering
amplitude from the planes made up of corner atoms when h1 +h2 +h3 is odd,
but they add constructively when h1 + h2 + h3 is even.

The scattering amplitude depends on other factors (e.g. thermal motion
and zero point vibrations of the atoms), which we have neglected by assuming
a perfect and stationary lattice.
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1.4.6 Experimental Techniques

We know that constructive interference from a set of lattice planes separated
by a distance d will occur when

2d sin θ = nλ, (1.31)

where θ is the angle between the incident beam and the planes that are scat-
tering, λ is the X-ray wave length, and n is an integer. For a given crystal
the possible values of d are fixed by the atomic spacing, and to satisfy (1.31),
one must vary either θ or λ over a range of values. Different experimental
methods satisfy (1.31) in different ways. The common techniques are (1) the
Laue method, (2) the rotating crystal method, and (3) the powder method.

Laue Method

In this method a single crystal is held stationary in a beam of continuous wave
length X-ray radiation (Fig. 1.22). Various crystal planes select the appropri-
ate wave length for constructive interference, and a geometric arrangement of
bright spots is obtained on a film.

Rotating Crystal Method

In this method a monochromatic beam of X-ray is incident on a rotating
single crystal sample. Diffraction maxima occur when the sample orientation
relative to the incident beam satisfies Bragg’s law (Fig. 1.23).

Powder Method

Here, a monochromatic beam is incident on a finely powdered specimen. The
small crystallites are randomly oriented with respect to the incident beam,
so that the reciprocal lattice structure used in the Ewald construction must
be rotated about the origin of reciprocal space through all possible angles.
This gives a series of spheres in reciprocal space of radii K1, K2, . . . (we
include the factor 2π in these reciprocal lattice vectors) equal to the smallest,

COLLIMATOR
SAMPLE

FILM

X - RAY
BEAM

SPOT
PATTERN

Fig. 1.22. Experimental arrangement of the Laue method
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ROTATABLE
SAMPLE

MONOCHROMATIC
X-RAY BEAM

FILM

Fig. 1.23. Experimental arrangement of the rotating crystal method

POWDER
SAMPLE

FILM

X - RAY BEAM

DIFFRACTION
  RINGS

Fig. 1.24. Experimental arrangement of the powder method

next smallest, etc. reciprocal lattice vectors. The sequence of values sin(φi/2)
sin(φ1/2)

give the ratios of Ki

K1
for the crystal structure. This sequence is determined

by the crystal structure. Knowledge of the X-ray wave length λ = 2π
k allows

determination of the lattice spacing (Fig. 1.24).

1.5 Classification of Solids

1.5.1 Crystal Binding

Before considering even in a qualitative way how atoms bind together to
form crystals, it is worthwhile to review briefly the periodic table and the
ground state configurations of atoms. The single particle states of electrons
moving in an effective central potential (which includes the attraction of the
nucleus and some average repulsion associated with all other electrons) can
be characterized by four quantum numbers: n, the principal quantum number
takes on the values 1, 2, 3, . . ., l, the angular momentum quantum number
takes on values 0, 1, . . . , n− 1; m, the azimuthal quantum number (projection
of l onto a given direction) is an integer satisfying −l ≤ m ≤ l; and σ, the
spin quantum number takes on the values ± 1

2 .
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The energy of the single particle orbital is very insensitive to m and σ (in
the absence of an applied magnetic field), but it depends strongly on n and l.
Of course, due to the Pauli principle only one electron can occupy an orbital
with given n, l,m, and σ. The periodic table is constructed by making an
array of slots, with l value increasing from l = 0 as one moves to the left, and
the value of n + l increasing as one moves down. (Table 1.4) Of course, the
correct number of slots must be allowed to account for the spin and azimuthal
degeneracy 2(2l+ 1) of a given l value. One then begins filling the slots from
the top left, moving to the right, and then down when all slots of a given
(n + l) value have been used up. See Table 1.4, which lists the atoms (H,
He, . . .) and their atomic numbers in the appropriate slots. As the reader can
readily observe, H has one electron, and it will occupy the n = 1, l = 0(1s)
state. Boron has five electrons and they will fill the (1s) and 2s states with the
fifth electron in the 2p state. Everything is very regular until Cr and Cu. These
two elements have ground states in which one 4s electron falls into the 3d shell,
giving for Cr the atomic configuration (1s)2(2s)2(2p)6(3s)2(3p)6(4s)1(3d)5,
and for Cu the atomic configuration (1s)2(2s)2(2p)6(3s)2(3p)6(4s)1(3d)10.
Other exceptions occur in the second transition series (the filling of the 4d
levels) and in the third transition series (filling the 5d levels), and in the rare
earth series (filling the 4f and 5f levels). Knowing this table allows one to
write down the ground state electronic configuration of any atom. Note that
the inert gases He, Ne, Kr, Rn, complete the shells n = 1, n = 2, n = 3, and
n = 4, respectively. Ar and Xe are inert also; they complete the n = 3 shell
(except for 3d electrons), and n = 4 shell (except for 4f electrons), respec-
tively. Na, K, Rb, Cs, and Fr have one weakly bound s electron outside these
closed shell configurations; Fl, Cl, Br, I and At are missing one p electron from
the closed shell configurations. The alkali metals easily give up their loosely
bound s electrons, and the halogens readily attract one p electron to give a
closed shell configuration. The resulting Na+ − Cl− ions form an ionic bond
which is quite strong. Atoms like C, Si, Ge, and Sn have an (np)2(n + 1 s)2

configuration. These four valence electrons can be readily shared with other
atoms in covalent bonds, which are also quite strong.1 Compounds like GaAs,

1 In Table 1.4, we note exceptions (i)–(viii):

i Dropping a 4s electron into the 3d shell while filling 3d shell (Cr, Cu)
ii Dropping a 5s electron into the 4d shell while filling 4d shell (Nb, Mo, Ru, Rh,

Ag)
iii Dropping both 5s electrons into the 4d shell while filling 4d shell (Pd)
iv Dropping both 6s electrons into the 5d shell while filling 5d shell (Pt)
v Dropping one 6s electron into the 5d shell while filling 5d shell (Au)
vi Adding one 5d electron before filling the entire 4f shell (La, Gd)
vii Adding one 6d electron before filling the entire 5f shell (Ac, Pa, U, Cm, Cf)
viii Adding two 5d electrons before filling the entire 5f shell (Th, Bk)
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GaP, GaSb, or InP, InAs, InSb, etc., are formed from column III and column
V constituents. With the partial transfer of an electron from As to Ga, one
obtains the covalent bonding structure of Si or Ge as well as some degree of
ionicity as in NaCl. Metallic elements like Na and K are relatively weakly
bound. Their outermost s electrons become almost free in the solid and act as
a glue holding the positively charged ions together. The weakest bonding in
solids is associated with weak Van der Waals coupling between the constituent
atoms or molecules. To give some idea of the binding energy of solids, we will
consider the binding of ionic crystals like NaCl or CsCl.

1.6 Binding Energy of Ionic Crystals

The binding energy of ionic crystals results primarily from the electrostatic
interaction between the constituent ions. A rough order of magnitude estimate
of the binding energy per molecule can be obtained by simply evaluating

〈V 〉 =
e2

R0
=

(
4.8 × 10−10esu

)2

2.8 × 10−8cm
� 8 × 10−12ergs ∼ 5eV.

Here, R0 is the observed interatomic spacing (which we take as 2.8 Å, the
spacing in NaCl). The experimentally measured value of the binding energy
of NaCl is almost 8 eV per molecule, so our rough estimate is not too bad.

Interatomic Potential

For an ionic crystal, the potential energy of a pair of atoms i, j can be taken
to be

φij = ± e2

rij
+

λ

rnij
. (1.32)

Here, rij is the distance between atoms i and j. The ± sign depends on
whether the atoms are like (+) or unlike (−). The first term is simply the
Coulomb potential for a pair of point charges separated by rij . The second
term accounts for core repulsion. The atoms or ions are not point charges, and
when a pair of them gets close enough together their core electrons can repel
one another. This core repulsion is expected to decrease rapidly with increas-
ing rij . The parameters λ and n are phenomenological; they are determined
from experiment.

Total Energy

The total potential energy is given by

U =
1
2

∑

i�=j
φij . (1.33)
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It is convenient to define φi, the potential energy of the ith atom as

φi =
′∑

j

φij . (1.34)

Here, the prime on the sum implies that the term i = j is omitted. It is
apparent from symmetry considerations that φi is independent of i for an
infinite lattice, so we can drop the subscript i. The total energy is then

U =
1
2

2Nφ = Nφ, (1.35)

where 2N is the number of atoms and N is the number of molecules.
It is convenient in evaluating φ to introduce a dimensionless parameter pij

defined by pij = R−1rij , where R is the distance between nearest neighbors.
In terms of pij , the expression for φ is given by

φ =
λ

Rn

′∑

j

p−nij − e2

R

′∑

j

(∓pij)−1 . (1.36)

Here, the primes on the summations denote omission of the term i = j. We
define the quantities

An =
′∑

j

p−nij , (1.37)

and

α =
∑

j

(∓pij)−1
. (1.38)

The α and An are properties of the crystal structure; α is called the Madelung
constant. The internal energy of the crystal is given by Nφ, where N is the
number of molecules. The internal energy is given by

U = N

[
λ
An
Rn

− α
e2

R

]
. (1.39)

At the equilibrium separation R0,
(
∂U
∂R

)
R0

must vanish. This gives the result

λ
An
Rn0

= α
e2

nR0
. (1.40)

Therefore, the equilibrium value of the internal energy is

U0 = Nφ0 = −Nα e
2

R0

(
1 − 1

n

)
. (1.41)
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Compressibility

The best value of the parameter n can be determined from experimental data
on the compressibility κ. κ is defined by the negative of the change in volume
per unit change in pressure at constant temperature divided by the volume.

κ = − 1
V

(
∂V

∂P

)

T

. (1.42)

The subscript T means holding temperature T constant, so that (1.42) is the
isothermal compressibility. We will show that at zero temperature

κ−1 = V

(
∂2U

∂V 2

)

T=0

. (1.43)

Equation (1.43) comes from the thermodynamic relations

F = U − TS, (1.44)

and
dU = TdS − PdV. (1.45)

By taking the differential of (1.44) and making use of (1.45), one can see that

dF = −PdV − SdT. (1.46)

From (1.46) we have

P = −
(
∂F

∂V

)

T

. (1.47)

Equation (1.42) can be written as

κ−1 = −V
(
∂P

∂V

)

T

= V

(
∂2F

∂V 2

)

T

. (1.48)

But at T = 0, F = U so that

κ−1 = V

(
∂2F

∂V 2

)

T=0

(1.49)

is the inverse of the isothermal compressibility at T = 0. We can write the
volume V as 2NR3 and use ∂

∂V = ∂R
∂V

∂
∂R = 1

6NR2
∂
∂R in (1.39) and (1.43). This

gives

κ−1
T=0 =

αe2

18R4
0

(n− 1), (1.50)

or

n = 1 +
18R4

0

αe2κ
. (1.51)

From the experimental data on NaCl, the best value for n turns out to be
∼ 9.4.
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Evaluation of the Madelung Constant

For simplicity let us start with a linear chain. Each positive (+) atom has two
neighbors, which are negative (−) atoms, at p01 = 1. Therefore,

α =
′∑

j

∓p−1
ij = 2

[
1 − 1

2
+

1
3
− 1

4
+ . . .

]
. (1.52)

If you remember that the power series expansion for ln(1 + x) is given by
−∑∞

n=1
(−x)n

n = x − x2

2 + x3

3 − x4

4 + · · · and is convergent for x ≤ 1, it is
apparent that

α = 2 ln 2. (1.53)

If we attempt the same approach for NaCl, we obtain

α =
6
1
− 12√

2
+

8√
3
− 6

2
+ · · · . (1.54)

This is taking six opposite charge nearest neighbors at a separation of one
nearest neighbor distance, 12 same charge next nearest neighbors at

√
2 times

that distance, etc. It is clear that the series in (1.54) converges very poorly.
The convergence can be greatly improved by using a different counting pro-
cedure in which one works with groups of ions which form a more or less
neutral array. The motivation is that the potential of a neutral assembly of
charges falls off much more quickly with distance than that of a charged
assembly.

Evjen’s Method

We will illustrate Evjen’s method2 by considering a simple square lattice in
two dimensions with two atoms per unit cell, one at (0, 0) and one at (1

2 ,
1
2 ).

The crystal structure is illustrated in Fig. 1.25. The calculation is carried out
as follows:

1. One considers the charges associated with different shells where the first
shell is everything inside the first square, the second is everything outside
the first but inside the second square, etc.

2. An ion on a face is considered to be half inside and half outside the square
defined by that face; a corner atom is one quarter inside and three quarters
outside.

3. The total Madelung constant is given by α = α1 + α2 + α3 + · · · , where
αj is the contribution from the ith shell.

As an example, let us evaluate the total charge on the first few shells. The
first shell has four atoms on faces, all with the opposite charge to the atom

2 H.M. Evjen, Phys. Rev. 39, 675 (1932).
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PRIMITIVE
    UNIT CELL

Fig. 1.25. Evjen method for a simple square lattice in two dimensions

at the origin and four corner atoms all with the same charge as the atom at
the origin. Therefore, the charge of shell number one is

Q1 = 4
(

1
2

)
− 4

(
1
4

)
= 1. (1.55)

Doing the same for the second shell gives

Q2 = 4
(

1
2

)
− 4

(
3
4

)
− 4

(
1
2

)
+ 8

(
1
2

)
− 4

(
1
4

)
= 0. (1.56)

Here the first two terms come from the remainder of the atoms on the outside
of the first square; the next three terms come from the atoms on the inside of
the second square. To get α1 and α2 we simply divide the individual charges
by their separations from the origin. This gives

α1 =
4 (1

2 )
1

− 4 (1
4 )√
2

� 1.293, (1.57)

α2 =
4 (1

2 )
1

− 4 (3
4 )√
2

− 4 (1
2 )

2
+

8 (1
2 )√
5

+
4 (1

4 )

2
√

2
� 0.314. (1.58)

This gives α � α1 + α2 ∼ 1.607. The readers should be able to evaluate α3

for themselves.

Madelung Constant for Three-Dimensional Lattices

For a three-dimensional crystal, Evjen’s method is essentially the same with
the exception that
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Fig. 1.26. Central atom and the first cube of the Evjen method for the NaCl
structure

1. The squares are replaced by cubes.
2. Atoms on the face of a cube are considered to be half inside and half outside

the cube; atoms on the edge are 1
4 inside and 3

4 outside, and corner atoms
are 1

8 inside and 7
8 outside.

We illustrate the case of the NaCl structure as an example in the three
dimensions (see Fig. 1.26).
For α1 we obtain

α1 =
6 (1

2 )
1

− 12 (1
4 )√
2

+
8 (1

8 )√
3

� 1.456. (1.59)

For α2 we have the following contributions:

1. Remainder of the contributions from the atoms on the first cube
= 6 ( 1

2 )

1 − 12 ( 3
4 )√
2

+ 8 ( 7
8 )√
3

2. Atoms on the interior of faces of the second cube
= − 6 ( 1

2 )

2 + 6(4) ( 1
2 )√

5
− 6(4) ( 1

2 )√
6

3. Atoms on the interior of edges of the second cube

= − 12 ( 1
4 )√
8

+ 12(2) ( 1
4 )√

9

4. Atoms on the interior of the coners of the second cube
= − 8 ( 1

8 )√
12

Adding them together gives

α2 =
(

3 − 9√
2

+
7√
3

)
+
(
−3

2
+

12√
5
− 12√

6

)
+
(
− 3√

8
+

6
3

)
− 1√

12
� 0.295.

(1.60)
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Thus, to the approximation α � α1 + α2 we find that α � 1.752. The exact
result for NaCl is α = 1.747558 . . ., so Evjen’s method gives a surprisingly
accurate result after only two shells.

Results of rather detailed evaluations of α for several different crystal struc-
tures are α(NaCl) = 1.74756, α(CsCl) = 1.76267, α(zincblende) = 1.63806,
α(wurtzite) = 1.64132. The NaCl structure occurs much more frequently than
the CsCl structure. This may seem a bit surprising since α(CsCl) is about 1%
larger than α(NaCl). However, core repulsion accounts for about 10% of the
binding energy (see (1.41)). In the CsCl structure, each atom has eight nearest
neighbors instead of the six in NaCl. This should increase the core repulsion
by something of the order of 25% in CsCl. Thus, we expect about 2.5% larger
contribution (from core repulsion) to the binding energy of CsCl. This negative
contribution to the binding energy more than compensates the 1% difference
in Madelung constants.
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Problems

1.1. Demonstrate that

(a) The reciprocal lattice of a simple cubic lattice is simple cubic.
(b) The reciprocal lattice of a body centered cubic lattice is a face centered

cubic lattice.
(c) The reciprocal lattice of a hexagonal lattice is hexagonal.

1.2. Determine the packing fraction of

(a) A simple cubic lattice
(b) A face centered lattice
(c) A body centered lattice
(d) The diamond structure
(e) A hexagonal close packed lattice with an ideal c

a ratio
(f) The graphite structure with an ideal c

a .

1.3. The Bravais lattice of the diamond structure is fcc with two carbon atoms
per primitive unit cell. If one of the two basis atoms is at (0,0,0), then the
other is at (1

4 ,
1
4 ,

1
4 ).

(a) Illustrate that a reflection through the (100) plane followed by a non-
primitive translation through [14 ,

1
4 ,

1
4 ] is a glide-plane operation for the

diamond structure.
(b) Illustrate that a fourfold rotation about an axis in diamond parallel to

the x-axis passing through the point (1, 1
4 , 0) (the screw axis) followed

by the translation [14 , 0, 0] parallel to the screw axis is a screw operation
for the diamond structure.

1.4. Determine the group multiplication table of the point group of an
equilateral triangle.

1.5. CsCl can be thought of as a simple cubic lattice with two different atoms
[at (0, 0, 0) and (1

2 ,
1
2 ,

1
2 )] in the cubic unit cell. Let f+ and f− be the atomic

scattering factors of the two constituents.

(a) What is the structure amplitude F (h1, h2, h3) for this crystal?
(b) An X-ray source has a continuous spectrum with wave numbers k

satisfying: k is parallel to the [110] direction and 2−1/2
(

2π
a

) ≤ |k| ≤
3× 21/2

(
2π
a

)
, where a is the edge distance of the simple cube. Use the

Ewald construction for a plane that contains the direction of incidence
to show which reciprocal lattice points display diffraction maxima.

(c) If f+ = f−, which of these maxima disappear?

1.6. A simple cubic structure is constructed in which two planes of A atoms
followed by two planes of B atoms alternate in the [100] direction.
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1. What is the crystal structure (viewed as a non-Bravais lattice with four
atoms per unit cell)?

2. What are the primitive translation vectors of the reciprocal lattice?
3. Determine the structure amplitude F (h1, h2, h3) for this non-Bravais lat-

tice.

1.7. Powder patterns of three cubic crystals are found to have their first four
diffraction rings at the values given below:

φA 30◦ 35◦ 50◦ 60◦

φB 21◦ 29◦ 36◦ 42◦

φ◦ 30◦ 50◦ 60◦ 74◦

The crystals are monatomic, and the observer believes that one is body
centered, one face centered, and one is a diamond structure.

1. What structures are the crystals A, B, and C?
2. The wave length λ of the incident X-ray is 0.95 Å. What is the length of

the cube edge for the cubic unit cell in A, B, and C, respectively?

1.8. Determine the ground state atomic configurations of C(6), O(8), Al(13),
Si(16), Zn(30), Ga(31), and Sb(51).

1.9. Consider 2N ions in a linear chain with alternating ±e charges and a
repulsive potential AR−n between nearest neighbors.

1. Show that, at the equilibrium separation R0, the internal energy becomes

U(R0) = −2 ln 2 × Ne2

R0

(
1 − 1

n

)
.

2. Let the crystal be compressed so that R0 → R0(1− δ). Show that the work
done per unit length in compressing the crystal can be written 1

2Cδ
2, and

determine the expression for C.

1.10. For a BCC and for an FCC lattice, determine the separations between
nearest neighbors, next nearest neighbors, . . . down to the 5th nearest neigh-
bors. Also determine the separations between nth nearest neighbors (n =
1, 2, 3, 4, 5) in units of the cube edge a of the simple cube.
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Summary

In this chapter first we have introduced basic geometrical concepts useful in
describing periodic arrays of objects and crystal structures both in real and
reciprocal spaces assuming that the atoms sit at lattice sites.

A lattice is an infinite array of points obtained from three primitive
translation vectors a1, a2, a3. Any point on the lattice is given by

n = n1a1 + n2a2 + n3a3.

Any pair of lattice points can be connected by a vector of the form

Tn1n2n3 = n1a1 + n2a2 + n3a3.

Well defined crystal structure is an arrangement of atoms in a lattice such
that the atomic arrangement looks absolutely identical when viewed from two
different points that are separated by a lattice translation vector. Allowed
types of Bravais lattices are discussed in terms of symmetry operations
both in two and three dimensions. Because of the requirement of transla-
tional invariance under operations of the lattice translation, the rotations of
60◦, 90◦, 120◦, 180◦, and 360◦ are allowed.

If there is only one atom associated with each lattice point, the lattice
of the crystal structure is called Bravais lattice. If more than one atom is
associated with each lattice point, the lattice is called a lattice with a basis.
If a1, a2, a3 are the primitive translations of some lattice, one can define a set
of primitive translation vectors b1,b2,b3 by the condition

ai · bj = 2πδij ,

where δij = 0 if i is not equal to j and δii = 1. It is easy to see that

bi = 2π
aj × ak

ai · (aj × ak)
,

where i, j, and k are different. The lattice formed by the primitive transla-
tion vectors b1,b2,b3 is called the reciprocal lattice (reciprocal to the lattice
formed by a1, a2, a3), and a reciprocal lattice vector is given by

Gh1h2h3 = h1b1 + h2b2 + h3b3.

Simple crystal structures and principles of commonly used experimental
methods of wave diffraction are also reviewed briefly. Connection of Laue
equations and Bragg’s law is shown. Classification of crystalline solids are
then discussed according to configuration of valence electrons of the elements
forming the solid.
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Lattice Vibrations

2.1 Monatomic Linear Chain

So far, in our discussion of the crystalline nature of solids we have assumed
that the atoms sat at lattice sites. This is not actually the case; even at the
lowest temperatures the atoms perform small vibrations about their equilib-
rium positions. In this chapter we shall investigate the vibrations of the atoms
in solids. Many of the significant features of lattice vibrations can be under-
stood on the basis of a simple one-dimensional model, a monatomic linear
chain. For that reason we shall first study the linear chain in some detail.

We consider a linear chain composed of N identical atoms of mass M
(see Fig. 2.1). Let the positions of the atoms be denoted by the parameters
Ri, i = 1, 2, . . . , N . Here, we assume an infinite crystal of vanishing surface
to volume ratio, and apply periodic boundary conditions . That is, the chain
contains N atoms and the Nth atom is connected to the first atom so that

Ri+N = Ri. (2.1)

The atoms interact with one another (e.g., through electrostatic forces, core
repulsion, etc.). The potential energy of the array of atoms will obviously be
a function of the parameters Ri, i.e.,

U = U(R1, R2, . . . , RN ). (2.2)

We shall assume that U has a minimum U
(
R0

1, R
0
2, . . . , R

0
N

)
for some partic-

ular set of values
(
R0

1, R
0
2, . . . , R

0
N

)
, corresponding to the equilibrium state of

the linear chain. Define ui = Ri−R0
i to be the deviation of the ith atom from

its equilibrium position. Now expand U about its equilibrium value to obtain

U (R1, R2, . . . , RN ) = U
(
R0

1, R
0
2, . . . , R

0
N

)
+
∑

i

(
∂U
∂Ri

)

0
ui

+ 1
2!

∑
i,j

(
∂2U

∂Ri∂Rj

)

0
uiuj + 1

3!

∑
i,j,k

(
∂3U

∂Ri∂Rj∂Rk

)

0
uiujuk + · · · . (2.3)
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Fig. 2.1. Linear chain of N identical atoms of mass M

The first term is a constant which can simply be absorbed in setting the
zero of energy. By the definition of equilibrium, the second term must vanish
(the subscript zero on the derivative means that the derivative is evaluated at
u1, u2, . . . , un = 0). Therefore, we can write

U(R1, R2, . . . , RN ) =
1
2!

∑

i,j

cijuiuj +
1
3!

∑

i,j,k

dijkuiujuk + · · · , (2.4)

where

cij =
(

∂2U

∂Ri∂Rj

)

0

,

dijk =
(

∂3U

∂Ri∂Rj∂Rk

)

0

. (2.5)

For the present, we will consider only the first term in (2.4); this is called the
harmonic approximation. The Hamiltonian in the harmonic approximation is

H =
∑

i

P 2
i

2M
+

1
2

∑

i,j

cijuiuj. (2.6)

Here, Pi is the momentum and ui the displacement from the equilibrium posi-
tion of the ith atom.

Equation of Motion

Hamilton’s equations

Ṗi = −∂H
∂ui

= −
∑

j

cijuj,

u̇i =
∂H

∂Pi
=
Pi
M

(2.7)

can be combined to yield the equation of motion

Müi = −
∑

j

cijuj . (2.8)

In writing down the equation for Ṗi, we made use of the fact that cij actually
depends only on the relative positions of atoms i and j, i.e., on |i− j|. Notice
that −cijuj is simply the force on the ith atom due to the displacement
uj of the jth atom from its equilibrium position. Now let R0

n = na, so that
R0
n−R0

m = (n−m)a. We assume a solution of the coupled differential equations
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of motion, (2.8), of the form

un(t) = ξqei(qna−ωqt). (2.9)

By substituting (2.9) into (2.8) we find

Mω2
q =

∑

m

cnmeiq(m−n)a. (2.10)

Because cnm depends only on l = m− n, we can rewrite (2.10) as

Mω2
q =

N∑

l=1

c(l)eiqla. (2.11)

Boundary Conditions

We apply periodic boundary conditions to our chain; this means that the
chain contains N atoms and that the Nth atom is connected to the first atom
(Fig. 2.2). This means that the (n+N)th atom is the same atoms as the nth
atom, so that un = un+N . Since un ∝ eiqna, the condition means that

eiqNa = 1, (2.12)

or that q = 2π
Na × p where p = 0,±1,±2, . . . . However, not all of these values

of q are independent. In fact, there are only N independent values of q since
there are only N degrees of freedom. If two different values of q, say q and q′

give identical displacements for every atom, they are equivalent. It is easy to
see that

eiqna = eiq′na (2.13)

Fig. 2.2. Periodic boundary conditions on a linear chain of N identical atoms
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for all values of n if q′ − q = 2π
a l, where l = 0,±1,±2, . . . . The set of inde-

pendent values of q are usually taken to be the N values satisfying q = 2π
L p,

where −N
2 ≤ p ≤ N

2 . We will see later that in three dimensions the inde-
pendent values of q are values whose components (q1, q2, q3) satisfy qi = 2π

Li
p,

and which lie in the first Brillouin zone, the Wigner–Seitz unit cell of the
reciprocal lattice.

Long Wave Length Limit

Let us look at the long wave length limit, where the wave number q tends to
zero. Then un(t) = ξ0e−iωq=0t for all values of n. Thus, the entire crystal is
uniformly displaced (or the entire crystal is translated). This takes no energy
if it is done very very slowly, so it requires Mω2(0) =

∑N
l=1 c(l) = 0, or

ω(q = 0) = 0. In addition, it is not difficult to see that since c(l) depends only
on the magnitude of l that

Mω2(−q) =
∑

l

c(l)e−iqla =
∑

l′
c(l′)eiql′a = Mω2(q). (2.14)

In the last step in this equation, we replaced the dummy variable l by l′ and
used the fact that c(−l′) = c(l′). Equation (2.14) tells us that ω2(q) is an even
function of q which vanishes at q = 0. If we make a power series expansion
for small q, then ω2(q) must be of the form

ω2(q) = s2q2 + · · · (2.15)

The constant s is called the velocity of sound.

Nearest Neighbor Forces: An Example

So far, we have not specified the interaction law among the atoms; (2.15)
is valid in general. To obtain ω(q) for all values of q, we must know the
interaction between atoms. A simple but useful example is that of nearest
neighbor forces. In that case, the equation of motion is

Mω2(q) =
1∑

l=1

cleiqla = c−1e−iqa + c0 + c1eiqa. (2.16)

Knowing that ω(0) = 0 and that c−l = cl gives the relation c1 = c−1 = − 1
2c0.

Therefore, (2.16) is simplified to

Mω2(q) = c0

[
1 −

(
eiqa + e−iqa

2

)]
. (2.17)

Since 1 − cosx = 2 sin2 x
2 , (2.17) can be expressed as

ω2(q) =
2c0
M

sin2 qa

2
, (2.18)

which is displayed in Fig. 2.3. By looking at the long wave length limit, the
coupling constant is determined by c0 = 2Ms2

a2 , where s is the velocity of
sound.
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ππ

ω

Fig. 2.3. Dispersion relation of the lattice vibration in a monatomic linear chain

2.2 Normal Modes

The general solution for the motion of the nth atom will be a linear com-
bination of solutions of the form of (2.9). We can write the general solution
as

un(t) =
∑

q

[
ξqeiqna−iωt + cc

]
, (2.19)

where cc means the complex conjugate of the previous term. The form of (2.19)
assures the reality of un(t), and the 2N parameters (real and imaginary parts
of ξq) are determined from the initial values of the position and velocity of
the N atoms which specify the initial state of the system.

In most problems involving small vibrations in classical mechanics, we seek
new coordinates pk and qk in terms of which the Hamiltonian can be written
as

H =
∑

k

Hk =
∑

k

[
1

2M
pkp

∗
k +

1
2
Mω2

kqkq
∗
k

]
. (2.20)

In terms of these normal coordinates pk and qk, the Hamiltonian is a sum
of N independent simple harmonic oscillator Hamiltonians. Because we use
running waves of the form eiqna−iωqt the new coordinates qk and pk can be
complex, but the Hamiltonian must be real. This dictates the form of (2.20).

The normal coordinates turn out to be

qk = N−1/2
∑

n

une−ikna, (2.21)

and

pk = N−1/2
∑

n

Pne+ikna. (2.22)
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We will demonstrate this for qk and leave it for the student to do the same
for pk. We can write (2.19) as

un(t) = α
∑

k

ξk(t)eikna, (2.23)

where ξk is complex and satisfies ξ∗−k = ξk. With this condition un(t), given
by (2.23), is real and α is simply a constant to be determined. We can write
the potential energy U = 1

2

∑
mn cmnumun in terms of the new coordinates

ξk as follows.

U =
1
2
|α|2

∑

mn

cmn
∑

k

ξkeikma
∑

k′
ξk′eik′na. (2.24)

Now, let us use k′ = q − k to rewrite (2.24) as

U =
1
2
|α|2

∑

nkq

[
∑

m

cmneik(m−n)a

]

ξkξq−keiqna. (2.25)

From (2.10) one can see that the quantity in the square bracket in (2.25) is
equal to Mω2

k. Thus, U becomes

U =
1
2
|α|2

∑

nkq

Mω2
kξkξ

∗
k−qe

iqna. (2.26)

The only factor in (2.26) that depends on n is eiqna. It is not difficult to prove
that

∑
n eiqna = Nδq,0. We do this as follows: Define SN = 1 + x+ x2 + · · ·+

xN−1; then xSN = x+ x2 + · · · + xN is equal to SN − 1 + xN .

xSN = SN − 1 + xN . (2.27)

Solving for SN gives

SN =
1 − xN

1 − x
. (2.28)

Now, let x = eiqa. Then, (2.28) says

N−1∑

n=0

(
eiqa

)n
=

1 − eiqaN

1 − eiqa
. (2.29)

Remember that the allowed values of q were given by q = 2π
Na × integer.

Therefore, iqaN = i 2π
NaaN × integer, and eiqaN = e2πi×integer = 1. Therefore,

the numerator vanishes. The denominator does not vanish unless q = 0. When
q = 0, eiqa = 1 and the sum gives N . This proves that

∑
n eiqna = Nδ(q, 0)

when q = 2π
Na × integer. Using this result in (2.26) gives
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U =
1
2
|α|2

∑

k

Mω2
kξkξ

∗
kN. (2.30)

Choosing α = N−1/2 puts U into the form of the potential energy for N
simple harmonic oscillators labeled by the k value. By assuming that Pn is
proportional to

∑
k pke

−ikna with p∗−k = pk, it is not difficult to show that
(2.22) gives the kinetic energy in the desired form

∑
k
pkp
∗
k

2M . The inverse of
(2.21) and (2.22) are easily determined to be

un = N−1/2
∑

k

qkeikna, (2.31)

and

Pn = N−1/2
∑

k

pke−ikna. (2.32)

Quantization

Up to this point our treatment has been completely classical. We quantize the
system in the standard way. The dynamical variables qk and pk are replaced
by quantum mechanical operators q̂k and p̂k which satisfy the commutation
relation

[pk, qk′ ] = −ih̄δk,k′ . (2.33)

The quantum mechanical Hamiltonian is given by H =
∑

kHk, where

Hk =
p̂kp̂

†
k

2M
+

1
2
Mω2

kq̂k q̂
†
k. (2.34)

p̂†k and q̂†k are the Hermitian conjugates of p̂k and q̂k, respectively. They are
necessary in (2.34) to assure that the Hamiltonian is a Hermitian operator.
The Hamiltonian of the one-dimensional chain is simply the sum ofN indepen-
dent simple Harmonic oscillator Hamiltonians. As with the simple Harmonic
oscillator, it is convenient to introduce the operators ak and its Hermitian
conjugate a†k, which are defined by

qk =
(

h̄

2Mωk

)1/2 (
ak + a†−k

)
, (2.35)

pk = i
(
h̄Mωk

2

)1/2 (
a†k − a−k

)
. (2.36)

The commutation relations satisfied by the ak’s and a†k’s are
[
ak, a

†
k′

]

−
= δk,k′ and [ak, ak′ ]− =

[
a†k, a

†
k′

]

−
= 0. (2.37)
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The displacement of the nth atom and its momentum can be written

un =
∑

k

(
h̄

2MNωk

)1/2

eikna
(
ak + a†−k

)
, (2.38)

Pn =
∑

k

i
(
h̄ωkM

2N

)1/2

e−ikna
(
a†k − a−k

)
. (2.39)

The Hamiltonian of the linear chain of atoms can be written

H =
∑

k

h̄ωk

(
a†kak +

1
2

)
, (2.40)

and its eigenfunctions and eigenvalues are

|n1, n2, . . . , nN〉 =

(
a†k1

)n1

√
n1!

· · ·
(
a†kN

)nN

√
nN !

|0〉, (2.41)

and

En1,n2,...,nN =
∑

i

h̄ωki

(
ni +

1
2

)
. (2.42)

In (2.41), |0 >= |01 > |02 > · · · |0N > is the ground state of the entire
system; it is a product of ground state wave functions for each harmonic
oscillator. It is convenient to think of the energy h̄ωk as being carried by an
elementary excitations or quasiparticle. In lattice dynamics, these elementary
excitations are called phonons. In the ground state, no phonons are present
in any of the harmonic oscillators. In an arbitrary state, such as (2.41), n1

phonons are in oscillator k1, n2 in k2, . . ., nN in kN . We can rewrite (2.41) as
|n1, n2, . . . , nN〉 = |n1 > |n2 > · · · |nN >, a product of kets for each oscillator.

2.3 Mössbauer Effect

With the simple one-dimensional harmonic approximation, we have the tools
necessary to understand the physics of some interesting effects. One example
is the Mössbauer effect.1 This effect involves the decay of a nuclear excited
state via γ-ray emission (see Fig. 2.4). First, let us discuss the decay of a
nucleus in a free atom; to be explicit, let us consider the decay of the excited
state of Fe57 via emission of a 14.4 keV γ-ray.

Fe57∗ −→ Fe57 + γ (2.43)

The excited state of Fe57 has a lifetime of roughly 10−7 s. The uncertainty
principle tells us that by virtue of the finite lifetime Δt = τ = 10−7 s, there
1 R. L. Mössbauer, D.H. Sharp, Rev. Mod. Phys. 36, 410 (1964).
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rayγ

Fig. 2.4. The exact transition energy is required to be reabsorbed because of the
very sharply defined nuclear energy states

is an uncertainty ΔE in the energy of the excited state (or a natural linewidth
for the γ-ray) given by ΔE = h̄

Δt . Using Δt = 10−7 s gives Δω = 107 s−1 or
Δ (h̄ω) � 6 × 10−9 eV. Thus, the ratio of the linewidth Δω to the frequency
ω is Δω

ω � 4 × 10−13.
In a resonance experiment, the γ-ray source emits and the target reso-

nantly absorbs the γ-rays. Unfortunately, when a γ-ray is emitted or absorbed
by a nucleus, the nucleus must recoil to conserve momentum. The momen-
tum of the γ-ray is pγ = h̄ω

c , so that the nucleus must recoil with momentum
h̄K = pγ or energy E(K) = h̄2K2

2M where M is the mass of the atom. The

recoil energy is given by E(K) = h̄2ω2

2Mc2 = (h̄ω)2

2(M/m)mc2 . But mc2 � 0.5× 106 eV
and the ratio of the mass of Fe57 to the electron mass m is ∼2.3 × 105, giv-
ing E(K) � 2 × 10−3 eV. This recoil energy is much larger than the energy
uncertainty of the γ-ray (6 × 10−9 eV). Because of the recoil on emission and
absorption, the γ-ray is short by 4 × 10−3 eV of energy necessary for reso-
nance absorption. Mössbauer had the idea that if the nucleus that underwent
decay was bound in a crystal (containing ∼1023 atoms) the recoil of the entire
crystal would carry negligible energy since the crystal mass would replace
the atomic mass of a single Fe57 atom. However, the quantum mechanical
state of the crystal might change in the emission process (via emission of
phonons). A typical phonon has a frequency of the order of 1013 s−1, much
larger than Δω = 107 s−1 the natural line width. Therefore, in order for res-
onance absorption to occur, the γ-ray must be emitted without simultaneous
emission of phonons. This no phonon γ-ray emission occurs a certain fraction
of the time and is referred to as recoil free fraction. We would like to estimate
the recoil free fraction.

As far as the recoil-nucleus is concerned, the effect of the γ-ray emission
can be represented by an operator H ′ defined by

H ′ = CeiK·R̂N , (2.44)

where C is some constant, h̄K is the recoil momentum, and R̂N is the position
operator of the decaying nucleus. This expression can be derived using the
semiclassical theory of radiation, but we simply state it and demonstrate that
it is plausible by considering a free nucleus.



46 2 Lattice Vibrations

Recoil of a Free Nucleus

The Hamiltonian describing the motion of the center of mass of a free atom
is

H0 =
P 2

2M
. (2.45)

The eigenstates of H0 are plane waves

|k〉 = V −1/2eik·RN

whose energy is

E(k) =
h̄2k2

2M
.

Operating on an initial state |k > with H ′ gives a new eigenstate proportional
to |k +K >. The change in energy (i.e., the recoil energy) is

ΔE = E(k +K) − E(k) =
h̄2

2M
(
2k ·K +K2

)
.

For a nucleus that is initially at rest, ΔE = h̄2K2

2M , exactly what we had given
previously.

Mössbauer Recoil Free Fraction

When the atom whose nucleus emits the γ-ray is bound in the crystal, the
initial and final eigenstates must describe the entire crystal. Suppose the initial
eigenstate is

|n1, n2, . . . , nN >=
∏

i

n
−1/2
i

(
a†ki

)ni |0 > .

In evaluating H ′ operating on this state, we write RN = R0
N +uN to describe

the center of mass of the nucleus which emits the γ-ray. We can choose the
origin of our coordinate system at the position R0

N and write

RN = uN =
∑

k

(
h̄

2MNωk

)1/2 (
ak + a†−k

)
. (2.46)

Because k is a dummy variable to be summed over, and because ωk = ω−k,
we can replace a†−k by a†k in (2.46).

The probability of a transition from initial state |ni >= |n1, n2, . . . , nN >
to final state |mf >= |m1,m2, . . . ,mN > is proportional to the square of the
matrix element 〈mf |H ′|ni〉. This result can be established by using time
dependent perturbation theory with H ′ as the perturbation. Let us write this
probability as P (mf , ni). Then P (mf , ni) can be expressed as

P (mf , ni) = α
∣
∣〈mf

∣
∣CeiK·RN

∣
∣ni

〉∣∣2 . (2.47)
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In (2.47) α is simply a proportional constant, and we have set H ′ =
CeiK·RN . Because P (mf , ni) is the probability of going from |ni > to |mf >,∑

mf
P (mf , ni) = 1. This condition gives the relation

α|C|2
∑

mf

〈
mf

∣
∣eiK·RN

∣
∣ni

〉∗ 〈
mf

∣
∣eiK·RN

∣
∣ni

〉
= 1. (2.48)

Because eiK·RN is Hermitian,
〈
mf

∣
∣eiK·RN

∣
∣ni

〉∗ is equal to
〈
ni
∣
∣e−iK·RN

∣
∣mf

〉
.

We use this result in (2.48) and make use of the fact that |mf 〉 is part of a
complete orthonormal set so that

∑
mf

|mf 〉〈mf | is the unit operator to obtain

α|C|2 [〈ni
∣
∣e−iK·RN × eiK·RN

∣
∣ni

〉]2
= 1.

This is satisfied only if α|C|2 = 1, establishing the result

P (mf , ni) =
∣
∣〈mf

∣
∣eiK·RN

∣
∣ni

〉∣∣2 . (2.49)

Evaluation of P (ni, ni)

The probability of γ-ray emission without any change in the state of the lat-
tice is simply P (ni, ni). We can write RN in (2.49) as

RN =
∑

k

βk

(
ak + a†k

)
, (2.50)

where we have introduced βk =
(

h̄
2MNωk

)1/2

. If we write |ni >= |n1 > |n2 >

· · · |nN >, then
〈
ni
∣
∣eiK·RN

∣
∣ni

〉
= 〈n1| < n2| · · · < nN |[eiK

∑
k βk(ak+a†k)]|n1 > |n2 > · · · |nN〉.

(2.51)
The operator ak and a†k operates only on the kth harmonic oscillator, so that
(2.51) can be rewritten

〈
ni
∣∣eiK·RN

∣∣ni
〉

=
∏

k

〈nk|eiKβk(ak+a†k)|nk〉. (2.52)

Each factor in the product can be evaluated by expanding the exponential in
power series. This gives

〈nk|eiKβk(ak+a†k)|nk〉 = 1 +
(iKβk)2

2!
〈nk|aka†k + a†kak|nk〉

+
(iKβk)4

4!
〈nk|(ak + a†k)

4|nk〉 + · · · . (2.53)

The result for this matrix element is

〈nk|eiKβk(ak+a†k)|nk〉 = 1 − E(K)
h̄ωk

nk + 1
2

N
+O(N−2). (2.54)



48 2 Lattice Vibrations

We shall neglect terms of order N−2, N−3, . . ., etc. in this expansion. With
this approximation we can write

〈ni|eiK·RN |ni〉 �
∏

k

[
1 − E(K)

h̄ωk

nk + 1
2

N

]
. (2.55)

To terms of order N−1, the product appearing on the right-hand side of (2.55)

is equivalent to e−
E(K)

N

∑
k

nk+1
2

h̄ωk to the same order. Thus, for the recoil free
fraction, we find

P (ni, ni) = e−2E(K)
N

∑
k

nk+ 1
2

h̄ωk . (2.56)

Although we have derived (2.56) for a simple one-dimensional model, the
result is valid for a real crystal if sum over k is replaced by a three-dimensional
sum over all k and over the three polarizations. We will return to the evalua-
tion of the sum later, after we have considered models for the phonon spectrum
in real crystals.

2.4 Optical Modes

So far, we have restricted our consideration to a monatomic linear chain. Later
on, we shall consider three-dimensional solids (the added complication is not
serious). For the present, let us stick with the one-dimensional chain, but let
us generalize to the case of two atoms per unit cell (Fig. 2.5).

If atoms A and B are identical, the primitive translation vector of the
lattice is a, and the smallest reciprocal vector is K = 2π

a . If A and B are
distinguishable (e.g. of slightly different mass) then the smallest translation
vector is 2a and the smallest reciprocal lattice vector is K = 2π

2a = π
a . In this

case, the part of the ω vs. q curve lying outside the region |q| ≤ π
2a must

be translated (or folded back) into the first Brillouin zone (region between
− π

2a and π
2a ) by adding or subtracting the reciprocal lattice vector π

a . This
results in the spectrum shown in Fig. 2.6. Thus, for a non-Bravais lattice, the
phonon spectrum has more than one branch. If there are p atoms per primi-
tive unit cell, there will be p branches of the spectrum in a one-dimensional
crystal. One branch, which satisfies the condition that ω(q) → 0 as q → 0 is
called the acoustic branch or acoustic mode. The other (p − 1) branches are
called optical branches or optical modes. Due to the difference between the

Α Α Α Α ΑΒ Β Β Β

UNIT CELL
2

Fig. 2.5. Linear chain with two atoms per unit cell
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ω

Fig. 2.6. Dispersion curves for the lattice vibration in a linear chain with two atoms
per unit cell

Fig. 2.7. Unit cells of a linear chain with two atoms per cell

pair of atoms in the unit cell when A �= B, the degeneracy of the acoustic
and optical modes at q = ± q

2a is usually removed. Let us consider a simple
example, the linear chain with nearest neighbor interactions but with atoms
of mass M1 and M2 in each unit cell. Let un be the displacement from its
equilibrium position of the atom of mass M1 in the nth unit cell; let vn be
the corresponding quantity for the atom of mass M2. Then, the equations of
motion are

M1ün = K [(vn − un) − (un − vn−1)] , (2.57)
M2v̈n = K [(un+1 − vn) − (vn − un)] . (2.58)

In Fig. 2.7, we show unit cells n and n+ 1. We assume solutions of (2.57) and
(2.58) of the form

un = uqeiq2an−iωqt, (2.59)

vn = vqeiq(2an+a)−iωqt. (2.60)

where uq and vq are constants. Substituting (2.59) and (2.60) into the equa-
tions of motion gives the following matrix equation.
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Fig. 2.8. Dispersion relations for the acoustical and optical modes of a diatomic
linear chain

[−M1ω
2 + 2K −2K cos qa

−2K cos qa −M2ω
2 + 2K

] [
uq
vq

]
= 0. (2.61)

The nontrivial solutions are obtained by setting the determinant of the 2× 2

matrix multiplying the column vector
[
uq
vq

]
equal to zero. The roots are

ω2
±(q) =

K

M1M2

{
M1 +M2 ∓

[
(M1 +M2)2 − 4M1M2 sin2 qa

]1/2}
.

(2.62)

We shall assume that M1 < M2. Then at q = ± π
2a , the two roots are

ω2
OP(q = π

2a ) = 2K
M1

and ω2
AC(q = π

2a ) = 2K
M2

. At q ≈ 0, the two roots are

given by ω2
AC(q) � 2Ka2

M1+M2
q2 and ω2

OP(q) = 2K(M1+M2)
M1M2

[
1 − M1M2

(M1+M2)2 q
2a2

]
.

The dispersion relations for both modes are sketched in Fig. 2.8.

2.5 Lattice Vibrations in Three Dimensions

Now let us consider a primitive unit cell in three dimensions defined by the
translation vectors a1, a2, and a3. We will apply periodic boundary conditions
such that Ni steps in the direction ai will return us to the original lattice site.
The Hamiltonian in the harmonic approximation can be written as

H =
∑

i

P2
i

2M
+

1
2

∑

i,j

ui · Cij · uj . (2.63)

Here, the tensor Cij (i and j refer to the ith and jth atoms and Cij is a
three-dimensional tensor for each value of i and j) is given by

Cij =
[∇Ri∇RjU(R1,R2, . . .)

]
R0

iR
0
j

. (2.64)
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In obtaining (2.63) we have expanded U(R1,R2, . . .) in powers of ui =
Ri − R0

i , the deviation from the equilibrium position, and we have used the
definition of equilibrium to eliminate the term that is linear in ui.

From Hamilton’s equation we obtain the equation of motion

M ün = −
∑

j

Cij · uj . (2.65)

We assume a solution to (2.65) of the form

un = ξk eik·R0
n−iωkt. (2.66)

Here, ξk is a vector whose magnitude gives the size of the displacement asso-
ciated with wave vector k and whose direction gives the direction of the
displacement. It is convenient to write

ξk = ε̂k qk, (2.67)

where ε̂k is a unit polarization vector (a unit vector in the direction of ξk)
and qk is the amplitude. Substituting the assumed solution into the equation
of motion gives

Mω2
kεk =

∑

j

Cij · ε̂keik·(R0
j−R0

i ). (2.68)

Because (2.68) is a vector equation, it must have three solutions for each value
of k. This is apparent if we define the tensor F (k) by

F (k) = −
∑

j

eik·(R0
j−R0

i )Cij . (2.69)

Then, (2.68) can be written as a matrix equation
⎛

⎝
Mω2

k + Fxx Fxy Fxz
Fyx Mω2

k + Fyy Fyz
Fzx Fzy Mω2

k + Fzz

⎞

⎠

⎛

⎝
ε̂kx
ε̂ky
ε̂kz

⎞

⎠ = 0. (2.70)

The three solutions of the three by three secular equation for a given value of
k can be labeled by a polarization index λ. The eigenvalues of (2.70) will be
ω2

kλ and the eigenfunctions will be

ε̂kλ = (ε̂xkλ, ε̂
y
kλ, ε̂

z
kλ)

with λ = 1, 2, 3.
When we apply periodic boundary conditions, then we must have the

condition
eikiNiai = 1 (2.71)

satisfied for i = 1, 2, 3 the three primitive translation directions. In (2.71), ki
is the component of k in the direction of ai and Ni is the period associated
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with the periodic boundary conditions in this direction. From the condition
(2.71), it is clear that the allowed values of the wave vector k must be of the
form

k = 2π
(
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3

)
, (2.72)

where n1, n2, and n3 are integers, and b1, b2, b3 are primitive translation
vectors of the reciprocal lattice. As in the one-dimensional case, not all of
the values of k given by (2.72) are independent. It is customary to chose as
independent values of k those which satisfy (2.72) and the condition

− Ni
2

≤ ni ≤ Ni
2
. (2.73)

This set of k values is restricted to the first Brillouin zone, the set of all values
of k satisfying (2.72) that are closer to the origin in reciprocal space than to
any other reciprocal lattice point. The total number of k values in the first
Brillouin zone is N = N1N2N3, and there are three normal modes (three
polarizations λ) for each k value. This gives a total of 3N normal modes, the
number required to describe a system of N = N1N2N3 atoms each having
three degrees of freedom. For k values that lie outside the Brillouin zone,
one simply adds a reciprocal lattice vector K to obtain an equivalent k value
inside the Brillouin zone.

2.5.1 Normal Modes

As we did in the one-dimensional case, we can define new coordinates qkλ and
pkλ as

un = N−1/2
∑

kλ

ε̂kλqkλeik·R0
n , (2.74)

Pn = N−1/2
∑

kλ

ε̂kλpkλe−ik·R0
n . (2.75)

The Hamiltonian becomes

H =
∑

kλ

Hkλ =
∑

kλ

[
1

2M
pkλp

∗
kλ +

1
2
Mω2

kλqkλq
∗
kλ

]
. (2.76)

It is customary to define the polarization vectors ε̂kλ to satisfy ε̂−kλ = −ε̂kλ
and ε̂kλ · ε̂kλ′ = δλλ′ . Remembering that

∑
n ei(k−k′)·R0

n = Nδk,k′ , one can
see immediately that

∑

n

ε̂kλ · ε̂k′λ′ei(k−k′)·R0
n = Nδk,k′δλλ′ . (2.77)
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The conditions resulting from requiring Pn and un to be real are

p∗
kλ = p−kλ and q∗

kλ = q−kλ (2.78)

where pkλ = ε̂kλpkλ and qkλ = ε̂kλqkλ. The condition on the scalar quantities
pkλ and qkλ differs by a minus sign from the vector relation (2.78) because
ε̂kλ changes sign when k goes to −k.

2.5.2 Quantization

To quantize, the dynamical variables pkλ and qkλ are replaced by quantum
mechanical operators p̂kλ and q̂kλ which satisfy the commutation relations

[p̂kλ, q̂k′λ′ ]− = −ih̄δkk′δλλ′ . (2.79)

It is again convenient to introduce creation and annihilation operators a†kλ
and akλ defined by

qkλ =
(

h̄

2Mωkλ

)1/2 (
akλ − a†−kλ

)
, (2.80)

pkλ = i
(
h̄Mωkλ

2

)1/2 (
a†kλ + a−kλ

)
. (2.81)

The differences in sign from one-dimensional case result from using scalar
quantities qkλ and pkλ in defining akλ and a†kλ. The operators akλ and ak′λ′

satisfy the commutation relations
[
akλ, a

†
k′λ′

]

−
= δkk′δλλ′ , (2.82)

[akλ, ak′λ′ ]− =
[
a†kλ, a

†
k′λ′

]

−
= 0. (2.83)

The Hamiltonian is given by

H =
∑

kλ

h̄ωkλ

(
a†kλakλ +

1
2

)
. (2.84)

From this point on the analysis is essentially identical to that of the one-
dimensional case which we have treated in detail already. In the three-
dimensional case, we can write the displacement un and momentum Pn of
the nth atom as the quantum mechanical operators given below:

un =
∑

kλ

(
h̄

2MNωkλ

)1/2

ε̂kλeik·R0
n

(
akλ − a†−kλ

)
, (2.85)

Pn =
∑

kλ

i
(
h̄Mωkλ

2N

)1/2

ε̂kλe−ik·R0
n

(
a†kλ + a−kλ

)
. (2.86)
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Mean Squared Displacement of an Atom

As an example of how to use the quantum mechanical eigenstates and the
operator describing dynamical variables, let us evaluate the mean squared
displacement of an atom from its equilibrium position in a three-dimensional
crystal. We can write

un ·un =
∑

kλ,k′λ′

(
h̄

2MN

)
(ωkλωk′λ′)

−1/2
ε̂kλ · ε̂k′λ′

(
akλ + a†kλ

)(
ak′λ′ + a†k′λ′

)
.

(2.87)
Here, we have again chosen the origin at the equilibrium position of the nth

atom so that R0
n = 0. Then, we can replace ε̂kλa

†
−kλ by −ε̂kλa†kλ in (2.85).

This was done in obtaining (2.87). If we assume the eigenstate of the lattice
is |nk1λ1 , nk2λ2 , . . . 〉, it is not difficult to see the that

〈un〉 = 〈nk1λ1 , nk2λ2 , . . . |un|nk1λ1 , nk2λ2 , . . .〉 = 0, (2.88)

and that

〈un · un〉 =
∑

kλ

(
h̄

2MNωkλ

)
(2nkλ + 1) . (2.89)

2.6 Heat Capacity of Solids

In the nineteenth century, it was known from experiment that at room tem-
perature the specific heat of a solid was given by the Dulong–Petit law which
said

Cv = 3R, (2.90)

where R = NAkB, and NA = Avogadro number (=6.03 × 1023 atoms/mole)
and kB = Boltzmann’s constant (=1.38×10−16 ergs/◦K). Recall that 1 calorie
= 4.18 joule = 4.18 × 107 ergs. Thus, (2.90) gave the result

Cv � 6 cal/deg mole. (2.91)

The explanation of the Dulong–Petit law is based on the equipartition theo-
rem of classical statistical mechanics. This theorem assumes that each atom
oscillates harmonically about its equilibrium position, and that the energy of
one atom is

E =
p2

2m
+

1
2
kr2 =

1
2m

(
p2
x + p2

y + p2
z

)
+

1
2
k
(
x2 + y2 + z2

)
. (2.92)

The equipartition theorem states that for a classical system in equilibrium〈
p2x
2m

〉
= 1

2kBT . The same is true for the other terms in (2.92), so that the
energy per atom at temperature T is E = 3kBT . The energy of 1 mole is
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Fig. 2.9. Temperature dependence of the specific heat of a typical solid

U = 3NAkBT = 3RT. (2.93)

It follows immediately that Cv, which is equal to
(
∂U
∂T

)
v

is given by (2.90). It
was later discovered that the Dulong–Petit law was valid only at sufficiently
high temperature. The temperature dependence of Cv for a typical solid was
found to behave as shown in Fig. 2.9.

2.6.1 Einstein Model

To explain why the specific heat decreased as the temperature was lowered,
Einstein made the assumption that the atomic vibrations were quantized.
By this we mean that if one assumes that the motion of each atom is
described by a harmonic oscillator, then the allowed energy values are given
by εn =

(
n+ 1

2

)
h̄ω, where n = 0, 1, 2, . . . , and ω is the oscillator frequency.2

Einstein used a very simple model in which each atom vibrated with the same
frequency ω. The probability pn that an oscillator has energy εn is propor-
tional to e−εn/kBT . Because pn is a probability and

∑∞
n=0 pn = 1, we find that

it is convenient to write
pn = Z−1e−εn/kBT , (2.94)

and to determine the constant Z from the condition
∑∞
n=0 pn = 1. Doing so

gives

Z = e−h̄ω/2kBT
∞∑

n=0

(
e−h̄ω/kBT

)n
. (2.95)

The power series expansion of (1 − x)−1 is equal to
∑∞

n=0 x
n. Making use of

this result in (2.95) gives

2 See Appendix A for a quantum mechanical solution of a harmonic oscillator
problem.
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Z =
e−h̄ω/2kBT

1 − e−h̄ω/kBT
=

eh̄ω/2kBT

eh̄ω/kBT − 1
. (2.96)

The mean value of the energy of one oscillator at temperature T is given by
ε̄ =

∑
n εnpn. Making use of (2.94) and (2.95) and the formula

∑
n n e−nx =

− ∂
∂x

∑
n e−nx gives

ε̄ =
h̄ω

2
+ n̄h̄ω. (2.97)

Here, n̄ is the thermal average of n; it is given by

n̄ =
1

eh̄ω/kBT − 1
, (2.98)

and is called the Bose–Einstein distribution function. The internal energy of
a lattice containing N atoms is simply U = 3Nh̄ω

(
n̄+ 1

2

)
, where n̄ is given

by (2.98). If N is the Avogadro number, then the specific heat is given by

Cv =
(
∂U

∂T

)

v

= 3NkBFE

(
h̄ω

kBT

)
, (2.99)

where the Einstein function FE(x) is defined by

FE(x) =
x2

(ex − 1)(1 − e−x)
. (2.100)

It is useful to define the Einstein temperature TE by h̄ω = kBTE. Then the x
appearing in FE(x) is TE

T .
In the high-temperature limit (T � TE), x is very small compared to unity.

Expanding FE(x) for small x gives

FE(x) = 1 − 1
12
x2 + · · · , (2.101)

and

Cv = 3NkB

[

1 − 1
12

(
TE

T

)2

+ · · ·
]

. (2.102)

This agrees with the classical Dulong–Petit law at very high temperature and
it falls off with decreasing T .

In the low temperature limit (T � TE), x is very large compared to unity.
In this limit,

FE(x) � x2e−x, (2.103)

and

Cv = 3NkB

(
TE

T

)2

e−TE/T . (2.104)
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The Einstein temperature was treated as a parameter to be determined by
comparison with experiment. The Einstein model reproduced the Dulong–
Petit law at high temperature and showed that Cv decreased as the temper-
ature was lowered. Careful comparison of experimental data with the model
showed that the low temperature behavior was not quite correct. The exper-
imental data fit a T 3 law at low temperature (i.e., Cv ∝ T 3) instead of
decreasing exponentially as predicted by the simple Einstein model.

2.6.2 Modern Theory of the Specific Heat of Solids

We know from our study of lattice vibrations that Einstein’s assumption that
each atom in the crystal oscillated at a single frequency ω is too great a
simplification. In fact, the normal modes of vibration have a spectrum ωqλ,
where q is a wave vector restricted to the first Brillouin zone and λ is a
label that defines the polarization of the mode. The energy of the crystal at
temperature T is given by

U =
∑

qλ

(
n̄qλ +

1
2

)
h̄ωqλ. (2.105)

In (2.105), n̄qλ is given by

n̄qλ =
1

eh̄ωqλ/kBT − 1
. (2.106)

From (2.105), the specific heat can be obtained; it is given by

Cv =
(
∂U

∂T

)

v

= kB

∑

qλ

(
h̄ωqλ

kBT

)2 (
e

h̄ωqλ
kBT − 1

)−1(
1 − e−

h̄ωqλ
kBT

)−1

. (2.107)

To carry out the summation appearing in (2.107), we must have either more
information or some model describing how ωqλ depends on q and λ is needed.

Density of States

Recall that the allowed values of q were given by

q = 2π
(
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3

)
, (2.108)

where bi were primitive translations of the reciprocal lattice, ni were integers,
and Ni were the number of steps in the direction i that were required before
the periodic boundary conditions returned one to the initial lattice site. For
simplicity, let us consider a simple cubic lattice. Then bi = a−1x̂i, where a is
the lattice spacing and x̂i is a unit vector (in the x, y, or z direction). The
allowed (independent) values of q are restricted to the first Brillouin zone. In
this case, that implies that − 1

2Ni ≤ ni ≤ 1
2Ni. Then, the summations over
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qx, qy, and qz can be converted to integrals as follows:

∑

qx

⇒
∫

dqx
2π/Nxa

⇒ Lx
2π

∫
dqx. (2.109)

Therefore, the three-dimensional sum
∑

q becomes

∑

q

=
LxLyLz
(2π)3

∫
d3q =

V

(2π)2

∫
d3q. (2.110)

In these equations Lx, Ly, and Lz are equal to the length of the crystal in
the x, y, and z directions, and V = LxLyLz is the crystal volume. For any
function f (q), we can write

∑

q

f (q) =
V

(2π)3

∫
d3q f (q). (2.111)

Now, it is convenient to introduce the density of states g(ω) defined by

g(ω)dω =
{

The number of normal modes per unit volume
whose frequency ωqλ satisfies ω < ωqλ < ω + dω. (2.112)

From this definition, it follows that

g(ω)dω =
1
V

∑

qλ
ω < ωqλ < ω + dω

1 =
1

(2π)3
∑

λ

∫

ω<ωqλ<ω+dω

d3q. (2.113)

Let Sλ(ω) be the surface in three-dimensional wave vector space on which
ωqλ has the value ω. Then dSλ(ω) is an infinitesimal element of this surface
of constant frequency (see Fig. 2.10). The frequency change dω in going from
the surface Sλ(ω) to the surface Sλ(ω+ dω) can be expressed in terms of dq,
an infinitesimal displacement in q space as

dω = dq · [∇qωqλ]ωqλ=ω or dω = dq⊥ |∇qωqλ|ωqλ=ω . (2.114)

Here, dq⊥ is the component of dq normal to the surface of constant frequency
Sλ(ω). The volume element d3q in wave vector space can be written d3q =
dq⊥dSλ(ω), and using (2.114) allows us to write

dq

q( )Sλ ω ( )S dλ ω+ ω

Fig. 2.10. Constant frequency surfaces in three-dimensional wave vector space
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d3q =
dω

|∇qωqλ|ωqλ=ω

dSλ(ω). (2.115)

With this result, we can express the density of states as

g(ω) =
1

(2π)3
∑

λ

∫
dSλ(ω)

|∇qωqλ|ω
. (2.116)

In (2.116) the integration is performed over the surface of constant frequency
Sλ(ω). The denominator contains the magnitude of the gradient of ωqλ (with
respect to q) evaluated at ωqλ = ω.

2.6.3 Debye Model

To evaluate (2.107) and obtain the specific heat, Debye3 introduced a simple
assumption about the phonon spectrum. He took ωqλ = sλ |q| for all values of
q in the first Brillouin zone. Then, the surfaces of constant energy are spheres
(i.e., Sλ(ω) is a sphere in q space of radius q = ω

sλ
). In addition, Debye replaced

the Brillouin zone by a sphere of the same volume. Since
∑
q∈1stBZ 1 = N , we

can write

N =
(
L

2π

)3 ∫

|q|<qD
d3q =

V

(2π)3
4
3
πq3D. (2.117)

In (2.117) we have introduced qD, the Debye wave vector. A sphere of radius
qD contains the N independent values of q associated with a crystal contain-
ing N atoms. From (2.117), q3D = 6π2N/V , where V is the volume of the
crystal.

The density of states for the Debye model is very simple since |∇q

ωqλ| = sλ. Substituting this result into (2.116) gives

g(ω) =
1

(2π)3
∑

λ

[
4πq2

sλ

]

q= ω
sλ

≤qD
. (2.118)

If we introduce the unit step function θ(x) = 1 for x > 0 and θ(x) = 0 for
x < 0, g(ω) can be expressed

g(ω) =
ω2

2π2

[
θ(slkD − ω)

s3l
+

2 θ(stkD − ω)
s3t

]
. (2.119)

Here, of course, sl and st are the speed of a longitudinal and of a transverse
sound wave. Figure 2.11 shows the frequency dependence of the three-
dimensional density of states in the Debye model. Any summation over allowed
values of wave vector can be converted into an integral over frequency by using
the relation

3 P. Debye, Annalen der Physik 39, 789 (1912).



60 2 Lattice Vibrations

ω
Dts q Ds q�

(
)
ω

g

Fig. 2.11. Three-dimensional density of states in the Debye model

∑

qλ

f (ωqλ) = V

∫
dω g(ω)f (ω). (2.120)

Here, f (ωqλ) is an arbitrary function of the normal mode frequencies ωqλ.
Making use of (2.120), the expression for the specific heat [(2.107)] can be
written

Cv = kBV

∫
dω

(
h̄ω

Θ

)2 (
eh̄ω/Θ − 1

)−1 (
1 − e−h̄ω/Θ

)−1

g(ω). (2.121)

Here, we have introduced Θ = kBT . We define the Debye temperature TD by
ΘD = kBTD = h̄slqD. Remembering that V = 6π2Nq−3

D and that the integral∫
dω goes from ω = 0 to ω = ωD = slqD for longitudinal waves and from ω = 0

to ω = stqD = st

sl
ωD for transverse waves, it is not difficult to demonstrate

that

Cv = 3NkB

[
1
3
FD

(
ΘD

Θ

)
+

2
3
FD

(
stΘD

slΘ

)]
, (2.122)

where the Debye function FD(x) is defined by

FD(x) =
3
x3

∫ x

0

z4 dz
(ez − 1)(1 − e−z)

. (2.123)

Behavior at Θ � ΘD

In this limit, x which equals ΘD
Θ or stΘD

slΘ
is much smaller than unity. Therefore,

we can expand the exponentials for small argument to obtain

FD(x) � 3
x3

∫ x

0

z4 dz
z2

≈ 1. (2.124)

In this limit, Cv = 3NkB, in agreement with the classical Dulong–Petit law.
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Behavior at Θ � ΘD

In this limit, x is much larger than unity, and because of the exponential in
the denominator of the integral little error arises from replacing the upper
limit by infinity. This gives

FD(x) � 3
x3

∫ ∞

0

z4 dz
(ez − 1)(1 − e−z)

. (2.125)

The integral is simply a constant. Its value can be obtained analytically
∫ ∞

0

z4 dz
(ez − 1)(1 − e−z)

=
4
15
π4. (2.126)

The result for Cv at very low temperature is

Cv =
4
5
π4NkB

[

1 + 2
(
sl
st

)3
](

Θ
ΘD

)3

. (2.127)

This agrees with the observed behavior of the specific heat at very low
temperature, viz. Cv = AT 3, where A is a constant.

2.6.4 Evaluation of Summations over Normal Modes
for the Debye Model

In our calculation of the recoil free fraction in the Mössbauer effect (See
(2.56)), and in the evaluation of (2.89), the mean square displacement 〈un · un〉
of an atom from its equilibrium position, we encountered sums of the form

I = N−1
∑

qλ

n̄qλ + 1
2

h̄ωqλ
. (2.128)

These sums can be performed by converting the sums to integrals through the
standard prescription

∑

q

f (ωqλ) → V

(2π)3

∫
d3q f (ωqλ), (2.129)

or by making use of the density of states g(ω) and the result that

∑

qλ

f (ωqλ) = V

∫
dω g(ω)f (ω). (2.130)

For simplicity, we will use a Debye model with the velocity of transverse and
longitudinal waves both equal to s. Then

g(ω) =
3ω2

2π2s3
θ(skD − ω). (2.131)
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The summation in (2.128) can then be written as

I =
V

N

∫ ωD

0

dω
3ω2

2π2s3
1
h̄ω

[
1
2

+
1

eh̄ω/Θ − 1

]
. (2.132)

Let z = h̄ω
Θ , and make use of k3

D = 6π2N
V . Then (2.132) can be rewritten

I =
9

ΘD

(
Θ
ΘD

)2 ∫ ΘD/Θ

0

dz z
[
1
2

+
1

ez − 1

]
. (2.133)

First, let us look at the high temperature limit of (2.133). If Θ � ΘD,
then for values of z appearing in the integrand 1

ez−1 � 1
z . This corresponds to

the classical equipartition of energy since the energy of a mode of frequency
ωqλ is given by

h̄ωqλ

[
1

eh̄ωqλ/Θ − 1
+

1
2

]
� h̄ωqλ

[
Θ

h̄ωqλ
+

1
2

]
,

and this is equal to Θ for every mode (the 1
2 is negligible if Θ � h̄ωqλ) as

required by classical statistical mechanics. With this approximation

I � 9
ΘD

(
Θ
ΘD

)2 ∫ ΘD/Θ

0

dz =
9Θ
Θ2

D

. (2.134)

At very low temperature, Θ � ΘD, we can approximate the upper limit
by ∞ in the term proportional to (ez − 1)−1, since the contribution from very
large values of z is very small. This gives

I =
9

ΘD

(
Θ
ΘD

)2
[∫ ∞

0

dz z
ez − 1

+
∫ ΘD/Θ

0

dz
z

2

]

. (2.135)

The first integral in the square bracket is a constant, while the second is
1
4

(
ΘD
Θ

)2
. The second term is much larger than the first for Θ � ΘD, so it is

a reasonable approximation to take

I =
9

4ΘD
. (2.136)

(see, for example, Fig. 2.12).

2.6.5 Estimate of Recoil Free Fraction in Mössbauer Effect

Equation (2.56) gave the probability of starting in a lattice state |ni >=
|n1, n2, . . . , nN > and ending, after the γ-ray emission, in the same state. If
we assume that the crystal is in thermal equilibrium at a temperature Θ, then
(2.56) is simply

P (n̄i, n̄i) = e−2E(K)I , (2.137)



2.6 Heat Capacity of Solids 63
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Fig. 2.12. Behavior of an integral I for Θ ≤ ΘD

where n̄i is the Bose–Einstein distribution function, E(K) is the recoil energy,
and I is given by (2.132). We have just evaluated I using a simplified Debye
model at both high (Θ � ΘD) and low (Θ � ΘD) temperatures. If we use

(2.134) and (2.137), we find that at (ΘD � Θ), P � e−
9E(K)
2ΘD . Remember that

E(K) � 2 × 10−3 eV. For a typical crystal ΘD � 300K · kB ≈ 2.5 × 10−2 eV,
giving for P , P � e−

1
3 ≈ 0.7. This means that at very low temperature, 70%

of the γ rays are emitted without any change in the number of phonons in the
crystal.

At high temperature (let us take Θ = 400 K, larger than but not much

larger than ΘD � 300 K) I � 9Θ
Θ2

D
giving P (n̄i, n̄i) � e−

9E(K)
2ΘD

4Θ
ΘD . This gives

P (n̄i, n̄i) at Θ = 400 K of roughly 0.14, so that, even at room temperature
the Mössbauer recoil free fraction is reasonably large.

2.6.6 Lindemann Melting Formula

The Lindemann melting formula is based on the idea that melting will occur

when the amplitude of the atomic vibrations
(

i.e.,
〈
(δR)2

〉1/2
)

becomes

equal to some fraction γ of the interatomic spacing. Recall that 〈un · un〉 =
h̄2

M I where I is given by (2.128) (see (2.89)). We can use the Θ � ΘD limit
for I to write

〈
(δR)2

〉
� 9h̄2Θ
MΘ2

D

. (2.138)

The melting temperature is assumed to be given by ΘMelting = MΘ2
D

9h̄2 γ2r20,
where r0 is the atomic spacing and γ is a constant in the range (0.2 ≤ γ ≤
0.25). This result is only very qualitative since it is based on a very much
oversimplified model.
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Some Remarks on the Debye Model

One can obtain an intuitive picture of the temperature dependence of the
specific heat by applying the idea of classical equipartition of energy, but only
to modes for which h̄ω < Θ. By this we mean that only modes whose energy
h̄ω is smaller than Θ = kBT can be thermally excited at a temperature Θ and
make a contribution to the internal energy U , and such modes contribute an
energy Θ. Thus, we can write for U

U =
∑

qλ

(
n̄qλ +

1
2

)
h̄ωqλ � 3

V

(2π)3

∫ Θ/h̄s

0

Θ 4πq2 dq. (2.139)

In writing (2.139) we have omitted the zero point energy since it does not
depend on temperature and put h̄ω[n̄(ω)] � Θ for all modes of energy less
than Θ. This gives (using V = 6π2N

k3
D

and h̄skD = ΘD)

U = 3N
(

Θ
ΘD

)3

Θ. (2.140)

Differentiating with respect to T gives

Cv = 12NkB

(
Θ
ΘD

)3

. (2.141)

This rough approximation gives the correct T 3 temperature dependence,
but the coefficient is not correct as might be expected from such a simple
picture.

Experimental Data

Experimentalists measure the specific heat as a function of temperature over
a wide range of temperatures. They often use the Debye model to fit their
data, taking the Debye temperature as an adjustable parameter to be deter-
mined by fitting the data to (2.122) or some generalization of it. Thus, if
you see a plot of ΘD as a function of temperature, it only means that at
that particular temperature T one needs to take ΘD = ΘD(T ) for that value
of T to fit the data to a Debye model. It is always found that at very low

T and at very high T the correct Debye temperature ΘD = h̄s
(

6π2N
V

)1/3

agrees with the experiment. At intermediate temperatures these might be
fluctuations in ΘD of the order of 10% from the correct value. The rea-
son for this is that g(ω), the density of states, for the Debye model is
a considerable simplification of the actual of g(ω) for real crystals. This
can be illustrated by considering briefly the critical points in the phonon
spectrum.
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2.6.7 Critical Points in the Phonon Spectrum

Remember that the general expression for the density of states was given by
(2.116). Points at which ∇qωqλ = 0 are called critical points; the integrand
in (2.116) becomes infinite at such points.

Suppose that qc is a critical point in the phonon spectrum. Let ξ = q−qc;
then for points in the neighborhood of qc we can write

ωq = ωc + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 , (2.142)

where ξi are the components of ξ, and ωc = ω(qc). If α1, α2, and α3 are all
negative, by substituting into the expression for g(ω) and evaluating in the
neighborhood of qc, one obtains

g(ω) =
{

0 if ω > ωc,

constant (ωc − ω)1/2 if ω < ωc.
(2.143)

Thus, although g(ω) is continuous at a critical point, its first derivative is
discontinuous.

In three dimensions there are four kinds of critical points:

1. Maxima: Points at which all three αi are negative.
2. Minima: Points at which all three αi are positive.
3. Saddle Points of the First Kind : Points at which two αi’s are positive and

one is negative.
4. Saddle Points of the Second Kind : Points at which one αi is positive and

the other two are negative.

The critical points all show up as points at which dg(ω)
dω is discontinuous. A

rough sketch of g(ω) vs. ω showing several critical points is shown in Fig. 2.13.
It is not too difficult to demonstrate that in three dimensions the phonon spec-
trum must have at least one maximum, one minimum, three saddle points of
each kind. As an example, we look at the simpler case of two dimensions. Then

Fig. 2.13. Behavior of the density of states at various critical points
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Fig. 2.14. Behavior of critical points in two dimensions

the phonon spectrum must have at least one maximum, one minimum, and
two saddle points (there is only one kind of saddle point in two dimensions)
(see Fig. 2.14). This can be demonstrated as follows:

1. We know ωq is a periodic function of q; values of q which differ by a
reciprocal lattice vector K give the same ωq.

2. For a Brillouin zone of a two-dimensional square, we can consider ω(qx, qy)
as a function of qx for a sequence of different fixed values of qy. Because
ω(qx, qy) is a periodic function of qx there must be at least one maximum
and one minimum on each line qy = constant.

3. Consider the locus of all maxima (represented by X’s in Fig. 2.14). Along
this locus ω(q) must have at least one maximum and one minimum as a
function of qy. These points will be an absolute maximum and a saddle
point.

4. Doing the same for the locus of all minima (represented by O’s in Fig. 2.14)
gives one absolute minimum and another saddle point.

Because of the critical points, the phonon spectrum of a real solid looks
quite different from that of the Debye model. However, the Debye model is
constructed so that

1. The low frequency behavior of g(ω) is correct because for very small ω,
ωqλ = sλ |q| is a very accurate approximation.

2. The total area under the curve g(ω) is correct since kD, the Debye wave
vector is chosen so that there are exactly the correct total number of modes
3N .

Because of this, the Debye model is good at very low temperature (where only
very low frequency modes are important) and at very high temperature (where
only the total number of modes and equipartition of energy are important).
In Fig. 2.15 we compare g(ω) for a Debye model with that of a real crystal.
We note that

∫
gDebye(ω)dω ≈ ∫

gActual(ω)dω.
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ω
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ω

Fig. 2.15. Comparison of the density of states g(ω) for a Debye model and that of
a real crystal

Fig. 2.16. Comparison of the potential felt by an atom and the harmonic approxi-
mation to it

2.7 Qualitative Description of Thermal Expansion

We have approximated the interatomic potential in a crystal by

V (R) = V (R0) +
∑

ij

cijuiuj + higher terms. (2.144)

In Fig. 2.16 we show a sketch of the potential felt by one atom and the
harmonic approximation to it. There are two main differences in the two
potentials:

1. The true interatomic potential has a very strong repulsion at u = R −R0

negative (i.e., close approach of the pair of atoms).
2. The true potential levels off as R becomes very large (i.e., for large

positive u).

For a simple one-dimensional model we can write x = x0 + u, where x0 is the
equilibrium separation between a pair of atoms and u = x−x0 is the deviation
from equilibrium. Then, we can model the behavior shown in Fig. 2.16 by
assuming that

V (x) = V0 + cu2 − gu3 − fu4. (2.145)
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Here, g and f are positive constants. The fu4 term simply accounts for the fact
that the harmonic approximation rises too quickly for large u. The gu3 term
accounts for the asymmetry in the potential for u greater than or less than
zero. When u is negative, −gu3 is positive making the short range repulsion
larger; when u is positive, −gu3 is negative softening the interatomic repulsion
for large R.

Now let us evaluate the expectation value of u at a temperature kBT = β−1.

〈u〉 =

∫∞
−∞ du u e−βV
∫∞
−∞ du e−βV

. (2.146)

But, V = V0 + cu2 − gu3 − fu4, and we can expand eβ(gu
3+fu4), for small

values of u, to obtain

e−βV = e−β(V0+cu
2) (1 + βgu3 + βfu4

)
. (2.147)

The integrals in the numerator and denominator of (2.146) can be evaluated.
Because of the factor e−βcu

2
, we do not have to worry about the behavior of

the integrand for very large values of |u| so there is little error in taking the
limit as u = ±∞. We can easily see that

∫ ∞

−∞
du e−βV = e−βV0

∫ ∞

−∞
du e−βcu

2 (
1 + βgu3 + βfu4

)
. (2.148)

The βgu3 term vanishes because it is an odd function of u; the βfu4 gives a
small correction to the first term so it can be neglected. This results in

∫ ∞

−∞
du e−βV � e−βV0

(
π

βc

)1/2

. (2.149)

In writing down (2.149) we have made use of the result
∫∞
−∞ dz e−z

2
=

√
π.

The integral in the numerator of (2.146) becomes
∫ ∞

−∞
du u e−βV = e−βV0

∫ ∞

−∞
du u e−βcu

2 (
1 + βgu3 + βfu4

)
. (2.150)

Only the βgu3 term in the square bracket contributes to the integral. The
result is ∫ ∞

−∞
du u e−βV � e−βV0

3
√
π

4
βg (βc)−5/2 . (2.151)

In obtaining (2.151) we have made use of the result
∫∞
−∞ dz z4 e−z

4
= 3

√
π

4 .
Substituting it back in (2.146) gives

〈u〉 =
1
β

3g
4c2

=
3g
4c2

kBT. (2.152)

The displacement from equilibrium is positive and increases with temperature.
This suggests why a crystal expands with increasing temperature.
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2.8 Anharmonic Effects

To get some idea about how one would go about treating anharmonic effect,
let us go back to the simple one-dimensional model and include terms that
we have neglected (up to this time) in the expansion of the potential energy.
We can write H = HHarmonic +H ′, where H ′ is given by

H ′ =
1
3!

∑

lmn

dlmnulumun +
1
4!

∑

lmnp

flmnpulumunup + · · · . (2.153)

As a first approximation, let us keep only the cubic anharmonic term and make
use of

um =
∑

k

(
h̄

2MNωk

)1/2 (
ak + a†−k

)
eikma. (2.154)

Substituting (2.154) in (2.153) gives

H ′
3 = 1

3!

∑

lmn

dlmn
∑

kk′k′′

(
h̄

2MN

)3/2

(ωkω′
kω

′′
k )

−1/2 (2.155)

×
(
ak + a†−k

)(
a′k + a†−k′

)(
ak′′ + a†−k′′

)
eiknaeik′maeik′′la.

As before, dlmn does not depend on l,m, n individually, but on their relative
positions. We can, therefore, write dlmn = d(n − m,n − l). Now introduce
g = n −m and j = n − l and sum over all values of g, j, and n instead of l,
m, and n. This gives for the cubic anharmonic correction to the Hamiltonian

H ′
3 = 1

3!

∑

ngj

d(g, j)
∑

kk′k′′

(
h̄

2MN

)3/2

(ωkωk′ωk′′ )
−1/2 (2.156)

×
(
ak + a†−k

)(
ak′ + a†−k′

)(
ak′′ + a†−k′′

)
eiknaeik′(n−g)aeik′′(n−j)a.

The only factor depending on n is ei(k+k′+k′′)na, and
∑

n

ei(k+k′+k′′)na = Nδ (k + k′ + k′′,K) . (2.157)

Here, K is a reciprocal lattice vector; the value of K is uniquely determined
since k, k′, k′′ must all lie within the first Brillouin zone. Eliminate k′′ remem-
bering that if −(k + k′) lies outside the first Brillouin zone, one must add a
reciprocal lattice vector K to k′′ to satisfy (2.157). With this H ′

3 becomes

H ′
3 = N

∑

kk′

1
3!

∑

gj

d(g, j)e−ik′gaei(k+k′)ja
(

h̄

2MN

)3/2

(2.158)

× (ωkωk′ωk+k′ )
−1/2

(
ak + a†−k

)(
ak′ + a†−k′

)(
a−(k+k′) + a†k+k′

)
.
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Fig. 2.17. Scattering of phonons: (a) annihilation of three phonons, (b) annihilation
of two phonons and creation of a third phonon, (c) annihilation of one phonon and
creation of two phonons, (d) creation of three phonons

Now define

G(k, k′) =
1
3!

∑

gj

d(g, j)eikjaeik′(j−g)a
(

h̄3

23M3Nωkωk′ωk+k′

)1/2

. (2.159)

Then, H ′
3 is simply

H ′
3 =

∑

kk′
G(k, k′)

(
ak + a†−k

)(
ak′ + a†−k′

)(
a−(k+k′) + a†k+k′

)
. (2.160)

Feynman Diagrams

In keeping track of the results obtained by applying H ′ to a state of the har-
monic crystal, it is useful to use Feynman diagrams. A wavy line will represent
a phonon propagating to the right (time increases to the right). The interac-
tion (i.e., the result of applying H ′

3) is represented by a point into (or out of)
which three wavy lines run. There are four fundamentally different kinds of
diagrams (see Fig. 2.17):

1. akak′a−(k+k′) annihilates three phonons (Fig. 2.17a).
2. akak′a

†
k+k′ annihilates two phonons and creates a third phonon (Fig. 2.17b).

3. aka
†
−k′a

†
k+k′ annihilates a phonon but creates two phonons (Fig. 2.17c).

4. a†−ka
†
−k′a

†
k+k′ creates three phonons (Fig. 2.17d).

Due to the existence of anharmonic terms (cubic, quartic, etc. in the dis-
placements from equilibrium) the simple harmonic oscillators which describe
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the normal modes in the harmonic approximation are coupled. This anhar-
monicity leads to a number of interesting results (e.g., thermal expansion,
phonon–phonon scattering, phonon lifetime, etc.) We will not have space to
take up these effects in this book. However, one should be aware that the har-
monic approximation is an approximation. It ignores all the interesting effects
resulting from anharmonicity.

2.9 Thermal Conductivity of an Insulator

When one part of a crystal is heated, a temperature gradient is set up. In
the presence of the temperature gradient heat will flow from the hotter to the
cooler region. The ratio of this heat current density to the magnitude of the
temperature gradient is called the thermal conductivity κT.

In an insulating crystal (i.e., one whose electrical conductivity is very small
at low temperatures as a result of the absence of nearly free electrons) the
heat is transported by phonons. Let us define u(x) as the internal energy per
unit volume in a small region about the position x in the crystal. We assume
that u(x) depends on position because there is a temperature gradient ∂T

∂x in
the x-direction. Because the temperature T depends on x, the local thermal
equilibrium phonon density n̄qλ =

[
eh̄ωqλ/Θ − 1

]−1
will also depend on x.

This takes a little explanation. In our discussion of phonons up until now, a
phonon of wave vector k was not localized anywhere in the crystal. In fact, all
of the atoms in the crystal vibrated with an amplitude uk and different phases
eikna−iωkt. In light of this, a phonon is everywhere in the crystal, and it seems
difficult to think about difference in phonon density at different positions. In
order to do so, we must construct wave packets with a spread in k values, Δk,
chosen such that (Δk)−1 is much larger than the atomic spacing but much
smaller than the distance Δx over which the temperature changes appreciably.
Then, by a phonon of wavenumber k we will mean a wavepacket centered at
wavenumber k. The wavepacket can then be localized to a region Δx of the
order (Δk)−1. If the temperature at position x is different from that at some
other position, the phonon will transport energy from the warmer to the cooler
region. The thermal current density at position x can be written

jT(x) =
∫

dΩ
4π

s cos θ u(x− l cos θ). (2.161)

In this equation u(x) is the internal energy per unit volume at position x,
s is the sound velocity, l is the phonon mean free path (l = sτ , where τ is
the average time between phonon collisions), and θ is the angle between the
direction of propagation of the phonon and the direction of the temperature
gradient (see Fig. 2.18). A phonon reaching position x at angle θ (as shown
in Fig. 2.18) had its last collision, on the average, at x′ = x− l cos θ. But the
phonons carry internal energy characteristic of the position where they had
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Fig. 2.18. Phonon propagation in the presence of a temperature gradient in the
x-direction

their last collision, so such phonons carry internal energy u(x−l cos θ). We can
expand u(x− l cos θ) as u(x) − ∂u

∂x l cos θ, and integrate over dΩ = 2π sin θdθ.
This gives the result

jT(x) = −1
3
sl
∂u

∂x
. (2.162)

Of course the internal energy depends on x because of the temperature gra-
dient, so we can write ∂u

∂x = ∂u
∂T

∂T
∂x . The result for the thermal conductivity

κT = −jT
(
∂T
∂x

)−1
is

κT =
1
3
s2τCv. (2.163)

In (2.163), we have set l = sτ and ∂u
∂T = Cv, the specific heat of the solid.

2.10 Phonon Collision Rate

The collision rate τ−1 of phonons depends on

1. Anharmonic effects which cause phonon–phonon scattering
2. Defects and impurities which can scatter phonons and
3. The surfaces of the crystal which can also scatter phonons

Only the phonon–phonon collisions are very sensitive to temperature, since
the phonon density available to scatter one phonon varies with temperature.
For a perfect infinite crystal, defects, impurities, and surfaces can be ignored.

Phonon-phonon scattering can degrade the thermal current, but at very
low temperature, where only low frequency (ω � ωD or k � kD) phonons
are excited, most phonon–phonon scattering conserves crystal momentum.
By this we mean that in the real scattering processes shown in Fig. 2.19, no
reciprocal lattice vector K is needed in the conservation of crystal momentum,
and Fig. 2.19a would contain a delta function δ(k1 + k2 − k3), Fig. 2.19b a
δ(k1 − k2 − k3), and Fig. 2.19c a δ(k1 + k2 − k3 − k4). This occurs because
each k-value is very small compared to the smallest reciprocal lattice vector
K. These scattering processes are called N-processes (for normal scattering
processes), and they do not degrade the thermal current.
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¢ ¢ ¢

Fig. 2.19. Phonon–phonon scattering (a) Scattering of two phonons into one
phonon, (b) Scattering of one phonon into two phonons, (c) Scattering of two pho-
nons into two phonons

Tκ

Fig. 2.20. Temperature dependence of the thermal conductivity of an insulator

At high temperatures phonons with k values close to a reciprocal lattice
vector K will be thermally excited. In this case, the sum of k1 and k2 in
Fig. 2.19a might be outside the first Brillouin zone so that k3 = k1 + k2 −K.
It turns out that these processes, U-processes (for Umklapp processes) do
degrade the thermal current. At high temperatures it is found that τ is
proportional to temperature to the −n power, where 1 ≤ n ≤ 2. The high tem-
perature specific heat is the constant Dulong–Petit value, so that according
to (2.163) κT ∝ T−n at high temperature.

At low temperature, only U-processes limit the thermal conductivity (or
contribute to the thermal resistivity). But few phonons with k ≈ kD are
present at low temperature. A rough estimate would give e−h̄ωD/Θ for the
probability of U-scattering at low temperature. Therefore, τU, the scattering
time for U-processes is proportional to eΘD/Θ. Since the low temperature
specific heat varies as T 3, (2.163) would predict κT ∝ T 3eTD/T for the thermal
conductivity at low temperature. The result for the temperature dependence
of thermal conductivity of an insulator is sketched in Fig. 2.20.

2.11 Phonon Gas

Landau introduced the concept of thinking of elementary excitations as par-
ticles. He suggested that it was possible to have a gas of phonons in a
crystal whose properties were analogous to those of a classical gas. Both the
atoms or molecules of a classical gas and the phonons in a crystal undergo
collisions. For the former, the collisions are molecule–molecule collisions or
molecule–wall of container collisions. For the latter they are phonon–phonon,
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phonon–imperfection or phonon–surface collisions. Energy is conserved in
these collisions. Momentum is conserved in molecule–molecule collisions in
a classical gas and in N-process phonon–phonon collisions in a phonon gas. Of
course, the number of particles is conserved in the molecule–molecule collisions
of a classical gas, but phonons can be created or annihilated in phonon–phonon
collisions, so their number is not a conserved quantity.

The sound waves of a classical gas are oscillations of the particle density.
They occur if ωτ � 1, so that thermal equilibrium is established very quickly
compared to the period of the sound wave. They also require that momentum
be conserved in the collision process.

Landau4 called normal sound waves in a gas first sound. He proposed an
oscillation of the phonon density in a phonon gas that named second sound.
This oscillation of the phonon density (or energy density) occurred in a crystal
if ωτN � 1 (as in first sound) but ωτU � 1 so that crystal momentum is
conserved. Second sound has been observed in He4 and in a few crystals.

4 L. Landau, J. Phys. U.S.S.R. 5, 71 (1941).
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Problems

2.1. Consider a three-dimensional Einstein model in which each degree of
freedom of each atom has a vibrational frequency ω0.

(a) Evaluate G(ω), the number of modes per unit volume whose frequency
is less than ω.

(b) Evaluate g(ω) = dG(ω)
dω .

(c) Make a rough sketch of both G(ω) and g(ω) as a function of ω.

2.2. For a one-dimensional lattice a phonon of wave number k has frequency
ωk = ω0 sin |k|a

2 for a nearest neighbor coupling model. Now approximate this
model by a Debye model with ω = s|k|.

(a) Determine the value of s, the sound speed, and kD, the Debye
wave vector.

(b) Sketch ω as a function of k for each model over the entire Brillouin
zone.

(c) Evaluate g(ω) for each model and make a sketch of g(ω) vs. ω for each.

2.3. Consider a diatomic linear chain. Evaluate uq/vq for the acoustic and
optical modes at q = 0 and at q = π

2a .

2.4. Consider a linear chain with two atoms per unit cell (each of mass M)
located at 0 and δ, where δ < a

2 , a being the primitive translation vector. Let
C1 be the force constant between nearest neighbors and C2 the force constant
between next nearest neighbors. Determine ω±(k = 0) and ω±(k = π

a ).

d

2.5. Show that the normal mode density (for samll ω) in a d-dimensional
harmonic crystal varies as ωd−1. Use this result to determine the temperature
dependence of the specific heat.

2.6. In a linear chain with nearest neighbor interactions ωk = ω0 sin |k|a
2 . Show

that g(ω) � (
2
πa

)
1√

ω2
0−ω2

.

2.7. For a certain three-dimensional simple cubic lattice the phonon spectrum
is independent of polarization λ and is given by

ω(kx, ky, kz) = ω0

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)
+ sin2

(
kza

2

)]1/2

.
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(a) Sketch a graph of ω vs. k for
1. ky = kz = 0 and 0 ≤ kx ≤ π

a (i.e., along Γ → X),
2. kz = 0 and kx = ky = k√

2
for 0 ≤ k ≤

√
2π
a (i.e., along Γ → K),

3. kx = ky = kz = k√
3

for 0 ≤ k ≤
√

3π
a (i.e., along Γ → L).

(b) Draw the ω vs. k curve for the Debye approximation to these dispersion
curves as dashes lines on the diagram used in part (a).

(c) What are the critical points of this phonon spectrum? How many are
there?

(d) Make a rough sketch of the Debye density of states g(ω). How will the
actual density of states differ from the Debye approximation?

(e) Using this example, discuss the shortcomings and the successes of the
Debye model in predicting the thermodynamic properties (like specific
heat) of solids.

2.8. For a two-dimensional crystal a simple Debye model takes ω = sk for the
longitudinal and the single transverse modes for all allowed k values up to the
Debye wave number kD.

(a) Determine kD as a function of N
L2 , where N is the number of atoms

and L2 is the area of the crystal.
(b) Determine g(ω), the density of normal modes per unit area.
(c) Find the expression for the internal energy at a temperature T as

an integral over the density of states times an appropriate function of
frequency and temperature.

(d) From the result of part (c) determine the specific heat cv.
(e) Evaluate cv for kBT � h̄ωD = h̄skD.
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Summary

In this chapter, we discussed the vibrations of the atoms in solids. Quantum
mechanical treatment of lattice dynamics and dispersion curves of the normal
modes are described.

The Hamiltonian of a linear chain is written, in the harmonic approx-
imation, as H =

∑
i
P 2

i

2M + 1
2

∑
i,j cijuiuj, where Pi is the momentum and

ui = Ri − R0
i is the deviation of the ith atom from its equilibrium position.

A general dispersion relation of the normal modes is Mω2
q =

∑N
l=1 c(l)e

iqla.
The normal coordinates are given by

qk = N−1/2
∑

n

une−ikna; pk = N−1/2
∑

n

Pne+ikna.

The inverse of qk and pk are un=N−1/2
∑

k qke
ikna; Pn = N−1/2

∑
k pke

−ikna.
The quantum mechanical Hamiltonian is given by H =

∑
kHk, where

Hk =
p̂kp̂

†
k

2M
+

1
2
Mω2

kq̂k q̂
†
k.

The dynamical variables qk and pk are replaced by quantum mechanical oper-
ators q̂k and p̂k which satisfy the commutation relation [pk, qk′ ] = −ih̄δk,k′ . It
is convenient to rewrite q̂k and p̂k in terms of the operators ak and a†k, which
are defined by

qk =
(

h̄

2Mωk

)1/2 (
ak + a†−k

)
; pk = ı

(
h̄Mωk

2

)1/2 (
a†k − a−k

)
.

The ak’s and a†k’s satisfy
[
ak, a

†
k′

]

−
= δk,k′ and [ak, ak′ ]− =

[
a†k, a

†
k′

]

−
= 0.

The displacement of the nth atom and its momentum can be written

un =
∑

k

(
h̄

2MNωk

)1/2

eikna
(
ak + a†−k

)
,

Pn =
∑

k ı
(
h̄ωkM

2N

)1/2
e−ikna

(
a†k − a−k

)
.

The Hamiltonian of the linear chain of atoms can be written

H =
∑

k

h̄ωk

(
a†kak +

1
2

)
,

and its eigenfunctions and eigenvalues are

|n1, n2, . . . , nN >=

(
a†k1

)n1

√
n1!

· · ·
(
a†kN

)nN

√
nN !

|0 >

and En1,n2,...,nN =
∑

i h̄ωki(ni + 1
2 ).
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In the three-dimensional case, the Hamiltonian is given by

H =
∑

kλ

h̄ωkλ

(
a†kλakλ +

1
2

)
.

The allowed values of k are given by k = 2π
(
n1
N1

b1 + n2
N2

b2 + n3
N3

b3

)
. The

displacement un and momentum Pn of the nth atom are written, respectively,
as

un =
∑

kλ

(
h̄

2MNωkλ

)1/2

ε̂kλeik·R0
n

(
akλ − a†−kλ

)

Pn =
∑

kλ

i
(
h̄Mωkλ

2N

)1/2

ε̂kλe−ik·R0
n

(
a†kλ + a−kλ

)
.

The energy of the crystal is given by U =
∑

qλ

(
n̄qλ + 1

2

)
h̄ωqλ, where n̄qλ

is given by n̄qλ = 1

eh̄ωqλ/kBT −1
. The lattice heat capacity is written as

Cv =
(
∂U

∂T

)

v

= kB

∑

qλ

(
h̄ωqλ

kBT

)2(
e

h̄ωqλ
kBT − 1

)−1(
1 − e−

h̄ωqλ
kBT

)−1

.

The density of states g(ω) defined by

g(ω)dω =
{

The number of normal modes per unit volume
whose frequency ωqλ satisfies ω < ωqλ < ω + dω.

Then we have g(ω) = 1
(2π)3

∑
λ

∫ dSλ(ω)
|∇qωqλ|ω . Here, dSλ(ω) is an infinitesi-

mal element of the surface of constant frequency in three-dimensional wave
vector space on which ωqλ has the value ω. Near a critical point qc, at which
∇qωqλ = 0, in the phonon spectrum, we can write

ωq = ωc + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 ,

where ξi are the components of ξ = q − qc, and ωc = ω(qc). In three
dimensions, there are four kinds of critical points:

1. Maxima: points at which all three αi are negative.
2. Minima: points at which all three αi are positive.
3. Saddle Points of the First Kind : Points at which two αi’s are positive and

one is negative.
4. Saddle Points of the Second Kind : Points at which one αi is positive and

the other two are negative.

The density of states for the Debye model is expressed as

g(ω) =
ω2

2π2

[
θ(slkD − ω)

s3l
+

2 θ(stkD − ω)
s3t

]
.

Here, sl and st are the speed of a longitudinal and of a transverse sound wave.



3

Free Electron Theory of Metals

3.1 Drude Model

The most important characteristic of a metal is its high electrical conductivity.
Around 1900, shortly after J.J. Thompson’s discovery of the electron, people
became interested in understanding more about the mechanism of metallic
conduction. The first work by E. Riecke in 1898 was quickly superseded by
that of Drude in 1900. Drude1 proposed an exceedingly simple model that
explained a well-known empirical law, the Wiedemann–Franz law (1853). This
law states that at a given temperature the ratio of the thermal conductivity
to the electrical conductivity is the same for all metals. The assumptions of
the Drude model are:

1. A metal contains free electrons which form an electron gas.
2. the electrons have some average thermal energy

〈
1
2mv

2
T

〉
, but they pursue

random motions through the metal so that 〈vT〉 = 0 even though
〈
v2
T

〉 �= 0.
The random motions result from collisions with the ions.

3. Because the ions have a very large mass, they are essentially immovable.

3.2 Electrical Conductivity

In the presence of an electric field E, the electrons acquire a drift velocity
vD which is superimposed on the thermal motion. Drude assumed that the
probability that an electron collides with an ion during a time interval dt is
simply proportional to dt

τ , where τ is called the collision time or relaxation
time. Then Newton’s law gives

m

(
dvD

dt
+

vD

τ

)
= −eE, (3.1)

1 P. Drude, Annalen der Physik 1, 566 (1900); ibid., 3, 369 (1900); ibid., 7, 687
(1902).
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where −e is the charge on an electron. Some appreciation of the term of relax-
ation time dt

τ can be obtained by assuming that the system acquires a drift
velocity vD in the presence of an electric field E, and then, at time t = 0, the
electric field is turned off. The behavior of vD(t) as a function of time is given
by

vD(t) = vD(0)e−t/τ , (3.2)

showing that vD relaxes from vD(0) toward zero with a relaxation time τ .
In the steady-state (where v̇D = 0), vD is given by

vD = −eEτ
m

. (3.3)

The quantity eτ
m , the drift velocity per unit electric field, is called μ, the

drift mobility. The velocity of an electron including both thermal and drift
components is

v = vT − eτE
m

. (3.4)

The current density caused by the electric field E is simply

j = V −1
∑

all
electrons

(−e)v. (3.5)

But
∑

all
electrons

vT = 0, so that

j = V −1N(−e)
(
−eτE

m

)
= σE. (3.6)

Here σ, the electrical conductivity, is equal to n0e
2τ

m where n0 = N
V is the

electron concentration.

3.3 Thermal Conductivity

The thermal conductivity is the ratio of the thermal current (i.e., the energy
current) to the magnitude of the temperature gradient. In the presence of a
temperature gradient ∂T

∂x , the average thermal energy
〈

1
2mv

2
T

〉
will depend

on the local temperature T (x). The electrons sense the local temperature
through collisions with the lattice. Thus, the thermal energy of a given elec-
tron will depend on where it made its last collision. If we choose an electron
at random, the mean time back to its last collision is τ . Therefore, an electron
crossing the plane x = x0 at an angle θ to the x-axis had its last colli-
sion at x = x0 − vTτ cos θ. (See Fig. 3.1.) The energy of such an electron is
E(x) = E (x0 − vTτ cos θ). The number of electrons per unit volume whose
direction of motion is in the solid angle dΩ is simply n0

dΩ
4π . (See Fig. 3.2.)
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Fig. 3.1. An electron crossing the plane x = x0 at an angle θ to the x-axis

θ

θ

2 sind dΩ= π θ θ

Fig. 3.2. Solid angle dΩ in which electrons moving to cross the plane x = x0 at an
angle θ to the x-axis

The number of such electrons crossing a unit area at x0 is n0
dΩ
4π vT cos θ,

giving for the energy flux through a unit area at x0

w(x0) =
∫
E (x0 − vTτ cos θ)n0vT cos θ

dΩ
4π

. (3.7)

Just as we did for the thermal conductivity due to phonons we expand E(x0−
vTτ cos θ) and perform the integral over θ from 0 to π. This gives

w(x) = −1
3
n0v

2
Tτ

(
∂E

∂x

)
. (3.8)

But ∂E
∂x = ∂E

∂T
∂T
∂x , so the thermal conductivity κ is given by

κ =
w

−∂T/∂x =
1
3
n0v

2
Tτ

dE
dT

=
1
3
v2
TτCv, (3.9)

where Cv = n0
dE
dT is the heat capacity per unit volume (or the specific heat).
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3.4 Wiedemann–Franz Law

The ratio of κ to σ is given by

κ

σ
=

1
3v

2
TτCv

n0e2τ
m

. (3.10)

Now Drude applied the classical gas laws to evaluation of v2
T and Cv, viz.,〈

1
2mv

2
T

〉
= 3

2kBT and Cv = n0

(
3
2

)
kB. This gave

κ

σ
=

3
2

(
kB

e

)2

T. (3.11)

In addition to agreeing with the Wiedemann–Franz law, the ratio L = κ
σT

had the value 3
2

(
kB
e

)2
which was equal to 1.24× 10−13 esu. The observed val-

ues for L, called the Lorenz number2, averaged to roughly 2.72 × 10−13 esu.
Drude made an error of a factor of 2 in his original paper and found that
L ∼ 2.48 × 10−13 esu, remarkably close to the experimental value.

3.5 Criticisms of Drude Model

1. If
〈

1
2mv

2
T

〉
= 3

2kBT , then the electronic contribution to Cv had to be Cv =
3
2NkB = 3

2R. This is half as big as the lattice contribution and was simply
not observed.

2. Experimentally σ varies as T−1. This implies that n0τ ∝ T−1 since e2

and m are constants. In Drude’s picture, the mean free path l � vTτ was
thought to be of the order of the atomic spacing and therefore independent
of T . Since vT ∝ T 1/2 this would imply that τ ∝ T−1/2 and, to satisfy
n0τ ∝ T−1, that n0 ∝ T−1/2. This did not make any sense.

3.6 Lorentz Theory

Since Drude’s simple model gave some results that agree fairly well with
experiment, Lorentz3 decided to use the full apparatus of kinetic theory to
investigate the model more carefully. He did not succeed in improving on
Drude’s model, but he did make use of the Boltzmann distribution function
and Boltzmann equation which we would like to describe.

2 Ludvig Valentin Lorenz (1829–1891).
3 Hendrik Antoon Lorentz (1853–1928).
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3.6.1 Boltzmann Distribution Function

The Boltzmann distribution function f (v, r, t) is defined by

f(v, r, t)d3rd3v = the number of electrons in the volume element d3r centered
at r whose velocity is between v and v + dv at time t.

Boltzmann’s equation says that the total time rate of change of f (v, r, t) must
be balanced by its time rate of change due to collisions, i.e.,

df (v, r, t)
dt

=
(
∂f
∂t

)

c

. (3.12)

Here,
(
∂f
∂t

)

c
d3r d3v dt is the net number of electrons forced into the volume

element d3rd3v (in phase space) by collisions in the time interval dt.

3.6.2 Relaxation Time Approximation

The simplest form of the collision term is
(
∂f
∂t

)

c

= − f − f 0

τ
, (3.13)

where f0 is the thermal equilibrium distribution function, f the actual nonequi-
librium distribution function (which differs from f0 due to some external
disturbance), and τ is a relaxation time. Once again if f − f 0 is nonzero due
to some external disturbance, and if at time t = 0 the disturbance is turned
off, one can simply write

(f − f 0)t = (f − f 0)t=0 e−t/τ . (3.14)

3.6.3 Solution of Boltzmann Equation

We are frequently interested in small perturbations away from equilibrium
and can linearize the Boltzmann equation. For example, suppose the external
perturbation is a small electric field E in the x-direction, and a temperature
gradient ∂T

∂x . The steady-state Boltzmann equation (∂f∂t = 0) is

∂f
∂vx

(
−eE
m

)
+
∂f
∂x
vx = − f − f 0

τ
. (3.15)

If f − f 0 is small we can approximate f on the left-hand side by f0 and obtain

f � f0 + τ

[
eE

m

∂f0
∂vx

− vx
∂f0
∂x

]
. (3.16)
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This is linear response since E and ∂f0
∂x are already linear in E or ∂T

∂x . The
electrical current density and thermal current density are given, respectively,
by

j(r, t) =
∫

(−e)v f (r,v, t) d3v, (3.17)

and

w(r, t) =
∫
εv f (r,v, t) d3v. (3.18)

In (3.18) ε = 1
2mv

2 is the kinetic energy of the electron of velocity v. We sub-
stitute the solution for f given by (3.16) into (3.17) and (3.18) to calculate j
and w.

3.6.4 Maxwell–Boltzmann Distribution

To evaluate j and w it is necessary to know f0(v). Lorentz used the following
expression:

f0(v) = n0

( m

2πΘ

)3/2

e−ε/Θ. (3.19)

Here n0 = N/V , Θ = kBT , and ε = 1
2mv

2. The normalization constant
has been chosen so that

∫
f0(v)d3v = n0. The reader should check this. (Use

∫∞
0
x1/2e−xdx = Γ(3

2 ) =
√
π

2 .)
The use of classical statistical mechanics and the Maxwell–Boltzmann

distribution function is the source of the difficulty with the Lorentz the-
ory. In 1925 Pauli4 proposed the exclusion principle; in 1926 Fermi and
Dirac5 proposed the Fermi–Dirac statistics, and in 1928 Sommerfeld pub-
lished the Sommerfeld Theory of Metals. The Sommerfeld theory was simply
the Lorentz theory with the Fermi–Dirac distribution function replacing the
Boltzmann–Maxwell distribution function.

3.7 Sommerfeld Theory of Metals

Sommerfeld6 treated the Drude electron gas quantum mechanically. We can
assume that the electron gas is contained in a cubic box of edge L, and that
the potential inside the box is constant. The Schrödinger equation is

− h̄2

2m
∇2Ψ(r) = EΨ(r), (3.20)

4 W. Pauli, Z. Physik 31, 765 (1925).
5 E. Fermi, Z. Physik 36, 902 (1926); P.A.M. Dirac, Proc. Roy. Soc. London, A

112, 661 (1926).
6 A. Sommerfeld, Zeits. fur Physik 47, 1 (1928).
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and its solution is

Ψk(r) = V −1/2eik·r (3.21)

Ek = h̄2k2

2m .

To avoid difficulties with boundaries, we can assume periodic boundary con-
ditions so that x = 0 and x = L are the same point. Then the allowed values
of kx (and ky and kz) satisfy kx = 2π

L nx, where nx = 0,±1,±2, . . ., and

Ek =
h̄2

2m

(
2π
L

)2 (
n2
x + n2

y + n2
z

)
. (3.22)

The functions |k〉 form a complete orthonormal set with

〈k|k′〉 =
∫

d3rΨ∗
k(r)Ψk′(r) = δkk′ . (3.23)

∑

k

|k〉 〈k| = 1 or
∑

k

Ψ∗
k(r′)Ψk(r) = δ(r′ − r). (3.24)

Fermi Energy

The Pauli principle states that only one electron can occupy a given quantum
state. In the Sommerfeld model, states are labeled by {k, σ} = (kx, ky, kz)
and σ, where σ is a spin index which takes on the two values ↑ or ↓. At
T = 0, only the lowest N energy states will be occupied by the N electrons in
the system. Define kF as the value of k for the highest energy occupied state.
Then the number of particles is given by

N =
∑

k < kF
σ

1 =
V

(2π)3
2
∫

k<kF

d3k. (3.25)

The factor of 2 comes from summing over spin. The integration simply gives
4
3πk

3
F, resulting in the relation

k3
F = 3π2n0. (3.26)

The Fermi energy εF(≡ΘF), Fermi velocity vF, and Fermi temperature
TF

(
= ΘF

kB

)
are defined, respectively, by

εF =
h̄2k2

F

2m
=

1
2
mv2

F = ΘF. (3.27)

For a typical metal, we have n0 = 1023 cm−3 giving εF � 5 eV, vF � 108 cm/s,
and TF � 105 K.
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3.8 Review of Elementary Statistical Mechanics

Suppose that the states of an ideal Fermi gas are labeled φ1, φ2, . . . , φi, . . .
and that they have energies ε1, ε2, . . . , εi, . . .. Then, if N is the total number
of Fermions ∑

i

ni = N, (3.28)

where ni = 1 if the state φi is occupied and ni = 0 if it is not. The partition
function ZN for this N particle system is defined by

ZN =
′∑

{ni}
e−β

∑
i niεi . (3.29)

In (3.29) β = (kBT )−1 and the symbol
∑′

{ni} means a summation over all sets
of values {ni} = {n1, n2, . . . , ni, . . .} which satisfy the condition

∑
i ni = N .

This restriction makes performing the sum to obtain ZN difficult. One can
avoid this difficulty by using the grand canonical ensemble instead of the
canonical ensemble. The grand partition function Q is defined by

Q =
∞∑

N=0

eβζNZN . (3.30)

The symbol ζ is is called the chemical potential. When we substitute (3.29) into
(3.30), the summation overN removes the restriction on the sets of values {ni}
included in the sum appearing in (3.29). We can rewrite the grand partition
function as follows:

Q =
∞∑

N=0

′∑

{ni}
e−β

∑
i ni(εi−ζ) (3.31)

=
1∑

n1=0

1∑

n2=0

· · ·
1∑

ni=0

· · · e−β(ε1−ζ)n1e−β(ε2−ζ)n2 · · · e−β(εi−ζ)ni · · · .

It is easy to see that

1∑

ni=0

e−β(εi−ζ)ni = 1 + e−β(εi−ζ)

so that
Q =

∏

i

[
1 + e−β(εi−ζ)

]
. (3.32)

The average occupancy of some quantum state l is given by

n̄l = Q−1
∑

{ni}
nle−β

∑
i ni(εi−ζ). (3.33)
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For all i �= l, the factor involving i in the numerator is exactly cancelled by
the same factor in Q−1 leaving us

n̄l =

∑
nl
nle−β(εl−ζ)nl

∑
nl

e−β(εl−ζ)nl
=

e−β(εl−ζ)

1 + e−β(εl−ζ) . (3.34)

Thus we find the Fermi–Dirac distribution function of

n̄l =
1

e(εl−ζ)/Θ + 1
. (3.35)

At Θ = 0 all states whose energy is smaller than εF are occupied; all states of
higher energy empty. Notice that (3.33) can be written

n̄l = −kBT
∂

∂εl
lnQ, (3.36)

a form that is sometimes useful.

3.8.1 Fermi–Dirac Distribution Function

At zero temperature the Fermi–Dirac distribution function can be written, as
a function of energy ε, as

f0(ε) =
{

1 if ε < εF,
0 if ε > εF.

(3.37)

At a finite temperature

f0(ε) =
1

e(ε−ζ)/Θ + 1
. (3.38)

Clearly at ε = ζ, f0(ε = ζ) is equal to 1
2 . (See Fig. 3.3.) The value of ζ is

determined (as a function of T ) by the condition
∑

kσ

f0 (εkσ) = N. (3.39)

Fig. 3.3. Fermi–Dirac distribution function f0(ε) for two different temperatures
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3.8.2 Density of States

It is easy to determine G(ε), the total number of states per unit volume whose
energy is less than ε, and then obtain g(ε) from it.

G(ε+ dε) −G(ε) =
dG
dε

dε = g(ε)dε. (3.40)

For free electrons we have

G(ε) = V −1
∑

kσ
εkσ ≤ ε

1 =
2

(2π)3
4π
3
k3, (3.41)

where h̄2k2

2m = ε. It is easy to see that

G(ε) = n0

(
k

kF

)3

= n0

(
ε

εF

)3/2

. (3.42)

Thus, from (3.40) we find

g(ε) =
3
2
n0

εF

(
ε

εF

)1/2

=
1

2π2

(
2m
h̄2

)3/2

ε1/2. (3.43)

For electrons moving in a periodic potential, g(ε) does not have such a simple
form.

At a finite temperature Θ, the number of electrons per unit volume having
energies between ε and ε + dε is simply the product of g(ε)dε and f0(ε):
n(ε)dε = g(ε)f0(ε)dε. (See Fig. 3.4.) The chemical potential ζ is determined
from

N = V

∫ ∞

0

g(ε)f0(ε)dε. (3.44)

Fig. 3.4. Particle density n(ε) and the density of states g(ε)
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3.8.3 Thermodynamic Potential

The thermodynamic potential Ω is defined by

Ω = −Θ lnQ = −Θ
∑

i

ln
(
1 + e(ζ−εi)/Θ

)
. (3.45)

Functions that are commonly used in statistical mechanics are:

Internal energy U,

Helmholtz free energy F = U − TS,

Thermodynamic potential Ω = U − TS − ζN = −PV, (3.46)
enthalpy H = U + PV = TS + ζN,

Gibbs free energy G = U − TS + PV = ζN.

These definitions together with Euler’s relation

U = TS − PV + ζN (3.47)

and the second law of thermodynamics

dU = TdS − PdV + ζdN (3.48)

are very useful to remember. By using (3.47) and (3.48) and Ω = −PV , one
can obtain

dΩ = −SdT − PdV −Ndζ. (3.49)

From (3.49) one can see that the entropy S, pressure P , and particle number
N can be obtained from the thermodynamic potential Ω

S = −
(
∂Ω
∂T

)

V,ζ

,

P = −
(
∂Ω
∂V

)

T,ζ

, (3.50)

N = −
(
∂Ω
∂ζ

)

V,T

.

3.8.4 Entropy

We know that
Ω = −Θ

∑

i

ln
(
1 + e(ζ−εi)/Θ

)
. (3.51)

But we can write

1 − n̄i = 1 − 1
e(εi−ζ)/Θ + 1

=
1

e(ζ−εi)/Θ + 1
, (3.52)
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so that
ln (1 − n̄i) = − ln

[
1 + e(ζ−εi)/Θ

]
. (3.53)

We can express (3.51) as

Ω = Θ
∑

i

ln (1 − n̄i) . (3.54)

Since the entropy is given by S = − ∂Ω
∂Θ , we can obtain

S = −
∑

i

ln (1 − n̄i) + Θ
∑

i

(1 − n̄i)
−1 ∂n̄i

∂Θ
. (3.55)

Evaluating ∂n̄i

∂Θ and multiplying by Θ (1 − n̄i)
−1 gives

Θ
1 − n̄i

∂n̄i
∂Θ

= n̄i ln
(

1 − n̄i
n̄i

)
. (3.56)

Sustituting this result into (3.55) gives

S = −kB

∑

i

[(1 − n̄i) ln (1 − n̄i) + n̄i ln n̄i] . (3.57)

We have inserted the factor kB into (3.57); in the derivation we had essentially
set it equal to unity. Notice that the expression for S goes to zero as T goes
to zero because n̄i takes on the values 0 or 1 in this limit. In addition, we can
write that

ΘS = −Θ
∑

i

[
ln (1 − n̄i) + n̄i ln

(
n̄i

1 − n̄i

)]
,

= −Θ
∑

i

ln (1 − n̄i) − Θ
∑

i

n̄i

(
ζ − ε

Θ

)
,

= −Θ
∑

i

ln (1 − n̄i) − ζ
∑

i

n̄i +
∑

i

n̄iεi, (3.58)

= −Θ
∑

i

ln (1 − n̄i) − ζN + U.

If we write F = U − TS we have

F = Nζ + Θ
∑

i

ln (1 − n̄i) , (3.59)

= Nζ − Θ
∑

i

ln
(
1 + e

ζ−εi
Θ

)
.
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If we hold V and T constant, the energy levels εi are unchanged and
(
∂F

∂N

)

T,V

= ζ +N

(
∂ζ

∂N

)

T,V

− Θ
∂

∂N

∑

i

ln
(
1 + e

ζ−εi
Θ

)
. (3.60)

It is not difficult to show that (since ln
[
1 + e

ζ−εi
Θ

]
depends on N through ζ)

the last two terms cancel and hence
(
∂F

∂N

)

T,V

= ζ. (3.61)

3.9 Fermi Function Integration Formula

To study how the chemical potential ζ and internal energy U vary with tem-
perature, we must evaluate the integrals

N

V
= n0 =

∫ ∞

0

dε g(ε)f0(ε) (3.62)

and

U

V
= u =

∫ ∞

0

dε εg(ε)f0(ε). (3.63)

In evaluating integrals of this type there is a very useful integration formula
which we will now derive. Let us define an integral I as follows:

I =
∫ ∞

0

dε f0(ε)
dF (ε)

dε
. (3.64)

Integrating by parts gives

I = [f0(ε)F (ε)]∞0 −
∫ ∞

0

dε
∂f0
∂ε

F (ε). (3.65)

For many functions F (ε), F (0) = 0 and limε→∞ f0(ε)F (ε) → 0. For such
functions we can write (3.65) simply as

I = −
∫ ∞

0

dε
∂f0
∂ε

F (ε). (3.66)

The functions f0 changes rather quickly in an interval of width of the order of
kBT about ε = ζ. It is obvious that

∫ ∞

0

(
−∂f0
∂ε

)
dε = 1.

If the function F (ε) is slowly varying compared to ∂f0
∂ε in the region ε � ζ, we

can expand F (ε) in Taylor series as follows:
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F (ε) = F (ζ) + (ε− ζ)F ′(ζ) +
1
2!

(ε− ζ)2 F ′′(ζ) + · · · . (3.67)

Then, we can write I as

I = F (ζ)
∫ ∞

0

dε
(
−∂f0
∂ε

)
+ F ′(ζ)

∫ ∞

0

dε (ε− ζ)
(
−∂f0
∂ε

)

+
1
2!
F ′′(ζ)

∫ ∞

0

dε (ε− ζ)2
(
−∂f0
∂ε

)
+ · · · .

But we note that

−∂f0
∂ε

= β
eβ(ε−ζ)

[
eβ(ε−ζ) + 1

]2 .

Introduce the parameter z = β(ε− ζ) and note that
∫ ∞

0

dε (ε− ζ)n
(
−∂f0
∂ε

)
= Θn

∫ ∞

−ζ/Θ
dz

zn

(ez + 1) (e−z + 1)
.

If ζ is much larger than Θ (this is certainly true in metals) the lower limit
on the integral over z can be replaced by −∞. Since zn

(ez+1)(e−z+1) is an odd
function of z for n odd, we obtain

I � F (ζ) +
1
2!

Θ2F ′′(ζ)
∫ ∞

−∞
dz

z2

(ez + 1) (e−z + 1)
+ · · ·

+
1

(2n)!
Θ2nF (2n)(ζ)

∫ ∞

−∞
dz

z2n

(ez + 1) (e−z + 1)
. (3.68)

The first few integrals are
∫ ∞

−∞
dz

z2

(ez + 1) (e−z + 1)
=
π2

3
,

∫ ∞

−∞
dz

z4

(ez + 1) (e−z + 1)
=

7π4

15
.

To order Θ2 we have

I = F (ζ) +
π2

6
Θ2F ′′(ζ). (3.69)

To evaluate the integral given in (3.62), we note that F (ζ) is just G(ε), the
total number of states per unit volume whose energy is less than ε. Then using
(3.69) gives us

n0 = G(ζ) +
π2

6
Θ2G′′(ζ). (3.70)

Define ζ0 as the chemical potential at T = 0. Then n0 = G(ζ0) and

G(ζ) = G(ζ0) − π2

6
Θ2g′(ζ). (3.71)
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Here, we have used G′(ε) = g(ε) and set n0 = G(ζ0). Write G(ζ) as G(ζ0) +
g(ζ0)(ζ − ζ0) and substitute into (3.71) to obtain

ζ = ζ0 − π2

6
Θ2 g

′(ζ0)
g(ζ0)

.

But for free electrons g(ζ) = 3
2
n0
ζ0

(
ε
ζ0

)1/2

so that

ζ = ζ0

[

1 − π2

12

(
Θ
ζ0

)2

+ · · ·
]

. (3.72)

Applying the integration formula to the integral for U
V , F (ε) is simply∫ ε

0
ε′g(ε′) dε′; therefore we have

U

V
=
∫ ζ

0

εg(ε) dε+
π2

6
Θ2

[
d
dε

(ε g(ε))
]

ε=ζ

. (3.73)

Define U0 = V
∫ ζ0
0
εg(ε) dε and use the expression for g(ε) given above for

free electrons. One can find that

U

V
=
U0

V
+
π2

6
Θ2g(ζ0). (3.74)

3.10 Heat Capacity of a Fermi Gas

The heat capacity Cv =
(
∂U
∂T

)
V

is given, using (3.74), by

Cv = V
π2

3
k2
Bg(ζ0)T = γT. (3.75)

For free electrons we have γ = π2k2
B

2ζ0
N . It is interesting to compare the quan-

tum mechanical Sommerfeld result CQM
v = γT with the classical Drude result

CCM
v = 3

2NkB:
CQM

v

CCM
v

=
π2

3
T

TF
. (3.76)

For a typical metal, TF � 105 K, while at room temperature T � 300 K. This
solves the problem that perplexed Drude concerning why the classical specific
heat CCM

v was not observed. The correct quantum mechanical specific heat
is so small (because T

TF
� 1) that it is difficult to observe even at room

temperature.
One can obtain a rough estimate of the specific heat by saying that only

quantum states within kBT of the Fermi energy contribute to the classical
estimate of the specific heat. This means that
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Neff = V [G(εF) −G(εF − kBT )] .

This gives

U ≈
(

3
2
kBT

)
Neff =

[
3
2
kBT

]
[V g(εF)kBT ], (3.77)

and hence

Cv =
∂U

∂T
≈ V 3k2

Bg(εF)T. (3.78)

3.11 Equation of State of a Fermi Gas

The equation of state relates the variables P , V , and T . For the Fermi gas we
know that

P = −
(
∂Ω
∂V

)

T,ζ

. (3.79)

But Ω = −Θ
∑
i ln

(
1 + e(ζ−εi)/Θ

)
. At constant values of Θ = kBT and ζ, Ω

depends on V through εi:

εi =
h̄2

2m

(
2π
L

)2 (
n2
ix + n2

iy + n2
iz

)
. (3.80)

We can write ∂εi

∂V = ∂εi

∂L

(
∂V
∂L

)−1
. Since εi ∝ L−2 and V ∝ L3 this gives

∂εi

∂V = − 2
3
εi

V . Using this result in (3.79) gives

P = Θ
∑

i

(
e(ζ−εi)/Θ

1 + e(ζ−εi)/Θ

)
(−Θ−1

) ∂εi
∂V

. (3.81)

From this we find (since G(ε) = 2
3εg(ε) for a free Fermi gas) that

P =
2
3
U

V
=
∫ ∞

0

dεG(ε)f0(ε). (3.82)

If we keep terms to order Θ2 we obtain

P = P0 +
π2

6
Θ2

{
g(εF) − g′(εF)

g(εF)
G(εF)

}
. (3.83)

3.12 Compressibility

The compressibility κT is defined by

κ−1
T = −V

(
∂P

∂V

)

T,ζ

(3.84)

= −V ∂

∂V

∫ ∞

0

G(ε)f0(ε)dε.
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If we define H(ε) =
∫ ε
0
G(ε) dε, then the integral can be evaluated by

integrating by parts to get (at T = 0)
∫ ∞

0

G(ε)f0(ε) dε = H (εF) .

But we know that G(ε) = Aε3/2, therefore H(ε) = 2
5Aε

5/2 = 2
5εG(ε) to have

κ−1
T = −V ∂

∂V

(
2
5
εFn0

)
,

since G(εF) = n0. εF is proportional to L−2, and n0 is proportional to L−3 so
εFn0 is proportional to L−5 = V −5/3. This gives

κ−1
T = −V 2

5

(
−5

3

)
n0εF
V

=
2
3
n0εF.

Using g(εF) = 3
2
n0
εF

allows us to write

κ−1
T =

n2
0

g(εF)
. (3.85)

For free electrons g(ζ0) = 3n0
2εF

and κT = 3
2n0ζ0

. The velocity of sound in a solid
is given by

s = (κTρ)
−1/2 (3.86)

where ρ is the mass density. κT is the compressibility of the material in (3.86),
and it includes the ion core repulsion as well as the pressure due to compressing
the electron gas. The ionic contribution is small in simple metals like the alkali
metals. If we neglect it and put ρ = n0M

z , where M is the ionic mass and z
the number of electrons per atom, we find

s =
( zm

3M

)1/2

vF. (3.87)

This result was first obtained by Bohm and Staver in a somewhat different
way.

3.13 Electrical and Thermal Conductivities

Assume that there is an electric field E = Ex̂ and a temperature gradient
∇T = ∂T

∂x x̂. In discussing the Lorentz model, we wrote down the solution to
the linearized Boltzmann equation

∂f
∂t

+ v · ∇rf + v̇ · ∇vf = −
(

f − f0
τ

)
(3.88)
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in the form

f = f0 − τ

[
−eE
m

∂f0
∂vx

+ vx
∂f0
∂x

]
. (3.89)

The equilibrium distribution function is the Fermi–Dirac distribution function

f0 =
1

1 + e(ε−ζ)/Θ . (3.90)

Because of the temperature gradient, both T and ζ depend on the coordinate
x, but the energy ε does not. We can write

∂f0
∂x

=
∂f0
∂α

∂α

∂x
, (3.91)

where α = ε−ζ
Θ . This can be rewritten

∂f0
∂x

= Θ
∂f0
∂ε

∂

∂x

(
ε− ζ

Θ

)
(3.92)

= −∂f0
∂ε

[
ε

Θ
∂Θ
∂x

+ Θ
∂

∂x

(
ζ

Θ

)]
.

Because ε = 1
2mv

2 we can write

∂f0
∂vx

=
∂f0
∂ε

∂ε

∂vx
= mvx

∂f0
∂ε

. (3.93)

We now substitute (3.90), (3.92), and (3.93) into (3.89) and use the resulting
expression for f (ε) in the equations for the electrical current density jx and
the thermal current density wx:

jx =
∫ ∞

0

dε (−evx)g(ε)f (ε), (3.94)

wx =
∫ ∞

0

dε (εvx)g(ε)f (ε). (3.95)

For the electrical current density we obtain

jx = e

∫ ∞

0

dε vxg(ε)τvx

(
−∂f0
∂ε

)[
eE +

ε

Θ
∂Θ
∂x

+ Θ
∂

∂x

(
ζ

Θ

)]
. (3.96)

Factoring all quantities that are independent of ε out of the integral gives

jx =
[
e2E + eΘ

∂

∂x

(
ζ

Θ

)]∫ ∞

0

dε v2
xg(ε)τ

(
−∂f0
∂ε

)
(3.97)

+
e

Θ
∂Θ
∂x

∫ ∞

0

dε v2
xεg(ε)τ

(
−∂f0
∂ε

)
.
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Now substitute v2
x = 2

3
ε
m and g(ε) = 3

2
n0

ζ
3/2
0

ε1/2 into (3.97) to have

jx =
[
e2E + eΘ

∂

∂x

(
ζ

Θ

)]
K1 +

e

Θ
∂Θ
∂x

K2, (3.98)

where we have introduced the symbol Kn defined by

Kn =
n0

mζ
3/2
0

∫ ∞

0

dε
(
−∂f0
∂ε

)
εn+1/2τ. (3.99)

In the calculation of wx, a factor of ε replaces (−e); this gives

wx = −
[
eE + Θ

∂

∂x

(
ζ

Θ

)]
K2 − 1

Θ
∂Θ
∂x

K3. (3.100)

The function Kn can be evaluated using the integration formula (3.69). We
obtain

Kn =
n0

mζ
3/2
0

[
ζn+1/2τ(ζ) +

π2

6
Θ2 d2

dε2
(
εn+1/2τ(ε)

)
|ε=ζ

]
. (3.101)

At T = 0 we have
Kn =

n0

m
ζn−1
0 τ(ζ0). (3.102)

3.13.1 Electrical Conductivity

If we set ∂T
∂x = 0, then jx is given by jx = e2EK1, and at T = 0 we have

jx =
n0e

2τ(ζ0)
m

E = σE. (3.103)

This is exactly the Drude result for the conductivity σ with τ(ε) evaluated on
the Fermi surface so that τ = τ(ζ0).

3.13.2 Thermal Conductivity

The thermal conductivity is defined as the ratio of the thermal current wx
to

(−∂T
∂x

)
under conditions of zero electrical current. Therefore, we must set

jx = 0 in (3.98) and solve for E. This gives

jx =
[
e2E + eΘ

∂

∂x

(
ζ

Θ

)]
K1 +

e

Θ
∂Θ
∂x

K2 = 0

or

−
[
eE + Θ

∂

∂x

(
ζ

Θ

)]
K1 =

1
Θ
∂Θ
∂x

K2. (3.104)
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Substitute this into (3.100) to obtain wx; the result is

wx =
1
Θ
∂Θ
∂x

K2

K1
K2 − 1

Θ
∂Θ
∂x

K3

=
K3K1 −K2

2

K1Θ

(
−∂Θ
∂x

)
. (3.105)

Thus the thermal conductivity κT = kBwx
(−∂Θ

∂x

)−1
is

κT = kB
K3K1 −K2

2

K1Θ
. (3.106)

If we evaluate Kn as a function of Θ using (3.101) and the result

(
ζ

ζ0

)l
� 1 − π2

12

(
Θ
ζ0

)2

l, (3.107)

we find (for τ independent of energy)

K1 � n0τ

m
,

K2 � n0τζ0
m

[

1 +
5
12
π2

(
Θ
ζ0

)2
]

, (3.108)

K3 � n0τζ
2
0

m

[

1 +
7
6
π2

(
Θ
ζ0

)2
]

.

Now, substitute these results into (3.106) to obtain

κT = kB
π2

3
n0τ

m
Θ.

Thus the Sommerfeld expression for κT can be written

κT =
π2

3
k2
B

n0τ

m
T. (3.109)

The Lorenz ratio for the Sommerfeld model LS is given by

LS =
κT
σT

=
π2

3

(
kB

e

)2

� 2.71 × 10−13esu. (3.110)

Recall that for the Drude model

LD =
3
2

(
kB

e

)2

� 1.24 × 10−13 esu, (3.111)

and the average experimental result is L ≈ 2.72 × 10−13 esu.



3.15 Magnetoconductivity 99

3.14 Critique of Sommerfeld Model

The main achievements of the Sommerfeld model were as follows:

1. It explained the specific heat dilemma by showing that Cv for the electrons
was very small.

2. It showed that even though there was one free electron per atom, the Pauli
principle made only those in an energy range kBT about ζ0 effectively free.

3. It not only explained the Wiedemann–Franz law but it gave a very accurate
value for the Lorenz ratio.

4. It correctly predicted the Pauli spin paramagnetism of metals.
5. It predicted Fermi energies that agreed with observed X-ray band widths.

The main shortcomings of the Sommerfeld model were:

1. It said nothing about the relaxation time τ(ε), τ appeared only as a
phenomenological parameter. To agree with observed conductivities, the
mean free path l = vFτ had to be of the order of a 100 atomic spac-
ings (∼5× 10−6 cm), and had to vary as T−1 at room temperature. These
requirements were difficult to understand in 1928.

2. The model ignored the interaction of the free electrons with the fixed ions
and with one another. These interactions were surely large. How could
one achieve such excellent agreement with experiment when they were
ignored. Furthermore, attempts to include these interaction ran into great
difficulties.

3.15 Magnetoconductivity

In the presence of a large dc magnetic field B, the conductivity of a metal
displays some new effects. These can be understood very simply using the
Drude model (the Sommerfeld model gives exactly the same result but involves
much more mathematics).

In the presence of an electric field E and a dc magnetic field B, the Drude
model would predict a drift velocity vD which was a solution of the equation

m

(
dvD

dt
+

vD

τ

)
= −eE− e

c
vD × B. (3.112)

Let us choose the z-axis along B and assume that E is spatially uniform but
varies in time as eiωt. Then (3.112) can be rewritten (we drop the subscript
D of vD in the rest of this section) as follows:

(1 + iωτ)vx = −eτ
m
Ex − eτ

mc
Bvy ,

(1 + iωτ)vy = −eτ
m
Ey +

eτ

mc
Bvx, (3.113)

(1 + iωτ)vz = −eτ
m
Ez .
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Define the cyclotron frequency ωc = eB
mc and solve for v. The result is

vx = −
(eτ
m

) [(1 + iωτ)Ex − ωcτEy ]
(1 + iωτ)2 + (ωcτ)2

,

vy = −
(eτ
m

) [ωcτEx + (1 + iωτ)Ey ]
(1 + iωτ)2 + (ωcτ)2

, (3.114)

vz = −
(eτ
m

) Ez
1 + iωτ

.

The current density is given by j = −en0v. This can be written j = σ · E,
where σ is called the magnetoconductivity tensor. Its components are σxz =
σzx = σyz = σzy = 0, and

σxx = σyy =
σ0(1 + iωτ)

(1 + iωτ)2 + (ωcτ)2
,

σxy = −σyx =
σ0(−ωcτ)

(1 + iωτ)2 + (ωcτ)2
, (3.115)

σzz =
σ0

1 + iωτ
.

Here σ0 = n0e
2τ

m is just the Drude’s dc conductivity.

3.16 Hall Effect and Magnetoresistance

If we apply an electric field E in the x-direction, the Lorentz force, − e
cv ×B

causes a drift velocity in the y-direction. If ω = 0 charge will accumulate on
the surfaces normal to the y-direction until a field Ey builds up that exactly
cancels the Lorentz force. (See Fig. 3.5.) The condition jy = 0 gives

jy = σxxEy − σxyEx = 0,

E

EBv

B

Fig. 3.5. Schematics of the Hall effect experiment. The initial drift of the negatively
charged electron is illustrated
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or
Ey =

σxy
σxx

Ex.

The Hall coefficient R is defined as the ratio of Ey to jxB:

R =
Ey
jxB

. (3.116)

But jx = σxxEx + σxyEy = (σ2
xx + σ2

xy)/σxx Ex. If we substitute it into the
expression for the Hall coefficient, we find

R =
Ey
jxB

=
(σxy/σxx) Ex[(

σ2
xx + σ2

xy

)
/σxx

]
ExB

=
σxy

σ2
xx + σ2

xy

1
B
.

Making use of (3.115) in the limit ω −→ 0 gives

R =
1

n0(−e)c . (3.117)

Because R depends on the carrier concentration, the Hall effect is often used
to measure n0.

Magnetoresistance

When B = 0, jx = σ0Ex. In the presence of the magnetic field B, we have

jx =
σ2
xx + σ2

xy

σxx
Ex. (3.118)

For the free electron model σ2
xx+σ2

xy

σxx
= σ0 (one can check this relation as

an exercise). Therefore even in the presence of the B-field jx = σ0Ex. The
magnetic field causes no change in the ratio Ex

jx
= ρ, the resistivity, and we

would say that
Δρ = ρ(B) − ρ(0) = 0,

or that the magnetoresistance vanishes. This does not occur in more general
cases than the simple free electron model as we shall see later.

3.17 Dielectric Function

The electrical current density j can be thought of as the time rate of change
of the polarization P. Assume D, P, and E vary as eiωt. Then j = Ṗ = iωP
and D = εE = E + 4πP where ε is the dielectric function. This gives us the
relation

ε(ω) = 1 − 4πi
ω
σ(ω), (3.119)
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where σ(ω) is the frequency dependent Drude conductivity. In the presence
of a dc magnetic field, the dielectric function and conductivity become tensor
quantities: σ(ω) and ε(ω), whose off-diagonal components result from the
Lorentz force.

The dielectric function ε(ω) or conductivity σ(ω) appear in Maxwell’s
equation for ∇× B:

∇× B =
1
c
Ė +

4π
c

j =
iω
c

[
1− 4πi

ω
σ(ω)

]
·E =

1
c
ε(ω) · Ė. (3.120)

In the Drude model
ε(ω) = 1 − 4πi

ω
σ(ω),

= 1 − 4πi
ω

n0e
2τ/m

1 + iωτ
.

Define the plasma frequency ωp by ω2
p = 4πn0e

2

m ; then we have

ε(ω) = 1 − ω2
p

ω(ω − i/τ)
. (3.121)

ε(ω) has real and imaginary parts, ε1 and ε2, respectively, as

ε1(ω) = 1 − ω2
p

ω2 + 1/τ2
, (3.122)

ε2(ω) = − ω2
p/ωτ

ω2 + 1/τ2
.

In general, we can ask how electromagnetic waves propagate in a medium
described by a dielectric tentor ε(ω). The wave equation can be obtained
from the two Maxwell equations:

∇× E = −1
c
Ḃ, (3.123)

∇× B =
1
c
ε · Ė.

Assume E and B vary as eiωt−iq·r. The two Maxwell equations can then
be combined, by eliminating B, to give

q(q ·E) − q2E +
ω2

c2
ε ·E = 0. (3.124)

This can be applied to a case in which a dc magnetic field B0 is present and
oriented in the z-direction. Then without loss of generality we can choose
q = (0, qy, qz) and write (3.124) as

⎛

⎜
⎝

ω2

c2 εxx − q2 ω2

c2 εxy 0

−ω2

c2 εxy
ω2

c2 εxx − q2z qyqz

0 qyqz
ω2

c2 εzz − q2y

⎞

⎟
⎠

⎛

⎜
⎝

Ex

Ey

Ez

⎞

⎟
⎠ = 0. (3.125)
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The description of the bulk modes are given by setting the determinant of the
matrix multiplying the column vector equal to zero.

For surface modes at a metal–dielectric interface, think of ω and qy (wave
vector along the surface) as given and determine the allowed values of qz in
the solid (with a given ε(ω)) and in the dielectric. One can get modes from
applying standard boundary conditions.
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Problems

3.1. A two-dimensional electron gas is contained within a square box of side L.

(a) Apply periodic boundary conditions and determine E(kx, ky) and
Ψk(x, y) for the free electron Hamiltonian H = 1

2m

(
p2
x + p2

y

)
.

(b) Determine the Fermi wave number kF in terms of the density n0 = N
L2 .

(c) Evaluate G(ε) and g(ε) for this system.
(d) Use n0 =

∫∞
0

dε g(ε)f0(ε) together with the Fermi function integration
formula to determine how the chemical potential ζ depends on T .

3.2. In the simple Drude model it is assumed that the probability that an
electron has a collision in a time interval dt is given by dt

τ .

(a) Show that an electron picked at random at a given instant had no
collision during the past t seconds with probability e−t/τ . Demonstrate
that it will have no collision during the next t seconds with the same
probability,

(b) Show that the probability that the time interval between two successive
collisions falls in the range t to t+ dt is

(
dt
τ

)
e−t/τ ,

(c) as a consequence of (a), the mean time (at any given instant) back to
the last collision (or up to the next collision) averaged over all electrons
is τ ,

(d) and, as a consequence of (b), the mean time between collisions is τ .

3.3. Think about the following argument, and use physical intuition (not
formal mathematics) to say why it its wrong.
Argument: Both (c) and (d) in Problem 2 cannot be simultaneously correct
for the following reason. If I catch a bus each morning to go to work, and the
buses arrive at random times except that the average time between buses is
15 min, then (c) would imply that, on the average, I have to wait 15 min.
However, if a friend got off each bus at my stop, and then got on the next bus
with me, then the average time waited by my friend boarding the bus with
me would be 15 min also. Clearly the friend boarding with me is waiting at
the bus stop when I arrive. How can it be that we wait the same amount of
time?

3.4. A metal is described by the conductivity tensor σxx=σyy=
σ0(1+iωτ)

(1+iωτ)2+(ωcτ)2
,

σxy=−σyx=
σ0(−ωcτ)

(1+iωτ)2+(ωcτ)2
, and σzz = σ0

1+iωτ in the presence of a dc magnetic
field B = Bẑ. Consider the propagation of an electromagnetic wave E± =
(Ex ± iEy) eiωt parallel to the z-axis. Use Maxwell’s equations to obtain the
wave equation, and show that c2k2 = ω2ε±(ω), where ε = 1 − 4πi

ω σ(ω).
Consider the cases ωcτ � 1 and ωc � ω and show that ω = c2k2ωc

ω2
p

for one
circular polarization.
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DIELECTRIC METAL

D

Fig. 3.6. Interface between a dielectric and a metal

3.5. Let us consider the interface between a dielectric of dielectric constant
εD and a metal of dielectric function ε(ω) = 1 − ω2

p
ω2 , where ω2

p = 4πne2

mω2 . It is
illustrated in Fig. 3.6.

If the normal to the surface is in the z direction and the wave vector
q = (0, qy, qz), consider the region of ω − qy space in which qz is imaginary
(i.e. q2z < 0) both in the dielectric and in the metal. Impose the appropriate
boundary conditions at z = 0 and at | z |−→ ∞, and determine the dispersion
relation (ω as a function of qy) for these surface plasma modes.

3.6. At a temperature T a semiconductor contains ne electrons and nh holes
per unit volume in parabolic energy bands (i.e. E ∝ k2). The mass, charge,
and collision time of the electrons and holes are me, −e, τe, and mh, e, τh,
respectively.

(a) Use the equations of motion of charged particles in the presence of a
dc magnetic field B = Bẑ and an ac electric field Eeiωt to determine
σe(ω) and σh(ω), the electron and hole contributions to the frequency
dependent magnetoconductivity tensor.

(b) Consider ωce = eB
mec

and ωch = eB
mhc

to be large compared to τ−1
e and

τ−1
h , respectively. Determine the Hall coefficient for ω = 0.

(c) Under the conditions of part (b), determine the magnetoresistance.
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Summary

In this chapter, first we have briefly reviewed classical kinetic theories of an
electron gas both by Drude and by Lorentz as simple models of metals. Then
Sommerfeld’s elementary quantum mechanical theory of metals is discussed.

In the Drude model, the electrical conductivity σ = n0e
2τ

m is determined
by the Newton’s law of motion given by

m

(
dvD

dt
+

vD

τ

)
= −eE.

Here, n0 = N
V and −e are the electron concentration and the charge on an

electron. The thermal conductivity is given by

κ =
w

−∂T/∂x =
1
3
n0v

2
Tτ
dE

dT
=

1
3
v2
TτCv,

where Cv = n0
dE
dT is the electronic specific heat.

The electrical current density j and thermal current density w are given,
in terms of distribution function f , by

j(r, t) =
∫

(−e)v f (r,v, t) d3v and w(r, t) =
∫
εv f (r,v, t) d3v.

In the Sommerfeld model, states are labeled by {k, σ} = (kx, ky, kz) and σ,
where σ is a spin index. The Fermi energy εF (≡ ΘF) , Fermi velocity vF, and
Fermi temperature TF

(
= ΘF

kB

)
are defined, respectively, by

εF =
h̄2k2

F

2m
=

1
2
mv2

F = ΘF,

where the Fermi wave number kF is related to the carrier concentration n0 by
k3
F = 3π2n0. The density of states of an electron gas is

g(ε) =
1

2π2

(
2m
h̄2

)3/2

ε1/2.

For electrons moving in a periodic potential, g(ε) does not have such a simple
form. At a finite temperature, the chemical potential ζ is determined from

N = V

∫ ∞

0

g(ε)f0(ε)dε.

The internal energy U is given by

U

V
= u =

∫ ∞

0

dε εg(ε)f0(ε).
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These integrals are of the form I =
∫∞
0

dε f0(ε)
dF (ε)

dε . At low temperatures,
we have, to order Θ2,

I = F (ζ) +
π2

6
Θ2F ′′(ζ).

The electronic heat capacity Cv =
(
∂U
∂T

)
V

is given, at low temperature, by

Cv = γT, where γ = π2k2
B

2ζ0
N for free electrons.

The electrical and thermal current densities jx and wx are, respectively,
written as

jx =
[
e2E + eΘ

∂

∂x

(
ζ

Θ

)]
K1 +

e

Θ
∂Θ
∂x

K2

and

wx = −
[
eE + Θ

∂

∂x

(
ζ

Θ

)]
K2 − 1

Θ
∂Θ
∂x

K3.

where

Kn =
n0

mζ
3/2
0

∫ ∞

0

dε
(
−∂f0
∂ε

)
εn+1/2τ.

The function Kn is given by

Kn =
n0

mζ
3/2
0

[
ζn+1/2τ(ζ) +

π2

6
Θ2 d2

dε2
(
εn+1/2τ(ε)

)
|ε=ζ

]
.

The electrical and thermal conductivities are given, in terms of K1, by σ = eK1

and κT = kB
K3K1−K2

2
K1Θ

. The Sommerfeld expression for κT is κT = π2

3 k
2
B
n0τ
m T.

In the presence of an electric field E and a dc magnetic field B, the mag-
netoconductivity tensor has nonzero components, for the case B along the
z-axis, as follows: σxx = σyy = σ0(1+iωτ)

(1+iωτ)2+(ωcτ)2
, σxy = −σyx = σ0(−ωcτ)

(1+iωτ)2+(ωcτ)2
,

σzz = σ0
1+iωτ . Here ωc = eB

mc and σ0 = n0e
2τ

m is just the Drude’s dc conductivity.
The electrical current density j can be thought of as the time rate of change

of the polarization P, that is, j = Ṗ = iωP, where P = ε−1
4π E and D, P, and

E are assumed to vary as eiωt. Hence, we have the relation

ε(ω) = 1 − 4πi
ω
σ(ω).

ε(ω) has real and imaginary parts, ε1 and ε2, respectively, and in the Drude

model, we have ε1(ω) = 1− ω2
p

ω2+1/τ2 and ε2(ω) = − ω2
p/ωτ

ω2+1/τ2 . The two Maxwell

equations ∇×E = − 1
c Ḃ and ∇×B = 1

c ε · Ė can be combined to obtain the
wave equation

q(q ·E) − q2E +
ω2

c2
ε · E = 0.
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Elements of Band Theory

4.1 Energy Band Formation

So far, we have completely neglected the effects of the ion cores on the motion
of the valence electrons. We consider “valence electrons” to be those outside
of a closed shell configuration, so that

1. Na has a single 3s valence electron outside a [Ne] core.
2. Mg has two 3s electrons outside a [Ne] core.
3. Ga has ten 3d electrons, two 4s electrons, and one 3p electrons outside an

[Ar] core.

The s and p electrons are usually considered as the “valence” electrons, since
they are responsible for “bonding”. Sometimes the mixing of d-electron atomic
states with “valence” electron states is important.

To get some idea about the potential due to the ion cores let’s consider
the simple case of an isolated Na+ ion. This ion has charge +e and attracts
an electron via the Coulomb potential. (See Fig. 4.1.)

V (r) = −e
2

r
if r > ion radius. (4.1)

For a pair of Na atoms separated by a large distance, each “conduction elec-
tron” (3s-electron in Na) has a well-defined atomic energy level. As the two
atoms are brought closer together, the atomic potentials V (r) begin to over-
lap. Then, each electron can feel the potential of both ions. This gives rise a
splitting of the degeneracy of atomic levels.

For a large number of atoms, the same effect occur. Think of a crystal
structure with a nearest neighbor separation of 1 cm. The energy levels of
the system will be atomic in character. However, as we decrease the nearest
neighbor separation the atomic energy levels will begin to broaden into bands.
(See Fig. 4.2.) The equilibrium separation of the crystal is the position at
which the total energy of the system is a minimum. In all crystalline solids the
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Fig. 4.1. Coulomb potential

210

210

Fig. 4.2. Schematic illustration of energy band formation

electronic energies form bands of allowed energy values separated by energy
gaps (bands of forbidden energy values). These energy bands determine the
electrical properties of the solid.

4.2 Translation Operator

Because the crystalline potential seen by a single electron in a solid is a peri-
odic function of position, with the period of the lattice, it is useful to introduce
a translation operator T defined by

Tf(x) = f(x+ a), (4.2)

where f(x) is an arbitrary function of position and a is the period of the
lattice. It is clear that T commutes with the single particle Hamiltonian H

H = − h̄2

2m
∂2

∂x2
+ V (x), (4.3)

because if we let x′ = x+a, we can see that ∂/∂x′ = ∂/∂x and V (x′) = V (x).
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One of the most useful theorems of linear algebra for the study of quantum
systems states that if two operators commute, one can find common eigen-
functions for them (i.e, they can both be diagonal in the same representation).
Let Ψ be an eigenfunction of H and of T

HΨ = EΨ and TΨ = λΨ. (4.4)

Here, E and λ are eigenvalues. Clearly applying T to Ψ N times gives

TNΨ(x) = λNΨ(x) = Ψ(x+Na). (4.5)

If we apply periodic boundary conditions with period N , then Ψ(x +Na) =
Ψ(x). This implies that

TNΨ(x) = Ψ(x), (4.6)

or that λN = 1. Thus, λ itself must be the Nth root of unity

λ = ei 2π
N n, (4.7)

where n = 0, ± 1, . . .. We can write λ as

λ = eika, (4.8)

where k = 2π
Na × n. Then, it is apparent that two values of k which differ by

2π/a times an integer give identical values of λ. As usual, we choose the N
independent values of k to lie in the range −π/a < k ≤ π/a, the first Brillouin
zone of a one dimensional crystal.

For more than one dimension, TR translates through a lattice vector R

TRΨ(r) = eik·RΨ(r), (4.9)

where k = 2π
N (n1b1+n2b2+n3b3). Here n1, n2, n3 are integers and b1, b2, b3

are primitive translations of the reciprocal lattice. We have assumed a period
N for periodic boundary condition with L1 = Na1, L2 = Na2, L3 = Na3,
and values of n1, n2, n3 are chosen to restrict k to the first Brillouin zone.

4.3 Bloch’s Theorem

We have just demonstrated that for a one-dimensional crystal with N -atoms
and periodic boundary conditions

TΨ(x) ≡ Ψ(x+ a) = eikaΨ(x), (4.10)

where the N independent values of k are restricted to the first Brillouin zone.
We can define a function

uk(x) = e−ikxΨ(x). (4.11)
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It is apparent that

Tuk(x) = T {e−ikxΨ(x)} = e−ik(x+a)Ψ(x+ a) = e−ikxΨ(x) = uk(x).

Therefore, we can write

Ψ(x) = eikxuk(x), (4.12)

where uk(x) is a periodic function i.e. uk(x + a) = uk(x). This is known to
physicists as Bloch’s theorem, although it had been proven sometime earlier
than Bloch1 and is known to mathematicians as Floquet’s theorem.

4.4 Calculation of Energy Bands

There are two very different starting points from which one can approach
energy bands in solids. The first approach is to start with atomic orbitals and
to form linear combinations which satisfy Bloch’s theorem. The second is to
start with a Sommerfeld free electron gas picture (for the electrons outside
a closed shell core) and to see how the periodic potential of ions changes
the εk = k2h̄2/2m free electron dispersion. The first approach works well for
systems of rather tightly bound electrons, while the second works well for
weakly bound electrons. We will spend a good deal of time on the “nearly free
electron” model and how group theory helps to make the calculations easier.
Before doing that, we begin with the first approach called the “tight-binding
method” or the LCAO (linear combination of atomic orbitals).

4.4.1 Tight-Binding Method

Suppose that a free atom has a potential Va(r), so that a “conduction
electron,” like the 3s electron in sodium, satisfies the Schrödinger equation

(
− h̄2

2m
∇2 + Va(r) − Ea

)
φ(r) = 0. (4.13)

Here, Ea is the atomic energy level of this conduction electron. When atoms
form a crystal, the potentials of the individual atoms overlap, as indicated
schematically in Fig. 4.3.

solid

Fig. 4.3. Tight-Binding Potential

1 Felix Bloch, Z. Physik 52, 555 (1928).
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In the tight-binding approximation, one assumes that the electron in the
unit cell about Rj is only slightly influenced by atoms other than the one
located at Rj . Its wave function in that cell will be close to φ(r − Rj), the
atomic wave function, and its energy close to Ea. One can make a linear
combination of atomic orbitals φ(r−Rj) as a trial function for the electronic
wave function in the solid.

To satisfy Bloch’s theorem, we can write

Ψk(r) =
1√
N

∑

j

eik·Rjφ(r −Rj). (4.14)

Clearly, the translation operator operating on Ψk(r) gives

TRnΨk(r) = Ψk(r +Rn)

= eik·Rn
1√
N

∑

j

eik·(Rj−Rn)φ(r −Rj +Rn) = eik·RnΨk(r).

The energy of a state Ψk(r) is given by

Ek =
〈Ψk |H |Ψk〉
〈Ψk|Ψk〉 , (4.15)

where H is the Hamiltonian for an electron in the crystal, and

〈Ψk|Ψk〉 =
1
N

∑

j,m

eik·(Rj−Rm)

∫
d3rφ∗(r −Rm)φ(r −Rj). (4.16)

If we neglect overlap between φ(r − Rj) and φ(r − Rm), the d3r integration
gives δj,m and the sum over j simply gives a factor N , the number of atoms
in the crystal.

The Hamiltonian for an electron in the solid contains the potential V (r).
Let’s write

V (r) = Ṽ (r −Rj) + Va(r −Rj). (4.17)

In other words, Ṽ (r−Rj) is the full potential of the solid minus the potential
of an atom located at Rj . It’s clear from Fig. 4.3 that Va is larger than V (r)
in the cell containing Rj so that Ṽ (r −Rj) is negative. Since

[
− h̄2

2m
∇2 + Va(r −Rj) − Ea

]
φ(r −Rj) = 0, (4.18)

Ek =
1
N

∑

j

∑

m

eik·(Rj−Rm)

∫
d3rφ∗(r −Rm)

[
Ea + Ṽ (r −Rj)

]
φ(r −Rj).

(4.19)
In the first term, Ea is the constant value of the atomic energy level and it can
be taken out of the integration. All that remains in the integral is 〈Ψk|Ψk〉
which is 1, so the first term is just Ea. We can define
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α = −
∫

d3rφ∗(r −Rj)Ṽ (r −Rj)φ(r −Rj), (4.20)

and
γ = −

∫
d3rφ∗(r −Rm)Ṽ (r −Rj)φ(r −Rj). (4.21)

In the definition of γ we assume that the only terms that are not negligible
are terms in which Rm is a nearest neighbor of Rj . Then, we have

Ek = Ea − α− γ
∑

m

′
eik·(Rj−Rm) (4.22)

where the sum is over all nearest neighbors of Rj . We chose minus signs in the
definition of α and γ to make α and γ positive (since Ṽ (r −Rj) is negative).

Now look at what happens for a simple cubic lattice. There are six nearest
neighbors of Rj located at Rj ± ax̂, Rj ± aŷ, and Rj ± aẑ. Substituting into
(4.22) gives

Ek = Ea − α− 2γ (cos kxa+ cos kya+ cos kza) . (4.23)

Because γ is positive
EMin
k = Ea − α− 6γ, (4.24)

and
EMax
k = Ea − α+ 6γ. (4.25)

The result is sketched in Fig. 4.4.
For k � π/a

Ek � Ea − α− 6γ + γa2k2; k2 = k2
x + k2

y + k2
z

= EMin
k +

h̄2k2

2m∗ .

The effective massm∗ = h̄2

2γa2 . As γ decreases, the band width ΔE gets smaller
and the effective mass near E = EMin

k increases.

[1,1,1]

Fig. 4.4. Tight-binding dispersion for simple cubic lattice
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4.4.2 Tight Binding in Second Quantization Representation

Suppose a system of free electrons is described by the Hamiltonian

H0 =
∑

k

εkc
†
kck, (4.26)

where εk = h̄2k2

2m is the kinetic energy. In the presence of a periodic potential
V (r) =

∑
K VKeiK·r, we can write the potential energy of the electrons as

H ′ =
∑

k,K

VKc
†
k+Kck. (4.27)

Now, introduce the operators cn and c†n which annihilate or create electrons
at site R0

n.

cn =
1√
N

∑

k

ckeik·R0
n . (4.28)

The inverse transformation is

ck =
1√
N

∑

n

cne−ik·R0
n . (4.29)

Substitute the latter equation into H0 to obtain

H0 =
∑

k

εk
∑

nm

1
N
c†ncmeik·(R0

n−R0
m). (4.30)

Define
Tnm =

1
N

∑

k

εkeik·(R0
n−R0

m). (4.31)

Then
H0 =

∑

nm

Tnmc
†
ncm. (4.32)

Now, look at H ′

H ′ =
∑

k,K

VK
1
N

∑

nm

c†ne
i(k+K)·R0

ncme−ik·R0
m

=
∑

Knm

[
∑

k

1
N

eik·(R0
n−R0

m)

]

VKeiK·R0
nc†ncm.

Since 1
N

∑
k eik·(R0

n−R0
m) = δnm, we have

H ′ =
∑

K,n

VKeiK·R0
nc†ncn. (4.33)
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But we note that
∑
K VKeiK·R0

n = V (R0
n), and hence H ′ becomes

H ′ =
∑

n

V (R0
n)c

†
ncn. (4.34)

Adding H0 and H ′ gives

H =
∑

n

(
Tnn + V (R0

n)
)
c†ncn +

∑

n�=m
Tnmc

†
ncm

=
∑

n

εnc
†
ncn +

∑

n�=m
Tnmc

†
ncm, (4.35)

where εn = Tnn + V (R0
n) represents an energy on site n and Tnm denotes the

amplitude of hopping from site m to site n. Starting with atomic levels εn and
allowing hopping to neighboring sites results in energy bands, and the band
width depends on the hopping amplitude Tnm. Later we will see that starting
with free electrons and adding a periodic potential V (r) =

∑
K VKeiK·r also

results in energy bands. The band gaps between bands depend on the Fourier
components VK of the periodic potential.

4.5 Periodic Potential

Because the potential experienced by an electron is periodic with the period
of the lattice, it can be expanded in a Fourier series

V (r) =
∑

K

VKeiK·r, (4.36)

where the sum is over all vectors K of the reciprocal lattice, and

VK =
1
Ω

∫
d3r V (r) e−iK·r.

For any reciprocal lattice vector K

K ·R = 2π × integer,

if R is any translation vector of the lattice. Thus

V (r + R) =
∑

K

VKeiK·(r+R),

=
∑

K

VKeiK·r = V (r).

The periodic part of the Bloch function can also be expanded in Fourier series.
We can write
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un(k, r) =
∑

K

CK(n,k)eiK·r, (4.37)

For the moment, let us omit the band index n and wave number k and simply
write

Ψk(r) = eik·ru(r) =
∑

K

CKei(k+K)·r. (4.38)

Use the Fourier expansion of V (r) and u(r) in the Schrödinger equation; this
gives

∑

K′

[ h̄2

2m
(k + K′)2 +

∑

K′′
VK′′eiK

′′·r]CK′ei(k+K′)·r

= E
∑

K′
CK′ei(k+K′)·r. (4.39)

We multiply by e−i(k+K)·r and integrate recalling that
∫

d3reiK·r = Ωδ(K)
where Ω is the volume. This gives

[
E − V0 − h̄2

2m
(k + K)2

]
CK =

∑

H�=0

VHCK−H (4.40)

Here, we have set K′′ = H and have separated the H = 0 term from the other
terms in the potential. This is an infinite set of linear equations for the coeffi-
cients CK. The non-trivial solutions are obtained by setting the determinant
of the matrix multiplying the column vector

⎛

⎜
⎜
⎝

...
CK

...

⎞

⎟
⎟
⎠

equal to zero. The roots give the energy levels (an infinite number – one for
each value of K) in the periodic potential of a crystal. We can express the
infinite set of linear equations in the following matrix notation:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

εK1 + 〈K1 |V |K1〉
−E 〈K1 |V |K2〉 · · · 〈K1 |V |Kn〉 · · ·

〈K2 |V |K1〉 εK2 + 〈K2 |V |K2〉
−E · · · 〈K2 |V |Kn〉 · · ·

.

.

.
.
.
.

.

.

.

〈Kn |V |K1〉 〈Kn |V |K2〉 · · · εKn + 〈Kn |V |Kn〉
−E · · ·

.

.

.
.
.
.

.

.

.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

CK1

CK2

.

.

.
CKn

.

.

.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

= 0 (4.41)

Here, εK = h̄2

2m (k+K)2 and 〈K |V |K′〉 = VK−K′ , where |K〉 = 1√
Ω

eiK·r. The
object of energy band theory is to obtain a good approximation to V (r) and
to solve this infinite set of equations in an approximate way.
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4.6 Free Electron Model

If VK = 0 for all K �= 0, then in the notation used earlier

(E − V0 − εk+K)CK = 0. (4.42)

This is exactly the Sommerfeld model of free electrons in a constant potential
V0. We can write

E
(0)
K = V0 + εk+K

C
(0)
K =

{
1 For the band K
0 For all other bands (4.43)

Let us discuss this in detail by considering a simple one-dimensional case, for
example, as shown in Fig. 4.5. The allowed values of the Bloch wave vector k
are restricted to the first Brillouin zone. Values of k outside the first Brillouin
zone are obtained by adding a reciprocal lattice vector K to k. The labels Cn
refer to the non-zero coefficients for that particular band; e.g. for C+2 we have

E
(0)
2 = V0 + h̄2

2m

[
k + 2

(
2π
a

)]2

Ψ(0)
nk(r) = eik·ru(0)

nk(r).

}

(4.44)

But unk(r) =
∑

K CK(k)eiK·r; with C
(0)
K (k) = 1 for | K |= Kn =

(
2π
a

) · n,
we have Ψ(0)

nk(r) = eik·r · eiKn·r. All of this is simply a restatement of the free
electron model in the “reduced” zone scheme (i.e. all Bloch k−vectors are in
the first Brillouin zone, but energies of higher bands are obtained by adding
reciprocal lattice vectors K to k; the periodic part of the Bloch function is
uK = eiK·r).

Fig. 4.5. One dimensional free electron band
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4.7 Nearly Free Electron Model

If we take VK for | K |�= 0 to be very small but non-zero, we can use “pertur-
bation theory” to solve the infinite set of coupled equations approximately.

For the lowest band (the one with C(0)
0 = 1) we know that in zeroth order

(i.e. with VK = 0 for | K |�= 0)

E(0) = V0 + h̄2k2

2m ,

C
(0)
0 = 1 and C

(0)
K = 0 for | K |�= 0.

Let us look at other values of CK (i.e. not | K |= 0 value) for VK �= 0 (but
very small) when | K |�= 0. The first order correction to C(0)

K is given by

[E − V0 − h̄2

2m
(k + K)2]C(1)

K =
∑

|H|�=0

CK−HV|H|. (4.45)

On the right-hand side all the V|H| appearing are small; therefore to first order
we can use for CK−H the value C(0)

K−H which equals unity for K−H = 0 and

zero otherwise. Solving for C(1)
K gives

C
(1)
K =

VK

h̄2

2m [k2 − (k + K)2]
(4.46)

Here, we have used E � h̄2k2

2m + V0 for the zeroth order approximation to the
energy of the lowest band (the one we are investigating). We substitute this
result back into the equation for C0, which is approximately equal to unity.

(
E − V0 − h̄2k2

2m

)
C0 �

∑

|H|�=0

C0−HVH =
V−HVH

h̄2

2m [k2 − (k − H)2]
(4.47)

We have that C0 = 1 + C
(1)
0 , but C(1)

0 can be neglected since the right-hand
side is already small. Setting C0 � 1 and solving for E gives

E = V000 + εk −
∑

|K|�=0

|VK|2
εk+K − εk

(4.48)

In this equation, we have used V−H = V ∗
H and let −H = K. As long as

| εk+K − εk |�| VK |, this perturbation expansion is rather good. It clearly
breaks down when

εk+K = εk

or
|k + K| = |k| .

This is exactly the condition for a Bragg reflection; when k′ − k = K we get
Bragg reflection.
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4.7.1 Degenerate Perturbation Theory

Suppose that for some particular reciprocal lattice vector K

|k + K| � |k| (4.49)

Our simple perturbation theory result gave

C
(1)
K =

VK

εk − εk+K
.

It is clear that this result is inconsistent with our starting assumption that
CK was very small except for K = 0. To remedy this shortcoming we assume
that both C0 and CK (for the particular value satisfying |k| = |k + K|) are
important. This assumption gives us a pair of equations

(E − V0 − εk)C0 = CKV−K

(E − V0 − εk+K)CK = C0VK.
(4.50)

The solutions are obtained by setting the determinant of the matrix mul-

tiplying the column vector
(
C0

CK

)
equal to zero. The two roots are given

by

E±(k) = V0 +
1
2
[εk + εk+K] ±

{

|VK|2 +
(
εk − εk+K

2

)2
}1/2

(4.51)

For |k| = |k + K|, εk − εk+K = 0 and the solutions become

E±(k) = V0 + εk ± |VK| (4.52)

This behavior is shown in Fig. 4.6. If we introduce q = K
2 + k, where q � K

2 ,
we can expand the roots for small q and obtain

K

K

Fig. 4.6. Bandgap formation at the zone boundary k = K
2
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E± = V0 + εK
2

+ εq ± |VK|
{

1 +
1
2
εK

|VK|2 εq
}

.

If we define
E0 = V0 + εK

2
− |VK| ,

and choose zero of energy at E0, the two roots can be written (for small q)

E− = h̄2q2

2m∗−

E+ = EG + h̄2q2

2m∗+
.

(4.53)

Here, the energy gap EG is equal to 2 |VK| and the effective masses m∗
± are

given by

m∗
± =

m

1 ∓ εK
2|VK|

. (4.54)

It is common for εK to be larger than 2 | VK | so that m∗
− is negative. Then

the two roots are commonly expressed as

Ev(k) = − h̄2k2

2mv
,

Ec(k) = EG + h̄2k2

2mc
,

where mv = −m∗
−. These results are frequently used to describe the valence

band and conduction band in semiconductors. The results are only valid near
q = 0 since we expanded the original equations for small deviations q from
the extrema. This result is called the effective mass approximation.

4.8 Metals–Semimetals–Semiconductors–Insulators

The very simple Bloch picture of energy bands and energy gaps allows us to
understand in a qualitative way why some crystals are metallic, some insulat-
ing, and some in between. For a one-dimensional crystal there will be a gap
separating every band (assuming that VK is non-zero for all values of K). We
know that the gaps occur when |k| = |k + K|. This defines the first Brillouin
zone’s boundaries.

In more than one dimension, the highest energy levels in a lower band can
exceed the energy at the bottom of a higher band. This is referred to as band
overlap. It is illustrated for a two-dimensional square lattice in Fig. 4.7. The
square represents the first Brillouin zone bounded by |kx| = π/a and |ky| =
π/a. The point Γ indicates the zone center of k = 0. The points X =

(
π
a , 0

)
and

M =
(
π
a ,

π
a

)
are particular k-values lying on the zone boundary. The Δ and Σ

are arbitrary points on the lines connecting Γ → X and Γ → M, respectively.
If we plot the energy along these lines, we obtain the result illustrated in
Fig. 4.8. It is clear that if the gaps are not too large, the maximum energy in
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Fig. 4.7. Constant energy surface in two-dimensional square lattice

Fig. 4.8. Energy dispersion along the line M − Γ − X

the lower band ELB(M) is higher than the minimum energy in the upper band
EUB(X). If we fill all the lowest energy states with electrons, being mindful of
the exclusion principle, then it is clear that there will be some empty states
in the lower band as we begin to fill the low-energy states of the upper band.
The band overlap can be large (when the energy gaps are very small) or
non-existent (when the energy gaps are very large).

The existence of

1. Band gaps in the energy spectrum at Brillouin zone boundaries
2. Band overlap in more than one dimension when energy gaps are small and
3. The Pauli exclusion principle allows us to classify solids as follows:
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• Metal
1. Monovalent metal. A material which contains one electron (outside a

closed core) on each atom and one atom per unit cell. Na, K, Rb, Cs
are good examples of monovalent metals. Because the total number of
allowed k values in the first Brillouin zone is equal to N , the number
of unit cells in the crystal, and because each k-state can accommodate
one spin up and one spin down electron, each band can accommodate
2N electrons. A monovalent metal has N electrons, so the conduction
band will be half filled. The Fermi energy is far (in comparison to
kBT ) from the band edges and band gaps. Therefore, the crystal acts
very much like a Sommerfeld free electron model. The same picture
holds for any odd valency solid containing 1, 3, 5, . . . electrons per
unit cell.

2. Even-valency metals When the band gaps are very small, there can be
a very large overlap between neighboring bands. The resultant solid
will have a large number nh of empty states in the lower band and
an equal number ne (ne = nh) of electrons in the higher band. If ne

and nh are of the order of N , the number of unit cells, the material is
metallic.

• Insulator. For a material with an even number of electrons per unit cell
and a large gap (≥ 4eV) between the highest filled state and the lowest
empty state, an insulating crystal results. The application of a modest
electric field cannot alter the electron distribution function because to do
so would require a large energy EG.

• Semiconductor. A material which is insulating at low temperature, but
whose band gap EG is small (0.1 eV ≤ EG ≤ 2 eV) is called a semiconduc-
tor. At finite temperature a few electrons will be excited from the filled
valence band to the empty conduction band. These electrons and holes
(empty states in the valence band) can carry current. Because the con-
centration of electrons in the conduction band varies like e−EG/2kBT , the
conductivity increases with increasing temperature.

• Semimetal. These materials are even-valency materials with small band
overlap. The number of electrons ne equals the number of holes nh but
both are small compared to N , the number of unit cells in the crystal.
Typically ne and nh might be 10−3 or 10−4 times the number of unit
cells.

Examples

Monovalent metals Li, Na, K, Rb, Cs, Cu, Ag, Au
Divalent metals Zn, Cd, Ca, Mg, Ba
Polyvalent metals Al, Ga, In, Tl
Semimetals As, Sb, Bi, Sn, graphite
Insulators Al2O3, diamond
Semiconductors Ge, Si, InSb, GaAs, AlSb, InAs, InP
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Problems

4.1. In an infinite linear chain of A and B atoms (. . .ABABAB . . .) with
equal spacings R between each atom, the energies of electrons in the system
are given by Ek = ±(ε2 + 4β2 cos2 kR)1/2, where k is the wavevector of the
electron state. What is the band gap in the electronic band structure for this
system? How would you expect the electrical and optical properties of this
structure to depend on ε and β?

4.2. Consider a crystal of sodium with a volume 0.10 cm3, estimate the average
spacing between the energy levels in the 3s band given that the 3s electron
eneregies span a range of 3.20 eV. The electron concentration of a sodium
crystal is approximately 2.65 × 1028 m−3. (You can estimate this value by
yourself.)

4.3. A BCC lattice has eight nearest neighbors at r = a
2 (±x̂± ŷ± ẑ). Use the

s-band tight-binding formula, (4.22), to evaluate E(k).

4.4. A single graphite sheet (called graphene) has a honeycomb structure.
Let us assume that there is one pz orbital, which is oriented perpendicular to
the sheet, on each carbon atom and forms the active valence and conduction
bands of this two-dimensional crystal.

(a) Using the tight-binding method and only nearest-neighbor interactions,
calculate and sketch the p-electron band structure En(k) for graphene.
You may assume the overlap matrix is the unity matrix.

(b) Show that this is a zero-gap semiconductor or a zero-overlap semimetal.
Note that there is one p electron per carbon atom.

(c) Locate the position where the zero gap occurs in the momentum space.

4.5. A one-dimensional attractive potential is given by V (z) = −λδ(z).
(a) Show that the lowest energy state occurs at ε0 = − h̄2K2

2m , where
K = mλ

h̄2 .
(b) Determine the normalized wave function φ0(z).

4.6. Consider a superlattice with V (z) = −λ∑∞
l=−∞ δ(z − la).

(a) Obtain ε0(kz), the energy of the lowest band as a function of kz by using
the tight-binding approximation (i.e. overlap between only neighboring
sites is kept).

(b) Use the tight binding form of the wave function Ψ0(kz , z) and show
that it can be expressed as

Ψ0(kz , z) = eikzz u(kz, z),

where u(kz , z) is periodic with period a. Determine an expression for
u(kz, z).
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4.7. Let us consider electrons in a one-dimensional Bravais lattice described
by the wave function and potential written as Ψ(x) = αeikx + βei(k+G)x and
V (x) = 2V1 cos(Gx). The zone boundary is at k = G/2 = π/a, where a is the
lattice constant.

(a) Obtain the band structure by solving the Schrödinger equation, and
sketch the band for 0 ≤ k ≤ G for V1 = 0 and V1 = 0.2h̄2G2/2m.

(b) What kind of material do we have when V1 = 0?
(c) If V1 = 0.2h̄2G2/2m and each atom has three electrons, what kind of

material do we have? Explain the reason.
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Summary

In this chapter, we studied the electronic states from the consideration of the
periodicity of the crystal structure. In the presence of periodic potential the
electronic energies form bands of allowed energy values separated by bands of
forbidden energy values. Bloch functions were introduced as a consequence of
the translational symmetry of the lattice. Energy bands obtained by a simplest
tight-binding method and nearly free electron model are discussed.

The eigenfunction of the Hamiltonian H can be written as

Ψ(r) = eik·Ruk(r),

where uk(r) is a lattice periodic function i.e. uk(r + R) = uk(r). This is the
Bloch’s theorem. For an electron in a crystalline potential, we have

TRΨ(r) = eik·RΨ(r),

where TR is a lattice translation operator and k = 2π
N (n1b1 + n2b2 + n3b3).

Here n1, n2, n3 are integers and b1, b2, b3 are primitive translations of the
reciprocal lattice.

In the tight-binding approximation one assumes that the electron in the
unit cell about Rj is only slightly influenced by atoms other than the one
located at Rj . Its wave function in that cell will be close to φ(r − Rj), the
atomic wave function, and its energy close to Ea. One can make a linear
combination of atomic orbitals φ(r−Rj) as a trial function for the electronic
wave function in the solid:

Ψk(r) =
1√
N

∑

j

eik·Rjφ(r −Rj).

The energy of a state Ψk(r) is given by

Ek = Ea − α− γ
∑

m

′
eik·(Rj−Rm)

where the sum is over all nearest neighbors of Rj and

α = −
∫

d3rφ∗(r −Rj)Ṽ (r −Rj)φ(r −Rj)

and
γ = −

∫
d3rφ∗(r −Rm)Ṽ (r −Rj)φ(r −Rj).

In second quantization representation, the tight-binding Hamiltonian is given
by

H =
∑

n

εnc
†
ncn +

∑

n�=m
Tnmc

†
ncm
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where εn = Tnn + V (R0
n) represents an energy on site n and Tnm denotes the

amplitude of hopping from site m to site n.
The periodic part of the Bloch function is expanded in Fourier series as

un(k, r) =
∑

K

CK(n,k)eiK·r

and the energy eigenfunction is simply written as

Ψk(r) = eik·ru(r) =
∑

K

CKei(k+K)·r.

The Schrödinger equation of an electron in a lattice periodic potential is
written as an infinite set of linear equations for the coefficients CK:

[
E − V0 − h̄2

2m
(k + K)2

]
CK =

∑

H�=0

VHCK−H.

We can express the infinite set of linear equations in a matrix notation:
⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

εK1 + 〈K1 |V |K1〉
−E 〈K1 |V |K2〉 · · · 〈K1 |V |Kn〉 · · ·

〈K2 |V |K1〉 εK2 + 〈K2 |V |K2〉
−E · · · 〈K2 |V |Kn〉 · · ·

.

.

.
.
.
.

.

.

.

〈Kn |V |K1〉 〈Kn |V |K2〉 · · · εKn + 〈Kn |V |Kn〉
−E · · ·

.

.

.
.
.
.

.

.

.

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

CK1

CK2

.

.

.
CKn

.

.

.

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

Here, εK = h̄2

2m (k + K)2 and 〈K |V |K′〉 = VK−K′ , where |K〉 = 1√
Ω

eiK·r.
In the nearly free electron method, the energies near the zone boundary

become
E±(k) = V0 + εk ± |VK| .

The two roots can be written, for small q, as

E− =
h̄2q2

2m∗−
; E+ = EG +

h̄2q2

2m∗
+

,

where q = K
2 +k. Here, the energy gap EG is equal to 2 |VK| and the effective

masses m∗± are given by

m∗
± =

m

1 ∓ εK
2|VK|

.

The results are only valid near q = 0 since we expanded the original equations
for small deviations q from the extrema. This result is called the effective
mass approximation. Crystalline solids are classified as metals, semimetals,
semiconductors, and insulators according to the magnitudes and shapes of
the energy gap of the material.
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Use of Elementary Group Theory
in Calculating Band Structure

5.1 Band Representation of Empty Lattice States

For a three-dimensional crystal, the free electron energies and wave functions
can be expressed in the Bloch function form in the following way:

1. Write the plane-wave wave vector as a sum of a Bloch wave vector and a
reciprocal lattice vector. The Bloch wave vector k is restricted to the first
Brillouin zone; the reciprocal lattice vectors are given by

K� = 2π[l1b1 + l2b2 + l3b3] (5.1)

where (l1, l2, l3) = � are integers and bi are primitive translations of the
reciprocal lattice. Then

Ψ�(k, r) = eik·reiK�·r. (5.2)

The second factor has the periodicity of the lattice since eiKl·R = 1 for any
translation vector R.

2. The energy is given by

E�(k) =
h̄2

2m
(k + K�)

2
. (5.3)

3. Each band is labeled by � = (l1, l2, l3) and has Ψ�(k, r) given by (5.2) and
E�(k) given by (5.3).

5.2 Review of Elementary Group Theory

In our brief discussion of translational and rotational symmetries of a lattice,
we introduced a few elementary concepts of group theory. The object of this
chapter is to show how group theory can be used in evaluating the band
structure of a solid. We begin with a few definitions.
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Order of a group: If a group G contains g elements, it is said to be of order g.
Abelian group: A group in which all elements commute.
Cyclic group: A group of g elements, in which the elements can be written

A,A2, A3, . . . , Ag−1, Ag = E.

Class When an element R of a group is multiplied by A and A−1 to form
R′ = ARA−1, where A and A−1 are elements of the group, the set of
elements R′ obtained by using every A belonging to G is said to form a
class. Elements belong to the same class if they do essentially the same
thing when viewed from different coordinate system. For example, for
4 mm there are five classes:
(1) E, (2)R90◦ and R−90◦ , (3) R180◦ , (4) mx and my, (5) m+ and m−

Rearrangement theorem If G = {E,A,B, . . .} is the set of elements of a group,
AG = {AE,AA,AB, . . .} is simply a rearrangement of this set. Therefore∑

R∈G f(R) =
∑
R∈G f(AR).

Generators If all the elements of a group can be expressed in form AmDn,
where m and n are integers, then A and D are called generators of the
group. For example, the four operators of 2mm can all be expressed in
terms of R and mx such as E = R2 = m2

x, R = R, mx = mx, my = R1m1
x.

5.2.1 Some Examples of Simple Groups

Cyclic Group of Order

n Consider an n-sided regular polygon. Rotation by Rj = 2π
n × j with j =

0, 1, 2, . . . , n− 1 form a group of symmetry operations. The generator of this
group is R1 = rotation by 2π

n .

G = {R1, R
2
1, R

3
1, . . . , R

n
1 = E} (5.4)

Symmetry Operations of an Equilateral Triangle

G = {E,R120, R−120, JA, JB, JC} (5.5)

Here, R120 and JA are generators of G. In this case, we have three classes of
{E}, {R120, R−120}, and {JA, JB, JC}. (See Fig. 5.1.)

J

J

J

Fig. 5.1. Equilateral triangle
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m

Fig. 5.2. Rectangle

Fig. 5.3. Square

Symmetry Group of a Rectangle

G = {E,R,mx,my} (5.6)

Here, R and mx are generators of G, and each element belongs to a different
class since x and y directions differ. (See Fig. 5.2.)

Symmetry Group of a Square

G = {E;R90 (≡ R1) , R−90 (≡ R3) ;R180 (≡ R2) ;mx,my;m+,m−} (5.7)

Here, R90 and mx are generators, and classes are discussed earlier. (See
Fig. 5.3.)

Other Examples

Groups of matrices, e.g., (1) n× n matrices with determinant equal to unity
and (2) n× n orthogonal matrices.

5.2.2 Group Representation

A group of matrices that satisfy the same multiplication as the elements of the
group is said to form a representation of the group. To be concrete, suppose a
group G = {E,A,B, . . .} of symmetry operations operates on some function
Ψ(x, y, z). These operations give us the set of functions.

EΨ, AΨ, BΨ, . . . . (5.8)
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which form a vector space that is invariant under the operations of the group.
By this, we mean that the space of all functions of the form

Φ = c1EΨ + c2AΨ + c3BΨ + · · · (5.9)

where ci are complex numbers is invariant under the operations of the group.
We can choose a basis set Ψj with j = 1, 2, . . . , l ≤ g, where g is the order of
the group. Then for any φ belonging to this vector space we can write

φ =
l∑

j=1

cjΨj. (5.10)

For any element R ∈ G,

RΨj =
l∑

k=1

Djk(R)Ψk, (5.11)

where D(R) is a matrix. The set of matrices D(R) (for each R ∈ G) form a
representation of G.

5.2.3 Examples of Representations of the Group 4mm

Under the operations of the eight elements of the group 4 mm, x always
transforms into ±x or into ±y as shown in Table 5.1.

Representation Γ1 Consider the function Ψ0 = x2 + y2. It is obvious that
under every operation belonging to G, Ψ0 is unchanged. For example,

R180Ψ0 = R180(x2 + y2) = (−x)2 + (−y)2 = x2 + y2 = Ψ0. (5.12)

Thus, every operation of G can be represented by the unit matrix

D(E) = D(R180) = D(R90) = D(R−90) = · · · = D(m−) = 1. (5.13)

This set of matrices forms a representation of G that is called the “iden-
tity” representation and denoted by the symbol Γ1 (i.e. the representation
Γ1). Any function f(x, y) that transforms under the group operation R in
exactly the same manner as multiplication by the matrix D(R) represent-
ing R in the representation Γn is said to belong to the representation Γn.

Table 5.1. Operations of the group 4mm on functions of x and y

Operation E R180 R90 R−90 mx my m+ m−
x x −x y −y x −x y −y
y y −y −x x −y y x −x
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Representation Γ4 Consider the function Ψ4 = xy. It is obvious that E,R180,
m+, and m− operating on Ψ4 leave it unchanged but that R90, R−90, mx,
and my operating on Ψ4 change it to −Ψ4. Therefore the matrices

D(E) = D(R180) = D(m+) = D(m−) = 1
D(R90) = D(R−90) = D(mx) = D(my) = −1

form a representation of G. This representation is called the Γ4 represen-
tation.

By writing Ψ3 = x2 − y2, Ψ2 = xy(x2 − y2), and Ψ5 =
(
x
y

)
, it is easy

to construct Table 5.2, which illustrates the sets of matrices DΓj (R) for each
R ∈ G of the group 4mm. The sets of matrices {DΓj (R)} for each R ∈ G
form representations of the group 4mm. Functions belonging to the represen-
tation Γj transform under the operations of 4mm in exactly the same way as
multiplying them by the appropriate DΓj (R).

Table 5.2. Group representation table of the group 4mm

R
Ψ0 = x2 + y2

DΓ1(R)

Ψ2 = xy(x2 − y2)

DΓ2(R)

Ψ3 = x2 − y2

DΓ3(R)

Ψ4 = xy

DΓ4(R)

Ψ5 =

(
x
y

)

DΓ5(R)

E 1 1 1 1

(
1 0
0 1

)

R180 1 1 1 1

(−1 0
0 −1

)

R90 1 1 −1 −1

(
0 1
−1 0

)

R−90 1 1 −1 −1

(
0 −1
1 0

)

mx 1 −1 1 −1

(
1 0
0 −1

)

my 1 −1 1 −1

(−1 0
0 1

)

m+ 1 −1 −1 1

(
0 1
1 0

)

m− 1 −1 −1 1

(
0 −1
−1 0

)

⇑ ⇑ ⇑ ⇑ ⇑
Γ1 Γ2 Γ3 Γ4 Γ5
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5.2.4 Faithful Representation

You will notice that the set of matrices forming the representation Γ1 of 4mm
to which the function x2+y2 belonged were all identical, i.e. D(E) = D(R1) =
D(R2) = · · · = D(mx) = 1. Such a representation is a homomorphism between
the group of symmetry operators and the group of matrices, and it is said to be
an unfaithful representation. A representation in which each operation R ∈ G
is represented by a different matrix D(R) is called a faithful representation.
In this case, the group of symmetry operations and the group of matrices are
isomorphic.

5.2.5 Regular Representation

If we construct a multiplication table for a finite group G as shown in Table 5.3
for 2 mm and we form 4 × 4 matrices D(E), D(R), D(mx), D(my) by sub-
stituting 1 in the 4 × 4 array wherever the particular operation appears and
0 everywhere else, the set of matrices form a representation known as the
regular representation. Thus, we have

D(E) =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , D(R) =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ , etc. (5.14)

5.2.6 Reducible and Irreducible Representations

Suppose D(1)(R) and D(2)(R) are two representations of the same group, then
D(R) defined by

D(R) =
(
D(1)(R) 0

0 D(2)(R)

)
(5.15)

also forms a representation of G. D(R) is called the direct sum of the first two
representations D(1)(R) and D(2)(R). A representation which can be written
as the direct sum of two smaller representations is said to be reducible. Some-
times a representation is reducible, but it is not at all apparent. The reason
for this is that if the matrices D(R) form a representation of G, then

Table 5.3. Multiplication table of the group 2mm

E−1 = E R−1 = R m−1
x = mx m−1

y = my

E E R mx my

R R E my mx

mx mx my E R
my my mx R E
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D̃(R) = S−1D(R)S (5.16)

also form a representation (corresponding to a change in the basis vectors of
the vector space on which the matrices act). This similarity transformation
can scramble the block diagonal form so that the resulting D̃(R) do not look
reducible. A representation is reducible if and only if it is possible to perform
the same similarity transformation on all the matrices in the representation
and reduce them to block diagonal form. Otherwise, the representation is
irreducible. Clearly all one-dimensional representations (1 × 1 matrices) are
irreducible.

5.2.7 Important Theorems of Representation Theory
(without proof)

1. Theorem one The number of irreducible representations (IRs) is equal to
the number of conjugate classes.

2. Theorem two If li is the dimension of the ith IR and g is the number of
operations in the group G

∑

i

l2i = g. (5.17)

Examples

1. 2mm. There are four operations E, R, mx, my and there are four classes
(remember that because the x and y directions are distinct mx and my

belong to different classes). From Theorem one, there are four IRs; from
Theorem two, they are all one dimensional so that

∑

i

l2i = 12 + 12 + 12 + 12 = 4 = g.

2. 4mm. There are eight operations falling into five conjugate classes: E; R2;
R1 and R3; mx and my; m+ and m−. Therefore, there are five IRs and four
IR’s must be one dimensional and one must be two dimensional so that

∑

i

l2i = 12 + 12 + 12 + 12 + 22 = 8 = g

5.2.8 Character of a Representation

The character χ of a representation D(R) is defined as

χ(R) =
∑

j

Djj(R) for each R ∈ G. (5.18)

Because the application of a similarity transformation does not change the
trace of a matrix
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1. χ(R) is independent of the basis used for the vector space.
2. χ(R) is the same for all elements R belonging to the same conjugate class.

Thus, we can define χ(C) to be the common value of χ(R) for all R belonging
to conjugate class C.1

5.2.9 Orthogonality Theorem

In trying to determine the IRs and their characters certain orthogonality
theorems are very useful. We state them without proof.

1.
∑

R∈G
χi(R)χj

∗
(R) = gδij, (5.19)

where χi and χj are the characters of two representations. This can also
be written ∑

C

nCχ
i(C)χj

∗
(C) = gδij , (5.20)

where nC is the number of elements in the class C.
2.

∑

i

χi(C)χi
∗
(C′) =

g

nC
δC,C′ . (5.21)

3. If D(i)
μν(R) is the μν matrix element of the ith IR for the operation R, then

∑

R∈G
D(i)
μν(R)

[
D(j)(R)

]−1

ν′μ′
=

1
li
δijδμμ′δνν′ . (5.22)

For a unitary representation
[
D(j)(R)

]−1

ν′μ′ = D
(j)∗

μ′ν′(R) so that for unitary
representation

∑

R∈G
D(i)
μν(R)D(j)∗(R)ν′μ′ =

1
li
δijδμμ′δνν′ . (5.23)

Some Examples

1. 2mm. We know there are four IRs all of which are one dimensional. We
label them Γ1, Γ2, Γ3, Γ4. The 1 × 1 matrices representing each element
are given in Table 5.4.

2. 4mm. There are five IRs; one is two dimensional and the rest are one
dimensional as are shown in Table 5.5.

The reader should use these simple examples to demonstrate that the orthog-
onality theorems hold.

1 In the regular representation, each IR Γi appears li times, where li is the
dimension of the IR Γi.
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Table 5.4. Irreducible representations of the group 2 mm

Γ1 Γ2 Γ3 Γ4

E 1 1 1 1
R 1 1 −1 −1
mx 1 −1 1 −1
my 1 −1 −1 1

Table 5.5. Irreducible representations of the group 4 mm

Γ1 Γ2 Γ3 Γ4 Γ5

E 1 1 1 1

(
1 0
0 1

)
⇒ 2

R2 1 1 1 1

(−1 0
0 −1

)
⇒ −2

R1, R3 1 1 −1 −1

(
0 1
−1 0

)
,

(
0 −1
1 0

)
⇒ 0

mx, my 1 −1 1 −1

(
1 0
0 −1

)
,

(−1 0
0 1

)
⇒ 0

m+, m− 1 −1 −1 1

(
0 1
1 0

)
,

(
0 −1
−1 0

)
⇒ 0

5.3 Empty Lattice Bands, Degeneracies
and IRs at High-Symmetry Points

In Sect. 5.2 we determined the free electron energies and wave functions in the
reduced zone scheme for a two-dimensional rectangular lattice. The starting
point for many band structure calculations is this empty lattice band structure
obtained by writing, as (5.3),

El(k) =
h̄2

2m
(k + Kl)

2
,

where k is restricted to lie in the first Brillouin zone and Kl is a reciprocal
lattice vector of (5.1)

Kl = 2π[l1b1 + l2b2 + l3b3].

Here, bi are the primitive translation vectors of the reciprocal lattice and
li = 0,±1,±2, . . .. We evaluate the energy at particular symmetry points, e.g.
at k = 0, the Γ point, along ky = kz = 0, the line Δ, etc.

The group of symmetry operations which leave the lattice invariant also
leaves the reciprocal lattice invariant. Suppose we know some wave function
Ψk. A rotation or reflection operation of the point group acting on Ψk will
give the same result as the rotation or reflection of k, that is

RΨk(x) = ΨRk(x) = Ψk

(
R−1x

)
. (5.24)
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Fig. 5.4. STAR of square lattice

Here, we used the fact that applying the same orthogonal transformation to
both vectors in a scalar product does not change the value of the product, for
example k ·R−1r = Rk ·RR−1r = Rk · r. By applying every R ∈ G to a wave
vector k, we generate the STAR of k. For a two-dimensional square lattice, all
operations leave Γ invariant so Γ is its own STAR. (See Fig. 5.4) For a general
point k, there will be g (=8 for 4mm) points in the STAR of k. The symmetry
point X has four points in its STAR; two of these lie along the x-axis and
are equivalent because they are separated by a reciprocal lattice vector. The
other two points in the STAR of X are not equivalent to the X-point along the
x-axis because they are not separated from it by a reciprocal lattice vector.
All four points in the STAR of M are equivalent since they are all separated
by vectors of the reciprocal lattice.

5.3.1 Group of the Wave Vector k

The group (or subgroup of the original point group) of rotations and reflections
that transform k into itself or into a new k vector separated from the original
k point by a reciprocal lattice vector belong to the group of the wave vector k.

Example
For two-dimensional square lattice (Fig. 5.5) we remember that Δ, Z, and Σ
denote, respectively, any point on the line from Γ → X , X →M , and Γ →M .
We have the groups of the wave vectors as follows:

GΓ = GM = {E,R1, R2, R3,mx,my,m+,m−}
GX = {E,R2,mx,my}
GΔ = {E,mx} (5.25)
GΣ = {E,m+}
GZ = {E,my}
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Fig. 5.5. First Brillouin zone of a square lattice

When the empty lattice bands are calculated, there are often a number of
degenerate bands at points of high symmetry like the Γ-point, the M -point,
and the X-point. Because the operations of the group of the wave vector Γ
(or M or X) leave this point invariant, one can construct linear combinations
of these degenerate states that belong to representations of the group of the
wave vector Γ (or M or X , etc.).

Example
Empty lattice bands for a two-dimensional square lattice are written by

El1l2(k) =
h̄2

2m
(k + Kl1l2)

2 and Ψl1l2(k, r) = ei(k+Kl1l2 )·r. (5.26)

Here
Kl1l2 =

2π
a

(l1x̂+ l2ŷ) (5.27)

with l1, l2 = 0,±1,±2, . . .. The empty lattice bands are labelled by the pair
of integers (l1, l2). (See Fig. 5.6.) By defining ξ and η by

k =
2π
a

[ξx̂+ ηŷ] (5.28)

then we have

El1l2 =
h2

2ma2

[
(ξ + l1)2 + (η + l2)2

]
and Ψl1l2 = e

2πi
a [(ξ+l1)x+(η+l2)y].

(5.29)
The parameters ξ and η are restricted to the range [− 1

2 ,
1
2 ].

Exercise
Evaluate the energies El1l2(Γ), El1l2(X) for energies up to E = h2

2ma2 × 10.
Make a sketch of the empty square lattice bands going from Γ → Δ → X .
(Use straight lines to connect El1l2(Γ) to El1l2(X) ). List the degeneracies at
Γ, Δ, and X. For example, see Table 5.6.
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Fig. 5.6. Empty lattice bands of a square lattice along the line Γ → Δ → X. Energy

is measured in units of h2

2ma2 . We have drawn straight lines connecting El1l2(Γ) to
El1l2(X) for the sake of simplicity. The pair of integers (l1, l2) is indicated for each
band, and the band degeneracy is given in the parenthesis. In fact the energy along
Δ varies as ξ2 + 2l1ξ + l21 + l22

5.4 Use of Irreducible Representations

It is apparent from the V (r) = 0 empty lattice structure that at some points
in the Brillouin zone more than one band has the same energy. If we refer
to the two-dimensional square lattice, we find that at E(X) = 1

4
h2

2ma2 there
are two degenerate bands, viz. (l1, l2) = (0, 0) and (−1,0). At E(Γ) = h2

2ma2

there are four degenerate bands (−1,0), (1,0), (0,1), (0,−1). The vector space
formed by the degenerate bands at E(k) is invariant under the operations
of the group of the wave vector k. This means that the space of degenerate
states at a point k in the Brillouin zone provides a representation of the
group of the wave vector k. We can decompose this representation into its
irreducible components and use the decomposition to label the states. This
process does not change the empty lattice band structure that we have already
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Table 5.6. Empty lattice bands of the group 4mm

l1 l2
2ma2

h2 El1l2(Γ) = l21 + l22
2ma2

h2 El1l2(X) = (l1 + 1
2
)2 + l22

0 0 0
1

4

−1 0 1
1

4

1 0 1
9

4

−2 0 4
9

4

2 0 4
25

4

0 ±1 1
5

4

0 ±2 4
17

4

−1 ±1 2
5

4

−1 ±2 5
17

4

obtained. It is simply a convenient choice of basis functions for each of the
spaces of degenerate energy states. However, once the periodic potential V (r)
is introduced, it is immediately seen that band gaps appear as a consequence
of the decomposition of degenerate states into irreducible components. We
shall see that states belonging to different IR’s do not interact (i.e. they are
not coupled together by the periodic potential).

The periodic potential V (r) can be expressed as a Fourier series

V (r) =
∑

K

VKeiK·r, (5.30)

where K is a reciprocal lattice vector. For the two-dimensional square lattice
we can write

V (r) =
∑

l1l2

Vl1,l2e
2πi
a (l1x+l2y). (5.31)

Because V (r) is invariant under the operations of the point group, it is not
difficult to see that

Vl1,l2 = V−l1,l2 = Vl1,−l2 = V−l1,−l2 = Vl2,l1 = V−l2,l1 = Vl2,−l1 = V−l2,−l1 .
(5.32)

In our previous discussion of the effect of the periodic potential, we were able
to obtain an infinite set of coupled algebraic equations, (4.40), which could be
written [

E − V0 − h̄2

2m
(k + K)2

]
CK =

∑

H�=0

VHCK−H. (5.33)
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Here, CK was the coefficient in the expansion of u(r), the periodic part of
the Bloch function, in Fourier series. This infinite set of equations could be
expressed as a matrix equation, (4.41). The off-diagonal matrix elements are
of the form 〈Ki |V (r)|Kj〉 = VKi−Kj . When the degeneracy of a particular
energy state becomes large (e.g. at E(Γ) = 5 h2

2ma2 the degeneracy is 8), the
degenerate states must be treated exactly and there is no reason to suppose
that any off-diagonal matrix elements vanish. However, when we classify the
degenerate states according to the IR’s of the group of the wave vector, we
are able to simplify the secular equation by virtue of a fundamental theorem
on matrix elements.

Theorem on Matrix Elements (without proof)
Matrix elements of any operator which is invariant under all the operations
of a group are zero between functions belonging to different IRs of the group.
Matrix elements are also zero between functions belonging to different rows of
the same representation.

When one classifies the degenerate states according to the IR’s of the group
of the wave vector, many of the degenerate states will belong to different IRs
and therefore the off-diagonal matrix elements of V (r) between them will
vanish.

5.4.1 Determining the Linear Combinations of Plane Waves
Belonging to Different IRs

Let us begin by considering the states at Γ. The plane-wave wave functions
and energies are given, respectively, by

Ψl1l2(Γ) = e
2πi
a (l1x+l2y)

El1l2(Γ) = h2

2ma2 (l21 + l22).
(5.34)

Therefore, the energies at Γ, the bands corresponding to that energy, and the
degeneracy are as given in Table 5.7.

At EΓ = 0, there is a single state (let us measure E in units of h2

2ma2 ). The
wave function is given by

Ψ00(Γ) = 1 (5.35)

It is unchanged by every operation of GΓ, the group of the wave vector Γ.
Therefore, it belongs to the IR Γ1 because every element of GΓ operating on
Ψ00 gives +1×Ψ00 or every operation is represented by the 1× 1 unit matrix
D = 1. This, of course, is the Γ1 representation. At EΓ = 1, there are four
states

Ψ±1,0(Γ) = e±
2πi
a x,

Ψ0,±1(Γ) = e±
2πi
a y. (5.36)
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Table 5.7. Empty lattice energy at Γ and its degeneracy for a two dimensional
square lattice

2ma2

h2 E(Γ) Bands (l1, l2) Degeneracy

0 (0,0) 1

1 (±1, 0); (0,±1) 4

2 (−1,±1); (1,±1) 4

4 (±2, 0); (0,±2) 4

5 (−1,±2); (1,±2); (−2,±1); (2,±1) 8

The eight operations of GΓ change x into ±x and y into ±y or x into ±y and
y into ±x. From the four function Ψ±1,0 and Ψ0,±1 we can form the following
linear combinations

Ψ(Γ1) = cos
2πx
a

+ cos
2πy
a

∝ Ψ1,0 + Ψ−1,0 + Ψ0,1 + Ψ0,−1, (5.37)

Ψ(Γ3) = cos
2πx
a

− cos
2πy
a

∝ Ψ1,0 + Ψ−1,0 − Ψ0,1 − Ψ0,−1, (5.38)

and

Ψ(Γ5) =
(

Ψ(1)(Γ5)
Ψ(2)(Γ5)

)
=
(

sin 2πx
a

sin 2πy
a

)
∝
(

Ψ1,0 − Ψ−1,0

Ψ0,1 − Ψ0,−1

)
. (5.39)

Because the cosine function is an even function of its argument, every opera-
tion of GΓ leaves (cos 2πx

a + cos 2πy
a ) unchanged, and this function transforms

according to the IR Γ1. The function (cos 2πx
a − cos 2πy

a ) is left unchanged by
operations (E,R2, mx,my) which change x → ±x, but it changes to minus
itself under operations (R1, R3, m+,m−) which change x → ±y. Thus the
operations of GΓ operating on (cos 2πx

a −cos 2πy
a ) do exactly the same thing as

multiplying by the matrices belonging to the representation Γ3. In a similar
way one can show that the operations of GΓ operating on the column vector(

sin 2πx
a

sin 2πy
a

)
have exactly the same effect as multiplying by the set of matrices

forming the 2 × 2 representation Γ5.

Exercise
The reader should determine the linear combinations of plane waves at EΓ = 2
and EΓ = 4 belonging to the appropriate IRs of GΓ.

At EΓ = 5 there are eight states

Ψ±1,±2(Γ) = e±
2πi
a (±x±y),

Ψ±2,±1(Γ) = e±
2πi
a (±2x±y).

(5.40)

The simplest way to determine the linear combinations belonging to IRs of
GΓ is first to form sine and cosine functions like
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Ψ1 = cos
2π
a
x cos

2π
a

2y,

Ψ2 = cos
2π
a

2x cos
2π
a
y,

Ψ3 = sin
2π
a
x sin

2π
a

2y,

Ψ4 = sin
2π
a

2x sin
2π
a
y,

Ψ5 = cos
2π
a
x sin

2π
a

2y,

Ψ6 = cos
2π
a

2x sin
2π
a
y,

Ψ7 = sin
2π
a
x cos

2π
a

2y,

Ψ8 = sin
2π
a

2x cos
2π
a
y.

It is easy to see how these Ψ′
is are transformed by the operations of GΓ.

For example, all operations of GΓ which transform x → ±x transform Ψ1

into itself; all operations which transform x → ±y transform Ψ1 into Ψ2.
Therefore, the linear combination Ψ1 + Ψ2 is unchanged by every operation
of GΓ and belongs to Γ1. The linear combination Ψ1 − Ψ2 is unchanged by
the operations which take x→ ±x, but changed to −(Ψ1−Ψ2) by operations
which take x→ ±y. Thus Ψ1 − Ψ2 belongs to the IR Γ3. We find, by similar
analysis

Ψ(Γ1) = cos 2π
a x cos 2π

a 2y + cos 2π
a 2x cos 2π

a y = Ψ1 + Ψ2,

Ψ(Γ3) = cos 2π
a x cos 2π

a 2y − cos 2π
a 2x cos 2π

a y = Ψ1 − Ψ2,

Ψ(Γ2) = sin 2π
a x sin 2π

a 2y − sin 2π
a 2x sin 2π

a y = Ψ3 − Ψ4,

Ψ(Γ4) = sin 2π
a x sin 2π

a 2y + sin 2π
a 2x sin 2π

a y = Ψ3 + Ψ4,

Ψ(1)(Γ5) =
(

cos 2π
a x sin 2π

a 2y
cos 2π

a y sin 2π
a 2x

)
=
(

Ψ5

Ψ8

)
,

Ψ(2)(Γ5) =
(

sin 2π
a x cos 2π

a 2y
sin 2π

a y cos 2π
a 2x

)
=
(

Ψ7

Ψ6

)
.

(5.41)

5.4.2 Compatibility Relations

The character tables for 4mm and its principal subgroups are listed in Tables
5.8-5.11. Notice that under the operation mx, functions belonging to the IR’s
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Table 5.8. Character table of the groups 4 mm and its principal subgroups

Γ1 = M1 Γ2 = M2 Γ3 = M3 Γ4 = M4 Γ5 = M5

E 1 1 1 1 2
R2 1 1 1 1 −2
R1, R3 1 1 −1 −1 0
mx, my 1 −1 1 −1 0
m+, m− 1 −1 −1 1 0

Table 5.9. Character table of a principal subgroup GX

X1 X2 X3 X4

E 1 1 1 1
R2 1 1 −1 −1
mx 1 −1 1 −1
my 1 −1 −1 1

Table 5.10. Character table of a principal subgroup GΔ

Δ1 Δ2

E 1 1
mx 1 −1

Table 5.11. Character table of a principal subgroup GΣ

Σ1 Σ2

E 1 1
m+ 1 −1

1. Γ1 and Γ3 are unchanged.
2. Γ2 and Γ4 change sign.
3. X1 and X3 are unchanged.
4. X2 and X4 change sign.
5. Δ1 are unchanged.
6. Δ2 change sign.

Because of this only a Δ1 band can begin at an Γ1 or Γ3 band and only a
Δ1 band can end at an X1 or X3 band. We call such restrictions compatibility
relations. For our purpose it is sufficient to know that

• A band Δ1 can connect Γ1,Γ3,Γ5 to X1, X3.
• A band Δ2 can connect Γ2,Γ4,Γ5 to X2, X4.
• A band Σ1 can connect Γ1,Γ4,Γ5 to M1,M4,M5.
• A band Σ2 can connect Γ2,Γ3,Γ5 to M2,M3,M5.
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5.5 Using the Irreducible Representations
in Evaluating Energy Bands

Instead of labelling energy bands at particular symmetry points or along
particular symmetry lines by the integers (l1, l2) [or in three-dimensions
(l1, l2, l3)], it is possible to label the states by their energy and by the lin-
ear combination belonging to a particular IR of Gk. Thus, at the Γ point of
E = 1 · h2

2ma2 we may write the four states as

|l1, l2〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|1, 0〉 = e
2πi
a x

|−1, 0〉 = e−
2πi
a x

|1, 0〉 = e
2πi
a y

|0,−1〉 = e−
2πi
a y

(5.42)

or we can write (in units of h2

2ma2 = 1)

|EΓ = 1,Γ1〉 = cos
2πx
a

+ cos
2πy
a

(5.43)

|EΓ = 1,Γ3〉 = cos
2πx
a

− cos
2πy
a

(5.44)
( |EΓ = 1,Γ5〉1
|EΓ = 1,Γ5〉2

)
=
(

Ψ(1)(Γ5)
Ψ(2)(Γ5)

)
=
(

sin 2πx
a

sin 2πy
a

)
. (5.45)

There is a distinct advantage to using the basis functions belonging to IRs of
GΓ that results from the theorem on matrix elements.

Any matrix elements of the periodic potential (i.e. an operator with the
full symmetry of the point group) between states belonging to different IR’s
is zero. Thus, the secular equation becomes

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣

ε0(Γ1) − E 〈Γ10 |V | 1Γ1〉 〈Γ10 |V | 1Γ3〉 〈Γ10 |V | 1Γ5〉1 · · ·
〈Γ11 |V | 0Γ1〉 ε1(Γ1) − E 〈Γ11 |V | 1Γ3〉 〈Γ11 |V | 1Γ5〉1 · · ·
〈Γ31 |V | 0Γ1〉 〈Γ31 |V | 1Γ1〉 ε1(Γ3) − E 〈Γ31 |V | 1Γ5〉1 · · ·

1 〈Γ51 |V | 0Γ1〉 1 〈Γ51 |V | 1Γ1〉 1 〈Γ51 |V | 1Γ3〉1 ε1(Γ5) − E · · ·
2 〈Γ51 |V | 0Γ1〉 2 〈Γ51 |V | 1Γ1〉

...
...

...
...

...

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣

= 0

(5.46)
Equation (5.46) reduces to

∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

ε0(Γ1) − E 〈Γ10 |V | 1Γ1〉 0 0 · · ·
〈Γ11 |V | 0Γ1〉 ε1(Γ1) − E 0 0 · · ·

0 0 ε1(Γ3) − E 0 · · ·
0 0 0 ε1(Γ5) − E · · ·
0 0 0 0 · · ·
...

...
...

... · · ·

∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

= 0 (5.47)
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Here, εn(Γj) = h2

2ma2n
2 + 〈Γjn |V |Γjn〉. There are two things to be noted:

1. The matrix elements of V between different IR’s vanish, so many off-
diagonal matrix elements are zero. This reduces the determinantal equation
to a block diagonal form.

2. The diagonal matrix elements 〈Γjn |V |Γjn〉 are, in general, different for
different IRs Γj . This lifts the degeneracy at the symmetry points and
splits the fourfold degeneracy into nondegenerate states Γ1 and Γ3 and
one doubly degenerate state Γ5 at E(Γ) � 1 · h2

2ma2 .

When the energy bands along Δ and alongX are classified according to the
IRs of the appropriate symmetry group, a band structure like that sketched
in Fig. 5.7 results. The degeneracies at Γ and X are lifted by the diagonal
matrix elements of the potential. The rare case when two different IRs have
the same value of the diagonal matrix element of V (r) is called as accidental
degeneracy. Two Δ-bands belonging to Δ1, or two belonging to Δ2 cannot
cross because they are coupled by the nonvanishing matrix elements of V (r)
between the two bands. However, a Δ1 band can cross a Δ2 band because

Γ3

Fig. 5.7. Electronic energy bands of a square lattice with V �= 0 along the line
Γ → Δ → X. The bands are schematic, showing where splittings and anticrossings
occur on the simplified diagram (Fig. 5.6) which connects E(Γ) and E(X) by straight
lines
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〈ΨΔ1 |V (r)|ΨΔ2〉 = 0. Bands that are widely separated in energy (e.g. the
bands at E(Γ) = 1 and E(Γ) = 4) can be treated by perturbation theory as
was done in the nearly free electron model. One can observe that degeneracies
do not occur frequently for bands belonging to the same IR’s at Γ (or at X)
until the energies become high.

5.6 Empty Lattice Bands for Cubic Structure

5.6.1 Point Group of a Cubic Structure

Every operation of the cubic group will turn x into ±x, ±y, ±z. It is easy to
see that there are 48 different operations that can be listed as follows:

1. x→ ±x, y → ±y, z → ±z.
2. x→ ±x, y → ±z, z → ±y.
3. x→ ±y, y → ±x, z → ±z.
4. x→ ±y, y → ±z, z → ±x
5. x→ ±z, y → ±y, z → ±x
6. x→ ±z, y → ±x, z → ±y
Since there are ± signs we have two possibilities at each step, giving 23 = 8
operations on each line or 48 operations all together.

We can also think of the 48 operations in terms of 24 proper rotations and
24 improper rotations:

Proper Rotations
E: Identity → 1 operation
4: Rotation by ±90◦ about x-, y-, or z-axis → six operations
42: Rotation by ±180◦ about x-, y-, or z-axis → three operations
2: Rotation by ±180◦ about the six [110], [11̄0], [101], [101̄], [011], [011̄] axes →

six operations
3: Rotation by ±120◦ about the four 〈111〉 axes → eight operations Hence,

we have 24 proper rotations in total.

Improper Rotations
Multiply each by J (inversion operator: r → −r) to have 24 improper rota-
tions.

The 24 improper rotations are obtained by multiplying each of the 24
proper rotations by J, the inversion operation (r → −r). Clearly there are 10
classes and 48 operations. Using the theorem

∑

i=IR

l2i = g

we can see that there are 10 IRs, four one-dimensional, and two two-
dimensional, and four three-dimensional ones.
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2{12 + 12 + 22 + 32 + 32} = 48.

It is probably worthwhile to sit down with a simple cube and work out the
following rotations:

1. E:

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
x
y
z

⎞

⎠.

2. Rotation of ±π
2 about x, y, z axes,

Cx(1):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
x
z

−y

⎞

⎠, Cx(−1):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
x

−z
y

⎞

⎠

Cy(1):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−z
y
x

⎞

⎠, Cy(−1):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
z
y

−x

⎞

⎠

Cz(1):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
y

−x
z

⎞

⎠, Cz(−1):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−y
x
yz

⎞

⎠

3. Rotation of π about x, y, z axes,

Cx(2):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
x

−y
−z

⎞

⎠, Cy(2):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
−x
y

−z

⎞

⎠

Cz(2):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−x
−y
z

⎞

⎠

4. Rotation of π about the six 〈110〉 axes,

Cx,y(2):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
y
x

−z

⎞

⎠, Cx,−y(2):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−y
−x
−z

⎞

⎠

Cy,z(2):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
−x
z
y

⎞

⎠, Cy,−z(2):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−x
−z
−y

⎞

⎠

Cz,x(2):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
z

−y
−x

⎞

⎠, Cz,−x(2):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−z
−y
−x

⎞

⎠

5. Rotation of ± 2π
3 about the six 〈111〉 axes,

Cx,y,z(+):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
y
z
x

⎞

⎠, Cx,y,z(−):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
z
x
y

⎞

⎠

Cx,y,−z(+):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−z
x

−y

⎞

⎠, Cx,y,−z(−):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
y

−z
−x

⎞

⎠

Cx,−y,z(+):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−y
−z
x

⎞

⎠, Cx,−y,z(−):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
z

−x
−y

⎞

⎠
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Table 5.12. Characters and IRs of cubic group

(number of operations) (1) (3) (6) (6) (8) (1) (3) (6) (6) (8)
class → E 42 4 2 3 J J42 J4 J2 J3
representation ↓
Γ1 (A1g) 1 1 1 1 1 1 1 1 1 1
Γ2 (A2g) 1 1 −1 −1 1 1 1 −1 −1 1
Γ12 (Eg) 2 2 0 0 −1 2 2 0 0 −1
Γ′

15 (T1g) 3 −1 1 −1 0 3 −1 1 −1 0
Γ′

25 (T2g) 3 −1 −1 1 0 3 −1 −1 1 0
Γ′

1 (A1u) 1 1 1 1 1 −1 −1 −1 −1 −1
Γ′

2 (A2u) 1 1 −1 −1 1 −1 −1 1 1 −1
Γ′

12 (Eu) 2 2 0 0 −1 −2 −2 0 0 1
Γ15 (T1u) 3 −1 1 −1 0 −3 1 −1 1 0
Γ25 (T2u) 3 −1 −1 1 0 −3 1 1 −1 0

Cx,−y,−z(+):

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−y
z

−x

⎞

⎠, Cx,−y,−z(−):

⎛

⎝
x
y
z

⎞

⎠→
⎛

⎝
−z
−x
y

⎞

⎠

6. All of the above operations multiplied by the inversion J,

J

⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
−x
−y
−z

⎞

⎠

gives the 24 improper rotations.

Characters and irreducible representations of the cubic group are listed in
Table 5.12.

5.6.2 Face Centered Cubic Lattice

The primitive translation vectors of a face centered cubic lattice are given by

a1 =
a

2
(x̂+ ŷ), a2 =

a

2
(ẑ + x̂), a3 =

a

2
(ŷ + ẑ). (5.48)

The primitive vectors of the reciprocal lattice (including the factor 2π) are

b1 =
2π
a

(−x̂− ŷ + ẑ),b2 =
2π
a

(−x̂+ ŷ − ẑ),b3 =
2π
a

(x̂− ŷ − ẑ). (5.49)

An arbitrary vector of the reciprocal lattice can be written as

Gk = h1b1 + h2b2 + h3b3,
Gk = 2π

a [(−h1 − h2 + h3)x̂+ (−h1 + h2 − h3)ŷ + (h1 − h2 − h3)ẑ] .
(5.50)

Brillouin Zone
There are eight shortest and six next shortest reciprocal lattice vectors

from the origin of reciprocal space to neighboring points (remember that the
reciprocal lattice of an FCC is a BCC). They are given by
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WQ
Z

Fig. 5.8. The first Brillouin zone of FCC lattice

1. The eight vectors 2π
a [±x̂,±ŷ,±ẑ] whose length is |G| = 2π

a

√
3.

2. The six vectors 2π
a (±2x̂), 2π

a (±2ŷ), 2π
a (±2ẑ) whose length is |G| = 2π

a · 2.

The first Brillouin zone is the volume enclosed by the planes which are the
perpendicular bisectors of these 14 G-vectors. The first Brillouin zone of FCC
lattice has six square faces perpendicular to (100) and eight hexagonal faces
perpendicular to (111). (See Fig. 5.8.)

The names of high symmetry points are labelled in Fig. 5.8. Γ is the origin.
Arbitrary points along (100), (110), and (111) directions are called Δ, Σ, and
Λ, respectively. The special points X,L,K, and W are

X =
2π
a

(1, 0, 0), L =
2π
a

(
1
2
,
1
2
,
1
2

)
,K =

2π
a

(
3
4
,
3
4
, 0
)
,W =

2π
a

(
1
2
, 1, 0

)
.

The energy of a free electron is given by

E =
h2

2ma2

[
(l1 + ξ)2 + (l2 + η)2 + (l3 + ζ)2

]
(5.51)

where

l1 = −h1 − h2 + h3, l2 = −h1 + h2 − h3, l3 = h1 − h2 − h3

and hi are integers. If we measure energy in units of h2

2ma2 , then

E(Γ) = l21 + l22 + l23,
E(X) = (l1 + 1)2 + l22 + l23,
E(L) = (l1 + 1

2 )2 + (l2 + 1
2 )2 + (l3 + 1

2 )2.
(5.52)

One should obtain a table similar to Table 5.13. From the table you con-
structed, you can draw the empty lattice band structure, showing the bands
going from Γ → X and from Γ → L.
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Table 5.13. Energies for FCC empty lattice E(Γ) ≤ 8. Energy is measured in units

of h2

2ma2

h1 h2 h3 l1 l2 l3 E(Γ) E(X) E(L)

0 0 0 0 0 0 0 1 3
4

1 0 0 −1 −1 1 3 2 11
4

−1 0 0 1 1 −1 3 6 19
4

0 1 0 −1 1 −1 3 2 11
4

0 −1 0 1 −1 1 3 6 19
4

0 0 1 1 −1 −1 3 6 11
4

0 0 −1 −1 1 1 3 2 19
4

1 1 1 −1 −1 −1 3 2 3
4

−1 −1 −1 1 1 1 3 6 27
4

1 1 0 −2 0 0 4 1 11
4

−1 −1 0 2 0 0 4 9 27
4

1 0 1 0 −2 0 4 5 11
4

−1 0 −1 0 2 0 4 5 27
4

0 1 1 0 0 −2 4 5 11
4

0 −1 −1 0 0 2 4 5 27
4

1 −1 0 0 −2 2 8 9 35
4

−1 1 0 0 2 −2 8 9 35
4

1 0 −1 −2 0 2 8 5 35
4

−1 0 1 2 0 −2 8 13 35
4

0 1 −1 −2 2 0 8 5 35
4

0 −1 1 2 −2 0 8 13 35
4

2 1 1 −2 −2 0 8 5 19
4

−2 −1 −1 2 2 0 8 13 51
4

1 2 1 −2 0 −2 8 5 19
4

−1 −2 −1 2 0 2 8 13 51
4

1 1 2 0 −2 −2 8 9 19
4

−1 −1 −2 0 2 2 8 9 51
4
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k k

11

3

3

4

6

5

2

0

4

4

19/4

(4)

(8)

(6)

(2)

(6)

Fig. 5.9. Empty lattice band of the FCC lattice. The energy E is measured in units

of h2

2ma2 and plotted as a function of k. Each band is schematically represented by a
straight line going from El(Γ) to El(X) or El(L) even though the bands really have
a more complicated (quadratic form) dependence of the Bloch wave vector k. The
set of integers (l1, l2, l3) is indicated for each band

This empty lattice lattice band structure is shown in Fig. 5.9. Note that k =
2π
a x̂ at X and k = π

a (x̂+ ŷ + ẑ) at L. The energy E is sketched as a function
of k.

5.6.3 Body Centered Cubic Lattice

The primitive translations of the reciprocal lattice (including 2π) are

b1 =
2π
a

(x̂+ ẑ),b2 =
2π
a

(−x̂+ ŷ),b3 =
2π
a

(−ŷ + ẑ). (5.53)

Therefore a general reciprocal lattice vector Gh1h2h3 is given by

Gh1h2h3 =
2π
a

[h1b1 + h2b2 + h3b3]

=
2π
a

[(h1 − h2)x̂+ (h2 − h3)ŷ + (h3 + h1)ẑ] . (5.54)
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Σ

F

Fig. 5.10. (a)First Brillouin zone of the BCC lattice, (b) cross section of the four
planes bisecting the G = ± 2π

a
(x̂±ŷ) perpendicular to the z-axis of the first Brillouin

zone of a BCC lattice

The 12 shortest reciprocal lattice vectors are

±2π
a

(x̂± ŷ) ,±2π
a

(ŷ ± ẑ) ,±2π
a

(x̂± ẑ) .

They have length 2π
a

√
2. The first Brillouin zone is formed by the 12 planes

that bisect these 12 shortest reciprocal lattice vectors.(See Fig. 5.10a.)
Figure 5.10b shows the cross section of the four planes that bisect the

shortest G = ± 2π
a (x̂ ± ŷ) perpendicular to the z-axis of the first Brillouin

zone of the BCC lattice. The empty lattice energy bands can be written by

El1l2l3 =
h2

2ma2

[
(l1 + ξ)2 + (l2 + η)2 + (l3 + ζ)2

]
(5.55)

where
l1 = h1 − h2, l2 = h2 − h3, l3 = h3 + h1,

and hi are integers. We use the symbols of k = 2π
a (ξ, η, ζ), H= 2π

a (1, 0, 0),
P= 2π

a (1
2 ,

1
2 ,

1
2 ), and N= 2π

a (1
2 ,

1
2 , 0). Thus, we have, in units of h2

2ma2

El1l2l3(Γ) = l21 + l22 + l23,
El1l2l3(H) = (l1 + 1)2 + l22 + l23,
El1l2l3(P ) = (l1 + 1

2 )2 + (l2 + 1
2 )2 + (l3 + 1

2 )2,
El1l2l3(N) = (l1 + 1

2 )2 + (l2 + 1
2 )2 + l23.

(5.56)

Since l1 = h1 − h2, l2 = h2 − h3, l3 = h3 + h1, we can write

E(Γ) = (h1 − h2)2 + (h2 − h3)2 + (h1 + h3)2,
E(H) = (h1 − h2 + 1)2 + (h2 − h3)2 + (h1 + h3)2,
E(P ) = (h1 − h2 + 1

2 )2 + (h2 − h3 + 1
2 )2 + (h1 + h3 + 1

2 )2,
E(N) = (h1 − h2 + 1

2 )2 + (h2 − h3 + 1
2 )2 + (h1 + h3)2.

(5.57)
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5.7 Energy Bands of Common Semiconductors

Many common semiconductors which crystallize in the cubic zincblende struc-
ture have valence–conduction band structures that are quite similar in gross
features. This results from the fact that each atom (or ion) has four electrons
outside a closed shell and there are two atoms per unit cell. For example,
silicon has the electron configuration [Ne]3s23p2, i.e., two 3s electrons and
two 3p electrons outside a closed neon core. With two silicon atoms per
unit cell, this gives eight electrons per unit cell. The empty lattice has a
single Γ1 band at EΓ = 0 and 8-fold degenerate bands at EΓ = 3. The
eightfold degeneracy is lifted by the periodic potential, so the valence and
conduction bands at Γ will arise from these eight bands. Germanium has
the electron configuration of [Ar]3d104s24p2, and III–V compounds like GaAs{
Ga

(
[Ar]3d104s24p1

)
As

(
[Ar]3d104s24p3

)}
look just like Ge if one 4p electron

transfers from As to Ga leaving a somewhat ionic Ga−As+ molecule in the
unit cell instead of two Ge atoms. The same is true if any III–V elements
replace a pair of Si atoms or Ge atoms in a zincblende structure.

A nice example of the use of group concepts in studying energy band
structure is a simple nearly free electron type model used to give a rather good
description of the valence–conduction band semiconductors with zincblende
structures. We will give a rough sketch of the calculation, referring the reader
to an article by D. Brust2. To describe the band structures of Si and Ge, Brust
use the following 15 plane-wave wave functions corresponding to the 15 bands
at Γ which have energy E ≤ 4. (See the 15 bands at Γ in Fig. 5.9.) We can
write these 15 plane waves as wi, with i = 1, 2, 3, . . . , 15 defined by

w0 = 1 E0(Γ) = 0,

w1 = w∗
5 = e

2πi
a

(x+y+z) E1(Γ) = E5(Γ) = 3,

w2 = w∗
6 = e

2πi
a (x−y−z) E2(Γ) = E6(Γ) = 3,

w3 = w∗
7 = e

2πi
a (−x+y−z) E3(Γ) = E7(Γ) = 3,

w4 = w∗
8 = e

2πi
a (−x−y+z) E4(Γ) = E8(Γ) = 3,

w9 = w∗
12 = e

2πi
a x E9(Γ) = E12(Γ) = 4,

w10 = w∗
13 = e

2πi
a y E10(Γ) = E13(Γ) = 4,

w11 = w∗
14 = e

2πi
a z E11(Γ) = E14(Γ) = 4,

From these 15 functions w0, w1, . . . , w14, one can construct linear superposi-
tions belonging to IRs of the group of the wave vector Γ, X, L, etc. Some
examples are

2 D. Brust, Phys. Rev. 134, A1337 (1964).
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Ψ1 = 1√
V
w0 belongs to Γ1,

Ψ2 = 1√
8V

[w1 − w2 − w3 − w4 + w5 − w6 − w7 − w8] belongs to Γ1,
...

...
Ψ9 = 1√

8V
[w1 + w2 − w3 + w4 − w5 − w6 + w7 − w8] belongs to Γ15,

Ψ10 = 1√
8V

[w9 + w10 + w11 − w12 − w13 − w14] belongs to Γ′
2,

...
...

Ψ15 = 1√
2V

[w11 + w14] belongs to Γ25.

If you use these combinations of plane waves, the Schrödinger equation breaks
up into a block diagonal 15 × 15 matrix as shown in (5.58).

∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

Γ1

Γ′
25[3 × 3]

Γ15[3 × 3]
Γ′

2

Γ1

Γ1

Γ12[2 × 2]
Γ25[3 × 3]

∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

= 0. (5.58)

Here Γ1 and Γ′
2 are 1×1, Γ12 is a 2×2, and Γ15, Γ25, and Γ′

25 are 3×3 matrices,
respectively. Off diagonal elements and bands in higher empty lattice states
are treated by standard nondegenerate perturbation theory.

Now the question arises “What do we use for the periodic potential
V (r) =

∑
l1l2l3

Vl1l2l3eiKl·r ?” Brust simply treated the parameters Vl1l2l3 as
phenomenological coefficients to be obtained by fitting band gaps and effective
masses measured experimentally or fitting more detailed first-principles band
structure calculations. He found that he could obtain a reasonably satisfactory
fit by keeping only three parameters:

V (3) = Vl1l2l3 when l21 + l22 + l23 = 3,
V (8) = Vl1l2l3 when l21 + l22 + l23 = 8, (5.59)
V (11) = Vl1l2l3 when l21 + l22 + l23 = 11.

Remember, by cubic symmetry, V1,1,1 = V1,1,−1 = V1,−1,−1 = V−1,−1,−1 etc.
For Si, Brust found that V (3) � −0.21 Ry, V (8) � 0.04 Ry, V (11) � 0.08 Ry.
For Ge he found that V (3) � −0.23 Ry, V (8) � 0.00 Ry, V (11) � 0.06 Ry.

The band structure obtained for Si is illustrated in Fig. 5.11. This diagram
shows 11 bands at Γ out of the 15 bands we put into the calculation. Since
there are two atoms per unit cell and four valence electrons per atom, we
have eight electrons per unit cell or enough to fill four bands. Thus the Γ′

25

state is the top of the valence band. The conduction band is Γ15 at Γ, but
the minimum is at near the X-point, so the conduction band minimum has
six valleys, each very near one of the six X points.
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(1)

(1)

(1)

(2)

(3)

(3)

Fig. 5.11. Simple band structure of Si
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Problems

5.1. At E(X) = 0.25 h2

2ma2 there are two degenerate bands. At E(X) =
1.25 h2

2ma2 there are four. Determine the linear combinations of degenerate
states at these points belonging to IR’s of GX . Do the same for E(Γ) =
1
[

h2

2ma2

]
and 2

[
h2

2ma2

]

5.2. Make a table, with values of h1, h2, h3, of the resulting l1, l2, l3 and E(Γ),
E(X), E(L) for all bands with E(Γ) ≤ 4 for an FCC lattice.

5.3. Use your knowledge of the irredicible representations at E(Γ) = 0, 1, 2 (in
units of h2

2ma2 ) and at E(X) = 0.25 and 1.25, together with the compatibility
relations to determine the irreducible representations for each of these bands
along the line Δ.

5.4. Tabulate E(Γ), E(H), E(P ) for all bands that have E(Γ) ≤ 4. Then
sketch E vs. k along Δ(Γ → H) and along Λ(Γ → P ).

5.5. Do the same as above in part 4 for simple cubic lattice where

El =
h2

2ma2

[
(l1 + ξ)2 + (l2 + η)2 + (l3 + ζ)2

]

for Γ, X = π
a (1, 0, 0), and R = π

a (1, 1, 1). Sketch E vs. k along Γ → X and
along Γ → R for all bands having E(Γ) ≤ 4.

5.6. Use the irreducible representations at E(X) = 0.25 to evaluate

Vij =
〈
ΨXi(0.25) | V (r) | ΨXj (0.25)

〉

where ΨXi(0.25) is the wave function at E(X) = 0.25 belonging to the
irreducible representation Xi.

(a) Show that Vij = 0 if i �= j.
(b) Show that the diagonal matrix elements give the same energies (and

band gap) as obtained by degenerate perturbation theory with the
original plane waves.
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5.7. A two dimensional rectangular lattice has a reciprocal lattice whose
primitive translations, including the 2π, are b1 = 2π

a x̂ and b2 = 2π
a

1√
2
ŷ.

2π

2π
2

(a) List the operations belonging to GΓ.
(b) Do the same for GX and GΔ.
(c) For the empty lattice the wave functions and energies can be written

Ψl(k, r) = ei(k+Kl)·r and El(k) = h̄2

2m (k + Kl)
2. Here, Kl = l1b1+

l2b2, and l1 and l2 are integers. Tabulate the energies at Γ and at X
for (l1, l2) =(0,0), (0,±1), (−1,0), (1,0), and (−1,±1).

(d) Sketch (straight lines are OK) E vs. k along the line Δ (going from Γ
to X) for these bands.

(e) Two degenerate bands at the point E(Γ) = 0.5 connect to E(X) = 0.75.
Write down the wave functions for an arbitrary value of kx for these
two bands.

(f) From these wave functions, construct the linear combinations belonging
to irreducible representations of GΔ.

5.8. Graphene has a two-dimensional regular hexagonal reciprocal lattice
whose primitive translations are b1 = 2π

a (1,− 1√
3
) and b2 = 2π

a (0, 2√
3
).

(a) List the operations belonging to GΓ.
(b) Do the same for GK and GM. Note that kK = 2π

a (2
3 , 0) and kM =

2π
a (1

2 ,
1

2
√

3
).

(c) Write down the empty lattice wave functions and energies Ψl(k, r) and
El(k) at Γ and K.

(d) Tabulate the energies at Γ and at K for (l1, l2) =(0,0), (0,±1), (±1, 0),
(−1,−1), and (1, 1).

(e) Sketch E vs. k along the line going from Γ to K for these bands.
(f) Write down the wave functions for the three fold degenerate bands at

the energy E(K) = 4/9.
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Summary

In this chapter, we first reviewed elementary group theory and studied the
electronic band structure in terms of elementary concepts of the group the-
ory. We have shown that how group theory ideas can be used in obtaining
the band structure of a solid. Group representations and characters of two-
dimensional square lattice are discussed in depth and empty lattice bands of
the square lattice are illustrated. Concepts of irreducible representations and
compatibility relations are used in discussing the symmetry character of bands
connecting different symmetry points and the removal of band degeneracies.
We also discussed empty lattice bands of the cubic system and sketched the
band calculation of common semiconductors.

The starting point for many band structure calculations is the empty lat-
tice band structure. In the empty lattice band representation, each band is
labeled by � = (l1, l2, l3) where the reciprocal lattice vectors are given by

K� = 2π[l1b1 + l2b2 + l3b3]

where (l1, l2, l3) = � are integers and bi are primitive translations of the
reciprocal lattice. Energy eigenvalues and eigenfunctions are written as

E�(k) =
h̄2

2m
(k + K�)

2

and
Ψ�(k, r) = eik·reiK�·r.

The Bloch wave vector k is restricted to the first Brillouin zone.
The vector space formed by the degenerate bands at E(k) is invariant

under the operations of the group of the wave vector k. That is, the space of
degenerate states at a point k in the Brillouin zone provides a representation
of the group of the wave vector k. We can decompose this representation into
its irreducible components and use the decomposition to label the states.

When we classify the degenerate states according to the IRs of the group
of the wave vector, we are able to simplify the secular equation by virtue of a
fundamental theorem on matrix elements:

1. The matrix elements of V between different IRs vanish, so many off-
diagonal matrix elements are zero. This reduces the determinantal equation
to a block diagonal form.

2. The diagonal matrix elements 〈Γjn |V |Γjn〉 are, in general, different for
different IRs Γj . This lifts the degeneracy at the symmetry points.

Many common semiconductors which crystallize in the cubic zincblende
structure have valence–conduction band structures that are quite similar in
gross features. This results from the fact that each atom has four electrons
outside a closed shell and there are two atoms per unit cell.
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More Band Theory and the Semiclassical
Approximation

6.1 Orthogonalized Plane Waves

So far, we have expanded the periodic part of the Bloch function u�(k, r) in
a plane wave basis, i.e.,

u�(k, r) =
∑

K�′

C��′(k)eK�′ ·r (6.1)

It often occurs that the series for u�(k, r) converges very slowly so that many
different plane waves must be included in the expansion. The reason for this is
that plane wave is not a very good description of the valence and conduction
band states in the region of real space in which the core levels are of large
amplitude. What are the core levels? They are the tightly bound atomic states
associated with closed shell configurations. States outside the core are valence
states that are responsible for the binding energy of the solid. For example,
consider Table 6.1.

Let us define the eigenfunction

|cj〉 = Ψcj(r −Rj) (6.2)

to be the core level c (c = 1s, 2s, 2p, 3s, . . .) of the atom located at position
Rj . The valence and conduction band states that we are interested in must
be orthogonal to these core states. When we expand the periodic part of the
Bloch function in plane waves, it takes a very large number of plane waves
to give band wave functions with all the necessary wiggles needed to make
them orthogonal to core states. For this reason, the orthogonalized plane waves
(OPW) was introduced by Herring and Hill.1 We define

|wk〉 = |k〉 −
∑

c′,j′
〈c′j′|k〉 |c′j′〉 . (6.3)

1 C. Herring, Phys. Rev. 57, 1169 (1940) and C. Herring, A.G. Hill, Phys. Rev. 58,
132 (1940).
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Table 6.1. Electron configurations of core states and valence states of Na, Si, and
Cu atoms

Atom Core states Valence states

Na 1s2, 2s2, 2p6 3s1 and higher
Si 1s2, 2s2, 2p6 3s2, 3p2 and higher
Cu 1s2, 2s2, 2p6, 3s2, 3p6 3d10, 4s1 and higher

Here, |wj〉 is an OPW, |k〉 is a simple plane wave, and the sum is over all
core levels on all atoms in the crystal. The core levels are solutions of the
Schrödinger equation

[
− h̄

2∇2

2m
+ Vj(r) − Ec

]
Ψcj = 0 (6.4)

where Vj(r) is the atomic potential for the atom located at rj . Because the
core levels are tightly bound, this potential is essentially identical to the value
of the periodic crystalline potential in the unit cell centered at rj .

It is clear from (6.3) that |wj〉 is orthogonal to the core levels since

〈cj|wk〉 = 〈cj|k〉 −
∑

c′,j′
〈c′j′|k〉 〈cj|c′j′〉 , (6.5)

but the core levels themselves satisfy

〈cj|c′j′〉 = δcc′δjj′ (6.6)

This gives 〈cj|wk〉 = 0. In an OPW calculation, the periodic part of the Bloch
function is expanded in OPW’s instead of in plane waves. This improves the
convergence.

6.2 Pseudopotential Method

We can think of the operator P defined by

P =
∑

cj

|cj〉 〈cj| (6.7)

as a projection operator. It gives the projection of any eigenfunction |φ〉 onto
the core states. If we expand the wave function Ψk in OPW’s we can write

|Ψk〉 =
∑

K

aK |wk+K〉 = (1 − P)
∑

K

aK |(k + K)〉 . (6.8)
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Let us define |φk〉 =
∑

K aK |k + K〉 as the pseudo-wavefunction. Clearly,
we have

|Ψk〉 = (1 − P) |φk〉 . (6.9)

We note that |φk〉 is the plane wave part of the OPW expansion. Both |cj〉
and |Ψk〉 are solutions of the Schrödinger equation

[
− h̄

2∇2

2m
+ V (r)

]
Ψ = EΨ, (6.10)

with eigenvalues Ec and E(k), respectively. Let us substitute |Ψ〉 = (1−P) |φ〉
into (6.10). This gives

[
− h̄

2∇2

2m
+ V (r) − E

]
(1 − P) |φ〉 = 0. (6.11)

Recall that
P |φ〉 =

∑

cj

|cj〉 〈cj|φ〉 . (6.12)

Therefore, we have

HP |φ〉 =
∑

cj

H |cj〉 〈cj|φ〉

=
∑

cj

Ecj |cj〉 〈cj|φ〉 . (6.13)

We use this in the Schrödinger equation to obtain
[
− h̄

2∇2

2m
+ V (r) − E

]
|φ〉 +

∑

cj

(E − Ecj ) |cj〉 〈cj|φ〉 = 0. (6.14)

We define an effective potential or pseudopotential by

W (r) = V (r) +
∑

cj

(E − Ecj ) |cj〉 〈cj| . (6.15)

The first term in the pseudopotential is just the usual periodic crystalline
potential. The second term is a nonlocal repulsive potential.

W (r)φ(r) = V (r)φ(r) +
∑

cj

(E − Ecj )Ψcj(r) 〈cj|φ(r′)〉

=
∫

d3r′[V (r′)δ(r − r′) +
∑

cj

(E − Ecj )Ψcj(r)Ψ∗
cj(r

′)]φ(r′).

(6.16)
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It is clear that W is nonlocal since only the first term involving the periodic
potential contains a δ-function. The second term

VR =
∑

cj

(E − Ecj ) |cj〉 〈cj| (6.17)

is repulsive as opposed to an attractive potential like V (r). We can see this
by evaluating 〈φ|VR |φ〉 for any function φ. We find that

〈φ| VR |φ〉 =
∑

cj

(E − Ecj ) |〈φ|cj〉|2 . (6.18)

Because |〈φ|cj〉|2 is positive and the valence–conduction band energies E are,
by definition, larger than core levels,

〈φ| VR |φ〉 > 0. (6.19)

Therefore, VR cancels a portion of the attractive periodic potential V . The
diagram shown in Fig. 6.1 is a sketch of what the periodic potential V (r),
the repulsive part of the pseudopotential VR, and the full pseudopotential
look like.

A number of people have used model pseudopotentials in which the poten-
tial is replaced by the one shown in Fig. 6.2. The pseudopotential W (r) is
taken to be a local potential which has (1) a constant value V0 inside a core
or radius d and (2) the actual potential V (r) for r > d. Both V0 and d
are used as adjustable parameters to fit the energy bands to experimental
observation.

V V

W(r)

V(r)

r

Fig. 6.1. A sketch of various potentials
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V
r

Fig. 6.2. A model pseudopotential

6.3 k · p Method and Effective Mass Theory

Often in discussing properties of semiconductors it is more important to have
a single analytic description of the band structure very close to a conduction
band minimum or valence band maximum than to have detailed numerical
calculations of En(k) and Ψnk throughout the Brillouin zone. One approach
that has proven to be useful is called the k · p method. We know that Ψk =
eik·ruk(r) is a solution of the Schrödinger equation

(
p2

2m
+ V (r) − Ek

)
Ψk(r) = 0. (6.20)

By substituting the Bloch wave form for Ψk, it is easy to see that uk(r) satisfies
the Schrödinger equation

[
(p + h̄k)2

2m
+ V (r) − Ek

]

uk(r) = 0. (6.21)

For k = 0 (i.e., at the Γ-point) this equation can be written as
(
p2

2m
+ V (r) − E0

)
u0(r) = 0. (6.22)

There are an infinite number of solutions u(1)
0 , u(2)

0 , u(3)
0 , . . ., u(n)

0 , . . . with
energies at the Γ-point E(1)

0 , . . ., E(n)
0 , . . .. Here, the superscript (n) is a band
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index and the subscript 0 stands for k = 0. For any fixed value of k the set
of functions u(n)

k (r) form a complete orthonormal set in which any function
with the periodicity of the lattice can be expanded. Therefore, we can use the
set of function u

(n)
0 (r) as a basis set for a perturbation expansion of u(m)

k for
k �= 0 and for any band m. By this, we mean that we can write

u
(m)
k =

∑

n

a(m)
n (k)u(n)

0 . (6.23)

The Schrödinger equation for u(m)
k can be written as

[
p2

2m
+
h̄

m
k · p +

h̄2k2

2m
+ V (r) − Ek

]∑

n

a(m)
n (k)u(n)

0 (r) = 0. (6.24)

We omit the band superscript (m) for simplicity. We know that
[
p2

2m + V (r)
]

u
(n)
0 = E

(n)
0 u

(n)
0 ; therefore, we can write

(
E

(n)
0 +

h̄2k2

2m
− Ek

)∑

n

anu
(n)
0 (r) +

h̄

m
k · p

∑

n

anu
(n)
0 (r) = 0. (6.25)

Take the scalar product with u(m)
0 remembering that

〈
u

(m)
0 |u(n)

0

〉
= δmn. This

gives
[
E

(m)
0 + εk − Ek

]
am +

∑

n

〈
u

(m)
0

∣
∣
∣
∣
h̄

m
k · p

∣
∣
∣
∣u

(n)
0

〉
an = 0. (6.26)

This is just a matrix equation of the form
⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

E
(1)
0 + εk − Ek

〈
u

(1)
0 |H1|u(2)

0

〉
· · ·

〈
u

(2)
0 |H1|u(1)

0

〉
E

(2)
0 + εk − Ek · · ·

〈
u

(3)
0 |H1|u(1)

0

〉 〈
u

(3)
0 |H1|u(2)

0

〉
· · ·

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎝

a1

a2

a3

...

⎞

⎟
⎟
⎟
⎠

= 0 (6.27)

Here, H1 = h̄
mk · p, where p = −ih̄∇, εk = h̄2k2

2m , and we have put〈
u

(n)
0 |p|u(n)

0

〉
= 0. This last result holds forcrystals with a center of sym-

metry because parity is a good quantum number and p is an operator that
changes parity. If this matrix element does not vanish it must be added
to εk.

If we consider k to be small (compared to π
a ), then if

〈
u

(m)
0

∣
∣ h̄
mk · p∣∣u(n)

0

〉

does not vanish, it is usuallyquite small compared to
∣
∣
∣E(n)

0 − E
(m)
0

∣
∣
∣. When
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the off-diagonal elements are treated by perturbation theory, the resulting
expression for E(n)

k is written as

E
(n)
k = E

(n)
0 +

h̄2k2

2m
+
h̄2

m2

∑

l

∣
∣∣k ·

〈
u

(n)
0 |p|u(l)

0

〉∣∣∣
2

E
(n)
0 − E

(l)
0

. (6.28)

This can be rewritten as

E
(n)
k = E

(n)
0 +

h̄2

2
k ·m∗−1 · k, (6.29)

where the inverse effective mass tensor (for the band n) is given by

m∗
ij
−1 = m−1δij +

2
m2

∑

l

〈
u

(n)
0 |pi|u(l)

0

〉〈
u

(l)
0 |pj |u(n)

0

〉

E
(n)
0 − E

(l)
0

. (6.30)

Because u(n)
0 is a periodic function with period a, the lattice spacing, the

matrix element
〈
u

(n)
0 |pi|u(l)

0

〉
is of the order of h̄

a if it does not vanish by
symmetry considerations. Thus for two coupled bands separated by an energy
gap ΔE

m

m∗ � 1 + 2
h̄2/ma2

ΔE
(6.31)

Since a � 3 × 10−8 cm, h̄2

ma2 � 10 eV, but typical gaps in semiconductors can
be as small as 10−1 eV. Thus, in small-gap semiconductors it is very possible
to have

m∗ =
m

1 + h̄2/ma2

ΔE

� 10−2m.

Effective masses of 0.1 − 0.01m are not at all unusual in semiconductors.
The simple perturbation theory breaks down when there are a number

of almost degenerate bands at the point in k-space about which the k · p
expansion is being made. In that case, it is necessary to keep all the nearly
degenerate states in the matrix Schrödinger equation and refrain from using
second-order (nondegenerate) perturbation theory. One example of this is the
Kane Model2 used frequently in zincblende semiconductors (like InSb, InAs,
GaSb, GaAs, etc.). In these materials, there are four bands that are rather
close together (see Fig. 6.3). If spin–orbit coupling is included (it can be impor-
tant in heavy atoms) one must add to the periodic potential V (r) the atomic
spin–orbit coupling

h̄

4m2c2
(σ ×∇rV ) · p. (6.32)

2 E.O. Kane, J. Phys. Chem. Solids 1, 82 (1956); ibid. 1, 249 (1957); Semiconductors
and Semimetals, Vol. 1, pp.75-100 (Academic, New York, 1966).
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E

k

Fig. 6.3. Schematics of the band structure of zincblende semiconductors near the
Γ point. Nonparabolicity of the valence band is neglected here

Then the four bands become eight (including the spin splitting) and h̄k · p
is replaced by Π · p, where Π = h̄k + h̄

4mc2σ ×∇rV . The 8 × 8 matrix must
be diagonalized to obtain a good description of the conduction–valence band
structure near the Γ point.

6.4 Semiclassical Approximation for Bloch Electrons

When we discussed the Sommerfeld model of free electrons, we discussed the
motion of electrons in response to electric fields and temperature gradients
which introduced r-dependence into the equilibrium distribution function

f0(ε) =
1

exp[ε−ζ(r)]/kBT (r) + 1
. (6.33)

The eigenfunctions of the Sommerfeld model were plane waves, so the prob-
ability that an electron was at a given position r was independent of r.
Therefore, the r-dependence in f0(ε) only made sense if we introduced the
idea of localized wave packets defined by

Ψk(r, t) =
∑

k′
g(k − k′)ei(k′·r−ωk′ t), (6.34)



6.4 Semiclassical Approximation for Bloch Electrons 169

where g(k−k′) � 0 if |k− k′| is larger than some value Δk. By the Heisenberg
principle

ΔkΔx
∼
> 1, (6.35)

so that the electron can be localized in a region Δx of the order of (Δk)−1.
We must have

1. Δx� a, the atomic spacing.
2. Δx � L the distance over which the potential φ(x) = eEx or the

temperature T (x) changes appreciably.

Thus, the semiclassical wave packet picture can be applied only to slowly
varying (in space) perturbations on the free electrons.

In the presence of a periodic potential, we have Bloch states (or Bloch
electrons) described by

Ψnk(r) = eik′·runk(r) (6.36)

and
E = εn(k) (6.37)

Here, k is restricted to the first Brillouin zone, and there is a gap between
different energy bands at the same value of k, i.e., εn(k) − εn′(k) = EGap

(k) �= 0.
The semiclassical wave packet picture can be used to describe the motion

of Bloch electrons in a given band in response to slowly varying perturbations
by taking

Ψnk(r) =
∑

k′
gn(k − k′)Ψnk′(r) (6.38)

with gn(k − k′) � 0 if |k − k′| > Δk. Then, the standard expression for the
group velocity of a wave packet gives

vn(k) =
1
h̄
∇kεn(k) (6.39)

as the velocity of a Bloch electron of wave vector k in the nth band. In the
presence of a force F, the work done in moving an electron wavepacket a
distance δx is written by

δW = F · δx = F · vnδt (6.40)

But this must equal the change in energy

δW = En(k + δk) − En(k)
= ∇kEn(k) · δk = h̄vn · k̇δt (6.41)

Equating (6.40) and (6.41) gives

k̇ = h̄−1F. (6.42)
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The semiclassical description of Bloch electrons satisfies the following rules:

1. The band index n is a constant of the motion; no interband transitions are
allowed.

2. ṙ = vn(k) =
1
h̄
∇kεn(k). (6.43)

3. h̄k̇ = −e
(
E +

1
c
vn(k) × B

)
. (6.44)

4. The contribution of the nth band to the electron density will be

2f0 (εn(k))
d3k

(2π)3
=

d3k/4π3

1 + exp [(εn(k) − μ) /kBT ]
. (6.45)

For free electrons (Sommerfeld model), electrons are not restricted to one
band but move continuously in k-space according to h̄k̇ = Force. For Bloch
electrons k is restricted to the first Brillouin zone and k ≡ k+K. Clearly the
restriction to band n requirement must break down when the gap EGap(k)
becomes very small. It can be shown (but not very easily) that the conditions

eEa� [EGap(k)]2

EF
(6.46)

and

h̄ωc � [EGap(k)]2

EF
. (6.47)

must be satisfied for the semiclassical treatment of Bloch electrons to be valid.
Here, E is the electric field and a the atomic spacing. ωc is the electron
cyclotron frequency and EF the Fermi energy. The breakdown of the inequali-
ties (6.46) and (6.47) lead to interband transitions; they are known as electric
breakdown and magnetic breakdown, respectively.

6.4.1 Effective Mass

The acceleration of a Bloch electron in band n can be written as

an ≡ dvn
dt

=
1
h̄

d
dt

∇kεn(k)

=
1
h̄
∇k∇kεn(k) · dk

dt
(6.48)

If we write this tensor equation in terms of components, we have

dv(n)
i

dt
=

1
h̄

∑

j

∂

∂kj

∂

∂ki
εn(k)

dkj
dt

. (6.49)
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But h̄dkj

dt = Fj , the j-component of the force. Thus, we can write

dvn
dt

= m∗
n
−1 · F (6.50)

where the effective mass tensor is defined by
(
m∗
n
−1
)

ij
=

1
h̄2

∂2εn(k)
∂ki∂kj

. (6.51)

Measured effective masses in different materials have widely different values.
For example, in nickel there are electrons with m∗ � 15m while in InSb there
are electrons with m∗ � 0.015m.

6.4.2 Concept of a Hole

Symmetry requires that if a band has an energy ε(k), then the solid must have
an energy ε(−k) satisfying ε(−k) = ε(k). The group velocity of the states k
and −k are equal in magnitude and opposite in direction. In equilibrium, if
the state k is occupied, so is the state −k. Since the velocities are equal in
magnitude and opposite in direction, there is no current. A current is obtained
by changing the probability of occupancy of the electron states.

A filled band cannot carry any current even in the presence of an electric
field. Each electron is accelerated according to the equation:

dk
dt

=
1
h̄
F. (6.52)

If F is in the x-direction, the electrons move in k space with kx(t) = kx(0) +
1
h̄Fxt. An electron arriving at kx = π

a (for a cubic crystal), the edge of the
Brillouin zone, reappears at kx = −π

a (i.e., it is Bragg reflected through kx −
k′x = K = 2π

a . Thus at all times the band is filled; for each electron at k
there is one at −k with equal but oppositely directed velocity. Therefore, the
electrical current density j = 0.

For a partially filled band we can write

j =
1
V

∑

k occupied

(−evk) . (6.53)

This can be rewritten as j = 1
V

[∑
entire bandk(−evk) −∑

k unoccupied(−evk)
]
.

The first term vanishes, so that

j =
1
V

∑

k empty

+ evk. (6.54)

Thus, for a nearly filled band, we can think of the current as being carried
by holes, empty states in the almost filled band. These act as if they have a
charge +e instead of −e, the charge on an electron.
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Fig. 6.4. Motion of an electron and a hole: panel (a) goes over to panel (b), and a
hole moves with electrons

Because the equation of motion in k space is

h̄k̇x = −eEx (6.55)

every electron in the nearly filled band moves in k space according to kx(t) =
kx(0) − eEx

h̄ t. Therefore, the hole moves in the same direction; Fig. 6.4a goes
over to Fig. 6.4b. Of course, the effective mass m∗ near the top of a valence
band is negative since

1
m∗ =

1
h̄2

∂2εk
∂k2

< 0. (6.56)

It is interesting to write down the following equations that describe the motion
of a hole:

h̄k̇ = −e
(
E +

1
c
vh × B

)
. (6.57)

vh =
1
h̄
∇kεk. (6.58)

m∗
k = − 1

h̄2

∂2ε

∂k2
> 0. (6.59)

We can assume that a hole has a positive mass near the top of the band where
an electron has a negative mass. Then,

dvh

dt
= m∗

k
−1 ·

[
eE +

e

c
vk × B

]
. (6.60)

Here, we have used a positive mass m∗
k and a positive charge +e to describe

the hole. In the valence band of a semiconductor, a few holes can be thermally
excited. They can be treated as particles having positive mass and positive
charge.

6.4.3 Effective Hamiltonian of Bloch Electron

We know that for Bloch electrons we can write

1. E = εn(k) for the energy of an electron in the nth band.
2. Ψnk(r) = eik·runk(r), where unk(r) is periodic with the lattice periodicity.
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We have seen that close to a minimum (e.g. at k = 0) we can write

εn(k) = εn(0) +
h̄2

2
k ·m∗−1 · k. (6.61)

The form of this equation might lead us to write an effective Hamiltonian

Heff = εn(0) +
h̄2

2
(−i∇) ·m∗−1 · (−i∇) , (6.62)

and an effective Schrödinger equation

Heffϕ(r) = Eϕ(r). (6.63)

The solution ϕ(r) of (6.63) is not a true wave function for an electron. For
example, if we set ϕ(r) = V −1/2eik·r, we obtain E = εn(0) + h̄2

2 k ·m∗−1 · k.
However, the true wave function Ψ is obtained from the pseudo-wavefunction
ϕ by multiplying it by unk, the periodic part of the Bloch function.

So far, we have not really done anything new. However, if we introduce a
potential W (r) which is very slowly varying on the atomic scale, we can take
as the effective Hamiltonian

Heff = εn(0) +
h̄2

2
(−i∇) ·m∗−1 · (−i∇) +W (r). (6.64)

Then the solutions to (Heff − E)ϕ(r) = 0 will mix Bloch wave functions with
different values of k. The smooth function ϕ(r) is called the envelope function.
This approach can be justified rigorously if the perturbing potential W (r) and
the energy band εn(k) satisfy certain conditions.

It turns out that the effective Hamiltonian approach works not only in the
regime of the effective mass approximation. In fact, for a Bloch electron (in
band n) in the presence of a time independent vector potential A(r) and a
scalar potential ϕ(r, t), which is slowly varying in space and time, we may
define an effective Hamiltonian

Heff = εn

(
−i∇ +

e

c
A(r)

)
− eφ(r, t). (6.65)

This effective Hamiltonian leads to the semiclassical equation of motion

ṙ =
1
h̄
∇kεn(k) = vn(k) (6.66)

h̄k̇ = −eE− e

c
vn(k) × B, (6.67)

where E = −∇φ and B = ∇× A.
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Problems

6.1. For a one-dimensional δ-function potential V (z) = −λδ(z), show that
the lowest energy state occurs at ε0 = − h̄2κ2

2m , where | κ |= mλ
h̄2 . Determine

the normalized wave function Ψ0(z).

6.2. Consider a periodic one-dimensional potential

V (z) = −λ
∞∑

l=−∞
δ(z − la).

(a) Use the tight binding approximation (keeping overlap between near-
est neighbors only) to determine the energy ε0(k) as a function of
wave number k.

(b) Use the tight binding form of the wave function to express the Bloch
function in the form Ψ0(k, z) = eikzu0(k, z), where u0(k, z) is a periodic
function of z. Write down an expression for u0(k, z) valid in the region
0 ≤ z ≤ a.

6.3. A Wannier function for the nth band of a one-dimensional lattice can be
written as

an(z − la) =
1√
N

∑

k

e−iklaΨnk(z).

Here, Ψnk(z) is a Bloch function, an(z−la) a Wannier function, and k = 2π
Nan,

where −N
2 ≤ n ≤ N

2 − 1.

(a) Use the orthogonality relation 〈Ψnk|Ψnk′〉 = δkk′ to show that
Wannier functions on different sites are orthogonal, i.e.,

〈an(z − l′a)|an(z − la)〉 = δll′ .

(b) For the model described in Problem 2, determine the Wannier function
for the site at the origin, i.e., l = 0.

6.4. In the semiclassical treatment of Bloch electrons, one constructs wave
packets by making linear combinations of Bloch functions within a single band,
with a spread Δk in wave vectors about some particular value of k. The wave
packets are localized in coordinate space in a region Δxi (i = 1, 2, 3) centered
on some point r = (x1, x2, x3), and ΔxiΔki � 1. The electron velocity is
given by the group velocity vn(k) = 1

h̄∇kεn(k). (Let us omit the band index
n hereafter.) The time rate of change of the wave vector k is given by dk

dt = 1
h̄F,

where F is the external force on the electron.

(a) If F = −eEx̂, show that

kx(t) = kx(0) − eE

h̄
t.

What happens when kx(t) reaches the Brillouin zone boundary?



6.4 Semiclassical Approximation for Bloch Electrons 175

(b) If F = − e
cvn×Bẑ, the Lorentz force in a magnetic field B = Bẑ, show

that the electron moves on a path in k-space that is the intersection of a
plane kz = constant and a surface of constant energy ε(k) = constant.
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Summary

In this chapter, we studied more theories of band structure calculation and
semiclassical description of Bloch electrons. We first introduced orthogonal-
ized plane wave method for expanding the periodic part of the Bloch functions
and discussed pseudopotential method and k ·p effective mass theory as prac-
tical alternative ways of including the effects of periodic symmetry of crystal
potential. Then, the semiclassical wave packet picture is discussed to describe
the motion of the Bloch electrons in a given band. In addition, ideas of effec-
tive mass and hole are shown to be convenient in describing the behavior of
band electrons.

It often occurs that the series for u�(k, r) =
∑

K�′
C��′(k)eK�′ ·r converges

very slowly so that many different plane waves must be included in the expan-
sion. In an orthogonalized plane wave calculation, the periodic part of the
Bloch function is expanded in orthogonalized plane waves instead of in plane
waves. This improves the convergence. In many calculations, model pseudopo-
tentials W (r) are introduced in such a way that W (r) is taken to be a local
potential which has

1. A constant value V0 inside a core or radius d and
2. The actual potential V (r) for r > d.

Both V0 and d are used as adjustable parameters to fit the energy bands to
experimental observation.

In discussing properties of semiconductors, it is often more important to
have a single analytic description of the band structure very close to a conduc-
tion band minimum or valence band maximum than to have detailed numerical
calculations of En(k) and Ψnk throughout the Brillouin zone. In a k·p method,
energy eigenvalue E(n)

k is written as

E
(n)
k = E

(n)
0 +

h̄2

2
k ·m∗−1 · k,

where the inverse effective mass tensor (for the band n) is given by

m∗
ij
−1 = m−1δij +

2
m2

∑

l

〈
u

(n)
0 |pi|u(l)

0

〉〈
u

(l)
0 |pj |u(n)

0

〉

E
(n)
0 − E

(l)
0

.

The semiclassical wave packet picture can be used to describe the motion
of Bloch electrons in a given band in response to slowly varying perturbations,
and the group velocity of a wave packet gives

vn(k) =
1
h̄
∇kεn(k)

as the velocity of a Bloch electron of wave vector k in the nth band. In the
presence of a force F, we have k̇ = h̄−1F. The semiclassical description of
Bloch electrons satisfies the following rules:
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1. The band index n is a constant of the motion; no interband transitions are
allowed.

2. ṙ = vn(k) = 1
h̄∇kεn(k).

3. h̄k̇ = −e (E + 1
cvn(k) × B

)
.

4. The contribution of the nth band to the electron density is

2f0 (εn(k))
d3k

(2π)3
=

d3k/4π3

1 + exp [(εn(k) − μ) /kBT ]
.

For free electrons, electrons are not restricted to one band but move continu-
ously in k-space according to h̄k̇ = Force. For Bloch electrons k is restricted
to the first Brillouin zone and k ≡ k + K. Clearly the restriction to band
n requirement must break down when the gap EGap(k) becomes very small.
The conditions

eEa� [EGap(k)]2

EF
; h̄ωc � [EGap(k)]2

EF
.

must be satisfied for the semiclassical treatment of Bloch electrons to be valid.
Here, E is the electric field and a the atomic spacing. ωc is the electron
cyclotron frequency and EF the Fermi energy.

The equation of motion becomes

dvn
dt

= m∗
n
−1 · F

where the effective mass tensor is defined by
(
m∗
n
−1
)
ij

= 1
h̄2

∂2εn(k)
∂ki∂kj

.

The motion of a hole is described by

h̄k̇ = −e
(
E +

1
c
vh × B

)
; vh =

1
h̄
∇kεk; m∗

k = − 1
h̄2

∂2ε

∂k2
> 0.

Since a hole has a positive mass near the top of the band where an electron
has a negative mass, we have

dvh

dt
= m∗

k
−1 ·

[
eE +

e

c
vk × B

]
.

The effective Hamiltonian of Bloch electron is written, in the presence of
slowly varying potential W (r), as

Heff = εn(0) +
h̄2

2
(−i∇) ·m∗−1 · (−i∇) +W (r).

In the presence of a time-independent vector potential A(r) and a scalar
potential ϕ(r, t), which is slowly varying in space and time, we have an effective
Hamiltonian

Heff = εn

(
−i∇ +

e

c
A(r)

)
− eφ(r, t).
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This effective Hamiltonian leads to the semiclassical equation of motion

ṙ =
1
h̄
∇kεn(k) = vn(k) and h̄k̇ = −eE− e

c
vn(k) × B,

where E = −∇φ and B = ∇× A.
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Semiconductors

7.1 General Properties of Semiconducting Material

In earlier sections, we have seen that a perfect crystal will be

1. An insulator at T = 0 K, if there is a gap separating the filled and empty
energy bands.

2. A conductor at T = 0 K, if the conduction band is only partially occupied.

A special case of the insulating crystal is that of the semiconductor. In a
semiconductor, the gap separating the filled and empty bands is very small,
and at finite temperature some electrons from the filled valence band are
thermally excited across the energy gap giving ne(T ) electrons per unit volume
in the conduction band and nh(T ) holes per unit volume in the valence band
(of course ne = nh).

If we recall the expression for the conductivity of a free electron model

σ =
ne2τ

m
, (7.1)

where n is the number of carriers per unit volume, we find that different types
of materials can be described by different values of n. For a metal n � 1022

to 1023 cm−3 and is independent of temperature. For a semimetal n � 1018 to
1020 cm−3 and is also roughly temperature independent. For an insulator or
a semiconductor

n � n0e
−EGap

2kBT ,

where n0 � 1022 to 1023 cm−3 and the energy gap EGap is large (EGap ≥ 4 eV)
for an insulator and is small (EGap ≤ 2 eV) for a semiconductor.

At room temperature, kBT � 25 meV, so that e−
EGap
2kBT ≤ e−80 � 10−35 for

an insulator, while for a semiconductor e−
EGap
2kBT ≥ e−20 � 10−9. The factor

10−35 even when multiplied by 1023cm−3 gives n � 0 for an insulator. With
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TT

Fig. 7.1. Temperature dependence of carrier concentration (a) and electrical
conductivity (b) of a typical semiconductor

0.1 eV ≤ EGap < 2.0 eV the carrier concentration satisfies 1022 cm−3 > n >
1013 cm−3. The relaxation time τ in the expression for the conductivity is
associated with scattering events that dissipate current. These are scattering
due to impurities, defects, and phonons. At room temperature, the relaxation
time τ of a very pure material will be dominated by phonon scattering. For
phonon scattering in this range of temperature τ ∝ T−1. Therefore, in a metal
the conductivity σ decreases as the temperature is increased. For a semicon-
ductor, τ behaves the same as in a metal for the same temperature range.
However, the carrier concentration n increases as the temperature increases.
Since n increases exponentially with 1

kBT
, this increase outweighs the decrease

in relaxation time, which is a power law, and σ increases with increasing T .

Intrinsic Electrical Conductivity

In a very pure sample, the conductivity of a semiconductor is due to the
excitation of electrons from the valence to the conduction band by ther-
mal fluctuations. For a semiconductor at room temperature the resistivity
is between 10−2 Ω-cm and 109 Ω-cm depending on the band gap of the mate-
rial. In contrast, a typical metal has a resistivity of 10−6 Ω-cm and a typical
insulator satisfies 1014 Ω-cm ≤ ρ ≤ 1022 Ω-cm. A plot of carrier concentration
versus temperature and a plot of conductivity versus temperature is shown in
Fig. 7.1a and b.

7.2 Typical Semiconductors

Silicon and germanium are the prototypical covalently bonded semiconduc-
tors. In our discussions of energy bands we stated that their valence band
maxima were at the Γ-point. The valence band originates from atomic p-states
and is threefold degenerate at Γ. Group theory tells us that this degeneracy
gives rise to light hole and heavy hole bands, and that an additional splitting



7.2 Typical Semiconductors 181

Fig. 7.2. Constant energy surfaces near the conduction band minima for Si

occurs if spin–orbit coupling is taken into account. The conduction band arises
from an atomic s-state, but the minimum does not occur at the Γ-point. In Si,
the conduction band minimum occurs along the line Δ, at about 90% of the
way to the zone boundary. This gives six conduction band minima or valleys.
(see Fig. 7.2). In the effective mass approximation, these valleys have a longi-
tudinal mass ml � 0.98me along the axis and a transverse mass mt � 0.19me

perpendicular to it. Here, me is the mass of a free electron.
For Ge, the conduction band minimum is located at the L-point. This gives

the Ge conduction band four minima (one half of each valley is at the zone
boundary in the 〈111〉 directions). In Ge, ml � 1.64me and mt = 0.08me.
Silicon and germanium are called indirect gap semiconductors because the
valence band maximum and conduction band minimum are at different point
in k-space. Materials like InSb, InAs, InP, GaAs, and GaSb are direct gap
semiconductors because both conduction minimum and valence band maxi-
mum occur at the Γ-point. The band structures of many III–V compounds
are similar; the sizes of energy gaps, effective masses, and spin splittings differ
but the overall features are the same as those of Si and Ge (see Table 7.1).
The energy gap is usually determined either by optical absorption or by mea-
suring the temperature dependence of the conductivity. In optical absorption,
the initial and final state must have the same wave vector k if no phonons
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Table 7.1. Comparison of energy gaps of Si, Ge, diamond, and various III–V
compound semiconductors

Crystal Type of energy gap EG[eV] at 0K

Si Indirect 1.2
Ge Indirect 0.8
InSb Direct 0.2
InAs Direct 0.4
InP Direct 1.3
GaP Indirect 2.3
GaAs Direct 1.5
GaSb Direct 1.8
AlAs Indirect 2.24
GaN Direct 3.5
ZnO Direct 3.4
Diamond Indirect 5.48

are involved in the absorption process because the kph vector of the photon
is essentially zero on the scale of electron k vectors. This leads to a sharp
increase in absorption at the energy gap of a direct band gap material. For
an indirect gap semiconductor, the absorption process is phonon-assisted. It
is less abrupt and shows a temperature dependence. The temperature depen-

dence of the conductivity varies, aswe shall show, as e−
EGap
2kBT where EGap is the

minimum gap, the energy difference between the conduction band minimum
and the valence band maximum.

7.3 Temperature Dependence of the Carrier
Concentration

Let the conduction and valence band energies be given, respectively, by

εc(k) = εc +
h̄2k2

2mc
(7.2)

and

εv(k) = εv − h̄2k2

2mv
. (7.3)

The minimum energy gap is EGap = εc − εv. The density of states in the
conduction band is given by

gc(ε)dε =
2

(2π)3

∫

ε<εc(k)<ε+dε

d3k. (7.4)
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Since, εc(k) is isotropic d3k = 4πk2dk and dε = h̄2

mc
kdk. Substituting into

(7.4) gives

gc(ε) =
√

2m3/2
c

π2h̄3 (ε− εc)
1/2 . (7.5)

In a similar way, we have

gv(ε) =
√

2m3/2
v

π2h̄3 (εv − ε)1/2 . (7.6)

The number of electrons per unit volume in the conduction band is given by

nc(T ) =
∫ ∞

εc

dεgc(ε)f0(ε), (7.7)

where f0(ε) = 1

e
ε−ζ
Θ +1

is the Fermi distribution function. The concentration

of holes in the valence band is written by

pv(T ) =
∫ εv

−∞
dεgv(ε) [1 − f0(ε)] . (7.8)

Note that 1 − f0(ε) = 1/
[
e

ζ−ε
Θ + 1

]
. Clearly nc(T ) and pv(T ) depend on the

value of the chemical potential ζ. We will make the simplifying assumption
that εc − ζ � Θ and ζ − εv � Θ, where Θ is, of course, kBT . This nondegen-
eracy assumption makes the calculation much simpler, and we will evaluate
ζ in the course of the calculation and check if the assumption is valid. With
this assumption, we can write

f0(ε) � e−
ε−ζ
Θ ,

1 − f0(ε) � e−
ζ−ε
Θ (7.9)

The first line of (7.9) can be rewritten as f0(ε) � e−
ε−εc

Θ e−
εc−ζ

Θ . The second
factor is independent of ε and can be taken out of the integral in (7.7) to
obtain

nc(T ) = Nc(T )e−
εc−ζ

Θ , (7.10)

where
Nc(T ) =

∫ ∞

εc

dεgc(ε)e−
ε−εc

Θ . (7.11)

In a similar manner, one can obtain

pv(T ) = Pv(T )e−
ζ−εv

Θ , (7.12)

and
Pv(T ) =

∫ εv

∞
dεgv(ε)e−

εv−ε
Θ . (7.13)
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Because the density of states varies as gc ∝ (ε− εc)
1/2 and gv ∝ (εv − ε)1/2,

the integral for Nc(T ) and Pv(T ) can be evaluated exactly by using the fact
that

∫∞
0 dx

√
xe−x = 1

2

√
π. The results are

Nc(T ) =
1
4

(
2mcΘ
πh̄2

)3/2

. (7.14)

The result for Pv(T ) differs only in having mv replace mc. It is sometimes
convenient to use the practical expression

Nc(T ) � 2.5
(mc

m

)3/2
(

T

300K

)3/2

× 1019 cm−3. (7.15)

Again for Pv(T ) we need only replace mc by mv. Note the very important
fact that the product nc(T )pv(T ) is independent of ζ, so that

nc(T )pv(T ) = Nc(T )Pv(T )e−EGap/Θ. (7.16)

7.3.1 Carrier Concentration: Intrinsic Case

In the absence of impurities, the only carriers are thermally excited electron–
hole pairs, so that nc(T ) = pv(T ); this is defined as ni(T ), where i stands for
intrinsic. From (7.16), we have

ni(T ) = [Nc(T )Pv(T )]1/2 e−EGap/2Θ. (7.17)

To obtain the value of ζ for this case (we will call it ζi, i for the intrinsic case)
we note that ni(T ) = nc(T ), or

[Nc(T )Pv(T )]1/2 e−EGap/2Θ = Nc(T )e−(εc−ζi)Θ. (7.18)

This can be rewritten as

[Pv(T )/Nc(T )]1/2 = e
ζi−εc+ 1

2 EGap
Θ . (7.19)

Solving for ζi gives

ζi = εc − 1
2
EGap +

3
4
Θ ln

(
mv

mc

)
. (7.20)

In writing (7.20) we have used [Pv(T )/Nc(T )] = (mv/mc)
3/2. In terms of εv

we can express (7.20) as

ζi = εv +
1
2
EGap +

3
4
Θ ln

(
mv

mc

)
. (7.21)

If mv = mc, then ζi always sits in mid-gap. If mv �= mc, ζi sits at mid-
gap at Θ = 0, but moves away from the higher density of states band as
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Θ is increased. For EGap � 1 eV, the separations ζi − εv and εc − ζi are
large compared to Θ for any reasonable temperature, so our assumption is
justified.

7.4 Donor and Acceptor Impurities

Si and Ge have four valence electrons. If a small concentration of a column V
element replaces some of the host atoms, then there is one electron more than
necessary for the formation of the covalent bonds. The extra electron must be
placed in the conduction band, and such atoms like As, Sb, and P are known
as donors. For column III elements (Al, Ga, In, etc.) there is a shortage of one
electron, thus, the valence band is not full and a hole exists for every acceptor
atom.

Let us consider the case of donors (for acceptors, the same picture applies if
electrons in the conduction band are replaced by holes in the valence band and,
as an example, As+ ions are replaced by Al− ions). To a first approximation
the extra electron of the As atom will go into the conduction band of the host
material. This would give one conduction electron for each impurity from the
column V. However, these conduction electron leaves behind an As+ ion, and
the As+ ion acts as a center of attraction which can bind the conduction
electron similar to the binding of an electron by a proton to form a hydrogen
atom.

For a hydrogen atom, the Hamiltonian for an electron moving in the
presence of a proton located at r = 0 is

H =
p2

2m
− e2

r
. (7.22)

The Schrödinger equation has, for its ground state eigenfunction and eigen-
value,

Ψ0 = N0e−r/aB and E0 = − e2

2aB
, (7.23)

where aB = h̄2

me2 is the Bohr radius (aB ∼ 0.5Å).
For a conduction electron in the presence of a donor ion, we have

H =
p2

2m∗
c

− e2

εsr
. (7.24)

Here, m∗
c is the conduction band effective mass and εs is the background

dielectric constant of the semiconductor. The ground state will have

Ψ0 = N0e−r/a
∗
B and E0 = − e2

2εsa∗B
. (7.25)

The effective Bohr radius a∗B is given by a∗B = h̄2εs
m∗ce2

. For a typical semi-
conductor m∗

c � 0.1m and εs � 10. This gives a∗B ≈ 102aB � 50 Å and
E0 ≈ −10−3 e2

2aB
� −13 meV.
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When donors are present, the chemical potential ζ will move from its
intrinsic value ζi to a value near the conduction band edge. We know that
nc(T ) = Nc(T )e−

εc−ζ
Θ ; we can define the intrinsic carrier concentration ni(T )

by ni(T ) = Nc(T )e−
εc−ζi

Θ . Then we can write for the general case

nc(T ) = ni(T )e
ζ−ζi

Θ and pv(T ) = ni(T )e−
ζ−ζi

Θ . (7.26)

If ζ = ζi, nc(T ) = pv(T ) = ni(T ). If ζ �= ζi, then nc(T ) �= pv(T ) and we can
write

Δn ≡ nc(T ) − pv(T ) = 2 ni sinh
(
ζ − ζi

Θ

)
= nc − n2

i

nc
. (7.27)

The product nc(T )pv(T ) is still independent of ζ so we can write nc(T )pv(T ) =
n2

i . Using pv = n2
i

nc(T ) , (7.27) gives a quadratic equation for nc

n2
c − Δnnc − n2

i = 0

whose solution is

nc =
Δn
2

+

√(
Δn
2

)2

+ n2
i . (7.28)

We take the positive(+) root because donor impurities must increase the
concentration nc(T ).

7.4.1 Population of Donor Levels

If the concentration of donors is sufficiently small (Nd ≤ 1019cm−3) that inter-
actions between donor electrons can be neglected, then the average occupancy
of a single donor impurity state is given by

〈nd〉 =

∑
j Nje

−β(Ej−ζNj)

∑
j e−β(Ej−ζNj)

. (7.29)

Here, β = 1/Θ and the possible values of Nj are

1. Nj = 0 when donor atom is empty.
2. Nj = 1 when donor atom is occupied by an electron of spin σ.
3. Nj = 1 when donor atom is occupied by an electron of spin −σ.
4. Nj = 2 when donor atom is occupied by two electrons of spin σ and −σ.

There is actually a large repulsion (repulsive energy U) between the electrons
in case of Nj = 2, so that case of Nj = 2 does not actually occur. If we use
the cases listed above in (7.29), we obtain

〈nd〉 =
0 + 2e−β(εd−ζ) + 2e−β(2εd+U−2ζ)

1 + 2e−β(εd−ζ) + e−β(2εd+U−2ζ)
. (7.30)
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If U is much larger than the other energies, then the terms involving U can
be neglected; the following result is obtained:

〈nd〉 =
1

1
2eβ(εd−ζ) + 1

. (7.31)

The numerical factor of 1
2 in this expression comes from the fact that either

spin up or spin down states can be occupied but not both.

7.4.2 Thermal Equilibrium in a Doped Semiconductor

Let us assume that we have Nd donors and Na acceptors per unit volume, and
let us take Nd � Na. This material would be doped n-type since it has many
more donors than acceptors. The energies of interest are shown in Fig. 7.3.

At zero temperature, there must be

• nc = 0, no electrons in the conduction band
• pv = 0, no holes in the valence band
• pa = 0, no holes bound to acceptors and
• nd = Nd −Na, electrons bound to donor atoms.

The (Nd −Na) donors with electrons bound to them are neutral. The remain-
ing Na donors have lost their electrons to the Na acceptors. Thus we have Na

positively charged donor ions and Na negatively charged acceptor ions per
unit volume. The chemical potential must clearly be at the donor level since
they are partially occupied, and only at the energy of ε = ζ can the Fermi
function have a value different from unity or zero at T = 0 .

At a finite temperature, we have

nc(T ) = Nc(T )e−β(εc−ζ), (7.32)

pv(T ) = Pv(T )e−β(ζ−εv), (7.33)

nd(T ) =
Nd

1
2eβ(εd−ζ) + 1

, (7.34)

Fig. 7.3. Impurity levels in semiconductors doped with Nd donors and Na acceptors
per unit volume
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and
pa(T ) =

Na

1
2eβ(ζ−εa) + 1

. (7.35)

In addition to these four equations, we must have charge neutrality so that

nc + nd = Nd −Na + pv + pa (7.36)

Here, nc+nd is the number of electrons that are either in the conduction band
or bound to a donor. If we forget about holes, nc + nd must equal Nd − Na,
the excess number of electrons introduced by the impurities. For every hole,
either bound to an acceptor or in the valence band, we must have an addi-
tional electron contributing to nc + nd. Equations (7.32)–(7.36) form a set of
five equations in five unknowns. We know β, Nd, Na, εc, εv, εd, and εa; the
unknowns are nc(T ), pv(T ), nd(T ), pa(T ), and ζ(T ). Although the equations
can easily be solved numerically, it is worth looking at the simple case where
εd−ζ � Θ and ζ−εa � Θ. This does not occur at T = 0 since ζ = εd in that
case; nor does it apparently occur at very high temperature. However, there is
a range of temperature where the assumption is valid. With this assumption

nd(T ) � 2 Nde−β(εd−ζ) � Nd, (7.37)

and
pa(T ) � 2 Nae−β(ζ−εa) � Na. (7.38)

We know from (7.36)–(7.38) that

Δn ≡ nc − pv = Nd −Na + pa − nd ≈ Nd −Na. (7.39)

From (7.27) Δn = 2 ni sinhβ (ζ − ζi), and for low concentrations of impuri-
ties at sufficiently high temperatures β (ζ − ζi) must be small. We can then
approximate sin hx by x and obtain

Δn � 2 niβ (ζ − ζi) . (7.40)

We know that

nc(T ) = ni(T )eβ(ζ−ζi) � ni [1 + β (ζ − ζi)] . (7.41)

Using (7.39)–(7.41) gives

nc � ni +
1
2

(Nd −Na) , (7.42)

and
pv � ni − 1

2
(Nd −Na) . (7.43)

For low concentrations of donors and acceptors at reasonably high temper-
atures Δn � ni(T ), so that 2β (ζ − ζi) � 1 and ζ is relatively close to ζi.
Because εd − ζi is an appreciable fraction of the band gap the assumptions
β (εd − ζ) � 1 and β (ζ − εa) � 1 are valid.
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7.4.3 High-Impurity Concentration

For high donor concentration Nd − Na � ni; then β (ζ − εa) � 1 since the
chemical potential moves from midgap closer to the conduction band edge.
Because

pa(T ) � 2 Nae−β(ζ−εa), (7.44)

and
pv(T ) = nie−β(ζ−ζi) = Pv(T )e−β(ζ−εv), (7.45)

pa must be very small compared to Na and pv must be very small compared
to ni which is, in turn, small compared to Nd − Na. That is, pa � Na and
pv � Nd −Na. Equation (7.36) then gives

nc + nd � Nd −Na. (7.46)

But nd(T ) = Nd
1
2 eβ(εd−ζ)+1

. If β(εd − ζ) � 1, then nd � Nd, and we find

nc � Nd −Na, (7.47)

pv � n2
i

Nd −Na
≈ 0, (7.48)

pa � 2 Nae−β(ζ−εa) ≈ 0, (7.49)
nd � 2 Nde−β(εd−ζ) ≈ 0. (7.50)

7.5 p–n Junction

The p–n junction is of fundamental importance in understanding semicon-
ductor devices, so we will spend a little time discussing the physics of
p–n junctions. We consider a material with donor concentration Nd(z) and
acceptor concentration Na(z) given by

Nd(z) = NdΘ(z) and Na(z) = Na [1 − Θ(z)] . (7.51)

We know that for z � a, where a is the atomic spacing the chemical potential
must lie close to the donor levels and for z � −a it must lie close to the
acceptor levels. Since the chemical potential must be constant (independent
of z) for the equilibrium case, we expect a picture like that sketched in Fig. 7.4.
On the left we have a normal p-type material, and at low temperature, the
chemical potential must sit very close to the acceptor levels which are shown
by the dots at the chemical potential ζ. One the right, the chemical potential
must be close to the donor levels (shown as dots at ε = ζ) which are near the
conduction band edge. In between, there must be a region in which there is a
built-in potential φ(z) that results from the transfer of electrons from donors
on the right to acceptors on the left in a region close to z = 0. We want to
calculate this potential φ(z).
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Fig. 7.4. Impurity levels and chemical potential across the p–n junction

7.5.1 Semiclassical Model

The effective Hamiltonian describing the conduction or valence band of a
system containing a p-n junction can be written

H = ε (−ih̄∇) − eφ(z), (7.52)

where φ(z) is an electrostatic potential that must be slowly varying on the
atomic scale in order for the semiclassical approximation to be valid. The
energies of the conduction and valence band edges will be given by

εc(z) = εc − eφ(z),

εv(z) = εv − eφ(z). (7.53)

The concentration of electrons and holes will vary with position z as

nc(z) = Nc(T )e−β[εc−eφ(z)−ζ],
pv(z) = Pv(T )e−β[ζ−εv+eφ(z)]. (7.54)

The most important case to study is the high concentration limit where
Nd � ni and Na � ni on the right and left sides of the junction, respec-
tively. In that case, the concentration of electrons and holes will vary with
position z as

lim
z→∞nc(z) = Nc(T )e−β[εc−eφ(∞)−ζ] ≈ Nd,

lim
z→−∞ pv(z) = Pv(T )e−β[ζ−εv+eφ(−∞)] ≈ Na. (7.55)

These two equations can be combined to give

eΔφ = e [φ(∞) − φ(−∞)] = EGap + Θ ln
[

NdNa

Nc(T )Pv(T )

]
. (7.56)
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The potential φ(z) must satisfy Poisson’s equation given by

∂2φ(z)
∂z2

= −4πρ(z)
εs

, (7.57)

where the charge density ρ(z) is given by

ρ(z) = e [Nd(z) −Na(z) − nc(z) + pv(z)] . (7.58)

In using (7.55), we are assuming that all donors and acceptors are ionized
[since nc(∞) = Nd, all the donor electrons are in the conduction band so the
donors must be positively charged ]. Thus we have

Nd(z) = NdΘ(z), (7.59)

Na(z) = Na [1 − Θ(z)] , (7.60)

nc(z) = Nde−β[φ(∞)−φ(z)], (7.61)

pv(z) = Nae−β[φ(z)−φ(−∞)]. (7.62)

Equations (7.57)–(7.62) form a complicated set of nonlinear equations. The
solution is simple if we assume that the change in φ(z) occurs entirely over a
relatively small region near the junction known as the depletion region.

We will assume that

φ(z) = φ(−∞) for z < −dp; region I
φ(z) = φ(∞) for z > dn; region II
φ(z) varies with z for − dp < z < dn; region III (7.63)

The length dp (or dn) is called the depletion length of the p-type (or n-type)
region. In region II the concentration of electron in the conduction band nc is
equal to the number of ionized donors Nd so that ρII(z) = −enc + eNd = 0.
In region I, the concentration of holes pv is equal to the number of ionized
acceptors so that ρI(z) = epv−eNa = 0. In region III, there are no electrons or
holes (the built-in junction potential sweeps them out) so pv(z) = nc(z) = 0
in this region. Therefore, for ρ(z) we have

ρIII(z) =
{

+eNd for 0 < z < dn,
−eNa for − dp < z < 0. (7.64)

We can integrate Poisson’s equation. In the region 0 < z < dn, we have

∂2φ(z)
∂z2

= −4πe
εs
Nd, (7.65)

and integration gives
∂φ(z)
∂z

= −4πe
εs
Ndz + C1. (7.66)
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Here, C1 is a constant of integration. Integrating (7.66) gives

φ(z) = −2πeNd

εs
z2 + C1z + C2. (7.67)

We choose the constants so that φ(z) evaluated at z = dn has the value φ(∞)
and ∂φ(z)

∂z = 0 at z = dn. This gives

φ(z) = φ(∞) − 2πeNd

εs
(z − dn)2, for 0 < z < dn. (7.68)

Doing exactly the same thing in the region −dp < z < 0 gives

φ(z) = φ(−∞) +
2πeNa

εs
(z + dp)2, for − dp < z < 0. (7.69)

Of course, for z > dn, φ(z) = φ(∞) and for z < −dp, φ(z) = φ(−∞)
(see Fig. 7.5).
Charge conservation requires that

Nddn = Nadp. (7.70)

This condition insures the continuity of ∂φ
∂z at z = 0. The continuity of φ(z)

at z = 0 requires that

φ(∞) − 2πeNd

εs
d2
n = φ(−∞) +

2πeNa

εs
d2
p. (7.71)

We can solve (7.71) for Δφ ≡ φ(∞) − φ(−∞) to obtain

Δφ =
2πe
εs

[
Ndd

2
n +Nad

2
p

]
. (7.72)

Combining (7.70) and (7.72) allows us to determine dn and dp

dn =
[
(Na/Nd) εsΔφ
2πe(Na +Nd)

]1/2

. (7.73)

c
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v

v

Fig. 7.5. Band bending across the p–n junction
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The equation for dp is obtained by interchanging Na and Nd. If Na were equal
to Nd then dn = dp = d and is given by

d �
(
εseΔφ
4πe2N

)1/2

≈
(
εsEGap

4πe2N

)1/2

, (7.74)

where N = Nd = Na. In the last result, we have simply put eΔφ ≈ EGap.

7.5.2 Rectification of a p–n Junction

The region of the p–n junction is a high resistance region because the carrier
concentration in the region (−dp < z < dn) is depleted. When a voltage V
is applied, almost all of the voltage drop occurs across the high resistance
junction region. We write Δφ in the presence of an applied voltage V as

Δφ = (Δφ)0 − V. (7.75)

Here, (Δφ)0 is, of course, the value of Δφ when V = 0. The sign of V is
taken as positive (forward bias) when V decreases the voltage drop across the
junction. The depletion layer width dn changes with voltage

dn(V ) = dn(0)
[
1 − V

(Δφ)0

]1/2

. (7.76)

A similar equation holds for dp(V ). When V = 0, there is no hole current Jh

and no electron current Je. When V is finite both Je and Jh are nonzero. Let
us look at Jh. It has two components:

Generation current This current results from the small concentration of holes
on the n-side of the junction that are created to be in thermal equilib-
rium, i.e., to have ζ remain constant. These holes are immediately swept
into the p-side of the junction by the electric field of the junction. This
generation current is rather insensitive to applied voltage V , since the
built-in potential (Δφ)0 is sufficient to sweep away all the carriers that
are thermally generated.

Recombination current This current results from the diffusion of holes from
the p-side to the n-side. On the p-side there is a very high concentration
of holes. In order to make it cross the depletion layer (and recombine with
an electron on the n-side), a hole must overcome the junction potential
barrier −e [(Δφ)0 − V ]. This recombination current does depend on V as

J rec
h ∝ e−e[(Δφ)0−V ]/Θ. (7.77)

Here, J rec
h indicates the number current density of holes from the p- to

n-side.
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Θ−1)(

Fig. 7.6. Current–voltage characteristic across the p–n junction

Now, at V = 0 these two currents must cancel to give Jh = J rec
h − Jgen

h = 0
We can write

Jh = Jgen
h

[
eeV/Θ − 1

]
. (7.78)

The electrical current density due to holes is jh = eJh, and it vanishes at
V = 0 and has the correct V dependence for J rec

h . If we do the same for
electrons, we obtain the current density Je = Jgen

e

[
eeV/Θ − 1

]
, which flows

oppositely to the Jh. The electrical current density of electrons je is parallel to
the jh. Therefore, the combined electrical current density becomes as follows:

j = e (Jgen
h + Jgen

e )
(
eeV/Θ − 1

)
. (7.79)

A plot of j versus V looks as shown in Fig. 7.6. The applied-voltage behavior
of an electrical current across the p–n junction is called rectification because
a circuit can easily be arranged in which no current flows when V is negative
(smaller than some value) but a substantial current flows for positive applied
voltage.

7.5.3 Tunnel Diode

In the late 1950s, Leo Esaki1 was studying the current voltage characteristics
of very heavily doped p–n junctions. He found and explained the j−V charac-
teristic shown in Fig. 7.7. Esaki noted that, for very heavily doped materials,
impurity band was formed and one would obtain degenerate n-type and p-
type regions where the chemical potential ζ was actually in the conduction
band on the n-side and in the valence band on the p-side as shown in Fig. 7.8.
For a forward bias the electrons on the n-side can tunnel through the energy
gap into the empty states (holes) in the valence band. This current occurs
only for V > 0, and it cuts off when the voltage V exceeds the value at

1 L. Esaki, Phys. Rev. 109, 603–604 (1958).
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Fig. 7.7. Current–voltage characteristic across a heavily doped p–n junction

c

v

Fig. 7.8. Chemical potential across the heavily doped p–n junction

which εc(∞) = εv(−∞). When the tunnel current is added to the normal p–n
junction current, the negative resistance region shown in Fig. 7.7 occurs.

7.6 Surface Space Charge Layers

The metal–oxide–semiconductor (MOS) structure is the basis for all of current
microelectronics. We will consider the surface space charge layers that can
occur in an MOS structure. Assume a semiconductor surface is produced
with a uniform and thin insulating layer (usually on oxide), and then on top
of this oxide a metallic gate electrode is deposited as is shown in Fig. 7.9.

In the absence of any applied voltage, the bands line up as shown in
Fig. 7.10. If a voltage is applied which lowers the Fermi level in the metal
relative to that in the semiconductor, most of the voltage drop will occur
across the insulator and the depletion layer of the semiconductor.

For a relatively small applied voltage, we obtain a band alignment as shown
in Fig. 7.11. In the depletion layer all of the acceptors are ionized and the hole
concentration is zero since the field in the depletion layer sweeps the holes into
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Fig. 7.9. Metal–oxide–semiconductor structure

c

v

Fig. 7.10. Band edge alignment across an MOS structure

Fig. 7.11. Band alignment across an MOS structure in the presence of a small
applied voltage

the bulk of the semiconductor. The normal component of the displacement
field D = εE must be continuous at the semiconductor–oxide interface, and
the sum of the voltage drop Vd across the depletion layer and Vox across the
oxide must equal the applied voltage Vg. If we take the electrostatic potential
to be φ(z), then

φ(z) = φ(∞) for z > d,

φ(z) = φ(∞) +
2πeNa

εs
(z − d)2 for 0 < z < d. (7.80)
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The potential energy V is −eφ. Vox is simply Eoxt, where Eox and t are the
electric field in the oxide and the thickness of the oxide layer, respectively.
Equating ε0Eox to −εsφ′(z = 0) gives

e
Vox

t
ε0 = 4πe2Nad. (7.81)

Equation (7.81) gives us d in terms of Vox. Adding Vox to the voltage drop
2πeNa
εs

d2 across the depletion layer gives

Vox = Vg − 2πeNa

εs
d2. (7.82)

Note that dmust grow as Vg increases since the voltage drop is divided between
the oxide and the depletion layer. The only way that Vd can grow, since Na is
fixed, is by having d grow. The surface layer just discussed is called a surface
depletion layer since the density of holes in the layer is depleted from its bulk
value. For a gate voltage in the opposite direction the bands look as shown
in Fig. 7.12. Here, the surface layer will have an excess of holes either bound
to the acceptors or in the valence band. This is called an accumulation layer
since the density of holes is increased at the surface. If the gate voltage V g is
increased to a large value in the direction of depletion, one can wind up with
the conduction band edge at the interface below ζs, the chemical potential of
the semiconductor. This is shown in Fig. 7.13.

c

v

Fig. 7.12. Band alignment across an MOS structure in the presence of a small
negative gate voltage

c

v

Fig. 7.13. Band alignment across an MOS structure in the presence of a large
applied voltage
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Fig. 7.14. Band edge near the interface of the semiconductor–insulator in the MOS
structure in the presence of a large applied voltage

Now, there can be electrons in the conduction band because ζs is higher
than εc(z) evaluated at the semiconductor–oxide interface. The part of the
diagram near this interface is enlarged in Fig. 7.14. This system is called a
semiconductor surface inversion layer because in this surface layer we have
trapped electrons (minority carriers in the bulk). The motion of the electrons
in the direction normal to the interface is quantized, so there are discrete
energy levels ε0, ε1, . . . forming subband structure. If only ε0 lies below the
chemical potential and ε1 − ζ � 0, the electronic system behaves like a two-
dimensional electron gas (2DEG)because

ε = ε0 +
h̄2

2m∗
c

(
k2
x + k2

y

)
, (7.83)

and

Ψn,kx,ky =
1
L

ei(kxx+kyy)ξn(z). (7.84)

Here, ξn(z) is the nth eigenfunction of a differential equation given by
[

1
2m∗

c

(
−ih̄

∂

∂z

)2

+ Veff(z) − εn

]

ξn(z) = 0. (7.85)

In (7.85) the effective potential Veff(z) must contain contributions from the
depletion layer charge, the Hartree potential of the electrons trapped in the
inversion layer, an image potential if the dielectric constants of the oxide
and semiconductor are different, and an exchange–correlation potential of the
electrons with one another beyond the simple Hartree term. Because the elec-
trons are completely free to move in the x−y plane, but “frozen” into a single
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quantized level ε0 in the z-direction, the z-degree of freedom is frozen out
of the problem, and in this sense the electrons behave as a two-dimensional
electron gas. We fill up a circle in kx − ky space up to kF, and

2
∑

kx,ky
ε<εF

1 = N, (7.86)

giving 2
(
L
2π

)2
πk2

F = N . This means that k2
F = 2πns, where ns ≡ N/L2

is the number of electrons per unit area of the inversion layer. Of course
εF ≡ h̄2k2

F
2m∗c

= ζ − ε0.
The potential due to the depletion charge is calculated exactly as before.

The Hartree potential is a solution of Poisson’s equation given below

∂2

∂z2
VH = −4πe2

εs
ρe(z). (7.87)

The electron density is given by

ρe(z) =
∑

n,k

f0(εnk) |Ψnk(z)|2 , (7.88)

where Ψnk(z) = L−1ξn(z)eik·r is the envelope wave function for the electrons
in the effective potential. The exchange–correlation potential Vxc is a func-
tional of the electron density ρe(z). This surface inversion layer system is the
basis of all large scale integrated circuit chips that we use every day. The
basic unit is the MOS field effect transistor (MOSFET) shown in Fig. 7.15.
The source–drain conductivity can be controlled by varying the applied gate
voltage Vg. This allows one to make all kinds of electronic devices like oscil-
lators, transistors etc. This was an extremely active field of semiconductor

g

Fig. 7.15. Schematic diagram of the metal–oxide–semiconductor field effect
transistor
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physics from the late 60’s till the present time. Some basic problems that
were investigated include:

• Transport along the layer
surface electron density ns and relaxation time τ as a function of the gate
voltage Vg, cyclotron resonance, localization, magnetoconductivity, and
Hall effect.

• Transport perpendicular to the layer
optical absorption, Raman scattering, coupling to optical phonons, intra
and intersubband collective modes.

• Many-body effects on subband structure and on effective mass and effective
g-value.

7.6.1 Superlattices

By novel growth techniques like molecular beam epitaxy (MBE) novel struc-
tures can be grown almost one atomic layer at a time. The requirements for
such growth are

1. The lattice constants of the two materials must be rather close. Otherwise,
large strains lead to many crystal imperfections.

2. The materials must form appropriate bonds with one another.

One very popular example is the GaAs–AlAs system shown in Fig. 7.16. A
single layer of GaAs in an AlAs host would be called a quantum well. A
periodic array of such layers is called a superlattice. It can be thought of as a
new material with a supercell in real space that goes from one GaAs to AlAs
interface to the next GaAs to AlAs interface.

7.6.2 Quantum Wells

If a quantum well is narrow, it will lead to quantized motion and subbands
just as the MOS surface inversion layer did (see, for example, Fig. 7.17). For

Fig. 7.16. Schematic diagram of the GaAs–AlAs superlattice system
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(v)
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(c)
0ε

(c)
1ε

Fig. 7.17. Schematic diagram of the subbands formation in a quantum well of the
GaAs–AlAs structure

FREE CARRIERS

Fig. 7.18. Schematic diagram of a quantum well in a modulation doped
GaAs/Ga1−xAlxAs quantum well

the subbands in the conduction band we have

ε(c)n (k) = ε(c)n +
h̄2

2m∗
c

(
k2
x + k2

y

)
. (7.89)

The band offsets are difficult to predict theoretically, but they can be mea-
sured.

7.6.3 Modulation Doping

The highest mobility materials have been obtained by growing modulation
doped GaAs/Ga1−xAlxAs quantum wells. In these materials, the donors are
located in the GaAlAs barriers, but no closer than several hundred Angstroms
to the quantum well. The bands look as shown in Fig. 7.18. A typical sample
structure would look like GaAlAs with Nd donors/cm3 ‖ pure GaAlAs of
20 nm thick // GaAs of 10 nm thick // pure GaAlAs of 20 nm thick // GaAlAs
with Nd donors/cm3 (see, e.g., Fig. 7.19). Because the ionized impurities are
rather far away from the quantum well electrons, ionized impurity scattering
is minimized and very high mobilities can be attained.

7.6.4 Minibands

When the periodic array of quantum wells in a superlattice has very wide
barriers, the subband levels in each quantum well are essentially unchanged
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 nm  nm nm

d d

Fig. 7.19. Schematic layered structure of a typical modulation doped GaAs/
Ga1−xAlxAs quantum well system

(see, for example, Fig. 7.20). However, a new periodicity has been introduced,
so we have a quantum number kz that has to do with the eigenvalues of the
translation operator.

TaΨnk(z) = eikzaΨnk(z) (7.90)

This looks just like the problem of atomic energy levels that give rise to
band structure when the atoms are brought together to form a crystal. For
very large values of the barrier width, no tunneling occurs, and the minibands
are essentially flat as is shown in Fig. 7.21. The supercell in real space extends
from z = 0 to z = a. The first Brillouin zone in k-space extends −π

a ≤ kz ≤ π
a .

The minibands εn(kz) are flat if the barriers are so wide that no tunneling
from one quantum well to its neighbor is possible. When the barriers are nar-
rower and tunneling can take place, the flat bands become kz-dependent. One
can easily show that in tight binding calculation one would get bands with
sinusoidal shape as shown in Fig. 7.22 below. Of course, the same band struc-
ture would result from taking free electrons moving in a periodic potential

Fig. 7.20. Schematic subband alignments in a superlattice of supercell width a

Fig. 7.21. Schematic miniband alignment in a superlattice of very large barrier
width
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Fig. 7.22. Miniband structure in a superlattice of very narrow barrier width

V (r) =
∑

n

Vn ei 2π
a nz. (7.91)

During the past 20 years, there has been an enormous explosion in the study
(both experimental and theoretical) of optical and transport properties of
quantum wells, superlattices, quantum wires, and quantum dots. One of the
most exciting developments was the observation by Klaus von Klitzing of
the quantum Hall effect in a 2DEG in a strong magnetic field. Before we
give a very brief description of this work, we must discuss the eigenstates of
free electrons in two dimensions in the presence of a perpendicular magnetic
field.

7.7 Electrons in a Magnetic Field

Consider a 2DEG with ns electrons per unit area. In the presence of a dc
magnetic field B applied normal to the plane of the 2DEG, the Hamiltonian
of a single electron is written by

H =
1

2m

(
p +

e

c
A
)2

. (7.92)

Here, p = (px, py) and A(r) is the vector potential whose curl gives
B = (0, 0, B), i.e., B = ∇ × A. There are a number of different possible
choices for A(r) (different gauges) that give a constant magnetic field in the
z-direction. For example, the Landau gauge chooses A = (0, Bx, 0) giving us(
x̂ ∂
∂x

) × (ŷBx) = Bẑ. Another common choice is A = B
2 (−y, x, 0); this is

called the symmetric gauge. Different gauges have different eigenstates, but
the observables have to be the same.

Let us look at the Schrödinger equation in the Landau gauge. (H − E)
Ψ = 0 can be rewritten as

[
p2
x

2m
+

1
2m

(
py +

e

c
Bx

)2

− E

]
Ψ(r) = 0. (7.93)



204 7 Semiconductors

Because H is independent of the coordinate y, we can write

Ψ(x, y, z) = eikyϕ(x). (7.94)

Substituting this into the Schrödinger equation gives

[
p2
x

2m
+

1
2
mω2

c

(
x+

h̄k

mωc

)2

− E

]

ϕ(x) = 0. (7.95)

Here, of course, ωc = eB
mc is the cyclotron frequency. If we define x̃ = x+ h̄k

mωc
,

∂
∂x = ∂

∂x̃ and the Schrödinger equation is just the simple harmonic oscillator
equation. Its solutions are as follows:

Enk = h̄ωc

(
n+

1
2

)
, n = 0, 1, 2, . . .

Ψnk(x, y, z) = eiky un

(
x+

h̄k

mωc

)
. (7.96)

The energy is independent of k, so the density of states (per unit length) is a
series of δ-functions, as is shown in Fig. 7.23.

g(ε) ∝
∑

n

δ

(
ε− h̄ωc

(
n+

1
2

))
. (7.97)

The constant of proportionality for a finite size sample of area L2 is mωcL
2

2πh̄ ,
so that the total number of states per Landau level is

NL = L

(
mωcL

2πh̄

)
=
BL2

hc/e
. (7.98)

For a sample of area L2, each Landau level can accommodateNL electrons (we
have omitted spin) and NL is the magnetic flux through the sample divided

c

Fig. 7.23. Density of states for electrons in a dc magnetic field
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by the quantum of magnetic flux hc
e . We note that the degeneracy of each

Landau level can also be rewritten by NL = L2

2πλ2 in terms of the magnetic

length λ =
√

h̄c
eB .

7.7.1 Quantum Hall Effect

If we make contacts to the 2DEG, and send a current I in the x-direction,
then we expect

σxx ∝ I

Vx
and σxy ∝ I

Vy
. (7.99)

Here, Vx is the applied voltage in the direction of I and Vy is the Hall voltage.
In the simple classical (Drude model) picture, we know that

σxx = σyy =
σ0

1 + (ωcτ)2
and σxy = −σyx = − ωcτσ0

1 + (ωcτ)2
, (7.100)

where σ0 = nse
2τ

m . In the limit as τ → ∞ we have σ0 → ∞, σxx → 0, and
σxy → −nsec

B .
In the absence of scattering, g(ε) is a series of δ-functions. With scattering,

the δ-functions are broadened as shown in Fig. 7.24. We know that, when one
Landau level is completely filled and the one above it is completely empty,
there can be no current, because to modify the distribution function f0(ε)
would require promotion of electrons to the next Landau level. There is a
gap for doing this, and at T = 0 there will be no current. If we plot σxx versus
ns/nL ≡ ν, the filling factor

(
nL = NL/L

2
)

we expect σxx to go to zero at
any integer values of ν as shown in Fig. 7.25.

Our understanding of the integral quantum Hall effect is based on the
idea that within the broadened δ-functions representing the density of states,
we have both extended states and localized states as shown in Fig. 7.26. The
quantum Hall effect was very important because it led to

1. A resistance standard ρ = h
e2

1
n .

2. Better understanding of Anderson localization.
3. Discovery of the fractional quantum Hall effect.

c

Fig. 7.24. Density of states for electrons in a dc magnetic field in the presence of
scattering
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Fig. 7.25. Conductivities as a function of the Landau level filling factor.
(a) Longitudinal conductivity σxx, (b) Hall conductivity σxy

Fig. 7.26. Scattering effects on the density of states and conductivity components
in an integral quantum Hall state

7.8 Amorphous Semiconductors

Except for introducing donors and acceptors in semiconductors, we have essen-
tially restricted our consideration to ideal, defect-free infinite crystals. There
are two important aspects of order that crystals display. The first is short
range order. This has to do with the regular arrangement of atoms in the
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vicinity of any particular atom. This short range order determines the local
bonding and the crystalline fields acting on a given atom. The second aspect
is long range order. This is responsible for the translational and rotational
invariance that we used in discussing Bloch functions and band structure.
It allowed us to use Bloch’s theorem and to define the Bloch wave vector k
within the first Brillouin zone.

In real crystals, there are always

• Surface effects associated with the finite size of the sample.
• Elementary excitations (dynamic perturbations like phonons, magnons,

etc.)
• Imperfections and defects (static disorder).

For an ordered solid, one can start with the perfect crystal as the zeroth
approximation and then treat static and dynamic perturbations by per-
turbation theory. For a disordered solid this type of approximation is not
meaningful.

7.8.1 Types of Disorder

We can classify disorder by considering some simple examples in two dimen-
sions that we can represent on a plane.
Perfect Crystalline Order Atoms in perfect crystalline array (see Fig. 7.27a).
Compositional Disorder Impurity atoms (e.g. in an alloy) are randomly dis-
tributed among crystalline lattice sites (See Fig. 7.27b.)
Positional Disorder Some separations and some bond angles are not perfect
(See Fig. 7.27c.)
Topological Disorder Fig. 7.27d shows some topological disorder.
Because we cannot use translational invariance and energy band concepts,
it is difficult to evaluate the eigenstates of a disordered system. What has
been found is that in disordered systems, some of the electronic states can
be extended states and some can be localized states. An extended state
is one in which, if |Ψ(0)|2 is finite, |Ψ(r)|2 remains finite for r very large.
A localized state is one in which |Ψ(r)|2 falls off very quickly as r becomes large
(usually exponentially). There is an enormous literature on disorder and local-
ization (starting with a classic, but difficult, paper by P.W. Anderson2 in the
1950s).

7.8.2 Anderson Model

The Anderson model described a system of atomic levels at different sites n
and allowed for hopping from site n to m. The Hamiltonian is written by

H =
∑

n

εnc
†
ncn + T

′∑

nm

c†mcn (7.101)

2 P.W. Anderson, Phys. Rev. 109, 1492 (1958).
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Fig. 7.27. Various types of disorder. (a) Atoms in perfect crystalline array.
(b) Impurity atoms are randomly distributed among crystalline lattice sites.
(c) Some separations and some bond angles are not perfect. (d) Not all fourfold
rings, but some five and sixfold rings leaving dangling bonds represent topological
disorder

Fig. 7.28. Basic assumption of energy level distribution on different sites in the
Anderson model

This is just the description of band structure in terms of an atomic level
ε on site n where the periodic potential gives rise to the hopping term. In
tight binding approximation, we would restrict T , the hopping term to near-
est neighbor hops, and that is what the prime on

∑′ in the second-term
means.

In Anderson model, it was assumed that εn the energy on site n was not
a constant, but that it was randomly distributed over a range w (see, for
example, Fig. 7.28). Anderson showed that if the parameter w

B , where B is
the band width (caused by and proportional to T ) satisfied w

B ≥ 5, the state
at E = 0 (the center of the band) is localized, while if w

B ≤ 5 it is extended.

7.8.3 Impurity Bands

Impurity levels in semiconductors form Anderson-like systems. In these sys-
tems, the energy E is independent of n; it is equal to the donor energy εd.
However, the hopping term T is randomly distributed between certain limits,
since the impurities are randomly distributed. Sometimes (when two impuri-
ties are close together) it is easy to hop and T is large. Sometimes, when they
are far apart, T is small.

7.8.4 Density of States

Although the eigenvalues of the Anderson Hamiltonian can not be calculated
in a useful way, it is possible to make use of the idea of density of states. In
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Fig. 7.29. Density of states of an ordinary crystal and that of a disordered material

Fig. 7.29, we sketch the density of states of an ordinary crystal and then the
density of states of a disordered material. In the latter, the tails on the density
of states usually contain localized states, while the states in the center of the
band are extended. The energies Ec′ and Ec are called mobility edges. They
separate localized and extended states. When EF is in the localized states,
there is no conduction at T = 0. The field of amorphous materials, Anderson
localization, and mobility edges are of current research interest, but we do not
have time to go into greater detail.
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Problems

7.1. Intrinsic carrier concentration can be written as

ni(T ) = 2.5
(mc

m

mv

m

)3/4
(
kBT

EGap

)3/2(
EGap in eV

1
40 eV

)3/2

e−
EGap
2kBT × 1019/cm3.

Take EGap = 1.5eV, mh = 0.7m, and me = 0.06m roughly those of GaAs,
and plot lnni vs T in the range T = 3K to 300K.

7.2. Plot the chemical potential ζ(T ) vs T in the range T = 3 − 300K for
values of EGap = 1.5 eV, mh = 0.7 m, and me = 0.06 m.

7.3. For InSb, we have EGap � 0.18eV, εs � 17, and me � 0.014m.

(a) Evaluate the binding energy of a donor.
(b) Evaluate the orbit radius of a conduction electron in the ground state.
(c) Evaluate the donor concentration at which overlap effects between neigh-

boring impurities become significant.
(d) If Nd = 1014cm−3 in a sample of InSb, calculate nc at T = 4K.

7.4. Let us consider a case that the work function of two metals differ by 2 eV;
EF1 − EF2 = 2 eV.

If the metals are brought into contact, electrons will flow from metal 1 to
metal 2. Assume the transferred electrons are displaced by 3× 10−8 cm. How
many electrons per square centimeter are transferred?

7.5. Consider a semiconductor quantum well consisting of a very thin layer
of narrow gap semiconductor of EGap = εc − εv contained in a wide band gap
host material of EGap = εHc − εHv . The conduction and valence band edges are
shown in the figure. The dashed lines indicate the positions of energy levels
associated with the quantized motion of electrons (εc0) and holes (εv0) in this
quantum well. We can write the electron and hole energies, respectively, as

εc(k) = ε̃c +
h̄2

2mc

(
k2
x + k2

y

)

and

εv(k) = ε̃v − h̄2

2mv

(
k2
x + k2

y

)

where ε̃c = εc + εc0 and ε̃v = εv + εv0.
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(a) Calculate the two-dimensional density of states for the electrons and
holes assuming that other quantized levels can be ignored. Remember
that

L2gc(ε) =
∑

kx,ky,σ

ε<εk<ε+dε

1.

(b) Determine Nc(T ) and Pv(T ) for this two-dimensional system. Remem-
ber that

Nc(T ) =
∫ ∞

ε̃c

dεgc(ε)e−
ε−ε̃c

Θ .

(c) Determine nc(T ) and pv(T ) for the intrinsic case.
(d) Determine the value of the chemical potential for this case.

c

v

v
H

c
H

c
c
0 +

v
v
0 +
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Summary

In this chapter, we studied the physics of semiconducting material and
artificial structures made of semiconductors. General properties of typical
semiconductors are reviewed and temperature dependence of carrier concen-
tration is considered for both intrinsic and doped cases. Then basic physics of
p-n junctions is covered in equilibrium and the current–voltage characteristic
of the junction is described. The characteristics of two-dimensional electrons
are discussed for the electrons in surface space charge layers formed in metal-
oxide-semiconductor structures, semiconductor superlattices, and quantum
wells. The fundamentals of the quantum Hall effects and the effects of disorders
and modulation doping are also discussed.

The densities of states in the conduction and valence bands are given by

gc(ε) =
√

2m3/2
c

π2h̄3 (ε− εc)
1/2 ; gv(ε) =

√
2m3/2

v

π2h̄3 (εv − ε)1/2 .

In the case of nondegenerate regime, we have εc − ζ � Θ and ζ − εv � Θ,
where Θ is kBT . Then the carrier concentrations become

nc(T ) = Nc(T )e−
εc−ζ

Θ ; pv(T ) = Pv(T )e−
ζ−εv

Θ ,

where
Nc(T ) =

∫ ∞

εc

dεgc(ε)e−
ε−εc

Θ ; Pv(T ) =
∫ εv

∞
dεgv(ε).

The product nc(T )pv(T ) is independent of ζ such that

nc(T )pv(T ) = Nc(T )Pv(T )e−EGap/Θ.

In the absence of impurities, nc(T ) = pv(T ) and we have

ni(T ) = [Nc(T )Pv(T )]1/2 e−EGap/2Θ.

The chemical potential now becomes

ζi = εc − 1
2
EGap +

3
4
Θ ln

(
mv

mc

)
; ζi = εv +

1
2
EGap +

3
4
Θ ln

(
mv

mc

)
.

When donors are present, the chemical potential ζ will move from its
intrinsic value ζi to a value near the conduction band edge. If the concentration
of donors is sufficiently small, the average occupancy of a single donor impurity
state is given by

〈nd〉 =
1

1
2eβ(εd−ζ) + 1

.

The numerical factor of 1
2 in 〈nd〉 comes from the fact that either spin up or

spin down states can be occupied but not both.
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At a finite temperature, we have

nc(T ) = Nc(T )e−β(εc−ζ), pv(T ) = Pv(T )e−β(ζ−εv),

nd(T ) =
Nd

1
2eβ(εd−ζ) + 1

, pa(T ) =
Na

1
2eβ(ζ−εa) + 1

.

In addition, we have charge neutrality condition given by

nc + nd = Nd −Na + pv + pa.

The set of these five equations should be solved numerically in order to have
self consistent result for five unknowns.

The region of the p–n junction is a high resistance region and the electrical
current density becomes

j = e (Jgen
h + Jgen

e )
(
eeV/Θ − 1

)
,

where Jgen
h and Jgen

e are hole and electron generation current densities,
respectively.

Near the interface of metal–oxide–semiconductor structure under a strong
enough gate voltage, the motion of the electrons is characterized by

ε = ε0 +
h̄2

2m∗
c

(
k2
x + k2

y

)
; Ψn,kx,ky =

1
L

ei(kxx+kyy)ξn(z).

Here, ξn(z) is the nth eigenfunction of a differential equation given by
[

1
2m∗

c

(
−ih̄

∂

∂z

)2

+ Veff(z) − εn

]

ξn(z) = 0.

If a quantum well is narrow, it leads to quantized motion and subbands:

ε(c)n (k) = ε(c)n +
h̄2

2m∗
c

(
k2
x + k2

y

)
.

In the presence of a dc magnetic field B applied normal to the plane of
the 2DEG, the Hamiltonian of a single electron is written by

H =
1

2m

(
p +

e

c
A
)2

.

Here, p = (px, py) and A(r) is the vector potential whose curl gives B =
(0, 0, B). The electronic states are described by

Enk = h̄ωc

(
n+

1
2

)
, Ψnk(x, y, z) = eiky un

(
x+

h̄k

mωc

)
; n = 0, 1, 2, . . . .

The density of states (per unit length) is given by g(ε) ∝ ∑
nδ
(
ε−h̄ωc(n+ 1

2 )
)
.

The total number of states per Landau level is equal to the magnetic flux
through the sample divided by the flux quantum hc

e :

NL =
BL2

hc/e
.
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Dielectric Properties of Solids

8.1 Review of Some Ideas of Electricity and Magnetism

When an external electromagnetic disturbance is introduced into a solid, it will
produce induced charge density and induced current density. These induced
densities produce induced electric and magnetic fields. We begin with a brief
review of some elementary electricity and magnetism. In this chapter, we
will neglect the magnetization produced by induced current density and con-
centrate on the electric polarization field produced by the induced charge
density.

The potential φ(r) set up by a collection of charges qi at positions ri is
given by

φ(r) =
∑

i

qi
|r − ri| . (8.1)

The electric field E(r) is given by E(r) = −∇φ(r).
Now, consider a dipole at position r′ (see Fig. 8.1).

φ(r) =
q

∣
∣r − r′ − d

2

∣
∣ −

q
∣
∣r− r′ + d

2

∣
∣ . (8.2)

By a dipole we mean p = qd is a constant, called the dipole moment, but
|d| = d itself is vanishingly small. If we expand for |r − r′| �| d |, we find

φ(r) =
qd · (r − r′)

(r − r′)3
=

p · (r − r′)
|r − r′|3 . (8.3)

The potential produced by a collection of dipoles pi located at ri is simply

φ(r) =
∑

i

pi · (r − ri)

|r− ri|3
. (8.4)

Again the electric field E(r) = −∇φ(r), so

E(r) =
∑

i

3(r− ri) [pi · (r − ri)] − (r − ri)2pi
|r − ri|5

. (8.5)
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r'

r

d

r'+d/2r'-d/2

Fig. 8.1. Electric dipole of moment p = qd located at r′

8.2 Dipole Moment Per Unit Volume

Let us introduce the electric polarization P(r), which is the dipole moments
per unit volume. Consider a volume V bounded by a surface S filled with a
polarization P(r′) that depends on the position r′. Then

φ(r) =
∫

d3r′
P(r′) · (r − r′)

|r − r′|3 . (8.6)

If we look at the divergence of P(r′)
|r−r′| with respect to r′, we note that

∇′ ·
[

P(r′)
|r − r′|

]
=

1
|r − r′|∇

′ ·P(r′) +
P(r′) · (r − r′)

|r − r′|3 . (8.7)

We can solve for P(r′)·(r−r′)
|r−r′|3 and substitute into our expression for φ(r). The

integral of the divergence term can be expressed as a surface integral using
divergence theorem. This gives

φ(r) =
∮

S

dS′ P(r′) · n̂′

|r − r′| +
∫

V

d3r′
[−∇′ · P (r′)]

|r − r′| . (8.8)

The potential φ(r) can be associated with a potential produced by a volume
distribution of charge density

ρP (r) = −∇ ·P(r) (8.9)

and the potential produced by a surface charge density

σP(r) = P(r) · n̂. (8.10)

Here, of course, n̂ is a unit vector outward normal to the surface S bounding
the volume V .
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Poisson’s equation tells us that

∇ ·E = 4π (ρ0 + ρP) , (8.11)

where ρ0 is some external charge density and ρP is the polarization charge
density. Since ρP = −∇ ·P, we can write

∇ ·E = 4πρ0 − 4π∇ ·P. (8.12)

If we define D = E + 4πP, then

∇ · D = 4πρ0. (8.13)

Thus, D is the electric field that would be produced by the external charge
density ρ0 if a polarizable material were absent. E is the true electric field
produced by all the charge densities including both ρ0 and ρP.

In general, P and E need not be in the same direction. However, for
sufficiently small value of E, the relationship between P and E is linear. We
can write

Pi =
∑

j

χijEj , (8.14)

where χ is called the electrical susceptibility tensor. We can write

D = ε ·E, (8.15)

where ε = 1 + 4πχ is the dielectric tensor.

8.3 Atomic Polarizability

An atom in its ground state has no dipole moment. However, in the presence
of an electric field E, an induced dipole moment results from the relative
displacements of the positive and negative charges within the atom. We can
write

pind = αE, (8.16)

and α is called the atomic polarizability.

8.4 Local Field in a Solid

In a dilute gas of atoms the electric field E that produces the induced dipole
moment on an atom is simply the applied electric field. In a solid, however,
all of the dipole moments produced on other atoms in the solid make a contri-
bution to the field acting on a given atom. The value of this microscopic field
at the position of the atom is called the local field. The local field ELF(r) is
different from the applied electric field E0 and from the macroscopic electric



218 8 Dielectric Properties of Solids

p

p p p

p p

p

p

Fig. 8.2. Induced dipoles of moment p located on neighboring atoms

field E (which is the average of the microscopic field ELF(r) over a region
that is large compared to a unit cell). Clearly, the contributions to the micro-
scopic field from the induced dipoles on neighboring atoms vary considerably
over the unit cell (see Fig. 8.2). The standard method of evaluating the local
field ELF(r) in terms of the macroscopic field E is to make use of the Lorentz
sphere. Before introducing the Lorentz field, let us review quickly the relation
between the external field E0 and the macroscopic field E in the solid.

8.5 Macroscopic Field

Suppose the solid we are studying is shaped like an ellipsoid. It is a stan-
dard problem in electromagnetism to determine the electric field E inside the
ellipsoid in terms of the external electric field E0 (see Fig. 8.3).

The applied field E0 is the value of the electric field very far away from
the sample. The macroscopic field inside the ellipsoid is given by

E = E0 − λP = E0 + E1. (8.17)

The field E1 = −λP is called the depolarization field, due to surface charge
density n̂ · P on the outer surface of the specimen, and λ is called the
depolarization factor.

8.5.1 Depolarization Factor

The standard electromagnetic theory problem of determining λ involves

1. Solving Laplace’s equation ∇2φ(r) = 0 in cylindrical coordinates so that

φ(r) =
(
arl + br−(l+1)

)
Pl(cos θ) (C sinmφ+D cosmφ)
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Fig. 8.3. The macroscopic electric field E inside an ellipsoid located in an external
electric field E0 is the sum of E0 and polarization field E1 = −λP due to the surface
charge density n̂ · P

Table 8.1. Depolarization factors λ of typical ellipsoids

Type of ellipsoid Axis λ

Sphere Any
4π

3
Thin slap Normal 4π
Thin slap Parallel 0
Long cylinder Along axis 0
Long circular cylinder Normal to axis 2π

(a) Inside the sample (where r can approach 0) and
(b) Outside the sample (where r can approach ∞),

2. Imposing boundary conditions
(a) E well behaved as r → 0,
(b) E → E0 as r → ∞,
(c) Dnormal = (E + 4πP)normal and Etrans be continuous at the surface.

For an ellipsoid with the depolarization factors λ1, λ2, and λ3 along the three
principal axes.

λ1 + λ2 + λ3 = 4π. (8.18)

Some examples are listed in Table 8.1.

8.6 Lorentz Field

Assume that we know E, the macroscopic field inside the solid. Now consider
an atom at position R. Draw a sphere of radius � (named as Lorentz sphere)
about R where �� a, the interatomic spacing (see Fig. 8.4). The contribution
to the microscopic field at R from induced dipoles on other atoms can be
divided into two parts:

1. For atoms inside the sphere we will actually sum over the contribution
from their individual dipole moments pi.

2. For atoms outside the sphere we can treat the contribution macroscopically,
treating them as part of a continuum with polarization P.
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0

r-R
r

R

r

rP

Fig. 8.4. A Lorentz sphere of radius 
 centered at R

The dipole moments outside the Lorentz sphere contribute a surface charge
density on the surface of the Lorentz sphere, and we can write

φ(R) =
∫

Lorentz sphere

dS
P(r) · n̂(r)
|R − r| . (8.19)

The field E2 caused by this surface charge on the spherical cavity (Lorentz
sphere) is called the Lorentz field :

E2(R) = −∇Rφ(R) =
∫

dS P(r) · n̂(r)
(R − r)
|R − r|3 . (8.20)

To evaluate this integral note, from Fig. 8.4, that

|r − R| = �,

P(r) · n̂(r) = P cos θ,
dS = 2π�2 sin θ dθ, and

R − r = � (sin θ cosφ, sin θ sinφ, cos θ) .

Hence, we have

E2(R) = −
∫ π

0

2π�2 d(cos θ)P cos θ
� cos θ
�3

.

Only the z-component of R − r survives the integration. We find that

E2(R) = 2πP
∫ 1

−1

d(cos θ) cos2 θ =
4π
3

P. (8.21)

E2 = 4πP
3 is the Lorentz field.

The final contribution E3 arises from the contribution of the dipoles within
the Lorentz sphere (L.S.). It is given by

E3 =
∑

i∈L.S.

3 (pi · ri) ri − r2i pi
r5i

. (8.22)
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This term clearly depends on the crystal structure. If pi = p = pẑ, then the
field at the center of the Lorentz sphere is

E3 = (0, 0, E3) = p
∑

i∈L.S.

3z2
i − r2i
r5i

ẑ. (8.23)

For a crystal with cubic symmetry

∑

i

x2
i

r5i
=
∑

i

y2
i

r5i
=
∑

i

z2
i

r5i
=

1
3

∑

i

r2i
r5i
.

Thus, for a cubic crystal, the two terms cancel and E3 = 0. Hence, we find
the local field in a cubic crystal

ELF = E0 + E1︸ ︷︷ ︸ + E2︸︷︷︸ + E3

= E + 4π
3 P + 0.

(8.24)

The last expression is the Lorentz relation. We note that, since E1 = − 4π
3 P

for a spherical specimen, the local field at the center of a sphere of cubic
crystal is simply given by

Esphere
LF = E0 − 4π

3
P +

4π
3
P + 0 = E0.

8.7 Clausius–Mossotti Relation

The induced dipole moment of an atom is given, in terms of the local field,
by p = αELF. The polarization P is given, for a cubic crystal, by

P = Np = NαELF = Nα

(
E +

4π
3

P
)
, (8.25)

where N is the number of atoms per unit volume. Solving for P gives

P =
Nα

1 − 4πNα
3

E ≡ χE. (8.26)

Thus, the electrical susceptibility of the solid is

χ =
Nα

1 − 4πNα
3

. (8.27)

Since D = εE with ε = 1 + 4πχ, we find that

ε = 1 +
4πNα

1 − 4πNα
3

. (8.28)
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or

ε =
1 + 8πNα

3

1 − 4πNα
3

. (8.29)

This relation between the macroscopic dielectric function ε and the atomic
polarizability α is called the Clausius–Mossotti relation. It can also be writ-
ten (solving for 4πNα

3 ) by

ε− 1
ε+ 2

=
4πNα

3
. (8.30)

8.8 Polarizability and Dielectric Functions
of Some Simple Systems

The total polarizability of the atoms or ions within a unit cell can usually be
separated into three parts:

1. Electronic polarizability αe: The displacement of the electrons relative to
the nucleus.

2. Ionic polarizability αi: The displacement of an ion itself with respect to its
equilibrium position.

3. Dipolar polarizability αdipole: The orientation of any permanent dipoles by
the electric field in the presence of thermal disorder.

Atoms and homonuclear diatomic molecules have no dipole moments in their
ground states. Molecules like KCl, HCl, H2O, . . . do exhibit permanent dipole
moments. A typical dipole moment p = qd has q � 4.8 × 10−10 esu and
d � 10−8 cm, giving p � 5 × 10−18 stat-coulomb cm.

8.8.1 Evaluation of the Dipole Polarizability

In the absence of an electric field, the probability that a dipole p will be
oriented within the solid angle dΩ = sin θ dθ dφ is independent of θ and φ and
is given by dΩ

4π . In the presence of a field E, the probability is proportional to
dΩ e−W/kBT , where W = −p · E is the energy of the dipole in the field E. If
we choose the z-direction parallel to E, then the average values of px and py
vanish and we have

p̄z =
∫

dΩ epE cos θ/kBT p cos θ∫
dΩ epE cos θ/kBT

. (8.31)

Let pE
kBT

= ξ, cos θ = x and rewrite p̄z as

p̄z = p
∫ 1
−1 dx xe

ξx

∫ 1
−1 dx eξx

= p ddξ ln
∫ 1

−1
dx eξx

= p d
dξ ln

(
2 sinh ξ
ξ

)
= p

(
coth ξ − 1

ξ

)
.
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Thus, we can write p̄z as

p̄z = pL(ξ). (8.32)

Here, L(ξ) is the Langevin function defined by L(ξ) = coth ξ − 1
ξ . The dipole

moment per unit volume is then given by

P = Np̄z = NpL
(
pE

kBT

)
.

We note that for ξ → ∞, L(ξ) → 1, while for ξ → 0, L(ξ) = ξ
3 . If ξ � 1,

P = Np2E
3kBT

. At room temperature the condition is satisfied if E � kBT
p �

107 volts/cm. The standard unit of dipole moment is the Debye, defined by 1
Debye = 10−18 esu. Figure 8.5 is a sketch of the temperature dependence of
an electrical polarization P .

The electronic polarizability αe and the ionic polarizability αion are almost
independent of temperature. Therefore, by measuring ε−1

ε+2 ≡ 4πNα
3 as a func-

tion of temperature one can obtain the value of p2 from the slope (see Fig. 8.6).

Fig. 8.5. Temperature dependence of an electrical polarization P

i

Fig. 8.6. An electrical polarizability α as a function of temperature
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8.8.2 Polarizability of Bound Electrons

Assume that an electron (of charge q = −e) is bound harmonically to a par-
ticular location (e.g., the position of a particular ion). Its equation of motion
is written by

m

(
r̈ +

ṙ
τ

)
= −kr− eE, (8.33)

where −kr is the restoring force and E is the perturbing electric field. Assume
E ∝ eiωt and let k = mω2

0 . Then we can solve for r ∝ eiωt to obtain

r =
−eE/m

−ω2 + iω/τ + ω2
0

≡ p
−e . (8.34)

The dipole moment of the atom will be p = −er and the polarization
P = Np = −Ner ≡ NαelE. This gives for αel

αel =
(e2/m)

[
ω2

0 − ω2 − iω/τ
]

(ω2
0 − ω2)2 + (ω/τ)2

. (8.35)

The dielectric function ε = 1 + 4πNαel is

ε(ω) = 1 +

(
4πNe2/m

) (
ω2

0 − ω2 − iω/τ
)

(ω2
0 − ω2)2 + (ω/τ)2

. (8.36)

It is clear that αe has a real and an imaginary part whose frequency
dependences are of the form sketched in Fig. 8.7.

8.8.3 Dielectric Function of a Metal

In a metal (e.g., Drude model) the electrons are free. This means that the
restoring force vanishes (i.e., k → 0) or ω0 = 0. In that case, we obtain

αe =
e2/m

−ω2 + iω/τ
, (8.37)

R
e

el

Im
el

Fig. 8.7. The frequency dependence of the dielectric function ε of atoms with bound
electrons. (a) Real part of ε(ω), (b) imaginary part of ε(ω)
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or

ε(ω) = 1 − 4πNe2/m
ω2 − iω/τ

= 1 − ω2
p

ω2 − iω/τ
. (8.38)

The real and imaginary parts of ε(ω) are

�ε(ω) = 1 − ω2
pτ

2

1 + ω2τ2
(8.39)

and

�ε(ω) = − ω2
pτ

2

ωτ(1 + ω2τ2)
. (8.40)

The fact that �ε(ω) < 0 for ω2 < ω2
p − 1

τ2 leads to an imaginary refractive
index and is responsible for the fact that metals are good reflectors.

8.8.4 Dielectric Function of a Polar Crystal

In an ionic crystal like NaCl, longitudinal optical phonons have associated
with them charge displacements, which result in a macroscopic polarization
field PL. Here the subscript L stands for the lattice polarization. (See, for
example, Fig. 8.8.)

The polarization field PL consists of two parts: (1) the displacements of
the charged individual ions from their equilibrium positions and (2) the polar-
ization of the ions themselves resulting from the displacement of the electrons
relative to the nucleus under the influence of the E field. In determining each
of these contributions to PL, we must use the local field ELF. We shall consider
the following model of a polar crystal:

1. The material is a cubic lattice with two atoms per unit cell; the volume of
the unit cell is V .

2. The charges, masses, and atomic polarizabilities of these ions are ±ze,M±,
and α±

3. In addition to long range electrical forces, there is a short range restoring
force that is proportional to the relative displacement of the pair of atoms
in the same cell.

Fig. 8.8. Polarization field due to charge displacements in a polar crystal
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Fig. 8.9. Ionic displacements in the nth unit cell and its nearest neighbor atoms

Note: Here we are considering only the q = 0 optical phonon, so that the
ionic displacements are identical in each cell. Therefore, the restoring force
can be written in such a way that: The force on M (n)

+ depends on u(n)
+ − u

(n)
−

and u
(n)
+ − u

(n−1)
− , but u(n)

− = u
(n−1)
− so the force is simply proportional to

u
(n)
+ − u

(n)
− . (See Fig. 8.9.)

We can write the equations of motion of u+ and u− as

M+ü+ = −k(u+ − u−) + zeELF,

M−ü− = k(u+ − u−) − zeELF. (8.41)

The local field ELF is given, for cubic crystals, by (8.24):

ELF = E +
4π
3

PL, (8.42)

and
PL =

ze

V
(u+ − u−) +

1
V

(α+ + α−)ELF. (8.43)

Substitute for ELF in terms of E and PL, and then solve for PL. This gives
us

PL =
ze

V β
r +

α+ + α−
V β

E. (8.44)

Here, β = 1 − 4π
3

(
α++α−

V

)
and r = u+ − u−. Introduce

Ω2± ≡ k
M± ,

Ω2
p± ≡ 4πe2

VM±
,

M
−1 ≡M−1

+ +M−1
− .

(8.45)

The equations of motion can be rewritten

−ω2u+ = −Ω2
+r + 1

3βΩ2
p+r + ze

M+β
E,

−ω2u− = +Ω2−r − 1
3βΩ2

p−r− ze
M−βE.

(8.46)

If we subtract the second equation from the first we obtain
[

−ω2 +
(
Ω2

+ + Ω2
−
)− Ω2

p+ + Ω2
p−

3β

]

r =
ze

βM
E. (8.47)
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This can be rewritten

r = − ze

βM

(
ω2 + b11

)−1
E, (8.48)

where

b11 = −
[

Ω2
+ + Ω2

− − Ω2
p+ + Ω2

p−
3β

]

≡ −ω2
T. (8.49)

−b11 is a frequency squared and it is positive since Ω2
p± is always smaller than

Ω±. Let us call it +ω2
T. Since we know the expression for PL in terms of r

and E we can write

PL =
ze

V β

(
− ze

βM

)
E

ω2 − ω2
T

+
α+ + α−
βV

E. (8.50)

Let us define
b22 =

α+ + α−
βV

,

b212 =
z2e2

β2MV
.

(8.51)

Then, we can rewrite PL as

PL =
(
b22 − b212

ω2 − ω2
T

)
E ≡ χE. (8.52)

Recall that the electrical susceptibility is defined by χ(ω) = PL(ω)
E(ω) , and the

dielectric function by
ε(ω) = 1 + 4πχ(ω). (8.53)

From (8.52) for PL we find

χ(ω) = b22 − b212
ω2 − ω2

T

. (8.54)

The frequency ωT is in the infrared (∼1013/sec). If we look at frequencies
much larger than ωT we find

χ∞ = b22. (8.55)

For ω → 0 we find that

χ0 = b22 +
b212
ω2

T

= χ∞ +
b212
ω2

T

. (8.56)

Therefore we can write

b212 = ω2
T (χ0 − χ∞) =

ω2
T

4π
(ε0 − ε∞) . (8.57)
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This, of course, is positive since ε0 contains contributions from the displace-
ments of the ions as well as the electronic displacements within each ion. The
latter is very fast while the former is slow. The dielectric function ε(ω) can
be written

ε(ω) = ε∞ − ω2
T

ω2−ω2
T
(ε0 − ε∞)

= ε∞
[
1 −

(
ε0
ε∞ − 1

)
ω2

T
ω2−ω2

T

]
.

We define ω2
L = ω2

T
ε0
ε∞ > ω2

T. Then, we can write

ε(ω) = ε∞

[
ω2 − ω2

L

ω2 − ω2
T

]
. (8.58)

Here, ωL and ωT are the TO and LO phonon frequencies, respectively. We note
that ωL > ωT since ε0 > ε∞ in general. Values of ε0 and ε∞ for some polar
materials are listed in Table 8.2. Instead of discussing the lattice polarization
PL, we could have discussed the lattice current density

jL = ṖL = iωPL = iωχ(ω)E.

A plot of ε(ω) versus ω is shown in Fig. 8.10. At ω = 0 ε has the static value
ε0, and as ω → ∞ it approaches the high-frequency value ε∞. ε0 is always
larger than ε∞. There is a resonance at ω = ωT.

Table 8.2. Dielectric constants ε0 and ε∞ for polar materials

Crystal ε0 ε∞ ε0/ε∞

LiF 8.7 1.93 4.5
NaCl 5.62 2.25 2.50
KBr 4.78 2.33 2.05
Cu2O 8.75 4.0 2.2
PbS 17.9 2.81 6.37

Fig. 8.10. Frequency dependence of the dielectric function ε(ω) of a polar crystal
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8.9 Optical Properties

The dielectric and magnetic properties of a medium are characterized by the
dielectric function ε(ω) and the magnetic permeability μ(ω):

D = εE and B = μH. (8.59)

In terms of E and B, Maxwell’s equations can be written

∇ · E = 4πρ = 4π(ρ0 + ρP)
∇ · B = 0
∇× E = − 1

c Ḃ
∇× B = 1

c Ė + 4π
c (j0 + jP) + 4π∇× M.

(8.60)

The last equation involves the magnetization which is normally very small.
Here, we will neglect it; this is equivalent to taking μ = 1 or B = H. The
sources of E are all charges; external (ρ0) and induced polarization (ρP) charge
densities. The sources of B are the rate of change of E and the total cur-
rent (external j0 and induced jP current densities). Recall that jP = Ṗ and
∇ ·P = −ρP.

Note: Sometimes the first Maxwell equation is replaced by ∇·D = 4πρ0.
Here D = E + 4πP and as we have seen ρP = −∇ · P. The fourth
equation is sometimes replaced by ∇ × H = 1

c
Ḋ + 4π

c
j0, which omits

all polarization currents.

In this chapter, we shall ignore all magnetic effects and take μ(ω) = 1. This is
an excellent approximation for most materials since the magnetic susceptibil-
ity is usually much smaller than unity. There are two extreme ways of writing
the equation for ∇× B:

∇× B =
ε

c
Ė +

4π
c

j0 or

∇× B =
1
c
Ė +

4π
c

(j0 + σE) (8.61)

The first equation is just that for H in which we put μ = 1 and D = εE. The
second equation is that for ∇× B in which we have taken jP = σE where σ
is the conductivity. From this we see that iω

c ε(ω) = iω
c + 4π

c σ(ω), or

ε(ω) = 1 − 4πi
ω
σ(ω) (8.62)

is a complex dielectric constant and simply related to the conductivity σ(ω).
We have assumed that E and B are proportional to eiωt.

8.9.1 Wave Equation

For the propagation of light in a material characterized by a complex dielectric
function ε(ω), the external sources j0 and ρ0 vanishes. Therefore, we have
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∇× E = − iω
c

B

∇× B =
iωε(ω)
c

E. (8.63)

Later, we will consider both bulk and surface waves. We will take the normal
to the surface as the z-direction and consider waves that propagate at some
angle to the interface. There is no loss of generality in assuming that the wave
vector q = (0, qy, qz), so that the E field is given by

E = (Ex, Ey, Ez)ei(ωt−qyy−qzz).

The operators ∇ and ∂
∂t become −iq and iω, and the two Maxwell equations

for ∇× E and ∇× B can be combined to give

∇× (∇× E) = − iω
c ∇× B = − iω

c

(
iωε
c E

)

= ∇(∇ · E) −∇2E.

This can be rewritten
(
ω2

c2
ε(ω) − q2

)
E + q (q ·E) = 0. (8.64)

This vector equation can be expressed as a matrix equation
⎛

⎜
⎝

ω2

c2 ε(ω) − q2 0 0
0 ω2

c2 ε(ω) − q2z qyqz
0 qyqz

ω2

c2 ε(ω) − q2y

⎞

⎟
⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ = 0. (8.65)

8.10 Bulk Modes

For an infinite homogeneous medium of dielectric function ε(ω), the nontriv-
ial solutions are obtained by setting the determinant of the 3 × 3 matrix
(multiplying the column vector E in (8.65)) equal to zero. This gives

ε(ω)
[
ω2

c2
ε(ω) − q2

]2

= 0. (8.66)

There are two transverse modes satisfying

ω2 =
c2q2

ε(ω)
. (8.67)

One of these has qyEy + qzEz ≡ q · E = 0; Ex = 0. The other has Ex �= 0
and Ey = Ez = 0. The other mode is longitudinal and has Ex = 0 and q ‖ E
or Ez

Ey
= qz

qy
, and has the dispersion relation

ε(ω) = 0. (8.68)

First, let us look at longitudinal modes.
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8.10.1 Longitudinal Modes

Longitudinal modes, as we have seen, are given by the zeros of the dielectric
function ε(ω). For simplicity we will neglect collisions and set τ → ∞ in the
various dielectric functions we have studied.

Bound Electrons

We found that (for τ → ∞)

ε(ω) = 1 +
4πNe2/m
ω2

0 − ω2
. (8.69)

We have seen the quantity 4πNe2/m before. It is just the square of the plasma
frequency ωp of a system of N electrons per unit volume. The zero of ε(ω)
occurs at

ω2 = ω2
0 + ω2

p ≡ Ω2. (8.70)

Free Electrons

For free electrons ω0 = 0. Therefore, the longitudinal mode (plasmon)
occurs at

ω2 = ω2
p. (8.71)

Polar Crystal

For a polar dielectric, the dielectric function is given by

ε(ω) = ε∞
ω2 − ω2

L

ω2 − ω2
T

. (8.72)

The longitudinal mode occurs at ω = ωL, the longitudinal optical phonon
frequency.

Degenerate Polar Semiconductor

For a polar semiconductor containing N free electrons per unit volume in the
conduction band

ε(ω) = ε∞

(
ω2 − ω2

L

ω2 − ω2
T

)
− ω2

p

ω2
. (8.73)

This can be written as

ε(ω) = ε∞
(ω2 − ω2

+)(ω2 − ω2
−)

ω2(ω2 − ω2
T)

. (8.74)

Here, ω2± are two solutions of the quadratic equation

ω4 − ω2(ω2
L + ω̃2

p) + ω2
Tω̃

2
p = 0, (8.75)

where ω̃2
p = ω2

p
ε∞

with background dielectric constant ε∞. The modes are cou-
pled plasmon–LO phonon modes. One can see where these two modes occur
by plotting ε(ω) vs. ω (see Fig. 8.11).
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Fig. 8.11. Frequency dependence of the dielectric function ε(ω) for a degenerate
polar semiconductor

Fig. 8.12. Dispersion relations of the transverse modes in a metal

8.10.2 Transverse Modes

For transverse waves ω2 = c2q2

ε(ω) . Again we will take the limit τ → ∞.

Dielectric

For a dielectric ε(ω) is a constant ε0 independent of frequency. Thus, we have

ω =
c√
ε0
q. (8.76)

Here,
√
ε0 is called the refractive index n, and the velocity of light in the

medium is c
n . paragraphMetal For a metal ε = 1 − ω2

p
ω2 , giving

ω2 = ω2
p + c2q2. (8.77)

No transverse waves propagate for ω < ωp since ε(ω) is negative there (see
Fig. 8.12).
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Fig. 8.13. Frequency dependence of the dielectric function ε(ω) for bound electrons

Fig. 8.14. Dispersion relation of the transverse modes for bound electrons

Bound Electrons

For bound electrons ε = 1 +
ω2

p

ω2
0−ω2 = Ω2−ω2

ω2
0−ω2 giving for the transverse mode

c2q2 = ω2

(
Ω2 − ω2

ω2
0 − ω2

)
. (8.78)

It is worth sketching ε(ω) versus ω (see Fig. 8.13).
The dielectric function is negative for ω0 < ω < Ω. The dispersion relation
of the transverse mode for bound electrons given by (8.78) is sketched in
Fig. 8.14. No transverse modes propagate where ε(ω) < 0 since c2q2 = ω2ε
gives imaginary values of q in that region.

Polar Dielectric

In this case ε(ω) = ε∞
ω2−ω2

L
ω2−ω2

T
and again it is worth plotting ε(ω) versus ω. It

is shown in Fig. 8.15. ε(ω) is negative in the region ωT < ω < ωL. Plotting
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Fig. 8.15. Frequency dependence of the dielectric function ε(ω) in a polar dielectric

Fig. 8.16. Dispersion relation of the transverse modes in a polar dielectric

ω versus cq we have result shown in Fig. 8.16. There is a region between ωT

and ωL where no light propagates the (reststrahlen region). The propagating
modes are referred to as polariton modes. They are linear combinations of
transverse phonon and electromagnetic modes.

Degenerate Polar Semiconductor

Here ε(ω) = ε∞
ω2−ω2

L
ω2−ω2

T
− ω2

p
ω2 . We have already shown in (8.74) that this can be

written in terms of ω+ and ω−. The equation for a transverse mode becomes

c2q2 = ε∞
(ω2 − ω2

+)(ω2 − ω2
−)

ω2 − ω2
T

. (8.79)

In Fig. 8.11 the dielectric function ε(ω) was plotted as a function of ω in order
to study the longitudinal modes. There, we found that ε(ω) was negative if
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Fig. 8.17. Dispersion relation of the transverse modes in a polar semiconductor

ω < ω− or if ωT < ω < ω+. The dispersion curve for the transverse mode is
displayed in Fig. 8.17.

8.11 Reflectivity of a Solid

A vacuum–solid interface is located at z = 0. The solid (z > 0) is described
by a dielectric function ε(ω) and vacuum (z < 0) by ε = 1. An incident light
wave of frequency ω propagates in the z-direction as shown in Fig. 8.18.

Here we take the wave to be polarized in the ŷ-direction and q0 = ω
c while

q =
√
ε(ω)q0. There are three waves to consider:

1. The incident wave whose electric field is given by

EI = ŷEIei(ωt−q0z).

2. The reflected wave whose electric field is given by

ER = ŷERei(ωt+q0z). (8.80)

3. The transmitted wave whose electric field is given by

ET = ŷETei(ωt−qz).

Because ∇× E = − 1
c Ḃ, B = cqi

ω × E, where qi = q0 for the wave in vacuum
and qi = q for the wave in the solid. We can easily see that

BI = −x̂EIei(ωt−q0z),

BR = x̂ERei(ωt+q0z),

BT = −x̂√ε(ω)ETei(ωt−qz).

(8.81)
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Fig. 8.18. Reflection of light wave at the interface of vacuum and solid of dielectric
function ε(ω)

The boundary conditions at z = 0 are continuity of E and B. This gives

EI + ER = ET, −EI + ER = −ε1/2ET. (8.82)

Solving these equations for ER
EI

gives

ER

EI
=

1 −√
ε(ω)

1 +
√
ε(ω)

. (8.83)

8.11.1 Optical Constants

The refractive index n(ω) and extinction coefficient k(ω) are real functions of
frequency defined by

ε(ω) = (n+ ik)2. (8.84)

Therefore, the reflection coefficient, defined by R = |ER/EI|2 is given by

R =
(1 − n)2 + k2

(1 + n)2 + k2
. (8.85)

The power absorbed is given by P = �(j · E). But j = σE and σ = iω
4π

(ε−1). Therefore the power absorbed is proportional to ω
4π ε2(ω)|E|2. But the

imaginary part of ε(ω) is just 2nk, so that

Power absorbed ∝ n(ω) k(ω). (8.86)

8.11.2 Skin Effect

We have seen that for a metal ε(ω) is given by

ε(ω) = 1 − ω2
p

ω(ω − i/τ)
= 1 − ω2

p

ω2 + 1/τ2
− i

ω2
p/ωτ

ω2 + 1/τ2
. (8.87)
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At optical frequencies ω is usually large compared to 1
τ . Therefore, the real

part of ε(ω) is large compared to the imaginary part; however, it is negative.
ε1(ω) � −ω2

p/ω
2, since ωp is large compared to optical frequencies for most

metals. The wave vector of the transmitted wave is

q =
ω

c
ε1/2 � ω

c

√
−ω2

p

ω2
= ±i

ωp
c

Thus, the wave
ET = ETŷ ei(ωt−qz)

decays with increasing z as e−z/λ where λ = c/ωp is called the skin depth. For
ωp � 1016sec−1, λ ≈ 30 nm. In a metal, light only penetrates this distance.
This analysis assumed that j(r) = σE(r), a local relationship between j and E.
If the mean free path l = vFτ is larger than λ, the skin depth, this assumption
is not valid. Then one must use a more sophisticated analysis; this is referred
to as the anomalous skin effect.

8.12 Surface Waves

In solving the equations describing the propagation of electromagnetic waves
in an infinite medium, we considered the wave vector q, which satisfied the
relation

q2 =
ω2

c2
ε(ω) (8.88)

to have components qy and qz which were real.
At a surface (z = 0) separating two different dielectrics it is possible to

have solutions for which q2z is negative in one or both of the media. If q2z is
negative in both media, implying that qz itself is imaginary, such solutions
describe surface waves.

Let us look at the system shown in Fig. 8.19. The wave equation can be
written

q2zi =
ω2

c2
εi − q2y, (8.89)

where i = I or II. We think of ω and qy as given and the same in each medium.
Then the wave equation tells us the value of q2z in each medium.

Let us assume a p-polarized wave (the s-polarization in which E is parallel
to the surface does not usually give surface waves). We take

E = (0, Ey, Ez) ei(ωt−qyy−qzz). (8.90)

Because there is no charge density except at the surface z = 0, we have
∇ ·E = q · E = 0 everywhere except at the surface. This implies that

qyEy + qzEz = 0, (8.91)
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Fig. 8.19. The interface of two different media of dielectric functions εI and εII

giving the value of Ez in each medium in terms of qy, qzi, and Ey . We take

EI = (0, EyI, EzI) eiωt−iqyy+αIz, α2
I = −q2zI

EII = (0, EyII, EzII) eiωt−iqyy−αIIz , α2
II = −q2zII. (8.92)

Since

e−iqzIz = eαIz, qzI = iαI

e−iqzIIz = e−αIIz , qzII = −iαII.

Here αI and αII are positive and the form of E(z) has been chosen to vanish
as |z| → ∞.

Since Ezi = − qy

qzi
Ey , we obtain

EzI = − qy
iαI

EyI , EzII = − qy
−iαII

EyII (8.93)

The boundary conditions are

(i) EyI(0) = EyII(0) = Ey(0)
(ii) εIEzI(0) = εIIEzII(0) (8.94)

These conditions give us the dispersion relation of the surface wave. Substi-
tuting fields given by (8.93) into the second expression of (8.94), we have

εI
αI

+
εII
αII

= 0 or
εo
αo

+
ε(ω)
α

= 0. (8.95)

where

αo =

√

q2y −
ω2

c2
εo and α =

√

q2y −
ω2

c2
ε(ω). (8.96)
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Non-retarded Limit

This is the case where cqy � ω or c may be taken as infinite. In this limit, we
have αI � αII � qy and the dispersion relation becomes

εo + ε(ω) = 0. (8.97)

Surface Polaritons (with Retardation Effects)

We take the dispersion relation given by (8.95) and square both sides. This
gives

ε2oα
2 = ε2(ω)α2

0,

or

ε2o

(
q2y −

ω2

c2
ε(ω)

)
= ε2(ω)

(
q2y −

ω2

c2
εo

)
.

This can be simplified to

[εo + ε(ω)] q2y =
ω2

c2
εoε(ω)

or

c2q2y =
ω2εoε(ω)
εo + ε(ω)

(8.98)

8.12.1 Plasmon

For a system containing n0 free electrons of mass m

ε(ω) = εs −
ω2

p

ω2
, (8.99)

where εs is the background dielectric constant and ω2
p = 4πn0e

2

m . In the non-
retarded limit we find

εo +

(

εs −
ω2

p

ω2

)

= 0.

Solving for ω2 gives the surface plasmon frequency

ωSP =
ωp√
εo + εs

. (8.100)

Recall the bulk plasmon is given by ε(ω) = 0

ωBP =
ωp√
εs
> ωSP. (8.101)
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-

Fig. 8.20. Dispersion curves of the bulk and surface plasmon–polariton modes

So that we have ωSP < ωBP. For the surface plasmon–polariton we find

c2q2y =
ω2εo

(
εs − ω2

p/ω
2
)

εo + εs − ω2
p/ω

2
(8.102)

It is easy to see that, for very small values of cqy, ω → 0 and we can neglect
εs and (εo + εs) compared to −ω2

p/ω
2 on the right-hand side of (8.102).

lim
cqy→0

ω2 � c2q2y
εo

. (8.103)

For very large cqy, the only solution occurs when the denominator of the right
hand side approaches zero.

lim
cqy→∞ω2 � ω2

p

εo + εs
= ω2

SP. (8.104)

The dispersion curves of the bulk and surface plasmon–polariton modes are
shown in Fig. 8.20.

8.12.2 Surface Phonon–Polariton

Here we take the dielectric function of a polar crystal

ε(ω) = ε∞
ω2 − ω2

L

ω2 − ω2
T

. (8.105)

At the interface of a dielectric εI and a polar material described by (8.105)
the surface mode is given by (8.95)

εI
αI

= −ε(ω)
α

. (8.106)
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Fig. 8.21. Dielectric function ε(ω) of a polar crystal

Since εI, αI, and α are all positive, this equation has a solution only in
the region where ε(ω) < 0. Recall that ε(ω) versus ω looks as shown in
Fig. 8.21. ε(ω) is negative if ωT < ω < ωL. The dispersion relation, (8.106), is
written by

c2q2y =
ω2εIε(ω)
εI + ε(ω)

=
εIε∞ω2(ω2 − ω2

L)
εI(ω2 − ω2

T) + ε∞(ω2 − ω2
L)
. (8.107)

The denominator can be written as

D ≡ (εI + ε∞)ω2 − (εIω2
T + ε∞ω2

L) = (εI + ε∞)(ω2 − ω2
s ), (8.108)

where the surface phonon frequency ωs is given by

ω2
s =

εIω
2
T + ε∞ω2

L

εI + ε∞
. (8.109)

It is easy to show that ω2
T < ω2

s < ω2
L. The dispersion relation can be

written

c2q2y =
εIε∞ω2(ω2 − ω2

L)
(εI + ε∞)(ω2 − ω2

s )
. (8.110)

Figure 8.22 shows the right-hand side of (8.110) as a function of frequency.
Since surface modes can occur only where q2y > 0 and ε(ω) < 0, we see that
the surface mode is restricted to the frequency region ωT < ω < ωs. It is
not difficult to see that as cqy → ∞, the surface polariton approaches the
frequency ωs. It is also apparent that at ω = ωT, c2q2y = εIω

2
T. This gives the

dispersion curve sketched in Fig. 8.23.
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Fig. 8.22. Dispersion curves of phonon–polariton modes

Fig. 8.23. Dispersion relation of surface phonon–polariton modes. Also shown are
the bulk mode ω+ and ω− which can occur outside the region ωT < ω < ωL
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Problems

8.1. Use the eigenstates of the hydrogen atom to evaluate its atomic polariz-
ability α.

8.2. If atomic hydrogen formed a cubic lattice, what would its static dielectric
constant be?

8.3. Evaluate the reflectivity for an S-polarized and a P-polarized electro-
magnetic wave incident at an angle θ from vacuum on a material of dielectric
function ε(ω) as illustrated in the figure below.

One can take E = (Ex, 0, 0)eiωt−iq·r and E = (0, Ey, Ez)eiωt−iq·r as the S-
and P-polarized electric fields, respectively. Remember that q · E = 0 and
q = (0, qy, qz).

8.4. A degenerate polar semiconductor contains n0 free electrons per unit
volume in the conduction band. Its dielectric function ε(ω) is given by

ε(ω) = ε∞
ω2 − ω2

L

ω2 − ω2
T

− ω2
p

ω2
,

where ωL and ωT are the LO and TO phonon frequencies, and ωp =
√

4πn0e2

m .

1. Show that ε(ω) can be written as

ε(ω) = ε∞
(ω2 − ω2−)(ω2 − ω2

+)
ω2(ω2 − ω2

T)

and determine ω2
− and ω2

+.
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2. Make a sketch of ε(ω) versus ω; be sure to indicate the locations of ωT, ωL,
ω−, ω+, ε0, and ε∞.

3. Determine the dispersion relation of the longitudinal and transverse modes,
i.e. ω as a function of q.

4. In which regions of frequency are the transverse waves unable to propagate?
5. Consider a vacuum–degenerate polar semiconductor interface. Use the

results obtained in the text to determine the dispersion relations of the
surface modes.

6. Make a sketch of ω versus qy (qy is parallel to the interface) for these surface
modes and for the bulk modes which have qz = 0.
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Summary

In this chapter, we studied dielectric properties of solids in the presence of
an external electromagnetic disturbance. We first reviewed elementary elec-
tricity and magnetism, and introduced concept of local field inside a solid.
Then dispersion relations of self-sustaining collective modes and reflectivity
of a solid are studied for various situations. Finally, the collective modes local-
ized near the surface of a solid are also described and dispersion relations of
surface plasmon-polariton and surface phonon-polariton modes are discussed
explicitly.

When an external electromagnetic disturbance is introduced into a solid,
it will produce induced charge density and induced current density. These
induced densities produce induced electric and magnetic fields. The local field
ELF(r) at the position of an atom in a solid is given by

ELF = E0 + E1 + E2 + E3,

where E0, E1, E2, E3 are, respectively, the external field, depolarization field
(= −λP), Lorentz field (= 4πP

3 ), and the field due to the dipoles within the

Lorentz sphere
(
=
∑

i∈L.S.
3(pi·ri)ri−r2i pi

r5i

)
. The local field at the center of a

sphere of cubic crystal is simply given by

Esphere
LF = E0 − 4π

3
P +

4π
3
P + 0 = E0.

The induced dipole moment of an atom is given by p = αELF. The polariza-
tion P is given, for a cubic crystal, by P = Nα

1− 4πNα
3

E ≡ χE, where N is the
number of atoms per unit volume and χ is the electrical susceptibility. The
electrical susceptibility and the dielectric function (ε = 1 + 4πχ) of the solid
are

χ =
Nα

1 − 4πNα
3

; ε = 1 +
4πNα

1 − 4πNα
3

.

The relation between the macroscopic dielectric function ε and the atomic
polarizability α is called the Clausius–Mossotti relation:

ε− 1
ε+ 2

=
4πNα

3

The total polarizability of the atoms or ions within a unit cell can usually
be separated into three parts:

1. Electronic polarizability αe: The displacement of the electrons relative to
the nucleus

2. Ionic polarizability αi: The displacement of an ion itself with respect to its
equilibrium position

3. Dipolar polarizability αdipole: The orientation of any permanent dipoles by
the electric field in the presence of thermal disorder.
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In the presence of a field E, the average dipole moment per unit volume is
given by p̄z = pL

(
pE
kBT

)
, where L(ξ) is the Langevin function. The dipolar

polarizability αdipole shows strong temperature dependence. The electronic
polarizability αe and the ionic polarizability αion are almost independent of
temperature.

In a metal, the conduction electrons are free and the dielectric function
becomes

ε(ω) = 1 − 4πNe2/m
ω2 − iω/τ

= 1 − ω2
p

ω2 − iω/τ
.

In an ionic crystal, we have

ε(ω) = ε∞

[
ω2 − ω2

L

ω2 − ω2
T

]
.

Here, ωL and ωT are the TO and LO phonon frequencies, respectively. We
note that ωL > ωT since ε0 > ε∞ in general.

For the propagation of light in a material characterized by ε(ω), the
external sources j0 and ρ0 vanishes. Therefore, we have

∇× E = − iω
c

B; ∇× B =
iωε(ω)
c

E.

The two Maxwell equations for ∇×E and ∇×B can be combined to give a
wave equation: (

ω2

c2
ε(ω) − q2

)
E + q (q ·E) = 0.

For an infinite homogeneous medium of dielectric function ε(ω), a general
dispersion relation of the self-sustaining waves is written as

ε(ω)
[
ω2

c2
ε(ω) − q2

]2

= 0.

The two transverse modes and one longitudinal mode are characterized,
respectively, by

ω2 =
c2q2

ε(ω)
; ε(ω) = 0.

For the interface (z = 0) of two different media of dielectric functions εI
and εII, the boundary conditions give us the general dispersion of the surface
wave:

εI
αI

+
εII
αII

= 0 or
εo
αo

+
ε(ω)
α

= 0

where

αo =

√

q2y −
ω2

c2
εo and α =

√

q2y −
ω2

c2
ε(ω).
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Magnetism in Solids

9.1 Review of Some Electromagnetism

9.1.1 Magnetic Moment and Torque

We begin with a brief review of some elementary electromagnetism. A current
distribution j(r) produces a magnetic dipole moment at the origin that is
given by

m =
1
2c

∫
r × j(r)d3r. (9.1)

If j(r) is composed from particles of charge qi at positions ri moving with
velocity vi, j(r) =

∑
i qiviδ(r − ri), and the magnetic moment m is

m =
1
2c

∑

i

qiri × vi. (9.2)

For a single particle of charge q moving in a circle of radius r0 at velocity v0,
we have

m =
1
2c
qr0v0 (9.3)

and m is perpendicular to the plane of the circle. The current i in the loop is
given by q divided by t = 2πr

v0
, the time to complete one circuit. Thus

i =
qv0
2πr0

. (9.4)

We can use this in our expression for m to get

m =
q

2c
r0v0 =

ia

c
. (9.5)

Here, a = πr20 is the area of the loop. We can write m = ia
c if we associate

vector character with the area a of the loop.
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i

m

Fig. 9.1. A magnetic moment m due to a current loop of radius r0 located in a
magnetic field B

If a magnetic field were imposed on a magnetic moment, the magnetic
moment would experience a torque. To show this we begin with the Lorentz
force

F =
q

c
v0 × B. (9.6)

For a charge dq the force dF is given by

dF =
dq
c

ds
dt

× B =
i

c
ds× B. (9.7)

Here, ds is an infinitesimal element of path length (see, for example, Fig. 9.1).
The torque τ is given by

∫
r × dF.

τ =
∫

r × dF =
i

c

∫
r × ds× B. (9.8)

But
∫

r × ds = a, and hence we have

τ =
i

c
a × B = m × B. (9.9)

9.1.2 Vector Potential of a Magnetic Dipole

If a magnetic dipole m is located at the origin, it produces a vector potential
at position r given by

A(r) =
m × r
r3

. (9.10)

Of course the magnetic field B(r) = ∇ × A(r). If we have a magnetization
(magnetic dipole moment per unit volume), then A(r) is given by

A(r) =
∫

d3r′
M(r′) × (r − r′)

|r − r′|3 . (9.11)
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As we did with the electric polarization P(r), we can transform this equation
into two parts.

A(r) =
∫

V

d3r′
∇r′ × M(r′)

|r− r′| +
∮

S

dS′M(r′) × n̂′

|r− r′| , (9.12)

where n̂ is a unit vector outward normal to the surface S. The volume integra-
tion is carried out over the volume V of the magnetized material. The surface
integral is carried out over the surface bounding the magnetized object. Since
A(r) is related to a current density by

A(r) =
1
c

∫
d3r′

j(r′)
|r − r′| , (9.13)

the vector potential produced by a magnetization is equivalent to volume
distribution of current

jM(r) = c∇× M(r) (9.14)

and a surface distribution of current

jS(r) = cM(r) × n̂. (9.15)

Recall that if E = 0, Maxwell’s equation for ∇× B is

∇× B =
4π
c

(j0 + jM) =
4π
c

j0 + 4π∇× M. (9.16)

Defining H = B − 4πM gives

∇× H =
4π
c

j0 (9.17)

which shows that H is that part of the field arising from the free current
density j0. As we stated before the two Maxwell equations

∇ · E = 4π (ρ0 + ρind) , (9.18)

and
∇× B =

1
c
Ė +

4π
c

(j0 + jind) + 4π∇× M (9.19)

are sometimes written in terms of D and H.

∇ · D = 4πρ0,

(where D = E+ 4πP and ∇ ·P = −ρpol with bound charge density ρpol) and

∇× H =
1
c
Ḋ +

4π
c

j0.
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9.2 Magnetic Moment of an Atom

9.2.1 Orbital Magnetic Moment

Let us consider the nucleus to be fixed and evaluate the orbital contribution
of the electron currents to the magnetic moment of an atom.

m =
1
2c

∑

i

qiri × vi. (9.20)

Since qi = −e for every electron, and every electron has mass me, we can
write

m = − e

2mec

∑

i

ri×mevi = − e

2mec
×
(

total angular momentum
of the electrons

)
. (9.21)

We know
∑

i ri ×mevi is quantized and equal to h̄L, where |L| = 0, 1, 2, . . .
and Lz = 0,±1,±2, . . . ,±L. Thus, we have

m = − eh̄

2mec
L = −μBL. (9.22)

Here, μB = eh̄
2mec

= 0.927×10−20(ergs/gauss) or 5.8×10−2 (meV/T) is called
the Bohr magneton. The Bohr magneton corresponds to the magnetic
moment of a 1s electron in H.

9.2.2 Spin Magnetic Moment

In addition to orbital angular momentum h̄L, each electron in an atom has an
intrinsic spin angular momentum h̄s, giving a total spin angular momentum
h̄S where

S =
∑

i

si. (9.23)

The z-component of spin is sz = ± 1
2 , and the spin contribution to the magnetic

moment is ∓μB. Thus, for each electron, there is a contribution −2μBs to
the magnetic moment of an atom. If we sum over all spins, the total spin
contribution to the magnetic moment is

ms = −2μB

∑

i

si = −2μBS. (9.24)

Note that the factor of 2 appearing in this expression is not exact. It is actually
given by g = 2(1 + α

2π − 2.973α
2

π2 + · · · ) � 2 × 1.0011454. However, in our
discussion here we will take the g-factor as 2.
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9.2.3 Total Angular Momentum and Total Magnetic Moment

The total angular momentum of an atom is given by

J = L + S. (9.25)

The total magnetic moment is given by

m = −μB (L + 2S) . (9.26)

In quantum mechanics the components of J, L, and S are operators that
satisfy commutation relations. As we learned in quantum mechanics, it is
possible to diagonalize J2 and Jz simultaneously.

J2 |j, jz〉 = j(j + 1) |j, jz〉 ; j = 0,
1
2
,
3
2
, . . . (9.27)

Jz |j, jz〉 = jz |j, jz〉 ; − j ≤ jz ≤ j (9.28)

Note that jz = 0,±1, . . . ,±j or jz = ± 1
2 ,± 3

2 , . . . ,±j. We can write that

m = −ĝμBJ. (9.29)

This defines the operator ĝ because we have J = L + S and

ĝJ = L + 2S. (9.30)

We can use these definitions to show that

J · J = (L + S) · (L + S) = L2 + S2 + 2L · S (9.31)

and
ĝJ · J = (L + S) · (L + 2S) = L2 + 2S2 + 3L · S. (9.32)

We can eliminate L · S and obtain

gL =
3
2

+
1
2
s(s+ 1) − l(l+ 1)

j(j + 1)
(9.33)

This eigenvalue of ĝ is called the Landé g-factor.

9.2.4 Hund’s Rules

The ground state of an atom or ion with an incomplete shell is determined by
Hund’s rules:

1. The ground state has the maximum S consistent with the Pauli exclusion
principle.

2. It has the maximum L consistent with the maximum spin multiplicity
2S + 1 of Rule 1.

3. The J-value is given by L − S when a shell is less than half filled and by
L+ S when more than half filled.
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Table 9.1. Ground state electron configurations angular momentum quantum
numbers for the elements of atomic numbers 20 ≤ Z ≤ 29

Z Element Configuration Spectroscopic notation S L J g

20 Ca (3p)6(4s)2 1S0 0 0 0 –

21 Sc (3d)1(4s)2 2D 3
2

1
2

2 3
2

4
5

22 Ti (3d)2(4s)2 3F2 1 3 2 2
3

23 V (3d)3(4s)2 4F 3
2

3
2

3 3
2

2
5

24 Cr (3d)5(4s)1 7S3 3 0 3 2
25 Mn (3d)5(4s)2 6S 5

2

5
2

0 5
2

2

26 Fe (3d)6(4s)2 5D4 2 2 4 3
2

27 Co (3d)7(4s)2 4F 9
2

3
2

3 9
2

4
3

28 Ni (3d)8(4s)2 3F4 1 3 4 5
4

29 Cu (3d)10(4s)1 2S 1
2

1
2

0 1
2

2

Example

Consider an ion of Fe2+; it has six electrons in the 3d level. We can put five
of them in spin up states (since d means l = 2 and ml can be −2,−1, 0, 1, 2)
and to maximize S, hence,

↑ ↑ ↑ ↑ ↑ ↓ gives S = 2.

The maximum value of L-value is given by

L = −2 − 1 + 0 + 1 + 2 + 2 = 2.

The J-value (since it is over half-filled) is

J = L+ S = 4.

Therefore, we have

g =
3
2

+
1
2

2(3) − 2(3)
4(5)

=
3
2
.

One can work out some examples listed in Table 9.1. The ground state
notation is 2S+1LJ , where L = 0, 1, 2, 3, 4, . . . are denoted by the letters
S, P,D, F,G, . . ., respectively.

9.3 Paramagnetism and Diamagnetism of an Atom

In the presence of a magnetic field B the Hamiltonian describing the electrons
in an atom can be written as

H = H0 +
∑

i

1
2m

(
pi +

e

c
A(ri)

)2

+ 2μBB ·
∑

i

si, (9.34)
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where H0 is the nonkinetic part of the atomic Hamiltonian, pi = −ih̄∇i, and
the sum is over all electrons in an atom. For a homogeneous magnetic field
B, one can choose a vector potential of

A = −1
2
r × B. (9.35)

Here, we take the magnetic field B in the z-direction.

B = (0, 0, B0). (9.36)

Then, the vector potential is given by

A = −1
2
B0

(
yî − x̂j

)
. (9.37)

Substituting the vector potential into (9.34), we have

H =H0+
∑

i

p2
i

2me
+
eB0

2mec

∑

i

(xipiy − yipix)+
e2B2

0

8mec2

∑

i

(
x2
i + y2

i

)
+2μBB0Sz.

(9.38)
Here, we note that

xipiy − yipix = (ri × pi)z = h̄liz.

Now, we can write the Hamiltonian as

H = H0 +
∑

i

p2
i

2me
+ μB(Lz + 2Sz)B0 +

e2B2
0

8mec2

∑

i

(
x2
i + y2

i

)
. (9.39)

But −μB(Lz + 2Sz) is simply mz , the z-component of the magnetic moment
of the atom in the absence of the applied magnetic field B. Therefore,
we have

H = H−mzB0 +
e2B2

0

8mec2

∑

i

(
x2
i + y2

i

)
, (9.40)

where H = H0 +
∑

i
p2i

2me
. In the presence of the magnetic field B0,

vix =
∂H

∂pix
=

1
m

(
pix − eB0

2c
yi

)
,

viy =
∂H

∂piy
=

1
m

(
piy +

eB0

2c
xi

)
, (9.41)

and the magnetic moment in the presence of B0 is (see (9.20))

μ =
∑

i

(
− e

2c
ri × vi − e

2mec
2h̄Si

)
. (9.42)
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Using (9.41), the expression for vix and viy , one obtains

μz = −μBLz − 2μBSz − e2B0

4mec2

∑

i

(
x2
i + y2

i

)
. (9.43)

Note that one can also obtain this result from (9.40) using the relation

μz = − ∂H

∂B0
. (9.44)

Thus, we have μz, the z-component of magnetic moment of the atom in the
magnetic field B0 is given by

μz = mz − e2B0

4mec2

∑

i

(
x2
i + y2

i

)
. (9.45)

It differs from mz, its value when B0 = 0 by a term that is negative and
proportional to B0.

If the atom is in its ground state, mz, the average value of mz is mz =
−μB(Lz + 2Sz) = −gμBJz = −gμBjz, where jz = −J,−J + 1, . . . , J . For a
spherically symmetric atom, x2

i = y2
i = z2

i = 1
3r

2
i . Therefore, we obtain

μz = −gμBJz − e2B0

6mec2

∑

i

r2i . (9.46)

The second term on the right-hand side is the origin of diamagnetism. If
J = 0 (so that Jz = 0), then a system containing N atoms per unit volume
would produce a magnetization

M = −N e2B0

6mec2

∑

i

r2i , (9.47)

and the diamagnetic susceptibility

χDia =
M

B0
= −N e2

6mec2

∑

i

r2i . (9.48)

Here, we have assumed χDia � 1 and set χ = M
B instead of M

H . This result
was first derived by Langevin.

All substances exhibit diamagnetism. Paramagnetism occurs only in sam-
ples whose atoms possess permanent magnetic moments (i.e. m �= 0 when
B0 = 0). All free atoms except those having complete electronic shells are
paramagnetic. In solids, however, fewer substances exhibit paramagnetism
because the electrons form energy bands and filled bands do not contribute
to paramagnetism.
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Examples of paramagnetism in solids are

1. Pauli spin paramagnetism of metals.
2. Paramagnetism due to incomplete shells.

(a) Transition elements:

Iron group elements with incomplete 3d shell, for example,[
Ti3+(3d1) ∼ Cu2+(3d9)

]
.

Palladium group elements with incomplete 4d shell, for example,[
Zr3+(4d1) ∼ Ag2+(4d9)

]
.

Platinum group elements with incomplete 5d shell, for example,[
Hf3+(5d1) ∼ Au2+(5d9)

]
.

(b) Rare earth elements:

Rare earth group elements (or Lanthanides) with incomplete 4f
shell, for example,

[
Ce3+(4f1) ∼ Yb3+(4f13)

]
.

Transuranic group elements (or Actinides) with incomplete 5f or
6d shells, for example, elements beyond Th.

9.4 Paramagnetism of Atoms

We have seen that the permanent magnetic dipole moment of an atom is
given by

m = −gLμBJ. (9.49)

We will assume that the separations between atoms in the systems of interest
are sufficiently large that the interactions between the atoms can be neglected.
The energy of an atom in a magnetic field B is

E = −m · B = gLμBBmJ , (9.50)

where mJ = −J,−J + 1, . . . , J − 1, J . The probability of finding an atom in
state |J,mJ > at a temperature T is

p(mJ) =
1
Z

e−βE(mJ ), (9.51)

where β = (kBT )−1 and the normalization constant Z is chosen so that∑
mJ

p(mJ) = 1. This gives

Z =
J∑

mj=−J
e−βgLμBBmJ . (9.52)
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Let βgLμBB = y. Then, Z =
∑J

m=−J e−ym. This can be rewritten

Z = e−yJ
(
1 + ey + e2y + · · · + e2Jy

)

= e−yJ
[
(ey)2J+1 − 1

ey − 1

]
. (9.53)

The result for Z can be rewritten

Z(x) =
sinh 2J+1

2J x

sinh x
2J

, (9.54)

where x = yJ = βgLμBBJ . The magnetization of a system containing N
atoms per unit volume will be

M = −NgLμB

∑
mJ

mJp(mJ)
∑
mJ

p(mJ )
= NgLμBJ

∂

∂x
lnZ. (9.55)

This is usually written as

M = NgLμBJBJ(βgLμBBJ), (9.56)

where the function BJ(x) is called the Brillouin function. It is not difficult
to see that

BJ (x) =
2J + 1

2J
coth

2J + 1
2J

x− 1
2J

coth
x

2J
. (9.57)

The argument of the Brillouin function 2J+1
2J βgLμBBJ is small compared

tounity if the magnetic field B is small compared to 500T at room tem-
perature. Under these conditions (use coth z � 1

z + z
3 for z � 1) one can

write
BJ(x) � x

3
J + 1
J

, (9.58)

and

M � Ng2
Lμ

2
BJ(J + 1)
3kBT

B. (9.59)

Since 〈m · m〉 = g2
Lμ

2
B 〈J · J〉 = g2

Lμ
2
BJ(J + 1) we can write

χPara =
M

B
=
N
〈
m2

〉

3kBT
(9.60)

for the paramagnetic susceptibility of a system of atoms of magnetic moment
m at high temperature (gLμBBJ � kBT ). This is commonly known as
Curie’s law. Notice that when J becomes very large

lim
J→∞

BJ(x) ⇒ cothx− 1
x

= L(x), (9.61)

where L is the Langevin function that we encountered in studying elec-
tric dipole moments. Thus, the quantum mechanical result goes over to the
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Fig. 9.2. Energy level splitting of the ground state and first excited multiplets for
an atom of the total angular momentum quantum number J

classical result as J → ∞, as expected. Curie’s law is often written

M � Nμ2
Bp

2B

3kBT
, (9.62)

where p = gL
√
J(J + 1) is called the effective number of Bohr mag-

netons. Knowing S, L, J and gL from the application of Hund’s rules
immediately gives us p. For example, for a Dy3+ ion the atomic configuration is
(4f)9(5s)2(5p)6. This results from removing two 6s electrons and one 4f elec-
tron from the neutral atom. The S-value will be 5

2 (seven 4f -electrons in ↑ and
two in ↓ states), L = 5 (the two ↓ electrons havemz = 3 and 2 to maximize L),

and J = L+ S = 15
2 , and hence gL = 4

3 and p = 4
3

√
15
2 · 17

2 � 10.63.
Observed and calculated p-values agree fairly well. There are exceptions

when excited state multiplets are not sufficiently high in energy (see, for
example, Fig. 9.2).

Until now we have assumed Δ � kBT and Δ � gLμBJB. If this is not
true, higher multiplets can be important in evaluation of χ or p. Typically, for
an ion with partially filled shell with nonzero value of J , χPara ∼ 10−2 − 10−3

at room temperature and χDia ∼ 10−5, which is independent of temperature.
Therefore, we have χPara ∼ 500χDia at room temperature.

9.5 Pauli Spin Paramagnetism of Metals

If we used the classical theory of paramagnetism for a particle with magnetic
moment m, the magnetization at a temperature T (with kBT � |m ·B|)
would be given by Curie’s law

M =
N
〈
m2

〉
B

3kBT
. (9.63)
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Fig. 9.3. Energy level splitting of the electron gas in the presence of the magnetic
field B. Energy parabolas E(k) (a) and density of states g(E) (b) of electrons in
two different spin states in the presence of Zeeman splitting

For free electrons m = −2μBs and
〈
m2

〉
= 4μ2 〈s · s〉 = 4μ2s(s + 1). Since

s = 1
2 this gives

〈
m2

〉
= 3μ2 and1

χclassical =
M

B
=
n0μ

2
B

kBT
. (9.64)

As we discussed earlier, this is not what is observed experimentally. In metals
the observed susceptibility is approximately independent of temperature and
two orders of magnitude smaller than the value of χclassical evaluated at room
temperature.

The qualitative explanation is exactly the same as that by which the Som-
merfeld model explained the electronic contribution to the specific heat. At a
temperature T only electrons whose energy lies within a shell of width kBT
about the Fermi energy are effectively free. Other electrons are inefficient
because of the Pauli exclusion principle. If we replace n0 by neff , where

neff � n0
kBT

ζ
. (9.65)

The spin susceptibility becomes χQM � n0μ
2
B

ζ � kBT
ζ χclassical = n0μ

2
B

ζ .
To obtain χQM more rigorously, we simply assume that in the presence of

the magnetic field B the energy of an electron is changed by an amount

δE = ±μBB = −m ·B; m = −gLμBS

depending on whether its spin is up or down relative to the direction of B.
The number of particles of spin up (or down) per unit volume is

n± =
1
2

∫ ∞

0

dEf0(E)g (E ∓ μBB) , (9.66)

where + and − in the subscript of n± correspond to the cases of spin up
(+) and spin down (−) states, respectively. (See Fig. 9.3.) We evaluated many
1 Here, n0 is the number of free electrons per unit volume in a metal.



9.6 Diamagnetism of Metals 259

integrals over Fermi functions in Chap. 3. Remember that the total number
of states per unit volume with energy less than ε is given by

G(ε) =
∫ ε

0

g(ε)dε = n0

(
k

kF

)3

= n0

(
ε

εF

)3/2

.

Using these results we can obtain

n± =
1
2

[
G(ζ ∓ μBB) +

π2

6
(kBT )2g′(ζ ∓ μBB)

]
. (9.67)

The magnetization M is equal to μB(n− − n+). Expanding for ζ � μBB and
kBT � ζ leads to

M � μ2
BB

[
g(ζ) +

π2

6
(kBT )2g′′(ζ)

]
. (9.68)

The chemical potential is determined by requiring the number of particles to
be n0 = n− + n+. This gives

n0 = G(ζ) +
π2

6
(kBT )2g′(ζ) +O(μ2

BB
2). (9.69)

To order μ2
BB

2, we note that

ζ = ζ0 − π2

6
(kBT )2

g′(ζ0)
g(ζ0)

. (9.70)

Using g(ζ) = 3
2
n0
ζ0

(
ε
ζ0

)1/2

gives

χQM =
3n0μ

2
B

2ζ0

[

1 − π2

12

(
kBT

ζ0

)2

+ · · ·
]

(9.71)

for the Pauli spin (paramagnetic) susceptibility of a metal.

9.6 Diamagnetism of Metals

According to classical mechanics there should be no diamagnetism of a free
electron gas. Consider the effect of a magnetic field B on the motion of an
electron. The force acting on the electron is

F = −e
c
v × B. (9.72)

This force is always perpendicular to v, therefore F · dl = F · vdt = 0. Thus,
no work is done on the electrons by the field B and their energy is unchanged.
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Further the distribution function depends only on E, T , N and will also be
unchanged. Thus, there can be no induced currents and no diamagnetism.

Quantum mechanics gives a different answer. Landau was the first to derive
the diamagnetic susceptibility of metals. We will not rederive his result in
full, but simply show how the result comes about in a quantum mechanical
calculation.

Let A = (0, xB, 0) be the vector potential of a dc magnetic field B.
The Hamiltonian for a single electron is (here we shall neglect the intrinsic
magnetic moment of the electron)

H =
1

2m

[
p2
x +

(
py +

e

c
Bx

)2

+ p2
z

]
. (9.73)

Recall that p = −ih̄∇. The Schrödinger equation is

− h̄2

2m

[
∂2

∂x2
+
(
∂

∂y
+ i

eB

h̄c
x

)2

+
∂2

∂z2

]

Ψ = EΨ. (9.74)

Since the Hamiltonian is independent of y and z, let us assume a solution of
the form

Ψ(x, y, z) = eikyy+ikzzφ(x). (9.75)

The equation which φ(x) must satisfy is
[
∂2

∂x2
−
(
ky +

eB

h̄c
x

)2

− k2
z +

2mE
h̄2

]

φ(x) = 0 (9.76)

If we let x′ = x+ h̄ky

mωc
this equation becomes

(
− h̄2

2m
∂2

∂x′2
+

1
2
mω2

cx
′2
)
φ(x′) =

(
E − h̄2k2

z

2m

)
φ(x′). (9.77)

This is just the equation for a simple harmonic oscillator of mass m and
characteristic frequency ωc. The energy levels are

E − h̄2k2
z

2m
= h̄ωc

(
n+

1
2

)
; n = 0, 1, 2, . . . (9.78)

Thus, the eigenfunctions and eigenvalues for an electron in the presence of a
magnetic field B are

|nkykz〉 = L−1eikyy+ikzzφn

(
x+

h̄ky
mωc

)
. (9.79)

En(ky , kz) =
h̄2k2

z

2m
+ h̄ωc

(
n+

1
2

)
. (9.80)
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We note that the eigenvalues En(ky, kz) are independent of ky . The allowed
values of ky and kz are determined by imposing periodic boundary conditions.
If we require the particles to be in a cube of length L, then because the center
of each oscillator must be in the box, the range of possible ky values must be

Range of values of ky ≤ mωcL

h̄
. (9.81)

The total number of allowed values of ky, for a given kz, is

L

2π
× Range of values of ky =

mωcL
2

2πh̄
=
BL2

hc/e
. (9.82)

Thus for each value of n, kz (and spin s) there are mωcL
2

2πh̄ energy states. Con-
sider the following schematic plot of the energy levels for a given kz shown in
Fig. 9.4. In quantum mechanics, a dc magnetic field can alter the distribution
of energy levels. Thus, there can be a change in the energy of the system and
this can result in a diamagnetic current. The diamagnetic susceptibility turns
out to be

χL = − n0

2ζ0

(
eh̄

2m∗c

)2

= −n0μ
2
B

2ζ0

( m
m∗

)2

. (9.83)

Notice that we expectm∗ (notm) to appear because the diamagnetism is asso-
ciated with the orbital motion of the electrons. This is justifiable only if the
cyclotron radius is much larger than the interatomic spacing.

rc =
vF
ωc

=
vF

eB0/m∗c
. (9.84)

Typically, vF ≈ 108 cm/s and ωc ≈ 1.76 × 107B0. Thus for B0 ∼ 105 gauss,
rc ≈ 10−4 cm ∼ 104 Å � lattice constant. The total magnetic susceptibility
of a metal is

χQM = χP + χL =
3n0μ

2
B

2ζ0

[
1 − 1

3

( m
m∗

)2
]

(9.85)

Fig. 9.4. Energy level splitting of the electron gas due to orbital quantizations in
the presence of the magnetic field B
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9.7 de Haas–van Alphen Effect

We have seen that the energy levels for an electron in a magnetic field look
like, as is shown in Fig. 9.5,

En(ky , kz) =
h̄2k2

z

2m
+ h̄ωc

(
n+

1
2

)
.

The Fermi energy ζ is a slowly varying function of B. As we increase B, the
distance between Landau levels increases, and at kz = 0 levels pass through
the Fermi energy. As the Landau level at kz = 0 passes through the Fermi
level, the internal energy abruptly decreases.

Let us consider a simple situation, where the Fermi energy ζ is between
two orbits. Let us assume that T = 0 so that we have a perfectly sharp Fermi
surface. As we increase the field, the states are raised in energy so that the
lowest occupied state approaches ζ in energy. Of course, all the energies in the
presence of the field will be higher than those in the absence of the field by
an amount 1

2 h̄ωc. As the levels approach the Fermi energy, the free energy of
the electron gas approaches a maximum. As the highest occupied level passes
the Fermi surface, it begins to empty, thus decreasing the free energy of the
electron gas. When the Fermi level lies below the cyclotron level the energy of
the electron gas is again a minimum. Thus, we can see how the free energy is
a periodic function of the magnetic field. Now, since many physically observ-
able properties of the system are derived from the free energy (such as the
magnetization), we see that they, too, are periodic functions of the magnetic
field. The periodic oscillation of the diamagnetic susceptibility of a metal at
low temperatures is known as the de Haas–van Alphen effect. The de
Haas–van Alphen effect arises from the periodic variation of the total energy
of an electron gas as a function of a static magnetic field. The energy varia-
tion is easily observed in experiments as a periodic variation in the magnetic
moment of the metal.

Fig. 9.5. Schematics of energy levels for an electron in a magnetic field B
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Density of States

Look at G(E), the number of states per unit volume of energy less than E.

G(E) =
1
L3

∑

nkykz
Enkz

< E

1 =
1
L3

(
L

2π

)2

2
∑

n
Enkz

< E

∫
dky dkz 1. (9.86)

We added a factor 2 to take account of spin. Since
∫

dky = mωcL
h̄ , we have

G(E) =
1
L3

(
L

2π

)2

2
mωcL

h̄

∑

n
Enkz

< E

∫
dkz ,

where En(ky, kz) = h̄2k2
z

2m + h̄ωc(n+ 1
2 ). Define κn =

√
2m
h̄

(
E − h̄ωc(n+ 1

2 )
)1/2.

For each value of n the kz integration goes from −κn to κn. This gives

G(E) =
mωc

2π2h̄

nMax∑

n=0

2
√

2m
h̄

(
E − h̄ωc

(
n+

1
2

))1/2

. (9.87)

The density of states g(E) is dG
dE .

g(E) =
mωc

2π2h̄

√
2m
h̄

nMax∑

n=0

(
E − h̄ωc

(
n+

1
2

))−1/2

. (9.88)

We note that the g(E) has square root singularities at E = h̄ωc(n + 1
2 ) as

illustrated in Fig. 9.6.

Fig. 9.6. Schematic plot of the density of states for an electron gas in a magnetic
field B
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Fig. 9.7. Schematic plot of the magnetic field dependence of the diamagnetic
susceptibility

In the limit as h̄ωc → 0, the sum on n can be replaced by an integral
nMax∑

n=0

−→ 1
h̄ωc

∫ E

0

dx,

where x = nh̄ωc. In this case the g(E) reduces to the free particle density of
states for B = 0, i.e. g0(E) =

√
2m3/2

π2h̄3 E1/2.
Because g(E) has square root singularities, the internal energy, the mag-

netic susceptibility, etc. show oscillations (see Fig. 9.7). As h̄ωc changes with
N fixed (or N changes with h̄ωc fixed), the Fermi level passes through the
bottoms of different Landau levels. Let ζ � μBB or ζ � h̄ωc. Then the
electron gas occupies states in many different cyclotron levels. At low tem-
peratures all cyclotron levels are partially occupied up to a limiting energy
ζ, which might lie between the threshold energies of the nth and (n − 1)th
cyclotron levels. As B-field increases, the energy and the number of states
in each subband increase, and hence the threshold energy likewise increases.
Since the total number of electrons is given, there is a continuous rearrange-
ment of the electrons with increasing the field. When the threshold energy
En = (n+ 1

2 )h̄ωc grows from a value below ζ to a value above ζ, the electrons
in the nth band fall back into states in the (n−1)th band, decreasing the total
energy. As the field increases, it rises again until the next threshold energy
En−1 exceeds the ζ. As a result ζ itself becomes (weakly) periodic. The sepa-
ration between the individual threshold energy is h̄ωc. Therefore, h̄ωc � kBT
is an important condition; otherwise the electron distribution in the region of
ζ is so widely spread that oscillations are smoothed out. When the condition
ζ � h̄ωc is no longer fulfilled, all the electrons are in the lowest subband and
the oscillations cease. This limit is called the quantum limit.

The oscillations in the magnetic susceptibility are observed in experiments
when h̄ωc � kBT in high purity (low scattering) samples. Oscillations in elec-
trical conductivity are called the Shubnikov–de Haas oscillations. Both



9.8 Cooling by Adiabatic Demagnetization of a Paramagnetic Salt 265

the de Haas–van Alphen oscillations and Shubnikov–de Haas oscillations are
useful in studying electronic properties of metals and semiconductor quantum
structures.

9.8 Cooling by Adiabatic Demagnetization
of a Paramagnetic Salt

The entropy of a paramagnetic salt is the sum of the entropy due to phonons
and the entropy due to the magnetic moments.

S = Sp + Sm. (9.89)

If the paramagnetic ion has angular momentum J , then the ground state in
the absence of any applied magnetic field must be 2J+1 fold degenerate. This
is because mJ can have any value between −J and +J with equal probabil-
ity. For a system containing N paramagnetic ions (noninteracting), the total
degeneracy is (2J + 1)N , and the magnetic contribution to the entropy is

Sm(B = 0) = kB ln(2J + 1)N = NkB ln(2J + 1). (9.90)

Introduce a magnetic field B (neglect local field corrections treating the ions
as noninteracting magnetic ions). Then the magnetic entropy must be given by

Sm(B) = −NkB

J∑

mJ=−J
p(mJ ) ln p(mJ), (9.91)

where
p(mJ) = Z−1e−

gLμBB

kBT mJ . (9.92)

Here, we have used the relation S(B, T ) = kB
∂
∂T (T lnZ) where the normal-

ization constant Z is defined so that
∑
mJ

p(mJ ) = 1, giving

Z =
∑

mJ

e−
gLμBB

kBT mJ . (9.93)

Substitute the expression for p(mJ) into Sm(B) to have

Sm(B) = NkB lnZ +NkB
gLμBB

kBT
mJ . (9.94)

We note that the magnetization is given by M = −NgLμBmJ so that

Sm(B) = NkB lnZ − MB

T
. (9.95)



266 9 Magnetism in Solids

Fig. 9.8. Schematic plot of the process of cooling by adiabatic demagnetization of
a paramagnetic salt

Notice that Sm(B) depends only on the product βB = B
kBT

. Thus, we have

Sm(B) − Sm(0) = NkB ln
Z

2J + 1
− MB

T
. (9.96)

It is easy to see that this quantity is always negative. This agrees with the
intuitive idea that the system is more disordered in the absence of the mag-
netic field. The phonon contribution to the entropy is essentially independent
of magnetic field.

Now, consider the following process (see Fig. 9.8):

1. Apply a magnetic field B under isothermal conditions. This takes one from
point A to point C in the Sm versus T plane.

2. Now, isolate the salt from the heat bath and adiabatically remove the
magnetic field to arrive at D.

This process has lowered the temperature from T1 to T2. The process can be
repeated. In an ideal system Sm(B = 0) should approach zero as T approaches
zero. In practice there is a lower limit in T that can be reached; it is due to the
internal magnetic fields (i.e. coupling of magnetic moments to one another)
in the paramagnetic salt.

9.9 Ferromagnetism

Some materials possess a spontaneous magnetic moment; that is, even in
the absence of an applied magnetic field they have a magnetization M .
The value of the spontaneous magnetic moment per unit volume is called the
spontaneous magnetization, Ms(T ). The temperature Tc above which the
spontaneous magnetization vanishes is called the Curie temperature.

The simplest way to account for the spontaneous alignment is by postulat-
ing the existence of an internal field HE, called the Weiss field, which causes
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the magnetic moments of the atoms to line up. The value of HE is determined
from the Curie temperature Tc by the relation gμBJHE � kBTc to be

HE =
kBTc
gμBJ

. (9.97)

Typically, HE has a value of about 500 Tesla. We shall see that effective field
is not of magnetic origin. If we take μB divided by the volume of a unit cell,
we obtain μB

a3 � 103 gauss � HE. Weiss assumed that the effective field HE

was proportional to the magnetization, i.e.

HE = λM. (9.98)

For T > Tc, the magnetic susceptibility obeys Curie’s law, but now H + HE

would replace H

M =
C

T
(H +HE) =

C

T
(H + λM)

Therefore, we have

M =
C

T − λC
H =

C

T − Tc
H (9.99)

Since C = Ng2Lμ
2
BJ(J+1)
3kB

, the molecular field parameter can be written

λ−1 =
Ng2

Lμ
2
BJ(J + 1)

3kBTc
. (9.100)

For Fe, we have λ � 5, 000.
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Problems

9.1. Consider a volume V bounded by a surface S filled with a magnetization
M(r′) that depends on the position r′. The vector potential A produced by
a magnetization M(r) is given by

A(r) =
∫

d3r′
M(r′) × (r − r′)

|r − r′|3 .

(a) Show that ∇′
(

1
r−r′|

)
= r−r′

|r−r′|3 .
(b) Use this result together with the divergence theorem to show that A(r)

can be written as

A(r) =
∫

V

d3r′
∇r′ × M(r′)

|r − r′| +
∮

S

dS′M(r′) × n̂′

|r − r′| ,

where n̂ is a unit vector outward normal to the surface S. The volume
integration is carried out over the volume V of the magnetized mate-
rial. The surface integral is carried out over the surface bounding the
magnetized object.

9.2. Demonstarate for yourself that Table 9.1 is correct by placing ↑ or ↓
arrows according to Hund’s rules as shown below for Cr of atomic configura-
tion (3d)5(4s)1.

lz 2 1 0 −1 −2

3d-shell ↑ ↑ ↑ ↑ ↑
4s-shell ↑

Clearly S = 1
2 × 6 = 3, L = 0, J = L+ S = 3, and

g =
3
2

+
1
2

3(3 + 1) − 0(0 + 1)
3(3 + 1)

= 2.

Therefore, the spectroscopic notation of Cr is 7S3.
Use Hund’s rules (even though they might not be appropriate for every

case) to make a similar table for Y39, Nb41, Tc43, La57, Dy66, W74, and Am95.

9.3. A system ofN electrons is confined to move on the x−y plane. A magnetic
field B = Bẑ is perpendicular to the plane.

(a) Show that the eigenstates of an electron are written by

εnσ(k) = h̄ωc

(
n+

1
2

)
− μBBσz ,
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ψnσ(k, x, y) = eikyun(x+
h̄k

mωc
)ησ.

Here, k = 2π
L × j, where j = −N

2 ,−N
2 + 1, . . ., N2 − 1, and ησ is a spin

eigenfunction.
(b) Determine the density of states gσ(ε) for electrons of spin σ. Remember

that each cyclotron level can accomodate NL = BL2

hc/e electrons of each
spin.

(c) Determine Gσ(ε), the total number of states per unit area.
(d) Describe qualitatively how the chemical potential at T = 0 changes as

the magnetic field is increased from zero to a value larger than (hce )NL
L2 .

9.4. Show that Sm(B, T )<Sm(0, T ) by showing that dS(B, T )= ∂BS|T,V dB+
∂TS|B,V dT and that ∂BS(B, T )|T,V < 0 for all values of gLμBB

kBT
if J �= 0. Here,

∂TS|B,V is just cv
T .
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Summary

The total angular momentum and magnetic moment of an atom are given by

J = L + S.; m = −μB (L + 2S) = −ĝμBJ.

Here, the eigenvalue of the operator ĝ is the Landé g-factor written as

gL =
3
2

+
1
2
s(s+ 1) − l(l + 1)

j(j + 1)
.

The ground state of an atom or ion with an incomplete shell is determined
by Hund’s rules:

1. The ground state has the maximum S consistent with the Pauli exclusion
principle.

2. It has the maximum L consistent with the maximum spin multiplicity
2S + 1 of Rule 1.

3. The J-value is given by L − S when a shell is less than half filled and by
L+ S when more than half filled.

In the presence of a magnetic field B the Hamiltonian describing the
electrons in an atom is written as

H = H0 +
∑

i

1
2m

(
pi +

e

c
A(ri)

)2

+ 2μBB ·
∑

i

si,

where H0 is the nonkinetic part of the atomic Hamiltonian and the sum is
over all electrons in an atom. For a homogeneous magnetic field B in the
z-direction, we have A = − 1

2B0

(
yî − x̂j

)
. In this gauge, the Hamiltonian

becomes

H = H−mzB0 +
e2B2

0

8mec2

∑

i

(
x2
i + y2

i

)
,

where H = H0 +
∑
i
p2i

2me
and mz = μB(Lz + 2Sz). In the presence of B0, the

z-component of magnetic moment of the atom becomes

μz = mz − e2B0

6mec2

∑

i

r2i .

The second term on the right-hand side is the origin of diamagnetism. If
J = 0 (so that Jz = 0), the (Langevin) diamagnetic susceptibility is given by

χDia =
M

B0
= −N e2

6mec2

∑

i

r2i .

The energy of an atom in a magnetic field B is E = gLμBBmJ , where
mJ = −J,−J + 1, . . . , J − 1, J . The magnetization of a system containing N
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atoms per unit volume is written as M = NgLμBJBJ (βgLμBBJ), where the
function BJ (x) is called the Brillouin function. If the magnetic field B is
small compared to 500 T at room temperature, M becomes

M � Ng2
Lμ

2
BJ(J + 1)
3kBT

B,

and we obtain the Curie’s law for the paramagnetic susceptibility:

χPara =
M

B
=
N
〈
m2

〉

3kBT

at high temperature, (gLμBBJ � kBT ).
In the presence of the magnetic field B, the number of electrons of spin

up (or down) per unit volume is

n± =
1
2

∫ ∞

0

dEf0(E)g (E ∓ μBB) .

For ζ � μBB and kBT � ζ, the magnetization M(=μB(n− − n+)) reduces
to

M � μ2
BB

[
g(ζ) +

π2

6
(kBT )2g′′(ζ)

]
,

with ζ = ζ0 − π2

6 (kBT )2 g
′(ζ0)
g(ζ0) . Since g(ζ) = 3

2
n0
ζ0

(
ε
ζ0

)1/2

, we obtain the
(quantum mechanical) expression

χQM =
3n0μ

2
B

2ζ0

[

1 − π2

12

(
kBT

ζ0

)2

+ · · ·
]

for the Pauli spin (paramagnetic) susceptibility of a metal.
In quantum mechanics, a dc magnetic field can alter the distribution of

the electronic energy levels and the orbital states of an electron are described
by the eigenfunctions and eigenvalues given by

|nkykz〉 = L−1eikyy+ikzzφn

(
x+

h̄ky
mωc

)
; En(ky , kz) =

h̄2k2
z

2m
+ h̄ωc

(
n+

1
2

)
.

The quantum mechanical (Landau) diamagnetic susceptibility of a metal
becomes

χL = − n0

2ζ0

(
eh̄

2m∗c

)2

= −n0μ
2
B

2ζ0

( m
m∗

)2

.

Appearance of m∗ (not m) indicates that the diamagnetism is associated with
the orbital motion of the electrons.

In a metal, as we increase B, the Landau level at kz = 0 passes through the
Fermi energy ζ and the internal energy abruptly decreases. Many physically
observable properties of the system are periodic functions of the magnetic
field. The periodic oscillation of the diamagnetic susceptibility of a metal at
low temperatures is known as the de Haas–van Alphen effect. Oscillations
in electrical conductivity are called the Shubnikov–de Haas oscillations.
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Magnetic Ordering and Spin Waves

10.1 Ferromagnetism

10.1.1 Heisenberg Exchange Interaction

The origin of the Weiss effective field is found in the exchange field between
the interacting electrons on different atoms. For simplicity, assume that atoms
A and B are neighbors and that each atom has one electron. Let ΨA and ΨB

be the wave functions of the electron on atoms A and B, respectively. The
Pauli principle requires that the wave function for the pair of electrons be
antisymmetric. If we label the two indistinguishable electrons 1 and 2, this
means

Ψ(1, 2) = −Ψ(2, 1). (10.1)

The wave function for an electron has a spatial part and a spin part. Let
ηi↑ and ηi↓ be the spin eigenfunctions for electron i in spin up and spin down
states, respectively. There are two possible ways of obtaining an antisymmetric
wave function for the pair (1,2).

ΨI = ΦS(r1, r2)χA(1, 2) (10.2)
ΨII = ΦA(r1, r2)χS(1, 2). (10.3)

The wave function ΨI has a symmetric space part and an antisymmetric
spin part, and the wave function ΨII has an antisymmetric space part and
a symmetric spin part. In (10.2) and (10.3), the space parts are

Φ S
A

(r1, r2) =
1√
2

[Ψa(1)Ψb(2) ± Ψa(2)Ψb(1)] , (10.4)

and χA and χS are the spin wave functions for the singlet (s = 0) spin state
(which is antisymmetric) and for the triplet (s = 1) spin state (which is
symmetric).
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χA(1, 2) =
1√
2

[η1↑η2↓ − η1↓η2↑] ; Sz = 0 (10.5)

χS(1, 2) =

⎧
⎨

⎩

η1↑η2↑ Sz = 1
1√
2

[η1↑η2↓ + η1↓η2↑] Sz = 0
η1↓η2↓ Sz = −1

(10.6)

If we consider the electron–electron interaction

V =
e2

r12
, (10.7)

we can evaluate the expectation value of V in state ΨI or in state ΨII. Since
V is independent of spin it is simple enough to see that

〈ΨI |V |ΨI〉 = 〈ΦS |V |ΦS〉 (10.8)
= 〈Ψa(1)Ψb(2) |V |Ψa(1)Ψb(2)〉 + 〈Ψa(1)Ψb(2) |V |Ψa(2)Ψb(1)〉 .

When we do the same for ΨII, we obtain

〈ΨII |V |ΨII〉 = 〈ΦA |V |ΦA〉 (10.9)
= 〈Ψa(1)Ψb(2) |V |Ψa(1)Ψb(2)〉 − 〈Ψa(1)Ψb(2) |V |Ψa(2)Ψb(1)〉 .

The two terms are called the direct and exchange terms and labeled Vd and J ,
respectively. Thus, the expectation value of the Coulomb interaction between
electrons is given by

〈V 〉 =
{
Vd + J for the singlet state (S = 0)
Vd − J for the triplet state (S = 1). (10.10)

Now, S = ŝ1 + ŝ2 and S2 = (ŝ1 + ŝ2)
2 = ŝ2

1 + ŝ2
2 + 2ŝ1 · ŝ2. Therefore,

ŝ1 · ŝ2 = 1
2 (ŝ1 + ŝ2)

2 − 1
2 ŝ

2
1 − 1

2 ŝ
2
2 = 1

2S(S + 1) − 3
4 . Here, we have used

the fact that the operator S2 has eigenvalues S(S + 1) and ŝ2
1 and ŝ2

2 have
eigenvalues 1

2 (1
2 + 1) = 3

4 . Thus, one can write

ŝ1 · ŝ2 =

{
− 3

4 if S = 0
1
4 if S = 1.

Then, we write

〈V 〉 = Vd + J (
1 − S2

)
= Vd − 1

2
J − 2J ŝ1 · ŝ2. (10.11)

Here, −2J ŝ1 · ŝ2 denotes the contribution to the energy from a pair of atoms
(or ions) located at sites 1 and 2. For a large number of atoms we need only
sum over all pairs to get

E = constant− 1
2

∑

i�=j
2Jij ŝi · ŝj . (10.12)
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Normally, one assumes that Jij is nonzero only for nearest neighbors and
perhaps next nearest neighbors. The factor 1

2 is introduced in order to avoid
double counting of the interaction. The introduction of the interaction term
−2J ŝ1 · ŝ2 is the source of the Weiss internal field which produces ferromag-
netism. If z is the number of nearest neighbors of each atom i, then for atom
i we have

Eex = −2J zS2 = −gLμBSHE. (10.13)

10.1.2 Spontaneous Magnetization

From our study of paramagnetism we know that

M = NgLμBSBS(x), (10.14)

where x = gLμBSBLocal
kBT

. Here, BLocal is B+λM , i.e. it includes the Weiss field.
If we plot M vs. x, we get the behavior shown in Fig. 10.1. But for B = 0,
BLocal = λM . Therefore, x = gLμBSλM

kBT
. If we plot this straight line x vs. M

on the panel of Fig. 10.1 for different temperatures T we find the behavior
shown in Fig. 10.2. Solutions (intersections) occur only at (M = 0, x = 0) for
T > Tc. For T < Tc there is a solution at some nonzero value of M , i.e.

Fig. 10.1. Schematic plot of the magnetization M of a paramagnet as a function
of the dimensionless parameter x defined by x = gLμBSBLocal

kBT

L

L

L

Fig. 10.2. Schematic plot of the magnetization M of a paramagnet for various
different temperatures, in the absence of an external magnetic field, as a function of
the dimensionless parameter x defined by x = gLμBSBLocal

kBT
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MS(T ) = NgLμBSBS(x0), x0 =
gLμBSλMS

kBT
.

The Curie temperature TC is the temperature, at which the gradient of the
line M = kBTx

gLμBSλ
and the curve M = NgLμBSBS(x) are equal at the origin.

Recall that, for small x, BS(x) = (S+1)x
3S +O(x3). Then the TC is given by

TC =
λN

[
gLμB

√
S(S + 1)

]2

3kB
. (10.15)

It is not difficult to see that MS(T ) vs. T looks like Fig. 10.3.
If a finite external magnetic field B0 is applied, then we have

M =
kBTx

gLμBSλ
− B0

λ
. (10.16)

Plotting this straight line on the M–x plane gives the behavior shown in
Fig. 10.4.

Fig. 10.3. Schematic plot of the spontaneous magnetization MS as a function of
temperature T

Fig. 10.4. Schematic plot of the magnetization M of a paramagnet, in the presence
of an external magnetic field B0, as a function of the dimensionless parameter x
defined by x = gLμBSBLocal

kBT
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10.1.3 Domain Structure

If all the magnetic moments in a finite sample are lined up, then there will
be flux emerging from the sample as shown in Fig. 10.5. There is an energy
density 1

8πH(r) ·B(r) associated with this flux emerging from the sample, and
the total emergence energy is given by

U =
1
8π

∫
d3rH(r) · B(r) (10.17)

The emergence energy can be lowered by introducing a domain structures
as shown in Fig. 10.6. To have more than a single domain, one must have a
domain wall, and the domain wall has a positive energy per unit area.

Fig. 10.5. Schematic plot of the magnetic flux around a sample with a single domain
of finite spontaneous magnetization

Fig. 10.6. Domain structures in a sample with finite spontaneous magnetization.
(a) Pair of domains, (b) domains of closure
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Fig. 10.7. A chain of magnetic spins interacting via Heisenberg exchange interac-
tion. (a) Single domain, (b) a domain wall, (c) gradual spin flip

10.1.4 Domain Wall

Consider a chain of magnetic spins (Fig. 10.7a) interacting via Heisenberg
exchange interaction

Hex = −2J
∑

〈i,j〉
si · sj ,

where the sum is over all pairs of nearest neighbors. Compare the energy
of this configuration with that having an abrupt domain wall as shown in
Fig. 10.7b. Only spins (i) and (j) have a misalignment so that

ΔE = Hex(i ↑, j ↓) −Hex(i ↑, j ↑)
= −2J (1

2 )(− 1
2 ) − [−2J (1

2 )(1
2 )
]

= J . (10.18)

Energetically it is more favorable to have the spin flip gradually as shown
in Fig. 10.7c. If we assume the angle between each neighboring pair in the
domain wall is Φ, we can write

(Eex)ij = −2J si · sj = −2J sisj cosΦ. (10.19)

Now, if the spin turns through an angle Φ0 (Φ0 = π in the case shown in
Fig. 10.7b) in N steps, where N is large, then Φij � Φ0

N within the domain

wall, and we can approximate cosΦij by cosΦij ≈ 1 − 1
2

Φ2
0

N2 . Therefore, the
exchange energy for a neighboring spin pair will be

(Eex)ij = −2JS2

(
1 − 1

2
Φ2

0

N2

)
. (10.20)

The increase in exchange energy due to the domain wall will be

Eex = N

(
J S2 Φ2

0

N2

)
= JS2 Φ2

0

N
. (10.21)

Clearly, the exchange energy is lower if the domain wall is very wide. In fact,
if no other energies were involved, the domain wall width Na (where a is the
atomic spacing) would be infinite. However, there is another energy involved,
the anisotropy energy. Let us consider it next.
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10.1.5 Anisotropy Energy

We realize that crystals are not spherically symmetric, but have finite point
group symmetry. In real crystals, certain directions are easy to magnetize
and others are hard. For example, Co is a hexagonal crystal. It is easy to
magnetize Co along the hexagonal axis, but hard to magnetize it along any axis
perpendicular to the hexagonal axis. The excess energy needed to magnetize
the crystal in a direction that makes an angle θ with the hexagonal axis can
be written

EA

V
= K1 sin2 θ +K2 sin4 θ > 0. (10.22)

For Fe, a cubic crystal, the 〈100〉 directions are easy axes and the 〈111〉 direc-
tions are hard. The anisotropy energy must reflect the cubic symmetry of the
lattice. If we define αi = cos θi as shown in Fig. 10.8, then an approximation
to the anisotropy energy can be written

EA

V
≈ K1

(
α2
xα

2
y + α2

yα
2
z + α2

zα
2
x

)
+K2α

2
xα

2
yα

2
z . (10.23)

The constants K1 and K2 in (10.22) and (10.23) are called anisotropy
constants. They are very roughly of the order of 105 erg/cm3.

Fig. 10.8. Orientation of the magnetization with respect to the crystal axes in a
cubic lattice
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Fig. 10.9. Rotation of the magnetization in a domain wall

Clearly, if we make a domain wall, we must rotate the magnetization away
from one easy direction and into another easy direction (see, for example, Fig.
10.9). To get an order of magnitude estimate of the domain wall thickness
we can write the energy per unit surface area as the sum of the exchange
contribution σex and the anisotropy contribution σA

σex =
Eex

a2
=

JS2π2

Na2
, (10.24)

where a is the atomic spacing. The anisotropy energy will be proportional to
the anisotropy constant (energy per unit volume) times the number of spins
times a.

σA ≈ KNa � 102 − 107 J/m3. (10.25)

Thus the total energy per unit area will be

σ =
π2J S2

Na2
+KNa. (10.26)

The σ has a minimum as a function of N , since the exchange part wants N
to be very large and the anisotropy part wants it very small. At the minimum
we have

N �
(
π2J S2

Ka3

)1/2

≈ 300. (10.27)

The width of the domain wall is δ = Na � πS( J
Ka)

1/2, and the energy per
unit area of the domain wall is σ � 2πS(JKa )1/2.

10.2 Antiferromagnetism

For a Heisenberg ferromagnet we had an interaction Hamiltonian given by

H = −2J
∑

〈i,j〉
si · sj , (10.28)

and the exchange constant J was positive. This made si and sj align parallel
to one another so that the energy was minimized. It is not uncommon to have
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Fig. 10.10. Sublattice structure of spins in a ferrimagnet

spin systems in which J is negative. Then the Hamiltonian

H = 2 |J |
∑

〈i,j〉
si · sj (10.29)

will attempt to align the neighboring spins antiparallel. Materials with J < 0
are called antiferromagnets.

For a antiferromagnet, the magnetic susceptibility increases as the tem-
perature increases up to the transition temperature TN = |J |

kB
, known as the

Néel temperature. Above TN, the antiferromagnetic crystal is in the standard
paramagnetic state.

10.3 Ferrimagnetism

In an antiferromagnet we can think of two different sublattices as shown in
Fig. 10.10. If the two sublattices happened to have a different spin on each
(e.g. up sublattice has s = 3

2 , down sublattice has s = 1), then instead of an
antiferromagnet for J < 0, we have a ferrimagnet.

10.4 Zero-Temperature Heisenberg Ferromagnet

In the presence of an applied magnetic field B0 oriented in the z-direction,
the Hamiltonian of a Heisenberg ferromagnet can be written

H = −
∑

i,j

J (Ri − Rj)Si · Sj − gμBB0

∑

i

Siz . (10.30)

Here, we take the usual practice that the symbol Si represents the total angu-
lar momentum of the ith ion and is parallel to the magnetic moment of the
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ion, rather than opposite to the moment as was given by (9.26). The exchange
integral J is defined as a half of the difference between the singlet and triplet
energies. Let us define the operators S± by

S± = Sx ± iSy. (10.31)

Remember that we can write S as

S =
1
2
σ, (10.32)

where σx, σy, σy are the Pauli spin matrices given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (10.33)

Let us choose units in which h̄ = 1. Then, Sx, Sy, and Sz satisfy the
commutation relations

[Sx, Sy]− = iSz,
[Sy, Sz]− = iSx,
[Sz, Sx]− = iSy.

(10.34)

We will be using the symbols S and Sz for quantum mechanical operators
and for numbers associated with eigenvalues. Where confusion might arise
we will write Ŝ and Ŝz for the quantum mechanical operators. From quan-
tum mechanics we know that Ŝ2 and Ŝz can be diagonalized in the same
representation since they commute. We usually write

Ŝ2|S, Sz >= S(S + 1)|S, Sz〉,
Ŝz|S, Sz〉 = Sz |S, Sz〉. (10.35)

Let us look at Ŝ+ operating on the state |S, Sz〉. We recall that
[
Ŝ2, Ŝ+

]
= 0,

[
Ŝz, Ŝ

+
]

= Ŝ+.
(10.36)

We can write

Ŝ2Ŝ+|S, Sz〉 = Ŝ+Ŝ2|S, Sz〉 +
[
Ŝ2, Ŝ+

]
|S, Sz〉. (10.37)

The second term vanishes because the commutator is zero, and Ŝ2|S, Sz〉 =
S(S + 1)|S, Sz〉 giving

Ŝ2Ŝ+|S, Sz〉 = S(S + 1)Ŝ+|S, Sz〉. (10.38)

Perform the same operation for Ŝz operating on Ŝ+|S, Sz〉 to have

ŜzŜ
+|S, Sz〉 = Ŝ+Ŝz|S, Sz〉 +

[
Ŝz, Ŝ

+
]
|S, Sz〉. (10.39)
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Use the fact that
[
Ŝz , Ŝ

+
]

= Ŝ+ and Ŝz|S, Sz〉 = Sz |S, Sz〉. This gives

ŜzŜ
+|S, Sz〉 = (Sz + 1)Ŝ+|S, Sz〉. (10.40)

This means that Ŝ+|S, Sz〉 is proportional to |S, Sz + 1〉. To determine the
normalization constant we write

Ŝ+|S, Sz〉 = N |S, Sz + 1〉,
and note that

{N |S, Sz + 1〉}† = N∗ < S, Sz + 1|
and

{Ŝz|S, Sz〉† = 〈S, Sz |Ŝz
Thus, we have

|N |2〈S, Sz + 1|S, Sz + 1〉 = 〈S, Sz |Ŝ−Ŝ+|S, Sz〉
= 〈S, Sz |(Ŝ2

x + Ŝ2
y − Ŝz)|S, Sz〉 = 〈S, Sz|(Ŝ2 − Ŝ2

z − Ŝz)|S, Sz〉
giving for N

N =
[
S(S + 1) − S2

z − Sz
]1/2

.

We can then show that

Ŝ+|S, Sz〉 =
√

(S − Sz)(S + 1 + Sz)|S, Sz + 1〉
Ŝ−|S, Sz〉 =

√
(S + Sz)(S + 1 − Sz)|S, Sz − 1〉 (10.41)

Now, note that

SixSjx + SiySjy =
1
2
(
S+
i S

−
j + S−

i S
+
j

)
. (10.42)

These are all operators, but we omit the ˆ over the S. The Heisenberg Hamil-
tonian, (10.30), becomes

H = −
∑

i,j

JijSizSjz− 1
2

∑

i,j

Jij
(
S+
i S

−
j + S−

i S
+
j

)−gμBB0

∑

i

Siz . (10.43)

It is rather clear that the ground state will be obtained when all the spins are
aligned parallel to one another and to the magnetic field B0. Let us define
this state as |GS > or |0 >. We can write

|0 >=
∏

i

|S, S〉i. (10.44)

Here, |S, S〉i is the state of the ith spin in which Ŝiz has the eigenvalue Sz = S,
its maximum value. It is clear that Ŝ+

i operating on |0〉 gives zero for every
position i in the crystal. Therefore, H operating on |0〉 gives



286 10 Magnetic Ordering and Spin Waves

H|0〉 = −
⎛

⎝
∑

i,j

Jij ŜizŜjz + gμBB0

∑

i

Ŝiz

⎞

⎠ |0 > . (10.45)

Equation (10.45) shows that the state, in which all the spins are parallel and
aligned along B0 = (0, 0, B0), so that Sz takes its maximum value S, has the
lowest energy. The ground state energy becomes

E0 = −S2
∑

i,j

Jij −NgμBB0S. (10.46)

If Jij = J for nearest neighbor pairs and zero otherwise, then
∑

i,j 1 = Nz,
where z is the number of nearest neighbors. Then E0 reduces to

E0 = −S2NzJ −NgμBB0S

= −gμBNS

[
B0 + z

JS
g2μ2

B

]
.

(10.47)

10.5 Zero-Temperature Heisenberg Antiferromagnet

If J is replaced by −J so that the exchange interaction tends to align neigh-
boring spins in opposite directions, the ground state of the system is not
quite simple. In fact, it has been solved exactly only for the special case of
spin 1

2 atoms in a one-dimensional chain by Hans Bethe. Let us set the applied
magnetic field B0 = 0. Then the Hamiltonian is given by

H =
∑

i,j

JijSi · Sj . (10.48)

If we assume that each sublattice acts as the ground state of the ferromagnet,
but has Sz oriented in opposite directions on sublattices A and B, we would
write a trial wave function

ΦTrial =
∏

i ∈ A
j ∈ B

|S, S〉i|S,−S〉j. (10.49)

Remember that the Hamiltonian is

H =
∑

i,j

Jij
(
SizSjz +

1
2
S+
i S

−
j +

1
2
S−
i S

+
j

)
. (10.50)

The SizSjz term would take its lowest possible value with this wave function,
but unfortunately S−

i S
+
j operating on ΦTrial would give a new wave function

in which sublattice A has one atom with Sz having the value S − 1 and
sublattice B has one with Sz = −S + 1. Thus, ΦTrial is not an eigenfunction
of H.



10.6 Spin Waves in Ferromagnet 287

10.6 Spin Waves in Ferromagnet

The Heisenberg Hamiltonian for a system (with unit volume) consisting of N
spins with the nearest neighbor interaction can be written

H = −2J
∑

〈i,j〉
Ŝi · Ŝj − gμBB0

∑

i

Siz, (10.51)

where the symbol 〈i, j〉 below the
∑

implies a sum over all distinct pairs of
nearest neighbors. The constants of the motion are Ŝ2 =

∑
i Ŝi ·

∑
j Ŝj and

Ŝz =
∑

j Ŝjz , where Ŝ =
∑

j Ŝj . The eigenvalues of Ŝ2 and Ŝz are given by

Ŝ2|0〉 = NS(NS + 1)|0〉
Ŝz|0〉 = NS|0〉. (10.52)

The ground state satisfies the equation

H|0〉 = − (
gμBB0NS + JNzS2

) |0〉 (10.53)

10.6.1 Holstein–Primakoff Transformation

If we write Ŝi · Ŝj in terms of x, y, and z components of the spin operators,
the Heisenberg Hamiltonian becomes

H = −2J
∑

〈i,j〉

(
ŜixŜjx + ŜiyŜjy + ŜizŜjz

)
− gμBB0

∑

i

Ŝiz . (10.54)

We can write
ŜixŜjx + ŜiyŜjy =

1
2
Ŝ+
i Ŝ

−
j +

1
2
Ŝ−
i Ŝ

+
j . (10.55)

Now, the Hamiltonian is rewritten

H = −2J
∑

〈i,j〉

(
1
2
Ŝ+
i Ŝ

−
j +

1
2
Ŝ−
i Ŝ

+
j + ŜizŜjz

)
− gμBB0

∑

i

Ŝiz. (10.56)

The spin state of each atom is characterized by the value of Sz, which can
take on any value between −S and S separated by a step of unity. Because
we are interested in low lying states, we will consider excited states in which
the value of Siz does not differ too much from its ground state value S. It is
convenient to introduce an operator n̂j defined by

n̂j = Sj − Ŝjz = S − Ŝjz . (10.57)

n̂j is called the spin deviation operator ; it takes on the eigenvalues 0, 1, 2,
· · · , 2S telling us how much the value of Sz on site j differs from its ground
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state value S. We now define a†j and its Hermitian conjugate aj by

n̂j = a†jaj . (10.58)

a†j and aj are creation and annihilation operators for the jth atom. We will
require aj and a†j to satisfy the commutation relation [aj , a

†
j] = 1, since a spin

deviation looks like a boson. Notice that a†j , which creates one spin deviation
on site j, acts like the lowering operator S−

j while aj acts, by destroying one
spin deviation on site j, like S+

j . Therefore, we expect a†j to be proportional
to S−

j and aj to be proportional to S+
j . One can determine the coefficient by

noting that
[Ŝ+, Ŝ−] = 2Ŝz = 2(S − n̂). (10.59)

If we introduce the Holstein–Primakoff transformation to boson creation and
annihilation operators a†j and aj

Ŝ+
j = (2Sj − n̂j)1/2aj and Ŝ−

j = a†j(2Sj − n̂j)1/2 (10.60)

and substitute into the expression for the commutator of Ŝ+ with Ŝ−, we
obtain

[Ŝ+, Ŝ−] = 2(S − n̂) (10.61)

if [a, a†] = 1. The proof of (10.61) is given below. We want to show that
[Ŝ+, Ŝ−] = 2(S − n̂) if [a, a†] = 1. We start by defining Ĝ = (2S − n̂)1/2.
Then, we can write

[Ŝ+, Ŝ−] = [Ĝa, a†Ĝ] = Ĝ[a, a†Ĝ] + [Ĝ, a†Ĝ]a
= Ĝa†[a, Ĝ] + Ĝ2 + [Ĝ, a†]Ĝa
= Ĝ2 + n̂Ĝ2 − a†Ĝ2a.

But, we note that

−a†Ĝ2a = −a†(2S − n̂)a = −a† {[2S − n̂, a] + a(2S − n̂)}
= −a†

{
−[n̂, a] + aĜ2

}
= −a†

{
−[a†a, a] + aĜ2

}

= −a†
{
−[a†, a]a+ aĜ2

}
= −n̂− n̂Ĝ2.

Therefore, we have

[Ŝ+, Ŝ−] = Ĝ2 + n̂Ĝ2 − a†Ĝ2a

= Ĝ2 + n̂Ĝ2 − n̂− n̂Ĝ2

= Ĝ2 − n̂ = 2(S − n̂) = 2Ŝz.

To obtain this result we had to require [a†, a] = −1. If we substitute (10.59)
and (10.60) into the Hamiltonian, (10.56), we obtain
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H = −2JS
∑

〈i,j〉

{√

1 − n̂i
2S
aia

†
j

√

1 − n̂j
2S

+ a†i

√

1 − n̂i
2S

√

1 − n̂j
2S
aj

+S

(
1 − n̂i

S

)(
1 − n̂j

S

)}
− gμBB0S

∑

i

(
1 − n̂i

S

)
. (10.62)

So far, we have made no approximation other than those inherent in the
Heisenberg model. Now, we will make the approximation that 〈n̂i〉 � 2S for

all states of interest. Therefore, in an expansion of the operator
√

1 − n̂i

2S we
will keep only terms up to those linear in n̂i, i.e.

√

1 − n̂i
2S

� 1 − n̂i
4S

+ · · · . (10.63)

We make this substitution into the Heisenberg Hamiltonian and write H as

H = E0 + H0 + H1. (10.64)

Here, E0 is the ground state energy that we obtained by assuming that the
ground state wave function was |0〉 =

∏
i |S, Sz = S〉i.

E0 = −2S2
∑

〈i,j〉 Jij −NgμBB0

= −zJNS2 − gμBB0NS.
(10.65)

H0 is the part of the Hamiltonian that is quadratic in the spin deviation
creation and annihilation operators.

H0 = (gμBB0 + 2zJS)
∑

i

n̂i − 2JS
∑

〈i,j〉

(
aia

†
j + a†iaj

)
. (10.66)

H1 includes all higher terms. To fourth order in a†’s and a’s the expression
for H1 is given explicitly by

H1 = −2J ∑
〈i,j〉

(
n̂in̂j − 1

4 n̂iaia
†
j − 1

4aia
†
j n̂j − 1

4 n̂ja
†
iaj − 1

4a
†
iaj n̂i

)

+ higher order terms.
(10.67)

Let us concentrate on H0. It is apparent that a†iaj transfers a spin deviation
from the jth atom to the ith atom. Thus, a state with a spin deviation on the
jth atom is not an eigenstate of H. This problem is similar to that which we
encountered in studying lattice vibrations. By this, we mean that spin devia-
tions on neighboring sites are coupled together in the same way that atomic
displacements of neighboring atoms are coupled in lattice dynamics. As we
did in studying phonons, we will introduce new variables that we call magnon
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or spin wave variables defined as follows:

bk = N−1/2
∑

j

eik·xj aj and b†k = N−1/2
∑

j

e−ik·xj a†j . (10.68)

As usual the inverse can be written

aj = N−1/2
∑

k

e−ik·xj bk and a†j = N−1/2
∑

k

eik·xj b†k. (10.69)

It is straightforward (but left as an exercise) to show, because [aj , aj′ ] =
[a†j , a

†
j′ ] = 0 and [aj, a

†
j′ ] = δjj′ , that

[bk, bk′] =
[
b†k, b

†
k′

]
= 0 and

[
bk, b

†
k′

]
= δkk′. (10.70)

Substitute into H0 the expression for spin deviation operators in terms of the
magnon operators; this gives

H0 = (gμBB0 + 2zJS)
∑

j

N−1
∑

kk′
ei(k−k′)·xjb†kbk′

− 2JSN−1
∑

〈j,l〉

∑

kk′

(
eik·xl−ik′·xjbk′b

†
k + eik′·xj−ik·xlb†k′bk

)
.(10.71)

We introduce δ, one of the nearest neighbor vectors connecting neighboring
sites and write xl = xj + δ in the summation

∑
〈j,l〉, so that it becomes

1
2

∑
j

∑
δ = 1

2zN . We also make use of the fact that

∑

j

ei(k−k′)·xj = δkk′N. (10.72)

Then, H0 can be expressed as

H0 = (gμBB0 + 2zJS)
∑

k

b†kbk − J S
∑

k

∑

δ

(
eik·δbkb

†
k + e−ik·δb†kbk

)
.

(10.73)
We now define

γk = z−1
∑

δ

eik·δ. (10.74)

If there is a center of symmetry about each atom then γ−k = γk. Further,
since

∑
k eik·R = 0 unless R = 0, it is apparent that

∑
k γk = 0. Using these

results in our expression for H0 gives

H0 =
∑

k

h̄ωkb
†
kbk, (10.75)

where
h̄ωk = 2zJS(1 − γk) + gμBB0. (10.76)
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Thus, if we neglect H1, we have for the Hamiltonian of a state containing
magnons

H = − (
gμBB0NS + zJNS2

)
+
∑

k

h̄ωkb
†
kbk. (10.77)

This tells us that the elementary excitations are waves (remember b†k =
N−1/2

∑
j e−ik·xj a†j is a linear combination of spin deviations shared equally

in amplitude by all sites) of energy h̄ωk. Provided that we stay at low enough
temperature so that 〈n̂j〉 � S, this approximation is rather good. At higher
temperatures, where many spin waves are excited, the higher terms (spin
wave–spin wave interactions) become important.

10.6.2 Dispersion Relation for Magnons

For long wave lengths |k ·δ| � 1. In this region, we can expand eik·δ in powers
of k to get

γk = z−1
∑

δ

(
1 + ik · δ − (k · δ)2

2
+ · · ·

)
. (10.78)

Using
∑

δ 1 = z, and
∑

δ δ = 0 gives

γk ≈ 1 − 1
2z

∑

δ

(k · δ)2 . (10.79)

Thus, z(1 − γk) � 1
2

∑
δ (k · δ)2 and in this limit we have

h̄ωk = gμBB0 + J S
∑

δ

(k · δ)2 . (10.80)

For a simple cubic lattice |δ| = a and
∑

δ (k · δ)2 = 2k2a2 giving

h̄ωk = gμBB0 + 2JSa2k2. (10.81)

In a simple cubic lattice, the magnon energy is of the same form as the energy
of a free particle in a constant potential ε = V0 + h̄2k2

2m∗ where V0 = gμBB0 and
1
m∗ = 4JSa2

h̄2 .
The dispersion relation we have been considering is appropriate for a Bra-

vais lattice. In reciprocal space the k values will, as is usual in crystalline
materials, be restricted to the first Brillouin zone. For a lattice with more
than one spin per unit cell, optical magnons as well as acoustic magnons are
found, as is shown in Fig. 10.11.

10.6.3 Magnon–Magnon Interactions

The terms in H1 that we have omitted involve more than two spin deviation
creation and annihilation operators. These terms are responsible for magnon–
magnon scattering just as cubic and quartic anharmonic terms are responsible



292 10 Magnetic Ordering and Spin Waves

E

Fig. 10.11. Magnon dispersion curves

for phonon–phonon scattering. Freeman J. Dyson studied the leading terms
associated with magnon–magnon scattering.1 Rigorous treatment of magnon–
magnon scattering is mathematically difficult.

10.6.4 Magnon Heat Capacity

If the external magnetic field is zero and if magnon–magnon interactions are
neglected, then we can write the magnon frequency as ωk = Dk2 for small
values of k. Here D = 2JSa2. The internal energy per unit volume associated
with these excitations is given by (we put h̄ = 1 for convenience)

U =
1
V

∑

k

ωk 〈nk〉 (10.82)

where 〈nk〉 = 1
eωk/Θ−1

is the Bose–Einstein distribution function since mag-
nons are Bosons. Converting the sum to an integral over k gives

U =
1

(2π)3

∫

BZ

d3k
Dk2

eDk2/Θ − 1
. (10.83)

Let Dk2 = Θx2; then U becomes

U =
D

2π2

(
Θ
D

)5/2 ∫
dx

x4

ex2 − 1
. (10.84)

Here, we have used d3k = 4πk2dk. Let x2 = y and set the upper limit at
yM =

(
DkM

Θ

)2
. Then, we find

U =
Θ5/2

4π2D3/2

∫ yM

0

dy
y3/2

ey − 1
. (10.85)

1 F.J. Dyson, Phys. Rev. 102, 1217 (1956).
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Fig. 10.12. Specific heat of an insulating ferromagnet

For very low temperatures Θ � ωM and no serious error is made by replacing
yM by ∞. Then, the integral becomes

∫ ∞

0

dy
y3/2

ey − 1
= Γ

(
5
2

)
ζ

(
5
2
, 1
)
. (10.86)

Here, Γ(x) and ζ(a, b) are the Γ function and Riemann zeta function, respec-
tively: Γ(5

2 ) = 3
2 · 1

2Γ(1
2 ) = 3

4

√
π and ζ(5

2 , 1) ≈ 1.341. Thus for U we
obtain

U � 0.45
π2

Θ5/2

D3/2
(10.87)

and for the specific heat due to magnons

C =
∂U

∂T
= 0.113kB

(
Θ
D

)3/2

(10.88)

For an insulating ferromagnet the specific heat contains contributions due to
phonons and due to magnons. At low temperatures we have

C = AT 3/2 +BT 3 (10.89)

Plotting CT−3/2 as a function of T 3/2 at low temperature should give a
straight line. (See, for example, Fig. 10.12.) For the ideal Heisenberg ferro-
magnet YIG (yttrium iron garnet) D has a value approximately 0.8 erg · cm2

implying an effective mass m∗ � 6me.

10.6.5 Magnetization

The thermal average of the magnetization at a temperature T is referred to
as the spontaneous magnetization at temperature T . It is given by

Ms =
gμB

V

(

NS −
〈
∑

k

b†kbk

〉)

. (10.90)
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The first term is just the zero temperature value where Sz = NS and
gμB = 2μ. The second term results from the presence of spin deviations n̂j .
Remember that

∑
j n̂j =

∑
j a

†
jaj =

∑
j

1
N

∑
kk′ e

i(k−k′)·xjb†kbk′
=
∑

kk′ b
†
kbk′δkk′ =

∑
k b

†
kbk.

(10.91)

We can define
ΔM = Ms(0) −Ms(T ) =

2μ
V

∑

k

〈nk〉 ,

where 〈nk〉 = 1

eDk2/Θ−1
. Replacing the sum over the wave number k by an

integral in the usual way gives

ΔM =
2μ

(2π)3
4π

∫
dk k2

eDk2/Θ − 1

=
μ

2π2

(
Θ
D

)3/2 ∫ yM

0

dy y1/2

ey − 1
.

(10.92)

Again if Θ � h̄ωM, yM can be replaced by ∞. Then the definite integral has
the value Γ(3

2 )ζ(3
2 , 1), and we obtain for ΔM

ΔM = 0.117μ
(

Θ
D

)3/2

= 0.117μ
(

Θ
2a2SJ

)3/2

. (10.93)

For Ms(T ) we can write

Ms(T ) =
N

V
2μS − 0.117

μ

a3

(
Θ

2SJ
)3/2

. (10.94)

For simple cubic, bcc, and fcc lattices, NV has the values 1/a3, 2/a3, and 4/a3,
respectively. Thus, we can write

Ms(T ) � 2μS
a3

[
α− 0.02

Θ3/2

S5/2J 3/2

]
, (10.95)

where α = 1, 2, 4 for simple cubic, bcc, and fcc lattices, respectively. The T 3/2

dependence of the magnetization is a well-known result associated with the
presence of noninteracting spin waves. Higher order terms in Θ

J are obtained if
the full expression for γk is used instead of just the long wave length expansion
(correct up to k2 term) and the k-integral is performed over the first Brillouin
zone and not integrated to infinity. The first nonideal magnon term, result-
ing from magnon–magnon interactions, is a term of order

(
Θ
J
)4

. F.J. Dyson
obtained this term correctly in a classic paper in the mid 1950s.2

2 F.J. Dyson, Phys. Rev 102, 1230 (1956).
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Fig. 10.13. Coupling of magnons–phonons

10.6.6 Experiments Revealing Magnons

Among the many experiments which demonstrate the existence of magnons,
a few important ones are as follows:

1. The existence of side bands in ferromagnetic resonances. The uniform pre-
cession mode in a ferromagnetic resonance experiment excites a k = 0 spin
wave. In a ferromagnetic film, it is possible to couple to modes with wave
length λ satisfying 1

2λ = d
n where d is the thickness of the film. This gives

resonances at magnon wave numbers kn = nπ
d .

2. The existence of inelastic neutron scattering peaks associated with
magnons.

3. The coupling of magnons to phonons in ferromagnetic crystals (see Fig.
10.13).

10.6.7 Stability

We started with a Heisenberg Hamiltonian H = −J ∑
〈i,j〉 Ŝi · Ŝj . In the fer-

romagnetic ground state the spins are aligned. However, the direction of the
resulting magnetization is arbitrary (since H has complete rotational symme-
try) so that the ground state is degenerate. If one selects a certain direction
for M as the starting point of magnon theory, the system is found to be
unstable. Infinitesimal amount of thermal energy excites a very large number
of spin waves (remembering that when B0 = 0 the k = 0 spin waves have zero
energy). The difficulty of having an unstable ground state with M in a par-
ticular direction is removed by removing the degeneracy caused by spherical
symmetry of the Hamiltonian. This is accomplished by either
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1. Applying a field B0 in a particular direction or
2. Introducing an effective anisotropy field BA.

For Θ � μB|B| where B is either B0 or BA, only small deviations from the
ground state occur. The anisotropy field is a mathematical convenience which
accounts for anisotropic interaction in real crystals. It is not so important in
ferromagnets, but it is very important in antiferromagnets

10.7 Spin Waves in Antiferromagnets

The Heisenberg Hamiltonian of an antiferromagnet has J > 0 so that

H = +2J
∑

〈i,j〉
Ŝi · Ŝj − gμBB0 ·

∑

i

Ŝi, (10.96)

where the sum is over all possible distinct nearest neighbor pairs. The state
in which all N spins on sublattice 1 are ↑ and all N spins on sublattice 2 are
↓ is a highly degenerate state because the direction for ↑ (or ↓) is completely
arbitrary. This degeneracy is not removed by introducing an external field
B0. For |B0| not too large, the spins align themselves antiferromagnetically
in the plane perpendicular to B0. However, the direction of a given sublattice
magnetization is still arbitrary in that plane.

Lack of stability can be overcome by introducing an anisotropy field BA

with the following propeties:

1. BA is in the +z-direction at sites in sublattice 1.
2. BA is in the −z-direction at sites in sublattice 2.
3. μBBA is not too small (compared to 1

NJ ).

Then, the Heisenberg Hamiltonian for an antiferromagnet in the presence of
an applied field B0 = B0ẑ and an anisotropy field BA can be written

H = +J
∑

〈i,j〉
Ŝi ·Ŝj−gμB(BA+B0)

∑

l∈a

Ŝa
lz+gμB(BA−B0)

∑

p∈b

Ŝb
pz . (10.97)

The superscripts a and b refer to the two sublattices. In the limit where
BA → ∞ while J → 0 and B0 → 0, the ground state will have

Sa
lz = S for all l ∈ a
Sb
pz = −S for all p ∈ b (10.98)

This state is not true ground state of the system when BA and J are both
finite. The spin wave theory of an antiferromagnet can be carried out in anal-
ogy with the treatment for the ferromagnet. We introduce spin deviations
from the “BA → ∞ ground state” by writing

Sa
lz = S − a†l al for all l ∈ a
Sb
pz = −(S − b†pbp) for all p ∈ b,

(10.99)
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where the spin deviation operators satisfy commutation relations
[
al, a

†
l

]
= 1

and
[
bp, b

†
p

]
= 1. Once again it is easy to show that

Ŝa+
l = (2S − n̂l)1/2al; Ŝa−

l = a†l (2S − n̂l)1/2

Ŝb+
p = b†p(2S − m̂p)1/2; Ŝb−

p = (2S − m̂p)1/2bp.
(10.100)

Here, n̂l = a†l al and m̂p = b†pbp. In spin wave theory, we assume 〈n̂l〉 � 2S
and 〈m̂p〉 � 2S and expand the square roots keeping only linear terms in n̂l
and m̂p. The Hamiltonian can then be written

H = E0 + H0 + H1. (10.101)

Here, E0 is the ground state energy given by

E0 = −2NzJS2 − 2gμBBANS, (10.102)

and H0 is the part of the Hamiltonian that is quadratic in the spin deviation
creation and annihilation operators

H0 = 2J S∑′
〈l,p〉

(
albp + a†l b

†
p + n̂l + m̂p

)

+ gμB (BA +B0)
∑

l∈a n̂l + gμB (BA −B0)
∑

p∈b m̂p.
(10.103)

The sum of products of a’s and b’s is over nearest neighbor pairs. H1 is a sum
of an infinite number of terms each containing at least four a or b operators
or their Hermitian conjugates. We can again introduce spin wave variables

ck = N−1/2
∑

l e
ik·xl al, c†k = N−1/2

∑
l e

−ik·xl a†l ,

dk = N−1/2
∑
p e−ik·xp bp, d

†
k = N−1/2

∑
p eik·xp b†p.

(10.104)

In terms of the spin wave variables we can rewrite H0 as

H0 = 2zJS∑k

(
γkc

†
kd

†
k + γkckdk + c†kck + d†kdk

)

+ gμB (BA +B0)
∑

k c
†
kck + gμB (BA −B0)

∑
k d

†
kdk.

(10.105)

Here, we have introduced

γk = z−1
∑

δ

eik·δ = γ−k

once again. We are going to forget all about H1, and consider for the moment
that the entire Hamiltonian is given by H0 + E0. H0 is still not in a trivial
form. We can easily put it into normal form as follows:

1. Define new operators αk and βk

αk = ukck − vkd
†
k ; βk = ukdk − vkc

†
k, (10.106)

where uk and vk are real and satisfy u2
k − v2

k = 1.
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2. Solve these equations (and their Hermitian conjugates) for the c’s and d’s
in terms of α and β. We can write

ck = ukαk + vkβ
†
k ; c†k = ukα

†
k + vkβk (10.107)

and
dk = vkα

†
k + ukβk ; d†k = vkαk + ukβ

†
k. (10.108)

3. Substitute (10.107) and (10.108) in H0 to have

H0 = 2zSJ ∑
k

{
γk

[
ukvk(α†

kαk + βkβ
†
k + αkα

†
k + β†

kβk)

+ u2
k(α†

kβ
†
k + αkβk) + v2

k(β†
kα

†
k + βkαk)

]

+ u2
kα

†
kαk + v2

kβkβ
†
k + ukvk(α†

kβ
†
k + βkαk)

+ v2
kαkα

†
k + u2

kβkβ
†
k + ukvk(αkβk + β†

kα
†
k)
}

+ gμB(BA +B0)
∑

k

[
u2
kα

†
kαk + v2

kβkβ
†
k + ukvk(α†

kβ
†
k + βkαk)

]

+ gμB(BA −B0)
∑

k

[
v2
kαkα

†
k + u2

kβ
†
kβk + ukvk(αkβk + β†

kα
†
k)
]
.

(10.109)
We can regroup these terms as follows:

H0 = 2
∑

k

[
2zSJ (

γkukvk + v2
k

)
+ gμBBAv

2
k

]

+
∑

k

[
2zSJ (

2γkukvk + u2
k + v2

k

)
+ gμBBA(u2

k + v2
k) + gμBB0

]
α†

kαk

+
∑

k

[
2zSJ (

2γkukvk + u2
k + v2

k

)
+ gμBBA(u2

k + v2
k) − gμBB0

]
β†
kβk

+
∑

k

{
2zSJ [

γk(u2
k + v2

k) + 2ukvk
]
+ 2gμBBAukvk

}(
α†

kβ
†
k + αkβk

)
.

(10.110)
4. We put the Hamiltonian in diagonal form by requiring the coefficient of

the last term to vanish. We define ωe and ωA by

ωe = 2J zS and ωA = gμBBA. (10.111)

We must solve

ωe

[
γk(u2

k + v2
k) + 2ukvk

]
+ 2ωAukvk = 0, (10.112)

remembering that u2
k = 1 + v2

k. Then, (10.112) reduces to

1 + 2v2
k

2vk
√

1 + v2
k

= − 1
γk

(
ωA

ωe
+ 1

)
.

Solving for v2
k gives

v2
k = −1

2
+

1
2

ωA + ωe√
(ωA + ωe)2 − γ2

kω
2
e

. (10.113)

Thus, we have

u2
k =

1
2

+
1
2

ωA + ωe√
(ωA + ωe)2 − γ2

kω
2
e

, (10.114)
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and since
ukvk = −1

2
γkωe

ωA + ωe
(u2

k + v2
k),

we have
ukvk = −1

2
γkωe√

(ωA + ωe)2 − γ2
kω

2
e

. (10.115)

Now, let us write the Hamiltonian in a diagonal form

H0 = C +
∑

k

[
(ωk + gμBB0)α

†
kαk + (ωk − gμBB0)β

†
kβk

]
(10.116)

where

ωk = 2zSJ (
2γkukvk + u2

k + v2
k

)
+ gμBBA(u2

k + v2
k)

=
√

(ωA + ωe)2 − γ2
kω

2
e .

(10.117)

The constant C is given by

C = 2
∑

k

[
2zSJ (

γkukvk + v2
k

)
+ gμBBAv

2
k

]

=
∑

k [ωk − (ωA + ωe)] .
(10.118)

Thus, to this order of approximation we have

H = −2NzJS2 − 2gμBBANS +
∑

k [ωk − (ωA + ωe)]
+
∑
k(ωk + ωB)α†

kαk +
∑
k(ωk − ωB)β†

kβk,
(10.119)

where
ωB = gμBB0. (10.120)

10.7.1 Ground State Energy

In the ground state
〈
0
∣
∣∣α†

kαk

∣
∣∣ 0
〉

=
〈
0
∣
∣∣β†

kβk

∣
∣∣ 0
〉

= 0.

Thus the ground state energy is given by

EGS = −2NzJS2 − 2gμBBANS +
∑

k

[ωk − (ωA + ωe)] . (10.121)

Let us consider the case B0 = BA = 0; thus ωA → 0 and ωk → ωe(1− γ2
k)1/2.

But ωe is simply 2J zS. Hence for B0 = BA = 0 the ground state energy is
given by

EGS = −2NzJS2 −Nωe + ωe

∑

k

(1 − γ2
k)1/2. (10.122)
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By using ωe = 2J zS, this can be rewritten by

EGS = −2NzJS
[

S + 1 −N−1
∑

k

√
1 − γ2

k

]

. (10.123)

Let us define β = z
(
1 −N−1

∑
k

√
1 − γ2

k

)
; then EGS can be written as

EGS = −2NzJS(S + z−1β). (10.124)

For a simple cubic lattice β � 0.58. For other crystal structures β has slightly
different values.

10.7.2 Zero Point Sublattice Magnetization

For very large anisotropy field BA, the magnetization of sublattice a is gμBNS
while that of sublattice b is equal in magnitude and opposite in direction.
When BA → 0, the resulting antiferromagnetic state will have a sublattice
magnetization that differs from the value of BA → ∞. Then magnetization is
given by

M(T ) =
gμB

V

〈
0|Ŝz |0

〉
, (10.125)

where the total spin operator Ŝz is given, for sublattice a, by

Ŝz =
∑

l∈a

Sa
lz = NS −

∑

l

a†lal. (10.126)

But
∑
l a

†
lal =

∑
k c

†
kck, and the ck and c†k can be written in terms of the

operators αk, α†
k, βk, and β†

k to get

Ŝz = NS −
∑

k

(
ukα

†
k + vkβk

)(
ukαk + vkβ

†
k

)
. (10.127)

Multiplying out the product appearing in the sum we can write

ΔŜ ≡ NS − Ŝz =
∑

k

{
v2
k + u2

kα
†
kαk + v2

kβ
†
kβk + ukvk

(
α†

kβ
†
k + αkβk

)}
.

(10.128)
At zero temperature the ground state |0 > contains no excitations so that
αk|0〉 = βk|0〉 = 0. Thus, at T = 0, ΔS(T ) =

〈
0|ΔŜ|0

〉
has a value ΔS0

given by

ΔS0 =
∑

k

v2
k = −1

2

∑

k

[

1 − ωA + ωe√
(ωA + ωe)2 − γ2

kω
2
e

]

. (10.129)
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Let us put ωA = 0 corresponding to BA → 0. This gives

ΔS0 = −N
2

+
1
2

∑

k

1
√

1 − γ2
k

. (10.130)

If we define β′ = zN−1
∑

k

(
1 − 1√

1−γ2
k

)
, then we have

ΔS0 = −1
2
β′N
z
. (10.131)

For a simple cubic lattice z = 6 and β′ has the value 0.94 giving for ΔS0 the
value −0.078N .

10.7.3 Finite Temperature Sublattice Magnetization

At a finite temperature it is apparent from Eqs.(10.128) and (10.129) that

ΔS(T ) = ΔS0 +
∑

k

[
u2
k

〈
α†

kαk

〉
+ v2

k

〈
β†
kβk

〉]
. (10.132)

But the excitations described by the creation operators α†
k and β†

k have
energies ωk ± ωB (the sign − goes with β†

k), so that

〈
α†

kαk

〉
=

1
eβ(ωk+ωB) − 1

and
〈
β†
kβk

〉
=

1
eβ(ωk−ωB) − 1

. (10.133)

In these equations β = 1
kBT

, ωB = 2μBB0, and ωk =
√

(ωA + ωe)2 − γ2
kω

2
e .

At low temperature only very low frequency or small wave number modes will
be excited. Remember that

γk = z−1
∑

δ

eik·δ

where δ indicates the nearest neighbors of the atom at the origin. To order
k2 for a simple cubic lattice

γk = z−1
∑

δ

(
1 − (k · δ)2

2

)
= 1 − k2a2

z
.

Thus, the excitation energies εk ≡ ωk ± ωB are approximated, in the long
wave length limit (k2a2 � zωA

ωe
� 1), by

εk � [ωA(ωA + 2ωe)]
1/2

√

1 +
ω2

e

ωA(2ωe + ωA)
k2a2

z
± ωB

≈ [ωA(ωA + 2ωe)]
1/2 +

1
2z

ω2
e√

ωA(ωA + 2ωe)
k2a2 ± ωB.

(10.134)
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Fig. 10.14. Antiferromagnetic spin wave excitation energies in the long wave length
limit

Thus, the uniform mode of antiferromagnetic resonance is given, in the
presence of an applied field, by

εk=0 =
√
ωA(ωA + 2ωe) ± ωB. (10.135)

In the long wave length limit, but in the region of 1 � k2a2 � z ωA
ωe

(
2 + ωA

ωe

)
,

we expect the behavior given by

εk � ωeka√
z

± ωB ≈ 2
√
zJ Sak ± ωB. (10.136)

Figure 10.14 shows the excitation energies ωk as a function of wave number
k in the long wave length limit.

Let us make an approximation like the Debye approximation of lattice
dynamics in the absence of an applied field. Replace the first Brillouin zone
by a sphere of radius kM, where

1
(2π)3

4
3
πk3

M =
N

V

to have
εk � ΘN

kM
k. (10.137)

Here ΘN is the value of εk at k = kM. With a use of this approximation
for εk of both the + and - (or αk and βk) modes one can evaluate the spin
fluctuation

ΔS(T ) = ΔS0 +
∑

k

u2
k + v2

k

eεk/Θ − 1
. (10.138)

Using our expressions for v2
k (and u2

k = 1 + v2
k), replacing the k-summation

by an integral, and evaluation for Θ � ΘN we have

ΔS(T ) = ΔS0 +
√

3
12

(
6π2

)2/3
N

(
Θ
ΘN

)2

. (10.139)
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10.7.4 Heat Capacity due to Antiferromagnetic Magnons

For Θ < ω0

(
≡√ωA(ωA + 2ωe)

)
, the heat capacity will vary with temperature

as e−const/T , since the probability of exciting a magnon will be exponentially
small. For somewhat higher temperatures (but not too high since we are
assuming small |k|) where modes with ωk � ΘN

kM
k are excited, the specific

heat is very much like the low temperature Debye specific heat (the tempera-
ture region in question is defined by ω0 � Θ � ΘN). The internal energy will
be given by

U = 2
∑

k

ωk

eωk/Θ − 1
. (10.140)

Here, we have two antiferromagnetic magnons for every value of k, instead
of three as for phonons, and the factor of 2 results from counting two types
of spin excitations, α†

k and β†
k type modes. Replacing the sum by an integral

and replacing the upper limit kM by infinity, as in the low temperature Debye
specific heat, gives

U = N
(kMa)3

15
Θ4

Θ3
N

π2 = N
2π4

5
Θ4

Θ3
N

. (10.141)

For the specific heat per particle one obtains

C =
8π4

5

(
Θ
ΘN

)3

. (10.142)

10.8 Exchange Interactions

Here, we briefly describe various kinds of exchange interactions which are the
underlying sources of the long range magnetic ordering.

1. Direct exchange is the kind of exchange we discussed when we investigate
the simple Heisenberg exchange interaction. The magnetic ions interact
through the direct Coulomb interaction among the electrons on the two
ions as a result of their wave function overlap.

2. Superexchange is the underlying mechanism of a number of ionic solids,
such as MnO and MnF2, showing magnetic ground states. Even in the
absence of direct overlap between the electrons on different magnetic ions
sharing a nonmagnetic ion (one with closed electronic shells and located
in between the magnetic ions), the two magnetic ions can have exchange
interaction mediated by the nonmagnetic ion. (See, for example, Fig. 10.15.)

3. Indirect exchange is the magnetic interaction between magnetic moments
localized in a metal (such as rare earth metals) through the media-
tion of conduction electrons in the metal. It is a metallic analogue of
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spin

s

Fig. 10.15. Schematic illustration of superexchange coupling in a magnetic oxide.
Two Mn ions (each having unpaired electron in a d orbital) are separated by an
oxygen ion having two p electrons

superexchange in ionic insulators and is also called as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction. For example, the unpaired f
electrons in the rare earths are magnetic and they can be coupled to f
electrons in a neighboring rare earth ion through the exchange interaction
via nonmagnetic conduction electrons.

4. Double exchange coupling is the ferromagnetic superexchange in an ex-
tended system. The double exchange explains the ferromagnetic coupling
between magnetic ions of mixed valency. For example, La1−xSrxMnO3(0 ≤
x ≤ 0.175) shows ferromagnetic metallic behavior below room temperature.
In this material, a fraction x of the Mn ions are Mn4+ and 1−x are Mn3+,
because La exists as La3+ and Sr exists as Sr2+.

5. Itinerant ferromagnetism occurs in solids (such as Fe, Co, Ni, · · · ) con-
taining the magnetic moments associated with the delocalized electrons,
known as itinerant electrons, wandering through the sample.

10.9 Itinerant Ferromagnetism

Most of our discussion up to now has simply assumed a Heisenberg JijSi ·Sj
type interaction of localized spins. The atomic configurations of some of the
atoms in the 3d transition metal series are Sc (3d)1(4s)2, Ti (3d)2(4s)2, V
(3d)3(4s)2, Cr (3d)5(4s)1, Mn (3d)5(4s)2, Fe (3d)6(4s)2, Co (3d)7(4s)2, Ni
(3d)8(4s)2, Cu (3d)10(4s)1. If we simply calculate the band structure of these
materials, completely ignoring the possibility of magnetic order, we find that
the density of states of the solid has a large and relatively narrow set of
peaks associated with the 3d bands, and a broad but low peak associated
with the 4s bands as is sketched in Fig. 10.16. The position of the Fermi level
determines whether the d bands are partially filled or completely filled. For
transition metals with partially filled d bands, the electrons participating in
the magnetic states are itinerant.
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Fig. 10.16. Schematic illustration of the density of states of the transition metals

10.9.1 Stoner Model

In order to account for itinerant ferromagnetism, Stoner introduced a very
simple model with the following properties:

1. The Bloch bands obtained in a band structure calculation are maintained.
2. By adding an exchange energy to the Bloch bands a spin splitting,

described by an internal mean field, can be obtained.
3. States with spin antiparallel (−) to the internal field are lowered in energy

relative to those with parallel (+) spin.

We can write for spin up (+) and spin down (−) electrons

E−(k) � h̄k2

2m∗ and E+(k) � h̄k2

2m∗ + Δ, (10.143)

where Δ is the spin splitting. The spin split Bloch bands and Fermi surfaces
for spin up and spin down electrons are illustrated in Fig. 10.17 in the presence
of spin splitting Δ.

10.9.2 Stoner Excitations

A single particle excitation in which an electron with wave vector k and spin
down (−) is excited to an empty state with wave vector k + q and spin up
(+) has energy

E = E+(k + q) − E−(k)

=
h̄2(k + q)2

2m∗ + Δ − h̄k2

2m∗

=
h̄2

m∗q ·
(
k +

q
2

)
+ Δ.

(10.144)

These Stoner single particle excitations define the single particle continuum
shown in Fig. 10.18. The single particle continuum of possible values of |k|
for different values of |q| are hatched. Clearly when q = 0, the excitations all
have energy Δ. These are single particle excitations. In addition Stoner found
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Fig. 10.17. Schematic illustration of the spin split Bloch bands in the Stoner model.
(a) Energy dispersion of the Bloch bands in the presence of spin splitting Δ (b) The
Fermi surfaces for spin up and spin down electrons

Fig. 10.18. Schematic illustration of the energy dispersion of the Stoner excitations
and spin wave modes. The hatched area shows the single particle continuum of
possible values of |k| for different values of |q|

spin waves of an itinerant ferromagnet that started at the origin (E = 0 at
q = 0) and intersected the single particle continuum at qc, a finite value of q.
The spin wave excitation is also indicated in Fig. 10.18.

10.10 Phase Transition

Near Tc, the ferromagnet is close to a phase transition. Many observable prop-
erties should display interesting behavior as a function of T − Tc (see, for
example, Fig. 10.19).
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Fig. 10.19. Schematic illustration of the temperature dependence of the sponta-
neous magnetization

Here, we list only a few of the interesting examples.

1. Magnetization: As T increases toward Tc the spontaneous magnetization
must vanish as

M(T ) ≈ (Tc − T )β with β > 0.

2. Susceptibility: As T decreases toward Tc in the paramagnetic state, the
magnetic susceptibility χ(T ) must diverge as

χ(T ) ≈ (T − Tc)−γ with γ > 0.

3. Specific heat : As T decreases toward Tc in the paramagnetic state, the
specific heat has a characteristic singularity given by

C(T ) ≈ (T − Tc)−α with α > 0.

In the mean field theory, where the interactions are replaced by their values
in the presence of a self-consistently determined average magnetization, we
find β = 1

2 and γ = 1 for all dimensions. The mean field values do not agree
with experiments or with several exactly solvable theoretical models for T
very close to Tc. For example,

1. β = 1
8 in the 2 dimensional Ising model.

2. β � 1
3 in the 3 dimensional Heisenberg model.

3. γ � 1.25 for most 3 dimensional phase transitions instead of the mean field
predictions of γ = 1.

In the early 1970s K. G. Wilson developed the renormalization group the-
ory of phase transitions to describe the behavior of systems in the region
T � Tc.
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Problems

10.1. Show that spin operators satisfy [Ŝ2, Ŝ+] = 0 and [Ŝz, Ŝ+] = Ŝ+. Eval-
uate the commutator [S+, S−] and [S±, Sz], and show that S± act as raising
and lowering operators.

10.2. If bk = N−1/2
∑

j eik·xj aj and b†k = N−1/2
∑

j e−ik·xj a†j are spin wave
operators in terms of spin deviation operators, show that [aj , aj′ ] = [a†j , a

†
j′ ]=0

and [aj , a
†
j′ ] = δjj′ implies [bk, bk′] =

[
b†k, b

†
k′

]
= 0 and

[
bk, b

†
k′

]
= δkk′ .

10.3. In the text the Heisenberg Hamiltonian was written as

H = −2JS∑〈i,j〉

{√

1 − n̂i
2S
aia

†
j

√

1 − n̂j
2S

+ a†i

√

1 − n̂i
2S

√

1 − n̂j
2S
aj

+S
(

1 − n̂i
S

)(
1 − n̂j

S

)}
− gμBB0S

∑
i

(
1 − n̂i

S

)
,

where n̂j = a†jaj and a†j (aj) creates (annihilates) a spin deviation on site j.
Expand the square roots for small n̂ and show that the results for H0 and H1

agree with the expressions shown in (10.66) and (10.67), respectively.

10.4. Evaluate ωk, the spin wave frequency, for arbitray k within the first
Brillouin zone of a simple cubic lattice. Expand the result for small k and
compare it with the result given by (10.81).

10.5. An antiferromagnet can be described by H =
∑

〈i,j〉 JijSi · Sj , where
Jij > 0. Show that the ground state energy E0 of the Heisenberg antiferro-
magnet must satisfy

−S(S + 1)
∑

i,j

Jij ≤ E0 ≤ −S2
∑

i,j

Jij .

Hint: for the upper bound one can use the trial wave function

ΦTrial =
∏

i ∈ A
j ∈ B

|S, S〉i|S,−S〉j,

where | S,±S〉k is the state with Sz = ±S on site k.

10.6. Prove that operators αk’s and βk’s defined in terms of spin wave
operators

αk = ukck − vkd
†
k and βk = ukdk − vkc

†
k

satisfy the standard commutation rules. Here, u2
k − v2

k = 1. (See (10.106))

10.7. Discuss spin wave excitations in a two-dimensional square lattice.
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Summary

In this chapter, we studied magnetic ordering and spin wave excitations of
magnetic solids. We first reviewed Heisenberg exchange interactions of atoms
and then discussed spontaneous magnetization and domain wall properties
of ferromagnets. The zero-temperature properties of Heisenberg ferromagnets
and antiferromagnets are described. Spin wave excitations and magnon heat
capacities of ferromagnets and antiferromagnets are also discussed. Finally,
Stoner model is introduced as an illustration of itinerant ferromagnetism.

The Heisenberg interaction Hamiltonian is given by

H = −2J
∑

〈i,j〉
si · sj ,

where the sum is over all pairs of nearest neighbors. The exchange constant
J is positive (negative) for ferromagnets (antiferromagnets). For a chain of
magnetic spins, it is more favorable energetically to have the spin flip gradu-
ally. If the spin turns through an angle Φ0 in N steps, where N is large, the
increase in exchange energy due to the domain wall is Eex = J S2 Φ2

0
N . The

exchange energy is lower if the domain wall is very wide.
In the presence of an applied magnetic field B0 oriented in the z-direction,

the Hamiltonian of a Heisenberg ferromagnet becomes

H = −
∑

i,j

JijSizSjz − 1
2

∑

i,j

Jij
(
S+
i S

−
j + S−

i S
+
j

)− gμBB0

∑

i

Siz.

In the ground state all the spins are aligned parallel to one another and to
the magnetic field B0: |0〉 =

∏
i |S, S〉i. The ground state energy becomes

E0 = −S2
∑

i,j

Jij −NgμBB0S.

For Heisenberg antiferromagnets, J is replaced by −J but a trial wave
function ΦTrial =

∏
i ∈ A
j ∈ B

|S, S〉i|S,−S〉j is not an eigenfunction of H.

Low lying excitations of ferromagnet can be studied by introducing spin
deviation operator n̂j defined by

n̂j = Sj − Ŝjz = S − Ŝjz ≡ a†jaj .

With a use of the Holstein–Primakoff transformation to operators a†j and aj

Ŝ+
j = (2Sj − n̂j)1/2aj and Ŝ−

j = a†j(2Sj − n̂j)1/2,

the Heisenberg Hamiltonian can be written, in the limit of 〈n̂i〉 � 2S, as

H = E0 + H0 + H1.
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Here, E0, H0, and H1 are given, respectively, by

E0 = −zJNS2 − gμBB0NS,

H0 = (gμBB0 + 2zJS)
∑

i n̂i − 2JS∑<i,j>

(
aia

†
j + a†iaj

)
,

H1 = −2J ∑
<i,j>

(
n̂in̂j − 1

4 n̂iaia
†
j − 1

4aia
†
j n̂j − 1

4 n̂ja
†
iaj − 1

4a
†
iaj n̂i

)

+ higher order terms.

Introducing spin wave variables defined by

bk = N−1/2
∑

j

eik·xj aj and b†k = N−1/2
∑

j

e−ik·xj a†j ,

H0 becomes H0 =
∑

k h̄ωkb
†
kbk, where h̄ωk = 2zJS(1 − γk) + gμBB0. Thus,

if we neglect H1, we have for the Hamiltonian of a state containing magnons

H = − (
gμBB0NS + zJNS2

)
+
∑

k

h̄ωkb
†
kbk.

We note that, at low enough temperature, the elementary excitations are
waves of energy h̄ωk.

At low temperature, the internal energy and magnon specific heat are
given by

U � 0.45
π2

Θ5/2

D3/2
and C =

∂U

∂T
= 0.113kB

(
Θ
D

)3/2

.

The spontaneous magnetization at temperature T is given by

Ms =
gμB

V

(

NS −
〈
∑

k

b†kbk

〉)

.

At low temperature, Ms(T ) becomes Ms(T ) = N
V 2μS − 0.117 μ

a3

(
Θ

2SJ
)3/2

.
In the presence of an applied field B0 = B0ẑ and an anisotropy field BA,

the Heisenberg Hamiltonian of an antiferromagnet can be written

H = +J
∑

<i,j>

Ŝi · Ŝj − gμB(BA +B0)
∑

l∈a

Ŝa
lz + gμB(BA −B0)

∑

p∈b

Ŝb
pz .

In the absence of magnon–magnon interaction, the ground-state energy is
given by

EGS = −2NzJS2 − 2gμBBANS +
∑

k

[ωk − (ωA + ωe)] .

The internal energy due to antiferromagnetic magnons is given by

U = 2
∑

k

ωk

eωk/Θ − 1
.

The low temperature specific heat per particle becomes

C =
8π4

5

(
Θ
ΘN

)3

.
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Many Body Interactions – Introduction

11.1 Second Quantization

The Hamiltonian of a many particle system is usually of the form

H =
∑

i

H0(i) +
1
2

∑

i�=j
Vij . (11.1)

Here, H0(i) is the single particle Hamiltonian describing the ith particle, and
Vij is the interaction between the ith and jth particles. Suppose we know the
single particle eigenfunctions and eigenvalues

H0|k〉 = εk|k〉.

We can construct a basis set for the many particle wave functions by taking
products of single particle wave functions. We actually did this for bosons
when we discussed phonon modes of a crystalline lattice. We wrote

|n1, n2, . . . , nk, . . .〉 = (n1!n2! · · ·nk!)−1/2
(
a†1
)n1 (

a†2
)n2 · · ·

(
a†k
)nk · · · |0〉.

(11.2)
This represents a state in which the mode 1 contains n1 excitations, . . . , the
mode k contains nk excitations. Another way of saying it is that there are n1

phonons of wave vector k1, n2 phonons of wave vector k2, . . . . The creation
and annihilation operators a† and a satisfy

[
ak, a

†
k′

]

−
= δkk′ ; [ak, ak′ ]− =

[
a†k, a

†
k′

]

−
= 0.

The commutation relations assure the symmetry of the state vector under
interchange of a pair of particles since

a†ka
†
k′ = a†k′a

†
k.
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The single particle part is given by
∑

i

H0(i) =
∑

k

εknk, (11.3)

where εk = 〈k|H0|k〉 and nk = a†kak.
For Fermions, the single particle states can be singly occupied or empty.

This means that nk can take only two possible values, 0 or 1. It is convenient
to introduce operators c†k and its Hermitian conjugate ck and to require them
to satisfy anticommutation relations

[
ck, c

†
k′

]

+
≡ ckc

†
k′ + c†k′ck = δkk′ ,

[ck, ck′ ]+ =
[
c†k, c

†
k′

]

+
= 0.

(11.4)

These relations assure occupancy of 0 or 1 since
(
c†k
)2

= 0 and (ck)
2 = 0:

[
c†k, c

†
k

]

+
= 2c†kc

†
k = 0

[ck, ck]+ = 2ckck = 0

from the anticommutation relations given by (11.4). It is convenient to order
the possible values of the quantum number k (e.g. the smallest k’s first). Then,
an eigenfunction can be written

|01, 12, 03, 04, 15, 16, . . . , 1k, . . .〉 = · · · c†k · · · c†6c†5c†2|01, 02, . . . 0k, . . . , 0n, . . .〉.

The order is important, because interchanging c†6 and c†5 leads to

|01, 12, 03, 04, 16, 15, . . . , 1k, . . .〉 = −|01, 12, 03, 04, 15, 16, . . . , 1k, . . .〉.
The kinetic (or single particle) energy part is given by

∑

k
occupied

〈k|H0|k〉c†kck =
∑

k

εkc
†
kck =

∑

k

εknk. (11.5)

The more difficult question is “How do we represent the interaction term in
the second quantization or occupation number representation?”.

In the coordinate representation the many particle product functions must
be either symmetric for Bosons or antisymmetric for Fermions. Let us write
out the case for Fermions

Φ =
1√
N !

∑

P

(−)PP {φα(1)φβ(2) · · ·φω(N)} (11.6)

Here,
∑
P means sum over all permutations and (−)P is −1 for odd permu-

tations and +1 for even permutations. For example, for a three particle state
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the wave function Φαβγ(1, 2, 3) can be written

Φαβγ = 1√
3!

[ φα(1)φβ(2)φγ(3) − φα(1)φβ(3)φγ(2) + φα(2)φβ(3)φγ(1)
−φα(2)φβ(1)φγ(3) + φα(3)φβ(1)φγ(2) −φα(3)φβ(2)φγ(1)] .

(11.7)
Such antisymmetrized product functions are often written as Slater determi-
nants

Φ =
1√
N !

∣
∣
∣
∣∣
∣
∣
∣
∣

φα(1) φα(2) · · · φα(N)
φβ(1) φβ(2) · · · φβ(N)

...
...

...
...

φω(1) φω(2) · · · φω(N)

∣
∣
∣
∣∣
∣
∣
∣
∣

. (11.8)

Look at V12 operating on a two particle wave function Φαβ(1, 2). We assume
that V12 = V (|r1 − r2|) = V (r12) = V21. Then

V12Φαβ(1, 2) =
1√
2
V12 [φα(1)φβ(2) − φβ(1)φα(2)] .

The matrix element 〈Φγδ|V12|Φαβ〉 becomes

〈Φγδ|V12|Φαβ〉 =
1
2
〈γδ|V12|αβ〉 +

1
2
〈δγ|V12|βα〉

−1
2
〈γδ|V12|βα〉 − 1

2
〈δγ|V12|αβ〉.

(11.9)

Since 〈γδ|V12|αβ〉 =
∫

d3r1d3r2 φ
∗
γ(1)φ∗δ(2)V (r12)φα(1)φβ(2), we can see that

it must be equal to 〈δγ|V12|βα〉 by simple interchange of the dummy variables
r1 and r2. Thus, we find, for two-particle wave function, that

〈Φγδ|V12|Φαβ〉 = 〈γδ|V12|αβ〉 − 〈γδ|V12|βα〉. (11.10)

Just as we found in discussing the Heisenberg exchange interaction, we find
that the antisymmetry leads to a direct term and an exchange term. Had we
been considering Bosons instead of Fermions, a plus sign would have appeared
in Φαβ(1, 2) and in the expression for the matrix element.

Exactly the same result can be obtained by writing

V12 =
∑

λλ′μμ′
〈λ′μ′|V12|λμ〉c†λ′c†μ′cμcλ, (11.11)

and
|Φαβ〉 =

1√
2
c†βc

†
α|0〉, (11.12)

where |0〉 is the vacuum state, which contains no particles. It is clear that

V12|Φαβ〉 =
1√
2

∑

λλ′μμ′
〈λ′μ′|V12|λμ〉c†λ′c†μ′cμcλc†βc†α|0〉
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will vanish unless (1) λ = β and μ = α or (2) λ = α and μ = β. From this,
we see that

V12|Φαβ〉 =
1√
2

∑

λ′μ′
[〈λ′μ′|V12|βα〉 − 〈λ′μ′|V12|αβ〉] c†λ′c†μ′ |0〉.

Taking the scalar product with 〈Φγδ| = 1√
2
〈0|cγcδ gives

〈Φγδ|V12|Φαβ〉 =
1
2

∑

λ′μ′
[〈λ′μ′|V12|βα〉 − 〈λ′μ′|V12|αβ〉] 〈0|cγcδc†λ′c†μ′ |0〉.

(11.13)
The matrix element 〈0|cγcδc†λ′c†μ′ |0〉 will vanish unless (1) δ = λ′ and γ = μ′

or (2) γ = λ′ and δ = μ′. The final result can be seen to be

〈Φγδ|V12|Φαβ〉 = 〈γδ|V12|αβ〉 − 〈γδ|V12|βα〉. (11.14)

If we consider the operator 1
2

∑
i�=j Vij we need only note that we can consider

a particular pair i, j first. Then, when Vij operates on a many particle wave
function

1√
N !

∑

P

(−)PP {φα(1)φβ(2) · · ·φω(N)} = c†αc
†
β · · · c†ω|0〉 (11.15)

only particles i and j can change their single particle states. All the rest of
the particles must remain in the same single particle states.

The final result is that the Hamiltonian of a many particle system with
two body interactions can be written

H =
∑

kk′
〈k′|H0|k〉c†k′ck +

1
2

∑

kk′ll′
〈k′l′|V |kl〉c†k′c†l′clck. (11.16)

The operators ck and c†k′ satisfy either commutation relations for Bosons
[
ck, c

†
k′

]

−
= δkk′ , and [ck, ck′ ]− =

[
c†k, c

†
k′

]

−
= 0. (11.17)

or anticommutation relations for Fermions
[
ck, c

†
k′

]

+
= δkk′ , and [ck, ck′ ]+ =

[
c†k, c

†
k′

]

+
= 0. (11.18)

11.2 Hartree–Fock Approximation

Now, we are all familiar with the second quantized notation for a system of
interacting particles. We can write

H =
∑

i

εic
†
ici +

1
2

∑

ijkl

〈ij|V |kl〉c†ic†jclck. (11.19)
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Here, c†i creates a particle in the state φi, and

〈ij|V |kl〉 =
∫
dxdx′ φ∗i (x)φ∗j (x

′)V (x,x′)φk(x)φl(x′). (11.20)

Remember that
〈ij|V |kl〉 = 〈ji|V |lk〉 (11.21)

if V is a symmetric function of x and x′. In this notation, H0 =
∑

i εic
†
i ci

is the Hamiltonian for a noninteracting system. It is simply the sum of the
product of the energy εi of the state φi and the number operator ni = c†i ci.
The Hartree–Fock approximation is obtained by replacing the product of the
four operators c†ic

†
jclck by a c-number (actually a ground state expectation

value of a c†c product) multiplying a c†c; that is

c†i c
†
jclck ≈ c†i 〈c†jcl〉ck + c†jcl〈c†i ck〉

− c†icl〈c†jck〉 − c†jck〈c†i cl〉.
(11.22)

By 〈Ω̂〉 we mean the expectation value of Ω̂ in the Hartree–Fock ground state,
which we are trying to determine. Because this is a diagonal matrix element,
we see that

〈c†jcl〉 = δjl nj . (11.23)

Furthermore, momentum conservation requires

〈ij|V |jk〉 = 〈ij|V |ji〉δik, etc.

Then, one obtains for the Hartree–Fock Hamiltonian

H =
∑

i

Eic
†
ici, (11.24)

where

Ei = εi +
∑

j

nj [〈ij|V |ij〉 − 〈ij|V |ji〉] . (11.25)

One can think of Ei as the eigenvalue of a one particle Schrödinger equation

HHFφi(x) ≡
{
p2

2m
+
∫

d3x′V (x,x′)
∑

j njφ
∗
j (x

′)φj(x′)
}
φi(x)

− ∫
d3x′V (x,x′)

∑
j njφ

∗
j (x

′)φi(x′)φj(x) = Eiφi.

(11.26)

Do not think the Hartree–Fock approximation is trivial. One must assume a
ground state configuration to compute 〈c†jcl〉. One then solves the “one parti-
cle” problem and hopes that the solution is such that the ground state of the
N particle system, determined by filling the N lowest energy single particle
states just solved for, is identical to the ground state assumed in computing
〈c†jcl〉. If it is not, the problem has not been solved.



316 11 Many Body Interactions – Introduction

11.2.1 Ferromagnetism of a degenerate electron gas
in Hartree–Fock Approximation

One can easily verify that plane wave eigenfunctions

φks(x) = Ω−1/2eik·xηs,

with single particle energy

εks =
h̄2k2

2m
form a set of solutions of the single particle Hartree–Fock Hamiltonian.

If the ground state is assumed to be the paramagnetic state, in which the
N lowest energy levels are occupied (each k state is occupied by one electron
of spin ↑ and one of spin ↓) then one obtains

Eks = εks + EXs(k) (11.27)

where
EXs(k) = −

∑

k′
nk′〈kk′|V |k′k〉. (11.28)

Here, we assumed that the nuclei are fixed in a given configuration and pic-
tured as a fixed source of a static potential. The matrix element 〈kk′|V |k′k〉 =

4πe2

|k−k′|2 , and the sum over k′ can be performed to obtain

Eks =
h̄2k2

2m
− e2kF

2π

[
2 +

k2
F − k2

kkF
ln
(
kF + k

kF − k

)]
. (11.29)

The total energy of the paramagnetic state is

EP =
∑

ks

nks

[
εks +

1
2
EXs(k)

]
. (11.30)

The 1
2 in front of EXs prevents double counting. This sum gives

EP = N

[
3
5
h̄2k2

F

2m
− 3

4π
e2kF

]
� N

[
2.21
r2s

− 0.916
rs

]
Ryd. (11.31)

One can easily see that Eks is a monotonically increasing function of k, so
that the assumption about the ground state, viz. that all k state for which
k < kF are occupied, is in agreement with the procedure of filling the N lowest
energy eigenstates of the single particle Hartree–Fock Hamiltonian.

Instead of assuming the paramagnetic ground state, we could assume that
only states of spin ↑ are occupied, and that they are singly occupied for all
k < 21/3kF. Then one finds that
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Ek↑ =
h̄2k2

2m
− 21/3e2kF

2π

[
2 +

22/3k2
F − k2

21/3kFk
ln
(

21/3kF + k

21/3kF − k

)]

Ek↓ =
h̄2k2

2m
.

(11.32)

This state is a solution to the Hartree–Fock problem only if

Ek↑|k=21/3kF < 0, (11.33)

otherwise some of the spin down states would be occupied in the ground state.
This condition is satisfied if

1
a0kF

>
π

22/3
� 3.142

1.588
= 1.98 (11.34)

It is convenient to introduce the parameter rs defined by

4π
3

(a0rs)
3 =

V

N
=

3π2

k3
F

.

Then, we have
(

4
9π

)1/3

rs = (a0kF)−1 ,

or

rs =
(

9π
4

)1/3

a−1
0 k−1

F � 1.92
a0kF

. (11.35)

If we sum over k to get the energy of the ferromagnetic state

EF =
∑

Ek↑ = N

[
22/3 3

5
h̄2k2

F

2m
− 21/3 3

4π
e2kF

]
. (11.36)

Comparing EF with EP, we see that

EF < EP if a0kF <
5
2π

1
21/3 + 1

,

which corresponds to
rs > 5.45, (11.37)

though the Hartree–Fock solution exists if rs ≥ 3.8. The present, Hartree–
Fock, treatment neglects correlation effects and cannot be expected to describe
accurately the behavior of metals. The present treatment does however point
up the fact that the exchange energy prefers parallel spin orientation, but the
cost in kinetic energy is high for a ferromagnetic spin arrangement. Actually
Cs has rs � 5.6 and does not show ferromagnetic behavior; this is not too
surprising.
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11.3 Spin Density Waves

We have seen that the exchange energy favors parallel spin alignment, but
that the cost in kinetic energy is high. Overhauser1 proposed a solution of
the Hartree–Fock problem in which the spins are locally parallel, but the
spin polarization rotates as one moves through the crystal. This type of state
enhances the (negative) exchange energy but does not cost as much in kinetic
energy.

For example, an Overhauser spiral spin density wave could exist with a
net fractional spin polarization given by

P⊥(r) = P⊥0(x̂ cosQz + ŷ sinQz). (11.38)

Overhauser showed that such a spin polarization P⊥(r) can result from taking
basis functions of the form

|φk〉 = ak|k ↑〉 + bk|k + Q ↓〉.

In order that 〈φk|φk〉 = 1, it is necessary that a2
k + b2k = 1. This condition

assures that there is no fluctuation in the charge density associated with the
wave. Thus, without loss of generality we can take ak = cos θk and bk = sin θk
and write

|φk〉 = cos θk|k ↑〉 + sin θk|k + Q ↓〉. (11.39)

The fractional spin polarization at a point r = r0 is given by

P(r0) =
Ω
N

∑

k occupied

〈φk|σδ(r − r0)|φk〉. (11.40)

Here, σ = σxx̂+ σy ŷ + σz ẑ, where σx, σy , σz are Pauli spin matrices, so that

σ =
(

ẑ x̂ − iŷ
x̂ + iŷ −ẑ

)
. (11.41)

We can write

|k ↑〉 = |k〉| ↑〉 = Ω−1/2eik·r
(

1
0

)

and

|k + Q ↓〉 = |k + Q〉| ↓〉 = Ω−1/2ei(k+Q)·r
(

0
1

)
.

Then
〈↑ |σ| ↑〉 = ẑ
〈↑ |σ| ↓〉 = x̂ − iŷ
〈↓ |σ| ↑〉 = x̂ + iŷ
〈↓ |σ| ↓〉 = −ẑ.

(11.42)

1 A.W. Overhauser, Phys. Rev. 128, 1437 (1962).
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Evaluating 〈φk|σ δ(r − r0)|φk〉 gives

〈φk|σδ(r − r0)|φk〉

= 1
Ω

{
cos2 θk〈↑ |σ| ↑〉 + sin2 θk〈↓ |σ| ↓〉
+ cos θk sin θk

[
eiQ·r0 〈↑ |σ| ↓〉 + e−iQ·r0〈↓ |σ| ↑〉]

}

.
(11.43)

Gathering together the terms allows us to express P(r0) as

P(r0) = P‖ẑ + P⊥ (x̂ cosQ · r0 + ŷ sinQ · r0) , (11.44)

where
P‖ =

1
8π3n

∫

occupied

cos 2θk d3k, (11.45)

and
P⊥ =

1
8π3n

∫

occupied

sin 2θk d3k. (11.46)

Here, n = N
Ω and the integral is over all occupied states |φk〉. We will not

worry about P‖ because ultimately we will consider a linear combination of
two spiral spin density waves (called a linear spin density wave) for which the
P‖’s cancel.

It is worth noting that the density at point r0 is given by

n(r0) =
∑

k〈φk|1δ(r − r0)|φk〉
= 1

Ω

∑
k

(
cos2 θk + sin2 θk

)
= N

Ω .
(11.47)

When the unit matrix 1 is replaced by σ, it is reasonable to expect the spin
density.

One can form a wave function orthogonal to |φk〉:
|ψk〉 = − sin θk|k ↑〉 + cos θk|k + Q ↓〉. (11.48)

So far, we have ignored these states (i.e. assumed they were unoccupied). We
shall see that this turns out to be correct for the Hartree–Fock spin density
wave ground state.

Recall that the Hartree–Fock wave functions φk(x) satisfy (11.26)

HHFφk(x) ≡
{
p2

2m +
∫

dx′V (x,x′)
∑

q nqφ
∗
q(x′)φq(x′)

}
φk(x)

− ∫
dx′V (x,x′)

∑
q nqφ

∗
q(x′)φk(x′)φq(x) = Ekφk.

(11.49)

We can write HHF as

HHF =
p2

2m
+ U +A, (11.50)

where
U(x) =

∫
dx′V (x,x′)

∑

q occupied

φ∗q(x′)φq(x′) (11.51)
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and
Aψ(x) = −

∫
dx′V (x,x′)

∑

q occupied

φ∗q(x′)ψ(x′)φq(x). (11.52)

V (x,x′) can be written as

V (x,x′) =
∑

q �=0

Vqeiq·(x−x′). (11.53)

Now, consider the matrix elements of A (with the Hartree–Fock ground state
assumed to be made up of the lowest energy φk states) between plane wave
states.

〈�σ|A|�′σ′〉 = −
′∑

k

∑

q �=0

Vq〈φk|e−iq·x′ |�′σ′〉〈�σ|eiq·x|φk〉, (11.54)

where
∑′

k means sum over all occupied states |φk〉. Now use the expressions

|φk〉 = cos θk|k ↑〉 + sin θk|k + Q ↓〉
〈φk| = 〈k ↑ | cos θk + 〈k + Q ↓ | sin θk (11.55)

to obtain

〈�σ|A|�′σ′〉
= −∑′

k

∑
q �=0 Vq

{
〈k ↑ |e−iq·x′ |�′σ′〉 cos θk + 〈k + Q ↓ |e−iq·x|�′σ′〉 sin θk

}

×
{
〈�σ|eiq·x′ |k ↑〉 cos θk + 〈�σ|eiq·x|k + Q ↓〉 sin θk

}
.

(11.56)
Because e±iq·x is spin independent, we can use 〈σ| ↑〉 = δσ↑, 〈σ| ↓〉 = δσ↓, etc.
to obtain

〈�σ|A|�′σ′〉
= −∑′

k

∑
q �=0 Vq (〈k + q|�′〉δσ′↑ cos θk + 〈k + Q + q|�′〉δσ′↓ sin θk)

× (〈�|k + q〉δσ↑ cos θk + 〈�|k + Q + q〉δσ↓ sin θk) .
(11.57)

For σ =↑ and σ′ =↓ we find

〈� ↑ |A|�′ ↓〉 = −
′∑

k

∑

q �=0

Vq δk+Q+q,�′ sin θk δ�,k+q cos θk, (11.58)

which can be rewritten

〈� ↑ |A|�′ ↓〉 = −
′∑

k

V�−k sin θk cos θk δ�′,�+Q. (11.59)

Thus, the Hartree–Fock exchange term A has off diagonal elements mixing
the simple plane wave states |� ↑〉 and |� + Q ↓〉. It is straightforward to see
that
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〈� ↓ |A|�′ ↑〉 = −
′∑

k

V�′−k sin θk cos θk δ�′,�−Q, (11.60)

so that A also couples |� ↓〉 to |� − Q ↑〉. The spin diagonal terms are

〈� ↑ |A|� ↑〉 = −
′∑

k

V�−k cos2 θk (11.61)

and

〈� + Q ↓ |A|� + Q ↓〉 = −
′∑

k

V�−k sin2 θk. (11.62)

Then, we need to solve the problem given by
(
p2

2m
+AD +AOD − Ek

)
Ψk = 0, (11.63)

where

AD = −
(∑′

k′ Vk−k′ cos2 θk′ 0

0
∑′

k′ Vk−k′ sin
2 θk′

)

(11.64)

and

AOD = −gk
(

0 1
1 0

)
. (11.65)

We can simply take |Ψk〉 = cos θk|k ↑〉 + sin θk|k + Q ↓〉 and observe that
(11.63) becomes

(
εk↑ − Ek −gk

−gk εk+Q↓ − Ek

)(
cos θk
sin θk

)

= 0. (11.66)

In this matrix equation, gk denotes the amplitude of the off-diagonal contri-
bution of the exchange term A

gk = 〈k ↑ |A|k + Q ↓〉 =
′∑

k′
Vk−k′ sin θk′ cos θk′ , (11.67)

and εk↑ and εk+Q↓ are the free electron energies plus the diagonal parts (AD)
of the one electron exchange energy

εk↑ =
h̄2k2

2m
−

′∑

k′
V|k−k′| cos2 θk′

εk+Q↓ =
h̄2(k + Q)2

2m
−

′∑

k′
V|k−k′| sin2 θk′ . (11.68)
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The eigenvalues Ek are determined from (11.66) by setting the determi-
nant of the 2 × 2 matrix equal to zero. This gives

Ek± =
1
2

(εk↑ + εk+Q↓) ±
[
1
4

(εk↑ − εk+Q↓)
2 + g2

k

]1/2

. (11.69)

The eigenfunctions corresponding to Ek± are given by (11.48) and (11.55),
respectively. The values of cos θk are determined from (11.66) using the eigen-
values Ek− given above. This gives

cos θk =
gk

[g2
k + (εk↑ − Ek−)2]1/2

. (11.70)

We note that the square modulus of the eigenfunction is a constant, and thus
a charge density wave does not accompany a spin density wave.

Solution of the Integral Equation

We have to solve the integral equation (11.67), which is rewritten as

gl =
∫
Vl−k cos θk sin θk

d3k

(2π)3
. (11.71)

Here, cos θk is given by (11.70), and the ground state eigenvalue Ek is itself a
function of θk and hence of gk. This equation is extremely complicated, and
no solution is known for the general case. To obtain some feeling for what is
happening we study the simple case where V�−k is constant instead of being
given by 4πe2

|�−k|2 . We take V�−k = γ; this corresponds to replacing the Coulomb
interaction by a δ-function interaction. Obviously gk will be independent of k
in this case, and the integral equation becomes

g = γ

∫
d3k

(2π)3
g (εk↑ − Ek)

g2 + (εk↑ − Ek)2
(11.72)

where

εk↑ − Ek =
1
2
(εk↑ − εk+Q↓) +

[
1
4
(εk↑ − εk+Q↓)2 + g2

]1/2

. (11.73)

By direct substitution we have

g (εk↑ − Ek)
g2 + (εk↑ − Ek−)2

=
g

2
[
1
4 (εk↑ − Ek)2 + g2

]1/2 , (11.74)

and the integral equation becomes

g = γ

∫
d3k

(2π)3
g

2
[
1
4 (εk↑ − Ek)2 + g2

]1/2 . (11.75)
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We replace εk↑ − Ek in (11.75) by

εk↑ − Ek ≈ − h̄
2

m
Q(kz +

Q

2
)

= 2
(
∂ε

∂kz

)

kz=−Q
2

(
kz +

Q

2

)
.

(11.76)

Here, we note that we left out a term −γ ∫ d3k
(2π)3 cos2 θk. This is the same term

which appeared in P‖, and it had better vanish when we evaluate it using the
solution to the integral equation for θk. Now let us introduce

μ =
(
− ∂ε

∂kz

)

kz=−Q/2
. (11.77)

Then, we have

1 =
γ

(2π)3

∫
d3k

2

√

g2 + μ2
(
kz + Q

2

)2
. (11.78)

Take the region of integration to be a circular cylinder of radius κ⊥ and of
length κ‖, centered at kz = −Q

2 as shown in Fig. 11.1. Then (11.78) becomes

1 =
γ

(2π)3

∫ κ‖/2

−κ‖/2

πκ2
⊥ d(kz +Q/2)

2

√

g2 + μ2
(
kz + Q

2

)2
=

γκ2
⊥

16π2μ
2 sinh−1

(
κ‖μ
2g

)
.

(11.79)
Thus, we obtain

g =
κ‖μ

2 sinh
(

8π2μ
γκ2
⊥

) (11.80)

kx

ky

kz

Fig. 11.1. Region of integration for (11.78). The cylinder axis is parallel to the
z axis
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One can now return to the equation for the ground state energy W

WGS =
h̄2

2m
∫ d3k

(2π)3
[
k2 cos2 θk + (k + Q)2 sin2 θk

]

−1
2
∫ d3k d3k′

(2π)6
Vk−k′ cos2 (θk − θ′k)

(11.81)

and replace Vk−k′ by the constant γ and substitute

1. g = 0 for the trivial solution corresponding to the usual paramagnetic state
and

2. g = κ‖μ

2 sinh

(
8π2μ

γκ2⊥

) for the spin density wave state

If we again take the occupied region in k space to be a cylinder of radius κ⊥
and length κ‖ centered at kz = −Q

2 , we obtain the deformation energy of the
spin density wave state

WSDW −WP = −
μκ2

‖κ
2
⊥

32π2

[
coth

(
8π2μ

γκ2
⊥

)
− 1

]
< 0. (11.82)

This quantity is negative definite, so that the spin density wave state always
has the lower energy than the paramagnetic state, i.e.

WP > WSDW.

Note that in evaluation of WP as well as of WSDW, the occupied region of
k space was taken to be a cylinder of radius κ⊥ and length κ‖ centered at
kz = −Q

2 . The result does not prove that the spin density wave has lower
energy than the actual paramagnetic ground state (which will be a sphere
in k space instead of a cylinder, and hence have a smaller kinetic energy
than the cylinder. Overhauser gave a general (but somewhat difficult) proof
that a spin density wave state always exists which has lower energy than the
paramagnetic state in the Hartree–Fock approximation.

The proof involves taking the wave vector of the spin density wave Q to
be slightly smaller than 2kF. Then, the spin up states at kz are coupled by the
exchange interaction to the spin down states at kz +Q as shown in Fig. 11.2.
The gap (at |kz | = Q/2) of the strongly coupled states causes a repopulation of
k-space as indicated schematically (for the states that were spin ↓ without the
spin density wave coupling) in Fig. 11.3. The flattened areas occur, of course,
at the energy gap centered at kz = −Q

2 . The repopulation energy depends on
κ⊥, which is given by κ⊥ =

√
k2
F −Q2/4 and is much smaller than kF. The

dependence of the energy on the value of κ⊥ can be used to demonstrate that
the kinetic energy increase due to repopulation is small for κ⊥ � kF and that
in the Hartree–Fock approximation a spin density wave state always exists
with energy lower than that of the paramagnetic state.
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Fe

Fig. 11.2. Energies of ↑ and ↓ spin electrons as a function of kz. The spin ↑ and spin
↓ minima have been separated by Q the wave number of the spin density wave. The
thin solid lines omit the spin density wave exchange energy. The thick solid lines
include it and give rise to the spin density wave gap. Near the gap, the eigenstates
are linear combinations of |kz ↑〉 and |kz + Q ↓〉

kz
2 ⊥κ

Fig. 11.3. Schematics of repopulation in k-space from originally occupied k ↓ states
(inside sphere of radius kF denoted by dashed circle) to inside of solid curve ter-
minated plane kz = Q/2 at which spin density wave gas occurs. The size of κ⊥ is
exaggerated for sake of clarity

For a spiral spin density wave the flat surface at |kz| = Q/2 occur at
opposite sides of the Fermi surface for spin ↑ and spin ↓ electrons. Near these
positions in k-space, one cannot really speak of spin ↑ and spin ↓ electrons
since the eigenstates are linear combinations of the two spins with comparable
amplitudes. Far away from these regions (on the opposite sides of the Fermi
surface) the spin states are essentially unmixed. The total energy can be
lowered by introducing a left-handed spiral spin density wave in addition to
the right-handed one. The resulting spiral spin density waves form a linear
spin density wave which has flat surfaces separated by the wave vector Q of
the spin density wave at both sides of the Fermi surface for each of the spins.
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11.3.1 Comparison with Reality

It is not at all clear what correlation effects will do to the balance which gave
WP > WSDW. So far no one has performed correlation calculations using the
spin density wave state as a starting point. Experiment seems to show that at
low temperatures the ground state of some metals, for example chromium, is
a spin density wave state. Shortly after introducing spin density wave states,
Overhauser.2 introduced the idea of charge density wave states In a charge
density wave state the spin magnetization vanishes everywhere, but the elec-
tron charge density has an oscillating position dependence. For a spin density
wave distortion, exchange favors the distortion but correlation does not. For a
charge density wave distortion, both exchange and correlation favor the distor-
tion. However, the electrostatic (Hartree) energy associated with the charge
density wave is large and unfavorable unless some other charge distortion can-
cels it. For soft metals like Na, K, and Pb, Overhauser claims the ground state
is a charge density wave state. Some other people believe it is not. There is
absolutely no doubt (from experiment) that the layered compounds like TaS2

(and many others) have charge density wave ground states. There are many
experimental results for Na, K, and Pb that do not fit the nearly free electron
paramagnetic ground state, which Overhauser can explain with the charge
density wave model. At the moment, the question is not completely settled.
In the charge density wave materials, the large electrostatic energy (due to the
Hartree field produced by the electronic charge density distortion) must be
compensated by an equal and opposite distortion associated with the lattice.

11.4 Correlation Effects–Divergence of Perturbation
Theory

Correlation effects are those electron–electron interaction effects which come
beyond the exchange term. Picturesquely we can represent the exchange term
as shown in Fig. 11.4. The diagrams corresponding to the next order in per-
turbation theory are the second-order terms shown in Fig. 11.5 for (a) direct
and (b) exchange interactions, respectively The second-order perturbation to

ori

j k'k

kk'

Fig. 11.4. Diagrammatic representation of the exchange interaction in the lowest
order

2 A.W. Overhauser, Phys. Rev. 167, 691 (1968).
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or

or k

k'

k

k'

k

k

k

k

k'

k'

k'

k'

Fig. 11.5. Diagrammatic representation of the (a) direct and (b) exchange
interactions in the second-order perturbation calculation

the energy is

E2 =
∑

m

〈Φ0|H ′|Φm〉 〈Φm|H ′|Φ0〉
E0 − Em

(11.83)

Look at one term Hij of H ′ =
1
2
∑
i�=j Vij .

E2D(ki,kj) =
∑

q �=0

∣
∣∣
〈
eiki·xeikj·x′

∣
∣∣
∑
q1

4πe2

q21
eiq1·(x−x′)

∣
∣∣ ei(ki+q)·xei(kj−q)·x′

〉∣∣∣
2

Eki + Ekj −
(
Eki+q + Ekj−q

) ,

(11.84)
where the subscript D denotes the contribution of the direct interaction.
Equation (11.84) can be reduced to

E2D(ki, kj) = −m(4πe2)2
∑

q �=0

1
q4

1
q2 + q · (ki − kj)

, (11.85)

where we have set h̄ = 1. Thus, we have

ETotal
2D =

1
2

∑

ki �= kj ; ki, kj < kF
|ki + q|, |kj − q| > kF

E2D(ki, kj). (11.86)

Summing over spins and converting sums to integrals we have3

3 M. Gell-Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957).
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ETotal
2D = − e4m

16π7

∫
d3q

q4

∫

ki < kF|ki + q| > kF

d3ki

∫

kj < kF
|kj + q| > kF

d3kj
1

q2 + q · (ki + kj)
.

(11.87)

It is not difficult to see that ETotal
2D diverges because of the presence of the

factor q−4. In a similar way, one can show that

ETotal
2X =

e4m

32π7

∫
d3q

q2

∫

ki < kF|ki + q| > kF

d3ki

∫

kj < kF
|kj + q| > kF

d3kj

1
q2+q·(ki+kj)

× 1
(q+ki+kj)2

.

(11.88)

This number is finite and has been evaluated numerically (a very complicated
numerical job) with the result

ETotal
2X = N · e

2

2a0
× 0.046 ± 0.002. (11.89)

All terms beyond second-order diverge because of the factor ( 1
q2 )m coming

from the matrix elements of the Coulomb interaction.
The divergence results from the long range of the Coulomb interaction.

Gell-Mann and Brueckner overcame the divergence difficulty by formally
summing the divergent perturbation expansion to infinite order.

What they were actually accomplishing was, essentially, taking account of
screening. For the present, we will concentrate on understanding something
about screening in an electron gas. Later, we will discuss the diagrammatic
type expansions and the ground state energy.

11.5 Linear Response Theory

We will investigate the self-consistent (Hartree) field set up by some external
disturbance in an electron gas. In order to accomplish this it is very useful to
introduce the single particle density matrix.

11.5.1 Density Matrix

Suppose that we have a statistical ensemble of N systems labelled k =
1, 2, 3, . . . , N . Let the normalized wave function for the kth system in the
ensemble be given by Ψk. Expand Ψk in terms of a complete orthonormal set
of basis functions φn

Ψk =
∑

n

cnkφn;
∑

n

| cnk |2= 1. (11.90)
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The expectation value of some quantum mechanical operator Â in the kth

system of the ensemble is

Ak =
∫

dτ Ψ∗
kÂΨk. (11.91)

The statistical average (over all systems in the ensemble) is given by

〈A〉 = 1
N

∑N
k=1 Ak,

= 1
N

∑N
k=1

∫
d3τ Ψ∗

kÂΨk.
(11.92)

Substitute for Ψk in terms of the basis functions φn. This gives

〈A〉 =
1
N

N∑

k=1

∑

m,n

c∗mkcnk〈φm|Â|φn〉. (11.93)

But 〈φm|Â|φn〉 = Amn, the (m,n) matrix element of Â in the representation
{φn}. Now define a density matrix ρ̂ as follows

ρnm =
1
N

N∑

k=1

c∗mkcnk. (11.94)

Then, 〈A〉 can be written

〈A〉 =
∑

m,n

ρnmAmn =
∑

n

(
ρ̂Â

)

nn
= Tr

(
ρ̂Â

)
. (11.95)

This states that the ensemble average of a quantum mechanical operator Â
is simply the trace of the product of the density operator (or density matrix )
and the operator Â.

11.5.2 Properties of Density Matrix

From the definition (11.94), it is clear that ρ∗nm = ρmn. Because the unit
operator 1 must have an ensemble average of unity, we have that

Trρ̂ = 1. (11.96)

Because Trρ̂ =
∑
ρnn = 1, it is clear that 0 ≤ ρnn ≤ 1 for every n. ρnn is

simply the probability that the state φn is realized in the ensemble.

11.5.3 Change of Representation

Let S be a unitary matrix that transforms the orthonormal basis set {φn}
into a new orthonormal basis set {φ̃n}. If we write
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φ̃l =
∑

n

φnSnl, (11.97)

then we have
φm =

∑

l

S∗
mlφ̃l. (11.98)

It can be proved by remembering that, because S is unitary, S−1 = S† = S̃∗

or S∗
ml = (S−1)lm. Now, write the wave function for the kth system in the

ensemble, in terms of new basis functions, as

Ψk =
∑

l

c̃lkφ̃l. (11.99)

Remember that
Ψk =

∑

n

cnkφn. (11.100)

By substituting (11.98) in (11.100), we find

Ψk =
∑

n

cnk
∑

l

S∗
nlφ̃l =

∑

l

(
∑

n

cnkS
∗
nl

)

φ̃l. (11.101)

By comparing (11.101) with (11.99), we find

c̃lk =
∑

n

cnkS
∗
nl. (11.102)

The expression for the density matrix in the new representation is

ρ̃lp =
1
N

∑

k=1

N
c̃∗pk c̃lk. (11.103)

Now, use (11.102) and its complex conjugate in (11.103) to obtain

ρ̃lp = 1
N

∑
k=1

N∑
m c

∗
mkSmp

∑
n cnkS

∗
nl

=
∑

mn SmpρnmS
∗
nl,

(11.104)

since ρnm = 1
N

∑N
k=1 c

∗
mkcnk. But (11.104) can be rewritten

ρ̃lp =
∑

mn

(
S−1

)
ln
ρnmSmp

or
ρ̃ = S−1ρ̂S = S†ρ̂S. (11.105)

The average (over the ensemble) of an operator Â is given in the new
representation by
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〈Ã〉 = Tr
(
ρ̃Ã

)
= Tr

(
S−1ρSS−1AS

)

= Tr
(
S−1ρAS

)
.

But the trace of a product of two matrices is independent of the order, i.e.
TrAB = TrBA. Therefore, we have

〈Ã〉 = TrρÂ = 〈A〉. (11.106)

This means that the ensemble average of a quantum mechanical operator Â
is independent of the representation chosen for the density matrix.

11.5.4 Equation of Motion of Density Matrix

The Schrödinger equation for the kth system in the ensemble can be written

ih̄Ψ̇k = ĤΨk. (11.107)

Expressing Ψk in terms of the basis functions φm gives

ih̄
∑

m

ċmkφm = Ĥ
∑

m

cmkφm. (11.108)

Taking the scalar product with φn gives

ih̄ċnk =
∑

l

〈n|Ĥ |l〉clk =
∑

l

Hnlclk. (11.109)

The complex conjugate of (11.107) can be written

− ih̄Ψ̇∗
k = Ĥ†Ψ∗

k. (11.110)

Expressing Ψ∗
k in terms of the basis functions φl gives

− ih̄
∑

l

ċ∗lkφ
∗
l =

∑

l

Ĥ†c∗lkφ
∗
l . (11.111)

Now, multiply by φn and integrate using
∫

d3τφ∗l φn = δln

and ∫
d3τφ∗l Ĥ

†φn = H†
ln = Hln,

since the Hamiltonian is a Hermitian operator. This gives

ih̄ċ∗nk = −
∑

l

c∗lkHln. (11.112)
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Now, look at the time rate of change of ρmn.

ih̄ρ̇mn =
1
N

N∑

k=1

ih̄ [ċ∗nkcmk + c∗nk ċmk] . (11.113)

Now, use (11.109) and (11.112) for ċnk and ċ∗nk to have

ih̄ρ̇mn = 1
N

∑N
k=1 [−∑

lHlnc
∗
lkcmk +

∑
l c

∗
nkHmlclk] ,

=
∑

l [−Hlnρml + ρlnHml] .
(11.114)

We can reorder the terms as follows:

ih̄ρ̇mn =
∑

l [Hmlρln − ρmlHln] ,

= (Hρ− ρH)mn .
(11.115)

This is the equation of motion of the density matrix

ih̄ρ̇ = [H, ρ]− . (11.116)

11.5.5 Single Particle Density Matrix of a Fermi Gas

Suppose that the single particle Hamiltonian H0 has eigenvalues εn and
eigenfunctions |n〉.

H0|n〉 = εn|n〉. (11.117)

Corresponding to H0, there is a single particle density matrix ρ0 which is time
independent and represents the equilibrium distribution of particles among the
single particle states at temperature T . Because ρ̇0 = 0, H0 and ρ0 must com-
mute. Thus, ρ0 can be diagonalized by the eigenfunctions of H0. We can write

ρ0|n〉 = f0(εn)|n〉. (11.118)

For f0(εn) =
[
exp( εn−ζ

Θ ) + 1
]−1

, ρ0 is the single particle density matrix for
the grand ensemble with Θ = kBT and the chemical potential ζ.

11.5.6 Linear Response Theory

We consider a degenerate electron gas and ask what happens when some
external disturbance is introduced. For example, we might think of adding an
external charge density (like a proton) to the electron gas. The electrons will
respond to the disturbance, and ultimately set up a self-consistent field. We
want to know what the self-consistent field is, how the external charge density
is screened etc.4

4 See, for eample, M.P. Greene, H.J. Lee, J.J. Quinn, S. Rodriguez, Phys. Rev. 177,
1019 (1969).
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Let the Hamiltonian in the absence of the self-consistent field be simply
given by H0 = p2

2m H0|k〉 = εk|k〉. (11.119)

H0 is time independent, thus the equilibrium density matrix ρ0 must be
independent of time. This means

[H0, ρ0] = 0, (11.120)

and therefore
ρ0|k〉 = f0(εk)|k〉, (11.121)

where
f0(εk) =

1

e
εk−ζ

Θ + 1
(11.122)

is the Fermi–Dirac distribution function. Now, let us introduce some external
disturbance. It will set up a self-consistent electromagnetic fields

[
E(r, t),

B(r, t)
]
. We can describe these fields in terms of a scalar potential φ and a

vector potential A
B = ∇× A, (11.123)

and
E = −1

c

∂A
∂t

−∇φ. (11.124)

The Hamiltonian in the presence of the self-consistent field is written as

H =
1

2m

(
p +

e

c
A
)2

− eφ. (11.125)

This can be written as H = H0 + H1, where up to terms linear in the
self-consistent field

H1 =
e

2c
(v0 ·A + A · v0) − eφ. (11.126)

Here, v0 = p
m . Now, let ρ = ρ0 + ρ1, where ρ1 is a small deviation from ρ0

caused by the self-consistent field. The equation of motion of ρ is

∂ρ

∂t
+
i

h̄
[H, ρ]− = 0. (11.127)

Linearizing with respect to the self-consistent field gives

∂ρ1

∂t
+

i
h̄

[H0, ρ1]− +
i
h̄

[H1, ρ0]− = 0. (11.128)

We shall investigate the situation in which A, φ, ρ1 are of the form eiωt−iq·r.
Taking matrix elements gives

〈k|ρ1|k′〉 =
f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k|H1|k′〉. (11.129)
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Let us consider a most general component of A(r, t) and φ(r, t)

A(r, t) = A(q, ω)eiωt−iq·r,
φ(r, t) = φ(q, ω)eiωt−iq·r. (11.130)

Thus, we have

H1 =
[
e

c
A(q, ω) · 1

2
(
v0e−iq·r + e−iq·rv0

)− eφ(q, ω)e−iq·r
]

eiωt. (11.131)

Define the operator Vq by

Vq =
1
2
v0eiq·r +

1
2
eiq·rv0. (11.132)

Then, the matrix element of H1 can be written

〈k|H1|k′〉 =
e

c
A(q, ω) · 〈k|V−q|k′〉 − eφ(q, ω)〈k|e−iq·r|k′〉. (11.133)

We want to know the charge and current densities at a position r0 at time t.
We can write

j(r0, t) = Tr
[−e (1

2vδ(r − r0) + 1
2δ(r − r0)v

)
ρ̂
]
,

n(r0, t) = Tr [−eδ(r− r0)ρ̂] .
(11.134)

Here, −e [1
2vδ(r − r0) + 1

2δ(r − r0)v
]

is the operator for the current density
at position r0, while −eδ(r− r0) is the charge density operator. The velocity
operator v = 1

m (p+ e
cA) = v0 + e

mcA is the velocity operator in the presence
of the self-consistent field. Because v0 = p

m contains the differential operator
− ih̄
m∇, it is important to express operator like v0eiq·r and v0δ(r − r0) in the

symmetric form to make them Hermitian operators.
It is easy to see that

j(r0, t) = − e2

mc

∑
k〈k|A(r, t)δ(r − r0)ρ̂0|k〉

−e∑k〈k|
[
1
2
v0δ(r − r0) + 1

2δ(r − r0)v0

]
ρ̂1|k〉.

(11.135)

δ(r − r0) can be written as

δ(r − r0) = Ω−1
∑

q

eiq·(r−r0). (11.136)

It is clear that 〈k|A(r, t)δ(r − r0)ρ0|k〉 = Ω−1A(r0, t)f0(εk). Here, of course,
Ω is the volume of the system. For j(r0, t) we obtain

j(r0, t) = −e
2n0

mc
A(r0, t) − e

Ω

∑

k,k′,q

〈k′|Vq|k〉e−iq·r0〈k|ρ̂1|k′〉. (11.137)
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But we know the matrix element 〈k|ρ1|k′〉 from (11.129). Taking the Fourier
transform of j(r0, t) gives

j(q, ω)= −e
2n0

mc
A(q, ω)− e2

Ωc
∑

k,k′
f0(εk′)−f0(εk)
εk′−εk−h̄ω 〈k′|Vq|k〉〈k|Vq|k′〉·A(q, ω)

+
e2

Ω
∑

k,k′
f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|eiq·r|k〉.
(11.138)

This equation can be written as

j(q, ω) = − ω2
p

4πc
[(1 + I) ·A(q, ω) + Kφ(q, ω)] . (11.139)

Here, ω2
p = 4πn0e

2

m is the plasma frequency of the electron gas whose density
is n0 = N

Ω , and 1 is the unit tensor. The tensor I(q, ω) and the vector K(q, ω)
are given by

I(q, ω) =
m

N

∑
k,k′

f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|Vq|k〉∗,

K(q, ω) =
mc

N

∑
k,k′

f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|eiq·r|k〉.
(11.140)

For the plane wave wave functions |k〉 = Ω−1/2eik·r the matrix elements are
easily evaluated

〈k′|eiq·r|k〉 = δk′,k+q,

〈k′|Vq|k〉 =
h̄

m

(
k + q

2

)
δk′,k+q.

(11.141)

11.5.7 Gauge Invariance

The transformations

A′ = A + ∇χ = A − iqχ
φ′ = φ− 1

c χ̇ = φ− iωc χ
(11.142)

leave the fields E and B unchanged. Therefore, such a change of gauge must
leave j unchanged. Substitution into the expression for j gives the condition

(1 + I) · (−iq) + K(−i
ω

c
) = 0, or q + I · q +

ω

c
K = 0. (11.143)

Clearly no generality is lost by choosing the z-axis parallel to q. Then, because
the summand is an odd function of kx or ky we have

Ixz = Izx = Iyz = Izy = Ixy = Iyx = Kx = Ky = 0. (11.144)



336 11 Many Body Interactions – Introduction

Thus, two of the three components of the relation

q + I · q +
ω

c
K = 0

hold automatically. It remains to be proven that

q + Izzq +
ω

c
Kz = 0. (11.145)

We demonstrate this by writing Izz and Kz in the following form

Izz=
h̄2

mN

{
∑

k

− f0(εk)
εk+q − εk − h̄ω

(
kz +

q

2

)2

+
∑

k

f0(εk+q)
εk+q − εk − h̄ω

(
kz+

q

2

)2
}

(11.146)
In the second term, let k + q = k̃ so that k = k̃ − q; then let the dummy
variable k̃ equal −k to have

f0(εk+q)
εk+q − εk − h̄ω

(
kz +

q

2

)2

→ f0(εk)
εk − εk+q − h̄ω

(
−kz − q

2

)2

.

With this replacement qIzz can be written

qIzz = − h̄2

mN

∑

k

f0(εk)
(
kz +

q

2

)2
[

q

εk+q − εk − h̄ω
+

q

εk+q − εk + h̄ω

]
.

(11.147)
Do exactly the same for Kz to get

ω

c
Kz =

1
N

∑

k

f0(εk)
(
kz +

q

2

)[ h̄ω

εk+q − εk − h̄ω
− h̄ω

εk+q − εk + h̄ω

]
.

(11.148)
Adding qIzz to ω

cKz gives

qIzz +
ω

c
Kz = − 1

N

∑

k

f0(εk)
(
kz +

q

2

)

[ h̄2

m q(kz + q/2) − h̄ω

εk+q − εk − h̄ω
+

h̄2

m q(kz + q/2) + h̄ω

εk+q − εk + h̄ω

]
. (11.149)

But εk+q − εk = h̄2

m q(kz + q/2), therefore the term in square brackets is equal
to 2, and hence we have

qIzz +
ω

c
Kz = − 1

N

∑

k

f0(εk)
(
kz +

q

2

)
× 2. (11.150)

The first term
∑
k f0(εk)kz = 0 since it is an odd function of kz. The second

term is − q
N

∑
k f0(εk) = −q. This gives qIzz + ω

cKz = −q, meaning that
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(11.145) is satisfied and our result is gauge invariant. Because we have estab-
lished gauge invariance, we may now choose any gauge. Let us take φ = 0;
then we have

E(q, ω) = − iω
c

A(q, ω) (11.151)

for the fields having time dependence of eiωt. Substitute this for A and obtain

j(q, ω) = −n0e
2

mc

i
ω

[1 + I(q, ω)] · E(q, ω). (11.152)

We can write this equation as j(q, ω) = σ(q, ω) · E(q, ω), where σ, the con-
ductivity tensor is given by

σ(q, ω) =
ω2
p

4πiω
[1 + I(q, ω)] . (11.153)

Recall that

I(q, ω) =
m

N

∑

k,k′

f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|Vq|k〉∗. (11.154)

The gauge invariant result5

j(q, ω) = σ(q, ω) · E(q, ω) (11.155)

corresponds to a nonlocal relationship between current density and electric
field

j(r, t) =
∫

d3r′σ(r − r′, t) ·E(r′, t). (11.156)

This can be seen by simply writing

j(q) =
∫

d3rj(r)eiq·r,
σ(q) =

∫
d3(r − r′)σ(r − r′)eiq·(r−r′),

E(q) =
∫

d3r′E(r′)eiq·r′ ,
(11.157)

and substituting into (11.155). Ohm’s law j(r) = σ(r) ·E(r), which is the local
relation between j(r) and E(r), occurs when σ(q) is independent of q or, in
other words, when

σ(r − r′) = σ(r)δ(r − r′).

Evaluation of I(q, ω)

We can see by symmetry that Ixx = Iyy and Izz are the only non-vanishing
components of I. The integration over k can be performed to obtain explicit
expressions for Ixx and Izz . We demonstrate this for Izz
5 See, for eample, M.P. Greene, H.J. Lee, J.J. Quinn, S. Rodriguez, Phys. Rev.

177, 1019 (1969) for three-dimensional case and K.S. Yi, J.J. Quinn, Phys. Rev.
B 27, 1184 (1983) for quasi two-dimensional case.
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Izz(q, ω) =
m

N

∑

k

f0(εk+q) − f0(εk)
εk+q − εk − h̄ω

h̄2

m2

(
kz +

q

2

)2

. (11.158)

We can actually return to (11.147) and convert the sum over k to an integral
to obtain

Izz(q, ω) = − h̄2

mN

(
L

2π

)3

2

∫
d3kf0(εk)

[ (
kz + q

2

)2

h̄2

m
q
(
kz+

q
2

)−h̄ω
+

(
kz + q

2

)2

h̄2

m
q
(
kz+

q
2

)
+h̄ω

]

.

(11.159)
For zero temperature, f0(εk) = 1 if k < kF and zero otherwise. This gives

Izz(q, ω) = − 1

4π2n0q

∫ kF

−kF

dkz(k
2
F−k2

z)
(
kz +

q

2

)2
[

1

kz + q
2
− mω

h̄q

+
1

kz + q
2

+ mω
h̄q

]

.

(11.160)

It is convenient to introduce dimensionless variables z, x, and u defined by

z =
q

2kF
, x =

kz
kF
, and u =

ω

qvF
. (11.161)

Then, Izz can be written

Izz(z, u) = − 3
8z

∫ 1

−1

dx(1 − x2)(x + z)2
[

1
x+ z − u

+
1

x+ z + u

]
. (11.162)

If we define In by

In =
∫ 1

−1

dxxn
[

1
x+ z − u

+
1

x+ z + u

]
, (11.163)

then Izz can be written

Izz(z, u) = − 3
8z

[−I4 − 2zI3 + (1 − z2)I2 + 2zI1 + z2I0

]
. (11.164)

From standard integral tables one can find
∫

dx
xn

x+ a
=

1
n
xn − a

n− 1
xn−1 +

a2

n− 2
xn−2 − · · · + (−a)n ln (x+ a).

(11.165)
Using this result to evaluate In and substituting the results into (11.164) we
find

Izz(z, u) = −
(
1 +

3
2
u2

)
− 3u2

8z

{
[
1 − (z − u)2

]
ln
(
z − u+ 1
z − u− 1

)

+
[
1 − (z + u)2

]
ln
(
z + u+ 1
z + u− 1

)}
. (11.166)
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In exactly the same way, one can evaluate Ixx(= Iyy) to obtain

Ixx(z, u) =
3
8

(
z2 + 3u2 − 5

3

)
− 3

32z

{[
1 − (z − u)2

]
ln
(
z − u+ 1
z − u− 1

)

+
[
1 − (z + u)2

]
ln
(
z + u+ 1
z + u− 1

)}
.

(11.167)

11.6 Lindhard Dielectric Function

In general the electromagnetic properties of a material can be described by
two tensors ε(q, ω) and μ(q, ω), where

D(q, ω) = ε(q, ω) ·E(q, ω) and H(q, ω) = μ−1(q, ω) ·B(q, ω). (11.168)

For a degenerate electron gas in the absence of a dc magnetic field ε(q, ω) and
μ(q, ω) will be scalars. In his now classic paper “On the properties of a gas of
charged particles”, Jens Lindhard6 used, instead of ε(q, ω) and μ(q, ω), the
longitudinal and transverse dielectric functions defined by

ε(l) = ε and ε(tr) = ε(l) +
c2q2

ω2

(
1 − μ−1

)
. (11.169)

Lindhard found this notation to be convenient because he always worked in
the particular gauge in which q · A = 0. In this gauge the Maxwell equation
for ∇ × B = 1

c Ė + 4π
c (jind + j0) can be written, for the fields of the form

eiωt−iq·r,

− iq × (−iq × A) =
iω
c

E +
4π
c
σ ·E +

4π
c

j0. (11.170)

But defining

ε = 1 − 4πi
ω
σ,

and using E = iqφ − iω
c A allows us to rewrite (11.170) as

q2
(

1 − ω2

c2q2
ε(tr)

)
A = −ω

c
ε(l)qφ+

4π
c

j0. (11.171)

Here, we have made use of the fact that ε · q involves only ε(l), while ε · A
involves only ε(tr) since q · A = 0. If we compare (11.171) with the similar
equation obtained from ∇ × H = 1

c Ḋ + 4π
c j0 when H is set equal to μ−1B

and D = εE, viz.
6 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, 8 (1954); ibid.,

27, 15 (1953).
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q2
(
μ−1 − ω2

c2q2
ε

)
A = −ω

c
εqφ+

4π
c

j0, (11.172)

we see that

ε = ε(l) and μ−1 − ω2

c2q2
ε(l) = 1 − ω2

c2q2
ε(tr). (11.173)

This last equation is simply rewritten

ε(tr) = ε(l) +
c2q2

ω2

(
1 − μ−1

)
. (11.174)

We have chosen q to be in the z-direction, hence

ε(l) = 1 − 4πi
ω
σzz and ε(tr) = 1 − 4πi

ω
σxx. (11.175)

Thus, we have

ε(l)(q, ω) = 1 − ω2
p

ω2 [1 + Izz(q, ω)]

ε(tr)(q, ω) = 1 − ω2
p

ω2 [1 + Ixx(q, ω)].
(11.176)

11.6.1 Longitudinal Dielectric Constant

It is quite apparent from the expression for Izz that ε(l) has an imaginary
part, because for certain values of z and u, the arguments appearing in the
logarithmic functions in Izz are negative. Recall that

ln(x+ iy) =
1
2

ln(x2 + y2) + i arctan
y

x
. (11.177)

One can write ε(l) = ε
(l)
1 + iε(l)2 . It is not difficult to show that

ε
(l)
2 = 3u2

ω2
p

ω2
×
⎧
⎨

⎩

π
2u for z + u < 1
π
8z

[
1 − (z − u)2

]
for |z − u| < 1 < z + u

0 for |z − u| > 1
(11.178)

The correct sign of ε(l)2 can be obtained by giving ω a small positive imaginary
part (then eiωt → 0 as t→ ∞) which allows one to go to zero after evaluation
of ε(l)2 . The meaning of ε(l)2 is not difficult to understand. Suppose that an
effective electric field of the form

E = E0e−iωt+iq·r + c.c. (11.179)

perturbs the electron gas. We can write E = −∇φ and then φ0 = iE0
q . The

perturbation acting on the electrons is H ′ = −eφ. The power (dissipated
in the system of unit volume) involving absorption or emission processes of
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Fig. 11.6. Region of the integration indicated in (11.184)

energy h̄ω is given by P(q, ω) = h̄ωW (q, ω). Here, W (q, ω) is the transition
rate per unit volume, which is given by the standard Fermi golden rule. Then,
we can write the absorption power by

P(q, ω) =
2π
h̄

1
Ω

∑

k < kF
k′ > kF

∣∣〈k′| − eφ0eiq·r|k〉∣∣2 h̄ω δ(εk′ − εk − h̄ω). (11.180)

This results in

P(q, ω) =
2π
h̄

1
Ω

∑

k < kF
|k + q| > kF

e2 |φ0|2 h̄ω δ(εk+q − εk − h̄ω). (11.181)

Now, convert the sums to integrals to obtain

P(q, ω) =
2π
h̄

e2

Ω

(
E0

q

)2

h̄ω 2
(
L

2π

)3 ∫ ′
d3k δ(εk+q − εk − h̄ω). (11.182)

The prime in the integral denotes the conditions k < kF and |k+q| > kF (see
Fig. 11.6). Now, write

∫
d3k =

∫
dkz d2k⊥. Thus

P(q, ω) =
e2ωE2

0

2π2q2

∫

k < kF|k + q| > kF

dkz d2k⊥ δ
(
h̄2q

m

(
kz +

q

2

)
− h̄ω

)
. (11.183)

Integrating over kz and using δ(ax) = 1
aδ(x) gives kz = mω

h̄q − q
2 so that

P(q, ω) =
me2ωE2

0

2πh̄2q3

∫ ′

kz= mω
h̄q − q

2

d2k⊥. (11.184)
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Fig. 11.7. Range of the values of k⊥ appearing in (11.184)

The solid sphere in Fig. 11.6 represents |k| = kF. The dashed sphere has
|k−q| = kF. Only electrons in the hatched region can be excited to unoccupied
states by adding wave vector q to the initial value of k. We divide the hatched
region into part I and part II. In region I, − q

2 < kz < kF − q, where kz =
mω
h̄q − q

2 . Thus

− q

2
<
mω

h̄q
− q

2
< kF − q. (11.185)

Divide (11.185) by kF to obtain

−z < u− z < 1 − 2z,

where z = q
2kF

, x = kz

kF
, and u = ω

qvF
. Now, add 2z to each term to have

z < u+ z < 1 or u+ z < 1. (11.186)

In this region, the values of k⊥ must be located between the following limits
(see Fig. 11.7):

k2
F −

(
mω

h̄q
+
q

2

)2

< k2
⊥ < k2

F −
(
mω

h̄q
− q

2

)2

.

Therefore, we have

∫
d2k⊥ =

[

k2
F −

(
mω

h̄q
− q

2

)2
]

−
[

k2
F −

(
mω

h̄q
+
q

2

)2
]

=
2mω
h̄

. (11.187)

Substituting into (11.184) gives

P(q, ω) =
ω

2π
| E0 |2 me2

h̄2q3
2mω
h̄

. (11.188)

Here, we recall that energy dissipated per unit time in the system of vol-
ume Ω is also given by E =

∫
Ω j · E d3r = 2σ1(q, ω)|E0|2Ω and we have that

ε(q, ω) = 1 + 4πi
ω σ(q, ω) following the form e−iωt for the time dependence of



11.6 Lindhard Dielectric Function 343

Fig. 11.8. Frequency dependence of ε
(l)
2 (ω) the imaginary part of the dielectric

function

the fields. The power dissipation per unit volume is then written

P(q, ω) =
ω

2π
ε2(q, ω) | E0 |2 . (11.189)

We note that ε2(q, ω), the imaginary part of the dielectric function determines
the energy dissipation in the matter due to a field E of wave vector q and
frequency ω. By comparing (11.188) and (11.189), we see that, for region I,

ε
(l)
2 (q, ω) =

3ω2
p

q2v2
F

π

2
u if u+ z < 1. (11.190)

In region II, kF − q < kz < kF. But kz = mω
h̄q − q

2 = kF(u − z). Combining
these and dividing by kF we have 1 − 2z < u − z < 1. Because z < 1 in
region II, the conditions can be expressed as | z− u |< 1 < z+ u. In this case
0 < k2

⊥ < k2
F − k2

z , and, of course, kz = kF(u − z). Carrying out the algebra
gives for region II

ε
(l)
2 (q, ω) =

3ω2
p

q2v2
F

π

8z
[
1 − (z − u)2

]
if | z − u |< 1 < z + u. (11.191)

For region III, it is easy to see that ε(l)2 (ω) = 0. Figure 11.8 shows the frequency
dependence of ε(l)2 (ω). Thus, we see that the imaginary part of the dielectric
function ε

(l)
2 (q, ω) is proportional to the rate of energy dissipation due to an

electric field of the form E0e−iωt+iq·r + c.c..

11.6.2 Kramers–Kronig Relation

Let E(x, t) be an electric field acting on some polarizable material. The polar-
ization field P(x, t) will, in general, be related to E by an integral relationship
of the form
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P(x, t) =
∫

d3x′ dt′ χ(x − x′, t− t′)E(x′, t′). (11.192)

Causality requires that χ(x−x′, t− t′) = 0 for all t < t′. That is, the polariz-
able material can not respond to the field until it is turned on. A well-known
theorem from the theory of complex variables tells us that the Fourier trans-
form of χ(t− t′) is analytic in the upper half plane since ei(ω1+iω2)t becomes
eiω1te−ω2t.

Theorem 1. Given a function f(z) such that f(z) = 0 for all z < 0, then the
Fourier transform of f(z) is analytic in the upper half plane.

Take the Fourier transform of the equation for P(x, t)

P(q, ω) =
∫

d3xdtP(x, t)eiωt−iq·x. (11.193)

Then

P(q, ω) =
∫

d3xdt
∫

d3x′ dt′ χ(x − x′, t− t′)E(x′, t′)eiωt−iq·x

=
∫

d(x − x′) d(t− t′)χ(x − x′, t− t′)eiω(t−t′)−iq·(x−x′)

× ∫
d3x′ dt′ E(x′, t′)eiωt′−iq·x′.

Therefore, we have
P(q, ω) = χ(q, ω)E(q, ω). (11.194)

Here, χ(q, ω) is the electrical polarizability (see (8.14)). The dielectric con-
stant ε(q, ω) is related to the polarizability χ by

ε(q, ω) = 1 + 4πχ(q, ω) (11.195)

The theorem quoted above tells us that χ(ω) is analytic in the upper half ω-
plane. From here on we shall be interested only in the frequency dependence
of χ(q, ω), so for brevity we shall omit the q in χ(q, ω). Cauchy’s theorem
states that

χ(ω) =
1

2πi

∫

C

χ(ω′)
ω′ − ω

dω′, (11.196)

where the contour C must enclose the point ω and must lie completely in the
region of analyticity of the complex function χ(ω′). We choose the contour
lying in the upper half plane as indicated in Fig. 11.9.

As |ω| → ∞, χ(ω) → 0 since the medium can not follow an infinitely
rapidly oscillating disturbance. This allows us to discard the integral over the
semicircle when its radius approaches infinity. Thus, we have

χ(ω) =
1

2πi

∫ ∞

−∞

χ(ω′)
ω′ − ω

dω′. (11.197)

We are interested in real frequencies ω, so we allow ω to approach the real
axis. In doing so we must be careful to make sure that ω is enclosed by the
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Fig. 11.9. The contour C appearing in (11.196)

Fig. 11.10. Relevant contour C when ω approaches the real axis

original contour. One can satisfy all the conditions by deforming the contour
as shown in Fig. 11.10.

Then, we have

χ(ω) =
1

2πi
P
∫ ∞

−∞

χ(ω′)
ω′ − ω

dω′ +
1

2πi

∫

small
semicircle

χ(ω′)
ω′ − ω

dω′, (11.198)

where P denotes the principal part of the integral. We integrate the second
term in (11.198) by setting ω′ − ω = ρeiφ and letting ρ→ 0

∫

small
semicircle

χ(ω′)
ω′ − ω

dω′ = limρ→0

∫ π/2

−π/2

χ(ω + ρeiφ)ρeiφidφ
ρeiφ

= iπχ(ω).

Thus, we have

χ(ω) =
1

2πi
P
∫ ∞

−∞

χ(ω′)
ω′ − ω

dω′ +
1

2πi
iπχ(ω)

or

χ(ω) =
1
πi
P
∫ ∞

−∞

χ(ω′)
ω′ − ω

dω′. (11.199)

This is the Kramers–Kronig relation. By writing χ(ω) = χ1(ω) + iχ2(ω), we
can use the Kramers–Kronig relation to obtain

χ1(ω) = 1
πP

∫∞
−∞

χ2(ω′)
ω′−ω dω′

χ2(ω) = − 1
πP

∫∞
−∞

χ1(ω′)
ω′−ω dω′,

(11.200)
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or in terms of ε
ε1(ω) = 1 + 1

πP
∫∞
−∞

ε2(ω
′)

ω′−ω dω′

ε2(ω) = − 1
πP

∫∞
−∞

ε1(ω′)−1
ω′−ω dω′,

(11.201)

where ε2 = 4πχ2. Here, we note that the reality requirement on the fields E
and P imposes the conditions χ1(ω) = χ1(−ω) and χ2(ω) = −χ2(−ω). This
allows us to write

ε1(ω) = 1 +
2
π
P
∫ ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′. (11.202)

11.7 Effect of Collisions

In actual experiments, the conductivity of a metal (normal metal) is not infi-
nite at zero frequency because the electrons collide with lattice imperfections
(phonons, defects, impurities). Experimenters find it convenient to account
for collisions by use of a phenomenological relaxation time τ . When collisions
are included, the equation of motion of the density matrix becomes

∂ρ

∂t
+
i

h̄
[H, ρ]− =

(
∂ρ

∂t

)

c

. (11.203)

The assumption of a relaxation time is equivalent to saying that
(
∂ρ

∂t

)

c

= −ρ− ρ̃0

τ
. (11.204)

Here, ρ̃0 is a local equilibrium density matrix. We shall see that ρ̃0 must be cho-
sen with care or the treatment will be incorrect.7 There are two requirements
that ρ̃0 must satisfy

1. ρ̃0 must transform properly under change of gauge
2. Because collisions cannot alter the density at any point in space, ρ̃0 must

be chosen such that ρ and ρ̃0 correspond to the same density at every
point r0

In a Hamiltonian description of dynamics, the electromagnetic potentials
appear in the Hamiltonian. But, the potentials are not unique. It turns out
that the correct choice for ρ̃0 which satisfies gauge invariance and conserve
particle number in collisions is

ρ̃0(H, η) =
1

e
H−η

Θ + 1
. (11.205)

Here, H is the full Hamiltonian including the self-consistent potentials (A′, φ)
and η is the local chemical potential. We can determine η by requiring that
7 See, for eample, M.P. Greene, H.J. Lee, J.J. Quinn, S. Rodriguez, Phys. Rev. 177,

1019 (1969).
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Tr {[ρ− ρ̃0(H, η)] δ(r − r0)} = 0. (11.206)

This condition implies that the local equilibrium distribution function ρ̃0

toward which the nonequilibrium distribution function ρ is relaxing has
exactly the same density at every position r0 as the nonequilibrium dis-
tribution function does at r0. Of course, the local chemical potential is
η(r, t) = ζ0 + ζ1(r, t), and the value of ζ1 is obtained by solving (11.206).

To understand this, think of the gauge in which the scalar potential
φ(r) vanishes. In this gauge the entire Hamiltonian is kinetic. Therefore, the
Hamiltonian, including the self-consistent field can be written as

HK =
1

2m

(
p +

e

c
A
)2

=
1
2
mv2.

For any gauge transformation A′ = A + ∇χ and φ′ = φ− 1
c χ̇, we can define

H ′
K = H ′ − e

c χ̇. Here H ′ is the sum of H ′
K and −eφ′ with

H ′
K = e−

ieχ
h̄c HKe

ieχ
h̄c . (11.207)

By choosing ρ̃0 to depend on HK we guarantee that

ρ̃′0 = e−
ieχ
h̄c ρ̃0e

ieχ
h̄c

transforms exactly as ρ itself transforms. There are two extreme cases:

1. H = HK −eφ, η = constant = ζ0. All of the density variation comes from
the scalar potential φ(r). (see Fig. 11.11a)

2. H = HK, η = ζ0 +eφ. All of the density variation comes from the variation
ζ1(r) in the chemical potential η(r). (see Fig. 11.11b)

Neither H nor η is gauge invariant, but their difference H − η is. This is the
quantity that appears in ρ̃0.

If we let η(r, t) = ζ0 + ζ1(r, t) where ζ0 is the actual overall equilibrium
chemical potential and ζ1(r, t) is the local deviation of η from ζ0, then we can
write

ρ̃0(H, η) = ρ0(H0, ζ0) + ρ2. (11.208)
The equation of motion of the density matrix is

∂ρ

∂t
+
i

h̄
[H, ρ]− = −ρ− ρ̃0

τ
(11.209)

where ρ̃0 = ρ0(H0, ζ0)+ρ2. We can write ρ = ρ̃0+ρ1, where ρ1 is the deviation
from the local thermal equilibrium value ρ̃0. Then (11.209) becomes

iω(ρ1 + ρ2) +
i
h̄

[H0, ρ1 + ρ2]− +
i
h̄

[H1, ρ0]− = −ρ1

τ
. (11.210)

Take matrix elements as before and solve for 〈k|ρ1|k′〉; this gives

〈k|ρ1|k′〉 =
[

ih̄/τ
εk′ − εk − h̄ω + ih̄/τ

− 1
]
〈k|ρ2|k′〉

+
f0(εk′ ) − f0(εk)

εk′ − εk − h̄ω + ih̄/τ
〈k|H1|k′〉.

(11.211)
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Fig. 11.11. Local chemical potential η and local density matrix ρ(r). (a) η =
constant(= ζ0), (b) η(r) = ζ0+eφ(r). Here Ec denotes the bottom of the conduction
band

Using the result of Problem in this chapter for 〈k|ρ2|k′〉 in this equation gives

〈k|ρ1|k′〉 =
[
−1 +

ih̄/τ
εk′ − εk − h̄ω + ih̄/τ

]
f0(εk′) − f0(εk)

εk′ − εk
〈k|H1 − ζ1|k′〉

+
f0(εk′ ) − f0(εk)

εk′ − εk − h̄ω + ih̄/τ
〈k|H1|k′〉.

(11.212)
The parameter ζ1 appearing in (11.212) is determined by requiring that

Tr {ρ1δ(r − r0)} = 0. (11.213)

The final result (after a lot of calculation) is

j(q, ω) =
ω2

p

4πiω

{
1 + I− iωτ

1 + iωτ
(K1 − K2)(K′

1 − K′
2)

L1 + iωτL2

}
·E, (11.214)

where we used the notations

I =
iωτI1 + I2

1 + iωτ
, (11.215)
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K =
iωτK1 + K2

1 + iωτ
, (11.216)

Li =
mc2

N

∑

kk′
Λ(i)
k′k | 〈k′|eiq·r|k〉 |2, (11.217)

Ki =
mc

N

∑

kk′
Λ(i)
k′k〈k′|Vq|k〉〈k′|eiq·r|k〉∗, (11.218)

K′
i =

mc

N

∑

kk′
Λ(i)
k′k〈k′|eiq·r|k〉〈k′|Vq|k〉∗, (11.219)

and
Ii =

m

N

∑

kk′
Λ(i)
k′k〈k′|Vq|k〉〈k′|Vq|k〉∗. (11.220)

The subscript (or superscript) i takes on the values 1 and 2, and

Λ(1)
k′k =

f0(εk′) − f0(εk)
εk′ − εk − h̄ω + ih̄/τ

(11.221)

and

Λ(2)
k′k =

f0(εk′ ) − f0(εk)
εk′ − εk

. (11.222)

In the limit as τ → ∞, I → I1 and K → K1, hence

j(q, ω) → ω2
p

4πiω
[1 + I1] ·E, (11.223)

exactly as we had before. For ωτ finite, there are corrections to this collisionless
result that depend on 1

ωτ .

11.8 Screening

Our original objective in considering linear response theory was to learn more
about screening since we found that the long range of the Coulomb interaction
was responsible for the divergence of perturbation theory beyond the first
order exchange. Later on, when we mention Green’s functions and the electron
self energy, we will discuss some further details on dynamic screening, but for
now, let us look at static screening effects.

If we set ω → 0 in (11.166), we can write

1 + Izz(z, u) = −3
2
u2

[
1 +

1
2

(
1
z
− z

)
ln
(

1 + z

1 − z

)]
. (11.224)

Here, z = q/2kF and u = ω/qvF. Substituting this result into ε(l) = 1− ω2
p
ω2 (1+

Izz) gives
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ε(l)(q, 0) = 1 +
3ω2

p

q2v2
F

F (z), (11.225)

where

F (z) =
1
2

+
1
4

(
1
z
− z

)
ln
(

1 + z

1 − z

)
. (11.226)

Since ln
(

1+z
1−z

)
� 2z(1 + z2

3 + · · · ), F (z) −→
z→0

1 − z2

3 . For z � 1, F (z) � 1
3z2

(see Fig. 11.12). For very long wave lengths, we have

ε(l)(q) �
(

1 − 1
3πa0kF

)
+
k2
s

q2
, (11.227)

where ks =
√

4kF
πa0

is called the Thomas–Fermi screening wave number. At high
density 3πa0kF � 1 so the constant term is usually approximated by unity.
εTF(q) = 1 + k2

s
q2 is called the Thomas–Fermi dielectric constant. . One can

certainly see that screening eliminates the divergence in perturbation theory
that resulted from the φ0(q) = 4πe

q2 potential. We would write for the self-
consistent screened potential by

φ(q) =
φ0(q)
εTF(q)

=
4πe

q2 + k2
s

. (11.228)

This potential does not diverge as q → 0.

11.8.1 Friedel Oscillations

If F (z) were identically equal to unity, then a point charge would give rise
to the screened potential given by (11.228), which is the Yukawa potential
φ(r) = e

r e
−ksr in coordinate space. However, at z = 1 (or q = 2kF) F (z)

Fig. 11.12. Function F (z) appearing in (11.225)
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Fig. 11.13. Electron–hole pair excitation energies as a function of wave number q

drops very abruptly. In fact, dF
dz has infinite slope at z = 1 (see, for example,

Fig. 11.12). The ability of the electron gas to screen disturbances of wave
vector q drops abruptly at q = 2kF. This is the result of the fact that pair
excitations of zero energy can be created if q < 2kF, but every pair excitation
must have finite energy if q > 2kF. This is apparent from a plot of Δε =
εk+q − εk = h̄2

m q(kz + q
2 ) versus q for kz = ±kF (see Fig. 11.13). The hatched

area is called the electron–hole continuum. If F (z) were replaced by unity,
the self-consistent potential φ(q) would be written as

φ(q) =
4πe
q2

1
ε(l)(q)

� 4πe
q2 + k2

s

.

The Fourier transform φ(r) is given by

φ(r) =
∫

d3q

(2π)3
eiq·rφ(q) (11.229)

and one can show that this is equal to φ(r) = e
r e

−ksr, a Yukawa potential.
Because F (z) is not equal to unity, but decreases rapidly around z = 1, the
potential φ(r) and the induced electron density n1(r) are different from the
results of the simple Thomas–Fermi model. In the equation for φ(r) we must
replace k2

s by k2
sF (z) so that

φ(r) =
∫

d3q

(2π)3
eiq·r 4πe

q2 + k2
sF (q/2kF)

. (11.230)

The induced electron density is given by

n1(q) =
k2
s

4π
F (z)φ(q). (11.231)
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This can be obtained from ∂ρ
∂t +∇· j = 0, where j = σ ·E = (ε(l)−1) iω

4π (+iqφ)

and ε(l) = 1 + k2
s
q2 F (z). After a little algebra one can show that the Fourier

transform of n1(q) is given by

n1(r) =
12n0

πa0kF

∫ ∞

0

sin 2kFrz

2kFrz

F (z)
1 + F (z)/(πa0kFz2)

dz. (11.232)

This can be written in a simpler form using

F (z)
1 + F (z)/(πa0kFz2)

= F (z) − F 2(z)
πa0kFz2 + F (z)

. (11.233)

Then, n1(r) becomes

n1(r) =
12n0

πa0kF

[∫ ∞

0

sin 2kFrz

2kFrz
F (z) dz −

∫ ∞

0

sin 2kFrz

2kFrz

F 2(z)
πa0kFz2 + F (z)

dz
]
.

(11.234)
In the high density limit πa0kF � 1. Therefore in the region where F (z)
deviates appreciably from unity, i.e. for z ≥ 1, πa0kFz

2 � F (z), and we make
a small error by replacing F (z) in the second term of (11.234) by unity. This
high-density approximation gives

n1(r) =
12n0

πa0kF

[∫ ∞

0

sin 2kFrz

2kFrz
F (z) dz −

∫ ∞

0

sin 2kFrz

2kFrz

dz
πa0kFz2 + 1

]
.

(11.235)
The first integral can be evaluated exactly in terms of known functions
∫ ∞

0

sin 2kFrz

2kFrz
F (z) dz

=
π

2

{
1

2kFr
− 1

4kFr

[
sin 2kFr

2kFr
+ cos 2kFr

]
+

1
2

[π
2
− Si(2kFr)

]}
≡π

2
f(2kFr),

(11.236)

where Si(x) =
∫ x
0

sin t
t dt is the sine integral function. For very large values of

x, the function f(x) in (11.236) behaves

f(x) � 1
x

+
cosx
x3

+O

(
higher orders of

1
x

)
. (11.237)

The second integral in (11.235) becomes
∫ ∞

0

sin 2kFrz

2kFrz

dz
πa0kFz2 + 1

=
π

4kFr

(
1 − e

− r√
πa0kF

)
. (11.238)

Therefore, for high density limit (πa0kF � 1) and large distances from the
point charge impurity, the induced electron density is given by
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n1(r) =
6n0

a0kF

cos 2kFr

(2kFr)3
. (11.239)

The oscillating behavior of the induced electron density at a wave vector
q = 2kF is known as a Friedel oscillation. Notice that the electron density
induced by the presence of the point charge impurity falls off in amplitude
as 1

r3 . For a Yukawa potential (φ = e
r e

−ksr), the fall in the induced electron
density is exponential.

11.8.2 Kohn Effect

When we discussed the Sommerfeld model we found a result for sl the velocity
of a longitudinal sound wave that could be written

ω2 = s2l q
2 �

(√
zm

3M
vF

)2

q2. (11.240)

In other words the longitudinal sound velocity was given by

sl =
√
zm

3M
vF, (11.241)

where z is the valence (charge on the positive ions), M is the ionic mass, and
vF the Fermi velocity.

This result can easily be obtained by saying that the positive ions have a
bare plasma frequency

Ωp =

√
4πNI(ze)2

M
, (11.242)

where NI is the number of ions per unit volume. However, the electrons will
screen the charge fluctuations in the ion density, so that the actual frequency
of a longitudinal sound wave of wave vector q will be

ω =
Ωp√
ε(q, ω)

, (11.243)

where ε(q, ω) is the dielectric function of the electron gas. Because the acoustic
frequency is much smaller than the electron plasma frequency and ω � slq �
qvF, we can approximate ε(q, ω) by ε(q, 0) in the first approximation

ω2 =
Ω2

p

1 + k2
s
q2 F (z)

� q2Ω2
p

q2 + k2
sF (z)

. (11.244)

Let us assume k2
s � q2. If we take F (z) � 1, we obtain

ω2 � q2

k2
s

Ω2
p. (11.245)
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But recall that Ω2
p = 4π

(
n0
z

) (ze)2

M and k2
s = 4kF

πa0
. Substituting into (11.245)

gives the result given by (11.240). However, q need not be small compared to
kF, even though ω � slq will still be small compared to qvF and ωp. Then, we
must keep F (z) and write

ω2 � s2l q
2

F (z) + πa0
4kF

q2
. (11.246)

Because F (z) has an infinite first derivative at q = 2kF (or z = 1), the phonon
dispersion relation will show a small anomaly at q = 2kF that is called the
Kohn anomaly8.

8 W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
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Problems

11.1. Let us consider the paramagnetic state of a degenerate electron gas, in
which nkσ = 1 for εkσ < εF and zero otherwise.

(a) Show that the exchange contribution to the energy of wave vector k
and spin σ is

ΣXσ(k) = − 1
Ω

∑

k′
nk′σ

4πe2

|k2 − k′|2 .

(b) Convert the sum over k′ to an integral and perform the integral to
obtain

ΣXσ(k) = −e
2kF

π

[
1 +

1 − x2

2x
ln
∣∣
∣
∣
1 + x

1 − x

∣∣
∣
∣

]
,

where x = k/kF.
(c) Plot ΣXσ(k) as a function of k

kF
.

(d) Show that the total energy (kinetic plus exchange) for the N particle
paramagnetic state in the Hartree–Fock approximation is

EP =
∑

kσ nkσ

[
h̄2k2

2m
+ ΣXσ(k)

]

= N

(
3
5
h̄2k2

F

2m
− 3e2kF

4π

)
.

11.2. Consider the ferromagnetic state of a degenerate electron gas, in which
nk↑ = 1 for k < kF↑ and nk↓ = 0 for all k.

(a) Determine the Hartree–Fock energy εkσ = h̄2k2

2m + ΣXσ(k).
(b) Determine the value of kF (Fermi wave vector of the nonmagnetic state)

for which the ferromagnetic state is a valid Hartree–Fock solution.
(c) Determine the value of kF for which EF =

∑
k εk↑ has lower energy than

EP obtained in Problem 11.1.

11.3. Evaluate Ixx(q, ω) in the same way as we evaluated Izz(q, ω), which is
given by (11.166).

11.4. The longitudinal dielectric function is written as

ε(l)(q, ω) = 1 − ω2
p

ω2
[1 + Izz(q, ω)].

Use ln(x+iy) = 1
2 ln(x2 + y2)+ i arctan y

x to evaluate ε(l)2 (z, u), the imaginary
part of ε(l)(q, ω), where z = q/2kF and u = ω/qvF.
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11.5. Let us consider the static dielectric function written as

ε(l)(q, 0) = 1 +
3ω2

p

q2v2
F

F (z),

where z = q/2kF and F (z) = 1
2 + 1

4

(
1
z − z

)
ln
(

1+z
1−z

)
.

(a) Expand F (z) in power of z for z � 1. Repeat it in power of 1/z for
z � 1.

(b) Determine the expressions of the static dielectric function ε(l)(q, 0) in
the corresponding limits.

11.6. In the absence of a dc magnetic field, we see that |ν〉 = |kx, ky, kz〉 ≡ |k〉,
the free electron states.

(a) Show that 〈k′|Vq|k〉 = h̄
m(k+ q

2 )δk′,k+q, where Vq = v0eiq·r +eiq·rv0.
(b) Derive the Lindhard form of the conductivity tensor given by

σ(q, ω) =
ω2

p

4πiω

[

1 +
m

N

∑

k

f0(Ek+q) − f0(Ek)

Ek+q − Ek − h̄ω

(
h̄

m

)2 (
k +

q

2

) (
k +

q

2

)
]

.

(c) Show that the Lindhard form of the dielectric tensor is written by

ε(q, ω) =

(
1 − ω2

p

ω2

)
1−mω2

p

Nω2

∑

k

f0(Ek+q) − f0(Ek)

Ek+q − Ek − h̄ω

(
h̄

m

)2 (
k +

q

2

) (
k +

q

2

)
.

11.7. Suppose that a system has a strong and sharp absorption line at a
frequency ωA and that ε2(ω) can be approximated by

ε2(ω) = Aδ(ω − ωA) for ω > 0.

(a) Evaluate ε1(ω) by using the Kronig–Kramers relation.
(b) Sketch ε1(ω) as a function of ω.

11.8. The equation of motion of a charge (−e) of mass m harmonically bound
to a lattice point Rn is given by

m(ẍ + γẋ + ω2
0x) = −eEeiωt.

Here, x = r−R, ω0 is the oscillator frequency, and the electric field E = Ex̂.

(a) Solve the equation of motion for x(t) = X(ω)eiωt.
(b) Let us consider the polarization P (ω) = −en0X(ω), where n0 is the

number of oscillators per unit volume. Write P (ω) = α(ω)E(ω) and
determine α(ω).

(c) Plot α1(ω) and α2(ω) vs. ω, where α = α1 + α2.
(d) Show that α(ω) satisfies the Kronig–Kramers relation.

11.9. Take H = 1
2m

(
p + e

cA
)2 − eφ and H ′ = 1

2m

(
p + e

cA
′)2 − eφ′ where

A′ = A + ∇χ and φ′ = φ− 1
c χ̇.
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(a) Show that H ′ − e
c χ̇ = e−

ieχ
h̄c He

ieχ
h̄c .

(b) Show that ρ′ = e−
ieχ
h̄c ρe

ieχ
h̄c satisfies the same equation of motion, viz.

(c) ∂ρ′
∂t + i

h̄ [H ′, ρ′]− = 0 as ρ does.

11.10. Let us take ρ̃0(H, η) =
[
exp(H−η

Θ ) + 1
]−1

as the local thermal equi-
librium distribution function (or local equilibrium density matrix). Here
η(r, t) = ζ + ζ1(r, t) is the local value of the chemical potential at posi-
tion r and time t, while ζ is the overall equilibrium chemical potential.
Remember that the total Hamiltonian H is written as H = H0 + H1. Write
ρ̃0(H, η) = ρ0(H0, ζ)+ ρ2 and show that, to terms linear in the self-consistent
field,

〈k|ρ2|k′〉 =
f0(εk′) − f0(εk)

εk′ − εk
〈k|H1 − ζ1|k′〉.

11.11. Longitudinal sound waves in a simple metal like Na or K can be
represented by the relation ω2 = Ω2

p

ε(l)(q,ω)
, where ε(l)(q, ω) is the Lindhard

dielectric function. We know that, for finite ω, ε(l)(q, ω) can be written as
ε(l)(q, ω) = ε1(q, ω) + iε2(q, ω). This gives rise to ω = ω1 + iω2, and ω2 is pro-
portional to the attenuation of the sound wave via excitation of conduction

electrons. Estimate ω2(q) for the case ω2
1 � q2Ω2

p
k2
s

� ω2
2 .
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Summary

In this chapter, we briefly introduced method of second quantization and
Hartree–Fock approximation to describe the ferromagnetism of a degener-
ate electron gas and spin density wave states in solids. Equation of motion
method is considered for density matrix to describe gauge invariant theory of
linear responses in the presence of the most general electromagnetic distur-
bance. Behavior of Lindhard dielectric functions and static screening effects
are examined in detail. Oscillatory behavior of the induced electron density in
the presence of point charge impurity and an anomaly in the phonon dispersion
relation are also discussed.

In the second quantization or occupation number representation, the
Hamiltonian of a many particle system with two body interactions can be
written as

H =
∑

k

εkc
†
kck +

1
2

∑

kk′ll′
〈k′l′|V |kl〉c†k′c†l′clck,

where ck and c†k′ satisfy commutation (anticommutation) relation for Bosons
(Fermions).

The Hartree–Fock Hamiltonian is given by H =
∑

iEic
†
i ci, where

Ei = εi +
∑

j

nj [〈ij|V |ij〉 − 〈ij|V |ji〉] .

The Hartree–Fock ground state energy of a degenerate electron gas in the
paramagnetic phase is given by Eks = h̄2k2

2m − e2kF
2π

[
2 + k2

F−k2

kkF
ln
(
kF+k
kF−k

)]
.

The total energy of the paramagnetic state is

EP = N

[
3
5
h̄2k2

F

2m
− 3

4π
e2kF

]
.

If only states of spin ↑ are occupied, we have

Ek↑ =
h̄2k2

2m
− 21/3e2kF

2π

[
2 +

22/3k2
F − k2

21/3kFk
ln
(

21/3kF + k

21/3kF − k

)]
; Ek↓ =

h̄2k2

2m
.

The total energy in the ferromagnetic phase is

EF =
∑

Ek↑ = N

[
22/3 3

5
h̄2k2

F

2m
− 21/3 3

4π
e2kF

]
.

The exchange energy prefers parallel spin orientation, but the cost in kinetic
energy is high for a ferromagnetic spin arrangement. In a spin density wave
state, the (negative) exchange energy is enhanced with no costing as much in
kinetic energy. The Hartree-Fock ground state of a spiral spin density wave
can be written as |φk〉 = cos θk|k ↑〉 + sin θk|k + Q ↓〉.
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In the presence of the self-consistent (Hartree) field {φ,A}, the Hamilto-
nian is written as H = H0+H1, where H0 is the Hamiltonian in the absence of
the self-consistent field and H1 = e

2c (v0 ·A + A · v0)−eφ, up to terms linear
in {φ,A}. Here, v0 = p

m and the equation of motion of ρ is ∂ρ
∂t + i

h̄ [H, ρ]− = 0.
The current and charge densities at (r0, t) are given, respectively, by

j(r0, t) = Tr

[
−e

(
1

2
vδ(r− r0) +

1

2
δ(r− r0)v

)
ρ̂

]
; n(r0, t) = Tr [−eδ(r− r0)ρ̂] .

Here −e [1
2vδ(r − r0) + 1

2δ(r − r0)v
]
is the operator for the current density at

position r0, while −eδ(r−r0) is the charge density operator. Fourier transform
of j(r0, t) gives

j(q, ω) = σ(q, ω) · E(q, ω)

where the conductivity tensor is given by σ(q, ω) =
ω2

p

4πiω [1 + I(q, ω)] . Here

I(q, ω) =
m

N

∑

k,k′

f0(εk′ ) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|Vq|k〉∗

and the operator Vq is defined by Vq = 1
2v0eiq·r + 1

2eiq·rv0.
The longitudinal and transverse dielectric functions are written as

ε(l)(q, ω) = 1 − ω2
p

ω2
[1 + Izz(q, ω)]; ε(tr)(q, ω) = 1 − ω2

p

ω2
[1 + Ixx(q, ω)].

Real part (ε1) and imaginary part (ε2) of the dielectric function satisfy the
relation

ε1(ω) = 1 +
2
π
P
∫ ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′.

The power dissipation per unit volume is then written P(q, ω) = ω
2π ε2(q, ω) |

E0 |2 .
Due to collisions of electrons with lattice imperfections, the conductivity

of a normal metal is not infinite at zero frequency. In the presence of collisions,
the equation of motion of the density matrix becomes, in a relaxation time
approximation,

∂ρ

∂t
+

i
h̄

[H, ρ]− = −ρ− ρ̃0

τ
.

Here, ρ̃0 is a local equilibrium density matrix. Including the effect of collisions,
the induced current density becomes

j(q, ω) =
ω2

p

4πiω

{
1 + I − iωτ

1 + iωτ
(K1 − K2)(K′

1 − K′
2)

L1 + iωτL2

}
· E.

In the static limit, the dielectric function reduces to

ε(l)(q, 0) = 1 +
3ω2

p

q2v2
F

F (z),
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where F (z) = 1
2 + 1

4

(
1
z − z

)
ln
(

1+z
1−z

)
and z = q/2kF. The self-consistent

screened potential is written as

φ(q) =
4πe

q2 + k2
sF (q/2kF)

.

where ks =
√

4kF
πa0

. For high density limit (πa0kF � 1) and large distances
from the point charge impurity, the induced electron density is given by

n1(r) =
6n0

a0kF

cos 2kFr

(2kFr)3
.

Electronic screening of the charge fluctuations in the ion density modifies the
dispersion relation of phonons, for example,

ω2 � s2l q
2

F (z) + πa0
4kF

q2

showing a small anomaly at q = 2kF.
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Many Body Interactions: Green’s Function
Method

12.1 Formulation

Let us assume that there is a complete orthogonal set of single particle states
φi(ξ), where ξ = r, σ. By this we mean that

〈φi | φj〉 = δij and
∑

i

| φi〉〈φi |= 1. (12.1)

We can define particle field operators ψ and ψ† by

ψ(ξ) =
∑

i

φi(ξ)ai and ψ†(ξ) =
∑

i

φ∗i (ξ)a
†
i , (12.2)

where ai (a†i ) is an annihilation (creation) operator for a particle in state i.
From the commutation relations (or anticommutation relations) satisfied by
ai and a†j , we can easily show that

[ψ(ξ), ψ(ξ′)] =
[
ψ†(ξ), ψ†(ξ′)

]
= 0,

[
ψ(ξ), ψ†(ξ′)

]
= δ(ξ − ξ′). (12.3)

The Hamiltonian of a many particle system can be written. (Here we set
h̄ = 1.)

H =
∫

d3r

{
1

2m
∇ψ†

α(r) · ∇ψα(r) + U (1)(r)ψ†
α(r)ψα(r)

}

+
1
2
∫

d3r d3r′ψ†
α(r)ψ†

β(r′)U (2)(r, r′)ψβ(r′)ψα(r).
(12.4)

Summation over spin indices α and β is understood in (12.4). For the moment,
let us omit spin to simplify the notation. Then

ψ(r) =
∑

i

φi(r)ai. (12.5)
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We can write the density at a position r0 as

n(r0) =
∫

d3rψ†(r)ψ(r)δ(r − r0) = ψ†(r0)ψ(r0). (12.6)

The total particle number N is simply the integral of the density

N =
∫

d3rn(r) =
∫

d3rψ†(r)ψ(r). (12.7)

If we substitute (12.5) in (12.7), we obtain

N =
∫

d3r

(
∑

i

φ∗i (r)ai

)⎛

⎝
∑

j

φj(r)aj

⎞

⎠ =
∑

ij

〈φi | φj〉a†iaj . (12.8)

By 〈φi | φj〉 = δij , this reduces to

N =
∑

i

a†iai, (12.9)

so that n̂i = a†iai is the number operator for the state i and N̂ =
∑

i n̂i is the
total number operator. It simply counts the number of particles.

12.1.1 Schrödinger Equation

The Schrödinger equation of the many particle wave function Ψ(1, 2, . . . , N)
is (h̄ ≡ 1)

ih̄
∂

∂t
Ψ = HΨ. (12.10)

We can write the time dependent solution Ψ(t) as

Ψ(t) = e−iHtΨH, (12.11)

where ΨH is time independent. If F is some operator whose matrix element
between two states Ψn(t) and Ψm(t) is defined as

Fnm(t) = 〈Ψn(t)|F |Ψm(t)〉, (12.12)

we can write |Ψm(t)〉 = e−iHt|ΨHm〉 and 〈Ψn(t)| = 〈ΨHn|eiHt. Then Fnm(t)
can be rewritten

Fnm(t) = 〈ΨHn|F (t)|ΨHm〉, (12.13)

where FH(t) = eiHtF e−iHt. The process of going from (12.12) to (12.13) is
a transformation from the Schrödinger picture (where the state vector Ψ(t)
depends on time but the operator F does not) to the Heisenberg picture (where
ΨH is a time-independent state vector but FH(t) is a time-dependent opera-
tor). The transformation from (to) Schrödinger picture to (from) Heisenberg
picture can be summarized by
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ΨS(t) = e−iHtΨH and FH(t) = eiHtFSe−iHt. (12.14)

From these equations and (12.10), it is clear that

∂FH(t)
∂t

= i [H,FH] . (12.15)

12.1.2 Interaction Representation

Suppose that the Hamiltonian H can be divided into two parts H0 and H ′,
where H ′ represents the interparticle interactions. We can define the state
vector ΨI(t) in the interaction representation as

ΨI(t) = eiH0tΨS(t). (12.16)

Operate i∂/∂t on ΨI(t) and make use of the fact that ΨS(t) satisfies the
Schrödinger equation. This gives

i
∂ΨI(t)
∂t

= HI(t)ΨI(t), (12.17)

where
HI(t) = eiH0tH ′e−iH0t. (12.18)

From (12.12) and the fact that ΨS(t) = e−iH0tΨI(t) it is apparent that

FI(t) = eiH0tFSe−iH0t. (12.19)

By explicit evaluation of ∂FI
∂t from (12.19), it is clear that

∂FI

∂t
= i [H0, FI(t)] . (12.20)

The interaction representation has a number of advantages for interacting
systems; among them are:

1. All operators have the form of Heisenberg operators of the noninteracting
system, i.e., (12.19).

2. Wave functions satisfy the Schrödinger equation with Hamiltonian HI(t),
i.e., (12.17).

Because operators satisfy commutation relations only for equal times, HI(t1)
and HI(t2) do not commute if t1 �= t2. Because of this, we cannot simply
integrate the Schrödinger equation, (12.17), to obtain

ΨI(t) ∝ e−i
∫

t HI(t
′)dt′ . (12.21)

Instead, we do the following:

1. Assume that Ψ(t) is known at t = t0.
2. Integrate the differential equation from t0 to t.
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This gives that

ΨI(t) − ΨI(t0) = −i
∫ t

t0

dt′HI(t′)ΨI(t′). (12.22)

This is an integral equation for ΨI(t) that we can try to solve by iteration. Let
us write

ΨI(t) ≡ Ψ
(0)
I (t) + Ψ

(1)
I (t) + · · · + Ψ

(n)
I (t) + · · · . (12.23)

Here
Ψ

(0)
I (t) = ΨI(t0),
Ψ

(1)
I (t) = −i

∫ t
t0

dt′HI(t′)Ψ
(0)
I (t′),

Ψ
(2)
I (t) = −i

∫ t
t0

dt′HI(t′)Ψ
(1)
I (t′),

...
Ψ

(n)
I (t) = −i

∫ t
t0

dt′HI(t′)Ψ
(n−1)
I (t′).

(12.24)

This result can be expressed as

ΨI(t) = S(t, t0)ΨI(t0), (12.25)

where S(t, t0) is the so-called S matrix is given by

S(t, t0) = 1 − i
∫ t
t0

dt1HI(t1) + (−i)2
∫ t
t0

dt1
∫ t1
t0

dt2HI(t1)HI(t2) + · · ·
=
∑∞

n=0(−i)n
∫ t
t0

dt1
∫ t1
t0

dt2 · · ·
∫ tn−1

t0
dtn

[
HI(t1)HI(t2) · · ·HI(tn)

]
.

(12.26)
Let us look at the third term involving integration over t1 and t2

I2 =
∫ t

t0

dt1
∫ t1

t0

dt2HI(t1)HI(t2) =
1
2
I2 +

1
2
I2. (12.27)

In the second 1
2I2, let us reverse the order of integration (see Fig. 12.1). We

first integrated over t2 from t0 to t1, then over t1 from t0 to t. Inverting the
order gives ∫ t

t0

dt1
∫ t1

t0

dt2 ⇒
∫ t

t0

dt2
∫ t

t2

dt1,

Therefore, we have

1
2
I2 =

1
2

∫ t

t0

dt1
∫ t1

t0

dt2HI(t1)HI(t2) =
1
2

∫ t

t0

dt2
∫ t

t2

dt1HI(t1)HI(t2).

(12.28)
But t1 and t2 are dummy integration variables and we can interchange the
names to get

1
2
I2 =

1
2

∫ t

t0

dt1
∫ t

t1

dt2HI(t2)HI(t1). (12.29)
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Fig. 12.1. Order of integration I2 appearing in (12.27)

Adding this term to the 1
2I2 that was left in its original form gives

I2 =
1
2

∫ t

t0

dt1
∫ t1

t0

dt2HI(t1)HI(t2) +
1
2

∫ t

t0

dt1
∫ t

t1

dt2HI(t2)HI(t1). (12.30)

We are integrating over a square of edge Δt = t − t0 in the t1t2-plane. The
second term, with t2 > t1, is just an integral on the lower triangle shown
in Fig. 12.1. The first term, where t1 > t2, is an integral on the upper tri-
angle. Therefore, we can combine the time integrals and write the limits of
integration from t0 to t.

I2 =
1
2

∫ t

t0

dt1
∫ t

t0

dt2 [HI(t1)HI(t2)θ(t1 − t2) +HI(t2)HI(t1)θ(t2 − t1)] .

(12.31)
The thing we have to be careful about here, however, is that HI(t1) and HI(t2)
do not necessarily commute. We can get around this difficulty by using the
time ordering operator T. The product of functions HI(tj) that follows the
operator T must have the largest t values on the left. In the first term of
(12.31), t1 > t2, so we can write the integrand as

HI(t1)HI(t2) = T{HI(t1)HI(t2)}.
In the second term, with t2 > t1, we may write

HI(t2)HI(t1) = T{HI(t1)HI(t2)}.
Equation (12.31) can, thus, be rewritten as

I2 =
1
2

∫ t

t0

dt1
∫ t

t0

dt2T {HI(t1)HI(t2)} . (12.32)
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For the general term we have

In =
∫ t
t0

dt1
∫ t1
t0

dt2 · · ·
∫ tn−1

t0
dtn HI(t1)HI(t2) · · ·HI(tn)

=
∫

dt1dt2 · · ·dtn HI(t1)HI(t2) · · ·HI(tn) with t ≥ t1 ≥ t2 ≥ · · · ≥ tn,

and it is not difficult to see that the same technique can be applied to give

In =
1
n!

∫ t

t0

dt1
∫ t

t0

dt2 · · ·
∫ t

t0

dtnT{HI(t1)HI(t2) · · ·HI(tn)}. (12.33)

Note that

T{HI(t1)HI(t2) · · ·HI(tn)} = HI(t1)HI(t2) · · ·HI(tn) if t1 ≥ t2 ≥ · · · ≥ tn.

Making use of (12.33), the S matrix can be written in the compact form

S(t, t0) = T
{
e−i

∫ t
t0
HI(t

′)dt′
}
, (12.34)

where it is understood that in the nth term in the expansion of the exponential,
(12.33) holds. We note that, at t = 0, the wave functions ΨS, ΨI coincide,

ΨS(0) = ΨI(0) = S(0, t0)ΨI(t0) = S(0, t0)eiH0t0ΨS(t0),

where we have used ΨI(t) = eiH0tΨS(t) and ΨI(t) = S(t, t0)ΨI(t0).

12.2 Adiabatic Approximation

Suppose that we multiply HI by e−β|t| where β ≥ 0, and treat the resulting
interaction as one that vanishes at t = ±∞. Then, the interaction is slowly
turned on from t = −∞ up to t = 0 and slowly turned off from t = 0 till
t = +∞. We can write H(t = −∞) = H0, the noninteracting Hamiltonian,
and

ΨI(t = −∞) = ΨH(t = −∞) = ΦH. (12.35)

Here, ΦH is the Heisenberg state vector of the noninteracting system. We know
that eigenstates of the interacting system in the Heisenberg, Schrödinger, and
interaction representation are related by

ΨH(t) = eiHtΨS(t) and ΨI(t) = eiH0tΨS(t). (12.36)

Therefore, at time t = 0,

ΨI(t = 0) = ΨH(t = 0) = ΨH. (12.37)

Henceforth, we will use ΨH to denote the state vector of the fully interacting
system in the Heisenberg representation. We can express ΨH as
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ΨH = S(0,−∞)ΦH, (12.38)

where S is the S matrix defined in (12.34). Because ΨI(t = 0) = ΨH we can
write

ΨI(t) = S(t, 0)ΨH = S(t,−∞)ΦH. (12.39)

In the last step, we have used S(t2,−∞) = S(t2, t1)S(t1,−∞). If we write
|ΨI(t)〉 = S(t, 0)|ΨH〉 and 〈ΨI(t)| = 〈ΨH|S−1(t, 0), then for some operator F

〈ΨI(t)|FI|ΨI(t)〉 = 〈ΨH|S−1(t, 0)FIS(t, 0)|ΨH〉 = 〈ΨH(t)|FH|ΨH(t)〉. (12.40)

But this must equal 〈ΨH|FH|ΨH〉. Therefore, we have

FH = S−1(t, 0)FIS(t, 0). (12.41)

Now, look at the expectation value in the exact Heisenberg interacting state
ΨH of the time ordered product of Heisenberg operators

〈ΨH|T{AH(t1)BH(t2) · · ·ZH(tn)}|ΨH〉.
If we assume that the ti’s have been arranged in the order t1 ≥ t2 ≥ t3 ≥
· · · ≥ tn, then we can write

〈ΨH|T{AH(t1)BH(t2)···ZH(tn)}|ΨH〉
〈ΨH|ΨH〉

=

〈ΦH|S(∞,0)S−1(t1,0)AI(t1)S(t1,0)S−1(t2,0)BI(t2)S(t2,0)S−1(t3,0)···S−1(tn,0)ZI(tn)S(tn,0)S(0,−∞)|ΦH〉
〈ΦH|S(∞,0)S(0,−∞)|ΦH〉

.

(12.42)

But from S(t1, 0) = S(t1, t2)S(t2, 0) we can see that

S(t1, 0)S−1(t2, 0) = S(t1, t2). (12.43)

Using this in (12.42) gives

〈ΨH|T{AH(t1)BH(t2)···ZH(tn)}|ΨH〉
〈ΨH|ΨH〉

= 〈ΦH|S(∞,t1)AI(t1)S(t1,t2)BI(t2)S(t2,t3)···ZI(tn)S(tn,−∞)|ΦH〉
〈ΦH|S(∞,−∞)|ΦH〉 .

(12.44)

We note that, in (12.44), the operators are in time-ordered form, i.e. tn ≥ −∞,
t1 ≥ t2, ∞ ≥ t1, so the operators

S(∞, t1)AI(t1)S(t1, t2)BI(t2)S(t2, t3) · · ·ZI(tn)S(tn,−∞)

are chronologically ordered, and hence we can rewrite (12.44) as

〈ΨH|T{AH(t1)BH(t2)···ZH(tn)}|ΨH〉
〈ΨH|ΨH〉

= 〈ΦH|T{S(∞,−∞)AI(t1)BI(t2)···ZI(tn)}|ΦH〉
〈ΦH|S(∞,−∞)|ΦH〉 . (12.45)
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12.3 Green’s Function

We define the Green’s function Gαβ(x, x′), where x = {r, t} and α, β are spin
indices, by

Gαβ(x, x′) = −i
〈ΨH|T{ψH

α (x)ψH†
β (x′)}|ΨH〉

〈ΨH|ΨH〉 . (12.46)

Here, ψH
α (x) is an operator (particle field operator) in the Heisenberg repre-

sentation.
By using Eq.(12.45) in Eq.(12.46), we obtain

Gαβ(x, x′) = −i
〈ΦH|T{S(∞,−∞)ψI

α(x)ψI†
β (x′)}|ΦH〉

〈ΦH|S(∞,−∞)|ΦH〉 . (12.47)

The operator ψI
α(x) is now in the interaction representation. If we write out

the expansion for S(∞,−∞) in the numerator and are careful to keep the
time ordering, we obtain

Gαβ(r, t, r′, t′) = − i
〈S(∞,−∞)〉

∑∞
n=0

(−i)n

n!

∫∞
−∞ dt1dt2 · · · dtn

×〈ΦH|T{ψI
α(r, t)ψI†

β (r′, t′)HI(t1) · · ·HI(tn)}|ΦH〉.
(12.48)

12.3.1 Averages of Time-Ordered Products of Operators

If F1(t) and F2(t′) are Fermion operators, then by T{F1(t)F2(t′)} we mean

T{F1(t)F2(t′)} = F1(t)F2(t′) if t > t′

= −F2(t′)F1(t) if t < t′. (12.49)

In other words, we need a minus sign for every permutation of one Fermion
operator past another. For Bosons no minus sign is needed.

In Gαβ we find the ground state average of products of time-ordered oper-
ators like T{ABC · · · }. Here, A, B, . . . are field operators (or products of field
operators). When the entire time ordered product is expressed as a product of
ψ†’s and ψ’s, it is useful to put the product in what is called normal form, in
which all annihilation operators appear to the right of all creation operators.
For example, the normal product of ψ†(1)ψ(2) can be written

N{ψ†(1)ψ(2)} = ψ†(1)ψ(2) while N{ψ(1)ψ†(2)} = −ψ†(2)ψ(1). (12.50)

The difference between a T product and an N product is called a pairing or
a contraction. For example, the difference in the T ordered product and the
N product of AB is given by

T(AB) − N(AB) = AcBc. (12.51)
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We note that the contraction of a pair of operators is the anticommutator we
omit when we formally reorder a T product of a pair of operators to get an N
product. The contractions are c-numbers for the operators we are interested
in.

12.3.2 Wick’s Theorem

The Wick’s theorem states that T product of operators ABC · · · can be
expressed as the sum of all possible N products with all possible pairings.
By this we mean that

T(ABCD · · ·XY Z)
= N(ABCD · · ·XY Z)

+ N(AcBcCD · · ·XY Z)+N(AcBCcD · · ·XY Z)+N(AcBCDc · · ·XY Z)
+ · · · + N(ABCD · · ·XY cZc)
+ N(AcBcCaDa · · ·XY Z) + · · · + N(ABCD · · ·W cXcY aZa)
...
+ N(AcBcCaDa · · ·Y bZb)+N(AcBaCcDa · · ·Y bZb)+ All other pairings.

(12.52)

In evaluating the ground state expectation value of (12.52) only the term in
which every operator is paired with some other operator is nonvanishing since
the normal products that contain unpaired operators must vanish (they anni-
hilate excitations that are not present in the ground state). In the second and
third lines on the right, in each term we bring two operators together by anti-
commuting, but neglecting the anticommutators, then replace the pair by its
contraction, and finally take the N product of the remaining n− 2 operators.
We do this with all possible pairings so we obtain n(n−1)

2 terms, each term
containing an N product of the n− 2 remaining operators. In the fourth line
on the right, we choose two pairs in all possible ways, replace them by their
contractions, and leave in each term an N products of the n − 4 remaining
operators. We repeat the same procedure, and in the last line on the right,
every operator is paired with some other operator in all possible ways leaving
no unpaired operators. Only the completely contracted terms (last line on
the right of (12.52)) give finite contributions in the ground-state expectation
value. That is, we have

〈T(ABCD · · ·XY Z)〉0
= 〈T(AB)〉〈T(CD)〉 · · · 〈T(Y Z)〉 ± 〈T(AC)〉〈T(BD)〉 · · · 〈T(Y Z)〉

± All other pairings.
(12.53)

Here, we have used AcBc = T(AB)−N(AB) and noted that 〈N(AB)〉 = 0, so
the ground state expectation value of 〈AcBc〉 = 〈T(AB)〉. Now let us return
to the expansion of the Green’s function. The first term in the sum over n in
(12.48) is
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G(0)(r, t, r′, t′) = − i
〈S(∞,−∞)〉 〈Φ

∗
H | T{ψI(r, t)ψ

†
I (r

′, t′)} | ΦH〉0, (12.54)

where, now, the operators ψ(r, t) and ψ†(r, t) are in the interaction repre-
sentation. G(0) is the noninteracting Green’s function (i.e., it is the Green
function when H ′ = 0). Here we shall take the interaction to be given, in
second-quantized form, by

H ′ =
1
2

∫
d3r1d3r2ψ

†(r1)ψ†(r2)U(r1 − r2)ψ(r2)ψ(r1). (12.55)

Now, introduce a function V (x1 −x2) ≡ U(r1 − r2)δ(t1 − t2) to write the first
correction due to interaction as (let x = r, t)

δG(1)(x, x′) = − i
2〈S(∞,−∞)〉

∫
d4x1d4x2V (x1 − x2)

×〈T{ψ(x)ψ(x′)ψ†(x1)ψ†(x2)ψ(x2)ψ(x1)}〉0.
(12.56)

The time-ordered product of the six operators (3 ψ’s and 3ψ†’s) can be written
out by using (12.53)

〈T{ψ(x)ψ†(x′)ψ†(x1)ψ†(x2)ψ(x2)ψ(x1)}〉0
= 〈T(ψ(x)ψ†(x1))〉〈T(ψ†(x2)ψ(x2))〉〈T(ψ(x1)ψ†(x′))〉

−〈T(ψ(x)ψ†(x1))〉〈T(ψ†(x2)ψ(x1))〉〈T(ψ(x2)ψ†(x′))〉± all other pairings.
(12.57)

But 〈T(ψ(xi)ψ†(xj))〉 is proportional to G(0)(xi, xj). Therefore, the first term
on the right hand side of (12.57) is proportional to

G(0)(x, x1)G(0)(x2, x2)G(0)(x1, x
′). (12.58)

It is simpler to draw Feynman diagram for each of the possible pairings. There
are six of them in δG(1)(x, x′) because there are six ways to pair one ψ† with
one ψ. The diagrams are shown in Fig. 12.2. Note that x1 and x2 are always
connected by an interaction line V (x1 − x2). An electron propagates in from
x and out to x′. At each x1 and x2 there must be one G(0) entering and one
leaving.

In a standard book on many body theory, such as Fetter–Walecka(1971),
Mahan(2000), and Abrikosov–Gorkov–Dzyaloshinskii(1963), one can find

1. Rules for constructing the Feynman diagrams for the nth order correction
and

2. Rules for writing down the analytic expression for δG(n) associated with
each diagram.

Let us give one simple example of constructing diagrams. For the nth order cor-
rections, there are n interaction lines and (2n+1) directed Green’s functions,
G(0)’s. The rules for the nth-order corrections are as follows:
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Fig. 12.2. Feynman diagrams in the first-order perturbation calculation

1. Form all connected, topologically nonequivalent diagrams containing 2n ver-
tices and two external points. Two solid lines and one wavy line meet at
each vertex.

2. With each solid line associate a Green’s function G(0)(x, x′) where x and
x′ are the coordinates of the initial and final points of the line.

3. With each wavy line associate V (x − x′) = U(r − r′)δ(t − t′) for a wavy
line connecting x and x′.

4. Integrate over the internal variables d4xi = d3ri dti for all vertex coordi-
nates (and sum over all internal spin variables if spin is included).

5. Multiply by in(−)F , where F is the number of closed Fermion loops.
6. Understand equal time G(0)’s to mean, as δ → 0+,

G(0)(r1t, r2t) → G(0)(r1t, r2t+ δ).

The allowed diagrams contributing to δG(2)(x, x′) are shown in Fig. 12.3.
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Fig. 12.3. Feynman diagrams in the second order perturbation calculation

12.3.3 Linked Clusters

In writing down the rules, we have only considered linked (or connected) dia-
grams, but diagrams (e) and (f) in Fig. 12.2 are unlinked diagrams. By this we
mean that they fall into two separate pieces, one of which contains the coordi-
nates x and x′ of G(x, x′). It can be shown (see a standard many body text like
Abrikosov–Gorkov–Dzyaloshinskii (1963).) that when the contributions from
unlinked diagrams are included, they simply multiply the contribution from
linked diagrams by a factor 〈S(∞,−∞)〉. Since this factor appears in denom-
inator of Gαβ(x, x′) in (12.48), it simply cancels out. Furthermore, diagrams
(a) and (c) in Fig. 12.2 are identical except for interchange of the dummy
variables x1 and x2, and so too are (b) and (d). The rules for constructing
diagrams for δG(n)(x, x′) take this into account correctly and one can find the
proof in standard many body texts mentioned above.

12.4 Dyson’s Equations

If we look at the corrections to G(0)(x, x′) we notice that for our linked cluster
diagrams the corrections always begin with a G(0)(x, x1), and this is followed
by something called a self energy part. Look, for example, at the figures labeled
(a) or (b) in Fig. 12.2 or (j) in Fig. 12.3. The final part of the diagram has
another G(0)(xn, x′). Suppose we represent the general self energy by Σ. Then
we can write

G = G(0) +G(0)ΣG. (12.59)
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Fig. 12.4. Diagrammatic expressions of (a) Dyson equation G = G(0) + G(0)ΣG,
(b) self energy Σ0, (c) Dyson equation W = V + V ΠW , (d) polarization part
Π0 = G(0)G(0)

This equation says that G is the sum of G(0) and G(0) followed by Σ which
in turn can be followed by the exact G we are trying to determine. We can
express (12.59) in diagrammatic terms as is shown in Fig. 12.4a. The simplest
self-energy part that is of importance in the problem of electron interactions
in a degenerate electron gas is Σ0, where

Σ0 = G(0)W. (12.60)

In diagrammatic terms this is expressed as shown in Fig. 12.4b, where the dou-
ble wavy line is a screened interaction and we can write a Dyson equation for
it by

W = V + VΠW. (12.61)

The Π is called a polarization part ; the simplest polarization part is

Π0 = G(0)G(0), (12.62)

the diagrammatic expression of which is given in Fig. 12.4d. Of course, in
(12.60) and (12.62) we could replace G(0) by the exact G to have a result
that includes many terms of higher order. Approximating the self energy by
the product of a Green’s function G and an effective interaction W is often
referred to as the GW approximation to the self-energy. The simplest GW
approximation is the random phase approximation (RPA). In the RPA, the
G is replaced by G(0) and W is the solution to (12.61) with (12.62) used for
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the polarization part. This RPA approximation for W is exactly equivalent to
V (q)
ε(q,ω) , where ε(q, ω) is the Lindhard dielectric function. The key role of the
electron self-energy in studying electron–electron interactions in a degenerate
electron gas was initially emphasized by Quinn and Ferrell.1 In their paper,
the simplest GW approximation to Σ was used. G(0) was used for the Green’s
function and V (q)

ε(q,ω) , the RPA screened interaction (equivalent to Lindhard
screened interaction) was used for W .

12.5 Green’s Function Approach
to the Electron–Phonon Interaction

In this section we apply the Green’s function formalism to the electron–phonon
interaction. The Hamiltonian H is divided into three parts:

H = He +HN +HI, (12.63)

where

He =
∑

i

[
p2
i

2m
+
∑

l

U(ri − R0
l )

]

, (12.64)

HN =
∑

l

[
P 2
l

2M
+
∑

l>m

V (Rl − Rm)

]

, (12.65)

and

HI =
∑

i>j

e2

rij
−
∑

i,l

ul · ∇U(ri − R0
l ). (12.66)

Here, U(ri −Rl) and V (Rl −Rm) represent the interaction between an elec-
tron at ri and an ion at Rl and the interaction potential of the ions with
each other, respectively. Let us write Rl = R0

l + ul for an ion where R0
l is

the equilibrium position of the ion and ul is its atomic displacement. The
electronic Hamiltonian He is simply a sum of one-electron operators, whose
eigenfunctions and eigenvalues are the object of considerable investigation for
energy band theorists. To keep the calculations simple, we shall assume that
the effect of periodic potential can be approximated to sufficient accuracy for
our purpose by the introduction of an effective mass. The nuclear or ionic
Hamiltonian HN has already been analyzed in normal modes in earlier chap-
ters. It should be pointed out that the normal modes of (12.65) are not the
usual sound waves. The reason for this is that V (Rl − Rm) is a “bare” ion–
ion interaction, for a pair of ions sitting in a uniform background of negative
charge, not the true interaction which is screened by the conduction electrons.
We can express (12.64)–(12.66) in the usual second quantized notation as

1 J.J. Quinn, R.A. Ferrell, Phys. Rev 112, 812 (1958).
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He =
∑

k

h̄2k2

2m∗ c
†
kck, (12.67)

HN =
∑

α

h̄ωα

(
b†αbα +

1
2

)
, (12.68)

and

HI =
∑

k,k′,q

4πe2

Ωq2
c†k+qc

†
k′−qck′ck +

∑

k,α,G

γ(α,G)(bα − b†−α)c†k+q+Gck. (12.69)

The ck and bα are the destruction operators for an electron in state k and a
phonon in state α = (q, μ), respectively.2 The creation and annihilation oper-
ators satisfy the usual commutation (phonon operators) or anticommutation
(electron operators) rules. The coupling constant 4πe2

Ωq2 is simply the Fourier
transform of the Coulomb interation, and γ(α,G) is given by

γ(α,G) = −i(q + G)εα

(
h̄N

2Mωα

)1/2

U(q + G), (12.70)

where U(q+ G) is the Fourier transform of U(r−R). For simplicity we shall
limit ourselves to normal processes (i.e., G = 0), and take U(r − R) as the
Coulomb interaction − Ze2

|r−R| between an electron of charge −e and an ion of
charge Ze. With these simplifications γ(α,G) reduces to

γ(q) = i
4πZe2

q

(
h̄N

2Mωq

)1/2

(12.71)

for the interaction of electrons with a longitudinal wave, and zero for interac-
tion with a transverse wave. Furthermore, when we make these assumptions,
the longitudinal modes of the “bare” ions all have the frequency

ωq = Ωp, (12.72)

where Ωp =
(

4πZ2e2N
M

)1/2

is the plasma frequency of the ions.
We want to treat HI as a perturbation. The brute-force application of

perturbation theory is plagued by divergence difficulties. The divergence arise
from the long range of the Coulomb interaction, and are reflected in the behav-
ior of the coupling constants as q tends to zero. We know that in the solid, the
Coulomb field of a given electron is screened because of the response of all the
other electrons in the medium. This screening can be taken into account by

2 We should really be careful to include the spin state in describing the electrons.
We will omit the spin index for simplicity of notation, but the state k should
actually be understood to represent a given wave vector and spin: k ≡ (k, σ).
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pertubation theory, but it requires summing certain classes of terms to infinite
order. This is not very difficult to do if one makes use of Green’s functions
and Feynman diagrams. Before we discuss these, we would like to give a very
quanlitative sketch of why a straightforward perturbation approach must be
summed to infinite order.

Suppose we introduce a static positive point charge in a degenerate electron
gas. In vacuum the point charge would set up a potential Φ0. In the electron
gas the point charge attracts electrons, and the electron cloud around it con-
tributes to the potential set up in the medium. Suppose that we can define
a polarizability factor α such that a potential Φ acting on the electron gas
will distort the electron distribution in such a way that the potential set up
by the distortion is αΦ. We can then apply a perturbation approach to the
potential Φ0. Φ0 distorts the electron gas: the distortion sets up a potential
Φ1 = αΦ0. But Φ1 further distorts the medium and this further distortion sets
up a potential Φ2 = αΦ1, etc. such that Φn+1 = αΦn. The total potential Φ
set up by the point charge in the electron gas is

Φ = Φ0 + Φ1 + Φ2 + · · · = Φ0(1 + α+ α2 + · · · )
= Φ0(1 − α)−1. (12.73)

We see that we must sum the straightforward perturbation theory to infinite
order. It is usually much simpler to apply “self-consistent” perturbation the-
ory. In this approach one simply says that Φ0 will ultimately set up some
self-consistent field Φ. Now, the field acting on the electron gas and polariz-
ing it is not Φ0 but the full self-consistent field Φ. Therefore, the polarization
contribution to the full potential should be αΦ: this gives

Φ = Φ0 + αΦ, (12.74)

which is the same result obtained by summing the infinite set of perturbation
contributions in (12.73).

We want to use some simple Feynman propagation functions or Green’s
functions, so we will give a very quick definition of what we must know to use
them. If we have the Schrödinger equation

ih̄
∂Ψ

∂t
= HΨ, (12.75)

and we know Ψ(t1), we can determine Ψ at a later time from the equation

Ψ(x2, t2) =
∫
d3x1G0(x2, t2;x1, t1)Ψ(x1, t1). (12.76)

By substitution, one can show that G0 satisfies the differential equation
[
ih̄

∂

∂t2
−H(x2)

]
G0(2, 1) = ih̄δ(t2 − t1)δ(x2 − x1), (12.77)
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where (2, 1) denotes (x2, t2;x1, t1). One can easily show that G0(2, 1) can be
expressed in terms of the stationary states of H . That is, if

Hun = Enun, (12.78)

then G0(2, 1) can be shown to be

G0(2, 1) =
∑

n

un(x2)u∗n(x1)e−iEnt21/h̄, if t21 > 0,

= 0 otherwise . (12.79)

If we are considering a system of many Fermions, we can take into account
the exclusion principle in a very simple way. We simply subtract from (12.79)
the summation over all states of energy less than the Fermi energy EF.

G0(2, 1) =
∑

En>EF

un(x2)u∗n(x1)e−iEnt21/h̄, if t21 > 0,

= −
∑

En<EF

un(x2)u∗n(x1)e−iEnt21/h̄, if t21 < 0. (12.80)

We always represent a Fermion propagator by a directed solid line. A negative
(relative to the last filled state EF) energy Fermion propagates backward in
time. This corresponds to the propagation of a hole in a normally filled state.
For free electrons the functions un(x) are plane waves. We are often interested
in G0(q, ω), the Fourier transform of G0(2, 1):

G0(2, 1) =
∫

d3qdω
(2π)4

G0(q, ω)eiq·x21−iωt21 . (12.81)

The single particle propagator G0(q, ω) for a system of free electrons is

G0(q, ω) =
i

ω − E(q)(1 − iδ)
, (12.82)

where E(q) = h̄2

2m (q2−k2
F) is the energy measured relative to the Fermi energy

and takes on both positive and negative values. kF is the Fermi wave number,
and δ is a positive infinitesimal.

In the language of second quantization G0(2, 1) can also be expressed as
the ground state expectation value of the time ordered product of two electron
field operators

G0(2, 1) = 〈GS | T {Ψ(2)Ψ †(1)} | GS〉. (12.83)

In this expression, Ψ(2) = Ψ(x2, t2) is the electron field operator and Ψ †(2)
is its conjugate. These operators satisfy the usual Fermion anticommutation
relations. T is the chronological operator. It should be pointed out that people
often define G0(2, 1) with an additional factor of i on the right hand side of
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(12.83). This arbitrariness in defining the propagation functions is compen-
sated for by slight differences in the rules for calculating the amplitudes of
the Feynman diagrams which appear in perturbation theory.

We can also define a propagation function for the instantaneous Coulomb
interaction e2

r21
δ(t21) between electrons at two points in space time. We shall

use i times the Fourier transform of e2

r21
δ(t21) as the bare Coulomb propagator

V (q, ω)

V (q, ω) =
4πe2i
Ωq2

. (12.84)

If we define the phonon field operator Φ(x) by the equation

Φ(x) =
∑

q

γ(q)eiq·x(b†q − b−q) (12.85)

then we can define the space time representation for the phonon propagator
in the usual way

P0(2, 1) = i〈GS | T {Φ(x2, t2)Φ†(x1, t1)} | GS〉 (12.86)

where Φ(x2, t2) = e−iHt2Φ(x2)eiHt2 . The Fourier transform of (12.86) is
P0(q, ω), the wave vector frequency space representation of P0. For the phonon
system of (12.71) and (12.72), P0(q, ω) is given by

P0(q, ω) =
2iΩpγ

2(q)
ω2 −Ω2

p

. (12.87)

It is quite convenient to use Feynman diagrams to keep track of the various
terms in perturbation theory. The rules for constructing diagrams are quite
simple. Each electron in an excited state is represented by a solid line directed
upward. Each hole in a normally filled state is represented by a solid line
directed downward. The instantaneous Coulomb interaction is represented by
a horizontal dotted line connecting the two particles undergoing a virtual
scattering, and propagation of a phonon is represented by a wavy line.

Consider the scattering of two electrons. In vacuum they can scatter by the
exchange of one virtual photon (Coulomb line) in only one way, which is shown
in Fig. 12.5. Now consider the Coulomb interaction in the medium. The set of

Fig. 12.5. Diagrammatic expression of the exchange of virtual photon
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(a) (b) (c)

Fig. 12.6. Diagrammatic expressions of representative polarization parts in pair
approximation

diagrams, of which Fig. 12.6a and b are representative, are additional processes
which can not occur in the absence of the polarizable medium. In Fig. 12.6c,
the circle represents any possible part of a diagram which is connected to
the remainder by two Coulomb interaction lines only. All such parts of a gen-
eral diagram are called polarizable parts , because they obviously represent the
response or screening of the polarizable medium. The effective Coulomb inter-
action between two particles should be the sum of all the possible polarization
parts (the bare intraction can be thought of as the zeroth order polarization
part). Actually we can not sum all the possible polarization parts, but we can
sum the class of which Fig. 12.6a and b are representative, that is, the chain
of bubbles. The approximation of replacing the effective interaction by the
sum of all bubble graph is called the pair approximation. Before looking at
the sum we will write down the rules for calculating the amplitude associated
with a given Feynman diagram which appears in perturbation theory. The
amplitude for a given diagram contains a product of

(i) a propagation function G0(k, ω) for each internal electron–hole line of
wave vector k and frequency ω.

(ii) a propagation function P0(k, ω) for each phonon line of wave vector q
and frequency ω.

(iii) a propagation function V (q, ω) for each Coulomb line of wave vector q.
(iv) a factor (−1) for each closed loop.
(v) (−i/h̄)n for the nth-order term in perturbation theory.
(vi) delta functions conserving energy, momentum, and spin at each vertex.
(vii) Finally, we must integrate over the wave vectors and frequencies of all

internal lines.

The set of diagrams we would like to sum in order to obtain the effec-
tive Coulomb propagator W (q, ω) can easily be seen to be the solution of the
equation given pictorially by Fig. 12.7. This equation can be written

W (q, ω) = V (q, ω) − V (q, ω)Q0(q, ω)W (q, ω), (12.88)



380 12 Many Body Interactions: Green’s Function Method

= +
Fig. 12.7. Diagrammatic expression of Dyson equation for the effective Coulomb
propagator W = V + V ΠW

where

Q0(q, ω) = 2(−1)
∫

d3k1dω1d3k2dω2

(2π)8
G0(k1, ω1)G0(k2, ω2)δ(ω1 − ω2 + ω)

×δ(k1 − k2 + q) (12.89)

is the propagation function for the electron–hole pair. The factor of two is
introduced to account for the two possible spin orientations. Using the electron
propagation functions defined by (12.82) and integrating gives

Q0(q, ω) =
−2i

(2π)3

∫

k<kF

d3k

[
1

E(k + q)−E(k) + ω
+

1
E(k + q)−E(k) − ω

]
.

(12.90)
The solution of (12.88) is simply

W =
V

1 + V Q0
(12.91)

and using (12.90) one can easily see that 1 +V Q0 is just the Lindhard dielec-
tric function ε(q, ω). This dielectric function is discussed at some length in
the previous chapter, and the reader is referred to Lindhard’s paper3 for a
complete treatment. For our purposes we must note two things: first ε(q, ω)
is complex, the imaginary part being proportional to the number of electrons
which can be excited to an unoccupied state by addition of a momentum
h̄q whose energy change is equal to h̄ω. The second point is that for zero
frequency ε(q, 0) is given by

ε(q) = 1 + F

(
q

2kF

)
k2
s

q2
, (12.92)

where ks is the Fermi–Thomas screening parameter and kF is the Fermi wave
number. The function F

(
q

2kF

)
is the function sketched in Fig. 11.12. F (x) is

equal to unity for x equal to zero, approaches zero as x approaches infinity,
and has logarithmic singularity in slope at x = 1.

Now, let us return to our “model solid” which contains longitudinal
phonons as well as electrons. Two electrons can scatter via the virtual
exchange of phonons. In fact, anywhere a Coulomb interaction line has
3 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, 8 (1954); ibid.,

27, 15 (1953).
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appeared previously, a phonon line may equally well appear. If we callD0(q, ω)
the sum of P0(q, ω) and V (q, ω) we can just replace V and W by D0 and D
in Eq.(12.88). D(q, ω) then represents the propagation function for the total
interaction, i.e., the sum of the Coulomb interaction and the interaction due
to virtual exchange of phonons. It is apparent that

D(q, ω) =
D0(q, ω)

1 +D0(q, ω)Q0(q, ω)
. (12.93)

By substituting into (12.92) the expressions for the propagation functions and
using the fact that 1 + V Q0 = ε(q, ω), one can obtain

D(q, ω) =
4πe2i

q2
[
ε(q, ω) −Ω2

p/ω
2
] . (12.94)

The propagation function D as a pole at

ω2 =
Ω2

p

ε(q, ω)
. (12.95)

The solutions of this equation are our “renormalized” phonons. From the long
wavelength, zero frequency dielectric constant we get the approximate solution

ωq =
Ωp

ks
q. (12.96)

For most metals, Ωp
ks

is within about 15–20% of the velocity of longitudinal
sound waves. If we look at the derivative of ω2

q with respect to q we see a
logarithmic singularity at q = 2kF. This is responsible for the Kohn effect,
which has been observed by neutron scattering. If we take account of the
imaginary as well as the real part of the dielectric constant, the solution of
(12.95) has both real and imaginary part. If we write ω = ω1 + iω2, then ω2

turns out to be

ω2 ≈ π

4
k2
s

k2
s + q2

cs
vF
ω1, (12.97)

where cs is the velocity of sound and vF the Fermi velocity. The coefficient
of attenuation of the sound wave (due to excitation of conduction electrons)
is simply ω2

cs
. This result agrees with the more standard calculations of the

attenuation coefficient.
Finally, if we wish to define the effective interaction between electrons due

to virtual exchange of phonons, or the effective phonon propagator , we can
simply subtract from D(q, ω) that part which contains no phonons, namely
W (q, ω). If we call the resultant effective phonon propagator P (q, ω), we
obtain

P (q, ω) =
2iωq | γeff

q |2
ω2 − ω2

q

, (12.98)
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where ωq is given by (12.96) and

| γeff
q |= 4πZe2

qε(q, ωq)

(
N

2Mωq

)1/2

. (12.99)

Replacing ε(q, ωq) by its long wavelength, zero frequency limit
[
1 + k2

s
q2

]
,

reduces (12.99) to the result of Bardeen and Pines4 for the effective electron–
electron interaction.

12.6 Electron Self Energy

The Dyson equation for the Green’s function can be written

G(k, ω) = G(0)(k, ω) +G(0)(k, ω)Σ(k, ω)G(k, ω). (12.100)

Dividing by GG(0) gives

Σ(k, ω) = [G(0)(k, ω)]−1 − [G(k, ω)]−1. (12.101)

The energy of a quasiparticle can be written

Ep = εp + Σ(p, ω) |ω=Ep . (12.102)

Ep and εp, the kinetic energy, are usually measured relative to EF, the Fermi
energy. Knowing how Σ(p, ω) depends on p, ω, and rs allows one to calculate
almost all the properties of an electron gas that are of interest. Some results
of interest are worth mentioning.

(1) Σ(p,Ep) has both a real and an imaginary part.

Σ(p,Ep) = Σ1(p,Ep) + iΣ2(p,Ep). (12.103)

The imaginary part is related to the lifetime of the quasiparticle excitation.

(2) The spectral function A(p, ω) is defined by

A(p, ω) =
−2Σ2(p, ω)

[ω − εp − Σ1(p, ω)]2 + [Σ2(p, ω)]2
. (12.104)

For noninteracting electrons A(p, ω) has a δ function singularity at ω = εp,
the energy of the excitation. The δ function is broadened by Σ2(p, ω). If
A(p, ω) has a pole in a region where Σ2(p, ω) is zero, the strength of the
pole is decreased by a renormalization factor Z(p).

A(p, ω) = 2πZ(p)δ (ω − εp − Σ1(p, ω)) (12.105)

4 John Bardeen, David Pines, Phys. Rev. 99, 1140 (1955).
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and

Z(p) =

[
1

1 − ∂
∂ωΣ1(p, ω)

]

ω=Ep

. (12.106)

(3) The quasiparticle excitations at the Fermi surface have an effective mass
m∗ given by

m

m∗ =

[
1 + ∂Σ1(k,ω)

∂εk

1 − ∂Σ1(k,ω)
∂ω

]

k=kF
ω=0

. (12.107)

(4) Properties like the spin susceptibility, the specific heat, the compressibil-
ity, and the ground state energy can be evaluated from a knowledge of
Σ(k, ω). But, we do not have time to go through these in any detail.

(5) The self-energy approach leads very naturally to an understanding of the
Landau theory of a Fermi liquid. We will describe a very brief and intuitive
explanation of the theory.

12.7 Quasiparticle Interactions and Fermi Liquid Theory

Instead of describing the interacting ground state and excited states of an
electron gas, we can think of simply describing how many quasiparticles are
present in some excited state. Let us start by noting that if we begin with a
filled Fermi sphere of noninteracting electrons (i.e., the Sommerfeld model)
and adiabatically turn on the electron–electron interaction, we will generate at
t = 0 the exact interacting ground state. Now consider the noninteracting state
described by a filled Fermi sphere plus one electron of momentum p outside
the Fermi sphere (or one hole of momentum p inside the Fermi sphere). When
interactions are adiabatically turned on, this is a single quasiparticle state.
The energy of this quasielectron (or quasihole) is written by

Ep = εp + Σ(p, Ep). (12.108)

If Ep is much larger than Σ2(p, Ep), then the quasiparticles have long life-
times. It is much simpler to describe a state by saying how many quasielectrons
and quasiholes are present. Then, the energy of the state can be written as

E = E0 +
∑

pσ

δnpσEpσ +
1
2

∑

p, p′
σ, σ′

fσσ′(p,p′)δnnσδnp′σ′ . (12.109)

The first term on the right is the ground state energy, the second is the quasi-
particle energy Epσ multiplied by the quasiparticle distribution function, and
the third represents the interactions of the quasiparticles with one another.
Σ(p, Ep) represents the interaction of a quasiparticle of momentum p with
the ground state of the interacting electron gas. But if the electron gas is
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Fig. 12.8. Diagrammatic representation of quasiparticle scattering of (a) zero
momentum transfer and (b) of finite momentum transfer

not in its ground state, there are quasielectrons and quasiholes present that
change the energy of the quasiparticle of momentum p. We can get a simple
picture of the Fermi liquid interaction between quasiparticles by consider-
ing the Feynman diagrams that describe the scattering processes that take
a pair of quasiparticles in states (p, σ) and (p′, σ′) from this initial state to
an equivalent final state. These processes are represented in diagrammatic
terms in Fig. 12.8a and b. Here, the interaction W (denoted by wavy lines)
will be taken as the RPA screened interaction. In the first term (a) W (q, ω)
corresponds to zero momentum transfer since p → p and p′ → p′. This term
is exactly zero since the Coulomb interaction is cancelled by the interaction
with the uniform background of positive charge at q = 0. The second term
(b) gives the same final state as the initial state only if σ = σ′. Then W (q, ω)
is W (p−p′, 0) since the momentum transfer is p−p′ and there is no change
in energy.

Of course, higher order processes in the effective interaction could be
important, but we will ignore them to get the simplified picture. We take
Landau’s fσσ′(p,p′) to be equal to

fσσ′(p,p′) =

{
4πe2

(p−p′)2ε(p−p′,0) if σ = σ′

0 if σ �= σ′.
(12.110)

With this simple approximation a rather good estimate of m∗ (and hence of
the electronic specific heat) can be obtained. Results for the spin susceptibility
are not quite as good, and the estimate of the interaction contribution to the
compressibility is poor. One important effect that is omitted is the effect
of spin fluctuations (in addition to charge density fluctuations) and another
is the local field corrections to the RPA. In order to get a more thorough
understanding of these ideas, one needs to read advanced texts on many body
theory.
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Problems

12.1. Show explicitly that
∫ t
t0

dt1
∫ t1
t0

dt2
∫ t3
t0

dt3 HI(t1)HI(t2)HI(t3)

=
1
3!
∫ t
t0

dt1
∫ t
t0

dt2
∫ t
t0

dt3T{HI(t1)HI(t2)HI(t3)}.

12.2. The complete first-order contributions to G(x, x′) are shown in the
figure.

(a) Write each term δG(1)(x, y) out in terms of noninteraction two particle
Green’s function G(0)(x, y) and the interaction V (x1 − x2) ≡ U(r1−
r2)δ(t1 − t2). Here, x = (r, t) and one may omit the spin to simplify
the notation.

(b) Let us introduce the Fourier transform Gαβ(k) of the Gαβ(x, y) as
follows:

Gαβ(x, y) =
1

(2π)4

∫
d4k eik·(x−y)Gαβ(k)

G
(0)
αβ(x, y) =

1
(2π)4

∫
d4k eik·(x−y)G(0)

αβ(k),

where k = (k, ω), d4k ≡ d3k dω, and k · x ≡ k · x−ωt. In addition, for
the interaction given by V (x1−x2) ≡ U(r1−r2)δ(t1− t2) we can write

V(x, x
′)αα′,ββ′ =

1
(2π)4

∫
d4k eik·(x−x′)V (k)αα′,ββ′

=
1

(2π)3
∫

d3x eik·(x−x′)U(k)αα′,ββ′δ(t− t′),

where V (k)αα′,ββ′ = U(k)αα′,ββ′ = 1
(2π)3

∫
d3x e−ik·xU(k)αα′,ββ′ is the

spatial Fourier transform of the interparticle potential. Express each
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term obtained in part (a) in terms of G(0)
αβ(k) and V (k) in the momen-

tum space.

12.3. By definition the noninteracting fermion Green’s function is given by

G
(0)
αβ(xt,x′t′) = −i〈Φ|T{ψIα(xt)ψ†

Iβ(x
′t′)}Φ〉,

the noninteracting ground state vector is taken to be normalized. Show that

G
(0)
αβ(k, ω) = δαβ

[
θ(k − kF)

ω − h̄−1εk + iη
+

θ(kF − k)
ω − h̄−1εk − iη

]
.

12.4. Let us define the phonon field operator Φ(x) by

Φ(x) =
∑

q

γ(q)eiq·x(b†q − b−q),

where γ(q) = i 4πZe
2

q

(
h̄N

2Mωq

)1/2

. Then we can define the phonon propaga-

tor by P0(2, 1) = i〈GS | T {Φ(x2, t2)Φ†(x1, t1)} | GS〉 where Φ(x2, t2) =
e−iHt2Φ(x2)eiHt2 .

(a) Take the Fourier transform of P0(2, 1) to obtain P0(q, ω), the wavevec-
tor frequency space representation of P0(2, 1).

(b) Show that P0(q, ω) can be written as

P0(q, ω) =
2iΩpγ

2(q)
ω2 −Ω2

p

,

where Ωp =
(

4πZ2e2N
M

)1/2

is the plasma frequency of the ions.

12.5. Let us consider a Dyson equation given by

W (q, ω) = V (q, ω) − V (q, ω)Q0(q, ω)W (q, ω),

where

Q0(q, ω) = 2(−1)
∫ d3k1dω1d3k2dω2

(2π)8
G0(k1, ω1)G0(k2, ω2)δ(ω1 − ω2 + ω)δ(k1−k2+q)

is the propagation function for the electron–hole pair.

(a) Show that Q0(q, ω) can be written as

Q0(q, ω) =
−2i

(2π)3
∫
k<kF

d3k
[

1
E(k + q) − E(k) + ω

+
1

E(k + q) − E(k) − ω

]
.

Note that the single particle propagator G0(q, ω) is given by

G0(q, ω) =
i

ω − E(q)(1 − iδ)
.
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(b) Show that the solution of the Dyson equation given above is simply
W = V

1+V Q0
.

(c) Show that 1 + V Q0 is the same as the Lindhard dielectric function
ε(q, ω).



388 12 Many Body Interactions: Green’s Function Method

Summary

In this chapter, we study Green’s function method – a formal theory of many
body interactions. Green’s function is defined in terms of a matrix element
of time ordered Heisenberg operators in the exact interacting ground state.
We then introduce the interaction representation of the state functions of
many particle states and write the Green’s function in terms of time ordered
products of interaction operators. Wick’s theorem is introduced to write the
exact Green’s function as a perturbation expansion involving only pairings of
field operators in the interaction representation. Dyson equations for Green’s
function and the screened interaction are illustrated and Fermi liquid picture
of quasiparticle interactions is also discussed.

The Hamiltonian H of a many particle system can be divided into two
parts H0 and H ′, where H ′ represents the interparticle interactions given, in
second quantized form, by

H ′ =
1
2

∫
d3r1d3r2ψ

†(r1)ψ†(r2)U(r1 − r2)ψ(r2)ψ(r1).

Particle density at a position r0 and the total particle number N are written,
respectively, as n(r0) = ψ†(r0)ψ(r0); N =

∫
d3rψ†(r)ψ(r).

The Schrödinger equation of the many particle wave function Ψ(1, 2, . . . , N)
is (h̄ ≡ 1) ih̄ ∂

∂tΨ = HΨ, where Ψ(t) = e−iHtΨH. Here, ΨH is time independent.
The state vector ΨI(t) and operator FI(t) in the interaction representation are
written as

ΨI(t) = eiH0tΨS(t); FI(t) = eiH0tFSe−iH0t.

The equation of motion for FI(t) is ∂FI
∂t = i [H0, FI(t)] and the solution for

FI(t) can be expressed as ΨI(t) = S(t, t0)ΨI(t0), where S(t, t0) is the S matrix
given by

S(t, t0) = T
{
e−i

∫ t
t0
HI(t

′)dt′
}
.

The eigenstates of the interacting system in the Heisenberg, Schrödinger, and
interaction representation are related by

ΨH(t) = eiHtΨS(t) and ΨI(t) = eiH0tΨS(t).

At time t=0, ΨI(t = 0) = ΨH(t = 0) = ΨH. ΨH is the state vector of the fully
interacting system in the Heisenberg representation: ΨH = S(0,−∞)ΦH.

The Green’s function Gαβ(x, x′) is defined, in terms of ψH
α and ψH†

β , by

Gαβ(x, x′) = −i
〈ΨH|T{ψH

α (x)ψH†
β (x′)}|ΨH〉

〈ΨH|ΨH〉 ,

where x = {r, t} and α, β are spin indices.
In normal product of operators, all annihilation operators appear to the

right of all creation operators: for example,
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N{ψ†(1)ψ(2)} = ψ†(1)ψ(2) while N{ψ(1)ψ†(2)} = −ψ†(2)ψ(1).

Pairing or a contraction is the difference between a T product and an
N product: T(AB) − N(AB) = AcBc. The Wick’s theorem states that T
product of operators ABC · · · can be expressed as the sum of all possible N
products with all possible pairings.

Dyson’s equations for the interacting Green’s function G and the screened
interaction W are written as G = G(0) + G(0)ΣG; W = V + VΠW. Here, Σ
and Π denote the self energy and polarization part, and the simplest of which
are given, respectively, by Σ0 = G(0)W ; Π0 = G(0)G(0). In the RPA, the G
is replaced by G(0) and W is exactly equivalent to V (q)

ε(q,ω) , where ε(q, ω) is the
Lindhard dielectric function.

The Hamiltonian H of a system with the electron–phonon interaction is
divided into three parts: H = He +HN +HI, where

He =
∑

k

h̄2k2

2m∗ c
†
kck, HN =

∑

α

h̄ωα(b†αbα +
1
2
),

and HI =
∑
k,k′,q

4πe2

Ωq2 c
†
k+qc

†
k′−qck′ck +

∑
k,α,G γ(α,G)(bα − b†−α)c†k+q+Gck.

Once we know Ψ(t1) of the Schrödinger equation, ih̄∂Ψ∂t = HΨ, we have

Ψ(x2, t2) =
∫

d3x1G0(x2, t2;x1, t1)Ψ(x1, t1).

For free electrons, G0(q, ω) is the Fourier transform of G0(2, 1):

G0(q, ω) =
i

ω − E(q)(1 − iδ)
.

For a “model solid” containing longitudinal phonons as well as electrons, two
electrons can scatter via the virtual exchange of phonons and the total inter-
action, i.e. the sum of the Coulomb interaction and the interaction due to
virtual exchange of phonons, is given, in terms of bare interaction D0 and
polarization Q0, by D(q, ω) = D0(q,ω)

1+D0(q,ω)Q0(q,ω) .

The Dyson equation for the Green’s function can be written

G(k, ω) = G(0)(k, ω) +G(0)(k, ω)Σ(k, ω)G(k, ω).

The electron self energy is Σ(k, ω) = [G(0)(k, ω)]−1 − [G(k, ω)]−1 and the
energy of a quasiparticle is written as Ep = εp + Σ(p, ω) |ω=Ep . Σ(p, Ep)
represents the interaction of a quasiparticle of momentum p with the ground
state of the interacting electron gas. The energy of the state is written as

E = E0 +
∑

pσ

δnpσEpσ +
1
2

∑

p, p′
σ, σ′

fσσ′(p,p′)δnnσδnp′σ′ .

The first term on the right is the ground-state energy, the second is the quasi-
particle energy Epσ multiplied by the quasiparticle distribution function, and
the third represents the interactions of the quasiparticles with one another.
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Semiclassical Theory of Electrons

13.1 Bloch Electrons in a dc Magnetic Field

In the presence of an electric field E and a dc magnetic field B, the equation
of motion of a Bloch electron in k-space takes the form

h̄k̇ = −eE− e

c
v × B. (13.1)

Here, v = 1
h̄∇kε(k) is the velocity of the Bloch electron whose energy ε(k)

is an arbitrary function of wave vector k. In deriving (13.1), we noted that
no interband transitions were allowed, and that when k became equal to a
value on the boundary of the Brillouin zone this value of k was identical to
the value on the opposite side of the Brillouin zone separated from it by a
reciprocal lattice vector K.

Equation (13.1) can be obtained from an effective Hamiltonian

H = ε(
p
h̄

+
e

h̄c
A) − eφ, (13.2)

where ε(k) is the energy as a function of k in the absence of the magnetic
field and B = ∇× A. Hamilton’s equations give, since p = h̄k − e

cA,

vx =
∂H
∂px

=
1
h̄

∂ε

∂kx
, (13.3)

− ṗx =
∂H
∂x

= ∇kε · ∂
∂x

( e

h̄c
A
)
− e

∂φ

∂x
=
e

c

(
v · ∂A

∂x

)
− e

∂φ

∂x
. (13.4)

But we also know that ṗx = h̄k̇x − e
c Ȧx, or

ṗx = h̄k̇x − e

c

∂Ax
∂t

− e

c

(
vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

)
. (13.5)
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Equating the ṗx from (13.4) with that from (13.5) gives

h̄k̇x = −eEx − e

c
(v × B)x . (13.6)

Since the equation of motion, (13.1) or (13.6), is derived from Hamilton’s
equations, (13.3) and (13.4), using the effective Hamiltonian (13.2), p and r
must be canonically conjugate coordinates.

13.1.1 Energy Levels of Bloch Electrons in a Magnetic Field

Onsager determined the energy levels of electrons in a dc magnetic field by
noting that

h̄k̇ = −e
c
v × B (13.7)

could be written as
k̇⊥ = − e

h̄c
|v⊥|B. (13.8)

Here, v⊥ is the component of v perpendicular to B and k⊥ is perpendicular
to both B and v. Integrating (13.7) gives

k⊥ =
eB
h̄c

× r⊥ + constant. (13.9)

We can choose the origin of k and r space such that the constant vanishes
for the electron of interest. Thus, the orbit in real space (by this we mean
the periodic part of the motion in r-space that is perpendicular to B) will be
exactly the same shape as the orbit in k-space except that it is rotated by
90◦ and scaled by a factor eB

h̄c . This factor eB
h̄c is called l−2

0 , where l0 is the
magnetic length.

Let us choose B to define the z-direction. Then k̇z = 0 and kz is a constant
of the motion. Now, look at the time rate of change of the energy

dε
dt

= ∇kε · dk
dt

= h̄v ·
(
− e

h̄c
v × B

)
. (13.10)

This is clearly zero since v is perpendicular to v × B, meaning that ε is a
constant of the motion also. Thus, the orbit of a particle in k-space is the
intersection of a constant energy surface ε(k) = ε and a plane of constant kz
(see Fig. 13.1).

Let us look at the different kinds of orbits that are possible by consid-
ering the intersections of a plane kz = 0 with a number of different energy
surfaces for a simple model ε(k) (see, for example, Fig. 13.2). The orbits can
be classified as

• Closed electron orbits like A and B
• Closed hole orbits like C
• Open orbits like D

Often one simply repeats the Brillouin zone a number of times to show how
the pieces of hole orbits or the open orbits look as illustrated in Fig. 13.3.
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Fig. 13.1. A constant energy surface ε(k) = ε and the orbit of a particle in k-space

Fig. 13.2. Different kinds of orbits of a particle in k-space

Fig. 13.3. Repeated zone scheme of the orbits in k-space
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13.1.2 Quantization of Energy

For closed orbits in k-space, the motion is periodic. The real space orbits in
the direction perpendicular to B will also be periodic. Because p and r are
canonically conjugate coordinates we can apply the Bohr–Sommerfeld quan-
tization condition

∮
p⊥ · dr⊥ = 2πh̄(n+ γ), (13.11)

where γ is a constant satisfying 0 ≤ γ ≤ 1, and n = 0, 1, 2, . . .. We can use
p⊥ = h̄k⊥ − e

cA⊥ and the fact that k⊥(t) = eB
h̄c × r⊥(t). Then

∮
p⊥ · dr⊥ =

e

c
B ·

∮
r⊥ × dr⊥ − e

c

∮
A · dr⊥.

But
∮

r⊥ × dr⊥ is just twice the area of the orbit as is illustrated in Fig. 13.4.
Furthermore,

∮
A ·dr⊥ =

∫
Surface

∇×A ·dS = B× (area of orbit). Therefore,
we obtain ∮

p⊥ · dr⊥ =
e

c
BA = 2πh̄(n+ γ), (13.12)

where A is the area of the orbit. A depends on energy ε and on kz . We know
that A(ε, kz) is proportional to the area S(ε, kz) of the orbit in k-space, from
(13.9), with S(ε, kz) =

(
eB
h̄c

)2 A(ε, kz). Thus, the quantization condition can
be written

S(ε, kz) =
2πeB
h̄c

(n+ γ). (13.13)

Example For free electrons ε = h̄2k2

2m . The area S(ε, kz) is equal to πk2
⊥, where

k2
⊥ + k2

z = k2. Therefore,

S(ε, kz) = π

(
2mε
h̄2 − k2

z

)
. (13.14)

Fig. 13.4. r⊥ × dr⊥ is twice the area of the triangle within the orbit
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Setting this result equal to 2πeB
h̄c (n+ γ) and solving for energy ε gives

ε =
h̄2k2

z

2m
+ h̄ωc(n+ γ), (13.15)

where ωc = eB
mc is the cyclotron frequency.

13.1.3 Cyclotron Effective Mass

In the absorption of radiation direct transitions between energy levels (Landau
levels) occur. If we make a transition from εn(kz) to εn+1(kz), we can write

S(εn(kz), kz) =
2πeB
h̄c

(n+ γ),

S(εn+1(kz), kz) =
2πeB
h̄c

(n+ 1 + γ).
(13.16)

We define the energy difference εn+1(kz) − εn(kz) as h̄ωc, where ωc(ε, kz) is
the cyclotron frequency associated with the orbit {ε, kz}. By subtracting the
first equation of (13.16) from the second we can obtain

[εn+1(kz) − εn(kz)]
∂S(ε, kz)

∂ε
=

2πeB
h̄c

and from this, we obtain

ωc(ε, kz) =
2πeB
h̄2c

[
∂S(ε, kz)

∂ε

]−1

=
eB

m∗c
(13.17)

or

m∗(ε, kz) =
h̄2

2π
∂S(ε, kz)

∂ε
. (13.18)

13.1.4 Velocity Parallel to B

Consider two orbits that have different values of kz separated by Δkz . Then,
for the same εn we have

S [εn(kz + Δkz), kz + Δkz ] − S [εn(kz), kz] = 0 (13.19)

because both orbits have cross-sectional area equal to 2πeB
h̄c (n + γ). We can

write (13.19) as
∂S

∂ε

∂εn(kz)
∂kz

+
∂S

∂kz
= 0. (13.20)

But ∂ε
∂kz

= h̄vz and ∂S
∂ε = 2πm∗

h̄2 giving

vz(ε, kz) = − h̄

2πm∗(ε, kz)
∂S(ε, kz)
∂kz

. (13.21)
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Example For the free electron gas model, we have S = π
(

2m∗ε
h̄2 − k2

z

)
.

Therefore, ∂S
∂kz

= −2πkz and, hence,

vz(ε, kz) = − h̄

2πm∗ (−2πkz) =
h̄kz
m∗ .

13.2 Magnetoresistance

The study of the change in resistivity of a metal as a function of the strength
of an applied magnetic field is very useful in understanding certain properties
of the Fermi surface of a metal or semiconductor. The standard geome-
try for magnetoresistance measurements is shown in Fig. 13.5. Current flows
only in the x direction. Usually B is in the z direction and the transverse
magnetoresistance is defined as

R(Bz) −R(0)
R(0)

= ΔR(Bz). (13.22)

Sometimes people also study the case where B is parallel to E and measure
the longitudinal magnetoresistance.

It might seem surprising that anything of interest arises from studying
the magnetoresistance, because, as we described, for the simple free electron
model ΔR(Bz) = 0. This resulted from the equation

jx = σxxEx + σxyEy
jy = −σxyEx + σxxEy = 0. (13.23)

Combining these gives

jx =
σ2
xx + σ2

xy

σxx
Ex. (13.24)

But for free electrons
σxx =

σ0

1 + ω2
cτ

2
,

σxy = − ωcτσ0

1 + ω2
cτ

2
,

(13.25)

where σ0 = n0e
2τ

m is the dc conductivity. Using (13.25) in (13.24) gives
jx = σ0Ex, independent of B so that the magnetoresistance vanishes.

Fig. 13.5. Standard geometry for magnetoresistance measurements



13.3 Two-Band Model and Magnetoresistance 397

Experimental Results

Before discussing other models than the simple one band free electron model,
let us discuss briefly the experimental results. The following types of behaviors
are common:

1. The magnetoresistance is nonzero, but it saturates at very high magnetic
fields at a value that is several times larger than the zero field resistance.

2. The magnetoresistance does not saturate, but continues to increase with
increasing B in all directions.

3. The magnetoresistance saturates in some crystal directions but does not
saturate in other directions.

Simple metals like Na, Li, In, and Al belong to the type (1). Semimetals like
Bi and Sb belong to type (2). The noble metals (Cu, Ag, and Au), Mn, Zn,
Cd, Ga, Sn, and Pb belong to type (3). One can obtain some understanding
of magnetoresistance by using a two-band model.

13.3 Two-Band Model and Magnetoresistance

Let us consider two simple parabolic bands with mass, cyclotron frequency,
charge, concentration, and collision time given by mi, ωci, ei, ni, and τi,
respectively, where i = 1 or 2. Each band has a conductivity σi, and the total
current is simply the sum of j1 and j2

jT = (σ1 + σ2) ·E. (13.26)

But

σi =
nie

2
i τi/mi

1 + ω2
ciτ

2
i

⎛

⎝
1 ωciτi 0

−ωciτi 1 0
0 0 1 + ω2

ciτ
2
i

⎞

⎠ . (13.27)

Note that we are taking ωci = eiB
mic

which is negative for an electron; this is
why the σxy has a plus sign. At very high magnetic fields |ωciτi| � 1 for both
types of carriers. Therefore, we can drop the 1 in 1 + ω2

ciτ
2
i :

σi �
nieic

B

⎛

⎜
⎜
⎜
⎝

1
ωciτi

1 0

−1
1

ωciτi
0

0 0 ωciτi

⎞

⎟
⎟
⎟
⎠
, (13.28)

and

σT � c

B

⎛

⎜
⎜
⎝

n1e1
ωc1τ1

+
n2e2
ωc2τ2

n1e1 + n2e2 0

−(n1e1 + n2e2)
n1e1
ωc1τ1

+
n2e2
ωc2τ2

0

0 0 n1e1ωc1τ1 + n2e2ωc2τ2

⎞

⎟
⎟
⎠ , (13.29)
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Now, suppose that n1 = n2 = n and e1 = −e2 = e. This corresponds to
a semimetal with an equal number of electrons and holes. Then, (13.29)
reduces to

σ � nec

B

⎛

⎜
⎜
⎜
⎝

1
|ωc1τ1| +

1
|ωc2τ2| 0 0

0
1

|ωc1τ1| +
1

|ωc2τ2| 0

0 0 |ωc1τ1| + |ωc2τ2|

⎞

⎟
⎟
⎟
⎠
,

The Hall field vanishes since σxy = 0 and

jx = σxxEx =
nec

B

[
1

eB
m1c

τ1
+

1
eB
m2c

τ2

]

Ex. (13.30)

The resistivity is the ratio of Ex to jx giving

ρ =
B2

nec2

( |μ1||μ2|
|μ1| + |μ2|

)
, (13.31)

where μi = eiτi

mi
is the mobility of the ith type. Thus, we find for equal numbers

of electrons and holes the magnetoresistance does not saturate, but continues
to increase as B2. The arguments can be generalized to two bands described
by energy surfaces εi(k), but we will not bother with that much detail. If
ne �= nh, σxy � − (ne−nh)ec

B while σxx =
(

ne
|ωce|τe + nh

|ωch|τh

)
ec
B . For |ωciτi| � 1,

σxy � σxx and ρ =
[
σ2

xx+σ2
xy

σxx

]−1

�
[
σ2

xy

σxx

]−1

. This saturates to a constant

because σxy ∝ B−1 while σxx ∝ B−2.

Influence of Open Orbits

For the sake of concreteness we will first consider a model which is extremely
simple and has open orbits to see what happens. Suppose there is a section
of the Fermi surface with energy given by

ε(k) =
h̄2

2m
(k2
x + k2

z), (13.32)

i.e. ε(k) is independent of ky as is shown in Fig. 13.6. Again take the magnetic
field in the z-direction. Then the orbits are all open orbits, and run parallel
to the cylinder axis. Note that

vx =
h̄kx
m

, vy = 0, and vz =
h̄kz
m

. (13.33)
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Fig. 13.6. A model energy surface with open orbits

Look at equations of motion in the presence of Bz and E = (Ex, Ey, 0):

h̄k̇x = −e(Ex +
1
c
vyBz) = −eEx,

h̄k̇y = −e(Ey − 1
c
vxBz), (13.34)

h̄k̇z = 0.

The equation of motion for h̄k̇x can be written as

v̇x = −eEx
m

. (13.35)

We have completely neglected collisions so far; they can be added by simply
writing

v̇x +
vx
τ

= −eEx
m

. (13.36)

Then in the steady-state we have

vx = −eExτ
m

. (13.37)

If no is the number of open orbit states per unit volume, then

σOpen =
noe

2τ

m

(
1 0
0 0

)
. (13.38)

Here, we have used σyy = σxy = σyx = 0; this is correct because jx depends
only on Ex and vy must be zero since the mass in the y direction is infinite.

Now, suppose there is another piece of Fermi surface that contains nc

electrons per unit volume all in closed orbit states. We can approximate the
contribution of these electrons to the conductivity by

σClosed =
nce

2τ

m

⎛

⎜
⎜
⎝

1
ω2

cτ
2

1
ωcτ

− 1
ωcτ

1
ω2

cτ
2

⎞

⎟
⎟
⎠ . (13.39)
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The total conductivity is simply the sum of σOpen and σClosed:

σT =
e2τ

m

⎛

⎜
⎝
no +

nc

ω2
cτ

2

nc

ωcτ

− nc

ωcτ

nc

ω2
cτ

2

⎞

⎟
⎠ . (13.40)

Let no, the concentration of open orbit electrons, be equal to a number S
times nc, the concentration of closed orbit electrons. Then

jx =
nce

2τ

m

{
(S +

1
ω2

cτ
2
)Ex +

1
ωcτ

Ey

}
,

jy =
nce

2τ

m

{
− 1
ωcτ

Ex +
1

ω2
cτ

2
Ey

} . (13.41)

We can investigate two different cases:

1. In the standard geometry jx is nonzero but jy is zero.
2. In the standard geometry jy is nonzero but jx is zero.

Case 1:

jy = 0 implies that
Ey = ωcτEx. (13.42)

Therefore, jx is given by

jx =
nce

2τ

m

(
S +

1
ω2

cτ
2

+ 1
)
Ex. (13.43)

The magnetoresistivity is Ex

jx
giving

ρ =
m/(nce

2τ)
S + 1

ω2
cτ

2 + 1
−→ m/(nce

2τ)
S + 1

as B → ∞. (13.44)

Thus, in this geometry the magnetoresistance saturates as B tends to infinity.

Case 2:

jx = 0 implies that

Ex = − 1
ωcτ(S + 1

ω2
cτ

2 )
Ey. (13.45)

This means that

jy =
nce

2τ

m

[
1

ω2
cτ

2S + 1
+

1
ω2

cτ
2

]
Ey. (13.46)
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But the magnetoresistivity is Ey

jy
and it is given by

ρ =
m

nce2τ

ω2
cτ

2(ω2
cτ

2S + 1)
ω2

cτ
2(S + 1) + 1

−→ m

nce2τ

S

S + 1
ω2

cτ
2 as B → ∞. (13.47)

Since ρ is proportional to ω2
c , the magnetoresistance does not saturate but

increases as B2 as long as S is finite.

13.4 Magnetoconductivity of Metals

We consider an electron gas for which the energy is an arbitrary function of
k. We introduce a uniform dc magnetic field B0, and an ac electric field E of
the form

E ∝ eiωt−iq·r. (13.48)

The Boltzmann equation is

∂f

∂t
+ v · ∇f − e

h̄

(
E +

v
c
× B0

)
· ∇kf = −f − f̄0

τ
. (13.49)

As we shall see later, some care must be taken in the collision term − f−f̄0
τ ,

to choose f̄0 to be the proper local equilibrium distribution toward which the
electrons relax.1 For now, we shall just put f̄0 = f0, the actual thermal equi-
librium function for the system. This gives the conduction current correctly,
but omits a diffusion current which is actually present. We put f = f0 + f1
and then the Boltzmann equation becomes

iωf1 − iq · vf1 − eE · v∂f0
∂ε

− e

h̄c
(v × B0) · ∇kf1 +

f1
τ

= 0. (13.50)

Here, we have used the fact that

∇kf0 =
∂f0
∂ε

∇kε = h̄v
∂f0
∂ε

, (13.51)

and have linearized with respect to the ac field. We can write the Boltzmann
equation as

(1 + iωτ − iq · vτ)f1 − eτ

h̄c
(v × B0) · ∇kf1 = eτE · v∂f0

∂ε
. (13.52)

From the equation of motion, we remember, when the ac fields are E = 0 = B,
that

h̄k̇ = −e
c
v × B0, (13.53)

1 See, for eample, M.P. Greene, H.J. Lee, J.J. Quinn, S. Rodriguez, Phys. Rev. 177,
1019 (1969).
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and we were able to show that

1. The orbit of an electron in k space is along the intersection of a surface of
constant energy and a plane of constant kz.

2. The motion in k space is periodic either because the orbit is closed, or
because an open orbit is actually periodic in k space also.

We introduce a parameter s with the dimension of time which describes the
position of an electron on its orbit of constant energy and constant kz. By
this, we mean that if s = 0 is a point on the orbit, s = T corresponds to the
same point, where T is the period. The equation of motion can be written

h̄
dk
ds

= −e
c
v × B0, (13.54)

and the rate of change of ε is

dε
ds

= ∇kε · dk
ds

= h̄v · dk
ds

= 0.

Now, consider ∂f1
∂s as

∂f1
∂s

= ∇kf1 · dk
ds

= − e

h̄c
(v × B0) · ∇kf1. (13.55)

This is exactly one of the terms in our Boltzmann equation which can be
written

∂f1
∂s

+ (
1
τ

+ iω − iq · v)f1 = eE · v∂f0
∂ε

. (13.56)

Closed Orbits:

Let us consider closed orbits first. We can write

h̄
dk⊥
ds

= −e
c
v⊥ × B0, (13.57)

where v⊥ is the component of v perpendicular to B0. Let kN and kT be the
normal and tangential components of k⊥ as shown in Fig. 13.7. Then

h̄
dkT

ds
=
e

c
v⊥B0, (13.58)

because v⊥ is in the direction of kN. Solving for ds gives

ds =
h̄c

eB0

dkT

v⊥
. (13.59)

Thus, the period is given by

T (ε, kz) =
2π

ωc(ε, kz)
=

h̄c

eB0

∮
dkT

v⊥
. (13.60)
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^

^

Fig. 13.7. A closed orbit in k space

From now on, we shall use the independent variables ε, kz, and s to describe
the location of an electron in k space.

dε = ∇kε · dkN = h̄v⊥dkN, (13.61)

and hence
dkN =

dε
h̄v⊥

. (13.62)

Now, the volume element in k space is given by

d3k = dkz dkN dkT = dkz
dε
h̄v⊥

ev⊥
h̄c

B0ds,

hence
d3k =

eB0

h̄2c
dkzdεds. (13.63)

Now, let us return to the differential equation given by (13.56)

∂f1
∂s

+
(

1
τ

+ iω − iq · v
)
f1 = eE · v∂f0

∂ε
. (13.64)

Multiply by
e
∫ s
0 dt′[ 1

τ +iω−iq·v(t′)]. (13.65)

Then, we have

e
∫

s
0 dt′[ 1

τ +iω−iq·v(t′)]
{
∂f1(s)
∂s + [ 1

τ + iω − iq · v(s)]f1(s)
}

= eE · v(s)
∂f0
∂ε

e
∫

s
0 dt′[ 1

τ +iω−iq·v(t′)].
(13.66)

Notice that the left-hand side can be simplified to write

∂

∂s

[
f1e

∫
s
0 dt′( 1

τ +iω−iq·v(t′))
]

= eE · v(s)
∂f0
∂ε

e
∫

s
0 dt′( 1

τ +iω−iq·v(t′)). (13.67)
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Integrate and get

f1(s)e
∫

s
0 dt′( 1

τ +iω−iq·v(t′)) =
∫ s

−∞
dt eE ·v(t)

∂f0
∂ε

e
∫

t
0 dt′( 1

τ +iω−iq·v(t′)), (13.68)

or
f1(s) =

∫ s

−∞
dt eE · v(t)

∂f0
∂ε

e−
∫ s

t
dt′( 1

τ +iω−iq·v(t′)). (13.69)

Note that the lower limit t = −∞ is chosen in the integration over t for a very
important reason. f1(kz , ε, s) must be a periodic function of s with period T .
Consider the function f1(s+ T ) for an arbitrary lower limit (LL)

f1(s+ T ) =
∫ s+T

LL

dt eE · v(t)
∂f0
∂ε

e−
∫ s+T

t
dt′( 1

τ +iω−iq·v(t′)). (13.70)

Now, let w = t−T , so that t = s+T −→ w = s and t = LL −→ w = LL−T .
We know v(t) is a periodic function of t with period T . Likewise, if we let
t′ = w′ + T , we can get

f1(s+ T ) =
∫ s

LL−T
dw eE · v(w)

∂f0
∂ε

e−
∫ s

w
dw′[ 1

τ +iω−iq·v(w′)].

It is obvious f1(s+ T ) = f1(s) if LL− T = LL. This is valid for LL = −∞ as
we have chosen. Now, look at the exponential
∫ s

t

dt′
(

1
τ

+ iω − iq · v(t′)
)

=
(

1
τ

+ iω
)

(s−t)−dq·[R(ε, kz, s) − R(ε, kz, t)] ,

(13.71)
so that

f1(ε, kz , s) =
∫ s

−∞
ds′ eE · v(s′)

∂f0
∂ε

e−( 1
τ +iω)(s−s′)+iq·[R(ε,kz,s)−R(ε,kz,s

′)].

(13.72)
The current density is given by

j(r, t) =
2

(2π)3

∫
(−e)vf1 d3k. (13.73)

Or, substituting the result of (13.63) for d3k, we have

j(r, t) = − 2e
(2π)3

eB0

h̄2c

∫
dεdkzdsvf1(ε, kz , s). (13.74)

Now, substitute the solution f1(ε, kz, s) given by (13.72) to obtain

j(r, t) = − 2e2B0

(2π)3h̄2c

∫∞
0

dε
∫∞
−∞ dkz

∫ T (ε,kz)

0
dsv

× ∫ s
−∞ ds′ eE · v(s′)

∂f0
∂ε

e−( 1
τ +iω)(s−s′)+iq·[R(ε,kz ,s)−R(ε,kz,s

′)].

(13.75)
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We define the conductivity tensor by j = σ · E. Then, it is apparent that

σ =
2e3B0

(2π)3h̄2c

∫∞
0 dε

(
−∂f0

∂ε

)∫∞
−∞dkz

∫ T (ε,kz)

0 dsv(ε, kz , s)e−( 1
τ +iω)s+iq·R(ε,kz,s)

× ∫ s
−∞ ds′ v(ε, kz , s′)e( 1

τ +iω)s′−iq·R(ε,kz,s
′).

(13.76)
We assume that τ depends only on ε. Now, look at the function v(ε, kz , s)
eiq·R(ε,kz,s). The position vector R(ε, kz, s) consists of two parts:

1. A periodic part Rp(ε, kz , s):

Rp [ε, kz, s+ T (ε, kz)] = Rp (ε, kz, s) . (13.77)

2. A nonperiodic part or secular part Rs(ε, kz, s):

Rs(ε, kz, s) = vs(ε, kz)s. (13.78)

Remember that the variable s is time. The vs is the average value of v(ε, kz , s)
over one period, and written as

vs(ε, kz) =
1

T (ε, kz)

∫ t+T

t

v(ε, kz , t′) dt′. (13.79)

Then, we have, since R = Rp + vss,

v(ε, kz , s)eiq·R(ε,kz,s) = v(ε, kz , s)eiq·vs(ε,kz)seiq·Rp(ε,kz ,s). (13.80)

Thus, for σ we can write

σ =
2e3B0

(2π)3h̄2c

∫∞
0

dε
(
−∂f0

∂ε

)∫∞
−∞ dkz

∫ T (ε,kz)

0
dsv(ε, kz , s)e−[ 1

τ +iω+iq·vs(ε,kz)]s

× eiq·Rp(ε,kz ,s)
∫ s
−∞ ds′ v(ε, kz , s′)e[ 1

τ +iω−iq·vs(ε,kz)]s′e−iq·Rp(ε,kz ,s
′).

(13.81)
We now expand the periodic function v(ε, kz , s)eiq·Rp(ε,kz ,s) in Fourier series
in s. Let ωc(ε, kz) = 2π

T (ε,kz) . Then

v(ε, kz , s)eiq·Rp(ε,kz ,s) =
∞∑

n=−∞
vn(ε, kz)einωcs. (13.82)

Obviously, the Fourier coefficients vn(ε, kz) are given by

vn(ε, kz) =
ωc(ε, kz)

2π

∫ 2π/ωc

0

dsv(ε, kz , s)eiq·Rp(ε,kz,s)−inωcs. (13.83)

We substitute the Fourier expansions, (13.82), into the expression for σ to
obtain

σ =
2e3B0

(2π)3h̄2c

∫∞
0

dε
(
−∂f0

∂ε

) ∫∞
−∞ dkz

∫ 2π/ωc

0
ds e−[ 1

τ +iω+iq·vs(ε,kz)]s

×∑∞
n=−∞ vn(ε, kz)einωcs

∫ s
−∞ ds′ e[ 1

τ +iω−iq·vs(ε,kz)]s′

×∑∞
n′=−∞ v∗

n′(ε, kz)e
−in′ωcs

′
.

(13.84)
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First perform the integration over s′ to obtain
∫ s

−∞
ds′ e[ 1

τ +iω−iq·vs(ε,kz)−iωcn
′]s′ =

e[ 1
τ +iω−iq·vs−in′ωc]s

1
τ + iω − iq · vs − in′ωc

. (13.85)

Thus, we have

σ =
2e3B0

(2π)3h̄2c

∫ ∞

0

dε
(
−∂f0
∂ε

)∫ ∞

−∞
dkz

×
∫ 2π

ωc

0

ds
∞∑

n,n′=−∞

vn(ε, kz)v∗
n′(ε, kz)e

i(n−n′)ωcs

1
τ + iω − iq · vs − in′ωc

. (13.86)

However,
∫ 2π/ωc

0 ds ei(n−n′)ωcs = 2π
ωc
δnn′ . Thus, we have

σ=
2e3B0

(2π)3h̄2c

∫ ∞

0

dε
(
−∂f0
∂ε

)∫ ∞

−∞
dkz

2π
ωc(ε, kz)

∞∑

n=−∞

vn(ε, kz)v∗
n(ε, kz)

1
τ+iω−iq · vs − inωc

.

(13.87)
This can be rewritten

σ =
2e3B0

(2π)3h̄2c

∫ ∞

0

dε
(
−∂f0
∂ε

)
τ

∫ ∞

−∞
dkzT (ε, kz)

×
∞∑

n=−∞

vn(ε, kz)v∗
n(ε, kz)

1 + iτ [ω − q · vs − 2πn
T (ε,kz) ]

. (13.88)

This expression is valid even for the case of open orbits. For closed orbits it
is customary to define

ωc(ε, kz) =
eB0

m∗(ε, kz)c
=

2π
T (ε, kz)

where m∗ is the cyclotron effective mass. Then, σ can be written

σ =
e2

2π2h̄2

∫ ∞

0

dε
(
−∂f0
∂ε

)
τ(ε)

∫ ∞

−∞
dkzm∗(ε, kz)

×
∞∑

n=−∞

vn(ε, kz)v∗
n(ε, kz)

1 + iτ(ε)[ω − q · vs − nωc(ε, kz)]
. (13.89)

At very low temperatures the integration over energy just picks out the Fermi
energy because −∂f0

∂ε acts just like a δ function, and we have

σ =
e2

2π2h̄2 τ(εF)
∫

F.S.

dkzm∗(kz)
∞∑

n=−∞

vn(εF, kz)v∗
n(εF, kz)

1 + iτ(εF)[ω − q · vs − nωc(εF, kz)]
,

(13.90)

where all quantities are evaluated on the Fermi surface.
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13.4.1 Free Electron Model

For the free electron model m∗(kz) = m is a constant independent of kz .
We shall assume that τ is also constant. The energy ε(k) and velocity v are,
respectively, given by

ε(k) =
h̄2k2

2m
,

v =
h̄k
m
, (13.91)

and hence,

vz =
h̄kz
m

,

v⊥ = |v⊥| =
√
v2 − v2

z =
h̄

m

(
2mε
h̄2 − k2

z

)1/2
.

We shall choose s, the time along the orbit, such that

vx = v⊥ cosωcs,
vy = v⊥ sinωcs.

(13.92)

Thus, for v(εF, kz , s) we have

v(ε, kz , s) =
h̄

m

(√
2mε
h̄2 − k2

z cosωcs,

√
2mε
h̄2 − k2

z sinωcs, kz

)

. (13.93)

The periodic part of the position vector is given by

Rp(ε, kz, s) =
∫

v⊥(ε, kz, s)ds,

=
v⊥
ωc

(sinωcs,− cosωcs, 0) . (13.94)

Thus, we have

iq ·Rp(ε, kz, s) =
iv⊥(ε, kz)

ωc
(qx sinωcs− qy cosωcs) . (13.95)

There is no loss in generality incurred by choosing the vector q to lie in the
y − z plane, i.e. qx = 0. Thus

iq · Rp(ε, kz , s) = − iv⊥(ε, kz)
ωc

qy cosωcs. (13.96)

Now, let us evaluate the Fourier coefficients vn in (13.83)

vn(ε, kz) =
ωc(ε, kz)

2π

∫ 2π/ωc

0

dsv(ε, kz , s)e−
iv⊥(ε,kz )qy

ωc
cosωcs−inωcs. (13.97)
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Let w′ = qyv⊥
ωc

and x = ωcs to have

vn(ε, kz) =
1
2π

∫ 2π

0

dxv(ε, kz , x)e−iw′ cosx−inx. (13.98)

Now, we use the relation

eiw′ sinx =
∞∑

l=−∞
Jl(w′)eilx. (13.99)

One can easily see that

e−iw′ cos x = eiw′ sin(x+ 3π
2 ) =

∞∑

l=−∞
Jl(w′)eilxeil 3π

2 =
∞∑

l=−∞
(−i)lJl(w′)eilx.

(13.100)

Thus, we have

vn(ε, kz) =
1
2π

∫ 2π

0

dxv(ε, kz , x)e−inx
∞∑

l=−∞
(−i)lJl(w′)eilx,

=
∞∑

l=−∞
(−i)lJl(w′)

1
2π

∫ 2π

0

dxv(ε, kz , x)ei(l−n)x. (13.101)

Now, let us investigate the individual components of vn.

vnx(ε, kz) =
∞∑

l=−∞
(−i)lJl(w′)

1
2π
v⊥

∫ 2π

0

dx cosx ei(l−n)x,

=
∞∑

l=−∞
(−i)lJl(w′)

v⊥
2

1
2π

∫ 2π

0

dx
[
ei(l−n+1)x + ei(l−n−1)x

]
,

=
v⊥
2

∞∑

l=−∞
(−i)lJl(w′) [δl,n−1 + δl,n+1] ,

=
(−i)n−1

2
v⊥ [Jn−1(w′) − Jn+1(w′)] . (13.102)

In an analogous way, we can obtain

vny(ε, kz) =
(−i)n−1

2i
v⊥ [Jn−1(w′) + Jn+1(w′)] , (13.103)

and
vnz (ε, kz) = (−i)nvzJn(w′). (13.104)
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Here, we recall some properties of Bessel functions:

Jn(z) =
∞∑

m=0

(−1)m
(z

2

)2m+n 1
m!(m+ n)!

, (13.105)

J−n(z) = (−1)nJn(z), (13.106)

lim
z→0

Jn(z) =
1
n!

(z
2

)n
, (13.107)

J ′
n(z) =

d
dz
Jn(z) =

1
2

[Jn−1(z) − Jn+1(z)] , (13.108)

and
n

z
Jn(z) =

1
2

[Jn−1(z) + Jn+1(z)] . (13.109)

Using some of these equations we can write the vector vn as

vn(ε, kz) = (−i)n

⎛

⎜
⎝

iv⊥J ′
n(w′)

(nωc/qy)Jn(w′)

vzJn(w′)

⎞

⎟
⎠ . (13.110)

If we take the zero temperature limit, we have
(
−∂f0

∂ε

)
= δ(ε− ζ) and, hence,

we have

σ =
e2τm

2π2h̄2

∫ kF

−kF
dkz

∞∑

n=−∞

vn(εF, kz)v∗
n(εF, kz)

1 − iτ [nωc(εF, kz) + q · vs − ω]
. (13.111)

For free electrons, the secular part of the velocity is simply vz, thus

q · vs = qzvz = qzvF cos θ,

dkz =
m

h̄
dvz =

mvF
h̄

d(cos θ),

v⊥ =
√
v2
F − v2

z = vF sin θ, (13.112)

w′ =
qyv⊥
ωc

=
qyvF
ωc

sin θ = w sin θ.

By substituting these in (13.111), we obtain

σ = 3σ0
2

∑∞
n=−∞

∫ 1

−1 d(cos θ)

×

⎛

⎜
⎜
⎝

i sin θJ ′
n(w sin θ)

n
w

Jn(w sin θ)
cos θJn(w sin θ)

⎞

⎟
⎟
⎠(−i sin θJ′n(w sin θ), n

w
Jn(w sin θ),cos θJn(w sin θ))

1−iτ [nωc(εF,kz)−ω+qzvF cos θ] ,

(13.113)
where J ′

n(x) = dJn(x)/dx and σ0 is the dc conductivity given by σ0 =
n0e

2τ
m . In addition, sin θJ ′

n(w sin θ) = ∂
∂wJn(w sin θ). Hence, we can rewrite



410 13 Semiclassical Theory of Electrons

(13.113) as

σ = 3σ0
2

∑∞
n=−∞

∫ 1

−1
d(cos θ)

×

⎛

⎜
⎜
⎝

i ∂∂wJn(w sin θ)
n
wJn(w sin θ)

cos θJn(w sin θ)

⎞

⎟
⎟
⎠(−i ∂

∂w Jn(w sin θ), n
w Jn(w sin θ),cos θJn(w sin θ))

1−iτ [nωc(εF,kz)−ω+qzvF cos θ] .

(13.114)

This result was first obtained by Cohen, Harrison, and Harrison.2

13.4.2 Propagation Parallel to B0

To acquaint ourselves with the properties of σ, let us first evaluate it for the
case q ‖ B0, i.e. q = (0, 0, q). In the limit qy → 0, w → 0 and, hence, we have

n

w
Jn(w sin θ) −→ 1

2
sin θ(δn,1 + δn,−1),

i
∂

∂w
Jn(w sin θ) −→ i

2
sin θ(δn,1 − δn,−1), (13.115)

cos θJn(w sin θ) −→ cos θδn,0.

It is easy to see that σxz = σzx = σyz = σzy = 0 because of the δ functions
involved. The nonvanishing components of σ are σxx = σyy, σxy = −σyx and
σzz . They can easily be evaluated to be written

σzz =
3
2
σ0

∫ 1

−1

d(cos θ) cos2 θ
1 + iωτ − iqzvFτ cos θ

, (13.116)

and

σ± = σxx ∓ iσxy =
3
4
σ0

∫ 1

−1

d(cos θ) sin2 θ

1 + i(ω ∓ ωc)τ − iqzvFτ cos θ
. (13.117)

Notice that when qz → 0 the integral in (13.116) becomes
∫ 1

−1 d(cos θ) cos2 θ =
2
3 so that, in that case, we have

σzz =
σ0

1 + iωτ
. (13.118)

The qz → 0 limit of the integral in (13.117) becomes
∫ 1

−1 d(cos θ) sin2 θ = 4
3

so that
σ± =

σ0

1 + i(ω ∓ ωc)τ
. (13.119)

2 M.H. Cohen, M.J. Harrison, W.A. Harrison, Phys. Rev. 117, 937 (1960).
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13.4.3 Propagation Perpendicular to B0

We consider the case q ⊥ B0, i.e. q = (0, q, 0) to write (13.114) as

σ = 3σ0
2

∑∞
n=−∞

∫ 1

−1 d(cos θ)

×

⎛

⎜
⎜
⎝

i ∂∂wJn(w sin θ)
n
wJn(w sin θ)

cos θJn(w sin θ)

⎞

⎟
⎟
⎠(−i ∂

∂wJn(w sin θ), n
w Jn(w sin θ),cos θJn(w sin θ))

1−iτ [nωc(εF,kz)−ω] .

(13.120)
We define the following functions

cn(w) =
1
2

∫ 1

−1

d(cos θ) cos2 θJ2
n(w sin θ),

sn(w) =
1
2

∫ 1

−1

d(cos θ) sin2 θ[J ′
n(w sin θ)]2, (13.121)

gn(w) =
1
2

∫ 1

−1

d(cos θ)J2
n(w sin θ).

It is obvious that the angular integrations appearing in σxz, σzx, σyz, and σzy
vanish because the integrands are odd functions of cos θ. For the nonvanishing
components we obtain

σxx = 3σ0

∞∑

n=−∞

sn(w)
1 − iτ(nωc − ω)

, (13.122)

σyy =
3σ0

w2

∞∑

n=−∞

n2gn(w)
1 − iτ(nωc − ω)

, (13.123)

σxy = −σyx =
3σ0i
2w

∞∑

n=−∞

ng′n(w)
1 − iτ(nωc − ω)

, (13.124)

and

σzz = 3σ0

∞∑

n=−∞

cn(w)
1 − iτ(nωc − ω)

. (13.125)

13.4.4 Local vs. Nonlocal Conduction

What we have been studying is the nonlocal theory of the electrical conduc-
tivity of a solid. It is worth emphasizing once again what is meant by nonlocal
conduction, and in which case the nonlocal theory reduces to a local theory.
The result we have obtained is

j(q, ω) = σ(q, ω) ·E(q, ω). (13.126)
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It is easy to show that this expression corresponds to the relation

j(r, t) =
∫
K(r − r′, t− t′) ·E(r′, t′)d3r′dt′. (13.127)

Let us take the Fourier transforms of each side by multiplying by eiq·r−iωt and
integrating

∫
j(r, t)eiq·r−iωtd3rdt
=
∫
K(r − r′, t− t′) ·E(r′, t′)eiq·r′−iωt′eiq·(r−r′)−iω(t−t′)d3r′dt′d3rdt.

The left-hand side is simply j(q, ω). The right-hand side can be simplified by
letting r − r′ = x and t− t′ = s

j(q, ω) =
∫
K(x, s)eiq·x−iωsd3xds

︸ ︷︷ ︸
·
∫

E(r′, t′)eiq·r′−iωt′d3r′dt′

︸ ︷︷ ︸
.

σ(q, ω) E(q, ω)
(13.128)

This is just the relation we gave in (13.126) if

σ(q, ω) =
∫
K(x, s)eiq·x−iωsd3xds

or

K(r − r′, t− t′) =
1

(2π)4

∫
σ(q, ω)eiω(t−t′)−iq·(r−r′)d3qdω. (13.129)

Consider for a moment what would happen if σ(q, ω) were independent of q.
In that case, we have

K(r − r′, ω) =
1

(2π)3

∫
σ(ω)e−iq·(r−r′)d3q,

= σ(ω) δ(r − r′). (13.130)

Thus, we have
j(r, ω) = σ(ω) · E(r, ω). (13.131)

This is just Ohm’s law in the local theory, in which j(r) depends only on the
electric field at the same point r. Thus, the local theory is the special case of
the general nonlocal theory, in which the q dependence of σ is unimportant.
By looking at the expressions we derived one can see that σ is essentially
independent of q if

1. ql � 1, in the absence of a magnetic field, where l = vFτ is the electron
mean free path.

2. q⊥rc � 1 or q⊥l0 � 1, and qzl0 � 1, in the presence of a magnetic field.
Here rc is the radius of the cyclotron orbit.
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13.5 Quantum Theory of Magnetoconductivity
of an Electron Gas

The evaluation of σ(q, ω,B0) for a quantum mechanical system is very similar
to our evaluation of the wave vector and frequency dependent conductivity in
the absence of the field B0. We will give a very brief summary of the technique
here.3

The zero-order Hamiltonian for an electron in the presence of a vector
potential A0 = (0, xB0, 0) is given by

H0 =
1

2m

[
p2
x + (py +

e

c
B0x)2 + p2

z

]
. (13.132)

The eigenfunctions and eigenvalues of H0 can be written as

|ν〉 = |nkykz〉 =
1
L

eikyy+ikzzun

(
x+

h̄ky
mωc

)
,

εν = εn,ky,kz =
h̄2k2

z

2m
+ h̄ωc

(
n+

1
2

)
. (13.133)

Perturbing self-consistent electromagnetic fields E(r, t) and B(r, t) are
assumed to be of the form eiωt−iq·r. These fields can be derived from the
potentials A(r, t) and φ(r, t):

E = −1
c
Ȧ−∇φ = − iω

c
A + iqφ,

B = ∇× A = −iq × A.
(13.134)

As in the Lindhard case, the theory can be shown to be gauge invariant (we
will not prove it here but it is done in the references listed earlier). Therefore,
we can take a gauge in which the scalar potential φ = 0. Then, we write the
linearized (in A) Hamiltonian as

H = H0 +H1, (13.135)

where H0 is given by (13.132) and H1 is the perturbing part

H1 =
e

2c
(v0 · A + A · v0) . (13.136)

Here, v0 = 1
m

(
p + e

cA0

)
is the velocity operator in the presence of the field

A0. From here on, one can simply follow the steps we carried out in evaluating
σ(q, ω,B0 = 0). We use

H0|ν〉 = εν |ν〉,
ρ0|ν〉 = f0(εν)|ν〉. (13.137)

3 For details one is referred to the references by J.J. Quinn, S. Rodriguez, Phys.
Rev. 128, 2480 (1962) and M.P. Greene, H.J. Lee, J.J. Quinn, S. Rodriguez, Phys.
Rev. 177, 1019 (1969).
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The perturbation is given by (13.136) and use that

A(r, t) = A(q, ω)eiωt−iq·r.

The resulting expression for j(q, ω) can be written (for the collisionless limit
where τ → ∞)

j(q, ω) = − ω2
p

4πc
[1 + I(q, ω)] ·A(q, ω). (13.138)

Here, ω2
p = 4πn0e

2

m and n0 = N
V . The symbol 1 stands for the unit tensor and

I(q, ω) =
m

N

∑

νν′

f0(εν′) − f0(εν)
εν′ − εν − h̄ω

〈ν′|V(q)|ν〉〈ν′|V(q)|ν〉∗. (13.139)

The operator V(q) is given by

V(q) =
1
2
v0eiq·r +

1
2
eiq·rv0, (13.140)

and v0 = 1
m{p + e

cA0}. The matrix elements of V(q) are given by

〈ν′|Vz(q)|ν〉 = δ(k′y, ky + qy)δ(k′z , kz + qz)
h̄

m

(
kz +

qz
2

)
fn′n(qy),

〈ν′|Vy(q)|ν〉 = δ(k′y, ky+qy)δ(k
′
z , kz+qz)

{
h̄qy
2m

fn′n(qy)+
(
h̄ωc

2m

)1/2

X
(+)
n′n(qy)

}

,

〈ν′|Vx(q)|ν〉 = δ(k′y, ky + qy)δ(k′z , kz + qz)

{

i
(
h̄ωc

2m

)1/2

X
(−)
n′n (qy)

}

(13.141)

In these equations, we have taken qx = 0; this can be done without loss of
generality. The function fn′n(qy) is the two-center harmonic oscillator integral:

fn′n(qy) =
∫ ∞

−∞
un′(x+

h̄qy
mωc

)un(x)dx, (13.142)

and
X

(±)
n′n (qy) = (n+ 1)1/2fn′,n+1(qy) ± n1/2fn′,n−1(qy). (13.143)

The function fn′n also appears in another useful matrix element

〈ν′|eiq·r|ν〉 = δ(k′y , ky + qy)δ(k′z , kz + qz)fn′n(qy). (13.144)

The function fn′n can be evaluated in terms of associated Laguerre polyno-
mials. For n′ ≥ n, we have

fn′n(q) =
(
n!
n′!

)1/2

ξ(n
′−n)/2e−ξ/2Ln

′−n
n (ξ), (13.145)
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where ξ = h̄q2

2mωc
and Lαn(ξ) is the associated Laguerre polynomial of order n.

For n′ < n we have fn′n(q) = (−1)n−n
′
fnn′(q). Some useful facts about the

functions fn′n are

fn′n(q) = in−n
′
∫ ∞

−∞
dx eiqxun′(x)un(x),

fn′n(−q) = fnn′(q) = (−1)n
′−nfn′n(q),

∞∑

n=0

f2
n′n(q) = 1,

∞∑

n′=0

(n′ − n)f2
n′n(q) = ξ, (13.146)

∂fn′n
∂q

=
(

h̄

2mωc

)1/2

X
(−)
n′n (q),

(n′ − n− ξ)fn′n(q) = ξ1/2X
(+)
n′n(q).

13.5.1 Propagation Perpendicular to B0

For the case of q = (0, q, 0) we find that

jx(q, ω) = σxxEx(q, ω) + σxyEy(q, ω),
jy(q, ω) = σyxEx(q, ω) + σyyEy(q, ω),
jz(q, ω) = σzzEz(q, ω).

(13.147)

The nonvanishing components of σ can be evaluated and they are written as

σxx =
ω2

p

4πiω

⎡

⎣1 − 2mωc

h̄

1
N

′∑

nkykzα

f0(εnkz )
(
∂fn+α,n

∂q

)2
α

α2 − (ω/ωc)2

⎤

⎦ ,

σyy =
imω2

pω

2πh̄ωc

1
N

′∑

nkykzα

f0(εnkz )f2
n+α,n

α

α2 − (ω/ωc)2
, (13.148)

σxy = −σyx =
iωc

2ωq
∂(q2σyy)

∂q
,

σzz =
ω2

p

4πiω

⎡

⎣1 − 2h̄
mωc

1
N

′∑

nkykzα

f0(εnkz)k2
zf

2
n+α,n

α

α2 − (ω/ωc)2

⎤

⎦ .

In these equations, the sum on α is to be performed from −n to ∞ (because
0 ≤ n′ = n+α ≤ ∞). The summations over n, ky, kz extend over all values of
the quantum numbers for which εnkz ≤ ζ, where ζ is the chemical potential
of the electron gas in the field B0. This restriction is indicated by a prime
following the summation sign.
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The semiclassical limit can be obtained by replacing the sum over n by an
integral. Remember that in general we can write

∑

nkykz

=⇒ 2
(
L

2π

)2∑

n

∫ mωcL
h̄

0

dky
∫

dkz =
mωc

h̄

Ω
2π2

∫
dkz

∑

n

, (13.149)

where Ω is the volume of the sample Ω = L3. We define n0 = ρ
h̄ωc

− 1
2 and

let n = n0 sin2 θ. For zero temperature, we can integrate over θ from θ = 0 to
θ = π

2 instead of summing over n. For n0 � 1 it is not hard to see that the
main contribution to the integrals comes from rather large values of n. For
large n, we can approximate

fn+α,n � Jα

[
(4n+ 2α+ 2)1/2ξ1/2

]
� Jα(w sin θ), (13.150)

where w = qvF
ωc

. By substituting into the expressions for the components of σ
we obtain

σxx =
3α

4πiω

∞∑

α=−∞

sα(w)
1 + αωc/ω

, (13.151)

where

sα(w) =
∫ π/2

0

dθ sin3 θ [J ′
α(w sin θ)]2 . (13.152)

Equation (13.151) is the semiclassical expression we already obtained in
(13.122) in the collisionless limit.

The quantum mechanical conductivity tensor can be written as the sum
of a semiclassical term and a quantum oscillatory part

σ(q, ω) = σSC(q, ω) + σQO(q, ω), (13.153)

where the semiclassical part σSC has been given earlier. As an example of the
quantum oscillatory part we give, without derivation, one example

σQO
zz =

3
2
δ2

ω2
p

4πiω

[

1 + 3
ω2

ω2
c

∞∑

α=−∞

1
α2 − (ω/ωc)2

(
1 + w

∂

∂w

)
cα(w)

]

.

(13.154)
Here, δ2 is a quantum oscillatory function of the de Haas–van Alphen type
and is given by

δ2 = π

(
kBT

ζ0

)√
h̄ωc

2ζ0

∞∑

ν=1

(−1)νν−1/2 sin(2πνζ0
h̄ωc

− π
4 )

sinh(2π2νkBT
h̄ωc

)
. (13.155)

The function cα(w), with w = qvF
ωc

, was defined by (13.121) in the discussion
of the semiclassical conductivity. If kBT becomes large compared to h̄ωc, the
amplitude of the quantum oscillations becomes negligibly small and σ reduces
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to the semiclassical result σSC given previously. What the quantum mechanical
conductivity tensor contains but what the semiclassical one does not is the
quantum structure of the energy levels. This, of course, determines all the
quantum effects like

1. de Haas–van Alphen oscillations in the magnetism
2. Shubnikov–de Haas oscillations in the resistivity
3. Quantum oscillations in acoustic attenuation, etc.
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Problems

13.1. Take direction of current flow to make an angle θ with x axis as is shown
in Fig. 13.8. First, transform to x′ − y′ frame. Then, put jy′ = 0, and check
for what angles θ the magnetoresistance fails to saturate.

13.2. Consider a band for a simple cubic structure given by E(k) = E0[cos
(kxa)+cos(kya)+cos(kza)], where a is the lattice constant. Let an electron at
rest (k = 0) at t = 0 feel a uniform external electric field E which is constant
in time.

(a) Find the real space trajectory [x(t), y(t), z(t)].
(b) Sketch the trajectory for E in a [120] direction.

13.3. Consider an electron in a state with a linear energy dispersion given
by E = ±h̄vF|k|, where k is a two-dimensional wave vector. (It occurs in the
low-energy states in graphene – a single layer of graphite.)

(a) When a dc magnetic field B is applied perpendicular to the graphene
layer, write down the area S(ε) and sketch S(εn) for various values
of n.

(b) Solve for the quantized energies εn and plot the resulting εn for
−5h̄ωc ≤ εn ≤ 5h̄ωc.

(c) What can you say about the effective mass of the particle in a graphene
subject to the magnetic field B?

13.4. The energy of an electron in a particular band of a solid is given by

ε(kx, ky, kz) =
h̄2k2

x

2mx
+
h̄2k2

y

2my
,

where −π
a < ki <

π
a is the first Brillouin zone of a simple cubic lattice.

(a) Determine vi(k) for i = x, y, and z.
(b) Show that h̄ki(t) =

√
2miε cosωct where i = x and y for a dc magnetic

field B0 in the z-direction.
(c) Determine ωc in terms of mi, B0, etc.

Fig. 13.8. A simple geometry of current flow
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Fig. 13.9. A constant energy surface ε(k) in a two-dimensional system

13.5. Consider two-dimensional electrons with a linear dispersion given by
E = h̄vF|k|, where k is a two-dimensional wave vector. Now apply a dc
magnetic field B perpendicular to the system. We shall assume that τ is
constant.

(a) Write down the v(εF, s) and the periodic part of the position vector
Rp(ε, s).

(b) Evaluate the Fourier coefficients vn(ε), and discuss the conductivity
tensor σ defined by j = σ ·E.

13.6. Consider an electron in a two-dimensional system subject to a dc mag-
netic field B perpendicular to the system. The constant energy surface of the
particle is shown in in Fig. 13.9.

(a) Sketch the orbit of the particle in real space.
(b) Sketch the velocity vy(t) as a function of t.
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Summary

In this chapter, we study behaviors of Bloch electrons in the presence of
a dc magnetic field. Energy levels and possible trajectories of electrons are
discussed, and simple two band model of magnetoresistance is illustrated
including the effect of collisions. General expression of semiclassical mag-
netoconductivity tensor is derived by solving the Boltzmann equation of
the distribution function, and the results are applied to the case of free
electrons. The relationship between the local and nonlocal descriptions are
discussed. Finally, quantum mechanical theory of magnetoconductivity ten-
sor is described and quantum oscillatory behavior in magnetoconductivity of
Bloch electrons is compared with its semiclassical counterpart.

In the presence of an electric field E and a dc magnetic field B(= ∇×A),
an effective Hamiltonian is given by H = ε(p

h̄ + e
h̄cA) − eφ, where ε(k) is the

energy as a function of k in the absence of B. The equation of motion of a
Bloch electron in k-space takes the form

h̄k̇ = −eE− e

c
v × B.

Here, v = 1
h̄∇kε(k) is the velocity of the Bloch electron whose energy ε(k) is

an arbitrary function of wave vector k. The orbit in real space will be exactly
the same shape as the orbit in k-space except that it is rotated by 90◦ and
scaled by a factor eB

h̄c : k⊥ = eB
h̄c × r⊥. The factor eB

h̄c is l−2
0 , where l0 is the

magnetic length. The orbit of a particle in k-space is the intersection of a
constant energy surface ε(k) = ε and a plane of constant kz:

dε
dt

= ∇kε · dk
dt

= h̄v ·
(
− e

h̄c
v × B

)
= 0.

The area of the orbit A(ε, kz) in real space is proportional to the area S(ε, kz)
of the orbit in k-space: S(ε, kz) =

(
eB
h̄c

)2 A(ε, kz). The area S(ε, kz) is quan-
tized by S(ε, kz) = 2πeB

h̄c (n + γ) and the cyclotron effective mass is given by
m∗(ε, kz) = h̄2

2π
∂S(ε,kz)

∂ε . The Bloch electron velocity parallel to the magnetic
field becomes

vz(ε, kz) = − h̄

2πm∗(ε, kz)
∂S(ε, kz)
∂kz

.

The transverse magnetoresistance is defined by R(Bz)−R(0)
R(0) = ΔR(Bz). The

simple free electron model gives ΔR(Bz) = 0, which is different from the
experimental results.

The current density is given by j(r, t) = 2
(2π)3

∫
(−e)vf1 d3k. In the pres-

ence of a uniform dc magnetic field B0, the semiclassical magnetoconductivity
of an electron gas is written as

σ =
e2

2π2h̄2 τ(εF)
∫

F.S.

dkzm∗(kz)
∞∑

n=−∞

vn(εF, kz)v∗
n(εF, kz)

1 + iτ(εF)[ω − q · vs − nωc(εF, kz)]
,
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where vn(ε, kz) is defined by

vn(ε, kz) =
ωc(ε, kz)

2π

∫ 2π/ωc

0

dsv(ε, kz , s)eiq·Rp(ε,kz,s)−inωcs.

Here, Rp(ε, kz, s) denotes the periodic part of the position vector in real space.
For the free electron model m∗(kz) = m is a constant independent of

kz and the periodic part of the position vector is given by Rp(ε, kz, s) =
v⊥
ωc

(sinωcs,− cosωcs, 0) . For the propagation q ⊥ B0, i.e. q = (0, q, 0), the
nonvanishing components of semiclassical conductivity σ are

σxx = 3σ0

∞∑

n=−∞

sn(w)
1 − iτ(nωc − ω)

; σyy =
3σ0

w2

∞∑

n=−∞

n2gn(w)
1 − iτ(nωc − ω)

;

σxy = −σyx =
3σ0i
2w

∞∑

n=−∞

ng′n(w)
1 − iτ(nωc − ω)

; σzz = 3σ0

∞∑

n=−∞

cn(w)
1 − iτ(nωc − ω)

.

Here, cn(w) = 1
2

∫ 1

−1 d(cos θ) cos2 θJ2
n(w sin θ), sn(w) = 1

2

∫ 1

−1 d(cos θ) sin2 θ

[J ′
n(w sin θ)]2, and gn(w) = 1

2

∫ 1

−1
d(cos θ)J2

n(w sin θ).
In the presence of a vector potential A0 = (0, xB0, 0), the electronic states

are described by H0 = 1
2m

[
p2
x + (py + e

cB0x)2 + p2
z

]
. The eigenfunctions and

eigenvalues of H0 can be written as

|ν〉 = |nkykz〉 =
1
L

eikyy+ikzzun

(
x+

h̄ky
mωc

)
,

εν = εn,ky,kz =
h̄2k2

z

2m
+ h̄ωc(n+

1
2
).

The quantum mechanical version of the nonvanishing components of σ are
given, for the case of q = (0, q, 0), by

σxx =
ω2

p

4πiω

⎡

⎣1 − 2mωc

h̄

1
N

′∑

nkykzα

f0(εnkz )
(
∂fn+α,n

∂q

)2
α

α2 − (ω/ωc)2

⎤

⎦ ,

σyy =
imω2

pω

2πh̄ωc

1
N

′∑

nkykzα

f0(εnkz )f2
n+α,n

α

α2 − (ω/ωc)2
,

σxy = −σyx =
iωc

2ωq
∂(q2σyy)

∂q
,

σzz =
ω2

p

4πiω

⎡

⎣1 − 2h̄
mωc

1
N

′∑

nkykzα

f0(εnkz)k2
zf

2
n+α,n

α

α2 − (ω/ωc)2

⎤

⎦ ,
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where fn′n(qy) is the two-center harmonic oscillator integral:

fn′n(qy) =
∫ ∞

−∞
un′(x+

h̄qy
mωc

)un(x)dx

and
X

(±)
n′n (qy) = (n+ 1)1/2fn′,n+1(qy) ± n1/2fn′,n−1(qy).

The quantum mechanical conductivity tensor is the sum of a semiclassical
term and a quantum oscillatory part:

σ(q, ω) = σSC(q, ω) + σQO(q, ω).
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Electrodynamics of Metals

14.1 Maxwell’s Equations

There are two aspects of the electrodynamics of metals. The first is linear
response theory and the second is the problem of boundary conditions. We
have already discussed linear response theory in some detail. Its application to
waves in an infinite medium is fairly straightforward. The problem of boundary
conditions is usually much more involved. We shall cover some examples of
each type in the rest of this chapter.

We consider an electromagnetic disturbance with space–time dependence
of the form eiωt−iq·r. Maxwell’s equations can be written

∇× E = −1
c

∂B
∂t
, (14.1)

and
∇× B =

1
c

∂E
∂t

+
4π
c

jT + 4π∇× Ms. (14.2)

In (14.2) jT is the total current in the system; it includes any external currents
and the diamagnetic response currents in the medium. The term Ms is the
spin magnetization in the case of a system containing spins. Equation (14.1)
can be written

B = ξ × E, (14.3)

where ξ = cq
ω . Therefore, the magnetic induction B can be eliminated from

(14.2):

ξ × (ξ × E) + E =
4πi
ω

jT +
4π
c

ξ × Ms,

or
ξ(ξ ·E) − ξ2E + E =

4πi
ω

jT +
4π
c

ξ × Ms. (14.4)

Normally, the total current jT can be written as

jT = j0 + jind, (14.5)
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where j0 is some external current and jind is the current induced (in the
electron gas) by the self-consistent field. The spin magnetization Ms and the
induced current jind are found in terms of the self-consistent fields E and B
from linear response theory. For example jind might simply be the electron
current density

je = σ · E, (14.6)

and the spin magnetization Ms will be some similar function of B

Ms = α · B. (14.7)

For the moment, let us ignore the effect of spin to drop the term Ms. Then,
(14.4) can be solved for jT.

jT = Γ ·E, (14.8)

where

Γ =
iω
4π

{
(ξ2 − 1)1− ξξ

}
. (14.9)

If we choose qx = 0 (as we did in linear response theory) Γ can be written

Γ =
ic2

4πω

⎛

⎜
⎝
q2y + q2z − ω2

c2 0 0
0 q2z − ω2

c2 −qyqz
0 −qyqz q2y − ω2

c2

⎞

⎟
⎠ . (14.10)

Notice that Γ is diagonal for propagation parallel or perpendicular to the dc
magnetic field (which we take to be in the z-direction).

14.2 Skin Effect in the Absence of a dc Magnetic Field

Consider a semi-infinite metal to fill the space z > 0 and vacuum the space
z < 0. Let us consider the propagation of an electromagnetic wave parallel
to the z-axis. Electromagnetic radiation is a self-sustaining oscillation of any
medium in which it propagates. Therefore, we need no external “driving”
current j0, and the total current is simply the electronic current

je(q, ω) = σ(q, ω) ·E(q, ω). (14.11)

But Maxwell’s equations require that jT = Γ · E, and we have just seen that
jT = je. Therefore, the electromagnetic waves must be solutions of the secular
equation

| Γ − σ |= 0, (14.12)
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which can be written
∣
∣
∣∣
∣
∣
∣

− c2q2

ω2 + ε(q, ω) 0 0
0 − c2q2

ω2 + ε(q, ω) 0
0 0 ε(q, ω)

∣
∣
∣∣
∣
∣
∣
= 0. (14.13)

Here, we have introduced the dielectric function

ε(q, ω) = 1 − 4πi
ω
σ(q, ω), (14.14)

and we have assumed that ε is diagonal (this is true for an electron gas in the
absence of a dc magnetic field). The transverse electromagnetic waves which
can propagate in the medium are solutions of the equation

c2q2 = ω2ε(q, ω). (14.15)

In addition, there is a longitudinal wave which is the solution of the equation

ε(q, ω) = 0. (14.16)

Normal Skin Effect

In the absence of a dc magnetic field, the local theory of conduction gives

σ =
σ0

1 + iωτ
=
ω2

pτ/4π
1 + iωτ

. (14.17)

Therefore, we have

ε(q, ω) = 1 − iω2
pτ/ω

1 + iωτ
(14.18)

or

ε(q, ω) =
1 + (ω2 − ω2

p)τ
2

1 + ω2τ2
− i

ω2
pτ

2

ωτ(1 + ω2τ2)
(14.19)

Usually in a good metal ωp � 1016/s, a frequency in the ultraviolet. Therefore,
in the optical or infrared range ωp � ω. The parameter τ can be as small as
10−14s or as large as 10−9s in very pure metals at very low temperatures. Let
us first consider the case ωτ � 1. Then, since ωp � ω, we have

ε(q, ω) � −ω
2
p

ω2
. (14.20)

Substituting this result into the wave equation c2q2 = ω2ε(q, ω) gives

q = ±i
ωp

c
= ± i

δ
. (14.21)

We choose the well-behaved solution q = − i
δ so that the field in the metal is

of the form



426 14 Electrodynamics of Metals

E(z, t) = E0eiωt−z/δ. (14.22)

What we find is that electromagnetic waves do not propagate in the metal
(for frequencies lower than ωp), and that the electric field in the solid drops
off exponentially with distance from the surface. The distance δ = c

ωp
is called

the normal skin depth.
If ωτ � 1, (this is usually true at rf frequencies, even at low temperatures

with pure materials) we have

ε(q, ω) � 1 − i
ω2

pτ

ω
∼ −i

ω2
pωτ

ω2
when ωp � ω. (14.23)

The solution of the wave equation is given by

q = ±ωp

c

(ωτ
2

)1/2

(1 − i), (14.24)

so that the field E is of the form

E(z, t) = E0eiωte−(i+1)
ωp
c ( ωτ

2 )1/2
z . (14.25)

Thus, the skin depth is given by

δ =
c

ωp

(
2
ωτ

)1/2

. (14.26)

If the mean free path l is much greater than the skin depth, l � δ, then the
local theory is not valid. In good metals at low temperatures, it turns out that
l � vFτ � 107nm and δ � 10nm, so that l � δ, and we must use the nonlocal
theory.

Anomalous Skin Effect

The normal skin effect was derived under the assumption that the q depen-
dence of σ was unimportant. Remember that this assumption is valid if
ql = qvFτ � 1. We have found that the electric field varies like e−z/δ. If
δ turns out to be smaller than l = vFτ , our initial assumption was certainly
incorrect. The skin depth δ is of the order of

δ � c

ωp
. (14.27)

Therefore, if
ωc

ωpvF
< ωτ, (14.28)

the theory is inconsistent because the field E(z) changes appreciably over a
mean free path l contradicting the assumption that the q dependence of σ can
be neglected. The theory for this case in which the q dependence of σ must
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be included is called the theory of the anomalous skin effect. In the nonlocal
theory, we can write, (we take the y-axis to be perpendicular to the metal’s
surface),

je(y) =
∫

dy′σ(y, y′) ·E(y′), (14.29)

which is true for an infinite medium. However, we have to take into account
the surface of the metal here. We shall do this by using the formalism for the
infinite medium, and imposing appropriate boundary conditions, namely, the
method of images.

14.3 Azbel–Kaner Cyclotron Resonance

The theory of the anomalous skin effect in the presence of a dc magnetic
field aligned parallel to the surface is the theory of Azbel–Kaner cyclotron
resonance in metals. We shall present a brief treatment of this effect, and
leave the problem of the anomalous skin effect in the absence of a dc magnetic
field as an exercise.

Let us choose a Cartesian coordinate system with the y-axis normal to the
surface, and the z-axis parallel to the dc magnetic field (see Fig. 14.1). For a
polarization in which E(r, t) is parallel to the z-axis, the wave equation can
be written, since q is along the y-direction,

(
−q2 +

ω2

c2
)E(q, ω

)
=

4πiω
c2

jT(q, ω). (14.30)

This comes from the Fourier transform of the wave equation. For the case
of self-sustaining oscillations of an infinite medium, we would set jT equal to

Fig. 14.1. The coordinate system for an electromagnetic wave propagating parallel
to the y-axis with the surface at y = 0. A dc magnetic field B0 is parallel to the
z-axis
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Fig. 14.2. A semi-infinite medium in terms of infinite medium picture. An electric
field Ez(y) in the metal is shown near the surface y = 0

the induced electron current given by σzz(q, ω)E(q, ω). For the semi-infinite
medium, however, one must exercise some care to account for the boundary
conditions. The electric field in the metal will decay in amplitude with distance
from the surface y = 0. There is a discontinuity in the first derivative of
E(r, t) at y = 0. Actually the term −q2E in the wave equation came from
making the assumption that E(y) was of the form e−iqy. One can use this
“infinite medium” picture by replacing the vacuum by the mirror image of
the metal as shown in Fig. 14.2. The fictitious surface current j0 ∝ δ(y) must
be introduced to properly take account of the boundary conditions. By putting
je(q, ω) = σzz(q, ω)E(q, ω), we can solve the wave equation for E(q, ω). The
fictitious surface current sheet of density j0 is very simply related to the
magnetic field at the surface

j0(y) =
c

2π
H(0)δ(y) or j0(q) =

cH(0)
2π

. (14.31)

Solving (14.30) for E(q, ω) gives

E(q, ω) =
2iωH(0)/c

−q2 + ω2

c2 − 4πiω
c2 σzz(q, ω)

. (14.32)

By substituting this result into the Fourier transform

E(y) =
1
2π

∫ ∞

−∞
dq e−iqyE(q, ω), (14.33)

and the definition of the surface impedance Z

Z =
4π
c

E(0)
H(0)

, (14.34)
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Fig. 14.3. The coordinate system for an electromagnetic wave propagating parallel
to the y-axis to the metal surface (y = 0) for the case of polarization in the x-
direction. A dc magnetic field B0 is parallel to the z-axis

we can easily obtain the electric field as a function of position and the surface
impedance of the metal. In (14.34), E(0) and H(0) are the electric field and
the magnetic field at the surface, respectively.

For the case of a wave polarized in the x-direction instead of the
z-direction, σzz is replaced by

σT = σxx +
σ2
xy

σyy
. (14.35)

This is equivalent to assuming that electrons are specularly reflected at the
boundary y = 0. Figure 14.3 shows the coordinate system for a wave prop-
agating perpendicular to the boundary of the metal with polarization in the
x-direction normal to the dc magnetic field. One can see that although E(y)
is continuous, its first derivative is not. Therefore, in defining the Fourier
transform of ∂2E(y)

∂y2 we must add terms to take account of these continuities.

∫ ∞

−∞
dy eiqy ∂

2E(y)
∂y2

= ΔE′
0 − iqΔE0 − q2E(q), (14.36)

where

ΔE′
0 =

(
∂E(y)
∂y

)

y=0+

−
(
∂E(y)
∂y

)

y=0−
, (14.37)

and
ΔE0 = E(0+) − E(0−). (14.38)

For the case of specular reflection we take ΔE0 = 0 and ΔE′
0 = 2E′(0+). This

adds a constant term to the wave equation
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(
−q2 +

ω2

c2

)
E(q, ω) = −ΔE′

0 +
4πiω
c2

je(q, ω). (14.39)

This added term can equally well be thought of as a fictitious surface current
j0(y) given by

j0(y) = −c
2ΔE′

0

4πiω
δ(y). (14.40)

So that the infinite medium result (or infinite medium wave equation) can be
used if we take for jT(q, ω)

jT(q, ω) = je(q, ω) + j0(q). (14.41)

Actually, the results just derived are valid in the absence of a magnetic field
as well as in the presence of a dc magnetic field. In the absence of a magnetic
field the conductivity tensor is given by

σ(q, ω) =
ω2

p

4πiω
{1 + I(q, ω)} , (14.42)

where

I(q, ω) =
m

N

∑

kk′

f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|Vq|k〉∗. (14.43)

14.4 Azbel–Kaner Effect

If we use the Cohen–Harrison–Harrison expression for σzz(q, ω), (13.125), we
have

σzz = 3σ0

∞∑

n=−∞

cn(w)
1 − iτ(nωc − ω)

, (14.44)

where

cn(w) =
1
2

∫ 1

−1

d(cos θ) cos2 θJ2
n(w sin θ). (14.45)

Since w � 1 (i.e., we assume w ≡ qvF
ωc

� 1 for the values of q of interest
in this problem) we can replace Jn(w sin θ) by its asymptotic value for large
argument.

lim
z→∞Jn(z) ≈

√
2
πz

cos[z −
(
n+

1
2

)
π

2
]. (14.46)

Substituting (14.46) into the expression for cn(w) (14.45) gives

cn(w) ≈ 1
4w

. (14.47)
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Therefore, we have

σzz ≈
3ω2

p

4πiω̃
1

4w

∞∑

n=−∞

1
1 + nωc/ω̃

. (14.48)

Making use of the fact that

∞∑

n=−∞

1
1 + nωc/ω

=
πω

ωc
cot

πω

ωc
(14.49)

and −i cotx = coth ix, one can easily see that

σzz ≈
3ω2

p

16qvF
coth

[
π(1 + iωτ)

ωcτ

]
. (14.50)

This can be rewritten

σzz ≈ − 3iω2
p

16qvF
cot

[
π(ω − i/τ)

ωc

]
. (14.51)

In the limit ωτ � 1, this function has sharp peaks at ω � nωc. In this last
expression, we have substituted ω− i/τ for ω. In the limit ωτ � 1, σzz shows
periodic oscillations as a function of ωc. These oscillations also show up in the
surface impedance.

In using the Cohen–Harrison–Harrison expression for σzz , we have obvi-
ously omitted quantum oscillations. By using the quantum mechanical expres-
sion for σ, for example σQO(q, ω) given by (13.154), one can easily obtain the
quantum oscillations of the surface impedance.

14.5 Magnetoplasma Waves

We have seen that if we omit spin magnetization, the Maxwell equations for
a wave of the form eiωt−iq·r can be written

jT = Γ(q, ω) · E. (14.52)

The total current is usually the sum of some external current and the induced
electron current. If one is interested in the self-sustaining oscillations of the
system, one wants the external driving current to be equal to zero. Then the
electron current is given by je = σ · E, and this is the only current. Thus,
jT = Γ ·E = σ ·E, so that we have

| Γ − σ |= 0 (14.53)

gives the dispersion relation for the normal modes of the system.
In the absence of a dc magnetic field (14.53) reduces to

(ω2ε− c2q2)2ε = 0. (14.54)
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Fig. 14.4. The dispersion curves of transverse and longitudinal plasmon modes in
the absence of a dc magnetic field

In the local (collisionless) theory, the dielectric function is given by

ε ≈ 1 − ω2
p

ω2
, (14.55)

so the normal modes are two degenerate transverse modes of frequency

ω2 = ω2
p + c2q2, (14.56)

and a longitudinal mode of frequency

ω = ωp. (14.57)

Figure 14.4 shows the dispersion curves of transverse and longitudinal plasmon
modes in the absence of a dc magnetic field. There are no propagating modes
for frequencies ω smaller than the plasma frequency ωp.

Now, consider the normal modes of the system in the presence of a dc
magnetic field. We choose the z-axis parallel to the magnetic field, and let the
wave vector q lie in the y − z plane. The secular equation can be written

∣
∣
∣
∣
∣
∣

εxx − ξ2 εxy 0
−εxy εxx − ξ2z ξyξz

0 ξyξz εzz − ξ2y

∣
∣
∣
∣
∣
∣
= 0. (14.58)

In writing down (14.58) we have introduced ξ = cq
ω , and now assume a local

theory of conductivity in which the nonvanishing elements of ε are

εxx(ω) = εyy(ω) = 1 − ω2
p

ω2 − ω2
c

,

εxy(ω) = −εyx(ω) = −i
ω2

pωc/ω

ω2 − ω2
c

, (14.59)

εzz(ω) = 1 − ω2
p

ω2
.



14.5 Magnetoplasma Waves 433

Fig. 14.5. The dispersion curves of magnetoplasma modes in a metal when the
wave propagates in the z-direction parallel to the dc magnetic field B0

Because the dielectric constant is independent of q, the secular equation turns
out to be rather simple. It is a quadratic equation in q2

αq4 + βq2 + γ = 0, (14.60)

where

α = εxx(ω) sin2 θ + εzz(ω) cos2 θ,
β = −ω2

{
εxx(ω)εzz(ω)(1 + cos2 θ) + [ε2xy(ω) + ε2xx(ω)] sin2 θ

}
, (14.61)

γ = ω4
[
ε2xx(ω) + ε2xy(ω)

]
εzz.

Here, θ is the angle between the direction of propagation and the direction
of the dc magnetic field. For θ = 0 (14.60) reduces to

εzz(ω)
{
[q2 − ω2εxx(ω)]2 + ω4ε2xy(ω)

}
= 0. (14.62)

The roots can easily be plotted; there are four roots as are shown in Fig. 14.5.
The longitudinal plasmon ω = ωp is the solution of εzz(ω) = 0. The two
transverse plasmons start out at q = 0 as ω =

[
ω2

p + (ωc/2)2
]1/2± ωc

2 . At very
large q they are just light waves, but there is a difference in the phase velocity
for the two different (circular) polarizations. Their difference in phase velocity
is responsible for the Faraday effect–the rotation of the plane of polarization
in a plane polarized wave. The low frequency mode is the well-known helicon.
For small values of q it begins as

ω =
ωcc

2q2

ω2
p

, (14.63)

and it asymptotically approaches ω = ωc for large q.
For θ = π

2 (14.60) reduces to

[q2 − ω2εzz(ω)]
{
q2εxx(ω) − ω2[ε2xx(ω) + ε2xy(ω)]

}
= 0. (14.64)

The mode corresponding to q2 = ω2εzz(ω) is a transverse plasmon of fre-
quency ω =

[
ω2

p + c2q2
]1/2. The helicon mode appears no longer. The other



434 14 Electrodynamics of Metals

Fig. 14.6. The dispersion curves of magnetoplasma modes in a metal when the
wave propagates in the z-direction normal to the dc magnetic field B0

two modes have mixed longitudinal and transverse character. They start at

ω =
[
ω2

p +
(ωc

2

)2
]1/2

± ωc

2
(14.65)

for q = 0. For very large q one mode is nearly transverse and varies as
ω ≈ cq while the other approaches the finite asymptotic limit ω =

√
ω2

p + ω2
c .

The roots of (14.64) are sketched in Fig. 14.6. For an arbitrary angle of
propagation1 the helicon mode has a frequency (we assume ωp � ωc)

ω � ωcc
2q2 cos θ

ω2
p + c2q2

(
1 +

i
ωcτ cos θ

)
. (14.66)

Here, we have included the damping due to collisions. For very large values
of cqω , the two finite frequency modes are sometimes referred to as the hybrid-
magnetoplasma modes. Their frequencies are

ω2
± =

1
2
(
ω2

p + ω2
c

)
+
[
1
4
(
ω2

p + ω2
c

)2 − ω2
pω

2
c cos2 θ

]1/2

. (14.67)

For propagation at an arbitrary angle we can think of the four modes as
coupled magnetoplasma modes. The ω± modes described above for very large
values of q are obviously the coupled helicon and longitudinal plasmon.

14.6 Discussion of the Nonlocal Theory

By considering the q dependence of the conductivity one can find a number
of interesting effects that have been omitted from the local theory (as well as
the quantitative changes in the dispersion relation which are to be expected).
Among them are:
1 M.A. Lampert, J.J. Quinn, S. Tosima, Phys. Rev. 152, 661 (1966).
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1. Landau Damping and Doppler Shifted Cyclotron Resonance
Suppose an electromagnetic wave of frequency ω and wave number q prop-
agates inside a metal. To absorb energy from the electromagnetic wave,
the component of the velocity of an electron along the applied dc mag-
netic field must satisfy nωc + qzvz = ω for some integral values of n.
When nωc − qzvF < ω < nωc + qzvF, there are electrons capable of direct
absorption of energy from the electromagnetic field and we have cyclotron
damping even in the absence of collisions. However, if this condition is
not satisfied, then, for example, when | ω − ωc |> qzvF, there does not
exist any electron with vz = (ωc − ω)/qz, which would resonantly absorb
energy from the wave. For n = 0, this effect is usually known as Landau
damping. Then, we have −qzvF < ω < qzvF or −vF < vphase < vF. It
corresponds to having a phase velocity vphase parallel to B0 equal to the
velocity of some electrons in the solid, i.e., −vF < vz < vF. These electrons
will ride the wave and thus absorb power from it resulting in collision-
less damping of the wave. For n �= 0, the effect is usually called Doppler
shifted cyclotron resonance, because the effective frequency seen by the
moving electron is ωeff = ω − qzvz and it is equal to n times the cyclotron
resonance frequency ωc.

2. Bernstein Modes or Cyclotron Modes
These are the modes of vibration in an electron plasma, which occur
only when σ has a q-dependence. They are important in plasma physics,
where they are known as Bernstein modes. In solid-state physics, they are
known as nonlocal waves or cyclotron waves. These modes start out at
ω = nωc for q = 0. They propagate perpendicular to the dc magnetic field,
and depend for their existence (even at very long wavelengths) on the q
dependence of σ.

3. Quantum Waves
These are waves which arise from the gigantic quantum oscillations in σ.
These quantum effects depend, of course, on the q dependence of σ.

14.7 Cyclotron Waves

We will give only one example of the new kind of wave that can occur when
the q dependence of σ is taken into account. We consider the magnetic field in
the z-direction and the wave vector q in the y-direction. The secular equation
for wave propagation is the familiar

∣
∣
∣∣
∣
∣

εxx − ξ2 εxy 0
−εxy εyy 0

0 0 εzz − ξ2

∣
∣
∣∣
∣
∣
= 0. (14.68)
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This secular equation reduces to a 2 × 2 matrix and a 1 × 1 matrix. For the
polarization with E parallel to the z-axis we are interested in the 1×1 matrix.
The Lorentz force couples the x-y motions giving the 2×2 matrix for the other
polarization. For the simple case of the 1 × 1 matrix we have

c2q2

ω2
= 1 − 4πi

ω
σzz , (14.69)

where, in the collisionless limit (i.e. τ → ∞),

σzz =
3iω2

p

4π

∞∑

n=0

cn(w)
1 + δn0

2ω
(nωc)2 − ω2

(14.70)

with

cn(w) =
∫ 1

0

d(cos θ) cos2 θJ2
n(w sin θ). (14.71)

If we let ω
ωc

= a, we can write

4πi
ω
σzz = −6ω2

p

ω2
c

[
c0/2
−a2

+
c1

1 − a2
+ · · · + cn

n2 − a2
+ · · ·

]
. (14.72)

Let us look at the long wavelength limit where qvF
ωc

� 1. Remember that for
small x

Jn(x) =
1
n!

(x
2

)n [
1 − (x/2)2

1 · (n+ 1)
+ · · ·

]
. (14.73)

We keep terms to order w2. Because cn ∝ J2
n, cn ∝ w2n. Therefore, if we

retain only terms of order w2, we can drop all terms but the first two. Then,
we have

J2
0 (x) ≈ 1 − x2

2
and J2

1 (x) ≈ x2

4
. (14.74)

Substituting (14.74) in c0 and c1 yields

c0(w) ≈
∫ 1

0

d(cos θ) cos2 θ
[
1 − 1

2
w2 sin2 θ

]
=

1
3
− w2

15
, (14.75)

and for c1 we find

c1(w) ≈
∫ 1

0

d(cos θ) cos2 θ
w2

4
sin2 θ =

w2

30
. (14.76)

Substituting these results into the secular equation, (14.69), gives

c2q2

ω2
ca

2
� 1 − ω2

p

ω2
ca

2

[
1 − w2/5

1 − a2

]
. (14.77)

This is a simple quadratic equation in a2, where a = ω
ωc

. The general solu-
tion is
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ω2 =
1
2
(
ω2

p + ω2
c + c2q2

)±
√

1
4
(
ω2

p + ω2
c + c2q2

)2 − ω2
c

(
ω2

p + c2q2 − ω2
pw

2

5

)
.

(14.78)

For q → 0, the two roots are

ω2 =
1
2
(
ω2

p + ω2
c

)± 1
2
(
ω2

p − ω2
c

)
=
{
ω2

p,
ω2

c .
(14.79)

If ωp � ωc, the lower root can be obtained quite well by setting
[
1 − w2/5

1 − a2

]
= 0,

which gives (
ω

ωc

)2

= 1 − w2

5
. (14.80)

Actually going back to (14.72)

4πi
ω
σzz = −6ω2

p

ω2
c

[
c0/2
−a2

+
c1

1 − a2
+ · · · + cn

n2 − a2
+ · · ·

]
,

it is not difficult to see that, for ωp � nωc, there must be a solution at
ω2 = n2ω2

c +O(q2n). We do this by setting cn = αnw
2n for n ≥ 1. If ωp � nωc,

then the solutions are given, approximately, by
[−c0/2

a2
+

c1
1 − a2

+ · · · + cn
n2 − a2

+ · · ·
]
� 0.

Let us assume a solution of the form a2 = n2 + Δ, where Δ � n. Then the
above equation can be written

[
− 1

3 (1 − w2

5 )
n2

+
α1w

2

12 − n2
+ · · · + αn−1w

2(n−1)

(n− 1)2 − n2
+
αnw

2n

Δ
+ · · ·

]

� 0.

Solving for Δ gives Δ � 3n2αnw
2n. Thus, we have a solution of the form

(
ω

ωc

)2

= n2 + O(q2n). (14.81)

14.8 Surface Waves

There are many kinds of surface waves in solids–plasmons, magnetoplasma
waves, magnons, acoustic phonons, optical phonons etc. In fact, we believe
that every bulk wave has associated with it a surface wave. To give some
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feeling for surface waves, we shall consider one simple case; surface plasmons
in the absence of a dc magnetic field.

We consider a metal of dielectric function ε1 to fill the space z > 0, and an
insulator of dielectric constant ε0 the space z < 0. The wave equation which
describes propagation in the y − z plane is given by

⎛

⎜
⎝

ε− ξ2 0 0
0 ε− ξ2z ξyξz

0 ξyξz ε− ξ2y

⎞

⎟
⎠

⎛

⎜
⎝

Ex

Ey

Ez

⎞

⎟
⎠ = 0. (14.82)

Here, ξ = cq
ω and ξ2 = ξ2y+ξ

2
z . For the dielectric ε = ε0, a constant, and we find

only two transverse waves of frequency ω = cq√
ε0

for the bulk modes. For the
metal (to be referred to as medium 1) there are one longitudinal plasmon of
frequency ω = ωp and two transverse plasmons of frequency ω =

√
ω2

p + c2q2

as the bulk modes. Here we are assuming that ε1 = 1 − ω2
p
ω2 is the dielectric

function of the metal.
To study the surface waves, we consider ω and qy to be given real numbers

and solve the wave equation for qz . For the transverse waves in the metal, we
have

q2z =
ω2 − ω2

p

c2
− q2y . (14.83)

In the insulator, we have

q2z = ε0
ω2

c2
− q2y . (14.84)

The qz = 0 lines are indicated in Fig. 14.7 as solid lines. Notice that in region
III of Fig. 14.7, q2z < 0 in both the metal and the insulator. This is the region
of interest for surface waves excitations, because negative q2z implies that qz
itself is imaginary. Solving for q(1)z (value of qz in the metal) and q(2)z (value of
qz in the insulator), when ω and qy are such that we are considering region III,
gives

q(1)z = ±i(ω2
p + q2y − ω2)1/2 = ±iα1,

q(0)z = ±i(q2y − ε0ω
2)1/2 = ±iα0. (14.85)

This defines α0 and α1, which are real and positive. The wave in the metal
must be of the form e±α1z and in the insulator of the form e±α0z. To have
solutions well behaved at z → +∞ in the metal and z → −∞ in the insulator
we must choose the wave of the proper sign. Doing so gives

E(1)(r, t) = E(1)eiωt−iqyy−α1z,

E(0)(r, t) = E(0)eiωt−iqyy+α0z. (14.86)

The superscripts 1 and 0 refer, respectively, to the metal and dielectric. The
boundary conditions at the plane z = 0 are the standard ones of continuity
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Fig. 14.7. The ω2 − q2
y plane for the waves near the interface of a metal and an

insulator at z = 0. The solid lines show the region where qz = 0 in the solid (line
separating regions I and II) and in the dielectric (line separating II and III). In
region III q2

z < 0 in both media, therefore excitations in this region are localized at
the surface

of the tangential components of E and H, and of the normal components
of D and B. By applying the boundary conditions (remembering that B =
i c
ω∇× E = c

ω (qyEz − qzEy , qzEx,−qyEx) we find that

1. For the independent polarization with Ey = Ez = 0, but Ex �= 0 there are
no solutions in region III.

2. For the polarization with Ex = 0, but Ey �= 0 �= Ez, there is a dispersion
relation

ε1
α1

+
ε0
α0

= 0. (14.87)

If we substitute for α0 and α1, (14.87) becomes

c2q2y =
ω2ε0ε1(ω)
ε0 + ε1(ω)

=
ε0ω

2(ω2
p − ω2)

[
ω2(ε0 − 1) + ω2

p

]

(ω2
p − ω2)2 − ω4ε20

. (14.88)

For very large qy the root is approximately given by the zero of the denomi-
nator, viz ω = ωp√

1+ε0
. For small values of qy it goes as ω = c√

ε0
qy. Figure 14.8

shows the dispersion curve of the surface plasmon.
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c

c

Fig. 14.8. Dispersion relation of surface plasmon

14.9 Magnetoplasma Surface Waves

In the presence of a dc magnetic field B0 oriented at an arbitrary angle
to the surface, the problem of surface plasma waves becomes much more
complicated.2 We will discuss only the nonretarded limit of cq � ω.

Let the metal or semiconductor be described by a dielectric function

εij(ω) = εLδij −
ω2

p

ω2(ω2 − ω2
c )
[
ω2δij − ωciωcj − iωωck

εijk
]
, (14.89)

where εL is the background dielectric constant, ωc = eB0
mc , ωcx = eB0x

mc , and
εijk = +1(−1) if ijk is an even (odd) permutation of 123, and zero otherwise.
Let the insulator have dielectric constant ε′. The wave equation is given by

⎛

⎜
⎝

εxx − q2/ω2 εxy εxz

εyx εyy − q2z/ω
2 εyz + qyqz/ω

2

εzx εzy + qyqz/ω
2 εzz − q2y/ω

2

⎞

⎟
⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ = 0. (14.90)

In the nonretarded limit (cq � ω) the off-diagonal elements εxy, εyx, εxz, εzx
can be neglected and (14.90) can be approximated (we put c = 1) by

(q2 − ω2εxx)
[
εzzq

2
z + εyyq

2
y + (εyz + εzy)qyqz

] ≈ 0. (14.91)

The surface magneto-plasmon solution arises from the second factor. Solving
for qz in the metal we find
2 A summary of magnetoplasma surface wave results in semiconductors is reviewed

by Quinn and Chiu in Polaritons, edited by E. Bernstein, F. DeMartini,
Pergamon, New York (1971), p. 259.
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q
(1)
z

qy
= −i

√
εyy
εzz

−
(
εyz + εzy

2εzz

)2

− εyz + εzy
2εzz

. (14.92)

The superscript 1 refers to the metal. In the dielectric (superscript 0) q(0)z =
+iqy. The eigenvectors are

E(1)(r, t) �
(

0, E(1)
y ,−E

(1)
y q

(1)
z

qy

)

eiωt−iqyy−iq(1)z z,

B(1)(r, t) � c

ω

(
qyE

(1)
z − q(1)z E(1)

y , 0, 0
)

eiωt−iqyy−iq(1)z z ≈ 0, (14.93)

E(0)(r, t) �
(

0, E(0)
y ,−E

(0)
y q

(0)
z

qy

)

eiωt−iqyy−iq(0)z z,

B(0)(r, t) � c

ω

(
qyE

(0)
z − q(0)z E(0)

y , 0, 0
)

eiωt−iqyy−iq(0)z z ≈ 0.

The dispersion relation obtained from the standard boundary conditions is

+ iε′ =
q
(1)
z

qy
εzz + εzy. (14.94)

With εL = ε′, (14.94) simplifies to

ω2 − ω2
c + (ω ± ωcx)2 − ω2

p

εL
= 0, (14.95)

where the ± signs correspond to propagation in the ±y-directions, respec-
tively. For the case B0 = 0, this gives ω = ωp√

2εL
. For B0 ⊥ x, we

have

ω =

√
ω2

c + ω2
p/εL

2
,

and with B0 ‖ x we obtain

ω =
1
2

√

ω2
c +

2ω2
p

εL
∓ ωc

2
,

where the two roots correspond to propagations in the ±y-directions, respec-
tively.

14.10 Propagation of Acoustic Waves

Now, we will try to give a very brief summary of propagation of acoustic waves
in metals. Our discussion will be based on a very simple model introduced by
Quinn and Rodriguez.3 The model treats the ions completely classically. The
metal is considered to consist of
3 J.J. Quinn, S. Rodriguez, Phys. Rev. 128, 2487 (1962).
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1. A lattice (Bravais lattice for simplicity) of positive ions of mass M and
charge ze.

2. An electron gas with n0 electrons per unit volume.
3. In addition to electromagnetic forces, there are short range forces between

the ions which we represent by two ‘unrenormalized’ elastic constants C�
and Ct.

4. The electrons encounter impurities and defects, and have a collision time
τ associated with their motion.

First, let us investigate the classical equation of motion of the lattice. Let
ξ(r, t) be the displacement field of the ions. Then we have

M
∂2ξ

∂t2
= C�∇(∇ · ξ)−Ct∇× (∇× ξ) + zeE+

ze

c
ξ̇ × (B0 + B) + F. (14.96)

The forces appearing on the right hand side of (14.96) are

1. The short range “elastic” forces (the first two terms).
2. The Coulomb interaction of the charge ze with the self-consistent electric

field produced by the ionic motion (the third term).
3. The Lorentz force on the moving ion in the presence of the dc magnetic

field B0 and the self-consistent ac field B. The term ze
c ξ̇×B is always very

small compared to zeE, and we shall neglect it (the fourth term).
4. The collision drag force F exerted by the electrons on the ions (the last

term).

The force F results from the fact that in a collision with the lattice, the elec-
tron motion is randomized, not in the laboratory frame of reference, but in a
frame of reference moving with the local ionic velocity. Picture the collisions as
shown in Fig. 14.9. Here, 〈v〉 is the average electron velocity (at point r where
the impurity is located) just before collision. Just after collision 〈v〉final ≈ 0
in the moving system, or 〈v〉final ≈ ξ̇ in the laboratory. Thus the momentum

Fig. 14.9. Schematic of electron–impurity collision in the laboratory frame and in
the coordinate system moving with the local ionic velocity. In the latter system a
typical electron has velocity 〈v〉 − ξ̇ before collision and zero afterward. In the lab
system, the corresponding velocities are 〈v〉 before collision and ξ̇ afterwards
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imparted to the positive ion must be Δp = m(〈v〉 − ξ̇). This momentum is
imparted to the lattice per electron collision; since there are z electrons per
atom and 1

τ collisions per second for each electron, it is apparent that

F =
z

τ
m(〈v〉 − ξ̇). (14.97)

We can use the fact that the electronic current je(r) = −n0e〈v(r)〉 to write

F = − zm

n0eτ
(je + n0eξ̇). (14.98)

But the ionic current density is jI = n0eξ̇ so that

F = − zm

n0eτ
(je + jI). (14.99)

The self-consistent electric field E appearing in the equation of motion,
(14.96), is determined from the Maxwell equations, which can be written

jT = Γ(q, ω) · E. (14.100)

Let us consider jT. It consists of the ionic current jI, the electronic current je,
and any external driving current j0. For considering the normal modes of the
system (and the acoustic waves are normal modes) we set the external driving
current j0 equal to zero and look for self-sustaining modes. Perhaps, if we have
time, we can discuss the theory of direct electromagnetic generation of acoustic
waves; in that case j0 is a “fictitious surface current” introduced to satisfy the
boundary conditions in a finite solid (quite similar to the discussion given in
our treatment of the Azbel–Kaner effect.). For the present, we consider the
normal modes of an infinite medium. In that case, j0 = 0 so that jT = jI + je.
The electronic current would be simply je = σ · E except for the effect of
“collision drag” and diffusion. These two currents arise from the fact that the
correct collision term in the Boltzmann equation must be

(
∂f

∂t

)

c

= −f − f̄0
τ

, (14.101)

where f̄0 differs from the overall equilibrium distribution function f0 in two
respects:

1. f̄0 depends on the electron kinetic energy measured in the coordinates
system of the moving lattice.

2. The chemical potential ζ appearing in f̄0 is not ζ0, the actual chemi-
cal potential of the solid, but a local chemical potential ζ(r, t) which is
determined by the condition

∫
d3k

[
f − f̄0

]
= 0, (14.102)

i.e., the local equilibrium density at point r must be the same as the
nonequilibrium density.
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We can expand f̄0 as follows:

f̄0(k, r, t) = f0(k) +
∂f0
∂ε

{
−mvk · ξ̇ + ζ1(r, t)

}
, (14.103)

where ζ1(r, t) = ζ(r, t)−ζ0. Because of these two changes, instead of je = σ ·E,
we have

je(q, ω) = σ(q, ω) ·
[

E− mξ̇

eτ

]

+ eD · ∇n, (14.104)

where
D =

σ

e2g(ζ0)(1 + iωτ)
(14.105)

is the diffusion tensor. In (14.105), g(ζ0) is the density of states at the Fermi
surface and n(r, t) = n0 + n1(r, t) is the electron density at point (r, t). The
electron density is determined from the distribution function f , which must be
solved for. However, at all but the very highest ultrasonic frequencies, n(r, t)
can be determined accurately from the condition of charge neutrality.

ρe(r, t) + ρI(r, t) = 0, (14.106)

where ρe(r, t) = −en1(r, t) and ρI can be determined from the equation of
continuity iωρI − iq · jI = 0. Using these results, we find

je(q, ω) = σ(q, ω) ·
[
E− iωm

eτ
ξ +

n0

eg(ζ0)(1 + iωτ)
q(q · ξ)

]
. (14.107)

If we define a tensor Δ by

Δ =
n0eiω
σ0

{
1− 1

3
q2l2

iωτ(1 + iωτ)
q̂q̂
}
, (14.108)

where q̂ = q
|q| , we can write

je(q, ω) = σ(q, ω) · E(q, ω) − σ(q, ω) · Δ(q, ω) · ξ(q, ω). (14.109)

We can substitute (14.109) into the relation je + jI = Γ ·E, and solve for the
self-consistent field E to obtain

E(q, ω) = [Γ − σ]−1 (iωne 1− σ · Δ) · ξ. (14.110)

Knowing E, we also know je and hence F, (14.98) in terms of the ionic dis-
placement ξ. Thus, every term on the right-hand side of (14.96), the equation
of motion of the ions can be expressed in terms of ξ. The equation of motion
is thus of the form

T(q, ω) · ξ(q, ω) = 0, (14.111)
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where T is a very complicated tensor. The nontrivial solutions are determined
from the secular equation

det | T(q, ω) |= 0. (14.112)

The roots of this secular equation give the frequencies of the sound waves (two
transverse and one longitudinal modes) as a function of q, B0, τ , etc. Actu-
ally the solutions ω(q) have both a real and imaginary parts; the real part
determines the velocity of sound and the imaginary part the attenuation of
the wave.

Here, we do not go through the details of the calculation outlined earlier.
We will discuss special cases and attempt to give a qualitative feeling for the
kinds of effects one can observe.

14.10.1 Propagation Parallel to B0

For propagation parallel to the dc magnetic field, it is convenient to introduce
circularly polarized transverse waves with

ξ± = ξx ± iξy,
σ± = σxx ∓ iσxy.

(14.113)

We also introduce the parameter β = c2q2

4πωσ0
= c2q2

ω2
pωτ

. Then the nonvanishing

components of Γ are Γxx = Γyy = iβσ0 and Γzz = − iω
4π . Define the resistivity

tensor R by
R = σ−1. (14.114)

Then R± = σ−1
± and Rzz = σ−1

zz . The secular equation | T |= 0 reduces to
two simple equations:

ω2
± = s2t q

2 ∓ zeωB0

Mc
+
zmiω
Mτ

(1 − iβ)(σ0R± − 1)
1 − iβσ0R±

(14.115)

for the circularly polarized transverse waves, and

ω2 = s2l q
2 +

zmiω
Mτ

(
σ0Rxx − 1 − q2l2/3

1 + ω2τ2

)
. (14.116)

for the longitudinal waves. In (14.115) and (14.116), st and sl are the speeds
of transverse and longitudinal acoustic waves given, respectively, by

st =

√
Ct

M
and sl =

√
zm

3M
v2
F

1 + ω2τ2
+
C�
M
. (14.117)

From these results, we observe that

1. ω has both real and imaginary parts. The real part gives the frequency and
hence velocity as a function of B0. The imaginary part gives the acoustic
attenuation as a function of ql, ωcτ , B0, etc.
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2. For longitudinal waves, if we use the semiclassical result for σzz , ω is
completely independent of B0.

3. In the case where the quantum mechanical result for σzz is used, both the
velocity and attenuation display quantum oscillations of the de Haas van
Alphen type.

4. For shear waves, the right and left circular polarizations have slightly dif-
ferent velocity and attenuation. This leads to a rotation of the plane of
polarization of a linearly polarized wave. This is the acoustic analogue of
the Faraday effect.

5. R± does depend on the magnetic field, and the acoustic wave shows a
fairly abrupt increase in attenuation as the magnetic field is lowered below
ωc = qvF. This effect is called Doppler shifted cyclotron resonances; DSCR.

6. The helicon wave solution actually appears in (14.115), so that the equation
for ω± actually describes helicon–phonon coupling.

14.10.2 Helicon–Phonon Interaction

Look at (14.115), the dispersion relation of the circularly polarized shear waves
propagating parallel to B0:

ω2
± = s2tq

2 ∓ zeωB0

Mc
+
zmiω
Mτ

(1 − iβ)(σ0R± − 1)
1 − iβσ0R±

. (14.118)

In the local limit, where σ is shown in (13.116) and (13.117), we have

σ0R± � 1 + iωτ ∓ iωcτ. (14.119)

Remember that β � c2q2

ωτω2
p
. Therefore, 1 − iβσ0R± can be written

1 − iβσ0R± � 1 − i
c2q2

ωτω2
p

[1 + iωτ ∓ iωcτ ]. (14.120)

Let us assume ωcτ � 1, ωc � ω, and β � 1. Then, we can write that

1 − iβσ0R± ≈ 1 ∓ ωH

ω
, (14.121)

where ωH = ωcc
2q2

ω2
p

(
1 − i

ωcτ

)
is the helicon frequency. Substituting this in

(14.118) gives

ω2
± − s2tq

2 � ∓ωΩc ± Ωcω
2

ω ∓ ωH
, (14.122)

where Ωc = zeB0
Mc is the ionic cyclotron frequency. Equation (14.122) can be

rewritten as
(ω − stq)(ω + stq)(ω ∓ ωH) � ωωHΩc. (14.123)

The dispersion curves are illustrated in Fig. 14.10. The helicon and transverse
sound wave of the same polarization are strongly coupled by the term on the
right-hand side of (14.123), when their phase velocities are almost equal. The
solid lines depict the coupled helicon–phonon modes.
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∝

Fig. 14.10. Schematic of the roots of Eq.(14.123). The region of strongly coupled
helicon–phonon modes for circularly polarized acoustic shear waves

14.10.3 Propagation Perpendicular to B0

For propagation to the dc magnetic field, the resistivity tensor has the
following nonvanishing elements:

Rxx =
σyy

σxxσyy + σ2
xy

, Ryy =
σxx

σxxσyy + σ2
xy

,

Rxy = −Ryx =
σxy

σxxσyy + σ2
xy

, Rzz = σ−1
zz . (14.124)

The secular equation |T| = 0 again reduces to a 2 × 2 matrix and a 1 × 1
matrix, which can be written

(
ω2 −Axx −Axy
−Ayx ω2 −Ayy

)(
ξx
ξy

)
= 0 (14.125)

and (
ω2 −Azz

)
ξz = 0, (14.126)

where

Axx =
Ct

M
q2 +

zmiω
Mτ

(1 − iβ)(σ0Rxx − 1)
1 − iβσ0Rxx

,

Ayy =
C�
M
q2 +

zmq2v2
F

3M(1 + ω2τ2)

+
zmiω
Mτ

{

σ0Ryy − 1 − iβσ2
0R

2
xy

1 − iβσ0Rxx
− q2l2

3(1 + ω2τ2)

}

,

Axy = −Ayx =
zmiω
Mτ

{
(1 − iβ)σ0Rxy
1 − iβσ0Rxx

− ωcτ

}
,

Azz =
Ct

M
q2 +

zmiω
Mτ

(1 − iβ)(σ0Rzz − 1)
1 − iβσ0Rzz

. (14.127)
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The velocity and attenuation of sound can display several different types of
oscillatory behavior as a function of applied magnetic field. Here we mention
very briefly each of them.

1. Cyclotron resonances When ω = nωc, for propagation perpendicular to B0,
the components of the conductivity tensor become very large. This gives
rise to absorption peaks.

2. de Haas–van Alphen type oscillations Because the conductivity involves
sums

∑
n,ky,s

over quantum mechanical energy levels, as is shown in
(13.81), the components of the conductivity tensor display de Haas–van
Alphen type oscillations exactly as the magnetization, free energy, etc. One
small difference is that instead of being associated with extremal orbits
vz = 0, these oscillations in acoustic attenuation are associated with orbits
for which v̄z = s.

3. Geometric resonances Due to the matrix elements 〈ν′|eiq·r|ν〉 which behave
like Bessel function in the semiclassical limit, we find oscillations associated
with Jn′−n(q⊥vF/ωc) for propagation perpendicular to B0. The physical
origin is associated with matching the cyclotron orbit diameter to multiples
of the acoustic wavelength. Figure 14.11 shows the schematic of geometric
resonances.

4. Giant quantum oscillations These result from the quantum nature of the
energy levels together with “resonance” due to vanishing of the energy
denominator in σ. The physical picture and feeling for the “giant” nature
of the oscillations can easily be obtained from consideration of
(a) Energy conservation and momentum conservation in the transition

En(kz) + h̄ωq −→ En′(kz + qz).
(b) The Pauli exclusion principle.

Suppose that we had a uniform field B0 parallel to the z-axis. Then, with
usual choice of gauge, our states are |nkykz〉, with energies given by

Fig. 14.11. Schematic of the origin of the geometric resonances in ultrasonic
attenuation
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Fig. 14.12. Schematic of the transitions giving rise to giant quantum oscillations

En(kz) = h̄ωc

(
n+

1
2

)
+
h̄2k2

z

2m
. (14.128)

Now, we can do spectroscopy with these electrons, and have them absorb
radiation. Thus, suppose that an electron absorbs a phonon of energy h̄ω and
momentum h̄qz. Then, energy conservation gives

En′(kz + qz) − En(kz) = h̄ωqz . (14.129)

Thus, only electrons with kz given, with α = n′ − n, by

kz =
m

h̄qz
(ω ∓ αωc) +

qz
2

(14.130)

will undergo transitions between different Landau levels. Let us call this value
of kz the parameter Kα. Then only electrons with kz = Kα can make the
transition (n, kz) −→ (n + α, kz + qz) and absorb energy h̄ω. Figure 14.12
shows a schematic picture of the transitions giving rise to giant quantum
oscillations.

To satisfy the exclusion principle En(kz) < ζ and En+α(kz + qz) =
En(kz)+ h̄ω > ζ. For ωc � ω this occurs only when the initial and final states
are right at the Fermi surface. Then the absorption is “gigantic”; otherwise it
is zero. The velocity as well as the attenuation displays these quantum oscil-
lations. The oscillations, in principle, are infinitely sharp, but actually they
are broadened out due to the fact that the Landau levels themselves are not
perfectly sharp, and various other things. However, the oscillations are actu-
ally quite sharp, and so the amplitudes are much larger than the widths of
absorption peaks.
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Problems

14.1. Evaluate σ given, for zero temperature, by

σ(q, ω) =
ω2

p

4πiω
{1 + I(q, ω)} ,

where

I(q, ω) =
m

N

∑

kk′

f0(εk′) − f0(εk)
εk′ − εk − h̄ω

〈k′|Vq|k〉〈k′|Vq|k〉∗,

and use it to determine E(y) and Z. This is the problem of the anomalous
skin effect, with the specular reflection boundary condition, in the absence of
a dc magnetic field.

14.2. Derive the result for a helicon wave in a metal propagating at an angle
θ to the direction of the applied magnetic field along the z-axis.

ω � ωcc
2q2 cos θ

ω2
p + c2q2

(
1 +

i
ωcτ cos θ

)
.

One may assume that ωp � ωc.

14.3. Investigate the case of helicon–plasmon coupling in a degenerate semi-
conductor in which ωp and ωc are of the same order-of-magnitude. Take
ωcτ � 1, but let the angle θ and ωτ be arbitrary. Study ω as a function
of B0, the applied magnetic field.

14.4. Evaluate σxx, σxy, and σyy from the Cohen–Harrison–Harrison result for
propagatin perpendicular to B0 in the limit that w = qvF/ωc � 1. Calculate
to order w2. See if any modes exist (at cyclotron harmonics) for the wave

equation ξ2 = εxx + ε2xy

εyy
where ξ = cq/ω.

14.5. Consider a semi-infinite metal of dielectric function ε1 to fill the space
z > 0, and an insulator of dielectric constant ε0 in the space z < 0.

(a) Show that the dispersion relation of the surface plasmon for the polariza-
tion with Ex = 0 and Ey �= 0 �= Ez is written by

ε1
α1

+
ε0
α0

= 0,

where α0 and α1 are the decay constants in the insulator and metal,
respectively.

(b) Sketch ω
ωp

as a function of cqy

ωp
for the surface plasmon excitation.

14.6. Assume a vacuum–metal interface at z = 0 (z < 0 is vacuum), and let
the electric charge density ρ appearing in Maxwell’s equations vanish both
inside and outside the metal. (This does not preclude a surface charge density
concentrated in the plane z = 0.)
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(a) Solve the wave equation in both vacuum and solid by assuming

Ev(r, t) = Eveiωt−iqyy+αvz,
Em(r, t) = Emeiωt−iqyy−αmz,

where q and ω are given and αv and αm must be determined.
(b) Apply the usual boundary conditions at z = 0 to determine the dispersion

relation (ω vs. q) for surface waves.
(c) Sketch ω2 as a function of q2c2 assuming ωτ � 1.
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Summary

In this chapter, we study electromagnetic behavior of waves in metals. The
linear response theory and Maxwell’s equations are combined to obtain the
condition of self-sustaining oscillations in metals. Both normal skin effect and
Azbel–Kaner cyclotron resonance are discussed, and dispersion relations of
plasmon modes and magnetoplasma modes are illustrated. Nonlocal effects in
the wave dispersions are also pointed out, and behavior of cyclotron waves is
considered as an example of the nonlocal behavior of the modes. General dis-
persion relation of the surface waves in the metal–insulator interface is derived
by imposing standard boundary conditions, and the magnetoplasma surface
waves are illustrated. Finally, we briefly discussed propagation of acoustic
waves in metals.

The wave equation in metals, in the present of the total current jT
(= j0 + jind), is written as

jT = Γ · E,
where Γ = iω

4π

{
(ξ2 − 1)1− ξξ

}
. Here, the spin magnetization is neglected

and ξ = cq
ω . The j0 and jind denote, respectively, some external current and

the induced current je = σ · E by the self-consistent field E.
For a system consisting of a semi-infinite metal filling the space z > 0 and

vacuum in the space z < 0 and in the absence of j0, the wave equation reduces
to [σ(q, ω) − Γ(q, ω)] · E = 0, and the electromagnetic waves are solutions of
the secular equation | Γ − σ |= 0. The dispersion relations of the transverse
and longitudinal electromagnetic waves propagating in the medium are given,
respectively, by

c2q2 = ω2ε(q, ω) and ε(q, ω) = 0.

In the range ωp � ω and for ωτ � 1, the local theory of conduction
(ql � 1) gives a well-behaved field, inside the metal, of the form

E(z, t) = E0eiωt−z/δ,

where q = −iωp
c = − i

δ . The distance δ = c
ωp

is called the normal skin depth.
If l � δ, the local theory is not valid. The theory for this case, in which the
q dependence of σ must be included, explains the anomalous skin effect.

In the absence of a dc magnetic field, the condition of the collective modes
reduces to

(ω2ε− c2q2)2ε = 0.

Using the local (collisionless) theory of the dielectric function ε ≈ 1 − ω2
p
ω2 , we

have two degenerate transverse modes of frequency ω2 = ω2
p + c2q2, and a

longitudinal mode of frequency ω = ωp.
In the presence of a dc magnetic field along the z-axis and q in the y-

direction, the secular equation for wave propagation is given by
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For the polarization with E parallel to the z-axis we have

c2q2

ω2
= 1 − 4πi

ω
σzz(q, ω),

where σzz(q, ω) is the nonlocal conductivity. For ωp � nωc and in the limit
q → 0, we obtain the cyclotron waves given by ω2 = n2ω2

c +O(q2n). They prop-
agate perpendicular to the dc magnetic field, and depend for their existence
on the q dependence of σ.

For a system consisting of a metal of dielectric function ε1 filling the space
z > 0 and an insulator of dielectric constant ε0 in the space z < 0, the waves
localized near the interface (z = 0) are written as

E(1)(r, t) = E(1)eiωt−iqyy−α1z,
E(0)(r, t) = E(0)eiωt−iqyy+α0z.

The superscripts 1 and 0 refer, respectively, to the metal and dielectric. The
boundary conditions at the plane z = 0 are the standard ones of continuity
of the tangential components of E and H, and of the normal components of
D and B. For the polarization with Ex = 0, but Ey �= 0 �= Ez , the dispersion
relation of the surface plasmon is written as

ε1
α1

+
ε0
α0

= 0,

where α1 = (ω2
p + q2y − ω2)1/2 and α0 = (q2y − ε0ω

2)1/2.
The classical equation of motion of the ionic displacement field ξ(r, t) in

a metal is written as

M
∂2ξ

∂t2
= C�∇(∇ · ξ) − Ct∇× (∇× ξ) + zeE +

ze

c
ξ̇ × (B0 + B) + F.

Here, C� and Ct are elastic constants, and the collision drag force F is F =
− zm
n0eτ

(je+jI), where the ionic current density is jI = n0eξ̇. The self-consistent
electric field E is determined from the Maxwell equations jT = Γ(q, ω) ·E:

E(q, ω) = [Γ − σ]−1 (iωne 1− σ · Δ) · ξ.
Here, a tensor Δ is defined by Δ = n0eiω

σ0

{
1− 1

3
q2l2

iωτ(1+iωτ) q̂q̂
}
, where q̂ = q

|q| .
The equation of motion is thus of the form T(q, ω) · ξ(q, ω) = 0, where T
is a very complicated tensor. The normal modes of an infinite medium are
determined from the secular equation

det | T(q, ω) |= 0.

The solutions ω(q) have both a real and imaginary parts; the real part deter-
mines the velocity of sound and the imaginary part the attenuation of the
wave.
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Superconductivity

15.1 Some Phenomenological Observations
of Superconductors

Superconductors are materials that behave as normal metals at high temper-
atures (T > Tc; however, below Tc they have the following properties:

1. The dc resistivity vanishes.
2. They are perfect diamagnets; by this we mean that any magnetic field that

is present in the bulk of the sample when T > Tc is expelled when T is
lowered through the transition temperature. This is called the Meissner
effect.

3. The electronic properties can be understood by assuming that an energy
gap 2Δ exists in the electronic spectrum at the Fermi energy.

Some common superconducting elements and their transition temperatures
are given in Table 15.1.

Resistivity

A plot of ρ(T ), the resistivity versus temperature T , looks like the diagram
shown in Fig. 15.1. Current flows in superconductor without dissipation. Per-
sistent currents in superconducting rings have been observed to circulate
without decaying for years. There is a critical current density jc which, if
exceeded, will cause the superconductor to go into the normal state. The ac
current response is also dissipationless if the frequency ω satisfies ω < Δ

h̄ ,
where Δ is an energy of the order of kBTc.

Thermoelectric Properties

Superconducting materials are usually poor thermal conductors. In normal
metals an electric current is accompanied by a thermal current that is asso-
ciated with the Peltier effect. No Peltier effect occurs in superconductors; the
current carrying electrons appear to carry no entropy.
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Table 15.1. Transition temperatures of some selected superconducting elements

Elements Al Sn Hg In FCC La HCP La Nb Pb

Tc (K) 1.2 3.7 4.2 3.4 6.6 4.9 9.3 7.2

Fig. 15.1. Temperature dependence of the resistivity of typical superconducting
metals

NORMAL STATE

SUERCONDUCTING
STATE

Fig. 15.2. Temperature dependence of the critical magnetic field of a typical
superconducting material

Magnetic Properties

There is a critical magnetic fieldHc(T ), which depends on temperature. When
H is above Hc(T ), the material is in the normal state; when H < Hc(T ) it is
superconducting. A plot of Hc(T ) versus T is sketched in Fig. 15.2.

In a type I superconductor, the magnetic induction B must vanish in the
bulk of the superconductor for H < Hc(T ). But we have

B = H + 4πM = 0 for H < Hc(T ), (15.1)
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Fig. 15.3. Magnetic field dependence of the magnetization M and magnetic induc-
tion B of a type I superconducting material

Fig. 15.4. Magnetic field dependence of the magnetization M and magnetic induc-
tion B of a type II superconducting material

which implies that

M = −H

4π
for H < Hc(T ). (15.2)

This behavior is illustrated in Fig. 15.3.
In a type II superconductor, the magnetic field starts to penetrate the

sample at an applied field Hc1 lower than the Hc. The Meissner effect is
incomplete yet until at Hc2. The B approaches H only at an upper critical
field Hc2. Figure 15.4 shows the magnetic field dependence of the magneti-
zation, −4πM , and the magnetic induction B in a type II superconducting
material. Between Hc2 and Hc1 flux penetrates the superconductor giving a
mixed state consisting of superconductor penetrated by threads of the mate-
rial in its normal state or flux lines. Abrikosov showed that the mixed state
consists of vortices each carrying a single flux Φ = hc

2e . These vortices are
arranged in a regular two-dimensional array.

Specific Heat

The specific heat shows a jump at Tc and decays exponentially with an energy
Δ of the order of kBTc as e−Δ/kBTc below Tc, as is shown in Fig. 15.5. There is
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1

el
/ γ

/
1

Fig. 15.5. Temperature dependence of the specific heat of a typical superconducting
material

Fig. 15.6. Tunneling current behavior for (a) a normal metal–oxide–normal metal
structure and (b) a superconductor–oxide–normal metal structure

a second order phase transition (constant entropy, constant volume, no latent
heat) with discontinuity in the specific heat.

Tunneling Behavior

If one investigates tunneling through a thin oxide, in the case of two nor-
mal metals, one obtains a linear current–potential difference curve, as is
sketched in Fig. 15.6a. For a superconductor–oxide–normal metal structure,
a very different behavior of the tunneling current versus potential difference
is obtained. Fig. 15.6b shows the tunneling current–potential difference curve
of a superconductor–oxide–normal metal structure.
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α

Fig. 15.7. Temperature dependence of the damping constant of low frequency sound
waves in a superconducting material

Acoustic Attenuation

For T < Tc and ω < 2Δ, there is no attenuation of sound due to electron
excitation. In Fig. 15.7, the damping constant α of low frequency sound waves
in a superconductor is sketched as a function of temperature.

15.2 London Theory

Knowing the experimental properties of superconductors, London introduced
a phenomenological theory that can be described as follows:

1. The superconducting material contains two fluids below Tc.
nS(T )
n is the

fraction of the electron fluid that is in the super fluid state. nN(T )
n =[

1 − nS(T )
n

]
is the fraction in the normal state. The total density of electrons

in the superconducting material is n = nN + nS.
2. Both the normal fluid and super fluid respond to external fields, but the

superfluid is dissipationless while the normal fluid is not. We can write the
electrical conductivities for the normal and super fluids as follows:

σN =
nNe

2τN
m

,

σS =
nSe

2τS
m

,

(15.3)

but τS → ∞ giving σS → ∞.
3.

nS(T ) → n as T → 0,
nS(T ) → 0 as T → Tc.

4. To explain the Meissner effect, London proposed the London equation

∇× j +
nSe

2

mc
B = 0. (15.4)
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How does the London equation arise? Let us consider the equation of motion
of a super fluid electron, which is dissipationless, in an electric field E that is
momentarily present in the superconductor:

m
dvS
dt

= −eE

where vS is the mean velocity of the super fluid electron caused by the field
E. But the current density j is simply

j = −nSevS. (15.5)

Notice that this gives the relation

dj
dt

= −nSe
dvS
dt

=
nSe

2

m
E. (15.6)

Equation (15.6) describes the dynamics of collisionless electrons in a perfect
conductor, which cannot sustain an electric field in stationary conditions.
Now, from Faraday’s induction law, we have

∇× E = −1
c
Ḃ. (15.7)

Combining this with (15.6) gives us

d
dt

[
∇× j +

nSe
2

mc
B
]

= 0. (15.8)

The solution of (15.8) is that

∇× j +
nSe

2

mc
B = constant.

Because in the bulk of a superconductor the magnetic induction B must be
zero, London proposed that for superconductors, the “constant” had to be
zero and j = −nse

2

mc A [called the London gauge] giving (15.4). The London
equation implies that, in stationary conditions, a superconductor cannot sus-
tain a magnetic field in its interior, but only within a narrow surface layer. If
we use the relation

∇× B =
4π
c

j, (15.9)

(This is the Maxwell equation for ∇×B in stationary conditions without the
displacement current 1

c Ė.), we can obtain

∇× (∇× B) =
4π
c
∇× j = −4π

c

nSe
2

mc
B. (15.10)
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But, ∇× (∇× B) = ∇(∇ ·B) −∇2B giving

∇2B =
4πnSe

2

mc2
B ≡ 1

Λ2
L

B. (15.11)

The solutions of (15.11) show a magnetic field decaying exponentially with a
characteristic length Λ. One can also obtain the relation ∇2j̇ = 4πnSe

2

mc2 j. The

quantity ΛL =
√

mc2

4πnSe2
is called the London penetration depth. For typical

semiconducting materials, ΛL ∼ 10 − 102nm. If we have a thin supercon-
ducting film filling the space −a < z < 0 as shown in Fig. 15.8a, then the
magnetic field B parallel to the superconductor surface has to fall off inside
the superconductor from B0, the value outside, as

B(z) = B0e−|z|/ΛL near the surface z = 0

and

B(z) = B0e−|z+a|/ΛL near the surface z = −a.

Figure 15.8b shows the schematic of the flux penetration in the supercon-
ducting film. The flux penetrates only a distance ΛL ≤ 102nm. One can show
that it is impossible to have a magnetic field B normal to the superconductor
surface but homogeneous in the x− y plane.

Fig. 15.8. A superconducting thin film (a) and the magnetic field penetration (b)
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15.3 Microscopic Theory–An Introduction

In the early 1950s Frölich suggested that the attractive part of the electron–
phonon interaction was responsible for superconductivity predicting the iso-
topic effect. The isotope effect, the dependence of Tc on the mass of the
elements making up the lattice was discovered experimentally independent
of Frölich’s work, but it was in complete agreement with it. Both Frölich, and
later Bardeen, attempted to describe superconductivity in terms of an elec-
tron self-energy associated with virtual exchange of phonons. Both attempts
failed. In 1957, Bardeen, Cooper, and Schrieffer (BCS) produced the first cor-
rect microscopic theory of superconductivity.1 The critical idea turned out to
be the pair correlations that became manifest in a simple little paper by L.N.
Cooper.2

Let us consider electrons in a simple metal described by the Hamiltonian
H = H0 + Hep, where H0 and Hep are, respectively the unperturbed
Hamiltonian for a Bravais lattice and the interaction Hamiltonian of the elec-
trons with the screened ions. Here we neglect the effect of the periodic part
of the stationary lattice to write H0 by

H0 =
∑

k,σ

εkc
†
kσckσ +

∑

q,s

h̄ωq,sa
†
q,saq,s,

where σ and s denote, respectively, the spin of the electrons and the three
dimensional polarization vector of the phonons, and aq,s annihilates a phonon
of wave vector q and polarization s, and ckσ annihilates an electron of wave
vector k and spin σ. We will show the basic ideas leading to the microscopic
theory of superconductivity.

15.3.1 Electron–Phonon Interaction

The electron–phonon interaction can be expressed as

Hep =
∑

k,q,σ

Mq

(
a†−q + aq

)
c†k+qσckσ, (15.12)

where Mq is the electron–phonon matrix element defined, in a simple model
discussed earlier, by

Mq = i

√
Nh̄

2Mωq
| q | Vq.

Here Vq is the Fourier transform of the potential due to a single ion at the
origin, and the phonon spectrum is assumed isotropic for simplicity. (In this
case, only the longitudinal modes of s parallel to q give finite contribution

1 J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).
2 L.N. Cooper, Phys. Rev. 104, 1189 (1956).
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Fig. 15.9. Electron–phonon interaction (a) Effective electron–electron interaction
through virtual exchange of phonons (b) and (c): Two possible intermediate states
in the effective electron–electron interaction

to Hep.) This Hep can give rise to an effective electron–electron interaction
associated with virtual exchange of phonons as denoted in Fig. 15.9a. The
figure shows that an electron polarizes the lattice and another electron inter-
acts with the polarized lattice. There are two possible intermediate states in
this process as shown in Fig. 15.9b and c. In Fig. 15.9b the initial energy is
Ei = εk + εk′ and the intermediate state energy is Em = εk + εk′−q + h̄ωq. In
Fig. 15.9c the initial energy is the same, but the intermediate state energy is
Em = εk+q + εk′ + h̄ωq. We can write this interaction in the second order as

∑

m

〈f | Hep | m〉〈m | Hep | i〉
Ei − Em

. (15.13)

This gives us the interaction part of the Hamiltonian as follows:

H ′ =
∑

kk′q
σσ′

|Mq |2
{

〈f |c†k+qσckσaq|m〉〈m|c†
k′−qσ′ck′σ′a

†
q|i〉

ε(k′)−[ε(k′−q)+h̄ωq]

+
〈f |c†

k′−qσ′ck′σ′a−q|m〉〈m|c†k+qσckσa
†
−q|i〉

ε(k)−[ε(k+q)+h̄ωq]

}
.

(15.14)
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One can take the Hamiltonian

H = H0 +H ′

=
∑

kσ εkσc
†
kσckσ +

∑
q h̄ωqa

†
qaq +

∑
k,q,σMq

(
a†−q + aq

)
c†k+qσckσ

(15.15)

and make a canonical transformation

HS = e−SHeS (15.16)

where the operator S is defined by

S =
∑

kqσ

Mq

(
αa†−q + βaq

)
c†k+qσckσ (15.17)

to eliminate the aq and a†−q operators to lowest order. To do so, α and β in
(15.17) must be chosen, respectively, as

α = [ε(k) − ε(k + q) − h̄ωq]−1

β = [ε(k) − ε(k + q) + h̄ωq]−1
.

(15.18)

Then, the transformed Hamiltonian is

HS =
∑

kσ

εkσc
†
kσckσ +

∑

kσ,k′σ′,q

W (k,q)c†k+qσc
†
k′−qσ′ck′σ′ckσ, (15.19)

where Wkq is defined by

Wkq =
| Mq |2 h̄ωq

[ε(k + q) − ε(k)]2 − (h̄ωq)2
. (15.20)

Note that when ΔE = ε(k + q) − ε(k) is smaller than h̄ωq, Wkq is negative.
This results in an effective electron–electron attraction.

15.3.2 Cooper Pair

Leon Cooper investigated the simple problem of a pair of electrons interact-
ing in the presence of a Fermi sea of “spectator electrons”. He took the pair
to have total momentum P = 0 and spin S = 0. The Hamiltonian is written as

H =
∑

�,σ

ε�c
†
�σc�σ − 1

2
V
∑

��′σ

c†�′σc
†
−�′σ̄c−�σ̄c�σ, (15.21)

where ε� = h̄2�2

2m , {c�σ, c†�′σ′} = δ��′δσσ′ , and the strength of the interaction, V ,
is taken as a constant for a small region of k-space close to the Fermi surface.
The interaction term allows for pairscattering from (�σ,−�σ̄) to (�′σ,−�′σ̄).
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Cooper took a variational trial function

Ψ =
∑

k

akc
†
kσc

†
−kσ̄ | G >, (15.22)

where | G〉 is the Fermi sea of spectator electrons, | G〉 = Πk<kF
|k| c†kσc

†
−kσ̄ | 0 >.

If we evaluate

〈Ψ | H | Ψ〉 = E, (15.23)

we get

E = 2
∑

�

ε�a
∗
�a� − V

∑

��′
a∗�′a�. (15.24)

The coefficient a� is determined by requiring E{a�} to be minimum subject
to the constraint

∑
� a

∗
�a� = 1. This can be carried out using a Lagrange

multiplier λ as follows:

∂

∂a∗k

{

2
∑

�

ε�a
∗
�a� − V

∑

��′
a∗�′a� − λ

∑

�

a∗�a�

}

= 0. (15.25)

This gives

2εkak − V
∑

�

a� − λak = 0. (15.26)

This can be written

ak =
V
∑

� a�

2εk − λ
. (15.27)

Define a constant C =
∑

� a�. Then, we have

ak =
V C

2εk − λ
. (15.28)

Summing over k and using the fact C =
∑

� a� we have

C = V C
∑

k

1
2εk − λ

, (15.29)

or

f(λ) =
∑

k

1
2εk − λ

=
1
V
. (15.30)

The values of εk form a closely spaced quasi continuum extending from the
energy EF to roughly EF+h̄ωD where ωD is the Debye frequency. In Fig. 15.10
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E
F

E
F
+

Fig. 15.10. Graphical solution of (15.30)

the function f(λ) is displayed as a function of λ, and it shows the graphical
solution of (15.30). Note that f(λ) goes from −∞ to ∞ every time λ crosses
a value of 2εk in the quasi continuum. If we take (15.26)

(2εk − λ) ak − V
∑

�

a� = 0, (15.31)

multiply by a∗k and sum over k, we obtain
∑

k

(2εk − λ) a∗kak − V
∑

k�

a∗ka� = 0. (15.32)

This is exactly the same equation we obtained from writing

〈Ψ | H − E | Ψ〉 = 0, (15.33)

if we take λ = E, the energy of the variational state Ψ. Thus, our equation
for f(λ) = 1

V could be rewritten

1
V

=
∑

k

1
2εk − E

. (15.34)

Approximate the sum in (15.34) by an integral over the energy ε and write

1
V

=
∫ EF+h̄ωD

EF

g(ε) dε
2ε− E

. (15.35)
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Now, let us take g(ε) � g(EF) ≡ g in the region of integration to obtain

1
V

=
g

2

∫ EF+h̄ωD

EF

dx
x− E/2

. (15.36)

Integrating (15.36) out gives

2
gV

= ln

(
EF + h̄ωD − E

2

EF − E
2

)

, (15.37)

or

EF + h̄ωD − E
2

EF − E
2

= e2/gV .

For the case of weak coupling regime 2
gV � 1 and e−2/gV � 1. This gives

E � 2EF − 2h̄ωDe−2/gV . (15.38)

The quantity 2h̄ωDe−2/gV is the binding energy of the Cooper pair. Notice
that

1. One can get a bound state no matter how weakly attractive V is. The free
electron gas is unstable with respect to the paired bound state.

2. This variational result, which predicts the binding energy proportional to
e−2/gV , could not be obtained in perturbation theory.

3. The material with higher value of V would likely show higher Tc.

The BCS theory uses the idea of pairing to account of the most important
correlations.

15.4 The BCS Ground State

Let us write the model Hamiltonian, (15.21) by

H = H0 +H1, (15.39)

where

H0 =
∑

k

εk

(
c†k↑ck↑ + c†−k↓c−k↓

)
(15.40)

and

H1 = −V
′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑. (15.41)
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Note that we have included in the interaction only the interaction of k ↑ with
−k ↓. In our discussion of the totally noninteracting electron gas, we found
it convenient to use a description in terms of quasielectrons and quasiholes,
where a quasielectron was an electron with |k| > kF and a quasihole was the
absence of an electron with |k| < kF. We could define

d†kσ = ckσ for k < kF,

dkσ = c†kσ for k < kF.
(15.42)

Then d†kσ creates a “hole” and dkσ annihilates a “hole”. If we measure all
energies εk relative to the Fermi energy, then H0 can be written as

H0 =
∑

k,σ εkc
†
kσckσ

= E0 +
∑

|k|>kF,σ ε̃knkσ +
∑

|k|<kF | ε̃k | (1 − nkσ),
(15.43)

where nkσ = c†kσckσ, ε̃k = ε(k) − EF, and E0

(
=
∑

|k|<kF εk
)

is the energy

of the filled Fermi sphere. Because c†kσ adds a momentum k and spin σ to
the system while d†kσ subtract k and σ (or adds −k and σ̄), it is useful to
introduce

α†
kσ = ukc

†
kσ + v−kc−kσ̄ (15.44)

and its Hermitian conjugate

αkσ = ukckσ + v−kc
†
−kσ̄. (15.45)

The operator α†
kσ adds momentum k and spin σ to the system. If uk = 1,

vk = 0 for |k| > kF and uk = 0, vk = 1 for |k| < kF, we have simply
the noninteracting electron gas described in terms of αkσ and α†

kσ. We must
have uk = u−k and vk = −v−k. Also u2

k + v2
k = 1 in order to satisfy the

anticommutation relations
[
αk, α

†
k′

]

+
= δkk′.

From (15.44) and (15.45) we have that

c†kσckσ = u2
kα

†
kσαkσ + v2

kα−kσ̄α
†
−kσ̄ + ukvk

(
α†

kσα
†
−kσ̄ + α−kσ̄αkσ

)
.

Hence
∑

k,σ εkc
†
kσckσ =

∑
k εk

[
u2
kα

†
k↑αk↑ + v2

k(1 − α†
−k↓α−k↓)

]

=
∑

|k|<kF εk +
∑

k,σ |εk |α†
kσαkσ.

Therefore, in terms of the αk and α†
k, the noninteracting Hamiltonian is writ-

ten as

H0 = E0 +
∑

k,σ

| ε̃k | α†
kσαkσ. (15.46)
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The ground state of the noninteracting electron gas (filled Fermi sphere) can
be constructed by annihilating quasiholes in all states with | k |< kF and is
given by

| GS〉 =
∏

kσ

αkσα−kσ̄ | VAC〉, (15.47)

where | VAC〉 is the true vacuum state. Using (15.44) and (15.45) gives

| GS〉 =
∏

kσ

v2
kc

†
−kσ̄c

†
kσ | VAC〉. (15.48)

But, for the noninteracting system vk = 1 if |k| < kF and zero otherwise so
that

| GS〉 =
∏

|k|<kF,σ
c†−kσ̄c

†
kσ | VAC〉. (15.49)

For the interacting system we will use a slight generalization of the notation
used above.

15.4.1 Bogoliubov–Valatin Transformation

For the Hamiltonian given in (15.40) and (15.41), we make the transformation
(called Bogoliubov–Valatin transformation) defined by

αk = ukck↑ − vkc
†
−k↓

β†
k = ukc

†
−k↓ + vkck↑, (15.50)

with Hermitian conjugates α†
k = ukc

†
k↑ + vkc−k↓̄ and βk = ukc−k↓ + vkc

†
k↑.

Note that the up spin ↑ is associated with the index k and the down spin
↓ is associated with the index −k. The operators α†

k and αk create or destroy
an excited state of the system, which is a correlated electron–hole pair. We
take uk = u−k and vk = −v−k; in addition u2

k + v2
k must be equal unity in

order to satisfy the anticommutation relations:
[
αk, α

†
k′

]

+
=
[
βk, β

†
k′

]

+
= δkk′ ; [αk, αk′ ]+ = [βk, βk′ ]+ = 0.

We can solve (15.50) for ck↑ and c−k↓ and their Hermitian conjugates

ck↑ = ukαk + vkβ
†
k; c†k↑ = ukα

†
k + vkβk

c†−k↓ = ukβ
†
k − vkαk; c−k↓ = ukβk − vkα

†
k.

(15.51)

Note that u2
k is the probability that a pair of states with opposite k and σ is

unoccupied and v2
k is the probability that it is occupied. Substituting (15.51)

in (15.40) gives
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H0 =
∑

k ε̃k

[
u2
kα

†
kαk + v2

kβkβ
†
k + ukvk(α†

kβ
†
k + βkαk)

+ u2
kβ

†
kβk + v2

kαkα
†
k − ukvk(β†

kα
†
k + αkβk)

]
.

(15.52)

Let us put the operators in normal form using βkβ
†
k = 1 − β†

kβk. This gives

H0 =
∑

k

ε̃k

[
2v2

k + (u2
k − v2

k)(α†
kαk + β†

kβk) + 2ukvk(α†
kβ

†
k + βkαk)

]
.

(15.53)
If we do the same thing for the interaction part H1 given by (15.41)

H1 = −V
′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑, (15.54)

we obtain

H1 = −V
∑

kk′(uk′α
†
k′ + vk′βk′)(uk′β

†
k′ − vk′αk′)(ukβk − vkα†

k)(ukαk + vkβ†
k)

= −V
∑

kk′
[
uk′vk′ukvk(1 − α†

k′αk′ − β†
k′βk′ )(1 − α†

kαk − β†
kβk)

+ uk′vk′(1 − α†
k′αk′ − β†

k′βk′)(u
2
k − v2

k)(α†
kβ†

k + βkαk)

+ 4th order off-diagonal terms
]
.

(15.55)

When this expression is multiplied out and then put in normal form (with all
annihilation operators on the right of all creation operators), the result can
be written

H = H(0) +H(2) +H(4). (15.56)

Here, H(2n) contains terms involving products of 2n Fermion operators
(α, α†, β, and β†). It is simple to evaluate H(0):

H(0) = 2
∑

k

εkv
2
k − V

∑

kk′
ukvkuk′vk′ . (15.57)

The terms in H(2) can be written

H(2) =
∑

k

[
εk(u2

k − v2
k) + V (

∑
k′ 2uk′vk′)ukvk

]
(α†

kαk + β†
kβk)

+
∑

k

[
2ukvkε̃k − (u2

k − v2
k)V

∑
k′ uk′vk′

]
(α†

kβ
†
k + βkαk).

(15.58)

We will neglect the terms in H(4); they contain interactions between the ele-
mentary excitations. H(0)+H(2) is not exactly in the form we desire because
of the term proportional to (α†

kβ
†
k + βkαk). We are still at liberty to choose

uk and vk; we do this by requiring the coefficient of (α†
kβ

†
k + βkαk) to vanish.

This gives us

2ukvkε̃k = (u2
k − v2

k)V
∑

k′
uk′vk′ . (15.59)
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Let us define Δ by

Δ = V
∑

k′
uk′vk′ (15.60)

and use it in (15.59) after squaring both sides. This gives

4u2
kv

2
kε̃

2
k = Δ2(u2

k − v2
k)2. (15.61)

We can eliminate u2
k since we already know that u2

k + v2
k = 1. Doing so gives

the quadratic equation in v2
k.

v4
k[ε̃2k + Δ2] − v2

k[ε̃2k + Δ2] +
Δ2

4
= 0. (15.62)

We choose the solution of the form

v2
k =

1
2
(1 − ξk). (15.63)

Here, ξk = ε̃k√
ε̃2k+Δ2

. Furthermore since u2
k = 1 − v2

k, we find that

u2
k =

1
2
(1 + ξk). (15.64)

But (15.60), the definition of Δ, can now be written

Δ =
1
2
V
∑

k

√
1 − ξ2k. (15.65)

With a little algebra, (15.65) becomes

Δ =
V

2

∑

k

Δ
√
ε̃2k + Δ2

. (15.66)

Thus, the equation for the energy gap Δ is given by

1 =
V

2

∑

k

1
√
ε̃2k + Δ2

. (15.67)

Now, replace the sum by an integral taking for the density of states 1
2g(EF)

of the pair. The 1
2 results from the fact that only k ↑ and −k ↓ are coupled

by the interaction. Then, (15.67) becomes

1 =
V

2
g(EF)

2

∫ h̄ωq

−h̄ωq

dε√
ε2 + Δ2

. (15.68)

Using
∫

dx√
x2+Δ2 = ln(x+

√
x2 + Δ2) = sinh−1 (x/Δ), the result for Δ becomes

Δ = 2h̄ωqe
− 2

g(EF)V . (15.69)
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If the interaction V is zero, the one-particle states of the system would be
occupied up to |k| = kF, and Δ agrees with the binding energy of a Cooper
pair.

15.4.2 Condensation Energy

The condensation energy ΔE(≡ E0
S − E0

N) defined by the difference between
the ground state energy in the normal state and the state with finite Δ is
approximately given by

ΔE � −g(EF)
Δ
2
× Δ

2
= −g(EF)

Δ2

4
. (15.70)

The ground-state wave function Ψ0 of the superconducting system is the
eigenfunction of the diagonalized BCS Hamiltonian, so that

αk | Ψ0〉 = β†
k | Ψ0〉 = 0. (15.71)

One can obtain Ψ0 by writing

| Ψ0〉 =
∏

k

αkβk | VAC〉. (15.72)

This gives the normalized wave function

| Ψ0〉 =
∏

k

(uk + vkc
†
kc

†
−k) | VAC〉, (15.73)

which is the BCS variational wave function normalized so that 〈Ψ0|Ψ0〉 = 1.

15.5 Excited States

From (15.58) we can see that

H(2) =
∑

k

Ek(α†
kαk + β†

kβk), (15.74)

where

Ek = ε̃k(u2
k − v2

k) + 2Δukvk. (15.75)

Knowing that uk = 1√
2

√
1 + ξk and vk = 1√

2

√
1 − ξk allows us to obtain the

energy of an individual quasiparticle

Ek =
√
ε̃2k + Δ2, (15.76)
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~

Fig. 15.11. Elementary excitations in a normal metal and in a superconductor

where ε̃k = h̄2k2

2m −EF, i.e., the energy is measured relative to the Fermi energy
EF. Thus, there is a gap Δ for the creation of elementary excitations α†

k | Ψ0〉
or β†

k | Ψ0〉. The state α†
k | Ψ0〉 is a quasiparticle state of wave vector k,

involving a superposition of an electron of wave vector k and a hole of wave
vector −k. In Fig. 15.11 quasiparticle energy spectra for a normal metal and
for a superconductor are illustrated. The excitation spectrum has a gap Δ,
which is known as the gap parameter. We notice that, since α†

k and β†
k are

linear combinations of single Fermion operators and always appear in pairs in
the interaction Hamiltonian. Therefore, quasiparticles can be excited in pairs
with the minimum excitation energy of 2Δ. The experimental gap should be
2Δ in experiments on absorption of electromagnetic radiation.

The density of quasiparticle states in the superconductor can be obtained
using the quasiparticle dispersion relation Ek.

gS(E) =
1
Ω

dN
dE

=
2

(2π)3
d
dk

(
4πk3

3

)
dk
dE

=
k2

π2

1
dE/dk

, (15.77)

where dE
dk is written, from (15.76), by

dE
dk

=
dE
dε̃

dε̃
dk

=
√
E2 − Δ2

E

h̄2k

m
. (15.78)

Substituting (15.78) in (15.79) gives

gS(E) =
mkF

π2h̄2

E√
E2 − Δ2

= gN(EF)
E√

E2 − Δ2
, (15.79)

where gN(E) = mk
π2h̄2 is the density of states of the normal metal. Since we con-

sider the quasiparticle energies close to the Fermi surface, we replaced gN(E)
by its value at the Fermi energy EF. Notice that the density of quasiparticles
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in the superconducting states shows a singularity at the energies E = ±Δ
measured with respect to the Fermi energy.

Essentially, all the other properties of a BCS superconductor can be
evaluated knowing that

1. The ground-state energy given by H(0), (15.57), is lower than the normal
state energy (E0

N =
∑

|k|<kF ε̃k) by −Δ2

4 g(EF), (15.70).
2. The energy of elementary excitations is given by Ek =

√
ε̃2k + Δ2, (15.76).

3. The Fermi distribution function nk is given by

f(Ek) = nk =
1

eEk/Θ + 1
.

Here, of course, ε̃k appearing in Ek is measured relative to EF.
4. The BCS wave function is given by (15.73)

| Ψ0〉 =
∏

k

(uk + vkc
†
kc

†
−k) | VAC〉.

One final example shows how to calculate the energy gap Δ as a function
of temperature. We note that states k ↑ and −k ↓ are occupied statistically at
finite temperatures. The Δ given in (15.69) was obtained under the assump-
tion that nk = 0 at T = 0. But, at finite temperatures the Fermi distribution
function should be understood as the occupation probability, and we expect
nk �= 0 and Δ = Δ(T ). To evaluate Δ(T ) we need to extend (15.59) by writing

2ukvkε̃k = (u2
k − v2

k)V
∑

k′
uk′vk′ (1 − 2f(Ek′)) . (15.80)

This comes from keeping a term −(α†
k′αk′ + β†

k′βk′) averaged at T �= 0 in

〈1 − (α†
k′αk′ + β†

k′βk′)〉 = 1 − nk′ − nk′ = 1 − 2f(Ek′),

instead of just unity as was done in writing (15.58). Now, we define

Δ(T ) = V
∑

k

ukvk [1 − 2f(Ek)] . (15.81)

Substituting (15.64) and (15.63) for uk and vk gives 1 = V
2

∑
k

1−2f(Ek)√
ε̃2k+Δ2(T )

,

which reduces to

1 =
V

2
g(EF)

2

∫ h̄ωD

−h̄ωD

dε
√
ε2 + Δ2(T )

[
1 − 2f(

√
ε2 + Δ2(T ))

]
. (15.82)

At T = 0 this is the T = 0 gap equation, (15.68). As T increases from T = 0,
Δ(T ) would decrease from Δ0, the zero temperature value. Δ(T ) vanishes
for T ≥ Tc, where Δ = 0 is the only stable solution. The superconductivity
disappears above Tc. Now, (15.82) can be written
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4
g(EF)V

=
∫ h̄ωD

−h̄ωD

dε
√
ε2 + Δ2(T )

− 2
∫ h̄ωD

−h̄ωD

dε
√
ε2 + Δ2(T )

f(
√
ε2 + Δ2(T )).

(15.83)

Since Δ becomes zero at T = Tc, we can determine Tc by setting Δ = 0 in
(15.83). This gives

2
g(EF)V

=
∫ h̄ωD

0

dε
ε

tanh
ε

2Θc
, (15.84)

where Θc = kBTc. Introducing the dimensionless variable x = ε
2Θc

we have

2
g(EF)V =

∫ h̄ωD/2Θc

0
dx
x tanhx

= ln h̄ωD
2Θc

tanh h̄ωD
2Θc

− ∫ h̄ωD/2Θc

0 lnx sech2xdx.
(15.85)

Since η ≡ h̄ωD/2Θc � 1, in general for weak coupling superconductors, we
may extend the upper limit of the integral to ∞ to have

2
g(EF)V

= ln
h̄ωD

2Θc
tanh

h̄ωD

2Θc
+ lnC, (15.86)

where the constant lnC is given, in terms of Euler’s constant γ:

lnC = −
∫ ∞

0

lnx sech2xdx = γ + ln
4
π
≈ 0.81876.

Then, one can write

Θc � 1.13h̄ωDe−
2

gV ≈ 0.57Δ(0), (15.87)

where ω is replaced by the Debye frequency ωD. The Debye temperature ΘD

is much larger than the superconducting transition temperature Θc. Figure
15.12 sketches the Δ(T ) obtained by numerical integration of (15.82).

15.6 Type I and Type II Superconductors

Correlations in superconductors involve electrons in a very limited range of
values in momentum space. The range δp about the Fermi momentum pF

must be restricted to

p2
F

2m
− Δ ≤ (pF + δp)2

2m
≤ p2

F

2m
+ Δ. (15.88)

This gives | δp |≤ Δ
vF

. The spread of momentum δp leads to a coherence length
in coordinate space ξ0 = h̄

δp ∼ h̄vF
Δ . ξ0 indicates the spatial range of the pair

wave function. We distinguish type I and type II superconductors by whether
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Fig. 15.12. Temperature dependence of the superconducting energy gap parameter
Δ(T ) in the weak coupling limit

the ratio of h̄vF
πΔ (� ξ0) to ΛL =

√
mc2

4πnSe2
, the London penetration depth,

is large or small compared to unity. For example, we have vF � 108 cm/s
and Tc ≈ 0.57Δ0 � 1.2K for Al, and thus ξ0 � 3.4 × 103nm and ΛL �
30nm resulting ξ0

ΛL
∼ 100. But, for the case of Nb3Sn we have vF � 106 cm/s

and Tc ≈ 0.57Δ0 � 20K, and thus ξ0 � 2 nm and ΛL � 200 nm resulting
ξ0
ΛL

∼ 10−2.
The London equation, (15.4), is written as

∇× j +
nSe

2

mc
B = 0. (15.89)

Using B = ∇× A allows us to write

j(r) = −nSe
2

mc
A(r). (15.90)

This local relation between j and A is valid only for type II materials where
ΛL is much larger than ξ0 and A(r) varies slowly on the scale of ξ0. For type
I materials, Pippard suggested a nonlocal relation between j and A. Pippard
equation is written as

j(r) = C

∫
A(r′) · R

R4
Re−|R|/ξ0d3r′, (15.91)

where R = r−r′. C is determined by requiring that slowly varying A(r) yields
the London equation. Then A(r) comes outside the integral (and taking A ‖ ẑ)
and Eq.(15.91) reduces to

jz(r) = CA(r)
∫ ∞

0

∫ 1

−1

R cos θ
R4

R cos θe−R/ξ02πd(cos θ)R2dR = C
4π
3
ξ0A(r).

(15.92)
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We note that, by comparing (15.90) and (15.92), C = −nSe
2

mc
3

4πξ0
, and picking

ξ0 = h̄vF
πΔ0

(at T = 0) gives excellent agreement with the microscopic theory.
For the case Λeff � ξ0, the vector potential A(r) is finite only in a surface
layer and we can write

j(r) = −nSe
2

mc

Λeff

ξ0
A(r) (15.93)

leading us to Λeff ≈ ΛL( ξ0ΛL
)1/3.

Flux Penetration

When a disc shaped type I superconductor is aligned perpendicular to an
applied magnetic field H0, the magnetic field at the boundary of the sample
(where the applied field is partially excluded) would become much greater
than the magnitude of H0 (see Fig. 15.13). Then the sample starts to loose
superconductivity at an applied field much below the critical field Hc forming
a large number of normal and superconducting regions side by side, and the
magnetic field energy gain is reduced significantly. The specimen is known
to be in the intermediate state. It is a mixture of normal and superconduct-
ing regions due to geometric factors. The intermediate state has a domain
structure that depends on competition between (1) superconducting conden-
sation energy 1

4g(Ef)Δ2, (2) magnetic field energy H2

8π , (3) surface energy of
N-S boundary (positive for type I material). In type II materials the surface
energy turns out to be negative, and flux penetrates in single vortices each
carrying one flux quantum (see Fig. 15.14). In alloys, if impurity scattering

type I
 Superconductor

Superconducting
layer

Normal
 layer

Fig. 15.13. Schematics of the intermediate state in a planar type I superconductor.
It occurs when a planar sample is held perpendicular to an applied magnetic field as
indicated in (a). Domain structure of normal and superconducting regions is formed
as sketched in (b) and (c) by the magnified magnetic field due to geometric factors
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r

H

r

Fig. 15.14. Schematic representation of flux and field penetration in a type II
superconductor

leads mean free path l, the Pippard relation replaces e−R/ξ0 by e−R( 1
ξ0

+ 1
l ). In

the extreme dirty limit of ξ0 � l, relation between j(r) and A(r) becomes

j(r) = −nSe
2

mc

l

ξ0
A(r),

and the corresponding penetration depth Λeff = ΛL

√
ξ0/l is increased greatly.
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Problems

15.1. Demonstrate that the electronic contribution to the heat capacity of
common intrinsic semiconductors shows the exponential temperature behavior
at low temperatures.

15.2. Let’s consider the equation of motion of a super fluid electron, which
is dissipationless, in an electric field E that is momentarily present in the
superconductor. That is, mdvS

dt = −eE, where vS is the mean velocity of the
super fluid electron caused by the field E. In order to explain the Meissner
effect, London proposed the London equation written as ∇× j + nSe

2

mc B = 0.

Show that ∇2j̇ = 1
Λ2 j where ΛL =

√
mc2

4πnSe2
is the so-called the London

penetration depth.

15.3. Assume ckσ and c†k′σ′ satisfy standard Fermion anticommutation rela-

tions. Show that
[
αk, α

†
k′

]

+
and

[
βk, β

†
k′

]

+
each equal δkk′ for αk and β′

k

defined by the Bogoliubov–Valatin transformation

αk = ukck↑ − vkc
†
−k↓

β†
k = ukc

†
−k↓ + vkck↑.

15.4. Let us consider the interaction Hamiltonian H1 given by

H1 = −V
′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑.

Use the Bogoliubov–Valatin transformation to show that H1 can be written
as

H1 = −V
∑

kk′(uk′α
†
k′ + vk′βk′)(uk′β

†
k′ − vk′αk′)(ukβk − vkα†

k)(ukαk + vkβ†
k)

= −V
∑

kk′
[
uk′vk′ukvk(1 − α†

k′αk′ − β†
k′βk′ )(1 − α†

kαk − β†
kβk)

+ uk′vk′(1 − α†
k′αk′ − β†

k′βk′)(u
2
k − v2

k)(α†
kβ†

k + βkαk)

+ 4th order off-diagonal terms
]
.

15.5. Consider the condition given by

2ukvkε̃k = (u2
k − v2

k)V
∑

k′
uk′vk′ .

(a) Determine uk and vk satisfying the condition given above. Note that
u2
k + v2

k = 1.
(b) Obtain the expression Δ defined by Δ = V

∑
k′ uk′vk′ .
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Summary

In this chapter, we first briefly review some phenomenological observations of
superconductivity and discuss a phenomenological theory by London. Then we
introduce ideas of electron–phonon interaction and Cooper pairing to discuss
microscopic theory by Bardeen, Cooper, and Schrieffer. The BCS ground state
and excited states are discussed through Bogoliubov–Valatin transformation,
and condensation energy and thermodynamic behavior of the superconduct-
ing energy gap are analyzed. Finally type I and type II superconductors are
compared in terms of coherence length and London penetration depth.

The Meissner effect indicates that any magnetic field that is present in a
bulk superconductor when T > Tc is expelled when T is lowered through the
transition temperature Tc. In a type I superconductor, the magnetic induction
B vanishes in the bulk of the superconductor for H < Hc(T ). In a type
II superconductor, the magnetic field starts to penetrate the sample at an
applied field Hc1 lower than the Hc. Between Hc2 and Hc1 flux penetrates the
superconductor giving a mixed state consisting of superconductor penetrated
by threads of the material in its normal state or flux lines. The mixed state
consists of vortices each carrying a single flux Φ = hc

2e .
The London equation is written as ∇× j+ nSe

2

mc B = 0, which implies that,
in stationary conditions, a superconductor cannot sustain a magnetic field in
its interior, but only within a narrow surface layer: ∇2B = 4πnSe

2

mc2 B ≡ 1
Λ2

L
B.

Here, the quantity ΛL =
√

mc2

4πnSe2
is called the London penetration depth.

The Hamiltonian of the electrons in a metal is written as

H =
∑

kσ

εkσc
†
kσckσ +

∑

kσ,k′σ′,q

W (k,q)c†k+qσc
†
k′−qσ′ck′σ′ckσ,

where Wkq is defined by Wkq = |Mq|2h̄ωq

[ε(k+q)−ε(k)]2−(h̄ωq)2
. Here, Mq is the

electron–phonon matrix element.
A pair of electrons interacting in the presence of a Fermi sea of “spectator

electrons” is described by H =
∑

�,σ ε�c
†
�σc�σ − 1

2V
∑

��′σ c
†
�′σc

†
−�′σ̄c−�σ̄c�σ,

where ε� = h̄2�2

2m and the strength of the interaction, V , is taken as a constant
for a small region of k-space close to the Fermi surface. A variational trial
function Ψ =

∑
k akc

†
kσc

†
−kσ̄ | G > gives us 1

V =
∑

k
1

2εk−E . Here, | G〉 is the
Fermi sea of spectator electrons, | G〉 = Πk<kF

|k| c†kσc
†
−kσ̄ | 0〉. Approximating

the sum by an integral over the energy ε, we have E � 2EF − 2h̄ωDe−2/gV .
The quantity 2h̄ωDe−2/gV is the binding energy of the Cooper pair.

In the BCS theory, H is rewritten as H = H0 +H1, where

H0 =
∑

k

εk

(
c†k↑ck↑ + c†−k↓c−k↓

)
and H1 = −V

′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑.
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Introducing α†
kσ = ukc

†
kσ + v−kc−kσ̄ and αkσ = ukckσ + v−kc

†
−kσ̄ the nonin-

teracting Hamiltonian becomes H0 = E0 +
∑

k,σ | ε̃k | α†
kσαkσ. The ground

state of the noninteracting electron gas (filled Fermi sphere) is given by
| GS〉 =

∏
kσ αkσα−kσ̄ | VAC〉, where | VAC〉 is the true vacuum state.

The Bogoliubov–Valatin transformation defined by

αk = ukck↑ − vkc
†
−k↓ ; β†

k = ukc
†
−k↓ + vkck↑

α†
k = ukc

†
k↑ + vkc−k↓̄ ; βk = ukc−k↓ + vkc

†
k↑

gives

H = H(0) +H(2) +H(4),

where

H(0) = 2
∑

k

εkv
2
k − V

∑

kk′
ukvkuk′vk′ ; H(2) =

∑

k

Ek(α†
kαk + β†

kβk).

Here Ek = ε̃k(u2
k− v2

k)+2Δukvk and H(4) contains interactions between the
elementary excitations. The equation for the energy gap Δ is given by

1 =
V

2

∑

k

1
√
ε̃2k + Δ2

and Δ = 2h̄ωqe
− 2

g(EF)V .

The ground-state wave function Ψ0 of the superconducting system is

| Ψ0〉 =
∏

k

(uk + vkc
†
kc

†
−k) | VAC〉.

The energy of a quasiparticle is Ek =
√
ε̃2k + Δ2, where ε̃k = h̄2k2

2m −EF. The
density of quasiparticle states in the superconductor is given by

gS(E) =
mkF

π2h̄2

E√
E2 − Δ2

.

The type I and type II superconductors are distinguished by whether the
ratio of the coherence length ξ0 to the London penetration depth ΛL is large
or small compared to unity. The local relation j(r) = −nSe

2

mc A(r) is valid only
for type II materials where ΛL � ξ0 and A(r) varies slowly on the scale of
ξ0. For the case Λeff � ξ0, the vector potential A(r) is finite only in a surface
layer and we have

j(r) = −nSe
2

mc

Λeff

ξ0
A(r)

leading to Λeff ≈ ΛL( ξ0ΛL
)1/3. The intermediate state is a mixture of normal

and superconducting regions due to geometric factors and it has a domain
structure. In the extreme dirty limit of ξ0 � l, we have

j(r) = −nSe
2

mc

l

ξ0
A(r),

and the effective penetration depth Λeff = ΛL

√
ξ0/l is increased greatly.
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The Fractional Quantum Hall Effect: The
Paradigm for Strongly Interacting Systems

16.1 Electrons Confined to a Two-Dimensional Surface
in a Perpendicular Magnetic Field

The study of the electronic properties of quasi two-dimensional systems has
been a very exciting area of condensed matter physics during the last quarter
of the twentieth century. Among the most interesting discoveries in this area
are the incompressible states showing integral and fractional quantum Hall
effects. Incompressible quantum liquid states of the integral quantum Hall
effect result from an energy gap in the single particle spectrum. The incom-
pressibility of the fractional quantum Hall effect is completely the result of
electron–electron interactions in a highly degenerate fractionally filled Landau
level. Since the quantum Hall effect involves electrons moving on a two-
dimensional surface in the presence of a perpendicular magnetic field, we
begin with a description of this problem.

The application of a large dc magnetic field perpendicular to the two-
dimensional layer results in some notable novel physics. The Hamiltonian
describing the motion of a single electron (of mass μ) confined to the x–y
plane, in the presence of a dc magnetic field B = Bẑ, is simply

H = (2μ)−1
[
p +

e

c
A(r)

]2
. (16.1)

The vector potential A(r) is given by A(r) = 1
2B(−yx̂ + xŷ) in a symmet-

ric gauge. We use x̂, ŷ, and ẑ as unit vectors along the Cartesian axes. The
Schrödinger equation (H − E)Ψ(r) = 0 has eigenstates1

Ψnm(r, φ) = eimφunm(r), (16.2)
Enm = 1

2 h̄ωc(2n+ 1 +m+ |m|), (16.3)

1 See, for example, L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon,
Oxford, 1977), p. 458; S. Gasiorowicz Quantum Mechanics (Wiley, New York,
1996), ch. 13.
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where n and m are principal and angular momentum quantum numbers,
respectively, and ωc(= eB/μc) is the cyclotron angular frequency. The radial
function u(r) in (16.2) satisfies the differential equation

d2u

dη2
+ η−1 du

dη
− (m2η−1 + η2 − ε)u = 0, (16.4)

where η and ε are, respectively, defined by η =
√
eB/2h̄cr = r√

2l0
and

ε = 4E/h̄ωc−2m. Here, l0 =
√
h̄c/eB is the magnetic length. The radial wave-

functions unm(r) can be expressed in terms of associated Laguerre polynomials
Lmn as

unm(η) = η|m|e−η
2/2L|m|

n (η2). (16.5)

Here, L|m|
0 (η2) is independent of η and L|m|

1 (η2) ∝ (|m| + 1 − η2). The lowest
energy level has n = 0 andm = 0,−1,−2, . . . . The first excited level has n = 1
and m = 0,−1,−2, . . . , or n = 0 and m = 1, etc. These highly degenerate
levels are separated from neighboring levels by h̄ωc. These quantized energy
levels are called Landau levels ; the lowest Landau level wavefunction can be
written as

Ψ0m = Nmz
|m|e−|z|2/4l02

, (16.6)

where Nm is the normalization constant and z stands for z(=x− iy) = re−iφ.
The maximum value of |Ψ0m(z)|2 occurs at rm ∝ m1/2.

For a finite size sample of area S = πR2, the number of single particle
states in the lowest Landau level is given by Nφ = BS/φ0, where φ0 =
hc/e is the quantum of magnetic flux. The filling factor ν of a given Landau
level is defined by N/Nφ, so that ν−1 is simply equal to the number of flux
quanta of the dc magnetic field per electron. For a sample of radius R, the
number of allowed values of |m| is simply Nφ. For the lowest Landau level,
degeneracy of the level is Nφ because the allowed values of |m| are given by
|m| = 0, 1, 2, . . . , Nφ − 1.

16.2 Integral Quantum Hall Effect

The integral quantum Hall effect occurs when N electrons exactly fill an inte-
gral number of Landau levels resulting in an integral value of the filling factor
ν. When ν is equal to an integer, there is an energy gap (equal to h̄ωc) between
the filled states and the empty states. This makes the noninteracting electron
system incompressible, because an infinitesimal decrease in the area A, which
decreases Nφ, requires a finite energy h̄ωc to promote an electron across the
energy gap into the first unoccupied Landau level. This incompressibility is
responsible for the integral quantum Hall effect.2 To understand the minima
2 K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
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in the diagonal resistivity ρxx and the plateaus in the Hall resistivity ρxy, it
is necessary to notice that each Landau level, broadened by collisions with
defects and phonons, must contain both extended states and localized states.
The extended states lie in the central portion of the broadened Landau level,
and the localized states in the wings. As the chemical potential ζ sweeps
through the Landau level (by varying either B or the particle number N),
zeros of ρxx (at T = 0K) and flat plateaus of ρxy occur when ζ lies within the
localized states.

A many particle wavefunction of N electrons at filling factor ν = 1 can
be constructed by antisymmetrizing the product function which places one
electron in each of the N states with 0 ≤ |m| ≤ Nφ − 1. Here, the product
function should be antisymmetric under exchange of any two electrons, and
the many particle wavefunction is written, for ν = 1, as

Ψ1(z1, . . . , zN) = A{u0(z1)u1(z2) · · ·uN−1(zN)} (16.7)

where A denotes the antisymmetrizing operator. Since u|m|(z) ∝ z|m|e−|z2|/4l20 ,
as given by (16.6), (16.7) can be written out as follows:

Ψ1(z1, . . . , zN ) ∝

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

1 1 . . . 1
z1 z2 . . . zN
z2
1 z2

2 . . . z2
N

...
... . . .

...
zN−1
1 zN−1

2 . . . zN−1
N

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

e
− 1

4l20

∑
i=1,N

|zi|2
. (16.8)

The determinant in (16.8) is the well-known Van der Monde determinant writ-
ten, simply, as Π

N≥i>j≥1(zi − zj). This is easily demonstrated by subtracting
column j from column i and noting zij = zi−zj is a common factor. Since it is
true for every i �= j, the result is apparent. Then the N -particle wavefunction
corresponding to a filled Landau level becomes

Ψ1(z1, . . . , zN) ∝ Π
N≥i>j≥1zije

− 1
4l20

∑
k=1,N |zk|2

. (16.9)

In (16.9), the highest power of zj is N−1. This means that the allowed values
of |m| are equal to 0, 1, 2, . . . , N − 1 or that the Landau level degeneracy is
given by Nφ = N and hence ν = N/Nφ = 1. We could obtain (16.9) by
the requirement of antisymmetry imposed on the product of single particle
eigenfunctions.

16.3 Fractional Quantum Hall Effect

When the filling factor ν is smaller than unity, the standard approach of
placing N particles in the lowest energy single particle states is not applica-
ble, because more degenerate states than the number of particles are present
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in the lowest Landau level. For example, for the case of ν = 1/3, it is not
apparent how to construct antisymmetric product function for N electrons
in 3N states to describe fractional quantum Hall states. In this case, no gap
occurs in the absence of electron–electron interaction, and it is not easy to
understand why fractional quantum Hall states are incompressible. At very
high values of the applied magnetic field, there is only one relevant energy
scale in the problem, the Coulomb scale e2/�0. In that case, standard many
body perturbation theory is not applicable. Laughlin used remarkable physi-
cal insight to propose a ground state wavefunction, for filling factor ν = 1/n,3

Ψ1/n(1, 2, · · ·, N) =
∏

i>j

znij e−
∑

l |zl|2/4l20 , (16.10)

where n is an odd integer.
The Laughlin wavefunction has the properties that (1) it is antisymmetric

under interchange of any pair of particles as long as n is odd, (2) particles stay
farther apart and have lower Coulomb repulsion for n > 1, and (3) because the
wavefunction contains terms with zmi for 0 ≤ m ≤ n(N−1),Nφ−1, the largest
value of m in the Landau level, is equal to n(N−1) giving ν = N/Nφ −→ 1/n
for large systems in agreement with experiment.4

16.4 Numerical Studies

Remarkable confirmation of Laughlin’s hypothesis was obtained by exact diag-
onalization carried out for relatively small systems. Exact diagonalization of
the interaction Hamiltonian within the Hilbert subspace of the lowest Landau
level is a very good approximation at large values of B, where h̄ωc � e2/l0.
Although real experiments are performed on a two-dimensional plane, it is
more convenient to use a spherical two dimensional surface for numerical diag-
onalization studies. Haldane introduced the idea of putting a small number of
electrons on a spherical surface at the center of which is located a magnetic
monopole. We consider the case that the N electrons are confined to a Hal-
dane surface of radius R. At the center of the sphere, a magnetic monopole of
strength 2Qφ0, where 2Q is an integer, is located, as illustrated in Fig. 16.1.
The radial magnetic field is written as

B =
2Qφ0

4πR2
R̂, (16.11)

where R̂ is a unit vector in the radial direction. The single particle Hamilto-
nian can be expressed as

H0 =
1

2mR2

(
l − h̄QR̂

)2

. (16.12)

3 R.B.Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
4 D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
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02Qφ
R

ˆr rR=

Fig. 16.1. Haldane sphere of radius R with magnetic monopoles of strength 2Q
located at the center of the sphere

Here, l is the orbital angular momentum operator. The components of l satisfy
the usual commutation rules [lα, lβ ] = ih̄εαβγlγ , where the eigenvalues of l2

and lz are, respectively, h̄2l(l + 1) and h̄m.5 The single particle eigenstates
of (16.12) denoted by |Q, l,m〉 are called monopole harmonics. The states
|Q, l,m〉 are eigenfunctions of l2 and lz as well as of H0, the single particle
Hamiltonian, with eigenvalues

ε(Q, l,m) =
h̄ωc

2Q
[l(l+ 1) −Q2]. (16.13)

In writing (16.13), we noted that Λ·R̂ = R̂·Λ = 0 and, hence, l·R̂ = R̂·l = h̄Q.
Because this energy must be positive, the allowed values of l are given by
ln = Q + n, where n = 0, 1, 2, . . . . The lowest Landau level (or angular
momentum shell) occurs for l0 = Q and has the energy ε0 = h̄ωc/2, which is
independent of m as long as m is a nonpositive integer. Therefore, the low-
est Landau level has (2Q+ 1)-fold degeneracy. The nth excited Landau level
occurs for ln = Q+ n with energy

εn =
h̄ωc

2Q
[(Q+ n)(Q+ n+ 1) −Q2]. (16.14)

An N -particle eigenfunction of the lowest Landau level can be written, in
general, as

|m1,m2, · · ·,mN 〉 = c†mN
· · · c†m2

c†m1
|0〉. (16.15)

5 We note that, in the presence of the magnetic field, the total angular momentum
is given by Λ = r × [−ih̄∇+ eA(r)] and that the eigenvalues of Λ2 are not equal
to l(l + 1)h̄2. Here, A is the vector potential and [Λi, R̂j ] = ih̄εijkR̂k.
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Here, |mi| ≤ Q and c†mi
creates an electron in state |l0,mi〉. Since we are

concentrating on a partially filled lowest Landau level we have only 2Q + 1
degenerate single particle states. The number of possible way of constructing
N -electron antisymmetric states from 2Q+1 single particle states or choosing
N distinct values of m out of the 2Q+ 1 allowed values is given by

GNQ =
(

2Q+ 1
N

)
=

(2Q+ 1)!
N !(2Q+ 1 −N)!

. (16.16)

Then, there are GNQ N -electron states in the Hilbert subspace of the lowest
Landau level. For the Laughlin ν = 1/m state, we have 2Qν=1/m = m(N−1).
For example, for the case of 2Q = 9 and N = 4 (ν = 1/3 state for 4 electrons
in the lowest Landau level of degeneracy 2Q+ 1 = 10), we have l = 4.5 and
there are GNQ = 10!/[4!(10 − 4)! = 210 of four-electron states in the Hilbert
space of the lowest Landau level.

Table 16.1 lists the values of the electron angular momentum �e, 2Q + 1
(the Landau level degeneracy),GNQ (the number of antisymmetricN -electron
states), LMAX (the largest possible angular momentum of the system), and

Table 16.1. The angular momentum 
e of an electron in the lowest Landau level;
2Q+1 the Landau level degeneracy; GNQ the dimension of N-electron Hilbert space;
LMax the maximum value of the total angular momentum L; the allowed L-values for
a system consisting of N electrons on the surface of a Haldane sphere. The exponent
of the allowed L-values indicates the number of times an L-multiplet appears and
the number in parenthesis denotes the total number of L-multiplets

N 
e 2Q + 1 GNQ LMax Allowed L-values

3 3.0 7 35 6 6 ⊕ 4 ⊕ 3 ⊕ 2 ⊕ 0 (5)

4 4.5 10 210 12
12 ⊕ 10 ⊕ 9 ⊕ 82 ⊕ 7 ⊕ 63⊕

5 ⊕ 43 ⊕ 3 ⊕ 22 ⊕ 02

(18)

5 6.0 13 1,287 20

20 ⊕ 18 ⊕ 17 ⊕ 162 ⊕ 152 ⊕ 143⊕
133 ⊕ 125 ⊕ 114 ⊕ 106 ⊕ 95⊕

87 ⊕ 67 ⊕ 55 ⊕ 46 ⊕ 33⊕
24 ⊕ 1 ⊕ 02

(73)

6 7.5 16 8,008 30
30 ⊕ 28 ⊕ · · ·

(338)

7 9.0 19 50,382 42
42 ⊕ 40 ⊕ · · ·

(1, 656)

8 10.5 22 319,770 56
56 ⊕ 54 ⊕ · · ·

(8, 512)

9 12.0 25 2,042,975 72
72 ⊕ 70 ⊕ · · ·

(45, 207)

10 13.5 28 13,123,110 90
90 ⊕ 88 ⊕ · · ·

(246, 448)



16.4 Numerical Studies 489

the allowed values of L (the total angular momentum) with a superscript
indicating how many times they appear. The number in parenthesis in the
allowed L-value column is the total number of different L-multiplets that
appear. For three electrons there are five such states, all with different L
values. For four electrons there are 18 states; L = 12, 10, 9, 7, 5, and 3
each appearing once, L = 8, 2, and 0 each appearing twice, and L = 6
and 4 each three times. For N = 10 and Q = 13.5 (ν = 1/3 state of 10
electrons) GNQ = 13, 123, 110 and there are 246,448 distinct L multiplets
with 0 ≤ L ≤ 90.

The numerical problem is to diagonalize the interaction Hamiltonian

Hint =
∑

i<j

V (|ri − rj |) (16.17)

in the GNQ dimensional space. The problem is facilitated by first determining
the eigenfunctions |LMα〉 of the total angular momentum. Here, L̂ =

∑
i l̂i,

M =
∑

imi, and α is an additional label that accounts for distinct multiplets
with the same total angular momentum L (for example, for the five electron
system the seven L = 6 states correspond to seven different values of α). The
210 four-electron states of four electrons give us 18 × 18 matrix that is block
diagonal with two 3 × 3 blocks, three 2 × 2 blocks, and six 1 × 1 blocks. For
small numbers of electrons these finite matrices can easily be diagonalized to
obtain the many-body eigenvalues and eigenfunctions.6

In a plane geometry, the allowed values of m, the z-component of the sin-
gle particle angular momentum, are 0, 1, · · ·, Nφ − 1. M =

∑
imi is the

total z−component of angular momentum, where the sum is over all occu-
pied states. It can be divided into the center-of-mass (CM) and relative (R)
contributions MCM + MR. The connection between the planar and spherical
geometries is as follows:

M = Nl+ Lz, MR = Nl − L, MCM = L+ Lz (16.18)

The interactions depend only on MR, so |MR,MCM〉 acts just like |L,Lz〉.
The absence of boundary conditions and the complete rotational symmetry
make the spherical geometry attractive to theorists. Many experimentalists
prefer using the |MR,MCM〉 states of the planar geometry. The calculations
give the eigenenergies E as a function of the total angular momentum L.

6 Because Hint is a scalar, the Wigner–Eckart theorem

〈L′M ′α′|Hint|LMα〉 = δLL′δMM′〈L′α′|Hint|Lα〉
tells us that matrix elements of Hint are independent of M and vanish unless L′ =
L. This reduces the size of the matrix to be diagonalized enormously. For example,
for N = 10 and Q = 27/2 (ν = 1/3 state of ten electrons) GNQ = 13, 123, 110
and there are 246,448 distinct L multiplets with 0 ≤ L ≤ 90. However, the largest
matrix diagonalized is only 7069 by 7069.
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2Q=27

E

Laughlin

ν=1/3 state

1QE+1QH

0 2 4 6 8 10 12

L
Fig. 16.2. The energy spectrum of 10 electrons in the lowest Landau level calculated
on a Haldane sphere with 2Q = 27. The open circle denotes the L = 0 ground state

The numerical results for the lowest Landau level always show one or more L
multiplets forming a low energy band. As an example, the numerical results
(E vs L) are shown in Figs. 16.2 and 16.3 for a system of 10 electrons with
values of 2Q between 25 and 29. It is clear that the states fall into a well
defined low energy sector and slightly less well defined excited sectors. The
Laughlin ν = 1/3 state occurs at 2Q = 3(N − 1) = 27 and the low energy
sector consists of a singlet L = 0 state as illustrated in Fig. 16.2. States with
larger values of Q contain one, two, or three quasiholes (2Q = 28, 29, 30), and
states with smaller values of Q, such as 2Q = 25 or 26, contain quasielectrons
in the ground states. For 2Q = 26 the system is one single-particle state shy
of having the Laughlin ν = 1/3 filling. In this case the low energy sector
corresponds to having a single Laughlin quasielectron of angular momentum
L = 5.

16.5 Statistics of Identical Particles in Two Dimension

Let us consider a system consisting of two particles each of charge −e and mass
μ, confined to a plane, in the presence of a perpendicular dc magnetic field
B = (0, 0, B) = ∇× A(r). Since A(r) is linear in the coordinate r = (x, y),
(for example, A(r) = 1

2B(−y, x) in a symmetric gauge), the Hamiltonian
separates into the center-of-mass and relative coordinate pieces R = 1

2 (r1+r2)
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E

(c) 2Q=261QE(a) 2Q=281QH

E

0 2 4 6 8 10 12

L

(d) 2Q=25

2QE

0 2 4 6 8 10 12

L

(b) 2Q=29

2QH

Fig. 16.3. The energy spectra of 10 electrons in the lowest Landau level calculated
on a Haldane sphere with 2Q = 28, 29, 26, 25. The open circles and solid lines mark
the lowest energy bands with the fewest composite fermion quasiparticles of nQH = 1
for 2Q = 28 in (a), nQH = 2 for 2Q = 29 in (b), nQE = 1 for 2Q = 26 in (c), and
nQE = 2 for 2Q = 25 in (d)

and r = r2−r1 being the center-of-mass and relative coordinates, respectively.
The energy spectra for the center-of-mass and relative motion of the particles
are identical to that of a single particle of mass μ and charge −e. We have
seen that, as given by (16.6), for the lowest Landau level, the single particle
wavefunction is

Ψ0m(r1) = Nmr
m
1 e−imφe−r

2
1/4l0

2
.

For the relative motion φ is equal to φ1 −φ2, and the interchange of the pair,
denoted by PΨ(r1, r2) = Ψ(r2, r1), is accomplished by replacing φ by φ+ π.

For two identical particles initially at positions r1 and r2 in a three dimen-
sional space, the amplitude for the path that takes the system from the initial
state (r1, r2) to the same final state (r1, r2) depends on the angle of rotation
φ of the vector r12(=r1−r2). The end points represented by φ = π or 0 corre-
spond to exchange or non-exchange processes, and the angle φ is only defined
modulo 2π. The angle of rotation φ is not a well-defined quantity in three
dimension, but the statistics can not be arbitrary. Under the exchange of two
particles, the wavefunction picks up either a plus sign named bosonic statistics
or a minus sign named fermionic statistics with no other possibilities. Since
two consecutive interchanges must result in the original wavefunction, eimπ

must be equal to either +1 (m is even; bosons) or −1 (m is odd; fermions).
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In two dimensions the angle φ is perfectly well-defined for a given tra-
jectory. It is possible to keep track of how many times the angle φ winds
around the origin. Any two trajectories can not be deformed continuously
into one another since any two particles can not go through each other. The
space of particle trajectories falls into disconnected pieces that cannot be
deformed into one another if |rij | is not allowed to vanish. Each piece has a
definite winding number. Therefore, it is not enough to specify the initial and
final configurations to characterize a given system completely. In constructing
path integrals, the weighting of trajectories can depend on a new parameter θ
(defined modulo 2π) through a factor eiθφ/π. For θ = 0 or θ = π we have the
conventional boson or fermion statistics. For the most general case, we have

P12Ψ(1, 2) = eiθΨ(1, 2). (16.19)

For arbitrary values of θ the particles are called anyons and satisfy a new
form of quantum statistics.7

Let us consider a simple Lagrangian describing the relative motion of two
interacting particles, the relative position and reduced mass of which are
denoted by r[= (r, φ)] and μ, respectively. A simple way to realize anyon
statistics is to add a term h̄βφ̇ called Chern–Simons term to the Lagrangian,
where β(≡ θ/π) = qΦ/hc is the anyon parameter with 0 ≤ β ≤ 1. While q and
Φ are a fictitious charge and flux, θ is the numerical parameter of 0 ≤ θ ≤ 1.
For example, if

L =
1
2
μ(ṙ2 + r2φ̇2) − V (r) + h̄βφ̇ (16.20)

the added (fictitious charge–flux) Chern–Simons term does not affect the clas-
sical equations of motions because q and Φ are time independent. However,
the canonical angular momentum is given by pφ(= ∂L

∂φ̇
) = μr2φ̇+ h̄β. Because

e2πipφ/h̄ generates rotations of 2π, h̄−1pφ must have integral eigenvalues �.
However, the gauge invariant kinetic angular momentum, given by pφ − h̄β,
can take on fractional values, which will result in fractional quantum statistics
for the particles.

16.6 Chern–Simons Gauge Field

Let us consider a two-dimensional system of particles satisfying some partic-
ular statistics and described by a Hamiltonian

H =
1
2μ

∑

i

[
pi +

e

c
A(ri)

]2
+
∑

i>j

V (rij). (16.21)

7 A. Lerda, Anyons: Quantum Mechanics of Particles with Fractional Statistics,
Lecture Notes in Physics (Springer, Berlin, 1992) and F. Wilczek, Fractional
Statistics and Anyon Superconductivity (World Scientific, Singapore, 1990).
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Then, we can change the statistics by attaching to each particle a fictitious
charge q and flux tube carrying magnetic flux Φ. The fictitious vector potential
a(ri) at the position of the ith particle caused by flux tubes, each carrying
flux of Φ, on all the other particles at rj(�= ri) is written as

a(ri) = Φ
∑

j �=i

ẑ × rij
r2ij

. (16.22)

The Chern–Simons gauge field due to the gauge potential a(ri) becomes

b(r) = Φ
∑

i

δ(r − ri)ẑ, (16.23)

where ri is the position of the ith particle carrying gauge potential a(ri).
Since no two electrons can occupy the same position and a given electron can
never sense the δ-function type gauge field due to other electrons, b(r) has no
effect on the classical equations of motion.

In a quantum mechanical system, we rewrite the vector potential a(r) as
follows:

a(ri) = Φ
∫

d2r1
ẑ × (r − r1)
|r − r1|2 ψ†(r1)ψ(r1). (16.24)

Here, ψ†(r1)ψ(r1) denotes the density operator ρ(r1) for the electron liquid
and the gauge potential a(r) introduces a phase factor into the quantum
mechanical wavefunction.

Chern–Simons transformation is a singular gauge transformation which
transforms an electron creation operator ψ†

e(r) into a composite particle
creation operator ψ†(r) as follows:

ψ†(r) = ψ†
e(r)eiα

∫
d2r′arg(r−r′)ψ†e(r′)ψe(r′). (16.25)

Here, arg(r − r′) denotes the angle that the vector r − r′ makes with the
x-axis and α is a gauge parameter. Then, the kinetic energy operator Ke of
an electron is transformed into

KCS =
1
2μ

∫
d2rψ†(r)

[
−ih̄∇ +

e

c
A(r) +

e

c
a(r)

]2
ψ(r), (16.26)

where a(r) is the total gauge potential formed at the position r due to the
Chern–Simons flux attached to other particles.

a(r) = αφ0

∫
d2r′

ẑ × (r − r′)
|r − r′|2 ψ†(r′)ψ(r′).

Hence, the Chern–Simons transformation corresponds to a transformation
attaching to each particle a flux tube of fictitious magnetic flux Φ(=αφ0)
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and a fictitious charge −e so that the particle could couple to the flux tube
attached to other particles.

The new Hamiltonian, through Chern–Simons gauge transformation, is
obtained by simply replacing e

cA(ri) in (16.21) by e
cA(ri) + e

ca(ri).

HCS =
1
2μ

∫
d2rψ†(r)

[
p +

e

c
A(r) +

e

c
a(r)

]2
ψ(r) +

∑

i>j

V (rij). (16.27)

The composite fermions obtained in this way carry both electric charge and
magnetic flux. The Chern–Simons transformation is a gauge transformation
and hence the composite fermion energy spectrum is identical with the orig-
inal electron spectrum. Since attached fluxes are localized on electrons and
the magnetic field acting on each electron is unchanged, the classical Hamil-
tonian of the system is also unchanged. However, the quantum mechanical
Hamiltonian includes additional terms describing an additional charge–flux
interaction, which arises from the Aharanov–Bohm phase attained when one
electron’s path encircles the flux tube attached to another electron.

The net effect of the additional Chern–Simons term is to replace the statis-
tics parameter θ describing the particle statistics in (16.19) with θ + πΦ q

hc .
If Φ = phce when p is an integer, then θ → θ + πpq/e. For the case of q = e
and p = 1, θ = 0 → θ = π converting bosons to fermions and θ = π → θ = 2π
converting fermions to bosons. For p = 2, the statistics would be unchanged
by the Chern–Simons terms.

The Hamiltonian HCS contains terms proportional to an(r) (n = 0, 1, 2).
The a1(r) term gives rise to a standard two-body interaction. The a2(r) term
gives three-body interactions containing the operator

Ψ†(r)Ψ(r)Ψ†(r1)Ψ(r1)Ψ†(r2)Ψ(r2).

The three-body terms are complicated, and they are frequently neglected.
The Chern–Simons Hamiltonian introduced via a gauge transformation is con-
siderably more complicated than the original Hamiltonian given by (16.21).
Simplification results only when the mean-field approximation is made. This
is accomplished by replacing the operator ρ(r) in the Chern–Simons vector
potential (16.24) by its mean-field value nS , the uniform equilibrium elec-
tron density. The resulting mean-field Hamiltonian is a sum of single particle
Hamiltonians in which, instead of the external field B, an effective magnetic
field B∗ = B + αφ0nS appears.

16.7 Composite Fermion Picture

The difficulty in trying to understand the fractionally filled Landau level in
two dimensional systems comes from the enormous degeneracy that is present
in the noninteracting many body states. The lowest Landau level contains Nφ
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states and Nφ = BS/φ0, the number of flux quanta threading the sample of
area S. Therefore, Nφ/N = ν−1 is equal to the number of flux quanta per
electron. Let us think of the ν = 1/3 state as an example; it has three flux
quanta per electron. If we attach to each electron a fictitious charge q(= −e,
the electron charge) and a fictitious flux tube (carrying flux Φ = 2pφ0 directed
opposite to B, where p is an integer and φ0 the flux quantum), the net effect
is to give us the Hamiltonian described by Eqs.(16.21) and (16.22) and to
leave the statistical parameter θ unchanged. The electrons are converted into
composite fermions which interact through the gauge field term as well as
through the Coulomb interaction.

Why does one want to make this transformation, which results in a much
more complicated Hamiltonian? The answer is simple if the gauge field a(ri)
is replaced by its mean value, which simply introduces an effective magnetic
field B∗ = B+ 〈b〉. Here, 〈b〉 is the average magnetic field associated with the
fictitious flux. In the mean field approach, the magnetic field due to attached
flux tubes is evenly spread over the occupied area S. The mean field composite
fermions obtained in this way move in an effective magnetic field B∗. Since,
for ν = 1/3 state, B corresponds to three flux quanta per electron and 〈b〉
corresponds to two flux quanta per electron directed opposite to the original
magnetic field B, we see that B∗ = 1

3B. The effective magnetic field B∗ acting
on the composite fermions gives a composite fermion Landau level contain-
ing 1

3Nφ states, or exactly enough states to accommodate our N particles.
Therefore, the ν = 1/3 electron Landau level is converted, by the composite
fermion transformation, to a ν∗ = 1 composite fermion Landau level. Now,
the ground state is the antisymmetric product of single particle states con-
taining N composite fermions in exactly N states. The properties of a filled
(composite fermion) Landau level is well investigated in two dimension. The
fluctuations about the mean field can be treated by standard many body per-
turbation theory. The vector potential associated with fluctuation beyond the
mean field level is given by δa(r) = a(r) − 〈a(r)〉. The perturbation to the
mean field Hamiltonian contains both linear and quadratic terms in δa(r),
resulting in both two body and three body interaction terms.

The idea of a composite fermion was introduced initially to represent an
electron with an attached flux tube which carries an even number α (= 2p)
of flux quanta. In the mean field approximation the composite fermion filling
factor ν∗ is given by the number of flux quanta per electron of the dc field
less the composite fermion flux per electron, i.e.

ν∗−1 = ν−1 − α. (16.28)

We remember that ν−1 is equal to the number of flux quanta of the applied
magnetic field B per electron, and α is the (even) number of Chern–Simons
flux quanta (oriented oppositely to the applied magnetic field B) attached
to each electron in the Chern–Simons transformation. Negative ν∗ means the
effective magnetic field B∗ seen by the composite fermions is oriented oppo-
site to the original magnetic field B. Equation (16.28) implies that when
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ν∗ = ±1,±2, . . . and a nondegenerate mean field composite fermion ground
state occurs, then

ν =
ν∗

1 + αν∗
(16.29)

generates, for α = 2, condensed states at ν = 1/3, 2/5, 3/7, . . . and ν =
1, 2/3, 3/5, . . . . These are the most pronounced fractional quantum Hall states
observed in experiment. The ν∗ = 1 states correspond to Laughlin ν = 1

1+α
states. If ν∗ is not an integer, the low lying states contain a number of quasi-
particles (NQP ≤ N) in the neighboring incompressible state with integral ν∗.
The mean field Hamiltonian of noninteracting composite fermions is known
to give a good description of the low lying states of interacting electrons in
the lowest Landau level.

It is quite remarkable to note that the mean field picture predicts not only
the Jain sequence of incompressible ground states, given by ν = ν∗

1+2pν∗ (with
integer p), but also the correct band of low energy states for any value of
the applied magnetic field. This is illustrated very nicely for the case of N
electrons on a Haldane sphere. In the spherical geometry, one can introduce
an effective monopole strength 2Q∗ seen by one composite fermion. When
the monopole strength seen by an electron has the value 2Q, 2Q∗ is given,
since the α flux quanta attached to every other composite fermion must be
subtracted from the original monopole strength 2Q, by

2Q∗ = 2Q− α(N − 1). (16.30)

This equation reflects the fact that a given composite fermion senses the vector
potential produced by the Chern–Simons flux on all other particles, but not
its own Chern–Simons flux.

Now, |Q∗| = l∗0 plays the role of the angular momentum of the lowest
composite fermion shell just as Q = l0 was the angular momentum of the
lowest electron shell. When 2Q is equal to an odd integer (1+α) times (N−1),
the composite fermion shell l∗0 is completely filled (ν∗ = 1), and an L = 0
incompressible Laughlin state at filling factor ν = (1 + α)−1 results. When
2|Q∗| + 1 is smaller than N , quasielectrons appear in the shell lQE = l∗0 + 1.
Similarly, when 2|Q∗| + 1 is larger than N , quasiholes appear in the shell
lQH = l∗0. The low-energy sector of the energy spectrum consists of the states
with the minimum number of quasiparticle excitations required by the value
of 2Q∗ and N . The first excited band of states will contain one additional
quasielectron – quasihole pair. The total angular momentum of these states in
the lowest energy sector can be predicted by addition of the angular momenta
(lQH or lQE) of the nQH or nQE quasiparticles treated as identical fermions.
In Table 16.2 we demonstrate how these allowed L values are found for a
ten electron system with 2Q in the range 29 ≥ 2Q ≥ 15. By comparing
with numerical results presented in Fig. 16.1, one can readily observe that the
total angular momentum multiplets appearing in the lowest energy sector are
correctly predicted by this simple mean field Chern–Simons picture.
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Table 16.2. The effective CF monopole strength 2Q∗, the number of CF quasipar-
ticles (quasiholes nQH and quasielectrons nQE), the quasiparticle angular momenta
lQE and lQH, the composite fermion and electron filling factors ν∗ and ν, and the
angular momenta L of the lowest lying band of multiplets for a ten electron system
at 2Q between 29 and 15

2Q 29 28 27 26 25 24 23 22 21 15

2Q∗ 11 10 9 8 7 6 5 4 3 −3
nQH 2 1 0 0 0 0 0 0 0 0
nQE 0 0 0 1 2 3 4 5 6 6
lQH 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1.5
lQE 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2.5
ν∗ 1 2 −2
ν 1/3 2/5 2/3
L 10,8,6, 5 0 5 8,6,4, 9,7,6,5, 8,6,5, 5,3,1 0 0

4,2,0 2,0 4,32,1 42,22,0

For example, the Laughlin L = 0 ground state at ν = 1/3 occurs when
2l∗0 = N−1, so that the N composite fermions fill the lowest shell with angular
momentum l∗0(=

N−1
2 ). The composite fermion quasielectron and quasihole

states occur at 2l∗0 = N − 1 ± 1 and have one too many (for quasielectron)
or one too few (for quasihole) quasiparticles to give integral filling. The single
quasiparticle states (nQP = 1) occur at angular momentum N/2, for example,
at lQE = 5 with 2Q∗ = 8 and lQH = 5 with 2Q∗ = 10 for N = 10 as indicated
in Table 16.2. The two quasielectron or two quasihole states (nQP = 2) occur
at 2l∗0 = N − 1 ∓ 2, and they have 2lQE = N − 1 and 2lQH = N + 1. For
example, we expect that, for N = 10, lQE = 4.5 with 2Q∗ = 7 and lQH = 5.5
with 2Q∗ = 11 as indicated in Table 16.2, leading to low energy bands with
L = 0 ⊕ +2 ⊕ +4 ⊕ +6 ⊕ +8 for two quasielectrons and L = 0 ⊕ +2 ⊕ +4 ⊕
+6 ⊕ +8 ⊕ 10 for two quasiholes. In the mean field picture, which neglects
quasiparticle-quasiparticle interactions, these bands are degenerate.

We emphasize that the low lying excitations can be described in terms
of the number of quasiparticles nQE and nQH. The total angular momentum
can be obtained by addition of the individual quasiparticle angular momenta,
being careful to treat the quasielectron excitations as a set of fermions and
quasihole excitations as a set of fermions distinguishable from the quasielec-
tron excitations. The energy of the excited state would simply be the sum
of the individual quasiparticle energies if interactions between quasiparticles
were neglected. However, interactions partially remove the degeneracy of dif-
ferent states having the same values of nQE and nQH. Numerical results in
Fig. 16.3b and d illustrate that two quasiparticles with different L have differ-
ent energies. From this numerical data one can obtain the residual interaction
VQP(L′) of a quasiparticle pair as a function of the pair angular momen-
tum L′. In Fig. 16.2, in addition to the lowest energy band of multiplets,
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the first excited band containing one additional quasielectron-quasihole pair
can be observed. The “magnetoroton” band can be observed lying between
the L = 0 Laughlin ground state of incompressible quantum liquid and a
continuum of higher energy states. The band contains one quasihole with
lQH = 9/2 and one quasielectron with lQE = 11/2. By adding the angu-
lar momenta of these two distinguishable particles, a band comprising L of
1(=lQE − lQH) ≤ L ≤ 10(=lQE + lQH) would be predicted. But, from Fig. 16.2
we conjecture that the state with L = 1 is either forbidden or pushed up by
interactions into the higher energy continuum above the magnetoroton band.
Furthermore, the states in the band are not degenerate indicating residual
interactions that depend on the angular momentum of the pair L′. Other
bands that are not quite so clearly defined can also be observed in Fig. 16.3.

Although fluctuations beyond the mean field interact via both Coulomb
and Chern–Simons gauge interactions, the mean field composite fermion pic-
ture is remarkably successful in predicting the low-energy multiplets in the
spectrum of N electrons on a Haldane sphere. It was suggested originally
that this success of the mean field picture results from the cancellation of the
Coulomb and Chern–Simons gauge interactions among fluctuations beyond
the mean field level. It was conjectured that the composite fermion transfor-
mation converts a system of strongly interaction electrons into one of weakly
interacting composite fermions. The mean field Chern–Simons picture intro-
duces a new energy scale h̄ω∗

c proportional to the effective magnetic field B∗,
in addition to the energy scale e2/l0 (∝ √

B) associated with the electron–
electron Coulomb interaction. The Chern–Simons gauge interactions convert
the electron system to the composite fermion system. The Coulomb interac-
tion lifts the degeneracy of the noninteracting electron bands. The low lying
multiplets of interacting electrons will be contained in a band of width e2/l0
about the lowest electron Landau level. The noninteracting composite fermion
spectrum contains a number of bands separated by h̄ω∗

c . However, for large
values of the applied magnetic field B, the Coulomb energy can be made
arbitrarily small compared to the Chern–Simons energy h̄ω∗

c , resulting in the
former being too small to reproduce the separation of levels present in the
mean field composite fermion spectrum. The new energy scale is very large
compared with the Coulomb scale, and it is totally irrelevant to the deter-
mination of the low energy spectrum. Despite the satisfactory description of
the allowed angular momentum multiplets, the magnitude of the mean field
composite fermion energies is completely wrong. The structure of the low-
energy states is quite similar to that of the fully interacting electron system
but completely different from that of the noninteracting system. The magne-
toroton energy does not occur at the effective cyclotron energy h̄ω∗

c . What
is clear is that the success of the composite fermion picture does not result
from a cancellation between Chern–Simons gauge interactions and Coulomb
interactions.
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16.8 Fermi Liquid Picture

The numerical result of the type displayed in Fig. 16.2 could be understood in
a very simple way within the composite fermion picture. For the 10 particle
system, the Laughlin ν = 1/3 incompressible ground state at L = 0 occurs
for 2Q = 3(N −1) = 27. The low lying excited states consist of a single quasi-
particle pair, with the quasielectron and quasihole having angular momentum
lQE = 11/2 and lQH = 9/2. The mean field composite fermion picture does not
account for quasiparticle interactions and would give a magnetoroton band of
degenerate states with 1 ≤ L ≤ 10 at 2Q = 27. It also predicts the degenera-
cies of the bands of two identical quasielectron states at 2Q = 25 and of two
identical quasihole states at 2Q = 29.

The energy spectra of states containing more than one composite fermion
quasiparticle can be described in the following phenomenological Fermi liquid
model. The creation of an elementary excitation, quasielectron or quasihole, in
a Laughlin incompressible ground state requires a finite energy, εQE or εQH,
respectively. In a state containing more than one Laughlin quasiparticles,
quasiparticles interact with one another through appropriate quasiparticle-
quasiparticle pseudopotentials, VQP−QP′ . Here, VQP−QP′(L′) is defined as the
interaction energy of a pair of electrons as a function of the total angular
momentum L′ of the pair.

An estimate of the quasiparticle energies can be obtained by comparing
the energy of a single quasielectron (for example, for the 10 electron system,
the energy of the ground state at L = N/2 = 5 for 2Q = 27 − 1 = 26) or a
single quasihole (the L = N/2 = 5 ground state at 2Q = 27 + 1 = 28 for the
10 electron system) with the Laughlin L = 0 ground state at 2Q = 27. There
can be finite size effects, because the quasiparticle states occur at different
values of 2Q from that of the ground state. But estimation of reliable εQE

and εQH should be possible for a macroscopic system by using the correct
magnetic length l0 = R/

√
Q (R is the radius of the Haldane sphere) in the

units of energy e2/l0 at each value of 2Q and by extrapolating the results as
a function of N−1 to an infinite system.8

The quasiparticle pseudopotentials VQP−QP′ can be obtained by subtract-
ing from the energies of the two quasiparticle states obtained numerically,
for example, for the ten particle system at 2Q = 25(2QE state), 2Q =
27(QE − QH state), and 2Q = 29(2QH state) the energy of the Laughlin
ground state at 2Q = 27 and two energies of appropriate noninteracting quasi-
particles. As for the single quasiparticle, the energies calculated at different
2Q must be taken in correct units of e2/l0 =

√
Qe2/R to avoid finite size

effects.

8 P. Sitko, S.-N. Yi, K.-S. Yi, J.J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).
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16.9 Pseudopotentials

Electron pair states in the spherical geometry are characterized by a pair
angular momentum L′(=L12). The Wigner–Eckart theorem tells us that the
interaction energy Vn(L′) depends only on L′ and the Landau level index n.
The reason of the success of the mean field Chern–Simons picture can be
seen by examining the behavior of the pseudopotential VQP−QP′(L′) of a pair
of particles. In the mean field approximation the energy necessary to create
a quasielectron–quasihole pair is h̄ω∗

c . However, the quasiparticles will inter-
act with the Laughlin condensed state through the fluctuation Hamiltonian.
The renormalized quasiparticle energy will include this self-energy, which is
difficult to calculate. We can determine the quasiparticle energies phenomeno-
logically using exact numerical results as input data. The picture we are using
is very reminiscent of Fermi liquid theory. The ground state is the Laughlin
condensed state; it plays the role of a vacuum state. The elementary excita-
tions are quasielectrons and quasiholes. The total energy can be expressed as

E = E0 +
∑

QP

εQPnQP +
1
2

∑

QP,QP′
VQP−QP′(L)nQPnQP′ . (16.31)

The last term represents the interactions between pair of quasiparticles in
a state of angular momentum L. One can take the energy spectra of finite
systems, and compare the two quasiparticle states, such as |2QE〉, |2QH〉, or
|1QE+1QH〉, with the composite fermion picture. The values of VQP−QP′(L)
are obtained by subtracting the energies of the noninteracting quasiparticles
from the numerical values of E(L) for the |1QP + 1QP′〉 states after the
appropriate positive background energy correction. It is worth noting that
the interaction energy for unlike quasiparticles depends on the total angular
momentum L while for like quasiparticles it depends on the relative angular
momentum R, which is defined by R = LMax − L. One can understand it
by considering the motions in the two dimensional plane. Oppositely charged
quasiparticles form bound states, in which both charges drift in the direction
perpendicular to the line connecting them, and their spatial separation is
related to the total angular momentum L. Like charges repel one another
orbiting around one another due to the effect of the dc magnetic field. Their
separation is related to their relative angular momentum R.9

If VQP−QP′(L′) is a “harmonic” pseudopotential of the form

VH(L′) = A+BL′(L′ + 1)

9 The angular momentum L12 of a pair of identical fermions in an angular momen-
tum shell or a Landau level is quantized, and the convenient quantum number
to label the pair states is the relative angular momentum R = 2lQP − L12 (on a
sphere) or relative angular momentum m (on a plane).
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every angular momentum multiplet having the same value of the total angu-
lar momentum L has the same energy. Here, A and B are constants and we
mean that the interactions, which couple only states with the same total
angular momentum, introduce no correlations. Any linear combination of
eigenstates with the same total angular momentum has the same energy. We
define VQP−QP′(L′) to be “superharmonic” (“subharmonic”) at L′ = 2l−R if
it increases approaching this value more quickly (slowly) than the harmonic
pseudopotential appropriate at L′ − 2. For harmonic and subharmonic pseu-
dopotentials, Laughlin correlations do not occur. In Figs. 16.3b and d, it is
clear that residual quasiparticle–quasiparticle interactions are present. If they
were not present, then all of the 2QE states in frame (b) would be degenerate,
as would all of the 2QH states in frame (d). In fact, these frames give us the
pseudopotentials VQE(R) and VQH(R), up to an overall constant, describing
the interaction energy of pairs with angular momentum L′ = 2l−R.

Figure 16.4 gives a plot of Vn(L′) vs L′(L′ + 1) for the n = 0 and n = 1
Landau levels. For electrons in the lowest Landau level (n = 0), V0(L′) is
superharmonic at every value of L′. For excited Landau levels (n ≥ 1), Vn(L′)
is not superharmonic at all allowed values of L′. The allowed values of L′ for a
pair of fermions each of angular momentum l are given by L′ = 2l−R, where
the relative angular momentum R must be an odd integer. We often write the
pseudopotential as V (R) since L′ = 2l−R. For the lowest Landau level V0(R)
is superharmonic everywhere. This is apparent for the largest values of L′ in
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Fig. 16.4. Pseudopotential Vn(L′) of the Coulomb interaction in the lowest (a) and
the first excited Landau level (b) as a function of the eigenvalue of the squared pair
angular momentum L′(L′ + 1). Here, n indicates the Landau level index. Squares
(l = 5), triangles (l = 15/2), diamonds (l = 10), and circles (l = 25/2) indicate data
for different values of Q = l + n
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Fig. 16.4. For the first excited Landau level V1 increases between L′ = 2l − 3
and L′ = 2l−1, but it increases either harmonically or more slowly, and hence
V1(R) is superharmonic only for R > 1. Generally, for higher Landau levels
(for example, n = 2, 3, 4, · · ·) Vn(L′) increases more slowly or even decreases
at the largest values of L′. The reason for this is that the wavefunctions
of the higher Landau levels have one or more nodes giving structure to the
electron charge density. When the separation between the particles becomes
comparable to the scale of the structure, the repulsion is weaker than for
structureless particles.10

When plotted as a function of R, the pseudopotentials calculated for
small systems containing different number of electrons (hence for differ-
ent values of quasiparticle angular momenta lQP) behave similarly and, for
N → ∞, i.e., 2Q→ ∞, they seem to converge to the limiting pseudopotentials
VQP−QP′(R = m) describing an infinite planar system.

The number of electrons required to have a system of quasiparticle pairs
of reasonable size is, in general, too large for exact diagonalization in terms
of electron states and the Coulomb pseudopotential. However, by restricting
our consideration to the quasiparticles in the partially field composite fermion
shell and by using VQP(R) obtained from numerical studies of small systems of
electrons, the numerical diagonalization can be reduced to manageable size.11

Furthermore, because the important correlations and the nature of the ground
state are primarily determined by the short range part of the pseudopotential,
such as at small values of R or small quasiparticle–quasiparticle separa-
tions, the numerical results for small systems should describe the essential
correlations quite well for systems of any size.

In Fig. 16.5 we display VQE(R) and VQH(R) obtained from numerical diag-
onalization of N (6 ≤ N ≤ 11) electron systems appropriate to quasiparticles
of the ν = 1/3 and ν = 1/5 Laughlin incompressible quantum liquid states.
We note that the behavior of quasielectrons is similar for ν = 1/3 and ν = 1/5
states, and the same is true for quasiholes of the ν = 1/3 and ν = 1/5 Laughlin
states. Because VQE(R = 1) < VQE(R = 3) and VQE(R = 5) < VQE(R = 7),
we can readily ascertain that VQE(R) is subharmonic at R = 1 and R = 5.
Similarly, VQH(R) is subharmonic at R = 3 and possibly at R = 7.

There are clearly finite size effects since VQP(R) is different for different
values of the electron number N . However, VQP(R) converges to a rather well
defined limit when plotted as a function ofN−1. The results are quite accurate
up to an overall constant, which is of no significance when we are interested

10 As for a conduction electron and a valence hole pair in a semiconductor, the
motion of a quasielectron–quasihole pair, which does not carry a net electric
charge is not quantized in a magnetic field. The appropriate quantum number to
label the states is the continuous wavevector k, which is given by k = L/R =
L/l0

√
Q on a sphere.

11 The quasiparticle pseudopotentials determined in this way are quite accurate up
to an overall constant which has no effect on the correlations.
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Fig. 16.5. Pseudopotentials V (R) of a pair of quasielectrons and quasiholes in
Laughlin ν = 1/3 and ν = 1/5 states, as a function of relative pair angular momen-
tum R. Different symbols denote data obtained in the diagonalization of between
six and eleven electrons

only in the behavior of VQP−QP as a function of R. Once the quasiparticle–
quasiparticle pseudopotentials and the bare quasiparticle energies are known,
one can evaluate the energies of states containing three or more quasiparti-
cles. Figure 16.6 illustrates typical energy spectra of three quasiparticles in the
Laughlin incompressible ground states. The spectrum in frame (a) shows the
energy spectrum of three quasielectrons in the Laughlin ν = 1/3 state of eleven
electrons. In frame (b) we show the energy spectrum of three quasiholes in
the nine electron system at the same filling. The results from exact numerical
diagonalization of the eleven and nine electron systems are represented by the
crosses and the Fermi liquid results are indicated by solid circles. The exact
energies above the dashed lines correspond to higher energy states containing
additional quasielectron–quasihole pairs. It should be noted that in the mean
field composite fermion model, which neglects the quasiparticle–quasiparticle
interactions, all of the three quasiparticle states would be degenerate and
the energy gap separating the three quasiparticle states from higher energy
states would be equal to h̄ω∗

c = h̄ωc/3. Although the fit is not perfect in
Fig. 16.6, the agreement is quite good and it justifies the use of the Fermi liq-
uid picture to describe non-Laughlin type compressible states at filling factor
ν �= 1

2p+1 .
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Fig. 16.6. The energy spectra of three quasielectrons (a) and three quasiholes (b)
in the Laughlin ν = 1/3 state. The solid circles denote the Fermi liquid calcula-
tion using pseudopotentials illustrated in Figs. 16.5a and b. The crosses correspond
to exact spectra obtained in full diagonalization of the Coulomb interaction for
electrons of N = 11 (a) and N = 9 (b) at 2Q = 27

16.10 Angular Momentum Eigenstates

We have already seen that a spin polarized shell containing N fermions each
with angular momentum l can be described by eigenfunctions of the total
angular momentum L̂ =

∑
i l̂i and its z-component M =

∑
imi. We define

fL(N, l) as the number of multiplets of total angular momentum L that can
be formed from N fermions each with angular momentum l. We usually label
these multiplets as |lN ;Lα〉, where it is understood that each multiplet con-
tains 2L+1 states having −L ≤M ≤ L, and α is the label that distinguishes
different multiplets with the same value of L. We define L̂ij = l̂i + l̂j, the
angular momentum of the pair i, j each with angular momentum l.

We can write12

|lN ;Lα〉 =
∑

L′α′

∑

L12

GLα,L′α′(L12)|l2, L12; lN−2, L′α′;L〉, (16.32)

where |lN−2, L′α′〉 is the α′ multiplet of total angular momentum L′ of N − 2
fermions each with angular momentum l. From |lN−2, L′α′〉 and |l2, L12〉 one
12 The following theorems are quite useful:

Theorem 1: L̂2 + N(N − 2)l̂2 =
∑

〈i,j〉 L̂2
ij , where the sum is over all pairs.

Theorem 2: fL(N, l) ≥ fL(N, l∗), where l∗ = l − (N − 1) and 2l ≥ N − 1.
Theorem 3: If bL(N, l) is the boson equivalent of fL(N, l), then bL(N, lB) =
fL(N, lF ), if lB = lF − 1

2
(N − 1).

The first theorem can be proven using the definitions of L̂2 and
∑

〈i,j〉 L̂2
ij and

eliminating l̂i · l̂j from the pair of equations. The other two theorems are almost
obvious conjectures to a physicist, but there exist rigorous mathematical proofs
of their validity.
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can construct an eigenfunction of total angular momentum L. Here, we mean
that the angular momentum multiplet |lN ;Lα〉 obtained from N fermions,
each with angular momentum l, can be formed from |lN−2, L′α′〉 and a
pair wavefunction |l2, L12〉 by using GLα,L′α′(L12) the coefficient of fractional
grandparentage. The GLα,L′α′(L12) produces a totally antisymmetric eigen-
function |lN ;Lα〉, even though |l2, L12; lN−2, L′α′;L〉 is not antisymmetric
under exchange of particle 1 or 2 with any of the other particles.

Equation (16.32) is useful because of a very simple identity involving N
fermions:

L̂2 +N(N − 2)l̂2 −
∑

〈i,j〉
L̂2
ij = 0, (16.33)

where L̂ is the total angular momentum operator, L̂ij = l̂i + l̂j , and the sum
is over all pairs. Taking the expectation value of this identity in the state
|lN ;Lα〉 gives the following useful result:

L(L+ 1) +N(N − 2)l(l+ 1) = 〈lN ;Lα|
∑

〈i,j〉
L̂2
ij |lN ;Lα〉. (16.34)

Because (16.32) expresses the totally antisymmetric eigenfunction |lN ;Lα〉 as
a linear combination of states of well defined pair angular momentum L̂ij , the
right hand side of Eq.(16.34) can be written as

1
2
N(N − 1)

∑

α

PLα(L12)L12(L12 + 1). (16.35)

In this expression PLα(L12) is defined by

PLα(L12) =
∑

L′α′
|GLα,L′α′(L12)|2, (16.36)

and is the probability that |lN ;Lα〉 contains pairs with pair angular momen-
tum L12. It is interesting to note that the expectation value of square of
the pair angular momentum summed over all pairs is totally independent
of the multiplet α. It depends only on the total angular momentum L. Because
the eigenfunctions |lN ;Lα〉 are orthonormal, one can show that

∑

L12

∑

L′α′
GLα,L′α′(L12)GLβ,L′α′(L12) = δαβ . (16.37)

From (16.34)–(16.37) we have two useful sum rules involving PLα(L12). They
are

∑

L12

PLα(L12) = 1 (16.38)
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and

1
2
N(N−1)

∑

L12

L12(L12+1)PLα(L12) = L(L+1)+N(N−2)l(l+1). (16.39)

The energy of the multiplet |lN ;Lα〉 is given by

Eα(L) =
1
2
N(N − 1)

∑

L12

PLα(L12)V (L12), (16.40)

where V (L12) is the pseudopotential describing the interaction energy of a
pair of fermions with pair angular momentum L12.

Equation (16.40) together with our sum rules, (16.38) and (16.39) on
PLα(L12) gives the remarkable result that, for a harmonic pseudopotential
VH(L12), the energy Eα(L) is totally independent of α and every multiplet
that has the same total angular momentum L has the same energy. This
proves that the harmonic pseudopotential introduces no correlations and the
degeneracy of multiplets of a given L remains under the interactions. Any
linear combination of the eigenstates of the total angular momentum having
the same eigenvalue L is an eigenstate of the harmonic pseudopotential. Only
the anharmonic part of the pseudopotential ΔV (R) = V (R) − VH(R) causes
correlations.

16.11 Correlations in Quantum Hall States

Since the harmonic pseudopotential introduces no correlations, only the
anharmonic part of the pseudopotential ΔV (R) = V (R) − VH(R) lifts the
degeneracy of the multiplets with a given L. The simplest anharmonic pseu-
dopotential is the case in which ΔV (R) = UδR,1. If U is positive, the lowest
energy multiplet for each value of L is the one with the minimum value of
the probability PL(R = 1) for pairs with R = 1. That is, the state of the
lowest energy will tend to avoid pair states with R = 1 to the maximum
possible extent.13 This is exactly what we mean by Laughlin correlations.
In fact, if U → ∞, the only states with finite energy are those for which
PL(R = 1), the probability for pairs with R = 1, vanishes. This cannot occur
for 2Q < 3(N−1), the value of 2Q at which the Laughlin L = 0 incompressible
quantum liquid state occurs. If U is negative, the lowest energy state will have
a maximum value of PL(R = 1). This would certainly lead to the formation
of clusters. However, this simple pseudopotential appears to be unrealistic,
with nothing to prevent compact droplet formation and charge separation.

13 Avoiding R = 1 is equivalent to avoiding pair states with m = 1 in the planar
geometry.
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Fig. 16.7. Pseudopotentials as a function of relative pair angular momentum R for
electrons in the lowest Landau level (a) and for quasielectrons in the first excited
composite fermion Landau level (b). l0 is the magnetic length

ΔV (R) = UδR,3 gives the lowest energy states when PL(R = 3) is either a
minimum for positive U or a maximum for negative U .

The pseudopotential describing the interaction energy of a pair of electrons
in the first excited Landau level was shown in Fig. 16.4b. It rises faster than
a harmonic potential VH(R) for R = 3 and 5, but not for R = 1, where it
appears to be harmonic or slightly subharmonic. In this situation, a Laugh-
lin correlated state with a minimum value of PL(R = 1) will have higher
energy than a state in which some increase of PL(R = 1) (from its Laughlin
value) is made at the expense of PL(R = 3), while the sum rules (16.38) and
(16.39) are still satisfied. Figure 16.7 illustrates the pseudopotentials V0(R)
for electrons in the lowest Landau level and VQE(R) for composite fermion
quasielectrons in the first excited composite fermion Landau level.14 The pseu-
dopotential VQE(R) describing the interaction of Laughlin quasiparticles is not
superharmonic at all allowed values of R or L′.

In Fig. 16.8 the low energy spectrum ofN = 12 electrons at 2l = 29 and the
corresponding spectrum for NQE = 4 quasielectrons at 2lQE = 9, which are
obtained in numerical experiments, are shown.15 The calculation for 2lQE = 9
and NQE = 4 is almost trivial in comparison to that of N = 12 at 2l = 29, but
the low-energy spectra are in reasonably good agreement, giving us confidence
in using VQP(R) to describe the composite fermion quasiparticles.

In Fig. 16.9 probability functions of pair states P(R) for the L = 0 ground
states of the 12 electron system and the four quasielectron system illustrated

14 S.-Y. Lee, V.W. Scarola, J.K. Jain, Phys. Rev. Lett. 87, 256803 (2001).
15 The composite fermion transformation applied to the electrons gives an effective

composite fermion angular momentum l∗ = l − (N − 1) = 7/2. The lowest com-
posite fermion Landau level can accommodate 2l∗ + 1 = 8 of the particles, so
that the first excited composite fermion Landau level contains the remaining four
quasiparticles each of angular momentum lQE = 9/2.
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Fig. 16.8. Energy spectra for N = 12 electrons in the lowest Landau level with
2l = 29 (a) and for N = 4 quasielectrons in the first excited composite fermion
Landau level with 2l = 9 (b). The energy scales are the same, but the quasielectron
spectrum obtained using VQE(R) is determined only up to an arbitrary constant
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Fig. 16.9. Pair probability functions P(R) for the L = 0 ground states of the 12
electron system (a) and the four quasielectron system (b) shown in Fig. 16.8

in Fig. 16.8. The electrons are clearly Laughlin correlated avoiding R = 1 pair
states, but the quasielectrons are not Laughlin correlated because they avoid
R = 3 and R = 7 pair states but not R = 1 state.

It is known that, when VQP(L′) is not superharmonic, the interacting par-
ticles form pairs or larger clusters in order to lower the total energy.16 These
pairing correlations can lead to a nondegenerate incompressible ground state.
Standard numerical calculations for N electrons are not very useful for study-
ing novel incompressible quantum liquid states at ν = 3/8, 3/10, 4/11, and
4/13. Convincing numerical results would require values ofN too large to diag-
onalize directly. However, one can look at states containing a small number

16 A. Wojs, J.J. Quinn, Phys. Rev. B 69, 205322 (2004).
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Table 16.3. Some novel family of incompressible quantum liquid states resulting
from pairing of composite fermion quasiparticles in the lowest Landau level

νQE 2/3 1/2 1/3 νQH 2/7 1/4 1/5

ν 5/13 3/8 4/11 ν 5/17 3/10 4/13

of quasiparticles of an incompressible quantum liquid state, and use VQP(L′)
discussed here to obtain the spectrum of quasiparticle states. As an example,
Table 16.3 shows a novel family of incompressible states resulting from the
scheme of quasiparticle pairing.
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Problems

16.1. The many particle wavefunction is written, for ν = 1, by

Ψ1(z1, . . . , zN ) = A{u0(z1)u1(z2) · · ·uN−1(zN )},
where A denotes the antisymmetrizing operator. Demonstrate explicitly that
Ψ1(z1, . . . , zN) can be written as follows:

Ψ1(z1, . . . , zN) ∝

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

1 1 · · · 1
z1 z2 · · · zN
z2
1 z2

2 · · · z2
N

...
... · · · ...

zN−1
1 zN−1

2 · · · zN−1
N

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

e
− 1

4l20

∑
i=1,N

|zi|2
.

16.2. Consider a system ofN electrons confined to a Haldane surface of radius
R. There is a magnetic monopole of strength 2Qφ0 at the center of the sphere.

(a) Demonstrate that, in the presence of a radial magnetic field B = 2Qφ0
4πR2 R̂,

the single particle Hamiltonian is given by

H0 =
1

2mR2

(
l − h̄QR̂

)2

.

Here, R̂ and l are, respectively, a unit vector in the radial direction and
the angular momentum operator.

(b) Show that the single particle eigenvalues of H0 are written as

ε(Q, l,m) =
h̄ωc

2Q
[l(l + 1) −Q2].

16.3. Figure 16.4 displays VQE(R) and VQH(R) obtained from numerical diag-
onalization of N (6 ≤ N ≤ 11) electron systems appropriate to quasiparticles
of the ν = 1/3 and ν = 1/5 Laughlin incompressible quantum liquid states.
Demonstrate that VQP(R) converges to a rather well defined limit by plotting
VQP(R) as a function of N−1 at R = 1, 3, and 5.

16.4. Consider a system of N fermions and prove an identity given by

L̂2 +N(N − 2)l̂2 −
∑

〈i,j〉
L̂2
ij = 0.

Here, L̂ is the total angular momentum operator, L̂ij = l̂i + l̂j , and the sum
is over all pairs. Hint: One can write out the definitions of L̂2 and

∑
〈i,j〉 L̂

2
ij

and eliminate l̂i · l̂j from the pair of equations.

16.5. Demonstrate that the expectation value of square of the pair angular
momentum Lij summed over all pairs is totally independent of the multiplet
α and depends only on the total angular momentum L.
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16.6. Derive the two sum rules involving PLα(L12), i.e., the probability that
the multiplet |lN ;Nα〉 contains pairs having pair angular momentum L12:

1
2
N(N − 1)

∑

L12

L12(L12 + 1)PLα(L12) = L(L+ 1) +N(N − 2)l(l + 1)

and ∑

L12

PLα(L12) = 1.

16.7. Show that, for harmonic pseudopotential VH(L12), the energy of the
multiplet |lN ;Lα〉 is given by

Eα(L) = N

[
1
2
(N − 1)A+ B(N − 2)l(l + 1)

]
+BL(L+ 1).
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Summary

In this chapter, we introduce basic concepts commonly used to interpret exper-
imental data on the quantum Hall effect. We begin with a description of
two dimensional electrons in the presence of a perpendicular magnetic field.
The occurrence of incompressible quantum fluid states of a two-dimensional
system is reviewed as a result of electron–electron interactions in a highly
degenerate fractionally filled Landau level. The idea of harmonic pseudopo-
tential is introduced and residual interactions among the quasiparticles are
analyzed. For electrons in the lowest Landau level the interaction energy of a
pair of particles is shown to be superharmonic at every value of pair angular
momenta.

The Hamiltonian of an electron (of mass μ) confined to the x-y plane, in the
presence of a dc magnetic field B = Bẑ, is simply H = (2μ)−1

[
p + e

cA(r)
]2
,

where A(r) is given by A(r) = 1
2B(−yx̂ + xŷ) in a symmetric gauge. The

Schrödinger equation (H − E)Ψ(r) = 0 has eigenstates described by

Ψnm(r, φ) = eimφunm(r) and Enm =
1
2
h̄ωc(2n+ 1 +m+ |m|),

where n and m are principal and angular momentum quantum numbers,
respectively, and ωc(= eB/μc) is the cyclotron angular frequency. The low-
est Landau level wavefunction can be written as Ψ0m = Nmz

|m|e−|z|2/4l02

where Nm is the normalization constant and z stands for z(= x− iy) = re−iφ.
The filling factor ν of a given Landau level is defined by N/Nφ, so that ν−1

is simply equal to the number of flux quanta of the dc magnetic field per
electron. The integral quantum Hall effect occurs when N electrons exactly
fill an integral number of Landau levels resulting in an integral value of the
filling factor ν. The energy gap (equal to h̄ωc) between the filled states and
the empty states makes the noninteracting electron system incompressible.
A many particle wavefunction of N electrons at filling factor ν = 1 becomes

Ψ1(z1, . . . , zN) ∝ Π
N≥i>j≥1zije

− 1
4l20

∑
k=1,N |zk|2

.

For filling factor ν = 1/n, Laughlin ground state wavefunction is written as

Ψ1/n(1, 2, · · ·, N) =
∏

i>j

znij e−
∑

l |zl|2/4l20 ,

where n is an odd integer.
It is convenient to introduce a Haldane sphere at the center of which is

located a magnetic monopole and a small number of electrons are confined on
its surface. The numerical problem is to diagonalize the interaction Hamilto-
nian Hint =

∑
i<j V (|ri− rj |). The calculations give the eigenenergies E as a

function of the total angular momentum L.
Considering a two dimensional system of particles described by a Hamil-

tonian
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H =
1
2μ

∑

i

[
pi +

e

c
A(ri)

]2
+
∑

i>j

V (rij),

we can change the statistics by attaching to each particle a fictitious charge q
and flux tube carrying magnetic flux Φ. The fictitious vector potential a(ri)
at the position of the ith particle caused by flux tubes, each carrying flux of
Φ, on all the other particles at rj(�=ri) is written as a(ri) = Φ

∑
j �=i

ẑ×rij

r2ij
.

The Chern–Simons gauge field due to the gauge potential a(ri) becomes
b(r) = Φ

∑
i δ(r − ri)ẑ, where ri is the position of the ith particle carrying

gauge potential a(ri). The new Hamiltonian, through Chern–Simons gauge
transformation, is

HCS =
1
2μ

∫
d2rψ†(r)

[
p +

e

c
A(r) +

e

c
a(r)

]2
ψ(r) +

∑

i>j

V (rij).

The net effect of the additional Chern–Simons term is to replace the statistics
parameter θ with θ + πΦ q

hc . If Φ = phce when p is an integer, then θ →
θ+ πpq/e. For the case of q = e and p = 2, the statistics would be unchanged
by the Chern–Simons terms, and the gauge interactions convert the electrons
system to the composite fermions which interact through the gauge field term
as well as through the Coulomb interaction. In the mean field approach, the
composite fermions move in an effective magnetic field B∗. The composite
fermion filling factor ν∗ is given by ν∗−1 = ν−1 − α. The mean field picture
predicts not only the sequence of incompressible ground states, given by ν =
ν∗

1+2pν∗ (with integer p), but also the correct band of low energy states for any
value of the applied magnetic field. The low lying excitations can be described
in terms of the number of quasiparticles nQE and nQH.

In a state containing more than one Laughlin quasiparticles, quasiparti-
cles interact with one another through appropriate quasiparticle-quasiparticle
pseudopotentials, VQP−QP′ . The total energy can be expressed as

E = E0 +
∑

QP

εQPnQP +
1
2

∑

QP,QP′
VQP−QP′(L)nQPnQP′ .

If VQP−QP′(L′) is a “harmonic” pseudopotential of the form VH(L′) = A +
BL′(L′ + 1) every angular momentum multiplet having the same value of the
total angular momentum L has the same energy. We define VQP−QP′(L′) to be
“superharmonic” (“subharmonic”) at L′ = 2l −R if it increases approaching
this value more quickly (slowly) than the harmonic pseudopotential appro-
priate at L′ − 2. For harmonic and subharmonic pseudopotentials, Laughlin
correlations do not occur. Since the harmonic pseudopotential introduces
no correlations, only the anharmonic part of the pseudopotential ΔV (R) =
V (R) − VH(R) lifts the degeneracy of the multiplets with a given L.



A

Operator Method for the Harmonic Oscillator
Problem

Hamiltonian

The Hamiltonian of a particle of mass m moving in a one-dimensional
harmonic potential is

H =
p2

2m
+

1
2
mω2x2. (A.1)

The quantum mechanical operators p and x satisfy the commutation relation
[p, x]− = −ıh̄ where ı =

√−1. The Hamiltonian can be written

H =
1

2m
(mωx− ıp) (mω + ıp) +

1
2
h̄ω. (A.2)

To see the equivalence of (A.1) and (A.2) one need only multiply out the prod-
uct in (A.2) remembering that p and x are operators which do not commute.
Equation (A.2) can be rewritten by

H = h̄ω

{
(mωx− ıp)√

2mh̄ω
(mωx+ ıp)√

2mh̄ω
+

1
2

}
. (A.3)

We now define the operator a and its adjoint a† by the relations

a = mωx+ıp√
2mh̄ω

(A.4)

a† = mωx−ıp√
2mh̄ω

. (A.5)

These two equations can be solved for the operators x and p to give

x =
(

h̄
2mω

)1/2 (
a† + a

)
, (A.6)

p = ı
(
mh̄ω

2

)1/2 (
a† − a

)
. (A.7)
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It follows from the commutation relation satisfied by x and p that
[
a, a†

]
− = 1, (A.8)

[a, a]− =
[
a†, a†

]
− = 0. (A.9)

By using the relation

[A,BC]− = B [A,C]− + [A,B]− C, (A.10)

it is not difficult to prove that
[
a, a†

2
]

−
= 2a†,

[
a, a†

3
]

−
= 3a†2, (A.11)

...[
a, a†

n
]

−
= na†n−1

.

Here, a† and a are called as raising and lowering operators, respectively.
From (A.3)–(A.5) it can be seen that

H = h̄ω

(
a†a+

1
2

)
. (A.12)

Now, assume that |n > is an eigenvector of H with an eigenvalue εn. Operate
on |n > with a†, and consider the energy of the resulting state. We can
certainly write

H
(
a†|n >) = a†H |n > +

[
H, a†

] |n > . (A.13)

But we have assumed that H |n >= εn|n >, and we can evaluate the
commutator [H, a†].

[
H, a†

]
= h̄ω

[
a†a, a†

]
= h̄ωa†

[
a, a†

]

= h̄ωa†. (A.14)

Therefore, (A.13) gives

Ha†|n >= (εn + h̄ω) a†|n > . (A.15)

Equation (A.15) tells us that if |n > is an eigenvector of H with eigenvalue
εn, then a†|n > is also an eigenvector of H with eigenvalue εn + h̄ω. Exactly
the same technique can be used to show that

Ha|n >= (εn − h̄ω) a|n > . (A.16)

Thus, a† and a act like raising and lowering operators, raising the energy by
h̄ω or lowering it by h̄ω.
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Ground State

Since V (x) ≥ 0 everywhere, the energy must be greater than or equal to zero.
Suppose the ground state of the system is denoted by |0 >. Then, by applying
the operator a to |0 > we generate a state whose energy is lower by h̄ω, i.e.,

Ha|0 >= (ε0 − h̄ω) a|0 >. (A.17)

The only possible way for (A.17) to be consistent with the assumption that
|0 > was the ground state is to have a|0 > give zero. Thus, we have

a|0 >= 0. (A.18)

If we use the position representation where Ψ0(x) is the ground state wave-
function and p can be represented by p = −ıh̄∂/∂x, (A.18) becomes a simple
first-order differential equation

(
∂

∂x
+
mω

h̄
x

)
Ψ0(x) = 0. (A.19)

One can see immediately see that the solution of (A.19) is

Ψ0(x) = N0e−
1
2α

2x2
, (A.20)

where N0 is a normalization constant, and α2 = mω
h̄ . The normalization con-

stant is given by N0 = α1/2π−1/4. The energy is given by ε0 = h̄ω
2 , since

a†a|0 >= 0.

Excited States

We can generate all the excited states by using the operator a† to raise the
system to the next higher energy level, i.e., if we label the nth excited state
by |n >,

|1 >∝ a†|0 >, ε1 = h̄ω

(
1 +

1
2

)
,

|2 >∝ a†2|0 >, ε2 = h̄ω

(
2 +

1
2

)
, (A.21)

...

|n >∝ a†n|0 >, εn = h̄ω

(
n+

1
2

)
.

Because a† creates one quantum of excitation and a annihilates one, a† and
a are often called creation and annihilation operators, respectively.

If we wish to normalize the eigenfunctions |n > we can write

|n >= Cna
†n|0 > . (A.22)
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Assume that |0 > is normalized (see (A.20)). Then, we can write

〈n|n〉 = |Cn|2
〈
0
∣
∣
∣ana†

n
∣
∣
∣ 0
〉
. (A.23)

Using the relations given by (A.12) allows one to show that

ana†
n|0 >= n!|0 > . (A.24)

So that
|n >=

1√
n!
a†
n|0 > (A.25)

is the normalized eigenfunction for the nth excited state.
One can use Ψ0(x) = α1/2π−1/4e−

1
2α

2x2
and express a†n in terms of p and

x to obtain

Ψn(x) =
1√
n!

[−ı (−ıh̄∂/∂x) +mωx√
2mh̄ω

]n
α1/2

π1/4
e−

α2x2
2 , (A.26)

This can be simplified a little to the form

Ψn(x) =
(α/

√
π)1/2 (−)n

αn (2nn!)1/2

(
∂

∂x
− α2x

)n
e−

α2x2
2 . (A.27)

Summary

The Hamiltonian of the simple harmonic oscillator can be written

H = h̄ω

(
a†a+

1
2

)
. (A.28)

and H |n >= h̄ω(n+ 1
2 )|n >. The excited eigenkets can be written

|n >=
1√
n!
a†
n|0 > . (A.29)

The eigenfunctions (A.29) form a complete orthonormal set, i.e.,

〈n|m〉 = δnm, (A.30)

and ∑

n

|n〉 〈n| = 1. (A.31)

The creation and annihilation operators satisfy the commutation relation

[a, a†] = 1.

Problems

A.1. Prove that [Â, B̂Ĉ]− = B̂[Â, Ĉ]− + [Â, B̂]−Ĉ, where Â, B̂, and Ĉ are
quantum mechanical operators.

A.2. Prove that [â, (â†)n]− = n(â†)n−1.



B

Neutron Scattering

A beam of neutrons interacts with a crystal through a potential

V (r) =
∑

Ri

v(r − Ri), (B.1)

where r is the position operator of the neutron, and Ri is the position operator
of the ith atom in the crystal. It is common to write v(r−Ri) in terms of its
Fourier transform v(r) =

∑
k vkeik·r. Then, (B.1) can be rewritten

V (r) =
∑

k,Ri

vkeik·(r−Ri). (B.2)

The potential v(r) is very short-range, and vk is almost independent of k.
The k-independent coefficient vk is usually expressed as v = 2πh̄2a

Mn
, where a

is defined as the scattering length and Mn is the mass of the neutron.
The initial state of the system can be expressed as

Ψi (R1,R2, . . . , r) = V −1/2eiph̄ ·r |n1, n2, . . . , nN 〉 . (B.3)

Here, V −1/2eiph̄ ·r is the initial state of a neutron of momentum p. The ket
|n1, n2, . . . , nN〉 represents the initial state of the crystal, with ni phonons in
mode i. The final state, after the neutron is scattered, is

Ψf (R1,R2, . . . , r) = V −1/2eip
′

h̄ ·r |m1,m2, · · · ,mN〉 . (B.4)

The transition rate for going from Ψi to Ψf can be calculated from Fermi’s
golden rule.

Ri→f =
2π
h̄

|〈Ψf |V |Ψi〉|2 δ (Ef − Ei) . (B.5)

Here, Ei and Ef are the initial and final energies of the entire system. Let us
write εi = Ei − p2

2Mn
and εf = Ef − p′2

2Mn
. The total rate of scattering out of
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initial state Ψi is given by

Routof i =
2π
h̄

∑

f

δ (εf − εi − h̄ω) |〈Ψf |V |Ψi〉|2 , (B.6)

where h̄ω = p′2−p2
2Mn

is the change in energy of the neutron. If we write p′ =
p + h̄k, where h̄k is the momentum transfer, the matrix element becomes

∑

i,k

〈
m1,m2, . . . ,mN

∣
∣vke−ik·Ri

∣
∣n1, n2, . . . , nN

〉
. (B.7)

But we can take vk = v outside the sum since it is a constant. In addition,
we can write Rj = R0

j + uj and

uj =
∑

qλ

(
h̄

2MNωqλ

)1/2

eiq·R
0
j ε̂qλ

(
aqλ − a†−qλ

)
. (B.8)

The matrix element of eiq·uj between harmonic oscillator states |n1, n2, . . . , nN〉
and |m1,m2, . . . ,mN 〉 is exactly what we evaluated earlier in studying the
Mössbauer effect. By using our earlier results and then summing over the
atoms in the crystal, one can obtain the transition rate. The cross-section is
related to the transition rate divided by the incident flux.

One can find the following result for the cross-section:

dσ
dΩdω

=
p′

p
N
a2

h̄
S(q, ω), (B.9)

where dΩ is solid angle, dω is energy transfer, N is the number of atoms in the
crystal, a is the scattering length, and S(q, ω) is called the dynamic structure
factor. It is given by

S(q, ω) = N−1
∑

f

∣∣
∣
∣
∣
∣

∑

j

〈
m1, . . . ,mN

∣
∣eiq·uj

∣
∣n1, . . . , nN

〉
∣∣
∣
∣
∣
∣

2

δ (εf − εi − h̄ω) .

(B.10)
Again, there is an elastic scattering part of S(q, ω), corresponding to

no-phonon emission or absorption in the scattering process. For that case
S(q, ω) is given by

S0(q, ω) = e−2W δ(ω)N
∑

K

δq,K . (B.11)

Here, e−2W is the Debye–Waller factor. W is proportional to
[〈
n1, . . . , nN

∣
∣
∣[q · u0]

2
∣
∣
∣n1, . . . , nN

〉]
.
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From (B.11) we see that there are Bragg peaks. In the harmonic approximation
the peaks are δ-functions [because of δ(ω)] due to energy conservation. The
peaks occur at momentum transfer p′ − p = K, a reciprocal lattice vector.

In the early days of X-ray scattering there was some concern over whether
the motion of the atoms (both zero point and thermal motion) would broaden
the δ-function peaks and make X-ray diffraction unobservable. The result,
in the harmonic approximation, is that the δ-function peaks are still there,
but their amplitude is reduced by the Debye–Waller factor e−2W .

For the one-phonon contribution to the cross-section, we obtain

dσ
dΩdω

= Ne−2W p′

p
a2
∑

λ

(q · ε̂qλ)2
2Mωqλ

{(1 + nqλ) δ (ω + ωqλ) + nqλδ (ω − ωqλ)} .
(B.12)

There are still unbroadened δ-function peaks at εf± h̄ωqλ = εi, corresponding
to the emission or absorption of a phonon. The peaks occur at a scattering
angle determined from p′ −p = q+ K where K is a reciprocal lattice vector.
The amplitude again contains the Debye–Waller factor e−2W . Inelastic neu-
tron scattering allows a experimentalist to determine the phonon frequencies
ωqλ as a function of q and of λ.

The broadening of the δ-function peaks occurs only when anharmonic
terms are included in the calculation. Anharmonic forces lead to phonon–
phonon scattering and to finite phonon lifetimes.
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nonlocal, 411
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crystal structure
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Curie temperature, 266
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Debye temperature, 60
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equation of motion of, 332
equilibrium, 346
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density of states, 57, 88
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surface, 197
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depolarization factor, 218
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diamagnetic susceptibility, 254
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diamagnetism, 252
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origin of, 254
quantum mechanical, 260

dielectric constant
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dielectric function, 101
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diffraction

electron wave, 17
neutron wave, 17
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drift mobility, 80
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criticisms of, 82

Dyson’s equation, 372
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463

effective Hamiltonian, 173

effective mass, 121

cyclotron, 395, 406

effective mass approximation, 121
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effective phonon propagator, 381
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Einstein function, 56

Einstein model, 55

Einstein temperature, 56

electric breakdown, 170
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electrical susceptibility, 221

electrical susceptibility tensor, 217
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electron–electron interaction, 326, 374
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entropy, 89
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exchange field, 275
exchange interaction, 303
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superexchange, 303
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exchange–correlation potential, 198
exclusion principle, 84
extended states, 205

Faraday effect, 446
Fermi energy, 85
Fermi function integrals, 91
Fermi liquid, 384
Fermi liquid picture, 499
Fermi liquid theory, 383
Fermi temperature, 85
Fermi velocity, 85
Fermi–Dirac statistics, 84
Fermi–Thomas screening parameter,

380
ferrimagnet, 283
ferromagnetism, 266
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finite size effect, 502
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Floquet’s theorem, 112
flux penetration, 477
free electron model, 118
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Friedel oscillation, 350

gap parameter, 473
gauge invariance, 335
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impurity band, 194, 208
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direct, 326
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interaction representation, 363
intermediate state, 477
internal energy, 28, 89
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itinerant ferromagnetism, 304
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k · p method, 165
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Landé g-factor, 251
Landau damping, 435
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Landau level, 483, 484

filling factor, 205
Landau’s interaction parameter, 384
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equation of motion, 38
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optical mode, 48
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transverse waves, 60
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Laue equation, 17
Laue method, 23
Lindemann melting formula, 63
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linear response theory, 328, 332

gauge invariance of, 335
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London theory, 459
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Mössbauer effect, 44, 62
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magnetic breakdown, 170
magnetic flux, 204

quantum of, 205
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magnetic moment
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free electron model, 407
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influence of open orbit, 398
longitudinal, 396
transverse, 396
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magnon-magnon interaction, 291
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mean field theory, 307
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Meissner effect, 455
metal–oxide–semiconductor structure,
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miniband structure, 202
mobility edge, 209
molecular beam epitaxy, 200
monopole harmonics, 487
monovalent metal, 123
MOSFET, 199

N-process, 72
Néel temperature, 283
nearest neighbor distance, 10
nearly free electron model, 119
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negative resistance, 195
neutron scattering, 519

cross section, 520
dynamic structure factor, 520
scattering length, 519

non-retarded limit, 239
nonlocal theory

discussion of, 434
normal form, 368

occupation number representation, 312
open orbit, 392, 398
operator

annihilation, 517
creation, 517
lowering, 516
raising, 516

optical constant, 236
orbit

electron, 392
hole, 392
open, 392

orthogonality theorem, 136
orthogonalized plane waves, 161

p–n junction, 189
semiclassical model, 190

pair approximation, 379
pairing, 368
paramagnetic state, 316
paramagnetism, 252

classical, 257
of atoms, 255
Pauli spin, 257

partition function, 86
Pauli principle, 85
Pauli spin paramagnetism

of metals, 257
Pauli spin susceptibility, 259
periodic boundary condition, 37
perturbation theory

divergence of, 326
phase transition

magnetic, 306
phonon, 44

collision rate, 72
density of states, 57
emission, 45

phonon–phonon scattering, 72
renormalized, 381

phonon collision
N-process, 72
U-process, 73

phonon gas, 74
phonon scattering

Feynman diagram, 70
plasma frequency, 102, 375

bare, 353
plasmon, 239

bulk, 239
surface, 239

plason–polariton mode, 240
point group

of cubic structure, 148
polariton mode, 234
Polarizability

dipolar, 222
electronic, 222
ionic, 222
of bound electrons, 224

polarizability factor, 376
polarization part, 373, 379
population

donor level, 186
powder method, 23
projection operator, 162
proper rotation, 148
pseudo-wavefunction, 163, 173
pseudopotential, 163, 499

harmonic, 500, 513
subharmonic, 501, 513
superharmonic, 501, 513

pseudopotential method, 162

quantization condition
Bohr–Sommerfeld, 394

quantum Hall effect
fractional, 205, 483, 485
integral, 205, 484

quantum limit, 264
quantum oscillation, 431
quantum wave, 435
quantum well

semiconductor, 200
quasicrystal, 7
quasielectron, 383
quasihole, 383
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quasiparticle, 44
interaction, 383

quasiparticle excitation
effective mass of, 383
liftime, 382

random phase approximation, 373
rearrangement theorem, 130
reciprocal lattice, 16
recombination current, 193
rectification, 194
reflection coefficient, 236
reflectivity

of a solid, 235
refractive index, 232
relaxation time, 79
relaxation time approximation, 83
renormalization factor, 382
renormalization group theory, 307
repopulation energy, 324
representation

change of, 329
interaction, 363

reststrahlen region, 234
rotating crystal method, 23
RPA, 373
Ruderman-Kittel-Kasuya-Yosida

(RKKY) interaction, 304

saddle point
the first kind, 65
the second kind, 65

Schrödinger picture, 362
screened interaction

Lindhard, 374
RPA, 374

screening, 349
dynamic, 349
static, 349

screw axis, 8
second quantization, 311

interacting terms, 314
single particle energy, 312

self energy
electron, 382

self energy part, 372
self-consistent field, 328
semiconductor, 123
semimetal, 123

short range order, 206
Shubnikov–de Haas oscillation, 264, 417
sine integral function, 352
singlet spin state, 275
skin depth, 237

normal, 426
skin effect

anomalous, 237, 426
normal, 236, 425

S matrix, 364, 388
Sommerfeld model, 84

critique of, 99
sound waves

first sound, 74
second sound, 74

spectral function, 382
spin density waves, 318

linear, 319
spiral, 318

spin deviation operator, 287
spin wave, 275, 290

in antiferromagnet, 296
in ferromagnet, 287

spontaneous magnetization, 266, 277
star of k, 138
Stoner excitation, 305
Stoner model, 305
structure amplitude, 22
subband structure, 198
sublattice, 283
sublattice magnetization

finite temperature, 301
zero-point, 300

sum rules, 505
supercell, 200
superconductivity, 455

BCS theory, 462
Cooper pair, 464
excited states, 472
ground state, 467
London theory, 459
magnetic properties, 456
microscopic theory, 462
phenomenological observation, 455

superconductor
acoustic attenuation, 459
coherence length, 475
condensation energy, 472
elementary excitation, 473
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flux penetration, 477
gap parameter, 473
isotope effect, 462
London equation, 459
London penetration depth, 461
pair correlations, 462
Peltier effect, 455
quasiparticle density of states, 473
resistivity, 455
specific heat, 457
thermal current, 455
thermoelectric properties, 455
transition temperature, 455, 475
tunneling behavior, 458
type I, 456, 475
type II, 457, 475

superlattice
semiconductor, 200

surface impedance, 428
surface inversion layer

smiconductor, 198
surface polariton, 239
surface wave, 237, 437
surfave space charge layer, 195
symmetric gauge, 203, 483

thermal conductivity, 72, 80, 97
in an insulator, 71

thermal expansion, 67
thermodynamic potential, 89
Thomas–Fermi dielectric constant, 350
Thomas–Fermi screening wave number,

350

tight binding method, 112

in second quantization representation,
115

time ordering operator, 365

translation group, 3
translation operator, 110
triplet spin state, 275
tunnel diode, 194

two-dimensional electorn gas, 198

U-process, 73

uniform mode
of antiferromagnetic resonance, 302

unit cell, 8

primitive, 8
Wigner–Seitz, 8

vacuum state, 313

valley, 181
Van der Monde determinant, 485

wave equation
in a material, 229

Weis field, 266

Weis internal field
source of the, 277

Wick’s theorem, 369

Wiedemann–Franz law, 82
Wigner–Eckart theorem, 500

zero point vibration, 22
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