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Preface

Few sounds in nature show the beauty, diversity and structure that we find
in birdsong. The song produced by a bird that is frequently found in the
place where we grew up has an immense evocative power, hardly comparable
with any other natural phenomenon. These reasons would have been more
than enough to attract our interest to the point of working on an aspect
of this phenomenon. However, in recent years birdsong has also turned into
an extremely interesting problem for the scientific community. The reason is
that, out of the approximately 10 000 species of birds known to exist, some
4000 share with humans (and just a few other examples in the animal king-
dom) a remarkable feature: the acquisition of vocalization requires a certain
degree of exposure to a tutor. These vocal learners are the oscine songbirds,
together with the parrots and hummingbirds. For this reason, hundreds of
studies have focused on localizing, within the birds’ brains, the regions in-
volved in the learning and production of the song. The hope is to understand
through this example the mechanisms involved in the acquisition of a gen-
eral complex behavior through learning. The shared, unspoken dream is to
learn something about the way in which we humans learn speech. Studies
of the roles of hormones, genetics and experience in the configuration of the
neural architecture needed to execute the complex task of singing have kept
hundreds of scientists busy in recent years.

Between the complex neural architecture generating the basic instruc-
tions and the beautiful phenomenon that we enjoy frequently at dawn stands
a delicate apparatus that the bird must control with incredible precision.
This book deals with the physical mechanisms at play in the production of
birdsong. It is organized around an analysis of the song “up” toward the
brain. We begin with a brief introduction to the physics of sound, discussing
how to describe it and how to generate it. With these elements, we discuss
the avian vocal organ of birds, and how to control it in order to produce
different sounds. Different species have anatomically different vocal organs;
we concentrate on the case of the songbirds for the reason mentioned above.
We briefly discuss some aspects of the neural architecture needed to control
the vocal organ, but our focus is on the physics involved in the generation
of the song. We discuss some complex acoustic features present in the song
that are generated when simple neural instructions drive the highly complex
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vocal organ. This is a beautiful example of how the study of the brain and
physics complement each other: the study of neural instructions alone does
not prepare us for the complexity that arises when these instructions interact
with the avian vocal organ.

This book summarizes part of our work in this field. At various points,
we have interacted with colleagues and friends whom we would like to thank.
In the first place, Tim J. Gardner, who has shared with us the first, exciting
steps of this research. At various stages of our work in the field, we had
the privilege of working with Guillermo Cecchi, Marcelo Magnasco, Marcos
Trevisan, Manuel Egúıa and Franz Goller, who are colleagues and friends.
The influence of several discussions with other colleagues has not been minor:
Silvina Ponce Dawson, Pablo Tubaro, Juan Pablo Paz, Ale Yacomotti, Ramón
Huerta, Oscar Mart́ınez, Guillermo Dussel, Lidia Szczupak, Henry Abarbanel,
Jorge Tredicce, Pablo Jercog and Héctor Mancini. The support of Fundación
Antorchas, Universidad de Buenos Aires, CONICET and ANPCyT has been
continuous. Several recordings were performed in the E.C.A.S. Villa Elisa
nature reserve in Argentina, with the continuous support of its staff. Part
of this book was written during a period in which Gabriel Mindlin enjoyed
the hospitality of the Institute for Nonlinear Science, University of California
at San Diego. Heide Doss-Hammel patiently edited the first version of this
manuscript, and enriched it with her comments.

One of us (R. L.) thanks Laura Estrada, and Jimena, Santiago, Pablo and
Kanky, for their continuous support and love.

Finally, it was the support of Silvia Loza Montaña, Julia and Iván that
kept this project alive through the difficult moments in which it was con-
ceived.

Buenos Aires, Gabriel B. Mindlin
April 2005 Rodrigo Laje
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1 Elements of the Description

There is a wide range of physical phenomena behind birdsong. Physics al-
lows us to understand what mechanisms are used in order to generate the
song, what parameters must be controlled, and what part of the complex-
ity of the sound is the result of the physics involved in its generation. The
understanding of these processes will take us on a journey in which we
shall visit classical mechanics, the theory of fluids [Landau and Lifshitz 1991,
Feynman et al. 1970], and even some modern areas of physics such as non-
linear dynamics [Solari et al. 1996]. Ultimately, all these processes will be
related to the sounds of birdsong described in this text. For this reason, it
is appropriate to begin with a qualitative description of sound. Even if it is
likely that the reader is familiar with the concepts being discussed, this will
allow us to establish definitions of some elements that will be useful in our
description and analysis of birdsong.

1.1 Sound

1.1.1 A Metaphor

Let us imagine a group of people standing in line, with a small distance
between each other. Let us assume that the last person in the line tumbles
and, in order to avoid falling, extends his/her arms, pushing forward the
person in front. This person, in turn, reacts just like the person that pushed
him/her: in order to avoid falling, this person pushes the person in front,
and so on. None of the people in the line undergoes a net displacement, since
every person has reacted by pushing someone else, and returning immediately
to their original position. However, the “push” does propagate from the end
of the line to the beginning. In fact, the first person in line can also try to
avoid falling, by pushing some object in front of him/her. In other words,
he/she can do work if the object moves after the push. It is important to
realize that the propagation of this “push” along the line occurs thanks to
local displacements of each of the persons in the line: each person moves just a
small distance around their original position although the “push” propagates
all along the line.
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Maybe the person that began this process finds the spectacle of a propa-
gating “push” amusing, and repeats it from time to time (trying to implement
this thought experiment is not the best idea). The time between “pushes” is
what we call the period of the perturbation. A related concept is the frequency :
the number of pushes per unit of time (for example, “pushes” per second).
Within our metaphor, each subject can either experience a slight deviation
from his/her position of equilibrium or be close to falling. The quantity that
describes the size of the perturbation is called its amplitude.

From this metaphor, we can extract the fact then that it is possible to
propagate energy (capacity to do work) through a medium (a group of people
standing in line) that undergoes perturbations on a local scale (no one moves
far away from their equilibrium position), owing to a generator of perturba-
tions (the last person in line, the one with a curious sense of humor) that
produces a signal (a sequence of pushes) of a given amplitude and at a certain
frequency.

1.1.2 Getting Serious

While it is true that metaphors can help us construct a bridge between a
phenomenon close to our experience and another one which requires indirect
inferences, it is also true that holding on to them for too long can hinder
us in our understanding of nature. Sound is a phenomenon of propagative
character, as in the situation described before. But an adequate description
of the physics involved must consider carefully the properties of the real
propagative medium, which, in the present case of interest, is air.

If an object moves slowly in air, a smooth flow is established around it. If
the movement is so fast that such a flow cannot be established, compression
of the air in the vicinity of the moving object takes place, causing a local
change in pressure. In this way, we can originate a propagative phenomenon
like the one described in our metaphor. In order to establish sound, the excess
pressure must be able to push the air molecules in its vicinity (in terms of
our metaphor, the people in the line should not be more than approximately
an arm’s length away from each other). Can we state a similar condition for
the propagation of sound in air?

As opposed to what happens in our metaphor, the molecules of air are
not static, or in line. On the contrary, they are moving and colliding with
each other in a most disorderly manner, traveling freely during the time
intervals between successive collisions. The average distance of travel between
collisions is known as the mean free path. Therefore, if we establish a high
density of molecules in a region of space, the escaping particles will push the
molecules in the region of low density only if the density varies noticeably
over distances greater than the mean free path. If this is not the case, the
region of high density will “smoothen” without affecting its vicinity. For
this reason, the description of sound is given in terms of the behavior of
“small portions of air” and not of individual molecules. Here is an important
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difference between our metaphor and the description of sound. The proper
variables to describe the problem will be the density (or pressure) and velocity
of the small portion of air, and not the positions and velocities of individual
molecules [Feynman et al. 1970].

1.1.3 Sound as a Physical Phenomenon

The physics of sound involves the motion of some quantity of gas in such a
way that local changes of density occur, and that these changes of density
lead to changes in pressure. These nonuniform pressures are responsible for
generating, in turn, local motions of portions of the gas.

In order to describe what happens when a density perturbation is gener-
ated, let us concentrate on a small portion of air (small, but large enough to
contain many molecules). We can imagine a small cube of size ∆x, and our
portion of air enclosed in this imaginary volume. Before the sound phenom-
enon is established, the air is at a given pressure P0, and the density ρ0 is
constant (in fact, the value of the pressure is a function of the value of the
density). Before a perturbation of the density is introduced, the forces acting
on each face of the cube are equal, since the pressure is uniform. Therefore,
our portion of air will be in equilibrium. We insist on the following: when
we speak about a small cube, we are dealing with distances larger than the
mean free path. Therefore, the equilibrium that we are referring to is of a
macroscopic nature; on a small scale with respect to the size of our imaginary
cube, the particles move, collide, etc.

Now it is time to introduce a kinematic perturbation of the air in our small
cube, which will be responsible for the creation of a density perturbation ρe.
We do this in the following way: we displace the air close to one of the faces
at a position x by a certain amount D(x, t) (in the direction perpendicular to
the face), and the rest of the air is also displaced in the same direction, but
by a decreasing amount, as in Fig. 1.1. That is, the air at a position x+∆x is
displaced by an amount D(x + ∆x, t), which is slightly less than D(x, t). As
the result of this procedure, the air in our imaginary cube will be found in
a volume that is compressed, and displaced in some direction. We now have
a density perturbation ρe. Conservation of mass in our imaginary cube (that
is, mass before displacement = mass after displacement) leads us to

ρ0 ∆x = (ρ0 + ρe) [(x + ∆x + D(x + ∆x, t)) − (x + D(x, t))]

= (ρ0 + ρe)
(

∆x +
∂D

∂x
∆x

)

= ρ0 ∆x + ρ0
∂D

∂x
∆x + ρe ∆x + ρe

∂D

∂x
∆x . (1.1)

Let us keep only the linear terms by throwing away the term containing
ρe ∂D/∂x as a second-order correction, since we can make the displacement
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Fig. 1.1. Propagation of air density perturbations. (top) The air in a small imag-
inary cube is initially in equilibrium. We now “push” from the left, displacing the
left face of the imaginary cube and compressing the air in the cube. (bottom) A
density perturbation is created by the push, leading to an imbalance of forces in
the cube. The forces now try to restore the air in the cube to its original position.
At the same time, however, the portion of air in the “next” cube will be pushed in
the same direction as the first portion was, propagating the perturbation

and hence the density perturbation as small as we want. Solving for ρe, (1.1)
now reads

ρe = −ρ0
∂D

∂x
. (1.2)

By virtue of the way we have chosen to displace the air (a decreasing dis-
placement), air has accumulated within the cube, which means that we have
created a positive density fluctuation.

What can we say about the dynamics of the problem now? Since we have
created a nonuniform (and increasing) density in the direction of the dis-
placements, we have established an increasing pressure in the same direction.
By doing this, we have broken the equilibrium of forces acting on our por-
tion of air. We have moved the faces, but by doing so, we have created an
imbalance of density and pressure that tries to take our portion of air back
to its original position, in a restitutive way. Another consequence is seen in
the fate of a second portion of air, close to the original one in the direction in
which we generated the compression. The imbalance of pressures around the
new portion of air will lead to new displacements in the direction in which
we generated our original perturbation, as shown in Fig. 1.1: a picture that
does not differ much from the propagation of “pushes” discussed before.
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With the help of Newton’s laws for the air in our original imaginary cube,
and ignoring the effects of viscosity, the restitutive effect of this imbalance
may be written as follows:

ρ0 ∆x
∂2D

∂t2
= − [P (x + ∆x, t) − P (x, t)]

= −∂p

∂x
∆x , (1.3)

where P = P0 + p is the pressure and p is the (nonuniform) pressure pertur-
bation, or acoustic pressure. In addition, assuming that the pressure pertur-
bations are linear functions of the density perturbations (which holds if the
density perturbations are small enough), we can write the equation of state

p =
κ

ρ0
ρe , (1.4)

where κ is the adiabatic bulk modulus.
So far, we have a conservation law (1.2), a force law (1.3) and an equation

of state (1.4). With these ingredients, we can write an equation for p only. If
we differentiate (1.2) twice with respect to t, we obtain

∂2ρe

∂t2
= −ρ0

∂2

∂t2
∂D

∂x
. (1.5)

On the other hand, the differentiation of (1.3) with respect to x gives us

ρ0
∂

∂x

∂2D

∂t2
= −∂2p

∂x2
. (1.6)

Writing ρe in terms of p and equating both expressions, we obtain the acoustic
wave equation

∂2p

∂t2
= c2 ∂2p

∂x2
, (1.7)

where c =
√

κ/ρ0 is the speed of sound, which is 343 m/s in air at a tempera-
ture of 20◦C and atmospheric pressure. This is the simplest equation describ-
ing sound propagation in fluids. Some assumptions have been made (namely,
sound propagation is lossless and the acoustic disturbances are small), and
the reader may feel suspicious about them. However, excellent agreement
with experiments on most acoustic processes supports this lossless, linearized
theory of sound propagation. It is interesting to notice that the same equa-
tion governs the behavior of the variable D (displacement) and the particle
velocity v = −∂D/∂t.

1.1.4 Sound Waves

Sound waves are constantly hitting our eardrums. They arrive in the form of
a constant perturbation (such as the buzz of an old light tube) or a sudden
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shock (such as a clap); they can have a pitch (such as a canary song) or not
(such as the wind whispering through the trees). Sound waves can even seem
to be localized in space, as in the “hot spots” that occur when we sing in our
bathroom: sound appears and disappears according to our location.

What is a sound wave? It is the propagation of a pressure perturbation
(in much the same way as a push propagates along a line). Mathematically
speaking, a sound wave is a solution to the acoustic wave equation. By this
we mean a function p = p(x, t) satisfying (1.7). Every sound wave referred to
in the paragraph above can be described mathematically by an appropriate
solution to the acoustic wave equation. The buzz of a light tube or a note sung
by a canary, for instance, can be described by a traveling wave. What is the
mathematical representation of such a wave? Let us analyze a spatiotemporal
function of space and time of the following form:

p(x, t) = p(x − ct) . (1.8)

If we call the difference x − ct = u, then it is easy to see that taking the
time derivative of the function twice is equivalent to taking the space deriv-
ative twice and multiplying by c2. The reason is that ∂p/∂x = dp/du, while
∂p/∂t = −cdp/du. In other words, a function of the form (1.8) will satisfy the
equation (1.7). Interestingly enough, it represents a traveling disturbance. We
can visualize this in the following way: let us take a “picture” of the spatial
disturbances of the problem by computing p0 = p(x, 0). The picture will look
exactly like a picture taken at t = t∗, if we displace it a distance x∗ = ct∗.
It is interesting to notice that just as a function of the form (1.8) satisfies
the wave equation, a function of the form p(x, t) = p(x + ct) will also satisfy
it. In other words, waves traveling in both directions are possible results of
the physical processes described above. Maybe even more interestingly, since
the wave equation (1.8) is linear, a sum of solutions is a possible solution.
The spatiotemporal patterns resulting from adding such counterpropagating
traveling waves are very interesting, and can be used to describe phenomena
such as the “hot spots” in the bathroom. They are called “standing waves”
and will be discussed as we review some elements that are useful for their
description.

1.1.5 Detecting Sound

To detect sound, we need somehow to measure the pressure fluctuations. One
way to do this is to use a microphone, which is capable of converting pressure
fluctuations into voltages. Now we are able to analyze Fig. 1.2, which is a typ-
ical display of a record of a sound. The sound wave, that is, the propagation
of a pressure perturbation, reaches our microphone and moves a mechanical
part. This movement induces voltages in a circuit, which are recorded. In
Fig. 1.2, we have plotted the voltage measured (which is proportional to the
pressure of the sound wave in the vicinity of the microphone) as a function of
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Fig. 1.2. A sound wave, as recorded by a microphone. A mechanical part within
the microphone (for instance, a membrane or a piezoelectric crystal, capable of
sensing tiny air vibrations) moves when the sound pressure perturbation reaches
the microphone. The movement of this mechanical part induces a voltage in the
microphone’s circuit, which is recorded as a function of time. In this zoomed-out
view of the recording, we can see hardly any details of the oscillation; instead,
however, we could certainly draw the “envelope”, which is a measure of how the
sound amplitude changes with time

time. In this way, we can visualize how the pressure in the vicinity of the mi-
crophone varies as the recording takes place. In this figure, we have displayed
52 972 voltage values separated by time intervals of 1/44 100 s (i.e., a total
recording time of 1.2 s). The inverse of this discrete interval of time is known
as the sampling frequency, in this case 44 100 Hz. The larger the sampling fre-
quency, the larger the number of data points representing the same total time
of recording, and therefore the better the quality. This record corresponds to
the song of the great grebe (Podiceps major) [Straneck 1990a].

1.2 Frequency and Amplitude

1.2.1 Periodic Signals vs. Noise

We now have the elements that we need to move forward and to present other
elements important for the description of sound records. A sound source pro-
duces a signal that propagates in the air, generating pressure perturbations
in the vicinity of a microphone. What do the time records of different sounds
look like? In Fig. 1.3, we have two records corresponding to different sounds.
The first one corresponds to what we call “noise” (for example, we might
record the sound of the wind while we wait for the song of our favorite bird).
The second record corresponds to what we would identify as a “note”, a sound
with a given and well-determined frequency. In fact, this record corresponds
to a fraction of the great grebe’s song (3/1000) s long. The first characteristic
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Fig. 1.3. Noise vs. pitched sound waves. (a) A very irregular sound wave (here,
the wind recorded in the field) is what we call “noise”. (b) In contrast, when the
sound wave is regular or periodic (such as the fraction of the great grebe’s song
shown here), our ear is able to recognize a pitch, and we call it a “note”

that emerges from a comparison between the two records is the existence of a
regularity in the second one. This record is almost periodic, i.e., it has similar
values at regular intervals of time. This periodicity is recognized by our ear
as a pure note. In contrast, when the sound is extremely irregular, we call it
noise.

Let us describe pure notes. The periodicity of a signal in time allows us
to give a quantitative description of it: we can measure its period T (the time
it takes for a signal to repeat itself) or its frequency f , that is, the inverse
of the period. The frequency represents the number of oscillations per unit
of time, and is related to the parameter ω (called the angular frequency)
through ω = 2πf . If time is measured in seconds, the unit of frequency is
known as the hertz (1 Hz = 1/s). What does this mean in terms of something
more familiar? Simply how high or low the pitch is. The higher the frequency,
the higher the pitch.

Let us assume that the pure note corresponds to a traveling wave. In this
case, the periodicity in time leads to a periodicity in space. For this reason,
one can define a wavelength in much the same way as we defined a period for
the periodicity in time. The meaning of the wavelength λ is easily seen by
taking an imaginary snapshot of the sound signal and measuring the distance
between two consecutive crests. It has, of course, units of distance such as
meters or centimeters. A related parameter is the wavenumber k = 2π/λ.
The wavenumber and angular frequency (and therefore the wavelength and
frequency) are not independent parameters; they are related through

ω = ck , (1.9)

where c is the only parameter appearing in the wave equation (1.7), that is,
the sound velocity.
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1.2.2 Intensity of Sound

In the previous section, we were able to define the units of the period and the
frequency. Now that we have a description of the nature of the sound pertur-
bation, we shall concentrate on its amplitude. For a periodic wave such as the
one displayed in Fig. 1.3b, the amplitude is the number that measures the
maximum value of the departure from the average of the oscillating quantity.

Since, for a gas, the pressure is a function of the density, we can perform
a description of the sound in terms of the fluctuations of either quantity.
Traditionally, the option chosen is to use the pressure. Therefore, we have
to describe how much the pressure P varies with respect to the atmospheric
pressure P0 when a sound wave arrives. Let us call this pressure p (that is,
the increment of pressure when the sound wave arrives, with respect to the
atmospheric value), and its amplitude A. Now, the minimum value of this
quantity that we can hear is tiny: only 0.00000000019 times atmospheric pres-
sure. Let us call this the reference pressure amplitude Aref . We can therefore
measure the intensity of a sound as the ratio between the sound pressure
amplitude when the wave arrives, A, and the reference pressure amplitude
Aref .

This strategy is the one used to define the units of sound intensity. How-
ever, since the human ear has a logarithmic sensitivity (that is, it is much
more sensitive at lower intensities), the sound intensity is measured in deci-
bels (dB), which indicate how strong a pressure fluctuation with respect to a
reference pressure is, but the intensity is measured in a way that reflects this
way of perceiving sound. The sound pressure level I is therefore defined as

I = 20 log10(A/Aref) . (1.10)

A sound of 20 dB is 10 times as more intense (in pressure values) as the
weakest sound that we can perceive, while a sound of 120 dB (at the threshold
of pain) is a million times as intense.

In Fig. 1.4, we show a series of familiar situations, indicating their charac-
teristic frequencies and intensities. For example, a normal conversation has a
typical intensity of 65 dB, and a rock concert can reach 115 dB (close to the
sound intensity of an airplane taking off at a distance of a few meters, and
close to the pain threshold). In terms of frequencies, the figure begins close
to 20 Hz, the audibility threshold for humans. Close to 500 Hz, we place a
note sung by a baritone, while at 6000 Hz we locate a tonal sound produced
by a canary.

1.3 Harmonics and Superposition

1.3.1 Beyond Frequency and Amplitude: Timbre

We can tell an instrument apart from a voice, even if both are producing
the same note. What is the difference between these two sounds? We need
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Fig. 1.4. Intensity and frequency ranges for the human ear. (a) The intensity scale
starts at 0 dB, which does not mean the absence of sound but is the minimum
intensity for a sound to be audible. A sound of 130 dB or more (the pain threshold)
can cause permanent damage to the ear even if the exposure is short. (b) The
minimum frequency of a pure sound for which our ear can recognize a pitch is
around 20 Hz, that is, a wave oscillating only 20 times per second. The highest
audible frequency for humans is around 20 000 Hz, although this depends on age,
for instance. Unlike bats and dogs, birds cannot hear frequencies beyond the human
limit (known as ultrasonic frequencies)

more than the period and the intensity to describe a sound. What is missing?
What do we need in order to describe the timbre?

According to our description, the pitch of a note depends on the time
it takes for the sound signal to repeat itself, i.e. the period T . But a signal
can repeat itself without being as simple as the one displayed in Fig. 1.3b. In
Fig. 1.5 (top curve), we show a sound signal corresponding to the same note
as in Fig. 1.3b. The period T is indeed the same, but the signal displayed in
Fig. 1.5 looks more complex. It is not a simple oscillation, and in fact we show
in the figure that the signal is the sum of two simple oscillations. The first of
these has the same period as the note itself. The second signal has a smaller
period (in this case, precisely half the period of the note). If a signal repeats
itself after a time T/2, it will also repeat itself after a time T . Therefore,
the smallest time after which the complex signal will repeat itself is T . Our
composite note will have a period T , as in the signal displayed in Fig. 1.3b,
but it will sound different. The argument does not restrict us to adding two
simple signals. We could keep on adding components of period T/n, where
n is any integer, and still have a note of period T . The lowest frequency
in this composite signal is called the fundamental frequency F1 = 1/T , and
the components of smaller period with frequencies F2 = 2/T , F3 = 3/T ,. . . ,
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Fig. 1.5. Components of a complex oscillation. The sound wave at the top is not a
simple or pure oscillation. Instead, it is the sum of two simple oscillations called its
components, shown below. The components of a complex sound are usually enumer-
ated in order of decreasing period (or increasing frequency): the first component
is the one with the largest period of all the components, the second component
is the one with the second largest period, and so on. Note that the period of the
complex sound is equal to the period of its first component. The frequency of the
first component is also called the fundamental frequency

Fn = n/T are called the harmonics. The frequencies of the harmonic com-
ponents are multiples of the fundamental frequency, i.e., Fn = nF1, and are
known as harmonic frequencies.

The timbre of a sound is determined by the quantities and relative weights
of the harmonic components present in the signal. This constitutes what is
usually referred to as the spectral content of a signal.

1.3.2 Adding up Waves

We can create strange signals by adding simple waves. How strange? In
Fig. 1.6, we show a fragment of a periodic signal of a very particular shape,
known as a triangular function or sawtooth. In the figure, we show how we
can approximate the triangular function by superimposing and weighting six
harmonic functions. The simulated triangular function becomes more similar
to the original function as we keep on adding the right harmonic components
to the sum.

A mathematical result widely used in the natural sciences indicates that
a large variety of functions of time (for example, that representing the vari-
ations of pressure detected by a microphone when we record a note) can be
expressed as the sum of simple harmonic functions such as the ones illustrated
in Fig. 1.6, with several harmonic frequencies. This means that if the period
characterizing our complex note f(t) is T , we can represent it as a sum of
harmonic functions of frequencies F1 = 1/T , F2 = 2/T , . . . , Fn = nF1, that
is, the fundamental frequency and its harmonics:
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Fig. 1.6. Adding simple waves to create a complex sound. The wave at the top
is a complex oscillation known as a triangular or “sawtooth” wave. A simulated
sawtooth is shown below, formed by adding the first six harmonic components of
the sawtooth. The first component has the same period as the complex sound,
the second component has a period half of that (twice the frequency), the third
component has one-third the period (three times the frequency), etc. Note that the
amplitudes of the harmonic components decrease as we go to higher components.
The quantity and relative amplitudes of the harmonic components of a complex
sound make up the spectral content of the sound. Sounds with different spectral
contents are distinguished by our ear: we say they have different timbres

f(t) = a0 + a1 cos(ω1t) + b1 sin(ω1t)
+a2 cos(2ω1t) + b2 sin(2ω1t)
+ · · ·
+an cos(nω1t) + bn sin(nω1t)
+ · · · , (1.11)

where we have used, for notational simplicity, 2πFn = nω1. Equation (1.11)
is known as a Fourier series. The specific values of the amplitudes an and bn

can be computed by remembering the following equations:∫ T

0

sin(nωt) cos(mωt) dt = 0 , (1.12)

∫ T

0

cos(nωt) cos(mωt) dt =
{

0 n �= m ,
T/2 n = m ,

(1.13)

∫ T

0

sin(nωt) sin(mωt) dt =
{

0 n �= m ,
T/2 n = m.

(1.14)
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The values of the amplitudes are

a0 =
1
T

∫ T

0

f(t) dt ,

an =
2
T

∫ T

0

f(t) cos(nω1t) dt ,

bn =
2
T

∫ T

0

f(t) sin(nω1t) dt .

This set of coefficients constitutes what we call the spectral content of
the signal. They prescribe the specific waves for all the harmonic functions
that we have to add in order to reconstruct a particular signal f(t). For the
moment, it is enough to say that in order to represent a note, we have several
elements available: its frequency, its amplitude and its spectral content.

However, there is still some way to go in order to have a useful set of
descriptive concepts to study birdsong. If all a bird could produce were simple
notes, we would not feel so attracted to the phenomenon. The structure of
a song is, typically, a succession of syllables, each one displaying a dynamic
structure in terms of frequencies. A syllable can be a sound that rapidly
increases its frequency, decreases it, etc. How can we characterize such a
dynamic sweep of frequency range?

1.4 Sonograms

1.4.1 Onomatopoeias

Readers of this book have probably had in their hands, at some point, or-
nithological guides in which a song is described in a more or less onomatopoeic
way. Maybe they have also experienced the frustration of noticing, once the
song has been identified, that the author’s description has little or no simi-
larity to the description that they would have come up with. Can we advance
further in the description of a bird’s song with the elements that we have
described so far? We shall show a way to generate “notes”, i.e., a graphical
representation of the acoustic features of the song. We shall do so by defining
the sonogram, a conventional mathematical tool used by researchers in the
field, which, with little ambiguity, allows us to describe, read and reproduce
a song.

The song of a bird is typically built up from brief vocalizations separated
by pauses, which we shall call syllables. In many cases, a bird can produce
these vocalizations very rapidly, several per second. In these cases the pauses
are so brief that the song appears to be a continuous succession of sounds.
But one of the aspects that makes birdsong so rich is that even within a
syllable, the bird does not restrict itself to producing a note. On the contrary,
each syllable is a sound that, even within its brief duration, displays a rich
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temporal evolution in frequency, and is perceived as becoming progressively
higher, lower, etc. For this reason, if we were to restrict ourselves to analyzing
the spectral content of a syllable as if it was a simple note, we would miss
much of the richness of the song. Therefore we use another strategy.

1.4.2 Building a Sonogram

In Fig. 1.7a, we have a signal corresponding to a syllable. We have already
worked with it in Fig. 1.2. We shall not look at the complete syllable, but just
at a small fraction of it around a given time t. We call this our time window,
and we center it around the time t. Let us proceed to analyze the spectral
content of this small fragment, and choose the aspects of the spectrum that
we find most relevant. We could, for example, concentrate only on the fun-
damental frequency, forgetting about the harmonics discussed earlier. In this
way, we can plot a diagram of fundamental frequency as a function of time,
plotting a dot for the fundamental frequency found in the window centered
at time t, at that time. For successive times, we proceed in the same way.
What we obtain with this procedure is a smooth curve that describes the
time evolution of the fundamental frequency within the syllable. This way
of analyzing small fragments of a song is a useful procedure for sounds that
change rapidly in frequency, and is available as part of almost any computer
sound package.
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Fig. 1.7. Building a sonogram. (a) We start by plotting the sound wave (actually,
at this scale, one cannot see the actual oscillation, just the envelope). Now we focus
on a very narrow time window at the beginning of the recording and calculate
the spectral content only for the part of the sound in that narrow window. Next,
we slightly shift our time window and repeat the procedure time after time, until
we reach the end of the recording. By gathering together all the results we have
obtained with the time-windowing procedure, we finally obtain (b), the sonogram,
which tells us how the sound frequency (and, in general, the spectral content)
evolves in time. In this case, the syllable is a note with an almost constant 2 kHz
frequency
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Fig. 1.8. A complex sonogram. This is the sonogram of a grass wren’s song. Here
you can see upsweeps (increasing fundamental frequency), downsweeps (decreasing
fundamental frequency) and tonal sounds (constant frequency). The rich vocaliza-
tions of this wren span a huge range in frequency, from around 2000 to 8000Hz

In Fig. 1.7b, we see the results of the procedure. The time is on the hori-
zontal axis, while the vertical axis indicates the value of the frequency. The
fact that the curve is an almost horizontal stroke indicates that the sound,
within this brief syllable, has an almost constant frequency – a note. This type
of representation is known as a sonogram. Of course, instead of focusing only
on the fundamental frequency, one can take into account the fundamental
and all other frequencies that appear in the spectrum in each time window.
The resulting sonogram allows us not only to track the time evolution of
the fundamental frequency but also to have a picture of the complete spec-
trum, evolving in time. In very complex songs, other frequencies appearing in
the sonogram may have an evolution different from that of the fundamental
frequency.

In Fig. 1.8, we show a sonogram corresponding to the song of the grass
wren (Cistothorus platensis) [Straneck 1990a]. Notice that the structure of
this song is extremely complex: syllables are repeated in rapid succession
before being replaced by others that are qualitatively different. Some are
upsweeps (the fundamental frequency increases), some are downsweeps, and
others are tonal sounds (and therefore could have been described as simple
notes). In this book, we intend to provide an understanding to understand
what physical processes are at play in generating such a variety of structures.
In the process of introducing some elements for the description of these phe-
nomena, we have discussed this graphical representation here, which will
allow us to represent the songs that we hear, diminishing the ambiguity of
the onomatopoeic description.
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To know that under certain conditions air is capable of propagating pressure
(or density) perturbations is the first step in our understanding of sound.
However, we still need to discuss a couple of issues in order to continue our
presentation on birdsong. On one hand, we are interested in the mechanism
used by the bird in order to generate these perturbations. On the other hand,
we need to know what happens to these perturbations in the space between
where they originate and the open air. Before we analyze the structure of the
avian vocal organ, it will be useful to have a general picture of the process of
the generation of sounds and the way in which they are filtered. This chapter
is dedicated to describing these phenomena.

2.1 Sources of Sound

2.1.1 Flow, Air Density and Pressure

We can begin our discussion by thinking about sources of sound we are famil-
iar with. Examples could include a siren, a flute or the sound that is produced
when we blow air between two sheets of paper [Titze 1994]. What do these
processes have in common? What physical phenomenon is at play in these
cases? As we saw in the previous chapter, sound is a pressure (or density)
perturbation that propagates in a medium – in the case we are interested in,
the atmosphere. How can we generate such a perturbation?

In order to describe the process by which sound is generated, we must
introduce the concept of flow. It is not a complex concept: we constantly refer
to traffic flow, the flow of a liquid through a pipe, etc. A flow (of something)
is the amount (of that thing) that passes through a surface in certain time.
For example, the flow of cars passing through a tollgate on a highway is the
number of cars that go through the gate in a certain interval of time. The
concept has implicit in it the existence of an area and a velocity. The flow
of cars can increase because more cars pass through the gates in the interval
of time (i.e., the “velocity” is increased). But let us imagine that the gates
are already letting as many cars pass per unit of time as possible: we can
also increase the flow by increasing the number of gates (i.e., by increasing
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the “area”). In fact, the flow is defined as the product of the area and the
velocity of the objects:

U = v · A . (2.1)

Here we let the velocity and the area be vectors, because the important thing
here is the cross section; that is, the effective area faced by the velocity. This
can be seen by expressing the dot product as U = vA cos α, where α is the
angle between the velocity and the direction perpendicular to the area.

Flow is an appropriate concept for stating conservation laws. For a general
closed surface S, we can write the flow U across it as

U =
∮

S

v·da . (2.2)

According to our previous discussion, this should be proportional to the vari-
ation of the mass within the volume enclosed by the surface S:

U = − 1
ρ0

∂m

∂t
, (2.3)

where ρ0 stands for the constant equilibrium density of the fluid. Changing
from mass to density by means of a volume integral (

∫
V

ρ dV = m), we can
write

U = − 1
ρ0

∂

∂t

∫
V

ρ dV (2.4)

=
∮

S

v·da , (2.5)

and since
∮

S
v·da =

∫
V
∇ · v dV (Gauss’s theorem),

∇ · v = − 1
ρ0

∂ρ

∂t
, (2.6)

where v stands for the particle velocity. As is known in acoustics, v is related
to the displacement D introduced in Chap. 1 through v = ∂D/∂t. The symbol
∇ is a compact notation for the vector spatial derivative. This equation does
not provide us with more physics than its one-dimensional version (1.2).
However, it is more general and will allow us to advance beyond a particular
geometry. Similarly, we can write Newton’s second law in a more general way
than in (1.3):

∇p = −ρ0
∂v
∂t

. (2.7)

As in the one-dimensional case, we can relate the density fluctuations to the
pressure perturbations by means of the linearized equation of state (1.4).
Simple algebra then allows us to derive the acoustic-pressure wave equation
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∂2p

∂t2
= c2 ∇2p , (2.8)

which is the three-dimensional version of (1.7).
Solving this equation for given initial and boundary conditions is not

trivial. However, two highly symmetric cases have been thoroughly discussed:
the plane wave and the spherical wave. These two read

p(x, t) = Aei(k·x−wt) plane , (2.9)

p(x, t) =
A

r
ei(kr−wt) spherical , (2.10)

where r is the modulus of the radius vector x. In these equations, we write
the pressure in terms of complex numbers. The physical quantities we are
interested in are the real parts of these expressions. The rationale behind this
trick is that taking time or spatial derivatives of harmonic functions in this
formalism is as simple as multiplying or dividing by a (complex) number. Let
us see this at work. In either geometry, it is possible to derive a relationship
between the particle velocity at any point and the pressure fluctuations there,
by means of (2.6) or (2.7). Since these equations are linear, we can be sure
that a solution with both p and v oscillating with the same frequency is
possible. However, a phase difference between them may appear that depends
on the symmetry of the solution, which in turn depends on the geometry
of the sources and boundaries. For example, in the planar case, where the
spatial derivative is everywhere equivalent to a multiplication by a complex
number ik, and the time derivative is equivalent to a multiplication by −iω,
the pressure and the velocity are in phase because the coefficient relating
them turns out to be real. However, this is not the case for a spherical wave.
Relating p and v by means of (2.7), we now obtain

ρ0iωv =
(
−1

r
+ ik

)
per , (2.11)

which means that the pressure and velocity are no longer in phase. Mathe-
matically, this is reflected in the fact that the coefficient relating them is a
complex number α = (−1/r + ik)/(iωρ0).

Why are we saying that a complex coefficient relating p and v represents
a phase difference between them? First, a real coefficient means that p and
v have zero phase difference, since the value of p at a given instant is that of
v (up to a scale factor). On the other hand, the effect of a purely imaginary
coefficient relating p and v can be seen as the fact that the value of p depends
on the value of the time derivative of v (scaled by the imaginary coefficient),
which is π/2 out of phase with respect to v. This is a consequence of the
following relationship, valid for complex harmonic functions:

iωv =
dv
dt

. (2.12)
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For these reasons, p and v are in general out of phase for generic geometries.
This can be written as a relationship between the pressure p and both the
flow U and its time derivative as follows:

p(t) = RU(t) + I
dU(t)

dt
, (2.13)

with appropriate coefficients R and I. The terms in the equation above will
not contribute equally to the pressure perturbation p(t) in every case. It may
happen that in certain circumstances one of them plays a more important
role, while the contribution from the other is negligible. We shall come back
to this subject in Chap. 6.

2.1.2 Mechanisms for Generating Sound

Let us begin by discussing the way in which a siren works [Titze 1994] – one
of the examples mentioned at the beginning of this chapter. This device has
a part that blows air, and a rotating disk with a sequence of holes close to
the edge, as displayed in Fig. 2.1a. The disk faces the mechanism that blows
the air, so that the air jet can pass through one of the holes of the disk. If
the disk is set into a rotating motion (for example, with the help of a motor),
there will be an airflow through the device that is sequentially established
and interrupted as the holes pass in front of the mechanism blowing the air.
Let us imagine the process in detail, taking into account the example of the
cars discussed in Sect. 2.1.1. One of the holes lets an air jet pass through. In

(a) (b) (c)

Fig. 2.1. Different physical phenomena generating sound. (a) A siren. An air jet
is blown against a rotating disk with holes. The air jet passes through a hole only
if the hole is just in front of it; otherwise, the jet is interrupted. A pulsating airflow
is established in this way. At a constant rotation speed, the siren produces a note
(a sound of constant frequency), and the frequency of the note is the frequency
at which the holes pass in front of the air jet. (b) A recorder. Very close to the
mouthpiece, there is a sharp edge that breaks the otherwise smooth, constant airflow
into vortices, creating turbulence. The frequency of the resulting sound is related
to the effective length of the tube, which can be set by fingering. (c) Blowing air
between two sheets of paper. Energy is transferred from the airflow to the sheets of
paper in such a way that a self-sustained oscillation of the sheets takes place. This
mechanism is very similar to the one that causes the oscillations of the labia in a
bird’s syrinx or the vocal folds in a human larynx
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the neighborhood of the hole, we have a high density of air. This injection of
air will stop as soon as the disk rotates a little, such that the hole no longer
faces the mechanism blowing the air. If the propagation speed of the sound
is high with respect to the speed of the holes, by the time new air injection
takes place, the air density in the neighborhood of the hole will be similar
to the density that we had at the beginning of the process. The recurrent
passing of holes in front of the air jet as the disk rotates then generates a
note. The frequency of such a note will be the frequency at which the holes
pass in front of the air jet. For example, if the disk rotates at such a speed
that 261 holes pass in front of the air jet per second, then the frequency of
the note is 261 Hz (the middle C).

The flute works in a different way. It consists of an open tube made of
wood or metal, which becomes narrow close to one end: the end through
which we blow air. As the air goes into the tube through this end, it en-
counters a sharp edge (Fig. 2.1b). The role of this edge during the onset of
the sound generation process is to divide the airflow and generate turbulence:
the laminar flow loses stability, giving rise to vortices (known as eolian noise)
that travel downstream along the tube. After this initial process, the jet will
alternately leave the edge above or below, owing to a mechanism that in-
volves waves being generated in the tube, giving rise to density fluctuations
of a definite frequency. In the siren, a time-varying flow is generated by a
mechanical process, while in the flute, a time-varying flow is present because
the constant, laminar flow loses stability with respect to a time-fluctuating
regime.

It is worthwhile to think about a third example: blowing air between
two sheets of paper (Fig. 2.1c). If the sheets are not too large (for instance,
one-quarter of a letter- or A4-sized sheet), a good vibrating effect can be
achieved. A similar way to obtain a good sound, however, is to cut a piece of
paper and hold it between the fingers, as shown in Fig. 2.2. As we blow, we
can feel in our lips the paper vibrating, and hear a high-pitched sound. The
mechanism by which the sound is produced is not trivial. In fact, it shares
many elements with the process involved in the generation of sound in the
avian vocal organ. For this reason, we shall analyze this process later. For now
it is enough to say that, as in the example of the siren, the sound is produced
by temporal fluctuations in the airflow due to periodic obstructions. However,
in one important aspect, the physics of this problem is more complicated than
that involved in the siren. In the case of the sheets of paper, the periodic
obstructions to the airflow are not produced by an “external” motion (such
as the rotation of a disk). Instead, energy is transferred from the airflow
to the sheets of paper, establishing an oscillatory regime. These oscillations,
partially and in a periodic fashion, obstruct the flow. The origin of the sound
produced is the creation of local density fluctuations that originate in the
presence of a time-varying airflow.



22 2 Sources and Filters

Fig. 2.2. A device with efficient energy transfer from an airflow to moving parts so
as to produce a self-sustained oscillation at an audible frequency: in other words, a
paper whistle. The physics behind this device is similar to that of the oscillation of
the human vocal cords and of the avian labia, and is like that of the paper sheets
in Fig. 2.1c. In contrast, an ordinary whistle emits sound in much the same way as
a flute (Fig. 2.1b)

2.2 Filters and Resonances

2.2.1 Same Source, Different Sounds

We have discussed the fact that a perturbation in the air density can give
rise to a propagative phenomenon. The displacements induced at a point in
an air mass as a perturbation arrives are capable of performing work (such as
moving the membrane of a microphone, for example). We have also discussed
how to generate the original perturbations that will eventually propagate: one
way is to establish a time-varying airflow. We still need to discuss another
element of importance: the role of passive filters.

In many cases the sound, after being generated, and before propagating
freely in the atmosphere, passes through a bounded region of space. The
geometry and other characteristics of that region will impose a signature on
the sound finally emitted. An example close to us all is the case of the human
voice. If you put your hand on your neck, close to the larynx, while you
pronounce a vowel, you will feel a vibration. The vibration is produced by
oscillations of the vocal folds, which in turn are induced by an airflow from
the lungs. This is a sound source whose dynamical nature is very similar to
that of the example of the parallel pieces of paper that oscillate when air
is blown between them. However, in the case of the vowels, we know that
the sound can change dramatically according to where we place our tongue
as we vocalize, even if we do not change the oscillation conditions of the
vocal folds. In fact, these sounds can be so different that we make them
different “vowels”. They are just sounds produced with the same source (the
vocal cords), but with the configuration of the filter changed by moving the
tongue, lips, etc. [Titze 1994].
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In the first chapter, we discussed the concept of the spectral content of a
signal. In the case of the human voice, for example, the time variations of the
airflow induced by periodic obstructions caused by the vocal folds typically
give rise to signals that are spectrally very rich. By this we mean that they
can be written as a sum of many harmonics, as in the case of the triangular
wave illustrated in Chap. 1. Our vocal tract stresses some components and
attenuates others, modifying the timbre of the sound. How does this happen?

2.2.2 Traveling Waves

Once a source of pressure perturbations has been set oscillating, a propagative
phenomenon takes place, leading to a sound wave. As mentioned in Chap. 1,
sound waves are solutions to the wave equation (1.7). That is, a sound wave
can be mathematically described by a function of space and time p = p(x, t)
which fulfills (1.7). One way of achieving this is by choosing p to be a traveling
wave. Traveling waves are functions of the form

p(x, t) = p(kx − ωt) , (2.14)

where k and ω are wave parameters such that c = ω/k is the velocity at
which the perturbation propagates, i.e., the sound velocity (see Chap. 1).
A well-known example of a traveling wave is the cosine function p(x, t) =
A cos(kx − ωt). Notice that the particular combination of time and space
kx−ωt in the argument of p is what makes this wave a traveling wave (see suc-
cessive snapshots in Fig. 2.3a). These waves describe all kind of propagative

(a) (b)
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x (arb. units)
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x (arb. units)

Fig. 2.3. Successive snapshots of waves. (a) Traveling wave. A traveling wave is
a function pT (x, t) satisfying (1.7), with space and time appearing in a particular
combination: pT (x, t) = pT (kx − ωt). Notice that there are no points at rest, and,
further, that the wave is traveling to the right. A wave traveling to the left would
be pT (x, t) = pT (kx + ωt). (b) Standing wave. A standing wave is a function
pS(x, t) satisfying (1.7) with a factorized space and time dependence pS(x, t) =
p1(x)p2(t). Notice the existence of points at rest, or nodes: points that always have
zero amplitude, being at positions x such that p1(x) = 0
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phenomena, from electromagnetic waves [Feynman et al. 1970] to waves of
calcium concentration inside a living cell [Keener and Sneyd 1998].

Traveling waves behave interestingly when they reach “boundaries”.
Imagine a uniform tube, open at one end and closed at the other by a mem-
brane capable of vibrating. The motion of this membrane will push the air
in its surroundings, inducing fluctuations of density and pressure that can
propagate along the tube. This propagation can be described by a function
pe = pe(kx − ωt), as discussed above. Now, what happens as the perturba-
tion of pressure arrives at the open end of the tube? This is very interesting:
an important fraction of this pressure perturbation is reflected, inverted , so
that the sum of the incident pressure perturbation pe and the perturbation
induced by the reflected wave pr give a negligible total pressure perturbation
at the open end of the tube: pe(x = L, t) + pr(x = L, t) ∼ 0. Why? Because
the atmosphere imposes its own pressure on the daring attempt of the tube
to try to change the pressure with its tiny pressure fluctuations. This is a
mechanism similar to that observed when we generate a wave on a string
with one end attached to a wall (see Fig. 2.4). The wave propagates and is
reflected, inverted. The sum of the displacements (incident and reflected) at
the fixed end must be zero, for the end of the string is rigidly attached to the
wall. In the case of the tube, the pressure at the open end is “tied” to the
atmospheric pressure. Notice that the fact that the pressure fluctuation is
zero does not mean that the interior of the tube is isolated from the exterior.
The displacement D, as seen in Chap. 1, satisfies ∂D/∂x ∼ −p and therefore
it oscillates with the maximum possible amplitude at the open end. These
fluctuations of the displacement are responsible for sound emission from the
end of the tube.

Fig. 2.4. A wave on a string attached to a wall. If you flap the string to create a
propagating wave, the wave travels down the string until it is reflected at the end
attached to the wall, and becomes inverted. A pressure sound wave propagating
along a tube will be reflected and inverted at an open end of the tube in an analogous
way
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2.2.3 Resonances

Now, suppose that our vibrating membrane generates harmonic fluctuations
in a periodic way, with a period T . By this we mean that the membrane gen-
erates high and low densities in its surroundings (position x ∼ 0) alternately,
in a regular way (Pe = Pe0 cos(ωt), with ω = 2π/T ), and these fluctuations
propagate along the tube. The other end of the tube reflects these fluctua-
tions, which return to the neighborhood of the membrane after traveling back
from the open end. Therefore, at every point x along the tube, the pressure
perturbation is a superposition of forward- and backward-traveling waves:

Pe(x, t) = Pe0 cos(kx − ωt) + Pr cos(kx + ωt) . (2.15)

What happens if, when the membrane is generating a high-pressure fluctu-
ation in its neighborhood, a reflected negative-pressure perturbation arrives?
The signal close to the membrane will be the sum of the two contributions,
and therefore will be strongly damped. This is known as destructive interfer-
ence. In contrast, if the pressure perturbation, after traveling to the open end
and returning back, arrives in phase with the perturbation being generated
by the membrane (for example, a high-pressure perturbation arrives as the
membrane is compressing its surroundings), the superposition of the signals
will be constructive. This helps to establish a signal of large amplitude. This
phenomenon is called resonance [Feynman et al. 1970].

The key quantities for establishing this strong signal in the neighborhood
of the membrane are the characteristic times of the problem. In order to
construct such a signal, the action of the membrane must be helped by the
reflected wave. For this to occur, there must exist a particular relationship
between the period of the signal generated by the membrane and the time it
takes the signal to propagate to the open end and back after its reflection.
When the signal returns, its shape is approximately equal to the shape that
it had when it was created, at a time 2τ before (with τ being the time it
takes for the sound to travel a distance equal to the length of the tube L).
The reflection changes the sign of the signal that returns. Therefore, this
perturbation has to be as similar as possible, considering the change of sign
that is produced in the reflection at the open end of the tube and the state of
the wave on its return, to the signal being created by the membrane, in order
to help constructively in the creation of a strong total signal. If the time taken
to travel from the membrane to the open end and back is 2τ , a constructive
effect will occur if 2τ = T/2. The reason is the following: two harmonic
oscillations whose phases differ by half a period will be in counterphase, as
illustrated in Fig. 2.5. In addition, the reflection of the wave produces an
inversion. Therefore, the delay of half a period accumulated in the trip plus
the inversion of the wave at its reflection implies that the wave that returns to
the membrane after reflection will be in phase with the signal being generated
by the membrane. Since τ = L/c (where c is the sound velocity), we have
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(b)(a)

0 T/2 T 3T/2 2T 2T0 T/2 T 3T/2

Fig. 2.5. (a) Harmonic oscillations in phase. Two harmonic oscillations are said
to be in phase when both oscillations reach a maximum (or a minimum) at the
same time. (b) In contrast, they are said to be in counterphase when one reaches a
maximum when the other reaches a minimum. Notice that two harmonic oscillations
in counterphase can be seen as two signals either delayed half a period relative to
each other or differing only by an overall factor of −1 (or inversion)

a possible frequency of membrane vibrations that will allow the generated
wave to be well supported by the tube:

F1 =
c

4L
. (2.16)

2.2.4 Modes and Natural Frequencies

The idea is not complex: in order to have a constructive effect, the harmonic
signal generated by the membrane must be in phase with the signal that re-
turns after being reflected at the open end of the tube. The theory of waves
expresses this idea in the following way: if the tube has a length L and the
sound propagates at a speed c, then the membrane must vibrate with a fre-
quency F1 = c/(4L) in order to contribute constructively and generate a
signal with augmented amplitude. This frequency is called the natural fre-
quency of the tube, and a pressure fluctuation oscillating at this frequency
is called a mode of the tube. Since frequency and wavelength are related
through f = c/λ, we have, for this mode, the result that the wavelength λ
cannot take any value but λ1 = 4L.

If it vibrates at a frequency different from the natural frequency, the mem-
brane can still induce pressure perturbations in the tube, but of a smaller
amplitude owing to the reflected wave not arriving exactly in phase with the
oscillation generated by the membrane. Is there only one natural frequency for
the tube? The answer is no, and this can be understood in the following way.
Let us suppose that the membrane is oscillating at just the natural frequency
of the tube. As we have discussed, the reflected wave returns in phase with
the perturbation established by the membrane. Let us now slightly increase
the vibration frequency of the membrane. Now, when the reflected perturba-
tion returns, it will no longer be in phase with the perturbation established
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by the membrane. Since the frequency of the vibration is higher now, the
perturbations created by the membrane will be “advanced” with respect to
the returning wave. Neither the travel time nor the sign inversion at the end
changes for the reflected wave. Since the two signals in the neighborhood of
the membrane are no longer in phase, the total amplitude of the signal will
not be as large as before (when the membrane was oscillating at the natural
frequency of the tube).

If we increase the membrane frequency even more, the phase difference
between the perturbations created by the membrane and the ones induced
by the reflected wave will be larger. Eventually, there will be a frequency
for which the two contributions to the total fluctuation will be completely
out of phase. For example, the membrane might be compressing the air in
its surroundings at the same time as an expansion has traveled back after
reflection at the open end. The interesting aspect of this is that if we increase
the frequency even more, the situation will reverse and, eventually, the two
contributions to the total pressure fluctuation will be back in phase. The
oscillation of the membrane is in this case too fast to use the reflected wave
to increase the total fluctuation in its surroundings, but it is now sufficiently
fast to take advantage of its “second chance” to increase the total amount of
fluctuation. The argument can be repeated, and in principle we can see that
there are an “infinite” number of natural frequencies.

The concept of natural frequencies is illustrated in Fig. 2.6, where we
show the gain of a tube that is open at one end and closed at the other, as
a function of the frequency of excitation. The gain is a function that shows
us the response of a filter at every excitation frequency. In our case, this
frequency is the one at which we make the membrane oscillate. The peaks of
the function are the resonances of the tube: each frequency that corresponds
to a peak is a natural frequency. Any time we make the membrane vibrate at
any of these frequencies, the air column in the tube will vibrate with increased
amplitude. In contrast, if the frequency is anywhere between resonances then
the oscillation amplitude of the air column will be zero.

The natural frequencies of the tube are easy to identify if we look at the
gain curve, but we have to note that the peaks are not ideally narrow but
have a finite width. In any real tube there will be dissipation, i.e., inevitable
energy losses. In this case, a wave returning to the exciting membrane will
do so with its amplitude greatly reduced owing to energy losses. Therefore
neither will the peak at a resonance diverge, nor will the total amplitude of
the resulting wave be zero at frequencies different from a natural frequency.
In the case without losses, the zero amplitude of the wave at a nonresonant
frequency is due to the waves added after succesive bounces not being in
phase. The infinite summation of all the positive and negative perturbations
will give zero. This cannot happen if losses diminish the amplitudes of the
waves after a few bounces.
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Fig. 2.6. Response function (or gain) for a tube with one end open and the other
closed. The response function is the way the tube responds when excited with
a sound wave. The peaks are called the resonances of the tube. In a real tube,
the peaks are not ideally narrow like these but have a width determined by the
energy losses. The frequencies corresponding to the maxima of the resonances are
the natural frequencies of the tube. A sound wave propagating along the tube will
resonate or increase its amplitude if it has a frequency very close to a natural
frequency of the tube. Otherwise, it will be attenuated

2.2.5 Standing Waves

We have discussed the behavior of the density (or pressure) fluctuations in the
vicinity of the exciting membrane. It is time to touch upon a most interesting
issue, related to the spatial distribution of the density along the tube, when
the membrane is vibrating at one of the natural frequencies.

Let us pay attention to the signal generated by the membrane at the
first natural frequency F1 = c/(4L). According to the arguments presented
in Sect. 2.2.3, the reflected wave will return to the vicinity of the exciting
membrane in such a way that it contributes constructively to the amplitude
of the total signal. We say that the reflected wave and the injected signal are
in phase, and that the total amplitude of the pressure fluctuations will be
maximum. This can be mathematically described as a pattern pe = pe(x, t)
as follows:

pe = pe0 cos(kx − ωt) + pe0 cos(kx + ωt) , (2.17)

where k = 2π/(4L) and ω = 2πf . Making use of the trigonometric identity
cos(α ± β) = cos α cos β ∓ sin α sin β, we can rewrite (2.17) as

pe = 2pe0 cos(kx) cos(ωt) , (2.18)

which is called a standing wave. Functions such as this, with a factorized
space and time dependence, are also solutions to the wave equation (1.7)
(see Fig. 2.3b for snapshots of a generic standing wave). This result can be
interpreted as a temporal oscillation that has a position-dependent amplitude
2Pe0 cos(kx). Notice that at x = 0 the amplitude of the oscillation is always
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maximum, that at x = L the amplitude of the oscillation is always zero, and
that there is no other position at which these situation occur within the tube
for this particular choice of ω (and hence k).

What about a signal generated at the second lowest natural frequency
of the tube, at which the tube is also capable of sustaining an important
excitation? Again, we want the contributions to the density fluctuations in
the vicinity of the membrane to be in phase. The wave will contribute (after
the perturbation has traveled for a time 2τ = 2L/c) constructively to the
fluctuations generated by the membrane if the travel time equals a period
and a half of the excitation, that is, 3T/2. Let us recall that in the case of the
first resonance, the travel time was equal to half the period of the oscillation.
This is so because two signals out of phase by a period and a half will be
in counterphase (see Fig. 2.5). Taking into account the inversion that occurs
at the reflection, we have the result that the fluctuations induced by the
reflected wave are in phase with the ones generated by the membrane. The
second natural frequency is therefore

F2 =
3c

4L
, (2.19)

which is triple the frequency of the first mode.
Now, something very interesting happens in the tube at a special point. At

a distance from the membrane equal to one-third of the length of the tube, the
signal that arrives directly from the membrane will be always out of phase by
a quarter of an oscillation with respect to the signal at the exciting membrane.
The reason is the following: the period of the oscillation is T2 = 4L/(3c),
so L/(3c) (the time it takes to travel a distance L/3 at speed c) is T2/4.
The signal that arrives at this point in space after undergoing a reflection
was emitted some time before: the time interval is the time it takes for the
sound to travel 5/3 of the length of the tube. This is so because the wave,
before affecting the pressure at our special position in space, had to travel the
length of the tube, plus the 2/3 of the tube length from the reflection point
to our point of observation. At the frequency of the oscillations considered,
the fluctuation induced by the reflected wave has been delayed in this time
interval by five-quarters of an oscillation with respect to the fluctuations at
the membrane. This is the same as saying that they are one quarter out of
phase. This is just the same as the delay of the fluctuation arriving at our
observation point directly from the excited membrane! But we still have to
consider the change in sign induced in the reflected wave. Therefore the two
contributions to the fluctuations, namely that from the wave coming directly
from the membrane and that arriving after a reflection, will be exactly out of
phase and their contributions will cancel each other. At this particular point,
at a distance one-third of the tube length from the membrane, there is no
oscillation. The air in this region is exposed to one wave trying to increase
the density, and to another one trying to decrease it. This is called a node: a
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point in space where the amplitude of the fluctuation is zero (in other words,
there are no fluctuations).

We can also obtain this result by writing explicitly the spatiotemporal
pattern of pressure fluctuations along the tube as we did in (2.18). Adding the
forward-traveling wave generated at the vibrating membrane to the reflected,
backward-traveling wave, both oscillating at triple the frequency of the first
case (i.e., at the second resonance), we obtain

Pe = Pe0 cos(3kx − 3ωt) + Pe0 cos(3kx + 3ωt)
= 2Pe0 cos(3kx) cos(3ωt) , (2.20)

which is a standing wave like that of the first mode, (2.18). Notice that now
there are two points at which the amplitude of the pattern is always zero.
One is the open end as before, and the other is, as we expect, at x = L/3.

Figure 2.7a shows the first two spatial configurations associated with the
excitation of a tube at the two lowest resonant frequencies. In this figure, the
lines describe the maximum amplitude of the oscillations that can occur at
each point of space. The points at which the lines touch are points with no

T/2 T0

(a) (b)

T/2 T0

Fig. 2.7. Standing sound waves in a tube with one end open and the other closed.
(a) Position-dependent amplitude of the oscillation, and (b) successive snapshots
of the spatial configuration of the air pressure within the tube when the tube
is excited at its lowest natural frequency (top) and at its second lowest natural
frequency (bottom), the first and second peaks in Fig. 2.6. A higher density of dots
means higher pressure
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oscillations. In Fig. 2.7b, we show the temporal sequence of the air pressure
for each configuration.

As a general result, we can add two counterpropagating waves of the same
frequency to obtain

cos(kx − ωt) + cos(kx + ωt) = 2 cos(kx) cos(ωt) , (2.21)

which is a standing wave with a position-dependent amplitude 2 cos(kx). The
boundary condition at the open end of the tube (that is, the pressure at x = L
is always zero, or atmospheric pressure) gives us

knL = (2n − 1)π/2 , n = 1, 2, 3, . . . . (2.22)

This means that the frequency and wavelength of a standing wave in a tube
open at one end and closed at the other cannot take any values, but only the
allowed values

Fn = (2n − 1)
c

4L
, (2.23)

λn =
1

2n − 1
4L , (2.24)

where n = 1, 2, 3, . . . . In contrast, in the case of a traveling wave, the fre-
quency and wavelength have no restriction other than ω = ck.

We have to point out that establishing these stationary density configu-
rations requires a source that excites the tube of air at a precise frequency.
What happens if we excite the tube with a signal that is the sum of two
periodic signals of different frequencies? Let us analyze this by inspecting a
simple example: we take as the excitation a signal that is the sum of the first
two resonances,

P = A cos(k1x − ω1t) + A cos(k1x + ω1t)
+ A cos(k2x − ω2t) + A cos(k2x + ω2t)

= 2A cos(k1x) cos(ω1t) + 2A cos(k2x) cos(ω2t) , (2.25)

which, although it is the sum of two standing waves with different frequencies
(with the same amplitude for simplicity), is not a standing wave. Now, we
have a pattern of densities that propagates along the tube, respecting only
the condition that there are no perturbations at the open end. In Fig. 2.8,
we show a temporal succession of the density along the tube. This density
no longer constitutes a stationary structure. There are no points within the
tube with no fluctuations. On the contrary, we have a fluctuation traveling
along the tube. This can be seen, after some tedious trigonometric algebra,
by rewriting (2.25) as

P = 4A cos(kx − ωt) cos(∆k x − ∆ω t)
+ 4A cos(kx + ωt) cos(∆k x + ∆ω t) , (2.26)
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Fig. 2.8. Superposition of two standing waves in a tube open at one end and closed
at the other. The resulting wave is not a standing wave, but a traveling wave at
the average frequency

where we have defined k = (k1 + k2)/2, ∆k = (k2 − k1)/2, ω = (ω1 + ω2)/2
and ∆ω = (ω2 − ω1)/2. Notice that the resulting wave is a traveling wave
(plus its reflection) at the average frequency ω, with an amplitude modulated
at a lower frequency ∆ω.

2.3 Filtering a Signal

2.3.1 Conceptual Filtering

It is time to examine what happens when a signal with a rich spectral con-
tent meets a filter. Our discussion of resonances was performed in terms of
harmonic excitations produced by a membrane. When did we use the fact
that our excitations were harmonic? We assumed this in order to claim that
a signal was equal to itself but inverted if we waited for half a period. This
is not necessarily true if the signal is not harmonic. Does this mean that for
forcings more realistic than simply harmonic ones, we have to forget about
our discussion? No, since we saw in Chap. 1 that a periodic signal of arbi-
trary form can be thought of as a sum of harmonic signals. In this way, we
can analyze what happens to a spectrally rich signal in terms of what hap-
pens to its harmonic components. Let us take the case, analyzed in detail
in Chap. 1, of the triangular time-periodic function. It is spectrally rich (we
could approximate it with a sum of properly weighted harmonic functions),
and we can describe such richness by showing in a diagram the frequency of
each component versus its relative weight. Such a diagram is illustrated in
Fig. 2.9. Each peak in the “source” part of the figure represents one of the
harmonic components that it is necessary to add in order to reproduce the
signal, as discussed in Chap. 1. The frequency at which a peak is located rep-
resents the frequency of the component, and its height indicates the relative
weight of the component in the sum.
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Fig. 2.9. Filtering a signal. Left : a source generates a triangular wave (time series
at top left, spectral content at bottom left). This triangular signal is used to excite
a tube open at one end and closed at the other (the filter), whose response function
is shown in the middle. In accordance with the response function of the tube, some
frequencies entering the tube will resonate (the frequencies close to a peak), while
others will be attenuated. The result is shown on the right : the spectral content of
the output signal (bottom right) has changed. The time series of the output signal
is shown at the top right

Now it is time to filter the signal. By this we mean that we excite a tube
of air by means of a signal that is no longer harmonic (as in our discussion of
resonances and modes), but instead is something like our triangular function.
According to our analysis of resonances in a tube, some components of the
excitation are capable of establishing important oscillations in the tube, while
others will eventually be damped. The gain diagrams discussed in Sect. 2.2.4
gave an idea of precisely those effects. In this way, it is possible to know what
will happen to the signal after it has been filtered by the tube: those spectral
components falling in the regions of resonant frequencies will survive, while
the others will see their relative weight diminished. In Fig. 2.9, we show in
addition the gain of a tube open at one end and closed at the other, and the
result of filtering our triangular signal. The frequency of the resulting signal
is the same as the frequency of the original triangular signal, but the timbre
has been changed by the effects of the tube [Titze 1994].

2.3.2 Actual Filtering

There are two ways of actually applying a filter to a signal. The direct way is,
obviously, forcing the tube to vibrate by means of a loudspeaker emitting the
signal at one end of the tube. This can be accomplished either experimentally
(with a real tube) or numerically with the help of a computer, by keeping
track of the propagation and reflection of the waves in the tube, which is
known as time-domain filtering. The details of this procedure are described
in Sect. 6.2.2.
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The second way is indirect: one needs to know the gain G of the tube as
a function of frequency, i.e., the mathematical expression G = G(ω) giving
rise to the central diagram in Fig. 2.9. In addition, the spectral content of the
input signal is needed. By this we mean the set of coefficients an, bn in (1.11),
represented by a function of (discrete) frequency Pin = Pin(ωn) (recall that a
coefficient labeled n stands for the amplitude of frequency ωn). The spectral
content of the signal after the filter, Pout, is simply

Pout(ωn) = G(ωn)Pin(ωn) . (2.27)

This is known as frequency-domain filtering. Once we know Pout(ωn), the
time-dependent output signal can be easily recovered by summing all the
spectral components, as in (1.11).

This is what is called a passive filter : the only thing it can do is enhance
or attenuate frequencies in the signal’s spectrum. It cannot create frequencies
that are not present in the original signal. But it should be kept in mind that
it is not always possible to separate the effects of the source and the filter.
This is a delicate issue. So far, we have assumed that the dynamics of the
exciting source are independent of what is happening in the filter, and that
the source maintains a strict control of the situation [Laje et al. 2001]. This
is known as “source–filter separation”. The filter simply adds the injected
signal to the successive reflections, selecting some frequencies and suppressing
others. However, it is not impossible to think that the signal built up in the
tube could affect the dynamics of the exciting source. We shall run into this
interesting effect at a later point of our discussion.

2.3.3 The Emission from a Tube

The problem of the tube excited by a membrane at one end and open at the
other end is an important exercise in advancing towards our understanding
of birdsong: at one end of the tube perturbations are being induced, and the
result is the emission of sound at the other end. According to our discussion in
the previous sections, the problem reduces to solving the wave equation with
the proper boundary conditions. We can propose a solution for the pressure
perturbations of the form

p = (aeikx + be−ikx)e−iωt , (2.28)

with the boundary conditions

v = u0e
−iωt membrane velocity at x = 0 , (2.29)

p = 0 at x = L . (2.30)

Since the velocity v of the wave satisfies (2.7), we obtain for the amplitudes
of the waves
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aeikL + be−ikL = 0 , (2.31)
a − b

cρ0
= u0 . (2.32)

With these coefficients, it is possible to compute the pressure and, therefore,
the velocity at the end. The latter has an oscillation amplitude

vx=L =
u

cos(kL)
. (2.33)

The divergence at the resonances reflects the idealization of neglecting
dissipation. However, it clearly conveys the idea that for some frequencies
(those that correspond to ωn = ckn = c(2n+1)π/(2L)), the particle velocity
at the open end will be maximum. Owing to these velocity fluctuations at
the open end, there will be variations of the flux that, as discussed at the
begining of the chapter, constitute the source of the emitted sound.



3 Anatomy of the Vocal Organ

In Chap. 2, we discussed sources and filters. We stated that the establishment
of a time-varying airflow was the basic mechanism by which density fluctu-
ations are created, giving rise to sound. We also described the phenomena
due to the existence of a filter between the source and the environment. In
that framework, we invited ourselves to touch our neck, at the approximate
location of the larynx, while pronouncing a vowel, and we said that as the
result of that simple experiment we would perceive a vibration. That percep-
tion is due to the motion that is established in a pair of tissues called vocal
folds. Why should this discussion be of any interest when we are discussing
birdsong? After all, if we were to try to imitate a bird, we would produce
some sort of whistle, the physical mechanism of which is certainly well differ-
entiated from the mechanism described above. The whole point of beginning
our description by discussing the vibrations of vocal folds in humans dur-
ing voiced sounds is that, for many species, there are important analogies
between this phenomenon and birdsong. And of course differences as well.

3.1 Morphology and Function

3.1.1 General Mechanism of Sound Production

The mechanism of sound production in birds resembles that in humans in
that an airflow driven by air sac pressure is modulated by some kind of
vibrating valve [Greenwalt 1968]. The acoustic output of this valve excites the
air column in the vocal tract. In many cases (both in birds and in humans)
this occurs in much the same way as in a source–filter system, and the output
of the valve is modified by the resonances of the tract. This mechanism is
not the only one to have been proposed to explain the nature of birdsong. A
second one, based on an aerodynamic whistle, has been proposed to account
for some tonal sounds [Nottebohm 1976, Casey and Gaunt 1985], although
direct endoscopic observation [Goller and Larsen 1997b], experiments with
light atmospheres [Nowicki 1987] and other studies [Suthers and Zuo 1991]
have failed to build confidence in the “whistle” picture.

The mechanism that is emerging as the most adequate one to account
for the generation of birdsong can be therefore summarized as one in which
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partially adducted membranes are set in motion by Bernoulli forces. This
motion affects the airflow, which further affects the dynamics of the mem-
branes modulating the airflow. Song will be produced as long as the motion
emerging out of these interactions is of oscillatory nature, since it is capable
of modulating the airflow in a way that gives rise to sound.

In agreement with this basic idea, there is a wide diversity of anatomical
devices that birds use to produce song. What are the membranes that oscil-
late? Where are they located? How can the vocal organ be controlled? What
are the muscles in charge of this control? In order to describe the physical
mechanisms involved in the generation of birdsong, we have to review part
of what is known about these issues.

3.1.2 Morphological Diversity

The taxonomic classification of songbirds and nonsongbirds was originally ba-
sed on syringeal morphology, which varies considerably [Elemans et al. 2003,
Suthers 2001]. Most bird species have a tracheobronchial syrinx (which is
particularly common in the suborder Oscines, order Passeriformes), in which
the syringeal membranes are located between tracheal and bronchial carti-
laginous rings at the tracheobronchial junction. Two other types of syrinx
are found: the tracheal syrinx, involving only tracheal cartilaginous rings, oc-
curs mainly in the Furnariidae (ovenbirds) and in some Ciconiidae (storks);
and the bronchial syrinx, involving only bronchial cartilaginous rings, oc-
curs mainly in Caprimulgiformes (goatsuckers), Cuculiformes (cuckoos) and
in some Strigidae (owls) [Casey and Gaunt 1985].

The syringeal anatomy of some birds (such as the ones with tracheal sy-
rinxes mentioned above, and also the parrots, Psittacidae) resembles that
of the larynx in humans in that there is only one vocal valve. However,
Oscines and other taxa have two sound sources, one in each bronchus below
its junction with the trachea. Some birds use mostly one source (such as the
waterslager canary), but some use both (such as the brown thrasher, Toxos-
toma rufum, with both sides of the syrinx contributing equally to phonation).
Some birds can use the two sources independently, producing either the same
or a different frequency, and some can even make them interact, as we shall
see in Chap. 6. Some syrinxes are displayed in Fig. 3.1.

3.1.3 The Richness of Birdsong

The details of the configuration of the syringeal structure are controlled by
the bird by means of a set of muscles, in order to create a wide range of
sounds. Remarkably, some muscles at each side of the double structure receive
instructions in an independent way. This allows the bird to produce sounds
using both sources either in a simultaneous or in a successive way, providing
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Fig. 3.1. Ventral sections of syrinxes. (a) Tra-
cheobronchial syrinx with two sound sources,
particularly common in Oscines (brown
thrasher, Toxostoma rufum). The two vocal
valves are formed by adduction of the lateral
and medial labia on each side. LL, ML, lat-
eral and medial labia; MTM, medial tympan-
iform membranes; T1, first tracheal ring; B3,
B4, third and fourth bronchial rings; P, ossi-
fied pessulus; SY, syringeal muscle. (redrawn
from [Larsen and Goller 2002]). (b) Tracheal
syrinx (ring dove, Streptopelia risoria). Con-
striction of the lumen by the lateral tym-
paniform membranes forms the only vocal
valve. LTM, lateral tympaniform membranes;
MTM, medial tympaniform membranes; T1,
T2, first and second tracheal rings; B1, first
bronchial ring; TL, tracheolateralis muscle;
ST, sternotrachealis muscle (redrawn from
[Gaunt et al. 1982]). (c) Bronchial syrinx (oil-
bird, Steatornis caripensis). Note that the dif-
ferent bronchial lengths, measured from the
valves to the trachea, make the syrinx asym-
metric. This characteristic has been proved to
stamp its signature on the song, which shows
two distinct formant bands. LTM, MTM, lat-
eral and medial tympaniform membranes; TL,
tracheolateralis muscle; ST, sternotrachealis
muscle; SY, syringeal muscle (redrawn from
[Suthers 2001])

the sound with possibility of extremely rich spectral features. In Fig. 3.2, we
show a sonogram associated with the song of the eastern slaty thrush (Turdus
subalaris) [Straneck 1990b] in which the two sources are active. Notice that we
have a series of notes of approximately constant frequency between 8 kHz and
9 kHz (indicated as “source 1”), and simultaneously we have a second series
of notes of a slightly lower frequency (between 7 kHz and 8 kHz, indicated as
“source 2”) similar to the first, but with independent dynamics.

The richness that the syrinx imprints on the song does not end with the
possibility of choosing one of two sources, or singing with two sources at
the same time: it is at the level of the syrinx that the bird defines the es-
sential properties of its vocalizations. This is a point of difference between
birdsong and the utterance of voiced sounds by humans. The diversity of
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Fig. 3.2. Sonogram of the song of an eastern slaty thrush (Turdus subalaris)
[Straneck 1990b]. While many birds use only one pair of labia to sing (by keep-
ing the other side silent as a result of active muscular work in order to close it),
this bird is singing with both sides of the syrinx independently, at the same time.
Notice the two sources of sound evolving independently

human voiced sounds is due mainly to reconfigurations of the vocal tract (by
tongue position, labial shape, and other configurational measures). The size
of the vocal tract, the aperture of the beak, etc., do affect the quality of the
vocalization in birdsong. Birds might make such changes in their vocal tract
in order to actively coordinate its filter characteristics with the output of
the syrinx [Nowicki 1987]. But sound quality and the main properties of the
song are primarily defined at the level of the syrinx. In order to understand
this point, let us observe the difference between the sonograms in Fig. 3.3.
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Fig. 3.3. Difference between birdsong and human speech, at the level of spec-
tral and temporal features. (a) Three syllables of the chingolo sparrow’s song
(Zonotrichia capensis). Notice the marked time evolution of the fundamental fre-
quency, spanning 3000 Hz in the third syllable. Although it is not evident at this
scale, the syllables of the chingolo have almost no harmonic content. (b) Sonogram
of an utterance of the word “taxi”. In contrast to the bird’s sonogram shown on the
left, human vowels have a very rich spectral content and the fundamental frequency
(the stroke at the lowest frequency) remains practically constant
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The first sonogram shows three consecutive syllables of song of the chingolo
sparrow (Zonotrichia capensis) [Straneck 1990a], while the second one corre-
sponds to the utterance of the word “taxi” by a human. We notice that, in
the second diagram, the fundamental frequency of each vowel remains con-
stant at approximately 120 Hz (this being the frequency at which the vocal
folds vibrate). The main difference between the spectra of different vowels is
in the quantity and position of the harmonics, which are shown by the traces
parallel to the trace of the fundamental frequency. The change in the spectral
content, as we discussed in Chap. 2, is due to a change in the morphology
of the passive filter (i.e., the position of the tongue in the mouth, the labial
configuration, etc.). In contrast, the sonogram associated with the chingolo
vocalization shows rich dynamics in the fundamental frequency (moreover,
the harmonics are quite weak in this vocalization). The third syllable, for ex-
ample, begins at 6 kHz and then, displaying an amazing amplitude of register,
decreases to 3 kHz.

This shows that it is at the level of the sound sources that the bird gives
the song some of its main features. To achieve this, the bird requires a delicate
control system that involves the coordinated action of three sets of muscles:
those that control the syrinx, those that control the respiratory system, and
those in charge of the control of the vocal tract, even if, in principle, they
have a less important role [Wild 1993, Wild et al. 1998]. Let us analyze the
vocal organ in detail.

3.2 The Oscine Syrinx

Oscine songbirds are capable of vocal learning. This has led to a detailed
study of the sophisticated set of neural nuclei responsible for the central
control of the song. Oscines also show a high degree of complexity at the level
of the vocal organ. For this reason, we dedicate a section to the description
of the oscine syrinx.

3.2.1 The Source of Sound

A ventral section of a typical oscine syrinx is displayed in Fig. 3.1a. This
illustration is based on a particular species, the brown thrasher (Toxostoma
rufum) [Goller and Suthers 1996a]. In contrast to the sound-producing organ
in humans (the larynx), the syrinx in oscines is a double structure located at
the junction between the bronchi and the trachea. All along these pipes we
can observe highly modified tracheal and bronchial cartilaginous rings, some
surrounded by muscles, and membranes [Goller and Suthers 1996b].

The vocal valves in oscines involve some of the membranes found in the
syrinx. These membranes are called the medial and lateral labia (ML and
LL). The labia are membranous connective-tissue masses capable of estab-
lishing, under appropriate conditions, oscillations in a way analogous to those
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in human vocal folds [Goller and Larsen 1997a]. The valve is formed by con-
striction of the bronchial lumen when the labia are drawn together by action
of adductor muscles. The lateral labium is a thick tissue in the anterior lateral
part of the bronchial wall, and it is attached to the third bronchial ring. The
medial part of the valve is a membrane attached to half-rings: one side of
the membrane is the bronchial lumen, and the other the interbronchial space
that opens to the interclavicular air sac. This membrane can be divided into
a thick part known as the medial labium and a very thin part called the
medial tympaniform membrane (MTM) [Fee 2002]. It is interesting to notice
that the MTMs were for a long time assumed to be the sources of sound in
birdsong. However, a series of experiments refuted this belief. By painting the
MTMs in pigeons with adhesive tissue [Goller and Larsen 1997a] or directly
removing them in cardinals and zebra finches, Goller and Larsen established
that the membranes are not actually required for vocalization, although the
intensity and spectral content of the sound did suffer changes after these
alterations.

The identification of the sources of sound is a very important first step
in understanding the mechanisms leading to the production of sound. It is
then important to understand how this vocal organ is driven in order to
generate sounds which can be roughly characterized by their timing, as well
as by their spectral properties. This is achieved by the control of a set of
muscles that alter the configuration of the vocal organ. The study of the
muscular activity during a vocalization is an even harder task than deter-
mining the sources of sound. It requires direct electrophysiological measure-
ments of the muscles controlling the syrinx. Such a research program has
been performed for several species (for the brown thrasher and the cardi-
nal, see [Goller and Suthers 1996b, Suthers et al. 1999]). The measurements
consist in inserting delicate wires that sense the tissue voltage. The voltage
measured in this way is a measure of the degree of activity of the muscle. By
recording these values for several muscles simultaneously with the airflow and
the sound, it was possible to determine the role played by different muscles
in the control of the syrinx.

3.2.2 The Role of the Muscles

Figure 3.4 shows another sketch of the syrinx, this time exhibiting the princi-
pal muscles attached to it. From the studies described above, it was concluded
that some muscles are associated with the active opening or closing of the
interlabial space. In other words, the bird can push one labium against the
other, actively closing the passage of air. It can also open the passage sepa-
rating the labia and keeping them apart as far as possible. In both of these
situations, the labia will not vibrate. Between these extremal situations, with
these muscles relaxed, conditions can be established such that the airflow in-
duces a vibration.
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Fig. 3.4. Schematic ventro-lateral view of a songbird syrinx, showing the main
muscles involved in the production of birdsong. Muscles (or groups of muscles)
have well-defined tasks, for instance controlling the frequency of the vocalization
and active gating of the syringeal lumen. Legend: vS, syringealis ventralis muscle;
dS, syringealis dorsalis muscle; TL, tracheolateralis muscle; dTB, tracheobronchialis
dorsalis muscle; T, trachea; ST m. sternotrachealis; vTB, m. tracheobronchialis
ventralis; B, bronchus. Adapted from [Goller and Suthers 1996a]

In studies performed with brown thrashers [Goller and Suthers 1996a],
it was observed that the active separation of the labia is controlled by the
ventral tracheobronchialis ventralis muscle (vTB) and the tracheoloateralis
muscle (TL), while the active closing is mainly controlled by dorsal muscles
called the siringealis dorsalis (dS) and the dorsal tracheobronchial (dTB).
This was determined by observing that the activity of the first pair of muscles
increased significantly while the bird was taking minibreaths (identified by
falls of the pressure to values below atmospheric pressure, accompanied by
airflow), while the activity of the second pair would increase simultaneously
with falls in airflow. In this way, the bird must at least coordinate the muscles
that participate in the opening and closing of the syringeal lumen with those
involved in respiration, since the pulses of air regulated by the opening and
closing of the syrinx are produced by the compression of the posterior air sacs.
Note that the bird does not take a deep breath before beginning a song. On
the contrary, it takes minibreaths between syllables. This respiratory pattern
is replaced by a pulsatile one when a syllable is repeated very fast (more
than 30 per second for a canary, for example). In that case, the bird keeps
a high level of bronchial pressure (i.e., it does not inspire between syllables)
and controls actively the aperture of the syrinx, opening and closing the air
passage at the right speed.

On the other hand, in Sect. 3.1 we pointed out that an important dif-
ference between a human vocalization and a birdsong syllable (even one
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produced by a single source, i.e., by one pair of oscillating labia) was the wide
spanning of the vibration frequency. The same set of measurements used to
identify the muscles that govern the active opening of the labia also made it
possible to recognize the existence of a correlation between the activity of a
ventral muscle (siringealis ventralis, vS) and the frequency of the vocalization.
The activity of this muscle increases with the frequency. This muscle controls
the tension of the labia by means of the separation of the cartilaginous rings
that support them.

The role played by these muscles seem to be widespread among oscines
[Suthers 2001], although some evidence exists that vS might also play a
role in the gating of the sounds produced by zebra finches [Vicario 1991,
Goller and Suthers 1996a].

3.2.3 Vocal Learners and Intrinsic Musculature

Songbirds have intrinsic and extrinsic syringeal muscles; the former originate
and insert completely within the syrinx, and the latter originate or insert
outside the syrinx. Intrinsic muscles probably control the relative position
of syringeal elements, while extrinsic muscles affect the syrinx as a whole
[Larsen and Goller 2002, Gaunt 1983].

The distinction based on syrinx morphology has survived, although nowa-
days we are more interested in other aspects of birdsong, namely its relevance
as a learned complex behavior. From this viewpoint, independent control of
syringeal components seems to be a necessary (although not sufficient) con-
dition for vocal plasticity, since it releases the constraints of a simple syrinx
[Gaunt 1983]. Extrinsic muscles are common to all birds, but not all birds
have in addition intrinsic muscles which directly alter the syringeal configura-
tion. Indeed, vocal learning seems to be confined to species possessing intrinsic
musculature, independent of the number of intrinsic muscles. Among vocal
learners, parrots and hummingbirds have two pairs, while some songbirds
have at least four pairs, such as the mockingbird (Mimus polyglottos).

As has already been mentioned, not every avian syrinx is a bipartite struc-
ture. In contrast to songbirds, parrots and doves have only one vocal valve.
Direct endoscopic observation of syringeal movements during phonation have
shown that oscines and nonoscines also differ in the source of vocalizations: pi-
geons and parrots use the lateral tympaniform membranes to generate sound,
in contrast to the medial and lateral labia used by the oscines [Suthers 2001].
In both cases the sound generator is a vibrating membrane.

3.3 The Nonoscine Syrinx

The syringeal anatomy of the nonoscines presents a wide diversity. In some
cases, the syrinx is tracheobronchial as in songbirds. In others, the syrinx is
entirely tracheal, and there are cases in which the syrinx is bronchial. In all
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cases, the functions of muscles are adapted to allow not only singing, but
respiration as well [Suthers 2001]. This can be clearly seen when it comes to
terminating a vocalization. This can be achieved either by withdrawing the
membranes from the airflow, or by adducting them, blocking the airflow. In
birds with a tracheal syrinx, the second possibility is not an option, since
adduction would not allow silent respiration. Some cases have been studied
in detail. Parrots and pigeons are the most thoroughly studied of the non-
oscines. In the following subsection, we shall review the structure of the syrinx
of the pigeons. This example can give us an insight into the similarities and
differences between oscines and nonoscines.

3.3.1 The Example of the Pigeons

In Fig. 3.1b, we display a schematic ventral view of the pigeon syrinx. A
detailed study of the biomechanics of the syrinx in anesthetized pigeons was
performed by Larsen and Goller [Goller and Larsen 1997a], who injected gas
into the subsyringeal air sacs while various muscles were electrically stimu-
lated. The results of those studies allowed them to identify the sound sources:
it was found that air-induced phonation was associated with vibrations of the
lateral tympaniform membranes. The control of the sounds in this case has to
be carried out with a smaller number of muscles. Contraction of the trache-
olateralis muscle (TL) withdraws the lateral tympaniform membranes out of
the lumen, opening the air path, while shortening of the sternotrachealis (ST)
brings the cartilages of the syrinx closer together, which leads to a folding of
the LTMs into the lumen (although even maximal ST contraction does not
lead to closure of the syrinx).

In order to start phonation, the pressure in the air sacs is increased. In
particular, the interclavicular sac is inflated, which pushes the LTMs into the
syringeal lumen, creating a sort of valve. The air passing through these folded
membranes sets them into vibration, which modulates, in turn, the airflow
going into the trachea. It was observed [Goller and Larsen 1997b] that strong
stimulation of the TL muscle leads to termination of the phonation, by the
abduction of the membranes from the air pathway. Interestingly enough,
weak stimulation of the same muscle was observed to lead to changes in the
acoustic features of the phonation. In fact, recent work with doves has shown
that TL activity correlates with frequency changes even during fast trills,
showing that syringeal muscles have superfast kinetics [Elemans et al. 2004].

Beyond what is known for the pigeons, the birds lacking the complex
set of intrinsic muscles that oscines have control the fundamental frequen-
cies of their vocalizations by processes which are not completely understood
[Suthers 2001]. It is known that the extrinsic muscles gating the sound affect
the tension of the oscillating tissues, as does the subsyringeal pressure, by
stretching them [Beckers et al. 2003b]. It is likely that different species have
different ways of controlling their vocalizations by combinations of these basic
gestures.
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3.4 Respiration

The production of song requires precise respiratory patterns, in order to both
accomplish adequate gas exchange and provide the airflow needed for phona-
tion. In order to achieve these goals, birds have a respiratory system which
is unique in structure and efficiency. The avian lungs are small and relatively
rigid (with a nearly fixed volume), and do not move freely [Hildebrand 1995].
Their ventilation is carried out by a set of air sacs, thin-walled structures
which connect to the trachea and lungs in a complex way. The typical struc-
ture consists of a pair of abdominal sacs (where the primary bronchi termi-
nate), a pair of posterior thoracic sacs, a pair of anterior thoracic sacs, paired
cervical sacs and an unpaired interclavicular air sac.

The motion of these sacs is driven by inspiratory and expiratory mus-
cles. By moving the sternum ventrally, the inspiratory muscles expand the
air sacs, decreasing the pressure. The motion is reversed by the expiratory
muscles, which therefore compress the air sacs, increasing the pressure. It is
during expiration that most vocalizations are achieved. The pressure during
singing can be over an order of magnitude larger than during normal, silent
respiration, reaching values of up to 30 cm H2O in some syllables sung by a
canary [Hartley and Suthers 1989].

Despite the wide variety of anatomical features found in the avian vocal
organs, it is interesting that some motor patterns are found across different
avian groups. For example, in the case of both oscines and nonoscines, the
production of repeated syllables at a moderate rate involves a brief inspira-
tion, or minibreath [Calder 1970], which allows the replacement of the air
used for the vocalization. Notice that the neural instructions controlling the
activity of the inspiratory and expiratory muscles will be interacting with the
mechanics of the body during the process. On one hand, stretching receptors
will modulate the activity of the neurons controlling inspiration. On the other
one, both inspiratory and expiratory muscles will be operating in conjunction
with the forces of thoracic elastic recoil: at small air sac volumes, the recoil
will help the inspiratory muscles, while at volumes of the air sac larger than
the equilibrium value, the elastic recoil will help expiration [Suthers 2004].
A second respiratory pattern frequently used across avian groups is the pul-
satile one, used at very high repetition rate. In this pattern, there are no
minibreaths, and the expiration is maintained through some level of activ-
ity in the expiratory muscles. The critical rate at which a bird will turn to
a pulsatile respiratory regime depends on its body size, probably owing to
the natural frequency of the mechanical parts of the body involved in the
respiration. This hypothesis was tested by tutoring mockingbirds with ca-
naries singing using minibreaths [Zollinger and Suthers 2004]. The result of
the experiment was that mockingbirds could copy the high-repetition-rate
syllables, but using a gesture that involved pulsatile expiration. This is a
beautiful example of the subtle interaction between the nervous system and
the body, which we shall explore further in this book.
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In the previous chapters we discussed the fact that periodic fluctuations in
the airflow generate sound, and we have described some mechanisms through
which these fluctuations could be established. In this chapter, we shall focus
on those mechanisms that are present in the avian vocal organ. The rich-
ness of the physics involved in the operating syrinx will lead us to explore
several fields, from the physics of fluids to nonlinear dynamics. In order to
carry out this discussion, we begin with an analysis of one of the most thor-
oughly explored and often used models in the natural sciences: the harmonic
oscillator.

4.1 Linear Oscillators

4.1.1 A Spring and a Swing

Basically, any periodic motion can be described (at least when the move-
ments are small) in terms of a harmonic oscillator. The harmonic oscillator is
a system that performs oscillations as simple as the ones displayed in Fig. 4.1
[Kittel et al. 1965]. In this figure, we show a small mass, attached to a spring,
that leaves a record of its motion on a moving sheet of paper. In this example,
the motion of the spring is described in terms of the displacement of the mass
with respect to its rest position. It is natural to ask about the mechanism
used by the spring in order to induce a periodic motion in the mass. The key
is that the restitution force that the spring exerts on the mass is proportional
to its departure from its rest position (i.e., if the mass is displaced twice as
far, then the force applied to the mass by the spring is twice as large). If
initially we displace the mass by stretching the spring, the mass will expe-
rience a force proportional to the displacement. If we now release the mass,
it will be accelerated, increasing its velocity. As the mass passes through the
equilibrium position, it will experience no net force (since in this position the
spring is stretched by just the amount necessary to compensate the weight
of the mass). The inertia of the mass is responsible for the continuation of
its motion, and the mass passes through the equilibrium position. At this
instant, the mass begins to compress the spring, and a restitution force de-
celerates the mass until its motion momentarily stops, and it then begins its
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Fig. 4.1. A system performing harmonic oscillation: a small mass attached to a
spring. The mass is subjected to a force by the spring, whose characteristic feature
is that it is linearly restitutive. This means that, if the mass is displaced from its
equilibrium position, the spring will tend to restore it to that position by exerting
a force proportional to the displacement (that is, the force is twice as large if the
mass is displaced twice as far). Once displaced and released, the mass will oscillate
back and forth around the equilibrium position owing to the restitution force. The
record left on the paper is a trace of the harmonic oscillation

return trip towards the initial position, where the story begins all over again.
What determines the frequency of the oscillations of this mass attached to
a spring? The strength of the restitution force for a given departure from
the equilibrium position. This can be described by means of a restitution
coefficient K. If x represents the system’s departure from equilibrium, the
restitution force is Fspring = −Kx, and the dynamics of the system can be
described by

M
d2x

dt2
= −Kx , (4.1)

or, as a two-dimensional system of first-order equations,

ẋ = y ,

ẏ = −K

M
x , (4.2)

with the solution x(t) = A cos(ωt + φ), where ω =
√

K/M , M is the mass
and A and φ are determined by the initial conditions. A dot on top of a
variable is a shorthand notation for the time derivative.

However, not many of us have seen an oscillating system displaying this
behavior for a long time. If we play with a spring, we shall probably see that
after a few oscillations, it will stop. Another system which, in principle, can
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be described in terms of harmonic oscillations is a pendulum performing small
oscillations (like a child on a swing) [Titze 1994]. A child sitting passively on
a swing after an initial push will stop after a few oscillations. What force are
we forgetting in our discussion?

4.1.2 Energy Losses

We have omitted a force which we can hardly avoid in our daily experience:
the friction that occurs during the motion of an object. This is a force that
is zero if the mass whose motion we are studying is at rest, but acts on any
body that is moving, with an intensity that is proportional to its velocity. The
direction of this force is reactive: if the velocity points in a given direction,
the force will point in the opposite direction. The constant of proportionality
between the friction force and the velocity (let us call it B) expresses how
strong the friction is (for example, the friction experienced by a hockey puck
sliding on ice is different from what it would be if it was sliding on a wooden
floor, although in both cases there is a force proportional (and opposed) to
the velocity of the puck). Mathematically speaking, the friction force can be
written as

Ffriction = −Bẋ , (4.3)

where ẋ = dx/dt is the velocity. In the case of the swing, the friction due to
the air interacting with the various oscillating components, and that due to
the chains interacting with the structure to which they are attached will be
responsible for the loss of the energy initially provided to the system, and
will be responsible for the stopping of the motion.

Our understanding of the nature of the agent responsible for stopping
our autonomous oscillator gives us a hint of how to counteract the effect
of friction. If we want a child on a swing to keep on performing periodic
oscillations, we have to push him/her periodically. But this strategy will not
work if we push the child as he/she approaches us (exerting on the child a
force opposite to the direction of his/her velocity); such a force is precisely
what eventually stops the motion. What is appropriate to do is to wait until
the child gets to the position of maximal departure from equilibrium, and
only push when he/she begins to move away from us. The external force
that we are exerting will not cancel the friction at every instant; rather, we
are trying to compensate the losses that have taken place in a cycle with
the energy provided in each push. If we could push at every instant with
a force exactly equal to the friction we could effectively cancel the friction
and achieve a perfect harmonic oscillator (amazing everyone around us. . .).
In this way, we exert a force in the same direction as the velocity, that is,

Fgain = βẋ . (4.4)

If we could exert a force proportional to the velocity at every instant, in the
same direction as the velocity, and more intense than the friction, we would
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induce larger and larger oscillations; we would be delivering energy to the
system.

This description in terms of external forces that compensate the friction is
somewhat abstract. We are anxious to understand how these elements could
be present in the avian vocal organ, but we still need a few more elements in
order to be able to give an adequate description of the mechanisms used to
produce birdsong.

4.2 Nonlinear Oscillators

4.2.1 Bounding Motions

In the previous section, we discussed the fact that if we could somehow ex-
ert a force proportional to the velocity of a body, we could compensate (and
eventually overcome) the effect of the friction force. In terms of the discussion
in our previous section, this could be achieved if β > B. It is particularly per-
tinent for our problem to understand what happens if the oscillating system
has to move within a bounded region of space. At a certain distance from
the rest position, for example, there could be walls of some sort. If this is
the case, our previous description will remain adequate as long as the body
under analysis does not touch the walls. However, if the external force pro-
portional to the velocity that we exert on our oscillating body overcomes the
friction, there will be a net force proportional to the velocity of the body, in
the same its direction. Therefore the system will oscillate with progressively
larger amplitude. Eventually, the system will reach the walls, and a new ef-
fect will have to be considered. What happens when the system touches the
walls?

The effect of this collision can be modeled in terms of an additional fric-
tion, since energy is lost. How can we describe this phenomenon? The usual
procedure in physics is to extend what we know works well for a given range
of variables to encompass a new range of variables. This enriches both the
description and our understanding of the phenomenon under study.

4.2.2 An Additional Dissipation

So far, we have described energy dissipation in a system in terms of friction:
a force proportional to the velocity and opposing the system’s motion. Now,
we want to propose an additional dissipative force that acts only when the
body reaches the walls. In this way, the total dissipation is no longer a func-
tion of only the velocity of the body, but a function of the position as well
[Gardner et al. 2001]. We shall not discuss details of this function, which de-
pends on many factors, such as the rigidity of the walls. What is important is
that it is a function of the position and therefore the dissipation is no longer
a function of only one of the variables of the problem (the velocity). Recall
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that the restitution force is a function only of the displacement, and before
the walls were introduced, the friction was a function of the velocity only. As
we have introduced the walls, the dissipation of the system must be modeled
by a force that has a component which depends on both the velocity and the
position. The problem is no longer linear. This will bring about important
changes in the morphology of the oscillatory solutions of the problem.

The simplest conceivable model for our nonlinear dissipative force can
be written as Fnl = −Cx2ẋ. Notice that for small values of x (i.e., close
to equilibrium) this term is negligible. It only becomes important when the
system is far from equilibrium. Other functional forms that are even in x can
be conceived of for Fnl, but, since we are not interested in the detailed shape
of the solutions for now, we shall retain this form, which is the lowest-order
expresion in both x and y consistent with our discussion.

If the force proportional to the velocity Fgain overcomes the friction
Ffriction, the system will begin to oscillate with progressively larger am-
plitude, but as soon as the walls are reached, the additional friction force
Fnl will stop the system. The restitution force Fspring will be responsible for
the return of the system, which will head towards the opposite wall, to be
stopped again. In this way, the oscillations around the equilibrium position
will continue, but with a shape quite different from the harmonic oscillations
that we would have obtained if all the forces were linear.

Taking into account all these forces, we can use Newton’s laws as before
to write a differential equation for the midpoint position of a labium:

ẋ = y ,

ẏ = −kx + (β − b)y − cx2y , (4.5)

whose solutions we shall describe in the following subsection. The constants
k, b and c are the already defined K,B and C per unit M .

4.2.3 Nonlinear Forces and Nonlinear Oscillators

In order to illustrate the difference between the predictions of a model of a
linear oscillator and the model which we are building, we refer to Fig. 4.2. In
this figure, we show the time evolution of the variable x, which measures the
departure from equilibrium of the body under analysis. How did we generate
this figure? Simply with the help of Newton’s equation (4.5), which prescribe
the acceleration of a body as a function of the forces acting on it. For given
initial values of the position x and the velocity y at some instant t0, if we
know the net force we know the acceleration, and therefore we can calculate
the position x and velocity y of the body at an instant t0 + ∆t later. In
this way, we can progressively build the trajectory of the body. We show the
result of this process in Fig. 4.2, for two different scenarios.

In the top part of Fig. 4.2, we show the result for the case in which
the body is subjected only to an elastic restitution force, which gives rise to
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Fig. 4.2. Linear and nonlinear oscillations. (Top) time trace of a linear, or har-
monic, oscillator such as the one displayed in Fig. 4.1. In terms of the discussion in
Chap. 1, this is a simple oscillation. (Bottom) time trace of a nonlinear oscillator.
The oscillator is a mass subjected to both linear and nonlinear forces. The linear
forces are restitution, dissipation and energy supply, and the nonlinear force is a
nonlinear dissipation mimicking collisions of the oscillating mass with the wall that
it is attached to. This complex oscillation can be decomposed into its harmonic
constituents, or components, by means of the representation discussed in Chap. 1

harmonic oscillations. In the bottom part of the figure, we show the time evo-
lution of the body’s position when it is subjected to all the forces discussed so
far. We have included the linear restitution, the linear dissipation, the exter-
nal force proportional to the velocity that overcomes the linear dissipation,
and the nonlinear dissipation [Arnold et al. 1999], as in (4.5). The nonlinear
dissipation is negligible for small values of the departure from equilibrium
but large for large departures, which takes account of the collisions of the
body with the walls. It is interesting to notice that owing to these collisions,
the signal is no longer harmonic. In terms of our discussion in Chap. 1, it is
a signal which has several harmonic components: it can be thought of as a
superposition of several harmonic signals with frequencies that are multiples
of a fundamental frequency.

Beyond observation of numerical simulations of the model, we can qual-
itatively explain the shape of these oscillations. In order to do so, we shall
study a dynamical system whose solutions are easy to understand geometri-
cally. Then, we shall show how to map our original problem onto this simpler
one.

Let us therefore study the following auxiliary dynamical system:

u̇ = v − 1
3
cu3 + (β − b)u , (4.6)

v̇ = −ku . (4.7)
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This system of equations is known as the van der Pol oscillator , and it de-
scribes the time evolution of two variables u and v. In order to begin our
discussion of its solutions, let us notice that two curves in the phase space
(u, v) delimit boundaries between regions with different behavior. Within the
region of the phase space in which v > 1/3cu3 + (β − b)u, u increases, since
u̇ > 0, while u decreases if v < 1/3cu3 + (β − b)u. The variable v, on the
other hand, decreases whenever u > 0, and increases in the region of the
phase space where u < 0. The curves

v =
1
3
cu3 + (β − b)u , (4.8)

u = 0 (4.9)

are known as the nullclines of the system. Let us use these curves as a back-
bone for our understanding of the dynamics displayed by these equations,
and let us assume that the constant k in them is small.

We start with an initial condition such that v is larger than f(u) ≡ −(β−
b)u+1/3cu3 (see (4.8)). According to (4.6), u increases. A rapid excursion in
phase space then occurs until the system reaches the branch with a positive
slope of v = f(u) and with positive u (see Fig. 4.3). We say that this excursion
is fast, because we compare it with the slow evolution of v: v is small since k
is small.
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Fig. 4.3. The dynamics of the van der Pol oscillator ((4.6) and (4.7)). The phase
space plot illustrates the time evolution of the system (solid line), which alternates
between slow excursions close to the nullcline u̇ = 0 (dashed line), and fast jumps
between branches of the nullcline
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Once in the neighborhood of f(u), u̇ ∼ 0 and v slowly decreases, since
v̇ = −ku and u > 0. Notice that the system will evolve so that it “sticks” to
the branch of positive slope of the nullcline: if, owing to the decrease in v, the
system finds itself below the nullcline, the direction of the force will now be
pointing towards the nullcline. The system evolves while trying to keep v ∼ 0.
A qualitative change occurs when the system reaches the minimum of f(u).
Now v is smaller than f(u), and therefore u will decrease rapidly. But there
is no longer a branch of the nullcline in the region of the phase space with
u > 0 to stop the dynamics. The system evolves in time in such a way that
u decreases, until it reaches the branch with positive slope of f(u) for u < 0.
Once again, in the neighborhood of f(u), the system will cause v to increase,
following v̇ = −ku with u < 0. Notice that the oscillations that arise alternate
rapid jumps with slowly varying time evolutions, as displayed in Fig. 4.2
(bottom trace). These oscillations are known as relaxation oscillations.

What we have learned from this system can help us to understand the
dynamics of (4.5), since the van der Pol equation can be mapped onto our
equations. In order to do so, we have to define u ≡ x and y ≡ v − cu3/3 +
(β − b)u.

The choice of all the forces mentioned so far in building our model is not
arbitrary: we have in mind the processes that will be relevant when we try
to understand the operation of the syrinx. And we have discussed almost all
the elements that we need.

4.3 Oscillations in the Syrinx

4.3.1 Forces Acting on the Labia

Let us remember that the syrinx is a bipartite device. At each junction be-
tween the bronchi and the trachea, there is a pair of labia whose dynamics we
want to analyze. It is not difficult to accept that a muscle tissue, after being
stretched or compressed, will recover owing to a restitution force. Neither is it
difficult to accept that the system has friction (actually, it would be difficult
to accept the contrary!). Finally, each labium has a bounded space to move
in. When the labia move away from each other, allowing an airflow through,
they meet the cartilaginous tubes to which they are attached. Later, within
the same oscillation, the labia approach each other until they eventually col-
lide. Consequently, it is also natural to expect a nonlinear dissipation force
like the one described earlier. The most difficult problem to be solved in order
to establish a description of the dynamics of the syrinx in the framework of
our discussion in the last section is to understand the origin of what we have
called the “external force”. That force is responsible for avoiding the decay
of the oscillations due to the dissipation terms.
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This problem was addressed for the first time in the study of the dynamics
of human vocal folds, and it was Ingo Titze who, in that framework, proposed
one of the most satisfactory models for the establishment of membrane os-
cillations in an airflow. According to this model, the membranes are able to
sustain lateral oscillation modes as well as flapping modes. This means that,
although the movement of the labia can be very complex as the airflow passes
between them, it is possible to decompose this movement into two simpler
ones. The first movement consists of the two masses of tissue approaching
(or moving away from) each other. In the second movement, the upper edges
of the labia move away from (or approach) each other, while the lower edges
approach (or move away from, respectively) each other. This second move-
ment can be seen as an upward propagating wave in the mucosa. In Fig. 4.4,
we show these basic motions, while Fig. 4.5 displays a series of snapshots
corresponding to successive times in the case where both movements are su-
perposed. These motions can be described as follows. Let us call a1 half the
separation between the lower edges of the labia, and a2 half the separation
between the upper edges. If the two modes described above are active, then

a1 = a10 + x + τy , (4.10)
a2 = a20 + x − τy , (4.11)

where τ is the time it takes for the propagating mucosal wave to travel a
distance of half the vertical size of the labia.

(a) (b)

Fig. 4.4. In the flapping model, the labia move according to the coordinated dy-
namics of two global modes. The first mode is a lateral displacement (a), while the
second mode is an upward-propagating wave (b). If the labia are displaced away
from each other and have a convergent profile, or are displaced towards each other
and have a divergent profile, the labia gain energy from the airflow in each cycle.
The reason is that when they have a convergent profile, the average pressure be-
tween the labia is closer to the bronchial pressure, whereas the interlabial pressure
is closer to atmospheric pressure for a divergent profile. This results in a force in
the same direction as the velocity of displacement of the labia, which can overcome
dissipation
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(e)

(d)

(c)

(b)

(a)

Fig. 4.5. If the two global modes are active in the right
phase, the labia gain energy from the airflow. This series of
snapshots illustrates the final labial motion in such a situa-
tion (modified after [Gardner et al. 2001])

To understand the origin of these movements in an airflow is not trivial,
but we are going to suppose that these movements can exist. Moreover, we
are going to suppose that they are coordinated in such a way that the labia
have a convergent profile while they are moving away from each other, and
a divergent profile when they are approaching each other. We shall see that
under these assumptions, it is easy to understand the origin of the force
responsible for overcoming the dissipation [Titze 1988, Gardner et al. 2001,
Laje et al. 2002a]. It is appropriate to point out that this mode structure
is compatible with direct endoscopic observations [Goller and Larsen 2002,
Fee et al. 1998].

4.3.2 Self-Sustained Oscillations

Let us see now how the combination of movements described above allows
the establishment of oscillations. We begin with the bird expiring, meaning
that it generates a high bronchial pressure, responsible for the airflow. In this
situation, the pressure below the labia is higher than atmospheric pressure,
while the pressure above them is essentially equal to atmospheric pressure
[Titze 1988, Gardner et al. 2001]. When the labia form a convergent profile
(see Fig. 4.6), the value of the pressure between them is nearly the bronchial
pressure. On the other hand, when the labia form a divergent profile, the
pressure between them is approximately atmospheric pressure. Therefore,
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Fig. 4.6. The labia can gain energy from the airflow when the two modes of motion
described in the text are active. The reason is that when they have a convergent
profile, the average pressure between the labia is closer to the bronchial pressure,
whereas the interlabial pressure is closer to atmospheric pressure for a divergent
profile. Consequently, if the the labia are displaced away from each other while
forming a convergent profile and displaced towards each other while forming a
divergent profile, the labia gain energy from the airflow in each cycle. In the first
part of the cycle, there is a strong force in the same direction as the velocity. In
the second part of the cycle (when the labia move towards each other), the force
(which opposes the velocity) is weaker

if the labial movements are coordinated in such a way that they form a
convergent profile when they are moving away from each other, there will be
a force acting on the labia in the direction of their velocities. Depending on the
value of the bronchial pressure pb, this force may be capable of generating an
amount of work that overcomes the energy losses, giving rise to self-sustained
oscillations.

Computing the average pressure per unit M (see (4.1)) between the labia
gives rise to the following expression:

pf = pb

(
1 − a2

a1

)
, (4.12)

where pb is the sublabial pressure per unit M . The technical details are
somewhat involved, but the basic idea is that the coordinated modes are able
to sustain oscillations of the membranes, transferring energy from the airflow
to the oscillating system [Titze 1988, Laje et al. 2002a]. In fact, Newton’s
equations now would read

ẋ = y ,

ẏ = −kx + −by − cx2y + pb

(
1 − a2

a1

)
, (4.13)

which, after making the approximation 1− a2/a1 ∼ y, gives rise to the equa-
tions of the simple model (4.5). Notice that these equations are similar to
those describing a mass attached to a spring, which actually was the first
quantitative model of sound production for birdsong [Fletcher 1988].
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4.3.3 Controlling the Oscillations

One of the parameters that a bird has to control in order to establish an
oscillation in the labia is the bronchial pressure. The bronchial pressure has
to be larger than a certain critical value in order to set up the oscillations,
which periodically obstruct the airflow. (This periodic obstruction is, as seen
in previous chapters, the physical origin of the sound.)

It is important to point out that the labial elasticity k is also controlled
by the bird. In the case of the oscine birds, the activity in the siringealis
ventralis muscle determines the stretching of the labia (and therefore their
stiffness). In Fig. 4.7, we show the spectral content of four different oscillations
(obtained from numerical simulations like the ones performed in order to
generate Fig. 4.2) for different values of the bronchial pressure p and labial
elasticity k.

There are two salient features to note. First, as the labial elasticity k
increases, the frequency of the oscillations increases. Second, the bronchial
pressure not only determines whether or not there will be oscillations, but
also determines the spectral content of the sound. The greater the bronchial
pressure, the more violent the collisions between the labia and against the
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Fig. 4.7. The features of the oscillations that this model generates depend on two
parameters: the restitution constant of the labia (k) and the pressure (p). The higher
the restitution constant, the higher the fundamental frequency of the oscillations
(compare, for the same pressure, the upper panels with the lower panels). In each
of the panels, the spectrum of the resulting oscillations is displayed. On the other
hand, as the pressure becomes higher, the oscillations become more “violent”. This
results in a higher spectral content of the signal, which can be seen from the spectra
by comparing how many harmonics are needed to represent the sound. Compare,
for the same restitution constant, the panels on the left with the panels on the right
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walls. The increase in the strength of the collisions is responsible for the richer
spectral content of the sound produced [Gardner et al. 2001].

There is still one more element to discuss. According to our description
of the syrinx in Chap. 3, this is a bipartite device [Goller and Suthers 1995],
with a pair of labia in the junction between the bronchi and the trachea. In
some species, both sources are used simultaneously, creating rich and com-
plex sounds. However, it is usually the case that one finds a high degree of
laterality, i.e., the use of only one source of sound, on the left or right de-
pending on the species [Goller and Suthers 1996a]. In order to achieve this,
birds often actively close one of the conduits, forcing the labia on one side to
stay pressed against each other. This is done through the activation of dorsal
muscles (specifically, the siringealis dorsalis and the tracheobronchialis dor-
salis), and in terms of our model of a labium, this corresponds to a force
f that does not depend on either x or y. If this term is large enough, the
oscillations can be stopped, by forcing the labia to stay pressed against each
other.

It is by means of the control of these parameters (control of the bronchial
pressure with respiratory muscles, labial tension with ventral muscles and
active adduction with dorsal muscles) that the bird is capable of establishing
oscillatory dynamics in the labia, periodically obstructing the airflow that
feeds the vocal tract [Laje et al. 2002].

The oscine birds have a large set of muscles to control the acoustic fea-
tures of their vocalizations. Nonoscine birds, however, also have some control
[Suthers 2001]. Doves, for example, can alter the tension of the oscillating
membranes with the same muscles as used to gate the airflow. On the other
hand, the high pressure in the interclavicular air sac inflates it, affecting
the tension of the oscillating membranes. These processes contribute in a
complex way to determining the acoustic features of nonoscine vocalizations
[Beckers et al. 2003b].

4.4 Filtering the Signal

An element lies between the source of sound and what we ultimately hear: the
vocal tract, which is the “tube” that runs from the syrinx to the beak. The
airflow fluctuations produced in the syrinx (at the entry to the vocal tract)
generate, as we have seen in Chap. 2, sound waves that travel through the
tract. In regions where the tract alters its shape (for example, by becoming
narrower or bending), part of the incident wave will be reflected and part
of it will be transmitted. The same happens at the beak. Part travels to
the exterior and part of the incoming wave is reflected back into the tract.
The consequences of this were discussed in Chap. 2. The basic result is that
some spectral components will be reinforced while others will be damped. In
Fig. 4.8, we display the song of a pirincho, (Guira guira) [Straneck 1990a],
in which the presence of a filter is clear in the fluctuations (of half a period)
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Fig. 4.8. The acoustic pressure (a) and Spectrum (b) for a note of a Guira guira.
Notice that the spectrum has many peaks, which do not monotonically decrease as
a function of the frequency. This is due to the effect of the filter (passive tract) on
the pressure fluctuations induced by labial oscillations

superimposed on the fundamental oscillation at 2333 Hz. It is important to
point out that the relative sizes of the harmonics provide the song with its
characteristic timbre.

This chapter has dealt with the problem of the generation of sound by
means of the induction of oscillations in syringeal labia. The airflow fluc-
tuations induced by these oscillations excite a tube that filters the signal,
reinforcing certain frequencies and damping others. We have also discussed
qualitatively the influence of the labial elasticity and bronchial pressure on
the acoustic features of the sound generated. In the following chapter, we
shall advance to the description of the instructions that the bird has to send
to its avian vocal organ in order to generate the various sounds that its song
is built from. We shall do so in the framework of simple models, similar to
those which we have discussed so far.

It is reasonable to keep in mind all the simplifications that we have made.
In the model that we have presented, the oscillating labia are symmetric.
In our model, the nonlinear dissipation is modeled as a simple polynomial
function. We do not take into account the internal structure of the oscillating
labia, although the difference in mass between the medial labium and the
medial tympaniform membrane might serve to induce the wave-like mode that
we are using in our description [Fee 2002]. We have also described the problem
of the generation of the sound separately from the problem of the linear
filtering of the sound, although the back-propagating waves (from partial
reflections at interfaces) could affect the oscillations of the labia, generating
extremely rich dynamics. Some of these issues will be revisited in Chap. 6.
However, it is important to know how successful the simplest models can be
before discussing these subtle effects. The exploration of the simplest models
is the focus of Chap. 5.
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The diversity of the basic acoustic elements that constitute a bird’s song is
amazing. In order to create these elemental vocalizations, the brain of the
bird has to send a set of precise instructions to the vocal organ. In the case
of songbirds, the neural motor pathway involved is composed of four neural
nuclei (each with thousands of neurons), which innervates some 20 muscles
(syringeal and respiratory). Now that we have some understanding of the
mechanics of the avian vocal organ, some questions naturally arise. How
does the bird achieve the coordination of so many signals? How complex are
the instructions sent by the avian brain to the syrinx in order to create a
song?

5.1 The Structure of a Song

5.1.1 Syllables

A bird’s song is one of the richest acoustic phenomena found in nature. Typ-
ically, it has a complex and varied structure, built out of a series of blocks,
each one made from the repetition of brief, continuous vocalizations that we
call syllables. In the case of the canary, for example, the syllables last between
15 and 300 ms (i.e., the bird executes several syllables per second). Each bird
has several dozen syllables, which are combined in order to create the songs in
its repertory. In Fig. 5.1, we show sonograms of two song fragments: one vo-
calized by an ashy-tailed swift (Chaetura andrei) [Straneck 1990b], and the
other by a greenish manakin (Schiffornis virescens) [Straneck 1990c]. The
songs of these two species are globally very different, yet at the level of the
syllables, they show important similarities. Although the structure of the
harmonics the timbre, the durations or frequency ranges might be different,
in both cases the sonograms show a sequence of small continuous “curves”.
These are typically repeated several times, and are separated by silences.
Each continuous curve sweeps a certain frequency range. As we can see, the
frequency typically evolves within a syllable, either upwards, or downwards
or “n” shaped.
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Fig. 5.1. Sonograms of two song fragments: (a) one vocalized by an ashy-tailed
swift (Chaetura andrei), and (b) one by a greenish manakin (Schiffornis virescens).
The songs are globally very different. The timbres of the sounds might differ, as
well as the average fundamental frequency of the notes. The combinations of sounds
used to compose the song are not the same. However, at the level of the note, there
is one important similarity: in both cases the sonogram shows a sequence of small
continuous “curves”. Each continuous curve sweeps a certain frequency range. The
frequency typically evolves within a syllable, either upwards, downwards or “n”
shaped

Calder conjectured that the spaces between syllables are used to make
the mini-inspirations needed to execute the song [Calder 1970]. This hy-
pothesis was experimentally validated by Hartley [Hartley and Suthers 1989,
Hartley 1990]. She found that each syllable is accompanied by an air pulse
(expiration), while during each intersyllabic silence, the air sac pressure falls
below atmospheric pressure (inspiration) creating an inflow of air. This res-
piratory strategy is not used in trills repeated at high frequencies, but in
canaries, the existence of mini-inspirations was found in executions of more
than 30 syllables per second.

The execution of a syllable after a mini-inspiration implies a raising of
the air sac pressure. This increase in pressure in the air sac continues until it
reaches a value such that, according to our discussion in the previous chapter,
the force exerted by the interlabial pressure overcomes the dissipative forces.
In this way, the labial oscillations that generate the sound are established. Af-
ter having sustained these oscillations for a while, the pressure decreases and
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the labial motion stops. Now the bird is ready to perform a mini-inspiration
before the execution of a new syllable.

5.1.2 Bifurcations

In our description, an increase in pressure has a remarkable consequence for
the state of the system. As the pressure grows beyond a critical value, the
labia begin to oscillate. This qualitative change in the behavior of a physical
system as a parameter is changed is called a bifurcation [Solari et al. 1996].
Bifurcation is a concept that refers to any qualitative change in the solutions
of a nonlinear problem, as a control parameter is varied. The transition from
a stationary state to an oscillatory state is one example. But not the only
one.

Some systems show a bifurcation from one static state to another static
state. As an example, let us analyze briefly what happens when a pair of forces
is exerted on a metal plate (as illustrated in Fig. 5.2a). If the magnitude of
the force on the plate is below some critical value, the undeformed plate is
stable. We can deform the plate a little, and after the perturbation is removed,
the system will evolve back towards the undeformed state. The situation is
different if the magnitude of the force exceeds the critical value. Then, the

(a)

(b)

Fig. 5.2. A bifurcation is a qualitative change in the dynamics of a system as a
parameter is changed. In this figure, two examples are illustrated. In (a), a plate
is subjected to a force (hold a credit card between your fingers and try the ex-
periment). If the force is high enough, the plate (card) will bend. The symmetric
solution becomes unstable. The initial conditions will determine whether the bend-
ing is to the right or to the left, if the plate is perfectly symmetric. In (b), we show
what happens if you blow air between a pair of paper sheets. If the airflow exceeds
a threshold, then the sheets begin to oscillate
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system no longer remains in the undeformed state. It is interesting that the
problem is as symmetric as before (the forces are still on the same axis), but
now a slight perturbation in the initial configuration will evolve until the
system finds its equilibrium in the bent-plate state. Whether it bends to one
side or the other depends on the initial conditions. By the way, the problem is
an extended one: both space and time are relevant. In fact, we could think of
a situation in which the force was so strong that we broke the plate, creating
a most complex spatial pattern. But as long as we are interested in discussing
only whether the system is in the undeformed state or the bent state, we can
restrict ourselves to the study of the dynamics of the spatial mode

ε = A sin
(π

L
x
)

, (5.1)

where ε represents the deformation of the plate with respect to the plane
where the forces are acting. The situation where the forces are below the
critical value has A = 0 as a stable solution. Even without knowing the
details of the elastic properties in the problem, we can advance a little in our
modeling. The time evolution of this mode does not seem to be influenced
by any other higher modes of the problem, and therefore we can attempt to
model its dynamics in terms of only one variable. The dynamics can therefore
be written as

dA

dt
= f(A) , (5.2)

where f(A) depends on all the elastic properties of the plate, as well as the
forces. However, we know that since the problem is symmetric, the function
f should satisfy the condition that f(A) = −f(−A). An expansion of this
function in a power series should therefore be, for small values of A, of the
form

f(A) = µA + cA3 , (5.3)

where µ and c depend on the parameters of the problem. We can advance
further in our qualitative modeling. We know that the transition as the ex-
ternal forces are increased can be captured by only the linear terms (since for
small values of A, the cubic term is negligible). Therefore, µ should depend on
the difference between the external forces and some critical value. Moreover,
when µ > 0, we want the nonlinearities to be capable of stopping the growth
of A, and therefore c should satisfy the condition that c < 0. In this way, we
find that for µ < 0, A = 0 is stable, and when µ > 0, A = 0 is an unstable
solution, while the stability is transferred to A =

√
µ and A = −√

µ. The
moral of the tale (or at least one of them) is that even if the problem is an
extended one, the qualitative change from a nondeformed state to a deformed
one can be described in terms of a low-dimensional system of equations.

Other systems show changes that imply the appearance of motion: for
example, the establishment of oscillations in a pair of paper sheets as the
airflow between them exceeds a critical value, as shown in Fig. 5.2b. This
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Fig. 5.3. The parameter space of a simple model of sound production. The axes
are the restitution constant (K) and the pressure (P ). The shaded region denotes
the region of the parameter space in which oscillations take place. If, initially, the
system operates with parameters outside the shaded region, the labia will not move.
If the parameters are slowly changed towards the shaded region, oscillations will
start as we enter it (modified after [Laje et al. 2002])

example belongs to the class of problems that we must understand in order
to address the issue of labial oscillations. The appearence of oscillations with
a well-defined frequency is known as a Hopf bifurcation. In the case of labial
oscillations, this frequency depends on the value of the restitution coefficient
of the labia when the oscillations begin.

In Fig. 5.3, we show the states of the syringeal labia for a range of values
of the pressure and muscle tension. The pressure and the tension constitute
what we call the parameter space of the system. To the left of the verti-
cal dashed line, the pressure is not large enough to establish oscillations, and
therefore the labia remain at rest. In contrast, as the pressure is increased and
the vertical line is passed, oscillations are started (shaded region). Depend-
ing on the tension as the critical pressure is passed, oscillations of different
frequencies are started. The turning off of the oscillations when the pressure
is decreased is described in terms of an inverse Hopf bifurcation.

The model described in the previous chapter to describe the dynamics of
the midpoint of a labium also assumed a restricted number of active modes,
as in the example where we discussed the deformation of a plate. In the case
of the labial motion, we assumed a lateral mode and a wavelike mode in order
to allow the transfer of energy from the airflow to the labia. By assuming a
small number of modes, we restrict the level of complexity that the solutions
of the model can display. We have to add this assumption to our list, in order
to explore the possible consequences of removing it. As with other effects,
we shall deal with this question in Chap. 6. Now, we shall continue with our
description of the simple, low-dimensional model presented in Chap. 4 for
the midpoint of a labium x:
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dx

dt
= y , (5.4)

dy

dt
= −k + (b − β)y − c2y , (5.5)

which has a stationary solution defined by the conditions dx/dt = 0 and
dy/dt = 0; this solution is y = 0 and x = 0. Now, what are the conditions
under which this solution is stable? As with the stationary case, we can con-
centrate on the behavior of small departures εx and εy from this equilibrium,
and just concentrate on a linear approximation to the complete problem.
Neglecting the nonlinear terms, we obtain

dεx

dt
= εy , (5.6)

dεy

dt
= −kx + (b − β)εy , (5.7)

known as the linearized problem. As it is a linear problem, its solutions are
simple to compute. If we write it in a matrix form dε/dt = DFε, the eigen-
values of the matrix DF allow us to gain a good insight into the behavior
of perturbations around the stationary solution. For those parameter values
such that the imaginary parts of the eigenvalues are different from zero, the
system will behave in an oscillatory manner. However, depending on whether
the real part is larger or smaller than zero, those oscillations will lead us
either away from the stationary solution or towards it. For this reason, we
call the curve in parameter space such that the real parts of the eigenvalues
of DF are zero (while the imaginary parts may be different from zero) the
bifurcation curve. In this problem, this curve is simply b − β = 0.

5.2 The Construction of Syllables

5.2.1 Cyclic Gestures

So far, we have concentrated on the mechanisms by which the labial oscil-
lations that occur during the vocalization of a syllable are turned on and
off. We are now ready to focus on the most remarkable feature of a syllable:
the variation of the fundamental frequency. In terms of the mechanisms that
we have described, an upsweep syllable corresponds to the oscillations being
turned on at a frequency lower than that at which they are turned off. Since
the frequency of the oscillations is determined by the labial restitution coef-
ficient, a variation of the frequency will be produced by a variation of this
parameter. It seems counterintuitive that the labial elasticity can be changed;
it is tempting to suppose that its restitution coefficient K has a fixed value,
determined by the nature of the labial tissue. However, this coefficient can
be controlled. The contraction of the siringealis ventralis muscle increases
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the distance between the cartilaginous rings on which the labia rest. There-
fore, a contraction of this muscle increases the stiffness of the labia. This
implies a higher restitution coefficient, which in turn implies an increase in
the oscillation frequency.

In this way, the generation of a syllable in which the fundamental fre-
quency varies can be achieved through the construction of a slow movement
through the parameter space (of bronchial pressure and muscle tension). By
this we mean that instead of there being a constant tension and pressure, the
vocalization is performed while the parameters are slowly changed. “Slow”
has, in this context, a precise meaning: the rate at which the parameters are
changed is very small compared with the frequency of the oscillations that are
turned on. Let us suppose, for example, a trajectory in the parameter space
such as the one illustrated in Fig. 5.4a. As this path is traveled along, several
dynamical changes will take place. As we go from point 1 to point 2, the os-
cillations are turned on (the interlabial pressure overcomes the dissipation in
the system). As the pressure is further increased from point 2 to 3, the most
important change is an increase in sound intensity and a spectral enrichment
of the signal, without major changes in the fundamental frequency of the os-
cillations. As we go from point 3 towards point 4, as the restitution coefficient
k increases and the oscillations become faster (i.e., the fundamental frequency
increases). The path from point 4 to 5 is associated simply with a spectral
impoverishment of the signal, which becomes progressively more harmonic
and less intense, but without significant changes concerning its fundamental
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Fig. 5.4. The most remarkable feature of a syllable that has to be reproduced by
a model is the changing vibratory behavior over time within a syllable, i.e., the
changing fundamental frequency of the labial oscillations. For example, upsweeps
and downsweeps denote syllables in which the oscillations are turned on at a lower
and higher frequency, respectively, than that at which they are turned off. In order
to generate an upsweep, we have to enter the region of oscillations in the parameter
space with a k value smaller than the value at which we exit the region in which
oscillations take places. (a) Path in parameter space. (b) Sonogram associated with
the path in (a)
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frequency. As we move out of the shaded region, just before getting to point
5, the oscillations stop [Gardner et al. 2001, Laje et al. 2002].

Now, it is ubiquitous in birdsong that certain syllables are repeated several
times. This, in terms of our path, can be reproduced if, from point 5 in the
parameter space, we return to point 1, and repeat the path as many times
as necessary. In Fig. 5.4b, we can see a sonogram of the syllables generated
(as explained in Chap. 4) using values of pressure and tension that change
along the path shown. To a piece of sound analysis software, the results
obtained with our equations are indistinguishable from a real recording in
digital format. Therefore, we can study the result as usual. We could, for
example, reproduce it in front of a bird and study the bird’s behavior.

5.2.2 Paths in Parameter Space

In the previous example, the pressure started and ended at the same value
after a complete cycle, and so did the labial tension. However, there was a
delay between the cycles of pressure and tension. In our example, the tension
started to grow after the pressure reached its maximum value. We say that
the two cycles were out of phase, and we quantify this delay in terms of a
quantity that we call the phase difference φ0 [Gardner et al. 2001].

The simplest conceivable path in the parameter space reflecting our ideas
about a “cycle” in pressure and tension and a “delay” between them can be
written mathematically as

p(t) = p0 + p1 cos(φ(t)) , (5.8)
k(t) = k0 + k1 cos(φ(t) + φ0) . (5.9)

The parametrization of time through φ(t) allows us to control the speed at
which the path is traversed. According to our previous discussion, dφ(t)/dt
must be very small compared with the frecuency of the vocalization. However,
the key parameter in (5.8) and (5.9) is the phase difference φ0. Let us explore
the reason.

Notice that a delay in the tension with respect to the pressure for a
syllable such as the one displayed in Fig. 5.4 can be achieved with a value
of φ0 between φ and 2φ. How different would the syllable be if, instead of
a delay in the tension with respect to the pressure, both variables evolved
simultaneously? By “simultaneously” we mean in phase, that is, φ0 = 0. In
this case, the path would look like that in Fig. 5.5. In this situation, as the
pressure increases, so does the tension. Therefore, at the moment at which
the oscillations start (between point 1 and point 2 in the parameter space),
the frequency of oscillation increases. The process continues until both the
pressure and the tension reach their maximum values. At this point the labia
are oscillating with a rich spectral content and a high frequency. From this
point, the pressure and tension begin to decrease (towards point 5 in the
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Fig. 5.5. If we enter the region of oscillations with a value of the parameter k
similar to the value at which we exit the region, the syllable will have a fundamental
frequency that evolves in time like a “mountain”. In this case, f0 ∼ 0

parameter space). In this way, the syllable shows a time interval in which the
frequency decreases, like one of the syllables in Fig. 5.1.

Along the same lines of analysis, we can understand how it is possible to
generate a downsweep syllable. We should think of a path in the parameter
space similar to the one displayed in Fig. 5.4, but traversed in reverse order.
This means that the pressure should be delayed with respect to the tension,
as opposed to the case shown in Fig. 5.4. This can be done by choosing φ0

to have a value between zero and π. Before the oscillations start, the tension
value should be high, and only after such a tension level is reached does the
bronchial pressure increase to the value necessary for the oscillations to start.
After this, the tension decreases. Finally, the pressure will decrease to values
small enough that dissipation dominates the dynamics, and the labia will
stop. The tension should increase again, if we want the cycle to repeat itself.

That the most important morphological features of a syllable can be un-
derstood in such simple terms is remarkable. In Fig. 5.6 we show several dif-
ferent syllables, together with the paths in the parameter space that produced
them, and the corresponding phase differences. Every path was constructed
according to (5.8) and (5.9). The only difference between them is the choice
of the phase difference φ0. Figure 5.6 says that the bronchial pressure and the
labial tension vary in a cyclic way, and by simply changing the relative delay
of a cycle with respect to the other we are able to change the morphology of a
syllable. Of course, there are many other changes that occur simultaneously
with this gesture: beak movements (which, as we saw, can modify the filtering
of the signal), posture, etc. However, the basic gesture necessary to produce
a syllable is a cycle in the bronchial pressure and the muscle tension.
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Fig. 5.6. A rich diversity of syllables can be generated by simply changing the
delay between cyclic respiratory and syringeal gestures. The phase difference φ0 in
(5.8) and (5.9) is monotonically increased here in steps of π/4 from top to bottom,
and then left to right, to generate upsweeps, downsweeps or nonmonotonic syllables

5.3 The Active Control of the Airflow: a Prediction

When we described the anatomy of the oscine syrinx in Chap. 3, we high-
lighted the bipartite nature of the vocal organ. However, the discussion of
the labial oscillations in the previous subsections in this chapter refers to one
pair of labia only. This restriction is appropriate since, some birds use mostly
one side of their vocal organ. Some species use predominantly the left side
(such as the waterslager canary) and others the right side (such as the zebra
finch, Taeniopygia guttata, in order to produce calls), while some species use
both sides indiscriminately (such as the brown thrasher, Toxostoma rufus).
In some cases, both sides are used simultaneously during a vocalization. A
well-studied example of this class is the last syllable in the call of the black-
capped chickadee (Parus atricapillus), in which not only are the two sources
active but also they interact acoustically [Nowicki and Capranica 1986].

In order to achieve the lateralization implied in the use of one side of the
syrinx, the bird actively closes the side not used, pushing the labia against
each other. In some species, the muscles in charge of performing this task
are the siringealis dorsalis and the tracheobronchialis dorsalis. In the case of
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the brown thrasher, these muscles rotates bronchial cartilages towards the
syringeal lumen [Goller and Suthers 1996a].

The role of the muscles used to actively close the syrinx by adducting labia
can be taken into account by an additional term f0 in our simple model, (4.5).
With this additional term, the model reads

ẋ = y ,

ẏ = −kx + (β − b)y − cx2y − f0 . (5.10)

The association of the parameter f0 with the activity of the muscles that
actively adduct the labia can be seen by considering the equilibrium points
of the system, also known as fixed points . The fixed points x̄ of a system are
found by setting all time derivatives to zero, that is, in our system,

x̄ = −f0

k
. (5.11)

By varying the value of f0, we can move the fixed point either towards the
position representing the labia being pushed against each other or towards
the position representing the labia being pushed against the walls. At these
positions, oscillations are prevented.

This gesture can eventually completely adduct the labia. However, the
muscle used here is briefly active on the side used to vocalize, prior to the
emission of sound. Owing to this additional gesture, the pressure at which
the labial oscillations effectively start is larger than that necessary if only
the mechanisms described in the previous section are active. In this way, the
bird delays somewhat the beginning of the oscillations. It also happens for
this species that the end of the labial oscillations is anticipated by the active
closing of the syringeal lumen through the dorsal muscles. It is worth pointing
out that the value of the force necessary to “hold” the oscillations depends
on the value of the restitution coefficient of the tissue (given by the activity
of the siringealis ventralis muscle). In our simple model, the conditions under
which no oscillations take place can be written as

|f0| > k

√
(β − b)

c
. (5.12)

That is, if the labia are vibrating at a higher frequency (higher k), a larger
force from the dorsal muscles is needed in order to prevent the oscillations.
This is a precise prediction of the physical model described so far, and has
been validated by experimental measurements [Mindlin et al. 2003].

We are now going to work with these physical models in order to recon-
struct the dynamical character of the control parameters needed to repro-
duce artificially the syllables of a song. The result of this exercise is displayed
in Fig. 5.7, in which the natural and artificial songs of a chingolo sparrow
(Zonotrichia capensis) are displayed. In order to build the artificial song, it
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Fig. 5.7. How good are models? The simple rules described in the text allow us
to reproduce the song of a chingolo sparrow (Zonotrichia capensis). The acoustic-
pressure amplitude and the sonograms of the recorded sounds are illustrated in (a),
while the synthetically generated sound is represented in (b)

was necessary to find the values of the parameters k and p, at successive
instants, that would drive the model in order to generate the song. With the
values displayed in Fig. 5.8, it was possible to generate a song remarkably
similar to the natural one [Laje et al. 2002].

It is tempting to try one more step. Where are these gestures generated?
Clearly, the activities of the muscles involved should vary in the precise way
that we have described. Therefore, some sets of neurons (dedicated to con-
veying the instructions to the muscles) should let a coordinated firing pattern
emerge. What neurons are these? Where are they located? How do they in-
terconnect? We shall address these issues in Chap. 8.

5.4 Experimental Support

In the model discussed in the preceding section, the main acoustic parame-
ters were correlated with the air sac pressure, the activity of the vS muscle
and the activity of the dTB. In order to build confidence in this model, Franz
Goller and Roderick Suthers recorded these variables. Then, these experi-
mental records were used to drive the model. In this way, one could compare
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Fig. 5.8. In order to reproduce the song of the chingolo sparrow, we had to generate
paths in the parameter space, which we illustrate in this figure. The sonogram of
the synthetic song is shown in the first panel. The next panel shows the synthetic
acoustic pressure predicted by the simple model. The panels below this one display
the values of pressure, restitution constant and f0 that had to be used in order to
drive the model so it could reproduce the desired song. The last panels show the
trajectories of the parameters p and k used in our simulations in a p, k parameter
space. The dashed lines correspond to pieces of the trajectories in which the labia are
not allowed to oscillate owing to the additional force f0. The ellipses are traversed
counterclockwise (modified after [Laje et al. 2002])

the recorded song with the synthetic song that was produced from the elec-
tromyographic (EMG) data that had been recorded [Mindlin et al. 2003].

The air sac pressure was recorded with a flexible cannula inserted into the
anterior thoracic air sac and connected to a piezoresistive pressure transducer.
The muscle activity was recorded with wire electrodes which were implanted
into the syringeal muscles. These wires were made of stainless steel and were
secured to the tissue with a microdrop of tissue adhesive. After the implan-
tation of the microelectrodes, the wires were led out and routed to the back,
and then the air sac was closed. Details of these procedures were published
in [Goller and Suthers 1996a]. The data used in the experiments designed to
test the model were simultaneous records of song, air sac pressure, dTB ac-
tivity and vS activity. The data were taken from two cardinals (Cardinalis
cardinalis).
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Fig. 5.9. The pressure and the smoothed–rectified activities of the dS and vS
muscles during the production by cardinals of a pair of syllables. Adapted from
Fig. 5.4 in [Mindlin et al. 2003]

The EMG data were sampled at 40 000 points per second. In order to
reconstruct a measure of the muscle activity, the signals were rectified and
smoothed. Rectification is needed in order to eliminate the artificial bipha-
sic nature of the recordings, a result of the bipolar nature of the electrodes.
The smoothing consisted of replacing each point by the average of its neigh-
bors within a 0.2 sec window. In Fig. 5.9, we show the processed data. The
vocalizations are produced basically when the air sac pressure is positive.
Notice that the activity of the vS muscle increases towards the end of the
vocalization. Therefore, according to the model, we expect the syllables being
produced to be upsweeps.

The relationship between an EMG signal and the tension that is gener-
ated in the muscle is likely to be a complex one. Even from experiment to
experiment, it is reasonable to expect important variations owing, for exam-
ple, to the different contact areas between tissue and wire. For this reason,
an absolute calibration is not possible. However, for the qualitative test that
we have described, a monotonically increasing function relating the EMG to
the tension is enough.

The actual test consisted of two parts. First, linear relationships were
assumed between the envelopes of vS activity, dS activity and pressure (mea-
sured in Volts), and the functions k, f0 and β − b, respectively, in (5.10).
This procedure had to be repeated for each experiment. Then, these “exper-
imental” instructions had to be used as driving functions in the model. The
final step required the comparison between the syllable synthetized using the
experimentally driven model, and the actual song. It is important to require
in this test that within an experimental session, the same values of the fitting
parameters used to map the EMG data to the driving functions (which were
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Fig. 5.10. (A) a sonogram of a recorded fragment of song, and (B) a sonogram of
a synthetic song, generated when the model was driven by linear functions of the
smoothed envelopes of the activities recorded during vocalizations

computed with data from one syllable) are also used for other syllables. In
Fig. 5.10, we display sonograms of an actual song and one computed from
EMG and pressure data.

The measurement of the activity of the dorsal muscle dS allows us to
test the prediction described in the previous section regarding the relative
sizes of the activities at the beginning and end of each syllable, depending
on the temporal evolution of its fundamental frequency. The analysis of the
model predicts that for upsweep syllables, the minimum value of f0 needed
to prevent oscillations at the begining of the syllable is smaller than the value
needed to stop the oscillations at the end. The ratios between the maximum
activities at the end and at the beginning of 17 syllables are displayed in
Fig. 5.11. The first six syllables are upsweeps, while the rest are downsweeps.
The latter show ratios smaller than one, as predicted.

The physical processes involved in birdsong are very rich, and yet it is
possible to attempt to produce simple models leading to qualitative agree-
ment with data. Since the origin of the sound in many examples of birdsong
has been traced to the vibration of labia, the existence of simple oscillatory
models reproducing the sounds is only natural. However, it is not trivial even
in principle to interpret model parameters in terms of the actual biological
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Fig. 5.11. The ratios between the local maximum activity of the dS muscle at the
end and at the beginning of a vocalization. Seventeen syllables from two birds were
analyzed, the first six being upsweeps. Adapted from Fig. 5.8 in [Mindlin et al. 2003]

forces. The experiments described in this section, however, build confidence
in the physical model that we have presented in this chapter.

Much of the research on birdsong focuses on the neural processes involved
in the learning of the vocalizations. By illuminating the mechanisms by which
the activities of the syringeal muscles control the syrinx, we can help to
build a bridge between neural activity and vocal behavior. An implication
of this modeling effort for neurophysiologists in the field is that in order to
map central neural activity onto peripheral motor activity, it is important to
relate neural activity to the driving parameters rather than to the acoustic
properties of the emitted song [Suthers and Margoliash 2002].

5.5 Lateralization

The functional lateralization of the brain remains an open problem. In bird-
song production, this phenomenon is present [Allan and Suthers 1994]. The
degree of asymmetry present in the behavior ranges from low to very high.
In some species, there is a clear unilateral dominance (only one side of the
syrinx is used), while in others, there are equal contributions from both sides
[Suthers 1990]. For a long time, it was very puzzling that this functional asym-
metry did not have a clear anatomical correlation in the song control nuclei.
This problem was addressed by Goller and Suthers [Goller and Suthers 1995],
who studied the activity in the muscles controlling both sides of a brown
thrasher’s syrinx. As we have seen, some muscles are involved in the con-
trol of the labial tension (and therefore of the frequency of the vocalization),
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and others are involved in the gating of the airflow. The findings reported
in [Goller and Suthers 1995] indicate that it is only in the case of the gating
muscles that the activity is lateralized. The other syringeal muscles are active
on both sides of the syrinx.

According to our models, the vocalization is largely determined by the
phase differences between the gestures affecting tension and pressure. It
is then natural to ask about lateralization of the muscle activity involved
in the control of the air sac pressure. In [Goller and Suthers 1999], it was
investigated whether the activity of respiratory muscles reflected the later-
alized activity of the vocal organ during the production of birdsong. Those
authors found that the activity was always present, independently of whether
the song was produced by one or both sides of the syrinx.



6 Complex Oscillations

To describe the songs of birds using the songs of the canary and the chingolo
as the only examples might seem suspicious. We are all familiar with the wide
range of timbre that birds can show in their songs. Can they all be described
in terms of the simple mechanisms presented so far? The answer is negative,
as we shall discuss in this chapter. Unavoidably, we shall have to introduce
more subtle effects in order to widen the spectrum of phenomena that are
presented by different species and under different circumstances.

6.1 Complex Sounds

6.1.1 Instructions vs. Mechanics

The spectral description of the song of some birds reveals the existence of
phenomena more complex than the ones studied so far. In Fig. 6.1, two sono-
grams are displayed. They correspond to the songs of the eastern slaty thrush
(Turdus subalaris) [Straneck 1990a] and the grassland sparrow (Ammodramus
humeralis) [Straneck 1990b]. They are more complicated than the sonograms
described in the previous chapters.

In Fig. 6.1a, above the curve representing the fundamental frequency,
there is a second curve which has little in common with the first curve. It
neither begins nor ends when the first curve does, and the frequency values do
not correspond to multiples of those of the first curve, i.e., the second curve
does not represent a harmonic of the first one. The completely different way
in which these curves behave is a signature of the fact that the bird has used
both sources in an independent way in order to generate its vocalization.

Compared with Fig. 6.1a, Fig. 6.1b is misleadingly simple. Notice that
there is a qualitative change in the shape of the sonogram, indicated by the
arrow. The line that corresponds to the time evolution of what was the lowest
frequency at the beginning of the vocalization appears to be accompanied
after some time by new curves at its sides. Have we seen sonograms like
this one before? No, since these new “parallel” curves are not harmonics of
the previous fundamental frequency. Recall that the harmonic frequencies
are lines parallel to the curve representing the fundamental frequency (the
lowest curve) that are located at multiples of the fundamental frequency. In
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Fig. 6.1. In (a), we display the sonogram of a song produced by the eastern
slaty thrush (Turdus subalaris), which uses both sides of the syrinx to produce
a rather complex sound. In part (b), we find in the sonogram of the grassland
sparrow’s song (Ammodramus humeralis) a series of paralell lines, which are a
signature of rather complex dynamics of the labia used to produce the sound. This
sonogram corresponds to a sound which cannot be reproduced with the simple
models described so far

this case, the lowest frequency before the transition is approximately 4000 Hz;
the first harmonic should therefore be at approximately 8000 Hz. However,
the new lines appear at 3800 Hz and 4200 Hz, etc.

Both examples imply a higher degree of complexity of the sound signal
than in the ones displayed in the previous chapters. However, there is an
important difference between them. In the first case, the bird uses both sides
of its bipartite vocal organ. The sound is generated by two sources that
each contribute their fluctuations (in principle, in an independent way), and
each contribution can be understood in terms of the elements that we have
presented so far. It is certainly true that to activate both sound sources with
a certain degree of coordination (instead of keeping one silent through the
active closing of the lumen) implies an important degree of complexity at the
level of neural the instructions sent to the vocal organ. However, the physics
involved is as simple as it was before.

The second case, in contrast, is more subtle: although the dynamics of
the lines appear to indicate that there is just one active source of sound,
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the spectrum reveals the existence of a physical phenomenon that we cannot
interpret with the elements presented so far. In summary, we have two sam-
ples of complex sounds, for which the origins of the complexity are quite
different. It is natural, then, to wonder if the complexity of a vocalized sound
is necessarily a signature of the complexity of the neural instructions sent to
the vocal organ by the brain. The first researchers who became interested in
this problem described the possible physical nontrivial behaviors of syringeal
labia subjected to a simple constant airflow [Fee et al. 1998]. The study was
carried out in vitro on syringes surgically extracted from zebra finches (Tae-
niopygia guttata). The degree of complexity of the sound signal produced in
these experiments was the same as that found in the natural vocalizations of
the bird. In this way, it was established that there is a degree of complexity
associated with the mechanics of the vocal organ, beyond the richness of its
neural control.

6.1.2 Subharmonics

We presented the sonogram in Fig. 6.1b as an example of a complex sound
signal. Why? Remember (Chap. 1) that a signal of a given fundamental fre-
quency F repeats itself every T time units (T is the period associated with
the fundamental frequency; T = 1/F ). It is possible for a signal to undergo
a modification of its spectral content and acquire or lose harmonics (for ex-
ample, after being filtered by the vocal tract), but it will always repeat itself
after T time units. The harmonics, which are multiples of the fundamental fre-
quency, make an important contribution to the timbre of the sound, but they
do not modify its periodicity, since they repeat themselves every T/n units
of time, where n = 1, 2, 3, . . . . In contrast, the appearance of subharmon-
ics (that is, frequencies that are submultiples of the fundamental frequency)
corresponds to signals that repeat themselves not after T but after nT time
units. In the language of Chap. 1, a time function such as

y1 = A cos(ωt) + εsupra cos(2ωt) (6.1)

has a period T = 2π/ω, no matter the value of εsupra. Its sonogram will
consist of a fundamental frequency F1 = 1/T with amplitude A plus its first
harmonic F2 = 2F1 = 2/T with amplitude εsupra. In contrast, a function such
as

y1 = A cos(ωt) + εsub cos
(

1
2
ωt

)
(6.2)

has a period Tnew = 2T (twice as large) as soon as εsub is different from zero,
since 2π/Tnew = ω/2 = (1/2)(2π/T ). What mechanisms can give rise to such
a behavior?
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6.2 Acoustic Feedback

6.2.1 Source–Filter Separation

One of the possible ways of obtaining oscillations of this sort, without aban-
doning the model that we introduced in Chap. 4, is through acoustic feedback.
When we analyzed the onset of oscillations for the syringeal labia, we men-
tioned that when the labia have a divergent profile, the average interlabial
pressure is low with respect to the bronchial pressure. The reason is that when
the profile is divergent, the average pressure between the labia is similar to
the tracheal pressure (and similar in turn to atmospheric pressure). We also
discussed the existence of pressure perturbations at the input of the vocal
tract as a result of adding the flow perturbations injected by the sources to
the perturbations induced by reflected pressure waves. In that discussion, we
assumed implicitly that the existence of pressure perturbations in the vocal
tract did not affect the labial dynamics. The theory that assumes that the
labial dynamics are independent of whatever happens in the filter is known
as the source–filter theory. In many cases, as during normal human speech
or the song of most bird species, this hypothesis is a most sensible one. But
source–filter separation does not hold in every case, or at least we cannot a
priori affirm that it holds.

6.2.2 A Time-Delayed System

Formally, the dynamics of a labium are described in terms of its midpoint
position x by

Mẍ + Bẋ + Kx = Pg , (6.3)

where Pg is the average interlabial pressure, given by

Pg = Pi + (Ps − Pi)f(x, ẋ) ; (6.4)

f(x, ẋ) is a generic function, which, in the flapping model, is f(x, ẋ) =
1 − a2/a1 (see Chap. 4). The source–filter approximation assumes that the
pressure at the entrance of the tract Pi is zero (that is, atmospheric pressure).
A more realistic approximation takes into account the fact that this pressure
is the result of adding perturbations due to the modulation of the airflow and
the perturbations arriving back after being reflected, mostly at the beak:

Pi(t) = s(t) + Pback(t − τ) , (6.5)
Pback(t) = −γPi(t − τ) , (6.6)

where τ is the time it takes for a sound wave to travel the length of the
tract, and γ is the reflection coefficient at the beak. This equation expresses
the fact that the pressure perturbations at the input of the tract are the
result of adding the perturbations induced by the labial fluctuations (s(t))
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and the pressure wave arriving as a result of reflection at the end of the
tract. If these perturbations are Pback(t) at time t, the total perturbation is
the result of adding s(t) and Pback(t − τ), since it takes the pressure wave
traveling backwards a time τ to reach the opposite end of the tract. The source
of pressure perturbations s(t) is a function of all the variables describing
the dynamics of the labium. As discussed in Chaps. 1 and 2, the pressure
perturbations s(t) at the entrance of the vocal tract are generated by time
variations of the flow U(t) injected by the glottis, which in turn is a function
of the variables x and ẋ.

The introduction of a time delay into the differential equation describing
the labial dynamics is responsible for a dramatic change in the kind of so-
lutions that can be expected. In order to gain an intuitive idea about this
observation, we can compare the simple dynamics obtained from the system

dN(t)
dt

= − π

2τ
N(t) (6.7)

with the solution of
dN(t)

dt
= − π

2τ
N(t − τ) . (6.8)

In the first case, we obtain a linear decay to zero, N(t) = A exp(−πt/2τ),
while in the second case the system evolves harmonically in time: N(t) =
A cos(πt/2τ).

There are two parameters, then, that are important in order to obtain
complex dynamics within this framework: one (the coupling parameter) mea-
suring the amplitude of the perturbation injected by the glottis at the en-
trance of the vocal tract, and one describing the delay involved (which can be
taken simply as the time it takes a sound wave to travel the length L of the
vocal tract). For large enough values of the coupling parameter, the pressure
fluctuations that are established at the base of the trachea can be impor-
tant and affect the labial dynamics [Laje et al. 2001]. The vocal-tract input
pressure values found by the labia in two consecutive situations in which the
profile is divergent (i.e. opened to the trachea) are not going to be equal.
Whenever this is the case, the labial oscillations can be more complex than
expected, and the period of the signal (if it exists) can be very large. This is
a possible mechanism for the appearance of low frequencies (subharmonics)
in the spectral analysis of a signal.

6.2.3 Coupling Between Source and Vocal Tract

An expression for the coupling parameter is needed in order to continue the
analysis. In other words, we need to develop an expression for s(t) in (6.5) in
terms of the variables x and ẋ. The coupling parameter (that is, the coefficient
hopefully appearing in front of the variables in the expression for s(t)) will in
general be a combination of anatomical parameters of the syrinx and vocal
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tract (such as lengths, widths and cross sections) and parameters related to
sound (such as the frequency and speed of the sound, and the air density).

A rigid-walled waveguide can propagate only plane waves if its cross-
sectional dimensions are much smaller than the sound wavelength
[Kinsler et al. 1982]. This is the case for the avian trachea. In the species
we are considering, and as a first approximation, the trachea is a very narrow
tube around 2 cm long and 1 mm wide, with a cutoff frequency (that is, the
frequency below which every propagating wave is a plane wave) of around
100 kHz. We can then assume that the sound waves in the avian trachea
are plane waves, and therefore make use of the very simple boundary condi-
tions (6.5) and (6.6) to account for the superposition of forward-emitted and
backward-reflected waves.

However, we do not expect the sound wave to be a plane wave very near
the source. As it is emitted by the glottis, the sound wave is of a rather diverg-
ing nature; for the sake of simplicity, we assume that the glottis behaves as
a local emitter of spherical diverging waves. Recall now our discussion of the
concept of flow in Chap. 2. Time variations of the flow U(t) (which is related
to the air particle velocity v through U = vA) induce pressure perturbations
s(t) at the vocal-tract input. For a spherical sound wave, assuming that the
pressure perturbations s(t) and air particle velocity v(t) are both harmonic
functions of time, the relationship between them can be written as

s(t) = zv(t) , (6.9)

where z = R + iωI is the complex specific acoustic impedance. R and I are
called the specific acoustic resistance and the inertance, respectively:

R = ρc
(kd)2

1 + (kd)2
, (6.10)

I = ρ
d

1 + (kd)2
, (6.11)

where c and ρ are the sound speed and the air density, and d is the anatom-
ical parameter shown in Fig. 6.2. Note that both R and I depend on the
frequency f of the sound wave through the wavenumber k = 2πf/c. Note
also that R and I are not independent quantities; they are related through
R = 4π2f2(d/c) I. A plot of R and I as a function of the frequency f is
shown in Fig. 6.3.

The parameters R and I are the coupling coefficients we are looking for
(v can be written in terms of the variables x and ẋ describing labial motion).
The key issue is that the pressure perturbations s(t) have two different contri-
butions: the first one in phase with the flow, scaled by R, and the second one
in phase with flow derivative and scaled by I (recall the discussion leading to
(2.12)). The nature of the coupling depends on the balance between these two
contributions (“resistive” coupling when the term containing R dominates,
and “inertive” coupling otherwise), which in turn depends on the frequency



6.2 Acoustic Feedback 85

a2

A0d

bronchus

trachea

labium

airflow

Fig. 6.2. Schematic section of the syrinx and vocal-tract input. Airflow coming
from the lungs is modulated by labial oscillation. As a result, a diverging sound
wave is injected at the input of the vocal tract. Dashed lines indicate the region of
spherical propagation. After this region and once in the trachea (which is a very
narrow tube around 1 mm wide), the sound wave is propagated as a plane wave.
The parameter d is a measure of the distance between the labia and the region of
plane-wave superposition
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Fig. 6.3. Coupling between source and vocal tract. The dependence of s(t) on the
flow and the flow derivative is mediated by the specific acoustic resistance and the
inertance R and I, respectively. The nature of the coupling (more in phase with
either the flow or its time derivative) is governed by the fundamental frequency of
the vocalization

f of the vocalization. Note in Fig. 6.3 that the coupling is inertive at low fre-
quencies, but that it becomes resistive at high frequencies; the frequency at
which the coupling changes behavior depends on the anatomical parameter
d and the sound velocity c.

An important assumption in the previous discussion is that the two valves
modulating the airflow are close to the junction of the trachea with the
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bronchi. If this is not the case, the portion of the bronchus between the
trachea and the valve will be seen by the valve as a pipe. Fletcher and
Tarnopolsky computed the bronchial resonance associated with this anatomy
[Fletcher and Tarnopolsky 1999]. These formants have been identified by
Suthers [Suthers 1994] in a study of the oilbird (Steatornis caripensis). He
identified frequencies which could be associated with the bronchial segments,
and showed that they were behaving as quarter-wave pipe resonators.

6.3 Labia with Structure

6.3.1 The Role of the Dynamics

There are other mechanisms that allow us to account for the spectral com-
plexity described above. But we shall have to enrich our model of the labial
oscillations in order to address them. In our discussion in Chap. 4, the up-
per part of a labium moves in a way that is perfectly correlated with the
lower part. This is due to our description of the labial movement in terms
of a superposition of two simple modes. The first mode consisted of a global
displacement, and the second one of an upward wave, together making up
a kind of flapping motion. In this situation, the upper and lower parts of a
labium move a little out of phase, the upper part always following the lower
part.

A model that allows for richer behavior can be built if the upper and lower
parts of each labium are thought of as two masses attached to each other by
means of a spring. In such a model, the labia can show more complex behavior,
beyond the behavior described above [Herzel et al. 1995, Herzel et al. 1996].
This was the strategy followed by Fee et al. [Fee et al. 1998] to explain the
existence of subharmonics in the song of zebra finches (Taeniopygia guttata).
The interesting aspect of this observation is that the acoustic properties of the
song are not uniquely controlled by the nervous system of the bird. The me-
chanical properties of the vocal organ can contribute to generating new prop-
erties of the sound when a small change in the control parameters is made.
In fact, the work by Fee et al. was performed on a syrinx in vitro. There-
fore, the appearance of subharmonics for certain values of the pressure does
not require delicate muscular control. The model used by Fee and coworkers,
known as the “two-mass model” (first proposed in [Ishizaka et al. 1972]) and
illustrated in Fig. 6.4, is capable of generating fluctuations in the airflow of
a higher complexity than those generated by the simple model (4.5). The
reason is that the motion of the upper part of the labium, represented by
the mass m2 in the figure, is affected (due to elastic coupling) to the lower
part. This allows solutions different from the ones analyzed so far, in which a
small distance between the upper parts of the opposed labia implied a large
separation between the lower parts.
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m2

m1

bronchus

labium

trachea

Fig. 6.4. The two-mass model of the labia. The hypothesis in the simple model
described in Chap. 4 is that only two modes of oscillations are needed to account for
the dynamics of the labia. A more subtle model would require us to allow different
parts of the labia to display their dynamics without being constrained to generate
an upward wave. The solutions of the models described so far can be generated by
this new model of labial oscillation, but now, new and richer solutions can also be
found

6.3.2 The Two-Mass Model

The set of hypotheses for the values of the interlabial pressure in this new
model is compatible with the set corresponding to the flapping model. In the
two-mass model, it is assumed that, if the labia form a convergent profile
(the lower parts of the opposing labia are more separated than the upper
parts), the pressure between the upper parts of the opposing labia is basi-
cally the vocal-tract pressure. On the other hand, the pressure between the
lower parts of the opposing labia is a fraction of the bronchial pressure. This
occurs because in this situation, the airflow is almost laminar (by laminar,
we mean that the air particles travel in an orderly fashion, following smooth
trajectories over the entire space available). In this regime, the pressure of
the air decreases as the fluid velocity increases. Moreover, the air will travel
faster as it moves from the bronchi to the interlabial space, since the passage
is narrower between the labia. If there is no accumulation of air, this should
further increase the air velocity. This is why the pressure between the lower
parts of the labia will be a fraction of the bronchial pressure.

Let us now pay attention to the hypothesis for the case in which the labia
form a divergent profile (i.e., the labia are “opened” to the trachea). It is
considered that the air acquires a velocity in its passage through the space
between the lower parts of the labia such that a laminar regime cannot be
established in the region between the upper parts. On the contrary, a jet is
established, so that the actual value of the distance between the upper parts
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(a) (b)

Fig. 6.5. Two snapshots of the labial motion in the two-mass model. In this model
it is assumed that, if the labia form a convergent profile (the lower parts of the
opposing labia are more separated than the upper parts) as shown in (a), the
pressure between the upper parts of the opposing labia is basically the vocal-tract
pressure. On the other hand, the pressure between the lower parts of the opposing
labia is a fraction of the bronchial pressure. If the labia form a divergent profile
as in (b), it is considered that the air acquires a velocity in its passage through
the space between the lower parts of the labia such that a laminar regime cannot
be established in the region between the upper parts. On the contrary, a jet is
established, so that the actual value of the distance between the upper parts of the
labia is irrelevant

of the labia is irrelevant. The interface of interest is now the one between
the trachea and the lower part of the labia. For reasons of continuity, the
interlabial pressure can be assumed to be equal to the tracheal pressure.
These hypotheses are illustrated in Fig. 6.5.

The global result of this set of hypotheses is not much different from
that in the case of the flapping model: in both models, the computation of
the average pressure between the labia for a divergent configuration gives
a smaller value than that for a convergent one, thus allowing a net energy
transfer from the airflow to the labial oscillation. The advantage is that if we
use a model in which the upper and lower parts of the labia are elastically
connected instead of having perfectly correlated positions, richer motions are
possible.

The results obtained by studying this model are surprisingly good if we
consider the number of approximations that have been made. Why can we
say that the results are reasonable? First, the equations are stated in such a
way that, given the values of the pressure, the masses that approximate the
labia, the restitution constants of the assumed coupling springs, etc., we are
able to compute the motion of the masses. The equations are simply Newton’s
laws applied to this problem:

M1ẍ1 + Bẋ1 + K1x1 + Kr(x1 − x2) − G1 = F1 , (6.12)
M2ẍ2 + Bẋ2 + K2x2 + Kr(x2 − x1) − G2 = F2 , (6.13)

where x1,2 are the departures from equilibrium of the lower and upper masses
M1,2, respectively; K1,2 are the restitution constants for each mass; Kr
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denotes the elastic coupling constant between the two masses; and B1,2 are
the linear dissipation constants. Unlike the case for the flapping model, a
collision between labia is modeled here by G1,2, an additional restoring force:

Gi =
{

giai during collision ,
0 otherwise .

(6.14)

Here ai = 2Lg(x0 + xi) denotes the lower (i = 1) and upper (i = 2) labial
areas, which take negative values during a collision. Lg is the length of the
glottis, and x0 is the labial rest position. Finally, the forces F1,2 are defined
by F1,2 = Lgd1,2P1,2, where d1,2 are the thicknesses of parts 1 and 2, and
P1,2 are the pressures acting on masses 1 and 2. Using Bernoulli’s law, when
the glottis is open we can write

P1 = Ps − ρ

2

(
U

a1

)2

, (6.15)

P2 = P0 , (6.16)

where U = amin

√
2(Ps − P0)/ρ is the velocity of air through the glottis (amin

is the minimal labial area between a1 and a2; it is set to 0 during a collision).
These equations reflect the fact that the pressure between the upper labia is
always the pressure at the entrance of the tract P0, and the pressure between
the lower labia can be either P0 when the profile is divergent or a larger
quantity (between P0 and Ps) when the profile is convergent.

Once these rules have been stated, the important questions are: Will the
masses begin to oscillate for realistic values of the pressure? Are the fre-
quencies of the oscillations comparable to the expected ones? When this
model was studied by Ishizaka and Flannagan [Ishizaka et al. 1972] in the
framework of an analysis of the human voice, surprisingly good results were
obtained. The model was afterwards studied extensively by many authors.
(In any case, no one considers a theory to be more than a set of partial
truths, ready to be abandoned for another one that explains both whatever
could be explained by the previous theory plus new phenomena which could
not . . . In fact, there is nothing as frustrating as a theory that is too suc-
cessful . . . !) A detailed analysis of this model performed by Steinecke and
coworkers [Steinecke and Herzel 1995] has shown that for sublabial pressures
larger than a certain critical value, oscillations are established which are very
similar to the ones predicted by our first model, that of the flapping mo-
tion. Similar in what sense? That the motions of the upper and lower parts
are highly correlated, the upper part always oscillating with a certain phase
difference with respect to the lower part.

6.3.3 Asymmetries

The old model in Chap. 4 could not account for the existence of subharmonics.
In terms of sonograms, what the old model cannot reproduce is the lines
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close to and parallel to the line of the fundamental frequency in Fig. 6.1b.
The interesting thing about this complex model, involving so many masses
and springs to emulate the labial motion, is that it gives us room to study
what happens when we change somewhat the symmetry of the problem. Now
we can afford to play with the possibility that the right and left labia might
not be exactly equal. This allows us a greater degree of realism, since the
bipartite nature of the syrinx does not allow, for each half, the same degree
of symmetry between labia as what is present in the case of human vocal folds.
Steinecke et al. [Steinecke and Herzel 1995] studied what kinds of oscillations
exist for different values of the pressure and for various degrees of asymmetry
in this model.

There are wide ranges of pressure for which (despite the asymmetries) the
solutions are regular, but for sublabial pressures larger than a certain value –
which depends on the degree of asymmetry of the problem – the solutions
become very complex. In Fig. 6.6, we compare the syringeal flows that are
predicted by the model for two different values of the pressure (and a fixed
degree of asymmetry). In the case illustrated, the values of the masses and
the coupling constant between them on the left side are 52% of the values for
the right side. As can be seen in the figure, for the first pressure condition, the
airflow is regular, with a certain period. For the second condition, the airflow
does not repeat itself until a time lapse three times larger than in the previous
case, despite the fact that the change in sublabial pressure was very slight.
The computed spectra denote the additional complexity of the airflow. The
origin of this complexity is in the dynamics of the masses, which can in fact
become completely aperiodic for appropriate values of the sublabial pressure
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Fig. 6.6. Assymetric two-mass model showing dramatic changes in flow periodicity
as the pressure parameter is changed slightly. The masses and coupling constants
for the left side are 52% those for the right-side. (a) “Normal” oscillation with
frequency F . (b) When the pressure is raised 10% above the value in (a), the
frequency of the oscillation suddenly changes to F/3
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and degree of asymmetry. And how do these pressure waves sound when
the labial motion is complex? Well . . . not very nice. It is interesting that the
presence of subharmonics can be found in juvenile birds and also in the crying
of human babies. It is tempting to speculate on the evolutionary advantages
of irritating mom and dad to get their attention [Robb 1988]. Can physics be
an ally in this process?

6.4 Choosing Between Two Models

In Fig. 6.1b, we were presented with a most interesting and puzzling effect: a
complex sound whose sonogram displayed evidence of subharmonicity. How-
ever, we have discussed two different mechanisms which are capable of ac-
counting for this effect: coupling between the sources and the tract (Sect. 6.2),
and a complex spatial excitation of the oscillating tissues (Sect. 6.3). Is there
a way to find the mechanisms at play for a particular bird? The unveiling of
the physical processes involved in each of these different mechanisms allows
us to predict the outcome of experiments designed to allow us to choose be-
tween these competing models. In particular, we shall investigate what could
be expected to occur if a bird producing complex vocalizations sings in a
heliox atmosphere (i.e., one in which nitrogen, comprising 80% of ordinary
air, is replaced by the less dense helium). Experiments of this sort has been
used to show that some birds actively coordinate the passive-filter charac-
teristics of their vocal tract with the output of the syrinx [Nowicki 1987]
and to discern between competing proposed mechanisms for song production
[Ballintijn and ten Cate 1998].

According to (6.9), the pressure fluctuations induced by the source at the
input of the tract depend on the air particle velocity v and its derivative dv/dt
through the coefficients R and I. The air velocity at the input of the tract
can be written as v(t) = v0a2(t)/A0 (see Fig. 6.2) owing to mass conservation,
where v0 =

√
2Ps/ρ. This defines a dependence of the air particle velocity

on the density of the medium. On the other hand, the coefficients R and I
depend on the density, as shown in (6.10) and (6.11). Therefore, the pressure
perturbation s(t) can finally be written as

s(t) = αf(x, dx/dt) + β df(x, dx/dt)/dt , (6.17)

where f(x, dx/dt) is a function that depends on the kinematics of the labia,
and α and β scale with the density as

α ∼ ρ1/2c−1 ∼ ρ , (6.18)
β ∼ ρ1/2 . (6.19)

Since a heliox atmosphere has a density 33% that of ordinary air, we obtain

αHeliox = 0.3αair , (6.20)
βHeliox = 0.5βair , (6.21)
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which allows us to predict qualitative changes in the spectral features of
syllables produced in these atmospheres. Performing numerical simulations
of the models defined in the previous sections, we have obtained the syllables
displayed in Fig. 6.7.

In Fig. 6.7 we display syllables obtained with models that take into ac-
count the coupling between the source and the filter (i.e. the acoustic-feedback
model of Sect. 6.2) (Fig. 6.7a), and the spatial structure of the oscillating labia
(i.e., the two-mass model of Sect. 6.3) (Fig. 6.7b). In each case, we compare
the syllables that are generated in two atmospheres of different density (air
and heliox). In Fig. 6.7b, the syllable is generated while the bronchial pressure
is raised, in order to display the appearence of subharmonic behavior. The
main conclusion that we can obtain from this numerical experiment is that
the subharmonic behavior due to source–filter coupling can be suppressed if
the density of the atmosphere is lowered. On the other hand, the changes

Fig. 6.7. Predicted sonograms in heliox experiments. (a) Acoustic-feedback model
(Sect. 6.2). Left : a subharmonic sonogram in ordinary air. Right : when ordinary air
is replaced by heliox, which has a density one-third that of air, the coupling between
the source and tract decreases according to (6.20) and (6.21), and the subharmonic
behavior disappears. (b) Two-mass model (Sect. 6.3). The results of the two-mass
model do not depend on the air density, as long as the coupling between the source
and tract is negligible. A syllable is displayed which shows a transition to a period-
three solution as the sublabial pressure is slightly raised. This transition is due to the
appereance of higher-order modes of labial vibration. The only difference between
ordinary air (left) and heliox (right) is a change in the vocal-tract resonances
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in the spectral features of the vocalization produced by structured labia are
more subtle: the complexity of the oscillations at the source is not decreased,
but changes are observed in the resonances, which grow by up to 75% in the
heliox atmosphere.

6.4.1 Signatures of Interaction Between Sources

There is yet another surprise behind the bipartite structure of the syrinx.
In the sonogram in Fig. 6.1a, we saw the signature of two sources that were
simultaneously active. The sonogram consisted of two lines with indepen-
dent time evolutions. There are no major difficulties in understanding this
phenomenon: the sources act independently, and both inject pressure fluctu-
ations that are added at the tracheal entrance [Nowicki 1997]. The tract will
simply filter the harmonic components as we have analyzed so far, in order
to achieve the final vocalization. However, when we analyzed the behavior
of one source, we noticed that in some circumstances, the resulting pressure
at the input of the trachea could show fluctuations so large that the labial
dynamics were affected. It is natural, then, to expect that it could be possible
that the fluctuations induced by an active source could influence the behavior
of the second source, if this were also to become active. Since it is not likely
that both sources will show oscillations at exactly the same frequency, the
resulting behavior in the case of coupling can be easily recognized.

To give us an idea of what we can expect to find in the case of two cou-
pled sources, let us revisit the simple model of the oscillating labia. Remem-
ber that the key for establishing oscillations in one source is the interlabial
pressure, which is responsible for the force that overcomes the system’s dis-
sipation and sustains the oscillations. However, the existence of a coupling
changes this scenario somewhat. Imagine that one of the sources is “on”,
and generates important pressure fluctuations at the input of the trachea.
The second source, as it begins to oscillate (for example, as the activity of
the dorsal muscle keeping the labia together is decreased), finds a complex
scenario. Each time that the labia have a divergent profile (i.e. open to the
trachea), the source will experience a fluctuating pressure that oscillates at
the frequency of the first source. Therefore, the second source will oscillate
with an amplitude modulated at the first source’s frequency. In Fig. 6.8a, we
show a harmonic signal and its spectrum (composed of a unique frequency).
In Fig. 6.8b, we show the resulting signal if we modulate the amplitude of the
first source with a different frequency. The spectrum of this signal now shows
new frequencies, with the signature of the coupling being frequencies equal
to the sum and difference of the original frequencies. Coupling between two
avian sound sources has been experimentally demonstrated in a characteristic
syllable of a black-capped chickadee (Parus atricapillus), a sort of internal
duet between the two sound sources [Nowicki and Capranica 1986].

An amazing fact is that some species have the capacity to choose between
using the two sources independently or making them interact. This seems to
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Fig. 6.8. (a) Harmonic signal. Its spectrum is composed of a single frequency
F = 1000 Hz. (b) The same signal as in (a), but with its amplitude modulated at
f = 100 Hz. The signature of the coupling between the two oscillations F and f
(amplitude modulation, in this case) is the appearance of new frequencies: the sum
and difference frequencies

be the case for the magpie tanager (Cissopis leveriana) [Straneck 1990b], one
of its songs being displayed in Fig. 6.9. Notice that the traces in the sonogram,
to the left of the dotted line, denote the existence of two independent sources:
the upper and lower traces are related neither temporally nor harmonically
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Fig. 6.9. In this syllable of a magpie tanager’s song (Cissopis leveriana), we see
at the begining the typical signature of two independent sound sources (on the two
sides of the syrinx). As the frequencies become closer, a series of subharmonics can
be observed. It is likely that coupling between the two sources is acting here
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(i.e., the upper traces are not multiples of the lower ones). To the right of
the dotted line, the situation is different: even though there is no harmonic
relationship between them, there are common temporal dynamics. The bird
has modified its vocal organ and/or its tract in order to make the sources
interact. The result is the appearance of subharmonics, as can be observed
in this complex sonogram. In this case, both complex neural instructions and
complex physics are in play to generate a unique (and, in some cases, proven
to be biologically relevant [Aubier et al. 2000]) sound.

6.4.2 Modeling Two Acoustically Interacting Sources

A quantitative description of this phenomenon requires us to take into ac-
count the dynamics of the two pairs of labia. The simplest model to describe
the two pairs can be expressed in terms of the variables xi and yi (i = 1, 2),
describing the deviations from the rest position and the velocities of the labia
in each of the sources:

ẋ1 = y1 ,

ẏ1 = −k1x1 − by1 − cx2
1y1 − f01 + pg1 , (6.22)

ẋ2 = y2 ,

ẏ2 = −k2x2 − by2 − cx2
2y2 − f02 + pg2 , (6.23)

where ki are the restitution constants for each side, b is the dissipation con-
stant, c is the coefficient of the nonlinear terms bounding the labial motion,
and f0i are force terms controlled by the activity of the dorsal muscles, all
per unit mass of the labia. Finally, pgi are the averaged interlabial pressures
on each side.

The terms describing the pressure between the labia on each side, pgi,
depend on both the sublabial pressure ps and the pressure at the input of
the trachea pi. Considering that the dynamics of each pair of labia can be
described in terms of a flapping model (as discussed in Chap. 4), we can write

pgi = ps −
(

a2

a1

)
i

(ps − pi) , (6.24)

where pi stands for the air pressure at the input of the trachea, which is
common to both sources. The ratios ri ≡ (a2/a1)i between the glottis exit
and entrance areas can be approximated by a linear function of the velocity
of the ith labium, i.e., ri ∼ −yi; this term is therefore directly responsible for
the onset of the oscillations, since it is capable of compensating dissipative
losses.

We further assume that the main constribution to the pressure fluctua-
tions at the input of the trachea is given by the time derivatives of the air-
flow (inertive coupling). With this and some additional assumptions (among
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which that there is no reflection at the end of the vocal tract), pi can be
approximated by

pi = β(y1 + y2) . (6.25)

The coupling parameter β is analogous to the acoustic inertance I in (6.11),
up to a coefficient made up of a combination of anatomical parameters. Notice
that the pressure at the input of the trachea pi keeps track of the oscillations
at both of the sources, and therefore couples the two oscillations.

A simulation using this model is shown in Fig. 6.10. The syllable was
generated by driving (6.22)–(6.25) with a time-dependent ps, in much the
same way as the syllables of Chap. 5 were. The remaining parameters were
symmetric (except the frequency-controlling parameters k1 and k2) and con-
stant in time. The isolated-source spectra are apparent, with fundamental
frequencies F1 and F2 around 2000 Hz. In addition, the signature of coupling
is readily seen: the heterodyne frequencies fmn appearing as light strokes in
the sonogram, which are sums and differences of multiples of F1 and F2:

fmn = mF1 + nF2 , m, n ∈ Z . (6.26)
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Fig. 6.10. Synthetic syllable generated with the theoretical model for coupled
sources (6.22)–(6.25). The model parameters are all symmetric except for k1 �= k2.
In addition to the spectral components of the isolated sources (the two dark strokes
around 2000Hz and their corresponding harmonics), a series of lighter strokes ap-
pear. These new frequencies are sums and differences of multiples of the two fun-
damental frequencies

6.4.3 Interact, Don’t Interact

But now the question arises of why the two sources do not couple in general.
In principle, the bird has the ability to control the bilateral structure. For
example, control of the dorsal muscles (gating muscles) is lateralized. Con-
sequently, unilateral silencing is possible by active closing of one side of the
syrinx.



6.4 Choosing Between Two Models 97

It is natural to ask whether all the muscles involved in birdsong production
reflect the lateralized activity of the vocal organ during singing. This question
was settled by Goller and Suthers [Goller and Suthers 1999], who monitored
bilateral airflow and subsyringeal air sac pressure in brown thrashers (Toxos-
toma rufum) during singing, together with the electromyographic activity of
the abdominal muscles. They found that expiratory muscles showed activity
on both sides, regardless of whether the song was produced bilaterally or on
one side of the syrinx. The motor commands to the respiratory muscles ap-
pear to be bilaterally distributed, in contrast to what happens with the motor
control of the syrinx. In our model, this is guaranteed by the introduction of
a unique parameter ps as the sublabial pressure.

Anatomical maneuvers at the level of the syrinx or the vocal tract, other
than active lateral gating, can make the coupling parameter α change its
value and vary the coupling strength as the bird sings. Coupling can then
be turned on and off “on the fly”. On the other hand, coupling may always
be present but have little effect unless the sources are vibrating at nearby
frequencies (in terms of our model, when the parameters ki governing the
frequencies on each side are very close to one another). This seems to be the
case for the sonogram in Fig. 6.9.

Acoustic interaction, however, is not the only way to achieve interaction.
The coupling between the sources may also be structural, for example involv-
ing the cartilaginous pessulus to which the labia on both sides of the syrinx
are attached [Nowicki and Capranica 1986]. Little is known about this, but
the dynamics displayed by two nonlinear, mechanically coupled oscillators
cannot but be exciting.

These examples of complex sounds are extremely interesting, since the
source of their complexity should not be traced up towards the brain, but
to the nonlinearities of the peripheral system. Chaotic calls [Fletcher 2000],
period doubling [Fee et al. 1998], etc. are only a few examples of a
large class of nonlinear phenomena present in vocalizations across the
animal kingdom [Wilden et al. 1998]. In recent work, Tchernikovski et al.
[Tchernikovski et al. 2001] even showed that zebra finches take advantage
of period-doubling bifurcations in their learning processes. These authors
showed that the acoustic features of syllables would show, during develop-
ment, an increasing acoustic mismatch until an abrupt correction would take
place (a period-doubling bifurcation). This process might reflect the physi-
cal and neural constraints on the production and imitation of song. Along
the same lines, Podos [Podos 1996] showed that syntax development could
also be affected by the physical limits of how birds sing, by the introduc-
tion of pauses, stops, etc., opening a new perspective on the issue of how
vocal diversity arose. Altogether, these results illustrate that the final vocal
output is the result of a rich interplay between neural instructions and a
nontrivial physical organ that provides limitations as well as opportunities
[Goller 1998, Fee et al. 1998, Chiel and Beer 1997].



7 Synthesizing Birdsong

Understanding the mechanisms behind birdsong production should enable us
to generate realistic synthetic song. A synthesizer could be built in such a
way that the acoustic properties of the song were reproduced by mechanisms
that were qualitatively different from those found in the actual birds, but
this is not our goal. We have focused on the generation of synthetic song
by reproducing the mechanisms found in the real system, as a way to build
confidence in our modeling. Other applications of our synthesizers will be
discussed at the end of the chapter. Two different strategies were followed.
First, we have produced synthetic song by generating audio files that can
be read by PC sound player software. Those audio files contain synthetically
generated sound pressure time series data, obtained by numerical integration
of the equations used to model the mechanisms involved in birdsong. Our
second strategy consisted of building an analog integrator of those equations,
using commercial integrated circuits. The output can be listened to by simply
connecting a loudspeaker to the electronic circuit.

7.1 Numerical Integration and Sound

In previous chapters, we derived systems of differential equations that would
allow us to compute the dynamical evolution of the variables involved. In
particular, the midpoint of a labium x and its velocity y were found to obey
(in a very simple model) a pair of first-order differential equations

ẋ = y ,

ẏ = −ε(t)x + (β(t) − b) y − cx2y , (7.1)

where ε(t) and β(t) are slowly varying temporal functions, periodic on the
timescale of the syllable, for phrases consisting of repeated syllables. The time
evolution of x and y, that is, the rule t → (x(t), y(t)), is in principle com-
pletely determined by the differential equations above, once we have chosen
an initial condition x(t0) = x0, y(t0) = y0. But how can we actually compute
the solutions x(t) = (x(t), y(t))? Analytical formulas are out of the question,
but good approximations are possible.
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7.1.1 Euler’s Method

The simplest possible method for integrating a differential equation is known
as Euler’s method . The basic idea behind it is the following. Given a function
x(t), we know that a good approximation to its derivative dx/dt (or ẋ) can
be computed from

ẋ(t0) =
x(t0 + ∆t) − x(t0)

∆t
, (7.2)

for a small enough ∆t. Conversely, given the derivative ẋ of a function x(t)
and an “initial” value of the function x(t0), we can compute an estimate of
the value of the function at a time t0 + ∆t from

x(t0 + ∆t) = x(t0) + ẋ(t0)∆t + O((∆t)2) , (7.3)

and we do know ẋ here. An approximation to the solution x(t) for all t is
achieved by concatenating steps such as this using the estimates from the
step before.

This approximation is not very good, actually, unless the time step ∆t is
extremely small. The main problem with this method is that one computes
the derivative values at the left-hand end of each time interval (tn, tn+1).
Therefore, the error is only one power of ∆t smaller than the correction. This
can be seen by continuing the expansion of (7.3), which shows that the error
is of order O((∆t)2).

An improvement over Euler’s method is to estimate the value of the deriv-
ative at other points of the interval and then take an average in order to
compute the values of the variables at time t + ∆t, an algorithm which is
known as the improved Euler method. For example, in a given step, one can
compute a trial value

xtrial(tn+1) = x(tn) + ẋ(tn)∆t (7.4)

and use it to estimate an average of the time derivative, to obtain

x(tn+1) = x(tn) +
ẋ(x(tn)) + ẋ(xtrial(tn))

2
∆t (7.5)

(notice that we know ẋ as an explicit function of x through the vector field
ẋ = f(x)). This method also gives an error that goes to zero as the time
step goes to zero. But, compared with Euler’s method, the error of our new
method tends to zero faster.

7.1.2 Runge–Kutta Methods

Another method frequently used to integrate ordinary differential equations
is known as the Runge–Kutta method. Its simple implementation uses a trial
step as before. The derivative at the begining of the interval is used to find a
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point halfway across the interval. This is our trial step. Using the derivative
at this estimated point, we advance the dynamics across the full width of the
interval. By this procedure, we obtain second-order accuracy.

We can illustrate this method with a one-dimensional example: the inte-
gration of ẋ = f(x). We define an estimate of the value of the variable at an
instant t + ∆t by

xestimated(t + ∆t) = x(t) + ∆tf

(
x +

1
2
∆tf(x)

)
, (7.6)

where f(x + 1
2∆tf(x)) is ẋ evaluated at the point x + (1/2)∆tf(x). On the

other hand, we can expand x(t + ∆t) as a Taylor series in ∆t, and use it to
compute the error,

error = ‖x(t + ∆t) − xestimated(t + ∆t)‖ . (7.7)

Expanding x(t + ∆t) as a Taylor series in ∆t, we obtain error = O(∆t3),
since the quadratic terms cancel out.

It is natural to ask then why we should not continue with the process of
estimating the time derivatives at yet more points, and obtain in that way an
approximation which is better and better for a given size of time step. There
is nothing wrong with that argument . . . except that, at some point, what
we gain on one side is lost on the other side, since many functions have to
be evaluated. A good compromise is known as the fourth-order Runge–Kutta
method, which, for a system of equations written as

ẋ = f(x) , (7.8)

estimates
xn+1 = xn +

1
6
(k1 + 2k2 + 2k3 + k4) , (7.9)

where

k1 = f(xn)∆t , (7.10)

k2 = f
(
xn +

1
2
k1

)
∆t , (7.11)

k3 = f
(
xn +

1
2
k2

)
∆t , (7.12)

k4 = f(xn + k3)∆t . (7.13)

Typically, very efficient routines are used to implement these techniques. The
interested reader is encouraged to consult classical references such as Numer-
ical Recipes in C [Press et al. 1992], which contain widely tested subroutines
that compute the quantities above. In this way, writing a code that approx-
imates the solutions of our differential equations is as easy as implementing
a loop in which, at each step, the subroutine is called.
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7.1.3 Listening to Numerical Solutions

With the methods described above, we can compute a good approximation
to the dynamics of the labial motion. As we have already discussed, the
pressure fluctuations at the input of the trachea pi(t) are the result of two
perturbations: those induced by the modulation of the airflow due to labial
motion s(x(t), y(t)), and the pressure waves that return to the base of the
trachea after being partially reflected back at the beak, pback:

pi(t) = s(x(t), y(t)) + pback(t − L/c) , (7.14)
pback(t) = −γpi(t − L/c) , (7.15)

where γ is the coefficient for internal reflection at the beak, and is equal to 1
in the ideal case of perfect reflection.

Computing x and y numerically allows us to obtain the air velocity at the
open end of the tract. In order to do so, we remember that ∇p = −ρ0∂v/∂t,
and use this relation to compute the velocity. The total pressure at a small
distance dx from the end of the tube is

ptot(x = L − dx) = pback(t − dt) + pi(t − (T − dt)) , (7.16)

where dx = c dt. Since, at the boundary, pback(t) = −pi(t− T ), we can write

ptot(x = L− dx) = −pi(t−T − dt)+ pi(t− (T − dt)) = 2
dpi

dt
|t−T dt . (7.17)

Computing the gradient from

∇pi =
0 − 2 (dpi/dt)|t−T dt

dx
(7.18)

and performing a temporal integration, we obtain the following for the ve-
locity at the open end of the tube:

v =
2

cρ0
pi(t − T ) . (7.19)

We can use the numerically computed time series representing the air mo-
tion to excite a mechanical membrane and generate a physical sound wave.
Software players actually allow you to do this: they convert numerical instruc-
tions into electrical signals at the output of a sound card, which are capable
of driving a loudspeaker. The tricky part of this procedure is to discover the
format of the file that is interpreted by the player. One of these formats is
called “wav”. In this format, the sound is represented by a string of integers
in the interval (−32768, 32767), in a binary format (i.e., each value of p is
represented by the coefficients bi, where p =

∑
bi2i). In this way, we can do

the following.

1. Integrate the equations of the labial motion x(t).
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2. Use the values of x to generate the sound pressure fluctuations and dis-
placements at the end of the tract.

3. Normalize these values and write them in binary format.

We are then ready to listen to our sounds. Windows operating systems are
distributed with a sound player among their accessories, and a variety of
sophisticated options are common. Linux is also distributed with sound play-
ers, and many distributions also come with snd, an open-source sound player,
recorder and editor.

It should be pointed out that we are working under the source–filter the-
ory, which states that a vibrating valve in the avian vocal organ is capable of
generating a multifrequency signal, which is then filtered (see Chap. 6). Are
there many bird sounds which are generated by mechanisms compatible with
this hypothesis? Pure-tone birdsong, for example, is a common phenomenon
in birds. Since these sounds are spectrally “pure”, and sound “whistled”,
many hypotheses have been proposed to account for them. For example, it
is possible to think of tube resonances coupling to a vibrating valve, sup-
pressing the normal production of harmonic overtones. In order to settle this
issue, Beckers and coworkers recorded sound signals close to the syringeal
sound source during spontaneous pure-tone vocalizations. At least for turtle-
doves, these authors could show that pure tones originate through filtering
of a multifrequency harmonic sound source [Beckers et al. 2003a].

7.2 Analog Integration

If we feel uncomfortable around computers, we can actually build an ana-
log integrator of the equations defining our model, and physically listen
to the synthetic songs by connecting it appropriately to a loudspeaker
[Reuter et al. 1999]. In this section we describe a very simple analog syn-
thesizer, built with commercial electronic components.

7.2.1 Operational Amplifiers: Adding and Integrating

Our main building block is the differential amplifier , a device with two inputs
(positive and negative, or noninverting and inverting) as shown in Fig. 7.1,
with an output voltage Vout = A (V+ − V−), where A is the gain. A special
form of differential amplifier, the operational amplifier or op-amp, is widely
used. It has an extremely large gain (typically on the order of 106). In fact,
in use, these devices are connected to power supplies of about ±15 V, which
of course bounds their amplification gain.

As described above, it would seem that op-amps are useful only for tiny
signals, but these devices are used with connecting impedances between one
of the inputs and the output, which provides a negative-feedback loop. Under
these conditions, the op-amp will operate in such a way that the following
conditions apply:
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−
output

inverting

A
+non−inverting

Fig. 7.1. A differential amplifier. The device has two inputs, V+ and V−, and an
ouput Vout = A (V+ − V−), where A is the gain of the amplifier

1. The voltages satisfy V+ ∼ V−.
2. The current into the device is negligible.

It is not complex to show that in this operating regime, the device illustrated
in Fig. 7.2a is a summing amplifier: since one of the inputs (V+) is grounded,
V− ∼ 0. Therefore, the currents through the resistances are Ij = Vj/Rj .
Since the device takes virtually no current, the sum of all those currents
passes through RF . Therefore,

V1

R1
+

V2

R2
+

V3

R3
= −Vout

RF
. (7.20)

By choosing the resistances, the output voltage can be chosen to be (modulo
an inversion) the sum of the input voltages.

outV
V 3

V 2

V 1
R 1

R 2

R 3

R F

−
A

+

outV
V in −

A
+

R

C

a)

b)

Fig. 7.2. (a) A summing amplifier. This arrangement of resistances and an op-amp
allows us to obtain an output voltage that is the sum of a number of voltages in
the circuit. (b) An integrator. By connecting a capacitor and a resistance as shown
in the figure to an op-amp, we are able to integrate the signal Vin
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A second important configuration of an op-amp, for the purpose of build-
ing our synthesizer, is the one displayed in Fig. 7.2b. The current charging
the capacitor is simply I = Vin/R, since no current enters the op-amp. On
the other hand, since V− ∼ V+ = 0,

Vin

R
= −C

dVout

dt
. (7.21)

Therefore,

Vout = − 1
RC

∫
Vin dt , (7.22)

allowing us to integrate the input signal. With these elements, we have built
an analog integrator for the simplest model describing labial motion in the
syrinx.

7.2.2 An Electronic Syrinx

In Fig. 7.3, we display an analog integrator for the system of equations under
analysis. Following the circuit clockwise from the top, we see first an arrange-
ment of an op-amp, resistor and capacitor like the one displayed in Fig. 7.2b,
i.e., an integrator. The voltage obtained is v = −(1/RC)

∫
w dt. The voltage

Va is obtained by multiplying v and an external signal ε(t), which represents
the varying tension of the syringealis ventralis muscle. The operation of mul-
tiplying can be performed by means of an integrated circuit (for example, an
AD633JN multiplier), which multiplies the signals and divides the result by

−

+
−

+

−

+

−

+

Fig. 7.3. An electronic syrinx. This device integrates by an analog method the
equations of a very simple model for the labial motions. When it is connected to a
loudspeaker, a synthetic song is generated
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a factor of 10 V. The voltage Vb is just −Va. By means of another multiplier,
we construct Vc = v2/(10V), which is in turn multiplied by w in order to
generate the function Vd = w v2/(100V2).

In the third layer of the circuit, the external function β(t)−b emulating the
cyclic changes in bronchial pressure above the linear dissipation is multiplied
by the voltage w, generating the voltage Ve = w (β(t) − b)/(10 V), which,
after an inverting amplifier, gives rise to Vf = −w (β(t) − b)/(10 V). Finally,
the voltages Vb, Vd and Vf are fed into the integrator at the top left through
R1, R2 and R3, respectively. Therefore,

w = − 1
C

∫ (
− vε(t)

R1 × 10V
+

wv2

R2 × 100V2 − w (β(t) − b)
R3 × 10V

)
dt . (7.23)

As a result, calling Vx = −v and Vy = w/(RC), we obtain

V̇x = Vy , (7.24)

V̇y = − ε(t)
RR1C2 × 10V

Vx − 1
R2C × 100V2 V 2

x Vy +
β(t) − b

R3C × 10V
Vy , (7.25)

which have the same form as (7.1), our simple model. We chose C = 0.1 µF,
R1 = 10Ω, R2 = 33Ω, R3 = 10 kΩ and R = 10 kΩ.

The integrator that we have described can be driven with our forcing
functions β(t) and ε(t), which emulate the time-varying air sac pressure and
the tension of the ventral muscles, respectively. In the implementation that
we are discussing, the amplitudes of the forcing functions can be in the order
of volts, and the frequencies in the range 1–10 Hz. For small values of the
function β(t), the voltage v basically follows the forcing, but beyond a critical
value of β(t) the voltage v displays large-amplitude oscillations, at a frequency
much larger than the forcing frequency. This activity represents the oscillation
of the labia in our problem. At this point, we say, in terms of the bifurcation
diagrams in Chap. 5, that the values of β(t) take the system into the region
of oscillations. For the values of capacitances and resistances chosen, these
rapid oscillations have frequencies in the order of kHz.

How can we visualize our integration? In a lab, a simple oscilloscope can
be used. But for a simple application such as this one, and for the ranges
of frequencies involved, the data can be downloaded to a PC by sending v
to the input of a commercial loudspeaker, the output of which is sent to a
commercial PC sound card, and the signal can be recorded by any sound
software. The free software snd , running under a Linux operating system,
and several others programs running under Windows, are good options for
analyzing the voltage time series obtained from our circuit, as well as for
processing the signals and computing their spectral properties.

In Fig. 7.4, we show the sonogram of a “composition” generated by the
device. In order to generate this audio file, four different recordings were
made. Different values of the frequency of the forcing parameters β(t) and
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Fig. 7.4. A “composition” interpreted by the electronic syrinx. Each phrase is a
repetition of a syllable. In order to generate different syllables, the frequency of the
basic perturbation was changed, as well as the phase difference between the signals
emulating pressure and tension

ε(t) were used, and the phase differences between them were varied for the
different syllable types.

In order to generate different phase differences between β(t) and ε(t),
a sinusoidal function generated by a function generator can be amplified
by means of different amplifiers such as the ones displayed in Fig. 7.5 to
produce β(t) and ε(t). In this subsection we have focused on the generation
of signals corresponding to the labial oscillations in the syrinx, disregarding
the filtering that occurs in the tract. Notice that for some species, this can be
a good approximation to the real sound (as discussed in Chap. 3), although
not for all.

The first inset of Fig. 7.5 displays the amplifier used to generate the in-
struction ε(t), emulating the gesture corresponding to changes in the tension
of the ventral syringeal muscle. By decreasing the variable resistance, the am-
plitude of the cyclic gesture was increased. This caused the synthetic sounds
to sweep a large range of frequencies. The potentiometer controls the constant
term in ε(t), and therefore the average frequency of the vocalization.

−

+

−

+− −

Fig. 7.5. These amplifiers can be used to generate two periodic functions with
a variable phase difference. An interesting way to drive this “electronic syrinx”
would be with a voltage measured by a pressure transducer connected to a cannula
inserted in an air sac, and a voltage obtained after rectifying and integrating a
voltage measured by microelectrodes inserted in the ventral muscles controlling the
frequency of the vocalization
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The cyclic gestures giving rise to syllables can be generated with a second
oscillator with the same design as the one used to emulate the labial motion,
but with R1 ≈ 2MΩ. This allows the device to run on 9V batteries, and
avoids the use of a function generator.

7.3 Playback Experiments

One of the purposes of synthesizing song is to build confidence in our mod-
els. If, by prescribing mathematical rules for the dynamics of the avian vo-
cal organ, we can emulate a behavior leading to realistic sounds, we build
confidence in our having identified the appropriate physical mechanisms un-
derlying vocal production in birds. Beyond this satisfaction, there are other
interesting possibilities for these techniques.

A complete book could be written on the communication between birds.
We are focusing in this book on the processes that they use to vocalize, but
what do they “say”? There is a wide consensus on birdsong being important
in at least two different behaviors: territorial defense and mating. Field scien-
tists test their ideas concerning these issues with a variety of techniques, one
of them being playback experiments. For example, a recorded song may be
used to persuade a bird that an intruder is in its territory. The use of either
numerical or analog simulations instead of recordings widens the range of
acoustic features that could be used in playback experiments, and provides
the experimenter with the possibility of experimenting with sounds well be-
yond what can be achieved by simply editing recordings.

Simulations can definitely play a role in experiments on learning and au-
ditory feedback. A computer connected to a loudspeaker can easily play back
a huge number of qualitatively different songs according to a prespecified
rule, throughout the learning period of a newborn songbird. There is no need
for previous song recording, nor subsequent classification and storage. Fur-
thermore, with an electronic syrinx capable of analog simulation, the experi-
menter now has the possibility of changing detailed features of the simulated
song in real time. Auditory-feedback experiments involving altered syllable
duration, altered frequency range and altered frequency evolution (even with
a downsweep changed into an upsweep) are available.

7.4 Why Numerical Work?

Most of the theoretical results discussed in the previous chapters were ob-
tained by numerical simulations of the equations describing the physical
mechanisms involved. In the previous section, we showed how to proceed
by generating of synthetic data. Is it always necesary to rely on numerical
tools to advance our understanding of the generation of birdsong?
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In general, numerical tools are needed as soon as nonlinear effects are
taken into account. Acoustics (in the regimes that we have been exploring) is
a linear theory and, therefore, complex problems can be expressed in terms
of simple problems. For example, the pressure waves established in a tube
which is forced by a complicated excitation at one end can be computed
by adding the pressure waves established when the tube is forced by a sum
of simple (harmonic) excitations at the end. Whenever the physical system
under study is linear, this procedure can be followed. In the problem of sound
generation by an oscillating device coupled to a tube, this strategy can be
followed as long as the whole system behaves linearly. For these cases, a most
useful concept can be defined: impedance.

7.4.1 Definition of Impedance

At the core of the concept of impedance lies the following feature of forced
linear oscillators: a linear oscillator forced by a harmonic function of time
will ultimately end up following the driver at the forcing frequency. However,
there will be phase lags betwen the forcing and the forced system. Also, the
amplitude of the response will depend on how similar the forcing frequency
and the natural frequency of the oscillating system are. But after a transient,
the forced oscillator will follow the forcing.

As an example, let us consider a simple harmonic oscillator, whose dis-
placement x from equilibrium is governed by the equation

m
d2x

dt2
+ b

dx

dt
+ kx = f(t) , (7.26)

whenever it is forced by a driving force f(t). An arbitrary forcing f(t) can
be decomposed in terms of harmonic functions as

f(t) =
∑

Fneiωnt , (7.27)

as discussed in Chap. 1. Since the system under study is linear, a sum of
solutions is also a solution. Therefore, the building block for understanding
the general problem (7.26) is the solution of

m
d2x
dt2

+ b
dx
dt

+ kx = Feiωt , (7.28)

where the real part of the complex forcing is Re(Feiωt) = F cos(ωt), and
therefore x is a complex variable whose real part represents the physical
displacement of the oscillator (in this section, boldface fonts are used to
indicate complex numbers). Since we know that, ultimately, the forced system
will oscillate at the same frequency as the forcing, we can propose as a solution
x = Aeiωt. The advantage of using these complex numbers is that taking a
temporal derivative is now trivial (it is simply a multiplication by iω), and
therefore we can write
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−ω2mA + iAωb + Ak = F . (7.29)

This equation allows us to compute x and v = dx/dt, since it determines
the complex amplitude A of the displacement. Notice that this gets us close
to computing the only unknown quantities of the problem: how strong the
reaction to the forcing will be (given by the modulus of this complex number),
and the relative phase between the forcing and the displacement (given by
the phase of this number). It is customary to represent this information by
computing the ratio between the complex forcing and the complex velocity
of the system,

Z =
f
v

, (7.30)

where Z is called the impedance [Kinsler et al. 1982]. In general, it is a ratio
between a complex forcing and the resultant complex speed of the system,
at the point where the force is applied. Therefore, this number allows us to
compute the velocity with which the forced system will react to a forcing.
This provides a general framework for the definition of the specific acoustic
impedance presented in Chap. 6.

7.4.2 Impedance of a Pipe

In acoustics, it is natural to use this concept to take account of situations in
which the geometry of the boundaries confines the pressure wave to a limited
region of space. If a pressure wave is established in a pipe of cross section S,
for example, we can write

p = Aei(ωt+k(L−x)) + Beiωt−k(L−x) , (7.31)

where we have assumed that the diameter of the pipe is much smaller than
the sound wavelength. This allows us to approximate the wave as a planar
wave. Using the relations described in Chap. 1 to relate the pressure to the
velocity of the air,

v = − 1
ρ0

∫
∂p

∂x
dt , (7.32)

we can compute the impedance of the system. At the end x = L, we find that

ZL = ρ0cS
A + B
A − B

, (7.33)

while at x = 0, we find that Z0 = Sp/u is given by

Z0 = ρ0cS
AeikL + Be−ikL

AeikL − Be−ikL
. (7.34)

Following [Kinsler et al. 1982], we combine these expressions to eliminate the
amplitudes A and B, writing
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Z0

ρ0cS
=

ZL/ρ0cS + i tan(kL)
1 + i(ZL/ρ0cS) tan(kL)

. (7.35)

In order to compute the input impedance of the system (i.e., the im-
pedance at x = 0), we have to compute (or estimate) the impedance at
x = L. If we are interested in a tube closed at x = L, this is really easy.
At the closed end there is no air displacement, regardless of the pressure.
Therefore, the output impedance is infinite, and we obtain

Z0 = −iρ0cS cot(kL) . (7.36)

Notice that the zeros of the impedance mean that, for a forcing with a
bounded amplitude, the velocity of the system can diverge. Therefore, we can
interpret these zeros as the resonances of the system.

This is a beautiful example of the power of linear methods . . . when they
are valid. We can obtain analytic expressions for the conditions for resonance
in terms of the system’s parameters, allowing us to understand general re-
lationships between geometry and acoustics. The problem of the open tube
can be approached similarly. Unfortunately, the condition ZL = 0 is an over-
simplification. The output impedance will be some radiation impedance (we
need some force to move the air outside the tube), which is not so easy to
compute [Kinsler et al. 1982].

In acoustics, we can define the acoustic impedance z of a fluid that is acting
on a surface area A as the acoustic pressure divided by the volume velocity
of the fluid (which is the product of the area and the particle velocity). This
quantity is useful for discussing the properties of the transmission of pressure
fluctuations through pipes of various geometries. The reason is that it allows
us to find the impedance of a complex arrangement of tubes in terms of the
impedances of the individual tubes.

Let us consider the example illustrated in Fig. 7.6, where we show a pipe
that branches into two pipes, denoted as pipes 1 and 2. Let us assume that the
branching pipes have acoustic impedances z1 and z2, and that the pressures
at the junction are P1 and P2. Finally, let us denote by P0 the pressure at
the bifurcating branch. Continuity of the pressure allows us to write

P0 = P1 = P2 , (7.37)

while the continuity of the volume velocity allows us to write

U0 = U1 + U2 , (7.38)

which, combined, allows us to write that

1
z0

=
1
z1

+
1
z2

. (7.39)

A very nice discussion of the impedances of avian vocal organs is presented
in [Fletcher and Tarnopolsky 1999]. The vocal-tract input impedances are
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P , U , z0       0     0

P , U , z1       1     1

P , U , z2       2     2

Fig. 7.6. The acoustic impedance of a branching pipe

computed as a function of the frequency, and the impedances of beaks are
also discussed. A nice study of vocal-tract function in birdsong produc-
tion, with manipulation of beak movements, was presented by Hoese et al.
[Hoese et al. 2003].

It is possible to solve a source model to generate a harmonically rich sound
signal. The volume velocity can be computed, and the component of the sound
pressure associated with each harmonic component of the volume velocity can
be easily obtained by just multiplying it by the proper impedance. However, a
word of caution is needed. In this procedure we have assumed that the system
under study is linear (the passive acoustic tract), and that the nonlinear
system is uncoupled from our linear system. We are not concerned with how
the spectrally rich signal that is injected into our linear problem is generated.
But we must keep in mind that as soon as the tube and the nonlinear sound-
generating sources are coupled, the system as a whole is nonlinear. At this
point, direct integration of the source dynamics plus boundary conditions
is needed, since the whole concept of impedance relies on the assumption
that the forcing and the forced system will end up oscillating with the same
frequency.

With these building blocks, some very interesting problems can be ad-
dressed. Recently, Fletcher et al. [Fletcher et al. 2004] analyzed the “coo”
vocalizations of ring doves. These birds generate sounds through a mecha-
nism that differs from those described so far. They produce a vocalization that
consists basically of a pure tone of relatively low frequency (around 600 Hz).
The most remarkable aspect of this vocalization is that it is produced with the
beak and nostrils closed. While the bird produces this vocalization, it inflates
the upper part of the esophagus, and it is this “sac” what radiates the sound.
The use of impedances allowed Fletcher et al. to settle several issues. They
established the plausibility of the trachea–glottis–inflated-esophagus system
being a band-pass filter, and they showed that the inflated esophagus is a
more efficient sound-radiating mechanism than the open beak.
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In the last few years there has been enormous progress in the understand-
ing of the brain structure of birds. At least, this is the case for song-
birds, which constitute some 4000 of the approximately 10 000 species of
birds known to exist. The reason for such interest is that, for these species,
the learning of song has many parallels with the acquisition of speech by
humans [Doupe and Kuhl 1999]. Notice that we write “speech” and not
“language”, since there is no evidence of birds using their songs in a com-
binatorial way in order to convey flexible syntactic content like that char-
acterizing human speech. However, songbirds require (as do humans) a
tutor whose song is memorized in the early stages of life [Thorpe 1961,
Marler 1970, Nottebohm 1970]. Later, they try to reproduce the songs previ-
ously memorized, correcting their vocalizations thanks to an auditory feed-
back [Konishi 1965]. For this reason, songbirds have been used as a test bench
on which fundamental aspects of a complex learned behavior can be studied.
This has led to the accumulation of an important amount of information on
the physical substrate of these operations. This will allow us to advance fur-
ther in our discussion, establishing the place in the brain where the precise
gestures (responsible for the execution of the commands driving the vocal
organ in order to produce a song) are controlled.

The fundamental operations involved in song learning (memorization of
the song of the tutor, auditory feedback from different attempts leading to
corrections, etc.) are interesting and sophisticated. For this reason, detailed
experiments have been performed in order to determine whether there were
specific neural circuits that would serve as the physical substrate. The first
step consisted in describing morphologically the brains of songbirds. From
these studies, we learned that there are sets of neurons (called nuclei) clearly
grouped into different regions in the brain, interconnected in a very complex
way through long axons. The way in which knowledge was generated about
the role played by these nuclei was basically through the study of behavioral
changes after localized lesions. As much as they help us, however, classifica-
tions can be dangerous. We shall say in this chapter that two major pathways
organize these nuclei, running the risk of caricaturing a most complex biolog-
ical device. In any case, it is well established in the field that a set of nuclei
is necessary to generate song. Systematic studies on lesioned birds indicate
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that without these nuclei, the birds cannot vocalize. For this reason, these
nuclei are said to be part of the motor pathway. Another set of nuclei con-
stitute the anterior forebrain pathway. These nuclei can be lesioned without
an immediate degradation of the song. However, lesions of these nuclei affect
the bird’s ability to learn or maintain the vocalizations. Let us describe some
features of these pathways.

8.1 The Motor Pathway

It was through lesions and observation of behavior that the nuclei involved in
the generation of motor activities responsible for the production of song were
identified [Nottebohm et al. 1976]. The “motor pathway” is constituted by
two nuclei, called HVC and RA (robustus nucleus of the archistriatum). HVC
sends instructions to RA, which in turn sends instructions to several nuclei:
the tracheosyringeal motor nucleus nXIIts, which innervates the syringeal
muscles, and a set of respiratory nuclei (among which we find the expira-
tory premotor nucleus retroambigualis RAm), which innervates the muscles
involved in respiration (see Fig. 8.1). HVC and RA are necessary for song
production. Lesions in them lead to the suppression of song. The specific func-
tion of each nucleus is more difficult to unveil. However, there is evidence of
a hierarchical organization in the brain. Microstimulation of HVC is followed
by interruption of singing and restarting of song, while microstimulation of
RA disrupts only the syllable being sung [Yu and Margoliash 1996].

Observed from the peripheral system, the motor pathway has to generate
cyclic instructions to drive the syrinx and the respiratory system. Moreover,
in order to generate the diversity of syllables within a song, the motor path-
way has to be capable of generating a diversity of phase differences between
these oscillations, as discussed in Chap. 5. How does it do this? First of all,
RAm and nXIIts, the brain stem structures most directly involved in phona-
tion since they are the nuclei involved in locking expiratory activity and
controlling the syrinx, are driven by projecting neurons in different regions
of RA [Spiro et al. 1999]. Since RAm also projects onto nXIIts, the phase
difference between the respiratory and syringeal gestures will depend on both
the nature of this connection and the pattern of activity within RA.

The RA nucleus is innervated by excitatory projection neurons from the
HVC nucleus. Just as RA is closely tied to the peripheral motor system, HVC
is supposed to have connections with higher-level nervous-system functions
[Yu and Margoliash 1996, Suthers and Margoliash 2002]. A song is organized
in terms of minimal continuous utterances that we call syllables, combined
with quiet periods, to build motifs. It has been proposed that this hierarchy in
the song has a neural correlation, on the basis of the observation that electri-
cal stimulation of HVC causes a resetting of the motif being sung, while stimu-
lation of RA causes a distortion of the vocalization [Yu and Margoliash 1996].
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This suggests that the HVC activity is sequenced to orchestrate the produc-
tion of syllables and motifs, so that interrupting its progress during such a
sequence causes a reset or reinitiation of the activity. It also suggests that RA
is a “junction box” where HVC signals are combined to produce song, but
does not itself initiate or command the song. The connections in the “junc-
tion box” can be altered by modification of its input connections from HVC
and the anterior forebrain pathway, so song production can be influenced in
RA but not started there.

Work on zebra finches (Taeniopygia guttata) has analyzed in detail the
exact time relation between the firing of neurons in HVC and RA during
song [Hahnloser et al. 2002]. This work has shown that during the vocaliza-
tion of a motif, lasting approximately 1 s, a given RA-projecting neuron in
HVC is active only during one window of temporal size 6.1 ± 2 ms in this
motif, and produces 4.5 ± 2 spikes in that temporal window. If a motif is
repeated, each HVC neuron will repeat its spiking in the same time window.
On the other hand, RA neurons generate highly stereotyped sequences of ac-
tion potential bursts, typically a few bursts of approximately 10 ms duration
per motif, well time-locked with parts of syllables [Chi and Margoliash 2001].
The picture emerging from these experiments is that during each time win-
dow in the RA sequence, RA neurons are driven by a subpopulation of
RA-projecting HVC neurons which are active only during that window of
time [Hahnloser et al. 2002]. These experiments suggest that the premotor
burst patterns in RA are basically driven by the activities of HVC neurons
[McCasland 1987]. In that case, the architecture of the connectivity between
the HVC nucleus and the RA nucleus will determine the complex patterns of
activity in the RA neurons. Additional nuclei afferent to HVC are likely to be
part of the motor pathway. One of these, the nucleus interfacialis (Nif), seems
to be critical at the moment of generation of the basic oscillations which even-
tually drive HVC into generating the sparse activity that ultimately drives
the syrinx.

8.2 The AFP Pathway

A second set of interconnected nuclei is the anterior forebrain pathway
(AFP), also shown in Fig. 8.1. It connects indirectly the nuclei HVC and
RA. In contrast to the motor pathway, the AFP contributes only minimally
to the production of song in adults [Brainard and Doupe 2000]. However,
it has been shown that lesions to these nuclei during learning profoundly
alter the bird’s capability for developing normal song [Bottjer et al. 1984,
Scharff and Nottebohm 1991]. Three nuclei are part of the AFP: area X, the
medial nucleus of the dorsolateral thalamus (DLM) and the lateral magno-
cellular nucleus of the anterior neostratum (lMAN). The way in which this
system operates during learning is not known. The motor pathway and the
AFP are not isolated. Some neurons in RA receive signals from both HVC
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Fig. 8.1. Schematic sagittal view of the brain. The areas shaded black are necessary
for adult song production, whereas the white areas are necessary for normal song
development, but not adult song production. The solid arrows show the motor
control pathway, while the dashed arrows show the anterior forebrain pathway, or
AFP. Modified after [Spiro et al. 1999]

and lMAN. lMAN sends to RA (part of the motor pathway) either the error
correction or the reinforcement signal during learning that will eventually
contribute to the reconfiguration of the connections within the motor path-
way. It is known that both the AFP and its connections to RA undergo
regressive changes as the sensitive period ends (the sensitive period being
the time in which the bird “learns” what it will eventually imitate), but the
global picture is still incomplete.

8.3 Models for the Motor Pathway: What for?

When we described the physical processes involved in the generation of bird-
song, we wrote down models based on first principles of physics. Can one
model in neuroscience? What for? There are two main reasons to attempt
to model the electrical activity of a brain when it is controlling singing. The
first one is conceptual in nature. In the process of writing down a quantita-
tive model for the voltages to be measured in the neurons involved, we realize
how complete or incomplete our conceptual models are. We can, for exam-
ple, write down differential equations for the voltages using the celebrated
Hodgkin–Huxley equations, and test whether, for the measured neural con-
ductances, the system generates patterns of activity like the ones measured.
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In that respect, modeling can support conceptual models developed from
direct experiments on one or a few neurons. But beyond that, neurons are
highly nonlinear devices, and whatever smart conceptual model might be
developed from experiments, it is very hard (in fact, impossible) to predict
the dynamical responses that the nuclei will display by just using “intuition”.
Quantitative modeling can translate conceptual models into mathematical
prescriptions with explicit dependences on parameters that can help turn
conjectures into testable theories. On the other hand, modeling brains or nu-
clei remains a formidable challenge today. It is not only that computers are
slow for the task. Maybe more important, there is no qualitative theory of
extended nonlinear systems that could allow us to interpret the simulated
information. In any case, while we wait for the architects to arrive, we shall
describe the bricks.

Any modeling of brain activity will probably begin by writing equations
for the time evolution of the membrane voltages of the neurons involved. The
voltage is a variable that controls several biophysically relevant processes
at the cell level, and is easy to measure [Koch 1999]. Just as an illustra-
tion, we shall write down the equations describing the dynamics of a simple
arrangement of excitable units capable of displaying the activity in the mo-
tor pathway that we described above. This arrangement falls short of being
a model of HVC since no realistic architecture or number of neurons will
be included, but its building blocks have been chosen in such a way that
the neural responses lie within realistic ranges. We also think that the level
of description is a good compromise between simplicity and the parametric
realism that could eventually help in real modeling efforts.

8.3.1 Building Blocks for Modeling Brain Activity

The majority of the cells in the nuclei that we have described in Sect. 8.2 gen-
erate brief voltage pulses, or spikes. These are generated in or close to the cell
body, and propagate along the axon with little deformation. The ionic mech-
anisms that originate the spikes were first studied by Hodgkin and Huxley
in the squid giant axon [Hodgkin and Huxley 1952]. These were translated
into celebrated phenomenological equations that are still used to model spike
generation in the nerve cells of both invertebrates and vertebrates.

The model basically assumes that the cell membrane can be characterized
by a capacitance CM due to its capacity to hold ionic imbalances with respect
to the extracellular space. However, the difference of potential V between
the interior and the exterior of the cell can evolve in time as ions cross the
membrane through specific channels. Since the total membrane current is the
sum of ionic and capacitive currents [Hodgkin and Huxley 1952] and must be
zero because there cannot be a net buildup of charge on either side of the
membrane, then

Iionic + CM
dV

dt
= 0 . (8.1)
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The difficult part in this approach is the titanic work needed to unveil the
nature of the currents Iionic. Hodgkin and Huxley were capable precisely of
writing down phenomenological models for these.

The two major voltage-dependent ionic currents involved in the gener-
ation of spikes are a sodium current and a potassium current. These are
characterized by conductances GNa and GK , respectively. A smaller “leak”
current, characterized by GL, is also important in the description. Therefore,

Iionic = INa + IK + IL , (8.2)

where
Ii = (V − Ei)Gi(V, t) . (8.3)

Here Ei are reversal potentials, typical of each of the ionic species (i =
Na, K, L). The conductances Gi(V, t) are typically expressed as products
of maximum values gi and nonlinear functions of coefficients that describe
macroscopically the fraction of open ionic channels.

The equations end up being quite intimidating, but the dynamics dis-
played by such a system are not complex to describe, at least for one unit.
The most remarkable property of the axonal membrane is its capacity to re-
spond in two qualitatively different ways to depolarizing perturbations. What
could be the origin of these perturbations? In its natural environment, the
origin is the currents that occur when neurotransmitters are released by an-
other neuron in a synapse, and ionic channels are opened. The qualitatively
different responses can be described as either (a) a small depolarization fol-
lowed by a return to the resting potential, or (b) a pulse-like action potential,
whose shape is somewhat independent of the perturbation. The last response
will occur whenever the perturbation exceeds a threshold.

In order to communicate, neurons have specialized contact zones called
synapses. In what is known as a chemical synapse, a spiking presynaptic
neuron releases neurotransmitters, chemicals which are capable of opening
channels that allow the passage of ions through the membrane of a post-
synaptic neuron. When the synapse is an excitatory one, the postsynaptic
membrane potential rapidly depolarizes, finally to return to its rest value.
When the synapse is inhibitory, a hyperpolarization takes place. Therefore,
the result of spiking activity in a presynaptic neuron is reflected in the onset
of a postsynaptic current

Isyn = (V (t) − Esyn)Gsyn(Vpre, t) , (8.4)

where Gsyn(Vpre, t) is determined by the presynaptic state. The details of the
function Gsyn(Vpre, t) depend on the nature of the synapse. Most of the fast
excitatory synapses are regulated by a neurotransmitter called glutamate,
and various receptors are sensitive to it (with different synaptic properties
associated with different receptors). The inhibitory synapses are regulated by
γ-amino butyric acid (GABA), the most common inhibitory neurotransmitter
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in invertebrates and vertebrates. In order to take into account the effect of
the synapse in our model, a current such as that in (8.4) should be added to
(8.1).

The details of these models can be found in a vast literature on computa-
tional neuroscience [Koch 1999]. We would like to point out at this point that
the simplicity of the description of the dynamics that one neuron can display
(its excitable nature) can be misleading. Once several units are coupled, a
wide variety of complex dynamics can be found. We can couple bidirection-
ally an excitatory neuron with an inhibitory one, and oscillations can take
place [Hoppensteadt and Izhikevich 1997]. We can couple a simple neural os-
cillator to a third neuron, and a variety of subharmonic dynamics can be
found [Feingold et al. 1988, Sigman and Mindlin 2000]. It is not our inten-
tion to intimidate the reader with the complexity that can emerge out of
coupling excitable systems, but just to stress that endless complex labyrinths
can be built with these simple building blocks.

8.4 Conceptual Models and Computational Models

It is experimentally well supported that the RA-projecting neurons of HVC
burst sparsely during a motif. These units will then recruit neurons in RA,
following an architecture of connections which will, in part, be responsi-
ble for the acoustic features of the song produced [Abarbanel et al. 2004a,
Fee et al. 2004].

In Fig. 8.2, we display a schematic picture of this conceptual model. A set
of excitatory and inhibitory units represents a subpopulation of HVC neurons,
some of which project to the nucleus RA. This nucleus is represented by a set
of excitatory and inhibitory units, the excitatory ones with local connections
and the inhibitory ones with long-range connections.

One can also translate this picture into a computational model, in which
the equations described in the previous section are computationally imple-
mented in order to emulate the dynamics of the variables describing the
activities in the nuclei. In Fig. 8.3, we show an example. The time evolution
of the voltages in two RA-projecting HVC neurons is displayed in Fig. 8.3a.
These two excitatory units were connected to an inhibitory one. Unless ex-
ternally forced, these excitatory units did not fire. The connections between
these two units were such that the second unit would spike if the first one
did. Then, both units were connected to one neuron in RA, and the resulting
activity is displayed in Fig. 8.3b. This architecture allows us to reproduce ex-
perimentally observed data, in which sparse spiking activity in HVC recruits
neurons in RA.

Reproducing an experimental result is an important first step in a model,
since it builds confidence in the plausibility of the proposed mechanisms.
However, models exhibit their usefulness when they allow us to explore new
regimes not yet experimentally observed. A simulation on a larger scale could
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Fig. 8.2. A schematic illustration of the connection between excitable units in the
nuclei HVC and RA. Inhibitory neurons are represented by squares, and excitatory
neurons are represented by circles. HVC units are white, and RA units are shaded
gray. Square and round connections represent inhibitory and excitatory connections,
respectively. For the sake of clarity, only a few representative units and connections
are shown

be attempted, using the architecture shown in Fig. 8.2. What equations allow
us to “translate this picture into a computational model”?

8.4.1 Simulating the Activity of HVC Neurons

In order to generate Fig. 8.3, we integrated conductance-based equations for
the membrane voltages of HVC and RA neurons. In this and the following
subsections, we write these equations down. The arrangements of neurons
used to emulate the behavior of the nuclei are much simplified. However, this
simplification will give us an insight into the way to proceed in order to carry
out this kind of simulation.

We write the equations for a set of NHV C HVC → RA projection neurons,
denoting the time-dependent membrane potential for the jth HVC excita-
tory neuron by VHj , where j = 1, 2, . . . , NHV C . This potential satisfies the
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Fig. 8.3. The voltage of two units emulating neurons in HVC (a), and the voltage
of a unit emulating a neuron in RA (b). Adapted from [Abarbanel et al. 2004a]

Hodgkin–Huxley (HH) equation

CM
dVHj

dt
= Ij

L + Ij
Na + Ij

K + Ij
HE + Ij

HI , (8.5)

where we have included the leak, sodium and potassium currents in the fash-
ion described in the previous section. In addition, a synaptic current IHE

from the previous excitatory unit is considered, as well as a synaptic current
IHI from the single inhibitory unit. When isolated, each excitatory HVC neu-
ron is silent and has a resting potential of approximately −65 mV. Leak and
ionic currents are constructed, as before:

Ij
L = (EL − VHj)G

j
L , (8.6)

Ij
Na = (ENa − VHj)G

j
Na , (8.7)

Ij
K = (EK − VHj)G

j
K , (8.8)

where ENa and EK are the equilibrium potentials of the corresponding ionic
currents, and EL is the equilibrium potential for the leakage current. Gj

L is
the (constant) conductance for the leak current, and Gj

Na and Gj
K are the

voltage-dependent, ion-specific channel conductances, which are given by

Gj
Na(VHj) = gNam3

jhj , (8.9)

Gj
K(VHj) = gKn4

j , (8.10)
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where gNa and gK are the (constant) maximum conductances. The sodium
and potassium activation and sodium inactivation variables mj , nj and hj ,
respectively, satisfy the usual first-order kinetics:

dxj

dt
= (1 − xj)αx − xjβx , (8.11)

where x stands for m, h or n. The reader may be surprised at the exotic
dependence on m3h and n4. These variables were phenomenologically intro-
duced by Hodgkin and Huxley (a discovery that was worth a Nobel Prize
ten years after its publication), and only later were associated with the fun-
damental subunits that form the channel. The functions αx = αx(VHj) and
βx = βx(VHj) are given in Table 8.1.

As stated in the previous section, the synaptic currents are analogous to
the ionic currents, although the corresponding conductances are constructed
in a somewhat different way:

Ij
HE = (EE − VHj)g

j
HES(VH(j−1)) , (8.12)

Ij
HI = (EI − VHj)g

j
HIS(VHI) . (8.13)

Here, the function S(Vpre), which depends on the membrane voltage of the
presynaptic neuron Vpre, represents the fraction of postsynaptic receptor
channels that are open in response to the binding of excitatory or inhibitory
neurotransmitters, and gHE and gHI are the (constant) maximum conduc-
tances of these channels. S(Vpre) is taken to satisfy the first-order kinetics

dS

dt
= (1 − S)αS(Vpre) − 0.2275S , (8.14)

where the function αS(Vpre) is given in Table 8.1. The equation for S(Vpre)
has the property of having two different time constants: the fraction of open
postsynaptic receptor channels rises with a larger time constant when the
presynaptic voltage rises, as during an action potential, and decreases with a
smaller time constant when the presynaptic voltage decreases to its resting
value.

In addition to the excitatory RA-projecting neurons, our minimal set
of HVC units contains an inhibitory neuron. Analogously to the excitatory
neurons, the membrane voltage VHI(t) of the inhibitory neuron satisfies an
HH equation,

CM
dVHI

dt
= IHI

L + IHI
Na + IHI

K + IHI
HE . (8.15)

Leak, sodium and potassium currents are considered, as before:

IHI
L = (EL − VHI)GHI

L , (8.16)
IHI
Na = (ENa − VHI)GHI

Na , (8.17)
IHI
K = (EK − VHI)GHI

K , (8.18)
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Table 8.1. Summary of constants and functions for the HVC–RA model. v =
V − Erest is the deviation of the membrane potential from its resting value (in
units of mV); the functions αx and βx are in units of ms−1; the conductances g, Γ0

and γ0 are in units of mS/cm2; the potentials Ex and Vpre are in units of mV; and
the current IDC is in units of µA/cm2

αm = 0.1
25 − v

exp ((25 − v)/10) − 1

βm = 4 exp
(−v

18

)
αh = 0.07 exp

(−v

20

)
βh =

1

exp ((30 − v)/10) + 1

αn = 0.01
10 − v

exp ((10 − v)/10) − 1

βh = 0.125 exp
(−v

80

)
αS = 0.15

1

1 + exp(10 − Vpre)

gNa = 120

gK = 36

gL = 0.3

gj
HE = 17.7

gj
HI = 7.5

gHI
HE = 10.5

gk
RI = 75

gRI
RE = 7.5

gRI
HE = 5

Γ0 = 18.62

γ0 = 3.5

EL = −64

ENa = 50

EK = −95

EE = 0

EI = −80

IDC = 1.93
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where GHI
L is the constant conductance for the leak current. The voltage-

dependent sodium and potassium conductances are given by

GHI
Na = gNam3

HIhHI , (8.19)
GHI

K = gKn4
HI , (8.20)

where the dynamics of the activation and inactivation variables mHI , nHI

and hHI are given by (8.11). The last term on the right of (8.15) represents
the input to the inhibitory unit from all the excitatory HVC units in the
model. It is a sum of synaptic currents and is given by

IHI
HE = (EE − VHI)gHI

HE

NHV C∑
j=1

S(VHj) . (8.21)

The resting potential of the isolated inhibitory HVC neuron is ∼ −65 mV.
Equations (8.5)–(8.21) describe a set of excitatory HVC neurons which are

connected in a feed-forward fashion (so that activation of neuron j = 1 excites
j = 2 and so forth to j = NHV C , with S(VH0) = 0), plus an inhibitory neuron
connected to each of them. We use constants guaranteeing that an initial
excitation of the first unit will excite the remaining units sequentially. When
gHI �= 0, the inhibitory neuron receives excitatory input in a global fashion
from the excitatory HVC neurons, and each excitatory HVC neuron receives
inhibition as well as sequential excitation. The parameters of the system are
adjusted so that the activity of an RA-projecting HVC unit consists of 4 to
7 spikes [Hahnloser et al. 2002].

8.4.2 Simulating the Activity of RA Neurons

A similar procedure can be carried out for the simulation of the activities of
the RA neurons. The kth excitatory RA neuron also satisfies an HH equation,
with the addition of input synaptic currents from the HVC population and
from the inhibitory RA interneuron, as well as excitatory connections from
other excitatory neurons within RA. The membrane voltage of the kth RA
excitatory neuron, VRk(t), where k = 1, 2, . . . , NRA, satisfies

CM
dVRk

dt
= Ik

L + Ik
Na + Ik

K + Ik
RI + Ik

RE + Ik
HE + IDC , (8.22)

where, again, we have the usual leak, sodium and potassium currents, as
well as the synaptic currents Ik

RI from the single inhibitory RA neuron and
Ik
RE from several other RA excitatory neurons. In addition, HVC → RA

connections are considered: input from several excitatory HVC neurons is
represented by the synaptic current Ik

HE . With the constant current IDC

also present, these excitatory units in RA display, before HVC activity starts,
spontaneous spiking at approximately 20 Hz.
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The input from the single inhibitory RA neuron, analogously to (8.13), is
given by

Ik
RI = (EI − VRk)gk

RIS(VRI) , (8.23)

while the input from other excitatory RA neurons is built up as a sum of
synaptic currents like those given by (8.12):

Ik
RE =

NRA∑
k′=1;k′ �=k

Γkk′S(VRk′)(EE − VRk) . (8.24)

The matrix Γkk′ determines the strength of the connections among excita-
tory neurons within RA. Following Spiro and coworkers [Spiro et al. 1999],
we consider only matrix elements between closely neighboring units to be
different from zero (i.e., units within the same subpopulation of units that
controls either tension or respiratory activity). This reflects the local nature
of the connectivity of excitatory units within RA. In order to account for
this, we take Γkk′ = Γ0Akk′ , with a constant Γ0 and Akk′ being a matrix
with entries of 0 and 1.

Analogously, input from excitatory HVC neurons is taken into account
by means of the term in (8.22):

Ik
HE =

NHV C∑
j=1

γkjS(VHj)(EE − VRk) . (8.25)

The matrix γkj dictates the strength of the synaptic connections between
HVC and RA neurons, and is given by γkj = γ0Bkj , with a constant γ0 and
Bkj being a matrix with entries of 0 and 1. These connections have been care-
fully studied, and the results reported in the literature. Optical methods have
been applied to describe how these connections evolve and are rearranged
as learning takes place [Herrman and Arnold 1991]. More recently, the pre-
cise receptors used in the connection from HVC to RA have been described
[Stark and Perkel 1999]. This study indicates that both AMPA and NMDA
receptors play a role in the connectivity between HVC and RA, although the
contribution of NMDA-mediated synaptic currents decreases as maturation
takes place.

The membrane voltage VRI of the single inhibitory RA neuron is given
by the following HH equation:

CM
dVRI

dt
= IRI

L + IRI
Na + IRI

K + IRI
RE + IRI

HE . (8.26)

The usual leak, sodium and potassium currents are considered here. Connec-
tions from all excitatory RA neurons and all excitatory HVC neurons are
represented by

IRI
RE = (EE − VRI)gRI

RE

NRA∑
k=1

S(VRk) (8.27)
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and

IRI
HE = (EE − VRI)gRI

HE

NHV C∑
j=1

S(VHj) , (8.28)

respectively, which are analogous to (8.21).
Equations (8.22)–(8.28) thus describe a set of interconnected RA excita-

tory neurons which are driven by connections from HVC neurons and are
inhibited by the inhibitory RA neuron. The inhibitory RA neuron, in turn,
is driven by synaptic input from all the RA excitatory neurons, as well as by
projection neurons in HVC.

8.4.3 Qualitative Predictions

In principle, if the purpose of the computational efforts in this field was to
reproduce observed behavior, one could argue against their utility. However,
models are useful when they allow us to go beyond integrating disparate
data. They are useful when they allow us to predict new dynamical regimes,
or behavior in regions of parameter space unexplored experimentally. Ideally,
they could point to situations worth exploring. The paramount complexity
that can in principle be expected in networks of coupled excitable units allows
us to predict that the activity in this field has hardly started.

The authors of [Abarbanel et al. 2004a] explored the dynamics displayed
by this mathematical model of the simple neural circuit used to represent
the motor pathway. In particular, they found that when the syllabic fre-
quency was very high, the average activity of RA (obtained after simulating
the dynamics of individual neurons by means of conductance models) showed
subharmonics. Abarbanel and coworkers described a period-two solution (i.e.,
the patterns of neural activity in the nucleus repeat themselves after twice
the period of the forcing that activates the neural circuit representing HVC).
If the respiratory nuclei and nXIIts nucleus were simply to follow the activity
of the different subpopulations of RA that project onto them, we could link
this result with the observation that in some species there is an alternation
of very similar syllables [Laje and Mindlin 2002]. In fact, this is not neces-
sarily the case. These nuclei are also built from excitable units, and they are
interconnected. But these models have predicted complex dynamic responses
emerging from interaction between simple instructions and a complex con-
nectivity of nonlinear units.

8.5 Sensorimotor Control of Singing

Between the song box that we have discussed throughout this book and the
forebrain nuclei that we described in the previous sections, there is still a set of
nuclei that constitute the brain-stem respiratory–vocal system [Wild 2004].
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One of these nuclei is the tracheosyringeal motor nucleus (nXIIts), which
innervates the syrinx. A second nucleus of this set is the retroambigualis
nucleus (RAm), which innervates both nXIIts and the spinal motor neu-
rons which control the expiratory muscles. In birds, both inspiration and
expiration are correlated with the activity of specific sets of muscles. The
parambigualis nucleus (PAm) has neurons with activity correlated with in-
spiration [Wild 2004]. How do these nuclei interact? On one hand, the nuclei
associated with inspiration and expiration (PAm and RAm) will inhibit each
other. On the other hand, there is feedback from the air sacs to these nuclei
via the vagus nerve (NX). Intrapulmonary CO2 receptors are innervated by
vagal afferents, as well as sensors of air sac volume [Wild 2004]. The vagal
nerve then projects to the tractus solitarius nucleus, which then projects to
PAm. We describe this complex structure to point out that the song system
should not be thought of as a music box, where a neural script forces a passive
peripheral system. On the contrary, the brain-stem nuclei are modulated on
one hand by the forebrain nuclei, and on the other hand by peripheral inputs
that act in a feedback manner. Experience has shown that forced nonlinear
systems can display quite complex behavior. This should prepare us to expect
a rich class of phenomena and sound features which are not just the result
of a complex musical script written in forebrain nuclei, but are a result of an
interaction between the script and the instrument itself.

8.6 Computational Models and Learning

The genetic constraints on song are sufficiently loose in oscine songbirds,
hummingbirds and parrots that song acquisition requires an imitation process
[Nottebohm 2002b]. However, the processes involved in learning are not com-
pletely known. In this area, we are not referring to details: there is a wide
range of phenomena which probably play complementary roles in the process
of learning, beyond reinforcement or weakening of connections between the
neurons of the motor pathway [Nordeen and Nordeen 1997].

Maybe one of the most surprising processes involved in learning is neuro-
genesis, i.e., the birth of neurons. Biologists usually assume that this oc-
curs in the developing embryo or at a young age. One of the scientific
statements that biologists have conveyed to the general public is that neu-
rons in adults cannot be replaced if damaged. For this reason, the observa-
tion that Nottebohm and coworkers reported in the 1980s was revolution-
ary [Nottebohm et al. 1986, Nottebohm 2002a]: they described anatomical
changes in the brain which were correlated with developmental changes in
song. New neurons were being detected in the brains of adult canaries. But
what was really suggestive was that Nottebohm and Alvarez Buylla were
able to follow the geometrical paths within the brain followed by these new
neurons, and found that they migrated precisely to HVC, one of the nuclei
of the motor song system [Alvarez-Buylla and Nottebohm 1988]. A fraction
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of the migrating cells reached the target and developed functional connec-
tions to other neurons in HVC [Burd and Nottebohm 1985]. To make the
picture even more suggestive, many of these new neurons developed projec-
tions to RA [Nordeen and Nordeen 1988]. As Catchpole and Slater point out
[Catchpole and Slater 1995], there are species in which neurogenesis is not
accompanied by changes in the song, as is the case with the zebra finch.
Unquestionably, there is an important mechanism to be revealed relating
neurogenesis and learning. However, it might not be the only neural process
involved in learning.

As we have discussed, there is an indirect connection between the HVC
and RA nuclei. It is known as the anterior forebrain pathway, and does not
participate in the production of song, but plays a crucial role in learning.
The output of this pathway is the lateral magnocellular nucleus of the an-
terior neostriatum. A series of experiments has suggested that this nucleus
responds if some error is detected [Bottjer 2002]. Individual RA neurons re-
ceive inputs from both lMAN and HVC, which is consistent with the picture
that experience-related lMAN activity facilitates certain HVC–RA synapses,
helping to build the neural architecture necessary to produce the adult song.

According to this picture, a sequence of bursts generated at an RA-
projecting HVC neuron will induce some activity in RA, and also eventu-
ally induce an activity in lMAN that will lead to either the potentiation
or the depression of the connection. This signal, however, requires a time
for processing through the AFP, which has been estimated as approximately
40 ms [Kimpo et al. 2003]. Abarbanel and coworkers [Abarbanel et al. 2004b]
presented a biophysical model for the heterosynaptic facilitation mechanism
described above, assuming a sparse activity in the RA-projecting HVC neu-
rons like that reported in the literature [Hahnloser et al. 2002]. Abarbanel
and coworkers showed that long term potentiation (LTP) is possible pre-
cisely if the delay between the presynaptic activity of the HVC connection
and the presynaptic activity arriving from lMAN is less than or equal to
40 ms. Therefore, the estimated processing times of the AFP allow the sys-
tem to operate in a regime in which either LTP or long term depression (LTD)
can be easily achieved through minimal dynamical changes. The basic idea
is that a change in calcium concentration in an RA cell can lead to changes
in the conductance of the HVC–RA synapses, and that this change in con-
centration can be induced by the arrival of bursts of action potentials from
HVC and lMAN, separated by specific intervals of time (∆T ). The model is
computational: it describes the time evolution of the membrane potential of
an RA neuron by a conductance model

CM
dV

dt
= gL(EL − V (t)) + INMDA

HV C + IAMPA
HV C + INMDA

lMAN , (8.29)

where the “leak” current drives the neuron to V = EL in the absence of
signaling from HVC or lMAN, CM is the membrane capacitance per unit
area, and the currents are synaptic currents induced by activity in lMAN or
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HVC through specific channels known as AMPA and NMDA. According to
numerical simulations, a sparse burst in HVC can induce a depolarization of
a postsynaptic RA cell. Later activity in an lMAN neuron connected to the
same RA cell can induce the entrance of calcium, as long as the cell is still
depolarized (since depolarization unblocks the channels used by the calcium
to enter the cell). If the concentration of calcium changes the conductance
of the HVC–RA synapses [Abarbanel et al. 2002], this process might also be
of importance in the learning process. Suggestively, the model predicts that
LTP is possible precisely if the delay between the presynaptic activity of
the HVC connection and the presynaptic activity arriving from lMAN is less
than or equal to 40 ms: precisely the estimated processing time of the AFP
[Abarbanel et al. 2004b]. Since for delay times slightly above this value, there
is an interval of delay times for which LTD occurs, the system operates in a
regime in which either LTP or LTD can be easily achieved through minimal
dynamical changes.

This model illustrates the lights and shadows of computational models.
It integrates anatomical and physiological information, and suggests a mech-
anism for learning: changes in the AFP processing time can strengthen or
weaken the connections from HVC to RA. It is worth noticing that a compu-
tational model of a realistic learning network mimicking these nuclei does not
exist. The nature of the coding of lMAN is not known, and only experiments
will enlighten this crucial issue.

8.7 Rate Models

The construction of computational models can also be useful for demonstrat-
ing theoretically the plausibility of a given mechanism. This was the case
in [Doya and Sejnowski 1995], in which a reinforcement model of birdsong
learning was conjectured. In this example, the biology inspires the elements
used to build the conjectured algorithmic processes.

Another interesting example of this procedure was carried out by Troyer
and Doupe [Troyer and Doupe 2000a, Troyer and Doupe 2000b]. These au-
thors proposed an associational model of birdsong learning, guided by well-
characterized functional anatomy. The model was designed to test the plau-
sibility of a precise set of hypotheses, among them that the AFP pathway
plays an important role in the comparison between the bird’s vocalization
and a previously memorized template. The issue is not minor, since this
beloved hypothesis is challenged by the important delay that presumptive
auditory signals would experience as the AFP processes them. Troyer and
Doupe used a computational model to show that, if an internal prediction
or “efference copy” is used for comparison instead of actual auditory sig-
nals, the delay problem can be overcome. Important simplifications are as-
sumed in this model concerning the encoding of motor and sensory infor-
mation corresponding to a song, but this will be the case for a long time,
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since our knowledge of the coding mechanisms involved is far from com-
plete. In particular, Troyer and Doupe used to represent the brain’s neural
activity a variable that represents the average activity of a large array of
neurons. Models at this level of description are known as “rate models”
[Troyer and Doupe 2000a, Troyer and Doupe 2000b].

In general, the “activity” of a neuron is measured in terms of the average
number of action potentials generated per unit of time, or firing rate. One of
the simplest continuous-time models used to describe the dynamics of such
a variable is the additive network model, which reads

dxi

dt
= −xi + S

(
ρi +

∑
cijxj

)
, (8.30)

where xi denotes the activity of the ith neuron within a network, ρi stands
for the external inputs, and the coefficients cij describe the connections be-
tween the ith and jth neurons. The function S(x) is a continuous, monoton-
ically increasing function of its real argument which tends to a saturation
value for large arguments, and tends rapidly to zero for arguments smaller
than zero. For example, we can use the model S(x) = 1/(1 + e−x). The
dynamics of this equation are simple enough to understand qualitatively:
depending on whether the argument of S(x) is large enough or not, the ac-
tivity of the ith neuron will converge to the saturation value of S or to zero
[Hoppensteadt and Izhikevich 1997].

Under certain conditions of the coupling between the neurons within a nu-
cleus, it is possible to attempt to write down a simple average rate model for
the activity of a population of neurons. This was the program of Schuster and
Wagner [Schuster et al. 1990], who studied a neural circuit of model neurons
whose efferent synapses were either excitatory or inhibitory, in a configura-
tion such that the neurons were densely interconnected on a local scale, but
only sparsely connected on a larger scale. Under these conditions, Schuster
and Wagner showed that it was possible to derive macroscopic mean-field
equations for clusters of neurons.

This simplification of the problem would allow us to write, for example,
sets of equations governing the behavior of different populations of neurons
within some of the nuclei of the motor pathway. For example, we could de-
scribe the average activities E1 and E2 of the subpopulations of the RA
nucleus projecting to the respiratory center and to nXIIts (controlling the
syringeal muscles), respectively, and the activity I of the inhibitory interneu-
rons:

τ1
dE1

dt
= −E1 + S(ρ1 + c11E1 + c13I) , (8.31)

τ2
dE2

dt
= −E2 + S(ρ2 + c22E2 + c23I) , (8.32)

τ3
dI

dt
= −I + S(ρ3 + c31E1 + c32E2 + c33I) , (8.33)
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where the variables ρi stand for the input from the high vocal center, and
the τi are time-scaling parameters.

It is important to stress that the level of the description chosen in devising
a model constrains the kind of questions that it can answer. Of course, if a
syllable in birdsong is represented by an oscillation in the average activity
of HVC, we shall not be able to study those phenomena related to how the
sparsely spiking RA-projecting HVC neurons recruit RA neurons. However, it
can warn us about global nontrivial phenomena. For example, under periodic
driving from HVC (represented by ρi(t) = ρi(t + T )), the system of (8.33)
displays subharmonic behavior. This means that under a driving from HVC
of period T , the variables Ei and I might repeat themselves after a time
nT , where the value of n depends on the frequency and amplitude of the
forcing. This warns us that even at the level of telencephalic activity, diverse
patterns of activity can be generated by a unique neural substrate operated
under different conditions.

Good models should provide us with new questions (and not only good
fits to already observed data). With all its limitations, the fact that a rate
model shows this nontrivial behavior should motivate the exploration of more
sophisticated models (and, ultimately, the exploration of real systems through
experimental observations).

So far, we have discussed several levels of description of the dynamics
displayed by neural circuits. Maybe more importantly, the motivations be-
hind the studies quoted were different. Some of the efforts concentrated on
predicting the dynamics that would emerge from an anatomical substrate.
Others concentrated on the plausibility of a given mechanism.

Another interesting motivation for modeling is to understand the func-
tion of an observed feature. As an example, Fiete et al. [Fiete et al. 2004]
explored the role of the sparseness present in premotor neural codes. As we
have already discussed, the RA-projecting neurons in HVC display a sparse
bursting activity. In zebra finches, which sing motifs that consist of sequences
of different syllables, each RA-projecting neuron in HVC spikes briefly (for
about 6 ms), once per motif. Fiete and coworkers explored numerically and
analytically a network of sparsely spiking units (emulating the dynamics of
each unit by a rate model), connected to a set of units emulating the RA
nucleus. The motor output of the network was assumed to be some function
of the RA activity. With this setup, they explored the efficiency of a learning
scheme as a function of the number of bursts in HVC per motif. The learning
scheme assumed the existence of a desired motor output, and that at some
level, a network error C could be computed. With a backpropagation gradi-
ent descent rule, the changes in the synaptic weights between HVC and RA
were computed:

∆Wij = −ε
∂C

∂Wij
. (8.34)
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Within this framework, the time taken to reduce C below a threshold was
computed as a function of B, the number of bursts in HVC per motif. The
result was that the learning speed decreased dramatically as a function of B;
this was found heuristically to be a consequence of the increasing interference
of weight updates for different synapses.

8.8 Lights and Shadows of Modeling Brain Activity

The brain is probably the most complex “device” found in nature. Are we
ever going to be able to model its dynamics? The brains of songbirds are a
tempting field. The number of nuclei involved in the production of song is
relatively small, as well as the number of nuclei constituting the “learning”
pathway. Our knowledge of the roles played by these nuclei is growing rapidly,
as well as our knowledge of some detailed physiological features of the neurons
within them.

On the other hand, thousands of nonlinear units coupled through a breath-
taking number of connections are the physical substrate of this “device”. How
complex should our description of an individual unit be? How many units are
a reasonable number for an emulation of the activity of a nucleus? Our discus-
sion of the complexity displayed by the physical apparatus, when nonlinear
effects are taken into account in models involving a few variables, gives us
an intuition about the difficulties of this program. There are no easy an-
swers to these questions. There is a wide consensus that conductance models
(such as those proposed by Hodgkin and Huxley) are an appropriate point to
start. Dynamicists fight for the hypothesis that simpler models that capture
basic dynamical properties of these equations [Izhikevich 2005] can be used
instead of complex conductance-based models, and some physicists are test-
ing this hypothesis by replacing real neurons by hardware devices obeying
simple dynamical rules [Szucs et al. 2000, Aliaga et al. 2003]. The problem of
the proper dimensionality in which to study these issues is not much easier.
There is no qualitative theory of extended nonlinear problems. On the other
hand, in many cases, we can try to build a consistent story with data from a
few neurons.

Quantification in this discipline will not be an easy adventure. Other dis-
ciplines, such as physics, have built confidence in general laws that allow us to
generate knowledge by theoretically exploring their consequences. Moreover,
it is always possible in physics to isolate a phenomenon and study it under
the simplest possible conditions. None of these basic pillars is available to the
modeler in theoretical neuroscience. However, it is the overwhelming interest
of the questions that keeps research in this field alive.



9 Complex Rhythms

There is more to birdsong than just a beautiful melody. So far, we have
found “melodies”, or sequences of more or less complex sounds. We have
focused on the acoustic properties of the individual elements. Now we turn
to another aspect of birdsong production: its rhythm. Here we use “rhythm”
in a very musical sense: we mean “the pattern of musical movement through
time” [American Heritage Dictionary 2000], or the timing of sounds within
the melody. As we shall see, complex rhythms in birdsong may be found in
the song of a single bird or a duetting couple. How are they generated?

9.1 Linear vs. Nonlinear Forced Oscillators

We can obtain a precise image of what we mean by complex rhythms by
simply hitting the table periodically with our left hand (which will behave
as a clock in this discussion) while also hitting the table, at a variety of
frequencies, with our right hand. The variety of possible timings between
impacts of the right hand constitute the various rhythms of the problem. If
both hands hit the table the same number of times in a given time interval,
we say that they are locked into a “period one” solution (a particular way
of achieving “period one” is by always hitting the table with both hands at
the same time). Let us now hit the table with our right hand only once per
two impacts of the left hand. This is a “period two” solution–the complete
pattern does not repeat itself until the left hand has hit the table twice.
Now, a more complex excercise. Let us generate a “period three” solution.
At this point we have a choice: the right hand can hit the table only once
in the time interval that it takes our left hand to hit the table three times,
quite analogously to the previous exercise for “period two”. But we could
also generate a “period three” solution in which the right hand hits the table
twice in the time it takes the left hand to hit it three times. These are two
different “period three” solutions. In order to distinguish them, one defines
the rotation number r = p/q, where q is the period of the solution, and
p the number of recurrences performed by the driven system. In our two
examples of “period three” solutions, we would have r = 1/3 and r = 2/3,
respectively. Can we generate these different rhythms with simple coupled
physical systems?



134 9 Complex Rhythms

We can build a physical system displaying these timings if it is made of
two parts: one behaving as a clock, and another one that is forced by the
first one. The kind of responses that the driven system might exhibit do not
depend on its details, but on its linear/nonlinear nature.

A linear oscillating system responds to a periodic forcing in a remarkably
boring way: after a transient, the forced system ends up following the driver.
The amplitude of the response will in fact depend on how similar the natural
frequency of the system and the forcing frequency are. The phase difference
between the oscillations will depend on the parameters, but the driven system
will always end up oscillating periodically, with the same period as the driver.

Nonlinear systems, on the other hand, react in a very different way to a
periodic forcing. If the forcing frequency is similar to the natural frequency of
the system, the forced system will in fact lock itself to the driver in a period
one state. But if the difference between these frequencies is large, then the
nonlinear system will show a more complex time evolution. The nonlinear
system might display periodic behavior but the period of the solution need
not, in principle, be equal to the period of the forcing. A typical response of
a nonlinear system is to show, for wide regions of the parameter space (in
this case, the amplitude and frequency of the forcing), periodic solutions with
periods that are multiples of the driving period. This means that the system
will repeat its behavior after a time that is an integer multiple of the forcing
period.

A neuron, with no musical talent at all, will react to periodic forcing with
these kinds of solutions. The typical time it takes a neuron to return to its
rest value after an action potential defines a characteristic time. If a neuron
is periodically forced by a sequence of pulses with a period comparable to
that characteristic time, it will spike with one action potential per period of
the forcing. However, if the neuron is forced twice as fast its characteristic
time, the neuron will spike only once per two periods of the forcing. Two
interesting observations: it is not necessary to force the neuron exactly twice
as fast as its characteristic time to lock the neuron into a period of two. There
is a range of parameter values for which the system locks into a “period two”
solution. For the same value of the forcing amplitude, we can change the
forcing frequency within a certain range and stay locked in the same regime.
The second observation is maybe even more curious. There is a wide range
of forcing frequencies in which the neuron locks into a “period one” solution
(with r = p1/q1 = 1/1). There is also a wide range of forcing frequencies
in which the neuron displays a “period two” solution (with r = p2/q2 =
1/2). Now, for a large class of nonlinear systems (excitable ones such as a
neuron among them), the largest region in frequency space between these
two frequency ranges for which a periodic solution exists is one in which a
“period three” solution occurs, characterized by

r =
p1 + p2

q1 + q2
=

2
3

. (9.1)
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This is a universal feature of nonlinear oscillators known as the Farey sum
rule. There is nothing special about neurons. Any excitable system would
show such a structure, as well as any nonlinear oscillator. For example, two
subpopulations of interconnected excitatory and inhibitory neurons might
have excitatory behavior as a whole. By this we mean that the activity
of the subpopulation (defined as the average number of spikes in some
time window for the subpopulation) can behave as an excitable system
[Hoppensteadt and Izhikevich 1997]. For this reason, under a periodic forc-
ing, a whole neural nucleus could display this complex rhythmic structure.
In summary, nonlinear systems are capable of generating complex and ap-
pealing rhythms. However, these temporal patterns are seriously constrained
by a mathematical structure. What about the beautiful rhythms present in
birdsong?

9.2 Duets

9.2.1 Hornero Duets

The South American hornero (Furnarius rufus) is a suboscine bird, widely
known for its nest, which is made of mud and looks like an oven. Beyond
their architectural skills, male and female horneros engage in highly struc-
tured duets. A sonogram of a typical duet is displayed in Fig. 9.1a, where
the continuous traces represent notes. The male starts singing at a note pro-
duction rate of approximately 6 Hz [Amador 2004], and in a few seconds it
increases the note production rate by about 200 percent. The duration of
the notes decreases. The female shows a large diversity: it may sing with an
increasing, decreasing or nonmonotonically varying note production rate, as
can be seen in Fig. 9.2. At the begining of the song (which can last up to 10
seconds), the female is capable of following the male, singing a note each time
the male does in a “one-by-one” fashion. However, after a while the female
seems to lose synchrony. Nevertheless, the timing has a nontrivial structure,
with features characteristic of nonlinear forced oscillators such as the one
that we discussed in the previous section.

In [Laje and Mindlin 2003], sonograms of hornero duets were computed
from field recordings, and only the fundamental frequencies were displayed,
as shown in Fig. 9.1a. The time intervals in which two notes are present are
those in which the two duetting birds are vocalizing simultaneously. In order
to characterize the duet, we define a coincidence as an event in which the
maximum of a male note occurs within a time interval in which the female is
vocalizing a note. We then define a number that describes the locking between
the male and female voices. This number rap is the quotient of two integers
p/q, where q stands for the number of male notes between consecutive male–
female coincidences, and p is the number of female notes between consecutive
male–female coincidences.
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Fig. 9.1. Duet sonograms. (a) Sonogram of a typical duet of the suboscine hornero
(Furnarius rufus). Male and female voices are easily distinguished, owing to the
differences in their spectral and temporal features. The male begins the vocalization,
monotonically increasing the note production rate as the duet develops. The female,
on the other hand, may respond with an increasing, decreasing or nonmonotonically
varying note production rate, but their notes lock in a systematic way. The locking
sequence of this duet is shown in the sonogram. (b) Sonogram of a synthetic duet.
Female syringeal and respiratory gestures were simulated by a nonlinear oscillator
subjected to a periodic forcing of increasing frequency. Both a periodic forcing and
a forced nonlinear oscillator were used to drive physical models of the syrinx to
generate male and female notes. Adapted from [Laje and Mindlin 2003]

9.2.2 A Devil’s Staircase

In Fig. 9.3a, we plot rap as a function of the normalized average time interval
between male notes Tmale for n = 11 duets (from at least 10 hornero couples),
in order to inspect the female response. The average time interval between
male notes has been normalized to the average time interval between notes
of the corresponding female when locked with rap = 1/3 (every female locked
with rap = 1/3 at least once). A clear stair-like structure emerges, with
steps at several values of p/q. Notice that some values of p are different
from 1. These are located at the regions predicted by the Farey sum rule
[González and Piro 1983]. For example, we found a number rap = 2/7; it fell
between rap = 1/3 and rap = 1/4. A segment with rap = 3/10 was also found,
located between rap = 1/3 and rap = 2/7.
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Fig. 9.2. Average time interval between notes as a function of note position in
a typical hornero duet. (a) Males show a clear tendency to increase the note pro-
duction rate as the duet develops. (b) Females, on the other hand, may increase,
decrease or nonmonotonically vary the note production rate as the duet develops.
Each trace was shifted vertically for clarity

This structure is very closely related to the one we described at the begin-
ning of the chapter. The organization of the rotation numbers as a function
of the forcing period is known as the “devil’s staircase”, a complex structure
where the steps are rational numbers, as displayed in Fig. 9.3b. The steps in
the devil’s staircase show universal features, regardless of the details of the
forced system (which can be either a nonlinear oscillator or an excitable sys-
tem) and the nature of the periodic forcing (a harmonic function, a sequence
of impulses, etc.).

It is possible to interpret the existence of a staircase in the duets as a
consequence of the male’s notes acting as a unidirectional forcing on the
female’s motor control through an auditory pathway. Since the notes sung by
the female manage to lock properly, both the respiratory and the syringeal
gestures would constitute a nonlinear system such that when it was forced it
would show a devil’s staircase (it would be an excitable system or a relaxation
oscillator), suggesting that at some level the corresponding motor neurons are
closely connected.

9.2.3 Test Duets

In order to check the plausibility of the proposed mechanism, we can generate
synthetic duets from a theoretical, physical model of the syrinx such as the
one proposed in Chap. 4, reading

ẍ − (p(t) − b) ẋ + k(t)x + cx2ẋ = 0 , (9.2)

where p(t)−b stands for the difference between the bronchial pressure and the
linear dissipation, k(t) for the stiffness of the syringeal labia and c stands for
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Fig. 9.3. Locking organization. (a)
Approximant of the rotation number
rap as a function of the normalized av-
erage time interval between male notes
Tmale, for n = 11 hornero duets. The
bottom axis has been normalized for
each male to the average time inter-
val between notes of the corresponding
female when locked with rap = 1/3.
Not every couple displayed the com-
plete locking sequence from 1/1 to 1/5,
but all of them displayed 1/3 at least
once. (b) Rotation number r as a func-
tion of forcing period Tforcing, for a
nonlinear oscillator subjected to a pe-
riodic forcing. This step-like organiza-
tion is known as the “devil’s staircase”.
The bottom axis is normalized to the
natural period of the driven oscillator.
(c) Surrogate random duets. The step-
like structure is lost, which is reflected
in the increased overlapping between
steps. This can be quantified by defin-
ing the average overlap φ between con-
secutive steps (see text): the original
duets have φ ∼ 20%, while the sur-
rogate duets have φ ∼ 70%. Overlaps
between steps are shown in grey

a nonlinear dissipation constant, all per unit mass of the labia. This equation
was first proposed to model labial oscillations in oscines. For suboscines, the
tracheal syrinx will show important differences, and actually the membrane
tension can be partially correlated with the pressure [Elemans 2004]. At this
point the model is just a very crude tool to emulate notes. We can do this
by driving (9.2) with a periodic forcing of increasing frequency. For the male,
we chose p(t) and k(t) to be harmonic functions of time, with a frequency
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increasing from around 5 Hz up to 20 Hz. We call p(t) and k(t) the respiratory
and syringeal gestures, respectively.

Analogously, we can generate female notes by driving (9.2) with respira-
tory and syringeal gestures p(t) and k(t), generated this time by a nonlinear
oscillator forced, in turn, by the male gestures. We are not making any as-
sumptions about the biological substrate of these nonlinear oscillators. We
do know that the cyclic gestures generating the syllables of the females have
to emerge out of some circuitry which involves nonlinear units. We conjec-
ture that this circuitry has to be affected by the auditory signals from the
duetting partner. Before attempting to build a biological model for this cir-
cuitry, we shall assume that the cyclic gestures are generated by the simplest
conceivable nonlinear oscillator, forced by a temporal function of increasing
frequency. The paradigmatic model chosen to emulate the cyclic instructions
driving the syrinx of the female was

u̇ = 75(u − u3 + A cos(ω(t)t) + 0.5 − v) , (9.3)
v̇ = 6(u + 0.7 − 0.8v) , (9.4)

with ω(t) varying from around 5 Hz up to 20 Hz. The cyclic instructions used
to drive the syrinx of the female were taken as p(t) = u−v and k(t) = u+v, in
order to generate realistic-looking syllables. The synthetic duet is displayed
in Fig. 9.1b.

OK, but what if the staircase in Fig. 9.3a (the actual duets) was just
coincidence? In order to check that it was not an effect of a simple mis-
match between frequencies changing independently, surrogate random duets
were analyzed. Surrogate duets were assembled by first taking two randomly
chosen duets, and then eliminating the male notes from the first duet and
the female notes from the second duet. Surrogate duets were then subjected
to the same analysis as performed on the original duets. Results are shown
in Fig. 9.3c, where the staircase structure is lost. For a quantitative mea-
sure of the staircase structure, we defined φ as the average overlap between
steps, using the steps of 1/2, 1/3 and 1/4 (the only steps for which we know
their length approximately know their length). The ratio of the length of the
overlap to the average step length was computed between the 1/2 and 1/3
steps, and the same was done between the 1/3 and 1/4 steps. The two ratios
were then averaged to give φ. In the case of the surrogate duets (Fig. 9.3c),
the average overlap φ is almost 70%, while in the case of the original duets
(Fig. 9.3a) φ is less than 20%.

The moral of this tale is that behind the appealing rhythm of the hornero
duets, there is more of a complex nonlinear circuitry than “musical talent”
(unless one wishes to explore the possibility of musical talent being related
to this mechanism!). In any case, just as the acoustic features of the notes
(as shown in the spectra) were in some cases affected by nonlinear effects (on
the timescale of thousands of Hz), nonlinearities can also play an important
role on the timescale of the syllables.
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9.3 Nonlinear Dynamics

9.3.1 A Toy Nonlinear Oscillator

The observations described in the previous section motivate us to ask two
questions: Why should these temporal patterns be present in forced nonlinear
oscillators? If so, what is the oscillator in this system? We begin this section
by addressing the first question. We shall do this by solving an example, and
illustrating how these temporal patterns emerge. Because biological oscilla-
tors are usually stable nonlinear oscillators [Glass 2001], many characteristics
of the interactions between a periodic input and an ongoing rhythm can be
understood in terms of simple toy models, without paying much attention to
the details of the system [Glass and Mackey 1988, Keener and Sneyd 1998].
For this reason, we can choose to explore the origins of our strange temporal
patterns in terms of a simple system, learning about the tools and processes
that take place in order to gain intuition about the particular system we
might be interested in.

The toy model that we shall use is known as the Poincaré oscillator,
named after the French mathematician Henri Poincaré, who used it precisely
to illustrate general mechanisms of nonlinear systems. This abstract oscillator
is described in terms of a radial variable ρ and an angular variable φ, whose
dynamics are governed by the following system of equations:

dρ

dt
= λρ(1 − ρ) ,

dφ

dt
= ω (mod 2π) , (9.5)

where “mod 2π” denotes a normalization of the phase dynamics: when
φ = 2π, the oscillator has completed a turn in the angular coordinate, and
starts again from φ = 0. The dynamics of this system of equations are easy to
understand: the phase of the oscillator increases monotonically at a constant
rate (of value ω). The behavior of the radial part of the equation is also sim-
ple: for initial conditions close to the origin, the radial component will grow
with time, as long as λ > 0. On the other hand, for initial conditions far away
from the origin (i.e., with a radial part much larger than 1), the system will
evolve so that the radial coordinate decreases (at a rate given approximately
by λρ2). The “equilibrium” is reached for the radial part when ρ = 1. In this
case, the dynamics are reduced to a monotonic increase of the phase, and
after a given amount of time (t = 2π/ω), the solution repeats itself. This
solution is known as a limit cycle. The term “limit” in this case refers to
the asymptotic nature of the periodic solution: an initial condition not in the
cycle (i.e., either outside or inside) will evolve towards it. Notice that the
larger the value of λ, the faster the time evolution of the system will
be towards the limit cycle, for initial conditions not in the limit cycle. For
our description of forced nonlinear oscillators we shall assume that λ is large,
so convergence is fast.
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9.3.2 Periodic Forcing

Let us now explore the response of the system to a periodic forcing. Again,
we shall use the simplest possible forcing term: a periodic “kick” to the sys-
tem by impulses applied to one coordinate. It would be tempting to try a
sinusoidal forcing (which would of couse also be periodic), but impulses have
an advantage: the forcing is simply a displacement of the state of the system
each time a kick occurs. Between kicks, the system evolves by the rules (9.5).
These rules, on the other hand, give rise to simple dynamics: a rapid decay
to ρ = 1 (assumed to be almost instantaneous if λ is large), and a free evolu-
tion of the phase at a constant rate. In summary, the dynamics of the kicked
system are as follows: the system is kicked (by the way, this may cause an
important change in the phase of the oscillator), it rapidly evolves back to
the limit cycle and freely evolves along it, until it is kicked again. The process
then repeats itself while the forcing is “on”. Our challenge is to understand
how a structure such as that displayed in Fig. 9.3b can emerge out of this
procedure.

In Fig. 9.4, we display the processes described in the previous paragraph.
The circle represents the unforced limit cycle. The system is assumed to be
at the point denoted by 1 in the nth step of our iteration procedure, its
state being described by the phase φn = φ. When the system is kicked, by
means of a horizontal displacement of value A towards the point denoted by
2, the phase of the system is changed to φa. The system then collapses rapidly
towards the limit cycle (the state denoted by 3 in the figure), finally to evolve
freely until its phase has increased by an additional amount α (equal to ωT ,
where T is the period of the forcing), at point 4. Then, a new kick is applied
to the oscillator. Since we are working in the limit of λ � 1 (which means
ρ ∼ 1 almost instantaneously after a kick), the state of our forced oscillator
can be described in terms of the dynamics of the phase φn only, which can
then be written as

φ
φa

1 L  =A 22

L
3L  =14 1

3

Fig. 9.4. Derivation of the phase map for a Poincaré oscillator, periodically kicked
along the horizontal axis. The evolution can be described as the iteration of the
following steps: (1) the system is kicked, (2) it rapidly collapses back to the limit
cycle, (3) the system evolves with a monotonic increase of the phase and (4) it is
kicked again after a time T , where T is the period of the forcing
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φn+1 = α + φa(φn, A) , (9.6)

where φa is the change in phase that occurs when the system is kicked.
The phase φa depends on the phase φn of the system at the moment it is
kicked and on the size of the kick A. From Fig. 9.4, it is simple to derive
an expression for this new phase. Notice that when the system is displaced
from point 1 to point 2, we can define a triangle with vertices at the origin
and at points 1 and 2. The sides are of lengths L1 = ρ = 1 (the value of
the radial coordinate), L2 = A and L3 =

√
A2 + 1 − 2A cos(π − φn) (by the

cosine theorem). Projecting the three sides of our triangle onto the x axis,
we can write

L3 cos(φa(φn, A)) = cos(φn) + A , (9.7)

which together with (9.6), gives us an expression for the phase of the oscillator
in the nth step as a function of the phase in the previous step. This reads

φn+1 = P (φn) ≡ α + cos−1

(
A + cos(φn)√

A2 + 1 − 2A cos(π − φn)

)
, (9.8)

which is known as the phase map of the Poincaré oscillator.

9.3.3 Stable Periodic Solutions

Equation (9.8) was easy to find, but it does not look easy to work with.
Nevertheless, it can help us in our process of gaining an understanding of
how complex patterns are generated by such systems. First of all, we have to
learn how to interpret the solutions of these maps in terms of the solutions of
the original problem: a forced oscillator. The simplest temporal pattern that
could emerge out of the forcing of a nonlinear system is a “one-to-one” locked
state: the system repeats its behavior after a time equal to the time between
forcing kicks. How would this pattern be represented in the map formalism?
Since this formalism only inspects what the system is doing at discrete times,
an underlying periodic solution would be captured by a map formalism as a
fixed point of the discrete dynamics. In other words, a period-one solution
(measured in units of the forcing period) corresponds to a situation in which
the phase of the system at a given kick is the same as the phase at the kick
before:

φn+1 = φn , (9.9)

where φn+1 is given by (9.8). Notice that this is a transcendental equation
and has no explicit solution, but it can be solved approximately either by
numerical methods or by graphical means. We should be warned, though,
that the existence of a solution does not mean by itself that we are going to
observe it (either in an experiment or in a numerical simulation). A solution
can exist but be unstable. If we are dealing with a numerical simulation, the
slightest difference between an initial condition and the point closest to it
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that is part of an unstable solution can grow with time, taking us away from
the solution. Therefore, the claim that, for a wide region of the parameter
space (T, A), a given model shows solutions locked in a particular way refers
to “stable” solutions, i.e., those toward which the system will evolve for all
initial conditions within a wide region of the phase space. This requires a
condition additional to the one expressed in (9.9), namely one that guarantees
stability. The condition is easy to understand: if we expand the map P by
calculating its first derivative DP ,

φn+1 + δ = P (φn + ε)
∼ P (φn) + DP (φn)ε , (9.10)

the condition that δ is smaller than ε is guaranteed if the value of DP is of
modulus smaller than one. Now we are able to find the region of parameter
space for which stable solutions of period one can exist: we have to show that
the cuves φn+1 = φn cross for some value of φ, and that the slope of the
curve φn+1 = P (φn) at the point of intersection is smaller than one.

9.3.4 Locking Organization

What about other temporal patterns? After all, we became involved in this
tour of nonlinear phenomena in order to explain “complex” rhythmic pat-
terns. The procedure to find the regions where other solutions exist is very
simple: we define a new map which is the second iterate of the one we have
used so far. The set of fixed points of the second-iterate map, P 2,

φn+2 = P 2(φn)
= P [P (φn)] , (9.11)

is the solutions to the following equation:

φn+2 = φn . (9.12)

This will contain, on the one hand, the period-one fixed points that we have
already met (a solution that repeats itself after one period of the forcing will
keep on repeating itself after n times as well). But on the other hand, this set
can also contain solutions that repeat themselves after twice the period of the
forcing, without repeating themselves in one period. These are “period-two”
solutions. Working with the map (9.11), we can again impose the conditions
of existence and stability of fixed points that we discussed before, and find
the region of parameter space where these conditions are met.

The result of performing this study for solutions of different periods is
displayed in Fig. 9.5, where the “tongues” enclose the set of parameter values
(T, A) for which solutions of different period occur. Moreover, we can advance
in our description of the system by defining the rotation number r, a ratio of
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Fig. 9.5. Locking organization for the Poincaré oscillator, periodically kicked along
the horizonal axis. The “Arnold tongues” are the regions of the parameter space
(T, A) where stable solutions of different rotation numbers can be found, identified
here by different gray levels. T = forcing period (in units of the period of the
oscillator T0 = 2π/ω); A = forcing amplitude

integers r = p/q, where q represents the period of the stable solution (in units
of the forcing period), and p the number of complete cycles that the forced
system performs before repeating itself. In this way, the period-one solutions
of (9.9) can be labeled by r = 1/1 (the white region in Fig. 9.5), while
the period-two solutions of (9.12) can be labeled by r = 1/2 (the first gray
level). For a given value of A, we could plot the rotation numbers obtained
in successive numerical simulations performed for different forcing periods.
The result would be a more or less complex stair, like the one described in
Sect. 9.2. But what is the dynamical mechanism behind the existence of these
“steps”?

Figure 9.6 allows us to gain some intuition. In this figure, we show the
(graphical) solution to the fixed points of the second-iterate map at para-
meter values corresponding to the begining and the end of the period-two
tongue, for a constant amplitude A = 0.8. In other words, the intersections
between the straight line and the curve represent those values of φ fulfilling
(9.12). Notice that it is possible that there may be no intersections at all;
the existence of intersections is governed by the values of the parameters T
and A, which set the position of the curve in the plane. As the forcing fre-
quency is increased, the main change in the curve that can be described is a
global shift downwards. However, the curve preserves its qualitative shape,
and this is why we have found no intersections for T < 0.47, two intersections
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Fig. 9.6. Graphical solution to the fixed points of the second-iterate map (9.12):
the right-hand side of the equation is represented by the straight line, and the left-
hand side is represented by the curve. The parameter values are A = 0.8 and (a)
T = 0.47, (b) T = 0.53 (in units of the period of the oscillator 2π/ω). As the forcing
frequency is decreased, the main change that is observed in the curve is a global shift
upwards. These values of forcing period define the borders of the period-two region;
for T between 0.47 and 0.53, there are four intersections (solutions to (9.12)), but
only two of them represent stable solutions

at T ∼ 0.47 (Fig. 9.6a), four intersections for 0.47 < T < 0.53, again two in-
tersections at T ∼ 0.53 (Fig. 9.6b) and, finally, no intersections for T > 0.53.
Only two of the four intersections found for 0.47 < T < 0.53 represent stable
solutions. This behavior tells us that the values T ∼ 0.47 and T ∼ 0.53 are
the borders of the period-two tongue for A = 0.8.

It is left for dynamicists to explain what is the minimal set of “geometric”
conditions that a one-dimensional map has to satisfy in order to show this
organization of temporal patterns. At the rough qualitative level that we are
interested in, nonlinear relaxation oscillators and excitable systems do fall
within the class.

What is the relationship between this abstract oscillator and the hornero
that we met in Sect. 9.2? The hornero is a suboscine. The brain structure in
the suboscines is less well understood than that of the oscine songbirds. For
this reason, it is a complex task to try to map the abstract oscillator that we
are using in this section to a particular structure in the brain. However, the
generation of repetitive syllables requires an oscillatory rhythm in order to
generate expirations, and therefore some population of neurons (which will
eventually feel somatosensory feedback) should show oscillatory activity. The
temporal structures described in the section on hornero duets could then be
produced if this neural substrate behaved as a nonlinear oscillator and could
be forced by auditory signals.
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9.4 Respiration

The duets between horneros are a spectacular display of complex rhythms.
However, many birds show a wide variety of intersyllabic times. How could
these be generated? This section contains a speculative model of their gener-
ation, inspired by anatomical descriptions of neural nuclei.

9.4.1 Periodic Stimulation for Respiratory Patterns

In the case of the oscine songbirds, much is known about the structure of the
nuclei involved in the generation of song. However, much of the description
of the avian nervous system focuses on the forebrain nuclei and pathways
[Wild 2004]. The extratelencephalic projections are described as if they were
simple followers of the activity in the forebrain nuclei. In fact, this is unlikely
to be true, since brain-stem nuclei are receptors of the sensory feedback which
informs the song system of the requirements for air. Brain-stem nuclei receive
both information from the telencephalic nuclei and sensorimotor feedback,
and are therefore a place where very interesting dynamics could be expected.
Horneros are suboscines. These birds are believed (after work with the east-
ern phoebe [Kroodsma and Konishi 1991]) to develop normal song without
auditory feedback. They also seem to lack the telencephalic nuclei widely
studied in songbirds. They are expected to have a nucleus DM, projecting to
the nucleus XIIts, as well as to respiratory nuclei. The respiratory pathways
are expected to show similar structures in oscines and suboscines.

Wild and others [Wild 2004, Sturdy et al. 2003] have described the path-
ways involved in the control of respiration during quiet respiration and
singing. The respiratory rhythm is generated or conveyed by the rostral
nucleus of the ventrolateral medulla (RVL), which innervates the retroam-
bigualis (RAm) nucleus. This nucleus projects to expiratory motor neurons.
On the other hand, the nucleus PAm projects to inspiratory motor neurons,
and receives feedback from sensors which update the nervous system about
the dynamics of the air sacs (see Fig. 9.7a). The details of the connections
are not yet known, but on the basis of this partial list of observations we can
build a computational model in order to explore the possible solutions that
this respiratory system can display. Interestingly enough, the effects emerging
out of this architecture can be present in both oscines and suboscines.

9.4.2 A Model

Recently, Trevisan and coworkers [Trevisan et al. 2005] proposed a simple
model to translate these anatomical observations into a computational model.
In it, they described the air sac dynamics in terms of a geometric variable
measuring the variation x of the air sac volume at atmospheric pressure.
The sacs are modeled as damped masses, driven by expiratory and inspi-
ratory muscles (a departure from what happens with mammals, where the
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Fig. 9.7. Diverse air sac pressure patterns that can be generated by simple RA
activity forcing brainstem nuclei at different frequencies

only driving is inspiratory). If the activities of these muscles are taken to be
proportional to the activities in the neural nuclei RAm and PAm (called i2
and i1), one can write

m
d2x

dt2
+ kx + b

dx

dt
= α1i1 − α2i2 (9.13)

for x, where the term kx accounts for elastic recoil of the sac and b dx/dt for
the dissipation. The activities i1 and i2 represent global averages of the ac-
tivity within the nuclei PAm and RAm. Therefore, their dynamics can be de-
scribed in terms of average-rate models [Hoppensteadt and Izhikevich 1997]:

τ
di1
dt

= −i1 + S(E1 − i2 − f(x)) ,

τ
di2
dt

= −i2 + S(E2 − i1 + A cos(ωt)) . (9.14)

In this model, S(x) = 1/(1 + e−x) is a sigmoidal function, typically used to
model saturation in neural rate models. The rationale behind the use of this
function as a driver of the activities in the nuclei is simple: the greater the
amount of excitation that converges on a neuron, the more active it is. How-
ever, since beyond a certain excitation the spiking rate of a neuron does not
increase further, the mean activity of a neuron has to converge to a saturating



148 9 Complex Rhythms

function of the variables in the problem. Assuming that within these nuclei
the neurons are densely interconnected on a local scale, we can describe the
activity of the nuclei in terms of averaged quantities i1, i2 satisfying (9.14)
[Schuster et al. 1990].

The arguments of the sigmoidal functions represent the following obser-
vation: inspiration and excitation, if coupled, should inhibit each other. RAm
receives input from RVL (which we model with an average periodic activity,
induced by RA neurons in the case of oscines, and maybe by neurons sen-
sitive to the male song in the brain of female horneros). The function f(x)
acts as an inhibitor of inspiration, and mimics the action of stretch recep-
tors or CO2 receptors in the respiratory system [Keener and Sneyd 1998].
The details of these mechanisms are yet to be discovered, but evidence of
somatosensory modulation of ongoing song patterns has been recently pre-
sented [Suthers et al. 2002]

As we have discussed, different forcing frequencies can lead to different
respiratory patterns. We assume that 1−x can represent the air sac pressure
(negative x represents small air sacs, and therefore a pressure higher than
atmospheric pressure). In Fig. 9.7, we show numerically generated pressure
patterns. The three segments correspond to the same neural substrate, but
forced with different frequencies (by RA, if we are dealing with oscines). This
is a possible mechanism for the generation of diverse temporal sequences.
For the moment, this mechanism is no more than a speculative, qualitative
one, compatible with the anatomy described so far. However, it highlights the
amount of possible dynamics that can emerge from the interaction between
the body and the nervous system.

The complexity of respiratory patterns that emerges out of the interac-
tion between neural instructions and the body is a nice example of a rich
physiological rhythm. In the literature, several examples have been reported
of this kind of dynamical behavior [Glass 2001], and in many cases, expla-
nations have been sought in the richness of solutions of nonlinear systems.
What remains rather poorly understood is whether complex dynamics are an
essential feature, or a consequence of the processes of the interaction with en-
vironment. A mechanism such as the one described in this section highlights
the enormous richness of possibilities that a nonlinear substrate provides.

9.5 Body and Brain

Much of the study of the behavior that enhances the survival and reproduc-
tion of animals is carried out in terms of its neural control. The emergence of
behavior, however, involves a strong interaction betwen the nervous system,
the morphology and the environment [Chiel and Beer 1997]. From this point
of view, the biomechanics of the peripheral system is a source of opportunities
as well as a source of constraints.
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Throughout these pages, we have analyzed birdsong in this light. Neural
instructions drive a highly nonlinear physical system, the syrinx, capable of
generating sounds ranging from simple tones to very complex sounds. Inter-
estingly enough, the complex sounds could be the result of simple instruc-
tions, owing to the richness of responses that a nonlinear system can display
under forcing. We have described some of the neural processes involved in
the song motor pathway. This is a field which is growing rapidly. However,
much work needs to be done. Some of the muscle instructions in charge of
controlling the vocal organ also emerge from a complex interaction between
the body and the neural circuits. Birdsong is becoming a beautiful field for
exploring some of these problems, providing biology, physics and dynamics
with exciting challenges.
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