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Preface

The importance of the field of atomic physics to modern technology cannot be
overemphasized. Atomic physics served as a major impetus to the development of
the quantum theory of matter in the early part of the twentieth century and, due
to the availability of the laser as a laboratory tool, it has taken us into the twenty-
first century with an abundance of new and exciting phenomena to understand.
Our intention in writing this book is to provide a foundation for students to begin
research in modern atomic physics. As the title implies, it is not, nor was it intended
to be, an all-inclusive tome covering every aspect of atomic physics.

Any specialized textbook necessarily reflects the predilection of the authors
toward certain aspects of the subject. This one is no exception. It reflects our be-
lief that a thorough understanding of the unique properties of the hydrogen atom
is essential to an understanding of atomic physics. It also reflects our fascina-
tion with the distinguished position that Mother Nature has bestowed on the pure
Coulomb and Newtonian potentials, and thus hydrogen atoms and Keplerian or-
bits. Therefore, we have devoted a large portion of this book to the hydrogen atom
to emphasize this distinctiveness. We attempt to stress the uniqueness of the attrac-
tive 1/r potential without delving into group theory. It is our belief that, once an
understanding of the hydrogen atom is achieved, the properties of multielectron
atoms can be understood as departures from hydrogenic properties.

From the beginning, it was our intention to include information in this book
that is not easily located elsewhere. Thus, while the book can be used as a text, it
is hoped that it will also be a useful reference. To this end, we have incorporated
derivations that are difficult to find in other books and, indeed, even in the literature.
For example, the quantum mechanical Lenz vector operator is not often discussed
in books on quantum mechanics and atomic physics. When it is discussed, it is
usually stated that it commutes with the hydrogen atom Hamiltonian, but it is
difficult to prove. However, this book gives this proof in some detail. In fact, one
of the general features of our book is that we often include more algebraic steps
than are traditionally given in textbooks. By doing this, we wish to relieve the
reader of the tedium of reproducing algebra and, thus, permit concentration on the
physics.
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viii Preface

This material is intended to be suitable for a one-semester graduate or advanced
undergraduate-level course in atomic physics. It is assumed that the student has had
at least introductory quantum mechanics, although pertinent topics such as pertur-
bation theory and variational techniques are briefly reviewed. Chapter 1 presents
some background material which, in large part, is review. In this chapter the utility
of the Bohr atom is discussed and the derivation performed as Bohr did it. This is
in contrast to most modern presentations. Chapters 2 and 3 are standard reviews of
angular momentum algebra with emphasis on aspects pertinent to atomic physics.
Chapter 4 is a discussion of the quantum mechanical hydrogen atom and the sep-
aration of the Schrödinger equation in both spherical and parabolic coordinates.
Emphasis is placed on the conditions that force quantization. This chapter also
includes an attempt to clarify the difference between two commonly used defi-
nitions of Laguerre and associated Laguerre polynomials. In most treatments of
the quantum mechanical hydrogen atom, no mention is made of alternate defini-
tions of these special functions. Chapter 5 is a discussion of the classical hydrogen
atom. Naturally it draws heavily on Keplerian orbits and the consequences of the
additional constant of the classical motion, the Lenz vector. Chapter 6 discusses
the accidental degeneracy of the hydrogen atom and its causes in the context of the
quantum mechanical analog of the Lenz vector. To our knowledge, the material
in Chapter 6 is not covered in any modern text. Chapter 7 discusses the break-
ing of the accidental degeneracy via fine structure, the Lamb shift, and hyperfine
structure. The treatment is fairly standard. Chapter 8 treats the hydrogen atom in
external fields. The description of the Zeeman effect is standard, but the weak field
Stark effect is described in quantum mechanically and classically. The classical
treatment leans heavily on the results of Chapter 5 while the quantum mechanical
treatment exploits the operator formalism developed in Chapter 6.

Chapters 9 and 10 are discussions of multielectron atoms, beginning with helium
in Chapter 9. The presentation is quite standard. Chapter 11 presents the quantum
defect in a way that is seldom seen in texts. In keeping with the theme of this
book, the quantum defect is related to classical concepts and the correspondence
principle. Chapter 12 deals with multielectron atoms in external fields. Here again
the Zeeman effect is treated in the standard manner, but the Stark effect is pre-
sented in a way that leans heavily on the material presented in Chapter 11. Finally,
in Chapter 13, radiation is discussed at length. We emphasize how the concept
of a stationary state is not at odds with the classical concept of radiation from
accelerating charges. Otherwise, the presentation in this chapter is standard, but,
we hope, thorough.

SI units are used except in those instances for which we believe that atomic units
are considerably more convenient. For instance, the Zeeman effect is treated using
SI units because the Bohr magneton times the magnetic induction field provides
a convenient measure of the Zeeman energy. However, we find atomic units to be
more convenient in the treatment of the Stark effect.

There are more than eighty problems listed at the ends of chapters, with se-
lected answers given at the end of the book. Some are merely exercises, but
others are more challenging. A few are derivations of results that are used later
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in the book. A detailed solutions manual, in many cases showing more than
one way to solve a given problem, is available to qualified instructors: visit
www.springeronline.com/0-387-25748-9.

A list of corrections to the book is available on the Internet at:
http://www.umsl.edu/ jjl/homepage/
and
http://www.stlcc.edu/fv/physics/CBurkhardt/
Comments or previously unreported errors can be transmitted to the authors

through these Web sites.
We wish to thank our graduate students Joseph F. Baugh, Marco Ciocca, and

Lucy Wenzhong He. Thanks are also due to the numerous undergraduates who
have worked in the UMSL Atomic Physics Laboratory over the past 40 years.
We also wish to acknowledge the contributions of our many collaborators and
our UMSL colleagues, Ta-Pei Cheng, Wayne P. Garver, and Philip B. James with
whom we had many valuable discussions over the years.

Thanks also to Wai-Yim Ching of UMKC for many valuable comments on the
manuscript during its preparation.
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1
Background

1.1. Introduction

A student’s introduction to atomic physics usually occurs as an undergraduate
in a course entitled “Modern Physics”. The subject is introduced by describing
the results of some early twentieth century experiments that demonstrated the
inadequacy of classical physics to describe events on the microscopic scale of
atoms. Also included in these introductory courses are descriptions of theoretical
efforts to explain the surprising experimental results.

Because these concepts are counter to everyday experience, it is often the case
that the student does not fully appreciate their significance. Therefore, in this
chapter we again present some of this introductory material from the perspective of
a student who has, by now, taken a first course in quantum mechanics. This review
will, it is hoped, lead the student to a fuller comprehension of some concepts that,
having learned quantum mechanics, are taken for granted.

The machinery used in this book is nonrelativistic quantum mechanics, also
sometimes referred to as “first quantization” or “Schrödinger wave mechanics”. In
this formulation, the particle energies are determined by the necessity of “fitting”
deBroglie wavelengths into a “box,” the dimensions of which are determined
by the system. In this book, this box is almost always an atom, but, for ex-
ample, nuclei and nucleons also confine particles and, in this context, may be
regarded as boxes. In first quantization electromagnetic fields are treated clas-
sically and the particle motion quantized. When the electromagnetic field is
also quantized, “second quantization”, additional observable atomic effects are
described.

1.2. The Bohr Model of the Atom

Inevitably, the study of atomic physics requires application of the principles of
quantum mechanics. Although the required formalism can be quite sophisticated,
the physicist’s view of atoms remains a planetary system. Probability distributions
notwithstanding, most physicists envision the Bohr model of the atom as a first

1



2 1. Background

approximation. But, the Bohr model is wrong! Atomic electrons do not execute
well-defined Keplerian orbits. Why then, students ask, study the Bohr atom? There
are many reasons, but three of them are:

1. Atomic parameters obtained from the Bohr model scale more or less correctly.
2. The result for the energy of the hydrogen atom, indeed, all one-electron atoms,

is correct.
3. The units of length, time, electric field, and so on in a widely used system of

units, atomic units, can be easily related to the atomic parameters obtained from
the Bohr model.

Because of the importance of the Bohr model to concepts in atomic physics we
present a derivation of the atomic parameters obtained from it. We begin by stating
Bohr’s two assumptions in his own words:1

Assumption I: That an atomic system can, and can only, exist permanently in a certain
series of states corresponding to a discontinuous series of values for its energy, and that
consequently any change of the energy of the system, including emission and absorption
of electromagnetic radiation, must take place by a complete transition between two such
states. These states will be denoted as the “stationary states” of the system.

Assumption II: That the radiation absorbed or emitted during a transition between two
stationary states is “unifrequentic” and possesses a frequency f , given by the relation

E ′ − E ′′ = h f (1.1)

where h is Planck’s constant and where E ′ and E ′′ are the values of the energy in the two
states under consideration.

A third assumption, although not stated as an assumption by Bohr, is the cor-
respondence principle. Loosely stated, the correspondence principle asserts that
as microscopic (quantum) systems become macroscopic (classical) the quantum
result must go over to the classical.

Assumption I above was quite heretical because, according to classical electro-
dynamics, accelerating charges radiate away their energy. An electron in a circular
orbit is surely accelerating. Bohr stated, however, that in these special favored
“stationary states” the electron could execute circular motion without radiating
away its energy. Classically, of course, as the electron loses energy by emitting
radiation, it would slow down and ultimately spiral into the nucleus. Calculations
show that it would take on the order of 10−9 seconds for the electron to spiral into
the nucleus.

Assumption II was also at odds with classical concepts because, classically, the
radiation given off by a periodically accelerating charge should have the same
frequency as the charge. There seems to be no relation between the frequency
of radiation predicted by Bohr’s second assumption and the laws of classical
electrodynamics.

To calculate the atomic parameters resulting from Bohr’s assumptions we use
classical physics together with the empirically determined Balmer formula for the
wavelengths of radiation emitted by hydrogen atoms. The model assumes circular
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Figure 1.1. Parameters used in the Bohr model of the atom.

orbits in which the electron is bound to the proton by the Coulomb force. The
parameters used in the derivation are shown in FIGURE 1.1.

In SI units, the Coulomb force on the electron executing a circular orbit of radius
r provides the centripetal acceleration that keeps the electron in the circular orbit.
We may obtain the total energy by equating the centripetal force to the Coulomb
force that keeps the electron in orbit. We have

e2

4πε0
· 1

r2
= mv2

r
(1.2)

and the kinetic energy is

T = 1

2
·
(

e2

4πε0

)
· 1

r
(1.3)

The total energy is then

E = T + V

= 1

2
·
(

e2

4πε0

)
· 1

r
− e2

4πε0
· 1

r

= −1

2
· e2

4πε0
· 1

r
(1.4)

The only variable in this equation is r . Therefore, quantizing the energy must
somehow involve quantizing the orbital radius of Bohr’s stationary states. If a
photon is emitted in a transition between states of energies E ′ and E ′′ (we assume
that E ′ > E ′′) then the frequency f is

h f = E ′ − E ′′

= 1

2

(
e2

4πε0

)(
1

r ′ − 1

r ′′

)
(1.5)

where r ′ and r ′′ are the coordinates of the electron in the states of energy E ′ and
E ′′, respectively. Now, Bohr knew of the famous Balmer formula that predicted
accurately the wavelengths of radiation given off in an electrical discharge of hy-
drogen atoms. According to the Balmer formula, the wavelengths of the hydrogen
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transitions can be calculated from the formula

1

λnm
= RH

(
1

m2
− 1

n2

)
(1.6)

where n and m are integers and RH is a constant, referred to as the Rydberg constant,
required to give the correct wavelengths. Notice that the Rydberg constant must
have units of reciprocal length. It is most often given in cm−1. But the frequency
and wavelength of the radiation are related by f λ = c where c is the speed of light
so this formula may be rewritten in terms of the frequency and compared with the
expression for h f derived from Bohr’s second postulate. We then have

h fnm = cRH

(
1

m2
− 1

n2

)
(1.7)

which has the same form as Bohr’s expression for the photon energy if the orbital
radii are quantized as

rn = a0n2 (1.8)

where the constant a0 has units of length and is referred to as the Bohr radius. It
represents the radius of the electronic orbit when the electron is in the lowest of
the stationary states.

How do we calculate a0? The method that is most often employed in elementary
texts is to assume that Bohr postulated that the angular momentum of the electron
is quantized in units of h̄. The electronic angular momentum in the nth Bohr orbit
is then

mevn(a0n2) = nh̄ (1.9)

where me is the mass of the electron and vn is the velocity of the electron in the
nth Bohr orbit and the radius rn has been replaced by Equation (1.8). The velocity
can be eliminated from Equation (1.9) using the kinetic energy

T = 1

2
mev

2
n

= 1

2
·
(

e2

4πε0

)
· 1

(a0n2)
(1.10)

thus leading to an expression for a0. It is, however, absurd to think that Bohr
had a divine revelation that led him to postulate that the angular momentum was
quantized in units of h̄. Why not h, or some other multiple of h? In fact, Bohr
formulated and used what is now called the correspondence principle to obtain the
quantized energy. It reveals the true genius of Niels Bohr.

To find the energy as Bohr did we recall that, according to classical electro-
dynamics the accelerating electron should emit radiation at the frequency of the
acceleration. Bohr assumed that the frequency of the radiation as given by his
Assumption II above must approach the frequency of the electron in its stationary
state for adjacent highly energetic states, that is, states of large rn . The frequency
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of the electron in an orbit of radius rn is

forbit = orbital speed

circumference of orbit

= vn

2π (a0n2)
(1.11)

Substituting for vn from Equation (1.10) and working with the square of the fre-
quency we have

f 2
orbit = 1

4π2n4a2
0

·
[

1

me
·
(

e2

4πε0

)
· 1

n2a0

]
(1.12)

Using Bohr’s second assumption we may calculate f 2
radiation for transitions between

adjacent stationary states characterized by “quantum numbers” n and (n + 1).
It is

f 2
radiation =

{
1

2
·
(

e2

4πε0

)
1

ha0

[
1

n2
− 1

(n + 1)2

]}2

=
{

1

2
·
(

e2

4πε0

)
1

ha0

[
(2n + 1)

n2 (n + 1)2

]}2

(1.13)

The limit of this as n becomes large is

lim
n→∞ f 2

radiation =
{(

e2

4πε0

)
1

ha0
· 1

n3

}2

(1.14)

which we may equate to the expression for f 2
orbit in Equation (1.12) and solve for

a0 to obtain

a0 = (4πε0) · h̄2

mee2

= 0.529 × 10−11 m (1.15)

It is now a simple matter to compute the energy of the electron in nth orbit as
well as the Rydberg constant. The Bohr energy is

En = −1

2
·
(

e2

4πε0rn

)

= −
(

e2

4πε0

)
· 1

2n2a0
(1.16)

which turns out to be the correct energy as calculated using Schrödinger wave
mechanics. This energy, of course, gives the correct wavelengths in the spectrum
of atomic hydrogen.
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We can obtain the Rydberg constant by comparing Equation (1.16) with Equation
(1.7) which yields

RH = mee4

8ε2
0h3c

= 2.1798741 × 10−18 J

= 13.6 eV (1.17)

in agreement with the empirically determined value. Because the joule is a very
large unit, the electron volt, abbreviated eV, is often used in atomic physics. One
electron volt is defined as the kinetic energy gained by an electron that is accelerated
through a potential difference of one volt. Also in wide use in atomic physics as
a unit of energy is the inverse centimeter, abbreviated cm−1, but read “inverse
centimeters” or, more simply “wave numbers”. (In fact, the cm−1 has an “official”
name, the Kaiser, but nobody uses it.) A simple way of viewing these units is as
follows. The energy interval in wave numbers between two quantized states is the
reciprocal of the wavelength in centimeters of a photon that would be emitted in
a transition between these two states, according to Bohr’s second assumption. In
terms of these units the Bohr energy is

E (0)
n = 109,737 cm−1

n2

= RH

n2
(1.18)

In actuality, RH in the above equation is not precise. The experimentally determined
value, denoted R∞, is R∞ = 109,737.31568525 cm−1. The reason that RH is not
precise is that it ignores effects such as the electron-proton reduced mass (which we
are ignoring here). Sometimes the energy is measured in “Rydbergs”. One Rydberg
is the ionization energy of hydrogen, 13.6 eV. Thus, the lowest energy state of hy-
drogen has an energy of −13.6 eV. This lowest energy state of any atom is referred
to as the “ground state” and any other states of the atom are “excited states”.

Finally, we can obtain the angular momentum of the electron in the nth Bohr
orbit. From Equations (1.11) and (1.12) the velocity of the electron in the nth Bohr
orbit is

vn = h̄

mea0
· 1

n
(1.19)

so the angular momentum is

Ln = mevnrn

= me ·
(

h̄

mea0
· 1

n

)
· (n2a0)

= nh̄ (1.20)

As noted previously though, this result is a consequence of the genius of Bohr
in deducing the correspondence principle, not a magical pronouncement that an-
gular momentum is quantized in units of h̄. In fact, this “postulate” is incorrect!
According to it, the angular momentum in the ground state is one unit of angular
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Table 1.1. Bohr parameters in SI units and their dependences on
the principal quantum number.

Orbital parameter Bohr parameter in SI units for the nth orbit Scaling

Energy En = − 1

2

(
1

4πε0

)2 (mee4

h--2

)
· 1

n2
−RH /n2

Radius rn =
(

4πε0h--2

mee2

)
n2 a0n2

Velocity vn =
(

e2

4πε0h--

)
1

n

v1

n

Period τn =
[

(2π )

√
(4πε0)me

e2

]
a3/2

0 n3 τ1n3

Frequency ωn = 2π

Tn

ω1

n3

momentum h̄. We now know that the electronic angular momentum in the ground
state is actually zero. Thus, not only is the picture envisioned by the Bohr model
incorrect, but it also gives some incorrect answers. Nonetheless, the quantities ob-
tained from the model provide reasonable approximations to atomic parameters.
TABLE 1.1 is a listing of some of these parameters in SI units.

1.3. Numerical Values and the Fine Structure Constant

Because the Bohr model of the atom provides order of magnitude estimates of
atomic parameters, it is useful to cast the Bohr parameters in convenient form.
This is easily done by writing them in terms of the fine structure constant α, a
dimensionless quantity that is, in fact, a measure of the strength of the electromag-
netic interaction. It is defined as

α =
(

1

4πε0

)
· e2

h--c

≈ 1

137
(1.21)

It is a pure number. That is, it has no units and is the same in every system of units.
In terms of the fine structure constant the energy of a hydrogen atom is given by

E (0)
n = (mec2)α2

2n2
(1.22)

This expression for the energy is particularly convenient because most physics
students know that the rest mass of the electron mec2 is 0.51 MeV. Because
α2 ≈ 10−4 it is clear that atomic energies are in the electron volt range.

Suppose that, instead of a hydrogen atom, we have a one-electron atom with
nuclear charge Z , for example, the He+ or Li++ ions. What is the correct expression
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Table 1.2. Bohr parameters in terms of the fine structure constant.

Parameter Formula Numerical value for Z = 1

Rydberg constant = RH
1

2
(Zα)2(mec2) 13.6 eV = 109,737.31568525 cm−1

Bohr radius = a0
1

Z

1

α

(
h--

mec

)
137 · (3.86 ×10−13 m) = 5.29 × 10−11 m

Electron velocity in the first Zαc 2.19 × 106 m/s
Bohr orbit = v1

Period in first Bohr orbit
1

α

(
2πa0

c

)
1.345 × 10−16 s

for the energy levels? The Coulomb force for such an atom (ion) is

F(r ) = 1

4πε0
· (Ze) (−e)

r2
(1.23)

so one of the electronic charges in the expressions for the hydrogen atom must be
replaced by Ze. We see that the energy of the hydrogen atom is proportional to RH

and, by Equation (1.17), RH ∝ e4 which leads us to write, for a one-electron atom
of nuclear charge Z ,

E (0)
n = Z2(mec2)α2

2n2
(1.24)

Some Bohr parameters for one-electron atoms of nuclear charge Z are listed in
TABLE 1.2 in terms of the fine structure constant.

Because the meter is an inconvenient unit to use for atomic dimensions a0 is
often given in nanometers (nm): 10−9 nm = 1 m. Although not an SI unit, the
Angström (Å) is also in wide use: 1 Å = 0.1 nm. Thus, according to the Bohr
theory, the diameter of an atom is ∼1 Å. Is this value reasonable?

The expression for the orbital velocity of the electron in terms of the fine structure
constant makes it clear that, for light atoms, this is a nonrelativistic problem. That
is, the highest orbital velocity that can occur in hydrogen (under the assumptions
of the Bohr model) is the speed of light divided by 137.

1.4. Atomic Dimensions—Is a0 a Reasonable Atomic
Diameter?

The most unforgiving of all principles to which any physical parameter must
conform is the uncertainty principle. According to this principle, the product of the
uncertainty in position �x and uncertainty in momentum �p must be greater than
h--/2. Thus, for an electron bound to a proton we may assume that the uncertainty
in the momentum is equal to the momentum itself, p, and the uncertainty in
the position is the radius of the “orbit”. With these loose assumptions on the
uncertainties the relation between momentum and position that is dictated by the
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uncertainty principle is

p = h--

2r
(1.25)

The total energy is then

E = p2

2me
−
(

e2

4πε0

)
· 1

r

= h--2

8mer2
−
(

e2

4πε0

)
· 1

r
(1.26)

Now, if the electronic motion is to be stable the energy must be a minimum.
Differentiating with respect to r and setting the derivative equal to zero, we obtain
the electronic radius for stability rs to be

rs = 2 ·
(

4πε0

e2

)
· h--2

me

= 2a0 (1.27)

Thus, for an electron bound to a proton the uncertainty principle dictates that
the dimensions of the system are of the order of the Bohr radius. That is, the
electron cannot be localized to a volume that is smaller than ∼Å3. The factor of
two in the above expression is inconsequential. We are only interested in orders of
magnitude. We conclude therefore that the electronic radii obtained from the Bohr
model of the atom are of the correct order of magnitude.

How about the energy? Of course, if we put a0 in the expression for the total
energy we will obtain an energy of order eV. That this is a reasonable energy for
atoms can be confirmed using the simplest of all potentials for which one solves
the Schrödinger equation, the one-dimensional infinite potential well of width L .
The energy levels are given by

En = n2π2h--2

2mL2
(1.28)

This expression gives the energy levels for a system consisting of a particle of
mass m confined to an infinite potential well of width L . The n-dependence is
unimportant. What is important is the relation between the parameters m and L to
the constants that provides an estimate of the energy levels for a system consisting
of a particle of mass m confined to a “box” of length L . We may cast En in the
form

En = n2π2(h--c)2

2(mec2)L2

= n2 π2(1973 eV · Å)2

2M(5 × 105)(1 Å)2

= 38n2

M L2
eV (1.29)
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where M is the mass in terms of the mass of the electron and L is in Å. Thus, for
an “atom” (M = 1 and L ≈ 1 Å) the energy level spacings are on the order of eV.
This is somewhat larger than most atomic energies, but not an order of magnitude.
Remember, we are using this as an estimate. Notice that this expression is good
for estimating other energies as well. For example, for a nucleon confined to a
box the size of a nucleus (M ≈ 2000 and L ≈ 10−5 Å), the energy level spacing
is roughly seven orders of magnitude greater than for the atom. Although this is
hardly an exact formula we can use the simplest of all potential energy functions
to estimate energy levels for real systems.

1.5. Localizing the Electron: Is a Point Particle Reasonable?

We have seen that although the Bohr model is in conflict with the principles of quan-
tum mechanics, it does produce the correct answer for the energy levels of the hy-
drogen atom. It also predicts, more or less correctly, the dimensions of atoms, ∼1 Å.
The fact that Bohr assumed that the electron is a point particle is not at variance with
nonrelativistic quantum mechanics (also sometimes referred to as “first quantiza-
tion” or “Schrödinger wave mechanics”). Recall that in Schrödinger wave mechan-
ics the particles are assumed to be point particles; it is the probability density that
does the waving. Thus, the probability density for the stationary states of hydrogen
that is obtained from the Schrödinger equation is smeared over the roughly 1 Å
diameter of the atom. According to the uncertainty principle, however, the electron
cannot be localized to a region smaller than roughly its deBroglie wavelength.

In order to confine an electron in a “box” the dimensions of the box must be at a
minimum the deBroglie wavelength. For an electron traveling with a speed v this
wavelength is given by

λD = h

p

= h

mev
(1.30)

To make this wavelength as small as possible we replace v with c, the speed of
light. Of course, the electron will not be traveling with the speed of light, but this
replacement gives a lower limit on the value of λD . In this limit, λD → λC where
λC is called the Compton wavelength because it appears in the correct description
of the Compton effect. Thus, we conclude that λC is the smallest length to within
which the electron can be localized. We may rewrite λC as

λC = h

mec
·
(

4πε0h--2

mee2

)
1

4πε0

mee2

h--2

= 2πa0α (1.31)

which shows that the “fuzziness” of the electron is much smaller than atomic
dimensions so the assumption that it is a point particle in “orbit” is justified.
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1.6. The Classical Radius of the Electron

Although we have concluded that it is permissible to treat the electron (and, indeed,
the proton) as point particles, there is another parameter that is often used to obtain
a sense of scale. If one assumes that the electron is actually a charged sphere it is
possible to calculate the “classical radius of the electron” by equating the electronic
rest energy mec2 to the electrostatic energy. The exact electrostatic energy of the
sphere depends upon the assumed distribution of charge within it. For example, if
a sphere of radius R is uniformly charged the energy is given by

Eelectrostatic =
(

3

5

)
e2

4πε0 R
(1.32)

Because only orders of magnitude are important, the fraction is usually dropped
and the classical radius of the electron re is calculated from

mec2 = e2

4πε0re
(1.33)

From this we obtain re which, as with the Compton wavelength, we write in terms
of the Bohr radius and the fine structure constant.

re = e2

4πε0
· 1

mec2

= e2

4πε0
· 1

mec2

(
4πε0h--2

mee2

)
1

4πε0

mee2

h--2

= α2a0 (1.34)

We see then that the particle “dimensions” are roughly 1/137 times smaller than
the fuzziness of the particle as dictated by the uncertainty principle.

1.7. Atomic Units

Although SI units are often preferred, in atomic physics it is useful to employ
atomic units (a.u.). The convenience is that many of the constants are set equal to
unity so that atomic parameters are expressed in terms of Bohr atom parameters.
Atomic units are defined so that

1/(4πε0) ≡ 1; e ≡ 1; h-- ≡ 1; me ≡ 1 (1.35)

TABLE 1.3 is a listing of some parameters in atomic units. Note that each of the
entries in the second column is unity in atomic units.

It is interesting to note that in atomic units the speed of light is 137 atomic units
of length (Bohr radii) per atomic unit of time. This is evident from the definition of
the fine structure constant, Equation (1.21), because α = 1/137 is independent of
the system of units. In addition, the atomic unit of length is a0, the radius of the
first Bohr orbit, which is frequently referred to as one Bohr. The unit of energy in
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Table 1.3. Atomic units.

Physical quantity Unit Physical significance Value (SI)

Mass me Electron mass 9.109534 × 10−31 kg
Charge e Absolute value of the

electron charge 1.6021892 × 10−19 C
Angular h-- 1.05465887× 10−34 J ?s

momentum

Length
4πε0h--2

mee2
Bohr radius of atomic 5.2917706 × 10−11 m

hydrogen
Velocity v0 = e2/(4πε0h--) Velocity in first Bohr orbit 2.19769 × 106 m/s

= αc

Time
a0

v0
Period of the first Bohr orbit 2.41889 × 10−17 s

divided by 2π

Frequency
v0

a0
Orbital frequency (cycles/s) 6.57968 × 10−15 s−1

times 2π

Energy
e2

4πε0a0
Twice the ionization 4.35974417 × 10−18 J

potential of atomic hydrogen 27.2113845 eV

Potential
e

4πε0a0
Potential at the first Bohr orbit 27.2113845 V

Electric field
e

4πε0a2
0

Electric field at the first 5.14225 × 1011 V/m
Bohr orbit

atomic units, often referred to as one hartree, is twice the ionization potential of
hydrogen, that is, two Rydbergs or 27.2 eV.

So far we have introduced four different units of energy. It is typical of atomic
physics that different units of energy are used to describe certain energy intervals.
This is because the range of atomic energy intervals is roughly seven orders of
magnitude. It is also typical of atomic physics that energy units are often expressed
in terms of the units measured in the experimental techniques that are used to
study them. For example, the cm−1 is a convenient unit in spectroscopy where the
wavelength is measured. Another unit that is often used for small energy intervals
is frequency measured in Hz or MHz (106 Hz). The usefulness of frequency as
a measure of energy is that many experiments employ microwave techniques.
Of course, the energy measured in Hz is simply the energy divided by Planck’s
constant h in consistent units. For convenience, some of the frequently used energy
conversion factors are listed in TABLE 1.4.

Table 1.4. Conversion factors between energy units used
in atomic physics.

1 hartree = 27.2113845 eV 1 eV = 3.67493245 × 10−2 hartree

1 eV = 1.60217653 × 10−19 J 1 J = 6.24150947 × 1018 eV

1 eV = 8065.54445 cm−1 1 cm−1 = 1.23984191 × 10−4 eV

1 eV = 2.417989 × 108 MHz 1 MHz = 4.13566743 × 10−9 eV

1 cm−1 = 2.997924 × 104 MHz 1 MHz = 3.335640 × 10−5 cm−1
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Problems

1.1. Bohr’s theory of the atom pre-dated deBroglie’s hypothesis of what we now
call the deBroglie wavelength λD . Suppose, however, that Bohr was aware of this
hypothesis and, rather than using the correspondence principle stated:

Assumption III: The orbits of the stationary states are defined by the condition
that only integral multiples of λD = h/p “fit” into the orbital circumference.

Show that this is identical to the “assumption” that the angular momentum is
quantized in units of h--, and, thus, it would lead to the correct energies and the
same atomic parameters that he derived using the correspondence principle.
1.2. Positronium is a bound state of a positron (anti-electron) and an electron. It
is essentially a hydrogen atom with the proton replaced by a positron. What is the
ground state energy of positronium?
1.3. Obtain the expression for the energy levels of a particle in an infinite square
well of length L , Equation (1.29), by fitting the deBroglie wave in the box. Note that
in this special case the deBroglie wavelength for each level is constant throughout
the box because there is no potential energy; that is, the kinetic energy (and hence
the momentum) is constant for each level.
1.4. What is the ionization energy of ground state He+? In other words, what is
the ground state energy of He+?
1.5. A diatomic molecule for which the reduced mass of the nuclei is µ undergoes
vibrational motion.
(a) Use the uncertainty principle to minimize the energy to show that an approxi-
mate value for the amplitude of vibration A is A = √

h--/2µω.
(b) Show that, using A from part (a), the minimum energy is the correct zero point
energy of a harmonic oscillator.
(c) The spacing between the quantized vibrational energy levels of a diatomic
hydrogen molecule is roughly 0.4 eV. Find the approximate amplitude of vibration
for this molecule.
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2
Angular Momentum

2.1. Introduction

An understanding of angular momentum algebra is crucial for proper description
of the properties and interactions of atoms. We therefore devote this chapter to a
review of angular momentum. We begin with a quantum mechanical description
of a particle of mass M confined to move on a plane circular ring of radius R. Such
a description leads to the quantum mechanically allowable values of the energy
and, of course, the angular momentum. In addition, this problem, which is often
referred to as the rigid rotor, provides an introduction to a very important concept
for the study of atomic structure—degeneracy.

We set up the coordinate system shown in FIGURE 2.1. We wish to solve the
eigenvalue problems for energy and angular momentum. The energy equation is
the familiar time independent Schrödinger equation in plane polar coordinates ρ

and φ

Ĥψ(ρ, φ) = Eψ(ρ, φ) (2.1)

where Ĥ is the Hamiltonian operator and E is the energy eigenvalue. We use the
“hat” over a quantity to signify that it is a quantum mechanical operator although
occasionally the hat is omitted when it is unnecessary, for example, for coordinates
such as x , y, or z. The Hamiltonian for the system is given by

Ĥ = 1

2M

(
p̂2

x + p̂2
y

)

= − h̄2

2M

(
∂2

∂x2
+ ∂2

∂y2

)
(2.2)

because there is no potential energy. Because of the symmetry of the problem cylin-
drical coordinates are ideal. The equations for the transformation from Cartesian
to cylindrical coordinates are

x = ρ cos φ y = ρ sin φ

14
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Figure 2.1. Coordinates for the rigid rotor problem.

and the derivatives transform according to

∂

∂ρ
= ∂x

∂ρ
· ∂

∂x
+ ∂y

∂ρ
· ∂

∂y
&

∂

∂φ
= ∂x

∂φ
· ∂

∂x
+ ∂y

∂φ
· ∂

∂y

These transformations lead to the Laplacian operator in polar coordinates:

∂2

∂x2
+ ∂2

∂y2
= 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2

For the particle confined to the ring the radial distance remains constant; that is,
ρ = R. The time-independent Schrödinger wave equation is therefore

d2ψ

dφ2
+ 2I E

h̄2 ψ = 0 (2.3)

where I = M R2, the moment of inertia of the particle about the z-axis. In this last
equation the partial derivative has been replaced by a total derivative because for
ρ = R, ψ is a function of φ only.

Equation (2.3) could have been deduced by noting that the energy of the rotating
particle is given by

E = (Lz)2

2I
(2.4)

where Lz is the angular momentum. Thus, from Equation (2.4) the quantum
mechanical operator Ĥ = L̂2

z/2I where L̂ z is the operator corresponding to the
z-component of angular momentum. Because L̂ z commutes with Ĥ they will have
simultaneous eigenfunctions and the Schrödinger equation becomes

L̂2
z

2I
ψ(φ) = Eψ(φ) (2.5)
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where, in Equation (2.5) we have explicitly noted that ψ is a function of φ only.
From elementary quantum mechanics we recall that the operator that represents
the z-component of the angular momentum is given by

L̂ z = x p̂y − y p̂x

= −ih̄

(
x

∂

∂y
− y

∂

∂x

)

= −ih̄
∂

∂φ
(2.6)

where the p̂ j are the operators corresponding to the j th component of linear
momentum. The commutation rules for the components of linear momentum with
position are

[x j , p̂k] = ih̄δ jk (2.7)

Equations (2.5) and (2.6) lead to the time-independent Schrödinger equation for
the rigid rotor

d2ψ

dφ2
+ ω2ψ = 0 (2.8)

where ω2 = (2IE)/h̄2.
Equation (2.8) is perhaps the most familiar differential equation in all of physics,

first encountered as the description of the motion of an undamped simple harmonic
oscillator. The solutions are

ψ(φ) = Ae±iωφ (2.9)

where A is a constant. Because ψ(φ) must be single-valued, ω must be an integer.
That is, we must have

ψ(φ) = ψ(φ + 2π ) (2.10)

which can be satisfied only if

e2π iω = 1 (2.11)

Therefore,

Aeiωφ = Aeiωφ[e2π iω] (2.12)

Normalization of the wave function shows that A = 1/
√

2π .
To satisfy Equation (2.12) we require ω = 0, ±1, ±2, . . . . Because ω is an

integer it is usually designated by the letter m. Consequently, the energy is given
by

Em = h̄2

2I
m2 where m = 0, ±1, ±2, . . . (2.13)

It is clear from Equation (2.13) that the energy is quantized. Moreover, because
the eigenvalues depend on the square of m, two values of m, positive and negative,
correspond to the same energy; that is, the system is degenerate.
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Now, because Ĥand L̂ z commute they must have simultaneous eigenfunctions.
Thus, we examine the effect of L̂ z operating on these energy eigenfunctions.

L̂ zψ(φ) = h̄

i

∂

∂φ
ψ(φ)

= h̄

i

∂

∂φ
Aeimφ

= mh̄ψ(φ) (2.14)

Therefore, as expected, ψ(φ) is also an eigenfunction of L̂ zwith eigenvalue mh̄.
In this case, however, the sign of m determines the sign of the eigenvalue of the
angular momentum. In fact, it is obvious that, classically, the positive eigenvalue
corresponds to Lz pointing in the direction of the z-axis and the negative eigenvalue
corresponds to the angular momentum vector pointing in the direction of the neg-
ative z-axis. Because, however, the energy is proportional to m2 either direction
of the angular momentum leads to the same energy and the system is degenerate.

Clearly it is the symmetry of the system that is responsible for this degeneracy. In
general, degeneracies are associated with symmetries. Mathematically, the opera-
tors that represent such symmetries commute with the Hamiltonian and therefore
have simultaneous eigenfunctions. In the case of the particle confined to a ring, Lz

(the z-component of the angular momentum) is that operator.
To summarize, we have:

Eigenvalues of Ĥ :

Em = h̄2

2I
m2 where m = 0, ±1, ±2, . . . (2.15)

Eigenvalues of L̂ z :

Lz = mh̄ where m = 0, ±1, ±2, . . . (2.16)

The degeneracy corresponds to different directions of rotation for which |Lz| is the
same. This “symmetry” is, as usual, responsible for the degeneracy. Notice that the
Schrödinger equation can also be separated in Cartesian coordinates. Frequently
symmetries manifest themselves by making the Schrödinger equation separable
in more than one coordinate system. A familiar example is the three-dimensional
isotropic harmonic oscillator. If a Hamiltonian can be written as the sum of terms,
each of which contains only a single variable, for example,

Ĥ (x, y, z) = Ĥx (x) + Ĥy(y) + Ĥz(z) (2.17)

then the eigenfunctions and eigenvalues are given by

ψ(x, y, z) = ψx (x)ψy(y)ψz(z)

E = Ex + Ey + Ez (2.18)

where the ψi and Ei are solutions of the equations

Ĥiψi = Eiψi (2.19)
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Because the Hamiltonian for the isotropic oscillator is given by

Ĥ (x, y, z) = 1

2m

(
p2

x + p2
y + p2

z

)+ 1

2
k(x2 + y2 + z2)

= Ĥx (x) + Ĥy(y) + Ĥz(z) (2.20)

it is clear that the Schrödinger equation can indeed be separated in Cartesian
coordinates. Moreover, by virtue of the central nature of this potential V (r ) =
(1/2)kr2, the Schrödinger equation can also be separated in spherical coordinates.
Accordingly, the isotropic oscillator possesses a degree of symmetry that is higher
than the symmetry associated with the isotropic nature of any central potential.
This is discussed in more detail later in this book.

2.2. Commutators

Classsically, the angular momentum is a vector in three dimensions

L = Lx i + L y j + Lzk (2.21)

Throughout this book the symbols i, j, and k in boldface designate the unit vec-
tors in Cartesian coordinates. The customary “hat” is omitted to avoid confusion
with quantum mechanical operators. In quantum mechanics a more generalized
approach to angular momentum is taken than to consider angular momentum ac-
cording to the classical definition

L = r × p (2.22)

An operator Ĵ

Ĵ = Ĵx i + Ĵy j + Ĵzk (2.23)

is defined to be an angular momentum if the commutation relations between its
Cartesian components are given by

[ Ĵi , Ĵ j ] = ih̄ Ĵk εijk (2.24)

where εijk is the Levi–Cevita symbol for which even permutations of i, j, k yield
+1 and odd permutations yield −1; εijk = 0 if any two of the indices are the same.
For example,

[ Ĵy, Ĵx ] = −ih̄ Ĵz (2.25)

but

[ Ĵx , Ĵx ] = 0 (2.26)

Note that Ĵ is “an angular momentum” whether or not there is a classical coun-
terpart of the operator that represents angular motion if the commutation rules of
Equation (2.24) are obeyed. In spite of this generalized nature of angular momen-
tum, we visualize such a motion and refer to rotations when discussing angular mo-
mentum operators. Later, we encounter quantum mechanical operators for which
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the above commutation relations apply, but that cannot be visualized classically.
Of course, the most familiar of these is the “intrinsic” angular momentum—spin.

The commutation rules of Equation (2.24) indicate that an angular momentum
can have only one of its components specified precisely. In keeping with accepted
tradition, we choose Ĵz as this component. Then Ĵx and Ĵy cannot have sharply
defined values. If we know Ĵz we wish to find out if we can, simultaneously, know
the magnitude of J.

To answer this question we examine Ĵ 2, the square of the magnitude of the total
angular momentum.

Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z (2.27)

If Ĵz commutes with Ĵ
2

then the eigenvalues of these operators can be specified
simultaneously. This commutator is

[ Ĵ2, Ĵz] = [
Ĵ 2

x , Ĵz
]+ [

Ĵ 2
y , Ĵz

]+ [
Ĵ 2

z , Ĵz
]

(2.28)

where the last term is obviously zero. Using the easily derived identity

[ Â B̂, Ĉ] = [ Â, Ĉ]B̂ + Â[B̂, Ĉ] (2.29)

the first term is [
Ĵ 2

x , Ĵz
] = Ĵx Ĵx Ĵz − Ĵz Ĵx Ĵx (2.30)

Now subtract and add Ĵx Ĵz Ĵx to obtain[
Ĵ 2

x , Ĵz
] = Ĵx Ĵx Ĵz + {− Ĵx Ĵz Ĵx + Ĵx Ĵz Ĵx } − Ĵz Ĵx Ĵx

= Ĵx [ Ĵx , Ĵz] + [ Ĵx , Ĵz] Ĵx

= Ĵx (−ih̄ Ĵy) + (−ih̄ Ĵy) Ĵx

= −ih̄{ Ĵx Ĵy + Ĵy Ĵx } (2.31)

The same procedure yields[
Ĵ 2

y , Ĵz
] = +ih̄{ Ĵx Ĵy + Ĵy Ĵx } (2.32)

so that

[ Ĵ
2
, Ĵz] = [(

Ĵ 2
x + Ĵ 2

y + Ĵ 2
z

)
, Ĵz

]
= [

Ĵ 2
x , Ĵz

]+ [
Ĵ 2

y , Ĵz
]+ [

Ĵ 2
z , Ĵz

]
= −ih̄{ Ĵx Ĵy + Ĵy Ĵx } + ih̄{ Ĵx Ĵy + Ĵy Ĵx } + 0

= 0 (2.33)

By symmetry we have

[ Ĵ
2
, Ĵx ] = 0 = [ Ĵ

2
, Ĵy]

which shows that | Ĵ| can be specified together with any one of its components.
Because, however, the components do not themselves commute, only one of them
can be specified. Customarily this component is chosen be Ĵz .
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2.3. Angular Momentum Raising and Lowering Operators

Manipulation of angular momentum operators is facilitated by defining two linear
combinations of Ĵx and Ĵy which are usually referred to as raising and lowering
operators or, simply, ladder operators. They are defined as

Ĵ± = Ĵx ± i Ĵy (2.34)

Note that Ĵ+ and Ĵ− are Hermitian conjugates of each other.
Using Equation (2.25) we obtain the following commutation relations.

[ Ĵ±, Ĵz] = [ Ĵx , Ĵz] ± i[ Ĵy, Ĵz]

= ∓ ih̄ Ĵy ∓ h̄ Ĵx

= ∓ h̄( Ĵx + i Ĵy)

= ∓ h̄ Ĵ± (2.35)

Similarly,

[ Ĵ+, Ĵ−] = 2h̄ Ĵz (2.36)

Note also that because Ĵ 2 commutes with all components of Ĵ, it commutes with
Ĵ+ and Ĵ−.

Now, we use Ĵ+ and Ĵ− to find the eigenvalues and eigenfunctions of the angular
momentum. Because Ĵ 2 and Ĵz commute, we find simultaneous eigenfunctions of
these two operators. Suppose that the eigenstates are distinguished by two quantum
numbers, j and m, and denote the eigenfunctions by the ket | jm〉. If m is the
quantum number associated with Ĵz we have

Ĵz| jm〉 = mh̄| jm〉 (2.37)

We insert the h̄ for future convenience because we know that angular momentum
is quantized in units of h̄.

Now, m must be real because Ĵz is a Hermitian operator (it represents an ob-
servable). We do not, however, know that it is an integer; it might be a continuous
function. Nor do we know the range of m. Also, operation on | jm〉 by Ĵ 2 must
give

Ĵ 2| jm〉 = h̄2 f ( j, m)| jm〉 (2.38)

where f ( j, m) is a dimensionless function (because h̄ has units of angular mo-
mentum). We have assumed that the eigenvalues of Ĵ 2 depend upon both j
and m.

We first investigate restrictions on the relative magnitudes of f ( j, m) and the
quantum numbers. The difference in the expectation values of Ĵ 2 and Ĵz is〈

Ĵ 2 − Ĵ 2
z

〉 = 〈 jm| Ĵ 2 − Ĵ 2
z | jm〉

= { f ( j, m) − m2}h̄2 (2.39)
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but it is also given by

〈 jm| Ĵ 2 − Ĵ 2
z | jm〉 = 〈

Ĵ 2
x

〉+ 〈
Ĵ 2

y

〉
(2.40)

which is manifestly positive. Therefore,

f ( j, m) ≥ m2 (2.41)

Now apply the raising and lowering operators recalling that they commute with
Ĵ 2 and cannot affect the magnitude of the angular momentum. We show this as
follows.

Operating with Ĵ+ on Ĵ 2| jm〉 = h̄2 f ( j, m)| jm〉 we obtain

Ĵ+{ Ĵ 2| jm〉} = h̄2 f ( j, m){ Ĵ+| jm〉}
which may be rewritten as

Ĵ 2{ Ĵ+| jm〉} = h̄2 f ( j, m){ Ĵ+| jm〉} (2.42)

Thus, { Ĵ+| jm〉} is an eigenstate of Ĵ 2 with the same eigenvalue as | jm〉, h̄2 f ( j, m).
Because Ĵ 2 represents the magnitude of the angular momentum { Ĵ+| jm〉} has the
same magnitude as | jm〉. The same argument applies to Ĵ−.

The same proof does not work for Ĵz because Ĵ+ and Ĵ− do not commute with
Ĵz . Therefore, application of Ĵ+ or Ĵ− to | jm〉 can shift the value of m, but it must
leave the magnitude unchanged. To find the eigenvalue of Ĵz corresponding to the
eigenstate { Ĵ+| jm〉} we apply Ĵz{ Ĵ+| jm〉}.

Ĵz{ Ĵ+| jm〉} = ( Ĵz Ĵ+ + Ĵ+ Ĵz − Ĵ+ Ĵz)| jm〉
= ([ Ĵz, Ĵ+] + Ĵ+ Ĵz)| jm〉 (2.43)

where the second and third terms were added and subtracted to put the commutator
on the right-hand side. Using [ Ĵ+, Ĵz] = −h̄ Ĵ+ we have

Ĵz{ Ĵ+| jm〉} = (h̄ Ĵ+ + Ĵ+ Ĵz)| jm〉
= (m + 1)h̄{ Ĵ+| jm〉}

from which we see that { Ĵ+| jm〉} is an eigenstate of Ĵz with eigenvalue (m + 1)h̄.
Ĵ+ therefore raises the eigenvalue by one unit of angular momentum h̄. The action
of Ĵ+ on | jm〉 produces an eigenstate of Ĵ 2 and Ĵz that is proportional to | j (m + 1)〉.
That is,

Ĵ+| jm〉 = h̄C+
nm | j( m + 1)〉 (2.44)

Using an identical procedure we find that

Ĵ−| jm〉 = h̄C−
nm | j( m − 1)〉 (2.45)

Now, Ĵ+ and Ĵ− do not change j , only m. Also, because f ( j, m) ≥ m2, we cannot
apply Ĵ+ and Ĵ− indefinitely. There must be maximum and minimum values such
that

Ĵ+| jmmax〉 = 0 (2.46)
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Applying Ĵ− to Equation (2.46) we have

Ĵ− Ĵ+| jmmax〉 = 0 (2.47)

But,

Ĵ− Ĵ+ = ( Ĵx − i Ĵy)( Ĵx + i Ĵy)

= Ĵ 2
x + Ĵ 2

y + i Ĵx Ĵy − i Ĵy Ĵx

= Ĵ 2 − Ĵ 2
z + i[ Ĵx , Ĵy]

= Ĵ 2 − Ĵ 2
z − h̄ Ĵz (2.48)

so that

Ĵ− Ĵ+| jmmax〉 = (
Ĵ 2 − Ĵ 2

z − h̄ Ĵz
) | jmmax〉

= 0 (2.49)

which leads to

Ĵ 2| jmmax〉 = (
Ĵ 2

z + h̄ Ĵz
) | jmmax〉

= {(mmax)2h̄2 + h̄(mmaxh̄)}| jmmax〉
= mmax(mmax + 1)h̄2| jmmax〉 (2.50)

We have therefore solved for f ( j, mmax). We have

f ( j, mmax) = mmax(mmax + 1) (2.51)

We see then that the magnitude of the angular momentum, the square root of
the eigenvalue of Ĵ 2, is determined by mmax which we replace by j so that the
eigenvalue equation becomes

Ĵ 2| jm〉 = j( j + 1)h̄2| jm〉 (2.52)

We must still determine the nature of j and m and the lower bound on m. We
begin by finding the matrix elements of Ĵ− Ĵ+.

Ĵ− Ĵ+| jm〉 = ( Ĵ 2 − Ĵ 2
z − h̄ Ĵz)| jm〉

= (h̄2 j( j + 1) − m2h̄2 − mh̄2)| jm〉
= h̄2( j( j + 1) − m(m + 1))| jm〉

Another expression for this matrix element may be obtained by recalling that

Ĵ+| jm〉 = C+
jm | j( m + 1)〉 and Ĵ−| jm〉 = C−

jm | j( m − 1)〉
so that

〈 jm| Ĵ− Ĵ+| jm〉 = 〈 jm| Ĵ−h̄C+
jm | j (m + 1)〉

= h̄2C+
jmC−

jm+1〈 jm|| jm〉
= h̄2C+

jmC−
jm+1
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Comparing the two expressions for the matrix element we find that

C+
jmC−

jm+1 = j( j + 1) − m(m + 1) (2.53)

Now to find the relation between C+
jm and C−

jm we use

〈 jm| Ĵ−| j (m + 1)〉 = 〈 j (m + 1)| Ĵ+| jm〉∗ (2.54)

which is true because Ĵ+ and Ĵ− are Hermitian conjugates. Because

〈 j (m + 1)| Ĵ+| jm〉 = h̄C+
jm (2.55)

and

〈 jm| Ĵ−| j (m + 1)〉 = h̄C−
jm+1 (2.56)

we have

C−
jm+1 = C+

jm (2.57)

which we insert in Equation (2.53) and arrive at

C+
jm

(
C+

jm

)∗
= j( j + 1) − m(m + 1) (2.58)

By convention, we choose C+
jm to be real and positive which leads to

C+
jm =

√
j( j + 1) − m(m + 1)

=
√

( j − m)( j + m + 1) (2.59)

and

C−
jm =

(
C+

jm−1

)∗
=
√

j( j + 1) − m(m − 1)

=
√

( j + m)( j − m + 1) (2.60)

so the actions of the ladder operators on the ket | jm〉 are

Ĵ+| jm〉 = h̄
√

j( j + 1) − m(m + 1)| j( m + 1)〉
= h̄

√
( j − m)( j + m + 1)| j( m + 1)〉 (2.61)

and

Ĵ−| jm〉 = h̄
√

j( j + 1) − m(m − 1)| j( m − 1)〉
= h̄

√
( j + m)( j − m + 1)| j( m − 1)〉 (2.62)

We may learn more about the nature of the quantum numbers by considering the
effect of Ĵ− on the state with the lowest possible value of m; call it mmin. Clearly,

Ĵ−| jmmin〉 = 0 (2.63)

and

〈 j (mmin − 1)| Ĵ−| jmmin〉 = 0 (2.64)
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Furthermore, because

Ĵ−| jm〉 = h̄C−
jm | j (m − 1)〉 (2.65)

the above matrix element is also given by

〈 j (mmin − 1)| Ĵ−| jmmin〉 = h̄C−
jm〈 j (mmin − 1)|| j (mmin − 1)〉

= h̄C−
jm (2.66)

Because

C−
jm =

√
j( j + 1) − m(m − 1) (2.67)

we have

C−
jmmin

= 0

=
√

j( j + 1) − mmin(mmin − 1) (2.68)

so that mmin = − j and we have − j ≤ m ≤ + j .
The symmetry of this relationship imposes two restrictions on j : it must be

either an integer or a half-integer. For example,

j = 2 ⇒ m = −2, −1, 0, +1, +2

and

j = 3/2 ⇒ m = −3/2, −1/2, +1/2, +3/2

We show that when boundary conditions are applied to spatial wave functions then
j will have to take on integral values. Half-integral angular momenta do, however,
exist. Electron spin is such an angular momentum, an “internal” or “intrinsic”
angular momentum.

By convention, integral values of angular momentum are orbital angular mo-
menta and are designated by  and m, that is, the quantum numbers j →  and
m → m. For spin angular momentum the convention is that j → s and m → ms .
Also, it is customary to designate orbital angular momenta by letters that seem
to make no sense. These letters are relics of the early days of spectroscopy when
the origin of atomic emissions and absorptions was unknown. Nonetheless, the
designations persist so we list them in TABLE 2.1.

Table 2.1. Letter designations for
orbital angulart momentum.

 Letter designation

0 s
1 p
2 d
3 f
4 and higher Alphabetically g, h, . . .
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The lowercase letters used in this notation refer to a single electron. When there
is more than one electron the script  is replaced by a capital L and the letter
designations are also replaced by capital letters.

2.4. Angular Momentum Commutation Relations
with Vector Operators

There are a number of commutation relations between angular momentum opera-
tors and a specific class of vector operators that are useful in atomic physics. If a
vector operator obeys certain commutation rules it is often referred to as a class T̂
operator.1,2 We simply refer to it as a “vector operator”. These commutation rules
are, in fact, the same commutation rules that are obeyed by the components of Ĵ.
Thus, if the components of an operator V̂ obey

[ Ĵi , V̂ j ] = ih̄V̂kεijk (2.69)

it is a vector operator. Obviously, Ĵ itself is a vector operator. Others are the
position vector r and the linear momentum p̂.

A number of relations can be derived from this definition. Among them is the
important commutation relation

[ Ĵ, (V̂1
� V̂2)] = 0 (2.70)

If we let V̂1 = Ĵ and V̂2 = V̂ we obtain a relation that will be useful later; viz.

[ Ĵ, ( Ĵ � V̂)] = 0 (2.71)

It is often useful to define combinations of the components of a vector operator as

V̂± = V̂x ± i V̂y (2.72)

Using the defining commutation rules together with these definitions we obtain
several commutator relations which are summarized in TABLE 2.2.

Table 2.2. Some useful
commutator relations.

[ Ĵi , V̂ j ] = ih̄V̂kεijk

[V̂±, Ĵz] = ∓h̄V̂±
[V̂±, Ĵx ] = ±h̄V̂z

[V̂±, Ĵy ] = ih̄V̂z

[V̂±, Ĵ±] = 0

[V̂±, Ĵ∓] = ±2h̄V̂z

[V̂z, Ĵ±] = ±h̄V̂±
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These are often cast in terms of the “spherical components” of the operators de-
fined as

V̂0 = V̂z

V̂±1 = ∓ 1√
2

V̂± (2.73)

2.5. Matrix Elements of Vector Operators

It is often necessary to compute the matrix elements of vector operators between
two angular momentum eigenstates. This is especially useful when finding the
selection rules for radiative transitions between two atomic states.

We consider systems for which the operators Ĵ 2 and its z-component Ĵz commute
with the Hamiltonian and stress that Ĵ can be any angular momentum. To derive
the form of the matrix elements of the total angular momentum we make use of a
rather specialized commutator relation2

[ Ĵ 2, [ Ĵ 2, V̂]] = 2h̄2( Ĵ 2V̂ + V̂ Ĵ 2) − 4h̄2 Ĵ( Ĵ � V̂) (2.74)

We form the matrix element of these operators with eigenstates of Ĵ 2 and Ĵz

which we designate | jm〉 and | j ′m ′〉. These eigenstates are also eigenstates of the
Hamiltonian so there can be other quantum numbers such as those corresponding to
the energy, but inasmuch as these matrix elements depend upon angular momentum
we simplify the notation by omitting them. Our goal in evaluating the matrix
elements of the commutator relation in Equation (2.74) is to obtain an expression
involving the matrix element 〈 jm|V̂ | j ′m ′〉.

Taking the matrix element of the operators in Equation (2.74) between the states
〈 jm| and | j ′m ′〉 we have

〈 jm| Ĵ 4V̂ − 2 Ĵ 2V̂ Ĵ 2 + V̂ Ĵ 4 − 2h̄2( Ĵ 2V̂ + V̂ Ĵ 2)

+ 4h̄2 Ĵ( Ĵ � V̂)| j ′m ′〉 = 0 (2.75)

To implement our goal we seek relations between the initial and final quantum
numbers for which the matrix element 〈 jm|V̂ | j ′m ′〉 does not (necessarily) vanish.
We first examine the properties of the operator in the last term of Equation (2.75),
Ĵ( Ĵ � V̂).

From Equation (2.71) we know that [ Ĵ, ( Ĵ � V̂)] = 0 so Ĵ and ( Ĵ � V̂) have
simultaneous eigenfunctions. Moreover, Ĵ and ( Ĵ � V̂) commute with Ĵ 2. Any
operator that commutes with Ĵ 2 cannot have nonzero matrix elements between
states of different j . This can be seen as follows.

Suppose Ô is an operator that commutes with Ĵ 2. We may form the matrix
element of their commutator.

0 = 〈 jm|[Ô, Ĵ 2]| j ′m ′〉
= { j( j + 1) − j ′( j ′ + 1)}〈 jm|Ô| j ′m ′〉 (2.76)
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Thus, unless j = j ′ the matrix element vanishes. In our case, the term containing
Ĵ( Ĵ � V̂) in Equation (2.75) vanishes unless j = j ′.

First we consider the case for which j �= j ′ so the matrix element of the last
term in Equation (2.75) vanishes. Equation (2.75) becomes

[ j( j + 1)]2 − 2 j( j + 1) j ′( j ′ + 1) + [ j ′( j ′ + 1)]2

− 2[ j( j + 1) + j ′( j ′ + 1)]〈 jm|V̂ | j ′m ′〉 = 0 (2.77)

or

[( j + j ′ + 1)2 − 1][( j − j ′)2 − 1]〈 jm|V̂| j ′m ′〉 = 0 (2.78)

The coefficient of 〈 jm|V̂ | j ′m ′〉 in Equation (2.78) vanishes under the following
circumstances.

1. j + j ′ = −2.
2. j = j ′ = 0.
3. j + j ′ = 0.
4. j − j ′ = ±1.

The first of these is impossible because j ≥ 0. The second is irrelevant because
j = j ′ is (temporarily) excluded. The third is excluded for the same reasons as
the first two. The fourth of these conditions is indeed possible. If j − j ′ = ±1 the
first factor can vanish and 〈 jm|V̂ | j ′m ′〉 can be nonzero.

For the case of j = j ′ we must actually evaluate the matrix element of Ĵ( Ĵ � V̂).
To do so we need an important general relation for vector operators that holds only
for j = j ′. It is called the Landé formula.3 It states

〈 jm|V̂ | jm ′〉 = 〈 jm|V̂ � Ĵ| jm〉
j( j + 1)

〈 jm| Ĵ| jm ′〉 (2.79)

Letting V̂ → Ĵ( Ĵ � V̂) we have

〈 jm| Ĵ( Ĵ � V̂)| jm ′〉 = 〈 jm| Ĵ( Ĵ � V̂) � Ĵ| jm〉
j( j + 1)

〈 jm| Ĵ| jm ′〉

= 〈 jm|( Ĵ � V̂) Ĵ 2| jm〉
j( j + 1)

〈 jm| Ĵ| jm ′〉

= 〈 jm|( Ĵ � V̂)| jm〉〈 jm| Ĵ| jm ′〉 (2.80)

where we have used the fact that Ĵ and ( Ĵ � V̂) commute. Solving Equation (2.79)
for the term 〈 jm| Ĵ| jm ′〉 we obtain

〈 jm| Ĵ| jm ′〉 = j( j + 1)
〈 jm|V̂ | jm〉

〈 jm|V̂ � Ĵ| jm ′〉 (2.81)

which we insert in Equation (2.80) and arrive at

〈 jm| Ĵ( Ĵ � V̂)| jm ′〉 = j( j + 1)〈 jm|V̂ | jm ′〉 (2.82)
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which is precisely what we seek, an expression for 〈 jm| Ĵ( Ĵ � V̂)| jm ′〉 in terms of
the matrix element of V̂ .

To find the matrix element 〈 jm|V̂ | j ′m ′〉 for j = j ′ we include the term given
in Equation (2.82) in Equation (2.75). This amounts to adding [4 j( j + 1)] to the
first factor in Equation (2.78). We obtain

{[(2 j + 1)2 − 1](−1) + [4 j( j + 1)]}〈 jm|V̂ | j ′m ′〉 = 0 (2.83)

Because the factor that multiplies the matrix element is identically zero
〈 jm|V̂ | j ′m ′〉 can be nonzero for j = j ′.

There is, however, an important exception to this last conclusion. It is the case
for which j = j ′ = 0. The matrix element for j = j ′ = 0 is

〈00|V̂ |00〉 = 〈00|V̂x |00〉i + 〈00|V̂ j |00〉 j + 〈00|V̂z|00〉k (2.84)

so we must evaluate the matrix element of each of the components of V̂ . This can
be done most easily by using the commutation relations in TABLE 2.2.

The matrix element of the z-component is

〈00|V̂z|00〉 = − 1

2h̄
〈00|( Ĵ−V̂+ − V̂+ Ĵ−)|00〉

= 0 (2.85)

because Ĵ±|00〉 ≡ 0. Because V̂± = V̂x ± i V̂y we may write

〈00|V̂x |00〉 = 1

2
{〈00|V̂+|00〉 + 〈00|V̂−|00〉}

= 1

h̄
{〈00|(V̂z Ĵ+ − Ĵ+V̂z)|00〉 − 〈00|(V̂z Ĵ− − Ĵ−V̂z)|00〉}

= 0 (2.86)

Clearly 〈00|V̂y |00〉 = 0 as well thus establishing that the matrix element
〈 jm|V̂ | j ′m ′〉 vanishes identically if j = j ′ = 0.

We may also deduce selection rules on the m quantum number using operator
techniques. First, because [ Ĵz, V̂z] = 0 we have

〈 jm|[ Ĵz, V̂z]| j ′m ′〉 = 0

= 〈 jm|( Ĵz V̂z − V̂z Ĵz)| j ′m ′〉
= m〈 jm|V̂z| j ′m ′〉 − m ′〈 jm|V̂z| j ′m ′〉
= (m − m ′)〈 jm|V̂z| j ′m ′〉 (2.87)

which shows that the matrix element 〈 jm|V̂z| j ′m ′〉 vanishes unless m = m ′. This
is, however, not the entire story for m. We must examine the other components of
V̂ as well. For this purpose we work with V̂± using a commutation relation from
TABLE 2.2,

[ Ĵz, V̂±] = ±h̄V̂± (2.88)
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from which we have

〈 jm|{[ Ĵz, V̂±] ∓ h̄V̂±}| j ′m ′〉 = 0

= 〈 jm|( Ĵz V̂± − V̂± Ĵz ∓ h̄V̂±)| j ′m ′〉
= h̄(m − m ′ ∓ 1)〈 jm|V̂±| j ′m ′〉 (2.89)

which leads to two equations for the two unknowns 〈 jm|V̂x | j ′m ′〉 and
〈 jm|V̂y | j ′m ′〉.

(m − m ′ − 1)〈 jm|V̂x | j ′m ′〉 + i(m − m ′ − 1)〈 jm|V̂y | j ′m ′〉 = 0

(m − m ′ + 1)〈 jm|V̂x | j ′m ′〉 − i(m − m ′ + 1)〈 jm|V̂y | j ′m ′〉 = 0 (2.90)

These homogeneous equations have a nontrivial solution only if the determinant
of the coefficients vanishes, so for the matrix elements to be nonzero we must have

(m − m ′ − 1)(m − m ′ + 1) = 0

or

(m − m ′) = ±1 (2.91)

The results of this section may be summarized as follows. The matrix element
〈 jm|V̂ | j ′m ′〉 vanishes unless

j − j ′ = 0, ±1 but j = j ′ = 0 is not allowed

m − m ′ = 0, ±1 (2.92)

2.6. Eigenfunctions of Orbital Angular Momentum Operators

For orbital angular momenta it is customary to let Ĵ = L̂ and j → , a positive
integer. We wish to find the explicit functions | m〉 in a specific coordinate system.
We choose spherical coordinates r, θ, φ because we will be dealing with central
potentials and for any central potential the Schrödinger equation is separable in
spherical coordinates. The work that we have performed in obtaining the properties
of the shift operators means that we need only find the eigenfunction |〉 and
successively lower it with L̂− to generate all of the eigenfunctions.

We find |〉 by solving the equation

L̂+| 〉 = 0 (2.93)

We must at this point choose a representation in which to work. We can no longer
use the abstract representation of operators. From the expressions for the Cartesian
components of the vector operator for linear momentum

p̂x j → h̄

i

∂

∂x j
(2.94)

where x j represents any of x , y, or z, Equation (2.22), and the transformation
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equations from Cartesian to spherical coordinates we have

L̂ x = −h̄

i

{
sin φ

∂

∂θ
+ cot θ cos φ

∂

∂φ

}

L̂ y = h̄

i

{
cos φ

∂

∂θ
− cot θ sin φ

∂

∂φ

}

L̂ z = −h̄

i

∂

∂φ
(2.95)

We may find the shift operators from their definitions, and the above equations.

L̂+ = L̂ x + i L̂ y

= −h̄

i

{
sin φ

∂

∂θ
+ cot θ cos φ

∂

∂φ

}
+ i

h̄

i

{
cos φ

∂

∂θ
− cot θ sin φ

∂

∂φ

}

= −h̄

i
sin φ

∂

∂θ
− h̄

i
cot θ cos φ

∂

∂φ
+ h̄ cos φ

∂

∂θ
− h̄ cot θ sin φ

∂

∂φ

= h̄(cos φ + i sin φ)
∂

∂θ
+ h̄ cot θ (cos φ + i sin φ)

∂

∂φ

= h̄eiφ

{
∂

∂θ
+ i cot θ

∂

∂φ

}
(2.96)

where we have used
1

i
= −i and e±iφ = cos φ ± i sin φ. Similarly, we find that

L̂− = −h̄e−iφ

{
∂

∂θ
− i cot θ

∂

∂φ

}
(2.97)

Because L̂+| 〉 = 0 we have

h̄e−iφ

{
∂

∂θ
+ i cot

∂

∂φ

}
ψ(θ, φ) = 0 (2.98)

where

ψ(θ, φ) = | 〉 (2.99)

Now, as usual, we try separation of variables. Let

ψ(θ, φ) = �(θ )�(φ) (2.100)

which leads to
tan θ

�
· d�

dθ
= −i

1

�
· d�

dφ
(2.101)

There are two important aspects of Equation (2.101):

1. The derivatives are total derivatives.
2. The left side contains only θ and the right side only φ.

Therefore each side must equal a constant; call it κ . The φ equation integrates
trivially to

�(φ) ∝ eiκφ (2.102)
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The θ equation is only slightly more difficult. The solution is

�(θ ) ∝ sinκ θ (2.103)

which is easily verified by substitution. Therefore,

ψ(θ, φ) ∝ sinκ θ · eiκφ (2.104)

We normalize this wave function later.
Now we must find κ . We do this by requiring

L̂ zψ(θ, φ) = h̄ψ(θ, φ) (2.105)

and, using Equation (2.95), L̂ zψ(θ, φ) can also be written

L̂ zψ(θ, φ) = h̄

i

∂

∂φ
ψ(θ, φ)

= h̄

i
(iκ)ψ(θ, φ) (2.106)

Comparison of the last two equations shows that κ =  so that, to within the
normalization constant A,

ψ(θ, φ) = A sin θ · eiφ (2.107)

Because we know ψ(θ, φ) we can generate the remaining eigenfunctions. We
begin by symbolically applying the lowering operator to | 〉 to obtain |( − 1)〉.

L̂−| 〉 = C−
h̄| ( − 1)〉

=
√

( + 1) − ( − 1)h̄| ( − 1)〉
=

√
2h̄| ( − 1)〉 (2.108)

Now actually operate on ψ(θ, φ) with L̂− and compare the two results.

L̂−ψ(θ, φ) = −h̄e−iφ

{
∂

∂θ
− i cot θ

∂

∂φ

}
A sin θ · eiφ

= −Ah̄e−iφ{[sin−1 θ ] cos θ − i(i) cot θ sin θ}eiφ

= −2Ah̄ sin−1 θ cos θ · ei(−1)φ (2.109)

Comparing the two expressions for L̂−| 〉 we see that
√

2h̄| ( − 1)〉 = −2Ah̄ sin−1 θ cos θ · ei(−1)φ (2.110)

so that

| ( − 1)〉 = ψ( −1) = −
√

2A sin−1 θ cos θ · ei(−1)φ (2.111)

Now, the expressions for ψ and ψ( −1) are the familiar spherical harmonics that
are traditionally designated Ym(θ, φ). In fact, we have actually generated Y(θ, φ)
and Y ( −1)(θ, φ), although they have not been normalized.
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Table 2.3. Spherical harmonics in spherical and Cartesian coordinates.

Spherical harmonic Spherical coordinates Cartesian coordinates

Y00
1√
4π

1√
4π

Y10

√
3

4π
cos θ

√
3

4π

( z

r

)

Y1 ± 1 ∓
√

3

8π
sin θe± iφ ∓

√
3

8π

(
x ± iy

r

)

Y20

√
5

16 π
(3 cos2 θ − 1)

√
5

16π

(
3z2 − r2

r2

)

Y2 ± 1 ∓
√

15

8 π
cos θ sin θe± iφ ∓

√
15

8 π

[
(x ± iy)z

r2

]

Y2 ± 2

√
15

32 π
sin2 θe± 2iφ

√
15

32 π

[
(x ± iy)2

r2

]

Spherical harmonics4 are products of eimφ and associated Legendre functions.
The associated Legendre functions are defined as

Pm
 (µ) = (1 − µ2)m/2

2 · !

d+m

dµ+m
(µ2 − 1) (2.112)

Properly normalized they are given by

Ym(θ, φ) = (−)m

√
(2 + 1)

4π
· ( − m)!

( + m)!
eimϕ Pm

 (cos θ ) (2.113)

The orthogonalality relation is∫ 2π

0
dϕ

∫ π

0
Ym(θ, φ)[Y′m ′ (θ, φ)]∗ sin θdθ = δ′δmm′ (2.114)

For convenience the spherical harmonics listed in TABLE 2.3 are shown in both
spherical and Cartesian coordinates.

We also quote a few other important results.

Ym(θ, φ) = (−)m[Y,−m(θ, φ)]∗ (2.115)

cos θYm(θ, φ) =
√

( + m + 1)( − m + 1)

(2 + 1)(2 + 3)
Y+1,m(θ, φ)

+
√

( + m)( − m)

(2 + 1)(2 − 1)
Y−1,m(θ, φ) (2.116)

sin θe±iφYm(θ, φ) = ∓
√

( ± m + 1)( ± m + 2)

(2 + 1)(2 + 3)
Y+1,m±1(θ, φ)

±
√

( ∓ m)( ∓ m − 1)

(2 + 1)(2 − 1)
Y−1,m±1(θ, φ) (2.117)
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There is an interesting relation between the spherical harmonics and the unit
vector in the r direction which we designate ar . This unit vector is given by5

ar = sin θ cos φi + sin θ sin φ j + cos θk (2.118)

According to the definition of the spherical components of a vector, Equation
(2.73), the spherical components of ar are

(ar )0 = cos θ

(ar )±1 = ∓ 1√
2

(sin θ cos φ ± i sin θ sin φ) (2.119)

Using TABLE 2.3, however, Equation (2.119) may be rewritten in terms of the
spherical harmonics.

(ar )0 =
√

4π

3
Y10(θ, φ)

(ar )±1 = ∓ 1√
2

sin θ (cos φ ± i sin φ)

= ∓ 1√
2

sin θe±iφ

= ∓
√

4π

3
Y1±1(θ, φ) (2.120)

Thus, the spherical harmonics are the spherical components of the unit vector ar

which may be written as

ar =
√

4π

3

{[
(−i + i j)√

2

]
Y11(θ, φ)

+
[

(i + i j)√
2

]
Y1−1(θ, φ) + Y10(θ, φ)k

}
(2.121)

2.7. Spin

Before discussing spin angular momentum we discuss the magnetic dipole moment
associated with a Bohr atom resulting from the electric current of the orbiting
electron. This simple classical picture permits calculation of the magnetic moment
(yet another virtue of the Bohr atom). We assume that the electron of charge e and
mass me executes a circular orbit of radius r with velocity v about the proton as
illustrated in FIGURE 2.2.

The circulating electron causes the system to mimic a bar magnet. The magnetic
moment of this bar magnet is given by

µ = i · A

where i is the current of the circulating electron. The current i is simply the
electronic charge e divided by the period of the electronic motion 2πr/v.
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Figure 2.2. Illustration of the classical concept of the orbital magnetic moment.

Thus,

µ = ev

2πr
· πr2

= evr

2
But, for this circular orbit, the orbital angular momentum is L = mvr so

µ = − e

2me
· L (2.122)

The minus sign arises because of the negative charge on the electron; that is, the
magnetic dipole moment and the angular momentum point in opposite directions.
This equation shows the direct relationship between the orbital angular momentum
and the orbital magnetic moment. Multiplying and dividing this expression by h̄
we define the Bohr magneton

µB = eh̄

2me
(2.123)

as the orbital magnetic moment of the electron in the first Bohr orbit. It is convenient
to measure magnetic moments in terms of the Bohr magneton so we write the
magnetic moment as

µ = −gµB

h̄
· L (2.124)

where g = 1 is known as the orbital g-factor. Although it is equal to unity, the
inclusion of g in Equation (2.124) is convenient because the g-factors of other
magnetic moments have other values.
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Figure 2.3. Conceptualization of the electron as a spinning ball of charge that produces a
magnetic dipole field.

The term “spin” represents the magnetic moment associated with a “spinning”
sphere of charge, the electron. Note that in nonrelativistic quantum mechanics the
electron is still regarded as a point particle. A point particle cannot spin, but the
concept is carried over from classical notions. Because the magnetic moment is
associated with the electron itself, and has nothing to do with its orbital motion, the
magnetic dipole moment associated with the spin is an intrinsic magnetic moment.
It is built into the electron, even if the electron is isolated in space. One may think
of the electron as being equivalent to a bar magnet as in FIGURE 2.3.

By analogy with the orbital magnetic moment, the spin magnetic moment µS is
assumed proportional to an angular momentum so there is an angular momentum
associated with the electron irrespective of its orbital motion, an intrinsic angular
momentum. In this context the word “intrinsic” means that the electron possesses
a magnetic moment whether or not it is an atomic electron. Indeed, the electron
behaves as a bar magnet even if it is isolated in space.

For the spin magnetic moment µS we may write

µS = −geµB

h̄
· S (2.125)

where ge is the electron spin g-factor. It is equal to (2 + ε) where ε is a small
number. For an electron it is found that the angular momentum quantum number
j → s = 1/2. The quantum number s is always equal to one-half. Furthermore,
the spin is not included in the Schrödinger equation so it must be included “by
hand.” Spin only appears in relativistic treatments so it is clear that the intrinsic
angular momentum is a relativistic property.
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Table 2.4. Angular momentum
quantum numbers.

Angular momentum z-component
quantum number quantum number

j m j

 m

s ms

Magnetic moments are often written in terms of their gyromagnetic ratios γ

which are defined as the ratio of the magnetic dipole moment to the angular
momentum. Thus, for electron spin we have

µS = −γe S

= −geµB

h̄
· S

= −
(

gee

2me

)
S (2.126)

from which we see that the gyromagnetic ratio is

γe = gee

2me
(2.127)

This general definition, suitably modified, is true for all magnetic moments, for
example, the intrinsic magnetic moment of the proton.

We must now modify our notation to distinguish between values of m that
correspond to different types of angular momenta. The conventional designations
are shown in TABLE 2.4.

For an electron s = 1/2. Therefore ms = ±1/2. These are the only possibilities!
Let |χs ms 〉 be the simultaneous eigenfunctions of the square of the spin angular
momentum operator Ŝ2 and its z-component Ŝz . Then, because Ŝ is an angular
momentum

Ŝ2|χs ms 〉 = s(s + 1)h̄2|χs ms 〉 and Ŝz|χs ms 〉 = msh̄|χs ms 〉
There are a number of ways of condensing the notation for |χs ms 〉 A few of the

common designations are

|+〉 = | ↑〉 = |α〉 = α = |χ1/2 1/2〉 = “spin up”

|−〉 = | ↓〉 = |β〉 = β = |χ1/2 −1/2〉 = “spin down”

We use the |α〉 and |β〉. Because the total spin operator Ŝ corresponds to a physical
observable, it is Hermitian and |α〉 and |β〉 are orthogonal. It is assumed that they
are also normalized so that

〈α |α〉 = 〈β |β〉 = 1 and 〈α |β〉 = 0 (2.128)
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A complete basis set may be represented by the kets |q, α〉 and |q, β〉 where
q represents all orbital quantum numbers, for example, n, , m if we are con-
sidering an atom. An arbitrary wave function may be expanded on this basis
set

|ψ〉 =
∑

q

K α
q |q, α〉 +

∑
q

K β
q |q, β〉 (2.129)

so that |ψ〉 contains both spin and orbital coordinates. Let |r , α〉/|r , β〉 represent
the state in which the electron is localized at r and has spin up/down. We can form
two wave functions in the position representation

|ψα(r )〉 = 〈r , α |ψ〉
=
∑

q

K α
q 〈r , α | q, α〉

= probability amplitude for finding the electron at r with spin up

with an analogous expression for |ψβ(r )〉, the probability amplitude for finding the
electron at r with spin down.

We can combine these two amplitudes into a single two-component object called
a spinor, (

ψα(r )
ψβ(r )

)
= |ψα(r )〉

(
1
0

)
+ |ψβ(r )〉

(
0
1

)
(2.130)

The unit “vectors”

(
1
0

)
and

(
0
1

)
are representations of |α〉 and |β〉, respectively.

If we use this representation, then operators such as Ŝ2 and Ŝz must be represented

by 2 × 2 matrices. Because

(
1
0

)
and

(
0
1

)
are, by definition, eigenfunctions of

Ŝ2 and Ŝz , their matrices are diagonal with the eigenvalues along the diagonal. We
have then

Ŝz = 1

2
h̄

(
1 0
0 −1

)
(2.131)

and

Ŝ2 =
(

1

2

)(
1

2
+ 1

)
h̄2

(
1 0
0 1

)

= 3

4
h̄2

(
1 0
0 1

)
(2.132)

We can use Ŝ+ and Ŝ− to find Ŝx and Ŝy . Obviously

Ŝ+|α〉 = 0 and Ŝ−|β〉 = 0 (2.133)
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Also

Ŝ+|β〉 = C+
jm |α〉

=
√

j( j + 1) − m(m + 1)h̄|α〉
=
√

s(s + 1) − ms(ms + 1)h̄|α〉

=
√(

1

2

)(
3

2

)
−
(

−1

2

)(
1

2

)
h̄|α〉

=
√

3

4
+ 1

4
h̄|α〉

= h̄|α〉 (2.134)

Similarly, we find that Ŝ−|α〉 = h̄|β〉. Combining the two expressions with |α〉 on
the left side we get

Ŝ+|α〉 + Ŝ−|α〉 = 2Ŝx |α〉
= h̄|β〉
= 0 + h̄|β〉

from which

Ŝx |α〉 = 1

2
h̄|β〉 (2.135)

The same procedure for the two expressions with |β〉 on the left gives

Ŝx |β〉 = 1

2
h̄|α〉 (2.136)

We note that the analogous expressions for Ŝy operating on |α〉 and |β〉 are

Ŝy |α〉 = i

2
h̄|β〉 and Ŝy |β〉 = − i

2
h̄|α〉 (2.137)

Then, using Ŝx |α〉 = 1

2
h̄|β〉we have

(
(Ŝx )11 (Ŝx )12

(Ŝx )21 (Ŝx )22

)(
1
0

)
= 1

2
h̄

(
0
1

)
(2.138)

or (
(Ŝx )11

(Ŝx )21

)
= 1

2
h̄

(
0
1

)
(2.139)

so that

(Ŝx )11 = 0 and (Ŝx )21 = 1

2
h̄
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Using Equation (2.136) we have(
(Ŝx )11 (Ŝx )12

(Ŝx )21 (Ŝx )22

)(
0
1

)
= 1

2
h̄

(
1
0

)
(2.140)

or (
(Ŝx )12

(Ŝx )22

)
= 1

2
h̄

(
0
1

)
(2.141)

from which

(Ŝx )12 = 1

2
h̄ and (Ŝx )22 = 0 (2.142)

so that

Ŝx = 1

2
h̄

(
0 1
1 0

)
(2.143)

Applying the same technique to Ŝy we obtain

Ŝy = 1

2
h̄

(
0 −i
i 0

)
(2.144)

To avoid having to continually write (1/2)h̄ the Pauli spin matrices are often used.
They are defined as

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
(2.145)

so that

Ŝ = 1

2
h̄σ̂ where σ̂ = σ̂x i + σ̂y j + σ̂x k (2.146)

and i, j, k are the unit vectors in Cartesian coordinates. Also, the actions of the
Pauli spin matrices on the eigenkets |α〉 and |β〉 are

σ̂x |α〉 = |β〉 : σ̂x |β〉 = |α〉
σ̂y |α〉 = i |β〉 ; σ̂y |β〉 = −i |α〉
σ̂z|α〉 = |α〉 ; σ̂z|β〉 = −|β〉 (2.147)

We now find the eigenstates of Ŝx and Ŝy . To do this we use the matrix representation
to determine the eigenstates of the operator

Ŝn = Ŝ � n where n = cos φi + sin φ j

The choice φ = 0 (φ = π/2) will yield the eigenstates of Ŝx (Ŝy). The eigenvalue
equation is then

Ŝn|µ〉 = µ

(
h̄

2

)
|µ〉 (2.148)
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where |µ〉 is the eigenvector and µ is the corresponding eigenvalue. The factor h̄/2
has been inserted for convenience. Note that we know that putting the h̄/2 factor
in the eigenvalue equation will be convenient because the eigenvalues of Ŝz are
±h̄/2. Because our choice of z-axis is arbitrary, ±h̄/2 must also be the eigenvalues
of Ŝn.

In matrix form

Ŝn = Ŝ � n

=
(

h̄

2

)
cos φ · σ̂x +

(
h̄

2

)
sin φ · σ̂y + 0 ·

(
h̄

2

)
σ̂z

=
(

h̄

2

)[
cos φ

(
0 1
1 0

)
+ sin φ

(
0 −i
i 0

)]
(2.149)

We wish to write the eigenvector as a linear combination of Ŝz eigenkets |α〉 and
|β〉.

|µ〉 = a|α〉 + b|β〉
where

a = 〈α |µ〉 and b = 〈β |µ〉
In matrix form we have(

h̄

2

)[
cos φ

(
0 1
1 0

)
+ sin φ

(
0 −i
i 0

)]
= µ

(
h̄

2

)(
a
b

)
(2.150)

Collecting, we have (−µ e−iφ

eiφ −µ

)(
a
b

)
= 0 ·

(
a
b

)
(2.151)

Multiplying produces two homogeneous equations in a and b. A nontrivial solution
exists only if the determinant of the coefficients vanishes∣∣∣∣−µ e−iφ

eiφ −µ

∣∣∣∣ = 0 (2.152)

or

µ2 − 1 = 0 ⇒ µ = ±1 (2.153)

Thus, the eigenvalues are ±(h̄/2), which, of course, we already knew.
We require the eigenkets that correspond to each of these eigenvalues. For

m = +1 call the eigenket |m+〉. We have(−1 e−iφ

eiφ −1

)(
a+
b+

)
= 0 (2.154)

from which

−a+ + b+e−iφ = 0 (2.155)
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and

a+eiφ − b+ = 0 (2.156)

which are the same equation. From this equation we have

b+ = eiφa+ (2.157)

But, we also have the normalization condition

|a+|2 + |b+|2 = 1 (2.158)

Equations (2.156) and (2.158) lead to

|a+|2 = |b+|2 = 1

2
(2.159)

so that we arrive at one eigenket of Ŝn

|µ+〉 = 1√
2
|α〉 + eiφ

√
2
|β〉 (2.160)

Similarly, we get

|µ−〉 = 1√
2
|α〉 − eiφ

√
2
|β〉 (2.161)

Now, we may choose φ = 0 to obtain the eigenkets of Ŝx which we denote by |α〉x

and |β〉x .

|α〉x = 1√
2
|α〉 + 1√

2
|β〉

|β〉x = 1√
2
|α〉 − 1√

2
|β〉 (2.162)

Because we have chosen Ŝz to commute with Ŝ2 thus making it special, we suppress
the subscript z from the eigenfunctions of Ŝz ; that is, |α〉 = |α〉z and |β〉 = |β〉z .

Finally, to obtain the eigenkets of Ŝy we choose φ = π /2 and obtain

|α〉y = 1√
2
|α〉 + i√

2
|β〉

|β〉y = 1√
2
|α〉 − i√

2
|β〉 (2.163)

2.8. The Stern–Gerlach Experiment

The Stern–Gerlach experiment had monumental consequences for the development
of the modern quantum theory. It showed definitively that angular momentum was
quantized, and, in particular, that the intrinsic angular momentum of the electron,
that is, spin, was quantized. A schematic diagram of the apparatus and the observed
result are shown in FIGURE 2.4.
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Figure 2.4. Schematic diagram of the Stern–Gerlach apparatus showing the observed
pattern.

The original experiment was performed with Ag atoms (total spin 1/2). We
may imagine that the experiment is being performed with electrons and ignore the
effects of the magnetic field on the charged electrons.

If the electrons emerging from the oven are “unpolarized,” that is, if the spins
are randomly oriented, then we may expand the wave function on the complete set
of Ŝz eigenfunctions, |α〉 and |β〉. Because, however, they are randomly oriented
the wave function must be

|ψ〉 = 1√
2
|α〉 + 1√

2
|β〉 (2.164)

Therefore, a Stern–Gerlach apparatus will simply split the beam into the spin-up
and spin-down components as shown schematically in FIGURE 2.5. SGz repre-
sents a Stern–Gerlach apparatus with the inhomogeneous magnetic field oriented
in the z-direction.

Each of the emerging beams is polarized: one spin-up, |α〉 and the other spin-
down, |β〉.

If either of the beams emerging from the SGz apparatus were passed through
a second SGz apparatus only that beam would emerge because it is already in
an eigenstate of Ŝz so “operating” on it again simply reproduces the eigenvector.
In other words, the particles that constitute the remaining beam, those in the |α〉
eigenstate, remain in the |α〉 eigenstate.

Figure 2.5. Schematic diagram of the results of passing an unpolarized beam through a
Stern–Gerlach apparatus with the inhomogeneous magnetic field in the z-direction.
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Figure 2.6. Schematic diagram showing a beam that is polarized in the +z-direction en-
tering a Stern–Gerlach apparatus with the inhomogeneous magnetic field in the x-direction.

Suppose, however, that instead of passing the output beam of the first SGz
apparatus into another SGz apparatus we pass it through an SGx apparatus, a
Stern–Gerlach apparatus having the magnetic field oriented at right angles to the
field in the first apparatus as shown schematically in FIGURE 2.6.

To determine the fate of the pure |α〉 beam when it passes through the SGx
device we must express |α〉 in terms of |α〉x and |β〉x . We have already found |α〉x

and |β〉x in terms of |α〉 and |β〉, Equation (2.162).

|α〉x = 1√
2
|α〉 + 1√

2
|β〉

|β〉x = 1√
2
|α〉 − 1√

2
|β〉 (2.165)

Adding these equations we eliminate |β〉 and solve for |α〉.

|α〉 = 1√
2
|α〉x + 1√

2
|β〉x (2.166)

Thus, the SGx device sorts the particles in the beam according to their x-
components of spin. The |α〉 beam is split into two equal beams as shown in
FIGURE 2.7.

Now, what happens if we block the |β〉x beam and pass the |α〉x beam through
a SGz device? Because, from Equation (2.165)

|α〉x = 1√
2
|α〉 + 1√

2
|β〉

Figure 2.7. Schematic diagram of the results of passing a beam polarized in the +z-
direction through a Stern–Gerlach apparatus with the inhomogeneous magnetic field in the
x-direction.
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Figure 2.8. Schematic diagram of the results of passing a beam polarized in the +x-
direction through a Stern–Gerlach apparatus with the inhomogeneous magnetic field in the
z-direction.

the beam will be split into two equal parts again. The situation is represented
graphically in FIGURE 2.8.

Problems

2.1. Consider a particle of mass µ subjected to a two-dimensional harmonic oscil-
lator potential in which the force constants for the x- and y-components of motion
are kx = ky = k. Show that the Schrödinger equation is separable in Cartesian
coordinates. How many quantum numbers are there? Find an expression for the
energy of this oscillator and discuss degeneracy. Do you think that the problem is
separable in any other coordinate system? If so, which one? Why?
2.2. Consider a particle of mass µ confined to a two-dimensional circular “box”
of radius a such that

V (ρ) = 0 ρ < a

= ∞ otherwise

Show that the Schrödinger equation is separable in polar coordinates ρ, φ. Find
and solve the equations for the radial and the angular motion. Indicate how to
obtain the energy eigenvalues.
2.3. Discuss modifications of the energies and wave functions obtained in Prob-
lem 2.2 if the particle were in a three-dimensional cylindrical box of length L such
that

V (ρ) = 0 ρ < a

= ∞ otherwise

V (z) = 0 |z| < L

= ∞ otherwise

2.4. Verify that � Ĵ
2
, Ĵx� = 0 = � Ĵ

2
, Ĵy�.

2.5. Prove that the operators L̂2, Ŝ2, Ĵ 2, Ĵz form a set of commuting operators,
and that �(L̂ � Ŝ), Jz� = 0.
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2.6. A particle moving in a central potential is described (in spherical coordinates)
by the wave function

ψ(r, θ, φ) = r2e−βr2
[cos θ + eiφ sin θ (1 + cos θ )]

where β is a real positive constant. What is the probability that measurements of
L̂2 and L̂ z yield the results 6h̄2 and h̄ respectively?
2.7. A system is in the following coherent superposition of angular momentum
states |m>.

|ψ〉 = A|11〉 + B|10〉 + C |1 − 1〉
where A, B, and C are complex constants. Calculate the expectation value of L̂ x .
2.8. (a) Find the eigenvectors of the operator Ŝy in terms of |α〉 and |β〉, the
eigenvectors of Ŝz . Express them as spinors.
(b) Suppose that an electron is in the spin state

1√
5

(
2

−1

)

with the Ŝz eigenvectors as the basis. If we measure the y-component of the spin,
what is the probability for finding a value of +(1/2)h̄?
2.9. Use the spin 1 Ŝz eigenstates as a basis to form the matrix representations of
the angular momentum operators.
Answer:

Ŝx = h̄√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ ; Ŝy = h̄√

2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ ; Ŝz = h̄√

2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

2.10. An unpolarized beam of neutral spin-1 particles is passed through a Stern–
Gerlach device with magnetic field in the y-direction, an SGy device. The beam of
emerging particles having Sy = h̄ is then passed through an SGz device. What frac-
tion of the particles with Sy = h̄ will be found to have Sz = h̄?
2.11. Show that the operators L̂ z and Ĥ = ( p̂2/2m) + V (r ) commute for a spher-
ically symmetric potential.
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3
Angular Momentum—Two Sources

3.1. Introduction

So far we have discussed a single source of angular momentum, that is, a single
angular momentum vector. Suppose, however, that there are two (or more) angular
momenta. As we have seen, even a single particle can have associated with it two
angular momenta, for example, spin and orbital angular momenta. Thus, there are a
number of quantized variables that describe the system. For two angular momenta
corresponding to the two operators Ĵ1 and Ĵ2, there are four quantum numbers
that might be used to describe the system ( j1, m j1 ) and ( j2, m j2 ). The total angular
momentum is represented by the operators

Ĵ = Ĵ1 + Ĵ2 and Ĵz = Ĵz1 + Ĵz2 (3.1)

which have quantum numbers ( j, m j ). It is necessary to find sets of commuting
operators that will provide a suitable description of the system.

We show that there are two sets of mutually commuting operators that lead to
“good” quantum numbers that describe a given system. Good quantum numbers are
quantum numbers that are eigenvalues of the mutually commuting operators. They
usually represent quantities that are conserved classically. Each set of operators
leads to a different set of angular momentum eigenkets and eigenvalues. Each set of
eigenkets constitutes a basis set upon which a wave function may be expanded. The
conditions of the problem determine which of these basis sets is most convenient.
Moreover, we would like to know how to convert from one basis set to the other.

3.2. Two Sets of Quantum Numbers—Uncoupled
and Coupled

Although a single particle can have more than one angular momentum associated
with it, for simplicity, we consider two different particles, each having a single
angular mometum. The state of a particle, say particle 1, is fully specified by
knowledge of its quantum numbers j1 and m j1 and likewise for particle 2. To see if it

46
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is possible to specify the entire state in terms of the individual angular momentum
quantum numbers j1, m j1, j2, and m j2 we must check the commutation rules.
Specifically, we wish to know if Ĵ 2

1 and Ĵ1z commute with Ĵ 2
2 and Ĵ2z . Clearly they

do because they operate on independent coordinates. For example, spin operators
act on internal coordinates of a particle whereas the orbital operators act on the
space coordinates. Therefore, all components of Ĵ1 commute with all components
of Ĵ2. Furthermore, Ĵ 2

1 and Ĵ 2
2 also commute. We therefore conclude that the four

operators Ĵ 2
1 , Ĵ1z , Ĵ 2

2 , and Ĵ2z constitute a mutually commuting set of operators
and that j1, m j1, j2, and m j2 are good quantum numbers. We write the ket as

| j1, m j1; j2, m j2〉
Now, how about the total angular momentum which we provisionally define

as Ĵ = Ĵ1 + Ĵ2? The definition is provisional because we must first prove that
Ĵ as defined above is indeed an angular momentum. To do this we examine the
commutators of the components of Ĵ where

Ĵi = Ĵ1i + Ĵ2i i = x, y, z (3.2)

Ĵ is an angular momentum if

[ Ĵi , Ĵ j ] = ih̄εijk Ĵk (3.3)

Evaluating � Ĵx , Ĵy� will be sufficient.

[ Ĵx , Ĵy] = [( Ĵ1x + Ĵ2x ), ( Ĵ1y + Ĵ2y)]

= [ Ĵ1x , Ĵ1y] + [ Ĵ1x , Ĵ2y] + [ Ĵ2x , Ĵ1y] + [ Ĵ2x , Ĵ2y]

= ih̄ Ĵ1z + 0 + 0 + ih̄ Ĵ2z

= ih̄( Ĵ1z + Ĵ2z)

= ih̄ Ĵz (3.4)

Therefore, Ĵ is indeed an angular momentum and we know immediately that the
eigenvalues of the magnitude of the Ĵ are√

j( j + 1)h̄ where j = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3, . . . .

and the eigenvalues of Ĵz are m jh̄ where m j = − j, −( j − 1), . . . , ( j − 1), j .
It is possible to specify simultaneously the values of j , j1, and j2 because Ĵ 2

1 ,
Ĵ 2

2 , and Ĵ 2 are mutually commuting operators. That is,[
Ĵ 2, Ĵ 2

1

] = 0 = [
Ĵ 2, Ĵ 2

2

]
and, indeed, the eigenvalues of Ĵ 2, Ĵ 2

1 , and Ĵ 2
2 can be specified simultaneously.

Moreover, m j can also be specified because Ĵz commutes with Ĵ 2
1 , Ĵ 2

2 , and Ĵ 2.
We may therefore find simultaneous eigenkets of these four operators which we
designate as

| j1, j2; j, m j 〉
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On the other hand, because neither Ĵ1z nor Ĵ2z commutes with Ĵ 2, m j1 and m j2

are not good quantum numbers. This may be seen by evaluating the commutators
� Ĵ1z, Ĵ 2� and � Ĵ2z, Ĵ 2�. (Of course, one will suffice.)[

Ĵ1z, Ĵ 2
] = [

Ĵ1z, Ĵ 2
x

]+ [
Ĵ1z, Ĵ 2

y

]+ [
Ĵ1z, Ĵ 2

z

]
= [ Ĵ1z, ( Ĵ1x + Ĵ2x )2] + [ Ĵ1z, ( Ĵ1y + Ĵ2y)2] + [ Ĵ1z, ( Ĵ1z + Ĵ2z)

2]

(3.5)

Ignoring the terms that are obviously zero, we have

[ Ĵ1z, Ĵ 2] = [
Ĵ1z,

(
Ĵ 2

1x + 2 Ĵ1x Ĵ2x
)]+ [

Ĵ1z,
(
Ĵ 2

1y + 2 Ĵ1y Ĵ2y
)]

= [
Ĵ1z,

(
Ĵ 2

1x + Ĵ 2
1y

)]+ 2[ Ĵ1z, Ĵ1x ] Ĵ2x + 2[ Ĵ1z, Ĵ1y] Ĵ2y

= [
Ĵ1z,

(
Ĵ 2

1 − Ĵ 2
1z

)]+ 2ih̄ Ĵ1y Ĵ2x − 2ih̄ Ĵ1x Ĵ2y

= 2ih̄( Ĵ1y Ĵ2x − Ĵ1x Ĵ2y)

�= 0 (3.6)

We conclude that there are two different sets of quantum numbers that describe
a system that consists of two independent angular momenta Ĵ1 and Ĵ2. In one set,
referred to as the uncoupled set, the quantum numbers are j1, m j1, j2, and m j2

corresponding to the mutually commuting operators Ĵ 2
1 , Ĵ1z, Ĵ 2

2 , and Ĵ1z and we
know the magnitude of the individual angular momenta and their z-components.
In this representation we have no information about the relative orientations of the
two angular momenta.

In the other representation, the coupled representation, the good quantum num-
bers are j1, j2, j, m j and the corresponding ket is designated | j1, j2; j, m j 〉. In this
representation the magnitudes of the individual angular momenta are known as
is the magnitude of the total angular momentum. We do not, however, know the
z-components of the individual angular momenta, only the z-component of the
total angular momentum.

These different representations are merely alternate ways of describing a system
consisting of two angular momenta. It is part of our art to decide which set is most
convenient for a given problem. To use the coupled representation we must find the
allowed values of j and m j . If we operate with Ĵz on an uncoupled ket we find that

Ĵz| j1, m j1; j2, m j2〉 = ( Ĵ1z + Ĵ2z)| j1, m j1; j2, m j2〉
= (m j1 + m j2)h̄| j1, m j1; j2, m j2〉 (3.7)

But the eigenvalues of Ĵz are m jh̄ so we must have

m j = m j1 + m j2 (3.8)

Also, because

(m j )max = (m j1)max + (m j2)max

= j1 + j2 (3.9)
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Table 3.1. Quantum numbers and number of states for two angular momenta.

j m j Number of states

j1 + j2 ( j1 + j2), ( j1 + j2 − 1), . . . − ( j1 − j2 + 1), −( j1 − j2) 2( j1 + j2) + 1
j1 + j2 − 1 ( j1 + j2 − 1), ( j1 + j2 − 2), . . . − ( j1 − j2 + 2), −( j1 − j2 + 1) 2( j1 + j2 − 1) + 1
. . . . . . . . .
j1 − j2 ( j1 − j2), ( j1 − j2 − 1), . . . − ( j1 − j2 + 1), −( j1 − j2) 2( j1 − j2) + 1

and

(m j )max = j ⇒ j = j1 + j2 (3.10)

We therefore have a system in which j = j1 + j2 and m j takes on the values
−( j1 + j2) ≤ m j ≤ +( j1 + j2). There are, however, other possible combinations.
For example, the state having m j = j1 + j2 − 1 can be formed from m j1 = j1
and m j2 = j2 − 1 or by m j1 = j1 − 1 and m j2 = j2. Although one of these states
“belongs” to the j = j2 + j2 set, the other is associated with j = j2 + j2 − 1.
We have then a grouping of states as shown in TABLE 3.1. For specificity, we
assume that j1 > j2.

It is clear from examination of the uncoupled representation that the total number
of states is

N = (2 j1 + 1) × (2 j2 + 1)

That is, N is simply the product of the total number of m j1 states and the total
number of m j2 states. To total the states using the coupled representation we add
all states for a given pair of j1 and j2. From TABLE 3.1 we see that

N = {2( j1 + j2) + 1} + {2( j1 + j2 − 1) + 1} + {2( j1 + j2 − 2) + 1} + · · ·
{2( j1 − j2 + 2) + 1} + {2( j1 − j2 + 1) + 1} + {2( j1 − j2) + 1}

=
2 j2∑
n=0

{2( j1 + j2 − n) + 1} (3.11)

where, as above, it is assumed that j1 > j2. That the summation in Equation (3.11)
is correct can be seen by noting that there are (2 j2 + 1) terms in the sum, j2
added to j1, j2 subtracted from j1,and one term in between. Writing out the terms,
especially in the region in which the transition from ( j1 + j2) to ( j1 − j2) occurs
reveals that the summation is indeed correct. The sum is easily evaluated with the
aid of “Gauss’ trick”1

M∑
0

n = M(M + 1)

2
(3.12)

and noting that there are (2 j2 + 1) terms in the summation from n = 0 to 2 j2. We
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have

N =
2 j2∑
n=0

{2( j1 + j2 − n) + 1}

= 2 j1
2 j2∑
n=0

1 + 2 j2
2 j2∑
n=0

1 − 2
2 j2∑
n=0

n +
2 j2∑
n=0

1

= 2 j1(2 j2 + 1) + 2 j2(2 j2 + 1) − 2
2 j2(2 j2 + 1)

2
+ (2 j2 + 1)

= (2 j2 + 1)(2 j1 + 1) (3.13)

thus demonstrating that the total number of states is the same in either represen-
tation.

As a simple example of these two representations we consider a single atomic
electron having orbital angular momentum one and spin angular momentum one-
half. We may thus designate j1 =  = 1 and j2 = s = 1/2. There are two possible
values of the total angular momentum j because there are two possible orientations
of the spin with respect to the orbital angular momentum as can be seen using a
Bohr picture of the hydrogen atom as shown in FIGURE 3.1.

The total angular momentum j can then take on the values

j =
(

1 + 1

2

)
or j =

(
1 + 1

2
− 1

)

= 3

2
,

1

2
(3.14)

Note that we must stop subtracting unity at 1/2 because the value of j cannot
be negative. Of course, the orbiting electron produces a magnetic moment, inde-
pendent of the intrinsic magnetic moment of the electron, so the system may be
imagined as two bar magnets having two different possible orientations.

The energy of orientation of a magnetic dipole in a magnetic induction field B is

E = −µ � B

∝ µS
�µl

∝ S � L (3.15)

so that the energy of this atomic electron will depend on the relative orien-
tations of the angular momenta vectors S and L. There will be two different

Figure 3.1. The two orientations of spin and orbital magnetic moments.



3.3. Vector Model of Angular Momentum 51

Figure 3.2. State that led to the Na D-line emissions.

energies corresponding to parallel ( j = 3/2) and anti-parallel ( j = 1/2) angular
momenta.

These two energies are observed in many atomic spectra. A simple example is
the spectrum of the Na atom. When Na emits a photon in undergoing a transition
from the first excited state (n = 3,  = 1) to the lowest state (n = 3,  = 0), it
emits photons in the yellow region of the spectrum, wavelength ∼590 nm. Closer
examination reveals that there are actually two different wavelengths of yellow
light emitted. These emissions are referred to as the sodium D-lines, actually
D1 and D2. This occurs because the upper state is split into two different states
depending upon the value of j , either j = 3/2 or j = 1/2. These two upper states
are designated 3p1/2 and 3p3/2 and the lower state 3s1/2 as discussed in Chapter 2.
The energy level diagram together with the atomic emission lines is shown in
FIGURE 3.2. Why is the ground state, the 3s-state, not similarly split?

It is interesting to note that the designation of these yellow lines as “D-lines”
is in no way related to angular momentum. In 1814 Fraunhofer examined the
solar spectrum using a spectrograph to separate the constituent wavelengths. He
observed a number of black lines against the continuum blackbody radiation from
the sun. These black lines were due to absorption by atoms and molecules in the
solar atmosphere at the characteristic wavelengths of these atoms and molecules.
He did not know the origin of these black lines, but he labeled the strongest of
them alphabetically beginning at the red end of the spectrum. Absorption by sodium
atoms in the solar atmosphere at around 589 nm was the fourth of the strong lines.
Thus, it is designated as the D-line. Often emissions and absorptions that originate
from analogous states of other alkali metal atoms are incorrectly referred to as
D-lines. There is, in fact, no such thing as the potassium D-line.

3.3. Vector Model of Angular Momentum

Because only discrete values of m j are allowed, the z-component of angular mo-
mentum is quantized. Similarly, only discrete values of j are allowed so that
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Figure 3.3. Two-dimensional view of the vector model of the atom for j = 2.

the magnitude of the total angular momentum is quantized. This is sometimes
referred to as “space quantization”. The maximum value of the z-component is
(m j )maxh̄ = jh̄ and the magnitude of the angular momentum is

√
j( j + 1)h̄. There-

fore, the total angular momentum vector J can never be along the z-axis; that is,
it cannot coincide with its own z-component. (Recall that the choice of z-axis is
arbitrary.) This can conveniently be illustrated using a vector model for angular
momentum. The case of j = 2 illustrates the model. The length of the total angular
momentum vector is

|J| =
√

j( j + 1)h̄

=
√

2 · 3h̄ (3.16)

and the maximum value of the z-component is

(Jz)max = 2h̄ (3.17)

This leads us to a picture of the total angular momentum and its z-component
as shown in FIGURE 3.3 for j = 2.

The quantum numbers j and m j , however, give no information about the values
of the x- and y-components of J. This is a feature of the quantum mechanics of
angular momentum and is, of course, a consequence of the commutation rela-
tion between the components of angular momentum. Thus, rather than the above
two-dimensional diagram, we should more properly depict the angular momentum
vector as shown in FIGURE 3.4.

We should think of the angular momentum as lying on one of the cones that is
defined by the five vectors of length

√
6h̄. The particular cone upon which it lies

is determined by the value of m j . We should not think of the angular momentum
vector as sweeping out of one of these cones. Rather, it lies at a particular orientation
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Figure 3.4. Three-dimensional view of the vector model of the atom for j = 2.

on the cone. Quantum mechanics simply refuses to let us know where it lies on
that cone if we already know the value of the z-component. This is because the
components of Ĵ do not commute.

The vector model is also useful for two angular momenta. The individual angular
momentum vectors Ĵ1 and Ĵ2 have lengths√

j1( j1 + 1)h̄ and
√

j2( j2 + 1)h̄

where j1 and j2 are the individual quantum numbers. The length of the total angular
momentum vector is

√
j( j + 1)h̄ where j is one of the permitted values of the

total angular momentum J = J1 + J2; that is,

j = ( j1 + j2), ( j1 + j2 − 1), ( j1 + j2 − 2), . . . | j1 − j2| (3.18)

In the uncoupled representation, in addition to the individual angular momen-
tum quantum numbers j1 and j2, we also know their individual z-components
m j1 and m j2. In this representation there is no information about the relative
orientation of J1 and J2 so the magnitude of J, that is, the quantum number
j , is not known. FIGURE 3.5 is an illustration of how two different orienta-
tions of individual angular momenta produce different total angular momentum
vectors.

In the coupled representation we know j and its z-component m j as well as the
magnitudes of the individual angular momenta j1 and j2. The quantum numbers
representing the individual z-components m j1 and m j2 are not known. We do,
however, know the sum m j = m j1 + m j2. FIGURE 3.6 is an illustration of how
two different orientations of individual angular momenta can produce identical
total angular momentum vectors.

Suppose we have two particles, each with spin 1/2 such as two electrons. This
is the situation for the He atom and the alkaline earth atoms. First, we must
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Figure 3.5. Possible orientations of angular momenta in the uncoupled representation.

establish a convenient notation. For each electron s = 1/2 and ms = ±1/2. For a
single electron we used |α〉 and |β〉 for spin up and down, respectively. We must
adapt the notation to permit convenient notation of eigenfunctions for two angular
momenta.

In the uncoupled representation the eigenkets are designated |s1, ms1; s2, ms2〉
but, because s1 and s2 are always 1/2, we may simplify the notation as follows∣∣∣∣12 ,

1

2
;

1

2
,

1

2

〉
= |α1α2〉∣∣∣∣12 ,

1

2
;

1

2
, −1

2

〉
= |α1β2〉∣∣∣∣12 , −1

2
;

1

2
,

1

2

〉
= |β1α2〉∣∣∣∣12 , −1

2
;

1

2
, −1

2

〉
= |β1β2〉

In the coupled representation the eigenkets are designated

|s1, s2; S, MS〉

Figure 3.6. Possible orientations of angular momenta in the coupled representation.
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but again s1 = s2 = 1/2, so we may eliminate them from the ket and designate
a coupled ket as |S , MS〉 where, for two spin 1/2 particles S = 1 or 0 and MS =
ms1 + ms2. For S = 0 there is only one possible value of MS , zero.

MS = 0 ⇒ |0, 0〉
This is called a “singlet” state because there is only one value of MS and thus only
one state having S = 0. For S = 1, the “triplet” state, we have

MS = −1, 0, +1 ⇒ |1, −1〉; |1, 0〉; |1, +1〉
The length of S is

√
2h̄ and the length of the constituent spin vectors is

(1/2) · √
(1/2) + 1h̄ = (1/2) · √

3h̄. Therefore, the individual vectors cannot lie
at arbitrary relative orientations on the cones. Their relative positions must be
such that their vector sum is a vector of length

√
2h̄. If one is at some orientation

on its cone, the other has a definite angle on its cone. The absolute location of the
vectors remains unknown.

The coupled and uncoupled sets are each complete sets so it is possible to express
any coupled state as a linear combination of the uncoupled states and, of course,
vice versa. Expanding a single uncoupled ket we have

| j1, j2; j, m j 〉 =
∑
m j1

∑
m j2

Cm j1m j2 | j1, m j1; j2, m j2〉 (3.19)

where the Cm j1m j2 are the Clebsch–Gordan coefficients.

3.4. Examples of Calculation of the Clebsch–Gordan
Coefficients

Example 1

To illustrate the procedure for obtaining the Clebsch–Gordan expansion we express
the coupled kets for two spin-1/2 particles in terms of the uncoupled kets. It is clear
that each of the coupled kets |S, MS〉 = |1, +1〉 and |S, MS〉 = |1, −1〉 can have
only one “component”; that is, each is identical to a particular uncoupled ket. We
can make the independence of the two uncoupled spin 1/2 kets more obvious by
letting

|α jαk〉 = |α j 〉|αk〉; |β jβk〉 = |β j 〉|βk〉; |α jβk〉 = |α j 〉|βk〉
Returning now to the two coupled kets |S, MS〉 = |1, +1〉 and |S, MS〉 =

|1, −1〉 we see that the only uncoupled kets for which the individual z-components
of angular momentum combine to give M = ±1 are |α1〉|α2〉 and |β1〉|β2〉 for
M = ±1, respectively. Any other combination leads to M = 0. Therefore,

|1, +1〉 = |α1〉|α2〉 and |1, −1〉 = |β1〉|β2〉 (3.20)

The remaining coupled kets are |S, M〉 = |1, 0〉 and |S, M〉 = |0, 0〉. The ex-
pansion for these coupled states must contain both of the uncoupled states |α1〉|β2〉
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Table 3.2. Table of Clebsch–Gordan coefficients for j2 = 1/2.

〈 j1,
1
2 ; m j1, m j2| jm j 〉

j m j2 = +1/2 ⇔ |α2〉 m j2 = −1/2 ⇔ |β2〉
j1 + 1/2

√
( j1 + m j + 1/2)/(2 j1 + 1)

√
( j1 − m j + 1/2)/(2 j1 + 1)

j1 − 1/2 −√( j1 − m j + 1/2)/(2 j1 + 1)
√

( j1 + m j + 1/2)/(2 j1 + 1)

and |α2〉|β1〉. Of course, it cannot contain either |α1〉|α2〉 or |β1〉|β2〉. We have then

|SM〉 = |1, 0〉 = C 1
2 ,− 1

2
|α1〉|β2〉 + C− 1

2 , 1
2
|β1〉|α2〉 (3.21)

We must obtain the two expansion coefficients for each of the coupled kets hav-
ing MJ = 0, |1, 0〉 and |0, 0〉. The common method is to use standard tabulations
which we employ first. The case at hand is particularly simple. TABLE 3.2 is a
listing of Clebsch–Gordan coefficients for an arbitrary angular momentum j1, but
with j2 specified to be 1/2.

If, however, both angular momenta are spin so that j1 = j2 = 1/2 then there is
considerable simplification as can be seen in TABLE 3.3.

To express the coupled ket |00〉 in terms of the uncoupled kets |α1〉|β2〉 and
|β1〉|α2〉 we read the Clebsch–Gordan coefficients from the bottom row of the
table (for which S = 0) and obtain:

SINGLET:

|SM〉 = |00〉 = − 1√
2
|β1〉|α2〉 + 1√

2
|α1〉|β2〉 (3.22)

This is the singlet state.
There are three coupled states |1 M〉 corresponding to the values M = 0, ±1,

the triplet states. Reading from the row of the table for which S = 1 we obtain

TRIPLET:
|SM〉 = |11〉 = |α1〉|α2〉 + 0

= |10〉 = 1√
2
|α2〉|β1〉 + 1√

2
|α1〉|β2〉

= |1 − 1〉 = 0 + |β1〉|β2〉 (3.23)

Now, a specific set of eigenvectors must be orthogonal, and, indeed, 〈00|10〉 =
0 = 〈00|1 − 1〉 because 〈00| contains neither |α1〉|α2〉 nor |β1〉|β2〉. Inspection of
〈00|and |10〉 reveals that the difference in the signs of the coefficients of |α2〉|β1〉

Table 3.3. Clebsch–Gordan coefficients
for j1 = j2 = 1/2.

S |α2〉 |β2〉
1

√
(1 + M)/2

√
(1 − M)/2

0 −1/
√

2 1/
√

2



3.4. Examples of Calculation of the Clebsch–Gordan Coefficients 57

in these two coupled states leads to

〈11 |00〉 =
[

1√
2
〈β1|〈α2| + 1√

2
〈α1|〈β2|

] [
− 1√

2
|β1〉|α2〉 + 1√

2
|α1〉|β2〉

]

= 1

2
(−1 + 0 + 0 + 1)

= 0 (3.24)

so that these two states are also orthogonal. The difference in the signs of |00〉 and
|10〉 can be understood in terms of the vector diagram. In the triplet, the individual
angular momenta have the same phase

|10〉 = 1√
2

[|β1〉|α2〉 + eiδ|α1〉|β2〉] (3.25)

where δ = 0.
In the singlet

|00〉 = − 1√
2

[|β1〉|α2〉 + eiδ|α1〉|β2〉] (3.26)

where δ = π .
To illustrate the method by which the tables may be constructed we again con-

sider two spin 1/2 particles. We begin with a coupled state for which we already
know the representation in terms of the uncoupled states, that is, one for which
there is only one uncoupled “component”. We know that |11〉 = |α1〉|α2〉 because
there is no other way to get M = +1. (We could also start with |1 − 1〉 = |β1〉|β2〉.)

Applying the lowering operator to |11〉 we have

Ŝ−|SM〉 =
√

S(S + 1) − M(M − 1)h̄|S(M − 1)〉 (3.27)

which leads to

Ŝ−|11〉 =
√

2h̄|10〉 (3.28)

But, we may also compute Ŝ−|11〉 by applying Ŝ− in terms of the individual spin
angular momentum operators; that is, we apply Ŝ− = (Ŝ1− + Ŝ2−) to |α1〉|α2〉. In
general

Ŝk−|αk〉 =
√

1

2

(
1

2
+ 1

)
− 1

2

(
1

2
− 1

)
h̄|βk〉

= h̄|βk〉 (3.29)

so that, operating on |11〉with Ŝ− we have

Ŝ−|11〉 = (Ŝ1− + Ŝ2−)|α1〉|α2〉
= h̄|β1〉|α2〉 + h̄|α1〉|β2〉
= h̄(|β1〉|α2〉 + |α1〉|β2〉) (3.30)
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Now, we have two different expressions for the action of Ŝ− on |11〉, Equations
(3.28) and (3.30). Equating these expressions, we obtain

√
2h̄|10〉 = h̄(|β1〉|α2〉 + |α1〉|β2〉)

or

|10〉 = 1√
2

(|β1〉|α2〉 + |α1〉|β2〉) (3.31)

as we found using the table. We have therefore derived the Clebsch–Gordan coef-
ficients which are, in this case, both +(1/

√
2).

To obtain the third of the triplet states we repeat the procedure (although we
already know that the answer is |1 − 1〉 = |β1〉|β2〉). Applying the lowering oper-
ator to the ket that we just obtained we have

Ŝ−|10〉 =
√

2h̄|1 − 1〉 (3.32)

Also

Ŝ−|10〉 = (Ŝ1− + Ŝ2−)|10〉
= 1√

2
(|β1〉|α2〉 + |α1〉|β2〉)

= 1√
2

h̄(|β1〉|β2〉 + 0 + 0 + |β1〉|β2〉)

= 2√
2

h̄|β1〉|β2〉 (3.33)

Again equating the two expressions, this time for Ŝ−|10〉, Equations (3.32) and
(3.33), we obtain |1 − 1〉 = |β1〉|β2〉 as expected. Clearly, we could have begun
with |1 − 1〉 = |β1〉|β2〉 and applied the raising operator twice to obtain the other
two of the triplet states.

The singlet state must be constructed from |α1〉|β2〉 and |α2〉|β1〉 so that we
cannot apply a shift operator to one of the sets. It must, however, be orthogonal to
all of the triplet states because Ŝ2 is a Hermitian operator. Therefore, let

|00〉 = A|α1〉|β2〉 + B|α2〉|β1〉 (3.34)

so that

〈10|00〉 =
[

1√
2
〈β1|〈α2| + 1√

2
〈α1|〈β2|

]
[A|β1〉|α2〉 + B|α1〉|β2〉]

= 1√
2

(A + B)

Because 〈10|00〉 = 0 we must have A + B = 0. Also, the normalization condition
is

|A|2 + |B|2 = 1
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so that

2|A|2 = 1 ⇒ A = ±1/
√

2 and B = ±1/
√

2

We have then

|00〉 = − 1√
2
|α1〉|β2〉 + 1√

2
|α2〉|β1〉 (3.35)

Notice that A was chosen to be negative, but, no matter which sign was chosen, B
must have the opposite sign for orthogonality.

Example 2

Consider now two p-electrons in an atom and ignore their spin. In this case j1 =
1 = j2. Because these are orbital angular momenta it is customary to let j1 = 1

and j2 = 2 and designate the coupled angular momentum J by L . Now, each of
these -states has three substates so there will be a total of nine states. Of course,
we may also count the states from the point of view of the coupled representation,
but the number of states must be the same. Standard notation for the L-states
is

L = 0, 1, 2, 3, 4, 5 . . .

= S, P, D, F, G, H . . .

Note that here S is not the spin operator; it refers to L = 0. Also, after F (for
L = 3) the letters proceed alphabetically. The coupled kets are designated

|1, 2; L , ML〉 ≡ |L ML〉
and the uncoupled kets are

|1, m1; 2, m2〉 ≡ |m1, m2〉
We know that |D2〉 = |11〉, where D stands for L = 2, is the highest value of

ML ; that is, ML = 2. Note that even though the coupled and uncoupled kets each
contain only two elements in our simplified notation there should be no confusion
between them because the coupled ket will always contain one capital letter and
one number whereas the uncoupled kets contain two numbers. Now apply the
lowering operator in two different forms to |D2〉 = |11〉.

L̂−|D2〉 =
√

2(2 + 1) − 2(2 − 1)h̄|D1〉
= 2h̄|D1〉 (3.36)

and

(L̂1− + L̂2−)|11〉 =
√

1(1 + 1) − 1(1 − 1)h̄|01〉 +
√

1(1 + 1) − 1(1 − 1)h̄|10〉
=

√
2h̄(|01〉 + |10〉) (3.37)
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Table 3.4. Clebsch–Gordan coefficients for j1 = 1 = j2.

j1 = 1 j2 = 1 j = 2 j = 1 j = 0

m1 m2 m = 2 m = 1 m = 0 m = −1 m = −2 m = 1 m = 0 m = −1 m = 0

1 1 1
1 0

√
1/2

√
1/2

1 −1
√

1/6
√

1/2
√

1/3
0 1

√
1/2 −√

1/2
0 0

√
2/3 0 −√

1/3
0 −1

√
1/2

√
1/2

−1 1
√

1/6 −√
1/2

√
1/3

−1 0
√

1/2 −√
1/2

−1 −1 1

Equating the two expressions, Equations (3.36) and (3.37), we have

|D1〉 = 1√
2

(|01〉 + |10〉) (3.38)

The remaining three kets for L = D may be generated by successive application
of L̂−. For the L = 1, the P states, we start with |P1〉 which must be composed of
only |10〉 and |01〉. Moreover, by symmetry, these uncoupled kets must be present
in equal amounts. We do not, however, know the sign (phase) so we have

|P1〉 = 1√
2

(|10〉 ± |01〉) (3.39)

But we know that it must be orthogonal to all other eigenkets such as |D1〉. Now,
we know that 〈D1|P1〉 = 0 because they must be orthogonal. Evaluating this inner
product using Equations (3.38) and (3.39) we have

〈D1|P1〉 = 1√
2

(〈01| + 〈10|) 1√
2

(|10〉 ± |01〉)

= 1

2
(±1 + 1) (3.40)

We see that the only way 〈D1|P1〉 can vanish is if we choose the minus sign so

|P1〉 = 1√
2

(|10〉 − |01〉) (3.41)

The remaining P-states may be generated by again applying L̂−. Continued, this
procedure may be used to construct the entire table of Clebsch–Gordan coefficients
for the case j1 = 1 = j2 as shown in TABLE 3.4.

Note that we obtained the coupled states |1, 2; L , ML〉 ≡ |L ML〉 in terms
of the uncoupled states |1, m1; 2, m2〉 ≡ |m1, m2〉. To use the table we would

simply read down the appropriate column. For example, |D1〉 = 1√
2

(|10〉 + |01〉).
To obtain the uncoupled states in terms of the coupled states we read across a row.
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For example, if we subtract Equation (3.41) from Equation (3.38) we obtain

|01〉 = 1√
2

(|D1〉 − |P1〉)

which is also obtained reading across the row of Table 3.4 having m1 = 0 and
m2 = 1.

3.5. Hyperfine Splitting in the Hydrogen Atom

Both the electron and the proton possess intrinsic magnetic dipole moments by
virtue of their half-integral spins. Because there are different energies associ-
ated with the two different orientations of these magnetic moments as shown in
FIGURE 3.7, the energy of each state will be split by this interaction. Solv-
ing the eigenvalue problem for this energy is a good exercise in angular mo-
mentum algebra. We concentrate on the ground state of the hydrogen atom for
which the orbital magnetic moment is zero so we deal only with the spin–spin
interaction.

This spin–spin interaction energy is rather small compared with other effects in
the hydrogen atom so it is given the name hyperfine structure. In Chapter 2 it was
seen that the magnetic moment of the electron is given by

µS = −geµB

h̄
· S

= −2

h̄

(
eh̄

2me

)
S (3.42)

An approximation to the magnetic moment of the proton that is analogous to
Equation (3.42) for the electron is obtained by replacing me by MP , the rest mass
of the proton, and ge by gp ≈ 5.6. Thus, the magnetic moment of the proton is
smaller than that of the electron by a factor of ∼700.

The term in the Hamiltonian, referred to as the hyperfine interaction, can
be shown to be proportional to the dot product of the two spins which we

Figure 3.7. Two possible orientations of the proton spin with respect to the electron spin.



62 3. Angular Momentum—Two Sources

Figure 3.8. Energy levels of the hydrogen atom.

write as

ĤHF = K Ŝ1
� Ŝ2 (3.43)

where K is a constant, and Ŝ1 and Ŝ2 are the spin angular momentum operators.
(We need not concern ourselves with which is the electron and which is the proton.)
Also, it can be shown that K > 0.

FIGURE 3.8 shows the gross energy level structure of the hydrogen atom, that
is, the Bohr energy levels.

The hyperfine interaction is very small because the magnetic moment of the
proton is small. To see this we can compare the hyperfine interaction energy to
that of the spin–orbit interaction for an excited state of hydrogen, that is, the
interaction between µs and the magnetic moment that results from the electron’s
“orbit” around the proton. (It has to be an excited state because there is no orbital
magnetic moment for the  = 0 ground state.) This spin–orbit interaction energy
is a component of the splitting due to several factors and collectively known as
fine-structure splitting and is discussed in Chapter 7.

The spin–orbit Hamiltonian is

ĤSO ∝ µ
�µs

but µ ≈ µs and µproton ≈ 1

700
· µelectron so the spin–orbit interaction is the order

of one thousand times that of the hyperfine interaction. In Chapter 7 we calculate
the magnitude of the spin–orbit interaction. For now, however, we concentrate on
the hyperfine interaction as an exercise in angular momentum algebra. We would
like to calculate the magnitude of the hyperfine interaction, that is, find out how
much the energy of the ground state of the hydrogen atom is altered by this spin–
spin interaction. To do this, we must calculate the eigenvalues of ĤHF . The wave
functions for the spin–spin interaction will involve two spins and may therefore
be regarded as 4-component spinors. The operator may thus be represented by a
4 × 4 matrix.
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To determine the components of this matrix we (unwisely) choose to use the
uncoupled basis set with the notation

|1〉 = |α1〉|α2〉
|2〉 = |α1〉|β2〉
|3〉 = |β1〉|α2〉
|4〉 = |β1〉|β2〉 (3.44)

Because of symmetry, we need not specify which number, 1 or 2, corresponds to
the electron and which to the proton. The matrix form of the Hamiltonian is

ĤHF =

⎛
⎜⎜⎜⎜⎜⎝

〈1|ĤHF|1〉 〈1|ĤHF|2〉 〈1|ĤHF|3〉 〈1|ĤHF|4〉
〈2|ĤHF|1〉 〈2|ĤHF|2〉 〈2|ĤHF|3〉 〈2|ĤHF|4〉
〈3|ĤHF|1〉 〈3|ĤHF|2〉 〈3|ĤHF|3〉 〈3|ĤHF|4〉
〈4|ĤHF|1〉 〈4|ĤHF|2〉 〈4|ĤHF|3〉 〈4|ĤHF|4〉

⎞
⎟⎟⎟⎟⎟⎠ (3.45)

We must now compute the matrix elements. We begin with 〈1|ĤHF|1〉.
〈1|ĤHF|1〉 = K〈α1|〈α2|Ŝ1

� Ŝ2|α1〉|α2〉 (3.46)

Again we exploit the properties of the raising and lowering operators and cast
Ŝ1

� Ŝ2 in terms of them. We have

Ŝ1
� Ŝ2 = Ŝ1x Ŝ2x + Ŝ1y Ŝ2y + Ŝ1z Ŝ2z

=
(

1

4

)
[(Ŝ1+ + Ŝ1−)(Ŝ2+ + Ŝ2−) − (Ŝ1+ − Ŝ1−)(Ŝ2+ − Ŝ2−)] + Ŝ1z Ŝ2z

=
(

1

2

)
(Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+) + Ŝ1z Ŝ2z (3.47)

where we have used

Ŝx =
(

1

2

)
(Ŝ+ + Ŝ−)

and

Ŝy =
(

1

2i

)
(Ŝ+ − Ŝ−)

Then

〈1|ĤHF|1〉 = K 〈α1|〈α2|Ŝ1
� Ŝ2|α1〉|α2〉

= K 〈α1|〈α2|
[(

1

2

)
(Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+) + Ŝ1z Ŝ2z

]
|α1〉|α2〉

= K 〈α1|〈α2|S1z S2z|α1〉|α2〉

= K

(
1

2
h̄

)2

= Kh̄2

4
(3.48)



64 3. Angular Momentum—Two Sources

Note that the raising and lowering operators always change the basis state and
therefore cannot contribute to any diagonal matrix elements. Thus, the diagonal
elements will all have the same absolute value.

Identical computations show that all off-diagonal elements vanish except
〈3|ĤHF|2〉 = 〈3|ĤHF|2〉. Evaluating this matrix element we have

〈3|ĤHF|2〉 = K〈β1|〈α2|
{(

1

2

)
(Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+) + Ŝ1z Ŝ2z

}
|α1〉|β2〉 (3.49)

Operating to the right with Ŝ1+ Ŝ2− gives zero because Ŝ1+|α1〉 ≡ 0. The last term
is also zero because all kets are eigenvectors of Ŝ1z and Ŝ2z . That is,

〈β1|〈α2|Ŝ1z Ŝ2z|α1〉|β2〉 = h̄2

2
〈β1 |. α1〉〈α2 |. β2〉

= 0

Then, only the Ŝ1− Ŝ2+ term survives and the matrix element 〈3|Ĥ |2〉 is given by

〈3|ĤHF|2〉 = K

2
〈β1|〈α2|Ŝ1− Ŝ2+|α1〉|β2〉 (3.50)

But, recalling that Ŝ+|β〉 = h̄|α〉 and Ŝ−|α〉 = h̄|β〉 we have

〈3|ĤHF|2〉 = K

2
〈β1|〈α2|Ŝ1− Ŝ2+|α1〉|β2〉

= K

2
〈β1|〈α2|h̄2|β1〉|α2〉

= K

2
h̄2 (3.51)

The matrix of the Hamiltonian is then

ĤHF = Kh̄2

4

⎛
⎜⎜⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎠ (3.52)

on the basis set |1〉, |2〉, |3〉, |4〉. Notice that the matrix for ĤHF, Equation (3.52),
is not diagonal so we must solve the eigenvalue equation using general methods
of matrix algebra. Letting

|ψ〉 = a1|1〉 + a2|2〉 + a3|3〉 + a4|4〉 (3.53)

which, in matrix form is

|ψ〉 =

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠
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the eigenvalue equation in matrix form is

Kh̄2

4

⎛
⎜⎜⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ = E

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠

This may be rewritten as⎛
⎜⎜⎜⎜⎜⎜⎝

(Kh̄2/4) − E 0 0 0

0 −(Kh̄2/4) − E

(
Kh̄2

2

)
0

0

(
Kh̄2

2

)
−(Kh̄2/4) − E 0

0 0 0 (Kh̄2/4) − E

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠= 0

(3.54)

This matrix equation, Equation (3.54), constitutes a set of four homogeneous
simultaneous equations in the ai . Such a set of equations has a nontrivial solution,
that is, all ai s vanish, only if the determinant of the coefficients vanishes. That is,
if ∣∣∣∣∣∣∣∣∣∣∣∣

(Kh̄2/4) − E 0 0 0

0 −(Kh̄2/4) − E

(
Kh̄2

2

)
0

0

(
Kh̄2

2

)
−(Kh̄2/4) − E 0

0 0 0 (Kh̄2/4) − E

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

which leads to(
Kh̄2

4
− E

)2
{(

Kh̄2

4
+ E

)2

−
(

Kh̄2

2

)2
}

= 0 (3.55)

which is referred to as the secular equation.
Letting κ = (h̄2/2)K we have(κ

2
− E

)2
(

E2 + 2κ E − 3

4
κ2

)
= 0 (3.56)

the roots of which are

E = κ

2
,

κ

2
,

κ

2
, −3κ

2
(3.57)

Because κ > 0 the first three eigenvalues must be associated with the excited
(degenerate) triplet state and the last eigenvalue is that of the ground state, a
singlet.

Successively inserting these eigenvalues in the matrix eigenvalue equation we
obtain the matrix representation of the eigenfunctions. For example, using E = κ/2
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we have

κ

⎛
⎜⎜⎝

(1/2) 0 0 0
0 −(1/2) 1 0
0 1 −(1/2) 0
0 0 0 (1/2)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ = κ

2

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ (3.58)

Multiplying, we obtain four equations for the ai s.

1

2
a1 = 1

2
a1

−1

2
a2 + a3 = 1

2
a2 ⇒ a2 = a3

a2 − 1

2
a3 = 1

2
a3 ⇒ a2 = a3

1

2
a4 = 1

2
a4 (3.59)

Now, the eigenvectors corresponding to a degenerate eigenvalue (such as κ/2) are
not necessarily orthogonal.2 For convenience we would like them to be orthogonal.
This can be accomplished by selecting the coefficients to be consistent with Equa-
tions (3.59) and then find the others. Subsequently we can use the Gram–Schmidt
orthogonalization process. In this case, however, it is simple enough to form the
eigenvectors by inspection. The spinors⎛

⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ (3.60)

fit the criteria of Equations (3.59) and are orthogonal to each other. The spinor

1√
2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ (3.61)

also fits these criteria. Furthermore, Equation (3.61) is orthogonal to the spinors in
Equation (3.60) and is an eigenvector of ĤHF with eigenvalue κ/2. Thus, we have
the three eigenvectors ⎛

⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ ;

1√
2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ ;

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ (3.62)

that correspond to the eigenvalue κ/2. To find the remaining eigenvector we solve
the eigenvalue equation with E = −3κ/2. Designating this remaining eigenvector
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by ⎛
⎜⎜⎝

a1

a2

a2

a4

⎞
⎟⎟⎠

we have (with E = −3κ/2)

κ

⎛
⎜⎜⎝

(1/2) 0 0 0
0 −(1/2) 1 0
0 1 −(1/2) 0
0 0 0 (1/2)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ = −3κ

2

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠

which leads to
1

2
a1 = −3

2
a1

−1

2
a2 + a3 = −3

2
a2 ⇒ a2 = −a3

a2 − 1

2
a3 = −3

2
a3 ⇒ a2 = −a3

1

2
a4 = −3

2
a4 (3.63)

In contrast to the relations we found for E = κ/2 the signs of a2 and a3 must
be different. Thus, the remaining eigenvector has the form

1√
2

⎛
⎜⎜⎝

0
±1
∓1
0

⎞
⎟⎟⎠

We choose the upper signs and obtain for the eigenvector corresponding to the
eigenvalue −3κ/2. Note that the signs are irrelevant because we have not even
specified which subscript on the operators and uncoupled kets corresponds to the
proton and which to the electron. It is clear that the four eigenvectors⎛

⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ ;

1√
2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ ;

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ;

1√
2

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠ (3.64)

are mutually orthogonal.
The triplet state eigenvectors are the following three linear combinations of the

uncoupled spin wave functions.

|triplet〉1 = |α1〉|α2〉

|triplet〉0 = 1√
2
|α1〉|β2〉 + 1√

2
|β1〉|α2〉

|triplet〉−1 = |β1〉|β2〉 (3.65)
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Figure 3.9. Energy levels of the hydrogen atom showing hyperfine structure of the ground
state.

and the singlet is

|singlet〉0 = 1√
2
|α1〉|β2〉 − 1√

2
|β1〉|α2〉 (3.66)

where the subscripts on these kets have been chosen to be the z-component of the
total spin. This is discussed shortly.

The hyperfine splitting is shown schematically in FIGURE 3.9.
Notice that the splitting is exaggerated in the diagram because it is so small that,

compared with energies on the order of electron volts, it is less than the thickness
of a line.

The form of the eigenvectors that we obtained suggests that we might not have
made the wisest choice when we elected to use the uncoupled basis set. Although
we started with uncoupled kets, we found that the coupled kets are the eigenkets
of the hyperfine Hamiltonian.

Suppose we had begun with coupled kets |SM〉. The total angular momentum
operator is

Ĵ 2 = L̂2 + Ŝ2 + 2L̂ � Ŝ (3.67)

which, in our problem, becomes

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1
� Ŝ2 (3.68)

But, retaining the use of κ

ĤHF = 2κ

h̄2 Ŝ1
� Ŝ2 (3.69)

so that we may write

ĤFS = κ

h̄2

(
Ŝ2 − Ŝ2

1 − Ŝ2
2

)
(3.70)
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Now, the coupled kets are, as usual, |SM〉 = |s1, s2; S, M〉. In short, the coupled
kets |SM〉 are eigenkets of the spin–spin Hamiltonian. If we use them to construct
the matrix representation of ĤHF it would already be diagonal. To see this, we
operate on each of the |SM〉 kets with ĤHF and examine each term independently.
We obtain

Ŝ2|SM〉 = S(S + 1)h̄2|SM〉
Ŝ2

1 |SM〉 = S1(S1 + 1)h̄2|SM〉
Ŝ2

2 |SM〉 = S2(S2 + 1)h̄2|SM〉 (3.71)

Notice that nothing in the Hamiltonian produces any eigenvalue that depends on
M . Therefore, all kets |1M〉 have the same eigenvalue and all three triplet states
have the same energy which, of course, we already found using the uncoupled
basis set. To find this energy we simply find the eigenvalue by operating on one of
the kets with ĤHF.

ĤHF|1M〉 = κ

h̄2

{
1(1 + 1)h̄2 − 1

2

(
1

2
+ 1

)
h̄2 − 1

2

(
1

2
+ 1

)
h̄2

}
|1M〉

= κ

2
|1M〉 (3.72)

Therefore, Etriplet = κ/2 as we found using the unwieldy uncoupled ket as a basis.
Now, how about the singlet? Again we must solve the eigenvalue equation, this

time using the ket |SM〉 = |00〉.

ĤHF|00〉 = κ

h̄2

{
0(0 + 1)h̄2 − 1

2

(
1

2
+ 1

)
h̄2 − 1

2

(
1

2
+ 1

)
h̄2

}
|00〉

= −3

2
κ|00〉 (3.73)

Therefore, Esinglet = −3κ/2, again as we found before. Notice that we got the en-
ergies without having to solve the eigenvalue problem because, this time, we chose
the more convenient kets, the coupled kets. They are more convenient because they
happen to be eigenkets of the spin–spin Hamiltonian.

The coupled ket |00〉 clearly corresponds to the singlet state. Therefore,

|00〉 = |singlet〉0

= 1√
2
|α1〉|β2〉 − 1√

2
|β1〉|α2〉 (3.74)

We may easily correlate the uncoupled triplet states with their coupled counterparts
using results previously obtained in this chapter. From Equation (3.23) it is clear
that

|11〉 = |triplet〉1 = |α1〉|α2〉

|10〉 = |triplet〉0 = 1√
2
|α1〉|β2〉 + 1√

2
|β1〉|α2〉

|1 − 1〉 = |triplet〉−1 = |β1〉|β2〉 (3.75)
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Figure 3.10. Hyperfine splitting of the ground state of the hydrogen atom.

The splitting of the ground state of hydrogen due to the hyperfine interaction is
shown schematically in FIGURE 3.10.

Experimentally, it is found that the hyperfine splitting of the ground state 2κ

is

2κ = h̄ω = 5.9 × 10−6 eV

Thus, a transition from the upper to the lower hyperfine levels of the ground state
of hydrogen emits a photon of frequency

f = ω

2π
= 1420.405751768 ± 0.001 MHz

which corresponds to a wavelength

λ = c

f
= 21 cm (3.76)

This transition between hyperfine levels of the hydrogen atom ground state has an
important astrophysical application. Detection of this 21 cm radiation using radio
telescopes has been used to map galaxies. It also permits Doppler shift measure-
ments of astrophysical objects to be made in the radio region of the electromagnetic
spectrum. The frequency of this transition is the most accurately known physical
quantity today!

Problems

3.1. An electron in an atom is in an uncoupled spin and orbital eigenstate given
by | m; ms〉 = |1 − 1; α〉 where we have omitted s = 1/2 from the ket because
all electrons have s = 1/2. What is the probability that a measurement of the total
angular momentum will yield the value j = 3/2? j = 1/2? j = 5/2?
3.2. An electron in an atom is in an coupled eigenstate

| j m j ; s〉 =
∣∣∣∣12 − 1

2
; 1

1

2

〉

What is the probability that a measurement of the z-component of the orbital
angular momentum will yield the value m = 0? m = +1? m = −1?

3.3. Show that Ĵ1
� Ĵ2 = Ĵ1z Ĵ2z +

(
1

2

)
( Ĵ1+ Ĵ2− + Ĵ1− Ĵ2+).
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3.4. An eigenfunction of Ĵ 2 and Ĵz (total angular momentum and its z-component)
is given in terms of the uncoupled eigenfunctions | j1 m j1; j2 m j2〉 as

|ψ〉 =
√

3

5

∣∣∣∣32 − 1

2
; 1 − 1

〉
+
√

2

5

∣∣∣∣32 − 3

2
; 10

〉
Using the operator identity of the previous problem, find the value of the total
angular momentum and its z-component.
3.5. An eigenfunction of Ĵ 2 and Ĵz (total angular momentum and its z-component)
is given in terms of the uncoupled eigenfunctions | j1 m j1; j2 m j2〉 as

|ψ〉 =
√

2

5

∣∣∣∣32 3

2
; 1 − 1

〉
+
√

1

15

∣∣∣∣32 1

2
; 10

〉
−
√

8

15

∣∣∣∣32 − 1

2
; 11

〉

Using the table of Clebsch–Gordan coefficients on the previous page, find the value
of the total angular momentum and its z-component.
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4
The Quantum Mechanical
Hydrogen Atom

4.1. The Radial Equation for a Central Potential

After writing the Schrödinger equation in spherical coordinates for an arbitrary
central potential and separating variables it is found that the eigenfunctions may
be written as

ψ (r, θ, φ) = Ym (θ, φ) Rn (r ) (4.1)

where n is the principal quantum number. Because the Schrödinger equation does
not contain spin, the only angular momentum to be considered here is orbital
angular momentum. As is customary, we use  as the angular momentum quantum
number and m as the azimuthal or magnetic quantum number that defines the
z-component of the angular momentum. The Ym(θ, φ) are the spherical harmonics
and Rn(r ) is the radial part of the wave function. Ym(θ, φ) is universal for any
central potential and Rn(r ) depends on the specific form of the central potential.
Of course, the energy eigenvalues also depend on the specific form of the potential
and, in general, depend upon both n and .

Solution of the angular part of the Schrödinger equation yields the magnitude of
the total angular momentum,

√
( + 1) h̄2, and the eigenvalues of the z-component

of the angular momentum mh̄. The radial equation that remains depends upon the
potential energy function V (r ),{

− h̄2

2µ

[(
d2

dr2
+ 2

r

d

dr

)
− ( + 1)

r2

]
+ V (r )

}
Rn (r ) = En Rn (r ) (4.2)

where µ is the reduced mass of a presumed two-particle system. We are here inter-
ested in the hydrogen atom for which µ is effectively the electronic mass, which
we designate by me to avoid confusion with the quantum number m. Inasmuch as
the energy eigenvalues are to be determined solely by the radial equation, we see
that, in general, these eigenvalues will depend on both n and  so we write them
as En to show this explicitly.

Although the universal angular solutions, the Ym(θ, φ), depend on both
the m and  quantum numbers, the radial functions do not depend upon m.

73
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Recalling that there are (2 + 1) values of m for every , we see that there is a
(2 + 1)-fold degeneracy in m for any central potential. Degeneracies are always
associated with an intrinsic symmetry in the potential. In this case it is the spher-
ical symmetry (sometimes referred to as “isotropy”) that is inherent in a central
potential. In other words, the energy levels do not depend on the orientation in
space because the potential is the same for all points on a given sphere centered at
the force center.

To solve the radial equation we make, as in classical mechanics, the convenient
substitution

Rn (r ) = un (r )

r
(4.3)

which leads to[
− h̄2

2me

d2

dr2
+  ( + 1) h̄2

2mer2
+ V (r )

]
un (r ) = Enun (r ) (4.4)

This equation has the same form as the one-dimensional Schrödinger equation
with an effective potential

Veff (r ) = V (r ) +  ( + 1) h̄2

2mer2
(4.5)

Therefore, we may think of the radial equation as being the solution to a
one-dimensional problem, provided that the potential for this one-dimensional
problem is Veff (r ). Clearly, there are many different values of Veff (r ) for a given
V (r ). Thus, Veff (r ) accounts for the parameter that is absent in one-dimensional
problems, angular momentum. The second term in Equation (4.5) is referred to
as the centrifugal term. FIGURE 4.1 shows the effective potential of a Coulomb
potential V (r ) = −e2/(4πε0r ) for several different values of .

Figure 4.1. Effective potential for the Coulomb potential for several values of the angular
momentum quantum number .
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Examination of these effective potentials shows that the wave functions for
 > 0 must vanish at r = 0 because the effective potential becomes infinite as r
approaches zero. Classically, this means that if the angular momentum of a particle
is nonzero, then the particle can never go through the origin. This is sensible
because, classically, the angular momentum is given by L = r × p.

We wish to examine the behavior of un(r ) near the origin for any central poten-
tial V (r ), but one for which the centrifugal term dominates near r = 0. Because
the Coulomb potential ∼1/r it is included in this category. Near r = 0 Equation
(4.4) becomes for  > 0 (when un(r ) must vanish)

d2un (r )

dr2
−  ( + 1)

r2
un (r ) = 0 (4.6)

The two solutions to Equation (4.6) are r +1 and r−, the latter of which must be
discarded as r → 0. Thus,

lim
r→0

un (r ) = r +1 (4.7)

Notice that as  increases, the particle is less and less likely to be found in
the vicinity of the origin. This is consistent with a classical notion of angular
momentum.

4.2. Solution of the Radial Equation in Spherical
Coordinates—The Energy Eigenvalues

For the hydrogen atom, the potential is the familiar Coulomb potential

V (r ) = − e2

4πε0
· 1

r
(4.8)

where e is the magnitude of the electronic charge. For convenience, we scale r in
terms of the Bohr radius a0 = 4πε0 h̄2/(mee2) and use the dimensionless quantity
ρ given by

r =
√

−h̄2

8me E
· ρ (4.9)

We also make the substitution

λ = e2

4πε0 h̄

√
− me

2E

= α

√
−mec2

2E
(4.10)

where E is the total energy, a negative number, and α is the fine structure constant.
Note that −E is the ionization potential of hydrogen, that is, the minimum energy
required to liberate the electron from the proton. We have temporarily dropped the
n and  subscripts on E because we do not as yet even know that E is quantized.
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With these substitutions the radial equation for the hydrogen atom in terms of
the un(r ) = r Rn(r ) becomes[

d2

dρ2
−  ( + 1)

ρ2
+ λ

ρ
− 1

4

]
un (ρ) = 0 (4.11)

Asymptotically, that is, as ρ → ∞, this becomes[
d2

dρ2
− 1

4

]
un (ρ) = 0 (4.12)

the solutions of which are e±ρ/2. As usual, we must discard the plus sign on physical
grounds so that

lim
ρ→∞ un (ρ) = constant · e−ρ/2 (4.13)

Equation (4.13) and Equation (4.7) specify the nature of the hydrogen atom wave
functions for small and large values of r .

To solve Equation (4.11) we try a solution of the form

un (ρ) = F(ρ) exp (−ρ/2) (4.14)

and, using the asymptotic form Equation (4.7) as a guide, we write F(ρ) as a power
series expansion

F(ρ) = ρ+1
(
a0 + a1ρ

1 + a2ρ
2 + · · ·)

= ρ+1
∞∑
j=0

a jρ
j (4.15)

Substituting this in Equation (4.11) we obtain
∞∑
j=0

{
[ j ( j + 1) + 2 ( + 1) ( j + 1)] a j+1 + (λ −  − 1 − j) a j

}
ρ j = 0 (4.16)

Because the ρ j are linearly independent, their coefficients must separately vanish
which leads to a recursion relation between successive coefficients in the expan-
sion, Equation (4.15),

a j+1 = j +  + 1 − λ

( j + 1)( j + 2 + 2)
a j (4.17)

Now, examine convergence of the series for which (4.17) is the recursion relation.

lim
j→∞

(
a j+1

a j

)
= 1

j
(4.18)

This series diverges! The only way to obtain a physically acceptable solution is
to force the series to terminate; that is, we drop the assumption that F(ρ) is an
infinite power series and force it to terminate. In order for the series to terminate,
the numerator of the recursion relation must vanish for some value of  equal to a
positive integer. Recall that j is, by definition, an integer. This is a very important
step. To this point there was no hint that the energy had to be “quantized”. It is
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seen then that it is the necessity of convergence of the series which is based on the
requirement that the wave function be bounded, that forces quantized levels upon
the hydrogen atom. It is physics, not mathematics!

For the series to converge, λ must be an integer that is equal to the rest of the
numerator. We designate this value of λ by n which will, of course, turn out to
be the usual principal quantum number. We also replace j , the index, by nr , the
“radial” quantum number. We have then

λ = n

= nr +  + 1 (4.19)

so that, returning to the definition of λ, Equation (4.10), we have

λ = α

√
−mec2

2E
= n (4.20)

Solving for E and noting that it depends upon the quantum number n we have

En = −(mec2)α2 · 1

2n2
(4.21)

which is precisely the Bohr energy.
We may also obtain a relationship between the principal quantum number and

the angular momentum quantum number. Solving Equation (4.19) for nr and noting
that it is manifestly positive or zero leads to

n ≥  + 1 (4.22)

It is often convenient to express the hydrogen eigenenergies in atomic units. Noting
that the cα ≡ 1 in atomic units, it is clear that

En = − 1

2n2
(4.23)

in atomic units. If the one-electron atom is not hydrogen, but is an atom with Z
protons in the nucleus, for example, He+, Li++, and so on, then the energy is
given by

En = −(mec2
)
α2 · Z2

2n2
(4.24)

For example, the ionization energy of the He+ ion is 22 × 13.6 eV = 54.4 eV.

4.3. The Accidental Degeneracy of the Hydrogen Atom

Perhaps the most intriguing feature of the hydrogenic energy is that it depends only
on the principal quantum number n, and not on the angular momentum quantum
number , as is expected for a general central potential. As remarked previously,
degeneracies are always associated with symmetries. We have discussed the spatial
symmetry associated with a central potential and the consequent degeneracy in m,
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but to what symmetry does this “accidental degeneracy” correspond? The answer
is that this symmetry is not apparent to ordinary humans, but, as discussed later,
is associated with an additional constant of the classical motion that exists for the
attractive 1/r potential. This constant of the motion does not exist for other cen-
tral potentials although the attractive r2 potential, the three-dimensional isotropic
harmonic oscillator has yet another classical constant of the motion. It therefore
possesses additional symmetry and, as a result, its own accidental degeneracy.

For a central potential we expect a (2 + 1)-fold degeneracy because there
are (2 + 1) values of m for each value of . That is, for any central potential
there should be (2 + 1) energies corresponding to given values of n and  because
the energy does not depend on m. To find the degree of the degeneracy for the
hydrogen atom we sum the -states over all of the possible m-values. The degree
of degeneracy is then given by

Degree of degeneracy =
∑
all 

m

=
n−1∑
=0

(2 + 1)

=
n−1∑
=0

2 +
n−1∑
=0

1

= 2 · (n − 1) ·
(n

2

)
+ n

= n2 (4.25)

where the term (n − 1)(n/2) is the sum of the integers from zero to (n − 1). The
Gauss trick has been used in evaluating the sum in Equation (4.25). Spin adds a
factor of 2; that is, the degeneracy is 2n2, but two proton spin states add another
two. Therefore, the total degeneracy of the hydrogen atom is 4n2.

It is remarkable that, although the effective potential is different for different
values of , the energy of the hydrogen atom remains independent of . It depends
only on the principal quantum number n. FIGURE 4.2 illustrates this nicely. The
hydrogenic energies for various values of n are superimposed on a plot of effective
potentials versus r , measured in Bohr radii, for various values of . Notice that
this diagram also makes clear the restriction on ; that is, 0 ≤  ≤ (n – 1). If a
given level lies lower than the minimum of a particular effective potential well
then the value of  that is characteristic of that effective potential is forbidden. For
example, there can be no  = 2 level having n = 2 because the n = 2 energy is
below the minimum in Veff (r ) for  = 2.

The cause of the accidental degeneracy is a subject of considerable interest
which is discussed in detail in Chapter 7. For now it is sufficient to note that
classical constants of the motion correspond to quantum mechanical operators
that commute with the Hamiltonian. We show that, in addition to L̂2 and L̂ z , there
is a third operator that commutes with the Hamiltonian for the pure Coulomb
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Figure 4.2. Energy levels of the hydrogen superimposed on different effective potentials
illustrating the accidental degeneracy.

potential. This commuting operator does indeed correspond to another constant of
the classical motion.

4.4. Solution of the Hydrogen Atom Radial Equation
in Spherical Coordinates—The Energy Eigenfunctions

The finite power series
∞∑
j=0

a jρ
j

that is part of the solution to the radial part of the Schrödinger equation is, in
fact, the associated Laguerre polynomials, designated Lβ

α(x). These polynomials
may be obtained by differentiation of the (ordinary) Laguerre polynomials Lγ (x).
Unfortunately, the definitions of neither the ordinary nor the associated Laguerre
polynomials are universal. We attempt to clarify the situation.

Because the associated Laguerre polynomials depend upon the particular choice
of ordinary Laguerre polynomial we first discuss the ordinary functions L p(x). The
difference between the common definitions of the ordinary Laguerre polynomial
definitions is a factor of p! Two often used mathematical references1,2 illustrate
the differences in the definitions. TABLE 4.1 is a listing of the first few Laguerre
polynomials and the two designations.
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Table 4.1. Two common definitions of ordinary
Laguerre polynomials as defined by two authors.

Spiegel2 Arfken and Weber1 Polynomial

L p(x) p!L p(x)
L0(x) 0!L0(x) 1
L1(x) 1!L1(x) −x + 1
L2(x) 2!L2(x) x2 − 4x + 2
L3(x) 3!L3(x) −x3 + 9x2 − 18x + 6

Inspection of TABLE 4.1 shows that there is no difference between the L p(x)
until p = 2.

There exist two different definitions of the associated Laguerre polynomials that
lead to two different sets of polynomials. Of course, the radial wave function does
not depend upon the definition, but the designation of the associated Laguerre
polynomial in Rn(r ) is different for each of the definitions.

The two definitions are:

Speigel:2 L p
q (x) = d p

dρ p
[Lq (x)]

Arfken and Weber:1 L p
q−p(x) = (−)p d p

dρ p
[Lq (x)]

where, for this purpose, p and q are integers. One attraction of the Arfken and
Weber definition is that it produces polynomials of degree (q − p), that is, the
lower index. The upper index is referred to as the order. TABLE 4.2 shows some
of the associated Laguerre polynomials for both definitions.

Because of these different definitions of the associated Laguerre polynomials
the radial wave function Rn(r ) encountered in the literature takes two different
forms. For example, Bethe and Salpeter3 and Schiff4 use Spiegel’s2 definition so
that

Rn (r ) = Mn

(
2r

na0

)

· exp

(
− r

na0

)
· L2+1

n+

(
2r

na0

)
(4.26)

Table 4.2. Two common definitions of associated
Laguerre polynomials as defined by two authors.

Spiegel2 Arfken and Weber1 Polynomial

L1
1(x) −L1

0(x) −1

L1
2(x) −L1

1(x) 2x − 4

L2
2(x) L2

0(x) 2

L1
3(x) L1

2(x) −3x2 + 18x − 18

L2
3(x) L2

1(x) −6x + 18

L3
3(x) −L3

0(x) −6
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whereas Griffiths5 and Gasiorowicz6 use Arfken and Weber’s1 definition which
leads to

Rn (r ) = Nn

(
2r

na0

)

· exp

(
− r

na0

)
· L2+1

n−−1

(
2r

na0

)
(4.27)

To normalize the radial wave function, that is, to compute the value of Nn

and Mn, it is necessary to use the orthogonality integral. These integrals, how-
ever, differ for the two definitions of the associated Laguerre polynomials. They
are

Speigel:2
∫ ∞

0
x pe−x L p

q (x) L p
q ′ (x) dx = q!3

(q − p)!
δqq ′

Arfken and Weber:1
∫ ∞

0
x pe−x L p

q (x) L p
q ′ (x) dx = (q + p)!

q!
δqq ′

Using these integrals it can be shown that

Speigel:2
∫ ∞

0
x2e−x

[
L2+1

n+ (x)
]2

x2dx = 2n (n + )!3

(n −  − 1)!

Arfken and Weber:1
∫ ∞

0
x2e−x

[
L2+1

n−−1 (x)
]2

x2dx = 2n (n + )!

(n −  − 1)!

Notice that these integrals differ by a factor of (n + )!2 because of the definitions
of the ordinary Laguerre polynomials.

Using these integrals the normalization factors in the Rn(r ) can be calculated.
We obtain

Mn = −
(

2

na0

)3/2 [ (n −  − 1)!

2n

]1/2 [ 1

(n + )!

]3/2

(4.28)

and

Nn = −
(

2

na0

)3/2 { (n −  − 1)!

2n [(n + )!]3

}1/2

(4.29)

For convenience the first six radial wave functions are listed in TABLE 4.3.

Table 4.3. Normalized radial wave functions Rn(r )
for n = 1–3.

R10(r ) = 2a−3/2
0 exp(−r/a0)

R20(r ) = 2(2a0)−3/2 (1 − r/2a0) exp(−r/2a0)

R21(r ) = 3−1/2 (2a0)−3/2 (r/a0) exp(−r/2a0)

R30(r ) = 2(3a0)−3/2
(
1 − 2r/3a0 + 2r2/27a2

0

)
exp(−r/3a0)

R31(r ) = (4
√

2/9)(3a0)−3/2 (1 − r/6a0)(r/a0) exp(−r/3a0)

R32(r ) = (4/27)10−1/2 (3a0)−3/2 (r/a0)2 exp(−r/3a0)
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4.5. The Nature of the Spherical Eigenfunctions

It is instructive to examine the energy eigenfunctions that arise from the separation
of variables in spherical coordinates because, as will be discussed, the hydrogen
atom problem can also be solved using separation of variables in parabolic coor-
dinates. (In fact, it can also be solved in spheroidal coordinates,7 but this solution
is of limited use.) This separability of the Schrödinger equation in more than one
coordinate system is indicative of the additional symmetry that leads to the acci-
dental degeneracy, that is, symmetry beyond the spherical symmetry of any central
potential. This additional symmetry manifests itself by permitting separability in
parabolic coordinates. It should be clear that the spatial symmetry of a central po-
tential is the symmetry that permits separation of variables in spherical coordinates
for any central potential.

The complete energy eigenfunctions in spherical coordinates, sometimes re-
ferred to as spherical eigenfunctions or “orbital” eigenfunctions, are

ψnm (r, θ, φ) = Rn (r ) Ym (θ, φ) (4.30)

The probability density is, as usual, |ψ |2. The angular part of ψ is the spherical
harmonics (see Section 2.6),

Ym (θ, φ) = Pm (θ ) · exp (imφ) (4.31)

where the Pm(θ ) are the associated Legendre functions. Upon taking the absolute
square, the φ-dependence disappears. The probability density is therefore cylin-
drically symmetric about the z-axis. Now |ψ |2 represents the probability per unit
volume so that |ψ |2 multiplied by the volume element is the probability of find-
ing the electron somewhere in the volume element. Thus, the probability density
(multiplied by the electronic charge) is the charge density of a given eigenstate. A
convenient way to depict the charge density is by using a density plot in which the
regions of the highest density of dots are the locations at which the electron would
be more likely to be found. FIGURE 4.3 is such a plot for the n = 4,  = 2, m = 0
state.

The cylindrical symmetry discussed above is apparent. In contrast with the
charge densities that will be obtained using parabolic coordinates it should be
noted that the charge distribution for orbital eigenstates is symmetric about the
xy-plane.

4.6. Separation of the Schrödinger Equation in Parabolic
Coordinates

We follow the same procedure to effect the separation of variables in parabolic
coordinates that was used to separate the Schrödinger equation in spherical co-
ordinates. The treatment is standard and can be found in the books by Bethe
and Salpeter,3 Landau and Lifshitz,8 and by Schiff.4 The relationship between
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Figure 4.3. Density plot of the spherical wave function indicated. The maximimum on
each axis is 50 a.u.

parabolic coordinates and spherical coordinates is given by the following transfor-
mation equations.

ξ = r − z = r (1 − cos θ )

η = r + z = r (1 + cos θ )

φ = φ (4.32)

The angular coordinate φ is seen to be the same azimuthal angle as in spherical
coordinates. This coordinate defines position with respect to the x-axis of a point
in the xy-plane. The surfaces of constants ξ and η are paraboloids of revolution
about the z-axis as shown in FIGURE 4.4.

The Coulomb potential in parabolic coordinates in SI units is

V (ξ, η) = −
(

e2

4πε0

)(
2

ξ + η

)
(4.33)

Using the Laplacian operator in parabolic coordinates,1 the Schrödinger equation
is(
− h̄2

2me

)(
4

ξ + η

)[
∂

∂ξ

(
ξ
∂ψ (ξ, η, φ)

∂ξ

)
+ ∂

∂η

(
η
∂ψ (ξ, η, φ)

∂η

)]

+ 1

ξη

∂2ψ (ξ, η, φ)

∂φ2
−
(

e2

4πε0

)(
2

ξ + η

)
ψ (ξ, η, φ) = Eψ (ξ, η, φ) (4.34)

To separate this equation we let

ψ(ξ, η, φ) = f (ξ )g(η)�(φ) (4.35)
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Figure 4.4. Parabolic coordinates and their relation to other coordinate systems.

After a considerable amount of algebra we obtain

F(ξ, η) = − 1

�(φ)

d2�(φ)

dφ2

= −m2 (4.36)

where the function F(ξ, η) does not contain φ and m2 is a separation constant
that has been judiciously chosen to be the same azimuthal (magnetic) quantum
number that represents the z-component of the angular momentum. This equation
obviously leads to the same solution that was obtained in spherical coordinates for
the � part of the wave function

�m(φ) = 1√
2π

exp (imφ) m = 0, ±1, ±2, . . . (4.37)

The remaining equation, F(ξ, η) = −m2, can also be separated. We obtain

1

f (ξ )

d

dξ

(
ξ

d f (ξ )

dξ

)
− m2

4ξ
− me|E |

2h̄2 ξ + me

h̄2 ·
(

e2

4πε0

)

= −
[

1

g(η)

d

dη

(
η

dg(η)

dη

)
− m2

4η
− me|E |

2h̄2 η

]
(4.38)
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Because the left side of Equation (4.38) is a function of ξ only and the right side
a function of η only we set each side equal to a constant, ν. We have then

d

dξ

(
ξ

d f (ξ )

dξ

)
−
(

m2

4ξ
+ me |E |

2h̄2 ξ − me

h̄2 ·
(

e2

4πε0

)
+ ν

)
f (ξ ) = 0 (4.39)

and

d

dη

(
η

dg(η)

dη

)
−
(

m2

4η
+ me|E |

2h̄2 η − ν

)
g(η) = 0 (4.40)

These equations differ only in that the equation for ξ contains an extra term, the
term containing e2. We thus need solve only one of these equations, the solution
to the remaining one following from the first.

4.7. Solution of the Separated Equations in Parabolic
Coordinates—The Energy Eigenvalues

We may cast these equations in a more convenient form. In Equation (4.39) let

ζ = εξ

to obtain [
1

ζ

d

dζ

(
ζ

d

dζ

)
+
(

λ1

ζ
− 1

4
− m2

4ζ 2

)]
f (ζ ) = 0 (4.41)

where

λ1 = 1

ε

[
me

h̄2

(
e2

4πε0

)
− ν

]
and ε2 = 2me |E |

h̄2 (4.42)

Notice that this equation contains the φ quantum number m and that λ1 contains
the separation constant ν. The energy |E | is contained in both λ1 and ε. Notice also
that, because we are interested in bound states, E will be negative thus necessitating
the absolute value sign in the definition of ε2.

Equation (4.40) can be similarly transformed. It has exactly the same form as
Equation (4.41) with λ1 replaced by λ2 and

ζ ′ = εη and λ2 = ν/ε (4.43)

We use the same technique to solve these equations as that employed to solve the
radial equation in spherical coordinates. Asymptotically

f (ζ ) → exp

(
±1

2
ζ

)
(4.44)

As usual, we must discard the plus sign. We try a solution of the form

F(ζ ) = ζ s(a0 + a1ζ + a2ζ
2 + · · ·)

= ζ s L (ζ ) exp

(
−1

2
ζ

)
(4.45)
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and find that s = ±(1/2)m. Because m may be positive or negative, we must
require that s = −(1/2)|m| for correct asymptotic behavior. Also,

f (ζ ) = ζ (1/2)|m| exp

(
−1

2
ζ

)
· L (ζ ) (4.46)

which leads to

ζ L ′′ (ζ ) + (|m| + 1 − ζ ) L ′ (ζ ) +
[
λ1 − 1

2
(|m| + 1)

]
L (ζ ) = 0 (4.47)

for the ξ equation.
As in the solution to the radial equation in spherical coordinates, we find that the

series must be terminated to keep the wave function from blowing up. It follows
then that the quantity λ1 − 1

2 (|m| + 1) must be an integer or zero. Denoting this
integer by n1 we have

n1 = 0, 1, 2, . . .

= λ1 − 1

2
(|m| + 1) (4.48)

Now, the η-equation is virtually identical to the ξ -equation. We may therefore
obtain the solution from the solution to the ξ -equation by letting ζ → ζ ′, n1 → n2,
and λ1 → λ2 in the equation that led to n1. We have

n2 = 0, 1, 2, . . .

= λ2 − 1

2
(|m| + 1) (4.49)

The sum of λ1 and λ2 must also be an integer, an integer that will turn out to be
the principal quantum number. We therefore judiciously denote the sum λ1 + λ2

by n.

n = λ1 + λ2

= n1 + n2 + |m| + 1 (4.50)

From this equation, together with the equations that define λ1, λ2, and ε2 we obtain
the energy. We have

n = λ1 + λ2

= 1

ε

[
me

h̄2

(
e2

4πε0

)
− ν

]
+ ν

ε

= me

h̄2

(
e2

4πε0

)√
h̄2

2me (−En)
(4.51)

where we have replaced
√|E | by

√−En because we seek the quantized (negative)
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bound state energies. Solving Equation (4.51) for En we have

En = −
(

1

4πε0

)2

· mee4

2 h̄2n2

= −1

2

(
mec2

) α2

n2
(4.52)

which is, of course, the same as that obtained using spherical coordinates because
the eigenenergies cannot depend upon the coordinate system. Nor can the degree
of degeneracy depend upon the coordinate system. To check that they are the same
we must count the parabolic eigenstates. For |m| = 0 there are n ways of choosing
n1 and n2. For |m| > 0 there are two ways of choosing m(= ±|m|) and n − |m|
ways of choosing n1 and n2. The degeneracy is therefore given by

degree of degeneracy = n + 2 ·
n−1∑

|m|=1

(n − |m|)

= n + 2n ·
n−1∑

|m|=1

1 − 2 ·
n−1∑

|m|=1

|m|

= n + 2n · (n − 1) − 2 · n (n − 1)

2

= n2 (4.53)

where Gauss’ trick was used to evaluate the second sum.

4.8. Solution of the Separated Equations in Parabolic
Coordinates—The Energy Eigenfunctions

To put the ξ - and η-equations in comparable forms we changed the variables to
ζ = εξ and ζ ′ = εη from which we obtained Equation (4.46) for ζ . This led us to
Equation (4.47) which we must now solve to obtain the energy eigenfunctions in
parabolic coordinates.

The solutions of Equation (4.47) for which the series is forced to terminate are
the associated Laguerre polynomials L |m|

n1+|m|(ζ ) with an analogous solution for
the η-equation. We are here using associated Laguerre polynomials as defined by
Spiegel2 and used by Bethe and Salpeter3 and Schiff4 (among many others). The
(unnormalized) wave function ψ(ξ, η, φ) is then given by

ψn1n2m (ξ, η, φ) = N · exp

[
−ε (ξ + η)

2

]
· (ξη)|m|/2

× L |m|
n1+|m| (εξ ) · L |m|

n2+|m| (εη) · exp (imφ) (4.54)
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Figure 4.5. Density plot of the spherical wave function indicated. Full scale on each axis
is 50 a.u.

Calculations using the parabolic eigenfunctions are frequently carried out using
atomic units for which the normalization constant is

N = 1√
πn

·
√

n1!n2!εm+3/2

[(n1 + m)!]3/2 [(n2 + m)!]3/2 (4.55)

Upon taking the absolute square of ψ , the φ-dependence disappears just as it did in
spherical coordinates so the probability density is cylindrically symmetric about
the z-axis. As was done for the spherical wave functions, we may make a density
plot of |ψ |2. FIGURE 4.5 is a density plot for the quantum numbers n1 = 3, n2 = 0;
m = 0; n = 4.

The contrast between the charge density for the parabolic eigenstate shown in
FIGURE 4.5 and that for the spherical eigenstate shown in Figure 4.3 is striking.
Although the charge densities for spherical eigenstates must be symmetric about the
origin, no such symmetry exists for the Stark eigenstates. As shown in FIGURE 4.5,
the charge density can be quite asymmetric with respect to the Cartesian axes thus
making it possible for hydrogen atoms in parabolic eigenstates to have permanent
electric dipole moments. This is not possible for spherical eigenstates due to the
symmetry requirements on the square of the wave function. Clearly the separability
of the Schrödinger equation in both spherical and parabolic coordinates makes this
possible. As noted previously, this separability in both coordinate systems is a result
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of the extra symmetry of the Coulomb potential, the symmetry that leads to the
accidental degeneracy.

Problems

4.1. The wave function for a hydrogen atom is given by

ψ (r, θ, φ) ∝ r2e−r/3a0
(
3 cos2 θ − 1

)
(a) What are the quantum numbers n, , m for this atom? No calculations allowed.
(b) What is the most probable value of r for the electron in this state? What is
significant about the result?
4.2. The wave function for a hydrogen atom is given by

ψ (r, θ, φ) = R54 (r ) Ym (θ, φ) + R53 (r ) Y30 (θ, φ) + R52 (r ) Y21 (θ, φ)

For what values of  and m (= m) will ψ be an eigenfunction of the Hamiltonian?
What is the energy in electron volts? In Rydbergs? In a.u.? In cm−1?
4.3. An electron is in the ground state of tritium, that is, a hydrogen atom with two
neutrons the symbol for which is 3H. A nuclear reaction instantaneously changes
the nucleus to 3He which retains the single electron from the tritium atom. That
is, the product is a singly ionized 3He which is a one-electron atom. Calculate the
probability that the atomic electron remains in the ground state of the 3He ion.
4.4. An electron in the Coulomb field of a proton is described by the normalized
wave function

|ψ(r )〉 = 1
6 {4 |ψ100 (r )〉 + 3 |ψ211 (r )〉 − |ψ210 (r )〉 +

√
10 |ψ21−1 (r )〉}

where the |ψ(r )〉 are spherical (orbital) eigenfunctions of the hydrogen atom
Hamiltonian.
Find:
(a) The expectation value of the energy in a.u.
(b) The expectation value of L̂2. Keep h̄ in the answer.
(c) The expectation value of L̂ z .
4.5. A hydrogen atom is in an eigenstate of L2 and Lz . Show that, although neither
Lx nor L y are well defined, their sum {L2

x + L2
y} is well defined. Find the value of

{L2
x + L2

y} in terms of  and m. Ignore spin.
4.6. Show that the integrals

zn(−1)m
nm = 〈n ( − 1) m|z|nm〉

=
∫ ∞

0
r2dr Rn (r ) Rn(−1) (r ) rdr

∫ π

0
Pm (θ ) P(−1)m (θ ) cos θ · sin θdθ

and

zn(+1)m
nm = 〈n ( + 1) m|z|nm〉

=
∫ ∞

0
r2 Rn (r ) Rn(+1) (r ) rdr

∫ π

0
Pm (θ ) P(+1)m (θ ) cos θ · sin θdθ
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are given in atomic units by

zn(−1)m
nm =

√
(2 − m2)

(2 + 1)(2 − 1)
Rn(−1)

n

and

zn(+1)m
nm =

√
[( + 1)2 − m2]

(2 + 3)(2 + 1)
Rn(+1)

n

where

Rn(−1)
n = 3

2
n
√

n2 − 2 and Rn(+1)
n = 3

2
n
√

n2 − ( + 1)2

4.7. A collection of hydrogen atoms is in a parabolic eigenstate |ψ〉 given by

|ψ〉 = 1√
2

|200〉 + 1√
2

|210〉

where the kets on the right are the spherical eigenkets |nm〉.
(a) What is the energy eigenvalue, in atomic units, corresponding to |ψ〉?
(b) What are the possible sets of parabolic quantum numbers that characterize
|ψ〉? Virtually no computation is required. Merely list the combinations that are
possible from inspection of the wave function given.
4.8. The normalized energy eigenfunctions for the hydrogen atom in parabolic
coordinates are given by

ψn1n2m (ξ, η, φ) = exp (imφ)√
πn

√
n1!

√
n2!ε|m|+3/2

(n1 + m)3/2 (n2 + m)3/2

× exp [−ε (ξ + η)] (ξη)|m|/2 L |m|
n1+|m| (εξ ) L |m|

n2+|m| (εη)

where ε = √−2E and the Ls are associated Laguerre polynomials.
(a) Find the normalized hydrogen atom energy eigenfunctions in parabolic co-
ordinates for n = 2, n1 = 1, n2 = 0 = m in terms of the hydrogen atom energy
eigenfunctions in spherical coordinates.

(b)–(h) What are the probabilities of measuring the following?
(b) The energy of the ground state.
(c) The energy of the first excited state.
(d) Total angular momentum zero.
(e) Total angular momentum

√
2h̄.

(f) z-Component of angular momentum zero.
(g) z-Component of angular momentum h̄.
(h) Find the normalized ground state eigenfunction in parabolic coordinates in
terms of the spherical eigenfunctions. What is noteworthy about this eigenfunction
and why?
4.9. A hydrogen atom is in an eigenstate that is characterized by the parabolic
quantum numbers
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n1 = 1; n2 = 0 = m. The wave function in spherical coordinates in atomic units
is:

un1n2m = u100 = 1√
2π

(
1

2

)3/2 [−1 + 1
2r (1 + cos θ )

] · e−r/2

That is, you have been spared the trouble of writing the wave function in parabolic
coordinates and converting to spherical coordinates. Some selected spherical har-
monics and radial hydrogen atom wave functions are:

Y00 = 1√
4π

; Y10 =
√

3

4π
cos θ ; Y11 =

√
3

8π
sin θeiφ

R10 = 2e−r ; R20 = 1√
2

(
1 − 1

2r
)
e−r/2; R21 = 1

2
√

6
re−r/2

(a) If a measurement of the energy of the atom in this state is made what are the
possible values of the energy that could be measured? Give your answer in atomic
units. What probabilities are associated with each value?
(b) If a measurement of the total orbital angular momentum of the atom in this state
is made what are the possible values that could be measured? What probabilities
are associated with each possible angular momentum?
(c) If a measurement of the z-component of the angular momentum of the atom
in this state is made what are the possible values that could be measured? What
probabilities are associated with each possible z-component?
4.10. Show that the expectation value of the electric dipole moment of an atom
having N electrons in a state of well-defined parity vanishes. Use atomic units.
Suppose a hydrogen atom is in a spherical eigenstate. What is the dipole moment?
How about a parabolic eigenstate?
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5
The Classical Hydrogen Atom

5.1. Introduction

The accidental degeneracy of the hydrogen atom is the result of symmetries in-
herent in the Coulomb potential. These symmetries must manifest themselves in
a classical formulation of the problem, so we examine the hydrogen atom from a
classical point of view.

The Coulomb potential and the Newtonian gravitational potential are both pro-
portional to 1/r , so the classical description of the hydrogen atom is directly
comparable with the Kepler problem. From any classical mechanics book1 we
find the equation of the orbit in the Kepler problem with potential

V (r ) = −k

r
(5.1)

Because angular momentum is conserved for any central potential, the motion
is confined to a plane and we use plane polar coordinates r and φ. The equation of
the orbit of a particle under the influence of this potential is a conic section with
eccentricity ε and is given by

α

r
= 1 + ε cos φ (5.2)

The α that appears in this equation is not the fine-structure constant, but because
this designation is universal, we retain this symbol. It is, in fact, referred to as the
latus rectum and is given by

α = 2

µk
(5.3)

where  is the angular momentum and µ the reduced mass of the system. Although
 is the same symbol used for the (dimensionless) angular momentum quantum
number, it can, in this context, take on continuous values and, of course, it has
units of angular momentum. The orbital eccentricity ε is given by

ε =
√

1 + 2E2

µk2
(5.4)

92
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Figure 5.1. Notation and definitions of an elliptical orbit caused by Coulomb or gravita-
tional potential.

where E is the total energy of the system. The nature of the trajectory of the particle
of mass µ depends upon the value of ε in the following way.

ε = 1 ⇒ orbit is a parabola
ε > 1 ⇒ orbit is a hyperbola
ε < 1 ⇒ orbit is an ellipse

Clearly the only way the orbit can represent a bound state is if E < 0, thus making
ε less than unity and the orbit an ellipse. In contrast to parabolas and hyperbolas
an elliptical orbit is a closed orbit and is thus a bound state of the orbiting particle.

FIGURE 5.1 shows the quantities associated with the elliptical orbit caused by
an attractive 1/r potential. The sun (proton) is located at the focus P and the earth
(electron) executes the elliptical orbit; rmin and rmax are, respectively, the pericenter
and apocenter of the orbit.

Using the notation and definitions in FIGURE 5.1 we may find an expression for
a, the semi-major axis and b, the semi-minor axis. From the equation of the orbit,
Equation (5.2), it is clear that rmin and rmax occur when θ = π and 0, respectively.
Therefore,

rmin = α

1 + ε
and rmax = α

1 − ε
(5.5)

Moreover,

a = rmin + rmax

2
(5.6)

so

a = α

1 − ε2

= 2

µk
· 1[

1 −
(

1 + 2 |E | 2

µk2

)]

= k

2 |E | (5.7)
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Figure 5.2. Orbital parameters used to derive an expression for the semi-minor axis of the
elliptical orbit.

To find b, the semi-minor axis of the ellipse, we use the definition of an ellipse. That
is, an ellipse is the locus of all points, each of which has the sum of its distances
from the two points (the foci) equal to a constant. In view of this definition we
specify the parameters shown in FIGURE 5.2.

From FIGURE 5.2 it is clear that

b2 = a2 − (εa)2

= a2(1 − ε2) (5.8)

so that

b = α

(1 − ε2)

√
1 − ε2

= 2

µk
·
√

µk2

2 |E | 2

= √
2µ |E | (5.9)

Comparing the semi-major and semi-minor axes, Equations (5.7) and (5.9), we
see that a is independent of the angular momentum, but b depends upon .

Solving Equation (5.7) for E we find that

E = − k

2a
(5.10)

where we have removed the absolute value signs and inserted the minus sign
because the total energy must be negative for a bound orbit. Because a depends
on the energy and not on the angular momentum, a given value of the energy
uniquely determines the semi-major axis of the elliptical orbit. The energy is,
however, independent of b, the semi-minor axis that does depend on the angular
momentum as found in Equation (5.9). Evidently, for a given negative energy,
there are an infinite number of elliptical orbits, each corresponding to a different
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Table 5.1. Listing of classical parameters for an
elliptical orbit in atomic units.

Quantity Value

Energy −1/2n2

Semi-major axis a = n2

Semi-minor axis b = n

Orbital period τ = 2πa3/2 = 2πn3

Orbital frequency ωn = 1/n3

Orbital eccentricity ε =
√

1 − 2/n2

Pericenter (from focus) rmin = n2(1 − ε) = 2/(1 + ε)
Apocenter (from focus) rmax = n2(1 + ε) = 2/(1 − ε)

semi-minor axis (and thus angular momentum), but all having the same semi-major
axis. The energy is thus independent of the angular momentum.

The independence of the energy on the angular momentum is reminiscent of
the accidental degeneracy encountered in the quantum mechanical solution of
the hydrogen atom. Of course, this is not an accident. In fact, this is a classical
degeneracy. Obviously, the classical and quantum mechanical degeneracies are
related.

To clarify this connection, recall that the Bohr radius for principle quantum
number n is given by

rn = n2a0 (5.11)

where a0 is the first Bohr radius. For circular orbits the semi-major axis a is the
radius so we may relate a to rn . Substituting in the expression for the (classical)
energy, we have

E = − k

2a0n2
(5.12)

In atomic units k = 1 and a0 = 1, so the classical energy is identical with the
energy obtained by solving the Schrödinger equation. Classically, of course, n
is continuously variable. For reference, TABLE 5.1 contains some parameters in
atomic units for an electron in an elliptical orbit subject to a Coulomb potential.
Of course, the “quantum numbers” in the listing are continuously variable.

5.2. The Classical Degeneracy

What is the origin of the degeneracy? Degeneracies are associated with symmetries.
To investigate the origin of the degeneracy, we examine the nature of the orbits.
Symmetries are always associated with constants of the associated motion. For
example, let us inspect the geometric symmetry discussed above in more detail.
If the potential is central, that is, V (r ) = V (r ), then it is obvious that the problem
has spherical symmetry. Classically this symmetry manifests itself as conservation
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of angular momentum. We can see this by inspection of the Lagrangian �. For a
central potential the Lagrangian is

� =
(

1

2

)
µ
(

ṙ2 + r2φ̇
2
)

− V (r ) (5.13)

where r and φ are the usual spherical coordinates and the dots above them designate
differentiation with respect to time. The angular momentum  is pφ , the momentum
conjugate to the coordinate φ, and is given by

 = pφ

= ∂�

∂φ̇

= µr2φ̇ (5.14)

Lagrange’s equation is

∂�

∂φ
− d

dt

(
∂�

∂φ̇

)
= 0 (5.15)

Inspection of the Lagrangian shows that it is “cyclic” in φ; that is, it does not

contain φ. Therefore
∂�

∂φ
= 0 and

d

dt

(
∂�

∂φ̇

)
= 0 = dpφ

dt
⇒ pφ = constant (5.16)

Because pφ = ∂�

∂φ̇

pφ = µr2φ̇

=  (5.17)

and, indeed it is the angular momentum (in the classical sense) that is the conserved
quantity.

Note that this is just Kepler’s second law which, unlike Kepler’s first and third
laws, is valid for any central potential. The first and third laws are valid only for
an attractive 1/r potential. We see then that

spherical symmetry ⇒ conservation of  ⇒ motion in a plane

Because angular momentum is conserved classsically, the corresponding quantum
mechanical operator for angular momentum must commute with the Hamilto-
nian. Thus, the spatial symmetry that causes the classical angular momentum to
be conserved manifests itself quantum mechanically as [Ĥ , L̂] = 0. This spatial
symmetry is the root of the degeneracy in energy with respect to the quantum
number m. It is present for any central potential because the spherical coordinates
θ and φ do not appear, only r .

For hydrogen, however, there is the additional degeneracy, the accidental de-
generacy that causes the energy to be independent of the quantum number . It
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is natural to suspect that there is a symmetry other than that associated with the
central potential that is responsible for this degeneracy. Such a symmetry would
correspond classically to an additional constant of the motion. Quantum mechan-
ically there would be an additional operator that commutes with the Hamiltonian,
that is, commutes with Ĥ in addition to L̂2 and L̂ z . Indeed, there is an additional
constant of the motion. It is called the Lenz vector, a vector that, classically, points
along the semi-major axis of the Keplerian ellipse that is the electronic orbit. The
precise definition of this vector and, indeed, even its direction (toward or away
from the apside), differ with different authors.

5.3. Another Constant of the Motion—The Lenz Vector

Following Goldstein,1 the Lenz vector A is defined for a hydrogen atom as

A = 1

(e2/4πε0)me
· p × L − r̂ (5.18)

where e is the electronic charge, me is the electronic mass, p is the linear momen-
tum, L the angular momentum, and r̂ = r/r is a unit vector that points from the
force center (the focus at which the sun or proton lies) to the orbiting particle. The
use of the “hat” to signify a unit vector as well as a quantum mechanical operator
should cause no confusion.

The calculations are simplified if atomic units are used. In atomic units the
Coulomb potential is

V (r ) = −1

r
(5.19)

and the Lenz vector is2

A = p × L − r̂ (5.20)

Now, we wish to examine the time dependence of A so that we may determine
the circumstances under which it is conserved. Taking the total time derivative of
A, we have

Ȧ = ṗ × L − p × L̇ − d

dt
(r̂ ) (5.21)

but, for a central potential L̇ = 0 and we have

Ȧ = ṗ × L − d

dt
(r̂ ) (5.22)

Now, the force is given by Newton’s second law so

ṗ = −dV (r )

dr
r̂

= f (r )
r
r

(5.23)

where f (r ) is the the central force.
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The first term in the definition of the Lenz vector may thus be written

ṗ × L = f (r )

r
[r × (r × p)] (5.24)

But, L = r × p and in atomic units p = ṙ so

ṗ × L = f (r )

r
[r × (r × ṙ )]

= f (r )

r
[r (r � ṙ ) − ṙ (r � r )] (5.25)

and

r � ṙ = 1

2

d

dt
(r � r )

= 1

2

d

dt
r2

= ṙr (5.26)

Equation (5.25) becomes

ṗ × L = f (r )

r
[r (r � ṙ ) − ṙ (r � r )]

= f (r )

r

(
rrṙ − ṙr2

)
= f (r )r

(r
r

ṙ − ṙ
)

= f (r )r (r̂ ṙ − ṙ ) (5.27)

The last term in Equation (5.21) is ˙̂r which is

d

dt
r̂ = d

dt

(r
r

)

= ṙ
r

− 1

r2
ṙr

= −1

r
(ṙ r̂ − ṙ ) (5.28)

so the term (ṙ r̂ − ṙ ) in ṗ × L is simply −r
d

dt
r̂ and Equation (5.21) becomes

Ȧ = − f (r )r2 d

dt
(r̂ ) − d

dt
(r̂ )

= −[1 + r2 f (r )
] d

dt
(r̂ ) (5.29)
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Figure 5.3. Elliptical orbit showing the linear and angular momenta vectors.

or, in terms of the potential energy

Ȧ = −
[

1 − r2 dV (r )

dr

]
d

dt
(r̂ ) (5.30)

This is the general form of Ȧ for any central potential. The uniqueness of the
Coulomb potential lies in the fact that for it

Ȧ ≡ 0 (5.31)

This means that, for a Coulomb (or gravitational) potential, the vector A is a
constant of the motion. It is fixed in magnitude and direction so the Keplerian orbit
is fixed in space. Therefore, the elliptical orbit does not precess about the force
center in the orbital plane. The orbiting particle retraces its path on successive
orbits.

To find the direction in which the Lenz vector points, we note that the vector
p × L lies in the xy-plane because it is perpendicular to p which is tangential to
the orbit and perpendicular to L which, itself, is perpendicular to the plane of the
orbit. Because r̂ also lies in the xy-plane, A must lie in the same plane. We can
determine where it lies in the xy-plane using the diagram in FIGURE 5.3.

For convenience, the x-axis is taken to be along the major axis and the y-axis
along the minor axis. Therefore, the angular momentum is in the z-direction. We
may compute the components of A from

A = p × L − r̂

=

∣∣∣∣∣∣∣
î ĵ k̂
px py pz

0 0 L

∣∣∣∣∣∣∣−
1

r

(
x î + y ĵ

)
(5.32)

where î, ĵ, k̂ are the unit vectors in the x , y, and z directions, respectively. We
obtain

Ax = py L − x

r
and Ay = −px L − y

r
(5.33)
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Figure 5.4. Precession of the nearly elliptical orbit that is caused by the small non-
Coulombic term in the potential.

and, of course, Az = 0. When the orbiting particle crosses the x-axis y = 0
and px = 0 so Ay = 0. Because Ȧ ≡ 0 for all time, we must have A ≡ Ax î .
Therefore, A remains along the major axis and points toward the pericenter (see
problem 5.4).

Suppose the potential energy is nearly a Coulomb potential, but contains a small
non-Coulombic, but central, term which we write as

V (r ) = −1

r
+ �(r ) (5.34)

where �(r ) is the non-Coulombic term. From Equation (5.30), the time derivative
of the Lenz vector is

Ȧ = −r2 d�(r )

dr
· d

dt
(r̂ ) (5.35)

so that, if �(r ) �= 0, the Lenz vector conservation extant for the Kepler potential
is destroyed.

If �(r ) is small compared with the Coulomb term then the trajectory is a nearly
Keplerian ellipse that revolves about the force center as shown in FIGURE 5.4. The
Lenz vector A (which points along the major axis) then precesses about the force
center.

By employing the properties of the Lenz vector, the equation of the orbit for a
pure Coulomb potential may be easily derived. Moreover, we can show that the
magnitude of the Lenz vector is the eccentricity of the orbit ε (in atomic units).
Taking the dot product of A with r we have

A � r = p × L � r − r̂ � r (5.36)
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Now, for a cross product dotted into another vector we may cyclically permute
the vectors so that

A � r = (r × p) � L − r (5.37)

Because (r × p) = L, we have

Ar cos φ = L2 − r (5.38)

Recalling that |L| =  we have

2

r
= 1 + A cos φ (5.39)

which is the equation of the Keplerian orbit provided A = ε, the eccentricity.
We have thus derived the equation of the orbit in a very simple way using the
Lenz vector. More importantly, however, we have shown that the magnitude
of the Lenz vector is the eccentricity of the conic section that is the classical
orbit.

From the standpoint of atomic physics, the significance of the Lenz vector lies
in the fact that Ȧ = 0; that is, A is a constant of the motion. Classically then, there
are three constants of the motion:

1. Energy, E
2. Angular momentum, L
3. Lenz vector, A

Quantum mechanically, we expect that
[
Â, Ĥ

] = 0, but we know that we can-
not simultaneously specify three components of a vector. When we solve the
Schrödinger equation in spherical coordinates we use the operators corresponding
to E (the Hamiltonian Ĥ ), L̂2, and L̂ z because L̂2 and only one component of L̂
commutes with Ĥ . We choose L̂ z as the commuting component. For the hydrogen
atom, however, we are at liberty to choose a different set of commuting operators
to solve the problem. If we choose Ĥ , L̂ z , and Âz it turns out that we are using
parabolic coordinates.3,4 Thus, the quantum numbers n and m are associated with
Ĥ and L̂ z , respectively. This leaves two quantum numbers n1 and n2 to correspond
to the operator Âz . Although it seems as if there is an “extra” quantum number,
four rather than three obtained in spherical coordinates, the relationship between
the quantum numbers

n = n1 + n2 + |m| + 1 (5.40)

establishes a relationship between n1 and n2 if n and m are fixed.
Aside from its role as a classical vector pointing along the semi-major axis, the

z-component of the Lenz vector has physical significance. It is proportional to the
permanent electric dipole moment of an electron in a Keplerian orbit. As was seen in
Chapter 4, hydrogen is unique among atoms in that it can have a permanent electric
dipole moment, a property that is not immediately obvious from the symmetry of
the charge distributions for the spherical coordinate eigenfunctions. On the other
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Figure 5.5. An elliptical orbit illustrating Kepler’s second law of equal areas and how the
orbiting particle must be moving more slowly at apocenter than at pericenter.

hand, the asymmetry of the charge distributions for parabolic eigenfunctions, as
exemplified in Figure 4.5, makes it clear that hydrogen atoms can indeed have
permanent electric dipole moments. The ground state is an exception because it is
nondegenerate so that the spherical ground state eigenfunction and the parabolic
ground state eigenfunction are identical.

The correspondence of the classical Lenz vector A with the quantum mechanical
operator Â makes the permanent electric dipole moment reasonable because A
lies along the major axis. From Kepler’s second law, the law of equal areas, the
electron in the classical hydrogen atom is moving more slowly at apocenter than
at pericenter as shown in FIGURE 5.5. Thus, averaged over a period, there is a
net buildup of negative charge at the apocenter that produces a permanent electric
dipole moment. By symmetry, it is along the major axis. Clearly it is in the direction
of the pericenter.

The relation between the Lenz vector and the electric dipole moment can be
deduced by noting that in atomic units the electric dipole moment for an electron
in a Keplerian orbit is simply given by the average value of r over a single orbit.
Thus, the dipole moment p is given by

〈p〉 = 〈r cos φ〉
(

A
A

)
(5.41)

and its magnitude is the average over a period of r cos φ; that is,

〈p〉 = 1

τ

∫ τ

0
r cos φdt (5.42)

Using the equation of the orbit and conservation of angular momentum it can
be shown (see Problem 5.3) that 〈p〉 = (3/2) n2 A. We expect then that quantum
mechanically the z-component of the electric dipole moment is given by

p̂z = 3

2
n2 Âz (5.43)

These operators are useful later when we treat the quantum mechanical Stark effect,
the effect of a constant electric field on a hydrogen atom.
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Problems

5.1. Using SI units, find the period Tn of an electron in a hydrogen Bohr orbit of
principal quantum number n. Show that this period is consistent with Kepler’s third
law. Show that it is the same as Tc, the period deduced from the correspondence
principal. Hint: Eliminate the h--s so the constants match. Show that the result
reduces to T = 2πn3 in atomic units.
5.2. The (classical) Lenz vector (in a.u.) is

A = p × L − r̂

where r̂ is the unit vector in the r direction. For a general central potential find a
general expression for the time derivative of A, that is, Ȧ, and show that A is a
constant of the motion for a Coulomb potential.
5.3. (a) Derive the equation of a Keplerian ellipse in terms of the Lenz vector A
and show that the eccentricity is ε = |A|.
(b) Show that

ε =
√

1 − 2

n

Note that neither  nor n are “quantum numbers” because, classically, they are
continuously variable.  is the classical angular momentum and n is a measure of
the energy. Recall that, in atomic units E = −1/

(
2n2

)
.

(c) By averaging over a period show that the electric dipole moment of a Keplerian
hydrogen atom is

|〈p〉| = 3

2
n2
√

1 − 2/n2

(d) For what value of the  is |〈p〉| = 0? What is special about these orbits?
(e) Find the positions (or position) of the maxima (or maximum) in the radial
probability density for hydrogen atoms having  = n − 1, the maximum angular
momentum. What is special about these states? It may be helpful to recall that

Rn (r ) ∝ exp
(
− r

n

)
·
(

2r

n

)
· L2+1

n+

(
2r

n

)

in atomic units and that

Lq
p (ρ) = d p

dρ p
Lq (ρ)

5.4. This problem should show you why the conservation of the (classical) Lenz
vector A implies closed orbits for the Kepler problem. Use A in a.u. so that A =
p × L − r̂ .
(a) Express A in terms of r and p alone; that is, eliminate L (no cross products).
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(b) Show that

A = rmax

(
2E + 1

rmax

)
= rmin

(
2E + 1

rmin

)
where rmax and rmin are the maximum and minimum values of r , that is, apocenter
and pericenter.
(c) Show that A is parallel to rmin and antiparallel to rmax.
(d) From the answer to (c) it is clear that for a circular orbit A = 0. Prove this
mathematically from the equations that you derived in (b).
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6
The Lenz Vector and the
Accidental Degeneracy

6.1. The Lenz Vector in Quantum Mechanics

To use the Lenz vector in quantum mechanics, an operator corresponding to this
observable must be constructed. If it is constructed by simply taking the operator
equivalent of the classical definition of the Lenz vector

A = p × L − r̂ (6.1)

it is found that such an operator is not Hermitian. Pauli1 recognized that to convert
A into Â, the classical definition must be modified to make the quantum mechanical
operator Hermitian. Because it is to correspond to a classical constant of the motion,
this operator must also commute with the Hamiltonian. Pauli deduced that the
classical definition must be properly symmetrized. The correct form is

Â =
(

1

2

) (
p̂ × L̂ − L̂ × p̂

)− r̂ (6.2)

where now

r̂ = x

r
î + y

r
ĵ + z

r
k̂

may be regarded as both a unit vector and a quantum mechanical operator. Because
they are operators, p̂ × L̂ �= −L̂ × p̂.

The proof that this operator is Hermitian need be done on only a single compo-
nent of Â. The x-component is

Âx = 1

2
{( p̂y L̂ z − p̂z L̂ y) − (L̂ y p̂z − L̂ z p̂y)} − x

r
(6.3)

and its Hermitian conjugate is

Â†
x = 1

2
{( p̂y L̂ z − p̂z L̂ y) − (L̂ y p̂z − L̂ z p̂y)}† −

( x

r

)†
= 1

2

{
( p̂y L̂ z)

† − ( p̂z L̂ y)† − (L̂ y p̂z)
† + (L̂ z p̂y)†

}−
( x

r

)†
= 1

2

{
L̂†

z p̂†
y − L̂†

y p̂†
z − p̂†

z L̂†
y + p̂†

y L̂†
z

}−
( x

r

)†
(6.4)

105
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Table 6.1. Some useful relations in
atomic units.

1. [L̂i , p̂ j ] = i p̂kεijk

2. [ p̂i , L̂ j ] = i p̂kεijk

3. [L̂i , r̂ j ] = i r̂kεijk

4. [r̂i , L̂ j ] = i r̂kεijk

5.

[
p̂i ,

1

r

]
= i

ri

r3

6.
[ ri

r
, p̂i

]
= i

(
1

r
− r2

i

r3

)

7. [L̂i , L̂ j ] = i L̂kεijk

8. [L̂i , Â j ] = i Âkεijk

9. [ Âi , Â j ] = −2i L̂k Ĥεijk

10. Â2 = 2(L̂2 + 1)Ĥ + 1

11. Âz = − 1
2 (L̂− Â+ + Â− L̂+) − Âz L̂ z

12. Â � L̂ = 0 = L̂ � Â

But, all of the operators on the right-hand side are Hermitian operators so we
have

Â†
x = 1

2
{( p̂y L̂ z − p̂z L̂ y) − (L̂ y p̂z − L̂ z p̂y)} − x

r
= Âx (6.5)

Pauli’s properly symmetrized Lenz vector operator does indeed commute with the
Hamiltonian. Because of the importance of this relationship we show that [Â, Ĥ ] =
0 in some detail. It is sufficient to show that one component of Â commutes with
the Hamiltonian. In this calculation as well as others we make use of a number of
commutator (and other) relations involving the quantum mechanical Lenz vector
operator. Some of these relations are given as problems at the end of this chapter.
TABLE 6.1 contains some relations that are useful in this chapter. Note that some
of these are special cases of the more general commutator relations for vector
operators discussed in Chapter 2.

Note that relation 8 in TABLE 6.1 assures us that Â is a vector operator.
To prove that [Â, H ] = 0 it is convenient to use a slightly different form of Â.

It can be shown (see Problem 2) that

Â =
(

1

2

)
( p̂ × L̂ − L̂ × p̂) − r̂

= p̂ × L̂ − i p̂ − r̂ (6.6)

We choose to work with the x-component for which

[ Âx , Ĥ ] = [( p̂ × L̂)x , H ] − i[ p̂x , H ] −
[ x

r
, H

]
(6.7)
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We now evaluate each of the three terms individually. The first term is

[( p̂ × L̂)x , Ĥ ] = [( p̂y L̂ z − p̂z L̂ y), Ĥ ]

= [ p̂y L̂ z, Ĥ ] − [ p̂z L̂ y, Ĥ ]

= [ p̂y, Ĥ ]L̂ z + p̂y[L̂ z, Ĥ ] − [ p̂z, Ĥ ]L̂ y − p̂z[L̂ y, Ĥ ]

= [ p̂y, Ĥ ]L̂ z − [ p̂z, Ĥ ]L̂ y (6.8)

where we have used the fact that the individual components of the angular mo-
mentum operator commute with the Hamiltonian for a central potential. For the
hydrogen atom

Ĥ = 1

2

(
p̂2

x + p̂2
y + p̂2

z

)− 1

r
(6.9)

so

[( p̂ × L̂)x , Ĥ ] = [ p̂y, Ĥ ]L̂ z − [ p̂z, Ĥ ]L̂ y

=
[

p̂y,
−1

r

]
L̂ z −

[
p̂z,

−1

r

]
L̂ y

= −i
y

r3
L̂ z + i

z

r3
L̂ y

= −i
y

r3
(x p̂y − y p̂x ) + i

z

r3
(z p̂x − x p̂z)

= −i
xy

r3
p̂y + i

y2

r3
p̂x + i

z2

r3
p̂x − i

xz

r3
p̂z (6.10)

Adding and subtracting i
x2

r3
p̂x we have

[( p̂ × L̂)x , Ĥ ] = −i
xy

r3
p̂y − i

xz

r3
p̂z − i

x2

r3
p̂x + i

(
y2

r3
p̂x + z2

r3
p̂x + x2

r3
p̂x

)

= −i
xy

r3
p̂y − i

xz

r3
p̂z − i

x2

r3
p̂x + i

r
p̂x (6.11)

The second term in the equation for � Âx , Ĥ� is relatively simple. It is

i[ p̂x , Ĥ ] = i

[
p̂x ,

−1

r

]

= −i
(

i
x

r3

)
= x

r3
(6.12)

The third term is somewhat more complicated. It is[ x

r
, Ĥ

]
=
[

x

r
,

(
1

2

)(
p̂2

x + p̂2
y + p̂2

z

)]

=
(

1

2

){[ x

r
, p̂2

x

]
+
[ x

r
, p̂2

y

]
+
[ x

r
, p̂2

z

]}
(6.13)
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Now we must evaluate
[ x

r
, p̂2

x

]
and

[ x

r
, p̂2

y

]
;
[ x

r
, p̂2

z

]
can be inferred from[ x

r
, p̂2

y

]
. To evaluate these commutators we must operate on a function f =

f (x, y, z). [ x

r
, p̂2

x

]
f = x

r
p̂2

x f − p̂2
x

( x

r
· f
)

= x

r
p̂2

x f − p̂x

(
−i

∂

∂x

)( x

r
· f
)

= x

r
p̂2

x f + i p̂x

[
x

r

∂ f

∂x
+
(

1

r
− x2

r3

)
f

]

= x

r
p̂2

x f + ∂

∂x

[
x

r

∂ f

∂x
+
(

1

r
− x2

r3

)
f

]

= 2 ·
(

1

r
− x2

r3

)
∂ f

∂x
+
(

3x3

r5
− 3x

r3

)
f

= 2 ·
(

1

r
− x2

r3

)
(i p̂x ) f +

(
3x3

r5
− 3x

r3

)
f (6.14)

where use has been made of the relationship p̂i → −i
∂

∂ri
so that p̂2

i → − ∂2

∂r2
i

.

Thus, the commutator
[ x

r
, p̂2

x

]
is

[ x

r
, p̂2

x

]
= 2 ·

(
1

r
− x2

r3

)
(i p̂x ) +

(
3x3

r5
− 3x

r3

)
(6.15)

We also require
[ x

r
, p̂2

y

]
which is evaluated as follows.[ x

r
, p̂2

y

]
f = x

r
p̂2

y f − p̂2
y

( x

r
· f
)

= x

r
p̂2

y f − x p̂y

[(
−i

∂

∂y

)(
1

r
· f

)]

= x

r
p̂2

y f + ix p̂y

[
1

r

∂ f

∂y
+
( y

r3

)
· f

]

= x

r
p̂2

y f + i x

(
−i

∂

∂y

)[
1

r

∂ f

∂y
+
( y

r3

)
· f

]

= −2
xy

r3
· ∂ f

∂y
+
(

3
xy2

r5
− x

r3

)
· f

=
[
−2

xy

r3
· (i p̂y) +

(
3

xy2

r5
− x

r3

)]
· f (6.16)

so that [ x

r
, p̂2

y

]
=
[
−2

xy

r3
· (i p̂y) +

(
3

xy2

r5
− x

r3

)]
(6.17)
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with the companion expression
[ x

r
, p̂2

z

]
obtained by replacing y with z. Finally,

the third term in the equation for � Âx , Ĥ� becomes[ x

r
, Ĥ

]
=
[

x

r
,

(
1

2

)(
p̂2

x + p̂2
y + p̂2

z

)]

=
(

1

2

){[ x

r
, p̂2

x

]
+
[ x

r
, p̂2

y

]
+
[ x

r
, p̂2

z

]}

=
(

1

2

)[
2 ·
(

1

r
− x2

r3

)
(i p̂x ) +

(
3x3

r5
− 3x

r3

)]

+
[
−2

xy

r3
· (i p̂y) +

(
3

xy2

r5
− x

r3

)]

+
[
−2

xz

r3
· (i p̂z) +

(
3

xz2

r5
− x

r3

)]

= 2i

(
1

r
p̂x − x2

r3
p̂x − xy

r3
p̂y − xz

r3
p̂z + i

x

r3

)
(6.18)

Combining Equations (6.10), (6.12), and (6.18) we have

[ Âx , Ĥ ] = [( p̂ × L̂)x , H ] − i[ p̂x , H ] −
[ x

r
, H

]

= −i
xy

r3
p̂y − i

x2

r3
p̂x − i

xz

r3
p̂z + i

r
p̂x − x

r3

−
(

1

2

)
2i

(
1

r
p̂x − x2

r3
p̂x − xy

r3
p̂y − xz

r3
p̂z + i

x

r3

)
= 0 (6.19)

This validates Pauli’s form of the quantum mechanical operator corresponding to
the Lenz vector. It is not only Hermitian, but it also commutes with the hydrogen
atom Hamiltonian. It is shown below that using this operator together with angular
momentum and the Hamiltonian, the hydrogenic energy En = −1/2n2 can be
obtained without recourse to a coordinate system.

6.2. Lenz Vector Ladder Operators; Conversion
of a Spherical Eigenfunction into Another
Spherical Eigenfunction

The fact that the orbital angular momentum raising and lowering operators oper-
ating on one of the |nm〉 eigenfunctions for any central potential changes only
the value of the m quantum number and neither  nor n, is a manifestation of
the degeneracy associated with the central nature of the potential. Recall that the
angular parts of the spherical coordinate eigenfunctions for any central potential
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are the spherical harmonics, so this degeneracy is not restricted to the hydrogen
atom. It exists for any central potential. We expect, therefore, that for the hydrogen
atom with its additional degeneracy in  there should be a similar operator that
reflects this additional degeneracy. Furthermore, because the classical constancy
of the Lenz vector (and the fact that [Â, Ĥ ] = 0) is the source of the “super”
symmetry that leads to the additional degeneracy, we suspect that ladder operators
involving the Lenz vector will change  and possibly m, but leave n intact. We
now develop the formalism that leads to these operators.

The commutator [Ĥ , Â] = 0 so that the quantum mechanical operator Â, like
its classical counterpart A, is a constant of the motion. But [ Âi , Â j ] �= 0. Â is
therefore similar to, but not quite, an angular momentum. One component, usually
Âz , is chosen to be a mutually commuting operator with Ĥ and L̂ z , not L̂2. In this
case the “extra symmetry” permits the Schrödinger equation to be separated in
parabolic coordinates as well as spherical coordinates.

We form the operators

Â± = ( Âx ± i Ây) (6.20)

Using the designation |nm〉 for spherical hydrogen atom eigenfunctions we show
that application of Â+ raises certain spherical hydrogen atom eigenfunctions as
follows.

Â+
∣∣n〉 = D+



∣∣n, ( + 1), ( + 1)〉 (6.21)

where D±
 are constants analogous to the C±

jm of Chapter 2. We also show that

Âz

∣∣∣n〉 = −1√
2( + 1)

D+


∣∣∣n, ( + 1), 〉 (6.22)

Therefore, given |n00〉 we can generate the entire set of |nm〉 by judicious appli-
cation of Â+, Âz , and L̂±. Surprisingly, the operator Â−, although lowering the
value of m for |n(−)〉, raises the value of .

First we must show that { Â+|nm〉} is an eigenfunction of L̂ z and L̂2 with
eigenvalues (m + 1) and ( + 1)( + 2), respectively. Operating on { Â+|nm〉}
with L̂ z gives

L̂ z{ Â+|nm〉} = (L̂ z Âx + i L̂ z Ây)|nm〉 (6.23)

But

[L̂ z, Âx ] = i Ây ⇒ L̂ z Âx = Âx L̂ z + i Ây

[L̂ z, Ây] = −i Âx ⇒ L̂ z Ây = Ây L̂ z − i Âx (6.24)

so

L̂ z{ Â+|nm〉} = ( Âx L̂ z + i Ây + i Ây L̂ z + Âx )|nm〉
= { Âx (L̂ z + 1) + i Ây(L̂ z + 1)}|nm〉
= (m + 1){ Â+|nm〉} (6.25)
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Therefore, { Â+|nm〉} is an eigenfunction of L̂ z with eigenvalue (m + 1).
We now show that { Â+|n〉} is an eigenfunction of L̂2 with eigenvalue

( + 1)( + 2).

L̂2{ Â+|nm〉} = L̂2( Âx + i Ây)|nm〉 (6.26)

The commutators �L̂2, Âx� and �L̂2, Ây� must be evaluated. They can easily be
shown to be

[L̂2, Âx ] = −i Âz L̂ y − i L̂ y Âz + i Ây L̂ z + i L̂ z Ây

[L̂2, Ây] = i Âz L̂ x + i L̂ x Âz − i Âx L̂ z − i L̂ z Âx (6.27)

so that

[L̂2, Â+] = − Âz L̂+ − L̂+ Âz + Â+ L̂ z + L̂ z Â+ (6.28)

Applying

[L̂ z, Â+] = Â+ (6.29)

and

[L̂+, Âz] = − Â+ (6.30)

we find that

[L̂2, Â+] = −2 Âz L̂+ + 2 Â+ + 2 Â+ L̂ z (6.31)

so that

L̂2{ Â+|nm〉} = ( Â+ L̂2 − 2 Âz L̂+ + 2 Â+ + 2 Â+ L̂ z)|nm〉
= ( + 1){ Â+|nm〉}

− 2 Âz

√
( + 1) − m(m + 1)|n (m + 1)〉

+ (2 Â+ + 2 Â+m)|nm〉 (6.32)

This does not appear to be helpful because the |nm〉 are not eigenfunctions of Âz .
If, however, m =  then the Âz term vanishes and we have

L̂2{ Â+|n〉} = (( + 1) + 2 + 2){ Â+|n〉}
= ( + 1)( + 2){ Â+|n〉} (6.33)

Therefore, if m =  then { Â+|n〉} is an eigenfunction of L̂2 with eigenvalue
( + 1)( + 2).

To obtain a complete expression for the action of Â+ on a spherical eigenfunction
|n〉 it is necessary to evaluate the constant D+

. We begin by following a procedure
similar to that used to evaluate the C±

jm in Chapter 2, the constants that result from

the action of L̂± on any spherical eigenfunction for a central potential. We examine
the quantity

〈n| Â− Â+|n〉 = (D+
)∗ D+

 (6.34)
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where the (D+
)∗ results from operation to the left with Â− and the fact that the

Hermitian conjugate of Â− is Â+. As we did for the C±
jm , for convenience we

specify that D+
 is real. Expanding the operator Â− Â+ we have

Â− Â+ = Â2 − Â2
z + 2L̂ z Ĥ

= (2L̂2 Ĥ + 2Ĥ + 1) − Â2
z + 2L̂ z Ĥ (6.35)

where we have used relation number 10 of TABLE 6.1. The |nm〉 are eigenfunc-
tions of all operators on the right-hand side except Âz . Using

L̂2|n〉 = ( + 1)|n〉
L̂ z|n〉 = |n〉
Ĥ |n〉 =

(
− 1

2n2

)
|n〉 (6.36)

we obtain (
D+



)2 = 2( + 1)

(−1

2n2

)
+ 2

(−1

2n2

)
+ n2

n2

− 2

(−1

2n2

)
− 〈

n
∣∣ Â2

z

∣∣n
〉

=
{

n2 − ( + 1)2

n2

}
− 〈

n
∣∣ Â2

z

∣∣n
〉

(6.37)

It is at this point that the derivation of D+
 becomes slightly more difficult than

the analogous derivation for the C±
jm because the |nm〉 are not eigenfunctions of

Âz . Thus, evaluation of the matrix element 〈n| Â2
z |n〉 is not straightforward.

To evaluate the matrix element 〈n| Â2
z |n〉 we operate on |n〉 with Âz and

use a relation number 11 from TABLE 6.1. We obtain

Âz|n〉 = −
[

1

2
L̂− Â+ − 1

2
Â− L̂+ + Âz L̂ z

]
|n〉

= −1

2
D+



√
2( + 1)|n( + 1) 〉 −  Âz|n〉, (6.38)

Solving for Âz|n〉 we have

Âz|n〉 = − 1√
2( + 1)

D+
|n, ( + 1), 〉 (6.39)

Clearly, Âz acting on |n〉 transforms it into another eigenfunction. In particular,
it transforms it into |n, ( + 1), 〉. In fact, Âz operating on |n〉 is itself a raising
operator for , but not for m.

Because we now have an expression for Âz|n〉 in terms of D+
 we may evaluate

the matrix element
〈
n

∣∣ Â2
z

∣∣n
〉

in terms of
(
D+



)2
. It is

〈n| Â2
z |n〉 = 1

2( + 1)

(
D+



)2
(6.40)
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Inserting Equation (6.40) in Equation (6.37) and solving for D+
 we have

D+
 = −1

n

√
2 ( + 1)

(2 + 3)
[n2 − ( + 1)2] (6.41)

The final result for Â+ is

Â+|n〉 = −1

n

√
2( + 1)

(2 + 3)
[n2 − ( + 1)2]|n, ( + 1), ( + 1)〉 (6.42)

and for Âz

Âz|n〉 = 1

n

√
[n2 − ( + 1)2]

(2 + 3)
|n( + 1)〉 (6.43)

The action of Â− is similar to that of Â+ with one variation; although application
to |n; ; −〉 lowers the L̂ z quantum number −, to −( + 1), it raises the angular
momentum quantum number to ( + 1) as did Â+. Following the same method
employed for { Â+|nm〉} it is found that { Â−|nm〉} is an eigenfunction of L̂ z with
eigenvalue (m − 1). We find, however, that L̂2{ Â−|nm〉} is

L̂2{ Â−|nm〉} = {( + 1) − 2(m − 1)}{ Â−|nm〉}
+ 2 Âz

√
( + m)( − m + 1)|n, , (m − 1)〉 (6.44)

so that { Â−|nm〉} is an eigenfunction of L̂2 with eigenvalue ( + 1)( + 2) only
if m = − because m =  + 1 is not permitted. Thus

Â−|n, , (−)〉 = D−
−|n, ( + 1), −( + 1)〉 (6.45)

Now, D−
− can be evaluated in the way that D+

 was evaluated. We obtain

D−
− = 1

n

√
2( + 1)

(2 + 3)
[n2 − ( + 1)2] (6.46)

The sign of D−
− was chosen to be consistent with convention. Thus, using a

combination of Â±, Âz , and L̂±, the complete set of spherical eigenfunctions
for a given value of n can be generated provided |n00〉 is known. More important,
however, is the fact that the Â± operating on certain hydrogen atom eigenfunctions
transform them into others without changing the value of n. This means that the
eigenfunctions are transformed into eigenfunctions having different values of 

without changing the energy, a result of the accidental degeneracy of the hydrogen
atom.
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6.3. Application of Lenz Vector Ladder Operators
to a General Spherical Eigenfunction

We have exploited the properties of the Lenz vector operators to produce state-to-
state conversions of spherical eigenfunctions. That is, we have obtained the condi-
tions under which one eigenfunction is transformed into another eigenfunction as
was done in Chapter 2 for generalized angular momentum ladder operators. These
state-to-state conversions are, however, possible only for special initial eigenfunc-
tions, in particular |n (±)〉. Application of the Lenz vector operators to a general
spherical eigenfunction |nm〉 produces a linear combination of spherical eigen-
functions. Using the results from Section 7.2 for the special case we can find the
effects of application of Â± and Âz to a general spherical eigenfunction.

We begin by determining the effect of operating on |nm〉 with Âz . For this task
it is convenient to recall that the spherical eigenfunctions of the hydrogen atom
are

ψnm(r, θ, φ) = Ym(θ, φ)Rn(r ) (6.47)

Therefore, the inner product 〈n′′m ′| Âz|nm〉 may be written as

〈n′′m ′| Âz|nm〉 =
∫
all

space

ψ∗
n′′m′ (r, θ, φ)|A| cos θψnm(r, θ, φ)r2drd�

=
∫ ∞

0
R∗

n′′ (r )|A|Rn(r )r2dr
∫
�

Y ∗
′m ′ (θ, φ) cos θYm(θ, φ) d�

= 〈n′′‖Â‖n〉
∫
�

Y ∗
′m ′ (θ, φ) cos θYm(θ, φ) d� (6.48)

where we have defined

〈n′′‖Â‖n〉 =
∫ ∞

0
R∗

n′′ (r )|A|Rn(r )r2dr (6.49)

as the “radial matrix element” because it does not depend on m. It should be noted
that this radial matrix element is similar to the “reduced matrix element” used in
the formulation of the Wigner–Eckart theorem, but differs in numerical factors
that depend on .

A well-known relation between spherical harmonics, Equation (2.116), is

cos θYm(θ, φ) =
√

( + m + 1)( − m + 1)

(2 + 1)(2 + 3)
Y(+1) m(θ, φ)

+
√

( + m)( − m)

(2 + 1)(2 − 1)
Y(−1) m(θ, φ) (6.50)
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so, using the orthogonality relation for spherical harmonics, the angular integral
in Equation (6.48) becomes∫

�

Y ∗
′m ′ (θ, φ) cos θYm(θ, φ)d� =

√
( + m + 1)( − m + 1)

(2 + 1)(2 + 3)
δm ′ mδ′ (+1)

+
√

( + m)( − m)

(2 + 1)(2 − 1)
δm ′ mδ′ (−1) (6.51)

from which we deduce that the action of Âz on |nm〉 is

Âz|nm〉 = 〈n ( + 1)‖Â‖n 〉
√

( + m + 1)( − m + 1)

(2 + 1)(2 + 3)
|n, ( + 1), m〉

+ 〈n ( − 1)‖Â‖n 〉
√

( + m)( − m)

(2 + 1)(2 − 1)
|n, ( − 1), m〉 (6.52)

Because the radial matrix element is independent of m we may obtain it by using
the result for the |n〉. From Equation (6.52) the matrix element for m =  is

〈n′′m ′| Âz|n〉 = 〈n′′‖Â‖n〉
√

(2 + 1)(1)

(2 + 1)(2 + 3)
δm ′δ′,+1δn′n

= 〈n′′‖Â‖n〉
√

1

(2 + 3)
δm ′δ′,+1δn′n (6.53)

Therefore, this matrix element is nonzero only if ′ =  + 1, n′ = n, and m ′ = .
We have then

〈n ( + 1) | Âz|n〉 = 〈n( + 1)‖Â‖n〉
√

1

(2 + 3)
(6.54)

From Equation (6.43) we know that

Âz|n〉 = 1

n

√[
n2 − ( + 1)2

]
(2 + 3)

|n, ( + 1), 〉 (6.55)

from which the inner product 〈n ( + 1) | Âz|n〉 is

〈n ( + 1) | Âz|n〉 = 1

n

√[
n2 − ( + 1)2

]
(2 + 3)

(6.56)

Equating the two expressions for 〈n ( + 1) | Âz|n〉, Equations (6.54) and (6.56),
we obtain the radial matrix element

〈n( + 1)‖Â‖n〉 = 1

n

√[
n2 − ( + 1)2

]
=
√

1 − ( + 1)2/n2 (6.57)



116 6. The Lenz Vector and the Accidental Degeneracy

The radial matrix element 〈n( − 1)‖Â‖n〉 may be obtained from Equation (6.57)
by letting  →  − 1

〈n( − 1)‖Â‖n〉 = 1

n

√
n2 − 2

=
√

1 − 2/n2 (6.58)

Inserting Equations (6.57) and (6.58) into Equation (6.52) we arrive at the final
result

Âz|nm〉 = 1

n

√
( − m + 1)( + m + 1)

[
n2 − ( + 1)2

]
(2 + 1)(2 + 3)

|n ( + 1) m〉

+ 1

n

√
( − m)( + m)(n2 − 2)

(2 − 1)(2 + 1)
|n ( − 1) m〉 (6.59)

Because it was found (in Chapter 5) that the magnitude of the classical Lenz
vector is equal to the eccentricity of the Keplerian orbit it is interesting to compare
the radial matrix elements of the magnitude of

∣∣Â∣∣, Equations (6.57) and (6.58),

with the expression for the eccentricity in atomic units ε =
√

1 − 2/n2. This is a
further example of correlations that exist between classical and quantal quantities
for the Kepler/Coulomb problem.

To determine the actions of Â± on |nm〉 we use the fact that Â is a vector
operator and employ the last of the commutation relations in Table 2.2,

[
Âz, L̂±

] =
± Â±. Because we know the action of Âz on |nm〉, Equation (6.59), and the action
of the L̂± on |nm〉, Equations (2.61) and (2.62), it is simply a matter of applying
these operators to |nm〉 in the correct order (Problem 6.5). We obtain

Â±|nm〉 = ∓1

n

√[
n2 − ( + 1)2

]
( ± m + 1)( ± m + 2)

(2 + 1)(2 + 3)
|n( + 1)(m ± 1)〉

± 1

n

√[
n2 − 2

]
( ∓ m)( ∓ m − 1)

(2 − 1)(2 + 1)
|n( − 1)(m ± 1)〉 (6.60)

These general results for application of the Â± and Âz to spherical hydrogen atom
eigenfunctions can also be obtained using angular momentum algebra and the
Wigner–Eckart theorem.2 In this book we choose to use the formalism developed
here for that purpose and avoid the use of the Wigner–Eckart theorem.

6.4. A New Set of Angular Momentum Operators

Although the Lenz vector operator is not an angular momentum, it is possible
to construct angular momentum operators by scaling it and forming linear com-
binations of this scaled Lenz vector with the orbital angular momentum. Using
these operators, the energy eigenvalues for the hydrogen atom can be obtained
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without solving the Schrödinger equation. It is, of course, necessary to solve the
Schrödinger equation to obtain the wave functions, but they depend upon the par-
ticular coordinate system chosen.

We begin by defining a new operator Â′

√
−2Ĥ Â′ = Â (6.61)

If this operator is to operate only on eigenfunctions of the hydrogen atom Â
′
may

be written

Â′ =
√

−1

2E
Â (6.62)

where E is the energy eigenvalue (a negative number for bound states). We assume
that E is, at this point, unknown. In fact, we do not even assume that it is quantized
so we omit, temporarily, any subscripts (such as the quantum number n).

In terms of Â′ the commutators become (in a.u.)[
L̂ i , Â′

j

] = i Â′
k[

Â′
i , Â′

j

] = i L̂k (6.63)

Now define two new operators Î and K̂ as follows.

Î =
(

1

2

)(
L̂ + Â

′)

K̂ =
(

1

2

)(
L̂ − Â

′)
(6.64)

Using the commutation relations of Equation (6.63) we find that[
Î, K̂

] = 0[
Îi , Î j

] = iεijk Îk[
K̂i , K̂ j

] = iεijk K̂k[
Î, Ĥ

] = 0 = [
K̂ , Ĥ

]
(6.65)

Amazingly, the components of Î and K̂ each obey the commutation rule that is the
very definition of “angular momentum”! They therefore both qualify as angular
momenta and we immediately know that the possible eigenvalues of the squares
of Î and K̂ are given by the equations

Î 2 |i〉 = i (i + 1) |i〉 and K̂ 2 |k〉 = k (k + 1) |k〉 (6.66)

where |i〉 and |k〉 are the eigenfunctions and i and k are quantum numbers that, in
accordance with our previous finding, can take on only the values

i, k = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3,

7

2
, . . . (6.67)
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Moreover, because Î and K̂ commute with the Hamiltonian as well as each other it
is possible to find a set of eigenfunctions that is common to these three operators.
We may write these eigenfunctions symbolically as

|i, mi ; k, mk〉 (6.68)

where mi and mk are the eigenvalues of Îz and K̂z , respectively. Because Î and K̂
are angular momenta we know also that the ladder operators Î± = Îx ± i Îy and
K̂± = K̂x ± i K̂ y will have the same effect on the quantum numbers mi and mk

as was derived in Chapter 2 for a general angular momentum Ĵ having quantum
number m as the eigenvalue of Ĵz .

6.5. Energy Eigenvalues

To obtain the energy eigenvalues we first square Î and K̂ to obtain

Î 2 =
(

1

4

)(
L̂2 + L̂ � Â′ + Â′ � L̂ + Â′2) (6.69)

and

K̂ 2 =
(

1

4

)(
L̂2 − L̂ � Â′ − Â′ � L̂ + Â′2) (6.70)

so that

Î 2 =
(

1

4

)(
L̂2 + Â′2)

= K̂ 2 (6.71)

because the L̂ � Â′ and Â′ � L̂ terms vanish (see relation 12 of TABLE 6.1).
Therefore, the quantum numbers corresponding to Î 2 and K̂ 2 are the same; that
is, i = k. Because the quantum numbers corresponding to the absolute value of
an angular momentum can take on all positive integral and half-integral values,
Equation (6.67), we have

| Î2| + | Ĵ2| = i(i + 1) + k(k + 1)

= 2k(k + 1); k = 0,
1

2
, 1,

3

2
, 2, . . . (6.72)

From relation 10 of TABLE 6.1 the relationship among Â
2
, L̂2, and Ĥ may be cast

in terms of the scaled Lenz vector Â′ yielding

−2Ĥ Â′2 = 2Ĥ (L̂2 + 1) + 1 (6.73)

which may be rewritten as{
1 + 2Ĥ ( Â′2 + L̂2) + 2Ĥ

} = 0 (6.74)



6.5. Energy Eigenvalues 119

But

( Â′2 + L̂2) = 4K̂ 2

= 4 Î 2 (6.75)

so {
1 + 2Ĥ (4K̂ 2) + 2Ĥ

} = 0 (6.76)

Applying this operator to a function that is simultaneously an eigenfunction of Î 2,
K̂ 2, and Ĥ , which we designate by |�〉, we obtain{

1 + 2Ĥ
(
4K̂ 2

)+ 2Ĥ
} |�〉 = 0

Because |�〉 is an eigenfunction of all operators in the bracket we have{
1 + 2Ĥ

(
4K̂ 2

)+ 2Ĥ
} |�〉 = {1 + 2E [4k (k + 1)] + 2E} |�〉

= 0 (6.77)

which implies that

{1 + 2E [4k (k + 1)] + 2E} = 0 (6.78)

Solving for E we have

E = −
(

1

2

)
1

4k(k + 1) + 1

= −
(

1

2

)
1

4k2 + 4k + 1

= −
(

1

2

)
1

(2k + 1)2
(6.79)

Now, from Equation (6.67) we know that (2k + 1) must be an integer because
the eigenvalues of the square of an angular momentum (such as k) are 0, 1/2, 1,
3/2, . . . Therefore,

k = 0 → 2k + 1 = 1

k = 1

2
→ 2k + 1 = 2

k = 1 → 2k + 1 = 3

k = 3

2
→ 2k + 1 = 4

etc. (6.80)

and we may let 2k + 1 = n where n = 1, 2, 3, . . . (which is, of course, the prin-
cipal quantum number). Attaching the subscript n to the energy we find that the
eigenvalue for the nth state is just the Bohr energy in a.u.

En = − 1

2n2
n = 1, 2, 3, . . . (6.81)
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Note that this derivation of the hydrogen atom energy eigenvalues was performed
using only operator methods. We can deduce information about the quantum num-
ber  by noting that, from the definition of Î and K̂ ,

L̂ = Î + K̂

(which is reminiscent of Ĵ = Ĵ1 + Ĵ2). The values of  are thus restricted to

 = (i + k) , (i + k − 1) , (i + k − 2) , . . . |i − k|
But, i = k so (i + k) = 2k = n − 1 and |i − k| has minimum value of zero because
of the absolute value. Furthermore, max = (i + k) = n − 1 as before. Thus, we
have

 = (n − 1), (n − 2), (n − 3), . . . , 0 (6.82)

We see then that the operator solution for the energy eigenvalues gives the correct
restrictions on , positive integral values in the range 0 <  < (n − 1).

The degree of degeneracy of a particular energy eigenvalue can also be com-
puted. Again using the fact that Î and K̂ are angular momenta, Îz and K̂z each
have (2k+ 1) values (recall that i = k). Therefore, there are (2k + 1) · (2k + 1)
states. But (2k+ 1) = n so, excluding spin, there are n2 states that have the same
energy eigenvalue.

6.6. Relations Between the Parabolic Quantum Numbers

It was remarked in Chapter 5 that separation of the Schrödinger equation
in parabolic coordinates is equivalent to employing the mutually commuting
operators3,4 Ĥ , L̂ z , and Âz . Although we did not explicitly use these operators, the
technique employed to determine the energy eigenvalues in this chapter is, in fact,
equivalent to separating the Schrödinger equation in parabolic coordinates. From
their definitions, Equation (6.64), we may consider the commuting operators to be
Îz and K̂z and either Ĥ or Î 2. The relation among the Hamiltonian and the squares
of Î and K̂ , together with the fact that Î 2 = K̂ 2 means that either Î 2 or Ĥ will
suffice. Although Î and K̂ are Hermitian and are “angular momenta”, they do not
correspond to “observables” in the sense that their eigenvalues are not recogniz-
able physical quantities. Of course, they are constructions made up of the “true”
angular momentum and the Lenz vector, both of which correspond to “legitimate”
observables.

To show that this procedure is equivalent to separating the Schrödinger equation
in parabolic coordinates we find the relationship between the two sets of quantum
numbers (i, mi ; k, mk) and the usual parabolic quantum numbers (n, n1, n2, m).
We show that the energy eigenkets |i, mi ; k, mk〉 are disguised versions of the
parabolic kets |n1 n2 m〉. We also show that these kets are also eigenkets of L̂ z and
Âz , thus establishing that they are indeed the parabolic eigenkets.

To obtain the relationship among the (i, mi ; k, mk) quantum numbers and the
more commonly used (n, n1, n2, m) we use results from the derivation of the
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energy eigenvalues, i = k = (n − 1) /2. We write L̂ z and Â′
z in terms of Îz and K̂z

L̂ z = Îz + K̂z

Â′
z = Îz − K̂z (6.83)

Therefore,

L̂ z |i, mi ; k, mk〉 = (
Îz + K̂z

) |i, mi ; k, mk〉
= (mi + mk) |i, mi ; k, mk〉 (6.84)

But |n1 n2 m〉 is an eigenfunction of L̂ z .

L̂ z |n1 n2 m〉 = m |n1 n2 m〉 (6.85)

so we must have

m = mi + mk (6.86)

which demonstrates that |i, mi ; k, mk〉 and |n1 n2 m〉 are different notations for the
eigenfunctions of L̂ z . Because the |n1 n2 m〉 are known to be parabolic eigenfunc-
tions, so too must the |i, mi ; k, mk〉 be parabolic eigenfunctions.

Noting the symmetry between n1 and n2 and between mi and mk we write, using
the relationship between the usual parabolic quantum numbers

n = 2n1 + 2mi + 1 (6.87)

where we have considered only positive values of m. The eigenfunctions for neg-
ative values are merely their complex conjugates. From this equation we obtain

n1 = (n − 1)

2
− mi

n2 = (n − 1)

2
− mk (6.88)

which also gives the proper limits on n1 and n2. Because −i ≤ mi ≤ i and 2i +
1 = n

− (n − 1)

2
≤
{

(n − 1)

2
− n1

}
≤ (n − 1)

2
(6.89)

or

0 ≤ n1 ≤ (n − 1) (6.90)

Similarly,

0 ≤ n2 ≤ (n − 1) (6.91)

To find the eigenvalues of Â′
z (and hence Âz) we apply it to |i, mi ; k, mk〉

Â′
z |i, mi ; k, mk〉 = (

Îz − K̂z
) |i, mi ; k, mk〉

= (mi − mk) |i, mi ; k, mk〉
= (n2 − n1) |i, mi ; k, mk〉 (6.92)
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where mi and mk have been replaced in accord with Equation (6.88). Because
Â′

z = n Âz it is clear that the parabolic eigenfunctions are indeed eigenfunctions
of Âz ; moreover the eigenvalues of Âz are (n2 − n1) /n.

Knowledge of the relationship between the |i, mi ; k, mk〉 and the |n1 n2 m〉makes
it possible to use ladder operators to convert one parabolic eigenstate into another.
We are interested in conversion of those states that are designated by the commonly
used quantum numbers (n, n1, n2, m).

First, apply Î− to |i, mi ; k, mk〉
Î− |i, mi ; k, mk〉 =

√
i (i + 1) − mi (mi − 1) |i, (mi − 1) ; k, mk〉 (6.93)

From the relationships between the mi and n1 and between mk and n2, Equation
(6.88), it is seen that lowering mi (or mk) actually raises n1 (or n2). The action of
Î− on |n1 n2 m〉 in terms of n, n1, and n2 is then

Î−|n1n2m〉 =
√

(n − 1)

2

(n + 1)

2
−
[

(n − 1)

2
− n1

][
(n − 3)

2
− n1

]

× |(n1 + 1) n2(m − 1)〉
=
√

(n1 + 1)[n − (n1 + 1)]| (n1 + 1) n2(m − 1)〉 (6.94)

By symmetry we have

K̂−|n1n2m〉 =
√

(n2 + 1)[n − (n2 + 1)]|n1 (n2 + 1)(m − 1)〉 (6.95)

If n1 or n2 has its maximum value (n − 1), then application of Î− or K̂− yields
zero as it must.

To lower n1 or n2 it is necessary to raise mi or mk . Applying Î+ and K̂+ we find

Î+|n1n2m〉 =
√

n1(n − n1)|(n1 − 1) n2(m + 1)〉 (6.96)

and

K̂+|n1n2m〉 =
√

n2(n − n2)|n1(n2 − 1) (m + 1)〉 (6.97)

It is seen that judicious application of these operators can produce the entire
manifold of parabolic eigenstates for a given n from knowledge of only one of the
eigenstates.

6.7. Relationship Between the Spherical and Parabolic
Eigenfunctions

Inasmuch as the spherical eigenfunctions and the parabolic eigenfunctions are
complete sets, a given eigenfunction may be written as a linear combination of the
other set. Comparison of the spherical eigenfunctions |nm〉 with the parabolic
eigenfunctions written in the form |i, mi ; k, mk〉 makes it clear that they are simply
coupled (spherical) and uncoupled (parabolic) representations. Therefore, when
expanding a given eigenfunction on the other set of eigenfunctions the expansion
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coefficients are just the Clebsch–Gordan coefficients.5 It is possible to apply the
methods of Chapter 2 to obtain these coefficients in certain cases. For example, if
we start with the eigenfunction that is an eigenfunction in both coordinate systems
we can generate expansions for the entire ladder of spherical states having the
same values of n and . In particular, the kets

|n (n − 1) (n − 1)〉sph = |n 0 0 (n − 1)〉par (6.98)

represent eigenfunctions in both spherical and parabolic coordinates. In Equation
(6.98) the quantum number m is explicit in the parabolic ket and subscripts have
been added for clarity. That these kets are identical can be seen by noting that m
is a good quantum number in both coordinate systems so the value of m must be
the same in both kets. If n1 = 0 = n2 then m = n − 1. If m = n − 1 then there is
only one possible value of ; it too must be n − 1.

We apply L̂− to the spherical eigenfunction and L̂− in the form L̂− = Î− + K̂−
to the parabolic eigenfunction and obtain

L̂−|n (n − 1)(n − 1)〉sph =
√

2(n − 1)|n (n − 1)(n − 2)〉sph (6.99)

and

L̂−|n 0 0 (n − 1)〉par = ( Î− + K̂−)|n 0 0 (n − 1)〉par

=
√

(n − 1)|n 1 0 (n − 2)〉par+
√

(n − 1)|n 0 1 (n − 2)〉par

(6.100)

Therefore

|n(n − 1)(n − 2)〉sph = 1√
2
|n 1 0 (n − 2)〉par + 1√

2
|n 0 1 (n − 2)〉par (6.101)

Successive application of L̂− = Î− + K̂− will generate the entire set of spherical
eigenfunctions for  = n − 1. Other Clebsch–Gordan coefficients can be obtained,
but with considerably more labor and are not within the scope of the work presented
here.

6.8. Additional Symmetry Considerations

We have seen that the Coulomb potential possesses “super-symmetry”. Another
potential energy function possessing super symmetry is that of the isotropic har-
monic oscillator oscillator, the potential energy for which is given by

V (r ) = 1

2
kr2

= 1

2
k
(
x2 + y2 + z2

)
(6.102)

This system is known to be highly degenerate and, in fact, has a higher degree of
symmetry than even the Coulomb potential. Note that the Schrödinger equation can
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Figure 6.1. Elliptical orbits for Coulomb/gravitational potential and isotropic oscillator
potential.

be separated in both spherical and Cartesian coordinates for this potential. It can be
separated in spherical coordinates because it is a central potential and separation of
variables in Cartesian coordinates is easily seen to lead to three one-dimensional
harmonic oscillator equations.

Of course, angular momentum is conserved in the isotropic oscillator problem
because it is a central potential. It is natural to ask if there is an additional conserved
quantity, analogous to the Lenz vector for the Coulomb/gravitational potential. In-
deed, there is such a constant of the motion, but, because the isotropic oscillator
potential has a higher degree of symmetry than the Coulomb potential this con-
stant is a tensor rather than a vector. We do not pursue this any further, but the
additional symmetry of the isotropic oscillator can be seen by a simple graphical
argument.6

For the classical Kepler problem the force center is at one focus of the elliptical
orbit as illustrated in FIGURE 6.1. Because the center of attraction is at a focus,
the major axis of the ellipse is an axis of symmetry, but not the minor axis. In
contrast, elliptical orbits resulting from the isotropic oscillator potential have as
the force center the geometric center of the ellipse. That is, the force center lies on
the major axis midway between the foci as shown in FIGURE 6.1. Therefore, an
elliptical orbit of a particle under the influence of the isotropic oscillator potential
has two symmetry axes, the major and minor axes. We conclude that the isotropic
oscillator is “more symmetric” than the Coulomb problem.

Problems

6.1. Find the probability of measuring the z-component of the Lenz vector to be
–1/2 in atomic units for a hydrogen atom for which n = 2; n1 = 1; n2 = 0 = m
(parabolic coordinates).
6.2. Show that

Â =
(

1

2

)(
p̂ × L̂ − L̂ × p̂

)− r̂

= p̂ × L̂ − i p̂ − r̂
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6.3. (a) Show that the commutator [ Â+, L̂+] = 0.
(b) Assume that it is known that Â+ |n〉 = D+

 |n( + 1)m〉. That is, it is known
that Â+ raises  by unity, but we don’t know what it does to m (=). Using the
commutator [ Â+, L̂+] = 0, confirm that when operating on |n〉, Â+ also raises
m (=) to ( + 1).
6.4. Show that { Â−|nm〉} is an eigenfunction of L̂ z with eigenvalue (m − 1) and
of L̂2 with eigenvalue ( + 1)( + 2) provided m = −.
6.5. Show that

Â± |nm〉 = ∓ 1

n

√[
n2 − ( + 1)2

]
( ± m + 1) ( ± m + 2)

(2 + 1) (2 + 3)
|n( + 1) (m ± 1)〉

± 1

n

√[
n2 − 2

]
( ∓ m) ( ∓ m − 1)

(2 − 1) (2 + 1)
|n ( − 1) (m ± 1)〉

using the known action of Âz on |nm〉, Equation (6.59), and the commutation
relation

[
Âz, L̂±

] = ± Â± (see Table 2.2).
6.6. Find all parabolic eigenfunctions for n = 2 as linear combinations of spherical
eigenfunctions by applying L̂− = Î− + K̂− to |211〉sp = |2001〉par where spherical
eigenfunctions are designated |nm〉sp and parabolic eigenfunctions |nn1n2m〉par.
Solve these simultaneous equations to obtain the parabolic eigenfunctions in terms
of the spherical eigenfunctions.
Answer:

|211〉sp = |2001〉par

|210〉sph = 1√
2
|2100〉par + 1√

2
|2010〉par

|21 − 1〉sp = |211 − 1〉par

|200〉sph = 1√
2
|2100〉par − 1√

2
|2010〉par

|2001〉par = |211〉sp

|2100〉par = 1√
2
|210〉sph + 1√

2
|200〉sph

|2010〉par = 1√
2
|210〉sph − 1√

2
|200〉sph

|211 − 1〉par = |21 − 1〉sp
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7
Breaking the Accidental Degeneracy

7.1. Introduction

To this point our discussion of the hydrogen atom has centered on the eigenstates
and their eigenenergies, the Bohr energies. There are, however, corrections to
these energies that are caused by effects not included in this Schrödinger equation.
These corrections are conveniently characterized by their magnitudes in terms of
the fine-structure constant α. We may write the total energy of the hydrogen atom as

ETOTAL = E (0)
n + EFS + ELamb + EHF (7.1)

where E (0)
n is the Bohr energy, −( 1

2

)
mec2α2/n2. The remaining terms in Equation

(7.1) are referred to as fine-structure, the Lamb shift, and the hyperfine structure,
respectively. Hyperfine structure has already been discussed in relation to angular
momentum in Chapter 2. In the present context we are, however, interested in the
magnitudes of these effects. These corrections are given, roughly, by

EFS ∼ α2 E (0)
n

ELamb ∼ α3 E (0)
n

EHF ∼ (3/1000) α2 E (0)
n (7.2)

Because α2 ∼ 10−5 it is clear that even the fine-structure correction is a small,
but easily observable, fraction of the Bohr energy.

The fine-structure correction can be obtained by solving the Dirac equation
for the hydrogen atom. In fact, the Dirac equation can be solved exactly for the
Coulomb potential. On the other hand, neither the Lamb shift nor the hyperfine
corrections are inherent in the Dirac equation. The Lamb shift requires quantization
of the electromagnetic field (QED) whereas the proton spin is absent from the Dirac
Hamiltonian. We deal with these corrections later in this chapter.

One way to obtain the fine-structure corrections is to begin with the exact solution
of the Dirac equation, expand it, and identify the interactions that constitute the
terms proportional to α2. Alternatively, we can expand the Dirac Hamiltonian,
identify the first-order correction terms to the Schrödinger Hamiltonian and use
perturbation theory. Neither method requires actual solution of the Dirac equation,
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merely acceptance that the Hamiltonian, and therefore the exact solution, is correct.
Expansion of the Hamiltonian can, however, provide more insight into the physical
origins of the corrections, so we elect to use the perturbation theory method.

Expanding the Dirac Hamiltonian for the hydrogen atom gives, in SI units1

Ĥrel = mec2 +
[

p̂2

2me
−
(

e2

4πε0

)
· 1

r

]

− p̂4

8m3
ec2

+
[(

e2

4πε0

)
· 1

2m2
ec2

· 1

r3

(
L̂ � Ŝ

)]+
(

e2

4πε0

)
h̄2π

2m2
ec2

δ (r )

(7.3)

The first term in Equation (7.3) is, of course, the rest energy of the electron.
The second and third comprise the nonrelativistic hydrogen atom (Schrödinger)
Hamiltonian. The last three terms in this Hamiltonian make up the fine-structure
correction and, as shown later, are proportional to α2. Thus, the use of perturbation
theory is justified.

The fine-structure terms are relativistic in nature. Each can be associated with
a physical interaction and can be derived on physical grounds. For the last term,
however, the one with the delta function, this association is equivocal.

7.2. Relativistic Correction for the Electronic Kinetic Energy

The most obvious relativistic correction is that due to the electronic motion. We
already know that this correction will be small because the electron velocity in
the lowest Bohr orbit is αc = c/137. To find the correction due to the relativistic
motion, we start with the expression for the relativistic kinetic energy

T̂rel =
√

p̂2c2 + m2
ec4 − mec2 (7.4)

where me is the rest mass of the electron and c the speed of light. For convenience
and to conform with most treatments, we continue to use SI units. It must be borne
in mind that T̂rel is an operator, written in terms of scalar quantities, me and c,
and the operator p̂. Note that we have ignored the motion of the nucleus about the
center of mass of the electron-nucleus system.

Now, the rest energy mec2 for the electron is ∼0.5 MeV, whereas the most
strongly bound state of the hydrogen atom, the ground state, is bound by only
13.6 eV! Therefore, the rest energy term must be dominant and we may expand
the radical in powers of p̂2c2/m2

ec4.

T̂rel = mec2

(
1 + p̂2

mec2

)1/2

− mec2

= mec2

(
1 + p̂2

2mec2
− p̂4

8m4
ec4

+ · · ·
)

− mec2

= p̂2

2me
− p̂4

8m3
ec2

+ · · · (7.5)
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We see that the first two terms in T̂rel are precisely the terms in Equation (7.3) that
contain the momentum p̂. The first, p̂2/2me, is the nonrelativistic kinetic energy.
The second term represents the correction to the energy due to the relativistic
motion of the electron. Letting T̂0 = p̂2/2me we may rewrite T̂rel as

T̂rel ≈ p̂2

2me

(
1 − p̂2

8m2
ec2

)

= T̂0

(
1 − T̂0

1

2mec2

)
(7.6)

We see then that T̂rel is equal to T̂0 plus a correction term. The magnitude of this
correction term can be estimated by noting that, according to the virial theorem T̂0

is one-half the magnitude of the total energy. Thus,

T0

mec2
∼
(

1
2α2mec2

)
mec2

∼ α2 (7.7)

The reason that α is called the fine-structure constant is apparent from
Equation (7.7).

We have seen that the relativistic kinetic energy operator is given by the usual
nonrelativistic kinetic energy operator plus the small correction term. Because this
correction term, when operating on a suitable wave function, will return an energy
that is only ∼10−4 of the Bohr energy, quantum mechanical perturbation theory
may be used to evaluate this correction term. Thus, we designate the correction
term in the Hamiltonian as ĤT given by

ĤT = −T̂ 2
0

(
1

2mec2

)

= − p̂4

8m3
ec2

(7.8)

This is precisely the term in the expansion of the Dirac Hamiltonian presented
earlier in this chapter. We defer the computation of the correction to the energy
due to this term until all of the fine-structure operators have been derived.

7.3. Spin-Orbit Correction

The term “spin-orbit” refers to the interaction of the electron, envisioned as a bar
magnet, with the magnetic field produced by the proton orbiting about the electron
in the rest frame of the electron. The spin-orbit correction is therefore nothing
more than the energy of a magnetic dipole immersed in a magnetic field. It should
be noted, however, that the spin-orbit correction is a relativistic correction because
electron spin is a relativistic characteristic. This is apparent from the fact that spin
is not contained in the Schrödinger equation, but is inherent in the Dirac equation,
an intrinsically relativistic equation.



7.3. Spin-Orbit Correction 129

The spin-orbit energy is

ESO = −µs
� B (7.9)

where µs is the spin magnetic moment and B is the field due to the proton motion
about the electron. We already know that µs is actually a quantum mechanical
operator because it is proportional to the spin angular momentum and is given by

µ̂S = −geµB

h̄
Ŝ (7.10)

where µB is the Bohr magneton. We need only evaluate the magnetic induction B
as “seen” by the electron.

We calculate the magnetic induction field at the location of the electron by as-
suming that the proton rotating about the electron with velocity v constitutes a
circular current of radius r , as in the calculation of the orbital magnetic moment.
This is, in fact, a bogus calculation because we are calculating the magnetic in-
duction field in the rest frame of the electron. Because the electron is assumed in
circular motion, it is not in an inertial frame of reference. We show that we get
almost the correct answer. We will be off by a factor of 1/2 from the term in the
relativistic Hamiltonian. This correction is known as the Thomas precession.

The magnetic induction field at the center of a planar circular loop is easily
calculated using the the law of Biot and Savard. The result is

B = µ0i

2r
(7.11)

where i = ev/ (2πr ). Therefore, the field due to the orbital motion Borbital is

Borbital = µ0e

4πmer3
· (mevr )

= µ0e

4πmer3
· L

= 1

4πε0
· e

mec2r3
· L (7.12)

where we have eliminated µ0 using the relation µ0ε0 = 1/c2. The correction term
for spin-orbit coupling in the Hamiltonian is therefore

ĤSO = ge

4πε0
· e2

2m2
ec2r3

(
Ŝ � L̂

)
(7.13)

As noted above, it is necessary to insert the Thomas correction factor, 1/2, which
cancels the g-factor. We obtain

ĤSO =
(

1

4πε0

)
· e2

2m2
ec2r3

(
Ŝ � L̂

)
(7.14)

which is identical to the analogous term in the expansion of the Dirac Hamiltonian.
It is often convenient to simplify the notation in Equation (7.14) by writing it as

ĤSO = ξ (r )
(
Ŝ � L̂

)
(7.15)
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where

ξ (r ) =
(

1

4πε0

)
· e2

2m2
ec2r3

(7.16)

7.4. The Darwin Term

The spin-orbit interaction is proportional to Ŝ � L̂. Accordingly, there is no cor-
rection when the orbital angular momentum is zero. There is, however, an ad-
ditional correction term that pertains only when the orbital angular momentum
is zero. This effect, which arises naturally in the solution to the Dirac equation,
has no classical analogue. It is caused by rapid oscillations of the electron that
are referred to in the literature2 as zitterbewegung, the translation of which is
“shaking”. The amplitude of these oscillations are of the order of the Compton
wavelength,2 2πa0α ≈ 2 × 10−12 m.

It should be emphasized that the Darwin correction to the Bohr energy is a
natural consequence of the Dirac equation. Attempts to derive it on the basis of
physical interactions are of dubious value. For this reason, we simply use the
correction term in the relativistic Hamiltonian to compute its contribution to the
fine-structure. From Equation (7.3), the Darwin Hamiltonian is

ĤD =
(

1

4πε0

)
e2·h̄2π

2m2
ec2

δ(r ) (7.17)

7.5. Evaluation of the Terms That Contribute
to the Fine-Structure of Hydrogen

From perturbation theory, the first-order correction to the energy is given by

E (1) = 〈
Ĥ (1)〉 (7.18)

where Ĥ (1) is the perturbing Hamiltonian and the expectation value is taken using
the unperturbed wave functions. In the present case Ĥ (1) = ĤFS where ĤFS is the
Hamiltonian representing the total fine-structure correction to the Bohr energies

ĤFS = ĤT + ĤSO + ĤD (7.19)

The unperturbed eigenfunctions are, of course, the nonrelativistic Schrödinger
eigenfunctions for the hydrogen atom. We consider the constituent terms of ĤFS

separately.

The Relativistic Correction

From Equation (7.8) the first-order correction is given by

E (1)
T = 〈

ĤT
〉

= − 1

8m3
ec2

〈
p̂4
〉

(7.20)
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Now, ĤT contains only p̂4 = p̂2 p̂2, and p̂2 appears in the unperturbed Hamilto-
nian. That is, the unperturbed Hamiltonian Ĥ0 is

Ĥ0 = p̂2

2me
− e2

4πε0r
(7.21)

Because p̂2 is present in ĤT , ĤT is diagonal in the |nm〉 basis set and

E (1)
T = − 1

8m3
ec2

〈nm| p̂2 p̂2 |nm〉 (7.22)

From Equation (7.21) we have

p̂2 = 2me

(
Ĥ0 + 1

4πε0
· e2

r

)
(7.23)

so that

E (1)
T = − 1

8m3
ec2

〈nm| 4m2
e

(
Ĥ0 + 1

4πε0
· e2

r

)2

|nm〉

= − 1

2mec2

[(
E (0)

n

)2 + 2E (0)
n

(
e2

4πε0

) 〈
1

r

〉
nm

+
(

e2

4πε0

)2 〈
1

r2

〉
nm

]

(7.24)

where E (0)
n is the Bohr energy.

To complete the evaluation of E (1)
T , the expectation values 〈1/r〉 and

〈
1/r2

〉
are

required. These, and other, powers of r can be found the classic book by Bethe
and Salpeter.3 The two that are germane here are〈

1

r

〉
nm

= 1

a0n2
(7.25)

and 〈
1

r2

〉
nm

= 1

a2
0

· 1

n3 ( + 1/2)
(7.26)

each of which may be expressed in terms of E (0)
n giving〈

1

r

〉
nm

= −2

(
4πε0

e2

)
E (0)

n (7.27)

and 〈
1

r2

〉
nm

= 4 · n

( + 1/2)

(
4πε0

e2

)2 (
E (0)

n

)2
(7.28)

We note parenthetically that the first expectation value, multiplied by −e2/ (4πε0),
is simply the average value of the potential energy, a quantity that can be evaluated
using the virial theorem.
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Inserting Equations (7.27) and (7.28) in Equation (7.24), we have

E (1)
T = −

(
E (0)

n

)2

2mec2

[
−3 + 4n

( + 1/2)

]
(7.29)

or, because E (0)
n = −( 1

2

)
mec2α2/n2,

E (1)
T =

[
−3

4
+ n

( + 1/2)

]
α2

n2
E (0)

n (7.30)

Inasmuch as it is sometimes useful to have the Z -dependence of the fine-structure
corrections for a one-electron atom having Z protons in the nucleus we note that for
such an atom in Equation (7.30) α → (Zα) so that E (1)

T ∝ Z4. This is reasonable
because for high Z the electron will be moving faster than for low Z .

The Spin-Orbit Correction

We found that

ĤSO = ξ (r )
(
Ŝ � L̂

)
(7.31)

In contrast to the relativistic kinetic energy term, this relativistic perturbation con-
tains the spin. When evaluating the perturbation due to ĤT we were already working
with a diagonal-perturbing Hamiltonian. To evaluate the spin-orbit contribution we
must diagonalize ĤSO. But, we have already done this because

2Ŝ � L̂ = Ĵ 2 − L̂2 − Ŝ2 (7.32)

That is, the coupled states
∣∣ jm js

〉
are eigenstates of Ŝ � L̂. Therefore

E (1)
SO = 〈

ĤSO
〉

= 〈ξ (r )〉 〈 jm js
∣∣ ( Ĵ 2 − L̂2 − Ŝ2

)∣∣ jm js
〉

=
(

1

4πε0

)
· e2

4m2
ec2

〈
1

r3

〉
n

h̄2 [ j ( j + 1) −  ( + 1) − s (s + 1)] (7.33)

The expectation value of 1/r3 is given by3〈
1

r3

〉
n

= 1

a3
0

· 1

n3 ( + 1/2) ( + 1)
(7.34)

which, because we would like to view the correction as a factor times the unper-
turbed hydrogen energy, we write in the form〈

1

r3

〉
n

=
(

−4πε0

e2

)
·
[(

− e2

4πε0

)
· 1

2a0n2

]
·
(

2

a2
0n

)
· 1

 ( + 1/2) ( + 1)

=
(

−4πε0

e2

)
E (0)

n

(
2

a2
0n

)
· 1

 ( + 1/2) ( + 1)

=
(

−4πε0

e2

)
E (0)

n

(
2

n

)(
α2m2

ec2

h̄2

)
· 1

 ( + 1/2) ( + 1)
(7.35)
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The final result is

E (1)
SO = − 1

2n
α2 E (0)

n
[ j ( j + 1) −  ( + 1) − 3/4]

 ( + 1/2) ( + 1)
(7.36)

where, again, the magnitude of the correction is α2 times the unperturbed hydrogen
energy.

Because j can take on the values  ± 1/2 we may write the correction in terms
of .

E (1)
SO = −1

2
α2 E (0)

n

1

n ( + 1/2) ( + 1)
for j =  + 1/2

= 1

2
α2 E (0)

n

1

n ( + 1/2)
for j =  − 1/2 (7.37)

Thus, as for the relativistic kinetic energy correction, the spin-orbit interaction
produces a correction that is α2 times the Bohr energy. As was the case for the
relativistic kinetic energy correction, for a one-electron atom having Z protons in
the nucleus α → (Zα) so the spin-orbit correction is proportional to Z4.

The Darwin Term

The first-order correction to the energy due to the Darwin Hamiltonian, Equation
(7.17), is given by

E (1)
D = 〈nm| ĤD |nm〉

=
(

1

4πε0

)
e2·h̄2π

2m2
ec2

〈nm|δ(r )|nm〉 (7.38)

Because of the δ-function, the expectation value of E (1)
D will be nonzero only for

s-states because all radial wave functions vanish at r = 0 except those having
 = 0. The integral 〈n00|δ(r )|n00〉 is easily evaluated using the sifting property of
the delta function.

〈n00|δ(r )|n00〉 =
∫

all space

Y ∗
00 (θ, φ)R∗

n0 (r ) δ (r ) Rn0 (r ) Y00 (θ, φ)

= 1

4π
|Rn0 (0)|2 (7.39)

For  = 0 the radial part of the hydrogen atom wave functions, Equation (4.26),
using Spiegel’s definition of the associated Laguerre polynomials,4 is

Rn0 (r ) = −
(

2

na0

)3/2 [ (n − 1)!

2n

]1/2 [ 1

n!

]3/2

· L1
n

(
2r

na0

)
(7.40)

which, for r = 0 is

Rn0 (0) = −
(

2

na0

)3/2 [ (n − 1)!

2n

]1/2 [ 1

n!

]3/2

· L1
n (0) (7.41)
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The Laguerre polynomial is

L1
n

(
2r

na0

)
=

n−1∑
j=0

(−) j+1 (n!)2

(n − 1 − j)! ( j + 1)! j!
·
(

2r

na0

) j

(7.42)

But, the only nonzero term in the summation in Equation (7.42) is the j = 0 term
because all other terms contain r j . Therefore,

L1
n (0) = (n!)2

(n − 1)!1!0!
ρ0

= n!n (7.43)

and

〈n00|δ(r )|n00〉 = 1

4π

(
2

na0

)3 [ (n − 1)!

2n

] [
1

n!

]3

· (n!)2 n2

= 1

πa3
0n3

(7.44)

The energy correction to the |n00〉 state of the hydrogen atom due to the Darwin
term is then

E (1)
D =

(
1

4πε0

)
e2·h̄2π

2m2
ec2

〈n00|δ(r )|n00〉

=
(

1

4πε0

)
e2·h̄2π

2m2
ec2

· 1

πa3
0n3

= −E (0)
n

α2

n
(7.45)

We see then that the Darwin term, as were the relativistic correction and the spin-
orbit correction terms, is proportional to α2 E (0)

n . For a one-electron atom having
Z protons in the nucleus we again substitute α → (Zα).

Although the spin-orbit result is valid only for  �= 0 we examine the limit of
E (1)

SO ( j =  + 1/2) as  approaches zero. ( j =  − 1/2 is unacceptable for  = 0
because j cannot be negative.) For j =  + 1/2 we obtain

lim
→0

E (1)
SO = −1

2
α2 E (0)

n lim
→0

[
1

n ( + 1/2) ( + 1)

]

= −α2 E (0)
n · 1

n

= E (1)
D (7.46)

Thus, the algebraic expression forE (1)
SO, although not valid for  = 0, produces the

correct answer for E (1)
D which is only valid for  = 0. This is not an accident as is

discussed later in this chapter.
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Figure 7.1. Individual contributions to the fine-structure splitting of the n = 2 state of
the hydrogen atom. The energies are given in cm−1. Adapted from B.H. Bransden and
C.J. Joachain, Physics of Atoms and Molecules: Second Edition (Upper Saddle River, NJ:
Prentice Hall, 2003), Fig. 5.2.

The magnitudes of the individual contributions to the fine-structure of the hy-
drogen atom are shown in FIGURE 7.1 for n = 2. Note that the spin-orbit energy
for s-states is zero as are the Darwin energies for the p-states.

7.6. The Total Fine-Structure Correction

Because the Darwin correction to the Bohr energy can be included in the spin-orbit
correction term we may write the total fine-structure correction as

E (1)
F S = E (1)

T + E (1)
SO (7.47)

where it is understood that if  = 0 then E (1)
SO represents the Darwin term. We have

then

E (1)
F S (n, ) = E (0)

n

α2

n2

[
n

( + 1)
− 3

4

]
for j =  + 1/2

= E (0)
n

α2

n2

[
n


− 3

4

]
for j =  − 1/2 (7.48)

Because the maximum value of  is (n − 1) it is clear that the terms in square
brackets in Equations (7.48) can never be negative. Therefore, because E (0)

n is
intrinsically negative, the fine-structure corrections will always lower the Bohr
energy.
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Equation (7.48) may be cast in terms of only j . Using j =  ± 1/2 we have

E (1)
FS (n, j) = E (0)

n

α2

n2

[
n

( j + 1/2)
− 3

4

]
for j =  ± 1/2 (7.49)

Notice that, although the three separate contributions depend on , the total shift,
E (1)

FS , does not. It depends only on j , the total angular momentum quantum number.
This is a remarkable degeneracy that is present even in the exact solution of the
Dirac equation for the Coulomb potential.

The total fine-structure splitting of the first three Bohr levels of the hydrogen
atom is displayed in FIGURE 7.2. The shifts between the states designated by
principal quantum numbers and the nearest fine-structure level were calculated
from Equation (7.49). This figure shows the differences in levels of different j ,
but does not show the differences between states having the same values of j , but
different  in accord with Equation (7.49).

Note from Equation (7.49) that the energy between fine-structure states, the
fine-structure interval, scales as 1/n3. For example, the interval between j = 3/2

Figure 7.2. Total fine-structure splitting of the designated states for the first three Bohr
levels of the hydrogen atom. The energies are given in cm−1. Adapted from B.H. Bransden
and C.J. Joachain, Physics of Atoms and Molecules: Second Edition (Upper Saddle River,
NJ: Prentice Hall, 2003), Fig. 5.1.
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and j = 1/2 states is

�n = �EFS ( j = 1/2, 3/2)

= E (1)
FS (n, j = 3/2) − E (1)

FS (n, j = 1/2)

= 1

2
E (0)

n

α2

n

= 1

2
RH

α2

n3
(7.50)

The fine-structure splitting therefore decreases dramatically with increasing prin-
cipal quantum number. On the other hand, for atoms of nuclear charge Z the
expressions for the hydrogen atom require the substitution α → Zα so the fine-
structure interval increases with increasing nuclear charge.

7.7. The Lamb Shift

We have seen that, although fine-structure effects partially lift the degeneracy of
the Bohr levels of hydrogen, some degeneracy remains. For example, the 2s1/2 and
2p1/2 levels are degenerate because the fine-structure correction depends only on
the magnitude of j and not on how it is constructed. That is, j =  ± 1/2 so that
 = 1 and ms = −1/2 gives j = 1/2. But, so too does  = 0 with ms = +1/2
lead to j = 1/2. There is, however, a difference in the energies of these two states,
a difference that is not predicted by even the Dirac equation. To obtain the energy
difference between these two states, referred to as the Lamb shift, it is necessary to
resort to quantum electrodymanics (QED). That is, it is necessary to quantize the
electromagnetic field. We do not do this here, but full mathematical treatments are
available in many textbooks.2,3,5,6 The lifting of the j-degeneracy by QED was an
important triumph for this theory.

Although we do not derive the expression for the Lamb shift we can attempt a
qualitative explanation for it. It was remarked in Chapter 1 that a complete picture
of a quantum mechanical system can only be obtained when both the particles
and the fields to which they are subjected are quantized. When quantizing the
electromagnetic field the basis set is that of a harmonic oscillator for which there
is a zero-point energy. Thus, the absence of any field, the vacuum state, has nonzero
energy. This means that even in the vacuum state charged particles are affected
by an electromagnetic field. We show in Chapter 13 that this is the cause of
spontaneous emission of a photon from an excited atom, even when no fields are
present.

The interaction of the zero-point energy of the quantized field with the electron
causes it to execute rapid oscillations. This shaking is a form of zitterbewegung, but
its origin is different from that noted in the case of the Darwin effect for which the
term zitterbewegung was coined by Schrödinger.2 In this case, the amplitude of the
shaking is roughly ten times smaller than the shaking that causes the Darwin effect.
The electric field that binds the electron in an atom varies as 1/r2 so the electron
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experiences different potentials at the extremes of its oscillation, reminiscent of
tidal forces that are proportional to 1/r3. Because of this nonuniformity of the
electric field, the tidal force on this shaking electron is greatest when the electron
is near the nucleus so that s-states (which have nonzero probability of being found
at r = 0) suffer the greatest Lamb shift. Because the magnitude of the effect clearly
depends upon the orbital angular momentum state, the j-degeneracy that remains
after the Dirac theory is lifted.

Our primary interest is to compare the magnitude of the Lamb shift with the
magnitudes of the fine-structure corrections. From quantum electrodynamics, the
Lamb shift for states with  = 0 is given approximately by7

ELamb = α5mec2 · 1

4n3
{k (n,  = 0)}

= α3 1

2n
E (0)

n {k (n,  = 0)} (7.51)

where the numerical factor depends only weakly on n and is

k (n,  = 0) = 12.7 for n = 1

= 13.2 for n → ∞ (7.52)

For  �= 0 the Lamb shift is

ELamb = α5mec2 · 1

4n3

{
k (n, ) ± 1

π ( j + 1/2) ( + 1/2)

}
j =  ± 1/2

= α3 1

2n
E (0)

n

{
k (n, ) ± 1

π ( j + 1/2) ( + 1/2)

}
j =  ± 1/2 (7.53)

The numerical factor in Equation (7.53), k (n, ) ∼ 0.05, is two orders of magnitude
smaller than that in Equation (7.51). Based on the discussion of the sensitivity of
s-states to the zitterbewegung this difference is expected, so the Lamb shift of
s-states is much greater than the Lamb shift for states for which  �= 0.

The Lamb shift for the ground state is about eight times larger than that
for the n = 2 states as predicted by Equation (7.51). The original experiment8

that verified QED was, however, performed using the 2s1/2 − 2p1/2 interval be-
cause the precision available with microwaves was employed. There is no such
nearby level of the 1s1/2 state so the measurement of the ground state Lamb shift
was made much later9,10 using two-photon laser spectroscopy on the 1s − 2s
interval.

The splitting of the three |n = 2; 〉 states of hydrogen is shown in FIGURE 7.3.
Notice that the magnitudes of the Lamb shift intervals are smaller than the fine-
structure splittings by ∼α.
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Figure 7.3. Schematic diagram of the Lamb shift of the n = 2 levels of the hydrogen
atom (not to scale). Adapted from B.H. Bransden and C.J. Joachain, Physics of Atoms and
Molecules: Second Edition (Upper Saddle River, NJ: Prentice Hall, 2003), Fig. 5.17.

7.8. Hyperfine Structure

In general, the hyperfine splitting of the energy is caused by the interaction of
the intrinsic magnetic moment of the proton, another spin 1/2 particle, with the
magnetic fields created by both the orbital motion of the electron and the electron
spin. We, however, consider only states having  = 0 so there is no magnetic field
caused by the orbital motion of the electron. A special case, the ground state,
was treated in Section 3.5. Our goal is to compare the magnitude of the hyperfine
energy splitting, �EHF (n), for |n00〉 states with the magnitude of the fine-structure
corrections. In the notation of Section 3.5, �EHF (n = 1) = 2κ .

The Hamiltonian may be regarded as the energy of orientation of one magnetic
dipole in the field of the other. The general expression for this interaction11 for
 = 0 reduces to

ĤHF = −
(

1

4πε0

)(
8π

3c2

)
µ̂S

� µ̂pδ (r ) (7.54)

where µ̂S and µ̂p are the magnetic dipole moments of the electron and proton,
respectively. Equation (7.54) is referred to as the contact term because the delta
function requires the electron and the proton to occupy the same point in space for
a nonzero interaction.
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Equation (7.54) can be written in terms of the spins and the gyromagnetic ratios
using the relations

µ̂S = −γe Ŝ

= geµB

h̄
Ŝ

=
(

gee

2me

)
Ŝ (7.55)

and

µ̂p = γp Î

=
(

gpe

2Mp

)
Î (7.56)

where gp is the proton g-factor and Mp is the mass of the proton. Also, we have
altered the notation of Section 3.5 letting Ŝ1 → Ŝ and Ŝ2 → Î, the electron and
nuclear spins, respectively. This is the customary notation for these quantities. The
quantum numbers are S = 1/2 and I = 1/2 so the eigenvalues of Ŝ2 and Î 2 are
(3/4) h̄2. Inserting Equations (7.55) and (7.56) into Equation (7.54) we obtain

ĤHF =
(

1

4πε0

)(
8π

3c2

)
γeγp

(
Ŝ � Î

)
δ(r ) (7.57)

To apply perturbation theory we require the expectation value of ĤHF using
the unperturbed states, the ordinary spherical eigenkets |n00〉. Having learned a
valuable lesson in Section 3.5, we know immediately that we should use the cou-
pled wave functions. Thus, again using customary notation we let F̂ = Î + Ŝ
so that the first-order correction due to the hyperfine interaction for |n00〉
states is

E (1)
HF (n) = 〈n : F M | ĤHF |n : F M〉

=
(

1

4πε0

)(
8π

3c2

)
γeγp 〈F M | (Ŝ � Î

) |F M〉 |ψn00 (0)|2 (7.58)

where |F M〉 = |I, S; F, M〉; F is the quantum number associated with the square
of the angular momentum F̂2. From Equation (7.44)

|ψn00 (0)|2 = 1

n3πa3
0

(7.59)

Now I and S are both 1/2, so F can take on the values 0 or 1 (0 if the spins are
antiparallel and 1 if parallel). Because

Î � Ŝ = 1

2

(
F̂2 − Ŝ2 − Î 2

)
(7.60)
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the expectation value 〈F M | (Ŝ � Î
) |F M〉 is

〈F M | (Ŝ � Î
) |F M〉 = 1

2

[
F (F + 1) − 3

2

]
h̄2

= 1

4
h̄2 F = 1

= −3

4
h̄2 F = 0 (7.61)

The energies of the singlet (F = 0) and the triplet (F = 1) states are thus

EHF = �EHF (n) ×
[

1

4

]
F = 1

= �EHF (n) ×
[
−3

4

]
F = 0 (7.62)

where

�EHF (n) =
[(

1

n3

)(
1

4πε0

)(
8π

3

)(
h̄2

c2πa3
0

)(
gee

2me

)(
gpe

2Mp

)]
(7.63)

To facilitate comparison with the fine-structure corrections we cast this quantity
in terms of the fine-structure constant and the Bohr energy. This is most easily
done recalling that αa0 = (h̄/mec). Equation (7.63) becomes

�EHF (n) = 4

3
· 1

n3

[
me

m p
· gp

] [
α2ge

(
1

2
mec2α2

)]
(7.64)

Equation (7.64) has been displayed so as to emphasize the nature of the factors
that it comprises. The term in ordinary parentheses is simply the Bohr energy of
the ground state, 13.6 eV. The square bracket on the right is the order of the fine-
structure energy; that is, α2 times the Bohr energy. The square bracket on the left is
the factor by which the fine-structure energy is reduced in the hyperfine interaction.
The ratio of the masses is 1/1836 whereas gp ≈ 5.6. Thus, the hyperfine interval is
roughly 3/1000 of the fine-structure interval. As noted in Section 3.5, for the ground
state of hydrogen, this expression leads to a transition frequency of 1420 MHz, the
famous 21 cm line. In view of the n-dependence in Equation (7.64) it is expected
that the hyperfine splitting of the 2s1/2 level of the hydrogen atom should be 1/8
that of the 1s1/2 ground state. Indeed, it is approximately 177 MHz.

From the foregoing discussion, we see that there exist progressively finer correc-
tions to the Bohr energies starting with fine-structure, the Lamb shift, and hyperfine
structure. These corrections are illustrated in FIGURE 7.4 which is a schematic
diagram of these energies. The energy intervals are exaggerated and not to scale.
The diagram is meant as a guide only.
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Figure 7.4. Schematic diagram showing the corrections to the Bohr energies of the hydro-
gen atom and the factors by which the magnitudes of the energies are altered. Adapted from
B.H. Bransden and C.J. Joachain, Physics of Atoms and Molecules: Second Edition (Upper
Saddle River, NJ: Prentice Hall, 2003), Fig. 5.18.

7.9. The Solution of the Dirac Equation

It was noted previously in this chapter that the Dirac equation can be solved
exactly for the Coulomb potential. Quantized energies are obtained using boundary
conditions in much the same way as the necessity of a bounded wave function led
to quantized energies in the solution of the Schrödinger equation. Because the
Dirac equation is inherently relativistic, it includes the effects of electron spin. It
is therefore expected that the quantized hydrogen energies resulting from solution
of the Dirac equation will contain the fine-structure effects. This is indeed the case.
The energy obtained from the exact solution is

E(n, j) = mec2 1√
1 + (Zα)2

[n − ( j + 1/2)] +
√

( j + 1/2)2 − (Zα)2

(7.65)

which may be expanded as

E(n, j) = mec2 − E (0)
n − E (0)

n

(Zα)2

n2

[
n

( j + 1/2)
− 3

4

]

+ O
[
(Zα)4

]
E (0)

n . . . (7.66)

The third term in Equation (7.66) is the fine-structure correction obtained in
Equation (7.49).
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The energy eigenvalues of Equation (7.65) were obtained without expanding
the Dirac Hamiltonian. It does not therefore permit identification of the individual
terms as “relativistic kinetic energy”, “spin orbit”, or “Darwin”. Indeed, the fine-
structure corrections obtained in the exact solution may simply be regarded as
relativistic in nature without any recognition of individual physical interactions.
This is why the spin-orbit term reduces to the Darwin term in the limit  → 0;
they have the same source: relativity.

The corrections in Equations (7.49) and (7.65) depend only upon n and j . As
discussed above, they do not include the Lamb shift or hyperfine structure. We
might inquire about the additional terms in the expansion in Equation (7.66),
those proportional to (Zα)4 E (0)

n and higher. There is, in fact, no need to compute
these terms because they are smaller than both the Lamb shift and the hyperfine
correction.

Problems

7.1. Show that no combination of quantum numbers can conspire to make the
fine-structure correction to the Bohr energy vanish.
7.2. Suppose the proton is approximated as a spherical shell of radius R ≈
10−4 nm. Calculate the first-order correction to the energy of the ground state,
E (1)

0 , due to the finite size of the nucleus. Is it positive or negative? Use the fact
that R/a0 ≈ 10−5 to make the approximation e−2R/a0 ≈ 1. Estimate the value of
E (1)

0 in terms of the unperturbed ground state energy E (0)
0 and compare with the

fine-structure correction to the ground state.
7.3. A particle of rest mass m0 is confined to an infinite one-dimensional potential
well; that is,

V (x) = ∞ x < 0 and x > L

= 0 otherwise

Find the first-order correction to E (1)
n , the energy of the nth level of this particle-

in-a-box, due to the relativistic kinetic energy of the electron. State your answer
in terms of the unperturbed energies and the rest energy of the particle. Un-
der what circumstances will the validity of E (1)

n be questionable? Consider two
cases, an electron in a 0.1 nm box (an atom) and a proton in a 10−4 nm box
(a nucleus).
7.4. A particle of rest mass m0 is confined to a one-dimensional harmonic oscil-
lator potential V (x) = 1

2 kx2. Find the first-order correction to E (1)
0 , the energy of

the ground state due to the relativistic kinetic energy of the electron. State your
answer in terms of the unperturbed energies and the rest energy of the particle.
Suppose the vibrations of a diatomic molecule are approximated by the harmonic
oscillator. Show that, because the separations between molecular vibrational lev-
els are typically on the order of tenths of eV, the correction due to the relativis-
tic motion of the electron is small. There are (at least) three ways to work this
problem.



144 7. Breaking the Accidental Degeneracy

7.5. Starting with Equation (7.15), the Hamiltonian for the spin-orbit correction
to the energy of the hydrogen atom

ĤSO = ξ (r ) · (Ŝ � L̂
)

find the energy difference between to the j =  ± 1

2
levels in terms of 〈ξ (r )〉.

7.6. An electron of mass me is bound by an isotropic harmonic oscillator potential

V (r ) = 1

2
k
(
x2 + y2 + z2

) = 1

2
kr2 = 1

2
meω

2r2

Find the corrections to the ground and first two excited state energies due to the
spin-orbit correction

VSO = h̄2

2m2
ec2

· 1

r
· dV (r )

dr

(
L̂ � Ŝ

)
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8
The Hydrogen Atom in External Fields

8.1. Introduction

To this point we have dealt with only central potentials. If, however, a constant ex-
ternal electric or magnetic field is applied, the spherical symmetry of the potential
is broken because the field establishes a direction in space. We expect that degen-
eracies that exist by virtue of the spatial symmetry will be lifted, at least partially,
and that some of the (field-free) degenerate levels will be split by application of
the field. Moreover, we expect the energy levels to depend on the magnetic quan-
tum numbers m, a dependence that is necessarily absent for spherical symmetry.
Although the spherical symmetry is broken, there still exists cylindrical symmetry,
so the spatial degeneracy cannot be entirely broken.

We begin by noting that the total Hamiltonian for a hydrogen atom in the presence
of an external field may be written as

Ĥ = ĤCoul + ĤFS + Ĥfield (8.1)

where

ĤCoul = p̂2

2me
−
(

1

4πε0

)
· e2

r
(8.2)

is the field-free hydrogen atom Hamiltonian and

ĤFS = − p̂4

8m3
ec2

+ 1

2
·
[(

1

4πε0

)
· e2

m2
ec2

· 1

r3

(
L̂ � Ŝ

)]

+
(

1

4πε0

)
e2·h̄2π

2m2
ec2

δ (r ) (8.3)

is the Hamiltonian that describes the fine-structure corrections discussed in
Chapter 7. The effects of the externally applied fields are contained in Ĥfield.

145
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8.2. The Zeeman Effect—The Hydrogen Atom in a
Constant Magnetic Field

When an external magnetic field is applied, it is necessary to consider only the
spin-orbit portion of ĤFS because this is the term that is sensitive to the atom’s
internal magnetic field. The effect of the external magnetic field depends on its
magnitude relative to the internal field.

We designate the term representing the effects of the magnetic field by Ĥfield =
ĤB . The energy associated with the interaction of the atom having total magnetic
moment µ = µ + µS with the external field is given by

ĤB = −µ̂ � B

= − (
µ̂ + µ̂S

)
� B

=
(

gµB

h̄
L̂ + gsµB

h̄
Ŝ
)

� B

= µB

h̄

(
L̂ + 2Ŝ

)
� B (8.4)

where the g-factors, g = 1 and gs = 2, have been used. Also, the spin of the proton
has been ignored. This is justified because, as we saw in Chapter 7, the magnetic
moment of the proton is roughly 2000 times smaller than either the spin magnetic
moment or the electronic orbital magnetic moment. For convenience, we choose
the direction of the external field to be the z-direction, B = Bk̂, so that ĤB becomes

ĤB = µB B

h̄

(
L̂ z + 2Ŝz

)
(8.5)

and the total Hamiltonian is

Ĥ = ĤCoul + ĤFS + µB B

h̄
(L̂ z + 2Ŝz) (8.6)

To decide which of the terms in the Hamiltonian is to be taken as the perturbation
and which is to be considered as part of the unperturbed Hamiltonian we must
examine the relative magnitudes of the internal and external magnetic fields. The
internal field due to the orbital motion of the proton about the electron Borbital is
given by Equation (7.12)

Borbital = 1

4πε0
· e

mec2r3
· L (8.7)

which may be written in terms of the Bohr magneton as

Bint = 1

4πε0
· 2

c2r3
·
(

eh̄

2me

)
· 

= 1

4πε0
· 2

c2r3
· µB ·  (8.8)

where we have replaced the angular momentum with h̄. If we take n = 2 (r ≈
22a0) and  = 1 we find that Bint ≈ 1 Tesla. Therefore, for B � 1 T we may
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consider ĤB as the perturbation to the unperturbed Hamiltonian

Ĥ0 = ĤCoul + ĤFS (8.9)

On the other hand, for strong fields the unperturbed Hamiltonian should be con-
sidered to be

Ĥ0 = ĤCoul + ĤB (8.10)

with ĤFS as the perturbation. In either case we write the total energy of the hydrogen
atom, to first order, as

E (1)
TOTAL(n, j, , m j , m, ms) = E (0)

n + E (1)
Z (n, j, , m j , m, ms) (8.11)

where E (1)
Z represents the total effect of the external B-field including the effect

on the spin-orbit correction. As usual, E (0)
n is the Bohr energy. Because there is

a magnetic moment associated with both the orbital motion of the electron and
its spin, in this chapter we distinguish between their magnetic quantum numbers
using the designations m and ms , respectively.

Not all quantum numbers
(
n, j, , m j , m, ms

)
in Equation (8.11) are present

in each case that we treat, but we state them to make clear that they may be present
in various combinations. Because the Bohr energy will always be part of the total
energy we obtain expressions for the Zeeman energy E (1)

Z only, noting that it will
contain the effects of the external B-field on the fine-structure as well as the direct
effect of the field on the electron. Of course, only the spin-orbit portion of the
fine-structure will be affected, but the relativistic correction, because it is the same
order of magnitude as the spin-orbit correction, must be included.

We first examine the strong field case followed by the treatment for weak fields.
We then solve the problem exactly. The exact solution is sometimes referred to as
the intermediate field case for which ĤB ∼ ĤFS. It would be aesthetically pleasing
to work out the details for the intermediate field case first and then take limits to
obtain the strong and weak field solutions. Unfortunately, as we show, the exact
solution is sufficiently complicated so that it is only practical to work it out for a
specific value of n. The strong and weak field cases are treated for any n. We use SI
units for the treatment of the Zeeman effect because the energies are conveniently
represented in terms of the Bohr magneton multiplied by the magnitude of the
magnetic induction field B.

Strong Field Approximation

Although the spherical symmetry has been broken, there is cylindrical symmetry
about the z-axis. In Equation (8.10), Ĥcoul and ĤB commute so, even though the
spherical symmetry has been broken,  is a good quantum number as are m and
ms . The unperturbed energies are therefore

E (0)
n (B) = E (0)

n + µB B(m + 2ms) (8.12)

Equation (8.12) makes it clear that the original hydrogen atom energy levels are
split and the magnitudes of the splittings depend on the magnetic quantum numbers
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m and ms . This is, of course, the reason that they are called “magnetic” quantum
numbers. The field-free degeneracy of 2 (2 + 1) (the “extra” factor of 2 accounts
for the two possible spin states) has been reduced by the breaking of the spherical
symmetry. The only degeneracy that remains is that for states which have the same
values of (m + 2ms). Because 2ms = ±1, states for which [m; ms = 1/2] and
[(m + 2); ms = −1/2] will be degenerate where, of course, m and m + 2 must
be among the allowed values.

To evaluate E (1)
FS , the contribution of fine-structure to the strong field energy, we

must compute the expectation values of ĤFS using the unperturbed wave functions,
which in this case are the uncoupled set |n  m ms〉. There is no change in the
relativistic correction, but the spin-orbit term is different because our previous
calculation was performed using the coupled set | jm js〉. We begin by noting that
L̂ � Ŝ may be written as (see Problem 8.1)

L̂ � Ŝ = L̂ z Ŝz + 1

2
(L̂+ Ŝ− + L̂− Ŝ+) (8.13)

Because both magnetic quantum numbers are good quantum numbers, even in the
presence of the field, the raising and lowering operators cause that portion of the
expectation value to vanish because of orthogonality. We are left with

〈L̂ � Ŝ〉 = mmsh̄
2 (8.14)

From Equation (7.35) we obtain the coefficient of 〈L̂ � Ŝ〉 and find that the correc-
tion to the energy due to the spin-orbit interaction is

E (1)
SO = −1

n
α2 E (0)

n

mms

( + 1/2)( + 1)
(8.15)

From Equation (7.29) the relativistic term is

E (1)
T =

[
−3

4
+ n

( + 1/2)

]
α2

n2
E (0)

n (8.16)

Adding Equations (8.15) and (8.16) we obtain the fine-structure correction in the
case of a strong externally applied magnetic field

E (1)
FS = −E (0)

n

(
α2

n

){
3

4n
−
[

( + 1) − mms

( + 1/2)( + 1)

]}
(8.17)

Note that the term involving the quantum number  is indeterminate for  = 0. It
can be shown that in this case this term is unity, but we do not pursue this further.

The Zeeman energy E (1)
Z in the strong field limit is the sum of E (1)

FS in Equa-
tion (8.17) and the unperturbed energy E (0)

n (B) of Equation (8.12). Adding these
contributions to the energy gives

E (1)
Z (n, , m, ms) = −E (0)

n

(
α2

n

){
3

4n
−
[

( + 1) − mms

( + 1/2)( + 1)

]}
+ µB B (m + 2ms) (8.18)
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Weak Field Approximation

In the weak field case it is assumed that ĤB � ĤFS so that ĤB is considered to
be a perturbation to the unperturbed Hamiltonian Ĥ0 = ĤCoul + ĤFS. Because the
eigenfunctions of this unperturbed Hamiltonian are the coupled states, we find the
first-order shift in energy caused by application of the weak field by evaluating
the expectation value of ĤB on these coupled states.

Because the coupled eigenfunctions are eigenfunctions of neither L̂ z nor Ŝz we
must express them in terms of the uncoupled eigenfunctions in order to evaluate
E (1)

B , the expectation value of ĤB . We can, however, simplify our task by noting
that we can write ĤB in terms of Ĵz and Ŝz . We do this because the coupled
eigenfunctions are indeed eigenfunctions of Ĵz . We thus obtain

ĤB = µB B

h̄
( Ĵz + Ŝz) (8.19)

which leads to

E (1)
B = µB B

〈(
j =  ± 1

2

)
m j

∣∣∣∣
(

Ĵz + Ŝz

) ∣∣∣∣
(

j =  ± 1

2

)
m j

〉
(8.20)

The expectation value of Ĵz is simply m jh̄. To evaluate 〈Ŝz〉 we express the coupled
wave functions in terms of the uncoupled using TABLE 8.1 which contains the
Clebsch–Gordan coefficients for j2 = s = 1/2. Regrettably, the symbol α is used
for both the fine-structure constant and the spin-up spin state, but this should cause
no confusion inasmuch as the latter occurs only as a bra or a ket.

Dropping the  and the s from the designation of the coupled ket so the notation
is | j m j 〉 = |( ± 1/2) m j 〉 we have

∣∣∣∣
(

 + 1

2

)
m j

〉
=

√√√√ + m j + 1

2
2 + 1

| m α〉 +

√√√√ − m j + 1

2
2 + 1

| m β〉 (8.21)

and

∣∣∣∣
(

 − 1

2

)
m j

〉
= −

√√√√ − m j + 1

2
2 + 1

| m α〉 +

√√√√ + m j + 1

2
2 + 1

| m β〉 (8.22)

Table 8.1. Clebsch–Gordan coefficients for j1 = ; j2 = s = 1/2.〈
j1,

1

2
; m1, m2

∣∣∣∣ jm j

〉

j m2 = +1/2 = ms = |α〉 m2 = −1/2 = ms = |β〉
 + 1/2

√
( + m j + 1/2)/(2 + 1)

√
( − m j + 1/2)/(2 + 1)

 − 1/2 −√( − m j + 1/2)/(2 + 1)
√

( + m j + 1/2)/(2 + 1)
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Note that the first basis ket on the right-hand side of Equation (8.22) contains α.
Therefore, m in that ket must be m = m j − 1/2 so that m + ms = m j . Similarly,
the m in the second ket must be (m j + 1/2). We have

∣∣∣∣
(

 ± 1

2

)
m j

〉
=

√√√√ ± m j + 1

2
2 + 1

∣∣(m j−1/2) α
〉

+

√√√√ ∓ m j + 1

2
2 + 1

∣∣(m j+1/2) β
〉

(8.23)

The expectation value of Ŝz is then

〈
Ŝz
〉 = h̄

2

(
 ± m j + 1

2

2 + 1
−  ∓ m j + 1

2

2 + 1

)

= ± m jh̄

2 + 1
(8.24)

where the plus sign refers to j =  + 1/2 and the minus sign to j =  − 1/2. From
Equation (8.20), the first-order correction to the energy, the Zeeman splitting, is

E (1)
B = µB Bm j

(
1 + 1

2 + 1

)
j =  + 1/2

= µB Bm j

(
1 − 1

2 + 1

)
j =  − 1/2 (8.25)

The quantity in brackets is called the Landé g-factor. It is usually written in terms
of j and  for which it is given by

g ( j, ) = 1 + j ( j + 1) −  ( + 1) + 3/4

2 j ( j + 1)
(8.26)

The Zeeman energy for the weak field case is the sum of the fine-structure energy
given in Equation (7.48) and E (1)

B from Equation (8.25). We have

E (1)
Z

(
n, , m j

)
= E (0)

n

α2

n2

[
n

( + 1)
− 3

4

]
+ µB Bm j

(
1 + 1

2 + 1

)
for j =  + 1/2

= E (0)
n

α2

n2

[
n


− 3

4

]
+ µB Bm j

(
1 − 1

2 + 1

)
for j =  − 1/2

(8.27)
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which may be written in terms of j as

E (1)
Z

(
n, j, m j

)
= E (0)

n

α2

n2

[
n

( j + 1/2)
− 3

4

]
+ µB Bm j

(
2 j + 1

2 j

)
for j =  + 1/2

= E (0)
n

α2

n2

[
n

( j + 1/2)
− 3

4

]
+ µB Bm j

(
2 j + 1

2 j + 2

)
for j =  − 1/2

(8.28)

Notice that the first terms on the right-hand sides of Equations (8.27) and (8.28)
are just the total fine-structure correction derived in Chapter 7. As such, they do
not contain the field B. This is because this is the “weak field” result; that is, to
first order, the fine-structure is unaffected by the presence of the (weak) external
field. This is in contrast to the strong field case in which the fine-structure term is
modified by the external field [see Equation (8.17)].

An interesting special case occurs when the energy of the “top of the ladder”
state is investigated (the bottom of the ladder works too). In this case the coupled
and uncoupled wave functions are the same and it is possible to find the expecta-
tion value of

(
ĤFS + ĤB

)
immediately. At the top of the ladder the coupled and

uncoupled wave functions are∣∣ j ; m j = j ; ; s
〉
coupled = |; s; m =  ; ms = 1/2〉uncoupled (8.29)

In terms of j , the quantum numbers have the values

m j = j ; m =  = j − 1/2 ; ms = +1/2 (8.30)

so that

m + 2ms = j + 1/2 (8.31)

Using Equations (7.49), (8.12), and (8.31) we have for the top of the ladder state

E (1)
Z = E (0)

n

α2

n2

[
n

( j + 1/2)
− 3

4

]
+ µB B ( j + 1/2) (8.32)

Note that for this state the strong and weak field expressions, Equations (8.18)
and (8.28) should reduce to Equation (8.32). This is left as an exercise at the end
of this chapter (see Problem 8.4).

As an example, we consider the effect of a weak field on the n = 1 and 2 states of
hydrogen. Fine-structure corrections cause the 1s1/2 ground state energy to lower
by 1.46 cm−1, but it does not split. Because, for a given value of B, E (1)

B depends
only on m j it is clear that the 1s1/2 level splits into two states corresponding to
m j = ±1/2. The first excited state, n = 2, shifts and splits. Ignoring the Lamb
shift, which is much smaller, the n = 2 level splits into three states, 2s1/2, 2p1/2,
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Table 8.2. Landé g-factors for the fine-structure
states of the first two Bohr states of hydrogen.

State  g( j, )

1s1/2 0 2
2s1/2 0 2
2p1/2 1 2/3
2p3/2 1 4/3

and 2p3/2 (see Section 7.6). The 2s1/2 and 2p1/2 states are degenerate and of
lower energy than the 2p3/2. As occurred for1s1/2, 2s1/2, and 2p1/2 each split
into two states corresponding to m j = ±1/2 under the influence of the external B
field. The 2p3/2 state splits into four levels corresponding to m j = ±1/2, ±3/2.
The magnitudes of the splittings differ though, depending on the Landé g-factor.
The splitting will be a multiple of what we may consider to be the basic en-
ergy unit for a given value of the field, E (1) (B) = µB B, which, for simplicity,
we denote as EB . TABLE 8.2 is a listing of the g ( j, ) for each fine-structure
state.

FIGURE 8.1 contains a diagram that shows the splitting for a fixed value of B.
Note that the splittings of the 2s1/2 and 2p1/2 levels, which are degenerate in the
absence of the field, are different. The vertical arrows in the diagram represent
the n = 2 → 1 radiative transitions that would be observed (in emission) in the
laboratory. These transitions obey the selection rule �m j = 0, ±1. There are
no transitisons connecting the 2s1/2 and 1s1/2 states because the selection rule
� = ±1 forbids transitions between s-states. There could, however, be transitions
between the 2s and 2p levels because there is no selection rule on n. Such transitions

Figure 8.1. Weak field Zeeman splitting of the first two Bohr levels of hydrogen.
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are omitted from the diagram. The origin of these “selection rules” is discussed in
Chapter 13.

Intermediate Field—Exact Treatment

The correspondence between the weak and strong field energies in the special
cases of the top and bottom of the ladder states indicates that these energies are
not only the same, but that they are exact. Indeed, this is the case as is easily seen
by noting that the states at the top and bottom of the ladder are eigenfunctions of
the entire Hamiltonian, Equation (8.6). In the language of matrix mechanics this
means that there are no off-diagonal elements involving these wave functions as
basis vectors that “contaminate” the diagonal elements. To illustrate, consider the
hypothetical Hamiltonian represented by the 3 × 3 matrix

Ĥ =
⎛
⎝a 0 0

0 b1 b2

0 b3 b4

⎞
⎠ (8.33)

where a and the bs are nonzero. The secular equation that results from the solution
of the Schrödinger equation has the form∣∣∣∣∣∣

(a − E) 0 0
0 (b1 − E) b2

0 b3 (b4 − E)

∣∣∣∣∣∣ = 0 (8.34)

from which it is clear that the matrix element a is indeed one of the eigenvalues.
This is precisely the case that we have in the Zeeman effect for the top and bottom
of the ladder states.

Solving for the energy shift in the presence of an external field for the interme-
diate case really amounts to solving the problem exactly. This would already have
been done in the previous section if it were not for the degeneracy of the problem.
It is this degeneracy that causes there to be nonzero off-diagonal matrix elements.
Because the Bohr energy does not depend upon any quantum numbers other than
n we take the Hamiltonian to be

ĤZ = ĤFS + ĤB (8.35)

To keep the computation tractable we calculate the energies of the n = 2 states
of hydrogen. We wish to determine the cases for which there will be degeneracy.
If we examine the energy in the weak field case, Equation (8.28), it is not im-
mediately obvious which states will be degenerate. If, however, we examine the
strong field case, Equation (8.18), we see that at very high field the second term,
µB B (m + 2ms), dominates. For n = 2 there are eight states (two spin states for
each spatial state), but some are degenerate. For insight into the degeneracy we
first examine the strong field case. Usually, we imagine a perturbation due to an
external field as breaking, at least partially, a degeneracy. If, on the other hand,
we imagine the field to be so strong that only the second term in Equation (8.18)
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Table 8.3. Possible quantum numbers for n = 2 used to reveal the
degree of degeneracy in the strong field limit. Energies of a few states are
included in the last column.

m ms m j j (m + 2ms ) E (1)
Z (2, j, m j )

 = 0 0 1/2 1/2 1/2 1 −5 ·
(

RH α2

64

)
+ µB B

0 −1/2 −1/2 1/2 −1 −5 ·
(

RH α2

64

)
− µB B

 = 1 1 1/2 3/2 3/2 2 −
(

RH α2

64

)
+ 2µB B

0 1/2 1/2 1
−1 1/2 −1/2 0

1 −1/2 1/2 0
0 −1/2 −1/2 −1

−1 −1/2 −3/2 3/2 −2 −
(

RH α2

64

)
− 2µB B

determines the energy then we may, in this case, imagine the perturbation to occur
when the magnetic field is decreased. This is, of course, equivalent to regard-
ing the strong field states as the unperturbed states and the perturbation to be
the fine-structure so the strong field degeneracy is removed by turning on the
fine-structure.

We may find the degree of degeneracy for the strong field case by examin-
ing the possible combinations of the quantum numbers m and ms , that is, the
energies for very strong fields. TABLE 8.3 is a listing of the possible quantum
numbers and the combinations (m + 2ms) used to determine the degree of de-
generacy. There are only five different values of (m + 2ms). Therefore, at very
high fields there will be only five distinct energies so the matrix representing ĤZ ,
see Equation (8.35), will not be diagonal in either the coupled or uncoupled basis
set.

Also included in TABLE 8.3 are the values of m j and j (where possible). We
notice that there are only four states for which it is possible to assign all of the
uncoupled quantum numbers and all of the coupled quantum numbers. These are
clearly the states at the tops and bottoms of the two ladders, the j = 3/2 and the
j = 1/2 ladders. The energies of each of these states will change linearly with
the applied B-field [see Equation (8.18)]. These energies are included in the last
column of the table.

There are four other states for which the expansion of the coupled ket on the
uncoupled basis set will contain more than one uncoupled ket (in this relatively
simple case each contains two uncoupled kets). These are the four uncoupled
states for which a definite value of j cannot be assigned. To solve the problem
we must now actually compute the matrix elements. If we use the coupled kets
as the basis set for the Hamiltonian then, when the proper quantum numbers
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Table 8.4. Clebsch–Gordan coefficients for  = 1
and s = 1/2. 〈

,
1

2
; m, ms

∣∣∣∣ jm j

〉

j ms = +1/2 ⇔ |α〉 ms = −1/2 ⇔ |β〉
3/2

√
(3/2 + m j )/3

√
(3/2 − m j )/3

1/2 −√(3/2 − m j )/3
√

(3/2 + m j )/3

are inserted, Equation (8.28) gives us the four energies listed in TABLE 8.3.
These energies are the diagonal elements of the 4 × 4 diagonal submatrix of
the 8 × 8 matrix that represents Ĥz . The remaining 4 × 4 submatrix is not di-
agonal. To find the elements of this submatrix we use Clebsch–Gordan coef-
ficients. This is easily done by modifying Table 3.2 for the present purpose.
TABLE 8.4 is a listing of the Clebsch–Gordan coefficients for j1 =  = 1 and j2 =
s = 1/2.

From TABLE 8.4 we can immediately write the required coupled kets in terms of
the uncoupled kets. These are tabulated in TABLE 8.5 where the quantum number
designations in the kets are displayed symbolically above the equations; Cα and
Cβ are constants.

The relevant submatrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
3

2

1

2

∣∣∣∣ ĤZ

∣∣∣∣ 32 1

2

〉 〈
3

2

1

2

∣∣∣∣ ĤZ

∣∣∣∣ 12 1

2

〉
0 0

〈
1

2

1

2

∣∣∣∣ ĤZ

∣∣∣∣ 32 1

2

〉 〈
1

2

1

2

∣∣∣∣ ĤZ

∣∣∣∣ 12 1

2

〉
0 0

0 0

〈
3

2

(
− 1

2

)∣∣∣∣ ĤZ

∣∣∣∣ 32
(

− 1

2

)〉 〈
3

2

(
− 1

2

)∣∣∣∣ ĤZ

∣∣∣∣ 12
(

− 1

2

)〉

0 0

〈
1

2

(
− 1

2

)∣∣∣∣ ĤZ

∣∣∣∣ 32
(

− 1

2

)〉 〈
1

2

(
− 1

2

)∣∣∣∣ ĤZ

∣∣∣∣ 12
(

− 1

2

)〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.36)

Table 8.5. Expansion of the coupled
kets in terms of the uncoupled kets.

| jm j 〉 = Cα | mα〉 + Cβ | mβ〉∣∣∣∣32 1

2

〉
= √

2/3 | 0α〉 + √
1/3 | 1β〉∣∣∣∣32

(
− 1

2

)〉
= √

1/3 | −1α〉 + √
2/3 | 0β〉∣∣∣∣12 1

2

〉
= −√

1/3 | 0α〉 + √
2/3 | 1β〉∣∣∣∣12

(
− 1

2

)〉
= −√

2/3 | −1α〉 + √
1/3 | 0β〉
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Inserting the matrix elements, the secular equation is found to be

∣∣∣∣∣∣∣∣∣∣∣∣

−γ + 2
3 µB B − E −

√
2

3 µB B 0 0

−
√

2
3 µB B −5γ + 1

3 µB B − E 0 0

0 0 −γ − 2
3 µB B − E −

√
2

3 µB B

0 0 −
√

2
3 µB B −5γ − 1

3 µB B − E

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(8.37)

where we have adopted the notation of Griffiths1 in which

γ = RH

( α

23

)2

= 1

4
�2 (8.38)

where �2 is the separation between the fine-structure levels for n = 2 as given
in Equation (7.50). From Equation (7.49), the 2p3/2 state is lower than the Bohr
energy by γ , and the 2p1/2 state is lower by 5γ (see also Figure 7.2). This provides
a convenient measure of “weak” and “strong” as they pertain to the n = 2 level
of hydrogen. We wish to find the magnitude of B that makes the energy µB B
comparable with the fine-structure splitting for �2 = 4γ . From Figure 7.2, γ =
0.091 cm−1. Then

B = 4γ

µB

= 4
(
0.091 cm−1

)
(
0.46 cm−1/ T

)
≈ 1 T (8.39)

Because the Earth’s magnetic field is ∼10−4 T we see that experimental studies of
the Zeeman effect for low-lying excited states will be relatively unaffected by the
Earth’s field. If, however, higher lying states are being studied then effects of the
Earth’s field are important because of the 1/n3 dependence of the fine-structure
intervals. Nonetheless, for the case of n = 2 we may regard a “weak” field to
be ∼0.1 T and a “strong” field to be of magnitude ∼10 T.

Returning to Equation (8.37), it is clear that it leads to a quartic equation, but,
conveniently, this equation is already factored into the product of two quadratic
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Table 8.6. Energies for each of the Zeeman states in coupled ket notation for n = 2.

| jm j 〉  Energy (exact) Energy (B → ∞)∣∣∣∣ 1

2

1

2

〉
 = 0 −5γ + µB B µB B∣∣∣∣ 1

2
− 1

2

〉
 = 0 −5γ − µB B −µB B∣∣∣∣ 3

2

3

2

〉
 = 1 −γ + 2µB B 2µB B∣∣∣∣ 3

2
− 3

2

〉
 = 1 −γ − 2µB B −2µB B

∣∣∣∣ 3

2

1

2

〉
 = 1 −3γ + 1

2
µB B +

√
4γ 2 + 2

3
γµB B + 1

4
(µB B)2 µB B

∣∣∣∣ 1

2

1

2

〉
 = 1 −3γ + 1

2
µB B −

√
4γ 2 + 2

3
γµB B + 1

4
(µB B)2 0

∣∣∣∣ 3

2
− 1

2

〉
 = 1 −3γ − 1

2
µB B +

√
4γ 2 − 2

3
γµB B + 1

4
(µB B)2 0

∣∣∣∣ 1

2
− 1

2

〉
 = 1 −3γ − 1

2
µB B −

√
4γ 2 − 2

3
γµB B + 1

4
(µB B)2 −µB B

equations. The quadratic equation from the first 2 × 2 submatrix is

E2 + [6γ − µB B]E + (
5γ 2 − 11

3 γµB B
) = 0 (8.40)

At this point it is worth noting which solutions will be obtained by solving
Equation (8.40). Examination of the ordering of the coupled basis kets in the ma-
trix of (8.36) makes it clear that the solutions to Equation (8.40) will yield the
energies for

(
j = 3/2 ; m j = +1/2

)
and

(
j = 1/2 ; m j = +1/2

)
, both of which

were formed with  = 1 (we have already solved the case for  = 0). Moreover,
examination of the second 2 × 2 submatrix reveals that the energies derived from
it can be obtained from the solutions to Equation (8.40) by making the substitu-
tion B → −B. All of the energies for the n = 2 state of hydrogen are listed in
TABLE 8.6 together with the strong field limits of these energies.

Note that there are exactly five asymptotic energies, consistent with the number
of different combinations of (m + 2ms) in TABLE 8.3. Of course, the last four
entries in the middle column reduce to the weak field limit for µB B � γ .

It is instructive to examine the graphs of eight Zeeman energy levels for n = 2
that are listed in TABLE 8.6. FIGURE 8.2 shows a graph of these eight energies
for “weak” fields. The dashed lines represent the two states for which  = 0 and
are two of the top of the ladder states. The other two are the m j = ±3/2. The
energies of these four states are linear in field strength B as shown in TABLE 8.6.
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Figure 8.2. Exact Zeeman energies for n = 2 in the weak magnetic field regime.

As the field is increased so that µB B is comparable with the fine structure
splitting, as may be seen in FIGURE 8.3, the eight distinct weak field energies
tend toward the five strong field energies, but are nonetheless distinct.

If the field is increased to values at which µB B dominates the fine-structure
splitting, the five distinct energies discussed in the strong field approximation are
approached as is clearly shown in FIGURE 8.4.

Figure 8.3. Exact Zeeman energies for n = 2 in the intermediate magnetic field regime.
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Figure 8.4. Exact Zeeman energies for n = 2 in the strong magnetic field regime.

8.3. Weak Electric Field—The Quantum Mechanical
Stark Effect

The interaction of atoms with an external electric field is referred to as the Stark
effect. When an atom is immersed in an electric field the Hamiltonian is the interac-
tion energy of an electric dipole moment in the field. Thus, the Stark Hamiltonian
ĤS for an electric field in the z-direction F = F k̂ is analogous to Equation (8.4)
for a magnetic field. Because the spin is a magnetic property, it may be ignored so
the Stark Hamiltonian is

ĤS = − p̂ � F

= er � F

= eFz (8.41)

where p̂ = er is the electric dipole moment of the atom. Recall that we are not
using the “hat” for coordinate operators.

At this point it is necessary to discuss the meaning of the term “weak electric
field”. We wish to compare a typical Stark energy with the separations between
adjacent n-states and with the fine-structure intervals �n [see Equation (7.50)]. It
is customary to define “weak electric field” to be a field such that the Stark energy
is much less than the separation between adjacent n-states, but much larger than
the fine-structure interval. We may thus write

�n � eFz � �E (0)
n (8.42)
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We may approximate z by ∼n2a0, the “size” of the atom. Thus,

1

2

∣∣E (0)
n

∣∣ α2

n
� eFn2a0 � 2

n

∣∣E (0)
n

∣∣ (8.43)

which may be written as

1

2

(
e2

4πε0

)
· 1

2n2a0

α2

n
� eFn2a0 � 1

n

(
e2

4πε0

)
· 1

n2a0
(8.44)

Isolating F we have

α2

4

(
e

4πε0a2
0

)
· 1

n5
� F �

(
e

4πε0a2
0

)
· 1

n5
(8.45)

We have written (8.45) such that the quantities in parenthesis are the atomic unit
of electric field. In commonly used laboratory units the atomic unit of electric field
is 5.142 × 109 V/cm. Thus, for the electric field to fit the weak field definition we
must have

6.9 × 104

n5
V/cm � F � 5.142 × 109

n5
V/cm (8.46)

We note that from the point of view of the Bohr levels this criterion does indeed
yield a weak field, but from the point of view of the fine-structure interval it is
actually a strong field.

In accord with the weak field assumption in which ĤFS is assumed small the
unperturbed Hamiltonian is the Coulomb Hamiltonian; Equation (8.2) and the
unperturbed eigenfunctions may be taken to be either the spherical hydrogen atom
wave functions |nm〉 or the parabolic eigenfunctions |n n1 n2 m〉. Because electron
spin is being ignored, we forgo the use of subscripts such as m and designate the
magnetic quantum number by m in this discussion of the Stark effect.

The first-order change in the energy caused by the electric field is

E (1)
S = 〈ĤS〉

= eF〈z〉 (8.47)

The ground state is nondegenerate so the spherical and parabolic eigenfunctions for
the ground state of hydrogen are the same. We elect to use spherical eigenfunction
notation for the ground state so the first-order correction to the energy is

E (1)
S (n = 1) = 〈ĤS〉

= eF〈100|z|100〉 (8.48)

This integral vanishes because the nondegenerate ground state has definite parity.
That is, the product of the square of the wave function (even) and z (odd) is
odd so the integral vanishes. Because the first-order correction vanishes we must
use second-order perturbation theory to obtain the magnitude of the effect of the
field. From perturbation theory the second-order correction to the energy due to a
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perturbation Ĥ (1) is

E (2)
n =

∞∑
k =1
k �=n

|〈n|Ĥ (1)|k〉|2
E (0)

n − E (0)
k

(8.49)

where the bras and kets are the eigenkets of the unperturbed Hamiltonian.
Applying Equation (8.49) to the ground state hydrogen atom in a constant elec-

tric field we obtain

E (2)
1 =

∞∑
n �=1

n−1∑
=0

∑
m=0

e2 F2 |〈100|z|nm〉|2
E (0)

1 − E (0)
n

+
∑

k

e2 F2 |〈100|z|k〉|2
E (0)

1 − E (0)
k

(8.50)

where the first sum in Equation (8.50) represents the sum over the bound states
and the second the sum over continuum states as characterized by their momentum
k. The reason the second sum is necessary is that the summation must be over a
complete set of eigenfunctions. It is clear that E (2)

1 will lower the ground state
energy because both denominators are manifestly negative.

We may obtain an upper bound to E (2)
1 by replacing all of the E (0)

n in the de-
nominators of Equation (8.50) by E (0)

2 . This leads to

E (2)
1 <

e2 F2

E (0)
1 − E (0)

2

∑
q,n �=1

|〈100|z|q〉|2 (8.51)

where we have used q to designate all quantum numbers, bound state, and con-
tinuum. We may further simplify the summation in Equation (8.51) using the
previously established integral relation 〈100|z|100〉 = 0.∑

q,n �=1

|〈100|z|q〉|2 =
∑

q

|〈100|z|q〉|2 − |〈100|z|100〉|2

=
∑

q

〈100|z|q〉〈q|z|100〉

= 〈100|z2|100〉
= 1

3
〈100|r2|100〉

= a2
0 (8.52)

Also used in obtaining the result of Equation (8.52) was the spherical symmetry
of the ground state, 〈z2〉 = 1

3 〈r2〉, the completeness relation2

∑
q

|q〉〈q| = 1 (8.53)

and the expectation value of r2 in the ground state of hydrogen3, 3a2
0 .
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Putting this in (8.51) and replacing the energies by their values we have

E (2)
1 <

e2 F2(
3
4 E (0)

1

)3a2
0

<
4e2 F2

3

[
− (4πε0) 2a0

e2

]
a2

0

< −(4πε0)

(
8

3

)
F2a3

0 (8.54)

The sum in Equation (8.50) can, in fact, be evaluated exactly.4 The answer is

E (2)
1 = −9

4
(4πε0) a3

0 F2 (8.55)

which authenticates that the result in (8.54) is indeed an upper bound.
Notice that E (2)

1 ∝ F2. In general, if there is no permanent electric dipole mo-
ment, a moment may be induced by the field. The relationship is linear so that the
induced dipole moment pin

pin = αd F (8.56)

where pin represents an electric dipole moment and αd is the dipole polarizability.
The dipole polarizability is often represented simply by α; we use the subscript d
to clearly differentiate it from the fine-structure constant. (The number of symbols
available is limited and α seems to be a favorite among physicists.) According to
Equation (8.56) αd is the rate of change of the dipole moment with respect to the
applied electric field. That is,

αd = dpin

d F
(8.57)

In general, the dipole moment reflects the change in the energy with respect to the
field F so

p = −d E

d F
(8.58)

and

αd = −d2 E

d F2
(8.59)

Therefore, from Equation (8.55) we obtain the exact value of the polarizability of
the ground state of hydrogen

αd = 9

2
(4πε0) a3

0 (8.60)

Now, how about excited states? As we have seen previously, as a result of
the accidental degeneracy, excited states of hydrogen can have permanent dipole



8.3. Weak Electric Field 163

moments, the z-components of which are given by (3/2) n (n1 − n2). This is easily
seen mathematically when it is realized that any linear combination of eigenfunc-
tions having the same eigenvalue, that is, the same n, is an eigenfunction with
energy E (0)

n . Such a linear combination can be as skewed with respect to the xy-
plane as we please and thus have a permanent electric dipole moment. Inspection
of Equation (8.41) shows that the linear Stark effect will be observed for excited
states of hydrogen.

The calculation of the Stark energies for excited states can be performed using
spherical eigenfunctions and degenerate perturbation theory in a manner analo-
gous to the method employed to solve for the Zeeman energies at intermediate
magnetic fields. This calculation is carried out for the n = 2 states as an exam-
ple of degenerate perturbation in textbooks on quantum mechanics.5 The result is
that, as expected, the accidental degeneracy is partially lifted by the electric field.
States with the same value of the quantum number m are mixed and the energies
corresponding to these mixed spherical states are shifted by an amount ±3ea0 F
(note the correct units of energy, dipole moment times electric field). The wave
function corresponding to the perturbed states are

|ψ±〉 = 1√
2

(|210〉 ∓ | 200〉)
|ψ1〉 = |211〉
|ψ2〉 = |21 − 1〉 (8.61)

where the last two wave functions correspond to unshifted energies. The results
of the degenerate perturbation theory calculation are summarized in FIGURE 8.5
where the energies are in atomic units.

It was remarked previously that for the hydrogen atom the Schrödinger equation
is separable in parabolic coordinates even if there is an applied electric field. For
this reason the parabolic eigenfunctions are sometimes referred to as Stark eigen-
functions. Indeed, the linear combinations of spherical eigenfunctions deduced
from degenerate perturbation theory are parabolic eigenfunctions. That is, using

Figure 8.5. Schematic diagram showing the level splitting of the n = 2 energy level of
hydrogen under the influence of an external electric field F . The kets represent spherical
eigenfunctions.
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the results of Problem 6.6, viz.

|2001〉par = |211〉sph

|2100〉par = 1√
2

(|210〉sph + |200〉sph)

|2010〉par = 1√
2

(|210〉sph − |200〉sph)

|211 − 1〉par = |21 − 1〉sph (8.62)

it is clear that the kets in Equation (8.61) are related to the parabolic kets in Equation
(8.62) according to

|ψ+〉sp = |2010〉par

|ψ−〉sp = |2100〉par (8.63)

Of course, there is also a one-to-one correspondence between the remaining two
eigenfunctions. This suggests that it may be simpler to treat the first-order Stark
effect in hydrogen using parabolic coordinates instead of spherical coordinates.

To see how this solution follows immediately if parabolic eigenfunctions are
used we must write the Stark Hamiltonian in terms of the Lenz vector. We sus-
pect from the classical treatment of Chapter 5 that p̂z ∝ Âz . Our approach shows
that, in fact, the quantum mechanical operator p̂z = (3/2) n2 Âz in atomic units
as was found classically. This can be demonstrated by showing that the matri-
ces representing these operators are proportional using, of course, the same basis
set. Because Âz is one of the commuting operators used in the separation of
the Schrödinger equation in parabolic coordinates the corresponding matrix us-
ing parabolic eigenfunctions as the basis functions is, by definition, diagonal. We
would then, however, have to compute the matrix elements of z using parabolic
coordinates. An alternate method is to obtain the matrices of p̂z and Âz using
spherical hydrogen atom eigenfunctions as the basis. Because we have already
derived the action of Âz on a spherical eigenfunction we elect to use spheri-
cal hydrogen atom eigenfunctions as the basis. We continue to employ the weak
field assumption so that the states involved all have the same principal quantum
number n.

Now, z operating on an arbitrary spherical eigenfunction leads to

z Rn(r )Y m
 = r cos θ Rn(r )Y m

 (θ, φ)

= r Rn(r )

√
( + m + 1)( − m + 1)

(2 + 1)(2 + 3)
Y m

+1(θ, φ)

+ r Rn(r )

√
( + m)( − m)

(2 + 1)(2 − 1)
Y m

−1(θ, φ) (8.64)
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where we have used the relation

cos θY m
 (θ, φ) =

√
( + m + 1)( − m + 1)

(2 + 1)(2 + 3)
Y m

+1(θ, φ)

+
√

( + m)( − m)

(2 + 1)(2 − 1)
Y m

−1(θ, φ) (8.65)

Thus, the diagonal elements vanish and the only nonzero elements of the z-matrix
are those for which ′ =  ± 1 and m = m ′; the nonzero matrix elements are

〈nm|z|n( − 1)m〉 =
√

( − m)( + m)

(2 − 1)(2 + 1)
Rn (−1)

n (8.66)

and

〈nm|z|n( + 1)m〉 =
√

( − m + 1)( + m + 1)

(2 + 1)(2 + 3)
Rn (+1)

n (8.67)

where

Rn′
n =

∫
r3 Rn(r )Rn′ (r )dr (8.68)

The Rn (±1)
n are evaluated in Problem 4.6. They are

Rn (−)1
nl = 3

2
n
√

n2 − 2

Rn (+)1
nl = 3

2
n
√

n2 − ( + 1)2 (8.69)

The final results for the nonvanishing z-matrix elements are therefore

〈nm|z|n( − 1)m〉 = 3

2
n

√
( − m)( + m)(n2 − 2)

(2 − 1)(2 + 1)
(8.70)

and

〈nm|z|n( + 1)m〉 = 3

2
n

√
( − m + 1)( + m + 1)[n2 − ( + 1)2]

(2 + 1)(2 + 3)
(8.71)

From Equation (6.59) we have

Âz Rn(r )Y m
 (θ, φ) = 1

n

√
( − m)( + m)(n2 − 2)

(2 − 1)(2 + 1)
Rn (−1)(r )Y m

−1(θ, φ)

+ 1

n

√
( − m + 1)( + m + 1)[n2 − ( + 1)2]

(2 + 1)(2 + 3)
Rn (+1)(r )Y m

+1(θ, φ)
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so it is clear that the same matrix elements that are nonvanishing for Âz are identical
to those for z. Moreover, these matrix elements are

〈nm| Âz|n( − 1)m〉 = 1

n

√
( − m)( + m)(n2 − 2)

(2 − 1)(2 + 1)
(8.72)

and

〈nm| Âz|n( + 1)m〉 = 1

n

√
( − m + 1)( + m + 1)[n2 − ( + 1)2]

(2 + 1)(2 + 3)
(8.73)

It is clear then that

〈nm|z|n( ± 1)m〉 = 3
2 n2〈nm| Âz|n( ± 1)m〉 (8.74)

from which we infer that p̂z = (3/2)n2 Âz which is identical to the classical result.
Returning now to the Stark effect, the complete Hamiltonian is

Ĥ = Ĥ0 + ĤS

= Ĥ0 − p̂z F

= Ĥ0 − 3

2
n2 FÂz (8.75)

The parabolic eigenfunctions are, however, eigenfunctions of both Ĥ0 and Âz so
we may immediately write the eigenvalues. This is reminiscent of the strong field
Zeeman effect for which the spherical eigenfunctions are eigenfunctions of both
Ĥ0 and ĤB . In Chapter 6 we found that the eigenvalues of Âz are (n2 − n1)/n so
the total energy shift from the degenerate Bohr levels are

ES(n, n1, n2) = 3
2 n(n1 − n2)F (8.76)

Notice that when the quantum numbers corresponding to n = 2 are inserted
in Equation (8.76) the energies are the same as those obtained using degenerate
perturbation theory and the spherical eigenfunctions.

It is convenient to define another parabolic quantum number, the electric quan-
tum number q . (This quantum number is often designated k, but we use q here
to avoid confusion with the quantum number associated with K̂ 2.) Of course, it
is dependent upon the quantum numbers that arise naturally from the solution to
Schrödinger’s equation in parabolic coordinates. We define

q ≡ n1 − n2 (8.77)

Because of the constraints on n1 and n2, q changes in steps of two for fixed m. In
terms of the quantum number q the Stark energy is

E (1)
nq = 3

2 nq F (8.78)
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Table 8.7. Stark effect parameters in
parabolic coordinates for the n = 2
state of hydrogen in atomic units.

n1 n2 m q E (1)
2q pz

1 0 0 1 +3F +3
0 1 0 −1 −3F −3
0 0 1 0 0 0
0 0 −1 0 0 0

We may summarize the results for n = 2 in TABLE 8.7 which includes the
parabolic quantum numbers, the Stark energy, and the permanent electric dipole
moment for that state.

The n = 2 results were relatively easily obtained using spherical eigenfunctions,
however, the situation for n = 3 is not so simple. To perform the calculation using
degenerate perturbation theory it would be necessary to diagonalize a 9 × 9 matrix
(actually only a submatrix). It is, however, a simple matter to obtain the Stark
energies using parabolic eigenfunctions. From Equation (8.78) we immediately
obtain the values listed in TABLE 8.8.

Using the operator formalism developed in Chapter 6 it is also possible to obtain
the wave functions corresponding to a particular Stark energy in terms of either the
parabolic or spherical basis set. Because the parabolic quantum numbers for each
energy are known, the corresponding parabolic eigenfunctions will be obvious.
It requires somewhat more work to obtain these eigenfunctions in terms of the
spherical basis set as shown below.

Because the operators Î and K̂ are angular momenta it is easiest to begin by
using the parabolic eigenfunctions designated by the set of quantum numbers that
correspond to Î and K̂ , that is (n i mi mk). It is not necessary to include k in this
list because i = k. We can, of course, convert the set of quantum numbers that
designate a particular wave function to the commonly used parabolic quantum
numbers (n n1 n2 m) using Equation (6.88).

Table 8.8. Stark effect parameters in
parabolic coordinates for the n = 3 state of
hydrogen in atomic units.

n1 n2 m q E (1)
3q pz

2 0 0 2 9 +9
0 2 0 −2 −9 −9
1 1 0 0 0 0
1 0 1 1 +(9/2) +9/2
1 0 −1 1 +(9/2) +9/2
0 1 1 −1 −(9/2) −9/2
0 1 −1 −1 −(9/2) −9/2
0 0 2 0 0 0
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Table 8.9. Eigenfunctions that are the same in parabolic and spherical
coordinates with the different sets of quantum numbers.

Spherical Parabolic Parabolic Parabolic
|n  m〉 |i mi mk〉 |n n1 n2 m〉 |n q m〉

|n(n − 1)(n − 1)〉sp

∣∣∣∣ (n − 1)

2

(n − 1)

2

(n − 1)

2

〉
ik

|n00(n − 1)〉par |n0(n − 1)〉q

Crucial to the development of this method for obtaining the Stark wave functions
in terms of the spherical basis is the fact that there are always states for which a
parabolic eigenfunction is exactly equal to a spherical eigenfunction. These are
the parabolic states for which q = 0, that is, states for which n1 = n2, and for
which |m| has its maximum value; that is, |m|max = n − 1. For example, in our
treatment of the Stark effect for the n = 2 state of hydrogen it was found that
|2001〉par = |211〉sp and |211 − 1〉par = |21 − 1〉sp. The reason for this identity is
that |m|max = n − 1 can occur for only one value of ; viz.  = (n − 1). Because m
is a good quantum number in each coordinate system there is only one component
in the expansion of the parabolic ket with m = (n − 1) on the spherical basis set,
viz. the spherical ket with both and m and  equal to (n − 1). A similar argument
holds for the parabolic ket with m = − (n − 1). These are, of course, the top and
bottom of the ladder states because the parabolic eigenstates are the uncoupled set
whereas the spherical are the coupled.

We can use the raising and lowering operators to generate the set of Stark states
using the formulas developed in Chapter 6. The states for which the parabolic
and spherical eigenfunctions are identical are summarized in TABLE 8.9 for all
different sets of quantum numbers. Of course, the m quantum number (m = mi +
mk) is the same for all of these designations because it is a good quantum number
in both spherical and parabolic coordinates. Note also that, for a given n, n1 = n2

means that mi = mk , Equation (6.88). Note that the Stark energy, Equation (8.76),
vanishes for these states; that is, there is no Stark shift when F is applied. In the
remainder of this chapter we attach subscripts to each ket to clarify which set of
quantum numbers is being used.

From the definition of Î in Chapter 6

Î =
(

1

2

)(
L̂ + Â

′)
(8.79)

and, because Â′ = n Â,

Î = 1

2
(L̂ + n Â) (8.80)

Therefore,

Î± = 1

2
(L̂± + n Â±) (8.81)

To obtain the Stark eigenfunctions in terms of the spherical basis set we operate
on both sides of the equation for which the parabolic and spherical eigenfunctions
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are identical, as in the construction of the Clebsch–Gordan coefficients in Chap-
ter 3. In fact, this is exactly what we are doing as discussed later. We choose to
begin by applying Î− to the wave function for which m = n − 1 and mi = mk ; that
is, m = n − 1 and n1 = n2. The left side is quite simple because Î is an angular
momentum so

Î−

∣∣∣∣ (n − 1)

2

(n − 1)

2

(n − 1)

2

〉
ik

= √
n − 1

∣∣∣∣ (n − 1)

2

(n − 3)

2

(n − 1)

2

〉
ik

(8.82)

To obtain the action of Î± on the |nm〉sp we use Equations (2.61), (2.62), and
(6.60) to obtain

Î± |nm〉sp

= (
1
2

)
(L̂± + n Â±)|nm〉sp

= (
1
2

)√
( ∓ m)( ± m + 1)|n(m ± 1)〉sp

∓ (
1
2

)√ [n2 − ( + 1)2]( ± m + 1)( ± m + 2)

(2 + 1)(2 + 3)
|n( + 1)(m ± 1)〉sp

± (
1
2

)√ [n2 − 2]( ∓ m)( ∓ m − 1)

(2 − 1)(2 + 1)
|n( − 1)(m ± 1)〉sp (8.83)

and

Î−|n(n − 1) (n − 1)〉sp

= 1
2

√
2(n − 1)|n (n − 1) (n − 2)〉sp + 0

− 1
2

√
2(n − 1)|n (n − 2) (n − 2)〉sp

=
√

(n − 1)

2
[|n (n − 1) (n − 2)〉sp − |n (n − 2) (n − 2)〉sp] (8.84)

Equating (8.82) and (8.84) we obtain∣∣∣∣ (n − 1)

2

(n − 3)

2

(n − 1)

2

〉
ik

= 1√
2

[|n(n − 1)(n − 2)〉sp − |n(n − 2)(n − 2)〉sp]

(8.85)

Converting the left-hand side to the common parabolic number designations
|n n1 n2 m〉 using Equation (6.88)

n1 = (n − 1)

2
− mi ⇒ mi = (n − 1)

2
− n1

n2 = (n − 1)

2
− mk ⇒ mk = (n − 1)

2
− n2

n = 2i + 1 ⇒ i = n − 1

2
(8.86)
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we find that

|n10 (n − 2)〉par = 1√
2

[|n(n − 1) (n − 2)〉sp − |n(n − 2) (n − 2)〉sp] (8.87)

Notice that for n = 2 we retrieve |ψ+〉 as determined using degenerate perturba-
tion theory, Equation (8.61). Also, because m = (n − 2) in this state there are two
spherical components in the expansion of the parabolic eigenfunctions on the spher-
ical basis set, viz. the kets for which n =  − 1 and n =  − 2. The same will be
true for m = −(n − 2). Clearly, application of Î− to |n 10 (n − 2)〉par will produce
an expansion for |n 20 (n − 3)〉par that contains three spherical eigenfunctions. Of
course, the coefficients are merely the Clebsch–Gordan coefficients because the
parabolic kets are the uncoupled set and the spherical kets the coupled set.

We see then that successively lowering mi by repeated application of Î− will in
turn lower m and produce the Stark states of maximum energy for each value of
m. To obtain the remaining states for a given m we judiciously apply Î± and K̂∓
because such application does not change m = mi + mk . For example, starting
with the parabolic ket above we have

Î− K̂+|n10 (n − 2)〉par = Î−
√

n(n + 1)|n11 (n − 1)〉par

=
√

n(n + 1)
√

(n + 1)n|n01 (n − 2)〉par (8.88)

Although this might seem a tedious task it not necessary to continue it because,
as noted above, knowledge of the Clebsch–Gordan coefficients is adequate. For
example, if we wish to solve for the Stark eigenfunctions for n = 3 we can use
TABLE 3.4 which is reproduced as TABLE 8.10 with the notation changed to be
consistent with the notation used in this chapter.

For n = 3, the general result of Equation (8.85) is

|101〉ik = |3101〉par

= 1√
2

[|321〉sp − |311〉sp] (8.89)

Table 8.10. Table of Clebsch–Gordan coefficients for i = 1 = k in the notation of this
chapter.

i = 1 k = 1  = 2  = 1  = 0

mi mk m = 2 m = 1 m = 0 m = −1 m = −2 m = 1 m = 0 m = −1 m = 0

1 1 1
1 0

√
1/2

√
1/2

1 −1
√

1/6
√

1/2
√

1/3

0 1
√

1/2 −√
1/2

0 0
√

2/3 0 −√
1/3

0 −1
√

1/2
√

1/2

−1 1
√

1/6 −√
1/2

√
1/3

−1 0
√

1/2 −√
1/2

−1 −1 1
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Table 8.11. Stark energies for n = 3 with
appropriate quantum numbers.

i = k mi mk n1 n2 q m E (1)
3q

1 −1 −1 2 2 0 −2 0
1 −1 0 2 1 −1 −1 9/2
1 −1 1 2 0 −2 0 9
1 0 −1 1 2 1 −1 −9/2
1 0 0 1 1 0 0 0
1 0 1 1 0 −1 1 0/2
1 1 −1 0 2 2 0 −9
1 1 0 0 1 1 1 −9/2
1 1 1 0 0 0 2 0

which can be read across the row for which mi = 0 and mk = 1. Examining a
Stark state that has three spherical components we see that, for example

|11 − 1〉ik = |302〉par

= 1√
6
|320〉sp + 1√

2
|310〉sp + 1√

3
|300〉sp (8.90)

The Stark energy for this state is –9F . TABLE 8.11 contains Stark energies for
n = 3 that are identical with TABLE 8.8 except that the i and k quantum numbers
are included.

8.4. Weak Electric Field—The Classical Stark Effect

As we saw in our discussion of the Kepler problem, for a pure Coulomb potential
the orbit is fixed in space due to the constant of the motion, A, the Lenz vector.
The fact that this constant is a vector that points along the semi-major axis ensures
that the orbit is fixed in space. As for any central potential problem, the angular
momentum vector L is also conserved. Conservation of L ensures that the motion
takes place in a plane that is perpendicular to L. Application of a constant electric
field destroys the spatial symmetry that causes L to be conserved so the motion is
no longer constrained to a plane. If this field is weak then the orbit will resemble an
ellipse, but the orbital plane and the shape of the ellipse do not remain constant. To
simplify the problem we note that under these circumstances the electron moves
around the nearly elliptical orbit in a time short compared with the time required
for changes in the plane and shape of the trajectory. Thus, the time dependencies
of the shape and orientation of the orbit provide a classical picture of the hydrogen
atom subjected to a weak constant electric field.

It has been shown that the z-component of the dipole moment of the hydrogen
atom in terms of the Lenz vector is

p̂z = 3
2 n2 Âz (8.91)
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If we identify the quantum mechanical operators with their classical counter-
parts we see that that the energy shift caused by the external electric field F =
F k̂, is

�E = −p � F

= − 3
2 n2 Az F (8.92)

which is consistent with the quantum mechanical result. Previously, we found
that the quantum mechanical eigenvalues of Âz in terms of the parabolic quantum
numbers are (n1 − n2)/n. Inserting this in the classical result yields

�E = 3
2 n(n1 − n2)F (8.93)

which is identical with E (1)
n as obtained in Equation (8.76).

We wish to find the effect of the electric field on the Keplerian orbit of the
electron. It should again be emphasized that the orbital motion is rapid with respect
to changes in the shape of the orbit so we may consider the orbit as the dynamical
entity. The time dependence of L can be obtained by using the classical relationship
for the torque on an electric dipole. The torque is the time derivative of the angular
momentum so

L̇ = p × F

= 3
2 n2(A × F) (8.94)

The appearance of n (and ) does not signify a quantal calculation. These quantities
may be regarded as being continuously variable for this calculation. We note from
Equation (8.94) that, because F is in the z-direction, L̇ z = 0 and Lz is a constant
of the motion when the field is present.

There is considerably more algebra involved in obtaining the equation for Ȧ
so we do not perform this derivation here. The reader is referred to the original
paper.6 The result is

Ȧ = 3
2 (L × F) (8.95)

Notice again that, because F is in the z-direction, Ȧz = 0 so Az is a constant of
the motion. That both Lz and Az are constants of the classical motion indicates
that their quantum mechanical operators commute with the Hamiltonian, thus
permitting the problem of a hydrogen atom in an electric field, the Stark effect, to
be separated in some coordinate system, in this case parabolic coordinates.

The coupled symmetric equations for Ȧ and L̇ can easily be uncoupled by
differentiating one and substituting into the other. For example, the equation of
motion for A is given by

Ä = −( 3
2 n
)2 {A (F � F) − F (F � A)} (8.96)
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Because F = F k̂

Äz = −( 3
2 n
)2 [

Az F2 − F (F Az)
]

= 0 (8.97)

so that

Ä = −( 3
2 n
)2

[A (F � F) − F (F � A)]

= −( 3
2 n
)2

A (F � F)

= −( 3
2 n
)2

F2
(

Ax î + Ay ĵ
)

(8.98)

The x- and y-components of Ä are therefore given by

Äi (t) = −( 3
2 nF

)2
Ai (t) (8.99)

Taking Ay(t = 0) = 0 we obtain

[Ax (t)]2 + [Ay(t)]2 = A2
x0 cos2(ωSt) + A2

y0 sin(ωSt) (8.100)

where the Ai0 are the values of the x- and y-components at t = 0 and

ωS = (3/2)nF (8.101)

is the Stark frequency. These relationships for the components of A show that the
Lenz vector describes a rotating ellipse in a plane perpendicular to the direction of
the applied field and that the frequency of the motion is ωS . Although the motion
of A indicates that the shape of the elliptical orbit is changing, this change can
be associated with changes of only the minor axis because the energy remains
constant and the energy is given by a, the semi-major axis.

If the equations of motion for A and L are uncoupled to give an equation that
describes the motion of L it is found that it also outlines an ellipse rotating with
frequency ωS , but in a plane perpendicular to the z-axis. FIGURE 8.6 shows the
rotation of the vectors A and L about the z-axis. Clearly, these vectors and the orbit
revolve rigidly about the field direction because A is always in the plane of the
orbit and L is perpendicular to the plane of the orbit. The entire assembly rotates
with frequency ωS = (3/2)nF , the Stark frequency.

The classical view of the Stark effect on hydrogen atoms is one of a pulsating
ellipse, rotating about the electric field vector. The pulsation causes the semi-
minor, but not the semi-major, axis to change as the plane of the orbit rotates.
FIGURE 8.7 shows the trajectory of an electron in a classical hydrogen atom
that is subjected to an external electric field F that has orbital parameters cor-
responding to the parabolic quantum numbers n = 11, m = 1, and g = 4. The
trajectory was generated by numerical solution of Hamilton’s equations of motion
with F = 2.917 × 10−7 a.u. (1500 V/cm). The nearly Keplerian orbits of the elec-
tron are slightly distorted and rotate around the electric field vector as described
above.
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Figure 8.6. The rotation of L and A about the z-axis for an externally applied electric field
in the z-direction.

Before leaving the subject of the classical hydrogen atom we examine the relation
between the classical and quantal results. We expect the correspondence principle
to manifest itself. To compare the classical and quantal effects we return to Equation
(8.78) for the quantum mechanical Stark energy in parabolic coordinates. Because
q = (n1 − n2) changes by two for fixed values of m, the difference in energy
between adjacent levels of the same m is given by

�E = 3
2 n(2)F

= 3nF (8.102)

This is not, however, the energy separation between adjacent Stark states of
different m. The Stark manifold of states having magnetic quantum number m
is, in fact, interleaved with states having magnetic quantum number (m + 1). The
arrary corresponding to (m + 2) coincides with the m-array, but with two fewer
states, one at the top and one at the bottom. The interleaving of the arrays is
illustrated in FIGURE 8.8 for adjacent values of m.

Figure 8.7. Classical trajectory of an electron having orbital parameters corresponding to
the parabolic quantum numbers n = 11, m = 1, and q = 4. [From Reference 6.]
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Figure 8.8. Stark energies for adjacent values of m.

From FIGURE 8.8 it is clear that the separation between adjacent Stark levels
is (3/2)nF which is precisely the Stark frequency ωS given Equation (8.101).
As suggested above, this is not an accident!6 According to the correspondence
principle, radiation given off when a system undergoes a transition between levels
separated by energy E is E/h̄, which in this case is ωS . The frequency of revolution
of the orbit about F is also ωS . The energy changes because it is the product of
the z-component of the electric dipole moment and the magnitude of the field.
Therefore, in our classical picture, different energy levels correspond to different
orientations of the orbital plane with respect to the external field. Because the
frequency of revolution remains constant, the energy levels at any given value of
F , a vertical line in FIGURE 8.8, have constant separation.

Problems

8.1. Show that L̂ � Ŝ = L̂ z Ŝz + 1
2 (L̂+ Ŝ− + L̂− Ŝ+).

8.2. Calculate the Zeeman splitting of each of the magnetic sublevels of hydrogen
for n = 2 assuming that the electron has zero spin. Assume that the Zeeman energy
and the fine-structure splitting are comparable.
8.3. Compute the energy shifts when a hydrogen atom in the n = 2 state is im-
mersed in a very strong constant external magnetic field B = Bk̂. Sketch these
energies as a function of µB B assuming that the (zero-field) fine-structure interval
is so small compared with the Zeeman energies that it is not noticeable in the
sketch. This is the Paschen–Bach effect. How do these energies compare with the
asymptotic energies in Table 8.6?
8.4. Show that E (1)

Z for the strong and weak field cases, Equations (8.18) and
(8.28), are the same for the top of the ladder state (or the bottom of the ladder
state) and that they are the same as Equation (8.32).
8.5. Consider the effect of application of a constant magnetic field B = Bk̂ on the
hyperfine levels of the ground state of hydrogen. Using the notation of Section 3.5
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the Hamilton is

Ĥ =
(

2µB

h̄
Ŝ1z + µN

h̄
Ŝ2z

)
B + K Ŝ1

� Ŝ2 ≈ 2µB

h̄
Ŝ1z B + 2κ

h̄2 Ŝ1
� Ŝ2

where the subscripts 1 and 2 refer to the electron and proton, respectively.
(a) Recast the Hamiltonian in the form

Ĥ = µB Bσ̂1z + κ

2
σ̂1

� σ̂ 2

= ξ σ̂1z + W σ̂1
� σ̂ 2

where W = κ/2 and ξ = µB B.
(b) Find the exact values of the energies for this Hamiltonian. It is not necessary
to find the eigenkets.
(c) Correlate the energies that you found in part (b) with the eigenkets for B = 0
from which they emanate. These kets were found in Section 3.5. The eigenkets are
not needed for this part either. Draw a graph of the energy E versus B; E versus
ξ will do.
8.6. Consider an electron of mass me confined to an infinite one-dimensional
potential well of width L . Show that the polarizability of this “atom” in the ground
state is

α = 256
e2L4me

π6h̄2

∞∑
q=1

4q2(
4q2 − 1

)5

Note that q is an index, not the electric quantum number. The following integral
will be helpful.∫ π

0
y sin y sin (ny) dy =

{−4n
/ [

(n + 1)2 (n − 1)2
]

, n even
0 , n odd

8.7. The energy levels in atomic units of a hydrogen atom in a constant electric
field are, to first-order,

E (n, n1, n2) = − 1

2n2
+ 3

2
n (n1 − n2) F

where n, n1, and n2 are parabolic quantum numbers.
(a) Show that the difference between adjacent levels having the same principal
quantum number is

�E =
(

3

2

)
nF

(b) Show that the difference between the two extreme components for a given
principal quantum number and magnetic quantum number is

�E = 3Fn (n − 1)

8.8. It can be shown (see ref. 6) that the time rates of change of the classical
angular momentum and the Lenz vector, in atomic units, for an H-atom subjected
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to a constant electric field F = F k̂ are

L̇ =
(

3

2

)
n2(A × F) and Ȧ =

(
3

2

)
(L × F)

Show that these equations lead to a picture of the Keplerian orbit of the electron
rotating about the electric field vector with a frequency ωS = (3/2)nF .
8.9. (This solution to this problem is identical with that for Problem 6.6. The
question is, however, phrased in the context of this chapter. If you did not work
it in Chapter 6 it is recommended that you work it here.) Use the fact that the
parabolic hydrogen atom eigenfunctions are also eigenfunctions in the presence
of a constant electric field to derive the Stark effect wave functions for n = 2 in
terms of the spherical eigenfunctions for a hydrogen atom in a constant electric
field. Use the formalism of Chapter 6 by applying the operator L̂− = Î− + K̂− to
the spherical eigenfunction |nm〉sp = |211〉sp which is identical to the parabolic
eigenfunction |nn1n2m〉par = |2001〉par. Note that, although redundant, we use
four quantum numbers in the parabolic kets.
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9
The Helium Atom

9.1. Indistinguishable Particles

Our discussion has so far been concerned only with the hydrogen atom, a two-
particle system. The transition to the study of multielectron atoms necessarily
requires the use of approximation methods and consideration of the indistinguisha-
bility of electrons. We first consider the effects of indistinguishability and the fact
that electrons are fermions. We write a ket that specifies a two-particle state as

particle #1
in this location
in state a

particle #2
in this location
in state b

particle
designation

state
designation

|ab>=|a>1|b>2

Now define the exchange operator P̂12 that exchanges the particles

P̂12|ab〉 = |ba〉 (9.1)

or

P̂12|a〉1|b〉2 = |b〉1|a〉2 (9.2)

For any acceptable state the “exchanged” state must be identical to the original
state because the particles are indistinguishable. Therefore, we cannot tell if we
have exchanged particles so that

P̂12|ψ〉 = λ|ψ〉 (9.3)

where λ is the eigenvalue of the operator P̂12. In fact, the exchange operator
must commute with the operator corresponding to any observable for a system of
identical particles. In particular, we must have [P̂12, Ĥ ] = 0.

178



9.1. Indistinguishable Particles 179

Because allowed states are eigenfunctions of P̂12 with eigenvalue λ, application
of P̂12 twice returns the system to the original state; that is,

(P̂12)2|ψ〉 = λ2|ψ〉
= |ψ〉 (9.4)

from which it is clear that λ = ±1. Now, if two identical particles are in the same
state |a〉, they are in an eigenstate of P̂12 with λ = +1. That is,

P̂12|aa〉 = |a〉|a〉 (9.5)

which is symmetric under interchange of particles. On the other hand, a state
|ab〉 where b �= a is not an eigenstate of P̂12. To make it one we must find linear
combinations of the states |ab〉 and |ba〉 that are eigenstates of P̂12. The matrix
representation of P̂12 using |ab〉 and |ba〉 as a basis is

P̂12 →
( 〈ab|P̂12|ab〉 〈ab|P̂12|ba〉

〈ba|P̂12|ab〉 〈ba|P̂12|ba〉
)

(9.6)

Because |ab〉 and |ba〉 are orthonormal, the matrix elements are easily calculated.
We have

P̂12 →
(

0 1
1 0

)
(9.7)

The eigenvalue equation leads us to the secular equation∣∣∣∣−λ 1
1 −λ

∣∣∣∣ = 0 ⇒ λ2 = 1 ⇒ λ = ±1 (9.8)

as was previously deduced. Now we find the ket corresponding to λ = +1. Calling
the ket |ψs >, where the s stands for “symmetric” (preempting the answer) we have

|ψs〉 = c1|ab〉 + c2|ba〉 (9.9)

The eigenvalue equation with λ = +1 is then(
0 1
1 0

)(
c1

c2

)
= +1 ·

(
c1

c2

)
⇒ c1 = c2 (9.10)

and we have

|ψ〉s = 1√
2

(|ab〉 + |ba〉) (9.11)

Similarly, for λ = −1 we obtain

|ψ〉a = 1√
2

(|ab〉 − |ba〉) (9.12)

where the a stands for “antisymmetric”.
Note that the identical particles must be in either |ψ〉s or |ψ〉a , not a linear

combination of them because the exchanging of particles must produce a state that



180 9. The Helium Atom

differs from the original state by only a phase. That is,

P̂12(cs |ψs〉 + ca|ψa〉) = cs |ψs〉 − ca|ψa〉
�= eI δ(cs |ψs〉 + ca|ψa〉) (9.13)

Now, there are two types of particles, bosons and fermions.

Bosons: Integral spin, only symmetric states, for example, deuterons
Fermions: 1/2-integral spin, only antisymmetric states, for example, electrons

Recall that if two identical particles are in the same state then the state is symmetric.
This is the Pauli principle. That is, two electrons (fermions) cannot occupy the same
state so the total wave function must be antisymmetric.

The Pauli principle is sometimes stated as “no two electrons in an atom can
have the same set of quantum numbers.” This is correct, but the statement above
concerning an antisymmetric wave function is the basis for this statement.

9.2. The Total Energy of the Helium Atom

The helium atom is the prototype of a multielectron atom. The coordinates for the
system are shown in FIGURE 9.1.

The Hamiltonian for this system in atomic units is

Ĥ = p2
1

2
+ p2

2

2
− Z

|r1| − Z

|r2| + 1

|r1 − r2| (9.14)

where Z = 2 for a helium atom, Z = 3 for once-ionized lithium, and so on. Re-
taining Z in the Hamiltonian (rather than replacing it by Z = 2 will turn out to be
convenient).

Figure 9.1. Coordinates used in the helium atom calculation.
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The electron–electron repulsion enters the Hamiltonian in only the last term so
we write Ĥ as the sum of three Hamiltonians

Ĥ01 = p2
1

2
− Z

|r1| ; Ĥ02 = p2
2

2
− Z

|r2| ; Ĥ1 = 1

|r1 − r2| (9.15)

The unperturbed Hamiltonian is taken to be

Ĥ0 = Ĥ01 + Ĥ02 (9.16)

Because each of the terms in Ĥ0 involves the coordinates of only a single elec-
tron, Ĥ0 is separable. The eigenfunctions and eigenvalues are straightforward. The
eigenfunctions are products of one-electron eigenfunctions with Z = 2 and the
eigenvalues are the sums of the corresponding one-electron eigenvalues.

The separation of the unperturbed Hamiltonian into individual terms, each of
which contains only coordinates of a single electron as in Equation (9.16), serves
as the basis for describing all multielectron atoms. The “state” of a given electron
is described by the one-electron quantum numbers that correspond to the one-
electron eigenfunction that describes it. These one-electron states are referred to
as “orbitals” and they are designated by the principal quantum number n and the
lowercase letter corresponding to . Thus, for the ground state of helium both
electrons occupy the 1s orbital. The listing of the orbitals is referred to as the
electron configuration. The electron configuration of the ground state of helium is
thus 1s2 where the superscript refers to the number of electrons in the designated
orbital. If there is only one electron in an orbital the superscript is usually omitted.

The perturbation is taken to be Ĥ1. The eigenvalues of Ĥ0 are then the zeroth
order approximation to the energy of the helium atom. Such an approximation
is employed in the description of all multielectron atoms. The eigenvalues and
eigenfunctions of Ĥ0 are

E0 = E0n1 + E0n2 (9.17)

and

|ψ〉 = |n11m1〉 · |n22m2〉 (9.18)

where E0n1 and E0n2 are one-electron energies −Z2 RH . The kets |n11m1〉 and
|n22m2〉 are the one-electron eigenfunctions where the subscripts refer to each
electron. Note that |ψ〉 is only the spatial part of the wave function. Moreover, we
have not yet imposed the symmetry requirements on the construction of |ψ〉.

The total wave function is the product of a spatial part and a spin part. The
spatial wave function of the ground state of helium is

|1s1s〉space = |100〉1 · |100〉2 (9.19)

This ket is clearly symmetric under interchange of particles. Therefore, the spin
wave function must be antisymmetric under interchange of particles so the total
wave function is given by

|1s1s〉 = |100〉1 · |100〉2 ·
[

1√
2

(|α1β2〉 − |α2β1〉)
]

(9.20)
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where the term in the brackets is the antisymmetric two-electron spin state (in
the uncoupled representation). α and β are the usual “spin up” and “spin down”
z-components of the spin and the subscripts designate each electron. Note that in
the coupled representation this antisymmetric spin state is designated |SM〉 = |00〉.

The requirement that the total wave function is antisymmetric dictates that the
ground state of a two-electron system must have total spin zero (even though the
Hamiltonian doesn’t contain the spin). This is easily shown using the coupled
representation because

Ŝ2|00〉 = 0 and Ŝz|00〉 = 0 (9.21)

In preparation for our discussion of the excited states of helium we note that there
are three other possible spin states for two electrons. In the two representations
they are

|α1α2〉 = |11〉
1√
2

(|α1β2〉 + |α2β1〉) = |10〉
|β1β2〉 = |1 − 1〉 (9.22)

These three states are all symmetric under interchange of particles and therefore
do not qualify as constituents of the ground state because the space part of the
ground state is manifestly symmetric. The ground state is therefore a “singlet”.

Now, as discussed in more detail later, for most atoms the traditional designation
for atomic states is “spectroscopic notation” which has the form 2S+1L J where S
is the total spin, L is the total orbital angular momentum, and J is the total angular
momentum, spin plus orbital angular momentum. The value of L is denoted by
spectroscopic notation. That is, L = 0, 1, 2, 3, . . . correspond, respectively, to S,
P , D, F (alphabetic order). Note that the “S” that represents L = 0 is not related
to the same symbol that represents the total spin, that is, S in the coupled ket |SM〉.
To confuse matters further, this scheme is referred to as LS notation. For the ground
state of the helium atom the designation is

2S+1L J → 1S0

because the total spin, the total orbital angular momentum, and the total angular
momentum are all zero. Note that the L-states are designated by capital letters and
lowercase letters are used for designation of hydrogen atom states. The designation
of hydrogen atom states is not, however, unique. Capital letters are frequently used.
For multielectron atoms capital letters are always used.

The ground state energy of the helium atom is the minimum energy required to
remove both electrons leaving behind a He++ ion. This minimum energy leads to
isolated electrons and a He++ ion, all of which have zero kinetic energy. In the
zeroth order approximation we ignore the interaction between the electrons, that is,
the electron–electron Coulomb repulsion. Therefore, the zeroth order eigenfunc-
tions are eigenfunctions of Ĥ0, products of the |100〉 one-electron wave functions
for Z = 2 for each electron. The eigenvalue of Ĥ0 is the sum of the eigenvalues of
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Ĥ01 and Ĥ02 for these states.

E (0)
1s1s =

(
−1

2
Z2

)
+
(

−1

2
Z2

)
(9.23)

For Z = 2

E (0)
1s1s = −4

= −108.8 eV (9.24)

Because He+ is indeed a one-electron atom, the ionization potential is correctly
given as 4 × RH = 54.4 eV. Experimentally it is found that the ionization potential
of neutral He (i.e., the energy required to remove a single electron from a helium
atom in the ground state) is 24.6 eV. Thus, the correct total energy of the helium
atom, the energy required to liberate both electrons is 79 eV. Clearly then the e−e
repulsion that was ignored in the zeroth order approximation that led to Equation
(9.24) raises the energy by ∼30 eV. This is consistent with the fact that the e−e
repulsion is positive. It is, however, a significant fraction of 108 eV so we suspect
that perturbation theory may not lead to a reliable answer. Nonetheless, it is clear
that to obtain a more realistic value for the total energy of the helium atom than
the zeroth approximation, 108.8 eV, we must include the correction due to Ĥ1, the
e−e repulsion.

9.3. Evaluation of the Ground State Energy of the Helium
Atom Using Perturbation Theory

Although the correction due to the e−e repulsion must be on the order of one-third
of the unperturbed energy we begin by trying perturbation theory. As it turns out,
we obtain a surprisingly good approximation to the true helium energy despite the
magnitude of the correction.

Using first-order perturbation theory, we require the expectation value of the
perturbing Hamiltonian using the unperturbed eigenfunctions so

E (1)
0 = 〈ψ0| 1

|r1 − r2| |ψ0〉 (9.25)

Because the perturbation does not involve spin we may evaluate the above integral
in coordinate space only so

E (1)
0 = 1〈100| · 2〈100| 1

|r1 − r2| |100〉1 · |100〉2 (9.26)

In terms of one-electron wave functions

E (1)
0 =

∫
dr1dr2|ψ1s(r1)|2 1

|r1 − r2| |ψ1s(r2)|2 (9.27)

Note that the ground state wave function for the one-electron atom is independent
of θ and φ so that r1 → r1 (the spherical coordinate). The physical interpretation



184 9. The Helium Atom

of this is the following.

|ψ1s(r1)|2 = probability of finding electron #1 at r1

so that it is also the charge density due to electron #1 in atomic units. Similarly

|ψ1s(r2)|2 = charge density due to electron #2 at r2

Therefore, the integral above is just the electrostatic interaction energy of two
overlapping spherically symmetric charge distributions.

Inserting the specific ground state wave functions we have

E (1)
0 = Z6

π2

∫
dr1dr2

1

r12
e−2Z (r1+r2) (9.28)

where

1

r12
= 1

|r1 − r2|
It is worthwhile to perform this calculation because it occurs many times in atomic
physics as well as other branches of physics. The term 1/r12 may be expanded in
terms of Legendre polynomials1

1

r12
= 1

r1

∞∑
=0

(
r2

r1

)

P(cos θ ) r1 > r2

= 1

r2

∞∑
=0

(
r1

r2

)

P(cos θ ) r2 > r1 (9.29)

where θ is the angle between r1 and r2. The geometry of r1 and r2 is shown in
FIGURE 9.2.

From simple trigonometry we have

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2) (9.30)

For convenience, the expansion of 1/r12 is usually written more compactly as

1

r12
= 1

r1

∞∑
=0

(r<)

(r>)+1 P(cos θ) (9.31)

where r< is the smaller of r1 and r2 and r> is the larger. The addition theorem for
spherical harmonics1 is given by

P (cos θ ) =
(

4π

2 + 1

) ∑
m=−

Y ∗
m (θ1, φ1) Ym (θ2, φ2) (9.32)

from which

1

r12
=

∞∑
=0

∑
m=−

(
4π

2 + 1

)
· (r<)

(r>)+1
Y ∗

m(θ1, φ1)Ym(θ2, φ2) (9.33)
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Figure 9.2. Geometry of the electron–electron repulsion calculation.

We may now insert this in Equation (9.28) and recall that the spherical harmonics
are orthonormal to obtain

E (1)
0 = Z6

π2

∞∑
=0

∑
m=−

(
4π

2 + 1

)∫ ∞

0
d3r1r2

1

∫ ∞

0
d3r2r2

2 e−2Z (r1+r2) (r<)

(r>)+1
δ,0δm,0

(9.34)

All terms in the summations in Equation (9.34) vanish except those for which
 = m = 0. The integrals are now straightforward and lead to

E (1)
0 = +5

8
Z (9.35)

Note that the positive sign indicates that the energy is indeed raised by the e−e
repulsion. To this level of approximation then the ground state energy is given by

E0 = E (0)
0 + E (1)

0

= −Z2 + 5

8
Z

= −74.8 eV (9.36)

This is surprisingly close to the experimentally determined value, 79 eV, especially
in view of the fact that 5

8 Z = 5
4 is a significant fraction of Z2 = 4.
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9.4. The Variational Method

Another approximation method commonly used to calculate the energy of the
helium atom is the variational method. This method permits calculation of the
energy to as precise a value as is desired, depending upon how much computer
time is available. We evaluate the energy analytically, but before doing so we
briefly review the method.

Let Ĥ be the true Hamiltonian for a given system. We pretend that we have
solved the eigenvalue problem

Ĥ |φn〉 = En|φn〉 (9.37)

where the kets |φn〉 are the eigenfunctions which, of course, constitute a complete
set; the En are the associated eigenvalues.

Let |ψ〉 be an arbitrary wave function such that 〈ψ |ψ〉 = 1. We use |ψ〉 as a
“trial” wave function and expand it using the (unknown) complete set |φn〉 as the
basis. That is, we write

|ψ〉 =
∞∑

n=1

cn|φn〉 (9.38)

Using this trial wave function |ψ〉 we obtain the expectation value of the energy
of the state that it represents

〈E〉 = 〈ψ |Ĥ |ψ〉

=
∞∑

n=1

|cn|2 En (9.39)

Now, the lowest of the energy eigenvalues, E0, is the ground state energy. For the
helium case, E0 is the lowest energy for which the process

He
(
1s2 1S0

) → He++ + 2e

can occur. In other words, E0 is the energy that will twice ionize a ground state
helium atom and leave the liberated particles with zero kinetic energy. If we replace
energy En by E0 in the summation in Equation (9.39) the result will be a number
that is lower than the correct expectation value 〈E〉. This leads to the inequality

〈E〉 = 〈ψ |Ĥ |ψ〉

=
∞∑

n=1

|cn|2 En

≥ E0

∞∑
n=1

|cn|2

≥ E0 (9.40)

Therefore, for any trial wave function |ψ〉 the true ground state energy E0 will
always be less than the expectation value 〈E〉 = 〈Ĥ〉. We may therefore select,
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perhaps by guessing, a |ψ〉 that includes parameters that may be varied to minimize
〈E〉. We leave these parameters in the trial wave function and evaluate 〈Ĥ〉 in
terms of them. We then minimize 〈Ĥ〉 with respect to the parameters. This is the
variational principle! According to this principle, the result will always be greater
than the true energy. We see then that we may choose a complicated function,
containing as many parameters as we please, and, if computer time is available,
we can obtain an answer to any degree of precision. For our purposes, however, we
use parameters that provide physical insight and for which the variational principle
can be implemented analytically.

9.5. Application of the Variational Principle to the Ground
State of Helium

We choose a trial wave function for which the integral 〈Ĥ〉 may be readily com-
puted. We use the product of two one-electron eigenfunctions with a parameter
ζ that may be viewed as an effective nuclear charge. That is, we imagine that
one electron screens the other electron from the effects of the full nuclear charge
Z . Therefore, the effective charge ζ replaces Z in the usual one-electron wave
function, but not in the Hamiltonian. It is the trial wave function that contains the
variational parameters, not the Hamiltonian. We expect that ζ will be less than Z .

Explicitly writing ζ in the kets we have as our trial ket

|ψ〉 = |100ζ 〉1 |100ζ 〉2 (9.41)

The expectation value of the Hamiltonian is thus

〈Ĥ〉 = 1〈100ζ |2〈100ζ |
(

T̂1 + T̂2 − Z

r1
− Z

r2
+ 1

r12

)
|100ζ 〉1|100ζ 〉2 (9.42)

where the T̂1 and T̂2 are the kinetic energies of the two electrons. Note that in
Equation (9.42) the Hamiltonian explicitly contains Z ; the variational parameter
ζ occurs only in the trial wave function. In principle, we could replace Z by 2,
but retaining it permits us to interpret the answer for any two-electron atom such
as Li+, Be++, and so on. Moreover, we obtain ζ in terms of Z so the physical
significance of it will be more apparent.

To evaluate 〈Ĥ〉 we must evaluate five integrals, but symmetry reduces this
number to three. We begin with the kinetic energy integrals which we evaluate
using the virial theorem. For a potential energy of the form V (r ) ∝ rk the virial
theorem states that 2〈T 〉 = k〈V 〉 so that for the Coulomb potential we have

〈T 〉 = −1

2
〈V 〉 (9.43)

Care must be taken, however, in applying Equation (9.43). This relation is valid
only if the eigenfunctions used in the computation of the expectation value are
eigenfunctions of the Hamiltonian. Because the eigenfunctions are trial eigen-
functions that contain ζ rather than Z the potential energy used in Equation (9.43)
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must be −ζ/r . Thus, the viral theorem result provides the relation

〈T 〉 = −1

2

〈
−ζ

r

〉

= 1

2
· ζ 2 (9.44)

where we have used2 〈1/r〉 = ζ/n2. In this case n = 1. Note that in Equation (9.44)
one ζ is from the potential energy and the other from the expectation value. By
symmetry 〈T̂1〉 = 〈T̂2〉.

Evaluation of the expectation values of the potential energies is straightforward.
We have 〈

Z

r

〉
= Z

〈
1

r

〉
= Zζ (9.45)

where, again, we have used2 〈1/r〉 = ζ/n2 and n = 1.
We have already evaluated 〈1/r12〉 in terms of Z in the calculation of the ground

state energy (in a.u.) of helium using perturbation theory. Letting Z → ζ in Equa-
tion (9.35) we have 〈

1

r12

〉
= 5

8
ζ (9.46)

Putting this all together we have

〈Ĥ〉 = ζ 2 − 2Zζ + 5

8
ζ (9.47)

which we must minimize by setting the derivative equal to zero. This yields

ζ = Z − 5

16
(9.48)

As expected, ζ < Z so that we may regard the factor 5/16 as a “screening constant”.
The interpretation of Equation (9.48) is that a fraction of the nuclear charge Z is
obscured from one electron by the presence of the other. Inserting this value of ζ

into
〈
Ĥ
〉

we find

〈
Ĥ
〉 = −

(
Z − 5

16

)2

=
(

−Z2 + 5

8
Z

)
− 25

256
(9.49)

The last line of Equation (9.49) is particularly illuminating because (−Z2 + 5/8) =
−74.8 eV is the total helium atom energy that was obtained using perturbation
theory, Equation (9.36). We may therefore regard 25/256 atomic units as a cor-
rection to the perturbation theory result. This correction lowers the perturbation
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theory result so that the answer from this simple variational treatment is

〈
Ĥ
〉 = −74.8 eV −

(
25

256

)
27.2 eV

= −77.5 eV (9.50)

Although –77.5 eV is still nearly two percent from the actual value of ∼79 eV,
it is clear that a more elaborate variational calculation would lead to a more pre-
cise answer, even if the variational parameters chosen have no obvious physical
significance.

9.6. Excited States of Helium

In the case of the ground state we had two 1s electrons, so the space part of the
wave function was necessarily symmetric. That is, it is an eigenfunction of P̂12

with eigenvalue +1. According to the Pauli principle then, the spin part of the
ground state wave function is

|1s1s〉spin = 1√
2

[|α1β2〉 − |α2β1〉] (9.51)

which is, necessarily, antisymmetric and an eigenfunction of P̂12 with eigenvalue
−1. Recall also that |1s1s〉spin is, in the coupled representation, |SM〉 = |00〉.
There are three other possible spin states for two identical particles, all of which
are symmetric under interchange of particles. They are

|11〉 = |α1α2〉
|10〉 = 1√

2
[|α2β1〉 + |α1β2〉]

|1 − 1〉 = |β1β2〉 (9.52)

Although the spin states in Equation (9.52) are prohibited for the ground state,
they are acceptable for excited states because, in general, the electrons are not in
the same spatial state. Because the singlet spin state |00〉 is an eigenstate of P̂12

with eigenvalue −1 and the triplet spin states |1M〉 are eigenfunctions of P̂12 with
eigenvalue +1 the corresponding spatial wave functions must be symmetric and
antisymmetric, respectively.

Consider now the possible electron configurations 1s2 of the helium atom, that
is, excited states of helium for which one electron remains in the 1s (unperturbed)
orbital and the other is excited to the 2s (m = 0) or 2p (m = 0, ±1) states. The
unperturbed energy is that for which the electron–electron repulsion is ignored. It
is given by

E1s n=2 =
(

−1

2

)
Z2

(
1

12
+ 1

22

)

= −5

8
Z2 (9.53)
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Table 9.1. Possible wave functions for n = 2.

1√
2

[|100〉1 |2m〉2 + |2m〉1 |100〉2
] |00〉 Singlets

1√
2

[|100〉1 |2m〉2 − |2m〉1 |100〉2
] |1 − 1〉 Triplets

1√
2

[|100〉1 |2m〉2 − |2m〉1 |100〉2
] |10〉

1√
2

[|100〉1 |2m〉2 − |2m〉1 |100〉2
] |11〉

The properly symmetrized possible spatial parts of the wave functions are

1√
2

[|100〉1|2m〉2 + |2m〉1|100〉2] symmetric

1√
2

[|100〉1|2m〉2 − |2m〉1|100〉2] antisymmetric

The subscript  on the quantum number m has been dropped for convenience. The
possible total wave functions including the spin |SM〉 are listed in TABLE 9.1.

Now we employ perturbation theory using the electron–electron repulsion Ĥ1

as the perturbation.

Ĥ1 = 1

r12

= 1

r1

∞∑
=0

(r<)

(r>)+1
P(cos θ ) (9.54)

Because this is independent of φ it commutes with L̂ z (= −∂/∂φ) so the energy
cannot depend upon the quantum number m and we may perform the calculation
for m = 0. The calculation is more complicated for the excited states than it was for
the ground state because each spatial part (the only part involved in the calculation)
is a sum or difference of two integrals. The first-order correction to the energies
may then be written (

E (1)
1s2

)
± = J1s2 ± K1s2 (9.55)

where J and K are integrals. These integrals depend on the quantum numbers
assigned to each electron. J1s2 is given by

J1s2 = 1〈100|2〈2m| 1

r12
|100〉1|2m〉2 (9.56)

It is called the Coulomb integral and it is manifestly positive. It represents electro-
static interactions because the integrals that it comprises involve the same electron
in each state. That is, in Equation (9.56) electron 1 is in the |100〉 and electron 2 is
in the |2m〉 state. J1s2 would be the energy if the electrons were distinguishable.
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In contrast to the Coulomb integral, the second integral K1s2 is given by

K1s2 = 1〈100|2〈2m| 1

r12
|2m〉1|100〉2 (9.57)

This term consists of integrals with wave functions that are “exchanged”, that
is, bras and kets of the form i 〈100| and |2m〉i appear (i = 1 or 2). K is thus
referred to as the exchange integral. It has no classical interpretation! It arises
because the electrons are identical particles (a nonclassical concept). Although
not as obvious as it is for J , K can also be shown to be manifestly positive. In the
expression for the energy, Equation (9.55), the plus and minus signs refer to the
energies associated with the symmetric and antisymmetric space wave functions,
singlet, and triplet states, respectively. The singlet corrections to the unperturbed
energy are therefore higher than the triplet corrections so that, for the same electron
configuration, the triplet states are of lower energy. This can be rationalized by
noting that the singlet wave functions for which the spins are in opposite directions
permit the spatial coordinates of the electrons to be the same. This can most easily
be seen by writing the probability of finding one electron at spherical coordinates
(r1, θ1, φ1) and the other at coordinates (r2, θ2, φ2) in terms of the one-electron
wave functions ψnm(r, θ, φ) = Rn(r )Ym(θ, φ) (with, of course, Z = 2). This
probability is given by

|ψ100(r1, θ1, φ1)ψnm(r2, θ2, φ2) ± ψnm(r1, θ1, φ1)ψ100(r2, θ2, φ2)|2

where the plus and minus signs represent the singlet and triplet states, respectively.
We see that the probability of the electrons being close together (i.e., their spatial
coordinates are nearly the same) is significant only for the singlet states. In fact,
for the triplet states, the probability vanishes for (r1, θ1, φ1) → (r2, θ2, φ2). Thus,
electrons in the singlet state tend to “attract” each other whereas in the triplet state
they tend to “repel”.

This “force” that causes the attraction and repulsion is not a force in the tradi-
tional sense. It is a consequence of the symmetry requirements imposed on the wave
functions by the indistinguishability of identical particles. The electrons tend to
avoid each other because of the symmetry requirements on the total wave function,
including the spin. Because spin is not contained in the Hamiltonian this symmetry
is not in the Hamiltonian. These forces are often referred to as “exchange forces”
and the energy associated with them the “exchange energy”. The exchange energy
causes the singlet and triplet states to have different energies because the (positive)
Coulomb repulsion must be greater for singlet states because the electrons tend to
“attract” than it is for triplet states in which the electrons tend to avoid each other.

The J and K integrals can be evaluated exactly.3 The energies E (1)
1s2s are

E (1)
1s2s = J1s2s ± K1s2s

= 17

81
Z ± 16

729
Z

= 11.4 eV ± 1.2 eV (9.58)
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Figure 9.3. Schematic energy level diagram of the n = 2 states of helium. The solid line
represents the energy if the interelectron repulsion is ignored. The Coulomb integral J
raises the energy and the exchange integral K splits these levels.

and

E (1)
1s2p = J1s2p ± K1s2p

= 59

243
Z ± 112

6561
Z

= 13.2 eV ± 0.9 eV (9.59)

The relative positions of the energies of the four states of He(1sn) are shown in
FIGURE 9.3. As discussed above, the singlet states are higher in energy than their
corresponding triplet states. This is, in fact, a special case of one of the rules used
to place the states in proper relative order for all multielectron atoms. These rules
are referred to as Hund’s rules and are discussed in detail in Chapter 10.

To put these energies in perspective relative to the ground state and the ionization
limit FIGURE 9.4 shows the ground state and the 1s2 excited states together with
the state of zero energy, that is, He+++ 2e in complete spectroscopic notation.
The energy scale is electron volts.

9.7. Doubly Excited States of Helium: Autoionization

In addition to excited states having nominal electron configuration 1sn there are
also states of configuration nn′′ where n, n′ > 1. Because states of configuration
1s2 have energies roughly 20 eV above the ground state and the ionization limit
of He(1s2) is 24.6 eV, it is not surprising that these doubly excited states have
energies in excess of the ionization limit. Thus, although they are bound states
(because both electrons are bound to the He++ nucleus), they are degenerate with
continuum states consisting of a He+ ion and a free electron of the appropriate
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Figure 9.4. Energy level diagram of He showing the ground state, the first set of excited
states, and the ionization limit.

Figure 9.5. Schematic diagram showing some autoionizing states of He.
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energy. States of this He+-electron system are not quantized because the kinetic
energies of free particles are not quantized. Another way of stating this is that for
free particles there are no restrictions on the deBroglie wavelength that impose
quantized energies on the system.

FIGURE 9.5 is a schematic diagram showing some of these doubly excited
states. The zero of energy is taken to be the energy of a ground state helium atom.
On this scale the energy of a ground state helium ion, He+(1s), and a free electron
is 24.6 eV, that is, the ionization limit (or “ionization potential”) of helium. The
energy of a doubly charge helium ion He++ and two free electrons is 79 eV. Notice
that the difference between 79 eV and 24.6 eV is 54.4 eV which is the ionization
energy of a ground state He+.

Problems

9.1. Two identical, noninteracting spin-1/2 particles of mass m are in the one-
dimensional harmonic oscillator for which the Hamiltonian is

Ĥ = p2
x1

2m
+ 1

2
mω2x2

1 + p2
x2

2m
+ 1

2
mω2x2

2 (9.60)

(a) Determine the ground state and first excited state kets and corresponding ener-
gies when the two particles are in a total spin-0 state. What are the lowest energy
states and corresponding kets for the particles if they are in a total spin-1 state?
(b) Suppose the two particles interact with a potential energy of interaction

V (|x1 − x2|) = −V0 for |x1 − x2| < a

= 0 elsewhere

Will the energies of part (a) be raised or lowered as a result of V (|x1 − x2|)?
9.2. Make an order-of-magnitude estimate of the singlet–triplet splitting of the
energy levels of helium due to a direct spin–spin interaction of the electrons by
comparing with the magnitude of the hyperfine interaction in hydrogen. By com-
paring this estimate with the observed splitting, ∼1 eV, what conclusions can be
drawn about the relative effects of exchange symmetry and spin–spin interaction
on the energy?
9.3. A helium atom is excited from the ground state to the autoionizing state
2s4p by absorption of ultraviolet light. Assume that the 2s electron moves in the
unscreened Coulomb field of the nucleus and the 4p electron in the fully screened
Coulomb potential.
(a) Obtain the energy of this autoionizing level and the corresponding wavelength
of the ultraviolet light required to effect this excitation. Make an energy level dia-
gram showing this level together with the ground states of neutral, singly ionized,
and doubly ionized helium atoms.
(b) Find the velocity of the electron emitted in the autoionizing process in which
the 2s4p state decays into a free electron and a He+ ion in the ground state.
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9.4. Use the variational principle to calculate the ground state energy of a hydrogen
atom (in atomic units) using the normalized trial functions.
(a) ψ(r ) =

√
β3/π · exp(−βr ).

(b) ψ(r ) = 2
√

2(2γ 3/π )1/4 · exp(−γ r2) where β and γ are parameters.
(c) Which gives the most accurate answer? Why?
9.5. A negative ion is formed when an electron attaches to an atom (or molecule),
the result being that the nucleus of charge Z binds (Z + 1) electrons. The binding
energy of the electron to the neutral atom is referred to as the electron affinity of
the atom. The electron affinity may also be thought of as the ionization potential
of the negative ion. Not surprisingly, the halogen atoms form negative ions most
readily. This means that the halogen atoms have the highest electron affinities of
all atoms (∼3 eV). Hydrogen atoms also form negative ions. The electron affinity
of hydrogen is 0.75 eV. Use perturbation theory as it was applied to the helium
atom to determine the total energy of the hydrogen atom negative ion. Compare
the answer with the actual value. Compare the accuracy of the perturbation theory
results for the hydrogen negative ion with the result for the helium atom. Why
is perturbation theory more accurate for helium? Note that there are no “new”
calculations necessary.
9.6. Assume the normalized trial wave function |ψ〉 = (1 + A2)−1/2[|100〉+
A|210〉], where the kets on the right-hand side are spherical hydrogen atom eigen-
kets, represents a ground state hydrogen atom in a constant electric field F . This
wave function represents a state that has “ground state character” and, assuming
A � 1, a small amount of |210〉 character.
(a) Using this trial wave function show that, if terms in 〈Ĥ〉 having powers greater
than A2 can be neglected, then second-order perturbation theory, as applied in
Chapter 8, yields the same energy as the variational treatment. Note that if powers
of A greater than two can be neglected in 〈Ĥ〉 that powers of A greater than one
may be neglected in ∂〈Ĥ〉/∂ A.
(b) Using this trial wave function estimate the dipole polarizability of ground state
hydrogen and compare the answer with the exact answer given in Chapter 8.
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10
Multielectron Atoms

10.1. Introduction

In our study of the helium atom we saw that the first approximation to the ground
state energy was obtained by ignoring the electron–electron repulsion, thus mak-
ing the Hamiltonian separable into the sum of two terms, each containing vari-
ables of a different electron. When a Hamiltonian is separable in this fashion the
eigenfunctions of it are products of the eigenfunctions of each of the constituent
Hamiltonians; the eigenvalues are the sums of the eigenvalues of the constituent
Hamiltonians. Using this approximation, the eigenfunction for the ground state of
helium is the product of two ground state one-electron wave functions with eigen-
value −4 a.u., −108.8 eV. This may be regarded as a zeroth-order approximation
to the energy of the helium atom because the (ignored) electron–electron repulsion
is substantial.

Although this level of approximation, sometimes referred to as the independent
electron model, is not very elegant, it is used as the basis for describing the states
of atoms over the entire periodic table, even though modern techniques in quantum
chemistry permit calculation of atomic energies with almost arbitrary accuracy.
Such calculations are not, however, a subject treated here. Rather, we present
descriptions of two methods of describing atomic states, electron configuration
and the quantum defect. In this chapter we concentrate on electron configuration.

10.2. Electron Configuration

The electron configuration of an atomic state is simply a listing of the one-electron
states that constitute the eigenfunctions of the Hamiltonian excluding the electron–
electron repulsion. It is assumed that each of these independent electrons is sub-
jected to a central potential that depends upon the positions of the other electrons.
As we have seen, the electron configuration of the ground state of helium is written
1s2 where the superscript 2, often (incorrectly) read as “squared”, refers to the num-
ber of electrons in the atom that are in the 1s eigenstate. As noted in Chapter 9,
such eigenstates (e.g., 1s, 2p, etc.) are frequently referred to as “orbitals” or
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“subshells”, the term “shell” being reserved for the principal quantum number;
the K -shell has n = 1, the L-shell n = 2, and so on. It is pointed out in introduc-
tory chemistry that the reason that two, and only two, electrons can occupy the
1s (or indeed the ns) orbital is that they have opposite spins. Therefore, the two
electrons have different quantum numbers, n, , and m being common to both,
but ms = ±1/2. In the language of quantum mechanics this situation is described
by a wave function that is the product of a symmetric spatial function and an
antisymmetric spin function.

After helium, the next atom in the periodic table is lithium (Z = 3) which has
three electrons. The ground state configuration is therefore written as 1s22s. This
procedure is continued and the subshells filled according to

1s22s22p63s23p64sx 3d y

where a “new” subshell must be populated when all lower-lying subshells are full.
The order in which these shells are filled is called the Aufbrau principle. Note that
the “regularity” of the order of the shells is broken at 3d and 4s, the energy of the
latter lying lower than that of the 3d because s-electrons ( = 0) penetrate closer
to the nucleus than do d-electrons ( = 2) electrons, thus making the Coulomb
attraction between electron and nucleus (which lowers the energy) greater for
s-electrons.

The above discussion is a familiar one first presented in introductory chemistry,
without, of course, the emphasis on eigenfunctions and eigenvalues. A description
of the independent electron model can also be framed in the context of quantum
mechanics. Approximate though they may be, the independent electron eigenfunc-
tions form a complete set. They may therefore be used as a basis set upon which
any eigenfunction may be expanded. The independent electron model contains the
assumption (actually, a first approximation) that the true eigenfunctions consist
of only one (properly symmetrized) basis function, the one that is the product
of individual electron eigenfunctions. As might be expected, this approximation
breaks down in varying degrees, depending upon the particular atom and the state
described. When the true eigenfunction is adequately described by a single basis
function, it is referred to as a “pure” state. If the true eigenfunction requires two or
more independent electron basis functions, that is, two or more “configurations”,
then it is said that these configurations interact. That is, configuration interaction
occurs.

States are designated according to the scheme that most accurately describes
the relationship of the orbital angular momentum of the electrons with the spin
angular momentum of these electrons. In other words, how do the different angular
momenta couple? The scheme that is appropriate for light atoms, and, indeed, most
atoms, is called Russell Saunders or LS-coupling. Included in the group of atoms
for which LS coupling is appropriate are certain heavy atoms, for example, alkali
atoms. Although this coupling scheme may not accurately describe a given atom,
states may be designated by their LS notation. In such cases, for example, mercury,
the LS notation merely provides a name for the state.
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10.3. The Designation of States—LS Coupling

To understand the LS coupling scheme we write the total Hamiltonian ĤT for a
multielectron atom as a sum of three terms

ĤT = Ĥ0 + Ĥ1 + Ĥ2 (10.1)

where Ĥ0 represents the Coulomb interaction of each electron with the nucleus,
Ĥ1 contains interelectron effects that include the electrostatic repulsion of the
electrons, and Ĥ2 describes the spin-orbit interaction. Of course, the exchange
energy is also present although not explicitly contained in the Hamiltonian. For
the purpose of this discussion, however, we may regard it as being (symbolically)
contained in Ĥ1. In fact, in LS-coupling the exchange force is greater than the
electronic electrostatic repulsion, both of which are assumed to be greater than
the spin-orbit coupling. That is, it is assumed that Ĥ1 � Ĥ2 so the unperturbed
Hamiltonian is taken to be

Ĥ = Ĥ0 + Ĥ1 (10.2)

Because Ĥ does not contain the spin-orbit interaction (or even the spin) Ĵ, L̂,
and Ŝ commute with the Hamiltonian and the eigenfunctions can be written as
eigenfunctions of L̂2 and Ŝ2; that is, they have definite orbital angular momentum
and definite spin angular momentum. It is assumed that there is a strong interaction
between the orbital angular momentum of each electron with the other orbital
angular momenta. Similarly, there is a strong interaction between the spin angular
momentum of each electron with the other spins. The vector sum of the orbital
angular momenta of all electrons is designated by the letter L , and S represents
the vector sum of all the spin angular momenta. J designates the vector sum of
L and S. Thus, the good quantum numbers are L , S, ML , MS , and, of course, J .
States, sometimes referred to as “terms”, are designated as follows.

2S+1L J

as was the case for helium. For reasons that are apparent shortly, the superscript
2S + 1 is called the multiplicity.

Terms for Nonequivalent Electrons—Electrons Not
in the Same Subshell

Once the electron configuration of a given atomic state is known, it is a relatively
simple matter to find the possible terms. The case of two electrons serves as a
guide. Extension to more than two electrons is obvious.

Example

Find all terms for two electrons of configuration npn′d. How many states are
possible for this configuration?
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Solution

The possible values of L for two electrons are given by

L = |1 + 2|, |1 + 2 − 1| , . . . |1 − 2|
= 3, 2, 1

so L can be F , D, or P . The possible values of S are

S = 1

2
± 1

2
= 1, 0

Therefore, the states that can arise from an npn′d configuration are

3 FJ ,
3 DJ ,

3 PJ ,
1 FJ ,

1 DJ ,
1 PJ

The possible J -values that accompany each state depend upon the values of L and
S for that state; that is,

J = |L + S| , |L + S − 1| , . . . |L − S|
Thus, the states that result from configuration npn′d are

3 F4,
3 F3,

3 F2
3 D3,

3 D2,
3 D1

3 P2,
3 P1,

3 P0
1 F3
1 D2
1 P1

There are three states, each of different J -value, for each-state for which 2S + 1 =
3, but only one for those for which 2S + 1 = 1. Therefore, the quantity 2S + 1
is called the multiplicity and, usually (not always), corresponds to the number of
J -values for a state of given L and S. An exception occurs (not in this example)
when L < S. In such a case the number of J -values for each state is 2L + 1.
This is because the number of different vectors that result from the vector addition
of L and S depends upon the smaller of L and S. Nevertheless, the antecedent
superscript is always 2S + 1 and it is usually called the multiplicity whether or
not it corresponds to the number of J -values for each state of definite L and S. In
this example, there are a total of twelve states: three each for the three different
triplets and one each for each of the three singlets. Of course, the total number of
states cannot depend upon the angular momentum coupling scheme.

To illustrate how the multiplicity, 2S + 1, need not correspond to the total num-
ber of states for a multiplet we present another example.

Example

Find the terms for a nsn′s configuration. How many states are possible for this
configuration?



200 10. Multielectron Atoms

Solution

Clearly L = 0 and S = 0 or 1. Therefore, the terms are 3S1 and 1S0. Although the
multiplicity of the 3S1 term suggests that this is a triplet, there is, in fact, only one
value of J ; that is, J = 1 + 0 = 1. Nonetheless, the term 3S1 is usually read as
“triplet S one”. This configuration provides a total of two states.

Terms for Equivalent Electrons—Electrons
in the Same Subshell

In the discussion of nonequivalent electrons we were justified in ignoring the
implications of the Pauli principle. In the above examples either the principal
quantum numbers of the electrons or the orbital angular momentum quantum
numbers of the electrons were different so we did not have to consider violations
of the Pauli principle in the form “no two electrons in an atom can have the
same set of quantum numbers.” For electrons that have different principal quantum
numbers and/or different angular momentum quantum numbers the Pauli principle
is satisfied a priori. If however, the electron configuration consists of two or more
electrons having the same values n and , then care must be taken to ensure that
some of the possible terms do not require two or more of the electrons to have the
same quantum numbers, n, , m, and ms . Electrons that have the same n and 

quantum numbers are referred to as equivalent electrons. Again, a simple example
serves to demonstrate the method of assigning terms to a given configuration.

Example

Consider two np electrons, that is, the np2 configuration. Find all possible terms.

Solution

We first treat the electrons as though they are nonequivalent to obtain all possible
designations of the states. We must then eliminate those that constitute a violation
of the Pauli principle. If the electron configuration were npn′p the possible states,
ignoring J -values, would be

npn′ p → 3 D, 3 P, 3S, 1 D, 1 P, 1S

Now we must eliminate those terms for which the sets of four quantum numbers
are identical. There are a few ways in which this may be done. The brute force
method is to make a table of possible quantum numbers for each electron and to
eliminate those terms for which the sets of quantum numbers are identical. This
is, however, time consuming and unnecessary. A much simpler method is to use
a table of equivalent electrons.1 For comparison we first show a partial listing for
nonequivalent electrons in TABLE 10.1.

This table is considerably reduced when the two electrons are equivalent as can
be seen in TABLE 10.2.
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Table 10.1. Terms for nonequivalent s, p, and d
electron configurations.

s s 1 S, 3 S
s, p 1 P, 3 P
s d 1 D, 3 D
p p 1 S, 1 P, 1 D, 3 S, 3 P, 3 D
p d 1 P, 1 D, 1 F, 3 P, 3 D, 3 F
d d 1 S, 1 P, 1 D, 1 F, 1G, 3 S, 3 P, 3 D, 3 F, 3G

There are two configurations listed in the left-hand column of TABLE 10.2 because
the same terms result when a given number of electrons are equal to the same
number of “holes” in a subshell.

For the purpose of this example we use TABLE 10.2 and find that three of the
terms for two nonequivalent p-electrons are excluded if the electrons are equiva-
lent. Thus,

np2 → 3 P, 1 D, 1S

There is an even easier way to find the possible terms if only two equivalent
electrons are involved. For two equivalent electrons there is a rule that states

For two equivalent electrons the only states that are allowed are those for which the sum
(L + S) is even.

Inspection of the example of two equivalent p-electrons shows that this rule is
obeyed as it is for two d-electrons (see TABLE 10.2).

After determining the possible terms for equivalent electrons, any other electrons
not in a closed shell (valence electrons) may be considered.

Example

Determine the terms for the electron configuration np2n′ p.

Solution

We know that the np2 configuration permits only the states 3 P , 1 D, and 1S. We
have then:

1 D + n′ p : [L = 2, S = 0] + n′ p ⇒ L = 3, 2, 1; S = 1/2
3 P + n′ p : [L = 1, S = 1] + n′ p ⇒ L = 2, 1, 0; S = 3/2, 1/2
1S + n′ p : [L = 0, S = 0] + n′ p ⇒ L = 0; S = 1/2

Table 10.2. Terms for equivalent s, p, and d electron configurations.

p1, p5 2 P
p2, p4 3 P, 1 D, 1 S
p3 4 S, 2 D, 2 P
d1, d9 2 D
d2, d8 3 F, 3 P, 1G, 1 D, 1 S
d3, d7 4 F, 4 P, 2 H, 2G, 2 F, 2 D(2), 2 P
d4, d6 5 D, 3 H, 3G, 3 F(2), 3 D, 3 P(2), 1 I, 1G(2), 1 F, 1 D(2), 1 S(2)
d5 6 S, 4G, 4 F, 4 D, 4 P, 2 I, 2 H, 2G(2), 2 F(2), 2 D(3), 2 P, 2 S
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The combinations involving the 3P two electron state give the following terms,
4 D7/2,5/2,3/2,1/2; 4 P5/2,3/2,1/2; 4S3/2; 2 D5/2,3/2; 2 P3/2,1/2; 2S1/2

Notice that in this example we have quartets and doublets, but there are four and
two states, respectively, only in those cases for which L > S. When L < S the
number of states is given by 2L + 1.

Ordering of the States—Hund’s Rules

This coupling scheme leads to two rules, referred to as Hund’s rules, which deter-
mine the ordering of the states. If these rules do not strictly apply, then LS-coupling
does not accurately describe the atom.

Hund’s Rules
1. For states having the same electron configuration the state having the highest total spin

S lies lowest.
2. For a given value of the total spin S the state with highest total orbital angular momentum

L lies lowest.

The origin of these rules may be understood qualitatively using symmetry and a
simple picture of the atom. For simplicity we discuss them for the helium atom;
extension to multielectron atoms presents no conceptual problem.

In essence, the ordering of the possible states is determined by the electron–
electron repulsion in the atom, that is, the term in the helium Hamiltonian

Ĥee =
(

1

4πε0

)
(−e)2

|r1 − r2| (10.3)

This term is manifestly positive. We see, therefore, that when the valence electrons
are, on average, far apart then |r1 − r2| is large and the positive contribution of
this term to the energy will be small. On the other hand, when |r1 − r2| is small
so that, on average, the electrons are close together, this term will provide a large
positive contribution to the energy. We may see this and also gain an appreciation
for the consequences of indistinguishability and the Pauli principle by computing
the average interelectron separation 〈|r1 − r2|〉 for two noninteracting electrons.
Because the electrons are assumed to be noninteracting, we use the wave functions
appropriate to the independent electron model. For the triplet state we have

|triplet〉 = 1√
2

(|100〉1 |nm〉2 − |nm〉1 |100〉2) |1Ms〉 (10.4)

where we have used the coupled representation for the spin; Ms denotes the
z-component of the total spin. Notice that for the triplet state, the spin part of
the wave function is symmetric, so the space part is antisymmetric. For the singlet
state we have

|singlet〉 = 1√
2

(|100〉1 |nm〉2 + |nm〉1 |100〉2) |00〉 (10.5)

Because |r1 − r2| does not contain spin, the spin part of the wave function does
not enter into the computation. Because it is normalized, it merely multiplies the
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spatial integral by unity. Also, we simplify the notation by replacing the ground
state and excited state kets by |g (i)〉 and |e (i)〉, respectively, where i denotes one
or the other electron; it is, of course, either 1 or 2. The spatial part of the wave
functions may then be written as

|spatial〉 = 1√
2

[|g (1)〉 |e (2)〉 ± |g (2)〉 |e (1)〉] (10.6)

where the upper sign corresponds to the singlet state and the lower to the triplet
states. For the computation we write |r1 − r2| in terms of the individual vectors
r1 and r2 and, for simplicity, consider the quantity |r1 − r2|2,〈|r1 − r2|2

〉 = 〈
r2

12

〉
= 〈

r2
1 + r2

2 − 2r1
� r2
〉

(10.7)

Then, ignoring normalization, we have

〈
r2

12

〉 = 1

2
〈g (1)| r2

1 |g (1)〉 + 〈e (1)| r2
1 |e (1)〉

+ 〈g (2)| r2
2 |g (2)〉 + 〈e (2)| r2

2 |e (2)〉
− 2 〈g (1)| r1 |g (1)〉 � 〈e (2)| r2 |e (2)〉
− 2 〈e (1)| r1 |e (1)〉 � 〈g (2)| r2 |g (2)〉
∓ 2

[ 〈g (1)| r1 |e (1)〉 � 〈g (2)| r2 |e (2)〉
−2 〈e (1)| r1 |g (1)〉 � 〈e (2)| r2 |g (2)〉

]
(10.8)

Symmetry demands that certain of the integrals above be identical. We may also
further simplify the notation letting

〈g (1)| r2
1 |g (1)〉 = 〈g (2)| r2

2 |g (2)〉 = 〈
r2
〉
g

〈e (1)| r2
1 |e (1)〉 = 〈e (2)| r2

2 |e (2)〉 = 〈
r2
〉
e

〈g (1)| r1 |g (1)〉 � 〈e (2)| r2 |e (2)〉 = 〈e (1)| r1 |e (1)〉 � 〈g (2)| r2 |g (2)〉
= 〈r〉g

� 〈r〉e

〈g (1)| r1 |e (1)〉 � 〈g (2)| r2 |e (2)〉 = 〈e (1)| r1 |g (1)〉 � 〈e (2)| r2 |g (2)〉
= (〈r〉exchange

)2
(10.9)

The expression for 〈r12〉 becomes

〈
r2

12

〉 = 〈
r2
〉
g + 〈

r2
〉
e − 2 〈r〉g

� 〈r〉e ∓ 2
[〈r〉exchange

]2
(10.10)

Now, if the electrons were distinguishable only the first three terms would appear.
The term containing 〈r〉exchange arises from the necessary condition that the wave
function, upon interchange of electrons, must transform into itself with a change of
sign. That is, the total wave function must be antisymmetric. The upper sign cor-
responds to a symmetric spatial wave function and the lower to an antisymmetric
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spatial wave function. Because 〈r〉exchange is manifestly positive, the average inter-
electron separation is smaller for singlet states (symmetric spatial) than it would be
if the electrons were distinguishable. Correspondingly, the average interelectron
separation for triplet states (antisymmetric spatial) is greater than it would be if
the electrons were distinguishable.

The effect of the Pauli principle on electrons may be summarized as follows.
Electrons having parallel spins tend to repel each other whereas electrons having
opposite spins tend to attract. The repulsion and the attraction are due only to the
symmetry requirements of the wave function. It is referred to as the exchange force
because it arises from the indistinguishability of the electrons and the symmetry
requirement of the Pauli principle. It is not caused by an electrical (Coulomb)
repulsion.

The Coulomb repulsion of the electrons produces a positive contribution to the
total energy, thus lowering the binding energy. Therefore, for triplet states, for
which the exchange force requires the electrons to avoid each other, this positive
contribution is lower than for singlet states for which the electrons can, in a sense,
occupy the same volume. It is clear then that, for electrons of the same configura-
tion, the state having the highest value of the total spin S will be the lowest lying
state. This is, in fact, Hund’s first rule.

To get a feeling for Hund’s second rule we must envision the valence electrons
in orbit about the ionic core. (In quantum mechanics we are not supposed to do
this, but physicists do it anyway.) Suppose the valence electrons have nonzero
angular momenta. Suppose further that the total orbital angular momentum L, the
vector sum of the individual angular momenta, has the lowest possible value. This
means that the individual electronic angular momenta vectors point in essentially
the opposite directions, indicating that the electrons are revolving about the core
in opposite directions. As such, they pass each other and the interelectron distance
can be quite small. This leads to a large positive contribution to the total energy.
At the other extreme, if L has its maximum value the electrons revolve in essentially
the same direction and can maintain large interelectron separations. In this case
the positive contribution to the energy is minimal. Such an argument provides, at
least, a qualitative rationalization of Hund’s second rule.

Using our knowledge of the labeling of LS-states and Hund’s rules to order
them we may construct an energy-level diagram for a given electron configuration.
Before doing so, however, we must address the ordering of the J -states. The group
of states having the same electron configuration and the same values of S and
L , but different values of J is called a multiplet. The ordering of these different
J -states within a multiplet is given by a separate rule.1,2

For a given multiplicity and value of L , the state having the lowest J lies lowest for subshells
that are less than one-half full. If the subshell is more than half full then the state having
the highest value of J lies lowest.

When subshells are less than half full the multiplets are referred to as being
“regular”; when subshells are more than half full they are “inverted”.



10.3. The Designation of States—LS Coupling 205

Figure 10.1. Schematic diagram of the energy splittings under LS-coupling of two electrons
of npn′d configuration. [From Reference 3.]

As an example, we construct a schematic diagram showing the ordering of the
LS-multiplets for two valence electrons in the npn′d configuration.3 The complete
diagram is shown in FIGURE 10.1.

The Landé Interval Rule for Multiplets

The relative separations between the states of a multiplet are given by the Landé
interval rule. The splitting into the levels of the multiplet is caused by the spin-orbit
interaction; the Hamiltonian Ĥ2 is

Ĥ2 = AL̂ �Ŝ (10.11)

where A is a constant. Now L̂ � Ŝ is given by

L̂ � Ŝ = 1

2

(
Ĵ 2 − L̂2 − Ŝ2

)
(10.12)

so that eigenfunctions of Ĵ 2, L̂2, and Ŝ2 are also eigenfunctions of Ĥ2. Thus, the
eigenvalues of the operator Ĥ2 are

E2 (J, L , S) = 1

2
[J (J + 1) − L (L + 1) − S (S + 1)] (10.13)

Within a given multiplet we may compute the difference in the energies of adjacent
J -levels. For adjacent levels of a multiplet the values of L and S are the same and
we designate Jupper = J so that Jlower = J − 1. We have then

E2 (J ) − E2 (J − 1) = 1

2
A [J (J + 1) − L (L + 1) − S (S + 1)]

− 1

2
A [(J − 1) J − L (L + 1) − S (S + 1)]

= AJ (10.14)
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Figure 10.2. Energy level spacing for a fictitious atom used in the example.

This is the Landé interval rule. It states

The energy separation between adjacent levels E(J ) and E(J − 1) is proportional to J , the
larger of the two J -values.

Example

The energy separations between the three levels of a triplet state of a fictitious
atom that obeys LS coupling are observed to be as shown in FIGURE 10.2.

Find the correct LS designation for the state, that is, the correct term symbol,
2S+1L .

Solution

According to the Landé interval rule, the energy separation between two levels of
a multiplet is proportional to the J -value of the higher state. Using the notation
shown in FIGURE 10.2 we have(

5

3

)
E0 = KJ3 and E0 = KJ2 (10.15)

where K is a constant. Note that K is the same constant in both of these equations.
Because J3 = J2 + 1(

5

3

)
E0 = K (J2 + 1) and E0 = KJ2 (10.16)

Dividing the equations in (10.16), we have

5

3
= J2 + 1

J2
(10.17)

or J2 = 3/2, from which J3 = 5/2 and J1 = 1/2. J is related to L and S according
to

J = |L + S| , |L + S − 1| , |L + S − 2| , . . . , |L − S| (10.18)

Now, assume that L > S, so we have L + S = 5/2 and L − S = 1/2. Adding
these two equations we get 2L = 3 or L = 3/2.

But this cannot be correct because L must be an integer. Because our arith-
metic is correct, our assumption that L > S must be incorrect. If S > L then



10.4. The Designation of States—jj Coupling 207

S − L = 1/2. Adding this to L + S = 5/2 (which must be correct) we obtain
2S = 3 or S = 3/2 from which we obtain L = 1. Because L is an integer, the as-
sumption that S > L must be correct and we are dealing with a P-state. The “multi-
plicity” is then 2S + 1 = 4 and we have a quartet P-state. Specifically, we have the
three states

4 P5/2,
4 P3/2,

4 P1/2

Note that, although the multiplicity is 4, there are only three levels because L < S.

10.4. The Designation of States—jj Coupling

Although LS coupling is satisfactory for describing most atoms, the heaviest atoms
require different considerations. jj-coupling is the antithesis of LS-coupling. In this
scheme it is assumed that the spin-orbit interaction is much larger than interelectron
effects. Therefore, the unperturbed Hamiltonian is taken to be

Ĥ = Ĥ0 + Ĥ2 (10.19)

and Ĥ1 is assumed to be the perturbation. The orbital angular momentum of
each electron interacts strongly with its own spin angular momentum. Each elec-
tron is treated exactly as the spin-orbit coupling was treated for the hydrogen
atom.

In Chapter 7 it was shown that the fine-structure correction is proportional to
Z4, and in Chapter 9 it was shown that the interelectron energy is proportional
to Z . Therefore, the spin-orbit energy is expected to dominate the interelectron
energy for high-Z atoms for which jj-coupling is most appropriate. Moreover,
because the relativistic correction is also proportional to Z4 we expect jj-coupling
to be most appropriate for highly ionized atoms in which the electronic velocities
are high.

For a single electron, jj-coupling states are designated by the quantum numbers
n, , j, m where m is mj . Using the letter designation for the quantum number
, states of a single electron are labeled j , so that possible one-electron states
are s1/2, p1/2, p3/2, d3/2, d5/2,. . . and so on. States are designated by first adding
the orbital and spin angular momenta for each electron and then combining these
angular momenta to form a total J . States are labeled ( j1 j2 . . .)J where the ji
are the total angular momenta for the i th electron. For nonequivalent electrons
the values of these quantities are determined by the rules for addition of angular
momenta.

Example

Consider the electron configuration ndn′d, two nonequivalent d-electrons. Find all
terms for two electrons of this configuration. How many states are there?
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Solution

The possible values of j1 and j2 are the same for each electron, 3/2 and 5/2.
The total angular momentum can then range from J = 0 to J = 5. The states are
designated(

3

2

3

2

)
3

;

(
3

2

3

2

)
2

;

(
3

2

3

2

)
1

;

(
3

2

3

2

)
0

;(
5

2

5

2

)
5

;

(
5

2

5

2

)
4

;

(
5

2

5

2

)
3

;

(
5

2

5

2

)
2

;

(
5

2

5

2

)
1

;

(
5

2

5

2

)
0

;(
3

2

5

2

)
4

;

(
3

2

5

2

)
3

;

(
3

2

5

2

)
2

;

(
3

2

5

2

)
1

;(
5

2

3

2

)
4

;

(
5

2

3

2

)
3

;

(
5

2

3

2

)
2

;

(
5

2

3

2

)
1

for a total of 18 states. Note that this is the same number of states that is obtained
for two nonequivalent d-electrons using LS coupling because the coupling scheme
does not determine the number of states (see TABLE 10.1).

As for LS coupling, the number of states is reduced if there are equivalent
electrons in the configuration. For two equivalent electrons it is relatively simple
to eliminate those terms that violate the Pauli principle. There are two rules.

1. If j1 �= j2 then all states from nonequivalent electrons are allowed, but, because the
electrons are equivalent, the states ( j1, j2)J are identical with states ( j2, j1)J so retain
only one set, for example, those for which j1 < j2.

2. If j1 = j2 then the allowed values of J are J = (2 j − 1) , (2 j − 3) , (2 j − 5) . . . un-
til J becomes negative. Values of J for which J = (2 j) , (2 j − 2) , (2 j − 4) . . . are
forbidden.

If the two d-electrons in the example above are now considered to be equivalent,
then, of the eight terms for which j1 �= j2 only four are distinct. We retain those
for which j1 < j2. (
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;
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;
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)
1

The remaining terms must also be reduced. We see that of the two terms with
j1 = j2 = 3/2 the ones for which J = 0, 2 are allowed. For the states for which
j1 = j2 = 5/2 those that are allowed are those for which J = 4, 2, 0. Therefore,
the allowed states for two equivalent d-electrons are(
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)
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;
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1
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Figure 10.3. Schematic diagram of the energy splittings under jj-coupling of two electrons
of npn′d configuration. [From Reference 3.]

We see that there are a total number of nine states from the (nd)2 configuration as
there are in the LS coupling scheme (see TABLE 10.2). It should be remarked that
when the valence electrons are equivalent their electrostatic interaction is large as
a result of their proximity. Thus, jj-coupling is more appropriate for nonequivalent
electrons.

To illustrate the splitting of the levels, FIGURE 10.3 shows the different jj-
coupling states for the npn′d configuration, the same configuration used to illustrate
LS-states in FIGURE 10.1. To order these states we note from the discussion of
hydrogen fine-structure in Chapter 7 that, for a single electron, the energy due
to the spin-orbit interaction depends upon the alignment of the orbital and spin
angular momenta. It was found that

E (1)
SO = −1

2
α2 E (0)

n

1

n

(
 + 1

2

)
( + 1)

for j =  + 1

2

= 1

2
α2 E (0)

n

1

n

(
 + 1

2

) for j =  − 1

2
(10.20)

Because E (0)
n is an intrinsically negative quantity, the spin-orbit energy for j =

( − 1/2) is lower than the spin-orbit energy for j = ( + 1/2). This indicates that
the lowest states in jj-coupling will be those for which the individual j-values are
lowest.

It is important to note that the LS and jj-designations are merely names for
the states. The efficacy of any name lies in the reliability of the parameters that
are contained in them. Therefore, to designate a state using, for example, its LS
name is not very helpful if L and S are not good quantum numbers. On the other
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hand, J remains a good quantum number in either coupling scheme and thus has
meaning in both. The utility of a particular designation is whether the observed
electromagnetic spectrum follows the selection rules for a given coupling scheme
as is discussed in Chapter 13.

As was noted previously, LS-coupling is most appropriate for light atoms and
heavier atoms tend to follow the jj-scheme. Because J is a good quantum number in
either scheme it is possible to examine the transition from one coupling scheme to
the other. In addition, the well-known result from perturbation theory that perturbed
states do not cross permits unambiguous correlation of these states. The transition
from LS- to jj-coupling can be illustrated by examining the Group IVA elements,2

the ground states of which have nominal electron configuration np2. The excited
configuration np (n + 1) s leads to four states. In LS notation these are 1 P1 and
3 P0,1,2 which are easily ordered using Hund’s rules. FIGURE 10.4 is a plot of the

Figure 10.4. The transition from LS- to jj-coupling for Group IVA elements in the excited
configuration np(n + 1)s.
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relative separations of these states as they evolve from C to Sn. Shown at the extreme
left and right, respectively, are the pure LS and jj-levels before having been split
according to their J -values. Because J is a good quantum number, the correlations
3 P0 → (

1
2

1
2

)
0 and 3 P2 → (

3
2

1
2

)
2 are obvious. Using the same arguments [see

Equations (10.20)] that led to ordering of the states in FIGURE 10.3, it is clear that
3 P1 → (

1
2

1
2

)
1 because this jj-designated state has smaller j-values than

(
3
2

1
2

)
1.

For the purpose of illustration the separations between the lowest and highest
levels of each element have been scaled to be the same in FIGURE 10.4. It can
be seen that for C the levels are arranged in accord with Hund’s rules. The singlet
state is higher than the triplet states by roughly 50 times the separations between
successive triplet states. Moreover, the triplet states are ordered in increasing values
of J because the subshell is less than half full. Si exhibits a near-LS spacing of
the analogous levels, but substantial deviation occurs for Sn where the highest
triplet state actually lies closer to the state that evolved from 1 P1 than the state
that evolved from 3 P1. For Sn the states have regrouped according to ( j1, j2) and,
as can be seen by comparison with the unperturbed jj-states on the right, this
atom exhibits nearly pure jj-coupling. The data in FIGURE 10.4 show clearly that
the coupling scheme that is appropriate for many atoms is a mixture of the two
extreme coupling schemes discussed here. An additional point of interest is that,
ignoring the spacing between energy levels, the correlations pertain to states of
any atoms (not just group IVA atoms) for which the valence electrons have sp
configuration.

Although high-Z atoms generally exhibit jj-coupling, high-Z does not neces-
sarily mean that jj-coupling is appropriate. This is illustrated in the alkaline earth
elements, group IIA. The ground states of the group IIA elements have nominal
electron configuration ns2 so they have relatively low-lying excited states of con-
figuration ns (n + 1) p. Notice that this sp configuration will lead to identically
labeled states as those we encountered in the case of the group IVA elements.
The difference is that in the group IVA elements the p-electron remains with the
“core” of the atom. It is the s-electron that occupies the higher orbital. The situ-
ation is reversed for the group IIA elements. The p-electron occupies the higher
orbital. FIGURE 10.5 shows the energy levels of the group IIA elements having
ns (n + 1)p electron configuration. Note that, even at high Z , the states group,
more or less, in accord with what is expected for LS-coupling. This is in sharp
contrast to the situation for the group IVA elements as was seen in FIGURE 10.4
despite the same nominal electron configurations.

The difference between these two cases lies in the relative magnitudes of n
and n′. If n > n′, as for the group IVA elements, then a transition from LS- to
jj-coupling occurs. If, however, n < n′, the energy level structure remains nearly
that of LS-coupling. For the s-electron,  = 0 so there is no spin-orbit interaction.
It remains then to understand the spin-orbit interaction for the p-electron in each
case. From Equation (10.20) it is seen that the magnitude of the spin-orbit energy
is proportional to 1/n3. Thus, this excited state configuration for the group IIA
elements features the p-electron in a higher shell (not subshell) than the compa-
rable state of the group IVA elements. Therefore, in the group IIA elements the
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Figure 10.5. Energy levels of Group IIA elements having ns(n + 1)p electron configura-
tion illustrating that LS-coupling is valid even for the high Z elements. The energy scale has
been adjusted to make the spacing between the lowest and highest levels the same in each
atom.

spin-orbit energy in ns (n + 1)p configuration will be considerably smaller than
the spin-orbit energy in np (n + 1) s configuration of the group IVA elements. Be-
cause jj-coupling is most pertinent when the spin-orbit coupling is maximum, the
nsn′p states of the group IIA elements exhibit near LS-coupling.

Problems

10.1. Find the LS terms that arise from the following configurations:
(a) nsnp; (b) npnd ; (c) (np)2ns.
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10.2. Write the complete ground state term in LS notation, 2s+1L J , for the elements
in the first row of the periodic table, that is, Li through Ne.
10.3. The total number of states for given values of L and S is the sum of all MJ

states for each possible value of J . Show that this number is (2S + 1) (2L + 1)
and verify that it is true for 4 D states and 4 P .
10.4. (a) Write all terms for the electron configuration npn′p in both the LS- and
jj-coupling notation.
(b) Make a diagram similar to FIGURE 10.3 for the jj-coupling states showing
the effects of spin-orbit interaction and exchange and electrostatic repulsion. Put
all terms in proper order.
10.5. (a) Write all terms for the electron configuration np2 in both LS- and jj-
coupling notation.
(b) Make a diagram similar to FIGURE 10.4 showing the transition from LS- to
jj-coupling. Put all terms in proper order.
10.6. An excited configuration of the Ca atom is: [Ar] (3d)2.
(a) What are the allowed LS terms?
(b) A particular multiplet of a Ca atom having the above electron configuration is
observed to have the energy spacing between adjacent J levels as follows.

EJ − EJ−1 = 4

3
E0 and EJ−1 − EJ−2 = E0

where E0 is a constant. What is J? What is the LS term designation 2S+1L of the
multiplet for which the energy levels are as shown?
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11
The Quantum Defect

11.1. Introduction

In 1890 Rydberg showed1 that for multielectron atoms the energy may be written
in a form that resembles the now familiar −1/2n2 for the hydrogen atom. (In
this chapter we use atomic units.) For multielectron atoms there is no accidental
degeneracy as for the hydrogen atom so the expression for the energy should
depend on both n and . The form in which Rydberg wrote the energy is

En = − 1

2 (n − δ)2 (11.1)

where n is, as usual, the principal quantum number and δ is called the quantum
defect. The attraction of the quantum defect approximation is that it is found
experimentally that for many atoms, in particular the alkali atoms, δ is very nearly
independent of n for a given value of . Thus, the energy-level diagram for such
an atom can be broken into different series of states, each series corresponding
to a different value of δ and hence . FIGURE 11.1 is an energy-level diagram
for hydrogen, lithium, and sodium with the common zero of energy taken to be
the ionization limits of each atom. This figure shows that, as expected, all lithium
and sodium levels approach those of the hydrogen atom as the principal quantum
number increases. It also shows that, for a given principal quantum number, the
higher angular momentum states are more nearly hydrogenic than the lower angular
momentum states.

The concept of the quantum defect extends beyond being merely a numerical
factor that leads to the correct energies. It is, in fact, a measure of the phase shift of
the wave function for the multielectron atom from that for a hydrogen atom. In this
picture the outermost or “valence” electron experiences a pure Coulomb potential
when it is beyond some critical distance from the nucleus, but is “scattered” when
it encounters the ionic core composed of the nucleus and the remaining electrons.
Although the valence electron is bound, this is analogous to the scattering problem
of an unbound electron scattering off the ionic core. In fact, when extrapolated
to positive energies the phase shift πδ provides a link to the cross section for
scattering of the th partial wave.2 In this book, however, we concentrate on the

214
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Figure 11.1. Partial energy-level diagrams of hydrogen, lithium, and sodium showing that
the levels approximate those of hydrogen for high principal quantum numbers and high
angular momentum quantum numbers.

consequences of the quantum defect on the bound state energy levels and their
behavior under the influence of perturbations, notably an external electric field.

Experimentally it is found that Equation (11.1) works particularly well for alkali
atoms, atoms that have one electron outside a closed shell (rare gas) configuration.
Thus, an alkali atom may be regarded a “one-electron” atom, the electron residing
in a potential provided by the nucleus and the rare gas core of electrons. The
nucleus and these core electrons are referred to as the ionic core. In accord with the
observation that the higher angular momentum states are more nearly hydrogenic
in energy than the lower angular momentum states it is expected that the quantum
defects δ for the higher angular momentum states should be very small compared
with those of the lower angular momentum states. TABLE 11.1 is a listing of the
quantum defects for the first few angular momentum states of the alkali atoms. This
table clearly shows the dramatic decrease in δ with increasing angular momentum.
As expected, the characterization of these atoms as one-electron atoms is best for

Table 11.1. Quantum defects of the alkali
atoms for  = 0 – 3.

 Li Na K Rb Cs

s 0.40 1.35 2.19 3.13 4.06
p 0.04 0.85 1.71 2.66 3.59
d 0.00 0.01 0.25 1.34 2.46
f 0.00 0.00 0.00 0.01 0.02
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those with the fewest electrons as signified by the lower quantum defects for even
s-states.

The reason that the quantum defects decrease with increasing  is easy to see.
Electrons with low angular momentum penetrate the ionic core making interelec-
tron repulsion important. The potential to which the valence electron is subjected
is therefore substantially different from the pure Coulomb potential that is expe-
rienced by the electron in a hydrogen atom. On the other hand, valence electrons
in alkali atoms that have high values of  must remain, on the whole, outside the
core, thus essentially moving in the field of Z protons and (Z – 1) electrons. They
therefore behave more as hydrogen, for which δ ≡ 0.

11.2. Evaluation of the Quantum Defect

If the quantum defect is to be a useful concept it must be small compared with the
principal quantum number. We therefore expand the expression for the energy in
terms of δ/n

En = −1

2
· 1

(n − δ)2

= − 1

2n2
· 1(

1 − δ

n

)2

= − 1

2n2

(
1 + 2

δ

n
+ · · ·

)

≈ − 1

2n2
− δ

n3

= En − δ

n3
(11.2)

According to Equation (11.2) the nonhydrogenic contribution to the energy is given
by −δ/n3 which is the average value of the non-Coulombic part of the potential
energy. Because this non-Coulombic term arises because of the core electrons we
refer to this potential as Vc (r ). Thus, this energy may be computed clasically by
averaging over a single orbit. We have

− δ

n3
= 1(

2πn3
) ∫

orbit

Vc (r )dt (11.3)

because the period is 2πn3 (see Chapter 1). Solving for δ,

δ = −(1/2π )
∫

Vc (r ) dt (11.4)
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Figure 11.2. Schematic diagram showing the polarization of the ionic core by the valence
electron.

If the Vc (r ) consists of several terms then δ is a simple sum

δ =
∑

δi (11.5)

In general Vc (r ) will be given by

Vc (r ) = Vpol (r ) + Vpen (r ) + Vrel (r ) (11.6)

Vpol (r ) describes the effects of polarization of the ionic core by the valence electron,
Vpen (r ) is due to core penetration, and Vrel (r ) is due to relativistic effects such as
spin-orbit coupling. The average values over an orbit of all three of these potentials
scale as 1/n3. We, however, concentrate on the case for which  > core, where
core is the maximum angular momentum of a core electron. For example, for
sodium core = 2 and it is found that δ � 1 for electrons for which  > core (see
TABLE 11.1). Under these circumstances the largest contribution to the quantum
defect comes from Vpol (r ).

By concentrating on the effects of Vpol (r ) we are considering the atom to consist
of the ionic core and a valence electron (sometimes referred to as a Rydberg electron
because such atoms are sometimes called Rydberg atoms). The picture is then one
of the Rydberg electron polarizing the charge distribution that is the ionic core. That
is, the electron distorts the cloud consisting of (Z − 1) electrons that surrounds the
nuclear point charge +Z as illustrated in FIGURE 11.2. In Chapter 12 we show,
however, that this simple model of core polarization does not always lead to a
useful physical picture.

The total Hamiltonian may be written as

Ĥ = ĤCoul + Ĥpol (11.7)

where ĤCoul is the hydrogen atom Hamiltonian and Ĥpol contains all the potential
energy terms resulting from polarization of the ionic core by the Rydberg electron.
That is, Ĥpol consists of all terms of the multipole expansion of the potential energy
of the core. In fact, however, only the first and perhaps the second terms, the dipole
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polarizability and the quadrupole polarizability, are important. We have then

Ĥpol = Vpol (r )

= V d
pol (r ) + V q

pol (r ) + · · ·
∼= − αd

2r4
− αq

2r6
(11.8)

where αd and αq are the dipole and quadrupole polarizabilities of the ionic core.
(The e2 that is usually present in the numerators has been set equal to one in atomic
units.) Now, the quantum defect will be the sum of the quantum defects due to
each of these terms in the potential energy; that is,

δ = δd
 + δ

q
 (11.9)

Our goal is to evaluate δd
 in terms of αd and the angular momentum quantum

number . Evaluation of δ
q
 is left as an exercise at the end of this chapter (see

Problem 11.5). To evaluate δd
 we compute the shift in energy (from En) resulting

from V d
pol (r ). This shift may be evaluated using quantum mechanical perturba-

tion theory for stationary states.3 This shift may also be evaluated using classical
mechanics.4 The answers, to the same level of approximation, are the same. We
elect to use classical mechanics.

The central nature of this potential energy assures us that Kepler’s second law
pertains. In accordance with Kepler’s second law, the electron spends a major
fraction of the Keplerian period at large values of r for which the 1/r4 is negligible.
Consequently, during a single revolution of the Rydberg electron this electron
executes a very nearly Keplerian orbit. We therefore compute the energy of the
Rydberg electron by averaging over an orbital period. Of course, the average of
the Coulombic part of the potential energy is just the hydrogenic energy En . We
evaluate the energy shift by averaging the expression for V d

pol (r ) over a single
orbit of the Rydberg electron assuming that each individual orbit is Keplerian.
Note that this uses a hydrogenic feature, a Keplerian orbit, to evaluate a decidedly
nonhydrogenic quantity V d

pol (r ). This is analogous to the technique that would
be employed if quantum mechanical perturbation theory were employed. That is,
the correction to the unperturbed energy is obtained by computing the expectation
value of the perturbing Hamiltonian using unperturbed wave functions which, in
this case, are hydrogen atom wave functions.

Now, the average value of V d
pol (r ) is

〈
V d

pol (r )
〉 = −αd

2
·
〈

1

r4

〉
(11.10)

so the task is to evaluate
〈
r−4

〉
over one Keplerian orbit. For generality, we evaluate

the quantity 〈rm〉. 〈
r−m

〉 = 1

τ

∫ τ

0
r−mdt

=
(

1

2πn3

)∫ τ

0
r−mdt (11.11)
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where τ is the Keplerian period equal to 2πn3. To evaluate the integral we convert
it to an integral over φ by replacing dt by dφ/φ̇ and, using the equation of the
Keplerian orbit of eccentricity ε (see Chapter 5),

1

r
= 1 + ε cos φ

2
(11.12)

to eliminate r . Using angular momentum conservation we have

r2φ̇ =  (11.13)

where  is the (constant) angular momentum. Then
〈
r−m

〉
becomes

〈
r−m

〉 = (
1

2πn3

)
· 1


· (2

)2−m
∫ 2π

0
(1 + ε cos φ)m−2 dφ (11.14)

provided, of course, that m ≥ 2. Now, expanding the integrand using the binomial
theorem we have

(1 + ε cos φ)m−2 = 1 + (m − 2)

1!
ε cos φ + (m − 2) (m − 3)

2!
ε2 cos2 φ

+ (m − 2) (m − 3) (m − 4)

3!
ε3 cos3 φ + · · · (11.15)

The integrals of the odd powers of the cosine vanish so we have

〈
r−m

〉 = 3−2m

n3

[
1 + (m − 2) (m − 3)

2!
ε2

(
1

2

)]

+ 3−2m

n3

[
(m − 2) (m − 3) (m − 4) (m − 5)

4!
ε4

(
3

8

)
+ · · ·

]
(11.16)

For m = 4 we have

〈
r−4

〉 = (
1

n3

)
· −5

(
1 + 1

2
ε2

)
(11.17)

The eccentricity is

ε2 = 1 − 2

n2
(11.18)

so that

〈
r−4

〉 = (
−5

n3

)[
1 + 1

2

(
1 − 2

n2

)]

=
(

−5

n3

)(
3

2
− 2

2n2

)
(11.19)



220 11. The Quantum Defect

and, retaining only terms to order 1/n3 (ε2 ≈ 1 in this approximation), we have

〈
r−4

〉 = (
3

2

)(
−5

n3

)
(11.20)

Then for
〈
Vpol (r )

〉
, we have

〈
V d

pol (r )
〉 = −αd

2

〈
1

r4

〉

= −3

4

(
αd

−5
) 1

n3
(11.21)

The total energy is given by

〈E〉 = − 1

2n2
− 3

4

(
αd

−5
) 1

n3
(11.22)

and we identify the coefficient of the 1/n3 term as δ so that

δd
 = 3

4

(
αd

−5
)

(11.23)

As noted previously, this is the same result as that obtained using quantum
mechanical perturbation theory.3 The result is also identical to that obtained using
classical perturbation theory.

11.3. Classical Formulation of the Quantum Defect
and the Correspondence Principle

Although seemingly self-contradictory, it is possible to relate the quantum defect
to the classical precession frequency. Assuming that dipole polarizability of the
core is the only non-Coulomb part of the potential, the total potential in atomic
units is

V (r ) = −1

r
− αd

2r4
(11.24)

Inasmuch as this is a central potential the classical orbit is confined to a plane
because angular momentum is conserved. If we also assume that

αd

2r4
� 1

r
(11.25)

then the classical orbit of the Rydberg electron is very nearly a Keplerian ellipse. As
discussed in Chapter 5, the non-Coulombic term in V (r ) destroys the conservation
of the Lenz vector A that would exist if the potential were purely Coulombic.
Because the non-Coulombic term is assumed small compared with the Coulombic
term the orbit may be envisioned as a Keplerian ellipse precessing about the force
center as shown in Figure 5.4. This is, of course, analogous to the celebrated
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Figure 11.3. Precession of the Lenz vector and, hence, the Keplerian ellipse caused by a
small non-Coulombic term in the potential.

precession of the perihelion of the planet Mercury that is caused by the relativistic
correction to the attractive Newtonian 1/r potential. Precession of the Keplerian
ellipse is illustrated in FIGURE 11.3.

It is interesting to contrast FIGURE 11.3 with Figure 5.5. In Chapter 5 the
permanent electric dipole moment that is unique to hydrogen was understood clas-
sically by appealing to Kepler’s third law. In a Keplerian orbit the electronic motion
produces an asymmetric charge distribution because it moves more slowly at apoc-
enter than at pericenter. The presence of the small non-Coulombic term causes the
(nearly) Keplerian orbit to precess about the force center thus symmetrizing
the charge distribution and destroying the permanent electric dipole moment of the
pure Keplerian orbit. This classical precession is equivalent to destruction of the
quantum mechanical accidental degeneracy.

It is seen then that in multielectron atoms, deviations from hydrogenic energies
are due to the non-Coulombic part of the potential. These deviations may be viewed
as manifestations of the quantum defect. Therefore, the quantum defect must be
related to the classical precession frequency ωc. If ωc is small then δ is expected
to be small.

We seek the relationship between the classical precession frequency and the
quantum defect. The precession rate is ωc, which, when the non-Coulombic term
is small compared to the Coulomb potential, is simply the “frequency” of the
revolution of A about the force center. Strictly speaking, of course, this is not a
frequency because the classical motion is not periodic. Within the approximation,
however, it is assumed that each revolution of the particle from φ = 0 to φ = 2π

is a Keplerian orbit and that A is fixed over one such revolution. The precession
frequency may then be identified as the time rate of change of A from one revolution
to the next. We therefore compute

〈
Ȧ
〉
t
, the time average of Ȧ over one “period”.
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We begin with the definition of A.

A = p × L − r̂ (11.26)

where r̂ is the unit vector in the r direction. Differentiating, we have

Ȧ = ṗ × L + p × L̇ − ˙̂r (11.27)

Now, ṗ = −∇V (r ) where

V (r ) = VCoul (r ) + Vpol (r ) (11.28)

and L̇ = 0 for a central potential. Then

Ȧ = −∇VCoul (r ) × L − ∇Vpol (r ) × L − ˙̂r (11.29)

Now, Ȧ ≡ 0 for a Coulomb potential so

0 = −∇VCoul (r ) × L − ˙̂r (11.30)

Thus

−∇VCoul (r ) × L = ˙̂r (11.31)

and

Ȧ = −∇Vpol (r ) × L (11.32)

Also,

∇Vpol (r ) = r̂
dVpol (r )

dr

= r
r

· dVpol (r )

dr
(11.33)

so that

Ȧ = 1

r

dVpol (r )

dr
(L × r )

= 1

r

(
4

αd

2r5

)
(L × r )

= 2αd

r6
(L × r ) (11.34)

We must now compute
〈
Ȧ
〉
t

which is given by〈
Ȧ
〉 = 2αd · L ×

〈 r
r6

〉
t

(11.35)

because L is constant throughout. Also, because A is very nearly constant over a
single revolution the direction of the vector r is along the major axis, the direction
of A, and its magnitude is rcosφ. Therefore,

Ȧ = 2αd

〈
cos φ

r5

〉
t

(
L × A

|A|
)

(11.36)
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To compute the average value of

〈
cos φ

r5

〉
t

we first compute the average for the

more general quantity

〈
cos φ

rm

〉
t

.

〈
cos φ

rm

〉
t

= 1

τ

∫ 2π

0

cos φ

rm
dt (11.37)

This time average is most easily computed by converting to an average over φ

using Kepler’s second law r2φ̇ = . Also, because the orbit is assumed Keplerian
over one revolution the period is τ = 2πn3. We obtain

〈
cos φ

rm

〉
φ

= 1

2πn3
· 1



∫ 2π

0

cos φ

rm
dφ

= 1

2πn3
· 1


·
(

1

2

)m−2 ∫ 2π

0
cos φ (1 + ε cos φ)m−2dφ

= 1

2πn3
· 1


·
(

1

2

)m−2 ∫ 2π

0
cos φ[1 + (m − 2)

1!
ε cos φ

+ (m − 2) (m − 3)

2!
ε2 cos2 φ

+ (m − 2) (m − 3) (m − 4)

3!
ε3 cos3 φ

+ (m − 2) (m − 3) (m − 4) (m − 5)

4!
ε4 cos4 φ + · · ·]dφ (11.38)

The integrals of the odd powers of cos φ vanish and we have

〈
cos φ

rm

〉
φ

= 1

2πn3
· 1



(
1

2

)m−2

×
[

(m − 2) επ + (m − 2) (m − 3) (m − 4)

3!
ε3 3

4
π + · · ·

]
(11.39)

Now, for the dipole polarizability we require m = 5 giving

〈
cos φ

rm

〉
φ

= 1

2n3
· 1



(
1

2

)m−2

3ε

[
1 + 3

4
ε2

]
(11.40)

To cast Equation (11.40) in a suitable form we keep only terms to first power of
(/n). Thus, ε2 = 1 − 2/n2 ≈ 1, but, from Chapter 5, ε = |A| so we have〈

cos φ

r5

〉
φ

= 15

8

1·
n37

· |A| (11.41)
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Equation (11.36) becomes

Ȧ = 15

4
· αd

7n3
(L × A)

= ωc

(
L


× A
)

(11.42)

where

ωc = 15

4
· αd

6n3

= 5

n3
δ (11.43)

where the last expression follows from Equation (11.23).
We may show that this is indeed the frequency of revolution of the vector A

about the angular momentum unit vector L/ as follows. Suppose that L is in the
z-direction so that k̂ = L/ and that A rotates about it with frequency ω so that

A = A
(
cos ωt î + sin ωt ĵ

)
(11.44)

and

Ȧ = −ωA
(
sin ωt î − cos ωt ĵ

)
= ωk̂ × A (11.45)

The relationship between ωc and δ in Equation (11.43) shows explicitly that, from
a classical point of view, the nonhydrogenic nature of Rydberg atoms as manifested
in the quantum defect is a result of the non-Keplerian part of the potential energy.
It is this non-Keplerian portion of the potential energy that causes the precession
and, consequently, the deviations from hydrogenic energies. Thus, δ or ωc may
each be regarded as a consequence of the other. The precession frequency and the
quantum defect are both very strong functions of 1/ showing that, as expected,
low angular momentum orbits penetrate the ionic core and are thus more non-
Keplerian than higher angular momentum orbits for which the electron is forced
to avoid the core.

We may gain further insight into the relationship between δ or ωc by invok-
ing the correspondence principle. According to the correspondence principle, the
energy between adjacent states should be equal to h̄ times the frequency of the
classical motion. Radiation given off in transitions between these adjacent states
should be of frequency equal to the frequency of the classical motion. Our inter-
est is in the difference in energy between angular momentum states of the same
Keplerian energy so the appropriate frequency here is not the Keplerian fre-
quency, but, rather, the precessional frequency. In atomic units h̄ = 1 so, using
Equation (11.2), we may write

ωc = En − En(+1)

= 1

n3
(δ − δ+1) (11.46)
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Inserting the value of δ from Equation (11.23) we have

ωc = 1

n3
· 3αd

4

[
1

5
− 1

(1 + )5

]

= 1

n3
· 3αd

4

(
5 + 102 + 103 + 54

)
(1 + )5 5

= 15

4
· αd

6n3
+ terms of higher order in

1


(11.47)

The leading term in this expression goes as −6, as does the precession frequency
as calculated previously. In fact, retaining only the leading term we arrive at ex-
actly the same expression for the precession frequency that we derived previously,
Equation (11.43).

This treatment is, of course, identical to treating  as a continuous variable (as
it is classically). Thus, Equation (11.46) may be written as

ωc = − 1

n3

∂δ

∂
(11.48)

Differentiating Equation (11.23) and inserting it in Equation (11.48) we have

ωc = 1

n3

(
15

4

) (
αd

−5
)

(11.49)

which is identical with the result of Equation (11.43). This treatment employing
the correspondence principle makes it clear that it is the rate of change of the
quantum defect with angular momentum that determines the precession rate of the
near Keplerian orbit and not the actual values of δ.

11.4. The Connection Between the Quantum Defect
and the Radial Wave Function

The success of the quantum defect description of the energy levels of multielectron
atoms in terms of those of hydrogen, stems from the fact that many core potentials
are central in nature and have a shorter range than the Coulomb potential. The
central nature of the core potential guarantees the angular dependence of the wave
function is given by the spherical harmonics, just as in hydrogen. Thus, the core
potential only affects the radial wave function.

To understand the role that the quantum defect plays in the radial wave function
of multielectron atoms, we consider the WKB approximation which provides a
good approximation to the radial wave function between the turning points5

r1,2 = n2 ± n
√

n2 − ( + 1/2)2 (11.50)

where, as is common in the WKB approximation, ( + 1) has been replaced
by ( + 1/2)2. The radial wave function for R (r ) is given by the solution to
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Equation (4.2). Using atomic units we have

d2u(r )

dr2
+
[

2E + 2V (r ) − ( + 1/2)2

r2

]
u(r ) = 0 (11.51)

where u(r ) = r R(r ). This has the approximate solution5 for R(r )

R(r ) = C

r

⎛
⎝[2V (r ) + 2E − ( + 1/2)2

r2

]−1/2
⎞
⎠

× cos

⎡
⎣ r∫

r1

√
2V (r ) + 2E − ( + 1/2)2

r2
dr − π

4

⎤
⎦ (11.52)

where C is a constant.
Although Equation (11.52) does indeed follow from the WKB approximation

to the radial Schrodinger equation, it is easily interpreted as a deBroglie wave with
a wavelength given by the “local” kinetic energy and momentum of the electron.

The addition of a small core potential Vc(r ) to the Coulomb potential will have
the greatest effect on the argument of the cosine function, which will become

∫ r

r1

√
2

r
− 2Vc (r ) − 1

n2
− ( + 1/2)2

r2
dr − π

4
(11.53)

Expanding (11.53) in a Taylor series about Vc(r ) = 0 gives

∫ r

r1

√
2

r
− 1

n2
− ( + 1/2)2

r2
dr −

∫ r

r1

Vc (r )√
2

r
− 1

n2
− ( + 1/2)2

r2

dr − π

4
(11.54)

Although, in general, we cannot evaluate the second integral, we already know the
answer as r becomes large (but not larger than r2). Appealing to the semiclassical
picture presented in Section 11.3 we can see that the denominator is dr/dt because
it is

√
2 [E − V (r )]. For large r we may extend the upper limit to r2 so that the

argument of the cosine in Equation (11.52) approaches

∫ r2

r1

√
2

r
− 1

n2
− ( + 1/2)2

r2
dr −

∫ r2

r1

Vc(r )dt − π

4
(11.55)

for large r .
Equation (11.4) shows that the quantum defect is given by δ = − (1/2π )∫

orbit

Vc(r )dt where the integral is evaluated over the entire Keplerian ellipse.

The integral from the inner turning point to the outer is over one half the el-
lipse so we see that the core term in the radial wave function approaches πδ for
large r .
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Figure 11.4. WKB radial wave functions of hydrogen and potassium in the classically
allowed region illustrating the shift in phase caused by the ionic core of potassium.

The effect of a core potential such as the polarization potentials discussed in
this chapter is to cause a phase shift from radial functions of hydrogen. This phase
shift “accumulates” throughout the classically allowed region and approaches πδ.
FIGURE 11.4 shows a graph of the radial wave functions of d-states of hydrogen
and potassium for n = 20 as given by Equation (11.52). Potassium was chosen
because its d-state quantum defect is 0.25, large enough to make the phase shift
observable in the graph. It is assumed that the quantum defect is produced by only
the dipole polarization of the core and using Equation (11.23) to compute αd so
that Vc (r ) is given by −αd/2r4. The solid line is hydrogen. The expected phase
shift approaching 0.25π (see TABLE 11.1) is indicated.

Problems

11.1. Using quantum defects calculate the ionization potentials of lithium and
sodium in electron volts. The ionization potential is simply the ground state energy
of the atom.
11.2. A spherically symmetric singly charged positive ion (the “ionic core”) is
situated at the origin of coordinates. An electron is assumed to be at a fixed
distance z along the z-axis. This electron induces in the ion a dipole moment,
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the magnitude of which is determined by the ion’s polarizability αd . Assume that
z is much greater than the dimension of the ion.
(a) Using the result from electromagnetic theory that the field of a dipole is given
by

Edipole (r, θ, φ) = p

4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
find the force on the electron.
(b) Show that the work done in bringing the electron from infinity to z = r gives
the dipole potential energy in Equation (11.8) after, of course, converting from the
SI units of this problem to atomic units.
11.3. The effects of core penetration by the valence electron of a Rydberg atom
may be approximated by assuming that the potential as seen by the Rydberg
electron is, in a.u.,

V (r ) = −
(

1

r
+ b

r2

)

where b is a positive constant. The effect of this potential is that of increasing the
attraction between the valence electron and the nucleus as the Rydberg electron
penetrates the ionic core. The constant b is then chosen to give the best fit to
spectral data. By averaging the 1/r2 term in the potential energy over a Keplerian
orbit find the quantum defect in terms of b and the angular momentum.
11.4. The quantum defect for the potential of the previous problem,

V (r ) = −
(

1

r
+ b

r2

)

where b is a positive constant, may also be obtained from the quantum mechanical
solution of the radial part of the Schrödinger equation because the 1/r2 term may
be combined with the centrifugal term. Show that the quantum defect is given by
δ ≈ b/ ( + 1/2). Can you account for the difference between this answer and
the previous answer? How do these energy states vary for a given n with ?
11.5. In addition to the dipole term in the Hamiltonian that led to the quantum
defect

δd
 = 3

4

(
αd

−5
)

there is also a potential energy due to quadrupole polarizability of the ionic
core that can be included. This quadrupole term is V q

pol(r ) = −αq/2r6. Use
the same technique as that used in the text to show that the portion of the quantum
defect that is due to quadrupole polarizability is

δ
q
 = 35

16

(
αq

−9
)
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12
Multielectron Atoms in External Fields

12.1. The Stark Effect

In Chapter 8 we saw that the quadratic Stark effect on the ground state of hydrogen
is a consequence of the nondegenerate nature of this state. The linear Stark effect
that is characteristic of the excited states of hydrogen is a direct consequence of
the accidental degeneracy. On the other hand, excited states of multielectron atoms
are nondegenerate and should therefore exhibit the quadratic Stark effect. In fact,
this is true, but in some instances excited states of multielectron atoms behave in
a hydrogenic fashion. We therefore make a distinction between hydrogenic states
(of multielectron atoms) and states of hydrogen. The existence of hydrogenic
states is most often observed in alkali metal atoms when they are subjected to an
external electric field. As might be expected from the discussion of Chapter 11,
high angular momentum states, those having the smallest quantum defects, are
most nearly hydrogenic.

In our discussion of the Stark effect in multielectron atoms we use sodium as
our example because it exhibits features not present in the lighter lithium. Certain
states behave as if they have a negative polarizability. That is, in terms of the static
polarization picture represented in Chapter 11 (see Figure 11.2), the field seems
to polarize the atomic charge distribution “backwards”, thus leading to a negative
polarizability. This concept is difficult to understand in terms of the simple static
picture. We emphasize, however, that in this chapter we are discussing polarization
of the entire atom, not the ionic core as was discussed in Chapter 11. We merely
compare the effects of the external field with those of the field of the valence
electron in the static model presented in Chapter 11. We return to the concept
of a negative atomic polarizability later in this chapter and find that the classical
model1 offers an alternative explanation.

FIGURE 12.1 is a schematic diagram of the energy levels of the sodium atom
when an electric field F is applied. This diagram, also referred to as a Stark map,
can be understood in terms of the quantum defects for sodium.

To understand this diagram we first examine the ordering of the levels with
F = 0. Because the quantum defects of the states having  ≥ 2 are very small, their

230
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Figure 12.1. Schematic energy-level diagram of sodium showing the behavior of the levels
when an external electric field F is applied. [From Reference 1.]

zero-field energies are very nearly the same as those of hydrogen. The groups of
states emanating from n and (n − 1) in FIGURE 12.1 are referred to as hydrogenic
manifolds of states. These manifolds comprise only those states for which the
zero-field energies are very nearly those of hydrogen. On the other hand, the
quantum defects of s- and p-states of sodium are 1.34 and 0.85, respectively (see
Table 11.1), so that the (n + 1)s and np states are isolated from the hydrogenic
manifolds. Examination of this table indicates that for lithium only the s-states
would be isolated from the hydrogenic manifolds.

In fact, the placement of states having substantial quantum defects with respect to
the hydrogenic manifolds depends only on the fractional part of the quantum defect.
Because the quantum defect of the p-states is greater than one-half, np-states lie
nearer to the (n − 1) hydrogenic manifold than to the n manifold. This is easily
seen by noting that if the quantum defect were exactly unity then the energy would
be coincident with the hydrogen energy of principal quantum number (n − 1). In
contrast, the quantum defect of sodium s-states is 1.35. The fact that δs > 1 means
that a given s-state lies below the next lowest hydrogenic manifold as shown in
FIGURE 12.1. In this sense, the quantum defects of the s- and p-states may be
regarded as being 0.34 and −0.15, respectively.

If now, we turn on the electric field, the energies of the nondegenerate s- and
(p)-states decrease (increase) quadratically. From quantum mechanics we know
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Figure 12.2. Magnified energy-level diagram (schematic) of sodium showing that the hy-
drogenic states are not truly degenerate.

that the s-state energy decreases because it is “repelled” by the closest state to it,
the lowest state of the n hydrogenic manifold above it. The p-state is, however,
different. It too is repelled by its nearest neighbor state, but this is the highest state
of the (n − 1) manifold so its energy must increase as shown. This is the negative
atomic polarizability mentioned earlier in this chapter.

As for the hydrogenic manifold, although the quantum defects for  ≥ 2 are
very small, they are not zero. Therefore, sufficiently magnified, there is a separa-
tion between states, even at zero field. Moreover, at very small fields these states
must behave quadratically because they are not states of hydrogen. FIGURE 12.2
illustrates this point. It shows the hydrogenic manifold corresponding to principal
quantum number n, but magnified from that in FIGURE 12.1 to show the separa-
tion between the d-state and the remainder of the hydrogenic manifold. Of course,
magnified further, the f -state and higher angular momentum states would also
separate from the nominal hydrogen energy. As the field increases these separated
states behave quadratically, but, with further increase in the field these states “join
the hydrogenic manifold” and behave as linear Stark states.

The Stark effect was studied early in the twentieth century by Stark and Lo
Surdo,2 but, because the high field required to affect atoms in low-lying states
was substantial, experiments were difficult. With the availability of lasers as a
laboratory tool, however, there was renewed interest in the Stark effect.3 Lasers
made it possible to excite atoms to specific highly excited states which, as we saw
in Chapter 8, are much more sensitive to the electric field because the Stark en-
ergy increases dramatically with increasing principal quantum number [see Equa-
tion (8.76)]. This, of course, makes sense because in highly excited states the
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intra-atomic electric field to which the valence electron is subjected is small be-
cause of the remoteness of the ionic core.

Because highly excited atoms are so sensitive to external electric fields it is
possible to gain insight into the Stark effect by again appealing to a classical model.
We saw in Chapter 8 that application of the electric field causes the Keplerian orbit
of a hydrogen atom to rotate about the electric field vector. From Chapter 11
we know that the non-Coulombic term in the potential energy causes the near-
Keplerian orbit to precess about the force center in the plane of the orbit. The
behavior of the atom under this influence is clearly determined by the relative
magnitudes of the rotation and precession frequencies. These frequencies are given
by

ωS = (3/2) nF

ωc = 5

n3
δ (12.1)

so that at low fields when ωS � ωc the Keplerian orbit rapidly spins about the
force center, symmetrizing the charge distribution and destroying the permanent
electric dipole moment extant for a fixed Keplerian orbit. The result is that there
is no linear Stark effect. The atom does, however, respond quadratically to the
electric field. At the other extreme, at high fields where ωS � ωc, the plane of
the orbit rotates rapidly about F . In effect this freezes the Keplerian orbit so the
atom behaves as though it had a permanent electric dipole moment and responds
linearly to the electric field.

To obtain an approximate value for the magnitude of the electric field at which
hydrogenic behavior is expected, we may equate ωS and ωc. This yields

F = 10

3

1

n4
δ (12.2)

which shows the strong dependence on n, , and the quantum defect which itself
is strongly dependent upon . In fact, because we know that δ � 1 for  > core

it is clear that the term “hydrogenic manifold” is quite descriptive for  > core.
We may use the classical model applied to multielectron atoms to understand the

negative polarizabilities of certain atomic states, for example, p-states of sodium
discussed earlier in this chapter. It was seen in Chapter 11, Equation (11.48), that
the field-free precession frequency ωc may be written as

ωc = − 1

n3

∂δ

∂
(12.3)

As usual, we treat the orbit as the dynamical entity. When the field is present, the
potential is no longer central and angular momentum is not conserved. There will
then be a torque on the orbit that causes it to rotate about the applied field. We
assume low fields so that this rotation rate is slow compared with the precession
rate ωc. The orbit may therefore be assumed to be frozen for the purpose of this
derivation. We designate the plane of this frozen orbit as the yz-plane and the field
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Figure 12.3. Geometry used in the derivation of the classical expression for the atomic
polarizability.

to be in the z-direction so that F = F k̂ L = î. The coordinates are shown in
FIGURE 12.3.

The torque on the orbit is

L̇ = p × F (12.4)

where p is the instantaneous electric dipole moment and θ the angular displacement
of p from the y-axis.

Because ωc is a function of the changing angular momentum  we find ωc().
Then, using ωc(), we average the instantaneous dipole moment over one preces-
sional period to find the effective atomic dipole moment. This effective dipole
moment then leads to the polarizability of the atom. We use the symbol α for the
polarizability in this chapter. Note that this is not the core polarizability αd of
Chapter 11.

From FIGURE 12.3 and Equation (12.4), the magnitude of the torque is

∣∣L̇∣∣ = d

dt
= py F (12.5)

Also,

d

dt
= d

dθ
θ̇

= d

dθ
ωc() (12.6)
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Therefore,

d

dθ
ωc () = py F (12.7)

Defining

ω0 = ωc ( = 0) (12.8)

and using Equation (11.43) which is

ωc = 5

n3
δ (12.9)

we have

ωc () = ω0

(
0



)6

(12.10)

Equation (12.7) becomes

ω0

(
0



)6

d = p cos θ Fdθ (12.11)

which integrates to

ω0
6
0

5

(
1

5
0

− 1

5

)
= pF sin θ (12.12)

If  deviates from 0 by only a small amount � we may write

ω0
6
0

5

(
1

5
0

− 1

5

)
= ω0

6
0

5

[
1

5
0

− 1

(0 + �)5

]

∼= ω0
6
0

5

[
1

5
0

− 1

5
0

(
1 − 5

�

0

)]

= ω0�

= ω0 ( − 0) (12.13)

Solving for  we have

 = pF sin θ

ω0
+ 0

= 0 (1 + η sin θ ) (12.14)

where η = pF/0ω0. The precessional frequency as a function of the angular
momentum is then

ωc () = ω0

(1 + η sin θ )6 (12.15)
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from which we may obtain the precessional period τc.

τc =
∫ τc

0
dt

=
∫ 2π

0

dθ

θ̇

=
∫ 2π

0

[(
1 + η sin θ

ω0

)]6

dθ

∼= 2π

ω0

(
1 + 15

2
η2

)
(12.16)

The average dipole moment is the average of the z-component of the dipole mo-
ment. By symmetry 〈py〉 = 0. The average value of the z-component is

〈pz〉 = 1

τc

∫ τc

0
pz (θ ) dt

= 1

τc

∫ τc

0
p sin θ

dθ

θ̇

= 1

τc

∫ 2π

0
p

sin θ (1 + η sin θ )6

ω0
dθ (12.17)

For the weak fields under consideration we retain only linear powers of the field,
and therefore linear powers of η. We have

〈pz〉 = ω0

2π

∫ 2π

0

p

ω0

(
sin θ + 6η sin2 θ

)
dθ

= 3pη

= 3
p2

0ω0
F (12.18)

From the results of Problem 5.3 we know that

p2 = 9

4
n4
(
1 − 2/n2

)
(12.19)

so that

〈pz〉 = 27

4

n4
(
1 − 2/n2

)
0ω0

F (12.20)

Because the energy is given by

E = −1

2
〈pz〉 F

= −27

8

n4
(
1 − 2/n2

)
0ω0

F2

= −1

2
αF2 (12.21)
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we see that the polarizability is

α = −27

4

n4
(
1 − 2/n2

)
0ω0

(12.22)

We wish, however, to cast this in terms of the quantum defect. We therefore
replace ω0 using Equation (12.9) with  → 0 and obtain

α = −27

20

(
1 − 2/n2

) n7

δ

(12.23)

The polarizability as given in Equation (12.23) is consistent with the concept of a
negative quantum defect assigned to sodium p-states to account for their positive
Stark shifts.

Thus, according to this formulation, any state for which the fractional part of
the quantum defect, call it f , is such that f > 1/2 should be assigned a quantum
defect δ = f − 1, a negative number. All such states will exhibit negative
polarizabilities. Equation (12.23) was derived using purely classical methods.
The appearance of the “quantum numbers” n and  and the quantum defect δ in
no way suggests a quantum mechanical origin of this expression. Indeed, n and
 are simply the energy and angular momentum, respectively, and are continuous
variables. It is interesting that the expression obtained for the polarization using
classical methods, Equation (12.23), is exactly the same expression obtained
using second-order perturbation theory.4

Positive and negative polarizabilities are illustrated in FIGURE 12.4. The figure
shows precessing near-Keplerian orbits with a variable precessional rate caused
by application of an external field. The parameters used were identical except the
signs of the quantum defects were reversed.

In FIGURE 12.4(A) there is clearly a buildup of negative charge on the downfield
side of the nucleus as is expected from the charge polarization model. In this case,

Figure 12.4. Precession of the nearly Keplerian orbit of an electron due to the charge-
induced polarization potential. In (A) the polarizability is taken to be positive whereas in
(B) it is negative. [From Reference 1.]
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application of the field leads to a negative shift in energy as would occur if the iso-
lated state were closer to the hydrogenic manifold above. On the other hand, if the
state were closer to the manifold below then ∂δ/∂ > 0 causing the orbit to precess
in the opposite direction. This leads to a buildup of negative charge on the upfield
side of the nucleus and a negative polarizability as shown in FIGURE 12.4(B).

12.2. The Zeeman Effect

In Chapter 8 we discussed at length the Zeeman effect in the hydrogen atom. A
major difference between the hydrogen atom treatment and the multielectron case
is that there is no limit on the total electronic spin for multielectron atoms. In
hydrogen the electronic spin is necessarily one-half. Moreover, we have to deal
with coupling between the spins and the total orbital angular momenta.

We consider the weak field Zeeman effect and define a “weak” magnetic field
B to be one for which the energy associated with the atom in this field, µ̂ � B, is
comparable with the spin-orbit term. Thus

µ̂ � B ∼ ξ (r ) L̂ � Ŝ

We take the unperturbed Hamiltonian to contain all intra-atomic effects not asso-
ciated with the external field

Ĥ0 = ĤCoulomb + ξ (r ) L̂ � Ŝ (12.24)

so that the unperturbed wave functions are eigenfunctions of L̂2, Ŝ2, Ĵ 2, and Ĵz ;
that is, the eigenfunctions are the coupled wave functions. Recall that these are not
eigenfunctions of either L̂ z or Ŝz . The perturbing Hamiltonian is taken to be

Ĥ ′ = −B � µ̂

= −B �

(
µB

h̄
L̂ + 2

µB

h̄
Ŝ
)

= −µB

h̄
B �

(
L̂ + 2Ŝ

)
= −µB

h̄
B �

(
Ĵ + Ŝ

)
(12.25)

This last expression shows that µ̂ ∝ (
Ĵ + Ŝ

)
so that µ̂ is parallel to Ĵ (or L̂) only

if Ŝ is zero. We take B to be in the z-direction, B = Bk̂, so that

Ĥ ′ = −µB B

h̄

(
Ĵz + Ŝz

)
(12.26)

From first-order perturbation theory

�E = 〈
Ĥ ′〉

= −µB B

h̄

(
MJh̄ + 〈

Ŝz
〉)

(12.27)

But, this expression for �E does not lend itself to easy evaluation because, although
Ĵz is well-defined on the coupled eigenstates of Ĥ0, Ŝz is not. It would be more
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Figure 12.5. Diagram showing the relationship of the various angular momenta.

useful if the Hamiltonian could be written in the form

Ĥ ′ = −gJ

(
µB

h̄

)
B Ĵz (12.28)

because Ĵz is well defined (with eigenvalues MJh̄). This procedure is equivalent to
replacing the magnetic dipole moment with an “effective” magnetic dipole moment

µe f f = gJ

(
µB

h̄

)
Ĵz (12.29)

The constant gJ , the Landé g-factor, is to be determined such that µe f f is a good

approximation to the true magnetic dipole moment,

(
µB

h̄

) (
Ĵz + Ŝz

)
. The Landé

g-factor in Equation (12.29) will be found to be a generalization of the Landé
g-factor that was obtained for the hydrogen atom in Chapter 8.

Consider a general direction for the field. Figure 12.5 illustrates the relationship
of the three angular momenta under consideration; Ĵ = J n̂, where n̂ is a unit vector
in the direction of Ĵ.

There are three precessional motions to consider:

1. S about J
2. L about J
3. J about B

Classically the magnetic moment µ precesses about the magnetic field B with
the Larmor frequency ωL given by

ωL = µB

h̄
B (12.30)
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If B is weak, ωL is low compared with the precession frequencies of L and S
about J. Therefore, averaging the L and S precessions about J gives the effective
magnetic dipole moment. The components of L and S that are perpendicular to J
average to zero. The component of L along J is given by

L � n̂ = L �

J
J

(12.31)

which is the magnitude of a vector in the n̂ direction (assuming that the perpen-
dicular component averages to zero).

Returning to the exact perturbing Hamiltonian (before we replaced J by L + S)
we have

Ĥ ′ = −B � µ

= −B �

(
µB

h̄
L̂ + 2

µB

h̄
Ŝ
)

= −µB

h̄
B �

(
L̂ + 2Ŝ

)
(12.32)

which shows that we must evaluate B � L and B � S with our approximation. We
have

B � L → B � 〈L〉
= B � |〈L〉| n̂

= B �

(
L � J

J

)
n̂

= B �

(
L � J

J

)
J
J

=
(

L � J
J 2

)
(B � J) (12.33)

Similarly, we have

B � S → B � 〈S〉
=
(

S � J
J 2

)
(B � J) (12.34)

Now we may insert Equations (12.33) and (12.34) in Equation (12.32) for Ĥ ′to
obtain

Ĥ ′ = −µB

h̄
B �

(
L̂ + 2Ŝ

)
= −µB

h̄

[(
L̂ � Ĵ
J 2

) (
B � Ĵ

)+ 2

(
Ŝ � Ĵ
J 2

) (
B � Ĵ

)]

= −µB

h̄

(
L̂ � Ĵ + 2Ŝ � Ĵ

) (B � Ĵ
J 2

)
(12.35)
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Now, Ĵ = L̂ + Ŝ so

L̂ � Ĵ = L̂2 + L̂ � Ŝ

= L̂2 + 1

2

(
Ĵ 2 − L̂2 − Ŝ2

)
= 1

2

(
Ĵ 2 + L̂2 − Ŝ2

)
(12.36)

Similarly

2Ŝ � Ĵ = (
Ĵ 2 + Ŝ2 − L̂2

)
(12.37)

and we have

Ĥ ′ = −µB

h̄

(
1

2
Ĵ 2 + 1

2
L̂2 − 1

2
Ŝ2 + Ĵ 2 + Ŝ2 − L̂2

)
B � Ĵ

J 2

= −µB

h̄

[
Ĵ 2 + 1

2

(
Ĵ 2 + Ŝ2 − L̂2

)] B � Ĵ
J 2

(12.38)

Moreover, we have judiciously chosen the direction of B (i.e., B = Bk̂) so that

B � Ĵ = B Ĵz

and the Hamiltonian becomes

Ĥ ′ = −µB

h̄

[
Ĵ 2 + 1

2

(
Ĵ 2 + Ŝ2 − L̂2

)] B

J 2
Ĵz (12.39)

If it is assumed that Ĥ ′ operates on coupled eigenfunctions, we may write Ĥ ′ as

Ĥ ′ = −µB

h̄

(
1 + J (J + 1) + S (S + 1) − L (L + 1)

2J (J + 1)

)
B Ĵz

Comparing this equation with the desired form of Ĥ ′, Equation (12.28), we
make the identification

gJ = 1 + J (J + 1) + S (S + 1) − L (L + 1)

2J (J + 1)
(12.40)

which is the Landé g-factor for multielectron atoms. The Zeeman energy is thus

�E = 〈
Ĥ ′〉

= µB B

h̄
gJ MJh̄

= µB BgJ MJ (12.41)

Thus, in the presence of a B-field, a given state will split into 2J + 1 magnetic
sublevels, one for each value of the quantum number MJ .

The Normal Zeeman Effect

For singlet states we have S = 0 so J = L . Therefore, gJ = 1 for all states for
which the total spin is zero. As a consequence, the splitting of all such states will be
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Figure 12.6. Energy-level diagram showing the level splitting for the normal Zeeman
effect. Also shown are the transitions that would be observed between levels.

the same [see Equation (12.41)] and the “normal Zeeman effect” will be observed.
In fact, the normal Zeeman effect is really abnormal because states for which S = 0
are the exception rather than the rule. The normal Zeeman effect can, however,
be understood in terms of orbiting electrons, thus the appellation “normal”. The
anomalous Zeeman effect was only understood after it was realized that electrons
had intrinsic magnetic moments, spin.

To understand the nature of the spectrum when a spin zero atom is immersed in
a constant B-field consider transitions between an upper 1 P level and a lower 1S
level. As noted above, the Landé g-factor is unity for both of these states. There
are three magnetic sublevels of the P-state and none of the S-state. Thus, there
will be only three transitions between these states as shown in Figure 12.6.

A somewhat more complicated case is encountered for transitions between an
upper 1 D level and a lower 1 P level which have five and three sublevels, respec-
tively. Although there will be a number of possible combinations between these
sublevels, only three spectral lines will be observed because of the selection rule
�MJ = 0, ±1 as will be discussed in Chapter 13. The Zeeman levels and the tran-
sitions between them are shown in Figure 12.7. Notice that, although there are nine
allowed transitions, only three distinct lines would be observed in the emission
spectrum because the energy differences between some of the different transitions
are the same.
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Figure 12.7. Energy-level diagram showing the level splitting for the normal Zeeman
effect. Also shown are the transitions that would be observed between levels.

The Anomalous Zeeman Effect

This effect is the more common one because most systems do not have S = 0. In
fact, it is the anomalous Zeeman effect that is observed in hydrogen because all
states are necessarily doublets. As an example of the anomalous Zeeman effect
we consider the 2 D3/2 → 2 P1/2 transition. The Landé g-factors for the two states
are

(gJ )D = 1 + J (J + 1) + S (S + 1) − L (L + 1)

2J (J + 1)

= 4

5
(12.42)

and

(gJ )P = 2

3
(12.43)

The different g-factors cause the Zeeman splitting of these states to be different
thus complicating the spectrum. This is illustrated in Figure 12.8 which shows the
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Figure 12.8. Energy-level diagram showing the level splitting for the anomalous Zeeman
effect. Also shown are the allowed transitions between levels.

splitting of each of these levels together with the allowed transitions between the
levels.

Problems

12.1. The quantum defects of the potassium atom are:

δ0 = 2.19

δ1 = 1.71

δ2 = 0.25

δ = 0.00 for  ≥ 3

Sketch a diagram similar to Figure 12.1 indicating the positions of the field-free
n states (i.e., ns, np, etc.). To avoid cluttering the diagram, show only the states
having principal quantum number n, not (n + 1), (n − 1), and so on. Indicate the
locations of hydrogenic manifolds. Sketch the Stark states when the dc electric
field, F , is turned on. Be sure to indicate details such as which states exhibit
quadratic Stark effects and which exhibit linear Stark effects. For clarity, show
the linear Stark effect on only the n and n − 2 hydrogenic manifolds. Be sure to
indicate the correct curvature of the quadratic Stark states. To start you off, the
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positions of several hydrogenic states are shown. Use atomic units.

En = − 1

2 (n − δ)2 = − 1

2n2

(
1 − δ

n

)−2

≈ − 1

2n2

(
1 + 2

δ

n
+ · · ·

)
12.2. Consider the Bohr atom to be a rigid rotor in the xy-plane with a proton at
the center and an electron circling it at radius rn = n2a0 where n is the principal
quantum number. Find the polarizability of this atom for any state of principal
quantum number n. Assume that the field is weak enough so there is no distortion
of the circular orbit by the field. Note that the rotation of this dipole symmetrizes the
charge distribution, thus negating the electric dipole moment of the proton/electron
combination. Show that the first-order correction to the energy vanishes so the first
nonzero correction to the energy is proportional to the square of the applied electric
field strength.
12.3. Show that there is no weak field Zeeman splitting for an atom having a 4 D1/2

term.
12.4. (a) Make a diagram of the energy levels for the weak field Zeeman effect on
1 F →1D transitions. How many lines will be observed in the emission spectrum?
(b) Make a diagram of the energy levels for the weak field Zeeman effect on
3 P →3S transitions. How many lines will be observed in the emission spectrum?
12.5. Make a diagram showing all energy levels resulting from application of
a weak magnetic field to an excited sodium atom having electron configuration
[Ne] 3p.
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13
Interaction of Atoms with Radiation

13.1. Introduction

To this point we have considered only the properties of isolated atoms. We know,
however, that atoms radiate and absorb electromagnetic radiation. Indeed, it was
investigation of the wavelengths of these emissions and absorptions that led to the
development of the quantum theory of matter.

Before delving into the details of the interaction of atoms with radiation we first
address the question of how, within the framework of quantum mechanics, an atom
radiates (or absorbs) electromagnetic energy. Having adopted the Rutherford model
of the atom, electrons “orbiting” a point nucleus, the most important question to
be asked is: why do these accelerating charges not radiate energy, lose their kinetic
energy, and collide with the positively charged nucleus? Recall that, in order to
formulate his model of the atom, Bohr simply postulated that atoms in “stationary
states” do not radiate. We now know that these ad hoc stationary states are closely
related to energy eigenstates.

Suppose we have an atom in an eigenstate. To be definite we use spherical
eigenfunctions and assume that the Hamiltonian does not contain the time. Because
the Hamiltonian does not contain time, the energy eigenfunctions are products of
the spatial wave functions and exponential time factors. The total wave function
including time is given by

�nm(r , t) = ψnm(r, θ, φ) · exp

[
−i

(
En

h--

)
t

]
= ψk exp[−iωk t] (13.1)

where we have represented the quantum numbers n, , and m by k. Ek is the energy
eigenvalue corresponding to the eigenfunction of ψk and ωk = Ek/h--.

The electronic charge distribution associated with an atom in this eigenstate is

ρ (r , t) = e�∗
nm (r , t) �nm (r , t)

= eψ∗
k (r ) ψk (r )

(
eikn t e−ikn t

)
= eψ∗

k (r ) ψk (r ) (13.2)

246
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The important point here is that because the atom is in an eigenstate, the electronic
charge distribution ρ (r , t) is independent of time. That is,

ρ (r , t) = ρ (r ) (13.3)

The charge distribution associated with the atom is electrostatic. Classically such
a distribution does not radiate because it is not changing in time; only accelerating
charges radiate.

Now, suppose the atom in a stationary state is perturbed so that it emits radiation
and decays to a lower (stationary) state, the wave function for which is

�n′ (r , t) = ψn′′m ′ (r, θ, φ) · exp

[
−i

(
Eq

h--

)
t

]
= ψqe−iqt (13.4)

where q represents the primed quantum numbers. We may conclude that, after
the perturbation, but before the atom is in the lower eigenstate, that is, during the
transition, the atom exists in a superposition of the initial and final states. The wave
function that describes this “intermediate” state is given by

� (r , t) = a (t) ψke−iωk t + b (t) ψqe−iωq t (13.5)

where the expansion coefficients a(t) and b(t) are functions of time. Clearly
|a (t = 0)|2 = 1 and |b (t = 0)|2 = 0 and after the transition |a (t)|2 = 0 and
|b (t)|2 = 1. During the transition |a (t)|2 + |b (t)|2 = 1.

For an atom in such a superposition of states ρ (r , t) is given by

ρ (r , t) = e�∗ (r , t) � (r , t)

= ∣∣aψke−iωk t + bψqe−iωq t
∣∣2

= |a|2 |ψk |2 + |b|2 ∣∣ψq

∣∣2 + a∗bψ∗
k ψqei(ωn−ωn′ )t + ab∗ψkψ

∗
q e−i(ωk−ωq)t

(13.6)

Although the first two terms are independent of time, the last two are not. In fact,
they oscillate in time with a frequency ω = ωk − ωq = (

Ek − Eq
)
/h--. Thus, unlike

the stationary state case, the charge distribution for an atom in a superposition of
states is an oscillating function of time. Classically, such an oscillating distribu-
tion radiates! Moreover, it radiates at the frequency of oscillation of the charge
distribution, in this case at the frequency ω. But, according to Bohr theory, ω is
the frequency of the photon given off when the atom undergoes a transition from
the state k to the state q . How then does one reconcile these two different fre-
quencies? As discussed in Chapter 1, the answer is that, for large n, the energy
separation En − En′ divided by h-- approaches the frequency of oscillation of the
charge distribution. That is, the correspondence principle is at the heart of the
matter.
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13.2. Time Dependence of the Wave Function

Consider a Hamiltonian

Ĥ (t) = Ĥ0 + Ĥ ′ (t) (13.7)

where Ĥ0 is independent of time. The Hamiltonian Ĥ (t) might represent an atom
in an applied electromagnetic field with Ĥ0 being the time-independent atomic
Hamiltonian and Ĥ ′ (t) the time-dependent function that represents the interaction
of the atom with the field. It is assumed that the solutions of the time-independent
Schrödinger equation are known and given by

Ĥ0 |un〉 = En |un〉 (13.8)

where the |un〉 do not contain time. We use |un〉 to designate the stationary states
of Ĥ0 to avoid confusion with our designation of the nonstationary state |� (r , t)〉.

It is assumed that at t = 0 the system is in a state |� (r , t = 0)〉 which is not a
stationary state. The wave function for the nonstationary state |� (r , t)〉 may be
expanded on the basis set of stationary states of Ĥ0, but the time dependences of
the stationary states (basis vectors) must be included. Therefore

|�(r , t)〉 =
∑

n

cn(t)|un〉 · exp[−i(En/h--) t] (13.9)

The time evolution of this wave function is governed by the time-dependent
Schrödinger equation

Ĥ (t) |� (r , t)〉 = ih--
∂

∂t
|� (r , t)〉 (13.10)

The probability of finding the system in one of the eigenstates |uk〉 at a time t
is given by the square of the amplitude |ck (t)|2 for that state. This quantity is, of
course, time dependent. To determine these amplitudes we substitute the expansion
for |� (r , t)〉 in the Schrödinger time-dependent wave equation and obtain

ih-- ċk (t) =
∑

n

cn (t) Ĥ ′
kn (t) eiωkn t (13.11)

where

ωkn = Ek − En

h--

and

Ĥ ′
kn (t) = 〈uk | Ĥ ′ (t) |un〉

are the matrix elements of the perturbing Hamiltonian. These matrix elements are
said to connect the initial and final states.

These equations are exact. They represent an infinite set of coupled equations
for the expansion coefficients cn (t). For most cases it is not possible to solve for
these expansion coefficients exactly, so it is necessary to make approximations to
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do so. Making approximations to solve these equations is called time-dependent
perturbation theory.

13.3. Interaction of an Atom with a Sinusoidal
Electromagnetic Field

The case that interests us here is that of a transition between initial and final
stationary states |ui 〉 and

∣∣u f
〉

that is caused by application of an external electro-
magnetic field. The interaction energy of the atom with this field is the perturbing
Hamiltonian. The atom may absorb energy from the field and thus the energy of
the final state E f will be higher than the energy of the initial state Ei . In this case
the atom is said to have absorbed a quantum of electromagnetic energy from the
field, or, more simply the atom has “absorbed a photon”. If, on the other hand,
Ei is higher than E f then the atom can give up a quantum of electromagnetic
radiation to the field and “emit a photon”. Note that, under the present assump-
tions, the presence of the external field is required for both of these processes,
absorption and emission, because without the field all matrix elements of the per-
turbing Hamiltonian vanish and there is no way to connect these states. We show
in the next section that it is possible for an excited atom, that is, an atom for which
Ei > E f , to spontaneously emit a photon, but that situation is not covered by the
present formulation. For this reason we use the term “stimulated” to describe both
the emission and the absorption of a photon when the external field is present. In
this sense, the terms “stimulated” and “spontaneous” are antitheses. Clearly, it is
not necessary to refer to absorption as “stimulated absorption” because “sponta-
neous absorption” is impossible (even in quantum mechanics) because it violates
conservation of energy.

To obtain the transition probabilities for interactions of atoms with electromag-
netic radiation it is necessary to find the proper form of the interaction Hamiltonian
Ĥ ′ (t) when an atom is immersed in an electromagnetic field. This field consists
of time-varying electric and magnetic fields, F

(
r j , t

)
and B

(
r j , t

)
, respectively.

The force on the j th constituent charge of the atom, electrons, and the nucleus,
due to the field is given by

f j = q j F
(
r j , t

)+ q j v j × B
(
r j , t

)
(13.12)

For electromagnetic waves, however, |B| = (1/c) |F|; moreover, the orbital ve-
locities of electrons are also proportional to 1/c. Therefore, we may, to a first
approximation, ignore the interaction with the magnetic field. Additionally, we
know that the energy separations between atomic energy levels are the order of
electron volts for which the wavelength of radiation connecting them is ∼104 Å.
Because atomic dimensions are ∼1 Å it is permissible to ignore the spatial varia-
tion of the field over the extent of the atom. We therefore regard the perturbation as
being time dependent with no spatial dependence. It can have some distribution of



250 13. Interaction of Atoms with Radiation

frequencies of the electromagnetic waves that constitute the field. First, however,
we consider the radiation field to be a plane wave with frequency ω and polariza-
tion vector n̂ so that, with these approximations, we represent the electromagnetic
field by

F (r , t) = F0n̂ cos (ωt) (13.13)

We examine the transition probability as a function of the frequency of the
monochromatic plane wave ω.

The total force on the atom due to the field is

f =
∑

j

f j

=
∑

j

q j F
(
r j , t

)
= −

∑
j

q j∇φ
(
r j , t

)
(13.14)

where φ
(
r j , t

)
is the potential that gives rise to the field at the location of the j th

charge in the atom. The energy due to the interaction of this field with the atom is
Ĥ ′ (t) and is given by

Ĥ ′ (t) =
∑

i

q jφ
(
r j , t

)
(13.15)

We expand the potential in a Taylor’s series1 about r = 0 so Ĥ ′ (t) becomes

Ĥ ′ (t) =
∑

i

qi

{
φ (0, t) + (r i

� ∇) φ (0, t) + 1

2
(r i

� ∇)2 φ (0, t) + · · ·
}

= Qφ (0, t) +
[∑

i

(qir i )

]
� ∇φ (0, t) + 1

2

∑
i

qi (r i
� ∇)2 φ (0, t) + · · ·

(13.16)

The first term includes the total charge on the atom Q. Usually, Q = 0 so this term
does not contribute. Even if Q �= 0, for example, if an electron is removed from
the atom leaving a positive ion, this term does not contribute because the matrix
element of Ĥ ′ (t) connecting two different states vanishes because of orthogonality
of the eigenfunctions.

If we now take the origin of coordinates to be the position of the nucleus, the
two remaining summations over the charges do not include the nucleus. The term
in brackets is the electric dipole moment of the atom having Z electrons

p̂ = −e
Z∑

j=1

r j (13.17)
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so the time-dependent Hamiltonian that represents the interaction of the atom with
the field to first order is then

Ĥ ′ (t) = − p̂ � F (t)

= −F0 ( p̂ � n̂) cos (ωt) (13.18)

This will be the dominant term, the one that leads to “electric dipole radiation”.

13.4. A Two-State System—The Rotating
Wave Approximation

Although most problems of interest require treatment using perturbation theory, the
“two-state atom” subjected to a sinusoidal electric field can be solved more or less
exactly. The solution is only nearly exact because an approximation to be discussed
below is required. We assume that the atom has two levels. The eigenstates are
designated |u1〉 and |u2〉 with eigenenergies E1 and E2, respectively. We assume
that E2 > E1. As was deduced in the previous section, the perturbing Hamiltonian
may be written

Ĥ ′ (t) = − p̂ � F (t)

= −F0 ( p̂ � n̂) cos (ωt)

= V̂ cos (ωt) (13.19)

where V̂ is a time-independent operator. From Equation (13.11) the equations for
the expansion coefficients are then

ih-- ċ1 (t) = c1 (t) V̂11 cos (ωt) + c2 (t) V̂12 cos (ωt) e−iω21t

ih-- ċ2 (t) = c1 (t) V̂21 cos (ωt) eiω21t + c2 (t) V̂22 cos (ωt) (13.20)

where ωkn = (Ek − En) /h-- is the Bohr frequency and we have used ω12 = −ω21.
Replacing the cosine coefficients of e±iω21t with the exponential form we

obtain

ih-- ċ1 (t) = c1 (t) V̂11 cos (ωt)

+ c2 (t) V̂12

(
1

2

)
{exp [i (ω − ω21) t] + exp [−i (ω + ω21) t]}

ih-- ċ2 (t) = c1 (t) V̂21

(
1

2

)
{exp [i (ω + ω21) t] + exp [−i (ω − ω21) t]}

+ c2V̂22 cos (ωt) (13.21)

These equations are exact, but intractable. We note, however, that near resonance,
when ω ≈ ω21, the sinusoidal terms, for which the arguments are (ω + ω21) and
ω, vary much more rapidly than those of argument (ω − ω21). These rapidly vary-
ing terms do not make significant contributions to the differential equations for
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long times. They therefore “average out”. This is referred to as the “rotating wave
approximation”. The name originated with the description of the response of an
electron spin to a magnetic induction field that is sinusoidally varying in time,
but constant in direction. Such a field may be described as the superposition of
two fields that are rotating in the opposite sense. The rotating wave approximation
amounts to ignoring one of the rotating fields because it causes the rapidly vary-
ing term as described above. In essence, the field that is constant in direction is
approximated by a rotating field.

For the rotating wave approximation we retain only terms containing (ω − ω21).
Letting δ = (ω − ω21) we obtain

ih-- ċ1 (t) = c2 (t) V̂12

(
1

2

)
eiδt

ih-- ċ2 (t) = c1 (t) V̂21

(
1

2

)
e−iδt (13.22)

Note that δ is a measure of the amount by which the frequency of the applied
field is “off-resonance” from the natural frequency of the system, the Bohr fre-
quency.

When these equations are uncoupled they yield a linear second-order differential
equation. If it is assumed that the atom is initially in the lower level, then these
equations can be solved (see Problem 13.2). The results are

c1 (t) = eiδt/2 cos (ωRt) − i

(
δ

2ωR

)
sin (ωRt)

c2 (t) = V̂12

2ih--ωR
e−iδt/2 sin (ωRt) (13.23)

where

ωR = 1

2

√
δ2 +

∣∣V̂12

∣∣2
h--2

(13.24)

so the probability that the atom undergoes a transition from state 1 to state 2 is

P1→2 = |c2 (t)|2

= 1

1 + (h--δ)2 /
∣∣V̂12

∣∣2 sin2 (ωRt) (13.25)

and the probability of returning to state 1 from state 2 is

P2→1 = |c1 (t)|2

= cos2 (ωRt) +
(

δ

2ωR

)2

sin2 (ωRt) (13.26)

Clearly the atom oscillates between the two states with frequency ωR which is
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Figure 13.1. Probabilities of transitions for a two-state system for two different values of
the matrix element, but the same value of the detuning δ.

referred to as the Rabi flopping frequency. Note that the “flopping” from state to
state (including upper to lower) requires the presence of the field. It does not occur
spontaneously.

If the frequency of the applied field is exactly resonant, ω = ωkn so δ = 0, then
the system oscillates between the two states with frequency V̂12/2h--. At resonance
the probability of stimulated absorption or stimulated emission can be unity at
certain times. When, however, the applied field is off resonant the amplitude for
transitions is somewhat less than unity depending upon the value of the matrix
element V̂12. FIGURE 13.1 shows plots of Equations (13.25) and (13.26) for two
different values of the matrix element, but the same value of the detuning δ. The

solid curves represent the case for which
∣∣V̂12

∣∣2/h--2 = 2δ2 and the dashed curves

denote the case for which
∣∣V̂12

∣∣2/h--2 = 0.5δ2.
It is clear that the Rabi frequency is different for the two cases [see Equation

(13.24)]. Notice also that, as expected, the stronger coupling (solid curve) leads
to a higher probability of transition between the two states. This is clear if we
examine the transition probability from lower to upper state P1→2 for a fixed value
of the matrix element, but different values of δ as shown in FIGURE 13.2 where
δ is in units of

∣∣V̂12

∣∣2/h--2.
For the resonant case, δ = 0, the probability of excitation reaches unity, but

as the detuning increases, the probability of excitation decreases. Moreover, the
frequency of the transitions, the Rabi frequency, increases with the detuning.
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Figure 13.2. Probabilities of transitions for a two-state system for three different values of
the detuning δ, but the same value of the matrix element.

13.5. Stimulated Absorption and Stimulated Emission

Having solved the two-state problem “exactly” we now turn our attention to the
more general problem of stimulated emission and absorption in the presence of
an external electromagnetic field. We use time-dependent perturbation theory and
compute the transition rate when multistate atoms are subjected to an external elec-
tromagnetic field. As previously, we consider the perturbation to be a monochro-
matic sine wave of the form

Ĥ ′ (t) = V̂ cos (ωt) (13.27)

where

V̂ = −F0 ( p̂ � n̂) (13.28)

Assume that Ĥ ′ (t) � Ĥ0. Further assume that at t = 0 the system is in an
eigenstate |ui 〉 of Ĥ0 so that

cn (t = 0) = δni (13.29)

where the subscript i denotes the initial state. Now we expand the coefficients
cn (t) power series in some arbitrary parameter ζ which we use to keep track of
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the order of the approximation retained.

ck (t) =
∞∑
j=0

ζ j c( j)
k (13.30)

Applying the initial condition on the ck (t), Equation (13.29), inserting the ex-
pansion, Equation (13.30), into the exact equation for the expansion coefficients,
Equation (13.11), and retaining only terms to first order we have

ih--
d

dt

(
ζ 0c(0)

k + ζ 1c(1)
k · · ·

)
=
∑

n

(
ζ 0c(0)

n + ζ 1c(1)
n · · ·) [ζ Ĥ ′

kn (t)
]

eiωkn t (13.31)

Notice that, in the spirit of the expansion of ck (t) in a power series of ζ we must
replace the time-dependent perturbation Hamiltonian Ĥ ′ (t) with ζ Ĥ ′ (t).

The zeroth-order term dc(0)
k /dt = 0 in Equation (13.31). Thus, to zeroth order,

nothing happens. On the other hand, the first-order correction provides the response
of the atom to the perturbation. In view of the initial conditions of Equation (13.29),
the first-order correction is

ih-- ċ(1)
k =

∑
n

c(0)
n Ĥ ′

kn (t) eiωkn t

= Ĥ ′
ki (t) eiωki t (13.32)

This expression for ċk (t) holds for all k (including k = i). We now integrate this
equation from t = 0 to some arbitrary time t and obtain

ck (t) = 1

ih--

∫ t

0
Ĥ ′

ki

(
t ′) eiωki t ′

dt ′ for k �= i (13.33)

and

ci (t) = 1 + 1

ih--

∫ t

0
Ĥ ′

i i

(
t ′) dt ′ for k = i (13.34)

Now, |ck (t)|2 is the probability that, at time t , the system has undergone a transition
from the state |ui 〉 to the state |uk〉. For perturbation theory to be applicable, this
probability must be small, so that

|ci (t)| 2 ≈ 1 (13.35)

and

1 − |ci (t)|2 =
∑
q �=i

∣∣cq (t)
∣∣2

� 1 (13.36)

Inserting the Hamiltonian in the expression for ck (t), letting k = f to represent a
final state, and integrating we obtain

c f (t) = 1

2ih--
p̂fi

{
exp

[
i
(
ωfi − ω

)
t
]− 1

i
(
ωfi − ω

) + exp[i (ωfi + ω)] + 1

i (ωfi + ω)

}
(13.37)
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Figure 13.3. Schematic energy-level diagram illustrating the absorption and emission of
a photon by the atom δ.

where

p̂fi = 〈u f | p̂ � n̂|ui 〉 (13.38)

The first term in the bracket in Equation (13.37) is significant only if ω ≈ ωfi and
the second is large only if ω ≈ −ωfi. There are therefore two different conditions
under which the transition may be expected to occur, that is, conditions under
which the transition probability,

∣∣c f (t)
∣∣2, would be large. This would occur when

ω ≈ ±ωfi. These two cases are illustrated in FIGURE 13.3.
For absorption of a photon, ωfi is positive and the first term in the equation for

c f (t) dominates. The probability of a transition from the lower state to the higher
state after time t is therefore given by

Pi→ f (t) = ∣∣c f (t)
∣∣2

= 1

h--2

∣∣ p̂fi

∣∣2 F2
0

sin2

[
1

2
(ωfi − ω) t

]
(
ωfi − ω

)2 (13.39)

For emission of a photon, ωfi is negative so the second term in the equation for
c f (t) dominates and the probability of a transition from the higher state to the
lower state is given by

Pi→ f (t) = ∣∣c f (t)
∣∣2

= 1

h--2

∣∣ p̂fi

∣∣2 F2
0

sin2

[
1

2
(ωfi + ω) t

]
(
ωfi + ω

)2 (13.40)

Before continuing discussion of this result it should be remarked that, within
the given assumptions, this expression should apply to the two-state system of
Section 13.3. This result is, however, more restrictive than that solution because it
was assumed that the perturbation is “small”. No such assumption was invoked in
the treatment of the two-state problem. Nonetheless, the result from the two-state
system should reduce to the present result if the interaction Hamiltonian is suitably
small.
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To check the compatibility of these two solutions we cast the two-state result
in the notation of the more general solution. In the present notation the two-state
result may be written

Pi→ f =
∣∣V̂if

∣∣2
4h--2ω2

R

sin2 (ωRt) (13.41)

where ωR is given by Equation (13.24). If, as required by the perturbation theory
treatment, V̂12 is small, then ωR may be approximated as

ωR =
(
ω − ωfi

)
2

√√√√1 +
∣∣V̂12

∣∣2(
ω − ωfi

)2
h--2

≈ 1

2

(
ω − ωfi

)
(13.42)

so that

Pi→ f =
∣∣V̂if

∣∣2
h--2
(
ω − ωfi

)2 sin2

[
1

2

(
ω − ωfi

)
t

]
(13.43)

Because ∣∣V̂if

∣∣2 = F2
0

∣∣ p̂fi

∣∣2 (13.44)

the result from the rotating wave approximation reduces to that obtained using
perturbation theory.

The emission from an upper state to a lower state is not spontaneous. Rather, it
is induced, or stimulated, by the presence of the field. In terms of photons, we may
say that for the transition to occur, the atom must be stimulated by the presence of
a photon of precisely the “correct” frequency, ωfi, to emit a second photon of the
same frequency. It is seen then that the term “stimulated emission” is the origin of
the “s” and the “e” in the word “laser”. In either of the above cases it is clear that
the probability of a transition is very low unless the applied frequency ω is very
close to the Bohr frequency ωfi; that is, there must be resonance.

We now examine these transition probabilities in more detail. We concentrate on
absorption, but the treatment for stimulated emission is identical. The probability
of an absorption transition i → f may be rewritten as

Pi→ f = Gfi (r ) F (ω, t) (13.45)

where

Gfi (r ) = 1

h--2

∣∣ p̂fi

∣∣2 F2
0 and F (ω, t) =

(
t2

4

)
sin2

[
1
2

(
ωfi − ω

)
t
]

[
1
2

(
ωfi − ω

)
t
]2

All of the ω dependence is contained in F (ω, t); a graph of this function versus(
ωfi − ω

)
for a fixed time t is shown in FIGURE 13.4.



258 13. Interaction of Atoms with Radiation

Figure 13.4. Graph of the frequency dependence of the probability of a transition from
initial to final states.

The positions of the zeros of the function are inversely proportional to time so
the width of the central maximum decreases as t increases. Thus, for large t the
system becomes less and less forgiving as far as permitting the atom to absorb
an off-resonant photon. This is, of course, a manifestation of the energy–time
uncertainty principle.

To evaluate Pi→ f if there is a range of frequencies of the external field we must
replace F0 by F0 (ω). That is, different frequency components of the external field
have continuously variable amplitudes, so we must sum them by integrating. We
are also interested in long times so

Pi→ f = lim
t→∞ Gfi (r ) F (ω, t)

=
∣∣ p̂fi

∣∣2
h--2

·
∫ ∞

0
dω [F0 (ω)]2 lim

t→∞

{(
t2

4

)
sin2

[
1
2 (ωfi − ω) t

]
[

1
2 (ωfi − ω) t

]2

}
(13.46)

Now F0 (ω) represents the electric field amplitude at frequency ω, but [F0 (ω)]2 dω

is proportional to the more readily available energy density per frequency interval
ρ (ω) dω. That is,

ρ (ω) = ε0

2
[F0 (ω)]2 (13.47)

The standard symbol for energy density ρ(ω) should not be confused with the
standard symbol for charge density ρ(r, t) used earlier in this chapter.
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We have then

Pi→ f = 2

ε0

∣∣ p̂fi

∣∣2
h--2

·
∫ ∞

0
dω ρ (ω) lim

t→∞

{(
t2

4

)
sin2

[
1
2 (ωfi − ω) t

]
[

1
2 (ωfi − ω) t

]2

}
(13.48)

It can be shown that the function in the curly brackets is proportional to a Dirac
delta function. Specifically,2

δ (x) =
(

β

2π

)
lim

t→∞

⎡
⎢⎢⎢⎣

sin2

(
βx

2

)
(

βx

2

)2

⎤
⎥⎥⎥⎦ (13.49)

Making the appropriate substitutions we have

Pi→ f = 2

ε0
·
∣∣ p̂fi

∣∣2
h--2

·
∫ ∞

0
dωρ (ω) δ

(
ω − ωfi

)

= t ·
(

π

ε0

) ∣∣ p̂fi

∣∣2
h--2

ρ
(
ωif
)

(13.50)

The transition rate W ′
if is the probability per unit time that a transition has taken

place. From Equation (13.50),

W ′
if = d Pi→ f

dt

= π

ε0h--2

∣∣ p̂fi

∣∣2 ρ
(
ωif
)

(13.51)

A final modification of Equation (13.51) is required because the atoms are
randomly oriented with respect to the direction of polarization of the electric
field. The matrix element p̂if, however, is proportional to p̂ � n̂ and thus depends
upon the orientation of the atom with respect to the direction of polarization n̂.
It is merely the component of p̂ along the direction n̂. We must therefore aver-
age over all orientations of the atoms, or, equivalently, over all orientations of
n̂. Because p̂ = −er this is equivalent to averaging n̂ � r over all possible ori-
entations. For convenience we define the angle between r and n̂ to be θ so we
have ∣∣ p̂fi

∣∣2 = e2
∣∣〈u f

∣∣ r � n̂ |ui 〉
∣∣2

= e2
∣∣〈u f

∣∣ r |ui 〉
∣∣2 cos2 θ

= e2
∣∣r f i

∣∣2 cos2 θ (13.52)

where

|r f i | ≡ 〈ui |r |u f 〉 (13.53)
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For unpolarized radiation we must average over the entire solid angle so

1

4π

∫ π

0
cos2 θ (2π sin θdθ ) = 1

2
· 1

3
cos3 θ

∣∣0
π

= 1

3
(13.54)

Thus, the transition rate Wif induced by randomly oriented atoms in the presence
of an incoherent external electric field is given by

Wif = e2π

3ε0h--2

∣∣r f i

∣∣2 ρ
(
ωif
)

(13.55)

We see then that, given the eigenfunctions for the atom and ρ
(
ωfi
)
, the transition

rate may be calculated.
The transition rate seems to imply that we have returned to consideration of a

two-level system, i and f . This is because we have examined the transition between
the two designated levels. None of the other levels appears in this expression, for
example, in the matrix element, because of the strongly peaked function F(ω, t).
Transitions to other “final” levels would have corresponding expressions with, of
course, the appropriate matrix element and ρ

(
ωfi
)
.

It is important to note that Wif is proportional to the square of the dipole matrix
element connecting the initial and final states. Thus, it is this matrix element
that determines the strength of the transition. Indeed, it is the matrix element
that determines whether the transition will occur at all. If it vanishes then the
transition cannot occur, at least to within the electric dipole approximation. We
may therefore derive selection rules, that is, rules under which the transition can
and cannot occur, by examining the conditions under which the matrix element
vanishes. First, however, we consider the process of spontaneous emission which
cannot be treated using the perturbation theory of “first quantization” because
there is, seemingly, no external perturbation (such as an electromagnetic field) to
cause the transition. In fact, this spontaneous transition rate can be derived using
second quantization, QED in which the absence of a field is described by the zero-
point energy of the field. Stimulated emission and absorption required interactions
between the atom and an external field, however, spontaneous emission occurs
when the atom interacts with the ground state of the field. Classically this means
that spontaneous emission occurs in the absence of a field.

13.6. Spontaneous Emission

Although the derivation of the spontaneous emission rate is properly carried out
using the principles of QED, this rate can be derived using an argument first em-
ployed by Einstein. Einstein derived a relation between the spontaneous rate and
the stimulated rates using a thermodynamic argument. Because we have expres-
sions for the stimulated rates, the spontaneous rate is thus derived. Because of
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Figure 13.5. Schematic energy-level diagram showing the parameters used in Einstein’s
derivation.

his pioneering work, the probabilities of stimulated emission and absorption and
spontaneous emission are often referred to as the Einstein coefficients.

Einstein began using a two-level system. The two levels are presumed to have
energies Ea and Eb and are separated by h--ω. FIGURE 13.5 shows the relation
between A and the Bs; Na and Nb are the instantaneous populations of the a and
b levels, respectively, and ga and gb are the degeneracies of each level. The gs
merely represent the number of states that have energy Ea or Eb.

The possible transitions are stimulated emission, stimulated absorption, and
spontaneous emission. It is assumed that the system is in equilibrium with the
surroundings which are at a temperature T that is characterized by a Planck dis-
tribution ρ (ω). The Einstein coefficient A is the spontaneous transition rate in
transitions per second or s−1; the quantities [Babρ (ω)] and [Bbaρ (ω)] also have
units of s–1. For the purpose of this two-level derivation we simplify notation by
letting A ≡ Aba inasmuch as the term Aab is meaningless because a spontaneous
transition from the lower level to the upper level would be quite impossible. Once
having derived the form of A, however, subscripts will be necessary to distinguish
transitions from a given upper level to different lower levels.

Note that the stimulated transitions require the presence of the external field,
but the spontaneous transition does not. Therefore, the probabilities for the stimu-
lated transitions must, necessarily, depend upon the “strength” of the radiation as
contained in ρ(ω). The consequence is that the units of A are different from the
units of the Bs; it is A and [Bρ (ω)] that have the same units, viz. s−1. In terms of
the notation of Section 13.5,

[Babρ (ω)] = Wab and [Bbaρ (ω)] = Wba

so it is clear that the B coefficients are contained in the expression for Wab from
the last section of this chapter. Comparing with the expression for Wif, Equation
(13.55) we see that

Bab = e2π

3ε0h--2

∣∣r f i

∣∣2 (13.56)

As noted above though, A cannot be obtained from first quantization. We can,
however, obtain a relation between A and the Bs using Einstein’s treatment without
having to resort to QED.
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In equilibrium the time rate of change of Na is

Ṅa = Nb A + Nb Bbaρ (ω) − Na Babρ (ω) (13.57)

The first term on the right-hand side of Equation (13.57) represents the spontaneous
emission rate, the second term is the stimulated emission rate Wba , and the third the
stimulated absorption rate Wab. The key point is that at equilibrium Ṅa = −Ṅb =
0. Setting Ṅa = 0 and solving Equation (13.57) for ρ(ω) we have

ρ(ω) = A(
Na
/

Nb

)
Bab − Bba

(13.58)

Now, the ratio of the populations is given by the Boltzmann factor

Na

Nb
=
(

ga

gb

)
exp

(
h--ω

kT

)
(13.59)

where k is the Boltzmann constant. After replacing Na/Nb in Equation (13.58)
ρ (ω) may be compared with the Planck distribution for ρ (ω); that is,

ρ(ω) = h--ω3

π2c3
· 1

exp
(
h--ω/

kT

)
− 1

(13.60)

From the comparison we make the following identifications

Bab =
(

ga

gb

)
Bba (13.61)

and

A = ω3h--

π2c3
Bab (13.62)

Equation (13.62) leads to a value of the spontaneous transition rate A,

A = 1

3πε0h--c3
ω3

ab

∣∣r f i

∣∣2
= 4α

3e2c2
ω3

ab

∣∣r f i

∣∣2 (13.63)

where α is the fine-structure constant.
We see that A is proportional to the cube of the Bohr frequency between the

levels and to the square of the dipole matrix element connecting the states. It
is natural to ask if these dependencies are reasonable. In particular, is the result
consistent with classical physics? To investigate this we compare the quantum
mechanical expression for A with the classical rate of radiation from an accelerated
atomic electron. Of course, this comparison must not be taken too literally, but the
dependencies upon the parameters are interesting.

Consider a collection of atoms, N of which are in a given excited state. Tran-
sitions to a lower state yield photons of energy h--ω. The rate at which energy is
lost by spontaneous emission is the spontaneous transition rate A multiplied by
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the energy per transition, h--ω. This may be equated to the Larmor formula for the
power radiated by the accelerating charges in the atoms. We have (in SI units)

N (Ah--ω) = N

(
e2a2

6πε0c3

)
(13.64)

where a is the acceleration of the orbiting electrons. For circular orbits of radius
R and angular velocity ω the acceleration is

a = v2/R

= ω2 R (13.65)

Because, classically, the frequency of the emitted radiation is the same as the
frequency of the accelerating charge we use the same value of ω as that for the
emitted radiation. Inserting this in the above equation and solving for A we obtain

A = 1

2
· ω3

3πε0h--c3
· (eR)2 (13.66)

Identifying the quantity (eR)2 with the square of the electric dipole matrix element
we see that, except for a factor of two, the derived transition rate is the same
as the quantum result. The factor of two is of little consequence because this
rough calculation provides only the order of magnitude and the dependencies
upon the parameters. Nonetheless, the result is of interest. Note that because of
the proportionality on ω3 high-energy transitions are favored.

Now, how about the lifetime of an excited state? If an atom is in a given excited
state how long is it expected to remain there before spontaneous emission causes it
to undergo a transition to some lower state? More properly, we should ask how the
number of atoms in a given excited state decreases with time. Clearly the higher
the value of A, the more rapidly the upper state will be depopulated by spontaneous
emission.

We imagine a collection of atoms in a field-free region of space. The collection
is not in thermal equilibrium as was assumed for the derivation of the relationship
between the Einstein coefficients. Let Ne (t) be the number of atoms in an excited
state designated by e. Then the time rate of change of this number is given by

d Ne (t)

dt
= −Ael Ne (t) (13.67)

where l designates some lower level. There may, however, be many lower levels
to which the excited state can decay by spontaneous emission. The total rate of
decay of the excited state is then the sum of these decay rates and is given by

d Ne (t)

dt
= −Ne (t)

∑
j

Aej (13.68)

where the summation is taken over all levels having energies lower than that of
the excited state. Integrating this equation and designating the population of the
excited state at t = 0 as Ne (0) we obtain the usual equation for a decay rate of a
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population that is proportional to the population itself.

Ne (t) = Ne (0) e−t/te

where

te = 1∑
j

Aej

is the lifetime of the state. In many cases a transition to one particular lower state
dominates and one of the Aej is much larger than the rest. In this case the lifetime
is essentially the reciprocal of this particular spontaneous emission coefficient.

To reiterate, we have used Einstein’s method to circumvent the necessity of em-
ploying QED to account for spontaneous emission. Thus, the spontaneous emission
rate, although it cannot be described in terms of “first quantization”, that is, quan-
tizing atomic energy levels, but not the electromagnetic field, can be obtained from
thermodynamic considerations that lead to relations between A and B.

To actually compute a spontaneous emission rate and the corresponding life-
time, it is necessary to compute the matrix elements. This can be done for hydrogen
because the wave functions are known. We calculate the spontaneous transition
probability for the n = 2 → 1 transition in hydrogen. The required matrix ele-
ments are

〈ui |r |u f 〉 = 〈21m|r |100〉 and 〈ui |r |u f 〉 = 〈200|r |100〉
Although we have been using SI units throughout this chapter, it is convenient to
carry out these integrations using atomic units. The lifetime thus obtained will be
in atomic units of time, roughly 2.4 × 10−17 s.

We first perform the angular part of the integral. To integrate over the angular
coordinates we express r = r r̂ in terms of spherical harmonics. This is easily done
by replacing the sines and cosines in the unit vector

r̂ = sin θ cos φ î + sin θ sin φ ĵ + cos θ k̂ (13.69)

by their equivalent spherical harmonics. We obtain

r̂ =
√

4π

3

[
−î + i ĵ√

2
Y11 (θ, φ) + î + i ĵ√

2
Y1−1 (θ, φ) + k̂Y10 (θ, φ)

]
(13.70)

The angular integrals may be represented as√
4π

3

∫
d�Y ∗

00 (θ, φ)

[
−î + i î√

2
Y11 (θ, φ) + î + i ĵ√

2
Y1−1 (θ, φ) + k̂Y10 (θ, φ)

]

× Ym (θ, φ) (13.71)

Y ∗
00 (θ, φ) is the angular part of the ground state wave function and the Ym (θ, φ)

in the integrand can have  = 0 with m = 0 or  = 1 with m = 0, ±1. We can
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see immediately that the integral will vanish for  = 0 because of orthogonality
of the spherical harmonics. If we acknowledge that the Y ∗

00 (θ, φ) is a constant
we can ignore it for the purpose of determining whether the integral vanishes.
Because none of the terms in the expression for r̂ contain (the remaining) Y00 (θ, φ),
orthogonality demands that the integral vanish. We may thus concentrate on the
integral for which  = 1 and m = 0, ±1.

Using the orthogonality relation we obtain√
4π

3

∫
d�Y ∗

00 (θ, φ)

[
−î + i î√

2
Y11 (θ, φ) + î + i ĵ√

2
Y1−1 (θ, φ) + k̂Y10 (θ, φ)

]

× Y1m (θ, φ)

= 1√
3

[
δm,0k̂ −

(
−î + i ĵ√

2

)
δm,−1 −

(
î + i ĵ√

2

)
δm,1

]
(13.72)

This expression actually represents three matrix elements, one for each allowed
value of the quantum number m. Clearly two of the three Kroneker deltas vanish
for each value of m. Moreover, the squares of each of these matrix elements are
identical because the absolute squares of the coefficients of each of the Kroneker
deltas are unity.

Because the angular integral vanishes for n = 2,  = 0, the only radial integral
that must be computed is∫ ∞

0
dr R∗

10 (r ) r3 R21 (r ) = 1√
6

∫ ∞

0
dr r4 exp

(
−3r

2

)

= 4
√

6

(
2

3

)5

(13.73)

The square of the matrix element is then

|〈21m| er |100〉|2 = 215

310
· (δm,0 + δm,1 + δm,−1

)
(13.74)

If the p-state is not “polarized” then all m-states of  = 1 are equally popu-
lated and we may replace the sum of the Kroneker deltas by its average, viz.
(1/3) (1 + 1 + 1) = 1 and the spontaneous transition probability is given by

A2p→1s = 4

3
·
(

ω3

c3

)(
215

310

)

= 217

311
·
(

ω3

c3

)
(13.75)

where all quantities are in atomic units for which ω = 3/8 = 3/23 and c = 137.
The final result is then

A2p→1s ≈ 1.5 × 10−8 (a.u. of time)−1

= 6 × 108 s−1 (13.76)
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and the lifetime is

τn=2 = 7 × 107a.u. of time

= 1.7 × 10−9 sec (13.77)

Now, the period of the electron in the second Bohr orbit is

Tn=2 = 2π
22a0

(v0/2)
= 16π a.u (13.78)

so that
Tn=2

τn=2
≈ 106 (13.79)

and the electron undergoes roughly one million orbits before the atom decays
to the n = 1 state. Thus, Bohr’s characterization of the allowed energy levels as
“stationary” states seems entirely justified.

13.7. Angular Momentum Selection Rules

From our discussion of spontaneous emission it is clear that the electric dipole
matrix element connecting the two states involved in the presumed transition de-
termines the strength of that transition. Indeed, if this matrix element vanishes,
as was found for the case for the 2s → 1s transition in hydrogen, then the tran-
sition cannot proceed via electric dipole radiation. In this case, the transition is
said to be “electric dipole forbidden”. It is possible that the transition could pro-
ceed via a higher-order multipole moment such as electric quadrupole or magnetic
dipole, but these rates are smaller than the electric dipole rates by a factor of α,
the fine-structure constant.

Consideration of the conditions under which the matrix element

r f i = 〈u f |r |ui 〉 (13.80)

vanishes provide “selection rules” for the transitions. Let us first use physical
arguments to deduce two of the selection rules. In what follows, we assume that
the electron that undergoes the transition, sometimes referred to as the “jumping
electron” is subjected to a spherically symmetric potential energy function so the
angular parts of the wave functions of the initial and final states are spherical
harmonics. Thus,  and m (or L and M) are good quantum numbers.

The simplest of the electric dipole selection rules states that the jumping electron
cannot change spin. This can be understood when it is remembered that electronic
spin is a magnetic moment, a quantity that cannot be affected by an electric field.
Thus, for example, a transition between triplet and singlet states in helium is
forbidden because it would require one of the electronic spins to flip.

Another rule that may be deduced is based on conservation of angular mo-
mentum. If a single photon is emitted or absorbed in the transition then the total
angular momentum of the atom must change by ±h--. This is because the photon
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has spin one and thus carries one unit of angular momentum, h--. Because angular
momentum is a vector quantity the total angular momentum of the atom must
change by ±h-- and we must have a change in angular momentum quantum number
� = ±1. Because  is also the parity of the spherical harmonic the parity of the
two wave functions must be different. That is, the parity of the state must change
in an electric dipole allowed transition. This is called the Laporte rule.

The selection rules discussed above are quite specific to orbital and spin angular
momenta. We can, however, derive these selection rules, and others, by considering
a general angular momentum Ĵ, that is, a vector operator Ĵ that is an angular
momentum because its components obey the angular momentum commutation
rules. Because the electric dipole operator is proportional to the position vector
r , a vector operator, we may use the general properties of the matrix elements of
such operators derived in Section 2.4. We then specialize to the hydrogen atom
and multielectron atoms.

It was found in Section 2.4 that the matrix element 〈 jm|V̂ | j ′m ′〉 vanishes unless

j − j ′ = 0, ±1 but j = j ′ = 0 is not allowed

m − m ′ = 0, ±1 (13.81)

and this will also be true of the matrix elements 〈 jm|r | j ′m ′〉. In terms of radiative
transitions, we may regard the unprimed quantum numbers as describing the initial
state and the primed the final state. The relationships between the primed and
unprimed quantum numbers given in Equation (13.81) then constitute selection
rules. That is, they specify conditions under which a given transition can occur
because the transition cannot occur by electric dipole radiation if the matrix element
〈 jm|r | j ′m ′〉 vanishes.

According to Equation (13.81) the z-component of the atomic angular momen-
tum need not change, but if it does it must do so by ±1. This is easily understood
in terms of the unit spin of the photon that is either absorbed or emitted. Whether
m changes, and how much it changes, is determined by the polarization of the
photon (or the direction of polarization of the external electric field). Because the
photon is a spin 1 particle, there are three possible z-components.

It should be emphasized that these selection rules are general conditions under
which the matrix element 〈 jm|V̂ | j ′m ′〉vanishes. For specific systems, for example,
the hydrogen atom, some of these rules may not apply.

13.8. Selection Rules for Hydrogen Atoms

The rules discussed in this section, of course, apply to any one-electron atom such
as singly ionized helium and doubly ionized lithium atoms. They also apply to
alkali atoms because, as we show, it is the spherical harmonics that determine the
selection rules and not the radial part of the eigenfunctions. Because the single
valence electron in alkali atoms is subject to the inherently spherically symmetric
potential of the inert atom shell the angular parts of their wave functions are also
spherical harmonics.
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For electric dipole radiation, the spin selection rule discussed above, that no
change in spin can occur during a transition, applies to all atoms because spin
represents the intrinsic magnetic moment of the electron. For hydrogen atoms this
rule is simply �ms = 0. The selection rules for hydrogen atoms must, of course,
be consistent with those already derived from angular momentum considerations
because r is a vector operator. We might therefore presume that these selection
rules are � = 0, ±1 and �m = 0, ±1, but, as we show below, certain exclusions
must be made.

Because the eigenfunctions for the hydrogen atom are known, we can derive
the selection rules directly. We use spherical coordinates so the conditions of the
previous section are met; in particular, the eigenfunctions must be eigenfunctions
of the magnitude of the angular momentum and its z-component. Inasmuch as
spin is not a factor, we drop the subscript on the quantum number m. The matrix
element to be investigated is

〈nm| r |n′′m ′〉 =
∫

all space

Rn′′ (r ) R∗
n (r ) rY′m ′ (θ, φ) Y ∗

m (θ, φ) dV (13.82)

which is actually three matrix elements corresponding to the three components
of the vector operator r. The radial integrals are difficult to evaluate,3 but the
important conclusion is that there are no selection rules on the quantum number n.
We therefore eliminate this quantum number from the matrix element designations.
We have then

〈m| r |′m ′〉 = 〈m| (x î + y ĵ + zk̂
) |′m ′〉 (13.83)

Because our goal is to determine when these integrals vanish we concentrate on
the integrals themselves and not their actual values.

It is convenient to convert the three integrals to spherical coordinates for which

x = r sin θ cos φ ; y = r sin θ sin φ z = r cos θ (13.84)

and to examine linear combinations of the x- and y-integral. In particular, we
consider

Iz = 〈m| z|′m ′〉 = r 〈m| cos θ |′m ′〉
I± = 〈m| x |′m ′〉 ± i 〈m| y|′m ′〉

= r 〈m| e±iφ sin θ |′m ′〉 (13.85)

The integrand of Iz is proportional to Y′m ′ (θ, φ) cos θYm (θ, φ). But, from Equa-
tion (2.116) we substitute for cos θYm (θ, φ) and obtain

Iz = C1

∫
[Y′m ′ (θ, φ)]∗ Y+1,m (θ, φ) d�

+ C2

∫
[Y′m ′ (θ, φ)]∗ Y−1,m (θ, φ) d� (13.86)

where C1 and C2 are constants that depend upon  and m. Examining first the re-
strictions on m, we see from Equation (13.86) that, because the spherical harmonics
are orthogonal, Iz vanishes unless m = m ′.
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The integrands of I± are proportional to Y′m ′ (θ, φ) e±iφ sin θYm (θ, φ). Using
Equation (2.117) we substitute for e±iφ sin θYm (θ, φ) and obtain

I± = C3

∫
[Y′m ′ (θ, φ)]∗ Y+1,m±1 (θ, φ)d�

+ C4

∫
[Y′m ′ (θ, φ)]∗ Y−1,m±1 (θ, φ)d� (13.87)

where C3 and C4 are constants that depend upon  and m. It is clear from Equation
(13.87) that these matrix elements vanish unless m ′ = m ± 1.

Using wave functions and integrals, we have thus retrieved the selection rules
on m that were derived using angular momentum methods. Moreover, we have
verified that they are valid for transitions in one-electron atoms. We now examine
the selection rules on  using Equations (13.86) and (13.87). Again using the
orthogonality condition for the spherical harmonics we see that transitions will
be forbidden unless ′ =  ± 1. We do not, however, obtain the selection rule ′ = 

that resulted from general angular momentum considerations; ′ =  transitions
are forbidden because of parity. The parity of the spherical harmonics is determined
by . Thus, the product of two spherical harmonics of the same  in the integrand
of the matrix element is necessarily even. Because the rest of the integrand, the
operator r, is odd, the integral vanishes identically for such transitions. This is the
Laporte rule that states:4 even terms can combine only with odd, and odd only
with even.

FIGURE 13.6 shows some of the allowed transitions of the Lyman, Balmer,
and Paschen series for atomic hydrogen states up to n = 5. Also included are
the wavelengths of these transitions in nm; for visible and infrared transitions the
wavelengths listed are in air. In spectroscopy, the state of ionization of an atom is
frequently indicated by a Roman numeral following the chemical symbol. Neutral
atoms are I, once-ionized atoms, II, and so on. Thus, the diagram is labeled H I.
Also included in the diagram are the common designations for a few of the lines
of the Lyman series (Lyα and Lyβ) and the Balmer series (Hα and Hβ). Hα and
Hβ were designated the C- and F-lines by Fraunhofer in the solar spectrum.

The total angular momentum j also has a selection rule. According to the general
selection rules derived in the last section � j can be 0, ±1. Indeed, these are
applicable because the selection rule on  can be obeyed with � j = 0. It is the
selection rules on j that determine the total number of lines per transition that
appear in the spectrum. For example, the Lyman α transition, 2p → 1s, consists of
two lines, the 2p3/2 → 1s1/2 and the 2p1/2 → 1s1/2 transitions. The wavelengths
of these emissions differ by roughly 1 nm.5 Of course, all lines of the Lyman series
are doublets.

The details of the Balmer series (and other series) are more complicated because
there are more j-levels involved. FIGURE 13.7 shows the allowed transitions that
produce the Hα transition, that is, transitions between n = 3 and n = 2 levels
(ignoring the Lamb shift). This diagram is not to scale because the splitting of the
lower level is considerably larger than that of the upper level.

It was seen in Chapter 7 that, ignoring the Lamb shift, the fine-structure energies
depend only upon the j quantum number. Therefore, if the Lamb shift is ignored,
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Figure 13.6. Partial energy-level diagram for the hydrogen atom showing some of the
transitions of the Lyman, Balmer, and Paschen series. The wavelengths are listed in nm.

Figure 13.7. Allowed transitions between the n = 3 and n = 2 fine-structure levels of
atomic hydrogen ignoring the Lamb shift and hyperfine interactions.
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Table 13.1. Wavelengths and energies of the Hα emissions.

Transition Energy (cm−1) Wavelength (nm)

3d5/2 → 2p3/2 15233.07058993(10) 656.4664649
3d3/2 → 2p3/2 15233.03445369(10) 656.4680222
3d3/2 → 2p1/2 15233.40034154(10) 656.4522546
3p3/2 → 2s1/2 15233.365233485(24) 656.4537676
3p1/2 → 2s1/2 15233.256822174(24) 656.4584394
3s1/2 → 2p3/2 15232.93672343(13) 656.4722339
3s1/2 → 2p1/2 15233.302 61127(13) 656.4564662

the seven allowed transitions would yield only five distinct lines. The precise
energies of these transitions6 are, however, available (including the Lamb shift).
They are listed in Table 13.1 in cm−1. There are thus seven different energies; the
wavelengths for these transitions are shown in the third column of the table.

FIGURE 13.8 shows the locations of the Hα wavelengths in TABLE 1. It can
be seen that there are two main groupings of lines. This is a consequence of the
fine-structure splitting of the n = 2 level being considerably larger than that for
n = 3. This is the reason that the original work on the Balmer series regarded the
lines as being “doubled” rather than broken down into seven distinct components.
Of course, the lines are doublets in the sense that 2S + 1 = 1/2.

It should be noted that the actual energies in TABLE 13.1 are not derivable
from observed wavelengths because, customarily, the wavelengths given are as
measured in air. Of course, it is the vacuum wavelength that accurately reflects the
energy difference between the two states involved in the transition. To illustrate
the difference between the air and vacuum measurement, TABLE 13.2 lists the
wavelengths in air and in vacuum7 for the Hα “doublet”.

We see that, although the difference, ∼0.2 nm, seems small, it is not. It is
worth remarking that wavelengths in the visible region of the spectrum are usually
reported in Angström units (1Å = 0.1 nm) by spectroscopists. Thus, the difference
between the air and vacuum measurements for Hα is about 2Å, which is easily
resolvable in the laboratory. Again, note that conversion of the air wavelengths to

Figure 13.8. The locations of the Hα lines showing that they are grouped to appear to be
a doublet.
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Table 13.2. Wavelengths of Balmer
emissions in air and in vacuum.

Component ( j → j ′) Air Vacuum

5/2 → 3/2 656.2849 656.4662
3/2 → 1/2 656.2725 656.4538

wave numbers (accomplished by multiplying the reciprocal of the wavelength in
nm by 107) does not produce a number that is close to those listed in the table of
energies. Using the vacuum wavelength does, however.

13.9. Transitions in Multielectron Atoms

LS-Coupling

It was remarked in Chapter 10 that atomic states are named according to the cou-
pling scheme of the inherent angular momenta that best describe them. We discuss
the extreme coupling schemes, LS-coupling and jj-coupling. It is important to un-
derstand that a given atomic state may be designated according to any scheme. The
utility of the designations is that the selection rules for the scheme used accurately
describe transitions between states. We begin with LS-coupling, a scheme that is
used for a majority of the atoms.

The state designations in LS-coupling have already been discussed in Chap-
ter 10. The selection rules when LS-coupling is pertinent are similar to those for
one-electron atoms (with capital letters replacing lowercase letters) with a few im-
portant differences. Although the selection rules for one-electron atoms are based
on the mathematics of the dipole moment matrix element, selection rules for many
electrons are based on both mathematics and experimental evidence. For example,
one empirical selection rule for all multielectron atoms is that only one electron
“jumps” during the transition. This means that in the electron configuration only
one electron changes its orbital designation from initial to final state. Of course,
this rule is only valid for atoms for which the wave functions are adequately de-
scribed as a single-electron configuration. Often, however, it is violated. Moreover,
the violation can produce rather strong transitions.

In LS-coupling the good quantum numbers are L , S, ML , and MS . Again, the
spin is not contained in the perturbing Hamiltonian so we have the selection rule
�S = 0. Also, just as for hydrogen, the parity must change. To see this, consider
a given electron configuration. The angular part of the wave function consists of
products of spherical harmonics, one for each electron. Because the parity of a
particular spherical harmonic is given by the value of , odd or even, the parity
of the product is the sum of the angular momentum quantum numbers for the
individual electrons. Thus, we have the selection rule

�

(∑
i

i

)
= ±1 (13.88)
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where �

(∑
i

i

)
is the change in the sum of the individual angular momentum

quantum numbers for the electrons. Even if there is configuration interaction so
that more than one configuration is present in the actual atomic wave function, the
parity must change because the constituents of the wave function must each have
the same parity.

For total orbital angular momentum, in addition to the selection rule �L = ±1,
we must retain �L = 0, but 0 → 0 is forbidden, obtained from general angular
momentum considerations. Clearly �L = 0 cannot occur in one-electron atoms.
In fact, it rarely occurs in atoms for which the ground state electronic configuration
contains only s-valence electrons. It can, however, occur in other atoms. A simple
example of this is the carbon atom. The ground state configuration is 1s22s22p2

which has even parity. From Chapter 10 we know that the possible LS states for a
p2configuration are 3 P , 1 D, 1S, the triplet being the ground state. There is also a
low-lying excited 1 D state of configuration 1s22s22p3d. This state has odd parity.
The parity of odd states in multielectron atoms is frequently explicitly noted in the
state designation by a following superscript “o”. Thus, the 1 D state of 1s22s22p3d
configuration is designated 3d 1 Do. Clearly a transition between the 2p2 1 D state
and the 3d 1 Do is allowed. It changes parity, one electron jumps, and �L = 0.
Indeed, in the spectrum of carbon, this transition of wavelength 148.2 nm is rather
strong. To illustrate, FIGURE 13.9 shows a partial energy level diagram for singlet
states of carbon. Only a few transitions are shown. The wavelengths are given in
nm, and, for those in the visible region of the spectrum, the wavelengths are in air.
Because only singlet states are included the J -values are omitted.

The two heavy lines are the raies ultimes8 or “sensitive lines”. These are so
designated9 because they are the last to be extinguished in an arc discharge as

Figure 13.9. Partial energy-level diagram for the carbon atom showing a few relevant
transitions. The wavelengths are listed in nm.
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Figure 13.10. Partial energy-level diagram for the helium atom showing a few relevant
transitions. The wavelengths are listed in nm.

the discharge is made progressively weaker. Early experimental spectroscopic
studies employed arc discharges to produce the light that was analyzed. Even today,
discharges are used. Often, but not always, the raies ultimes are the “resonance
lines”, that is, lines for which the lower state is the ground state. Note that the
247.9 nm line of CI does not terminate in the ground state, but is nevertheless
designated as a raie ultime. The two other transitions shown in the diagram have
�L = 0, but are allowed. Both are of comparable strength with the raies ultimes.5

The selection rule �S = 0 often leads to what appear to be two separate
atomic systems. There are, however, many instances under which a weak tran-
sition between states of different multiplicity occurs. The simplest case is helium.
FIGURE 13.10 shows a partial energy level diagram for helium that is divided into
two distinct systems, that is, a system featuring transitions between singlet states
and one between triplet states. The fine-structure has been omitted for clarity.

The singlet system, often referred to as “parahelium” includes the ground 1s2 1S0

and the lowest state of the “orthohelium”, the triplet state, is the 2p 3 P multiplet.
In accord with Hund’s rules, the triplet states lie lower than their comparable
singlet counterparts. Because the 2p 3 P state is, effectively, the ground state of
orthohelium all triplet → triplet transitions eventually lead to this state and the
atoms are, in effect, “stuck” there because they cannot radiate to the ground state
of the atom via electric dipole transitions. In fact, they can decay by higher mul-
tipole moments or by a breakdown of the LS-coupling scheme. In the case of the
2p 3 P → 1s2 1S transition the observed transition at 59.1 nm has been attributed
to a small amount of 2p 1 P in the nominal 2p 3 P wave function.
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It is interesting that for many years it was believed that orthohelium and para-
helium were two different atoms because there seemed to be two distinct sets of
emission lines. Another complication is that the spacing between states of the
triplets was so small that orthohelium multiplets were observed to be doublets
rather than triplets. For example, the 3s 3S1 → 2p 3 P2,1,0 transition at 706.5 nm
was finally resolved, but, even today there are only two wavelengths listed in most
compilations.5,8 This conundrum persisted until the 1920s when, using very high
resolution instruments, the triplet nature of the transitions was resolved.

jj-Coupling

The selection rules when jj-coupling pertains may be deduced from general an-
gular momentum considerations. Although L and S are no longer good quantum
numbers, J , MJ , and the individual electronic js are good. Thus, the selection
rules must be �J = 0, ±1, �MJ = 0, ±1, and � j = 0, ±1. All three of these
selection rules include the usual rule that 0 → 0 is prohibited. In addition, as for
LS-coupling, it is assumed that only one electron “jumps”.

We have noted that the states of an atom may be designated according to any
scheme we please because the designations are merely names. The utility of these
names lies in whether they obey any selection rules that permit the atomic spectrum
to be analyzed. A good example of this is the Hg atom for which the electron
configuration is [Xe] 4 f 145d106s2. Thus, if LS-coupling is appropriate for this
atom the spectrum is expected to be heliumlike and divide into two systems, singlet
and triplet. FIGURE 13.11 is a partial energy-level diagram that shows some of

Figure 13.11. Partial energy-level diagram for the mercury atom showing a few relevant
transitions. The wavelengths are listed in nm.
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Table 13.3. Summary of selection rules.

Hydrogen atom �m = 0, ±1; � = ±1; � j = 0, ±1; �s = 0
LS-coupling �ML = 0, ±1; �L = 0, ±1; �J = 0, ±1; �MJ = 0, ±1 but

0 ↔ 0 is forbidden for �L = 0; �i = 0, ±1
jj-coupling �J = 0, ±1; �MJ = 0, ±1 but 0 ↔ 0 is forbidden for

�J = 0; �Ji = 0, ±1

the HgI emissions. The states are, as is customary, labeled in LS-notation, but the
6p 3 P1 → 6s 1S0 ultraviolet line at 253.7 nm, a forbidden transition according to
LS-coupling, is quite strong. It is, in fact, designated a raie ultime. (This emission is
the primary cause of fluorescence of the phosphor that coats the inside of a standard
fluorescent bulb.) The analogous transition in He, 2p 3 P1 → 1s2 1S0, does occur,
however, it is quite weak.

To understand the strength of this apparently forbidden transition in HgI it is
necessary to consider the states from the standpoint of jj-coupling. To this end
the states involved are labeled in jj-coupling notation in the diagram. We see that
although the 6p 3 P1 → 6s 1S0 transition is forbidden in the LS-coupling scheme,
the same transition, labeled (1/2, 1/2)1 → (1/2, 1/2)0 is allowed according to
jj-coupling. It is a resonance line in Hg! On the other hand, transitions from the
6p 3 P0 and 6p 3 P2 to the ground state, which are doubly forbidden in LS-coupling,
are also forbidden in jj-coupling.

For convenience, the selection rules in the two coupling schemes are summarized
in TABLE 13.3.

Problems

13.1. (a) Starting with the classical expression for power radiated (in SI units) by
an accelerating charge q ,

P =
(

1

4πε0

)
2q2a2

3c3

where a is the acceleration and c is the speed of light, show that the average
power radiated by a particle of charge e executing simple harmonic motion with
frequency ω0 is given by

〈P〉 =
(

1

4πε0

)
p2ω4

0

3c3

where p = er0, is the electric dipole moment where r0 is the amplitude of the
oscillation.
(b) Assume that an excited atom, as represented by an electron executing simple
harmonic motion with frequency ω0 for a time τ , must emit a photon of frequency
h--ω0. Using the expression for 〈P〉 above, find an expression for the lifetime τ of
the excited state and for the spontaneous transition rate.
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(c) Point out salient features of your answer to (b). For example, the relation
between τ and ω0, τ and the electric dipole moment, relation to the quantum
mechanical result, and so on.
13.2. (a) Solve Equations (13.22) that result from the rotating wave approximation
for the probabilities P1→2 and P2→1.
b) Show that the sum P1→2 + P2→1 ≡ 1.
13.3. A hydrogen atom is placed in a time-dependent homogeneous electric field

F (t) = F0e−t/τ k̂

where k̂ is the unit vector in the z-direction and F0 and τ are constants. At t = 0
the atom is in its ground state. Calculate the probability that it will be in a 2p state
as t → ∞. Use atomic units.
13.4. Consider a spin-1/2 particle with magnetic moment µ. At time t = 0, the
particle is in the state |α〉, that is, spin up with respect to the operator Ŝz .
(a) If Ŝx is measured at t = 0, what is the probability of measuring a value +h--/2?
Let |α〉x be the spin up eigenfunction of Ŝx and use analogous notation.
(b) Suppose instead of performing the above measurement, the system is allowed
to evolve in a magnetic field B = B0 ĵ B. Using the Ŝz basis, calculate the state of
the system |ψ (t)〉 at time t .
(c) At time t suppose we measure Ŝx ; what is the probability that a value +h--/2
will be found?
13.5. Look up the initial and final states of the Cd+ ion (perhaps listed as Cd II)
that are involved in the transition that yields λ = 4416 Å. What is unusual about the
initial and final electron configurations? Rationalize the necessity of this transition
proceeding as it does given that the spin of a photon is 1.
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Answers to Selected Problems

Chapter 1: Background

1.2 −6.8 eV.

1.3 En = 1

2m

n2π2h--2

L2

1.4 54.4 eV
1.5 A ≈ 0.2 a0

Chapter 2: Angular Momentum

2.1 Two quantum numbers with degeneracy. The degeneracy suggests that the
problem will be separable in some other coordinate system. Because of the cylin-
drical symmetry the obvious choice is polar (cylindrical coordinates).

2.2 � (ρ, φ) = const · Jm

(√
2µE
h--2

ρ
)

· eimφ where m = 0, ±1, ±2 . . . . .

Since the Bessel functions wiggle there are many zeros of the argument. The
quantum number m determines the order of Bessel function in the wave function.

The energies are given by the condition Jm

(√
2µE
h--2

a
)

= 0 so that the energies are

Emn = h--2

2µa2
rmn where rmn is the nth root of the mth Bessel function.

2.3 The enegies would be the same as in Problem 2 with the “particle-in-
a-box” energies added. The wave functions would be multiplied by ψq (z) =√

2/L sin (qπ z/L) where q is the “extra” quantum number.

2.6
2

17

2.7
h--√
2

(
A∗ B + B∗C + B∗ A + C∗ B

)

279
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2.8 a) |α〉y = 1√
2

(
1
i

)
; |β〉y = 1√

2

(
1
−i

)
; b)

1

2

2.10
1

4

Chapter 3: Angular Momentum—Two Sources

3.1 Probability of finding the electron with j = 3/2 = |A|2 = 1/3
Probability of finding the electron with j = 1/2 = |B|2 = 1 − |A|2 = 2/3
Probability of finding the electron with j = 5/2 = 0

3.2 Probability of m = 0:

(
1√
3

)2

= 1

3
Probability of m = +1: zero

Probability of m = −1:

(
− 2√

3

)2

= 2

3
3.4 −3/2
3.5 j = 3/2; m = 1/2

Chapter 4: The Quantum Mechanical Hydrogen Atom

4.1 a) n = 3;  = 2; m = 0 ; b) 32a0 It is the Bohr radius for n = 3.

4.2 It is an eigenfunction (n = 5). E5 = −0.544 eV = − 1

52
Ry = −1

2
·

1

52
au = −4389.492 cm−1

4.3 0.70
4.4 a) −21/72 a.u.: b) (10/9)h--2 c) (−1/36)h--

4.5
{[

 ( + 1) − m2


] · h--2
}

4.7 a) − (1/8) a.u.; b) {n1n2m} = {100} or {n1n2m} = {010}
4.8 a) ψpar (r, θ, φ) = 1√

2
R20 (r ) Y00 (θ, φ) − 1√

2
R21 (r ) Y10 (θ, φ) where the

subscript par refers to the parabolic quantum numbers given n = 2, n1 = 1, n2 =
0 = m.
b) zero; c) 1; d) 1/2; e) 1/2; f) 1; g) 0; h) It is the same in spherical and parabolic
coordinates.
4.9 a) − (1/8) a.u.; b)  = 0 and 1 are equally probable; c) m = 0 with proba-
bility 1
4.10 Zero for spherical coordinates, not necessarily zero for parabolic coordi-
nates.
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Chapter 5: The Classical Hydrogen Atom

5.1

[(
2πn3

)√ (4πε0) me

e2

]
a3/2

0 or
4πε0

e2
· 2πn3h--a0

5. d)  = n, circular orbits ; e) rmax = n2ao, circular states
5.4 a) A = r p2 − p (p • r ) − r̂

Chapter 6: The Lenz Vector and the Accidental Degeneracy

6.1 1

Chapter 7: Breaking the Accidental Degeneracy

7.2 10−10 E (0)
0

7.3 E (1)
n = − (

E (0)
n

)2
/2m0c2 ; the result might be questionable for a proton in a

nucleus. It is, however, reasonable for an electron in an atom.
7.4 E (1)

0 = − (3/32) (h--ω)2 /
(
m0c2

)
The correction for a diatomic molecule will

be ∼10−8 eV.
7.5 �ESO = 〈ξ (r )〉 · h--2

2 (2 + 1)
7.6 Ground state correction: none

First excited state: j = 3/2 ⇒ (5/2)h--ω + (1/2) ζ ; j = 1/2 ⇒
(5/2)h--ω − (1/2) ζ

Second excited state: j = 5/2 ⇒ (7/2)h--ω + ζ ; j = 1/2 ⇒
(5/2)h--ω − (3/2) ζ

Chapter 8: The Hydrogen Atom in External Fields

8.2 E (n = 2;  = 1; m = 1) = 7

48
α2 E (0)

n + µB B

h--

E (n = 2;  = 1; m = 0) = 7

48
α2 E (0)

n

E (n = 2;  = 1; m = 1) = 7

48
α2 E (0)

n − µB B

h--

E (n = 2;  = 0; m = 0) = 5

16
α2 E (0)

n

The only states that are affected by the magnetic field are the two states for which
m �= 0.

8.3 E

(
n, , m, ms ± 1

2

)
= − 1

2n2
+ µB B (m ± 1)
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8.5 b) E11 = (W + ξ ) ; E1−1 = (W − ξ ) ; E10 =
(
−W +

√
4W 2 + ξ 2

)
; E00 =(

−W −
√

4W 2 + ξ 2
)

Chapter 9: The Helium Atom

9.1 a) Ground state energy: E0 = E (00) = h--ω. Ground state ket:
|n1n2〉 |SMs〉 = |00〉 |00〉.

First excited state energy: E1 = E (10) = E (01) = 2h--ω with 4 possible kets.{
1√
2

|10〉 + 1√
2

|01〉
}

|00〉(singlet) and

{
1√
2

|10〉 − 1√
2

|01〉
}

|S =
1 Ms = 0 ± 1〉 (triplet)

b) ) Total spin-0 state will have the energy lowered more than that of the total
spin-1 state.
9.3 a) −14.5 eV below the He++ + e + e energy. λ = 192 Å; b) v = 3.8 ×
106 m / s
9.4 a) −1/2 ; b) − (1/2) (8/3π ) ; c) The wave function in a) because it is exact.

9.5 For hydrogen

∣∣∣∣∣ E (1)
0

E (0)
0

∣∣∣∣∣
H

= 3/8

1
= 0.375; For helium

∣∣∣∣∣ E (1)
0

E (0)
0

∣∣∣∣∣
H

= 5/8

4
=

0.156.
9.6 b) (4πε0)

(
219/311

)
a3

0

Chapter 10: Multielectron Atoms

10.1 a) 3 P2,1,0 & 1 P1

b) 1 F3; 1 F4,3,2,1 ; 1 D2; 3 D3,2,1; 1 P1 ; 3 P2,1,0

c) 2 P1/2,3/2 and 4 P1/2.3/2.5/2 ; 1 D + s → 2 P3/2,5/2 ; 1S + s → 2S1/2

10.4 a) 3 D3,2,1 ; 3 P2,1,0 ; 3S1 ; 1 D2 ; 1 P1 ; 1S0

(
1

2

1

2

)
0

;

(
1

2

1

2

)
1

;

(
1

2

3

2

)
2

;

(
1

2

3

2

)
1

;

(
3

2

1

2

)
2

;

(
3

2

1

2

)
1

;

(
3

2

3

2

)
3

;(
3

2

3

2

)
2

;

(
3

2

3

2

)
1

;

(
3

2

3

2

)
0

10.5 a) 3 P2,1,0; 1 D2; 1S0 and

(
1

2

1

2

)
0

;

(
3

2

1

2

)
2

;

(
3

2

1

2

)
1

;

(
3

2

3

2

)
2

;

(
3

2

3

2

)
0

10.6 J = 4 The multiplet is 3 F .
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Chapter 11: The Quantum Defect

11.1 IP (Li) = 5.3 1 eV; IP (Na) = 5.00 eV

11.2 a) F = −eEdipole k̂ = −
(

e

4πε0

)2

2αd
1

z5
k̂

11.3 δ = b/

11.4 δ = (
 + 1

2

)−
√(

 + 1
2

)2 − 2b ≈ b/
(
 + 1

2

)
; The ( + 1/2) comes from

the  ( + 1) term in the solution of the radial Schrödinger equation.

En = − 1

2n2

[
1 + 2b

n
(
 + 1

2

)
]

Chapter 12: Multielectron Atoms in External Fields

12.2 αnm = 2mee2n8a4
0

h--2

(
1

4m2 − 1

)
where n and m are the Bohr and rigid rotor

quantum numbers.
12.4 b) There will be 19 lines observed.

Chapter 13: Interaction of Atoms with Radiation

13.1 b)
h--ω0

τ
=
(

1

4πε0

)
D2ω4

0

3c3
and transition rate = 1

lifetime =(
1

4πε0

)
p2ω3

0

3h--c3

c) The transition probability, which is the same as the Einstein A coefficient, is
proportional to ω3

0 and the square of the electric dipole moment,p.

13.2 a) P1→2 = |c2 (t)|2 =
(

V

2h--ωR

)2

sin2 ωRt and P2→1 = |c1 (t)|2 =(
cos2 ωRt + δ2

4ω2
R

sin2 ωRt

)

13.3 P2p (∞) = 215

310
F2

0 · τ 2

1 +
(

3

8

)2

τ 2

13.4 a) 1/2

b) |ψ (t)〉 =
(

cos (µBt/h--)
sin (µBt/h--)

)
on the Ŝz basis.

c) 1
2 [1 − sin (2µBt/h--)]

13.5 Upper state: [Kr] 4d95s22 D5/2 & lower state: [Kr] 4d105p 2 P3/2

The transition involves a “two-electron jump”.



Index

A
Absorption, 2, 24, 51, 246, 249, 253,

254–262
Accidental degeneracy, 77–82, 92, 95, 96,

105–124, 126, 162, 163, 214, 221,
230

Angular momentum, 4, 6, 14–41, 46–61,
105–24, 198–208, 214–220,
266

See also Orbital angular momentum;
Spin angular momentum;
Generalized angular momentum

Apocenter, 95, 102, 221
Apside, 97
Associated Laguerre polynomials, 79–81,

87, 90, 133
See also Laguerre polynomials

Atomic dimensions, 8–10
Atomic units, 11, 12

B
Balmer, 3, 269–272
Bohr

energy, 5, 6, 77,
frequency, 251
magneton, 34, 146
model, 1–10
radius, 4, 95

Boltzmann factor, 262
Bosons, 180

C
Central potential, 18, 29, 73
Centrifugal term, 74

Classical radius of the electron, 11
Clebsch–Gordan coefficients, 55–72, 123,

149, 155, 169, 170
Commutation relations, 18–20, 25, 28,

116, 117
Commutator, 18–21, 25, 26, 48, 106, 108,

111, 117
Completeness relation, 161
Compton

effect, 10
wavelength, 10, 11, 130

Configuration interaction, 197, 273
Core polarization, 217
Correspondence principle, 2, 4, 6, 174,

175, 220, 247
Coulomb potential, 74
Coupled kets, 55, 56, 59, 68, 69, 154, 155

D
D–line, 51
Darwin term, 130, 133–135, 143
deBroglie wavelength, 1, 10, 13, 194
Degeneracy, 17, 78, 79, 82, 87, 92, 95–97,

105–125, 126, 136–138, 145, 148,
153, 154, 214, 221, 230

Delta function, 127, 133, 139, 259
Dipole moment

electric, 88, 101–103, 159, 162, 163,
167, 171, 175, 221, 233–236, 250,
272

magnetic, 33–36, 61, 139, 239, 240
Dirac equation, 126, 128, 130, 136, 137,

142
Doubly excited states, 192–194

285
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E
Eccentricity, 92, 95, 100, 101, 116, 219
Effective potential, 74, 75, 78, 79
Eigenfunctions

parabolic, 88, 121, 122, 125, 160, 163,
164, 166, 167–170

spherical, 82, 101, 113, 114, 122, 123,
163, 167–170, 246

Einstein coefficients, 261, 263
Electric dipole radiation, 251, 266–268
Electrodynamics

classical, 2, 4
quantum, 138, 260, 264
See also QED

Electric quantum number, 166, 176
Electromagnetic waves, 249, 250
Electron, 2
Electron affinity, 195
Electron configuration, 181, 189, 191, 192,

196–213, 272, 275, 277
Elliptical orbits, 94, 124
Emission, 2, 24, 51, 137, 152, 242,

246–277
Energy eigenvalues, 75–77, 85–87,

118–120
Equivalent electrons, 200, 201, 208

See also Nonequivalent electrons
Exchange energy, 191, 198
Exchange force, 191, 198, 204
Exchange operator, 178

F
Fermions, 178, 180
Fine structure

constant, 7
correction, 126–137
interval, 136, 141, 156, 159, 160
splitting, 62, 135–137, 156, 158, 271
terms, 127

First quantization, 1, 10, 260, 264
Flopping. See Rabi flopping frequency
Fraunhofer, J., 51, 269

G
Gauss’ trick, 49, 87
Generalized angular momentum, 114

See also Angular momentum; Orbital
angular momentum; Spin angular
momentum

Good quantum numbers, 46–48, 148, 198,
209, 266, 272, 275

Gyromagnetic ratio, 36, 140

H
Hamiltonian, 14
Harmonic oscillator, 16, 137

See also Isotropic harmonic oscillator
Hartree, 12
Helium, 178–195, 196–198, 202, 266, 267,

274, 275
Highly excited atoms, 233

See also Rydberg atoms
Hund’s rules, 192, 202, 204, 210, 211,

274
Hydrogenic energy, 77, 109, 218
Hydrogenic manifold, 231–233, 237
Hyperfine

Hamiltonian, 68
interaction, 61, 62, 70, 140, 141, 270
levels, 70
splitting, 61, 68, 137
structure, 61, 68, 126, 139, 141, 143

I
Indistinguishability, 178, 191, 202, 204
Integral

Coulomb, 190–192
exchange, 191, 192

Ionization potential, 12, 75, 183, 194
Isotropic harmonic oscillator, 17, 78, 123

See also Harmonic oscillator

J
jj–coupling, 207–213, 275, 276

K
Kepler problem, 92, 124, 171
Keplerian

ellipse, 97, 100, 220, 221, 226
orbit, 2, 99, 101, 102, 116, 172, 173,

177, 218–221, 233, 237
Kepler’s laws, 96, 102, 103, 218, 221, 223

L
Ladder operators, 20, 23, 109, 110, 114,

118, 122
See also Raising and lowering operators

Lagrangian, 96



Index 287

Laguerre polynomials, 79–81
See also Associated Laguerre

polynomial
Lamb shift, 126, 137–139, 141, 143, 151,

269–271
Landé

formula, 30
interval rule, 205, 206
g–factor, 150, 152, 239, 241–243

Laporte rule, 267, 269
Larmor

formula, 263
frequency, 239

Latus rectum, 92
Legendre polynomials, 184
Lenz vector

classical, 97–102, 105
operator, 105–124

Levi–Cevita symbol, 18
Lifetime, 263, 264, 266
LS–coupling, 197, 198, 202, 205, 207,

210–212, 272–276
Lyman, 269, 270

M
Magnetic moment

orbital, 34, 35, 50, 61, 62, 129,
146

spin, 35, 129, 146
Magnetic quantum number, 73, 84,

145–148, 160, 174
Multiplet, 199, 204–206, 274, 275
Multiplicity, 198–200, 204, 207,

274

N
Negative polarizability, 230, 238
Nonequivalent electrons, 198, 200, 208,

209
See also Equivalent electrons

O
Orbital angular momentum, 29–34, 50, 70,

73, 109, 116, 130, 138, 182, 197,
198, 200, 202, 204, 207, 273

See also Angular momentum; Spin
angular momentum; Generalized
angular momentum

Orthohelium, 274, 275

P
Parabolic coordinates, 82–90, 101, 110,

120, 164–174
Parabolic quantum numbers, 90, 120, 121,

167, 172
Parahelium, 274, 275
Parity, 160, 267, 269, 272, 273
Paschen, 269, 270
Paschen–Bach effect, 175
Pauli

principle, 180, 189, 200, 202, 204, 208
spin matrices, 39

Pauli, W., 105
Pericenter, 93, 95, 100, 102, 104,

221
Polarizability

dipole, 160, 220, 223
quadrupole, 218

Precession, 100, 220–225, 233–240
Principle quantum number, 95

Q
QED, 126, 137, 260, 261

See also Electrodynamics, quantum
Quantum defect, 214–229, 230–238

R
Rabi flopping frequency, 253
Radial matrix element, 114–116
Radial wave function, 80, 81, 133,

225–227
Raies ultimes, 273, 274
Raising and lowering operators, 20, 21, 63,

64, 109, 148, 168
See also Ladder operators

Recursion relation, 76
Relativistic correction, 127, 128, 130, 134,

147, 148, 207, 248
Resonance line, 274, 276
Rigid rotor, 14–16, 245
Rotating wave approximation, 251–253,

257
Russell Saunders coupling, 197

See also LS–coupling
Rydberg

atoms, 217, 224
See also Highly excited atoms

constant, 4–6, 8
Rydberg, R., 214
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S
Secular equation, 65, 153, 156, 179
Selection rule, 26, 28, 152, 153, 210, 242,

260, 266–276
SI units, 3, 7, 11, 83, 147, 187, 264
Singlet, 55, 56
Spectroscopic notation, 182, 190,

192
Spherical harmonics, 31–33
Spherical symmetry, 74, 82, 95, 96, 145,

147, 148, 161
Spin angular momentum, 24, 33–44, 50,

62, 129, 197, 198, 207, 267
See also Angular momentum; Orbital

angular momentum; Generalized
angular momentum

Spin–orbit correction, 128, 129, 132–135,
144, 147

Spinor, 37, 62, 66, 134
Spontaneous emission, 137,

260–266
Stark effect, 159–175, 230–238
Stationary states, 2–5, 10, 13, 218, 246,

248, 249
Stimulated

absorption, 249, 253–262
emission, 253–262

Stern–Gerlach, 41–44
Superposition, 247, 252

T
Thomas correction factor, 129
Transition probability, 249, 250, 253, 256,

257, 264, 265
Triplet, 56, 57

U
Uncertainty principle, 8–11, 13, 258
Uncoupled kets, 55, 56, 59, 60, 67, 68, 155

V
Valence electron, 201
Variational method (principle), 186, 187
Vector operator, 25–27, 106, 114, 116, 267,

268
Virial theorem, 128, 131, 187

W
Wigner–Eckart theorem, 114, 116
WKB approximation, 225, 226

Z
Zeeman

effect
anomalous, 145–158, 242–244
normal, 241–243

energy, 147–150, 15, 241
splitting, 150, 152, 175, 249

Zitterbewegung, 130, 137, 138




