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Preface to the Third Edition

This is a text for the third semester of undergraduate physics for students
in accelerated programs, who typically are preparing for advanced degrees
in science or engineering. The third semester is often the only opportunity
for physics departments to present to students who are not physics majors
a coherent background in the physics of waves, required later for confident
handling of applied problems, especially applications based on quantum
mechanics.

Physics is a coherent subject. It is often found that the going gets easier
as one goes deeper, learning the mathematical connections tying together
the various phenomena. Even so, the steps that took us from classical wave
physics to Heisenberg's "Physical Principles of Quantum Theory" were, as
a matter of history, harder to take than later steps dealing with detailed
applications. With these considerations in mind, the classical physics of os
cillations and waves is developed here at a more advanced mathematical
level than is customary in second year courses. This is done to explain the
classical phenomena, but also to provide background for the introductory
wave mechanics, leading to a logical integration of the latter subject into
the presentation. Concurrently, detailed applications of quantum mechanics
are beyond the mission of the text. The concluding chapters on nonlinear
waves, solitons, and chaos broaden the previously established concepts of
wave behavior, while introducing the reader to important topics in current
wave physics.

Experience teaching the course has led in this third edition to the author's
fully presenting material dealing with Green's functions, rather than trying
to save course time by burying the material in problems and an appendix,
as heretofore. This extension has led, in turn, to a broadening of Chap. 6
on wave mechanics, with a treatment of the Green's function for harmonic
oscillators. In this way, along with additions to examples and problems, the
integration of wave mechanics with classical wave physics has been reinforced.

The text begins with a full chapter of mathematics that develops Fourier
analysis in the context of generalized functions. The idea is to expose students
to the new concepts while there is yet a minimum of "pressure" , and then al
low them to assimilate the concepts through the chapters on classical physics.
In this way, when it comes to the wave mechanics in Chap. 6, students should
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be able to distinguish the new physics from mathematics. M. J. Lighthill, in
his monograph "Fourier Analysis and Generalized Functions" , says that "The
theory of generalized functions ... greatly curtails the labor of understanding
Fourier transforms". Application of generalized functions (Schwartz' "theorie
des distributions") avoids undefined integrals like J~ooeikx dk still prevalent in
texts on quantum mechanics. Chapter 2, on oscillations, may seem somewhat
in the nature of a review. The physics material thus starts at the point where
the first exposure in the freshman year has been made, but may have led to
only a partial grasp.

It is hoped that this book will be useful to various categories of readers,
honors math and physics students, graduate students studying for Ph.D.
qualifiers, as well as professors looking for examination problems. Problems
displace tedium by presenting a challenge. Here many are used to establish
significant results. This makes for meaningful activity, as well as for efficiency
in the learning process.

The prerequisite for the text is limited to a standard calculus based
freshman course in mechanics and electricity and magnetism. The text is
an outgrowth of the Honors Physics III course which the writer had been
frequently teaching at Rensselaer since 1973. He believes that some selection
according to the purpose of the course will need to be excersised. Only in this
way will the first six chapters of this extended edition fit comfortably within
a standard fourteen week semester. Selection is facilitated by the fact that
the more advanced topics occur towards the end of each chapter.

Alternatively, following a suggestion of Professor Lyle Roelofs1 , physics
departments might consider offering Chap. 1, Mathematical Foundations, in
a mini semester, if there is one available.

Saarbriicken,
June 2002

Stephen N ettel

1 L. Roelofs, Book Reviews, D.J. Griffiths Ed., Am. J. Phys. 69, 922 (2001).



Preface to the Second Edition

A number of examples and problems to elucidate basic concepts have been
added, and typographic errors corrected.

The first edition has now been used a number of times at Rensselaer in
second year courses using the interactive method of teaching. This method
includes regular problem-solving sessions where students work together in
groups with aid from special work sheets. There is input from more senior
students, graduate and undergraduate, acting as tutors. It was discovered
that with this method Wave Physics can be used by a wider selection of
individuals to advantage than the honors students for whom the text was
originally intended. The main factor in a student's success appeared to be
the quality of his or her mathematical preparation. It is a pleasure to thank
the many students who participated as tutors. Special thanks go to Howard
Goldowsky, Byong Kim, and Richelle Thompson who carried much of the
responsibility over the various classes. Our teaching experience has influenced
the present revision.

Troy,
August 1994

Stephen Nettel



Preface to the First Edition

This is a text for the third semester of undergraduate physics for students
in accelerated programs who typically are preparing for advanced degrees
in science or engineering. The third semester is often the only opportunity
for physics departments to present to students who are not physics majors
a coherent background in the physics of waves required later for confident
handling of applied problems, especially applications based on quantum
mechanics.

Physics is an integrated subject. It is often found that the going gets easier
as one goes deeper, learning the mathematical connections tying together
the various phenomena. Even so, the steps that took us from classical wave
physics to Heisenberg's "Physical Principles of Quantum Theory" were, as
a matter of history, harder to take than later steps dealing with detailed
applications. With these considerations in mind, the classical physics of os
cillations and waves is developed here at a more advanced mathematical
level than is customary in second year courses. This is done to explain the
classical phenomena, but also to provide background for the introductory
wave mechanics, leading to a logical integration of the latter subject into
the presentation. The concluding chapters on nonlinear waves, solitons, and
chaos broaden the previously established concepts of wave behavior, while
introducing the reader to important topics in current wave physics.

The text begins with a full chapter of mathematics that develops Fourier
analysis in the context of generalized functions. The idea is to expose students
to the new concepts while there is yet a minimum of "pressure" , and then al
low them to assimilate the concepts through the chapters on classical physics.
In this way, when it comes to the wave mechanics in Chap. 6, students should
be able to distinguish the new physics from mathematics. M. J. Lighthill, in
his monograph "Fourier Analysis and Generalized Functions" , says that "The
theory of generalized functions ... greatly curtails the labor of understanding
Fourier transforms". Application of generalized functions (Schwartz' "theorie
des distributions") avoids undefined integrals like J~ooeikxdk still prevalent in
texts on quantum mechanics. Chapter 2, on oscillations, may seem somewhat
in the nature of a review. The physics material thus starts at the point where
the first exposure in the freshman year has been made, but may have led to
only a partial grasp.
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It is hoped that this book will be useful to various categories of readers,
honors math and physics students, graduate students studying for Ph.D.
qualifiers, as well as professors looking for examination problems. Problems
displace tedium by presenting a challenge. Here many are used to establish
significant results. This makes for meaningful activity, as well as for efficiency
in the learning process.

The prerequisite for the text is limited to a standard calculus based
freshman course in mechanics and electricity and magnetism. The text is
an outgrowth of the Honors Physics III course which the writer has been
frequently teaching at Rensselaer since 1973. He has found that the first
six chapters can be taught comfortably within. a standard fourteen week
semester.

Tray,
February 1992

Stephen Nettel



Acknowledgernents

It is a pleasure to express my gratitude to Dr. Ernst F. Hefter, the original
editor at Springer-Verlag, whose interest has made this text a reality. I have
had the benefit of some hitherto unpublished work of Dr. Hefter's on solitons,
contributing to the presentation of nonlinear waves in Chap. 7. Thanks are
likewise due to Dr. Natasha Aristov of Springer-Verlag for her critical reading.
The writer is much indebted to Dr. Hans J. K6lsch, the present editor, for his
advice and encouragement during the preparation of this, the third, edition.

The contributions of Professor Martin C. Gutzwiller and of Professors
A. V. Gaponov-Grekhov and M. I. Rabinovich are deeply appreciated.

Professor G.B. Whitham of Caltech was kind enough to send me some un
published notes on inverse scattering in soliton theory. Professots P. Banderet
and H. Beck at the University of Neuchatel, in Switzerland, were generous
with various help. The "Further Reading" at the end of each chapter is an
indication of sources.

The honors students at Rensselaer Polytechnic Institute who have taken
the course which led to this text have contributed by their scientific curiosity
as by their tolerance. Later, it was discovered that Wave Physics can be
used to advantage by a wider selection of individuals than honors students
when using an interactive method of teaching. Special thanks go to Howard
Goldowsky, Byong Kim, and Richelle Thompson who carried much of the
responsibility for the various classes.

The idea of writing a text came at the time when I had been initiated into
Transcendental Meditation, which imparted the desire to add to my profes
sional activity in some creative way. Lastly, I express gratitude to Irmgard
Blandfort for her moral support, and for taming our computer from time to
time.



Contents

1. Mathematical Foundation for Wave Physics. . . . . . . . . . . . . . . 1
1.1 Introduction to the Concepts 1
1.2 Important Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Complex Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The Dirac Delta Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Fourier Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11
1.6 Hilbert Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24
Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

2. Oscillations of Mechanical and Electrical Systems. . . . . . . .. 33
2.1 The Systems and Their Equations. . . . . . . . . . . . . . . . . . . . . . .. 33
2.2 Natural Motion of Systems 36
2.3 Forced Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41
2.4 Forced Motion and the Green's Function. . . . . . . . . . . . . . . . .. 44
2.5 Oscillators............................................. 46
2.6 Summary.............................................. 48
Problems 49
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

3. Waves on Stretched Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55
3.1 Equation of Motion of a String. . . . . . . . . . . . . . . . . . . . . . . . . .. 55
3.2 Natural Motion of a String 58
3.3 The Normal Modes. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60
3.4 Forced Motion of a Stretched String 67
3.5 Green's Functions for a Stretched String. . . . . . . . . . . . . . . . . .. 71
Problems 78
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85

4. Electromagnetic Waves 87
4.1 Maxwell's Equations in Integral Form. . . . . . . . . . . . . . . . . . . .. 87
4.2 Maxwell's Equations in Differential Form. . . . . . . . . . . . . . . . .. 88
4.3 Plane Electromagnetic Waves in Free Space. . . . . . . . . . . . . . .. 92
4.4 Distributed Electromagnetic Systems - Cavities . . . . . . . . . . .. 98



XIV Contents

4.5 The Vector Potential and Related Solutions
of Maxwell's Equations 103

4.6 Dipole Radiation 107
4.7 Electromagnetism and the Green's Function 110
Problems 117
4.A Appendix 124
Further Reading 127

5. Light - Physical Optics, Refraction . . . . . . . . . . . . . . . . . . . . . .. 129
5.1 The Nature and Generation of Light 129
5.2 Diffraction............................................. 133
5.3 X-ray Diffraction 139
5.4 EM Waves in Dielectrics. Refraction 141
5.5 The Magic Rule in Three Dimensions 147
Problems 151
Further Reading 156

6. Wave Mechanics 157
6.1 Origin of Schroedinger's Wave Equation 157
6.2 Postulates of Wave Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . .. 161
6.3 Motion of a Free Particle.

The Heisenberg Uncertainty Principle 171
6.4 Wave-Particle Duality and Loss of Determinism. . . . . . . . . . . . 179
6.5 Driven Motion and the Green's Function

for the Harmonic Oscillator 181
6.6 Scope of Quantum Mechanics 191
Problems 206
Further Reading 215

7. Nonlinear Waves on Water - Solitons 217
7.1 Linear Surface Waves on Water 218
7.2 Dispersion. Group Velocity 221
7.3 Nonlinear Waves 223
7.4 Solitons............................................... 229
7.5 Inverse Scattering 233
Problems 241
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8. Nonlinear Phenomena - Chaos 249
8.1 Nonlinear Physics - Chaos and Order 250
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.2 Quantum Chaos 265

Hints for Solution 277

Index 285



1. Mathematical Foundation for Wave Physics

Abstract. The chapter begins with an introduction to the main concepts
in generalized functions theory. The development of the mathematics of
wave physics itself begins by evaluating certain essential integrals involving
gaussians. A brief section on complex variables yields additional integrals.
After its intuitive introduction, the Dirac delta function is shown to be an
example of a generalized function, that is, it is given by a certain family of
equivalent sequences. The members of such sequences must be good functions,
for example, gaussians. The designations "equivalent", "good" are carefully
defined. The Fourier representation as a decomposition of functions of spatial
variables into harmonic functions of all possible wavelengths is introduced.
Using the analogy of basis vectors in three dimensions, the idea is developed
that harmonic waves form a complete basis in an infinite dimensional function
space (Hilbert space). The formula for the Fourier transform is obtained in
analogy to projecting out vector components, the Dirac delta function serving
as the analogue of the Kronecker delta. As summary a comparison is given
between formulae governing representation in vector and Hilbert space of
arbitratry vectors and functions, respectively. Worked examples include the
Fourier transform of a square wave, the computer synthesis of the square wave
from its transform, and orthonormality of the Dirac delta functions. Prob
lem 1.17, which develops the Green's function for diffusion, is particularly
recommended as background for Chap. ~, "Wave Mechanics" .

1.1 Introduction to the Concepts

Waves play a pervasive role in nature. There are the mechanical waves, includ
ing seismic waves, sound waves in air, water waves. There are electromagnetic
waves, and underlying all matter, quantum mechanical waves. These diverse
wave phenomena are understood on the basis of a few unifying mathematical
concepts.

In the study of particle mechanics we use vectors to describe displace
ments, velocities, and other quantities of motion. In three dimensions any
vector F can be constructed from three building blocks, the standard unit
vectors i, j, k:

F == Al i + A 2 j + A3 k ,



2 1. Mathematical Foundation for Wave Physics

AI, A2 , A3 being the component amplitudes which determine F. The corre
sponding building blocks for waves are, in one dimension, sin kx, cos kx, if we
are working in space and sin wt, cos wt in the time domain. Here k is called
the wave number. It is related to the wavelength A by

k == 27r
A .

Similarly, w, the angular frequency in radians/seconds, is related to the pe
riod T in seconds, or the frequency v in Hz (cycles/s) by

27r
w == 27rV == T .

For mathematical convenience we shall often combine the harmonic functions
into the complex exponential:

eikx == cos kx + isin kx i == R .
We say that a particle in three dimensions has three degrees of freedom.

The quantities of motion for continuous systems such as a long string under
tension have infinitely many degrees of freedom. There are an infinite number
of points along the line for each of which the motion must be specified.
From a different perspective, the displacement of the string is often analyzed
as a continuous function of position at any given time. We should not be
surprised to learn that such continuous functions are conveniently represented
by vectors in a "function space" which has an infinite number of dimensions,
thereby allowing for an infinite number of degrees of freedom. This function
space with an infinite number of building blocks or basis junctions is a key
concept in the physics of waves. What one wants to know is whether the basis
functions form a complete set. By complete set we shall mean that the phys
ical functions of interest can indeed, be adequately described by appropriate
sums or integrals over the available set of basis functions. The question of
completeness as required in theoretical physics was studied by the German
mathematician David Hilbert (1862-1943). In Sect. 1.6 we shall review these
ideas. Here the necessary infinite number of building blocks or basis functions
is obtained by noting that k (or w) is a continuous variable taking on any
one of the infinite possible values that lie in the range 00 > k > -00. Each
new positive value of k yields two new basis functions sin kx, cos kx.

Going to the time domain we find that the idea of sin wt, cos wt as basic
components is not new to us. Anyone interested in high-fidelity reproduction
of music is familiar with the technique of decomposing the signal F(t) into
separate signals, each with a single frequency w, a definite amplitude B(w),
and a phase Ow. F(t) is then given as the sum of all these separate signals,
that is, as an integral over all the possible frequencies:

00 00

F(t) '" JB(w) sin(wt + 8w)dw = JA(w)eiwtdw
o -00
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where in the last integral A(w) is a complex number chosen so as to take
into account the phase shift 8w and to make F(t) real valued. The ideal high
fidelity equipment is that which processes (converts and amplifies) all the
different frequency components in the same way.

The possibility of resolving functions of position into harmonic compo
nents of all possible wavelengths was introduced by the French mathematician
Joseph Fourier in his "Theorie analytique de la chaleur" in 1882. In one
dimensional space, we write

00

F(x) rv JA(k)eikxdk.

-00

In nature we find pairs of "opposites" or antipodes, point and infinity,
etc. We shall learn that the exponential wave exp(ikx) also has its opposite,
the so-called Dirac delta/unction 8(x) [or 8(k)] named after the British Nobel
prize winning physicist P.A.M. Dirac. The function 8(x) has an infinitely high
and narrow peak at x == O. We have for 8(x) the properties:

8(x) ==0
00J8(x)dx = 1

-00

00J F(x)8(x)dx = F(O) .
-00

The last property, true for any "physical" function F(x), follows intuitively
from the localization of 8(x) at x == o. If exp (ikx) represents some infinitely
extended phenom'enon to be found anywhere between 00 > x > -00,8(x) is
its antipode representing total localization. We shall see the need for a delta
function as we develop the mathematics of wave physics, particularly in
Chap. 6, which deals with matter waves (quantum mechanics).

We note that, taken together, all the amplitudes of the wave components
A(k) determine any particular function F(x) which is being Fourier analyzed.
The central problem of Fourier analysis is, given a function F(x), how can one
find these (complex) expansion coefficients (amplitudes and phases)? This is
called finding the Fourier transform of the given function. The procedure for
obtaining the transform is analogous to projecting out of any given vector
one of its components. For vectors this depends on the orthonormality of
the unit vectors i, j, k. For functions, we shall see that Uk == 1/vI21f exp(ikx)
may be considered normalized, and two basis functions Uk, Uk' with k i= k'
orthogonal.

Orthonormal for i, j, k means that these vectors are perpendicular to each
other (orthogonal) and each vector has length unity (normal). The procedure
to establish the orthonormality of functions analogous to taking the vector
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dot product is to take appropriate "overlap integrals", see Problem 1.20.
The overlap integrals are obtained by integrating the product of the complex
conjugate of the first function uk and of the second function Uk t over the
range 00 > x > -00:

(X) (X)JU'k (X)Uk' (x)dx = 1/21r Je-i(k-k')xdx.

-(X) -(X)

It was suggested by Dirac that in physical calculations the overlap integrals
should yield the delta function <5(k - k'). Since if k i=- k', <5(k - k') == 0,
functions with different k will have zero overlap, and if k == k', Uk (x) would in
some sense be normalized. Thus, we see that when seeking Fourier transforms,
that is, when projecting the individual wave components out from a function
we shall need to understand the Dirac delta function.

This discussion needs some mathematical justification. As it stands, the
overlap integral of the two functions Uk, Ukt is not yet defined, that is, no limit
is approached as the range of integration is extended to infinity. In addition,
the Dirac delta function is not a function in the sense that we could ascribe
a value to it at every value of the independent variable x. These difficulties
have a physical origin. If exp(ikx) /.J21r represents a wave corresponding to
some phenomenon, then usually in physical problems that wave must be
presumed to have a beginning (in space, or time if we replace x by t), and
an end. It turns out that if we use the more rigorous theory oj generalized
junctions to handle the delta function, and proceed in a consistent fashion
from there, then the effect of distant yet physical boundaries is automatically
supplied and the lack of mathematical definition of the orthonormalizing
integrals disappears.

The theory of generalized functions begins with the identification of cer
tain functions as good junctions. These, as we shall see in the next section, are
functions that go to zero in a particularly regular way as x goes to ± infinity.
The definition of generalized functions has its origin in the observation that
whereas 8(x) is not a function in the ordinary sense, it can be simulated by
certain infinite sequences of good functions. A generalized function f (x) is
defined through an infinite sequence of integrals by the equation

(X) (X)

Jf(x)F(x)dx == lim Jfn(x)F(x)dx .
n~(X)

-(X) -(X)

Here fn(x) is any sequence of good functions fn(x), n == 1,2,3, ... which give
a desired limiting value to the integral, for example, F(O) for f(x) == 8(x).
F(x) is, again, any good function, and can be thought of as a "test function"
for various sequences. In the case of the delta function the members of each
sequence will become progressively sharper and higher as n increases. It is
also possible to define Fourier transforms (FT) of generalized functions by
using sequences whose members are FTs of the original sequences' members.
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Once the generalized function has become familiar through repeated ap
plication, its abstract nature will, just like that of the ordinary derivative, not
present any hindrance. The theory of generalized functions has its origin in
Laurent Schwartz's "Theorie des distributions" which appeared in 1951, and
was developed in the form outlined here by George Temple and M.J. Lighthill.
We list under Further Reading at the end of the chapter the monograph by
M.J. Lighthill. The theory allows one to include in Fourier analysis not only
the delta function and its derivatives, but quite simple functions such as
constants and powers of x, which were formerly excluded. Our approach to
Fourier analysis in terms of an orthonormal basis and generalized functions is
expedient both for learning the analysis, as well as for developing the physics
of classical and matter waves.

1.2 Important Integrals

The function g(x) is defined as

ga(x) == va/1re-ax2 , (1.1)

a being a positive real number. This function, named after the German
mathematician Friederich Gauss (1777-1855), is used extensively not only in
physics but also in various statistical analyses. We calculate here a number of
integrals with integrands containing gaussians, which occur again and again
in all branches of physics.

The limits of these integrals are at x == ±oo. Because of the rapid approach
of ga(x) to 0 as I x I~ 00 the integrals will be well defined. Actually, ga(x) will
be an important example of what we have already called a good function. The
formal definition of a good function is one which is everywhere differentiable
any number of times, and it and all its derivatives are on the order of at most
I x I-N as Ix I~ 00 for all N.

The first integral of importance to us is
00

h = Je-
ax2

dx ,

-00

which we can find by using a trick. We write
00 00

If = Je-
ax2

dx Je-
ay2

dy

-00 -00

00 00

= JJe-a
(x

2
+y2

)dxdy.

-00 -00

(1.2)

(1.3)

We convert to polar coordinates r, 0, remembering that dxdy becomes rdrdO.
If becomes
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00 27r 00

I; = JrdrJdO e-
ar2

= 21rJe-
ar2

rdr = ~ .

o 0 0

The desired result is

(1.4)

(1.5)

In the introduction we have suggested the convenience of "normalizing" func
tions, that is, of adjusting their relative magnitudes in some definite way.
From (1.3) we see that 9a(n) has been defined so that

00Jga(x)dx = 1 ·
-00

The next integral of interest is
00

h = Jcos(kx) e-ax2dx .
-00

What trick can we use? Let us expand cos(kx) in a Taylor series:

cos kx = 1 - (kX)2/2! + (kx)4/4! - ....

(1.6)

(1.7)

(1.8)

Next, we differentiate 11 under the integral sign with respect to a and find

(1.9a)

(1.9b)

and so on, with repeated differentiation. If we now substitute (1.8) into (1.7)
and use (1.5, 1.9) we find:

12 = If;, [1 - k2/(4a) + k43/(a24!22) - k63.5/(a36!23) + ...]

= If;, [1 - k2/(4a) + (k2/(4a))2 1/ 2! - (k2/(4a))3 1/ 3! + ...] .(1.10)

The term in the square brackets of (1.10) is just the series expansion for
exp [-k2

/ (4a)J. (Here we have used the theorem that the order of integration
and summation may be interchanged in expressions in which convergence is
retained when each term is replaced by its absolute value.) Our result is:



1.3 Complex Numbers 7

ex:>Jcoskx e-
ax2 dx = -/rr/a e-k2j4a . (1.11)

-ex:>

The right side of (1.11) is again a gaussian. Furthermore, the larger the wave
number k, that is, the more rapidly cos kx oscillates, the smaller the overlap
integral (1.11) becomes. If a is large, the original gaussian is narrowly peaked
and the overlap becomes broad in k.

Before concluding this section we need one more integral:
ex:>

I3 = Jsinkx e-
ax2 dx = 0 .

-ex:>

(1.12)

Why is this integral zero? The reader will notice that whereas cos kx ==
cos(-kx), sinkx == -sin(-kx), coskx has even symmetry, sinkx has odd
symmetry about x == O. Now, in (1.12) we are taking the overlap integral of
an odd function (sinkx), with an even function exp (-ax 2

). Such an overlap
integral always vanishes because for every contribution coming from between
x and x+dx, there is an equal but opposite contribution coming'from between
-(x + dx) and -x, the integrand is odd.

1.3 Complex Numbers

In the study of algebraic equations of quadratic and higher orders the reader
will have encountered the use ofi, the square root of -1. With i one constructs
the two-fold set of complex numbers z out of real numbers. We write:

z == a + ib (1.13a)

where a and b are real numbers.
Complex numbers can be represented as points in the "complex plane" ,

Fig. 1.1. The x-coordinate gives the real component of the number a, and the
y-coordinate gives the imaginary component b. By "equality" of two complex
numbers we mean that the real components of the two numbers are equal to
each other, and the imaginary components are also equal:

z == z' with (1.13b)

z == a + ib, z' == a' + ib'

means

a == a' b == b' .

In Fig. 1.1 we see that if z == z', z and z' are represented by the same
point in the complex plane. For various algebraic manipulations with complex
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Fig. 1.1. Two arbitrary com
plex numbers z, z" represented
on the complex plane. r" is
the absolute value of z", e" the
phase of z". Also shown is ZQ, of

" iO"absolute value unity, zQ == e

(1.14)

numbers the reader is referred to books on intermediate algebra, and to the
problems at the back of this chapter.

We generalize the well-known series representation for the exponential
function of a real variable

eX == 1 + x + x2/2! + x3/3! + ...

to complex numbers

eZ == 1 + z + z2/2! + z3/3! + ... ,

(1.15)

where z is any complex number.
Let us see what happens when z is pure imaginary, that is,

z == iO

where 0 is real. Remembering that i2 == -1, we have from (1.14)

eiO == 1 + iO - 02/2! - i03 /3! + 04/4! ....

Grouping the real and imaginary contributions together, we find

eiO == 1 - 02/2! + 04/4! + ... + i(O - 03/3! + ...) .

We recall the series for the sine and cosine functions: sin 0 == 0 - 03/3! +
05 /5! ... and cos 0 == 1 - 02/2! + 04/4! ....

What we see is that

I eH1 = cos () + i sin (). I (1.16)

In our geometric representation of complex numbers, exp(iO") would cor
respond to the point at the tip of a radius vector of length unity, and making
an angle 0" with the real axis. Then the x and y projections of the radius
vector will just be the real and imaginary components of exp(iO"). We often
write an arbitrary complex number z" as
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z" == r"eiO
" == a" + ib"

r" == Ja,,2 + b,,2 , tan 0" == b" / a" . (1.17)

z" is to be represented by the end of a radius vector of length r", r" is referred
to as the absolute value of z",r" ==1 z" 1,0" as the phase. Figure 1.1 makes
all these relationships clear.

The use of (1.17) for exp(iO) in terms of trigonometric functions allows us
to combine (1.11,12):

(1.18)

[Equation (1.18) can be derived directly by using Cauchy's Theorem, which
lets us shift the contour of integration from the real axis to x - ik/ (2a)].
Complex variable theory leads to many new results in mathematics. Complex
numbers also simplify many relationships used in physics. As we shall see
in Chap. 6, complex variables are necessary in the formulation of quantum
mechanics. Equation (1.18) is a result we shall use very often.

1.4 The Dirac Delta Function

Let us first develop an intuitive understanding of the Dirac delta "function"
through its simulation by sequences and then outline the rigorous treatment
using the theory of generalized functions. We remember from the introduction
that we are dealing with a spike-like function. b(x - a) has its spike at a. We
can summarize the properties of b(x - a) as follows:

00JF(x)o(x - a)dx = F(a)
-00

00Jo(x - a)dx = 1

-00

b(x - a) == 0 if x:/= a

(1.19a)

(1.19b)

(1.19c)

where F(x) is any good function.
Although b(x) is not a function in the ordinary sense, its action can be

simulated by a sequence of functions. We obtain gn(x), n == 0,1,2,3 ... by
replacing the parameter a in (1.6) with the integer n:

(1.20)
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-1 -0.5 o 0.5 x

Fig. 1.2. As n gets large the gaussian rapidly becomes a spike-like function. This
function simulates the "Dirac delta function". The area under all the curves is unity

We need to investigate the integral
00Jgn(x)F(x)dx as n --+ 00 .

-00

In Fig. 1.2 we show the behavior of gn(x) as a function of x for increas
ing n. Clearly gn(x) becomes higher and more localized. The area under
the curve, however (the "strength" of the function), remains constant. Since
with n large gn (x) is a narrow spike at x == 0, all contributions to the integral
must come from the immediate neighborhood of x == o. We may think of F(x)
as having the constant value F(O) in that neighborhood. Thus we write:

00 00 00

J~~Jgn(x)F(x)dx ~ JF(O)gn(x)dx = F(O) Jgn(x)dx = F(O) ,
-00 -00 -00

where in the last equality we have used (1.6).
Proceeding with the rigorous approach we define a sequence of good

functions fn(x) to be regular if for any good function F(x) the limit
00

Hm Jfn(x)F(x)dx
n-+oo

-00

exists. Two regular sequences of good functions are equivalent if the limit is
the same for each sequence. The sequences exp(-x2 /4n) and exp(-x4 /n2 ),

for example, are equivalent. Finally, a generalized function f(x) is defined as
a regular sequence f n (x) of good functions, and two generalized functions are
said to be equal if the corresponding sequences are equivalent. We therefore
write for a generalized function f (x):

00 00

Jf(x)F(x)dx == Hm Jfn(x)F(x)dx .
n-+oo

(1.21)

-00 -00
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Many ordinary functions, for(x), can be viewed as generalized functions.
All that is required is that at least one regular sequence of good functions
f n (x) exists for which

00 00

lim Jfn(x)F(x)dx == Jfor(x)F(x)dx .
n~oo

(1.22)
-00 -00

[It turns out that if for (x) is such that (1 + x 2 ) - N for (x) is absolutely inte
grable from -00 to 00 for some N, then a sequence fn(x) can be constructed.]
Equation (1.22) greatly extends the scope of the theory of generalized func
tions.

We now prove that the sequences equivalent to 9n(X), see (1.20), define
a generalized function J(x) such that

00 00

JJ(x)F(x)dx == lim J9n(x)F(x)dx == F(O) .
n~oo

(1.23)
-00 -00

Proof. For any good function F(x)

00J(n/1r)1/2e-nx
2
F(x)dx - F(O)

-00

00J(n/1r)1/2e-nx
2

[F(x) - F(O)] dx
-00

00

:::; IF'(x) Imax J(n/1r)1/2e-nx
2 Ix Idx

-00

== IF' (x) Imax (n7r) -1/2 ---t 0 as n ---t 00

Here we have assumed that I F(x) - F(O) lisalwayslessthanthemaximum
value ofthe derivative in the range 00 > x > -00, times Ix I, (I F'(x) Imaxl x I).

1.5 Fourier Analysis

In Sect. 1.1 we indicated that Fourier analysis is concerned with decomposing
functions into individual "waves", that is, periodic components. In classical
physics, that is, physics as it was formulated before the advent of quan
tum mechanics, physical phenomena were divided into particles and waves.
Chapters 3-5 deal with waves as encountered in classical physics. Fourier
analysis has always been a tool for working with these. Chapter 6 begins
the exposition of quantum mechanics, where both particle and wave aspects
can be attributed to the same phenomena. Here Fourier analysis is a key for
understanding this duality.
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For a system with boundaries at infinity we must consider an infinite
number of possible wavelengths. We express a given good function F(x), 00 >
x > -00, by an integral over all possible values of the wavevector k:

00

F(x) = 1/...J2ii JA(k)eikxdk.

-00

(1.24)

We use the exponential form exp(ikx) rather than decomposing into sines and
cosines as a matter of convenience. If we allow the coefficients A(k) to also be
complex, then there is no loss of generality, as A(k) then carries a phase. F(x)
may be real or complex. These matters are examined in more detail in the
problems at the end of this chapter. There we find that if, for instance, F(x)
is a real and even function of x, the Fourier representation (1.24) may be
written in terms of only cos(kx) and real Fourier coefficients A(k). We note
that the absolute values I A(k) I are a measure of the relative importance of
the various wave components (27r)-1/2 exp(ikx) in the function F(x) being
analyzed.

Equation (1.24) is useful only if some means exist of finding A(k) for any
given function F(x). When found, the function A(k) is called the Fourier
transform of F(x). There is one function for which we can find the Fourier
transform with the knowledge we already have. Equation (1.18) will allow
us to find the transform for the Dirac delta function. With this Fourier
representation we shall be able to invert (1.24) and find the A(k) for any
good function F (x ).

Replacing a by 1/(4n), n again an integer, and interchanging k and x in
(1.18) we find:

00

9n(X) = In/ne-nx2 = 1/(2n) Jeikxe-k2j4ndk.

-00

We now write
00

9n(X) = 1/...J2ii Jbn(k)eikxdk .

-00

(1.25)

(1.26a)

Equation (1.26a) is in the same form as (1.24) with the desired transform
bn(k) given by

bn(k) == 1/...J2iie-k2
/
4n . (1.26b)

Suppose now that any generalized function f (x) is given by a sequence
f n (x), each member of the sequence having a Fourier representation

00

fn(x) = 1/...J2ii Jan(k)eikxdk.

-00

(1.27a)
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One can then show that the Fourier transforms of all equivalent sequences
fn(x), namely an (k), are also regular and equivalent sequences of good func
tions. Let a(k) be the generalized function equal to the sequences an(k). That
is, using (1.21)

00 00

Ja(k)F(k)dk = lim Jan(k)F(k)dk ,
n--+oo

(1.27b)

-00 -00

a(k) will be taken as the definition of the Fourier transform of the generalized
function f (x ).

Returning to the Fourier transform sequences of gn (x), namely the se
quences bn(k), we have the obvious limit

00 00

lim Je-
k2

/
4nF(k)dk = JF(k)dk .

n--+oo
(1.28a)

-00

We may, therefore, write

-00

00 00

J(l/~)F(k)dk = lim Jbn(k)F(k)dk .
n--+oo

(1.28b)

-00 -00

It follows from (1.26a, 1.27, 1.28b) that

the FT of £5(x) is b(k) = 1/~
£5(x) and 1/V21T are both generalized functions.

How can we understand this discovery that the Fourier transform of the
delta function is a constant? If A(k) in (1.24) is a constant then at x = °
all the waves will be in phase and will pile up, tending to an infinite value.
If x i=- 0, then while some waves (cos kx + i sin kx) will have, say, positive
real and imaginary contributions at some value of x, these will be cancelled
by negative contributions at the same value of x coming from, say, waves
(k ± 1r/ x). The net result, it turns out, is that adding together all waves with
amplitudes tending to be equal leads to a limit of zero, except at x = 0,
where the sum blows up. In the excercises we ask the reader to show that the
imaginary contribution to the integral defining £5 (x) vanishes by symmetry.

We can model the procedure for finding A(k) in general, Le., inverting
(1.24), on the procedure for projecting out of a given vector F anyone
of the desired components. An arbitrary vector F can be represented in
a three dimensional cartesian system in terms of three mutually orthogonal
unit vectors, VI, V2, V3, (replacing i, j, k):

F = AIVI + A2V2 + A3V3 ,

with

(1.29)
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i,j = 1,2,3. (1.30)

(1.31)

The symbol on the right side of (1.30) is called the Kronecker delta 8ij ,

and is unity when i = j and zero when i =I- j. Equation (1.30) thus ex
presses the orthonormality of the basis vectors VI, V2, V3. To find one of the
components Ai in (1.29) we take the vector dot product of both sides of the
equation with Vi. This procedure projects out from F the desired component.
For example, taking the dot product with VI we get

VI . F = AlVI . VI + A2V I . V2 + A3V I . V3 .

Using (1.30) we find

Al = VI· F.

It is not so difficult to prove (Problem 1.19) that any good function F(x)
can be expressed without error by a Fourier representation as in (1.24):

00

F(x) = 1/-/21i- JA(k)eikxdk.

-00

(1.24)

We have suggested in Sect. 1.1 that this representation may be compared to
the expansion of any vector F in the basis VI, V2, V3 (1.29). The functions
exp(ikx)/.J27[,oo > k > -00, form a basis or complete set for good functions.

We now want to establish the orthonormality of this basis set of functions.
To do so we rewrite (1.25), replacing x by (k - k') and k by x. This gives

00

1/21r f ei(k-k/)xe-x2j4ndx = gn(k - k') .

-00

If we let

Uk (x) == eikx /-/21i
then:

(1.32a)

(1.32b)

where recalling (1.23), one sees that gn(k-k') is a sequence equal to 8(k-k').
Equation (1.32b) tends with n ~ 00 to the orthonormality condition for

Uk(X), Ukl(X). As stated in Sect. 1.1 the condition involves taking the "overlap
integral" between either one of the functions and the complex conjugate of
the other. Equation (1.32b) is the analogue for exponential waves of the
orthonormality. of the basis vectors. A Dirac delta function 8(k - k'), equal
to the sequence gn(k - k'), replaces the Kronecker deltas, 8ij , in (1.30). The
similarity of the two conditions is seen by comparing the properties of the
two kinds of deltas:
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00Jc5(k - k')dk' = 1 with c5ij = 1 i = j
-00

and

~(k - k') = 0 if k =1= k' with ~ij = 0 i =1= j .

Again, if (k = k') the two waves in (1.32b) are everywhere in phase, and
the overlap integral tends to 00 with n. If (k =1= k') there is a relative phase
(k - k')x, varying with k', leading to overall cancellation.

The factor exp - (x2 / 4n) or a member of another equivalent sequence gives
a prescription for\carrying out the integration in (1.32b), and is, when n tends
to infinity, a part of the definition of orthonormality for the exponential waves.
Without this factor the integral would not be defined; the reader can easily
check that no limit is approached when the range of integration is made larger
and larger. As noted in Sect. 1.1 the need for mathematical definition has
a physical counterpart. The factor exp -(x2 /4n) with n --+ 00 simulates the
fact that there is after all a beginning and an end to the wave components.
The individual waves fade out as exp -(x2 /8n). (In reality, they may either
be absorbed, or one does not wait for their reflections to arrive.)

Following the projection procedure with vectors, we now multiply both
sides of (1.24) by an element l/v'21fexp(-ik'x), and by exp-(x2/4n) and
integrate over all x:

00

l/...I21r Je-ik'xe-x2/4nF(x)dx

-00

We interchange the order of integration on the right (this procedure can be
justified for good functions):

00

l/...I21r Je-ik'xe-x2/4nF(x)dx

-00

Further, interchanging sides, and simplifying with (1.32) we have:
00 00Jgn(k - k')A(k)dk = l/...I21r JF(x)e-ik'xe-x2/4ndx.

-00 -00
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If we now let n -+ 00 then we may use (1.23) to reduce the left side. Similarly,
the right side may be reduced rather trivially by using (1.28a). The result is

if
(X)

F(x) = 1/.;2; JA(k)eikxdk
-(X)

(1.24)

then
(X)

A(k') = 1/.;2; JF(x)e-ik'xdx.
-(X)

(1.33)

Equation (1.33) is the desired Fourier transform of (1.24). We have put both
equations side by side for comparison. Although the relationships look similar,
indeed, except for a minus sign they are said to have a reciprocal relationship,
it helps to initially interpret them as having quite different meanings. Equa
tion (1.24) is the Fourier representation for the known function F(x), that
is, it gives F(x) as a sum over basis functions l/J27fexp(ikx) with complex
amplitudes A(k). Equation (1.33), the Fourier transform, tells us how these
amplitudes A(k) are to be found once F(x) is given. We note the similarity of
(1.33) to (1.31) which projects out the desired vector component. Equation
(1.33) projects out the desired basis function component.

As they stand, (1.24) and (1.33) have been shown to apply to good func
tions. They, therefore, also apply to the good sequences fn(x), an(k) which
are equal, respectively, to generalized functions f(x), a(k). In summary:

if
(X)

fn(x) = 1/.;2; Jan(k)eikxdk
-(X)

(1.27a)

then
(X)

an(k') = 1/.;2; Jfn(x)e-ik'Xdx
-(X)

(1.34)

and, we recall the definitions of f (x), a(k):

00 (X)Jf(x)F(x)dx ~ 1~~Jfn(x)F(x)dx (1.21)

-00 -(X)

00 00

Ja(k)F(k)dk ~ lim Jan(k)F(k)dk .
n-+oo

(1.27b)

-(X) -00
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As already stated, the sequences an (k) are equivalent if the sequences
fn(x) are, and the generalized function a(k) is, by definition, the FT of the
generalized function f(x). We have seen in connection with (1.22) that there
exists a wide class of functions that can be viewed as generalized functions.
The combination of good functions and all generalized functions includes
all the functions for which a theoretical physicist is likely to need Fourier
representations.

The reader will wonder whether the evaluation of the functions A(k) by
means of (1.33) or (1.34) is always an easy matter. In practice the situation is
not that difficult. Apart from the Dirac delta function there are two functions
which, perhaps, one is called upon to Fourier analyze more frequently than
any other. These are the gaussian and the "square wave". We already have
in (1.18,25) the representation of a gaussian. The FT is again a gaussian 
a well-known result. The "square wave" is analyzed in Examples 1.1 and 1.2.
Some other simple transforms will be found in the Examples and Problems.
Many transforms can be found in published tables. Some of these have been
worked out by using complex variable theoryl. A different approach is to
use numerical methods, usually with the help of a computer. The reader will
find an illustration in Example 1.2, and a computing problem as a suggested
laboratory excercise at the end of Problems.

1.6 Hilbert Space

In Sect. 1.1 we introduced the concept of infinite function space, which while
encompassing infinite dimensions is built up in the same manner as the famil
iar three dimensional vector space. As we stated, the ordinary unit vectors
i, j, k form a complete basis. This means that in ordinary vector space any
vector can be described as a linear combination of these three basis vectors,
with suitable coefficients fixing the size of the corresponding components.
In the same way, a set of basis functions, such as Uk(X) == 1/-J2(i exp(ikx),
00 > k > -00, can be considered complete if the functions of physical interest
can be linearly expressed in terms of this basis. Many other examples of
basis built from orthogonal functions of x as arise in the theory of differ
ential equations find application in physics. The question of completeness
was studied by Hilbert in a mathematically rigorous fashion, exceeding our
needs. The interested reader is referred to the book by Byron and Fuller
listed at the end of the chapter. For the exponential functions Uk (x) of this
chapter we may be satisfied with the proof of their completeness outlined
in Problem 1.19. Infinite function spaces in general that are complete are

1 The FTs of many functions which are ordinary functions that can be viewed as
generalized functions can be obtained directly from (1.33) for good functions.
Sometimes, however, one must find a suitable sequence satisfying (1.22), see
Example 1.2.
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called Hilbert spaces. Hilbert space is the setting for quantum mechanics,
and the term, meaning the space of an infinite complete set of basis functions
is prevalent in theoretical physics.

It will be helpful by way of a summary to point out explicitly the analogues
between N-dimensional vector space and Hilbert space. In Problem 1.20 we
give a simple development, showing how the continuum expressions governing
Hilbert space arise naturally from their analogues in N-dimensional vector
space. The latter, the reader will perceive is an obvious generalization of
three dimensional space.

N-Dimensional Vector Space

The basis of the space are the unit
vectors:
Vi; i == 1,2,3, ... N
with N == 3
VI == i, V2 == j, V3 == k.

The orthonormality condition is:
Vi· Vj == <5ij i,j == 1,2, ... N
On the left is the vector dot product,
on the right the Kronecker delta.

Completeness means that any
vector F in the space can be
written as:

F == '2:i:1 AiVi

where the Ai are the N components.

Projection Formula
Ai == vi· F
with the right side being
a vector dot product.

Hilbert Space

The basis of the space are the
functions:
Uk(X), 00 > k > -00

Discretly numbered functions
Un(X), n == 1,2,3, ...
are also possible, see Chap. 6.

The orthonormality condition is:
J~oo uk(x)Uk l (x)dx == <5(k - k')
On the left is the overlap integral,
on the right the Dirac delta function.

Completeness means that any
function F (x) in the space can be
written as:

F(x) == J~oo A(k)Uk(X)dk
or, if the basis is discrete, as:
F(x) == '2:nAnun(X)
where the A(k), An are the amplitudes
of the basis functions Uk (x), Un (x).

Projection Formula
A(k) == J~oo uk(x)F(x)dx
with the right side being
an overlap integral.

Example 1.1. Find the FT of the square wave function F(x) defined by

F(x) = 0

F(x) = v

x 2: a, x ::; -a

a> x >-a

and discuss the result.

Solution. We expand the exponential in (1.24), the Fourier representation
for good functions. [We postpone discussion of the fact that F(x) is not
a good function, but rather an "ordinary function that may be viewed as
a generalized function" until the end of Example 1.2.] We find:
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CX)

A(k) = 1/..j2:ff J(coskx - isinkx)F(x)dx ·
-CX)

Again, because F(x) is even in x while sinkx is odd the integral J~CX)sin(kx)

x F(x)dx vanishes.
Making direct use of the definition of F(x), we can now write

CX)

A(k) = 1/..j2:ff JF(x)coskxdx
-CX)

a

= V /..j2:ff Jcos kxdx
-a

= vj..j2:ff [sin ka - sin(-ka)] jk

= v2j1r(vjk)sin(ka) .

We are asked to discuss this result: We first notice that A(k) is even in k.
This allows us to collect together the contribution of +k and -k for every k in
the original Fourier representation, (1.24), and to write a new representation
valid for all even functions:

CX)

F(x) = V2/ 7f JA(k) coskxdk ,
o

where we have used exp(ikx) + exp(- ikx) = 2 cos kx.
Turning now to the result for A(k), if we ask ourselves at what values

of k we expect the coefficients A(k) to be most pronounced, we might guess
this to be in the vicinity of k = 1r/2a, because the central loop of cos 1rX/2a
most nearly resembles the given function, and can be expected to have the
greatest overlap integral with it. In general the long waves (ka ~ 1) will
assure correct long range representation of a function, and short waves will
take care of any rapid changes. Recalling that

Hm sinka/k = a ,
. k-+O

we see that in the present case (Fig. 1.3), we get the largest contributions to
the transform over the range

1rja >1 k I> 0 .

For large Ik I, A(k) goes to zero, but rather slowly. The very short waves
are needed to help produce the infinitely sharp edges at x = ±a (as we verify
in the next example).
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v

-a a
x k

Fig. 1.3. The square wave and its FT, see Example 1.1

Lastly, we notice that D"k ~ l/a is the range in k over which we get the
most important Fourier components, and D"x ~ a is the range of the original
function, so that

I ~x~k ~ 1. I
This is a most important result, which can be extended to any function and
its Fourier transform. A large spread in ordinary space leads to a narrow
spread in "k-space" and vice versa. Later we shall establish this result more
precisely in connection with the gaussian function.

Example 1.2. Use the computer to verify that, indeed, a Fourier cosine rep
resentation with ~(sink)/kyields a square wave extending from x = -1
to x = + 1 with unit height. Show explicitly the contribution of the short
waves.

Solution. According to Example 1.1
00

F(x) = vh/7f!A(k) cos kxdk
o

00

= 2/7f! (sin k)/k cos kxdk ~ h + h
o

where we will take 11 to be the main contribution ending at k = 31r/ 4, and
12 the short wave contribution ending at a large number, say 321r. We have

37r/4

h == 2/7f ! (sink)/kcoskxdk
o
327r

h == 2/7f ! (sin k) / k cos kxdk .

37r/4
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Numerically, we take 8k == 0.05, and notice that (31r/4)/0.05 == 47.124. We
then evaluate 11 ,12 at the points x == O.Olm, m == 0,1,2, ... 300, with limits
on n as shown in the summations:

h = (2 X O.05)/1r [1/2 + ~(Sino.05n)/(o.05n)COS(o.05nX)]

[

2010 ]
12 = (2 X O.05)/1r n~8 (sinO.05n)/(O.05n) cos(O.05nx) .

Figure 1.4 shows 11 ,12 , and (11 +12 ) as functions of x for x > O. We notice
that 11 indeed represents the smoothed out square wave. The sharp features
arise from the short wave contribution 12 .

3 X2
-1 -f------+----O+-----f-----+-----+----t--...

o

Fig. 1.4. Fourier synthesis of a square wave function for x > o. The principal
contribution, 11, comes from 31r/4 > k > O. 12 for the short wavelengths, viz.
321r > k > 31r/ 4, and (11 +12) are also shown. The rapid oscillations are associated
with Gibbs' phenomenon, see Example 1.2

The sudden drop at x == 1 in F(x) give rise to the rapid oscillations
in the Fourier representation at this point. The characteristic wavelength
A of these oscillations is A rv 21r/ ko where ko is the largest k (cut-off) in
our numerical calculation. If we could increase ko to infinity the oscillations
would not entirely disappear, but degenerate into small but finite over-shoots
of zero width to the values of the function F == 1 and F == 0 at x == 1 (and
at x == -1). These over-shoots will occur whenever the represented function
has infinite slopes and are referred to as Gibbs' phenomenon.

We note several points about the phenomenon. Because the over-shoots are of finite
height and zero width they will have no effect if the represented function is a factor
in an integral.
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Second, the phenomenon is avoided altogether if F(x) is viewed as a generalized
function, Le., taken to be "equal" to a sequence In (x), where in In (x) the discon
tinuities at x == ±1 are "smudged out" over a width of order 1/n. All that is then
required is that in Fourier representing In, the cut-off wave vector ko » n.

Lastly, the analytic form obtained in Example 1.1 for A(k) will give the same end
result for test integrals defining the generalized transform (1.27b) as the procedure
of finding an (k) and letting n -+ 00. Thus, the FT of "an ordinary function that can
be viewed as a generalized function" rather than being a good function itself can
often be obtained directly from (1.33) (see footnote to the last section), although
here some small difficulty did arise. Direct results, such as the analytic form for
A(k) here, or the results given in Problems 1.11 - 13c, are generally used in phys
ical calculations. However, if, for example, derivatives of discontinuous functions
(polynomials in the transform functions) are involved, we do need the full theory
of generalized functions.

Example 1.3. The delta function has an orthonormal property analogous
to that in (1.32b) of the functions Uk(X), namely,

00J<5(x - a)<5(x - b)dx = <5(a - b) .

-00

Use the theory of generalized functions to give a formal proof of this intuitive
result. (In the context of quantum mechanics (Chap. 6), it is this property
rather than (1.19b) which implies "normalization" of the delta function.)

Solution. Equations (1.21) and (1.32b) indicate that for the left side of the
relation we may consider the limit as l -t 00, of I lmn , where

00

Ilmn = Je-x2j41gm(X - a)gn(x - b)dx.

-00

Fourier representing gm(x - a), gn(x - b) as in (1.26b) and rearranging the
order of integrations, one has

(21r) 2Ilmn =
00 00 00JJJ[e-X2j41eikl(x-a)eik2(X-b)] dxe-k'f!4me-kV4ndkldk2

-00 -00-00

00 00

= JJ 21rgl(k1 + k2)e-iklae-ik2be-k'f!4me-k~j4ndkldk2 .

-00 -00

Proceeding to the limit I -t 00 (lim I -t 00, I lmn == I mn ) one gets from (1.23)
that

00

2 I Jeik2(a-b)e-k~(n+m)/4nmdk1r mn = 2 ,

-00
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or Imn = gnm/n+m(a - b), which is indeed a sequence for 8(a - b), as n, say,
gets large compared to m, and then m also gets large, or as m and n get
large together.

Example 1.4. In Chap. 6, in connection with the second postulate of quan
tum mechanics, it is stated that the solution to the equation

(6.20)

is

(6.21)

that is, the Dirac delta function centered at ~. Formulate this statement in
terms of the theory of generalized functions, and give a proof.

Solution. When u,(x) and xu,(x) are understood to be generalized functions,
(6.20) means that:

CX) CX)

JF(x)xue(x)dx = JF(x)~uf;(x)dx (6.20a)
-CX) -CX)

for any good function F(x). Similarly (6.21) means that
CX) CX)JF(x)uf;(x)dx = J8(x - ~)F(x)dx , (6.21a)

-CX) -CX)

again with generalized functions appearing in the integrands along with F(x).
As proof of (6.20a) we have, replacing F(x) by xF(x) in (6.21a), also

a good function:
CX) CX)JxF(x)uf;(x)dx = JxF(x)8(x - ~)dx

-CX) -CX)

CX)

= lim JxF(x)gn(x - ~)dx
n--+CX)

-CX)

CX)

= lim J~F(x)gn(x - ~)dx
n--+CX)

-CX)

CX)

= JF(x)~uf;(x)dx,
-CX)

where the second and third line both have ~F(~) as limit, and the last equality
follows from (6.21a).
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Example 1.5. Show that the FT of xf(x) is ia'(k) when a(k) is the FT
of f(x) and, hence, that the FT of x is V21ri<5'(k), all being regarded as
generalized functions of x or k, respectively. The primes indicate derivatives
with respect to the indicated variable.

Solution. We remember that the FT an(k) of a regular sequence fn(x) defines
a(k), the FT of f(x). Differentiating both sides of (1.34) with respect to k,
we find

CX)

a~(k) = 1/V21r J-ixfn(x)e-ikxdx.

-CX)

Inverting, we have
CX)

-ixfn(x) = 1/-../2ii Ja~(k)eikxdk,
-CX)

showing that the FT of xfn(x) is ia'(k), in the limit n -+ 00. Further, if we
choose fn(x) to be exp(-x2 /4n), one of the sequences equivalent to unity,
then by (1.18):

CX)

an(k) = 1/-../2ii Je-x2/4ne-ikxdx = V2ne-nk2
1

-CX)

or an(k) is a sequence of V21r<5(k) and a~(k) a sequence giving V21r<5'(k). It
follows that the FT of x is iV21r<5' (k) from the first part of the example. (The
formulation of the theory of generalized functions in terms of good functions
allows the extension of these results to arbitrary powers of x and arbitrarily
high derivatives of the <5 function.)

Problems

1.1 Find a general formula for
CX)

1/(2n)! Jx2ne-ax2dx .

-CX)

1.2 A fairly good function is one that is everywhere differentiable any num
ber of times, and such that it and all its derivatives are 0(1 x IN) as x -+ 00

for some N. Show that the product of a good function and a fairly good
function is a good function.

1.3 Write l/(a + ib) as the sum of a real and imaginary number.
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1.4 a) Multiply ZI = A1eHh by Z2 = A2ei02 (A1 ,A2 ,01,02 real). Represent
the whole operation on the complex plane.

b) Consider the special case Al = A2 , 01 = -02 . What can you say about
the relationship between Zl and Z2?

1.5 a) Prove de Moivre's Theorem:

(cos 0 + i sin o)n = cos nO + i sin nO .

b) Find formulas for cos 30 and sin 30.

1.6 a) Show that if the derivative I' (x) of a generalized function I(x) is
defined by the sequence I~(x), where I(x) is defined by In(x), then

00 00Jj'(x)F(x)dx = - Jj(x)F'(x)dx.
-00 -00

00

b) Find Jxe-x2
/

n 8'(x)dx.
-00

c) Sketch g~(x) for large n. What does it do as part of an integrand?

1.7 In the representation for the b function sequence gn, (1.26a), there
appear complex quantities on the right, whereas the left side is real. Can you
explain this paradox?

1.8 An incoming FM radio signal has an amplitude given by E(t), with t the
time. Write E(t) as the superposition of all possible angular frequencies w.
Make a rough plot of how you suppose the absolute value of the Fourier
coefficients lA (I = W/21T) I looks as a function of the frequency I.

Put numbers on the frequency axis.

Hint: Look at your FM dial, and recall that the side-bands of anyone channel
extend through about ±75 kHz.

1.9 In the text it is stated in connection with the Fourier representation
(1.24), "We use the exponential form exp(ikx) rather than decomposing into
sines and cosines as a matter of convenience. If we allow the amplitudes A(k)
to also be complex functions, then there is no loss of generality, as A(k) then
carries a phase. F(x) may be real or complex."

a) Find a general relationship between A(k) and A(-k) so that F(x) will
be real.

b) Write A(k) = IAkl exp(iOk), where IAkl is the amplitude and Ok is the
phase, and find the
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Fourier representation for F (x) in terms of these quantities, assuming
F (x) real. Now, convert your representation to sines and cosines and show
that, indeed, enough parameters are provided with no loss of generality. (The
functions sin kx, cos kx for 00 > k > 0 form a complete basis, and for each
harmonic function and value of k one parameter is needed. It may be helpful
to discretize the given range of k into small but finite intervals.)

c) Show that when F(x) is complex, again enough parameters are provided
for no loss of generality.

1.10 a) Show that any function can be written as the sum of an even
function, fe(x) and an odd function fo(x).

b) Show that we may write the Fourier representation (1.24) as
00 00

F(x) = 1/..;7fJC(k) coskxdk + 1/..;7fJS(k) sinkxdk .

o 0

Find C(k) and S(k) in terms of A(k).
c) Find Fourier expansions for fe(x) and fo(x) in part (a) in terms of

A(k), A(-k) and then in terms of C(k) and S(k).
d) Find J~oo cos k'x cos kxe- x2

/ 4ndx and, then, a simple formula for C(k)
in terms of fe(x).

e) Find J~oo sin k'x cos kx e_x
2

/ 4ndx .

1.11 a) Find A(k), the FT of the function

F(x)=e-ax x20

=0 x<O.

b) Represent F(x) as a Fourier integral over sines and cosines.

1.12 a) Find a set of tables of the Fourier transform and determine the
transform of (sin nx) / 1rX.

b) Refer to Example 1.1, and find a way of corroborating your findings.
c) Show that

lim (sin nX)/1rx = 8(x) .
n-+oo

Discuss.
d) Suggest two equivalent sequences for 8(x).

1.13 a) Indicate by using the techniques of Problem 1.12, that is, by looking
at the FT sequences, that the sequence

fn(x) == l/(n1r) [x2 + n-2
]-1

is equal to 8(x).
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b) Show that
00

Hm JF(x)/(x + i/n)dx
n~oo

-00

00 00

= Hm JF(x)x/(x2 + n-2 )dx - i1r JF(x)8(x)dx .
n~oo

-00 -00

00 -l/n +00

c) If P J[F(x)/x] dx == J~~ J[F(x)/x] dx + J[F(x)/x] dx
n-oo -00 +1/n

show that
00 00

liro JF(x)x/(x2 + n-2 )dx = p J[F(x)/x] dx .
n~oo

-00 -00

d) Show that the FT of the sequence of good functions

fn(x) = (1/n1r)e- x2
/
n2 [x2 + n-2J-1

is given by

an(k) = 1/4y!2/rr[e-k
/
nErfc(n-2

- nk/2) + ek
/
nErfc(n-2+ nk/2)]en-

4

where Erfc(y) = 2/y1r fy
OO

e-x2 dx for 00 > Y > -00. Why do we say
"indicate" in (1.13a)?

1.14 (Parseval's theorem for good functions.) Show that if F1 (x), F2 (x) are
good functions and Al (k), A2 (k) their FTs, then

00 00JA1 (k)A2 (k)dk = JF1(-x)F2 (x)dx.
-00

1.15 a) Show that

-00

00 00JF(x)H(y - x)dx = JA(k)B(k)eikYdk,
-00 -00

where A(k), B(k) are the FTs of F(x) and H(x), respectively. This result is
known as the "Faltungstheorem".

b) Solve the integral equation
00

G(y) = JF(x)H(y - x)dx
-00

where F(x) is the unknown function, G(x),H(x) are known.
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1.16 The correlation function for a random process is defined for a random
variable x by

00

0(7) == Hm Jx(t)x(t - 7)e- t2
/
4ndt .

n---+oo
-00

By representing x (t) as a Fourier integral

00

x(t) = vz;;: JA(f)e21riftdf

-00

show that with x(t) real
00

G(T) = 2VZ;;: J 1 A(f) 1
2 COS(21CfT)df .

-00

1.17 a)2 Show that the diffusion equation

8g(t, x)j8t == D82 g(t, x)j8x2

has solutions of the form (that stay finite as x --+ ±oo)

gk == e(ikx-k
2

Dt) .

b) In general:

00

(J = IjVZ;;: JA(k)e(ikx-k
2
Dt)dk.

-00

Find A(k) if at t == 0

g(O, x) == 8(x - xo) .

c) Show that for the initial condition given in (b), the result obtained
gives

g(x, t) == 1jV41rDt e-(x-xo)2/4Dt .

1.18 A member fn(x) of the sequence corresponding to a suitable ordinary
function for(x), (1.22), can be constructed as

00

fn(x) = Jfor(t)S{n(t - x)}ne-
t2

/
n2

dt
-00

2 Problem 1.17 is important for Chap. 6 on wave mechanics.
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where, what Lighthill calls the "smudge function", S(y) is given by

S(y) = e-1/(1- y2) [1 e- 1/(1-Z
2)dZ] -1 1 > Y > -1

S(y) ==0 y<-I,y>l.

a) How is S(y) normalized?
b) Over what interval is for(t) averaged ("smudged") out?

c) What is the purpose of the factor e- t2
/
n2 ?

1.19 Completeness. The functions exp(ikx)/J21f,oo > k > -00, form
a complete set if the Fourier representation

~ ~

1/V27f JA(k)eikxdk where A(k) = 1/V27f JF(x)e-ikxdx

-~ -~

tends to F(x) at all x, for any good function F(x).
To verify completeness, substitute the given expression for A(k) into the

given representation, and verify that this yields F (x) at all x.

1.20 Overlap Integrals. Two arbitrary vectors FA, FB can be represented
in N dimensional space, generalizing (1.29), as:

N

FA == LAiVi ,
i=l

N

FB == LBiVi
i=l

i == 1, 2, 3, ... N

where Vi is an orthonormal vector basis as in (1.30). The vector dot product
becomes:

N

FA . FB == L AiBi ,
i=l

the sum over products of corresponding components.
We wish, now, to extend these concepts to "function space", working with

a discrete formulation that can then be easily taken to its continuum limit.
Thus, we choose some finite increment Ll in x, and consider an allowed range
for x:

-NL1 NLl
--<x<--2 - 2

where N is a large even number. We begin by working with N "square wave"
functions, hi (x) :

hi(x) == I/VLl Xi-l < X :::; xi
NLl -NLl

== 0 -- > x > x" x"-l > X > --2 - ~ ,~ 2

where x,; == (i)Ll and i == -N + 1 -N+2 ... +N
fJ 2 '2' 2'
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The hi(x) form a basis; in the given interval any funtion of x, FA(X),
FB(x) ... can be represented in terms of these functions with increasing
precision as N -+ 00, L1 -+ 0:

N/2

FA(x) ~ L Aihi(x) ;
i=-N/2+1

N/2

FB(x) ~ L Bihi(x).
i=-N/2+1

Moreover, the functions hi (x) are independent (can not be written as linear
combinations of each other). Indeed, they exist only at their own individual
locations; they do not overlap in space. This last property can be best de
scribed analytically by defining an overlap integral for two functions, which
is going to vanish if the functions selected are hi(x), hj(x), i -:f:. j. We have:

NL1/2

I ij = J hi(x)hj(x)dx = bij

-NL1/2

where the integral over x defines the overlap integral I ij of any two functions
hi (x), hj (x) whatever, while the Kronecker delta, bij, on the right expresses
the orthonormality of the "square wave functions" just defined.

i) We can now anticipate that the overlap integral of the two arbitrary
functions, FA(X), FB(X) will have the same form as the dot product of the
vectors FA and FB above. Show by expanding FA(X), FB(x) in square wave
functions hi (x) that

NL1/2

J
-NL1/2

N/2

FA(x)FB(x)dx = L AiBi
i=-N/2+1

Le. the sum of products of corresponding components (expansion coefficients).
ii) Show that

NL1/2

Ai ~ J FA(X)hi(x)dx,

-NL1/2

the overlap integral of FA (x) with the basis member hi(x), in analogy with
the projection of an arbitrary vector on a unit vector. Does Ai ~ vLfFA(Xi)?

iii) Suppose that we can find a new orthonormal basis, that is, with the
new overlap integral I ij = bij again. The new basis. Ui(X), could, for example,
be comprised of the N functions

f2 f2 21rj . NVJVJ sinkjx, VJVJ coskjx, with kj = N L1 ,J = 1,2,3' ... "2 .
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Show, this time be expanding in Ui (x), that

N/2

FA(x)FB(x)dx == L AiBi
i=-N/2+1

with Ai, B i the new expansion coefficients.
Since, for the functions there is only one overlap integral ("dot product")

JFA(x)FB(x)dx, the sum E AiBi is independent of the choice of basis. May
we characterize the linear transformation expressing functions Ui (x) in terms
of the hi(x) as a rotation in function space? Find an approximate formula
for the coeffecients in such a transformation. Find a formula for the new
expansion coefficients Ai.

Suggestion for Laboratory Excercise. Use a computer to evaluate
~ ~

Ij(2n) Jexp(-k2 j4n)exp(ikx)dk = IjnJcos kx exp(-k2 j4n)dk ,

-~ 0

and compare with In/1re-nx2
, thereby validating that the FT of a gaussian

is again a gaussian. Different values for both 8k and kmax should be tried.
Example 1.2 may be useful.

Further Reading

M.J. Lighthill: Introduction to Fourier Analysis and Generalized Functions
(Cambridge University Press, 1958).
The mathematical results that we have only stated are found proved in this
concise monograph written on an undergraduate level.

R.D. Stuart: An Introduction to Fourier Analysis. (Science Paperback, Hal
sted, New York 1966).
A more conventional approach to Fourier analysis on an elementary level is
found in this concise presentation.

K.F. Riley, M.P. Hobson, S.J. Bance: Mathematical Methods for Physics and
Engineering. (Cambridge University Press, Cambridge, UK and New York,
NY 1998).
Has everything.

F.W. Byron, Jr., R.W. Fuller: Mathematics of Classical and Quantum Physics.
(Dover Publications, New York, NY 1992).
Hilbert Space is discussed fully here.

H. Margenau, G.M. Murphy: The Mathematics of Physics and Chemistry.
(Van Nostrand, New York 1943).
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A very good alternate exposition of many topics studied here, at about the
same level.

A. Erdelyi (ed.): Tables of Integral Transforms (McGraw-Hill, New York
1954).
These are, perhaps, the most famous integral transform tables.



2. Oscillations of Mechanical
and Electrical Systems

Abstract. The equation of motion for a mechanical system comprised of
a mass at the end of a string and vibrating in a viscous medium is compared
to the analogous equation for an electrical system consisting of an R-L-C
circuit. The distinction between natural and driven dynamics is carefully
drawn. For natural motion the initial value problem is solved for the case
of negligible viscous damping, negligible electrical resistance. The resonance
phenomenon is brought out fully in connection with the analysis of forced
motion, and the characteristics of resonance are related to those of natural
motion, attention being drawn to the quality factor Q. The Green's function
method of finding the solution for forced motion is described. A subsequent
section is then devoted to an explanation of the operation of oscillators in
general, and extended to a description of an actual pendulum clock. In the
problems we treat natural motion for nonnegligible damping.

2.1 The Systems and Their Equations

Figure 2.1a shows a mass m, at the end of a spring of spring constant k,
suspended in a viscous medium which exerts a back force on the mass of
bdx/ dt, with dx / dt being the velocity of the mass which has been displaced
a distance x from its equilibrium or resting position. If, further, an external
time-dependent force F(t) is applied to the mass, then the total force on the
mass will be

dx
F(t) - b dt - kx .

From Newton's second law, F == ma, we have

d2 x dx
F (t) == m dt2 + b dt + kx . (2.1)

Figure 2.1b shows an electrical system with an inductor L, a resistor R, and
a capacitor C all connected in series. If an external time-dependent emf c(t)
is applied to the system, then recognizing that a charge going once around
the loop does not change its energy, Le., setting the voltages around the loop
equal to zero, we have
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(a) (b) L

A

; '--- £(t)r~. ...... R
___ F(t) _ ~_

C

Fig. 2.1. (a) Linear lumped mechanical system under action of driving force F(t).
A mass is immersed in a viscous medium. Natural damped oscillations occur when
F(t) == O. (b) Electrical circuit which is the analogue of (a). With the switch at B,
the circuit undergoes natural damped oscillations, assuming the capacitor C was
initially charged. With the switch at A the circuit undergoes forced oscillations
under the driving influence of the voltage e(t)

(2.2)

and since I, the current, is given by dq/dt, with q being the electric charge
on the capacitor,

d2q dq q
c(t) == L dt2 + R dt + C . (2.3)

Expressions (2.1) and (2.3) are seen to be the same equation if we identify

F(t) with c(t) (2.4a)

x with q (2.4b)

m with L (2.4c)

b with R (2.4d)
1

k with C. (2.4e)

This means that if we have an appropriate solution to (2.1), then it is also
a solution of (2.3), and vice-versa. For this reason we speak of the circuit in
Fig. 2.1b as being the electrical analogue of the system shown in Fig. 2.1a,
and, similarly, the system in Fig. 2.1a as the mechanical analogue of the
circuit of Fig. 2.1b.

The mechanical and electrical quanities listed in (2.4) are, in general,
physically quite different. Let us review what we remember about them. All
matter has mass, and in classical physics all material objects satisfy Newton's
laws. The property of electric inductance, L, comes about as a result of
Ampere's law, according to which electric currents lead to magnetic fields, and
Faraday's law, according to which changing magnetic fields induce voltages.
The sense of these voltages, according to Lenz's law, is such as to oppose
whatever changes in magnetic flux are taking place. The net result is a back
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voltage LdI/dt, where the inductance L is a measure of the coupling between
magnetic flux and circuit current.

Turning to the coefficient b, perhaps the most familiar cause of viscous
drag we have is air resistance (a high speed automobile wastes a great deal of
energy in warming up the surrounding atmosphere). The origin of the elec
trical resistance R is also frictional. In this case the main impediment to the
flow of electric charges, actually electrons, is caused by the irregular thermal
vibrations of the atoms comprising the conductor. A back force proportional
to the average forward velocity of the electrons results.

The force -kx, where x is the displacement from equilibrium, is the
familiar Hooke's law for a spring. A spring is not only something found in
mattresses or in the laboratory. Every mechanical system acts as a spring as
long as its deformation is within its elastic limit. Even the vertical motion
of the center of a complex structure such as a suspension bridge stressed by
a truck passing over it can be represented by a spring system. The electrical
capacitance C is defined as the ratio of the charge on the capacitor, q,
divided by the voltage required to maintain that charge on the capacitor.
We remember that accumulation of electric charge leads to electric fields,
and that the effect of these fields is to make it difficult to bring additional
charge to the accumulation. A larg~ capacitor is one where much charge leads
to small fields, so that even the l~t charge can be put on the capacitor with
a small expenditure of energy. Just as every mechanical system has some
resilience, so has every electrical system some capacitance. Not only is there
some capacitance between the metal plates of the little air capacitor used to
tune radio sets, there is likewise capacitance, for instance, between a high
voltage transmission line and the ground beneath it.

Indeed, (2.1) describes every linear mechanical system, as long as we are
content to regard it as a lumped system. Similarly, (2.3) describes every linear
lumped electric system. The word "lumped" means that the time dependence
of a single parameter contains all the information that we want. For example,
the full motion of a suspension bridge includes the relative motion of the
different parts of the bridge rather than just the motion at its center. The
bridge is in its detailed motion a distributed system. In the case of an electric
transmission line, if it is long we could never be satisfied with a lumped
treatment, because owing to the distributed capacitance between incoming
and outgoing conductors, the electrical charge q would at any instant of
time vary as we go down the line. We shall learn in later chapters how the
treatment of distributed systems rests on the treatment of lumped systems,
to be undertaken here.

Equation (2.1) is a linear differential equation. We note that the displace
ment and its various derivatives are all raised to the power of unity. If we were
to distend the spring beyond its elastic limit the simple linear Hooke's law
would break down, and the governing differential equation would no longer
be linear. If in the electrical system the current were so large as to cause
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the electric resistance to change because of heating of the conductor, i.e.,
if R depended on dq/dt, (2.3) would no longer be linear. Linear differential
equations have one extremely valuable property, namely, if we have found
a particular solution to the equation for a given driving force, and then go on
to find a second solution for a new driving force, and a third solution, then
the sum of any two of these or the sum of all of them are likewise solutions
of the equation for a driving force which itself is the sum of the component
forces. This means that when faced with the problem of solving (2.1) for
a rather complicated driving force F(t) (driving forces can be complicated in
practice), we can resort to the Fourier representation discussed in Chap. 1.
We can write F(t) as the sum of components, each component having only
one simple harmonic motion in time, solve the problem for each of these
component driving forces, and then add together all the resulting solutions.
See the Problems for illustration.

The next characterization of (2.1,3) which we need to understand is
striking, and of paramount importance. It is the distinction whether we do,
or do not, have a nonvanishing left side; that is, whether we do or do· not
apply a driving force F(t) to the mechanical system, or a driving emf, c(t),
to the electrical system. If we do not, the differential equations are said to
be homogeneous. If F(t) is zero, then the mass, after being released with
some initial displacement or velocity, or both, will move at the will of the
system. We call this free motion of the system its natural motion. Similarly
we can remove the driving voltage c(t) of our electrical system by switching
to position B, Fig. 2.1b, thereby obtaining its natural response. This problem
is different from the situation when a driving force F(t), or a driving voltage
c(t) exist. For example, someone could be hitting the mass in Fig. 2.1a with
a hammer on a regular basis, and clearly then x(t) would be different from
the natural motion. The solution of (2.1) with the given F(t) describes the
forced motion of the mass. Similarly, if we switch back to A in Fig. 2.1b then
the time dependence of the charges and currents will after a short time be
exclusively influenced by the electrical voltage c(t) of the generator, a forced
response of the electric circuit. The linear nature of the governing differential
equations gives the general solution as the sum of the forced solution and the
natural solution, the latter determined by the initial conditions. We shall see
that in practice the natural solution becomes damped out and is referred to
as the transient. Accordingly, we shall divide our subsequent work into two
sections. In the first we shall analyze the natural motion of the systems, in the
second their forced responses. Moreover, as we shall see, there are important
relationships between the two responses.

2.2 Natural Motion of Systems

We know from experience what happens when the mass in Fig. 2.1a is dis
placed from its equilibrium position at x == 0, moved to some point x == Xo,
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Fig. 2.2. On the basis of observation we ex
pect the mass of Fig. 2.1 to oscillate with ever
smaller amplitude when no external force is
applied other than air resistance. For a Q of
2000, we would have to show about 600 oscil
lations in our figure, which we have extended
over a time l/a

TIME

(2.7a)
(2.7b)

and released, let us say, with no starting velocity. The mass accelerates as it is
pulled back to the equilibrium position by the spring. When it reaches x == 0
the force exerted on it by the spring vanishes. However, the mass, which at
that point has considerable kinetic energy, a maximum as it turns out, and
would require an infinite force to stop it quite suddenly, continues its motion
until it reaches close to x == -Xo. At this point its kinetic energy has been
reabsorbed by the spring, the mass comes to a stop, and begins its motion
in the reverse direction. We say "close" to x == -Xo because we know that
a small amount of energy has been lost to the viscous damping. The mass,
accordingly, undergoes a motion as in Fig. 2.2. We refer to this motion as
damped oscillations.

Analytically, damped oscillations have the form

x(t) == (A' sinwt + E' coswt)e-at , (2.5)

Le., the usual form for oscillations of angular frequency w here multiplied
by the factor exp(-at), with a a positive coefficient. The factor exp(-at)
gets smaller in a smooth way with time, and will produce a damping of the
oscillations. The coefficients A', E' are amplitudes; their size has to do with
the beginning displacement and velocity of the mass, questions we put off for
the moment.

To check (2.5) and see what are the quantities wand a, we substitute x(t)
into the equation of motion (2.1), with the driving force set equal to zero:

d2 x dx
m dt2 + b dt + kx == 0 . (2.6)

To make things less tedious let us write

x(t) == A eiwte-at == A eiOt

n == w + ia .
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Here A is a complex number, and we have written the exponent in terms of
a "complex frequency" n. We remember from Chap. 1 that by a judicious
choice of phase for the complex number A, the real part of Aexp(iwt) can be
made into any desired combination of sines and cosines (Problem 1.9). At the
same time x(t), if defined as in (2.7a), gains an imaginary part. The linear
equation of motion with real coefficients will determine independently both
the real and imaginary parts of x(t). But x(t) describes the motion of a mass,
how can it be a complex number? The answer is that although we work with
x (t) complex, the real part of x is the physical solution of whatever' differential
equation we are working with. The imaginary part is excess baggage, which
we discard in the end. While this sounds a bit complicated, it actually is very
practical, as we shall now see, mostly because exponential functions are so
easy to differentiate.

We substitute (2.7a) into (2.6), and perform the indicated differentiations:

m(iO)2Aeint + b(iO)Aeint + kA eint == 0 .

We see a common factor, A exp(iOt) , meaning that a solution of the form
(2.7a) will, indeed, satisfy (2.6). Cancelling this factor we find 0 from

-m02 + iOb + k == 0

which upon substituting from (2.7b) becomes

-m(w2
- o? + 2wia) + ib(w + ia) + k == 0 .

Separating real and imaginary parts we get

-mw2 + ma2 - ab + k == 0

-2wam + bw == 0 .

We find

b
a==-

2m

from the second equation, and from the first,

b2 b2

-mw2 + - - - + k == 0,
4m 2m

(2.8a)

(2.8b)

Jk b
2

W== ----.
m 4m2

If we set the viscous damping coefficient b in (2.8b) equal to zero, we ob
tain, as we should, the angular frequency for a simple undamped mechanical
oscillator of mass m and spring constant k,

Wo == Jk/m. (2.9)

In many applications the frictional term b/2m in (2.8b) leads to only a small
correction to the angular frequency Wo. The angular frequency Wo is called



(2.8a)

(2.11b)

2.2 Natural Motion of Systems 39

the natural frequency of the system, even though when the system undergoes
its natural (unforced), motion the actual frequency is the slightly shifted
quantity w. In conclusion, we write (2.8a,b) as

Wf == (w5 - o?)1/2 (2.10)

b
a==-.

2m
The subscript f emphasizes that we have free oscillations.

Let us go back and find the undetermined quantities A', E' in the original
equation (2.5). We shall do this for the particular problem already posed,
namely, at time t == 0 the mass is displaced to the point x == xo and
released with zero initial velocity, and we shall assume for the present that
the frictional term is small. At time t == 0 we have from (2.5)

xlt=o == E'. (2.11a)

Let us also differentiate (2.5) to find an expression for the velocity of the
mass, dx / dt:

~~ = wf(A' COswft - B ' sinwft)e-at + small term. (2.12)

The small term arises from differentiating the factor exp(-at), and is small,
by virtue of its proportionality to a, as compared to W in the term which is
not small. Leaving out the small term, we find that at t == 0 this equation
reduces to

dxl I-d ==wfA .
t t=o

Thus, for our case of small damping:

A' == 0 (2.13a)

E' == xo (2.13b)

x(t) == xoe-at coswft . (2.13c)

Evidently, we can fit the amplitudes A', E' to whatever initial combina
tion of displacements and velocities the mass acquired at time t == O. In
Problem 2.5 we solve the initial value problem exactly with a finite a. How
ever, the case of negligible damping shall appear frequently in later chapters.
We have already drawn attention to Fig. 2.2 showing x(t). The two curves
±xoexp(-at) act as envelopes. Every time the cosine takes on the value
+1, Le., at time intervals of 21r /Wf, x(t) touches the top curve; similarly, at
the half periods, when coswft is -1, x(t) touches the lower curve. This is
true even if cos wt contains a phase shift, as it does for finite a. Note that
the points of contact are not actually the maxima or minima of the cycles
(Problem 2.4).

Having solved the problem of the natural motion of the mechanical sys
tem, we have the solution of the analogous problem for the electrical system
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likewise in hand. All we need to do is to use the identifications listed in the
relationships in (2.4). We see that in the electrical problem at t == 0 the
capacitor has some given initial charge, say qo, while the initial current in
the circuit vanishes, dq/dt == O. By analogy with (2.13c) the subsequent time
development of the charge on the capacitor is given by

q(t) == qoe-atcoswft. (2.14)

Here, in analogy with (2.8-10),

Wf == (w5 - o?)1/2 . (2.15a)

The natural frequency of the system, again Wo, is given by

Wo == vIILe, and

a == R/2L.

(2.15b)

(2.15c)

It also follows that Fig. 2.2 is a representation of q(t) as well as of x(t). Finally,
we note that whereas in the mechanical system the energy shifts back and
forth between the spring (when the displacement is at a positive or negative
peak) and the kinetic energy (when the velocity is at a peak), in the electrical
system the energy is shifting from the capacitor when the charge is at a peak
to the inductor when the current is at its peak.

While the mechanical and electrical systems are qualitatively similar in
so many aspects, a striking quantitative difference exists in the number of
cycles the system will undergo before the motion becomes damped out. The
damping, exp(-at), suggests that l/a is a measure of the time for which the
system can oscillate, and is commonly referred to as the time constant. Since
the period for a cycle is very nearly given by 27r/wo, the ratio (1/a)/(27r /wo)
is some measure of the number of cycles allowed. For an electrical system we
have

ratio
2LIR
27rlwo

(2.16a)

and for a mechanical system

. 2rn/b worn
ratIo == 27rIWo == ---;b .

It is conventional to define a quality factor Q given by

Q == woLIR electrical;

Q == worn/b mechanical.

(2.16b)

(2.17a)

(2.17b)

Q tends to be higher for electrical than for mechanical systems, indicating the
greater number of oscillations sustained electrically. While for a mechanical
system a Q of 50 is not unreasonable, electrical systems working at radio
frequencies may have Qs of the order of several thousand.
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2.3 Forced Motion

As mentioned, the driving force F(t) appearing on the left of (2.1) is generally
not a simple function. Our scheme here will be to find the motion x(t) corre
sponding to a single arbitrary Fourier component of that force, Le., a simple
harmonic time dependence. If one wishes, one can then add the solutions for
all the different Fourier components present in the driving force to get the
overall response. We thus write

F(t) == Focoswt. (2.18a)

(2.20)

(2.21)

(2.22)

In the case of the analogous electrical problem the solution with a harmonic
drive is often in itself of practical use; many electric generators are designed
to produce pure harmonic voltages of adjustable or fixed frequency w:

c(t) == co cos wt . (2.18b)

Combining (2.18a) with (2.1), we see that the problem we wish to solve
is contained in the differential equation

d2 x dx
m dt2 + bdt + kx == Focoswt . (2.19)

Let us attempt to solve this equation, again as in the previous section,
by letting x(t) become a complex quantity, and discarding its imaginary part
after finding the solution. Since imaginary parts are to be discarded, it is
convenient to begin by rewriting (2.19) in the form

d
2
x bdx k D iwt

m dt2 + dt + x == L'oe .

The real part of this equation is just (2.19). Similarly, we write

x(t) == Aeiwt

where A is an unknown constant, a complex quantity to allow for phase lag
which we wish to find. We notice that x(t) is assumed to have precisely the
same angular frequency as the driving force, w. It is an experimental fact,
which also follows from the orthogonality of Fourier waves, that if a system
is steadily driven at one frequency, it will respond at the same frequency.

Let us substitute (2.21) into (2.20) and do the indicated differentiation.
We find

(iw)2 m A eiwt + iwbA eiwt + kA eiwt == Foeiwt
.

Again we have a common factor eiwt , which we cancel, and solve for A:

A == Fo/( -mw2 + iwb + k)

== Fo(-mw2 + k - iwb)/ [(-mw2 + k)2 + w2b2
] •

In the last equation we have written A as the sum of a real and an imaginary
component.
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IMAGINARY

R

x=(coL - 1/coC)

REAL

Fig. 2.3. The positive phase
angle <p

We can simplify this result by introducing the mechanical reactance X,
where

wX == m(w2
- k/m) == m(w2

- w5) .

We find from (2.22):

A == _ Fo ( X + ib ) == Z*Fo
W X2 + b2 iw I Z 1

2

where Z, the complex mechanical impedance, is defined by

Z==b+iX.

(2.23a)

(2.23b)

The triangle in the complex plane in Fig. 2.3 identifies a positive phase
angle ~. We can therefore write

Z == IZlei
4>

and
-iFae- i 4>

A= wlZI .
It follows that

x(t) == Re {Aeiwt
}

== R {Foexpi(-~+ wt - rr/2)}
e wlZ\

since -i is also exp(-irr/2). Or we have

x(t) == Fa sin(wt - ~)/wIZI

where

sin~ == X/IZI
and

IZI == [b2 + X 2
] 1/2 .

(2.24a)

(2.24b)

(2.24c)
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Before discussing this result, let us go on to the electrical analogue prob
lem, and write down the corresponding result when the electrical system is
driven by the simple harmonic voltage c{t) given in (2.18b). Rather than
giving the results in terms of the charge on the capacitor q, it is customary
to give them in terms of the electric current I == dq/dt, that is, the quan
tity which is the analogue of the velocity dx/dt in the mechanical problem.
We therefore differentiate (2.24a) with respect to the time, and also do the
replacements of (2.4). We thus find for the electric current

I(t) == co cos(wt - 4»/IZI
with

(2.25a)

(2.25b)

(2.25c)

Z==R+iX,

1 L 2 2
X ==wL- - == -(w -wo),

wC w

and 4> is again sin-1(X/IZI).
What chiefly interests us about this result is the way the current changes

when we fix the amplitude of the driving voltage co and vary the driving
angular frequency, w. This is commonly referred to as the response of the
system. To see this response most clearly we plot in Fig. 2.4 a graph of current
amplituq.e versus driving frequency w, for fixed input voltage co. Since R is
generally a rather small quantity the graph will go to a sharp maximum at

w ==Wo. (2.26)

Here the frequency dependent term in the denominator of (2.25a), Le. in Z,
which is never negative, vanishes. Further, we see from (2.24c) that in the
immediate neighborhood of Wo the response curve will decrease in a smooth
and almost symmetric manner.

dx
I'dt

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

ro
000

Fig. 2.4. Resonance response, the same function for both electrical and mechanical
systems. Electric current, or particle velocity, plotted as a function of the angular
frequency of the applied drive, with the amplitude of the drive maintained constant.
Resonance (optimum response), takes place at the natural frequency of the systems,
Wo. The plot is for Q == 20
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The condition (2.26) is called resonance, a word which implies what actu
ally happens at this frequency, maximum response for a fixed input. Indeed,
as R goes to zero the amplitude tends to infinity. From (2.24) at resonance
the phase shift c/J == 0 for all R; EO(t) and I(t) are in phase; the circuit acts as
a pure resistor, and positive power flows into it at all times. For fixed driving
voltage EO the absorbed power is a maximum (Problem 2.8). Off resonance
c/J =j:. 0, and when R == 0 power going into the circuit during part of a cycle
is given back during the remainder of the cycle. However, at resonance if R
vanishes the amplitude builds since power is then continually absorbed by
the oscillator without dissipation.

Mechanical systems have responses that show resonance just as electrical
systems do. Anyone who has ever watched a heavy vehicle being "rocked"
from a stranded position in a slippery depression, or who has seen young
ladies and gentlemen riding a ski chair-lift and finding it fit to rock with
just the right timing until all the chairs undergo vertical motions of perilous
amplitude has witnessed precisely mechanical resonance. Many of our daily
experiences of resonance are in connection with distributed systems, of which
the details are left to ensuing chapters.

The electric system is one of the supporting pillars of electronic technol
ogy. Communication receivers have such a circuit as their first stage, which
is adjusted to resonate at (is tuned to) the frequency of the desired incoming
signal. Second, the circuit is a basic component of a frequently employed type
of oscillator (L-C oscillator). The operation of most communication systems
is dependent on stable oscillators in both transmitters and receivers.

2.4 Forced Motion and the Green's Function

There is another way of solving (2.1) for the forced motion aside from the
Fourier representation method described in the previous section - the Green's
function method, after the English physicist George Green (1793-1841). The
latter method with its clear physical motivation is, when the relevant Green's
function is available, more direct, and the results are often easier to under
stand. Moreover, as we shall see in Chap. 6, the method can also be carried
over into quantum mechanics, where the Green's function plays a significant
role.

The basic idea is as follows: We wish to solve the forced motion equation:

d2 x dx
m dt2 + bdt + kx == F(t) . (2.1)

Instead, we first solve the equation:

d
2
G(t - to) bdG(t - to) kG( _ ) - b( - ) (2.27)

m dt2 + dt + t to - t to·

That is, the driving force F(t) is replaced by a single impact at time to with
an impulse of unity. We, then, represent F(t) by a sum of such impacts. The
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response to the impact at to is G(t - to). We can expect on physical grounds
that the total response x(t) will be given by the sum of all the responses.
that is, x(t) will be given by:

t

x(t) = JF(to)G(t - to)dto .
-<X)

(2.28)

Here G(t-to) is the Green's function, with to the time of impact. It has been
assumed that for negative time, Le. t < to, G(t - to) vanishes, and that F(to)
is defined over all time to; 00 > to > -00.

We can give an analytic derivation of (2.28). We are interested in all
possible times of impact to. Hence, we are interested in J~<X) F(to)8(t - to)dto
on the right or driving side of (2.27), and in any arbitrary time t on the left of
the same equation. If we multiply both sides of (2.27) by F(to), and integrate
over to we find, interchanging differentiation and integration:

d2 J<X) d J<X)
m dt2 F(to)G(t - to)dto + bdt F(to)G(t - to)dto

-<X) -<X)<X) <X)

+k JF(to)G(t - to)dto = JF(to)o(t - to)dto (2.29a)

-<X)

Again, recalling

G(t - to) == 0 for t:::; to

-<X)
== F(t) . (2.29b)

(2.30a)

we see that x(t) as given in (2.28) is, indeed, the desired solution. Evidently,
future values of F(to), (to> t), do not affect x(t).

The point about this method is that, in general, the Green's functions
are rather easy to find. We must bear in mind that while these functions
describe the response of the system to some sudden blow, they are, after
all, describing unperturbed motion, Le., natural motion. Accordingly, except
at the starting time t == to, G(t - to) satisfies the homogeneous equation
of motion (2.6), which, as in 2.2 restricts the solution to damped sines or
cosines. Now, G(t - to) is considered zero prior to the impact, the oscillator is
standing still, and it can not with a finite force acquire a finite displacement
in vanishing time. We must start with vanishing G(O) as in (2.30a). This rules
out any cosine contribution. Thus, we find that:

G(t - to) == 0 for t:::; to

== e-a(t-to) sinwf(t - to)
Wfm

wl == w5 - o?

(2.30a)

(2.30b)

(2.10)
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The amplitude in (2.30b) comes from the second initial condition, which re
quires that the initial momentum of the oscillator equal the impulse imparted
at t == to:

00 00JFdt = J8(t - to)dt = 1 ·
-00 -00

(2.31a)

Checking, we have from (2.30b):

p(t)lt=to = m aG(~- to) It=to

== e-a(t-to) [COSWf(t - to) - : sinwf(t - to)] I . (2.31b)
f t=to

The final result for x(t) is (2.28) with G(t - to) given by (2.30a,b). This
result must be consistent with our previous derivation using a harmonic
driving force Focos(wt) as given in (2.18a). The interested reader is referred
to Problem 2.9. There it is shown that the Fourier transform G(w) of G(t) is
given by:

-1
G(w) == . (2.32)

V27r m(w2 - 2iaw - w6)

Evidently, G(w) shows the same resonance response as obtained previously.
We shall have occasion to apply the Green's function method to forced

motion problems in classical physics in each of the subsequent three chapters.
It turns out that the Green's function is likewise important in quantum
mechanics. Indeed, as we shall see in Chap. 6, it is one of the bridges taking
us from classical mechanics to ordinary wave mechanics to quantum field
theory.

2.5 Oscillators

Let us look briefly at how an L-C oscillator works. Its central component is
an amplifier, a device that enlarges incoming signals by a factor A, taking the
necessary energy from elsewhere. A portion f3 of the output of this amplifier is
fed back to become its input, Fig. 2.5. The portion (1- (3) of the output of the
amplifier is available for useful outside application. To begin with, the reader
must imagine a variety of meaningless electrical signals going around the
loop (noise); their origin could be thermal or, perhaps, there are stray signals
picked up from other electrical devices. We can always take the Fourier time
transform of all this disturbance. All possible frequencies will be represented.
The quantities A and f3 are frequency-dependent, and complex to allow for
phase shifts. Now, because of the vastly enhanced response of the L-C circuit
incorporated (into the load) in the amplifier near wo, the amplification factor
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Fig. 2.5. Operation of an oscillator. We see that A.8 == 1 for stable oscillation

A will be large and particularly sensitive to frequency in the neighborhood
of wo. Thus, it will be that for some particular w somewhere near resonance,
the conditions for growth, {3A real and

(3(w)A(w) > 1 (2.33)

will be satisfied. The condition (2.33) tends to produce growth because each
time the signal goes around its loop it increases. What actually happens is
that as soon as the system is turned on, nonlinear effects limit A to where

(3(w)A(w) == 1 . (2.34)

The point to emphasize is that (2.33, 2.34) involve phase as well as mag
nitude. A complex {3A implies destructive interference rather than growth.
The phase shifts carried by A and (3 must be equal and opposite. We can see
from (2.24b) that in the vicinity of resonance not only does the magnitude of
the response have its most striking change, but the phase does as well. This
in turn means that (2.34) will only hold for a rather well-defined frequency,
or that the output of the oscillator will be steady in frequency, Le. stable, the
basic requirement for communication systems.

In Example 2.1 we will show an additional property of the resonating
systems, namely that the higher the value of the quality factor Q (2.17a,b),
the narrower, more discriminating the resonance curve gets, and the faster
will the phase change be as we go through resonance. This fact allows us to
link frequency stability with Q, and accounts for engineers' constantly seeking
ways of obtaining higher Qs. Lastly, we illustrate how the described scheme
of oscillator operation applies to a mechanical clock driven by a pendulum
which, unlike the electrical case, we can do in detail. .

Figure 2.6 shows the escapement. Attached to the pendulum is a release
lever with two pawls. In view of its shape the lever is referred to as the anchor
piece. It controls the motion of the ratchet below it, which itself is under
tension from the main spring of the clock. If unimpeded by the anchor the
ratchet would spin clockwise. As shown, the pendulum bob is moving to the
right. On its swing back, just to the left of the position shown, the left anchor
pawl will release the ratchet, which will then advance about a tooth width,
being finally held back by the right anchor pawl from advancing further.
"Tick" goes the clock. The reverse happens as the bob approaches center
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Fig. 2.6. Escapement of a pendulum clock

from the left, when the right tooth releases the ratchet - "tock". The rachet
has advanced one tooth and slot, the pendulum has gone through one cycle.

Essential is that energy be supplied to the pendulum without greatly
affecting its period. Indeed, the slopes of the pawl tips are such as to assure
the flow of energy from ratchet to anchor, Le. to pendulum. To understand
the representation of the clock as an amplifier with feedback, one can imagine
replacing the ratchet by a periodic drive of the pendulum and anchor. We
know from our analysis of driven motion that for a fixed driving force we
will secure a large amplitude only near the natural frequency. That is, only
here would the motion of the anchor be large enough to control a ratchet. In
reality the ratchet is feeding energy back to the (air) damped pendulum near
resonance and at the proper phase. Concurrently, it is providing output, driv
ing the gearing which connects it to the clock hands. Thus, if the pendulum
is initially driven, or simply released, it will have to settle down to oscillate at
an w very near its natural frequency, where ,8(w)A(w) can equal unity. (The
amplifier consists of the pendulum, the escapement, and the power source, its
output being in the motion of the ratchet. The signal fed back from ratchet
to anchor gets amplified.)

2.6 Summary

We have found that both the mechanical system and its electric analogue,
if excited and then left to themselves, will undergo oscillations that become
damped at a rate dependent on the magnitude of the frictional agent involved,
be that viscous drag or electric resistance. The angular frequencies of these
oscillations are only slightly shifted from the values they would assume in
the absence of any damping, the so-called natural frequencies of the systems.
When these same systems are driven by inputs having a simple harmonic
time dependence, they exhibit a sharply increased response when the driving
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frequencies become equal to the natural frequencies that characterize the free
motion. By "response" we mean the change in amplitude of the velocity of the
mass or of the electric current with driving frequency, and the phenomenon
is called resonance.

We also note that systems with high quality factors Q, on the one hand
undergo many oscillations before they are damped when the systems undergo
their natural motion, and on the other are those systems with particularly
sharp resonance responses. The connection between these facts and the use
of the systems in oscillators and clocks is not entirely direct, originating
with the rapid changes in phase near resonance with frequency. It is the
distinctiveness of the resonance phenomena that leads to steady oscillation.
This is ultimately what one expects on an intuitive basis.

Example 2.1. Show that the width of resonance curves can be directly
related to quality factors Q.

Solution. By setting the two terms in the denominator of (2.25a) equal to
each other we will find a condition on the driving frequency which reduces
the current to 1/v'2 of its value at resonance, a so-called half-power point.
Taking the square root of both terms, we find

L(wo - w) (wo + w) = R .
W

Since we are still in the immediate vicinity of resonance we replace W by Wo

in the third factor on the left (but not the second!) and write

L(wo-w)2~R.

For the width of the curve at the half-power point, L1w,

L1w == 2(wo - w)

so that L1w/wo == R/woL == l/Q.
This is the desired result, the relative width at half-power is inversely

proportional to the quality factor Q.

Example 2.2. An electric circuit consisting of an Rand L and a G in series
is charge-free and inert when suddenly, at t == 0 it is connected across
a battery of constant voltage Vo. Find the subsequent time dependence of
the charge on the capacitor, q(t). Consider R small.

Solution. The problem can be understood readily via its mechanical analogue.
We know that if we suddenly apply a constant force Fo to the mechanical
system, the mass will not move at all in that instant, but the actual equi
librium point of the spring will be displaced foreward a distance Xo == F /k.
We have the same situation as in the example, namely a mass is started with
zero initial velocity, but with initial displacement, here -Fo/k, relative to the
equilibrium position. Translating back to the electrical system, the answer is

q == -GVocoswfte-at + OVo, a == R/2L .
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Problems

2.1 Combine the laws of Ampere and Faraday to show that the inductance
of a long solenoid is given by

L = J.lon2lA ,

where n is the number of turns per unit length, 1 is the total length of the
solenoid, and A its cross-sectional area.

2.2 Show that if Xl (t) is the solution of (2.1) when the driving force is
F I (t), and X2(t) is the solution when F2(t) is the driving force, (Xl + X2) is
the solution when the driving force is given by (FI +F2 ). What statement can
you make for so-called homogeneous differential equations, where the driving
forces are zero? What determines x(t) in this case?

2.3 a = O. When all the charge has been conducted away from the ca
pacitor, why does the electric current in a circuit undergoing its natural
motion not come to a stop? You may use the mechanical analogue for help in
answering. Assuming that the resistance in the circuit is zero, what is d1/dt
at the instant when q = O?

2.4 a small. The previous problem was rather easy. Now discuss the condi
tion

d1/dt = 0

when the resistance in the circuit, while small, is nonvanishing.

a) Let the time dependence of the current I be given by:

1(t) = 1o(coswft)e-at, a = R/2L .

Draw a graph of 1(t) vs. t. Do the minima of the curve come before or after
the minima of coswft? The maxima? Give a simple explanation for your
answers.

b) Find analytically the location of the extrema of 1(t), and check your
answers in Part (a).

c) Use the differential equation of motion for Q(t) to find the charge Q at
the extrema of 1(t), Le. when d1/dt = O. What is the physical reason that Q
does not vanish as it did for a = 0; what will be the sign of Q compared to
that of I? Finally, show that at the extrema of 1(t), to first order in a, Q(t)
is given by:

Q(t) ~ -(2a/w5)Ioe-at .

d) Discuss the mechanical analogue solutions to the questions posed in
Parts (a) and (c).
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2.5 a) a not small. In this case we must use (2.12) rather than (2.11b).
Show that the initial conditions

Ilt=o == 0

are exactly satisfied if

w5 -ot .I == -Qo-e SIn Wft .
Wf

Hint: Show first that

q == QO(coswft + ~ sinwt)e-ot .
Wf

b) A special case is where a is so large that

w; == w5 - a 2 == 0 .

This is called critical damping. Derive a simple expression for I as a function
of time valid for critical damping. Draw a rough graph of I(t) for this case.

Hint: lim (sinwt)jw == t .
w-tO

2.6 a large. a) If a » Wo we can define two positive decay constants aI, a2

a1 == a + (a2 - w5)1/2

a2 == a - (a2 - w5)1 /2 •

Show that for the initial conditions in Problem 2.5, q(t) will be given by

a1e- 02t - a2e- 01t

q(t) == Qo-----
a1 - a2

for a free oscillator, and that after a long time

q(t) ~ Qoe-tlr

where T, the relaxation time, is given by

T == 2ajw5 .

b) Show that if the oscillator is driven at a low frequency w « Wo,

q(t) = (1 +:2~2)l/2 sin(wt -1» ,

where T is the relaxation time of part (a). What value does <p approach as
w -+ O? What value does the amplitude of the mechanical oscillator approach?
Sketch the amplitude of x(t) as a function of w.

2.7 a) Verify the statement in the text: "In the vicinity of resonance ... not
only does the magnitude of the response have its most striking change, but
the phase does as well."
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Fig. 2.7. The phase 4> as a function of w near resonance, Problem 2.7b

b) When testing for the resonance response of an L-C-R circuit one found
that the phase lag of the current c/J followed the graph shown in Fig. 2.7.
Calculate the number of free oscillations during the time an initial charge Qo
decays to Qo/e.

2.8 a) Show that the average power absorbed by a mechanical oscillator is
given by

- F6
p = 2jZ! cos</>o

b) Verify that the points on the resonance curve selected in Example 2.1
indeed correspond to half-power.

2.9 a) The solution of the forced oscillator equation

d2 x dx
m dt2 + bdt + kx = F(t)

dx
x(o) = 0, dt Ix=o = 0, F(t) = 0 t < 0

can be found by Fourier representing F(t). Show that
00

-1 J F(w)eiwt
xt=--- . dw,
() J21rm w2 - 2Iaw - w6

-00

where F(w) is the FT of F(t).
b) Use the Faltungstheorem, Problem 1.15, in conjunction with (2.28) and

Part (a) here to show that the Fourier transform of G(t), G(w) is given by:

-1
G(w) = . (2.32)

J21r m(w2 - 2iaw - w5)

c) Use whatever results in Sect. 2.5 you may need to show that:
00

J
eiwt

2 2' 2 dw = -(27r/wf)e-atsinwft t> 0
W - law -wo

-00

=0 t < O.
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This integral can be done directly by using complex variable analysis, thereby
providing a check on (2.28).

2.10 The AC electric susceptibility X is defined by the equation

P(w) == X(w)EoE(w) ,

where P, the dipole moment per unit volume, in a simple model of polariza
tion is given by

P(w) == Nex(w) .

Here there are N ions per unit volume, each with a charge e oscillating
harmonically about x(w) == o.

Referring to Problem 2.9(d) show that

X(w) == (Ne2 jEo)G(w) ,

Let X(w) == XI(W) + iX2(w) where Xl and X2 are real.

Find Xl and X2 as functions of w, and sketch the results. Which of the two
functions, Xl (w) or X2 (w), is associated with power loss?

2.11 Find the complex impedance Z for an idealized circuit with a capacitor
and an inductor in parallel. Start with the appropriate differential equations,
or use any other method you may know to find Z. The solution of this problem
will be useful later in the development of this text, Problems 3.15, 4.21.

Further Reading

R. Resnick, D. Halliday: Physics, Vols. 1 and 11 (Wiley, New York 1977)
An introduction to harmonic oscillators is given in these volumes.

I.G. Main: Vibrations and Waves in Physics (Cambridge University Press,
Cambridge 1978)
A thorough treatment of all degrees of oscillator damping is found here.

P.R. Wallace: Mathematical Analysis of Physical Problems (Dover, New York
1984)
A full treatment of the oscillator in the content of Fourier analysis can be
found in this text.



3. Waves on Stretched Strings

Abstract. The string under tension, when only lightly disturbed, is the
simplest example of a distributed system undergoing linear wave motion.
This chapter begins with a derivation of the wave equation governing the
vibrations of the string. As in Chap. 2 we divide the analysis into natural
and driven motion. The natural motion is shown to consist of an infinite
number of independent contributions, each contribution a so-called normal
mode. Associated with each mode is a harmonic oscillator, with a natural
frequency characteristic of the mode. The spatial dependences of the modes
together form a complete orthonormal basis over the interval occupied by
the string. This last fact facilitates the solution of the initial value problem.
Analysis of the driven motion reveals that the oscillator characterizing each
mode displays a resonance response just as did the single oscillator in the
previous chapter. The analysis is shown to be an instance of the systematic
treatment of driven motion using Green's function techniques. The techniques
are likewise applied to the problem of a stretched string driven from one end.

3.1 Equation of Motion of a String

In the previous chapter we distinguished between lumped and distributed
systems. The simplest example of a distributed system is one which extends
in only one dimension, in mechanics we have the flexible string under tension.
The string of a violin is an obvious application, human vocal chords are an
application. We will study this problem in detail because it contains all the
elements of analysis inherent in any distributed system with, however, a min
imum of complications. As it is, the problems of this chapter are considerably
more complex than those of the previous. The reason is not hard to find: If
we were to divide the string into its component atoms we could study the
motion of each atom by the methods of the previous chapter. But there would
be very many atoms, very many lumped systems of which to keep track, very
many independent variables or degrees of freedom. Instead of doing such an
atomistic calculation one analyzes the motion of the string by considering
it to be a single continuous system. Even so, characterizing the motion can
involve the time dependence of an infinite set of variables, in correspondence
to an infinite number of degrees of freedom.
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/I----.../:i.x

Fig. 3.1. Top: The flexible string slightly
displaced from equilibrium under a ten
sion T. The pulley is frictionless. Below:
The segment ~x of the string under a ver
tical force per unit length F (x, t)

As in the previous chapter, Newton's second law will give us an equation
of motion whose solutions will correctly predict the motion of the system
under specified imposed conditions. In Fig. 3.1 we show the flexible string
under tension T slightly displaced from its equilibrium configuration.

As shown, any point on the string can be identified by the value of the
coordinate x which measures the horizontal distance from the beginning of
the string. If the string has length L, x goes from zero to L. The vertical or
transverse displacement of the string at any point is measured by a second
coordinate, y. The latter will depend on two variables, we write y(x, t), t being
the time.

In contrast to the previous chapter we have to deal with functions of more
than one variable. When we take the derivative of these functions it is the
partial derivative that we usually need. The partial derivatives of y(x, t) are
defined as

ay~X, t) = lim 1/~x [y(x + ~x, t) - y(x, t)] ,
x ~x-+o

ay~, t) = lim 1/~t [y(x, t + ~t) - y(x, t)] .
t ~t-+O

(3.1a)

(3.1b)

The partial derivative 8yj8x is the usual derivative of y with respect to x,
with the other variable, t, remaining a constant parameter. As we might
expect, the equation of motion of the string will be in terms of partial
derivatives, a partial differential equation. Indeed, distributed systems satisfy
partial differential equations, and we must learn how to solve them.

To find the equation of the string we analyze the problem by isolating that
segment of the string which stretches from x to x + ~x, Fig. 3.1. What will
be the net force acting on this segment? We know that along a flexible string
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the tension always acts in a direction tangent to the string. In the present
problem it is important to distinguish between the slopes of the string at the
two ends of the segment; these are, respectively, at some instant t,

() _ oy(x + ~x, t) () _ oy(x, t)
tan 2 - OX and tan 1 - OX .

We now make an important restriction which will hold throughout the
chapter. We shall assume that we are concerned only with small vibrations
of the string. The angles (}l and ()2 will always be sufficiently small that in
a Taylor expansion of the trigonometric functions we can stop at the first
term. This restriction will ensure that our ensuing differential equation of
motion is linear. We recall that this means that only the linear power of
y(x, t) appears. Thus physically we are dealing, as so often is the case, with
an idealization, an approximation, yet one that we expect will be very useful.

We see from Fig. 3.1 that the horizontal components of the forces acting
on the string are, respectively, T2 cos ()2 and T1 cos e1 . But, since e1 and e2

are to be small angles, we replace cos ()l and cos ()2 by unity. Since the string
does not move in the horizontal·direction, we find

T1 cos ()l == T2 cos ()2, T1 == T2 == T .

The string has the same tension T all the way down its length, even though
we are not going to neglect its mass.

The vertical components of the tension are T sin ()l, T sin ()2. Again, since
the angles are small, we can replace their sines by their tangents, so that the
net vertical component of force exerted on the segment of the string by the
two ends is

T( . () _ . () )_T[Oy(x+~x,t) _ Oy(x,t)]
SIn 2 sIn 1 - ox ox·

We shall be interested in the possibility of having some external force
applied to the string. It will suffice for our purposes to restrict this force to
act always in the vertical direction. If we say that a force F(x, t) per unit
length is applied to the string at the point x, then the force acting on the
segment is F(x, t)~x.

We must also find an analytic expression for the mass acceleration term.
We assume the string is uniform with a constant density, Le., the mass per
unit length is (]. The mass of the segment becomes (]~x, the vertical accel
eration of the segment is 02y(x, t)/ot2, and Newton's second law applied to
the vertical components gives us the desired equation of motion:

T [Oy(x + ~x) _ Oy(x)] F( )~ == ~ 02 y
ox ox + x, t x (] x ot2 '

or

T 02y (X, t) F(x, t) 02 y(X, t)- + --- == ----
(] ox2 (] ot2

L>x>O y«L. (3.2)
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In going from the first equation to (3.2) we have divided by (2~X, gone to the
limit ~x -+ 0, and used (3.1a) for the result:

lim 1/~x [8Y(X + ~x, t) _ 8y(x, t)] == 8
2
y(x, t) .

~x-+o 8x 8x 8x2

3.2 Natural Motion of a String

As in the previous chapter we shall distinguish between two problems, the
natural motion of the string, that is, its motion when after an initial dis
turbance the string is left to itself without any external applied force, and
the forced motion of the string under the influence of a prescribed driving
force F(x, t). The natural or forced motion of any distributed system may
be referred to as wave motion. Usually the first wave motion we observe as
children is that of the surfaces of bodies of water. These are transverse waves,
the physical displacements of the water being perpendicular to the direction
of motion (propagation) of the waves. The waves in this chapter are likewise
transverse and, being linear, are simpler to analyze. Surface water waves are
included in the last chapter, where our work is extended to nonlinear waves.

Since we are not to have any external force in this section the problem is
to understand the implications of the equation

82y(x, t) = 8 2 82y(x, t) (3.3)
8t2 8x2

obtained from (3.2) by setting F(x, t) equal to zero, and by making the
standard substitution

(3.4)

The partial differential equation (3.2) is a wave equation, indeed, it can
probably be considered as the most basic of all the wave equations studied
in physics.

One way of writing the solution to this wave equation is surprisingly
general in character:

(3.5)

Here Yl and Y2 are any reasonable functions whatever. By "reasonable" we
mean continuous enough to be assumed by a physical string without its having
to be cut. l What does a solution Y(x - st) mean? Suppose at t == 0 the string
is deformed into a given arbitrary shape Y(x). Then, at a later time t, the
string will have exactly the same shape, but evidently a given feature is found
at a point a distance st farther to the right. We illustrate this in Fig. 3.2. We

1 The proof of (3.5) is simple. Let ~ == x - st. Then a2y(x - st)/8t2 == s2y",
where y" is the second derivative of Y(~) with respect to ~. Similarly,
a2y(x - st)/8x2 == Y".
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y(X,t) =Y(x-st)

"--------------------il~X

Fig. 3.2. A possible solution to the wave equation. Wave is moving to the right

can say that whatever the nature of the disturbance, it moves with a uniform
velocity s to the right. The solution Y(x + st) has a similar implication, only
now the disturbance is moving to the left.

If we refer back to (3.4) we see that s, which we have just learned is the
speed of wave motion as supported by the string, increases with the tension
on the string, although only as the root, and decreases with its density in the
same way. Surely, this is what we might have expected from our own daily
experience of all manners of elastic responses.

Let us use the knowledge about the solutions of the wave equation we
have obtained so far to study a particular problem: In Fig. 3.3a a string is
displaced an amount h between x == L/2 - a/2 and x == L/2 + a/2, and not
displaced at all everywhere else. In other words, we have deformed the string
into a "square wave". What will be the natural motion of the string if it is
displaced in this fashion and then released from rest? Will the pattern move
to the left, or will it move to the right? When seen from the center of the string
the situation looks exactly the same towards the right as the left. Therefore,
the square wave will be divided into two waves, each of displacement h/2,
one of these waves will move to the right, the other to the left. Figure 3.3b
shows the situation after a short time interval. In Problem 3,1 we verify this
solution analytically, and include the possibility of an initial velocity.

x=L

(a) I---~---i... -..I<L l U_h _

x =0 x = L/2

(b) ~s

..J-------
s~

Ji,/2J l-

Fig. 3.3. (a) Displacement of stretched string, as initially at rest. (b) Motion of
string in consequence of initial symmetry

But what happens when the moving square waves hit the ends of the
string? We are to think of both ends as rigidly fixed. In other words the
boundary conditions on the string are

y(O, t) == 0, y(L, t) == 0 . (3.6)

There is a method of graphical analysis (the method of images) which
will enable us to handle the effects that the rigid end points provide, see



(3.7)

(3.9a)
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Example 3.1 at the end of the chapter. However, sometimes, particularly if
one is interested in the long time behavior, one needs a more analytic account
of the solutions of the wave equation than we have so far seen. In our later
work we shall be concerned with other distributed systems, and again more
complete knowledge will be called for.

3.3 The Normal Modes

We can solve the wave equation (3.3) in rather a particular way. Since the
ultimate solution we obtain with this starting point will in fact be the most
general solution, we need not concern ourselves with other possible ways of
going about solving the equation. Let us substitute for y(x, t) a product of
two functions, one of which depends only on x and the other only on t:

y(x, t) == u(x)v(t) .

If we substitute (3.7) directly into (3.3), we find

( )
d2V ( t) _ 2 ( ) d2

U ( x )
u X dt2 - 8 V t dx2 •

We next divide both sides by the product u(x)v(t):

_1_ d
2v(t) ~ d

2u(x) (3.8)
v(t) dt2 u(x) dx2

The last equation has a remarkable feature. The left side depends on t,
but not on x, the right side depends on x but not on t, yet the two sides
are supposed to be equal for every value of x and t. This can only be true
if, in fact, each side is equal to the same constant, i.e., a quantity which
depends neither on x nor on t. Anticipating the next steps, we will call this
constant -w2 • We have, then,

1 d2v(t) 2
----- ==-w
v(t) dt2 '

8
2 d2u(x) 2

u(x) ----a;;;2 = -w . (3.9b)

Let us take the first of these:

d2v
dt2 == -w2v(t) , (3.10a)

This is the equation of an undamped harmonic oscillator, already studied in
Chap. 2. Its solution is

v(t) == sinwt, or cos wt, or eiwt
, (3.11a)

or any arbitrary combination of these. We again have a function periodic in
time, and w is revealed as an angular frequency.
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Likewise (3.9b) reads

d2u(x) w2

-d2 + 2 u (X) == 0 , (3.10b)
x s

with the solution

u(x) == sin(w/s)x or cos(w/s)x or ei(w/s)x. (3.11b)

Since these functions are spatially periodic we follow Chap. 1 in defining
a wave vector k by

k==w/s. (3.12)

Summarizing up to this point, a solution of the wave equation (3.3) for the
stretched string will be a product of a function periodic in space, u, and one
periodic in time, v. Besides (3.3) we must also satisfy the boundary conditions
given by (3.6). Since these must hold throughout time, we must rely on u(x).
The necessary and sufficient conditions are

u(O) == 0 u(L) == 0 . (3.13)

It follows that in order that u should vanish at x == 0 we must restrict
the possible solutions given in (3.11b) to the sine function. To satisfy the
condition at x == L we find that we must put restrictions on the wave vector k,
it becomes limited to certain particular values. We have

u(x) == sin knx ,

u(L) == 0 ,

n == 1,2,3 .... (3.14a)

(3.14b)

In (3.14a) n can be any positive integer. We discard the negative integers,
since they just give us back the same function with a minus sign, i.e., the
same solutions again.

In view of the relationship (3.12) we must now also restrict the possible
values of the angular frequency to

wn == skn == n7rs/L .

The solution of our wave equation now reads

Yn(x, t) = (An sinwnt + Bn coswnt)/f sin (n~x) . (3.15)

Here An and B n are arbitrary constants. Equation (3.15) will be a solution of
the wave equation (3.3) regardless of what value we ascribe to them. J2/L is
a "normalizing" factor. We will see that having it there makes things neater.
Lastly, we notice that the choice of a negative real constant in (3.9a,b) was
necessary to secure physical "boundary" conditions in space and time.



(3.17a)

(3.16a)

(3.16b)

(3.17b)
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Since the wave equation, as already mentioned, is linear, its solution will
not only be of the form (3.15) where n is any positive integer, but also the
sum of any number of such solutions:

00. (2 . (n1rx)y(x, t) = L(An SIllWnt + Bn coswnt)y L SIll L ·
n=l

It turns out that with the doubly infinite set of constants An, Bn at our
disposal we can correctly describe any natural motion that a stretched string
with fixed ends can be made to undergo. We have found the most general
solution of our wave equation subject to the imposed boundary conditions at
x == 0 and x == L. The actual values of An and Bn will depend on the initial
conditions, on the shape, and on the distribution of speeds over the length
of the string with which we initiate the subsequently free motion. We have
an extension of the simple harmonic solution we found for one oscillator in
the previous chapter. Again, before we can solve a specific problem, we need
to complete our formal work by writing along with (3.16a) a corresponding
solution for the velocity distribution over the string:

ay(x, t) ~ (A .) {2 . (n1rx)
at == L.JWn ncoswnt-Bnslnwnt VL s1n L .

n=l

We return to the problem of Fig. 3.3. From (3.16a,b) we have at time t == 0:

~ (2. (n1rx)
y(x,O) == L.JBnVL s1n L '

n

ay~, t) Lo = 0 = 2; Anwn/isin (n~x) .

The left side of (3.17a) is the function of x shown in Fig. 3.3, that is, the
initial displacement of the string. Since we assume that the string starts from
rest all along its length, we have put the left side of (3.17a) equal to zero.
What we see on the right side are expressions very reminiscent of the Fourier
representations of arbitrary functions we studied in Chap. 1. The differences
are ones of detail; in Chap. 1 we were concerned with functions described
over the infinite range 00 > x > -00, while here the range is finite:

L>x>O.

In correspondence, there the range of k was over all possible values, whereas
here k is restricted to certain discrete values, enumerated by the positive
integers. The integral of Chap. 1 has become a discrete sum. But the general
ideas are the same, and the constants An and Bn will be determined in much
the same way.

The first fact we establish is that the functions Un

un=/iSinknx=/iSin(n~x) n=1,2,3... (3.18)



(3.19a)

(3.19b)

(3.20a)

(3.20b)
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again form an orthogonal set:

LJUn(x)um(x)dx = 0 when n -=I- m .

o

Further, in virtue of the factor J2/L, integration also shows us that

LJun(x)um(x)dx = 1 when n = m .

o

Equation (3.19b) allows us to say that the functions Un are normalized. We
have already said that (3.16a) is the most general solution to our problem.
Equations (3.17) can be satisfied for any physical choice of the functions
y(x,O), 8y(x,0)/8t. These facts lead us to say, as in Chap. 1, that the
functions

Un(X), n = 1,2,3 ...

form a complete orthonormal set of basis functions.
We now use (3.19) to solve (3.17). We multiply both sides of (3.17a) by

J2/Lsin(m1Tx/L) and integrate both sides over the defined range of x:

IfJsin (m;x) y(x,O)dx = fBn (~)Jsin (m;x) sin C~X) dx.
o n=l 0

If we compare the right side of this equation with (3.19a), we see that every
term in the sum will be zero except the one for which n = m. Further,
(3.19b) shows us that this particular term in the sum is just Bm. So turning
the equation around, we have the desired formula for the coefficient Bm:

L L

Bm = IfJsin (m;x) y(x, O)dx = Jum(x)y(x, O)dx .

o 0

A similar procedure applied to (3.17b) leads to the formula

L

A = ~ f!J . (m1TX) 8y(x,0)d
m W

m
VL SIn L 8t x

o
L-~J ()8y(x'0)d

- UmX 8 x.
Wm t

o

If now at last we apply (3.20) to the particular function y(x, 0) of Fig. 3.3,
then we may write
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L/2 + a/2

Bm = hlf J sin (m;x) dx ,
L/2 - a/2

since y(x, 0) is zero everywhere else. Doing the integration we find,

Bm = 2h..,fiL sin m1r sin (am .~) . (3.21a)
m7r 2 L 2

Since the initial velocity is zero everywhere, we have also, from (3.20b)

Am = 0 (3.21b)

for all m. We notice that Bm is also equal to zero for all even values of m
in view of the factor sin(m7r/2) in (3.21a). The situation is reminiscent of
that encountered in Example 1.1. The even symmetry about the center of
the string excludes all the functions Un that themselves have odd symmetry
about the center.

Equations (3.16a, 21) constitute the solution to our initial value problem.
When the coefficients Am, Bm as obtained from (3.21) are substituted into
the general expression (3.16a) we have the development of the displacement
Y at all points x throughout time. We see that given the problem of some
distributed system such as our stretched string, with the positions and veloc
ities specified at some initial time t = O... there is a systematic procedure for
finding the motion of the system at all subsequent times. On physical grounds
we expect that this solution is unique; once the system is started it always
develops in the same way. Mathematics confirms that a partial differential
equation of the nature of our wave equation, with given boundary conditions,
has only one solution if the initial values of position and velocity have been
specified. Since the preceding development has been a rather long one, we
summarize it in Table 3.1.

There is one feature of (3.16a) which requires further comment. We notice
that once the magnitude of the amplitudes An and Bn have been determined
they remain constant throughout time. There is no cross-linkage between the
various component solutions Yn of (3.15):

Yn(x, t) = (An sinwnt + Bn coswnt)un(x) ,
00

Y= LYn.
n=l

(3.16a)

A quantity which shows this independence of the various components of
the motion particularly clearly is the energy of the string, which shows up
as a sum of terms, one for each value of n. This fact is taken up in one of
the problems at the end of the chapter. In more advanced treatments it is
possible to solve for the motion of systems by looking at the kinetic and
potential energies rather than at forces. The problem then becomes one of
determining functions Yn(x, t) which will lead to contributions independent
of each other in the expression for the energy.
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Table 3.1. Systematic procedure for solving an initial value problem for a dis
tributed system

A string under tension T extends from x == 0 to x == L. Its density is (J.

The small displacement of the string, y, satisfies the wave equation

a2 y(x, t) 2 a2 y(x, t)
at2 == 8 ax2

with 8
2 == T / (J •

The boundary conditions are

y(O, t) == 0 y(L, t) == 0 . (3.6)

The general solution satisfying (3.3) and (3.6) throughout time is

00

y(x,t) == L(Ansinwnt + Bncoswnt)Un(X) .
n=l

(3.16a)

Here Wn == 8kn ,Un(X) is the complete, orthonormal set of functions

Un(X) = Ifsinknx (3.18)

(3.20a)

n7r
kn == L . (3.14a)

The coefficients An, B n are determined from the initial conditions through

the formulas

L

An == ~ jun(x) aya(x, t) It=o dx,
Wn t

o
L

B n = j un(x)y(x,O)dx .

o
(3.20b)

With all these properties, it is hardly surprising that we give the inde
pendent solutions of the problem, Yn, a name. They are the normal.modes of
motion of the system. A corollary of the solution (3.16a) is that if we were
to excite the string so that only one mode, say Yl, were initially present,
then the string will vibrate throughout time in only this one mode, Fig. 3.4.
Often, in practice the higher modes damp out rather quickly, leaving only the
lowest (fundamental) mode, see Fig. 3.4b. We say the modes are characteristic
of the system. [In more advanced treatments one also uses the designation
"eigenfunction" for the functions Yn (x, t), eigen meaning "characteristic" in
German. We will stress the concepts that go with the latter designation in
Chap. 6, when we come to quantum mechanics.] We summarize by saying
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(a) (b)

=====~

Fig. 3.4. (a) Stretched string oscillating in the n == 3 mode only. (b) Diving board
oscillating in its lowest characteristic mode. Any higher modes initially excited
would be damped out very rapidly

that the motion of distributed systems can be viewed as a superposition of
basic modes of motion, the normal modes.

Let us examine the normal modes of the string in more detail. First, we
notice that for all of them the time dependence is simple harmonic. In fact,
the angular frequencies W n are integral multiples of the lowest frequency Wl,

which is called the fundamental frequency of the system. We have

W n == nWl n = 1,2,3... Wl = 1rs/L .

The higher frequencies are sometimes referred to as the higher harmonics or
overtones.

The normal modes we have found are examples of standing waves. We have
seen that the definition of a wave is any disturbance (motion) supported by
a given distributed system. For the homogeneous (constant density) string
we have found that the normal modes are simple harmonic in both space and
time. In elementary treatments waves are introduced from the beginning as
having the functional form

y = A {c~swt} {c~s kX} ,
sInwt SIn kx

Le., as one of these four products. These waves are called standing because
the positions of the crests and modes of the waves are always at the same
location in space.

There is one further relation characteristic of harmonic waves. Let f n (=
wn/21r) be a characteristic frequency of a wave. Let .An [already introduced
in (1.10) as 21r/kn ] be the wavelength associated with the wave. Then a little
algebra shows us that (3.14b) can be written

.Anfn = s = speed of wave, (3.22)

a result independent of n. Besides standing waves one can also talk about
traveling waves,

y = A sin(kx - wt) .
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We note that these are a special example of the solution (3.5) of the wave
equation. Here the relation AI = s has an obvious physical interpretation.
Further, two harmonic travelling waves of the same frequency but travelling in
opposite directions lead to a standing wave. Since not every reader is assumed
to be familiar with these basic ideas, we take them up again in Example 3.1
and in Problem 3.15.

3.4 Forced Motion of a Stretched String

Having solved the problem of the natural motion of the string, we now inquire
into forced motion; how does the system respond to the action of a driving
force? Since F(x, t) in (3.2) is now expected to be the controlling influence,
we rewrite (3.2), recalling (3.4), as

8
2
y + (J8Y _ 82 8

2
y = F(x, t) . (3.23)

at2 at ax2 (}

Here we have added a damping force per unit length -(f3(}ay/at), propor
tional to the velocity ay/at, just as we added the damping force -bdx/ dt to
the harmonic oscillator in Chap. 1. However, we shall see that there will not
be any need to repeat a full description of its effects. Rather, it is introduced
for mathematical definition, Le., to avoid again certain infinities, and will be
taken as infinitesimally small in most of what follows.

We need not solve the problem of the string under an arbitrary force.
Rather we will specialize to a localized force in space, and one which is simple
harmonic in time. We can write a force localized in space analytically by the
use of the Dirac delta function discussed in Chap. 1, and defined in (1.23).
Accordingly, we have for the force per unit length F(x, t),

F(x, t) = Fw 8(x - xo) coswt . (3.24)

(3.25)

Incidentally, the total force acting on the string now will be given by the
integral of F(x, t) over the string by

L LJF(x, t)dx = JFw 8(x - xo) coswtdx = Fw coswt .

o 0

If we combine (3.23) and (3.24) we have

a2 y ay 2 a2 y Fw- + f3- - s - = -8(x - xo)coswt.
at2 at ax2 (}

If we want to know the response of the string to an arbitrary force in space
and time, then we can always decompose that force into a sum of terms, each
of the form of (3.24) but having various frequencies, and various locations xo
along the length of the string. We can then use a feature of inhomogeneous
linear equations already pointed out in the previous chapter, namely, that the
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solution of such equations is obtained by adding together individual solutions,
each of which is obtained by taking the right side of the equation to be
a particular one of the component driving terms. We shall not go so far here,
leaving that to the Problems, but rather try to understand well the effect of
a force of the form (3.24).

What will be the response in time of a system under a simple harmonic
driving force, as in (3.25)? First, we must distinguish between the steady
state response and the startup problem. The latter introduces that solution
to the homogeneous wave equation which must finally be added in to yield
correspondence with the actual starting conditions. In the analysis of this
start up, the initial value problem of the previous sections, we found that
all the various normal modes of motion are excited to varying degrees, and
the system will oscillate in all these modes. However, in that analysis we did
not include frictional damping. The damping action will qualitatively be the
same as it was for the single oscillator in Chap. 2. In practice, first the higher,
faster modes of motion dissipate their energy, to be followed finally by the
fundamental mode itself. We again refer to these effects as the "transient",
and find that their lifetimes, as for the single oscillator, is related reciprocally
to the strength of the frictional damping (3. What is left when the transient
has died out? The forced motion, that is, that motion which depends solely
on the steady, continuous harmonic driving force. As far as this steady state
is concerned, we are to think of the situation as though the driving force has
been present for all time, since negative infinity.

If the driving force has really been there since negative infinity, and will
always be there, then we know what the time response of the system will
be. We recall from Chap. 1 that functions of the form coswt,exp(iwt) are
orthogonal over the infinite time domain. A necessary corollary is that the
time response of y will likewise be simple harmonic with the same frequency
as the driving force, exactly as for the driven oscillator of Chap. 2. If we
neglect any phase shift due to damping, (3 infinitesimal only, then we will
have y(x, t) ex: cos wt. For the moment, more generally,

y(x, t) ex: eiwt . (3.26)

What about the spatial dependence of y on x for the forced motion? Here we
can return to the methods of the previous sections, and recollect that the set
of functions un(x) of (3.18) form a complete set of functions for the interval
x == 0 to x == L, providing that the end points are held fixed. That being the
case, and bearing (3.26) in mind, we write y(x, t) in the form

00

y(x, t) == L Cnun(x)eiwt .
n=l

(3.27)

As in previous sections the Cn are a set of (complex) coefficients that deter
mine the sought-for solution [given by the real part of (3.27)].
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Let us substitute (3.27) into (3.25):

~C [ ()(~ (3~)- 2d2un (X)] iwt==Fw~( _ ) iwt.L....t n Un X d 2 + d s d 2 e u X Xo e .
n=l t t X (}

Upon performing the necessary differentiation we find

-f Cnun(x)(w2 - iw,8)eiwt + s2 f Cnk~Un(x)eiwt = Fw8(x - xo)eiwt .
n=l n=l (}

If we cancel the common factor exp(iwt), the equation becomes

L Cnun(x)(s2k~ + iw,8 - w2) = Fw8(x - xo) .
n (}

We now use the usual stratagem of multiplying both sides by um(x) and
integrating over x from 0 to L:

L L

L Cn(s2k~ + iw,8 - w2)Jum(x)un(x)dx = F; Jum(x)8(x - xo)dx .
n 0 0

The left side reduces to a single term in view of the orthonormality conditions
(3.19a,b); the right side is evaluated using the definition of the Dirac delta
function, (1.23). We get

Cm(s2k;' + iw,8 - w2) = Fwum(xo) .
(}

Referring back to (3.14b), namely W m == skm , we write Cm as

C - (Fw / (})Um(Xo)
m - (w~ + iw{3 - w2 ) •

When we substitute this result for Cm back into (3.27) and take the real
value we get the desired response of the string. In Chap. 2 we have explored
the full effect of damping, {3 i=- O. Here (3 will be taken to be very small, so
that if we are not exactly at a resonance we may, taking the real part, write
for y(x, t)

( )
_ Fw "un(x)un(xo)

y x, t - .L....t (2 2) cos wt
(} n wn - W

w i=- wn , n == 1,2,3 ...

An apparatus to test (3.28) can be easily constructed. Figure 3.5 shows
a schematic diagram. A light wire has its left end fixed. The other end of the
wire is placed over a pulley at the far side of the platform, and has a hook for
holding various weights attached to it. The apparatus is also provided with
a small electromagnet, which itself produces an oscillating magnetic field,
say at the line frequency of (21r)60 rad/s. A DC electric current is sent down
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Xo Electromagnet

Fig. 3.5. The wire carries a DC current I. The Lorentz force, Il x B, exerted
on the wire at Xo drives it vertically at the line frequency. The apparatus allows
verification of the analysis of the forced motion of a stretched string

the wire, so that a Lorentz force (Il x B) will drive the wire at the line
frequency in a direction perpendicular to the wire and the applied magnetic
field. We identify the location of the magnet, which is adjustable, with xo,
and the force per unit length of the magnet with <5(x - xo)Fw coswt (total
force Fw coswt). The delta function representation of the exerted force is
valid providing the magnetic field extends over a length small compared to
the excited wavelengths of interest.

No matter where we apply the magnet, or what the tension on the wire,
there will be some oscillation, and a low hum will be heard. We can always
check out that the oscillating frequency is that in the line with a stroboscope,
thereby verifying the last factor, cos wt, in (3.28), but it would be surprising
if the frequency of oscillation of the wire were anything different! Of course
higher harmonics in the line voltage itself are always a possibility.

Now if we begin to adjust the tension, the amplitude of the wire oscil
lations will suddenly begin to increase drastically. This means that we are
going through one of the nulls in the denominator in (3.28), that is, we have
adjusted the tension so that

(3.29)

The system has reached a condition of resonance. The situation here is just
that already encountered for the lumped single oscillator, only here we have
an infinite number of resonances, one for each normal mode n. Had we
included damping explicitly, as we did in the previous chapter, the denomi
nators in (3.28) would have the more complicated form of (2.24c), and would
remain finite at resonance.

Besides calculating n from (3.29), and verifying that it is an integer, with
careful observation, or with the help of little paper riders on the wire, we
can establish that the oscillations of the wire are a standing wave pattern
described exactly by the corresponding function un(x) appearing in (3.28).
From (3.28) we can also understand another observation, that is, that the
response of the wire is greatest when the magnet is held at the precise location
of one of the crests of the standing wave oscillation. This is predicted by the
presence of the other factor, Un (xo), in the numerator. Evidently that factor
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determines the effectiveness of the magnet to system coupling. One does not
usually trouble oneself to verify the presence of the first factor Fw / (J in (3.28).
But certainly its presence seems reasonable on physical grounds. Thus our
mathematical reasoning can be tested out easily and completely, and is seen
to provide an understanding of the entire phenomenon.

3.5 Green's Functions for a Stretched String

The calculation of the forced motion of a string carried out in Sect. 3.4
can be viewed within the broader theory concerned with the application of
Green's functions. In the theory the Green's function technique for solving
forced motion problems is extended from lumped systems dependent only
on the time variable t, as in Chap. 2, to distributed systems dependent,
in three dimensions, on a space variable r as well as on t. The basic idea
is as before. To solve the problem of a driven system, we first solve the
problem with a drive that has a delta function distribution. The solution of
this preliminary problem is the Green's function. The influence of boundaries
aside, linear superposition then yields the solution to the full problem. In the
last chapter the delta distribution was in time, here it could be in space, or
time, or both. In fact, the distribution will be in space only, the treatment
being restricted to a harmonic time dependence, with angular frequency w.
Explicit subscripts referring to w will be omitted. We shall, accordingly,
consider Green's functions G(rlro), where r is the location of the observer,
and ro the location of the delta function source, Le. of the driving force in
mechanics, or of electrical charges or currents in electromagnetism.

The desired solution is going to depend not only on the actual drive, but
on the boundary conditions of the system. For instance, if a stretched string
has driven end supports, this will clearly affect the motion. The Green's
function G(rlro) satisfies, by definition, so called homogeneous boundary
conditions. Homogeneous boundary conditions means that when ro is at the
boundary, Le. at a point on the boundary T s , either G(rlrs ), or the normal
derivative of G with respect to ro at r s , (or possibly some linear combination
of both these) vanishes. However, the problems to be solved, mayor may
not satisfy homogeneous boundary conditions (a driven end point would not
be a homogeneous boundary condition). To see how, nevertheless, solutions
are possible, we must derive a general relationship Inediated by the Green's
function between the desired solution, u(r ), its sources within some specified
boundary, and the values of u(ro) and its derivative at the boundary.

In this chapter we shall restrict ourselves to one spatial dimension, x. The
generalization of the relationship we are about to derive to three dimensions
will be given in Chap. 5, where we shall see that it forms the analytic basis
for doing physical optics. Working here in one dimension on the problem of
stretched strings will make it easier to assess the three dimensional results
when we reach Chap. 5.
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As a first step we derive a well known formula, using standard integration
by parts (chain rule). Let U(x), V(x) be any good functions of x in the range,
L > x > O. Then:

[L U(x) d2V~x) _ [L Vex) d2U~X) dx = [U(X) dV(x) _ Vex) dU(X)] L
lo dx lo dx dx dx °

(3.30)

after cancelling the extra term. (3.30) is the one dimensional equivalent of
Green's theorem in three dimensional vector calculus. Now, let fj(x, tlxo)
be the displacement of the string when it is driven harmonically from the
point xo, as in the last section, and y(x, t) the solution with an arbitrary
harmonic driving force. Thus, fj satisfies the equation of motion (3.25) with
only the (3 (frictional) term left out, and will be given by:

82fj 282y
8t2 - S 8x2 == Fw / g b(x - xo) coswt

w == sk

To obtain a conventional Green's function G(xlxo) we write:

G(xlxo) cos wt == (gs2 / Fw )y(x, tlxo)

From (3.31) and (3.32) we obtain:

8
2
G(xlxo) k2G( I ) - ~( )--8-x-2 - + X Xo - -u X - Xo

(3.32)

(3.33)

(3.33) is the wave equation with a point source, which along with boundary
conditions defines the Green's function. The specifics of the homogeneous
boundary conditions of the Green's function will depend on the nature of the
problem to be solved, as we shall see shortly. Again, following convention, we
choose a formal solution u(x) proportional to the actual displacement of the
string y(x, t), where, again, y(x, t) is assumed to arise from a time harmonic
drive:

u(x) cos wt == s2 y(x, t) (3.34)

y(x, t) is to be the solution of the general equation of motion (3.23) with
driving force F(x, t), and the frictional coefficient, (3 == O. Noting that the
applied force is to be harmonic we have:

F(x, t) == f(x) coswt (3.35)

Substituting (3.34) and (3.35) into (3.23) we obtain for u(x):

d2u(x)
~ +k2u(x) = -f(x)/{! (3.36)

It is (3.36), subject to boundary conditions on u(x) at x == 0, x == L, that we
wish to solve. Equations (3.33) for the Green's function, and (3.30), Green's
theorem are to help us.
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Green's functions satisfy a reciprocity relation. In one dimension:

G(xlxo) == G(xolx) (3.37a)

(3.38a)

(3.37b)

We will take this relation for granted. It may be taken as a generalization of
Newton's third law, "to every action there is an equal and opposite reaction" .
The reader who wants to see a mathematical proof (it is not long) is referred
to the book by Morse and Feshbach listed at the end of the chapter. In any
case we can always check that the Green's functions that are used here satisfy
(3.37a). We shall also need the fact that:

82G(xlxo) 82 G(xlxo)
8x2 8x6

(3.37b) follows from (3.37a) and the definition of the Green's function (3.33).
[Formally interchange x and Xo in (3.33), then use the reciprocity relation,
and note that 8(x - xo) == 8(xo - x)].

If we now replace x by Xo in (3.36), and multiply the result through by
G(xlxo) we obtain:

82u(x )
G(xlxo) 8 2 0 + G(xlxo)k2u(xo) = -G(xlxo)f(xo)/ (}

Xo
Now we multiply the equation for the Green's function (3.33) by u(xo):

82G(xlxo) 2
u(xo) 8x2 + G(xlxo)k u(xo) == -u(xo)8(x - xo) (3.38b)

Subtracting (3.38b) from (3.38a), and applying (3.37b) to the relevant term
we obtain:

Finally, we integrate both sides of (3.39) over the range, L > x > 0, and use
Green's theorem (3.30):

[
G(x1xo)8u(xo) ~ u(xo) 8G(x 1xo)] xo=L

8xo 8xo xo=o
L .

+ 1/(}1G(xlxo)f(xo)dxo = u(x) L > x > 0 (3.40)

(3.40) is so useful, it is sometimes called the magic rule.
To apply the magic rule the boundary conditions of G(xlxo) need to be

chosen according to the conditions on u(x), that is, at x == 0 and x == L,
(or, if one is working in three dimensions, on u(r) over a closed surface or
at infinity). There are two possibilities in a given problem, either u, or the
gradient of u is specified at the boundary. There is also the possibility that
some mixture of both u and its gradient is given. However, this more general
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case goes beyond what we need here or in subsequent chapters. Let us now
suppose that it is u(x) that is specified at an end point. Then we must choose
G(xlxo) to vanish at that end point. As we are learning, this will (along with
the condition at the other end) uniquely determine G, and, hence, uniquely
u(x) as well. Here 8u(x)j8x is initially unknown, and must be left free to
be determined by the final solution for u(x). Similarly, if it is 8u(x)j8x that
is specified at an end point, we choose G so that 8G(xlxo)j8xo (xo == end
point) vanishes. It being both a mathematical and a physical fact that the
motion of the string is fully determined by only one boundary condition, Le.
either value or slope at the end points, it follows that our specific choices of
Green's functions have not introduced any lack of generality.

To make the procedure of solving problems with inhomogeneous boundary
conditions using Green's functions, that satisfy, by definition, homogeneous
boundary conditions convincing, we discuss the physical meaning of the terms
on the left side of (3.40), one at a time. Beginning with the last term on the
left, we remember that G(xlxo) is the solution of the wave equation for the
delta function source <5(x - xo). The term, which can be seen to express
summation or integration over the distributed source f (xo) j (] follows from
linear superposition.

To get at the second last term we consider the problem where at, say,
Xo == 0 the displacement, u does not vanish, Le. the string is driven from an
end point. Drawing on the suggested procedure for this boundary condition,
we choose G(xIO) to vanish. To simulate the drive at x == 0, we apply a strong
delta function force at Xo == ~,~ « L, while assuming that u(O) == O. This
force is to give the correct u(x) for all x > ~. Now, see Problem (3.14b),
a transverse force on the string, T(tanO), Le. Tyj~, or Tu(~)j(s2~)coswt,
see (3.34) will provide the desired displacement U(~)js2. T is the tension in
the string. To obtain the source strength we must still divide the hypothetical
force by (], see (3.36). We are, thereby, left with a source strength u(O)j~. If
this source is multiplied by G(xl~), we can expect that the product will yield
the actual displacement u(x) for all x > ~. Recalling that G(xIO) vanishes,
we estimate G(xl~) by 8G(xlxo)j8xo~,at Xo == O. Finally, we multiply this
estimate for G by the source strength u(O)j~, and then go to the limit ~ -7 o.
In this way we recapture the second term on the left of the magic rule (3.40)
when Xo == O.

Somewhat similar plausibility arguments can be used to explain the first
term in the magic rule (3.40), G(xlxo)8u(xo)j8xo, to be evaluated at the
end points, see Problem (3.18). The preceeding discussion interpreting the
terms in the magic rule will be more readily convincing for readers familiar
with calculating electrostatic potentials in three dimensions. The analogue of
the simulating force is a charged surface lying just in front of the boundary
surface. In general, then, boundary conditions can be replaced by equivalent
sources at the boundaries. Indeed, turning things around, boundary condi
tions dictated by the nature of the physical apparatus are, in fact, brought
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about by appropriate source strengths lying just in the physical boundaries.
This fact will be very evident in the next chapter on electromagnetism, and
can be taken as the physical origin of the "magic".

It will be best to begin illustrating the use of the magic rule by considering
the problem we have already solved in Sect. 3.3. Accordingly, we consider the
stretched string fixed at x = 0 and at x = L, driven by a transverse harmonic
force with a delta function distribution at x = Xo. Referring to the right side
of (3.28) in the previous section, actually the result for y when the end points
are fixed, and (2.32) which defines G(xlxo), we find immediately that:

G( I ) = ~ un(x)un(xo) k -I- k
x Xo L...J k2 _ k2 I n

n=l n

un(x) = J2/Lsinknx (3.18)

kn =n1r/L n=1,2,3,... (3.14a)

The solution (3.41) satisfies the wave equation, either (3.25) with (3 = 0, or,
equivalently, (3.33). It also satisfies the homogeneous boundary conditions,
with G(Olx), G(Llx) both vanishing. We see that the expression (3.28), de
rived in the previous section yields precisely the Green's function as defined by
(3.33) and by the boundary conditions appropriate for the present problem.
The magic rule now gives as the solution with the general force, j(x):

u(x) = 1/(l1£ G(xlxo)f(xo)dxo L > x > 0 (3.42a)

=0 x>L,x<O (3.42b)

The boundary conditions on u, and on G(xlxo) at x = 0 and x = L, Le. both
quantities vanish there, have led to the vanishing of the boundary term on
the left of (3.40).

As a second illustration we consider the situation in Problems 3.15, 3.16,
namely a stretched string driven from the x = 0 end: y(O, t) = A cos wt. The
solution can be obtained directly by the method of images, as in Problem
(3.15). In Problem (3.16) we obtain the solution in terms of expansion in
normal modes using a trick. Here we show how to proceed systematically
using the magic rule.

From (3.34), which relates y(x, t) to u(x) we have that at the beginning
support:

u(xo) = As2
, Xo = 0

With the x = L point fixed we have

u(xo) = 0, Xo = L (3.43b)

Since the boundary conditions specify the values of u(x), rather than its
gradient, we are to choose the Green's function for which G(xIO) and G(xIL)
both vanish. But this is just the Green's function we have in (3.41a,b). From
the magic rule we obtain:
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u(x) = u(O) 8G(xlxo) I
8xo xo=O

(3.44) reflects the fact that the only forces on the string are at the end points.
Finally, combining (3.41) for G with (3.34) relating y to u, and remembering
(3.43a) we find:

( f2 ~ knun(x)
y x, t) == VLA~ k2 -k2 coswt L > x > 0

n=l n

This result agrees with that obtained in Problem (3.16), to which the reader
has already been referred.

As x -+ 0, the expression (3.45) does not converge. The origin of the difficulty is the
fact that G(xlxo) can not be differentiated at x == XQ. The situation is reminiscent of
convergence difficulties when Fourier transforming a square wave, as in Example 1.2.
There it was found that the Gibbs' phenomenon could be avoided by first smoothing
the abrupt edges of the square wave (converting the square wave to a good function,
Problem 1.18). Here we could, in principle, replace 8(x - xQ), the drive on the right
side of the equation (3.33) for G(xlxo), by 9m(X - xo), 9m(X) defined in (1.20)
as Jm/7f exp(-mx2

). We should, then, get converging series in (3.45) even at
x == XQ. The resulting sum for y(x, t) would be adequately represented by including
wavelengths An up to A~ < l/m, where An == 27f/kn in (3.45). Thus, we must have
k n /(27f) > yrii, or n(m) > Lyrii. To get results in (3.45) independent of m we
would have to choose m larger and larger as we edge x closer to Xo (xQ being, say,
the location of a simulating drive at XQ ~ 0). For a given difference Ix - xQI 2 ~,

m must exceed 1/~2. This, finally, gives n » L/~. The argument suggests that we
shall get realistic results from (3.45) for y(x, t) as it stands providing we take terms
up to n » L/~, where, again, ~ is the minimum allowed increment for Ix - xol.
Additional analytic insight can be obtained by studying Problem (3.16).

The procedure for obtaining the Green's function outlined in Sect. 3.3
is referred to as "expansion of the Green's function in eigenfunctions" (or
normal modes, see Chap. 6). A closed form for the Green's function with
the given boundary conditions is available from the theory of differential
equations, and can be used to find an alternative answer to (3.45) for y(x, t).
The interested reader is referred to Problem (3.17).

x = -L/2
I-----,--t--.

L_..J--..

x=L
1 I

~[lJh/2 !.....-_-....1 1 .....--.....1

X =0 x = L/2 ;

I
~r-, I

--------~ ~~
I

Fig. 3.6. Reflection of a pulse at a fixed end using the method of images
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Example 3.1. What happens to the displacement of the string when a pulse
such as the one approaching the left end of the string in Fig. 3.3b actually
arrives at the fixed support?

Solution. Let us call the function which describes the original pulse on the
string traveling to the left y (x, t) == Y (x + st).

Suppose we consider the displacement y(x, t) == Y(x + st) - Y(st - x)
with the second pulse in the neighborhood of x == -L/2 at t == o. y(x, t) is
a perfectly acceptable solution. It

a) satisfies the conditions at t == 0 for L > x > 0,
b) satisfies the wave equation for the string,
c) satisfies the boundary conditions at x == 0 and x == L (the latter for
a limited time only). At x == 0, y(O, t) == Y(st) - Y(st) == o.

Since conditions (a-c) are the necessary and sufficient conditions for a so
lution, we have solved the problem. We note that Y(st-x) is a pulse traveling
to the right, as shown. The effect of a fixed support is to produce a "reflected"
wave.

In Problem (3.15) we use the method of images to validate the result
obtained with a Green's function for a stretched string driven from the x == 0
end. An experiment illustrating that the reflected wave leads to an overall
standing wave is often demonstrated in elementary courses on wave physics.
(However, swing to practical difficulties, it is sometimes difficult to make
a convincing demonstration).

Example 3.2. Show in the usual way that the Green's function for a stretched
string given in (3.41a,b,c) can also be written in closed form as:

G
1 {sin(kx) sin [k(L - xo)]

x Xo ==(I ) ksin(kL) sin(kxo)sin[k(L-x)]
x < Xo
x> Xo

Solution. The reader can easily show that G(xlxo) satisfies the differential
equation (3.33)

82G(xlxo) 2
8x2 + k G(xlxo) == -l5(x - xo) L > x, Xo > 0

when x =1= xo, and that G vanishes at both x == 0, and at x == L. We treat
what happens at x == Xo as an additional boundary condition, see Sect. 2.4.
We must have:

8G(xlxo) I 8G(xlxo) I == -1

8x Xo+c 8x XO-c

the integral over x of the second term on the left of (3.33) vanishing as usual.
On the other hand, the derivation of G with respect to x has a discontinuity
at x == Xo:
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8C(xlxo) I _ 8C(xlxo) I
8x xo+c 8x XO-c

== l/(sinkL) [- sinkxo cosk(L - xo) - cos kxo sink(L - xo)]

== -1.

In Problem 3.17 the reader is asked to verify that the closed form for C leads
to the same result for the string driven at one end as is obtained using the
method of Example 3.1, above. One may wonder how two such different forms
for C, the closed form here, versus the formal expansion in normal modes
(3.41) can be equal. The interested reader is, again, referred to Problem
(3.17).

Problems

3.1 Find a general solution y(x, t) for a stretched string with initial dis
placement yo(x) [== y(x, 0)], and initial velocity vo(x) [== 8y(x, t)/8t It=o].
How does the development in Fig. 3.3 follow from your answer here?

Hint: Let y(x, t) == 9I(X + st) +92(X - st), where 91 and 92 are to be found.

3.2 Verify by direct integration (3.19a,b).

3.3 Verify (3.21a) and (3.21b). Discuss the results contained in these equa
tions.

Hint: see Example 1.1.

3.4 A string of length L, with end points fixed, is vibrating purely in its
second normal mode, n == 2. Its initial velocity is zero for all x.

a) Make a schematic drawing of the string at times

showing its displacement for all x.
b) Draw a diagram showing the displacement y as a function of time at

the point x == (3/8)L, and at x == L/2.
c) Explain why what you have drawn corresponds to standing waves.

3.5 A string of length of 1 meter is fixed at both its ends. How many normal
modes does it have, if we count all wave vectors smaller than 100 m-I, Le.,
k < 100 m-I?

3.6 The total kinetic energy of the vibrating string is given by the integral

L 2

K.E.(t) = 1/2J{} (~;) dx.
o

a) Why does this integral give the kinetic energy?
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b) The potential energy V(t) of a stretched string originates in the work
done against the tension T, when as a result of its displacement, the string
becomes longer. Show that

L 2

V(t) = ~J[8Y1~ t)] dx.
o

c) Use our series expression (3.16b) to show that the total energy can
be written as a sum over normal mode terms, with no cross-terms linking
different modes.

3.7 a) The power P(x, t) transmitted at any point x by the string is given
by the transverse force that the left side of the string exerts on the right side
multiplied by the transverse velocity of the string at x. Show that for any
wave y(x - st), P is given by

P(x, t) == sT(y')2 ,

where y' == dy(~) c == x - st .
d~ , ~

b) Calculate the product of the energy density for the same wave as in
part (a) (obtainable from the previous problem) and the wave velocity s.
Compare the result with the expression for P(x, t) in part (a).

3.8 At time t == 0 a string is deformed as shown in Fig. 3.7, and then
released from rest.

a) Express the displacement as an expansion in normal modes and calcu
late the coefficients An' B n.

b) The intensity of the sound emitted by the vibrating string at any of
the normal frequencies is proportional to the square of the amplitude of the
mode. Show that the intensity of sound corresponding to the fifth harmonic
is less than 0.2 % of that corresponding to the fundamental mode.

Hint: Are any even harmonics present? And,

Jhx. d 2h. 2hx C
L/2 Slnax x == a2 L Slnax - La cosax + .

c) Draw the string at t·== 0, taking into account only harmonics up to the
third. Discuss, also paying attention to the various signs (±).

1
x=o ~ h
~----L--~Tx = L/2 x = L

Fig. 3.7. Problem 3.8
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3.9 a)2 Find the two normal modes for the coupled oscillator problem in
Fig. 3.8.
Hint: In the equations of motion substitute

I == 1,2

and find the two possible values of w which give nontrivial solutions for XI.
Take ml == m2 == m.

b) Show that when k2 ~ kl , the energy if initially carried by the left
mass ml will slog back and forth between ml and m2 with a period 1r/ {3,
(3 == k2 /m, m the common mass.

Hint: Express Xl (t) and X2(t) in normal modes.
Take as initial condition:

Xl (0) == A,

X2(0) == 0,

dXI/dtlt=o == 0

dX2/dtlt=o == o.
Now calculate xI(t)xi(t), X2(t)X;(t), i.e. the amplitudes squared.

c) Two identical pendula are coupled by having their suspension rods
rigidly attached at the points of suspension to the two ends of a horizontal
torsion bar. Give a qualitative analysis of what happens if the left bob is
pulled to one side, (Le. perpendicular to the bar) and released from rest,
while simultaneously the right bob is released from its equilibrium position
at the bottom.

This experiment makes for a good laboratory demonstration.

3.10 A wire of length 1-1/2 meters weighs 2.5 grams. What mass in grams
must be suspended from its end so that resonance with the third normal
mode is achieved when a driving electromagnet is operated at 60 Hz?

3.11 The general way of expressing an arbitrary function y(x) periodic in
the interval 0 to L is by means of the complete, periodic set of functions

~ 2n1rx ~ 2n1rx
y(x) == Li An sin -y;- + Li Bn cos -y;- .

n=l n=O

How is it, then, that the set sin(n1rx/L) , n == 1,2,3 ... has been cited as
complete, admittedly for fixed end points?

Hint: Think about the larger interval 0 to 2£, and consider a function of
suitable symmetry.

2 Problem 3.9 is important for Chap. 6 on wave mechanics.
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3.12 a) Show that the series for y(x) in Problem 3.11 can be written as
00

n=-oo

where kn == 21rn/L. Find an in terms of An and B n.
b) Show that

+L/2

an(kn ) = 1/,;2; J y(x)e-iknXdx

-L/2

where x extends from -L/2 to L/2, instead of from 0 to L.
c) What integral does y(x) in (a) approach as L -+ oo? What is the

corresponding equation for a(k)?

3.13 In a sound wave in a gas traveling in the x direction the excess pres
sure p(x, t) is proportional to the compression 8y(x, t)/8x, viz. p(x, t) ==
-B8y(x, t)/8x. Here y is the average molecular displacement from equilib
rium, and B is the "adiabatic bulk modulus of elasticity". If sound waves
of fixed frequency generated by a tuning fork are sent down a glass column
whose length can be adjusted, then resonances set in.

a) By considering the forces on and acceleration of a cross-sectional slice
of gas of thickness ~x, show that

282y 82y
s- -

8x2 8t2

where 8
2 == B / Q, (] is the density.

b) Find the set of normal modes Yn(x, t) for the average displacement of
air molecules from equilibrium taking into account the boundary conditions
of no excess pressure on top of the column, and no average displacement
at the closed-off bottom. Are the modes longitudinal (displacement in the
direction of propagation), or are they transverse, as the waves on a string?

c) Discuss the completeness of the set of modes you have suggested fol
lowing the method of Problem 3.9.

Hint: Consider the range -2L < x < 2L.

d) Without actually doing the calculation, explain how you would go about
deriving a result analogous to (3.28), and suggest what the result might look
like, assuming that the system is being driven from somewhere near the head
of the air column. At what frequencies do we find resonances?

3.14 A force F(t) == Fo coswot is applied vertically to the x == 0 end of a long
string of density Q and horizontal tension T. (A long string corresponds to
the situation where any reflected signal is either too small or comes too late
for consideration.)
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a) Why do we call the expression y == -Yo sin(wox/s - wot) a traveling
wave? What is the physical interpretation of the relation Ai == s for this
wave?

Hint: How many waves pass a fixed observer in unit time?

b) Under the assumption that a traveling wave originates at x == 0 which
is the driven end of the string, show that the ratio F(t)/[8y(0, t)/8t] is given
at all times by

F(t) T
8y/8t s

where s is the wave speed. This ratio is the mechanical impedance (electrical
analogue c/I) characteristic of the string. What happens qualitatively to the
travelling wave if some length of the string is tied to a stretched string with
the same characteristic impedance, with a different characteristic impedance?
Hint: See Problem 6.11.

c) Use the principle of superposition to explain why for a long force-free
string extending from x == 0 we can write

8y(x, t)
8t

00

= ~ j[A(W) cos(wt - wx/s) + B(w) sin(wt - wx/s)]dw x > 0 .

o

d) If at the x == 0 end

ay~~, t) = 1/2 F;S (eiwot + e-iwot)e-t2/4n ,

show that

A(w) = J2;r (F;S) [gn(WO - w) + gn(WO +w)]

with

9n(X) == vn/1re-nx2 ,

B(w) ==0.

e) Treating exp[i(wt - wx/s] as a good function, use parts (c) and (d) to
find 8y(x, t)/8t, and y(x, t) in the limit n -+ 00.

f) Use parts (c) and (d) to find 8y(x, t)/8t without letting n -+ 00, and
discuss your result.

3.15 a) The x == 0 end of a string under tension and fixed at x == L is
driven so that y(O, t) == Acoswt. Use the method of images to show that:

A .
y(x,t) = . ( L/ ) sm[w(L-x)/s]coswt

SIn w s
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Hint: Start by letting

y(x, t) == 0: sin [k(L - x) + wt + 8] + ,Bsin [k(x - L) + wt + 8']

an incoming and reflected wave, with no loss of generality. 8, 8' are initially
unknown phases. Compare your result with the statement that, if one end
of the string is harmonically driven while the other end is fixed, a standing
wave forms on the string. What happens as the driving frequency approaches
a natural frequency, Le. the frequency of a normal mode?

b) Show that the complex impedance of the string, Z [the ratio of the
applied force to the transverse velocity as in Problem (3.14b)] is given by:

y == Z-l == -ij(s[2) tan(wL/s)

Y, the reciprocal of Z is called the admittance. Does the string absorb power?
Discuss your result for Z briefly, Le. as a function of the driving frequency
w. When Z is infinite, what is the x == 0 end of the string doing during
vibration? Could one build an oscillator from a vibrating string?

N.B. The electric analogue of the vibrating string is a capacitor and
inductor in parallel. See Problem 2.11.

3.16 a) The x == o· end of a string under tension and fixed at x == L
is driven so that y(O, t) == A cos wot. Find y(x, t) by letting z(x, t) ==
y(x, t) + [A(x - L)jL] C08wot, and using the method of Sect. 3.4.

b) Check that your result agrees with (3.45).

Hint: (1 - x / L) can be represented as:

1 - ~ = ~~ sin (n1rx) L > x> O.
L L.J n7r L

n=l

The right side of this equation is not defined at x == O. It is this contribution
to y(x, t) that leads to the convergence difficulties with (3.45). See also the
discussion at the end of Sect. 3.5.

c) Compare and contrast your result with the statement that if one end
of a string is driven at a natural frequency while the other end is fixed, the
corresponding standing wave forms on the string.

3.17 a) The closed form for the Green's function of the stretched string
given in Example 3.2 is:

G 1 {sin(kx) sin [k(L - xo)]
k(xlxo) = ksin(kL) sin(kxo)sin[k(L-x)]

x < Xo
x> Xo

Use this result, along with the magic rule (3.40), to verify the expression for
y(x, t) found in Problem 3.15 for the string driven from the x == 0 end.

b) Show that the Green's function given in (3.41), Le.
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k i- kn,x i- xo,L > X,Xo > 0

is equal to the closed form result, above, in Part (a) for all physical x and xo.
Liouville's theorem in complex variable analysis states that a function of
z which is analytic for all finite values of z and is bounded everywhere is
a constant. It follows that two functions with the same singularities in the
complex plane can differ only by a constant. Here the reader must show
that if one of the forms of Gk(xlxo) goes to infinity in the complex k plane as
A/(k-a) as k -+ a, the other form for Gk(xlxo) goes to infinity as Bj(k-(3),
with A == B, a == (3.

Why must we check that both G's go to zero as k goes to ±oo, and, also
k goes to ±i oo?

3.18 Give a plausibility argument for the first term
- G(xlxo)8u(xo)/8xolxo=o in the magic rule (3.40).

Hint: In general with a source S8(x - d) at a point d:

u(x) == G(xld)S

If du(x)jdxlx=o == a is specified, then we can obtain a solution with (3.40) by
choosing 8G(dlxo)/8xo == 0 at Xo < d. Reciprocity yields: 8G(xld)j8x == 0
at x < d.

We can, now, find the source strength S at Xo == d of the simulating force
from the equation:

S8G(xld)/8xlx=~+c== a

See Example 3.2 for inspiration in finding the unknown derivative in this
last equation, thereby obtaining S. (This S will produce the given initial
condition for x > d, rather than having the derivative vanish, and at the
same time will yield the very motion as the first term in the magic rule.)

3.19 Taking the full complex result obtained in Sect. 3.4 for en show that
for a long string, and when b « w, the driven solution (3.27) reduces to

y(x, t) = :;Re {W --i~/2 exp [iW (t - x ~ Xo ) ] exp [ -(x~xo)b] }

when x > xo

FOR {-i [. ( x - xo)] [(x - xo)b]}== - e .b/2 exp IW t+ -- exp 2
(lS W - 1 S S

when x < Xo .

These are two damped traveling waves originating at x == Xo heading in oppo
site directions. Here a long string means that L » s jb and that Lw jS» 1,
where W is the driving frequency, and that the driving point Xo is likewise far
from either end.



Further Reading 85

Note that for small b/w
00

J eivPdv 1l"i
2 ob 2 ~ ( °b/2) exp[-P(iw + b/2)]v +1 w-w W-l

-00

(W::b/2) exp[P(iw + b/2)]

Further Reading

when P> 0,

when P < o.

w.e. Elmore, M.A. Heald: Physics of Waves (Dover, New York 1985)

P.R. Wallace: Mathematical Analysis of Physical Problems (Dover, New York
1984)

P.M. Morse, K.V. Ingard: Theoretical Acoustics (McGraw-Hill, New York
1968)

P.M. Morse, H. Feshbach: Methods of Theoretical Physics (McGraw-Hill, New
York 1953)



4. Electromagnetic Waves

Abstract. The development of one dimensional waves in Chap. 3 is applied
to the six dimensional system of electromagnetic fields. The integral form of
Maxwell's equations, assumed to be familiar to the reader from introductory
treatments, begins this chapter. Mathematical definitions and the physical
significance of the vector operators of gradient, divergence, and curl are given.
In the appendix to this chapter the reader will find proofs establishing the
equivalence for these operators of the definitions and physical interpretations.
The differential form of Maxwell's equations follows. Beginning with free
space, we then show the Maxwell equations leading to wave equations for
the electric and magnetic fields. Solutions of these wave equations give us
the propagation of electromagnetic waves, i.e., light in the visible region,
etc. The solutions can be modified to apply to closed systems, cavities, in
analogy to a finite string with fixed ends. Again, carrying over from Chaps. 2
and 3 we have normal modes, natural motion, and, Problem 4.21, driven
motion and resonance. Finally, we solve Maxwell's equations for the general
case, Le., with distributed sources, charge and current densities, pervading
the space. The Helmholtz theorem, which specifies what it is that determines
vector fields, is given, and used to find the electric and magnetic fields in
terms of the sources. We, then, apply the general solutions to calculating the
power radiated by a dipole antenna. In the last section we show how the
Green's function technique provides a systematic solution to the driven wave
equation.

4.1 Maxwell's Equations in Integral Form

The evolution of magnetic and electric fields in space and time has much in
common with the mechanical motion of distributed systems of the previous
chapter. The fields will also be found to satisfy certain wave equations. The
sources of the mechanical disturbances are applied forces, and they commonly
appear on the right side of the wave equations; we have called them the driv
ing terms. The sources of the electromagnetic fields are the electric charges q
and the electric current densities j, and they, also, are found on the right
side of the corresponding wave equations. Electromagnetism is complicated
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by the fact that there are two fields, the electric field E, and the magnetic
field B, and that these are coupled together.

The reader is assumed to have some familiarity with the integral form of
the laws of electromagnetism:

f E 0 dB = l/co f gdv

f Eodl =-JaB/atodB

fBodB=O

f B 0 dl = 1-£0J(j + coaE/at) 0 dB 0

(4.1)

(4.2)

(4.3)

(4.4)

These four relations are the integral form of Maxwell's equations. They enable
us to find the vector fields E(r, t) and B(r, t) for any given charge per unit
volume, e(r, t), and any given distribution of electric current per unit area,
j(r, t). We shall show how to find the fields, Le., to solve the equations, in
the course of this chapter.

The first equation (4.1) is Gauss's Law. It states that the integral of the
electric field over any arbitrary closed area, the so-called electric flux, is equal
to the total charge enclosed within the volume bounded by that same area
(divided by co). The second equation, Faraday's Law, tells us that the line
integral of the electric field around any closed path is equal to minus the time
rate of change of the magnetic flux, Le., the magnetic field integrated over
the area enclosed by that path. The latter two equations contain integrals of
the same nature as the two preceeding ones. In (4.3) we see that there are no
magnetic sources analogous to the electric charge density. Equation (4.4) is
Ampere's Law as modified by Maxwell. co and Mo are called the permittivity
and permeability of free space; co == 8.85 X 10-12 , and Mo == 41T X 10-7 , in
the mks system of units.

As the reader knows, these equations can be used directly only in situ
ations with special symmetry. For example, with (4.1) we can always find
the electric field of a charged plate of infinite extent. Similarly, (4.4) enables
one to find at once the magnetic field of an infinitely long current carrying
conductor.

4.2 Maxwell's Equations in Differential Form

Maxwell's equations in differential form are in terms of the operators gradient,
divergence, curl. These operate on vector fields in a prescribed manner, and
the result of each operation has a physical interpretation. We will give both
the manner of operation and the interpretations here. These interpretations
are not obvious. In the appendix we outline proofs in the simpler situation
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of two dimensions. The interested reader may see what sort of considerations
are involved.

In cartesian coordinates we define the vector operator "\7" as

v == (8/8x)i + (8/8y)j + (8/8z)k

with i, j, k the unit vectors in the x, y, z direction.

Gradient: The definition is

grad'l/J(x, y, z) == Vtt/J == (8tt/J/8x)i + (8tt/J/8y)j + (8tt/J/8z)k ,

(4.5)

(4.6a)

where tt/J is a scalar function of x, y, z on which we are to operate. The gradient
creates out of a scalar field tt/J(x, y, z) the vector field Vtt/J. If c is a unit vector
in some given direction, then the physical interpretation of V'l/J is that c· V tt/J
gives the rate of change of tt/J in the direction of c. Noticing that

(c· Vtt/J) == IVtt/J1 cos 0

where 0, the angle between the two vectors, goes to zero when the unit
vector c is aligned with V tt/J, we see that V tt/J points in the direction of
the greatest rate of change of 'l/J, and its magnitude is that greatest rate
of change. In electrostatics the relation between the electric field and the
scalar potential cP is E = - V cP, as the reader may know.

Divergence:

divF(x, y, z) == V· F == 8Fx/8x + 8Fy/8y + 8Fz/8z . (4.6b)

We formally take the vector dot product between V and F, and create out
of the vector field F(x, y, z) a scalar field V · F. The divergence measures
the net outward flux of the vector field F from a vanishingly small volume,
per unit volume. That is

V. F == f F· dB
fdv

as f dv -+ o. (4.6c)

The term "flux" for the surface integral of the vector field has its origin in
fluid mechanics where the field is the velocity and the flux is then the total
fluid flow through the surface per unit time.

Curl:

curIF(x, y, z) == V X F == [(8/8x)i + (8/8y)j + (8/8z)k]
x [Fxi + Fyj + Fzk] . (4.6d)

The curl is obtained by formally calculating the vector crossproduct of del
and the vector field F(x, y, z) on which it operates. A vector field again yields
a vector field. The physical interpretation of the curl is that if we take the
line integral of a vector field F around the contour enclosing a vanishingly
small area ~B, f F· dl, then in the limit as the magnitude of the area I~B I
goes to zero, the curl satisfies
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(VxF)·l:1S= !F.dl. (4.6e)

Here ~S points perpendicularly to the plane of integration in the usual right
hand rule manner. It follows, recollecting our discussion of the gradient, that
the direction of the curl is perpendicular to that plane of integration oriented
to yield the greatest value for the line integral per unit area. The magnitude
of the curl is the line integral around f1S when so oriented, divided by I f1S I
in the limit that I~S I goes to zero.

The curl can be said to give the "circulation" per unit area at a given
point in the vector field. It measures the rate of twisting of lines of force, or
of flow, the "vorticity" of the field on which it is acting. If the field is the
velocity of a fluid, a nonvanishing curl implies rotation of the fluid.

To someone exposed to them for the first time, these three definitions may
seem like much to assimilate. We believe that if the readers follow the rest of
the development of this chapter and study the examples and problems, they
will gradually acquire a sufficient mastery of these vector operators.

There exist two basic theorems - one concerning the divergence, discov
ered by Gauss, the other, concerning the curl, discovered by the English
physicist G. Stokes (1819-1903). Consider the integral f V . Fdv taken over
some arbitrary closed volume such as the one shown in Fig. 4.1, F(x, y, z)
is a continuous vector field. From the definition of the divergence we know
that an element of the integrand, divFdv (dv being the element of volume),
equals the net flux issuing from the element, Le., flux out less flux in. The
flux out from any element either enters the next element or, finally, if the
element is at the surface, it issues. Accordingly, we have Gauss's theorem:

j V . Fdv = j F· dS . (4.7)

Fig. 4.1. The net flux issuing from the
small volume ~v is [V ·F(x, y, z)]~v. If
we integrate over the entire closed arbi
trary volume, we shall be left with the
net flux issuing from its outside surface
- Gauss's theorem

In Fig. 4.2 we show an arbitrary surface bound by some particular contour.
We want to consider the following integral taken over the surface bounded
by the contour:

j(V X F)· dS.

We already know that the element (curIF· dS) represents the line integral of
the vector field F around the little contour binding dS. If we begin to add
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the contributions to the integral from adjoining elements of area then the line
integral over every internal contour will cancel, as there will always be line
integrands in opposing directions. All that will be left is the line integral of F
around the contour binding the entire area. Accordingly, we have Stokes's
theorem, which reads

f (V X F) . dS = f F · dl . (4.8)

The integral of the curl of a vector field over an arbitrary surface is equal to
the line integral of the vector field around the contour binding the surface.

Fig. 4.2. The line integral around one
of the little contours is given by [V x
F(x, y, z)] . dB. If we integrate over the
entire surface, then line integrals over in
ternal contours will cancel, giving us the
line integral of F over the outside contour
- Stokes' theorem

We now use these theorems to recast the Maxwell equations (4.1-4) into
their more accessible form as differential equations. We can write the first
Maxwell equation (4.1) as

V·E=gjeo. (4.9)

Obviously we can go back from here to (4.1) by Gauss's theorem simply by
integrating both sides of (4.9) over an arbitrary volume. It is the arbitrary
ranges of all integrations in the integral form of the equations that gives
them their power. By choosing two volumes in (4.1) only slightly removed
from one another and subtracting, we can extract the Maxwell equation in
the differential form (4.9) directly from (4.1). The two forms of the equation
are exactly equivalent.

Similarly, the use of Stokes's theorem, (4.8), leads to a differential form
for (4.2):

V X E = -aB/at. (4.10)

And having gone this far, we easily finish by rewriting (4.3) and (4.4):

V·B=O,

V X B = J-to[j + coaEjat] .

(4.11)

(4.12)

Equations (4.9-4.12) are the differential form of Maxwell's equations. These
are the equations most generally used in more advanced treatments of elec
tromagnetic theory.
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4.3 Plane Electromagnetic Waves in :Free Space

In Chap. 3, Waves on Stretched Strings, we learned to solve two kinds of
problems, that of the subsequent development of a system which had been
subjected to a certain kind of initial disturbance, the so-called initial value
problem, and second, the problem of determining the response of the system
to a prescribed set of continuously applied forces, the forced motion of the
system. We shall now study the analogous problems for electric and magnetic
fields.

We have already seen that the equivalents to applied forces in mechanical
systems are the sources of the fields, electric charges and electric currents.
In this section, as a beginning, we will analyze the situation when there are
no sources, only a disturbance, originally produced either at an earlier time,
or at a different place. Accordingly, we have free space. (The presence of
matter generally implies the existence of some charges and currents, see next
chapter.) For simplicity we shall restrict ourselves to cartesian coordinates.
Although we wish to work in three dimensions, it is usual to analyze problems
in any coordinate system by first treating disturbances which vary in only
one of the coordinates; such disturbances do not have any spatial variations
whatever over surfaces that, in the cartesian system, are planes. For example,
for a disturbance in the z-direction one has the planes with z equal to various
constants, which are the x-y plane or the various planes parallel to it. In this
section we shall consider, then, plane electromagnetic waves in free space.

We are seeking plane solutions for E and B to the Maxwell equations,
solutions E(z, t), B(z, t) that depend on z and the time t, but not on x or y.
It is not obvious that we can find such solutions, but we shall show that we
can, and point out how they may be extended to form a complete set. Thus,
we shall have the desired basis for doing any electromagnetic problem in free
space despite our having started with restrictions.

The plane solutions we are seeking will be transverse. A transverse field
may be taken as one which has zero divergence. It follows from (4.9), div
E == (2/£0, that in free space, where the charge density (2 is zero, V . E == 0,
and we always have V· B == o. Alternatively, we mean by a transverse solution
that E and B will lie completely in the planes perpendicular to the direction
of propagation, the z-direction. In the Problems we shall show that the two
definitions of transverse are equivalent.

We still have no knowledge as to the direction of the E and B vectors
in the x-y planes. It turns out, as we shall see, that there will be no loss of
generality if we initially assume that the E field, and, in consequence, also
the time derivative of E, aE / at, points in the same direction for all z and t.
We have the situation shown in Fig. 4.3, where we have taken the x-direction
for E and aE / at. In this figure we show the projections of the electric lines of
force on the x-z plane as vertical lines, and on the y-z plane by dots signifying
the field emerging from the latter plane in a perpendicular direction.
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Fig. 4.3. Transverse EM wave. The dots signify the emerging electric field out of the
y-z plane. We calculate :f B . dl around the rectangle shown, and equate it to J.Lo
times the displacement current JcO . aE/ at . dB threading this circuit

Let us apply Maxwell's equation in integral form (4.4) (extension of Am
pere's Law) to this situation. We choose a small rectangle in the y-z plane,
as shown in Fig. 4.3, and integrate the magnetic field around its boundary.
Since B depends only on z and not on y it is obvious that the contributions
to the line integral from the two segments parallel to the z-axis cancel each
other. For the remaining two segments going counter clock-wise, as directed
by the right-hand rule for a current in the positive x-direction, we have

f B . dl = -By(z + .6.z, t).6.y + By(z, t).6.y .

In the absence of current density, (4.4) is

f B· dl = /lata JaE/at· dB .

For our infinitesimal rectangle, (4.4) combined with our result for the line
integral of B gives

[ ( ) ( )]
aEx (z, t)

- By z + ~z, t - By z, t ~y == J1o€o at ~z~y .

Dividing both sides by ~z and going to the limit ~z -+ 0 we find

aBy(z, t) oEx(z, t) (4.13)- az == J10€O at .
We could get more information by integrating around rectangles in the

other two planes. Actually we can get the relations we are seeking directly
from the differential form of the Maxwell equation, that is, from (4.12). In
cartesian components we have
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v X B= [(~) i + (:y) j + (:Z) k] X [BxCz, t)i + By(z, t)jJ

= (~) k X [Bx(z, t)i + By(z, t)jJ

== (8Bx (z,t)) . _ (8By(z,t)) .
8z J 8z t.

Remembering that 8E/8t is in the x-direction, and that j == 0, (4.12) reads

V B _ (8Ex (z,t)) .
X - /-loco 8t t .

Or, combining with our result for V X B, we have

(
8Bx (Z, t)) . _ (8By (Z, t)) . _ (8Ex (Z, t)) .

8z J 8z t - /-loco 8t t .

The x-component of this last equation just gives us again (4.13), as it should.
The y-component of the equation tells us

Bx(z, t) == 0 . (4.14a)

If boundary conditions so warrant, we can always add in fields that are
spatially constant.

Let us now process the differential Maxwell equation (4.10) in the same
way as we have (4.12). By analogy, remembering that E has only an
x-component, we find

( 8E~~, t) ) j = _ ( 8~x ) i _ (8~y ) j _ (8~z ) k .

Actually, we already know that B x does not exist and that B z vanishes,
since both E and B are transverse. Here we see that B z would have to
be independent of time. Since we are not interested here in any stationary
situation that might be superimposed on our time-dependent solutions, we
also have that

(4.14b)

By looking at both (4.14a) and (4.14b) we learn that the magnetic field, like
the electric field, is confined to one direction, that of the y-axis. By looking
at the y-component of our last relation, we get a second equation to go with
(4.13),

8E 8B
/-lOC0at == - 8z ' (4.13)

8E 8B
8z -at ' (4.15)

where we have dropped the x subscript on E, and the y subscript on B.
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It is easy to uncouple these equations. By differentiating both sides of the
first equation with respect to t, and of the second with respect to z, and then
subtracting, we find

82E 82E
J-toco 8t2 - 8z2 == 0 . (4.16a)

We can also differentiate the first with respect to z, and the second with
respect to t, and add. Then we find

82 B 82 B
J-toco 8t2 - 8z2 == 0 . (4.16b)

Now each of these equations is precisely of the same form as the wave
equation we derived in the previous chapter for the displacement of the
stretched string. We, therefore, have solutions, for example, of the form

E == Eo sin(kz ± wt),

B == B osin(kz ± wt).

(4.17a)

(4.17b)

Eo and B o are amplitudes for the disturbance, and k and ware the wave
vector and angular frequency, respectively. We note that we have taken the
same wave vector and frequency for E and B, and are taking them in phase.
These restrictions are necessary to satisfy (4.13) and (4.15). We must also
have

Eo == cBo . (4.17c)

From the wave equations we know the speed of the wave; it is given by

c == 1/VJ-toco . (4.18)

The reader may well be familiar with the fact that when the speed of light
was measured, it was found to agree very well with the value one calculates
from (4.18) using measured values of the permittivity and permeability of
free space. This agreement at once elucidated the nature of light. The entire
development, the analytical part credited above all to James Clerk Maxwell
(1831-1879), and the most successful measurements (in 1880) to Albert A.
Michelson (1852-1931), can be considered as possibly the greatest discovery
in physics to date, certainly of the 19th century. All of electromagnetic radi
ation, from gamma rays at the high frequency end of the spectrum to long
radio waves at the low end, satisfy the Maxwell equations, and propagate with
the same velocity c in free space. The understanding of all these phenomena
originates from the more limited laws first discovered by Coulomb, Ampere,
and Faraday.

The picture we have so far of light is that of time- and space-varying
electric and magnetic fields as in (4.17), with the electric vector being fixed in
one direction (our x-axis), the magnetic vector fixed at right angles to it (our
y-axis), and the light propagating in the direction mutually perpendicular to
these two (Fig. 4.4).
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Fig. 4.4. The direction of propagation, given by E x B, the
electric field E, and the magnetic field B form a mutually
orthogonal set. The Poynting vector S == (E x B / /Lo) gives
the intensity (see Problems)

The reader may know that even in free space electric and magnetic fields
carry energy, with energy densities (1/2)EoE 2 and B 2 /(2J.Lo), respectively. As
a result, one can show (see Problems) that the intensity (energy/unit time
- unit area) of the electromagnetic wave is given by the so-called Poynting
vector 8 (after John Henry Poynting, 1852-1914):

8 = (1/J.Lo)E x B . (4.19)

Not only does 181 give the intensity of the wave, but as the reader can readily
verify, 8 "points" in the direction of the propagation. The three vectors
E, B, 8 conveniently characterize a plane EM wave.

Unlike mechanical waves, no medium is required for EM propagation.
Going back to Fig. 4.3 and the derivation of (4.13) we see that what produces,
or "drives", the magnetic field are the sheets of displacement current density,
EoGE / at, which we find arranged in planes parallel to the x-y plane. (The
reader may find it helpful to look at Example 4.1 at the end of the chapter.)
What is the origin of the displacement current sheets? The answer is that the
sheets of changing magnetic field, which also lie in planes parallel to the x-y
plane but with B pointing at right angles to E, in turn generate the E fields,
entirely in accordance with Faraday's Law. Of course, since the wave carries
energy, something has to start the disturbance, just as one has to wiggle the
end of a stretched string to get propagation there. Oscillating electric charges,
be they comprised of the oscillating material components of a hot body, or
be they the currents set up in a radio antenna, start the disturbance.

The radiation we have studied is plane-polarized, the "plane" being the
x-z plane to which the electric field is confined. There is nothing special
about the x-z plane. In general, light is comprised of radiation polarized in
every direction. Mathematically, to get completeness, we add to the mode
we have considered a second mode, which has fields rotated through ninety
degrees about the z-axis relative to the first, Le., the E field points in the
y-direction, and the B field in the -x-direction. Together these are the two
modes of polarization propagating in the z-direction which can be combined
to give any desired net polarization.

In Chap. 1 we discussed how any function defined in one dimension be
tween + and - infinity can be represented by the complete set of states

sinkx, coskx; k ~ o.
One can generalize this representation to three dimensions by taking the
"wave vector" k as truly a vector with a direction in space, rather than just
as a number. In three dimensions the complete set of states becomes
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sink· r, cosk· r

sink· r = sin(k1x + k2 y + k3 z) ,

where k1, k2 , k3 are the cartesian components of wave vector k. sin k . r
represents a plane wave propagating in the direction of k, see Problem 4.6.

To find a complete set of functions with which to represent any electro
magnetic signal (natural motion), we need to similarly generalize the plane
EM waves we have been studying. We enlarge our set of waves by allowing
them to propagate in arbitrary directions, rather than just in the z-direction.
Since we have been talking of traveling rather than standing waves, we also
allow for negative values of k. A complete set of EM waves is accordingly

E == Eo sin(k . r - wt), with

B = Bosin(k· r - wt), 00 > k1 ,k2 ,k3 > -00.

(4.20a)

(4.2Gb)

Since the set is again to be transverse, we must further restrict Eo to take up
an orientation perpendicular to the wave vector k, and Ba will be perpen
dicular to Eo. Once such an orientation has been chosen (determination of
plane of polarization), the complete set of modes is obtained by allowing, for
each choice of k, one further choice of Eo, that perpendicular to the original
choice. With two polarizations chosen for every k in (4.20a,b), we have the
desired complete set of functions for expressing the propagation of any EM
signal in free space.

We recall from Chap. 3 (Problem 3.14) that in a one dimensional situation
where reflections can be neglected, a time harmonic signal will be carried by
a single traveling wave. Much the same considerations apply in analyzing
the radiation from, say, a distant television antenna. In the vicinity of the
antenna, Le., only a small number of wavelengths or less away, the radiation
pattern will be quite complicated. However,·many wavelengths away it will be
spherical, and radiation of each frequency will be carried by a single traveling
wave, in this case spherical. Such a spherical wave can in turn be resolved into
plane waves of the type in (4.20a,b), since these constitute a complete set. In
general, the dimensions of the receiving antenna are small indeed compared
to the radius of curvature of the transmitting wave, which means that the
signal of a given frequency received by the antenna can for practical purposes
be described by one wave of the set (4.20a,b), that heading in the direction
of the receiver. Similarly the spherical traveling waves carrying the sun's
radiation will converge at the usual focal point of a simple lens, indicating
that the lens, tiny on a solar scale, is receiving plane waves.

In the next section we shall be concerned with electromagnetic radiation,
again in source-free space, but confined within boundaries, i.e., radiation
in cavities. We shall see that the solutions obtained there have much in
common with those obtained here for unconfined free space, indeed, they
are combinations of a finite subset.



98 4. Electromagnetic Waves

4.4 Distributed Electromagnetic Systems - Cavities

In Chap. 2 we analyzed the dynamics of mechanical and electrical systems
with one degree of freedom. In Chap. 3 we were concerned with distributed
mechanical systems. We must now study distributed electrical systems. We
have seen that when one wishes to construct electrical oscillators one em
ploys as the timing element L-C lumped circuits. These display the same
characteriztic resonance response as their mechanical counterparts, springs
and pendula. However, as the resonance frequency increases to beyond the
usual radio-frequency range the lumped L-C circuits become unsatisfactory
due both to losses by radiation, and also to physical difficulties of making suf
ficiently precise circuit elements with very small values of Land C. Unwanted
capacitance between the conductors comprising L, and similarly "stray" in
ductance become too large. The small elements automatically evolve into
physical systems that are more accurately viewed as distributed, see Feyn
man's Lectures on Physics 11 listed under Further Reading. The new sys
tems are nothing but enclosures, cans or boxes of some shape, with walls
constructed of materials that are good electrical conductors. We call these
systems resonant cavities. To obtain high frequency oscillators one can couple
the cavities into the remaining circuit with small wire antennas, or one can
even couple them more directly to the current by having a free electron stream
pass through them, as is done in the klystron.

Distributed electrical systems extend, of course, beyond closed systems
(cavities) to open systems employed in the transfer of energy. At high frequen
cies the transfer of energy along ordinary wires is again accompanied by excess
losses due to radiation, and one resorts to coaxial cables and waveguides. The
analysis of these open systems depends upon our ensuing analysis of cavities.
We restrict our rather detailed study in the text to just the cavities, which
will· be taken to be simple rectangular ones, with examples of open systems
given in Problems.

Thus, we wish to develop the space-time behavior of the electric and
magnetic fields in a rectangular cavity, measuring a x b x d (Fig. 4.5). No
energy is added to or taken away from the fields confined to the interior of the
metal box. We are, therefore, talking about the natural behavior of the fields.
As in previous chapters one can subsequently discuss the drivenbehavior, Le.,
what happens if a little antenna is placed inside the box and connected to
an externally generated signal. (The details of a driven situation are treated
in the Problems.) Although we can easily arrange not to supply power to
the cavity beyond the first impulse that creates the fields, there will be, just
as in the systems considered in earlier chapters, some losses, again basically
of a frictional origin. These will slowly dampen whatever electromagnetic
activity we have excited within the cavity. The lo~ses will arise because our
fields are accompanied by electric currents in the walls of the cavity, which
are never perfect conductors. We are neglecting these losses.
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Fig. 4.5. Rectangular cavity 
a closed box with highly conductive
walls. Also shown by the arrows, cur
rents in the back plate for the TEI03
mode
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(4.21)

The possible electric and magnetic fields in the cavity are determined,
much as was the displacement of the stretched string, by finding which fields
are both solutions of the wave equations that govern them, and satisfy bound
ary conditions imposed by what happens at the walls of the cavity. We shall
also have to think about the subsidiary conditions, V' . E = 0, V' . B = O.
The boundary conditions for the stretched string that we considered were
simple, neither end could move. The boundary conditions for the electric
and magnetic fields are less obvious. We have decided to work with cavity
walls that are perfect conductors. In this case the electric fields will adjust
themselves so that their tangential components vanish at the boundaries.
Were this not the case, the walls would be carrying infinite currents, giving
rise to infinite fields. In practice, with good but not perfect conductors, a very
small tangential component of the field remains. Our idealization is giving us
a practical but not perfect solution. Since the electric fields do not penetrate
the walls, we might expect to find restrictions on the accompanying magnetic
field. The actual condition turns out to be that the normal component of B
vanishes at the boundary. We have

{
Ell =0

at boundary B.l = 0 .

The second condition also requires (4.11), V . B = 0, for its derivation,
see Problems. In fact, for perfect conductors we can find the fields without
the second condition. It is satisfied automatically if the boundary condition
for the E field is satisfied. Ultimately the reason for this is the internal
consistency of the Maxwell equations.

In (4.20) we have given a complete set of functions for expressing the
electromagnetic field in free space, Le., no sources, and with boundaries at
infinity. These functions satisfy the time-dependent Maxwell equations. It
turns out that a suitable subset of these functions can likewise be made
to satisfy the boundary conditions for our rectangular cavity, and to form
a complete set, a basis, within the restricted space of the cavity.

The functions in (4.20) are traveling waves. To accommodate the given
fixed boundaries of the cavity they must first be recombined to form standing
waves. We shall show that the standing waves which form the basis in our
cavity are
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Ex = El cos wt cos klx sin k2y sin k3 z ,
E y = E 2 coswtsinklxcosk2ysink3z,

E z = E 3 coswtsinklxsink2ycosk3z.

(4.22a)

(4.22b)

(4.22c)

where El, E 2 , E 3 , are amplitudes, kl , k2 , k3 , are wave vector components.
Let us look at (4.22a) in some detail. We have chosen sine functions for

the y and z dependence of Ex so as to secure vanishing of the tangential
component of E at the boundaries of the cavity at y = 0 and z = o.
Further, looking at all three equations, the boundary conditions restrict the
components of the wave vector k to the subset

(4.23)

where I, m, n are the positive integers, 1,2,3 ... , and at most only one of
them may vanish, and a, b, d are the stated dimensions of the cavity.

As previously, k 2 = w2 / c2 , where c is the speed of light. In consequence,
the angular frequencies for natural motion are

w~m,n = c2 (kr + k~ + k5), (4.24a)

= c2 (12Jr2/a2 + m 2 Jr2/b2 + n 2 Jr2/d2 ) • (4.24b)

We note that the phase in (4.22a) has been arbitrarily set equal to zero.
Actually it would be determined by the initial conditions resulting from
excitation of the cavity.

As in free space the condition V . E = 0 will be satisfied if k is chosen
perpendicular to E. Here, this gives us the restriction

(4.25)

Further, V· E = 0 accounts for our having selected the x-dependence of Ex,
the y-dependence of E y , etc. to be cosinusoidal.

So far we have not bothered about B. It can be calculated from

-aB/at = V x E (4.10)

with the B field depending on time as sin wt. One again finds that B is
perpendicular to both E and k. In seeking all independent solutions for
the cavity we may again allow the E vectors to assume any two mutually
perpendicular directions in the plane perpendicular to a given wave vector k.
The complete basis set is obtained by enumerating all possible wave vectors
k, Le., all allowed choices of the trio I, m, n in (4.23), and then assigning both
polarizations to each choice of k.

The method of classification of modes we have just given is often used in
formal developments of physical theories, for example, when working prob
lems in thermodynamics and statistical mechanics. However, when working
with more detailed, descriptive problems, one prefers a set of explicit modes
that already satisfy the constraint \7 . E = O. Leaving out any time factor
to stress the fact that we are dealing with a set of spatially complete modes,
also suitable for driven problems, we have
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E TE == -(k2/k)cosk1xsink2ysink3zi

+(k1/k) sin k1x cos k2y sin k3zj , (4.26a)

E TM == [(ki + k~)/k2] sin k1x sin k2ycos k3zk

- [k1k3 /k2] cos k1x sin k2y sin k3 zi

- [k3 k2/k2] sink1xcosk2ysink3zj . (4.26b)

Here the wave numbers k1, k2, k3 , k are the same as before, i.e., they
satisfy (4.23-24a,b). Although this set is somewhat more specialized than the
previous set, it favors the z-direction; it is complete. The modes as written are
orthogonal. (To check, we take vector dot products and integrate over the vol
ume of the cavity.) The normalization constants are chosen for convenience,
see Problem 4.21. We note that the first kind of modes, those in (4.26a), are
called "transverse electric" because we do not find any electric field in the
z-direction. Similarly, the second set is called "transverse magnetic", since
for these modes the associated magnetic field in the z-direction, which we
can get from (4.10), vanishes. These same modes can be used to describe the
fields in waveguides for propagation in the z-direction. EM cavities have many
applications in technology, for example, they form an integral component of
lasers.

In Fig. 4.6 we illustrate the TE103 mode, viz. l == 1, m == 0, n == 3. The

diagram corresponds to the instant wt = 3; with the time depentent factor

coswt multiplying E(x,z). From (4.26a) we see that the electric field will be
given by

ETEI03 == k1(ki + k~)-1/2 sin k1x sin k3 zj

= d(d2 + 9a2 )-1/2 sin 1r: sin 3~Z j .

d

)(

z
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(b)

d

Fig. 4.6. (a) The TEI03 mode. The closed lines represent the B field, the circles
the displacement current, Eo8E/ 8t. There is no variation in the y-direction. (b)
Currents in the top plate. Lines of co8E/ 8t in the cavity join to lines of J in the
plate, and the J lines continue down the sides (Fig. 4.5); V . (J + co8E/8t) == 0
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In the diagram we illustrate the displacement current coaEIat by dots where
it is pointing vertically upward, by crosses where it is pointing down. The
continuous lines are the B lines, calculated from (4.10). Once the magnetic
fields are known we can also estimate the surface currents in the cavity walls
from the boundary conditions. Using the reasoning of Example 4.1, we find
that the cavity walls will carry surface currents per unit length,

Js = Btan,slJ-to , (4.27a)

Btan,s is the (tangential) magnetic field at the surface in question. At the
inner surface of the cavity we have the vector relation

(4.27b)

(4.28a)

(4.28b)

(4.28c)

where n is a unit vector, pointing into the cavity in a direction normal to the
surface, and B s is the magnetic field at the surface.

The surface currents are good estimates of actual currents even when
the electric resistance of the cavity walls is finite. They then enable us to
calculate a quantity W, namely, the average energy dissipated as joule heat
during each cycle of operation. In analogy with L-C circuits we can define
a quality indicator Q for a cavity oscillating in a given mode as

Q = 21T time-average of energy stored in cavity = 21T~

energy loss per cycle of operation W .

U, the average energy stored in a given mode, is found by taking the volume
integral of the energy density. The electric and magnetic energy densities can
be seen from the previous section to be proportional to the square of the
respective fields. Consequently, if a is the damping constant for the fields,
analogous to the constant in the lumped systems of Chap. 2, the energy will
decay as e-2at . We can write

U = Uoe-2at

dU
- = -2aU == -WIT = -Wf
dt

where f is the frequency, T the period of oscillation of the mode, and by
defining W as the average loss per cycle, WIT is the rate of energy loss.
Finally,

(4.28d)

giving the same relation between the damping coefficient and the quality
factor as for a lumped system. We note that whereas the latter is charac
terized by a single Q, a distributed system possesses a separate Q for every
mode of oscillation. We recall that a high Q, Le., low loss, implies a sharp
resonance response, that is, good performance in oscillatory or discriminatory
applications. This is as true for a cavity "resonating" in one of its modes, as
it is for an L-C circuit.
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4.5 The Vector Potential and Related Solutions
of Maxwell's Equations

Before undertaking a discussion of the vector potential we note two well
known properties of vector operators. If we form a vector field by taking the
curl of some given initial vector field, then that second field will have zero
divergence. In symbols, for any vector field F(x, y, z)

v . (V X F) == 0 . (4.29a)

Equation (4.29a) is a vector identity: the divergence of a curl is zero. (See
Example 4.2.) A second identity is that the curl of a gradient is zero:

V X (V'ljJ) ==0 (4.29b)

with 'ljJ (x, y, z) being any scalar field.
Underlying our understanding of vector equations such as those of Maxwell

is an important theorem, Helmholtz's theorem, which we will state without
proof. The final form can be made plausible by reference to elementary elec
trostatics, as we do in one of the problems. The reader is referred for a full
proof to the more advanced text by Panofsky and Phillips listed at the end
of the chapter. The theorem states that any vector field F(x, y, z) is uniquely
determined if its curl and divergence are given, providing the source fields,
Le., its curl and divergence vanish at infinity. Suppose we have

and

V X F(x, y, z) == c(x, y, z)

V . F(x, y, z) == d(x, y, z)

(4.30a)

(4.30b)

where c and d, a vector and a scalar field, are the sources. The field F is
then

F(x,y,z) == -V'l/J(x,y,z) + V x G(x,y,z) ,

where

J d(xo, Yo, zo)dxodyodzo
'ljJ(x, y, z) = 1/4n [(x _ xO)2 + (y - Yo)2 + (z - zo)2)1/2 '

and

J c(xo, Yo, zo)dxodYodzo
G(x, Y, z) = 1/4n [( )2 ( )2 ( )2)1/2 .X - Xo + Y - Yo + z - Zo

Moreover, for this form for G

V·G==O.

(4.31a)

(4.31b)

(4.31c)

(4.31d)

[Other forms for G (x, y, z) are also permitted, we can add any field with zero
curI to G (x, y, z). However, in every case V x G will be as obtained from the
solution given here. F(x, y, z), which is unique, has been determined.]



104 4. Electromagnetic Waves

The field F(x, y, z) is the sum of - V'l/J(x, y, z) and V x G, that is,
a longitudinal part (zero curl), and a transverse part (zero divergence). The
longitudinal part is determined solely by the divergence of F, while the
transverse part is determined only by the curl of F.

The scalar potential of (4.31b) is calculated in much the same way as
the electric potential in electrostatics, by taking an element of source den
sity, d(xo, Yo, zo)dxo, dyo, dzo, dividing it by the distance between the source
density and the observer at x, y, z, and adding up such terms until all the
existing source density has been accounted for. The vector potential G(x, y, z)
is computed in the same manner, except that the source c is a vector.

Let us apply the Helmholtz theorem in the given form to (4.11,12). Since
the divergence of B is always zero we can write at once

B==VxA.

Moreover, in accordance with (4.31d)

V·A==O,

and, from (4.31c) we would have

A( ) - J[j(ro, t) + co (8E(ro, t)/8t)] dvo
r, t - /-Lo 4 I I .

1r r - ro

(4.32a)

(4.32b)

(4.32c)

Here A(r, t) is the vector potential for the magnetic field at the point
r(x, y, z), and dvo is used as an abbreviation for dxodYodzo. We recall that
the various fields depend on time as well as space. Equation (4.32c) is not
our final result for A(r, t) because the source (j + co8E/8t) still contains
one of the unknown fields, E. We shall have to do more than directly apply
the Helmholtz theorem to fully solve our problem, except in static situations,
where 8E/8t == O.

Again, because of the coupling between the E and B fields in the Maxwell
equations, we can not apply the Helmholtz theorem directly to finding E.
However, here we can use the theorem to find a convenient result, leading
towards solving our problem of finding the fields in terms of the sources.
Using (4.32a) we rewrite (4.10)

V X E == -8/8t(V X A) ,

or

V x (E + 8A/8t) == 0 . (4.33a)

Going back to auss's law (4.9), for the divergence of E, and noting from
(4.32b) that V . A == 0, we find

V . (E + 8A/8t) == (2/co (4.33b)

with (2 as the charge density. Equations (4.33a,b) are, thus, giving us both
the curl and divergence of (E + 8A/8t), allowing us to use the Helmholtz
theorem (4.31) to write
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E + aA/at = -VcjJ

or

E = -VcjJ - aA/at

where

cjJ(r, t) = J g(ro, t)dvo .
41T"co I r - ro I

(4.34)

(4.35)

The potential cjJ is the same as that encountered in electrostatics.
We will now find a modified expression for A(r, t), which like (4.35)

contains the sources only. Let us rewrite (4.12) so that the unknown field
is on the left and the sources on the right:

(4.36)

(4.37a)

Here we have substituted E and B in terms of the potentials. Since cjJ is
already known from (4.35), we considered /-LocovacjJ/at to be a source term.
A well-known vector identity states that

V x (V x A) = V(V· A) - \72 A.

But V . A = o. If we replace /-Loco by c-2
, (4.36) becomes

2 2 a2 A .
\7 A - l/e at2 = -/-LOJT ,

where

iT = i-coV (acjJ/at) (4.37b)

the subscript T indicating total.
The vector potential satisfies a wave equation with a driving term -/-LoiT.
We are already familiar with a wave equation, namely, that governing the

displacement of a string, equation (3.2):

a2 y 2 a2 y
8x2 -l/s at2 =F(x,t)lg.

We remember that in a "source"-free region of the string, Le., where the
externally applied force F(x, t) vanishes, the solution can be written in the
form [see (3.5)]

y(x, t) = Y(t ± xis)

where s is the wave speed.
Beyond that, the wave equation (4.37a) for A(r, t) resembles another

equation whose solution is now known to us, the so-called Laplace equation
for cjJ: combining (4.9) and (4.34) and, again, recalling that V . A = 0, we
find

(4.38)
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which has as its solution precisely (4.35).
These two solutions, (4.35) and (3.5), make plausible the actual solution

of (4.37a) for A(r, t):

A( ) - JiT(rO, t')dvo
r, t - J-lo 4 I I '1r r - ro

where

t'==t-Ir-rol/c. (4.39b)

This result for A(r, t) is referred to as a retarded solution because the
current density iT is evaluated not at the time t, but at the earlier time
t - I r - ro I le, Le., at the time the field was "generated". Just as for the
waves on a string, information is being passed along at a fixed speed, but
here in three dimensions with a diminishing amplitude. The equally valid
mathematical solution that has t' == t + I r - ro lie has found little practical
value to date. In the last section we show using the Green's function technique
that, indeed, the expression in (4.39a) is the physical solution of the wave
equation (4.37a) for A(r, t). There we regard the solution, in analogy with
electrostatics, as a superposition of elemental solutions

dA(r, t) == J-lojT(rO, t')dvo/(41r I r - ro I) (4.39c)

corresponding to point sources jT(rO, t')dvo.
Equations (4.37-39a,b) for the potentials cP and A respectively, and

(4.32, 34, 35) giving the fields Band E in terms of the potentials, complete
the work of finding these fields in terms of the sources (] and j, that is, of
solving Maxwell's equations. In Table 4.1 we summarize the equations that
govern the electromagnetic fields, and their solutions.

The solution (4.39c) for A(r, t) (a Green's function), is to be compared to
the solution in Problem 3.16 for the disturbance caused by a point force on
a long string, i.e., when we can neglect reflections from the ends of the string.
It follows that we can use (4.39) to directly calculate the electromagnetic
radiation due to any space and time source distribution (antenna), providing
the radiation is into free space. In the next and last section of this chapter
we illustrate this by finding the radiated fields of a simple "dipole" antenna.

A last remark is to point out again that our potentials A and et> are
not unique, even though E and B are uniquely determined by the sources.
Other choices (gauges) for A and et> are also possible. Our choice is called the
"transverse gauge" by virtue of the relation V . A == O. It has its origin in our
statement of the Helmholtz theorem, where we chose G to give V . G == O.
Because certain problems in modern physics are best done in this gauge it is
also sometimes called the quantum mechanical gauge. In one of the problems
we show how to change et> when we convert A to a different gauge, Le., take
V·A#O.
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Table 4.1. Summary of basic relations for electromagnetic fields

Integral Form of
Maxwell's Equations

f E . dB = cOl f (Jdv

f E . dl =-f~~ ·dB

fB.dB=O

f B . dl = 1-£0f (j + coDE/Dt) . dB

Differential Form of
Maxwell's Equations

\7 . E == (l/eo

\7 x E == -aB/at

\7·B==O

\7 x B == J-to[i + eoaE/at] .

In the transverse gauge, \7. A == 0, and

vector potential A(r, t) = 1-£0 f jT(ro, t')/(41rlr - rol}dvo

with iT == i-co \7 (a4>/at)

scalar potential ljJ(r, t) = f (J(ro, t)/(41rlr - rol}dvo

with t' == t - Ir - rol/c .

E == -\74> - aA/at B==\7xA.

'\7 == i :x + j ~ + k :z' f '\7 . Fdv = f F . dB .

f ('\7 x F) . dB = f F . dl .

4.6 Dipole Radiation

As an application of the retarded potentials we shall study radiation from
a dipole antenna. The term dipole orginates from so-called "multipole" ex
pansions of fields in powers of the ratio of the dimensions of the antenna I
to the distance from the antenna to the observer I r I. We shall assume that
this ratio is small I r I» I. To obtain the conventional dipole radiation one
must further take the dimensions of the antenna as being small compared
to the wavelengths of the radiation, and these in turn small compared to r.
Thus, we will be seeking the total net power radiated from a harmonically
fed antenna of length I, with I r I» A » l. The result finds application in
electrical communication and in atomic physics.
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We start by splitting the retarded expression for the vector potential
A(r, t), (4.39a) into two parts:

A ( ) == J-Lo ! j(ro, t')dvo
1 r,t - I I'41r r - ro

A ( ) == __1_!Vro [8</>(ro, t')/8t'] dvo
2 r, t - 2 I I '41rC r - ro

(4.40a)

(4.40b)

(4.40c)

with again t' == t - I r - ro I /c; in (4.40c) V ro involves differentiation with
respect to the ro coordinates.

Now,

(4.41)

We can easily verify this by noting that for anyone component of V, say the
x component, we can write

88iXA2==412!(80 I 1 l)iXVro[8</>(ro,t')/8t']dVo
x 1rC Xo r - ro

-I! 1 8. (( ')/')== --2 I '-8 ~ x V ro 8</> ro, t 8t dvo·41rC r - ro Xo

Here in the first line we have taken 8/8x under the integral sign and then
changed the variables of differentiation. To get the second line we have done
an integration by parts, noticing that at Xo == ±oo the relevant integral over
dYodzo only is a vanishing quantity. Taking all three components together,
one sees that one is left with a curl of a gradient in the integrand, which
vanishes. Since the curl of A 2 (r, t) vanishes we can obtain the magnetic field
B(r, t) from A 1 (r, t) alone. Having found B(r, t) we shall employ Maxwell's
equation (4.12) to find E(r, t) directly. In this way we can avoid having to
find A 2(ro, t) and </>(ro, t) altogether.

If we now take the distance between the observer and the antenna to be
much longer than the antenna dimensions, we may replace I r - ro 1-1 in
(4.40b) by r- 1 and factor it out of the integral, giving

A, (r, t) ~ J-Lo !j(ro,t')dvo . (4.42)
41rT

The current density j(r, t) is in general given by

j(r, t) == Q(r, t)u(r, t) , (4.43)

where Q is the charge density, and u the charge velocity. If we assume the
charge to be divided into small aggregates of charge qi

qi = ! (! dVi
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moving with velocity Ui, then Jj(ro, t)dvo just becomes Ei qiUi. The overall
charge distribution for a radio antenna or, for that matter, for any given atom
will, in general, be neutral. We shall suppose that it is the positive charges
that are moving with respect to equal and opposite negative charges which
are fixed.

Defining dipole moments by

with ri the location of the ith charge, and differentiating with respect to
time, we have Pi(t) == qiUi. Restricting our summation to the mobile positive
charges, we have

LqiUi == LPi(t)
i i

Le., time derivatives of the dipole moments.
Going back to our assumption that the antenna length l is small compared

to the radiated wavelength 27rl/A « 1, we can neglect any difference in phases
due to retardation originating from the finite extent of the antenna. We can
then assume a simple harmonic time dependence for the total dipole moment
of the antenna:

p(t) == LPi(t) =- poeiwt
.

i

Using the definition of the retarded time t',

wt' = wt - (~) r ,

we finally have

J Ot' Ok ok dp(t)
j(ro, t')dvo == iwpoe1w == iwp(t)e-1

r == e- 1
r~ ,

with k == w/c. Equation (4.42) now gives

A (r t) == Mo e-ikr dp(t) (4.44)
1, 41rr dt·

The calculation of V x A 1 (r, t) == B(r, t) and V x B(r, t) == coMo8E/8t, the
latter equation being Maxwell's equation (4.12) in free space, is now entirely
straightforward, and is posed in one of the Problems. Further, by integrating
the Poynting vector S,

1
S == -E x B (4.19)

Mo

over the surface of a sphere of radius r, we find in the problems that the total
power crossing the surface of the sphere is independent of r, since by energy
conservation it should be in steady-state, and is given by the well-known
formula
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(4.45)

(4.37a)

(4.37b)

The bars over P and S indicate that a time average over each cycle has been
taken.

4.7 Electromagnetism and the Green's Function

In Sect. 4.5 plausibility arguments were given for finding the solution to the
wave equation for the driven vector potential A(r, t):

2 282A .
\7 A - lie 8t2 == -J-LoJr

j r == j - EO V (84JI8t)

Thinking back to previous sections on the Green's function, 2.4, 3.5, the
reader will correctly infer that the Green's function technique will again
provide a systematic solution. Before treating (4.37a,b) we will consider a
related but somewhat simpler problem, with a familiar solution.

The scalar potential of a static point charge of magnitude q located at ro
is given by the expression:

4Jq (r Iro) == -41r-E-o-1:---ro-' (4.46)

We now assert that for a charge of magnitude unity the expression (4.46)
is the Green's function suitable for problems in electrostatics, providing the
boundary can be taken at infinity:

1
G(rlro) == (4 47)

41rEolr - rol .

The electrostatic potential 4J(r) in general satisfies the Poisson equation
(after the French mathematician S.D. Poisson, 1781-1840):

\724J(r) == -g(r) / EO (4.38)

where g(r) is the charge density (source of the field). Accordingly, the appro
priate Green's function G(rlro) is defined by the equation:

\72G(rlro) == -8(r - ro)/Eo (4.48)

In addition, since we are interested in problems where the boundary is at
infinity, we need to specify G there. If we choose G in this way, we will be
able to use the magic rule (Sects. 3.5 and 5.5) to solve (4.38) for the potential
4J(r).

It is easy to show that the Green's function in (4.47) satisfies (4.48) when
r == ro. (The reader could, for example, verify that 82I8x2 R equals - R-3 [1
3(x - xO)2 / R2] with R2 given by [(x - xO)2 + (y - YO)2 + (z - zO)2].
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We can show that at the source, G satisfies the governing equation (4.48)
by integrating the equation over the region of the source. This is the same
procedure as was followed in Chaps. 2 and 3 for the harmonic oscillator
and stretched string, respectively. In this way the influence of the source is
replaced by an additional boundary condition on the Green's function. We
now construct a vanishingly small sphere of radius T s about the source point
at TO, and a large concentric sphere of radius Tl. Then, G will be defined in
the region bounded by the two spheres by (4.48), which has a vanishing right
side within the region, along with the conditions at the bounding surfaces.

Integrating the Poisson equation (4.48) over the inner sphere we get:

JJrlr-rol=rs \72G(rlro)dvo = -~JJrlr-rol=rs 8(rlro)dvo (4049a)
J\r-rol=o EO J1r-rol=o

or: JVrG(rlro)dS = -~ (4049b)
EO

Here we have used Gauss's theorem to reduce the left side of (4.49a),
(\72 is div.grad). As we know from electrostatics the boundary condition
described by (4.49b) is satisfied by the expression 1/(41rEo Ir - ro I) in (4.46).
The gradient of G(r/ro) yields the electrostatic field for a point charge as
given by Coulomb's law: IEI == 1/(41rEolr - roI 2

). Writing for dB, an element
of surface area of the small sphere, Ir - rol 2dO, dO an element of solid angle,
we easily see that (4.49b) is satisfied. Alternatively, we can write (4.49b) as:

JE(rlro)dS = -~ (4.50)
EO

Obviously, from Gauss's law, (4.50) holds. It follows from either argument
that G(rlro) is a solution of the defining wave equation (4.48) even arbitrarily
close to the singularity centered at r == ro.

Since we are interested in electrostatic problems that specify a vanishing
potential cP at infinity, we know from the magic rule (see Sect. 3.5, or the
three dimensional formulation given in Sect. 5.5) that G must vanish there
as well. We have:

G(rdro) -+ 0 as Irll -+ 00 (4.51)

Clearly, G as given in (4.47) satisfies this second requirement as well as
the differential equation, (4.48).

With the magic rule we now obtain the standard result of electrostatics
for:

cjJ(r) = JG(rlro)e(ro)dvo (4.52a)

1 Je(ro)dvo (4.52b)
== 41rEo Ir - rol

In special situations, such as problems with high symmetry, the Maxwell
equations can be solved directly from their integral form. Electrostatics can
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be built up directly from the known fields and potentials of individual point
charges; each point charge has, after all, full spherical symmetry. In general,
however, the Maxwell equations require rather far reaching mathematical
methods for their formulation and systematic solution. When, in the course
of solving these equations, we come to our present task of solving (4.37a),
the wave equation for the vector potential A(r, t), it is difficult to see how
we can avoid the full mathematics.

To solve (4.37a) we need to modify the procedure we have just used to
solve the Poisson equation owing to the addition of time dependence in the
source, as well as in the wave equation itself. It will soon become evident that
we need to weigh the source of the Green's function with the source density,
solving:

\72GA(rlrolt) - 1/c282GA(rlrolt)/8t2 == -J-loir(ro, t)83 (r - ro) (4.53)

We solve this vector equation by treating it as three independent equa
tions, one equation for each cartesian component.

In Problem (4.20) the reader is guided through much the same steps as in
the preceeding development to show that the solution to (4.53) is given by:

GA(rlrolt) == J-loir(ro, t -Ir - rol/c)/(47rlr - rol)

Finally, superposition (integrating (4.53) over dvo) will yield:

Jir(ro, t')
A(r,t)=/-Lo 4 I I dvo

7r r - ro

t'==t-Ir-rol/c

(4.54)

(4.39a)

(4.39b)

Example 4.1. A series of infinitely long straight wires is arranged so that
they all lie side by side in an infinite plane, as shown in Fig. 4.7a. If each
wire carries a current I, and there are N wires for each cross-sectional meter,
find (a) the effective surface current density, (b) the magnetic field that exists
above this conductor, given that no magnetic field exists below it.

Hint: Use (4.4) (the integral form).

(a) (b) B=O

.. B

_£1
I ~

B=O

.. B

B=O

Fig. 4.7. (a) Example 4.1. A series of infinitely long straight parallel wires.
(b) Example 4.1. Two planes of wires, superimposed
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Solution: The surface current Js ' Le., the total current per unit cross-sectional
area is given by Js == NI. In the absence of a time-varying electric field, (4.4)
reads

f B . dl = /.Lo JJ. dB .

As the circuit for the integral on the left, we pick a rectangular contour
piercing the plane of conductors, and perpendicular to them, as shown by the
dashed line in Fig. 4.7a. By symmetry the magnetic field is horizontal, and
there is no magnetic field in the region of the bottom contour. Integration
along the top gives Bl, where 1 is the width of the rectangle. The current
threading the area around which we have just integrated is obviously

JJ. dB = Jsl = NIl .

Applying (4.4) to the above, we have

IBll ==MoNIl

B == MaNI .

The total magnetic field induced by the conductors will have the direction
shown in Fig. 4.7a. From symmetry, one might expect equal and opposite
fields above and below, each of magnitude MaNI /2. In fact there might also
be a return sheet of current somewhere else, giving rise to the situation in
Fig. 4.7b, in complete analogy to the electric capacitor (fields reinforcing each
other inside, canceling outside).

This example illustrates the production of sheets of parallel magnetic
fields by sheets of current, with the current flowing in a direction perpen
dicalar to the induced fields. We find this situation in the plane EM waves
of Sect. 4.3 where the current sheets are produced, not by charges flowing
down wires, but by the displacement currents ca8E/8t. We also find it in
cavities, where surface currents Js keep the magnetic fields from entering the
conducting walls, confining them to the interior of the cavity.

Example 4.2. Show that the divergence of a curl field always vanishes.

Solution: The divergence of any vector F is given by

V . F == 8Fx + 8Fy + 8Fz and
8x 8y 8z

V· V x F= V· (:X i + :yj + :zk) x (Fxi + Fyj + Fzk)

== ~ (8Fz _ 8Fy ) +~ (8Fx_ 8Fz)
8x 8y 8z 8y 8z 8x

+~ (8Fy _ 8Fx) .
8z 8x 8y



114 4. Electromagnetic Waves

Remembering that second order partial derivatives are independent of the
order of differentiation, we see that all the terms cancel in pairs, proving the
identity.

Example 4.3. Maxwell's first equation, V . E == g/eo, is well illustrated in
the operation of a vacuum diode. Here electrons are emitted thermally in
vanishing electric field and with vanishing velocity at the cathode. They are
accelerated as they cross an evacuated gap of width d to the anode, held at
fixed potential V relative to the cathode. A current implies a charge density g
(which will be negative, owing to the negative charge e of the electron). If we
assume infinite plane electrodes parallel to the y-z plane then g will depend on
x only: g(x). This charge density, by the Maxwell equation will influence the
electric field E(x), which will be in the x direction and negative, pointing from
anode to the cathode at x == o. Thus, g(x) affects the motion of the electrons.
In steady state, however, the current/unit area, J must be independent of x
and the time t if g(x) is to be constant in time. The problem is to first find
the dependence of the electrostatic potential 1J(x), and then the dependence
of J on the applied potential V, both in steady state.

Solution: The current density J is related to the charge/volume g through

J == -g(x)v(x)

with J and v(x), the electron velocity, both positive. In steady state

E(x) == -d1J(x)/dx with 1J(d) == V,1J(O) == O.

Since the electrons start from rest, and are assumed to influence each other
only through the average electric field E(x), conservation of energy yields:

1
2"mv2 (x) + e1J(x) == O.

Lastly, V . E == g/eo becomes

d21J(x) g(x)
~ eo

If we now eliminate g(x) in favor of J, then with

v(x) == [2Iel1J(x)/m]1/2

or
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This homogeneous second-order equation can be transformed to a first order
equation by assuming that <j)(x) and x(</J) are known, and letting:

y(</J) == d</J(x)/dx .

The second order equation becomes

dy(</J) d</J(x) == CJ~-1/2(X) or
d</J dx \f/ ,

ydy == CJd</J/</JI/2 .

Upon integrating we find:

y2/2 == 2CJ</JI/2 .

The constants of integration vanish, since at x == 0, </J == 0; the electric field
-y (</J == 0) also vanishes.
Thus,

d</J(x)/ dx == 2[CJ] 1/2</JI /4(x) .

Integrating again, we find:

</J(x) == (3/2)4/3[CJ]2/3x4/3 ,

giving us the desired expression for the static potential </J(x ). Further, the
current J is related to the potential drop across the diode </J(d) == Y, by

J == 4/(9Cd2 )y3
/

2
.

This distinctly non-ohmic result for a vacuum diode is known as the Child
Langmuir law. The reader will find further analysis of these results for the
diode in Problem 4.A.1.

Example 4.4. Rewrite the TE cavity modes of (4.26a) to describe em fields
in a wave guide driven at z == 0, which are propagating in the positive z
direction. Find the value of k3 corresponding to given values of 1and rn, and
a given driving frequency w. Check that V . E == o.

Hint: See Problem 3.14

Solution: In analogy with Problem 3.14, the time dependence will be asso
ciated with traveling waves in the positive z direction, cos(k3 z - wt + bZ,m),
where the propagation vector k3 , and the phase bZ,m depend on the mode, and
bZ,m is determined by the boundary condition at the driven end, z == O. With
this time dependence we can satisfy both the homogeneous wave equation for
E(x, y, z; t) inside, the guide, as well as the boundary condition as z -+ 00 

that there is no signal traveling (back) in the negative z direction.
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For the electric field in the mode l, m we write:

ETEZ,rn (x, y, Z; t) == [-(km/k) cos(klx) sin(kmy)i

+(kl/k) sin(klx) cos(km)j] cos(k3 - wt + <5l ,m)

where

kl == l7f/a, km == m7r/b, I == 1,2,3 ... , m == 1,2,3 ....

To find k3 we substitute the given electric field into the homogeneous wave
equation in free space for E (see Problem 4.13):

1 a2E
V

2
E - c2 8t2 = 0 ·

This equation must be satisfied by each vector component of E individually.
Adopting a short-hard notation, we write:

ETEz,rn (x, y, Z; t) == [El (x, y)i + E 2 (x, y)j] cos(k3 z - wt + <5l ,m) .

We find, upon carrying out the indicated differentiation, that:

2 ( 8
2

8
2

) (2 2 )V El = 8x2 + 8y2 El = - k1 + km El,

\72E2 == - (kr + k~) E2

and, so

\72ETEZ,rn == - (kr + k~ + k~) ETEz,rn .

Carrying out the differentiations with respect to t as well, we find that the
wave equation is satisfied if:

k2 == kr + k~ + k~ == w
2

/ c
2

relating k3 to the driving frequency w, and to kl and km' See Problem 4.13
for further discussion.

Thrning to V . ETEz,rn' we have

(:x i + :yi + :z k ) . El (x, y)i COS (k3z - wt + tS1,m)

= kl~m sin k1xsin kmycos (k3z - wt + tS1,m)

== - V . [E2 (x, y)j] cos (k3 z - wt + <5l,m)

Evidently, the phase <5l ,m must be the same for both vector components of
E TEz if the divergence of E is to vanish, as it must in free space inside the
gUid~.rn

We note that the modes have been designed to satisfy boundary conditions
at the walls of the guide. The work of finding the electric field inside the guide
can be completed by determing the amplitude and phase of each TE and TM
mode from the driving fields or sources at z == o.
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Problems

4.1 When at 1 cm from an insulating plate measuring 5m x 5m an observer
measures an electric field of 4x 104 V/m, estimate what field he would measure
80 m from the plate, assuming a uniform charge distribution on the plate.

4.2 Use (4.4) to find a formula for the magnetic field surrounding a long
wire carrying a time independent current I.

4.3 A long wire is connected in series to a parallel plate capacitor, as shown
in Fig. 4.8. If the wire carries current I, show that

a) I ~ CdV/dt
b) Idispl ~ CdV/dt

where Idispl is the total displacement current through the capacitor. Why is
the result I ~ Idispl necessary for consistency in the applications of Ampere's
Law (4.4) to this situation?

Hint: Consider the current threading through a surface which passes between
the capacitor plates rather than through a surface cut by the incoming wire.

I

Fig. 4.8. Problem 4.3

4.4 a) Show clearly how the physical interpretation of the divergence and
the law of conservation of charge lead to the well-known relation

V·j+8{J/8t~0

where j and (J are, respectively, the current and charge densities.
b) Infer from (4.12) that V . (j + co8E/8t) must equal o.
c) Use part (a) and another Maxwell equation to verify the result in (b).
d) Show, assuming them to be uniformly distributed, the real and dis-

placement currents on the plates and within the parallel plate capacitor of
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Problem 4.3, as well as the magnetic field lines just without and within the
plates. Discuss the application of (4.4) to this situation.

4.5 It is well known that a particle with constant angular velocity w has
a linear velocity v == w x r.

a) Find V x v .
(One may without loss of generality take w ==1 w I k, with k the unit vector
in z-direction.)

b) Use your result in (a) to obtain f v . dr/ JdB where JdB is the
surface area enclosed by the path f dr, itself taken in the x-y plane. Check
by calculating f v . dr directly for a circular path.

c) Write an analytic expression for the vector potential A(r) giving rise
to a uniform magnetic field B in, say, the z-direction. Make a plot, showing
lines of constant IA(r)l. Calculate V . A, and comment on the uniqueness of
your result for A(r); (see discussion of (4.31d)).

d) Distinguish between fluids flowing with velocities v(r) that do or do
not possess a curl. Does one of them possess an element of rotation?

4.6 a) Consider the wave

'l/J == 'l/Joei(kor-wt) == 'l/Joei(kxx+kyY+kzz-wt) .

Show that points of constant phase lie on a plane.
b) Consider the longitudinal and transverse waves

F == F, ei(kor-wt)~
1 0 I k I

F - F, i(kor-wt)~ where k..l· k := 0 .
t - oe I k..l I

Show that V . Ft == 0 and V x FI == 0 .
Since any function, longitudinal or transverse, can respectively be written

as a Fourier expansion of such waves, what can you conclude about the two
alternative definitions of longtitudinal and transverse mentioned in the text
when there is a specified direction of propagation?

4.7 a) Equation (4.28) shows E and B to be in phase for a transverse EM
wave. Is this arbitrary?

b) Derive the relation Eo == cBo (4.17c).

4.8 Use the vector identity valid for any two vector fields A(x, y, z),
B(x,y,z),

V . (A x B) == B . (V x A) - A . (V x B)

to show that

-a [B2
coE2

]V·B:=V·(ExB//-lo)==- --+- .at 2/-lo 2
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Explain why S, the Poynting vector, can be interpreted as giving the energy
flux.

4.9 Sunlight strikes the earth, outside its atmosphere, with a time average
intensity of 1400 watts/m2 • Find Eo, the amplitude of the impinging electric
field, assuming an incident EM wave which is plane.

4.10 Use V . B == 0 to show that if the B field does not enter a perfect
conductor, its normal component must vanish at the surface.

Hint: Choose as the gaussian surface a little "pill box" with its sides inter
sected by the surface of the conductor.

4.11 In a rectangular cavity the wave vectors k1 , k2 , k3 may be considered
as forming a space, sometimes called reciprocal space. Show that the number
of standing wave normal modes that may be associated with an element of
volume ~3k in this space is

~N == 2V/1r3~3k

where V is the volume of the cavity

~3k == ~kx~ky~kz .

4.12 a) Calculate from the given electric field the magnetic field associated
with the TE103 mode, and check that it has been drawn in correctly in
Fig. 4.6.

b) Calculate the current distribution associated with this mode which
holds in the end wall where z == d.

4.13 A TE mode

E == Eo sin 1rX ei [wt-21rz/Ag]j
a

where j is the unit vector in the y-direction, propagates down a rectangular
waveguide of width ~x == a.

a) Show by using Maxwell's equations that inside the guide the free space
wave equation is

V
2
E - 1/c2

( ~t~) = 0 .

b) Show that

Ag == Ao/VI - (Ao/2a)2

where Ao == 21rc/w.
c) Find Wc, the cut-off frequency, below which the mode will not propa

gate, Le., where it becomes exponentially damped as a function of z.
d) Calculate B, and draw an x-z cross section, showing both the BE/at

and B fields in the guide over a distance ~z == Ag at some instant of time.
Take W > Wc.

Hint: see Example 4.4.
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/II/1///IIIIIII/III1Il
•

z Fig. 4.9. Problem 4.14

4.14 Power flows down a coaxial cable in its principal TEM mode. In the
free space b > r > a (Fig. 4.9), the electric field E is given by

E == Eau(r)e i [wt-21rz/A]a
r

where r, Z are cylindrical coordinates, and a r is the unit vector pointing in
the radial direction. u(a) == 1.

a) On a side view such as the one shown in Fig. 4.9, illustrate with
field lines the displacement current ca8Ea/8t over one wavelength of the
transmitted signal. Find 8r(z, t)/8t, the time rate of change of the charge
per unit length on the inner conductor.

b) Similarly plot the magnetic fields. Which of Maxwell's equations are
needed to find the field? Lastly, show also the current la cos(wt - 21TZ/A) in
the conductors. Calculate la.

c) Use Gauss's law (4.1) to determine u(r), noting that no charge density
exists in the free space b > r > a. Find Va(z, t), the potential difference
between the outer and the inner conductor. (The Lorentz force, form q(E +
v x B) shows that no work is done by the magnetic field.)

d) With E(r, z) and B(r, z) in hand, check that all four of Maxwell's
equations are satisfied providing 21T/ A == w / c, c the light velocity.

e) Find A(r, z, t) and cjJ(r, z, t) for b > r > a.
f) Calculate Za == Va(z, t) / Ia(z, t), the characteristic impedance of the

cable. What happens qualitatively if some finite length of the cable is termi
nated by a circuit element whose impedance Z == Za, what happens if Z =1= za?

Hint: see Problem 6.11.
In cylindrical coordinates:

v .A == 1jr8(rAr )j8r + 1/r8A<jJ/8cjJ + 8Az /8z

Vw == 8w j 8rar + 1/r8w j 8cjJa<jJ + 8w /8zaz ,

and see Problem 4.18 for the curl.

4.15 a) Starting with (4.33a,b), show that adding a curl-free field -VX,
where x(r, t) is any scalar field with appropriate boundary conditions to A,
not only leaves B unchanged but E as well, thereby guaranteeing unique
solutions to Maxwell's equations.



(-1/c2
) (acjy/ at), (4.31)

Problems 121

Hint: Show that-- J(\7')2 x(r')dv'
x(r, t) - 1/41r I I Ir-r

before applying the Hemholtz vector theorem.
b) Show that in the Lorentz gauge V . A

becomes

2 1 a2 A .
\7 A - c2 at2 == -j1o} ,

2 1 a2 cjy
\7 cjy - c2 at2 == -(2/co .

What is X?

4.16 a) Show from (4.31a)

F(x,y,z) == -V'ljJ(x,y,z) + V x G(x,y,z)

that for sources d and c, (4.30a,b)

-\72'ljJ==d _\72G==C

providing (4.31d), V . G == 0, holds.
b) Accepting the "electrostatic" solution to - \72'ljJ == d,

'ljJ == ~Jd(r')dv'
41T I r - r' I

where 'ljJ(r) --t °as I r l--t 00, can you find G(r) satisfying the same
boundary condition?

4.17 Consult Table 4.1 to write down the solution for E and B in terms
of the sources (2 and j when the latter do not depend on time. Under what
circumstances can a vector field be written as the gradient of a scalar field
only, as the curl of a vector field only, or a combination of both? Give reasons
for your answers.

4.18 Consider a straight wire extending from z' == -L/2 to z' == +L/2, and
carrying a time-independent current I.

a) Set up, but do not evaluate, an integral for the vector potential
A (r, z, cjy) in terms of a given current density j (r' , z' , cjy'), and simplify to the
thin wire at z == 0, carrying total current I from z' == - L /2 to z' == +L/2.

b) Calculate B(z, r, cjy) == V x A, by differentiating the result in (a) under
the remaining integral sign Jdz', and then setting z == 0.

c) Complete the integration to find B(r,O,cjy).
d) Consider your result for B as L --t 00, and compare with the result

obtained in Problem 4.2.
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In cylindrical coordinates V x A ==

(
18Az 8Act» (8Ar 8Az ) 1 [8 ) 8Ar ]--- - -- ar + -- - -- act> + - -(rA4> - -- a z ·
r 81 8z 8z 8r r 8r 81

4.19 From the static relation

dA == Mo I dl
41r I r - r' I

derive the Biot-Savart law

dB == Mol dl x (r - r')
41r I r - r' 1

3 .

Hint: V x (tt/JF) == tt/JV x F + (Vtt/J) x F .

4.20 a) Show that the vector potential G A(rIOlt) induced by a point current
density iT(O, t)<53 (r) at the origin satisfies the wave-equation

V 2GA - 1/c282GA = 0
8t2

at every point r =1= 0, if

GA(rIOlt) == MoiT(O, t - r/c)/(41rr) .

Hint: In spherical coordinates

V2'lj; = ~~ (r2~'lj;) +_1_~ (Sin()~'lj;) + 1 8
2
'lj;.

r2 8r 8r r2 sin 0 80 80 r2 sin2 0 812

b) Derive a boundary condition for GA(rIOlt) in analogy with (4.49b), to
replace the effect of the drive in (4.53), here in the vicinity of ro == 0.

c) Verify by direct calculation that GA(rIOlt) == MoiT(O,t - r/c)/(41rr)
satisfies the boundary condition derived in (b). In spherical coordinates

8 1 8 1 8
V r == -8a r + -8~aE> + ~8~act>r r 0 rSlno \f/

Hint: In both Parts (b) and (c) "additional" terms may turn out to be
infinitesimal.

4.21 The cavity of Fig. 4.5 is driven by a thin antenna extending from the
bottom surface y == 0, to the top y == b, and located at x == a/2, z == d/12.
The current density in the antenna is thus given by the real part of

J == lo<5(x - a/2)<5(z - d/12)e- iwti
where w is the driving frequency, and i the unit vector in the y-direction.
The charge density {} equals 0.

a) Show that the amplitude of the vector potential associated with the
TE103 mode is given by
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where k is k103 and ko the ratio of the driving frequency w to the speed of
light.

b) Discuss the concept of "resonance" in terms of this result for the
amplitude, and say something about the effect of losses in the cavity walls
on the result.

c) Calculate the electric field associated with the TE103 mode as measured
at the location of the antenna, and write an expression for the external voltage
drop across the antenna.

d) Use (c) to find the complex impedance Z for the mode. Show that
for this mode that cavity's equivalent circuit is an Land C in parallel (see
Problem 2.11.). Find Land C.
The coefficients Cs are defined by the expression

A(x, y, z, t) = L Csus(x, y, z)e-iwt

when the Us are the modes given in (4.26) for the electric field.

4.22 Verify that the time average of the power radiated by a dipole antenna
is given by

p = l!6W4 / (121r€oc3
) •

In spherical coordinates

(4.45)

( ) aT [8 (. ) 8Fo ]
V x F r, B, cfi = r sin B aB smBF", - ocfi

ao [ 18FT 8 ] ac/> [ 8 8FT ]+ - -.--- - -(rFc/» + - -(rFo) - - .
r SIn 0 8cjJ 8r r 8r 80

Show first that in the "radiation zone" , d « ,X « r (in contrast to the "near
zone", d « r « ,X) the electric and magnetic fields, separately, diminish with
distance from the antenna as 1/ r .

4.23 Show that Coulomb's Law is not only valid in electrostatics, but gives
the longtitudinal electric field even in electrodynamics.

Laboratory Excercise.
Excite an EM cavity with a klystron and look for resonances. Examine the
E and B field patterns of the resonating modes.
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4.A Appendix

Verification of Meaning of Vector Operators

Gradient: We need to show that if c is a unit vector in a given fixed direction,
c . V'l/J(x, y, z) gives the rate of change of 'l/J in the direction of c.

Proceeding in two dimensions we note that the change in 'l/J, in going from
Point 1 to Point 3 in Fig. 4.A.l is:

'l/J(3) - 'l/J(l) == ['l/J(2) - 'l/J(l)] + ['l/J(3) - 'l/J(2)]
8'l/J 8'l/J

= 8x~x + 8Y~Y'

The rate of change of 'l/J in the direction of c is

'l/J(3) - 'l/J(l) == 8'l/J cos (1 + 8'l/J sin (1 .

J(~X)2 + (~y)2 8x 8y

On the other hand

8'l/J 8'l/J
c· V'ljJ = Cx 8x + Cy 8y

8'l/J 8'l/J .
= 8x cDsB + 8y smB ,

because c is a unit vector.

(4.A.l)

Divergence: We need to show that the net outward flux of the vector field V
from a given vanishingly small volume, per unit volume, is given by V .
V(x,y,z).

The flux emerging from the face at x == ~x as shown in Fig. 4.A.2 is:

[ ( ) 8Vx (x, y, z) ]
Vx X,Y,z + 8x ~x ~y~z

and the flux entering the back face at x == 0 is:

Vx(x, y, z)~y~z ,

y

-c

x
Fig. 4.A.l. c· V'ljJ gives the rate of change of'ljJ in the
direction of c
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giving the net flux

8Vx (x,y,z) A A A
8x uxuyuz.

Proceeding to the net flux through the top and bottom, we find

8Vz (x, y, z) A A A
8z uxuyuz.

Finally, including the net flux through the faces at y == 0, y == Lly, we find
that the net outward flux per unit volume is given by:

8Vx 8Vy 8Vz ( A )
8x + 8y + 8z ' 4. .2

as we wish to show.

z

x

y Fig. 4.A.2. The outward flux of the
vector field V per unit. volume is given
by V .V. Shown in the figure is the vec
tor field Vx , with flux entering at x == 0,
and leaving at x == Llx.

(4.A.3)

Curl. We need to show that the line integral of a vector field V around
a contour enclosing a vanishingly small area llB is given by (V x V) . llB.

Restricting ourselves to having llB in the x-y plane and making an angle
() with the y-axis, we have

(V x V). llB == [(8Vz _8Vy ) i + (8Vx_8Vz) j
8y 8z 8z 8x

+ (a;: - 8~x ) k] .[i sin 0 + j cos OJ I~S I

[(
8Vz 8VY ). (8Vx 8Vz) ] ( )( )== - - - SIn () + - - - cos () Llz Lll .
8y 8z 8z 8x

We divide the desired line integral f V . dl into four components, as in
Fig.4.A.3.

11 == V (x, y, z) . Lll == V . Lll ,

12 == (Vz + VVz . Lll)Llz ,
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4

z

y

13 = - ( V + ~:~z) .~l ,

14 == -Vz~z .

Fig. 4.A.3. The line integral of a vector
field V around a contour of area ~S is given
by (V x V) . ~S. The magnitude of the vec
tor ~S gives the area ~l~z, and ~S points
perpendicular to the infinitesimal area

f V . dl = h +12 + 13 +14 ,

- == -(aV/az) . ~l~z + (VVz . ~l)~z .

We note that

~l == (-i cos 0 + j sin O)(~l) .

Then,

f V . dl = [( -;~x i - ~ j ) . (-i cos () + j sin ())

+ (C;;; i + a;;; j ) . (- cos ()i + sin ()j)] (~z~l)

which gives the right side of (4.A.3).
A proof with the element of area tilted with respect to the z-axis would

be tedious. The symmetric form of V in cartesian coordinates does make
plausible that V x V, a vector, is invariant under rotation or translation
upon change of coordinates (the same form yields the same value at every
point. (V x V) . ~S, a scalar remains equal to f V . dl.

Problem 4.A.l. In the analysis of a vacuum diode, Example 4.3, we obtain
for the static potential the result:

<jJ(x) == (3/2)4/3(CJ)2/3 x4/3 .

Here, calculate E(x), g(x), v(x), and check that

J == -g(x)v(x)

does not depend on x.
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Make a plot of cjJ(x) , E(x), {}(x) versus x, and compare with similar plots
when {}(x) vanishes, but cjJ(O) and cjJ(d) remain the same. What do we know

about the area - fad E(x)dx in both cases?
Now, place a rectangular box extending from some point x to x + ~x

somewhere in the range of the above graphs, Le. for d > x > 0, with the
cross-sectional area of the box parallel to the y - z plane, Le. parallel to the
planes of the cathodeand anode. Draw in the electric field lines as is being
done for Vx(x,y,z) in Fig.4.A.2, but inside the box as well. What is the
net electric flux out of the box? To first order in ~x? What is the total
electric charge inside the box? Show the electric charges as they occur in
the box. Do your electric field lines accurately portray the situation of the
electric field changing with x? Now, find E(x) and {}(x) as x ~ 0, but not
at x = O! Explain. Does the integral form of Maxwell's equation help resolve
the situation at x = ~x, ~x ~ O?

Problem 4.A.2. Fluids flow in the y direction in a rectangular channel with
velocities v(x, y) which do not depend on the depth, Le. on z, but possibly
do on the lateral position x. Consider two situations:

i) v(x, y) = v(x)j,
ii) v(x,y) = v(y)j.

Draw in the velocity field lines for both cases. Compare and contrast the two
upon calculating V·v and V x v. In which case is the channel changig direc
tion? Could one of the cases apply to a compressible fluid under acceleration?
Discuss. Which flow can be described as laminar?

Problem 4.A.3. Show that V x V is a vector.

Hint: i x V(x + 8x, y, z) is a vector.

Further Reading

D.J. Griffiths: Introduction to Electrodynamics (Prentice Hall, Upper Saddle
River, NJ, 3d. ed., 1999)

R.P. Feynman, R.B. Leighton, M. Sands: Lectures on Physics 11 (Addison
Wesley, Reading, MA, 1962)

W.K.H. Panofsky, M. Phillips: Classical Electricity and Magnetism (Addison
Wesley, Reading, MA, 1962)



5. Light - Physical Optics, Refraction

Abstract. The previous chapter on EM waves forms a basis for developing
physical optics, which itself traditionally serves as the background to wave
mechanics, (Chap. 6). In addition, in this chapter we analyze the propagation
of EM waves in dielectrics, with the goal of understanding refraction and
reflection at interfaces, the central phenomenon in geometric optics. The
chapter begins with a discussion of the generation of light as the outcome
of quantum transitions within matter and the role of the Heisenberg uncer
tainty principle in limiting coherence is pointed out. Analysis of diffraction by
a single slit using Fresnel zones, and the consequences for the resolution of illu
minated objects follows. Special considerations applying to X-ray diffraction
by crystals (three dimensional gratings) completes the discussion of physical
optics. Propagation of plane EM waves in insulating dielectrics is treated.
Lastly, extension of the Green's function method of solving inhomogeneous
wave equations to three dimensions provides a rigorous basis for Fresnel
analysis of diffraction. Worked examples include interference of light from
two slits, as well as details of reflection and refraction at an interface. There
are problems dealing with the Einstein photoelectric effect, the Huygens
principle, the square aperture, gratings, Rayleigh's criterion for resolution,
Debye-Scherrer X-ray diffraction, and attenuation in metals.

5.1 The Nature and Generation of Light

The human eye is sensitive to electromagnetic radiation with wavelengths
in the range of 6500 A in the red to 4500 A in the violet. (1 Angstrom ==
10-10meters). Certain phenomena characteristic of wave motion in general,
and EM waves in particular, namely diffraction and interference, have been
studied intensively in the visible region of light. These studies form the sub
ject matter of physical optics, and much of this chapter will be devoted to
them.

According to classical physics, that is, physics as it stood prior to the
development of quantum mechanics in the twentieth century, all EM radiation
is generated by accelerating electric charges. For light in the visible region
the charges are, generally, electrons attached to atoms. In the same context
one can think of "'(-rays as generated by the charges of accelerating nuclear
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particles comprising the nuclei, infrared rays by accelerating ions, and,· as
already mentioned, radio waves by the macroscopic charge densities forming
in antennae. In every case we can think of the motion of these charges as
oscillations about an equilibrium point, giving us the so-called electromag
netic oscillators. The frequency of the EM radiation then corresponds to the
frequency of the charge oscillation.

In modern physics the situation is described somewhat differently. Nev
ertheless, despite the seemingly disparate nature of the classical and modern
concepts, the modern merge into the classical under certain conditions in
accord with the "correspondence principle". This principle was first enun
ciated by Niels Bohr; be learning more about his many contributions. In
quantum physics particles occupy certain states; if stationary, these states
have a definite and constant energy associated with them. If a particle makes
a transition from a state whose characteristic energy is Ea to one whose
energy is Eb' the energy difference (Ea - Eb) is, assuming it to be positive,
emitted in some form, quite often as EM radiation. What is the frequency of
this radiation?

In 1905 Albert Einstein gave his famous interpretation of the photoelectric
effect. He concluded that EM radiation is given off as discrete entities, quanta,
and that each quantum of radiation, called a photon, will have associated
with it an energy hv, where v is the frequency of the radiation in Hertz,
and h(== 6.624 X 10-34 joule s) is called Planck's constant, after Max Planck.
Planck had been able a few years earlier, in 1900, to fit the so-called black
body radiation with a formula that required one new hypothetical physical
constant, h, which he was able to roughly evaluate from the experimental
data. Einstein's hypothesis gave a clear meaning to Planck's findings.

It turns out rather simply that when a particle makes a downward transi
tion from an energy level Ea to a level Eb that it generally emits only a single
photon, one that has the energy relationship

(5.1)

giving us at once a frequency, Vo for the emitted radiation.
In an isolated atom the characteristic energies of the various states, the

various electronic energy levels, are well separated. It follows that the emit
ted radiation occurs at only certain discrete frequencies. However, when the
atoms become associated into a crystal, for example, a crystal of tungsten, the
discrete levels widen into continuous energy bands. We then get a continuous
spectrum with all frequencies, rather than the discrete spectra characteristic
of gases, Le., of isolated atoms.

Thus, on the one hand light comes in discrete "particles" called photons.
Yet, clearly on the other, it also has a wave nature, how otherwise could we
speak of a frequency vo? Our study of the Fourier representation in Chap. 1
will help us to resolve this paradox in large measure. Further clarification
will have to await the ensuing chapter, where we broaden our discussion to
include matter waves.
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We naturally suppose that the radiation is emitted at some definite time,
t == O. However, it is more fruitful to suppose that a pulse of radiation is
emitted which occupies some finite time interval about t == 0, let us say, from
-~t/2 to +~t/2. The magnetic field, for example, associated with the pulse
is then present during this time interval, as shown in Fig. 5.1. Let us represent
this field as

00

B(t) = coswot~ JBweiwtdw
-00

00

= ~ JBw- wQ cos(wt)dw
-00

Wo == 21I"lIo ,

(5.2a)

(5.2b)

(5.2c)

lIo being given in (5.1). In (5.2a) we have separated out the factor giving
oscillations with the frequency lIo. The remaining factor,

B(t)

Bo

t-O

4t80

72:

Fig. 5.1. A light signal with the magnetic field B(t) occupying a finite time D..t.
Bw - wQ is the cosine Fourier transform of its square wave envelope
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00

_1_ JB eiwtdw
y'21r w

-00

represents the square-wave envelope extending from -~t/2 to ~t/2 with
amplitude Bo. We already know from Example 1.1 that the cosine Fourier
transform of B(t), Bw - Wo, will satisfy

Bw - wo == BOV2/71" sin [(w - wo)~t/2] / (w - wo) , (5.3)

(Fig. 5.1). A more realistic representation of the radiated signal would be
based on the statement that the probability of finding the particle in its upper
excited state goes like e-l't, where 1//\( is the "lifetime" of the excitation. This
would result in a signal with the same time dependence as that of damped
oscillations (Problem 5.3). -

Actually, we are not interested· here in the detailed structure of either
B(t) or its transform Bw - wo , but rather in the general feature universally
true of the Fourier relation: If B(t) occupies a region in time of roughly
~t, B w - wo will occupy a region in angular frequency whose width ~w, about
Wo is related to ~t by the approximate relation

~w~t ~ 1. (5.4)

We have already indicated this relationship in Chap. 1, see, in particular,
Example 1.1: a smooth broad function has a narrow Fourier transform, and
vice versa.

To recapitulate, light is generated by the downward transition of an elec
tron from one energy level to a lower one. (Absorption accompanied by an
upward transition is also possible. In quantum mechanics the peak of the
exponential Fourier transform of B(t) at -Wo then comes into play.) The
resulting pulse of light occupies some finite time interval, which is related
reciprocally to the range of harmonic frequencies needed to represent the
pulse in time. But how does (5.1), which links the emitted frequency to
energy levels, fit in?

We shall learn in the next chapter that only perfectly stable systems,
systems that do not change at all in time, are associated with perfectly sharp
energy levels, Le., are found in stationary states. This will turn out to be in
accordance with the most comprehensive principal of quantum mechanics, the
"Heisenberg uncertainty principle". However, the atoms of, say, a crystal of
tungsten are not perfectly stable. Not only are they disturbed by the thermal
activity of the crystal, but the very radiation process itself diminishes the
stability of the upper levels. Let us, therefore, assume that the width at the
level of Ea' ~E, is actually some definite quantity, often in practice on the
order of 10-20 joules, while the width of the lower level may be neglected.
Then, by (5.1) the spread in emitted frequencies is simply

~v == ~E/h, ~w == 271" ~E/h ,
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and from (5.4) the duration of the pulse, which we can take to represent the
uncertainty in the time of its emission, is given by

D-.t ~ _1_. ~
D-.E 27r

or

D-.ED-.t ~ h/27r . (5.5)

This relation is the Heisenberg uncertainty principle as it applies to radiation.
Does it have any practical consequences for the study of diffraction and
interference upon which we are about to embark?

Indeed, yes. The phenomena of diffraction and interference come about as
a result of a recombination of different portions of a light beam. We naturally
write the magnetic (or electric) field for such a beam as

B(w) == Bosin(kx - wt + 8w ) .

Here 8w is the phase, which we are showing explicitly. Some reflection will
show that 8w is a determined quantity as long as we are concerned with light
originating from one particular radiation process, but we do not expect or get
any relation between this phase and the phase pertaining to light at a given
frequency that originated from a different transition. Thus, although we will
be observing the accumulation of effects from many radiation processes, these
will be adding together in a random fashion. The special relationships we will
be studying will apply only to radiation originating at most from a coherence
length

ne
l ~ cD-.t ~ D-.E' (h == h/21r) , (5.6)

Le., from one radiation process.
In view of its feature of random phases we refer to ordinary light as

incoherent radiation. The reader is probably familiar with the fact that there
are devices, lasers, that produce highly coherent radiation. Interference and
diffraction become much more striking effects when one works with laser
light rather than with traditional sources. The phenomena first discovered by
physicists in the early 19th century, and studied by generations of students
since, become really vivid only now in the quantum age.

5.2 Diffraction

So far our work has been confined primarily to closed systems such as lumped
oscillators, finite stretched strings, closed cavity resonators. However, we have
also briefly seen a different type of problem, an open system with a steady
flux. Examples are the wave traveling down an infinite string in Problem 3.14,
or the traveling plane EM waves of the previous chapter. These problems
generally have a common simplifying feature; they are steady state problems.
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The flux or flow keeps coming steadily, it never starts or stops. The transients
associated with the startup are assumed to be long past. It would seem that
there is not much to be learned about such situations, which is true until the
"beam" is interfered with in some way, some obstacle such as a narrow slit
or a reactive body is placed in its path. We then get a so-called "scattering
problem". Many chemical reactions can be viewed as scattering problems,
and so can the problems of diffraction and interference of physical optics.

The fields comprising the flux of energy obey wave equations. The method
of solution often resorted to is the Green's function method, already intro
duced in previous chapters. The Green's function is the solution of the wave
equation that corresponds to a "point" source in time or space or both, ap
propriate boundary conditions also being fulfilled. Once the Green's function
has been found the problem can, at least in principle, be solved easily, with
the magic rule already illustrated in Chap. 3, where we only needed to work in
one dimension. In Sect. 5.5 the reader will find a complete analysis illustrating
the Green's function method in physical optics.

Here we will content ourselves with working with not much more than
a rather old principle, formulated by C. Huygens around 1670. The math
ematically complete formulation from which the principle can be derived,
though, is just the Green's function method of theoretical physics. Huygens'
principle may be stated as: each point on a wave front acts as a point source of
a secondary disturbance, of a spherical wavelet, also traveling with velocity c.
The field at a given point some time later is then the sum of the fields of each
of these secondary disturbances, their envelope being the new wave front.

Consider now the problem of a plane coherent beam of light passed
through a rectangular aperture, Fig. 5.2. How will a screen placed a dis
tance D from the aperture be illuminated? If we were dealing with a beam of
fast particles moving according to Newtonian mechanics, then the illumina
tion would be confined to a rectangular area corresponding to the aperture
opening, the geometric shadow. The light, on the other hand, will spread out
somewhat and, further, the intensity of the illumination will vary rapidly on
the screen according to a complicated function. Such behavior, which includes
the tendency to bend around corners, characterizes all wave phenomena,
and is called diffraction. As we will see, one can determine the wavelength
associated with the beam from the pattern of illumination on the screen, Le.,
the diffraction pattern.

We assume that the slit is very long in the direction out of the plane of
Fig. 5.2 (horizontal), so that, in fact, we will be dealing with a one dimensional
problem that of determining the variation in the amplitude of the fields as
a function of the (vertical) displacement on the screen. In view of the Huygens
principle we shall divide the aperture into elements of area (dxdy) , x being
the coordinate which measures along the extended length of the aperture
(i.e., out of the plane of Fig. 5.2), y the vertical coordinate. We consider each
element to be the source of a secondary wave of light.
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·...------0-------.1

Incoming
illumination
treated as
plane coherent

Fig. 5.2. Single slit diffraction. R = rl - r as measured from arbitrary origin O.
IRI ~ IRol + y sin 8. Slit width greatly exaggerated

How can we describe the electric (or magnetic) field produced by the
secondary elemental sources analytically? According to Huygens' original
principle the secondary wavelets are taken as isotropic radiators in the for
ward direction. This seems rather reasonable on an intuitive basis, since, first
and foremost, the principle must be capable of explaining the progression
of an ordinary plane wave. (The complete Green's function analysis yields
an obliquity factor that disallows backward radiation. In view of the small
angles involved the factor can be taken as constant in the forward direc
tion, see Sect. 5.5.) In addition, in any optical system the polarization of
the incoming radiation will usually remain largely unaffected by the system
itself, with the result that the polarization of the transmitted radiation need
not be particularly specified. Thus, as a good approximation, one ends up
representing the electric or magnetic fields by a scalar field, the so-called
optical disturbance, which is taken as radiating equally in all directions from
the secondary sources. At the same time one bears in mind the considerations
of the previous section, that light interferes with itself in discernible fashion
only within a coherence length.

As a result, we restrict ourselves only to the magnitude of the electric
field associated with the spherical wavelet radiated from the element at r,
and write for this optical disturbance measured at the point r' on the screen
the proportionality

eikR

dE ex Rdxdy

R=r'-r.
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The constant of proportionality (which in any case can not be obtained
directly, see the appendix), does not play an essential role in this analysis.

The expression (5.7a) represents a spherical wave of wave vector k. We
notice that the points of constant phase lie on concentric spherical surfaces
with the point r at the center, and that the radiation flux per unit area,
which is proportional to the square of the amplitude, satisfies an inverse
square law: the same power is crossing every spherical surface, as required by
energy conservation.

To find the total amplitude of the field at the point r' on the screen we
add the contributions from all the elements of area comprising the aperture.
We can simplify further by accepting the fact that in optical experiments the
variations 8R in R in the denominator of (5.7a) are negligible compared to R,
while variations in the phase factor kR equal to 27r8R/A, are rapid; 8R is not
small compared to the wavelength A of the light. Accordingly we write

E(r') QC JJeikRdxdy , R = r' - r(x, y) . (5.8)

We have already said that the aperture is long in the horizontal (x) direc
tion and that we can treat the problem as a one dimensional one. (If we are at
the horizontal middle of the pattern on the screen proceeding vertically we can
always add contributions (phasors) from two segments placed symmetrically
about x == 0 on the aperture. This will yield the same net phase as that due
to the element of the aperture at x == 0 for the given value of y. As we depart
from the center of the screen the procedure breaks down since not all the
elements can now be paired. However, the assumption of a long slit, viz., the
tacit omission of end effects, yields a constant intensity in the x-direction.
The interested reader is referred to Problem 5.7, the square aperture.)

If we specify the position of the chosen point r' on the screen by the
angle () (Fig. 5.2) then we may write to good approximation

R == Ra + ysin() . (5.9a)

(5.9b)

[This approximation becomes exact if a/D -+ 0, see Fig. 5.2, or if we place
a lens next to the aperture which would exactly focus the beam specified by ()
at the point r'. In practice one either does use a lens (Fraunhofer diffraction),
or one chooses a/D small (Fresnel diffraction).]

Combining (5.8) and (5.9) we finally have

+a/2

B(r') QC eikRo JeikysinBdy.

-a/2

Integrating, one finds

B(') ikRo 1
2 sin (ka sin ()/2) I

r ex: e k sin () .
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It is customary to let

ka sin () 21r a sin ()
a == -2- == ~-2- , (5.9c)

giving

kR ISi:a I.B(r') IX ei
0 '-' (5.9d)

The intensity of the illumination, I, power/unit area (Problem 4.8) is
proportional to the square of the magnetic, or electric, field. The intensity
will be most intense at the center of the pattern, i.e., at a == O. We note
in passing that a, as given by (5.9c), represents the optical phase difference
between the ray coming from the upper end of the aperture and the one
coming from its center, Fig. 5.2. When a == 0, the factor sinaja and its
square have their maximum values, namely unity. Squaring B(r'), we may
write for the intensity at r', that is, at (),

I(()) = 10 (Si:a)2 (5.10)

where 10 is the maximum intensity at the center of the pattern. I(()), the one
slit diffraction pattern, is shown in Fig. 5.2.

The diffraction patterns of many geometries, besides that of a single long
slit, have been thoroughly studied. In the problems we look at the pattern of
the finite rectangular slit. Very well known is the half plane pattern shown
in Fig. 5.3. Here we see particularly graphically that light will bend around
corners.

What if we have more than one opening? The interference from two slits
is discussed in Example 5.1. The illuminating patterns become yet more com
plicated (see Figs. 5.9 and 5.11), and are referred to as interference patterns.

BaffleeJ-~ _

10 =:r. I f\ 0 - Fig. 5.3. Diffraction by a half plane.
V V"" Light bends around corners. 10 is the

light intensity on the screen S far from
------ S the shadow
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Fig. 5.4. Diffraction introduces
a limitation on information that
can be imparted by signals of
a wave nature

One can also have three or more slits, or many thousands. In the latter case
we talk about a diffraction grating, a scientific instrument which the reader
will find analyzed in Problems 5.9 and 5.10.

Diffraction brings about a fundamental limitation on the information
that can be imparted by sign.als of a wave nature. In Fig. 5.4 we show
the diffraction pattern produced when light from two sources placed close
together is passed through a rectangular slit. We see that as the two sources
approach each other the two patterns will merge, and it shall no longer be
clear that there is anything other than one extended source of illumination.
If we define {}R as the smallest angle separating the two sources which allows
us to conclude that the sources are distinct, then we have approximately that

(5.11)

since the first minimum of the diffraction pattern occurs at

0: = 27r asin{} = 7r sin{} = ~
A 2 ' a .

In (5.11) we have made use of the so-called Rayleigh criterion (Baron
Rayleigh 1842-1919) which suggests that two objects may be seen as distinct
as long as the maximum of one pattern lies clear of the first minimum of the
other.

When viewing objects we are generally restricted to light received through
an aperture, for example, the lens of the human eye. When these apertures
are circular one needs to carry out the corresponding analysis for this type
of geometry. This involves functions that may not be familiar to the reader
(Bessel functions) and we shall not carry this analysis through here. Let
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us merely note that the pattern of a circular aperture is a series of con
centric rings, with the intensity along any radius having a variation rather
resembling the lateral behavior we have found with the long rectangular slit.
The Rayleigh criterion, which actually was originally formulated for circular
apertures, becomes

OR = 1.22>"/d ,

where d is the diameter.

5.3 X-ray Diffraction

The region of 10 to 1.10 A of the electromagnetic spectrum, i.e., about 1/1000
of the wavelength of visible light, is associated with X-rays. While sharp
X-ray lines are obtained when electrons located deep inside atoms of the
heavier elements undergo transitions between their energy levels, the contin
uous X-ray spectrum, which will be of interest here, is emitted by high speed
electrons (5 x 104 eV) when they are decelerated by their interaction with the
nuclei of a target material. The radiation is sometimes called Bremsstrahlung,
"bremsen" meaning "to brake" in German and "strahlung", radiation.

We have already mentioned interference by very many slits, brought about
by so-called diffraction gratings. In 1912, Max von Laue thought that the
regular array of atoms in a crystal, being separated by distances on the order
of the magnitude of X-ray wavelengths, Le., could be made to act as a three
dimensional diffraction grating. Subsequent experiments by Friederich and
Knipping confirmed this hypothesis.

When electromagnetic radiation impinges on an atom the electrons of the
atom will either undergo transitions to other energy levels, as discussed in
Sect. 5.1, or they can scatter the incoming light (re-emit the light in a different
direction) without changing their energy levels at all. It is the latter, elastic
scattering, that gives rise to X-ray diffraction. Let us see how the latter
process can be understood.

Fig. 5.5. Cross-sectional view of
equivalent planes for a cubic struc
ture. The squares mark the unit
cells, the diagonal lines are one of
many possible choices for the equiv
alent planes

In Fig. 5.5 we show a simplified representation of a crystal as comprised
of a regular array of small clusters of atoms, the so-called unit cells. In many
crystals the unit cell has two or more atoms, but in the simplest crystals, for
example, a crystal of metallic sodium, there would be only one atom. In any
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case the diffraction is brought about by the collective response of the ~nit

cells, each viewed as a single entity, rather than by the individual atoms.
Thus, in Fig. 5.6 the black dots represent unit cells. It is possible to place
all the unit cells on a series of equivalent planes, as suggested in Fig. 5.5.
The planes which are possible will depend on the crystal structure. Now the
unit cells belonging to a single plane can act cooperatively in scattering the
incoming X-ray beam. We see that if we focus our attention on that portion
of the scattered radiation for which the angle of incidence is equal to the angle
of reflection, () == c/J in Fig. 5.6 (in X-ray diffraction one works with the angle
complementry to that chosen in optics), then the radiation from all atoms
in the plane will be in phase. (Successive rays might also differ by one or
more whole wavelengths. This is one of several possible complicating features
on the conditions for reinforcement that we ignore here.) Accordingly, one
should think of a given plane as a single reflecting mirror for the incoming
X-rays.

Now, how do the light components specularly reflected from successive
crystal planes interfere with each other? We see from Fig. 5.6 that these
beams can likewise have phase coherence providing only that

2dsin() == mA, m == 1,2,3 . (5.12)

Equation (5.12) is the famous Bragg's law, named after Sir William Lawrence
Bragg. It says that the difference in the path length in a crystal, 2d sin (), must
be an integral number of wavelengths long for observable coherence.

In an experiment, a narrow beam of X-rays with a continuous spectrum
is directed at a firmly mounted single crystal. The source and detector are
sufficiently distant from the crystal to allow plane wave representation. For
a given set of planes () is fixed. There will then in general be, for a given m,

Fig. 5.6. Although atoms scatter X-rays in all directions, when () == 4>, X-rays from
successive atoms in an equivalent plane are all in phase. Similarly, when 2d sin (} ==
mA, X-rays from successive planes are likewise in phase
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some wavelength in the narrow incoming X-ray beam for which (5.12) will
be satisfied. The narrow diffracted X-rays show up as a Laue spot on a pho
tographic film. Usually, there will be one spot for each set of planes, giving
rise to a regular pattern, Fig. 5.7. Inspection of the pattern at once gives
direct information about the symmetry of the crystal target and, incidentally,
allows one to locate the direction of the crystal axis. It is also possible to do
the experiment with monochromatic X-ray beams and often more readily
available powdered rather than single crystal targets. This is the so-called
Debye-Scherrer method (Problem 5.12). We see that X-ray diffraction offers
an unequivocal way of verifying the crystallinity and determining the struc
ture of a given material.

Fig. 5.7. Schematic Laue pattern for an aligned

• • crystal

• •
• •

• • •

• • •
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5.4 EM Waves in Dielectrics. Refraction

The reader will be familiar with the concept of electric polarization of mate
rials, that is, the separation of the positive and electric charges comprising
any material which occurs when the material is exposed to an electric field.
The quantity characterizing this phenomenon is the polarization vector field
P(x, y, z, t), which is defined as the dipole moment per unit volume at the
point and moment of time in question. The central result concerning P is
that

v .P == -{!pol (5.13)

where {!pol is the charge density arising from the polarization (Problem 5.14).
Restricting ourselves as usual to linear phenomena we write, breaking up

all fields into Fourier components in space and time,

P(k,w) == soX(k,w)E(k,w) (5.14)

where X is called the electric susceptibility. Since X is a real (see below) scalar,
we are assuming that P and E are parallel, as they usually tend to be, and
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in phase. Physically, we differentiate between two different origins of the
polarization: the first is the motion of electrons relative to the fixed centers
of the ions of the material (electronic polarization); the second involves the
motion of the ion cores themselves (ionic and dipolar polarization, the latter
requiring the existence of internal dipolar molecules). The frequency response
of these different mechanisms will be different, the electronic polarization will
be active up to a higher cutoff frequency than for the other type of mechanism.

The simple model of polarization in Problem 2.10 based on an ensemble
of forced harmonic oscillators illustrates in some detail the origin of the fre
quency dependencies. Thus, it comes about that X(k, w) is indeed a function
of the frequency, w. The wave vector, k dependence is actually only of interest
in metals, where one can speak of the conduction electrons as forming an
independent electron gas. In this section we shall consider only insulators,
and omit further mention of the wave vector dependence of x.

The reader will also be familiar with the displacement field D(r, t), very
useful in all problems involving dielectrics Le., materials that polarize. The
definition of D(r, t) is

D(r, t) == coE(r, t) + P(r, t) . (5.15)

Again, resorting to Fourier components, but omitting any wave vector de
pendence, we have

D(w) == c(w)E(w) .

Lastly, from (5.14),

c(w) = co [X(w) + 1] ,

(5.16a)

(5.16b)

where c(w) is the dielectric constant of the material.
The central problem we wish to answer in this section is how do electro

magnetic waves propagate in insulators; how does the propagation differ from
that in empty space described in Sect. 4.3? If we have N dipole moments Px,
with say Px = qx, then we shall also have a current density Jx = qNdx/dt,
as well as a polarization Px = N qx so that

Jpol = dP/dt. (5.17)

(5.18)

In other words, time varying polarizations produce currents, and set up
magnetic fields. Suppose we are interested in the situation where the only
sources, charge and current densities, are due to the polarization. Then, from
(5.17) the Maxwell equation (4.12) becomes in the dielectric

[
8P 8E]V x B = {Lo at + coat .

By the same token (4.9) becomes

V·(E+P/co)=O, (5.19)

in view of (5.13). The remaining two Maxwell equations do not change:
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v X E == -8B/8t , (4.10)

V . B == 0 . (4.11)

Following Sect. 4.3 we can easily solve these equations. Since P is taken
parallel to E and has the same wave vector dependence we can again expect
from (5.19) transverse solutions, Le.,

V·P==V·E==O. (5.20)

If we take the curl of (4.10) and use the vector identity

V x (V x E) == V (yr . E) - yr2E

we get, remembering (5.20)

_yr2E == -8/8t(V x B) .

Using (5.18) and again (5.20), we find

yr2 E _ ~ 8
2
E _ _ l_c}2P = 0 (5.21)

c2 8t2 coc2 8t2 .

Lastly, if we have to contend with only one frequency w at a time, then we
can combine (5.14) and (5.16a) to get

Ew(r, t) + Pw(r, t)/co == [c(w)/co]Ew(r, t)

where the subscript reminds us that all time dependences will actually be
harmonic with the given frequency. Consequently, we can write (5.21) as

V2E
w

_ c(w) c}2 E w = 0 . (5.22a)
coc2 8t2

The same steps can be repeated to get a similar result for B, this time by
taking the curl of (5.18):

V2B w - c(w) (}2B w = 0 . (5.22b)
coc2 8t2

Equations (5.22a,b) show us that we can expect the same propagating
plane waves in a dielectric as we obtained for free space in Sect. 4.3. The
main difference is that the wave speed is modified from c, the speed in free
space, to

v(w) == Jco/c(w) c; (5.23)

v(w) will always be numerically less than c.
Equation (5.23) is of the greatest practical importance. For if a beam

of light traverses the interface from one material with a given value of the
dielectric constant to another with a different value, then as a consequence of
(5.23), the direction of the beam is changed. The light beam is said to have
been refracted, from the latin "refractus" (broken off). The phenomenon of
refraction underlies the functioning of lenses and prisms; hence its practical
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importance. The ratio cjv(w) is, accordingly, given a special name, the index
of refraction, n(w):

n(w) == cjv(w) == Vc(w)jco(w) . (5.24)

For light refracted by prisms the frequency dependence of the index of re
fraction leads to decomposition according to color (wavelength).

We shall analyze the problem of a beam impinging on a plane interface
between two dielectrics. This will be done on the assumption that there is
no loss of energy (attenuation) associated with the propagation of the light
beams. In the preceding development the tacit assumption has been made
that the electric susceptibility x(k, w) and, hence, the index of refraction
are real. However, this need not always be the case; if there is a phase lag
between the applied electric field E and the responding polarization (charge
displacement) P then power will be dissipated in the dielectric just as in the
driven harmonic oscillator when damping leads to a phase difference (other
than 0, or possibly 7(") between the applied force and the displacement. One
can then still use (5.14) and (5.16) to represent the situation, only now x(w)
will be a complex number (Problem 2.10). Thus there arises the possibility
of generalizing to a complex index of refraction. However, for the purposes of
this section the electric susceptibility X(w), the dielectric constant c(w), and
the index of refraction n(w) can be taken as real.

X(w), however, can be positive or negative. In a driven harmonic oscillator
model for polarizing electric dipoles, a model which, as it turns out, has
considerable physical reality, the sign of X(w) changes as w goes through its
resonance value wo. (In practice, there are a number of resonances corre
sponding to the different polarization mechanisms. X(w) goes negative for w

above the highest of these.) The change of sign in X(w) has the consequence
that n(w) becomes less than unity at frequencies above Wo, leading, by (5.24),
to a velocity v(w) which exceeds the velocity of light in free space, c. It takes
a more detailed consideration of the propagation of wave phenomena to see
how the dictum of relativity that nothing can travel faster than c is preserved.
Basically, the v(w) we are finding is called the phase velocity, the velocity of
a single harmonic wave, cos(kx - wt), which, as we have seen in Chap. 1,
implies that the wave stretches from minus to plus infinity in time and space.
To convey some information we must combine many waves (invoke a wave
packet). This packet will travel at its "group velocity", which will always be
less than c. An analytic exposition of wave packets and group velocity is best
deferred until Chap. 7, where we consider the effects of dispersion fully, and
after we have actually worked with wave packets, which we do in Chap. 6.

We now address the problem of what happens when a beam of light
in a medium of refractive index nl impinges upon a medium of index
n2, nl =f. n2, the two media separated by a plane surface, the x-z plane in
Fig. 5.8. As mentioned, geometric optics is based directly or indirectly on an
understanding of this physical problem. Its solution depends on a knowledge
of the boundary conditions at the surface. Directly from Chap. 4 we know
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that in the absence of surface currents, we are dealing with nonmagnetic
insulators, that B I , B 2 , the magnetic inductions in the two media, respec
tively, will be the same just above and just below the surface, as will be the
tangential components of the electric field, Ex and Ez. However, because the
polarization of the media leads to surface charges, the normal components of
the electric field E are not, in general, continuous across the boundary, and
one proceeds best at this point by turning to the displacement field D(r, t)
defined in (5.15). In the absence of charges external to those comprising the
medium, (5.19) holds and we find

V·D==O.

y

CD

®
x

(5.25)

Fig. 5.8. Incoming (k), reflected
(k'), and transmitted (k") beams at
a plane interface between nonmag
netic insulators. The index of refrac
tion of the lower medium (2) exceeds
that of medium (1), n2 > nI. In this
case the refracted beam is bent to
wards the normal; the electric field
is polarized in the z-direction and
the k vectors lie in the x - y plane.
(Problem 5.16)

Using the development of Chap. 4 [see, in particular, Problem 4.10], we see
that it is the normal component of D rather than of E which is continuous
across the boundary. Labeling the B fields of the incoming and reflected
beams in Fig. 5.8 B, B', respectively, and of the transmitted beam B", with
similar superscripts for the electric fields E, the boundary conditions on the
fields at the surfaces can be written

B + B' == B" (S.26a)

Ex + E~ == E~ (5.26b)

Ez +E~ == E~ (5.26c)

Dy + D~ == D~ . (5.26d)
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Example 5.1. A beam of plane coherent light is passed through two long
slits separated a distance d. By considering each slit as a single Fresnel zone,
Le., by neglecting diffraction effects, show that the illumination of a screen
a large distance D away will be given by

1==10 cos2 f3

where 10 is the illumination at the center of the pattern, and

(3 == 1rd(sin 0) / A

with 0 as in the diagram in Fig. 5.9a.

(a)

==:1---.--... \
~--..----.-.

=E I....~f-----

SCreen

s

I
I

/\1\Il\I\C:\
I
I

Fig. 5.9. (a) Light from two slits leads to interference at screen S, Example 5.1.
(b) Example 5.1. Top, phasor diagram; bottom interference pattern with diffraction
effects omitted

Draw the pattern, and give a direct physical explanation for the occur
rence of minima at (3 == (1r/2)(2n + 1) n == 0,1,2, ....

Solution. With diffraction effects left out, an EM field at the point P in
Fig. 5.9a can be represented by the phasor sum of the two individual fields,
likewise represented by phasors. The component phasors are equal in length
corresponding to equal amplitudes for the two fields, but are shifted with
respect to each other by their difference in phase, 2(3:

2(3 == (21r / A) (difference in optical paths == d sin 0) .

Simple geometry (Fig. 5.9b) gives

Iresulting phasorl == 2 cos f3/each individual phasorl ,

and I == 10 cos2 (3 follows when we recall that intensities are proportional to
the square of the field amplitudes. The minima in Fig. 5.9b occur whenever
the two components point in opposite directions (optical paths differing by
an integral number of half wavelengths). In practice the interference pattern
is modulated by diffraction effects (Problems 5.10, 5.11).
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Example 5.2. Let us prove that the angle of reflection ()' is equal to the
angle of incidence () relative to the x - z plane (Fig. 5.8) but for an arbitrary
plane of incidence.

Solution. In time and space an electric field component of the incoming beam
will satisfy at the surface

Ex(r, t) == Exoei(kxx+kz z-wt) . (5.27)

The boundary condition (5.26b) thus becomes

E ei(kxx+kzz-wt) + E' ei(k~x+k~z-wt) == E" ei(k~x+k~z-wt)
xO xO xO (5.28a)

at every instant of time t, and at every point x, z on the infinite plane
separating the two media. This condition can only be satisfied if, in the
first place, the two fields oscillate together in time, Le., the same frequency
characterizes all the fields, as in fact we have already assumed in (5.28a). By
the same token we must have

(5.28b,c)

and

(5.28d,e)

On the other hand, the E fields for both the incoming and outgoing
beams satisfy the wave equation (5.22a) with the index of refraction nl

VCl(W)/cO, requiring that

2 2 2 ,2 ,2 ,2
kx + ky + kz == kx + ky + kz . (5.29)

In view of (5.28b,d) and (5.29) we conclude that

k~ == -ky (5.30)

giving the desired result () == ()'. The reader is referred to Problem 5.16 for
details analyzing the refraction shown in Fig. 5.8.

5.5 The Magic Rule in Three Dimensions

The main purpose of this section is to put the theory of diffraction and
interference on a first-principles' basis, Le., to relate the developments in this
chapter to the wave equation for the electric or magnetic field with boundary
conditions.

The formal development outlined here depends, in distinction to Sect. 3.5,
upon the full Green's theorem in vector calculus, which is an extension of
Gauss's theorem. Let U(x, y, z) and V(x, y, z) be any two scalar fields of
x, y, z. For these fields there holds the vector identity

v . (UVV) == (VU)(VV) + UV2V . (5.31)
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We can integrate both sides of this identity over any closed volume, and
directly apply Gauss's theorem to the left side. This yields

f UVV . dB = JVUVVdv +JUV2V dv , (5.32)

where the left integral is over the surface area enclosing the arbitrary vol
ume. We can get a second equation like (5.32) by interchanging U and V.
Subtracting this second equation from (5.32) we obtain the desired Green's
theorem:

f [UVV - VVU] . dB = J[UV2V - VV2U]dv . (5.33)

Now, suppose 'ljJ(r, t) is the scalar solution of a wave equation with a driv
ing term harmonic in time

\7
2'ljJ(r, t) - (ljc2 )82'ljJ(r, t)j8t2 == _g(r)e-iwt

with g(r)e- iwt the source of the field. We have the solution

'ljJ(r, t) == u(r)e- iwt ,

where u(r) satisfies the Helmholtz equation:

\7
2u(r) + k 2u(r) == -g(r) ,

(5.34)

(5.35)

with k2 == (wlc)2. The Green's function technique consists in solving this
equation by first splitting the source g(r) into a spatial distribution of point
sources <5(r - ro), and ultimately taking the solution to be an appropriate
integral of the respective individual solutions corresponding to the point
sources.

The individual solutions are the Green's functions G(rlro)

\72G(rlro) + k 2G(rlro) == -<5(r - ro) . (5.36)

We shall learn that the boundary conditions of G(rlro) will need to be chosen
in particular ways if G(rlro) is to be instrumental in solving the physical
problem for 'ljJ(r, t). We recall that the problem can be of two categories. The
first category is as posed by the equation of motion (5.34) for 'ljJ(r, t), that is,
an inhomogeneous equation with certain fixed boundary conditions. A second
category of problem is where the right (driving) side vanishes throughout the
volume of interest, the source of the field being only in the boundary, for
example, a cavity driven by currents in one of its walls. Even then, just as in
Chap. 3, G(rlro), which is a function satisfying the inhomogeneous equation
(5.36), can be used to solve this second problem.

Although we are in this section singling out the Helmholtz equation, which
originates with time harmonic forces in the wave equation, the Green's func
tion concept carries over to field sources with arbitrary time dependence as,
in fact, we saw in Chap. 2. At the same time the wave equation need not have
the standard form of (5.34), for example, the Poisson equation \72cjJ == -g/eo
of electrostatics can also be solved by a Green's function, as we did in Chap. 4.
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In wave mechanics, somewhat related Green's functions play an important
role.

Let us return to the Helmholtz Green's function G(rlro) [strictly Gk (Tiro),
k == wlc]. Let us replace r by TO in (5.35) and multiply both sides by G(rlro);
multiply both sides of (5.36) by u(ro), and subtract. With G(r/ro) ==
G(rolr) we get

G(rlro)V76u(ro) - u(ro)V76G(rlro) == u(ro)8(r - ro) - G(rlro)g(ro) .

Now integrate both sides over an arbitrary volume of ro and take the integral
of the term containing g to the left side. We get

JJJ[G(rlro)V6u(ro) - u(ro)V6G(rlro)] dvo

+JJJg(ro)G(rlro)dvo = u(r) if r is in the volume

== 0 otherwise.

Lastly, we can apply Green's theorem here, (5.33), to the first volume integral
and write

u(r) fo == [G(rlro)Vou(ro) - u(ro)VoG(rlro)] . dSo

+JJJg(ro)G(rlro)dvo , (5.37)

where in the first integral on the right ro lies on the surface Aa of the volume,
while in the second ro lies anywhere inside.

Equation (5.37) is, again, the magic rule, now in three dimensions. If we
wish to do a problem in which u(ro) is specified at the boundary but V ou(ro)
is unknown there, we choose G(rlro) to vanish at the boundary. We can also
handle the problem when it is the gradient of u(ro) at the surface which
is given. (How?) Also, a solution is forthcoming regardless of whether g(ro)
exists or vanishes everywhere.

Let us apply (5.37) to finding, say, one component (polarization) of the
electric field E(r) when light from a point source S is diffracted by a single
aperture in an infinite baffle, Fig. 5.10. For the spherical wave emitted at S,
which we regard as the origin of our system, ro == 0, we write

E(ro) == Eoeikro Ira, (5.38)

and identify E(ro) in (5.38) with u(ro) in (5.37), and E(r), the desired dis
turbance at the point of observation 0 with u(r). The surface of integration
Ao is comprised of the dashed line in the figure, completed by the baffle and
the aperture. The appropriate choice for G(rlro) is that of an outgoing wave
from r:

eiklro-rl
G(rlro) = I I . (5.39)ro - r
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Fig. 5.10. Light from a point source S,
diffracted by a single slit, gives rise to an
electric field component E (r) at the point
of observation, O. The dashed portion of the
area Ao at infinity is completed by the baffle
and aperture. n is a unit vector, outward
bound from the aperture

(5.40a)

(5.40b)

The same considerations determine G(rlro) in (5.39) as E(ro) in (5.38), both
expressions satisfying wave equations with appropriate singularities on their
right sides. We notice that G(rlro) == G(rolr), Le. the principle of reciprocity
is satisfied; it always will be for G (see Sect. 3.5). The dashed portion of the
area Ao is at infinity, and of the two possible conditions there, outgoing or
incoming waves, the first alternative needs to be used. u(ro) and Vou(ro)
then vanish sufficiently rapidly that no integration need be carried out here;
there are no reflections. The physical situation is further specified by saying
that the surface integral in (5.37) vanishes over the baffle; that is, u(ro) and
its gradient vanish there, whereas within the aperture, u(ro) and its gradient
may be obtained from (5.38) - no reflections are coming back into the opening
from anywhere. From (5.38), then

n· Vou(ro) == -E(ro) (~ - ik) ro . n ,
ro ro

and, from (5.39)

(
1 . ) r - ro

n· VoG(rlro} = G(rlro} I I -lk I I .n .r - ro r - ro

Since the wavelength of the light, 27f/k, is assumed to be small compared to
distances ro or Iro - ri, only the second terms in the parentheses of (5.40a,b)
are retained. n being the outward unit vector from the baffle, as shown in
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Fig. 5.10, we have, substituting (5.38-5.40) into (5.37),

E(r) == ik J {E(ro)G(r1ro) [n. ro _ (ro - r) . n] } dSo
ro Iro - rl

aperture

J eik(ro+lro-rl) [n.ro n.(ro-r)]
== ikEo -- - dSo(ro)lro - rl ro Iro - rl .

aperture

151

(5.41)

In case the source instead of being a point at S close to the screen is removed
far away from the screen giving an incoming plane wave Eoeikoro, E(r) be
comes

E(r) = -ikEo J
aperture

eikoroeiklro-r\ [n. (r - r) ]
o . + 1 dSoIro - rl Iro - rl

(5.42)

where ro is now understood to be pointing parallel to -n, Le., to the incoming
direction k, so that eikoro is a phase factor constant over the area of the
aperture, and can be left out. The term in square brackets is the "obliquity
factor" mentioned in Sect. 5.2. Clearly, for the usual deflections of a few
degrees or less we may likewise consider this factor to be a constant. In this
way (5.42) leads to (5.7a).

Problems

5.1 Einstein Photoelectric Effect. Einstein's law regarding the emission of
electrons from metals illuminated by light of frequency v is

Ue == hv - cjJ •

a) If the electrons in a metal occupy all available energy states, one elec
tron per state, up to a maximum energy called the Fermi energy, explain why
Ue is the maximum kinetic energy of any emitted electron.

b) Write an equation for the threshold frequency Vc below which you do
not expect any electrons to be emitted.

c) An electron-volt is the amount of energy acquired by a particle having
the numerical charge of one electron, 1.60 x 10-19 coulombs, when it is
accelerated through a potential difference of 1 volt. If the work function
cjJ of a metal is 1 eV, what is the threshold frequency Vc, and what is the
corresponding wavelength, Ac •

If cjJ == 1.82 eV as for sodium, what is Ac?
d) Explain how the intensity of the illumination will affect the number of

emitted photoelectrons

i) for v > Vc

ii) for v < vc.
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These observations were not understood before Einstein's explanation of pho
toemission.

5.2 a) If the frequency of radiation from some particular source were pre
cisely known, what knowledge would we have about the time of emission t?

b) If the uncertainty in the energy of the upper level of an emitter is given
by

E ~ 10-20 j,

about how many wavelengths A is the coherence length, when the emitted
radiation is at A~ 5000A?

5.3 If an atom is known to have been excited at time t = 0, then the
probability that it is still excited at time t is given by e-,t, where 1/'"'( is
the lifetime of the excitation. Assume that, proportional to the amplitude of
a damped harmonic oscillator, the radiated field B(t) depends on t as:

B(t) = 0 t < 0

= boVWO coswote-,t/2 t > 0 .

a) Show that B(w), the usual Fourier component of B(t), is given by

B(w) = ~~~ [(W-wo
l
-h/2) + (w+wo

l
-h/2)] .

Show also that U(w), the w contribution to the energy U = JU(w)dw, is

U(w) = B*(w)B(w)c/J-lO .

Hint: See (4.17c, 19) and Problem 1.14.

Finally, show that the leading component of U (w) is proportional to

Wo

[(w - wO)2 + '"'(2/4]

This expression is the well known "Lorentzian lineshape" yielded by a full
quantum mechanical treatment of a two-level system.

b) Devise some method for estimating ~w from part (a), ~t from B(t),
and compare your estimate for the product (~w)(~t) with (5.4).

5.4 Show, with a diagram, the somewhat trivial development of how the
Huygens principle can be used to predict the advancement of a plane EM
wave.

5.5 For what values of the angle a do we get minima in the intensity of the
light diffracted by a single long slit, given (5.9, 10)? Can you give a physical
interpretation for your result by analyzing the incoming radiation fields as
comprised of contributions from a series of long horizontal elements of area
(Fresnel zones) comprising the slit?

Hint: Consider the radiation from two Fresnel zones at a time.
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5.6 What happens to the single slit diffraction pattern when A» a, i.e. the
width is small compared even to the wavelength of the diffracted light, when
A « a? Give a simple physical characterization for each of these situations.

5.7 Find an analytic expression for the diffraction pattern of a square aper
ture of area a2 , with a ~ A. Make a qualitative drawing representing your
calculated light intensity. (The diffraction pattern turns out to be a square
grid.)

5.8 As mentioned in the text, an important measuring device is the diffrac
tion grating, an opaque screen with many (N) parallel slits.

a) Using the Fresnel zone arguments, as in Example 5.1, show that the
first minimum for a grating will occur at () == A/(Nd), where d is the distance
between adjacent slits.

Hint: For a principal maximum all phasors are parallel, for the corresponding
minimum the phasors form a closed N -sided polygon.

b) We can say that two colors, wavelengths A and A + LlA, are resolved
when the second minimum for A falls at the first principal maximum (not
counting the central maximum) for A+ LlA, LlA taken as positive.

Show that (LlA/A) == (l/N).

What can you conclude about the relationship between the number of slits N
and the "resolving power" of a diffraction grating?

5.9 a) When we shift our attention from the first principal maximum to the
m-th maximum (not counting the central peak), the so-called m-th order
spectrum, we find that

LlA/A == l/mN .

Can you show this?
b) In a grating the sodium doublet (5890 and 5895.9 A) is viewed in third

order at 10 to the normal, and is barely resolved. Find (i) the grating spacing
and (ii) the total width of the rulings.

5.10 A plane coherent light beam impinges on the baffle B, Fig. 5.11. SI, Sn,
SIn are three imaginary screens assumed to have been placed in succession
at almost the same distance behind B, one at a time. It is suggested that the
reader copy Fig. 5.11 and then:

a) On the screen SI draw the diffraction pattern corresponding to a single
slit of width a at the center of B. State the position of the first minimum.
The wavelength is A.

b) On screen Sn draw the intensity pattern assuming there are two
horizontal, vertically centered slits in B, separated by a distance d, with
d ~ (9/2)a. Do not neglect diffraction effects in your diagram.

c) On screen BIn draw the pattern for the same values of a and d as in
part (b), but assume there are many slits. Be sure the distinction with the
pattern on Bn is clearly, if only qualitatively, displayed.
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Fig. 5.11. Problem 5.10

5.11 Consider a baffle with three slits, each of width a, separated by a dis
tance d. Divide each slit into four zones. Write down a phase factor eikR

for each of the twelve light rays joining the zones to a point at () on the
infinitely wide screen, R beeing the distance from zone to screen. Show that
the sum of the twelve corresponding phasors can be arranged into a product
of a diffraction factor multiplied by an interference factor.

5.12 At what distance will the two headlights of an oncoming car first
appear as distinct? Assume that the determining limitation is the finite
resolution of the eye, with a pupil diameter of about 1/2 cm, and that the
illumination is at 5500 A. The headlights are separated by 120 cm.

5.13 Why does a Laue diffraction pattern display dots, whereas a Debye
Scherrer pattern display a series of concentric rings? How would you produce
a monochromatic X-ray beam?

5.14 a) Show that the (uncompensated) polarization charge per unit area
at a boundary aligned perpendicular to a polarization P is given by

(Jpol = P .

Hint: Assume n dipoles/unit area, each dipole having a moment of, say, qd.
b) Generalize this result to

(Jpol = p. n

where n is a unit vector perpendicular to the area now making an arbitrary
angle with P.
Demonstrate that the net charge inside a closed volume with polarization
P(r) is given by the surface integral

Qpol == J{lpoldV = - f P . dA .

c) Finally, use Gauss's theorem for vector fields to obtain the desired
result

£Jpol = -V· P.
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5.15 Show that
00

D(r, t) = E(r, t) + JG(T)E(r, t - T)dT
-00

where

00

G(T) = J.-. J [c(w) - 1] e-iwtdw .
27r

-00

Reduce the result for D(r, t) when c(w) is not a function of w. Note that,
in general, c(w) will be such as to ensure that G(t - r) == 0, when t < r
(causality). Polarization can not precede an applied electric field.

5.16 a) For the situation shown in Fig. 5.8, Le., with the electric fields
polarized to lie parallel to the z-axis, show that the amplitudes of the reflected
and transmitted electric fields Eb and E~, respectively, are related to Eo, the
amplitude of the incoming beam by

I (ky-k~)

Eo = (ky + k~)Eo

11 2ky
Eo = (ky + k~)Eo .

Hint: Use (5.26a) and (5.28b,c).
b) Prove the well-known Snell's law

n2 sin ()" == nIsin () ,

where ()" is the angle of refraction, Figure 5.8, for both possible polarizations
of the electric field.

5.17 a) Show that a plane wave propagating in the z-direction with complex
index of refraction n == nR + inI is given by

E(z, t) == Eoeiw(nRZ/C-t)e-WnIZ/C .

b) Use the Maxwell equations to show that the wave equation in a non
polarizable, nonmagnetic metal of electric conductivity a is given by

\12E - (1/c2 )82 E/8t2
- J-loa8E/8t == 0 .

Show that

nI ~ via /2cow when a » coW

as is the case in good conductors at any available frequency. However, for
w ~ 1013 rad/s dynamic effects associated with electron collisions set in.

c) If the electric field in the metal is attenuated as e-z / 8 , where 8 is
called the "skin depth" , estimate 8 numerically for a microwave frequency of
1010 Hz, given that a ~ 5.76 x 107 Ohm-1 m-I.
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d) Show that there exists between the complex conductivity a(w) and the
complex dielectric constant c(w) the general relation

a(w) == -iw[c(w) - co] .

Note and discuss the implied 90° phase difference between a(w) and the
electrical susceptibility X(w).
Hint:

[
BP BE]V x B == {to at +COat .

Any current is to be viewed as a polarization current.

Further Reading

D. Halliday, R. Resnick: Physics, Part Two (Wiley, New York 1978)
Readers who have had no previous exposure to physical optics may well wish
to consult this more basic account.

G.R. Fowles: Introduction to Modern Optics (Holt, Rinehart and Winston,
New York 1967)
An intermediate level treatment which the reader may find helpful.

M. Born, E. Wolf: Principles of Optics (Cambridge University Press, Cam
bridge, U.K. and New York, NY, 7th ed. 1999)
The greatest treatise on the subject of all time.



6. Wave Mechanics

Abstract. The need for a wave equation, given the de Broglie relation
for particles and Bohr's spatially periodic description of atomic orbitals, is
noted. A derivation of Schroedinger's wave equation as motivated by the
classical wave equations of Chaps. 3 and 4 follows. The three postulates of
wave mechanics - that to every observable there corresponds an operator,
that the only possible values which measurements can yield are the eigen
values, and that average values can be predicted with the Schroedinger wave
function - are given. The special role of the energy eigenfunctions as yielding
stationary states, and of the coordinate eigenfunctions as yielding a physical
interpretation of the wave function are described. There then follows the
analysis of the propagation of a free particle in terms of a wave packet,
which serves as a basis for illustrating the Heisenberg uncertainty principle.
Section 6.4 explores the wave-particle duality and indeterminism, and ends
up by showing that these do not upset our notions of an orderly world. Section
6.5 develops the necessary aspects of the quantum physics of the harmonic
oscillator, and, subsequently, the Green's function technique for treating the
driven motion. Parallels with the classical problem are drawn. Lastly, Sect. 6.6
outlines some of the wide range of phenomena that have been quantitatively
interpreted by quantum mechanics. The part played by Green's functions in
quantum field theory is pointed out. The relevant Green's functions for both
harmonic oscillators and free particles are related to the previous development
of these functions in ordinary (first) quantization. Green's functions are seen
to provide a bridge from classical to ordinary quantum physics to field theory.
Example 6.4 explores the basis of the nuclear magnetic imaging technique
(NMR) with a two level model, whereas Problem 6.19, using a similar model,
deals with the origin of the resonance response of electronic polarizability.
Both these examples again bring out the correspondence with the occurrence
of the two distinct motions, natural and driven, in classical mechanics.

6.1 Origin of Schroedinger's Wave Equation

We have seen in the previous chapter that there existed at the beginning
of the twentieth century a certain crisis in optics. Einstein's explanation of
the photo-electric effect initiated a wave-particle duality for EM radiation,
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since light not only had its wave nature, but could also act as a particle, the
photon. There was, further, the necessity of explaining black body radiation.
The ideal model for a black body is a cavity. If we have an em cavity, such
as the ones discussed in Chap. 4, one can measure the intensity of radiation
escaping from a little hole in anyone of the walls as a function of the fre
quency of radiation v. Seen from the outside the hole is perfectly absorbing,
black, and the emitted radiation will be exactly that of any black body. If
the temperature of the cavity walls is carefully maintained at a value T,
then according to classical statistical mechanics each normal mode in the
cavity will radiate a certain energy depending only on its normal frequency v,
and on T. (Statistical mechanics is the microscopic theory used to explain
themodynamics.) However, the total predicted radiation was far in excess of
what was observed; in fact, it was divergent with the highest frequency v. As
we mentioned in Chap. 5, Planck established a new empirical law giving the
mode radiation as a function of v and T. As stated by Planck, the new law
contained the physical constant h, Planck's constant.

The Austrian physicist Erwin Schroedinger (1887-1961) remarked that
"wave mechanics was born in statistics" (statistical mechanics). The honor
of first correctly proposing a wave-like nature for material particles belongs
to the French physicist Louis de Broglie (1892-1987). In 1922, de Broglie was
able to obtain an approximate formula for Planck's radiation law directly
from statistical mechanics using only Einstein's E = hv for photons. In
analyzing the radiation in the cavity as a gas of photons, de Broglie was
continually reminded of traditional gas kinetics and statistical mechanics.
"All of a sudden" , as he later said, he saw that the crisis in optics was due to
the failure in understanding the true universal duality of waves and particles.
Some ideas of his own on the "harmony of phases" then led him to extend
to all material particles a law already suspected for photons. The famous de
Broglie relation reads

(6.1)

where A is the wavelength of the material particle or photon, h is again
Planck's constant, and p the momentum of the particle.

When EM radiation is absorbed, the electric field exerts a force on the
charges in the absorber. At the time of de Broglie's research, one knew that
according to classical EM theory, energy absorption of U leads to a transfer
of momentum Uj c to the absorber. Thus, one suspected that for a photon,
where U = hv, p = hvjc = hjA, as in (6.1). In 1923 the American physicist
A.H. Compton verified this relationship for photons by scattering X-rays
from the electrons of a graphite target. He noticed that scattered photons
underwent a shift in wavelength commensurate with their shift in momentum.

Significant for our purpose is that (6.1) was also confirmed for electrons
in 1927, by Clinton Davisson and Lester Germer in the United States and,
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independently, by Sir George Thomson in Britain. The experiments involved
diffraction of electron beams by crystals using the same theory as given
for X-ray diffraction at the end of the previous chapter. Today, electron
microscopes, which are a direct application of the de Broglie relation (see
Problems), have become a widely used scientific instrument.

The de Broglie relation for material particles gave rise to the search for
a wave equation. The idea that there exists an underlying wave nature for
matter was strengthened by the notion, derived from atomic physics, that
the electron orbitals in atoms were in some way spatially periodic. The work
of the Danish physicist Niels Bohr (1885-1962) had shown that the angular
momentum of the electrons was "quantized" into integer multiples of hI21r.
The discovery of a wave equation could lead to an understanding of phe
nomena on an atomic and possibly subatomic level, which, as was becoming
increasingly evident, was not being provided by the physics known in 1924.

On the basis of what we have learned we might expect an underlying
wave junction 'ljJ(x, t) dependent (restricting ourselves temporarily to one
dimension) on x, and on the time t. This function might be a harmonic
function, say, of the form

'ljJ(x,t) == u(x)v(t) ,

u(x) == sin kx ,

vet) == sinwt .

(6.2a)

(6.2b)

(6.2c)

k, the wave number 21rIA, is related through (6.1) to the momentum p by

k == pin,
and w related to the total energy E, through the Einstein relation by

w==Eln.

(6.2d)

(6.2e)

(6.3a)

(6.3b)

Here n is hI21r, Le., Planck's constant divided by 21r as in Chap. 5.
The spatial part of the wave equations which we encountered in Chaps. 3

and 4 read in one dimension

d
2
u(x) k2 ( ) == 0dx2 + u X .

If one substitutes pin for k as in (6.2d), and recognizes that

p2
-==T
2m

== E - Vex)

where m is the mass of the particle, T the kinetic energy, E the total energy
and Vex) the potential energy, the latter taken as time-independent, one
obtains

[
n2 d2

]
2m dx2 + Vex) u(x) == Eu(x) . (6.3c)
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Equation (6.3c) is the time-independent Schroedinger equation, as written
down by its great discoverer in early 1925. Generalizing to three dimen
sions, and taking V(r) to be the Coulomb potential of a hydrogen nucleus,
Schroedinger was immediately able to use the equation to calculate the ener
gies of the stationary atomic orbitals in the hydrogen atom. These energies
then checked against observed energy differences deduced from the light spec
trum of atomic hydrogen gas.

The full wave equation for a stretched string is

82 y 1 82 y
- -- (3.3)
8x2 8 2 8t2 .

When we turn to the right side, Le., now consider 821jJ/ 8t2, we encounter
a major difficulty. The result of taking two time derivatives of v(t) along
with Einstein's equation (6.2e) gives rise to the square of the total energy,
Le., to E 21jJ, rather than the E1jJ we are seeking to balance against the left
side of the equation. Indeed, the right side can be presumed to contain only
a first derivative in time. This raises a different problem. If we are to have
a solution to a first order differential equation, that solution will have to
be an exponential function rather than a trigonometric one. Moreover, to
avoid having the solution go to infinity or be exponentially damped as t goes
to either plus or minus infinity but rather to get waves, the exponent in
the solution will have to be imaginary. As a result the final time-dependent
Schroedinger equation reads

[
_h2~ V()] r)/'( ) == ."t, 81jJ(x, t)
2m 8x2 + x tj/ x, t In 8t . (6.4)

If V(x) is set equal to zero in (6.4), then as the reader can easily check, we
get the solution

1jJ(x, t) == ei(kx-wt) (6.5a)

with

hw == h2k2/2m .

Additionally, applying (6.2d) and (6.2e), we get

E == p2/2m,

(6.5b)

(6.5c)

the required result for a free particle.
For the general problem with a nonvanishing potential V(x), (6.4) should

be viewed as more general than (6.3c). The latter can be obtained from (6.4)
through the trial solution u(x)v(t) of (6.2a), as we see in the Problems. One
finds that

v(t) == e-iwt

w==E/h,

(6.6)

(6.2e)
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that is, an Einstein frequency for the total energy, E. Concurrently, u(x) is
satisfying the time-independent Schroedinger equation (6.3c), which proved
so immediately successful in predicting atomic structure. Indeed, the time
dependent Schroedinger equation, (6.4), is the correct nonrelativistic wave
equation for matter.

Lastly, we note that all of our discussion in this chapter is being restricted
to time-independent potentials V(x), i.e., closed systems which have constant
total energy. It is this restriction which facilitates separation of space and
time variables. Equation (6.4) itself is also valid for time-dependent potentials
if one inserts for V(x) the appropriate potential V(x, t). However, solution
becomes more difficult, usually requiring so-called perturbation methods.

6.2 Postulates of Wave Mechanics

What is the relation between the Schroedinger wave function 'l/;(x, t) of the
previous section and physical phenomena? The answer was far from obvious
in 1925, especially in view of the complex variable nature of 'l/;(x, t). Eluci
dation came as a result of the efforts of many physicists working together,
in particular, Niels Bohr in Copenhagen, Max Born (1882-1970), Pascual
Jordan (1902-1980), and Werner Heisenberg (1901-1976) all three in Got
tingen, P.A.M. Dirac (1902-1984) in Cambridge, and Schroedinger himself,
then in Zurich. Schroedinger discovered the relationship between results ob
tained with his wave equation and those obtained with matrix calculations
initiated by Heisenberg in the summer of 1925. (The term wave mechanics
refers to the treatment based on Schroedinger's wave equation, in contrast
to the equivalent matrix mechanics, the two methods comprising quantum
mechanics. )

The postulates of wave mechanics are as follows:

1. To every physical observable there corresponds an operator. Operators re
place the simple functions of classical physics. The table below, suitable for
three dimensional calculations for a particle of mass rn, explains:

Observable Classical function Quantum
mechanical operator

Position in cartesian
coordinates r == xi + yj + zk r == xi + yj + zk

Momentum m[(dx/dt)i + (dy/dt)j + (dz/dt)k] (n/i)\J

Kinetic energy p2/2m -n2\J2/2m

Total energy (p2/2m) + V(r) -n2\J2/2m + V(r)
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2. The only possible values which a measurement of the observable whose
operator is Q can yield are the eigenvalues qn, ql of the equations:

n = 1,2,3, ...

00 > 1> -00

(6.7a)

(6.7b)

Here the functions Un ( r ), Ul ( r) must be finite, continuous and single-valued,
and must satisfy boundary conditions appropriate to the physical problem. In
writing (6.7a,b) we distinguish between functions with discrete eigenvalues,
(6.7a), and continuous eigenvalues, (6.7b), Le., 1 is a continuous variable.
(In practice, the operator Q, as well as the boundary conditions determine
whether we are dealing with continuous or discrete eigenvalues, or both.)
Further, the un(r), ul(r) must be normalizable. In one dimension, for the
first type of eigenfunction, Un (x), the normalization is contained in

00

~ u~(x)un,(x)dx=onn'·
-00

For the second type:

00

~ Ul,(x)ul(x)dx = o(l' -l) .
-00

(6.8a)

(6.8b)

Here 8nn, is the Kronecker delta, 8(1' - l) the Dirac delta function. All the
u(x) belonging to any operator together will turn out to be an orthonormal
basis. (The basis may contain functions with both discrete and continuous
eigenvalues, or only one type.) For the moment we must illustrate what is
meant by eigenfunctions and eigenvalues with a few examples.

Suppose that the operator Q is the total energy operator, Q = H. It
is customary to use H, calling the total energy operator the Hamiltonian
in honor of Sir W.R. Hamilton (1805-1865), who reformulated classical
Newtonian mechanics in terms of variational principles. Equation (6.7) gen
eralized to three dimensions reads

(6.9)

We consider a problem already referred to, namely, the motion of an electron
in a hydrogen atom,

H = -1i2\72/2m - e2/47r£or , (6.10)

where e is the charge of the electron. H is seen to be the sum of the kinetic
energy and the Coulomb potential of the nucleus, the latter is considered
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fixed. Suppose we restrict ourselves to bound situations, where the hydrogen
atom does not disintegrate into an electron and nucleus, Le., for total en
ergy E < O. The reader will suppose that (6.9) can be solved for any value
of E, and so it can. However, we have seen in Chap. 3 that the imposition of
boundary conditions limits physical solutions of differential equations. The
boundary conditions for un(r) are supplied by the normalization conditions
(6.8). Evidently, un(r) must go to zero as r goes to infinity, and must do so
as (l/r) or faster.

It turns out that for E < 0 only certain discrete values of E, El, E 2, ... ,
lead to solutions of (6.9) that satisfy the boundary conditions. These discrete
values of E are the eigenvalues. They are precisely "the possible values of
the total energy" of the postulate. (A discussion of what happens when
E > 0 can be found in Chap. 7). For the hydrogen atom with E < 0 the
eigenvalues are the quantum energy levels with which the reader may be
familiar from elementary modern physics or from chemistry. On the other
hand the functions which solve the partial differential equation obtained by
combining (6.9) and (6.10) may not be familiar. Indeed, although he was
a powerful mathematician in his own right, Schroedinger in 1924-25 had
to consult a mathematician friend to fully solve the problem. (Nowadays
physicists do learn all about the functions. See Problem 6.3 for the solution
corresponding to the lowest energy level.) There is, however, an important
problem which we are in a position to solve in detail, and we now do so as
a second illustration of eigenfunctions and eigenvalues.

Consider a particle of mass m in a one dimensional potential, Fig. 6.1:

Vex) == 0

Vex) == 00

L?x?O

x> L,x < o. (6.11)

This problem is actually of great importance in modern physics, tending
towards a simple model for nucleons bound inside the nucleus, or of electrons
confined to a metallic crystal. It also is directly related to the model of
photons confined to a cavity, as analyzed in the theory of black body radiation
(based on the normal mode problem in a cavity as formulated in Chap. 4,
see Sect. 6.5).

Inside the one dimensional box (6.9) takes the form

_'h2 d2un (x)
2m dx2 == Enun(x) . (6.12)

We note that we have chosen the functions un(x) to be time-independent. We
may always do so when the operator in the eigenfunction equation (6.7) itself
does not depend on the time. One can then always solve (6.7) by the method
of separation of variables, Le., through the trial solution (6.2a). Outside the
box, where the potential is infinite, no solution to (6.3) is possible other than
un(x) == o. Thus, we take the boundary conditions on un(x) to be

(6.13)
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V.oo
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V.Q ...
I

x-o

E1
I

x=o
I

x=L

Fig. 6.1. On the left, a potential well with infinitely high vertical walls. Also shown
are the first three energy levels. On the right, the corresponding time-independent
wave functions Un (x)

Apart from constants, (6.12) and (6.13) are identical to (3.9b) and (3.13),
which describe the normal modes of a string of length L with fixed end points.
We therefore have the familiar solutions

Un(x) == J2/Lsin(n1rx/L), n == 1,2,3, ... (6.14)

(6.15a)

(6.15b)

where un(x) is already normalized, Le., satisfies (6.8a). By substitution we
obtain the energy eigenvalues:

En == n2k;/2m ,
kn == n1r/L .

Again, the allowed energy levels are quantized.
Since the operator H is the space-dependent operator in the Schroedinger

time-dependent equation (6.4), finding the eigenfunctions and eigenvalues of
H also yields the general form of the solution of (6.4), namely,

'l/J(x, t) == L Anun(x)e-iEnt/n
n=l

(6.16)

where the An are time-independent constants determined by the initial value
'l/J(x, 0).

Again, the functions un(x) are examples of eigenfunctions. Finding the
normal modes in classical mechanics is a special example of the more general
mathematical procedure of finding eigenfunctions and eigenvalues.

The operator corresponding to physical quatities in quantum mechanics
turn out to be Hermetian (after the French mathematician Charles Hermite,
1822-1901). Such operators are defined in Sect. 6.5. They have real eigen
values, see Problem 6.14. Since the eigenvalues are possible observed values,
real eigenvalues are obviously a necessity for a consistent theory.

Let us now allow L, the length of the one dimensional box of Fig. 6.1,
to get large, Le., L -+ 00, and look for the eigenvalues of the momentum
operator

Px == -in8/8x .
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Thus, we are to solve the equations

-ili8u(x)j8x == PkU(X) •

Again, the solutions are at hand, from Chap. 1. They are

Uk(X) == 1jV2ieikx

with

Pk == lik .

(6.17)

(6.18)

(6.2d)

Equation (6.2d) is the expected relation between the momentum P and the
wave number k, being again in accord with the de Broglie relation. If we
suppose that L -+ 00, Le., the boundaries do not affect the problem, then
any value of k is allowed; the eigenvalues are continuous. We thus have from
(6.8b)

00Ju~,(x)uk(x)dx = o(k' - k) .
-00

(6.19)

Actually, we see that we are dealing with the same functions Uk (x) al
ready defined in (1.32a) of Chap. 1. The rigorous mathematical statement
corresponding to (6.19) is

00Ju~'(X)uk(x)e-x2/4ndx = gn(k - k') ,
-00

(1.32b)

where it is understood that the limit n -+ 00 is of interest. In general, in
physics we write and directly use the result as given in (6.19), but if we are
not certain of whether a particular calculation is justifiable, we revert to the
more rigorous formulation given in Chap. 1.

Lastly, we inquire into the eigenfunctions of the position variable x:

(6.20)

Obviously the solution of this equation vanishes when x =I- ~. P.A.M. Dirac
discovered the need in quantum mechanics of the delta function. Using it, we
have

U~(x) == 8(x -~)

with, again, the normalization (6.8b):
00Jo(x - ~)o(x - e')dx = o(~ - e') .

-00

(6.21)

(6.22)

The reader may wish to consult Example 1.4 for the formulation of (6.20)
and (6.21) in terms of the theory of generalized functions.
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What happens to momentum eigenfunctions when L is finite? The answer,
which we shall understand better shortly, is that there is no solution to (6.17)
which satisfies the boundary conditions (6.13). In particular, the reader can
check that the energy eigenstates um(x) of (6.14) do not satisfy (6.17). (The
word "state" in eigenstate implies that the eigenfunction defines the particle's
situation and behavior - its state.) Thus, we now ask what happens if the
Schroedinger wave function tt/J (x, t) is not an eigenfunction of the operator for
the observable in which we happen to be interested.

3. When the particle has a wave function tt/J(x, t), the expected mean of a se
quence of measurements of the observable whose operator is Q is given by

00

Q(t) = J'ljJ*(x, t)Q'ljJ(x, t)dx
-00

providing we normalize tt/J*(x, t) as

00J'ljJ*(x, t)'ljJ(x, t)dx = 1 .

-00

(6.23a)

(6.23b)

The wording of this postulate makes us aware for the first time of a radical
departure of quantum mechanics from classical mechanics. Classical mechan
ics sets out to, and does, fully predict future dynamics on the basis of present
conditions, Le., there is determinism. Quantum mechanics, on the other hand,
in its utilization, is statistical in nature. This departure caused, as we shall
see, wide discussion among physicists when quantum mechanics was first
formulated, and even at the time of this writing, there is still some debate,
especially in philosophy. However, in general, physicists accepted a standard
formulation of quantum mechanics within a few years of its first formulation.

It is convenient in quantum mechanics to take over from statistics not only
the idea of a mean as defined by (6.23a,b), but also a root square deviation:

[ ]

1/2
jj.Q == (Q _ Q)2

with
00

(Q - Q)2 = J'ljJ*(x, t)[Q2 - 2QQ + (Q)2]'ljJ(X, t)dx
-00

= Q2 _ (Q)2 .

(6.24a)

(6.24b)

Q being in one dimension a number rather than an operator, as in (6.23a),
Q2 meaning the operator Q is applied twice in succession.
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We recall the orthogonality of the various normal modes in the problems
of previous chapters, for example, of the standing wave solutions for the
stretched string in Chap. 3, and that these normal modes formed a basis.
By "basis" we meant that functions of physical interest in the given interval,
and satisfying the appropriate boundary conditions could be conveniently
expressed in terms of these modes. It turns out that these properties of
normal modes can be generalized; the eigenfunctions of a quantum mechanical
operator belonging to different eigenvalues are orthogonal, and together form
a basis, as already anticipated following (6.8a) and (6.8b). If more than
one functionally independent eigenfunction belong to the same eigenvalue
of an operator, as sometimes happens, an orthornormal basis can still be
constructed.

The completeness of a set of eigenfunctions means that the Schroedinger
wave function ~(x, t) can always be expanded in them as a sum,

~(X, t) == L Bn(t)un(x) ,
n=l

if we are dealing with a discrete basis, and as an integral,

00

'I/J(x, t) = JBz(t)uz(x)dl ,
-00

(6.25a)

(6.25b)

if we are dealing with a continuous basis. (In some problems both sum and
integral are required.) The B(t) are time-dependent expansion coefficients.
An important point to note is that if, and only if, the u's are eigenfunctions
of the total energy operator H, will B(t) have the explicit form

Bn(t) == Ane-iEnt/n , (6.26)

for n discrete, and a similar form for I continuous. Here An is independent of
the time. This result was already indicated in (6.16).

Insertion of (6.25a) into the left of the normalization condition (6.23b)
yields

00

LB~BnJu~/(X)un(x)dx = L I Bn 1
2

n'n -00 n

after using (6.8a), the orthonormality condition for the un's. Thus, we find

(6.27a)

Similarly with the continuous expansion (6.25b), we find for the left side of
(6.23b) that
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00 00 00 00

JJBf*Bl JU;*(X)ul(x)dxdldl' = J 1 Bl 1
2 dl

-00 -00 -00 -00

with the help of (6.8b). One, therefore, also has

00J1 Bl(t) 1
2 dl = 1 .

-00

(6.27b)

It becomes significant now to insert (6.25a) into (6.23) with the un(x)
eigenfunctions of Q:

00

(J(t) = ~B~/(t)Bn(t) Ju~/(x)Qun(x)dx.
n,n -00

Recalling (6.7a),

Qun(x) == qnun(x)

we find

(6.28a)
n

Similarly, for functions with continuous eigenvalues, Q(t) is given by the
triple integral

00 00 00

Q(t) = JJBz';(t)BI(t) JUI'(X)QUI(X)dxdldl'

or
-00 -00 -00

00

(J(t) = Jql I Bl(t) 1
2 dl .

-00

(6.28b)

If (6.28a,b) is viewed in conjunction with (6.27a,b), the expansion coefficients
Bn(t), Bz(t) in (6.25a,b) assume the physical interpretation that the squares
of their moduli give the relative frequency of occurrence of the eigenvalues
qn, qz, respectively, at the time t.

Again, expansion in eigenfunctions of H can be particularly useful. From
(6.26) giving an exponential time-dependence for the expansion coefficient
Bn(t), we see that the square of the modulus I Bn(t) 1

2 is time-independent
and, hence, the total energy given by (6.23a) will be constant, as expected
for a closed system. (We use E for energy eigenvalues in place of h so as not
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to confuse them with Planck's constant.) If it now happens that in such an
expansion all the coefficients Bn(t) vanish except for one, say Bm(t), then it
is said that the particle is in the eigenstate U m (x) and, additionally, it is said
to be in a stationary state. Here 'ljJ(x, t) assumes the simple form

'ljJ(x, t) == um(x)e-iErnt/n . (6.29)

The expectation value of the total energy E will then exactly equal Em' and
the spread in the total energy, D..E, defined in (6.24a), will vanish.

Moreover, from (6.23a) defining the expectation value of any observable,
we see that when (6.29) is true, all expectation values Q will be time
independent, as we might expect for a "stationary state" (see also Exam
ple 6.1).

Whether or not 'ljJ(x, t) is in an energy eigenstate depends upon the initial
conditions. The situation is, therefore, entirely analogous to that encountered
in classical wave physics, where the distribution of the total energy among
the normal modes was similarly determined at the outset, and then similarly
stayed put.

The eigenstate with the lowest energy is referred to as the ground state,
for example, Ul(X) for the square well problem, Fig. 6.1, or the stable Is
state of an electron in the hydrogen atom. The stability of this state comes
simply from the fact that it takes a positive energy input from the outside
to dislodge the particle from this state.

Let us now return to the solutions for a finite box of dimension L in
(6.14-16). As has been mentioned, the stationary solutions

'ljJn(x, t) == un(x)e-Ent/n , (6.29)

Un(x) == V2/Lsin(n7rx/L), n == 1,2,3 ... (6.14)

while eigenstates of the total energy operator H, are not eigenstates of the
momentum operator p. Indeed, we can now calculate the expectation value p,
using (6.28a). It turns out (Example 6.1) that p == 0 for anyone of these
states 'ljJn(x, t). The reason is that un(x) is a standing wave, i.e., composed of
the two waves eikx / V2L, e-ikx / V2L, each of which carries momentum, but
the two momenta are pointing in opposite directions. The particle is moving
back and forth between the two confining walls. We expect that D..p =1= 0, see
Problems.

More is to be learned by looking at the two specific bases with continuous
eigenvalues with which we are already familiar. First, suppose that we choose
the position eigenfunctions u~(x) of the operator x given by (6.21) as 8(x-~).

With this choice of uz(x) the integral expansion (6.25b) for 'ljJ(x, t) reads
ex:>

1/J(x, t) = JBe(t)o(x - e)de
-ex:>

(6.30a)



170 6. Wave Mechanics

which means that here

Boo(t) = 'ljJ(oo,t).

It follows from (6.28b) for any Q that
00

x(t) = J'ljJ*(x, t)x'ljJ(x, t)dx ,
-00

(6.30b)

(6.31)

with (6.30b) for the coefficients Bz(t). Similarly, from (6.27b) it follows
that

00J'ljJ*(x, t)'ljJ(x, t)dx = 1 .
-00

(6.23b)

One has thus recaptured the normalization condition on the Schroedinger
wave function 'ljJ(x, t), thereby justifying the delta function normalization on
the continuous eigenfunctions 8(x - ~). Going now to our interpretation of
I Bz(t) 1

2 as the relative frequency of occurrence of a continuous eigenvalue l,
we obtain from (6.30b) a physical interpretation for 'ljJ*(x, t)'ljJ(x, t):

'ljJ* (x, t)'ljJ(x, t) is the probability of finding the particle at x at time t,

or 'ljJ* (x, t)'ljJ(x, t)dx is the probability of the particle's being between x and
x + dx at t. One can deduce the same physical interpretation, less formally,
directly from (6.31) for x(t), with the normalization condition (6.23b) signi
fying that the particle must exist somewhere; the sum of all the probabilities
of finding the particle is unity.

Lastly, suppose that for Uz (x) we choose the momentum eigenfunctions
Uk(X) of (6.18), Le., eikx jV2i. In that case the expansion (6.25b) becomes

00

'ljJ(x, t) = vk JBk(t)eikxdk,
-00

(6.32)

the standard Fourier representation (1.24) familiar to us from Chap. 1. It is
thus an easy matter given 'ljJ(x, t) to find Bk(t), since we already know how
to invert Fourier transforms.

We recall that the eigenvalues of the p operator, (hji)8j8x, are just
hk. The general formula for expectation values with continuous eigenvalues
(6.28b) assumes the particularly transparent form

00

Px(t) = J1ik 1 Bk(t) 1
2 dk

-00

(6.33a)
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when we expand in momentqm eigenfunctions. Analogously combining
(6.30b) and (6.31) we can write:

00

x(t) = Jx I Bx(t) 1
2 dx .

-00

(6.33b)

We notice that the Uk (x) are, for free particle, eigenfunctions of both the to
tal energy operator H, [Le., the kinetic energy operator (_li2 j2m)82 j8x2 since
Vex) == 0], as well as of the momentum operator -ili8j8x. Accordingly, it is
tempting to employ a single wave Uke-iEkn/t , Ek being li2 k 2 j2m, as the solution of
the Schroedinger wave equation 'ljJ(x, t) in problems where the particle's momentum
is well defined, p == lik, ~p == o. However, in view of the delta function normalization
(6.8b) for the Uk(X), one can not do so directly. Instead one must employ a stratagem
like saying that one knows that the particle exists with a certain probability (in
tensity if there is a beam of particles, as there usually is) between certain points
a < x < b, and then normalizing 'ljJ(x, t) in that range to the appropriate overall
probability for the range. Another common stratagem is to employ so-called periodic
boundary conditions, an approach outlined in one of the problems. On the other
hand, the delta function 8(x - e), which has the fundamental property

00J8(x - ~)dx = 1

-00

(1.19b)

[not to be confused with the orthonormalization condition (6.22)] becomes very
useful when we wish to localize a particle, Le., its probability density 'ljJ* (x, t)'ljJ(x, t).
These comments, pertaining to practice, will become clearer in the next section.

6.3 Motion of a Free Particle.
The Heisenberg Uncertainty Principle

In the previous section we gave the formal postulates of wave mechanics, and
began to solve some problems. To get a better feeling for how wave mechanics
works, we shall solve the most basic problem of all in classical wave mechanics,
that of a free particle, which according to Newton's first law, if not at rest,
"continues in a state of uniform motion" . How do we extract the equivalent of
x == vt from Schroedinger's equation and the postulates of wave mechanics?

The procedure is to solve an initial value problem, using the Schroedinger
equation as the governing wave equation, much as we solved the diffusion
equation in Problem 1.17, or the problem of a traveling pulse on a stretched
string in Chap. 3 using the wave equation there.

We shall write for our initial condition

'l/J(x,O) == ae(_x
2

/4a
2

)+ikox . (6.34a)

Here the proportionality constant a is determined by the normalization con
dition:

00J'ljJ*(x, O)'ljJ(x, O)dx = 1 .
-00

(6.23b)
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We remember that (6.23b)· ensures that the total probability of finding
the particle somewhere is unity. We have

(X)

o? Je-x2/2a2 dx = a 2V2a27f = 1 ,

-(X)

where we have used (1.5) to get our integral. Thus, normalized, ~(x, 0) is

~(x, 0) == (2na2 ) -1/4 e(_x
2

/4a
2

)+ikox . (6.34b)

Why do we choose such a complicated starting function? Why do we not
choose the initial probability distribution ~*(x, O)~(x,0) to be 8(x)? At least
we will have nailed down the starting position of the particle to be at x == o.
These questions bring us to the heart of wave mechanics. To give a full answer
we are obliged to Fourier-represent ~(x, 0) in (6.34b) [see (1.24)]:

(X)

"p(x,O) = IjV'f,; JA(k)eikxdk

-(X)

with
(X)

A(k) = IjV'f,; J"p(x,O)e-ikxdx

-(X)

== (2a2 In) 1/4 e-(k-ko)2 a2 .

Equation (6.35b) follows upon application of (1.18), namely
(X)Jeikxe-ax2 dx = J7fjae- k2 /4a .

-(X)

(6.35a)

(1.33)

(6.35b)

(1.18)

With (6.35b) for A(k), we can use (6.33a) of the previous section to find the
average momentum as

(X)

Px(O) = nJk I A(k) 1
2 dk .

-(X)

(6.36a)

Now, the reader can easily use (1.18) to check that J~(X) I A(k) 1
2 dk is equal

to one. Indeed, we know from (6.23b) and (6.27b) for t == 0 that this integral
will be unity. We, therefore, find at once that

(X) (X) (X)

Jk 1 A(k) 1
2 dk = J(k - ko) 1 A(k) 1

2 dk + ko J 1 A(k) 1
2 dk ,

-(X) -(X) -(X)

== ko

since the first integral on the right, having an odd integrand, vanishes.
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Therefore, from (6.36a)

p(O) == liko , (6.36b)

where here and subsequently we drop the subscript x.
Equation (6.36b) explains the factor eikQx in our chosen initial condition.

Without it the average momentum would be zero, and we shall find that then
the particle would on the average not move at all.

We can also use (6.35b) for A(k) to find the spread in the momentum ~p

defined as in (6.24a,b). In the Problems one obtains

~p(O) == li/2a . (6.37)

At the same time the spread in x, denoted ~x, associated with the initial
condition (6.34b) for 'l/J(x, 0) is found in Problem 6.6 to be

~x(O) == a . (6.38)

(6.39)

This calculated result for ~x comes as no surprise. The initial probability
distribution is from (6.34b):

2 -1/2 2/2 2'l/J*(x, O)'l/J(x, 0) == (21ra ) e-x a;

the position of the particle can, indeed, be seen distributed approximately
over an extension ~x "-J a. Further, if we replace 2a2 by l/n, we formally get
back from (6.39) for I 'l/J(x,O) 1

2 the function

gn(x) == In/1re-
nx2 , (1.20)

which, in Chap. 1, was given as a member of a sequence defining 6(x). Thus,
initial conditions corresponding to a 6(x) localization are included in (6.34a).
One simply lets a --+ O. But then there is a price to pay, for by (6.37) we shall
have ~p --+ 00. How about choosing some function other than a Gaussian?
We have already seen in Example 1.1 that it is a property of the Fourier
representation that for the product of the spread in wave vector space ~k,

and in real space ~x

~k~x ~ 1. (6.40a)

Further, it can be shown that of all functions it is the Gaussian which
yields the smallest value for this product, to wit:

~k~x == 1/2 . (6.40b)

Obviously, these facts, inherent in wave mechanics, have broad implica
tions. However, it will be advantageous to defer going further into the latter
until we have solved our problem, Le., found 'l/J(x, t) for t > O.

Going back to (6.12), Schroedinger's time-independent equation for a free
particle, one sees that

(6.18)



174 6. Wave Mechanics

give a complete set of free particle solutions when there is no need for any
special boundary condition. The eigenfunctions of the time-independent to
tal energy operator H coincide with the eigenfunctions of the momentum
operator p, see (6.17). Finding exactly when two or more operators turn out
to have common eigenfunctions is really beyond the scope of our treatment;
however, the interested reader will find that one of the problems does address
this question.

As in (6.29), the time-dependent solution of Schroedinger's equation cor
responding to Uk(X) is uk(x)e-iEkt/li. Or, following (6.25b), the most general
solution for 'ljJ(x, t) will be a linear combination of all possible solutions. Thus,
for a free particle

00

1jJ(x, t) = JA(k)uk(x)e~iEkt/1idk.
-00

(6.41)

(6.42a)

Just as for normal modes in classical physics, the coefficients A(k) are
amplitudes to be determined from the initial conditions. In fact, looking at
the derivation of the result for A(k) in (6.35), we have precisely found the
coefficients for 'l/J(x,O). Therefore, there only remains an integration over k
to give us 'ljJ(x, t). Substituting (6.35) for A(k) and (6.18) for Uk(X) into the
general expression (6.41) we get

1jJ(x, t) = (1/J21T) (2a2 j-rr) 1/4Jeikxe-iwkte-(k-ko)2a2 dk .

Using (6.15a), the formula for the angular frequency Wk == Ek/Ti is
given by

(6.42b)

In our study of classical mechanics we were used to having a linear rela
tionship between the wave number k and angular frequency w, for example,
with waves on a stretched string. However, we have also encountered disper
sive situations; the phase speed w / k of a light wave in a medium in Chap. 5
did depend on k, giving, for instance, prisms "dispersive power". In wave
mechanics dispersion is evidently very marked.

The integral in (6.42a) is carried out by "completing the square". To
reduce the algebra we introduce a complex quantity for the coefficient of k 2

in the exponent, and also a "time" T, where

A2 == a2 + iT

T == Tit/2m .

(6.42c)

(6.42d)
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With these symbols 'ljJ(x, t) in (6.42a) becomes

'ljJ(x,t) = (1/~) (2a2/7T)1/4ek5a4/A2e-k5a2J

or

00

J = Je-(kA-koa2/A)2+ikxdk.

-00

(6.42e)

(6.42f)

Here the factors exp(k5a4/A2) and exp-(k5a4/A2) have been introduced
into (6.42e,f), respectively. Interchanging x and k and substituting A for a,
in (1.18), the Fourier transform of a Gaussian, we get:

00

J. 2A2 2/ A2
e1kxe-k dk == (v:rr/A) e-x 4 .

-00

(6.42g)

Here it is important to notice that the real part of A2 , a2
, is always positive.

Under these circumstances (1.18) may be extended, as is indicated in Chap. 1,
to complex values of the parameter A. Further, in this case we may disregard
a finite shift koa2/ A2 in k when the range of integration in k is from plus to
minus infinity. Thus, making the change from k to (k - koa2/A2) in (6.42f),
we have from (6.42g)

I == (v:rr/A) e-x2
/4A

2
ei (koa

2
/A

2
)x . (6.42h)

Equations (6.42e,h) give us the sought after analytic solution for the wave
function of a free particle 7./J (x, t).

We can, before dealing with the full complexity of the expressions for
7./J(x, t), discover some of the information we shall be wanting. Thrning things
around, we again note that for a free particle the eigenfunctions of the momen
tum operator Uk (x) are also eigenfunctions of the energy operator H, giving
us the expression Ake-i(Ek/n)t for the time-dependent coefficients Bk(t) in
the expansion (6.25b) for 7./J(x, t) in momentum eigenfunctions:

00

'ljJ(x, t) = .vk JBk(t)Uk(X)dk.
-00

(6.25b)

Thus, with I Bk(t) 1
2 independent of time, pet) and D,.p(t) are, likewise, time

independent. We therefore have

pet) == p{O) == liko

D,.p(t) == ~p(O) == 1r/2a .

(6.43)

(6.44)

On the basis of classical physics this result is hardly surprising for a free
particle, a point to which we shall return.
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On the other hand x(t) and ~x(t) are strongly time-dependent. To cal
culate this dependence we do not need the full 'l/J(x, t) as we do, in prin
ciple, to find the details of the momentum distribution. It suffices to know
'l/J* (x, t)'l/J(x, t), the probability distribution of the particle. Looking at (6.42d)
and (6.42g), we shall need:

1(1 1) a
2

2 A2 + (A2)* == ~

1(1 1) -iT
2 A2 - (A2)* == T (6.45b)

(6.45c)

(6.45d)

With these results we find a perfect square in the exponent, that is, we find

(6.45e)

Equation (6.45e) is our final result for the probability distribution of
the free particle at time t. We can easily check that the distribution has
remained normalized in time (6.23b), a consequence of the unitary property
of the Schroedinger equation. The entire calculation for 'l/J*'l/J can be easily
generalized to three dimensions, as can all of our subsequent discussion.

We can now find both x(t) and ~x(t) rather directly from (6.45e). Pro
ceeding as we did to find p(O) in (6.36b), we see at once that

ex:>

x(t) = J'I/J*(x, t)'I/J(x, t)xdx
-ex:>

== Chko/m)t . (6.46a)

Also, remembering that ~x(O) in (6.38), associated with a normalized distri

bution going as e-x2
/2a

2
, was a, we have here, more generally, for the spread

~x(t):

~x(t) == ViS./a (6.46b)

== Ja2+ (~p/m)2t2 , (6.46c)

where we have used (6.45d) for ~, and (6.42d) for T, and (6.44), which relates
a to ~p.



6.3 Motion of a Free Particle. The Heisenberg Uncertainty Principle 177

The results of our calculation are summarized below comparing initial
and later values, and in Fig. 6.2.

t==O

x==O
~x == a

p == hko

~p == h/2a

~x~p == h/2

t>O

x == (p/m)t

~x == Ja2+ (~p/m)2t2

p == hko

~p == h/2a

~x~p > h/2

I.. (fJ ko/m)t

'If ·(X,O) 'I' (x,o)

~- ~

'I' ·(x,t) 'If(x,t)
after measurement
at time t

x

Fig. 6.2. The probability distribution 'ljJ* 'ljJ at t == 0, and at t > o. The larger
spread at finite t displays the statistical nature of wave mechanics. Also shown is
'ljJ*'ljJ after a measurement at time t. The wave function has "collapsed"

At first inspection what has happened is simple enough. The particle
started at x == O. We described it, the only way one can in wave mechanics,
as a linear superposition of waves of varying wave vector k. The Dirac delta
function b(x), and the plane wave Uk(X) are the two extremes of possible
descriptions being, as pointed out in Chap. 1, exact opposites. b(x) represents
total localization, but the associated ~p goes to 00, since all Fourier compo
nents are equally represented in the delta function. Uk (x), a single harmonic
wave, represents total delocalization, ~x ---t 00, with, however, a well defined
momentum, i.e., ~p ---t o. More generally, we have used a superposition of
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waves called a wave packet. With the wave packet we found that no matter
how we adjust parameters, we get a description in which

~x~p ? li/2 . (6.47)

By now such limitations are a familiar facet of wave formalisms, having their
origin directly in Fourier analysis. We came across a similar limitation in
Chap. 5:

~E~t ? li/2 . (5.5)

The subsequent motion of the free particle is entirely consistent with clas
sical mechanics. The average momentum of the particle, p = liko, remains
constant; the momentum distribution in k space does not change in time, and
remains centered about ko. This is what we expect for a free particle, Le.,
when the potential V(x) does not have a gradient, when there are no forces.

In time t the peak of the probability distribution advances a distance
(p/ m )t. The particle satisfies

x = vt (6.48)

where v is given by liko/m, or, equivalently by p/m.
However, ~x given by Ja2+ (~p/m)2t2, does change in time. The initial

spread in momentum manifests itself as a spread in position at a later time.
The Heisenberg uncertainty principle states that the position of a parti

cle and its momentum can .not be measured simultaneously to an accuracy
greater than that given in (6.47). Similarly the energy of a particle and the
time during which the particle has that energy can not be ascertained to an
accuracy exceeding that given in (5.5). We have already seen that (6.47) is the
direct outcome of the original de Broglie relation (6.1) and Fourier analysis.
What the Heisenberg principle states is that at the very precise level of
measurement where (6.47) is relevant, the means of measurement will always
affect the system to such an extent that accuracy exceeding ~x~p = li/2 is
unobtainable. We illustrate in Example 6.3 how the measurement of position
with light (on the quantum level, by bouncing photons off the particle under
scrutiny) disturbs the particle. When quantum physics was first formulated,
physicists thought of many different hypothetical experiments to test the
Heisenberg principle, but no experiment has ever been found to discredit the
principle.

The limitation on measurement formulated by Heisenberg is a necessary
condition for the ultimate validity of wave mechanics. Were it possible to
make measurements which give data in excess of the limitations of (5.5)
and (6.47), one could study such information and the subsequent evolution.
Such knowledge would lie outside the scope of wave mechanics, which can
only describe phenomena within the limitations. This would not, in itself,
invalidate the theory, but it would indicate the existence of a yet more basic
formulation, and some further way of understanding nature. Rather, we see
that quantum mechanics has an internal consistency; in fact, it has correctly
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predicted such an incredible wealth of physical phenomena on the atomic and
sub-atomic level, where Newtonian mechanics has been found to break down,
to have become on this level the accepted replacement.

If we now focus on the free particle at time t, where t:,..xt:,..Px is definitely
greater than fi/2, here measurements will allow more precise simultaneous
assessment of the dynamic variables than our calculation was able to predict,
Le., to within fi/2. Thus, there will be more than one possible outcome
from the measurement, 'ljJ*(x, t)'ljJ(x, t) representing a statistical distribution.
We can, for instance, take a Geiger counter (a device that counts particles
individually) with a window opening t:,..w set at considerably less than t:,..x(t),
and scan the probability distribution at time t. We will then find that, on the
average, repeating the experiment many times, the total number of counts
(per particle) will be distributed according to the function 'ljJ*(x, t)'ljJ(x, t);
'ljJ*(x, t)'ljJ(x, t)t:,..w is the likelihood that the particle will be found at x within
a window opening of width t:,..w.

After the measurements, the indeterminacy of the wave function may be
back to what it was at t == 0; we simply set t:,..w == t:,..x(O). This is sometimes
called a "collapse" of the wave function (Fig. 6.2), an alteration to which we
shall refer again.

Lastly, we note that our calculation of the propagation of a free particle,
however strong the relation of the results to classical particle mechanics,
did, in fact, proceed by the way of wave mechanics; the propagation of the
particle was represented by the motion of a wave packet. This wave particle
duality can be illustrated most vividly by a rather different physical situation
described in the next section.

6.4 Wave-Particle Duality and Loss of Determinism

The two-slit diffraction experiment of the previous chapter can be repeated
with particles. A beam of particles, say, electrons, is passed through two
horizontal slits in a bafHe. The vertical distribution of arriving electrons can
be mapped out with the use of a Geiger counter, just as the distribution of
free particles could be ascertained in the previous section. In its distribution,
the intensity of the diffracted electron beam will exactly resemble the pattern
obtained in Fig. 5.12 for diffracted light. Now, the Geiger counter is a device
that records the arrival of particles, it either clicks or it does not; there are
no half-clicks. If a bunch of heavy particles, say, pellets, had been directed
through the slits, the distribution along a vertical receiving plane could not
possibly resemble the observed complex diffraction pattern. The pellets would
simply be found to arrive along two well-defined, well-separated lines, as
predicted by classical mechanics. The departure from such a distribution,
namely, the complex diffraction pattern, may be taken as indicating that
when an electron goes through one of the slits it knows that the other slit is
there as well! - the wave-particle duality at its most evident.
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At this point one becomes curious as to what would happen if the Geiger
counter, with all its complexity, were formally included in the problem, Le.,
the whole mechanism became part of the potential V in the Schroedinger
wave equation. In that case we would do our physics in the usual deter
ministic fashion, simply solving a (nonsimple!) wave equation, just as we
do in classical physics. The wave-particle duality, the indeterminism, and
the "collapse" of the wave function would disappear from the calculation.
Would they disappear altogether? The answer is they would be pushed to
the next level of observation. In the end, to quote from Heisenberg's Physical
Principles of the Quantum Theory (see Further Reading for Chap. 6): "we
should be forced, for example, to include our own eyes as part of the system,
and so on. The chain of cause and effect could be quantitatively verified only
if the whole universe were considered as a single system - but then physics
has vanished, and only a mathematical scheme remains. The partition of the
world into observing and observed system prevents a sharp formulation of the
law of cause and effect. (The observing system need not always be a human
being; it may also be an inanimate apparatus, such as a photographic plate.)"

In practice, in view of the difficulty of solving the Schroedinger equa
tion, only very simple problems can be analyzed. The rest of the work of
interpretation of experiments is as much an art as a science. Nevertheless,
physicists have successfully managed to quantitatively understand a wealth
of information on the quantum level of nature. We demonstrate this in the
next section, the last section of this chapter.

Wave mechanics, when first discovered, caused consternation among many
physicists. A wave function which, on the one hand, contained information of only
statistical value had, on the other, to be carried through calculations in all its
entirety (as in a multiple slit experiment), yet collapsed with each measurement.
Schroedinger himself posed the famous cat paradox (Schroedinger's Cat). A cat is
shut up in a box together with a small amount of radioactive substance such that
in an hour there is a 50 % chance of a radioactive decay. If there is a decay, an
apparatus is triggered which releases a deadly gas. The 'ljJ function of the system
at the end of an hour would expess this situation by being a linear combination
with equal coefficients of components describing a living and a nonliving animal.
Is the cat really neither alive nor dead until an observer has looked into the box?
A different but related question is, will there be any evidence upon opening of the
box of strange behavior attributable to the mixed wave function, as there is with
the composite wave function of an electron that has been diffracted by two slits?

Today most physicists are no longer troubled by such questions. In particular,
an animal or human brain (or even one transistor), is complex; so many neural
processes go into any human decision, that as regards individual life, or recorded
history, any effects of quantum fluctuations are almost certainly completely obliter
ated. As regards Schroedinger's cat, the wave function would contain a tremendous
number of eventualities, almost all of them leading to one or the other of the large
scale outcomes, with only a totally negligible number of eventualities leading to
something strange.

Let us consider a simpler example. Suppose we measure simultaneously the
position and momentum of the moon, with the inevitable Heisenberg uncertainty.
It is posed as one of the Problems to determine how long it will take for the moon
to come off-course by one kilometer. In enough time (eons), the initial quantum
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uncertainty can lead to such an effect. However, if it does, it will not come as
a surprise, since, inevitably, we will take a look now and then. As in any statistical
process, monitoring will limit the statistical spread in the predictions. At the same
time there is nothing to support the notion that the collapsing of the wave functions
in themselves affect future outcomes. It is the measurements leading to the collapse
that have effects (Example 6.3).

In summary, when dealing with the constituents of nature, very light
particles or photons, it is necessary to relax certain concepts based on direct
experience. Here visualization of particles as concrete objects, so useful in
Newtonian mechanics, must be modified by notions of wave particle duality.
The German physicist Max von Laue (1879-1960) suggested that a quantum
mechanical object is to be viewed as a wave when looking towards the future,
but as a particle when considering the past! Alternately, in answer to where,
we have a wave, in answer to how, we have a particle. However, despite
the unpredictability which appears in quantum mechanics when the world is
split into a subject and object, we can integrate the quantum results into our
picture of an orderly universe. Most "hardware" is sufficiently massive or com
plex (redundant) for quantum fluctuations to have any tangible effect. In his
famous "correspondence principle" Niels Bohr emphasized the requirement
that when physical situations approach a nonquantum limit, usually because
there are present many quanta of energy or angular momentum, quantum
theory results must go into those of classical physics. This does happen in
quantum theory as it does in experiment.

6.5 Driven Motion and the Green's Function
for the Harmonic Oscillator

We have already seen that, strictly, the Schroedinger equation applies to the
universe as a whole. The choice of a workable model, for example, doing
calculations ignoring the apparatus of observation requires expertise in inter
preting the results. Nevertheless, the concept of an external driving agent,
providing an intuitive dissection of problems in classical physics is also useful
in quantum mechanics. For example, if one were studying infrared absorption
by the elastic waves of an ionic crystal, one would assume a given, fixed
amplitude for the applied field. One could safely neglect that oscillations
of the crystal ions, driven by the field were producing additional radiation,
which might even be reacting back on the original source. This assumption
is in contrast to what happens in, say, a laser, where the induced radiation
is essential to the laser's operation. In addition, for the laser one needs to
quantize the electromagnetic field, introducing photons (see next section).
However, in calculating the effect of the infrared on the lattice waves one
may work with an external driving field, and treat that field as in classical
physics. The concept of driven as contrasted to natural motion is, thereby,
carried over from classical to quantum mechanics.
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The dynamics of all the phenomena studied in the previous chapters on
classical mechanics rested on the time dependent behavior of the harmonic
oscillator. Here we will develop the necessary aspects of the quantum physics
of harmonic oscillators, and, subsequently, the Green's function technique
for treating the driven motion. This analysis will contribute to our goal of
integrating quantum mechanics with the previous exposition of classical wave
physics.

Possibly the system with the simplest time dependent behavior in quan
tum mechanics is one with only two energy levels. For example, problems
involving electron "spin" (intrinsic angular momentum) may require just
two states: the magnetic moment of the electron can point either parallel
or anti-parallel to an applied magnetic field. In practice these two states do
not form a complete set for the electron, but the other eigenstates are so
far away in energy compared to the spacing between the two states, ~hat

the exclusion of the other states will have negligible influence on the results
of the calculation. The two level problems can be solved quite directly by
expanding the time dependent wave function in energy eigenstates, letting
the time be carried by coefficients cn(t), n = 1,2. These simplest systems
can be of great importance technically. Example (6.4) explores the basis
of the nuclear magnetic resonance (NMR) imaging technique, so useful in
medicine. Problem (6.19) deals with the origin of the resonance response of
the electronic polarizability of dielectrics.

Let us return to the study of the driven harmonic oscillator, the subject
of this section. The total energy operator Ho for a free harmonic oscillator
is given by:

Ho = p2/2m + 1/2kx2 (6.49)

(6.51)

Here the first term on the right is the kinetic energy, the second term the po
tential energy stored in the spring. In quantum mechanics, p, the momentum
of the mass m becomes the operator (li/i)/8x with one dimension x. k is the
spring constant.

The harmonic oscillator can be treated by means of two very significant
operators, defined as:

a == i/(2mliw)1/2(p - imwx) (6.50a)

a+ == -i/(2mliw)1/2(p + imwx) (6.50b)

Here the superscript (dagger) of the operator in (6.50b) denotes that this
operator is the adjoint of the original operator defined in (6.50a). For any
operator Q one can define an operator Q+ by the equation:i: v*(x)Q+w(x)dx = i: [Qv(x)]* w(x)dx

where v, ware any good functions of x, and the asterisks (*) denote complex
conjugates, as usual. By doing "integrations by parts" when treating the
momentum operator p the reader can easily show that a and a+ are, indeed,
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adjoints of each other. While, possibly, unfamiliar to the reader, (6.51) is, in
fact, an integral part of the mathematics of quantum mechanics. An operator
which has Q+ == Q is said to be Hermetian. As already stated in Sect. 6.2,
Hermetian operators have real eigenvalues, see Problem (6.15). a and a+ are
decidedly not Hermetian.

If we solve (6.50a,b) for p and x, we obtain:

p = (m~) 1/2 i(a+ _ a) (6.52a)

(
li ) 1/2

X == 2mw i(a+ + a) (6.52b)

Substituting these expressions for p and x back into (6.49) for Ho we obtain
after some algebra:

(6.53)

(6.55)

We note that a, a+ being operators, their order of operating is important,
that is, a and a+ do not commute (see Problem 6.7). In fact, from their
definitions (6.50a,b) one finds the commutation relation:

aa+ - a+a == 1 (6.54)

Accordingly, we write (6.53) as

Ho == 1iw(a+a + ~)

As it happens, one can easily find the energy eigenvalues of the Hamiltonian
(6.49), or its equivalent (6.55) without actually solving Schroedinger's differ
ential equation. Suppose that one has available an energy eigenstate Un (x),
where, anticipating, n is 0 or an integer:

(6.56)

En is the corresponding energy eigenvalue. Now, consider the function
a un(x). One has from (6.55):

Ho [a+un(x)J == liw [a+aa+ + a+ /2J un(x) (6.57a)

== liw (a+a+a + a+ + a+ /2) un(x) (6.57b)

== a+liw (a+a + ~) un(x) + 1iwa+un(x) (6.57c)

== (En + liw) a+un(x) (6.57d)

where one has used (6.54) to obtain (6.57b), and (6.56) to go from (6.57c) to
(6.57d). (6.57d) shows that if un(x) is an energy eigenfunction with eigenvalue
En, a+un(x) is likewise an eigenfunction with eigenvalue (En + liw). If one
proceeds similarly, focusing on aun(x), one learns that aun(x) is also an
eigenfunction, with eigenvalue (En -1iw).

Physically, one must suppose that a ground state, call it uo(x), exists.
The classical physics equivalent of the ground state is when the oscillator is
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standing still at its equilibrium point, and has then zero energy. However,
some small energy, Eo, must be associated with Uo to allow the uncertainty
principle ~x~p 2: n/2 to be satisfied. We have just learned that the opera
tor a, when applied to an eigenstate leads to a state with yet lower energy.
To terminate this process one will have to have:

auo(x) == 0 (6.58)

(If a differential equation method is used, solution likewise involves a termina
tion condition.) Moreover, from what we have learned about the eigenvalues
of the oscillator we have proportions:

aUn(x) <X Un-l (X )

a+un(x) <X Un+l (x)

n == 1,2,3, .

n == 0, 1, 2, 3, .

(6.59a)

(6.59b)

(6.61a)

(6.61b)

and the energy eigenvalues will be given by:

En == Eo + nnw n == 0,1,2,3, . . . (6.60)

The original equations (6.54) and (6.55) along with (6.60) for the eigenvalues
can now be solved uniquely by letting:

a+un(x) == (n + 1)1/2Un+1(X) n == 0,1,2,3, .

aun(x) == n1/2un_l (x) n == 0,1,2,3, .

where the operators a+ ,a are now seen to be raising and lowering operators.
Finally, substituting (6.61a,b) into the equation (6.55) for the Hamiltonian
of the oscillator yields for the eigenvalue equation (6.56):

Houn(x)~nw(n+~) n==0,1,2,3,... (6.62)

(6.61a,b), with a and a+ defined in (6.50a,b) give full information equivalent
to knowing the eigenstates Un (x), as we shall see.

It may come as a surprise that one is able to solve the problem this
way, without explicitly solving Schroedinger's time independent equation.
The fact is that in quantum mechanics systems are fully determined once
the Hamiltonian(energy operator) is given, and the component operators are
defined by their commutation relations, here (6.54). The skeptical reader is,
however, refered to Problem 6.16. Here the ground state solution uo(x) of
Schroedinger's equation is explicitly given, the relation auo(x) == 0 demon
strated, and the ground state energy, nw/2 shown to be compatible with the
requirements of the uncertainty principle.

Having solved the eigenvalue (normal mode) equation (6.56), we can solve
fully the initial value problem for a harmonic oscillator undergoing natural
motion. We revert to an expansion like that given in (6.25a) along with (6.26)
which, as we have seen, solve the Schroedinger time dependent equation.
However, for the more general case of driven motion calculations become more
difficult. There is, however, another way of solving time dependent porblems
in quantum mechanics, which we can apply. This method will prove to be par
ticularly helpful in displaying the relation between the classical and quantum
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mechanical way of treating driven motion. We have already learned that the
raising and stepping down operators a+, a are extemely useful. Can they, per
haps, be generalized to carry the time dependence? In fact, time dependence
in quantum mechanics can be treated in two equivalent ways, or according to
two different pictures. Up to now we have used the Schroedinger picture. Here
the time dependence is contained in the wave function tJt(x, t). We can write
the time dependent Schroedinger equation (6.4) for tf/(x, t) in the form:

. atf/(x, t)
zli at == H(x, t) tf/(x, t)

H(x, t) == Ho(x) + V(x, t)

(6.63a)

(6.63b)

Since, we are interested in external driving forces that are time dependent,
we must allow for the possibility that V(x, t), and, hence, also H(x, t) are
time dependent. As explained in Sect. 6.1, the Schroedinger equation holds
for such an extension of V.

In the Heisenberg picture, the time dependence is transferred from the
wave functions to the quantum mechanical operators. This is done by means
of an operator U(t) which is defined as taking the wave function from the
initital time, say, t == 0, to the desired final time t:

tf/(x, t) == U(x, t) tf/(x, 0) (6.64)

U(t) is to be found from Schroedinger's time dependent wave equation
(6.63a).

In solving (6.63a) we must be careful to remember that H is an operator.
Going back to the definition of a derivative we devide the time interval 0 to
t into N equal intervals, ~t, (~t == tiN), and ultimately let N -+ 00. For the
first interval we can now rewrite (6.63a):

tf/(x, ~t) - tf/(x, 0) ~ (-i/li)H(O)~t tf/(x, 0)

yielding from (6.63), the definition of U(t):

U(~t) ~ 1 - (i/li)H(O)~t

~ e(i/1i)H(O)~t

== 1 - (i/n)H(O)~t + (i/n)2H(0)~t2 ...

(6.65a)

(6.65b)

(6.65c)

(6.65d)

with, clearly, U(O) == 1. As long as ~t is small enough there is no distinction
between the two forms (6.65b), (6.65c). However, to obtain solutions for finite
time intervals we shall need, as ~t gets smaller and smaller, to take products
of an infinite number of factors such as those that appear on the right of
(6.65b,c). We can only take such products and come out with the correct
limit by using the second form, (6.65c). Proceeding with our calculation,
increasing the time step by step, we obtain:

U(t) == exp [-(i/li)~tH(N- l~t)J ... exp [-(i/li)~tH(O)] (6.66)
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(6.66) tells us immediately that:

U(t) == U(t, 0) == U(t, t')U(t', 0) t 2: t' 2: 0 (6.67)

One result useful in handling exponentials with operators, such as (6.65b) is:

expA expB == exp(A + B + ![A, B]) (6.68)

where A and B are operators, and [A, B], their commutator, is a scalar
(ordinary number, or vanishes). For a proof the reader is referred to the
book by Messiah (Sect. 12.2.1) listed at the end of this chapter. If now H
is independent of t, for example, if it equals Ho, defined in (6.49), then,
obviously, we obtain:

U(t) == e-(i/n)Hot (6.69)

If H does depend on t, special circumspection is called for when applying
(6.66). Here we will not be called upon to perform explicit calculations when
this last is the case.

The transforming operator, U has important properties, which we would
like now to establish. First:

U+(t) == U*(t) (6.70a)

where U+ is the adjoint operator of U, see (6.51) for the definition
of "adjoint", whereas U* is the complex conjugate of U. Noting that the
potential in (6.63) is a real scalar, we haveI: [Hv(x)]* w(x)dx =I: v*(x)Hw(x)dx (6.71)

Here we have applied integration by parts (chain rule) twice to deal with
the kinetic energy. The integrals vanish at ±oo owing to wave functions v,w
being good functions. From (6.71), H is a Hermitian operator, as was to be
expected since it has real eigenvalues. One can now see that any polynomial
of iH satisfies a relationship like (6.70a). Since, we can always expand U(t),
as given in (6.66), into such polynomials, (6.70a) is going to hold.

The operator U will also possess an inverse operator, U-1 , defined by the
equation

U(t)U-1(t) == 1

Inspection of (6.66), which gives U(t) will reveal that:

U-1(t) == U*(t)

As a result we finally have:

U+(t) == U-1(t)

(6.70b)

(6.70c)

(6.70d)

(6.70d) tells us that U(t) is a unitary matrix because its adjoint is equal
to its inverse. Alltogether we have four relationships for the operator U:
(6.70a) relating U to its complex conjugate U*, ii) (6.70b) defining the inverse
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operator, iii) (6.70c), and iv) (6.70d) telling us that U is unitary. Lastly, for
completeness we note that

U+(t) =1= U(t) (6.70e)

U is not a Hermetian operator.
We are now in a position to carry out our aim of converting from the

Schroedinger to the Heisenberg picture. Explicitly or implicitly quantum
mechanical calculations in the Schroedinger picture involve taking overlap
integrals I, where

I == i: c/J* (x, t)Q ljj(x, t)dx (6.72)

cP and tjJ are any two functions satisfying the Schroedinger time dependent
equation, and Q is a quantum mechanical operator. With the help of (6.64),
defining the operator U(t), the integral I becomes:

I = i: [U(t)c/J(x, 0)]* QU(t) ljj(x, O)dx

= i: c/J*(x, 0)U-1(t)QU(t) ljj(x, O)dx

= i: c/J*(x, O)Q(t) ljj(x, O)dx

with

IQ(t) == U-1(t)QU(t) I

(6.73a)

(6.73b)

(6.73c)

(6.73d)

Here (6.51), the definition of an adjunct operator has been combined
with (6.70d) to go from (6.73a) to (6.73b). We have carried out our aim
of transferring the time dependence from the Schroedinger wave function
to Heisenberg operators Q(t), defined in (6.73d). The Schroedinger operator
Q(O), i.e. the operator at the initial time t == 0, will continue to be designated
as simply Q.

Noting the form (6.66) of U(t), we have the relation:

U- 1(t)H(t)U(t) == H(t) (6.74)

(6.75a)

There is only one H(t); it is the same in both pictures.
To calculate the time dependence of Heisenberg operators we find from

(6.73d) and with the help of (6.70a) that:

oQ(t) = oU*(t) QU(t) U*(t)QoU(t)
at at + at

if Q does not depend expilicitly on time. If we now combine Schroedinger's
equation (6.63a) with (6.64), the definition of U(t), we get the operator
equation:
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inaU(t) = H(t)U(t) (6.75b)
8t

Combining (6.75a) with (6.75b) and the complex conjugate of equation
(6.75b) we obtain:

8Q(t) -1---at = in {H(t)U(t)QU- 1 (t) - U- 1 (t)QU(t)U- 1 (t)H(t)U(t)}

(6.75c)

or, with the help of (6.73d) and (6.74)

8Q iat == h [H(t), Q(t)] (6.75d)

In the second term of (6.75c) an extra factor U(t)U- 1 (t) has been in
serted, and (6.74) has been invoked in going to (6.75d). The square brackets
in the final result (6.75d) denote the commutator.

We are ready to tackle the driven harmonic oscillator. We shall have:

V(x, t) == -xF(t) (6.76a)

(6.63b)

(6.49)

(6.76b)

where F(t) is the applied time dependent force. It is being assumed that
this force does not depend on x, the location of the oscillating mass. We can,
thus, write for the Hamiltonian:

H(t) == Ho + V(x, t)

Ho == p2/2m + kx2/2
-f1? a2

H(t) == -a 2 +kx2/2-xF(t)
2m x

Using the equation for the time rate of change of an operator (6.75d) we
have:

ax i
at == h [H(t), x(t)]

== i/(2mTi) [p2(t), x(t)]

== p(t)/m

since [p, x] does not depend on time. Furthermore,

1 8p(t)
---
m at

and,

a~~t) = *[~kx2(t) - x(t)F(t),P(t)]

again from (6.75d). We get:

: = -kx(t) + F(t)

Finally, combining (6.77d) with (6.77f) we have:

(6.77a)

(6.77b)

(6.77c)

(6.77d)

(6.77e)

(6.77f)
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82 x
m 8t2 + kx == F(t). (6.77g)

Again, the equation of motion (6.77g) is identical with the classical equation
(2.1), when damping is omitted in the latter. However, it must be remembered
that here x(t) is a quantum mechanical operator.

Nevertheless, (6.77g) can be solved by the Green's function method. It
is conventional to introduce a change of scale when doing the problem in
quantum physics. The unit of length is:

xo == (~)1/22mw (6.78)

(6.77g) is rewritten as:

~ (~) + w2 (~) == f(t)w t > 0 (6.79a)
8t2 xo xo

We have rescaled F(t) as:

F(t) == mxowf(t)

Now, x is an operator with expectation value

x(t) = I: ~*(x, O)x(t) ~(x, O)dx

(6.79b)

(6.80a)

Taking expectation values of both sides, one finds that (6.79a) be
comes:

~: (:0) +w
2 (:J = f(t)w t > 0 (6.80b)

In view of (6.80a,b), we define the Green's function G(t) as the solution
to the equation:

d2G(t)di2 + w2G(t) == w8(t) (6.81)

Here G(t) is dimensionless as a result of the rescaling of F(t), it being f(t)
which has been replaced by the delta function 8(t).

We recall from Sect. 2.5 that to obtain a solution for G we must specify
the initial value and the initial derivative. Here we have again (to == 0) that

G(t) == 0 t ~ 0 (6.82a)

As in Chap. 2 we can integrate (6.81) over time from just below
t == 0, (t == 0-) to just above t == 0, (t == 0+). We find:

( dG(t) 1 - dG(t) I. ) == w (6.82b)
dt t=o+ dt t=O-

where the integral w2 I~~ G(t)dt goes to zero, and (1.1gb), the normalization
of the delta function, was used to obtain the right side. Since, from (6.82a) the
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second term on the left of (6.82b) vanishes, we have as the second condition
on G(t) that

dG(t) I == w (6.82c)
dt t=o+

Concurrently, we see from (6.77c), after taking expectation values that:

dx p(t)
dt m

or,

dG(t) p(t)
dt mxo

From (6.82c) and (6.83b) we can write:

p(O) == wmxo

(6.83a)

(6.83b)

(6.83c)

Thus, (6.83c) is equivalent physically to the initial condition on G(t) that
the momentum absorbed on the average by the oscillator, Le. wmxo in (6.82c)
is equal to the impulse imparted by the delta function force, see (6.79b).

As in Sect. 2.5 the solution

G(t) == 0 t < 0

G(t) == sinwt t > 0

(6.84a)

(6.84b)

satisfies the initial conditions, here (6.82a) and (6.82c), as well as the
equation of motion (6.81). Indeed, (6.84a,b) are the functions (2.30a,b) of t,
rescaled.

We see from (2.32) that, with the damping missing, the Fourier transform
G(w) of G(t) in (6.84a,b) is given by:

G(w) == -1/v'2i 2 w 2 (6.85)
w -wo

Damping is also found in a full quantum mechanical analysis, with G(t)
ultimately going to zero as t gets large. To get damping we would, at least,
in principle, have to include in the Hamiltonian operator the mechanism
whereby the damping occurs, for example, weak coupling to other oscillators
that model the environment. The analytic results, then, are similar but not
identical with those contained in equation (2.32) for the classical Green's
function G(w) of a damped oscillator.

Of interest here, as in Example 6.4 is that the resonance phenomenon,
so striking in classical physics carries over into quantum mechanics. Indeed,
given Bohr's correspondence principle of quantum mechanics going under
appropriate conditions of many quanta into classical mechanics, this out
come is not unexpected. However, we must be very careful not to dismiss
quantum mechanics as an academic excersise whose practical consequences
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are anticipated by classical physics. We hope to make this clear in the next
section, which will indicate how much more of nature's functioning we can
understand as quantum physicists. The Green's function, as we have been
learning about it will turn out to play an important part in the emerging
development.

6.6 Scope of Quantum Mechanics

The unfolding of quantum mechanics has led to an understanding of an ever
wider range of physical phenomena. In Sect. 6.1 we began to discuss how
Schroedinger obtained the entire range of bound quantum states, Is, 2s, 2p,
3s, 3p, 3d ... etc., of a hydrogen atom as the eigenstates (normal modes),
of his time-independent equation. Since the structure of the entire periodic
table of the elements is the direct extrapolation of these states, one begins
to see that the structure of matter on the chemical level is to be under
stood as a consequence of wave mechanics. Besides the electronic structure
of the atoms themselves, quantum mechanics also elucidates the nature of the
chemical bonds in molecules and solids. Condensed matter physics goes on
to describe the many physical properties of matter: crystal structure, electric
conductivity in metals and semiconductors, magnetism, the superfluidity of
liquid helium 11 and, still evolving, the mechanism of superconductivity, to
name a few.

Returning to atomic physics, one finds that the energy levels in hydrogen
are influenced not only by the details of the charge distribution tIt* tIt as
characterized by an electron "radius" (principle quantum number n), but
directly by the angular momentum of the electron (quantum number l). Every
electron possesses an intrinsic magnetic moment due to an intrinsic "spin",
rotation about its own axis (see below). What happens is that, as predicted
by special relativity, the electron moving in the Coulomb field of the nucleus
also sees a magnetic field. This field wants to align the electron's intrinsic
magnetic moment with it, leading to a shift in energy level dependent on the
quantum number l. Such shifts in turn affect the frequencies of the emitted
lines, giving rise to fine structure. Attempts to account for the fine structure
with the Schroedinger equation lead to failure.

The reader may have studied Einstein's theory of special relativity, which
states that the laws of physics must be the same in all reference frames moving
at constant velocity with respect to each other, Le., relativistic invariance.
It was known from its inception that the Schroedinger equation does not
possess this invariance. It turns out that the simplest way of including spe
cial relativity into wave mechanics requires the wave function tIt (x, t) of the
Schroedinger equation to be replaced by a column matrix with four entries,
tIt1 , tIt2 , tIt3 , tIt4 , yielding the Dirac equation, a matrix equation. The solutions
of the equation make clear that the electron has a spinning motion, the
intrinsic spin. This motion has, once a particular axis has been selected, two
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senses of rotation, though a unique scalar value of angular momentum. tf/1 , tf/2
denote the relative likelihood of each of the two "spin" possibilities. tf/3 , tf/4
do not correspond to an electron at all, but to a particle of the same mass but
opposite charge, the positron, again with two spin possibilities. The discovery
of the positron in 1932 confirmed Dirac's theory, and led to his being awarded
the Nobel prize for physics in 1933.

Not only can quantum mechanics, with this modification, account for
the fine structure, it can likewise fully account for hyperfine structure. The
latter is a tiny shift (1/2 A, or less, in the visible region) due to the interaction
between the magnetic moment of the nucleus and the magnetic field produced
both by the orbital and intrinsic motion of the electron. All these successes,
and others in atomic, condensed matter, and nuclear physics establish quan
tum mechanics as a viable theory over a very broad range of phenomena.

We now turn to a very significant development. In the previous section
we saw that the energy levels of the harmonic oscillator are given by the
formula:

En = Eo + nnw n = 1, 2, 3, ... (6.60)

Instead of saying that the oscillator is in its nth level, we can say that
there are n quanta of oscillation. Such quanta, each with an energy nw, can
be thought of as a particle. This new approach, when fully implemented
to include other particles, notably electrons and photons, requires for its
analysis a further treatment, referred to as second quantization. Here, the
lowering and raising operators, a and a+ of (6.61a,b), become, for obvious
reasons annhilation and creation operators, respectively, leading, as they do,
to one less or one more quantum.

To bring out second quantization in all its power, we would need to go
to a distributed system, for example, the stretched string. We would then
treat each mode of oscillation as we are going to treat here the harmonic
oscillator, with its one mode of oscillation. The result would be a quantum
field theory, such as applies to electromagnetic fields. With some care the
theory can be extended to particles that satisfy the Pauli excusion principle
(after the Swiss physicist Wolfgang Pauli, 1900-1958), notably electrons. The
principle states that at most one particle per quantum state is allowed. In
non-relativistic field theory it is the Schroedinger equation which becomes
the equation governing a particle field tf/ (r, t), just as the Maxwell equations
are the wave equations governing the fields E(r, t) and B(r, t). It is all these
fields which are quantized, Le. expressed in terms of the creation and anni
hilation operators associated with the various modes. The space variables r,
the independent variables in the normal modes are referred to as coordinate
parameters. A particle is viewed as one more quantum of oscillation in a given
normal mode (eigenstate). The electromagnetic quanta are the photons of
Chap. 5. The term second quantization has its origin in as much as for
material particles the Schroedinger equation is considered first quantization.
While carrying out this development fully is beyond our limited scope here,



6.6 Scope of Quantum Mechanics 193

we will be able to infer how the different ideas fit together by continuing with
our discussion of the Green's function.

In quantum field theory the definition of the dimensionless Green's func
tion for the harmonic oscillator is given by:

G(t) == i/(2x~) Ju~(x) [x(t), x(O)] uo(x)dx t > 0

=i/(2x6) (uo I[x(t), x(O)]1 uo) t > 0

=0 t~O

(6.86a)

(6.86b)

(6.86c)

Here x(t) and x(O) are operators. Their time dependence is generated as
in the formula (6.73d) for Heisenberg operators, the transformation operator
U(t) being given by (6.69). There is no external driving force on the oscillator;
the Hamiltonian, Ho in (6.49) describes natural motion. We have again taken
the initial time to = O. The square bracket in (6.86a) denotes the commutator.
The scaling parameter Xo is the length given in (6.78). Uo is the ground
state of the harmonic oscillator. It becomes convenient to no longer regard
(6.50a,b) as the defining equations for the creation and anihilation operators,
but their inverses, (6.52a,b) as defining the operators x and p appearing in
(6.86a). Further, when taking expectation values we no longer have to take
integrals, but can rely on the orthonormality of the various eigenstates of Ho
generated by the operators a, a+. The variable x, thus, disappears from this
part of the calculation. We adopt the procedure of quantum field theory, and
rewrite (6.86a) in the form (6.86b), the triangular brackets again denoting
expectation values.

The definition of G(t) in (6.86a,b) corresponds to what is known in
scattering theory as the retarded Green's function, in contrast to an ad
vanced Green's function, see the paper by Carruthers and Nieto listed under
Advanced Reading at the end of the chapter. In Chap. 4 we have seen in
discussing radiation, that it is the retarded Green's function that can be
directly identified with a physical situation. We shall have more to say shortly
about the origin of the definitions in (6.86a,b).

We carry out the replacement of the operators x(t), x(O) by creation and
annhilation operators. A moments's reflection will show that the equations
(6.50a,b) for a, a+ can be extended to arbitrary times t using the formula
(6.73d) for conversion from Schroedinger to Heisenberg operators. With the
help of (6.52b), we find:

[x(t), x(O)] = 2~ [(a+(t) +a(t)), (a+(O) + a(O))] (6.87)

When we substitute (6.87) for the commutator back into (6.86a) for the
Green's function, only two terms survive as we are taking expectation values
with the ground state of the oscillator. The careful reader may wish to refer to
(6.93a,b). Consistent with the previous section we are here interested in the
free oscillator, i.e. without external influence on the propagation. We get:
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G(t) == i/2 (uo la(t)a+ (0) - a(O)a+ (t) Iuo)

==0

t>O
t:::;O

(6.88a)

(6.88b)

How can we understand the formal expression (6.88a)? In Problem (6.17)
the reader is asked to show that an initial wave function,

c/J(x, 0) == 1/V2 [a+ (0) - i] Uo (x)

will lead to the initial expectation values:

x(O) == 0

p(o) = (m~) 1/2

(6.89)

(6.90a)

(6.90b)

We note that these expectation values correspond to the initial conditions
for the quantum Green's function in the previous section, a point to which
we shall return. (6.90b) corresponds to (6.83c), with xo defined by (6.78),
as Ch/2mw)1/2. Moreover, the expression obtained for x(t)/xo in Problem
6.17 agrees with the full expression (6.88a), obtained from the field theory
definition of G(t), thereby providing a physical interpretation for (6.88a).

For t < 0, the oscillator is in the ground state uo. Although x is zero,
the oscillator is not standing still in this condition. Indeed, as reviewed in
Problem 6.16, the uncertainty principle t::..xt::..p ~ n/2 is satisfied even here.
From Problem 6.17 we learn that the effect of the impulse at t == 0 is a brusque
change of state from the ground state to the state described by the normalized
function 1/V2 [a+ (0) - i] Uo (x). We see from this wave function that the
oscillator has been jolted from its ground state, with zero average momentum,
to a composite state with one component of this state holding one quantum
of oscillation. The linear combination of the ground and first excited state
leads to the oscillator's continuing to carry, on the average, the acquired
momentum. However, a distribution in space and momentum corresponding
to the composite wave function is alien to what we find in classical mechanics
for a particle. In general, only when large quantum numbers are involved will
fully classical features emerge.

The impulse, Le. momentum (mnw/2)1/2 acquired by the oscillator from
this impact agrees with the initial impulse acquired by the quantum oscillator
in the previous section, Le., with (6.83c). We note, however, that whereas in
the previous section, as in the classical development of Chap. 2, the initial
impulse was chosen as a matter of convenience, (fixing the constant in front of
G), for quantum field theory the impulse is mandated by calculations whose
nature is outlined below. The graininess associated with the quantization
of the impulse is absent from the two earlier treatments. These we recall,
were both based on the model of an external drive, which in the quantum
treatment required many quanta in the driving field for its validity. Indeed,
the latter calculation is in some contexts referred to as semi-classical; again,
we see how, in accord with the correspondence principle, classical features
emerge as the number of quanta become large.
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As a last step we use what we learned in the previous section about
evaluating time dependent operators to find G(t) as given in (6.88b). Using
the formula (6.73d) for Heisenberg operators, and applying (6.69), which
gives U(t) when the Hamiltonian is time independent, we obtain:

a+(t) == e(i/Ii)Hota+(O)e-(i/1i)Hot (6.91)

Applying a+(t) to anyone of the eigenstates un(x) we find from (6.91):

a+(t)un(x) == e(i/1i)Hote-(i/1i)Enta+(O)un(x) (6.92a)

== e-(i/1i)En te(i/Ii)Ho(t)(n + 1)1/2Un+1(X) (6.92b)

== e-(i/1i)En te(i/1i)En+l t (n + 1)1/2un+1(X) (6.92c)

where in (6.92b) we have used (6.61a), which defines the creation operator
a+(O). From (6.92c) we get:

a+(t)un(x) == eiliwta+(O)un(x) (6.92d)

where in the last step we have used (6.60), the formula for En. Since
(6.92d) does not depend on n a similar relation will apply when we operate
on any wave function. As a result we have, quite generally:

a+ (t) == ei1iwta+ (0)
a(t) == e-iliwta(O)

(6.93a)

(6.93b)

Here, (6.93b) can be obtained through a similar procedure as that used
to obtain (6.93a).

Formulae (6.93a,b), giving the time dependence of the Heisenberg cre
ation and annhililation operators allow us to evaluate (6.88a) for the Green's
function. We obtain:

G(t) == i/2 (e- iwt - e+iwt ) (u~ la(O)a+(O) Iuo) t > 0

and thus:

G(t) == 0 t < 0

== sinwt t > 0

(6.94)

(6.84a)

(6.84b)

We have recaptured the results of the previous section. The result for the
quantum Green's function, obtained there on the basis of a delta function
drive as in classical physics, and the retarded Green's function as defined
formally in quantum field theory have been found to agree. Finally, we recall
that the wave function of (6.89) which furnished the correct result for the
formal expression (6.88a) for G(t), also led to the same initial conditions as
satisfied by G(t), thereby confirming that interpretation of the initial impact.

The question now arises as to the origin of the field theoretic definition of
G(t) in (6.86a,b,c). Two types of problems that use quantum field theory are
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particularly prominent in modern physics. The first belongs to the many body
problem of solid state physics. We have already indicated that for distributed
systems the time dependent part for each normal mode is to be treated as
a quantized harmonic oscillator. For example, the collective vibrations of
the ions comprising a solid are represented as quantized normal modes, the
relevant quanta of energy of vibration being called phonons. The interaction of
the conduction electrons of the vibrating solids with the phonons is a central
subject in many-body theory. The interaction is the mechanism underpin
ning electrical resistivity in solids on the one hand, and the phenomenon of
superconductivity on the other, and of possibly the high temperature su
perconductivity in the newly developed ceramics as well. When calculations
are undertaken depicting this interaction between electrons and phonons,
the time evolution of the interacting system gets analysed into a series of
apparent (virtual) electron-phonon collisions. In the interval between these
collisions the particles propagate, evolve in time, as free. Thus, we need not
be surprised that for the phonons these propagators, at their simplest turn
out to be Green's functions. The functions depend on an oscillator factor and
a space factor. The oscillator contribution conforms with the single oscillator
Green's function we have been studying. The Green's functions form some of
the building blocks of the overall calculation.

The second type of problem is the basis of quantum electrodynamics,
the interaction between electrons and the quantized electromagnetic field,
i.e. photons. Again, the photon propagators become oscillator Green's func
tions.What can we say about the electron propagators?

In second quantization electrons can be considered quanta of energy that
can be created or annhilated just like photons or phonons. For example,
a 1 particle, Le. a high energy photon can, under certain circumstances, split
into an electron and its antiparticle, the positron (see below). An electron and
a positron have been created (they weren't there before!). The mathematical
analysis of the interaction between electron or positron and the photons turns
out to picture the evolution in time of the interacting system as a series of
virtual collisions. Again one says virtual because such collisions are not what
one is setting out to observe; they just appear (not unnaturally) within the
mathematical description. In such an analysis one finds that once an electron
has been created in a "collision", again the sudden addition of a quantum of
energy into the relevant mode, it will, just as a photon, propagate freely until
it undergoes the next collision. Evidently, we are dealing with the Green's
function for the electron. This function, G(2,1) is defined as the probability
amplitude for arrival at some point, in one dimension, X2, at a time t2, starting
from Xl, tl. The analysis of the electron- positron problem, Le. pair creation,
in terms of Green's functions or propagators was pioneered by the American
physicist R.P. Feynman (1918-1988). We are not in a position to write the
Feynman propagators in terms of the appropriate creation and annhilation
operators and coordinate parameters Xl and X2 of second quantization, a task
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which would involve a full exposition of quantum electrodynamics. However,
assuming that the particle can be treated as non-relativistic, so that the field
equation becomes the Schroedinger equation, we do already know the form
which G(2, 1) takes. We have from Sect. 6.3, (6.42a,b) with ko == 0:

G(2, 1) = [a2 /(21[3)] 1/41: eik(X2-Xl)e-iwk(t2-tl)e-k2a2 dk t2 2:: t1 (6.95a)

== 0 t 2 ~ t1 (6.95b)

Wk == 1l?k2 j(2m) (6.42b)

Here we are giving the Fourier representation. By integrating over k we
can obtain, for instance, the closed form expression for G at the initial time
t2 == t1, thereby recapturing (6.34b):

G(x t == t . x t) == (27ra2)-1/4e-eX2-Xl)2/4a2, 2 1, 1, 1

The actual propagator G(2,1) is understood to start off at a point, Le.
one wants to go to the limit a --+ O. This is straightforward when we want to
use G as a propagator (Problem 6.18).

We have seen that the origin of the Green's functions as we have de
fined them in this section is building blocks (propagators) in calculations
of quantum field theory. Their definitions in the latter theory can also be
in terms of operators whose time dependence is generated by Hamiltonians
that include interactions. These more complicated Green's functions contain
a wealth of information in their own right. The basic functions, the only ones
we have been studying describe unforced or natural propagation. They satisfy
Green's function equations as the term was originally understood, and form
the basis, historically, of the more elaborate functions. To learn the details of
how G(l, 2) in (6.95) satisfies a Green's function equation see Problem 6.18.

Physically the free particle Green's functions, in quantum as well as
classical physics depict the situation where the described system is started
with a sudden jolt. In quantum mechanics we have seen that such a jolt can
be described, for the oscillator, by the sudden addition of a wave function
component containing a quantum of oscillation, where previously there were
no quanta. Similarly for fermions, particles satisfying the exclusion principle,
for example an electron or positron, the jolt occurs when one particle (one
field quantum) is created. Second quantization, as, indeed, the whole of
quantum theory have their formal origin in a more advanced form of classical
mechanics (Lagrangian and Hamiltonian mechanics) that may be unfamil
iar to the reader. But even in the more advanced development of quantum
theory the Green's function is of help in conceptually bridging the transition
from classical mechanics, to pedestrian quantum mechanics, to quantum field
theory.

It is quantum field theory that brings about an understanding of the
interaction of matter and light. This understanding finds application not
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only in such high energy phenomena as electron-positron annihilation, but
also, for instance, in the everyday macroscopic application of quantum theory
already mentioned, the laser. In Problem 6.20 the interested reader will find
discussed the "Lamb shift", a critical test in its day of validity of quan
tum electrodynamics (after the American physicist Willis Eugen Lamb, Jr.,
1913-).

Einstein's general relativity postulates an equivalence for the laws of
physics no matter what the relative motion of the reference frames. It explains
the force of gravity in terms of the curvature of a four dimensional space-time.
The forces of nature can be characterized as the electromagnetic forces, the
weak forces (that lead to radioactivity), the strong forces that hold together
nucleons in the nucleus, and the gravitational forces. While unification of the
first three appears to be well on the way, the problem of incorporating general
relativity into quantum field theory is not solved. Present efforts are directed
towards representing the entities of nature by "strings" in a space-time of
possibly twenty-six dimensions. If this theory holds, the development of wave
physics will have come full circle, for the dynamics of these elemental strings
are taken from those of the classical string under tension in Chap. 3.

Example 6.1. Show that the expectation value of the momentum operator p
vanishes for the stationary state solutions of a particle entirely confined to
a box, as in Fig. 6.1.

Solution: From (6.30), a stationary state will have the form

tf/(x, t) == um(x)e-iEmt/n .

p can be found directly form Postulate (3) by
00

pet) = JtJF*(x, t)ptJF(x, t)dx .
-00

(6.30)

(6.23a)

Substituting for p from the table of operators and using (6.30) one gets
00

pet) = Je+iErnt/he-iEmt/hu":n(x)(nji)8um(x)j8xdx

-00

00

= Ju":n(x)(nji)8um(x)j8xdx.
-00

From (6.14)

um(x) == J2/Lsin(m1rx/L)

== _1_; (eikmx _ e-ikmx)
VU 1

with km == m1r/ L.

(6.14)
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Thus,

We note that
L

j (eikmx)*e-ikmxdx = [i/2km] (e-2ikmL - 1)
o

== i/ (2km ) (e-i27rm
- 1) == 0 ,

(the two functions are orthogonal).
Similarly,

L

j(e-ikmX)*eikmxdx = O.

o

We are left with
L

p(t) = -(L/2) j [e-ikmxhkmeikmx + eikmX (-nkm)e-ikmx] dx

o
== 0 .

Example 6.2. Find the eigenstates and energies of a particle confined by
a delta function potential well given by

V(x) == -Vo8(x) ,

where Vo is a positive constant (with dimensions of energy times length).
Delta function potentials are often used as models in quantum mechanics.
This example will be used in Chap. 7, on Nonlinear Waves - Bolitons.

Solution. We are to solve the Schroedinger time-independent equation

[-(11,2 /2m)d2 jdx2 + V(x)]u(x) == Eu(x) (6.3c)

where V(x) == -Vo8(x) .
Simplifying, we may write (6.3c) as

d2u
dx2 + [A + W8(x)]u(x) == 0

where W == (2m/h?)Vo > 0 and A == (2mjh?)E. Moreover, since the particle
is bound, Le., confined to the neighborhood of x == 0, we expect that whatever
its value E, the total energy and, hence, A, are negative; A < O. Outside of
x == 0, that is, outside the well, u(x) must satisfy the simpler equation
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d2 u
dx2 + '\U(X) == 0, ,\ < 0 .

The only possible solutions here are

u(x) == Cle- Kx x > 0
u(x) == C2eKx x < 0

K 2 == -'\, K > 0

We have exponentials of real functions. We choose decaying functions as
x -+ ±oo to allow normalization of the wave function. Further, continuity of
u(x) requires Cl == C2 == c. Integration of the Schroedinger equation across
the delta function potential (see also Problem 6.11) yields

dui - dui == -Wu(O) == -Wc.
dx 0+ dx 0-

Here, the well extending form 0+ to 0- , is recognized to have vanishing width,
so that the integral of the term '\u(x) across the well vanishes. From the above
equation, substituting the given solutions for u(x) we find

-Kc-Kc==-Wc, K == W/2 .

Thus we find

u(x) == ce-Wx /2 x > 0
u(x) == ceWx / 2 x < 0

and E == 1i2W 2 /8m. Normalization yields
00 00Ju*(x)u(x)dx = 21 c 1

2 Je-wxdx = 1

-00 0

or Ic 1== JW/2.
We see that the solution is unique. The delta function potential in one

dimension has always exactly one bound state. In three dimensions, it turns
out that a certain width is needed to secure even one bound state, see the
text by L. 1. Schiff listed under Further Reading.

According to classical physics the particle would be confined to within
the well; its kinetic energy is less than Vo, since its total energy E has been
chosen to be negative. This means the particle does not have enough energy to
climb over the potential barrier at each side of the potential well. In quantum
mechanics we do find a certain probability of its being outside. Actually, with
a delta function potential the particle is always outside, but because of its
total negative energy it cannot leave the well and become free, Le., have an
imaginary exponential solution eikx , with k real. If the particle were confined
inside, ~x would go to zero, which would cause ~k -+ 00, implying infinite
kinetic energy (Fig. 6.3). Exponentially decaying solutions occur frequently in
quantum mechanics, particles "tunnel" through so-called potential barriers,
which are regions of negative kinetic energy for the particles, regions which



6.6 Scope of Quantum Mechanics 201

E

T

Fig. 6.3. Example 6.2: Particle confined to a nearly 8 function potential, shown
on the left. Inside, the kinetic energy T > O. Outside, its kinetic energy becomes its
total energy, T < O. On the right the wave function for the particle

in classical mechanics totally repel. Radioactive decay of nuclei, common
in nature, takes place by means of such tunneling processes. Similarly the
remarkable superconductive Josephson junctions involve electron tunneling.

Example 6.3. Show that visual inspection can not locate a particle and
determine the momentum simultaneously to better than

D,.xD,.p rv h .

Hint: Recall the effect of diffraction on resolution.

Solution. We recall from Chap. 5 that the angle of resolution OR is given
approximately by

OR ~ >"jD ,

where D is the lens diameter (Fig. 6.4). Diffraction, therefore, restricts our
ability to locate the particle to within an uncertainty

D,.x ~ ORd ,

~>"djD,

\vhere d is the distance between lens and particle. The particle is located by
photons bouncing from it. The momentum carried by a photon p is given by

p == hj>" .

We do not know which path within the angle 4> the photon followed. The
particle, we note, experiences a recoil, leaving us with an uncertainty D,.p as
to its final momentum of

D,.p ~ (hj>")4> ~ (hj>..)D/d .

Thus, combining the above results for D,.x, D,.p we get

D,.xD,.p ~ h .
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Fig. 6.4. Example 6.3. Finite resolution of a viewing lens
leads to an uncertainty in position dx. The reflected pho
ton may have traveled anywhere within the cone subtended
by the angle 4J

Example 6.4. Consider a system, described by a Hamiltonian Ho, which
for practical purposes has only two eigenstates, Ul, U2, with energies fiWl, fiW2,

W2 > Wl. These eigenstates could correspond, for instance, to the situation
of a nuclear magnetic moment J-t being parallel or antiparallel to a constant
(D.C.) magnetic field Ba, leading to an energy splitting 2J-tBo between the
two states. In this case we would have 2J..lBo = (fiW2-liwl). Suppose now, that
this system is driven from the outside harmonically with a driving frequency
w, adding a term W sinwt to the Hamiltonian, which becomes:

H = Ho + Wsinwt

In the case of the nucleus in the field Ba, the new term could represent
the influence of an additional small time dependent field B (t) = B sin wt,
applied at right angles to Ba. In classical physics, such a field would exert
a torque J-t x B(t), tending to rotate the nucleus relative to Ba. Quantum
mechanically, the time dependent field would introduce the term W sinwt
into H, W being proportional to the product of J-t and B(t). This term
would lead to the transitions between the two "spin" (up and down) states.
(The expression for W requires a knowledge of the Pauli spin matrices.)

In our problem, generally, we may assume that the overlap integrals

W12 = f ui(x)Wsinwtu2(x)dx

and its adjunct W21 are real and equal. However, they may not vanish. For the
spinning nucleus, the integral would be replaced by a sum over the possible
values of the spin (up or down relative to Ba, with W connecting the spin
states).

a) On the assumption that the system is entirely in the lower energy
states Ul, at t = 0, find the probability that the system will be found in state
U2 at some subsequent time t. Discuss the appearance of resonance. Assume
troughout that the driving frequency w is close to the energy splitting of
states (1) and (2):

Iw - (W2 - wl)1 «W2 - Wl, W2 > Wl·
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b) Find a formula for the time average response when the system is
a spinning nucleus under the influence of the D.C. magnetic field B o, and
the driving A.C. magnetic field B sin wt.

Solution: As suggested in Sect. 6.5, we expand the time dependent solution
tf/(t) as:

2

tf/(t) = L Ci(t)Uie-iwit
i=l

where

HOUi = "hWiui i = 1,2.

Substituting into the time-dependent equation

in8'I!(t)j8t = (Ho + W sinwt)'I!(t)

we find:

in Ei [dCi/dt ui - iWiciui] e- iwit

= Ei [Ci(t)"hWiUi + W sinwt Ci(t)Ui] e-iwit

or, cancelling the biggest terms,

in L dCi/dt uie-iwit = L Ci(t)W sin(wt)uie-iwit
i i

If we multiply by Ul(X) and integrate over x, (or sum over spins), we
obtain, recalling that the u's are orthonormal:

in(dcl/dt)e-iwlt = C2(t)W12(sinwt)e-iw2t

On the assumption that Wll = W 22 = 0, W 12 = W 21 == "hw we obtain:

-2tidcddt = tiwc2 (e i [W-(W2-Wl)]t _ e- i [W+(W2-Wl)]t)

We may ignore the second exponential, on the assumption that this term has
such a rapid time variation as compared to the first exponential, that on the
average over time it will not contribute. On the other hand, we recall that

~w == w - (W2 - Wl)

the difference between the driving frequency, and the frequency split of our
two eigenstates, is to be considered small. As a result we get:

2 dCl i~wt- di = WC2e

Proceeding similarly, but first multiplying by U2(X) we obtain

2 dC2 -i~wt- di = -Cle
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After noting the asymmetry of the last two equations, we look for a normal
mode solution to the coupled linear differential equations by letting:

Cl(t) == aleiOtei~wt/2

C2(t) == a2eiOte-i~wt/2

This substitution yields:

-2al i(0 + ~w/2) == wa2

-2a2i(0 - ~w/2) == -wal

As usual, (see Problems 3.9 and 6.14) we obtain the "secular equation":

l
-i(20 + ~w) - w I == 0
w - i(20 - ~w)

or,

±O == J(~w)2 +w2 /2; 0> O.

Thus, we obtain

Cl(t) == ei~wt/2 (AeiOt + Be-iOt )

where A and B are the amplitudes of the two possible "normal modes" , each
mode having its respective frequency. Further, we have available from our
solution of the coupled linear equations the ratios a2/al for each of the two
frequencies, ±O. Thus:

. w (Ae
iOt

Be-
iOt

)
C2(t) = -ie~·t:>.wt/22 n _ !:i.wj2 - n + !:i.wj2

At t == 0, Cl (t) == 1, C2(t) == 0, the given initial conditions, normalization
provided. It follows that:

A == (0 - ~w/2)/(20) B == (0 + ~w/2)/(20)

Substituting these values for A and B back into our expressions for Cl (t)
andc2(t) we obtain:

Cl(t) == ei~wt/2 [cosOt - i~w/(20) sinOt]

C2(t) == e-i~wt/2w/(20) sinOt

a) We are asked to find the probability that the system is to be found
in state U2 at a subsequent time t, assuming, as we have, that the system is
entirely in state Ul at t == 0, i.e. Cl (0) == 1, C2(0) == O. Clearly, this probability,
P(t) is given by:

2

pet) = IC2(t)1
2

= (!:i.w~ + w 2 sin
2

nt

402 == (~w)2 + w2 W12 == W2l == nw

This result shows that the system alternates as sin2 Ot between the two
eigenstates, Ul and U2.
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b) The "response" of a spinning nucleus, Le. the time average probability
of finding the upper state occupied, with the corresponding average energy
drawn from the transverse driving field Ba sinwt is, from Part (a)

IC2(t)1 2 == w 2/(~2w + w 2)

This is again a resonance response, reaching its maximum when ~w vanishes,
Le. as

~w == w - (W2 - Wl) -+ 0

Here w is the driving frequency, and (W2 - Wl), the splitting of the two
states, the "natural frequency" of the system. We have seen that w, Le.
overlap integrals W 12 , W 21 is proportional to the driving magnetic field B.
By choosing B « Ba, (n(w2 -Wl) == 2j.LBo), one can obtain a sharp resonance.

We are back to driven as distinct from natural motion. Indeed, we find
all the connections between the two types of motion as we did in the ear
lier chapters on classical physics. In Problem 6.19 the external agent is an
alternating electric field, and we find an electric susceptibility that shows the
same characteristics at resonance as yielded by the representation of an atom
as a classical spring in Problem 2.10. The natural frequency of the spring is
replaced by ~EIn, where ~E is again the energy spacing of the two station
ary states. We do need to note, however, that there are also differences with
the classical, for it is the expectation values of physical quantitites, rather
than the wave function t[/, that respond at the driving frequency. A perusal
of Problem 6.13 will be useful in gaining additional insight into how it is t[/* t[/

rather than t[/ that can relate to phenomena observed in classical physics.

Example 6.4 with the energy splitting of the two states coming as a con
sequence of the interaction between the angular momentum of a nucleon
and an applied D.C. magnetic field underlies magnetic imaging techniques
in medicine. If the second (the A.C.) magnetic field is applied as a pulse,
the resulting resonance condition quickly leads to equal occupation of both
stationary states. The times for the excitation to return to equilibrum once
the pulse is over determine the induced output. These relaxation times depend
on the magnetic fields in the microscopic neighborhood of each resonating
nucleus, with different fields in different tissues.

In conclusion, we have found that there are strong analogues between
classical and quantum mechanical responses. In the first instance oscillators
are associated with energy eigenstates just as there are oscillators associated
with normal modes; it is the treatments of the oscillators which run on parallel
if not identical lines.
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Problems

6.1 a) An electron and a photon each have a wavelength of 2.0 A. What
are
i) their momenta?

ii) their energies?
b) Assuming equal lens diameters, how does the resolving power of

a 10 keV electron microscope compare to an ordinary microscope using light?

6.2 Verify that the method of separation of variables, Le., a trial solution
of the form

W(x, t) == u(x)v(t)

indeed leads to a solution of Schroedinger's equation (6.4), with u(x) satis
fying (6.3), and v(t) ultimately satisfying (6.2a) and (6.6).

6.3 a) Calculate the Bohr radius a and the total energy El of an electron
in the ground state of a hydrogen atom, using Bohr's semiclassical theory.

Hint: To find the radius a, equate the centripetal acceleration mv2/ a to the
centripetal force e2/(41rcoa2), while fixing the electron's angular momentum
mva at nn, with n == 1 (e is the charge of the electron). Then show that the
total energy El is given by -e2/(81rcoa), and substitute in the expression
for a.

b) The time-independent wave function for the ground (Is) state is given by

ul(r) == (1ra3 )-1/2e-r/a .

Use the time-independent Schroedinger equation

[- (n2 /2m) yr2 + V(r)] u(r) == Eu(r)

to show that a and El are uniquely given by the same expressions as in the
semiclassical Bohr theory above.

Hints: For the spherically symmetric solution Ul (r) the Schroedinger equation
becomes

[_~~ (r2B _ ~)] ul(r) == Elul(r) .
2mr2 Br Br 41rcor

The two sides of the equation must agree for all values of r.

6.4 a) Verify the derivation of (6.24b) from the definition of (Q - Q)2.
b) Calculate ~p for a particle totally confined to a potential well,

L > x > 0 (Fig. 6.1) in the state un(x), with n == 3.
c) Calculate x and ~x for the same eigenstate as in (b). 6.5 Periodic

Boundary Conditions. Consider the potential well with

v == 0
V==oo

L>x>O
x>L, x<O.
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If L is large compared to the region of interest in a particular problem,
we can impose periodic boundary conditions:

tJt(x + L) == tJt(x) .

That is, as regards boundary conditions, the straight line interval x == 0 to
x == L is replaced by a circle of circumference L. Since the boundaries are
assumed to have no influence this physical model is both convenient and
acceptable.

a) Write down all possible time-independent solutions within the well.
Normalize these solutions.

b) Show that your solutions are eigenstates of both the total Hamiltonian
and of the momentum operator.

c) Show that for any energy eigenvalue less than or equal to some eigen
values En of the periodic solution there are as many standing wave solutions
u(L) == u(O) == 0 as there are periodic solutions.

6.6 a) Given the wave number distribution (6.35b) for a free particle show
that ~p(O) == n/2a.

Hint: Refer to the general formulas (6.24b, 28b) and the derivation of (6.33a)
for fi.

b) Similarly, noting (6.39), show that for the same initial state ~x(O) == a.

6.7 Commuting Operators. The commutator of two operators A, B, namely
[A, B], is defined as

[A,B] == AB - BA.

a) Show that operators that commute have the very same eigenfunctions.
b) Calculate

i) rp, x] p == (n/i)o/ ox
ii) rp, H] H == V(x) + T V(x) # 0

iii) rp, T] T == _(n2/2m)o2 /ox2 .

c) On the basis of parts (a) and (b) suggest why it might be possible to
measure the momentum and energy of a free particle simultaneously without
error, whereas the Heisenberg uncertainty principle limits a simultaneous
determination of, say, the momentum and position.

6.8 A certain telescope allows the observer to locate the moon within 5 x
10-7 radians. How many seconds will it take for the moon to deviate by 1 km
from its most probable course with a reasonable likelihood? Assume a free
particle model.

6.9 a) Consider a one dimensional square well extending from x == -a to
x == a, with constant negative potential - Vo.

V(x) == -Vo ,
V(x) == 0

Vo > 0,
x < -a,

a> x > -a
x> a.



208 6. Wave Mechanics

Show that no matter how small the quantity Voa2 is, there is always at least
one bound state with E < O. What is the time-independent wave function
for this state U1 (x)?
Hint: See Fig. 6.3.

b) The reflection operator R changes any function u(x) or operator Q(x)
into u(-x), Q(-x), respectively. Show that for the Hamiltonian of Problem
6.9(a), Hand R commute (Problem 6.7). This implies that the solutions of
(a) have definite symmetry about x == 0; explain. What symmetry does the
solution U1(X) that you found in (a) have?

6.10 Show that if a single horizontal slit in a baffle is used to fix the
location of a particle as it crosses the baffle (Fig. 6.5), the simultaneous
vertical momentum, Py and location, ~y, of the particle can again only be
inferred to an accuracy within the Heisenberg uncertainty.

diffraction
pattern

ay

1-
----------

T

Fig. 6.5. Electron beam diffracted by a sin
gle slit, Problem 6.10

6.11 Arrange a table as shown, numbering slots; then fill in the called for
developments.

Show that T the transmission
probability across a sudden
discontinuity in the density of a long
string (Fig. 6.6a) is given by

T == (2yQ1/(yQ1 + ve2))2 &.V(22

Here (21, (22 are the densities to the
right and left, respectively, of the
discontinuity. T is defined by

T == (C/ A)2v2 / V1

(See below.)

Show that T the transmission probability
across a sudden potential barrier,
(Fig. 6.6b) is given by

Here E is the total energy of the particles,
Vo the barrier "height". T is defined by

T == (C/A)2(V2/V1)

(v == fik/m)
(See below.)



a) Write the time-dependent wave
equation for YI (x, t), the displace
ment for x < o.

b) Make the substitution

Substitute into (a), and find the time
independent wave equation for UI (x).

c) Repeat (a) and (b) with

Y2(X, t) == Re{u2(x)e- iw't} for x > o.

d) Let UI(X) == Aeik1X + Be- ik1X

and U2(X) == Ceik2X

Discuss.
Find kl and k2 in terms of wand w'.

e) Show on physical grounds that

lim YI (x, t) == Hm Y2 (x, t)
x ~ 0- x ~ 0+.

f) Use (e) to obtain a relation between
wand w'.

g) Use Newton's 2nd law to show that
8u / 8x is continuous at x == 0 unless
(2 == 00.

Hint: go back to derivation of the
wave equation in Chap. 3.

h) Using (d - g) show that

i) Explain the definition of T given at
the beginning, and verify the answers.
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a) Write the time-dependent wave
equation for !PI (x, t), the wave
function for x < o.

b) Make the substitution

!PI (x, t) == UI(x)e-i(Ejn)t

== UI (x)e- iwt for x < o.

Substitute into (a) and find the
time-independent equation for UI (x).

c) Repeat (a) and (b) with
!P2(X, t) == u2(x)e- i(E' jn)t

== u2(x)e- iw't for x > o.

d) Let uI(x)Be- ik1X

and u2(x)Ceik2X

Discuss.
Find kl and k2 in terms of E and E'.

e) The continuity of !P is one of the
postulates of quantum mechanics.
Show that

lim !PI (x, t) == lim !P2 (x, t)
x ~ 0- x ~ 0+.

f) Give wand w' in terms of E and E'.
i) Use (e) to obtain a relation

between wand w'.
ii) What is the relation between E

and E'? Do you believe it?

g) Use the general form of the time
dependent equation obtained in (b) to
show that 8u / 8x is continuous at
x == 0, indeed, always, unless V == 00.

h) Using (d - g) show that

i) Explain the definition of T given at
the beginning, and verify the answers.
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y(x} (a) J~ V (b)

P=P2 Vo -~.._----
~.

0I
I
I -

x=o X x=o x

Fig. 6.6. (a) Stretched string with a discontinuity in its mass per
unit length at x == o. (b) The corresponding discontinuity in the potential V (x),
Problem 6.11

6.12 A particle of total energy E tunnels through a potential barrier Vex)
from Xo to Xf, where Vex) > E, Xf > x > Xo. Show that if in one wavelength
the fractional change of potential energy as compared to its kinetic energy is
small, Le.,

IdV(x)ldx I A (= 21fnl y'2m(V - E))
(V - E) «1 ,

then the probability of the particle's getting through the barrier is given by

exp { - (23
/

2m 1
/

2In) l[V(X) - E]1/2dX} .

6.13 a) We define a vector S(r, t) by

S =~ [1Ji*V 1Ji - (V 1Ji*) 1Ji] .
21m

Use Schroedinger's time-dependent equation and integration by parts to show
that

{)
{)t [w*(r, t) tfJ(r, t)] + V . S(r, t) == 0 .

b) Give arguments to support the interpretation of N S as a current
density, where N is the number of particles present per unit volume.

c) Working in one dimension only show that

Argue that the velocity of a particle v (= dx/dt) must satisfy Sx(x, t) ==
v tfJ* (x, t) tfJ(x, t), if v is constant over the spread of the particle. Use parts
(a) and (c) to verify this relation. Further, since Px is always real, show that

dx 1
dt == m Px ·

d) Again integrating twice by parts, use Schroedinger's equation to verify
that
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dpx = _ 8V = -J tf/*8V tf/dx.
dt 8x 8x

Recalling (c), show that Newton's second law is regained if -8V18x, the force,
varies little over the extent of a wave packet describing a particle (Ehrenfest's
Theorem).

6.14 To illustrate a technique for solving time-dependent problems in
wave mechanics we consider a system with only two degenerate eigenstates
uo(x)e-iEt/ li and u1(x)e-iEt/ li . Degenerate means that both states have the
same energy E, although the states are orthogonal. Thus:

Houo(x) = Euo(x),

Does W01 = W{o?

uo and U1 are normalized, and orthogonal to each other. Suppose that at
time t = 0, when the system is in one of the states, uo(x), it is disturbed by
an external agent, W(x), so that the Hamiltonian becomes:

H = Ho + W(x).

Find the resulting time-dependent function tf/(x, t) after the disturbance. Dis
cuss the new physical situation, comparing your solution with the situation
encountered for two lightly coupled harmonic oscillators as in Problem 3.9.

Hints: Let tf/(x, t) = [aouo(x) + a1u1(x)]e-int where nn is the energy of
new stationary states which include the effect of W(x). Obtain the secular
determinant

l
-nn+EW01 1=0
W01 -nn+E

J
+L / 2

W01 = u~(x)W(x)ui(x)dx
-L/2

Now, let tf/(x, t) = 014J1(X, t) + 024J2 (x, t) where 4J1,4J2 are the new eigen
states, and 01, 02 are to be determined from the initial condition. Finally,
find Ao(t) and A1(t), defined by tJt(x, t) == Ao(t)uo(x) + A1(t)U1(t).

6.15 a) Use (6.51) to show that the eigenvalues of a Hermetian operator
are real.
Hint: Expand v(x) and w(x) in the eigenfunctions of the operator, and, at
some point recall that v and ware, if arbitrary, yet physical (good) functions.
Can you also argue in the reverse direction, Le. prove sufficiency?

b) Prove (6.71).

Hint: Show first that:

J
oo [d ]* Joo d

-00 dxvex) w(x)dx = - -00 v*(x) dx w(x)dx

c) Show that the operator (iH) n satisfies (6.70a)
viz, {(iH)n}+ = {(iH)n}*.
Hint: Show first that Hn is Hermetian if Hand (H)n-1 are, n = 3,4, ... ;
how about if n = 2?
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6.16 a) Show by direct substitution that the function

uo(x) == (27rX6)-1/4 exp -[x2/(4x6)]

is the solution of Schroedinger's time independent equation:

H oUo(x) == (hw /2)uo(x),

Ho given by (6.49).
b) Find, using (6.50a) auo(x), a the annihilation operator.
c) Find ~x, ~p, and evaluate the product ~x~p, for the function uo(x),

as given above.

6.17 a) Evaluate x(O) and p(O), expectation values at t == 0 for the initial
wave function

4J(x,O) == 1/V2 [a+ (0) - iJ uo(x).

Uo (x) is the ground state for the harmonic oscillator.

Hint: Refer to (6.52a,b)
b) Show that, in agreement with (6.88a), x(t) the expectation value at

time t, t > 0, is given by:

x(t) == ixo/2 (uo I{a(t)a+ (t) - a(O)a+ (t)} Iuo)

x6 == h/(2mw)

6.18 a) Carry out the k integration in (6.95a), and compare your result
with (6.42e) and (6.42h) in Sect. 6.3

b) Show that G(2, 1) as given in (6.95) propagates, Le.

G(3, 1) = I: G(3, 2)G(2, 1)dx 2

Hint: Use the Fourier representation (6.95). Seek a b function representation
for the two wave-vectors in the representation.

c) Show that G(2, 1) in (6.95a,b) satisfies the Green's function equation:

(ih,~ - ~ EP2) G(2, 1) == ih(27ra2)-1/4 e-(X2-X l)2 j(4a
2 )b(t2 - t l )

8t2 2m 8x2

Hint: Check the boundary condition at t2 == tl. Does G(2, 1) satisfy the given
equation when t2 > tl ?

6.19 The Response of a two-level system driven by an alternating electric
field is E(t) == Eo coswt == Eo/2(eiwt +e-iwt ). If two energy levels in an atom
are separated by an energy

wo> 0

with Wo close to the driving frequency w, we may neglect all other energy
levels in the atom. We write the time-dependent wave function as
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w(r, t) == Cl(t)Ul(r) + C2(t)U2(r) ,

where uI(r),u2(r) are the time-independent solutions for the two levels.
Thus, if Ha is the Hamiltonian for the atom without the applied electric
field then

HaUI(r) == E1uI(r) ,

HaU2(r) == E2u2(r) .

However, assuming that the electric field is in the z-direction, the true Hamil
tonian is given by

H == Ha - ezE(t) .

We can define the dipole moment of the atom as

JL = Jur(r)ezu2(r)d3r

= Ju;(r)ezul(r)d3r .

Note

JI Ul(r) 1
2 zd3r = JI U2(r) 1

2 zd3r = 0 .

(The two u's have opposite symmetries about z == 0, leading to a nonvanishing
dipole moment J-L coupling the two states.)

a) Use the Schroedinger time-dependent equation to show that

d(}2I. iJ-L )--;It == -lWO(}2I + r;E(t)((}ll - (}22 ,

d(}22 -iJ-L *
--;It == TE(t) ((}2I - (}2I) ,

and since (}II + (}22 == 1,

d 2iJ-L *
dt ((}II - (}22) == r;:E(t)((}2I - (}2I) .

Here,

(}II == Ci CI

(}2I == Ci C2

(}22 == C2 C2

(}12 == C2CI .

b) In practice, whichever atom is under study collides with other atoms.
Here, as one usually does in practice, we are calculating a response which
takes cognizance of such collisions. In the absence of the driving field E(t),
atomic collisions would cause (}II, (}22 to relax to their equilibrium values
(l?ll)O, ((}22)O. Thus, the final equation in (a) gets an extra term, becoming

d ( ) _ 2iJ-L E(t) ( *) ((}11 - (}22) - ((}II - (}22)O
dt (}II - (}22 - r;: l?2I - (}2I - T .
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On the other hand, with collisions, Q21, Q12 acquire phases specific to each
level in each atom. In the absence of the driving field, the presence of phases
is considered to cause the averaged values of Q12, Q21 to vanish with time.
Assuming, for simplicity, an equal relaxation time T, for the first equation in
(a) we have

dQ21. iJ.L Q21- == -lWOQ21 + -E(t)(Q11 - Q22) - - .
& h T

Show that, on the average, these equations have steady state solutions:

(t) -iwt
Q21 == 0"21 e

(t) iwt *Q12 == 0"12e == Q21 .

Hint: Obtain the equations

d(721 . iJ.LEo (721
-- == l(W - WO)(721 + --(Q11 - Q22) - -

dt 2h T '

d ( ) iJ.LEo( *) (Q11 - Q22) - (Q11 - Q22)O
dt Q11 - Q22 == -h- (721 - (721 - T .

Here, only terms with an e-iwt dependence are retained in the first equation,
and no time-dependent exponentials are retained in the second. Such cyclic
terms average out to zero. Now we set the left sides equal to zero correspond
ing to a steady state, and show that they can be solved, Le., find the constant
solutions for complex (721 and (Q11 - Q22) to our inhomogeneous equations.

c) As in Problem 2.10 we define a complex electric susceptibility by

P(w) == coX(w)E(w)

or
P(t) == Re {co X Eoeiwt

}

== Eo (co Xl cos wt - co X2 sinwt)

X(w) == X1(W) + iX2(w) .

At the same time, we again have

P(w) == Nez(w)

with N atoms per unit volume.

Use part (b) to calculate X1(W) and X2(W), and compare your results with
those obtained in Problem 2.10 where a damped harmonic oscillator was
taken as a model for an atom.

6.20 An important confirmation of quantum theory is derived from mea
surements of the "Lamb shift". The shift is in the energy of the 28 level of
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hydrogen compared to the 2p level, when both levels are characterized by the
same total electron angular momentum. (Its physical basis is the interaction
of the electron with the electromagnetic field. Just as an electron interacts
with the charged vibrating ions of a host crystal, even if there are no phonons,
so can it interact with the EM field even when there are no photons.) The
shift itself was measured directly by Lamb and Retherford to be 1057.5 MHZ
as compared to the calculated value of 1057.19 MHZ. Estimate the fractional
error this discrepancy represents in an actual 2p -+ Is spectral line.

Further Reading

H.A. Medicus: Fifty Years of Matter Waves, Physics Today (Feb. 1974)

W. Heisenberg: The Physical Principles of the Quantum Theory (Dover, New
York 1930)
A brief, authoritative statement of the theory.

L.!. Schiff: Quantum Mechanics (McGraw-Hill, New York 1968)
This is a classic textbook on quantum mechanics. Many other good texts
exist.

P. Carruthers and M.M. Nieto: Coherent States and the Forced Quantum
Oscillator, Am. J. of Phys. 33, 537 (1965)

A. Messiah: Quantum Mechanics (Dover, Minoela, NY 1999)

G. Rickayzen: Green's Functions and Condensed Matter (Academic Press,
London and New York 1991)

R.P. Feynman: The Theory of Fundamental Processes (W.A. Benjamin,
Reading, MA 1961)

S. Fluegge: Rechenmethoden der Quantentheorie, 6. Aufiage (Springer-Verlag,
Berlin, Heidelberg, New York 1999)
Many famous examples in quantum mechanics are worked out here.

Aff. Yariv: Quantum Electronics, Third Edition (John WHey & Sons, New
York 1987)
A good place to look for applications of quantum mechanics in a very practical
field.



7. Nonlinear Waves on Water - Solitons

Preamble. There is one kind of wave mentioned in the introduction to
Chap. 1 which we have so far pointedly ignored - waves on water. These
waves must be among the earliest recorded illustrations of nonlinear behavior,
breaking noticeably at all but the smallest amplitudes. In previous chapters
the equations of motion were linear. Of course, it has been understood that
linear equations are idealizations. No matter how small the displacement of
a spring, if finite, it must be that its elastic limit is in some fashion exceeded
as discussed, for example, by Erber et aI., listed under Further Reading.
Idealization implies that, although something has been left out for simplicity,
the idealized model reflects the essentials of the physical situation. But water
waves are different. Results obtained by linearizing, that is, by ignoring the
nonlinear parts, are most frequently too far from reality to be useful. In
particular, linearization misses a central phenomenon, solitons, which are
isolated waves or pulses which maintain their identity indefinitely just when
we most expect that dispersion effects will lead to their rapid disappearance.
Further, water waves act as prototypes for many other nonlinear physical
phenomena which, as technology develops are becoming ever more important.

The creation of orderly stable pulses as an effect of nonlinearity has come
to science as a surprise. It has also come as a surprise that the more intu
itive outcome of nonlinearity, chaos, can be constructively analyzed including
transitions from true chaos to structural order. Broadly speaking, Chaps. 2
through 5 deal with phenomena well understood in 1900, Chap. 6 brings one
to 1930. Progress in nonlinear dynamics has taken dramatic steps forward
since about 1960. Nonlinear waves and solitons are taken up in this chapter.
Nonlinearity and chaos are discussed in the essays of Chap. 8.

Abstract. We develop the theory of waves on water, starting with linear
waves, then giving an account of the effect of nonlinearity, and lastly going
on to the existence and description of solitons. In the last section we out
line the method of inverse scattering for obtaining multi-soliton solutions.
Thus, in Sect. 7.1 we develop the theory of gravity waves on incompress
ible fluids in the absence of nonlinearity. The picture that emerges is one
where in deep channels the elements of a fluid undergo circular motion of
diminishing radius as we proceed perpendicularly from the surface into the
channel. At the same time, dispersion, the change of the phase velocity of
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the waves with wave number, is revealed to be especially important in deep
water. Section 7.2 is devoted to exploring the consequences of dispersion,
with a discussion contrasting group and phase velocities. Nonlinear behavior
is first studied in Sect. 7.3. This section begins with a description of the
theory of characteristics as applied to the solution of first order, nonlinear
partial differential equations (pde). Subsequently, direct application of the
method of characteristics to the pdes for nonlinear water waves leads to an
understanding of the deformation of the wave forms with time. Section 7.4
introduces solitons. First, it is shown that the combination of dispersion and
nonlinearity together leads to the famous Korteweg-de Vries (KdV) partial
differential equation. An explicit expression for the single soliton solution of
the KdV equation is introduced next, followed by the much more complicated
expression for several solitons. In the last section, 7.5, it is shown how the
complex solutions of the KdV equation corresponding to many solitons can be
generated systematically by the method of inverse scattering. In this method
the desired solution of the KdV equation is taken to be the potential in
a scattering problem. The potential doing the scattering is reconstructed only
after the scattered function, whose time ~volution is indirectly controlled by
the KdV equation, has been formally determined. It turns out that each
soliton can be traced to a single bound eigenstate of the initial scattering
potential, that is, of the wave disturbance as it is given at the initial time.

7.1 Linear Surface Waves on Water

The waves observed on the surface of a body of water, such as a pond, are
very different in nature from sound waves in an elastic solid or in a gas,
and the analysis is also different. Elastic waves depend on forces in reaction
to compression and rarefaction. A liquid such as water has relatively very
small compressibility, and in our analysis we shall leave it out altogether; the
fluids supporting the surface waves will be taken as incompressible. It is the
combination of adaptibility to change of shape which, by definition, fluids
possess, and the action of gravity forces which come into play when the fluid
is disturbed from its static configuration of minimum energy that gives rise
to the surface wave motion.

The analysis shall be restricted to nonviscous (ideal) fluids. Furthermore,
eddies or vortices, which in a nonviscous fluid persist without decaying, will
be left out. The velocity u(r, t) of any element of the fluid will have zero curl.
Consequently, as we know from Chap. 4, u(r, t) can be taken as the gradient
of a scalar field <jJ(r, t) which is the velocity potential:

u(r,t) == -V<jJ(r,t). (7.1)

Also from Chap. 4, we know that if g(r, t) is the density of a fluid, the
continunity equation will read
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gV . u + 8g/8t = 0 ,

where gu is the current density in mass per unit area - unit time. However,
we have just finished saying that g will be taken as constant, 8g/8t = o. The
incompressible fluid satisfies

V·u=O. (7.2)

Evidently (7.1) and (7.2) combine to give Laplace's equation (in electrostatics
this is the equation satisfied by a potential in a charge-free region):

(7.3)

The problem we have in mind is based on a body of water confined to
a channel or canal of constant width bound by smooth vertical walls and
a smooth level bottom. The equilibrium depth of the water is h. Surface
tension, which would give rise to a pressure difference across any curved
boundary, will be omitted. Lastly, the amplitudes of our waves will, for now,
continue to be small. We are still concerned with only linear waves. (Five
effects are being left out! - compressibility, vortices, viscosity, surface tension,
and nonlinearity.)

We will be interested in disturbances traveling along the length of the
canal, taken to be the x direction, with z the direction perpendicular to the
surface. Thus, the velocity potential will be a function of x, z, and t, </J(x, z, t),
signaling "plane" waves, Le., no variation in the lateral (y) direction.

</J(x, z, t) will be subject to boundary conditions at the bottom z = 0, and
top of the channel, z = d. It becomes convenient to let h(x, t) measure the
height of the disturbed surface relative to the undisturbed surface at z = d,
where d is the (average) depth. The condition at z = 0 is simple enough, the
vertical velocity U z vanishes there:

uz(x, z, t) = -8</J(x, z, t)/8z = 0 at z = 0 . (7.4)

On the other hand, at z = d there will exist an excess pressure p. The
hydrostatic pressure Po, Le., the pressure when the water is undisturbed, at
a height z above the bottom of the channel is given by

Po = Pa + gg(d -.z)

and, the excess pressure P is defined as

P == Ptot - Po ,

(7.5a)

(7.5b)

where Pa is the atmospheric pressure, and Ptot is the actual pressure. This
excess pressure as it exists at the surface z = d, Le., p(x, d, t), can be related
to the vertical dynamic displacement of the surface h(x, t) as

p(x, d, t) = h(x, t)gg (7.6)

where 9 is the gravitational constant.
The excess pressure produces acceleration of elements of the fluid. Limit

ing ourselves in this section to a linear theory, in which the changes in time
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in the fluid velocity u(x, z, t) due to the corresponding change in location of
the element can be neglected, we have

8u(x,z,t) __V( )e 8t - p x, z, t

or,

eV8cjJ(x,z,t)/8t = -V p(x,z,t).

Thus,

p = -e8cjJj8t .

Combining (7.6) and (7.8) we find

[8cjJ/8t]z=d = -h(x, t)g .

(7.7)

(7.8)

(7.9)

The vertical velocity of the fluid at the surface, uz(x, d, t), may in a linear
theory again be equated to 8h(x, t)j8t, the vertical velocity of the surface.
Differentiation of both sides of (7.9) with respect to t, we find with the help
of (7.1) for the second boundary condition

82 cjJj8t2 = -g 8cjJj8z at z = d . (7.10)

The problem thus consists of solving the Laplace equation (7.3)

8
24J(x, z, t) + 8

24J(x, z, t) = 0 (7.11)
8x2 8z2

subject to the conditions at the bottom and top of the channel, (7.4,10),
respectively. The solution can be readily found by using the method of sep
aration of variables, fully illustrated in Chap. 3 in the analysis of waves on
a stretched string. The solution for waves propagating in the forward direction
is

cjJ(x,z,t) =A coshkz cos[kx-w(k)t] ,

where

w2 (k) = gktanhkd

(7.12a)

(7.12b)

and A is the amplitude. The reader can arrive at the details by solving
Problem 7.1.

The physical picture corresponding to the solution (7.7) is most easily
described for the case of deep water, that is, with the depth d greater than
one wavelength, 27r/k. Here we can replace sinh kz, cosh kz by ekz /2 near the
surface at z = d. The two velocity components ux , U z become

u = - 8cjJ = kA ekz sin(kx - wt) (7.13a)
x 8x 2 '

8cjJ kA kz
U z = -- = -e cos(kx - wt) .

8z 2
(7.13b)
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Fig. 7.1. Fluid elements of deep water undergoing circular motion, with phases
depending on x, leads to the familiar surface waves on water. This figure is given
by J. Lighthill in his Waves in Fluids

An element of fluid is seen to be undergoing circular motion (clockwise since
U z is leading) of fixed radius, with only the phase depending on x. With
increasing depth (z becoming smaller than z == d) the radius diminishes.
Figure 7.1 gives a complete picture of how the surface waves work.

7.2 Dispersion. Group Velocity

As long as the differential equation governing a system is linear, one can
obtain solutions as four dimensional (space and time) Fourier representations
with harmonic functions:

ei(k.r-wt) or sin(k . r - wt), cos(k· r - wt) .

The ensuing equation connecting wand k is called the dispersion relation
for the system. The simplest form of the dispersion relation is a linear one.
Systems with this relationship are said to be nondispersive. The first systems
we studied, idealized waves on a stretched string in Chap. 3, electromagnetic
waves in a vacuum in Chap. 4, were nondispersive. However, we have also seen
three instances of dispersive systems, EM waves propagating in a medium, as
in Chap. 5, the matter waves of Chap. 6, and the water waves of this chapter,
where w is related to k by means of (7.12b).

As we found in Chap. 3, whenever we have a harmonic solution, the
velocity of the wave, for example, of the antinode, is given by

Sph == (w/k) . (7.14)

The velocity defined by (7.14) is called the phase velocity, and for nondis
persive systems it is a constant independent of k or w. The fact is that in
physics we are seldom interested in sending harmonic disturbances but rather
in sending distinctive physical signals. As we saw in Sect. 6.3, it is convenient
to represent such signals by their Fourier integrals (wave packets). It is clear
that since with linear dispersion relations all the wave components travel
with the same (phase) velocity, the signal maintains its original shape; it
does not "disperse", in the commonly accepted meaning of that word. (The
Appleton-Century dictionary defines the verb "disperse" when intransitive
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as: "to separate or move apart in various directions; become dissipated or
dispelled" .) On the other hand, in those situations where the dispersion
relation is nonlinear, different harmonic components will travel at different
(phase) velocities, and the signal does disperse; the energy associated with
the signal disperses as well; the systems are dispersive!

It now becomes natural to ask if one can find a unique velocity for the
signal, or velocity of the wave packet while it has not yet completely dispersed.
In one dimension a suitable wave packet can be represented by the Fourier
integral

00

hex, t) = Ijy"j;ff JA(k) exp i[kx - w(k)t]dk .
-00

(7.15)

We can argue that the principal contribution for any value of x and t to this
integral comes from the neighborhood of a value ko(x, t) found by letting

:k[kX - W(k)tJI = 0,
k=ko

(7.16a)

or,

(7.17)

(7.16b)
xdw(k) I

dk k=ko(x,t) t

Uniquely in the neighborhood of this value of ko do the phases add con
structively (method of stationary phase). Equation (7.16b) is of direct value
whenever the signals of interest can be described by rather tight packets
centered about some fixed wave vector ko. One can then turn (7.16b) around
and argue that the location of the signal x is related to the time t through

x _ _ dw(k) It = Sg - --;jk ,
k=ko

where the group velocity Sg is truly the velocity of the signal.
Consider now the situation when a stone is thrown into a "deep" pond.

The dispersion relation for water waves in general is

w(k) = [gktanhkd]1/2 . (7.12b)

(7.18a)

(7.18b)

By deep we mean kd » 1, Le., the depth of the water corresponds to many
wavelengths. Here,

_ (ekd _ e-kd ) "'-'

tanh kd = (ekd + e-kd ) ~ 1

w(k) ~ (gk)1/2

sg(k) = 8wj8k = ~(gjk)1/2

sph(k) = w/k = (g/k)1/2 .
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Thus, if we observe waves with wavelengths distributed about some central
value, we shall find that they do not spread out at their phase velocities at
all, but at half of those velocities! Clearly, the distinction between Sph and
Sg is important.

The concept of group velocity is helpful in interpreting the propagation
of wave packets in quantum mechanics, as in Sect. 6.3 (Problem 7.2). In
advanced studies of classical wave phenomena the group velocity indeed plays
an important role (refer to the texts for further reading listed at the end of
the chapter).

By contrast with (7.18) for shallow water (long waves, kd « 1), we have

Sg == So == 8w/ 8k == (gd)1/2 . (7.19)

The propagation is without dispersion (Problem 7.3).
For somewhat shorter waves ("fairly long waves") we expand (7.12b) in

kd, stopping after two terms (Problem 7.4) and find

Sph == w/k == So (1 - ik2d2) . (7.20)

7.3 Nonlinear Waves

The acceleration a(r, t) of an element of fluid is given in Cartesian coordinates
in fact by three equations; for the x component we have

8ux 8ux ( )
ax == 8t + Ux 8x . 7.21

The first term on the right gives the rate of change with time at a fixed point,
while the second term takes account of the element's changing location. It
is this second term which has been omitted in the previous two sections so
as to have a linear formulation. The purpose of this section is to explore
the consequences of the nonlinear term. To simplify we omit here several
other features which were considered previously, namely, the two dimensional
character of waves in open channels, and dispersion.

We restrict ourselves to shallow waves where, as we have seen, dispersion
effects become negligible. When analyzing deep water waves we found that
elements near the surface undergo circular motion. Suppose, on the contrary,
that the water is shallow compared to the wavelength 27r/ k. Referring to
(7.12a) for the velocity potential cjJ(x, z, t), we see that the two velocity
components Ux,Uz , both shown in (7.13a) and (7.13b) as depending on ekz ,

are actually given by cosh kz and sinh kz, respectively. This means that for
shallow waves, kd » 1, U x much exceeds U z near the surface at z == d. As
a consequence, we can treat the propagation as one dimensional, and can
find a solution directly without resorting to a velocity potential. The cross
sectional area of the channel A(p), however, must be allowed to vary with
the excess pressure as before. We had
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p(x, t) = ggh(x, t) ,

and,

A(x, t) = b[d + hex, t)] = bd + p(x, t)b/gg

or

A(p) = bd+pbjgg,

(7.6)

(7.22a)

(7.22b)

where d is the equilibrium depth of the channel, and b its constant width.
As in (7.7) the gradient of the excess pressure gives rise to acceleration of

elements of the fluid. In view of (7.21) we have, in one dimension,

g(8u/8t + u8uj8x) = -8p/8x (7.23)

where g is the constant density of the fluid. The other key equation is again
the equation of continuity, which for an incompressible fluid in a channel of
varying cross section A is given by

g8Aj8t + g8(Au)/8x = 0 . (7.24)

(7.26)

Since the time of the French mathematician Augustin Cauchy
(1789-1857), it has been known that certain initial value problems involv
ing partial differential equations, even nonlinear equations, can be solved by
first finding the so-called characteristics. For our purposes it will suffice to
illustrate the method for an initial value problem where the unknown function
w (x, t) satisfies a partial differential equation (pde) of the form

8w(x, t) 8w(x, t)
a(x, t, w) 8x + b(x, t, w) 8t = 0 , (7.25)

and w(x,O) is prescribed. Since a and b may depend on w, this equation is
nonlinear. A characteristic for the pde (7.25) is any function x(t) obtained
by solving the ordinary differential equation

dx a(x,t,w)
dt b(x,t,w) '

where w is to be treated as a constant parameter [x(O) must be within the
limits for which w(x, 0) is prescribed]. We now note that on the characteristic

d - 8w(x, t) d 8w(x, t) d
w - 8x x + 8t t,

with

dx dt = dl
a(x,t,w) b(x,t,w) - ,

[
8W(X, t) 8w(x, t) ]

dw= 8x a(x,t,w)+ 8t b(x,t,w) dl.

Hence, if w(x, t) is a solution of the original equation (7.25), dw is zero, that
is, w is a constant on the characteristic curve x(t).
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Fig. 7.2. The solution surface w(x, t).
The characteristics, paths of walkers on
the surface who do not wish to "climb",
are shown dashed. Strictly, functions x (t)
are the projections of the characteristics
on the xt plane, rather than the actual
characteristics

Thus, for a homogeneous pde such as (7.25) the characteristics can be
defined as paths of constant w (Fig. 7.2). Moreover, if the characteristics do
not cross, then, in general, if we can solve the ordinary differential equation
(7.26), we have solved the problem. For if we wish to know w(xo, to) at some
point xo, to, we simply trace the characteristic passing through this point back
to the point x(O) at t == 0, Le., w(xo, to) == w[x(O), 0]. All this may remind
the reader of Chap. 3 in which we found that a solution of the homogeneous
wave equation (3.3) with zero initial velocity was any function of x ± st, Le.,
was a constant along these curves; x == ±st are characteristics for (3.3), see
Problem (7.7).

We should like now to combine (7.22, 23, 24) into first order pdes, each
in terms of one unknown function which will be solvable by the method of
characteristics. We proceed by defining certain auxiliary functions s(p) and
P(p) , both having dimensions of velocity u. First, we notice that if we linearize
(7.24) we expect to obtain the same phase velocity as we found for long waves
in Sect. 7.2 (Problem 7.8):

So == (gd)1/2 . (7.19)

The convenient generalization of So turns out to be

S(p)-2 == [QjA(p)]dA(p)jdp.

From (7.19),

s-2 == bjAg ~ 80
2 .

(7.27a)

(7.27b)

The physical significance of s will become apparent shortly. Second, we define
an integral P(p) by

p

pep) == 1/eJS(~') dp'
o

where s(p) is defined by (7.22) and (7.27).

(7.28)
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Going back now to the equation of motion (7.23) we first notice that from
(7.28)

8P 1 8p 8P 1 8pe---- e-=--
8x - 8(p) 8x ' 8t 8(p) 8t

giving, after division by e
8u 8u 8P
8t + u 8x + 8 8x = 0 . (7.29a)

Dividing the equation of continuity (7.24) by eAI8 we obtain

8 8A 8u 8 8A
A: 8t + 8 8x + A:u 8x = 0 .

Noting also that

8P 1 8p 8A dA 8p and 8A dA 8p
eat = 8(p) 8t' 8t dp 8t ' 8x dp 8x '

and making use of the definition of 8-2 in (7.27), we can now rewrite the
equation of continuity as

8P 8u 8P
at + 8 8x + u 8x = 0 .

Adding (7.29a) and (7.29b) we obtain,

8(u + P) ( ) 8(u + P) _ 0
8t + u+ 8 8x -,

and subtracting,

8(u-P) (_ )8(u-P)_0
8t + u 8 8x -.

(7.29b)

(7.30a)

(7.30b)

Equations (7.30a,b) constitute the desired nonlinear first order pdes that
govern the wave motion.

In the remainder of this section we shall use our knowledge of the theory
of characteristics to obtain a general insight into the propagation of nonlin
ear waves without solving any specific problem analytically. Let us call the
characteristics associated with (7.30a) C+. On these, U + P is constant, and
from (7.26)

dx
dt = u(x, t) + 8(X, t) on C+. (7.31a)

For (7.30b) we have, similarly,

dx
dt = u(x, t) - 8(X, t) on C-, (7.31b)

with u - P constant.
Consider the initial value problem where at t = 0 all the fluid in the

channel is at rest except in the interval XF > x > XB:
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u(x,O), p(x,O), P(p = 0) = 0

u(x,O), p(x,O), P(p = 0) =1= 0

x > XF, X < XB

XF 2 x 2 XB .

(7.32a)

(7.32b)

The characteristics e+, e- originating at XF and XB, respectively, divide
the xt plane into six zones, Fig. 7.3. Regions 11, IV, and VI in the figure
do not have any associated disturbance; u(x, t) vanishes. Region 11 is free
because the most forward part of the disturbance is bound by et; u + P,
which is constant on e+, vanishes on all more forward e+ characteristics in
view of (7.32a). The disturbance has not yet reached the space-time points
in 11. The same holds in VI, as one can show by reversing all directions.
Further, the complex disturbance in I separates or disentangles into two
disturbances moving in opposite directions, Regions III and V, gradually
leaving the original region XB > x > XF, and its subsequent extension IV
clear of the motion, Problem 7.9. The disturbances in Regions III and V are
referred to as simple waves; it is to these that we turn next.

Fig. 7.3. Characteristics originating at XF and XB, respectively, divide the xt plane
into six zones. Water in Zones 11, IV and VI is undisturbed. Zone I becomes empty
at time td, when the original disturbance entirely disentangles into the "simple
waves" found in III and V. Here characteristics are straight lines, but, in general,
not parallel. This figure is adapted from J. Lighthill's Waves in Fluids

We can imagine Region III covered by e- characteristics originating at
x > XF, where u and P separately vanish. Thus, since on e- the function
u - P is constant, we have

u(X, t) = P(x, t) in III

so that

(7.33a)

u(X, t) + P(x, t) = 2u(x, t) along e+ in III . (7.33b)

From the respective definitions (7.27,28) of sand P, and (7.22b) giving A(p),
we see again that sand P are functions of p only. Thus, viewing (7.33b) we
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conclude that u(x, t), P(x, t), s(p),p are all constants along any characteristic
C+ in Ill; by (7.31a) these characteristics become straight lines. It is this
latter fact that prompts us to refer to the disturbances in III as "simple
waves" . Similarly, in Zone V the C- characteristics will also be straight lines,
and we have simple waves there as well.

However, the characteristics in III and V are not parallel as they are for
linear waves (Problem 7.9). Using (7.28) for P(p) with (7.27b) for s, we have
for long waves in channels (with small modifications the theory holds for
many other phenomena, e.g., blood flowing in distendable arteries)

P If Pdp b dp
P(p) = lief s(p) = lie 9f Al/2 .

o 0

With (7.22b) for A(p) this equation becomes

A(p)

P(p) = Vifb f A-1
/

2dA,

A(O)

or

P(p) == 2[s(p) - so] .

U(X,t)

(7.34a)

Fig. 7.4. Progression of "simple" nonlinear waves. The characteristics, shown
dotted, are not parallel, leading to the development of a sharper leading edge.
Eventually the wave will break
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(7.38a)

(7.38b)
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Combined with (7.33a), (7.34a) gives

3
S == So + uj2 or u + S - So == 2u . (7.34b)

As a result, the slope of each characteristic C+, (7.31a) becomes in III

dx 3
dt == So + 2u(x, t) in III . (7.35)

The larger the u the more rapid the progression of any point (particular value
of u) on the wave. The consequence of the differing slopes of characteristics
is that nonlinear waves distort as they progress, as illustrated in Fig. 7.4.
Eventually, Fig. 7.5b, the wave breaks.

7.4 Solitons

The physics of waves on water that we have been learning in the previous
sections of this chapter is illustrated in Fig. 7.5a,b, and can be summarized
analytically in the so-called Korteweg-de Vries equation. According to (7.31a)
we can interpret (u + s) as a "signal" velocity, and S as the velocity of the
signal relative to the motion of the fluid, as given by u. Let us call the velocity
with which the wave is deforming v(x, t):

3
v(x, t) == u(x, t) + s(x, t) - So == 2u(x, t) , (7.36)

where So is the linear velocity, Le., the limiting value of s as u goes to zero,
(7.34b). At the same time we obtained in the last section that u +p == 2u, so
that

4
u(x, t) + P(x, t) == 3"v(x, t) .

As a result (7.30a) assumes the very convenient form

8v(x, t) [( t) ]8v(x, t) - 0 (7.37)
8t + v x, + So 8x - .

In Sect. 7.2 we saw that for waves in water which is not shallow compared to
the wavelength, dispersion occurs, with a phase velocity

(
1 22)S == So 1 - 6k d .

This dispersion can be included by adding into (7.37) the linear term
a83v(x, t)j8x3 , yielding

8v/8t + (so + v)8v/8x + a83vj8x3 == 0 ,

a == (1/6)sod2
•

Equations (7.38a,b) are the Korteweg-de Vries equation, which we will
be studying for the remainder of this chapter. However, it will be worthwhile
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to put (7.38a,b) into a slightly different form to conform with the usage of
applied mathematicians, thereby facilitating any interested reader's access to
current research. Three minor mathematical manipulations are needed. The
first is to transform to a new coordinate system, itself moving at speed so.
Thus

Xnew == Xold - sotold

t new == told .

The second is to replace v:

Vnew == -VoId .

(7.39a)

(7.39b)

(7.39c)

The third and last will be to make a change of scale in x resulting in a's
replacement by unity in (7.38a). Noting that

8 8 8tnew 8 8xnew 8 8-- == ---- +---- == - - So
8told 8tnew 8told 8xnew 8told 8t 8x

8 8 8tnew 8 8xnew 8-- == ---- +---- == -
8Xold 8tnew 8Xold 8xnew 8Xold 8x '

where we drop subscripts on the new quantities on the right and below,
(7.38a) becomes the Korteweg-de Vries equation in its most usual form:

8v(x, t) _ 6 ( ) 8v(x, t) 83v(x, t) - 0
8t v x, t 8x + 8x3 - . (7.40)

Fairly long surface waves on water actually do satisfy (7.40).
At first it might be supposed that nothing of new significance can be

learned from this equation; the effects of dispersion and nonlinearity have
already been explored. Indeed, given some initial disturbance v(x, 0), (7.40)
has, in general, solutions v(x, t) which die out in time in a dispersive manner.
However, it turns out that it is also possible to create an excitation which
remains stable, one that does not dissipate its energy with time - the soliton.

The occurrence of a soliton was first recorded by the British civil engineer
J. Scott Russell in 1834 who wrote the now famous description: "I was
observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the
mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of
a large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its height
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gradually diminished, and after a chase of one or two miles I lost it in the
windings of the channel."

Solitons are not confined to shallow water waves. All physical phenomena
go nonlinear at sufficiently high amplitudes. Theoretical physicists, perhaps,
too long tended to avoid the problems raised by nonlinearity. The techniques
we have learned in previous chapters for linear systems, Fourier analysis, or
mode superposition, do not work for nonlinear problems and, as is becoming
increasingly clear, nonlinearity often leads to chaotic behavior. Yet an orderly
outcome, the soliton, is also possible. There are ion-plasma-wave solitons,
high-intensity shock solitons, nerve conduction solitons. Solitons have now
been observed in virtually every branch of physics. In nuclear physics in
verse methods have been used to derive soliton equations and solutions from
the Schroedinger eigenvalue problem. In condensed matter physics so-called
topological solitons whose passage brings a change of state are common;
in superconductivity, vortices carrying unit magnetic flux h/2e are solitons,
interfaces between different structural phases in crystals, domain walls in
magnetism, some dislocations are all solitons. At the time of this writing
a multi-billion dollar project for an optical fiber cable across the Pacific to
carry signals as optical fiber solitons is pending.

The stability of solitons can, to some extent, be understood as due to
a combination of dispersive and nonlinear effects. In Sect. 7.2 we explored
the effect of dispersion. We found that for water waves, long wave components
travel faster than short wave components, leading to a gradual dissipation
of a pulse, as shown in Fig. 7.5a. At the same time, nonlinear effects were
shown in Sect. 7.3 to lead to a concentration of the pulse on the leading
side of a wave, as shown in Fig. 7.5b. The existence of a stable solitary wave
(soliton), indicated by the pulse in Fig. 7.5c, may be understood as resulting
from an opportune balance of these two effects.

An analytic solution of the KdV equation (Problem 7.10) corresponding
to a single soliton can be conveniently written as

v(X, t) == -o? /2sech2 [a/2(x - a2t - Xl)] .

Alternatively, it is helpful to define an f(x, t) as

f(x, t) == e-O:(X-Xl)+o:3 t

in which case,

(7.41)

(7.42a)

(7.42b)
-2a2 f(x, t)

v(x, t) = [1 + f(x, t)J2 .

The maximum absolute value of v(x, t), the amplitude, is given by a 2 /2,
occurring at f == 1, that is, at x == a 2 t + Xl, where Xl is the phase shift. The
velocity of the soliton is given by a 2

, that is, by twice its amplitude, a very
nonlinear result. (It should be remembered, however, that to find the actual
velocity of a pulse such as shown in Fig. 7.5c we must add in so.) Initial
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x x x

(7.43a)

(7.43b)

Fig. 7.5. (a) Water waves in anything but very shallow channels disperse.
(b) Nonlinear effects produce a sharpening of the leading edge of a wave, ultimately
leading to breakers. (c) When the dispersion shown in (a) is just balanced by the
concentration in (b) the stable soliton results

conditions determine both a and Xl, the two unknown parameters, as will be
shown in the next section.

So far we have empasized the stability of a single soliton; dispersion effects
are baffled. Again, the disturbance is nonlinear, the amplitude determines the
velocity. However, we remember from Chap. 2 that the hallmark of linearity is
superposition: If we generate one homogeneous (undriven) solution, and then
a second solution, the sum of the two solutions likewise becomes a solution.
The two solutions do not affect each other. Looking at (7.40), the KdV
equation, such superposition clearly can not be expected. Now, if we have
two solitons of different amplitudes, they will also have different velocities,
and we can easily arrange for the larger soliton to catch up and bump into
the smaller one. The very remarkable thing is that both solitons will survive
such a collision unscathed, the larger passing the smaller; the only effect
is a change of phase for each soliton. The soliton, indeed, appears in some
ways as the KdV counterpart of a linear disturbance. How can we prove
analytically the stability to collisions, which actually holds independent of
the number of solitons present? The analytic solution with two solitons in
terms of parameters Ql, a2 defining 11,12, respectively, is given by

( )
aill + a~12 + 2(a2 - al)!112 + A (Q~lf12 + ailll?)

v X t - ----------------------
, - (1 + 11 + 12 + AIl12)2

A == (a2 - al)2 j(Q2 + al)2 ,

where 11 and 12 are also given by (7.42a), each! having its own arbitrary
parameters aI, Xl, and Q2, X2, respectively. The demonstration that v(x, t) as
given in (7.43) indeed corresponds to nondeforming collisions of two solitons
is given in Problem 7.11. The point to be noted here is that (7.43), with all
its complexity is an exact solution of the KdV equation (7.40). How does
this expression look for N solitons? How can such complicated solutions be
found? Can we obtain a deeper understanding? It is this understanding which
forms the subject of the next, last, section of this chapter.
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7.5 Inverse Scattering

Inverse scattering is a method for solving certain nonlinear pdes, for example,
the Korteweg-de Vries equation. The desired solution of the pde is taken as
the potential in an artificially constructed scattering problem, which is solved
as a first step. The time evolution of the scattering solution follows that of
the potential, thus being determined indirectly by the original pde equation.
In the second step the potential, Le., the solution of the pde equation, is
obtained by a process of reconstruction from the scattering solution. That
such a procedure could be used was discovered by Gardener, Greene, Kruskal
and Miura in 1967 at the Plasma Physics Laboratory of Princeton University
in their work with the KdV equation. This development came in the wake of
the first suggestion of the modern ideas for finding soliton solutions in the
1956 paper by the american mathematicians Irvin Kay and Harry Moses,
and by the numerical discovery of stable solutions (solitons) of the KdV
equation by Zabusky and Kruskal in the course of computer calculations.
The point is that one can find the time dependence of the scattering solution
without solving the pde itself. Although roundabout, no other method is
in general known for finding solutions to these nonlinear pdes. There is, of
course, no general method for solving an arbitrary nonlinear pde. However,
the equations that can be solved with the method appear rather frequently in
physics. Solitons, as we have seen, occur in many physical phenomena. The
discussion which follows will be restricted to the Korteweg-de Vries pde.

In the method, the scattering process is represented by the following
equation:

82c/J(X, 7; t) _ ( )A.( .) _ 82c/J(X, 7; t)
8x2 V X, t \f/ X, 7, t - 872 ' (7.44)

where v(x, t) is the desired solution of the KdV equation. c/J(x, 7; t) is referred
to as the "wave function" of the "scattered particle" and, in further analogy
to the Schroedinger equation,we refer to v(x, t) as the scattering potential. In
addition, we shall refer to 7 as "time", while regarding the physical time t over
which v(x, t) evolves as a constant parameter during the scattering process.

Equation (7.44) can be solved by the usual method of separation of vari
ables. If we substitute as a trial function

trial function == u[x, w(t); t]e-iW(t)T , (7.45)

u independent of T, we obtain the eigenvalue equation

82u [x w(t)· t]
ax2 ' + [w2 (t)-v(x,t)]u[x,w(t)jtJ=O. (7.46)

Motivated by the stability of the soliton one is led to inquire into con
ditions on v(x, t) which would make the eigenvalues of (7.46), i.e., w2(t),
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independent of t. One then discovers the fact, essential to the method, that
a sufficient condition for w 2 (t) for bound states to be time independent is for
vex, t) to satisfy the KdV equation, see Problem 7.15. As it turns out, with
KdV one can arrange for the eigenvalues of the free states of (7.46) to be
constant as well. Thus wet) will henceforth be written as time independent,
anticipating an actual proof.

The particular inverse scattering method to be outlined in detail is that
of G.N. Balanis, following upon a suggestion of the same approach in a 1960
paper by Irvin Kay. Here the incident particle is described by a delta function
pulse, 6(x +r), at every fixed value of the parameter t. The particle is moving
to the left at unit velocity [corresponding to (7.44), where the velocity has also
been set equal to unity]. Accordingly, we say that for all t in the asymptotic
limit,

Hm cP(x, r; t) == cPoo(x, r; t) = 6(x + r) + B(x - r; t) ,x-too (7.47)

where B(x - r; t) is the reflected signal, the wave scattered by vex, t); (7.47)
is the scattering solution of (7.44) for x ---+ 00.

It is convenient to classify the eigenfunctions of (7.46) according to their
asymptotic forms. Scattering implies that vex, t) only extends over a finite
region L > x > -L; outside this region vex, t) equals zero. The asymptotic
forms of u and of cP, (<Poo), are their forms outside the region. We shall have
to consider, as already implied, both bound and free eigenstates; the latter
are referred to as scattering states.

The bound states decay exponentially in the asymptotic region:

u(x, w; t) == un(x; t) ---+ '"'In(t)e- Knx as x ---+ 00 , (7.48a)

w = =fiKn, K n > 0 , (7.48b)

Le., the "total energy" w2 is negative. Either sign is possible for w, see below.
The "constants" '"'In (t) are determined by the normalization of the exact eigen
functions un(x; t). These states can be taken as real, and are orthonormal:

00Jun(x; t)um(x; t)dx = 8nm .
-00

(7.48c)

For the free eigenstates we expect that

the state ---t 1/y!2;e-ikx as x ---+ 00 .

Actually, every ingoing wave will also have an associated scattered wave
heading outward from the scattering potential (Problem 6.11), and in the
region x ---+ -00 there will appear a transmitted wave eikx • Thus,
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vk [e-ikx + {3(k; t)eikx
] X ----+ 00, k > 0

1 'ky'2;ll:(k; t)e-1
x X ----+ 00, k < 0 (7.49a)

1 'k--a(k· t)e- 1 x x -t -00, k > 0y'2; ,

vk [e-ikx + (3(k; t)eikx
]

w == ±k.

x -t -oo,k < 0 (7.49b)

(7.49c)

Here w, unlike the case for the bound states, forms a continuum. The most
general solution will contain combinations of positive and negative frequency
exponentials for any given value of k or K n . As mentioned we shall be able to
find solutions 4>(x, 7; t) using scattering states u(x, k; t) with k independent
of t. The scattering states thus have as their asymptotic form plane waves
with, by (7.49c), again unit phase velocities (±w/k). The orthonormality
condition may, if one wishes to return to the rigorous formulation of (1.32b),
be written as

00

Hm Ju*(x,k;t)u(x,k';t)e-x2
/
4ndx== lim 9n(k-k') ,

n~oo n~oo

-00

(7.49d)

where the contribution to the integral from the scattering region L > x > - L
can be taken as going to zero. The parameters a,(3 in (7.49a,b) are called the
scattering coefficients. From Chap. 6 we know that at all t particle conserva
tion requires

(7.50)

leading to the orthonormality (7.49d), see Problem 7.14.
We can now solve the scattering problem. We are seeking the solution

4>(x, 7; t) to (7.44) subject to the initial condition (in 7),

(7.51)

for some early value of 7 == e, at all times t. A long time (7) in the past,
a particle coming from x == 00 heads towards the potential in the vicinity of
x == o.

Combining (7.45) for a trial function with (7.48b, 49c) for the frequencies,
we can conveniently expand 4>(x, 7; t), when x > 0, as

4>(x, T; t) == L [An(t)e- KnT + Bn(t)eKnT
] un(x; t)

n
00

+ J[A(k; t)e- iWkT + B(k; t)eiWkT
] u(x, k; t)dk

-00

(7.52)
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where the An' Bn, A, and B are expansion coefficients. In view of the or
thonormality of the discrete states as well as their being orthonormal to the
scattering states, we get from (7.51,52):

Similarly,

A(k, t)e-iWke + B(k, t)eiWke == u*( -~, k; t) Wk > 0 .

(7.53a)

(7.53b)

The scattering equation (7.44) is, like the classical wave equation, of second
order in T. Accordingly, one must fit not only the initial value c/J(x,~; t) but
the initial derivative 8c/J(x, T; t)/8T to the given conditions at T == ~, thereby
obtaining equations to determine both the A, An and the B, Bn expansion
coefficients, see Problem 7.12. The result is that c/J for x ~ 00, Le., c/Joo' is
given by

00

<Poo(x, Tj t) = L 'Y;(t)e-Kn(X-T) + 2~ J[e-ikx + ,B(kj t)eikx ] e-ikT dk .
n -00

(7.54)

(The reduction in Problem 7.13 may be found helpful.)
Let us now recall (7.47):

c/Joo(x, T; t) == b(x + T) + B(x - T; t) (7.47)

where, again, B is the returning signal. If we expand b(x + T) in the usual
way as

00

t5(x + T) = 2~ Je-ik(x+T)dk,

-00

we find from (7.54) that
00

B(x - Tj t) = L 'Y;(t)e-Kn(X-T) +~ Jf3(k; t)eik(x-r)dk .
211'"

n -00

(1.25)

(7.55)

The next step is to find the time t dependence of ~n and f3. In Problem
7.15 we use the wave equation (7.46) and the KdV equation to show that for
any discrete eigenstate un(x; t)

Rn == Unt + VxUn - 2(V - 2K~)unx == 0 , (7.56a)

the subscripts x, t denoting partial differentiation with respect to these vari
ables.

In the asymptotic region x ~ oo,v ~ 0, (7.56a) yields for ~n(t),

[see (7.48a)]

~n(t) == ~n(0)e4K~t . (7.57a)
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For the continuum states u in the same asymptotic region, one finds (Problem
7.15) that if k in (7.49) is to be independent of t then

R == c(t)u(x, W; t) . (7.56b)

Here R is Rn of (7.56a) with u replacing Un and -k2 replacing K;". In (7.56b)
c may be any function of t, but is not a function of x. Now if the leading term
in (7.49a) for u as x -+ 00, namely e-ikx , is to be an asymptotic solution of
(7.56b) we must have

c == 4ik3
, (7.58)

which also takes care of u at x -+ -00, (7.49b). With this value for c we find
that if the second term, (3(k; t)eikx , is to be a solution of (7.56b) we must
have

(3(k; t) == e8ik3t . (7.57b)

Finally, (7.57a,b) substituted into (7.55) yields
00

B(x - Ti t) = L ,;e-Kn(x-T)+8K~t + 2~ J(3(k)eik(x-T)+8ik3tdk, (7.59)

n -00

where "'In and (3(k) have their t == 0 values. These values are found by direct
calculation of the bound states and scattering states associated with the given
v(x,O); see Example 7.1 and Problem 7.20 for illustration. We notice that
B(X-T;t), which from (7.47) and (7.51) goes to zero as T -+ -00, is, in fact,
comprised entirely of waves moving to the right in time T, as expected for
the scattered part of cjJ.

To reconstruct v(x, t) from cjJ(x, T; t) one starts by representing cjJ by a lin
ear Fredholm integral equation:

00

</>(X,Ti t ) = </>oo(X,Ti t ) +JK(x,f.;t)</>oo(~,Tit)d~
x

(7.60)

where K(x,~; t) is the kernel of the equation. Substituting this form for cjJ
into the original wave equation (7.44), we find in Problem 7.16 that the K
which solves (7.60) will also satisfy

K~~(x,~; t) -Kxx(x,~; t) + v(x, t)K(x,~; t) == 0 ~ > x , (7.61a)
o

-2 ox K(x, x; t) == v(x; t) , (7.61b)

K, K~ -----+ 0 as ~ -----+ 00 , (7.61c)

where the subscripts again denote derivatives. The conditions (7.61) yield
a unique solution for the function K(x,~; t).

Further, going back to the scattering problem, it is clear that no distur
bance starting at x == -T and moving in the negative x direction with unit
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velocity will enter the region (x +r) < 0 even after scattering. Since </J is zero
in this region, we can write (7.60) as (causality condition)

ex)

cPoo(X,7;t) +JK(x,e;t)cPoo(e,7;t)de = 0
x

x+r<O.

Introducing the expression (7.47) defining the reflected signal B in terms of
</Jex) we have

ex)

B(x - 7; t) + K(x, -7; t) +JK(x, e; t)B(e - 7)de = 0 x + 7 < 0 .

x

Replacing r by -Y, as is conventional, and eby z, we obtain

ex)

K(x, y; t) + B(x + y; t) +JK(x, z; t)B(z + y; t)dz = 0 y > x. (7.62)
x

Equation (7.62) is referred to as the Gelfand-Levitan-Marchenko equation
after its originators. As we shall see, the point is that given B one can readily
solve (7.62), whereas, as mentioned, no direct method is known for solving
the KdV equation. Once the integral equation (7.62) is solved, (7.61b) yields
v(x, t).

We draw attention to the fact that B in (7.59) consists of two contri
butions, one originating in the bound states, the other in the continuum
states. In Problem 7.17 we give some indication of how the effects of the two
contributions can be separated when solving (7.62) for K. In any case, and
recalling the dispersion written into the KdV equation this is not surprising,
the effects of the second term quickly die out in time, Le., as t- 1/ 3 (Problems
7.18 and 7.20), leaving only the effects of the first term, the solitons.

Looking back at (7.59) for B and ignoring the continuum contribution,
we may write (remembering that Y == -r)

n

with gn(x; t) == 1'~e-KnX+8K~t

hn(y) == e-KnY

Similarly, we choose a trial solution for K(x, y; t) of the form

K(x,y;t) == Lwn(x;t)hn(y) ,
n

(7.63a)

(7.63b)

(7.63c)

(7.63d)

where wn(x; t) are functions to be determined. Substituting (7.63) into (7.62)
we find

L hn(y) .[wn(X; t) + gn(x; t) + L wm(x; t) Ihm(z)gn(Z; t)dZ] == 0 .
n m x
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Thus, we must have for each n
(X)

wn(x; t) + gn(Xj t) + L wm(x; t) f hm(z)gn(z; t)dz = 0 .
m x

(7.64)

If there are N bound states, (7.64) represents a set of N linear inhomogeneous
equations for Wm, m == 1,2, ... N. In matrix form this set of equations may
be written

PW== -G,

W, G are column matrices with elenlents W n,gn respectively, and
(X)

Pmn(Xj t) = 8mn + f gm(Zj t)hn(z)dz .

x

The solution is

W == _P-1G,

and

K(x,x;t) == HT(x)W(x;t) == -HT(x)p-l(x;t)G(x;t)

== - L hm(x)P~~gn(x; t) ,
m,n

with HT (x) the row matrix having elements hn (x). Since

8j8xPmn(x;t) == -gm(x;t)hn(x;t) ,

we also have

K == Tr {p-l8P j8x} (the sum of diagonal elements)

= LL~;la:;n
n m

== IPI-18IPI/8x ,

(7.65)

(7.66)

where IPI denotes the determinant of P, and p:nn is the cofactor of Pmn.
We can find Pmn(x; t) in (7.65) from (7.63b,c), which define gn and hn.

ry2 e-(Km+Kn)x+8K~t

Pmn(x;t) == 6mn + m K K .m+ n

Lastly, from (7.61b) relating v to K, we obtain

82

v(x, t) == -2 8x2 log IP(x; t)1 .

(7.67)

(7.68)



240 7. Nonlinear Waves on Water - Solitons

To illustrate the use of (7.67) and (7.68) we calculate in Example 7.1
the time evolution of a soliton originating with a delta function wave dis
turbance. The delta function, it will be remembered from Chap. 6, has only
one bound state, leading to a single soliton. It is interesting to see how the
initial condition v(x,O) determines the soliton evolution. The amplitude of
the soliton, as we saw in Sect. 7.4, is directly related to its velocity, an indeed
nonlinear result; the soliton comes as a complete package without adjustable
amplitude. The number and nature of the solitons are, remarkably enough,
respectively determined by the number of bound eigenstates in the initial
condition v(x, 0), and by the parameters 'rn, K n characterizing the asymptotic
expressions of these states. Any slack in v(x, 0), Le., failure of the solitons to
represent v at the initial time, is taken up via a contribution traceable to the
presence of the continuum states in B; this additional disturbance then dies
out. In Problem 7.19 we find v(x, t) for two solitons by using (7.67,68). We
thereby capture the rather extraordinary exact solution (7.43) of the previous
section. Indeed, (7.67,68) easily give the exact stable part of the solution to
the KdV equation no matter how many solitons may be present.

Example 7.1. Find the soliton solution VD(X, t) (the D stands for "dis
crete") given that at t == 0, v(x,O) == -W8(x).

Solution. In Example 6.2 we learn that the only bound solution to the eigen
value problem

d2u
dx2 + [A + W8(x)]u(x) == 0

with u chosen real, is given by the state

u(x) == JW/2e- Kx x > 0

== JW/2eKx x < 0 ,

A == -K2
, and K == W/2 .

The eigenvalue equation (7.46) shows that we must identify A in Chap. 6 with
w 2 here. Recalling (7.48b), we have

w == -iKn == -iK ,

giving the stated solution for u.
From (7.48a) for""( and (7.67) for Pmn we find with ""(2 == W/2 == K,

e-2Kx+8K3t

IPI == PII == P == 1 +K--
2
-K--

with Xl, the phase shift, given by

e2Kx1 == 1/2 or Xl == 1/(2K) In(I/2) .



If we let

P(x; t) == 1 + e-a(x,t) ,

then,

8lnPj8x == P- 18Pj8x

8
2
lnP == -1 [(8P)2 _p 82P ]

8x2 p2 8x 8x2

= 4K2 [ea/2 +e~a/2]-2 .

Finally, from (7.68) relating v to P
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-4K2[e- 2a - (1 + e-a)e-a]
(1 + e-a )2

There will also be a continuum part, vc(x, t), see Problem 7.19.

Problems

7.1 Use the method of separation of variables to show that (7.12a,b) is
the desired solution of Laplace's equation (7.11) for water waves, subject to
boundary conditions (7.4) and (7.10).

Hints: Let </J(x, z, t) == U(x)V(z)W(t), with W(t) == e-iwt . Show that the
physical solutions of (7.11) have the general form U(x) == Aeikx for waves
traveling in the positive x direction, V{z) == Cekz + De-kz , k real. How must
C and D be related to satisfy (7.4)? Lastly obtain (7.12b).

7.2 Use (7.17) to find group velocities for a wave packet describing the
propagation of a free particle according to wave mechanics. Give a physical
interpretation of the results based, for instance, on the de Broglie relation.
Referring to Sect. 6.3, find a suitable choice for "ko" of (7.17) explaining the
role played by the resulting Sg in describing the propagation, even in the case
of dispersion.

7.3 Show that in shallow water gravity waves are not dispersive at all.

7.4 Verify (7.20) for Sph by expanding (7.12b).

7.5 Verify (7.38) by inserting a trial solution v x == vxoei(kx-wt).

7.6 Bernoulli's equation for a nonrotating, incompressible fluid is

p(l, t) 1 2(l) 8</J(l, t) ( )-{}- + gy + 2u ,t == at + et,

where </J(y, t) is the velocity potential, p(l, t), is the total pressure, and c(t) is
a function of t only. The force on the fluid element ~m along the tube will
be
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A [P(l + b,.l, t) - p(l, t)] ,

along with the influence of gravity.
a) Use Newton's second law, taking full cognizance of nonlinearity, to

obtain the equation.
b) What form does the equation take for steady state?

y Fig. 7.6. Problem 7.6.
A non-viscous fluid con
fined to a frictionless tube.
-The vertical direction is
given by the y-axis

7.7 a) Show that the wave equation (3.3) for waves on a stretched string
can be factored to give the two independent first order pdes

(~ + s~ ) Yl (x, t) = 0 ,

(~ - s~ ) Y2(X, t) = 0 .

b) Find the characteristics for these two first order pdes.
c) i) If the initial condition for the total wave y(x, t) satisfying (3.3),

y(x,O) is given, are Yl (x, t), Y2(X, t) completely determined?
ii) How do we incorporate a second initial condition, namely,

dy(x, t)/dtlt=o == 0 for all x, L > x > O?
iii) If we know u(x,O) for all x, XF > X > XB in Sect. 7.3, is this

sufficient to find u(x, t) at all subsequent times? Discuss.
d) Use the characteristics found in (b) to divide the xt plane into six

regions as is done in Sect. 7.3. Explain what happens in each region given that

y(x,O) == given function XF 2: x 2: XB

== 0 X > XF, X < XB

8y(x, t) I == 0 for all x .
8t t=o

7.8 a) Linearize (7.23,24), and show that this yields 85 == gd, i.e., (7.19).
b) Recalling (7.6) giving the excess pressure as a function of the surface

displacement h(x, t), use the equations in (a) to show
i) that h == dU/80,
ii) that for shallow waves, 8h/8t is indeed small compared to u, again

justifying the one dimensional treatment in Sect. 7.3. However, if we need h,
we can find it approximately from (i).
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7.9 Show that in Region IV of Fig. 7.3 we have both u(x, t) == P(x, t) and
u(x, t) == -P(x, t). What conclusion do you draw?

7.10 Show that, indeed, v(x, t) as given in (7.41):

v(x, t) == -a2/2sech2 [a/2(x - a2t - Xl)]

is a solution of the KdV equation (7.40).

7.11 a) Show that the expression (7.43) for two solitons reduces to (7.41)
describing one soliton when 12 is set equal to zero.

b) Show that in regions of X, t when 11 ~ 1 and 12 is either large or small,
that v(x, t) is given almost exactly by the single a1 soliton. Is this a reciprocal
relationship as regards 11 and 12? If so, how do we know?

c) Show that for t -t -00 12 « 1 when 11 ~ 1, and that 11 » 1 when
12 ~ 1. Assume a§ » ai. Which wave is leading at t -t -oo?

d) Now show that as t -t 00 when 11 ~ 1,12 » 1, and that when 12 ~ 1,
11 « 1.

e) How do the above facts support the picture of two solitons passing
each other without change of shape? Show that for soliton 2 the effect of the
collision is a forward shift in space of (2/a2) log[(a2 +a1)/(a2 - a1)], and for
Soliton 1 a backward shift of 2/a1 10g[(a2 + a1)/(a2 - a2)].

7.12 Show that by fitting 81J(x, T; t)/8TIT=~ to 8b(x+T)/8TIT=~along with
(7.53b) determines An(t), Bn(t), A(k; t), B(k; t). Find these coefficients, the
latter two for both positive and negative values of k.

7.13 Show that at X -t 00

~ 0J[e- ikx + .B(k)eikx] [e-iTk + .B*(k)eiTk ] dk + 100(kW Je-ikxe-iTkdk

o -~

~

= J[e-ikx + .B(k)eikx] e-ikTdk
-~

by virtue of (7.50), and the fact that (3*(k) == (3(-k). This last equality follows
from the invariance of the theory to whether we use i or -i, the scattering
equation (7.44) being linear in 1J and with real coefficients.
Use the result of this problem along with those of Problem 7.12 to obtain the
expansion for 1J~ in (7.54) from (7.52).

7.14 Check that as n -t 00

~

2~ Je-
x2

/4n [e- ikx + .B(k)eikx ] [eikx + .B*(k)e-ikx] dx

o
o

+ 2~ Je-
x2

/4n [o:(-k)e- ikx] [0:* (_k)eikx ] dx = gn(O) ,

-~
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and explain the significance of this calculation. What happens to the contri
bution to the integral from the region L > x > -L, where v(x, t) i=- 0, if we
consider the actual eigenstates u(x, k; t) rather than their asymptotic forms?
What happens if njL ~ oo?

7.15 a) By differentiating the eigenvalue equation (7.46) with respect to
both x and t, and invoking the KdV equation for v(x, t), show that

8 8w2

ox (uxR - uRx) = at u2 (7.69)

where U x = 8u(x,w(t);t)j8x, with R x similarly a derivative of R:

R == Ut + VxU - 2(v + 2w2 )ux .

b) Integrating both sides of (7.69) with respect to x from -00 to 00, show
that 8w2 j8t must vanish for bound states that go to zero as x ~ ±oo, the
eigenvalues are constant in t.

c) Using the results of (a) and (b), show that when U = Un, giving

R == Rn, Rn = 0 . (7.56a)

Hint: Integrate twice over x from -00 to x.

d) Show that for free states u(x, w; t) a consequence of (7.69) is that if the
eigenvalues.k2 (t) are to be independent oft then

R = c(t)u(x, w; t) , (7.56b)

where c depends on t but not x.

7.16 Show that cP(x, T; t), or temporarily dropping the t, </J(x, T) is indeed
a solution of the wave equation (7.44),

</Jxx - cPTT - vcP = 0

if K in

(7.44)

00

cP(x, T) = cPoo(x, T) +JK(x, ~)cPoo(~,T)d~ (7.60)

x

satisfies

(7.61a)

(7.61b)

e>xK~~ - K xx + v(x)K = 0
8

v(x) = -2
8x

K(x,x)

K, K~ ~ 0 e~ 00 .

The subscripts denote derivatives.

Hint: What is the differential equation satisfied by cPoo in view of the fact
that v(x) ~ 00 as x ~ oo? When substituting </J(x, T) into the wave equation
use integration by parts repeatedly to evaluate </JTT.
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7.17 Show that the integral equation (7.62) can be written as

(1 + bn)K + bcK = -(Bn + Bc) ,

where we have split B(x - T) in (7.59) into its "discrete part" Bn and its
"continuous part" Bc, and the operator bn is defined by

00

bDK == JK(x, Z)BD(Z + y)dz .
x

Show also that if we split K into

K:=Kc+Kn,

then

(1 + bn)Kn = -Bn ,

(1 + bc)Kc = -Bc,

providing the cross terms bnKc and bcKn may be left out. This approxima
tion becomes increasingly valid as t --+ 00, then allowing for the separation of
v(x, t) into solitons coming from K n , and a time decaying wave disturbance
originating with the continuum.

7.18 Solitons aside (where the procedure would not converge) the KdV
equation can be solved directly by iteration.

a) Show that the KdV equation (7.40) can be written as

Lv = 38/8x(v2) ,

where

Lv = 8v/8t + 83v/8x3
.

b) Show that the expansion

v = VI + V2 + ...
leads to the iterative scheme

LVI = 0

LV2 = -38/8xvi

n-I

LVn = -3 L 8/8x l (VjVn-j) ,
j=1

and has the solution
00 00 t

f(x, t) = J<jJ(x')h(x - x', t)dx' + JJ(l(x', t')h(x - x', t - t')dx'dt' .
-00 -00 0

Hint: Refer to Problem (1.17) to find h(x - x', t).
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c) A well known integral yields

h(x, t) = (3t)-1/3Ai [x(3t)-1/2] .

Assuming that the Airy function Ai is bound and decays quickly for a fi
nite argument, make plausible, on the basis of the foregoing two problems
(7.17,18a,b,c), that as stated in the text the nonsoliton part of v decays
as t- 1/ 3 for any x. More complete insight can be obtained by looking up
H. Segur, J. Fluid Mech. 59, part 4, 721 (1973).

7.19 a) Use (7.67) to show that for two solitons

1P 1= 1 + f1 + f2 + Af1f2 ,

where f1 and f2 are defined via (7.42a), with ill = 2K1 , il2 = 2K2 ,1'r =
ill ea1X1 , 1'~ = il2ea2X2, and A = (ill - il2)2 / (ill + il2)2 .

b) Use (7.68) giving v(x; t) in terms of the determinant IP(x; t)1 to gener
ate (7.43), the disturbance produced by two interacting solitons. Is the result
an exact solution of (7.40), the KdV equation?

7.20 a) Find the scattering states for the initial disturbance considered in
Example 7.1,

v(x, 0) = -W8(x) .

b) Calculate the contribution of the these states to B(x, t).
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J. Lighthill: Waves in Fluids (Cambridge University Press, 1978)
The full treatment of waves on water, linear and nonlinear, can be found in
this treatise.

J .A. Krumhansl: "Unity in the Science of Physics" , Physics Today, 33, March
1991.
The reader will find here a very helpful overview of the increasing importance
of solitons in physics.

G.B. Whitham: Linear and Nonlinear Waves (WHey, New York 1974)
In the sections on solitons the method of inverse scattering due to G.N.
Balanis is described in Whitham's comprehensive treatise. (G.B. Whitham
was a professor of G.N. Balanis.)
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P.G. Drazin, R.S. Johnson: Bolitons: an Introduction (Cambridge University
Press, 1989)
A good source to look at for the reader who wishes to know more about the
many aspects of the theory of solitons on an intermediate level.

M. Remoissonet: Waves Called Bolitons, Concepts and Experiments (Springer
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Preamble. Chapters 1-6 have dealt with linear behavior, behavior that
forms the core of traditional theoretical physics. The last two chapters,
Chaps. 7,8, give the reader a glimpse into an extension of the traditional,
- the currently active field of nonlinear behavior. In this chapter two essays
by distinguished physicists deal with order and chaos, essays complemen
tary to the subject matter of Chap. 7, which revealed unexpected order and
stabilities.

The authors of the first contribution, Andrei V. Gaponov-Grekhov and
Mikhail I. Rabinovich have been working for decades on problems in nonlin
ear sciences at the Institute of Applied Physics of the Russian Academy of
Sciences in Nizhnii Novgorod (Gorkii). Gorkii, known as the exile of the late
A.D. Sakhorov, was until shortly closed to foreigners; scientific work done at
its institute has taken unusual time to reach the international community of
scientists. Professor Gaponov-Grekhov is a member of the Russian Academy
of Sciences, and Professor Rabinovich a corresponding member.

The essay of Gaponov-Grekhov and Rabinovich is an abridged version
of Chap. 6 of their textbook Nonlinearities in Action released by Springer
Verlag in 1992. Their chapter has been shortened for this text by Dr. Ernst
F. Hefter (Springer-Verlag). In the original, colored illustrations exhibit the
unexpected beauty that comes with the interplay between chaos and order.

The second essay has been prepared by Martin C. Gutzwiller. It is essen
tially a reprint of his review Quantum Chaos that appeared also with beau
tiful colored illustrations in Scientific American in January 1992. Gutzwiller,
a member of the US National Academy of Sciences, is a staff member at
the IBM research laboratory in Yorktown Heights, New York, and also
a professor at Columbia University. He is the author of a graduate level
textbook "Chaos in Classical and Quantum Mechanics", recently published
by Springer-Verlag.
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8.1 Nonlinear Physics - Chaos and Order 1

By Andrei V. Gaponov-Grekhov and Mikhail 1. Rabinovich

The Where and the How

In science as in daily life we run into questions the answers to which are
so sophisticated and uncertain that it appears most reasonable to adopt
either the point of view established by the majority (or convention) or to
treat them not as a matter of science but of belief. Into the latter category
fall two questions that are possibly some of the oldest ones: "Where does
randomness come from?" and "How does order arise?" Everybody who has
pondered about the basic principles lying at the foundations of Nature must
have encountered these questions. From daily life as well as from traditional
learning we have grown accustomed to the almost obvious perception that
complicated, irregular, imbroglio behavior is possible only in very complicated
systems. Examples are the vast number of molecules in a balloon filled with
gas or a crowd of excited football fans just after the unexpected announce
ment that the football game of the season is cancelled. In the case of such
complicated systems we are usually not able to unravel for the individual
events unambiguous connections between cause and consequences, that is,
we are not in the position to predict the detailed behavior of the system and
thus consider it to be ruled by chance.

It is true that scientists always nourished the hope that in principle such
an interpretation in terms of random behavior and our inability to predict
the future of the system could be removed once we had a more complete
knowledge of its details. For a long time the following point of view was
accepted: if we obtain more precise knowledge on the details of the interaction
of all elements of a complicated system and collect more detailed information
on their initial conditions then we will be able to predict its behavior over
long periods and the randomness "will become smaller and smaller" as we
increase our knowledge.

Similarly natural appears the idea that there must be an "organizing be
ginning" or "creator" behind each sophisticatedly organized structure which
exists in a stable form or which emerged out of a background of noise and
disorder. It is precisely for these reasons that the strongly regular structures
of clouds or the hexagons of volcanic origin depicted in Fig. 8.1 appear so
imbroglio and even mystic.

In this short excursion we try to get a glimpse of the beauty of the
most intriguing facets of modern nonlinear dynamics, disorder versus ordered
structures. Chaos and order do not just coexist in Nature, they arise due to

1 The more detailed original appeared as Chap. 6 of the book "Nonlinearities in
Action" by the same authors (Springer, Berlin, Heidelberg, New York 1992)
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Fig. 8.1. Hexagonal volcanic structures (Kuril island "Kunashir") [illustration
courtesy of E.N. Pelinovsky; Inst. Appl. Phys., Russian Acad. Sci., Nizhnii Nov
gorod, Russia]

the same general principles, laws, or conditions which justifies to discuss them
in parallel.

In the last few decades two distinct discoveries have been made that
have completely changed our perception of the nature of randomness and
regularity. It has turned out that very simple systems are able to exhibit
random behavior. These are systems evolving or living according to very
simple rules (or having a small number of elements or degrees of freedom).
Randomness is an intrinsic property of such a system and is not imposed on
it by its surroundings or through external forces. It is impossible to remove
it through more detailed studies of the system. Such a randomness exhibited
even by simple regular systems is what we refer to as dynamical chaos.

The other discovery is related to the awareness and experimental confir
mation of the fact that from initial disorder simple as well as complicated
highly organized structures may spontaneously arise, continuously developing
and evolving. This process is referred to as self-organization.

Randomness Born out of N onrandomness

Let us start with chaos. The main difficulty which we have to overcome is
a psychological one. We are used to the notion that simple systems (like
a swing, a marble in a chute, etc.) display a very simple behavior. Knowing
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the rules such a simple system obeys and its initial conditions, we may predict
its behavior over periods of time of any desired length. For example, using
Newton's laws we can list all future solar eclipses not only for the next few
hundred but even thousand years! We need relatively little time to evaluate
them, hence, this is indeed a real prediction.

What are then the sources within similarly simple systems - systems living
according to simple rules - which give rise to unpredictability, irregularity,
randomness? To develop an understanding of such peculiar features, let us
start with a simple example.

Presumably all of us encountered back in our schooldays sequences of
numbers like the arithmetic series Xn+l == X n + a and the geometrical series
Xn+l == bxn . Let us refer to these series as systems. In this interpretation the
label or number of each member or element may be viewed as a time (mea
sured in discrete units) and X n as the state of the system at the moment n.
The behavior of such simple systems is indeed very simple, because their
states are completely predictable for as long as you like. For arbitrarily large n
we have Xn+l == Xl + na and Xn+l == bnXI, respectively. Thus a knowledge
of the systems at n -+ 00 does not require that we explicitly know its states
at all intermediate moments of time in their "life". It is sufficient to evaluate
Xn+l. Is that always true?

Let us consider a series which is almost equally simple and defined by the
rule Xn+l == {2xn } where the symbol {...} stands for taking only the frac
tional part of the number within these brackets. Obviously the X n represent
points in the interval (0,1) from 0 to 1 of the number axis. As an example we
take for Xl the number 1/5. Whence follow X2 == 2/5, X3 == 4/5, X4 == 3/5,
Xs == 1/5 == Xl. Indeed, everything is simple: we observe a purely regular
motion and for Xl == 1/5 we are able to predict the state of the series after
arbitrarily long periods of "time" , that is for large n.

Let us give it another try. As the initial number we now take the fractional
part of 1r. With a pocket calculator you can easily verify that with this we
get Xl == {1r - 3} and a chain X2, X3, .•. , X n which never closes and that the
resulting sequence of numbers is similar to one of random numbers. We are no
longer able to predict the state of the system. Not even for a few steps ahead.
It is now impossible to skip intermediate steps without losing the ability to
predict the "future". To give the explicit value of Xn+l, we have to evaluate
all X n up to the (n + 1)-th step. Since the computational time is of the same
order as the time of the moment the prediction is made for, that implies
unpredictability (chaos) which is characteristic for such a random series. The
same will hold for any series if its first element Xl is an irrational number.
And the overwhelming majority of numbers in the interval from 0 to 1 is of
this type.

As illustrated in Fig. 8.2, the motion of our simple system may also be
represented graphically. The two axes represent Xn+l and X n , respectively.
The area in between the lines Xn+l == 2xn and Xn+l == 1 + 2xn within the
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interval (0,1) is the graphical representation of the rule: extend the initial
bit by two and take away the integer. Having reflected the trajectory off the
bisectrix it converts the final result of the preceding step into the inital value
of the following. The closed trajectories (bold lines) correspond to periodic
motions of the system. The trajectories (thin lines) which never close are
examples of complicated, chaotic motions.

n = 31/5

Fig. 8.2. Periodic (bold lines) and random (thin lines) trajectories in the simple
system defined by Xn+l == {Xn}

For computer calculations it is convenient to represent X n in a binary
system. In that case each subsequent value in the series is obtained from
the preceding one simply by moving the number one digit to the left (which
corresponds to multiplication by two) and by suppressing its integer part.
For example, if Xl == 0.101100010111 ... then we get x2 == 0.01100010111 ... ,
X3 == 0.1100010111 ... etc. Periodic sequences correspond to rational numbers
and random series to irrational numbers. (Let us recall that the irrational
numbers are in the majority, implying that almost all arithmetic sequences
should be random; usually we do not pay attention to this point because we
use normally rational numbers.)

From these examples we have seen that simple fully deterministic systems
may indeed give birth to chaos.

An Unstable Path and Steady Motion - Are They Incompatibles?

The points X n , Xn+l' ... wander in a random manner within the interval
(0,1) extending from 0 to 1. Yet, this chaos does have its own order. To see
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that in a more pictorial way, let us go over from a series of real numbers to
one with complex numbers. As an example we take the series represented
by Xn+l == x; + C. The majority of the resulting points will no longer be
found within the interval (0,1) but in the plane defined by the real and
imaginary parts of X n namely Re X n and Im X n , respectively. For n rv 106

and C == 0.32 + iO.43; Re x == (-2.0 ... + 2.0); Im x == (-1.8 ... + 1.8) this
leads to pictures of unusual beauty (see the books by Peitgen and Richter
and by the authors of this essay).

Each one of the points of this series with the coordinates Re Xl, Re X2, ••• ,

Rexn , ... and ImxI' Imx2' ... , Imxn , ... is random. Yet, it is problematic
to refer to this manifold as being random. For example, it resembles only
vaguely the random figure formed when a handful of sandgrains is thrown at
random to the ground. The surprising beauty of this figure is, as a matter of
fact, a consequence of the point that the random series emerged in the given
case from a deterministic system. It has its own order, that is the dynamical
chaos is in a specific way "organized". This is a remarkable phenomenon
which demands a more detailed discussion. However, first we have to answer
the question left out earlier: amongst the manifold of series' the majority of
which are random, there are also periodic ones; maybe they are the only ones
that are indeed observed?

No. They are unstable, implying that for arbitrarily small uncertainties or
variations in the given Xl we will already have a completely different series, see
Fig. 8.2. Here we note a manifestation of another feature of dynamical chaos,
an extremely strong sensitivity to changes in the initial conditions. Thus, in
spite of the fact that there are many periodic series, even infinitely many (yet,
there are nevertheless many, many more nonperiodic ones) it is practically
impossible to observe them. However, the nonperiodic trajectories are also
unstable. Why is it then that they are observed at all? The point is that there
is an almost continuous manifold of them and that they are indistinguishable.
Indeed, let us assume that because of a small perturbation (or uncertainty in
the given Xl) we obtained not the "correct" series, nevertheless the other one
which we obtained belongs also to the same manifold of unstable trajectories.
Thus we will always observe one or the other of them. Consequently we
are led to a remarkable conclusion: although the individual trajectories of
a stochastic manifold are unstable and thus not observable (not realized),
the manifold itself is stable and at least one of its many trajectories (covering
almost the entire manifold) is observed!

Does Chance Rule the World?

Why didn't we realize earlier the random behavior of nonrandom systems?
Maybe, we were only picking artificial examples? Maybe life is different and
real systems with chaos are described by different equations? For example,
could it be that Newton's equations guarantee only a regular behavior of
mechanical systems?
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Let us consider a very simple system, a swing. Of course, it is described
by the simple equations of mechanics which some of us encountered at school.
But apparently the example is not a good one: as we know, the swing oscillates
periodically; however, its period is also determined by the actions of the per
son using it, standing up or squatting. The effective length of the swing may
thus be altered to accelerate it or (by getting up out of phase) to slow it down.
Let us now deprive the person on the swing of his will power. Let us assume
that it is now a robot who squats and stands up strictly periodically! What
will happen? - The swing will oscillate completely randomwise, without any
random forces acting on it! Squatting strictly periodically the robot will out of
phase "lengthen" or "shorten" the swing and consequently add energy to the
swing (or pendulum) or take it away, respectively. The observed randomness
is due to the fact that the swing moves with different speeds depending on
its angle of deviation from the vertical. For example, close to the position
"head over heels" it slows down drastically and at the turning points it even
comes to a stop. Thus we see that even real mechanical systems that obey
Newton's laws, behave chaotically. That is, they generate randomness! Why
didn't we observe it earlier? It seems appropriate to respond: "We saw it, but
we did not realize what we were seeing." The traditional ways of thinking did
not allow us to take serious individual experiments demonstrating chaos in
simple systems (and therefore not fitting into the framework of established
theories). In some way or the other they were "explained" in terms of natural
fluctuations or by the salutary influence of noise that could not be accounted
for in the calculations.

The sensitivity to the initial conditions typical for chaos is due to the
instability of the motion. In a very pictorial and direct way reflected by
historical developments.

History would have a very mystic character, if randomness played no role
in its evolution. However, during different periods of time in the evolution of
society and in different countries this randomness has manifested itself dif
ferently. In periods of stable evolution, randomness (like the death or murder
of a political leader, natural calamity, etc.) pushed the evolutionary path of
the society only from one trajectory to another one lying in its immediate
neighbourhood: the welfare of the people changed a bit, building plans were
altered, interior or exterior politics came to be harsher or more moderate.
A qualitatively different picture is observed in a period of unstable evolution
(just before the outbreaks of wars or revolutions, in periods of disorder and
unrest): small random deviations have led to completely different routes in
the subsequent development of the society. In such periods it appears indeed
as if "chance rules the world" . But in such a case one usually forgets that such
significant results due to the action of randomness are in reality only possible
because the "flow of life" which was completely changed by an insignificant
randomness was unstable and randomness just played the role of a trigger.
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The following children's rhyme illustrates such a situation neatly:

For the want of a nail, the shoe was cast.
For the want of a shoe, the horse was lame.

For the want of a horse, the message was late.
For the want of a warning, the city was lost.

This is a pictorial example for a motion that is at every point unstable: if
there were a nail, then the horseshoe would have been fixed; if the horseshoe
were fixed then the horse would not have been lame; if the horse were not
lame (or if there were a spare one) then the message would have been in time;
if the message were received in time then the city would not have been lost.

What is the Character of Nature? - Integer or Fractal?

Pictures due to fractal manifolds of points depicted in the plane of random
sequences generated by a deterministic system are remarkably regular see
(Plate 1 of) the book by the authors or the one by Peitgen and Richter which
contains a multitude of such manifolds with microstructures. According to the
words of Ruelle they possess an "aesthetic attractiveness" . These systems of
curves, these clouds of points resemble sometimes fireworks of galaxies, some
times strange mysterious brushwood. This is a sphere of research in which
new harmonies will be discovered. Such manifolds with "floating" rarefying
structures (which have as a rule noninteger dimensions as will be explained
below) are called fractals.

An example of fractals is given by the sophisticated evolution of the
discrete analogue or predator-prey system modelled by the Lotka-Volterra
equations

(
xn+1) _ (xn)+!2. (!(xn,Yn)+Q![Xn+Q!(xn,Yn)Yn+Qg(xn,Yn)])
Yn+l - Yn 2 g(xn,Yn)+g[xn+Q!(xn,Yn)+Qg(xn,Yn)] .

Another one is the stochastic manifold of the nonautonomous self-oscillations
of a system like

x+ 1'X + x + x 3 == Fa sin(wt) .

The discrete lattice described by

dUjl (')1 12---;]1 == Ujl - 1 + ~f3 Ujl Ujl

+ ~(1 - iC)(Uj,l+l + Uj,l-l + Uj+l,l + Uj-l,l - 4Ujl)

with j, l == 1,2, ... , Nand N » 1 yields for a large supercriticality,;that is
for approximately r == 1/~ ~ 0, to spatio-temporal chaos. In this process the
short-wave excitations play the most important role. In the extreme case
the system leads to so-called 1f-1f-oscillations corresponding to anti-phase
oscillations of neighbouring lattice elements. The arising chaotic structure
is very fascinating - it is a kaleidoscope of pictures that never repeat in
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Fig. 8.3. Modulation waves and 7r-1r

oscillations in the discrete lattice-model

time. The complexity of its spatial structure is determined by the number of
elements in the lattice, see Fig. 8.3.

Although the term fractal was rather recently introduced into science by
Benoit Mandelbrot, fractal objects have been the subject of research for quite
a long time. Judging from their huge number, Nature "likes" fractal forms
very much. Amongst them we have colloids, electrical discharges, porous
solid states, coastal lines, the structures of turbulent flows (the majority of
whose trajectories are points generated by deterministic systems with chaotic
behavior) and many more. No doubt, the beauty of fractals is linked to
their property of self-similarity which manifests itself in repeated patterns
at changing scales of the figures, see Peitgen and Richter.

If we magnify under a microscope an arbitrarily small area of a fractal (or
stochastic) manifold, Le. if we increase the resolution significantly, then we
observe again an exceptionally complicated picture with a manifold of details.
And thus we may proceed to infinity! - a most extraordinary fact. Really
up to infinity? What determines the threshold for this chain of subsequent
reductions and detailizations? Before answering this question, let us consider
what could possibly perturb such a process. Let us recall the underlying rule:
what we need is that in between two arbitrary trajectories (for example,
strange attractors), we can find as many further trajectories as we like (!) 
no matter how close our initial two trajectories are to each other. Obviously
this is only possible if the space in which they move is continuous!

It is the discreteness of space (if it corresponds to the given problem) that
is the cause for limitations in subsequent detailizations of fractal structures.
And for dynamical chaos it is the cause of the existence of chaos itself. Let
us look into this in more detail.

Let us imagine space to be discrete (no matter whether it is the real space
in which liquid particles move or an abstract state space or phase space).
This discreteness may be caused by different reasons. In the case of the flow
of a liquid this is naturally related to the impossibility of considering the path
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of a fluid particle to be an infinitely small line. In that case the trajectory of
each particle will be closed and chaos dissapears.

The discreteness of space may also be determined by deeper reasons. In the
first place, it may be related to the discreteness of the elements which make
up the flow of a liquid or gas (for example, the molecules) in real space. It
may also be related to the quantum nature of the objects under investigation
because in that case the quantization condition gives rise to a discrete phase
space.

Fractal Fingers

In passing, we mentioned that fractal manifolds have noninteger dimension.
What does that mean? Maybe, noninteger dimensions are the result of ap
proximations? It is just the opposite. Estimating the dimensions of an object
by eye we make them due to our habits integer ones. Indeed, what is the
dimension of an entangled "ball" or clot of thin thread? If we look at it from
the far distance we notice aobject implying zero dimension. If we come closer
then its dimension is three. If we want to consider this object in detail and
follow the individual bits of thread, the tiny building units which make up
this clot then its dimension seems to be unity. But why does the dimension
change in jumps? Well, because this is what our perception is used to and,
consequently, it appears to us to be true. To obtain the correct answer in the
analysis of such unusual objects like fractals (to which, in a crude way, our
ball or clot also belongs) we have to define the term dimension more rigidly.

This may be accomplished by counting the number of elements of the
object of interest found within a sphere of radius r with its center within the
object under consideration, see Fig. 8.4. The number N of elements found
within such a sphere will be proportional to the D-th power of the radius
of the sphere with D standing for the dimension of the system. That is,
using unity for the associated dimensional constant we have N == rD or
D == In N / In r. For an object in the form of a straight line the number of
its elements· within such a sphere increases by a factor of three if the radius
is tripled, that is D == 1. If the object is the close packing of elements in
a plane then tripling r implies that N is increased nine times. Consequently
we obtain the dimension D == 2. So far the rigorous definition gives only the
obvious traditionally expected results. However, let usturn to the less trivial
situation depicted in Fig. 8.4. For this structure tripling the radius r of the
sphere leads to five times more elements within the sphere, Le. the number
of elements grows faster than for one-dimensional object and slower than
for a two-dimensional one. This is related to the fact that our structure is
everywhere "porous", "holey" or fractal so that its dimension turns out to
be a noninteger one, namely D == 1.46.



8.1 Nonlinear Physics - Chaos and Order 259

Fig. 8.4. A fractal "snowflake" [courtesy of T. Vicsek of the Research Institute for
Technical Physics of the Hungarian Academy of Sciences in Budapest and of L.M.
Sander; Scientific American 256, 82 (1987)]

Self-Organizing Structures

Now we would like to go over to the second part of our excursion into the
realm of Nonlinear Physics - Chaos and Order, to the problem of order arising
from disorder, to the problem of self-birth or self-generation of structures.

Figure 8.5 illustrates the birth of an ordered structure out of an initially
disordered system as observed within the computer simulation of the two
dimensional medium depicted by the lattice model referred to in the context
of Fig. 8.3. Out of disorder order is seen to arise - but maybe that happens
only in computer experiments? Maybe, the in reality ubiquitous presence of
noise and fluctuations does prevent the formation of such a self-organization
in Nature?

A good example known from reality is the well known (see the book by the
authors and/or the one by Haken) self-generation of a regular hexagonallat
tice out of an initially mixed inhomogeneous liquid. This (Rayleigh-Benard)
lattice is the result of convective flows emerging in a horizontal layer of the
liquid (in the given case it is a silicon oil) when uniformly heated from below.
In this processthe upper surface is free and surface tension plays an important
role. Visualization is facilitated by adding aluminium powder to the liquid.

The hexagonal convective lattice arises only when the temperature dif
ference between the heated lower liquid layer and the cold upper surface
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Fig. 8.5. Spatial field distribution of the nonlinear lattice

exceeds a certain critical value. It is only in this case that the molecular
heat exchange (in the absence of macroscopic motion in the respective liquid
layer) is not able to comply with its "task" of transporting the temperature,
thus leading to convective instabilities within the layer. They start off from
fluctuations (read "disorder"!) and yield vortex motion with characteristic
scales which depend on the thickness of the layer. (This instability is related to
the fact that the lighter heated part of the liquid follows Archimedes' law and
moves upward forcing the heavier cold parts of the fluid to move downwards.)
Thus we have again an instability. But now in the opposite sense: not giving
rise to chaos but to order, to regular structures! The instability of a quiet,
equilibrium state of the liquid leads to the preferred growth of the motion at
individual characteristic scales at the expense of others and thus in the very
end to regularly structured flows.

Such regular structured flows of liquids are quite often met in Nature.
Amongst them are for example large vortices in the atmosphere of the Earth
and also the regular structures of "topographical vortices" which we saw
already in Fig. 8.1. These topographical vortices of volcanic material were
formed as a consequence of the particular profile of the shelf.

But nevertheless, when we talk about the self-organization, self-generation
of structures and follow their evolution towards completeness we (possibly
subconsciously) have in mind something greater and by far more fundamental
and unusual than simply the appearance of regular structures similar to the
wave-like ones depicted in Fig. 8.6. This figure illustrates the regular three-
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Fig. 8.6. Three-dimensional wavestructures [illustration courtesy of Ming-Yang-Su
and M. van Dyke, Ed. An Album of Fluid Motion (The Parabolic Press, Stanford
1982) Fig. 194]

dimensional structure of waves on the surface of a fluid. Due to instability
they arise from a homogeneous train of steep plane Stokes waves.

Disorder and Structures

The notion of turbulence as a spatio-temporal chaos of structures is well
known to all of us. Just think about the evolution of smoke rings! The concept
is also applicable to anisotropic media and in particular to shear flows. Struc
tures arise as the result of evolving shear instabilities. Their dynamics and
the character of their interaction along the flow becomes more complicated
and as a result one observes eventually (downstream) the birth of turbulence.

To determine the general laws of the nonlinear dynamics of such structures
it is convenient to use artificial nonequilibrium systems that can be prepared
in the laboratory or even at home. They allow for detailed studies and a good
understanding of the mentioned universality of the topology of these struc
tures and their respective transformations in interactions with each other.
One of the possible variants of such devices or artificial "media" can be set
up at home with the help of an amateur video camera and a TV set: direct
your camera towards the screen of your TV set and transmit the obtained
signal of the camera into the video input of your TV set. This "camera +
TV + feedback" system is self-excited for sufficiently strong amplification.
Naturally, the amplification coefficient has to exceed the characteristic critical
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value not just temporally but also spatially (which you may achieve by coming
closer to the screen and accordingly stretching the picture).

As the result of such self-excitations you observe video pictures on the
screen of the TV. In the direct sense they have nothing in common with the
pattern "seen" by your video camera. If we experiment in a dark room then
we find out that this system is characterized by "hard" excitation. In the dark
it is necessary to generate a light pulse to "ignite" the screen. You can watch
how the light of the flame of a lighted match brought within the aperture of
the objective spreads out across the screen (according to the laws of nonlinear
diffusion). The pictures which we thus obtain resemble the ones of the fractal
structures looked at earlier. We observe spirals, "viscous fingers" and many
others on the screen of our monitor, see the book by Gaponov-Grekhov and
Rabinovich.

The dynamics of the structures in our home experiment with unstable
media are of an amazing variety. Depending on the particular conditions,
they may either be chaotic or regular. With the help of a separate camera
directed towards the screen we may obtain pictures showing self-oscillations
of our "camera + TV + feedback" system: The video structures replace each
other periodically as time progresses.

Multistability and Memory

We may also use the "camera + TV + feedback" system for completely
unexpected purposes, say, for obtaining parallel backward information. Let
us ponder a bit about this point.

As many as three decades ago it was clarified that a good number of
the processes associated with the vision of a frog (including practically all
computations related to the recognition of simple objects like insects) takes
place in the retina of its eye. In the language of our computerized world the
retina is just an ensemble of parallel processors which spend almost no time in
communication with each other. Why are they not communicating with each
other? - In the case of a network of only twelve communicating processors
almost all time is needed for the exchange of information so that there is
essentially no time left for the actual evaluation of the information, that is
for the recognition of the object.

The simplest architecture of a computer with parallel information pro
cessing of pictures is represented by a rectangular matrix of processors, each
communicating only with its neighbour. Onto such a matrix we may by the
aid of a video camera project the picture which is to be evaluated. Devices
of this type are called Cellular Logic Image Processors or Automata. If we
assume that each element of the matrix can only perform a small number of
operations, then the number of states which it can receive as a function of
the amplitude of the incident signal is also small. Let us try to employ as
such a Cellular Processor the screen of the colour TV set in our TV-system
with feedback. By the aid of a lattice of "open boxes" arranged in front of
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the screen we divide its area into small cells (the dimensions of which should
naturally not be smaller than the ones of the smallest points our TV set can
reproduce stably). Each of the cells can now be in one of four independent
states (the nonexcited ground state versus three excited states represented by
red, blue and green). Thus the number of stably existing pictures (attractors)
in our "camera + TV + feedback" system may be sufficiently large. The
system may be multistable. The stability of the pictures allows us on the one
hand to remember them, on the other hand to distinguish different ones. Some
nice illustrations of the phenomenon of multistability for our TV-system are
shown in our book.

N onlinear Dynamics in Society

We would like to add that models and methods of nonlinear dynamics them
selves are also continuously developing. Let us mention just one comparatively
new direction, the modelling of nonlinear dynamics of extended systems with
the help of cellular automata. In this case the "medium" is treated as a set
of discrete cells with given rules for their interaction with each other and
evolving in discrete time. Such models turned out to be extremely effective
for traditional problems of physics as well as, in particular, for problems
related to the modelling of evolution processes and of self-teaching (neural
networks).

Already for extremely simple interaction laws between each other, the
life of cellular automata may turn out to be highly sophisticated and even
chaotic as demonstrated in our book. After the experience gained so far with
such nonlinear systems we should no longer be surprised by this. If we follow
the time evolution of complicated non-repeated spatial structures in cellular
automata we will see that neighbouring cells excite each other while the
ones which are not so close to each other slow the process down. The colour
indicates the intensity of the excitation; black corresponds to no excitation
at all.

In spite of our bad experience with predictions we dare to assert that
within the coming decade the methods of nonlinear physics and nonlinear
dynamics will come into vogue not only for physicians and ecologists but also
for economists, sociologists and geographers.

Indeed, as clarified most recently, the growth of cities and the evolution
of the network of urban and intercity transport resemble strongly the growth
of fractal clusters in models with "limited" diffusion.

The majority of specialists concur nowadays that the idea of dynamic
equilibrium which lies at the foundation of traditional economical models is
not satisfactory. It is. realized that it will inevitably be necessary to build
nonlinear dynamic models. One approach as proposed by Bak, Tang and
Wiesenfeld is named Self-Organized Criticality. When the modelled system
reaches a critical state, it experiences a self-reorganization and acquires a new
form which may be predicted with a sufficient degree of probability. A similar
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type of prediction - admittedly applied to the past! - was for example made
with the aid of the method of critical dynamics in models of arms races be
tween countries which subsequently entered into open war with each other,see
the paper by A. Superstein. The methods of critical dynamics are indeed uni
versal. This universality manifests itself also in the character of the changes
observed in the dynamics of completely different processes due to changes in
the parameters determining the evolution of these processes. Thus it is, e.g.
that the same changes (bifurcations) are experienced within the mentioned
arms races and the oscillations observed in experiments with microwave gen
erators: a bifurcation (period) doubling and the transition to chaos.
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8.2 Quantum Chaos 2

By Martin C. Gutzwiller3

Does chaos lurk in the smooth, wavelike quantum world? Recent
work shows that the answer is yes - symptoms of chaos enter
even into the wave patterns associated with atomic energy levels

In 1917 Albert Einstein wrote a paper that was completely ignored for
40 years. In it he raised a question that physicists have only recently begun
asking themselves: What would classical chaos, which lurks everywhere in
our world, do to quantum mechanics, the theory describing the atomic and
subatomic worlds? The effects of classical chaos, of course, have long been
observed - Kepler knew about the irregular motion of the moon around the
earth, and Newton complained bitterly about the phenomenon. At the end
of the 19th century, the American astronomer George William Hill demon
strated that the irregularity is the result entirely of the gravitational pull
of the sun. Shortly thereafter, the great French mathematician-astonomer
physicist Henri Poincare surmised that the moon's motion is only a mild case
of a congenital disease affecting nearly everything. In the long run, Poincare
realized, most dynamic systems show no discernible regularity or repetitive
pattern. The behavior of even a simple system can depend so sensitively on
its initial conditions that the final outcome is uncertain.

At about the time of Poincare's seminal work on classical chaos, Max
Planck started another revolution, which would lead to the modern theory
of quantum mechanics. The simple systems that Newton had studied were
investigated again, but this time on the atomic scale. The quantum analogue
of the humble pendulum is the laser; the flying cannonballs of the atomic
world consist of beams of protons or electrons, and the rotating wheel is the
spinning electron (the basis of magnetic tapes). Even the solar system itself
is mirrored in each of the atoms found in the periodic table of the elements.

2 The original appeared in Scientific American, January 1992. Reprinted with
permission. @(1991) by Scientific American, Inc. All rights reserved.

3 Martin C. Gutzwiller is a member of the US National Academy of Sciences. He is
at the research staff at the IBM Thomas J. Watson Research Center in Yorktown
Heights, N.Y. and also serves as adjunct professor of metallurgy at the Columbia
University School of Engineering. Born in Switzerland, he received his eduaction
in Swiss public schools and at the Federal Institute of Technology in Zurich,
where he obtained a degree in physics and mathematics in 1950. His Ph.D. in
physics was awarded by the University of Kansas in 1953. Gutzwiller joined
IBM in 1960 after working for seven years in the Exploration and Production
Research Laboratory of Shell Oil Company. At IBM his focus was first on the
interaction of electrons in metals and is now on the relations between classical and
quantum mechanics. He is also interested in celestial mechanics and the history
of astronomy and physics. In addition, he is an amateur musician, a collector of
old science books and a hiker.
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Perhaps the single most outstanding feature of the quantum world is its
smooth and wavelike nature. This feature leads to the question of how chaos
makes itself felt when moving from the classical world to the quantum world.
How can the extremely irregular character of classical chaos be reconciled
with the smooth and wavelike nature of phenomena on the atomic scale?
Does chaos exist in the quantum world?

Preliminary work seems to show that it does. Chaos is found in the dis
tribution of energy levels of certain atomic systems; it even appears to sneak
into the wave patterns associated with those levels. Chaos is also found when
electrons scatter from small molecules. I must emphasize, however, that the
term "quantum chaos" serves more to describe a conundrum than to define
a well-posed problem.

Considering the following interpretation of the bigger picture may be
helpful in coming to grips with quantum chaos. All our theoretical discussions
of mechanics can be somewhat artificially divided into three compartments
(see Fig. 8.7) although nature recognizes none of these divisions.

R
(REGULAR)

p Q
(POINeAR!) ---------------... (QUANTUM)

QUANTUM CHAOS

CHAOTIC SYSTEMS QUANTUM SYSTEMS

Fig. 8.7. Mechanics is traditionally (and artificially) divided into the three com
partments depicted here, which are linked together by several connections. Quan
tum chaos is concerned with establishing the relation between boxes P and Q

Elementary classical mechanics falls in the first compartment. This box
contains all the nice, clean systems exhibiting simple and regular behavior,
and so I shall call it R, for regular. Also contained in R is an elaborate
mathematical tool called perturbation theory, which is used to calculate
the effects of small interactions and extraneous disturbances, such as the
influence of the sun on the moon's motion around the earth. With the help
of perturbation theory, a large part of physics is understood nowadays as
making relatively mild modifications of regular systems. Reality, though, is
much more complicated; chaotic systems lie outside the range of perturbation
theory, and they constitute the second compartment.
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Since the first detailed analyses of the systems of the second compartment
were done by Poincare, I shall call this box P in his honor. It is stuffed with
the chaotic dynamic systems that are'the bread and butter of science [see
Crutchfield et al.]. Among these systems are all the fundamental problems
of mechanics, starting with three, rather than only two, bodies interacting
with one another, such as the earth, moon and sun, or the three atoms in the
water molecule, or the three quarks in the proton.

Quantum mechanics, as it has been practiced for about 90 years, belongs
in the third compartment, called Q. After the pioneering work of Planck, Ein
stein and Niels Bohr, quantum mechanics was given its definitive form in four
short years, starting in 1924. The seminal work of Louis de Broglie, Werner
Heisenberg, Erwin Schroedinger, Max Born, Wolfgang Pauli and Paul Dirac
has stood the test of the laboratory without the slightest lapse. Miraculously,
it provides physics with a mathematical framework that, according to Dirac,
has yielded a deep understanding of "most of physics and all of chemistry" .
Nevertheless, even though most physicists and chemists have learned how to
solve special problems in quantum mechanics, they have yet to come to terms
with the incredible subtleties of the field. These subtleties are quite separate
from the difficult, conceptual issues having to do with the interpretation of
quantum mechanics.

The three boxes R (classic, simple systems), P (classic chaotic systems)
and Q (quantum systems) are linked by several connections. The conection
between Rand Q is known as Bohr's correspondence principle. The corre
spondence principle claims, quite reasonably, that classical mechanics must
be contained in quantum mechanics in the limit where objects become much
larger than the size of atoms. The main connection between Rand P is
the Kolmogorov-Arnold-Moser (KAM) theorem. The KAM theorem provides
a powerful tool for calculating how much of the structure of a regular system
survives when a small perturbation is introduced, and the theorem can thus
identify perturbations that will cause a regular system to undergo chaotic
behavior.

Quantum chaos is concerned with establishing the relation between boxes
P (chaotic systems) and Q (quantum systems). In establishing this relation,
it is useful to introduce a concept called phase space. Quite amazingly, this
concept, which is now so widely exploited by experts in the field of dynamic
systems, dates back to Newton.

The notion of phase space can be found in Newton's Mathematical Princi
ples of Natural Philosophy, published in 1687. In the second definition of the
first chapter, entitled "Definitions", Newton states (as translated from the
original Latin in 1729): "The quantity of motion is the measure of the same,
arising from the velocity and quantity of matter conjointly." In modern En
glish, this means that for every object there is a quantity, called momentum,
which is the product of the mass and velocity of the object.
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Newton gives his laws of motion in the second chapter, entitled "Axioms,
or Laws of Motion." The second law says that the change of motion is propor
tional to the motive force impressed. Newton relates the force to the change
of momentum (not to the acceleration, as most textbooks do).

Momentum is actually one of two quantities that, taken together, yield
the complete information about a dynamic system at any instant. The other
quantity is simply position, which determines the strength and direction of
the force. Newton's insight into the dual nature of momentum and position
was put on firmer ground some 150 years later by two mathematicians,
William Rowan Hamilton and Karl Gustav Jacob Jacobi. The pairing of
momentum and position is no longer viewed in the good old Euclidean space
of three dimensions; instead it is viewed in phase space, which has six dimen
sions, three dimensions for position and three for momentum.

The introduction of phase space was a wonderful step from a mathematical
point of view, but it represents a serious setback from the standpoint of hu
man intuition. Who can visualize six dimensions? In some cases, fortunately,
the phase space can be reduced to three or, even better, two dimensions.

Such a reduction is possible in examining the behavior of a hydrogen
atom in a strong magnetic field'. The hydrogen atom has long been a highly
desirable system because of its simplicity: a lone electron moves around a lone
proton. And yet the classical motion of the electron becomes chaotic when
the magnetic field is turned on. How can we claim to understand physics if
we cannot explain this basic problem?

Under normal conditions, the electron of a hydrogen atom is tightly bound
to the proton. The behavior of the atom is governed by quantum mechanics.
The atom is not free to take on any arbitrary energy; it can take on only
discrete, or quantized, energies. At low energies, the allowed values are spread
relatively far apart. As the energy of the atom is increased, the atom grows
bigger, because the electron moves farther from the proton, and the allowed
energies get closer together. At high enough energies (but not too high, or
the atom will be stripped of its electron!), the allowed energies get very close
together into what is effectively· a continuum, and it now becomes fair to
apply the rules of classical mechanics.

Such a highly excited atom is called a Rydberg atom [see Kleppner et
al.] Rydberg atoms inhabit the middle ground between the quantum and the
classical worlds, and they are therefore ideal candidates for exploring Bohr's
correspondence principle, which connects boxes Q (quantum phenomena) and
R (classic phenomena). If a Rydberg atom could be made to exhibit chaotic
behavior in the classical sense, it might provide a clue as to the nature of
quantum chaos and thereby shed light on the middle ground between boxes
Q and P (chaotic phenomena).

A Rydberg atom exhibits chaotic behavior in a strong magnetic field, but
to see this behavior we must reduce the dimension of the phase space. The
first step is to note that the applied magnetic field defines an axis of symmetry
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through the atom. The motion of the electron takes place effectively in a two
dimensional plane, and the motion around the axis can be separated out;
only the distances along the axis and from the axis matter. The symmetry
of motion reduces the dimension of the phase space from six to four.

Additional help comes from the fact that no outside force does any work
on the electron. As a consequence, the total energy does not change with
time. By focusing attention on a particular value of the energy, one can
take a three-dimensional slice - called an energy shell - out of the four
dimensional phase space. The energy shell allows one to watch the twists and
turns of the electron, and one can actually see something resembling a tangled
wire sculpture. The resulting picture can be simplified even further through
a simple idea that occurred to Poincare. He suggested taking a fixed two
dimensional plane (called a Poincare section, or a surface of section) through
the energy shell and watching the points at which the trajectory intersects the
surface. The Poincare section reduces the tangled wire sculpture to a sequence
of points in an ordinary plane.

A Poincare section for a highly excited hydrogen atom in a strong mag
netic field shows regions of the phase space where the points are badly
scattered, indicating chaotic behavior. Such scattering is a clear symptom
of classical chaos, and it allows one to separate systems into either box P or
boxR.

What does the Rydberg atom reveal about the relation between boxes
P and Q? I have mentioned that one of the trademarks of a quantum me
chanical system is its quantized energy levels, and in fact the energy levels
are the first place to look for quantum chaos. Chaos does not make itself
felt at any particular energy level, however; rather its presence is seen in the
spectrum, or distribution, of the levels. Perhaps somewhat paradoxically, in
a nonchaotic quantum system the energy levels are distributed randomly and
without correlation, whereas the energy levels of a chaotic quantum system
exhibit strong correlations, see Fig. 8.8. The levels of the regular system are
often close to one another, because a regular system is composed of smaller
subsystems that are completely decoupled. The energy levels of the chaotic
system, however, almost seem to be aware of one another and try to keep
a safe distance. A chaotic system cannot be decomposed; the motion along
one coordinate axis is always coupled to what happens along the other axis.

The spectrum of a chaotic quantum system was first suggested by Eugene
P. Wigner, another early master of quantum mechanics. Wigner observed, as
had many others, that nuclear physics does not possess the safe underpinnings
of atomic and molecular physics; the origin of the nuclear force is still not
clearly understood. He therefore asked whether the statistical properties of
nuclear spectra could be derived from the assumption that many parameters
in the problem have definite, but unknown, values. This rather vague starting
point allowed him to find the most probable formula for the distribution.
Oriol Bohigas and Marie-Joya Giannoni of the Institute of Nuclear Physics
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Fig. 8.8. The Energy Spectrum, or distribution of energy levels, differs markedly
between chaotic and nonchaotic quantum systems. For a nonchaotic system, such
as a molecular hydrogen ion (Ht), the probability of finding two energy levels close
to each other is quite high. In the case of a chaotic system such as a Rydberg atom
in a strong magnetic field, the probability is low. The chaotic spectrum closely
matches the typical nuclear spectrum derived many years ago by Eugene P. Wigner

in Orsay, France, first pointed out that Wigner's distribution happens to be
exactly what is found for the spectrum of a chaotic dynamic system.

Chaos does not seem to limit itself to the distribution of quantum energy
levels, however; it even appears to work its way into the wavelike nature of
the quantum world. The position of the electron in the hydrogen atom is
described by a wave pattern. The electron cannot be pinpointed in space; it
is a cloudlike smear hovering near the proton. Associated with each allowed
energy level is a stationary state, which is a wave pattern that does not change
with time. A stationary state corresponds quite closely to the vibrational
pattern of a membrane that is stretched over a rigid frame, such as a drum.

The stationary states of a chaotic system have surprisingly interesting
structure, as demonstrated in the early 1980s by Eric HelIer of the University
of Washington. He and his students calculated a series of stationary states
for a two-dimensional cavity in the shape of a stadium. The corresponding
problem in classical mechanics was known to be chaotic, for a typical trajec
tory quickly covers most of the available ground quite evenly. Such behavior
suggests that the stationary states might also look random, as if they had
been designed without rhyme or reason. In contrast, HelIer discovered that
most stationary states are concentrated around narrow channels that form
simple shapes inside the stadium, and he called these channels "scars". Sim
ilar structure can also be found in the stationary states of a hydrogen atom
in a strong magnetic field. In the original paper in the Scientific American
you find at this place a nice illustration due to HelIer and an impressive
colored illustration of Stationary states, or wave patterns, associated with
the energy levels of a Rydberg atom (a highly excited .hydrogen atom) in
a strong magnetic field which can exhibit chaotic qualities. The smoothness
of the quantum wave forms is preserved from point to point, but when one
steps back to view the whole picture, the fingerprint of chaos emerges.
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It is possible to connect the chaotic signature of the energy spectrum
to ordinary classical mechanics. A clue to the prescription is provided in
Einstein's 1917 paper. He examined the phase space of a regular system from
box R and described it geometrically as filled with surfaces in the shape of
a donut; the motion of the system corresponds to the trajectory of a point
over the surface of a particular donut. The trajectory winds its way around
the surface of the donut in a regular manner, but it does not necessarily close
on itself.

In Einstein's picture, the application of Bohr's correspondence principle
to find the energy levels of the analogous quantum mechanical system is
simple. The only trajectories that can occur in nature are those in which the
cross section of the donut encloses an area equal to an integral multiple of
Planck's constant, h (27r times the fundamental quantum of angular momen
tum, having the units of momentum multiplied by length). It turns out that
the integral multiple is precisely the number that specifies the corresponding
energy level in the quantum system.

Unfortunately, as Einstein clearly saw, his method cannot be applied if
the system is chaotic, for the trajectory does not lie on a donut, and there is
no natural area to enclose an integral multiple of Planck's constant. A new
approach must be sought to explain the distribution of quantum mechanical
energy levels in terms of the chaotic orbits of classical mechanics.

Which features of the trajectory of classical mechanics help us to under
stand quantum chaos? Hill's discussion of the moon's irregular orbit because
of the presence of the sun provides a clue. His work represented the first
instance where a particular periodic orbit is found to be at the bottom of
a difficult mechanical problem. (A periodic orbit is like a closed track on
which the system is made to run; there are many of them, although they
are isolated and unstable.) Inspiration can also be drawn from Poincare, who
emphasized the general importance of periodic orbits. In the beginning of this
three-volume work, The New Methods of Celestial Mechanics, which appeared
in 1892, he expresses the belief that periodic orbits "offer the only opening
through which we might penetrate into the fortress that has the reputation
of being impregnable" . Phase space for a chaotic system can be organized, at
least partially, around periodic orbits, even though they are sometimes quite
difficult to find.

In 1970 I discovered a very general way to extract information about the
quantum mechanical spectrum from a complete enumeration of the classical
periodic orbits. The mathematics of the approach ·is too difficult to delve
into here, but the main result of the method is a relatively simple expression
called a trace formula. The approach has now been used by a number of
investigators, including Michael V. Berry of the University of Bristol, who
has used the formula to derive the statistical properties of the spectrum.

I have applied the trace formula to compute the lowest two dozen en
ergy levels for an electron in a semiconductor lattice, near one of the care-
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fully controlled impurities. (The semiconductor, of course, is the basis of
the marvelous devices on which modern life depends; because of its impu
rities, the electrical conductivity of the material is halfway between that
of an insulator, such as plastic, and that of a conductor, such as copper.)
The trajectory of the electron can be uniquely characterized by a string
of symbols, which has a straightforward interpretation. The string is pro
duced by defining an axis through the semiconductor and simply noting
when the trajectory crosses the axis. A crossing to the "positive" side of
the axis gets the symbol +, and a crossing to the "negative" side gets the
symbol -.

A trajectory then looks exactly like the record of a coin toss. Even if the
past is known in all detail - even if all the crossings have been recorded - the
future is still wide open. The sequence of crossings can be chosen arbitrarily.
Now, a periodic orbit consists of a binary sequence that repeats itself; the
simplest such sequence is (+-), the next is (++ - ), and so on. (Two crossings
in a row having the same sign indicate that the electron has been trapped
temporarily.) All periodic orbits are thereby enumerated, and it is possible
to calculate an approximate spectrum with the help of the trace formula.
In other words, the quantum mechanical energy levels are obtained in an
approximation that relies on quantities from classical mechanics only.

The classical periodic orbits and the quantum mechanical spectrum are
closely bound together through the mathematical process called Fourier anal
ysis [see Bracewell]. The hidden regularities in one set, and the frequency with
which they show up, are exactly given by the other set. This idea was used
by John B. Delos of the College of William and Mary and Dieter Wintgen of
the Max Planck Institute for Nuclear Physics in Heidelberg to interpret the
spectrum of the hydrogen atom in a strong magnetic field.

Experimental work on such spectra has been done by Karl H. Welge and
his colleagues at the University of Bielefeld, who have excited hydrogen atoms
nearly to the point of ionization, where the electron tears itself free of the
proton. The energies at which the atoms absorb radiation appear to be quite
random (see upper part of Fig. 8.9), but a Fourier analysis converts the jumble
of peaks into a set of well-separated peaks (see lower part of Fig. 8.9). The
important feature here is that each of the well-separated peaks corresponds
precisely to one of several standard classical periodic orbits. Poincare's in
sistence on the importance of periodic orbits now takes on a new meaning.
Not only does the classical organization of phase space depend critically on
the classical periodic orbits, but so too does the understanding of a chaotic
quantum spectrum.

So far I have talked only about quantum systems in which an electron
is trapped or spatially confined. Chaotic effects are also present in atomic
systems where an electron can roam freely, as it does when it is scattered
from the atoms in a molecule. Here energy is no longer quantized, and the
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Fig. 8.9. Absorption of light.by a hydrogen atom in a strong magnetic field appears
to vary randomly as a function of energy (top), but when the data are analyzed
according to the mathematical procedure called Fourier analysis, a distinct pattern
emerges (bottom). Each peak in the bottom panels has associated with it a specific
classical periodic orbit (figures next to peaks)

electron can take on any value, but the effectiveness of the scattering depends
on the energy.

Chaos shows up in quantum scattering as variations in the amount of time
the electron is temporarily caught inside the molecule during the scattering
process. For simplicity, the problem can be examined in two dimensions.
To the electron, a molecule consisting of four atoms looks like a small maze.
When the electron approaches one of the atoms, it has two choices: it can turn
left or right. Each possible trajectory of the electron through the molecule
can be recorded as a series of left and right turns around the atoms, until the
particle finally emerges. All of the trajectories are unstable: even a minute
change in the energy or the initial direction of the approach will cause a large
change in the direction in which the electron eventually leaves the molecule.

The chaos in the scattering process comes from the fact that the number
of possible trajectories increases rapidly with path length. Only an interpre-
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tation from the quantum mechanical point of view gives reasonable results;
a purely classical calculation yields nonsensical results. In quantum mechan
ics, each classical trajectory of the electron is used to define a little wavelet
that winds its way through the molecule. The quantum mechanical result
follows from simply adding up all such wavelets.

Recently I have done a calculation of the scattering process for a special
case in which the sum of the wavelets is exact. An electron of known mo
mentum hits a molecule and emerges with the same momentum. The arrival
time for the electron to reach a fixed monitoring station varies as a function
of the momentum, and the way in which it varies is what is so fascinating
about this problem. The arrival time fluctuates smoothly over small changes
in the momentum, but over large changes a chaotic imprint emerges, which
never settles down to any simple pattern (see right part of Fig. 8.10) .
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Fig. 8.10. Chaotic variation (characterizes the time it takes for a scattered electron
of transitting a molecule) of known momentum to reach a fixed monitoring station.
Arrival time varies as a function of the electron's momentum. The variation is
smooth when changes in the momentum are small but exhibits a complex chaotic
pattern when the changes are large. The quantity shown on the vertical axis, the
phase shift, is a measure of the time delay

A particularly tantalizing aspect of the chaotic scattering process is that
it may connect the mysteries of quantum chaos with the mysteries of number
theory. The calculation of the time delay leads straight into what is probably
the most enigmatic object in mathematics, Riemann's zeta function. Actually,
it was first employed by Leonhard Euler in the middle of the 18th century
to show the existence of an infinite number of prime numbers (integers that
cannot be divided by any smaller integer other than one). About a century
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later Bernhard Riemann, one of the founders of modern mathematics, em
ployed the function to delve into the distribution of the primes. In his only
paper on the subject, he called the function by the Greek letter zeta.

The zeta function is a function of two variables, x and y (which exist in the
complex plane). To understand the distribution of prime numbers, Riemann
needed to know when the zeta function has the value of zero. Without giving
a valid argument, he stated that it is zero only when x is set equal to !.
Vast calculations have shown that he was right without exception for the
first billion zeros, but no mathematician has come even close to providing
a proof. If Riemann's conjecture is correct, all kinds of interesting properties
of prime numbers could be proved.

The values of y for which the zeta function is zero form a set of numbers
that is much like the spectrum of energies of an atom. Just as one can study
the distribution of energy levels in the spectrum, so can one study the distribu
tion of zeros for the zeta function. Here the prime numbers play the same role
as the classical closed orbits of the hydrogen atom in magnetic field: the primes
indicate some of the hidden correlations among the zeros of the zeta function.

In the scattering problem the zeros of the zeta function give the values
of the momentum where the time delay changes strongly. The chaos of the
Riemann zeta function is apparent in a theorem that has only recently been
proved: the zeta function fits locally any smooth function. The theorem sug
gests that the function may describe all the chaotic behavior a quantum
system can exhibit. If the mathematics of quantum mechanics could be han
dled more skillfully, many examples of locally smooth, yet globally chaotic,
phenomena might be found.
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Hints for Solution

Chapter 1

1.1 1.3.5 ... (2n - 1)/ [(2n)!2nan] simplifies further.
1.2 Notice the word "some". This procedure greatly increases the number

of good functions.
1.3 Use (a - ib), the complex conjugate of (a + ib).
1.5 cos 30 == cos3 0 - 3 cos 0sin2 0 sin 30 == 3 cos2 0 sin 0 --.. sin3 O.

00 00

1.6 a) Hm J f~(x)F(x)dx == - Hm J fn(x)F'(x)dx.
n~oo_oo n~oo_oo

b) From (1.21) the answer is -1.
1.7 Consider both positive and negative values of I k I together.

00

1.8 E(t) = 1/v"iif- JAweiwtdw

-00

00

= v"iif- JA(f)e21riftdj

-00

108 + 75 X 103 ~ f ~ 108 - 75 X 103 Hz if the radio is turned to 100
MHz

1.9 a) A(k) == A*(-k)
b) IAk Icos(Ok + kn ) == IAk I(cos Ok cos kx - sin Ok sin kx)
c) Four parameters are available for every k > O.

1.10 a) fe(x) == f(x) + f(-x)/2.
b) C(k) == [A(k) + A(-k)] /J2.
d) Refer to (1.16) and (1.32).
e) Do 1/(2/1T) cos kx, 1/(2/1T) sin kx, form a complete orthonormal
set?

1.11 a) A (k) == (1/V21r)1/(a + ik).
b) F(x) is nonsymmetric but real.

1.12 b) Note the reciprocal relation which says that if A(k) is the FT of
F(x), (1.26), then F(k) is the FT of A(-x), [(1.33) with k' ~ -x, x ~ k].
c) Consider "smudged" (why?) square waves, and note (a) and (b).

d) y'n/7re-nx2 , (sin nX)/(7rx).



278 Hints for Solution

1.13 a) The FT of (1/J21r)e- 1xl / n is 1/(7rn)(n-2 + k2)-1.
b) See Problem 1.3.
c) Expand F(x) in a Taylor series about x == o.
d) Here the an(k) are good functions differentiable at k == 0 and
equal to the generalized function 1 (why?). To find the an(k), dif
ferentiate the desired transform with respect to 1/n2 in only the nu
merator! Split your derivative into two terms with integrating factors
[1/2 + kn2 /4)] ' [1/2 - k/ (4/n2

) J, respectively.
1.14 Both sides can be written as the double integral

00 00

1/J21r JJAl(k)e-ikxF2(X)dkdx.
-00 -00

1.15 a) See Problem 1.14.
00

b) F(x) = 1/27f J[G(k)/B(k)] eikxdk .
-00

1.16 See Problem 1.9a.

1.17 a) A(k) == 1/J21r e-ikxo , or 1/J21r e-ikxo-n(x-xo)2
if £)(0, x) == gn(x - xo).
b) Integrate over k. Refer to (1.18).

1.18 c) The factor assures that f n (x) is "good" at infinity. See Lighthill
(Further Reading) p.22 for a proof that (1.22) is satisfied.

1.19 Consider

00

Hm .~ JA(k)fn(k)eikxdk ,
n~oo V 27r

-00

where
00

A(k) == _1_ JF(x')e-ikx'dx'
J21r

-00

with fn(k) a sequence defining the generalized function unity, for ex
ample, fn(k) == exp(-k2 /4n).

1.20 (iii) With Ui(X) real

Nti./2

A; ~ J ui(x)FA(X)dx.

-NtJ../2



Hints for Solution 279

Chapter 2

2.4

2.5

2.6

2.7

2.8

2.10

a) Vc == -IR.
b) Can you show that to first order in a

qo - at t R - at· tC e cos Wf == Wf qoe SIn Wf

at the point of inflection for q(t)?
This is a general initial value problem. Try it. Alternatively show that

Q == Qo + J~ Idt for the given current.
a) (a2 - w5)1/2 ~ a - w5/2a
b) c/J ------* -7r12, Ixl -+ Folk.
b) rv 106

a) 1IT JOT sin(wt) cos(wt)dt == 0

X2(W) = (];m) (w2 - W5); + (2aw)2
measures the in-phase component of the velocity.

Chapter 3 + t

3.1 y(x, t) = 1/2 [yO(X - st) + yo(x + st) + (l/S)xf.:VO(X1)dX'l.

3.6 b) (1 + 8)1/2 ~ 1 + 812 for any 8 « 1.
3.7 a) See the derivation of the wave equation for a transverse force.
3.9 For nontrivial solutions, the determinant

must vanish. The normal modes are

XI == J273 sin(7rII3) cos(tyla - t3)

XI == J273 sin(27rII3) cos(tyla + t3)

I == 1,2

I == 1,2

Le., the two masses move together (low frequency mode), or they move
against each other (high frequency).
b) See Example 6.4.

3.12 b) Consider

+L/2

±J exp [(2;i) (n - m)x] dx
-L/2

c) The result is the integral (as opposed to series) Fourier transform
of Chap. 1 for functions that may be Fourier represented.

3.13 a) On a unit cross-sectional area at x + ~x the force is p(x + ~x, t).
b) Start by examining the solution L == A14.
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3.14 b) The transverse force exerted on the end of the string is - T ~y I .
uX x=o

oy(x, t) Fos
e) ot ---+ T cos(wot - wox/s) .

f) The analytic result corresponds to a pulse of width rv sVii centered
at st. Explain physically the origin of your result. Is there any way of
obtaining the idealized result of part (e) from your result here?

3.15 a) Bear in mind that the boundary conditions must be satisfied trough
out time.
b) At resonance, for the electric analogue Zparallel == 00 Zseries == O.

3.16 a) First see Problem 2.9(c).

z(x, t) = A L:>n(X) 2 W5 2 (V2L) coswot
n wn - Wo n1f

b) A
sin[wo(x - L)/s]

- cos wot . ( L/)SIn Wo s

3.17 b) Use a Taylor series to expand sin[Lkn + L(k - kn )].

Chapter 4

4.1 E ~ 25 V/m.
4.3 b) C == (Aeo/d) for a parallel plate capacitor. Suppose that the surface

around which we integrate B in (4.4), rather than being a plane per
pendicular to the wire and pierced by it, is deformed to pass between
the plates of the capacitor, with now no physical current threading it
anywhere (Fig. 4.10).

4.4 b) See vector identities in text.

B B Fig. 4.10. Problem 4.3
@---(8)---- ----@---~

I I
I I
I I
I I
I I
I I
I I
I I
I ,, ,
\ ,
\ I
' ...._------_._-------"'~

4.6 a) Drop a vector V{t) from the origin unto the plane.
b) A vector field with zero curl will have as Fourier components har
monic waves pointing along the direction of propagation.

4.7 a) See (4.13,15).
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4.9 Eo rv 103 V/m.
4.10 See Fig. 4.11.

Fig. 4.11. Problem 4.10

4.11 There are two directions of polarization for every k.
4.12 b) J == (ie-iwt)/(f-Low)(klk3/k)(sin1rx/a)j. Check with Fig. 4.5.
4.13 a) V x (V x E) == V(V . E) - V2E.
4.14 c) u(r) == a/r.

f) zo == In(b/a) / (21rcoc)
4.15 a) The new "charge density" becomes

{} + coa/atV2x ,
and the new scalar potential

4J + aX/at .

)
2 1 a4J

4.15 b V X== - c2 at .
4.18 a) Let j(r') == I8(r')/21rr' so that

Jj(r') . dB = JJj(r')r'dr'dcP = ?

b) Which of the variables r, 4J, z, does A depend on?
c) B(r, 0, 4J) == (f-LoI/21rr)(L/vL2 + 4r2)a</>.

4.21 a) The driven wave equation for A may be solved by the same proce
dure as the driven wave equation for y in Chap. 3. Note that

J
dJbJa Vkr

UTEI03 . usdxdydz == 4k2 8TEI03,S

000

where V == a bd is the volume of the cavity.
b) See Chap. 3 for resonance in distributed systems.

b

c) V == - JEydy.
o

d) C == coV/2b2 == coA/2b LC == 1/c2kr03 == 1/Wr03 (c is the speed
of light).

4.22 A1(r,t)== -4f-LOPOwsin(wt-kr)az.
1fr
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21rw
For kr » 1, k == -- ,

c

B(r, t) ~ jjoPo wkcos(wt - kr) sin(}ac/>
41rr

V x B(r, t) ~ jjoPo wk2 sin(wt - kr) sin (}ao
41rr

4.A.1 Some lines end at the charges in the box.

Chapter 5

5.2 b) rv 6
5.6 .A « a; two infinite half planes.
5.7 Can the integral of the phase factor be written as the product of two

independent integrals? What happens to the pattern as we go to the
long horizontal slit?

5.9 b) d ~ 0.11 mm. Total width ~ 3.6 cm.
5.10 b) Fig. 5.12.

Fig. 5.12. Problem 5.10b. Interference fringes modulated by the diffraction
envelope; d ~ (9/2)a

5.17 c) 6 == 6.7 X 10-4 mm

[
8P 8E]

d) V x B == jjo 7ft + co 7ft '
if all current is viewed as polarization current. In case of a magneti
zation lM, B can be replaced by J-LoH == B - jjolM in the Maxwell
equation.

Chapter 6

6.7 c) If A and B do not commute a particle can be at most in the eigen
state of one of the operators, with a statistical spread for the observable



6.8
6.9

6.12
6.14

6.19

6.20

Hints for Solution 283

belonging to the other operator. If the operators do commute, there
is the possibility of finding an exact value for both observables; i.e.,
it is possible within the wave mechanical framework to describe the
situation where any spread for both variables simultaneously vanishes.
It is not surprising that in this case the measurement of both quantities
can in fact be simultaneously carried out without disturbing the state
of the particle; the measurements are said to be compatible.
Earth-moon distance = 3.82 x 108 m. Mass of earth = 7.36 x 1022 kg.
a) See Example 6.3 for x > a, x < -a. See Problem 6.11 for boundary
conditions.
b) R2un(x) = un(x). What does this say about the eigenvalues of the
operator R?
Consider .;p in light of Schroedinger's time-independent equation.

IAo(t)1 2 = 1 - sin2 (Wt/n)
IAI (t)1 2 = sin2 (Wt/n)
See Problem 3.9 to complete your discussion.
I (J-lEo/2n)T(jj.No/N)

m(J21 = 1 + (w - wO)2T2+ (J-lEoT/n)2

X2(W) = p,2r (t:J..N)o 1
con 1 + (w - wO)2T2

()
J-l2T(jj.N)o (w - WO)T

Xl W = con 1 + (w - wO)2T2
when (J-loco/n)2T2 « 1 .

(jj.N)o = N(f211 - (222)O

Plot Xl (w), X2(W) as functions of wand notice the resonance at w = Wo.
Temperature, for instance, will keep (f222)O -I O. For more discussion
refer to Chap. 8 of the text by Amnon Yariv, listed under Further
Reading.
1 part in 5 x 109 . Herzberg confirmed the effect by measuring the actual
line to an accuracy of 1 part in 106 .

Chapter 7

7.6 a) jj.m = f2A jj.l; integrate over jj.l.
b) p(l)/ f2 + gy + 1/2u2 (l) = c

7.7 c) ii) If YI and Y2 are the same function of their respective compound
arguments, what can you say about 8[YI(X,t) +Y2(x,t)]/8tl t=o? See
also Problem 3.1.
c) iii) To find P(x,O) we must know p(x,O) in the interval. Subse
quently, we can find p(x, t) in terms of u(x, t), u(x, 0), P(x, 0) along
the characteristic. Two intersecting characteristics will always yield
p(x, t), u(x, t).



7.18

7.15

284 Hints for Solution

7.11 b) If i2 is large v(x, t) becomes a function of Ail. Note the symmetric
form of v(x, t) in (7.43).
c,d) We can take I t I as large as we please.
e) for t ---+ -00 Soliton 1 leads; for t ---+ +00 Soliton 2 leads. Soliton
2, which has the larger velocity, given by Q~, has passed Soliton 1.
However, the shapes of the two solitons have not changed in view of
the constant functional dependence of v(x, t) on x and t for any given
soliton j, j == 1, 2 : ij / (1 + ij)2. A change of phase for each soliton can
be identified.

7.12 See Problem 1.6a.

An == 0 B n == 1n(t) n == 0,1,2 ...

A(k) = ~ B(k) = (3*(k) k > 0
v2~ v'21r

A(k) = 0 B(k) = a*(k) k < 0
v'21r

with Wk > 0 for all k.
~ 0

7.14 Im{{3}Je-
x2

/4n sin(2kx)dx = -Im{{3} Je-
x2

/4n sin(-2kx)dx

o -~

~ 0Je~x2/4n{3*(k)e-2ikxdx = Je-x2/4n{3(k)e2ikXdx

o -~

the normalization of a scattering state.

a) :x (uxR - uRx) = uxx(Ut - 2vux - 4w2ux ) - u(vxxxu - 4vxuxx )

- u(VUt - W2Ut - w;u + Vtu)
+ u(2v + 4w2)(vx u - w2ux + vUx ) ,

which simplifies if one uses (7.46), or see Drazin and Johnson, loco cit.
p.68.

~

c) h(x, t) = ~ Je(ik
3
t+ikx)dk.

-~

7.19

7.20

b) Yes; however, direct substitution into the KdV equation to check is
not recommended.

) ( )
_ -1 J~ exp [i(kx + 8k3 t)J

b B x, t - 'k/K dk .
2~ 1 + 1
-~

If we let k == y(x/t)I/2,

B == -2K J~ exp [i(x3/t)1/2(y + 8y3)J dy
2~ 2K(t/x)I/2 + 2iy

-~

leading, as it turns out, to an oscillatory dispersive wave to the left,
decaying as t- I / 3 , as t ---+ 00.



Index

admittance 83
Ampere's law 88
amplifier 46
anode 127

basis functions 2, 167
- complete orthonormal set 63
- complete set 2, 68, 92, 97
- complete, periodic set 80
- continuous basis 167
- discrete basis 167
- function space 2
- normalization 167
- normalized 3
- orthogonal 3
- orthonormality 3, 14
beam 144
- of particles 171
Bernoulli's equation 241
Bohr, N. 130, 159
- Bohr radius 206
Born, M. 161
boundary conditions 61, 75, 111, 145,

163
- for the electric and magnetic fields

99
- homogeneous 71
- on string 59
- periodic rv 171, 206
de Broglie, L. 158
- de Broglie relation 158
Byron, F.W. Jr. 17, 31

capacitance 98
capacitor
- parallel plate rv 117
cathode 127
Cauchy's Theorem 9
Cellular Processor 262
complete set 29
completeness 81
complex exponential 2

complex numbers 7, 38
- de Moivre's Theorem 25
Compton, A.H. 158
condensed matter physics 191
correlation function 28
correspondence principle 130
Coulomb's law 123
coupled oscillator 80
curl 88, 89, 103, 125
- angular velocity 118
- circulation 90

damped oscillations
- damped traveling waves 84
Davisson, C. 158
Debye-Scherrer 141
degrees of freedom 2, 55
dielectric constant
- complex rv 156
dielectrics 142
- dielectric constant 142
differential equation
- linear 35
- separation of variables 206
differential equations 17
- Korteweg-de Vries equation 229
- Korteweg-de Vries pde 233
- separation of variables 241
diffraction 129, 133-139, 147
- m-th order spectrum 153
- circular aperture 139
- Debye-Scherrer rv pattern 154
- of electron beams 159
- Fraunhofer rv 136
- Fresnel rv 136
- Fresnel zone 152, 153
- grating 138, 139, 153
- Laue rv pattern 154
- pattern 134, 137
- phasors 154
- resolving power 153
- single slit rv 153



286 Index

- sodium doublet 153
- X-ray rv 139
diffusion equation 28
dipole radiation 107-110
Dirac delta function 3, 9, 22, 23
- potential 199
Dirac, P.A.M. 3
- Dirac equation 191
dispersion
- group velocity 221-223
displacement field 142
distributed systems
- electromagnetic rv 98
divergence 88, 89, 103, 124
driven motion
- driven behavior 98

eigenfunction 162
eigenfunctions
- completeness 167
- expansion in rv of H 168
- normalization condition 170
- of a quantum mechanical operator

167
eigenvalue
- continuous rvS 169
- energy rvS 164
Einstein, A. 130, 265
- photoelectric effect 151
- special relativity 191
electric inductance 34
electric susceptibility 141
electric transmission line 35
electrical capacitance 35
electrical resistance 35
electrical susceptibility 156
electromagnetic cavities 98-102
electromagnetic cavity 97, 158
electromagnetism 87, 110
- Biot-Savart law 122
- coaxial cable 120
- energy densities 96
- fields 106
electron microscopes 159
electrostatic potential 110, 114, 121
electrostatic potential 4> 105
energy bands 130
energy levels 130
escapement 47
even symmetry
- even function 26
expectation value 169
- expected mean 166

Faraday's law 88
Feshbach, H. 73, 85
Feynman, R.P. 98, 127, 196, 215
fine structure 191
flux 134
forced motion 33, 41-46, 67
- driving terms 87
- of a string 71
Fourier analysis 3, 11-17, 178, 272
- cosine Fourier transform 132
- Faltungstheorem 27, 52
- Fourier cosine representation 20
- Fourier representation 16
- Fourier transform 3, 12
- Fourier transforms 4
- FT of 8(x) 13
- Gibbs' phenomenon 21
- harmonic components 3
- Parseval's theorem 27
Fourier, J. 3
fractals 256
- fractal fingers 258
Fredholm integral equation 237
Fuller, R.W. 17,31

,particle 196
,-rays 129
Gaponov-Grekhov, A.V. 250
Gauss's law 88, 104
Gauss's theorem 90, 111, 148, 154
Gauss, F. 5
gaussians 5
Geiger counter 179
Gelfand-Levitan-Marchenko equation

238
generalized functions 4, 10, 22, 23
geometric optics 144
Germer, L. 158
good functions 4, 5, 23, 82
- fairly 24
gradient 88, 89, 124
Green's function method 33, 44, 71,

72, 110, 189
- expansion of the Green's function in

eigenfunctions 76
- free particle Green's functions, 197
- Green's function for a stretched

string 77
- harmonic oscillator 181
- magic rule 73, 83, 147
- principle of reciprocity 150
- quantum field theory 193
- quantum Green's function 195



- retarded Green's function 193
Green's theorem
- one dimensional equivalent 72
Green, G. 44
- Green's theorem 148
Gutzwiller, M.C. 265, 275

Hamilton, W.R. 162
harmonic oscillator 182
Heisenberg uncertainty principle 133,

171-179,194
Heisenberg, W. 161, 180
Helmholtz equation 148
Helmholtz theorem 104
Hermetian operator 187, 211
Hilbert space 17-18
Hilbert, D. 2
Hooke's law 35
Huygens' principle 135, 152
hyperfine structure 192

idealization 57, 99
impedance
- characteristic rv of cable 120
- complex rv Z for a mode 123
- complex rv Z for an idealized circuit

53
- complex rv of the string 83
- complex mechanical 42
- mechanical 82
inductance 98
- of a long solenoid 50
initial conditions 62
initial value problem 64
interference 129, 147
- patterns 138
intrinsic magnetic moment 191
inverse scattering 233-241

Jordan, P. 161

Kay,1. 233
Kronecker delta 162

Lamb shift 214
Lamb, W.E. 198
lasers 133
von Laue, M. 139, 154
- spot 141
Lenz's law 34
Lighthill, M.J. 5, 31
linear systems
- linear differential equations 36
Liouville's theorem 84

Index 287

longitudinal field 104
Lorentz gauge 121

magnetic imaging 205
matrix mechanics 161
Maxwell equations 155, 192
Maxwell's equations 88
- differential form 88, 91
- integral form 88
Maxwell, J.C. 95
Michelson, A.A. 95
Morse, P.M. 73, 85
Moses, H. 233

natural motion 33, 205
- natural behavior 98
- natural frequency 39
- of systems 36
normal modes 60, 65, 80, 83, 158, 163
- classification 100
- eigenstates 191
- electric field in the mode 116
- in classical physics 174
- longitudinal 81
- modes of polarization 96
- TEI03 mode 119
- transverse 81
nuclear physics 192

obliquity factor 135, 151
observable 162, 166
odd symmetry
- odd function 26
operator 162, 166
- Hermetian 164
optical disturbance 135
oscillator
- harmonic rv 192
oscillators 33, 44, 46
- damped oscillations 37
- damping 33, 190
- free oscillations 39
- half-power point 49
- response 43
overlap integral 4, 7, 29

Panofsky, W.K.H. 103, 127
particles 130
Pauli, W. 192
- Pauli excusion principle 192
periodic table 191
phase 42, 51
- unknown 83
phasors 153
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Phillips, M. 103, 127
photoelectric effect 130
photon 130
physical optics 129
- crisis in optics 157
Planck, M. 130, 158
- Planck's constant 130, 158
Poisson equation 110
Poisson, S.D. 110, 111
polarization 97
- plane-polarized 96
polarization charge 154
polarization of materials 141
positron 192
Poynting vector 96
Poynting, J .H. 96
prisms 174
projection formula 18

quality factor Q 33, 40, 47
- for a cavity 102
Quantum Chaos 265

Rabinovich, M.1. 250
radiation
- black body rv 158
- coherence length 135
- electromagnetic rv 129
- incoherent rv 133
- intensity 137
radiation zone 123
Randomness 251-253
Rayleigh, Baron 138
- Rayleigh criterion 138
reactance
- mechanical 42
refraction 141, 143
- complex index of rv 155
- index of rv 144
- refractive index 144
- Snell's law 155
resonance phenomenon 33,44, 81, 123
- condition of resonance 70
- resonance frequency 98
- resonance response 102, 205
- vicinity of resonance 51
retarded potential 107
retarded solution 106
root square deviation 166
Russell, J.S. 230
Rydberg atom 268

Schroedinger equation 160
Schroedinger, E. 158, 191

Schwartz, L. 5
second quantization 192
skin depth 155
solitons 229-241, 245
sound wave 81
source 111
- antenna 106
- dipole antenna 106, 107, 123
- source fields 103
sources 87
square wave function 59
square wave function F(x) 18
stationary state 169
statistical mechanics 158
Stokes's theorem 91
structures
- disorder 250
- ordered structures 250
superconductivity 191
symmetry
- even 7
- odd 7
systems
- distributed 35, 87, 98
- linear mechanical 35
- lumped 35, 55

Temple, G. 5
Thomson, G. 159
time constant 40
topographical vortices 260
transverse field 104

unit vectors i, j, k 3

vacuum diode 114, 126
- Child-Langmuir law 115
vector potential 103, 104
viscous drag 35

wave function 159
wave mechanics
- commuting operators 207
- ground state 183
- Heisenberg operators 193
- operators 193
- pair creation 196
- postulates of rv 161-171
- quantum electrodynamics 196
- raising and lowering operators 184
- reflection operator 208
- Schroedinger's cat 180
- stationary states 270



- time dependent wave equation 185
- time-dependent problems 211
- tunnel 200
- two-level system 212
- wave-particle duality 179
wave mechanics operators
- annhilation and creation operators

192
waves
- amplitudes 3
- angular frequency 2
- dispersion 174
- fundamental frequency 66
- group velocities 241
- group velocity 144
- nonlinear rv 223-229
- packet 144, 178
- period 2
- phase shift 3, 39
- phase speed 174

Index 289

- phase velocity 144
- plane solutions 92
- polarization 135
- scattering states 235
- spherical 97
- standing 99
- surface rv 218
- transverse 92
- transverse displacement 56
- transverse electric 101
- transverse field 92
- transverse magnetic 101
- traveling 66, 82, 99, 115
- on water 217
- wave motion 58
- wave number 2
- wave-particle duality 157
- wavelength 2

X-rays 158
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