

ENTERPRISE COLLABORATION

INTEGRATED SERIES IN INFORMATION SYSTEMS

Series Editors
Professor Ramesh Sharda Prof. Dr. Stefan VoB
Oklahoma State University Universitat Hamburg

Other published titles in the series:

E-BUSINESS MANAGEMENT: Integration of Web Technologies with Business
Models/ edited by Michael J. Shaw

VIRTUAL CORPORATE UNIVERSITIES: A Matrix of Knowledge and Learning
for the New Digital Dawn/Walter R.J. Baets & Gert Van der Linden

SCALABLE ENTERPRISE SYSTEMS: An Introduction to Recent Advances/
edited by Vittal Prabhu, Soundar Kumara, Manjunath Kamath

LEGAL PROGRAMMING.' Legal Compliance for RFID and Software Agent
Ecosystems in Retail Processes and Beyond/ Brian Subirana and Malcolm Bain

LOGICAL DATA MODELING: What It Is and How To Do It/ Alan Chmura and
J. Mark Heumann

DESIGNING AND EVALUATING E-MANAGEMENT DECISION TOOLS: The
Integration of Decision and Negotiation Models into Internet-Multimedia
Technologies/ Giampiero E.G. Beroggi

INFORMATION AND MANAGEMENT SYSTEMS FOR PRODUCT
CUSTOMIZATION/ Thorsten Blecker et al

MEDICAL INFORMATICS: Knowledge Management and Data Mining in
Biomedicine/W^mchwn Chen et al

KNOWLEDGE MANAGEMENT AND MANAGEMENT LEARNING:
Extending the Horizons of Knowledge-Based Management/ edited by Walter
Baets

INTELLIGENCE AND SECURITY INFORMATICS FOR INTERNATIONAL
SECURITY: Information Sharing and Data Mining/ Hsinchun Chen

ENTERPRISE COLLABORATION
On-Demand Information Exchange for
Extended Enterprises

David M. Levermore and Cheng Hsu
Rensselaer Polytechnic Institute, Troy, New York

^ Springer

David M. Levermore Cheng Hsu
Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute
New York, USA New York, USA

Library of Congress Control Number: 2006926230

ISBN-10: 0-387-34566-3 (HB) ISBN-10: 0-387-34567-1 (e-book)
ISBN-13: 978-0387-34566-6 (HB) ISBN-13: 978-0387-34567-3 (e-book)

Printed on acid-free paper.

© 2006 by Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in
part without the written permission of the publisher (Springer Science +
Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Dedication

This book is dedicated to our
families

Contents

Dedication v

Preface ix

Acknowledgments 13

Enterprise Collaboration 1

Foundations 21

A General Model 43

The Core Logic of the Two-Stage Collaboration Model 61

The Architectural Components of the Two-Stage Collaboration Model 85

The Implementation of the Two-Stage Collaboration Model 101

The Justification of the Two-Stage Collaboration Model 117

Where Do We Stand? 141

Appendix 149

References 169

Index 175

Preface

Global supply chain is a fact of life in today's world. From the
perspective of the First World, this practice reigns in outsourcing of jobs
that, in the view of many, threatens a way of life. This argument actually
implies that outsourcing represents a fair chance for the Third World to catch
up and reverse-leverage through market economy. However, many in the
Third World are also opposed to the global market economy from an
opposite argument. The fact that matters is, of course, that globalization
continues to progress relentlessly in its own momentum, and that the
national playing grounds continue to level globally for both Worlds. Would
globalization results in the rich nations getting richer and the poor poorer; or
would it help the world united in the same economical reason?

The questions that we the researchers could try to answer are a
different kind, the kind that leads to the understanding of the elements of
"the fittest" in the global competition. For instance, what defines an
enterprise's staying power on the top of the food chain, or an economy's
ability to design and control the global supply chains, in the long term?
Evidently, to understand this ability the field needs to study the engineering
prowess required, as much as the finance and management if the history of
industrial revolution is any guide. Yet, the study on the engineering of global
supply chains has been largely lacking. Traditional enterprise system
engineering methods and information technology do not automatically scale
up to the massively extended enterprises that global supply chains entail. As
a prime example, from the perspective of this book, the problem is illustrated
in the limited practice of real-time information exchange across the supply
chain - i.e., the field lacks some key elements to enable an enterprise drilling
through all tiers of suppliers to coordinate the global schedules. Without this

X Enterprise Collaboration

ability, supply chain management would have to rely on managerial control,
which is inherently off-line and limited by the manual span of control.

We set out to develop real-time information exchange for massively
extended enterprises in the book. Our work started with a simple question:
Why the traditional results for global query of autonomous databases do not
work sufficiently for supply chains? To answer the question, we draw
heavily from our past work on information integration in manufacturing
enterprises; that is, we examine the requirements of supply chains in the
context of the evolution of enterprise integration, with an ever expanding
scale and scope. In this context, we examined the limits of the previous
Global Database Query results and the promises of the new extended
enterprise approaches, especially the software agent-based methods and the
market-style resource allocation models. We realized that the key issues
include the independence of the participating databases in the participating
enterprises of the supply chains; and that this issue logically extends the
previous paradigm of enterprise integration into a new one of enterprises
collaboration. The previous paradigm is proven in manufacturing, while the
new one is promising for supply chain integration (and indeed, for that
matter, in any other similar domains of enterprises collaboration).

It follows, then, that we can formulate a new model which retains
the traditional Global Query results, along with their proven promises, to
address the new domain for what they can and do best, and devise new
attending methods to handle the rest in a synergistic manner. This approach
leads to a Two-Stage Collaboration Model, where the first stage, which is
new, matches the independent databases for their information provisions and
requests in a market-style design, while the second, which is based on
proven results, processes the matched, resultant global queries.

The new solution allows enterprises to safely contribute their
production databases to collaboration, such as in a supply chain information
exchange regime, without having to succumb to an intrusive control model,
which has traditionally inhibited the enterprise databases from participating
in the collaboration. The solution also supports enterprises to contribute
multiple images or personalities of their databases to multiple concurrent
collaborating endeavors, as well as to only one. This property attends to the
many-to-many relationship between suppliers and supply chains - i.e., the
fact that suppliers often sell to more than one buyer or prime. These results
distinguish the new model in the field.

In a more general sense, beyond supply chain per se, the new model
provides a high-level concept where information owners and seekers
collaborate in an economic market to exchange information and facilitate
each others' enterprises. The economic paradigm allows participants to
choose with whom to trade, and to also define the terms of the transaction.

Enterprise Collaboration XI

Accordingly, databases denoted as data providers will not only publish the
resources to be shared, but in contrast to traditional global query solutions,
also proactively select data subscribers that are looking for information that
the databases contain. The economic market works towards self-allocation
or self-regulation of resources for optimal global utilization. In the general
context, the present work holds promises for application domains that
employ database query-level information fusion and on-demand exchange of
information resources.

In summary, the book analyzes the evolution of Enterprise
Integration from the perspective of the Two-Stage Collaboration Model, and
reviews the related results in the literature. Supply chain integration provides
a context for these discussions. A general agent-based conceptual model is
then developed to usher in the main result of the book. On this basis, the rest
of the book is devoted to the complete development of the Two-Stage
Collaboration Model. The first stage is analytically justified on its
computing performance and unique properties, vis-a-vis the previous results
in the fields of matchmaking and global database query. A prototype and
laboratory testing are also included to illustrate the technical feasibility and
soundness of the new model.

The book is based on David's unpublished dissertation at Rensselaer
Polytechnic Institute, Troy, NY 12180-3590, with substantive revision and
extension.

April 20, 2006

Acknowledgments

The authors wish to thank Professor Gilbert Babin of the HEC,
Montreal, whose technical insight made the results on information matching
possible. We also wish to thank the other members of David's doctoral
committee, who served along with Cheng: Professors William Wallace,
Mark Embrechts, and Christopher Carothers, for their assistance to David's
dissertation. Finally, we wish to thank the publisher, Mr. Gary Folven, and
the reviewers of the book and the series editors for their recommendation
and approval to publish this book.

Chapter 1

ENTERPRISE COLLABORATION
A Solution for Supply Chain Integration and Beyond

1. THE EVOLUTION OF ENTERPRISE
INTEGRATION

Enterprise Integration is arguably originated in post-Industrial
Revolution manufacturing. Whereas Industrial Revolution developed
standardization - standard parts, standard bill-of-materials, and even
standard machines and fabrication processes, therefore the breakthroughs
beyond it have come mainly from building ever-larger scale of flexibility to
remove the drawbacks of standardization from ever-larger scale of
manufacturing systems. Integration is the means to scale up and build
flexibility; and information and information technology are the key enablers
to achieving integration. The field has witnessed the development of the
concrete results for integrating standardized components, sub-systems, and
systems of manufacturing enterprises. It has also witnessed the ensuing
development of the scaling up of the manufacturing enterprises into the
extended enterprises along supply chains, which lack strong standardization.
Now, it is even witnessing the application of Enterprise Integration to
service in general, including the emerging visions of On-Demand
Business/Service. Along with this development, the field is also
experiencing a renaissance of service enterprise engineering through
information.

In retrospect, much of what happened in the field of manufacturing
since 1970's can be described as the milestones of Enterprise Integration.
The effort started with the computerization of engineering design (e.g.,
CAD/CAE/CAPP - or, computer-aided design/engineering/process

planning) and manufacturing facilities (e.g., CAM/MES/FMS - or,
computer-aided manufacturing/manufacturing executive systems/flexible
manufacturing system), evolved into the integration of islands of automation
for the enterprise (e.g., CE/Concurrent Engineering, CIM/Computer-
Integrated Manufacturing, and ERP/Enterprise Resources Planning), and
continued today to cover the extended enterprises of the whole product life
cycle (e.g., PLCM/Product Life Cycle Management and e-Engineering). The
vision of product life cycle naturally brings the demand chains and supply
chains into the concern of the integration, and hence espouses the push for
on-demand products and on-demand production across all organizations
involved in the extended enterprises.

Integration within an organization is reasonably mature,
technologically speaking. The field has accumulated impressive results in
software, hardware, and telecommunications to connect enterprise processes
and resources. On this basis, enterprises can turn their sequential processes
into concurrent to reduce transaction cost and cycle time. They can also
strive to satisfy their customers with personalized (mass-customization)
services and products to expand the market. A proof of the maturity is that,
the results of enterprise integration (including enterprise system engineering)
are diffusing from manufacturing into service sectors. A prime case in point
is the notion of On-Demand Business and On-Demand Service, which draw
from the previous on-demand manufacturing results such as agile
manufacturing.

Integration across organizations, on the other hand, faces formidable
organizational issues. In the past, supply chain integration, for instance,
relied on contractual agreements to exchange information and coordinate
schedules between the producers of parts/products and the users of them.
Other efforts to reconcile enterprise processes across organizations have
similarly limited to the level of human managerial control as opposed to
technically based systems integration. Companies such as Wal-Mart and
Cisco have invested heavily to effect technical integration to their supply
chains. Due to these efforts, the field has witnessed the maturing of
technology for the direct integration of immediate partners - e.g., the prime
and its first tier suppliers. To "drill through" multiple tiers of suppliers
remains a challenge to the field. The problems stem not only from the
scalability of the previous results for recursive connection of partners along
the open-ended supply chain, but also from the fact that the relationship
between the primes and the suppliers are many-to-many - or, a partner
belongs to more than one demand chain and supply chain at any one point
and at any one time. The issues of openness, scalability, and flexibility
challenge fundamentally the technology of enterprise integration.

Take Wal-Mart and Warner-Lambert as an example. The extended
enterprise process of Warner-Lambert's supplying of the product Listerine to
Wal-Mart could be facilitated by EDI (electronic data interchange), the
Internet-based solutions, or some industrial exchanges, as three
representative technologies of enterprise integration. The first requires direct
"hand-shaking" arrangements (e.g., API - application programs interchange)
between the Wal-Mart systems (e.g., inventory replenishment) and the
Warner-Lambert's (e.g., order processing) using proprietary software and
value-added dedicated network. The connection cannot be readily expanded
to include other systems in the process or other processes of the extended
enterprise, without multiplying the effort. Furthermore, for each additional
trading partner to join the system, (n-1) additional connections need to be
developed with similar effort; where n is the total number of partners.
Therefore, the total number of connections to be established with the EDI
approach for a supply chain of n partners, in general, is n(n-l)/2.

An Internet-based solution, such as the well-known CFAR project in
late 1990's - see Fig. 1-1, can remove the limitations due to value-added
networks, but cannot remove much of other limitations. For instance, the
CFAR project linked Wal-Mart's forecasting information to Warner-
Lambert's SAP/R3 system through dedicated protocols and routines; and yet
this linkage did not address its extension to other systems at Warner-
Lambert or elsewhere that might benefit from the same information. That is,
the new connection as shown in the dashed line in the figure is the result of
the process-to-process (involving inter-operation of enterprise databases)
collaboration; which can replace the previous EDI level connections (the
solid lines) but cannot allow other processes to join readily. The savings
over the EDI arose mainly from the openness and scalability of the Internet:
in this case, only one additional connection is required of each new partner -
from the partner to the Internet. The total number of connections is precisely
n, the number of partners included in the supply chain. The connection itself,
however, still involves high transaction cost and face organizational barriers
(i.e., the issues and difficulties associated with opening up each
organization's enterprise systems for others to inter-operate - such as
control, security, and maintenance).

Example: Collaboration (the CFAR case)

DtllKlFUl

l-iiii;i.a>liii!;

\

Inventory
Replenishment

CFAR

Internet

VAN

Production
PUmninL'

/

Order
Processing

Wal-Mart Warner-Lambert

Figure 1-1. Enterprise Collaboration at the Process Level, the CFAR case

Finally, the latest industrial exchange approach, such as the
automotive Covisint.com, promises to support concurrent connection of
suppliers from multiple tiers for the primes that own the exchange. In this
approach, all participants of the supply chains meet at the virtual
marketplace and transact (buy-sell negotiation and agreement) by using the
same set of global protocols and tools. However, the transaction does not
include the connection of the participants' enterprise systems - i.e., the
degree of information sharing achieved in this approach is still below the
high watermark that CFAR reached. In particular, enterprise databases are
not inter-operable under the current technology of industrial exchanges. New
results are required to bring the functionality of the industrial exchange
approach to a level of global database query while retain the approach's
relatively low transaction cost and cycle time, and relatively high openness
and scalability.

Notwithstanding the difficulties in organizational and technical
arenas, enterprise collaboration is clearly on the rise and will continue to
push the envelope as far as the continuing progress of enterprise integration
technology can support. We show below two thought models, one for the
enterprise integration within an organization and the other the collaboration

across organizations. Both thought models represent our view of the design
metaphysics that has been driving the progress of the field.

The Model of Enterprise Integration

• Objective: reduce transaction cost and cycle time
• Means: Use open and scalable information technology and systems to:

- Connect tasks with resources and information
- Simplify and streamline processes and/or workflows (re-engineering)

• Share/inter-operate human and non-human resources (data, knowledge
and processes)
- Convert sequential processes into concurrent

• Scope: the whole enterprise or clearly defined and administered extended
enterprise (e.g., along demand chains and supply chains)

The Model of Enterprise Collaboration

• Objective: reduce societal transaction cost and cycle time
• Means: seek collaboration from three perspectives,

- Follow the value chain. (Apply the enterprise integration model to
extended enterprises along aggregate demand/supply chains.)

- Put the Person at the Center. (Alter the societal value chain to connect
businesses along the life cycle requirements of a person.)

- Serve the Whole Enterprise (extended). (Align business services with
the client's life cycle requirements of an enterprise.)

• Scope: open and scalable extended enterprises (e.g., along societal value
chains)

The evolution is reflected in the scope of integration.
Organizationally, the scope is expanding away from the origin that requires a
clear administrative authority for the entire enterprise; which includes the
case of single firms and that of multiple partners bonded with definitive
business contracts for the effort. The bonding gives way in the evolution to
increasingly relaxed community agreements that govern more the classes of
individual, random transactions than the wholesale coverage of products and
processes. Conversely, with this relaxation on authority, partners are able to
push for increasingly more grand integration across organizations. As the
organizational scope expanding, so must the technology of integration. The
evolution inevitably makes openness and scalability the key concept in the
development of new technologies. The Internet showcases the power of this
concept beyond any doubt. The continuing movement toward embracing
open source code, not just the recent adoption of Linux by much of the

industry, as evidenced in IBM and other industry leaders, further illustrates
this point.

Our work as reported in this book contributes to a core element of
the new technology called for by the continuing evolution; that is, the on-
demand information exchange among a large number of databases owned by
a large number of collaborating enterprises. In other words, the work deals
with the global query aspect of the inter-operation of massively distributed,
autonomous, and heterogeneous databases; which is the technical literature
to which the work belongs. From this point on, we focus on the technical
nature of the on-demand information exchange problem in the context of
Enterprise Integration and Enterprise Collaboration, as defined above. We
discuss the goal of the work from this particular perspective in the next
section, before we discuss the research problem and describe what we have
accomplished.

2. ON-DEMAND INFORMATION EXCHANGE: THE
GOAL

Simply put, the goal is to allow collaborating participants to query
each other's enterprise databases without hindering their control and
operation of their own systems, nor paying prohibiting transaction cost and
cycle time. The control and cost issues also determine the openness and
scalability of enterprise collaboration; i.e., how the collaborating community
accommodates new partners, and how the partners can join or leave multiple
such communities. Looking conversely, the above "without-nor" clause
actually describes the limits of the previous results and indicates the
practical contributions of the new work. With this ability, enterprises can
move a step forward in their collaboration, such as drilling through the
supply chain to coordinate their schedules and connect their processes.

To be sure, supply chains are always concerned with information
exchange among trading partners. Previous results already promised the
integrated view of critical functions including, among others, purchasing,
demand management, quality management and manufacturing planning
(Wisner and Tan 2000). The problem is, they do not afford participants real
time and online data throughout the supply chain. At most, they rely on
particular hand-shaking arrangements such as those illustrated in the CFAR
project to provide fixed, pre-determined information exchange; or they
contend with summary data or "catalog" data only - such as the MESChain
system (Cingil and Dogac 2001). Therefore, the integrated view of critical
functions attainable is confined to certain finite templates. Integrated views

7

that are attainable for custom needs at random moments really require on-
demand information exchange.

Certainly, on-demand information exchange is also available in
traditional information technology used for enterprise integration. The
primary case of such results is global database query; which allows users to
share information on-demand, in real-time across several databases. The
problem is the scope: traditional global data query typically requires a single
authority over all databases involved and incurs significant effort to design
(e.g., schema integration), implement, and maintain the system - i.e.,
suitable basically for integration within a single organization. When applied
to enterprise collaboration, many organizations could not or would not open
up their production databases to abide by such a regime for trading partners,
let alone commit to open-ended implementation. For this reason global
database query has not been widely employed in supply chains or industrial
exchanges; although the technology is best suited for acquiring of integrated
views. As proven in traditional enterprise integration, global database query
promises "deeper" information sharing at the enterprise database level than
the customary trading of flat documents, e.g., purchase orders and invoices,
found in the industry, that supply chains rely. Clearly, the field needs to
make global database query a more open and scalable technology to suit the
need of enterprise collaboration.

Yet, to become more open and scalable the traditional paradigm of
global database query must evolve; it must shed its traditional one-sided
command structure, where information retrievals are the only type of
database queries that dominate the user needs and the design of the control
structure. In this paradigm, the participating databases are passive subjects of
search in which they are completely open to all users' search (barring some
hard-coded security checks) at all time. Virtually, the only control they have
over their contents against the search is to withdraw from the global query
system altogether. In such a retrieval-dominated one-sided paradigm, the
design is necessarily oriented toward optimizing the information retrieval
process at the expenses of the autonomy of the participating databases.
Therefore, even when the traditional technology considers local autonomy,
the consideration still requires participating databases to surrender their
control to a global regime, as to when and what information is searchable to
whom.

Enterprise collaboration requires a new paradigm where the
participating databases control their provision of information on demand,
just like users control their information requests on demand. Instead of just
being passive objects of global search, databases are regarded as proactive
information providers that also seek users to subscribe to their information.
This is a two-sided command structure with the databases (information

providers) being an equal participant to users (information requesters). In
this paradigm, certain traditional elements are still valid. In particular, it
must simplify the information integration process and reduce the effort
required to resolve semantic differences across databases, in the face of the
heterogeneity and autonomy that are inherent to on-demand information
exchanges (e.g., a global view of the community). It must afford
participants an acceptable process by which they join the system (e.g.,
registration) and a reasonable mechanism by which they use the system (e.g.,
global query language and local interface). In addition, it must afford the
participants the ability to cooperate and share databases on-demand and in
real-time, as well as the capability to control what information is shared,
how it is shared, when and to whom; rather than carte blanche to any trading
partner that has access to the information exchange community.

Finally, on the basis of these new capabilities, the new paradigm
should support an enterprise database joining multiple information exchange
communities with distinct "personalities" at the same time. For example, a
manufacturer's inventory database may be of concern to a number of trading
partners in different supply chains of different primes (owned separately by,
e.g., Wal-Mart and Bloomingdale). Each chain may require different
semantics of the same inventory database when exchange information. Each
model of data semantics would give rise to a personality of the database.

The new paradigm of global database query can be comprehended
from other perspectives of enterprise collaboration, as well. Homeland
security is such an example. As mandated by law, multiple federal agencies
must sense, exchange and fuse information from across the security
community. Moreover, the job of gathering information also extends to other
agencies at all levels of government and even to companies and persons in
the private sector. Certainly, this information exchange, rather
collaboration, has to be dynamic, virtual, and voluntary. Information should
flow freely, but still be secure and of assured integrity; it must be readily
accessible - which means requested and offered on-demand, and not
dependent on any centralized authority. Furthermore, the facilitating
infrastructure must be platform agnostic and accept diverse information
resources. All these characteristics and requirements point to a new global
database query problem that we described above.

Therefore, in this book, we develop a new global database query
technology to achieve the goal of on-demand information exchange as a tool
for enterprise collaboration. The new technology is based on a new paradigm
of participatory databases, where the databases are independent as opposed
to being controllable by a global authority as the traditional regime assumes;
and the new technology retains the basic promises of traditional global
databases query while accomplishing a new level of openness and

scalability. To this end, the particular solution approach developed combines
the established results from both the global database query field and the e-
business exchange field, and integrates them with original results on
information matching and processing that the problem requires. We refer to
the complete solution the Two-Stage Collaboration Model, which extends
traditional global query to meet the requirements of on-demand information
exchange. The model introduces the concepts of publication queries
(information offers) and subscription queries (information requests) at the
user level, and thereby characterizes its two-sidedness. The first stage
establishes the required global queries on demand, and the second executes
the queries.

3. TWO-STAGE COLLABORATION MODEL: THE
RESEARCH AND SOLUTION

We explain in this section why these two stages are needed, and how
the e-business exchange results can help remove the limits on the openness
and scalability of the traditional global query results. First, we elaborate on
these limits to show that they are fundamentally pegged to a one-sided
command structure, as mentioned above. It follows, then, that opening it up
leads naturally to a market regime at the front-end of query formulation.
Finally, we show that a particular model of the traditional global query
results is amenable to coupling with the exchange approach and the
integration of both can give rise to a solution to the on-demand information
exchange problem with the required properties.

The field of Global Query of autonomous databases offers
maximum on-demand information exchange among traditional results for
enterprise integration within single organizations. It faces a few difficult
issues including especially the hard problem of integrating and maintaining
massively distributed and heterogeneous data models. To solve the problem
and other related issues, the distributed databases are typically configured as
components of a strict search regime, subservient to a single authority,
which rigorously defines and maintains the global database query
infrastructure. Essentially, this regime tends to flounder if the authority is
distributed since, in part, the required integration of schemas will become
impractical in this situation. This is a common problem facing the previous
results in this field, such as schema integration approaches, federated and
multi-database systems and peer-to-peer networks.

The tenuous nature of the integration environments extends to the
technical approaches to query processing, schema integration, transaction
processing, concurrency control and other aspects. The enabling algorithms

10

for query processing, for example, depend on heuristic search methodologies
that degrade, become exponentially complex, or even intractable, when the
number of databases in the integration environment increases. This may be
caused by a number of reasons, such as the required statistics for query
processing operations may not be provided by the associated databases, or
latency on communication network may hinder these operations. The
problem is exacerbated when the environments increases the demand for a
greater degree of heterogeneity and autonomy. When the transaction cost
imposed on local databases to join a global query system is already high, the
prospect of administering them for integration into different such global
query systems can be prohibitive. When new databases are added, most of
the previous results would have to require significant modifications or
redesign to the integration environments, such as creating new pair-wise
external schemas to connect the new databases with the old. The complexity
tends to be n(n-l). An exception is the Metadatabase results that we use for
the Two-Stage Collaboration Model; as will be discussed later.

We examine more closely three representative technologies from the
traditional field: Schema Integration, Multi-Database Languages and
Federated Database Systems. The degree of autonomy, heterogeneity and
distribution varies for these particular integration methods, and so influences
their global query capabilities.

Schema integration (Batini, Lenzerini et al. 1986) consolidates the
data models of multiple distributed systems into a common, unified schema.
This approach offers system transparency, and resolves semantic conflicts
that may exist among the distributed systems. It however limits the
autonomy of local systems through its imposing the global schema or the
global administrator on the local databases. An additional concern relates to
the administration of the common schema, which requires a typically manual
process to integrate schemas, given the human input required to resolve the
semantic, structural and behavioral conflicts. This process clearly increases
in difficulty in at least a polynomial manner as the number of local schemas
to be integrated grows.

Federated database management systems (Sheth and Larson 1990)
provide greater flexibility for distributed databases due to the extended, five-
level schema architecture. However, the degree of autonomy of the local
system is dependent on the type of federation, that is, whether it is a loosely
or tightly coupled federation. Tightly coupled federations mimic the schema
integration approach mentioned above, since the global administrator
dictates the contents of the federated schema. The departure from the
schema integration approach is in the amount of data provided to the global
controller - this needs not be the complete data model, but can be fragments
that are denoted as export schemas for global query. It should be pointed out

11

that the designation of the export schemas is fixed, not on-demand. On the
other hand, in loosely coupled federations, multiple schemas are created and
managed by local administrators, which may subsequently lead to
redundancies in the federation. The schemas so created are typically less
complex than those in tightly-coupled federations, and additionally tend to
be brittle and more easily compromised. Moreover, these schemas though
integrated are primarily read-only and typically cannot process inserts,
deletes, or updates on the schema, since there is no complete ownership of
the federated schemas. In any case, the administration of the schemas
requires manual processing to reconcile semantics and cascade changes, and
hence involve significant cost. This transaction cost hinders on-demand
information exchange as well as the openness and scalability of the
integration environment.

Multi-database languages (Litwin 1985) are applied to pre-existing
heterogeneous database environments that lack a global controller or global
schema. No integration measures are taken to consolidate the databases;
rather, the multi-database language incorporates the necessary constructs to
query the participating databases. Multi-database languages provide for
greater autonomy, heterogeneity and distribution of databases, at the expense
of requiring the users to possess greater knowledge of the overall database
environment, such that users must know where specific data reside to
correctly formulate the global queries and perform joins, scans on database
relations, and other operations.

Apart from the above three approaches, the Metadatabase Model
(Hsu 1996) represents a different thinking to integrating and managing the
global semantics. Instead of creating layered structures of fixed schemas, it
focuses on local data models and treats them as enterprise metadata (along
with contextual knowledge) that are integrated and administered as an
enterprise database. The Metadatabase is the repository of the enterprise
metadata. Local data models are added, deleted, and modified as metadata
tuples to the relations in the Metadatabase, and thereby afford the
Metadatabase the same openness and scalability in accommodating local
data models as relational databases do for ordinary records. As such, it is an
information resources management system that facilitates the integration of
distributed, heterogeneous and autonomous information systems. The
Metadatabase architecture is comprised of the Metadatabase, the
Metadatabase Management System (MDBMS), the Metadatabase Global
Query System (MGQS), the Metadatabase Query Language (MQL), and the
Rule-Based Programming Environment (ROPE).

The Global Information Resources Dictionary (GIRD) represents the
logical structure of the Metadatabase - its schema. The representation
method is based directly on the Two-Stage Entity-Relationship (TSER)

12

model and its attendant modeling methodology. The TSER model is a
generic extension to the standard Entity-Relationship-Attribute model that
includes object concepts and rule-base concept for data and knowledge
modeling. All local data models are represented in TSER (in a way
amenable to using a Computer-Aided Software Engineering) during the
registration process, and then populated into the Metadatabase. In this way,
TSER is the conceptual limit of what kind of systems the Metadatabase
Model can accommodate and with how much transaction cost. The MDBMS
manages and processes the Metadatabase, including searching on the
metadata it contains. MGQS and MQL provide ad-hoc query capabilities for
managing the local databases. MGQS avails the enterprise user with a
model-assisted approach to query formulation, where the user can select in a
"point and click" manner the metadata items that pertain to the information
of interest, and MGQS produces a completely formulated and optimized
global query. The underlying capabilities of MGQS are provided by the
non-procedural query language MQL, a global query language that is an
extension of SQL but supports queries across distributed and heterogeneous
local systems with different schemata as well as different data semantics.
MGQS translate the MQL expressions into multitude of local-bound sub-
queries, which are expressed in local data languages (such as SQL). While
all other components are co-located with the Metadatabase, ROPE - the
architecture of software shells - is distributed at local databases to connect
them according to the global model (data and contextual knowledge). ROPE
inter-operates between the Metadatabase and local databases, as well as
among local systems. It submits sub-queries to the local databases involved
in the global query for local processing, and transfers the results back to the
MGQS for assembly. We discuss further details of the Metadatabase Model
in Chapter 2.

More recent results address some aspects of the on-demand
information exchange problem more than the traditional global query field
has provided, but they also lack in other aspects. Web Service architectures
and P2P networks are emerging as de facto standards for data integration and
information sharing in today's enterprise networks. Mainstream file sharing
networks such as Napster and Gnutella, popularized P2P networks and
exposed the technology to a wider community of users. A significant
disadvantage of P2P networks in this regard, however was the lack of a fine
grained approach to file sharing; if a resource was shared, all elements
within that resource are available to the entire community with no way to
restrict access to specific users, and no way to allocate resources for
different groups. Furthermore, P2P networks do not readily support global
query beyond parametrical keyword searching.

13

Web Service architectures provide a collection of communication
protocols and associated language specifications that offer an open and
standards-based method for information integration. Using Web Services,
companies with disparate information technologies are able to share data by
using these protocols and language specifications; accordingly, when Web
Services are exposed to a wide audience, it presents the opportunity to
engage potential customers and business partners, who can automatically
and seamlessly integrate these services into their own operations. However,
global data semantics is largely lacking, or taken as a given; that is, the
semantics issues are left for the participants to interpret, as well as to figure
out the discrepancies and reconcile them. This approach also requires
participants to adopt these standards to the extent of replacing their legacy
and proprietary technologies.

However, recent progress has also shed light on how to open up the
information retrieval-dominated, one-sided paradigm and convert it to the
two-sided paradigm of participatory database query. In particular, the
market-based systems (Clearwater 1996) offer some new thinking for this
problem; that is, on-demand information exchange is consistent with the
basic characteristics of transactions on a market between information
providers and information requesters. The database participatory query,
therefore, can be interpreted as a matching of information offering queries
and information requesting queries at the first stage, followed by the
execution of the matched queries at the second stage. Conceptually, the data
integration task in enterprise collaboration is formulated as a distributed
resource allocation problem, and the two stages constitute a solution to the
problem.

The market finds a solution, or an optimal distribution of resources,
in the balance between the supply (data resources provision) and demand
(information retrieval queries). An optimal allocation of resources needs not
be found; in which case, queries may need to be refined, or the data may not
be available. This approach reduces the complexity of large scale
optimization to a function of self-regulation according to certain measure of
value embedded in the users (which may include availability and
performance).

Self-regulation is in the nature of a market-based approach.
However, it is also arguably necessary for participatory database query
because of the intricate differences that exist across myriad distributed
database systems in a collaboration environment. The attempt to devise and
deploy a top-down synchronization mechanism to administer this on-demand
participation of databases would be a difficult, if not impossible,
undertaking. With self-regulation, participating databases determine their
own conditional participation in global query, and to conditionally provide

14

access to their information resources. They define their association within
the global query infrastructure, to freely and voluntarily join, and disjoin
without disruption of a pre-existing and ongoing global query sessions, and
without reliance on a centralized controller to regulate this process. They
also possess the capability to make public the data resources of their own
choosing at any time, and modify the publication at any time, and still retain
full membership of the collaborating community. These critical capabilities
of collaboration are unavailable in any of the above traditional approaches,
including the Metadatabase Model.

From the traditional global query results to the recent market-based
systems, a promising solution approach is emerging to implement the Two-
Stage Collaboration Model, under the two-sided participatory database query
paradigm, for on-demand information exchange. That is, a market design
can be coupled with the Metadatabase Model to provide the required two
stages. The design will allow participants to collaborate voluntarily in an
information exchange, to choose with whom to trade, and to also define the
terms of the transaction. Accordingly, data publishers publish the resources
to be shared, and in contrast to traditional global query solutions, seek data
subscribers that are looking for information that the databases contain. The
market matches the publishers and subscribers on their own terms (offering
queries and requesting queries) through a new, particular information
matching method, and executes the allocated resources using the extended
Metadatabase Model. The new information matching method and the
extensions to the Metadatabase Model are developed in the research.

4. INTEGRATION OF A MARKET WITH THE
METADATABASE: THE RESULTS

The TSCM results for on-demand information exchange are the
focus of the book. However, they are also generalized into a model for the
allocation of enterprise resources, the Enterprise Resources Market (ERM)
model. The development of this general model is reported in (Hsu 2002; Hsu
and Carothers 2003; Hsu and Carothers 2004; Hsu, Carothers et al. 2005),
which is also summarized in Chapter 3 of the book. The general model
provides a conceptual design of an agent-based market, which is applicable
to certain on-demand system engineering problem for both Enterprise
Integration and Enterprise Collaboration. Insofar as the particular
information matching method is consistent with an agent-based design, the
TSCM results represent a particular instantiation of the general ERM
approach.

15

For the purpose of the TSCM, the Participatory Database Query
problem can be described succinctly as the global query of a loose collection
of independent databases whose participation in information exchange and
sharing is controlled by the databases. Accordingly, we define Collaboration
to mean the following conditions of Global Query, which characterize the
difference between this extended work and the previous results:

• Participant: a single or a cluster of data resources that controls its own
participation in the Community and the information contents with which
it participates; responsible for its own data models; and can
independently issue information requests and/or information offers. (This
definition is stronger than the usual notion of autonomy in the literature
of databases.)

• Community: a collection of participants which joins through a
Community-sanctioned registration process and subscribes to a
Community-sanctioned protocol of collaboration.

• On-Demand: The initiation of a request and/or an offer (the publication
and subscription for information exchange) by a participant can start at
any time and last for any duration, and the participation and the
information contents of participation can change at any time.

• Collaborators: the matched information requests and information offers
(or the participants who initiated these matched requests/offers).

We do not impose conditions on the number of information sources,
nor prescribe the nature of their networking, data semantics, and the regime
of data processing (such as ebXML or XQuery) in this definition. These
important issues belong to the design of the specific solution algorithms for
particular application domains and requirements, since they define the
particularization of the general model. The definition allows for peer-to-peer
collaboration as well as a regime that imposes a controlling global
administrator. Nonetheless, a minimum (virtual) global site that implements
the registration process is required.

The particular TSCM methods are developed from three bases: first,
a conceptual framework in ERM; second, the Metadatabase Model discussed
above; and third, new results developed in this work (i.e., exMQL, the
Blackboard and Query Database, and exMGQS - see below). The general
purpose ERM concept employs software agents to perform matching and
other market functions. Like most other market models, it also treats
matching and global query as two separate models and uses completely
separate methods to conduct them. In contrast, for on-demand information
exchange, the TSCM replaces software agents with a unified Metadata
Query Language, called exMQL; which performs both matching and global

16

query. Towards this end, the previous Metadatabase model serves as the
basic representation method for the novel design of the new query database,
and thereby integrates the query language, query processing, and matching
into a simplified regime.

For matching information collaborators, exMQL formulates both
information requests and information offers as database queries and save
them into a Query Database (which replaces the Agent-Base of the general
ERM, or the Agent Community in the general literature of agents). The basic
semantics of exMQL is also the basic structure (schema) of the query
database. With this design, processing a query against the query database is
to perform a matching for finding the right information collaborators. The
metadata semantics includes both data and rules found in information
requests and offers, and hence the query database schema and the metadata
language both include rules as well as data. The rule component is an
extension to the previous matching methods of e-business and previous
query languages. After the optimal participants are determined from the
matching, the language also executes the requests at the local sites of the
matched offers across the community - for global query processing.

Finally, this new method results in a new simplified design for the
Blackboard that artificial markets, including the ERM, always need. The
design reduces the usually complicated, custom-developed Blackboard to an
off-the-shelf database management system (DBMS) that performs all
matching and global query functions in standard SQL and PL/SQL. In
addition, the design for the open and scalable common schema and the
efficient computing onboard the sensors are also contributions of this paper.
We might also mention that the new model does not require a price
mechanism. The mere existence of a motive to cooperate among participants
would suffice.

4.1 The basic logic of the two-stage solution approach

• The objective function: the maximization of the total (perceived) value
of information resources.

• The constraints: the transaction requirements and data semantics of tasks
(information requests and offers of the global query processing).

• A feasible solution: a match of information offers (database views) with
requests (global queries).

• The optimization: The execution of a request for information or a
provision of information.

17

• Stage 1: match requests with offers to find the right information
collaborators; i.e., determine the optimal alignment of participants (users
and/or databases/sensor networks) for a global query processing task.

• Stage 2: execute the global query task; i.e., choose the suitable query
processing regime to distribute the task to participants and process it at
the local sites, and then assemble the query results for the user.

The basic logic of this two-stage collaboration is depicted in Fig. 1-
2, a subscriber submits a request to the Blackboard, and a publisher submits
an offer. The Blackboard will then execute a search on the database looking
for a match to the request, and a match to the offer. If the request matches
an existing offer, then the Blackboard assigns (awards) the processing of the
request to the associated export database, which is an image (personality) of
the local enterprise database. The query is delivered to the export database
for processing, is executed, and the results are returned to the subscriber via
the Blackboard.

EXPORT
DATABASE r'" " '<

(SUBSCRIBER/
PUBLISHER)

REQUEST

n

EXPORT
DATABASE
(SUBSCRIBER/
PUBLISHER)

EXPORT
DATABASE
(PUBLISHER)

NET^^fORh

GLOBAL
METADATABASE

Figure 1-2. Conceptual Overview of the Two Stage Collaboration Model

Therefore, the particular new results developed for the TSCM
include the algorithms and architecture necessary to deploy the Blackboard
and Export Database, in addition to the communication protocols necessary
to mobilize these components. The algorithms that are developed include
the Matching, Combination Matching and Constraint Matching Algorithms
in Chapter 4, and those required to support the transformation and execution

18

of the queries from exMQL to the native language of the export database in
Chapter 6. The query matching algorithm allocates query processing jobs to
the export database that best matches the supplied query. The process,
however, may involve a round of negotiation for the query processing job if
multiple publishers respond to a single request (see Chapter 4).

Thus far, in this chapter, we have provided an overview of the
Enterprise Collaboration problem, and in this context formulated the
conceptual and technical nature of the on-demand information exchange
problem and its Two-Stage Collaboration Model solution. We have also
provided an overview of the related literature to shed light on the research
nature of the work. The remainder of this book is divided into three main
areas: (1) the general background of the research problem. Chapter 2, and
the general market model of ERM, Chapter 3; (2) the execution methods of
the TSCM in Chapters 4, 5, and 6; and (3) the analysis of the solution and
comparison to previous results in Chapters 7 and 8.

In particular. Chapter 2 provides a detailed literature review of the
field, placing emphasis on the nascent research in Market-Based Resource
Allocation and Global Query, as well as the Metadatabase research since it
forms the core of the TSCM. The TSCM design is compared to previous
Global Query results on this basis. In Chapter 3 the concepts of the
Enterprise Resources Market are discussed, which presents the conceptual
framework of the TSCM.

In Chapter 4, the core methods of the TSCM are introduced,
including the information matching algorithms and query execution methods
that are critical for the operation of this model. In Chapter 5 the protocols
and architecture of the TSCM, especially the exMQL, exMGQS, the
Blackboard and the Export Database, are presented. In Chapter 6, the
operation of the TSCM and how the components of the model interoperate to
achieve the goals set out in this research are demonstrated.

In Chapter 7, the performance of the TSCM is analyzed and a
discussion of the qualitative advantages of the TSCM relative to comparable
research results in the field is presented. The comparison includes the
MESChain system for supply chains and the RETSINA multi-agent system
for general information sharing, as well as federated databases and other
global database query technologies in the field. The development culminates
in Chapter 8 with an overview of the research that was performed and
suggestions for future work.

We might submit that chapter 7, along with Chapter 6, establishes
the feasibility and correctness of the TSCM results, and thereby substantiates
the claims made in the book (such as Chapter 2). More specifically, since the
second stage of the TSCM is based on the Metadatabase Model, which has

19

already been established in the literature and whose integration with the first
stage is shown in the book, therefore, the correctness and promises of the
first stage are what we need to prove. The analyses in Chapter 7 prove the
intellectual core of the first stage: the information matching algorithms.

Chapter 2

FOUNDATIONS
Global Database Query and Market-based Resource Allocation

1. O V E R V I E W

As the evolution of enterprise integration continues (see Chapter 1),
the evolution of the technology for information integration continues. Scope
of integration has been and will continue to be the driving force of the
evolution and the determinant of the technology. The Enterprise
Collaboration results developed in this book is a part of the evolution, and
hence should be put in the larger context of the field of enterprise
information integration. For the purpose of the research, we recognize two
particular foundations based on which the TSCM results have been
developed. The first is Global Database Query, of which the federated
databases results are arguably the most noticeable and influential for the
industry. The second is the market-based approaches to information
exchange, which include a variety of results ranging from auction-oriented
algorithms to agent-based market models. Among them, we focus mostly on
the concepts and methods that have impacted our work and that have a direct
bearing to the TSCM results from a comparison perspective. In the review of
the previous results, we implicitly keep this context in mind: the integration
environment that the field faces today is increasing on a global scale,
perhaps numbering in the hundreds of millions of data sources.
Furthermore, these global resources are owned and managed by disparate
groups or individuals, with unique policies, schedules, and agendas. It is in
this context that we emphasize independent databases as the target of
integration.

22

The effort to integrate these resources manifest itself in a number of
fields from a number of perspectives, which include but are not limited to
grid computing and agent-oriented computing systems as well as distributed
database systems. Each approach shares similar concerns: (1) how to
dynamically scale the integration architecture, (2) how to dynamically
include new resources, and (3) how to accommodate heterogeneous
resources, both in content and physical capabilities. Although we review
only the very limited subset that concerns the TSCM directly, it should still
be pointed out that the larger trend in the larger literature certainly helps to
solidify our concept and design.

The market-based results, including multi-agents, are reviewed first.
The ensuing review on Global Query results also includes some popular
Internet-motivated technologies such as Peer-to-Peer systems and Web
Services.

2. MARKET-BASED MECHANISMS FOR
RESOURCE MANAGEMENT AND
ALLOCATION: MATCHING, AUCTION, AND
AGENTS

Market-based systems, or systems that simulate a market economy,
have emerged as compelling mechanisms for resource allocation. One
advantage with this approach is the ability to deal with the integration
complexity inherent to heterogeneous, distributed and autonomous
resources. In these simulated economies, buyers represent resource
consumers (e.g. applications, users) and sellers represent resource providers
(e.g. database, CPU). Buyers and sellers trade resources, exchanging goods
and/or services for profit. An underlying economic model, such as an
auction or fixed price model facilitates the interaction between buyers and
sellers. The applications of economic models for resource management are
now widespread, including resource allocation and management in
computing systems, manufacturing systems, communication networks. Grid
computing, multi-agent systems, and distributed database management
systems. Clearwater (Clearwater 1996) provides a survey of a diverse set of
applications that offer market-based control of distributed resources.

In (Kwiat 2002), an illustration of the similarities between
information grids and electric power grids suggests that they both offer
dependable service requirements, infrastructure for large-scale pooling of
resources, consistency of service, and pervasiveness. However, management
issues arise due to the complexity of the resource allocation problem. It is

23

suggested that this can be solved by creating a market and allowing prices to
allocate the resources. Whereas the application of the market to the electric
power grid failed (e.g. the notorious California energy crisis (Kuttner 2002;
Bushnell 2004)), this was primarily due to the fact that supply was
significantly less than demand, and increasing resources required expensive
(time and cost) new infrastructure. On the other hand, adding more resources
to the information grid is, comparatively, significantly less expensive, and so
the advantage of pursuing the market model for the information grid is
"appealing" (Kwiat 2002). Doing so provides for arbitrary scale,
heterogeneity of resources, decentralized asynchronous operation, and
tolerance of localized failures (Kwiat 2002).

A brief survey of various economic models used to manage
distributed resources is provided in (Buyya, Abramson et al. 2002).
Identified are: (1) the Commodity Market model, (2) Posted Price model, (3)
Bargaining model, (4) Contract-Net model, and (5) Auction model among
others. In the Commodity Market, consumers are charged for the amount of
resources consumed. Posted price is similar to Commodity Market but
services are priced to increase resource usage and influence greater
consumer interest. In the Bargaining model, consumers bargain with
providers on pricing and usage of the services. In Contract-Net, the
consumer announces a request in the form of bid contract to which providers
compete, while in an Auction, a single provider invites bids to which
consumers offer bid responses. The Grid marketplace is unique in its
capacity to offer these economic models across various resource
management systems, which includes database systems and agent-based
systems. This is demonstrated in the Nimrod-G system, a Grid resource
broker that supports the commodity market, and contract-net economic
models. The Nimrod-G system has the responsibility for resource
discovery, resource trading, scheduling, job execution and results
aggregation, and works in concert with Grid middleware to provide uniform
access to Grid resources and services.

A Market-based architecture to alleviate fraud and counter-
speculation that may arise in agent-to-agent negotiation is described in
(Collins, Youngdahl et al. 1998; Collins, Bilot et al. 2001). The architecture
combines a market, an exchange and a market session, and a series of
services that are utilized across the market infrastructure.

24

EMcltBm§s

Umrket

Ms*et

Msitel

''common "^
Services

' ' Regissr/)
Security)

'" Creoit)
'' Bettsr ^

Business
Bufeaj J

^ Oliier
Services

• ^ ^

Aelmlnfrtritor

Figure 2-1. A Market Architecture for Multi-agent Contracting (Collins, Youngdahl et al.
1998)

The exchange (See Fig. 2-1) is a collection of domain specific
markets in which goods and services are traded. The market facilitates trade
in a specific domain, while the market-session maintains the state of agent
interaction. This intermediary (the market-session) in the agent interaction
provides the aforementioned controls against counter-speculation and fraud.
Agents initiate bids which are submitted to the market-session. The market-
session registers and timestamps the bid, and queries the registry of agents
providing services. Interested agents submit responses back to the market-
session which redirects the responses to the initiating client. A bid
acceptance is issued to the winning bidder. The market-session enforces the
rules of the market, for example, whether trade is by auction; it provides the
registry of agents providing services such that no exhaustive search of the
market needs to be undertaken; and, a common schema for services
description. Since the market-session registers all messages in the agent
interaction, it retains the state of the interaction even over periods of time. It
removes the opportunity for agents to misrepresent bids, rules and
timestamps essentially removing the chance for fraud and counter-
speculation.

ObjectGIobe (Braumandl, Keidl et ai. 2001) provides an open
marketplace where queries are distributed and processed by unrelated
Internet applications, although no particular economic model drives this
interaction. These Internet applications are manifested as data, function and
cycle providers, which can be hosted at a single site, and which offer or sell
services to facilitate distributed query processing, ObjectGIobe provides a
distributed, open and secure environment for query processing. A query is

25

processed by identifying relevant providers using the ObjectGlobe loolcup
service, optimizing tliis plan according to the capabilities of the providers
and user requirements, distributing the plans to the relevant providers, which
will then execute the query. Security and privacy in the infrastructure are
enforced by Java and popular encryption technologies, in addition to
enforcing user and application policies across the distributed resources.

Computational economies have long been apart of the artificial
intelligence (AI) domain, particularly multi-agent systems (MAS). The
interaction of software agents in various MAS's is guided by the electronic
models to facilitate interaction (Maes, Guttman et al. 1999), although other
Multi-Agent Systems (MAS) (Sycara, Paolucci et al. 2003) also employ an
agent communication language (ACL) that aids communication and
interoperation between agents. Software agents are intelligent, autonomous
and persistent and perform tasks on behalf of their owners; decision and
negotiation strategies may differ from agent to agent, but the context of the
interaction (or ontology) must be shared. For example, Kasbah (Maes,
Guttman et al. 1999) is a multi-agent transaction system where buyer and
seller agents negotiate, on behalf of their users, in a centralized marketplace.
Buyer agents bid to seller agents with no restrictions on time or price,
although a utility function is employed to manipulate bid amounts over time.
Likewise, seller agents also benefit from utility functions in their
transactions. See (Maes, Guttman et al. 1999) for a survey of agent systems.
Intelligent agents also have the capability to locate themselves to more
profitable areas of the market (Want, Fiddian et al. 2001). Doing so affords
the agent the opportunity to increase its value in the market, while not doing
so may force the removal of the agent from the market.

Manufacturing enterprises also benefit from the use of market-based
control or economic models for resource management. A modified
Contract-Net protocol is employed in (Heragu, Graves et al. 2002) as the
negotiation protocol for real-time task/job allocation. Intelligent agents
representing manufacturing systems and manufacturing components bid and
negotiate for jobs. The price set for jobs depend on multiple factors
including required processing time (e.g., processing time required for a part),
the utilization of resources (e.g., a material handling device), whether or not
the resource is already committed, as well as system-wide factors.

Business-to-Business (B2B) commerce has been largely aided by
large private trading exchanges, e.g, CommerceOne (CommerceOne 2006).
These are companies that provide a framework to facilitate interoperability
between businesses. The framework may contain a catalog of services
offered by participating companies, a unified view of products that can be
traded, as well as automated trading mechanisms (Sairamesh, Mohan et al.
2002). The exchanges are largely aided by standards (Sundaram and Shim

26

2001; Tsalgatidou and Pilioura 2002) that define a common framework to
which all participating members must subscribe, in order to facilitate trade.

ClfBtAppHcatioB

Ql»«)- |5«l«rt • fKm EKP;|

iidCer-it IS, •: ! • * , . . .
.teier

SQL Parser

, :

Siiifle-Sitf Optimizer

sTrse

Qmiy Impnmttf

; . - IS-;- . I

CMrdimator

£

f
EiKitor

, BBIArj Biddfr

Bid

*• Broker

Kw|MU Ferliii

[K t l WW!] I f

m.

Local
Execution

Componeiit

Middletvare
Laver

Figure 2-2. The Mariposa Architecture (Stonebraker, Aoki et al. 1996)

Mariposa (Stonebraker, Aoki et al. 1996) is a market-based wide-
area distributed database management system (See Fig. 2-2). A primary
problem of the distributed database management approach has been the
complexity of integrating databases distributed over wide-area networks.

27

The market-based approach reduces the complexity to a function of price
and time. Cooperating databases bid in this framework to process queries
initiated by a client application. Each database possesses a client application
that enables the construction of queries, a middleware layer that performs
query preparation and brokering capabilities, and a local execution
component that responds to and executes bids and queries respectively. At
the core of the framework is the concept of budgets. When a query is
submitted by the client application, a budget represented as a non-increasing
function of time, is allocated to the query that represents the value of the
query to the client, that is, the amount that will be paid for the query to be
answered in a specified amount of time. The query and the budget are both
submitted to the Mariposa middleware layer, where it is processed. The
resulting query plans (which may be decomposed into multiple queries
plans) are passed on to the broker, which sends out bids to other Mariposa
sites (the bids consist of the query along with the budget). The bidding
process is facilitated by an advertising system consisting of name servers
that store advertisements from cooperating databases. These databases post
advertisements describing the services offered and brokers read the
advertisements to locate databases willing to execute the bid.

Mariposa utilizes two economic models as the underlying bid
protocol, (1) expensive bid, and (2) purchase order. In the expensive bid
protocol, the broker first submits the bid request to other Mariposa sites.
Interested bidders respond to the broker with a bid that defines the cost for
processing, the expiration date of the bid and the delay to start processing the
bid. The broker assembles all bid responses, chooses the winning bid and
notifies the winning bidder of acceptance. It may or may not inform the
losing bidders. The purchase order protocol is "cheaper" than the expensive
bid due to the lower number of messages required in the bidding process.
Here the broker submits queries to other Mariposa sites without an
expectation that the bid will be processed, and without knowledge of the
costs and delay of the service. Capable and interested bidders process the
query and return the results, along with a bill for services.

The term matchmaking is used within the multi-agent systems
domain to define the entire agent interaction process, from the match on
search terms, to negotiation and then agreement.

The matchmaking process in (Sim and Chan 2000; Sim and Wong
2001) involves the comparison of requests from buyers with advertisements
from sellers that are stored in a Blackboard database. A broker agent is
responsible for identifying matches between requests and advertisements,
which are represented by multi-attribute sets. The matching algorithm is
enabled by a series of conditional loops that compare the attributes of the
requests and advertisements. (Sycara, Lu et al. 1999) on the other hand

28

utilizes an agent capability description language called LARKS (Language
for Advertisement and Request for Knowledge-Sharing) to describe the
requests and advertisements of agents. LARKS supports multiple stages of
matching (or filtering, as described in the (Sycara, Lu et al. 1999)) that span
context matching, similarity matching and constraint matching among
others. The matchmaking process qualifies the type of match; it is an exact
match, plug-in match or relaxed match, where each type of match is derived
from various combinations of the aforementioned filters.

In (Rahwan, Kowalczyk et al. 2002; Kurbel and Loutchko 2003) the
authors delineate between concerns that arise in multi-player negotiations,
such as, one-to-one, one-to-many, and many-to-many agent interactions.
One-to-many and many-to-many interactions are realized through the use of
a coordinating agent that manages (coordinates) the individual one-to-one
agent negotiations (Rahwan, Kowalczyk et al. 2002). Many-to-many
negotiations are achieved by the negotiation of multiple one-to-many
interactions (Kurbel and Loutchko 2003).

In (Di Noia, Di Sciascio et al. 2000) the authors deviate from
negotiation and focus on the search process and the evaluation (ranking) of
matches. They offer two interesting properties of the matchmaking process;
first, the absence of information in a demand or supply should imply
opportunity for refinement rather than rejection. Second, depending on the
perspective taken in the matchmaking process, different evaluations may
arise. If a supply appears to be a subset of a demand, then it would rank
highly as a match, whereas the converse may not be true.

3. GLOBAL QUERY SYSTEMS

Traditional Global Query methods require varying degrees of
control over participating databases, for example, a specific query language
must be shared, or a common data model is necessary to integrate large
numbers of databases. The following literature review explores data
integration in three particular areas, Global Query Systems which is further
classified as Federated Database Systems and other Multidatabase
approaches. Global Schema Integration, and Multidatabase Languages. The
review culminates in a comparative analysis of the related literature with the
Two-Stage Collaboration Model (TSCM).

Global Schema Integration methods (Batini, Lenzerini et al. 1986;
Beynon-Davies, Bonde et al. 1997; Rahm and Bernstein 2001) consolidate
the schemas of multiple distributed databases into a single global schema,
which avails the enterprise user with a unified view of enterprise data.

29

providing system transparency (the user need not be knowledgeable about
system configuration), in addition to resolving semantic conflicts that may
exist among the multiple systems. Federated Database Systems (FDSs)
(Sheth and Larson 1990) provide greater autonomy for local systems,
although a global schema may still be employed for data integration.
Whereas a single global schema is required for data integration in the
aforementioned global schema approach, multiple schemas are allowed in
the federated approach. These multiple schemas vary by control and
complexity, for example, a global federation administrator can define a
global schema, through which all federated databases interact (single
controller, high complexity), or local administrators can define their own
integrated schemas (multiple controllers, low complexity). Multidatabase
Languages (Litwin 1985) are applied to pre-existing heterogeneous database
environments that lack a global controller or integrated schema. No
integration measures are taken to consolidate the distributed databases;
rather, the multidatabase language incorporates the necessary constructs to
query the participating databases. In Multidatabase Languages, knowledge
of the overall database environment is necessary for operation, such that,
users must know where specific data reside in order to perform, joins or
scans on database relations, and so on.

These three aforementioned methods differ in the autonomy and
heterogeneity of the participant distributed databases, which subsequently
affect the scalability of the integration environment. Sheth and Larson
(Sheth and Larson 1990) classify databases with respect to autonomy, which
includes: (1) Design, (2) Communication, (3) Execution, and (4) Association
autonomy. Heterogeneity in distributed databases systems may arise as a
result of either differences in hardware, software or communication
capabilities; or differences in data semantics. (See (Sheth and Larson 1990)
for further details on this subject). For the purposes of this research,
scalability pertains to the ability of the data integration solution to add
increasingly large numbers of databases without compromising functionality
and performance, but rather embracing full advantage of the available
resources. Kossmann (Kossmann 2000) provides a survey of the recent
developments in query processing architectures.

Garlic (Carey, Haas et al. 1995; Haas, Miller et al. 1999) provides
the integration and management of heterogeneous multimedia information
repositories, using an object-oriented modeling paradigm. Multimedia data
include text, images, CAD drawings, and medical objects. The Garlic
architecture consists of data repositories which are independent of the
centralized controller, and are integrated into the Garlic framework via
wrappers that perform query and data transformations (See Fig. 2-3). Each
wrapper translates information about the schemas and queries between

30

Garlic internal protocols and the repositories native protocols. Query
processing is provided by the Query Services and Runtime System
components which avails applications and end users with a unified schema
of the Garlic database through which queries, updates and method
invocation requests are issued. Queries are expressed in an object-oriented
extension to the SQL query language. The Garlic query browser provides
the end user with a graphical interface that supports interactive browsing,
navigation and querying of the Garlic databases.

C++

Application
Oucry/BTOwsfr

Repository
Wrapjiftr

Complex
Object
Repository

Garlic

Query Scivices &

Run! I me System

Rqxjsilory
WrafficT

Repository
Wrafiper

Data

Rqwsitory
Data

Repository

Garlic

Metuclala

Repository

.ilTX:-.
Repository

Wrapper

rxTii
Data

Repository

Figure 2-3. Garlic Architecture (Carey, Haas et al. 1995)

The IBM DB2 (Haas, Lin et al. 2002) architecture is rooted in Garlic
mentioned above, and integrates federated data sources with user defined
functions and wrappers. The simplest approaches to data integration in DB2
is the scalar User-Defined Function (UDF) that returns a scalar result, and
the table UDF, which returns a table as output. The third and most powerful
is the wrapper, which allows the complete integration of a federated data
source. The wrapper is the mediator between the data source and DB2, and

31

maps the source data model to the DB2 data model while also transforming
operations on DB2 to operations at the source. DB2 facilitates system
transparency, heterogeneity, extensibility and autonomy. The underlying
"idiosyncrasies and implementations" are hidden from the user, which arise
due to the variety in the data source, i.e. hardware and software, and so on.
New data sources can be dynamically added, and the functionality of the
data source is not compromised by its addition to the federation.

InfoSleuth (Bayardo, Bohrer et al. 1997) resembles a market-based
system with its use of cooperating agents within an open and dynamic
architecture, but the absence of a computational economy disqualifies it as
such. The heterogeneity of data sources on the World Wide Web and the
inability to access information based on semantic "concepts" in this
environment are the primary concerns of the InfoSleuth project.
Accordingly, agent technologies and domain ontologies are employed to
facilitate information brokering in a dynamic and open environment. The
InfoSleuth architecture consists of cooperating agents that represent
information resources, from users to databases, communicating via
Knowledge Query and Manipulation Language (KQML) (Finin, Fritzson et
al. 1994), which encapsulates queries and requests represented in SQL and
Knowledge Interchange Format (KIF), respectively. User agents represent
users, which interact with the network of agents via a Java applet. The user
agent facilitates the formulation of queries using domain ontologies, and
presents the user with the results. Other agents in the network, including
ontology, broker, resource, task execution, and others, all interact to support
the interoperation of distributed data and services. In particular, the
ontology agent serves as the overall knowledge base of ontologies, providing
all agents in the architecture with an agreed upon terminology of agent
contexts as well as the ontology for the information handled by agents.

The Observer system (Mena, Illarramendi et al. 2000) is concerned
with the loss of semantic information when a query is translated from one
domain to another. Accordingly, Observer's vocabulary sharing translates
queries into a target ontologies given pre-defined mappings defined in an
inter-ontology relationship manager. Observer accounts for inexact matches
in the translation of queries from one domain to another; regarded as partial
translation, by measuring the loss of information given alternative
translations and chooses the one with the least loss of information.

The Carnot project (Collet, Huhns et al. 1991; Singh, Cannata et al.
1997) utilizes the Cyc knowledge base as the basis of a global schema
(Lenat 1995) to facilitate resource integration. Resource integration is
achieved by translating individual resource schemas to the global schema via
articulation axioms that describe the equivalence between components of
different domains. Consequently, queries issued at an individual resource

32

are first translated into the global context language (GCL), both semantically
and syntactically, and then to the local database manipulation languages.
These queries can also be issued against the global view which is then
distributed to the individual resources, although this requires knowledge of
the GCL. The Camot approach avoids the traditional global schema
management problem by merging individual schemas with the global
schema, as opposed to with each other. This not only retains the integrity of
individual and global schemas, but provides for simpler construction and
management of the global schema.

Pegasus (Ahmed, DeSmedt et al, 1991; Ahmed, Albert et al. 1993)
is a heterogeneous, multidatabase management system, based on the object-
oriented data modeling paradigm, that provides native access to
heterogeneous and autonomous databases, and database management
systems. The data abstraction and encapsulation facilities of the object-
oriented paradigm, creates an extensible framework for dealing with the
heterogeneities common in traditional database systems.

Query processing is made more efficient by deploying necessary
application functionality (for example, query operators) to remote sites, as
opposed to consolidating and processing data at a global site. MOCHA
(Rodriguez-Martinez and Roussopoulos 2000) is database middleware,
developed in JAVA, that provides such functionality. In traditional systems,
tremendous effort would be undertaken to deploy the operators throughout
the distributed computer network, or to interconnect multiple data sites, due
to heterogeneities that may exist in the hardware and software, as well as the
overhead realized in data shipping and query shipping. MOCHA deploys
JAVA code dynamically to remote sites, dubbed code shipping, resulting in
improved and efficient query optimization and subsequently reduced query
execution times. The Query Processing Coordinator (QPC) provides the
query processing functionality and deploys all necessary application
functionality to clients and remote sites. The Data Access Provider
interfaces with the data sources, providing an execution engine that
processes the specific application functionality, and so differs from wrappers
found in traditional systems.

The MDV system (Keidl, Kreutz et al. 2002) is a distributed
metadatabase management systems that speeds up access to distributed data
sources by replicating and caching metadata about participating resources
and services in the middle-tier of its three-tier architecture. The architecture
is comprised of Metadata Providers (MDP), Local Metadata Repositories
(LMR) and MDV clients. MDP's synchronize metadata amongst themselves
to provide uniform access to metadata by LMR's; while LMR's cache and
replicate metadata relevant to local users and applications (MDV clients),
using a publish and subscribe algorithm.

33

4. EMERGING INTEGRATION TECHNOLOGIES:
WEB SERVICES, P2P AND THE SEMANTIC WEB

Peer-to-Peer (P2P) networks and Web Services are emerging as de
facto standards for data integration and information sharing. Data providers
and consumers participate in ad-hoc data siiaring arrangements on their own
terms, in real-time, and on-demand. These technologies are inherently
scalable and heterogeneous; however the data sources are partially
autonomous as the data providers typically must subscribe to some global
information sharing standard or proprietary data format of a facilitating
application. It is also important to note that these technologies are
applications that sit a layer above data sources, not core technologies such as
databases and query languages, such that the data sources or database
facilitate data sharing but are typically passive functions of the application.

4.1 Web Services

Business Process Management (Dayal, Hsu et al. 2001) provides for
the automation and integration of business processes, and is presently
manifested as a system of Web Services, that foster a services-oriented
paradigm. As described in (Fremantle, Weerawarana et al. 2002;
Tsalgatidou and Pilioura 2002), the underlying Web Services technology
include SOAP, UDDI, WSDL and WSIL. SOAP, Simple Object Access
Protocol, provides messaging capabilities; while UDDI, Universal
Description, Discovery and Integration protocol, provides directory or
lookup services, which categorize businesses according to industry and so
on. WSIL, Web Services Inspection Language, provides the method to
determine what services are located at a particular site; and WSDL, Web
Services Description Language, offers the ability to describe a Web Service.
The attractive feature of the BPM approach is software and applications can
be componentized and deployed as Web Services, without disruption of their
original functionality. Furthermore, any application or data source can be
deployed as a Web Service as long as they can be described using the open
and standards based WSDL and its associated technologies.

4.2 Peer-to-Peer Networks

In P2P networks, individual nodes connecting to the Internet can
access real-time index of files shared by other active nodes (Parameswaran,
Susarla et al. 2001). P2P networks provide various advantages, most
importantly, improved search capabilities relative to web-based search
engines. Here, data shared is current, since the node refreshes its content

34

whenever connected to the network. Load balancing, redundancy and fauU
tolerance, though typically found in more advanced P2P implementations,
are additional benefits of the P2P architecture, such that content is
distributed throughout the network, and most likely will not be lost if parts
of the network were to fail. However, the downsides of P2P include noise in
resulting query results since there is no standard to describe shared
resources, as well as the semantic heterogeneities that will arise due to
individual naming conventions and content representation.

JXTA on the other hand, is a suite of protocols that facilitate P2P
communication (Waterhouse, Doolin et al. 2002). The protocols are XML-
derived, which provides platform independence and network transparency.
JXTA peers can exist as providers and consumers as well as hubs that
redirect query requests to other peers.

Freenet (Clarke, Miller et al, 2002) is a self-organizing and
decentralized P2P global information storage system, which promotes the
autonomy of system participants. It provides stability and fault tolerance by
automatically replicating and relocating files according to user demand.

4.3 The Semantic Web

As the World Wide Web continues to evolve, it is necessary for
information providers to describe their content with terms that are
universally shared. Hendler (Hendler 2001) posits that ontologies fill this
need by providing a set of terms, including a vocabulary and simple rules of
inference and logic, for some particular topic such as shopping for pets. In
these situations, information providers define and markup content in terms
derived from a central ontology, such as the DARPA Agent Markup
Language (DAML) (Mcllraith, Son et al. 2001). The nature of ontologies
however, allows them to be extended such that information providers can
create a derived ontology which can in turn be used by other providers. The
challenge therefore to achieve widespread use of ontologies, is to develop
tools to simplify these procedures for the average user, and make it trivial to
create semantically defined content.

4.4 XML

XML (W3C 2004) provides the foundation for a number of the
nascent technologies used for data integration and sharing. The ubiquity of
XML stems from its acceptance as an open standard, and the simplicity with
which XML content can be created and exchanged between heterogeneous
systems. XQuery (Chamberlin 2002) provides the opportunity to query an
XML document, akin to SQL and relational databases. Associated

35

technologies, XML Path Language (XPath) (W3C 2004), Extensible
Stylesheet Language Transformations (XSLT) (W3C 2004) facilitate the
selection of elements in an XML document as well as the transformation of
XML documents from one format to another, respectively.

5. METADATABASE AND ROPE

The Metadatabase project at Rensselaer Polytechnic Institute
explores information integration in the enterprise. The results, after a decade
of research, include the Metadatabase - an information resource
management system for distributed, autonomous and heterogeneous
environments; and ROPE - a programming environment that extends the
interoperability and adaptiveness of the Metadatabase, through the use of
extensible software shells.

36

Application

' ' llemin V

/\ i \

<^Namedasj>

^ Administer _̂ -—'

User

Subject

^Mapped t o N < [Describes

EntRel

^ 'ERExis l 'V

Integrity

Item

• Subjectin \ - ^

Maintain

Context

I — ' ' Convert V

Contains

Rule

I ' ' Condof V

Condition
Action

' Bind-Fact ~-

Hardware
Resources

Figure 2-4. Global Information Resources Dictionary (GIRD)

The role of traditional distributed systems has been to integrate
distributed data sources, without regard for the context in which the data is
used. Conversely, the Metadatabase approaches this integration problem

37

from a holistic perspective, that is, how the applications / systems / databases
interact and contribute to intra-enterprise synergies. This is regarded as
enterprise intelligence, or enterprise knowledge, expressed in the form of
business rules which include triggers, integrity constraints, and decision
knowledge that describe information workflows between applications /
systems / databases; as well as, control knowledge that delineate global
equivalence knowledge and data transfer rules between the information
resources. This enterprise knowledge is metadata, and is regarded as the
basis of database integration in the Metadatabase architecture.

5.1 Two Stage Entity Relationship Method (TSER)

The Metadatabase architecture is comprised of three elements, a
conceptual model of the enterprise, which includes all knowledge and
information resources; a physical representation method that any capable
relational database management system (RDBMS) can provide; and the
Metadatabase management system, a management framework that provides
query and metadata management and modeling facilities. The first element,
the conceptual model, is manifested in the Global Information Resources
Dictionary (GIRD) (See Fig. 2-4), a unified representational model of
enterprise metadata. The GIRD model is created using the Two-Stage
Entity-Relationship (TSER) approach (Hsu, Bouziane et al. 1991; Hsu, Tao
et al. 1993; Hsu 1996), a modeling methodology that provides a
representation method for the contextual knowledge of the enterprise as well
as its data objects. TSER encompasses a multi-stage modeling methodology
that begins with the system analysis and representation of the application /
information system / user level (or functional layer). Two constructs are
used to model this functional layer, SUBJECTS which describe the data
objects and CONTEXT which is used to describe the intended context of the
data objects. The functional layer is recursively decomposed, to produce
additional functional views representing components of the enterprise
information system. Dependency theory-based algorithms are then applied
to the completed functional model to map the functional layer to a
normalized structural model - described using four general constructs,
ENTITY (OE) and three classes of integrity RELATIONSHIPS: functional
(PR), plural (PR) and mandatory (MR) - which guarantees the model to be
at least in third normal form. A subsequent phase of the TSER methodology
generates an import schema that is amenable to input into an RDBMS (See
(Hsu, Bouziane et al. 1991; Hsu, Tao et al. 1993; Hsu 1996) for a complete
description of the TSER approach).

38

5.2 Metadatabase Management System (MDBMS)

The Metadatabase Management System (Bouziane 1991) provides
basic metadata management capabilities, that is, insert, delete, update and
retrieve similar to traditional relational database manipulation language
constructs, however, these actions are performed on metadata. An additional
management tool provided by the MDBMS is the Model-Assisted Global
Query System (MGQS) (Cheung and Hsu 1996) that provides syntax-free
online assistance for query formulation and processing, supports local
autonomy, local system transparency and local systems interoperation.
Users interact with MGQS through a graphical user interface (GUI) that
accommodates model traversal and subsequent query formulation. The user
selects metadata items relevant to his/her interest or perspective, which may
correspond with application, functional, structural views, or actual metadata
items, and MGQS produces a completely formulated and optimized global
query (additional metadata items, if necessary, are included by the system -
hence online assistance). Global query formulation capabilities are provided
by the non-procedural Metadatabase Query Language (MQL) (Cheung and
Hsu 1996), a global query language that supports queries across distributed
and heterogeneous local systems with different schemata as well as different
data semantics.

As is, the Metadatabase is a stand-alone, semi-active knowledge
base. The global system administrator creates a global data model using the
individual schemata of the distributed applications using the TSER
methodologies mentioned earlier. Global queries can then be executed
against the Metadatabase via MQGS or MQL (Cheung and Hsu 1996) from
the global or local perspective. Local users within the enterprise interact
directly with the Metadatabase, or through an interface deployed at the local
application site. It is important to note that users of the Metadatabase need
not be knowledgeable about the underlying distributed architecture; the
Metadatabase avails the enterprise user of full system transparency. Global
queries are decomposed and transformed into the local query format by the
global query processor and translator of the MGQS. Local queries are sent
to the relevant local applications via the communication network and
executed at the local application. Local results are returned to the MGQS,
merged into a global result by the result integrator of the MGQS, and then
presented to the enterprise user (Hsu, Babin et al. 1992).

5.3 ROPE

ROPE (Babin 1993) transforms the Metadatabase into an active and
adaptive integration architecture. Here, the operating and decision rules are

39

instead located at the local sites, and reside there, as opposed to being
completely referenced in the Metadatabase architecture. This adds the
functionality for local sites to actively respond to rule-based changes in the
local architecture, without consideration of the Metadatabase (hence, an
increase in local autonomy). Thus, if changes to the local application takes
place, through temporal or event-based triggers, and these changes affect the
global architecture (the Metadatabase and other local sites) then ROPE
provides the functionality to distribute these changes. This is facilitated by
software shells that surround, and enhance the functionality of the local
applications (Hsu and Babin 1993). The software shells are identical for all
local applications; however, the knowledge possessed by the shells
(represented as operating rules) are tailored to each application. ROPE is a
programming environment that defines (1) how the software are created, (2)
how the shells behave, and (3) how the shells are managed (Hsu and Babin
1993). It also integrates with the Metadatabase to push rule-based changes
from the Metadatabase, downstream to the local applications, and for the
local applications to push new knowledge upstream to the Metadatabase, or
across to other local applications.

6. A COMPARATIVE ANALYSIS OF THE TWO-
STAGE COLLABORATION MODEL WITH THE
RELATED LITERATURE

A critical and required feature required of collaboration on the
Internet is the resolution of semantic and structural heterogeneities that exist
as a result of heterogeneous data models. The proposed Two-Stage
Collaboration Model (TSCM) offers a solution for semantic heterogeneity in
the global equivalence feature of the TSER modeling methodology (See
Chapter 5). Semantically equivalent data items or objects that exist
throughout the enterprise, in the disparate data models are made equivalent
to each other during the TSER modeling process. An item with the same
semantics, which is determined by the designer, is "mapped" to the global
model, such that queries against the Metadatabase or a participating local
database will retrieve the variants of the data items and present these in
global query results. On the contrary, the Carnot project (Collet, Huhns et
al. 1991) maps local data models to the CYC knowledge-base, but the
scalability of this architecture is limited, as it is a manual effort to define the
knowledge-base. Also, various other integration architectures, for example,
Mariposa (Stonebraker, Aoki et al. 1996) and ObjectGlobe (Braumandl,
Keidl et al. 2001) assume homogeneous semantics, where participant
databases speak the same language and data items and objects share the

40

same meaning throughout the integration framework. Ontologies (Hendler
2001) offer improved classification of data semantics; however, the rigorous
modeling and representation method of the Metadatabase supersedes any
offering currently provided in this area.

Structural heterogeneities are addressed using the TSER modeling
process (See Chapter 5). Relational, object-oriented, and object-relational
databases represent a sample of the data models that can be modeled using
TSER methodologies. Each data model is first represented using TSER
functional constructs, then structural constructs, and then finally transformed
into a comprehensive physical model corresponding to the relational
paradigm. The process is repeated for each database to be integrated into the
global data model. Conversely, for new databases to be added to Garlic
(Carey, Haas et al. 1995) and DB2 (Haas, Lin et al. 2002) a wrapper must be
created, and extensive work is required if the data model is entirely new. In
Pegasus (Ahmed, DeSmedt et al. 1991; Ahmed, Albert et al. 1993), an
import schema is generated for each external database, which span object,
relational, and hierarchical data models - although the complexity of
importation increases moving from object to hierarchical - and these are
imported into the Pegasus schema to form a unified schema. Agent-based
systems such as InfoSleuth (Bayardo, Bohrer et al. 1997) address semantic
and structural heterogeneities in ontologies and agent modeling respectively.
Typically, the agent architecture is homogeneous, with respect to
architecture, such that integration across heterogeneous agent architectures
requires manual intervention to resolve differences between agent
communication languages, and so on.

Market-based systems in general, address the traditional global
query problem with respect to integration scalability, given various degrees
of database autonomy and heterogeneity, by regarding the member databases
as buyers and sellers of information that trade resources for financial benefit.
This approach offers numerous advantages: because of the market
paradigm, member databases are not tied to a specific architecture and are
free to join and disjoin the integration. Moreover, the integration and global
query can span increasingly greater numbers of databases than that found in
traditional approaches to database integration and global query. In fact, the
scalability of traditional distributed database management systems are
compromised by the optimization phase (Ozsu and Valduriez 1991) of the
query processor. Traditional approaches (Ribeiro, Ribeiro et al. 1997)
generate query execution plans through algorithmic searches or heuristics,
and measure these based on various costs: inter-site
communications/network cost, response times, CPU and I/O costs.
Consequently, as the search space grows (that is, the number of databases
participating in the integration increases to a very large number), then the

41

evaluation becomes exponentially complex or intractable. ObjectGlobe
(Braumandl, Keidl et al. 2001) employs a lookup service to identify
unrelated data sources, query operators and servers on which to execute a
query, but, the resources must register beforehand to participate in query
operations. ObjectGlobe also requires that query operators be created using
JAVA, which compromises heterogeneity within the architecture.

Chapter 3

A GENERAL MODEL
Enterprise Resources Market

1. OVERVIEW

This chapter is drawn from (Hsu 2002; Hsu and Carothers 2003;
Hsu and Carothers 2004; Hsu, Carothers, and Levermore 2006), and
highlights the general concepts from which the design of the Two-Stage
Collaboration Model is derived. Intellectually, the ERM model is a general
conceptual design that the Two-Stage Collaboration Model substantiates
through a particular new method: information matching, which in its own
right is a major and self-contained result in the field. We discuss the ERM
model here both as a conceptual design for the general problem of
integration of information resources (databases, files, computing resources,
and others) in single or multiple enterprises, and as a conceptual basis for the
TSCM results. We establish first the general problem and discuss the ERM
model from this perspective.

Research has shown that market-style self-scheduling is a promising
approach to resolving the problem of real-time online resources allocation.
However, previous results tend to focus on manufacturing and other physical
systems that lack some of the challenges of today's extended information
enterprises. When the real-time products and processes span multiple
organizations at different parts of the world, the complexity of data
semantics and performance requirements could violate some of the basic
assumptions of previous models. Yet, this level of resource sharing is a key
to new Internet-centric computing visions as well as enterprise integration.

44

2. MARKET-STYLE SELF-SCHEDULING

Information enterprises include virtual enterprises, extended
enterprises, and enterprises that feature information production and
integration. For the purpose of this paper, they feature conspicuously the use
of Internet technology to reach out and integrate, and thereby improve their
performance. The intelligence community, news organizations, the ASP
(Application Service Provider) model of e-business, industrial exchanges
(e.g., Covisint, FreeMarkets, and CommerceOne), and the service business
of industrial equipment manufacturers (e.g., Boeing and GE Industrial
Systems) are representative examples. At the heart of these enterprises is the
scheduling and control of their resources - i.e., the databases, networked
computers, and the like; which tend to be widely distributed and
heterogeneous in their technical design, and may also require openness and
scalability of the regimes that inter-operate with them. Without enterprise-
wide management of these resources, an information enterprise cannot
operate at high level of integration and hence can hardly capture the full
benefits of extended enterprising. However, resource allocation for (Internet-
based) information enterprises can be more involved to design than the
scheduling regimes for traditional enterprises such as manufacturing and
transportation, because of the nature of information production. In fact, this
can be characterized as a resource allocation problem under the conditions of
globally distributed resources and users (providers and requesters),
heterogeneous information models, and real-time assignment with online
performance measurement and adjustment. In this paper it is referred to as
the enterprise resource allocation problem.

The enterprise resource allocation problem defies many premises of
classical scheduling theory (Conway, Maxwell et al. 1967) and online
scheduling (Hochbaum and Shmoys 1987; Coppersmith and Raghavan
1989). The classical paradigm focuses on optimizing the supply (resources)
with respect to a given demand (tasks), subject to workflow precedence and
other job constraints. This leads to the dichotomy of resource versus user in
the tradition of manufacturing, where machines and jobs are two orthogonal
genres and it does not consider the possibility that a job could be a resource,
nor a resource a job. Therefore, the instances of each genre are homogeneous
in their technical nature; and both genres can be characterized in a unified
set of definitive terms such as machining capacity, classes or functions, and
processing times. The matching of a job to a machine in this context is never
ambiguous and the objective function can be neatly analyzed with respect to
throughput, make-span, tardiness, utilization rate, and other physical
performance measures. When necessary, such as in online scheduling for
computers, an assignment can even be moved around as in bin packing, in

45

order to optimize the overall performance within a single migration round.
Finally, a scheduling regime is designed to be a planner rather than an
executioner, and it does not consider real-time conditions nor online
feedback from the system that executes the schedules when it determines the
schedules. The literature assumes that either the system's controller will
adjust the schedules to accommodate real time conditions, or the scheduler
will re-run itself with new conditions to produce a new result in the next
planning window.

For Internet information enterprises, the resource allocation regime
would have to do better since the environment includes not only physical
facilities but also information resources such as databases and personal
information assets. The regime must produce maximum quantity of
information to maximum suitable users with maximum relevance and
quality, with minimum delay. Thus, the regime has to encourage information
sharing, respond to real-time conditions online, and re-allocate resources
according to performance feedback. That is, it must consider both the supply
and the demand. The regime must allow for resources providers to also be
users; e.g., a field officer could both provide and request information and an
automated analysis system or a database might request input or even co
processing from other facilities as well as produce output. In addition, these
providing or requesting tasks might use different data semantics to describe
their information contents and requirements. When information exchange is
involved, the semantic uniqueness makes tasks heterogeneous and requiring
individual, custom representation, attention, and processing. Furthermore,
Internet information enterprises involve extended organization (inter-
organizational tasks), globally distributed resources and users, and
potentially, very large number of participants. These characteristics fit best
with those of an artificial market, such as a stock exchange or industrial
exchange in e-business.

A number of researchers have recently proposed market-style
resource allocation schemes using software agents to make conventional
scheduling models more in line with real-time assignment (Baker 1998;
Swaminathan, Smith et al. 1998; Cesta, Oddi et al. 2000; Nandula and Dutta
2000; Prabhu 2000; Parunak 2001; Heragu, Graves et al. 2002). These
newer efforts tend to create a pseudo market, for example, shop floor
scheduling and computer networks allocation, where facility agents and job
agents meet and match. These works, however, tend to lack an effective
market mechanism - i.e., a performance-feedback-reward loop - to measure
the value of the resources in the market and thereby approach global
optimality. Without this self-correcting capability, the pseudo market is
more a metaphor than a complete mechanism capable of capturing the
benefits of the market model. These designs also tend to ignore the adaptive

46

capacity of agents required to perform semantics matching, multi-criteria
negotiation, and other dynamic tasks. They do not consider how to create
efficiently large number of agents online and effectively manage these
agents when updates are necessary, either. These issues become critical
when the pseudo market were to scale up to handling, say, hundreds or even
millions of concurrent, custom tasks. Consequently, the assignment schemes
developed in the previous designs do not offer sufficient feedback and
adaptation to assure self-correction. Not surprisingly, some of these pseudo
markets exhibit various global inefficiencies (e.g., long queues at certain
resources sites caused by obsolete information at the global site, and tasks
not getting assigned properly due to lack of negotiation); and others
excessive overhead (imposition of a global controller to supersede the self-
scheduling. All of them lack the promises to address the potential of
influencing demand and supply such as encouraging information sharing.

In contrast, a full-fledged artificial market model is developed, the
Enterprise Resources Market, as a solution to the enterprise resource
allocation problem. The solution uses the proven technology of industrial
exchanges and new results developed in the research to accomplish self-
scheduling with the balance of demand and supply, computational efficiency
(linear to low polynomial complexity), information interchange (semantics
match), and self-correction (performance feedback and reward) for Internet
information enterprises. The model extends the previous exchanges from
focusing on information tasks to allocating both physical and information
resources that the enterprises involve, and from relying on a global
Blackboard to allow execution of the information processing tasks at the
local level on a peer-to-peer basis. Collectively, the new results provide an
agent model and an agent-based architecture to connect distributed resource
providers and users to the market, as well as directly to each other. The new
agent model allows for very large number of concurrent participants
(exponentially scalable) to use software surrogates to globally publish their
offers and requests of resources, and match-negotiate-auction (at a global
Blackboard); and then connect locally with their matches to subscribe to the
resources. It also provides an alternative peer-to-peer negotiation model to
allow matching and auction among local sites without a global Blackboard.
A pricing model drives negotiation and feedback towards achieving a
globally sound, self-scheduling regime. The pricing model encourages
sharing of information and resources in the same time it controls the use of
them. In this regime, both providers and users can initiate tasks as bids for
transaction, while a global server facilitates the creation, management, and
processing of their custom (task-oriented) agents. The global server uses
metadata technology to represent task characteristics, including transaction
requirements and data semantics, and to match requests with offerings
according to these characteristics. It subsequently conducts the negotiation.

47

auction, and final connection of tasks to local resources. As such, the
objective function is the maximization of the total (perceived) value of
information and physical resources. It is worthwhile to note that the pricing
model gives rise to a market mechanism that encompasses and synthesizes
such criteria as minimization of delay in assignment and optimal utilization
of resources, as well as provides performance-based rewards and adjustment,
in a way similar to that associated with a natural market. The constraints are
the transaction requirements and data semantics of tasks, which could be
updated real-time and online through the task agents, based on local
conditions (e.g., work load and deadline). Self-scheduling takes place at
matching, the allocation-connection, and the queuing at the local resources;
and hence assure computational efficiency. Finally, note that the Enterprise
Resources Market accomplishes both resource allocation and information
sharing for the extended organization. With the pricing model, it optimally
allocates the published tasks and helps subscribe to the resources; without it,
it still matches tasks and helps interchange of information resources.

In summary, the self-scheduling resource allocation model is
motivated by extended information enterprises and solves a problem
formulated with a clear logical objective function and constraints. Its new
results contribute to the agent technology and distributed computing, as well
as the field of exchanges of e-business. In the next section we discuss how
this Enterprise Resources Market works; whose design and attendant new
results are then presented in Section 4.

3. THE AGENT-BASED, PEER-TO-PEER PUBLISH
AND SUBSCRIBE MODEL

We define that the user community, i.e. the organizations involved,
encompasses multiple operating groups, databases and computing networks
all of whom have information and can process data. Both the human and
machine components of the community can both be providers and requesters
of information resources. That is, all participants of the market can play both
roles of sellers and buyers (e.g., an automated information system may
trigger a request for information or co-processing from other sources during
the execution of an analysis). The organization uses budgets to control the
allocation and utilization of information resources. All users, therefore, pay
from their funds (real money or fungible credit) for their requesting tasks
(buy) and take revenue from their offering tasks (sell). The market is, hence,
a performance and reward mechanism, as well; to which the management
could complement additional adjustments of funding, as desired.

48

Participants use task-oriented and manageable agents to publish their
requests and offers of resources, and use the same to subscribe to the
resources. Software agents bring about several significant advantages:
asynchronous (24/7) transaction, controllable consistency with enterprise
knowledge and requirements, and security (e.g., the participant can publish
only the information slated to offer, and conceal the true nature of the tasks
or identity of the requesters from the providers if necessary). The design of
the agents must also include additional intelligence such as preferences and
transaction rules to further automate negotiation and peer-to-peer transaction
as described below.

At the global server level, a blackboard is maintained to match
requests and offers based on task characteristics such as deadline, specific
requirements, availability, and perceived value in terms of price. The criteria
allow for non-exact or staggered match. After one or more matches are
found, a pricing model will perform the assignment, which entails
negotiation, including group auction and revision of terms, amongst the
matched parties if alternative allocations exist. The global server maintains
and makes available the market status to all participants to help them publish
their bids and negotiate, as well as provide remedy to tasks having difficulty
getting allocated. For instance, the server could increase the price offered by
a request to find it a match just before the deadline. The loan becomes a
feedback to the reward system on the initiator of the task. After finalization,
the agents proceed to establish connections for the requesters and the
providers' resources at the local level. A proxy server of adjustable
complexity could reside at the local resources to enable peer-to-peer
transactions. The requests become jobs at the local resources and queue
themselves according to the price offered and follow the local queuing
discipline. This process does not require global coordination. The queuing
status, including workload, will become feedback to update the local
resource's agents at the blackboard. The global server contains a
Metadatabase about tasks characteristics and enterprise requirements to
support the blackboard. The server also includes an Agent-Base to create and
manage the task agents online, which could number in the millions,
according to users' instructions.

An alternative to going through the Blackboard is for a participant to
initiate directly task agents that visit other task agents at other local sites to
find-negotiate the matches and conduct auction when necessary, on their
own within the virtual "match circle." This alternative is available to local
sites that have sufficient computing power. In this case, the initiating
participants will control the virtual auctions that their task agents started first
(distributed computing); and hence simplify the computing load at the global
server.

49

4. THE ENTERPRISE RESOURCES MARKET
METHODS

The above architecture entails several major elements. Some of the
key methods and techniques are adopted from our past research (Bouziane
1991; Cheung 1991; Hsu, Bouziane et al. 1991; Babin 1993). We adapt these
results for the Enterprise Resources Market, and further develop them and
the new elements not available currently to satisfy the requirements of the
system. We discuss the details below.

4.1 The Agent Model: Task Agent, Agent-Base, and
Metadatabase

Resource providers and users initiate their offers and requests
through custom created task agents. They log on (remotely) to the Agent-
Base at the exchange site and instruct it to create a task agent for their offers
or requests. The software agents are uploaded to the local sites of the
participants. They use the same mechanism to update or delete their agents.
The participants can now initiate a task by launching the agent created to the
Blackboard of the exchange site. The agent publishes its information content
(see below) at the Blackboard, with possible subsequent modifications. The
Blackboard uses this information to conduct matching, negotiation-auction,
and assignment, as described in the next section on Blackboard.

The agent has three basic elements: the communicator, the
information content, and the rule-base. The communicator includes header
(e.g., ID or IP address, XML-SQL or inter-operation protocols, and other
metadata and routines required for agent processing). We will consider the
best practices in the field as well as the operating policies of the enterprise to
determine the actual design of the communicator. The information content
describes the conditions and semantics of the task according to certain
representation methods acceptable to the enterprise. In any design, the
conditions specify the price demanded or offered, the deadline, and
processing requirements; while the semantics use either the common schema
of the organization or, if one does not exist, the common dictionary of
keywords to communicate to other agents the information nature of the task.
The processing requirements include the type of resource offered or
requested, job constraints and task status if the task belongs to an automated
workflow (series of single tasks) or complex task. A complex task will be
processed as a sequence of single tasks according to processing or workflow
rules. The rule-base contains operating knowledge for conducting automatic
negotiation, auction, and other similar behaviors, such as choices of pre
determined negotiation schemes. It also contains workflow rules and other

50

logic for the processing of complex tasks. All agents follow a unified
protocol regulated by the Agent-Base using the knowledge stored in the
Metadatabase.

The Metadatabase contains a version of the communal or extended
organization-wide common schema, or a common dictionary of keywords
that the participants use, for information enterprise resources allocation. It,
along with the proxy server (see Section 4.3), constitutes the connector of
the artificial market through which the system plugs into the overall
enterprise environment. While the proxy server provides physical connection
in an API manner, the Metadatabase offers logical integration with the
enterprise. If these common schema or keywords do not currently exist, then
we need to develop the keywords with enterprise experts as an
implementation effort. Alternatively, when the enterprise chooses to develop
its own common schema from scratch, we could employ the Metadatabase
model developed at Rensselaer over the past decade (Hsu, Bouziane et al.
1991; Babin and Hsu 1996; Cheung and Hsu 1996; Hsu 1996; Hsu and Pant
2000) to accomplish this purpose. The Metadatabase model employs a
particular representation method based on the TSER information model to
integrate enterprise information models, contextual knowledge, software
resources (for inter-operation), and user-application families. These
enterprise metadata are structured into a database on its own so that the
community can query, manage, and evolve enterprise metadata resources
through the Metadatabase for their tasks in the same manner as they could
for regular data resources with a regular database. Therefore, the
Metadatabase can be a repository of enterprise policies pertaining to the
artificial market (such as rules about particular user-application families,
entities, and relationships). Moreover, the scope of the representation
method covers all three elements of the software agents; thus, the
Metadatabase can also be a depot of re-usable objects or common raw
materials (communication software, information content, and rules) from
which the Agent-Base builds task agents. In any case, the provision or the
construction of the common schema and/or keywords, regardless of the
methods taken, would have to come from the enterprise experts in the
extended organization. Without them, the proposed research would only
simulate one for the final prototype.

One aspect of the Agent-Base is a method to mass-customize large
amount of agents at run time. When the potential task agents at any one time
could number thousands or even millions, and most of them are custom
build, then we need an efficient way to create and manage these agents
online and on the fly. We will use the Metadatabase to provide community
resources required by mass production, and use the Agent-Base to customize
the configuration of these resources for particular tasks. It will also support

51

the owners of the agents to add ad-hoc information (e.g., specific data values
of some entities, relationships, or attributes, and operating rules) and route
them to the Metadatabase for possible inclusion into its content. Another
aspect is the ability to automatically update the metadata contents of agents
when these metadata are changed at the Metadatabase. This capability,
unique to the Agent-Base model, is very useful for maintaining the logical
consistency across agents, or the integrity of the agent community. The third
aspect is a log of the task agents currently active at the Blackboard. This
design allows the software agent to be a persistent surrogate (24/7) at the
market for conducting asynchronous negotiation, among other things, to
enhance reliability and performance. Thus, the Agent-Base is both a
management shell and a gathering of active agents.

We need to fine-tune the agent design, the Metadatabase model, and
the Agent-Base of the Enterprise Resources Market for particular
enterprises. However, the general designs available now provide a good
starting point for the particularization effort. Both the Metadatabase and the
Agent-Base could be implemented on a commercial, stand-alone database
management system such as Oracle. We envision the necessary user
interfaces of these components to be added shells of the database using its
built-in facilities.

4.2 The Blackboard: Match, Negotiation-Auction, and
Assignment

The Blackboard is the regular, default mechanism for the Enterprise
Resources Market to serve the agents and conduct match, negotiation-
auction, and assignment. This engine maintains a list of all tasks published
by agents, including their information contents, conduct matching and
negotiation, and finalize the assignment. It also consults with the
Metadatabase for the latest enterprise policies to avoid chaos at the artificial
market; one of these responsibilities is to break ties and ascertain that all
(worthy) tasks find a match before their deadlines.

The basic logic of match goes this way. For a given task, it first
satisfies the semantic constraints by looking for counterparts possessing the
same information content. The match is based on metadata, either from
common schema or keywords, and can either be exact or partial. The
software agent specifies the rules. The Blackboard could either incorporates
the rules in its matching (custom match) or inform the logged agent of the
result of standard match for it to exercise the rules. When semantic
constraints are met, the matching proceeds to conditions including price,
deadline, and other requirements. If single perfect match exists, then the
Blackboard will assign the task to the resources matched. If multiple perfect

52

matches are found, then a round of auction amongst them will decide the
final assignment. If only partial matches are found, then the task enters
negotiation. The negotiation could be automated where the logged agents
concerned use their rules to find an optimal match and break ties by auction;
or, the agents could inform the task initiators and have a round of
modification of the original conditions - i.e., human intervened negotiation.
On the other hand, if no match, perfect or partial, is found, then the agent
and/or the initiator could update the task information content depending on
whether the difficulty is caused by semantics or by conditions. The
Blackboard will post current market conditions - e.g., statistics of bids,
usage patterns of keywords, and status of hot issues - to facilitate the
modification and negotiation. The initiators could also proactively update the
task agents stored at the local site and re-launch it to replace the old one.
Certain conditions, especially those related to workload at local resources,
would be suitable for automatic update from the participant sites. The
Blackboard intervenes only on an as-needed, exceptional basis to break ties
and enforce enterprise policies. For example, it could check on certain types
of requesting tasks that have no match and increase their offering prices on a
loan basis to find them a match on or near the deadline.

The assignment phase is essentially a notification of the connections
that the tasks should establish with their resources. It entails an update of the
communicator of the logged task agent by the Agent-Base, if necessary, to
prepare it to communicate with the proxy server at the destination resources
site. The update agent will then upload to the task initiating site and initiate a
peer-to-peer transaction from there. Now, the task agent is ready to subscribe
to the resources; namely, connect to their system.

It is well known that the computational complexity of traditional
scheduling algorithms (global control) is NP-hard; while the complexity of
sorting (according to price) is linear, 0(N) with N being the number of tasks.
Thus, the self-scheduling nature of the Enterprise Resources Market assures
a very efficient regime of computation with complexity in linear to low order
of polynomial (including negotiation and feedback). Therefore, the artificial
market is scalable exponentially in theory; i.e., its computational efficiency
allows it to expand virtually freely. However, this is not the case with most
other schedulers, whose scalability is inherently limited by its computational
complexity.

4.3 The Proxy Server: Peer-to-Peer Transaction and
Systems Inter-operation

The proxy server is a software system that the artificial market adds
to local resources sites and resides there. It accomplishes two basic jobs

53

towards enabling the computing connection of the exchange side with the
participant side: systems inter-operation and peer-to-peer transaction. The
server interacts with the exchange site and collaborates with the Agent-Base
to store, maintain, and process (launch) the software agents owned by its
local site, as well as to respond (execute) to the call of task agents from other
sites. In this capacity, it functions as the server of the local site for all task
agents initiated at the site but processed elsewhere at the Blackboard or other
local sites. Thus, it executes the workflow logic for its complex tasks to, e.g.,
sequentially launch the component single tasks and maintain the overall task
status. The server offers a data standard for the task agents to communicate
between themselves. The exact design will depend on the enterprise
requirements; but a good, standing design is to use XML-SQL. That is, the
proxy server will have a standard protocol to receive and process task agents
for information transfer. Part of the protocol is a standard schema for view
tables that the proxy server maintains for the local databases to use. It works
two ways. First, the local database publishes the select content that it slates
to share with the artificial market at the proxy server, using the format
provided by the latter. The information requesting task agents can then query
the view tables to retrieve or transfer the selected content. Second, if its own
task agents transfer in content from other resources, then the input is stored
as view tables for the database to acquire under its own management. The
queue discipline at the proxy server is self-scheduling based on prices.
However, if the requesting task from outside is to use the computing facility
for data processing, as opposed to information retrieval, then the proxy
server passes it as a regular job to the local system and follow the local
queue discipline. In a similar way, it monitors the work load, task status, and
other relevant data of the host server to update its task agents at the Agent-
Base and elsewhere in the system.

The proxy server also controls peer-to-peer negotiation, including
matching and auction, as described in the next sub-section, if the local site
has sufficient computing power to invoke this option. In this capacity, the
proxy server launches its task agents to visit task agents publishing on proxy
servers at other local sites, as well as prepare them for negotiation with
visiting agents from other participants. The proxy server from which the task
agent first (time stamp) initiates a peer-to-peer negotiation in the community
will function as a mini-Blackboard during the life of the negotiation. The
basic logic of the Blackboard applies here, except that the initiating task
agents call on other sites rather than other agents posting onto its proxy
server. As such, a proxy server might control several concurrent auctions
involving different tasks at different sites, and the community might have
numerous such auctions controlled by different proxy servers at numerous
local sites at the same time; all are autonomous to the global server. In this

54

mode, a proxy server will maintain a list of visiting task agents and matches
its own task agents against them at the time the participant publishes them.

The employment of proxy servers allows for peer-to-peer transaction
and hence concludes the assurance of the computational efficiency promised
by the price-based Blackboard. Peer-to-peer transaction is advantageous to
the environment for these basic reasons: (1) it allows for the participants'
direct control of all tasks originating at their site as well as tasks being
processed there, and hence simplifies the global control requirements and
work load; (2) it supports distributed updates and processing of agents based
on local conditions; and (3) it provides a backup to the Blackboard.
Furthermore, it also contributes an open and scalable way to connect any
number of local databases and other resources into the Enterprise Resources
Market without interrupting the operation of the market. Along with the
Metadatabase, which offers an open and scalable way to incorporate any
number of information models into the market on the fly, and the
Blackboard, which promises computational scalability, these three elements
of the Enterprise Resources Market make this design uniquely open and
scalable.

An implementation of the model can adopt the best practices in the
field to build the proxy server for the enterprise, in light of the new agent
model and the Blackboard. A reference point for the technology is the
commonly available products such as Apache server, which is extendable
with JAVA-J2EE, PERL, and other general purpose programming
languages. Although one needs to design it, the proxy server has many
mature technologies to choose from for its implementation.

4.4 Peer-to-Peer Negotiation: Virtual and Distributed
Mini-Blackboards

Peer-to-peer computing has a general complexity of O(N^) which
hinders scaling-up. We develop a new basic logical structure, the match
circles, to denote the group of nodes (local sites) whose tasks match. Pair-
wise computing is unnecessary within a match circle once it is recognized.
Thus, a circle will have a node serving as its mini-Blackboard and thereby
reduce the computing complexity. Since a local site can have a number of
simultaneous tasks alive in the community, it can belong to a number of
simultaneous match circles. Thus, both the circles and the mini-Blackboard
are virtual and task-based. This way, the overall complexity of the peer-to-
peer computing is primarily the number of such virtual circles, which is
arguably much less than the theoretical upper bound. We elaborate on this
idea below.

55

The Agent-Base maintains a global protocol for determining
timestamps for all task agents initiating a negotiation, which starts with a
search for matches at other local sites and finishes when an assignment is
finalized after, if necessary, auctioning among multiple matches. The
negotiation at the matching phase is concerned with task constraints, while it
is about the objective function when auctioning. The initiating task agent,
the one with the earliest timestamp among all agents that matched, has the
control of the negotiation. Its proxy server first launches a round of search
where the task agent looks for matches at (all) other local sites in the
community in a purely peer-to-peer manner. If a single perfect match is
found within a pre-determined time period, then the proxy server acts
according to the nature of the task: for requesting task, it obtains necessary
inter-operation parameters or routines from the Agent-Base for the task
agent and sends it to queue at the matching site through the proxy server at
that site; and for offering task, it informs the proxy server of the match task
to launch the requesting agent. Optionally, the proxy server could also
contain a reduced copy of the Metadatabase to allow it augmenting its task
agents with the inter-operation data. If multiple matches exist, then the proxy
server conducts an auctioning session where it sends out asking prices,
iteratively, to the matches in the manner of traditional auctions - i.e., the
proxy server singly controls the auction session. The result will either be a
single meeting of the best price - in which case the proxy server assigns the
task as mentioned above, or a declaration of failure of the auction which
results in a deletion of the current task. The participant in the latter case can
opt to re-initiate the task or re-create a new task agent.

If no perfect match is found when the time expires, then the
initiating task agent everywhere starts a round of lock-step, pair-wise
negotiation with its host agents. Each pair of negotiation is independent of
all other pairs under the initiating task agent's autonomous control, which
uses the same negotiating regime to proceed. The regime could be rule-
based, staged modules, or any appropriate design, as long as it uses
definitive steps to define and control its gives and takes, with each step
associated with a certain time window. Thus, all pair-wise, simultaneous
negotiations at all local sites are at the same steps at all times. Each step
modifies certain constraints in certain manner within each window, and the
proxy server terminates the negotiation at the first moment when a perfect
match or matches are found. At the conclusion of each step of the
negotiation for matches (on constraints), the task agent returns the matches
(when achieved) with an indicator of the step during which they are
obtained, along with the identification of the local proxy servers of the
matched task agents. The initiating proxy server could use the indicator to
determine the matches in the assumption that modifications are reversely
favorable in the sequence of steps and hence the earlier the matches the more

56

preferable. Thus, if some negotiations are lagging behind because of their
local queuing situations or any other reasons, then they could preempt
incumbent results (including auctions) when they report matches back to the
initiating proxy server. However, the proxy server could also opt to ignore
late results whenever the auction is underway. The task agents use the time-
based progression of negotiation to synchronize virtually their autonomous
processing. The initiating proxy server, i.e., the mini-Blackboard in this case
for the round of negotiation, does not actively control the processing of its
task agent at each local site, but only determine the matches from all
reported results. When the time expires without any matches found, the task
agent ceases to exist and the participant could either revive it or forgo it. The
peer-to-peer design allows a proxy server to control the negotiations
(matching and auctioning) of its task agents, individually as well as
collectively (to manage its own local resources), and thereby promote
distributed computing. There could be many proxy servers controlling many
concurrent negotiation sessions in the community at any time, each of which
is a virtual mini-Blackboard for the match circle, or the virtual group of
matched task agents.

4.5 Implementation Model: Organizational Metrics and
Data Standard

To implement the artificial market in the enterprise environment, we
need to investigate some of the organizational issues, especially how to map
the pricing model to organizational control metrics and how to inter-operate
the Enterprise Resources Market with other functions and systems. We
assume that the extended organization uses a budget model to control the
overall allocation of resources to operating units and individuals. The model
will create artificial funds (either of money or of fungible credit) for
participants of Enterprise Resources Market, and periodically deposit or
adjust them according to their overall performance at the market over the
period, among other things, on an off-line basis. In addition, the market
maintains these funds and will automatically adjust them for the participants
after each transaction to reflect their revenues (sales) or payments
(purchases) in a manner similar to a bank. Thus, individuals and operating
units do not exchange money directly, but their purchasing power as
recognized by the market. The bids, therefore, reflect the perceived value of
the resources requested or offered by the participants. To make the scheme
work, the fund owners must have control of their funds and the ability to use
surplus for real world purposes such as hiring people or purchasing facilities.
Thus, the market itself is the first mechanism to measure performance,
reward the participants, and thereby reallocate resources. The managers of
the participants will also assess the performance of resources in terms of

57

value added to their missions; that is, the quality and quantity of information
provided and utilized. They could measure the value in terms of how many
people have used and benefited from the offerings (sales) and how actively
people seek out for useful information. The system will generate market
statistics on problems (e.g., loans), requests, offerings, transactions,
connections, keyword usage (hot topics), as well as accounting and
scheduling logs. Results are performance feedback to the managers for the
budgeting process and reward systems. This periodic review assisted by
market statistics is the second line of control and reward for resource
allocation.

We need to study the optimal way to design the pricing model for an
implementation so as to best fit the organizational metrics of performance
evaluation and reward. Furthermore, for organizational evaluation, the
implementation also should consider developing the possibilities of
collaboration with other enterprise management functions. For instance, the
patterns of subscription (connection) reveal the need for new or ad-hoc
channels of communication or workflow processes. Thus, these data could
feed into such models as organizational networks and processes.

The data standard issue concerns inter-operating local databases
within the domain of the enterprise and possible collaboration with other
enterprise functions. The first aspect is a matter of information integration
and data interchange protocols. As discussed above in the sections on the
agent model and the proxy server, we propose to use the current
organizational specification of keywords or common schema to represent
data semantics and store them into the Metadatabase, to achieve logical
information integration; and use the proxy server to handle data interchange.
This approach is well established in industry; in addition, the above sections
also offered realistic alternatives for the development of Market data
standard. We are confident that in the case of actual implementation, one can
adopt the best practices in the field of e-business and database integration to
recommend a data standard for the enterprise and make the artificial market
work as designed. At present, we propose common technologies including
XML-SQL, relational databases, and Internet-based computing protocols.
The data format required for collaboration with other enterprise systems will
come from these sources. We will continue to investigate these issues and
hopefully recommend some general designs as the field matures.

4.6 Open Common Schema: a Metadatabase for
Extensible Information Integration

The section on the Agent Model provides a Metadatabase to
represent data semantics of all resources in the enterprise. This task usually

58

corresponds to developing a common schema at the high end of integration
effort, or a reference dictionary of keywords at the low end. Current
practices in the field at both ends have certain drawbacks: available common
schema methods tend to be hard to develop and too rigid to maintain, while
keywords might not cover the full semantics contained in information
models (especially relationships and contextual knowledge - processes). An
alternative is to base the common schema on an ontology (the basic structure
of semantics at a meta-level), rather than on tenuous instances of practice.
The Metadatabase model is such a design, offering an open, scalable and
integrated repository of enterprise information models (in the form of
metadata), constructed on a minimal ontology of generic information
modeling concepts per se. The ontology is comparable in concept to the
Information Resources Dictionary System (IRDS) effort of NIST (see (Hsu
1996)) and similar approaches in the current Enterprise Integration
community. However, it differs fundamentally from designs that generalize
application logic for an entire domain. The methodology-based ontology
offers efficiency and simplicity (minimalism), but is limited to the
applicability of the method on which the design is based. For the
Metadatabase, the basis is the Two-Stage Entity-Relationship model, an
extended entity-relationship-attribute model. Previous works have shown the
model to be scalable (i.e., metadata independence) (Hsu 1996) and capable
of incorporating rules (Hsu, Tao et al. 1993) and supporting global query
processing across multiple databases (Cheung and Hsu 1996).

The icons of the Metadatabase structure, or the graphical
representation of the ontology, shown in Fig. 2-4, represent either a table of
metadata or a particular type of integrity control rules. The ontology in Fig.
2-4 extends slightly the previous Metadatabase structure by also including
user words and cases (as in case-based reasoning), to enhance the extension
of the model. The metadata include subjects and views, entity-relationship
models, contextual knowledge in the form of rules, application and user
definitions, database definitions and database objects. User-words are
defined as ordered pairs (class, object). Classes include Applications,
Subjects, EntRels (entity-relationship), Items, Values, and Operators; all of
which are metadata tables as shown in Fig. 2-4. Objects are instances
(contents) of these classes. An object is uniquely identified by an ordered
quadruple (Item name, EntRel name. Subject name. Application name) as
well as an identifier. A case consists of a problem definition and a solution,
but not the usual outcome, because the Metadatabase contains the complete
domain knowledge needed. New problems (e.g., exceptions to general
policies) would use the problem definition to find the (best) matching cases
and apply the associated solutions to them. A set of metadata for a task
describes the problem definition, and its interpretation defines the solution.
Cases strengthen the Blackboard's ability to perform real time matching and

59

assignment of tasks when uncertainty arises. As such, the Metadatabase
collects local information models as the elements (metadata entries)
constituting the common schema.

The common schema so constructed, as a Metadatabase, will be able
to accommodate changes, including deletion, addition, and modification of
information models for local resources. For instance, when a new local
resource is added to the Market, the necessary "registration" effort will be to
create an information model using the TSER methodology for the new
resource (either by the local participants or by the Market experts), and add
the information model as new metadata entries to the appropriate meta-tables
of the Metadatabase (e.g., SQL Insert statements). This process is amenable
to automation using a CASE tool. The Metadatabase does not need to shut
down at any time during the update, since the operation is really a regular
database job. After this logical connection, the Market will install a proxy
server fine-tuned for the new resource in the local environment, as described
before. This installment does not interfere with the regular operation of the
(rest of the) Market, and hence the whole addition process will not affect any
existing local systems nor the on-going tasks at the Market. Once the process
is completed, the new resource takes part immediately and automatically in
the Market. Other changes are similarly self-contained and autonomous.
Therefore, the design offers an open common schema to enable extensible
information integration for the community and thereby facilitate it to become
open and scalable, as well.

The Metadatabase has been tested extensively in LAN, WAN, and
even Internet-based environments at some industrial companies. However, it
has not been deployed for an open community such as the extended
information enterprises targeted here. Thus, its development into the
common schema will represent a new contribution to the filed.

In a broad sense, the proposed technology contributes intellectually
to two hard problems: real time global resource allocation and information
integration for extended enterprises; both of which are critical to IT-based
organizations. Its extensions on the previous scheduling regimes include its
true, price-driven market mechanism to provide comprehensive performance
evaluation, feedback, and resources reallocation. This new mechanism is
made possible by its new agent model and the extensions to previous
exchange technology. The industrial exchange model has always called for
the use of agent technology, but actual practices tend to stop short because of
insufficient capacity for large-scale agents management. This research fills
in the gap with the new Agent-Base using the proven Metadatabase
technology. It further extends the previous results to allow for peer-to-peer
negotiation and information sharing, where traditional exchanges tend to
limit the data transactions to the processing of business documents and

60

straightforward transfer of files. When we can show to have achieved the
intended results, we will have accomplished a good progress toward
resolving these two problems.

Furthermore, the new results amount to a general agent-based, peer-
to-peer, publish and subscribe model applicable to a class of problems in the
digital society. Examples encompass naturally the management of global
(virtual) enterprises; but they also extend to such novel areas as community
collaboration in for-profit or non-profit settings. A particular vision would
be for persons, companies, and organizations to buy and sell information
resources from the universal Internet community on a task-by-task basis. As
the concept of an exchange is general and far reaching, so does the notion of
the new model. The new results make it feasible technically to realize some
of the new visions of exchange in practice.

Chapter 4

THE CORE LOGIC OF THE TWO-STAGE
COLLABORATION MODEL
Information Matching

1. OVERVIEW

The Two-Stage Collaboration Model (TSCM) engenders a new
global query method that supports self-determination of independent
databases. The TSCM accomplishes this primarily through the introduction
of information matching, which enables the new two-sided collaboration
regime (see Chapter 1, Section 2), and the export databases that serve as a
proxy (image) in the TSCM for private and protected enterprise databases.
The export database is also supported by the new global query paradigm,
where a participant specifies the particular data resources that are to be
shared from the enterprise database, but which are actually stored and
offered from the export database during regular operation of the TSCM.
Multiple such images in different representations can be supported
simultaneously in the new paradigm.

The new, defining fundamental results developed in this research are
concerned with information matching; so we discuss these results herein
before we present the architectural design of the TSCM. As mentioned
above, export databases submit subscription queries and/or publishing
queries. They are matched in the first stage to determine the global database
queries to be executed in the second stage. The matching process requires a
number of steps to determine, to what extent and of what type matches exist,
if any. A match can come from a single publishing export database or a
joining of multiple export databases, for example.

62

The first step of matching is to identify the sets of publishing queries
that contain all the required data items. They are qualified as item feasible,
as each set may be used to extract all the data items required. Second, we
verify that all export databases in an item feasible set (if containing more
than one) can indeed join to produce meaningful information. This is done
by verifying the existence of common data items among publishing queries
within the set. Such sets are said to be join feasible, as we may identify join
conditions between the different queries within the set. This verification
process may result in the addition of new publishing queries to the set to
make the (extended) set join feasible. Third, we verify that the constraints on
a join feasible set match the constraints on the subscription query. When this
is the case, the set is said to be constraint feasible. Finally, the best
constraint feasible set is selected for allocation.

2. THE NEW ELEMENTS OF GLOBAL QUERY

It is necessary, for the purposes of this research, to rethink the
concept of a global query to achieve the benefits described above. A global
query is therefore represented in this new context as a subscription query (or
information request). This new connotation emphasizes that a global query
no longer exists as a single execution or process, but now that it can exist for
an extended period of time, "connected" to its target database. Similarly,
publication queries can exist for an extended duration, but add the facility to
declare what content should be shared from an enterprise database. The
overall concept of global query in general is also modified; in the TSCM
context it is considered as a two-stage process. In the first stage,
subscription queries are matched with publication queries to associate
information seekers with information providers. In the second phase, match
information obtained from the first stage are used to obtain results from the
corresponding information provider(s) using traditional query processing
methods. To establish these new concepts, a technical analysis is employed
to formally characterize the subscription and publication queries, below.

Let g^: a set containing search terms, where a search term is a data
n

item / G / and Q^ C,\JM^^
k=\

Let g'': a set containing search terms, where a search term is a data
item / G / and Q'' C M^

Let /: the set of all data items, where I cMi,

63

Let Mk- the metadata from a single system, which includes structural

and functional information, and M M ^ the collective set of metadata from

all systems, made available by the Metadatabase.

Let R: a set containing rules associated with a query, where each
contains a set of conditions C, and optionally a set of actions A.

Let C: a set of conditions used to qualify the search terms in the
query, or the query in general. There are three classes: selection conditions
((f), join conditions (Cf) and negotiation conditions (Cf).

Given these definitions a subscription query takes the following
form:

n

(Q^R\Q^ ^[JM^ A/? = (C, A)), where C c Ĉ u C ' u C^ (1)
k=l

To clarify, a subscription query is defined as a set containing search
terms indicated as data items, and a set of rules, where the data items are
limited to the boundaries of the global information model, and the rules
(which qualify or constrain the data items, and the query in general)
represent a combination of selection, join and negotiation conditions, and
actions. It is necessary to emphasize that the subscription query can be
constructed from any element, i.e. data items, in the entire global data
model.

This is not the case however for a publication query, which derives
its search terms from an individual system. A publication query can only be
provided by the owner of a system, and so the contents of the query are
derived from the sub-schema of the global data model that represents this
particular system. Accordingly, a publication query takes the following
form:

(<f,R\Q''cMkAR = (C, A)), where C c Ĉ u C' u C^ (2)

It must be emphasized here that the content of a publication query is
restricted to the sub-schema of the Metadatabase, M^ that corresponds to the
enterprise database. The scope of data items available to a query therefore
represents the fundamental difference between a publication query and a
subscription query. These definitions present the opportunity to formalize
the entire lifecycle of this new global query method. This begins with the
next section.

64

3. QUERY MATCHING: IDENTIFYING
COMPLEMENTARY QUERIES

The first stage in the TSCM is concerned with the matching of
queries, which means identifying queries that are the complement of a
supplied query. These complementary queries contain matching search
terms and conditions. This matching stage is concluded with the allocation
of a query, which identifies the best match among those found earlier, if
multiple matches are found. Otherwise, the allocation of the match is trivial.
The second stage in the TSCM is concerned with the execution of the query,
which submits the allocated query to the corresponding export database for
execution. The basic logic of matching involves three steps, as follows.

3.1 Step 1 - Identify Matching Data Items

The query matching process is defined as follows: Given a query S,
identify a complementary query q e Q, such that q n S ^ 0. Essentially,
matching queries must contain common data items. The query S can be
considered as a subscription query or publication query, and similarly a
query q e Q, identified from a set of Q, can be considered a publication
query or subscription query. The match process always finds the
complement of the supplied query. As demonstrated in Fig. 4-1, the match
process given queries q e Q and S produces four classes of results: (a) an
exact match, (b) a superset match, (c) a subset match, and (d) an intersect
match.

65

Supplied Query, S

L Taiflet Q e Q

(a) Exact

r Supplied Query, S

/ ^ , ' \

' Target, qe Q

(b) Superset

jr™^»w-r-' . Target; g e Q r""* Tanget, ij e Q

1 fli)
Supplied Query, S Supplied Query, S

(c) Subset (€) Intersect

Figure 4-1. Match Classes Determined from Algorithm 1

Definition: An exact match indicates that the data items in ^ G 2 'ire
equivalent to those in S, i.e. the complementary queries have the same
number of data items, which share the same semantics, and syntax. This is
formally established in the following statement:

Exact: Card (S) = Card (q n 5) and Card (q r)S) = Card (q), where
Card (qnS)> 0.

Definition: A superset match indicates that the number of items
matched is less than that specified in 5 but equivalent to those defined in a ^
G Q. This is established as,

Superset: Card (5) > Card (q n S) and Card (q n S) = Card (q)
where Card {qnS)>0.

Definition: A subset match indicates that the number of items
matched is equivalent to the number of items in S, but less than the number
of items that exist in ^ G Q. This is established as.

66

Subset: Card (S) = Card {q n S) and Card {q nS) < Card (q) where
qeQ.

Definition: An intersect match demonstrates that the queries contain
common items. That is the number of items matched is less than the number
of items that exist in both S and q G Q. That is,

Intersect: Card (S) > Card (q n 5) and Card (q n S) < Card (q),
where q s Q.

The algorithm illustrated in Table 4-1 summarizes the match of S
and q e Q. For each q e Q, if the match engine determines that S and q e Q
contain common items, it will count these data items and classify the match
according to the aforementioned definitions. It returns the set of queries that
match the supplied query S.

Table 4-1. Algorithm 1: Matching (S)
Let /: the set of all search terms (data items)
Let S; the query, containing items, ; e /, and S cI
Let Q: the set of all queries, each containing items i e I and Qcl
Let Q': the set of all queries that match S, such that 3; e S
Let Select (S): the set of queries that match S.
Let Type (S): the type of query, which belongs to one of two query classes request or ojfer.
Let R: the set of queries Q that match S qualified by the class of match Exact (R^), Superset
(R''), Subset (R% and Intersect (R').

Q <- Select (.q\q& QAqnSi^0 Aq€ Type (5))
For each q e Q

If Card (S) = Card (q n S) and Card (9 n 5) = Card (q)
R'^ (r-R'^uq

Else-If Card {S) > Card (q n S) and Card (qnS) = Card (q)
R'^R'yjq

Else-If Card (S) = Card (q n S) and Card (qnS)< Card (q)
«'* f- /?'' u ^

Else-If Card (S) > Card (q n S) and Card {qnS)< Card (q)
R'<r-R'uq

End-If
End-For
Return R

3.2 Step 2 - Combine Queries to Identify a Feasible
Solution

If a query q e Q that contain all the data items in the supplied query
cannot be identified, that is, if an exact or subset match (recall, this is from

67

the perspective of S) has not be found, but a superset and intersect match
(See Fig. 4-2) has been found, then an advanced round of matching is
entered into to attempt to find a solution for S. Here, the results from Step 1
(See Section 3.1) are combined (that is, superset and intersect) and each
combination is evaluated to determine if it contains the data items found in
the supplied query, S. The resulting combination queries are classified as,
(1) combination exact match, (2) combination superset match, (2)
combination subset match, and (4) combination intersect match, where each,
respectively, is the analogue of the classification defined in Section 3.1 and
in Table 4-1 above.

Target^

Targttqt

\ I
y^' . •̂ ". .^rr'/'TJ

r 'M'-
'""J^

[^ • • - .•<•
' . *C—^

•Wrrj,

i |^

Supplied Query,

-r._^

: /

S

Target 4

Figure 4-2. Conditions Required for a Combination Matcii

3.3 Item and Join Feasible Solutions

A combination exact or combination subset match does not indicate
that a solution for the query S has been found; rather, only that the disparate
queries combined, contain data items common to S. This is considered an
item feasible solution. To be otherwise considered a join feasible solution,
the queries q e Q that constitute the combination query must be logically
connected. This is illustrated with the following example:

Table 4-2. Combination Match Example
S = (itemi, item2, itemj, itemj
qA = (itenij, item2, item„, item„+ij
qs = (item2, itenij}
qc = (item^, item„, item„^.jj

68

Let S, qA, qs, and qc correspond to the subscription query and
publication queries respectively that are illustrated in Fig. 4-2 and Table 4-2
above. As indicated in the illustrations, q^, qs, and qc match S on particular
data items, and each with the class of match specified in Fig. 4-2 above. For
example, q^ matches S on data items, itemi and iteniz. The union of q^, qs,
and qc, which is denoted as qABc is the combination query that contains all
data items found in 5; however this is only regarded as an item feasible
solution, if the intersection of q^, qa, and qc is empty. If qABc is to be the
more valuable and meaningful join feasible solution for S then there must be
logical relationships among qA, qB, and qc, or the intersection of qA, qB, and
qc is not empty. In the event that qA, qB, and qc is empty, the Metadatabase
is employed to evaluate these item feasible solutions, whereas logical
connection between queries are determined from the global data model.

In this specific example, the intersection of qA and qB is item feasible
and join feasible, since the union contain common items in S, and the
intersection of qA and qB is not empty.

To extend this example, find that the union qABc also contains data
items common to S, but there is no apparent connection between qA, qB and
qc. In this case the Metadatabase may be consulted for information, which
would need to determine that that the qc is dependent on attributes in qA or
qB for this to be considered a join feasible solution. Otherwise, it would not
be possible determine the join feasibility of qABc- The following definitions
summarize these findings:

Let S: a query used as the input in our match algorithm

Let Q: a set of queries that the query S will be matched against

Let IF: the set of item feasible solutions

Let JF: the set of join feasible solutions

Let yf": the set of join feasible solutions resulting from a
combination query

Let /?^, R^, R'^, R': be defined as shown in Table 4-1.

Definition 1:

\fqe R'^UR'^ =>qe IF and qe JF

For each query q, where S is an exact and/or subset q, then the query
q by default is item feasible and join feasible.

69

Definition 2:

JF = R'^(JR''UJF' where JF' •• u* e IF<^

\ i

nS = S

A query is join feasible if it satisfies Definition 1, and if it is a

component of a combination query

and contains all the data items in S.
V i J

, where
V i J

is item feasible

Definition 3:

[J ,̂. 6 JF' ^\fqe R''^R' I \fqe IF, 3q'e IF^0 | qnq'i^i
\ i

A combination query U* is join feasible if the queries in the
V 1 J

combination belong to the set where 5 is a superset of, or intersects q, and if

the queries ^, in M q^ intersect and contain common data items.
V i

Algorithm 2 in Table 4-3 determines if a combination query is
feasible. The feasible combination query (or queries) that result contains the
greatest number of data items common to S.

Let S: the set of search terms defined in a query, where search term
is a data item / e /

Let R: the set of queries that match 5 derived from Algorithm 1 and
qualified by the class of match Exact, Superset, Subset, and Intersect

Let R': the set of queries that match S derived from R and qualified
by the class of match Superset and Intersect

Let M: the set of messages sent among the nodes (queries) R' in the
current cycle

Let N: the set of pending messages to be sent among the nodes R' in
the next cycle

Let P: the set of enumerated combinations of R'

Let Pbest- The current best solution for the algorithm.

70

Letpbest'. The value (cardinality) of the current best solution

Let pinclude'- The set of data items that must be included to create a
join feasible solution using the Shortest Path Algorithm.

Let Initialize (B): returns a set of messages containing an identifier
for the source of the message, and the data items contained in the set B.

Let n: The number of cycles for the algorithm to run.

Let ShortestPath (T): calls the shortest path algorithm for the given
set of entity-relationships, T and returns the set of items required to logically
connect T.

Let getEntRel (P): determines the entity-relationship(s) for the given
combination P.

Let JoinFeasible(P): determine if the given combination query P is
logically connected.

71

Table 4-3. Algorithm 2: Combination Matching (R)

p • <— 0

M <r- Initialize (R')
N^0
P < - 0
n f- Card (R')
no<r- 1
P*«/ <- 0
While no<n

For each me M
For each re /? '

If Card ((m u r) - m) > 0 and {m^r)i P
If Card/ ((m u r) n 5) > p/j^,,

If JoinFeasible (m u r)
^fc« ^ /'te.w u (m u r)
Ptest = Card ((ra u r) n 5)

Else-If ShortestPath {getEntRel (m u r)) u (m u r) - (m u r) ^ 0
Pnegotiate <— Pnegotiate '^ {m u r) Kj ShortestPttth {getEntRel (m u r))

End-If
Else-If Card ((m u r) n 5) = /?,;„,

If JoinFeasible (m u r)
Pbe.,t ^ /'*«(u (m u r)
Pfcoj = Card ((m u r) n 5)

Else-If ShortestPath {getEntRel (m u r)) u (m u r) - (m u r) T̂ 0
Pnegotiate ^~- Pnegotiate ^ {m u r) <~J SkortestPath {getEntRel {m u r))

End-If
End-If
P <— P u (m u r)
Af <— A*" u (m u r)

End-If
End-For

End-For
M<-iV
/ V ^ 0
«o = /Jo+ 1

End-While
Return Pfeg,

The primary function of Algorithm 2 is the one of message sending
between nodes. Each query resulting from Algorithm 1 constitutes a node in
Algorithm 2, and each node generates a unique message. Each message has
an identifier that corresponds to the query name, and the attributes of the
query constitutes the body of the message. At the start of the algorithm, the
number of cycles the algorithm should run is determined, which corresponds

72

to the number of queries found, Count (R'' U /?') in Algorithm 1, minus 1.
Table 4-4 illustrates the combinations of three queries, q^, qg, and qc, where
a: G R'' u R'. Round 1 is ignored since this correspond directly with the
elements of R'' U R', and so rounds 2 and 3 identify the remaining nodes for
processing.

Table 4-4. Evaluation of Combined Queries

Round Combinations
1 qA, qB, qc
2 qAB, qAC-, qac
3 q^Bc

In the first cycle of the algorithm each node broadcasts its message,
while the algorithm records all combined queries created as a result of the
broadcast, and ignores duplicates that it may find. A broadcasted message
received at a node has its message body combined with the contents of the
node, and a combination query is created. The order in the combination is
not significant; duplicate combination queries are created but are ignored by
the algorithm as previously mentioned. If a combination query shares data
items with the input query S, then the number of shared items constitutes
Pbest, if this number is greater than an earlier round of processing then we test
the join feasibility of the query and return new solutions phest and Phest if the
function returns true. If a join feasible solution cannot be found then the
modified Shortest Path Algorithm (See Appendix A-2 determines if the
entities and relationships to which the data items in the queries belong, are
logically connected (See Definition 4 below). The getEntRel function
provides this aforementioned functionality. This process is repeated if p^jfis
unchanged in the current round of processing.

Definition 4:

ShortestPath

(?' = 0 A ShortestPath

V i J
(\

V ;)

e JF => Vg e ;e'' u i?' I V(? e /F, -Bq' & IF^0 \ qn

The Shortest Path Algorithm attempts to determine a join feasible
solution from an item feasible combination query, where the set of queries
that constitute the combination query are disjoint. The Shortest Path
Algorithm therefore searches for additional metadata, which logically
connects these disjoint queries, perhaps allowing for the subsequent
modification of one or more of the queries, q.

73

Finally, the combination queries determined in each cycle of the
algorithm constitute the nodes for the next cycle, with the messages to be
broadcast remaining the same as initially created. The algorithm returns the
combination query (or queries) that contain the greatest number of data
items common to the input query S.

3.4 Step 3 - Constraint Matching

A successful query match also requires a satisfactory match between
the constraints in S and those in ^ e Q. Each query is optionally defined
with a set of constraints as indicated in Eq. (1) and Eq. (2). For a successful
constraint match, or rather a constraint feasible solution, the constraints in
the supplied query S, must be compatible with the constraints in the
matching query q e Q. Constraints that are compatible indicate that the
constraints in S will satisfy the corresponding constraints in ^ e Q. This
point is clarified with the following example: If a query S contains a
negotiation constraint, price < $20.00 and a matching query q e Q contains
a corresponding constraint, price = $10.00, then if S is considered an
information request and q e Q an information offer, then these particular
constraints are compatible.

The challenge that arises with the constraint matching process is to
evaluate not only the semantics of the constraints, but the quantitative
aspects as well. There are no actual data values to evaluate the constraints
during the match process, and so the effect that the operators have on these
data items cannot be readily identified. Therefore a new method to evaluate
the constraints must be devised. This algorithm assesses the compatibility of
the constraints provided in a query S and a matching query q e Q. The goal
of the algorithm is to ascertain if the constraints provided in the matching
queries are compatible with each other, that is, are the variables/data items of
the same domain, and if so, will the data values satisfy each other. In doing
so, truth tables are utilized to evaluate matching constraints, which is
discussed in greater detail in the following.

Each constraint provided in a query consists of a data item /
negotiation attribute /, a comparison operator from the set {=, <, >}, and a
data item / literal value v. Therefore, for each constraint in S and in ^ e Q,
establish all the possible constraint variations given the set of comparison
operators. For example, given a constraint, price < 20, then the variations of
this constraint include price = 20, and price > 20. In the first step of the
algorithm, given the set of constraints in S and in q, the matrix V is created to
consist of all the provided constraints and their variations. This matrix V is
denoted as the matrix of assertions. Table 4-1 illustrates a simple example

74

of the construction of a matrix V, given three constraints; q constraints: x
1,^ = 4, and S constraints: x < 5.

Table 4-5. Table of Assertions for Constraint Matching Algorithm
Constraint Number

Variation Number x< 1
x> 1

y = 4
y<4
y>4

x = 5
x<5
x>5

In the second step of the algorithm, all combinations of the
assertions in V are determined and their compatibility assessed.
Accordingly, the number of combinations to be evaluated is determined by
the following formula: 3", where n is the total number of constraints, which
is the sum of the number of constraints in S and those in ^ e Q. For each
combination of the constraints the compatibility is determined along with the
validity of the constraint, when compared with the provided constraints in S
and in q. That is, a combination constraint is true if it is compatible, and if
the constraints in the combination match the original constraints (See Table
4-2).

Table 4-6. Compatibility and Truth Table for Constraint Matching Algorithm
Constraint Combination Compatible

x= 1
x=l
x= 1

y = 4
y = 4
y = 4

x = 5
x<5
x> 5

No
Yes
No

x> 1 y>l x> 5 Yes

Comparing y = 4 and x < 5 to x = 1, highlights the fact that this
constraint combination is compatible since (1) x = 1, does satisfy x < 5, and
(2)y = 4 and x = 1 are compatible. This latter argument requires elaboration.
By default, constraints in different domains are compatible, and since x and y
are different domains then y - 4 and x = 1 are compatible. Also, this
combination constraint is true for each constraint in S and q e Q, since each
of the constraints in the combination match the originally provided
constraints.

75

S constraint

QConsitraint

Figure 4-3. Determination of the Type of Constraint Matcli

The compilation of the results found in Table 4-6 reveal the numbers
of true/true (TT), true/false (TF) and false/true (FT) results for the given set
of constraints in S and q e Q. A true/true result corresponds to the
intersection of both regions in Fig. 4-3, whereas a true/false corresponds to
the region bounded by S constraint, and conversely a false/true is bounded
by q constraint in Fig. 4-3. A false/false result can also be determined,
which is the complement of Sconstmim u qconsminu but this is discarded since
this simply indicates that the constraints do not match. It is necessary to
determine how the constraints match and so emphasis is placed on the results
that provide such information. Therefore, the TT, TF and FT results are
classified according to the aforementioned exact, superset/subset, and
intersect classification described in Section 3.1. Where the compiled results
from Table 4-2 indicate a TT quantity greater than zero, with the TF and FT
equal to zero, then an exact match between the constraints has been
identified. This is summarized Table 4-3:

Table 4-7. Classification of Constraint Match Results

Exact
Superset
Subset
Intersect

TT
> 0
> 0
> 0
> 0

TF
= 0
>0
= 0
> 0

FT
= 0
= 0
> 0
> 0

Algorithm 3 {Constraint Match) in Table 4-8 determines the con
straint feasibility of a query S and a matching query q e Q.

76

Table 4-8. Algorithm 3: Constraint Matchinf^ (S , q)
Let S^: The set of constraints associated with S.
Let q^: The set of constraints associated with q.
Let A: the current assertion
Let V: The set of all assertions corresponding to the constraints in S'' and q''.
Let Initialize(A, B): Create a matrix of assertions from the constraints A and B. V is a two
dimensional array of constraint variations.
Let Op: The set of operators {=,<,>)
Let evaluate(A, B): Assess the truth value of A and B.
Let accumulate(A, B): Sum AB, where A and B can be T or F. So TT = TT + I if A is T and
B is T, Perform also for TF and FT.
Let Compatible(A, B): Determine if B is compatible with the current set of assertions in A.

7 T ^ 0
T F f - 0
FT<^0
A<r-0
V <- InitializeiS'^, q^)
If count{S^ u q'^)^o
For V = 1 to count{Op)

Match (A,
End-For
End-If

V, S ,̂ / , 1, V)

Function Match (A, V, S'', cf, u, v)
M Compatible(A, Vlu]lv])

A[u] <r-Vlu][v]
If M = countiS^ u q^)

accumulate {evaluate(S'', A), evaluate(q'', A))
Else
For V = 1 to count{Op)

Match(A,V,S'^,q^,u+ 1, v)
End-For

End-If
End-If
End-Function

Definition 5 and Definition 6 establish the criteria for the constraint
feasible solution of a query S and matching query q e Q, or matching

r \
combination query

V i J

Definition 5:

^ n 5 6 Cf => V5^, 3^^ e Q^ such that g'̂ n 5^ 7̂ 0

77

The match of a query S and a query q e Q is constraint feasible if
the constraints in S and q are compatible.

Definition 6:

nSe CF^\f S^,3q'^ e Q'̂ , V
f \

V i

, such that
f

U'??
A

c

V ; J

n 5 ' ^ # 0

The match of a combination query and query S is constraint
V i J

feasible, if the constraints in the S and in each query ^, are compatible.

4. QUERY ALLOCATION: ASSIGN QUERIES TO
WINNING EXPORT DATABASES

Once a satisfactory match has been found, then the query S is
allocated to the corresponding export database of the matching query q e Q.
It is trivial if S matches a single q e Q, but is non-trivial if multiple queries,
q e Q are a satisfactory match for S. The non-trivial case assumes that the
queries q e 2 are similarly item, join and constraint feasible and they can be
substituted for each other to provide a single, equivalent satisfactory match
for S. It is assumed in this non-trivial case that S corresponds to a
subscription query, and conversely q e Q corresponds to a publication
query, and so to identify a single query will require the use of decision rules.
The list below provides four decision criteria which can be specified as
actions during query formulation. Recall that multiple actions can be
specified in a query, and so these decision criteria can be specified in any
combination; grouped all together, or only a single criterion specified.

Heuristic: First-Come, First-Serve and Last-Come First-Serve -
uses the system-defined timestamp of each query to select a winner. In
First-Come First-Serve, the query with the oldest timestamp, i.e., the query
that has been registered with the Blackboard for the greatest amount of time
is selected. The assumption here is that the associated export database will
be reliable. In Last-Come First-Serve the query with the most recent
timestamp, i.e., the query that has been registered with the Blackboard for
the least amount of time is selected. The assumption here is that the
associated export database will have current data.

Network Performance - determines the geographical location of the
export databases, assuming that further distances contribute to network

78

latency, and chooses the export database that is in closer proximity to its
location. This requires that the Blackboard shell has the functionality, or is
connected to resources that can assess the geographical location of other
systems in the TSCM.

Past History - the export database that is popular, that is, where it
has frequently provided answers in other previous matching sessions will be
chosen over an export database that has not been similarly prolific.
Moreover, if the export database is reliable, that is, if the export database has
significantly greater success than not, in providing answers in previous
matching sessions. This requires that the Blackboard shell maintain the
history of past sessions, such that these statistics can be determined.

Preferred Organizations - the selected export database will be
chosen from a list of preferred export databases that have been specified
during query formulation. It may be desired to restrict the allocation to a
specific export database, say for example, government, military or academic
export databases. In this respect, the Blackboard must provide a mechanism,
or is connected to a mechanism that authenticates and classifies the export
databases that participate in the TSCM.

On the other hand, if multiple equivalent subscription queries q e Q
are found for a supplied publication query S, then generally no decision rules
are required to choose a "winner," since the subscription queries match the
publication query. The export database will therefore service each
subscription query. However, these decision criteria are still provided
during query formulation, and so can be specified during the construction of
a publication query. Accordingly, the Blackboard will filter the subscription
queries as required.

In the event that actions are not included in queries that match each
other, then the Blackboard automatically selects a winning match from the
available decision criteria. If the publication query dominates and multiple
subscriptions queries are found, then the Blackboard may choose to filter, or
stagger the results to an acceptable number, rather than load the export
database with an excessive number of queries. If the subscription query
dominates, then the Blackboard may rank the publication queries to provide
a result of increased "quality". If the Blackboard still cannot determine an
acceptable solution then it will seek manual input to choose an appropriate
solution.

79

5. QUERY EXECUTION: OBTAINING RESULTS
FROM THE EXPORT DATABASE

The execution of the query on the export databases, which is
achieved through the particular architecture discussed in Chapter 5,
constitutes the final phase of query processing in the TSCM. The supplied
query is delivered to the winning export database shell as described in the
previous section, where it is transformed from Extended Metadatabase
Query Language (exMQL) format to its equivalent Structured Query
Language (SQL) representation for execution on the export database. The
query is processed and the results returned from the export database are then
transformed into an exMQL message and delivered to the Blackboard, where
it is forwarded to the initiator of the supplied query. The query execution
process is discussed in greater detail in Chapters 5 and 6.

6. A SUMMARY OF THE QUERY MATCHING
PROCESS

The query matching process is summarized in the following text,
and as illustrated in Fig. 4-4. A query S that is an exact match of a query q
6 Q, or if 5 is a subset of q e Q then q e Q (See Section 3.2) is
automatically considered item feasible (IF) and join feasible (JF), and so we
continue onwards to test for the constraint feasibility (CF) of the match.

If the query S otherwise matches the query q e Q, i.e. if 5 is a
superset of, or intersects q e Q, then the match algorithm enters into a
second stage of matching (See Section 3.3) to determine combinations of

these results M^, , which are again compared with S to determine their
i

item and join feasibility. If q e Q or \\qi is not item feasible then the

query matching algorithm terminates.

80

op
:^^x-m^y^

<x Jr(0? >
/ \ HO

res

REQUfST I
MODFCAnON f~

ASSIGN
QJUEHY

.J
NO riATCH

Foum

Figure 4-4. The Evaluation of a Combination Matcti Evaluation

If M^; is join feasible, which implies that the data items are

logically connected and that a common item exists in all queries, then

M^; is tested for constraint feasibility. In the event that M^, is not join

feasible, then \\qi is evaluated with the Shortest Path Algorithm {SPA)
i

(Cheung 1991). If the SPA determines a solution for M^, then it is
i

necessary to request the inclusion of the missing items found by the SPA

before |Jg,. is considered join feasible. If the SPA cannot determine the

join feasibility of 1) q^ then it indicates that the individual queries cannot be

logically connected given the information in the Metadatabase, and therefore
the query matching algorithm is terminated.

The query S is assigned to the corresponding export database of q e

Q, or the export databases of 1) ^, if these are constraint feasible. In the

event q e Q or (^^. are not constraint feasible then it is necessary to

request the modification of the constraints in the appropriate queries.

7. THE ADVANTAGES OF THE N E W EXECUTION
M E T H O D S W H E N COMPARED WITH
TRADITIONAL APPROACHES

The new execution methods provide improvements for global query
in distributed database systems, specifically in the areas of database
autonomy, heterogeneity and scalability as highlighted in the sub-sections
that follow. The introduction of the publication queries to the global query
regime, as facilitated by export databases, and the algorithms that support
the matching of these queries with subscription queries on the Blackboard
contributes to the advantages of the TSCM over the traditional methods of
global query.

7.1 Database Autonomy

By virtue of its dependence on the Metadatabase, the TSCM inherits
the contributions in autonomy, open architectures and extensibility already
realized in the original research; but it also expands on these areas
significantly in its own right. In the original research the schemata of the
distributed database systems are consolidated into a global information
model (See Chapter 2) that resolves the semantic heterogeneities that exists
among the individual schemata. The application of the global information
model on the federation differs from traditional approaches, in that the
global information model is not imposed on each component database
systems, rather it works in concert with the local schemata. In fact, the
schemata of the local databases remain unchanged when associated with the
Metadatabase therefore contributing to its relatively greater autonomy.

The global information model (See Fig. 2-4) is implemented as a
regular database schema, and the local data models and their attendant
functional (operating, decision and business rules) constructs are essentially
tuples in the underlying database system. Modifications to the global
information model, such as the addition of new local schemas, or the update
or deletion of existing local schemas are made using insert, update and

82

delete commands in MQL, which are equivalent to the commands found in
standard SQL.

The TSCM extend the autonomy of the databases participating
Metadatabase-enabled global query, by offering the ability to connect and
disconnect from global query infrastructure at will, yet retaining the
membership of the local data model in the Metadatabase. In traditional
global query systems, including the Metadatabase, a distributed database is
always available for global database query. The databases are subservient to
the global query authority, and cannot control when and how their data
resources are utilized, unless the local data model is removed entirely from
the global query infrastructure. In the Metadatabase context, this essentially
requires the deletion of tuples from the Metadatabase, but in traditional
systems the effort may be a significant undertaking. To re-connect to the
global query architecture, the local schema must enter into the initial
registration phase once again, which can be a significant undertaking. The
TSCM on the other hand separates the registration mechanism from the
global query architecture, as represented by the Metadatabase and
Blackboard respectively. Furthermore, this new approach is supported by
the new publish/subscribe mechanism facilitated by publication queries and
subscription queries respectively. Therefore, a local database participates in
global query only when the data to be shared is made public, by submitting
queries to the Blackboard. Otherwise, the local database remains a part of
the global query architecture, but does not participate in it.

7.2 Database Heterogeneity

In traditional global query, the component databases are subject to
the authority of the database management system, and so their participation
in global query is unconditional. Moreover, the DBMS imposes the global
query language and the global schema on the component databases. The
Metadatabase technology affords participating databases the opportunity to
maintain a heterogeneous local schema, while still participating in global
query. The Metadatabase transforms all global queries from the global
query format to an equivalent local query format via ROPE, which are
software shells that encapsulate the databases (Babin 1993). The TSCM
therefore inherits this functionality but extends the heterogeneity of a local
database in the Metadatabase architecture in two ways. First, all resources in
the TSCM and beyond the boundaries of an enterprise database exist in the
global scope. The global schema, the export database schema, query
language, and data values are all global defined. The enterprise database
monitor (See Chapter 5) has the responsibility of converting the local data
values and attributes to their equivalent global representation. Second, MQL

83

is extended to include the concept of rules, which include constraints that
qualify the data items, and actions that additionally assess the best results
returned from global query. The opportunity to declare constraints at the
query level (See Section 2) provides a degree of extensibility, and
heterogeneity that was necessary but until now has not been realized in the
Metadatabase architecture.

7.3 Integration Scalability and Open Architectures

Integration scalability pertains to the ability of the distributed
database management systems to add increasingly greater numbers of
databases without loss of functionality and performance, but rather to take
full advantage of the available resources. Scalability was not a significant
barrier to functionality in traditional DBMSs, for the simple fact the numbers
of databases included in a database integration framework was small. But,
as the database environment grows, which is more evident in today's
enterprise infrastructure, and Internet-facilitated industrial exchanges, then
the ability to manage a global query in these infrastructures using traditional
methods is impossible, and so new methods are necessary to support this.

The Metadatabase has already provided a compelling mechanism to
improve the scalability and openness of global query, via the methods
provided to add new databases to the global data model (Hsu, Bouziane et al.
1991). The Metadatabase approach also can be installed on standard
relational database technology, and so the scalability of the global
information model, and therefore the integration scalability are limited only
by the capabilities of the hardware and software.

The new methods of the TSCM extend the scalability and maintain
the openness of the Metadatabase architecture. Export database shells
facilitate the addition of diverse database systems and alternative data
sources as well, if necessary. The primary effort required in this regard, is
the development of wrappers required to retrieve the data from the
enterprise databases, and transform the resident data from the native format
to the global format. These export databases therefore can submit any
number of queries to the Blackboard, to take part in query matching.
Consequently, the scalability of the Blackboard is limited by the capabilities
of the underlying database hardware and software. The openness of the
Blackboard and therefore the TSCM is limited by the number of wrappers
provided to integrate the enterprise databases.

Chapter 5

THE ARCHITECTURAL COMPONENTS OF THE
TWO-STAGE COLLABORATION MODEL

1. OVERVIEW

This chapter describes the architectural components that are required
to support the algorithms described in the previous chapter, and in general to
actualize the TSCM. As previously indicated, the global query methods
implement the functionality of the Blackboard, which serves as the hub of
collaboration in the TSCM. The Metadatabase maintains the global data
model and supports the Blackboard in instances where additional semantic
information is required during query matching. An enterprise database
participating in the TSCM is represented by an export database shell, which
contains an export database and additional apparatus to facilitate the
information sharing within the TSCM. These components are connected to
each other via a messaging protocol, combined with exMQL. The message
protocol provides the transport for messages between the components of the
TSCM, and encapsulates the exMQL commands necessary to manipulate
queries at the Blackboard. Finally, the exMGQS facilitates the construction
of queries, both subscription and publication queries; in addition to
monitoring the status of the query matching process at the Blackboard.
These components are explored in greater detail in the sections that follow.

86

2. THE PROTOTYPE STRUCTURE OF THE
BLACKBOARD

The Blackboard shell (See Fig. 2-1), abbreviated Blackboard, is a
software shell that encapsulates the query database and rulebase as well as
additional components necessary for query management, processing and
optimization. The query database, which maintains the list of queries, and
rulebase, which maintains the constraints associated with the queries are
implemented on a standard relational database management system
(RDBMS) that is extended by the implementation of the algorithms
described in the previous chapter, as well as the new query language
exMQL. In this regard, the RDBMS is denoted as the Blackboard
Database Management System (BDBMS). The BDBMS therefore
implements the algorithms in Chapter 4 by using the procedural language
facility (e.g. PL/SQL in Oracle, and PL/pgSQL in PostgreSQL) of the
underlying RDBMS. The remaining software components of the Blackboard
include: the Network Monitor, Message Processor, and Result Integrator.

NETWORK
MONITOR

MESSAGE
PROCESSOR

NETWORK

^
' \

, • • • • »

:Q
• QUERV
_ DATABASE

I I T r m RULEBASE '

RESULT
INTEGRATOR

BDBMS

a.

GLOBAL
METADATAEftSE

Figure 5-1. Blackboard Prototype Architecture

The Message Processor is used primarily to transform exMQL
queries that are to be added to the Blackboard database to an equivalent
series of SQL (Structured Query Language) INSERT statements.
Subsequent to the query matching process, if a matching query is not found,
the supplied query is added to the Blackboard database. The message
processor therefore transforms the supplied query into a series of INSERT
statements, organized to respect dependency constraints. This transaction is
described in greater detail in Chapter 6.

87

The results returned from the Blackboard database include the
identification of the export database(s) that satisfy the supplied query, along
with the corresponding data items and constraints. Accordingly, these
database results are converted to their equivalent message representation,
and are directed to the Network Monitor for additional processing.

The Network Monitor directs all communication to the appropriate
targets. It listens for all incoming query messages and redirects them to the
Message Processor for further processing as indicated above. In this regard,
the Network Monitor removes the message envelope and forwards the
message body to the Message Processor. For outgoing messages, such as
notifications sent to export databases matching the supplied query, the
Network Monitor transforms the matching data items and constraints, and
encapsulates this content in a message envelope for delivery to the affected
export databases. In the event that, multiple queries must be integrated to
satisfy the supplied query, which corresponds to a combination match, then
the Network Monitor maintains a database of the notified export databases,
and the pending integration requirement, and waits for responses from them.
When all results are retrieved from the affected export databases, they are
directed to the Result Integrator for consolidation into a single result. The
Network Monitor uses the knowledge of queries stored in the Blackboard
database (e.g. IP addresses) to forward outgoing messages and query results
to their required destinations.

The primary responsibility of the Result Integrator is the
integration of results from a combination match. The Result Integrator
consolidates the actual query results (not the query metadata) from the
corresponding export databases, according to the data supplied by the
BDBMS. A combination match provides the necessary integration
requirements for the Result Integrator; the involved data items determine the
affected export databases, while the necessary joins that produce the match
dictate how the Result Integrator must combine the results returned from
these databases. The combined results are then directed to the Message
Processor and then on to the Network Monitor to be forwarded to the
supplier of the initial query.

The Global Metadatabase maintains the global data model and is
the central authority to which Local Metadatabases subscribe (See Chapter
5). As described in Chapter 5, the Metadatabase provides an integrated
model of global metadata, which also considers global knowledge such as
operating and business rules corresponding to a local or enterprise database.
For its role in the TSCM, the Metadatabase is primarily used for this global
knowledge, and the facility to transform global attributes and values, into
local attributes and values, and vice versa. It is also used for the evaluation
of combination queries in the combination algorithm depicted in Table 4-3

(See Chapter 4 for additional details), where the combination of disparate
queries is determined to be feasible if the Shortest Path Algorithm returns a
result. Finally, as a component of the exMGQS the Metadatabase also
contributes to the construction of queries (See Section 4).

SYSTEM

Itemin

/•» f\

\ | ^ <M)efines J >

User

-< 'AdminislerV

QUERY

VIEW

-^ ERExist V

Integrity

^ B e l o n g t o ^

Item

— ' ' Subjeclin^--

Context

d l o > < Describes

I — - ' Convert ^,^ Rule

I ' ' Condof V < * * '

Condition Action

Expr

' Loper ^ ^ r ^ Roper"

- : For V

Fact

' Bind-FacI

' ' Maintain"

Calls

Software

Hardware
Resources

Figure 5-2. Conceptual Structure of the Blackboard Database

89

The conceptual structure of the Blackboard database is derived from
the Global Information Resources Dictionary (GIRD), which is also the
conceptual structure of the Metadatabase (See Chapter 2). However, the
requirements of the GIRD are relaxed for the purposes of the Blackboard
database, and so a number of the elements of the GIRD are unused but are
retained in the information model for possible future expansion. In this
regard, this version of the GIRD is denoted as the Blackboard schema, which
conceptually constitutes two distinct database schemas and can be
implemented as such, but as illustrated in Fig. 5-2 and implemented in this
research (See Appendix B) they are contained in a single structural model,

2.1 The Conceptual Structure of the Query Database

The main changes to the GIRD to satisfy the requirements of the
Blackboard schema are the SYSTEM, QUERY, and VIEW meta-entities,
which replace the APPLICATION, SUBJECT and ENTREL meta-entities.
The remaining meta-entities, and meta-relationships, that is the Functional
Relationships (FR), Mandatory Relationships (MR) and Plural Relationships
(PR) that connect them, retain their original definitions as outlined in
(Bouziane 1991; Hsu, Bouziane et al. 1991), with minor extensions. The
relevant changes are clarified in the list below.

The SYSTEM meta-entity identifies the enterprise databases that are
currently participating in global query, and accordingly the export database
shell that represent the local enterprise. Each export database shell is
defined by a unique identifier, which is determined at design-time when the
local data model is integrated into the Metadatabase. However, this is not
made available to the global Blackboard unless a query has been submitted
to the Blackboard by the export database.

The QUERY meta-entity identifies the queries submitted by the
export database. Each query submitted to the Blackboard is unique, and is
associated with a unique identifier that is assigned at run-time. A timestamp
attribute is generated automatically when the query is received at the
Blackboard. The timestamp is primarily used for breaking ties, as discussed
in Chapter 4, but is also used to remove queries from the query database
after a user-defined or system-enforced expiration date and time. The
related COMPONENTS meta-MR associates queries with a particular export
database (SYSTEM), and upholds existence and dependency constraints by
deleting these corresponding queries if the export database is removed
entirely from the Blackboard. This will occur if no queries owned by the
export database are resident at the Blackboard.

90

The VIEW meta-entity, in its currently implemented form is an alias
for the QUERY meta-entity, and so displays the same list of data items
described in a query. The complete implementation of a query may have
multiple views, which is analogous to the traditional definition of a database
view. Indeed, the conceptual model provides this opportunity, since an
export database can submit more than one query to the Blackboard.
Therefore, it is possible for the queries to contain common items, which then
implies that the unique identifiers of the data items are shared. It is
important to note that there cannot be multiple instances of unique identifiers
in the query database.

The ITEM meta-entity remains unchanged from its original
definition (Cheung 1991), and represents the data items specified in each
query. The related BELONGTO meta-PR associates data items to a specific
VIEW, and the DESCRIBES meta-PR specifies the data items that belong to
each QUERY.

2.2 The Conceptual Structure of the Rulebase

The rulebase maintains its original definitions as described in
(Bouziane 1991), although the context in which it is used has changed. In
the original definition, the RULE meta-entity consolidated the decision,
business and operating rules in the global data model. These rules took the
form, IF condition THEN action, and only operated on the data items in the
Metadatabase. In its new context, the RULE meta-entity consolidates the
various constraint types discussed in Chapter 4, and actions as defined in a
query. Consequently, the RULE meta-entity is comprised of the
CONDITION, ACTION meta-entities, and the additional meta-plural
relationships necessary to support the abstraction of the rules (See Fig. 5-2).

The general syntax of a rule is based on the Event-Condition-Action
(ECA) grammar described in (Babin 1993). The ECA paradigm suggests
that given the occurrence of an event, and the positive assertion of its
condition(s), the corresponding action(s) should be executed. Now, the
event in question always refers to the successful match of data items at the
Blackboard, regardless of the class of match as specified in Chapter 4,
although generally the default action on an exact match will always deliver
the results to the corresponding recipient. As with the constraints in a query,
the actions in a rule can also be defined during query construction.

As discussed in Chapter 4, a constraint takes the form of an
operation between an attribute or data item, and literal value in the case of
negotiation and selection constraints respectively, and between data items in
the case of join constraints. This is depicted in Fig. 5-2 by the CONDITION

91

meta-entity, which abstracts the negotiation, selection and join constraints;
while the FACT meta-entity provides additional details about the
components of this abstraction.

The implemented functionality of the Blackboard is limited to the
scope of meta-entities and the supporting meta-relations that are specifically
discussed in this section, but additional details on the remaining elements of
the rulebase model can be found in (Bouziane 1991).

3. THE PROTOTYPE STRUCTURE OF THE
EXPORT DATABASE SHELL

Figure 5-3 illustrates the elements of the export database shell,
which encapsulates the export database and additional elements necessary to
support the ability of the database to share information in the TSCM. The
export database also maintains the globally defined data and attributes of the
local equivalents found in the enterprise databases, which it represents.
Moreover, the schema of the export database is defined by the data items
contained in the publication queries that are issued via the exMGQS. A
standard relational database system is used to implement the export
database, and accordingly the native query language is utilized for accessing
the database. Finally, the remaining software components of the export
database shell include the Network Monitor and Message Processor.

The Network Monitor and Message Processor provide similar
functionality as described in Section 2. The Network Monitor listens for
incoming query execution requests from the Blackboard, and passes these on
to the Message Processor for additional processing. It strips the query
execution request of its message envelope and submits the message body to
the Message Processor. The Message Processor transforms all incoming
messages queries into their equivalent SQL representation and submits it to
the Export Database Management System (EDBMS) for processing.
Conversely, the Message Processor converts the outgoing query results from
the EDBMS into their messaging format, to which the Network Monitor
adds the message envelope for delivery to the Blackboard.

92

NETVWRK

LOCAL

BLACKBOARD

f

MESSAGE
PROCESSOR

LOCAL
METADATAElASE

MONITOR !

4 K i

^S^V»!!h:«*~Ss(!S"^"

^3 J

> ; : . : . ,

« • • • *
EDBMS

* I •» •

ENTERPRISE
DATABASES

Figure 5-3. Prototype Structure of the Export Database Shell

The Export Database is the repository of data corresponding to
publication queries issued via the exMGQS, This data is obtained from the
enterprise database(s) that exist in the local domain, and are updated through
an enterprise database monitor, which is unique for each enterprise
database. This design is provided to facilitate the open architecture of the
TSCM, and particularly to work in concert with the heterogeneous systems
that the TSCM will no doubt encounter. Moreover, if the enterprise
databases are shielded from public view by software or hardware-based
firewalls, then the export database provides the opportunity for these
enterprise databases to still participate in the TSCM.

To populate the export database with data corresponding to a
publication query, however, still requires the export database shell to have
access to the enterprise databases. How this is implemented, and how it is
managed is the responsibility of the local domain, although multiple
alternatives are possible in the TSCM design. The export database shell can
be installed in front of the firewall and connected to the enterprise databases
via a secured TCP port. On the other hand, the export database can be
connected behind the firewall, which would require it to communicate
through an open port on the firewall. We defer the resolution of these issues
for a future design of the TSCM.

As stated earlier, the export database is implemented on a standard
relational database, and so all incoming queries from the Message Processor
are transformed to the native language of the export database, which in the
current design will be SQL queries. The Export Database Management

93

System implements the interface and data management facilities of the
export database.

The Local Metadatabase in the current implementation facilitates
the query transformation process by converting the local data values
retrieved from the enterprise database into their global equivalent when
populating the export database. In its minimum implementation it serves as
a reference table that provides a mapping of local attributes to global
attributes, and the necessary conversion factors to go from local values to
global values. In the full implementation it is an exact copy of the Global
Metadatabase, and captures the complete knowledge, which is the business,
decision and operation rules of all enterprise databases participating in the
TSCM. Furthermore, the Local Metadatabase works in concert with the
Local Blackboard when the export database shell participates in a peer-to-
peer manner with other export database shells.

The Local Blackboard facilitates peer-to-peer global query, where
each export database shell can initiate a global query session directly with
other export database shells. The initiating export database shell in this
context will operate in a manner analogous to Global Blackboard, but exists
outside the purview of the central Global Blackboard. In this role the export
database shell functions exactly as described in Section 2, however the
discussion of this peer-to-peer functionality is beyond the scope of this
research.

94

4.

(
\

A

> • _

THE PROTOTYPE STRUCTURE OF THE
EXTENDED METADATABASE GLOBAL QUERY
SYSTEM

GLOBAL QUERY
FORMULATOR

BLACKBOARD
MONITOR

1
•9

Y

t
\..., NETWORK

DATABASESROGRAM INTERFACE

'""xie-^^-

« • • • • »

I
rnr-=i

GRAPHICAL USER
INTERFACE

• #-« Hr-

• L-J • — Z L J •
GLOBAL

METADATABASE
GLOBAL

BLACKBOARD

Figure 5-4. The Architecture of the Extended Metadatabase Global Query System

The extended Metadatabase Global Query System (exMGQS)
extends the original implementation of the GQS (Babin 1993; Cheung and
Hsu 1996) primarily through the addition of the Blackboard as a data source
for query formulation, as well as the addition of the new context applied to
queries, notably subscription and publication queries (See Fig. 5-4).
Moreover, the new rule processing methods are added, which previously
were not addressed at this level of the GQS design, and so the interface and
functionality are modified to reflect these changes. The exMGQS therefore
consists of the components necessary to facilitate the construction of queries,
and so is not simply a graphical user interface; most importantly it combines
a Global Query Formulator to provide online-assistance during query
formulation. A Blackboard Monitor is also provided to display the status of
the query matching processes to users of the exMGQS, who gain visual
access through the graphical user interface.

The Global Query Formulator is an interactive tool that facilitates
the construction and manipulation of queries (See Section 5) in the

95

exMGQS. It provides the underlying methods required to interactively
navigate the Blackboard and Metadatabase. The vertical traversal of the
Metadatabase directs query formulation in a path that leads from a selected
APPLICATION to its component data ITEMs. Along the path, the
navigation would have revealed the component SUBJECT and ENTITY-
RELATIONSHIPS. Similarly, when vertically navigating the Blackboard,
the Global Query Formulator reveals the ITEMs and QUERY that belong to
a selected SYSTEM (export database). Conversely, the original research
(Cheung 1991) also describes a horizontal traversal method, where
navigating the Metadatabase reveals the adjacent meta-entities (OE) and
meta-plural relationships (PR) when an OE/PR is selected in the
Metadatabase. This process however cannot be implemented for the
Blackboard since the common elements across export databases are the data
items alone. In fact, the matching algorithms in Chapter 4 provide this
functionality; by pivoting around the provided data items in a query we are
able to identify complementary queries.

During query construction, the Query Formulator does the
following: (1) validates the query, (2) detects and notifies the user if the data
items and constraints are semantically inconsistent, if they belong to
mismatched domains, or if they have conflicting data formats. The result of
the query formulation process is therefore a semantically consistent and
validated query, which can then be submitted directly to the Blackboard.

The Blackboard Monitor is activated when a query has been added
to the Blackboard, and so provides updates on the performance of the
queries owned by each export database.

The Graphical User Interface, which is described in further detail
in Chapter 6 is implemented using basic HTML and JavaScript
programming, and is accessible from a standard Internet browser. The
content of the GUI is provided by the Blackboard and Metadatabase, through
the database interfaces illustrated in Fig. 5-4.

5. EXTENDED MQL: A QUERY LANGUAGE FOR
THE TSCM

The Extended Metadatabase Query Language (exMQL) is designed
to provide a uniform query format for the various query operations that are
required in the TSCM. The structure is derived from the original MQL
specification in (Cheung 1991), and therefore is also based on the TSER
representation method. It differs distinctly from the original MQL however,
due to the new publication method and to the new rule specification to the

96

query language. The full syntax specification of exMQL is illustrated in
Figs. 5-5 to 5-15, and uses an alternative Backus-Naur Format (BNF)
described in (Babin 2004). A corresponding XML representation is also
provided in Appendix A. In particular, exMQL:

• Supports queries requiring joins of data from different export databases.
During the match process, the Blackboard will consult the Metadatabase
to determine if the query can be joined on the data items.

• Uses familiar names for the data items in queries. The Metadatabase and
Blackboard utilize the itemcode, a unique internal identifier used for all
data items in both databases.

• Minimizes technical details expected of users for the global query
formulation, while supporting the above functionalities (e.g., the physical
locations, local names, and implicit join conditions).

In Fig. 5-5 to 5-15, the GET and PUT commands specify a
subscription query (information request) and publication query (information
offer), respectively. Both commands are followed by a space-delimited list
of data items for retrieval (subscription) or sharing (publication),
respectively as represented by the ITEMs category. At least one data item
must be provided in a query, which in addition to the GET or PUT
command. These are the minimum requirements for a global query in the
TSCM.

The FOR command specifies constraints on the data items specified
in the query, as well as constraints on the query in general. As specified in
Chapter 4, three classes of constraints are considered: selection conditions
(SC), join conditions (JC) and negotiation conditions (NC). These
conditions serve two functions: (1) to be used in the evaluation of a match
(See Chapter 4), and (2) to be used in a manner analogous to the WHERE
command in traditional SQL.

• <QUERY> ::= <COMMAND> <ITEMS> *['FOR'
<CONDITIONS>]* *['D0' <ACTIONS>]* ;

>—I COMMAND |-[COMMAND H ITEMS
^ - j> - (JOR) - | CONDITIONS k - ^ ^ - ^ H ^ D q) - | ACTIONS ~\y^

Figure 5-5. exMQL QUERY Clause

97

• <ITEMS> : : = / [i t e m 11 ' , '] / ;

ITEMS

" - { ^ ^

Figure 5-6. exMQL ITEMS Clause

• <COMMAND> : : = ' G E T ' I ' P U T ' ;

GET>
COMMAND[

TPUT;)

Figure 5-7. exMQL QUERY COMMAND options

• <CONDITIONS> : := /[<CONDITION> I I <CONJOIN>]/

CONDITIONS > — ^ CONDITION I V
^ CONJOIN k

Figure 5-8. exMQL CONDITIONS Clause

• <CONJOIN> : : = 'AND' I ' O R ' ;

CONJOIN
COR)

Figure 5-9. exMQL CONJOIN options

• <CONDITION> ::= <SELECT> <JOIN> <NEGOTIATE>

SELECT

I CONDITION I >-

Figure 5-10. exMQL CONDITION options

98

• <SELECTION> : : = i t e m <B01JND> v a l u e ;

I SELECT] >—(item) - \ BOUND \-{ value }—»

Figure 5-11. exMQL SELECTION Clause

• <JOIN> ::= item <BOUND> item ;

I JOIN I >—(item W BOUND [{ item)—>

Figure 5-12. exMQL JOIN Clause

• <NEGOTIATE> ::= attribute <BOUND> value ;

I NEGOTIATE | >—(attribute }-j BOUND \{ value)—»

Figure 5-13. exMQL NEGOTIATE Clause

• <BOUND> <> ' 1 ^ 1 1 ^ 1 1 - ' — ' 1 — I

BOUND

K5K

F(̂ Mre 5-14. exMQL BOUND options

>=' ;

• <ACTIONS> : : = / [a c t i o n ' , '] / ;

ACTIONS >—T-f action }—<r >

Figwre 5-/5. exMQL ACTIONS Clause

99

For this second function, and particularly selection and join
conditions, each row in a query result set that is returned for an information
request is checked against these conditions, and if the conditions are upheld
then the query results remain intact. Otherwise, the affected rows are
removed from the query results.

Multiple conditions are conjoined by the logical operators AND, or
otherwise OR. As illustrated a selection condition is defined as a data item
bound to a literal value, i.e. a string or numeric value. A join condition is the
comparison of two data items, while a negotiation condition is a system-
defined attribute that is bound to a literal value. The specification of
conditions in a query is optional.

The DO command is used to specify the procedural actions of a
query (See Chapter 4). An action can be associated with a particular
condition, and accordingly will be executed if the condition is determined to
be true. Also, an action can be associated with a query in general, and so
will be executed on the successful match of a query. The specification of
actions in a query is optional.

• <DELETE_QUERY> ::= 'DELETE' query_name -[
'CASCADE']- ;

Figure 5-16. exMQL DELETE QUERY Clause

• <DELETE_RULE> : : = 'DELETE' / [ru le_narae | | ' , '] /
' IN' query_narae ;

I DELETE_RULE | > — < D E L E T f > ^ rulejame }^ —(lNy{~query_name)—>

Figure 5-17. exMQL DELETE RULE Clause

• <DELETE_CONDITION> ::= 'DELETE' /[condition_name
II ',']/ 'IN' query_name ;

DELETE^CONDITION | > - < ^ E L E T g > Y - (condition_name } - ^ (J N ^ query_namo }—»

Figure 5-18. exMQL DELETE CONDITION Clause

100

• <UPDATE_QUERY> ::= 'UPDATE' <ITEMS> *['FOR'
<CONDITIONS>]* *['DO' <ACTIONS>]* 'IN' query_name

^--7K^fOR>-| CONDITIONS [y^ ^ • ' - T ^ J I Q) -] ACTIONS l ^ y ^

Figure 5-19. exMQL UPDATE QUERY Clause

As illustrated in Figs. 5-16 - 5-19, a query can be removed from the
Blackboard with the DELETE QUERY command. As noted in Section 2 all
queries are unique to the system and so the DELETE command followed by
the unique query identifier removes the query from the Blackboard. If the
optional command CASCADE is specified then the all queries related to the
particular proxy database server will be removed from the Blackboard.

If it is necessary to delete a rule, the DELETE RULE command is
used. This rule takes two values as input, the rule name which is specified
after the DELETE RULE command, and the query name which appears after
the IN command. This command deletes all conditions associated with a
query. More than one rule can be specified for deletion in each delete rule
command.

The DELETE CONDITION command removes a condition from an
existing rule, and can accommodate more than one condition specified as a
comma-delimited list.

A query can be completely revised through the use of the UPDATE
QUERY command. New data items and conditions included in the update
query command will be added to the existing query, and existing items will
be unchanged if they are specified as such in the query. If existing items are
modified then these will be similarly modified in the rulebase. If existing
items are not provided in the update query command, then these will be
automatically removed from the existing query.

The above description of the exMQL has been provided for
instructive purposes only, since in common usage these commands will be
hidden from the user, as the exMQGS is regarded as the standard
programmatic interface for the TSCM. Accordingly, each command
represented in the above figures has a menu-driven counterpart in the
exMGQS. Furthermore, our functional implementation of exMQL differs
from the commands represented above as illustrated in Appendix A, but the
definitions and procedures of all commands still remain intact.

Chapter 6

THE IMPLEMENTATION OF THE TWO-STAGE
COLLABORATION MODEL

1. GLOBAL DATABASE QUERY IN A SUPPLY-
CHAIN

This chapter illustrates how the elements of the TSCM interoperate
to implement global query in a supply-chain. The illustration in Fig. 6-1,
depicts the supply-chain for a typical enterprise, and also identifies
additional suppliers and retailers that do not participate in the supply-chain
of the enterprise.

The significant issue here is that suppliers may belong to multiple
supply-chains, and perhaps are subject to various scheduling demands. The
ability to determine demand forecasts would improve cycle time and
optimize inventories, among other benefits, but in the traditional supply-
chain this would be a difficult undertaking. The TSCM on the other hand,
offers the opportunity to view shared data at all levels of the supply-chain,
via the queries shared at the Blackboard, and the data available in the
associated export databases. For example, the material inventory published
by the SCD export database in Figure 6-2, should be visible throughout
enterprise. Accordingly, the opportunity to access and manipulate a
supplier's shared data, regardless of position in the supply-chain is realized
in the TSCM.

102

RETAILER 1

TIER1
SUPPLIERS

Figure 6-1. Traditional Supply-Cliain

1.1 The Global Query Process: A Working Example

The illustrations that follow depict the various activities required for
global query in the supply-chain. As expressed in the previous chapters and
depicted in Fig. 6-3, the TSCM consists of interconnected export databases
participating as publishers and/or subscribers, as well as the global
Blackboard and global Metadatabase.

Each export database submits queries corresponding to the role in
which it participates in the TSCM, that is, it submits a request (See O in Fig.
6-3) (subscription query) if it is participating as a subscriber, and an offer
(See © in Fig. 6-3) (publication query), if participating as a publisher.
When the Blackboard encounters a query it initiates the query matching
process to identify queries in the query database that complement the
supplied query.

103

RETAILERS AND DISTRIBUTORS

PUBLISH ORDER DATA (INFOSYS)
(PRODUCT, QTY, PRICE)
SUBSCRIBE INVENTORY

PUBLISH BOM (VIU)
PUBLISH PRODUCT
NVENTORY

PUBLISH MATERIAL
INVENTORY
SUBSCRIBE DEMAND (SCD)

PUBLISH CAPACITY
(AGGREGATE PRODUCTION VOLUME)

Figure 6-2. TSCM facilitated Supply-Chain

EXPORT
DATABASE
(SUBSCRIBEFy
PUBLISHER)

^-^, REQUEST

<
/

NETiJVORK

GLOBAL
METADATABASE

EXPORT
DATABASE
(SUBSCRIBER/
PUBLISHER)

EXPORT
DATABASE
(SUBSCRIBER/
PUBLISHER)

Figure 6-3. Global Query in a Supply-Chain

104

The queries sent between export databases and the Blackboard are
described in an XML-based query language, exMQL which is illustrated in
Chapter 5 and Appendix A. The information offer and information request
corresponding to the queries in Fig. 6-3 are depicted in Table 6-1 and Table
6-2. Table 6-1 illustrates that a supplier has shared the production data for
the product "paper", and specified an expiration date for the query. Table 6-
2 on the other hand, illustrates an information request for a product with a
part identifier "paper" and additional attributes to constrain the query. These
are negotiation constraints that include the cost that is offered for the item,
and the associated currency.

Table 6-1. Information Offer
<exMQL SYSTEMID="UUID_SYSTEM">

<query command="put" ID="UUID_QUERY">
<items>

< i t em> PARTNAME</i t em>
<item>PARTDESC</item>
< i tein>NUM_COMPLETED< / i tem>

</items>
<condlist>

<cond tYpe="SEL" loper="PARTNAME" op="eq" roper="PAPER"
/>
<cond tYpe="NEG" loper="EXPIRE" op="eq" roper="121304"
/>

</condlist>
</query>

</exMQL>

Table 6-2. Information Request
<exMQL SYSTEMID="UUID_SYSTEM">

<querY coiranand="get" ID="UUID_QUERY">
< i tems>

< i tem>PARTNAME< / i tein>
< / i t e m s >
< c o n d l i s t >

<cond tYpe="SEL" loper="PART_ID" op="eq" roper="PAPER"
/>
<cond tYpe="NEG" loper="PRICE" op="eq" roper="10.00" />
<cond type="NEG" loper="LANG" op="eq" roper="EN" />
<cond type="NEG" loper="CURRENCY" op="eq" roper="USD" />

</condlist>
</query>

</exMQL>

It is important to note that both information requests and offers are
uniquely defined in each export database, and so are also uniquely defined in

105

the global domain by appending the unique system identifier to each query.
This is represented by the universally unique identifier (UUID) in the figures
above. Furthermore, these examples use the more familiar data item names
for illustrative purposes only in Table 6-1 and Table 6-2, which are viewable
in the exMGQS. However the internal representation of these data items in
the Metadatabase and the Blackboard that are declared in these messages
utilizes a globally unique identifier, the ITEMCODE (See Appendix B) that
would be substituted in the actual queries.

1.2 Query Matching and Allocation at the Blackboard

Fig. 6-4 illustrates the internal operations of the Blackboard when a
query is encountered. When a new query is received at the Blackboard the
Network Monitor detects and passes the query on to the Message Processor
(See © in Fig. 6-4), where it is validated and the query attributes extracted
and then submitted (See © in Fig. 6-4) to the Blackboard Database
Management System (BDBMS) for processing. The Blackboard identifies
matching queries via the execution of the matching, combination matching
(optional) and constraint matching algorithms illustrated in Chapter 4. If
necessary, the Combination Matching algorithm in Chapter 4 is executed to
combine matching results from individual export databases in an attempt to
identify a combination exact match. Accordingly, the global Metadatabase
may be included in this query process (See O in Fig. 6-4) to assess if the
data items from the individual queries are directly connected in any fashion.
Following a match in any form, the query is assigned (See ©©©in Fig. 6-4
and O in Fig. 6-5.

MESSAGE
PROCESSOR

QUERY FROM NETWORK
MONITOR m ^ • !• • •%

'•'•• • QUERY •
_ . . . _ _ , DATABASE " A

\m. 1%

^ • PI I! cnjicic

RESULT
INTEGRATOR

Q • RULEBASE_

Figure 6-4. Internal Blackboard Query Processing

106

EXPORT DATABASE,
(SUBSCRIBERj /

5SIGN

iiiinr ^ f

EXPORT
DATABASE
(PUBLISHER)

/ • \ ,

-4
E>;:PORT
DATABASE
(PUBLISHER)

^ ' t ' .

NETiil/ORK
~~,-ITT^

GLOBAL

IWlETADATABASE

Figure 6-5. Allocation of Query to Export Database

QUERY
FROM
EK:PORT
DBS

@

DATA
RESULTS
TO EXPORT
DBS

MESSAGE
PROCESSOR

NETWORK
MONITOR

9. •M^^h.

Aw?.] ©.
\—V D

RESULT
INTEGRATOR

QUERY •
DATABASE p

• RULES AS E ^

« • H • ^
BBDBMS

315

D
Figure 6-6. Internal Operations of Blackboard - Result Integration

107

EXPORT /
DATABASE /
(SUBSCRIBER)

GLOBAL
METADATABASE

EXPORT
DATABASE
(PUBLISHER/

f SUBSCRIBER)

EXPORT
DATABASE
(PUBLISHER/
SUBSCRIBER)

Figure 6-7. Results Processing

When the Blackboard encounters a combination match it issues
query execution requests to the affected export databases (See © 0 © in Fig.
6-4), and concurrently submits an integration script to the result integrator
(See © in Fig. 6-4). Each execution request contains the data items required
from the affected export databases, and a reference to the affected query.
The integration script is registered with the Network Monitor, such that
when the query results are returned to the Blackboard, it is routed to the
result integrator for processing. When all results have been returned to the
Blackboard from the individual export databases, the results are integrated
(See 0 © © 0 © in Fig. 6-6) and then forwarded to the requestor (See O© in
Fig. 6-7.

The discussion of query execution is postponed until Section 1.4, so
that the process of how to add a query to the Blackboard in the event query
matching fails can be discussed, in Section 1.3.

1.2.1 Encountering a Match that Requires External Input

There are various instances that will require the Blackboard to seek
external input. In the event the Blackboard encounters a data feasible
solution, but cannot determine a constraint feasible solution, then the
Blackboard issues a notification of the conflict. The working example (See
Table 6-1 and Table 6-2) depicts a subset match, and data feasible solution
from the perspective of the information request; however, it is constraint

108

infeasible as defined by the constraint matching algorithm (See Chapter 4)
due to the non-matching constraints specified in each query. The
information request contains selection conditions and negotiation conditions,
whereas the information offer contains only selection conditions that do not
match each other. In light of this conflict, if it is not possible for the
Blackboard to determine a result, the affected parties, i.e. the subscriber and
publisher would be notified of the conflict, and would be prompted to
modify the relevant queries.

1.3 Insert Query Operation on the Blackboard

In the event a match is not found, the query is added to the
Blackboard for subsequent processing at a later time. The Message
Processor (See © in Fig. 6-4) also transforms the supplied query into its
SQL equivalent, which is then submitted to the Blackboard upon the failure
to identify a match. The SQL statements are arranged in a particular order to
preserve dependency constraints that exists in the query database and
rulebase. It is necessary therefore to create a mapping from the query
message representation into a relational format, to satisfy these dependency
issues. As illustrated in Fig. 6-8, the query message can be realized as a
directed graph (Florescu and Kossmann 1999; Liu and Vincent 2003), where
the message is the root of the tree. The tree consists of nodes that
correspond to the various internal elements of the query message, while the
leaves of the tree correspond to either attributes of a node or a text node.
The attributes and leaves are represented as shaded circles, and the nodes as
hollow circles. The diagram illustrates where the various message elements
are stored in the Blackboard. The exMQL element identifies the origin of
the message, and so contains a SYSTEM identifier attribute which is stored
in the SYSTEM entity, while the query element additionally contains a
unique QUERY identifier, which is stored in the QUERY entity. The same
goes for data items referenced by the ITEM entity, which also must create
corresponding relationships in the adjacent MAPPED_TO and DESCRIBES
tables (See Fig. 5-2 and Appendix B) for a description of these meta-entities,
meta-relationships and their attributes.

109

exMQL

item*

condlist \ ~

"--^.-^conjoin*

SYSTBVI

adionlist

actions*

QUERY

VIBW
RULE

ITBVl
ACTION

Vvnegotiate*

item / \ \
\Vva lue

CONDITION

FACT

Figure 6-8. Mapping Query Schema to Blackboard Schema

-"" K
XML
MESSAGE n

SQL
TEMPLATE

1 f

DOM PARSER
K

SQL
QUERY

Figure 6-9. Query Message Transformation to SQL

A DOM (Document Object Model) Parser is used to transform the
XML message to its equivalent SQL query format. As depicted in Fig. 6-9,
the DOM Parser is the link between the XML message and the SQL query,
however a corresponding template that describes the resulting format of the
SQL query is also required as input to the DOM Parser. The template
addresses the dependency constraints that were raised above.

110

Table 6-3. Commands for Information Offer illustrated in Table 6-1
SYSTEM (SYSNAME) VALUES (•UUID_SYSTEM');
QUERY (QNAME, SYSNAME, QTYPE, TIMESTAMP)
VALUES ('UUID_QUERY','UUID_SYSTEM','OFFER',20041213000000);
VIEW (VNAME) VALUES ('UUID_QUBRY_VIEW_1');
ITEM (ITEMCODE, ITEMNAME, SYSNAME)
VALUES ('UUID_SYSTEM_ITEMCODE_l•,'PARTNAME', 'UUID_SYSTEM•);
ITEM (ITEMCODE, ITEMNAME, SYSNAME)
VALUES (•UUID_SYSTEM_ITEMCODE_2•,•PARTDESC', 'UUID_SYSTEM');
ITEM (ITEMCODE, ITEMNAME, SYSNAME)
VALUES ('UUID_SYSTEM_ITEMCODE_2','NUM_COMPLETED',
'UUID_SYSTEM•);
DESCRIBES (QNAME, ITEMCODE)
VALUES (•UUID_QUERY•, •PARTNAME•);
DESCRIBES (QNAME, ITEMCODE)
VALUES ('UUID_QUERY', •PARTDESC');
DESCRIBES (QNAME, ITEMCODE)
VALXraS (•UUID_QUERY', •NUM_COMPLETED');
FACT (FACTID, FACTNAME, FACTYPE, FACTVAUXE, VALUEOF)
VALUES (•FACTID_1', •', 1, •', 'UUID_SYSTEM_ITEMC0DE_1•) ;
FACT (FACTID, FACTNAME, FACTYPE, FACTVALUE, VALUEOF)
VALUES (• FACTID_2 ' , • • , 0, ' SHELL • , ' •) ;
CONDITION (CONDID, LOPER, OPERATOR, ROPER)
VALXreS ('CONDID_l•, •FACTID_1', 'eg', 'FACTID_2) ;
RULE (CONDID) VALUES ('C0NDID_1') ;

FACT (FACTID, FACTNAME, FACTYPE, FACTVALUE, VALUEOF)
VALUES ('PARTIDeqSHELL', 4, ' ', 'CONDID_l') ;

The resulting output of this transformation algorithm for the
information offer depicted in Table 6-1 is illustrated in Table 6-3 above.
The E^SERT statements have been truncated, i.e. the prefix "INSERT
INTO" has been removed from each statement to improve readability.

1.4 Query Execution at the Export Database

Figure 6-10 illustrates the internal operations of the export database
when a query execution request has been encountered. The Network
Monitor detects the query execution request issued by the Blackboard and
redirects (See © in Fig. 6-10) it to the Message Processor that transforms the
query into a SQL SELECT statement. The query is then redirected (See ©
in Fig. 6-10) to the export database system for processing. Query
transformation is accomplished in a similar manner to that described in
Section 1.3. The results are then sent to the Blackboard (See O©© in Fig.
6-10).

ASSIGNED
QUERY

DATA TO
BLACKBOARD

LOCAL
BLACKBOARD

NETWORK
MONITOR

111

D LOCAL
METADATABASE

^. Q . . • • • » .

EXPORT •
DATABASE

MESSAGE
PROCESSOR

« • • • »
EDBMS

ENTERPRIS
DATABASES

Figure 6-10. Internal Operations of the Export Database

The enterprise databases are the source of data for the export
databases. When the publication query is defined, this creates a
corresponding schema in the export database, and the database is populated
with the associated data from the enterprise databases (See © in Fig. 6-10).
At the same time, the local Metadatabase transforms the data values from the
local attributes and values to their equivalent global attributes and values
(See O in Fig. 6-10).

THE PROTOTYPE OF THE TWO-STAGE
COLLABORATION MODEL

2.1 Specifications of the Prototype Environment

The prototype considers the implementation of the Blackboard,
Metadatabase and the attendant algorithms. The prototype development
environment utilized the Fedora Linux Core 2 operating system, which was
installed on a custom-built database and web server. The hardware and
additional software utilized on the server had the following specifications:

Dual Processor, Pentium 3 CPU, 900 MHz
1 GB Ram
2 X 80 GB Hard Drive, RAID 0
PostgreSQL ORDBMS Version 7.4.7
Apache Httpd Server, Version 2.0.51

112

• PHP Version 4.3.10
The default installation options for all software utilized in the

prototype were utilized, with the exception of PostgreSQL, which had to be
modified to accept connections from the Apache web server. The additional
steps that were required to configure the prototype environment are
discussed in the following sub-section. A discussion about the operation of
the exMGQS is also the subject of a subsequent sub-section.

2.2 Implementation of the Metadatabase and
Blackboard

Two PostgreSQL database schemas were created within a single
database: mdb and bb, to contain the Metadatabase and Blackboard schemas
respectively (See Appendix B for the Blackboard and Metadatabase
Schema). The PostgreSQL ORDBMS maintains an additional definition for
the term schema, as defined in the PostgreSQL 7.4 manual:

"A schema is essentially a namespace: it contains named objects (tables,
data types, functions, and operators) whose names may duplicate those of
other objects existing in other schemas. Named objects are accessed
either by "qualifying" their names with the schema name as a prefix, or
by setting a search path that includes the desired schema(s) (The
PostgreSQL Global Development Group 2005)."

This provided for a seamless integration of the Metadatabase and the
Blackboard. Therefore, it was not necessary to consider the overhead
required to communicate between disparate databases when using an
external message protocol, as well as the issues of dealing with multiple
database connections if different databases were used. The schema facility
allows both structures to be contained within one database, and the internal
operations inclusive of the algorithms in Chapter 4, and exMQL are confined
to this single database.

The algorithms in Chapter 4 were implemented in PL/pgSQL the
procedural programming language for the PostgreSQL Database System,
and installed into the database server.

113

2.3 Query Formulation using the exMGQS

• File _ gan Vimv Co BookniJrfts Tods Wlwlow Hel|>

..El; g'J'S*::-_S«*rcli ^cj. • I

jCREATK OFFER [3 |FRaM METAOAIABASE ;

^̂ SELECT EXPORT DB
GALATEA

^ SELECT QUERY - ^ ^̂ SELECT VIEW H SELECT ITEM
CUSTJAME
DATE_0ESIRED

iNUMXOMPlEIEOr"

pfMISiSsliKiii]
AtBITEM

Selection and Join Constraints

3 1 = d I SPECIFY VALUE F O R T O N S T R A I N T ' ^ JS,'5.'2005^ I DATE_OESIRED

ADDCONSTBAIOT :

Negotiation Constraints

[" r i i l c r NEGOTIATION PARAMETER - ^ ' j< f j f

ADD CONSTRAINT (

Actions to Talce

I - SELECT A a i O N - J

ADO ACTION I

Visuai Query iuiWer

jCET A04I^18S A 0 4 l a 9 6 AOZt^lOS A 0 3 U 2 5
IFOR A04I.a8a<>SliHTB « 4 f . a » 0 ^ 5 / 5 / ? 0 0 5

RUN QUERY | RESET QUERY BUILDER |

Figure 6-11. Extended Metadatabase Global Query System Graphical User Interface

The exMGQS application by default resides at the global site. In the
event that an export database is masquerading as a global Blackboard in a
peer-to-peer match session, then the exMGQS will be installed on that
particular system as well. Both subscription and publication queries are
constructed via the GUI of the exMGQS, an example of which is illustrated
in Fig. 6-11. The GUI is implemented as a JavaScript front-end, with
embedded PHP functionality to connect to the Metadatabase and
Blackboard, however all TSCM functionality is isolated to the database
system. The formulation of a subscription or publication query begins with

114

the selection of the corresponding command in the list of tasks, that is,
CREATE REQUEST and CREATE OFFER respectively. This activates the
list of data sources, which include the Blackboard and Metadatabase. The
selection of a data source activates the display of resources available for the
combination of previously selected options, which is described in Table 6-4.

Therefore, the selection of the task and data source reveals an
adjacent list of options listing the resources indicated in Table 6-4.
Consequently, selecting an export database, when creating a request, reveals
an adjacent list of options describing the queries published by the selected
export database. Choosing a query from the list of queries reveals an
adjacent list of options describing the views contained in the selected query.
Finally, the selection of a view, from the list of views, reveals an adjacent
list of data items that are contained in the view, and recursively the
publication query issued by the selected export database. This procedure is
identical for all the combinations listed in Table 6-4, and can be repeated
until the information content of the query is satisfied. However, in
combinations 1, 2 and 3 in Table 6-4, the data items selected may span
multiple export databases when selecting data items from the Blackboard,
and may span multiple applications when selecting data items from the
Metadatabase (See Chapter 4). Combination 4 on the other hand is limited
to the local data model only, that is, the data items can only span the
applications contained within this data model.

Table 6-4. Resources Displayed in exMGQS given Selected Task and Data Source
Combination Task Data Source exMGQS Display

All Export Databases
(Publication Queries Only)
Global Metadata Model
All Export Databases
(Subscription Queries Only)
Local Metadata Model Only

The Visual Query Builder provides a snapshot of the current state of
the query as each data item is selected for inclusion in the query.

Once all data items have been selected for inclusion in the query,
then constraints on these data items can be specified, if required. The data
items previously selected are all candidates for attributes in the selection and
join constraints, and so are made available for qualification by the exMGQS.
The participant qualifies data items by specifying parameters (or data items
in the case of join conditions) for the attributes, and also selecting a
relational operator to compare both quantities. Negotiation constraints can
also be specified to further qualify the query; however the attributes that
constitute these constraints are not derived from data items and do not exist

1

2

3

4

Create Request

Create Request

Create Offer

Create Offer

From Blackboard

From Metadatabase

From Blackboard

From Metadatabase

Step 1 - Traverse to the data item identified at the ;"' visit and select the data item to be

115

in any particular system meta-model, but rather are globally-defined at run
time. Finally, the participant can specify actions to take given specific
outcomes of a match session at the Blackboard (See Chapter 4). These
actions are also globally defined at run-time.

The query formulation is then complete when the participant
submits the query to the Global Blackboard. In summary, the query
formulation process encompasses the following procedure, which is derived
from the query formulation algorithm found in Cheung (Cheung and Hsu
1996), Page 75:

Table 6-5. Query Formulation Algorithm
Repeat (for each visit)

Step 1 - Traverse t(
included in the query
Step 2 - Specify the selection conditions C^'' and join conditions (f that will be imposed
on the selected data items

Until no more intended data items are specified
Step 3 - Specify the negotiation conditions C", and actions A that will be imposed on the
query.

The exMGQS simplifies query formulation due to the interactive
process of adding data items and constraints to the visual query builder,
which therefore reduces lexical, structural and syntactical errors that are
typical in command-line query formulation. It is still however necessary to
parse the query in order to validate the syntax, and also the semantics of the
query. In this regard, emphasis is placed on the constraints to verify that the
format and domain of the parameters are consistent with the data items
(specifically, selection constraints) to which there are applied. Furthermore,
the exMQGS ensure that the data items in join constraints are consistent with
each other.

Chapter 7

THE JUSTIFICATION OF THE TWO-STAGE
COLLABORATION MODEL

1. OVERVIEW

The TSCM differs at a fundamental level from traditional global
query methods and the various other approaches for information matching,
primarily in the contribution of the publication methods, and the Blackboard
Match Engine. The realization of the database platform as its enabling
technology establishes the TSCM, as a significant contribution to the global
query field.

Traditional global database query, as realized in federated database
systems offer greater "depth" to information exchange, relative to current
information exchange technologies; however the technology has not
embraced these virtual enterprises and so are limited by their traditional
architectures. Conversely, private and industrial information exchanges
facilitate information exchange within the supply-chain; however the
"depth" of collaboration is limited to document and message exchange.
Databases are integral to such collaboration infrastructures, however they are
typically ancillary elements of the integration, and support the
construction/population of said collaboration documents. In a different
approach, software agents in Multi-Agent Systems are endowed with
intelligence to make complex decisions, however the implementation of
these agents and the underlying multi-agent infrastructure is no easy task.
Current results in the field depend on heuristics to define the match methods
and agent capabilities. These characteristics however can differ across the

118

various multi-agent architectures thus preventing interoperability and
requiring custom solutions to facilitate integration.

In this chapter the TSCM is justified through a comparison with
similar results in the field, and peripheral research domains. This analysis
emphasizes the qualitative aspects of these related contributions, and
presents a discussion of the advantages/disadvantages of the TSCM with
respect to these results. But first, the performance of the TSCM is assessed,
specifically focusing on the Blackboard Match Engine and its attendant
matching algorithms. By using relational algebra, acceptable query trees are
determined, which allow for the identification of query plans, such that the
performance of the algorithms can be evaluated. This quantitative analysis
emphasizes the worst-case performance. Section 2 presents the discussion
of this quantitative analysis, while Section 3 and onwards presents the
qualitative analysis previously mentioned.

2. A PERFORMANCE ASSESSMENT OF THE TSCM

As the TSCM is implemented as a procedural language module of a
relational database, its performance is intrinsically tied to the capabilities of
the database software and underlying hardware. For this research the
PostgreSQL Object-Relational Database Management System (ORDBMS)
was used, which is installed on the operating system hardware and software
described in Chapter 6. An execution plan is readily determined in
PostgreSQL; however, given the lack of realistic data, a generic analysis of
the matching algorithms is performed to assess the performance limitations
of the Blackboard. Since the database system will determine the execution
plan, which then may vary by database platform, in this analysis the worst-
case execution plan/performance, or highest cost estimate, of the matching
algorithms is derived. The cost estimate quantity correlates to the algorithm
with the most number of pages/blocks transferred from disk during a
database query, which is a popular measure of database performance. The
analysis however excludes other relevant query costs that do heavily
influence the cost estimate, because (1) these are difficult-to-acquire
measures of performance, and (2) the values are specific to the hardware,
software, and communication platforms in which the database participates.
These additional costs include computational, communication, and storage
costs. Since the algorithms are implemented on the centralized Blackboard
database system, then the communication costs between the export databases
and the Blackboard can be ignored. Computational costs can also be
ignored since this determines the cost of performing operations in memory,
which would be difficult to assess. Moreover, storage cost is similarly

119

excluded since these consider the storage of intermediate query results
during the execution of a query plan. The access cost of secondary storage
i.e. the disk access read and write times, provides the only relevant measure
of performance that is widely accepted, but the analysis only considers the
disk read times.

Table 7-1. SQL Query Corresponding to Algorithm 1

SELECT D.QNAME, COUNT(D.ITEMCODE)

FROM describes AS D, query AS Q

WHERE ITEMCODE

IN (itemcode_list)

MUD D.QNAME = Q.QNAME

AND Q.TYPE ^ < j u e r y _ t y p e

GROUP BY D.QNAME;

Table 7-1 depicts an SQL query that corresponds to the matching
algorithm illustrated in Chapter 4. This can be converted to a relational
algebra expression to assist in the evaluation of the query execution plan.
The expression in Eq. (1) depicts an acceptable query plan for the algorithm,
in that it moves the select operation to the bottom of the query tree, uses
equi-joins to join tables, and projects necessary attributes when possible.
The size of the QUERY table (Q), and the DESCRIBES table (D) are
restricted by applying the selection conditions, thus reducing the size of the
relations participating in joins. Note also that a non-standard symbol 3 is
employed to describe the GROUP BY clause - the prefix indicates the
attribute the query should be grouped on, whereas the suffix indicates the
aggregate functions applied to the adjacent attribute.

qname,
itemcount

^qname V^type * QVERY_TYPE \^))

oo
Q.qname ̂ D.qname

f . :\
qname COUNT itemcode ^qname, ^itemcode e ITEMCODn_LIST V " ^ / /

\^ itemcode J

(1)

To begin the analysis a number of assumptions are made. As
illustrated in Table 7-2, the QUERY table has a tuple size of 118 bytes,
determined from Appendix B by assuming fixed width fields (i.e CHAR) as
opposed to variable width fields (i.e. VARCHAR). Moreover, this
discussion considers only the essential attributes in the QUERY table, which
includes {QNAME, QTYPE, TIMESTAMP} required for query matching.

120

Summing the fixed widths of these fields totals 118 bytes, where QNAME
constitutes 100 bytes, QTYPE, 10 bytes, and the TIMESTAMP is a fixed
date/time field of 8 bytes. We will ignore tuple headers (metadata) in this
analysis. The analysis is repeated for the DESCRIBES table to identify a
tuple width of 200 bytes, which considers the QNAME and ITEMCODE
attributes only. Furthermore, since the number of records is unknown for the
QUERY and DESCRIBES table, then \Q\ and |D| are declared as these
variables. Finally, an assessment of the cost of basic operations, or the disk
access times, will require an understanding of the basic units of storage on
the disks. For this reason, the PostgreSQL page/block size of 8192 bytes is
used as an estimate of the unit of storage, noting that this value is adjustable
in PostgreSQL, and will likely also differ by database vendor. These
quantities are summarized in Table 7-2.

Table 7-2. Statistical and Assumed Variables for Blackboard Database
Feature Value

Cardinality, Q \Q\
Cardinality, D \D\

Page Size/Block Size 8192 bytes
Tuple Size, 2 118 bytes
Tuple Size, D 200 bytes

With the data provided in Table 7-2, it is now possible to determine
the number of pages/blocks that the QUERY and DESCRIBES consume on
the disk, and so determine the number of disk accesses required in the initial
operations on the respective database tables. The blocking factor (bfr)
defines the number of records that are contained in a block, and so it is
possible to determine the number of blocks required for each table, which is
a function of the number of tuples in a table. Accordingly,

bfr^ =L8192/118j^&g =[|2 | /^ / rg]=[|e | /69 l (2)

bfr, = [8 1 9 2 / 2 0 0] ^ Z;̂ = \\D\/bfr,]^ [|D | / 4O1 (3)

Given this information, then it is now possible to determine the cost
estimates for the matching algorithm. To simplify the analysis, the query is
deconstructed and the cost estimates of the individual operations are
determined. The analysis begins with the project and select operation on the
QUERY table as depicted in Eq. (4).

121

(Jp^ = ^^„ame V^type * QUERY_TYPE VV?// (4)

Since TYPE is a non-key attribute of Q, then it is necessary to
perform a full-table scan on Q to determine the tuples that match TYPE ^
QUERY_TYPE. With the assumption of a uniform distribution, the

approximate number of results returned is ' K since the attribute TYPE

considers two distinct values, and so roughly half of the tuples will match
QUERY_TYPE. The estimate of the number of tuples returned from
operation 1, denoted o, is depicted in Eq. (5). But, the performance is
determined by the number of page reads, and so the corresponding cost
estimate for this selection condition Cy, which assumes that half the pages
have to be read before the results are found is depicted in Eq. (6). Note
however that the project operator reduces the number of attributes in the
result set, and so the blocking factor used corresponds to the size of this
intermediate result, r; set and not |2 | that was specified above.

.Hal-fl

' 2 2 8192

The next operation in Eq. (7) is split into two distinct parts, (1) the
select and project of QNAME and ITEMCODE, and (2) the grouping by
attribute QNAME. The select operation can be transformed to a disjunctive
condition, consisting of equality conditions on the ITEMCODE attribute,
which are connected by the OR logical operator. It will be necessary to
perform a full-scan on the table, because of the composite key <QNAME,
ITEMCODE> and the fact that the select operator is on the ITEMCODE
attribute only.

^P2~qname~^ COUNT ilemcodeV^qname, itemcodeV^itemcocle e 1TEMC0DE„LIST \ ^ / / / ' ' ^

The estimate of the number of tuples returned from this operation,
r2a is depicted in Eq. (8) (Silberschatz, Korth et al. 2002), where m is the
number of ITEMCODE attributes in the selection condition, and 5, is the
selection cardinality of the /"' attribute given the associated equality

122

constraint. Estimating 5, does present a challenge, since each query, and
accordingly the data items it contains is independent from other queries. As
a result, an assumption of a uniform distribution in / is probably not a
reasonable one to make. In this regard, database statistics would provide for
a more accurate estimate, and would be the proper approach to take.
However, since such statistics are unavailable, a uniform distribution in / is
assumed (subsequent analysis will test the effect that additional distribution
models, e.g. Ziphian Distribution, will have on these estimates). Given this
assumption of a uniform distribution, all values of / are equally likely to be
in D, and therefore Si = \D\lm and rza is transformed to rji,- The project
operation terminates the first part of operation 2, which does not modify the
tuple size; consequently the corresponding number of blocks required by this
intermediate relation remains the same.

ha = LD *
' '

/
1 - 1-

\

A /
.J!L

1̂1 1 1/

* 1 -

V

\
ii±L

1̂1 1 \ J

*.
f

.* 1 -

V

A"
fiZL

\D\
1 l/_

(8)

h,=\D* i - i . - l l
m)

(9)

The second part of Operation 2 in Eq. (7) is more complex than the
first, involving sorting and grouping of the results by the QNAME attribute
and then computing the COUNT aggregate function. As recommended in
(Garcia-Molina, Ullman et al. 2002), the results from a grouping operation
can range from one group to the number of distinct tuples in r2h- However,
since the grouping is performed on QNAME, the aforementioned
assumption of uniformity can also be applied here, and so the number of

tuples returned from operation 2 is estimated to be '2h/
'1 ' on average.

Equation (10) illustrates the complete result. The corresponding cost of this
result set is illustrated in Eq. (11).

m (10)

123

C,

\D\
1 -

V mj
(11)

The third operation considers the join of rj and r2 (See Eq. (12)).
Multiple join algorithms can be employed to evaluate this operation, e.g.
nested-loop, sort-merge and the hash-join algorithm, among others. The
nested-loop join algorithm is selected first to determine the result of
operation 3.

Op^ = Opi oo 1 Q.ciname-D.qname .Op, (12)

The nested-loop join algorithm gives better performance when the
table with the lower number of tuples is used as the outer-loop relation in the
join. It is difficult to assess which quantity, rj or rz could be used as the
outer relation, since rj considers one type of query, and rz considers both,
and conversely, rz has a reduced set because of the grouping operation and ri
does not. Therefore, the final analysis will demonstrate both results, and the
effect it has on the cost estimate. The corresponding number of tuples
resulting from a nested-loop join algorithm is depicted in Eq. (13). This
result considers rz as the outer-relation in the join.

r2 + r2* r, (13)

Again, the number of page reads is the more interesting value, and
so the corresponding cost of this operation can be determined with the
formula depicted in Eq. (14) (Elmasri and Navathe 2000). Recall that this
quantity excludes page writes, i.e. the writing of the result set to disk.

C,=b2 + {b2*b,) (14)

To keep the unknowns in the cost estimate consistent, Q is
transformed to Cj^ as illustrated in Eq. (15). The \SLSt project operation does
not alter the cost C^a, and consequently this quantity remains unchanged.

C _ 2̂
3a

bfr. + bfh bfr^
(15)

l y

124

With the results sizes, o and 2̂, and the quantities from Table 7-2 it
is now possible to evaluate the performance of the matching algorithm. The
evaluation considers the performance per table size, i.e. the cost estimate
given the number of tuples in the Blackboard, given an average number of
data items per attribute.

Lemma 1: The number of tuples in DESCRIBES is directly
proportional to the number of tuples in QUERY.

Proof: This is established by the foreign key relationship that
DESCRIBES (D) has with QUERY {Q) on the attribute QNAME. Each
query, when stored in D, requires at least n tuples, where n corresponds to
the average number of data item in a query. Each of these data items
references the particular query to which it belongs. Therefore given \Q\
queries, then the number of tuples in D is n\Q\. n\Q\ is substituted wherever
the size of D is required, since D is a function of the number of tuples in Q.
•

Therefore, the cost estimate for the query in Table 7-1 is the sum of
the individual costs determined in Eq. (6), Eq. 11 and Eq. 14. Accordingly,
Fig. 7-1 illustrates a plot of this cost as function of the number of queries
that are in the Blackboard; given that on average there are five (5) data items
per query.

e+10-

o
O

6-^10-

Query Cost vs. Cardinality of Q

/

/

^ ^ ^ / /

""

500000 1e-t-06

Figure 7-1. Query Cost vs. Cardinality of Q (Outer Relation - r2)

125

Figure 7-2 is obtained by choosing r; as the outer relation in the
nested-loop join algorithm. The plot indicates that there is an increase in the
cost when choosing rj as the outer relation.

9e+10-

<-* « o
^e+10

1e+10-

Query Cost vs. Cardinality of Q

/

/

/

^ ^ _ , . . / - ^
— • • "

500000 1 e-H06

Figure 7-2. Query Cost vs. Cardinality of Q (Outer Relation - rj)

Theorem: The complexity of the matching algorithm for a uniform
set of offers and requests is no greater than 0{n^), where n is the number of
queries in the Blackboard.

Proof: The corresponding cost is determined by assuming that a, b,
c, d are constants, and k is the number of tuples in the QUERY table. Since
the queries and ITEMCODEs are assumed uniformly distributed, m is
therefore a constant. From Lemma 1, the number of tuples in D is declared a
function of the number of tuples in Q, therefore each instance of \D\ is
replaced with n\Q\. The blocking factors are a constant, while the number of
blocks consumed by each table is a function of the table size, and the
blocking factor. Therefore, the sum of the cost estimates can be reduced to
the following generic polynomial:

C = ak+bk + ck + dk^ =i'C = {a + b + c)k + dk^ (16)

Therefore, assuming a uniform distribution of the query table, the
complexity of the matching algorithm is no greater than O(n^). •

126

The results here however do represent an overestimation of the
performance of the matching algorithm. A database will choose the best
execution plan it can, but this occurs only if the data structures are defined to
support this selection. In the following section, certain adjustments are
recommended to the logical model, which will force the implementation of
better performing algorithms in the aforementioned operations, therefore
providing for lower cost estimates and improved performance of the
matching algorithm.

2.1 Adjusting the Logical Model to Improve TSCM
Performance

The biggest contributor to the cost of the matching algorithm is the
nested-loop join algorithm, and so adjustments to improve the matching
performance are made here first. The alternative sort-merge algorithm will
introduce a cost: C - b2 + by, essentially a cost having linear complexity
0{n), but this requires that the corresponding input tuples, vy and rj are
sorted on the join attribute QNAME, which currently is not guaranteed. The
sorting in the sort-merge join operation increases the associated cost as
indicated in Eq. (17) (Elmasri and Navathe 2000). This arises from the fact
that the sort-merge algorithm must make multiple passes on r\ and ra; first to
sort then to merge. Moreover, the estimate includes the cost to write the
results back to disk.

C =(2*Z72*(l + log2&2)) + (2 * ^ i * (l + log2^i)) + ^2+^ i (17)

By choosing this adjustment, the performance complexity of the
matching algorithm then becomes at most 0(nlogn).

As indicated above, the sort-merge has linear complexity if both n
and r2 are already sorted. The QUERY table already contains an index on
QNAME, but the WHERE clause in the select operation specifies the
QTYPE attribute, which does not have an index. Therefore, a sorted result is
not guaranteed. Creating a secondary index on this attribute will improve
the select operation, such that Ci = x + s, where s is the selection cardinality
matching -iQTYPE, and x is the number of levels in the secondary index. A
B+-tree search tree used for the secondary index allows for this linear
complexity, 0{n).

The DESCRIBES table contains an index on <QNAME,
ITEMCODE>, but the IN clause in the select operation leads to the
disjunctive condition previously mentioned, which requires the union of the
results from the individual conditions. A secondary index could also be

127

applied to ITEMCODE, resulting in the similar cost just derived above, but
modified to include the multiple passes required by the union of the results,
and also the cost required to sort on QNAME. Accordingly, the complexity
of this operation is limited to 0(n).

In summary, this analysis suggests that the potential best
performance of the matching algorithm has linear complexity, 0(n). This
compares favorably with the ERM described in Section 6, considering also
that semantic matching is considered in the TSCM.

3. TSCM VS. FEDERATED DATABASE SYSTEMS:
EXTENDING TRADITIONAL DATABASE
INTEGRATION TECHNOLOGY

Federated Database Systems (FDBSs) are multi-database systems
that are classified according to the degree to which the federation is
distributed, heterogeneous and autonomous. They are classified as tightly-
coupled if the administration of the federated schema is centralized and
tightly controlled, and so local databases have reduced or no autonomy; or
loosely-coupled if the database administration is distributed thus granting
local databases greater autonomy. Databases in the federation may be
homogenous where all databases share the same database schema, or may be
heterogeneous requiring all databases to subscribe to a canonical data model.
With respect to these definitions, the TSCM possesses a combination of both
classifications. It requires centralized management of the global data model
as represented by the Metadatabase, although there are efforts to support a
distributed model (Hsu 1996). On the other hand, the publication and
subscription query facility demonstrate the loosely-coupled qualities of the
TSCM, which extends the degree of autonomy typically found in FDBSs.
That is, export databases submit queries to the Blackboard when active
participation in the federation is desired, which is contrary to the FDBS
approach where component databases are beholden to an authority,
centralized or otherwise, when it becomes a member of a federation. This
autonomy difference is analyzed in greater detail in the next two sections.

128

Ext emeil Schema

Faderoted Schema
Data
Dictionary

Export Schema Export ScberiK)
- p r

C^mpofieiit Schema

—J—
Local Schema

Componeril
Database

Export Soh«mo Export Schema

Component Schema

Locol Schema

aCc>mporieht
Database

Figure 7-3. Five-scliema Arctiitecture of Federated Database Systems

Subsaiption Subsaiption

Bteokbotrd

tdrtaclalalsoss

Publication Publicatton

Expwt Database

T
Local Schema

Erterptise
Database

Wjlteslion PuUic*or»

Export Datstiase

Local Sctwma

:x
Enterprise
Database

Figure 7-4. Four-schema Architecture of the TSCM

129

Figure 7-3 and Figure 7-4 illustrate the architecture of a FDBS and
the TSCM respectively. The FDBS schema architecture is a five-schema
architecture as opposed to the classical three-schema architecture, which
does a better job of addressing database distribution, heterogeneity and
autonomy. The TSCM shares a similar architecture; however the export
schema is replaced with an export database and so we classify the TSCM
architecture is classified as a four-schema architecture. The local schema
belongs to the enterprise database and constitutes a single schema, while the
export database data model is defined by the publication queries.
Accordingly, the publication queries and the export database constitute one
schema. The Blackboard meta-schema and the subscription queries
constitute the remaining two schemas, which results in a four-schema
architecture. The reduction in the number of schemas however does not
correspond to a reduction in the degree of autonomy; rather the converse is
true in this instance, since the export database in conjunction with the
Blackboard provides an added dimension to the autonomy of the TSCM
architecture.

This export database represents the fundamental difference between
the traditional FDBS and the TSCM. It provides an opportunity to realize an
increase in the autonomy of enterprise databases that participate in a TSCM,
hereafter regarded as the federation, relative to traditional FDBSs. The
combination of the export database and publication queries allows the
enterprise database to participate in the federation, both passively and
actively. Passive participation implies that the enterprise database is a
member of the federation but does not actively participate in global query.
Specifically, the enterprise data model, or a subset of this data model is
registered with the Metadatabase, and no publication queries corresponding
to the related export database reside at the Blackboard. On the other hand,
active participation arises when queries have been submitted to the
Blackboard, a corresponding export database has been defined, and the
enterprise database is therefore actively engaged in the query matching
process. The advantages of this approach are made evident when to
discontinue participation in federation, a component database in a traditional
FDBS would have to remove itself entirely from the federation to prevent
access to its data sources, thus rendering the federated schema compromised.

Export databases, and the architecture of the TSCM in general also
contribute to improving database distribution, by providing the opportunity
to scale to significantly larger numbers of databases in the federation relative
to traditional FDBSs. Scalability in the context of the TSCM pertains to the
ability of the FDBS to add increasingly greater numbers of databases
without loss of functionality and performance, but rather to take full
advantage of the available database resources. However, as traditional

130

FDBSs grow larger, the management of the corresponding federated
database management system (FDBMS) grows increasingly intractable. It
therefore becomes increasingly difficult to manage the FDBMS, that is, to
create/modify global database schemata or facilitate queries over multi-
database systems, since a significant investment of time and human
resources would be necessary to maintain the infrastructure. Indeed,
traditional FDBSs were typically employed by enterprises, which were able
to control and limit the scope of the federation. Conversely, the TSCM
presents the opportunity for the federation to scale to significantly larger
numbers of databases, since there is no rigid connection required between
participating databases. The registration of the enterprise database schema
into the Metadatabase still requires a manual effort, that is, conversion of the
independent data models to global representation requires human input,
which presents the single, although not crippling, bottleneck in this
approach. With respect to other comparable schema integration approaches
however, the Metadatabase in concert with the Blackboard facilitates an
open and distributed administration regime, where enterprise databases
independently control and manage access to their data resources.

4. TSCM VS. MULTI-AGENT SYSTEMS: THE
TSCM AS A PLATFORM FOR IMPLEMENTING
MULTI-AGENT SYSTEMS

Multi-Agent Systems (MASs) share a common mission with the
TSCM, i.e. to address information sharing within distributed, heterogeneous
and autonomous environments. However, these systems overlap with the
TSCM primarily at the first stage, i.e., information matching. The RETSINA
MAS (Sycara, Klusch et al. 1999; Sycara, Lu et al. 1999; Sycara, Paolucci et
al. 2003) is one such solution to this research problem, which utilizes
autonomous software agents as the drivers for information sharing. This
process, known as matchmaking, uses a middle agent (matchmaker) to
broker agent transactions between provider agents and requestor agents.
Provider agents issue advertisements for services they provide, while
requestor agents issue queries/requests to the middle agent for providers of
services. The middle-agent stores all advertisements and provides these to
the requestor agent upon request.

The challenge in the RETSINA MAS and MASs in general is to
facilitate the interoperability of heterogeneous agents that possess various
capabilities. The motivation of the RETSINA MAS has been to provide a
neutral, domain independent infrastructure where heterogeneous agents can
communicate and interoperate with each other. Towards this end, the

131

RETSESTA infrastructure provides an Agent Communication Language
(ACL) for describing advertisements and requests entitled the Language for
Advertisements and Requests for Knowledge Sharing (LARKS). LARKS
accounts for the capabilities of agents by including ontological references,
keywords and descriptions in each specification. It is assumed that the
ontologies supported by agents are rooted in a concept language ITL
(Information Terminological Language), which leads to a further assumption
that the semantics of the terminologies expressed in the ontologies are
shared across MASs. The matching of requests to advertisements depends
partially on the matching of these ontological expressions which is discussed
next.

Table 7-3. Similarities between the TSCM and the RETSINA Multi-Agent System
TSCM RETSINA MAS
Publication Query Provider Agent
Subscription Query Requestor Agent
Blackboard Matchmaker Agent
exMQL LARKS
Metadatabase Combined Agent Ontology

The RETSINA MAS has adopted a number of methods to match
request with advertisements, or the matching of specifications in general. In
increasing order of complexity, the matching process offers (1) Context
Matching, which restricts matching to specifications of the same domain, (2)
Profile Comparison, which measures the degree of similarity between two
specifications, (3) Similarity Matching, which compares the word distance
between concepts expressed in the input/output declarations indicated in the
specification, and (4) Signature matching, and (5) Constraint Matching,
where both combined determine if the input/output declarations match. It
will become evident the TSCM offers a simpler method to matchmaking,
and in general a less complex approach to the problem of information
sharing when compared to the RETSINA MAS. Table 7-3 illustrates the
obvious similarities between the TSCM and RETSINA MAS.

The TSCM approach to matchmaking or query matching as
described in Chapter 4 is considerably simpler than the corresponding
matchmaking approach in the RETSINA MAS. The Blackboard serves as
the broker between databases offering publication and subscription queries
and performs a two-stage process to identify matches between these objects.
As illustrated in Chapter 4, the first stage identifies matching queries that
contain common data items and classifies the match according to the number
of common items found in each match, i.e. exact match, superset/subset
match, and intersect match. The second stage attempts to integrate/combine

132

subset and intersect matches identified in the first stage such that they
constitute a combination exact match, combination superset/subset match or
combination intersect match. Since semantic differences have been resolved
at design-time, when the schema of a new database has been added to the
Metadatabase, then the TSCM relies on straightforward relational query
processing to identify affected queries. The equivalence of queries therefore
is determined by the heuristic algorithms described in Chapter 4. This first
stage of query matching compares favorably with the approach to
matchmaking in the RETSINA MAS. To the best of our knowledge the
second stage of query matching has no counterpart in the RETSINA MAS,
i.e. no discussion of agents working to together in the RETSINA MAS to
satisfy a request from a requestor agent, although other MASs attempt to
address this problem.

ExMQL also provides a concise representation method for
publications and subscriptions as opposed to requests and advertisements in
the RETSINA MAS.

AWA C-A irMissions

Context
Types

Input
Output
InConstra ints
DutConstraints

ConcDescriptions

TextDescription

Combat, Mis.sioii*AWAC-AirMissioii
Date = (mm; hit, dd: Int, yy; hit)
DoploycdMission =
ListOf(mt: String, raid:String||hit,
mStart: Date, niEiid: Date)
start: Date, end: Date
missions: DcployedMissioii;
start < = end.
deployed(mlD), mt =: AWAC,
launched After (mid,m Start),
launchcdf3efore(mID,mEnd).
AWAC-AirMission =
(and AirMission (atleast 1 has-airplaiic)
(atmost 1 lias-airplane) (all has-aii-plane
aset(E-2)))
capable of providing information on
deployed AWAC aii- combat missions launclied
in some given time interval

Figure 7-5. LARKS specification for Agent Advertisement (Sycara, Klusch et al. 1999)

Figure 7-5 and Table 7-4 illustrate an advertisement in LARKS and
the corresponding publication in exMQL. The example illustrated in Table

133

7-4 assumes that the data items specified are attributes of the enterprise
database schema, but as illustrated represent the global attributes as defined
in the global data model. Recall that publication attributes are defined in
terms of the global data model, as is the schema of the export database
which corresponds to the publication query. Moreover, the export database
data values are converted to their global equivalents via the equivalence
functionality of the Metadatabase.

Table 7-4. Corresponding exMQL Publication for LARKS Advertisement illustrated in Fig.
7-5
PXJT mID, mt, mStart, niEnd
FOR mStart = DATE
AND mEND = DATE
AND mStart <= mEND
AND mt = 'AWAC

Therefore, while software agents are endowed with intelligence to
make complex decisions, the implementation of these agents and the
underlying multi-agent system is no simple task. The RETSINA MAS and
other current results in the MAS field depend on heuristics to define the
match methods and agent capabilities. These characteristics however differ
across the various research efforts thus preventing interoperability and
requiring custom solutions (Sycara, Klusch et al. 1999) to facilitate
integration. In contrast query matching in the TSCM utilizes proven
database technology with established standards; the methods of the TSCM
are built using the PL/SQL facilities of a database management system, and
so the limitations to the architecture are only constrained by the capabilities
of the underlying software and hardware. As illustrated in Table 7-3, the
similarities between the TSCM and the RETSINA MAS are extensive,
which leads us to believe that the TSCM could be used as the platform on
which the RETSINA MAS, and perhaps MASs in general could be built
upon.

5. TSCM VS. SUPPLY-CHAIN INTEGRATION
ARCHITECTURES: AN ARCHITECTURE FOR
GLOBAL QUERY IN THE SUPPLY-CHAIN

EDI (Electronic Data Interchange) has long been the standard upon
which supply-chain solutions have been built, but within the relatively recent
past XML-based solutions have been used as substitutes to this long
standing approach. MESChain (Cingil and Dogac 2001) is a supply-chain

134

integration architecture that employs emerging technologies and standards to
facilitate electronic catalog interoperability, workflow process automation
and other benefits. From this analysis of MESChain is discovered that
supply-chain integration and automation warrants a database-oriented
solution, but as yet no such solution has emerged to address this need,
although MESChain does provide a compelling substitute. Consequently,
the TSCM has been developed to fill this void, which is convincingly
demonstrated in the examples in Chapter 6. The TSCM is a database-
oriented solution that offers a number of advantages when compared to
MESChain, ranging from a consistent integration platform where deviations
from this approach are limited to messaging protocol alone, to the advanced
integrity controls provided by database systems, which tightly integrate the
data and operations made on them. In the analysis that follows we question
specific contributions of MESChain, and compare these with the capabilities
of the TSCM.

5.1 Interoperability of Distributed and Heterogeneous
Suppliers in the Supply-Chain

Interoperability within MESChain is facilitated by the Common
Business Library (CBL), which provides a canonical catalog description to
which all merchants in the supply-chain subscribe. The transformation or
mapping of the independent XML applications and documents in the supply-
chain to the CBL ensures the semantic consistency of product catalogs. To
participate therefore, each merchant in the supply-chain must adopt the
information models which constitute the CBL, which in the end we believe
is reminiscent of the rigid approach to schema integration in distributed
database management systems. It is assumed however, that this process is
embedded in wrapper programs that preserve the autonomy of the
merchants, but this has not been explicitly stated.

In comparison, the interoperability of the TSCM is facilitated via the
Metadatabase, which defines the global data model that is derived from the
integration of databases schemas obtained from the participating enterprise
databases. This global data model, its meta-structure (See the GIRD,
Chapter 2) and the supporting database infrastructure is arguably a superior
integration solution than that provided by the CBL. Firstly, the global data
model is extensible, and will adapt to reflect new global data attributes as
local database schemata are added to the Metadatabase, given the following
additional advantage. Second, the management of the global data model is
trivial, since the addition, deletion or modification of the schemas from the
data model, correspond to traditional data manipulation languages: the
insert, delete and update commands of a database management system.

135

which incidentally does not require the database systems to be taken off-line.
Finally, the meta-structure has proven to be enduring and robust for the
applications in which is has been utilized (Hsu 1996) over the past decade.

5.2 Customized Views in the Supply-Chain

Customized product catalogs provide the ability to combine product
descriptions from different merchants throughout the MESChain supply-
chain. The benefits include a product catalog customized to a customers
needs, and a catalog reflecting current product data. However, as indicated
in (Cingil and Dogac 2001), this customization feature leads to a sub-optimal
representation of the product catalog, since typically this introduces
repetitive catalog information for each product description, which is
necessary for the catalog to validate against the associated DTD.

In contrast, the TSCM subscription query facility provides
essentially the same functionality as a MESChain customized catalog, but in
a relatively concise format. The subscription query can include data from
multiple export databases in the supply-chain, at any level in the supply-
chain (See Chapter 6).

Figure 7-6 and Table 7-5 illustrate a customized catalog for a
300MHz desktop PC in MESChain and the corresponding subscription
query in the TSCM, respectively. The query in Fig. 7-5 consists of three
separate queries, and a function that includes two sub-queries, although only
one query is executed if the other fails. However, the subscription query
requires a single databases select query on the Blackboard in the first stage
of query matching and an additional heuristic to classify the results, in order
to identify matching publication queries, (See Chapter 4).

The query in Table 7-5 is valid given the following assertions: (1)
the specified data attributes are globally defined, and are available in one or
more publication queries, and (2) the literal value of the constraint is defined
within the domain of the corresponding attribute. See Chapter 4 for
additional information on the formulation of subscription and publication
queries.

136

FUNCTION Get.Proddesc.General.Element (in $pdi, in $proddesc_url)

•C WHERE <product.description ident = "$pdi">

<prodnct.description.general> </> ELEMENT.AS $pdge

</> IN $proddesc_url

RETURN $pdge }

•C WHERE <product.description ident = "$pdi">

<product.description.general.pointer ident = "$pdgi">

<url.reference url.string = "$pdgidesc_url">

</></></> IN $proddesc.url

RETURN Get.Proddesc.General.Element($pdgi, $pdgidesc_url) }

END

WHERE <catalog>

<catalog.entry.pointer ident = "$cei">

<url.reference url.string = "$catentry_url">

</></> ELEMENT.AS $cep_element

</> IN "www.srdc.metu.edu.tr/sc/Rl.catalog.xml",

<catalog.entry ident = "$cei">

<product .description.groiip>

<product.description.pointer ident = "$pdi">

<url.reference url.string = "$proddesc_url">

</></></></> IN "$catentry_url",

<product.descript ion.general>
<keyword.set><keyword>Desktop</></>
<feature.set> <feature.group>
<feature.name>Clock Speed</>
<feature.name.value><mhz>$mhz_value</></>

</></></> IN Get.Proddesc.General.Element($pdi, $proddesc_url),

EXPR "($mhz_value >= 300)"

CONSTRUCT $cep_element INTO "resultl.xml"

Figure 7-6. An XML Query in MESChain (Cingil and Dogac 2001)

Table 7-5. An exMQL Subscription Query that Corresponds to the XML Query in Fig. 7-6
GET desktop c l o c k _ s p e e d nihz_value
FOR inhz_value >= 300

137

5.3 Traversal of the Supply-Chain

Visibility in the supply-chain is generally limited to the customer's
immediate supplier(s) or purchaser(s). As illustrated in Chapter 6 however,
a supplier may be connected to one supplier, or more. MESChain provides
the opportunity to "drill down" these supply-chains, to view the catalog of a
supplier, and the supplier's supplier(s) and so on. This is facilitated through
a specification of links in the product catalog: "up-links" that are linked to
purchasers, and "down-links," which are linked to suppliers. This
functionality allows a customer the ability to navigate the MESChain using a
product property as a pivot point (such as a product brand), which allows the
customer to identify the suppliers, retailers, and manufacturers and so on that
also feature the product.

A similar, but more robust feature is available in the TSCM. The
global data model describes the global knowledge of all connected
databases. Moreover, the Blackboard describes the particular global
knowledge that is offered for consumption in the supply-chain. The
exMGQS (See Chapter 5) provides the opportunity to navigate the
Blackboard and to interact with the offered subscription and publication
queries. The vertical traversal of the Blackboard allows the user to navigate
to a particular export database, and interact with the publication queries that
define this resource. The horizontal traversal on the other hand allows the
user to choose a specific data item within a publication query, and pivot
about this object to identify the related queries and correspondingly, the
export databases that contain this global data item. Accordingly, this avails
a user of the opportunity to see how the particular data item is utilized, and
to what other data items/objects to which it is connected. This facility to
enable this functionality is derived from the initial modeling effort when an
enterprise database schema is integrated in the global data model. The
declaration of the attributes in the enterprise schema that correspond to the
global attributes automatically establishes the connections with the other
enterprise databases in the supply-chain. The availability of subscription
and publications at the Blackboard, which contain these global data items,
therefore establishes the links between suppliers and consumers and so
affirms the robustness of this approach, in contrast to MESChain where
these links will have to be declared manually for each connected resource.

138

6. TSCM VS. ERM: A GLOBAL QUERY
APPROACH TO AGENT TASK MATCHING

The TSCM shares the same goals and basic concepts with the
Enterprises Resources Market model; however, the ERM is more a general
conceptual design than a complete technology that is ready for testing or
even for implementation. In a sense, the TSCM reduces the basic concept of
ERM to practice with a particular method of information matching - i.e.,
developing an artificial market to facilitate the collaboration of databases,
with the possibility of considering pricing and other measures of value to
determine an optimal allocation of resources. As indicated in this research,
the TSCM is concerned more specifically with the on-demand information
exchange that enterprise collaboration requires, and seeks more directly to
expand the realm of the previous global query of databases.

Technically speaking, a significant point between these two models -
and the one we focus on in this analysis - is the Blackboard design. Whereas
the design with the ERM facilitates the matching of agent tasks, the design
with the TSCM optimizes the matching of queries. The two designs could
be considered as two competing approaches; or, more preferably as the view
we adopted, the query-based design in TSCM is interpreted as a particular
method for constructing the task agents in the ERM. With the latter view, the
Blackboard of the TSCM is the Match Engine of the ERM that facilitates
agent transactions, and is coupled with a database (the query database) to
store tasks (the queries). The difference is that agents in the general
literature (and hence in the ERM design) are assumed to be realized with
software threads, which search the repository of agents (often a flat file) for
matching tasks. An agent determines a match by using an internal
evaluation function to determine the goodness of fit. A simple example of
an internal evaluation function could be price and time; the requestor agent
pays a certain price X to a provider agent within a given time period.
Consequently, if a match is found the corresponding sleeping threads are
alerted, which when bound together with the matching thread, form a run
time agent. If a match is not found, then the software thread (Agent) is put
to sleep, and the corresponding task is placed in the database. In a
laboratory testing of a particular software agent design for the ERM model
(see Hsu, et.al. 2006), the architecture of the Agent-Base can support
upwards of 100,000 agents on a single machine, and upwards of millions of
agents across a distributed network of databases.

When compare the prevalent agent design in the literature against
the database approach of the TSCM, the significant difference is the richness
of the matching logic, which happens to have advantages on either platform.
The Blackboard in the TSCM by virtue of the integration with the

139

Metadatabase offers the semantic matching of queries. The Blackboard in
the ERM does not possess this capability. Moreover, the Blackboard in the
TSCM simply performs the matching of queries which may consist of the
evaluation of meta-attributes that describe market variables, but otherwise
does not implement a market. The market approach is a novel one, allowing
market dynamics to determine the value of goods and services. The ERM
provides this functionality through the internal evaluation functions that are
native to each agent. Therefore, this matching is flexible and adaptive, but
nonetheless suffers the problem that is endemic in current technologies in
which semantic matching is questionable.

The TSCM also offers an extensible architecture, by virtue of the
complete implementation in a RDBMS. This lends itself to the notion of
database independence that the database provides for applications.
Similarly, by providing a generic matching protocol, the Blackboard and
new market-based technologies can build on these resources, ignoring the
underlying implementation, and focusing on the functional aspects of these
applications.

Chapter 8

WHERE DO WE STAND?

1. A REVIEW OF THE RESULTS

The existing solutions for information exciiange in the supply-chain
are limited. They allow for document and message exchange and so only
scratch the surface when considering collaboration in the TSCM, given the
volume of information in enterprise databases that are available for sharing.
Likewise, traditional global database query has the potential to revolutionize
information exchange in the supply-chain, but to do so it must shed the
restrictive requirements it places on member databases, and embrace the
open architectures of the virtual enterprise. The TSCM evolves information
exchange in the enterprise; it extends the traditional global query paradigm
and allows for the conditional participation of databases in the information
exchange. Moreover, it empowers databases to consider exactly what
information is shared from their data resources, in contrast to traditional
approaches where the participation by default determines and controls what
is shared. The global query process has also been extended in the TSCM,
which introduces a bi-directional global query process, whereas the
traditional approach is unidirectional. Traditional global query only
considers the user side; queries are executed against a fixed set of databases,
and so it does not consider the needs of the database. Indeed, the database
should retain the capability to determine who to associate with, and what
information to share, in addition to publishing their data resources so that
information seekers are brought to the attention of the information that is
available.

142

To realize the benefits of the TSCM, a new global query architecture
consisting of the Blackboard, Export Database Shell, described in Chapter 5,
and the Metadatabase (See Chapter 2) has been developed. The Blackboard
provides for the large-scale concurrent processing and matching of queries,
which is realized in a general-purpose relational database management
system. The Blackboard determines matches between information requests
and offers, which are provided by data subscribers and data publishers
respectively. Following a query matching session (See Chapter 6), the
execution of the query is assigned to the export database associated with the
winning data publisher for processing. The Export Database Shell integrates
enterprise databases into the TSCM via the creation of the export database,
and so does not compromise the heterogeneity and autonomy of these
databases. The publication of an information offer initiates the creation of a
corresponding export database views in the export database, which reflects
the data retrieved from the enterprise database. The interface to the
enterprise database is realized through the enterprise database monitor that is
unique for each export database shell and is dependent on the particular
hardware and software utilized at the site. The enterprise database monitor
periodically updates the export database to keep the data current, on a
schedule determined by the policies of the enterprise domain. The
Metadatabase is the fundamental element in the design of the TSCM that
acknowledges the distributed knowledge, i.e. the operating and decision
rules in the distributed systems. It integrates the schemata of the distributed
systems into a single global data model to facilitate global query that is
system transparent, and performance-wise indifferent to the autonomy,
heterogeneity of the distributed databases (See Chapter 2).

The contributions of this research are the query matching
algorithms, the design of the architecture for the Blackboard and Export
Database, the Extended Global Query Language (exMQL), and the Extended
Metadatabase Global Query System (exMGQS). Three algorithms
pertaining to the Blackboard were developed in this research (See Chapter
4). The first algorithm, Matching identifies matching queries in the
Blackboard given a supplied query. For example, given an information
request the Matching algorithm iterates through the query database of the
Blackboard and compares the data items of each information offer that it
finds with the data items in the information request. If it identifies an
information offer that contains data items common to the information
request then it classifies the match according to the number of data items
that are found. An offer that contains the same items as the request, which
includes quantity and semantics, is denoted as an exact match. If the request
is a subset of the offer, then it is denoted a subset match. If the request is a
superset of the offer then it is denoted a superset match, and finally if they

143

contain common items but do not meet the aforementioned criteria then the
match is denoted an intersect match.

A second round of processing takes place if no exact or subset
matches are found. In this case, the Combination Matching algorithm is
executed taking as inputs the queries classified as superset and intersect
matches. The Combination Matching algorithm generates the set of
combinations these queries and determines if the combination provides a
solution for the information request. In this regard, the algorithm determines
combination exact, combination superset, combination subset and
combination intersect matches. The combination exact and combination
subset are the only categories of relevance. In this case, these two categories
are denoted item feasible, if they contain the necessary items to match the
information request. It is necessary however to determine if the combination
is join feasible, i.e. if the queries constituting the combination query are
logically connected. If the disparate queries contain common items then a
query join operation can be performed, and so the combination query is
considered join feasible.

In the event the queries are not logically connected then the
Metadatabase is consulted to determine if a solution can found. In this
regard, a modified Shortest Path Algorithm (See Appendix A) searches the
Metadatabase for data items that will logically connect the queries. If a
solution is found, it will return a set of data items required to connect the
combination query. Since the data items are not apart of the original
combination query, then it is necessary to modify the affected queries, and
so the system alerts the affected data publishers and/or data subscribers.
Given a join feasible solution, the third algorithm is executed.

The Constraint Matching algorithm (See Chapter 4) determines the
constraint feasibility of queries by determining if the constraints in the
queries are compatible. Since it is not possible to evaluate actual data
values, the algorithm instead uses truth tables to asses the truth value of the
constraints. The export databases that correspond to the queries that are
item, join and constraint feasible are then allocated the supplied query, and
the supplied query is then delivered to the appropriate export databases for
processing. In the event that multiple query matches are found, such as in
the case of multiple publication queries for a single subscription query, then
the Blackboard applies the decision criteria provided in the queries, or
automatically applies these criteria if they are not included in the queries.
Finally, given an acceptable solution, the query is executed on the affected
export databases.

144

2. COMPARATIVE PROPERTIES

We analyze further the properties of the TSCM. The model is unique
in the two-stage concept, the information matching method, and the creation
of the Export Database as a direct participant (in contrast to an export
schema of a participant). Together, they have the promise to turn the
traditional one-to-many rigid command relationship between users and
databases into one that is many-to-many and ad hoc. The new relationship is
unprecedented in the Global Database Query literature. Moreover, the
TSCM improves the properties of the Metadatabase model, and other similar
results in the literature (see Chapter 1), concerning autonomy, heterogeneity,
and openness and scalability of integration, by virtue of developing the new
first stage.

The TSCM expands local autonomy by affording participants the
ability to connect and disconnect from the global query infrastructure at will.
In traditional global query systems, including the Metadatabase, a distributed
database is always available for global database query. The databases
cannot control when and how their data resources are utilized, unless the
local data model is removed entirely from the global query infrastructure.
The TSCM separates the registration structure from the global query
architecture, as represented by the Metadatabase and Blackboard
respectively. A local database participates in global query only when the
data to be shared is made public, by submitting queries to the Blackboard.
Otherwise, the local database remains a part of the global community, but
does not participate in its information exchange.

Heterogeneity is another limit with the traditional global query
methods that the TSCM improves. Previous results tend to accommodate
local heterogeneity by relying on some kind of a global administrator, whose
limits, therefore, represent the limits on the heterogeneity. The
Metadatabase model, for example, affords participating databases the ability
to maintain a heterogeneous local schema by availing the Metadatabase to
transform all global queries into an equivalent local query format via ROPE
shells, which encapsulate the local databases. The TSCM expands
heterogeneity in two ways. First, it provides an enterprise database monitor
to the export database, to present the local data values and attributes in their
equivalent global representation for all participants to see and use. This
ability eases the burden of data conversion at the global site and thereby
makes it easier to accommodate heterogeneous local systems. Second, the
exMQL includes rules for the participants to declare constraints at the query
level; which adds a degree of the heterogeneity accommodated.

Openness and scalability of integration was not a significant concern
to traditional databases since the number of databases in an integration

145

environment tended to be small. However, this is no longer the case with
new practices such as supply chain integration. The Metadatabase allows a
comparatively favorable degree of openness and scalability in the field, in
that the addition, deletion, and modification of local data models are realized
as ordinary database operations to the Metadatabase. So, member databases
can be added, deleted and modified with relative ease. The TSCM expands
the scalability since the Export Database shells facilitate the addition of
diverse database systems and alternative data sources. It also maintains the
openness of the Metadatabase model since it requires only the standard
technology or even the open sources. The primary implementation effort is
the development of wrappers to retrieve data from the enterprise databases,
and the transformation of the resident data from the native format to the
global format.

3. OPPORTUNITIES FOR CONTINUING WORK

The TSCM results, including the design, the algorithms, and the
prototype, are complete as a research solution and are ready for testing in
practical settings. However, from the research perspective, continuing work
is envisioned. Although the critical components of the TSCM have been
established, there are number of areas that have not been completely
implemented in the laboratory prototype. Moreover, there are a number of
issues that need to be resolved before the TSCM is fully realized. Before
looking at these issues, two alternative methods to implement the query
matching algorithms are explored, in an effort to improve the overall
performance of the Blackboard Match Engine.

First, as currently implemented the combination algorithm performs
an exhaustive search of the Blackboard to evaluate combination queries. If
the number of queries that match the supplied query is large then this can
create a bottleneck in the query matching process. It has been determined
that two approaches can be taken to alleviate this concern, (1) a divide and
conquer strategy, and (2) a greedy strategy.

In the divide and conquer strategy, the combination query that
considers all superset and intersect queries is evaluated, to determine if the
combination query is item feasible. If it is, then the combination query is
recursively split until one with the least number of queries is found, while
still being item feasible. It then would be tested for join feasibility. If the
join feasibility test fails then the algorithm backtracks and evaluates the
previously discarded, item feasible, combination queries.

146

In the greedy strategy, the combination query that contains the
greater number of data items that are common to the supplied query is
considered, and the remaining queries and iteratively append to it, in an
attempt to improve the item feasibility of the combination query. Once an
item feasible solution is found, then the join feasibility is assessed

Furthermore, finding a better way to integrate the results from
multiple export databases, rather than having this centralized at the
Blackboard, will go far to improving the performance of the TSCM.
Alternative methods to the approach implemented in this research include
performing the integration of multiple query results at the export database
shell, as opposed to the Blackboard. This would require that the Blackboard
provide the relevant integration script to the affected export database, but
this can be performed at the same time the queries are allocated to the export
database.

With regards to completing the TSCM, the Blackboard and its
attendant methods, the exMGQS and exMQL have been successfully
implemented. Furthermore, the export database shell has been designed
however, this has not been implemented. Moreover, the message protocol
required to deliver exMQL queries to the export databases and back to the
Blackboard, although alluded to in the research this has not been
implemented. However, the requirements in this regard are easily met with
current technologies, including for example SOAP (Simple Object Access
Protocol) (W3C 2005) and XML-RPC (Remote Procedure Call) (Userland
Software 2005), among others.

Additional work must also be performed to implement the
functionality of publication queries creating views in an export database.
The export database can be implemented on standard relational database
technologies, and so the ability to create views is a trivial matter. However,
translating the exMQL publication query into this SQL representation is
another matter. First, the database views must be named such that these
correspond to the query identifier, which should be unique both at the export
database and at the Blackboard. It is this identifier that the Blackboard
refers to when the query is to be allocated, and so must be unique to prevent
conflicts at the export database. Furthermore, the methods by which these
views are created must be investigated. What are the arrangements of the
database tables? Are database tables' better alternatives to view creation, and
must multiple tables be created to support each view, and accordingly each
publication query, or is there a better solution?

The enterprise database monitor - the mechanism required to
connect the enterprise database to the TSCM, has also been discussed. The
enterprise database monitor facilitates populating the export database

147

according to the attributes of the publication query, as well as the periodic
updates of the export database given changes in the enterprise databases. It
also transforms the enterprise data values and attributes into their global
equivalents prior to being entered into the export database. This has not
implemented or a design provided for this component, but this can be
realized as a software wrapper that is custom designed for each enterprise
database. Examples of this approach are seen in other database integration
technologies such as Garlic (Carey, Haas et al. 1995).

This implementation of the TSCM considers user interactions with
the database and vice versa, although the implications are database-to-
database interaction. While there are solutions that approximate this
functionality, for example, database replication, none addresses the need
where a database autonomously interacts with another database. The ability
of databases to autonomously publish their information contents with other
databases facilitates the real-time management of data. Data in the
collaboration is kept current without human intervention. This however
leads to a concern which was not addressed in this research but does require
exploration to ensure the completeness of exMQL. Specifically, this refers
to the data management capabilities of exMQL. While this research has
provided the methods to manipulate the data residing in the Blackboard, it
has not explored the issue of managing content on an enterprise database.
That is, can the export database be used as the conduit to maintain the
information in enterprise databases? Is it possible, for an information
request to be reinterpreted as an information update/delete/insert, such that
upon submission to the Blackboard, the affected export database shells are
notified and update/delete/insert their export databases and accordingly the
enterprise databases. Being able to implement this functionality presents a
tremendous opportunity to manage distributed information, which although
previously addressed in the related literature (Babin 1993), is still bound to
the traditional global query technology thus limiting its scope. By returning
to one of the initial examples in the Introduction the benefits of such a
framework can be realized. In homeland security; the sharing of information
would no longer be a significant undertaking, since this dynamic database-
to-database exchange would keep collaborating database up to date,
semantically consistent and synchronized.

Appendix

1. THE OPERATIONAL ELEMENTS OF THE TWO-
STAGE COLLABORATION MODEL

1.1 Extended Metadatabase Query Language (XML)

The XML syntax and diagrams illustrated in Figs. A-1 to A-16 uses
the alternative BNF format described in (Babin 2004). This specification
describes the operational query language of the TSCM. All queries in the
current implementation are encoded in this message format.

• <exMQL> ::= '<exinql>' [<QUERY> | <DELETE_QUERY> |
<DELETE_RULE> | <DELETE_CONDITION> j
<UPDATE_QUERY>] '</exmql>' ;

Figure A-1. exMQL QUERY Clause

• <QUERY> ::= '<query' <COMMAND> '>' <ITEMS> -[
'<condlist>' +[<CONDITIONS>]+ '</condlist>']- -[
'<actionlist>' +[<ACTIONS>]+ '</actionlist>']-
'</query>';

3q"ei2!>-f COMMAND"~[-(>)-[~iTEMS [->,

c
^-Cl3ip*'°"''^'£I^^^'~H ACTIONS |-Y-C^ctionlis

Figure A-2. exMQL QUERY Clause

152

• <ITEMS> ::= '<items>' +['<itein>' item '</item>'
]+ '</items>' ;

Figure A-3. exMQL ITEMS Clause

• <COMMAND> : : = 'command' '= [' g e t ' I ' p u t ']

9 ^

pu t .
I COMMAND"] >—<£omman9

Figure A-4. exMQL QUERY COMMAND options

• <CONDITIONS> ::= '<COnds>' /[<CONDITION>
<CONJOIN>]/ '</conds>';

I CONDITIONS I >—C3'=°"''iS^>-H CONDITION
^ CONJOIN k

Figure A-5. exMQL CONDITIONS Clause

• <CONJOIN> : : = ' < c o n j o i n op=' ' " ' [' a n d ' | ' o r ']
' " ' ' / > ' ;

Figure A-6. exMQL CONJOIN options

153

• <CONDITION> ::= '<COnd ' [<SELECT> | <JOIN>
<NEGOTIATE>] '/>';

CONDITION I >—<3con£>-^ 1 JOIN | 7~CE^~*

NEGOTIATE

Figure A-7. exMQL CONDITION options

• <SELECT> :: = ' loper' ' = ' '"' item '"' <BOUND>
'roper' '= value '"' ;

I SELECT I >—(Jppery-(=)-(!'y^Jtsirr}-(^ BOUND [-Croper>{=}-{ ' 'y(value K'^}—»

Figure A-8. exMQL SELECTION Clause

• <JOIN> : := ' l o p e r ' ' = i t e m ' " ' <BOUND>
' r o p e r ' ' = i t e m r rr r

I JOIN I >-<Toper>-(S)-(''y(lteffr)-(^'}-f~BOUND K£oper>-(=)-(' ') - { item j - Q - ^

Figure A-9. exMQL JOIN Clause

• <NEG0TIATE> : : = 'loper' ' = parameter ' " '

<BOUND> ' roper' ' = value '" ' ;

I NEGOTIATE | >—<1oper>-{=}-{'')-(parameter H ^ BOUND~|<roper>-{=)-(J')-(~ya/ue j - Q — >

Figure A-10. exMQL NEGOTIATE Clause

154

• <BOUWD> : : = ' o p ' '= [' n e q '
' g t ' I ' l e q ' I ' g e q '] ' " ' ;

'eq' I ' I t

BOUND >—(op

Figure A-ll exMQL BOUND options

• <ACTIONS> ::= '<actions>' +['<action>' action
'</action>']+ '</actions>' ;

Figure A-12. exMQL ACTIONS Clause

• <DELETE_QUERY> : : =̂ '<delete' 'id'
querY_name '"' -['isCascade' '-' '"' ['true' |
'false'] '"']- '/>' ;

DELETE_QUERY | > - - < < d e i e i ? > (i d) - 0 - (^ qmyjianui\(^

Figure A-13. exMQL DELETE QUERY Clause

I I _ I r ri I • <DELETE_RULE> ::= '<delete' 'id'
query_name '"' '>' ' <rules>' +[' <rule' 'id' ' = '
'"' rule_name />']+ '</rules>' '</delete>'

>-<35iiE^KEXi)~0"G^^™D"CKi)^

Figure A-14. exMQL DELETE RULE Clause

155

I — I I rr I • <DELETE_CONDITION> ::= '<delete' 'id'
query_name >' ' <conds>' +['<cond' 'id' ' = '
'"' condition_name '"' '/>']+ '</conds>'
'</delete>' ;

LCONDITION ~| > - < < d 5 e t e > (i d) - 0 - (y queryjame] - (' ^X^)^^

condition name

Figure A-15. exMQL DELETE CONDITION Clause

• <UPDATE> ::= '<update' 'id' '-' '"' guery_name
'>' <ITEMS> : -['<condlist>'

+[<CONDITIONS>]+ '</condlist>']- -[
'<actionlist>' +[<ACTIONS>]+ '</actionlist>]-
'</update>';

query_name\(^^y-(>y\ ITEMs"~]->,

CONDITIONS }T<3H

<actionl : ionlist>^>Y'l ACTIONS [-^ -< :3? '= ' ' ° " l ' s t>T I I ^ > - | /"Pdale \-^

Figure A-16. exMQL UPDATE QUERY Clause

1.2 Modified Shortest Path Algorithm

The Shortest Path Algorithm below is derived from (Cheung 1991)
and is included here to illustrate the slight modification, which is
emboldened, required for the use in the TSCM. For the complete details of
the operation of the TSCM, please see (Cheung 1991).

156

Table A-1. Algorithm 1: Shortest Path Algorithm (S)
Let currentCost: the current cost of the solution
Let createMessageiA): Create a message for each node in A, where a message contains a
unique identity, the cost and an indicator from which node the message is sent.
Let currentCycle: the set of messages that are currently being sent in the algorithm
Let nextCycle: the set of messages to be sent in the next round
Let visitedNotes(S): the set of nodes that have previously received messages.
Let numberCycleiS): the current cycle in the algorithm.
Let N": the set of nodes to be connected, where each node is a structure that has a key, the
name of the node, the number of messages received and the set of messages it carries.
Let root: the current best solution of the algorithm
Let newBestSolutionQ: determines the solution is better than the previous solution
Let nii. the i''' message
Let n/. the/''node

Function determineShortestPath(N")
currentCost <— oo
root <r- 0
createMessage(N"y,
currentCycle{N")\
nextCycle <r- 0
visitedNodesiN°)\
numberCycle i— 1

For (currentCost < numberNodes - 1)

For each m, in currentCycle
listOfNodes = getRelatedEntrel{mj-^from)

For each node nj in listofNodes
If nj ^ visitedNodes

nij-^from = mj-^from + 1;
m\-^from = nj—>key;
add nil fo nextCycle;

End-If
Itmji nj

add message m; to ray
If newBestSolutionQ

root = Hj
currentCost = calculatedCostQ;

End-If
End-If

End-For
End-For
currentCycle = nextCycle
nextCycle <— 0
nbCycle = nbCycle + 1;

End-For

End-Function

157

THE STRUCTURAL ELEMENTS OF THE
METADATABASE AND THE BLACKBOARD

2.1 The DDL for the Blackboard

* * * * * * : J f * * * * * * * * * * i l r * * * i l r * * * -) t * : V * * * * + * * * * * * * * * *

* * * *
** FILE: BLACKBOARD.DDL **
** DDL STATEMENTS FOR CREATING THE BLACKBOARD DB MODEL **

IN POSTGRESQL * * * *

-- ** Represents the
CREATE TABLE "USER"

(USERID
LASTNAME
FIRSTNAME
POSITION
PHONE
OFFICE
ADDRESS
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS
EMAIL
SKILL

users in an enterprise **

CHARACTER VARYING(10) NOT NULL,
CHARACTER VARYING(20)
CHARACTER VARYING(20)
CHARACTER VARYING(40)
CHARACTER VARYING(14)
CHARACTER VARYING(10)
CHARACTER VARYING(45)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
INTEGER,

CHARACTER VARYING(60),
INTEGER);

-- ** Represents the systems of an enterprise **
CREATE TABLE SYSTEM (

SYSNAME CHARACTER VARYING(100) NOT NULL,
CHARACTER VARYING(45),
CHARACTER VARYING(3),
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
INTEGER,

CHARACTER VARYING(10),
TIMESTAMP);

DESCRIPT
APPLCODE
USERID
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS

IPADDRESS
TIMESTAMP

158

-- ** Represents the views or subjects in a system **
CREATE TABLE QUERY (

QNAME
DESCRIPT
XCOORD
YCOORD
SYSNAME
FILEID
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS

QTYPE
TIMESTAMP

CHARACTER VARYING(100) NOT NULL,
CHARACTER VARYING(45),
INTEGER,
INTEGER,
CHARACTER VARYING(20)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
INTEGER,

CHARACTER VARYING(10),
TIMESTAMP);

Represents the operational entity*relationships in an
enterprise **
CREATE TABLE VIEW

VNAME
DESCRIPT
AKEY
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS

CHARACTER VARYING(100) NOT NULL,
CHARACTER VARYING(45),
CHARACTER VARYING(100) ,
CHARACTER VARYING(10),
CHARACTER VARYING(10) ,
CHARACTER VARYING(10),
CHARACTER VARYING(10),
INTEGER);

-- ** Represents the structural integrity in a system **
CREATE TABLE INTEGRITY (

INTNAME CHARACTER VARYING(40)
INTTYPE CHARACTER VARYING(2),
DESCRIPT CHARACTER VARYING(45)
MASTER CHARACTER VARYING(40)
SLAVE CHARACTER VARYING(40)
ADDEDBY CHARACTER VARYING(10)
DATEADDED CHARACTER VARYING(10)
MODIFBY CHARACTER VARYING(10)
LASTMOD CHARACTER VARYING(10)
NUMMODS INTEGER) ;

NOT NULL,

-- ** Represents the data items in an enterprise **
CREATE TABLE ITEM (

ITEMCODE CHARACTER VARYING(100) NOT NULL,
ITEMNAME CHARACTER VARYING(40),
ITEMTYPE INTEGER,
DESCRIPT CHARACTER VARYING(45),
IFORMAT CHARACTER VARYING(20),

159

ILENGTH
PRECISION
DOMAIN
UNIT
DEFVALUE
SYSNAME
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NXJMMODS

INTEGER,
INTEGER,
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
INTEGER);

VARYING(20)
VARYING(20)
VARYING(20)
VARYING(20)
VARYING(10)
VARYING(10)
VARYING(10)
VARYING(10)

-- ** Represents the
systems **
CREATE TABLE CONTEXT

CNAME
DESCRIPT
XCOORD
YCOORD
SYSNAME
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS

contextual knowledge within or across the

CHARACTER VARYING(20) NOT NULL,
CHARACTER VARYING(45),
INTEGER,
INTEGER,
CHARACTER VARYING(20) ,
CHARACTER VARYING(10),
CHARACTER VARYING(10),
CHARACTER VARYING(10),
CHARACTER VARYING(10),
INTEGER);

-- ** Represents the
context **
CREATE TABLE RULE (

RNAME
RTYPE
DESCRIPT
CONDID
NUMBCONDS
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS

production rules used in a subject or

CHARACTER VARYING(20) NOT NULL,
CHARACTER VARYING(20),
CHARACTER VARYING(45),
CHARACTER VARYING(10),
INTEGER,
CHARACTER VARYING(10),
CHARACTER VARYING(10),
CHARACTER VARYING(10) ,
CHARACTER VARYING(10),
INTEGER);

-- ** Represents the action part of a rule **
CREATE TABLE ACTION

(ACTID CHARACTER VARYING(10) NOT NULL,
ACTTYPE INTEGER,
FACTID CHARACTER VARYING(10),
DECLVALUE CHARACTER VARYING(1));

-- ** Table containing the facts used by the rule processor **
CREATE TABLE FACT

160

(FACTID CHARACTER VARYING(10) NOT NULL,
FACTNAME CHARACTER VARYING(80),
DESCRIPT CHARACTER VARYING(45),
FACTTYPE INTEGER,
FACTVALUE CHARACTER VARYING(20),
VALUETYPE CHARACTER VARYING(20),
VALUEOF CHARACTER VARYING(10),
BINDTYPE INTEGER);

-- ** Represents the condition part of a rule **
CREATE TABLE CONDITION (

CONDID CHARACTER VARYING(10) NOT NULL,
LEFTFACT CHARACTER VARYING(10),
OPERATOR CHARACTER VARYING(10),
RIGHTFACT CHARACTER VARYING(10));

-- ** Represents the hardware resources (systems) used in an
enterprise **
CREATE TABLE HARDWARE_RESOURCE (

SERIALNO
HNAME
HTYPE
DESCRIPT
LOCATION
NODENAME
NODEADDR
MANUFACTURER
PURCHBY
DATEPURCH
USERID
ADDEDBY
DATEADDED
MODIFBY
LASTMOD
NUMMODS

CHARACTER VARYING(100)
CHARACTER VARYING(20)
CHARACTER VARYING(20)
CHARACTER VARYING(45)
CHARACTER VARYING(20)
CHARACTER VARYING(20)
CHARACTER VARYING(2 0)
CHARACTER VARYING(40)
CHARACTER VARYING(40)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
CHARACTER VARYING(10)
INTEGER);

NOT NULL,

__ ** fiiQ software resources (files, programs, and documents)
used by the systems **
CREATE TABLE SOFTWARE_RESOURCE (

RESID CHARACTER VARYING(100) NOT NULL,
RESNAME CHARACTER VARYING(40),
EXTENSION CHARACTER VARYING(3),
RESTYPE CHARACTER VARYING(20),
DESCRIPT CHARACTER VARYING(45),
SIZEVALUE INTEGER,
SIZEUNIT CHARACTER VARYING(20),
CODING CHARACTER VARYING(20),
DEVELOPBY CHARACTER VARYING(45),
ADDEDBY CHARACTER VARYING(10),

161

DATEADDED CHARACTER VARYING(10),
MODIFBY CHARACTER VARYING(10),
LASTMOD CHARACTER VARYING(10),
NUMMODS INTEGER);

-- ** A PR between SYSTEM and USER entities **
CREATE TABLE SYSTEMUSER

(SYSNAME CHARACTER VARYING(20) NOT NULL,
USERID CHARACTER VARYING(10) NOT NULL,
UPASSWORD CHARACTER VARYING(10),
SKILL INTEGER,
ACCESSCODE CHARACTER VARYING(2),
ADDEDBY CHARACTER VARYING(10),
DATEADDED CHARACTER VARYING(10),
MODIFBY CHARACTER VARYING(10),
LASTMOD CHARACTER VARYING(10),
NUMMODS INTEGER);

-- ** A PR between SYSTEM and SOFTWARE entities **
CREATE TABLE USES

(SYSNAME CHARACTER VARYING(100) NOT NULL,
RESID CHARACTER VARYING(100) NOT NULL,
DATAORG CHARACTER VARYING(20));

-- ** A PR between VIEW and SYSTEM entities **
CREATE TABLE NAMEDAS

(VNAME CHARACTER VARYING(100) NOT NULL,
SYSNAME CHARACTER VARYING(100) NOT NULL,
LOCALNAME CHARACTER VARYING(40));

-- ** A recursive PR on SOFTWARE entity **
CREATE TABLE MODULEOF

(SUBRESID CHARACTER VARYING(15) NOT NULL,
RESID CHARACTER VARYING(15) NOT NULL,
RELATIONSHIP CHARACTER VARYING(20));

CREATE TABLE DESCRIBES
(ITEMCODE CHARACTER VARYING(100) NOT NULL,
QNAME CHARACTER VARYING(100) NOT NULL,
RELPOS INTEGER,
INHERITED CHARACTER VARYING(20));

-- ** A PR between QUERY and VIEW entities **
CREATE TABLE MAPPEDTO

(QNAME CHARACTER VARYING(100) NOT NULL,
VNAME CHARACTER VARYING(100) NOT NULL,
ADDEDBY CHARACTER VARYING(10),
DATEADDED CHARACTER VARYING(10),
MODIFBY CHARACTER VARYING(10),

162

LASTMOD CHARACTER VARYING(10),
NUMMODS INTEGER);

-- ** A PR between ITEM and VIEW entities **
CREATE TABLE BELONGTO

(ITEMCODE CHARACTER VARYING(100) NOT NULL,
VNAME CHARACTER VARYING(100) NOT NULL,
RELPOS INTEGER,
INPKEY INTEGER,
POSINPK INTEGER);

CREATE TABLE RELATES
(CNAME CHARACTER VARYING(20) NOT NULL,
QNAME CHARACTER VARYING(20) NOT NULL,
DIRECTION INTEGER);

CREATE TABLE CONTAINS
(CNAME CHARACTER VARYING(20) NOT NULL,
RNAME CHARACTER VARYING(20) NOT NULL,
RELORDER INTEGER);

-- ** A PR between QUERY and RULE entities **
CREATE TABLE APPLIES

(QNAME CHARACTER VARYING(2 0) NOT NULL,
RNAME CHARACTER VARYING(20) NOT NULL,
RELORDER INTEGER,
INHERITED CHARACTER VARYING(20));

-- ** A PR between ACTION and RULE entities **
CREATE TABLE ACTOF

(RNAME CHARACTER VARYING(20) NOT NULL,
ACTIO CHARACTER VARYING(10) NOT NULL,
RELORDER INTEGER);

-- ** A PR between FACT and SOFTWARE RESOURCES entities **
CREATE TABLE COMPUTES

(FACTID CHARACTER VARYING(10) NOT NULL,
FUNCTID CHARACTER VARYING(16) NOT NULL,
PARID CHARACTER VARYING(10),
PARORDER INTEGER);

-- ** A PR between ACTION and SOFTWARE entities **
CREATE TABLE CALLS

(ACTID CHARACTER VARYING(10) NOT NULL,
PROCID CHARACTER VARYING(10) NOT NULL,
PARID CHARACTER VARYING(10),
PARORDER INTEGER);

163

-- ** A recursive PR on ITEM entity **
CREATE TABLE EQUIVALENT

(ITEMCODE CHARACTER VARYING(10) NOT NULL,
EQITEMCODE CHARACTER VARYING(10) NOT NULL,
CONVERT_BY CHARACTER VARYING(20)
REVERSE_BY CHARACTER VARYING(20)
ADDEDBY CHARACTER VARYING(10)
DATEADDED CHARACTER VARYING(10)
MODIFBY CHARACTER VARYING(10)
LASTMOD CHARACTER VARYING(10)
NUMMODS INTEGER);

-- ** A PR between ITEM and SOFTWARE entities **
CREATE TABLE STOREDIN

(ITEMCODE CHARACTER VARYING(10) NOT NULL,
RESID CHARACTER VARYING(15) NOT NULL,
RELPOS INTEGER);

-- ** A PR between SOFTWARE and HARDWARE entities **
CREATE TABLE RESIDESAT

(RESID CHARACTER VARYING(15) NOT NULL,
SERIALNO CHARACTER VARYING(10) NOT NULL,
PATH CHARACTER VARYING(45),
INVOKECOM CHARACTER VARYING(45));

CREATE SEQUENCE factid;
CREATE SEQUENCE condid;
CREATE SEQUENCE rname;

2.2 Description of GIRD and Blackboard Structural
Elements

This list is derived from the original Metadatabase research
(Bouziane 1991; Cheung 1991); however the meta-entities and meta-
relationships are shared with the Blackboard and so are repeated here for
convenience. The new and modified attributes that are contributed by the
Blackboard structure have their attributes emboldened.

Table B-1: Description of GIRD and Blackboard Structural Elements

RELATION (Primary Key. Attrlbutej,..., Attribute„)

Action (Actid, acttype, factid, addedby, dateadded, modifby, lastmod, nummods)

Actof (Actid. Rname. relorder, addedby, dateadded, modifby, lastmod,

nummods)

Application (Applname. descript, addedby, dateadded, modifby, lastmod, nummods,
userid)

164

Applies (Sname. Rname. relorder)

Appluser (Applname. Userid, password, accesscode, addedby, dateadded, modifby,

lastmod, nummods)

Belongto (Itemcode.Vname, relpos, inpkey, posinpk)

Calls (Actid, Procid. Parid, parorder)

Computes (Factid. Punctid.Parid, parorder)

Condition (Condid, leftfact, operator, rightfact, addedby, dateadded, modifby,
lastmod, nummods)

Contains (Cname. Rname, relorder, addedby, dateadded, modifby, lastmod,
nummods)

Context (Cname, applname, descript, xcoord, ycoord, addedby, dateadded,

modifby, lastmod, nummods)

Describes (Itemcode, Qname, relpos)

Ent-Rel (ERname, ertype, descript, akey, addedby, dateadded, modifby, lastmod,

nummods)

Equivalent (Itemcode, Eqltemcode, rname, addedby, dateadded)

Fact (Factid. factname, facttype, factvalue)

Hardware (Seriaino, hname, htype, descript, location, nodename, nodeaddr,
Resource manufacturer, purchby, datepurch, addedby, dateadded, modifby,

lastmod, nummods, userid)
Integrity (Intname, inttype, descript, master, slave, addedby, dateadded, modifby,

lastmod, nummods)

Item (Itemcode. itemname, itemtype, descript, format, length, domain,

defvalue, addedby, dateadded, modifby, lastmod, nummods, applname)

Mappedto (Qname. Vname. addedby, dateadded, modifby, lastmod, nummods)

Moduleof (Resid, Subresid. relationship)

Namedas (Vname. Svsname. localname)

Query (Qname. Sysname. Qtype, timestamp)

Relates (Cname. Qname. direction)

Residesat (Resid. Seriaino. path, invokecom, addedby, dateadded, modifby,
lastmod, nummods)

Rule (Rname, rtype, descript, condid, addedby, dateadded, modifby, lastmod,

nummods)

Software (Resid. resname, extension, restype, descript, sizevalue, sizeunit, coding.

Resource developedby, addedby, dateadded, modifby, lastmod, nummods)

Storedin (Itemcode. Resid. relpos)

Subject (Sname. descript, xcoord, ycoord, addedby, dateadded, modifby, lastmod,

nummods, supersname, applname, fileid)

System (Svsname. host, timestamp)

User (Userid, username, class, position, phone, office, address, addedby,
dateadded, modifby, lastmod, nummods)

Uses (Applname. Resid, dataorg, addedby, dateadded, modifby, lastmod,

165

View

nummods)

(Vname, Vtype, descript)

2.3 Definitions of Metadatabase and Blackboard Meta-
Attributes

This list is derived from the original Metadatabase research
(Bouziane 1991; Cheung 1991); however the attributes are shared with the
Blackboard and so are repeated here for convenience. The new attributes
that are contributed by the Blackboard structure have their description
emboldened.

Table B-2: Definitions of Metadatabase and Blackboard Meta-Attributes

META-
ATTRIBUTE

DESCRIPTION

accesscode An attribute of the meta-PR appluser that identifies a user's authorized

data access level; e.g., Read (R), Write (W), Execute (E), Delete (D).

actid Unique identifier (primary key) for meta-entity ACTION.

acttype Class of consequences of the production rule. Ex. Takes on a value of 0
if result of rule is binding of a fact or a value of 1 for a procedure call.

addedby Name/initials of a modeler or information administrator who entered the

meta-entity or relationship into the GIRD. Provides an audit trail.

address Home address of a user. Attribute of meta-entity USER.

akey Alternative primary-key(s) for an ENT-REL base relation.

applname Unique name (primary key) for an application.

class Classification scheme for end-users; can serve to control privileges and

data access.

cname Unique name (primary key) for the meta-entity CONTEXT.

coding The type of physical representation of a software resource; e.g., Pascal or
LISP for program code; or ASCII, VSAM, or ISAM for data files.

condid Unique identifier (primary key) for meta-entity CONDITION. Also an

attribute of meta-entity RULE.

dataorg Indicates how the data is organized in an application in meta-PR USES.

dateadded Date that instance of meta-entity or meta-relationship was added to

GIRD.

datepurch Date on which a hardware resource was purchased/acquired.

defvalue Default value, if any, for a meta-entity ITEM.

descript Description of all defined meta-entities and meta-relationships.

developedby The name of the firm or person who developed a software resource.

direction Indicates how the link (data flows) between a CONTEXT and SUBJECT

166

domain

eqitemcode

ername

ertype

extension

factid

factname

facttype

factvalue

iileid

format

functid

hname

htype

inpkey

intname

inttype

involtecom

itemcode

itemname

itemtype

lastmod

leftfact

length

is directed graphically, (i.e.; 1 = toward SUBJECT; 2 = toward
CONTEXT; 3 =bidirectional; nil = none)

The set of values that can be assigned to a data item (meta-entity ITEM).

Synonym for itemcode in meta-PR Equivalent.

Unique name (primary key) for meta-entity ENT-REL.

The type of ENT-REL; takes on a value of "OE" or "PR" corresponding
to an operational entity and plural relationship respectively.

The file-name extension (if any) for a software resource.

Unique system-generated identifier (primary key) for meta-entity FACT.
Also, an attribute of meta-entity ACTION.

Attribute of a fact that is either an itemcode or an expression (condid).
Attribute of a fact that indicates how the value of the fact is to be
assigned: 0 if the fact value is to be retrieved from a local database, 1 if
it is the result of an expression evaluation, and 2 if it is computed by a
function call.

The calculated or referenced value, or a constant, that binds a fact during
the rule inference process.

Attribute of meta-entity SUBJECT. Synonym for resid.

The data item representation type. Attribute of meta-entity ITEM.
Examples: Character (C), Integer (I), Real (R), BCD (B), EPCDIC (E),
etc.

Synonym of resid; identifies the function to be called for binding a fact.
Key field in meta-PR Computes.

Model number or name of a hardware resource.

The type of hardware. Attribute of meta-entity HARDWARE
RESOURCE. Examples: line-printer, mainframe, mini-, micro
computer, harddisk, etc.

A flag (boolean value) indicating whether or not a data item is part of the
primary key of ENT-REL. Attribute of meta-PR belongto.

Unique name (primary key) for an integrity constraint.

The type of integrity constraint, either "FR" or "MR" corresponding to
functional relationship or mandatory relationship respectively.

The command to invoke a software resource on a hardware resource.
Attribute of meta-PR residesat.

Unique system-generated identifier (primary key) for a data element
(metaentity ITEM).

The name of a data item in meta-entity ITEM.

An attribute of meta-entity ITEM to indicate whether the data item is
"persistent" (exists in at least in one local DB) or is generated at runtime.

Date of last modification of GIRD meta-entities and meta-relationships.

Synonym of factid and represents the left operand of an expression.

The length of a data item. May refer to length in character positions or
bytes depending upon implementation.

167

localname Attribute of meta-PR namedas.

location Physical location for meta-entity HARDWARE RESOURCE,

manufacturer The manufacturer of a hardware resource.

master An attribute of meta-entity INTEGRITY which, in the case of an
FRtype, plays the role of determinant; and in the case of an MRtype,
plays the role of owner.

modifby Identifier (name or initials) of an individual who last modified an

instance of a given meta-relation.

nodeaddress Network address for a hardware resource.

nodename Network "node" name for a hardware resource.

nummods Number of modifications to a meta-entity. This attribute is in all meta-

entities and most meta-PRs.

office Office location or address of meta-entity USER.

operator The logical operator in antecedent of a production rule. This includes the
set of arithmetic and set operators.

parid Synonym of factid which represents a parameter of a function in meta-
PR Calls.

parorder The relative position of the parameter in a function/procedure parameter
list.

path Path to top level directory in which a software resource resides on a

hardware resource.

password The password to an application in meta-PR appluser,

phone Business telephone number of a user.

posinpkey The relative position of a data item field in the primary key of ENT
REE.

position Organizational position of the user; e.g., president, DBA, data-entry

clerk.

procid Synonym of resid, it identifies the procedure to be called for a rule

action.

purchby Identifier of individual responsible for the purchase of the hardware

resource.

qname Unique identifier (primary key) for the meta-entity QUERY

qtype The type of query, i.e. REQUEST or OFFER

relationship The relationship among software resources; in meta-PR moduleof

relorder Relative order (sequence) of a rule within a SUBJECT or CONTEXT —

or of a condition in a rule.

relpos Relative position of a data item in meta-entity ENT-REL.

resid A unique identifier (primary key) for meta-entity SOFTWARE

RESOURCE

resname Title/name of a software resource.

restype Software resource type; e.g., program, data file, network, document.

168

rlghtfact Synonym of factid and represents the right side operand of an

expression.

rname Unique name (primary Icey) for meta-entity RULE.

rtype The type of rule; e.g., Modeling (M), Operating (O), Production (P), etc.

seriaino The unique identifier (primary key) for meta-entity HARDWARE
RESOURCE.

sizeunlt The unit of measure for describing storage of a software resource; e.g.,
KBytes, blocks, cylinders, pages, etc.

sizevalue Quantity of units of storage for a specified software resource (expressed
in size units).

slave An attribute of meta-entity INTEGRITY which, in the case of an
FRtype, plays the role of determined; and in the case of an MRtype,
plays the role of owned.

sname Unique name (primary key) of meta-entity SUBJECT.

subresld A synonym for resid. Key field in meta-PR moduleof.

ssname The upper-level (if any) subject name for meta-entity SUBJECT.

sysname Unique identifier (primary key) for the meta-entity SYSTEM

timestamp Current date and time a tuple is added to the relation.

userid Unique identifier (primary key) for meta-entity USER.

username Full name of a user in meta-entity USER.

vname Unique identifier (primary key) for the meta-entity VIEW

xcoord X-coordinate of the graphical representation of a SUBJECT or
CONTEXT.

y coord Y-coordinate of the graphical representation of a SUBJECT or
CONTEXT.

References

Ahmed, R., J. Albert, et al. (1993). An overview of Pegasus. RIDE-IMS '93, Thirrd
International Workshop on Research Issues in Data Engineering: Interoperability in
Multidatabase Systems. April 19-20, 1993. Vienna, Austria. lEEE-CS.

Ahmed, R., P. DeSmedt, et al. (1991). "The Pegasus heterogeneous multidatabase system."
Computer 24(12): 19-27.

Babin, G. (1993). Adaptiveness in Information Systems Integration. Unpublished Ph.D.
Thesis. Decision Sciences & Engineering Systems Dept. Troy. Rensselaer Polytechnic
Institute.

Babin, G. (2004). CompTools : A Compiler Generator for C and Java. Montreal, Quebec:
HEC Montreal. Cahier de recherche no. 04-09.

Babin, G. and C. Hsu (1996). "Decomposition of knowledge for concurrent processing."
IEEE Transactions on Knowledge and Data Engineering 8(5): 758-772.

Baker, A. (1998). "A Survey of Factory Control Algorithms That Can Be Implemented in a
Multi-Agent Hierarchy: Dispatching, Scheduling, and Pull." Journal of Manufacturing
Systems 17(4): 297-320.

Batini, C, M. Lenzerini, et al. (1986). "A comparative analysis of methodologies for database
schema integration." ACM Computing Surveys 18(4): 323-364.

Bayardo, R. J., Jr., W. Bohrer, et al. (1997). InfoSleuth: agent-based semantic integration of
information in open and dynamic environments. Proceedings ACM SIGMOD
International Conference on Management of Data. May 13-15, 1997. Tucson, Arizona,
USA. ACM.

Beynon-Davies, P., L. Bonde, et al. (1997). "A Collaborative Schema Integration System."
Computer Supported Cooperative Work: The Journal of Collaborative Computing 6(1): 1-
18.

Bouziane, M. (1991). Metadata Modeling and Management. Unpublished Ph.D. Thesis.
Computer Science Dept. Troy. Rensselaer Polytechnic Institute.

Braumandl, R., M. Keidl, et al. (2001). "ObjectGlobc: Ubiquitous query processing on the
Internet." The VLDB Journal 10(1): 48-71.

Bushnell, J. (2004). "California's electricity crisis: a market apart?" Energy Policy 32(9):
1045-1052.

170 References

Buyya, R., D. Abramson, et al. (2002). "Economic models for resource management and
scheduling in Grid computing." Concurrency and Computation: Practice and Experience
14(13-15): 1507-1542.

Carey, M. J., L. M. Haas, et al. (1995). Towards heterogeneous multimedia information
systems: the Garlic approach. Proceedings RIDE-DOM '95: Fifth International Workshop
on Research Issues in Data Engineering-Distributed Object Management. March 6-7,
1995. Taipei, Taiwan. lEEE-CS.

Cesta, A., A. Oddi, et al. (2000). Iterative Flattening: A Scalable Method for Solving Multi-
Capacity Scheduling Problems. Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence. July 30 - August 3, 2000. Austin, Texas, USA. AAAI Press / The MIT Press.

Chamberlin, D. (2002). "XQuery: An XML query language." IBM Systems Journal 41(4):
597-615.

Cheung, W. (1991). The model-assisted global query system. Unpublished Dissertation.
Unpublished Ph.D. Thesis. Decision Sciences & Engineering Systems Dept. Troy.
Rensselaer Polytechnic Institute.

Cheung, W. and C. Hsu (1996). "The model-assisted global query system for multiple
databases in distributed enterprises." ACM Transactions on Information Systems (TOIS)
14(4): 421-470.

Cingil, I. and A. Dogac (2001). "An Architecture for Supply Chain Integration and
Automation on the Internet." Distributed and Parallel Databases 10(1): 59-102.

Clarke, I., S. G. Miller, et al. (2002). "Protecting Free Expression Online with Freenet." IEEE
Internet Computing 6(1): 40-49.

Clearwater, S. H. (1996). Market-based control : a paradigm for distributed resource
allocation / editor, Scott H. Clearwater. Singapore; River Edge, NJ, World Scientific.

Collet, C, M. N. Huhns, et al. (1991). "Resource integration using a large knowledge base in
Carnot." Computer 24(12): 55-62.

Collins, J., C. Bilot, et al. (2001). "Decision processes in agent-based automated contracting."
IEEE Internet Computing 5(2): 61-72.

Collins, J., B. Youngdahl, et al. (1998). A market architecture for multi-agent contracting.
Second International Conference on Autonomous Agents (Agents '98). May 9-13, 1998.
Minneapolis/St. Paul. ACM Press.

CommerceOne (2003). http://www.commerceone.com.
Conway, R., W. Maxwell, et al. (1967). Theory of Scheduling. Reading, MA, Addison-

Wesley.
Coppersmith, D. and P. Raghavan (1989). "Multidimensional On-line Bin Packing:

Algorithms and Worst-Case Analysis." Operations Research Letters 8(1): 17-20.
Covisint (2004). http://www.covisint.com.
Dayal, U., M. Hsu, et al. (2001). Business Process Coordination: State of the Art, Trends, and

Open Issues. VLDB 2001, Proceedings of 27th International Conference on Very Large
Data Bases. September 11-14, 2001. Roma, Italy. Morgan Kaufmann.

Di Noia, T., E. Di Sciascio, et al. (2000). A system for principled matchmaking in an
electronic marketplace. Twelfth International World Wide Web Conference. 20-24 May
2003. Budapest, Hungary.

Elmasri, R. and S. Navathe (2000). Fundamentals of database systems. 3rd. Reading, Mass.,
Addison-Wesley.

Finin, T., R. Fritzson, et al. (1994). KQML as an Agent Communication Language.
Proceedings of the Third Internationa! Conference on Information and Knowledge
Management. December 1994. Gaithersburg, Maryland. ACM Press.

References 171

Florescu, D. and D, Kossmann (1999). "Storing and Querying XML Data using an RDBMS."
IEEE Data Engineering Bulletin 22(3): 27-34.

Fremantle, P., S. Weerawarana, et al. (2002). "Enterprise Services." Communications of the
ACM 45(10): 77-82.

Garcia-Molina, H., J. D. Ullman, et al. (2002). Database systems : the complete book. Upper
Saddle River, NJ, Prentice Hall.

Haas, L. M., E. T. Lin, et al. (2002). "Data integration through database federation." IBM
Systems Journal 41(4): 578-596.

Haas, L. M., R. J. Miller, et al. (1999). "Transforming Heterogeneous Data with Database
Middleware: Beyond Integration." IEEE Data Engineering Bulletin 22(1): 31-36.

Hendler, J. (2001). "Agents and the Semantic Web." Intelligent Systems, IEEE [see also IEEE
Expert] 16(2): 30-37.

Heragu, S. S., R. J. Graves, et al. (2002). "Intelligent agent based framework for
manufacturing systems control." Systems, Man and Cybernetics, Part A, IEEE
Transactions on 32(1083-4427): 560-573.

Hochbaum, D. S. and D. B. Shmoys (1987). "Using Dual Approixmation Algorithms for
Scheduling Problems: Theoretical and Practical Results." Journal of the ACM, 34(1): 144-
162.

Hsu, C. (1996). Enterprise integration and modeling : the metadatabase approach / by Cheng
Hsu. Boston, Kluwer Academic Publishers.

Hsu, C. (2002). A Market Mechanism for Information Enterprise Resource Allocation. Troy:
Decision Sciences and Engineering Systems, Rensselaer Polytechnic Institute. TR 38-02-
493. 18 p.

Hsu, C. and G. Babin (1993). A Rule-Oriented Concurrent Architecture to Effect
Adaptiveness for Integrated Manufacturing Enterprises. International Conference on
Industrial Engineering and Production Management. June 1993. Mons, Belgium.

Hsu, C , G. Babin, et al. (1992). "Metadatabase Modeling for Enterprise Information
Integration." Journal of Systems Integration 2(1): 5-39.

Hsu, C , M. Bouziane, et al. (1991). "Information Resources Management in Heterogeneous,
Distributed Environments: A Metadatabase Approach." IEEE Transactions on Software
Engineering 17(6): 604-624.

Hsu, C. and C. Carothers (2003). A Self-Scheduling Model Using Agent-Base, Peer-to-Peer
Negotiation, and Open Common Schema. 17th International Conference on Production
Research. 3rd August-7th August 2003. Blacksburg, VA.

Hsu, C. and C. Carothers (2004). A Design for Enterprises Collaboration: Information
Sensing, Exchange, and Fusion. Troy: Decision Sciences and Engineering Systems,
Rensselaer Polytechnic Institute. TR: 38-04-508.

Hsu, C, C. Carothers, et al. (2005). "A Market Mechanism for Participatory Global Query: A
First Step of Enterprise Resource Allocation." Information Technology and
Management(forthcoming in 2005).

Hsu, C. and S. Pant (2000). Planning for Electronic Commerce and Enterprises: A Reference
Model. Boston, Kluwer Academic Publishers.

Hsu, C, Y. Tao, et al. (1993). "Paradigm Translations in Integrating Manufacturing
Information Using a Meta-Model." Ingenierie des systemes d'information 1(3): 325-352.

Keidl, M., A. Kreutz, et al. (2002). A Publish & Subscribe Architecture for Distributed
Metadata Management. Proceedings of the 18th International Conference on Data
Engineering. 26 February - 1 March 2002. San Jose, CA. IEEE Computer Society.

Kossmann, D. (2000). "The state of the art in distributed query processing." ACM Computing
Surveys 32(4): 422-469.

172 References

Kurbel, K. and L. Loutchko (2003). "Towards multi-agent electronic marketplaces: what is
there and what is missing?" The Knowledge Engineering Review 18(1): 33-46.

Kuttner, R. (2002). "Free Markets are Great-But Not for Electricity." Business Week(3803):
34.

Kwiat, K. (2002). "Using Markets to Engineer Resource Management for the Information
Grid." Information Systems Frontiers 4(1): 55-62.

Lenat, D. B. (1995). "CYC: a large-scale investment in knowledge infrastructure."
Communications of the ACM 38(11): 33-38.

Litwin, W. (1985). An overview of the multidatabase system MRDSM. Proceedings of the
13th ACM Annual Conference, The range of computing : mid-80's perspective. October
14-16,1985. Denver, Colorado. ACM.

Liu, J. and M. Vincent (2003). Query translation from XSLT to SQL. Seventh International
Database Engineering and Applications Symposium (IDEAS'03). July 16 - 18, 2003. Hong
Kong, SAR. lEEE-CS.

Maes, P., R. H. Guttman, et al. (1999). "Agents that buy and sell." Communications of the
ACM42(3):81-ff

Mcllraith, S. A., T. C. Son, et al. (2001). "Semantic Web services." Intelligent Systems, IEEE
[see also IEEE Expert] 16(2): 46-53.

Mena, E., A. Illarramendi, et al. (2000). "OBSERVER: An Approach for Query Processing in
Global Information Systems Based on Interoperation Across Pre-Existing Ontologies."
Distributed and Parallel Databases 8(2): 223-271.

Nandula, M. and S. P. Dutta (2000). "Performance Evaluation of an Auction-Based
Manufacturing System Using Colored Petri Nets." International Journal of Production
Research 38(38): 2155-2171.

Ozsu, M. T. and P. Valduriez (1991). Principles of distributed database systems. Englewood
Cliffs, N.J., Prentice Hall.

Parameswaran, M., A. Susarla, et al. (2001). "P2P networking: an information sharing
alternative." IEEE Computer 34(7): 31-38.

Parunak, H. (2001). Agents in Overalls: Experiences and Issues in the Development and
Deployment of Industrial Agent-Based Systems. Ann Arbor, MI 48113-4001: ERIM CEC
Report, P.O. Box 134001.

Prabhu, V. (2000). "Performance of Real-Time Distributed Arrival Time Control in
Heterogeneous Manufacturing Systems." HE Transactions 32(4): 323-331.

Rahm, E. and P. A. Bernstein (2001). "A survey of approaches to automatic schema
matching." The VLDB Journal 10(4): 334-350.

Rahwan, I., R. Kowalczyk, et al. (2002). Intelligent agents for automated one-to-many e-
commerce negotiation. Proceedings of the twenty-fifth Australasian conference on
Computer science. January 2002. Melbourne, Victoria, Australia. Australian Computer
Society, Inc.

Ribeiro, C. C, C. D. Ribeiro, et al. (1997). "Query Optimization in Distributed Relation
Databases." Journal of Heuristics 3(1): 5-23.

Rodriguez-Martinez, M. and N. Roussopoulos (2000). MOCHA: a self-extensible database
middleware system for distributed data sources. Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data. May 16-18, 2000. Dallas, Texas. ACM.

Sairamesh, J., R. Mohan, et al. (2002). "A platform for business-to-business sell-side, private
exchanges and marketplaces." IBM Systems Journal 41(2): 242-252.

Sheth, A. and J. A. Larson (1990). "Federated Database Systems for Managing Distributed
Heterogeneous and Autonomous Systems." ACM Computing Surveys 22(3): 183-236.

References 173

Silberschatz, A., H. F. Korth, et al. (2002). Database system concepts. 4th. Boston, McGraw-
Hill.

Sim, K. M. and R. Chan (2000). "A brokering protocol for agent-based e-commerce."
Systems, Man and Cybernetics, Part C, IEEE Transactions on 30(4): 474-484.

Sim, K. M. and E. Wong (2001). "Toward market-driven agents for electronic auction."
Systems, Man and Cybernetics, Part A, IEEE Transactions on 31(6): 474-484.

Singh, M. P., P. E. Cannata, et al. (1997). "The Carnot Heterogeneous Database Project:
Implemented Applications." Distributed and Parallel Databases 5(2): 207-225.

Stonebraker, M., P. M. Aoki, et al. (1996). "Mariposa: A Wide Area Distributed Database
System." The VLDB Journal 5(1): 48-63.

Sundaram, M. and S. S. Y. Shim (2001). Infrastructure for B2B exchanges with RosettaNet.
3rd IEEE International Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2001). 21-22 June 2001. San Jose, CA. lEEE-CS.

Swaminathan, J., S. F. Smith, et al. (1998). "Modeling Supply Chain Dynamics: a Multi-
Agent Approach." Decision Sciences 29(3): 607-632.

Sycara, K., M. Klusch, et al. (1999). "Dynamic Service Matchmaking Among Agents in Open
Information Environments." Journal ACM SIGMOD Record 28(1): 47-53.

Sycara, K., J. Lu, et al. (1999). Matchmaking among Heterogeneous Agents on the Internet.
Proceedings of the 1999 AAAI Spring Symposium on Intelligent Agents in Cyberspace.
22-24 March 1999. Stanford University, USA.

Sycara, K., M. Paolucci, et al. (2003). "The RETS IN A MAS Infrastructure." Autonomous
Agents and Multi-Agent Systems 7(1-2): 29-48.

The PostgreSQL Global Development Group (2005). "PostgreSQL 7.4.7 Documentation,
http://www.postgresql.Org/docs/7.4/static/indcx.html."

Tsalgatidou, A. and T. Pilioura (2002). "An Overview of Standards and Related Technology
in Web Services." Distributed and Parallel Databases 12(2-3): 135-162.

Userland Software (2005). "XML-RPC, http://www.xmlrDC.com/."
W3C (2004). Extensible Markup Language (XML), http://www. w3.org/XML/.
W3C (2004), XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath.
W3C (2004). XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt.
W3C (2005). "Simple Object Access Protocol (SOAP), http://www.w3.org/TR/soap/."
Want, I. N., N. J. Fiddian, et al. (2001). Market-Based Agent Allocation in Global

Information Systems. Proceedings of the fifth international conference on Autonomous
Agents. May 28 - June 01, 2001. Montreal, Quebec, Canada.

Waterhouse, S., D. M. Doolin, et al. (2002). "Distributed search in P2P networks." Internet
Computing, IEEE 6(1): 68-72.

Wisner, J. D. and K. C. Tan (2000). "Supply Chain Management and Its Impact on
Purchasing." The Journal of Supply Chain Managment 36(4): 33-42.

Index

ENTERPRISE COLLABORATION, 4,
5,6,7,8,13, 14, 18,21, 138

ENTERPRISE DATABASE, 3, 4, 6, 7, 8,
11, 17,61,62,63,64,82,83,85,87,
89,91,92,93, 111, 129, 130, 133,
134, 137, 141, 142, 144, 145, 146, 147

ENTERPRISE INTEGRATION, 1, 2, 3,
4 ,5 ,6 ,7 ,9 , 14,21,43,58

ENTERPRISE RESOURCES MARKET,
14, 15, 16, 18,43,46,47,49,51,52,
54, 56, 127, 138, 139
Agent-Base, 16, 47, 48, 49, 50, 51, 52,

53,55,59, 138
mini-Blackboard, 53, 54, 56
Open Common Schema, 57
Proxy Server, 52
Task Agent, 49

exMQL. See Extended Metadatabase
Query Language

EXTENSIBLE MARKUP LANGUAGE,
34, 49, 53, 57, 96, 104, 109, 133,134,
136, 146, 153

GIRD. See Global Information Resource
Dictionary

GLOBAL QUERY SYSTEMS
Federated Database Systems, 10, 28,

29, 127, 128
Multi-Database Languages, 11, 28, 29
Schema Integration, 10, 28

MARKET-BASED RESOURCE
ALLOCATION, 13, 14, 21, 22, 23,
25,26,31,40, 139

MDBMS. See Metadatabase Management
System

METADATABASE MODEL
Global Information Resources

Dictionary, 11,36,37,89, 134,
165, 167, 168

Metadatabase, 10, 11, 14, 15, 18, 35,
36,37,38,39,48,49,50,51,54,
55,57,58,59,63,64,68,80,81,
82, 83, 85, 87, 89, 90, 93, 95, 96,
102, 105, 111, 112, 113,114, 127,
129, 130, 131, 132, 133, 134, 139,
142, 143, 144, 145, 159, 165, 167

Metadatabase Management System,
11, 12,38

Metadatabase Query Language, 11,
12, 38, 82, 95

Model-Assisted Global Query System,
11, 12,38

Rule Oriented Programming
Environment, II, 12, 35, 38, 82,
144

Two Stage Entity Relationship Model,
11,37,38,39,40,50,59,95

MGQS. See Model-Assisted Global
Query System

MQL. See Metadatabase Query Language
PEER-TO-PEER SYSTEMS, 12, 33, 34

176 Index

QUERY ALLOCATION, 77
QUERY EXECUTION, 79, 110
QUERY MATCHING

Algorithms
Combination Matching, 70
Constraint Matching, 75
Query Matching, 66

Classification of
Exact Match, 28, 64, 65, 75, 79,

90, 131, 142
Intersect Match, 64, 66, 67, 131,

143
Subset Match, 64, 65, 66, 107,

131, 142, 143
Superset Match, 64, 65, 67, 142

Combination Match, 17, 67, 80, 105,
143
Classification of, 67, 105, 132, 143
Constraint Feasible Solution, 17,

28,62,73,74,76,77,81, 105,
107, 131, 143

Item Feasible Solution, 62, 67, 68,
69, 72, 79, 143, 145, 146

Join Feasible Solution, 62, 67, 68,
69, 70, 72, 79, 80, 143

Shortest Path Algorithm, 70, 72,
80, 88, 143, 157

Type of Query
Publication, 63, 64, 77, 78, 92, 96,

102, 111, 113, 114, 133, 137,
146, 147

Subscription, 62, 63, 64, 68, 77,
78, 96, 102, 127, 135, 143

ROPE. See Rule-Oriented Programming
Environment

SEMANTIC WEB, 33, 34
TSCM, See Two-Stage Collaboration

Model

TSER. See Two-Stage Entity
Relationship Model

TWO-STAGE COLLABORATION
MODEL, 9, 10, 13, 14, 15, 17, 18, 21,
22, 28, 39, 43, 61, 62, 64, 78, 79, 81,
82, 83, 85, 87, 91, 92, 93, 95, 96, 100,
101, 102, 111, 113, 117, 118, 126,
127, 128, 129, 130, 131, 133, 134,
135, 137, 138, 139, 141, 142, 144,
145, 146, 147, 153, 157
Blackboard, 78, 86
Blackboard Architecture

Global Metadatabase, 87, 93
Query Database, 15, 16,89
Rulebase, 90

Export Database, 17, 18, 61, 62, 64,
77,78,79,81,82,83,85,87,89,
90,91,92,93,95,96, 101, 102,
104, 105, 107, 110, 111, 113, 114,
118,127, 129,133,135, 137, 142,
143, 144, 146, 147

Extended Metadatabase Global Query
System, 15, 18,85,88,91,92,94,
95, 100, 105, 112, 113, 114, 115,
137, 142, 146

Extended Metadatabase Query
Language, 15, 16, 18,79,85,86,
95, 96, 97, 98, 99, 100, 104, 108,
112, 131, 132, 133, 136, 142, 144,
146, 147, 153, 154, 155, 156, 157
Information Offer, 9, 13, 15, 16,

73,96, 104, 108, 110, 142
Information Request, 7, 9, 13, 15,

16, 53, 62, 73, 96, 99, 104, 107,
142, 143, 147

WEB SERVICES, 12, 13, 22, 33

