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Dedicated to Giovanni Paolo Galdi, on the
occasion of his sixtieth birthday



Giovanni Paolo Galdi



Foreword

The present volume celebrates the 60th birthday of Professor Giovanni Paolo Galdi
and honors his remarkable contributions to research in the field of Mathematical
Fluid Mechanics. The book contains a collection of 35 peer reviewed papers, with
authors from 20 countries, reflecting the worldwide impact and great inspiration
by his work over the years. These papers were selected from invited lectures and
contributed talks presented at the International Conference on Mathematical Fluid
Mechanics held in Estoril, Portugal, May 21–25, 2007 and organized on the occa-
sion of Professor Galdi’s 60th birthday. We express our gratitude to all the authors
and reviewers for their important contributions.

Professor Galdi devotes his career to research on the mathematical analysis of the
Navier-Stokes equations and non-Newtonian flow problems, with special emphasis
on hydrodynamic stability and fluid-particle interactions, impressing the worldwide
mathematical communities with his results. His numerous contributions have laid
down significant milestones in these fields, with a great influence on interdisci-
plinary research communities. He has advanced the careers of numerous young
researchers through his generosity and encouragement, some directly through intel-
lectual guidance and others indirectly by pairing them with well chosen senior col-
laborators. A brief review of Professor Galdi’s activities and some impressions by
colleagues and friends are included here.

This project could not have been successfully concluded without the generous
support of some collaborators and several Portuguese institutions. Special thanks
are due to João Janela for the careful preparation of the final version of this book,
and also to Thomas Wick for his precious help. The financial and technical sup-
port of Fundação para a Ciência e a Tecnologia (FCT), Fundação Calouste Gul-
benkian, Fundação Luso-Americana para o Desenvolvimento (FLAD) and of Centro
de Matemática e Aplicações (CEMAT), Instituto Superior Técnico, are gratefully
acknowledged. Finally, a special thanks to Springer-Verlag for accepting to publish
this work.

On behalf of all collaborators and friends of Professor G.P. Galdi we wish him
many more years of continued high energy, great enthusiasm and further impressive
mathematical achievements.

Heidelberg, Germany Rolf Rannacher
Lisboa, Portugal Adélia Sequeira
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Short Biography

Giovanni P. Galdi was born in Naples, Italy, on January 3, 1947, where he received
his University degree (Laurea) in Physics from the University of Naples in 1971.

He is, currently, the William Kepler Whiteford Professor of Engineering and
Professor of Mathematics at the University of Pittsburgh. He is also Adjunct Faculty
at the Tata Institute of Fundamental Research in Mumbai, India. Before joining
the faculty at the University of Pittsburgh in the Fall semester 1999, in the years
1980–1985 he was Professor at the Department of Mathematics of the University
of Naples (Italy) and, from 1985 until 1998, he was Professor at the Institute of
Engineering of the University of Ferrara (Italy).

Professor Galdi founded and organized the School of Engineering of the Uni-
versity of Ferrara in 1989, where he was the Dean from 1989 until 1995. He has
been Visiting Professor in several academic institutions, including the University of
Glasgow (Scotland), University of Minnesota (USA), University of Paderborn (Ger-
many), University of Pretoria (South Africa), TIFR, Bangalore (India), Fudan Uni-
versity, Shanghai (China), University of Waseda, Tokyo (Japan), Czech Academy
of Science (Czech Republic), Steklov Institute of Mathematics, the St Petersburg
Branch (Russia), University of Paris-Sud XI, Orsay (France), Instituto Superior
Tecnico, Lisbon (Portugal), and University of Pisa (Italy).

In the years 2003 and 2009 he was awarded the Mercator-Gastprofessuren from
Deutschen Forschungsgemeinschaft (DFG).

He is a member of the Editorial Board of several scientific Journals, including
European Journal of Mechanics B/Fluids. He is also co-founder and Editor in Chief
of the Journal of Mathematical Fluid Mechanics, and of the Series Advances in
Mathematical Fluid Mechanics, published by Birkhäuser-Verlag, Basel, Boston.

Professor Galdi has (co) authored over 130 original research papers and 6
books, and (co) edited 13 books, dedicated mostly to hydrodynamic and mag-
netohydrodynamic stability, mathematical theory of the Navier-Stokes equations,
non-Newtonian fluid mechanics and fluid-solid interactions. In particular, his two-
volume book “An Introduction to the Mathematical Theory of the Navier-Stokes
Equation”, first published with Springer-Verlag in 1994, is a classical milestone in
the steady-state theory of the Navier-Stokes equations.
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Paolo Galdi – The Man and the Mathematician

During the 1960s I worked hard on the Navier-Stokes equations, writing a number
of papers. Then I sensed that the problems weren’t getting easier, on top of which
competition was moving in, so I looked for other things to do. My instincts soon
found expression in reality when G.P. Galdi appeared on the scene; he would have
been a formidable competitor and I’m happy I didn’t have to face that challenge. He
had a voracious appetite for knowledge, and I recall repeated requests for reprints of
my papers. At that time, e-mail was not yet suitable for exchanging manuscripts, and
reprints were generally sent as hard copies through postal services. He requested an
early paper, which I dutifully sent him. Postal service between USA and Italy was
rather slow, and apparently he lost patience, as shortly later he requested the same
paper again. I assumed then that he wanted a later paper, and sent him that one. That
seems to have arrived prior to the one he wanted, as I then got still another request
from him. Again there was confusion, and I sent him still another paper. Ever since,
he has been repeatedly accusing me (publicly) of sending him things he didn’t want.

Never mind! It is clear that he read all the papers (also those written by others),
absorbed their content, and then carried the theory further in new ways that have
left a permanent imprint with his signature. A case close to my heart is his 1997
paper with Heywood and Shibata, in which the dissertation problem that I gave
to John Heywood about 1965, on which Heywood at the time made deep initial
progress, was finally solved. Beyond that is his impressive recasting of my own
results on exterior problems into function space settings, and his extensions of the
results to rotating and more general periodic motions. Galdi became – and continues
to be – a central figure in describing and clarifying some of the most profound
problems in modern hydromechanics. He has established himself as one of the few
top contributors to a theory that has attracted worldwide interest and activity, and
as a person who has stimulated and encouraged the creative achievements of many
others. He is in fact in large part responsible for the present worldwide interest,
by calling attention to the beauty, depth and underlying unity of the many open
problems.

Stanford, California Robert Finn
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xii Paolo Galdi – The Man and the Mathematician

As many people have commented, “Paolo Galdi is a very special person”. His
enthusiasm, generosity, kindness and discernment have made him a most valu-
able colleague to the whole community of researchers working on topics in fluid
dynamics.

Paolo’s own contributions to fluid dynamics have been very significant and wide
ranging. As an Editor of the Handbook of Mathematical Fluid Dynamics, I was very
pleased to include an article by Paolo “On the motion of a rigid body in a viscous
fluid” which covered an interesting sub-class of important fluid applications, and
illustrated Paolo’s versatility.

Through hard work and dedication, Paolo, John Heywood and Rolf Rannacher
have created a major journal in the field, The Journal of Mathematical Fluid Dynam-
ics, which has encouraged the resurgence of a classical topic in mathematics that is
again taking center stage in partial differential equations.

I was honored and delighted to be part of the wonderful celebration of Paolo’s
60th birthday that Adélia Sequeira and her colleagues organized in Estoril in 2007.

Los Angeles, California Susan Friedlander

I am not sure when I first met Paolo. I think it was in 1976 when I published my book
on the stability of fluid motions. The mathematicians in Naples, under Salvatore
Rionero, had taken an interest in the energy theory of stability. Paolo was a student
of Rionero. I had published papers on that subject which led to my 1976 book on the
stability of fluid motions. I was greatly stimulated to go in this direction by papers
of James Serrin. I think that Mariolina Padula, Paolo’s wife then, was also Rionero’s
student. She was, in any case, very active in math and she and Paolo would study
together. Paolo and Mariolina came to the US I think in 1976. I do not know how
their trip was financed. In any case, my wife then (Ellen) and I had a little party in
our house which was on a lake in Minnesota. James Serrin was also a guest. I think
it was in 1976 because Paolo reminded me that my book had arrived from Springer
that very day. I think that Paolo and Mariolina were very impressed to meet with
persons they though so great in an environment so different that via Mezzacannone.
This is the time that Paolo and I became fast friends. I like to say that people from
Minneapolis and Naples are natural friends since Minneapolitans can be thought to
be small persons from Naples.

The next stage of our friendship developed in successive trips to Italy. These trips
were arranged by Professor Rionero. In the first trip, Paolo and Mariolina invited
me to their home. There, I learned about Paolo’s special talents in the arts as a
painter specializing in portraits of Donald Duck and as a fine pianist specializing
in Chopin. I loved Naples. For years in the early 1980s I taught in the summer
school in Ravello. These were very pleasant summers. In 1982, I practiced there
to run the original marathon in Greece. I would run up to Valico di Chiunzi and
back, chased always by angry Italian dogs. The further south you go in Europe, the
greater are the number of female math students and there were many nice ragazzi
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in Ravello. I remember one handsome Italian mathematician from Bologna telling
me that his marriage license was not valid in the South. Later, it was not valid in the
north.

I had many intimate conversations with Paolo in the cafes in Ravello. At this
time he was drifting to a more rigorous approach to mathematics. I urged him
to continue his studies on the applied side, warning him that if he followed his
desire he would have to compete with fine mathematicians much better prepared
than he. At that time, he was working on energy theory on unbounded domains.
To complete his results, he needed some powerful Navier Stokes theorems. I think
the work of Leray was involved in his theorems. He was intense about mathemat-
ics and had gone beyond the energy theory of stability which frankly is a theory
which demands that you know how to use the divergence theorem and integrate
by parts. Gradually, our trajectories in science grew apart. Paolo was encouraged
to prepare his now well known Springer monograph on the Navier Stokes equa-
tions by Clifford Truesdell, who at an earlier time was also my mentor but later my
tormentor.

In 1991, Paolo and Salvatore visited me again in Minneapolis. I had developed
a theory for miscible liquids and showed that mixtures of incompressible mixing
liquids are compressible and obtained a new theory of diffusion. The velocity is not
solenoidal. Paolo found that a certain combination of the velocity and expansion
velocity was divergence free. It turns out that this combination is equivalent to
a volume averaged velocity. It is a great result, which we used in all subsequent
papers.

Paolo is a very special, outgoing and supportive person. He has that magic per-
sonality which radiates interest and concern about others wherever he goes. He
engages all persons and elevates their level of well being. Maybe this is why he
has so many friends all over the world and at the great birthday meeting celebrated
by this volume.

I know three mathematicians from the applied side who developed a burning
desire to be the master of rigorous mathematics. This goal is at the top of a mountain.
One of these mathematicians in Klaus Kirchgässner, another is Edward Fraenkel
and the third is Paolo. It was a difficult journey, but Paolo has reached the summit
without forgetting the applied side. It is my pleasure to wish happy 60th birthday to
this good friend, great man and fine mathematician.

Minneapolis, Minnesota Daniel D. Joseph

Naples, via Mezzocannone, 8, early Seventies. It is here, in this stern and monu-
mental environment where Tommaso d’Aquino gave his theological lectures, that
I, a young student of Mathematics, take my first steps in the field of mathemati-
cal research. Professor Salvatore Rionero introduces and guides me into this world
where at first I feel awe. Further than him, I owe his young co-worker Giovanni
Paolo Galdi my quick and complete adaption, so that I could feel quite at ease
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among those great staircases and those lecture halls where one could smell the
odor of history. There had lived and worked mathematicians of the level of Ernesto
Cesaro, Roberto Marcolongo, Mauro Picone and Renato Caccioppoli and there still
worked in that period great masters like Alfredo Franchetta, Carlo Miranda and
Carlo Tolotti.

Paolo, as I called him at once since at once we became friends, was for me a
most precious guide towards that world which seemed to me very far and difficult
to reach. Paolo addressed me to the journals he deemed more suitable for my kind
of research, gave me his advice, but above all stimulated me with his observations
and his sparkling conversation. Our friendship and our work relations consolidated
in time. I always remember the wonderful evenings passed together, when Paolo, as
a true showman, was the life and soul of the company with his pleasantness and his
skill as a piano player; or the football games played on Saturday in a small pitch
on one of the finest hills of Naples. I always remember the days Marina and I spent
at the seaside together with Paolo, Mariolina, Adriana and Giovanni, swimming in
the crystal clear waters of Calabria and playing on the beach. Memories the time
will never wipe out, even though life has assigned to each of us a different road to
follow.

Caserta, Italy Remigio Russo

Christian Simader met Paolo Galdi for the first time in 1988, exactly 20 years ago.
He describes this meeting as follows: “In the spring 1987 I was a visitor at the
University of Catania in Sicily, where I gave several lectures. One was devoted to
the Helmholtz decomposition of vector fields. Shortly before this visit, Hermann
Sohr and I found an elementary proof of this theorem. Professor Giuseppe Mulone
suggested I contact Professor Galdi from Ferrara who, at the time, was writing a
book on the Navier-Stokes equations. In April 1988, my wife and I intended to
participate in an intensive Italian language course at Venice. Shortly before we left
for Venice, I realized that Ferrara is close to Venice, so I immediately contacted Pro-
fessor Galdi who invited me to come to Ferrara. At that time I was already familiar
with many of his papers, but I had never met him in person. These papers impressed
me deeply because of their clearness, accuracy and profoundness. Therefore, I had
the impression that the author had to be a mature mathematician, much older than I
was. Our first appointment was in a hotel in Ferrara. Precisely at the time of our
appointment, a young couple entered the lounge and was obviously looking for
someone. After some seconds, I asked the man if he was Professor Galdi. He said
yes and I introduced my wife and myself. He was very surprised – and told me that
he thought vice versa that I had to be much older. From his mathematical studies
with Professor Carlo Miranda at Naples, he knew my old Springer Lecture Notes
from 1972 which in fact was an English translation (at least I regarded it so) of my
thesis from 1968. So we laughed a lot and spent a very nice evening together, enjoy-
ing a wonderful dinner. My wife and I had the impression of a very sympathetic and
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cultured couple, interested in many topics – clearly very much in mathematics. This
impression was deepened in the following days, especially when we met their three
children. Briefly expressed, it was reciprocal sympathy at the first view. At that time,
the joint work with Hermann Sohr on the L-Dirichlet problem for the Laplacian in
exterior domains was in progress. The problem turned out to be much more difficult
than we expected. Though clearly we had Stokes’ system in mind, we regarded this
problem as a first step and as a type of model to find the appropriate function spaces.
At that time, we worked with function spaces which in certain cases (1 < q < n)
turned out to be too “small” and we had to impose a certain compatibility condition
on the data such that we could prove existence and uniqueness of weak L-solutions
in exterior domains. I presented a lecture on the results Hermann and I had achieved.
Afterwards Paolo (meanwhile, we had begun to use first names) told me, that he was
studying the corresponding problem for Stokes’ system. Some weeks after returning
to Bayreuth, Paolo called me and asked again for our compatibility condition which
turned out to be different from the one he found. So I returned to Ferrara and we
started to jointly work on the exterior Stokes’ system. It turned out that we have a
similar mathematical taste and a similar way in regarding problems. These similari-
ties, simplified our collaboration very much. But there were also differences: Paolo
knew a magnitude more about Stokes’ problem than I did and he was much faster
in thinking and calculating. But it was a very happy collaboration and within some
days we solved the problem completely and the joint paper appeared 1992 in the
Archive. But to tell the truth, 90% of the paper is due to Paolo. In the sequel, I often
visited Ferrara which also gave me the opportunity to meet many truly sympathetic,
excellent mathematicians from all over the world. In 1991 Deutsche Forschungsge-
meinschaft (DFG) installed a research group “Equations of Hydrodynamics” at the
University of Bayreuth (members: Professors F. Busse, C. G. Simader, M. Wiegner,
W. von Wahl (all Bayreuth) and H. Sohr (Paderborn)) which worked until the spring
1998. This group provided us the financial basis to invite Paolo to Bayreuth and
Paderborn, where a fruitful collaboration with Hermann Sohr started too. This was
very important since at that time Hermann did (not yet) like to travel.

Now, we can continue to jointly describe our impressions of Paolo. In May
1992, mainly Professors I. Straskraba and R. Salvi organized a meeting on Navier-
Stokes equations in the wonderful Villa Monastero in Varenna. This meeting was
followed by many other meetings in the castle of Thurnau near Bayreuth (1992),
Cento/Italy (1993), Funchal/Madeira (1994), Toulon-Hyeres/France (1995), Preto-
ria/South Africa (1996) and again in Varenna (1997). It was surely Paolo’s influence
that both very young mathematicians as well as very experienced mathematicians
were included for these scientific gatherings. In addition to an enormous number
of very important papers, to Paolo’s persistent merit are the two volumes of “An
Introduction to the Mathematical Theory of the Navier-Stokes Equations” which
was finished in 1992 and appeared in 1994. At that time, these books represented
the state of the art in this field. His book is both very precise and readable. Besides,
including an excellent preface, there is an introduction to each chapter where the
reader is clearly introduced to the aims of the chapter and the underlying ideas.
Due to our knowledge, many young people became fascinated by this book for the
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Navier-Stokes equations. We are very much indebted to Paolo as a friend and as an
outstanding scientist. We wish him (and us too) the chance to celebrate many further
birthdays together, such as the 70th, 80th, 90th and. . . .

Bayreuth, Germany Christian G. Simader
Paderborn, Germany Hermann Sohr
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A Numerical Method for Nonstationary Stokes Flow . . . . . . . . . . . . . . . . . . . 589
Werner Varnhorn



xx Contents

A New Criterion for Partial Regularity of Suitable Weak Solutions to
the Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Jörg Wolf

An In Vitro Device for Evaluation of Cellular Response to Flows Found
at the Apex of Arterial Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
Zijing Zeng, Bong Jae Chung, Michael Durka, and Anne M. Robertson



Contributors
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Isotropically and Anisotropically Weighted
Sobolev Spaces for the Oseen Equation

Chérif Amrouche and Ulrich Razafison

Abstract This contribution is devoted to the Oseen equations, a linearized form of
the Navier-Stokes equations. We give here some results concerning the scalar Oseen
operator and we prove Hardy inequalities concerning functions in Sobolev spaces
with anisotropic weights that appear in the investigation of the Oseen equations.

Keywords Oseen equations · Anisotropic weights · Hardy inequality · Sobolev
weighted spaces

1 Introduction

In an exterior domain Ω of R
3, the Oseen system is obtained by linearizing the

Navier-Stokes equations, describing the flow of a viscous fluid past the obstacle
R

3 \Ω , around a nonzero constant vector which is the velocity at infinity (see [13]).
When Ω = R

3, the system can be written as follow:

−νΔu+ k
∂u
∂x1

+∇π = f in R
3,

div u = g in R
3,

(1)

where we add the condition at infinity

lim
|x|→∞

u(x) = u∞. (2)

The data are the viscosity of the fluid ν, the external forces acting on the fluid f , a
function g, a constant vector u∞ and a real k > 0. The unknowns are the velocity of
the fluid u and the pressure function π . Let us now notice that the pressure satisfies
the Laplace equation
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2 C. Amrouche and U. Razafison

Δπ = div f + νΔg − k
∂g

∂x1
, (3)

and each component ui of the velocity satisfies

− νΔui + k
∂ui

∂x1
= fi − ∂π

∂xi
. (4)

Hence we see that the Oseen problem (1) is related to the following equation:

− νΔu + k
∂u

∂x1
= f in R

3. (5)

Therefore, the results arising from the analysis of (5) can be used for the inves-
tigation of the Oseen problem (1). To prescribe the growth or the decay properties
of functions at infinity, we consider here weighted Sobolev spaces where the weight
reflects the decay properties of the fundamental solution O of (5) defined by

O(x) = 1

4πν|x|e
−k(|x|−x1)/2ν . (6)

Note now that, at infinity, O has the same following decay properties than the
fundamental solution of Oseen

O(x) = O(η−1
−1(x)), ∇O(x) = O(η−3/2

−3/2(x)), ∂2O(x) = O(η−2
−2(x)), . . . .

where ηαβ (x) ≡ ηαβ = (1+|x|)α(1+|x|−x1)β will be the weight function considered.
Equation (5) has been investigated by Farwig (see [6]) in weighted L2-spaces, with
the weight ηαβ .

Furthermore, for r = |x| sufficiently large, we obtain the following anisotropic
estimates (see [11]):

|O(x)| ≤ C r−1(1+ s)−2,

∣
∣
∣
∣

∂O
∂x1

(x)

∣
∣
∣
∣
≤ C r−2 (1+ s)−

3
2 ,

∣
∣
∣
∣

∂O
∂x j

(x)

∣
∣
∣
∣
≤ C r−

3
2 (1+ s)−

3
2

(

1+ 2

r

)

, j = 2, 3, if n = 3,
(7)

|O(x)| ≤ C r−
1
2 (1+ s)−1,

∣
∣
∣
∣

∂O
∂x1

(x)

∣
∣
∣
∣
≤ C r−

3
2 (1+ s)−1,

∣
∣
∣
∣

∂O
∂x2

(x)

∣
∣
∣
∣
≤ C r−1 (1+ s)−1, if n = 2.

(8)

Note also the following properties:
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∀p > 3, O ∈ L p(R3) and ∀p ∈ ]
3

2
, 2[, ∇O ∈ Lp(R3), (9)

∀p ∈ ]2, 3[, O ∈ L p(R3) and ∀p ∈ ]
4

3
,

3

2
[, ∇O ∈ Lp(R3), (10)

O ∈ L1
loc(Rn) and ∇O ∈ L1

loc(Rn), for n = 2, 3. (11)

Observe that when f ∈ D(R3), then u = O ∗ f is a solution of (5). We have also

u = F−1(m0(ξ )F f ), with m0(ξ ) = (|ξ |2 + ikξ1)−1 and
∂u

∂x j
= F−1(m1(ξ )F f ),

with m1(ξ ) = iξ j (|ξ |2 + ikξ1)−1. Here F f is the Fourier transform of f .

2 Scalar Oseen Potential in Three Dimensional Space

This section is devoted to the L p estimates of convolutions with Oseen kernels.
Before that, we introduce some basic weighted Sobolev spaces. We first set �(x) =
(1+ | x |2)

1
2 , lg � = ln (1+ �) and we define

W 1,p
0 (R3) =

{

v ∈ D′(R3);
v

ω1
∈ L p,∇v ∈ L p(R3)

}

,

with ω1 = � if p �= 3, ω1 = � lg � if p = 3 and W−1,p′
0 (R3) = (W 1,p

0 (R3))′.
We recall that D(R3) is dense in W 1,p

0 (R3) and the constant functions belong to
W 1,p

0 (R3) if p ≥ 3. We now introduce a second family of weighted spaces:

W̃ 1,p
0 (Rn) =

{

v ∈ W 1,p
0 (Rn),

∂v

∂x1
∈ W−1,p

0 (Rn)

}

and we can prove that

D(Rn) is dense in W̃ 1,p
0 (Rn).

Theorem 1 Let f ∈ L p(R3). Then
∂2O

∂x j∂xk
∗ f ∈ L p(R3) (in the sense of

principal value),
∂O
∂x1

∗ f ∈ L p(R3) and the following estimate holds

‖ ∂2O
∂x j∂xk

∗ f ‖L p(R3) + ‖
∂O
∂x1

∗ f ‖L p(R3) ≤ C‖ f ‖L p(R3). (12)

Moreover,
(1) if 1 < p < 2, then O ∗ f ∈ L

2p
2−p (R3) and satisfies
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‖O ∗ f ‖
L

2p
2−p (R3)

≤ C‖ f ‖L p(R3). (13)

(2) If 1 < p < 4, then
∂O
∂x j

∗ f ∈ L
4p

4−p (R3) and verifies the estimate

∥
∥
∥
∥

∂O
∂x j

∗ f

∥
∥
∥
∥

L
4p

4−p (R3)

≤ C‖ f ‖L p(R3). (14)

Proof By Fourier’s transform, from Eq. (5) we obtain:

F
(

∂2O
∂x j∂xk

∗ f

)

= −ξ jξk

ξ 2 + iξ1
F( f ).

Now, the function ξ �→ m(ξ ) = −ξ jξk

ξ 2 + iξ1
is of class C2 in R

3 \ {0} and satisfies

for every α = (α1, α2, α3) ∈ N
3

∣
∣
∣
∣

∂ |α|m
∂ξα

(ξ )

∣
∣
∣
∣
≤ C |ξ |−α,

where, |α| = α1 + α2 + α3 and C is a constant not depending on ξ . Then, the linear
operator

A : f �→ ∂2O
∂x j∂xk

∗ f (x) =
∫

R3
eixξ −ξ jξk

ξ 2 + iξ1
F f (ξ ) dξ

is continuous from L p(R3) into L p(R3) (see Stein [15], Theorem 3.2, p. 96). There-

fore,
∂2O

∂x j∂xk
∗ f ∈ L p(R3) and satisfies

‖ ∂2O
∂x j∂xk

∗ f ‖L p(R3) ≤ C‖ f ‖L p(R3).

We also have

F
(
∂O
∂x1

∗ f

)

= iξ1

ξ 2 + iξ1
F( f )

and since the function ξ �→ m1(ξ ) = iξ1

ξ 2 + iξ1
have the same properties than m(ξ ),

it follows that
∂O
∂x1

∗ f ∈ L p(R3) and satisfies the estimate
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∥
∥
∥
∥

∂O
∂x1

∗ f

∥
∥
∥
∥

L p(R3)

≤ C‖ f ‖L p(R3),

which proves the first part of the proposition and Estimate (12). Next, to prove
inequalities (13) and (14), we adapt the technique used by Stein [15] who studied the
convolution of f ∈ L p(Rn) with the kernel |x|α−n . Let us decompose the function
K as K1 + K∞ where,

K1(x) = K (x) if |x| ≤ μ and K1(x) = 0 if |x| > μ,

K∞(x) = 0 if |x| ≤ μ and K∞(x) = K (x) if |x| > μ.
(15)

The function K will denote successively O and
∂O
∂x j

and μ is a fixed positive

constant which need not be specified at this instance. Next, we shall show that the

mapping f �→ K ∗ f is of weak-type (p, q), with q = 2p

2− p
when K = O and

q = 4p

4− p
when K = ∂O

∂x j
, in the sense that:

for all λ > 0, mes {x ; |(K ∗ f )(x)| > λ} ≤
(

C p,q
‖ f ‖L p(R3)

λ

)q

. (16)

Since K ∗ f = K1 ∗ f + K∞ ∗ f , we have now:

mes {x ; |K ∗ f | > 2λ} ≤ mes {x ; |K1 ∗ f | > λ} +mes {x ; |K∞ ∗ f | > λ}. (17)

Note that it is enough to prove inequality (16) with ‖ f ‖L p(R3) = 1. We have also:

mes {x ; |(K1 ∗ f )(x)| > λ} ≤
‖K1 ∗ f ‖p

L p(R3)

λp
≤
‖K1‖p

L1(R3)

λp
, (18)

and

‖K∞ ∗ f ‖L∞(R3) ≤ ‖K∞‖L p′ (R3). (19)

(1) Estimate (13) Observe that O1 ∈ L1(R3) and O∞ ∈ L p′ (R3) for 1 ≤ p < 2.
Then, the integral O1 ∗ f converges almost everywhere and O∞ ∗ f converges
everywhere. Thus, O ∗ f converges almost everywhere. But

∀μ > 0, ‖O1‖L1(R3) ≤ Cμ. (20)

Next, by using (7), we have for any p′ > 2:

∀μ > 0, ‖O∞‖L p′ (R3) ≤ Cμ
2−p′

p′ . (21)
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Choosing now λ = Cμ
2−p′

p′ or equivalently μ = C ′λ
p

p−2 . Then from (21) and (19)
we have ‖O∞ ∗ f ‖L∞(R3) < λ and so mes {x ; |O∞ ∗ f | > λ} = 0. Finally, for
1 ≤ p < 2, we get from inequalities (20), (17) and (18):

mes {x ∈ R
3; |(O ∗ f )(x)| > λ} ≤

(

C p
1

λ

) 2p
2−p

. (22)

Therefore, for 1 ≤ p < 2, the operator R : f �→ O ∗ f is of weak-type
(

p,
2p

2− p

)

.

(2) Estimate (14). Here we take K = ∂O
∂x j

. First, according to (12),
∂O
∂x1

∗ f ∈

W 1,p(R3) then, by the Sobolev embedding results, we have in particular,
∂O
∂x1

∗ f ∈
L

4p
4−p (R3). It remains to prove Estimate (14) for j = 2, 3. First we have:

∥
∥
∥
∥

∂O
∂x j

∥
∥
∥
∥

L1(R3)

≤ cμ, if μ ≤ 1 and

∥
∥
∥
∥

∂O
∂x j

∥
∥
∥
∥

L1(R3)

≤ cμ
1
2 , if μ > 1.

Furthermore, we have for p′ > 4
3 :

∫

|x|>μ

∣
∣
∣
∣

∂O
∂x j

(x)

∣
∣
∣
∣

p′

dx ≤ Cμ4−3p′ , if μ ≤ 1,

∫

|x|>μ

∣
∣
∣
∣

∂O
∂x j

(x)

∣
∣
∣
∣

p′

dx ≤ Cμ
4−3p′

2 , if μ > 1.

Summarising we obtain:
(a) If 0 < μ < 1,

∫

|x|<μ

∣
∣
∣
∣

∂O
∂x j

(x)

∣
∣
∣
∣

dx ≤ cμ and
∫

|x|>μ

∣
∣
∣
∣

∂O
∂x j

(x)

∣
∣
∣
∣

p′

dx ≤ Cμ4−3p′ ,

(b) if μ ≥ 1,

∫

|x|<μ
| ∂O
∂x j

(x)| dx ≤ cμ
1
2 and

∫

|x|>μ
| ∂O
∂x j

(x)|p′ dx ≤ Cμ
4−3p′

2 .

Setting λ = Cμ
4−3p′

p′ in the case (a) or λ = Cμ
4−3p′

2p′ in the case (b), we get in both
cases:

mes {x ∈ R
3; |K ∗ f (x)| > λ} ≤

(

C p
1

λ

) 4p
4−p

. (23)
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Thus, for 1 ≤ p < 4, the operator R j : f �→ ∂O
∂x j

∗ f is of weak-type
(

p,
4p

4− p

)

. Applying now the Marcinkiewicz interpolation’s theorem, we deduce

that, for 1 < p < 2, the linear operator R is continuous from L p(R3) into L
2p

2−p (R3)

and for 1 < p < 4, R j is continuous from L p(R3) into L
4p

4−p (R3). ��
Remark 1 Another proof of Theorem 1 consists in using Fourier’s approach. Let
( f j ) j∈N ⊂ D(R3) be a sequence which converges to f ∈ L p(R3). Then the sequence
(u j ) j∈N given by:

u j = F−1(m0(ξ )F f j ), m0(ξ ) = (|ξ |2 + iξ1)−1, (24)

satisfies the equation −Δu j + ∂u j

∂x1
= f j . Let us recall now the (see [15]):

Lizorkin Theorem Let D = {ξ ∈ R
3; |ξ | > 0} and m : D −→ C, a continuous

function such that its derivatives
∂km

∂ξ
k1
1 ∂ξ

k2
2 ∂ξ

k3
3

are continuous and verify

|ξ1|k1+β |ξ2|k2+β |ξ3|k3+β
∣
∣
∣
∣
∣

∂km

∂ξ
k1
1 ∂ξ

k2
2 ∂ξ

k3
3

∣
∣
∣
∣
∣
≤ M, (25)

where k1, k2, k3 ∈ {0, 1}, k = k1 + k2 + k3 and 0 ≤ β < 1. Then, the operator

A : g �−→ F−1(m0 Fg),

is continuous from L p(R3) into Lr (R3) with 1
r = 1

p − β.

Applying this continuity property with f j ∈ L p(R3) and β = 1
2 , we show that

(u j ) is bounded in L
2p

2−p (R3) if 1 < p < 2. Thus, this sequence has a subsequence
still denoted by (u j ) which converges weakly to u and which satisfies T u = f .
For the derivative of u j with respect to x1, the corresponding multiplier is of the
form m(ξ ) = iξ1(|ξ |2 + iξ1)−1. It follows that (25) is satisfied for β = 0 and
∂u

∂x1
∈ L p(R3). The same property takes place for the derivatives of second order

with m(ξ ) = ξkξl(|ξ |2+ iξ1)−1. Finally, we verify with β = 1
4 , that the derivative of

(u j ) with respect to xk is bounded in L
4p

4−p (R3), which implies
∂u

∂xk
∈ L

4p
4−p (R3). ��

Theorem 1 states that ∂2O
∂x j ∂xk

∗ f ∈ L p(R3) and under some conditions on p,
∂O
∂x j
∗ f ∈ L

4p
4−p (R3) and O∗ f ∈ L

2p
2−p (R3). Now, using these results and the classical

Sobolev embedding results, we have the following (see also [3]–[5]):

Theorem 2 Let f ∈ L p(R3).

(1) Assume that 1 < p < 4. Then ∇O ∗ f ∈ L
4p

4−p (R3) with the estimate (14).
Moreover,
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(i) if 1 < p < 3, then ∇O ∗ f ∈ L
3p

3−p (R3) with the estimate

‖∇O ∗ f ‖
L

3p
3−p (R3)

≤ C‖ f ‖L p(R3). (26)

(ii) If p = 3, then ∇O ∗ f ∈ Lr (R3) for any r ≥ 12 and satisfies

‖∇O ∗ f ‖Lr (R3) ≤ C‖ f ‖L p(R3). (27)

(iii) If 3 < p < 4, then ∇O ∗ f ∈ L∞(R3) and verifies the estimate

‖∇O ∗ f ‖L∞(R3) ≤ C‖ f ‖L p(R3). (28)

(2) Assume that 1 < p < 2. Then O ∗ f ∈ L
2p

2−p (R3) with the estimate (13).
Moreover,
(i) if 1 < p < 3

2 , then O ∗ f ∈ L
3p

3−2p (R3) and satisfies

‖O ∗ f ‖
L

3p
3−2p (R3)

≤ C‖ f ‖L p(R3). (29)

(ii) If p = 3
2 , then O ∗ f ∈ Lr (R3) for any r ≥ 6 and

‖O ∗ f ‖Lr (R3) ≤ C‖ f ‖L p(R3). (30)

(iii) If 3
2 < p < 2, then O ∗ f ∈ L∞(R3) and the following estimate holds

‖O ∗ f ‖L∞(R3) ≤ C‖ f ‖L p(R3). (31)

Proof (1) If 1 < p < 4, the previous theorem asserts that ∂O
∂x j
∗ f ∈ L

4p
4−p (R3) and

∂2O
∂x j ∂xk

∗ f ∈ L p(R3). If 1 < p < 3, there exists a unique constant k( f ) ∈ R such that

v = ∂O
∂x j
∗ f + k( f ) ∈ W 1,p

0 (R3). Then k( f ) = v− ∂O
∂x j
∗ f ∈ W 1,p

0 (R3)+ L
4p

4−p (R3).

As none of both spaces contains constants then k( f ) = 0, which implies that ∂O
∂x j
∗

f ∈ W 1,p
0 (R3). Now, the Sobolev embedding results yield ∂O

∂x j
∗ f ∈ L

3p
3−p (R3) and

Estimate (26). If p ≥ 3, again by the previous theorem, we have ∂O
∂x j
∗ f ∈ W 1,p

0 (R3).

Then ∂O
∂x j
∗ f ∈ B M O(R3) if p = 3. Applying now the interpolation theorem

between B M O(R3) and L p(R3), we get ∂O
∂x j
∗ f ∈ Lr (R3) for any r ≥ 12. By

Sobolev embedding results, if 3 < p < 4, we have ∂O
∂x j
∗ f ∈ L∞(R3), and the case

(1) is proved.

(2) By the previous theorem, if 1 < p < 2, we have O ∗ f ∈ L
2p

2−p (R3) and

∇O ∗ f ∈ L
3p

3−p (R3). Now by Sobolev embedding results, O ∗ f ∈ L p∗ (R3), where
1
p∗ = 3−p

3p − 1
3 = 1

p − 2
3 if 1 < p < 3

2 , which yields (26). For the remainder of the
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proof, we use the same arguments that in the previous case with O ∗ f instead of
∂O
∂x j
∗ f and ∂O

∂x j
∗ f instead of ∂2O

∂x j ∂xk
∗ f . ��

Remark 2 In Farwig and Sohr [7], Theorem 2.3 proves existence of solutions to
the Oseen equations with forces in L p, thanks to the Lizorkin theorem’s. These
solutions, which are not explicit, belong to homogeneous Sobolev spaces. Here, in
Theorem 1, we prove some continuity properties for the Oseen potential, without
using Lizorkin theorem’s, and in Theorem 2, we complete those properties, thanks
to Sobolev embeddings and we find the same results as the ones given in [7].

Remark 3 (i) We can also have the result given by Theorem 2, by showing that
O ∈ L2,∞(R3), i.e.

sup
μ>0

μ2 mes {x ∈ R
3; O(x) > μ} < +∞. (32)

So that, for any 1 < q < 2, according to weak Young inequality (cf. [14],
Chap. IX.4), we obtain:

‖O ∗ f ‖
L

2q
2−q ,∞

(R3)
≤ C‖O‖L2,∞(R3)‖ f ‖Lq (R3). (33)

Let now p ∈ ]1, 2[. There exist p0 and p1 such that 1 < p0 < p < p1 < 2
and such that the operator R : f �−→ O ∗ f is continuous from L p0 (R3)

into L
2p0

2−p0
,∞(R3) and from L p1 (R3) into L

2p1
2−p1

,∞(R3). The Marcinkiewicz theo-
rem allows again to conclude that the operator R is continuous from L p(R3) into

L
2p

2−p (R3)
(ii) The same remark remains valid for ∇O that belongs to L

4
3 ,∞(R3). ��

Using the Young inequality with the relations (10) and (11), we get the following
result:

Proposition 1 Let f ∈ L1(R3). Then
(1) O ∗ f ∈ L p(R3) for any p ∈ ]2, 3[ and satisfies the estimate

‖O ∗ f ‖L p(R3) ≤ C‖ f ‖L1(R3), (34)

(2) ∇O ∗ f ∈ Lp(R3) for any p ∈ ] 4
3 ,

3
2 [ and the following estimate holds

‖∇O ∗ f ‖Lp(R3) ≤ C‖ f ‖L1(R3). (35)

Remark 4 Taking “formally” p = 1 in Theorem 2, we find that O ∗ f ∈ Lq (R3) for
any q ∈ ]2, 3[ and ∇O ∗ f ∈ Lq (R3) for any q ∈ ] 4

3 ,
3
2 [. We notice that they are the

same results obtained in Theorem 1 by using the Young inequality.

Now, we are going to study the Oseen potential O ∗ f when f belongs to
W−1,p

0 (R3). For that purpose, we give the following definition of the convolution
of f with the fundamental solution O:
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∀ϕ ∈ ∂(R3), 〈O ∗ f, ϕ〉 =: 〈 f, Ŏ ∗ ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

, (36)

where Ŏ(x) = O(−x). With the L∞ weighted estimates obtained in [11] (Theorems
3.1 and 3.2), we get an estimate on the convolution of Ŏ with a function ϕ ∈ D(R3)
which we shall use afterward as follow

Lemma 1 For any ϕ ∈ D(R3) we have the estimates

|Ŏ ∗ ϕ(x)| ≤ Cϕ

1

|x|(1+ |x| + x1)
, (37)

|∇ Ŏ ∗ ϕ(x)| ≤ Cϕ

1

|x| 3
2 (1+ |x| + x1)

3
2

, (38)

where Cϕ depends on the support of ϕ.

Remark 5 (1) The behaviour on |x| of Ŏ ∗ ϕ and its first derivatives is the same that
of Ŏ, but the behaviour on 1+ s ′ is slightly different (see (7)).
(2) From Estimates (37) and (38) we find that

∀q >
4

3
, Ŏ ∗ ϕ ∈ W 1,q

0 (R3). (39)

(3) In (37) and (38), when ϕ tends to zero in D(R3), then Cϕ tends to zero in R.

The next theorem studies the continuity of the operators R and R j when f

belongs to W−1,p
0 (R3) (see also [1] and [3]–[5]).

Theorem 3 Assume that 1 < p < 4 and let f ∈ W−1,p
0 (R3) satisfying the compati-

bility condition

〈 f, 1〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

= 0, when 1 < p ≤ 3

2
. (40)

Then O ∗ f ∈ L
4p

4−p (R3) and ∇O ∗ f ∈ Lp(R3) with the following estimate

‖O ∗ f ‖
L

4p
4−p (R3)

+ ‖∇O ∗ f ‖Lp(R3) ≤ C‖ f ‖W−1,p
0 (R3). (41)

Moreover,
(i) if 1 < p < 3, then O ∗ f ∈ L

3p
3−p (R3) and the following estimate holds

‖O ∗ f ‖
L

3p
3−p (R3)

≤ C‖ f ‖W−1,p
0 (R3). (42)

(ii) If p = 3, then O ∗ f ∈ Lr (R3) for any r ≥ 12 and satisfies

‖O ∗ f ‖Lr (R3) ≤ C‖ f ‖W−1,p
0 (R3). (43)
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(iii) If 3 < p < 4, then O ∗ f ∈ L∞(R3) and we have the estimate

‖O ∗ f ‖L∞(R3) ≤ C‖ f ‖W−1,p
0 (R3). (44)

Proof Let 1 < p < 4. By Lemma 1 and Remark 5 point (3), if ϕ → 0 in D(R3),
then Cϕ → 0 where Cϕ is defined by (37). Thus, Ŏ ∗ ϕ → 0 in W 1,p′

0 (R3) for all
p ∈ ]1, 4[, which implies that O ∗ f ∈ D′(R3). Next, there exists Φ ∈ Lp(R3) such
that

f = div Φ and ‖Φ‖Lp(R3) ≤ C‖ f ‖W−1,p
0 (R3). (45)

According to (12), we have for any ϕ ∈ D(R3),

∣
∣
∣
∣

〈
∂O
∂x j

∗ f, ϕ

〉

D′(R3)×D(R3)

∣
∣
∣
∣
=

∣
∣
∣
∣

〈

Φ,∇ ∂

∂x j
Ŏ ∗ ϕ

〉

Lp(R3)×Lp′ (R3)

∣
∣
∣
∣

≤ C‖ f ‖W−1,p
0 (R3)‖ϕ‖L p′ (R3).

Then we deduce the second part of (41). We also have for all ϕ ∈ D(R3):

〈O ∗ f, ϕ〉D′(R3)×D(R3) = −〈Φ,∇ Ŏ ∗ ϕ〉Lp(R3)×Lp′ (R3),

and by (14):

|〈O ∗ f, ϕ〉D′(R3)×D(R3)| ≤ C‖ f ‖W−1,p
0 (R3)‖ϕ‖L

4p
5p−4 (R3)

.

Note that 1 < p < 4 ⇐⇒ 1 <
4p

5p−4 < 4. Consequently, we have the first part of

(41). Moreover, by Sobolev embeddings, O ∗ f ∈ L
3p

3−p (R3) if 1 < p < 3, O ∗ f
belongs to Lr (R3) for all r ≥ 12 if p = 3 and belongs to L∞(R3) if 3 < p < 4.
Thus, we showed that if 1 < p < 4, the operators R and R j are continuous. ��
Corollary 1 Assume that 1 < p < 4. If u is a distribution such that ∇ u ∈ Lp(R3)
and ∂u

∂x1
∈ W−1,p

0 (R3), then there exists a unique constant k(u) such that u + k(u) ∈
L

4p
4−p (R3) and

‖ u + k(u) ‖
L

4p
4−p (R3)

≤ C(‖ ∇ u ‖Lp(R3) + ‖
∂u

∂x1
‖W−1,p

0 (R3)). (46)

Moreover, if 1 < p < 3, then u + k(u) ∈ L
3p

3−p (R3), where k(u) is defined by:

k(u) = − lim
|x|→∞

1

ω3

∫

S2

u(σ |x|) dσ, (47)
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where, ω3 denotes the area of the sphere S2 and u tends to the constant −k(u) as x
tends to infinity in the following sense:

lim
|x|→∞

∫

S2

|u(σ |x|)+ k(u)| dσ = 0. (48)

If p = 3, then u + k(u) belongs to Lr (R3) for any r ≥ 12. If 3 < p < 4, then u
belongs to L∞(R3), is continuous in R

3 and tends to −k(u) pointwise.

Proof We set g = −Δu + ∂u
∂x1

∈ W−1,p
0 (R3). Since P[1− 3

p′ ]
contains at most

constants and according to the density of ∂(R3) in W̃ 1,p
0 (R3), then g satisfies

the compatibility condition (40). By the previous theorem, there exists a unique

v = O ∗ g ∈ L
4p

4−p (R3) such that ∇ v ∈ L p(R3) and ∂v
∂x1
∈ L p(R3), satisfying

T (u − v) = 0, where T is the Oseen operator, with the estimate:

‖ v ‖
L

4p
4−p (R3)

≤ C(‖ ∇ u ‖Lp(R3) + ‖
∂u

∂x1
‖W−1,p

0 (R3)). (49)

Setting w = u − v, we have for all i = 1, 2, 3, ∂w
∂xi
∈ L p(R3) and satisfies

T ( ∂w
∂xi

) = 0. Then by an uniqueness argument, we deduce that ∇ u = ∇ v and
consequently there exists a unique constant k(u), defined by (47), such that u +
k(u) = v. The last properties are consequences of Sobolev embeddings. ��
Remark 6 Let u ∈ D′(R3) such that ∇ u ∈ Lp(R3).
(i) If 1 < p < 3, we know that there exists a unique constant k(u) such that u +
k(u) ∈ L

3p
3−p (R3). Here, the fact that in addition ∂u

∂x1
∈ W−1,p

0 (R3) we also have

u + k(u) ∈ L
4p

4−p (R3), with 4p
4−p <

3p
3−p .

(ii) If 3 ≤ p < 4, for any constant k, u + k belongs only to W 1,p
0 (R3) but not to

the space Lr (R3). But, if moreover ∂u
∂x1
∈ W−1,p

0 (R3) then, u + k(u) ∈ L
4p

4−p (R3)

for some unique constant k(u). Moreover u + k(u) ∈ Lr (R3) for any r ≥ 4p
4−p and

u ∈ L∞(R3) if p > 3.

3 Weighted Hardy Inequalities

In this section, our aim is to give some weighted anisotropic Hardy inequalities in
R

n with n ≥ 2.
For α, β ∈ R, we consider the anisotropic weight functions

ηαβ = (1+ r )α(1+ s)β,

with

s = s(x) = r − x1.
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We define the weighted space

L p
α,β(Rn) = {v ∈ D′(Rn), ηαβv ∈ L p(Rn)},

which is a Banach space for its natural norm given by

‖v‖L p
α,β (Rn ) = ‖ηαβv‖L p(Rn ).

We introduce the first family of weighted Sobolev spaces,

W 1,p
α,β (R3) =

{

v ∈ L p
α− 1

2 ,β
(Rn),∇v ∈ λ

p
α,β(Rn)

}

,

X1,p
α,β(R3) =

{

v ∈ L p
α− 1

2 ,β− 1
2
(Rn),∇v ∈ λ

p
α,β(Rn)

}

,

Y 1,p
α,β (R3) =

{

v ∈ L p
α−1,β (Rn),∇v ∈ λ

p
α,β(Rn)

}

.

These are Banach spaces for their natural norms. Observe that

W 1,p
α,β (R3) ⊂ X1,p

α,β (R3) ⊂ Y 1,p
α,β (R3).

All the local properties of the spaces W 1,p
α,β (R3), X1,p

α,β(R3) and Y 1,p
α,β (R3) coincide

with those of classical Sobolev spaces W 1,p(Rn). Moreover, we have the following
properties:

Proposition 2 The space D(Rn) is dense in W 1,p
α,β (R3) (resp. in X1,p

α,β (R3) and in

Y 1,p
α,β (R3)).

Proof It relies on a truncation procedure. Let u ∈ W 1,p
α,β (R3), ϕ ∈ D(Rn), with

0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 if r ≤ 1, ϕ(x) = 0 if r ≥ 2, and set ϕk(x) = ϕ(x/k),
uk = uϕk . We have

‖uk − u‖p

W 1,p
α,β (R3)

= ‖uk − u‖p
L p

α− 1
2 ,β

(Rn )
+ ‖∇(uk − u)‖p

L p
α,β (Rn )

≤ ‖(ϕk − 1)u‖p
L p

α− 1
2 ,β

(Rn )
+ C‖(ϕk − 1)∇u‖p

L p
α,β (Rn )

+ C‖u∇ϕk‖p
L p
α,β (Rn )

, (50)

where C is a positive real. Since u ∈ W 1,p
α,β (R3), it is clear that the first two terms of

the right hand side of (50) tend to zero, when k tends to ∞. Now, the last term of
(50) can be written,

‖u∇ϕk‖p
L p
α,β (Rn )

=
∫

{k≤r≤2k}
η
αp
βp|u∇ϕk |pdx
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and, since |∇ϕk(x)| ≤ 1

k
|∇ϕ(x/k)|, we arrive at

‖u∇ϕk‖p
L p
α,β (Rn )

≤ C
∫

{k≤r≤2k}
η

(α−1)p
βp |u|pdx.

Recalling that u ∈ W 1,p
α,β (R3), this last quantity tends to zero as k tends to ∞.

Then, since each uk has a compact support and the topologies of W 1,p
α,β (R3) and

W 1,p(Rn) coincide on this support, the statement of the proposition follows from
the density of D(Rn) in W 1,p(Rn). The proof is the same for the two other spaces.
��

The previous proposition implies that the dual spaces respectively denoted
W−1,p′
−α,−β (Rn), X−1,p′

−α,−β (Rn), Y−1,p′
−α,−β (Rn) are subspaces of D′(Rn). Let � be the weight

function � = 1+ r = η1
0 and lg r = ln (1+ �). For α ∈ R, we recall the following

weighted Sobolev spaces

W 0,p
α (Rn) = {u ∈ δ′(Rn), �αu ∈ L p(Rn)} = L p

α,0(Rn), (51)

W 1,p
α (Rn) = {u ∈ W 0,p

α−1(Rn),∇u ∈ W0,p
α (Rn)}, if

n

p
+ α �= 1, (52)

W 1,p
α (Rn) = {(lg r )−1u ∈ W 0,p

α−1(Rn),∇u ∈ W0,p
α (Rn)}, if

n

p
+ α = 1. (53)

We have the following identity:

W 1,p
α (Rn) = Y 1,p

α,0 (Rn) if
n

p
+ α �= 1.

We will now prove some one-dimensional inequalities.

Lemma 2 Let γ ∈ R satisfy γ+ n − 1

2
> 0 and θ∗ ∈ ]0, π/2[. Then for any positive

measurable function f defined on ]0, θ∗[, such that

∫ θ∗

0
(1− cos θ )γ+

p
2 (sin θ )n−2[ f (θ )]pdθ < +∞,

one has

∫ θ∗

0
(1− cos θ )γ (sin θ )n−2[F(θ )]pdθ ≤ C

∫ θ∗

0
(1− cos θ )γ+

p
2 (sin θ )n−2[ f (θ )]pdθ,

(54)
with

F(θ ) =
∫ θ∗

θ

f (t)dt. (55)
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Proof Let us first notice that on ]− π
2 ,

π
2 [, the following inequality holds

1

2
sin2 θ ≤ 1− cos θ ≤ sin2 θ. (56)

We now set

J =
∫ θ∗

0
(1− cos θ )γ (sin θ )n−2(F(θ ))pdθ.

In view of Inequality 56, we find

J =
∫ θ∗

0
(1− cos θ )γ (sin θ )n−3 sin θ (F(θ ))pdθ

≤ 2(n−3)/2
∫ θ∗

0
(1− cos θ )γ+

n−3
2 sin θ (F(θ ))pdθ.

From (55) and since γ + n−1
2 > 0, an integration by parts yields

J ≤ C
∫ θ∗

0
(1− cos θ )γ+

n−1
2 f (θ )(F(θ ))p−1dθ.

Using the Hölder inequality, we obtain

J ≤ C
∫ θ∗

0
(1− cos θ )γ+

n−1
2 p(sin θ )−(n−2)(p−1)( f (θ ))pdθ

and from (56), we prove (54). ��

Remark 7 By the same way, we can prove that, if γ ∈ R, satisfy γ + 1
2 > 0 and

θ∗ ∈ ]0, π/2[, then for any positive measurable function f defined on ] − θ∗, 0[,
such that

∫ 0

−θ∗
(1− cos θ )γ+

p
2 [ f (θ )]pdθ < +∞,

one has

∫ 0

−θ∗
(1− cos θ )γ [F(θ )]pdθ ≤ C

∫ 0

−θ∗
(1− cos θ )γ+

p
2 [ f (θ )]pdθ, (57)

with

F(θ ) =
∫ θ

−θ∗
f (t)dt.
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Remark 8 (i) As a consequence of inequality (54) for n = 2 and inequality (57), for
any w ∈ D(]− θ∗, θ∗[) with γ + 1

2 > 0, one has

∫ θ∗

−θ∗
(1− cos θ )γ |w(θ )|pdθ ≤ C

∫ θ∗

−θ∗
(1− cos θ )γ+

p
2 |w′(θ )|pdθ. (58)

(ii) Inequality (54) also implies that for any w ∈ D([0, θ∗[), γ + n−1
2 > 0, one has

∫ θ∗

0
(1− cos θ )γ (sin θ )n−2|w(θ )|pdθ ≤ C

∫ θ∗

0
(1− cos θ )γ+

p
2 (sin θ )n−2|w′(θ )|pdθ.

(59)

We now consider the sector

S = SR,λ = {x ∈ R
n, r > R, 0 < s < λr}, with R > 0 and 0 < λ < 1. (60)

We start to prove a Hardy-type inequality in the sector S.

Lemma 3 Let α, β ∈ R such that β > max(0, (1− n + p)/2p). Then we have

∀u ∈ D(S), ‖u‖L p

α− 1
2 ,β− 1

2
(S) ≤ C‖∇u‖L p

α,β (S). (61)

Proof Let u be in D(S). Since β > 0, it is enough to prove

I =
∫

S
(1+ r )(α− 1

2 )ps(β− 1
2 )p|u|pdx ≤ C

∫

S
(1+ r )αpsβp|∇u|pdx. (62)

Indeed, let us assume that inequality (62) holds. Then, if 0 < β <
1

2
, thanks to

(62), we have

∫

S
(1+ r )(α− 1

2 )p(1+ s)(β− 1
2 )p|u|pdx ≤

∫

S
(1+ r )(α− 1

2 )ps(β− 1
2 )p|u|pdx

≤ C
∫

S
(1+ r )αpsβp|∇u|pdx

≤ C
∫

S
(1+ r )αp(1+ s)βp|∇u|pdx.

Now, if β ≥ 1

2
,

∫

S
(1+ r )(α− 1

2 )p(1+ s)(β− 1
2 )p|u|pdx ≤ C

∫

S
(1+ r )(α− 1

2 )p(1+ s(β− 1
2 )p)|u|pdx

≤ C
∫

S
(1+ r )αp(s p/2 + sβp)|∇u|pdx
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and we obtain (61). First, we prove inequality (62) for the case n ≥ 3. Let θ =
(θ1, θ2, . . . , θn−1) ∈]0, π [n−2×]0, 2π [, R > 0, θ∗ ∈]0, π

2 [ fixed and consider

Δ = {(r, θ ) ∈ R
+×]0, π [n−2×]0, 2π [, r > R, θ1 ∈]0, θ∗[}. (63)

To establish (62), we introduce the generalized spherical coordinates

x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , xn−1 = r sin θ1 . . . sin θn−2 cos θn−1,

xn = r sin θ1 . . . sin θn−2 sin θn−1,

(64)

where (r, θ ) ∈ Δ. Now taking u(x) = v(r, θ ) and observing that

∣
∣
∣
∣

∂v

∂θ1

∣
∣
∣
∣
≤ r |∇u|,

it is sufficient to prove that

I =
∫

Δ

(1+ r )(α− 1
2 )p(r − r cos θ1)(β− 1

2 )prn−1(sin θ1)n−2|v|pdrdθ

≤ C
∫

Δ

(1+ r )αp(r − r cos θ1)βprn−1(sin θ1)n−2r−p

∣
∣
∣
∣

∂v

∂θ1

∣
∣
∣
∣

p

drdθ.
(65)

We immediately have

I ≤
∫

Δ

(1+ r )αprβp(1− cos θ1)(β− 1
2 )prn−1(sin θ1)n−2r−p|v|pdrdθ. (66)

We now set

J =
∫ θ∗

0
(1− cos θ1)(β− 1

2 )p(sin θ1)n−2|v|pdθ1.

Since β > (1 − n + p)/2p, we have (β − 1
2 )p + n−1

2 > 0. Moreover u ∈
D(S) implies that, for (r, θ ) ∈ Δ, the function θ1 → v(r, θ ) belongs to D([0, θ∗[).
Therefore from (59), we get

J ≤ C
∫ θ∗

0
(1− cos θ1)βp(sin θ1)n−2

∣
∣
∣
∣

∂v

∂θ1

∣
∣
∣
∣

p

dθ1. (67)

In view of inequalities (66) and (67), we obtain (65).
We now continue the proof of (62) for the case n = 2. We define

Δ = {(r, θ ) ∈ R
+×]− π, π [, r > R, θ ∈]− θ∗, θ∗[} (68)



18 C. Amrouche and U. Razafison

and we introduce the polar coordinates

x1 = r cos θ , x2 = r sin θ, (69)

where (r, θ ) ∈ Δ. Taking u(x) = v(r, θ ), it is sufficient to prove

I =
∫ θ∗

−θ∗

∫ ∞

R
(1+ r )(α− 1

2 )p(r − r cos θ )(β− 1
2 )pr2|v|pdrdθ

≤ C
∫ θ∗

−θ∗

∫ ∞

R
(1+ r )αp(r − r cos θ )βpr2−p

∣
∣
∣
∣

∂v

∂θ

∣
∣
∣
∣

p

drdθ.

(70)

Proceeding as for the case n ≥ 3 and the use of inequality (58) give us Inequality
(70). ��

Let R be a positive real number fixed large enough. In the sequel, we will need
the following Hardy-type inequality (cf. Hardy-Littlewood-Polya [9] : we have

∀ f ∈ D(]R,∞[),
∫ +∞

R
| f (r )|prγ dr ≤ C

∫ +∞

R
| f ′(r )|prγ+pdr, with γ+1 �= 0.

(71)
Let now BR denotes the open ball centered at the origin and with radius R and

B ′R = R
n \ B R . We are going to prove inequality (61) for a function u ∈ D(B ′R).

Lemma 4 Let α, β ∈ R satisfy β > max(0, (1−n+ p)/2p) and α+β+n/p−1 �=
0.Then, for any large enough positive real number R, we have

∀u ∈ D(B ′R), ‖u‖L p

α− 1
2 ,β− 1

2
(B ′R ) ≤ C‖∇u‖L p

α,β (B ′R ). (72)

Proof Let u be in D(B ′R). We introduce the open set

DR,λ = {x ∈ R
n, r > R, λr < s}

and the following partition of unity

ϕ1, ϕ2 ∈ C∞(B ′R), 0 ≤ ϕ1, ϕ2 ≤ 1, ϕ1 + ϕ2 = 1 in B ′R,

with

ϕ1 = 1 in SR,λ/2, supp ϕ1 ⊂ SR,λ

and |∇ϕ1(x)| ≤ C

|x| , x ∈ SR,λ ∩ DR,λ/2.
(73)

We have
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‖u‖L p

α− 1
2 ,β− 1

2
(B ′R ) ≤ ‖uϕ1‖L p

α− 1
2 ,β− 1

2
(B ′R ) + ‖uϕ2‖L p

α− 1
2 ,β− 1

2
(B ′R ).

Let us prove that

‖uϕ1‖L p

α− 1
2 ,β− 1

2
(B ′R ) ≤ C‖∇u‖L p

α,β (B ′R ). (74)

Since uϕ1 ∈ δ(SR,λ) and β > max(0, (1− n + p)/2p), Lemma 3 yields

‖uϕ1‖L p

α− 1
2 ,β− 1

2
(SR,λ) ≤ C‖∇(uϕ1)‖L p

α,β (SR,λ). (75)

Furthermore, we have

‖∇(uϕ1)‖p
L p
α,β (SR,λ)

≤ C
∫

SR,λ

(1+ r )αp(1+ s)βp|∇u|pdx

+ C
∫

SR,λ∩DR,λ/2

(1+ r )αp(1+ s)βp|u∇ϕ1|pdx. (76)

Since s ∼ r in SR,λ ∩ DR,λ/2 and from (73), for the second term of the right hand
side of (76), we find

∫

SR,λ∩DR,λ/2

(1+ r )αp(1+ s)βp|u∇ϕ1|pdx

≤ C
∫

SR,λ∩DR,λ/2

(1+ r )(α+β−1)p|u|pdx (77)

≤ C
∫

SR,λ∩DR,λ/2

r (α+β−1)p|u|pdx.

Now, we introduce the generalized spherical coordinates defined by (64), where
(r, θ ) ∈ R

+×]0, π [n−2×]0, 2π [, for the case n ≥ 3, or the polar coordinates defined
by (69), where (r, θ ) ∈ R

+×] − π, π [, for the case n = 2. We take u(x) = v(r, θ )
and, recalling that α+ β + n/p− 1 �= 0, we apply (71) to the function r → v(r, θ ).
Thus, it comes

∫ +∞

R
|v|pr (α+β−1)p+n−1dr ≤ C

∫ +∞

R

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

r (α+β)p+n−1dr,

which immediately yields

∫

SR,λ∩DR,λ/2

r (α+β−1)p|u|pdx ≤ C
∫

SR,λ∩DR,λ/2

r (α+β)p|∇u|pdx

≤ C
∫

SR,λ∩DR,λ/2

(1+ r )αp(1+ s)βp|∇u|pdx. (78)
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Summarizing (75), (76), (77) and (78), we deduce (74). Let us now prove that

‖uϕ2‖L p

α− 1
2 ,β− 1

2
(B ′R ) ≤ C‖∇u‖L p

α,β (B ′R ). (79)

Since the support of ϕ2 is included in DR,λ/2 and ϕ2 ≤ 1, we have

‖uϕ2‖p
L p

α− 1
2 ,β− 1

2
(B ′R )
=

∫

DR,λ/2

(1+ r )(α− 1
2 )p(1+ s)(β− 1

2 )p|uϕ2|pdx

≤
∫

DR,λ/2

(1+ r )(α− 1
2 )p(1+ s)(β− 1

2 )p|u|pdx.

Moreover, recalling that s ∼ r in DR,λ/2, we get

∫

DR,λ/2

(1+ r )(α− 1
2 )p(1+ s)(β− 1

2 )p|u|pdx ≤ C
∫

DR,λ/2

r (α+β−1)p|u|pdx.

Next, we use generalized spherical coordinates for n ≥ 3 or polar coordinates
for n = 2, with u(x) = v(r, θ ). Since α + β + n/p − 1 �= 0, inequality (71) yields

∫ +∞

R
r (α+β−1)p+n−1|v|pdr ≤ C

∫ +∞

R
r (α+β)p+n−1

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

dr,

which implies that

∫

DR,λ/2

r (α+β−1)p|u|pdx ≤ C
∫

DR,λ/2

r (α+β)p|∇u|pdx

≤ C
∫

DR,λ/2

(1+ r )αp(1+ s)βp|∇u|pdx.

The previous inequalities yield (79) and that concludes the proof. ��
We are now in a position to give the following Hardy-type inequality.

Theorem 4 Let α, β ∈ R satisfy β > max(0, (1−n+ p)/2p) and α+β+n/p−1 �=
0. Let j ′ = min ( j, 0), where j is the highest degree of the polynomials contained in
X1,p
α,β (R3). Then, we have

∀u ∈ X1,p
α,β (R3), inf

λ∈P j ′
‖u + λ‖L p

α− 1
2 ,β− 1

2
(Rn ) ≤ C‖∇u‖L p

α,β (Rn ). (80)

In other words, the semi-norm | . |X1,p
α,β (R3) defines on X1,p

α,β (R3)/P j ′ a norm which

is equivalent to the quotient norm.

Proof The proof of this theorem is similar to that given in Amrouche-Girault-
Giroire [2] (Theorem 8.3, p. 598). ��
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Remark 9 Note that the particular case n = 3, p = 2, β > 0 and α + β + 1
2 > 0

of previous theorem for was proved by Farwig (see [6]). Next, observe that the
previous theorem also improves the inequalities proved in [10] (Lemma 2.3) for the
case n = 3, p = 2, β > 0, α ≥ 0 and α + β < 3

2 .

Lemma 5 Let α, β be two reals such that β ≤ 0 and α + n/p − 1 < 0 or α + β +
n/p − 1 > 0. Then, for any large enough positive real number R, we have

∀u ∈ D(B ′R), ‖u‖L p
α−1,β (B ′R ) ≤ C‖∇u‖L p

α,β (B ′R ). (81)

Proof Let u ∈ D(B ′R). We first prove (81) for n ≥ 3. Let θ = (θ1, . . . , θn−1) and
consider the following set

D = {(r, θ ) ∈ R
+×]0, π [n−2×]0, 2π [, r > R}.

We introduce the generalized spherical coordinates (64) with (r, θ ) ∈ D. Taking
u(x) = v(r, θ ), inequality (81) is equivalent to

I =
∫

D
r (α−1)p+n−1(1+ r − r cos θ1)βp(sin θ1)n−2|v|pdrdθ

≤ C
∫

D
rαp+n−1(1+ r − r cos θ1)βp(sin θ1)n−2

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

drdθ.
(82)

We define r̃ (θ1) = 1

1− cos θ1
and θ̃ ∈]0, π [ such that R = 1

1− cos θ̃
. We divide

D into three subdomains:

D1 = {(r, θ ) ∈ D, R < r < r̃ (θ1), 0 < θ1 < θ̃} where 1+ r − r cos θ1 ∼ 1,

D2 = {(r, θ ) ∈ D, r > r̃ (θ1), 0 < θ1 < θ̃} where 1+ r − r cos θ1 ∼ r − r cos θ1,

D3 = {(r, θ ) ∈ D, r > R, θ̃ < θ1 < π} where 1+ r − r cos θ1 ∼ r − r cos θ1.

Thus, we obtain

I ∼ I1 + I2 + I3,

with

I1 =
∫

D1

r (α−1)p+n−1(sin θ1)n−2|v|pdrdθ,

I2 =
∫

D2

r (α+β−1)p+n−1(1− cos θ1)βp(sin θ1)n−2|v|pdrdθ,

I3 =
∫

D3

r (α+β−1)p+n−1(1− cos θ1)βp(sin θ1)n−2|v|pdrdθ.
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Let us now estimate the three integrals. Since α + n

p
− 1 �= 0, an integration by

parts and the Hölder’s inequality yield

∫ r̃ (θ1)

R
r (α−1)p+n−1|v|pdr ≤ 1

(α − 1)p + n
(r̃(θ1))(α−1)p+n|v(r̃ (θ1), θ ))|p

+ p

|αp − p + n|
(∫ r̃ (θ1)

R
r (α−1)p+n−1|v|pdr

)1/p′(∫ r̃ (θ1)

R
rαp+n−1

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

dr

)1/p

,

and consequently

I1 ≤
1

(α − 1)p + n

∫ 2π

0

∫ π

0
· · ·

∫ π

0

∫ θ̃

0
(r̃ (θ1))(α−1)p+n(sin θ1)n−2|v(r̃(θ1), θ )|pdθ1 . . . dθn−1

+ C
∫

D1

rαp+n−1(sin θ1)n−2

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

drdθ. (83)

Similarly, since α + β + n

p
− 1 �= 0, we get for the two other integrals

I2 ≤ − 1

(α + β − 1)p + n
I ′2

+ C
∫

D2

r (α+β)p+n−1(1− cos θ1)βp(sin θ1)n−2

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

drdθ,
(84)

with

I ′2 =
∫ 2π

0

∫ π

0
· · ·
∫ π

0

∫ θ̃

0
r̃ (θ1)(α+β−1)p+n(1− cos θ1)βp(sin θ1)n−2|v(r̃ (θ1), θ )|pdθ1 . . . dθn−1,

I3 ≤ C
∫

D3

r (α+β)p+n−1(1− cos θ1)βp(sin θ1)n−2

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

drdθ. (85)

Summarizing (83), (84), (85), we obtain

I ≤ C
∫

D
rαp+n−1(1+ r − r cos θ1)βp(sin θ1)n−2

∣
∣
∣
∣

∂v

∂r

∣
∣
∣
∣

p

drdθ+

1

(α − 1)p + n

∫ 2π

0

∫ π

0
· · ·
∫ π

0

∫ θ̃

0
(r̃(θ1))(α−1)p+n(sin θ1)n−2|v(r̃ (θ1), θ )|pdθ1 . . . dθn−1

− 1

(α + β − 1)p + n
I ′2.
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Recalling that (r̃ (θ1)(1− cos θ1))βp = 1, and since β ≤ 0 with α+ n

p
− 1 < 0 or

α + β + n

p
− 1 > 0, we have

1

(α − 1)p + n
− 1

(α + β − 1)p + n
≤ 0.

Thus, we deduce inequality (82).
For the case n = 2, we use polar coordinates (69), with (r, θ ) ∈ D, where

D = {(r, θ ) ∈ R
+×]− π, π [, r > R}.

We set r̃ (θ ) = 1

1− cos θ
and θ̃ such that R = 1

1− cos θ̃
. We devide D as follow

D1 = {(r, θ ) ∈ D, R < r < r̃ (θ ),−θ̃ < θ < θ̃}
D2 = {(r, θ ) ∈ D, r > r̃ (θ ),−θ̃ < θ1 < θ̃}
D3 = {(r, θ ) ∈ D, r > R, θ ∈]− π,−θ̃ [∪]θ̃ , π [}.

We then proceed as for the proof of the case n ≥ 3. ��
Now proceeding as for the case β > 0, we obtain the Hardy-type inequality.

Theorem 5 Let α, β be two real satisfying β ≤ 0 and α + n

p
− 1 < 0 or α + β +

n

p
− 1 > 0. Let j ′ = min ( j, 0), where j is the highest degree of the polynomials

contained in Y 1,p
α,β (R3). Then we have

∀u ∈ Y 1,p
α,β (R3), inf

λ∈P j ′
‖u + λ‖L p

α−1,β (Rn ) ≤ C‖∇u‖L p
α,β (Rn ). (86)

In other words, the semi-norm | . |Y 1,p
α,β (R3) defines on Y 1,p

α,β (R3)/P j ′ a norm which

is equivalent to the quotient norm.

Remark 10 For the case β = 0, we get the result proved by Amrouche-Girault-

Giroire [2] for the space W 1,p
α (Rn) when α + n

p
− 1 �= 0.
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9. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Cambridge University Press, New
York, 1952
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11. S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted L p spaces.
J. Math. Soc. Japan 53 (2001), 59–111

12. P. I. Lizorkin, (L p, Lq ) – multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR 152,
(1963), 808–811

13. C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik. Akadem. Ver-
lagsgesellschaft, Leipzig, 1927

14. M. Reed and B. Simon, Fourier Analysis Self-Adjointness. t.II Academic Press New York,
1975

15. E. M. Stein, Singulars Integrals and Differentiability Properties of Functions. Princeton Uni-
versity Press. Princeton, NJ, 1970



A New Model of Diphasic Fluids in Thin Films

Guy Bayada, Laurent Chupin, and Bérénice Grec

Abstract In this work, we are interested in the modelling of diphasic fluids flows
in thin films. The diphasic aspect is described by a diffuse interface model, the
Cahn-Hilliard equation. The specific geometry (thin domain) allows to replace
heuristically the usual Navier-Stokes equations by an asymptotic approximation, a
modified Reynolds equation (in which the pressure and the velocity are uncoupled),
where the viscosity depends on the composition of the mixture. An existence result
on the limit system is stated. since the boundary conditions are chosen in order to
model the injection phenomenon, previous results on the Cahn-Hilliard equation
cannot be applied, and new estimates have to be obtained. Moreover, we present
numerical simulations for lubrication applications to improve the understanding of
the cavitation phenomenon.

Keywords Diphasic flows · Cahn-Hilliard equation · Existence result · Numerical
simulations · Lubrication

1 Introduction

In lubrication applications, the flow of a fluid between two close surfaces in relative
motion is described by an asymptotic approximation of the Navier-Stokes equations,
the Reynolds equation. This equation is much easier to study, since the pressure and
the velocity can be uncoupled. Indeed, the pressure is shown to be independent of
the normal direction to the surfaces, this simplification leads to an equation on the
pressure only, and the velocity can be deduced from the pressure. This approach
was introduced by Reynolds, and has been rigorously justified in [2] for the Stokes
equation, and generalized afterwards in many works (Navier-Stokes equations [1],
unsteady case [3], compressible fluid (for some perfect gases law) [12]). It is of
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interest to investigate how this approach can be used for the case of a two fluid flow.
A partial answer to this question has been given in [13].

There are two different approaches to describe multi-phase fluids. The most
frequent one in the previous works on the subject for lubrication applications is
to consider the interface to be sharp. It consists in introducing a variable viscosity
η(x, y), which is either equal to the viscosity η1 of one fluid or the viscosity η2 of
the other fluid (that is to say that the fluids are supposed to be non-miscible). The
behavior of η is described by a transport equation. In that case, under an assump-
tion on the interface, the asymptotic equations can be interpreted as a generalized
Buckley-Leverett equation coupled with a generalized Reynolds equation [13]. One
of the main disadvantages of the method is that the fluid interface is supposed to
be the graph of a function, which hinders for example the formation of bubbles.
In addition, this kind of models only takes into account hydrodynamical effects
between the two phases.

The second class of models describing diphasic flows are the so-called diffuse
interface models. These models are not only based on mechanical considerations but
also on chemical properties at the interface between the two fluids, which enable an
exchange between the two phases. In this chapter, we use the Cahn-Hilliard equa-
tion, which involves an interaction potential. To this end, we introduce an order
parameter ϕ, for example the volumic fraction of one phase in the mixture. This
kind of model has already been studied for the complete Navier-Stokes equations in
[6, 10].

In this chapter, we describe the governing equations (in Sect. 2) for a diphasic
fluid in thin flows, and explain how this model is derived from the Navier-Stokes
and the Cahn-Hilliard equation. In Sect. 3, we state an existence result and sketch
out its proof. Lastly, in Sect. 3, the numerical scheme used for simulations of this
model is detailed, and some numerical results are given.

2 Governing Equations

In order to derive the governing equations, we first recall briefly the approach for
obtaining the Reynolds equation from the Navier-Stokes equations. Then we intro-
duce the Cahn-Hilliard equation, which models a mixture of fluids. Last, we obtain
the full model for two fluids in a thin domain.

2.1 Modelling One Fluid in a Thin Domain

For ε > 0, let Ωε be a thin domain

Ωε = {

(x, y) ∈ R
2, 0 < x < L , 0 < z < εh(x)

}

,

with h a regular mapping from [0, L] to R
∗
+ which is supposed to satisfy 0 <

hm ≤ h(x) ≤ hM . The usual Navier-Stokes equations describe an incompressible
fluid flow, coupling the velocity u = (u, v) and the pressure p, which depend on
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the physical parameters of the fluid (the density �, the viscosity η), and the external
forces F (for example the gravity term �g):

� (∂t u+ u · ∇u)− div (ηD(u))+ ∇ p = F , div u = 0. (1)

In lubrication applications, it is important to take the shear effects into account,
and the following boundary conditions are used: Dirichlet boundary conditions are
imposed on the velocity on {z = 0} and {z = εh(x)}:

∀x ∈]0, L[ u(x, 0) = s, u(x, εh(x)) = v(x, 0) = v(x, εh(x)) = 0. (2)

It has been showed in [2] that in a thin domain, the conditions on u on the lateral
part of the boundary only occur in the limit problem (i.e. when ε→ 0) by means of
the input flow: indeed, any lateral boundary condition corresponding to a given input
flow will lead to the same limit problem. Therefore the lateral boundary conditions
are not given explicitly, only the input flow q is given:

∫ h(0)

0
u|x=0 · ∇ = q, (3)

where ∇ is the external normal to ∂Ω.
With the aid of asymptotic expansions, one shows that the Navier-Stokes equa-

tions (1) tend formally to the Reynolds equation when ε tends to zero. It has been
proved in [1] that this limit can be justified rigorously. Introducing the rescaled
domain

Ω = {

(x, y) ∈ R
2, 0 < x < L , 0 < y < h(x)

}

,

the following steady-state equation is obtained to the limit ε→ 0:

∂y
(

η ∂yu
) = ∂x p, ∂y p = 0, ∂x u + ∂yv = 0. (4)

The usual procedure to obtain the Reynolds equation is to integrate twice (4) with
respect to y, and make use of the boundary conditions (2), u can be expressed as a
function of p. The incompressibility condition enables to obtain an equation on the
pressure only, the Reynolds equation:

∂x

(
h3

12η
∂x p

)

= s∂x

(
h

2

)

. (5)

The velocity u is given as a function of p:

u(x, y) = y(y − h)

2η
∂x p + s

(

1− y

h

)

and v(x, y) = −
∫ y

0
∂x u(x, z) dz.

(6)
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The boundary conditions on p are deduced from the ones on u. Indeed, the choice
of q corresponds to a Neumann condition on p at x = 0: it follows from (6) that

q =
∫ h(0)

0
u(0, y)dy = −∂x p(0)

h(0)3

12η
+ sh(0)

2
.

This expression determines ∂x p(0) as a function of q. Moreover, since the pres-
sure p is defined up to a constant, we have to impose another condition. Finally, the
boundary conditions on p read:

∂x p(0) = 12η

h(0)3

(
sh(0)

2
− q

)

, p(L) = 0. (7)

2.2 Modelling a Mixture in a Thin Domain

2.2.1 Modelling a Mixture and Taking the Surface Tension into Account

In order to describe the mixture of two miscible fluids, we introduce an order param-
eter ϕ ∈ [−1, 1] (corresponding to the volumic fraction of one fluid in the flow).
Then all physical parameters are written as functions of ϕ. The viscosity η(ϕ) of the
mixture is given as function of the viscosities of the two fluids η1 and η2 by:

1

η(ϕ)
=

⎧

⎪⎪⎨

⎪⎪⎩

1+ ϕ

2η1
+ 1− ϕ

2η2
if ϕ ∈ [−1, 1],

1/η1 if ϕ > 1,

1/η2 if ϕ < −1,

(8)

so that ϕ = 1 and ϕ = −1 correspond to the fluids of viscosity η1 and η2 respec-
tively.

In a similar way, the density � of the mixture can be defined as a function of ϕ.
However, the non homogeneous case �1 �= �2 induces further difficulties (see [8])
due to the loss of the local conservation equation for the density. We do not wish to
take these effects into account in this paper. Therefore, we restrict ourselves to the
case �1 = �2 (as in [6] for example).

In order to describe the evolution of ϕ, we introduce the Cahn-Hilliard equa-
tion, which is composed of both a transport term, taking the mechanical effects into
account, and a diffusive term modelling the chemical effects. The Cahn-Hilliard
equation reads in a dimensionless form:

∂tϕ + u · ∇ϕ − 1

Pe
div (B(ϕ)∇μ) = 0, (9a)

μ = −α2Δϕ + F ′(ϕ). (9b)

The variable μ is the chemical potential, B(ϕ) is called mobility, Pe is the Péclet
number, α is an non-dimensional parameter measuring the thickness of the diffuse
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interface, and the function F is called Cahn-Hilliard potential. The physical-relevant
assumption on F is that it must have a double-well structure, each of them rep-
resenting one of the two fluids. A realistic choice for F is given by a logarithmic
form F(x) = 1−x2+c ((1+ x) log(1+ x)+ (1− x) log(1− x)), or its polynomial
approximation F(x) = (1−x2)2. The mathematical hypotheses imposed on F match
these two choices, and allow some more general profiles. As far as the mobility B
is concerned, it is supposed to be regular, positive, and bounded from above and
from below: 0 < Bm ≤ B(ϕ) ≤ BM . Let us mention that other functions B can be
considered, in particular the degenerate case B(x) = (1 − x2)r , with r ≥ 0. This
case has been studied in [6], but introduces further mathematical difficulties.

This equation is equipped with boundary conditions on ϕ and μ. Unlike the pre-
vious works [6, 10], we are interested in modelling injection phenomena, therefore
we consider a Dirichlet condition on ϕ on the left-hand side of the boundary. In
order to state the boundary conditions mathematically, we define different parts of
the boundary Γ = ∂Ω as follows: let Γl = {(x, y) ∈ Γ, x = 0} be the left-hand
part of the boundary (see Fig. 1). Let ϕl is a given function satisfying ϕl ∈ H 5/2(Γl),
with a compatibility condition reading

∃(ϕ1, ϕ2) ∈ R
2, ∃r > 0, ϕ|[0,r ] = ϕ1, ϕ|[h(0)−r,h(0)] = ϕ2.

The boundary conditions read

ϕ|Γl = ϕl,
∂ϕ

∂∇
∣
∣
∣
Γ \Γl

= 0, μ|Γl = 0,
∂μ

∂∇
∣
∣
∣
Γ
= 0. (10)

In order to take into account the surface tension effects, we add to the exter-
nal forces F in (1) an additional term κμ∇ϕ, where κ is the capillarity coefficient
(related to the surface tension). The Navier-Stokes equation becomes:

� (∂t u+ u · ∇u)− div (ηD(u))+ ∇ p = κμ∇ϕ, div u = 0. (11)

Fig. 1 Domain Ω of
boundary Γ and notations for
the boundary conditions on ϕ

and on u

The system (11)–(9) has been studied in [6, 10].
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2.2.2 Modelling Diphasic Flows in a Thin Domain

Formally, we can pass to the limit in (11) as ε tends to zero similarly to Sect. 2.1.
However, it remains to make a choice for the non-dimensionalization of the
additional parameters: in this work, κ is chosen to be of order ε (thus the term
κμ∇ϕ in (11) vanishes when passing to the limit).

Passing formally to ε→ 0, we get again (4), with η non constant. After integra-
ting twice the first equation of (4) and making use of the boundary conditions, we
find

u =
(

B − B̃

Ã
A

)

∂x p +
(

1− A

Ã

)

s (12)

where

A(x, y) =
∫ y

0

dz

η(ϕ(x, z))
, B(x, y) =

∫ y

0

zdz

η(ϕ(x, z))
,C(x, y) =

∫ y

0

z2dz

η(ϕ(x, z))

and Ã(x) = A(x, h(x)), B̃(x) = B(x, h(x)), C̃(x) = C(x, h(x)).
As before we use the fact that u is divergence-free and the boundary conditions

to obtain

∫ h(x)

0
∂x u(x, z) dz = ∂x

∫ h(x)

0
u(x, z) dz = 0.

After integrating (12), we have

∂x
(

D̃∂x p
) = s∂x

(

Ẽ
)

(13)

where

D̃ =
(

C̃ − B̃2

Ã

)

and Ẽ = B̃

Ã
.

The velocity u = (u, v) is determined from the pressure by:

u =
(

B − AB̃

Ã

)

∂x p +
(

1− A

Ã

)

s and v = −
∫ y

0
∂x u(x, z) dz. (14)

The whole system (Reynolds and Cahn-Hilliard equations) reads, in the case
where the capillarity coefficient κ is of order ε:
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x (D̃(ϕ) ∂x p) = s ∂x Ẽ(ϕ)

u(x, y) =
(

B − AB̃

Ã

)

∂x p + s

(

1− A

Ã

)

v(x, y) = −
∫ y

0
∂x u(x, z)dz

∂tϕ + u ∂xϕ + v ∂yϕ − 1

Pe
div(B(ϕ)∇μ) = 0

μ = −α2Δϕ + F ′(ϕ).

(15)

with the boundary conditions (2), (3), (7), (10), and the initial condition ϕ|t=0 = ϕ0,
for ϕ0 ∈ H 1(Ω) compatible with the boundary conditions.

Remark 1 It is to be noticed that the non-dimensionalization choices for α and B(ϕ)
imply that the thin film effect only changes the Reynolds equation, and not the
Cahn-Hilliard equation. Other choices lead to different equations, which deserve
further studies.

3 Theoretical Results

Let us state the following existence theorem (the full details of the proof are given
in [4]).

Theorem 1 Let us denote X (Ω) = { f ∈ H 1(Ω) ∩ L∞(Ω), ∂y f ∈ H 1(Ω)}. Under
some smallness assumptions on |Ω| and under a condition on F (somehow more
general than convexity), there exists a solution (p,u, ϕ, μ) of (15), equipped with
its initial and boundary conditions, such that

∂x p ∈ L∞(0,∞; H 1(0, L) ∩ L∞(0, L)), u ∈ L∞(0,∞; X (Ω)),

v ∈ L∞(0,∞; L2(Ω)), ϕ ∈ L∞(0,∞; H 2(Ω)) ∩ L2
loc(0,∞; H 3(Ω)),

μ ∈ L2
loc(0,∞; H 1(Ω)).

Proof We just sketch out the main steps of the proof, pointing out the main difficul-
ties and differences with previous works [6, 10]. The main idea consists in writing
a unique equation on ϕ by expressing u and p as a function of ϕ.

1. Since the Reynolds equation (13) is an elliptic equation on p, we have to prove
first the regularity of p as a function of ϕ, and then deduce the regularity of u
by (14). For the regularity of p, the proof divides in two steps; first the proof
of the regularity of the coefficients D̃, Ẽ , and then the coercivity of the elliptic
operator ∂x (D̃∂x ·).

2. For the Cahn-Hilliard equation, the usual approach is to use Galerkin approxima-
tions, thus reducing the system to finite dimension, and proving the convergence
of these approximations.
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We then obtain some a priori estimates on ϕ and μ in appropriate norms, by
multiplying (9a) by μ and (9b) by ϕ and Δϕ, and integrating over Ω:

• The loss of the capillarity term in the limit problem induces difficulties, since
usually it cancels with the convection term u · ∇ϕ in the Cahn-Hilliard equa-
tion. Here, this term of the Cahn-Hilliard equation has to been estimated in
order to obtain a priori estimates, and deduce the existence theorem.

• Let us point out that the regularity obtained on the second component v of
the velocity is weaker than the regularity obtained with the full Navier-Stokes
system (v /∈ L∞(Ω)). Therefore, the two components of the convection term
of the Cahn-Hilliard equation have to be treated separately.

• The boundary conditions on ϕ take into account the fluid injection pheno-
mena, and correspond to a non homogeneous Dirichlet condition on the left-
hand side of the domain, instead of the homogeneous Neumann condition
considered e.g. in [6]. This induces many boundary terms coming from the
integration by parts which have to be estimated. It is to be emphasized that the
non-conservation of the flow (because of the injection) generates estimates of
a slightly different type, which are to be dealt with. Moreover, since the mean
value m(ϕ) of ϕ is not constant, classical inequalities on ϕ−m(ϕ) as Poincaré
inequality cannot be applied. We have to work with the boundary value of ϕ
given on the left-hand side of the domain, and control the terms induced.

3. A Gronwall argument allows to conclude that ϕ ∈ L∞(0,∞; H 2(Ω)). From the
a priori estimates follow weak convergences. For the convergence of the non-
linear term u · ∇ϕ, we estimate the time derivatives, which allows to conclude
the Galerkin process. ��

4 Numerical Simulations

4.1 The Numerical Scheme

In order to simulate the behavior of a diphasic flow in thin film, we introduce a
numerical scheme for the system (15), which consists in two steps. The first step is
the computation of the pressure and the velocity by (13) and (14). For the Reynolds
equation, the derivatives are discretized by finite differences, and the integrals (in the
coefficients) by the trapezoidal method. Then, the Cahn-Hilliard equation is solved
using a method similar to the one introduced in [7, 9].

4.1.1 Time Discretization

For the Cahn-Hilliard equation (9a) and (9b), the time discretization is done with a
variable time step δt . First, knowing the values ϕn , μn at instant tn , the first step
consists in computing the solution ϕn+1/2, μn+1/2 of the Cahn-Hilliard equation
without the convection term, using a θ -method. More precisely, we consider the
following scheme
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⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕn+1/2 − ϕn

δt
− 1

Pe
div

(

B(ϕn)∇(θμn+1/2 + (1− θ )μn)
) = 0,

θμn+1/2 + (1− θ )μn + α2Δ(θϕn+1/2 + (1− θ )ϕn) =
F ′(θϕn+1/2 + (1− θ )ϕn).

The parameter θ is chosen greater than 0.5 in order to ensure the stability, but
close enough to 0.5 so that the precision remains good (for example θ = 0.6). This
non-linear system is solved with a fixed point method. From a practical point of
view, a few iterations are needed for the method to converge.

For the convection part, knowing ϕn+1/2, we compute ϕn+1 (and then we deduce
μn+1 from ϕn+1 by (9b)). To this end, we define the convection operator K by
K ( f ) = u · ∇ f . The third-order Runge-Kutta scheme reads

ϕn+1 − ϕn+1/2 = −δt K (ϕn+1/2)+ 1

2
δt2 K 2(ϕn+1/2)− 1

6
δt3 K 3(ϕn+1/2).

4.1.2 Space Discretization

The domain considered here is not rectangular, but since there is no particular point
where the mesh should be finer, we consider a regular rectangular mesh of uniform
cells, and we re-write all the equations in a rescaled rectangular domain.

For a cell (i, j), the values of p, ϕ and μ are sought at the center of the cells (of
coordinates (i, j)), the values of u at the point of coordinates (i + 1/2, j) and the
values of v at (i, j + 1/2). The boundary conditions are discretized in an usual way,
introducing artificial unknowns around the physical domain.

We define a finite-difference centered discretization of the convection opera-
tor K . In order to ensure that this discretization is L∞-stable, we use some limi-
ters in the discretization, as proposed for example in [11], and then applied to the
Cahn-Hilliard equation in [9]. For this scheme, the C.F.L. (Courant-Friedrich-Levy)
condition reads

δt

δx
max

i, j
(|ui+1/2, j | + |ui−1/2, j |)+ δt

δy
max

i, j
(|ui, j+1/2| + |ui, j−1/2|) ≤ 1.

4.2 The Numerical Results

In the field of lubrication, it is of interest to compare the results obtained with the
Cahn-Hilliard model with previous results using the Buckley-Leverett equation, for
example in [5]. Therefore, we choose the two viscosities of the two fluids to be of
ratio η1/η2 = 10−3 (which corresponds to the modelling of a lubricant of viscosity
η2 and air). We simulate a flow between two surfaces in relative motion (i.e. with
shear effects). The lubricant is supposed to be adhering to the moving surface, and
the geometry chosen corresponds to a convergent-divergent upper surface: L = 1,
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h(x) = 1
3

(

2(2x−1)2+1
)

. In order to work in a rectangular domain, the equations are
rescaled. The mesh grid has 1000 elements, and we choose the following numerical
data: for the shear velocity s = 1, for the input flow q = 0.28. The injection height
is chosen equal to 0.45 (i.e. for y ∈ [0, 0.45], lubricant is injected, and for y ∈
[0.45, 1], air is injected). As for the time evolution, the first simulations are similar
to the ones obtained in [5], until a saturation point appears. Then the behavior of
the two fluids is significantly different, and we present the numerical simulations in
Fig. 2 (the black region corresponds to ϕ = −1, i.e. the fluid of viscosity η2, the
lubricant).

The velocity field obtained in this simulation is similar to the one obtained in
previous works. Let us stretch out that the velocity reverses at the left-hand side
of the saturation zone. In our model, there is no hypothesis forcing the boundary
between the lubricant and air to be the graph of a function. Therefore, on the contrary
to [5], the fluid is not limited by a fictive vertical boundary at the left-hand side of
the saturation zone, and the saturation profile is consistent with the velocity field.

Fig. 2 Saturation profile (repartition of the two fluids) and velocity field in the thin rescaled domain
with convergent-divergent upper surface
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On the Global Integrability for Any Finite
Power of the Full Gradient for a Class
of Generalized Power Law Models p < 2

Hugo Beirão da Veiga

Abstract In the following we consider a class of non-linear systems that covers
some well known generalized Navier-Stokes systems with shear dependent viscosity
of power law type, p < 2 . We show that weak solutions to our class of systems
have integrable gradient up to the boundary, with any finite exponent. This result
extends, up to the boundary, some of the interior regularity results known in the
literature for systems of the above power law type. Boundedness of the gradient, up
to the boundary, remains an open problem.

Keywords Navier-Stokes equations · Power law model · Regularity up to the
boundary

1 Main Result

In the following we prove W 1,q (Ω)-regularity up to the boundary, for any finite
power q, for solutions of the system (5) under very weak assumptions on the non-
linear term G(x,∇u). Our proof, based on a bootstrap argument and Stokes-elliptic
regularization (see [3]), is elementary. Nevertheless, the Theorem 1 below extend to
a larger class of operators, and up to the boundary, some of the well known results
in the literature.

In the sequel Ω is a bounded, connected, open set in R
3, locally situated on one

side of its boundary Γ, a manifold of class C2.
Below we consider solutions to the following class of stationary Navier-Stokes

equations for flows with shear (more generally, gradient) dependent viscosity
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Via F. Buonarroti, 1, 56127-Pisa, Italy
e-mail: bveiga@dma.unipi.it

R. Rannacher, A. Sequeira (eds.), Advances in Mathematical Fluid Mechanics,
DOI 10.1007/978-3-642-04068-9 3, C© Springer-Verlag Berlin Heidelberg 2010

37



38 H. Beirão da Veiga

⎧

⎨

⎩

−∇ · T (u, π )+ (u · ∇) u = f,

∇ · u = 0 ,
(1)

under suitable boundary conditions. T denotes the Cauchy stress tensor

T = −π I + ν0 D u + G(x,∇u) (2)

and D u is the symmetric gradient, i.e.,

D u = 1

2
(∇ u + ∇ uT ) .

Here ν0 is a strictly positive constant and G is a tensor with components
Gi j , i, j = 1, 2, 3. Note that

G = G(x,Du)

is a particular case of G(x,∇u) . We set

|S|2 =
∑

S2
k l ,

where S = Skl is a tensor. In the following we assume that G(x, S) satisfies the
classical Caratheodory conditions (measurability in x for each S, continuity in S for
a.a. x), together with

|G(x, S)| ≤ c (1+ |S|)p−1 (3)

for some p ∈ (1, 2). As a particular case of (3), one may have

|G(x, S)| ≤ c (1+ |S|)μ(x)− 1 (4)

provided that μ(x) ≤ p < 2, almost everywhere in Ω . This particular case is
related to the theory of electro-rheological fluids. See [8].

It is worth noting that G(x,∇u) may depend on each of the first order derivatives
∂i u j in a totally independent way. In particular, there are not convexity-related
assumptions here.

Without loss of generality we assume that ν0 = 1. From (1) we get

⎧

⎨

⎩

−Δ u + ∇ · G(x,∇ u)+ (u · ∇) u + ∇ π = f ,

∇ · u = 0 .
(5)
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In order to fix ideas we assume here the homogeneous Dirichlet boundary
condition

u|Γ = 0 . (6)

However, many other boundary conditions fall within the above scheme. Actu-
ally, it is sufficient that an estimate like (21) holds for the usual Stokes linear system
(20) under the desired boundary condition. We may also assume a non-homogeneous
Dirichlet boundary condition u|Γ = a(x) , if a ∈ W 1,+∞(Γ ) satisfy the necessary
compatibility condition

∫

Γ

a · n dΓ = 0 .

We take into account any possible weak solution u,

u ∈ W 1,p
0 (Ω) . (7)

Note that (7) may be replaced by u ∈ W 1,2
0 (Ω) (see (11) and (12)). Spaces

W 1,q
0 (Ω) are endowed here with the norm ‖∇u‖q .

Remark 1 Our assumptions do not necessarily imply the existence of a solution.
However, and this is a crucial point here, many well known existence theorems fall
within the assumptions made here.

Our main result is the following.

Theorem 1 Assume that (3) holds and that

f ∈ L3(Ω) . (8)

Let u be a solution of problem (5), (6) in the class (7). Then

u ∈ W 1,q (Ω) ∀ q < +∞ . (9)

In particular

u ∈ C0,α(Ω) , ∀α < 1 . (10)

Theorem 1 allows the extension up to the boundary of some of the interior reg-
ularity results known in the literature, obtained under much restrictive assumptions
on G. In [6], Theorem 3.2.3, it is proved that Du ∈ L∞loc(Ω). In Remark 3.2.5 it
is pointed out that this last result implies (9) locally in Ω . In Theorem 3.2.1 (10)
is proved locally in Ω . See also [5]. Finally, in reference [4], the author proves (9)
under more classical assumptions on G.
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It remains open, in particular, the conjecture proposed in [6] Remark 3.2.9,
namely, to prove that Du ∈ L∞(Ω). Actually, by taking into account (9), we may
even expect that, in our very general context, ∇u ∈ L∞(Ω).

For interior partial regularity results we also refer the reader to [2] (see, in par-
ticular, Lemma 3.14) and to [1] and references therein.

Finally we refer to [7] where the authors prove the existence of globally smooth
solutions in the two dimensional case under suitable conditions.

2 Proof of Theorem 1

From (5) and (6) we get the “energy estimate”

‖∇ u‖2
2 ≤ ‖ f ‖−1, 2 ‖∇ u‖2 + c ‖∇u‖1 + c ‖∇u‖p

p . (11)

In particular, it readily follows that

‖∇ u‖2
2 ≤ c( 1+ ‖ f ‖−1, 2 ) . (12)

The symbol c denotes, here and in the sequel, positive constants that may depend,
at most, on Ω . The same symbol may denote distinct constants.

Note that under any of the typical assumptions that lead to an existence theorem,
the term ‖∇u‖p

p appears in the left hand side instead of in the right hand side of
Eq. (11).

We start by the following result.

Lemma 1 Let u ∈ W 1,p
0 (Ω) be a weak solution of problem (5), (6). Then

∇u ∈ L3(Ω) . (13)

Proof We start by noting that

f ∈ L3(Ω) ⊂ W−1, q (Ω) , ∀q < ∞ , (14)

and that (since ∇ u ∈ L2 )

(u · ∇) u ∈ L
3
2 (Ω) ⊂ W−1, 3(Ω) . (15)

Set, for each non-negative integer m ,

rm = min
{

3,
2

(p − 1)m

}

. (16)

Let us show that

∇u ∈ Lrm (Ω) , ∀m . (17)
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Clearly (17) holds for m = 0. Next we assume that (17) holds for some m and
show it for m + 1. If rm = 3 then rm+ 1 = 3 , and the thesis follows. If rm < 3 , by
appealing to (3) one shows that

G(x, ∇ u) ∈ L
2

(p− 1)m+ 1 (Ω) ⊂ Lrm+ 1 (Ω) . (18)

In particular, from (14), (15) and (18) it follows that

f − ∇ · G(x,∇ u)− (u · ∇) u ∈ W−1, rm+ 1 (Ω) . (19)

Well know regularity results, see [3], for the linear Stokes system

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δw + ∇ π̃ = F,

∇ · w = 0 ,

w|Γ = 0 ,

(20)

state that

‖∇w‖q ≤ Cq ‖F‖−1,q , (21)

where Cq denotes a suitable positive constant. So, from (19), it follows that (17)
holds with m replaced by m + 1 . Hence it holds for each index m . This shows
(13). ��
Lemma 2 Let u ∈ W 1,p

0 (Ω) be a weak solution of problem (5), (6). Then

∇u ∈ L6(Ω) . (22)

Proof The proof follows that of the previous lemma. Now, since ∇ u ∈ L3(Ω) , it
follows that (u · ∇) u ∈ L2(Ω) ⊂ W−1, 6(Ω) . This is used here in place of (15).
Furthermore, the exponents rm , defined by (16), are now replaced by

sm = min
{

6,
3

(p − 1)m

}

. (23)

Details are left to the reader. ��
The proof of Theorem 1 follows the same lines. Now we appeal to the fact that

∇ u ∈ L6(Ω) yields

f − (u · ∇) u ∈ L3(Ω) ⊂ W−1, q (Ω) , ∀q < ∞ .

Set tm = 2
(p− 1)m . Clearly ∇ u ∈ Lt0 (Ω) . If ∇ u ∈ Ltm (Ω) then
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f − ∇ · G(x,∇ u)− (u · ∇) u ∈ W−1, tm+ 1 (Ω) .

This leads to ∇ u ∈ Ltm+ 1 (Ω) . So ∇ u ∈ Ltm (Ω) for all m . This proofs (9).

Remark 2 It is worth noting that if the constants Cq were uniformly bounded for
large values of q then we could easily prove the uniform boundedness of the norms
‖∇u‖q , hence the Lipschitz continuity of u up to the boundary. However, it may be
proved, see [9], that for the scalar equation −Δw = F under the homogeneous
Dirichlet boundary condition, one has ‖w‖2,q ≤ Cq ‖F‖q , where Cq ≈ q , as
q → ∞ . At best, we expect this same behavior for the constants Cq in the case
of the Stokes problem (20). By merely assuming this behavior, specific estimates
obtained by following our proof do not lead to the above uniform boundedness.
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Steady Flow Around a Floating Body:
The Rotationally Symmetric Case

Josef Bemelmans and Mads Kyed

Abstract We investigate the steady motion of a viscous incompressible fluid around
a floating body which is rotating with a constant angular velocity. The fluid flow is
described by a free boundary problem for the Navier-Stokes equations, where the
free boundary consists of the capillary surface of the fluid and the wetted part of the
floating body.

Keywords Free boundary problems · Navier-Stokes equations · Capillarity
(surface tension) · Rotating fluids

1 Introduction

In this paper we consider the stationary flow of a viscous incompressible fluid which
is generated by a circular cylinder C or by a more general rotationally symmetric
body B that is partly immersed in it and that rotates with prescribed angular veloc-
ity. We formulate the problem for a floating cylinder first and describe in Sect. 4
how to proceed in the general case. The density of C is assumed to be smaller
than that of the fluid, and therefore the cylinder is floating on the liquid; hence the
position of C is a further unknown of the problem. The upper boundary of the fluid
consists of a capillary surface, such that we are about to solve the free-boundary
problem (Fig. 1)

{

−μΔv + Dp + � (v · D) v = −� g e3 in Ω ,

div v = 0 in Ω ,
(1)
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where, putting r =
√

x2
1 + x2

2 and z = x3, the domain Ω occupied by the fluid is
given by

Ω := {

x ∈ R
3 | 0 ≤ r < R ,

0 < z < a + α(r ) for 0 ≤ r < r0 ,

0 < z < ζ (r ) for r0 ≤ r < R
}

.

(2)

Fig. 1 Floating cylinder in a bounded fluid reservoir

Here μ denotes the coefficient of viscosity, � the density of the fluid, and g
the gravitational constant. We shall impose a no-slip boundary condition on the
fluid-structure boundaries. Consequently, on the wetted part of C,

Σ(a, h) := {

x ∈ R
3 | z = a + α(r ) for 0 ≤ r < r0 ,

a + r0 ≤ z < h for r = r0
}

,
(3)

we impose the boundary condition

v(x) = ω ∧ x on Σ(a, h) , (4)

where ω = (0, 0, ω3) ∈ R
3 is the angular velocity of C. On the bottom,

Σ0 := {

x ∈ R
3 | 0 ≤ r < R , z = 0

}

,

and the wetted part of the lateral boundary of the container,

Σ(H ) := {

x ∈ R
3 | r = R , 0 ≤ z < H

}

,

we have

v = 0 on Σ0 ∪Σ(H ) . (5)
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On the capillary surface, Γ , that separates the fluid from the atmosphere above
it, we impose the mixed boundary condition

v · n = 0 , τ k · T (v, p) · n = 0 on Γ (k = 1, 2) , (6)

where n is the exterior normal to Ω , and τ 1, τ 2 span the tangent plane on Γ . As
usual

T (v, p) := −pI + μ (Dv + DvT )

denotes the stress tensor of the fluid. The capillary surface is the graph of a real
function ζ = ζ (r ),

Γ := {

x ∈ R
3 | z = ζ (r ) , r0 < r < R

}

, (7)

which satisfies

1

r

d

dr

(

rζr
√

1+ ζ 2
r

)

= σ n · T (v, p) · n for r0 < r < R (8)

together with the boundary conditions

dζ

dr
(r ) = 0 for r = r0 and r = R . (9)

Note that (9) implies that the capillary surface meets the rigid walls at a right
angle. As the fluid is assumed to be incompressible, we further require

volΩ = V0 . (10)

This condition determines the height of the capillary surface:

h0 := ζ (r0) and h R := ζ (R). (11)

Finally, we have the equilibrium condition

∫

Σ(a,h)

T (v, p) · n dσ = m g e3 , (12)

where m denotes the mass of C. From this condition, the depth to which C is
immersed in the fluid can be be determined. We shall use a to denote this depth.

In order to avoid a complicated analysis of (1) in domains with corners, we
assume that the lower half of a ball is attached to the cylinder C such that its bound-
ary is smooth where it is in contact with the fluid. In a similar way, the assumption
(9) on the capillary angle allows for regular solutions v and p up to the ridge at the
fluid-structure contact line.
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The free-boundary problem (1)–(12) can also be solved for an unbounded layer
of fluid. In this case Σ0 and Γ extend to infinity, which means that ζ = ζ (r ) is
defined on (r,∞). We then require

lim
r→∞ ζ (r ) = h∞ (13)

and

lim
x2

1+x2
2→∞

v(x) = 0, (14)

Our main proof of existence is based on the implicit function theorem; in order
to apply it one has to find suitable function spaces for v, p and ζ such that the
nonlinear mapping that is defined by the equations in Ω and on the boundary of
Ω has a Frechet-derivative which is an isomorphism on these spaces. Following
Sattinger [8] we work in Hölder-spaces, namely u = (v, p, ζ, a) ∈ X := C2,α ×
C1,α × C3,α × R, and we first show that a sequence of successive approximations
(vn, pn, ζn, an) is well-defined on X in the sense that for any (vn, pn, ζn, an) ∈ X
the next approximation lies in the same space. We then show that the difference of
two approximations is small in the norm of X provided the data are small.

As the functions (vn, pn) and (vn+1 , pn+1) are solutions to the Navier-Stokes
equations in different domains this requires several transformations onto a standard
domain; when constructing these mappings one has to take several side conditions
into account.

The flow generated by a rotating cylinder whose position is fixed, rather than
determined by the force of buoyancy, is the topic of the first free-boundary problem
for the Navier-Stokes equations that could be solved analytically; D.H. Sattinger
proved in [8] existence and uniqueness of a classical solution if the angular velocity
is small. We not only apply the approximation scheme from [8] but also construct
the transformations of the domains Ωn in such a way that we can use the careful
calculations from [8] that eventually yield regularity of the solution up to the ridge
where the capillary surface Γ and the cylinder C meet.

2 Approximation Scheme

To define the approximation scheme that eventually leads to a solution of the free-
boundary problem, we start with the static configuration Ω0 = Ω(a0, ζ0), where
ζ0(r ) = h0 on [r0, R], v0(x) ≡ 0 and p0(x) = const on Ω . The cylinder is in
equilibrium which means that

� V (a0, h0) = �0 vol(C) , (15)

where V (a0, h0) is the volume of the part of C lying below the fluid-cylinder contact
line, see Fig. 2.
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Fig. 2 Static configuration

First we solve the Navier-Stokes equations (1) in Ω0 under the boundary condi-
tions (4), (5), and (6), and we denote the solution by (v1, p1). From this we calculate

n0(x) · T (v1(x), p1(x)) · n0(x) for x ∈ Γ0 ,

and we consider this quantity as a function g1 = g1(r ), r ∈ (r0, R). For this g1 we
solve the mean curvature equation (8) with the Neumann boundary condition (9).
Its solution ζ ′1 is unique up to an additive constant c1. Next we calculate the stress
tensor on the wetted part of ∂C:

t1(x) := T (v1(x), p1(x)) · n0(x) for x ∈ Σ (a0, h0).

The cylinder will generally no longer be in equilibrium with this force, but either
plunge deeper into the fluid or rise higher out of it. This change in position will be
described by the new height a1 of C above the bottom of the container. The solution
(v1, p1) is rotationally symmetric; the stress vector t1(x), x ∈ Σ (a0, h0), may have
an r -component that is different from zero, but due to the symmetry, the resultant of
t1(x) over Σ (a0, h0) is a vector that points in the z-direction. When we determine
a1 we must take the volume constraint (10) into account; a decrease in the height of
C results in an increase of the free boundary by some constant and vice versa. This
determines c1, and we set ζ1(r ) := ζ ′1(r ) + c1, h1 := ζ1(r0), H1 := ζ1(R). For the
corresponding new domain Ω1 := Ω(a1, ζ1) we have

vol(Ω1) = V0 . (16)

Furthermore

�V (a1, h1) g e3 =
∫

Σ(a0,h0)

t1(x)dσ (x) . (17)
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To obtain the next approximation we solve (1) in Ω1 with boundary conditions
(4) on Σ(a1, h1), (5) on Σ0 ∪ Σ(H1) and (6) on Γ1, the graph of ζ1. We call the
solution (v2, p2) and construct from it a2 and ζ2 as we did for a1 and ζ1.

In the case of an unbounded layer we argue somewhat differently because the
solution of the mean curvature equation (8) on (r0,∞) with boundary data

dζ

dr
(r ) = 0 for r = r0 (18)

and (13) is now uniquely determined. From (v1, p1) we calculate g1(r ) as before
and solve (8), (18), (13) for this g1. The solution ζ1 = ζ1(r ) attains some value
h1 = ζ1(r0) at the boundary. When we next compare

∫

Σ(a0,h0)
t1(x)dσ

with �0 V (a0, h0) g e3, we can change a0 into a1 such that

�0V (a1, h1) g e3 =
∫

Σ(a0,h0)

t1(x) dσ (x) (19)

because in an unbounded reservoir we need not compensate the height of the free
boundary if we change a0.

The successive approximation is based on the following existence theorem.

Theorem 1 Let Ω0 and Γ0 be defined as above. Then there exists a unique solution
(v, p) ∈ C2,α(Ω0)× C1,α(Ω0) with

∫

Ω0
p = 0 to the stationary Stokes equations

{

−μΔv + Dp = −� g e3 in Ω0 ,

div(v) = 0 in Ω0 ,
(20)

with boundary conditions (4) on Σ(a0, h0), (5) on Σ0 ∪Σ(h0), and (6) on Γ0.

For the existence of a unique solution that is regular up to the smooth part of the
boundary we refer to [11]. Regularity up to the fluid-structure contact line has been
shown in [8] by a reflection argument that can be applied because of the following
compatibility conditions: In cylindrical coordinates v = (vr , vϑ , vz) ≡ (u, v, w) the
boundary conditions (4) and (6) read

u = w = 0 , v = const on Σ(a0, h0) ,

∂u

∂z
= ∂v

∂z
= w = 0 on Γ0 .

(21)

On Σ (a0, h0) derivatives of v with respect to ϑ and z vanish, and the same holds
on Γ0 for derivatives in r - and in ϑ-direction. If one inserts these values into the
equations of motion one gets the following compatibility conditions in the corner:
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∂u

∂r
= 0 ,

∂2w

∂r2
= 0 ,

∂w

∂r
= 0 ,

∂2u

∂r∂z
= 0 ,

∂p

∂z
= 0 . (22)

Regularity is there shown by first extending the solution across r = r0 and after
that by reflecting it across the plane {z = h0}.

The results of Theorem 1 hold for more general domain Ω where Γ need not be
planar, but still meets the cylinder C at a right angle.

In this case the domain Ω is transformed onto Ω0, and in the new coordinates
the equations of motion become rather involved, cf. (28) below. It is essential that
near the corner the transformation affects only the z-component such that the com-
patibility conditions (22) remain basically unchanged.

The solutions obtained in Theorem 1 are of class C2,α(Ω0) × C1,α(Ω0) as long
as the boundary is of class C3,α – apart from the corner points. Therefore the
approximation (vn, pn, ζn) will be in the same space X := C2,α × C1,α × C3,α

as (vn−1, pn−1, ζn−1) if the solution ζn of (8) with data n · T (vn−1, pn−1) · n ≡ gn−1

is of class C3,α . Now for ζn−1 ∈ C3,α the normal n to its graph is of class C2,α;
for (vn−1, pn−1) ∈ C2,α × C1,α we have T (vn−1, pn−1) ∈ C1,α , hence gn−1 ∈ C1,α .

Then clearly a solution to (8) is of class C3,α . Existence of such solutions can be
shown by proving a-priori estimates or by variational methods, see [4].

Remark 1 Free-boundary problems for an infinite layer of fluid that is bounded on
top by a capillary surface have been investigated by R.S. Gellrich in [5] and [6].
Her results can be applied to the problem above, where Ω is an infinite layer with
boundary conditions (13) and (14), since the presence of a bounded floating body
does not affect the properties of the solution at infinity.

3 A Solution to the Free-Boundary Problem for a Cylinder

The sequence of successive approximations {vn, pn, ζn, an} converges if we can esti-
mate the differences vn − vm etc. in appropriate norms. While all ζn are defined on
the same domain [r0, R], this is not the case for vn and pn . Therefore we construct
diffeomorphisms W n : Ω0 → Ωn , such that we can define vn+1 on W−1

n (Ωn). Once
all functions vm are defined on Ω0 we can estimate their differences.

We now describe the construction of the transformation W : Ω0 → Ω as well as
the transformed equations and the unknowns. We omit from now on the index n for
simplicity.

If W : Ω0 → Ω is a diffeomorphism we set

gi j := ∂W

∂xi
· ∂W

∂x j
(23)

for the corresponding metric tensor. Then the original vector field v has components
vi defined on Ω0 by
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vi := gi j (v · ∂W

∂x j
) , (24)

cf. [8, Chap. 3] or for a more general presentation [1, §8]. We denote the covariant
derivative of vi by vi

, j and set

vi := gi j v
j (25)

Di j := 1

2
(vi, j + v j,i ) (26)

Di
j := gi m Dmj . (27)

Di
j is the transformed deformation tensor. Then we get the Navier-Stokes equations

in the new variables:
⎧

⎪⎨

⎪⎩

−2μ g jk Di
j,k + gi j ∂p

∂x j
+ v jvi

, j = 0 in Ω0 ,

vi
,i = 0 in Ω0 .

(28)

The boundary conditions on Σ(a, h) are

gi j v
i e j

r = 0 , gi j v
i e j

ϑ = ω , gi j v
i e j

z = 0 , (29)

where er , eϑ , ez are the basis vectors. On the free surface we now have

vi ni = gi jv
i n j = 0 , (−pgi j + 2Di j )n

j = σHni , (30)

where H is the mean curvature.
The construction of W takes three properties of Ω into account: The height of C

above {z = 0} changes from a0 to a, Ω must have the same volume as Ω0, and the
upper surface is z = ζ (r ) instead of z = h0. First we define L : Ω0 → Ω

′
0 , where

Ω ′
0 is defined as Ω0 but with a0 replaced by a and h0 replaced by h ′0 := h0+a−a0 ,

i.e. the cylinder and the boundary Γ0 have been lowered by a − a0 (or rather raised
by that amount). We define

L(r, ϑ, z) := (r, ϑ, f1(z))

with

f1(z) :=
⎧

⎨

⎩

z + a − a0 for a1 ≤ z ≤ h0 ,

z + a − a0 + a0 − a

a4
1

(z − a1)4 for 0 ≤ z ≤ a1 .

Here a1 is some height less than 1
2 min (a, a0). Note that f1 is a smooth function,

and near the contact point the deformation is a translation in z-direction. Now the
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volume of Ω ′
0 differs from V0 by 2πR2 (a0 − a). We compensate this by the trans-

formation M : Ω ′
0 → Ω ′′

0, where Ω ′′
0 is of the same form as Ω ′

0 but the upper
surface is now z = h ′′0 := h ′0 + α, where α satisfies

R2(a0 − a) = (R2 − r2
0 )α .

We fix some height h2 < h ′0 and define

f2(z) :=
⎧

⎨

⎩

z for 0 ≤ z ≤ h2 ,

z + a0 − a + α

(h ′0 − h2)4
(z − h2)4 for h2 ≤ z ≤ h′0 ,

and

M(r, ϑ, z) := (r, ϑ, f2(z)) .

Finally, we transform Ω ′′
0 onto Ω , where the upper surface is now given by z =

ζ (r ). Moreover, as the solution ζ to (8), (9) is unique up to an additive constant, we
may assume

R∫

r0

(ζ (r )− h ′′0) r dr = 0 .

As before we define

f3(z) :=

⎧

⎪⎨

⎪⎩

z for 0 ≤ z ≤ h2 ,

z + ζ (r )− h′′0
(h′′0 − h2)4

(z − h2)4 for h2 ≤ z ≤ h′′0 ,

and set N (r, ϑ, z) = (r, ϑ, f3(z)). Then W = N ◦ M ◦ L maps Ω0 onto Ω , and if
we compare this mapping with the transformation W in [8, (3.1)] we see that it is of
the same form because the quantities |a0 − a|, |h′′0 − h′0|, and |ζ (r )− h′′0| are small
if the angular velocity ω is small. Therefore Theorem 5.1 from [8] can be applied,
and we obtain a solution to the free-boundary problem (1)–(12).

4 A Solution to the Free-Boundary Problem for a Rotationally
Symmetric Body

We now extend the reasoning from before to the case of a rotationally symmetric
body B that is not necessarily a cylinder. If we now consider different heights a of
the body above {z = 0}, the corresponding capillary surfaces ζ0(r ) are no longer
constants; and these functions will be defined on different intervals [r1, R] where
r1 depends on a, see Fig. 3. We can, however, use the same transformations W as
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Fig. 3 Floating body in a bounded fluid reservoir

before if we introduce a coordinate system that consists of a family of capillary
surfaces ζ = ζ (r, α), where α refers to the volume that is included by ζ . These
functions correspond to the surfaces z = α = const in the previous case, which are
also capillary surfaces including different volumes for different values of α. Curves
that are perpendicular to the family ζ = ζ (r, α) replace the z-coordinate.

We assume B to be convex because we want to exclude situations where the
region occupied by the fluid is no longer connected. For a convex body B there
exists a point P ∈ ∂B such that the normal vector in P points into the r -direction.
The curve that describes ∂B between 0 and P is the graph of a function ψ = ψ(r ),
and P = (r2, ψ(r2)). For r > r2 we set ψ(r ) = ψ(r2). Then the capillary surfaces
ζ = ζ (r ) for which

∫

(ζ (r ) − ψ(r )) r dr is positive are solutions to the following
variational problem:

Theorem 2 Let ψ = ψ(r ) , 0 ≤ r ≤ R , as defined above. For ζ = ζ (r ) , 0 ≤ r ≤
R , set

I+ := [0, R] ∩ {

r | ζ (r ) > ψ(r )
}

.

Then the variational problem

F(ζ ) :=
∫

I+

√

1+ ζ 2
r (r ) r dr + k

2

∫

I+
ζ 2(r ) r dr → Min (31)

in

E := {

ζ ∈ BV [0, R] | ζ (0) = ψ(0) , ζ (r ) ≥ ψ(r ) ,
∫

I+
(ζ (r )− ψ(r )) r dr = V0

}

has a unique solution ζ ∈ E .
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The solvability of this problem and many properties of the solutions are well-
known, cf. [3]. The set {r | ζ (r ) > ψ(r )} is a single interval (r1, R], and ζ satisfies
the Euler-Lagrange equation

d

dr

(

r ζr (r )
√

1+ ζ 2
r (r )

)

= kr ζ (r )+ λ r for r ∈ (r1, R) , (32)

and in the endpoints r1 and R we have

ζr (R) = 0 (33)

and

1+ ψr (r1) ζr (r1) = 0 . (34)

Condition (33) is the same as in (9) before, whereas (34) is a transversality con-
dition, cf. [2, p. 44]:

r1

√

1+ ζ 2
r (r1)+

[

ψr (r1)− ζr (r1)
] r1 ζr (r1)
√

1+ ζ 2
r (r1)

= 0 . (35)

Equation (34) follows immediately from (35), and it states that the graphs of
ψ and ζ meet under a right angle. The Lagrange multiplier λ can be calculated
explicitly from (32):

R∫

r1

d

dr

(
r ζr (r )

√

1+ ζ 2
r (r )

)

dr = k

R∫

r1

ζ (r ) r dr + λ

R∫

r1

r dr ,

hence we get

λ = 2

R2 − r2
1

⎛

⎝
r1

√

1+ ψ2
r (r1)

− k

R∫

r1

ζ (r ) r dr

⎞

⎠ ,

and as the last integral is V0 +
R∫

r1

ψ(r ) r dr , we see that λ depends on V0 monoton-

ically. For λ1 < λ2 the corresponding solutions ζ1 and ζ2 from Theorem 2 satisfy
ζ1(r ) ≥ ζ2(r ), and in particular

ζ1(r ) > ζ2(r ) (36)

for all r with ζ2(r ) > ψ(r ). This monotone behavior was proved in [9, Theo-
rem 4.23], see also [10].

We can now proceed as in the previous chapter. To a given V0 there exists a
unique solution ζ0 as in Theorem 2, and to Vα ∈ (V0 − ε, V0 + ε) we obtain
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corresponding solutions ζα with the properties above.1 Then we introduce coor-
dinates � and η where � is the parameter of arc length on the graph of ζ0 and η on
the curves perpendicular to the family ζα . Locally the boundary of B is described
by {� = 0}, which means that it is a cylinder in these coordinates. Therefore we
can use the same transformation as in Sect. 3 for the successive approximations
{vn, pn, ζn, an} to the free-boundary problem. Consequently, we obtain the follow-
ing theorem of existence.

Theorem 3 Let B be a convex and rotationally symmetric body with the properties
described in the introduction. Then the free-boundary problem (1)–(12) has a unique
solution (v, p, ζ, a) for ω sufficiently small.

Remark 2 The reasoning from this chapter cannot be extended to the case of an
unbounded layer of fluid, because in that case the capillary surface does no longer
include a finite volume, and therefore we do not have a Lagrange multiplier as
above.

Remark 3 After submitting the manuscript we learned that the free boundary prob-
lem that was investigated by Sattinger has been solved in Sobolev spaces by Jin
in [7].
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On a Stochastic Approach to Eddy Viscosity
Models for Turbulent Flows

Luigi C. Berselli and Franco Flandoli

Abstract The aim of this note is twofold: we review some basic results which are at
the basis of the derivation of eddy viscosity methods for large eddy simulation (LES)
and we also try to combine them with the Stochastic approach to the Navier-Stokes
equations. In particular, we propose a stochastic approach to the introduction of
eddy viscosity LES methods and we evaluate by means of probabilistic techniques
generalizations of the Lilly’s constant. Next, we propose some heuristic for alternate
modeling of sub-grid-scale terms and we apply scaling techniques to the derivation
of a model for channel flows.

Keywords Navier-Stokes equations · Turbulence · LES · Stochastic modeling

1 Introduction

In this paper we consider the 3D Navier-Stokes equations describing an incompress-
ible viscous Newtonian fluid with constant (equal to one) density

⎧

⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ ∇ · (u ⊗ u)+∇π − νΔu = f,

div u = 0,

u|t=0 = u0.

(1)

It is well-known that mathematical difficulties arise in the study of the well-
posedness of the Cauchy problem: If the viscosity is large (compared to the data),
then a unique smooth solution exists for all positive times. For arbitrary positive
viscosity and L2-initial data (and external force) then existence of Leray-Hopf weak
solutions is known since about 1930, while proving global regularity (or breakdown
of smooth solutions) is a challenging problem, see the review in Galdi [18]. On the
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other hand, these difficulties are also reflected by the fact that for small values of the
viscosity ν > 0 the flow becomes unstable and with a chaotic behavior. At present
state-of-the-art performing accurate direct numerical simulations is not possible. In
fact, the so called “K-41,” Kolmogorov’s 1941 theory [22], predicts that the size of
the smallest persisting scale is

O
(
ν3

ε

) 1
4

,

where ε is the kinetic-energy injection rate.
It is interesting to observe that experimentally ε � u′3/ l where u′ is the RMS

turbulence intensity, while l is the scale or the largest eddy, which is comparable
to the length scale L , cf. Pope [37, p. 183]. It is then possible to define Re, the
Reynolds number and it turns out that Nd the number of degrees of freedom needed
to fully resolve turbulence in the 3D case is

Nd = O(Re
9
4 ),

and for real-life flows this is completely out of range also for the most powerful
supercomputers. We point out that the K-41 theory is based on a mixing of pure sta-
tistical methods with audacious physical guesswork and dimensional analysis. The
link with this various theoretical questions and the statement of the precise math-
ematical hypotheses underlying the K-41 theory is addressed, e.g., in Frisch [17],
Kupiainen [23], and in Flandoli et al. [16].

The aim of this paper is to review some well-known facts in physics of fluids and
to try to give different explanations of some results, together with possible general-
izations in the field of LES of turbulent flows. In particular, we present a different
(based on a stochastic approach) derivation of eddy viscosity (EV) methods.

The approach of LES is that of finding suitable equations in which the smallest
scales are cut-off, even if their effect on larger scales is still taken into account (even
if in a non completely exact way). To this end we give the following definition.

Definition 1 The function u, is an approximation of the solution u of (1), such that
u contains only “large scales,” and consequently it is a computable quantity.

Deriving a suitable system of partial differential equations satisfied by u is one
of the main issues in the mathematical theory of LES, see the review in Berselli,
Iliescu, and Layton [4].

Here, we want to focus on one of the earlier LES models, the Smagorinsky model
(hence u will be a solution to system (4) below or of some generalizations) and we
shall consider the following natural generalization of the Smagorinsky EV term:

νT = 2
(

CS,pδ
) 2

3 p
∣
∣
∣

√
2∇su

∣
∣
∣

p−2
, for p ≥ 2, (2)

where ∇su = 1
2 (∇u +∇uT ).

A stochastic approach to parameterization of LES seems promising, see also the
recent results of Duan and Nadiga [14] and Du and Duan [13]. More precisely, here
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we want to present a new justification, based on a combination of scaling arguments
and techniques from probability, of the fact that u should be a large scale approxi-
mation of u. In addition, we derive in a manner a little different from usual the value
of the Lilly’s-Smagorinsky constant in the more general context of p-fluids.

Moreover, we are trying to glue open problems, mathematical techniques, per-
spectives, and motivations coming form several fields rather far away each other.
Hence, we think it would be helpful to have such a review in order to make a
wider community aware of several results. As a by product, we propose some
new results (or partially restatement of known facts). The interdisciplinary nature
of the problem of understanding, describing, and predicting by means of accurate
numerical simulations the behavior of turbulent flows seems to be a perfect play-
ground to try to employ (perhaps not in a very rigorous way) tools well-established
in other research topics. Consequently, we try to give some hints, not focusing on
real technical points, but just on the underlying ideas. The reader should not be an
expert of stochastic differential equations, analysis of partial differential equations,
numerical simulations of fluids etc . . . to understand the main points. At the same
time we apologize for not proving any deep and analytical results, because we are
aware that the rigorous justification of every single step -if possible- would take
too much effort and will hide the main results we are proposing. We remark that
several arguments of this note are heuristic and we make computations at a formal
level assuming the necessary regularity. Only a few fragments can be rigorously
handled and will be reported elsewhere. The reader can find rigorous contributions
to the theory of stochastic Navier-Stokes equations, see for instance the review in
Flandoli [15]. See also Kupiainen [23] for a review of the use of Itô calculus and
scaling transformations (which will be our two main tools).

Plan of the paper. In Sect. 2 we review the basic tools of LES and of Stochas-
tic calculus, with their applications to the Navier-Stokes equations. In particular,
we introduce Kolmogorov’s scaling transformations, which are of interest for our
approach. In Sect. 3 we employ scaling and asymptotic techniques to derive our
family of LES models and to give our justification of the fact that u is an approxi-
mation of the large scales of u. In Sect. 3.5 we propose a slightly new way to evaluate
Lilly’s constant, which generalizes to more general exponents. Finally, in Sect. 3.6
we also propose a scaling argument to derive suitable channel flow approximation
of turbulent flows.

2 Two Approaches to Turbulent Flows: LES and Stochastic
Partial Differential Equations

In this section we review the basic tools we shall need later on and we refer to the
extensive bibliography for further details.

2.1 The Paradigm of Large/Small Scales

As we claimed in the introduction, real-life flows develop very small scales. From
the computational point of view several approximate methods have been proposed
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in order to truncate the smallest (and impossible to be accurately described) ones.
The inner consistency of these methods is that the effect of the unresolved scales
should be taken into account in some way, and not simply disregarded as in the
classical Galerkin method. Various techniques based on time averaging, space aver-
aging, scale similarity, variational multiscale methods etc . . . have been proposed,
see the review in Berselli, Iliescu, and Layton [4], in Sagaut [40] and in Lesieur,
Métais, and Comte [28].

It is peculiar that in several applications, or at least to debug, check performances,
and also to stabilize complicate methods it is still well-diffused the “probably old-
est” LES Model: the Smagorinsky model introduced in 1963 to perform simulations
for weather prediction. In this case u represents an approximation of the velocity u,
recall Definition 1, where the cut-off length δ is tuned on the size of the computa-
tional grid. The effect of the unresolved scales is taken into account by using the
hypothesis that

. . . a turbulent flow is dissipative in mean.

This assumption leads to the class of EV-methods introduced for the first time by
Boussinesq [5], who proposed that this ansatz is taken into account by an additional
turbulent stress tensor

τ = νT ∇su,

where νT is function of the turbulent flow. Later Smagorinsky [42] proposed the
following constitutive relation for the turbulent stress viscosity:

νT = (CSδ)2|
√

2∇su|, (3)

where δ > 0 is the sub-grid-scale characteristic length (taken proportional to the
size of the grid in the numerical approximation) and

|∇su| :=
√
√
√
√

3
∑

i, j=1

2[∇su]i j [∇su]i j .

The classical Smagorinsky approximation is given by the solution of the equa-
tions

⎧

⎪⎪⎨

⎪⎪⎩

∂u

∂t
+∇ · (u ⊗ u)−∇ ·

(

ν + 2 (CSδ)2
∣
∣
∣

√
2∇su

∣
∣
∣

)

∇u + ∇π = f ,

div u = 0,

u|t=0 = u0.

(4)

System (4) have been used in LES with the hope that u approximates u at large
scales, but small scale structures are almost absent in u. Motivations and numerical
experiments supporting this LES model can be found, e.g., in Moin and Kim [34],
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Rodi et al. [39], and Breuer and Jovicic [6]. More precisely, the Smagorinsky model
is capable of representing both the k−

5
3 law and the theoretical decay (with respect

to time) of kinetic energy for homogeneous isotropic turbulence. Interesting com-
putations also with Finite Element Methods (instead of classical spectral ones) have
been performed by Chalot et al. [7].

For completeness, we also point out that the class of EV methods is too narrow
to include all phenomena present in turbulent flows. For instance criticism against
Smagorinsky model may be that: it does not work correctly near walls (compu-
tations of a mixing layer are too dissipative since this model seems incapable of
discriminating between the mean shear and the shear associated with fluctuations);
The value of CS (which is calculated for homogeneous and isotropic flows) is too
large in presence of walls; The Smagorinsky model cannot take into account of
back-scatter of energy as scale similarity methods can do.

On the other hand, EV models have good stability properties and the are a build-
ing block for some advanced LES methods. See for instance the dynamic model
of Germano et al. [20] based on an adaptive evaluation of CS = CS(x, t) and
also the recent selective Smagorinsky model proposed by Cottet, Jiroveanu, and
Michaux [10], based on triggering of the dissipative term in presence of regions
of high vortex-activity.

We recall that the Smagorinsky model (and its generalizations) became also a
paradigm for the modeling of several phenomena involving non-Newtonian flu-
ids, see the review in Galdi [19]. The first mathematical studies can be found in
Ladyžhenskaya [24], Lions [32] and for the mathematical foundation see also Málek
et al. [33]. Fine properties of regularity have been recently obtained, see Beirão da
Veiga [1, 2].

2.2 Preliminaries on Stochastic Navier-Stokes Equations

In this section we consider the Navier-Stokes equations (1) in TL = ]−L , L[3 with

periodic boundary conditions, and with f =
·

W

⎧

⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ ∇ · (u ⊗ u)+∇π − νΔu =

·
W ,

div u = 0,

u|t=0 = u0,

(5)

where f is a wildly oscillating function. We recall some basic assumptions and
results which will be needed later on.

2.2.1 On White Noise

We recall the basic hypotheses on the noise exciting the fluid at large scales. We
assume that the white noise has the form, for some N ∈ N,
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·
W (x, t) :=

N
∑

k=1

σkek (x)
dWk(t)

dt
, (6)

and observe that we require the sum to be finite. To be more specific, consider a
torus TL , employ the (scaled) L2-scalar product

〈 f, g〉 := 1

L3

∫

TL

f (x) · g (x) dx,

for vector fields f, g ∈ L2(TL ; R
3), and assume that {ek}k=1,...,N are orthonormal

vector fields on L2(TL ). Moreover, assume that Wk (t) are independent Brownian
motions, identified with the components of the canonical process W (t, ω) := ω(t)
on the space Ω of real continuous functions ω(·) on [0,+∞[, equipped with the
Wiener measure P . The assumption that the sum in (6) is finite reflects the idea that
the noise acts at large scales, hence that it cannot act as a direct perturbation of all
small scales. Finally, we define

σ 2 :=
N
∑

k=1

σ 2
k ,

which will be linked with the kinetic energy input.

2.2.2 On a Stochastic LES Model

To explain why we expect that u should be a large scale approximation of u (for
every p ≥ 2), we analyze the stochastic partial differential equation

⎧

⎪⎨

⎪⎩

∂u

∂t
+∇ · (u ⊗ u)−∇ ·

(

ν + 2
(

CS,pδ
) 2

3 p
∣
∣
∣

√
2∇su

∣
∣
∣

p−2
)

∇u + ∇π =
·

W ,

∇ · u = 0,
(7)

and the corresponding stochastic Navier-Stokes equations (1), with f equals to a

white noise
·

W acting at large scales. Specific scaling properties of the white noise
and Itô calculus allow us to develop the analysis which will be presented here.

The generalization with p �= 3, is not only natural from the view point of the
method presented in this note. We believe it is useful for two reasons: First, values
of p larger than 3 allow one to develop numerical schemes of higher degree, see
Layton [25] and Iliescu [21]. Next, there is hope that suitable large values of p
may mitigate the over-damping observed in many numerical simulations with the
Smagorinsky equations. We explain the reasons for this hope in Sect. 3.4 below.

It is worth to mention that generalizations of the classical Smagorinsky model
have already been proposed in the literature, see Sect. 3.2.
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2.2.3 Existence and Balance Laws for Stochastic Navier-Stokes Equations

The concept of solution and questions of uniqueness and regularity are reviewed
for instance in Flandoli [15]. Without entering too technical details on the precise
notion of solution, we recall that it is possible to prove that there exists a weak
solution u(x, t,W ) such that with probability one:

u ∈ Cw([0, T ]; L2) ∩ L2(0, T ; H 1)

and

d

dt

(

u −
N
∑

k=1

σkek (x) Wk (t)

)

∈ L
4
3 (0, T ; H−1),

and we refer, for instance, to Bensoussan and Temam [3]. The solution u clearly
depends on x, t, and W . Hence, it can be seen as a stochastic process, i.e., a param-
eterized collection of random variables. The parameter t represents time (for each
t we have a random variable), while W represents an individual experiment. Since
we consider homogeneous fully developed turbulence, in the sequel we shall assume
that:

The velocity u is a time-stationary, space-homogeneous solution, with sufficient regularity
to perform Itô calculus.

In this case time-stationary does not mean that u is time independent, but that the
velocity u at time t has the same distribution (as a random variable) as the velocity
at time t + h, for each h > 0.

With this assumption it is easy to prove (formally, see footnote at page 62) that,
for each space-time point (x, t)

ν E
[|∇u|2] = σ 2

2
. (8)

Here the symbol E[ · ] denotes expectation with respect to the probability mea-
sure underlying the white noise:

E[X ] :=
∫

X (W ) d P(W ) =
∫

R

x dμX (x),

where μX is the distribution of the scalar random variable X . This balance relation
motivates the following definition (cf. with the quantity ε defined at page 56):

Definition 2 The quantity

ε := σ 2

2
(9)

is the energy density (energy per unit volume) injected by the noise into the fluid.
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We give a sketch of the computations with Itô’s calculus (cf. Øksendal [35])
behind the derivation of (8). The Itô’s formula is a generalization of the chain rule
to stochastic integrals. It states that for a C2 function g : [0,∞)× R

n → R
m and a

n-dimensional Itô’s process Xt , then Yt = g(t, Xt ) is again an Itô process and

dYk = ∂gk

∂t
(t, X )dt +

n
∑

i=1

∂gk

∂xi
(t, X )d Xi + 1

2

n
∑

i, j=1

∂2gk

∂xi∂x j
(t, X )d Xi d X j ,

1 ≤ k ≤ m,

where we have written d Xi d X j to help intuition, but the more precise term d[Xi , X j ]
should be used, involving the concept of mutual quadratic variation. By applying the
above formula to |u|2

2 it follows that, for every sufficiently regular1 solution of the
stochastic Navier-Stokes equations, we have

d

(
1

2

∫

TL

|u|2 dx

)

+
(

ν

∫

TL

|∇u|2 dx

)

dt = d M + 1

2

N
∑

k=1

(∫

TL

σ 2
k e2

k dx

)

dt,

where M is a martingale (we do not recall this concept based on conditional expec-
tation at different times, but only use the property E[Mt ] = 0). Hence, for time-
stationary solutions

νE

[∫

TL

|∇u|2 dx

]

= L3 σ
2

2
, (10)

(and the scaling factor 1
L3 in the definition of the above scalar product is essential

here.) We get (8) in the case of space-homogeneous solutions, but (10) is already
sufficient to motivate the concept of energy density injected by the noise into the
fluid.

We observe that, contrary to the deterministic Navier-Stokes, there is a more clear
expression for the energy dissipation. In the deterministic case the energy balance
(formally) gives

1

2

d

dt

∫

Ω

|u(x, t)|2dx + ν

∫

Ω

|∇u(x, t)|2dx =
∫

Ω

f (x, t)u(x, t) dx

and, even if the solution is supposed to be stationary (or similarly if it is integrated
over very large time-intervals), it turns out that the power input depends on the
solution u itself! This difference is one of the main features of a statistical approach
to the Navier-Stokes equations.

1 This calculation cannot be rigorously performed in the 3D case, since we do not know that
solutions are smooth enough. In this case the inequality corresponding to the equality (10) can
be proved by means of Galerkin approximation.
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Finally, since we shall work with the modified equations we need the analog of
relation (10) for equation (7). With the same arguments above sketched one gets

ν E

[∫

TL

|∇u|2 dx

]

+ (

CS,pδ
) 2

3 p
E

[∫

TL

∣
∣
∣

√
2∇su

∣
∣
∣

p
dx

]

= L3 σ
2

2
, (11)

for time-stationary solutions to system (7).

2.3 Brownian Scaling

Beside Itô’s calculus, the second essential ingredient of our arguments are scaling
transformations.

Lemma 1 Denoting equality in law between (generalized) stochastic processes by
L=, we have the following classical result for white noises:

λβ/2
·

W
(

x, λβ t
) L=

·
W (x, t) , (12)

for every λ > 0 and β.

Instead of a rigorous proof, let us explain (12), at the intuitive level. It is well
known (see [35]) that a one dimensional Brownian motion Wk (t) is invariant under
the (Brownian) scaling

λ−β/2Wk
(

λβ · ) L= Wk ( · ) .

The corresponding white noise dWk
dt (t) is invariant under the following scaling

λβ/2 dWk

dt

(

λβ t
) L= dWk

dt
(t) ,

because

λβ/2 dWk

dt

(

λβ t
) ∼ λβ

λ−β/2Wk
(

λβ t + dt
)− λ−β/2Wk

(

λβ t
)

dt
dt=λβdt ′∼ λβ

λ−β/2Wk(λβ t + λβdt ′)− λ−β/2Wk(λβ t)

λβdt ′

∼ λβ
Wk

(

t + dt ′
)−Wk (t)

λβdt ′

∼ dWk

dt
(t) .

The claim (12) for a finite dimensional noise follows from the previous one.
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We use the information in Lemma 1 to perform suitable scaling transformation
of the equations. In the next section we shall perform scaling transformations of the
form

·
W

λ

(x, t) := λ2α+1
·

W
(

λx, λα+1t
)

.

This is again a white noise on the torus TL/λ and it acts on the fluid through the

orthonormal fields ek (λx) (so it acts at larger scales than
·

W , if λ < 1). The essential
point of our argument is given by the following statement.

Lemma 2 The energy density injected by the noise
·

W
λ

(x, t) into the fluid is σ 2

2 , the

same as for
·

W (x, t), if and only if

α = −1

3
.

Proof From (12), we get

·
W

λ

(x, t) = λ2α+1
·

W
(

λx, λα+1t
) L= λ

3
2 α+ 1

2

·
W (λx, t)

and thus its injected energy density is

λ
3
2α+ 1

2
1

2

N
∑

k=1

σ 2
k ,

which equals ε in Eq. (9) (for all λ > 0) if and only if α = − 1
3 . ��

This lemma will be used later on to detect the most suitable scaling transforma-
tions needed to study statistical properties of the flow.

3 Scaling Transformations and Derivation of Generalized
Smagorinsky Models

In this section we give a derivation of the EV model (7). As we shall see from the
derivation, our main goal will be that of having a model consistent (in some sense)
with K-41. In this respect we see that the consistency of a LES model with the K-41
theory seems a first natural request. Similar calculations (aimed at different K-41-
consistency, as reproducing the k−

5
3 behavior) have been previously performed by

several authors, see, e.g., Lesieur et al. [28] and Layton and Neda [26, 27].
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3.1 Derivation of a Family of Eddy Viscosity Models

We now derive the expression

νT := 2
(

CS,pδ
) 2

3 p
∣
∣
∣

√
2∇su

∣
∣
∣

p−2

for the turbulent viscosity in (7) and in particular the precise scaling exponent for
the “length” δ > 0.

Theorem 1 Equation (7) with the additional turbulent viscosity

νT = 2
(

CS,pδ
)r

∣
∣
∣

√
2∇su

∣
∣
∣

p−2
, r ∈ R

is consistent with K-41 if and only if

r = 2p

3
.

Proof Let us consider the EV equation (7)

∂u

∂t
+∇ · (u ⊗ u)− ∇ ·

(

ν + 2
(

CS,pδ
)r

∣
∣
∣

√
2∇su

∣
∣
∣

p−2
)

∇u + ∇π =
·

W , (13)

with an arbitrary r > 0.
For more transparency in the calculations, let us employ the family of scaling

transformation

uλ (t, x) := λαu
(

λα+1t, λx
)

πλ (t, x) := λ2απ
(

λα+1t, λx
)

, (14)

indexed by α ∈ R and which we shall specialize later on. We have the following
equalities for the Navier-Stokes equations and for the EV model (13), with the arbi-
trary coefficient r ∈ R:
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[
∂uλ

∂t
+∇ · (uλ ⊗ uλ

)− (

λα−1ν
)

Δuλ

]

(t, x)

= λ2α+1

[
∂u

∂t
+ ∇ · (u ⊗ u)− νΔu

]
(

λα+1t, λx
)

,

[

∇ ·
(

2
(

CS,pδ
)r

∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
)

∇suλ

]

(x, t)

= λ(p−1)(α+1)+1

[

∇ ·
(

2
(

CS,pδ
)r

∣
∣
∣

√
2∇su

∣
∣
∣

p−2
)

∇su

]
(

λα+1t, λx
)

,

∇πλ(t, x) = λ2α+1∇π (

λα+1t, λx
)

.

Thus, we get the following rescaled form of the equations for the p-fluid

[
∂uλ

∂t
+ ∇ · (uλ ⊗ uλ

)+∇πλ

]

(t, x)

−∇ ·
(

λα−1ν + λ3α+1−p(α+1)2
(

CS,[δ
)r

∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
)

∇suλ (t, x) =

= λ2α+1

[
∂u

∂t
+∇ · (u ⊗ u)+ ∇π−

∇ ·
(

ν + 2
(

CS,pδ
)r

∣
∣
∣

√
2∇su

∣
∣
∣

p−2
)

∇su

]
(

λα+1t, λx
)

.

This shows that if u solves (13) on the torus TL , with the still generic coefficient
(

CS,pδ
)r

in place of
(

CS,pδ
) 2

3 p
, then

∂uλ

∂t
+ ∇ · (uλ ⊗ uλ

)+ ∇πλ

− ∇ ·
(

λα−1ν + λ3α+1−p(α+1)2 (CSδ)r
∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
)

∇suλ =
·

W
λ

,

where
·

W
λ

is defined by (2.3).
To identify r ∈ R we need two properties:

1. We ask that the energy density injected by
·

W
λ

is the same as the energy density

injected by
·

W . By Lemma 2, this is true for α = − 1
3 . For a reason that will be

clear below, we call Kolmogorov scaling transformation the change of variable
(14) when α = − 1

3 .
2. We ask that the coefficient λ3α+1−p(α+1)δr in the EV term is of order one when

λ = δ. Since α = − 1
3 , this requires



On a Stochastic Approach to Eddy Viscosity Models for Turbulent Flows 67

r = 2

3
p.

By using the results of the previous section we derived the model (7) and we have
identified the exponent that the smallest resolved scale length δ > 0 should assume
to have a statistical consistency with the Navier-Stokes theory. ��
Remark 1 The scaling transformation we are using (well-known since the work of
Kolmogorov and Obukhov) is rather different from the scaling used in the analyt-
ical theory of partial regularity for Navier-Stokes equations. In fact, the standard
parabolic scaling is at the basis of some well-known regularity criteria due to Leray,
Prodi, Serrin, Sohr . . ., see [18]: If the pair (u, π ) solves (1) then so does the family
(uλ, πλ)λ>0 defined by

uλ(x, t) := λ u(λx, λ2t) πλ(x, t) := λ2 π (λx, λ2t).

With this transformation the viscosity does not change, but the energy input
changes. Hence, the use of different scaling transformations can be used to extract
different information from the equations. In particular, the scaling we use (and a
whole one-parameter family) keeps the material derivative D

Dt := (∂t + u · ∇)
unchanged and this explains the relevance in the study of Euler equations or also
in presence of very small viscosities.

Remark 2 The use of Kolmogorov’s scaling is at the basis of the Onsager’s conjec-
ture. In particular, the scaling transformation is compatible with C0,1/3-functions.
The problem of energy conservation for non-smooth functions has been recently
addressed in Cheskidov et al. [9].

3.2 Comparison with Alternate Scaling Previously Proposed

We observe that the exponent r = 2p
3 in (7) is different from other ones which have

been previously obtained (even if with different intents). We review some of these
results: Smagorinsky model is most successful when used with second order finite
difference methods for which it gives a perturbation of O(discretization error) in the
smooth/laminar flow regions. For higher order methods (say, order p − 1) a natural
generalization is thus (see Layton [25])

νT = (CS,pδ)p−1 |∇su|p−2 =
{

O(δ p−1) in smooth regions,
O(δ) in the smallest resolved eddies,

and this scaling is motivated by experiments with central difference approximations
made on linear convection diffusion problems.

Another scaling, again motivated by the interface between models and higher
order numerical methods, was proposed in [25]. In 3 dimensions and using a numer-
ical method with accuracy of order O(h p−1), a possible choice is
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νT = CS,p | log(δ)|− 2(p−1)
3 δ

3(p−1)
2 |∇su|p−2, with p ≥ 2

3
r + 1.

As p increases, these formulas concentrate the EV more and more in the regions
in which the gradient is large. These regions include the smallest resolved eddies
and also regions with large shears.

A third rescaling has been proposed from interpreting the turbulent viscosity
coefficient νT micro-locally in K-41 theory. Thus, the K-41 theory suggests the
higher order Smagorinsky-type model

νT = (CS,pδ)p− 2
3 |∇2u|p−2 ≈

{

O(δ p− 2
3 ) in smooth regions,

O(δ
4
3 ) in the smallest resolved eddies.

which is consistent with K-41 prediction that the smallest persistent eddy is O(ν
3
4 ).

We observe that different rescaling have been derived from different motivations
and with different goals. So we do not claim that our scaling is “the correct one.”
It turns out that our scaling is the most natural if one assumes the mathematical
hypotheses which are at the basis of the statistical theory of fluids, and this seems
the most promising way to attack the problem of description of turbulent flows.

In order to validate the choice of our method we observe that in the classical
Smagorinsky model it turns out that

νT = O
(

δ
4
3

)

. (15)

In fact (this argument is elaborated with more details in Sect. 3.5), K-41 theory
implies also that E(k), the spectral amplitude of kinetic energy (defined as the inte-
gral over surfaces of spheres in wave-number space parameterized by the radius k)
decays as k−

5
3 in the inertial subrange. This implies, with some guessing (cf. also

Eq. (17)), that |∇su| � k
2
3 , where k corresponds to the spectral resolution limit. If

the smallest resolved scale is proportional to δ = k
−1

, then it follows (15). If we
apply the same computations to our EV term (2) we get, independently of p,

νT = 2
(

CS,pδ
) 2

3 p
∣
∣
∣

√
2∇su

∣
∣
∣

p−2
= O

(

δ
2
3 pδ−

2
3 (p−2)

)

= O
(

δ
4
3

)

and this is the main consistency with K-41 theory that the method we propose
has. Other details and also some consideration on the possible nature of the over-
damping introduced by p-models, in connection with turbulent flows, are examined
in Sect. 3.4.
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3.3 Is u a Large Scale Approximation of u?

In this section we try to give an heuristic justification (from the point of view of
statistical fluid mechanics) that the velocity u could be a good approximation of the
large scales of u.

Let us suppose that on the torus TL are given a time-stationary solution u of (7)
and a time-stationary solution u of (1), both with external force f =

·
W . Let us fix

some x0 ∈ TL that without loss of generality we can take x0 = 0. Next, given an
unitary vector e, consider the increment (at any time):

u (λe)− u (0) .

The aim of this section is to give a reasonable argument for the following two
claims:

1. The quantity u (λe) − u (0) is a statistically an approximation of the increment
u (λe)− u (0) for δ ! λ ≤ L;

2. The quantity u (λe)− u (0) is very small for λ! δ.

The argument requires a number of conditions and (unproved) assumptions, for
instance the relative smallness of δ and ν and the cascade properties of the 3D equa-
tions, that will be described step by step.

Suppose that L and σ 2

2 are of order one. Then, the rescaled fields

⎛

⎜
⎝

uλ (t, x) := λ−
1
3 u

(

λ
2
3 t, λx

)

πλ (t, x) := λ−
2
3 π

(

λ
2
3 t, λx

)

uλ (t, x) := λ−
1
3 u

(

λ
2
3 t, λx

)

πλ (t, x) := λ−
2
3 π

(

λ
2
3 t, λx

)

⎞

⎟
⎠ ,

satisfy the equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uλ

∂t
+∇ · (uλ ⊗ uλ

)−∇ ·
(

λ−
4
3 ν + 2

(

CS,p
δ

λ

) 2
3 p ∣

∣
∣

√
2∇suλ

∣
∣
∣

p−2
)

∇uλ

+∇πλ =
·

W
λ

,

∂uλ

∂t
+∇ · (uλ ⊗ uλ

)−∇ ·
(

λ−
4
3 ν

)

∇uλ +∇πλ =
·

W
λ

.

First, let us consider the case: δ ! λ ≤ L .
If we assume ν > 0 sufficiently small with respect to λ (in order to have λ−

4
3 ν

! 1), we are considering two Navier-Stokes-type equations (in possibly large
domains) but with energy injected per unit volume of order one, and very small
viscosity coefficients.



70 L.C. Berselli and F. Flandoli

We assume that the energy is transferred, by a cascade mechanism, from large
scales (those of the direct action of the noise) to smaller and smaller scales, with-
out essential dissipation until a certain scale, where the dominant effect is that of
dissipation. This fact is at the basis of the derivation of K-41 theory, but it has been
introduced for the first time by the meteorologist Richardson [38, p. 66], recall his
famous verse on big whirls and lesser whirls:

Big whirls have little whirls what feed on their velocity,
little whirls have lesser whirls, and so on to viscosity.

We may conjecture that the statistical properties of uλ (e) − uλ (0) and uλ (e) −
uλ (0) are similar. Let us stress that this result would not be true if the injected
energy per unit volume of the noise would be of order different from one or also
if the viscosity would not be very small, since the difference in viscosities between
the two equations could make a difference on the solutions already at scale one. The
approximate equality in law

uλ (e)− uλ (0)
L� uλ (e)− uλ (0)

means

u (λe)− u (0)
L� u (λe)− u (0) .

We have proved the first part of our claims. In fact, the range of scales λ to
which the previous argument applies could be very narrow: not only the viscosity

coefficients λα−1ν and 2
(

CS,p
δ
λ

) 2
3 p

should be sufficiently small, but the full coef-

ficient 2
(

CS,p
δ
λ

) 2
3 p

∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
should be small too. This could be the origin of

the over-damping observed in numerical simulations performed with the classical
(p = 3) Smagorinsky equation as sub-grid-scale model. We shall argue in the next
section that this phenomenon could be less strong if p is large and also if there is
some degree of intermittency.

Consider now the case λ! δ.

The coefficient 2
(

CS,p
δ
λ

) 2
3 p

becomes very large (even if λα−1ν may still be
small). The density of energy injected by the noise is always of order one. We
thus conjecture that at scales of order one the solution uλ is already very smooth,
namely uλ (e) − uλ (0) is small, i.e., u (λe) − u (0) is small. This is the second part
of our claim. Note that λα−1ν may still be small, so that uλ (e) − uλ (0) (and thus
u (λe)− u (0)) is not necessarily small. So the small scale structures approximately
disappear in the Smagorinsky model.

Notice that these arguments are independent of p, hence they also apply to p = 3,
namely they are a (new) explanation of the classical Smagorinsky approximation.
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3.4 Over-Damping and the Size of
∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2

As the reader may have noticed, the previous arguments may be affected by a non-

unitary size of
∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
and this observation could be used to deduce an expla-

nation of the over-damping observed in numerical simulations, for p = 3. Let us

try to guess the typical size of
∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
and show that the over-damping could

be less strong if p is large and also if there is some “degree of intermittency.” In
this context the word intermittency means that the flow may have some non regular
bursts, which affect the prediction of the K-41 theory, see Frisch [17]. In some sense
it can be seen as an irregularity issue, but also as a peculiar and non-standard scaling
of the equations at some point, excluding the pure homogeneity.

We use again the balance law (11). Let us assume we are in the case δ ! λ ≤ L
and λα−1ν ! 1 and rewrite (11) for uλ:

ν E

[
∫

TL/λ

∣
∣∇uλ

∣
∣
2

dx

]

+
(

CS,p
δ

λ

) 2
3 p

E

[
∫

TL/λ

∣
∣
∣

√
2∇suλ

∣
∣
∣

p
dx

]

=
(

L

λ

)3
σ 2

2
.

Assume that ν > 0 is small enough that the second term is not infinitesimal with
respect to the first one. For space-homogeneous solutions (to simplify the exposi-
tion) this implies that

(

CS,p
δ

λ

) 2
3 p

E

[∣
∣
∣

√
2∇suλ

∣
∣
∣

p]

is of order one (16)

(we are always assuming that L and σ 2

2 are of order one). Very roughly this gives
the indication

∣
∣∇suλ

∣
∣ ∼

(
λ

δ

) 2
3

, (17)

and this indication comes also from the standard derivation of the largeness in tur-
bulent viscosity coefficients, as can be exactly evaluated for p = 3 and for Gaussian
fields, see Lilly [29–31]. This means that

∣
∣∇suλ

∣
∣ would not be of order one and the

eddy viscosity satisfies

νT = 2

(

CS,p
δ

λ

) 2
3 p ∣

∣
∣

√
2∇suλ

∣
∣
∣

p−2
" 2

(

CS,p
δ

λ

) 2
3 p

.

In fact, as proposed as a consistency test, the turbulent viscosity νT turns out to be

of the order of
(
δ
λ

) 4
3 independently of the choice of p. Hence, both for the classical

Smagorinsky model and the p-modifications introduced here, the EV is much larger
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than expected and thus it damps fluctuations of the fluid more than wanted. To be
more precise, given δ > 0, the scales λ > 0 at which the previous arguments

work (we mean the argument yielding u (λe) − u (0)
L� u (λe) − u (0)), are not

those for which
(
δ
λ

) 2
3 p

is sufficiently small, but those for which
(
δ
λ

) 4
3 is sufficiently

small. Since in numerical simulations the resolved scales δ cannot be very small,
this imposes a too strong restriction on λ and this may be the reason we observe
over-damping even at large scales.

The picture would be different if there is some degree of intermittency. In our
context this means that the random variable

∣
∣∇suλ

∣
∣ is not rather homogeneous, sta-

tistically speaking, but that:

The random variable
∣
∣∇suλ

∣
∣ assumes relatively small values with large probability and

relatively large values with small probability.

∣
∣∇suλ

∣
∣ =

{

rλ with probability 1− θλ,

Rλ with probability θλ,

where θλ is small compared to 1,rλ is of order one, and Rλ is large.

From (16) we now deduce

(
δ

λ

) 2
3 p

(

(1− θλ) r p
λ + θλR p

λ

)

is of order one.

Take p so large that (1− θλ) r p
λ + θλR p

λ ∼ θλR p
λ , and such that from θλR p

λ ∼
(
δ
λ

)− 2
3 p

we may deduce

Rλ ∼
(
λ

δ

) 2
3

. (18)

This replaces (17) and has the consequence that 2
(

CS,p
δ
λ

) 2
3 p

∣
∣
∣

√
2∇suλ

∣
∣
∣

p−2
is of

the order
(
δ
λ

) 4
3 only with probability θλ, while it is of order

(
δ
λ

) 2
3 p

with probability
(1− θλ). The over-damping affects the fluid only rarely and thus the large scale
structures in the Smagorinsky approximation, continuously re-created by the noise
and the cascade, are observed most of the time as for the original fluid.

As a final comment, one may argue that intermittency, often observed in fluids,
is depleted by an EV with very large power p of the symmetric gradient, because
of smoothness properties of solutions. In fact, regularity measured in terms of inte-
grability exponents of Sobolev spaces increases as p increases. Therefore, it is not
natural to think that the p-modifications of Smagorinsky model behave better and
better as p increases. One could just hope that these models behave better than the
classical Smagorinsky model (p = 3) for certain large (but not too large) values of
p. Numerical simulations are needed to throw some light on this issue and we are
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starting a research project in order to perform accurate simulations aimed at under-
standing if (moderate) large exponents may lead to better numerical simulations,
with respect to those obtained with the Smagorinsky model with p = 3.

3.5 Modification of Lilly’s Argument for General p

In this section we show how to reproduce for the p-modifications of Smagorinsky
model (7) the computations of Lilly [29–31] used to evaluate the constant CS . Let
us denote by ε the rate of kinetic-energy dissipation which, being equal to the rate
of injected energy, in the above stochastic model must be equal to σ 2/2. In (11) we
assume that the viscosity is so small that we essentially have

(

CS,pδ
) 2

3 p
E

[∫

TL

∣
∣
∣

√
2∇su

∣
∣
∣

p
dx

]

= L3 σ
2

2
.

Assume also space homogeneity (and write ε for σ 2

2 ), so that

(

CS,pδ
) 2

3 p
E

[∣
∣
∣

√
2∇su

∣
∣
∣

p]

= ε,

at any space-time point (x, t). Assume that u, being a large scale approximation,
contains only scales larger than δ (or in Fourier variables only frequencies which
are smaller than kc = π

δ
):

1

2
E

[∣
∣
∣

√
2∇su

∣
∣
∣

2
]

=
∫ π

δ

0
k2 E (k) dk.

Now, by following Lilly’s argument [30], we assume Kolmogorov scaling law for
the spectrum of the kinetic energy E (k) = α ε

2
3 k−

5
3 , for k in the inertial subrange.

The universal constant α is evaluated by means of experiments and it has a value
around 1.4. In this way we obtain that

E

[∣
∣
∣

√
2∇su

∣
∣
∣

2
]

= 3

2
α ε

2
3

(π

δ

) 4
3
.

As in [29] for p = 3, we introduce a very rough approximation

E

[∣
∣
∣

√
2∇su

∣
∣
∣

p]

� E

[∣
∣
∣

√
2∇su

∣
∣
∣

2
] p

2

, (19)

which nevertheless it is not too bad in the inertial subrange, and for moderate values
of p. Then, we obtain
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ε = (

CS,pδ
) 2

3 p
E

[∣
∣
∣

√
2∇su

∣
∣
∣

p]

� (

CS,pδ
) 2

3 p
[

3

2
α ε

2
3

(π

δ

) 4
3

] p
2

=
(

3α

2

) p
2

π
2p
3 C

2p
3

S,p ε
p
3 .

Remarkable is that this relation does not include the cut-off scale δ. We finally
get

CS,p = ε
3−p
2p

1

π

(
3α

2

)− 3
4

.

For p = 3 it reduces to CS,3 = CS evaluated by Lilly, which is approximately
0.18. It is important to observe that the value of CS,p is independent of ε if and only
if p = 3. Moreover, as described by Deardorff [11], Lilly’s value of the coefficient
works well when applied to turbulence produced by buoyant instabilities. For shear-
driven turbulence, however, Deardorff and others found it necessary to use a smaller
coefficient. These discrepancies have been verified by other investigators, as pointed
out in the introduction. A priori tests by McMillan et al. on homogeneous turbulence
confirmed that CS decreases with increasing strain rate.

The above calculations show why the Smagorinsky model is very special in the
class of shear-dependent viscosities. Moreover, we know that ε = σ 2

2 hence we can
finally write

CS,p = 2
5
4− 3

2 p

σ
p−3

p

1

π
(3α)−

3
4 .

Therefore, in the p-generalizations of the Smagorinsky EV term, the generalized
Lilly’s constant CS,p depends also on the rate of energy injection (or dissipation). In
particular, it is not a universal constant, but it still depends in a precise way on the
experiment we are trying to simulate.

Concerning the assumption (19) we observe that for large p the approximation
can be very bad. In fact, measurements of the probability distribution function of
the gradient of velocity made in the atmospheric boundary layer (hence at a very
high Reynolds number) have been performed. The tails of the distribution (beyond
four standard deviations) decay as simple exponentials. This decay is much slower
than that of the standardized Gaussian (On the other hand the velocity in isotropic
turbulence cannot be Gaussian.) Then, the contribution of the tails to the normalized
velocity derivative moments
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Mn =
E

[∣
∣
∣
∂u1
∂x1

∣
∣
∣

n]

E

[∣
∣
∣
∂u1
∂x1

∣
∣
∣

2
] n

2

increases very rapidly with n. For instance M6 is about 15 times the corresponding
moment for a Gaussian variable. For a discussion see Pope [37, Sect. 6.7].

3.6 On a Wall Bounded Problem

In this section we want to give some ideas of what can be done in presence of
some kind of space-anisotropy. First we recall that the first attempt to generalize the
Smagorinsky model to more complex geometries dates back to Van Driest [12], even
if his studies had different motivations (and they are also dated before appearance
of LES!).

The simplest situation with boundaries is the channel flow. For this very simple
geometric situation an ad hoc generalization of the Smagorinsky model have been
proposed in [12], with damping of the turbulent stress tensor near the walls deter-
mined by a suitable exponential. Beside being purely empirical and being based on
consistency with the mixing length hypothesis, this approach provides good repre-
sentation of the data.

A more recent attempt to extend the problem to more complex geometries has
been taken into account by Scotti, Meneveau, and Lilly [41]. In presence of dis-
cretization grids with aspect ratios a1 = δ1/δ3 and a2 = δ2/δ3 (which are different
in the various directions) it has been shown that the term (CSδ)2 may be replaced by

CS(δ1δ2δ3)
1
3 f (a1, a2),

where the function f can be determined by using an approach based again on theo-
retical arguments for isotropic turbulence. The function f is approximated by

f (a1, a2) � cosh

√

4

27

[

log2(a1)− log(a1) log(a2)+ log2(a2)
]

,

and also dynamic versions have been considered. This approach considers the LES
method as a computational discrete method, hence it tries to adapt the method to the
grid. For instance the flow past a bluff-body needs a big refinement in the stream-
wise direction. Hence, in the far wake region one can have a very anisotropic grid
to simulate a turbulent flow which can be not very far from isotropic.

In this section we want to use a different approach: we do not consider the prob-
lem as a discretized problem (as in [41] and further works) but we want to say
something on a non-isotropic problem, starting from the point of view of statistical
analysis and scaling transformations. Hence, we try to adapt the previous techniques



76 L.C. Berselli and F. Flandoli

based on scaling to the flow bounded by two rigid walls. In particular, we suppose
that the flow takes place in the domain

D = {

(x, y, z) : x, y ∈ R
2, 0 < z < 1

}

, (20)

with periodicity in the x-y directions. We consider the scale invariant transforma-
tions (only in x, y, and t variables) that are allowed for the velocity u = (u1, u2, u3)
and the pressure π . (We use now a notation which is a little bit different from the
previous sections, because we need to distinguish the various components of the
space variables and of the velocity). Since no scaling is possible along the (vertical)
z-axis direction, we define the following scaled quantities:

⎛

⎜
⎝

uλ
1(t, x, y, z) = λαu1(λβ t, λx, λy, z) uλ

2(t, x, y, z) = λαu2(λβ t, λx, λy, z)

uλ
3(t, x, y, z) = λγ u3(λβ t, λx, λy, z) πλ(t, x, y, z) = λδπ (λβ t, λx, λy, z)

⎞

⎟
⎠ .

Simple calculations show that necessarily

β = γ = α + 1 and δ = 2α, (21)

if we want to keep the material derivative D
Dt appropriately scaled. Hence, we plug

the functions (uλ, πλ) with such α, β, γ , and δ in the Navier-Stokes equations and
we obtain (here given any differential operator L , the symbol L ′ denotes the same
operator restricted to the first two variables, e.g., Δ′ is the Laplacian in the x-y
variables, while ∇′ = (∂x , ∂y, 0))

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Duλ
1

Dt
− νλα−1Δ′uλ

1 − νλα+1∂2
zzuλ

1 + ∂xπ
λ = 0,

Duλ
2

Dt
− νλα−1Δ′uλ

2 − νλα+1∂2
zzuλ

2 + ∂yπ
λ = 0,

Duλ
3

Dt
− νλα−1Δ′uλ

3 − νλα+1∂2
zzuλ

3 + λ2∂zπ
λ = 0.

(22)

If we assume now that an external force
·

W is present and if we use the exponent
α = − 1

3 (for the same reasons explained before) we get

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Du1

Dt
− νλ−

4
3 Δ′u1 − νλ

2
3 ∂2

zzu1 + ∂xπ =
·

W
λ

,

Du2

Dt
− νλ−

4
3 Δ′u2 − νλ

2
3 ∂2

zzu2 + ∂yπ =
·

W
λ

,

Du3

Dt
− νλ−

4
3 Δ′u3 − νλ

2
3 ∂2

zzu3 + λ2∂zπ =
·

W
λ

.

(23)
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Disregarding the terms that are of smaller order (as λ→ 0), and calling uλ (with
a slight abuse of notation) again u, we get the following anisotropic Navier-Stokes

Du

Dt
− νλ−

4
3 Δ′u +∇′π =

·
W .

Again the structure of the equations allows to find, in the limit of small viscosity,
an expression for the energy dissipation involving the term

νE

[∫

TL

|∇′u|2dx

]

= L3σ 2

2
.

Note that, since the effects of the dissipation in the z-variables are much smaller,
the corresponding terms can be disregarded. This can be seen in the light of
geostrophic models with Ekman Layers, see Chemin et al. [8].

We now use the same approach, but we suppose that the equations that govern
the fluid are those of Smagorinsky (4) (but the same argument applies as well also
to generalized p-models). To employ the same procedure, we first need to evaluate
the scaling transformation for ∇suλ

∇suλ(t, x, y, z) =
⎛

⎜
⎜
⎜
⎜
⎝

λα+1∂x u1 λα+1 ∂x u2 + ∂yu2

2
λα

∂zu1

2
+ λα+2 ∂x u3

2

∗ λα+1∂yu2 λα
∂zu2

2 + λα+2 ∂yu3

2
∗ ∗ λα+1∂zu3

⎞

⎟
⎟
⎟
⎟
⎠

(λα+1t, λx, λy, z),

where ∗ is put just to recall that the matrix is symmetric and we need to mirror terms
off from the diagonal. Hence, we can write that

|∇su|(λα+1t, λx, λy, z) =
λ−α J1(t, x, y, z)+ λ−(α+1) J2(t, x, y, z)+ λ−(α+2) J3(t, x, y, z),

with (some factor 1/2 is present, but inessential)

J1(t, x, y, z) = |∂zu
λ
1|(t, x, y, z)+ |∂zu

λ
2|(t, x, y, z),

J2(t, x, y, z) = |∇′uλ
1|(t, x, y, z)+ |∇′uλ

2|(t, x, y, z)+ |∂zu
λ
3|(t, x, y, z),

J3(t, x, y, z) = |∇′uλ
3|(t, x, y, z).

Plugging this expressions into (4) we get the following equations
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Duλ
1

Dt
− λα−1

[

νΔ′uλ
1 +∇′ · (C2

Sδ
2|∇suλ|∇′uλ

1)
]

− λα+1
[

ν∂2
zzuλ

1 + ∂z(C
2
Sδ

2|∇suλ|∂zu
λ
1)
]+ ∂xπ

λ =
·

W ,

Duλ
2

Dt
− λα−1

[

νΔ′uλ
2 +∇′ · (C2

Sδ
2|∇suλ|∇′uλ

2)
]

− λα+1
[

ν∂2
zzuλ

2 + ∂z(C
2
Sδ

2|∇suλ|∂zu
λ
2)
]+ ∂yπ

λ =
·

W ,

Duλ
3

Dt
− λα+1

[

νΔ′uλ
3 +∇′ · (C2

Sδ
2|∇suλ|∇′uλ

3)
]

− λα−1 [ν∂2
zzuλ

3 + ∂zC
2
Sδ

2|∇suλ|∂zu
λ
3

]+ λ2∂zπ
λ =

·
W .

(24)

At this point to understand which are the “relevant” terms in ∇suλ, we observe
that

δ2∇suλ = δ2 J1 + δ2

λ
J2 + δ2

λ2
J3,

hence for δ � λ, and in the limit of asymptotically small λ, the only term that
survives is J3. This observation and setting α = − 1

3 , allows us to consider (up to the
leading order) the following system of partial differential equations for uλ, which
we call again u:

Du

Dt
− νλ−

4
3 Δ′u − C2

Sδ
2∇′(|∇′u3|∇′u)+ ∇′π =

·
W .

In the limit of small ν we get, for stationary solutions,

C2
Sδ

2
E

[∫

TL

|∇′u3|∇′u|2dx

]

= L3σ 2

2
.

The resulting equations are similar to certain proposed in order to study gravity
waves involving fluids with large scales in the horizontal direction as in global cir-
culation models. Thus, despite the increase in computational power, not all scales in
the ocean circulation can be resolved simultaneously. Basin models are configured
for O(1000 km) to O(10 km), and regional or coastal models from O(100 km) to
O(1km), requiring both sub-grid-scale parametrization and extra-domain forcing.
There exist, however, small-scale ocean flows (which take place below this inher-
ently coarse numerical resolution) that often play a significant role in an accurate
representation of the large ocean scales: The entrainment of ambient waters into
overflows has a significant impact on the global balance of the thermohaline circu-
lation, and affects the transport of pollutants, sediments, and biological species.
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It is then a challenging problem to propose LES models (also based on suitable
modifications of the Smagorinsky model) for this problems. Hence, a numerical
method based on Smagorinsky acting only in the horizontal variables may be
derived also by using our approach and it turns out to be similar to those tested
in Özgökmen et al. [36].

4 Conclusions

We reviewed some well-known results on eddy-viscosity models for LES and on
stochastic Navier-Stokes equations. Moreover, we provided a new justification,
based on a statistical approach, of the derivation of some EV and we used tools
from stochastic partial differential equations to estimate relevant parameters. In
addition, we proposed a new modeling for equations in thin domains. The presence
of a Smagorinsky-like term acting only in the horizontal directions is one of the
most promising technique to attack numerically problems of geophysics or more
generally with very different scales in different directions. In future work we shall
test the generalized models we are proposing and we also shall start the analysis of
the well-posedness of the systems of partial differential equations for thins domains
we introduced.
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Numerical Study of the Significance
of the Non-Newtonian Nature of Blood in Steady
Flow Through a Stenosed Vessel

Tomáš Bodnár and Adélia Sequeira

Abstract In this paper we present a comparative numerical study of non-Newtonian
shear-thinning and viscoelastic blood flow models through an idealized stenosis.
Three-dimensional numerical simulations are performed using a finite volume semi-
discretization in space, on structured grids, and a multistage Runge-Kutta scheme
for time integration, to investigate the influence of combined effects of inertia, vis-
cosity and viscoelasticity in this particular geometry. This work lays the founda-
tion for future applications to pulsatile flows in stenosed vessels using constitutive
models capturing the rheological response of blood, under relevant physiological
conditions.

Keywords Non-Newtonian fluids · Blood rheology · Stenosis · Numerical
simulations

1 Introduction

One of the most frequent abnormalities of the vascular system is the partial occlu-
sion of blood vessels due to stenotic obstruction (lumen area reduction) related to
atherosclerosis. There is strong evidence that hemodynamical factors such as flow
separation, flow recirculation, low and oscillatory wall shear stress, play a major
role in the development and progression of atherosclerotic plaques and other arte-
rial lesions (see e.g. [3, 8]) but their specific role is not completely understood.
The mathematical and numerical study of meaningful constitutive models, that can
accurately capture the rheological response of blood over a range of physiological
flow conditions, is recognized as an invaluable tool for the interpretation and anal-
ysis of the circulatory system functionality, in both physiological and pathological
situations [18].
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Blood is a concentrated suspension of formed cellular elements including red
blood cells (RBCs or erythrocytes), white blood cells (WBCs or leukocytes) and
platelets (thrombocytes). These cellular elements are suspended in an aqueous poly-
meric and ionic solution of low viscosity, the plasma, containing electrolytes and
organic molecules such as metabolites, hormones, enzymes, antibodies and other
proteins. The formed elements are produced in the bone marrow and represent
approximately 45% by volume of the normal human blood [8].

The study of blood flow in the vascular system is complicated in many respects
and thus simplifying assumptions are often made. Plasma behaves as a Newto-
nian fluid but whole blood exhibits marked non-Newtonian properties, like shear
thinning viscosity, thixotropy, viscoelasticity and possibly a yield stress. This is
largely explained by erythrocyte behavior, mainly their ability to aggregate into
three-dimensional microstructures (rouleaux) at low shear rates, their deformabil-
ity (or breakup) and their tendency to align with the flow field at high shear rates
[12]. In particular, at rest or at low shear rates (below 1 s−1) blood seems to have a
high apparent viscosity, while at high shear rates there is a reduction in the blood’s
viscosity. Attempts to recognize the shear-thinning nature of blood were initiated
by Chien et al. [10, 11] in the 1960s. Empirical models like the power-law, Cross,
Carreau or W-S generalized Newtonian fluid models (see [4, 32]) have been obtained
by fitting experimental data in one dimensional flows. More recently, Vlastos et al.
[31] proposed a modified Carreau equation to capture the shear dependence of blood
viscosity.

Experiments on blood at low shear rates are extremely difficult to perform and
consequently a controversy remains on the behavior of blood at the limit of zero
shear rate. Despite this controversy, it is commonly accepted that blood displays a
yield stress. Namely, there is a critical value of stress (the yield stress) below which
blood does not flow. The treatment of yield stress as a material parameter should
be independent of experimental factors and of yielding criteria and this is not the
case for blood. In fact there exists a large variation in yield stress values for blood
reported in the literature (e.g [22]). The finite time required for the changes in blood
microstructure is related to blood yield stress and thixotropy. Charm et al. [9] found
that Casson’s model gives the best fit to blood data. Casson’s and Herschel-Bulkley
models [27] are generalizations of the Bingham model that can capture both the
yield stress and the shear-thinning behavior of blood.

None of the previous homogenized models can predict the viscoelastic response
of blood. Blood cells are essentially elastic membranes filled with a fluid and it
seems reasonable, at least under certain flow conditions, to expect blood to behave
like a viscoelastic fluid. At low shear rates, erythrocytes aggregate and store elastic
energy that accounts for the memory effects in blood. At high shear rates, they
disaggregate forming smaller rouleaux, and later individual cells, that are charac-
terized by distinct relaxation times. They lose their ability to store elastic energy
and the dissipation is primarily due to the internal friction. Upon cessation of
shear, the entire rouleaux network is randomly arranged and may be assumed to
be isotropic with respect to the current natural configuration. Thurston [28] was
among the earliest to recognize the viscoelastic nature of blood and that the vis-
coelastic behavior is less prominent with increasing shear rate. He proposed a



Numerical Study of the Non-Newtonian Nature of Blood 85

generalized Maxwell model that was applicable to one dimensional flow simula-
tions and observed later that, beyond a critical shear rate, the non-linear behavior is
related to the microstructural changes that occur in blood [29]. Thurston’s work was
suggested to be more applicable to venous or low shear unhealthy blood flow than to
arterial flows. Recently, a generalized Maxwell model related to the microstructure
of blood, inspired on the behavior of transient networks in polymers, and exhibiting
shear-thinning, viscoelasticity and thixotropy, has been derived by Owens [21].

Other viscoelastic constitutive models for describing blood rheology have been
proposed in the recent literature. The empirical three constant generalized Oldroyd-
B model studied in [33] belongs to this class. It has been obtained by fitting exper-
imental data in one dimensional flows and generalizing such curve fits to three
dimensions. This model captures the shear-thinning behavior of blood over a large
range of shear rates but it has its limitations, given that the relaxation times do not
depend on the shear rate, which does not agree with experimental observations. The
model developed by Anand and Rajagopal [1] in the general thermodynamic frame-
work stated in [23] includes relaxation times depending on the shear rate and gives
good agreement with experimental data in steady Poiseuille flow and oscillatory
flow.

Non-Newtonian homogeneous continuum models are very significant in hemo-
dynamics and hemorheology. However, it should be emphasized that blood flow
is Newtonian in most parts of the arterial system and attention should be drawn to
flow regimes and clinical situations where non-Newtonian effects of blood can prob-
ably be observed. These include, for normal blood, regions of stable recirculation
like in the venous system and parts of the arterial vasculature where geometry has
been altered and RBC aggregates become more stable, like downstream a stenosis,
inside a saccular aneurysm or in some cerebral anastomoses. In addition, several
pathologies are accompanied by significant changes in the mechanical properties of
blood and this results in alterations in blood viscosity and viscoelastic properties, as
reported in the recent review articles [25, 26].

In what follows we present a comparative numerical study of non-Newtonian
fluid models capturing shear-thinning and viscoelastic effects of blood flow in
a smooth idealized stenosed vessel. Section 2 is devoted to the description of a
number of constitutive models, namely the equations of generalized Oldroyd-B
flows with shear dependent viscosity. The numerical methods and the adopted
stabilization techniques are briefly outlined in Sect. 2. Preliminary results of the
three-dimensional simulations predicted by the constitutive models under physio-
logically relevant conditions are presented in Sect. 4, showing combined effects of
inertia, viscosity and viscoelasticity. The paper ends with concluding remarks.

2 Constitutive Models for Blood

In this section we discuss basic macroscopic constitutive models suitable to capture
both shear-thinning and viscoelastic properties of blood, under certain flow condi-
tions. We recall the equations for the conservation of linear momentum and mass
(incompressibility condition) for isothermal viscous flows
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�
Du
Dt
= div T−∇ p (1)

div u = 0. (2)

Here, u is the velocity field, p is the pressure, � is the density, and D(·)/Dt
denotes the material time derivative. To close the system of equations we require an
equation relating the extra stress tensor T to the kinematic variables.

The simplest constitutive model for incompressible viscous fluids is based on the
assumption that the extra stress tensor is proportional to the symmetric part of the
velocity gradient,

T = 2μD (3)

where μ is a (constant) viscosity and D = (∇u +∇uT )/2 is the rate of deformation
tensor. Substitution of (3) in the linear momentum equation (1) leads to the well
known Navier-Stokes system. As already discussed, this set of equations is com-
monly used to describe blood flow in the heart and healthy arteries but, particularly
at low shear rates, blood exhibits relevant non-Newtonian characteristics and more
complex constitutive models should be used.

2.1 Generalized Newtonian Models

The most general constitutive model of the form T = T(∇u) which satisfies invari-
ance requirements [2] can be written as

T = ϕ1(I ID, IIID)D+ ϕ2(I ID, IIID)D2 (4)

where I ID and IIID are the second and third principal invariants of D

I ID = 1

2

(

(trD)2 − tr
(

D2
))

, IIID = detD (5)

and trD ≡ 0 for isochoric motions. Incompressible fluids of the form (4) are called
Reiner-Rivlin fluids. They include Newtonian fluids as a particular case, correspond-
ing to ϕ1 constant and ϕ2 ≡ 0.

The behavior of real fluids impose some restrictions on the material functions ϕ1

and ϕ2. In fact, there is no evidence of real fluids with non-zero values of ϕ2 and the
dependance on the value of IIID is often neglected [2]. As a result, attention is usu-
ally restricted to a special class of Reiner-Rivlin fluids called generalized Newtonian
fluids

T = 2μ(γ̇ )D (6)
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where γ̇ is the shear rate (a measure of the rate of deformation)1 defined by

γ̇ ≡
√

2tr (D2) =
√

−4I ID (7)

and μ(γ̇ ) is a shear dependent viscosity function.
One of the simplest generalized Newtonian fluids is the power-law, for which the

viscosity function is given by

μ(γ̇ ) = K γ̇ (n−1) (8)

where the positive constants n and K are termed the power-law index and consis-
tency, respectively. This model includes, as a particular case, the constant viscosity
fluid (Newtonian) when n = 1. For n < 1 is leads to a monotonic decreasing func-
tion of the shear rate (shear-thinning fluid) and for n > 1 the viscosity increases
with shear rate (shear thickening fluid). The shear-thinning power-law model is
often used for blood, due to the analytical solutions easily obtained for its governing
equations, but it predicts an unbounded viscosity at zero shear rate and zero viscosity
when γ̇ →∞, which is unphysical.

Viscosity functions with bounded and non-zero limiting values of viscosity can
be written in the general form

μ(γ̇ ) = μ∞ + (μ0 − μ∞)F(γ̇ ) (9)

or, in non-dimensional form as

μ(γ̇ )− μ∞
μ0 − μ∞

= F(γ̇ ). (10)

Here μ0 and μ∞ are the asymptotic viscosity values at zero and infinite shear rates
and F(γ̇ ) is a shear dependent function, satisfying the following natural limit con-
ditions

lim
γ̇→0+

F(γ̇ ) = 1 and lim
γ̇→∞

F(γ̇ ) = 0

Different choices of function F(γ̇ ) correspond to different models for blood flow,
with material constants quite sensitive and depending on a number of factors includ-
ing hematocrit, temperature, plasma viscosity, age of RBCs, exercise level, gender
or disease state. The generalized Cross model given by

μ(γ̇ ) = μ∞ + μ0 − μ∞
(

1+ (λγ̇ )b
)a (11)

1 For isochoric motions I ID is not a positive quantity.
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contains other models as special cases and has been adopted in our numerical
simulations. Parameters λ, a and b have been obtained by nonlinear regression
analysis. Commonly used values found in literature are [17]:

μ0 = 1.6 · 10−1 Pa · s μ∞ = 3.6 · 10−3 Pa · s
a = 1.23, b = 0.64 λ = 8.2 s

2.2 Viscoelastic Models

One of the simplest rate type models accounting for the viscoelasticity of blood is
the Maxwell model

T+ λ1
δT
δt
= 2μD (12)

where λ1 is the relaxation time and δ(·)/δt stands for the so-called convected deriva-
tive, a generalization of the material time derivative, chosen so that δT/δt is objec-
tive under a superposed rigid body motion and the resulting second-order tensor is
symmetric [24].

A more general class of rate type models, called Oldroyd type models, can be
defined by

T+ λ1
δT
δt
= 2μ

(

D+ λ2
δD
δt

)

(13)

where the material coefficient λ2, denotes the retardation time. and is such that
0 ≤ λ2 < λ1. The Oldroyd type fluids can be considered as Maxwell fluids with
additional viscosity. These models contain the previous two models (3) and (12) as
particular cases.

In order to better understand the theory of viscoelasticity it is instructive and
useful to illustrate typical behaviors of viscoelastic materials by simple mechanical
models, where a dashpot (piston moving inside a cylinder filled with liquid) repre-
sents a viscous (Newtonian) fluid and a spring stands for an elastic (Hookean) solid.
These elements can be connected in series or in parallel and their combinations
can represent various deformation-stress models to analyze the behavior of different
viscoelastic materials [19, 13, 7]. The one-dimensional mechanical analogue to (12)
can be represented by an elastic spring and a dashpot in series, as shown in Fig. 1.
Here, the speed of movement γV is an analogue of the rate of deformation, the
coefficient of proportionality μ (for the viscous element) is an analogue of viscosity,
γE can be treated as a relative deformation, G as the elastic modulus and the force
τ is an analogue of the extra stress T in (12)). The ratio between the viscosity μ and
elastic modulus G is hidden in the relaxation time parameter λ1.

The combination of the Newtonian model and the Maxwell model joined in par-
allel is shown in Fig. 2 which represents the mechanical analogue to the Oldroyd
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m G
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gV gE

Fig. 1 Mechanical analogue of the Maxwell model

model (13). Here the total viscosity μ is defined as μ = μs + μe, where μs and μe

are the solvent and the elastic viscosity coefficients. Moreover, parameters λ1, λ2

are defined by

e

G

t t

t

ts

ms

me

g = gs 
= ge

t = ts 
+ te

Fig. 2 Mechanical analogue of an Oldroyd-type model

λ1 = μe

G
, λ2 = λ1

μs

μs + μe
(14)

and are such that 0 ≤ λ2 < λ1 (assuming μe is not zero).
The total force τ can be expressed as the sum of the Newtonian solvent contri-

bution τs and its viscoelastic counterpart τe. In a similar manner, the extra stress
tensor T in Eq. (13) is decomposed into its Newtonian part Ts and its elastic part
Te, T = Ts + Te, such that Ts = 2μsD and Te satisfies a constitutive equation of
Maxwell type, namely

Te + λ1
δTe

δt
= 2μeD (15)

2.2.1 Convected Derivatives and Oldroyd-B Model

The general expression for a one-parameter family of convected derivatives of a
tensor M is given by2

2 This is sometimes referred as Gordon-Schowalter derivative with parameter a = ξ − 1 where ξ
is called slip parameter.
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(
δM
δt

)

a

= DM
Dt

−WM+MW+ a(DM+MD), a ∈ [−1, 1] (16)

where W represents the anti-symmetric part of the velocity gradient. The idea of
objective derivatives is to take the time derivative with respect to a reference frame
suitably fixed to the body. Different choices of body-fixed frames will yield differ-
ent objective derivatives. A few classical examples of possible objective convected
derivatives δM

δt are shown in Table 1 (L = 2D).

Table 1 Commonly used convected derivatives

Name Notation Definition Parameter a

Lower-convected
�
M

DM
Dt

+ LT M+ML 1

Upper-convected
�
M

DM
Dt

− LM−MLT −1

Co-rotational (Jaumann)
◦

M
DM
Dt

−WM+MW 0

The particular values a = 1, 0 and −1 correspond respectively to the lower-
convected, co-rotational and upper-convected Maxwell or Oldroyd-type (Oldroyd-A
and Oldroyd-B) models. When −1 < a < 1, the Maxwell and Oldroyd-type fluids
are often referred to as nonlinear Maxwell and Oldroyd fluids, or Johnson-Segalman
fluids [16]. For the upper-convected Maxwell and Oldroyd-B fluids the second nor-
mal stress difference is equal to zero. It turns out that this is not observed in visco-
metric experiments with many real fluids but, since this coefficient has been found to
be small, upper-convected Maxwell and Oldroyd-B are often used to model the vis-
coelastic behavior of real fluids, like blood. However, these models do not account
for shear-thinning viscosity. A number of models have already been considered that
include both shear-thinning and viscoelastic effects, as mentioned above.

We now recall Eq. (15) for the elastic part of the extra stress tensor. It can be
rewritten as

δTe

δt
= 2μe

λ1
D− 1

λ
Te (17)

or, in terms of the classical material time-derivative, as

DTe

Dt
+

(
δTe

δt
− DTe

Dt

)

= 2μe

λ1
D− 1

λ1
Te, (18)

with the term in brackets representing a kind of “objective correction” of the mate-
rial time-derivative. Moving this term to the right-hand side and expanding the
remaining time-derivative on the left, we get the following transport equation for Te
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∂Te

∂t
+ (u ·∇) Te = 2μe

λ1
D− 1

λ1
Te −

(
δTe

δt
− DTe

Dt

)

. (19)

Using Eq. (16) with a = −1, corresponding for the upper-convected derivative
(Table 1), transport equation (19) becomes

∂Te

∂t
+ (u ·∇) Te = 2μe

λ1
D− 1

λ1
Te + (WTe − TeW)+ (DTe + TeD) (20)

This is the constitutive equation for an Oldroyd-B fluid. It has one source term and
one sink term. The sink term corresponds to an exponential time decay of Te at the
time-scale related to relaxation time λ1. The parameter λ1 can thus be regarded as
a kind of the “memory time-scale” of the fluid, i.e. the measure of time for which
the fluid particle “remembers” that it was previously exposed to a shear stress. The
shear stress contributes to the Te via the source term, which is proportional to μeD.

Qualitative changes in the model response to variations of λ1 could be deduced
from two limit cases. As λ1 → 0, the first two terms on the righ-hand side of
Eq. (20) become dominant. They balance each other and therefore in this case we
have Te = 2μeD. It means the fluid has no “memory” and behaves like a simple
Newtonian fluid. In the opposite case, when λ1 → ∞, both source and sink terms
disappear from Eq. (20) and thus δTe/δt = 0. The extra stress Te is conserved, i.e.
it is only advected by the flow, and is decoupled from the momentum equations.

Remark 1 An important non-dimensional parameter characterizing the viscoelastic
effects in the flow is the Weissenberg number defined as W e = λ1U

L , where U
denotes a characteristic velocity and L is a characteristic length of the flow. In this
case the Weissenberg number can be interpreted as the ratio between “memory”
and advection time-scales. It relates the relaxation time to the time the fluid particle
needs to pass the distance L while advected at speed U .

2.3 Models Summary

The basic conservation laws for linear momentum (1) and mass (2) are used with
the following constitutive equations

T = Ts + Te (21)

Ts = 2μs(γ̇ )D (22)

∂Te

∂t
+ (u ·∇) Te = 2μe

λ1
D− 1

λ1
Te + (WTe − TeW)+ (DTe + TeD), (23)

where the constant viscosity μ can be replaced by the shear dependent viscosity
μs(γ̇ ) given by (11), with parameters listed in Sect. 2.1.

Summarizing the above discussion, four specific models with special parameter
settings will be used in the simulations:
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Newtonian μs(γ̇ ) = μ∞ Te ≡ 0
Generalized Newtonian μs(γ̇ ) Te ≡ 0
Oldroyd-B μs(γ̇ ) = μ∞ Te

Generalized Oldroyd-B μs(γ̇ ) Te

Experimental parameter choices will be presented in Sect. 4.1.
These equations can be solved for the variables velocity, pressure and shear

stress, provided the viscosity function, flow parameters and appropriate boundary
conditions are given.

With respect to boundary conditions for the Navier-Stokes and generalized
Navier-Stokes equations, it is necessary to prescribe either the velocity or the sur-
face traction force (Dirichlet or Neumann boundary conditions, respectively) at the
inflow boundary. Usually, physiological data are not available and a fully devel-
oped Poiseuille velocity profile (or the Womersley solution, in the unsteady case)
can be prescribed. This is an acceptable idealization of the inflow condition in
relatively long straight vessel segments. At the vessel wall, the no-slip condition,
expressing that the velocity at the wall boundary is the wall velocity, is appropri-
ate. At the outflow boundary, a condition prescribing surface traction force can be
applied.

The Oldroyd-B and generalized Oldroyd-B models are of mixed
elliptic-hyperbolic type (or parabolic-hyperbolic, in the unsteady case). The extra
stresses behave hyperbolic, which means that they are only determined by past time.
For these models the boundary conditions are the same as for the Navier-Stokes and
generalized Navier-Stokes equations, supplemented by the specification of all the
stress components representing the fluid memory at the inlet boundary [16].

3 Numerical Methods

The numerical solutions of the above described models are obtained using a three-
dimensional code based on a finite-volume semi-dicretization in space, and an
explicit Runge-Kutta time integration scheme (see also [6]. We search for steady
solutions by a time-marching approach, i.e. the unsteady governing systems are
solved with steady boundary conditions and stationary solutions are recovered when
t →∞.

An artificial compressibility formulation [30], often used in steady flow simula-
tions, is applied to resolve pressure and to enforce the divergence-free constraint.
The continuity equation (2) is modified by adding the time-derivative of pressure
properly scaled by the artificial speed of sound c, as follows:

1

c2

∂p

∂t
+ div u = 0 (24)
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3.1 Space Discretization

The computational mesh is structured, consisting of hexahedral primary control
volumes. To evaluate the viscous fluxes also dual finite volumes are needed. They
have octahedral shape and are centered around the corresponding primary cell faces.
Figure 3 shows a schematic representation of this configuration. The same grid is
used for the calculation of both, flow field and stress tensor. Thus it is natural to use
the same method for solving the Navier-Stokes (or generalized Navier-Stokes) equa-
tions and the transport equation for the extra stress tensor. The algorithm described
below for the flow variables W, is directly applied to the calculation of the extra
stress tensor Te.

System of Eqs. (1) and (24) can be rewritten in vector form, namely3

R̃Wt + Fx + Gy +Hz = Rx + Sy + Tz (25)

where W = (0, u, v, w)T , the inviscid flux vectors are denoted

F = (u, u2+ p, uv, uw)T , G = (v, uv, v2+ p, vw)T , H = (w, uw, vw,w2+ p)T ,

and the viscous fluxes by

Fig. 3 Finite-volume grid in 3D

R = (0, μux , μvx , μwx )T , S = (0, μuy, μvy, μwy)T , T = (0, μuz, μvz, μwz)T .

Here R̃ = diag(0, 1, 1, 1) is a diagonal matrix. Due to the artificial compressibility
used in our model (24), R̃ is modified and replaced by R = diag(1/c2, 1, 1, 1).4

Using this notation, the spatial finite-volume semi-discretization can be written as

3 Subscripts t xyz denote partial derivatives with respect to time and x, y, z coordinates
4 Here, for simplicity, the artificial speed of sound c is equal to 1 and therefore the matrices R and
R̃ do not appear in the equations
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∂Wi jk

∂t
= − 1

|D|
∮

∂D

[

(F− R), (G− S), (H− T)
]

· ν̂ d S. (26)

Here D denotes the computational cell, ν̂ is the outer unit normal vector to the cell
boundary and d S is the surface element of this boundary. The operator on the right
hand side is still exact at this stage and should be properly discretized replacing the
fluxes by their numerical approximations.

The inviscid flux integral can be approximated using centered cell fluxes, e.g. the
value of the flux F on each cell face is computed as the average of cell-centered
values from both sides of this face, and the contribution of inviscid fluxes is finally
summed up over the cell faces. The discretization of viscous fluxes (appearing in
the generalized Newtonian or generalized Oldroyd-B model (Sect. 2.3)) is more
complicated since vectors R,T involve the derivatives of the velocity components
that need to be approximated at cell faces. This can be done using a dual finite-
volume grid, with octahedral cells, centered around the corresponding faces. The
evaluation of the velocity gradient components is then replaced by the evaluation of
the surface integral over the dual volume boundary. Finally, this surface integral is
approximated by a discrete sum over the dual cell faces. The values of the velocity
components in the middle nodes of these faces are taken as an average of the values
in the corresponding vertices.

3.2 Time Advancing Scheme

After the discretization with respect to the space variables, and since we are solving
a transient problem, we need to consider the time discretization as well. We obtain
a system of ordinary differential equations of the form

dWijk

dt
= −LWi, j,k . (27)

For simplicity, as for the discretization in space, the same time integration scheme
is used for both the flow field W and the extra stress tensor Te. System (27) is solved
by an efficient and robust modified Runge-Kutta four-stage method (outlined in [15]
and further refined in [14]). The idea behind this modified approach lies in splitting
the space discretization operator into its inviscid and viscous parts. The momentum
operator is evaluated at each RK stage, while the viscous operator is evaluated in
just a few more stages. This corresponds to the use of different RK coefficients for
time integration of momentum and viscous fluxes. The modified algorithm can be
written in the form

W(0)
i, j,k =Wn

i, j,k

W(r )
i, j,k =W(0)

i, j,k − α(r )Δt
(

Q(r−1) +D(r−1)
)

r = 1, . . . , s

Wn+1
i, j,k =W(s)

i, j,k

(28)
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Here the space discretization operator at stage (r ) is split as follows

LW(r )
i, j,k = Q(r ) +D(r ). (29)

The momentum flux Q is evaluated in the usual way at each stage

Q(r ) = QW(r )
i, j,k with Q(0) = QWn

i, j,k, (30)

and the viscous flux D uses a blended value from the previous stage and the actual
stages, according to the rule

D(r ) = β(r )DW(r )
i, j,k + (1− β(r ) )D(r−1) with D(0) = DWn

i, j,k . (31)

Coefficients α(r ) and β(r ) are chosen to guarantee a large enough stability region
for the Runge-Kutta method. The following set of coefficients was used in this study

α(1) = 1/3 β(1) = 1
α(1) = 4/15 β(1) = 1/2
α(1) = 5/9 β(1) = 0
α(4) = 1 β(4) = 0

When this four-stage method is used, only two evaluations of the dissipative
terms are needed. This saves a significant amount of calculations while retaining
the advantage of a large stability region. Further admissible sets of coefficients and
remarks on the efficiency and robustness of these methods can be found in [15, 14]
and references therein.

3.3 Numerical Stabilization

A well known property of central schemes is the existence of non-physical oscilla-
tions in the solution, mainly due to the presence of strong gradients. Several proce-
dures may be considered to avoid these phenomena. A pressure stabilization tech-
nique, widespread in finite elements, is used in the present simulations to prevent
oscillations in the pressure, and to stabilize the whole numerical method (see e.g.
[30]). It consists in adding a pressure dissipation term (Laplacian) into the right-
hand side of the modified continuity equation (24), which takes the form

∂p

∂t
+ c2div u = εΔp (32)

This type of numerical stabilization has some advantages over the classical artifi-
cial diffusion applied to the velocity components. First, the artificial effects induced
by the pressure dissipation term do not interfere with the physical constant or
shear dependent viscosity. Moreover, this stabilization term contains only second
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derivatives of the pressure and will vanish if pressure is a linear function of space
coordinates, which is for example the case of Poiseuille flow with linear pressure
decay along the flow axis. Details can be found in [5]. See also [20] for other stabi-
lization techniques.

4 Numerical Simulations and Results

4.1 Computational Domain and Model Parameters

In this study numerical simulations are performed to model blood flow in a three-
dimensional geometric idealized non-symmetric (with respect to the bulk flow direc-
tion) cosine-shaped stenosed vessel shown in Fig. 4. The vessel is axisymmetric,
rigid-walled, with length L = 10R = 31 mm and diameter D = 2R = 6.2 mm.
The diameter is reduced to one half in the stenosed region, which leads to a 4 : 1
cross-sectional area reduction and thus to a significant speed-up of the local flow.

R 2R

R2R 2R 5R

10R

Fig. 4 Stenosis

The whole domain is discretized using a structured multiblock mesh with hexa-
hedral cells. To avoid high cells distortion, the mesh is wall fitted with uniform axial
cell spacing, as shown in Fig. 5. The outer mesh block has 40× 16× 80 cells, while
the central mesh block has 10× 10× 80 control volumes.

Numerical simulations have been obtained under physiological conditions, using
the values already introduced in Sect.2.1 for the Cross model, as well as the follow-
ing parameters used for blood flow in the carotid artery (see [17]):

U0 = 6.62 cm · s−1 L0 = 2R = 0.0062 m

μe = 4.0 · 10−4 Pa · s μs = 3.6 · 10−3 Pa · s
μ0 = μ = μs + μe μ∞ = μs

λ1 = 0.06 s � = 1050 kg ·m−3

Re
.= �U0 L0

μ0
= 100 W e

.= λ1U0
L0

= 0.6

Using these data fully developed Poiseuille velocity profile is prescribed at the
inlet (Dirichlet condition) and the flow rate is set to Q = 2 cm3 s−1. At the outlet
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Z

X Y

Fig. 5 Computational grid structure

we impose homogeneous Neumann conditions for the velocity components and a
constant pressure. On the vessel walls no-slip homogeneous Dirichlet conditions
are prescribed for the velocity field. In the case of the Oldroyd-B and generalized
Oldroyd-B models, homogeneous Neumann conditions are imposed for the compo-
nents of the extra stress tensor at all boundaries.

4.2 Numerical Results

Using the different models described in Sect. 2 we investigate the influence of
shear-thinning and viscoelastic effects on the qualitative behavior of blood flow in a
stenosed idealized three-dimensional vessel.

Figure 6, 7, 8 and 9 show the axial velocity contours corresponding to the models
described above, using the same color scale (units in m/s) as in Fig. 6. To emphasize
the flow separation behind the stenosis, the regions of reversal flow (with respect to
axial direction) are marked with grey color. Upstream the stenosis, separated flow
can be seen, with a faster axial velocity for the Newtonian flow (Fig. 6) than for the
non-Newtonian flows (Fig. 7, 8 and 9). The slowest axial velocity corresponds to
the generalized Oldroyd-B flow (Fig. 9).

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Fig. 6 Axial velocity contours for the Newtonian flow with viscosity μ = μ∞
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Fig. 7 Axial velocity contours for the Oldroyd-B flow

Fig. 8 Axial velocity contours for the generalized Newtonian flow (with shear-thinning viscosity)

Fig. 9 Axial velocity contours for the generalized Oldroyd-B flow (with shear-thinning viscosity)

The behavior is similar at the stenosis site but, downstream the stenosis and near
the wall, it becomes different due to the appearance of the recirculation phenomena.
This is better observed in Fig. 10, 11, 12 and 13, showing not only the velocity
vectors and streamlines, but also the recirculation fow patterns downstream the
stenosis. In the four test cases the flow structure is similar but the impact of the
non-Newtonian effects is non-negligible. The axial velocity close to the wall is
negative, developing a backflow, and the Newtonian flow is slower than the non-
Newtonian ones. The recirculating region is larger for the Newtonian flow (Fig. 10),
and we also observe that the shear-thinning and viscoelastic fluid behavior have a

Fig. 10 Streamlines and velocity vectors for the Newtonian flow with viscosity μ = μ∞
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Fig. 11 Streamlines and velocity vectors for the Oldroyd-B flow

Fig. 12 Streamlines and velocity vectors for the generalized Newtonian flow (with shear-thinning
viscosity)

Fig. 13 Streamlines and velocity vectors for the generalized Oldroyd-B flow (with shear-thinning
viscosity)

similar influence reducing the recirculating region (Fig. 11 and 12), which becomes
remarkably shorter when both effects are added (Fig. 13).

The comparison of pressure distributions relative to the four test cases (Fig. 14,
15, 16 and 17) exhibits visible differences. As expected, the pressure drop between
inlet and outlet is higher for shear-thinning flows due to the local increase of the
viscosity with respect to the Newtonian flow. Similar effect is observed in the vis-
coelastic flow simulations, where the additional term (extra stress) appearing in the
momentum equations needs to be balanced by an appropriate pressure gradient.

4036322824201612840– 4– 8– 12– 16– 20

Fig. 14 Pressure contours for Newtonian flow with viscosity μ = μ∞
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Fig. 15 Pressure contours for the Oldroyd-B flow

Fig. 16 Pressure contours for the generalized Newtonian flow (with shear-thinning viscosity)

Fig. 17 Pressure contours for the generalized Oldroyd-B flow (with shear-thinning viscosity)

A more complete study of the shear-thinning and viscoelastic effects on the
axial velocity contours is shown in Fig. 18, 19 and 20, displaying the differences
between solutions of each pair of Newtonian and non-Newtonian flows considered
as test cases. Color scale (in physical units m/s) is used to emphasize the set of flow
regions ranging from those where differences of solutions are similar (grey color) to
regions of the most significant distinctive flow regime. The axial velocity is slower
in the central part of the stenosis (region of low shear rate) and faster near the wall
(region of high shear rate) due to the shear-thinning behavior of the fluid viscosity
(Fig. 18). Viscoelastic effects can be observed in Fig. 19 and the shear-thinning

– 0.013 – 0.009 – 0.005 – 0.001 0.003

Fig. 18 Axial velocity contours: Difference between the generalized Newtonian and the Newto-
nian solutions
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– 0.013 – 0.009 – 0.005 – 0.001 0. 00 3

Fig. 19 Axial velocity contours: Difference between the Oldroyd-B the Newtonian solutions

– 0.013 – 0.009 – 0.005 – 0.001 0.003

Fig. 20 Axial velocity contours: Difference between the generalized Oldroyd-B the generalized
Newtonian solutions

impact in the viscoelastic flow behavior can be detected comparing Fig. 19 and 20.
Examining these figures we conclude that flow changes induced by shear-thinning
and viscoelastic effects are comparable in magnitude, but differ significantly in their
structure.

The viscoelastic fluid behavior is represented in the equations of linear momen-
tum by the divergence of the extra stress tensor Te. The above described differ-
ences between the Oldroyd-B and the Navier-Stokes solutions are therefore a direct
consequence of the presence of this term. The magnitude and sign of div Te are
related to the flow acceleration and deceleration. The contours shown in Fig. 21 and
22 can be interpreted as a measure of the flow acceleration in the axial direction
due to the viscoelastic effects in the stenotic region. Axial acceleration distribution
suffers large variations in this region, and the fluid is exposed to higher stresses and
wall shear stresses, with the greatest values at the point of maximum stenosis As a
consequence, viscoelastic effects are enhanced in the stenosis, they are advected by

– 300 – 180 – 60 60 180 300

Fig. 21 Contours of the axial component of the extra stress tensor for the Oldroyd-B model
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– 300 – 180 – 60 60 180 300

Fig. 22 Contours of the axial component of the extra stress tensor for the generalized Oldroyd-B
model

the flow along the vessel and decay in time. Grey color is used in areas where the
viscoelastic effects are relatively small.

5 Conclusions and Remarks

The numerical results have shown important non-Newtonian effects for steady flow
in a stenosed vessel, related to the rheological models used for blood under the
chosen experimental data (Sect. 2.3).

Differences of solutions have been compared for these models, showing that the
shear-thinning effect is more pronounced than the viscoelastic one and is mainly
localized in the proximity of the stenosed region (Fig. 18, 19 and 20). Deceleration
(with respect to Newtonian flow) in the central part of the vessel, downstream the
stenosis, gives a flatter velocity profile and results in a marked flow acceleration
near the vessel wall. This is a typical behavior of shear-thinning flows that can
be neglected for very low or very high shear rates, where the asymptotic viscosity
values can be considered.

Concerning the evaluation of the impact of viscoelasticity in the flow, we need
to emphasize that the elastic component of the extra stress tensor Te is generated in
regions with high velocity gradients, then it is advected by the flow and decays in
time. In fact, as we can observe comparing Fig. 18 and Fig. 19 and 20 is that a signif-
icant influence of the viscoelastic behavior related to flow acceleration/deceleration
is only evident dowstream the stenosis. In the present simulation test cases it is clear
that the computational domain was not long enough to allow for the full relaxation of
the extra stress and thus the differences between viscoelastic and non-viscoelastic
solutions are still present at the outlet. On the other hand, it should be noted that
the elastic extra stress contributes to the flow acceleration/deceleration through its
divergence (equation of linear momentum (1)) and thus it is not the magnitude of
the stress that counts, but the magnitude of the “space variation” of the extra stress
that influences the flow. This is shown in Fig. 21 and 22 where the contours of the
axial component of the extra stress are depicted. It is clearly visible that the highest
flow acceleration/deceleration appears in regions of flow recirculation and drops
very quickly otherwise.
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To gain further insight into some of the problems discussed above, unsteady flow
on different stenotic geometries and hemodynamical control quantities such as the
wall shear stress (WSS) distribution and the oscillatory shear index (OSI) could be
considered (see e.g. [3, 8]) to provide some understanding of the significance of the
non-Newtonian characteristics of blood on the genesis of atherosclerosis and other
arterial lesions.
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A Priori Convergence Estimates for a Rough
Poisson-Dirichlet Problem with Natural Vertical
Boundary Conditions

Eric Bonnetier, Didier Bresch, and Vuk Milišić

Abstract Stents are medical devices designed to modify blood flow in aneurysm
sacs, in order to prevent their rupture. Some of them can be considered as a locally
periodic rough boundary. In order to approximate blood flow in arteries and vessels
of the cardio-vascular system containing stents, we use multi-scale techniques to
construct boundary layers and wall laws. Simplifying the flow we turn to consider a
2-dimensional Poisson problem that conserves essential features related to the rough
boundary. Then, we investigate convergence of boundary layer approximations and
the corresponding wall laws in the case of Neumann type boundary conditions at the
inlet and outlet parts of the domain. The difficulty comes from the fact that correc-
tors, for the boundary layers near the rough surface, may introduce error terms on
the other portions of the boundary. In order to correct these spurious oscillations, we
introduce a vertical boundary layer. Trough a careful study of its behavior, we prove
rigorously decay estimates. We then construct complete boundary layers that respect
the macroscopic boundary conditions. We also derive error estimates in terms of
the roughness size ε either for the full boundary layer approximation and for the
corresponding averaged wall law.

Keywords Wall-laws · Rough boundary · Laplace equation · Multi-scale
modelling · Boundary layers · Error estimates

1 Introduction

A common therapeutic treatment to prevent rupture of aneurysms, in large arteries
or in blood vessels in the brain, consists in placing a device inside the aneurysm sac.
The device is designed to modify the blood flow in this region, so that the blood
contained in the sac coagulates and the sac can be absorbed into the surrounding
tissue. The traditional technique consists in obstructing the sac with a long coil. In
a more recent procedure, a device called stent, that can be seen as a second artery

V. Milisic (B)
LJK-IMAG, UMR 5523 CNRS, 38041 Grenoble cedex 9, France
e-mail: Vuk.Milisic@imag.fr

R. Rannacher, A. Sequeira (eds.), Advances in Mathematical Fluid Mechanics,
DOI 10.1007/978-3-642-04068-9 7, C© Springer-Verlag Berlin Heidelberg 2010

105



106 E. Bonnetier et al.

wall, is placed so as to close the inlet of the sac. We are particularly interested
in stents produced by a company called Cardiatis, which are designed as multi-
layer wired structures. Clinical tests show surprising bio-compatibility features of
these particular devices and one of our objectives is to understand how the design
of these stents affect their effectiveness. As stent thicknesses are small compared to
the characteristic dimensions of the flow inside an artery, studying their properties
is a challenging multi-scale problem.

In this work we focus on the fluid part and on the effects of the stent rugosity
on the fluid flow. We simplify the geometry to that of a 2-dimensional box Ωε, that
represents a longitudinal cut through an artery: the rough base represents the shape
of the wires of the stent (see Fig. 2, left). We also simplify the flow model and
consider a Poisson problem for the axial component of the velocity. Our objective
is to analyze precisely multi-scale approximations of this simplified model, in terms
of the rugosity.

In [4] we considered periodic inflow and outflow boundary conditions on the
vertical sides Γin ∪ Γout of Ωε. Here, we study the case of more realistic Neumann
conditions on these boundaries, which are consistent with the modelling of a flow
of blood.

As a zeroth order approximation to uε, we consider the solution ũ0 of the same
PDE, posed on a smooth domain Ω0 strictly contained in Ωε. We introduce bound-
ary layer correctors β and τ that correct the incompatibilities between the domain
and ũ0. These correctors induce in turn perturbations on the vertical sides Γin∪Γout

of Ωε. We therefore consider additional correctors ξin and ξout, that should account
for these perturbations (see Fig. 1). We also introduce a first order approximation,
defined in Ω0, that satisfies a mixed boundary condition (called Saffman-Joseph
wall law) on a fictitious interface Γ 0 located inside Ωε.

For the case of Navier-Stokes equations and the Poiseuille flow the problem
was already considered in Jäger et al. [11, 10] but the authors imposed Dirichlet
boundary conditions on Γin ∪ Γout for the vertical velocity and pressure. Their
approach provided a localized vertical boundary layer in the ε-close neighborhood
of Γin ∪ Γout . A convergence proof for the boundary layer approximation and the

Fig. 1 The exact solution, the multi-scale framework and wall laws
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wall law was given wrt to ε, the roughness size. These arguments are specific to
the case of Poiseuille flow and differ from the general setting given in the homog-
enization framework [19]. In this work, we address the case of Neumann boundary
conditions, where the above methods do not apply. The difficulty in this case, stems
from the “pollution” on the vertical sides due to the bottom boundary layer correc-
tors.

From our point of view, the originality of this work emanate from the following
aspects :

– the introduction of a general quarter-plane corrector ξ that reduces the oscil-
lations of the periodic boundary layer approximations on a specific region of
interest. Changing the type of boundary conditions implies only to change the
boundary conditions of the quarter-plane corrector on a certain part of the micro-
scopic domain.

– the analysis of decay properties of this new corrector: indeed we use techniques
based on weighted Sobolev spaces to derive some of the estimates and we com-
plete this description by integral representation and Fragmen-Lindelöf theory in
order to derive sharper L∞ bounds.

– we show new estimates based on duality on the traces and provide a weighted
correspondence between macro and micro features of test functions of certain
Sobolev spaces.

The error between the wall-law and the exact solution is evaluated on Ω0, the
smooth domain above the roughness, in the L2(Ω0) norm. This relies on very weak
estimates [18] that moreover improve a priori estimates by a

√
ε factor. While this

work focuses on the precise description of vertical boundary layer correctors in the
a priori part, a second article extends our methods to the very weak context [16] in
order to obtain optimal rates of convergence also for this step.

The paper is organized as follows: in Sect. 2, we present the framework (includ-
ing notations, domains characteristics and the toy PDE model under consideration),
in Sect. 3, we give a brief summary of what is already available from the periodic
context [4] that should serve as a basis for what follows, in Sect. 4 we present a
microscopic vertical boundary layer and its careful analysis in terms of decay at
infinity, such decay properties will be used in Sect. 5 in the convergence proofs
for the full boundary layer approximation as well as in the corresponding wall law
analysis.

2 The Framework

In this work, Ωε denotes the rough domain in R
2 depicted in Fig. 2, Ω0 denotes

the smooth one, Γ ε is the rough boundary and Γ 0 (resp. Γ 1) the lower (resp. upper)
smooth one (see Fig. 2). The rough boundary Γ ε is described as a periodic repetition
at the microscopic scale of a single boundary cell P0. The latter can be parameter-
ized as the graph of a Lipschitz function f : [0, 2π [→] − 1 : 0[, the boundary is
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then defined as

P0 = {y ∈ [0, 2π ]×]− 1 : 0[ s.t. y2 = f (y1)}. (1)

Moreover we suppose that f is bounded and negative definite, i.e. there exists a
positive constant δ such that 1−δ < f (y1) < δ for all y1 ∈ [0, 2π ]. The lower bound
of f is arbitrary and it is useful only in order to define some weight function see
Sect. 4. We assume that the ratio between L (the width of Ω0) and 2πε (the width of
the periodic cell) is always a positive integer. We consider a simplified setting that
avoids theoretical difficulties and non-linear complications of the full Navier-Stokes
equations. Starting from the Stokes system, we consider a Poisson problem for the

Fig. 2 Rough, smooth and cell domains

axial component of the velocity. The axial component of the pressure gradient is
assumed to reduce to a constant right hand side C . If we set periodic inflow and
outflow boundary conditions, the simplified formulation reads : find uε such that

⎧

⎪⎨

⎪⎩

−Δuε
# = C, in Ωε,

uε
# = 0, on Γ ε ∪ Γ 1,

uε
# is x1 periodic.

(2)

In Sect. 3 we should give a brief summary of the framework already introduced in
[4]. Nevertheless the main concern of this work is to consider the non periodic set-
ting (see Sect. 4) where we should consider an example of a more realistic inlet and
outlet boundary conditions. Namely, we look for approximations of the problem:
find uε such that

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δuε = C, in Ωε,

uε = 0, on Γ ε ∪ Γ 1,

∂uε

∂n
= 0, on Γin ∪ Γout.

(3)

In what follows, functions that do depend on y = x/ε should be indexed by an ε

(e.g. Uε = Uε(x, x/ε)).
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3 Summary of the Results Obtained in the Periodic Case

3.1 The Cell Problems

3.1.1 The First Order Cell Problem

The rough boundary is periodic at the microscopic scale and this leads to solve the
microscopic cell problem [4]: find β s.t.

⎧

⎪⎨

⎪⎩

−Δβ = 0, in Z+ ∪ Γ ∪ P,

β = −y2, on P0,

β is y1 − periodic .

(4)

We define the microscopic average along the fictitious interface Γ : β =
1

2π

∫ 2π
0 β(y1, 0)dy1. As Z+ ∪ Γ ∪ P is unbounded in the y2 direction, we define

also

D1,2 = {v ∈ L1
loc(Z+ ∪ Γ ∪ P)/ Dv ∈ L2(Z+ ∪ Γ ∪ P)2, v is y1 − periodic},

then one has the result:

Theorem 1 Suppose that P0 is sufficiently smooth ( f is Lipschitz) and does not
intersect Γ . Let β be a solution of (4), then it belongs to D1,2. Moreover, there
exists a unique periodic solution η ∈ H

1
2 (Γ ), of the problem

< Sη,μ >=< 1, μ >, ∀μ ∈ H
1
2 (Γ ),

where <,> is the (H− 1
2 (Γ ), H

1
2 (Γ )) duality bracket, and S the inverse of the

Steklov-Poincaré operator. One has the correspondence between β and the interface
solution η :

β = HZ+η + HPη,

where HZ+η (resp. HPη) is the y1-periodic harmonic extension of η on Z+ (resp. P).
The solution in Z+ can be written explicitly as a power series of Fourier coefficients
of η and reads:

HZ+η = β(y) =
∞
∑

k=−∞
ηkeiky1−|k|y2 , ∀y ∈ Z+, ηk =

∫ 2π

0
η(y1)e−iky1 dy1,

In the macroscopic domain Ω0 this representation formula gives

∥
∥
∥β

( ·
ε

)

− β

∥
∥
∥

L2(Ω0)
≤ K

√
ε‖η‖

H
1
2 (Γ )

. (5)
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3.1.2 The Second Order Cell Problem

The second order error on Γε should be corrected thanks to a new cell problem: find
γ ∈ D1,2 solving

⎧

⎪⎨

⎪⎩

−Δτ = 0, ∀y ∈ Z+ ∪ Γ ∪ P,

τ = −y2
2 , ∀y2 ∈ P0,

τ periodic in y1.

(6)

Again, the horizontal average is denoted τ . In the same way as for the first order
cell problem, one can obtain a similar result:

Proposition 1 Let P0 be smooth enough and do not intersect Γ . Then there exists a
unique solution τ of (6) in D1,2(Z+ ∪ Γ ∪ P).

3.2 Standard Averaged Wall Laws

3.2.1 A First Order Approximation

Using the averaged value β defined above, one can construct a first order approxi-
mation u1 defined on the smooth interior domain Ω0 that solves :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δu1 = C, ∀x ∈ Ω0,

u1 = εβ
∂u1

∂x2
, ∀x ∈ Γ 0, u1 = 0, ∀x ∈ Γ 1,

u1 is x1 − periodic on Γin ∪ Γout,

(7)

whose explicit solution reads :

u1(x) = −C

2

(

x2
2 −

x2

1+ εβ
− εβ

1+ εβ

)

. (8)

Under the hypotheses of Theorem 1, one derives error estimates for the first order
wall law

∥
∥uε

# − u1
∥
∥

L2(Ω0) ≤ K ε
3
2 .

3.2.2 A Second Order Approximation

In the same way one should derive second order averaged wall law u2 satisfying the
boundary value problem:



A Priori Convergence Estimates 111

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δu2 = C, ∀x ∈ Ω0,

u2 = εβ
∂u2

∂x2
+ ε2

2
τ
∂2u2

∂x2
2

, ∀x ∈ Γ 0,

u2 = 0, ∀x ∈ Γ 1, u2 is x1 − periodic on Γin ∪ Γout,

(9)

whose solution exists, is unique [4] and writes :

u2(x) = −C

2

(

x2
2 −

x2(1+ ε2τ )

1+ εβ
− ε(β − ετ )

1+ εβ

)

. (10)

Now, error estimates do not provide second order accuracy, namely we only
obtain

∥
∥uε

# − u2
∥
∥

L2(Ω0) ≤ K ε
3
2 ,

which essentially comes from the influence of microscopic oscillations that this
averaged second order approximation neglects. Thanks to estimates (5), one sees
easily that these oscillations account as ε

3
2 if not included in the wall law approxi-

mation.

3.3 Compact Form of the Full Boundary Layer Ansatz

Usually in the presentation of wall laws, one first introduces the full boundary layer
approximation. This approximation is an asymptotic expansion defined on the whole
rough domain Ωε. In a further step one averages this approximation in the axial
direction over a fast horizontal period and derives in a second step the corresponding
standard wall law.

Thanks to various considerations already exposed in [4], the authors showed that
actually a reverse relationship could be defined that expresses the full boundary
layer approximations as functions of the wall laws. Obviously this works because
the wall laws (defined only on Ω0) are explicit and thus easy to extend to the whole
domain Ωε. Indeed we re-define

u1(x) = C

2

(

(1− x2)x2χ[Ω0] + x2χ[Ωε\Ω0]

)− εβ

1+ εβ
(1− x2), ∀x ∈ Ωε (11)

while we simply extend u2 using the formula (10) over the whole domain. This leads
to write:
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u1,∞
# = u1 + ε

∂u1

∂x2
(x1, 0)

(

β
( x

ε

)

− β
)

,

u2,∞
# = u2 + ε

∂u2

∂x2
(x1, 0)

(

β
( x

ε

)

− β
)

+ ε2

2

∂2u2

∂x2
2

(x1, 0)
(

τ
( x

ε

)

− τ
)

.

(12)

For these first order and second order full boundary layer approximations one
can set the error estimates [4]:

∥
∥uε

# − u1,∞
ε

∥
∥

L2(Ω0) ≤ K ε
3
2 ,

∥
∥uε

# − u2,∞
ε

∥
∥

L2(Ω0) ≤ K e−
1
ε .

Note that the second order full boundary layer approximation is very close to the
exact solution in the periodic case, an important step that this work was aiming to
reach is to show how far this can be extended to a more realistic boundary condi-
tions considered in (3). Actually, convergence rates provided hereafter and in [16]
show that only first order accuracy can be achieved trough the addition of a vertical
boundary layer (see below). For this reason we study in the rest of this paper only
the first order full boundary layer and its corresponding wall law.

4 The Non Periodic Case: A Vertical Corrector

The purpose of what follows is to extend above results to the practical case of (3).
We should show a general method to handle such a problem. It is inspired in a part
from the homogenization framework already presented in [19, 17] for a periodic
media in all directions. The approach below uses some arguments exposed in [3] for
another setting.

4.1 Microscopic Decay Estimates

In what follows we mainly need to correct oscillations of the normal derivative of the
first order boundary layer corrector β on the inlet and outlet Γin∪Γout . For this sake,
we define the notations Π := ∪+∞k=0[Z+ ∪ Γ ∪ P + 2πke1], the vertical boundary
will be denoted E := {0}×] f (0),+∞[ and the bottom B := {y ∈ P0 ± 2kπe1}
(cf. Fig. 3). In what follows we should denote Π ′ := R

2
+, B ′ := R+ × {0} and

E ′ := {0} × R+.
On this domain, we introduce the problem: find ξ such that

⎧

⎪⎪⎨

⎪⎪⎩

−Δξ = 0, in Π,

∂ξ

∂n
(0, y2) = ∂β

∂n
(0, y2), on E,

ξ = 0, on B.

(13)
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Fig. 3 Semi infinite microscopic domains: Π , the rough quarter-plane and Π ′, the smooth one

We define the standard weighted Sobolev spaces : for any given integers (n, p)
and a real α set

W n,p
α (Ω) :=

{

v ∈ D′(Ω) / |Dλv|(1+ �2)
α+|λ|−n

2 ∈ L p(Ω), 0 ≤ |λ| ≤ n
}

where � :=
√

y2
1 + (y2 + 1)2. In what follows we should distinguish between prop-

erties depending on � which is a distance to a point exterior to the domain Π and

r =
√

y2
1 + y2

2 the distance to the interior point (0, 0). These weighted Sobolev
spaces are Banach spaces for the norm

‖ξ‖W m,p
α (Ω) :=

⎛

⎝
∑

0≤|λ|≤m

∥
∥
∥(1+ �2)

α−m+|λ|
2 Dλu

∥
∥
∥

p

L p(Ω)

⎞

⎠

1
p

,

the semi-norm being

|ξ |W m,p
α (Ω) :=

⎛

⎝
∑

|λ|=m

∥
∥
∥(1+ �2)

α−m+|λ|
2 Dλu

∥
∥
∥

p

L p(Ω)

⎞

⎠

1
p

.

We refer to [9, 15, 1] for detailed study of these spaces. We introduce a specific
subspace

Ẇ p,n
α (Π ) = {

v ∈ W p,n
α (Π ) s.t. v ≡ 0 on B

}

.

We begin by some important properties satisfied by ξ that will be used to prove
convergence Theorems 3, 4 and 5. Such estimates will be obtained by a careful study
of the weighted Sobolev properties of ξ as well as its integral representation through
a specific Green function.

Theorem 2 Under the hypotheses of Theorem 1, there exists ξ , a unique solution of
problem (13). Moreover ξ ∈ Ẇ 1,2

α (Π ) with α ∈]−α0, α0[ where α0 := (
√

2/π ) and
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|ξ (y)| ≤ K

�(y)1− 1
2M

, ∀y ∈ R
2
+ s.t. � > 1,

∫ ∞

0

∣
∣
∣
∣

∂ξ

∂y1
(y1, y2)

∣
∣
∣
∣

2

dy1 ≤ K

y1+2α
2

, ∀y2 ∈ R+,

where M is a positive constant such that M < 1/(1− 2α) ∼ 10.

The proof follows as a consequence of every result claimed until the end of
Sect. 4.1.

Lemma 1 In Ẇ 1,2
α (Π ) the semi-norm is a norm, moreover one has

‖ξ‖W 1,2
α (Π) ≤

1

2α0
|ξ |W 1,2

α (Π), ∀α ∈ R.

On the vertical boundary E one has the continuity of the trace operator

‖ξ‖
W

1
2 ,2
α (E)

≤ K‖ξ‖W 1,2
α (Π), ∀α ∈ R,

the weighted trace norm being defined as

W
1
2 ,2

0 (∂Π ) =
{

u ∈ D′(∂Π ) s.t.
u

(1+ �2)
1
4

∈ L2(∂Π ),

∫

∂Π2
l

|u(y)− y(y′)|2
|y − y′|2 ds(y)ds(y′) < +∞

}

,

and

u ∈ W
1
2 ,2
α (∂Π ) ⇐⇒ (1+ �2)

α
2 u ∈ W

1
2 ,2

0 (∂Π ).

The proof is omitted: the homogeneous Dirichlet condition on B allows to estab-
lish Poincaré Wirtinger estimates ([6], vol. I page 56) in a quarter-plane containing
Π . Nevertheless, similar arguments are also used in the proof of Lemma 4.

Lemma 2 The normal derivative g := ∂β

∂y1
(0, y2) is a linear form on Ẇ 1,2

α (Π ) for
every α ∈ R.

Proof In Z+, the upper part of the cell domain, the harmonic decomposition of β
allows to characterize its normal derivative explicitly on E ′. Indeed

g = Re

{ +∞
∑

k=−∞
ikηke−|k|y2

}

χ[E′] + g− =: g+ + g−

where g− is a function whose support is located in y2 ∈ [ f (0), 0]. One has for the
upper part
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∫

E ′
g2
+yα2 dy2 ≤ K‖η‖2

H
1
2 (Γ )

, ∀α ∈ R,

thus g+ is in the weighted L2 space for any power of (1+�2)
1
2 , it is a linear form on

W
1
2 ,2−α (E). For g−, we have no explicit formulation. We analyze the problem (4) but

restricted to the bounded sublayer P . We define β− to be harmonic in P satisfying
β− = η on Γ , where η is the trace on the fictitious interface obtained in Theorem 1
and β− = −y2 on P0. Note that thanks to standard regularity results η ∈ C2(Γ )
because Γ is strictly included in Z+ ∪ Γ ∪ P , [7]. So β solves a Dirichlet y1-
periodic problem in P with regular data. As the boundary is Lipschitz β ∈ H 1(P)
and so on the compact interface Ec := {0} × [ f (0), 0], ∂nβ is a linear form on H

1
2

functions. Then because Ec is compact :

∫

Ec

∂β

∂n
vdy2 ≤

∥
∥
∥
∥

∂β

∂n

∥
∥
∥
∥

H− 1
2 (Ec)

‖v‖
H

1
2 (Ec)

≤ K‖v‖
W

1
2 ,2
α (Ec)

, ∀α ∈ R

��
Lemma 3 If α ∈]− α0 : α0[ there exists ξ ∈ Ẇ 1,2

α (Π ) a unique solution of problem
(13).

Proof The weak formulation of problem (13) reads

(∇ξ,∇v)Π = (g, v)E , ∀ v ∈ C∞(Π ),

leading to check hypothesis of the abstract inf-sup extension of the Lax-Milgram
Theorem [18, 2], for

a(u, v) =
∫

Π+
∇u · ∇v dy, l(v) =

∫ +∞

f (0)

∂β

∂n
v dy2.

By Lemma 2, l is a linear form on W 1,2
α (Π ). It remains to prove the inf-sup like

condition on the bilinear form a. For this purpose we set v = u�2α and we look for
a lower estimate of a(u, v).

a(u, u�2α) =
∫

Π+
∇u · ∇ (

u�2α
)

dy = |u|2
W 1,2

α (Π)
+ 2α

∫

Π+
�2α−1u∇u · ∇� dy

Using Hölder estimates one has

∫

Π+
�2α−1u∇u · ∇�dy ≤

(
∫

Π+
�2α

(
u

�

)2

dy

) 1
2 (∫

Π+
�2α |∇u|2 dy

) 1
2

≤ 1

2α0
|u|2

W 1,2
α (Π)
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In this way one gets

a(u, u�2α) ≥ (1− α

α0
)|u|2

W 1,2
α (Π)

and if α < α0 the inf-sup condition is fulfilled, the rest of the proof is standard and
left to the reader [2]. ��

Thanks to the Poincaré inequality in Π \Π ′ with α = 0, we have

Corollary 1 If a function ξ belongs to Ẇ 1,2
0 (Π ) it satisfies ξ ∈ L2(B ′).

To characterize the weighted behavior of ξ on B ′ we set

ωα(y1) = (y2
1 + 1)

2α−1
2 y1

and we give

Lemma 4 If ξ in Ẇ 1,2
α (Π ) then ξ ∈ L2(B ′, ωα) := {u ∈ D′(B ′) :

∫

B ′ ξ
2ωαdy1

<∞}.
Proof Π is contained in a set R+ × {−1,+∞}. We map the latter with cylindrical
coordinates (�, θ ). Every function of Ẇ 1,2

0 (Π ), extended by zero on the complemen-
tary set of Π , belongs to the space of functions vanishing on the half-line θ = 0.
Using Wirtinger estimates, one has for every such a function.

∫ +∞

1
ξ 2

(

�, arcsin

(
1

�

))

�2αd� ≤
∫ ∞

1

∫ π
2

0
�2α−1 arcsin

(
1

�

) ∣
∣
∣
∣

∂ξ

∂θ

∣
∣
∣
∣

2

�dθd�

≤ K‖ξ‖2
W 1,2

α (Π)

because on B ′, �d� = y1dy1, one gets the desired result. ��
In order to derive local and global L∞ estimates we introduce in this part a

representation formula of ξ on Π ′. As long as we use the representation formula
below, x will be the symmetric variable to the integration variable y. Until the end
of Proposition 2 both x and y are microscopic variables living in Π .

Lemma 5 The solution of problem (13) satisfies ξ (y) ≤ K�−1+ 1
2M for every y ∈ Π ′

such that �(y) ≥ 1. The constant M can be chosen such that M < 1/(1−2α) ∼ 10.

Proof We set the representation formula

ξ (x) =
∫

E ′
Γx g(y2)dy2 +

∫

B ′

∂Γx

∂n
ξ (y1, 0)dy1 =: N (x)+ D(x), ∀x ∈ Π ′, (14)

where the Green function for the quarter-plane is

Γx (y) = 1

4π

(

ln |x − y| + ln |x∗ − y| − ln |x∗ − y| − ln |x − y|) ,
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with x = (x1, x2), x∗ = (−x1, x2), x∗ = (x1,−x2), x = (−x1,−x2).
The Neumann part N (x).
We make the change of variables x = (r cosϑ, r sinϑ) which gives

N := lim
m→∞

m
∑

k=0

ηk Nk

= lim
m→∞

m
∑

k=0

ηk

2π

∫ ∞

0
ke−ky2

(

ln (x2
1 + (y2 − x2)2)− ln (x2

1 + (y2 + x2)2)
)

dy2

= lim
m→∞

1

2π

m
∑

k=1

ηk

∫ ∞

0
ke−ky2

(

ln

(

1− 2sy2

r
+

( y2

r

)2
)

−ln

(

1+ 2sy2

r
+

( y2

r

)2
))

dy2,

where c = cosϑ, s = sinϑ . Now we perform the second change of variables tk =
e−ky2 and get

Nk ≤ 1

π

∫ 1

0
ln

(

1− 2sln tk
r

+
(

ln tk
r

)2
)

dtk ≤ 1

π

∫ 1

0
ln

((

1− ln t

r

)2
)

dt

The last rhs is independent of k; one easily estimates it using the change of vari-
ables y = −ln t/r , indeed:

∫ 1

0
ln

((

1− ln t

r

)2
)

dt =
∫ ∞

0
ln (1+ y)e−ryrdy =

∫ ∞

0

e−ry

1+ y
dy ≤ 1

r

Now because the fictitious interface Γ is strictly included in S := Z+ ∪ Γ ∪ P ,
β ∈ H 2

loc(S) and thus ‖η‖H 1(Γ :=∑∞
k=1 |ηk |2k2 < +∞, one has for every finite m

m
∑

k=1

|ηk Nk | ≤
( ∞
∑

k=1

|ηk |2k2

) 1
2
( ∞
∑

k=1

1

k2

) 1
2

≤ C‖η‖H 1(Γ )
1

r

the estimate being uniform wrt m one has that N ≤ C‖η‖H 1(Γ )/r .
The Dirichlet part D(x).
We have, by the same change of variable as above (x := r (cos(ϑ), sinϑ) :=

r (c, s) :

D(x) = − x2

2π

∫ ∞

0

(
1

(y1 − x1)2 + x2
2

+ 1

(y1 + x1)2 + x2
2

)

ξ (y1, 0)dy1

≤ s

πr

∫ ∞

0

1

1− 2c y1

r +
( y1

r

)2 |ξ |dy1 = s

πr

∫ ∞

0

1

(1− c2)+ (

c − y1

r

)2 |ξ |dy1,



118 E. Bonnetier et al.

where we suppose that c < 1. We divide this integral in two parts, we set m > 1

D(x) ≤ s

πr

[
∫ m

0

1

(1− c2)+ (

c − y1

r

)2 |ξ |dy1 +
∫ ∞

m

1

(1− c2)+ (

c − y1

r

)2 |ξ |dy1

]

=: (I1 + I2)(x).

For I1 one uses the L p
loc inclusions :

I1 ≤ s

πr

K

1− c2
‖ξ (·, 0)‖L1(0,m) ≤

2

πx2
K‖ξ‖L2(B ′),

while for I2 one uses the weighted norm established in Lemma 4

I2 ≤ s

πr

⎛

⎝

∫ ∞

m

(

1

(1− c2)+ (

c − y1

r

)2

)2
(y2

1 + 1)
1−2α

2

y1
dy1

⎞

⎠

1
2

‖ξ‖L2(B ′,ωα)

≤ 2s

πr

⎛

⎝

∫ ∞

m

(

1

(1− c2)+ (

c − y1

r

)2

)2

y−2α
1 dy1

⎞

⎠

1
2

‖ξ‖L2(B ′,ωα)

≤ 2s

πr

⎛

⎜
⎝

⎛

⎝

∫ ∞

m

(

1

(1− c2)+ (

c − y1

r

)2

)2M

dy1

⎞

⎠

1
M(∫ ∞

m
y−2αM ′

1 dy1

) 1
M ′

⎞

⎟
⎠

1
2

‖ξ‖L2(B ′,ωα),

where M and M ′ are Hölder conjugates. We choose M ′2α > 1 such that the weight
contribution provided by ξ is integrable, this implies that M < 1/(1 − 2α) ∼ 10.
One then recovers easily

I2 ≤ 2sK

πr

(
πr

(1− c2)2M− 1
2

) 1
2M

= 2K

(πx2)1− 1
2M

.

We could shift the fictitious interface Γ to Γ − δe2 and repeat again the same
arguments because the rough boundary does not intersect it. Note that in this case
we could establish again the explicit Fourier representation formula for β and its
derivative as in Theorem 1. Thus we can obtain that ξ ≤ c(x2 + δ)1−1/(2M) which
shows that ξ is bounded in Π ′. So that on E’, one has |ξ |�1− 1

2M = |ξ |(1+ x2)1− 1
2M ≤

c′. Here one applies the Fragmèn-Lindelöf technique (see [3], Lemma 4.3, p. 12).
We restrict the domain to a sector, defining ΠS = Π ∩ S, where S = {(�, θ ) ∈
[1,∞] × [0, π/2]}. On ΠS , we define � := −1 + 1/(2M) and v := �� sin(�θ )
the latter is harmonic definite positive, we set w = ξ/v which solves

Δw + 2

v
∇v · ∇w = 0, in SΠ,
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with w = 0 on BS = ∂S ∩ B, whereas w is bounded uniformly on ES := E ∩ S.
Because by standard regularity arguments ξ ∈ C2(Π ), w is also bounded when
� = 1. Then by the Hopf maximum principle, we have

sup
ΠS

|w| ≤ sup
∂ΠS

w ≤ K

which extends to the whole domain ΠS , the radial decay of ξ . ��
Deriving the representation formula (14), one gets for all x strictly included in

Π ′ that

∂x1ξ (x) =
∫

E ′
∂x1Γx gdy2 +

∫

B ′

∂

∂x1

∂Γx

∂ y2
ξ (y1, 0)dy1 =: Nx1 (x)+ Dx1 (x),∀x ∈ Π ′

Lemma 6 For any x ∈ Π ′, the Neumann part of the normal derivative ∂x1ξ satisfies
Nx1 (x) ≤ Kr−2 for all x in Π ′

Proof On E ′ the derivative wrt x1 of the Green kernel reads

∂x1Γx = x1

(
1

x2
1 + (x2 − y2)2

− 1

x2
1 + (x2 + y2)2

)

thus using the cylindrical coordinates to express x = (r cosϑ, r sinϑ) =: r (c, s) for
0 ≤ s < 1 one gets

Nx1 (x) = c

r

∫ ∞

0

(

1

1− 2s y2

r +
( y2

r

)2 −
1

1+ 2s y2

r +
( y2

r

)2

)

g(y2)dy2

=
∑

k

c

r

∫ ∞

0

4s y2

r

4s2(1− s2)+
(

1− 2s2 − ( y2

r

)2
)2 e−|k|y2 dy2

≤ 4
∑

k

1

x1x2

∫ ∞

0
y2e−|k|y2 dy1 ≤ 1

x1x2

∑

k

4

k2
|ηk |2 ≤ 4

x1x2
‖η‖H−1(Γ ).

(15)
This estimate is not optimal since it is singular near x1 = 0 or x2 = 0. But it

provides useful decay estimates inside Π ′.
It’s easy to check that Nx1 is harmonic, Nx1 = g on E ′, and that it vanishes on B ′.

Because on E ′ g is bounded, by the maximum principle Nx1 is bounded. We divide
Π ′ \ B(0, 1) in three angular sectors :

Si = {(r, ϑ) s.t. r > 1, ϑ ∈ [

ϑi−1, ϑi
]}, (ϑi )

3
i=0 =

{

0,
π

6
,
π

3
,
π

2

}

For S1 and S3 we define vi := ±�−2 cos(2ϑ), i = 1, 2 which is positive def-
inite and harmonic, while for S2, we set vi := �−2 sin(2ϑ), thatshares the same
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properties. For each sector we define wi = Nx1/vi , it solves

Δwi + 2

vi
∇vi · ∇wi = 0, in Si , i = 1, . . . , 3

The estimate (15) shows that on each interior boundary ∂Si , w is bounded while
on E ′ ∪ B ′ it is bounded by the boundary conditions that Nx1 satisfies. By the Hopf
maximum principle [7], one shows that

sup
S1

w1 ≤ sup
ϑ= π

6

w1 <∞, sup
S2

w2 ≤ sup
ϑ= π

6 ,ϑ= π
3

w2 <∞, sup
S3

w3 ≤ sup
ϑ= π

3 ,ϑ= π
2

w3 <∞

which implies that Nx1 ≤ Kr−2 for every y ∈ Π ′
S := Π ′ ∩ S. ��

In order to estimate Dx1 the latter term of the derivative, we introduce the lemma
inspired by proofs of weighted Sobolev embeddings in [13, 14].

Lemma 7 If ξ ∈ W 1,2
α (Π ) with α ∈ [0, 1/2[ then its trace on a horizontal interface

satisfies

I (ξ ) =
∫ ∞

0

∫ ∞

0

|ξ (y1 + h, 0)− ξ (y1, 0)|2
h2−2α

dy1 dh ≤ ‖ξ‖W 1,2
α (Π) (16)

The proof follows ideas of Theorem 2.4’ in [14] p. 235, we give it for sake of
self-containtness.

Proof We make a change of variables x1 = r cosϑ, x2 = r sinϑ, ϑ = 0, leading to
rewrite I as

I =
∫ ∞

0

∫ ∞

0

|ξ (r + h, 0)− ξ (r, 0)|2
h2−2α

dr dh,

note that the second space variable for ξ is now ϑ = 0. We insert intermediate terms
inside the domain, namely

I ≤ K

{
∫ ∫ ∞

0

∣
∣ξ (r + h, 0)− ξ

(

r + h, atan h
r

)∣
∣
2

h2−2α

+
∣
∣ξ

(

r + h, atan h
r

)− ξ
(

r, atan h
r

)∣
∣
2

h2−2α
dr dh

+
∫ ∞

0

∫ ∞

0

∣
∣ξ

(

r, atan h
r

)− ξ (r, 0)
∣
∣
2

h2−2α
dr dh

}

=: I1 + I2 + I ′1

Obviously the terms I1 and I ′1 are treated the same way. We make a change of
variable (r, h = r tanϑ)
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I1 =
∫ π

2

0

∫ ∞

0

|ξ (r (1+ tanϑ), 0)− ξ (r (1+ tanϑ), ϑ)|2
(r tanϑ)2−2α

r

1+ ϑ2
dr dϑ.

In order to eliminate the dependence on ϑ in the first variable of ξ , we then make
the change of variable (r = r̃/(1+ tanϑ), ϑ) which gives

I1 =
∫ π

2

0

∫ ∞

0

|ξ (r̃ , 0)− ξ (r̃ , ϑ)|2
r̃2−2α

r̃dr̃
(1+ tanϑ)2α

tan2−2α ϑ(1+ ϑ2)
dϑ

≤
∫ ∞

0

∫ π
2

0

|ξ (r̃ , 0)− ξ (r̃ , ϑ)|2
r̃2−2α

r̃dr̃
dϑ

ϑ2−2α
.

We are in the hypotheses of the Hardy inequality (see for instance [13], p. 203
estimate (7)), thus we have

I1 ≤ 4

(1− 2α)2

∫ ∞

0

∫ π
2

0

∣
∣
∣
∣

∂ξ

∂ϑ
(r̃ , ϑ)

∣
∣
∣
∣

2

ϑ2αdϑ r̃2α−1dr̃

≤ K
∫ ∞

0
r̃2α

∫ π
2

0

1

r̃2

∣
∣
∣
∣

∂ξ

∂ϑ
(r̃ , ϑ)

∣
∣
∣
∣

2

dϑ r̃dr̃ ≤ ‖ξ‖2
W 1,2

α (Π)
,

in the last estimate we used that in Π ′, the distance to the fixed point (0,−1) can be
estimated as �2α := (y2

1 + (y2 + 1)2)α ≥ (y2
1 + y2

2 )α =: r̃2α , this explains why we
need a positive α in the hypotheses. In the same manner

I2 ≤
∫ π

2

0

∫ ∞

0

|ξ (r (1+ tanϑ), ϑ)− ξ (r, ϑ)|2
(r tanϑ)2−2α

rdr dϑ,

=
∫ π

2

0

∫ ∞

0

∣
∣
∣
∣

∫ r tan θ

0

∂ξ

∂r
(r + s, ϑ)ds

∣
∣
∣
∣

2

r2α−1dr
dϑ

tan2−2α ϑ
,

≤
∫ π

2

0

⎧

⎨

⎩

∫ tanϑ

0

[
∫ ∞

0

∣
∣
∣
∣

∂ξ

∂r

∣
∣
∣
∣

2

(r (1+ σ ), ϑ)r1+2αdr

] 1
2

dσ

⎫

⎬

⎭

2

dϑ

tan2−2α ϑ
,

where we made the change of variables s = r t and applied the generalized
Minkowski inequality ([13], p. 203 estimate (6)). Now we set r̃ = r (1 + t) inside
the most interior integral above

I2 ≤
∫ π

2

0

⎧

⎨

⎩

∫ tanϑ

0

dt

(1+ t)1+α

[
∫ ∞

0

∣
∣
∣
∣

∂ξ

∂r

∣
∣
∣
∣

2

(r̃ , ϑ)r̃1+2αdr̃

] 1
2

⎫

⎬

⎭

2

dϑ

tan2−2α ϑ
.

Now, we have separated the integrals in t and r , the part depending on t is easy
to integrate. Thus we obtain
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I2 ≤
∫ π

2

0
S(ϑ)

∫ ∞

0

∣
∣
∣
∣

∂ξ

∂r

∣
∣
∣
∣

2

(r̃ , ϑ)r̃1+2αdr̃dϑ,

where S(ϑ) = 1

tan2−2α ϑ

[
1

(1+ tanϑ)α
− 1

]2

.

Distinguishing whether tanϑ is greater or not than 1, it is possible to show that
S is uniformly bounded wrt ϑ . This gives the desired result. ��

We follow similar arguments as in the proof of Theorem 8.20 p. 144 in [12] to
claim:

Proposition 2 Set ξ a function belonging to W 1,2
α (Π ), and

Dx1 (x) :=
∫ ∞

0
G(x, y1)ξ (y1, 0)dy1,∀x ∈ Π ′, where G(x, y1) = ∂

∂x1

∂Γx

∂y2

∣
∣
∣
∣

y∈B ′
,

then it satisfies for every fixed positive h

∫ ∞

0
|Dx1 (x1, h)|2dx1 ≤ K

h1+2α
,

where the constant K is independent on h.

Proof We recall that

G := −x2

(
x1 − y1

((x1 − y1)2 + x2
2 )2
+ x1 + y1

((x1 + y1)2 + x2
2 )2

)

.

Because
∫∞

0 G(x, y1)dy1 = 0 for every x ∈ Π ′ we have

Dx1 (x) =
∫ ∞

0
G(x, y1) (ξ (y1, 0)− ξ (x1, 0)) dy1, ∀x ∈ Π ′,

we underline that G(x, ·) is evaluated at x ∈ Π ′ while ξ (x1, 0) is taken on B ′. By
Hölder estimates in y1 with p = 2, p′ = 2, we have :

|Dx1 |2 ≤
∫ ∞

0
G2|y1 − x1|2−2αdy1

∫ ∞

0

|ξ (y1, 0)− ξ (x1, 0)|2
|y1 − x1|2−2α

dy1 (17)

integrating in x1 and using Hölder estimates with p = ∞, p′ = 1 then

I3 :=
∫ ∞

0
|Dx1 |2dx1

≤ sup
x1∈R+

∫

R+
G2|y1 − x1|2−2α dy1

∫ ∞

0

∫ ∞

0

|ξ (y1, 0)− ξ (x1, 0)|2
|y1 − x1|2−2α

dy1dx1
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Thanks to Proposition 7 we estimate the last integral in the rhs above

I3 ≤ K sup
x1∈R+

I4(x1, x2)‖ξ‖W 1,2
α (Π),

where I4(x1, x2) :=
∫

R+
G2|y1 − x1|2−2α dy1. Considering I4 one has

I4(x) ≤ K
∫ ∞

0

x2
2 (y1 − x1)4−2α

((x1 − y1)2 + x2
2 )4

dy1 + x2
2 (y1 + x1)2(y1 − x1)2−2α

((x1 + y1)2 + x2
2 )4

dy1

≤ K
∫ ∞

0

x2
2 (y1 − x1)4−2α

((x1 − y1)2 + x2
2 )4

dy1 + x2
2 (y1 + x1)4−2α

((x1 + y1)2 + x2
2 )4

dy1 =: I5 + I6

Both terms in the last rhs are treated the same, namely

I5 ≤ x2+5−2α−8
2

∫ ∞

−∞

z4−2α

(z2 + 1)4
dz ≤ K

x1+2α
2

which ends the proof. ��
Remark 1 This is one of the key point estimates of the paper. One could think of
using weighted properties of ξ of Lemma 4 instead of the fractional Sobolev norm
introduced from Proposition 7, in the Hölder estimates (17). This implies to transfer
the x1-integral on G, then it seems impossible to conclude because

∫ ∞

0

∫ ∞

0
G2ωα(y1)dy1dx1 = ∞,

which is easy to show if one performs the change of variables z1 = y1−x1, y1 = y1.

In this part we study the convergence properties of the normal derivative of ξ on
vertical interfaces far from E . For this sake we call

Πl = {y ∈ Π : y1 > l}, El = {y1 = l, y2 ∈ [ f (0),+∞[}, Bl = {y ∈ B, y1 > l},

here we redefine the weighted trace spaces of Sobolev type

W
1
2 ,2

0,σ (∂Πl) =
{

u ∈ D′(∂Πl) s.t.
u

(1+ σ 2)
1
4

∈ L2(∂Πl),

∫

∂Π2
l

|u(y)− y(y′)|2
|y − y′|2 ds(y)ds(y′) < +∞

}

where we define σ := |y − (0, f (0))| =
√

y2
1 + (y2 − f (0))2. Note that the weight

is a distance to the fixed point (0, f (0)) independent on l.
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Proposition 3 Suppose that v ∈ W
1
2 ,2

0,σ (∂Πl) with v = 0 on Bl then there exists an
extension denoted R(v) ∈ D′(Πl) s.t.

|∇R(v)|L2(Πl ) ≤ K‖v‖
W

1
2 ,2

0,σ (∂Πl )
,

where K depends only on
∥
∥ f ′

∥
∥
∞.

Proof We lift the domain in a first step in order to transform Πl in a quarter-plane
Π̂l .

y = ϕ(Y ) :=
(

Y1

Y2 + f (Y1)

)

, Y ∈ Π̂l := (R+)2,

if we set v̂(Y2) = v(Y2+ f (0)) = v(y2) then the L2 part of the weighted norm above
reads

∫

El

v2

(1+ σ 2)
1
2

dy2 =
∫

El

v2

(1+ l2 + (y2 − f (0))2)
1
2

dy2

=
∫

{l}×R+

v̂2

(1+ l2 + Y 2
2 )

1
2

dY2 =
∫

{l}×R+

v̂2

(1+ σ̂ 2)
1
2

dY2,

where σ̂ 2 = Y 2
1 + Y 2

2 . If v ∈ W
1
2 ,2

0,σ (∂Πl) and v = 0 on Bl we know that ([8], p. 43
Theorem 1.5.2.3)

∫ δ

0
|v̂(Y2)|2 dY2

Y2
< +∞,

which authorizes us to extend v by zero on Êl := {Y1 = l} × R, this extension

still belongs to W
1
2 ,2

0,σ̂ (Êl). Arguments above allow obviously to write for every v

vanishing on B and v̂ defined above

‖v‖
W

1
2 ,2

0,σ (∂Πl )
= ‖v̂‖

W
1
2 ,2

0,σ̂ (Êl )
.

Here we use trace Theorems II.1 and II.2 of Hanouzet [9], they follow exactly the
same in our case except that the weight is not a distance to a point on the boundary
(as in [9]) but it is a distance to a point exterior to the domain. So in order to define
an extension ([9] p. 249), we set

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

V (Y ) =
∫

|s|<1
K(s)v̂(Y1s + Y2)ds, s ∈ R, ∀Y ∈ Π̂l,

Ψ(Y ) = Φ

(

Y1 − l

(1+ Y 2
2 + l2)

1
2

)

,
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where Φ is a cut-off function such that

SuppΦ ∈ [0 : 1/4[ , Φ(0) = 1, Φ ∈ C∞ ([0, 1/4[) ,

and K is a regularizing kernel i.e. K ∈ C∞0 (]− 1 : 1[) and
∫

R
K(s)ds = 1. Then the

extension in the quarter-plane domain reads

w(Y ) = (Ψ V )(Y1,Y2)− (Ψ V )(Y1,−Y2), Y ∈ Π̂l,

which allows to have w(Y1, 0) = 0 for all Y1 ∈ R+. According to Theorems II.1 and
II.2 in [9], one then gets

∥
∥
∥
∥

w

(1+ σ̂ 2)
1
2

∥
∥
∥
∥

L2(Π̂l )

≤ K‖v̂‖
W

1
2 ,2

0,σ (Êl )
, ‖∇w‖L2(Π̂l ) ≤ K‖v̂‖

W
1
2 ,2

0,σ (Êl )
.

Turning back to our starting domain Πl , we set

R(v) = w(ϕ−1(y)) = w(y1, y2 − f (y1)), ∀y ∈ Πl .

We focus on the properties of the gradient

∫

Πl

(A∇y R(v),∇y R(v))dy =
∫

Π̂l

|∇Yw|2dY, where A =
(

1 f ′

f ′ 1+ ( f ′)2

)

,

but the eigenvalues of A are

λ± = 2+ ( f ′)2 ±
√

2+ ( f ′)2| f ′|
2

,

the lowest eigenvalue is positive and tends to zero as | f ′| increases. The boundary
is Lipschitz so that

∥
∥ f ′

∥
∥
∞ is bounded. Thus there exists a minimum value of λ−.

All this guarantees the existence of a constant δ′(
∥
∥ f ′

∥
∥
∞) > 0 such that

δ′
∫

Πl

∣
∣∇y R(v)

∣
∣
2

dy ≤ K‖v̂‖
W

1
2 ,2

0,σ̂ (Êl )
,

which ends the proof. ��
Thanks to the existence of a lift R(v), we are able to estimate a sort of weak

weighted Sobolev norm for the normal derivative on vertical interfaces located at
y1 = L/ε.

Proposition 4 If v ∈ W
1
2 ,2

0,σ (∂Π L
ε
) and v = 0 on B L

ε
then one has

∫

E L
ε

∂ξ

∂n

(
L

ε
, y2

)

v(y2)dy2 ≤ K εα‖v‖
W

1
2 ,2

0,σ (∂Π L
ε

)
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Proof The function v given in the hypotheses belongs to the adequate spaces in
order to apply Proposition 3, thus there exists a lift R(v) ∈ W 1,2

0 (Π L
ε
) s.t. R(v) = v

on ∂Π L
ε
. Because ξ is harmonic and belongs to W 1,2

0 (Π ), for any ϕ ∈ ∂(Π L
ε
) and

ϕ|B L
ε

= 0 , one writes the variational form:

∫

Π L
ε

∇ξ · ∇ϕdy =
∫

∂Π L
ε

∂ξ

∂n
ϕdσ (y) =

∫

E L
ε

∂ξ

∂n
ϕdy2

Then by density and continuity arguments one extends this formula to every test
functions in ϕ ∈ W 1,2

0,σ (Π L
ε
) such that ϕ = 0 on B L

ε
. As the specific lift R(v) belongs

to this space one has

∫

E L
ε

∂ξ

∂n
vdy2 =

∫

Π L
ε

∇ξ∇R(v)dy ≤
⎛

⎝sup
Π L

ε

1

�2α

∫

Πl

|∇ξ |2�2αdy

⎞

⎠

1
2

‖∇R(v)‖L2(Π L
ε

)

≤ K εα‖ξ‖W 1,2
α (Π L

ε
)‖∇R(v)‖L2(Π L

ε
) ≤ K ′εα‖v‖

W
1
2 ,2

0,σ (∂Π L
ε

)

which ends the proof. ��

4.2 Test Functions: From Macro to Micro and Vice-Versa

We suppose that v ∈ H 1
D(Ωε) := {u ∈ H 1(Ωε), u = 0 on Γε ∪ Γ1} then γ (v) ∈

H
1
2 (∂Ωε) which implies that v ∈ H

1
2 (Γin ∪ Γout) and that for any corner

∫ δ

0
|v(x(t))|2 dt

t
<∞,

where x(t) ∈ Γin ∪ Γout is a mapping of the neighborhood of the corners. To the
trace of v on Γin or Γout, we associate a trace of a function defined on ∂Π L

ε
which is

zero on B L
ε

s.t.

ṽ

(
L

ε
, y2

)

:= v(0, εy2) = v(0, x2),∀x2 ∈ [ε f (0), 1] and ṽ

(
L

ε
, y2

)

:= 0, y2 >
1

ε
,

then one has the following connexion between the macroscopic trace norm and the
microscopic weighted one.

Proposition 5 Under the hypotheses above on functions v and ṽ,

‖v‖
H

1
2 (Γin∪Γε∪Γ1)

∼ ‖ṽ‖
W

1
2 ,2

0,σ (∂Π L
ε

)
,
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if v = 0 on Γε ∪ Γ1 (resp. ṽ = 0 on B L
ε
).

Proof Thanks to the change of variables x2 = εy2 we have that

∫ 1

ε f (0)
v2(0, x2)dx2 = ε

∫ 1
ε

f (0)
ṽ2

(
L

ε
, y2

)

dy2

≤ K ε sup
E L

ε

(1+ σ 2)
1
2

∫

E L
ε

ṽ2

(1+ σ 2)
1
2

dy2,

≤ K ε
L

ε
‖ṽ‖2

W
1
2 ,2

0,σ (∂Π L
ε

)
.

Conversely

∫

E L
ε

ṽ2

(1+ σ 2)
1
2

dy2 =
∫ 1

ε

f (0)

ṽ2

(1+ σ 2)
1
2

dy2 ≤ sup
E L

ε

1

(1+ σ 2)
1
2

∫ 1
ε

f (0)
ṽ2dy2

≤ K ε‖ṽ‖2
L2( f (0), 1

ε
)
= K‖v‖2

L2(Γin).

For the semi-norm the same change of variable provides an equality due to the
homogeneity in ε i.e.

|v|2
H

1
2 (Γin)

=
∫ ∫

Γ 2
out

|v(x2)− v(x2)|2
|x2 − x ′2|2

dx2dx ′2 = |ṽ|2
W

1
2 ,2

0,σ (E L
ε

)

��
Remark 2 We insist on the fact that one can associate traces of v either from Γin or
Γout to ṽ, the weight that one gains in the microscopic norm comes from the scaling
from macro to micro and not from the vertical position of the macroscopic interface
wrt the origin of the domain Ωε.

5 A New Proof of Convergence for Standard
Averaged Wall Laws

5.1 The Full First Order Boundary Layer Approximation:
Error Estimates

The periodic boundary layer approximations given in (12) introduce some micro-
scopic oscillations on the inlet and outlet boundaries Γin ∪ Γout . We define a new
full boundary layer approximation

u1,∞
ε = u1 + ε

∂u1

∂x2
(x1, 0)

(

β − β − ξin − ξout
) ( x

ε

)

(18)
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where we define

ξin

( x

ε

)

= ξ
( x

ε

)

, ξout

( x

ε

)

= ξ̃

(
x1 − L

ε
,

x2

ε

)

,

and ξ is the solution of problem (13), and ξ̃ solves the symmetric problem for Γout:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δξ̃ = 0, in Π− := ∪∞k=1{Z+ ∪ Γ ∪ P − 2πke1}
∂ξ̃

∂n
= ∂β

∂n
, on E

ξ̃ = 0, on B− := ∪∞k=1{P0 − 2πke1}

Every result shown for ξ in sections above holds equally for ξ̃ . One easily checks
that

∂ξin

∂n

∣
∣
∣
∣
Γout

= 1

ε

∂ξ

∂n

(
L

ε
,

x2

ε

)

and
∂ξout

∂n
|Γin =

1

ε

∂ξ̃

∂n

(

− L

ε
,

x2

ε

)

We estimate the error of this new boundary layer approximation. We denote
r1,∞
ε := uε − u1,∞

ε , it solves

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δr1,∞
ε = Cχ[Ωε\Ω0], on Ωε,

∂rε
∂n

1,∞
= ∂ξ

∂n

(
L

ε
,

x2

ε

)

on Γout,
∂rε
∂n

1,∞
= ∂ξ̃

∂n

(
L

ε
,

x2

ε

)

on Γin,

r1,∞
ε = ε

∂u1

∂x2
(x1, 0)

(

β − β − ξin − ξout
)
(

x1

ε
,

1

ε

)

=: b

(
x1

ε
,

1

ε

)

on Γ1,

r1,∞
ε = 0, on Γε

(19)

As u1,∞
ε is only a first order approximation, a second order error remains in

Ωε \Ω0. This explains the constant source term on the rhs of the first equation in
the system above. We then have

Theorem 3 Under the hypotheses of Theorem 1, r1,∞
ε satisfies

∥
∥r1,∞

ε

∥
∥

H 1(Ωε) ≤ ε

Proof We separate various sources of errors, we set r1 the solution of the Neumann
part of the errors, it solves:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δr1 = 0, in Ωε,

∂r1

∂n
= ∂ξ

∂n

(
L

ε
,

x2

ε

)

on Γout,
∂r1

∂n
= ∂ξ̃

∂n

(
L

ε
,

x2

ε

)

on Γin ,

r1 = 0 on Γε ∪ Γ1,

(20)
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then the rest r2 satisfies

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δr2 = Cχ[Ωε\Ω0], in Ωε,

∂r2

∂n
= 0 on Γin ∪ Γout ,

r2 = b

(
x1

ε
,

1

ε

)

on Γ1, r2 = 0 on Γε,

(21)

which is the Dirichlet part of the errors and should be evaluated in a second step
thanks to appropriate extensions and lifts.

5.1.1 The Neumann Part

The variational form of the problem (20) reads

∫

Ωε

∇r1 · ∇v dx =
∫

Γout

∂r1

∂n
γ (v)dx2, ∀v ∈ H 1

D(Ωε),

dividing this expression by ‖∇v‖L2(Ωε) we first obtain the equivalence:

sup
v∈H 1

D (Ωε)

∫

Ωε ∇r1 · ∇v dx

‖∇v‖L2(Ωε)
≡ ‖∇r1‖L2(Ωε).

Indeed, by Cauchy-Schwartz one has easily that the L2 norm is greater than the
supremum while a specific choice of v = r1 gives the reverse estimate. Thanks to
this, one has

‖∇r1‖L2(Ωε) = sup
v∈H 1

D (Ωε)

∫

Γout

∂r1
∂n γ (v)dx2

‖∇v‖L2(Ωε)
.

We underline that we kept the properties of the traces of H 1
D(Ωε) functions inside

the sup that we aim to evaluate. This norm is lower that the simple H− 1
2 (Γout) which

authorizes different behaviors of test functions near the corners of Γout ([8], p 43,
Theorem 1.5.2.3).

Now the integral in the rhs of the last expression reads in fact :

∫

Γout

∂r1

∂n
γ (v)dx2 =

∫

Γout

∂ξ

∂n

(
L

ε
,

x2

ε

)

γ (v)dx2 = ε

∫ 1
ε

f (0)

∂ξ

∂n

(
L

ε
, y2

)

γ (ṽ)dy2,

where we constructed ṽ as in Sect. 4.2 i.e. ṽ has the same trace as v but ṽ is expressed
as a microscopic trace function. Thanks to Proposition 5 the corresponding micro-

scopic trace ṽ belongs to W
1
2 ,2

0,σ (∂Π L
ε
) and Propositions 4 and 5 give that
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∫ 1
ε

f (0)

∂ξ

∂n

(
L

ε
, y2

)

γ (ṽ)dy2 ≤ εα‖ṽ‖
W

1
2 ,2

0,σ (∂Π L
ε

)

≤ K εα‖v‖
H

1
2 (∂Ωε)

≤ K ′εα‖v‖H 1(Ωε).

The same analysis and convergence rates hold on Γin with the normal derivative
of ξout. All together one obtains

‖∇r1‖L2(Ωε) ≤ ε1+α.

5.1.2 The Dirichlet Part

We should lift b, the non homogeneous Dirichlet boundary conditions on Γ 1

defined in (19), so we set

ς := b

(
x1

ε
,

1

ε

)

x2
2χ[Ω0], and r̃2 := r2 − ς.

Standard a priori estimates give

‖∇r̃2‖L2(Ωε) ≤ ‖∇ς‖L2(Ωε) + ε,

where the ε in the last rhs comes when estimating the constant source term C local-
ized in Ωε \Ω0, indeed :

(C, v)Ωε\Ω0 ≤ ‖C‖L2(Ωε\Ω0)‖v‖L2(Ωε\Ω0) ≤
√
ε‖C‖L2(Ωε\Ω0)‖∇v‖L2(Ωε\Ω0)

≤ εC‖∇v‖L2(Ωε)

thanks to a Poincaré inequality in the sub-layer. Hereafter we estimate the gradient
of the lift,

‖∇ς‖L2(Ωε) ≤ εK

∥
∥
∥
∥
β

( ·
ε
,

1

ε

)

− β

∥
∥
∥
∥

L2(Γ1)

+ K

∥
∥
∥
∥
∂x1β

( ·
ε
,

1

ε

)∥
∥
∥
∥

L2(Γ1)

+ ε‖ξin‖L2(Γ1) + ε
∥
∥∂x1ξin

∥
∥

L2(Γ1) + ε‖ξout‖L2(Γ1) + ε
∥
∥∂x1ξout

∥
∥

L2(Γ1)

≤ K ε
3
2 + 2

[

ε

∥
∥
∥
∥
ξ

( ·
ε
,

1

ε

)∥
∥
∥
∥

L2(Γ1)

+
∥
∥
∥
∥

∂ξ

∂y1

( ·
ε
,

1

ε

)∥
∥
∥
∥

L2(Γ1)

]

≤ K
[

ε
3
2 + ε2− 1

2M + ε1+α
]

≤ K ε1+α

where we used the second estimate of Theorem 2 describing the decay properties of
ξ . This ends the proof: the main error is still made when linearizing the Poiseuille
profile in Ωε \Ω0. As r1,∞

ε := r1 + r2 one gets the desired estimate. ��
Here comes the error estimate in the L2 norm that add approximately an

√
ε

factor to the a priori estimates above.
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Theorem 4 Under the hypotheses of Theorem 1, r1,∞
ε , the solution of system (19)

satisfies

∥
∥r1,∞

ε

∥
∥

L2(Ω0) ≤ K ε1+α,

where the constant K is independent on ε and α <
√

2/π ∼ 0.45.

Proof We define v a regular solution on the “smooth” domain Ω0 (in the sense: not
rough, in particular, Ω0 is a rectangle) of the problem

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δv = F, in Ω0,

∂v

∂n
= 0, on Γin

′ ∪ Γ ′out

v = 0, on Γ0 ∪ Γ1

where the function F is in L2(Ω0). Thanks to [8] Theorem 4.3.1.4 p. 198, one has
that there are no singularities near the corners i.e. v ∈ H 2(Ω0) ∩ H 1

D(Ω0) and

‖v‖H 2(Ω0) ≤ K‖F‖L2(Ω0).

Testing r1,∞
ε against F , one gets

(r1,∞
ε , F)Ω0 =

〈
∂r1,∞

ε

∂n
, v

〉

−
(

r1,∞
ε ,

∂v

∂n

)

Γ1∪Γε

where the brackets stand for the duality pairing between H−1(Γin
′ ∪ Γ ′out) and

H 1
0 (Γin

′ ∪ Γ ′out), whereas the left bracket denotes the standard L2(Γ0 ∪ Γ1) scalar
product. This leads to write :

∥
∥r1,∞

ε

∥
∥

L2(Ω0) ≤
∥
∥
∥
∥

∂r1,∞
ε

∂n

∥
∥
∥
∥

H−1(Γin
′∪Γ ′out)

+ ∥
∥r1,∞

ε

∥
∥

L2(Γ0∪Γ1) =: I1 + I2

the latter term of the rhs is classically estimated through Poincaré on the sublayer
and the a priori estimates above for the Γ 0 part :

∥
∥r1,∞

ε

∥
∥

L2(Γ0) ≤
√
ε
∥
∥r1,∞

ε

∥
∥

H 1(Ωε\Ω0) ≤
√
ε
∥
∥r1,∞

ε

∥
∥

H 1(Ωε) ≤ ε
3
2 .

On Γ1 there is an exponentially small contribution of the periodic boundary layer
and an almost ε2 term coming from the vertical correctors ξin and ξout :

∥
∥r1,∞

ε

∥
∥

L2(Γ1) ≤ K ε

∥
∥
∥
∥
ξ

( ·
ε
,

1

ε

)∥
∥
∥
∥

L2(0,L)

≤ ε2− 1
2M .



132 E. Bonnetier et al.

I1 follows using the same arguments as in the proof of the a priori estimates. The
astuteness resides in the fact that

I1 ≤ sup

v∈H
1
2

0 (Γout)

〈
∂r1,∞

ε

∂n , v
〉

‖v‖
H

1
2 (Γout)

≤ K ε1+α

Indeed H 1
0 (Γ ′out) functions when extended by zero on Γout are a particular subset

of H
1
2 (Γout) functions vanishing on ∂Γout. At this point one uses the same estimates

as in the previous proof to obtain the last term in the rhs. �

5.2 The Standard Averaged Wall Law: New Error Estimates

We use the full boundary layer approximation above as an intermediate step to prove
error estimates for the wall law. We denote r1

ε := uε − u1.

Theorem 5 Under the hypotheses of Theorem 1 , one has

∥
∥r1

ε

∥
∥

L2(Ω0) ≤ ε1+α

Proof We insert the full boundary layer approximation between uε and u1

r1
ε := uε − u1 = uε − u1,∞

ε + u1,∞
ε − u1

= r1,∞
ε + ε

∂u1

∂x2
(x1, 0)

(

β − β − ξin + ξout
) ( x

ε

)

=: r1,∞
ε + ∂u1

∂x2
(x1, 0)I1

We evaluate the L2(Ω0) norm of I1

I1 ≤ K

{

ε

∥
∥
∥β

( ·
ε

)

− β

∥
∥
∥

L2(Ω0)
+ ε

∥
∥
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( ·
ε

)∥
∥
∥

L2(Ω0)

}

≤ K

{

ε
3
2 + ε

∥
∥
∥ξ

( ·
ε

)∥
∥
∥

L2(Ω0)

}

while the first term is classical and the estimate comes from (5), for what con-
cerns the second term, we use the L∞ estimates of Theorem 2 and get

∫

Ω0
ξ 2

( x

ε

)

dx = ε2
∫ L

ε

0

∫ 1
ε

0
ξ 2dy ≤ ε2

∫ L
ε

0

∫ 1
ε

0

1

�2− 1
M

dy

≤ ε2 sup
[0, L

ε ]×[0, 1
ε ]
�

1
M+δ′′

∫

[0, L
ε ]×[0, 1

ε ]

1

�2+δ′′ dy ≤ K ε2− 1
M−δ′′

where δ′′ is a positive constant as small as desired. This ends the proof. �
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6 Conclusion

In this work we established error estimates for a new boundary layer approximation
and for the standard wall law with respect to the exact solution of a rough problem
set with non periodic lateral boundary conditions. The final order of approximation
is of ε1+α where 1 + α ∼ 1.45 which is compatible and comparable to results
obtained in the periodic case (see [5, 4] and references there in).

Establishing estimates in the spirit of very weak solution [18] but in the weighted
context improves the L2(Ω0) estimates but requires an extra amount of work not pre-
sented here. This is done in [16], we perform also a numerical validation illustrating
the accuracy of our theoretical results.
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4. Bresch, D., Milišić, V.: High order multi-scale wall laws: Part i, the periodic case. Accepted

for publication in Quart. Appl. Math. (2008)
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Vortex Induced Oscillations of Cylinders at Low
and Intermediate Reynolds Numbers

Roberto Camassa, Bong Jae Chung, Philip Howard, Richard McLaughlin,
and Ashwin Vaidya

Abstract We study the orientational behavior of a hinged cylinder suspended in a
water tunnel in the presence of an incompressible flow with Reynolds number (Re),
based on particle dimensions, ranging between 100 and 6000 and non-dimensional
inertia of the body(I ∗) in the range 0.1–0.6. The cylinder displays four unique fea-
tures, which include: steady orientation, random oscillations, periodic oscillations
and autorotation. We illustrate these features displayed by the cylinder using a phase
diagram which captures the observed phenomena as a function of Re and I ∗. We
identify critical Re and I ∗ to distinguish the different behaviors of the cylinders.
We used the hydrogen bubble flow visualization technique to show vortex shedding
structure in the cylinder’s wake which results in these oscillations.

Keywords Vortex Induced Oscillation · Autorotation · Vortex Shedding

1 Introduction

This paper deals with a fundamental question of orientation of a symmetric rigid
body in a fluid. The orientation behavior of cylinder, for instance, shows several
transitions, depending upon the inertia of the fluid in which it is immersed and the
inertia of the body. These include (i) steady state orientation, (ii) random oscilla-
tions, (iii) periodic oscillations and in some extreme cases, even (iv) autorotation.

The question of orientation bodies in fluids dates back to Kirchoff [7] who exam-
ined the dynamics of falling paper. The steady state orientation of bodies with
certain classes of symmetries has been long known. A sedimenting cylinder, for
instance, is known to fall with its axis of symmetry perpendicular to gravity in a
Newtonian fluid when its length exceeds its diameter d. However, in the case of a
disk, when the length of the cylinder is less than the diameter, the disk falls with
its axis of rotation parallel to gravity. Several more recent systematic studies have
experimentally, theoretically and numerically explored the steady state dynamics of
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falling bodies (see [4, 6, 8, 14] for instance) in the Stokes and low inertial regimes.
The orientational dynamics becomes even more interesting in the unsteady regime,
vortex shedding effects become significant and gives rise to oscillations of the body.
In the context of sedimentation, several relevant studies have been conducted, both
experimental and numerical to document the highly nonlinear dynamics of disk
like bodies, i.e. bodies whose aspect ratios (length to diameter ratio, denoted τ )
are much less than 1, which are typically represent disks or flat plates. See for
instance [2, 3, 16, 19] and references therein. It is seen that a sedimenting disk or
flat plate can exhibit (i) fluttering, (ii) tumbling and (iii) chaotic motions. Attempts
have been made to classify these different phenomena by means of non-dimensional
parameters such as particle aspect ratio, reduced inertia, Froude number, Strouhal
number and Reynolds number.

The bulk of previous studies have focused upon translational motions of disks,
vibrational motions of bodies or response of disks in aerodynamic flows [2, 5, 21,
19, 18]. The literature on the first two of these studies is far too vast to be discussed
here. The more relevant of these studies is the last one. Willmarth et al. [19] have
studied the free and forced oscillations of disks of diameters ranging from 15 cms to
about 30 cms in a wind tunnel with Reynolds numbers in the range 68000–636000.
The aspect ratio in these experiments were 0.014 < τ < 0.125. The particles were
seen to oscillate periodically with increasing fluid inertia and eventually displaying
autorotation at sufficiently large wind speeds. Perhaps the work that comes closest to
our study is due to Mittal et al. [12] who perform some interesting two dimensional
numerical simulations for uniform flow past a hinged plate which is free to rotate
about its central axis and compare it to the dynamics of falling bodies. They examine
the effects of varying Re and I ∗. The Reynolds number is defined here as Re = U l

ν
,

where U is the centerline velocity in the absence of the body and l is the maximum
of the length or diameter of the cylinder. The second non-dimensional parameter,
namely the reduced inertia, is define by I ∗ = I

� f d5 , where I is the moment of inertia
of the body with respect to the symmetry axis and � f stands for the fluid density.
The Re achieved in this experiment ranges from about 100–6000 while the values
of I ∗ typically range from 0.1 to 0.6. In the previous literature, the appearance of
autorotation is identified in terms of critical values of Re and I ∗.

Our study is carried out in a horizontal water tunnel, whereby the effects of grav-
ity do not matter by hinging the cylinder. The advantage of this experiment is that it
allows for very long observation times when compared to the case of sedimentation
where a falling body is restricted by the height of the tank. We also wish to explore if,
neglecting gravity and also translational motions, makes the problem under inves-
tigation any different from the free fall experiments. A rigorous quantification of
the varying dynamics of the body is missing in the literature, which explores for
the most part, merely qualitative aspects of the phenomena. We use a wider range
of aspect ratios in our study which has not previously been examined leading us
further into the three dimensional effects of vortex induced wake flows. One of our
central contribution in this paper lies in the discussion of the effect of autorotation.
Autorotation is a phenomena, primarily observed in aerodynamics and defined by
Lugt [10] as:
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. . . any continuous rotation of a body in a parallel flow without external sources of energy . . .

Autorotation is rather well studied in aerodynamic applications, it has not been
documented in the literature for three dimensional liquid flows. In this article, we fill
this gap in the literature; we capture the phenomena of autorotation for symmetric,
cylindrical bodies and also discuss their dependence upon τ , Re and I ∗.

Our specific objectives include: (i) construction of a phase diagram to classify
the particle behavior, (ii) obtaining dominant frequency of periodic oscillations and
(iii) visualization of the vortex shedding structure. The paper begins with a brief
description of the experimental setup and methodology. This is followed in Sect. 3
with an analysis of the particle motion and also a discussion of the wake structure.
The concluding Sect. 4 summarizes the central contributions of this paper to the
field of vortex induced vibrations and also briefly recounts the additional work being
carried out.

It must be said at the outset that the study is still in its preliminary stages. Several
questions regarding the experimental setup still need to be addressed which may
contribute to errors in our observations. These include a more elaborate study of:
(i) friction caused by the suspension, (ii) the pump frequency of the water tunnel,
(iii) the effect of varying the tension of the suspension, (iv) flow profile in the water
tunnel as a function of increasing flow velocity and (v) the disturbance to the flow
in the tank due to the presence on the hydrogen bubble setup. We are continuing to
address these issues currently.

2 Experimental Setup

The experimental setup consists of plastic cylinders of diameter (d) 0.635 cm and
lengths ranging from 0.32 to 1.27 cms. The aspect ratio, τ , therefore ranged from 0.5
to 2.0. The cylinders were made of ABS, Lexan and Delrin (plastics) with densities
1.05, 1.18 and 1.4 g/cc, respectively. The cylinders were held at the center of a water
tunnel (Engineering Laboratory Design Inc., Model 502) with range of flow rates
between 0.1 and 1.0 fps at 0.5HP. The dimensions of the test section of the water
tunnel are 6 × 6 × 18 inches. The cylinder was suspended by means of a stainless
steel wire of thickness 0.023 cms passing through a hole of diameter 0.04 cms at
the center of the tank. The cylinder was suspended in such a way as to allow it to
oscillate freely along the flow direction alone. Figure 1 shows a schematic of the
general setup. The dynamics of the cylinder were recorded using a 72 mm SONY
HDR FX1 camera fitted with +6 diopter zoom lens (Hoya Inc.). The operational
speed of the camera was set at 30 frames per second and the resulting videos were
analyzed using the Video Spot Tracker V.5.20 program [17].

Previous studies suggest that the specific motions displayed by the body depend
upon the vortex shedding process in the wake of the body which is visualized
using the hydrogen bubble technique. The setup involves a copper wire of diameter
0.01 cms mounted vertically at a distance of 12 cms from the cylinder as shown in
Fig. 1. A copper rod was used as the anode. Four 9 V batteries in parallel were used
to generate the bubbles.
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3 Results

This section focuses on the analysis of the particle motion. Our analysis reveals that
the cylindrical particle displays the following types of motions:

• Steady Orientation (S): the particles position remains unchanged with time.
• Oscillations (O): defined to represent particle motion which displays time depen-

dent fluctuations in orientation, but not in a systematic manner. Our criterion
for defining a motion as being an oscillation is that the average fluctuation with
respect to time for the particle be at least 0.1 radians.

• Periodic Oscillations (P): particles oscillate in a steady periodic manner.
• Autorotation (A): represents particles that rotate completely (by an angle of 2π )

and periodically around the axis of suspension.

Figure 2 displays some sample plots of angle versus time showing each of the
cases discussed above for different I ∗ and Re. The plots in Fig. 2 were made based
upon analysis performed on the Spot Tracker program. The program follows the
motion of a dark spot marked on the body and computes the x and y coordinates of
the dark spot in each frame. From this data, we can evaluate the angle versus time.
The Spot Tracker analysis was applied to all the cases (i.e. recorded movies) except
the steady and autorotation case. The former of these cases was not analyzed since
there is no motion to speak of while focusing issues due the rapid speed of the auto
rotating bodies caused difficulties in the Spot Tracker analysis.

Using the phase diagram adopted by Fields et al. [3], we create a diagram of I ∗

versus Re for the four different features observed in our experiments. The Fig. 3
shows the four features plotted as distinct points marked by the symbols X, filled
circle, open circle and filled triangle which stand for S,O,P and A respectively. To
identify clear patterns in the phase diagram, we make a contour diagram using four
different color schemes to distinguish clustering of the various features (see Fig. 4).
The plot shows four distinctive regions depending upon the values of Re and I ∗. Our
data indicates: (i) the steady behavior falls along regions of lower values Re (ii) the
oscillations predominantly fall in the regions above I ∗ = 0.29 and 1800 < Re <

4000 (and possibly larger Re corresponding to the higher I ∗ values), (iii) the features

Fig. 1 A schematic of the experimental setup
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Fig. 2 Angle versus time variations showing representative sample data for the cases of (a) oscil-
lation and (b) periodic behavior

of periodic behavior is shown to occur approximately for 1600 < Re and in an
expanding I ∗ region contained between 0.15 and 0.35 and finally, (iv) autorotation
is densely packed in regions of large Re, exceeding 3000 and for some intermediate
values of 0.19 < I ∗ < 0.29. To characterize the patterns more clearly, we would
like to have a larger range of data with higher Re. Interestingly, the particles can
display periodic oscillations even at relatively low Re, as long as I ∗ is limited to a
certain value.

Based upon Fig. 4, we can analyze how the frequency of the periodic oscillations
are affected by Re and I ∗. This analysis is performed by the Power Spectral Density
method using the Matlab software which plots part of the power of the signal within
some frequency bins. The results of this analysis are shown in the Figs. 5, 6. The
frequency chosen in these plots correspond to the maximum power in the spectrum
and only for particles that exhibit periodic motion. These dominant frequencies,
denoted f , seem to lie in the range 0.7–5.2 Hz. In our graphs, we chose to work

Fig. 3 A phase diagram showing where the different features displayed by the particles lie as a
function of I ∗ and Re
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Fig. 4 A contour plot of the phase diagram showing where the different features displayed by the
particles lie as a function of I ∗ and Re

with the non dimensional parameter, given by f L
U , which can also be interpreted as

the particle Strouhal number.
The Fig. 5 shows the dimensionless frequency versus Re while the Fig. 6 shows

the dimensionless frequency versus I ∗. A linear fit to the non-dimensional frequency
is also displayed on the plots as a dashed line but shows a very low R2 value making
it difficult to discern any explicit correlations between the frequency and Re or I ∗

at this stage. We need several more data at higher I ∗ and Re values to be able to
capture any possible trends. The non dimensional frequency values in Fig. 5 for all
of these cases lie between 0.03 and 0.14 for 1000 < Re < 6000.

Fig. 5 The non-dimensional frequency versus Reynolds number
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Fig. 6 The dominant non-dimensional frequency versus reduced inertia

The shedding of vortices in the wake of bodies is a very well studied problem.
The classical Karman vortex patterns have been previously documented [20, 21].
It is also well established that in the case of free falling bodies (or hinged bodies
as in our case), the asymmetric vortex shedding gives rise to oscillatory behavior
[2, 12, 3]. The shedding behavior merits some attention although our observations
in this regard remains very preliminary. The Strouhal number Sr = f L

U is used to
quantify the vortex shedding phenomena, where, f represents the frequency of the
vortex shedding, L is the characteristic length which we take to be the maximum of
the length or diameter of the cylinder and U is the velocity of the fluid. The depen-
dence of Sr upon Re is well known for the case of spheres and circular cylinders
[1, 13] and also known to be sensitive to the geometry of the body. In the low Re
range, namely for 40 < Re < 6000, the value of 0.17 < Sr < 0.21.

Visualizations using hydrogen bubble were performed, both for the case of a
fixed cylinder and also for a body free to oscillate, for sake of comparison. A visual
comparison of the two cases is made in the Figs. 7, 8 below (Re ≈ 3000, I ∗ ≈ 0.3)
for six different times. The first of these, Fig. 7 shows a sequence of images showing
variations in the wake structure with time when the cylinder oscillates. Although
details of the vortex shedding patterns due to the largeness of the Re and the three
dimensional effects are difficult to visualize, one can clearly see the variations in
the wake. In the second Fig. 8 for a fixed cylinder, the wake structure shows no
dramatic changes over time in the field of view. A quantitative comparison has also
been made. Using our flow visualization images, we are able to visually track the
emergence of vortex patterns in the wake of a fixed cylinder and then determine its
frequency. Similarly, we were, in a few cases, able to determine the vortex shedding
frequency past an oscillating cylinder. Our objective in this case was to verify if the
Sr number for the two cases (fixed and oscillating) was significantly different. Our
estimates are summarized in the Table 1.
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Fig. 7 Flow visualization for vortex shedding past an oscillating cylinder

Fig. 8 Flow visualization for vortex shedding past a fixed cylinder

Our analysis thus far reveals a significant difference in the values of Sr versus Re
for the case of the fixed cylinder when compared to the oscillating one. The Sr for
the former case lie in the neighborhood of 0.21–0.28 as observed in the literature,
however for the oscillating cylinders, the Sr is almost half of the previous values
and seems to be much less sensitive to Re. Further, the Sr values, based on particle
oscillation frequencies, reported in Fig. 6, lie in the same range as Sr due to the

Table 1 A comparison of Sr versus Re for the case of fixed versus oscillating cylinders

Re 568 946 1325 1514 3029 3408

Srfixed 0.21 0.25 – 0.21 0.26 0.28
Srosc – – 0.12 – 0.105 0.108
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vortex shedding past the oscillating cylinders. To conclude this discussion, while
our study of the vortex shedding process deserves further attention, there seems
enough evidence to suggest that the oscillatory behavior displayed by the particles
are driven by vortex shedding.

4 Discussion

Our experiments on hinged cylindrical bodies in a water tunnel reveals four different
behavioral characteristics. We have characterized these orientational features of the
body as a function of the Reynolds number and reduced inertia. We present a phase
diagram which localizes the orientational features of the cylinders in distinct zones.
Our analysis indicates that in the range explored, the transition from oscillation to
autorotation is highly sensitive to the value of Re and I ∗. Autorotation lies in the
approximate range 0.19 < I ∗ < 0.29 and for Re > 3000. Similarly, periodic
oscillation can be said to effectively lie in some region enclosed within Re > 1000
and 0.15 < I ∗ < 0.35. We make comparisons with the work of Willmarth et al.
They report the oscillation amplitude increases with Re until the body eventually
begins to auto rotate. As in our experiments (see Fig. 4), they also note that cylin-
ders with aspect ratio in the neighborhood of τ = 1, have a tendency to oscillate
periodically or even auto rotate sooner than others. Our experiments also reveal
that in the presence of an obstacle placed downstream and close to the particle, the
cylinder has a tendency to auto rotate for values of Re and I ∗ at which it otherwise
does not. This phenomena also merits future study.

The critical non dimensional parameters that we report here vary from those in
the literature [2, 3, 11] since these studies are primarily for much smaller disks or
for thin filaments. A summary of the different critical values in the literature can be
found in the paper by Mittal et al. [12]. The two dimensional numerical results of
Mittal et al. are performed for cylinders with 0 < τ < 0.5, I ∗ > 0.17 Re < 600 in
order to keep the vortex structure essentially two dimensional. Their investigation
also reveals a distinctive separation of the oscillation versus autorotation data based
on some critical values of I ∗ and Re.

Our calculation of the Strouhal number indicates a marked difference in the
values of Sr for fixed versus oscillating cylinders; Sr in the case of oscillations
dropping to almost half of the fixed case. Further the ratio Srp/Srs , where Srp is
the particle Strouhal number and Srs is the shedding Strouhal number is nearly 1,
indicating a lock-on phenomena.

Our work at this stage being the only three dimensional study with aspect ratios
exceeding 1 cannot be compared effectively to any other study in the literature. It
needs to be pointed out that our study is marred by some drawbacks. Our phase
diagram, though contains several data points, is lacking in data in regions where
perhaps some effective comparisons to the literature can be made, especially for
τ ! 1 and Re > 6000. More data for the power spectrum analysis would yield
better possibilities of discerning a correlation between the oscillating frequency and
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Re or I ∗. Errors, frictional for instance, coming from the suspension mechanism
must be reduced. Also a quantification of the flow in the tank and also the vortex
shedding is needed. We provide no quantitative data on the vortex shedding mecha-
nism at this stage. However, a quantification of the shedding frequency is currently
being looked into using a constant temperature anemometer. We hope to report these
results and a detailed comparison of the shedding frequency to that of the oscillating
bodies in a soon to follow article. It has been pointed out [9] that bodies with sharp
corners such as cylinders, display noticeably different vortex shedding patterns com-
pared to smooth bodies. A next step would therefore to repeat these experiments for
spheroidal bodies to study the effect of changing geometry. We are also carrying out
three dimensional numerical simulations of this phenomena using the Chimera grid
method which is based on a finite volume approach.
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One-dimensional Modelling of Venous
Pathologies: Finite Volume and WENO Schemes

Nicola Cavallini and Vincenzo Coscia

Abstract An efficient and accurate numerical scheme, based on Finite Volumes and
WENO (Weighted Essentially Non-Oscillatory) techniques, is used to implement a
one-dimensional model of the venous network of the inferior limb, that includes
a suitable modelling of venous valves. The model is applied to the physiological
as well as to the pathological situation, with data obtained experimentally using an
Echo-Color Doppler device.

Keywords One-dimensional blood flow models · Finite volume numerical
methods · Phlebologic diseases

1 Introduction

The human circulatory system has become, in the last decades, the focus of a number
of studies both on the modelling point of view and on the mathematical and numer-
ical analysis of models [4, 10, 40, 11]. The physiology and the pathology of the
circulatory system is very complex [32]. A significant number of vascular diseases
are related to mechanical and/or fluid dynamical disfunctions. For this reason the
methods of biomechanics, largely based on continuum mechanics, are used in the
modelling in order to describe the main issues of the cardiovascular system and give
a way to quantify physical processes governing blood and vessels motion [28].

The system build up by vessels and inside blood leads, when considered from
a mechanical point of view, to a typical fluid-structure interaction problem whose
analysis can be performed in different ways and at different detail levels [15, 17, 26,
18, 38].

One dimensional modelling of the vascular system has attracted a great interest
as it results in a good compromise between information achievable, structure detail
and computational cost [8, 35]. Integrating the velocity distribution over the vessel’s
cross section, introducing an empirical velocity profile and a wall constitutive law,
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the coupled system of the Navier-Stokes equations and of the equations of motion
of the blood vessel is reduced to a second order nonlinear hyperbolic system of
partial differential equations. One of the earliest numerical implementation of this
model is due to Noseda [23] which uses the characteristics method as proposed
by Barnard [2]. Finite differences techniques is applied by Olufsen et al. [24] and
Smith et al. [33], while finite elements integration is performed in [1, 8, 30]. Finally,
Sherwin et al. [30] accurately examine the modelling of vessels branching.

Because they greatly simplify the complexity of the flow and its interaction with
the walls, one-dimensional models are not able to capture the details of blood and
vessel motions, details whose investigation is relevant in localized situations and
pathologies along the circulatory tree. Recently, Robertson and Sequeira [29] intro-
duced a model of the arterial tree based on the Cosserat curves that gives inter-
esting results when benchmarked versus one-dimensional models in specific flow
geometries.

The large part of the literature on the mathematical modelling of the circulatory
system concerns the arterial side of it. On the other hand the venous system has its
own specificities that force the modelling to stress more on the gross flow properties
as they are very well described in the one-dimensional approach [10, 36]. In the
systemic circulation, deoxygenated blood from capillaries is returned to the heart’s
right atrium via the venous tree through collecting venules to small veins to the
large veins, following the directions going from superficial to deep and from distal
to proximal circulation. With the exception of the largest veins (vena cava, great
pulmonary veins) and the smallest venules, veins have valves whose primary func-
tion is to facilitate the return of blood to the heart and prevent backflow. From the
structural point of view, veins have the same histological components as arteries,
but the different content and thickness (veins’ walls are much thinner than arteries’
ones) resulting in a high venous compliance. Veins are rich in smooth muscle, which
responds to to neural and mechanical stimuli. This is very important in physiology,
because the veins contain 75% or more of the total blood volume [9]. Because they
are thin walled and have a low elastic modulus, veins are very sensitive to variations
of transmural pressure (they are highly collapsible). Many interesting phenomena,
as well as many common diseases, occur in venous blood flow because of this. In
particular, backflows in some vein of the inferior limbs (typically saphenous or col-
lateral veins) due to valves incontinence result, in the clinical practice, in a symptom
that can evolve toward diseases such as varicose veins and, more serious, varicose
ulcers. Usually surgeons, using their clinical experience, occlude or remove one or
more veins in such a way to restore the overall right superficial-deep and low-high
flow direction [3].

Aims of a clinically-oriented modelling of the venous tree of the inferior limb
(say) can be summarized as follows:

• design a venous system’s map of the circulatory district based on anatomic
images (CT, NMR and similar);

• choose a mathematical model of the system that is able to describe the main
features (flow rates, pressure waves) of the flow;
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• design a numerical scheme that permits to solve the model efficiently and fast;
• acquire, for each single patient, the necessary clinical data and introduce them

into the model;
• run numerically the model and optimize with respect to the occlusion of different

branches in view of a prescribed “target” function (the right flow direction, for
example).

In this paper we concentrate, in particular, on the third of the above mentioned
steps. A Finite Volume scheme, whose application is well established in the numer-
ical treatment of gas dynamics and shallow water equations [6], is adopted in the
integration of a one-dimensional blood flow model. In particular, we show how
it is possible to introduce in the model, in a simple but rigorous way, the pres-
ence of valves and how to take account of their possible malfunction. The paper is
organized as follows. In Sect. 1 we derive a nonlinear hyperbolic one-dimensional
model for the blood motion integrating over the the vessel section and using a suit-
able flow-wall interaction as well as a constitutive relation for the wall. In Sect. 2,
following[7], we introduce the numerical scheme to solve the model’s equations.
Boundary cell fluxes are approximated by the Lax-Friedrichs formulation and
boundary cell values are reconstructed using WENO (Weighted Essentially Non-
Oscillatory) approximations. The time integration is performed by a strong stability
preserving Runge-Kutta five steps scheme, fourth order accurate. The numerical
integration is completed with a suitable treatment of the source terms and by the
introduction of proper boundary conditions. The source term is integrated by a stan-
dard Gauss-Lobatto quadrature, while boundary conditions are accurately described
and a non-reflecting boundary flux function is formulated. In Sect. 3 we give an
accuracy study of the scheme and apply the model to a venous network of the thigh.
It is worth to stress that, even though we consider a small portion of the whole
thigh’s venous tree the approach is completely generalizable and the data we use
in the model are obtained experimentally using the diagnostic facilities available in
any good phlebology department or private office. Finally, in Sect. 4 we draw some
conclusions and suggest possible research perspectives.

2 Mathematical Modelling

A simple, largely used mathematical modelling of blood flow in the vascular system
[2, 33, 8, 1] is based on the two-dimensional Navier-Stokes equations in a cylin-
drical, axially symmetric geometry [33]. Considering the coordinate system (x, r ),
where the x is the abscissa along the vessel’s axis and r is the vessel’s radius, we
write the two momentum equations:
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where Vx and Vr are the axial and radial components of the velocity, respectively,
p is the pressure (including the gravity force potential), � is the blood density
(assumed constant) and ν the kinematic viscosity. The equations above are com-
pleted by the mass conservation equation:

∂Vx

∂x
+ 1

r

∂(r Vr )

∂r
= 0. (3)

Following [2], we write this system in non-dimensional form. If V0 and U0 rep-
resent typical velocities in the axial and radial directions and R0 a representative
vessel’s radius, a characteristic length L0 is defined as:

L0 = R0
U0

V0
.

As a consequence, we get the full set of non-dimensional quantities:
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�U 2
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.

The maximum value of U0 coincide with the radial velocity of the wall. Thus,
unless the latter is very flexible, the non-dimensional parameter ε = U0

V0
is small [2].

Under this assumption, retaining only terms of order ε, Eq. (1) reads:
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while Eq. (2) becomes:

∂ p̃

∂ r̃
= 0,

so that the pressure is constant across the vessel’s 3. In order to write the previous
equations in terms of averaged quantities, the mean velocity:

U = 1

A

∫

A
2πr Vx dr, (4)

is introduced. Together with the stream line condition for the wall, we write the con-
tinuity and the first momentum equation as a system of partial differential equations
in dimensional form:
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where q = U A and α̂ is the momentum correction coefficient:
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α̂ = 1

A ·U 2

∫ R

0
2πr V 2

x dr.

The value α̂ = 1 is a common choice (see for example [8]). Equations (5) and (6)
represent the undefined (without initial and boundary conditions) one-dimensional
model for blood flow in large vessels and is frequently adopted in literature [2, 23,
24, 33, 8, 38, 1].

In order to close the system, a wall model and an assumption on the velocity pro-
file are needed. To express the interaction between the fluid an the vessel structure
we use a simple Laplace’s law for the transmural pressure p(x, t), with a Poisson’s
coefficient equal to 0.5, as mentioned in [24]:

p(x, t)− p0 = 4

3

Eh
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√

A0

A

)

, (7)

where E represents the Young modulus, h the wall thickness, r0, A0 and p0 the
radius, the section area and pressure in diastolic condition, respectively. These coef-
ficients allow to define the quantity st = 4

3
Eh
r0

. The velocity profile frequently used
(see e.g. [1, 8, 33]) is:
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, (8)

with γ = 9. Equations (7) and (8) are used to write (6) in conservative form:
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where:

k = st

�

√
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Equations (5) and (9) give the system of hyperbolic equations we shall study. It
can be written in vector form as:

Ut + F(U)x = S(U) (10)

where U = [A, q]T represents the conserved variables,

F(U) = [q, q2/A + k
√

A]T ,

the corresponding fluxes and
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the source term. Equation (10) has to be complemented with proper initial and/or
boundary conditions. This issue will be addressed in detail in the following sec-
tion relating the numerical formulation of (10). Following the procedure sketched
in [37], we evaluate the eigenstructure of (10),which is needed in the sequel. The
Jacobian matrix is written as:
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⎡

⎣
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From the above definition, we get the eigenvalues:
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as well as the corresponding right eigenvectors:
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]
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From (12) and (12) it is easy to show that the field is genuinely nonlinear. To
complete the problem characterization, we write down the Riemann invariants as:

w(A, q) = q

A
− 4

√

k/2 A−
1
4 , (13)

z(A, q) = q

A
+ 4

√

k/2 A−
1
4 . (14)

3 Numerical Modelling

The model presented in the previous section, is intended to be intensively applied
to clinical problems. Since it is not always possible to analytically solve the
problem we proceed to discretize equations (10) and find a suitable computa-
tional solution. In this case we chose a finite volume discretization with Lax-
Friedrichs fluxes approximation, WENO boundary cell values reconstructions and
Runge-Kutta strong stability preserving time integration. Several reasons lead to
such a choice. First, the Lax-Friedrichs approximation is chosen to keep the fluxes
expression as simple as possible. A possible the drawback is that this formula-
tion has the most dissipative behavior among other possible choices: Godunov flux
or Enquist flux, [31]. This dissipative behavior is well balanced implying a fifth
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order accurate WENO reconstruction of border cell values. This spatial integra-
tion together with the five steps fourth order accurate Runge-Kutta time integration
scheme performs a fifth order accuracy, (see Table 1).

One-dimensional models are often used in biomedical multiscale modelling to
connect areas modelled with 3D fluid-structure interaction schemes [27]. Complete
schemes are most of the times first or second order accurate, [26, 19, 13, 12], it is
then essential that this areas are linked by the lowest possible numerical dissipation.
The need of interfacing complete and reduced models [20] leads to choose numer-
ical schemes simple to implement, and WENO represents an ideal solution to such
an issue.

WENO schemes where developed to numerically solve problems characterized
by discontinuous solutions, for example shallow water equations [6], traffic flow
[16] or gas dynamics problems [5]. In the case of bio-fluid mechanics the great
pressure and flow-rate gradients can give spurious oscillations we wish to avoid. On
the other hand the developed model should apply to certain pathological situations
such as heart attack or the opening of an arteriovenous fistula.

Moving to the actual integration of Eq. (10), following the treatment proposed in
[14, 37], we discretize system (10) on the domain D = {x ∈ [0, L]} using N − 1
uniformly spaced cells of amplitude:

Δx = L

N − 1
.

We associate to each cell its center xi and its edges xi− 1
2

and xi+ 1
2
. Conservation

equations are then integrated on each cell extension [14, 37]:
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If we consider a simple fourth-order accurate Gauss-Lobatto quadrature the
source term integration becomes:
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where ωk represents the specific Gauss-Lobatto weight. Defining the mean value Ūi
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By this approach we are able to reduce a system of partial differential equations
to an ordinary differential equations one, separating spatial and time integration.

As outlined in the lines above we choose the Lax-Friedrichs flux approximation
because of its simple expression when compared to other possible choices [31]:

F̂i+ 1
2
= 1

2

[

F(U−
i+ 1

2
)+ F(U+

i+ 1
2
)− ψ(U+

i+ 1
2
− U−

i+ 1
2
)
]

where ψ is the maximum right eigenvalue in the significant range of U. The dis-
sipative behavior of the flux is balanced by a fifth-order WENO reconstruction for
the border cell values. Such a technique will be only briefly presented in the sequel.
The interested reader can find exhaustive reviews on this topic in [31, 25].

Center, left and right approximation of both the border cell values is similar;
we, for this reason outline the technique focusing our attention on U−

i+ 1
2
. Point val-

ues of U−
i+ 1

2
are reconstructed through a suitable polynomial Ri (x) defined over

the domain Ii = [xi− 1
2
xi+ 1

2
]. In this domain, conservation, accuracy and non-

oscillatory requirements must be satisfied, in such a way that:

U−
i+ 1

2
= Ri (xi+ 1

2
).

The requirements we need to satisfy are:

1. Conservation requirement: The conservative character of the reconstruction is
preserved by the following relation:

1

Δx

∫ x
i+ 1

2

x
i− 1

2

Ri (x) dx = Ūi .

2. Accuracy requirement: The reconstruction is fifth-order accurate if the following
relation holds:

Ri (xi+ 1
2
) = U(xi+ 1

2
, t)+O(Δx5).

3. Non-oscillation requirement: Fifth-order accurate WENO reconstructions require
that oscillations closed to discontinuities decay as O(Δx5)

The requirements above are fulfilled selecting three stencils, sets of three cells,
Pi+k = ∪ l=+1

l=−1 Ii+k+l , with k = −1, 0, 1; each Pi+k(x) is associated to a polynomial
of degree 2. The coefficients of each polynomial Pi+k(x) are uniquely determined
imposing the conservation requirement on each cell of the stencil Pi+k :

1

Δx

∫

Ii+k− j

Pi+k(x) dx = Ūi+k− j k = −1, 0, 1 j = −1, 0, 1 (16)
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For further considerations, we select a bigger stencil, Qi = ∪m=+2
m=−2 Ii+m , and

the corresponding polynomial Qi (x) of degree 4, whose coefficients are uniquely
determined imposing the conservation requirement:

1

Δx

∫

Ii+m

Qi (x) dx = Ūi+m m = −2, 0, 2 .

In case of a smooth reconstructed function, it is easy to prove [25] the following
accuracy property of Qi (x):

Qi (xi+ 1
2
) = U(xi+ 1

2
, t)+O(Δx5). (17)

Accuracy and the non-oscillatory properties of the reconstruction are achieved
writing the polynomial Ri (x) as a convex combination of the three polynomials
Pi+k(x), using suitable variables weights, wk

i (k = −1, 0, 1):

Ri (x) =
1

∑

k=−1

wk
i Pi+k(x). (18)

Such weights are functions of the solution regularity on each stencil Pi+k . They
are computed through the definitions of linear weights dk and index of smoothness
function ISk

i [25]. The linear weights are chosen in such a way that the reconstruc-
tion satisfies the accuracy requirement where the solution is smooth. For U+

i− 1
2

and

U−
i+ 1

2
we get:

d−1 = 1

10
, d0 = 3

5
, d1 = 3

10
.

In the case of Ui , to avoid coefficients becoming negative, we prefer a fourth-
order accurate reconstruction [22]:

d−1 = 1

4
, d0 = 1

2
, d1 = 1

4
.

The index of smoothness function allows the optimal weighting of polynomials
Pi+k(x) in Eq. (18), where the solution is characterized by high gradients or discon-
tinuities. In this paper we quantify the index of smoothness using the L2 norm of
the polynomial derivatives P (l)

i+k(x) on the cell Ii :

ISk
i =

2
∑

l=1

∫
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Δx2l−1
(

P (l)
i+k

)2

dx . (19)

as suggested in [31]. The evaluation of (19) gives:
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IS−1
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)2 + 1

4

(
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Finally, the indices of smoothness are used into the final expressions for the
weights:

αk
i =

dk
(

ε + ISk
i

)2 ; wk
i =

αk
i

∑l=1
l=−1 α

l
i

, (20)

where ε is equal to 10−6 to avoid the denominator to vanish.
Shu in [25] proves that, if the solution is smooth, weights wk

i tend to dk and the
convex combination (18), evaluated in xi+ 1

2
, tends to:

1
∑

k=−1

dk Pi+k(xi+ 1
2
) = Qi (xi+ 1

2
). (21)

Therefore, considering the Eqs. (17) and (21) it is easy to understand how the
fifth-order accuracy is achieved. It is also demonstrated [31] that the weights wk

i
are O(Δx4) or O(1) if the solution, inside Pi+k(x), is discontinuous or smooth,
respectively. As a consequence, the reconstruction U−

i+ 1
2

is basically based on the

polynomials associated to stencils in which the solution is continuous. This behavior
of the weights avoids the Gibbs phenomena development.

Time integration is preformed through a strong stability preserving Runge-Kutta
five-steps fourth-order accurate scheme (SSPRK(5,4)). Highlighting time integra-
tion in Eq. (15) we can focus on the following ordinary differential equation:

U̇ = L(U).

Runge-Kutta can be briefly described as a linear combination of forward Euler
steps:

U(0) = Un,

U(i) =
i−1
∑

k=0

(αikU(k) +Δtβik L(U(k))), i = 1, 2, . . . , s

Un+1 = U(s),

where αik and βik are the linear coefficients, Δt is the time step and s is the number
of steps between tn and tn+1. The superscript in the above expression indicates the
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relative time level. Details on the scheme derivation and performances can be found
in [34], as well as details about α and β coefficients and Courant-Friedrichs-Lewy
(CFL) condition.

3.1 Numerical Treatment of Boundary Conditions

In this subsection we address the treatment of the boundary conditions needed in
the numerical formulation of the model. Each vessel in the vascular system interacts
with the surrounding apparatus through an appropriate setting of boundary condi-
tions. In the applications explored in Sect. 3 we will model different segments of the
venous system. When studying limited sections of the vascular apparatus it is essen-
tial to introduce non reflecting boundary conditions in order to avoid reflections the
model is not expected to show [21, 8]. In the case of a finite volume discretization
the assignment of boundary conditions consists in writing a flux term at the upstream
and downstream sections of the domain, namely, border cell flux values.

In [7] we introduced highly accurate absorbing boundary conditions. Here we
explain the imposition of the flow rate at the inlet and the area, bijectively related
to the pressure, at the outlet; the converse situation can be easily derived. We first
consider the Riemann invariants definition and write area and mean velocity at the
inlet:

⎧

⎨

⎩

Uin = 1
2 (zsx + wdx )

Ain =
(

8
√

k/2

zsx − wdx

)4

,
(22)

(details of the notation in Fig. 1). Absorbing boundary conditions are achieved
introducing an undisturbed state U = (qU , AU ) and defining the correct wdx which
satisfies the imposed q(t) = qin and preserves U :

qin = 512
k2(wdx + zU )

(zU − wdx )4
. (23)

Getting from equation (23) an appropriate value of wdx and stating the conser-
vation zsx from the interior it is possible to use relation (22) and evaluate the inlet
expression of the flux:

Fin =
[

Ain

U 2
in · Ain + k

√
Ain

]

. (24)

The same technique is used with the area (pressure) prescription at the outlet
section. Using the Riemann invariants and the undisturbed state definitions the fol-
lowing area expression holds:

zsx = wU + 8
√

k/2 · A
− 1

4
out . (25)
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Fig. 1 Riemann invariants represented in the kinematical plane (see [7, 14] for detailed reference)

Then we state the conservation of wdx from the interior and, using the Riemann
invariants expressions (22) at the outlet too, we can write the flux Fout.

The tree-type morphology of the vascular system network implies that suitable
conditions have to be imposed at the branching of a vessel. In this work we follow
a classical approach in fluid mechanics [39] and state the conservation of mass and
the continuity of pressure. First the mass conservation holds:

3
∑

i=1

qi = 0, (26)

where the geometry setting is sketched in Fig. 2. Then, imposing pi = p̄ ∀i and
requiring the conservation of proper Riemann invariants, we can write the following
non linear system:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

U1 · k2
1 · (st1 − p̄)−2 −U2 · k2

2 · (st2 − p̄)−2 −U3 · k2
3 · (st3 − p̄)−2 = 0

U1 − 2
√

2/� (st1 − p̄)
1
2 − w1 = 0

U2 + 2
√

2/� (st2 − p̄)
1
2 − z2 = 0

U3 + 2
√

2/� (st3 − p̄)
1
2 − z3 = 0.

(27)

System (27) solution brings values for U1, U2, U3 and p̄ letting us evaluating
the outlet flux for vessel 1 and the inlet flux for vessels 2 and 3. On the venous
side of the apparatus it is essential to model the behavior of the valves. They are
essentially non-return valves which prevent the inversion of the blood motion with
respect to its physiological direction: from the periphery to the heart and from the
superficial to the deep circulation. In the case of one dimensional modelling we are
interested in the effect that the valve plays on the whole network. For this reason we
do not consider the fluid structure problem, describing how the blood and the leaflets
motion affect each other; the whole valve is modelled as a non-return valve. In the
present study we evaluate the valve behavior applying the momentum theorem. The
result of this original application is simple, but gives a rigorous interpretation of the
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Fig. 2 Branching scheme

physical phenomena. Since in the applications we will consider a test case relative
to a patient in supine position we get rid, in the sequel, of the possible presence of
the gravity force, for the latter is orthogonal to the vessels’ axes. This assumption
does not affect the generality of the model’s formulation. The momentum theorem
derivation is standard, in the next few lines the main steps will be summarized,
while the interested reader can refer to [39] for a detailed explanation. The equation
of motion for a fluid in a domain Ω with surface Γ states the balance of volume and
surface forces, versus the fluid acceleration (the total time derivative of the velocity
field):

∫

Ω

�f dΩ +
∫

Γ

τ dΓ = D

Dt

∫

Ω

�v dΩ,

where f are the volume forces, τ are the internal stresses and v is the velocity field.
With v and � ∈ C1 we can write:

∫

Ω

�f dΩ +
∫

Γ

τ dΓ =
∫

Ω

∂(�v)

∂t
dΩ −

∫

Γ

�v(v · n) dΓ,

with n the inward unit normal at volume surface. Putting:

M i =
∫

Γi

�v(v · n) dΓi ,

I =
∫

Ω

∂(�v)

∂t
dΩ,

G =
∫

Ω

�f dΩ,

Π =
∫

Γ

τ dΓ,
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we get:

G +Π = I + Mout − M in. (28)

Assuming the velocity time derivative bounded and Ω → 0, in the sense of
a lumped treatment of the valve modelling, we can drop I . Such a consideration
holds also for G, in addition the vessels’ axes are orthogonal to the gravity direction
(see Fig. 3). Projecting Eq. (28) along vessel’s axis the surface forces are:

1

1

2

2

Fig. 3 Control volume used in the momentum theorem application

Πx = p1 · A1 − p2 · A2 − π f ,

where π f , our unknown, is the force that the fluid applies on the valve structure.
The linear momentum at the outlet and inlet sections is given by:

Mout,x = � · q2
2

A2
, M in,x = � · q2

1

A1
.

For the detailed derivation of such quantities in a one dimensional model see
[39]. Finally, the surface force on the valve is:

π f =
(

p1 · A1 + �
q2

1

A1

)

−
(

p2 · A2 + �
q2

2

A2

)

. (29)

The term pi · Ai + �q2
i /Ai is to be addressed as specific hydraulic force. In the

case of the present applications we consider a perfect valve, then, if π f < 0, the
valve is closed and a reflecting boundary condition q(t) is prescribed. Otherwise if
π f ≥ 0 the valve is opened and the continuity of the fluxes is required: F1 = F2.
It is immediate to notice that different levels of valve efficiency can be obtained
modifying the reacting value of π f . Reflecting boundary conditions are achieved
with standard techniques [14]. Referring to the outlet condition for the upstream
vessel we write:

{

qout = 0
wout = wdx

⇒ Aout =
(

−4
√

k/2

wdx

)4

,

analogous is the result for the inlet condition for the downstream vessel.
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4 Applications

In this section we will explore several applications of the model developed in this
paper. We first present the model accuracy analysis, in order to demonstrate the
required accuracy and dissipative characteristics. Then we develop a test case to
validate the valve modelling. Finally we apply the developed model to the inves-
tigation of the leg veins network. In particular we consider the perfectly closing
and the perfectly non-closing valve. In every application the patient is considered in
supine position.

4.1 Accuracy Analysis

As outlined in Sect. 2, we choose a finite-volume fifth-order accurate scheme due to
its low-dissipative and high-accurate character; by this accuracy analysis we intend
to test such performances. One of the test cases most extensively used to test hyper-
bolic non-linear numerical models (see for example [31]) is the inviscid Burgers
equation:

ut + f (u)x = 0, with f (u) = u2

2
; (30)

with initial condition u(x, 0) = 1/2 + sin (π · x), for 0 ≤ x ≤ L = 2. Fig. 4
presents the comparison between analytical and numerical solutions of such a test,
plotting both a continuous and a shocked solution of problem (30); the complete
accuracy analysis is reported in Table 1. Analyzing Fig. 4b we observe that the
scheme is substantially non-dissipative, on the other hand Table 1 proves the high
order of accuracy performed by the scheme.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x [1]

(a) Continuous Burgers solution. (b) Shocked Burgers solution.
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t = 1.5/π [1]

numerical
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Fig. 4 Continuous and shocked Burgers equation solution
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Table 1 Accuracy analysis results

N L1 error L1 order L∞ error L∞ order

10 9.525468e-03 – 1.388366e-02 –
20 1.286307e-03 2.68 3.218273e-03 1.96
40 8.532353e-05 3.77 2.889721e-04 3.35
80 3.847901e-06 4.39 1.635095e-05 4.07
160 1.607156e-07 4.54 1.155735e-06 3.79
320 4.835067e-09 5.03 4.609006e-08 4.63
640 1.398019e-10 5.10 4.894403e-10 6.54

4.2 Valve Test Case

Venous valves can be defined as non-return valves of the venous apparatus. In this
section we present a test case to verify the modelling of the non-return valve pre-
sented in Sect. 2.1. The behavior of the non-return valve is tested taking into account
the network structure in Fig. 5 characterized by the physiological geometrical and
material properties in Table 2. For sake of clearness Table 2 explains the boundary
condition setting too. Here upstream and downstream conditions refer to the physi-
ological conditions where the blood flows from the superficial to the deep apparatus
(Fig. 7).

All the boundary conditions, both in the form A(t) or q(t) are non reflecting, to
avoid oscillations our model is not supposed to show. At the outlet section of vessel
1 we impose q(t) = 0 ∀t ; at the inlet of vessel 4 we have:

A(t) =
{

0.9A0 for t ≤ tmax

0 for t > tmax;
(31)

and at the inlet of vessel 7 we impose:

q(t) =
{

20(0.5− 0.5 cos
(

2π t
tmax

)

[cm3/s] for tmax < t ≤ 2tmax

0 for t ≤ tmax, t > 2tmax.
(32)

In Fig. 6, vessels 6 and 5 are plotted on the same abscissa. Fig. 6a reports the
time variation of area (pressure) while Fig. 6b shows the time variation of flow rate.
Equation (32) represents a positive pressure drop wave, when it reaches the node
among vessels 7, 6 and 2 it is in part reflected, in part transmitted [7, 30]. When
it gets into vessel 6, Fig. 6a, it is a pressure drop traveling with negative celerity,
but characterized by a positive flow rate and, as a consequence, it passes through the
valve without being affected. On the other hand, in vessel 4, we have a pressure drop
wave with positive celerity but negative flow rate; as a matter of fact it is transmitted
to vessel 5 as positive celerity wave and negative flow rate, then it is reflected.
Such a behavior is satisfying and reproduces a correct modelling of non-return
valves.



1D Modelling of Venous Pathologies 163

Fig. 5 Scheme of the
network employed in the
venous valve test case. The
valve allows flow from vessel
5 to vessel 6 but not vice
versa

Non-ReturnValve

1

2

3

7

6 5

4

Table 2 Boundary conditions, geometrical and structural properties implied in the valve test case

Vessel Length cm k cm2/s2 r0 cm Upstream BC Downstream BC

1 100 6.84 ·105 0.35 Branching q(t)
2 100 6.31 ·105 0.32 Branching Branching
3 100 5.97 ·105 0.30 Branching Branching
4 100 5.65 ·105 0.28 q(t) Branching
5 50 5.51 ·105 0.27 Branching Valve
6 50 5.51 ·105 0.27 Valve Branching
7 100 5.65 ·105 0.28 A(t) Branching

4.3 Leg Veins Network

Phlebology is the clinical science that studies veins diseases. In this area a great role
is played by fluid mechanics and fluid-structure interaction to ensure an optimal
blood return to the heart. A lot of illnesses are caused by structural damages to the
vein network in its vessels or, usually, to the vein valves. In the clinical practice, the
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Fig. 6 Non-return valve tests: vessel 5 and 6 are plotted on the same abscissa, area 6a and flow
rate 6b time variation are presented

main investigation tool is Echo-Doppler imaging because of low costs and no x-rays
or magnetic field exposition.

For the reasons listed above in this section we design the left leg veins network
structure of an healthy 26 year old male employing Echo-Doppler imaging. We
measure blood velocities using the calf squeezing technique in order to reproduce
the muscular pump effect. The structure schematized in Fig. 7 and geometrical prop-
erties, reported Table 3, are achieved using images such as Figs. 8a, b, acquired by
Echo-Doppler techniques. Valve position is imposed at mid-point of the interested
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Fig. 7 Physiological scheme of the leg veins

vessel, this assumption simplifies the empirical data achievement without affecting
significantly the clinical reliability of the model. The inlet flow rate function at the
femoral vein is the mean value of three different calf-squeezing actions in order
to get a physiologically reliable average data. No more than three repetitions were
possible due to the limited amount of blood stored in the calf. The result is presented
in Fig. 9. Structural properties can be achieved from [4, 9] and show: h = 0.05 cm
and E = 3.5 · 106 Pa.

Table 3 Geometrical properties of a 26 year old, 183 cm tall male left leg veins

Vessel name Length cm Diameter cm Vessel number

Common femoral vein 4.00 1.580 1
Common femoral vein 7.50 1.400 2–4
Grand saphenous vein 8.00 0.729 3–5
Dodd 1.20 0.127 6–7
Grand saphenous vein 5.00 0.472 9
Common femoral vein 5.00 1.400 4
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(a) (b)

(c) (d)

Fig. 8 Experimental evaluation by Echo-Doppler imaging of geometrical and flow properties of
patient’s left leg thigh
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Fig. 9 Averaged femoral inflow (flow rate)
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Figure 10 presents the results of the simulation reproducing the muscular pump
in two clinically relevant cases. The first one is the physiological case, where the
whole structure performs correctly, addressed as healthy test case.

In a second test we assumed a dysfunction of valve 3 that does not close at all.
This case is named as pathological test case. In the healthy case we notice that
the wave produced by the muscular pump travels through the femoral vein without
affecting the superficial circulation. In the pathological case the disfunction of valve
3 causes the blood to flow into the grand saphenous vein, Fig. 10e and 10f. Moreover
the saphenous vein shows a flow inversion, from deep to the superficial circulation,
which is a clinically observed behavior in such cases. The high frequency oscil-
lations are due the reflections between the network nodes and they are not to be
addressed to numerical instabilities, as Fig. 4 demonstrates. This two test cases are
the fist attempt to conjugate a mathematically rigorous model of the leg vein network
and the clinical equipment used in every day practice. This are the reasons why a low
computational cost model, such as one-dimensional ones, and echo-doppler imaging
are used.

5 Conclusions

In this paper we outline the development of an accurate numerical scheme to treat
an one-dimensional model of the vascular system. One-dimensional models cannot
describe the details of blood flow and of the vessel motion, but they are charac-
terized by simplicity and a relative easiness of implementation. Among the advan-
tages of one-dimensional models we recall that they are often used to link local
three-dimensional complete models characterized by low orders of accuracy. In this
perspective, it is essential that the one-dimensional link has the lowest dissipative
character as possible. Moreover the interface should be as simple as possible to be
realized. Both these issues are taken into account in the development of the model
and scheme presented in this paper and the results, mainly represented in Fig. 4 and
Table 1, prove the achievement of the desired performances.

In the application section we exploit the model and the numerical scheme to
develop one of the earliest investigations of the venous apparatus. In that sec-
tion we investigate the physiological effect of the veins valves. There, the valves
are modelled by a simple but rigorous application of the momentum theorem. In
this work we limit ourselves to the perfectly physiological or totally pathological
situation, but there is no limitation in principle to the modelling of different levels
of valve efficiency. In this application the mathematical modelling is coupled with
Echo-Color Doppler imaging. The coupling of these two “techniques” represents, to
our opinion, an important integration that interfaces the diagnostic apparatus most
extensively used in clinical practice with a mathematical vascular modelling with
an optimized balance between computational cost and achievable information.

The results presented in this paper are part of a large project, developed in collab-
oration with vascular surgeons, radiologists and bioengineers funded by the Italian
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(a) Flow rate at midpoint of vessel 1,
femoral vein.    

(c) Flow rate at midpoint of vessel 4,
femoral vein.    

(e) Flow rate at midpoint of vessel 5,
saphenous vein.    

(b) Pressure at midpoint of vessel 1,
femoral vein.

(d) Pressure at midpoint of vessel 1,
femoral vein.

(f) Pressure at midpoint of vessel 5, 
saphenous vein

Fig. 10 Pathological and healthy simulation of the leg vein network
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Ministry of Scientific Research. Presently, we are studying the way in which the
results given by the model when applied to a large network in pathological con-
ditions can be optimized to suggest the best surgical approach in the outpatient
treatment of venous insufficiency.
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On the Energy Equality for Weak Solutions
of the 3D Navier-Stokes Equations

Alexey Cheskidov, Susan Friedlander, and Roman Shvydkoy

Abstract We prove that the energy equality holds for weak solutions of the Navier-
Stokes equations in the functional class L3([0, T );D(A5/12)), where D(A5/12) is the
domain of the fractional power of the Stokes operator.

Keywords Navier-Stokes equations ·Weak solutions · Energy equality

1 Introduction

We consider weak solutions to the three dimensional 3D incompressible Navier-
Stokes equations (NSE)

{

∂t u − νΔu + (u · ∇)u +∇ p = f,

∇ · u = 0
(1)

on a smooth bounded domain Ω ⊂ R3 subject to the Dirichlet boundary condition.
We assume f ∈ L1([0, T ); L2(Ω)). The classical Leray-Hopf solutions to (1) that
belong to u ∈ L∞L2

x ∩ L2
t H 1

x are known to only satisfy the energy inequality

|u(t)|22 + 2ν
∫ t

t0

|∇u(s)|22ds ≤ |u(t0)|22 + 2
∫ t

t0

( f (s) · u(s))ds, (2)

for all t ∈ [0, T ) and almost all t0 ∈ [0, t) including t0 = 0 (see [2]). The problem of
proving exact energy equality for such solutions is an open problem. In a sequence
of papers by Serrin [8], Lions [7], Shinbrot in [9], and more recently, Kukavica [6] it
was settled in a stricter regularity class for velocity or pressure. Namely, u ∈ Lr

t Ls
x ,

with 2/s + 2/r ≤ 1 and s ≥ 4, or p ∈ L2
t,x . The main technical obstacle in proving
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energy equality is to show vanishing of the energy flux due to the nonlinear term.
In context of the related question of energy conservation for weak solutions of the
Euler equation (ν = 0, f = 0) the optimal regularity of u has been found in terms
of Besov-type spaces (see [1, 3–5]):

lim
y→0

1

|y|
∫

Ω×[0,T ]
|u(x − y, t)− u(x, t)|3dxdt = 0. (3)

where Ω = R
3 or T

3. The differential dimension of this space is equivalent to that
of L3

t L9/2
x , which breaks the previously known scaling. On the Sobolev scale the

corresponding space is H 5/6. For Navier-Stokes equation with Dirichlet boundary
conditions more practical spaces to use are fractional domains of the Stokes operator
A (see [2]). In the scale of those spaces H 5/6 corresponds to D(A5/12). We note that
the methods used previously for proving the energy equality in the case of R

3 or T
3

are not applicable to Dirichlet boundary conditions. For such boundary conditions
the following theorem is proved in this present paper.

Theorem 1 Every weakly continuous weak solution u : [0, T ) → L2(Ω) to (1)
which belongs to the regularity class L3

t D(A5/12)x ∩ L2
t H 1

x satisfies the energy
equality.

We remark that the energy inequality (2) is not needed in the proof of Theorem 1.

2 Preliminaries

In this section we briefly recall some standard facts (see [2] for details). Let us
denote

H = {u ∈ L2(Ω) : ∇ · u = 0, u · n|∂Ω = 0}, (4)

and let P : L2(Ω) → H be the L2-orthogonal projection. Let A be the Stokes
operator defined by

Au = −PΔu. (5)

The Stokes operator is a self-adjoint positive vectorial operator with a compact
inverse. Hence, there exists an orthonormal basis of eigenvectors {wn} in H , and a
sequence of positive eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λn →∞,

such that

Awn = λnwn, wn ∈ D(A), (6)
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Henceforth we will use the notation un = (u, wn). For s > 0 we define the
operator As by

Asu =
∞
∑

n=1

λs
nunwn, (7)

and the space

V s = {u ∈ H : u =
∞
∑

n=1

unwn, ‖u‖2
s =

∞
∑

n=1

λs
n|un|2 <∞}, (8)

which is exactly the domain D(As/2). We denote V = V 1 and V ′ its dual. Let us
put B(u, v) := P(u · ∇v) ∈ V ′ for u, v ∈ V . We can rewrite (1) as the following
differential equation in V ′:

∂t u + νAu + B(u, u) = g, (9)

where u is a V -valued function of time and g = P f . Finally, we denote b(u, v, w) =
〈B(u, v), w〉. This trilinear form is anti-symmetric:

b(u, v, w) = −b(u, w, v), u, v, w ∈ V,

in particular, b(u, v, v) = 0 for all u, v ∈ V .

3 The Proof of Theorem 1

Define

Pκu =
∑

n:λn≤κ2

unwn, u ∈ H. (10)

Let u ∈ V β and denote ul
κ = Pκu, uh

κ = u − ul
κ . Observe the following inequal-

ities:

‖ul
κ‖β ≤ κβ−α‖ul

κ‖α
‖uh

κ‖α ≤ κα−β‖uh
κ‖β,

(11)

whenever β > α.

Lemma 1 Let u : [0, T ) → H be a weakly continuous weak solution of (1) on
[0, T ). Then

|u(t)|2 + 2ν
∫ t

t0

‖u‖2 ds = |u(t0)|2 + 2
∫ t

t0

(g, u) ds + 2 lim
κ→∞

∫ t

t0

b(u, ul
κ , u) ds,

for all 0 ≤ t0 ≤ t < T .
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Proof One can see from our assumption that ul
κ ∈ C([0, T ); V ) and ∂t ul

κ ∈
L2([0, T ); V ). Thus, using ul

κ as a test function (allowed by the standard approx-
imation argument) we obtain

|ul
κ (t)|2 − |ul

κ (t0)|2 + 2ν
∫ t

t0

‖ul
κ‖2 ds − 2

∫ t

t0

(g, ul
κ ) ds

= 2
∫ t

t0

b(u, ul
κ , u) ds. (12)

From this we see that the limit of the right hand side exists as κ → ∞, which
completes the proof of the lemma. ��

Let ul
κ and uh

κ be defined as before. In view of Lemma 1, it suffices to show that

lim
κ→∞

∫ T

0
|b(u, ul

κ , u)| ds = 0. (13)

To this end let us write

b(u, ul
κ , u) = b(uh

κ , ul
κ , uh

κ )+ b(ul
κ , ul

κ , uh
κ )+ b(uh

κ , ul
κ , ul

κ )+ b(ul
κ , ul

κ , ul
κ ).

The last two terms vanish, so it suffices to estimate only the first two. We use the
standard estimate found, for example, in [2]:

|b(u, v, w)| ≤ ‖u‖s1‖v‖s2+1‖w‖s3 (14)

where s1 + s2 + s3 ≥ 3/2. To estimate the first term let us set s1 = s2 = s3 = 1/2,
then

|b(uh
κ , ul

κ , uh
κ )| ≤ ‖uh

κ‖2
1/2‖ul

κ‖3/2,

and by (11) we have

‖uh
κ‖1/2 ≤ κ−1/3‖uh

κ‖5/6 (15)

‖ul
κ‖3/2 ≤ κ2/3‖ul

κ‖5/6. (16)

So,

|b(uh
κ , ul

κ , uh
κ )| ≤ ‖uh

κ‖2
5/6‖ul

κ‖5/6,

which tends to zero a.e. in t as κ →∞. Since in addition,

|b(uh
κ , ul

κ , uh
κ )| ≤ ‖u‖3

5/6

for all t , by the Dominated Convergence Theorem,
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|b(uh
κ , ul

κ , uh
κ )| → 0, as κ →∞,

in L1([0, T )). As to the second term, similar estimates with s1 = 5/6, s2 = 0,
s3 = 2/3, yield

|b(ul
κ , ul

κ , uh
κ )| ≤ ‖ul

κ‖2
5/6‖uh

κ‖5/6,

which also tends to zero in L1([0, T )) as κ → ∞. This finishes the proof of (13)
and the theorem.
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The ( p − q) Coupled Fluid-Energy Systems

Luisa Consiglieri

Abstract We investigate the nonlinear coupled system of elliptic partial differential
equations which describes the fluid motion and the energy transfer what we call
the (p − q) coupled fluid-energy system due to p and q coercivity parameters cor-
related to the motion and heat fluxes, respectively. Due to the simultaneous action
of the convective-radiation effects on a part of the boundary, such system leads to
a boundary value problem. We present existence results of weak solutions under
different constitutive laws for the Cauchy stress tensor with p > 3n/(n + 2), in
a n-dimensional space. If the Joule effect is neglected in the energy equation, the
existence result is stated for a broader class of fluids such that p > 2n/(n + 1), and
related q-coercivity parameter to the heat flux.

Keywords Non-Newtonian fluids · Convective-radiative heat transfer · Joule
effect ·Weak solution · Convex analysis

1 The Formulation of the Problem

Let Ω be an open bounded set of R
n (n > 1) with a sufficiently smooth boundary

∂Ω . The equations governing the heat transport in incompressible viscous fluids at
steady-state consist of

(u · ∇)u−∇ · τ = −∇π + f in Ω (1)

∇ · u =
n

∑

i=1

∂ui

∂xi
= 0 in Ω (2)

u · ∇e − ∇ · (χ (·, e)a(∇e)) = τ : Du+ g in Ω. (3)
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Here u and e are unknown functions denoting the fluid velocity vector and the
specific (i.e., per unit mass) internal energy, respectively, the density � is assumed
equal to one, f and g represent the external and the heat forces, respectively, π
denotes the pressure, and D = (∇ + ∇T )/2 denotes the symmetrized velocity gra-
dient. We suppose the generalized Fourier law for heat flux, where χ denotes the
diffusity,

q = −χ (·, e)a(∇e)

to be consistent with the following constitutive relations between the deviator stress
tensor τ and the kinematical and thermal quantities [14].

The differentiable flux. The Cauchy stress tensor σ for the class of non-Newtonian
fluids considered here as dependent on the temperature is defined by

σ = −π I + ν(·, θ )τ (Du), (4)

where I is the identity matrix, ν the viscosity, θ the temperature, and τ : M
n×n
sym →

M
n×n
sym is a continuous function which satisfies the conditions of p-coercivity

∃τ1 > 0 ∃ϕ1 ∈ L1(Ω) : τ (!) : ! ≥ τ1|!|p − ϕ1, (5)

of polynomial growth of the power p − 1

∃τ2 > 0 ∃ϕ2 ∈ L p/(p+1)(Ω) : |τ (!)| ≤ τ2|!|p−1 + ϕ2, (6)

and of strict monotonicity

(

τ (ζ )− τ (!)
)

: (ζ − !) > 0, (7)

for any symmetric matrix ζ, ! ∈M
n×n
sym , ζ �= !, and taking into account the conven-

tion on implicit summation over repeated indices ζ : ! = ζi j!i j .
The non-differentiable flux. The deviator stress tensor τ is defined as a subgra-

dient, i.e.,

τ ∈ ν(·, θ )∂F(Du), (8)

where ∂ denotes the subdifferential of F at the point Du with F a convex functional
known as superpotential. Indeed F : M

n×n
sym → R

+
0 is a continuous and strictly

convex function such that F(0) = 0, and for some p > 1

∃τ1, τ2 > 0 : τ1|ζ |p ≤ F(ζ ) ≤ τ2(|ζ |p + 1), ∀ζ ∈M
n×n
sym , (9)

with |ζ | = (ζ : ζ )1/2.
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Considering that the specific heat capacity at constant volume is

cv(θ ) = de

dθ
(θ ) > 0,

we assume invertible the nonlinear relation between the specific internal energy e
and the temperature θ

e = e(θ ) ⇔ θ = θ (e).

Then the viscosity is given by μ(·, e) = ν(·, θ (e)).

Definition 1 We say that (1), (2) and (3) is a (p − q) coupled fluid-energy system
if τ obeys (4), (5), (6) and (7) or (8) and (9) and a corresponds to a nonlinear gen-
eralization related with the p−growth of the constitutive law for the flow, that is,
a : R

n → R
n is a continuous function which satisfies the conditions

∃α1 > 0 ∃ψ1 ∈ L1(Ω) : a(!) · ! ≥ α1|!|q − ψ1 (10)

∃α2 > 0 ∃ψ2 ∈ Lq/(q+1)(Ω) : |a(!)| ≤ α2|!|q−1 + ψ2, ∀! ∈ R
n (11)

(

a(ζ )− a(!)
)

· (ζ − !) > 0, ∀ζ, ! ∈ R
n, ζ �= !. (12)

The application of the developed theory allows to avoid the study of the free
boundaries between the different flow regions (e.g. rigid/plastic zones). The (p−q)
coupled fluid-energy system includes the Navier-Stokes fluid coupled with Fourier
law (p = q), namely when τ ≡ id (p = 2), a ≡ id (q = 2) and the thermal
conductivity given by

k(·, θ ) = χ (·, e(θ ))cv(θ ).

This model also includes the generalized Newtonian fluids (see, for instance,
[1, 2, 13, 16] and the references therein) in particular the power-law fluid and its
variants describing as the shear thinning and shear thickening behaviors, the modi-
fied Navier-Stokes system introduced by Ladyzenskaya [11], and the p-Laplacian.
Otherwise the Bingham viscoplastic fluid does not flow at all unless acted on by at
least some critical shear stress (the plasticity threshold) dependent on the tempera-
ture θ which can be modeled by (8).

The Lipschitz continuous boundary ∂Ω is assumed to consist of two disjoint
open parts Γ0 and Γ such that ∂Ω = Γ̄0 ∪ Γ̄ and meas(Γ0) > 0. For p and q >

1 correlated one each other, we present a solution (u, e) ∈ W1,p(Ω) × W 1,q (Ω)
satisfying what we call the (p− q) coupled fluid-energy system under the following
boundary conditions

u = 0 on ∂Ω (13)

e = e0 on Γ0, χ (·, e)a(∇e) · n+ γ (·, e) = h on Γ := ∂Ω \ Γ̄0, (14)
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where n = (ni ) denotes the unit outward normal to Γ . For the sake of clarity we
assume that e0 ≡ 0.

Traditionally the radiation effects have been described by Stefan-Boltzmann
law, which represents ‘radiation-to-infinity’. The radiative heat flux is given by
qr = εσ (θ4 − θ4

0 ), where ε represents the emissivity coefficient, σ the Stefan-
Boltzmann constant, θ the temperature which satisfies θ = θ (e), and θ4

0 the effec-
tive external radiation temperature. Hence, γ and h denote the outgoing radiation,
γ (e) = εσθ4(e), and the incoming radiation, h = εσθ4

0 , respectively. This emission
reflects the radiative flux on a convex Γ [10].

However industrial devices such as furnaces with surfaces which permit emit-
ted as well as incident radiation require convective-radiation effect coupled with a
nonlocal boundary condition. Thus, when the surface Γ is not convex, the outgoing
radiation is a combination of emission and reflected fraction of incoming radiation
which receives radiation from other parts of itself (see [5, 6] and the references
therein). Moreover, since Γ is not an enclosure, then γ : Γ × R → R is a
Carathéodory function such that

∃l ≥ 1, ∃γ1 > 0, γ (x, e)sign e ≥ γ1|e|l, (15)

∃γ2 > 0, |γ (x, e)| ≤ γ2(1+ |e|)l, (16)

(γ (x, e)− γ (x, ξ ))sign(e − ξ ) > 0, a.e. x ∈ Γ, ∀e, ξ ∈ R, (17)

for limited physical values of the emissivity, 0 ≤ ε(x) ≤ 1(ε �≡ 0). When l = 1,
(14) corresponds to a convection condition. In the case l = 4, it corresponds to the
radiative heat transfer condition.

We refer to the work [3] where the class of non-Newtonian fluids has a non-
differentiable velocity-stress flux but a Fourier law of heat conduction to the heat
flux, under a convective boundary condition, that is, γ (·, e) = h(·, e)e with a
bounded Carathéodory function h. In the work [5] the Navier-Stokes-Fourier fluid
is studied under a convective-radiative boundary condition, but the exponent l is
restricted undirectly by the exponents couple (p − q). The reader can find in
[7] the study for the coupled fluid-energy system when slip boundary conditions
are also taken into account. The existence of solution to the coupled system for
2n/(n+1) < p ≤ 3n/(n+2) based on the L∞− truncation method can be found in
[6]. The unsteady-state case on the (p − q) coupled fluid-energy systems has been
studied since [4].

The outline of the paper is as follows: in next section we establish the appropriate
functional framework and we state the main results. Section 3 is devoted to the
proofs of the existence of a solution for the coupled fluid-energy system when the
Joule effect is neglected, in Sect. 3.1 for q > 2n/(n + 1) if p ≥ n, and q >

2np/(p(n + 2) − n) if 3n/(n + 2) < p < n (see Fig. 1), in Sect. 3.2 for q >

np/(p(n + 1) − n) if 2n/(n + 1) < p ≤ 3n/(n + 2), and in Sect. 3.3 when the
external forces involve the energy. In Sect. 4 we prove the existence of a weak
solution provided that q > 2 − 1/n if p ≥ n, and q > n(2p − 1)/(p(n + 1) − n)
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Fig. 1 In 3D, the relations (p − q): q = 6p/(5p − 3) if 9/5 < p < 3, q = 3/2 if p ≥ 3 (solid
line) and q = (6p − 3)/(4p − 3) if 9/5 < p < 3, q = 5/3 if p ≥ 3 (dashed line)

if 3n/(n + 2) < p < n (see Fig. 1), when the Joule effect is taken into account. We
apply different fixed point arguments.

The problem of finding a weak solution for the larger range to the coercivity
parameter 2n/(n + 2) < p ≤ 2n/(n + 1) is still an open problem for coupled
fluid-energy systems.

2 Existence Results

In the framework of Lebesgue and Sobolev spaces, we introduce the Banach spaces,
for p, q > 1, l ≥ 1 and p′ = p/(p − 1),

V = {v ∈ C∞0 (Ω) : ∇ · v = 0 in Ω}
Hp = V‖·‖p,Ω = {v ∈ Lp(Ω) : ∇ · v = 0 in Ω, vN = 0 on ∂Ω}

Vp = V‖·‖1,p,Ω = {v ∈ W1,p
0 (Ω) : ∇ · v = 0 in Ω}

Yp′ = {τ = (τi j ) : τi j = τi j ∈ L p′ (Ω), ∇ · τ ∈ (Vp)′}
Xq,l = {e ∈ W 1,q (Ω) ∩ Ll(Γ ) : e = 0 on Γ0},

where X ′ means the dual space of the Banach space X and it is implicit that the
symbol ∩ represents the function and its trace. Applying the Trace Theorem, it
follows

Xq,l ≡ Wq := {e ∈ W 1,q (Ω) : e = 0 on Γ0}
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if q ≥ nl/(n + l − 1) or equivalently l ≤ q(n − 1)/(n − q) for q < n. Considering
the Poincaré inequality, we can endow the above spaces with the standard norms

‖v‖Vp = ‖Dv‖p,Ω, ‖e‖Xq,l := ‖∇e‖q,Ω + ‖e‖l,Γ , ‖e‖Wq = ‖∇e‖q,Ω .

2.1 The Differentiable Flux

If we neglect the source term in the energy equation due to the Joule effect, the
coupling behavior is due to the fact that physical parameters depend on the tem-
perature. Indeed, these parameters depend not only on the temperature but on the
position as well and this prevents us from using Kirchoff transformation to elimi-
nate the nonlinearity in the conductive term of the energy equation. We assume that
μ, χ : Ω × R → R

+ are Carathéodory functions, that is, measurable with respect
to x ∈ Ω for every e ∈ R, and continuous with respect to e ∈ R for almost every
x ∈ Ω such that

∃μ1, μ2 > 0 : μ1 ≤ μ(·, e) ≤ μ2, ∀e ∈ R, a.e. in Ω; (18)

∃χ1, χ2 > 0 : χ1 ≤ χ (·, e) ≤ χ2, ∀e ∈ R, a.e. in Ω. (19)

Let us state the following results.

Theorem 1 Under the assumptions (5), (6) and (7), (10), (11) and (12), (15) and
(16) and (18) and (19), for

q >
2np

p(n + 2)− n
and

3n

n + 2
< p < n , (20)

or q > 2n/(n + 1) and p ≥ n, let

f ∈ (Vp)′, g ∈ (

W 1,q (Ω)
)′

and h ∈ L (l+1)/ l (Γ ). (21)

Then the (p – q) coupled fluid-energy system has a weak solution (u, e) ∈ Vp ×
Xq,l+1 in the following sense

∫

Ω

μ(·, e)τ (Du) : Dvdx +
∫

Ω

u⊗ v : Dudx = 〈f, v〉, ∀v ∈ Vp, (22)
∫

Ω

χ (·, e)a(∇e) · ∇ϕdx +
∫

Ω

ϕu · ∇edx +
∫

Γ

γ (·, e)ϕdΓ =

= 〈g, ϕ〉 +
∫

Γ

hϕdΓ, ∀ϕ ∈ Xq,l+1, (23)

where the symbol 〈·, ·〉 denotes a generic duality pairing, not distinguished between
scalar and vector fields.



The (p − q) Coupled Fluid-Energy Systems 183

Remark 1 The convective term
∫

Ω
w ⊗ v : Dudx is well defined for u, v, w ∈ Vp

if p ≥ 3n/(n + 2) [11, 12]. For q > 2n/(n + 1) arbitrary, the convective term
∫

Ω
ϕu · ∇edx is well defined for u ∈ Ht and e, ϕ ∈ W 1,q (Ω), if

{

t ≥ nq/(q(n + 1)− 2n)
q < n

or

{

t > n′ = n/(n − 1)
q = n

or

{

t ≥ q ′

q > n.
(24)

Moreover, both terms satisfy the anti-symmetry property due to the incompress-
ibility condition (2) and the Dirichlet condition (13). Notice that the restriction
p > 3n/(n + 2) is a sufficient condition to the existence of t ∈]pn/(p(n + 1) −
2n), pn/(n − p)[. The restriction q > 2pn/(p(n + 2)− n) is a sufficient condition
to the existence of t < pn/(n − p) verifying (24).

Theorem 2 Under all assumptions in Theorem 1 except (20) consider

2n

n + 1
< p ≤ 3n

n + 2
and q >

np

p(n + 1)− n
. (25)

Then there exists a solution to the problem (22) and (23), for v ∈ V and ϕ ∈
C∞0 (Ω).

Remark 2 The convective terms
∫

Ω
w ⊗ v : Dudx and

∫

Ω
ϕu · ∇edx are still

meaningful for v ∈ V and w,u ∈ Vp for p ≥ 2n/(n + 1); and for ϕ ∈ L∞(Ω),
e ∈ W 1,q (Ω), considering q > np/(p(n+1)−n) which means nq/(n − q) > p′ or
equivalently np/(n − p) > q ′. However the anti-symmetry properties are no more
valid.

When the external body forces are dependent on the specific internal energy in
the form f = (e − ē)b, for some given functions ē and b, the coupled system is
motivated by the buoyancy driven flow, also known as free or natural convection
flow. The motion of a viscous fluid driven by buoyancy forces is in fact generated
by density gradients which are not aligned with the gravitational acceleration vector
g and the variation of density is usually provoked by some external heat source,
that means, b = −βg with β denoting the volumetric factor of thermal expansion.
Assuming that the variation in density is negligible which corresponds to the con-
straint of incompressibility (2), we can state the following result.

Theorem 3 There exists a solution in the conditions of Theorems 1 and 2, if f = be,
with b ∈ L∞(Ω).

2.2 The Nondifferentiable Flux

The minimization problem related to (1), (2) and (8) in its weak formulation (29)
follows from the property of subdifferentiability

∂F(Du) = (−∇·)∂(F ◦ D)(u), (26)
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for a continuous convex functional F . Indeed, using the definition of subdifferential
∂ in (8) and considering (26) and (1), we find

〈f− (u · ∇)u, v− u〉 ≤ J (e, Dv)− J (e, Du), ∀v ∈ Vp,

which corresponds to (29), where J : L1(Ω)× Vp → R
+
0 is such that

J (e, v) =
∫

Ω

μ(·, e)F(Dv)dx .

Finally we assume that

f ∈ (Vp)′, g ∈ L1(Ω) and h ∈ L1(Γ ). (27)

Theorem 4 Suppose that the assumptions (9), (10), (11) and (12), (15), (16), (17),
(18) and (19) and (27) are fulfilled. For

q >
n(2p − 1)

p(n + 1)− n
and

3n

n + 2
< p < n (28)

or q > 2 − 1/n and p ≥ n, then the (p – q) coupled fluid-energy system has a
weak solution (u, τ, e) ∈ Vp × Yp′ × Xr,l , for all 1 < r < (q − 1)n/(n − 1), in the
following sense

J (e, v)− J (e,u)−
∫

Ω

(u⊗ u) : D(v− u)dx ≥ 〈f, v− u〉, ∀v ∈ Vp; (29)
∫

Ω

(χ (e)a(∇e)− eu) · ∇ϕdx +
∫

Γ

γ (·, e)ϕdΓ =

=
∫

Ω

(τ : Du+ g)ϕdx +
∫

Γ

hϕdΓ, ∀ϕ ∈ Wr/(r−q+1), (30)

and (8) is satisfied.

The convective term in (30) is meaningful for u ∈ Ht , e ∈ W 1,r (Ω) and ϕ ∈
W 1,r/(r−q+1)(Ω) if t ≥ r ′. Thus the requirement

max(pn/(p(n + 1)− 2n), r ′) ≤ t < pn/(n − p)

leads to the restriction (28). Then all the terms on (30) have sense, since ϕ ∈
W 1,r/(r−q+1)(Ω) ↪→ C(Ω̄) for r/(r − q + 1) > n, that is, r < (q − 1)n/(n − 1).

3 The Differentiable Flux

Let us recall the Tychonoff extension to weak topologies of the Schauder fixed point
theorem [17, pp. 452].
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Theorem 5 Let K be a nonempty closed bounded convex subset of a reflexive sepa-
rable Banach space X. Let L : K → K be a weakly sequential continuous operator.
Then L has at least one fixed point.

3.1 Proof of Theorem 1

The proof of Theorem 1 is based on the following fixed point argument (cf. Theorem
5): defining

K := {(w, ξ ) ∈ Vp × Xq,l+1 : ‖w‖Vp ≤ R1, ‖ξ‖Xq,l+1 ≤ R2},

with R1 and R2 given as in (32) and (34), respectively, and the operator L by
L(w, ξ ) = (u, e), where u and e are the following fluid velocity and energy solu-
tions, respectively.

FLUID VELOCITY SOLUTION. For a fixed w ∈ Ht , for t verifying (24), and
ξ ∈ L1(Ω) the existence of the solution u = u(w, ξ ) for the problem

∫

Ω

(μ(·, ξ )τ (Du)− w⊗ u) : Dvdx = 〈f, v〉, ∀v ∈ Vp , (31)

holds in Vp for all p ≥ 3n/(n + 2). Choosing v = u ∈ Vp as a test function in (31),
we can state the following result.

Lemma 1 Under the assumptions (5), (18) and (21), the solution u of (31) is such
that:

‖u‖Vp ≤
⎛

⎝
‖f‖p′

(Vp)′

(μ1τ1)p′ +
p′μ2

μ1τ1
‖ϕ1‖1,Ω

⎞

⎠

1/p

:= R1. (32)

ENERGY SOLUTION. The existence of the solution e = e(u, ξ ) for the problem
∫

Ω

(χ (·, ξ )a(∇e)− eu) · ∇ϕdx +
∫

Γ

γ (·, e)ϕdΓ =

= 〈g, ϕ〉 +
∫

Γ

hϕdΓ, ∀ϕ ∈ Xq,l+1 , (33)

holds in Xq,l+1 for q satisfying (20). Choosing ϕ = e ∈ Xq,l+1 as a test function in
(33), we obtain the following result.

Lemma 2 Under the conditions (10), (15), (19) and (21), the solution e of (33)
satisfies the estimate

‖e‖Xq,l+1 ≤ C
[

‖g‖q ′

(W 1,q (Ω))′ + ‖h‖(l+1)/ l
(l+1)/ l,Γ + χ2‖ψ1‖1,Ω

]λ

:= R2, (34)

where C = C(q, l,Ω, χ1α1, γ1) and λ = λ(q, l).
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Henceforth we denote by C every positive constant depending on n, p, q, l, the
domain Ω , and the constants τi , αi , μi , χi , γi (i = 1, 2).

The operator L is well defined, since from classical theory of monotone operators
(see for example [11, 12]), there exist u = u(w, ξ ) ∈ Vp a unique solution to the
system (31) as well as e = e(u, ξ ) ∈ Xq,l+1 a unique solution to the problem (33).
Lemmas 1 and 2 guarantee that L maps K into itself. Since that, for (p−q) verifying
(20), wm ⇀ w in Vp and ξm ⇀ ξ in Xq,l+1 imply that um ⇀ u in Vp and em → e in
W 1,q (Ω)−weak, L1(Ω)−strong and Ll(Γ )−strong, the proof of Theorem 1 holds
(for details see [6]).

3.2 Proof of Theorem 2

The proof is based on a fixed point argument for the following approximate problem
(cf. [6]). For M ∈ N and

t > max

(
2p

p − 1
,

nq

q(n + 1)− 2n

)

,

find (uM , eM ) satisfying

∫

Ω

μ(·, eM )τ (DuM ) : Dvdx +
∫

Ω

uM ⊗ v : DuM dx +

+ 1

M

∫

Ω

|uM |t−2uM · vdx = 〈f, v〉, ∀v ∈ V; (35)
∫

Ω

χ (·, eM )a(∇eM ) · ∇ϕdx +
∫

Ω

ϕuM · ∇eM dx +
∫

Γ

γ (·, eM )ϕdΓ =

= 〈g, ϕ〉 +
∫

Γ

hϕdΓ, ∀ϕ ∈ C∞0 (Ω). (36)

In order to apply Theorem 5, let L : K → K be the operator defined by

L : (w, ξ ) ∈ Vp × Xq,l+1 �→ (uM , eM ),

where uM = uM (w, ξ ) ∈ Vp ∩ Ht is the solution to the system
∫

Ω

(μ(·, ξ )τ (DuM )− w⊗ uM ) : Dvdx + 1

M

∫

Ω

|uM |t−2uM · vdx =
= 〈f, v〉, ∀v ∈ Vp (37)

and eM = eM (uM , ξ ) ∈ Xq,l+1 is the solution to the equation
∫

Ω

(χ (·, ξ )a(∇eM )− eM uM ) · ∇ϕdx +
∫

Γ

γ (·, eM )ϕdΓ =

= 〈g, ϕ〉 +
∫

Γ

hϕdΓ, ∀ϕ ∈ Xq,l+1. (38)
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The existence and uniqueness of solutions to (37) and (38) arises as in the proof
of Theorem 1. Note that 2p/(p − 1) ≥ pn/(n − p) (the critical value of Sobolev-
Rellich embedding) for p ≤ 3n/(n + 2). Moreover, the following uniform estimate
holds

‖DuM‖p
p,Ω +

1

M
‖uM‖t

t,Ω ≤ R p
1

as well as (34). Thus L is a well defined operator that maps K into itself, and it is
weakly sequential continuous. Hence Theorem 5 guarantees the existence of a weak
solution (uM , eM ) to the approximate problem (35) and (36). Passing to the limit as
M tends to infinity we conclude the proof of Theorem 2 (for details see [6]).

3.3 Proof of Theorem 3

The proof is similar to the proofs of Theorems 1 and 2 freezing the term f = bξ ∈
Lqn/(n−q)(Ω) in (31) and in (37), respectively, and defining R2 by (34) and

R1 :=
(

R2‖b‖p′
∞,Ω

(μ1τ1)p′ +
p′μ2

μ1τ1
‖ϕ1‖1,Ω

)1/p

.

For these suitable R1, R2 > 0, the operator L is well defined. Its weakly sequen-
tial continuity holds by compactness arguments.

4 The Nondifferentiable Flux

PROOF OF THEOREM 4
First we recall the fixed point result for multivalued mappings due to Ky Fan and

Glicksberg [17, pp. 452, Generalized Theorem of Kakutani].

Theorem 6 Let K be a nonempty compact convex subset of a locally convex linear
topological vector space X. Let L : K → P(K ) be a multivalued upper semi-
continuous operator such that the set L(z) is nonempty closed and convex for all
z ∈ K . Then L has at least one fixed point.

The proof of Theorem 4 is based on the following fixed point argument. Let us
consider the space X := Vp × L1(Ω) × Xr,l endowed with the product of weak
topologies. Thus X becomes a locally convex Hausdorff topological vector space,
and the ball

K = {(w, υ, ξ ) ∈ X : ‖w‖Vp ≤ R1, ‖υ‖1,Ω ≤ R2, ‖ξ‖Xr,l ≤ R3}

is a nonempty convex compact set in X , considering Ri (i = 1, 2, 3) the chosen
below positive constants. The operator L defined by
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L(w, υ, ξ ) = {(u, τ : Du, e)} ⊂ P(K )

verifies the fixed point argument (cf. Theorem 6). This proof is slip in the following
steps. For details, see [3] and [7].

FLUID VELOCITY SOLUTION. For every w ∈ Ht , for t verifying (24), and ξ ∈
L1(Ω) there exists a unique solution u = u(w, ξ ) to the variational inequality

J (ξ, v)− J (ξ,u)−
∫

Ω

(w⊗ u) : D(v− u)dx ≥ 〈f, v− u〉, ∀v ∈ Vp. (39)

The existence and uniqueness of a solution are consequences of classical results
(see [12], for instance) on variational inequalities with convex continuous function-
als. Choosing v = 0 as a test function in (39) the following estimate holds

‖u‖Vp ≤
(‖f‖(Vp)′

μ1τ1

)1/(p−1)

:= R1.

STRESS SUBGRADIENT SOLUTIONS. Let u be the fluid velocity solution. From
the duality theory of convex analysis [9, pp. 50–52], there exists a Lagrange multi-
plier ς = ς (ξ,u) ∈ Yp′ and from the Rham Theorem (see, for instance, [12]) there
exists a pressure π ∈ L p′ (Ω) such that

〈−ς, Du〉 = J (ξ, Du)+
∫

Ω

μ(·, ξ )F∗
(∣
∣
∣
∣

ς

μ(·, ξ )

∣
∣
∣
∣

)

dx

(w · ∇)u−∇π +∇ · ς = f in Ω,

where F∗ represents the conjugate functional of F . The estimates

‖ς‖p′,Ω ≤ C(‖Du‖p−1
p,Ω + 1)

‖ς : Du‖1,Ω ≤ C(‖Du‖p−1
p,Ω + 1)‖Du‖p,Ω ≤ C(R p

1 + R1) := R2

hold. We set the stress subgradient τ = −ς . Note that we have no uniqueness of τ .
However it is known that the subdifferential of the convex functional F (the set of
the subgradient solutions) is a convex set.

ENERGY SOLUTION. For each M ∈ N, define

gM = M(υ + g)

M + |υ + g| ∈ L∞(Ω) and hM = Mh

M + |h| ∈ L∞(Γ ).

From classical elliptic theory, there exists a unique solution eM ∈ Xq,l+1 to the
following variational equality

∫

Ω

(χ (ξ )a(∇eM )− eM w) · ∇ϕdx +
∫

Γ

γ (eM )ϕdΓ =
∫

Ω

gMϕdx +
∫

Γ

hMϕdΓ,
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for all ϕ ∈ Xq,l+1. Using L1−data theory [8, 15], a unique solution e = e(w, υ, ξ ) ∈
Xr,l is obtained as the limit approximation of eM and the estimate holds, indepen-
dently on w and ξ ,

‖e‖Xr,l ≤ C(‖υ + g‖1,Ω + ‖h‖1,Γ )λ ≤ C(R2 + ‖g‖1,Ω + ‖h‖1,Γ )λ := R3,

with λ = λ(n, r, q) some positive constant.
CONTINUOUS DEPENDENCE. Let {(wm, υm, ξm)} be a sequence in K and um =

u(wm, ξm), τm = τ (ξm,um) and em = e(wm, υm, ξm) be solutions given by the above
steps, respectively. Then, there exists (u, τ, e) solution to (29), (30) and (8) verifying

wm ⇀ w, um ⇀ u in Vp ↪→↪→ Ht ∩ Lp(Γ );

υm ⇀ υ, τm : Dum ⇀ τ : Du in L1(Ω);

ξm ⇀ ξ, em ⇀ e in Xr,l ↪→↪→ L1(Ω) ∩ L1(Γ ).

We conclude that the conditions of Theorem 6 are fulfilled and then Theorem 4
holds. For details see [7].
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A Potential-Theoretic Approach
to the Time-Dependent Oseen System

Paul Deuring

Abstract We consider an initial-boundary value problem for the time-dependent
Oseen system in a 3D exterior domain. This problem is reduced to an integral equa-
tion for the single layer potential related to the the Oseen system. The resolution of
this integral equation, in turn, is reduced to a result by Shen, American Journal of
Mathematics, 113, 293–373, 1991 on the nonstationary Stokes system.

Keywords Time dependent Oseen system · Single layer potential · Integral
equation

1 Introduction

Let Ω ⊂ R
3 be a bounded Lipschitz domain with connected boundary, and let U

denote the exterior domain R
3\Ω . Take T ∈ (0,∞]. Then we consider the time-

dependent Oseen system on ZT := U × (0, T ),

∂t u −Δx u + τ · ∂x1 u +∇x p = f, divx u = 0 in ZT , (1)

with a Dirichlet boundary condition on ∂Ω and zero velocity at infinity,

u | ST = b, u(x, t) → 0 (|x | → ∞) for t ∈ (0, T ), (2)

where ST := ∂Ω × (0, T ). In addition, we impose an initial condition,

u(x, 0) = a(x) for x ∈ U. (3)

Our aim is to solve this initial-boundary value problem by means of potential the-
ory. As usual with this access, the given problem will be split into two subproblems.
The first is the Cauchy problem

P. Deuring (B)
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∂tv −Δxv + τ · ∂x1v + ∇x� = f, divxv = 0 in R
3 × (0, T ), (4)

v(x, t) → 0 (|x | → ∞) for t ∈ (0, T ), (5)

v(x, 0) = a(x) for x ∈ R
3, (6)

and the second the ensuing initial-boundary value problem:

∂tw −Δxw + τ · ∂x1w +∇xπ = 0, divxw = 0 in ZT , (7)

w | ST = b − v|ST , w(x, t) → 0 (|x | → ∞) for t ∈ (0, T ), (8)

w(x, 0) = 0 for x ∈ Ω. (9)

The function v in (8) is the velocity part of the solution to (4), (5) and (6). Under
suitable assumptions on the functions a and f , a solution of the Cauchy problem
(4), (5) and (6) is given by the convolution of an Oseen fundamental solution with f
and a, respectively. The convolution with f is performed with respect to the space
and the time variables and will be denoted by R

(τ )( f ). The convolution with a only
involves the space variables; we will denote it by I

(τ )(a). (Precise definitions will
be given in Sect. 2.) The function R

(τ )( f ) solves (4), (5) and (6) with a = 0, and
I

(τ )(a) is a solution of (4), (5) and (6) with f = 0, so the sum R
(τ )( f ) + I

(τ )(a)
satisfies (4), (5) and (6) without f or a necessarily vanishing. (Here and in the rest
of this introduction, when we discuss a solution of the Oseen system, we actually
consider only the velocity part of such a solution. Regarding the pressure part, we
refer to the main body of the paper.)

As concerns the second subproblem, that is, (7), (8) and (9), we want to solve it
by a single layer potential V

(τ )(ϕ) with a suitable layer function ϕ ∈ L2(ST )3. The
potential V

(τ )(ϕ) is defined as a Volterra integral in time and as a surface integral
on ∂Ω in space (see (19)), and satisfies (7) and (9) for any ϕ ∈ L2(ST )3. That latter
function is determined by the remaining condition (8), which takes the form

V
(τ )(ϕ) | ST = b − (

R
(τ )( f )+ I

(τ )(a)
) | ST . (10)

This is an integral equation on ST with ϕ as unknown. Thus we are led to study
the integral equation

V
(τ )(ϕ) | ST = c, (11)

where c is given and ϕ is looked for. It is the main purpose of the work at hand to
solve this problem.

To this end, we start from a result by Shen [19] involving the single layer potential
V

(0)(ϕ) associated to the time-dependent Stokes system (Eq. (1) with τ = 0). Shen
shows that the equation V

(0)(ϕ) | ST = c admits a unique solution in the space
L2

n(ST ) of L2-vector fields on ST having zero flux on ∂Ω for a. e. t ∈ (0, T ),
provided the data c belongs to a certain Sobolev space HT involving a fractional
derivative with respect to the time variable. It is not straightforward to generalize
this result to the Oseen system because if T = ∞, the mapping ϕ �→ (

V
(τ )(ϕ) −

V
(0)(ϕ)

) | ST does not seem to be compact as an operator from L2
n(ST ) into HT .
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Instead of compactness, our argument uses the theory of Fredholm operators. With
this theory in mind, we show that the term

(

V
(κ)(ϕ)−V

(0)(ϕ)
) | ST , considered as a

function of the Reynolds number κ ∈ [0, τ ], is continuous with respect to the norm
of operators from L2(ST ) into HT (Theorem 4). The proof of this result is the main
difficulty we have to handle in order to solve (11).

Still there is another point which requires some effort, namely the proof of
uniqueness of the operator V

(τ )(ϕ) | ST if ϕ is taken from L2
n(ST ) (Theorem 6).

Although the general approach for obtaining this result is well known, in the present
context we have to deal with the problem of giving a sense to certain surface inte-
grals.

Once these two crucial points are settled, it may be shown by Fredholm theory
that V

(τ )(ϕ) | ST as an operator from L2
n(ST ) into HT is bijective. Thus, for any

c ∈ HT , there is a unique solution ϕ ∈ L2
n(ST ) to equation (11); see Corollary 3.

This is the main result of the present article.
However, this result is not sufficient to solve equation (10). In fact, in order

to apply our theory for (11) to (10), we first have to make sure that
(

R
(τ )( f ) +

I
(τ )(a)

) | ST belongs to HT . If we do not want to restrict ourselves to smooth
functions, this relation is by no means obvious, in particular if T = ∞, and
will be discussed in another paper [6]. Actually already in [4] we showed that
R

(τ )( f ) | ST ∈ HT if the function f belongs to certain Lp-spaces. But the crite-
rion in that reference is not well adapted to an eventual application to the non-
linear case (Navier-Stokes system with Oseen term) and should be considered as
preliminary. The result we prove in [6] should be more useful in this respect,
although we did not yet study the nonlinear case. Also in [6], we show that
I

(τ )(a) | ST ∈ HT if a ∈ Hσ (U )3 for some σ ∈ (1/2, 1]. Thus, in reference [6],
we are in a position to solve the integral equation (10) by applying Corollary 3
below to (11) with c = b − (

R
(τ )( f ) + I

(τ )(a)
) | ST . This means the function

(

R
(τ )( f )+I

(τ )(a)+V
(τ )(ϕ)

) | ZT is a solution of (1), (2) and (3). In [6], we further
show this solution to belong to a function space in which the usual weak solution
of (1), (2) and (3) is looked for. Since this space is a uniqueness space for (1),
(2) and (3), we may conclude that weak solutions may be represented by the sum
(

R
(τ )( f )+ I

(τ )(a)+V
(τ )(ϕ)

) | ZT ([6, Corollary 5.1]), at least if the data f, a and
b verify the assumptions we require in our theory. This representation formula, in
turn, is exploited in [6] in order to derive estimates of the spatial decay of solutions
to (1), (2) and (3) ([6, Corollary 5.2]).

The preceding indications, some of which will be made precise in Sect. 2 (The-
orem 1, Lemma 6, Theorem 2, Lemma 7, Corollary 1), should serve to convince
the reader that the resolution of Eq. (11) – the subject of the work at hand – is
an important element in a wider theory, and thus is worthwhile to be studied. We
remark that in [3], we already sketched the approach we present in the following
in order to solve (11). But reference [3] does not give a proof of the two crucial
result mentioned above (continuous dependence from the Reynolds number and
uniqueness of the single layer potential). What we did prove in [3], however, was
a useful estimate of the Oseen fundamental solution, although a term was forgotten
when this estimate was stated in [3, Lemma 3]. A correct formulation may be found



194 P. Deuring

below in Lemma 5. We finally remark that estimates of R
(τ )( f ) were derived in

[12, 13] in a different context. For other studies, based on different methods, of the
time-dependent Oseen system or of the resolvent problem associated to the Oseen
system, we refer to [8, 9, 15, 16, 20].

2 Notations, Definitions, Auxiliary Results

Recall the bounded Lipschitz domain Ω and the notations U := R
3\Ω, ZT :=

U × (0, T ), ST := ∂Ω × (0, T ) (T ∈ (0,∞]) introduced in Sect. 1. The set
Ω was supposed to have a connected boundary, so Ω and U are connected. Let
n(Ω) denote the outward unit normal to Ω . We choose a non-tangential vector field
m(Ω) ∈ C∞0 (R3)3 to Ω . This means that m(Ω)(x) = 1 for x from a neighbourhood
of ∂Ω , and there are constants D1, D2 ∈ (0,∞) with

|x + δ · m(Ω)(x)− x ′ − δ′ · m(Ω)(x ′)| ≥ D1 ·
( |x − x ′| + |δ − δ′| ) (12)

for x, x ′ ∈ ∂Ω, δ, δ′ ∈ [−D2, D2], and

x + δ · m(Ω)(x) ∈ U, x − δ · m(Ω)(x) ∈ Ω for x ∈ ∂Ω, δ ∈ (0,D2]. (13)

Some indications on how to construct such a field are given in [18, p. 246]. Since
Ω is only Lipschitz bounded, the relations in (12) and (13) do not hold in general
when m(Ω) is replaced by the outward unit normal to Ω .

As explained in the proof of [5, Lemma 3.4], the relations in (12) and (13) imply
there is a constant D3 > 0 only depending on Ω such that

|x − y − κ · m(Ω)(y)| ≥ D3 · (|x − y| + κ), (14)

|z − y + κ · m(Ω)(y)| ≥ D3 · (|z − y| + κ)

for κ ∈ (0,D2], y ∈ ∂Ω, x, z ∈ R
3 with dist(x,Ω) < D1 · κ/2 and dist(z,U ) <

D1 · κ/2.
Put Br := {y ∈ R

3 : |y| < r} for r ∈ (0,∞). We fix some R0 > 0 with
Ω ⊂ BR0/2. We further define |α| := α1 + α2 + α3 (length of α) for multi-indices
α ∈ N

3
0. Put e1 := (1, 0, 0) and s(x) := |x | − x1 for x ∈ R

3.
Let A ⊂ R

3 be open. Then we write H 1(A) for the usual Sobolev space of order
1 and exponent 2. This space is to be equipped with its standard norm. Denote by
V the closure of the set

{

v ∈ C∞0 (U )3 : div v = 0
}

with respect to that norm
(with A = U ). The Sobolev spaces H 1/2(∂Ω) and H 1(∂Ω) are to be defined in
the standard way; see [11, Chapter III.6], for example. Let ‖ ‖1/2, 2 and ‖ ‖1, 2,
respectively, denote their usual norm with respect to some local coordinates of ∂Ω
([11, Section III.6.7]). Put

L2
n(∂Ω) := {v ∈ L2(∂Ω)3 :

∫

∂Ω

v · n(Ω) dΩ = 0}.
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Let T ∈ (0,∞]. (Note that the case T = ∞ is admitted.) Then we put

L2
n(ST ) := {v ∈ L2(ST )3 : v( · , t) ∈ L2

n(∂Ω) for almost every t ∈ (0, T )},
H̃T := {v | ST : v ∈ C∞0 (R4)3, v |R3 × (−∞, 0] = 0}.

For v ∈ C1
(

(−∞, T )
)

with v | (−∞, 0] = 0, and for t ∈ (0, T ), we put

∂
1/2
t v(t) := Γ (1/2)−1 · ∂t

(∫ t

0
(t − r )−1/2 · v(r ) dr

)

(“fractional derivative of v”), where Γ denotes the usual gamma function. We fur-
ther define for v ∈ H̃T :

∂
1/2
4 v(x, t) := ∂

1/2
t

(

v(x, · )
)

(t) for (x, t) ∈ ∂Ω × (0, T ).

For any v ∈ L2(ST ), we may define Fv ∈ L2
(

0, T, H 1(∂Ω)′
)

by setting

Fv(t)(σ ) :=
∫

∂Ω

v(x, t) · σ (x) dx for σ ∈ H 1(∂Ω) and for a. e. t ∈ (0, T ).

We will write v instead of Fv . For v ∈ H̃T , set

‖v‖HT :=
(∫ T

0

(

‖v( · , t) | ∂Ω‖2
1, 2 +

∫

∂Ω

∣
∣ ∂

1/2
4 v(x, t)

∣
∣
2

dΩ(x)

+‖∂tv( · , t) · n(Ω)‖2
H 1(∂Ω)′

)

dt
)1/2

.

The mapping ‖ ‖HT is a norm on H̃T . Let the space HT consist of all functions
v ∈ L2

n(ST ) such that there exists a sequence (wn) in H̃T with the property that
‖v − wn | ST ‖2 → 0, and such that (wn | ST ) is a Cauchy sequence with respect
to the norm ‖ ‖HT . This means in particular that the sequence

( ‖wn | ST ‖HT

)

is
convergent. Its limit value does not depend on the choice of the sequence (wn) with
the above properties. Thus, for v ∈ HT , we may define the quantity ‖v‖HT in an
obvious way. The mapping ‖ ‖HT is a norm on HT , and the pair

(

HT , ‖ ‖HT

)

is a
Banach space.

Let us present some auxiliary results.

Lemma 1 ([10, Lemma 4.3]) Let β ∈ (1,∞). Then there is a constant C = C(β)
such that

∫

∂Br

(

1+ s(x)
)−β

dox ≤ C · r f or r ∈ (0,∞).

Lemma 2 ([7, Lemma 4.8]) There is C > 0 such that for x, y ∈ R
3, κ ∈ (0,∞),

the following inequality holds:

(

1+ κ · s(x − y)
)−1 ≤ C ·max{1, κ} · (1+ |y|) · (1+ κ · s(x)

)−1
.
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Lemma 3 (Compare [2, Lemma 4.9]) Let A, B be measurable spaces equipped
with the measure μ and ν, respectively. Let F, F1, F2 : A × B �→ [0,∞), f :
B �→ [0,∞) be measurable functions. Suppose that F = F1 · F2. Then

(∫

A

(∫

B
F(x, y) · f (y) dν(y)

)2
dμ(x)

)1/2
≤ C · ‖ f ‖2, (15)

with

C :=
(

sup
x∈A

{∫

B
F1(x, y)2 dν(y)

}

· sup
y∈B

{∫

A
F2(x, y)2 dμ(x)

})1/2
.

Proof Hölder’s inequality yields that the left-hand side of (15) is bounded by

(∫

A

(∫

B
F1(x, y)2 dν(y)

)

·
(∫

B
F2(x, y)2 · f (y)2 dν(y)

)

dμ(x)
)1/2

.

Thus the lemma follows after an application of Fubini’s theorem. ��
Next we introduce the fundamental solutions we will consider in what follows.

Let H denote the usual fundamental solution of the heat equation in R
3, that is,

H(z, t) := (4 · π · t)−3/2 · e−|z|2/(4·t) for (z, t) ∈ R
3 × (0,∞),

H(z, t) := 0 for (z, t) ∈ (

R
3 × (−∞, 0]

)\{0}.

We further introduce a fundamental solution of the time-dependent Stokes system
by setting as in [19]

Γ jk(z, t) := δ jk · H(z, t)+
∫ ∞

t
∂ j∂kH(z, s) ds,

Ek(x) := (4 · π )−1 · xk · |x |−3
(16)

for (z, t) ∈ G := (

R
3× [0,∞)

)\{0}, x ∈ R
3\{0}, 1 ≤ j, k ≤ 3. Finally we define

the velocity part of a fundamental solution of the time-dependent Oseen system
(with Reynolds number κ) by putting

Λ jk(z, t, κ) := Γ jk(z − κ · t · e1, t) for (z, t) ∈ G, j, k ∈ {1, 2, 3}.

An associated pressure part is given by the functions Ek introduced in (16).

Lemma 4 The relations H ∈ C∞(R4\{0}), Γ jk ∈ C∞(G) and Ek ∈ C∞(R3\{0})
hold for 1 ≤ j, k ≤ 3. Moreover, for l ∈ N0, α ∈ N

3, there is C = C(l, α) >

0, C̃ = C̃(α) > 0 with

∣
∣ ∂ l

t ∂
α
z H(z, t)

∣
∣+ ∣

∣ ∂ l
t ∂

α
z Γ jk(z, t)

∣
∣ ≤ C · (|z|2 + t)−3/2−|α|/2−l ,
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|∂αx Ek(x)| ≤ C̃ · |x |−2−|α|

for z ∈ R
3, t ∈ (0,∞), x ∈ R

3\{0}, 1 ≤ j, k ≤ 3.

For the Oseen fundamental solution, the following estimate holds:

Lemma 5 The function Λ jk( · , · , κ) belongs to the space C∞(G), for κ > 0, 1 ≤
j, k ≤ 3. For any K > 0, α ∈ N

3
0, l ∈ N0, there is some C(K , α, l) > 0 with

∣
∣ ∂ l

t ∂
α
z Λ jk(z, t, κ)

∣
∣

≤ C(K , α, l) ·max{1, κ} 3
2+
|α|
2 +l · ( γ (z, t)−

3
2−
|α|
2 −l + γ (z, t)−

3
2−
|α|
2 −

l
2
)

,

for z, t, j, k as in Lemma 4, and for κ ∈ (0,∞), where

γ (z, t) := |z|2 + t if |z| ≤ K , γ (z, t) := |z| · ( 1+ κ · s(z)
)+ t if |z| > K .

Proof Reference [3, Lemma 2], Lemma 4. ��
Let us now fix a Reynolds number τ ∈ (0,∞). In the following, the symbol C will

always denote constants only depending on Ω, R0 and τ . We write C(γ1, . . . , γn)
for constants depending additionally on other parameters γ1, ..., γn ∈ (0,∞), for
some n ∈ N.

Let us introduce the volume potentials mentioned in Sect. 1. Take f ∈ C∞0
(

R
3×

(0,∞)
)3

. Then, for x ∈ R
3, t ∈ [0,∞), j ∈ {1, 2, 3}, we put

R
(τ )
j ( f )(x, t) :=

∫ t

0

∫

R3

3
∑

k=1

Λ jk(x − y, t − σ, τ ) · fk(y, σ ) dy dσ, (17)

P( f )(x, t) :=
∫

R3

3
∑

k=1

Ek(x − y) · fk(y, t) dy.

Let a ∈ C∞0 (U )3. Then we define

I
(τ )
j (a)(x, t) :=

∫

U
H(x − τ · t · e1 − y, t) · a j (y) dy, (18)

for x, t and j as above.
These potentials solve the Cauchy problem (4), (5) and (6):

Theorem 1 Take f and a as in (17), (18). Then the functions R
(τ )
j ( f ), P( f ) and

I
(τ )
j (a) belong to C∞

(

R
3 × [0,∞)

)

, for 1 ≤ j ≤ 3. Moreover, R
(τ )
j ( f ) and I

(τ )
j (a)

verify (5), and the following relations hold for x ∈ R
3, t ∈ (0,∞):

∂tR
(τ )( f )(x, t)−ΔxR

(τ )( f )(x, t)+ τ · ∂x1R
(τ )( f )(x, t)
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+ ∇xP( f )(x, t) = f (x, t),

div xR
(τ )( f )(x, t) = 0, R

(τ )( f )(x, 0) = 0, I
(τ )(a)(x, 0) = a(x),

∂tI
(τ )(a)(x, t)−ΔxI

(τ )(a)(x, t)+ τ · ∂x1I
(τ )(a)(x, t) = 0.

If div a = 0, then div xI
(τ )(a)(x, t) = 0 for x ∈ R

3, t ∈ (0,∞).

This theorem follows from Lebesgue’s theorem on dominated convergence and
from some standard properties of H (like the equation

∫

R3 H(x, t) dx = 1 for t ∈
(0,∞)). The details of a proof are tedious but simple.

Next we define the single layer potentials mentioned in Sect. 1. For T ∈
(0,∞], ϕ ∈ L2(ST )3, κ ∈ (0,∞), x ∈ R

3, t ∈ [0,∞), we put

V
(0)(ϕ)(x, t) :=

(∫ t

0

∫

∂Ω

3
∑

k= 1

Γ jk(x − y, t − σ ) · ϕ̃k(y, σ ) dΩ(y) dσ
)

1≤ j≤3
,

V
(κ)(ϕ)(x, t) :=

(∫ t

0

∫

∂Ω

3
∑

k= 1

Λ jk(x − y, t − σ, κ) · ϕ̃k(y, σ ) dΩ(y) dσ
)

1≤ j≤3
,

where ϕ̃ denotes the zero extension of ϕ from ST to S∞ if T <∞, and ϕ̃ := ϕ else.
We further set

Q(ϕ)(x, t) :=
∫

∂Ω

3
∑

k= 1

Ek(x − y) · ϕ̃k(y, t) dΩ(y)

for ϕ ∈ L2(ST )3, x ∈ R
3\∂Ω, t ∈ (0,∞). We call the function pairs

(

V
(0)(ϕ),

Q(ϕ)
)

and
(

V
(κ)(ϕ), Q(ϕ)

)

the “single layer potential related to the time-dependent
Stokes and Oseen system”, respectively.

The following lemma holds:

Lemma 6 Let T ∈ (0,∞], κ ∈ [0,∞), ϕ ∈ L2(ST )3. Abbreviate

w := V
(κ)(ϕ) | (R3\∂Ω)× [0,∞), π := Q(ϕ).

Then w j ( · , t), π ( · , t) ∈ C∞(R3\∂Ω) for 1 ≤ j ≤ 3, t ∈ [0,∞). For α ∈ N
3
0,

the partial derivative ∂αx w(x, t) as a function of x ∈ R
3\∂Ω and t ∈ [0,∞) is

continuous. The partial derivative ∂tw(x, t) exists for x ∈ R
3\∂Ω and for a.e.

t ∈ (0,∞). This derivative also is the weak derivative of w with respect to t on
(R3\∂Ω)× (0,∞), and the weak derivative of w(x, · ) on (0,∞), for x ∈ R

3\∂Ω .
The equations (7) (with τ replaced by κ) and (9) are satisfied.

We mention a regularity result on V
(τ )(ϕ) established in [5].

Theorem 2 V
(τ )(ϕ) | ZT ∈ L∞(0, T, L2(U )3)∩ L2(0, T, V )∩H 1(0, T, V ′) for T ∈

(0,∞), ϕ ∈ L2(S∞)3.
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We note another result proved in [5], and which shows that the restriction of
V

(κ)(ϕ) to ST may be considered as the boundary value of V
(κ)(ϕ) | ZT on ST :

Lemma 7 Let ϕ ∈ L2(S∞)3. Then the trace of
(

V
(τ )(ϕ)( · , t)

) |U coincides with
V

(τ )(ϕ)( · , t) | ∂Ω , for a. e. t ∈ (0,∞).

Now we can state how the problem of finding a solution to (1), (2) and (3)
reduces to an integral equation on S∞, as indicated in Sect. 1. Since this result is
only mentioned in order to motivate the study of Eq. (11), we did not make an effort
to weaken the assumptions on f and a.

Corollary 1 Let f, a be given as in (17), (18), and suppose that div a = 0. Let
b ∈ L2(S∞)3, and suppose there is ϕ ∈ L2(S∞)3 with

V
(τ )(ϕ) | S∞ = b − (

R
(τ )( f )+ I

(τ )(a)
) | S∞. (19)

Put

u := (

R
(τ )( f )+ I

(τ )(a)+V
(τ )(ϕ)

) | Z∞, p := (

P( f )+ Q(ϕ)
) | Z∞. (20)

Then u j ( · , t), p( · , t) ∈ C∞(U ) for t ∈ (0,∞), 1 ≤ j ≤ 3, the derivative
∂t u(x, t) exists for x ∈ U and for a. e. t ∈ (0,∞), and the pair (u, p) verifies (1),
(2) and (3).

3 Solving Integral Equation (11)

We start by stating a result from [19].

Theorem 3 For T ∈ (0,∞], the operator F
(0)
T : L2

n(ST ) $ ϕ �→ V
(0)(ϕ) | ST ∈ HT

is well defined, linear, bounded and bijective. In particular, F
(0)
T is Fredholm with

index 0.

Proof See [19, pp. 365–367]. Note that the arguments given there also hold for
T = ∞, although only the case T <∞ is considered. ��

The ensuing theorem will allow to reduce the invertibility of the Oseen single
layer potential to Theorem 3.

Theorem 4 Let T ∈ (0,∞]. Then
(

V
(κ2)(ϕ)−V

(κ1)(ϕ)
) | ST ∈ HT and

∥
∥
(

V
(κ2)(ϕ)−V

(κ1)(ϕ)
) | ST ‖HT ≤ C(κ2) · (κ2 − κ1)1/2 · ‖ϕ‖2 (21)

for ϕ ∈ L2(ST )3, κ1, κ2 ∈ [0,∞) with κ1 < κ2, where the constant C(κ), for
κ ∈ (0,∞), depends on Ω and κ , and is an increasing function of κ . In view of
Theorem 3, this means in particular that the operator

F
(κ)
T : L2

n(ST ) $ ϕ �→ V
(κ)(ϕ) | ST ∈ HT
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is well defined, linear and bounded. Abbreviate εp := min {1, D2}/p f or p ∈ N,

v := v(κ1, κ2, ϕ) := (

V
(κ2)(ϕ)−V

(κ1)(ϕ)
) | (R3\∂Ω)× (0, T ),

where κ1, κ2 ∈ [0,∞), ϕ ∈ L2(ST )3. Then the relation

∂lv
(

x + εp · m(Ω)(x), t
)− ∂lv

(

x − εp · m(Ω)(x), t
)→ 0 for p →∞ (22)

holds for l ∈ {1, 2, 3}, x ∈ ∂Ω and t ∈ (0, T ).
Finally, if T < ∞, the operator F

(κ2)
T − F

(κ1)
T : L2

n(ST ) �→ HT is compact for
κ1, κ2 ∈ [0,∞).

Proof For �1, �2 ∈ [0,∞) with �1 < �2, z ∈ R
3, s ∈ (0,∞), j, k ∈ {1, 2, 3},

put

K (�1,�2)
jk (z, s) := Λ jk(z, s, �2)−Λ jk(z, s, �1) if �1 > 0.

In the case �1 = 0, the term Λ jk(z, t, �1) is replaced by Γ jk(z, t).
Let κ1, κ2 ∈ [0,∞) with κ1 < κ2. We will write K jk instead of K (κ1,κ2)

jk in what
follows. All the constants appearing in the estimates in this proof and depending on
κ2 are increasing functions of κ2.

Lemma 4 and 5 with K = 2 · R0 yield

|∂ l
t ∂

α
z K jk(z, t)| ≤ C(κ2) · ( (|z|2 + t)−

3
2−
|α|
2 −

l
2 + (|z|2 + t)−

3
2−
|α|
2 −l ) (23)

for l ∈ {0, 1}, α ∈ N
3
0 with |α| + l ≤ 2, z ∈ B2·R0 , t ∈ (0,∞), j, k ∈ {1, 2, 3}.

Moreover

|∂ l
t ∂

α
z K jk(z, t)| (24)

=
∣
∣
∣

∫ 1

0

[

∂αz ∂
l+1
1 Λ jk

(

z, t, κ1 + ϑ · (κ2 − κ1)
) · (−κ1 − ϑ · (κ2 − κ1)

)l · t
+ δl1 · ∂αz ∂1∂4Λ jk

(

z, t, κ1 + ϑ · (κ2 − κ1)
) · t

+ δl1 · ∂αz ∂1Λ jk
(

z, t, κ1 + ϑ · (κ2 − κ1)
)]

dϑ
∣
∣
∣ · (κ2 − κ1)

≤ C(κ2) · (κ2 − κ1) · ( (|z|2 + t)−1−|α|/2−l/2 + (|z|2 + t)−1−|α|/2−l
)

.

By taking the average of the right-hand side of (23) and (24), we get for
l, α, z, t, j, k as before,

|∂ l
t ∂

α
z K jk(z, t)| (25)

≤ C(κ2) · (κ2 − κ1)1/2 · ( (|z|2 + t)−5/4−|α|/2−l/2 + (|z|2 + t)−5/4−|α|/2−l
)

.

We further remark that for z ∈ R
3\{0}, j, k ∈ {1, 2, 3}, α ∈ N

3
0, l ∈ N0, we

have
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∂ l
t ∂

α
z K jk(z, t) → 0 for t ↓ 0. (26)

For δ ∈ (0,D2], let ϕ(δ) ∈ C∞0 (R3) be such that ϕ(δ)(x) = 1 for x ∈ R
3 with

dist(x,Ω) ≤ D1 · δ/4, and ϕ(δ)(x) = 0 if dist(x,Ω) ≥ 3 · D1 · δ/8. Next choose
ζ ∈ C∞(R) with ζ | (−∞, 1] = 1 and ζ | [2,∞) = 0. Put ζ (δ)(t) := ζ (δ · t) for t ∈
R, δ ∈ (0, min {1,D2} ]. Then supp(ζ (δ)) ⊂ (−∞, 2/δ] and ζ (δ) | (−∞, 1/δ] = 1,
hence

|ζ (δ) ′(t)| ≤ C · χ(1/δ, 2/δ)(t) · t−1 ≤ C · χ(1,∞)(t) · t−1 ≤ C (27)

for t ∈ (0,∞), δ ∈ (0,D2] with δ ≤ 1. Using the number εp introduced in
Theorem 4, we define

w
(�1,�2)
p, j (ϕ)(x, t) := ϕ(εp)(x) · ζ (εp)(t)

·
∫ t

0

∫

∂Ω

3
∑

k= 1

K (�1,�2)
jk (x − y − εp · m(Ω)(y), t − σ ) · ϕk(y, σ ) dΩ(y) dσ

for p ∈ N, 1 ≤ j ≤ 3, ϕ ∈ L2(ST )3, x ∈ R
3, t ∈ [0, T ] ∩ R, �1, �2 ∈ [0,∞)

with �1 < �2. In the following, we will write wp(ϕ) instead of w(κ1,κ2)
p (ϕ). Due to

(13), (14), (26) and the choice of ϕ(εp) and ζ (εp), we have wp | ST ∈ H̃T ∩ L2
n(ST ).

It was shown in the proof of [3, Lemma 9] that (F(�)
T − F

(0)
T )(ϕ) ∈ HT and

‖w(�,0)
p (ϕ)− (F(�)

T − F
(0)
T )(ϕ)‖HT → 0 (p →∞) (28)

for ϕ ∈ L2(ST )3, � ∈ (0,∞). We note that the term C · γ (x, t)−3/2−|α|/2−l/2 is
lacking on the right-hand side of the estimate in [3, Lemma 3], which corresponds
to Lemma 5 here. As a consequence of this oversight, inequality [3, (18)] in the
proof of [3, Lemma 9] is incomplete; the term C · (|z|2 + t)−3/2−|α|/2−l/2 has to be
added on the right-hand side. This modification, in turn, means that the function H2

in [3, p. 123] has to be changed: the integral over
(

0, (t − σ )/2
)

in the definition
of H2 should apply to the function

r−
1
2 · [χ(1,∞)(t) · t−1 · (|x − y|2 + t − σ − r )−

3
2 + (|x − y|2 + t − σ − r )−2

]

.

(Distinguish the cases |x − y|2 + t − σ − r ≤ 1 and |x − y|2 + t − σ − r ≥ 1.)
The rest of the proof of [3, Lemma 9] remains valid with a modification of the upper
bound of H2(x, y, t, σ ), which may be chosen as

C · χ(0,1)(t − σ ) · |x − y|−
15
8 · (χ(1,∞)(t) · t−1 · (t − σ )−

1
16 + (t − σ )−

9
16

)

+C · χ(1,∞)(t − σ ) · |x − y|−
1
8 · (χ(1,∞)(t) · t−1 · (t − σ )−

15
16 + (t − σ )−

23
16

)

.
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Since wp(ϕ) = w(κ2,0)
p (ϕ)−w(κ1,0)

p (ϕ) for p ∈ N, ϕ ∈ L2(ST )3, we may conclude
from (28) that

‖wp(ϕ)− (F(κ2)
T − F

(κ1)
T )(ϕ)‖HT → 0 (p →∞), for ϕ ∈ L2(ST )3. (29)

Let ϕ ∈ L2(ST )3, p ∈ N. We are going to estimate ‖wp(ϕ)‖HT . To this end,
using the abbreviation

βp(x, y) := x − y − εp · m(Ω)(y) for x ∈ Ω, y ∈ ∂Ω, (30)

we define for j, k,m ∈ {1, 2, 3}, x ∈ Ω, y ∈ ∂Ω, t ∈ (0,∞), σ ∈ (0, t),

Kp, j,k,0(x, y, t, σ ) := ζ (εp)(t) · K jk
(

βp(x, y), t − σ ),

Kp, j,k,m(x, y, t, σ ) := ζ (εp)(t) · ∂xm K jk
(

βp(x, y), t − σ
)

,

Lp, j,k(x, y, t, σ ) :=
∫ (t−σ )/2

0
r−1/2 · [ ζ (εp) ′(t − r ) · K jk

(

βp(x, y), t − σ − r
)

+ζ (εp)(t − r ) · ∂t K jk
(

βp(x, y), t − σ − r
) ]

dr

+ 21/2 · (t − σ )−1/2 · ζ (εp)
(

(t + σ )/2
) · K jk

(

βp(x, y), (t − σ )/2
)

− (1/2) ·
∫ t−σ

(t−σ )/2
r−3/2 · ζ (εp)(t − r ) · K jk

(

βp(x, y), t − σ − r
)

dr,

Mp, j,k(x, y, t, σ ) := ζ (εp) ′(t) · K jk
(

βp(x, y), t − σ
)

+ζ (εp)(t) · ∂t K jk
(

βp(x, y), t − σ
)

.

Inequalities (23), (27) and (14) imply

| ∂ l
t ∂

α
x

[

ζ (εp)(t) · K jk
(

βp(x, y), t − σ
) ] | ≤ C(κ2) · ε−3/2−|α|/2−l

p (31)

for x ∈ Ω, y ∈ ∂Ω, t ∈ (0, T ), σ ∈ (0, t), and for α ∈ N
3
0, l ∈ N0 with

|α| + l ≤ 1. Thus we see that the functions Kp, j,k,m and Mp, j,k are bounded, and

|Lp, j,k(x, y, t, σ )| ≤ C(εp, κ2) · ( (t − σ )1/2 + (t − σ )−1/2 ) (32)

for x, y ∈ ∂Ω, t ∈ (0,∞), σ ∈ (0, t), 1 ≤ j, k ≤ 3. As a consequence, we may
define

Ap, j,k,m(ψ)(x, t) :=
∫ t

0

∫

∂Ω

Kp, j,k,m(x, y, t, σ ) · ψ(y, σ ) dΩ(y) dσ

for j, k ∈ {1, 2, 3}, m ∈ {0, 1, 2, 3}, x ∈ ∂Ω, t ∈ (0, T ), ψ ∈ L2(ST ). In
addition, we may introduce Bp, j,k(ψ) and Cp, j,k(ψ) in the same way as Ap, j,k,m(ψ),
but with the kernel Kp, j,k,m replaced by Lp, j,k and Mp, j,k , respectively, and with
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x ∈ Ω instead of x ∈ ∂Ω in the case of Cp, j,k(ψ). By referring to (26), it may be
shown that

∂t

(∫ t

0
(t − r )−1/2 · wp, j (ϕ)(x, r ) dr

)

(33)

=
3

∑

k=1

∫

∂Ω

∂t

(∫ t

0
ϕk(y, σ ) ·

∫ t

σ

(t − r )−1/2 · ζ (εp)(r )

·K jk
(

βp(x, y), r − σ
)

dr dσ
)

dΩ(x)

=
3

∑

k=1

∫ t

0

∫

∂Ω

Lp, j,k(x, y, t, σ ) · ϕk(y, σ ) dΩ(y) dσ =
3

∑

k=1

Bp, j,k(ϕk)(x, t)

for j ∈ {1, 2, 3}, x ∈ ∂Ω, t ∈ (0, T ). Let E : H 1/2(∂Ω) �→ H 1(Ω) be a linear
bounded extension operator. Using the equation divxwp(ϕ)(x, t) = 0

(

x ∈ Ω, t ∈
(0, T )

)

, we get for t ∈ (0, T ), v ∈ H 1(∂Ω),

∫

∂Ω

(

∂twp(ϕ)(x, t) · n(Ω)(x)
) · v(x) dΩ(x) (34)

=
3

∑

j=1

∫

Ω

∂twp, j (ϕ)(x, t) · ∂ j E(v)(x) dx

=
3

∑

j,k=1

∫

Ω

∫ t

0

∫

∂Ω

Mp, j,k(x, y, t, σ ) · ϕk(y, σ ) dΩ(y) dσ · ∂ j E(v)(x) dx

=
3

∑

j,k=1

∫

Ω

Cp, j,k(ϕk)(x, t) · ∂ j E(v)(x) dx

≤
3

∑

j,k=1

‖Cp, j,k(ϕk)( · , t)‖2 · ‖v‖1/2, 2.

Since ‖v‖1/2,2 ≤ C · ‖v‖1,2 for v ∈ H 1(∂Ω), and in view of (33) and (34), we
may conclude

‖wp(ϕ) | ST ‖HT (35)

≤ C ·
3

∑

j,k=1

( 3
∑

m=0

‖Ap, j,k,m(ϕk)‖2 + ‖Bp, j,k(ϕk)‖2 + ‖Cp, j,k(ϕk)‖2

)

.

Next we indicate an observation which follows from (25) and (14), and which
holds for x, y ∈ ∂Ω, t ∈ (0, T ), σ ∈ (0, t), j, k ∈ {1, 2, 3} and α ∈ N

3
0 with

|α| ≤ 1:
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|∂αx K jk
(

βp(x, y), t − σ )| ≤ C(κ2) · (κ2 − κ1)1/2 · H1(x − y, t − σ ), (36)

with

H1(z, r ) := χ(0,1)(r ) · r−15/16 · |z|−13/8 + χ(1,∞)(r ) · r−5/4

for r ∈ (0,∞), z ∈ R
3\{0}. By referring to (25), (27), (14), we obtain for

x, y, t, σ, j, k as in (36),

|L jk(x, y, t, σ )| ≤ C(κ2) · (κ2 − κ1)1/2

·
(∫ (t−σ )/2

0
r−1/2 · [χ(1,∞)(t − r ) · (t − r )−1 · (|x − y|2 + t − σ − r )−5/4

+ (|x − y|2 + t − σ − r )−7/4 + (|x − y|2 + t − σ − r )−9/4
]

dr

+ (t − σ )−1/2 · (|x − y|2 + t − σ )−5/4

+
∫ t−σ

(t−σ )/2
r−3/2 · (|x − y|2 + t − σ − r )−5/4 dr

)

≤ C(κ2) · (κ2 − κ1)1/2 ·
([

(t − σ )−1 · (|x − y|2 + t − σ )−5/4

+ (|x − y|2 + t − σ )−7/4 + (|x − y|2 + t − σ )−9/4
] ·

∫ (t−σ )/2

0
r−1/2 dr

+ (t − σ )−1/2 · (|x − y|2 + t − σ )−5/4

+ (t − σ )−3/2 ·
∫ t−σ

(t−σ )/2
(|x − y|2 + t − σ − r )−5/4 dr

)

≤ C(κ2) · (κ2 − κ1)1/2 ·
((

1+ (t − σ )−1/2
) · (|x − y|2 + t − σ )−5/4

+ χ(1,∞)(t − σ ) · (t − σ )−3/2 · |x − y|−1/2

+ χ(0,1)(t − σ ) · (t − σ )−3/2 · |x − y|−13/8 ·
∫ t−σ

(t−σ )/2
(t − σ − r )−7/16 dr

)

≤ C(κ2) · (κ2 − κ1)1/2 · H2(x − y, t − σ ), (37)

where we used the following notation, for z ∈ R
3\{0}, r ∈ (0,∞),

H2(z, r ) := χ(1,∞)(r ) · r−5/4 · |z|−1/2 + χ(0,1)(r ) · r−15/16 · |z|−13/8.

Moreover, due to (24), (25), (27) and (14), we get for x ∈ Ω and for y, t, σ, j, k
as in (36),

|Mp, j,k(x, y, t, σ )| (38)

≤ C · ( |ζ (εp) ′(t)| · |K jk
(

βp(x, y), t − σ )| + |∂t K jk
(

βp(x, y), t − σ )| )
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≤ C(κ2) · (κ2 − κ1)1/2 · [ (|x − y|2 + t − σ )−5/4 + (|x − y|2 + t − σ )−3/2

+(|x − y|2 + t − σ )−2
]

≤ C(κ2) · (κ2 − κ1)1/2 · H3(x − y, t − σ ),

with

H3(z, r ) := χ(1,∞)(r ) · r−5/4 + χ(0,1)(r ) · r−15/16 · |z|−17/8

for z ∈ R
3\{0}, r ∈ (0,∞). Applying Lemma 3 with A = B = ST , F1 = F2 =

F1/2, we get in the case i ∈ {1, 2} that

(∫ T

0

∫

∂Ω

(∫ T

0

∫

∂Ω

Hi (x − y, t − σ ) · |ϕ(y, σ )| dΩ(y) dσ
)2

dΩ(x) dt
)1/2

(39)

≤ C · ‖ϕ‖2.

Also by Lemma 3, this time with A = Ω × (0, T ), B = ST , F1 = F2 = F1/2,

(∫ T

0

∫

Ω

(∫ T

0

∫

∂Ω

χ(1,∞)(t − σ ) · (t − σ )−5/4 · |ϕ(y, σ )| dΩ(y) dσ
)2

dx dt
)1/2

(40)

≤ C · ‖ϕ‖2.

When we apply Lemma 3 with A = Ω × (0, T ), B = ST ,

F1(x, t, y, σ ) := χ(0,1)(t − σ ) · (t − σ )−15/32 · |x − y|−7/8

for x ∈ Ω, y ∈ ∂Ω, t, σ ∈ (0,∞), and with F2 defined in the same way as F1,
except that the exponent −7/8 is replaced by −5/4, we arrive at the estimate

(∫ T

0

∫

Ω

(∫ T

0

∫

∂Ω

χ(0,1)(t − σ ) · (t − σ )−15/16 · |x − y|−17/8 (41)

·|ϕ(y, σ )| dΩ(y) dσ
)2

dx dt
)1/2

≤ C · ‖ϕ‖2.

Inequalities (40) and (41) imply

(∫ T

0

∫

Ω

(∫ T

0

∫

∂Ω

H3(x − y, t − σ ) · |ϕ(y, σ )| dΩ(y) dσ
)2

dx dt
)1/2

(42)

≤ C · ‖ϕ‖2.

Combining (35), (36), (37), (38), (39) and (42) yields ‖wp(ϕ) | ST ‖HT ≤ C(κ2) ·
(κ2 − κ1)1/2 · ‖ϕ‖2. This is true for any p ∈ N. Thus inequality (21) follows with
(29). An obvious application of (24), (14) and the mean value theorem yields
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∣
∣
∣

3
∑

k=1

(

∂i K jk(x − y + ε · m(Ω)(x), t − σ )− ∂i K jk(x − y − ε · m(Ω)(x), t − σ )
)∣
∣
∣

≤ C(κ2) ·min
{

(|x − y|2 + t − σ )−3/2, ε · (|x − y|2 + t − σ )−2
}

≤ C(κ2) · ε1/4 · (|x − y|2 + t − σ )−13/8

for x, y ∈ ∂Ω, t ∈ (0, T ), σ ∈ (0, t), 1 ≤ i, j ≤ 3, ε ∈ (0,D2]. Now the relation
in (22) follows after an integration over St , for t ∈ (0, T ).

Let us finally suppose that T <∞. Recalling the abbreviation introduced in (30),
we may conclude from (23), (24), (14) that for x ∈ Ω, y ∈ ∂Ω, t ∈ (0, T ), p, q ∈
N, j, k ∈ {1, 2, 3}, l ∈ N, α ∈ N

3
0 with |α| + l ≤ 1,

|∂ l
t ∂

α
x K jk

(

βp(x, y), t
)− ∂ l

t ∂
α
x K jk

(

βq (x, y), t
)|

≤
∑

ν∈{p,q}
|∂ l

t ∂
α
x K jk

(

βν(x, y), t
)|7/8

· |∂ l
t ∂

α
x K jk

(

βp(x, y), t
)− ∂ l

t ∂
α
x K jk

(

βq (x, y), t
)|1/8

≤ C(κ2, T ) · (κ2 − κ1)7/8 · (|x − y|2 + t)7·(−1−|α|/2−l)/8

·
∣
∣
∣

∫ 1

0

3
∑

i=1

∂ l
t ∂

α
x ∂i K jk

(

x − y − (εq + ϑ · (εp − εq )) · m(Ω)(y), t
)

· (εp − εq ) · m(Ω)
i (y) dϑ

∣
∣
∣

1/8

≤ C(T, κ2) · (|x − y|2 + t)
7
8 (−1− |α|2 −l)·

|εp − εq | 1
8 · (|x − y|2 + t)(−2− |α|2 − l

8 )

≤ C(T, κ2) · |εp − εq |1/8 · (|x − y|2 + t)−9/8−|α|/2−l .

(43)

Now it is easy to show with (24) and (27) that in the situation of (43), with
σ ∈ (0, t),

|∂ l
t ∂

α
x

[

ζ (εp)(t)K jk
(

βp(x, y), t − σ
) ]− ∂ l

t ∂
α
x

[

ζ (εq )(t)K jk
(

βq (x, y), t − σ
) ]|

≤ C(T, κ2)|εp − εq |1/8(|x − y|2 + t − σ )−9/8−|α|/2−l .

Due to this inequality, one may use similar arguments as in the proof of (21), but
with simplifications because of the assumption T <∞, to obtain

‖(wp(ϕ)− wq (ϕ)
) | ST ‖HT ≤ C(T, κ2) · |εp − εq |1/8 · ‖ϕ‖2 for p, q ∈ N.

It follows with (29) that

sup
{ ‖wp(ϕ)− (F(κ2)

T − F
(κ1)
T )(ϕ)‖HT /‖ϕ‖2 : ϕ ∈ L2

n(ST )\{0} } −→ 0 (44)
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for n → ∞. On the other hand, take p ∈ N. Since T < ∞ and the functions
Kp, j,k,m and Mp, j,k are bounded (see (31)), and because of (32), we may conclude
that Ap, j,k,m, Bp, j,k and Cp, j,k are compact as operators from L2(ST ) into L2(ST ).
Thus, due to (35), it follows that the operator Wp : L2

n(ST ) $ ψ �→ wp(ψ) | ST ∈
HT is compact. In view of (44), this means that F

(κ2)
T − F

(κ1)
T : L2

n(ST ) �→ HT is
compact. ��
Theorem 5 (jump relations) Let T ∈ (0,∞], κ ∈ [0,∞), ϕ ∈ L2(ST )3, j ∈
{1, 2, 3}, and put V := V

(κ)(ϕ) | (R3\∂Ω)× (0, T ). Then

Q(ϕ)
(

x + ε · m(Ω)(x), t
)− Q(ϕ)

(

x − ε · m(Ω)(x), t
) −→ n(Ω)(x) · ϕ(x, t),

3
∑

k=1

((

∂k Vj − δ jk · Q(ϕ)
)(

x + ε · m(Ω)(x), t
)) · n(Ω)

k (x)

−
3

∑

k=1

((

∂k Vj − δ jk · Q(ϕ)
)(

x − ε · m(Ω)(x), t
)) · n(Ω)

k (x) −→ −ϕ j (x, t)

for ε ↓ 0, for a. e. x ∈ ∂Ω, t ∈ (0, T ).

Proof See (13) and [19, Lemma 2.3.4] in the case κ = 0. The statement for κ > 0
follows with (22). ��

Now we may establish a result which serves to prove uniqueness of a solution to
the integral equation (11). The general approach for proving this result is standard,
but in our particular situation, the problem consists in interpreting all the integrals
involved in a rigorous way.

Theorem 6 Let T ∈ (0,∞], κ ∈ [0,∞) ϕ ∈ L2
n(ST ) with F

(κ)
T (ϕ) = 0. Then

ϕ = 0.

Proof Let T̃ ∈ (0, T ). For p ∈ N, we put εp := min {1, D2}/p, and we set for
j ∈ {1, 2, 3}, x ∈ R

3 with dist(x,U ) < D1 · εp/2, t ∈ [0, T̃ ],

V (p)
j (x, t) :=

∫ t

0

∫

∂Ω

3
∑

k=1

Λ jk
(

x − y + εp · m(Ω)(y), t − σ, κ
)

(45)

·ϕk(y, σ ) dΩ(y) dσ,

Q(p)(x, t) :=
∫

∂Ω

3
∑

k=1

Ek
(

x − y + εp · m(Ω)(y)
) · ϕk(y, t) dΩ(y). (46)

By (13), (14) and Lemma 5, we have for 1 ≤ j, k ≤ 3, p ∈ N, t ∈ [0, T̃ ] that

V (p)
j ( · , t), Q(p)( · , t) ∈ C∞(Up), ∂k V (p), V (p) ∈ C0

(

Up × [0, T̃ ])3

with Up := {x ∈ R
3 : dist(x,U ) < D1 · εp/2}. It further follows that the derivative

∂t V (p)(x, t) exists for x ∈ Up and for a. e. t ∈ (0, T̃ ), with
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∂t V
(p)
j (x, t) =

∫ t

0

∫

∂Ω

3
∑

k=1

∂tΛ jk
(

x − y + εp · m(Ω)(y), t − σ, κ
)

(47)

·ϕk(y, σ ) dΩ(y) dσ − ∂x j Q(p)(x, t),

∂t V
(p)
j (x, t)−Δx V (p)

j (x, t)+ τ · ∂x1 V (p)
j (x, t)+ ∂x j Q(p)(x, t) = 0. (48)

We may conclude from (47) and (14) that

|∂t V
(p)
j (x, t)| ≤ C(T̃ , p) · ‖ϕ( · , t)‖2 for x ∈ Up, t ∈ (0, T̃ ). (49)

This means in particular the function ∂t V (p)(x, · ) is square integrable on (0, T̃ ).
On the other hand, this function is not only the pointwise, but also the weak deriva-
tive of V (p)(x, · ) on (0, T̃ ). Since V (p)(x, · ) is continuous on [0, T̃ ], we thus have
V (p)(x, · ) ∈ H 1

(

(0, T̃ )
)3

. Moreover, for p, q ∈ N, R ∈ [R0,∞), we get from
(48) that

0 =
∫ T̃

0

∫

BR\Ω

(

∂t V
(p) −Δx V (p) + τ · ∂x1 V (p) + ∇x Q(p)

) · V (q) dx dt,

hence by partial integration and the equation divx V (p) = 0,

0 =
∫ T̃

0

∫

∂BR∪∂Ω

3
∑

j, k= 1

(

(−∂k V (p)
j + δ jk Q(p)

)

V (q)
j

)

(x, t)N (R)
k (x) dox dt

+
∫ T̃

0

∫

ΩR

(

(∇x V (p)∇x V (q))+ τ (∂x1 V (p)V (q))+ (∂t V
(p)V (q))

)

(x, t) dx dt,

(50)

where N (R) : ∂ΩR �→ R
3 denotes the outward unit normal to ΩR := BR\Ω , that is,

N (R)(x) := R−1 · x for x ∈ ∂BR, N (R) := −n(Ω)(x) for x ∈ ∂Ω . Now abbreviate
V := V

(τ )(ϕ). As explained in the proof of [5, Theorem 2.4], we have

‖( V (p) −V
) |ΩR × (0, T̃ )‖1,2 → 0, (p →∞)

‖(V (p) −V) | ST̃ ‖2 → 0, (p →∞).
(51)

Recalling that V|ST = F
(κ)
T (ϕ) = 0 by the choice of ϕ, and noting that the

function V |ΩR × (0, T ) belongs to L2(0, T, H 1(ΩR)3) by Theorem 2, we may
thus deduce from (50) and (49), by first letting q, and then p, tend to zero,

0 =
∫ T̃

0

∫

∂BR

( 3
∑

j, k= 1

(

(−∂xk V j (x, t)+ δ jk Q(ϕ)(x, t)
)

V j (x, t)
)

xk/R dox dt

+
∫ T̃

0

∫

ΩR

( |∇xV(x, t)|2 + τ∂x1V(x, t)V(x, t)
)

dx dt
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+ lim
p→∞

∫ T̃

0

∫

ΩR

∂t V
(p)(x, t)V(x, t) dx dt. (52)

On the other hand, referring to (51) and the relation V|ST = F
(κ)
T (ϕ) = 0, we get

∫ T̃

0

∫

ΩR

∂x1V(x, t) ·V(x, t) dx dt (53)

= lim
p→∞

∫ T̃

0

∫

ΩR

∂x1 V (p)(x, t) · V (p)(x, t) dx dt

= lim
p→∞

∫ T̃

0

∫

∂BR∪∂Ω
(1/2) · |V (p)(x, t)|2 · N (R)(x) dox dt

=
∫ T̃

0

∫

∂BR

(1/2) · |V(x, t)|2 · x1/R dox dt.

Let us determine the remaining limit in (52). To this end, we first observe that for
j ∈ {1, 2, 3}, p ∈ N, x ∈ ΩR, t ∈ (0, T̃ ), the following relations are valid:

|V (p)(x, t)−V(x, t)|

=
∣
∣
∣

∫ t

0

∫

∂Ω

3
∑

k, l = 1

∫ 1

0
∂lΛ jk

(

x − y + ϑ · εp · m(Ω)(y), t − σ, κ
)

dϑ · εp

·m(Ω)
l (y) · ϕk(y, σ ) dΩ(y) dσ

∣
∣
∣

≤ C(κ, R) · εp ·
∫ t

0

∫

∂Ω

(|x − y|2 + t − σ )−2 · |ϕ(y, σ )| dΩ(y) dσ,

where we used Lemma 5 with K = 2 · R and (14) in the last estimate. By Lemma 3
with A = ΩR × (0, T̃ ), B = ST̃ ,

F1(x, t, y, σ ) := χ(0,∞)(t − σ ) · (|x − y|2 + t − σ )−7/8,

F2(x, t, y, σ ) := χ(0,∞)(t − σ ) · (|x − y|2 + t − σ )−9/8

for x ∈ ΩR, y ∈ ∂Ω, t, σ ∈ (0, T̃ ), we get

‖(V (p) −V) |ΩR × (0, T̃ )‖2 ≤ C(κ, T̃ , R) · εp · ‖ϕ‖2 for p ∈ N. (54)

On the other hand, we refer to (14), (47), Lemma 5 with K = 2 · R, and to
Lemma 3 with A, B, F2, F1 as above, except that the exponent −7/8 in the defini-
tion of F1 is replaced by −15/16. It follows for p ∈ N, 1 ≤ j ≤ 3,

(∫ T̃

0

∫

ΩR

|∂t V
(p)
j (x, t)+ ∂x j Q(p)(x, t)|2 dx dt

)1/2
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≤
(∫ T̃

0

∫

ΩR

∣
∣
∣

∫ t

0

∫

∂Ω

3
∑

k=1

∂tΛ jk
(

x − y + εpm(Ω)(y), t − σ, κ
)

· ϕk(y, σ ) dΩ(y) dσ
∣
∣
∣

2
dx dt

)1/2

≤ C(R) ·

·
(∫ T̃

0

∫

ΩR

(∫ t

0

∫

∂Ω

≤ (

(|x − y| + εp)2 + t − σ
)−5/2|ϕ(y, σ )| dΩ(y) dσ

)2
dx dt

)1/2

≤ C(R)ε−7/8
p ·

·
(∫ T̃

0

∫

ΩR

(∫ t

0

∫

∂Ω

(|x − y|2 + t − σ )−33/16 · |ϕ(y, σ )| dΩ(y) dσ
)2

dx dt
)1/2

(55)

≤ C(κ, T̃ , R) · ε−7/8
p · ‖ϕ‖2.

A similar argument yields

(∫ T̃

0

∫

ΩR

|∂x j Q(p)(x, t)|2 dx dt
)1/2

≤ C · ε−7/8
p ·

(∫ T̃

0

∫

ΩR

(∫

∂Ω

|x − y|−17/8 · |ϕ(y, t)| dΩ(y)
)2

dx dt
)1/2

≤ C(T̃ , R) · ε−7/8 · ‖ϕ‖2

for p ∈ N, 1 ≤ j ≤ 3. Due to (54), (55), (47) and the preceding estimate, we may
conclude for p ∈ N that

∣
∣
∣

∫ T̃

0

∫

ΩR

∂t V
(p) · (V− V (p)) dx dt

∣
∣
∣ ≤ C(κ, T̃ , R) · ε1/8

p · ‖ϕ‖2
2.

Thus we get

lim
p→∞

∫ T̃

0

∫

ΩR

∂t V
(p) ·V dx dt = lim

p→∞

∫ T̃

0

∫

ΩR

∂t V
(p) · V (p) dx dt (56)

= lim
p→∞

∫

ΩR

( |V (p)(x, T̃ )|2 − |V (p)(x, 0)|2 )/2 dx =
∫

ΩR

|V(x, T̃ )|2/2 dx .

We note that the partial integration in (56) is justified because the function
V (p)(x, · ) belongs to C0([0, T̃ ])3 and to H 1

(

(0, T̃ )
)3

, for x ∈ Up, p ∈ N, as
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observed above. The last equation in (56) follows from (14) and Lebesgue’s theorem
on dominated convergence; compare the proof of [5, Theorem 2.4], in particular [5,
(33)]. Also note that V (p)(x, 0) = 0 for p ∈ N, x ∈ Up. Equation (52), (53) and
(56) yield

0 =
∫ T̃

0

∫

∂BR

( 3
∑

j,k=1

−∂xk V j (x, t)V j (x, t)xk/R (57)

+ (τ/2)|V(x, t)|2x1/R + Q(ϕ)(x, t)R−1
(

xV(x, t)
))

dox dt

+
∫ t

0

∫

ΩR

|∇xV(x, t)|2 dx dt + (1/2)
∫

ΩR

|V(x, T̃ )|2 dx .

We have
∫ T̃

0

∫

U |∇xV(x, t)|2 dx dt < ∞ and
∫

U |V(x, T̃ )|2 dx < ∞, according
to [5, Corollary 3.1]. Moreover, by Lemma 5 with K = R0/2,

|∂αV(x, t)| ≤ C(κ, T̃ , R0) · ‖ϕ‖2 · |x |−3/2−|α|/2,

|Q(ϕ)(x, t)| ≤ C(κ, T̃ )‖ϕ‖2 · |x |−2

for x ∈ Bc
R0
, t ∈ (0, T̃ ), α ∈ N

3
0 with |α| ≤ 1. Thus, letting R tend to infinity in

(57), we obtain

0 =
∫ T̃

0

∫

U
|∇xV(x, t)|2 dx dt + (1/2)

∫

U
|V(x, T̃ )|2 dx . (58)

Since T̃ is an arbitrary number in (0, T ), and because V|ZT is continuous, we
may conclude that V|ZT = 0. Therefore Eq. (7) (verified according to Lemma 6),
the assumption that U is connected, and the decay of Q(ϕ)(x, t) for |x | → ∞ imply
that Q(ϕ)(x, t) = 0 for x ∈ U and for a. e. t ∈ (0, T ).

Next we define V (−p)(x, t) and Q(−p)(x, t) in the same way as respectively
V (p)(x, t) and Q(p)(x, t) in (45) and (46), but for x ∈ R

3 with dist(x,Ω) < D1 ·εp/2
instead of x ∈ Up, and with the term−y+εp ·m(Ω)(y) replaced by−y−εp ·m(Ω)(y).
By a reasoning analogous to (but somewhat simpler than) the one which led to (58),
we may show that V |Ω×(0, T ) = 0 and that for a. e. t ∈ (0, T ), there is cin(t) ∈ R

with Q(ϕ)(x, t) = cin(t) for x ∈ Ω . It follows that

Q(ϕ)(x + εp · m(Ω)(x), t)− Q(ϕ)(x − εp · m(Ω)(x), t) → −cin(t) (p →∞)

for x ∈ ∂Ω and for a. e. t ∈ (0, T ). Thus we may conclude from Theorem 5 that
−cin(t) = n(Ω)(x) · ϕ(x, t) for a. e. x ∈ ∂Ω, t ∈ (0, T ), hence

−cin(t) ·
∫

∂Ω

dΩ(x) =
∫

∂Ω

n(Ω)(x) · ϕ(x, t) dΩ(x) for a. e. t ∈ (0, T ).
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Since ϕ ∈ L2
n(∂Ω), we arrive at the equation cin(t) = 0 for a. e. t ∈ (0, T ). But

V | (R3\∂Ω)× (0, T ) = 0, as proved above, so we have

3
∑

k=1

(

∂k(V j |O)− δ jk · Q(ϕ)
)(

x + εp · m(Ω)(x), t
) · n(Ω)

k (x)−

3
∑

k=1

(

∂k(V j |O)− δ jk · Q(ϕ)
)(

x − εp · m(Ω)(x), t
) · n(Ω)

k (x) → 0 (p →∞)

for 1 ≤ j ≤ 3, a. e. x ∈ ∂Ω, t ∈ (0, T ), where we used the abbreviation O :=
(R3\∂Ω)× (0, T ). Now Theorem 5 yields ϕ = 0. ��

At this point we may prove the invertibility of the operator F
(τ )
T .

Corollary 2 Let T ∈ (0,∞]. Then the operator F (τ )
T : L2

n(ST ) �→ HT is linear,
bounded and bijective.

Proof Let κ ∈ (0,∞). For any T ′ ∈ (0,∞), the operator F
(κ)
T ′ − F

(0)
T ′ is linear,

bounded and compact; see Theorem 4. Theorem 3 now implies that F
(κ)
T ′ is linear,

bounded and closed range for T ′ ∈ (0,∞). Since F
(κ)
T ′ (ϕ|ST ′) = F

(κ)
T (ϕ) | ST ′ for

T ′ ∈ (0, T ), ϕ ∈ L2
n(ST ), it is not difficult to conclude that F

(κ)
T is also closed-range

even if T = ∞. A detailed argument may be found in the proof of [3, Lemma 12].
On the other hand, we know by Theorem 6 that the operator F

(κ)
T is one-to-one, and

by Theorem 3 and 4 that it is bounded. Thus this operator is linear, bounded and
semi-Fredholm. This is true for any κ ∈ (0,∞). Due to inequality (21), the index
of this operator is stable with respect to κ . In this respect, we refer to [17, Theorem
I.3.11], where Fredholm operators are considered. But the result stated there also
holds for semi-Fredholm operators. To see this, it suffices to replace the reference to
[17, Theorem I.3.5] in [17] by a reference to [14, p. 235, Theorem 5.17] (stability of
the index of semi-Fredholm operators with respect to small perturbations). But by
Theorem 3, the index of F

(0)
T equals zero. Thus we may conclude that the operator

F
(τ )
T also has index zero. Recalling that the latter operator is one-to-one (Theorem 6),

we thus obtain that it is even bijective. ��
The preceding corollary means that we may solve the integral equation in (11) if its
right-hand side is in HT :

Corollary 3 Let T ∈ (0,∞], c ∈ HT . Then there is a unique function ϕ ∈ L2
n(ST )

which solves (11). There is C = C(τ,Ω) > 0 such that ‖ϕ‖2 ≤ C · ‖F(τ )
T (ϕ)‖HT for

ϕ ∈ L2
n(ST ).

Proof We still have to show that the constant C does not depend on T ∈ (0,∞]. To
this end, suppose that T ∈ (0,∞). For b ∈ HT , x ∈ ∂Ω, t ∈ (0,∞), define

GT (b)(x, t) := b(x, t) if t ≤ T, GT (b)(x, t) := b(x, 2T − t) if t ∈ (T, 2T ],

GT (b)(x, t) := 0 if t > 2 · T .
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Then GT (b) ∈ HT and

‖GT (b)‖H∞ ≤ C · ‖b‖HT for b ∈ HT . (59)

The proof of this result is not trivial; we refer to [1] for details. To indicate a
possible way to proceed, we mention that for x ∈ R

3, t ∈ [0, T ], v ∈ H̃T ,

v(x, t) = B(1/2, 1/2)−1/2 ·
∫ t

0
(t − s)−1/2 · ∂1/2

4 v(x, s) ds, (60)

where B denotes the usual beta function. By applying (60) to v(x, t) for t ≤ T and
to v(x, 2 · T − t) for t ∈ (T, 2 · T ), it is possible to prove that

‖∂1/2
4 GT (v|ST )‖2 ≤ C · ( ‖v|ST ‖2 + ‖∂1/2

4 v|ST ‖2
)

for v ∈ H̃T .

Then inequality (59) may be established by some obvious additional estimates.
Once an extension operator GT from HT to H∞ with (59) is available, the corollary
follows from Corollary 2 with T = ∞. ��
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Regularity of Weak Solutions
for the Navier-Stokes Equations Via
Energy Criteria

Reinhard Farwig, Hideo Kozono, and Hermann Sohr

Abstract Consider a weak solution u of the instationary Navier-Stokes system in a
bounded domain of R

3 satisfying the strong energy inequality. Extending previous
results by Farwig et al., J. Math. Fluid Mech. 11, 1–14 (2008), we prove among
other things that u is regular if either the kinetic energy 1

2‖u(t)‖2
2 or the dissipation

energy
∫ t

0 ‖∇u(τ )‖2
2 dτ is (left-side) Hölder continuous as a function of time t with

Hölder exponent 1
2 and with sufficiently small Hölder seminorm. The proofs use

local regularity results which are based on the theory of very weak solutions and on
uniqueness arguments for weak solutions.

Keywords Navier-Stokes equations ·Weak solutions · Regularity criteria · Energy
criteria · Hölder continuity

1 Introduction and Main Results

Given a bounded domain Ω ⊂ R
3 with boundary ∂Ω of class C1,1 and a time

interval [0, T ), 0 < T ≤ ∞, let u0 ∈ L2
σ (Ω) be some initial value and f an external

force. In the space-time cylinder [0, T ) × Ω we consider a weak solution u of the
Navier-Stokes system

ut − νΔu + u · ∇u + ∇ p = f, div u = 0

u|∂Ω = 0, u|t=0
= u0 (1)

with viscosity ν > 0 as follows.

Definition 1 Let u0 ∈ L2
σ (Ω) and f = div F, F ∈ L2

(

0, T ; L2(Ω)
)

. A vector field

u ∈ L∞
(

0, T ; L2
σ (Ω)

) ∩ L2
(

0, T ; W 1,2
0 (Ω)

)

(2)

R. Farwig (B)
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is called a weak solution of the system (1) if the relation

−〈u, wt 〉Ω,T + ν〈∇u,∇w〉Ω,T −〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω −〈F,∇w〉Ω,T (3)

is satisfied for all test functions w ∈ C∞0 ([0, T ); C∞0,σ (Ω)).

In this definition 〈·, ·〉Ω and 〈·, ·〉Ω, T mean the usual pairing of functions on Ω

and on [0, T )×Ω , respectively. For further notations we refer to §2.
As is well known, there exists a weak solution u additionally satisfying the strong

energy inequality

1

2
‖u(t)‖2

2 + ν

∫ t

t ′
‖∇u‖2

2 dτ ≤ 1

2
‖u(t ′)‖2

2 −
∫ t

t ′
〈F,∇u〉Ω dτ (4)

for almost all t ′ ∈ [0, T ), including t ′ = 0, and all t ∈ [t ′, T ), see [22, Theorem
V.3.6.2]. Moreover, we may assume in Definition 1 that

u : [0, T ) → L2
σ (Ω) is weakly continuous (5)

with u(0) = u0. Finally, there exists a distribution p, called an associated pressure,
such that

ut − νΔu + u · ∇u +∇ p = f (6)

holds in the sense of distributions, see e.g. [22, Chap. V.1].

Definition 2 A weak solution u of (1) is called regular in some interval (a, b) ⊆
(0, T ) if Serrin’s condition

u ∈ Ls
loc

(

a, b; Lq (Ω)
)

with 2 < s <∞, 3 < q <∞,
2

s
+ 3

q
= 1, (7)

is satisfied. A time t ∈ (0, T ) is called a regular point of u if u is regular in some
interval (a, b) ⊆ (0, T ) with a < t < b.

Condition (7) means that ‖u‖Ls (a′,b′;Lq (Ω)) < ∞ for each interval (a′, b′) with
a < a′ < b′ < b. Obviously, for a bounded domain, the identity 2

s + 3
q = 1 may be

replaced by the inequality 2
s + 3

q ≤ 1. If ∂Ω is of class C∞ and f ∈ C∞0
(

(a, b)×Ω)

,
then (7) implies that

u ∈ C∞
(

(a, b)×Ω
)

, p ∈ C∞
(

(a, b)×Ω
)

, (8)

see e.g. [22, Theorem V.1.8.2]. The limit cases s = 2, q = ∞ and s = ∞, q = 3
are much harder to deal with. If u ∈ L∞

(

a, b; L3(Ω)
)

, then u ∈ C∞
(

(a, b) ×Ω
)

,
see [3, 17–20]. Finally, if Ω = R

3 and u ∈ L2
(

a, b; L∞(R3)
)

or only u ∈
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L2
(

a, b; BMO(R3)
)

, then the same conclusion holds, see [15]. Concerning crite-
ria based on the kinetic energy 1

2 ‖u(t)‖2
2, t ∈ (0, T ), or on the dissipation energy

∫ t
0 ‖∇u(τ )‖2

2 dτ we cite the following result.

Theorem 1 [7, 8] Let Ω ⊂ R
3 be a bounded domain with boundary ∂Ω of class

C2,1. Consider a weak solution u of the Navier-Stokes system (1) with u0 ∈ L2
σ (Ω),

ν = 1 and vanishing external force f , satisfying the strong energy inequality (4).
Suppose that at time t ∈ (0, T ) the kinetic energy is left-side Hölder continuous

with exponent α ∈ ( 1
2 , 1) in the sense that

lim
δ→0+

| 12 ‖u(t − δ)‖2
2 − 1

2 ‖u(t)‖2
2|

δα
<∞. (9)

Then u is regular at t . The same conclusion holds when the dissipation energy
satisfies at t ∈ (0, T ) the left-side Hölder condition

lim
δ→0+

1

δα

∫ t

t−δ
‖∇u‖2

2 dτ <∞ . (10)

Note that Theorem 1 can easily be generalized to the case of a nonvanishing
external force f , see [9].

However, the limit case α = 1
2 was left open in [8]. The aim of this paper is to

extend Theorem 1 to the cases α = 1
2 and f �= 0, 0 < ν �= 1. Note that in this case

we do need a smallness condition on the local left-side Hölder seminorm. Actually,
it is known, see [12, Theorem 6.4], that if (0, t), t ∈ (0, T ), is a maximal regularity
interval of a weak solution u, then necessarily

‖∇u(τ )‖2 ≥ c(t − τ )−1/4, 0 < τ < t,

with some c = c(Ω) > 0. Hence (10) with α = 1
2 fails to imply regularity in general

if such a maximal regularity interval exists. Moreover, the estimate

2c2 ≤ 1

δ
1
2

∫ t

t−δ
‖∇u(τ )‖2

2 dτ ≤ 1

2δ
1
2

∣
∣‖u(t)‖2

2 − ‖u(t − δ)‖2
2

∣
∣

(for a.a. δ ∈ (0, t), see (4)) shows in this case that also the condition (9) with α =
1
2 does not imply regularity in general. Thus the smallness condition (11) in our
following main result is essential.

Theorem 2 Let Ω ⊂ R
3 be a bounded domain with boundary ∂Ω of class C1,1.

Consider a weak solution u of the Navier-Stokes system (1) on (0, T ) with initial
value u0 ∈ L2

σ (Ω) and external force f = div F, f ∈ L2
(

0, T ; L2(Ω)
)

, F ∈
L4

(

0, T ; L2(Ω)
)

, satisfying the strong energy inequality (4). Then there exists a
constant ε∗ > 0 independent of ν, u0 and f with the following property:

(i) If the kinetic energy is left-side Hölder continuous at time t ∈ (0, T ) with
exponent α = 1

2 in the sense that
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lim
δ→0+

| 12 ‖u(t − δ)‖2
2 − 1

2 ‖u(t)‖2
2|

δ
1
2

≤ ε∗ν5/2 , (11)

then u is regular at t .
(ii) The same conclusion holds when the dissipation energy satisfies at t the left-

side Hölder condition

lim
δ→0+

1

δ
1
2

∫ t

t−δ
‖∇u‖2

2 dτ ≤ ε∗ν5/2 . (12)

Note that the assumptions (9) and (10) immediately imply (11) and (12). There-
fore, Theorem 1 is a corollary of Theorem 2. Moreover, 2

s + 3
2 = −α + 3

2 = 1 in
Theorem 2. Since

1

δ
1
2

∫ t

t−δ
‖∇u‖2

2 dτ ≤
( ∫ t

t−δ
‖∇u‖4

2 dτ
)1/2

we see that condition (12) is weaker than the L4(0, T ; L2(Ω)-condition on ∇u in
[2], which uses Serrin’s criterion 2

s + 3
q = 2 for the gradient of the velocity.

We do not know whether there exists any maximal regularity interval (0, t) with
0 < t < T . However, if it does exist, then Theorem 2 cannot be improved replacing
“≤ ε∗ν5/2” by “<∞”. Therefore, this result is optimal in a certain sense.

For results on regularity of weak solutions satisfying criteria even beyond
Serrin’s condition [21] we refer to [6, 9].

2 Proof

Let Ω ⊂ R
3 and 0 ≤ a < b ≤ T be as in Sect. 1. We need the well-known

Lebesgue spaces Lq (Ω), 1 ≤ q ≤ ∞, with norm ‖·‖Lq (Ω) = ‖·‖q and pairing
〈v,w〉Ω = 〈v,w〉 =

∫

Ω
v ·w dx for v ∈ Lq (Ω), w ∈ Lq ′(Ω), q ′ = q

q−1 . Further we

use the Bochner spaces Ls
(

a, b; Lq (Ω)
)

, 1 ≤ s ≤ ∞, with norm ‖·‖Ls (a, b; Lq (Ω)) =
‖·‖Ls (Lq ) =

( ∫ b
a ‖·‖s

q dt
)1/s

(and the usual modification when s = ∞) and corre-
sponding pairing 〈v,w〉Ω,(a, b) for v ∈ Ls

(

a, b; Lq (Ω)
)

, w ∈ Ls ′
(

a, b; Lq ′ (Ω)
)

,
s ′ = s

s−1 . If (a, b) = (0, T ) we write 〈·, ·〉Ω,(a, b) = 〈·, ·〉Ω, T . We also need the
function spaces C∞0 (Ω), C∞0, σ (Ω) = {v ∈ C∞0 (Ω); div v = 0} of smooth compactly

supported functions (vector fields), and Lq
σ (Ω) = C∞0,σ (Ω)

‖·‖q . Let W k,q (Ω), k ∈
N0, 1 ≤ q ≤ ∞ denote the usual Sobolev spaces, and let W 1,q

0 (Ω) = C∞0 (Ω)
‖·‖W 1,q

,
1 ≤ q <∞. For q = 2 we also write W 1,2(Ω) = H 1(Ω) etc.

The proof of Theorem 2 rests on a local existence result of regular solutions,
which has been developed in the theory of very weak solutions, see [1, 5]. In this
context we use the Helmholtz projection Pq : Lq (Ω) → Lq

σ (Ω), 1 < q < ∞, and
the Stokes operator

Aq = −PqΔ : D(Aq ) → Lq
σ (Ω), D(Aq ) = Lq

σ (Ω) ∩W 1,q
0 (Ω) ∩W 2,q (Ω).
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See [4, 10–14, 23] concerning the following properties of these operators and of
the Stokes semigroup e−t Aq : Lq

σ (Ω) → Lq
σ (Ω), t ≥ 0.

Lemma 1 Let Ω ⊂ R
3 be a bounded domain with boundary of class C1,1 and let

1 < q <∞.

1. The Stokes operator is a closed bijective operator from D(Aq ) ⊂ Lq
σ (Ω) onto

Lq
σ (Ω). If u ∈ D(Aq ) ∩D(A�) for 1 < � <∞, then Aqu = A�u.

2. For 0 ≤ α ≤ 1 the fractional powers Aα
q : D(Aα

q ) ⊂ Lq
σ (Ω → Lq

σ (Ω) are well-
defined, closed, bijective operators. In particular, the inverses A−αq := (Aα

q )−1

are bounded operators on Lq
σ (Ω) with range R(A−αq ) = D(Aα

q ). The space
D(Aα

q ) endowed with the graph norm ‖u‖q + ‖Aα
q u‖q , which is equivalent to

‖Aα
q u‖q , is a Banach space. Moreover, for 1 > α > β > 0,

D(Aq ) ⊂ D(Aα
q ) ⊂ D(Aβ

q ) ⊂ Lq
σ (Ω)

with strict dense inclusions, and (Aα
q )∗ = Aα

q ′ is the adjoint to Aα
q .

3. The norms ‖u‖W 2,q and ‖Aqu‖q are equivalent for u ∈ D(Aq ). Analogously,

the norms ‖∇u‖q , ‖u‖W 1,q and ‖A1/2
q u‖q are equivalent for u ∈ D(A1/2

q ) =
W 1,q

0 (Ω) ∩ Lq
σ (Ω). More generally, the embedding estimate

‖u‖q ≤ c‖Aα
γ u‖γ , 1 < γ ≤ q, 2α + 3

q
= 3

γ
, (13)

holds for every u ∈ D(Aα
γ ); here c = c(q, γ,Ω) > 0.

4. There exists constants δ0 = δ0(q,Ω) > 0 and c = c(q, α,Ω) > 0 such that

‖Aα
q e−t Aq u‖q ≤ ce−δ0t t−α ‖u‖q for u ∈ Lq

σ (Ω), t > 0. (14)

5. Given f ∈ Ls
(

0, T ; Lq (Ω)
)

, 1 < s, q <∞, the instationary Stokes system

ut − νΔu + ∇ p = f, div u = 0 in (0, T )×Ω,

u = 0 on (0, T )× ∂Ω, u(0) = 0 at t = 0
(15)

or, equivalently, the abstract evolution equation in Lq
σ (Ω),

ut + νAqu = Pq f, u(0) = 0,

has a unique solution u satisfying the maximal regularity estimate

‖ut‖Ls (0, T ; Lq (Ω)) + ‖νAqu‖Ls (0, T ; Lq (Ω)) ≤ c‖ f ‖Ls (0, T ; Lq (Ω)). (16)

Moreover, there exists a function p ∈ Ls
(

0, T ; W 1,q (Ω)
)

such that (u, p) satis-
fies (15) and the estimate
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‖(ut ,∇ p, ν∇2u)‖Ls (0, T ; Lq (Ω)) ≤ c‖ f ‖Ls (0, T ; Lq (Ω)). (17)

In both estimates c = c(q, s,Ω) > 0 is independent of ν, T and f .

The following key lemma is an extension and generalization of a similar result,
Lemma 2.1 in [6], and essentially a consequence of [5, Theorem 1], the basic the-
orem on the existence of very weak solutions to the Navier-Stokes equations (see
Definition 3 and Lemma 3 below). Here we only need the case 0 < T <∞.

Lemma 2 Given a bounded domain Ω ⊂ R
3 with boundary ∂Ω ∈ C1,1 and some

0 < T <∞, consider data

f = div F, F ∈ L2
(

0, T ; L2(Ω)
) ∩ Lmax(s∗,4)

(

0, T ; Lmax(�,2)(Ω)
)

and u0 ∈ Lq∗
σ (Ω), where

2 < s∗ <∞, 3 < q∗ <∞,
2

s∗
+ 3

q∗
= 1,

1

3
+ 1

q∗
= 1

�
. (18)

Then there exists a constant ε∗ = ε∗(q∗,Ω) > 0 independent of u0, f and ν with
the following property: If

∫ T

0
‖F‖s∗

� dτ ≤ ε∗ν2s∗−1 and
∫ T

0
‖e−ντ Aq∗u0‖s∗

q∗ dτ ≤ ε∗νs∗−1, (19)

then the Navier-Stokes system (1) has a unique weak solution u satisfying Serrin’s
condition u ∈ Ls∗

(

0, T ; Lq∗ (Ω)
)

and moreover the energy inequality (4).

Before proving Lemma 2 we introduce the notion of very weak solutions (sim-
plified and adapted to our application) and recall the main theorem on their exis-
tence and uniqueness. For further results on the theory of very weak solutions to the
(Navier-)Stokes equations see [1, 5, 9, 16].

Definition 3 Let Ω ⊂ R
3 be a bounded domain with C1,1-boundary, let f = div F ,

F ∈ L2
(

0, T ; L2(Ω)
) ∩ Ls∗

(

0, T ; L�(Ω)
)

, 0 < T ≤ ∞, and u0 ∈ Lq∗
σ (Ω), where

s∗, q∗, � satisfy (18). Then a vector field u ∈ Ls∗
(

0, T ; Lq∗(Ω)
)

is called a very
weak solution of the instationary Navier-Stokes system (1) if

−〈u, wt 〉Ω, T − ν〈u,Δw〉Ω, T −〈uu,∇w〉Ω, T =
(

u0, w(0)
)−〈F,∇w〉Ω, T (20)

for all test fields w ∈ C1
0

(

[0, T ); C2
0,σ (Ω)

)

, and additionally

div u = 0 in (0, T )×Ω, u · N = 0 on (0, T )× ∂Ω. (21)

Here C2
0,σ (Ω) = {w ∈ C2(Ω); divw = 0, w = 0 on ∂Ω}, and N = N (x) denotes

the exterior normal vector at x ∈ ∂Ω .
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Note that u · N = 0 on (0, T )× ∂Ω is well-defined in the sense of distributions
since div u = 0, see [5].

Lemma 3 [5, Theorem 1] Given data F, u0 as in Definition 3, there exists some
T ′ = T ′(ν, F, u0) ∈ (0, T ] and a unique very weak solution u ∈ Ls∗

(

0, T ′; Lq∗ (Ω)
)

of the Navier-Stokes system (1). The interval of existence, [0, T ′), is determined by
the condition

( ∫ T ′

0
‖νe−νt Aq∗ u0‖s∗

q∗ dt
)1/s∗ + ‖F‖Ls∗ (0,T ′;L�) ≤ ε∗ν2−1/s∗ . (22)

Moreover, the solution u has the representation u(t) = γ (t)+ ũ(t) where

γ ∈ L∞
(

0, T ; L2(Ω)
) ∩ L2(0, T ; H 1

0 (Ω)
)

(23)

is the weak solution of the instationary Stokes system with data u0, f in (0, T )×Ω ,
i.e.

γ (t) = e−νt Aq∗u0 +
∫ t

0
Aq∗e

−ν(t−τ )Aq∗ A−1
q∗ Pq∗div F(τ ) dτ, (24)

and where ũ satisfies

ũ(t) = −
∫ t

0
A1/2

q∗/2 e−ν(t−τ )Aq∗/2 A−1/2
q∗/2 Pq∗/2 div(uu) dτ. (25)

Note that v = A−1/2
q∗/2 ũ solves the nonlinear system

vt + Aq∗/2v = −A−1/2
q∗/2 Pq∗/2 div(uu), v(0) = 0,

in the strong sense.

At this point we will explain the meaning of terms such as A−1
q Pqdiv F and

A−1/2
q Pqdiv F , cf. (24), (25). Let 0 < α ≤ 1, 1 < q <∞, and let ψ be a functional

on C∞0,σ (Ω) satisfying the estimate

|〈ψ, ϕ〉| ≤ cψ‖Aα
q ′ϕ‖q ′ for all ϕ ∈ D(Aα

q ′)

with constant cψ ≥ 0. Then there exists a unique element Ψ ∈ Lq
σ (Ω), denoted by

A−αq Pqψ , such that

〈ψ, ϕ〉 = 〈A−αq Pqψ, Aα
q ′ϕ〉 for all ϕ ∈ D(Aα

q ′ )

and ‖A−αq Pqψ‖q ≤ cψ.

In particular, if 1
3 + 1

q = 1
�

, then the embedding W 1,�(Ω) ⊂ Lq (Ω) implies the
estimate
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‖A−1
q Pqdiv F‖q ≤ c‖F‖� for all F ∈ L�(Ω) (26)

with c = c(Ω, q) > 0. Correspondingly, it holds

‖A−1/2
� P�div F‖� ≤ c‖F‖� (27)

with c = c(Ω, q) > 0. For further details on the operator A−αq Pq we refer to [5].

Proof of Lemma 2 Given the smallness condition (22), Lemma 3 yields a unique
very weak solution u ∈ Ls∗

(

0, T ; Lq∗ (Ω)
)

of (1). In view of (23) it suffices to prove
the property

ũ ∈ L∞
(

0, T ; L2(Ω)
) ∩ L2

(

0, T ; H 1
0 (Ω)

)

(28)

so that u = γ + ũ ∈ Ls∗
(

0, T ; Lq∗ (Ω)
)

is seen to be a weak solution as well.
Hence u satisfies the energy (in-)equality and Serrin’s uniqueness condition, see
e.g. [22, Theorem V.1.5.1]. This shows that u is the unique weak solution with these
properties.

To prove (28) we recall from (27) that

‖A−1/2
q∗/2 Pq∗div (uu)‖q∗/2 ≤ c‖uu‖q∗/2 ≤ c‖u‖2

q∗ for a.a. t ∈ (0, T ). (29)

Consequently, (25) implies the identity

A1/2
q∗/2ũ(t) = −Aq∗/2

( ∫ t

0
e−ν(t−τ )Aq∗/2 A−1/2

q∗/2 Pq∗/2 div (uu) dτ
)

. (30)

Now Lemma 1, in particular the maximal regularity estimate (16), and (29) yield
the estimate

ν‖∇ũ‖Ls∗/2(Lq∗/2) ≤ cν‖A1/2
q∗/2ũ‖Ls∗/2(Lq∗/2)

≤ c‖uu‖Ls∗/2(Lq∗/2) ≤ c‖u‖2
Ls∗ (Lq∗ ) (31)

with c = c(q∗,Ω) > 0, so that

∇ũ ∈ Ls∗/2
(

0, T ; Lq∗/2(Ω)
)

. (32)

We will consider four cases concerning the exponent s∗, starting with the case
s∗ = 4, q∗ = 6 needed to prove Theorem 2. In this case (32) immediately yields
∇ũ ∈ L2

(

0, T ; L2(Ω)
)

, and (31) shows that uu ∈ L2
(

0, T ; L2(Ω)
)

. Now the iden-
tity (30) implies that ũ is the weak solution of an instationary Stokes system with
vanishing initial value and external force div F̃ where F̃ = uu ∈ L2

(

0, T ; L2(Ω)
)

so that

ũ ∈ L∞
(

0, T ; L2(Ω)
) ∩ L2

(

0, T ; H 1
0 (Ω)

)

,
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see e.g. [22, Theorem IV.2.3.1]. Hence also

u ∈ L∞
(

0, T ; L2(Ω)
) ∩ L2

(

0, T ; H 1
0 (Ω)

)

.

An elementary calculation shows that u is not only a very weak solution, but
also a weak one satisfying the energy (in-)equality. Furthermore, the uniqueness
assertion follows from Serrin’s uniqueness condition.

Next we consider the case 2 < s∗ < 4 (and q∗ > 6) which has not been con-
sidered in [6, 8]. Let s1 = s∗, q1 = q∗. Then (25) and (14) (with α = 1

2 ) imply
that

‖ũ(t)‖q1/2 ≤ c√
ν

∫ t

0

1

(t − τ )1/2
‖uu‖q1/2 dτ,

where ‖uu(τ )‖q1/2 ∈ Ls1/2(0, T ). Hence the Hardy-Littlewood inequality proves
with

1

s2
= 1

s1/2
− 1

2
, q2 = q1

2

that

ũ ∈ Ls2
(

0, T ; Lq2 (Ω)
)

.

Here 2
s2
+ 3

q2
= 1 since 2

s1
+ 3

q1
= 1, and s2 > s1, q2 < q1. To get the same result for

γ , note that

γ1(t) := e−νt Aq∗ u0 ∈ L∞
(

0, T ; Lq∗ (Ω)
) ⊂ Ls2

(

0, T ; Lq2 (Ω)
)

.

Concerning γ2(t) = γ (t)− γ1(t), the second term on the right-hand side of (24), we
use (13) with α = 1

s1
and conclude, since A−1/2

� P� div F(τ ) ∈ L�(Ω) for a.a. τ , see
(27), that

v := A−1/s1
� A−1/2

� P� div F ∈ Ls1
(

0, T ; Lq2 (Ω)
)

.

Hence γ2(t) satisfies the estimate

‖γ2(t)‖q2 ≤ c
∫ t

0

1

(t − τ )1/2+1/s1
‖v(τ )‖q2 dτ,

c = c(ν,Ω, q2) > 0, from which we deduce by the Hardy-Littlewood inequality
that γ2 ∈ Ls2

(

0, T ; Lq2 (Ω)
)

; here we used that 1
2 + 1

s1
= 1− (

1
s1
− 1

s2

)

.

Summarizing the results for γ1 and γ2 we get that γ ∈ Ls2
(

0, T ; Lq2 (Ω)
)

so that
also u ∈ Ls2

(

0, T ; Lq2 (Ω)
)

and, due to (32),
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∇ũ ∈ Ls2/2
(

0, T ; Lq2/2(Ω)
)

.

Repeating this step finitely many times, we finally arrive at exponents sk ∈
[4,∞), qk ∈ (3, 6], k ∈ N. The case of exponents s∗ > 4, q∗ < 6 has already
been considered in [6, 8], but its proof will be repeated for the convenience of the
reader.

Let 4 < s∗ ≤ 8 (and 4 ≤ q∗ < 6) so that (32) yields ∇ũ ∈ L2
(

0, T ; L2(Ω)
)

and
ũ ∈ L2

(

0, T ; H 1
0 (Ω)

)

. Applying (14) and (29) to (25), Hölder’s inequality implies
the estimate

‖ũ(t)‖2 ≤ c√
ν

∫ t

0

1

(t − τ )1/2
e−νδ0(t−τ ) ‖uu‖2 dτ

≤ c√
ν

∫ t

0

1

(t − τ )1/2
e−νδ0(t−τ ) ‖uu‖q∗/2 dτ

≤ c ‖uu‖Ls∗/2(0,T ;Lq∗/2(Ω))

≤ c ‖u‖2
Ls∗ (0,T ;Lq∗ (Ω)),

where c = c(ν, T ) > 0. Consequently, ũ and even u belong to L∞
(

0, T ; L2(Ω)
)

.
Now we complete the proof as in the previous case.

Finally assume that 8 < s∗ < ∞ (and 3 < q∗ < 4). Now we need finitely
many steps to reduce this case to the former one. Let s1 = s∗ and q1 = q∗. Then
∇ũ ∈ Ls1/2

(

0, T ; Lq1/2(Ω)
)

by (32). Defining s2 < s1, q2 > q1 by

s2 = s1

2
,

1

3
+ 1

q2
= 2

q1

we get by Sobolev’s embedding theorem that ũ ∈ Ls2
(

0, T ; Lq2 (Ω)
)

. By Lemma 1
we conclude that also γ ∈ Ls2

(

0, T ; Lq2 (Ω)
)

so that

u ∈ Ls2
(

0, T ; Lq2 (Ω)
)

where again 2
s2
+ 3

q2
= 1. Repeating this step finitely many times, if necessary, we

arrive at exponents sk ∈ (4, 8], qk ∈ [4, 6), i.e. in the previous case.
Now Lemma 2 is completely proved. ��

In the next more technical lemma we will use the notation

−
∫ b

a
h(τ ) dτ = 1

b − a

∫ b

a
h(τ ) dτ

for the mean integral value of an integrable function h on (a, b).

Lemma 4 Under the assumptions of Lemma 2, and for any s ∈ [1, s∗], there exists
a constant ε∗ = ε∗(q∗, s,Ω) > 0 with the following property:
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Assume 0 < t0 < t ≤ t1 < T , 0 ≤ β ≤ s
s∗

and that f = div F and the weak
solution u of (1) satisfy the integrability conditions

∫ t1

t0

‖F‖s∗
� dτ ≤ ε∗ν2s∗−1 and −

∫ t

t0

(t1 − τ )β ‖u‖s
q∗ dτ ≤ ε∗νs−β . (33)

Moreover, u is supposed to satisfy the strong energy inequality (4). Then u is
regular in the interval (t − δ, t1) for some 0 < δ < t in the sense that u ∈
Ls∗

(

t − δ, t1; Lq∗ (Ω)
)

. In particular, if t1 > t , then t is a regular point of u. If
β = 0, then t1 = T ≤ ∞ is allowed.

Proof From the second condition in (33) and the fact that u satisfies the strong
energy inequality we find a null set N ⊂ (t0, t) such that for each τ0 ∈ (t0, t)\N

1

2
‖u(τ1)‖2

2+ν
∫ τ1

τ0

‖∇u‖2
2 dτ ≤ 1

2
‖u(τ0)‖2

2−
∫ τ1

τ0

〈F,∇u〉dτ, τ0 < τ1 < T, (34)

and u(τ0) ∈ Lq∗
σ (Ω).

Next we claim the existence of τ0 ∈ (t0, t)\N such that

∫ t1−τ0

0
‖e−ντ Aq∗ u(τ0)‖s∗

q∗ dτ ≤ ε∗νs∗−1 . (35)

Actually, the second condition in (33) yields the existence of τ0 ∈ (t0, t)\N such
that

(t1 − τ0)β ‖u(τ0)‖s
q∗ ≤ −

∫ t

t0

(t1 − τ )β ‖u(τ )‖s
q∗ dτ ≤ ε∗νs−β ; (36)

otherwise (t1 − τ )β ‖u(τ )‖s
q∗ is strictly larger than its integral mean on (t0, t) for

every τ ∈ (t0, T )\N , and we are led to a contradiction. Now, by Lemma 1, Hölder’s
inequality and (36),

∫ t1−τ0

0
‖e−ντ Aq∗ u(τ0)‖s∗

q∗ dτ ≤
∫ t1−τ0

0
e−δ0νs∗τ dτ ‖u(τ0)‖s∗

q∗

≤ c(t1 − τ0)βs∗/s ν−1+βs∗/s‖u(τ0)‖s∗
q∗

≤ c εs∗/s
∗ νs∗−1

where c = c(q,Ω) > 0. Hence, with a new constant ε∗ = ε∗(q∗, s,Ω) > 0, (35) is
proved. If β = 0, then even t1 = T ≤ ∞ is admitted.

Given τ0 as in (35) and using (33), Lemma 2 will yield a unique weak solution
v ∈ Ls∗ ([τ0, t1); Lq∗

σ (Ω)
)

to the Navier-Stokes system (1) with initial value v(τ0) =
u(τ0) at τ0. Then Serrin’s uniqueness theorem shows that

u = v ∈ Ls∗
(

τ0, t1; Lq∗
σ (Ω)

)
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which completes the proof. ��
Proof of Theorem 2 The proof is based on Lemma 4 with t ∈ (0, T ), t0 = t − δ,
t1 = t + δ, δ > 0 sufficiently small, and exponents s = 2, q∗ = 6, s∗ = 4, β = 1

2
(and � = 2) so that u ∈ Ls

(

0, T ; Lq∗ (Ω)
)

. To control the second term in (33) note
that

I (δ) := −
∫ t

t0

(t1 − τ )
1
2 ‖u‖2

6 dτ ≤ 2
1
2 δ−

1
2

∫ t

t−δ
‖u‖2

6 dτ

≤ c δ−
1
2

∫ t

t−δ
‖∇u‖2

2 dτ , (37)

where c = c(Ω) > 0. Since u is supposed to satisfy the strong energy inequality,
we may assume without loss of generality that

I (δ) ≤ c

ν

1

2

(∣
∣‖u(t − δ)‖2

2 − ‖u(t)‖2
2

∣
∣

δ
1
2

+
∣
∣
∣

1

δ
1
2

∫ t

t−δ
〈 f, u〉 dτ

∣
∣
∣

)

. (38)

By the inequality of Cauchy-Schwarz the assumption f ∈ L2
(

0, T ; L2(Ω)
)

implies that δ−
1
2
∫ t

t−δ〈 f, u〉 dτ → 0 as δ→ 0+ . Moreover, the term

c

2

∣
∣‖u(t − δ‖2

2 − ‖u(t)‖2
2

∣
∣

ν δ
1
2

is bounded by c ε∗ν3/2 for a sequence (δ j ), 0 < δ j → 0 as j → ∞, due to the
assumption on the kinetic energy. Hence the continuity of I (δ), δ > 0, proves that
(33)2 can be satisfied. Finally, since F ∈ L4(0, T ; L2(Ω)

)

, (33)1 can be guaranteed
for all sufficiently small δ > 0.

Looking at (37), condition (12) allows the same reasoning.
Now Theorem 2 is completely proved. ��
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Looking for the Lost Memory
in Diffusion-Reaction Equations

José Augusto Ferreira and Paula de Oliveira

Abstract The paper studies the analytical and numerical behaviours of some non
Brownian models for diffusion phenomena. These models have been introduced in
the literature to overcome the gap between experimental data and numerical simu-
lations. From analytical point of view stability results leading to the well-posedness
in the Hadamard sense of the initial boundary value problems are established. From
numerical point of view some numerical methods are analysed. Applications within
the fields of drug release, heat conduction and reaction diffusion phenomena are
addressed.

Keywords Fick’s law for the flux ·Reaction-diffusion equations · Integro-differential
equations · Stability · Numerical methods

1 Introduction

Diffusion is a mechanism by which the components of a mixture are transported
around it by means of a random molecular motion with no preferred movement. In
1827 the english botanist Robert Brown was the first to notice that pollen grains sus-
pended in water performed a chaotic dance, like random fluctuation, that he initially
explained as pollen vitality. He soon realised that the process had a physical nature.

Assuming the so called Brownian motion of particles Adolf Fick addressed the
problem of diffusion when studying the way that water and nutrients travel through
membranes establishing the classical diffusion equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t), x ∈ (0, L), t > 0, (1)

where u(x, t) denotes the probability of a diffusing particle in (0, L) be at position
x at time t . This model is based on the assumptions that the motion of different
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particles is independent, there exists a time interval β such that the displacement of
the same particle during different β intervals is independent and there exists a mean
square displacement during such a β interval.

Equation (1) is obtained by combining Fick’s law

J (x, t) = −D
∂u

∂x
(x, t) (2)

with the mass conservation law

∂u

∂t
(x, t)+ ∂ J

∂x
(x, t) = 0, (3)

where in (2) and (3) J stands for the flux. However experimental evidence of diffus-
ing phenomena within different field of applications shows that (1) is not an accurate
model. In fact Fick’s law for the flux establishing a simultaneously occurrence of
the cause and of the effect does not describe accurately the transport mechanism.

The aim of this paper is to explain this lack of accuracy in different fields
focussing three different problems : drug release from polymeric matrices, heat
propagation and reaction-diffusion systems.

For instance in the drug release context in [7, 14, 22, 25–27] it is shown a lack
of agreement between the theoretical results obtained by the Brownian models and
the experimental data. The explanation for this relies on the fact that the polymeric
matrix reacts to the presence of the penetrant molecules with a certain delay that
is the flux at time t is related to the gradient of the concentration at a time t −
τ . In [2, 13, 20] mathematical models to overcome the discrepancies between the
results obtained by simulation of the Brownian models and the experimental data
are studied.

Heat propagation phenomena in a homogeneous and isotropic bar are also gen-
erally modeled by Eq. (1). It is well known that this equation has the unphysical
property that if a sudden change in the temperature is made at some point of the
bar, it will be felt instantly everywhere. We say that diffusion equation gives rise
to infinite speeds of propagation. The problem that unphysical infinite speeds of
propagation are generated by diffusion was firstly treated in [9] and considered later
in [29]. Modifications of the classical heat equation (1) which avoid the pathological
behaviour of the solution are studied in [5, 10–12, 15, 23].

Reaction diffusion systems were traditionally modeled by (1) with a reaction
term f , that is by the Fick’s law (2) with the mass conservation law

∂u

∂t
(x, t)+ ∂ J

∂x
(x, t) = f (u(x, t)), (4)

(see [6, 21, 24]). This equation, known as Fisher-Kolmogorov-Petrovski-Piskunov
equation (FKPP), presents, however, a serious drawback – which is related to its
parabolic character – that can be roughly defined as an “infinite speed of heat/mass
transfer”. As a consequence the propagation rate of traveling wave solutions, given
by
√

4DU for f (u) = U (1 − u)u, exhibits the unphysical property of becom-
ing arbitrarily large when U goes to infinity. To overcome this difficulty several
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modifications of (4) have been proposed in the literature. A first modification takes
into account the boundness of the transport process by introducing a relaxation
parameter τ which represents the waiting time between two successive jumps of
the particles whose movement we want to describe [16, 17]. Recently those models
were studied in [3, 4, 8, 19].

The alternative models to Brownian ones introduced in the previous papers are
obtained modifying at a macroscopic level Fick’s law for the flux. Nevertheless they
can be established modifying at a microscopic level assumptions for the random
walk as for instance in [1, 30, 28].

In this paper we present an overview on some results on non Brownian models
obtained recently by the authors in [3, 5, 8, 19, 20]. The results are presented without
proofs which can be found in the previous papers. Section 2 focuses on the analysis
of the simplest model which takes into account the non Brownian motion of dif-
fusing particles in a domain. Mathematical models for physical phenomena whose
fluxes present Brownian and non Brownian contributions are studied in Sect. 3.
Finally Sect. 4 addresses non Brownian diffusion-reaction systems.

2 The Simplest Non Brownian Model

2.1 Introduction

To overcome the incompatibility between the numerical simulation of the Brownian
model (1) and the experimental data in the drug release context we define the flux J
by

J (x, t + τ ) = −D
∂u

∂x
(x, t), (5)

where τ is a delay parameter. Assuming that τ is small enough we have from (5)

∂ J

∂t
+ 1

τ
J (x, t) = −D

τ
D
∂u

∂x
(x, t)

and integrating this first order equation we obtain

J (x, t) = −D

τ

∫ t

0
e−

t−s
τ
∂u

∂x
(x, s) ds. (6)

With this new definition for the flux, mass conservation law (3) leads to an
integro-differential equation

∂u

∂t
(x, t) = D

τ

∫ t

0
e−

t−s
τ
∂2u

∂x2
(x, s) ds, x ∈ (0, L), t ∈ (0, T ], (7)

coupled with initial and boundary conditions

u(x, 0) = u0(x), x ∈ (0, L), u(0, t) = u&, u(L , t) = u R, t ∈ (0, T ]. (8)
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In Sect. 2.2 we establish the well-posedness of the initial boundary value problem
(IBVP) (7), (8), in Hadamard’s sense. As (7) depends on the delay parameter τ , the
asymptotic behaviour of this model is also studied. In Sect. 2.3 we establish that the
solution of the delayed model converges to the solution of the classical diffusion
model (1) with the initial and boundary conditions (8). The asymptotic behaviour of
the total amount of diffusing substance defined by the integro-differential model is
also addressed in this section.

2.2 Well-Posedness in Hadamard’s Sense

In this section we establish the existence of a solution of the IBVP (7), (8) and its
stability with respect to perturbations of the initial condition. By L2(0, L) we denote

the vector space of all function v defined in [0, L] such that
∫ L

0
v2(x) dx <∞. In

L2(0, L) we consider the usual L2 inner product (., .) and by ‖.‖L2(0,L) we denote
the corresponding norm.

Due to its particular structure it is possible to compute the solution of (7), (8) by
using Fourier analysis.

Theorem 1 ([20]) If u0(0) = u&, u0(L) = u R and u′′′0 ∈ L2(0, L), then

u(x, t) =
[ L

2π
√

Dτ
]

∑

n=1

An

(1+ δn(τ )

2δn(τ )
e

t
2τ

(

−1+δn (τ )
)

+−1+ δn(τ )

2δn(τ )
e

t
2τ

(

−1−δn (τ )
))

sin(
nπ

L
x)

+
∞
∑

[ L
2π
√

Dτ
]+1

Ane−
t

2τ

(

cos(
tδ(nτ )

2τ
)+ 1

δn(τ )
sin(

tδ(nτ )

2τ
)
)

sin(
nπ

L
x)+ u R − u&

L
x + u& (9)

for x ∈ [0, L], t ∈ [0, T ], where [
L

2π
√

Dτ
] represents the integer part of

L

2π
√

Dτ
and

An = 2

L

∫ L

0
u0(x)sin(

nπ

L
x) dx + 2

nπ

(

u R(−1)n − u&

)

, n ∈ N, (10)

δn(τ ) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

√

1− 4D
n2π2

L2
τ , n ≤ [

L

2π
√

Dτ
]

√

−1+ 4D
n2π2

L2
τ , n ≥ [

L

2π
√

Dτ
]+ 1.

(11)

Solution (9) is composed by three terms: a sum with a finite number of terms, a
sum with an infinite number of terms and a third term coming from the boundary
conditions. We note that the terms in the finite sum recall the terms in the solution
of the parabolic IBVP (1), (8) and the terms in the infinite sum recall the solution
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of a wave type hyperbolic equation. From a formal view point as τ → 0 we have
L

2π
√

Dτ
→∞ and consequently the infinite sum disappears. In this case the solu-

tion u(x, t) given by (9) converges formally to the solution of (1),(8). We postpone
for a later theorem the establishment of a convergence result for u(x, t).

For the delayed IBVP (7), (8) the stability is based on the following estimate for
the energy functional

E(u)(t) = ‖u(t)‖2
L2(0,L) +

D

τ
‖
∫ t

0
e−

t−s
τ
∂u

∂x
(s) ds‖2

L2(0,L), t ≥ 0. (12)

The proof of this result is based on the energy method.

Theorem 2 ([20]) Let u be a solution of the delayed IBVP (7), (8) with homoge-
neous boundary conditions. Then

E(u)(t) ≤ ‖u0‖2
L2(0,L), t ≥ 0. (13)

As a corollary of Theorem 2 we conclude the stability of model (7), (8) in Corol-
lary 1.

Corollary 1 Let u and ũ be solutions of the delayed IBVP (7), (8) with initial con-
ditions u0 and ũ0 respectively. Then w = u − ũ satisfies

‖w(t)‖2
L2(0,L) +

D

τ
‖
∫ t

0
e−

t−s
τ
∂w

∂t
(s) ds‖2

L2(0,L) ≤ ‖u0 − ũ0‖2
L2[0,L], t ≥ 0. (14)

By Corollary 1 the delayed IBVP (7), (8) is stable with respect to perturbations of
the initial condition. The uniqueness of the solution, established by a constructive
approach in Theorem 1, can also be concluded as a consequence of Corollary 1.
From the previous we conclude that the integro-differential model (7), (8) is well-
posed in Hadamard sense.

The energy estimate (13) gives information on the spatial behaviour of the “aver-
age” in time of the gradient of the solution of the IBVP (7), (8).

2.3 Asymptotic Behaviour of the Model

In this section we study the dependence of the solution u of (7), (8) on the parameter
τ . In what follows we represent such solution by u(x, t, τ ) and the solution of (1),
(8) by uF (x, t). The solution u can be written in the equivalent form

u(x, t, τ ) = u R − u&

L
x + u& +

∞
∑

n=1

un(x, t, τ )

with
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un(x, t, τ ) = An

(

e
t

2τ

(

−1+δn (τ )
)

1+ δn(τ )

2δn(τ )
+ e

t
2τ

(

−1−δn (τ )
)−1+ δn(τ )

2δn(τ )

)

for n ≤ [
L

2π
√

Dτ
] and

un(x, t, τ ) = Ane−
t

2τ

(

cos
( tδn(τ )

2τ

)+ 1

δn(τ )
sin

( tδn(τ )

2τ

))

for n ≥ [
L

2π
√

Dτ
]+ 1, where An and δn(τ ) are defined by (10) and (11) respec-

tively.

Theorem 3 ([20]) If u0(0) = u&, u0(L) = u R and u′0 ∈ L2(0, L) then u(x, t, τ ) is
τ -continuous and

lim
τ→0

u(x, t, τ ) = uF (x, t), x ∈ [0, L], t ∈ (0, T ], (15)

where u and uF are the solutions of IBVPs (7), (8) and (1),(8) respectively.

In Fig. 1 are plotted the graphics of the solution of (7), (8) for D = 0.05, t = 1
and for different values of τ . Boundary conditions u R = u& = 0 and initial condition
u0(x) = 4(1− x)x have been considered. The delay effect of parameter τ is clearly
observed. As τ decreases the concentration within [0, 1] also decreases. We remark
that the Fickian solution uF of (1),(8)-corresponding to τ = 0 - and the plots of non
Fickian solutions corresponding to τ = 0.05 and τ = 0.125 are very close. As a
consequence the convergence (15) is also illustrated in this figure.

The delayed IBVP (7), (8) can be used to model sorption or desorption diffusion
phenomena depending on the relation between the concentrations at the boundary
points and the initial distribution. In this model a time memory effect was introduced
to delay the diffusion phenomenon. Consequently, it should be observed a delayed
effect on the sorpted or desorpted mass computed by using IBVP (7), (8).

Let M(t, τ ) be the total amount of diffusing substance at time t defined by

M(t, τ ) =
∫ L

0
u(x, t, τ )dx .

As u is given by (9) we obtain

M(t, τ ) = u R + u&

2
L +

∞
∑

n=1

Mn(t, τ )

where Mn(t, τ ) is defined by

Mn(t, τ ) = An
L((−1)n+1 + 1)

nπ

(

e
t

2τ

(

−1+δn (τ )
)

1+ δn(τ )

2δn(τ )
+
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Fig. 1 The effect of τ on the solution of (7), (8)

e
t

2τ

(

−1−δn (τ )
)−1+ δn(τ )

2δn(τ )

)

for n ≤ [
L

2π
√

Dτ
], and

Mn(t, τ ) = An
L((−1)n+1 + 1)

nπ
e−

t
2τ

(

cos
( tδn(τ )

2τ

)+ 1

δn(τ )
sin

( tδn(τ )

2τ

))

for n ≥ [
L

2π
√

Dτ
]+ 1, with An and δn(τ ) defined by (10) and (11) respectively.
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It can be shown ([20]) that if u0 ∈ L2(0, L), then

M(t, τ ) → MF (t) as τ → 0, for t ∈ (0, T ], (16)

where MF (t) is the total amount of diffusing substance at time t defined by the
classical diffusion model (1), (8).

The behaviour of M(t, τ ) when t ∈ [0, 10], is illustrated in Fig. 2 for u0(x) =
4(1 − x)x, x ∈ [0, 1], u& = u R = 0 and D = 0.05. Convergence (16) is also
illustrated by Fig. 2.
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Fig. 2 The effect of τ on the total amount of diffusing substance defined by (7)

3 An Hybrid Method for Diffusion: Brownian
and Non Brownian Character

3.1 Introduction

Heat conduction phenomena were traditionally modeled by Eq. (1) where u(x, t)
represents the temperature at (x, t) and D represents in this case the effective ther-
mal conductivity. This model gives rise to an infinite speed of propagation. In order
to avoid this serious drawback it has been proposed by Cattaneo in [9] to define the
flux by using all the history of the temperature gradient, that is,

J1(x, t) = −D

τ

∫ t

−∞
e−

t−s
τ
∂u

∂x
(x, s) ds (17)

where D represents the thermal conductivity. The asymptotic behaviour observed
for the non Fickian flux (6) with respect to the delay parameter τ can be also estab-
lished for (17) that is the flux (17) converges to the Fourier flux defined by (2) when
τ → 0.

Considering (17), it can be shown that the temperature u at (x, t) satisfies the
integro-differential equation
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∂u

∂t
(x, t) = D

γ τ

∫ t

−∞
e−

t−s
τ
∂2u

∂x2
(x, s) ds , (18)

where γ is the heat capacity. This equation, known as Cattaneo’s equation, was
considered by several authors. For instance Vernotte, in [29], considered Cattaneo’s
equation as the simplest one that gives rise to finite speed of propagation. However,
as pointed out in the engineering literature (see for example [24]), there are no real
conductors which exhibit the wave propagation behaviour of Cattaneo’s model. In
Fig. 3 are plotted the solutions of the heat equation and Cattaneo’s equation with
a Dirac delta initial condition. The plots have been obtained from a discretiza-
tion with a standard numerical method in a very fine mesh. Neither of the plots
represent accurately the heat propagation: heat equation produces a very “dissipa-
tive solution”, Cattaneo’s equation exhibits a too “conservative behaviour”. This
last remark suggest that a compromise between the two flux definitions should be
considered.

In [23] a such compromise is presented. A kernel of Jeffrey’s type was then
considered by replacing in (17) the exponential kernel by

Q(s) = D1δ(s)+ D2

τ
e−

s
τ , (19)
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Fig. 3 Solutions of the heat equation and Cattaneo’s equation with a Dirac delta initial condition
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where δ(s) is a Dirac delta function, and D1 and D2 represent, respectively, the
effective thermal conductivity and the elastic conductivity. In this case the flux J
has two contributions, J = J1 + J2, being J1 defined by (2) with D replaced by the
effective thermal conductivity coefficient D1 and J2 defined by (17) with D replaced
by the elastic conductivity coefficient D2. It can be shown that the temperature, in
this case, satisfies Jeffrey’s integro-differential equation

∂u

∂t
(x, t) = D1

γ

∂2u

∂x2
(x, t)+ D2

γ τ

∫ t

−∞
e−

t−s
τ
∂2u

∂x2
(x, s) ds . (20)

For D2 = 0 we have the classical diffusion equation while for D1 = 0 we obtain
Cattaneo’s equation. As shown in Fig. 4 a solution that represents a compromise
between Fickian and Cattaneo model is obtained from this model.

The rest of the section is organized as follows. In Sect. 3.2 we study the sta-
bility behaviour of the solution of Jeffrey’s model (20). In Sect. 3.3 is proposed a
numerical method for (20) using a splitting technique. Numerical simulations are
included.

Fig. 4 Numerical solution of Jeffrey’s equation obtained using method (24) with
Di

γ
= 0.1, τ = 1, h = 0.1,Δt = 0.03
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3.2 An Energy Estimate for the Jeffrey’s Equation

We consider in what follows the IBVP associated with (20) but where the integral
is computed in (0, t), that is

∂u

∂t
(x, t) = D1

γ

∂2u

∂x2
(x, t)+ D2

γ τ

∫ t

0
e−

t−s
τ
∂2u

∂x2
(x, s) ds, x ∈ (0, L), t > 0, (21)

associated with initial and boundary conditions (8) with u& = u R = 0.
In the following theorem, an estimate for the energy functional (12) with D

replaced by
D2

γ
that is

E(u)(t) = ‖u‖L2(0,L) +
D2

γ τ
‖
∫ t

0
e−

t−s
τ
∂u

∂x
(s) ds‖2

L2(0,L),

for t > 0, is established. Such estimate is obtained by using the energy method and

the Poincaré-Friedrichs inequality in the term −D1

γ
‖∂u

∂x
(t)‖2

L2(0,L).

Theorem 4 ([5]) Let u be a solution of (21), (8) with u& = u R = 0. Then

E(u)(t) ≤ e
−2min { D1

γ L2 ,
1
τ
}t‖u0‖2

L2(0,L) , t ≥ 0. (22)

Nevertheless, if we do not use the Poincaré-Friedrichs inequality, then the fol-
lowing energy estimate

‖u‖L2(0,L) +
2D1

γ

∫ t

0
‖∂u

∂x
(s)‖2

L2(0,L) ds + D2

γ τ
‖
∫ t

0
e−

t−s
τ
∂u

∂x
(s) ds‖2

L2(0,L)

≤ ‖u0‖2
L2(0,L),

(23)

can be established using −D1

γ
‖∂u

∂x
(t)‖2

L2(0,L) = −
D1

γ

d

dt

∫ t

0
‖∂u

∂x
(s)‖2

L2(0,L).

We remark that estimate (22) gives information on the behaviour in time of
solution u and of the “average” in time of its gradient. Estimate (23) gives also
information on the evolution in time of the “average” in space of the solution u.
From both estimates we conclude the following

‖u(t)‖L2(0,L) → 0, ‖
∫ t

0
e−

t−s
τ
∂u

∂x
(s) ds‖2

L2(0,L) → 0

and
∫ t

0
‖∂u

∂x
(s)‖2

L2(0,L) ds remains bounded as t →∞.

Let us now consider the stability of Jeffrey’s model. Let ũ be the solution corre-
sponding to the initial condition ũ0. As for w = u − ũ holds the estimate
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‖w‖2
L2(0,L) +

D2

γ τ
‖
∫ t

0
e−

t−s
τ
∂w

∂x
(s) ds‖2

L2(0,L) ≤ e
−2min { D1

γ L2 ,
1
τ
}t‖u0 − ũ0‖2

L2(0,L)

if (22) is used and

‖w‖L2(0,L) +
2D1

γ

∫ t

0
‖∂w
∂x

(s)‖2
L2(0,L) ds + D2

γ τ
‖
∫ t

0
e−

t−s
τ
∂w

∂x
(s) ds‖2

L2(0,L)

≤ ‖u0 − ũ0‖2
L2(0,L).

if (23) is considered, we conclude that

‖w‖2
L2(0,L) → 0, ‖

∫ t

0
e−

t−s
τ
∂w

∂x
(s) ds‖2

L2(0,L) → 0

as t → ∞ independently of ‖u0 − ũ0‖2
L2(0,L) and

∫ t

0
‖∂u

∂x
(s)‖2

L2(0,L) ds remains

arbitrarily small as t increases provided that ‖u0 − ũ0‖2
L2(0,L) is arbitrarily small.

3.3 A Splitting Method

The solution u of the Jeffrey’s IBVP (21), (8) can be computed by using the
approach introduced in Sect. 2. As this approach gives u as the sum of a series, we
present in this section a family of numerical methods to compute an approximation
for u.

We consider a spatial uniform grid xi such that xi+1 − xi = h and a uniform
temporal grid tn such that tn+1− tn = Δt . By un

h(x j ) we denote a numerical approx-
imation of u(x j , tn).

Let us consider Eq. (21) at (x j , tn). Using the trapezoidal rule in the discretization
of the integral term and discretizing the partial derivative with respect to t with
backward differences and the partial derivative with respect to the space variable
with second order centered differences we obtain

un
h(x j )− un−1

h (x j−1)

Δt
= D1

γ
D2,x un−1

h (x j )

+k2Δt

2γ τ

(

e−
tn−1
τ D2,x u0

h(x j )+ 2
n−2
∑

&=1

e−
tn−1−t&

τ D2,x u&
h(x j )+ D2,x un−1

h (x j )

)

, (24)

where j = 1 , . . . ,N − 1 , and

D2,xvh(x j ) = 1

h2
(vh(x j+1)− 2vh(x j )+ vh(x j−1)).

The numerical solution obtained with method (24) is plotted in Fig. 4. Experi-
mentally we observed an unstable behaviour of this method for reasonable values
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of stepsizes h and Δt . This behaviour is illustrated in Fig. 5. To overcome this
drawback we consider in what follows a splitting method.

The splitting method that we propose is based on a functional splitting suggested
by the decomposition of Jeffrey’s heat flux J into two parts: Fourier’s heat flux
J1 and modified heat flux J2 where the first one is updated by the second one. This
assumption is equivalent to consider the IBVP (21) in the interval [t, t+Δt] splitted
into the two subproblems:

⎧

⎨

⎩

∂v1

∂t
= D1

γ

∂2v1

∂x2
in (0, L)× (t, t +Δt] ,

v1(x, t) = u(x, t) , x ∈ (0, L),
(25)

⎧

⎨

⎩

∂v2

∂t
(x, t) = D2

γ τ

∫ t

0
e−

t−s
τ
∂2v2

∂x2
(s) ds in (0, L)× (t, t +Δt],

v2(x, t) = v1(x, t +Δt) , x ∈ (0, L).
(26)

The temperature u(x, t +Δt) is approximated by v2(x, t +Δt).
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Fig. 5 Stability behaviour of method (24) with
Di

γ
= 0.1, i = 1, 2, τ = 1, h = 0.1 at T = 2
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In order to replace the integro-differential equation in (26) by an equivalent par-
tial differential equation, we remark that such equation is equivalent to the telegraph
equation

∂2v2

∂t2
+ 1

τ

∂v2

∂t
= D2

γ τ

∂2v2

∂x2
. (27)

This last assertion follows immediately for Theorem 5.

Theorem 5 ([5]) Let u be the solution of (21) with initial condition u(x, 0) =
u0(x), x ∈ (0, L), and v be the solution of

∂2v

∂t2
+ 1

τ

∂v

∂t
= D1

γ

∂3v

∂t∂x2
+ D2

γ τ

∂2v

∂x2
(28)

with initial conditions
∂v

∂t
(x, 0) = f (x), x ∈ (0, L), v(x, 0) = v0(x), x ∈ (0, L).

Then u = v if and only if u0 = v0 and f = D1
γ

u′′0 .

We consider in [0, L] a spatial uniform grid xi such that xi+1 − xi = h and a
uniform temporal grid tn such that tn+1− tn = Δt . By un

h(x j ) we denote a numerical
approximation of u(x j , tn).

Discretizing (25) and (27) we obtain

⎧

⎨

⎩

Dtv
n
h,1(x j ) = D1

γ
D2,xv

n+1
h,1 (x j ), j = 1 , . . . ,N − 1 ,

vn
h,1(x j ) = un

h(x j ) , j = 1 , . . . ,N − 1 ,
(29)

⎧

⎨

⎩

Dtw
n
h (x j ) = D2

γ τ
D2,xv

n
h,2 −

1

τ
wn

h (x j ) , j = 1 , . . . ,N − 1 ,

Dtv
n
h,2(x j ) = wn+1

h (x j ) , j = 1 , . . . ,N − 1 ,
⎧

⎨

⎩

vn
h,2(x j ) = vn+1

h,1 (x j ), j = 1 , . . . ,N − 1 ,

wn
h (x j ) = D1

γ
D2,xv

n+1
h,1 (x j ), j = 1 , . . . ,N − 1 ,

(30)

where u(x j , tn+1) � vn+1
h,2 (x j ), j = 1 , . . . ,N − 1 . In (29), (30) Dt represents the

backward finite difference operator with respect to time variable.
Using matrix notation, the splitting method (29), (30) has the form

1. (I − D1

γ
Δt A2)vn+1

h,1 = un
h,

2. wn+1
h =

(
D1

γ
+ Δt

τ

D2 − D1

γ

)

A2v
n+1
h,1 ,

3. un+1
h = vn+1

h,1 +Δtwn+1
h ,
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which lead to

un+1
h =

(

I +Δt

(
D1

γ
+ Δt

τ

D2 − D1

γ

)

A2

)(

I − D1

γ
Δt A2

)−1

un
h, (31)

where A2 is the matrix associated with D2,x .
In the next result we establish the stability of the splitting method (29), (30) with

respect to the L2- discrete norm.

Theorem 6 ([5]) Let un
h and un+1

h be the numerical approximations at time levels n
and n + 1 defined by the splitting method (29), (30). If ε ∈ (0, 1) and Δt and h are
such such that

4
Δt

h2

(
D1

γ
+ Δt

τ

|D2 − D1|
γ

)

≤ ε, (32)

then

‖un+1
h ‖L2 ≤ 1− ε

1+ D1
γ

Δt
L2τ

‖un
h‖L2 . (33)
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Fig. 6 Numerical approximation for the solution of Jeffrey’s equation obtained using the splitting

method (29), (30) (
ki

γ
= 0.1, i = 1, 2, τ = 1, h = 0.1,Δt = 0.06)
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We note that taking D1 = D2 and τ → 0 Eq. (20) leads to heat equation with

a diffusion coefficient
2D1

γ
. Stability condition (32) is then equivalent to Courant-

Friedrichs-Lewy condition.
By using the consistency of the splitting method and the stability established in

Theorem 6, the convergence can be easily proved.
An energy estimate for (29), (30) which looks like a discretized version of (22)

could not be obtained. Nevertheless the method is computationally efficient because
the use of telegraph equation avoids the discretization of the integral. However a
splitting method presenting stability properties analogous to the continuous one
is studied in [3]. From a computational point of view this method is more time-
consuming.

A numerical simulation obtained using the splitting method is plotted in Fig. 6
considering a Dirac delta initial condition.

4 A Non Brownian Model for a Quasi-linear
Reaction-Diffusion Problem

4.1 Introduction

A huge number of biological and physical phenomena are modeled by reaction-
diffusion equation (2), (4). In certain cases, as we mentioned before, the solution of
this equation presents a pathological behaviour. In order to avoid such behaviour the
integro-differential equation

∂u

∂t
(x, t) = D

τ

∫ t

0
e−

t−s
τ
∂2u

∂x2
(x, s) d s + f (u(x, t)), x ∈ (0, L), t > 0, (34)

is introduced in [16–18]. Equation (34) is known as a generalized Fisher-Kolmogorov-
Petrovskii-Piskunov equation, FKPP, and it is coupled with initial and boundary
conditions

u(x, 0) = u0(x), x ∈ (0, L), u(0, t) = u&(t), u(L , t) = u R(t), t > 0 . (35)

Equation (34) is established combining the conservation law (4) with the non
Fickian flux (6). The parameter τ is a relaxation parameter and when τ → 0, the
FKPP equation is replaced by (2),(4).

The existence and the behaviour of solutions of Eq. (34) with f (u) = Uu(1−u),
U > 0, and a Heaviside initial condition is considered in [16].

We point out that in [4] some qualitative properties of the non Brownian model
(34) are studied. Moreover reaction transport systems with memory and long range
interaction with a transport process described by a non Brownian random walk
model and a memory term induced by a waiting time distribution of the gamma
type is considered in [19].
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In Sect. 4.2 we focus on the stability analysis of the integro-differential model. In
Sect. 4.3, we study numerical methods to compute approximations for the solution
of (34), (35). Numerical experiments illustrating the theoretical results presented are
also included.

4.2 Energy Estimates for the PDE

In this section we study the stability of the solution of (34), (35) when the initial
condition is perturbed. Attending to this fact we assume in Theorem 7 homogeneous
Dirichlet boundary conditions.

We establish in what follows an estimate for the energy functional (12) by using
the energy method.

Theorem 7 ([8]) Let u be a solution of (34), (35) with u&(t) = u R(t) = 0, t > 0,
satisfying for each t ∈ [0, T ]

u(x, t) ∈ [c, d], x ∈ [0, L], (36)

where c, d are constants. If f is continuously differentiable and f (0) = 0, then the
energy E(u) is such that

E(u)(t) ≤ e2 max{− 1
τ
, f ′max}t ‖u0‖2

L2(0,L) (37)

for each t ∈ (0, T ], where f ′max = max|u|≤max{|c|,|d|} f ′(u).

Under the assumptions of Theorem 7, a solution u of (34), (35) exists then u is
unique. Moreover u satisfies

‖u(t)‖L2(0,L) ≤ emax{− 1
τ
, f ′max}t‖u0‖L2(0,L), (38)

and

D

τ
‖
∫ t

0
e−

t−s
τ
∂u

∂x
(s) ds‖L2(0,L) ≤ emax{− 1

τ
, f ′max}t‖u0‖L2(0,L) . (39)

Let us consider now the classical Fisher equation (2), (4). It can be shown that

‖u(t)‖L2(0,L) ≤ e f ′maxt‖u0‖L2(0,L). (40)

and no information is available about
∂u

∂x
. But if u represents the solution of (34),

we conclude from (39) a stronger result that is the “average in time” of the gradient
is bounded by emax{− 1

τ
, f ′max}t‖u0‖L2(0,L), for each time t ∈ (0, T ].

In what follows the stability behaviour of u under perturbations in the initial
condition u0 is considered. Let u and ũ be solutions of (34) satisfying the same
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boundary conditions (not necessarily homogenous) and initial conditions u0 and ũ0

respectively. For u − ũ holds the following stability result.

Theorem 8 ([8]) Let u and ũ be solutions of (34), (35) with initial conditions u0

and ũ0, respectively. If for u, ũ assumption (36) holds and the source function f is
continuously differentiable with f (0) = 0, then

E(u − ũ)(t) ≤ e2 max{− 1
τ
, f ′max}t‖u0 − ũ0‖2

L2(0,L). (41)

4.3 Energy Estimates for the Fully Discrete Approximation

Let us consider in [0, L] a grid Ih = {x j , j = 0, . . . , N } with x0 = 0, xN = L and
x j − x j−1 = h. We denote by L2(Ih) the space of grid functions vh defined in Ih

such that vh(x0) = vh(xN ) = 0. In L2(Ih) we consider the discrete inner product

(vh, wh)h = h
N−1
∑

i=1

vh(xi )wh(xi ), vh, wh ∈ L2(Ih). (42)

We denote by ‖.‖L2(Ih ) the norm induced by the above inner product. For grid
functions wh and vh defined in Ih we introduce the notations

(D−xwh, D−xvh)h,+ =
N
∑

i=1

h D−xwh(xi )D−xvh(xi ),

|D−xwh‖L2(I+h ) =
(

N
∑

i=1

h(D−xwh(xi ))
2

)1/2

,

where D−x denotes the backward finite-difference operator.
We remark that (., .)h + (D−x ., D−x .)h,+ is a natural discretization of the usual

inner product in H 1(0, L).
In the following we establish an estimate for the fully discrete version of the

energy E(u)(t) defined by (12):

E(un+1
h ) = ‖un+1

h ‖2
L2(Ih ) +

D

τ
‖Δt

n+1
∑

&=1

e−
tn+1−t j

τ D−x u&
h‖2

L2(I+h ),

where u j
h is the numerical approximation defined in what follows.

Implicit discretization of the reaction term: In this case the fully discrete approx-
imation of (34) is defined by the system of nonlinear equations
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un+1
h (x j )− un

h(x j )

Δt
=D

τ
Δt

n+1
∑

&=1

e−
tn+1−t&

τ D2,x u&
h(x j )+ f (un+1

h (x j )),

j = 1, . . . , N − 1,

(43)

where

u&
h(x0) =u&(t&), u&

h(xN ) = u R(t&), & = 1, . . . , M − 1, u0
h(x j ) = u0(x j ),

j = 1, . . . , N − 1.
(44)

The discrete version of Theorem 7 holds for the solution of (43), (44).

Theorem 9 ([8]) Let u&
h be defined by (43), (44) with u&(t) = u R(t) = 0, t > 0,

such that u&
h(xi ) ∈ [c, d], for i = 0, . . . , N , and & = 0, . . . , M. If the source

function f is continuously differentiable and f (0) = 0, then

E(un+1
h ) ≤

(
1

min{1, 1− 2Δt f ′max}
)n+1

‖u0
h‖2

L2(Ih ) (45)

provided that 1− 2Δt f ′max > 0.

The factor SI = 1

min {1, 1− 2Δt f ′max}
represents the stability amplification fac-

tor. If f ′max < 0 then SI = 1 and from (45) we obtain

E(un+1
h ) ≤ ‖u0

h‖2
L2(Ih ).

Otherwise if f ′max > 0, then

E(un+1
h ) ≤ eβ(n+1)Δt‖u0

h‖2
L2(Ih ) (46)

for Δt ≤ Δt0 with β = 2 f ′max

1− 2Δt0 f ′max

.

Explicit discretization of the reaction term: Let us consider now the implicit-
explicit (IMEX) scheme obtained by replacing in (43) f (un+1

h ) by f (un
h), that is,

un+1
h (x j )− un

h(x j )

Δt
= D

τ
Δt

n+1
∑

&=1

e−
tn+1−t&

τ D2,x u&
h(x j )+ f (un

h(x j )), j = 1, . . . , N − 1.

(47)
In this case we can establish a result analogous to Theorem 9 where the stability

coefficient SI is replaced by the stability coefficient SIMEX defined by

SIMEX = 1+Δt

1−Δt( f ′max)2
provided that 1−Δt( f ′max)2 > 0. As we have

SIMEX ≤ 1+ 1+ ( f ′max)2

1−Δt0( f ′max)2
Δt, we can prove (46) with β = 1+ ( f ′max)2

1−Δt0( f ′max)2
.
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4.4 Convergence

Let us study now the convergence of the approximation defined by (43), (44). Let
e&h(xi ) = u&

h(xi )−u(xi , t&) be the global error of the approximation u&
h(xi ) computed

using (43), (44), and let T &
h (xi ) be the corresponding truncation error. These two

errors are related by

en+1
h (xi ) = en

h(xi )+ D

τ
Δt2

n+1
∑

j=1

e−
tn+1−t j

τ D2,x e j
h(xi )+ f (un+1

h (xi ))−

f (u(xi , tn+1))+ΔtT n+1
h (xi ), i = 1, . . . , M − 1

(48)

with

e0
h(xi ) = 0, i = 1, . . . , N − 1, e&h(x0) = e&h(xN ) = 0, & = 1, . . . , M.

The next convergence result can be proved.

Theorem 10 ([8]) Let u&
h be defined by (43), (44) and such that u&

h(xi ) ∈ [c, d], for
all i and for all &. If the solution u of (34), (35) satisfies (36) and the source function
f is continuously differentiable with f (0) = 0, then

E(en+1
h ) ≤

n
∑

j=0

Ŝ j+1
I Δt‖T n+1− j

h ‖2
L2(Ih ) (49)

with ŜI = 1

min {1, 1− (1+ 2 f ′max)Δt} .
Considering that (43) is defined approximating the second-order spatial deriva-

tive using centered differences, the integral term using the rectangular rule and the
integration in time using the Euler implicit method, we have

‖Th‖∞ = max
&
‖T &

h ‖∞ ≤ C max
t∈(0,T ]

(

Δt + h2
)

. (50)

In the last inequality C denotes a positive constant independent of h and Δt .
Using (50) in Theorem 10 we conclude:

Corollary 2 ([8]) Under the assumptions of Theorem 10 and assuming f ′max ≤ −
1

2
then

E(en
h) ≤ C‖Th‖2

∞. (51)

If f ′max > −
1

2
then

E(en+1
h ) ≤ CeβnΔt‖Th‖2

∞, (52)
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with

β = 1+ 2 f ′max

1− (1+ 2 f ′max)Δt0
.

Analogous convergence results can be established for the IMEX method.
We present in what follows some numerical results that illustrate the qualitative

and stability properties of methods (43) and (47). The computational experiments
were obtained with a reaction term of type f (u) = U (1 − u)u, and with the initial
condition

u0(x) =
⎧

⎨

⎩

1, x ∈ [0, 50]

0, x ∈]50, 100] .

In Fig. 7 we plot the numerical approximations obtained using method (43) and
method (47) with U = 1, τ = 0.1 = D = 0.1 and Δt = h = 0.1. The two
numerical solutions exhibit the same stability behaviour, but as it can be observed
the speed of the numerical solution obtained with method (43) is greater.

Fig. 7 Numerical solutions computed with methods (43) and (47) for U = 1, τ = D = 0.1 and
Δt = h = 0.1
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Fig. 8 Numerical solutions computed with methods (43) and (47) for D = τ = 0.1 = Δt = h =
0.1 and U = −25

We shown that if the reaction term f is stiff, then method (43) is more stable
then method (47). This behaviour is illustrated in Fig. 8 where we plot the numerical
solution obtained with the previous methods for U = −25 and h = Δt = τ = D =
0.1. As can be observed, the numerical solution obtained with method (47) presents
an unstable behaviour.
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Maximum Principle and Gradient Estimates
for Stationary Solutions of the Navier-Stokes
Equations: A Partly Numerical Investigation

Robert Finn, Abderrahim Ouazzi, and Stefan Turek

Abstract We calculate numerically the solutions of the stationary Navier-Stokes
equations in two dimensions, for a square domain with particular choices of bound-
ary data. The data are chosen to test whether bounded disturbances on the boundary
can be expected to spread into the interior of the domain. The results indicate that
such behavior indeed can occur, but suggest an estimate of general form for the
magnitudes of the solution and of its derivatives, analogous to classical bounds for
harmonic functions.

The qualitative behavior of the solutions we found displayed some striking and
unexpected features. As a corollary of the study, we obtain two new examples of
non-uniqueness for stationary solutions at large Reynolds numbers.

Keywords Navier-Stokes equations ·Maximum Principle · Gradient estimates

1 Introduction

Two cornerstones of the theory of the Laplace equation

'u = 0 (1)

are the a priori bound on the solution, and the a priori bound on the gradient ∇u;
see, e.g., [3], Chap. VIII, Theorems X and XII. The former bound states that if u(x)
is a solution of (1) in a bounded domain Ω and continuous up to Γ = ∂Ω , then

sup
Ω

|u| ≤ M
.= max

Γ
|u| (2)

The latter bound states that there exists a function F(d; M) such that if d is
distance from p ∈ Ω to Γ then

R. Finn (B)
Department of Mathematics, Stanford University, Stanford, CA, USA
e-mail: finn@math.stanford.edu

R. Rannacher, A. Sequeira (eds.), Advances in Mathematical Fluid Mechanics,
DOI 10.1007/978-3-642-04068-9 15, C© Springer-Verlag Berlin Heidelberg 2010

253



254 R. Finn et al.

|∇u(p)| < F(d; M). (3)

The linearized (Stokes) equations of hydrodynamics

'w = ∇ p

div w = 0
(4)

for slow stationary viscous fluid flow, with velocity field w and pressure p, bear
a formal resemblance to (1); this was exploited in a beautiful way by Odqvist [5]
who showed that much of the classical Fredholm theory for (1) can be extended to
solutions of (4). As a consequence, Odqvist was led to a bound

|∇w(p)| < FΩ (d; M) (5)

analogous to (3), although Odqvist imposed also smoothness requirements on Γ that
are not needed for (3). The subscript Ω in (5) indicates an additional distinction that
occurs, that was not explicitly observed in [5]: the functional dependence of Φ on d
and on M can vary greatly, depending on the particular domain. That was exhibited
in [2], as a property of an explicitly known family of Couette flows, considered in
expanding domains.

Given a domain Ω , the results of Odqvist lead to construction of a “Green’s
tensor” for the system (4) in Ω , and then to an integral equation for solutions of the
Navier-Stokes equations

'w − Re w · ∇w = ∇ p

div w = 0
(6)

in Ω , with prescribed boundary data subject to an outflow condition on Γ . Leray
[4] studied the integral equation, and by an ingenious reasoning obtained an a priori
bound for the Dirichlet integral for any solution and in consequence a bound for the
gradient analogous to that of Odqvist; however the bound depends additionally on
the Reynolds number Re and on the tangential derivatives of the data on Γ up to
third order; see, e.g., the comments in [1]. Using that bound in the integral equation,
Leray was able to prove the existence of a smooth solution of (6), in any domain
bounded by smooth components, corresponding to sufficiently smooth data having
zero outflow on each boundary component. It is a remarkable result that had not
been predicted and certainly was unexpected, in view of the known instabilities that
arise with increasing Re.

The question, whether for a specific domain there is a gradient bound for (6)
fully analogous to that of Odqvist (i.e., depending only on Re and on M and not on
smoothness of the boundary data), remains open. Such a bound would remove the
differentiability requirements imposed by Leray on the data, and would also be of
independent interest, in many contexts. Partial information was supplied by Finn and
Solonnikov [2], who obtained a result of somewhat different character, weakening
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the requirements imposed by Leray but not yet including the specific estimate that
is sought. Those authors offered a suggestive reasoning (short of a proof) that in two
dimensions the indicated estimate may fail.

In the present note, we put the matter to an initial experimental test in the two
dimensional case, using numerical calculations. We take as domain Ω a square,
and impose data on the sides Γ that are uniformly bounded but successively more
oscillatory, to determine whether the rapid disturbances on the boundary will spread
into the interior. We do that for two ranges of data that are tangential on Γ , so that
no fluid enters Ω but for which the tangential direction oscillates. We do it also for
two ranges of data that are orthogonal on Γ , with rapid oscillation between entering
Ω and leaving it. Each calculation was performed for three different Reynolds num-
bers, in a range from 1 to 10000, and for five different oscillation rates, determined
by a parameter k. We use the computer calculations to estimate the magnitudes |w|
in Ω . The corresponding bounds on |∇w| are then inferred from Theorem 1 in [2].

2 Test Configurations

Specifically, the data were as follows, for velocities w = (u, v) on the sides x = ±1,
y = ±1 of a square of side length 2:

(A) Tangential data

A1) w = ((x2 − 1) sin kx, 0) on y = ±1, w = (0, 0) on x = ±1
AC) w = ((x2 − 1) sin kx, 0) on y = +1, w = (0, (y2 − 1) sin ky) on x = +1
and
w = (0, 0) on the remaining sides

k = 1, · · · , 120; Re = 1, · · · , 10000.

(B) Normal data

B1) w = (0, (x2 − 1) sin kx) on y = ±1, w = (0, 0) on x = ±1
BC) w = (0, (x2−1) sin kx) on y = 1, w = (−(y2−1) sin ky, 0) on x = 1 and
w = (0, 0) on the remaining sides

k = 1, · · · , 120; Re = 1, · · · , 10000.

We examined also the question, whether a local jump discontinuity in boundary
data can spread into the interior as an unbounded disturbance. In the view that
such behavior could be dependent on the magnitude of the jump, we made the
choices:
(C) Tangential data

w = (K , 0) on y = ±1, −0.9 eps < x < +0.9; w = (0, 0) elsewhere on the
boundary
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(D) Normal data
w = (0, K ) on y = ±1, −0.9 < x < +0.9; w = (0, 0) elsewhere on the

boundary

K = 1, · · · , 60; Re = 1, · · · , 10, 000.

3 Numerical Methods

In our numerical studies with the open source CFD package FEATFLOW

(www.featflow.de), we mainly focus on low order Stokes elements with non-
conforming finite element approximations for the velocity and piecewise constant
pressure functions which satisfy the LBB condition [7]. Moreover, in the case of
nonstationary flow simulations, second order time stepping schemes are used which
can be applied in a fully coupled as well as operator-splitting, resp., pressure correc-
tion framework. However, in these studies, we directly solved the stationary Navier-
Stokes equations by applying a Newton-like method to the fully coupled discretized
system while the auxiliary linear problems are solved via multigrid techniques.

There are well-known situations for standard FEM methods when severe numer-
ical problems may arise, namely in the case of convection dominated problems.
Then, numerical difficulties arise for instance for medium and high Re numbers
since the standard Galerkin formulation usually fails and may lead to numerical
oscillations and to convergence problems of the iterative solvers. Among the stabi-
lization methods existing in the literature for these types of problems, we use the
proposed one in [6, 8] which is based on the penalization of the gradient jumps over
element boundaries. In 2D, the additional stabilization term Ju, acting only on the
velocity u in the momentum equations, takes the following form (with hE = |E |)

< Ju, v >→=
∑

edge E

max(γ
1

Re
hE , γ

∗h2
E )

∫

E
[∇u] : [∇v] ds, (7)

and can simply added to the original bilinear form. Summarizing, in the underlying
test cases which require the solution of stationary problems, efficient Newton-type
and multigrid solvers can be easily applied for such highly accurate stabilization
techniques (see [8] for more details) which are the basis of the subsequent numerical
analysis.

4 Results and Analysis

In the data for cases A and B, the factors of the form
(

x2 − 1
)

are inserted to impose
continuity with zero data at the corner points, thus ameliorating eventual singulari-
ties that could arise from the corner boundary discontinuities. Although the presence
of these discontinuities causes both the domain and the data to be outside the range
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Fig. 1 The tangential data A1: Velocity magnitude for k = 1, k = 3, k = 30, k = 60 and k = 120
and Reynolds numbers Re = 1, Re = 1000 and Re = 10000. Reynolds number increases from
left to right and k increases from top to bottom
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Fig. 2 The tangential data AC: Velocity magnitude for k = 1, k = 3, k = 15, k = 30 and k = 60
and Reynolds numbers Re = 1, Re = 1000 and Re = 10000. Reynolds number increases from
left to right and k increases from top to bottom
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Fig. 3 The normal data B1: Velocity magnitude for k = 1, k = 3, k = 30, k = 60 and k = 120
and Reynolds numbers Re = 1, Re = 1000 and Re = 10000. Reynolds number increases from
left to right and k increases from top to bottom
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Fig. 4 The normal data BC: Velocity magnitude for k = 1, k = 3, k = 15, k = 30 and k = 60 and
Reynolds numbers Re = 1, Re = 1000 and Re = 10000. Reynolds number increases from left to
right and k increases from top to bottom
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for Leray’s existence theorem, the choice made was considered preferable from the
point of view of programming data for the computer procedures. No indication was
observed of any difficulty in finding at least one solution of the boundary problem
in all cases, and in some instances multiple solutions could be identified, see the
discussion below. The choice k = 120, which appears only in Figs. 1 and 3, was
not originally contemplated; it is outside the range for which the computation pro-
cedures can be trusted to be reliable, and so the inferences we make from that case
must be considered provisional; however the results obtained for it are consistent
with other observations, and point to trends that we feel are worth noting.

An initial comment is in order on the choice of scaling for the figures, which
display interior velocity magnitudes on a color scale ranging from blue (small) to
red (large). One is tempted as a “natural” choice to make the highest scale point
in each figure the maximum velocity magnitude in the figure. Such a procedure is
well suited for examining what happens in that figure, but can be misleading when
comparing one figure with another. In consideration of the behavior features that
we felt most important to emphasize, and with a view to minimize confusion in
interpretation, we decided to choose the highest scale point for each row to be the
maximum of the two numbers: (a) the maximum velocity magnitude achieved in
that row, and (b) the maximum velocity magnitude achieved in any row that is above
that one. The reader should keep that choice in mind when interpreting the figures;
a change in scale in any figure can produce a very different appearance of the figure.
In the relevant (groups of) Figs. 1, 2, 3 and 4, k increases with row from top to
bottom, Re increases with column from left to right. Thus in our choice of scaling,
the highest scale point is the same for all figures in a row, and is non-decreasing
from top to bottom.

It should be noted that the maximum boundary velocity magnitude is the same
for all figures in a row. For reference, the values for this quantity are: k = 1 :
.365; k = 3 : .784; k = 15 : .989; k = 30 : .997; k = 60 : .999; k = 120 : 1.000.
For the data as chosen, this maximum magnitude is usually achieved at only a single
point. In some of the figures, the highest scale points will be slightly less than these
values; that is because the computer mesh points in general differ from those special
extremal points.

We organize our interpretations of the figures according to Roman numerals.

I. Figure 1 displays the velocity magnitudes |w| in case A1 corresponding to five
values of k and three values of Re, arising from oscillating tangential data on
the sides y = ±1 for which no fluid enters or leaves the square Ω . The value
k = 15 is not included in the figure, however the k = 15 fluid patterns are
similar to those for k = 1 and k = 3 cases. The maximum magnitudes interior
to Ω for some of the cases are roughly comparable to those on Γ , and in that
sense one sees that the boundary disturbances do transmit into the interior.

With increasing k and small Re, the oscillations in data are dissipated rapidly
by frictional forces within the fluid; there appears to be no focusing of energy,
and to the extent visible in the figures, one can not even discern that the bound-
ary data are achieved, although the oscillations in data are detectable near the
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Fig. 5 The tangential data A1: Solution (top) and corresponding three dimensional view of the
solution (bottom) for k = 30 and Re = 1, Re = 1000 and Re = 10000. Reynolds number
increases from left to right

Fig. 6 The tangential data A1: A three dimension of the norm of the velocity for k = 3 and k = 30
for Re = 10000

boundary. We have suppressed the case Re = 100 in the interest of more clarity
for the remaining cases, but we remark that the behavior does not differ greatly
from that of Re = 1.

For large Re this behavior changes dramatically, and a ring of relatively large
kinetic energy appears with increasing k when Re is large enough. For fixed
Re and further increasing k, the effect fades and for Re ≤ 1000 disappears.
Presumably it will eventually disappear also for larger Re, as suggested in the
figure. Thus, for large Re a rotational symmetry not apparently connected with
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Fig. 7 The tangential data A1: Solution and the corresponding vector plot for k = 30 and Re =
1000, and Re = 10000, arising from changes in detail of the calculation procedure for case A
(Fig. 1). Reynolds number increases from top to bottom
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the boundary data at first occurs with increasing k, but as k increases further the
effect then is overwhelmed by dissipation and washes out. It should be noted
that throughout this development, the magnitudes interior to Ω do not exceed
the maximum on the boundary.

We examine the effect in further detail in Figs. 5 and 6, which offer relief
figures for the magnitudes, with the particular choices k = 3 and k = 30, with
increasing Re. The “spikes” on opposite sides are the prescribed boundary data.

The flow within the rings is roughly rotational, and can be produced in either
rotation sense, depending on details of the computational procedure. Thus we
obtain a new example of non-uniqueness for stationary solutions of (6) at large
Reynolds number. The two solutions are illustrated in Fig. 7, for k = 30 and for
Re = 1000 and 10000.

II. In order to determine the extent to which the symmetry of the data affected the
results, the same oscillating data were imposed on two adjacent sides. Results
are shown in Fig. 2, The same qualitative behavior occurs, with somewhat
larger magnitudes appearing, presumably since the boundary data are imposed
on sides that are closer together.

III. Figure 3 results from identical data normal to the boundary, imposed on the top
and bottom of the square, with k = 1, 3, 30, 60, 120, and Re = 11000, 10000.
A notable event occurs when k changes from 1 to 3, with Re = 10000. Pre-
sumably due to more rapidly changing data and larger magnitudes, the entering
flow for k = 3 does not succeed in crossing to the opposite side as does the
flow for k = 1, but instead enters and then leaves again on the same side. It is
for this reason that we decided to retain the case k = 1 for display, despite that
no full oscillation occurs. It exhibits an initial step in a behavior that seems to
exert a controlling influence on the further developments.

The change to k = 30 in that column is again dramatic, with the development
of a circular flow as in the tangential data case. What appears to be happening
is that flow enters the square and then departs in adjacent boundary segments.
For large k these segments are close together and most of that motion occurs
close to the boundary, as indicated by the succession of half-rings in the figure.
Space then appears in the central part of the square for development of the
observed large circular motion, with larger velocities than occur near the bound-
ary. The magnitudes in the central ring become for normal data notably larger
than occurs for tangential data. There is clear evidence of energy focusing, with
magnitudes in the ring more than double those of the (isolated) boundary peaks.

For each k the top and bottom boundary segments are divided into an even
number 2 j = 2(1+ [k/π ]) of subsegments, in each of which flow either enters
or exits, and such that for each subsegment on either half of the boundary in
which flow is entering, there is a corresponding one on the other half in which
flow is leaving. Flow alternately enters and leaves in adjacent subsegments. If
j is odd, then a predominantly left oriented flow near the upper boundary will
be created, as will a predominantly right oriented flow near the lower boundary,
see Fig. 8a. The reverse orientation occurs when j is even, see Fig. 8b.The flows
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Fig. 8 The normal data B1: Projected explanation for development of rotation interior to the
square, in Case B1. The arrows exterior to the square indicate the directions of applied data in
the intervals separated by dots on the sides. Fluid enters between two dots and exits in an adjacent
interval. Identical data are prescribed on the top and bottom of the square. The boundary motions
combine to induce rotation in the center. Note that orientation reverses from j = 3 to j = 4. These
numbers were chosen for illustration; they may be too small for actual development of interior
rotation

(a) (b)

Fig. 9 The tangential data A1: Development of large-scale interior rotation in case k = 1 or 3, as
result of instability of symmetric flow. Two distinct configurations with opposite flow orientations
appear, in addition to a presumed symmetric solution



266 R. Finn et al.

thus occasioned provide an explanation for the development of the circular flow
in the central region. The determination of orientation just described is reason-
able when k is not large. As k increases, the subsegments near the vertices
lose their influence in view of the factor (x2 − 1), and the actual flow could
be established in either direction, determined by circumstances having nothing
to do with the equations. That could be an explanation for non-uniqueness of
computed solutions. In fact, in Fig. 3 with Re = 10000 the computed flow
orientation reverses from k = 30–60, although j is even in both cases, and
again from 60 to 120, when j reverses parity.

We note however that the non-uniqueness we have already observed under
I above occurred for tangential data, for which a corresponding reasoning does
not at first seem available to us. In that case the data and also the figures seem
to suggest a succession of symmetrically placed small eddies at the boundary in
alternating orientations; these lead formally to symmetric influence on a sym-
metrically placed interior circle, which would not induce rotation.

In fact, we believe the interior rotation arises in the tangential data case from
quite different causes, than for the normal data case.

The clue to what happens for tangential data can be found in the upper
two rows of Fig. 1. The behavior in the Re = 10000 column of those rows
is sketched in Fig. 9a, where flow directions are shown. One sees there that a
large-scale rotational motion in the interior of the square is indeed supported
by the data, and occurs as the result of an instability of the symmetric solution.
This can happen in either rotation sense, as indicated in Fig. 9b, and as can
be seen by comparing the second and third columns for the upper two rows of
Fig. 3. With increasing k, the effects become more complicated, and combine
to lead at large k and Re to a nearly circular configuration.

Thus, we must expect in this situation the existence of at least three distinct
solutions: a solution exhibiting the symmetries of the symmetric data but which
is unstable to skew-symmetric rotational disturbances, and then two rotational
solutions with opposite flow orientations, as there is no reason to prefer one
orientation to the other. It is these two rotational solutions that give rise to the
non-uniqueness observed in item I above.

IV. Again for normal data we reduced the symmetry by placing the data on adja-
cent sides instead of opposite sides. Again the same kind of behavior appeared,
with larger interior magnitudes presumably occasioned by the sides being closer
together.

V. We consider Figs. 10 and 11, arising from successively increasing constant data
on fixed subsegments of opposite boundary segments, with a jump to zero data
at the endpoints. Here the behavior yielded clearly less dramatic events. Interior
magnitudes in some instances exceeded those of the boundary data, but not by
large amounts. This is noteworthy, especially as the boundary data are identi-
cally their maxima on intervals close to the entire sides in length, rather than at
a few isolated points as in the earlier cases. On comparing behavior in the two
situations, it becomes clear that rapid boundary oscillations do propagate into
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Fig. 10 The tangential data C: Velocity magnitude for K = 1, K = 3, K = 15, K = 30 and
K = 60 and Reynolds numbers Re = 1, Re = 1000 and Re = 10000. Reynolds number increases
from left to right and K increases from top to bottom
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Fig. 11 The normal data D: Velocity magnitude for K = 1, K = 3, K = 15, K = 30 and K = 60
and Reynolds numbers Re = 1, Re = 1000 and Re = 10000. Reynolds number increases from
left to right and K increases from top to bottom



Maximum Principle and Gradient Estimates 269

the interior and cause disturbances that can be large in relation to the boundary
magnitudes.

5 Some Conclusions

We may interpret the figures from the point of view of the a priori estimates dis-
cussed in the Introduction. Looking at Figs. 2, 4, 10 and 11 we see immediately
that the estimate |w| < M does not extend without change from solutions of (1) to
solutions of (6); larger values can be attained throughout large interior sets, includ-
ing even the midpoint of the square. However, from Figs. 10 and 11 we see no
evidence that even a large jump discontinuity in data will induce arbitrarily large
magnitudes in the interior. The calculations suggest that with increasing k, oscil-
lating disturbances may initially spread into the interior and even exhibit some
focusing behavior, but as k becomes large enough, the focusing dampens out due
to frictional dissipation. Thus, we are inclined to expect an a priori estimate of the
form |w| < ΦΩ (Re; M). From Theorem 1 of [2] would then follow an estimate
|∇w| < GΩ (d; Re; M).

We emphasize again that although our calculations suggest such estimates, we
have not proved them.
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A Study of Shark Skin and Its Drag Reducing
Mechanism

Elfriede Friedmann, Julia Portl, and Thomas Richter

Abstract In this paper we will give an overview of our studies on turbulent flow
over rough surfaces such as shark skin, which have a drag reducing effect known
as shark-skin effect. Our mathematical model is restricted to the flow in the vis-
cous sublayer. Here, the turbulences which occur in the flow above this layer enter
through a boundary condition. The flow equations are the steady state Navier-Stokes
equations with a Couette flow profile given through two boundary conditions: a
diagonal flow on the top and the no-slip condition on the rough surface. Direct
simulations are performed via stabilized finite elements. For a better approxima-
tion of the boundary isoparametric finite elements are used. Our first calculations
give a drag reduction of rough surfaces up to 8% whereas 15% is obtained with an
improved model. We will discuss this amount of drag reduction and how it can be
compared with experimental results. For gaining insight in the details of the flow,
how it is influenced by the different shapes of microstructures, and how their drag
reducing mechanism can be explained, we used scientific flow visualization. We
will present a short overview of the methods employed.

Keywords Boundary layers · Navier-Stokes equations · Direct simulations · Drag
reduction · Flow visualization

1 Introduction

Microstructures on surfaces influence the flow at first only in a small region around
the surface but this small influences can have a great importance, e.g. for the drag.
The golf ball flies 2.5 times further than a smooth ball of the same size would do.
The lotus flower is always clean because of its special structure, and sharks are so
fast because of their rough skin. In this paper we will describe the so-called shark
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Fig. 1 The skin of sharks is made up of so-called placoidal scales (0.1-few mm). The shape of
these scales depends on the species and on the position along the body. The microstructures on the
crown form riblets in the main stream direction (Fig. from [16])

skin effect, i.e. the drag reducing mechanism of the small riblets found on the skin
of sharks. Sharks live since more than 350 million years, so that they had a long
period of time during evolution to adapt optimally in their environment. They are
very fast swimmers and can reach velocities up to 60 km/h. W.E. Reif discovered
in the 80s that fast swimming sharks are covered with very fine and sharp riblets
which are streamlined on the body (see Fig. 1). This kind of riblets were observed
on contemporary sharks but also on petrified pieces of skin which were 100 million
years old. This observation signaled the importance of these structures so that a
detailed study was innitated. The main result of these studies was that riblets do
reduce the drag. They work only in turbulent flow which has in addition to the
main stream velocity component also a cross flow velocity component which is
dampened by the riblets, and so the magnitude of turbulence is reduced. This theory
sounds very promising for engineers, and this so-called shark skin effect found many
applications where the contribution of the turbulent skin friction to the total drag
is high, e.g. swimming suits (≈ 39%), airplanes (≤ 50%), submarine vehicles (≤
70%) and long distance pipelines (≤ 100%). Tested in wind and water channels
all these applications showed a drag reduction of 7–8%. In the case of airplanes it
corresponds to a fuel saving of 3% per long distance flight.

2 Modeling of Shark Skin

Due to the high burst velocity of sharks (around 70 km/h), their length and the vis-
cosity of water, the Reynolds number of the flow around a shark is high: It lies
between 106 and 107. One of the difficulties of modeling the flow around a shark is
that analysis of turbulent flow is out of reach until now, and the other difficulty is
the fact that the microstructures are very small (0.01–0.2 mm). To build up a suitable
model we have to restrict ourself only to a small region of the flow: We will zoom
into the flow (see Fig. 2) until we obtain the part which can be described by a suitable
model. For describing a small part of a turbulent flow we have to know something
about its structure.

Around 1904 Prandtl found out that the flow over a body of high Reynolds num-
ber can be decomposed firstly in a thin layer near the wall, the so-called boundary
layer, and secondly in a potential flow. The so-called boundary layer is the domain of
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Fig. 2 Our model of flow around sharks describes only a small part of the real situation (Fig. from
[5, 13]). This figure shows a duplex zooming into the skin of a shark

influence of the viscosity on the flow. In this region the velocity profile shows values
from 0 (no-slip boundary condition) to U∞ (the frictionless external velocity). This
deceleration of the fluid is the cause of the drag which seems to be a pure boundary
layer phenomena. Dependent on the flow situation the boundary layer can be lami-
nar or turbulent. In the case of fast swimming sharks we have a turbulent boundary
layer. A turbulent boundary layer can not be described analytically. Following the
boundary layer theory of Schlichting (see [15]) we observe following structure (see
Fig. 3): the viscous sublayer is a thin layer of fluid (thickness: 0 < y+ ≤ 5, where
y+ is the dimensionless characteristic wall coordinate) which is slowed down near
the wall through friction forces. Here we have a linear velocity profile. The buffer
layer is the region near the wall (thickness 5 < y+ ≤ 25) where the friction can
be neglected. There the velocity profile is unknown because the flow is turbulent.
The last sublayer is called logarithmic layer because of the logarithmic velocity
profile, it is the frictionless layer far away from the wall (thickness 25 < y+). From
Schlichting we know that as long as the riblets stay within the viscous sublayer of the
turbulent flow, they do not induce additional drag and are considered as a hydraulic
smooth surface. Let δ be the thickness of the viscous sublayer and h be the height
of the microstructures: if h < 0.6δ then the riblets do not influence the thickness
of the viscous boundary layer for Re ≈ 106 (for higher Re they must be slightly
smaller). If we zoom into the flow around a swimming shark until we see only
the viscous sublayer we are able to formulate a suitable model. The flow equations
are the incompressible stationary Navier-Stokes equations with a Couette profile
prescribed through the no-slip boundary condition on the rough skin and a velocity
U on the upper boundary. The Reynolds number here is very small (Re ≈ 1). The
turbulent character of our original model enters only through the boundary condition
U = (U1,U2, 0) which indicates that we have a mean flow velocity U1 and a cross
flow velocity U2 which is induced by the vortices in the turbulent flow above the
modeled area.

The so-called canonical cell of roughness is denoted by Z = (0, b1)× (0, b2)×
(0, b3) which is plotted in Fig. 5. The rough boundary is denoted by γ (y1, y2), where
y1, y2 ∈ (0, b1) × (0, b2) are the macroscopic variables. The fluid part of this cell
is denoted by Y = {y ∈ Z | b3 > y3 > max{0, γ (y1, y2)}}. Then the bottom of
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Fig. 3 In this figure we see the structure of a turbulent boundary layer. In each sublayer the velocity
has a different profile. Here, photographs from [18] are inserted in the corresponding layers to get
a better impression of the flow behavior

our three-dimensional channel consists of the layer of roughness given through the
periodical repetition of one basic cell of roughness scaled with our scaling parameter
ε to obtain the microscopical description. Mathematically the layer of roughness
is Rε = (∪ε(Y + (k1, k2,−b3))) ∩ ((0, L1) × (0, L2) × (−εb3, 0)). We recall the
connection between the macroscopic and microscopic variables: yi = xi

ε
, with i =

1, 2, 3. The rough boundary Bε = ε(∪γ + (k1, k2,−b3)) consists of a large number
of periodically distributed humps of characteristic length ε but variable height εh
with h ∈ [0, 1]. The region above the layer of roughness is the cuboid P = (0, L1)×
(0, L2) × (0, L3), and the interface which separates this region from the layer of
roughness is denoted by Σ = (0, L1) × (0, L2) × (0). Thus the region where the
fluid flows is Ωε = P ∪Σ ∪Rε (see Fig. 4). With Σ2 we denote the upper interface
(0, L1)× (0, L2)× {L3}, where the velocity is prescribed.

The steady state incompressible Navier-Stokes equation for the three-dimensio-
nal viscous sublayer reads as follows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−νΔvε + vε · ∇vε + ∇ pε = 0, in Ωε

div vε = 0, in Ωε

vε = 0, on Bε

vε = U, on Σ2

{vε, pε} − (x1, x2) periodic.

(1)
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Fig. 4 The three-dimensional viscous sublayer
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Fig. 5 The three-dimensional canonical cell of roughness

Due to the rough boundary the system (1) is difficult to solve. Jäger and Mikelić
proved in [11] that if |U |δ < 2ν, there exists a unique solution {uε, pε} ∈ H 2(Ωε)×
H 1(Ωε).

Further in this paper we are interested in the numerical solution of (1) and espe-
cially on the numerical evaluation of the drag force in order to analyze the effect of
different roughness to it. The drag which is the force that resists the movement of a
solid object through a fluid is made up of friction forces, which act in the direction
parallel to the surface, plus pressure forces, which act in the direction perpendicular
to the surface. In our case the surface of the object is the oscillating boundary Bε

with normal n. In the three-dimensional case the drag force on the rough boundary
is a two-dimensional vector:

Definition 1 The longitudinal drag component of our shark skin model is defined
by

(

F ε
t

)

1 =
1

L1L2

∫

Bε

νσne1dx1dx2

= ν

L1L2

∫

Bε

(

2
∂vε1

∂x1
− p

)

n1 +
(∂vε1

∂x2
+ ∂vε2

∂x1

)

n2 +
(∂vε1

∂x3
+ ∂vε3

∂x1

)

n3

(2)

and the cross drag component by
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(

F ε
t

)

2 =
1

L1L2

∫

Bε

νσne2dx1dx2

= ν

L1L2

∫

Bε

(∂vε2

∂x1
+ ∂vε1

∂x2

)

n1 +
(

2
∂vε2

∂x2
− p

)

n2 +
(∂vε2

∂x3
+ ∂vε3

∂x2

)

n3.

(3)

We will calculate the two components of the drag where the drag in the longi-
tudinal flow direction is of main interest (denoted by drag - x1 in the tables). The
values were obtained after a transformation of the boundary integral into a domain
integral to obtain a more accurate evaluation.

3 Direct Simulations

Numerical simulations for (1) are very difficult especially for the three-dimensional
flow problem with very small microstructures. To capture the microstructures with
a sufficient accuracy, we need a very fine mesh which requires a huge amount of
data.

The direct simulations of the oscillating incompressible steady state Navier-
Stokes equation (1) were performed using one of the powerful codes developed by
the numerical group of R. Rannacher called GASCOIGNE. Here error control, adap-
tive mesh refinement and a fast solution algorithm based on multigrid methods are
combined (see [2] and [4]). A stabilized Finite Element formulation is used with a
local projection stabilization (LPS). For details on this local projection stabilization
method see [3]. Since we are interested in the evaluation of functionals directly on
the rough surface we have to use isoparametric finite elements to achieve a higher
order boundary approximation. More details about the direct simulations of flow
over a shark skin one can find in [8].

Under some assumptions like the periodicity of the microstructures and their
smallness we can reduce the calculation costs by using homogenization. In [6] and
[7] we showed how the oscillating drag force given in (2) and (3) can be approx-
imated by the so-called effective drag force using a homogenization process. In
this process the rough surface will be replaced by an artificial smooth surface situ-
ated above the microtructures on which the effect of these enter through a different
boundary condition (the Navier slip condition). The solution of (1) is than con-
structed analytically as a correction of the Couette flow with the no-slip boundary
condition on this smooth surface. The correction terms include the solution of an
auxiliary boundary layer problem. In [11] convergence results are proved for this
asymptotic expansion of the velocity, for the mass-flow and for the drag force. The
computation costs for the effective drag are drastically smaller: the unknown (Navier
matrix) is obtained by solving the boundary layer equation, i.e. a Stokes type system
on the cell of roughness Y (see Fig. 5) and another fluid cell above it instead of the
complete Navier Stokes system on the whole rough channel (see Fig. 4).
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Table 1 The amount of drag reduction of rough surfaces

Drag - x1 Drag - x2 Skin friction - x1 Skin friction - x2

F smooth
t 1.1765 1.1765 1.1765 1.1765

F ε
Bε n-o. rib. 1.122 (4.6%) 1.146 (2.5%) 1.122 (4.6%) 0.37 (69%)

F ε
Bε o. rib. 1.111 (5.5%) 1.142 (2.9%) 0.764 (35%) –0.023 (102%)

F ε
Bε thorns 1.086 (7.7%) 1.086 (7.7%) 0.7 (40%) 0.7 (40%)

We made firstly direct calculations on a channel of size 1.2 × 1.2 × 1 with two
different shapes of microstructures: riblets and a thorn like structure which was
observed on the skin of slow swimming sharks. The results for the drag are listed in
Table 1.

We expected a higher contribution to drag reduction in the case of riblets. Instead
of that we obtained 7.7% drag reduction for the thorn like structure. In [9] we ana-
lyzed different models with different channel lengths, different in- and outflow con-
ditions and different evaluation positions of the drag to get comparable values. For
that we could use information from the homogenized model concerning the correct
in-and outflow conditions: We used the effective Couette flow. The conclusion of
this comparison was to choose a longer channel for our model of shark skin and
evaluate the drag on a smaller domain from inside to avoid the disturbances from
the in- and outflow. The evaluation of the drag on the domain [2.4..3] × [2.4..3]
inside a channel of size 3.6× 3.6× 1 gave us different values (see Table 2) but the
drag for the thorn-like structure is again lower than the drag for riblets.

For better understanding of the differences between the two structures we com-
pared the amount of in- and outflow (see Table 3). Because we have a diagonal
inflow we have two inflow and two outflow faces. We also considered two different
models, one model with free overflow and no-slip condition on the rough surface and
the other one with prescribed Dirichlet boundary conditions. A detailed description
of the models are in [9].

We observe that in the case of riblets we have a total in- and outflow of 1.055 for
the model with free overflow and a total in- and outflow of 1.08 for our model with
prescribed in-and outflow, i.e. 2.5% higher. In the case of the thorn-like microstruc-
ture we have a total in- and outflow of 1.114 for the model with free overflow and a
total in- and outflow of 1.08 for our model with prescribed in-and outflow, i.e. 3%
less. These calculations explain the different results in the amount of drag reduction
of the two models (see Sect. 5).

Another point of interest in our work was to evaluate the vorticity and the
stabilization terms for the two models (see Table 4). The L2-norm of the vortic-
ity, ||∇ × uε||2, is for all models in the same range, only slightly higher for the

Table 2 The drag and its components compared on the two geometries

Drag - x1 Fric - x1 Press. - x2 Drag - x2 Fric - x2 Press. - x2

Thorns 0.361 0.224 0.132 0.361 0.224 0.132
Riblets 0.419 0.411 0 0.471 0.123 0.327
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Table 3 The amount of in- and outflow compared on the two geometries

In-flow Out-flow

Left Front Right Back

Riblets Free overflow & no-slip −0.52 −0.535 0.52 0.535
Riblets D.b.c. −0.54 −0.5398 0.533 0.547
Thorns Free overflow & no-slip −0.553 −0.553 0.553 0.553
Thorns D.b.c. −0.54 −0.54 0.54 0.54

Table 4 The amount of vorticity and of the stabilization term

Norm of vorticity Vorticity range Stabilization

Riblets Free overflow & no-slip 8.82502 0..26 0.000550819
Riblets D.b.c. 10.3983 0..26 0.00182755
Thorns Free overflow & no-slip 8.54718 0..130 0.000651022
Thorns D.b.c. 8.28226 0..119 0.000579329

riblet-model with Dirichlet boundary conditions. But if we look at the vorticity in
each gridpoint, we see a higher difference (see Fig. 6). Due to the small Reynolds
number the vorticity is nearly zero in the greatest part of the channel. It is not zero
only near the rough surface. Directly on the top of the microstructures we find the
highest value. In case of the riblets the top value is 26 whereas for the thorn-like
structure it can reaches 130 but only in a singular point so that it has not a great
effect to the total value.

The values in the last column of Table 4 comes from the following stabilization
term:

∫

Ωε αK |∇(ph − i2h ph)|2, where i2h denotes the interpolation on the grid with
double grid size and αK = 0.5∗h2

K in our case of very viscous flow. The stabilization
term is small and if we look at its distribution in the rough channel (see Fig. 7) we
see two clearly defined positions, where this term acts: in front and after the highest
point of the microstructures.

Fig. 6 The vorticity is zero far away from the microstructures. The high values are concentrated
directly on the tip of the microstructures
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Fig. 7 The stabilization term used for the direct simulations is very small almost everywhere. The
extreme values are concentrated directly in front and back of the tip of the microstructures, there
where the pressure has higher values

4 Scientific Visualization of our Flow Data

Virtual flow visualization is largely influenced by traditional experimental tech-
niques of visualization, like smoke or dye injection, as well as by the existing data
types, typically vector fields. Because there exists no natural visual representation
of three-dimensional vector fields we have to use simplified representations which
we can understand more easily. In this section we will give a short description of the
techniques we used with the software COVISE.

COVISE is a visualization system developed at the High Performance Compu-
ting Center Stuttgart (HLRS), advanced and distributed by VISENSO. Originally
designed for applications of fluid mechanics, it has been extended by many other
application areas. Via an amount of various modules a work flow for the data to
pass can be built. Those modules are precast programs, so that the intrinsic program-
ming work can be avoided by linking the needed modules together. COVISE gives
a fully scalable and rotatable model of the input data. There is also the possibility
to develop some new modules to extend the range of the program or to fit it to own
circumstances respectively.

4.1 The Visualization Pipeline

Generally scientific visualizations pass some specified work steps, known as visua-
lization pipeline: read/compute→ filter→ map→ render→ display.

Our work steps can be collocated in this pipeline like this:
To read the data generated by GASCOIGNE we needed a Visualization Toolkit

(vtk) data reading module. Such a module had been developed by M. Winckler
and D. Neumayer in 2001, but it did not match neither our data nor our current
HLRS-COVISE. So we had to match this module to our conditions.
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To get just some specific data from our source file, we had to filter it. COVISE
offers some different filter modules, we used them e. g. for cutting of parts of a
geometry to see inside, extracting a cutting plane or for computing an outer surface
of a grid.

For mapping we can choose between a large number of visualization methods
where everyone has its assets and drawbacks. We used arrow plot which is one of
the oldest visualization techniques. It is a so-called direct visualization technique
used for immediate investigation of the flow data. Here arrows are drawn in each
sample point in the field oriented according to the flow with length proportional to
the flow velocity (see Fig. 10 and 9). Often there is a problem that the arrows will
overlap in a two dimensional view, so that it is difficult to gain further insights. At
this point the advantage of COVISE is to display the model not only on a conven-
tional monitor, but with a stereo projection installation. So it is possible to study the
model with a realistic depth effect and additionally the plane with the arrows can
be moved within the stream. The module CuttingSurface (see also Fig. 10)
describes a technique where a plane is extracted from the data, often colored e. g.
by velocity or pressure values. A very common technique for flow visualization is
a geometric technique based on integral objects such as streamlines which can be
obtained with the module Tracer (see Fig. 11, 12, 13). This visualization is based
on making streams visible in a wind tunnel by injecting smoke. Streamlines result
from integration of flow vectors over a longer time. They are a natural extension
of the arrow plot-based technique and for the user it is easier to understand that
flow evolves along integral objects. The velocity of the stream is displayed at the
respective location by the coloration of the streamlines. Problems could appear in
finding an adequate starting point for the integration so that no essential effects are
missed (see Fig. 12 and 14). A more dynamic visualization can be obtained with the
module Tracer with the moving points option. Here single particles are rendered
among the stream as animated points, or, for better cognition, spheres. It is also
important to chose an adequate start position, otherwise some areas of the volume
might not be reached by particles. To avoid this, we had chosen more then only one
starting plane (see Fig. 15). With the filter module DomainSurface the sharkskin
could be illustrated (see Fig. 11). It computes the outer surface of the grid. To obtain
a smooth surface, we used the additional module GenNormals before rendering,
which creates normals for the surface (see Fig. 16).

The last component of the visualization pipeline is rendering and displaying. If
the computing is extensive it might be necessary to separate them: the rendering
can be distributed to different processors having the display only on one screen.
But that was not requested in our case. Besides the monitor display COVISE also
supports the output through a stereo projection installation with tracking of the line
of sight and interactive operations (with a 3d pointer), so that a full three dimen-
sional impression of the model can be provided. For more details on visualization
techniques for flow data see e.g. [12] and [14], for more informations about COVISE
see [19] or visit the web page [20].
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4.2 A Small Album on the Visualization of Flow over Shark Skin

In this section we present some figures which visualize the flow over shark skin.
The techniques described in the former subsection help to understand how the
microstructures act.

Fig. 8 Here we see a simple visualization of the computed data obtained by plotting the values of
the first component of the velocity using VisuSimple. In generally it is sufficient for the first eval-
uation of the computations. But we get no informations for the flow insight and can not compare
the two models

Fig. 9 In this figure the three-dimensional velocity is represented by a vectorfield using VisuSim-
ple. The evaluation of the data is quiet difficult if we want to see the differences of the flow over
the two different shapes of microstructures

Fig. 10 Here we used the module VectorField on a cut surface to avoid overlapping of the
arrows. One can see the linear profile of the Couette flow contouring the arrows
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Fig. 11 This figure presents a part of our modeled shark skin visualized using the mod-
ule DomainSurface. The smoother surface was obtained by using the additional module
GenNormals

Fig. 12 This figure gives us the main insights of the flow of our computation model. We see
the shark skin visualized using DomainSurface and GenNormals and the complete flow by
streamlines. We get a realistic impression of how the microstructures effect the flow and we can
clearly see the differences

Fig. 13 This figure shows a series of snapshots from our movie which represents the flow over
shark skin visualized by moving spheres traced from five parallel planes. If it is displayed on the
stereo projection installation a realistic three-dimensional impression of the flow model is provided

Fig. 14 In this figure we filtered the velocity data and visualized them only in the part of interest,
i.e. around the microstructures, using streamlines traced forward and backwards from a diagonal
plane parallel to the in-flow situated in the middle of the geometry
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Fig. 15 Here the streamlines were traced from the two in-flow planes (front and back), so that we
can see only where the incoming particles are distributed

Fig. 16 This figure stays in direct comparison with Fig. 14, i.e. we used the same visualization
tools in order to explain the drag reduction mechanism of shark skin

5 Drag Reduction Mechanism of Shark Skin

Our direct calculations in three dimensions showed a drag reduction of rough
surfaces up to 15% compared with a smooth surface situated on the top of the
microstructures and up to 10% compared with a smooth surface situated at the
origin of the effective flow. This position can be calculated using homogenization.
In experiments it is estimated by engineers. If we want to compare the results from
our calculations with results from experiments (e.g. Deutsches Zentrum für Luft
und Raumfahrt (DLR), see [10, 17]) then we should compare the drag of the rough
surfaces with the drag of a smooth surface situated at this position. From [6], where
we solved a shape optimization problem in order to find the optimal microstructure
which minimizes the drag, we know how to change the riblets to get a higher con-
tribution to drag reduction: they must be very sharp and their height must be twice
their spacing. Considering only riblets, we can explain the drag reducing mechanism
after applying homogenization as follows: The effective drag which we explained
in Sect. 3 depends only on the Navier Matrix. Due to the simple geometry (constant
in one direction) this matrix is diagonal and its components can be calculated from
the boundary layer equations which are of Stokes type. This three dimensional flow
equations can be decomposed in two two-dimensional systems: the longitudinal and
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the cross flow. In both cases the velocity profile of the flow is linear, two Couette
flows with different origins. The riblets work like fences: they impede the cross flow
and redirect it into the longitudinal direction (see Fig. 12). This effect is character-
ized mathematically through the fact that the origin of the cross flow lies always
higher than the one of the longitudinal flow. Physically it means that the grade
of turbulence of the flow above the viscous sublayer is dampened. Through this
redirecting very slow rotating spirals are formed in the riblet valleys (see Fig. 12).
Because we modeled only the viscous sublayer which has a small viscosity it is
possible that we obtained a smaller contribution to drag reduction for the riblets
than for the thorn-like structure. In Fig. 15 we can observe that the particles above
the riblets flow away with the stream with higher velocity (colored by yellow and
red) whereas the particles in the riblet valleys rotate slowly inside (colored by blue)
while new particles come and slip over them. This means that riblets work also as
an anti-friction coating (lubricant): Are the riblet valleys once filled up with water
the flow slips more easily over the shark skin.

In the case of thorn-like microstructures (see Fig. 13) there are no slow rotating
spirals formed and there is no redirecting of the flow (see Fig. 11). Therefore the
flow channels between the structures and is a little bit faster than the flow over
riblets.

The different amount of drag reduction from the different models can also be
explained by analyzing the amount of in- and outflow (see Sect. 3). In our first model
with free overflow and no-slip boundary condition on the rough surface (see Fig. 11)
we had a discrepancy between the amount of inflow in the cross flow direction (see
Table 1): In case of the riblets the geometry started with a hill so that we had a
smaller inflow than in the case of the thorn-like structure. By choosing the effective
Couette flow as Dirichlet boundary conditions for the in- and outflow we obtained
an improved model witch shows the same amount of inflow for both structures. In
the case of thorns we have no redirecting of the flow, we have the same amount of
in- and outflow whereas in the case of riblets the outflow of the cross flow is slightly
reduced and the outflow of the longitudinal flow slightly increased.

We conclude that in our case where we modeled only the viscous sublayer of the
turbulent flow over a rough shark skin a thorn-like structure showed higher contribu-
tion to drag reduction than riblets. We will enlarge our model in future and will see
if riblets will be as good as they are in nature on the skin of fast swimming sharks.
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Stability of Poiseuille Flow in a Porous Medium

Antony A. Hill and Brian Straughan

Abstract We study the linear instability and nonlinear stability of Poiseuille flow in
a porous medium of Brinkman type. The equivalent of the Orr-Sommerfeld eigen-
value problem is solved numerically. Difficulties with obtaining the spectrum of
the porous Orr-Sommerfeld equation are discussed. The nonlinear energy stability
eigenvalue problems are solved for x, z and y, z disturbances.

Keywords Poiseuille flow · Porous media · Orr-Sommerfeld equation · Nonlinear
stability

1 Introduction

The classical hydrodynamic problem of stability of Poiseuille flow in a channel is a
major one in fluid dynamics, see e.g. Joseph [7], Chap. 3, Straughan [10], Chap. 8.
As these texts point out there are major problems in trying to develop a meaningful
nonlinear energy stability theory for such flows since the nonlinear energy stability
threshold is inevitably far away from the linear instability one. Additionally, the
eigenvalue problems associated with this class of flows are numerically very diffi-
cult, see e.g. Dongarra et al. [2], Yecko [13]. Nevertheless, this area continues to
attract much attention in the fluid dynamics literature. In particular, we draw atten-
tion to the nonlinear energy stability work of Kaiser and Mulone [8], the analyses of
time - dependent and time - periodic Poiseuille flows by Galdi and Robertson [4],
Galdi et al. [3], the work on the problem with slip boundary conditions by Webber
and Straughan [12], the problem of Poiseuille flow of a fluid overlying a porous
medium, see Chang et al. [1], Hill and Straughan [6], and the Poiseuille problem
for flow in a channel with one fluid overlying another, see Yecko [13]. These papers
contain many other pertinent references.

The focus of attention here is on the problem of Poiseuille flow in a channel
which is filled with a porous medium saturated with a linear viscous fluid. Due to
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the invention of man-made materials such as metallic foams which have a porosity
close to one, and are of much use in the heat transfer industry, the porous – Poiseuille
problem is of practical interest. To the best of our knowledge, this problem was first
addressed by Nield [9] who developed a linearised instability analysis. Straughan
[11], Sect. 5.8.1 shows that the analysis of Nield [9] is incomplete in that he omits a
term from one equation. We here present a numerical solution of the corrected sys-
tem of equations. However, we stress that the fundamental model is due to Nield [9].

2 Linear Instability

The basic equations are given in Nield [9], again in Straughan [11], Sect. 5.8.1, and
for completeness and readability we include them here. We suppose the saturated
porous medium is one of Brinkman type and occupies the spatial domain {(x, y) ∈
R

2} × {z ∈ (−L/2, L/2)}. The basic equations are

�
(∂vi

∂t
+ v j

∂vi

∂x j

)

= − ∂p

∂xi
+ μΔvi − ϕμ

K
vi ,

∂vi

∂xi
= 0 .

(1)

In these equations (vi , p) denote the velocity field and pressure, � is the density, μ
is the equivalent viscosity (for a Brinkman model), ϕ is the porosity, and K is the
permeability.

With the scalings of L , V and L/V for length, velocity, and time, Eqs. (1) may
be rewritten in non-dimensional form as

R
(∂vi

∂t
+ v j

∂vi

∂x j

)

= − ∂p

∂xi
+Δvi − M2 vi ,

∂vi

∂xi
= 0 ,

(2)

where R is the Reynolds number and M2 is a non-dimensional (porous) quantity,
given by

R = �V L

μ
, M2 = ϕL2

K
.

The spatial domain is now {(x, y) ∈ R
2} × {z ∈ (−1, 1)}.

With no-slip boundary conditions

vi = 0, z = ±1,

and the flow driven by a constant pressure gradient in the x−direction, G =
−∂p/∂x > 0, the basic solution whose stability we are interested in is, cf. Nield
[9], Straughan [11], Sect. 5.8.1,
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U = (U (z), 0, 0),

U = G

M2

(

1− cosh Mz

cosh M

)

.

The non-dimensional perturbation equations are then

R(ui,t + u jUi, j +U j ui, j + u j ui, j ) = −π,i +Δui − M2ui ,

ui,i = 0.
(3)

where (ui , π ) is the velocity, pressure perturbation. If we linearize and use Squire’s
theorem to reduce to a two-dimensional spatial perturbation we may show, see
Straughan [11], Eqs. (5.117), that the (u, w, π ) ≡ (u1, u3, π ) perturbations satisfy
the system of equations

[L− iaR(U − c)]u = RU ′w + iaπ,

[L− iaR(U − c)]w = Dπ,

iau + Dw = 0,

(4)

where D = d/dz, L = D2 − a2 − M2, and a and c are a wavenumber and growth
rate which arise from a representation u = u(z) exp[ia(x − ct)] with similar forms
for w and π . Straughan [11], Sect. 5.8.1, notes that equation (4)2 differs from that of
Nield [9] in that he has D2−a2 instead of L. By eliminating u and π one then derives
the analogue of the Orr-Sommerfeld equation for the Brinkman porous theory. This
is, cf. Straughan [11], Eq. (5.119),

D2w − M2Dw = iaR(U − c)Dw − iaRU ′′w, (5)

where D = D2 − a2, z ∈ (−1, 1), and the boundary conditions are

w = Dw = 0, z = ±1. (6)

3 Numerical Results

We have solved (5), (6) by using a D2-Chebyshev tau method, cf. Dongarra et al.
[2]. The neutral curves for M = 0 to 10 are given in Fig. 1 below.

Actually, there is very little variation with the critical Reynolds numbers observed
by Nield [9], as is shown in Table 1.

The spectrum of (5), (6) behaves very like that of the Orr-Sommerfeld problem
for classical Poiseuille flow. For example, for higher Reynolds numbers we wit-
nessed mode crossing of eigenvalues. For example, for M = 0, 0.5, 1.0, the first
and second eigenvalues interchange places for R between 80822 and 80828, 86852
and 86854, and 106618 and 106620, respectively, with the previous first eigenvalue
moving down the list as R increases. This behaviour is very similar to that observed
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Fig. 1 Critical Reynolds number R against wavenumber a. The thresholds in the upper graph
correspond to M = 0–4 from bottom to top, and in the lower graph for M = 5–10

Table 1 Comparison between the critical Reynolds numbers (minimised over the wavenumber) of
Nield [9] and this paper for a selection of M values

M Rcrit (Nield [9]) Rcrit

0 5772 5772
0.5 6706 6710
1 10016 10033
2 28604 28663
5 164090 164298
10 439818 440223

by Dongarra et al. [2]. Additionally the spectrum is very sensitive and care must be
taken with the number of polynomials used in the numerical approximation, and in
the arithmetical precision used in the calculation (those presented here are all in 64
bit arithmetic). Figure 2 show the spectrum for R = 3× 104, M = 1.

The split in the “tail”, evident in Fig. 2 (i) (i i), is removed by increasing the
number of polynomials but the inexactness at the branch of the “Y” increases, cf.
Fig. 2 (i i i) (iv). Again, this is analogous to what is observed by Dongarra et al. [2],
and by Yecko [13].
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Fig. 2 Spectra of growth rate c = cr + ici , with R = 3 × 104 and M = 1. The number of
polynomials used in the numerical approximation correspond to (i) 150, (i i) 170, (i i i) 200, (iv)
400

4 Nonlinear Energy Stability Theory

We briefly discuss the employment of the energy method on the full system of
Eq. (3). Since the linear operator is far from symmetric we do not expect the linear
instability results to necessarily be close to the nonlinear stability ones. If the linear
operator is symmetric they are the same, Galdi and Straughan [5]. For the classical
Poiseuille problem they are far apart, cf. Joseph [7], Straughan [10], Chap. 8.

To investigate energy theory for the porous Poiseuille problem, multiply (3)1 by
ui and integrate over a period cell for the disturbance. With ‖ · ‖ denoting the L2

norm on the period cell V we find

R

2

d

dt
‖u‖2 = −R

∫

V
U ′wu dV − ‖∇u‖2 − M2‖u‖2.

One may then use variational energy theory to derive a nonlinear global sta-
bility threshold, RE , cf. Galdi and Straughan [5]. The Euler-Lagrange equations
which arise are not in a form such that Squire’s theorem may be applied. Thus,
we here investigate the cases of (x, z) and (y, z) dependent solutions (this has been
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done in the non-porous case, cf. Joseph [7], Kaiser and Mulone [8], Webber and
Straughan [12]).

For a perturbation u, w dependent on x, z the equivalent energy Orr-Sommerfeld
equation may be shown to be

DLw + ia R(U ′Dw + 1

2
U ′′w) = 0, (7)

where z ∈ (−1, 1) and w satisfies the boundary conditions

w = Dw = 0 at z = ±1. (8)

For the case of y, z dependent solutions the Euler-Lagrange equations reduce to

2LDw + RU ′a2u = 0,

2Lu − RU ′w = 0,
(9)

z ∈ (−1, 1), with

u = 0, w = Dw = 0 at z = ±1. (10)

Here a is again a wavenumber, but now u = u(z)eiay , w = w(z)eiay in the derivation
of (9).

Numerical results for the critical value of RE in the nonlinear energy stability
theory are presented in Fig. 3.

Again, as in the non-porous case, we find there is a large gap between the linear
instability and nonlinear stability boundaries. This does raise the issue as to whether
strong nonlinear subcritical instabilities exist.
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100

0

200

300

400

500

600

700

Fig. 3 Critical Reynolds number RE against wavenumber a. Thresholds (i) and (i i) refer to the
(x, z) and (y, z) dependent solutions respectively
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Towards a Geometrical Multiscale Approach
to Non-Newtonian Blood Flow Simulations

João Janela, Alexandra Moura, and Adélia Sequeira

Abstract In this paper we address some problems that arise when modelling the
human cardiovascular system. On one hand, blood is a complex fluid and in many
situations Newtonian models may not be capable of capturing important aspects
of blood rheology, for example its shear-thinning viscosity, viscoelasticity or yield
stress. On the other hand, the geometric complexity of the cardiovascular system
does not permit the use of full three-dimensional (3D) models in large regions.
We deal with these problems by using a relatively simple non-Newtonian model
capturing the shear-thinning behaviour of blood in a confined region of interest,
and coupling it with a zero dimensional (0D) model (also called lumped parameters
model) accounting for the remaining circulatory system. More specifically, the 0D
system emulates the global circulation, providing proper boundary conditions to the
3D model.

Keywords Blood rheology ·Geometrical multiscale approach · Lumped parameters
models · Numerical coupling strategies

1 Introduction

Over the past few years the mathematical modelling and numerical simulation of the
cardiovascular system has gained great importance in the study of cardiovascular
diseases, helping to understand the blood flow dynamics in specific patients without
using invasive techniques. The research activity in this field has been very active,
and mainly driven by the research needs in biology and medicine. Ultimately, the
objective is to help medical decisions in the prevention and treatment of cardio-
vascular pathologies. However, there are still many problems to resolve. Indeed,
the enormous complexity and variability of the human circulatory system make its
modelling and simulation a very difficult and challenging task.
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Precisely, blood is a multi-component mixture with complex rheological charac-
teristics. It consists of multiple particles such as red blood cells - RBCs, white blood
cells - WBCs and platelets, suspended in an aqueous polymer solution, the plasma
(Newtonian fluid). Because of its composition, blood exhibits non-Newtonian prop-
erties, such as shear-thinning viscosity, thixotropy and viscoelasticity [13, 12]. For
this reason, the Navier-Stokes equations are not always appropriate to simulate
blood flow, and non-Newtonian fluid models should be used. Indeed, even in large
vessels, blood viscosity can vary up to two orders of magnitude, thus considering a
constant viscosity can be a too rough approximation and simplification, specially in
some disease situations or in parts of the venous system. Another difficulty is that the
cardiovascular system is extremely heterogeneous, both geometrically, and in what
concerns the physical and mechanical characteristics, being at the same time highly
integrated. In order to deal with this heterogeneity a whole hierarchy of models
for the simulation of blood flow in the vascular system has been developed, giving
rise to the so-called geometrical multiscale modelling of the cardiovascular system
[9, 3]. It consists in coupling different models operating at different space scales
involving local and systemic dynamics. To that scope, apart from the 3D detailed
model, composed by the 3D equations for incompressible non-Newtonian fluids,
reduced 1D and 0D models are considered. These reduced models are obtained from
the 3D detailed one, by making simplifying assumptions and averaging procedures
[3]. Namely, 0D models, also called lumped parameters models, describe the vari-
ation in time of the mean pressure and flow rate. They are able to represent large
compartments of the cardiovascular system, having at the same time a very low
computational cost. This approach provides a way of accounting for the entire car-
diovascular system, by resorting to reduced models, while using 3D detailed models
on selected parts of interest.

Very little can be found in the literature regarding the coupling of reduced
blood flow models with 3D non-Newtonian ones. In fact, the geometrical multiscale
approach has not yet been applied to the study of the non-Newtonian behaviour of
blood. In this work we provide a first step in that direction. We consider the cou-
pling between a 3D incompressible generalized Newtonian model with a 0D model,
representing the systemic circulation. We perform the coupling, demonstrating that
it can be extended to the non-Newtonian case.

In Sect. 2 we describe the models, providing the 3D generalized Newtonian equa-
tions for incompressible fluids, the description of the lumped parameters model,
and the coupling strategy between them both. In Sect. 3 we introduce the numerical
methods to solve both models and their coupling. We also supply a technique to
obtain semi-analytical solutions of the generalized Newtonian 3D problem, in order
to guarantee the accuracy of the fluid solver. In Sect. 4 we present the numerical
results, and Sect. 5 is devoted to the conclusions.

2 The Mathematical Models

The mathematical model describing local blood flow in 3D regions of the car-
diovascular system consists of the 3D equations of fluid dynamics for incom-
pressible fluids (see for instance [10, 12]). The application of such model and its
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numerical resolution requires a bounded domain. Also, the geometrical complexity
of the human circulatory system makes it unfeasible to discretize large geometrical
domains. The truncation of the 3D regions into specific regions of interest generates
artificial sections that do not correspond to any physical interface (see Fig. 1).

Consider a bounded domain Ω ⊂ R
3, representing a portion of an arterial vessel.

We denote by Γw the part of the boundary corresponding to the physical artery wall.
In this work we assume that the vessel is rigid, thus Γw does not change in time. We
denote by Γi , i = 1, . . . , n, the artificial boundaries (Fig. 1).

The equations of fluid dynamics, consisting in the equations of the conservation
of the momentum and mass, read as follows

⎧

⎨

⎩

�

(
∂u
∂t
+ u · ∇u

)

− div σ (u, P) = 0, in Ω

div u = 0, in Ω.

(1)

Here the unknowns are the velocity u and the pressure P; � is the blood density,
which is considered constant and equal to 1g/cm3, and σ (u, P) is the Cauchy stress
tensor. To close system (1) a constitutive law, relating the Cauchy stress tensor with
the kinematic quantities, velocity and pressure, must be provided. The constitutive
law characterizes the rheology of the fluid at study. Very often in literature [10, 8,
14], blood is considered as a Newtonian fluid: σ (u, P) = −PI+ 2μD(u), where μ
is the blood dynamical viscosity and D is the strain rate tensor, given by

D(u) = 1

2

(∇u+∇uT
)

.

However, as referred, the complex rheological behaviour of blood is difficult to
describe and is still a subject of active research (see for instance [13, 12] as recent
review papers on mathematical models of blood rheology). One of the consensual
non-Newtonian properties exhibited by blood is the shear-thinning viscosity. Pre-
cisely, blood viscosity depends on the shear rate γ̇ :

γ̇ =
√

1

2

(∇u+∇uT
)

:
(∇u+∇uT

)

.
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In particular, the shear-thinning behaviour is characterized by the decreasing of
the apparent viscosity, while the shear rate increases.

The generalized Newtonian fluid models account for this dependence of viscosity
on shear rate:

σ (u, P) = −PI+ 2μ(γ̇ )D(u). (2)

They represent a wide class of fluid models which can be shear-thinning or shear-
thickening. For instance, for the classical Power-Law model the viscosity is given
by μ(γ̇ ) = kγ̇ n−1, where n ∈ R is the so called power-law index. In this model the
flow is shear-thinning if n < 1 and shear-thickening if n > 1. Another generalized
Newtonian model is the Carreau-Yasuda, where the viscosity is given by

μ(γ̇ ) = μ∞ + (μ0 − μ∞)× (1+ (λγ̇ )a)
n−1

a ,

with μ0 > μ∞ > 0, λ > 0, and n, a ∈ R. In the particular case of a = 2 we
obtain the so-called Carreau model. The coefficient μ∞ corresponds to the viscosity
at higher shear rates, that is for the highest pressure drop, and μ0 is the viscosity for
the lower shear rates, which corresponds to the lowest pressure drop. Notice that if
λ = 0 or n = 1, the viscosity is constant and we have the Newtonian case, with a
constant viscosity equal to μ0.

The fluid equations (1) must be endowed with initial and boundary conditions.
We consider the initial condition u = u0, for t = 0 in Ω . Regarding the boundary
conditions on the physical wall Γw, we impose the no-slip condition which, for a
viscous flow in a fixed domain, is given by the Dirichlet boundary condition u = 0
in Γw, for t ∈ I , with I = (0, T ] the time interval where we solve the Eqs. (1)
and (2).

The prescription of boundary conditions on artificial sections is a much more
complex task. While on physical interfaces the boundary conditions are imposed
through physical arguments, like the no-slip condition, this is not the case in artificial
sections. Moreover, standard Neumann or Dirichlet boundary conditions are rather
unphysical. In fact, in order to have reliable simulations, the boundary conditions
on these sections need to take into account the remaining parts of the cardiovascu-
lar system (see for instance [8] for an illustrative example where the prescription
of physiological boundary conditions on the artificial sections is critical). This is
not the case if Neumann or Dirichlet boundary conditions are used. We solve this
difficulty by resorting to the geometrical multiscale approach [9, 3].

2.1 The Geometrical Multiscale Approach

The geometrical multiscale approach has been introduced to address the complexity
and heterogeneity of the human cardiovascular system [3, 9]. It consists in using
models of different dimensions, 3D, 1D and 0D, with different levels of complexity,
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accuracy, and computational cost, and to put them together by means of suitable
coupling strategies [9].

The reduced 1D and 0D models can be derived from the 3D fluid-structure inter-
action model, of which the fluid equations were introduced in the previous section,
by making simplifying assumptions and averaging procedures [3]. Although they
represent simplified descriptions of blood flow, they are able to describe the presence
of the remaining parts of the cardiovascular system, providing appropriate boundary
conditions when coupled to the 3D fluid equations (1) at the artificial boundaries.
In this work we consider the coupling of the fluid equations with a 0D, also called
lumped parameters model.

2.1.1 The Lumped Parameters Model

Lumped parameters models can be derived from the 3D model, starting by integrat-
ing over the cross section after considering simplifying hypotheses, and by further
integrating in space (see for instance [3]). They are expressed in terms of a system
of ODEs, and describe the variation in time of the averaged pressure and flow rate
in specific compartments of the cardiovascular system, such as the heart, the venous
bed, or the pulmonary circulation. Since they do not account for variations in space,
they are also called 0D models.

In general, a lumped parameters model describing blood flow in a cylindrical
vessel can be written as (see [3, 11])

⎧

⎪⎨

⎪⎩

C
d P

dt
+ Qout − Qin = 0,

L
d Q

dt
+ RQ + Pout − Pin = 0,

where the state variables are the flow rate Q and the mean pressure P . The coef-
ficients R, L and C correspond to the lumped parameters which summarize the
geometrical and physical features of the 3D model:

R = �μl

πR4
0

, L = �l

A0
, C = 3l A0 R0

2Eh
, (3)

being � the fluid density, l the vessel length, μ the viscosity, A0 the section area at
rest, R0 the section radius at rest, E the vessel wall Young modulus, and h the vessel
wall thickness. The values Qin, Qout, Pin and Pout are obtained from the values of
the velocity and pressure at the upstream (in) and downstream (out) sections of the
initial 3D cylinder. Two of these values are derived from the boundary conditions of
the 3D fluid equations which originated the 0D model: from a Dirichlet condition we
obtain the value of the flow rate, while a Neumann condition provides the pressure
value. The two remaining values are set equal to the state variables, which is a
reasonable approximation since a single cylindrical vessel is sufficiently small.
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We remark the analogy between the lumped parameters model and the electric
networks, where the flow rate can be thought as the electric current and the mean
pressure as the voltage. In this context the lumped parameters are the resistance R,
related with blood viscosity, the inductance L , related with blood inertia, and the
capacitance C , related with the wall compliance.

Joining together the lumped description of single vessels, we are able to build
complex systems. We can also include terms such as diodes, to describe the presence
of valves. By combining all these components, we are lead to an ODEs system of
the type [3, 8]

⎧

⎪⎨

⎪⎩

dy(t)

dt
= A(t)y(t)+ r(t), t > 0,

y(0) = y0,

(4)

where y is the vector of the state variables, which are the flow rate and the mean
pressure at the different compartments. A is the matrix of parameters (possibly
depending on time), r(t) accounts for the forcing term (for instance, the heart action)
and some components like the diodes, and y0 is the initial data.

2.1.2 Coupling the 3D and the 0D Model

To couple the 3D fluid equations (1) and (2) and the 0D model (4) we impose, at the
coupling interfaces, the continuity of the mean pressure and of the flow rate. This
coupling is accomplished by means of boundary conditions on the 3D model and
forcing conditions on the 0D one.

In an iterative frame to the solution of the coupled problem, the 3D model pro-
vides pointwise information on the velocity and pressure, which are integrated to
obtain the averaged data to be given to the 0D model as a forcing term. In turn,
the 0D model provides average data to be prescribed as boundary conditions at the
artificial sections of the 3D model (see [2, 11]).

In this work we perform the coupling based on the prescription of pressure at all
artificial boundaries of the 3D model, while the 0D model receives the 3D flow rate
as input. Let us notice that in this case we have mean pressure boundary conditions
for the 3D fluid equations. These are defective boundary conditions for Eq. (1),
since they require pointwise boundary conditions. This is one of the difficulties
of using the geometrical multiscale approach [3, 9], which is due to the different
mathematical nature of the models to be coupled.

The defective boundary conditions are not sufficient to the well posedness of the
3D problem, since in that case there is no uniqueness of the solution, and require a
special treatment. In [4] a variational formulation has been proposed for this prob-
lem where, if the boundary interface Γi is a plane section perpendicular to a cylin-
drical pipe, imposing the mean pressure Pi is equivalent to prescribe the following
condition
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− σ (u, P) · n = Pi , on Γi ,∀t ∈ I, (5)

where n is the unit normal vector to Γi . We will follow this approach to carry out
the coupling strategy. Although in real vascular geometries we do not have artificial
sections exactly perpendicular to a cylindrical pipe, this technique has proved to be
a good approximation for blood flow simulations [2, 9, 8].

3 The Numerical Methods

In order to perform the numerical simulations on the 3D problem, we start by dis-
cretizing in space the equations of motion, using the finite element method. This
method requires that the differential problem (1) and (2) is written in a weak form.
First, we rewrite the fluid equations (1) and (2) in the following form:

⎧

⎨

⎩

∂u
∂t
+ u · ∇u+∇ p − 1

�
div τ = 0, in Ω

div u = 0, in Ω,

(6)

where p = P

�
and τ = τ (u) is the extra stress tensor τ = 2μ(γ̇ )D(u).

Let us define the Hilbert spaces V = H1
0(Ω) and Q = L2(Ω). The weak form of

the equations of motion is obtained by multiplying Eqs. (6) by suitable test functions
and integrating by parts. Namely, the weak formulation of Eqs. (6) is given by

∫

Ω

(
∂u
∂t
+ u · ∇u

)

· v+ 1

�

∫

Ω

τ : ∇v−
∫

Ω

p div v =
∫

Ω

f · v+
∫

Γ

(σ · n) · v,∀v ∈ V
∫

Ω

q div v = 0, ∀q ∈ Q.

The finite element method corresponds to substitute the functional spaces V
and Q by suitable sequences of finite dimensional subspaces {Vh |h > 0} and
{Qh|h > 0} in which we can compute an approximate solution (uh, ph). A proper
choice of these subspaces ensures that the problem is solvable in the finite dimen-
sional spaces and the approximate solutions converge to the solution of (7) when
h → 0. More precisely, we have used a space discretization of problem (7) that
corresponds to use P1−P1 finite elements with interior penalty (IP) stabilization [1]
for the approximation of u and p.

The discretization in time is performed with a standard backward Euler method,
and the convective term is linearized in a semi-implicit way, by considering that at
time step t k+1 we have uk+1 ·∇uk+1 ≈ uk ·∇uk+1. Finally, in order to fully linearize
the discrete problem, we use the following approximation
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τ k+1 = μ(γ̇ k+1)(∇uk+1 + (∇uk+1)T ) ≈ μ(γ̇ k)(∇uk+1 + (∇uk+1)T ).

The fully discrete problem then reads: Find (uh, ph) ∈ Vh × Qh such that

∫

Ω

(
1

δt
uk+1

h + uk
h · ∇uk+1

h

)

· vh + 1

�

∫

Ω

μ(γ̇ k)(∇uk+1
h + (∇uk+1)) : ∇vh

−
∫

Ω

pk+1
h div vh =

∫

Ω

(

f + 1

δt
uk

h

)

· vh +
∫

Γ

(σ · n) · vh, ∀vh ∈ Vh

and

∫

Ω

qhdiv uk+1
h = 0, ∀qh ∈ Qh .

The computational effort necessary to perform the numerical simulation of the
previous equations is of the same order of magnitude as for the Navier-Stokes equa-
tions. The extra computational load is related to the necessity, at each time step,
of computing the shear rate. In the simulations we used the LifeV (lifev.org)
solver, that we have adapted to support the simulation of generalized Newtonian
fluids.

The 0D model system of ODEs is discretized by means of the explicit Euler
method. In what concerns the 3D-0D coupling, its approximation is based on a
splitting strategy, where each model is solved separately at each time step, providing
the necessary data to the other one (see Fig. 2). Since the time discretization of the
0D model is explicit, the computation of the two discretized models is completely
independent at each time step, with no need for subiterations [2, 11].

0D

0D

0D

3Dtn –1

tn

tn +1 3D

3D

pressure

pressure

pressure

flux

flux

Fig. 2 Explicit coupling between the 3D and 0D models
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3.1 Solution of a Reduced Problem

In the case of Newtonian fluids, for some particular geometries and flow conditions,
it is possible to derive closed form analytical solutions for the velocity and pres-
sure fields. This supplies natural benchmark solutions against which we can test
our numerical solvers. However, for generalized Newtonian fluids no such solutions
were available in the literature, apart from the classical technique where we fix a
priori the solution and boundary conditions, and then compute the forcing term that
yields that solution.

In order to fill this gap, we next present a method that can provide benchmark
solutions, with arbitrary precision, to a particular viscometric flow of generalized
Newtonian fluids (for details see [5, 6]). More precisely, we consider the steady fully
developed flow of a generalized Newtonian fluid in an infinite cylinder of radius
R, that we suppose aligned with the z axis. Rewriting the equations of motion in
cylindrical coordinates (r, θ, z) and looking for solutions for the velocity field of the
form (0, 0, vz(r )), we recognize that the pressure gradient must be constant ∇ p =
(0, 0,G), the shear rate is given by γ̇ = −∂rvz and the only nonzero components of
the extra-stress tensor are

τr z = τzr = μ(γ̇ )∂rvz .

In addition, since we can derive the explicit formula τr z = Gr/2, the velocity
field can be computed as the solution of

μ (−∂rvz) ∂rvz = Gr

2
. (7)

Although this implicit ordinary differential equation could be directly solved to
obtain a solution for the velocity profile vz , we will take a different direction because
of the difficulty in justifying the accuracy of the numerical methods. Instead, we
will first solve the equation for ϕ = −∂rvz , determining for each r ∈ [0, R] the
corresponding value of the shear rate ϕr as the solution of

μ(ϕr )ϕr = |G|r
2
⇔ ϕr = |G|r

2μ(ϕr )
.

Defining the mapping H : C[0, R] → C[0, R] such that H (ψ) = |G|r/μ(ψ),
we realize that the shear rate profile is precisely a fixed point of H . The Banach
fixed point theorem gives a straightforward way of computing ϕ(r ).

Proposition 1 Let μ : R+ → R be a continuous decreasing function for which there
exist constants μ0, μ∞ such that 0 < μ∞ ≤ μ0 < +∞. Let also H : C[0, R] →
C[0, R] be the mapping defined by ψ �→ |G|r/μ(ψ). Then, if the pressure gradient
is such that G < μ2

∞/R, the mapping H has a unique fixed point ϕ that can be
approximated by the fixed point iteration
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{

ϕ0

ϕn+1 = H (ϕn)

where ϕ0 ∈ C[0, R] is some initial approximation and ϕ = limn→∞ ϕn. Further-
more, the function defined by

vz(r ) =
∫ R

r
ϕ(s) ds (8)

is a solution of Eq. (7).

Using this result, it is possible to compute the velocity profile with any prescribed
accuracy. Since the fixed point iteration allows to compute ϕ at any point in [0, R],
the integral (8) can be computed with any accuracy using any efficient adaptive
quadrature rule. Tests conducted with the truncated power-law viscosity model, for
which we have an analytical closed form solution, reveal that in fact we can compute
the velocity profiles, up to machine precision, in a fast way.

We next present the so-called semi-analytical solution given by (8), in the case
of the fluid model we are using to describe blood flow, the Carreau model, with
parameters μ0 = 0.56Pas, μ∞ = 0.0345Pas, λ = 3.313s and n = 0.3568,
taken from [7]. The domain is a cylinder of radius R = 0.5cm and the flow is
driven by a constant pressure gradient |G| = 2. In Fig. 3 we show a graphic of
the “exact” velocity profile, together with the velocity values for selected radial
distances.

Having access to the semi-analytical solution, we can also provide relevant data
like the relation between the volume flow rate and pressure gradient (see Fig. 4)
or the equivalent Newtonian viscosity (see Fig. 5). The later is especially useful
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Fig. 3 (a) Exact velocity profile obtained for a Carreau fluid with parameters μ0 =
0.56Pas, μ∞ = 0.0345Pas, λ = 3.313s and n = 0.3568 driven by a constant pressure gradient
|G| = 2 in a cylinder of radius R = 0.5 cm. (b) Values of the velocity [cm/s] for several axial
distances



Geometrical Multiscale in Blood Flow Simulations 305

when comparing Newtonian and generalized Newtonian models. The curve shown
in Fig. 5 gives, for each value of the pressure gradient, the viscosity of the Newtonian
model that would yield the same volume flow rate. As expected, for low pressure
gradient the equivalent Newtonian viscosity approaches μ0, and for high pressure
gradient approaches μ∞.
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Fig. 4 Relation between pressure gradient and volume flow rate for the Carreau model with the set
of parameters taken from [7] (solid line) and for other values of n
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4 Numerical Results

We consider the coupling of a straight 3D rigid wall cylinder with 5cm length and a
radius of 0.5cm, with a lumped parameters network. The lumped parameters model
is composed by four RC L elements, as shown in Fig. 6. We impose on the 0D model
a pressure source of the type U(t) = c + cos (2π t), representing a periodic action.
Notice that although not physiologic, this source term captures the characteristic
periodicity of the heart beat.

The results presented here were obtained using the Carreau generalized Newto-
nian model on the 3D cylinder with the coefficients previously mentioned: μ0 =
0.56Pas, μ∞ = 0.0345Pas, λ = 3.313s and n = 0.3568, taken from [7].

We compare the numerical results of the 3D-0D coupling with the results
obtained by substituting the 3D model with its equivalent lumped parameters
description (see Fig. 6). Since the 3D cylinder is rigid, its 0D equivalent is composed
only by an inductance and a resistance, without any compliance. We remark that, due
to the fact that we are using a generalized Newtonian model on the 3D cylinder, and
recalling that the lumped parameters reflect the geometrical and physical properties
of the 3D model, the 0D equivalent must take into account the variability of the
viscosity, namely in the computation of the parameter R as in (3). As mentioned in
Sect. 2, the 0D model is a system of ODEs, thus in this case it is relevant the vari-
ability of the viscosity in time. In the present numerical test, since we are applying a
sinusoidal impulse, the mean value of the mean pressure drop along time is equal to
zero. In this case, although we are using the Carreau generalized Newtonian model,
it is sufficient for the equivalent 0D model to consider the viscosity equal to μ0,
corresponding to the lowest pressure drop.

In Fig. 7 are depicted the flow rate and mean pressure drop values of the differ-
ence between the 3D-0D coupling and its 0D equivalent network. We can observe
that the differences between the two simulations are small, and the maximum dif-
ferences are attained for the maximum absolute values of the flow rate and mean
pressure drop.

Fig. 6 Scheme of the 3D-0D coupling, with the RC L representation of the 0D network
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Fig. 7 Differences between the 3D-0D coupling and the equivalent 0D network values of the mean
pressure drop (top) and the flow rate (bottom)

Figure 8 presents the graphics of the mean pressure drop and flow rate values for
both the 3D-0D coupled and the equivalent 0D model. From these graphics we can
see that the results of both simulations are very close to each other.

The absolute errors and the graphical comparison results demonstrate that the
coupling strategy works very well, the 3D model capturing the impulse input of the
0D model. We can conclude that, although with very different mathematical natures,
these models can be coupled in an effective way. These results demonstrate that the
0D-3D coupling can be extended to non-Newtonian flows.
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Fig. 8 Comparison between the 3D-0D coupling and the equivalent 0D network values of the mean
pressure drop (top) and the flow rate (bottom), for whole time interval (left), and in detail (right)

5 Conclusions

In this work we have coupled a 3D model for blood flow, consisting of the 3D equa-
tions for incompressible generalized Newtonian fluids, with a 0D model describing
blood flow in wide compartments. We have used a coupling strategy where the 0D
model provides the mean pressure drop to the 3D model, which in turn gives the
flow rate to the 0D network.

We have guaranteed the accuracy of the generalized Newtonian solver applied
through the use of semi-analytical solutions, which are obtained by means of a
reduced problem.

In order to assess the quality of the coupling, we have compared the 3D-0D
coupling with its equivalent 0D network. Here we took into account into the lumped
parameters model the shear-rate dependent viscosity of the non-Newtonian con-
stitutive law. The derivation of a fully 0D model in which the viscosity, at each
compartment, varies in time, is a work in progress.

From the numerical results obtained so far, we have seen that the quantitative
and qualitative behaviour of the mean pressure drop and the flow rate are similar for
both 3D-0D coupling and 0D models. This means that the 3D-0D coupling works
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very well, since the quantities were not affected by the coupling. These results also
show that the 3D-0D coupling, now extended to generalized Newtonian models,
might be extended to more complex non-Newtonian flows. The coupling between a
physiological 0D network and a 3D realistic geometry is a work in progress.
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The Role of Potential Flow in the Theory
of the Navier-Stokes Equations

Daniel D. Joseph

Abstract Solutions of the Navier-Stokes equations for flows of incompressible
fluids satisfying no-slip boundary conditions are discussed in the frame of the
Helmholtz decomposition. The focus is on the steady flow of a body in an unbounded
fluid. The decomposition of the velocity into rotational and irrotational parts can be
uniquely determined as the velocity generated by the vorticity in the Biot-Savart law
plus a harmonic velocity in which the body and boundary conditions are identified.
It is shown that contribution of the rotational velocity to the drag is larger than
the total which includes a negative contribution from the irrotational velocity, The
dissipation due to the potential flow cannot be neglected in any exact theory as it is
in the conventional boundary layer theory and elsewhere.

Keywords Rotational · Irrotational · Biot-Savart law · Uniqueness · Dissipation ·
Drag · Stokes flow

1 Helmholtz Decomposition

Here I will derive some results which extend those derived by Joseph [1] and
extended by Joseph et al. [2]. The Helmholtz decomposition says that every vector
field u can be decomposed into a rotational part v and an irrotational part ∇ϕ,

u = v +∇ϕ (1)

where

∇ × u = ∇ × v + ∇2ϕ (2)

∇ × u = ∇ × v. (3)
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If the field is solenoidal, then

∇ × u = ∇ × v = 0, ∇2ϕ = 0. (4)

This decomposition leads to the theory of the vector potential which I did not
pursue in my earlier work but I do consider here. The decomposition is unique on
unbounded domains without boundaries and explicit formulas for the vector poten-
tial are well known. The sense of the decomposition (1) is that is entirely rotational
with no irrotational component. Uniqueness of the decomposition is not guaranteed
by (1) since v could have an additional irrotational component. However, the condi-
tion (3) annihilates irrotational components; if (4) holds, then (3) can also be written
as

∇2u = ∇2v = 0. (5)

In our previous publications [1, 2] we showed that unique decompositions can be
easily identified in explicit solutions.

2 Irrotational Viscous Stress and the Irrotational Viscous
Dissipation

The irrotational viscous stress is given by

τ = 2μ∇ ⊗ ∇ϕ,
(

τi j = 2μ
∂2ϕ

∂xi∂x j

)

(6)

The irrotational viscous stress τI = 2μ∇ ⊗∇ϕ does not give rise to a force den-
sity term in (5). The divergence of vanishes on each and every point in the domain
V of flow. Even though an irrotational viscous stress exists, it does not produce a
net force to drive motions. Moreover,

∫

div τI dV =
∫

n × τI d S = 0. (7)

The traction vectors n×τI have no net resultant on each and every closed surface
in the domain V of flow. We say that the irrotational viscous stresses, which do not
drive motions, are self-equilibrated. Equation (1), (2), (3), (4), (5), (6) and (7) were
given in our earlier work. An implication of (7) is that no force can be produced
on a body in steady flow by the viscous irrotational stresses. This can be called a
generalized D’Alembert Paradox which is usually presented as valid for inviscid
fluids. Irrotational viscous torques on bodies also vanish because

∫

εi jk x jτklnl d S =
∫

∂εi jk x jτkl

∂xl
dV = 0. (8)
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The key to understanding purely irrotational flows is that even though the irrota-
tional stresses are self-equilibrated the power of these irrotational stresses is positive

∫

∇ϕ · (n · τ ) d S =
∫

∂ϕ

∂xi
τi j n j d S = 2μ

∫
∂2ϕ

∂xi∂x j

∂2ϕ

∂xi∂x j
dV . (9)

3 Navier-Stokes Equations and Viscous Dissipation
in Decomposed Form

The Navier-Stokes equations in decomposed form may be written as

∂

∂xi
(�
∂ϕ

∂t
+ �

2
|∇ϕ|2 + p)+ �

∂

∂x j

(

v j
∂ϕ

∂xi
+ vi

∂ϕ

∂x j
+ viv j

)

= μ∇2vi (10)

These equations, together with ∇2ϕ = 0, are five equations for the three com-
ponents of velocity, the potential and the pressure. The boundaries conditions for v

and ϕ are determined by the prescribed values for the velocity u; for example, for
the problem of drag on a body moving to the left in steady flow U = −exU without
rotation, we have

− exU = v +∇ϕ (11)

The dissipation function evaluated on the decomposed field (1) sorts out into
rotational, mixed and irrotational terms given by

Φ =
∫

2μDi j Di j dV

=
∫

2μDi j [v]Di j [v]dV + 4μ
∫

Di j
∂2ϕ

∂xi∂x j
dV

+2μ
∫

∂2ϕ

∂xi∂x j

∂2ϕ

∂xi∂x j
dV . (12)

Equation (12) can be greatly simplified; we have

∫

Di j [v]
∂2ϕ

∂xi∂x j
dV + 2μ

∫
∂2ϕ

∂xi∂x j

∂2ϕ

∂xi∂x j
dV =

1

2

∫ (
∂vi

∂x j
+ ∂v j

∂xi

)
∂2ϕ

∂xi∂x j
dV =

∫

vi
∂2ϕ

∂xi∂x j
n j d S

(13)

where vi is given by (11) and
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∫
∂2ϕ

∂xi∂x j

∂2ϕ

∂xi∂x j
dV =

∫
∂ϕ

∂xi

∂2ϕ

∂xi∂x j
d S. (14)

Hence, using (7), we have

∫

vi
∂2ϕ

∂xi∂x j
n j d S =

∫ (

Ui − ∂ϕ

∂xi

)
∂2ϕ

∂xi∂x j
n j d S = −

∫
∂ϕ

∂xi

∂2ϕ

∂xi∂x j
n j d S. (15)

Combining now (15) and (12), we have

Φ =
∫

2μDi j Di j dV =
∫

2μDi j [v]Di j [v]dV = −
∫

∂ϕ

∂xi

∂2ϕ

∂xi∂x j
n j d S. (16)

Not only is potential flow necessary to satisfy no-slip boundary conditions but
the potential flow terms enter into the dissipation.

4 Computation of Drag from Dissipation

It is not generally true that drag on a body in steady rectilinear motions can be
computed from the dissipation integral. Joseph and Liao [3], (Eqs. (2.6) and (2.7))
showed that the drag could be computed from the dissipation if no-slip conditions
on a solid or no-shear conditions on a bubble are required. In the case of a solid
body moving the left with a steady velocity −exU , we have FxU = Φ where Φ is
given by (12) or (16).

5 Stokes Flow Around a Sphere of Radius a in a Uniform
Stream U

Rotational and irrotational velocities in many exact solutions were identified by
Joseph [1] and Joseph et al. [2]. The problem of Stokes flow around a sphere is
a good example in which all the main features of the general theory can exhibited.
The solution for Stokes flow around a sphere of radius a in a uniform stream U is
given in decomposed form

u = (ur , uθ ) =
(

vr + ∂ϕ

∂r
, vθ + ∂ϕ

r∂θ

)

,

ur = U

(

1− 3a

2r
+ a3

2r3

)

cos θ,

uθ = −U

(

1− 3a

4r
− a3

4r3

)

sin θ,
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∇ × u = U

(

0, 0,− 3a

2r2
sin θ

)

,

vr = −3a

2r
U cos θ,

vθ = 3a

4r
U sin θ,

∂ϕ

∂r
= U

(

1+ a3

2r3

]

cos θ,

1

r

∂ϕ

∂θ
= −

(

1− a3

4r3

)

sin θ. (17)

This problem is Galilean invariant; the sphere moves to the left with a velocity
U and the fluid at infinity is at rest. In the usual approach, the drag Fx = 6πμaU
is computed directly; two thirds of the drag arises from the pressure and 1/3 from
shear stress. Of course, the drag on the moving sphere is equal to the drag on the
stationary sphere. The decomposed form of the strain rates are

[Drr , Dθθ , Dϕϕ, Drθ ] = U [(2, 1, 1)(P − V ) cos θ,−P sin θ ] (18)

where P = 3a3/(4r4) is the irrotational part computed from ϕ and V = 3a/r2 is
the irrotational part computed from v . The stresses are proportional to the strain
rate. At r = a , P = V and all the stresses except the shear stress vanish. The
shear stress is entirely from the irrotational flow proportional to P . The drag on the
moving sphere, following (12), is given by

FxU = 2μ
∫ π

0
dθ

∫ ∞

a
[D2

rr + D2
θθ + D2

ϕϕ + D2
rθ ]2π r2 sin θ dr

= (9− 3)πμaU 2 = 6πaμU 2. (19)

The factor 9 arises from the purely rotational velocity v and the factor 3 from the
irrotational velocity ∇ϕ.

6 Biot-Savart Law

The Biot-Savart law gives a recipe for the calculation of velocity from a given dis-
tribution of vorticity. It is understood that the vorticity is a smooth function defined
on all of R3 and vanishes at infinity. The velocity generated from the Biot-Savart
integral

v =
∫

ω × r
4πr

dV ′ (20)
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where r = x − x′ and ω = ω(x′) = ∇ × v(x′) , is rotational. The irrotational
contribution to the velocity cannot give rise to vorticity and cannot enter on the left
of (20) and hence, an irrotational component of velocity cannot be generated by the
Biot-Savart integral.

v + ∇ϕ =
∫

curl(v +∇ϕ)

4πr
dV ′ =

∫
curl v × r

4πr
dV ′ = v. (21)

No body is recognized in the Biot-Savart law. Suppose we are interested in the
steady motion of a sphere in R3 ; we prescribe the velocity U of the sphere and
require that the no-slip boundary condition be satisfied. To use (20) in this problem
we would have to know the vorticity and require no-slip there. But v on the sphere
could not in general be U. We can add ∇ϕ to v and try to find a ϕ such that

U = ∇ϕ +
∫

curl v × r
4πr

dV ′. (22)

We cannot satisfy (22) because only one boundary condition can be satisfied by
a solution of the Laplace equation. This problem was considered by Lamb ([4],
Chap. vii), who has shown that, for any given solenoidal distribution of vorticity
outside the body whose motion is prescribed, one and only one solenoidal velocity
exists, tending to zero at infinity and with zero normal relative velocity at the solid
surface. This form of the Helmholtz decomposition was considered by Lighthill [5].
In general, u does not satisfy the boundary condition for v. However, the difference
u − v must be irrotational (since curl u = u′), and hence equal to ∇ϕ for some
potential ϕ. On the body surface

∂ϕ

∂n
= Un − vn (23)

is prescribed. The normal component of the velocity U can be balanced but the
tangential component cannot. It is instructive to consider the example of Stokes
flow over a sphere (17). The rotational component v gives rise to the vorticity. It is a
smooth function on R3 and satisfies (20). The irrotational components are required
to satisfy the no-slip boundary condition. The irrotational flow does not have a zero
normal component; rather the irrotational flow satisfies a Robin condition in which
a linear combination of the tangential and normal components has equal weight.
The role of Robin boundary conditions for the Laplace equation in the Helmholtz
decomposition of the Navier-Stokes equations is under-studied.
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Small Perturbations of Initial Conditions
of Solutions of the Navier-Stokes Equations
in the L3-Norm and Applications

Petr Kučera

Abstract In this paper, we solve two problems. We prove a theorem on stability of
a strong solution with respect to the norm ‖ . ‖L2+‖ . ‖L3 in Sect. 2. Then, in Sect. 3,
we show that there exist strong solutions of the Navier-Stokes initial-boundary value
problem such that their initial values are arbitrarily large (in the norm of D(A1/4))
and they belong to an arbitrarily chosen open set U ⊂ D(A1/2) at a time instant
ξ > 0 which can be as small as we wish (We denote by A the Stokes operator.)

Keywords Navier-Stokes equations · Stokes operator

1 Introduction

Let T > 0, T ≤ ∞, QT = R3× (0, T ). The classical formulation of the considered
initial-value problem is as follows:

∂u
∂t
− νΔu+ (u · ∇)u+ ∇P = 0 in QT , (1)

∇ · u = 0 in QT , (2)

u(0) = u0 in R3. (3)

u = (u1, u2, u3) denotes the velocity, P represents the pressure and ν is the kine-
matic coefficient of viscosity. For simplicity we suppose that ν = 1.

Let V = C∞0 (R3)3 ∩ {v; ∇ · v = 0}. As usual in literature, H and V denote
the closures of V in the norms of L2(R3)3 and W 1,2

0 (R3)3. We denote by ‖.‖2, ‖.‖3

and
((

., .
))

, respectively, the norms in L2(R3)3, L3(R3)3 and the scalar product in
L2(R3)3. Let A = −PΔ, where P is the Helmholtz projection of L2(R3)3 onto H .
The Stokes operator A has the domain D(A) ≡ W 2,2(R3)3∩V . It is well known that
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A is self-adjoint and non-negative. Therefore it is possible to define its fractional
powers. D(A) is a Banach space with the norm ‖u‖D(A) = ‖Au‖2 + ‖u‖2. This
norm is equivalent to the norm ‖.‖W 2,2(R3)3 (see e.g. [6], Chap. III, Theorem 2.1.1).
Similarly, D(Aα) is a Banach space with the norm ‖u‖D(Aα) = ‖Aαu‖2 + ‖u‖2 for
α > 0. The space V can now be identified with D(A1/2) (see e.g. [6], Chap. III,
Lemma 2.2.1).

Definition 1 Let u0 ∈ H . We call a function u ∈ L∞loc(0, T ; H ) ∩ L2
loc(0, T ; V ) a

weak solution of the problem (1), (2) and (3) if

∫ T

0

∫

R3

[

−u · ∂ϕ
∂t
+∇u · ∇ϕ + (u · ∇)u · ϕ

]

=
∫

R3
u0 · ϕ(0)

for all ϕ ∈ C0
∞([0, T );V) such that ∇ · ϕ = 0 in QT .

We use the notion of a strong solution of the Navier-Stokes equations as it is
defined in ([6], Chap. V, Definition 4.1.1):

Definition 2 Let u be a weak solution of the system (1), (2) and (3) with an initial
velocity u0 ∈ V . Then u is called a strong solution of the problem (1), (2) and (3) if
there exist real numbers q, s such that 3 < q <∞, 2 < s <∞, 3

q + 2
s = 1 and

u ∈ Ls
loc(0, T ; Lq (R3)

3
).

It is well known that if u is a strong solution of the problem (1), (2) and (3) then

u ∈ L2
loc(0, T ; W 2,2(R3)

3
) ∩ L∞loc(0, T ; V ), (4)

u′ ∈ L2
loc(0, T ; H )

and

u ∈ C([0, T ); V )

(see. e.g. [6], Chap. V, Theorem 1.8.1).
In [3], G. Ponce et al. proved a theorem on stability of a strong solution u of

the Navier-Stokes problem (1), (2) and (3) with respect to perturbation of the initial
velocity in the norm ‖A1/2. ‖2.

In [4] and [5], B. Scarpellini constructed strong global solutions of the Navier-
Stokes equations in a bounded sufficiently smooth domain Ω with an arbitrary large
initial conditions in the norm of D(A1/2). He proved that to a given nonempty open
set U in D(Aγ ) (for 3

4 < γ < 1), χ > 0 (arbitrarily small) and K > 0 (arbitrarily
large), there exist u0 ∈ D(A) and real numbers κ and ξ such that ‖A1/2u0‖2 > K
and 0 < ξ < κ < χ and the solution u of the Navier-Stokes equations with the
initial velocity u0 that is strong on the time interval (0, κ) and satisfies the condition
u(ξ ) ∈ U .

In the next section we prove Theorem 1 which extends the mentioned result from
[3]. We prove a theorem on stability of a strong solution u of the Navier-Stokes
problem (1), (2) and (3) with respect to perturbation of the initial velocity in the
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norm ‖.‖2 + ‖.‖3 instead of ‖A1/2. ‖2. In the last Sect. 3, we use this result and we
improve the above cited Scarpellini’s theorem in the sense that the size of the initial
value u0 is measured by the norm ‖A1/4. ‖2. Moreover, we consider U to be an open
subset of D(A1/2) instead of D(Aγ ).

2 Small Perturbations of the Initial Velocity
in the Norm ‖.‖2 + ‖.‖3

The goal of this section is to prove the theorem on stability of a strong solution u of
the problem (1), (2) and (3) with respect to the norm ‖.‖2 + ‖.‖3.

We shall denote by c1 a generic constant, i.e. a constant whose value may change
from one line to the next. On the other hand, c will be used to denote a constant
depending on certain number ε whose exact value will be specified later. Numbered
constants C1, . . . ,C4 will have fixed values throughout the whole paper.

Remark 1 We often deal with functions ψ satisfying

ψ ∈ L2(0, T ; W 2,2(R3)
3
) ∩ L∞(0, T ; V ) (5)

in this paper. The sense of this remark is to recall other integrability properties of ψ

that can be directly derived from (5) by means of Hölder’s inequality or embedding
inequalities. Naturally, (5) implies that

|∇ψ | ∈ L2(0, T ; L6(R3)) ∩ L2(0, T ; L2(R3)) ∩ L∞(0, T ; L2(R3)). (6)

Consequently,

ψ ∈ L2(0, T ; W 1,3(R3)) ∩ L4(0, T ; W 1,3(R3)). (7)

By analogy, one can derive that

(ψ · ∇)ψ · ψ ∈ L1(0, T ; L1(R3)), (8)

(ψ · ∇)ψ ∈ L2(0, T ; L2(R3)3), (9)

ψ ∈ L3(0, T ; L9(R3)
3
). (10)

Lemma 1 Let u and v be strong solutions of (1), (2) and (3) with the initial velocities
u(0) = u0 ∈ V and v(0) = v0 ∈ V , satisfying the stronger variant of (4), i.e.

u, v ∈ L2(0, T ; W 2,2(R3)
3
) ∩ L∞(0, T ; V ). (11)

Denote w = v− u. Then there exists C3 = C3(u) > 0 such that

‖w(t)‖2
2 +

∫ t

0
‖∇w‖2

2 ≤ C3 ‖w(0)‖2
2 (12)
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for almost all t ∈ (0, T ).

Proof Equations (7), (8) and (9) imply that

u,w ∈ L2(0, T ; W 1,3(R3)),

(w · ∇)w · w ∈ L1(0, T ; L1(R3)),

(w · ∇)w ∈ L2(0, T ; L2(R3)3), (13)

(w · ∇)u · w, (u · ∇)w · w ∈ L1(0, T ; L1(R3)),

(w · ∇)u, (u · ∇)w ∈ L2(0, T ; L2(R3)3). (14)

It is easy to see that

2
∫

R3

∣
∣(w · ∇)u · w∣

∣ ≤ ‖∇w‖2
2 + C1 ‖∇u‖2

3 ‖w‖2
2 (15)

for almost every t ∈ (0, T ). Using inclusions (13), (14) and applying projection P
to the equation for the difference w = v− u, we get

w′ + Aw+ P
(

(w · ∇)w+ (u · ∇)w+ (w · ∇)u
) = 0. (16)

Equation (16) is the operator equation in space H , satisfied for almost all t ∈ (0, T ).
Multiplying (16) by 2w(t) and using (15) we obtain

d

dt
‖w‖2

2 + 2‖∇w‖2
2 ≤ 2

∫

R3

∣
∣(w · ∇)u · w∣

∣ ≤ ‖∇w‖2
2 + C1 ‖∇u‖2

3 ‖w‖2
2. (17)

Hence

d

dt
‖w‖2

2 ≤ C1 ‖∇u‖2
3 ‖w‖2

2.

Put C2 := C1 ·
∫ T

0 ‖∇u‖2
3. Then

‖w(t)‖2
2 ≤ eC2 ‖w(0)‖2

2 (18)

for almost all t ∈ (0, T ). Integrating (17) on (0, t) (0 < t ≤ T ) and using (18) we
get

‖w(t)‖2
2 +

∫ t

0
‖∇w‖2

2 ≤
(

1+ C2 eC2
) ‖w(0)‖2

2.

Denoting C3 := 1+ C2 eC2 , we complete the proof. ��
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Theorem 1 Let

u ∈ L2(0, T ; W 2,2(R3)
3
) ∩ L∞(0, T ; V )

be a strong solution of (1), (2) and (3) with the initial velocity u(0) = u0 ∈ V . Then
there exists δ > 0 such that if v0 ∈ V satisfies

‖u(0)− v0‖2 + ‖u(0)− v0‖3 < δ (19)

then there exists a unique strong solution v of (1), (2) and (3) with the initial
velocity v0.

Proof Let

σ := sup
{

ς ∈ (0, T ); v is a strong solution on the time interval (0, ς )
}

. (20)

Since v(0) ∈ V , σ > 0. Then w = v− u satisfies the equation

w′ + Aw+ P
[

(w · ∇)w+ (u · ∇)w+ (w · ∇)u
] = 0 (21)

on (0, σ ). This follows in the same way as (16). Since Ω = R3, we have A = −Δ
on D(A) (see [6], Chapter III, Lemma 2.3.2). Hence

((

Aw, P(w |w|))) = ((−Δw,w|w|)) = −
∫

R3
Δw · w|w|. (22)

Multiplying (21) by P(w |w|), using (22) and integrating over R3, we obtain

1

3

d

dt

∫

R3
|w|3 +

∫

R3
|∇w|2|w| + 4

9

∫

R3

∣
∣∇|w|3/2

∣
∣
2 =

−(((w · ∇)w, P(w |w|)))−(((u · ∇)w, P(w |w|)))

−(((w · ∇)u, P(w |w|))).

(23)

We will now estimate the integrals in (23). We shall use the Helmholtz decom-
position and the embedding D(A1/2) ↪→ L6(R3)

3
(see [6], Chap. III, Lemma 2.4.1).

At first, the inequality

∣
∣
∣

((

(w · ∇)w, P(w |w|)))
∣
∣
∣ =

∣
∣
∣

∫

R3
(w · ∇)w · P(w |w|)

∣
∣
∣ ≤

≤ ε
(∫

R3
|∇w|2|w|

)

+
(

ε + c(ε)
∫

R3
|w|3

) (∫

R3

∣
∣∇|w|3/2

∣
∣
2
)

(24)

holds on (0, σ ) (see the inequality (24) in [2]) and for every ε > 0. Furthermore,
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∣
∣
∣

((

(u · ∇)w, P(w |w|)))
∣
∣
∣ =

∣
∣
∣

∫

R3
(u · ∇)w · P(w |w|)

∣
∣
∣ ≤

≤ c1

(∫

R3
|u|6

)1/6 (
∫

R3
|∇w|2

)1/2 (
∫

R3
|P(w |w|)|3

)1/3
≤

≤ c1

(∫

R3
|u|6

)1/6 (
∫

R3
|∇w|2

)1/2 (
∫

R3
|w|6

)1/3
≤

≤ c1 ‖A1/2u‖2

(∫

R3
|w|3

)1/6 (
∫

R3
|w|9

)1/6 (
∫

R3
|∇w|2

)1/2
≤

≤ ε ‖A1/2u‖2
2

(∫

R3
|w|3

)1/3 (
∫

R3

∣
∣∇|w|3/2

∣
∣
2
)

+ c(ε)
(∫

R3
|∇w|2

)

(25)

and

∣
∣
∣

((

(w · ∇)u, P(w |w|)))
∣
∣
∣ =

∣
∣
∣

∫

R3
(w · ∇)u · P(w |w|)

∣
∣
∣ ≤

≤ c1

(∫

R3
|∇u|3

)1/3(
∫

R3
|w|3

)1/3(
∫

R3
|P(w |w|)|3

)1/3
≤

≤ c1

(∫

R3
|∇u|3

)1/3(
∫

R3
|w|3

)1/3(
∫

R3
|w|6

)1/3
≤

≤ c1

(∫

R3
|∇u|3

)1/3(
∫

R3
|w|3

)1/2(
∫

R3
|w|9

)1/6
≤

≤ c1

(∫

R3

∣
∣∇|w|3/2

∣
∣
2
)1/2(

∫

R3
|∇u|3

)1/3(
∫

R3
|w|3

)1/2
≤

≤ ε
(∫

R3

∣
∣∇|w|3/2

∣
∣
2
)

+ c(ε)
(∫

R3
|∇u|3

)2/3(
∫

R3
|w|3

)

. (26)

The two latter inequalities also hold on (0, σ ) and for every ε > 0. Using (23),
(24), (25) and (26), we obtain

1

3

d

dt

∫

R3
|w|3 + (1− ε)

∫

R3
|∇w|2|w| +

+
[

4

9
− 2ε − c(ε)

∫

R3
|w|3 − ε ‖A1/2u‖2

2

(∫

R3
|w|3

)1/3
] (∫

R3

∣
∣∇|w|3/2

∣
∣
2
)

≤

≤ c(ε)
(∫

R3
|∇u|3

)2/3(
∫

R3
|w|3

)

+ c(ε)
(∫

R3
|∇w|2

)

. (27)

Choose ε > 0 such that 4
9 − 2ε > 1

3 and fix ε and c = c(ε). Denote

h(t) :=
∫

R3
|w(., t)|3,

θ (t) := 3c
(∫

R3
|∇u(., t)|3

)2/3
,
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ϑ(t) := 3c
∫

R3
|∇w(., t)|2,

ϕ(t) :=
∫

R3

∣
∣∇|w(., t)|3/2

∣
∣
2

and

η(t) := 3
(4

9
− 2ε − c h(t)− ε ‖A1/2u(., t)‖2

2 h1/3(t)
)

.

In the definitions of functions h, θ , ϑ , ϕ and η we use notation w(., t) and u(., t)
instead of u and w in order to emphasize that h, θ , ϑ , ϕ and η depend only on t and
we integrate over R3 in their definition. Clearly, θ, ϑ ∈ L1((0, T )). The inequality
(27) now reads

h′(t)+ η(t)ϕ(t) ≤ θ (t)h(t)+ ϑ(t). (28)

Note that there exists κ > 0 such that if h(t) = ∫

R3 |w|3 < κ , then η(t) > 1
4 .

Suppose that such κ is fixed from now. Let us compare function h(t) = ∫

R3 |w|3
with function ϕ such that ϕ(0) = h(0) = ‖w(0)‖3

3 and ϕ satisfies the estimate

ϕ′(t) = θ (t)ϕ(t)+ ϑ(t). (29)

Obviously,

h(t) ≤ ϕ(t) (30)

on each interval (0, σ ∗), σ ∗ < σ , provided that

η(t) >
1

4
(31)

also holds on (0, σ ∗). Integrating (29), we get

ϕ(t) ≤ e
∫ T

0 θ(s)
(

ϕ(0)+
∫ T

0
ϑ(s)

)

. (32)

Lemma 1, (19) and (32) yield the existence of δ > 0 (see (19)) sufficiently small
such that the inequality ϕ(0) < δ implies that

ϕ(t) < κ (33)

on (0, T ). Thus, (31), and consequently (30), hold on (0, σ ). Using (27), (31) and
(33) we obtain the inequalities
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‖w(t)‖3
3 +

1

2

∫ t

0

∫

R3
|∇w|2|w| + 1

4

∫ t

0

∫

R3

∣
∣∇|w|3/2

∣
∣
2 ≤

≤ ‖w(0)‖3
3 + 3cκ

∫ t

0

(∫

R3
|∇u|3

)2/3
+ 3c

∫ t

0

∫

R3
|∇w|2 ≤

≤ ‖w(0)‖3
3 + 3cκ

∫ T

0

(∫

R3
|∇u|3

)2/3
+ 3c

∫ T

0

∫

R3
|∇w|2 < +∞

which hold for every t ∈ (0, σ ). Therefore

∫ σ

0

∫

R3

∣
∣∇|w|3/2

∣
∣
2
<∞.

Since

∇|w|3/2 ∈ L2(0, σ ; L2(R3)
3
),

we obtain |w|3/2 ∈ L2(0, σ ; L6(R3)). Thus

∫ σ

0

(∫

R3
|w|9

)1/3
<∞. (34)

(10) and (34) yield v = u+ w ∈ L3(0, σ ; L9(R3)
3
). We want to prove that σ = T .

Suppose that σ < T . Hence v ∈ C([0, σ ]; V ) (see [1], Lemma 5.4). Using the
well known theorem on the local in time existence of a strong solution (see e.g.
[1], Theorem 6.2) we obtain the contradiction with (20). Therefore σ = T and the
theorem is proved. ��

3 Strong Solution of the Navier-Stokes Equations with Large
Initial Conditions

In this section, we show that Theorem 1 enables us to show, relatively easily, that
there exist strong solutions of the Navier-Stokes initial-boundary value problem
such that their initial values are arbitrarily large (in the norm of D(A1/4)) and they
belong to an arbitrarily chosen open set U ⊂ D(A1/2) at a time instant ξ > 0 which
can be as small as we wish.

Remark 2 Let Ω be a bounded domain. Let us denote by B the operator of restriction
from L2(R3)

3
into L2(Ω)3 by setting (Bψ)(x) := ψ(x) for x ∈ Ω . Obviously, B

is bounded and linear. Let AΩ be the Stokes operator for Ω . (It is the operator
analogous to A, which is derived from the Stokes problem with the homogeneous
Dirichlet boundary conditions; see [6], Chap. II, 2.1). Applying Lemma 2.4.2 in
[6, Chap. III], we can deduce that to given K > 0 arbitrarily large, there exists a
function ψ ∈ C∞0 (R3)

3
such that ∇ · ψ ≡ 0 in R3, Suppψ ⊂ Ω ,
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‖ψ‖2 + ‖ψ‖3 ≤ 1,

‖A1/4
Ω Bψ‖2 ≥ K .

Using the Heinz lemma (see [6], Chap. II, Lemma 3.2.3) we obtain

‖A1/4ψ‖2 ≥ C4 K ,

where C4 > 0 is independent of a concrete function ψ .

The goal of this section is to prove the following theorem.

Theorem 2 Let U be a nonempty open set in ⊂ D(A1/2). Given K > 0 (arbitrarily
large), χ > 0 (arbitrarily small), there exists a weak solution v of the problem (1),
(2) and (3) with initial value v(0) = v0 ∈ D(A1/2) and real numbers κ and ξ such
that 0 < ξ < κ < T , κ < χ and

‖A1/4(v0)‖2 ≥ K , (35)

v(ξ ) ∈ U, (36)

v ∈ C([0, κ); D(A1/2)). (37)

Proof Since U is an open set in D(A1/2), there exist μ > 0, κ > 0 and a weak
solution u of the problem (1), (2) and (3) with the initial value u(0) ∈ U such
that u ∈ C([0, κ],D(A1/2)) and Bμ(u(t)) ⊂ U for every t ∈ [0, κ] (whereBμ(u(t))
denotes the ball of radius μ with the center at the point u(t).) By Theorem 1 there
exists δ > 0 such that if

‖u(0)− v0‖2 + ‖u(0)− v0‖3 < δ (38)

for some v0 ∈ D(A1/2), then there exists a solution v of the problem (1), (2) and
(3) with the initial velocity v0 which is strong on the time interval (0, κ). Moreover,
applying Lemma 1, inequality (12), we can derive that if δ > 0 is chosen to be
sufficiently small, there exists ξ ∈ (0, κ/2) such that

‖u(ξ )− v(ξ )‖2 + ‖A1/2(u(ξ )− A1/2(v(ξ ))‖2 = ‖w(ξ )‖2 + ‖A1/2(w(ξ )‖2 < μ.

Then ξ ∈ (0, κ) and v(ξ ) ∈ U . Due to Remark 2, v0 can be considered such that
in addition to (38), it also satisfies (35). The theorem is proved. ��
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Streaming Flow Effects in the Nearly Inviscid
Faraday Instability

Elena Martı́n and José M. Vega

Abstract We study the weakly nonlinear evolution of Faraday waves in a two
dimensional container that is vertically vibrated. It is seen that the surface wave
evolves to a drifting standing wave, namely a wave that is standing in a moving
reference frame. In the small viscosity limit, the evolution of the surface waves is
coupled to a non-oscillatory mean flow that develops in the bulk of the container. A
system of equations is derived for the coupled slow evolution of the spatial phase
of the surface wave and the streaming flow. These equations are numerically inte-
grated to show that the simplest reflection symmetric steady state (the usual array
of counter-rotating eddies below the surface wave) becomes unstable for realistic
values of the parameters. The new states include limit cycles, drifted standing waves
and some more complex attractors. We also consider the effect of surface contamina-
tion, modelled by Marangoni elasticity with insoluble surfactant, in promoting drift
instabilities in spatially uniform standing Faraday waves. It is seen that contamina-
tion enhances drift instabilities that lead to various steadily propagating and (both
standing and propagating) oscillatory patterns. In particular, steadily propagating
waves appear to be quite robust, as in the experiment by Douady et al., Europhysics
Letters, pp. 309–315, 1989.

Keywords Faraday waves · Weakly nonlinear evolution · Hydrodynamic
instabilities · Surface contamination · Marangoni elasticity · Navier-Stokes
numerical simulation

1 Introduction

We consider the parametric excitation of waves at the free surface of a liquid that
is being vertically vibrated with a forcing amplitude that exceeds a threshold value.
The surface waves that appear (named after Faraday [3]) have attracted a great deal
of attention because of the rich variety of non-linear pattern forming phenomena
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that the Faraday instability exhibits (see [8] and references herein) and that cur-
rent theoretical approaches fail to explain, particularly in the singular limit of small
viscosity. The usual nonlinear amplitude equations used to described this weakly
nonlinear regime are obtained from a strictly inviscid formulation and corrected a
posteriori by adding some linear dissipation terms [8, 1]. This formulation ignores
the presence of the slow non oscillatory mean flow that is driven by the boundary
layers at the container walls and free surface and, in the case of a monochromatic
wave only predicts standing waves (SW) after onset and fails to reproduce the drift-
ing SWs that have been observed experimentally in annular containers [2, 9]. This
paper is organized as follows: in S2 we shall present the systems of equations for the
slow time evolution of the surface waves and the mean flow, derived from the full
Navier-Stokes equations that described the problems assuming a clean free surface
and a contaminated one (surface contamination is likely to be present in water, as in
[2], unless care is taken in the experimental set-up); the relevant large-time patterns
resulting from the primary bifurcations will be described in S3 as well as the main
conclusions.

2 Coupled Amplitude-Mean Flow Equations

We consider a horizontal 2-D liquid layer supported by a vertically vibrating plate
(Fig. 1), and use the container’s depth h and the gravitational time

√
h/g for nondi-

mensionalization. The governing equations are the following

ux + vy = 0, (1)

ut + v(uy − vx ) = −qx + C(uxx + uyy), (2)

vt − u(uy − vx ) = −qy + C(vxx + vyy), (3)

u = v = 0 at y = −1, (4)

Fig. 1 Sketch of the fluid domain
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v = ft + u fx (a), C1/2(ûn + v̂s + κ û) = 0 (b),

q − u2 + v2

2
+ 4ω2ε f cos(2ωt)− f + T κ = 2C v̂n (c) at y = f, (5)

u, v, q and f are L-periodic in x, (6)

where

s =
∫ x

0

√

1+ f 2
x dx and κ = fxx

(1+ f 2
x )3/2

(7)

are an arch length parameter and the curvature of the free surface (defined as y = f ),
respectively, and n is a coordinate along the upward unit normal to the free surface;
û and v̂ are the tangential and normal velocity components at the free surface y = f ,
which are related to the horizontal and vertical components u and v by

û = u + fxv
√

1+ f 2
x

, v̂ = v − fx u
√

1+ f 2
x

. (8)

Equations (1), (2), (3), (4), (5) and (6) formulate the problem when dealing with
a clean free surface, with no contamination. Nevertheless, surface contamination
is likely to be present in water. The only difference between the equations for a
clean surface and the formulation that takes into account the presence of surfactant
contamination is the boundary condition (5b), whose right hand side was zero for
the clean surface and now accounts for the presence of contaminating surfactants
(9), modelled in the simplest way, where the resulting tangential stress includes
Marangoni elasticity effects produced by a variation of surface tension with surfac-
tant concentration

C1/2(ûn + v̂s + κ û) = −γ ζs . (9)

A linear law for the variation of the surface tension T ∗ with the surfactant con-
centration ζ ∗ is assumed T ∗(ζ ∗) = T ∗0 + (dT ∗/dζ ∗0 )(ζ ∗ − ζ ∗0 ), where the derivative
is calculated at the equilibrium value of the surfactant concentration ζ ∗, denoted as
ζ ∗0 .

The nondimensional surfactant concentration ζ = (ζ ∗ − ζ ∗0 )/ζ ∗0 is given by the
conservation equation for an insoluble surfactant

ζt + [(1+ ζ )u]s = 0 in 0 < s < sL , ζ (s + sL , t) = ζ (s, t). (10)

Here, sL is the length of the free surface in one period and we are neglecting both
cubic terms and surface diffusion of the surfactant.

Both dimensionless problems (1), (2), (3), (4), (5) and (6) and (1), (2), (3), (4)
and (5a), (5c) and (6), (9), (10) depend on the following nondimensional parame-
ters: the forcing frequency 2ω = 2ω∗

√
h/g and amplitude ε = ε∗/h, the ratio of

viscous to gravitational effects C = μ/(�
√

gh3) (� = density, μ = viscosity),
the Bond number T−1 = �gh2/T ∗0 (T ∗0 = surface tension at equilibrium), the
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horizontal aspect ratio L = L∗/h (L∗ = horizontal length of the domain), and
only for the contaminated free surface problem, the Marangoni elasticity number
γ = ζ ∗0 (dT ∗/dζ ∗0 )C1/2/(μ

√
gh) .

We shall consider small, nearly-resonant solutions at small viscosity and conve-
niently rescaled Marangoni elasticity, i.e.,

|u|+|v|+|q|+| f |+|ζ | ! 1, ε ! 1, |ω−ω0| ! 1, C ! 1, γ ∼ 1. (11)

The assumption that C ! 1 is reasonable for not too viscous fluids in not too
thin layers. The assumption γ ∼ 1 is made for the Marangoni elasticity to have a
significant effect both in the damping ratio of the surface waves and in the streaming
flow (see [7] for more details). Frequency ω0 in (11) is a natural frequency in the
inviscid limit (C = 0). As explained in [6] and [5], the solution can be expanded
as an oscillating first part caused by the oscillatory inviscid modes (with a O(1)
frequency and a O(

√
C) decay rate) and a slow non-oscillatory secondary part gen-

erated by the viscous modes (with a O(C) decay rate), that produce the mean flow.
The solution in the bulk region, outside the boundary layers that appear at the free
surface and the bottom plate, is written as follows

u = U0(y)eiωt [A(t)eikx − B(t)e−ikx ]+ c.c.+ um(x, y, t)+ · · · ,
v = iV0(y)eiωt [A(t)eikx + B(t)e−ikx ]+ c.c.+ vm(x, y, t)+ · · · ,
q = Q0(y)eiωt [A(t)eikx + B(t)e−ikx ]+ c.c.+ qm(x, y, t)+ · · · ,
f = eiωt [A(t)eikx + B(t)e−ikx ]+ c.c.+ f m(x, t)+ · · · ,
ζ = Ξ0eiωt [A(t)eikx + B(t)e−ikx ]+ c.c.+ ζm(x, t)+ · · · ,

(12)

where c.c stands for the complex conjugate, k = 2mπ/L (with m a positive integer)
is the horizontal wave number and U0, V0 and Q0 are the corresponding inviscid
eigenfunctions

U0 = −k Q0

ω0
, V0 = Q0y

ω0
, Q0 = ω2

0 cosh k(y + 1)

k sinh k
, (13)

ω2
0 = k(1+ T k2) tanh k. (14)

Note that the expansion for the surfactant concentration variable (12e) is only
necessary for the contaminated problem, where

Ξ0 = (kω0

√

iω0)/(tanh k(ω0

√

iω0 − ik2γ )) (15)

can not be obtained in the inviscid approximation. The terms displayed above cor-
respond to the only surface mode that is sub-harmonically excited by the external
forcing and the mean flow, that will be denoted hereinafter by the superscript m.
Dependence of the complex amplitudes A and B on x is ignored for simplicity, see
[10] and [4] for a more complicated analysis including spatial wave modulations.
The weakly nonlinear analysis requires the amplitudes A and B to be small and
depend slowly on time |A′| ! |A| ! 1, |B ′| ! |B| ! 1
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If we insert expansions (12a), (12b), (12c) and (12d) into the governing equations
for the clean free surface case, and (12a), (12b), (12c), (12d) and (12e) into the
equations for the contaminated free surface problem, take into account the bound-
ary layers at the free surface and the bottom of the container and apply solvability
conditions, the following equations for the evolution of the complex amplitudes are
obtained

A′ = [−d1 − id2 + iα3|A|2 − iα4|B|2 − i
α6

L

∫ 0

−1

∫ L

0
g(y)umdxdy]A + iεα5 B̄,

(16)

B ′ = [−d1 − id2 + iα3|B|2 − iα4|A|2 + i
α6

L

∫ 0

−1

∫ L

0
g(y)umdxdy]B + iεα5 Ā,

(17)

and depend on the mean flow through a non local term. See [6] and [7] for a more
detailed derivation of the equations above and for the expressions of the coefficients
and the function g(y) in the non contaminated and contaminated case, respectively.

The solution of Eqs. (16) and (17) always relaxes to a standing wave (|A| =
|B| = R0) of the form

f (x, t) = 4R0 cos(ωt + ϕ0) cos[k(x − ψ)] (18)

with constant amplitude R0 (which depends on the amplitude of the applied forc-
ing) and spatial phase ψ(t) that remains coupled to the streaming flow through the
equation

ψ ′ = α6

kL

∫ 0

−1

∫ L

0
g(y)umdxdy . (19)

Ignoring the initial transient, taking into account the last result in expansions
(12a), (12b), (12c), (12d) and (12e) and introducing these expressions in the two
cases, we obtain the following equations for the mean flow outside the two boundary
layers

ũx + ṽy = 0, (20)

∂ ũ

∂τ
+ ṽ(ũ y − ṽx ) = −q̃x + Re−1(ũxx + ũ yy), (21)

∂ṽ

∂τ
− ũ(ũ y − ṽx ) = −q̃y + Re−1(ṽxx + ṽyy), (22)

ũ, ṽ and q̃ are x-periodic, of period L = 2mπ/k, (23)

dψ

dτ
= 1

L

∫ 0

−1

∫ L

0
G(y)ũ(x, y, τ )dxdy, G(y) = 2k cosh 2k(y + 1)

sinh 2k
(24)
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where the bottom and free surface horizontal velocities are determined from one of
the following additional conditions, (25) and (26) for the clean free surface case and
(27) and (28) for the contaminated free surface problem

ũ = − sin[2k(x − ψ)], ṽ = 0 at y = −1, (25)

ũ y = 0, ṽ = 0, at y = 0, (26)

ũ = −(1− Γ ) sin[2k(x − ψ)], ṽ = 0 at y = −1, (27)

ũ = −Γ sin[2k(x − ψ)]+ ũ0(τ ), ṽ = 0,
∫ L

0
ũ y dx = 0, at y = 0, (28)

where, for convenience, we have rescale time and mean flow variables as

τ = ReCt, ũ = um

ReC
, ṽ = vm

ReC
, q̃ = qm

(ReC)2
, (29)

with the effective mean flow Reynolds number defined as follows

Re = 2R2
0

C
(α7 + α8) , (30)

with

α7 = 3ω0k

sinh2 k
, α8 = ω0k

tanh2 k

(
4γ k2

ω0
√

iω0 − iγ k2
+ c.c + 3γ 2k4

|ω0
√

iω0 − iγ k2|2
)

.

(31)

where, for the clean surface case, γ must be substituted by 0 in expression (31).
Equations for the clean case (20), (21), (22), (23), (24), (25) and (26), hereinafter
referred to as MFClean, depend on the values of the 3 parameters (Re, k, m), while
the contaminated free surface problem defined by (20), (21), (22), (23) and (24), (27)
and (28), hereinafter MFContam, depends on an additional contamination parame-
ter Γ that measures the relative effect of contamination in the generation of the
streaming flow

Γ = Γ (k, T, γ ) ≡ α8

α7 + α8
, (32)

and is plotted vs. the wavenumber k in Fig. 2(a) for the indicated values of γ for
T = 7.42 · 10−4, that corresponds to the inverse of the Bond number for a 10 cm
depth water container. It can be seen that for deep water problems, namely k > π ,
the contamination parameter is of the order of 1, even for quite small values of the
Marangoni number γ . The maximum values of Γ are plotted in Fig. 2(b).
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Fig. 2 The contamination parameter Γ . (a) Γ vs. k for T = 7.42·10−4 and: (——) γ = 1, (−−−)
γ = 0.1, (− · − · −) γ = 0.01, and (· · · · ·) γ = 10−3. (b) The maximum value of Γ vs. k for
T = 7.42 · 10−4 and varying γ

3 Results and Conclusions

Problems MFClean and MFContam are both numerically solved to show that for
small values of the effective mean flow Reynolds number Re, the solution relaxes
to the usual standing wave (SW) with ψ ′ = 0 and for the mean flow corresponds to
pairs of steady counterrotating eddies as the ones plotted in Fig. 3(a) for the clean
free surface problem and (4a), (4b) and (4c) for the contaminated free surface case
and the indicated values of the contamination parameter Γ . These steady solutions
are L/2-symmetric and since they are also reflection symmetric in x , the integral
(24) vanishes and the streaming flow does not affect the surface SW.

For the MFClean problem, if Re exceeds a threshold value, indicated in Fig. 5(a),
this steady solution becomes unstable always through a Hopf bifurcation and a
branch of time periodic solutions (PSW) appears, that produces a time periodic drift
of the SW with no net drift on the free surface. These periodic solutions resemble the
so called compression modes that have been observed in annular containers [2, 9]
and cannot be obtained with the usual amplitude equations that ignore the coupling
with the streaming flow. For some values of k and L there are some additional

(a)

Re = 260 Re = 325

(b)

Fig. 3 Streamlines of the streaming flow of MFClean for k = 2.37, L = 2.65 (m = 1) and (a)
Re = 260 and (b) Re = 325 (in moving axes x − ψ ′τ with constant drift velocity). Thick vertical
lines correspond to the nodes of the surface waves given by (18)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Streamlines of MFContam, for k = 2.37, L = 2.65 (m = 1), and (Re, Γ ): (a) (200, 0.1),
(b) (160, 0.5), (c) (60, 0.9), (d) (200, 0.5), (e) (200, 0.9) in moving axes ξ = x−ψ ′τ with constant
drift velocity ψ ′ = 0.32 and ũ0 = 0.49, (f) (600, 0.9) in moving axes with constant drift velocity
ψ ′ = 0.27 and ũ0 = 0.53

bifurcations to drifted SWs, namely travelling waves TWs, that move at a constant
speed like the one shown in Fig. 3(b), and more complex oscillatory attractors, but
these depend strongly on k and L (see [6] for more details). However, drift insta-
bilities were quite robust in the experiment of Douady et. al. [2] (Fauve, personal
communication, 2003) and the MFclean problem does not seem to reproduce this
feature.

In order to mimic the behaviour of tap water (used in the experiment [2]) the
MFContam problem is solved to obtain that the primary instability of the basic SW
(SW(L/2)) depends on the value of the contamination parameter. In Fig. 5(b) it can
be seen that for small values of Γ the instability takes place through a Hopf bifur-
cation and for quite small values of Γ the contamination effect seems to stabilize
the basic SWs (note that the critic Reynolds number for the clean case for the same
values of k and L is marked with a large point in the horizontal axis of Fig. 5(b)).

This is because the only effect of contamination in this regime on the mean flow is
to replace the free stress boundary condition at the free surface by a no-slip boundary
condition, which reduces the strength of the mean flow. For an intermediate value of
Γ a symmetry breaking bifurcation to another type of SW no longer L/2 symmetric
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Fig. 5 The primary instability of the basic SW for: (a) MFClean for different wave numbers k
and (b) MFContam, for k = 2.37, L = 2.65 (m = 1). Figure 5(a): The bifurcation is always a
Hopf bifurcation (——) ((− − −) shows the parity breaking bifurcation that takes place only if
the coupling between the surface wave and the mean flow (24) it is ignored). Figure 5(b): The
bifurcation is either a Hopf bifurcation (− · − · −) if 0 < Γ < 0.372, a (L/2)-symmetry breaking
bifurcation (− − −) if 0.372 < Γ < 0.584, or a parity breaking bifurcation (——) if 0.584 <

Γ < 1

(SW(L)) occurs, see Fig. 4(d) as an example. For larger values of the contamination
parameter Γ the basic SW(L/2) destabilizes through a parity breaking bifurcation
that leads to TWs (TW(L/2)) whose streamlines for the mean flow in a moving
reference frame are similar to the one plotted in 4(e). Note that the mean flow is
still L/2-symmetric. In contrast with the clean case, these TWs appear in a primary
bifurcation and are quite robust (remain unchanged for larger domains and appear
for all values of the wave number we have checked). Thus, contamination effects
seem to play an important role in the surface waves dynamics. For bigger values
of the Reynolds number Re different secondary instabilities are obtained, among
them another type of TWs with no L/2-symmetric mean flow (Fig. 4(f)), pulsating
travelling waves and even complex attractors ([7]). For all these states which are not
steady SW, the coupling with the mean flow is an essential ingredient that should
not be ignored.
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The Dirichlet Problems for Steady Navier-Stokes
Equations in Domains with Thin Channels

Yuliya V. Namlyeyeva, Šarka Nečasová, and Igor Igorievich Skrypnik

Abstract We consider a sequence of the Dirichlet problems for steady Navier-
Stokes equations in domains perforated with channels Ωs = Ω \⋃I (s)

i=1 F
(s)
i , where

F (s)
i , i = 1, . . . , I (s), are closed subsets of bounded domain Ω ⊂ R3 contained

in small neighborhoods of some lines. While the number I (s) of channels tends
to infinity as s → ∞, these small sets F (s)

i are becoming thinned. We study the
asymptotic behavior of solutions us(x) to problems in domains with thin channels
as s → ∞. We find conditions on perforated domains under which sequence of
solutions {us(x)}∞s=1 converges to solution of homogenized problem as s → ∞.
The proof is based on the asymptotic expansion of us(x) and on pointwise and inte-
gral estimates of auxiliary functions which are solutions of model boundary value
problems.

Keywords Homogenization · Navier-Stokes equations · Perforated domains

1 Introduction and Formulation of the Problem

Processes in locally inhomogeneous media, the local properties of which are subject
to sharp small scale changes in the space, are of great interest in various fields of
science. Various methods were applied to the investigation of such problems. We
mention one of the most famous micro-macro approach which was used for homog-
enization of processes in porous periodic media, [21]. In particular, there were
constructed the asymptotic expansions for flow in small channels of solid porous
body and for moving of composite of solid elastic bodies and viscous fluids. It is
known that it is possible to get Darcy’s law in the limit. By the Darcy’s law a slow
fluid flowing through a rigid medium can be modelled. Ene and Sanchez-Palencia
seems to be first to give a derivation of it, from the Stokes system, using multiscale
expansion [8]. This derivation was made rigorously by Tartar in [24]. This result was
generalized by many authors and we mention one generalization, which was done
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by Allaire [1] and to random statistically porous medium by Beliaev and Kozlov
[3]. Also we would like to mention the fundamental work of Jikov, Kozlov and
Oleinik [12] and several fundamental works which were done by Jäger, Mikelic
[11], Mikelic at el. [10, 5]. If a rigid part of the porous medium Ω has the critical
size, much smaller than O(1), then it is possible to get Brinkman’s law, (in detail,
see [2]). In many applications the solid part is supposed to be elastic. In this case
the effective filtration law is known as Biot’s law [7].

Different problems in perforated domains with non periodic structure, corre-
sponding to the case of Brinkman’s law, were considered in [17, 18, 22]. Firstly,
elliptic systems of higher order in domains with fine-grained boundary were stud-
ied in [17] using potential theory and variational methods. This approach was
applied, in particular, to the Dirichlet problems for Navier-Stokes equations in
domains with fine-grained boundary (see [13, 14]). Another approach was devel-
oped by I.V.Skrypnik for nonlinear elliptic and parabolic equations (see, for exam-
ple, [22, 23] and reference therein). This situation is essentially different from
the study of linear problems. It is necessary to have some strong convergence of
gradients of solutions of nonlinear problems in perforated domains to construct
the homogenized boundary value problem. The proof of such strong convergence
is based on the special asymptotic expansion. In this case solutions of nonlinear
problems in perforated domains are approximated by solution of appropriate model
nonlinear problems near small sets of perforation. The main role in construction
of the homogenized boundary value problems is played by pointwise and integral
estimates of solutions to model problems. This approach, which gives us possibility
to show the strong convergence of gradients of solutions, was applied to the homog-
enization of the Navier-Stokes equation with Dirichlet’s condition in domains with
fine-grained boundary ([19]). In this paper we consider the problem of homoge-
nization of the Navier-Stokes equations with the Dirichlet boundary condition in
sequence of domains with thin channels.

To begin with we formulate the state of the problem. Let �(x,G) be the distance
from a point x to a set G ⊂ R3. Let us define the ε-neighborhood U(G, ε) of the set
G by

U(G, ε) := {x ∈ R3 : �(x,G) < ε},

for every ε > 0. Let Ω be a bounded domain in R3. For every fixed number s ∈ N
we consider a finite number I (s) of lines l (s)

i ⊂ Ω , positive numbers d (s)
i , and closed

domains F (s)
i , such that

F (s)
i ⊂ U(l (s)

i , d (s)
i ), i = 1, . . . , I (s).

The number I (s) tends to infinity as s → ∞. Let us denote by Ωs, s ∈ N, the
following sequence of perforated domains
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Ωs = Ω \
I (s)
⋃

i=1

F (s)
i .

In the sequence of domains Ωs , perforated with channels, we study the following
problems

νΔu(s) − (u(s) · ∇) u(s) = ∇ p(s) + f,

div u(s) = 0, x ∈ Ωs, (1)

u(s)|∂Ωs = 0,

where p(s)(x) is a pressure, f(x) ∈ L2(Ω)3 is a force, ν ∈ R1
+.

In study of this problem the following questions arise:

• How to establish conditions under which the solutions of the problem (1) con-
verge as s →∞?

• How to determine a boundary value problem for the limit function?

Let us introduce the following spaces

H (Ωs) := {us ∈ W 1,2
0 (Ωs)3 : div us = 0, x ∈ Ωs},

H (Ω) := {u ∈ W 1,2
0 (Ω)3 : div u = 0, x ∈ Ω}.

Denote by D[u] the symmetrized gradient of the velocity

D[u] = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)

.

We introduce a weak formulation of problem (1).

Definition 1 We say that u(s) ∈ H (Ωs) is a weak solution of problem (1) if the
following integral identity

∫

Ωs

(

νD[u(s)] · D[ϕ(s)]− (u(s) · ∇)ϕ(s) · u(s)
)

dx = −
∫

Ωs

(f,ϕ(s))dx (2)

is satisfied for every ϕ(s) ∈ H (Ωs).

Analogously to [16] it is possible to show the existence of the solution to problem
(1) and to prove the following a priory estimate

‖u(s)‖H (Ωs ) ≤ C0‖f‖L2(Ωs )3 ,

with a positive constant C0 not depending on s. Extending the function u(s) ∈ H (Ωs)
into

⋃I (s)
i=1 F

(s)
i by zero and keeping the same notation, we obtain the function u(s) ∈

H (Ω) which satisfies the following estimate

‖u(s)‖H (Ω) ≤ C0‖f‖L2(Ω)3 .
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Then, there exists a subsequence of the sequence {u(s)}∞s=1 converging to a func-
tion from H (Ω) weakly in H (Ω) and strongly in L p(Ω)3 (p < 6) as s → ∞. We
denote this weak limit by u(0) ∈ H (Ω).

Remark 1 Hereafter we denote by C, C j , K j , j = 0, 1, . . . , different positive con-
stants depending on Ω and not depending on i and s.

2 Assumptions on the Sequence of Perforated Domains {Ωs}∞
s=1

and Formulation of the Main Result

We denote by B(x, r ) a ball of a radius r with center at a point x . We suppose
that there exist positive constants λ, C1, C2, not depending on i and s, and posi-
tive numbers r (s)

i , s ∈ N, i = 1, . . . , I (s), such that the following conditions are
satisfied:

• (i) lim
s→∞ r (s) = 0, where r (s) = max

1≤i≤I (s)
r (s)

i ,

(2+ C1)d (s)
i ≤ r (s)

i , ∀ s ∈ N, i = 1, . . . , I (s),

I (s)
∑

i=1

ln −2 1
d (s)

i

(r (s)
i )2

≤ C2;

• (ii) there exists a finite number P(i, s) of points z(s)
i,p, l = 1, . . . ,P(i, s), such

that for every t (s)
i ∈ [d (s)

i , r (s)
i ] the inclusion

U
(

T (s)
i ({t (s)

i }), t (s)
i

)

⊂
P(i,s)
⋃

p=1

B(z(s)
i,p, λt (s)

i ),

holds for every s ∈ N, i = 1, . . . , I (s), where

T (s)
i ({t (s)

i }) = U(l (s)
i , t (s)

i )
⋂{⋃

j �=i

U(l (s)
j , t (s)

j )
⋃

∂Ω
}

,

U(l (s)
i , r (s)

i ) ⊂ Ω, B(z(s)
i,p, λr (s)

i ) ⊂ Ω;

• (iii) there exists a number p0 ∈ N such that for every s ∈ N the orders of families
of sets

{U(l (s)
i , ln −1 1

r (s)
i

), i = 1, . . . , I (s)},

{B(z(s)
i,p, λln −1 1

r (s)
i

), i = 1, . . . , I (s), p = 1, . . . ,P(i, s)},

do not exceed p0.
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The order p0 of families of sets in condition (iii) we understand in such sense
that p0 is the largest positive number for which (p0 + 1) sets from these families
with common points exist.
We suppose the following conditions on regularity of the lines l (s)

i , s ∈ N, i =
1, . . . , I (s), also:

• (iv) there exists a diffeomorphisms g(s)
i : U(l (s)

i , 1) → g(s)
i (U(l (s)

i , 1)) ⊂ R3 from
class C1, such that the following inclusion holds

g(s)
i (l (s)

i ) ⊂ {y ∈ R3 : y1 = y2 = 0};

• (v) there exists a positive constant κ , not depending on i and s, such that the
following inequalities

∣
∣
∣
∣
∣

∂g(s)
i (x)

∂x

∣
∣
∣
∣
∣
≤ κ, det

Dg(s)
i (x)

Dx
≥ κ−1,

are satisfied for every x ∈ U(l (s)
i , 1), where Dg(s)

i (x)
Dx is the Jacobi matrix of g(s)

i (x)
at a point x.

Remark 2 From condition (v) we derive that there exists a positive constant C3,
depending on n and κ only, such that the following inequality

1

C3
|x1 − x2| ≤ |g(s)

i (x1)− g(s)
i (x2)| ≤ C3|x1 − x2| (3)

is valid for every x1, x2 ∈ U(l (s)
i , 1).

To formulate an additional condition for the sets F (s)
i that guarantees the possi-

bility to construct an averaged problem, we define auxiliary functions which are
solutions of an appropriate model problem in every domain B(0, 1)\F (s)

i , i =
1, . . . , I (s). We define vk(x ; G,F) as a solution of the following problem

Δvk(x) = ∇ pk(x),

div vk(x) = 0, x ∈ U(G, 1/2) \ F , (4)

vk(x)|∂F = ek, vk(x)|∂U(G,1/2) = 0,

for every open set G ⊂ R3 and a closed set F ⊂ G where ek is the unit vector of
axis 0Xk , k = 1, 2, 3.

We suppose that for every s ∈ N the inequality r (s) ≤ 1/2 is valid. We define
sequences of numbers {λs}, {μs}

λs = ln −1 1

r (s)
, μs = ln ln

1

r (s)
. (5)
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These sequences satisfy the following properties

lim
s→∞ λs = 0, lim

s→∞μs = ∞, lim
s→∞ λ2

sμs = 0

which were shown in [22]. For s ∈ N, . . . , i = 1, . . . , I (s), we introduce subsets
of indices

I ′(s) :=
{

i : i = 1, . . . , I (s), ln −1 1

d (s)
i

≥ [r (s)
i ]2μs

}

,

I ′′(s) :=
{

i : i = 1, . . . , I (s), ln −1 1

d (s)
i

< [r (s)
i ]2μs

}

,

and a sequence of numbers ε(s)
i by the following relations

ε
(s)
i := 2C2

3 [r (s)
i ]2μs if i ∈ I ′′(s), (6)

where C3 is the constant from (3). For every s ∈ N, i ∈ I ′′(s), we consider the
following sets

L (s)
i :=

{

x ∈ l (s)
i : �

(

x, T (s)
i ({2ε(s)

i })
)

≥ 2ε(s)
i

}

= L (s)
i,1

⋃

L (s)
i,2.

We denote by L (s)
i,1 the union of all connected sets from L (s)

i which lengths are not

less than λ−1
s ε

(s)
i . The closed set L (s)

i,2 consists of all curve segments of l (s)
i such that

their lengths are less or equal λ−1
s ε

(s)
i . We divide every curvilinear segment from the

set L (s)
i,1 on the finite number M(i, s) of segments with equal lengths such that

L (s)
i,1 =

M(i,s)
⋃

m=1

L (s)
i (m), (2λs)−1ε

(s)
i ≤ |L (s)

i (m)| ≤ λ−1
s ε

(s)
i ,

where |L (s)
i (m)| is the length of curvilinear segment L (s)

i (m). Let α
(s)
i,m, β

(s)
i,m be

endings of curvilinear piece L (s)
i (m), for every s = 1, 2, . . . , i ∈ I ′′(s), m =

1, . . . ,M(i, s). For some constant γ we use the following notations:

G(s)
i,m(γ ) := U(L (s)

i (m), 2ε(s)
i ) \ {B(α(s)

i,m, γ ε
(s)
i )

⋃

B(β(s)
i,m, γ ε

(s)
i )}, (7)

v(s)
k,i,m(x) := vk(x ; G(s)

i,m(γ ),F (s)
i

⋂

G(s)
i,m(γ )),

Ck&
m (F (s)

i ) :=
∫

U(G(s)
i,m (γ ),1/2)

D[v(s)
k,i,m] · D[v(s)

&,i,m] dx, k, & = 1, . . . , n,
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for every s ∈ N, i = 1, . . . , I (s), m = 1, . . . ,M(i, s). We assume that the following
additional condition is satisfied:

• (vi) There exists a continuous nonnegative matrix ||ck&(x)||nk,&=1 such that for
every ball B ⊂ Ω we have

lim
s→∞

∑

(i,m)∈Is (B)

Ck&
m (F (s)

i ) =
∫

B

ck&(x) dx .

By Is(B) we denote the set of all pairs (i,m), i ∈ I ′′(s), m = 1, . . . ,M(i, s),
such that x (s)

i,m ∈ B, where x (s)
i,m is middle of the curvilinear piece L (s)

i (m).

Under conditions (i)–(vi) on the sequence of perforated domains, it is constructed
the following averaged problem in a domain Ω

νΔu(x)− (u · ∇) u− νc(x)u(x) = ∇ p(x)+ f(x),

div u(x) = 0, x ∈ Ω, (8)

u(x)|∂Ω = 0,

where c(x) = ‖ckl(x)‖n
k,l=1 is the continuous nonnegative matrix from condition

(vi).
A weak solution of the problem (8) we understand in the sense of the following

definition:

Definition 2 We say that u(x) ∈ H (Ω) is a weak solution of problem (8), if the
integral identity

∫

Ω

(ν∇u∇ϕ − (u · ∇)ϕ · u) dx +
∫

Ω

νc(x)uϕ dx = −
∫

Ω

(f,ϕ) dx

is satisfied for every ϕ ∈ H (Ω).

The main result of this paper is the following:

Theorem 1 Suppose that conditions (i)–(vi) are satisfied. Then the subsequence of
solutions {u(s)}∞s=1 of problems (1) converges to function u(0) strongly in W 1,ϑ (Ω)3

for any 0 < ϑ < 2 as s → ∞ and the function u(0) is a weak solution of problem
(8).

3 Pointwise and Integral Estimates of the Auxiliary Functions

To construct a homogenized problem (8) we investigate the qualitative asymptotic
behavior of the solution to model problems type (4).

We denote by Qh
a, a > 0, the following cylinder with a base a and a height 2h:



346 Yu.V. Namlyeyeva et al.

Qh
a = {x ∈ Rn; x = (x ′, xn), x ′ = (x1, x2), |x ′| < a, |x3| < h}.

Let F be a closed set such that F ⊂ Q H
d and 0 < d < h < H < 1/4.

Without loss of generality, we assume that ν = 1. We consider the main model
problem in B(0, 1) \ F :

Δvk(x) = ∇ pk(x),

div vk(x) = 0, x ∈ B(0, 1) \ F , (9)

vk(x)|∂F = ek, vk(x)|∂B(0,1) = 0.

We extend vk(x) by ek for x ∈ F and keep for the extended function the same
notation. Let us define by Hk(F) the following class of functions

Hk(F) := {vk(x) ∈ W 1,2
0 (B(0, 1))3 : div vk = 0, x ∈ B(0, 1), vk = ek, x ∈ F}.

Definition 3 We say that vk ∈ Hk(F) is a weak solution of problem (9) if the fol-
lowing integral identity

∫

B(0,1)

D[vk] · D[ϕk] dx = 0 (10)

is satisfied for every ϕk ∈ Hk(F).

The existence and uniqueness of the weak solution vk(x, t) to problem (9) fol-
lows from [16]. The solution vk(x, t) can be found as a minimizer of the following
functional

J (vk) =
∫

B(0,1)

|D[vk]|2dx =
∫

B(0,1)

n
∑

l,p=1

∣
∣
∣
∂vk

l

∂x p

∣
∣
∣

2
dx

in the class of functions Hk(F).
Pointwise and integral estimates of solution to model problem (9) play the key

role in study of the homogenization of problems (1) in sequence of domains with
channels. We obtain this estimates using methods of [13, 14].

Theorem 2 There exists a positive constant C4 not depending on d, such that the fol-
lowing estimates for the solutions vk(x, t), k = 1, 2, 3, of problem (9) are satisfied

|Dαvk
i (x)| ≤ C4

|x ′||α| ln
−1 1

d
, |α| = 0, 1, 2, (11)
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for every x ∈ B(0, 1) \ Q1
a, where a ≥ 2b, 4d < b < 2

√
d, for every i = 1, 2, 3.

Here Dα = ∂ |α|
∂α1 x1∂

α2 x2∂
α3 x3

, |α| = α1 + α2 + α3.

Moreover, there exists a positive constant C5 such that the following integral
estimates are valid

∫

B(0,1)\F
|vk |2 dx ≤ C5(b2ln −1 1

d
+ ln −2 1

d
), (12)

∫

B(0,1)

|D[vk]|2 dx ≤ C5 H ln −1 1

d
, (13)

for every b ∈ [4d, 1].

Proof Denote by U(x, y) = ‖Ui j (x, y)‖3
i, j=1 the velocity part of the Green function

to the Dirichlet problem for the Stokes system in the whole space R3

ΔxUi j (x − y)− ∂

∂xi
q j (x − y) = Δ2ϕ(x − y)δi j ,

3
∑

i=1

∂

∂xi
Ui j (x − y) = 0, x �= y,

where ϕ(x − y) = |x−y|
8π is a fundamental solution to the biharmonic equation. This

solution has the following explicit form

Ui j (x − y) = − 1

8π

(
δi j

|x − y| −
(xi − yi )(x j − y j )

|x − y|3
)

,

q j (x − y) = 1

4π

(x j − y j )

|x − y|3 .

To construct Green’s tensor for the Stokes problem in an arbitrary bounded
domain Ω we follow the tools from Galdi [9]. We consider functions Hi j (x, y) and
ai (x, y), i, j = 1, 2, 3, such that they are solutions to the following problems

Δx Hi j (x, y)+ ∂a j (x,y)
∂xi

= 0, x ∈ Ω,
3∑

i=1

∂
∂xi

Hi j (x, y) = 0, x ∈ Ω,

Hi j (x, y) = Ui j (x − y), x ∈ ∂Ω.

(14)

Then we define

Gi j (x, y) = Ui j (x − y)− Hi j (x, y),

gi (x, y) = qi (x − y)− ai (x, y),
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where Hi j (x, y) is a solution of problem (14) for Ω = B(0, 1). Functions Gi j (x, y)
satisfy the symmetry condition

Gi j (x, y) = G ji (x, y).

Also the following derivatives

Dα
x Dβ

y Gi j (x, y) = A(x, y)|x − y|−1−|α|−|β|, x �= y,

exist and are continuous. Here the functions A(x, y) are bounded for x �= y.
Due to Theorem 6 from Appendix there exist functions G̃j(x, y) such that

G j (x, y) = curlx G̃j(x, y),

where

G̃j(x, y) := Ũj(x, y)+ H̃j(x, y),

Ũj(x, y) = curlx

(
1

8π
|x − y|e j

)

, Hj(x, y) = curlx H̃j(x, y).

Here

Dα
x Dβ

y G̃i j (x, y) = B(x, y)|x − y|−|α|−|β|, x �= y,

and B(x, y) are bounded functions.
Let u, v be smooth solenoidal functions in B(0, 1). We use Green’s formulas in

the next consideration:

∫

B(0,1)\F

(

Δv− ∇ p,u
)

dx =
∫

B(0,1)\F
D[v] · D[u]dx

+
∫

∂B(0,1)

(
∂v
∂n1

− pn1,u
)

ds +
∫

∂F

(
∂v
∂n2

− pn2,u
)

ds, (15)

∫

B(0,1)\F

{

(Δv−∇ p,u)− (Δu− ∇q, v)
}

dx

= ∫

∂B(0,1)

{

( ∂v
∂n1
− pn1,u)− ( ∂u

∂n1
− qn1, v)

}

ds

+ ∫

∂F

{

( ∂v
∂n2
− pn2,u)− ( ∂u

∂n2
− qn2, v)

}

ds, (16)

where n1 is the outer normal vector to B(0, 1), n2 is the interior vector to F .
Let in (16) u := G j (x, y) and v := vk(x) be a solution of (9), then
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∫

B(0,1)\F

{

(Δvk −∇ pk,G j (x, y))− (Δx G j (x, y)− ∇q, vk)
}

dx

= ∫

∂B(0,1)

{

( ∂vk

∂n1
− pkn1,G j (x, y))− ( ∂x G j (x, y)

∂n1
− q j n1, vk)

}

dx s

+ ∫

∂F

{

( ∂vk

∂n2
− pkn2,G j (x, y))− ( ∂x G j (x, y)

∂n2
− q j n2, vk)

}

dx s. (17)

We use the following properties of functions vk(x), G j (x, y):

∇vk(x) = ∇x G j (x, y) = 0 if x ∈ ∂B(0, 1),

vk(x) = ek,
∂vk

∂n2
= 0 if x ∈ ∂F ,

∫

B(0,1)\F
(Δx G j (x, y)−∇q j , vk)dx =

∫

B(0,1)\F
δ(x, y)vk

j (x)dx = vk
j (y),

if (x, y) ∈ B(0, 1)× B(0, 1). Then from (17) we derive

vk
j (y) = −

∫

∂F

((
∂vk

∂n2
− pkn2,G j (x, y)

)

−
(
∂x G j (x, y)

∂n2
− q j n2, ek

))

dx s (18)

for all y ∈ B(0, 1). To prove that

∫

∂F

(∂x G j (x, y)

∂n
− q j n2, ek

)

dx s = 0, (19)

we use formula (15) with v := G j (x, y), u := ek, y ∈ F , and the domain of
integration F \ ∂F . Then we obtain

∫

F\∂F

(

Δx G j (x, y)−∇q j , ek

)

dx

= ∫

F\∂F
Dx [G j (x, y)] · D[ek]dx + ∫

∂F

(
∂G j (x,y)

∂n2
− q j (x)n2, ek

)

dx s. (20)

From (20) we have (19). Using (18) and (19), we derive

Dαvk
j (y) = −

∫

∂F

( ∂vk

∂n2
− pkn, Dα

y G j (x, y)
)

dx s ∀y ∈ B(0, 1), (21)

with |α| = 0, 1, 2.
Now we introduce cut-off functions ϕ and ψ :
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• ϕ(|x ′|) ∈ C∞0 (B(0, b)), ϕ(|x ′|) = 1 if |x ′| ≤ d, ϕ(|x ′|) = 0 if |x ′| ≥ b, and
such that ‖∇ϕ(|x ′|)‖2

L2(B(0,b)) ≤ C6ln −1 b
2d , where C6 is a positive constant;

• ψ(t) ∈ C∞(R1), is such that ψ(t) = 1 if |t | ≤ 1
2 , ψ(t) = 0 if |t | ≥ 1.

By uα
j (x, y), |α| = 0, 1, we define the following function

uα
j (x, y) := curlx

(

Dα
y G̃ j (x, y)ϕ(|x ′|)ψ

(
y3 − x3

h

))

∀(x, y) ∈ B(0, 1) × B(0, 1), h < H . This type of functions was used in [4]. It is
easy to see that

uα
j (x, y) = Dα

y G j (x, y), ∀x ∈ ∂F ⊂ Qh
a .

Moreover,

uα
j (x, y) ∈ C∞(Qh

a), if |y′| ≥ 2b,

and

uα
j (x, y) = 0 if |x ′| ≥ b.

Let in (15) u := uα
j (x, y), v := vk be a solution of (9), then we deduce

∫

B(0,1)\F

(

Δvk −∇ pk,uα
j (x, y)

)

dx = ∫

B(0,1)\F
D[vk] · Dx [uα

j (x, y)]dx

+ ∫

∂B(0,1)

(
∂vk

∂n1
− pkn1,uα

j (x, y)
)

dx s + ∫

∂F

(
∂vk

∂n2
− pkn2,uα

j (x, y)
)

dx s.

From the last identity we derive

∫

∂F

(
∂vk

∂n2
− pkn2, Dα

y G j (x, y)

)

dx s = −
∫

B(0,1)\F
D[vk] · Dx [uα

j (x, y)]dx . (22)

Finally, from (21) and (22) we have

Dα
y v

k
j (y) =

∫

B(0,1)\F
D[vk] · Dx [uα

j (x, y)]dx,

for |y′| ≥ 2b. From this identity, using Hölder’s inequality, we derive

|Dα
y v

k
j (y)| ≤

⎛

⎜
⎝

∫

B(0,1)\F
|D[vk]|2dx

⎞

⎟
⎠

1
2
⎛

⎜
⎝

∫

B(0,1)\F
|Dx [uα

j (x, y)]|2dx

⎞

⎟
⎠

1
2

. (23)
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By ωk(x) ∈ Hk(F) we denote a function

ωk(x) := curl{ẽk(x)ϕ(|x ′|)ψ
( x3

2h

)

},

where ẽk is such that curl ẽk(x) = ek , that is, ẽ1(x) = {0, 0, x2}, ẽ2(x) = {x3, 0, 0},
ẽ3(x) = {0, x1, 0}. Using the fact that minimum of the functional J (vk) in class
Hk(F) is reached on vk , we obtain

∫

B(0,1)\F
|D[vk]|2dx ≤ C

∫

B(0,1)

|D[ωk]|2dx =

n
∑

i, j=1

∫

B(0,1)

∣
∣
∣
∣

∂ωk
i

∂x j

∣
∣
∣
∣

2

dx ≤ C7hln −1 b

2d
,

(24)

hereafter C are generic constants not depending of d.
We consider the second integral in the right-hand side of (23). Using properties

of the cut-off functions ϕ and ψ , we derive the following estimate

∫

B(0,1)\F

∣
∣
∣
∣
Dx [curlx

(

Dα
y G̃ j (x, y)ϕ(|x ′|)ψ

(
y3 − x3

h

))

]

∣
∣
∣
∣

2

dx ≤

C

|y′|2|α|+1
ln −1 b

2d
.

(25)

Here we used that |y′| ≥ 2b, |x ′| ≤ b, and |y′| − |x ′| ≥ |y′|
2 . Finally, from (23),

(24) and (25) we obtain the following preliminary pointwise estimate

|Dαvk
i (x)| ≤ C8

(
h

|y′|
) 1

2 1

|y′||α| ln
−1 1

d
, |α| = 0, 1, 2, (26)

for 4d < b < 2
√

d . In this step we apply the auxiliary lemma which is proved using
methods from [22, 23].

Lemma 1 Let vk be a solution of problem (9) and there exist positive constants
K1, K2, K3, such that the following estimates

∫

Qh
K3h

|D[vk]|2dx ≤ K1hln −1 1

d
, (27)

|Dαvk
i (x)| ≤ K2

(
h

|x ′|
) 1

2 ln −1 1
d

|x ′||α| , 2b ≤ |x ′| ≤ K3h, (28)

|Dαvk
i (x)| ≤ K2

(
2

K3

) 1
2 ln −1 1

d

|x ′||α| , K3h < |x ′| ≤ 1, (29)
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are valid for a fixed h < H and |α| = 0, 1, 2. Then the following estimates are
satisfied

∫

Q
h
2
K3

h
2

|D[vk]|2dx ≤ K1
h

2
ln −1 1

d
, (30)

|Dαvk
i (x)| ≤ K2

(
h

2|x ′|
) 1

2 ln −1 1
d

|x ′||α| , 2b ≤ |x ′| ≤ K3
h

2
, (31)

|Dαvk
i (x)| ≤ K2

(
2

K3

) 1
2 ln −1 1

d

|x ′||α| , K3
h

2
< |x ′| ≤ 1, (32)

for |α| = 0, 1, 2.

Let R = min {K3 H, 1}. We define a sequence of numbers hi = 2−i+1 H, i =
1, . . . , I, such that 2−I R < 2b < 2−I+1 R. Then the following inequalities are valid

∫

Q
hi
K3hi

|D[vk]|2dx ≤ K1hi ln
−1 1

d
, (33)

|Dαvk
i (x)| ≤ K2

(
hi

|x ′|
) 1

2 ln −1 1
d

|x ′||α| , 2b ≤ |x ′| ≤ K3hi , (34)

|Dαvk
i (x)| ≤ K2

(
2

K3

) 1
2 ln −1 1

d

|x ′||α| , K3hi < |x ′| ≤ 1, (35)

for every i = 1, . . . , I, and |α| = 0, 1, 2. Let i = 1. Then inequalities (34), (35)
follow from preliminary estimate (26) with K2 ≥ C7. Integral estimate (33) is a
consequence of (24) for K1 ≥ C8. Estimates (34), (35) hold for i = i1 ≤ I − 1, this
means that they are valid for i = i1 + 1 due to Lemma 1. It implies that estimates
(33), (34) and (35) are satisfied for every i = 1, . . . , I .

Let x0 ∈ Q1
1\F be an arbitrary point. For x0 satisfying the following estimate

K3hI < |x ′0| ≤ R,

we define a number i0 = i0(|x ′0|) such that

K3hi0+1 < |x ′0| ≤ K3hi0 .

In this case we apply pointwise estimate (34) for i = i0
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|Dαvk
i (x0)| ≤ K2

(
hi0

|x ′0|
) 1

2 ln −1 1
d

|x ′0||α|
≤ K2

(
hi0

K3hi0+1

) 1
2 ln −1 1

d

|x ′0||α|
≤

2K2 K
− 1

2
3

ln −1 1
d

|x ′0||α|
.

(36)

For the case |x ′0| > R we use preliminary pointwise estimate (26). From the
choice of R we obtain

|Dαvk
i (x0)| ≤ C8

(
H

R
+ 1

) 1
2 ln −1 1

d

|x ′0||α|
≤ C

(

K−1
3 + 1

) 1
2

ln −1 1
d

|x ′0||α|
(37)

for |α| = 0, 1, 2. From (36) and (37) we derive (11).
Now we will show the integral estimates for the solution of the model problem.

Estimate (13) is obtained analogously to (24), with the help of cut-off function
ψ( x3

2H ). Let us prove (12). We divide the domain of integration B(0, 1) into two
parts

B(0, 1) = (

B(0, 1) \ Q H
2b

)⋃

Q H
2b.

Integral over B(0, 1) \ Q H
2b we estimate using pointwise estimate (11):

∫

B(0,1)\Q H
2b

|vk
i (x)|2dx ≤ C ln −2 1

d
. (38)

Now we estimate the integral over the cylinder Q H
2b. For x ∈ Q H

2b we denote by
x ′t = x ′ t

|x ′| , then

vk
i (x) = vk

i (x ′2b, x3)−
2b∫

|x ′ |

dvk
i (x ′t , x3)

dt
dt.

Using Hölder’s inequality, we derive

|vk
i (x)|2 = 2|vk

i (x ′2b, x3)|2 + 2

⎛

⎜
⎝

2b∫

|x ′|

∣
∣
∣
∣

dvk
i (x ′t , x3)

dt

∣
∣
∣
∣
dt

⎞

⎟
⎠

2

≤ 2|vk
i (x ′2b, x3)|2 + 2

2b∫

|x ′ |
dt

2b∫

0

|∇vk
i |2 dt.
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Integrating the last inequality over the cylinder Q H
2b, we obtain

∫

Q H
2b

|vk
i (x)|2dx ≤ 2

∫

Q H
2b

|vk
i (x ′2b, x3)|2 dx + 4b

∫

Q H
2b

2b∫

0

|∇vk
i (x ′t , x3)|2 dtdx .

The first integral on the right-hand side we estimate using (11), the second inte-
gral is estimated analogously to (24). Then we get (13). The proof is completed.
��
Remark 3 Using integral estimate of solution to problem (9) one obtains the follow-
ing estimate

∫

Qh
1

|D[vk]|2 dx ≤ C9hln −1 1

d
, ∀ h ≤ H. (39)

4 Auxiliary Statements and Cut-off Functions

To specify some geometrical properties of perforated domains Ωs , we formulate the
additional statements which can be found in [22]. The following inclusion is valid
for i ∈ I ′′

U(l (s)
i , 2ε(s)

i ) ⊂ U(L (s)
i,1, 2ε(s)

i )
⋃

U(T (s)
i ({2ε(s)

i }), 2ε(s)
i (2+ 1

λs
)).

The following results were proved in [22].

Lemma 2 There exists a number γ , not depending on s and i , such that
(I) the sets G(s)

i,m(γ ), m = 1, . . . ,M(i, s), are disjoint for every fixed s, i . Here

the sets G(s)
i,m(γ ) are defined by (7);

(II) the following inclusion holds

U(l (s)
i , 2ε(s)

i ) ⊂
{ P(i,s)

⋃

p=1

B(z(s)
i,p, 2λsε

(s)
i (2+ 1/λs))

}⋃

{M(i,s)
⋃

m=1

{

G(s)
i,m(γ + 1/3)

⋃

B(α(s)
i,m, (γ + 2/3)ε(s)

i )
⋃

B(β(s)
i,m, (γ + 2/3)ε(s)

i )
}}

.

The covering of set U(l (s)
i , 2ε(s)

i ) introduced in (II) is used for the construction of
asymptotic expansion of solutions {u(s)(x)}∞s=1 to problem (1).

If i ∈ I ′(s) we divide the curve onto the finite number of curvilinear segments

with equal length such that it belongs to the segment [ d (s)
i
2 , d (s)

i ]. Then we have



The Dirichlet Problems for Steady Navier-Stokes Equations 355

l (s)
i =

R(i,s)
⋃

r=1

l (s)
i (r ),

d (s)
i

2
≤ |l (s)

i (r )| ≤ d (s)
i ,

U(l (s)
i , 2d (s)

i ) =
R(i,s)
⋃

r=1

U(l (s)
i (r ), 2d (s)

i ), i ∈ I ′(s).

Now we define the cut-off functions in a different way for indices i ∈ I ′(s), i ∈
I ′′(s). Let m = 1, . . . ,M(i, s), p = 1, . . . ,P(i, s), j ∈ I ′(s), r = 1, . . . ,R( j, s),
then we denote:

B(s,1)
i,m = B(αi,m, (γ + 1)ε(s)

i ), B(s,2)
i,m = B(β(s)

i,m, (γ + 1)ε(s)
i ),

B(s,3)
i,m = B

(

x (s)
i,m,

(

2+ 1

λs

)

ε
(s)
i

)

, B̄(s)
i,m = B

(

z(s)
i,m, 2λε(s)

i

(

3+ 1

λs

))

,

D(s)
j,r = U(l (s)

j (r ), 2d (s)
j ), G(s)

i,m = G(s)
i,m(γ ),

where x (s)
i,m is the middle of the curve segment L (s)

i (m). Numbers λs and ε
(s)
i are

defined in (5) and (6) accordingly, and α
(s)
i,m, β

(s)
i,m, γ, take the same values as in (7).

We define for i ∈ I ′′(s), m = 1, . . . ,M(i, s), p = 1, . . . ,P(i, s), j ∈
I ′(s), r = 1, . . . ,R( j, s), the sequences of cut-off functions

{ϕ(s)
i,m(x)}, {ψ (s,1)

i,m (x)}, {ψ (s,2)
i,m (x)}, {χ (s)

i,p(x)}, {ω(s)
j,r (x)}

from C∞(R3) with values in [0, 1], such that the following properties are satisfied:

(a) suppϕ(s)
i,m(x) ⊂ G(s)

i,m, suppψ (s,1)
i,m (x) ⊂ B(s,1)

i,m , suppψ (s,2)
i,m (x) ⊂ B(s,2)

i,m ,

suppχ (s)
i,p(x) ⊂ B̄(s)

i,p, suppω(s)
j,r (x) ⊂ D(s)

j,r ;

(b)
∑

j∈I ′(s)
ω

(s)
j (x)+ ∑

j∈I ′′(s)
σ

(s)
i (x) = 1, for x ∈

I (s)⋃

i=1
U(l (s)

i , �i ),

where ω
(s)
j (x) =

R( j,s)∑

r=1
ω

(s)
j,r (x),

σ
(s)
i (x) =

M(i,s)
∑

m=1

[

ϕ
(s)
i,m(x)+ ψ

(s,1)
i,m (x)+ ψ

(s,2)
i,m (x)

]+
P(i,s)
∑

p=1

χ
(s)
i,p(x);

(c) ϕ(s)
i,m(x) = 1 for x ∈ U(l (s)

i , �
(s)
i ) ∩ G(s)

i,m(γ + 1);
(d) there exists a constant C10 not depending on i, s, such that

|∇ϕ(s)
i,m(x)| + |∇ψ (s,1)

i,m (x)| + |∇ψ (s,2)
i,m (x)| + |∇χ (s)

i,p(x)| ≤ C10

ε
(s)
i

for i ∈ I ′′s ,
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|∇ω(s)
i,r (x)| ≤ C10

d (s)
i

for i ∈ I ′s ;

(e) the order of the following families of sets

{suppϕ(s)
i,m, suppψ (s,1)

i,m , suppψ (s,2)
i,m , suppχ (s)

i,p, suppω(s)
j,r },

for every i ∈ I ′′(s), m = 1, . . . ,M(i, s), p = 1, . . . ,P(i, s), j ∈ I ′(s),
r = 1, . . . ,R( j, s), is less or equal than a constant not depending of s.

These functions were constructed in [22] and it was shown that

{suppϕ(s)
i ′,m ′ (x)} ∩ {suppϕ(s)

i ′′,m ′′ (x)} = ∅ if (i ′,m ′) �= (i ′′,m ′′)

for every fixed number s. We recall the asymptotic properties which were proved
in [22]:

M(i, s) ε
(s)
i
λs
≤ C11, R(i, s)d (s)

i ≤ C11,
I (s)∑

i=1
P(i, s)(r (s)

i )3 ≤ C11,

I (s)∑

i=1
(r (s)

i )2 ≤ C12,
I (s)∑

i=1
ln −1 1

d (s)
i

≤ C12. (40)

Using definitions of ε(s)
i , λs, μs, and inequalities (40) it can be shown that

lim
s→∞

∑

i∈I ′′(s)

M(i, s)
λs

(ε(s)
i )3 = 0, lim

s→∞
∑

i∈I ′(s)
R(i, s)(ε(s)

i )2 = 0,

lim
s→∞

∑

i∈I ′′(s)
M(i, s)(ε(s)

i )2 = 0, lim
s→∞

∑

i∈I ′′(s)
P(i, s)(ε(s)

i )2 = 0. (41)

5 Asymptotic Expansion of Solutions and Proof
of the Main Result

The construction of asymptotic expansion of solutions to problems (1) is connected
with the separation of leading terms which are constructed by means of solutions
of local boundary value problems. We need Theorem 6 (see Appendix) about the
representation of solenoidal vectors from the space L2(Ω)3 in the form of rotors
[6]. Let G = B(x0, R), then from this theorem and using a scaling argument, the
following estimates can be obtained:

‖ũ‖L2(G)3 ≤ C13 R‖u‖L2(G)3 , ‖Dũ‖L2(G)3 ≤ C13‖u‖L2(G)3 , (42)

where the constant C13 does not depend on R and u(x).
For an arbitrary function g(x) = (g1(x), g2(x), g3(x)) ∈ L1(Ω)3 we define:
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M (s)
i,m[gk] = 1

meas B(s,3)
i,m

∫

B(s,3)
i,m

gk(x) dx, M (s,t)
i,m [gk] = 1

meas B(s,t)
i,m

∫

B(s,t)
i,m

gk(x) dx,

M̄ (s)
i,p[gk] = 1

mes B̄(s)
i,p

∫

B̄(s)
i,p

gk(x) dx, M̂ (s)
j,r [gk] = 1

meas D(s)
j,r

∫

D(s)
j,r

gk(x) dx,

where i ∈ I ′′(s), m = 1, . . . ,M(i, s), t = 1, 2, p = 1, . . . ,P(i, s), j ∈ I ′(s),
r = 1, . . . ,R(i, s), k = 1, 2, 3.

Let {u(δ)}∞δ=1 be a uniformly bounded sequence of functions from C∞(Ω) which
converges to u(0) in W 1,2(Ω)3 as δ→∞. Let us define the following vectors:

u(s,δ)
i,m = (

M (s)
i,m[u(δ)

1 ], M (s)
i,m[u(δ)

2 ], M (s)
i,m[u(δ)

3 ]
)

,

u(s,δ,t)
i,m = (

M (s,t)
i,m [u(δ)

1 ], M (s,t)
i,m [u(δ)

2 ], M (s,t)
i,m [u(δ)

3 ]
)

,

ū(s,δ)
i,p = (

M̄ (s)
i,p[u(δ)

1 ], M̄ (s)
i,p[u(δ)

2 ], M̄ (s)
i,p[u(δ)

3 ]
)

,

f (s)
i,m =

(

M (s)
i,m[ f1], M (s)

i,m[ f2], M (s)
i,m[ f3]

)

,

û(s,δ)
j,r =

(

M̂ (s)
j,r [u(δ)

1 ], M̂ (s)
j,r [u(δ)

2 ], M̂ (s)
j,r [u(δ)

3 ]
)

,

f (s,t)
i,m = (

M (s,t)
i,m [ f1], M (s,t)

i,m [ f2], M (s,t)
i,m [ f3]

)

,

f̄(s)
i,p =

(

M̄ (s)
i,p[ f1], M̄ (s)

i,p[ f2], M̄ (s)
i,p[ fn]

)

,

f̂
(s)
j,r =

(

M̂ (s)
j,r [ f1], M̂ (s)

j,r [ f2], M̂ (s)
j,r [ f3]

)

.

We denote by v̄(s)
k,i,r , v(s,t)

k,i,m, v̂(s)
k,i,p, the following solutions of the model problem

(4) in different domains:

v̄(s)
k,i,r (x) := vk(x ; D(s)

i,r , D(s)
i,r ∩ [F (s) ∩ ∂Ω]),

v(s,t)
k,i,m(x) := vk(x ; B(s,t)

i,m , B(s,t)
i,m ∩ [F (s) ∩ ∂Ω]),

v̂(s)
k,i,p(x) := vk(x ; B̂(s)

i,p, B̂(s)
i,p ∩ [F (s) ∩ ∂Ω]).

With the help of Theorem 6, we define the rotations of these solutions to the
model problems with the mentioned properties

v(s)
k,i,m = curl ṽ(s)

k,i,m, v(s,t)
k,i,m = curl ṽ(s,t)

k,i,m, v̄(s)
k,i,r = curl ˜̄v(s)

k,i,r , v̂(s)
k,i,p = curl ˜̂v(s)

k,i,p.

By ũ(s,δ)
i,m (x), ũ(s,δ,t)

i,m (x), ˜̄u(s,δ)
i,r (x), ˜̄u(s,δ)

i,r (x), we denote functions satisfying the fol-
lowing relations

u(s,δ)
i,m − u(δ)(x) = curl ũ(s,δ)

i,m (x), u(s,δ,t)
i,m − u(δ)(x) = curl ũ(s,δ,t)

i,m (x),

ū(s,δ)
i,r − u(δ)(x) = curl ˜̄u(s,δ)

i,r (x), û(s)
i,p − u(δ)(x) = curl ˜̂u

(s,δ)
i,p (x).
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We use the following ansatz for the asymptotic expansion of the solution to
problem (1)

u(s,δ)(x) = u(δ)(x)+ r(s,δ)(x)+
4

∑

j=1

r(s,δ)
j (x)+ ws,δ(x), (43)

where

r(s,δ)(x) = −
∑

i∈I ′′s

M(i,s)
∑

m=1

curl
{

3
∑

k=1

ṽ(s)
k,i,m(x) u(s,δ)

i,m,kϕ
(s)
i,m(x)

}

,

r (s,δ)
1 (x) =

∑

i∈I ′s

R(i,s)
∑

r=1

curl
{

˜̄u(s,δ)
i,r (x)ω(s)

i,r

}+
∑

i∈I ′′s

P(i,s)
∑

p=1

curl
{

˜̂u(s,δ)
i,p (x)χ (s)

i,p

}

+
∑

i∈I ′′s

M(i,s)
∑

m=1

(

curl
{

ũ(s,δ)
i,m (x)ϕ(s)

i,m

}+
2

∑

t=1

curl
{

ũ(s,δ,t)
i,m (x)ψ (s,t)

i,m

}
)

,

r (s,δ)
2 (x) = −

∑

i∈I ′s

R(i,s)
∑

r=1

curl
{

3
∑

k=1

˜̄v(s)
k,i,r (x) u(s,δ)

i,r,kω
(s)
i,r (x)

}

,

r (s,δ)
3 (x) = −

∑

i∈I ′′s

M(i,s)
∑

m=1

2
∑

t=1

curl
{

3
∑

k=1

ṽ(s,t)
k,i,m(x) u(s,δ,t)

i,m,k ψ
(s,t)
i,m (x)

}

,

r(s,δ)
4 (x) = −

∑

i∈I ′′(s)

P(i,s)
∑

p=1

curl
{

3
∑

k=1

˜̂v(s)
k,i,p(x) ũ(s,δ)

i,p,kχ
(s)
i,p(x)

}

,

and ws,δ ∈ H (Ωs) is the remainder term of asymptotic expansion.
In order to investigate the behavior of r(s,δ)(x) and r(s,δ)

j (x) as s → ∞ from
asymptotic expansion (43) we use the pointwise and integral estimates from Theo-
rem 2, definition and properties of the cut-off functions. In such way we prove the
following results:

Theorem 3 Suppose that conditions (i)–(v) are satisfied. Then the sequences of
functions {r(s,δ)

j }∞s=1, j = 1, 2, 3, 4, converge to zero strongly in H (Ω) as s →∞.

Theorem 4 Suppose that conditions (i)–(v) are satisfied. Then the sequence of solu-
tions {r(s,δ)}∞s=1 converges to zero strongly in W 1,ϑ (Ω)3 for any 0 < ϑ < 2 and
weakly in H (Ω) as s →∞.

Proofs of these theorems are similar to the proofs of analogous results in [22]
and they are omitted here.

In the next theorem we obtain the behavior of the reminder term ws,δ(x) of
asymptotic expansion (43).
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Theorem 5 Suppose that conditions (i)–(v) are satisfied. Then the sequence of func-
tions {ws,δ}∞s=1 converges to zero strongly in H (Ω) as s →∞.

Proof It follows from definition (43) of function u(s,δ), and from Theorems 3, 4, that
ws,δ converges to zero weakly as s →∞. We will prove that ws,δ converges to zero
strongly in H (Ω). Plugging the function ϕs = ws,δ ∈ H (Ωs) into integral identity
(2), we have

∫

Ωs

νD[u(s,δ)] · D[ws,δ] dx −
∫

Ωs

(u(s,δ) · ∇)ws,δ · u(s,δ)dx = −
∫

Ωs

fws,δ dx . (44)

From the weak convergence ws,δ to zero in H (Ω) as s →∞ we derive

lim
s→∞

∫

Ωs

fws,δdx = 0.

Let us consider the second integral on the left-hand side of (44). From the defi-
nition of the function u(s,δ) we have

∫

Ωs

(u(s,δ) · ∇)ws,δ · u(s,δ)dx

=
∫

Ωs

((u(δ) + r(s,δ) +
4

∑

j=1

r(s,δ)
j + ws,δ) · ∇)ws,δ · (u(δ) + r(s,δ) +

4
∑

j=1

r(s,δ)
j + ws,δ)dx .

Then, from the weak convergence of function ws to zero in H (Ω), it is simple to
see that

lim
s→∞

∫

Ωs

(u(δ) · ∇)ws,δ · u(δ)dx = 0.

From the strong convergence of (r(s,δ)+∑4
j=1 r(s,δ)

j ) and ws,δ in Lq (Ω)3, q < 6,
to zero as s →∞, and from the boundedness of ‖u(δ)‖L2(Ω)3 and ‖∇ws,δ‖L2(Ω)3 by
a constant not depending of s, we derive

lim
s→∞

∫

Ωs

(ws,δ · ∇)ws,δ · ws,δdx ≤ C lim
s→∞

( ∫

Ωs

|ws,δ|4 dx
) 1

2
( ∫

Ωs

|∇ws,δ|2 dx
) 1

2= 0,

lim
s→∞

∫

Ωs

(ws,δ · ∇)ws,δ · u(δ) dx = lim
s→∞

∫

Ωs

(u(δ) · ∇)ws,δ · ws,δdx

≤ C lim
s→∞

( ∫

Ωs,δ

|ws,δ|4 dx
) 1

4
( ∫

Ωs

|u(δ)|4 dx
) 1

4
( ∫

Ωs

|∇ws,δ|2 dx
) 1

2= 0,
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lim
s→∞

∫

Ωs

(u(δ) · ∇)ws,δ · (r(s,δ) +
4

∑

j=1

r(s,δ)
j )dx

≤ C lim
s→∞

( ∫

Ωs

|r(s,δ) +
4

∑

j=1

r(s,δ)
j |4 dx

) 1
4
( ∫

Ωs

|∇ws,δ|2 dx
) 1

2
( ∫

Ωs

|u(δ)|4 dx
) 1

4= 0,

lim
s→∞

∫

Ωs

(ws,δ · ∇)ws,δ · (r(s,δ) +
4

∑

j=1

r(s,δ)
j )dx

= lim
s→∞

∫

Ωs

((r(s,δ) +
4

∑

j=1

r(s,δ)
j ) · ∇)ws,δ · ws,δdx

≤ C lim
s→∞

( ∫

Ωs

|r(s,δ) +
4

∑

j=1

r(s,δ)
j |4 dx

) 1
4
( ∫

Ωs

|∇ws,δ|2 dx
) 1

2
( ∫

Ωs

|ws,δ|4 dx
) 1

4= 0,

lim
s→∞

∫

Ωs

((r(s,δ) +
4

∑

j=1

r(s,δ)
j ) · ∇)ws,δ · u(δ)dx

≤ C lim
s→∞

( ∫

Ωs

|r(s,δ) +
4

∑

j=1

r(s,δ)
j |4 dx

) 1
4
( ∫

Ωs

|∇ws,δ|2 dx
) 1

2
( ∫

Ωs

|u(δ)|4 dx
) 1

4= 0,

lim
s→∞

∫

Ωs

((r(s,δ) +
4

∑

j=1

r(s,δ)
j ) · ∇)ws · (r(s,δ) +

4
∑

j=1

r(s,δ)
j )dx

≤ C lim
s→∞

( ∫

Ωs

|r(s,δ) +
4

∑

j=1

r(s,δ)
j |4 dx

) 1
2
( ∫

Ωs

|∇ws,δ|2 dx
) 1

2= 0.

This gives us

lim
s→∞

∫

Ωs

(u(s,δ) · ∇)ws,δ · u(s,δ)dx = 0. (45)

Now we consider the first integral on the left-hand side of (44)

∫

Ωs

D[u(s,δ)] · D[ws,δ] dx

≤ C
∫

Ωs

(

D[u(δ)]+ D[r(s,δ)]+ D[
4∑

j=1
r(s,δ)

j ]+ D[ws,δ]

)

D[ws,δ] dx .
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Since ‖D[u(δ)]‖L2(Ω)3 is bounded, ∇(
∑4

j=1 r(s,δ)
j ) converges strongly to zero, and

∇ws,δ(x) converges weakly to zero in L2(Ω)3 as s →∞, we obtain

lim
s→∞

∫

Ωs

D[u(δ)] · D[ws,δ] dx = 0, lim
s→∞

∫

Ωs

D[
4

∑

j=1

r(s,δ)
j ] · D[ws,δ] dx = 0.

Let us prove that

lim
s→∞

∫

Ωs

D[r(s,δ)] · D[ws,δ] dx = 0. (46)

Using that ϕ(s)
i,m

∂ws,δ,ξ

∂xξ
= ∂

∂xξ
(ϕ(s)

i,mws,δ,ξ ) − ws,δ,ξ
∂ϕ

(s)
i,m

∂xξ
, ξ = 1, 2, 3, and definition

of the function v(s)
k,i,m(x), we obtain

∣
∣
∣
∣
∣
∣

∫

Ωs

D[r(s,δ)] · D[ws,δ] dx

∣
∣
∣
∣
∣
∣

=
∣
∣
∣

∫

Ωs

D[
∑

i∈I ′′s

M(i,s)
∑

m=1

curl
{

3
∑

k=1

ṽ(s)
k,i,mu(s,δ)

i,m,kϕ
(s)
i,m

}

]

· D[ws,δ] dx
∣
∣
∣ ≤

∑

i∈I ′′s

M(i,s)
∑

m=1

3
∑

k=1

|u(s,δ)
i,m,k |

∣
∣
∣

∫

Ωs

D[v(s)
k,i,mϕ

(s)
i,m

] · D[ws,δ] dx +
∫

Ωs

D[∇ϕ(s)
i,m × ṽ(s)

k,i,m

]

· D[ws,δ] dx
∣
∣
∣ ≤

C
∑

i∈I ′′s

M(i,s)
∑

m=1

3
∑

k=1

|u(s,δ)
i,m,k |

(∣
∣
∣

∫

Ωs

D[v(s)
k,i,m] · D[ws,δϕ

(s)
i,m] dx

∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∫

Ωs

D[∇ϕ(s)
i,m × ṽ(s)

k,i,m] · D[ws,δ] dx

∣
∣
∣
∣
∣
∣

+
∫

Ωs

|D[v(s)
k,i,m]||ws,δ||∇ϕ(s)

i,m | dx

+
∫

Ωs

|v(s)
k,i,m ||D[ws,δ]||∇ϕ(s)

i,m | dx
)

. (47)

We consider every integral on the right-hand side of the last inequality, using the
pointwise and integral estimates of solutions to model problems and definition of
the cut-off functions. For the first integral on the right-hand side of (47) we derive

lim
s→∞

∑

i∈I ′′s

M(i,s)∑

m=1

3∑

k=1

∣
∣
∣
∣
∣

∫

Ωs

D[v(s)
k,i,m] · D[ws,δϕ

(s)
i,m] dx

∣
∣
∣
∣
∣
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≤ C lim
s→∞

⎛

⎝
∫

G(s)
i,m

(
ε

(s)
i
|x ′|

)2
dx

⎞

⎠

1
2
⎛

⎝
∫

G(s)
i,m

|ws,δ|2 dx

⎞

⎠

1
2

= 0,

since ws,δ converges to zero strongly in L2(Ω)3 as s →∞. From condition (i) and
definition of ε(s)

i we obtain

lim
s→∞

∑

i∈I ′′s

M(i,s)
∑

m=1

3
∑

k=1

∫

Ωs

|v(s)
k,i,m ||D[ws,δ]||∇ϕ(s)

i,m | dx ≤

C lim
s→∞

M(i,s)
∑

m=1

3
∑

k=1

⎛

⎝

∫

Ω

|D[ws,δ]|dx

⎞

⎠

1
2

⎛

⎜
⎜
⎝

∑

i∈I ′′s

1

(ε(s)
i )2

∫

F (s,1)
i,m

|v(s)
k,i,m |2 dx

⎞

⎟
⎟
⎠

1
2

= 0,

where F (s,1)
i,m := G(s)

i,m \ (U(l (s)
i , ε

(s)
i )

⋂
G(s)

i,m(γ + 1)).

Analogously, using inequality (42) and the integral estimate of solutions v(s)
k,i,m of

the model problems, we have

lim
s→∞

M(i,s)
∑

m=1

3
∑

k=1

∑

i∈I ′′s

∣
∣
∣
∣
∣
∣

∫

Ωs

D[∇ϕ(s)
i,m × ṽ(s)

k,i,m] · D[ws,δ] dx

∣
∣
∣
∣
∣
∣

= 0.

For estimation of the third integral on the right-hand side of (47) we use the
following inequalities for the function ws,δ

M(i,s)∑

m=1

∫

E (s,ζ )
i,m

|ws,δ|2 dx ≤

C(ε(s)
i )2

⎛

⎝ 1
(r (s)

i )2

∫

U(l(s)
i ,r (s)

i )

|ws,δ|2 dx + ln 1
ε

(s)
i

∫

U(l(s)
i ,r (s)

i )

|D[ws,δ]|2 dx

⎞

⎠ (48)

where ζ = 1, 2, and

E (s,1)
i,m := {U(l (s)

i , 2ε(s)
i ) \ U(l (s)

i , ε
(s)
i )}

⋂

G(s)
i,m(γ + 2),

E (s,2)
i,m := G(s)

i,m(γ ) \ G(s)
i,m(γ + 2).

To prove this inequality we use the change of variables y = g(s)
i (x) where g(s)

i
are the diffeomorphisms from condition (v). The following estimates are valid
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|Dαvk
i (x)| ≤ C14

�|α|(x, l (s)
i )

ln −1 1

d (s)
i

, |α| = 0, 1, 2, ∀ x ∈ E (s,1)
i,m , (49)

∫

E (s,2)
i,m

|D[vk]|2 dx ≤ C15ε
(s)
i ln −1 1

d (s)
i

. (50)

Using (48), (49), (50), we obtain

lim
s→∞

∑

i∈I ′′s

M(i,s)∑

m=1

3∑

k=1

∫

Ωs

|D[v(s)
k,i,m]||ws,δ||∇ϕ(s)

i,m | dx

≤ lim
s→∞C

∑

ζ=1,2

∑

i∈I ′′s

3∑

k=1

⎛

⎝

M(i,s)∑

m=1

∫

E (s,ζ )
i,m

|D[v(s)
k,i,m]|2 dx

⎞

⎠

1
2

×
⎛

⎝

M(i,s)∑

m=1

1
(ε(s)

i )2

∫

E (s,ζ )
i,m

|D[ws,δ]|2 dx

⎞

⎠

1
2

= 0.

From (45) and (46) we derive

lim
s→∞

∫

Ωs

|D[ws,δ]|2 dx = 0.

From Korn’s inequality (see [15, 20]) and the last equality we obtain the conver-
gence of ∇ws,δ in L2(Ω)3 to zero as s →∞. Theorem 5 is proved. ��

Now we present the method how to construct a boundary value problem for the
limit function u(0). Let h be an arbitrary function of class C∞0 (Ω). Let us introduce
a sequence of functions

hs(x) = h(x)+ q(s)(x)+
4

∑

j=1

q(s)
j (x), s ∈ N, (51)

where

q(s)(x) = −
∑

i∈I ′′s

M(i,s)
∑

m=1

curl
{

n
∑

k=1

ṽ
(s)
k,i,m(x) h(s)

i,m,kϕ
(s)
i,m(x)

}

,

q (s)
1 (x) =

∑

i∈I ′s

R(i,s)
∑

r=1

curl
{ ˜̄h(s)

i,r (x)ω(s)
i,r (x)

}+
∑

i∈I ′′s

P(i,s)
∑

p=1

curl
{ ˜̂h(s)

i,p(x)χ (s)
i,p(x)

}

+
∑

i∈I ′′s

M(i,s)
∑

m=1

(

curl
{

h̃
(s)
i,m(x)ϕ(s)

i,m(x)
}+

2
∑

t=1

curl
{

h̃
(s,t)
i,m (x)ψ (s,t)

i,m (x)
}
)
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q (s)
2 (x) = −

∑

i∈I ′s

R(i,s)
∑

r=1

curl
{

n
∑

k=1

˜̄v(s)
k,i,r (x)h̄(s)

i,r,kω
(s)
i,r (x)

}

,

q (s)
3 (x) = −

∑

i∈I ′′s

M(i,s)
∑

m=1

2
∑

t=1

curl
{

n
∑

k=1

ṽ
(s,t)
k,i,m(x)h(s,t)

i,m,kψ
(s,t)
i,m (x)

}

,

q(s)
4 (x) = −

∑

i∈I ′′(s)

P(i,s)
∑

p=1

curl
{

n
∑

k=1

˜̂v(s)
k,i,p(x)h̃(s)

i,p,kχ
(s)
i,p(x)

}

,

here we keep for the function h(x) all notations as in (43) and

h(s)
i,m − h(x) = curl h̃

(s)
i,m(x), h(s,t)

i,m − h(x) = curl h̃
(s,t)
i,m (x),

h̄(s)
i,r − h(x) = curl ˜̄h

(s)

i,r (x), ĥ
(s)
i,p − h(x) = curl ˜̂h

(s)

i,p(x).

Substituting the function ϕ(s)(x) = hs(x) ∈ W 1,2
0 (Ω)3 into integral identity (2),

we get:

∫

Ω

(νD[u(0)] · D[h]− (u(0) · ∇)h · u(0)) dx +
∫

Ω

(f,h) dx

+ν
∑

i∈I ′′s

M(i,s)
∑

m=1

n
∑

k,&=1

h(s)
i,m,ku(s)

i,m,&

∫

Ω

D[v(s)
k,i,m] · D[v(s)

&,i,m] dx = Υ (δ, s), (52)

where

|Υ (δ, s)| ≤ γ
(s)
1 + γ

(δ)
2 ,

and sequences γ (s)
1 , γ

(δ)
2 are such that lim

s→∞ γ
(s)
1 = 0, lim

δ→∞
γ

(δ)
2 = 0. Finally, using

the condition (vi) on the left-hand side of (52) and passing to the limit as s → ∞,
δ → ∞, we obtain that the limit function u(0)(x) is a weak solution of averaged
problem (8) in the sense of Definition 2. Theorem 1 is proved completely.

6 Appendix

Theorem 6 (see [6]) Let G be a domain of R3 which is a diffeomorphic image of
ball. Let J (G) be the closure of linear smooth solenoidal functions from L2(G)3.
Then for every u(x) ∈ J (G) the following representation is valid

u(x) = curl ũ(x),

where ũ(x) ∈ W 1,2(G)3, div ũ(x) = 0, ∂ũ
∂n |∂G = 0,
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‖ũ‖W 1,2(G)3 ≤ K‖u‖L2(G)3 ,

where K = K (G) is a positive constant. The vector-function ũ is defined by these
conditions in a unique way.
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Existence of Weak Solutions to the Equations
of Natural Convection with Dissipative Heating

Joachim Naumann and Jörg Wolf

Abstract In this paper, we prove the existence of a weak solution to a system of
PDE’s which model the non-stationary motion of a heat-conducting incompressible
viscous fluid including the effects of dissipative and adiabatic heating. Our method
of proof consists in approximating these heat sources by bounded nonlinearities.

Keywords Heat conducting fluid · Dissipative heating · Conservation of internal
energy

1 Introduction

In this paper, we consider the following system of PDE’s modeling the motion of a
heat-conducting incompressible viscous fluid:

div u = 0 (1)

∂u
∂t
+ (u · ∇)u− div

(

ν(θ )D(u)

)

+∇ p = (1− α0θ )f (2)

∂θ

∂t
+ u · ∇θ − div

(

κ(θ )∇θ
)

= ν(θ )D(u) : D(u)+ α1θ f · u+ g, 1 (3)

where the unknowns are: u = velocity, p = mechanical pressure and θ = temperature.

D(u) = 1

2

(

∇u + (∇u))
)

denotes the rate of strain tensor. System (1), (2) and

(3) represents the laws of conservation of mass, momentum and internal energy,
respectively, of a fluid with constitutive relations

J. Naumann (B)
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σ = ν(θ )D(u)− pI stress tensor (I = unit tensor),

q = −κ(θ )∇θ heat flux,

e = C0θ internal energy (C0 = const > 0),
where

ν(θ ) = viscosity, κ(θ ) = heat conductivity

(for notational simplicity, in what follows we set C0 = 1). The density of the fluid
is treated as a constant in all terms of the equations of conservation of momentum
except the one in the external force f. Accordingly, α0 is the coefficient of linearized
density variation with respect to the temperature (see, e. g., [3]).

The term ν(θ )D(u) : D(u) on the right hand side of (3) models viscous dissi-
pation of internal energy. The terms α1θ f · u and g represent an adiabatic and an
external heat source, respectively.

If ν(θ )D(u) : D(u) and α1θ f · u are neglected in (3), the resulting system for
the unknowns u, p and θ is usually referred to as the Boussinesq approximation of
the general system of conservation laws governing the motion of a heat-conducting
incompressible viscous fluid (see [3] for details). The above version of (1), (2)
and (3) has been derived in [6], however, with ν = const (see (2.21) there). This
approach is closely related to the Oberbeck-Boussinesq approximation presented in
[10]. ��

We consider system (1), (2) and (3) in the cylinder Q = Ω×]0, T [, where Ω is
a bounded domain in R

3. We restrict our discussion of (1), (2) and (3) to the case of
three space dimensions for the same reasons as in [7, 8]. Namely, in contrast to the
case of two space dimensions, the well-known integrability properties of u · (∇u)
in Q = Ω×]0, T [ (Ω ⊂ R

3) produce serious difficulties when handling the
term ν(θ )D(u) : D(u) in (3) by approximation methods within the standard weak
formulation. This leads to a defect measure in the weak formulation of (3).

To complete the formulation of the problem that we shall consider, assume

∂Ω is Lipschitz,

∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅.

The boundary and initial conditions on u and θ are then as follows:

⎧

⎪⎨

⎪⎩

u = 0 on ∂Ω×]0, T [,

θ = 0 on Γ0×]0, T [, κ(θ )
∂θ

∂n
= 0 on Γ1×]0, T [,

(4)

1 By A : B = Ai j Bi j we denote the trace of the matrices A = {Ai j }, B = {Bi j } (throughout
repeated Latin subscripts imply summation on 1, 2, 3). - For u = (u1, u2, u3) we have D(u) =
{Di j (u)}, Di j (u) = 1

2

(
∂ui
∂x j
+ ∂u j

∂xi

)

.
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u = u0, θ = θ0 on Ω × {0} (5)

(n = exterior unit normal along ∂Ω). Here, u0 and θ0 are given data. ��
The equations of non-stationary motion of heat-conducting incompressible vis-

cous fluids with temperature dependent material coefficients and viscous energy
dissipation have attracted much interest in recent time.

Amann [1] investigated the conservation laws for mass, momentum and internal

energy for large classes of constitutive laws σ = ν(θ, DI I )D− pI (DI I = 1

2
D : D)

and q = q(θ,∇θ ), with dissipative heating and certain additional heat sources.
Under smallness assumptions on the initial values u0 and θ0 he proved the existence
of a strong solution to the problem considered. Feireisl/Màlek [5] (ν depending on θ ,
α0 = α1 = 0) and Kagai; Růžička; Thäter [6] (ν = const > 0) proved the existence
of weak resp. strong solutions to (1), (2) and (3) under space periodic boundary
conditions on u and θ . Buliček; Feireisl; Málek [2] investigated (1), (2) and (3)
with ν depending on θ , α0 = α1 = 0 and slip boundary conditions. This paper
contains a profound discussion the thermodynamical aspects of (1), (2) and (3).
Nečas; Roubiček [9] studied the system of conservation laws for mass, momentum
and internal energy with dissipative heating and α0 �= 0, α1 �= 0, but with a power
law type constitutive assumption on the stress tensor σ which excludes the case of
Navier-Stokes equations that we consider in the present paper.

In Sect. 2 we introduce the notations and present the main result of our paper.
It states the existence of a weak solution to (1), (2), (3), (4) and (5) with a defect
measure in 3. The concept of a defect measure occurs in Feireisl [4] in the field
of compressible fluids, and has been subsequently developed by this author and his
collaborators. We note that in [1, 5, 6, 9] the weak formulation of the equation of
conservation of internal energy does not involve a defect measure. Sect. 3 is devoted
to the proof of our main result. It makes use of techniques developed by the authors
in [7, 8, 11].

2 Notations. Statement of the Main Result

Let W 1,q (Ω) (1 ≤ q ≤ +∞) denote the usual Sobolev space. Define

W 1,q
Γ0

(Ω) := {ϕ ∈ W 1,q (Ω); ϕ = 0 a. e. on Γ0},

Vq := {v ∈ [W 1,q (Ω)]3; v = 0 a. e. on ∂Ω, div v = 0 a. e. in Ω},

H :=
{

h ∈ [L2(Ω)]3;
∫

Ω

h · ∇ϕdx = 0 ∀ ϕ ∈ C∞c (Ω)
}

.

If Γ0 = ∂Ω , we write W 1,q
0 (Ω) := W 1,q

Γ0
(Ω).
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Next, given a normed space X with norm ‖ · ‖, we denote by X∗ the dual space
of X and by 〈x∗, x〉X the value of x∗ ∈ X∗ at x ∈ X . Cw([0, T ]; X ) stands for
the vector space of all mappings z : [0, T ] → X such that for every x∗ ∈ X∗ the
function

t �→ 〈x∗, z(t)〉
is continuous in [0, T ]. By Lq (0, T ; X ) (1 ≤ q ≤ +∞) we denote the vector space
of all equivalence classes of Bochner measurable functions z : [0, T ] → X such
that

T∫

0

‖z(t)‖qdt < +∞ if 1 ≤ q < +∞, ess sup
t∈[0,T ]

‖z(t)‖ < +∞ if q = +∞.

Finally, let M(Q̄) be the set of all Radon measures in Q̄.
For notational simplicity, in what follows we write

D(u, v) := D(u) : D(v) = Di j (u)Di j (v).

Without further reference, throughout we assume

ν ∈ C(R), κ ∈ C(R),

0 < ν1 ≤ ν(ξ ) ≤ ν2 < +∞ ∀ ξ ∈ R (ν1, ν2 = const),

0 < κ1 ≤ κ(ξ ) ≤ κ2 < +∞ ∀ ξ ∈ R (κ1, κ2 = const).

The main result of our paper is the following

Theorem 1 Assume

f ∈ [L∞(Q)]3, g ∈ L1(Q), g ≥ 0 a. e. in Q, (6)

u0 ∈ H, θ0 ∈ L1(Ω), θ0 ≥ 0 a. e. in Ω, (7)

α0, α1 ∈ R. (8)

Then there is an ε0 > 0 such that if

(|α0| + |α1|)2‖f‖2
L∞T 1/3 ≤ ε0,

there exists a triple {u, θ, μ} such that

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ Cw([0, T ]; H ) ∩ L2(0, T ; V2), u′ ∈ L4/3(0, T ; V ∗2 ),

θ ∈ L∞(0, T ; L1(Ω)) ∩ ⋂

1≤r< 5
4

Lr (0, T ; W 1,r
Γ0

(Ω)), θ ≥ 0 a. e. in Q,

μ ∈M(Q̄)

(9)
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and

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T∫

0

〈u′, v〉V2 dt −
∫

Q

ui u j
∂vi

∂x j
dxdt +

∫

Q

ν(θ )D(u, v)dxdt =

=
∫

Q

(1− α0θ )f · v dxdt ∀ v ∈ L4(0, T ; V2),

(10)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫

Q

θ
∂ϕ

∂t
dxdt −

∫

Q

uiθ
∂ϕ

∂xi
dxdt +

∫

Q

κ(θ )∇θ · ∇ϕ dxdt =

=
∫

Ω

θ0(x)ϕ(x, 0)dx

+
∫

Q

(

ν(θ )D(u,u)+ α1θ f · u+ g
)

ϕdxdt +
∫

Q̄

ϕdμ

∀ ϕ ∈ C1(Q̄), ϕ = 0 on Γ0×]0, T [, ϕ(x, T ) = 0 ∀ x ∈ Ω,

(11)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

u(0) = u0 a. e. in Ω,

lim
t→0

∫

Ω

θ (x, t)ζ (x)dx ≥
∫

Ω

θ0(x)ζ (x)dx ∀ ζ ∈ C1(Ω̄), ζ ≥ 0 in Ω.
(12)

If Γ0 = ∅, then

lim
t→0

∫

Ω

θ (x, t)dx =
∫

Ω

θ0(x)dx, (13)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω

(
1

2
|u(t)|2 + θ (t)

)

dx =

=
∫

Ω

(
1

2
|u0|2 + θ0

)

dx +
t∫

0

∫

Ω

(

f · u+ (α1 − α0)θ f · u+ g

)

dxds

f or a. e. t ∈]0, T [.

(14)

3 Proof of the Main Theorem

3.1 Approximate Solutions

Let Φ ∈ C([0,+∞[) be a fixed, non-increasing function such that

0 ≤ Φ ≤ 1 in [0,+∞[,
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Φ = 1 in [0, 1], Φ = 0 in [2,+∞[.

For ε > 0 and ξ ≥ 0, define

Φε(ξ ) := Φ(εξ ).

The following properties of Φε are readily verified:

• ξΦε(ξ ) ≤ 2

ε
∀ ξ ≥ 0, ∀ ε > 0;

• lim
ε→0

Φε(ξ ) = 1 uniformly for all ξ in a bounded interval of [0,+∞[;

•
∫

Ω

wiw jΦε(|w|2)
∂wi

∂x j
dx = 0 ∀ w ∈ V2, ∀ ε > 0.

The function Φε is used for a cut-off procedure of the quadratic term ui u j which
occurs in the second integral on the left hand side in (10). More specifically, we
replace this integral by

∫

Q

ui u jΦε(|u|2)
∂vi

∂x j
dxdt.

Then the term ui u jΦε(|u|2) gives rise to a uniformly bounded nonlinearity which
is easy to handle when proving the existence of an approximate solution. The pas-
sage to the limit ε→ 0 is then straightforward (see Sect. 3.3 below).

The method of approximation of ui u j by ui u jΦε(|u|2) has been developed in
[11]. ��

The following result forms the point of departure for the proof of our main result.

Proposition 1 Assume f, g satisfy (6), u0 ∈ V6, θ0 ∈ W 1,2
0 (Ω), θ0 ≥ 0 a. e. in

Ω, α0, α1 satisfy (8). Then, for every 0 < ε ≤ 1, 0 < δ ≤ 1 there exists a pair
{u, θ} (u = uε,δ, θ = θε,δ) such that

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ L6(0, T ; V6) ∩ C([0, T ]; H ), u′ ∈ L6/5(0, T ; V ∗6 ),

θ ∈ L2(0, T ; W 1,2
Γ0

) ∩ C([0, T ]; L2), θ ′ ∈ L2(0, T ; (W 1,2
Γ0

)∗),

θ ≥ 0 a. e. in Q,

(15)

and
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫

0

〈u′, v〉V6 ds +
t∫

Q

∫

Ω

[ν(θ )+ δ(D(u,u))2]D(u, v)dxds−

−
t∫

0

∫

Ω

ui u jΦε(|u|2)
∂vi

∂x j
dxds =

t∫

0

∫

Ω

(

1− α0θ

1+ εθ2

)

f · v dxds

∀ t ∈ [0, T ], ∀ v ∈ L6(0, T ; V6),

(16)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫

0

〈θ ′, ϕ〉W 1,2
Γ0

ds + δ

t∫

0

∫

Ω

θϕdxds +
t∫

0

∫

Ω

κ(θ )∇θ · ∇ϕdxds−

−
t∫

0

∫

Ω

uiθ
∂ϕ

∂xi
dxds

=
t∫

0

∫

Ω

(

ν(θ )D(u,u)+ α1θ

1+ εθ2
f · u+ g

1+ εg

)

ϕ dxds

∀ t ∈ [0, T ], ∀ ϕ ∈ L2(0, T ; W 1,2
Γ0

),

(17)

u(0) = u0, θ (0) = θ0 a. e. in Ω. (18)

The proof of this proposition follows the same lines as those of [7; Prop. 1]. To
see this, it suffices to note the elementary inequalities

ξ

1+ εξ 2
≤ 1

2
√
ε
,

ξ 2

1+ εξ 2
≤ 1

ε
∀ ξ ∈ [0,+∞[.

Hence the integrals

−α0

t∫

0

∫

Ω

θ

1+ εθ2
f · vdxds in (16),

α1

t∫

0

∫

Ω

θ

1+ εθ2
f · uϕ dxds in (17)

give rise to compact perturbations which can be easily included into the context of
[8]. Therefore we dispense with further details.

Remark 1 The assumption u0 ∈ V6, θ0 ∈ W 1,2
0 (Ω), θ0 ≥ 0 a. e. in Ω , we made for

reducing the weak formulation of (1), (2), (3), (4) and (5) to zero initial conditions
(see [8] for details).
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3.2 A-priori Estimates

We derive estimates on u=uε,δ and θ=θε,δ which are independent of 0 < ε, δ ≤ 1.
1st step. Inserting v = u into (16) gives

1

2
‖u(t)‖2

L2 +
t∫

0

∫

Ω

[ν(θ )+ δ(D(u,u))2]D(u,u)dxds

≤ 1

2
‖u0‖2

L2 + ‖f‖L∞

t∫

0

∫

Ω

|u|dxds + |α0|‖f‖L∞

t∫

0

∫

Ω

θ |u|dxds

for all t ∈ [0, T ]. Observing that 0 < ν1 ≤ ν(θ ) a. e. in Q we obtain by the aid of
Korn’s inequality

‖f‖L∞

t∫

0

∫

Ω

|u|dxds ≤ 1

4

t∫

0

∫

Ω

ν(θ )D(u,u)dxds + c‖f‖2
L∞T mes Ω.

Thus

1

2
‖u(t)‖2

L2 + 3

4

t∫

0

∫

Ω

ν(θ )D(u,u)dxds + δ

t∫

0

∫

Ω

(D(u,u))3dxds ≤

≤ 1

2
‖u0‖2

L2 + c‖f‖2
L∞T mes Ω + |α0|‖f‖L∞

t∫

0

∫

Ω

θ |u|dxds (19)

for all t ∈ [0, T ].
Next, for 0 < σ < 1 define

Ψσ (ξ ) := ξ + 1

1− σ

(

1− (1+ ξ )1−σ
)

, 0 ≤ ξ < +∞.

Clearly,

ξ

2
− 2(1−σ )/σ

1− σ
≤ Ψσ (ξ ) ≤ ξ, Ψ ′σ (ξ ) = 1− 1

(1+ ξ )σ
∀ ξ ∈ [0,+∞[.

Consider ϕ = Ψ ′σ (θ ) a. e. in Q. We have

∂ϕ

∂xi
= σ

(1+ θ )1+σ ·
∂θ

∂xi
a. e. in Q (thus ϕ ∈ L2(0, T ; W 1,2

Γ0
))
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t∫

0

〈θ ′, ϕ〉W 1,2
Γ0

ds =
∫

Ω

Ψσ (θ (t))dx −
∫

Ω

Ψσ (θ0)dx ∀ t ∈ [0, T ],

∫

Ω

uiθ
∂ϕ

∂xi
dx = −

∫

Ω

ui
∂

∂xi
Ψσ (θ )dx = 0 for a. e. t ∈ [0, T ].

Inserting ϕ into (17) gives

1

2

∫

Ω

θ (t)dx + σ

t∫

0

∫

Ω

κ(θ )
|∇θ |2

(1+ θ )1+σ dxds ≤

≤ 2(1−σ )/σ

1− σ
mesΩ +

∫

Ω

θ0dx +
t∫

0

∫

Ω

(

ν(θ )D(u,u)+ |α1|‖f‖L∞θ |u| + g
)

dxds

for all t ∈ [0, T ]. We now multiply this inequality by
1

4
and add it to (19). Again

using Korn’s inequality we find

‖u(t)‖2
L2 +‖θ (t)‖L1 +

t∫

0

∫

Ω

(

|∇u|2 + δ|∇u|6
)

dxds+ σ

t∫

0

∫

Ω

|∇θ |2
(1+ θ )1+σ dxds

≤ c1

(

1+ ‖u0‖2
L2 + ‖θ0‖L1 + ‖f‖2

L∞ + ‖g‖L1

)

+ (20)

+c2(|α0| + |α1|)‖f‖L∞

t∫

0

∫

Ω

θ |u|dxds 2

for all t ∈ [0, T ].

For the sake of notational simplicity, in what follows we use the notation

Λ := 1+ ‖u0‖2
L2 + ‖θ0‖L1 + ‖f‖2

L∞ + ‖g‖L1 .

We estimate the last integral on the right hand side of (20). By Hölder’s inequality
and Sobolev’s embedding theorem,

2 In what follows, we denote by c1, c2, ... positive constants which may change their numerical
value from line to line, but depend neither on ε nor on δ.
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t∫

0

∫

Ω

θ |u|dxds ≤ c3

( t∫

0

‖θ‖2
L6/5 ds

)1/2( t∫

0

∫

Ω

|∇u|2dxds

)1/2

≤ c3

{( t∫

0

‖θ‖4
L1 ds

)1/3( t∫

0

‖θ‖L2 ds

)2/3}1/2( t∫

0

∫

Ω

|∇u|2dxds

)1/2

(t ∈ [0, T ]). Inserting this estimate into (19) and applying Young’s inequality gives

‖u(t)‖2
L2 + ‖θ (t)‖L1 +

t∫

0

∫

Ω

(|∇u|2 + δ|∇u|6) dxds + σ

t∫

0

∫

Ω

|∇θ |2
(1+ θ )1+σ dxds

≤ c4Λ+ c5(|α0| + |α1|)2‖f‖2
L∞

( t∫

0

‖θ‖4
L1 ds

)1/3( t∫

0

‖θ‖L2 ds

)2/3

(21)

for all t ∈ [0, T ].
2nd step. From (21) we derive a-priori estimates on u and θ . To begin with, we
estimate the last integral on the right hand side of (21).

Firstly, let t ∈]0, T ]. From Hölder’s inequality we obtain, for every s ∈ [0, t],

‖θ (s)‖L2 ≤ ‖θ (s)‖1/6
L1 ‖θ (s)‖5/6

L5/2 ≤ ‖θ‖1/6
C([0,t];L1)‖θ (s)‖5/6

L5/2 . (22)

Secondly, for 0 < σ < 1 define

η := θ

(1+ θ )(1+σ )/2
a. e. in Q.

Clearly,

(1+ θ )(1−σ )/2 ≤ 1+ η, |∇η| ≤ |∇θ |
(1+ θ )(1+σ )/2

a. e. in Q. (23)

Take σ = 1

6
. Then the first inequality in (23) implies

‖θ (s)‖5/6
L5/2 ≤ c6(1+ ‖η(s)‖2

L6 ) for a. e. s ∈ [0, t].

From (22) we thus obtain

t∫

0

‖θ‖L2 ds ≤ c6‖θ‖1/6
C([0,t];L1)

(

t +
t∫

0

‖η‖2
L6 ds

)

(24)
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for all t ∈ [0, T ].
To continue, define

φ(t) := ‖θ‖C([0,t];L1) + ‖η‖2
L2(0,t ;L6), t ∈ [0, T ].

The function φ is continuous and non-decreasing on [0, T ]. Inserting (24) into

(21) (with σ = 1

6
), using Sobolev’s embedding theorem and the second inequality

in (23) gives

φ(t) ≤ ‖θ‖C([0,t];L1) + c7

t∫

0

∫

Ω

|∇η|2dxds

≤ ‖θ‖C([0,t];L1) + c7

t∫

0

∫

Ω

|∇θ |2
(1+ θ )7/6

dxds

≤ c8Λ+ c9(|α0| + |α1|)2‖f‖2
L∞ ×

×
(

t‖θ‖4
C([0,t];L1)

)1/3(

‖θ‖1/6
C([0,t];L1)

(

t + ‖η‖2
L2(0,t ;L6)

))2/3

for all t ∈ [0, T ].
Thus, for every t ∈ [0, T ],

t + φ(t) ≤ K0 + c9(|α0| + |α1|)2‖f‖2
L∞T 1/3(t + φ(t))19/9,

where

K0 := T + c8Λ.

Without loss of generality we may assume that φ(0) ≤ K0.
Define

ε0 := 1

3c9
(2K0)−10/9.

We now apply Lemma 1 (Appendix) to the function Ψ (t) := t+φ(t) (t ∈ [0, T ]).
It follows that if

(|α0| + |α1|)2‖f‖2
L∞T 1/3 ≤ ε0, (25)

then

φ(t) ≤ 2K0 ∀ t ∈ [0, T ].
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We obtain

T∫

0

‖θ‖4
L1 ds ≤ (2K0)4T,

T∫

0

‖θ‖L2 ds ≤ c6‖θ‖1/6
C([0,T ];L1)(T + ‖η‖2

L2(0,T ;L6)) [cf. (24)]

≤ c6(T + 2K0)7/6.

Inserting these estimates into (21) gives

‖u(t)‖2
L2 +‖θ (t)‖L1 +

t∫

0

∫

Ω

(|∇u|2+ δ|∇u|6)dxds+
t∫

0

∫

Ω

|∇θ |2
(1+ θ )1+σ dxds ≤ c10Λ

(26)
for all t ∈ [0, T ], provided the smallness condition (25) is satisfied. The constant
c10 depends on ν1, ν2, κ1, κ2, |α0|, |α1|, σ,mes Ω and T , but is independent of ε and
δ (note that c10 →+∞ as σ → 1). ��

Recall that u0 ∈ V6, θ0 ∈ W 1,2
0 (Ω), θ0 ≥ 0 a. e. in Ω (see the remark above). By

the definition of Λ, it is clear that estimate (26) continues to hold when these initial
data are replaced by sequences (u0,ε) ⊂ V6 and (θ0,ε) ⊂ W 1,2

0 (Ω), θ0,ε ≥ 0
a. e. in Ω , respectively, such that u0,ε→u0 in H and θθ,ε→θ0 in L1(Ω) as ε→0. ��

By an elementary application of Hölder’s inequality, from (26) it follows that

‖θ‖Lr (σ+1)/(2−r ) + ‖∇θ‖Lr ≤ c11Λ (27)

for all 1 ≤ r <
5

4
and all 0 < σ < 1

(

clearly, σ + 1 ≤ r (σ + 1)

2− r
<

5

3
(σ + 1)

)

.

3rd step. From (16), (17) and (26), (27) we derive estimates on u′ and θ ′.
Firstly, the last integral on the right hand side of (16) can be estimated as follows.

For every v ∈ L2(0, T ; V2),

∣
∣
∣
∣

∫

Q

θ

1+ εθ2
f · vdxdt

∣
∣
∣
∣
≤ ‖f‖L∞

T∫

0

(∫

Ω

θ6/5dx

)5/6(∫

Ω

|v|6dx

)1/6

dt

≤ c12‖f‖L∞‖θ‖L4/3‖∇v‖L2

≤ c13(1+Λ2)‖v‖L2(0,T ;V2)

[

by (27) with
r (σ + 1)

2− r
= 4

3

]

(28)

The estimation of the other terms in (16) follows that in [8] word by word. There-
fore

‖u′‖L6/5(0,T ;V ∗6 ) ≤ c14(1+Λ2). (29)
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Secondly, as in [8], let
6

5
< r <

5

4
and define ρ := 8r

5r − 6
(clearly, ρ > 3).

Then the second integral on the right hand side of (17) can be estimated as follows.
For a. e. t ∈ [0, T ] and all ψ ∈ W 1, �

Γ0
(Ω), we have

∣
∣
∣
∣

∫

Ω

θ (x, t)

1+ εθ2(x, t)
f(x, t) · u(x, t)ψ(x)dx

∣
∣
∣
∣
≤ ‖f‖L∞

∫

Ω

θ (x, t)|u(x, t)|dx max
Ω̄
|ψ |

≤ c15‖f‖L∞‖θ (t)‖L2‖u‖L∞(0,T ;H )‖∇ψ‖L� .

Then the same arguments as in [8] give

‖θ ′‖L1(0,T ;(W 1,�
Γ0

)∗) ≤ c16(1+Λ3). (30)

��

3.3 Passage to the Limit

(i) Passage to the limit δ → 0 (0 < ε ≤ 1 fixed). From (26), (27) and (29), (30)
it follows that there exists a subsequence of {uε,δ, θε,δ} (not relabeled, 0 < ε ≤ 1
fixed) such that

uε,δ → uε weakly in L2(0, T ; V2), strongly in L2(Q), a. e. in Q,

and, for every 1 ≤ r <
5

4
and 0 < σ < 1,

θε,δ → θε weakly in Lr (0, T ; W 1,r
Γ0

), weakly in Lr (σ+1)/(2−r )(Q),
strongly in Lr (Q), a. e. in Q

as δ→ 0. In addition,

∇uε,δ → ∇uε strongly in [L2(Q)]9 as δ→ 0,
∫

Q

|∇θε|2
(1+ θε)1+σ dxdt ≤ lim

δ→0

∫

Q

|∇θε,δ|2
(1+ θε,δ)1+σ dxdt

(see [8] for more details).
Now, the passage to the limit δ→ 0 in (16), (17), (18) and (26), (27) is straight-

forward. Indeed, given w ∈ V6, we set v(t) = w for a. e. t ∈ [0, T ]. Inserting this v
into (16), integrating by parts

t∫

0

〈u′ε,δ(s),w〉V6 ds, t ∈ [0, T ]

and passing to the limit δ→ 0 in (16) gives
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∫

Ω

uε(x, t) · w(x)dx +
t∫

0

∫

Ω

ν(θε)D(uε,w)dxds −
t∫

0

∫

Ω

uεi uε jΦ(|uε|2 ∂wi

∂x j
dxds

=
∫

Ω

u0,ε(x) · w(x)dx +
t∫

0

∫

Ω

(

1− α0θε

1+ εθ2
ε

)

f · w dxds

for a. e. t ∈ [0, T ], ∀ w ∈ V2.

(31)

Here we approximated w ∈ V2 by functions from V6.
Analogously, given ψ ∈ W 1,�

Γ0
(Ω), we set ϕ(t) = ψ for a. e. t ∈ [0, T ]. Inserting

this ϕ into (17), integrating the first integral on the left hand side by parts and passing
to the limit δ→ 0 gives

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω

θε(x, t)ψ(x)dx +
t∫

0

∫

Ω

κ(θε)∇θε · ∇ψ dxds −
t∫

0

∫

Ω

uεiθε
∂ψ

∂xi
dxds =

=
∫

Ω

θ0,ε(x)ψ(x)dx+

+
t∫

0

∫

Ω

(

ν(θε)D(uε,uε)+ α1θε

1+ εθ2
ε

f · uε + g

1+ εg

)

ψ dxds

for a. e. t ∈ [0, T ], ∀ ψ ∈ W 1,�
Γ0

(Ω)

(32)

(

note that δ

t∫

0

∫

Ω

θε,δ(s)ψdxds → 0 as δ→ 0
)

.

The passage to the limit in (18) and (26), (27) gives

uε(0) = u0,ε, θε(0) = θ0,ε a. e. in Ω, (33)

and

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

‖uε(t)‖2
L2 + ‖θε(t)‖L1 +

t∫

0

∫

Ω

(

|∇uε|2 + |∇θε|2
(1+ θε)1+σ

)

dxds

≤ c10Λ for a. e. t ∈ [0, T ] [by Lemma 2, Appendix],

(34)

‖θε‖Lr (σ+1)/(2−r ) + ‖∇θε‖Lr ≤ c11Λ ∀ 1 ≤ r <
5

4
, ∀ 0 < σ < 1, (35)
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respectively. We recall that u0,ε ∈ V6 and θ0,ε ∈ W 1,2
0 (Ω), θ0,ε ≥ 0 a. e. in Ω , are

such that u0,ε → u0 in H and θ0,ε → θ0 in L1(Ω), respectively, as ε→ 0.
Next, by a routine argument, from (31) it follows that

1

2

∫

Ω

|uε(x, t)|2dx +
t∫

0

∫

Ω

ν(θε)D(uε,uε)dxds

= 1

2

∫

Ω

|u0,ε(x)|2dx +
t∫

0

∫

Ω

(

1− α0θε

1+ εθ2
ε

)

f · uε dxds (36)

for a. e. t ∈ [0, T ]. Let Γ0 = ∅. Then ψ = 1 is an admissible test function in (32).
We add (36) and (32) with ψ = 1 therein, and obtain

∫

Ω

(1

2
|uε(x, t)|2 + θε(x, t)

)

dx =

=
∫

Ω

(1

2
|u0,ε(x)|2 + θ0,ε(x)

)

dx +
t∫

0

∫

Ω

(

f · uε + (α1 − α0)θ f · uε + g
)

dxds (37)

for a. e. t ∈ [0, T ].
Finally, from (31) it follows that there exists u′ε ∈ L4/3(0, T ; V ∗2 ), there holds

〈u′ε(t),w〉V2 +
∫

Ω

ν(θε(t))D(uε(t),w)dx −
∫

Ω

uεi (t)uε j (t)Φ
(

|uε(t)|2
)∂wi

∂x j
dx =

=
∫

Ω

(

1− α0θε(t)

1+ εθ2
ε (t)

)

f(t) · wdx for a. e. t ∈ [0, T ], ∀ w ∈ V2

and

‖u′ε‖L4/3(0,T ;V ∗2 ) ≤ c17(1+Λ2), for all 0 < ε ≤ 1. (38)

Analogously, (32) implies the existence of θ ′ε ∈ L1(0, T ; (W 1,ρ
Γ0

)∗) and

‖θ ′ε‖L1(0,T ;(W 1,ρ
Γ0

)∗) ≤ c18(1+Λ3) ∀ 0 < ε ≤ 1 (39)

(

recall
6

5
< r <

5

4
, ρ = 8r

5r − 6

)

.

��
(ii) Passage to the limit ε→ 0.
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From (34), (35) and (38), (39) we obtain the existence of a subsequence of
{uε, θε} (not relabeled) such that

uε → u weakly in L2(0, T ; V2), strongly in L2(Q), a. e. in Q,

u′ε → u′ weakly in L4/3(0, T ; V ∗2 ),

and, for every 1 ≤ r <
5

4
and 0 < σ < 1,

θε → θ weakly in Lr (0, T ; W 1,r
Γ0

), weakly in Lr (σ+1)/(2−r )(Q),

strongly in Lr (Q), a. e. in Q

as ε→ 0. In addition,

∫

Q

|∇θ |2
(1+ θ )1+σ dxdt ≤ lim

∫

Q

|∇θε|2
(1+ θε)1+σ dxdt.

By routine arguments,

lim
ε→0

∫

Q

( θε

1+ εθ2
ε

− θ
)

f · v dxdt = 0 ∀ v ∈ [L2(Q)]3,

lim
ε→0

∫

Q

( θε

1+ εθ2
ε

f · uε − θ f · u
)

ϕ dxdt = 0 ∀ ϕ ∈ L∞(Q).

Using all the above convergence properties, we deduce (9), (10), (11) and (12)
from (31)-(29), (36) and (38) by passing to the limit ε → 0 with the help of the
same arguments as in [8].

Finally, let Γ0 = ∅. Then the passage to the limit ε → 0 in (37) gives (14)
Observing that

lim
t→0
‖u(t)‖L2 = ‖u0‖L2

one easily deduces (13) from (14). ��

Appendix

Lemma 1 Let Ψ : [0, T ] → [0,+∞[ be a continuous non-decreasing function
such that

Ψ (0) ≤ K0,

Ψ (t) ≤ K0 + β(Ψ (t))γ ∀ t ∈ [0, T ],
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where K0 = const > 0, γ = const > 1 and

β = 1

3
(2K0)1−γ .

Then

Ψ (t) ≤ 2K0 ∀ t ∈ [0, T ].

Proof Define

T∗ := sup{t ∈ [0, T [; Ψ (s) ≤ 2K0 ∀ s ∈ [0, t]}.

Clearly, 0 < T ∗ ≤ T . If T ∗ = T , we have finished.
Assume T∗ < T . For every t ∈ [0, T∗[, there holds Ψ (t) ≤ 2K0. The continuity

of Ψ implies Ψ (T∗) ≤ 2K0. On the other hand, again by the continuity of Ψ , since
T∗ < T we find Ψ (T∗) ≥ 2K0. Thus, Ψ (T∗) = 2K0. It now follows

2K0 = Ψ (T∗) ≤ K0 + β(Ψ (T∗))γ = 5

3
K0,

a contradiction.
Whence the claim. ��
The following result can be easily proved by routine arguments from measure

and integration theory.

Lemma 2 Let (wε) ⊂ L∞(0, T ; L1(Ω)) ∩ Lr (Q) (1 < r < +∞) be a sequence
such that

wε → w weakly in Lr (Q) as ε→ 0,

‖wε‖L∞(0,T ;L1) ≤ C0 = const ∀ ε > 0.

Then

w ∈ L∞(0, T ; L1), ‖w‖L∞(0,T,L1) ≤ C0.
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6. Kagei, Y., Růžička, M., Thäter, G.: Natural convection with dissipative heating. Commun.

Math. Phys. 214, 287–313 (2000)
7. Naumann, J.: On the existence of weak solutions to the equations of non-stationary motion of

heat-conducting incompressible viscous fluids. Math. Meth. Appl. Sci. 29, 1883–1906 (2006)
8. Naumann J.: An existence theorem for weak solutions to the equations of non-stationary

motion of heat-conducting incompressible viscous fluids. J. Nonlin. Convex Anal. 7, 483–497
(2006)
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A Weak Solvability of the Navier-Stokes
Equation with Navier’s Boundary Condition
Around a Ball Striking the Wall

Jiřı́ Neustupa and Patrick Penel

Abstract We assume that Bt is a closed ball in R
3
+ := {(x1, x2, x3) ∈ R

3; x3 > 0},
striking the wall (= the x1, x2–plane) at time tc ∈ (0, T ). The speed of the ball at the
instant of the collision need not be zero. Although a weak solution to the Navier-
Stokes equation with Dirichlet’s no-slip boundary condition in (R3

+ � Bt )× (0, T )
does not exist if the speed of the stroke is non-zero, we prove that such a solution
may exist if Dirichlet’s boundary condition is replaced by Navier’s slip boundary
condition.

Keywords Navier-Stokes equations ·Weak solution · Navier’s boundary condition

1 Motivation, Introduction and Notation

The existence of a weak solution to the Navier-Stokes equation in a fixed domain
Ω ⊂ R

3 on a given time interval (0, T ) belongs to fundamental results of the qual-
itative theory of the Navier-Stokes equation. (See e.g. J. Leray [17], E. Hopf [15],
O. A. Ladyzhenskaya [16], J. L. Lions [18], R. Temam [22] or G. P. Galdi [10].)

Of all results on the existence of the weak solution in domains with given moving
boundaries, we cite the papers by H. Fujita and N. Sauer [7] (the boundary of a
variable domain Ω t consists of a finite number of moving simple closed surfaces of
the class C3, the distance of any two of these surfaces is never less than d0 > 0) and
J. Neustupa [19] (Ω t has an arbitrary shape and smoothness, the assumptions on Ω t

involve simulation of collisions of bodies moving in a fluid).
There exists a series of other works dealing with flows in time varying domains

that concern the motion of one or more bodies in a fluid. The fluid and the bodies are
studied as an interconnected system so that the position of the bodies in the fluid is
not apriori known. The weak solvability of such a problem, provided the bodies do
not touch each other or they do not strike the boundary, was proved by B. Desjardins
and M. J. Esteban [4, 5], K. H. Hoffmann and V. N. Starovoitov [13] (the 2D case),
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C. Conca et al. [2] and M. D. Gunzburger et al. [12]. The analogous result, without
the assumption on the lack of collisions, was proved by J. San Martı́n et al. [20] (the
2D case), K. H. Hoffmann and V. N. Starovoitov [14] (the motion of a “small” ball
in a fluid filling a “large ball”) and E. Feireisl 2003 [6] (in a 3D bounded domain,
the author uses the contact condition that once two bodies touch one another, they
remain stuck together forever).

All the mentioned authors consider the homogeneous Dirichlet boundary condi-
tion for velocity on the boundary of Ω t . The motion of the so called “self-propelled
bodies” (which produce certain velocity profile on their surface), together with the
motion of the fluid around them, was studied except others by G. P. Galdi, see the
survey paper [11].

None of the mentioned papers provides the existence of a weak solution to
the Navier-Stokes equation at the geometrical configuration when the fluid fills a
domain Ω t around a solid ball striking a wall with a finite non-zero speed. Moreover,
it follows from results of V. N. Starovoitov 2003 [21] that the weak solution with
the no-slip Dirichlet boundary condition in such a situation cannot exist. Reference
[19], where the no-slip boundary condition is also considered, provides the weak
solution only if the ball strikes the wall with the speed that tends to zero as time
approaches the instant of the collision. (With a non-zero speed, the body must have
another shape than the ball, see [19].)

This state motivated us to study the Navier-Stokes equation in the described
domain Ω t with boundary conditions that enable the fluid to slip on the boundary.
We assume that the motion of the ball is given. We use Navier’s boundary condition
and we prove the global in time existence of a weak solution under the restriction
that the speed of the ball is “sufficiently small” at times close to the instant of the
collision – see Theorem 1. The considered case of a ball moving in a fluid and
striking perpendicularly the wall represents a sample example. We actually prepare
a generalization concerning flow around moving bodies of various shapes which
may collide one with another. Nevertheless, the basic techniques is developed in the
present paper. It is based on the construction of Rothe approximations.

A series of steps require a different approach than in the case of homoge-
neous Dirichlet’s boundary condition. For instance, Sobolev’s embedding inequal-
ities cannot be used in a standard fashion because the constants in these inequal-
ities now depend on time. Other difficulties appear in the part where we treat the
limit transition in the nonlinear term and we therefore need an information on a
strong convergence of a sequence of approximations in an appropriate norm. (The
argument based on the Lions–Aubin lemma cannot be used in a usual way – see
Sect. 6.)

The time-variable domain Ω t . We suppose that (0, T ) is a bounded time interval
and tc ∈ (0, T ). We denote by R

3
+ the half-space {x = (x1, x2, x3) ∈ R

3; x3 > 0},
by R+3 the closure of R

3
+ and by ∂R

3
+ the boundary of R

3
+ (= the x1, x2-plane).

Further, we denote by Bt the closed ball in R+3 with radius R and center St =
(0, 0, δt + R). We suppose that δt (the distance of the ball Bt from ∂R

3
+) is a

continuous function of t for t ∈ [0, T ] such that δtc = 0 and
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(i) δt is decreasing on [0, tc] and increasing on [tc, T ],
(ii) δ̇t (the derivative of δt ) is bounded on the intervals [0, tc) and (tc, T ],

(iii) δ̈t (the second derivative of δt ) is integrable on (0, T ).

We put Ω t := R
3
+ � Bt . The boundary of Ω t is denoted by Γt . Ω t represents

the space filled by the fluid and Bt represents the solid ball which moves in the fluid
and strikes the fixed wall ∂R

3
+ at time t = tc. We assume, for simplicity, that the

ball Bt does not rotate and all its particles have only translational velocity. Thus, the
velocity of “material points” on the boundary Γt of Ω t is

Vt (x) :=
{

(0, 0, δ̇t ) for t �= tc and x ∈ ∂Bt ,

0 for t �= tc and x ∈ ∂R
3
+.

Notation of norms and function spaces.

• ( . , . )2;Ω t is the scalar product and ‖ . ‖2;Ω t is the norm in L2(Ω t ) or in L2(Ω t )3

or in L2(Ω t )9, respectively. The meaning of ( . , . )2; Γt and ‖ . ‖2; Γt is analogous.
• ‖ . ‖q;Ω t is the norm in Lq (Ω t ) or in Lq (Ω t )3 or in Lq (Ω t )9, respectively.
• C∞σ (Ω t ) is the space of infinitely differentiable divergence-free vector-functions

in Ω
t

with a compact support in Ω
t

and zero normal component on Γt .
• W 1,2

σ (Ω t ) is the closure of C∞σ (Ω t ) in W 1,2(Ω t )3.
• C∞0,σ (Ω t ) is a subspace of C∞σ (Ω t ), containing functions with a compact support

in Ω t .
• Lq

σ (Ω t ) is the closure of C∞0,σ (Ω t ) in Lq (Ω t )3 (for 1 ≤ q < +∞).

If t ∈ (0, T ) � {tc} then W 1,2
σ (Ω t ) ↪→ Lq (Ω t )3 for 2 ≤ q ≤ 6. Using the charac-

terization of Lq
σ (Ω t ) (see [8, p. 111]), we can verify that W 1,2

σ (Ω t ) ↪→ Lq
σ (Ω t ).

The initial-boundary value problem. Put Q(0,T ) := {

(x, t); 0 < t < T, x ∈ Ω t
}

and Γ(0,T ) := {

(x, t); 0 < t < T, x ∈ Γt
}

.
Our aim is to prove the existence of a weak solution of the problem

∂t v+ v · ∇v+ ∇ p = νΔv+ f in Q(0,T ), (1)

div v = 0 in Q(0,T ), (2)

v · n = Vt · n in Γ(0,T ), (3)

[Td(v) · n]τ + K (v− Vt ) = 0 in Γ(0,T ), (4)

v = v0 in Ω0 × {0}. (5)

The Eqs. (1) and (2) describe the motion of a viscous incompressible fluid in
domain Ω t . The symbols v, p, ν, f, n and Td(v) successively denote the velocity
of the fluid, the pressure, the kinematic coefficient of viscosity, the specific exter-
nal body force, the outer normal vector on the boundary of Ω t and the dynamic
stress tensor associated with the flow v. The density of the fluid is supposed
to be one. The subscript τ denotes the tangential component to Γt . Since the
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considered fluid is Newtonian, the dynamic stress tensor has the form Td(v) =
2ν (∇v)s where (∇v)s is the symmetrized gradient of v. Condition (3) expresses
the impermeability of Γt . Condition (4) is due to H. Navier, who proposed in 1824
that the tangential component of the stress acting on the boundary should be pro-
portional to the velocity of the fluid (relative with respect to the material boundary).
We suppose (in accordance with physical arguments) that K ≥ 0.

Introduction of function at . In order to transform the inhomogeneous boundary con-
dition (3) to the homogeneous one, we look for solution v in the form v = at + u
where at is considered to be a known function satisfying the condition

at · n = Vt · n a.e. in Γ(0,T ) (6)

and u is a new unknown function. The construction of an appropriate function at

is presented in Sect. 2. We shall see that for t ∈ (0, T ), t �= tc, function at can be
defined a.e. in R

3
+ so that it is divergence-free and, in addition to condition (6), it

also satisfies the series of estimates

‖∇at‖2
2;Ω t ≤ c1 (δ̇t )2 ln

(

1+ R

δt

)

, (7)

∣
∣
(

∂t at , ϕ
)

2;Ω t

∣
∣ ≤ c2 (δ̇t )2 ‖∇ϕ‖2;Ω t + c3 |δ̈t | ‖ϕ‖2;Ω t , (8)

∣
∣
(

at · ∇at , ϕ
)

2;Ω t

∣
∣ ≤ c4 (δ̇t )2 ‖∇ϕ‖2;Ω t , (9)

‖at‖5;Ω t ≤ c5
|δ̇t |

(δt )1/10
, (10)

∣
∣
(

ϕ · ∇at , ϕ
)

2;Ω t

∣
∣ ≤ c6 |δ̇t | ‖∇ϕ‖2

2;Ω t , (11)

K
∣
∣
(

at − Vt , ϕ
)

2; Γt

∣
∣ ≤ 1

16ν ‖∇ϕ‖2
2;Ω t + c7 (12)

for t �= tc, all ϕ ∈ W 1,2
σ (Ω t ), with constants c1–c7 which are independent of ϕ

and t . Obviously, the right hand side of (7) is integrable on (0, T ) with any power
α ≥ 0 and the right hand side of (10) is integrable on (0, T ) with any power α ∈
[1, 10).

If t �= tc then domain Ω t has the cone property and consequently, W 1,2(Ω t )3 is
continuously embedded into L6(Ω t )3. Thus, we can also derive the estimate

∣
∣
(

ϕ · ∇at , ϕ
)

2;Ω t

∣
∣ ≤ ‖∇at‖2;Ω t ‖ϕ‖1/2

2;Ω t ‖ϕ‖3/2
6;Ω t

≤ c8 a(t) ‖ϕ‖2
2;Ω t + 1

16ν ‖∇ϕ‖2
2;Ω t , (13)

valid for t �= tc, where a(t) := ‖∇at‖4
2;Ω t . Constant c8 depends on ν and it also

generally depends on t through the cone parameters appearing in the definition of
the cone property of Ω t , see e.g. [1, p. 103]. However, if we use (13) only at times
t such that |t − tc| > κ0 then c8, although dependent on κ0, can be considered to be
independent of t . The value of κ0 will be fixed by condition (iv) in Lemma 1.



Navier-Stokes Equation with Navier’s Boundary Condition 389

We shall also see in Sect. 2 that the initial-value problem

d

dt
X(t ; t0, x0) = at

(

X(t ; t0, x0)
)

, X(t0; t0, x0) = x0 (14)

has a unique solution X (t ; t0, x0), defined for a.a. t0 ∈ (0, T ), all t ∈ [0, T ] and all
x0 ∈ R

3
+. The mapping x0 �→ X(t ; t0, x0) is a 1–1 transformation of Ω t0 � &t0 onto

Ω t
� &t (where &t0 and &t are certain sets of measure zero), whose Jacobian equals

one due to the incompressibility of the flow at . This mapping can be used in order
to transform volume integrals on Ω t0 to volume integrals on Ω t .

2 A Formal Study of the Initial-Boundary Value Problem (1)–(5)
and the Main Theorem

A formal derivation of the weak formulation. The weak formulation of the problem
(1), (2), (3), (4), and (5) can be formally derived from the classical formulation
if we multiply Eq. (1) by an appropriate test function ϕ, integrate in Q(0,T ) and
use all the conditions (2), (3), (4), and (5). Thus, assume that ϕ is an infinitely
differentiable divergence-free vector-function in R+3 × [0, T ] that has a compact
support in R+3 × [0, T ) and satisfies the condition ϕ · n = 0 on Γ(0,T ). Assume that
v is a “sufficiently smooth” solution of (1)–(5) of the form v = at + u where at

has all the properties named in the last paragraph of Sect. 1 and u ∈ L2
σ (Ω t ) for

a.a. t ∈ (0, T ). The product {∂t v+ (vt ·∇)v} ·ϕ equals the sum of {∂t v+ (at ·∇)v} ·ϕ
and u · ∇v · ϕ. The integral of the first term can be treated as follows:

∫ T

0

∫

Ω t

{

∂t v(x, t)+ at (x) · ∇v(x, t)
} · ϕ(x, t) dx dt +

∫

Ω0
v0(x0) · ϕ(x0, 0) dx0

=
∫ T

0

∫

Ω0

d

dt
v
(

X(t ; 0, x0), t
) · ϕ(X(t ; 0, x0), t

)

dx0dt +
∫

Ω0
v0(x0) · ϕ(x0, 0)dx0

= −
∫ T

0

∫

Ω t

{

∂tϕ(x, t)+ at (x) · ∇ϕ(x, t)
} · v(x, t) dx dt. (15)

The integral of u·∇v·ϕ in Ω t can be transformed to the negative integral of u·∇ϕ ·v
by means of the integration by parts. Further, we have

∫

Ω t

νΔv · ϕ dx =
∫

Ω t

νΔat · ϕ dx+
∫

Γt

ν
∂u
∂n
· ϕ dS −

∫

Ω t

ν∇u : ∇ϕ dx

=
∫

Γt

ν
[

2n · (∇u)s − n · ∇u
] · ϕ dS +

∫

Ω t

[

νΔat · ϕ − ν∇u : ∇ϕ
]

dx

=
∫

Γt

n · [2ν (∇v)s − 2ν (∇at )s] · ϕ dS +
∫

Ω t

[

νΔat · ϕ − 2ν (∇u)s : ∇ϕ
]

dx

= −
∫

Γt

K (v− Vt ) · ϕ dS −
∫

Ω t

2ν (∇v)s : ∇ϕ dx. (16)
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We have used the identities
∫

Γt

n · 2ν (∇v)s · ϕ dS =
∫

Γt

[n · Td(v)]τ · ϕ dS = −
∫

Γt

K (v− Vt ) · ϕ dS,
∫

Γt

n · ∇u · ϕ dS =
∫

Ω t

(∇u)T : ∇ϕ dx,
∫

Ω t

νΔat · ϕ dx =
∫

Γt

2ν n · (∇at )s · ϕ dS −
∫

Ω t

2ν (∇at )s : ∇ϕ dx,

the first of whose follows from (4). The integral of ∇ p ·ϕ on Ω t equals zero because
the subspace of gradients of scalar functions is orthogonal to L2

σ (Ω t ) in L2(Ω t )3.
Thus, using (15) and (16), we obtain the integral identity

∫ T

0

∫

Ω t

{−v · ∂tϕ − v · ∇ϕ · v+ 2ν (∇v)s : ∇ϕ
}

dx dt+

+
∫ T

0

∫

Γt

K (v− Vt ) · ϕ dS dt =
∫ T

0

∫

Ω t

f · ϕ dx dt +
∫

Ω0
v0 · ϕ(. , 0) dx.

Replacing v by the sum at + u, we arrive at the definition:

Definition (the weak solution of (1), (2), (3), (4), and (5)) Suppose that u0 ∈
L2
σ (Ω0) and f ∈ L2(0, T ; L2(Ω t )3). The function v ≡ at + u is called a weak

solution of the problem (1)–(5) if u ∈ L2(0, T ; W 1,2
σ (Ω t )) ∩ L∞(0, T ; L2

σ (Ω t ))
satisfies

∫ T

0

∫

Ω t

{−(at+u) · ∂tϕ − (at + u) · ∇ϕ · (at+u)+2ν [∇(at + u)]s : ∇ϕ
}

dx dt

+
∫ T

0

∫

Γt

K (at+u−Vt )·ϕ dS dt=
∫ T

0

∫

Ω t

f · ϕ dx dt +
∫

Ω0
[a0 + u0] · ϕ(. , 0) dx (17)

for all divergence-free vector-functions ϕ ∈ C∞0
(

R+3 × [0, T )
)

, that satisfy the con-
dition ϕ · n = 0 on Γ(0,T ).

The readers can verify that this definition enables us the “backward calculation”,
i.e. to show that if the weak solution v is “sufficiently smooth” and all other input
data are also “sufficiently smooth” then there exists a pressure p so that the pair v,
p is a classical solution of (1), (2), (3), (4), and (5).

We shall refer to the problem defined above as to the weak problem (17).

A formal derivation of the energy inequality. The energy inequality is a fundamental
apriori estimate of a solution of the problem (1), (2), (3), (4), and (5). An analogous
estimate can be rigorously derived for appropriate approximations of the solution.
However, in order to abstract from technical details connected with the approxima-
tions and to explain how we use the boundary conditions and apply estimates (7),
(8), (9), (10), (11), (12), and (13), we include the formal derivation of the energy
inequality already in this section.
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Lemma 1 Suppose that

(iv) there exists κ0 > 0 so that c6 |δ̇t | < 1
4 ν for tc − κ0 < t < tc + κ0.

Then there exists a non–negative integrable function G on (0, T ) such that if
(v, p) ≡ (at + u, p) is a smooth solution of the initial-boundary value problem
(1)–(5) and t ∈ (0, T ) then

‖u(. , t)‖2
2;Ω t + ν

∫ t

0
‖∇u(. , s)‖2

2;Ωs ds + 2K
∫ t

0
‖u(. , s)‖2

2;Γ s ds

≤ ‖u0‖2
2;Ω0 +

∫ t

0
ω(s) ‖u(. , s)‖2

2;Ωs ds + G(t), (18)

where ω(t) = 2c3 |δ̈t | + 2c8 a(t) + 1. (Recall that c6 and c8 are the constants from
inequalities (11), (13) and a(t) = ‖∇at‖4

2;Ω t .)

Proof Assume that t �= tc, multiply Eq. (1) (where v = at + u) by u and integrate
in Ω t . We obtain

∫

Ω t

{

[∂t (at +u)+ at · ∇(at +u)] ·u+u · ∇at ·u− νΔv ·u} dx =
∫

Ω t

f ·u dx. (19)

Now we estimate or rewrite the terms in (19):

• Following (16), we have

− ν

∫

Ω t

Δv · u dx = K
∫

Γt

|u|2 dS + K
∫

Γt

(at − Vt ) · u dS+

+ ν

∫

Γt

n · ∇u · u dS + ν

∫

Ω t

|∇u|2 dx+ 2ν
∫

Ω t

(∇at )s : ∇u dx.

• Using the identity ∇(u · n) · u = 0 (valid a.e. on Γt ) and the negative semi-
definiteness of the tensor ∇n a.e. on Γt (following from the special geometry of
Ω t ), we observe that

∫

Γt n · ∇u · u dS ≥ 0. Therefore, using (12), we get

∫

Γt

n · ∇u · u dS + K
∫

Γt

(at − Vt ) · u dS ≥ − 1
16ν ‖∇u‖2

2;Ω t − c7,

− ν

∫

Ω t

Δv · u dx≥K ‖u‖2
2; Γt + 14

16 ν

∫

Ω t

|∇u|2 dx− 16ν
∫

Ω t

|∇at |2 dx− c7. (20)

• Due to (8) and (9), we obtain (with c9 = [8(c2
2 + c2

4)/ν] · ess sup(δ̇t )4)

∣
∣
∣
∣

∫

Ω t

[∂t at + at · ∇at ] · u dx

∣
∣
∣
∣
≤ c3 |δ̈t | ‖u‖2

2;Ω t + 1
4 c3 |δ̈t | + 1

16ν ‖∇u‖2
2;Ω t + c9.
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• Using the transformation x �→ y = X(t + h; t, x) of Ω t
� &t onto Ω t+h

� &t+h ,
we can rewrite the next integral as follows:

∫

Ω t

[

∂t u+ at · ∇u
] · u dx =

[∫

Ω t

d

dϑ

1

2

∣
∣u
(

X(ϑ ; t, x), ϑ
)∣
∣
2

dx
]

ϑ=t

= lim
h→0

1

2h

[∫

Ω t

(∣
∣u
(

X(t + h; t, x), t + h
)∣
∣
2 − ∣

∣u
(

X(t ; t, x), t
)∣
∣
2
)

dx
]

= lim
h→0

1

2h

[∫

Ω t+h

|u(y, t + h)|2 dy−
∫

Ω t

|u(x, t)|2 dx
]

= d

dt

1

2

∫

Ω t

|u|2 dx.

• Now, due to inequalities (11) and (13) and denoting by χ0 the characteristic func-
tion of the interval (tc − κ0, tc + κ0), we can estimate

∣
∣
∣
∣

∫

Ω t

u · ∇at · u dx

∣
∣
∣
∣
≤c6 χ0(t) |δ̇t | ‖∇u‖2

2;Ω t + 1
16ν ‖∇u‖2

2;Ω t + c8 a(t) ‖u‖2
2;Ω t .

• Finally, by means of condition (iv) of the smallness of |δ̇t | on the interval
(tc − κ0, tc + κ0), the term c6 χ0(t) |δ̇t | ‖∇u‖2

2;Ω t can also be absorbed by
14
16 ν ‖∇u‖2

2;Ω t (see (20)).
• Substituting now all previous estimates or identities to (19) and using inequality

(7), we obtain

d

dt
‖u‖2

2;Ω t + ν ‖∇u‖2
2;Ω t + 2K ‖u‖2

2; Γt ≤ ‖f‖2
2;Ω t + ω(t) ‖u‖2

2;Ω t

+ 1
2 c3 |δ̈t | + 16c1 (δ̇t )2 ln

(

1+ R

δt

)

+ c7 + c9.

To complete the proof, we integrate this inequality on the time interval (0, t). �

Our main theorem, whose proof is given in Sect. 4, 5 and 6, reads:

Theorem 1 Suppose that function δt satisfies conditions (i)–(iii) and also the con-
dition of smallness (iv). Then the weak problem (17) has a solution.

3 Construction of the Auxiliary Function at and its Properties

The purpose of this section is to define a divergence-free function at in R
3
+ × [0, T ]

which has the properties named and used in Sect. 1: identity (6), essentially at · n =
(0, 0, δ̇t ) · n in ∂Bt for t �= tc, and inequalities (7)–(13).

Except for the Cartesian coordinates x1, x2, x3, we shall also use the cylindrical
coordinates r , ϕ and x3. Thus, r2 = x2

1 + x2
2 . The lower half of the surface of Bt

coincides with the graph of the function

x3 = gt (r ) := δt + R −
√

R2 − r2; 0 ≤ r ≤ R.
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Domains Ω t (r0), Ωext and Ωint. Let us fix r0 := 3
4 R. The crucial sub-domain of Ω t ,

where the collision occurs, is (see Fig. 1)

Ω t (r0) := {

x = (r, ϕ, x3) ∈ Ω t ; r < r0, x3 < gt (r )
}

. (21)

We also denote by Ωext the set of points x = (r, ϕ, x3) ∈ R
3
+ such that either r >

21
20 R or x3 > max{δ0; δT }. The complementary set Ωint is defined as R

3
+ � Ωext.

Fig. 1 Structure of domain Ω t

An auxiliary function bt . Suppose that t ∈ (0, T ) � {tc}. We define

β t = (β t
r , β

t
ϕ, β

t
3) :=

(

0,
r x3

2gt (r )
, 0

)

δ̇t ,

bt = (bt
r , bt

ϕ, bt
3) := curlβ t =

(

− r

2gt (r )
, 0, − x3r ∂r gt (r )

2gt (r )2
+ x3

gt (r )

)

δ̇t (22)

in the cylinder r < r0, 0 < x3 < δt + R. The derivative of gt (r ) with respect to
r is ∂r gt (r ) = r/

√
R2 − r2. The function bt is divergence–free and it satisfies the

conditions of impermeability, bt · n = −bt
3 = 0 for x3 = 0, and for x3 = gt (r ),

bt · n =
(

− r

2gt (r )
, 0, −r ∂r gt (r )

2gt (r )
+ 1

)

δ̇t ·
(−∂r gt (r ), 0, 1

)

√

[gt (r )]2 + 1
= (0, 0, δ̇t ) · n

Thus, bt · n = Vt · n on the lower and upper parts of the boundary of Ω t (r0).

Two auxiliary cut-off functions. We shall use two cut-off functions: η1 is an infinitely
differentiable cut–off function of one variable such that
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η1(s) :=

⎧

⎪⎨

⎪⎩

1 for s < R,

0 for 21
20 R < s,

∈ [0, 1] for R ≤ s ≤ 21
20 R

and ηt
2 is an infinitely differentiable cut-off function in R+3 whose support is a subset

of {x = (r, ϕ, x3); r ≤ r0, x3 ≤ δt + R} and ηt
2(x) = 1 for r < 1

2 R and 0 ≤ x3 <

gt (r ).
Let eϕ denote the unit vector in the direction of ϕ. Then curl

[
1
2r δ̇t eϕ

] =
(0, 0, δ̇t ). Furthermore, curl

[

η1
(|x − St |) 1

2r δ̇t eϕ
]

coincides with (0, 0, δ̇t ) in Bt

and it equals zero if |x− St | > 21
20 R.

Definition of function at . We put

at (x) := curl
[

ηt
2(x)β t (x)+ [

1− ηt
2(x)

]

η1(|x− St |) 1
2r δ̇t eϕ

]

. (23)

Then, in the important regions,

at (x) =

⎧

⎪⎨

⎪⎩

bt (x) for x ∈ Ω t (r1) with r1 := 1
2 R = 2

3 r0,

(0, 0, δ̇t ) for x ∈ Bt
+ := {

x ∈ R
3
+; |x− St | ≤ R, x3 > R + δt

}

,

0 for x ∈ Ωext .

Obviously, at is divergence-free and satisfies identity (6). It can be proved that it
also satisfies all the estimates (7)–(13) named in Sect. 1: since at is smooth outside
the critical region Ω t (r1), where the collision of the ball Bt with the x1, x2-plane
occurs, and at = 0 in Ωext, we can focus only on the behavior of at in Ω t (r1), where
at = bt .

Using the explicit form of bt , given by (22), one can show that bt indeed satis-
fies the same estimates as (7), (8), (9), (10), (11), (12), and (13). We only have to
consider the norms or scalar products in Ω t (r1) instead of Ω t on the left hand sides
of (7)–(11). Similarly, bt satisfies an estimate analogous to (12) with Γt ∩ ∂Ω t (r1)
instead of Γt .

We verify only two of the estimates in the rest of this section.

An estimate of
∣
∣
(

ϕ · ∇bt , ϕ
)

2;Ω t (r1)

∣
∣ with ϕ ∈ W 1,2

σ (Ω t ). We consider this estimate
to be crucial, because although domain Ω t (r1) is time-dependent, it provides an
estimate with constant C independent of t .

Let us begin with the integral of (∂r bt
r )ϕ2

r , where we can easily check that
|∂r bt

r | =
∣
∣∂r

(

r δ̇t/2gt (r )
)∣
∣ ≤ C |δ̇t |/gt (r ). We put ϕ̃r (r, x3) := ∫ 2π

0 ϕr (r, ϕ, x3) dϕ.
Since the flow ϕ is incompressible and it also satisfies the condition of imperme-
ability ϕ · n = 0 on Γt , we have

∫ gt (r )

0
ϕ̃r dx3 =

∫ gt (r )

0

∫ 2π

0
ϕr dϕ dx3 =

∫

∂Ω t (r )
ϕ ·n dS =

∫

Ω t (r )
div ϕ dx = 0 (24)
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(where 0 < r ≤ r1). This implies that to each r ∈ (0, r1) there exists x3(r ) between
0 and gt (r ) such that ϕ̃r (r, x3(r )) = 0. Using also the inequality r2 ≤ 2R gt (r ) and
applying Poincaré’s inequality (see e.g. [3, R. Dautray and J. L. Lions, p. 127]) to
the integral

∫ 2π
0 ϕ2

r dϕ, we obtain

∣
∣
∣
∣

∫

Ω t (r1)
(∂r bt

r )ϕ2
r dx

∣
∣
∣
∣
≤ C |δ̇t |

∫ r1

0

r dr

gt (r )

∫ gt (r )

0
dx3

(∫ 2π

0
ϕ2

r dϕ

)

≤ C |δ̇t |
∫ r1

0

r dr

gt (r )

∫ gt (r )

0
dx3

(

4π
∫ 2π

0
(∂ϕϕr )2 dϕ + 1

2π

[∫ 2π

0
ϕr dϕ

]2)

= C |δ̇t |
∫ r1

0

r dr

gt (r )

∫ gt (r )

0
dx3

∫ 2π

0
(∂ϕϕr )2 dϕ + C |δ̇t |

∫ r1

0

r dr

gt (r )

∫ gt (r )

0
|ϕ̃r |2 dx3

≤ C |δ̇t |
∫ r1

0

r3 dr

gt (r )

∫ gt (r )

0
dx3

∫ 2π

0

1

r2

[

∂ϕϕr (r, ϕ, x3)
]2

dϕ

+ C |δ̇t |
∫ r1

0

r dr

gt (r )

∫ gt (r )

0

[∫ x3

x3(r )
∂y ϕ̃r (r, y) dy

]2

dx3

≤ C |δ̇t |
∫ r1

0
r dr

∫ gt (r )

0
dx3

∫ 2π

0

1

r2

[

∂ϕϕr (r, ϕ, x3)
]2

dϕ

+ C |δ̇t |
∫ r1

0
gt (r ) r dr

∫ gt (r )

0

∣
∣∂x3 ϕ̃r (r, x3)

∣
∣
2

dx3 ≤ C |δ̇t |
∫

Ω t (r1)
|∇ϕr |2 dx.

The generic constant C is always independent of t . The integrals of (∂3bt
3)ϕ2

3 and
(∂r bt

3)ϕr ϕ3 can be treated similarly. (Here we can use the identity ϕ3(r, ϕ, 0) = 0.)
Thus, we finally estimate the modulus of

(

ϕ ·∇bt , ϕ
)

2;Ω t (r1) by C |δ̇t | ‖∇ϕ‖2
2;Ω t (r1) .

An estimate of the surface integral of (bt−Vt )·ϕ. We estimate the product (bt−Vt )·ϕ
on the “lower part” Γt

0(r1) := {x = (r, ϕ, x3) ∈ Γt ; r < r1, x3 = 0} and on the
“upper part” Γt

1(r1) := {x = (r, ϕ, x3) ∈ Γt ; r < r1, x3 = gt (r )} of Γt ∩ ∂Ω t (r1).
Using the explicit forms of bt − Vt on Γt

0(r1) and Γt
1(r1) and the identity ϕ3 =

∂r gt (r )ϕr on Γt
1(r1) (following from the condition ϕ · n = 0), we get

∣
∣
∣
∣

∫

Γt
0(r1)

(bt − Vt ) · ϕ dS +
∫

Γt
1(r1)

(bt − Vt ) · ϕ dS

∣
∣
∣
∣

=
∣
∣
∣
∣

δ̇t

2

∫ r1

0

∫ 2π

0

[ r2

gt (r )
ϕr (r, ϕ, 0)+ r2

gt (r )

(

1+ [

∂r gt (r )
]2
)

ϕr
(

r, ϕ, gt (r )
)]

dϕdr

∣
∣
∣
∣

=
∣
∣
∣
∣

δ̇t

2

∫ r1

0

[ r2

gt (r )
ϕ̃r (r, 0)+ r2

gt (r )

(

1+ [

∂r gt (r )
]2
)

ϕ̃r
(

r, gt (r )
)]

dr

∣
∣
∣
∣

≤ C

∣
∣
∣
∣

∫ r1

0

r2

gt (r )

(∫ 0

x3(r )
∂σ ϕ̃r (r, σ ) dσ

)

dr

∣
∣
∣
∣

+ C

∣
∣
∣
∣

∫ r1

0

r2

gt (r )

(

1+ [

∂r gt (r )
]2
)(∫ gt (r )

x3(r )
∂σ ϕ̃r (r, σ ) dσ

)

dr

∣
∣
∣
∣
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≤
∣
∣
∣
∣

∫ r1

0
r
∫ gt (r )

0

(

ε
∣
∣∂x3 ϕ̃r (r, x3)

∣
∣
2 + C(ε)

)

dx3 dr

∣
∣
∣
∣
.

The generic constant again C does not depend on t . Choosing sufficiently small
ε > 0, we obtain an inequality that further enables us to arrive at (12).

The initial-value problem (14). Suppose that t0 ∈ [0, T ] and x0 ∈ Ω t0 �lt0 (where lt0

is the open line segment in Ω t0 with the end points (0, 0, 0) and (0, 0, δt0 )). Then the
initial-value problem (14) has a unique solution X(t ; t0, x0) defined for t ∈ [0, T ]
by the Carathéodory theorem. The trajectory of the solution stays in Ω t

� &t (where
&t is defined by analogy with &t0 ) due to the condition at · n = Vt · n satisfied
by function at on Γt . The mapping x0 �→ X(t ; t0, x0) is a 1–1 regular mapping of
Ω t0 � &t0 onto Ω t

� &t , whose Jacobian equals one. Note that if x0 ∈ Ωext then
X(t ; t0, x0) = x0 independently of t and t0 because at (x0, t) = 0 for all 0 ≤ t ≤ T .

4 The Time Discretized Boundary Value Problems

The time-discretization. Let n ∈ N and k ∈ {0; 1; . . . ; n}. We put h := T/n,
tk := kh, Ωk := Ω tk and Γk := Γ tk . We can assume without loss of generality
that the critical time tc of the collision differs from all the time instants tk .

The stationary boundary value problems. We put U0 := u0. We successively solve,
for k = 1, . . . , n, a sequence of these stationary boundary value problems: given
Uk−1 ∈ L2

σ (Ωk−1) and fk ∈ L2(Ωk)3, we look for Uk , Pk such that

Uk(x)−Uk−1
(

X(tk−1; tk, x)
)+ hUk(x)·{[∇a]k(x)+∇Uk(x)

}+ h∇Pk(x)

= νh
{

Div[∇a]k(x)+ΔUk(x)
}+ Ak(x)+ h fk(x) in Ωk, (25)

div Uk(x) = 0 in Ωk, (26)

Uk · n = 0 in Γk, (27)
[

(Td)k · n
]

τ
+ K (ak + Uk − Vk) = 0 in Γk, (28)

The meaning of the functions Ak , [∇a]k , fk , ak , Vk and (Td)k is explained below:

Ak(x) := −atk (x)+ atk−1
(

X(tk−1; tk, x)
) = −

∫ tk

tk−1

d

dt
at
(

X(t ; tk, x)
)

dt,

[∇a]k(x) := 1

h

∫ tk

tk−1

∇at (x) dt, fk(x) := 1

h

∫ tk

tk−1

f(x, t) dt

for x ∈ Ωk and (Td)k := 2ν
{

[∇a]k + ∇Uk
}

s on Γk . Denoting by e3 the unit vector
(0, 0, 1), we define for x ∈ Γ s and t, s ∈ [0, T ] (such that s ≤ t)

Y(t ; s, x) :=
{

x+ (

δt − δs
)

e3 if x ∈ ∂Bs,

x if x ∈ the x1, x2–plane.
(29)
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The mapping x �→ Y(t ; s, x) represents the shift of the “material point” x on the
boundary of the flow field in the time interval [s, t]. Now we denote for x ∈ Γk

ak(x) := 1

h

∫ tk

tk−1

at
(

Y(t ; tk, x)
)

dt, Vk(x) := 1

h

∫ tk

tk−1

Vt
(

Y(t ; tk, x)
)

dt.

Note that the term at · ∇u, which appears in Eq. (1) if we write v in the form
v = at + u, is now related to the difference at the beginning of (25):

Uk(x)− Uk−1
(

X(tk−1; tk, x)
) =

∫ tk

tk−1

∇Uk
(

X(t ; tk, x)
) · at

(

X(t ; tk, x)
)

dt.

The weak formulation of the BV problem (25)–(28). We can get rid of pressure Pk in
the classical formulation (25)–(28) if we formally multiply Eq. (25) by a test func-
tion Φk from W 1,2

σ (Ωk). Furthermore, we integrate by parts in the “viscous term”
and we use boundary conditions (27) and (28) in the same way as the conditions
(3) and (4) were used in (16). Thus, we arrive at the weak formulation: we look for
Uk ∈ W 1,2

σ (Ωk) such that

∫

Ωk

{

Uk(x)−Uk−1
(

X(tk−1;tk, x)
)+hUk(x)·{[∇a]k(x)+∇Uk(x)

}}·Φk(x) dx

+
∫

Ωk

2νh
{

[∇a]k(x)+∇Uk(x)
}

s : ∇Φk(x) dx

+
∫

Γk

K h
[

ak(x)+ Uk(x)− Vk(x)
] ·Φk(x) dS

=
∫

Ωk

h fk(x) ·Φk(x) dx+
∫

Ωk

Ak(x) ·Φk(x) dx (30)

for all Φk ∈ W 1,2
σ (Ωk). The solvability of this nonlinear elliptic problem can be

proved by standard methods, particularly of theory of the steady Navier-Stokes
equation. We refer e.g. to the book [9] by G. P. Galdi for the corresponding tech-
niques. The coerciveness of an associated quadratic form follows from the next
estimates.

Apriori estimates of solutions of the BV problem (30). Using Φk = Uk in (30), we
obtain:

1

2
‖Uk‖2

2;Ωk
+ 1

2

∫

Ωk

∣
∣Uk(x)− Uk−1

(

X(tk−1; tkx)
)∣
∣
2

dx

+νh
∫

Ωk

(∇Uk)s : ∇Uk dx+
∫

Γk

K h |Uk |2 dS ≤
1

2
‖Uk−1‖2

2;Ωk−1
+

∣
∣
∣
∣
h
∫

Ωk

fk · Uk dx

∣
∣
∣
∣
+

∣
∣
∣
∣
h
∫

Ωk

Uk · [∇a]k · Uk dx

∣
∣
∣
∣
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∣
∣
∣
∣

∫

Ωk

Ak · Uk dx

∣
∣
∣
∣
+

∣
∣
∣
∣
νh

∫

Ωk

(

[∇a]k
)

s : ∇Uk dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Γk

K (ak − Vk) · Uk dS

∣
∣
∣
∣
.

The integral of (∇Uk)s : ∇Uk can be estimated from below by 1
2 ‖∇Uk‖2

2;Ωk
by

means of the integration by parts, the identity ∇(n · Uk) · Uk = 0 (valid on Γk) and
the negative semi-definiteness of ∇n on Γk . The integrals on the right hand side can
F be treated by analogy with the procedure explained in Sect. 1, which now leads us
to a discrete variant of the energy inequality (18):

‖U j‖2
2;Ω j

+
j

∑

k=1

∫

Ωk

∣
∣Uk(x)− Uk−1

(

X(tk−1; tk, x)
)∣
∣
2

dx+ νh
j

∑

k=1

‖∇Uk‖2
2;Ωk

+ 2K h
j

∑

k=1

‖Uk‖2
2;Γk

≤ ‖U0‖2
2;Ω0

+
j

∑

k=1

ωk ‖Uk‖2
2;Ωk

+
j

∑

k=1

gk (31)

for j = 1, . . . , n, where ωk , gk are certain positive numbers, depending on the same
quantities as functions ω and G in (18), and satisfying the estimates

∑n
k=1 ωk ≤ c11

and
∑n

k=1 gk ≤ c12 (with appropriate constants c11 and c12 independent of n).

5 The Non-stationary Approximations, Their Estimates
and Weak Convergence

We define for tk−1 < t ≤ tk (where k = 1, . . . , n)

un(x, t) :=
{

Uk(x) if x ∈ Ωk,

0 if x ∈ R
3
+ � Ωk,

U
n(x, t) :=

{

∇Uk(x) if x ∈ Ωk,

O if x ∈ R
3
+ � Ωk,

un
∗(x, t) := un

(

Y(tk ; t, x), t
) = Uk

(

Y(tk ; t, x)
)

if x ∈ Γt .

Estimates of the sequences {un}, {Un} and {un
∗}. Inequality (31) implies that there

exist c13(h) > 0 and c14(h) > 0 such that both c13(h) and c14(h) tend to zero as
h → 0+ and

[

1− c13(h)
] ‖un(. , t)‖2

2; R
3+
+ν

∫ t

0
‖Un(. , s)‖2

2; R
3+

ds + 2K
∫ t

0
‖un
∗(. , s)‖2

2;Γ s ds

≤ ‖u0‖2
2;Ω0 +

∫ t

0
λn(s) ‖un(. , s)‖2

2; R
3+

ds + c12 + c14(h) (32)

where λn(s) := ωk for tk−1 < s ≤ tk . Applying Gronwall’s lemma, we deduce that
there exists c15 > 0 (depending on c11, c12 and ‖u0‖2;Ω0 ) such that for all n ∈ N so
large that c13(h) ≤ 1

2 and for all t ∈ (0, T ), we have



Navier-Stokes Equation with Navier’s Boundary Condition 399

‖un(. , t)‖2; R
3+ ≤ c15 . (33)

Using this estimate in (32), we observe that there exist c16 and c17 independent of n
and such that

∫ T

0
‖Un(. , s)‖2

2; R
3+

ds ≤ c16 ,

∫ T

0
‖un
∗(. , s)‖2

2;Γ s ds ≤ c17 . (34)

Inequalities (33) and (34) conversely yield:

‖Uk‖2;Ωk ≤ c15 (k = 1, . . . , n) and h
n

∑

k=1

‖∇Uk‖2
2;Ωk

≤ c16 . (35)

Weak convergence of selected subsequences. Estimates (33) and (34) imply that
there exist subsequences of {un}, {Un} and {un

∗} (we shall denote them again by
{un}, {Un} and {un

∗} in order not to complicate the notation) and functions u ∈
L∞(0, T ; L2(R3

+)3), U ∈ L2(0, T ; L2(R3
+)9) and u∗ ∈ L2(Γ(0,T ))3 such that

un −⇀ u weakly–∗ in L∞(0, T ; L2(R3
+)3) for n →+∞, (36)

U
n −⇀ U weakly in L2(0, T ; L2(R3

+)9) for n →+∞, (37)

un
∗ −⇀ u∗ weakly in L2(Γ(0,T ))

3 for n →+∞ (38)

with the following relations between u, U and u∗:

Lemma 2 (a) U = ∇u in the sense of distributions in Q(0,T ),
(b) u ∈ L2(0, T ; W 1,2

σ (Ω t )),
(c) u∗ = u on Γ(0,T ) (here u denotes the trace of function u

∣
∣

Q(0,T )
on Γ(0,T )).

The proof can be made by standard techniques.

6 The Limit Function u: A Solution of the Weak Problem (17)

Suppose that ϕ is a fixed infinitely differentiable divergence-free vector-function in
R+3 × [0, T ] with a compact support in R+3 × [0, T ), such that ϕ · n = 0 on Γ[0,T ].

Using the relation between un and the solutions of the steady weak problem (30),
one can verify that un (with U

n standing for ∇un and u∗ standing for the trace on
Γ(0,T )) satisfies the non-steady weak problem (17), up to a correction which tends to
zero as n →+∞. (The intermediate step is to use (30) with Φk = ϕ(. , tk).)

Applying (36), (37), and (38), we can pass to the limit as n → +∞ in all the
linear terms. Thus, the limit of the nonlinear term (the integral of un · Un · ϕ) also
exists. So we obtain:

∫ T

0

∫

Ω t

{−[∂tϕ + at · ‖∇ϕ] · (at+u)− u · ∇ϕ · at + 2ν [∇(at+u)]s : ∇ϕ
}

dx dt
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+ lim
n→+∞

∫ T

0

∫

Ω t

un · Un · ϕ dx dt +
∫ T

0

∫

Γt

K [at + u− Vt ] · ϕ dS dt

=
∫ T

0

∫

Ω t

f · ϕ dx dt +
∫

Ω0
(a0 + u0) · ϕ(. , 0) dx. (39)

Comparing (39) with (17), we observe that in order to verify that u is a solution of
the weak problem (17), it is sufficient to show that there exists a subsequence of
{un} (we shall denote it again by {un}) such that

lim
n→+∞

∫ T

0

∫

Ω t

un · Un · ϕ dx dt =
∫ T

0

∫

Ω t

u · ∇u · ϕ dx dt. (40)

This limit procedure is not standard because of the variability of domain Ω t and the
choice of the test function ϕ, which generally has only the normal component equal
to zero on Γ(0,T ). We explain it in greater detail in the next six paragraphs.

Cutting-off function ϕ. Let ε1 > 0 be given. Then, due to (33) and (34), there exists
κ1 > 0 so small that

∣
∣
∣
∣

∫ tc+κ1

tc−κ1

∫

Ω t

un · Un · ϕ dx dt

∣
∣
∣
∣
≤

c18

[

ess sup
0<t<T

‖un(., t)‖2;Ω t

] ∫ tc+κ1

tc−κ1

‖Un(., t)‖2;Ω t dx ≤ c18 c15

√

2κ1 c16 < ε1 (41)

for all n ∈ N sufficiently large. (Here c18 is the maximum of |ϕ| on R
3
+ × [0, T ].)

Let η3 be an infinitely differentiable cut-off function of variable t defined on the
interval [0, T ], with values in [0, 1], such that

η3(t) :=
{

1 for t ∈ [0, tc − κ1] ∪ [tc + κ1, T ],

0 for t ∈ [

tc − 1
2κ1, tc + 1

2κ1
]

,

The function ϕ∗(x, t) := η3(t) ϕ(x, t) equals zero for tc − 1
2κ1 ≤ t ≤ tc + 1

2κ1 and

∣
∣
∣
∣

∫ tc+κ1

tc−κ1

∫

Ω t

un · Un · (ϕ − ϕ∗) dx dt

∣
∣
∣
∣
< ε1

due to (41). Since ε1 can be chosen arbitrarily small, it is sufficient to prove (40)
with function ϕ∗ instead of ϕ.

Approximation of function ϕ∗. Since each of the domains Ωk (for k = 1, . . . , n) has
the cone property (because all the time instants tk differ from tc), inequalities (35)
and the Sobolev embedding theorem imply that Uk ∈ L6(Ωk)3. This means that
un(. , t) ∈ L6(R3

+)3 for all t ∈ (0, T ). Moreover, if we restrict ourselves to times
t ∈ I (κ1), where
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I (κ1) := [

0, tc − 1
2κ1

) ∪ (

tc + 1
2κ1, T

]

,

then the cone parameters in the definition of the cone property of domain Ω t

can be chosen to be independent of t . Hence the constants in the embedding
inequalities also become independent of t and we obtain the uniform estimate
‖un(. , t)‖6; R

3+ ≤ C (‖un(. , t)‖2; R
3+ + ‖Un(. , t)‖2; R

3+) for all t ∈ I (κ1). From this
information and from (34), we can deduce that the product un · U

n belongs to
L2

(

I (κ1); L1(R3
+)3

)∩ L1
(

I (κ1); L3/2(R3
+)3

)

. By interpolation, we obtain the inclu-
sion un · Un ∈ Lr

(

I (κ1); Ls(R3
+)3

)

for r ≥ 1, s ≥ 1 such that 2/r + 3/s = 4.
Particularly, un · Un ∈ L5/4

(

I (κ1); L5/4(R3
+)3

)

.
Function ϕ∗ can be approximated by infinitely differentiable divergence–free

vector-functions that have a compact support in Q[0,T ) with an arbitrary accuracy
in the norm of the space L5

(

I (κ1); L5(Ω t )3
)

. Hence, given ε2 > 0, there exists such
a vector–function ϕ∗∗ which satisfies

∣
∣
∣
∣

∫ T

0

∫

Ω t

un · Un · ϕ∗ dx−
∫ T

0

∫

Ω t

un · Un · ϕ∗∗ dx

∣
∣
∣
∣
< ε2

for all n ∈ N sufficiently large. Since ε2 can be chosen to be arbitrarily small, we
can prove (40) only with the function ϕ∗∗ instead of ϕ (respectively instead of ϕ∗).

Partition of function ϕ∗∗. Let m ∈ N. We denote τ j = jT/m (for j = 0, . . . ,m).
There exist m + 1 infinitely differentiable functions θ0, . . . , θm on [0, T ] with their
values in the interval [0, 1] such that supp θ0 ⊂ I0 := [τ0, τ1), supp θ j ⊂ I j :=
(τ j−1, τ j+1) (for j = 1, . . . ,m−1), supp θm ⊂ Im := (τm−1, τm] and

∑m
j=0 θ j (t) =

1 for 0 ≤ t ≤ T . Now we put ϕ∗∗j := θ j ϕ∗∗ (for j = 0, 1, . . . ,m). The functions
ϕ∗∗j are divergence–free, they have compact supports in QI j (where QI j =

{

(x, t) ∈
R

3 × [0, T ]; t ∈ I j , x ∈ Ω t
}

) and

m
∑

j=0

ϕ∗∗j = ϕ∗∗ in Q[0,T ].

Denote by K j be the orthogonal projection of supp ϕ∗∗j into R
3. If m is large

enough then the distance between K j and Γt is greater than one half of the distance
between supp ϕ∗∗ and Γ[0,T ] for all t ∈ I j . Thus, there exists a bounded open set
Ω∗

j in R
3 with the boundary of the class C1,1 such that K j ⊂ Ω∗

j ⊂ Ω∗
j ⊂ Ω t for

all t ∈ I j . So, we conclude that in order to prove (40), it is sufficient to treat (40)
separately with ϕ = ϕ∗∗j (for j = 0, 1, . . . ,m) and to show that

lim
n→+∞

∫

I j

∫

Ω∗
j

un · ∇un · ϕ∗∗j dx dt =
∫

I j

∫

Ω∗
j

u · ∇u · ϕ∗∗j dx dt. (42)

The local Helmholtz decomposition of function un. We denote by P j
σ the Helmholtz

projection in L2(Ω∗
j )3. Put w j

n := P j
σ un . The function (I − P j

σ )un has the form ∇ϕ j
n

for an appropriate scalar function ϕ
j
n . Equation (42) can now be written as
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lim
n→+∞

∫

I j

∫

Ω∗
j

[

w j
n · ∇w j

n · ϕ∗∗j + w j
n · ∇2ϕ j

n · ϕ∗∗j +∇ϕ j
n · ∇w j

n · ϕ∗∗j

+∇ϕ j
n · ∇2ϕ j

n · ϕ∗∗j
]

dx dt =
∫

I j

∫

Ω∗
j

(u · ∇)u · ϕ∗∗j dx dt. (43)

Since ∇ϕ j
n · ∇2ϕ

j
n = ∇

(
1
2 |∇ϕ j

n |2
)

and ϕ∗∗j (. , t) ∈ L2
σ (Ω∗

j ), the integral of ∇ϕ j
n ·

∇2ϕ
j
n · ϕ∗∗j on Ω∗

j equals zero.
The convergence (36) and (37), the coincidence of U

n with ∇un on Ω∗
j × I j and

the boundedness of operator P j
σ in L2(Ω∗

j )3 and in W 1,2(Ω∗
j )3 imply that

w j
n ⇀ w j = P j

σ u, and ∇ϕ j
n ⇀ ∇ϕ j = (I − P j

σ )u for n →+∞ (44)

weakly in L2(I j ; W 1,2(Ω∗
j )3) and weakly–∗ in L∞(I j ; L2

σ (Ω∗
j )).

Strong convergence of a subsequence of {w j
n}. We are going to show that there exists

a subsequence of {w j
n} that tends to w j strongly in L2(I j ; L2

σ (Ω∗
j )) as n → +∞.

We shall therefore use the next lemma, see J. L. Lions [18, Theorem 5.2].

Lemma 3 Let 0 < γ < 1
2 and let H0, H and H1 be Hilbert spaces such

that H0 ↪→↪→ H ↪→ H1. Let Hγ (R; H0, H1) denote the Banach space
{

w ∈
L2(R; H0); |ϑ |γ ŵ(ϑ) ∈ L2(R; H1)

}

with the norm

|||w|||γ ; R := (‖w‖2
L2(R; H0) + ‖ |ϑ |γ ŵ(ϑ)‖2

L2(R; H1)

)1/2
.

(Here ŵ(ϑ) is the Fourier transform of w(t).) Let Hγ (a, b; H0, H1) further denote
the Banach space of restrictions of functions from Hγ (R; H0, H1) onto the interval
(a, b), with the norm

|||w|||γ ; (a,b) := inf |||z|||γ ; R

where the infimum is taken over all z ∈ Hγ (R; H0, H1) such that z = w a.e. in
(a, b). Then Hγ (0, T ; H0, H1) ↪→↪→ L2(a, b; H ).

Consider j ∈ {1; . . . ; m} fixed. We shall use Lemma 3 with (a, b) = I j ,
H0 = W 1,2

σ (Ω∗
j ), H = L2

σ (Ω∗
j ) and H1 = W−1,2

0,σ (Ω∗
j ). (Here W−1,2

0,σ (Ω∗
j ) denotes

the dual to W 1,2
0,σ (Ω∗

j ) where W 1,2
0,σ (Ω∗

j ) is the closure of C∞0,σ (Ω∗
j ) in W 1,2(Ω∗

j )3.

The space W 1,2
0,σ (Ω∗

j ) can be characterized as the space of functions from W 1,2
σ (Ω∗

j )

that have the trace on ∂Ω∗
j equal to zero.) We claim that {w j

n} is bounded in the

space Hγ (I j ; H0, H1). The boundedness of {w j
n} in L2(I j ; H0) follows from (33),

(34), from the coincidence of U
n with ∇un on Ω∗

j × I j and from the boundedness

of operator P j
σ in L2(Ω∗

j )3 and in W 1,2(Ω∗
j )3. Thus, we only need to verify that

{|ϑ |γ ŵ j
n} is bounded in the space L2(I j ; H1), i.e. in L2(I j ; W−1,2

0,σ (Ω∗
j )). Let z j

n be

an extension by zero of w j
n from the time interval I j onto R. Then
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ẑ j
n(ϑ) =

∫ +∞

−∞
e−2π i tϑ w j

n(t) dt =
∑

k∈Λn
j

∫ tk

tk−1

e−2π i tϑ P j
σ Uk dt (45)

where Λn
j is the set of such indices k ∈ {1; . . . ; n} that [R3× (tk−1, tk)]∩ supp ϕ∗∗j �=

∅. Λn
j has the form Λn

j = {l; l + 1; . . . ; q} where 1 ≤ l ≤ q ≤ n. Calculating the
integrals in (45), we obtain

ẑ j
n(ϑ) =

q
∑

k=l

1

2πrirϑ

[

e−2π i tk−1ϑ − e−2π i tkϑ
]

P j
σ Uk

= 1

2πrirϑ

[

e−2π i tl−1 P j
σ Ul − e−2π i tq P j

σ Uq
]

+ 1

2πrirϑ

q
∑

k=l+1

e−2π i tk−1ϑ [P j
σ Uk − P j

σ Uk−1].

Since Ω∗
j ⊂ Ωs for all s ∈ I j , we also have Ω∗

j ⊂ Ωk for all k ∈ Λn
j (if n is

large enough). If |ϑ | ≤ 1 then, using (45) and (35), we can estimate the norm of
|ϑ |γ ẑ j

n(ϑ) in W−1,2
0,σ (Ω∗

j ) as follows:

∥
∥ |ϑ |γ ẑ j

n(ϑ)
∥
∥
−1,2;Ω∗

j
≤ C(Ω∗

j ) |ϑ |γ
q

∑

k=l

h ‖Uk‖2:Ω∗
j
≤ C(Ω∗

j ) |ϑ |γ . (46)

If |ϑ | > 1 then we must proceed more subtly:

∥
∥ |ϑ |γ ẑ j

n(ϑ)
∥
∥
−1,2;Ω∗

j
≤ |ϑ |γ−1

2π

(‖P j
σ Ul‖−1,2;Ω∗

j
+ ‖P j

σ Uq‖−1,2;Ω∗
j

)

+ |ϑ |
γ−1

2π

q
∑

k=l+1

‖P j
σ Uk − P j

σ Uk−1‖−1,2;Ω∗
j

≤ C(Ω∗
j ) |ϑ |γ−1 (‖Ul‖2:Ω∗

j
+ ‖Uq‖2:Ω∗

j

)

+ |ϑ |
γ−1

2π

q
∑

k=l+1

sup
ψk

1

‖ψk‖1,2;Ω∗
j

∣
∣
∣
∣

∫

Ω∗
j

(Uk − Uk−1) · ψk dx

∣
∣
∣
∣

(47)

where the supremum is taken over all ψk ∈ W 1,2
0,σ (Ω∗

j ) such that ‖ψk‖1,2;Ω∗
j
> 0.

The sum in (47) can be estimated by S1 + S2 where

S1 =
q

∑

k=l+1

sup
ψk

1

‖ψk‖1,2;Ω∗
j

∣
∣
∣
∣

∫

Ω∗
j

[

Uk(x)− Uk−1
(

X(tk−1; tk, x)
)]· ψk(x) dx

∣
∣
∣
∣
,

S2 =
q

∑

k=l+1

sup
ψk

1

‖ψk‖1,2;Ω∗
j

∣
∣
∣
∣

∫

Ω∗
j

[

Uk−1(x)− Uk−1
(

X(tk−1; tk, x)
)]· ψk(x) dx

∣
∣
∣
∣
.
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The function ψk , extended by zero to R
3
+ � Ω∗

j , belongs to W 1,2
σ (Ωk). Hence the

integral of
[

Uk(x) − Uk−1
(

X(tk−1; tk, x)
)] · ψk(x) on Ω∗

j equals the integral of the
same function in Ωk and it can be therefore expressed by means of (30). Thus, S1

can be estimated:

S1 ≤
q

∑

k=l+1

sup
ψk

1

‖ψk‖1,2;Ω∗
j

∣
∣
∣
∣
−h

∫

Ωk

Uk(x) · [∇a]k(x) · ψk(x) dx

− h
∫

Ωk

Uk(x) · ∇Uk(x) · ψk(x) dx

− h
∫

Ωk

ν
{

[∇a]k(x)+∇Uk(x)
}

s : ∇ψk(x) dx

−
∫

Γk

K
[

ak(x)+ Uk(x)− Vk(x)
] · ψk(x) dS

+
∫

Ωk

h fk(x) · ψk(x) dx+
∫

Ωk

Ak(x) · ψk(x) dx

∣
∣
∣
∣
.

The surface integral on Γk equals zero because the function ψk is zero on Γk .
The right hand side can be estimated by C(Ω∗

j ) by means of (7) and (35), stan-
dard inequalities based on the Sobolev embedding theorem (applied in Ω∗

j ) and the
Hölder inequality. Let us show the procedure in greater detail, for example, in the
case of the terms containing the product Uk · ∇Uk · ψk :

q
∑

k=l+1

sup
ψk

1

‖ψk‖1,2;Ω∗
j

∣
∣
∣
∣
h
∫

Ωk

Uk · ∇Uk · ψk dx

∣
∣
∣
∣

≤ C(Ω∗
j )

( q
∑

k=l+1

h
∫

Ωk

|∇Uk |2 dx
)1/2 ( q

∑

k=l+1

h
∫

Ωk

|Uk |3 dx
)1/3

≤ C(Ω∗
j )

(

h
q

∑

k=l+1

‖∇Uk‖3/2
2;Ωk

‖Uk‖3/2
6;Ωk

)1/3

≤ C(Ω∗
j )

[

h
q

∑

k=l+1

‖∇Uk‖3/2
2;Ωk

(

‖Uk‖3/2
2;Ωk

+ ‖∇Uk‖3/2
2;Ωk

)]1/3

≤ C(Ω∗
j )

[

1+
(

h
n

∑

k=1

‖∇Uk‖2
2;Ωk

)3/4]1/3

≤ C(Ω∗
j ).

Here the constant C(Ω∗
j ) also depends on the right hand sides of (7) and (35). In

order to estimate S2, we use the identities

Uk−1(x)− Uk−1
(

X(tk−1; tk, x)
) =

∫ tk

tk−1

d

dξ
Uk−1

(

X(ξ ; tk, x)
)

dξ
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=
∫ tk

tk−1

aξ
(

X(ξ ; tk, x)
) · ∇Uk−1

(

X(ξ ; tk, x)
)

dξ.

Then the sum S2 can be estimated by means of (10) and (35) as follows:

S2 ≤ C(Ω∗
j ) sup

ψk

‖ψk‖6;Ω∗
j

‖ψk‖1,2;Ω∗
j

q
∑

k=l+1

[∫ tk

tk−1

∫

Ω∗
j

∣
∣∇Uk−1

(

X(ξ ; tk, x)
)∣
∣
2

dx dξ

]1/2

·
[∫ tk

tk−1

(∫

Ω∗
j

∣
∣aξ

(

X(ξ ; tk, x)
)∣
∣
3

dx
)2/3

dξ

]1/2

≤C(Ω∗
j )

[ q
∑

k=l+1

∫ tk

tk−1

∫

Ωk−1

∣
∣∇Uk−1(x)

∣
∣
2

dx dξ

]1/2 [∫ T

0

∫

Ωξ

∣
∣aξ (x)

∣
∣
5

dx dξ

]1/5

≤C(Ω∗
j ).

Substituting the estimates of S1 and S2 to (47), we finally obtain

∥
∥|ϑ |γ ẑ j

n(ϑ)
∥
∥
−1,2;Ω∗

j
≤ C(Ω∗

j ) |ϑ |γ−1. (48)

The constant C(Ω∗
j ) is independent of n. Recall that inequality (48) holds for

|ϑ | > 1. Since the exponent γ satisfies 0 < γ < 1
2 , the right hand side of (48) is

integrable on (−∞,−1) ∪ (1,+∞) with power 2. This, together with (46), implies
that the sequence {|ϑ |γ ẑ j

n(ϑ)} is bounded in L2(R; W−1,2
0,σ (Ω∗

j )). Consequently, the

sequence {w j
n} is bounded in Hγ

(

I j ; W 1,2
σ (Ω∗

j ), W−1,2
0,σ (Ω∗

j )
)

. This space is reflex-

ive, hence there exists a subsequence (we denote it again by {w j
n}) which converges

weakly in Hγ
(

I j ; W 1,2
σ (Ω∗

j ), W−1,2
0,σ (Ω∗

j )
)

. Due to (44), the limit must be w j . Apply-

ing now Lemma 3, we have: w j
n −→ w j = P j

σ u strongly in L2
(

I j ; L2(Ω∗
j )3

)

. This
strong convergence, together with the weak convergence (44), enables us to pass
to the limit in the first three terms on the left hand side of (43). The procedure is
standard (see e.g. J. L. Lions [18] or R. Temam [22]), therefore we omit the details.
Using also the equation

∫

Ω∗
j

(∇ϕ · ∇)∇ϕ · ϕ∗∗j dx = 0,

following from the inclusion ϕ∗∗j ∈ L2
σ (Ω∗

j ) and from the identity (∇ϕ · ∇)∇ϕ =
∇( 1

2 |∇ϕ|2
)

, we can verify the validity of (43), and consequently also the validity of
(40). This confirms that u is a weak solution of the weak problem (17). The proof
of Theorem 1 is thus completed.
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7 Concluding Remarks

Energy inequality for the weak solution. The limit processes (36), (37) and (38) and
Lemma 2 imply that the limit function u, which is a solution of (17), satisfies the
same estimates (33) and (34) as the approximations. Inequality (33) thus provides an
estimate of the kinetic energy associated with the flow u at a.a. times t ∈ (0, T ) and
the first inequality in (34) estimates the dissipation of this energy in the time interval
(0, T ). The question whether u also satisfies the energy inequality (18), formally
derived in Sect. 2 (see Lemma 1), is open. To obtain (18), it would be necessary
to make the limit transition in inequality (32) (which is the discrete equivalent of
(18)). Here we need an information on the strong convergence of a subsequence
of {un} in L2(0, T ; L2

σ (Ω t )) in order to control the second term on the right hand
side of (32). However, we do not have such an information: we have only obtained
the strong convergence of appropriate local interior Helmholtz projections of un in
Sect. 6. It was sufficient for the limit transition (40), but it does not enable us to treat
the integral on the right hand side of (32) in a similar way.

The condition of smallness (iv). Condition (iv) (see Lemma 1) requires a sufficient
smallness of the speed of the ball Bt at times close to the critical instant tc of the
collision of the ball with the wall. We need this condition because estimate (13),
based on the continuous embedding W 1,2(Ω t )) ↪→ L6(Ω t ), cannot be used in order
to estimate the approximations at times close to tc. (The constant in the embedding
inequality increases “too rapidly” to infinity as t → tc.) Thus, we use estimate
(11) instead of (13) at times close to tc and since we need the right hand side to be
absorbed by the “viscous term”, it must be “sufficiently small”.

Flow around a body of a general shape striking the wall. We have mainly used the
information on the shape of Bt (i.e. that it is a ball) in the region close to the point of
the collision of Bt with the wall. (Particularly, the shape of Bt influences the form of
function gt in Sect. 2. With another function gt , we would obtain other inequalities
than (7), (8), (9), (10), (11), (12), and (13) for function at .) Thus, Theorem 1 could
be generalized in such a way that instead of the ball Bt we would speak on a compact
body of another (however sufficiently smooth) shape, which coincides with a ball in
the neighborhood of the point of the collision.
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On the Influence of an Absorption Term
in Incompressible Fluid Flows

Hermenegildo B. de Oliveira

Abstract This work is concerned with a mathematical problem derived from the
Ellis model used in Fluid Mechanics to describe the response of a great variety
of generalized fluid flows. For pseudoplastic fluids, it is well-known that the weak
solutions to that problem extinct in a finite time. In order to obtain the same prop-
erty for Newtonian and dilatant fluids, we modify the problem by introducing an
absorption term in the momentum equation. The proof relies on a suitable energy
method, Sobolev type interpolation inequalities and also on a generalized Korn’s
inequality. Then we extend our results for several cases: slip boundary conditions,
anisotropic absorption and non-homogeneous fluid flows. We also discuss existence
and uniqueness of weak solutions for the modified problem.

Keywords Non-Newtonian fluids · Ellis model · Absorption · Existence ·
Uniqueness · Extinction in time

1 Introduction

In Fluid Mechanics, the most widely used constitutive relation to model the response
of incompressible and homogeneous fluids is

T = −pI+ F(D) , F(D) = α1(ID)D , D = 1

2

(∇ u+ ∇ uT
)

. (1)

The notation is well known: u is the velocity field, p is the pressure, T is the
Cauchy stress tensor, I is the unit tensor, D is the stretching tensor which mathe-
matically corresponds to the symmetric part of the velocity gradient ∇ u, usually
denominated in Fluid Mechanics as the shear rate, and ID = 1/2|D|2 is the first
invariant of D. In this work, we assume the extra stress tensor F and the stretching
tensor D are related by the following rheological flow law
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F = (

μ0 + μ1|D|q−2
)

D . (2)

Parameters μ0, μ1 and q are non-negative, being the first two related with the
fluid viscosity and the latter characterizing the flow. Equations (1) and (2) are known
in the literature as the Ellis model and describe the response of a great variety of
generalized fluids. For q >> 1 and small values of |D|, (1) and (2) tend to approxi-
mate the Stokes model for Newtonian fluids. On the contrary, for q << 1 and great
values of |D|, they approximate the Ostwald-de Waele model for power law fluids,
very often used to model non-Newtonian fluids. Therefore many fluid models can
be obtained from the Ellis law (1) and (2) by combining the parameters μ0, μ1 and
q as follows:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Newtonian if μ0 > 0 ∧ μ1 = 0

Ostwald-de Waele if μ0 = 0 ∧ μ1 > 0

⎧

⎪⎪⎨

⎪⎪⎩

Bingham if q = 1
pseudoplastic if 1 < q < 2
Newtonian if q = 2
dilatant if q > 2 .

Examples of such fluids are water solutions, gasoline, vegetal and mineral oils
(Newtonian), drilling muds used in petroleum industry, toothpaste and face creams
(Bingham), milk fluids, varnishes, shampoo and blood fluids (pseudoplastic), polar
ice, glaciers, volcano lava and sand (dilatant). It is well known that a pseudoplastic
fluid is characterized by a viscosity that decreases with shear rate and a dilatant
fluid by a viscosity that increases with shear rate. As a consequence, many authors
rather use to denote them as shear thinning and shear thickening fluids, respec-
tively. Bingham fluid is similar to a pseudoplastic fluid, but it exhibits a yield point.
The existence of a yield point means fluid flow is prevented below a critical stress
level, but flow occurs when the critical stress level is exceeded. Other names found
in the literature for Bingham fluids are plastic fluids and sometimes viscoplastic
fluids to avoid confusion with the word plastic as applied to solid polymers. See
Schowalter [18] and the references therein for the models more often used in non-
Newtonian Fluid Mechanics.

From the basic principles of Fluid Mechanics, it is well known that, in motions of
incompressible fluids modeled by the Ellis law (1) and (2) (with neither inner mass
sources nor sinks), the velocity field and pressure are determined by:

• the incompressibility condition

div u = 0; (3)

• the conservation of mass

∂ �

∂ t
+ div (�u) = 0; (4)
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• the conservation of momentum

�

(
∂ u
∂ t
+ (u·∇)u

)

= � f− ∇ p + div
[(

μ0 + μ1|D|q−2
)

D
]

. (5)

Again in (3), (4), and (5), � is the density and f is the forcing term. For homo-
geneous fluids, the density is regarded as constant. Therefore, in that case, we can
replace the continuity equation (4) by its incompressible form (3). System (3), (4),
and (5) must be supplemented with boundary conditions characterizing the flow on
the boundary of the domain occupied by the fluid and by initial conditions deter-
mining the initial state of the flow at the beginning of the time interval.

2 The Modified Ellis Problem

In this section, we shall introduce the main problem we are going to work with. Let
us consider a general cylinder

QT := Ω × (0, T ) ⊂ R
N × R

+ ,

where Ω is a bounded domain whose boundary ∂Ω is assumed to be smooth
enough. The boundary of QT is defined by

ΓT := (0, T )× ∂Ω .

The dimensions of physical interest are N = 2 and N = 3, but the results to be
presented here extend to any dimension N ≥ 2. In this paper we shall consider the
following modified Ellis problem (MEP) for homogeneous fluids

div u = 0 (6)

∂ u
∂ t
+ (u · ∇)u− div

[(

ν0 + ν1|D|q−2
)

D
]+ α|u|σ−2u = f−∇ p (7)

supplemented by the initial condition

u = u0 when t = t0 (8)

and by the adherence boundary condition

u = 0 on ΓT . (9)

In (7), we have set p = p/�, and ν0 = μ0/� and ν1 = μ1/� are non-negative
parameters related to the kinematics viscosity, α = α/� is a non-negative con-
stant and, for the time being, σ is a constant such that σ ≥ 1. The term |u|σ−2u is
understood as an absorption and, as we shall see, it behaves like a sink inside the
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flow domain. Its motivation is purely mathematical and goes back to the works of
Benilan, Brezis and Crandall, Dı́az and Herrero, and Bernis (see Antontsev et al. [5]
and Dı́az [11]) Of particular importance to this work is the Dirichlet problem

−div
(|∇u|q−2∇u

)+ |u|σ−2u = f in Ω ⊂ R
N , q ≥ 1, σ > 1 ,

u = h on ∂Ω
(10)

presented in Dı́az [11] as modeling a stationary non-Newtonian fluid. When (10)
is linear, i.e. with p = σ = 2, the solution u of (10) corresponding to data, say
f ≥ 0 and h ≥ 0, is such that u > 0 in Ω . When (10) is nonlinear, entirely
different behavior may appear. Roughly speaking, the effective power of the dif-
fusion term div

(|∇u|p−2∇u
)

and of the absorption term |u|σ−2u vary with p and
σ , generating new phenomena. If σ ≥ p, Ω is an unbounded open domain and f
and h have compact support, then the support of the solution contains the whole
domain Ω and if σ < p the solution u has compact support and so u = 0 in an
unbounded region of Ω . With this motivation, the purpose of this work is to study
the asymptotic behavior of the weak solutions to the MEP problem (6), (7), (8),
and (9). Specifically we want to know if these solutions extinct in a finite time and
if so, what is the relation between the parameter q which characterizes the flow
and the absorption constants α and σ . The problem of the solutions vanishing in
some space region is much more difficult and we address the reader to Antontsev
et al. [3, 4], where 2D stationary Navier-Stokes problems were studied. It should
be remarked that these issues have been studied by many authors, either in time
or in space. There exists an extensive literature on decay rates for the solutions of
the Navier-Stokes problem (see Oliveira [10] and the references cited therein). For
the non-Newtonian setting, the literature is scarce, although many techniques of the
Navier-Stokes model can be used. In Bae [6] it was proved that the L2 norm of weak
solutions to the homogeneous problem (6), (7), (8), and (9) with α = 0, decreases
with rate t−1/(q−2) as t tends to infinity for the dilatant case (q > 2) and vanishes in
a finite time for the pseudoplastic case (1 < q < 2). The same problem was solved
by Guo and Zhu [12] and by Ňečasová and Penel [17], but only for the dilatant case
(q > 2). As regards to the non-homogeneous problem (6), (7), (8), and (9), with
α = 0, and to the best of our knowledge, there is no references where such kind of
decays are studied.

3 Notation and Auxiliary Results

The notation used throughout this paper is largely standard in Mathematical Fluid
Mechanics – see, e.g., Lions [15]. We distinguish vectors from scalars by using bold-
face letters. For functions and function spaces we will use this distinction as well.
The symbol C will denote a generic constant – generally a positive one, whose value
will not be specified; it can change from one inequality to another by subscripting
different numbers and it can be related to an important result by subscripting initial
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letters of that result. The dependence of C on other constants or parameters will
always be clear from the exposition. In this article, the notation Ω stands always for
a domain, i.e., a connected open subset of R

N , whose compact boundary is denoted
by ∂Ω .

Let 1 ≤ p ≤ ∞ and Ω ⊂ R
N be a domain. We shall use the classical Lebesgue

spaces Lp(Ω), whose norm is denoted by ‖ · ‖Lp(Ω). W1,p(Ω) denotes the Sobolev
space of all functions u ∈ Lp(Ω) such that the weak derivatives Du exist, in
the generalized sense, and are in Lp(Ω). Given T > 0 and a Banach space X ,
Lp(0, T ; X ) is the Bochner space used in evolutive problems. The corresponding
spaces of vector-valued functions are denoted by boldface letters. All these spaces
are Banach spaces and the Hilbert framework corresponds to p = 2. In the last case,
we use the abbreviation W1,2 = H1.

To prove the main results of this paper, it will be of the utmost importance some
Sobolev type inequalities established in lemmas below.

Lemma 1 (Korn) Assume 1 < p <∞ and let Ω be a domain of R
N , N ≥ 2, with

a locally compact boundary ∂Ω . Then for any u ∈ W1,p
0 (Ω),

CK‖∇ u‖Lp(Ω) ≤ ‖D(u)‖Lp(Ω) , CK = C(p,Ω). (11)

This is the so-called second Korn’s inequality and it extends to suitable unbounded
domains (see e.g. Ladyzhenskaya et al. [14]).

Lemma 2 (Interpolation Embedding) Let Ω be a domain of R
N , N ≥ 1, with a

locally compact boundary ∂Ω . Assume that u ∈ W1,p
0 (Ω). Then, for every fixed

number r ≥ 1 there exists a constant CG N depending only on N, p, r such that

‖u‖Lq (Ω) ≤ CG N‖∇u‖θLp(Ω)‖u‖1−θ
Lr (Ω), (12)

where p, q ≥ 1, are linked by θ =
(

1
r − 1

q

) (
1
N − 1

p + 1
r

)−1
, and their admissible

range is:

(1) If N = 1, q ∈ [r,∞], θ ∈
[

0, p
p+r (p−1)

]

, CG N = [1+ (p − 1)/pr ]θ ;

(2) If p < N, q ∈
[

N p
N−p , r

]

if r ≥ N p
N−p and q ∈

[

r, N p
N−p

]

if r ≤ N p
N−p , θ ∈ [0, 1]

and CG N = [(N − 1)p/(N − p)]θ ;

(3) If p ≥ N > 1, q ∈ [r,∞), θ ∈
[

0, N p
N p+r (p−N )

)

and CG N = max{q(N −
1)/N , 1+ (p − 1)pr}θ .

The interpolation inequality (12) is known in the literature as Gagliardo-Niren-
berg inequality. This result is valid whether the domain Ω is bounded or not and
notice the constant CG N does not depend on Ω (see e.g. Ladyzhenskaya et al. [14]).
Notice also that in the particular case of θ = 1, (12) reduces to the well-known
Sobolev’s inequality and, in this case, the constant will be denoted by CS .
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4 Weak Formulation

The mathematical analysis of incompressible fluid problems is commonly done in
the context of divergence free function spaces. Working in this context, we introduce
the following function spaces:

V := {v ∈ C∞0 (Ω) : div v = 0} ;

H := closure of V in L2(Ω) ;

Vq := closure of V in W1,q (Ω) .

It is worth to recall that H is endowed with the L2(Ω) inner product and norm,
and Vq is a Banach space whose norm is inherited from the Sobolev space W1,q (Ω).
For a bounded domain Ω , V2 ⊂ Vq if q < 2 and Vq ⊂ V2 if q > 2. Below we
define the notion of weak solutions we shall work with.

Definition 1 Let Ω be a bounded domain in RN , N ≥ 2, with a Lipschitz boundary
∂Ω , and let q , σ > 1. A vector field u is a weak solution to the MEP problem (6),
(7), (8), and (9), if:

1. u ∈ L2(0, T ; V) ∩ Lq (0, T ; Vq ) ∩ Lσ (QT ) ∩ L∞(0, T ; H);
2. The following identity

−
∫

QT

u · ϕt dz−
∫

QT

u⊗ u : ∇ϕ dz+
∫

QT

(

μ0 + μ1|D(u|q−2
)

D(u) : ∇ϕ d z

+ α

∫

QT

|u|σ−2u · ϕ d z =
∫

QT

f · ϕ d x+
∫

Ω

u0 · ϕ(0) dx

holds for all ϕ ∈ C∞(QT ) with divϕ = 0 and suppϕ ⊂⊂ Ω× [0, T ), and where
z = (x, t).

To the best of our knowledge, the MEP problem (6), (7), (8), and (9) is new and
there are no references to it in the literature. On the other hand, for the problem (6),
(7), (8), and (9) with α = 0 there are some important works. The first results on
existence and uniqueness of weak solutions were achieved by Ladyzhenskaya [13]
for N = 2 and N = 3. Lions [15] has extended her results to a general dimen-
sion N ≥ 2. Combining monotone operator theory and compactness arguments, he
has proved the existence of weak solutions for q > (3N + 2)/(N + 2) and their
uniqueness for q ≥ (N + 2)/2. For the success of those proofs, it was of the utmost
importance the embedding

Lq (0, T ; Vq ) ∩ L∞(0, T ; H) ↪→ Lq N+2
N (QT )

to prove that u ⊗ u : D(ϕ) ∈ L1(QT ) for all u, ϕ ∈ Lq (0, T ; Vq ) ∩ L∞(0, T ; H)
(see Lions [15]). For 2 ≤ q ≤ 11/5 and N = 3, the existence of weak solutions
has been proved by Málek et al. [16] under the restrictive assumption that ∂Ω ∈ C3.
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Moreover, they have proved a uniqueness result for any q > 20/9. Without any
restriction on Ω , Wolf [19] has proved the existence of weak solutions in the space
Lq (0, T ; Vq ) ∩ Cw(0, T ; H) for q > 2(N + 1)/(N + 2). For the existence results of
Málek et al. [16] and Wolf [19], were very important the q-coercivity condition

F : D ≥ C |D|q , C = constant > 0 (13)

and the q-growth condition

|F| ≤ C (1+ |D|)q−1 , C = constant > 0 .

Although the results of Wolf [19] extend to some values q < 2, so far it is an open
problem to prove the existence of weak solutions for all q > 1. The main obstacle
is the fact that one is unable to construct the pressure as a measurable function in
(x, t) ∈ QT , but only as a distribution with regard to t ∈ (0, T ). On the contrary,
for the space periodic problem, the full existence result is proved for any q > 1 (see
Bae and Choe [7]).

Theorem 1 Assume that q > 2N/(N + 2), σ > 1 and u0 ∈ H. Then, there exists,
at least, a weak solution to the MEP problem (6), (7), (8), and (9) in the sense of
Definition 1.

The proof can be adapted from Wolf [19] by using the arguments of Bernis [9]
to deal with the absorption term if σ > 2. For 1 < σ ≤ 2, we use the Sobolev
embedding H1(Ω) ↪→ Lσ (Ω) valid for 1 ≤ σ ≤ 2N/(N − 2) if N ≥ 3 and for
any σ ≥ 1 if N = 2. In this case and in order to prove the convergence of the
approximate solutions, it is also important the inequality (14), established in the
Lemma below, to deal with the absorption term, where we have to take p = σ and
δ = 2− σ , which in turn implies σ ≤ 2.

Lemma 3 For all p ∈ (1,∞) and δ ≥ 0, there exist constants C1 and C2, depending
on p and N, such that for all ξ , η ∈ R

N , N ≥ 1,

∣
∣|ξ |p−2ξ − |η|p−2η

∣
∣ ≤ C1|ξ − η|1−δ (|ξ | + |η|)p−2+δ (14)

and

(|ξ |p−2ξ − |η|p−2η
) · (ξ − η) ≥ C2|ξ − η|2+δ (|ξ | + |η|)p−2−δ (15)

Proof See Barret and Liu [8]. ��
Below we present a result about uniqueness which, for N = 3, can be improved by
using the results of the same kind of Málek et al. [16].

Theorem 2 Assume that q > 2N/(N + 2), σ > 1, f ∈ Lq ′ (QT ) and u0 ∈ H. Then
the weak solution of the MEP problem (6), (7), (8), and (9) is unique.
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For q ≥ (N + 2)/2, the uniqueness result can be derived from Lions [15]. Here, the
problem lies in proving that the difference of absorptions from two weak solutions
is non-negative. But this follows directly from (15) by taking p = σ and δ = 0.

Shortly, existence and uniqueness of weak solutions to the MEP problem (6), (7),
(8), and (9) hold for any σ > 1 as far as the same results hold for the problem (6),
(7), (8), and (9) with α = 0. If one can improve these results for any q > 1, then the
same results for the MEP problem (6), (7), (8), and (9) can be obtained.

5 Extinction in Time

In this section, we are interested in weak solutions for the MEP problem (6), (7),
(8), and (9) such that

E(t)+
∫

Ω

(|∇ u(t)|2 + |∇ u(t)|q) dx <∞, E(t) := 1

2

∫

Ω

|u(t)|2 dx . (16)

We denote by E(t) the energy associated with the MEP problem (6), (7), (8), and
(9), which in Fluid Mechanics is usually denoted as the kinetic energy.

Theorem 3 Assume that 1 < σ < 2, u0 ∈ H and let u be a weak solution to the
MEP problem (6), (7), (8), and (9) in the sense of Definition 1.

1. If f = 0 a.e. in QT , then there exists t∗ > 0 such that u(x, t) = 0 a.e. in Ω and
for almost all t ≥ t∗.

2. Let f �= 0 and assume that there exist positive constants ε and θ and that there
exists a positive time tf such that, for almost all t ∈ [0, T ],

‖f(t)‖Lq′ (Ω) ≤ ε

(

1− t

tf

)θ

+
if

Nq

N − q
≤ q < 2 , (θ is given by (30)) ,

(17)
or

‖f(t)‖Lq′ (Ω) ≤ ε

(

1− t

tf

)θ

+
if q > 2 , (θ is given by (38)) . (18)

Then there exists a constant ε0 > 0 (defined by (30) for (17) and by (39) for (18))
such that u = 0 a.e. in Ω and for almost all t ≥ tf provided 0 < ε ≤ ε0.

Notice that, although the property is the same, the constants ε, θ , tf and ε0 can be
distinct in the different cases (17) and (18). The notation u+ means the positive part
of u, i.e. u = max(u, 0).

Proof We formally multiply (7) by u, a weak solution to the MEP problem (6), (7),
(8), and (9), integrate over Ω and use (6), (9) and the symmetry of D. Then we use
Korn’s inequality (11) to obtain the following energy relation
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d

dt
E(t)+

∫

Ω

(

C0|∇ u(t)|2 + C1|∇ u(t)|q + α|u(t)|σ ) dx

≤
∫

Ω

u(t) · f(t) dx for a.a. t ∈ [0, T ] ,
(19)

where C0 = C2
K ν0 and C1 = Cq

K ν1, being CK the Korn’s inequality constant.
Applying successively Schwarz’s, Young’s and Sobolev’s (12) inequalities, the latter
with p = q, we obtain

∣
∣
∣
∣

∫

Ω

u(t) · f(t) dx

∣
∣
∣
∣
≤ εCq

S‖∇ u(t)‖q
Lq (Ω)+C(ε)‖f(t)‖q ′

Lq′ (Ω)
for a.a. t ∈ [0, T ] , (20)

where CS is the Sobolev inequality constant. Choosing ε : 0 < ε < C1/Cq
S , we

obtain from (19) and (20)

d

dt
E(t)+

(∫

Ω

(

C0|∇ u(t)|2 + C2|∇ u(t)|q + α|u(t)|σ ) dx
)

≤ C3

∫

Ω

|f(t)|q ′ dx for a.a. t ∈ [0, T ] ,
(21)

where C2 = C1− εCq
S and C3 = C(ε). To be precise, (21) is first established for the

approximations of the weak solutions to the MEP problem (6), (7), (8), and (9) and
then is shown to be true for the limit function.
Case 2N/(N + 2) ≤ q < 2. Using a vector version of Sobolev’s inequality (12), we
obtain

E(t) ≤ C4

(∫

Ω

|∇ u(t)|q dx
) 2

q

for a.a. t ∈ [0, T ] , q ≥ 2N

N + 2
, (22)

where C4 = C2
S/2. Taking into account that C0 and α are non-negative constants,

we obtain from (19) and (22) that

d

d t
E(t)+ C5 E(t)

q
2 ≤ C3

∫

Ω

|f(t)|q ′dx for a.a. t ∈ [0, T ] , (23)

where C5 = C2C−q/2
4 . If f = 0, then we obtain the following homogeneous ordinary

differential inequality for the energy function E(t)

d

d t
E(t)+ C5 E(t)

q
2 ≤ 0 for a.a. t ∈ [0, T ]. (24)

Knowing that 2N/(N+2) ≤ q < 2, an explicit integration of (24) between t = 0
and t leads us to
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E(t) ≤
(

E(0)
2−q

2 − 2− q

2
C3t

) 2
2−q

for a.a. t ∈ [0, T ]. (25)

The right-hand side of (25) vanishes for t ≥ t∗ := 2E(0)(2−q)/2/[C5(2− q)] and
the first assertion is then proved.

If f satisfies to (17), then from (23), we obtain the following non-homogeneous
ordinary differential inequality

d

d t
E(t)+ C5 E(t)

q
2 ≤ C3ε

q ′
(

1− t

tf

)q ′θ

+
. (26)

To analyze (26), we need the following result.

Lemma 4 Let δ > 0 such that
(

t f − δ, t f + δ
) ⊂ [0, T ] and assume E ∈

W1,1
(

t f − δ, t f + δ
)

satisfies the differential inequality

d

dt
E(t)+ ϕ(E(t)) ≤ F

((

1− t

t f

)

+

)

a.e. in
(

t f − δ, t f + δ
)

, (27)

where ϕ is a continuous non-decreasing function such that

ϕ(0) = 0 and
∫

0+

ds

ϕ(s)
<∞ , (28)

and the function F satisfies, for some k ∈ (0, 1), to

F(s) ≤ (1− k)ϕ(ηk(s)) in (0, tf) , (29)

where

ηk(s) = θ−1
k (s) and θk(s) =

∫ s

0

dτ

kϕ(τ )
.

Then E(t) = 0 for all t ≥ tf.

Proof See Antontsev et al. [5]. ��
In order to read (26) in the form (27), we define

ϕ(s) := C5s
q
2 and F(s) := C3ε

q ′sθq ′ .

Then clearly (28) is satisfied and we have

θk(s) = 2

kC5(2− q)
s

2−q
2 and ηk(s) =

(
kC5(2− q)

2
s

) 2
2−q

.
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Moreover, (29) is satisfied if

θ := q − 1

2− q
and ε ≤ ε0 := (1− k)C5

C3

(
kC5(2− q)

2

) q
2−q

(30)

for a certain k ∈ (0, 1), e.g. k = q/2. Then Lemma 4 proves the second assertion.
Case q ≥ 2. Using a vector version of the interpolation embedding inequality (12)
with q = 2, p = q and r = σ , and the algebraic inequality AαBβ ≤ (A + B)α+β

valid for every α, β ∈ R and every A, B ≥ 0, we obtain

E(t) ≤ C6

(∫

Ω

(|∇ u(t)|q + |u(t)|σ ) dx
)μ

for a.a. t ∈ [0, T ] , (31)

where C6 = C2
G N/2, being CG N the interpolation embedding inequality constant,

and

μ := 1+ q(2− σ )

q(N + σ )− Nσ
. (32)

The analysis of (32) shows us that

q ≥ 2 ⇒ μ > 1 iff σ < 2. (33)

Taking into account that C0 is a non-negative constant, we obtain from (21) and
(31),

d

d t
E(t)+ C7 E(t)

1
μ ≤ C3

∫

Ω

|f(t)|q ′ dx for a.a. t ∈ [0, T ] , (34)

where C7 = min (C2, α)C−1/μ
6 and C3 is given in (21). If f = 0, then (34) leads us

to the homogeneous ordinary differential inequality

d

dt
E(t)+ C7 E(t)1/μ ≤ 0. (35)

An explicit integration of (35) between t = 0 and t , where we use (32) and (33),
leads us to

E(t) ≤
(

E(0)
μ−1
μ − C7(μ− 1)

μ
t

) μ

μ−1

(36)

and E(t) vanishes for t ≥ t∗ := μE(0)
μ−1
μ /[C7(μ− 1)]. This proves the first asser-

tion.
Assume now that (18) is satisfied. Then, using (18) and (34), we obtain the fol-

lowing non-homogeneous ordinary differential inequality
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d

dt
E(t)+ C7 E(t)1/μ ≤ C3ε

q ′
(

1− t

tf

)θ

+
for a.a. t ∈ [0, T ] , (37)

where C7 is given in (34) and C3 in (21). In order to use Lemma 4, let

ϕ(s) = C7s
1
μ and F(s) = C3ε

q ′s
1

μ−1 .

Then clearly (28) is satisfied,

θk(s) = μ

C7k(μ− 1)
s

μ−1
μ , ηk(s) =

(
C7k(μ− 1)

μ
s

) μ

μ−1

and (29) holds provided

θ := q − 1

q(μ− 1)
, (32) ⇒ θ = (q − 1)[q(N + σ )− Nσ ]

q2(2− σ )
(38)

and

ε ≤ ε0 :=
{

C7(1− k)

C3

[
k(μ− 1)

μ

] 1
μ−1

} q−1
q

, (39)

the latter for some k ∈ (0, 1), e.g. k = μ/2. Second assertion is thus proved and this
concludes the proof. ��
Remark 1 Theorem 3 still holds for unbounded domains Ω as far as the used
Sobolev type inequalities hold.

Remark 2 We could also have considered non-homogeneous boundary conditions,
say u∗, on ΓT . But then, in order to carry out the results of Theorem 3, we would
have to assume the existence of a time t∗ > 0 such that u∗ = 0 for all t ≥ t∗ and
E(t∗) < ∞. In the above proof we only would have to replace the time t = 0 by
t = t∗.

Remark 3 For the 2D stationary version of the MEP problem (6), (7), (8), and (9),
we are able to prove that its weak solutions have compact support in Ω . This is
obtained by using the arguments of Antontsev et al. [3, 4] and reducing the original
problem to a fourth-order non-linear one for the stream function, where the pressure
term does not appear anymore.

6 Discussion and Extensions

In the previous section, we have shown the weak solutions to the MEP problem (6),
(7), (8), and (9) extinct in a finite time whether 2N/(N + 2) ≤ q < 2 or q ≥ 2. In
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both cases the diffusion term |∇ u|2 does not play any role in the obtained results.
Therefore, we may simplify the exposition by saying, at the beginning, that the extra
stress tensor should satisfy to the q-coercivity condition (13), instead of (2). This is
certainly the case if F is given by (2). In such situation, the energy relation (19)
would come in the form

d

dt
E(t)+

∫

Ω

(

C1|∇ u(t)|q + α|u(t)|σ ) dx ≤
∫

Ω

u(t) · f(t) dx for a.a. t ∈ [0, T ] ,

where now C1 = Cq
K C , being C the constant resulting from (13). The analysis of the

case when 2N/(N+2) ≤ q < 2 takes only into account the q-diffusion term |∇ u|q .
Not only the diffusion term, but also the absorption term |u|σ is neglected. There-
fore, in this case, the extinction in a finite time property holds for all fluid problems
governed by the Eqs. (3), (4), and (5), with 2N/(N + 2) ≤ q < 2, supplemented
with the initial-boundary conditions (8) and (9). Moreover, once the diffusion term
|∇ u|2 is useless for the obtained properties, we may also consider the q-coercivity
condition (13), instead of (2), and the energy relation (19) would come in the form

d

dt
E(t)+ C1

∫

Ω

|∇ u(t)|q dx ≤
∫

Ω

u(t) · f(t) dx for a.a. t ∈ [0, T ] .

We thus can say that for a pseudoplastic fluid the structure of the stress tensor is
able to stop the flow in a finite time. For q ≥ 2, the analysis of the previous case is
no longer valid, because in (23) we have now q/2 ≥ 1. If f = 0, then (24) comes
with q/2 ≥ 1. An explicit integration of (24) between t = 0 and t leads us to

E(t) ≤
(

C3
q − 2

2
t + E(0)−(q−2)/2

)−2/(q−2)

for a.a. t ∈ [0, T ] , q > 2 .

If q = 2, then (24) is linear and the same integration procedure leads us to

E(t) ≤ E(0)e−C3t for a.a. t ∈ [0, T ].

Then E(t) decays to zero at the rate t−2/(q−2) if q > 2 and with an exponential
decay if q = 2. This means that dilatant fluid flows tend to extinct with the fractional
time rate t−2/(q−2) and Newtonian fluid flows with the exponential time rate e−t . If,
f �= 0, we obtain analogous results as for f = 0 (see Bae [6], Guo and Zhu [12] and
Nečasová and Penel [17]). As a consequence, for q ≥ 2, if we want to obtain an
analogous property as for the case 2N/(N + 2) ≤ q < 2, we need to modify the
momentum equation (5) by introducing there the absorption term |u|σ−2u. As we
have seen, in this case, the results are valid under the assumption that σ < 2 (see
(32) and (33)). On the other hand for the well-posedness of the MEP problem (6),
(7), (8), and (9), one needs to assume that σ > 1. In the limit case of σ = 1, the
extinction in a finite time property remains valid, because it is still true that μ > 1
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(see (32) and (33)). If σ = 2, then the obtained ordinary differential inequalities
become linear and using this framework we can only obtain an exponential decay.

These properties extend for the MEP problem (6), (7), and (8) supplemented with
the following slip boundary conditions:

u · n = 0 and u · τ = β−1t · τ on ΓT ;

where n and τ denote, respectively, unit normal and tangential vectors to the
boundary ∂Ω , t = n · T is the stress vector and β is a coefficient with no defined
sign. In this case, the energy relation (19) comes in the form

d

dt
E(t)+

∫

Ω

(

C0|∇ u(t)|2 + C1|∇ u(t)|q + α|u(t)|σ ) dx ≤
∫

Ω

u(t) · f(t) dx+ β

∫

∂Ω

|u(t)|2 dx for a.a. t ∈ [0, T ] .

The last term on the right-hand side is estimated by using an interpolation trace
inequality (see Antontsev and Oliveira [2] and Ladyzhenskaya et al. [14]). Proceed-
ing in an analogous way, we can prove that, regardless the sign of β, the weak
solutions to this problem extinct in a finite time if q < 2 or if 1 < σ < 2.

We can also consider the MEP problem (6), (7), (8), and (9) with an anisotropic
absorption, i.e. if we replace the modified momentum equation (7) by the following
one

∂ u
∂ t
+ (u · ∇)u− div

[(

ν0 + ν1|D|q−2
)

D
]+

(

α1|u1|σ1−2u1, . . . , αN |uN |σN−2uN
) = f− ∇ p ,

where α1, ..., αN are non-negative constants. For the weak solutions to this problem,
we are able to obtain the same properties if, at most, αi = 0 for only one i and if the
domain Ω is convex in that direction xi , where i ∈ {1, . . . , N }. If that direction is
i = N , then the energy relation (19) comes in the form

d

dt
E(t)+

∫

Ω

(

C0|∇ u(t)|2 + C1|∇ u(t)|q +
N−1
∑

i=1

αi |ui (t)|σi

)

dx ≤
∫

Ω

u(t) · f(t) dx for a.a. t ∈ [0, T ] .

We prove the extinction in a finite time property by using the same techniques of
the previous section to estimate all the components ui , with i = 1, . . . , N − 1, and
the incompressibility condition (6) to estimate uN (see Antontsev and Oliveira [1]).

The main results established in this paper can be generalized to non-homogeneous
fluid flows. In this case, we only need to assume that the density function � is
bounded as follows
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1

C�

≤ � , �0 ≤ C� ,

where C� is a positive constant and �0 is the initial density. The energy function is
now defined by

E(t) := 1

2

∫

Ω

�(t)|u(t)|2 dx

and the energy relation comes such as in (23) and in (34), with the constants appear-
ing there depending also on C�. See Antontsev et al. [5] where this property was
obtained for fluid problems with the extra stress tensor satisfying to the q-coercivity
condition (13) with 1 < q < 2, i.e. pseudoplastic fluids.
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Adaptive FE Eigenvalue Computation with
Applications to Hydrodynamic Stability

Rolf Rannacher

Abstract We present an adaptive finite element method for the solution of eigen-
value problems associated with the linearized stability analysis of non-linear
operators in the context of hydrodynamic stability theory. The goal is to obtain
a posteriori information about the location of critical eigenvalues, their possible
degeneration and the corresponding pseudo-spectrum. The general framework is
the Dual Weighted Residual (DWR) method for local mesh adaptation which is
driven by residual- and sensitivity-based information. The basic idea is to embed the
eigenvalue approximation into the general framework of Galerkin methods for non-
linear variational equations for which the DWR method is already well developed.
The evaluation of these error representations results in a posteriori error bounds
for approximate eigenvalues reflecting the errors by discretization of the eigenvalue
problem as well as those by linearization about an only approximately known base
solution. From these error estimates local error indicators are derived by which eco-
nomical meshes can be constructed.

Keywords Navier-Stokes equations · Hydrodynamic stability · Linearized stability
analysis · Perturbation analysis

1 Introduction

We consider the Galerkin finite element approximation of eigenvalue problems
arising in the linearized stability theory of nonlinear variational equations partic-
ularly in hydrodynamic stability theory. Some parts of the underlying theory will be
developed within a more abstract setting suggesting the application to other kinds of
nonlinear problems. On a bounded domain Ω ⊂ R

d , d = 2 or d = 3, with boundary
∂Ω = Γrigid ∪ Γin ∪ Γout , we consider the typical eigenvalue problem occurring in
hydrodynamic stability theory:
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−νΔv + v̂ · ∇v + v · ∇v̂ +∇q = λv, ∇ · v = 0, in Ω,

v|Γrigid = 0, v|Γin = 0, ν∂nv − pn|Γout = 0.
(1)

Here, û := {v̂, p̂} is a stationary “base flow”, i.e. a stationary solution of the corre-
sponding Navier-Stokes equations

−νΔv + v · ∇v +∇ p = f, ∇ · v = 0, in Ω,

v|Γrigid = 0, v|Γin = vin, ν∂nv − pn|Γout = P,
(2)

where v is the velocity vector field of the flow, p its hydrostatic pressure, ν the
kinematic viscosity (density � ≡ 1), P a prescribed mean pressure, and f a pre-
scribed volume force. The goal is to investigate the stability of this base flow under
small perturbations, which leads us to consider the eigenvalue problem (1). If an
eigenvalue of (1) has Re λ < 0 , the base flow is unstable, otherwise it is said to
by “linearly stable”. That means that the solution of the linearized nonstationary
perturbation problem

∂tw − νΔw + v̂ · ∇w + w · ∇v̂ + ∇q = 0, ∇ · w = 0, in Ω, (3)

corresponding to some initial perturbation w|t=0 = w0 satisfies a bound of the form

sup
t≥0
‖w(t)‖ ≤ c‖w0‖, (4)

for some constant c ≥ 1 , where ‖ · ‖ denotes the L2-norm over Ω . However,
linear stability does not guarantee full nonlinear stability due to effects caused
by the “non-normality” of the operator governing problem (1), which may make
the constant A large. This is related to the possible “deficiency” (discrepancy of
geometric and algebraic multiplicity) or a large “pseudo-spectrum” (range of large
resolvent norm) of the critical eigenvalue.

The finite element discretization of the stability eigenvalue problem is based on
its variational formulation. It uses finite element spaces Vh consisting of piecewise
polynomial functions on certain decompositions Th of the domain Ω̄ into cells
T ∈ Th of width hT := diam(T ) . Our primal goal is to derive an a posteriori
estimate for the eigenvalue error λ− λh in terms of the “cell residuals” of the com-
puted approximations v̂h , {vh, λh} , and a practical criterion for the degeneracy of
λ . In Heuveline & Rannacher [10] nonsymmetric eigenvalue problems of the kind
(1) have been treated by employing duality techniques from optimal control theory.
In this approach one simultaneously considers the approximation of the “primal”
eigenvalue problem Au = λu and its associated “dual” analogue A∗u∗ = λ∗u∗ .
The combined problem is embedded into the general optimal-control framework of
Galerkin approximations of nonlinear variational equations developed in Becker and
Rannacher [5, 4]. In this paper, we use this approach for the case of nonsymmetric
stability eigenvalue problems with special emphasis on non-normality effects and
coefficient perturbation. The result is an a posteriori error estimate of the form
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|λ− λh| ≈
∑

T∈Th

h2
T

{

�̂T (ûh)�̂∗T (û∗h)+ �T (uh, λh) �∗T (u∗h, λ
∗
h)
}

, (5)

involving the cell residuals �̂T , �̂∗T , and �T , �∗T of the computed primal and dual
base solutions ûh , û∗h , and eigenpairs {uh, λh} , {u∗h, λ∗h} , respectively. This error
estimate accomplishes simultaneous control of the error in the linearization, v̂− v̂h ,
and the error in the resulting eigenvalues, λ−λh . The cell-wise error indicators can
then guide the mesh refinement process. Further, we devise a simple computational
criterion based on the inner products (vh, v

∗
h ) which can detect possible instability

caused by non-normality effects.
The a priori error analysis for nonsymmetric eigenvalue problems is well devel-

oped in the literature, e.g., Babuska and Osborn [1]. Particularly to mention is
Osborn [18], where the eigenvalue problem of the linearized Navier-Stokes equa-
tions is considered, though neglecting the additional error due to the approximative
linearization. These studies usually employ the heavy machinery of resolvent inte-
gral calculus. In contrast to that the a posteriori error analysis only needs arguments
from elementary calculus since it is based on the assumption that the approximation
is sufficiently accurate on the considered meshes. In turn, this assumption is justified
by the a priori error analysis.

The further contents of this paper are as follows. In Sect. 2, we present an exam-
ple from optimal flow control which illustrates several principle questions arising
in numerical stability analysis. Section 3 summarizes some basic facts about the
stability eigenvalue problem of the Navier-Stokes equations, particularly the con-
sequences arising from its non-normality. Section 4 recalls the details of the finite
element approximation of problems (2) and (1) from Rannacher [19, 20]. Then,
Sect. 5 contains an a posteriori error analysis for the finite element approximation
of the perturbed stability eigenvalue problem based on the general optimal control
approach developed in Heuveline and Rannacher [10–12]. In Sect. 6, we discuss the
possible effect of the non-normality of the linearized Navier-Stokes operator and its
numerical detection. Finally, Sect. 8 illustrates the theoretical results at some model
eigenvalue problems.

2 An Example from Flow Control

We consider the configuration shown in Fig. 1, i.e. flow through a channel around
a fixed cylinder with circular cross section and surface S [3]. The mathematical
model are the stationary Navier-Stokes equations (2) complemented by Neumann-
type boundary conditions at the two openings ΓQ ,

ν∂nv − np|ΓQ = P, (6)

where P represents mean pressure. The diameter of the cylinder, the viscosity and
the mean inflow velocity are chosen such that for P = 0 the Reynolds number is
moderate, Re ∼ 40 , corresponding to stable stationary flow.
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Fig. 1 Configuration of the drag minimization problem

The goal is to minimize the drag coefficient

Cdrag := 2

Ū 2 D

∫

S
n · σ (v, p) · e1 ds,

by varying the mean pressure P . Here, S is the surface of the cylinder, D its
diameter, Ū a reference inflow velocity, and σ (v, p) = −pI + ν(∇v+∇vT ) the
stress tensor. For given P the corresponding state {v, p} ∈ H 1(Ω) × L2(Ω) is
determined by the variational equation

ν(∇v,∇ψ)+ (v · ∇v,ψ)− (p,∇ · ψ)− (χ,∇ · v) = (P, n · ψ)ΓQ , (7)

for all test pairs {ψ, χ} , and the appropriate boundary conditions at Γin ∪ Γrigid .
The discretization of this optimization problem is by a standard 2nd-order FE

method using equal-order bilinear elements for velocity and pressure with least-
squares pressure stabilization (see [19] and [20]). The “goal-oriented” mesh adap-
tation is done by the “Dual Weighted residual (DWR) Method” (see [3, 5, 2]) which
uses local residual information of the computed solution weighted by sensitivity
factors obtained from the approximate solution of an associated “dual problem”.
The results obtained by the DWR method for this optimization problem are shown
in Table 1 and Fig. 2. The drag minimization on an adapted mesh with only about
11, 000 cells is as accurate as that on a uniformly refined mesh with about 164, 000
cells. This demonstrates the potential of sensitivity-driven mesh adaptation particu-
larly in solving optimal control problems.

The optimal state shown in Fig. 2 has been computed in a post-processing step
on a globally refined mesh from the stationary model by using Newton’s method.
Its rough pattern races the question of its stability. It is well known that Newton’s
method may give solutions to stationary models which are actually unstable in the
dynamic sense. This question has to be investigated by an accompanying stability
analysis, i.e. by solving the associated stability eigenvalue problem (1) for u :=
{v, p} ∈ V and λ ∈ C ,

Table 1 Uniform versus adaptive refinement

Uniform refinement Adaptive refinement

N Jdrag N Jdrag

10,512 3.31321 1,572 3.28625
41,504 3.21096 4,264 3.16723

164,928 3.11800 11,146 3.11972
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Fig. 2 Streamlines of uncontrolled flow (P = 0), controlled flow (P = Popt), and adapted mesh
for the optimization cycle

−νΔv + v̂ · ∇v + v · ∇v̂ +∇ p = λv, ∇ · v = 0.

Here, û = {v̂, p̂} is the stationary optimal state of the drag minimization problem.
If all eigenvalues satisfy Re λ ≥ 0 then the base solution is said to be linearly stable.
In this context the following questions occur:

– Inaccurate model: The approximate base solution ûh = {v̂h, p̂h} has been com-
puted on a possibly rather coarse mesh, which was just sufficiently fine for the
particular needs of the optimization process (see Fig. 2). How large is the dete-
rioration of the eigenvalues for only approximately known base solution used in
the coefficients?

– Efficient solution: Since solving large nonsymmetric eigenvalue problems is
rather expensive the mesh on which this computation is done should be as coarse
as possible according to the accuracy requirements of the stability analysis.

– The effect of non-normality: The linearized Navier-Stokes operator A′(û) is
non-normal, i.e., it does not commute with its Hilbert-space adjoint. This has
well-known implications for the associated eigenvalue problem (non-trivial alge-
braic eigenspaces) and the corresponding stability analysis characterized by the
key words “non-monotone perturbation growth”, “large resolvent norm” and
“pseudo-spectrum”. How could a simple numerical test look like for indicating
that in a particular situation, due to the non-normality, linear (eigenvalue-based)
stability analysis may be misleading?
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3 The Navier-Stokes Problem and its Stability Analysis

We use the common notation L2(Ω) and H m
0 (Γ ;Ω) ⊂ H m(Ω) for the Lebesgue

and Sobolev spaces on Ω , with the corresponding norms denoted by ‖ · ‖ and
‖ · ‖m , respectively. Spaces of R

d -valued functions v = (v1, . . . , vd ) are denoted
by boldface-type, but no distinction is made in the notation of norms and inner
products; thus H1

0(Γ ;Ω) = H 1
0 (Γ ;Ω)d has norm ‖v‖1 = (

∑d
i=1 ‖vi‖2

1)1/2, etc.
All other notation are self-evident, e.g., ∂t u = ∂u/∂t and ∂nv = n · ∇v, where
n is an outer normal unit vector. We assume ∂Ω = Γin ∪ Γout ∪ Γrigid, where
Γin, Γout, and Γrigid denote the inlet, the outlet and the rigid part of the boundary,
respectively. We introduce the abbreviation L := L2(Ω), H̄ := H1(Ω), H :=
{v ∈ H̄, v|Γin∪Γrigid = 0}, V̄ := H̄× L and V := H× L . In the case Γout = ∅ ,
we use L := L2

0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0} . For pairs u = {v, p} and
ϕ = {ϕv, ϕ p} ∈ V, we define the semilinear form

a(u;ϕ) := ν(∇v,∇ϕv)+ (v · ∇v, ϕv)− (p,∇ · ϕv)+ (ϕ p,∇ · v),

and the functional F(ϕ) := ( f, ϕv) . With a solenoidal extension v̄in ∈ H̄ of the
inflow data vin, we consider a solution û = {v̂, p̂} ∈ V+{v̄in, 0} of the equation

a(û;ϕ) = F(ϕ) ∀ϕ ∈ V, (8)

or A(û) = F in operator notation. In the following, we do not need H 2-regularity
of this problem therefore allowing for general domains which may even be non-
convex polygonal or polyhedral. For theoretical analysis it is convenient to introduce
spaces of solenoidal functions in order to formally eliminate the pressure from the

discussion, J1 := {v ∈ H, ∇ · v = 0} and J0 := J
‖·‖
1 (see Galdi [7]). We assume

that the solution û = {v̂, p̂} is (locally) unique and that the derivative of a(·; ·)
at v̂ ,

a′(v̂;ψ, ϕ) := ν(∇ψ,∇ϕ)+ (v̂ · ∇ψ, ϕ)+ (ψ · ∇v̂, ϕ), ϕ, ψ ∈ J1,

is regular on V , i.e., it satisfies the “inf-sup condition”

inf
ψ∈J1

(

sup
ϕ∈J1

a′(v̂;ψ, ϕ)

‖∇ψ‖‖∇ϕ‖

)

≥ β > 0.

The corresponding linearized stability analysis considers the nonstationary lin-
earized perturbation equation

(∂tv, ϕ)+ a′(v̂; v, ϕ) = 0 ∀ϕ ∈ J1, v(0) = v0. (9)

The stability of û under “small” perturbations is then characterized by the
growth property of the corresponding solution operator S(t) : J0 → J0 ,
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‖S(t)‖ ≈ Ae−Reλ t , (10)

where A ≥ 1 and λ is the most critical eigenvalue of the stability eigenvalue
problem, i.e. that with the smallest real part,

− νΔv + v̂ · ∇v + v · ∇v̂ +∇ p = λv, ∇ · v = 0. (11)

If one of the eigenvalues has negative real part, then the base solution is unstable.
The variational formulation of this eigenvalue problem reads

a′(v̂; v, ϕ) = λ (v, ϕ) ∀ϕ ∈ J1, (12)

or A′(v̂)v = λv in operator notation, with the normalization condition ‖v‖
= 1 . Since the domain Ω is bounded, the classical Riesz-Schauder theorem (see
Kato [16]) implies that this eigenvalue problem possesses a countably infinite set
Σ(A′(v̂)) := {λi }∞i=1 ⊂ C of isolated eigenvalues with finite (algebraic) multiplici-
ties which have no finite accumulation points. The difference between the algebraic
and geometric multiplicity of an eigenvalue λ , its so-called “defect”, is denoted by
α ∈ N0 and corresponds to the largest integer such that N ((A′(v̂) − λI)α+1) �=
N ((A′(v̂) − λI)α) . For the following discussion, we assume that the eigenvalue of
interest, λ , has geometric multiplicity one. The case of higher geometric multiplic-
ity requires some minor technical modifications. Associated to the primal eigen-
function v ∈ J1 , there is a “dual” (left) eigenfunction v∗ ∈ J1\{0} corresponding
to λ , that is determined by the “dual” eigenvalue problem

a′(v̂;ϕ, v∗) = λ (ϕ, v∗) ∀ϕ ∈ J1, (13)

or A′(v̂)∗v∗ = λ∗v∗ in operator notation. Here, λ∗ = λ̄ and the dual eigenfunction
may be normalized by (v, v∗) = 1 . If (v, v∗) = 0 , then (and only then) the problem

a′(v̂; v1, ϕ)− λ (v1, ϕ) = (u, ϕ) ∀ϕ ∈ J1, (14)

possesses a solution u1 ∈ J1 , a “generalized eigenfunction”, satisfying (v1, v) = 0 .
In this case the eigenvalue λ has defect α ≥ 1 and the solution operator S(t) has
the growth property

‖S(t)‖ ≈ tαe−Reλ t . (15)

For more details, we refer to Heuveline and Rannacher [11]. The effect of degen-
eracy on the numerical approximation of the Navier-Stokes equations has been
addressed in Johnson et al. [15].
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4 The Galerkin Finite Element Approximation

The discretization of the variational problem (8) and of its associated eigenvalue
problem uses a standard second-order finite element method as described in [11]
and [12]. Let Th be decompositions of Ω̄ into cells T (triangles, quadrilaterals,
etc.). The local width of a cell T ∈ Th is hT , while h := maxT∈Th hT denotes the
global mesh size. For simplicity, we consider here only low-order tensor-product
elements, that is piecewise d-linear trial and test functions for all unknowns (so-
called “Q1/Q1-Stokes element”). In order to ease local mesh refinement and coars-
ening, we allow “hanging” nodes (see Fig. 3), where the corresponding “irregular”
nodal values are eliminated from the system by linear interpolation of neighboring
regular nodal values. The corresponding finite element subspaces are denoted by
Lh ⊂ L , H̄h ⊂ H̄, Hh ⊂ H, V̄h := H̄h × Lh , Vh := Hh × Lh , and v̄in

h ∈ H̄h is
a suitable interpolation of the boundary function v̄in . This construction is oriented
by the situation of a polygonal domain Ω for which the boundary ∂Ω is exactly
matched by the mesh domain Ωh := ∪{T ∈ Th} . In the case of a curved bound-
ary certain modifications are necessary, which are rather standard in finite element
analysis (see Ciarlet [6]).

Since the finite element approximations vh ∈ Hh of v ∈ J1 are usually
not exactly solenoidal, we have to include the approximate pressures ph ∈ Lh

in the analysis. Therefore, from now on we will consider approximating pairs
uh = {vh, ph} ∈ Vh to u = {v, p} ∈ V . In order to obtain a stable discretization
in these spaces with “equal-order interpolation” of pressure and velocity, we use
the least-squares technique proposed by Hughes et al. [14]. Following Hughes and
Brooks [13], a similar approach is employed for stabilizing the convection term. We
use the approximation

S(û)ϕ := v̂ · ∇ϕv +∇ϕ p, ϕ = {ϕv, ϕ p} ∈ V,

to the derivative A′(û) for defining the stabilized form

ah(û;ϕ) := a(û;ϕ)+ (A(û)− f,S(û)ϕ)h,

with the mesh-dependent inner product and norm

Fig. 3 Quadrilateral mesh patch for the Q1/Q1-Stokes element with a “hanging node”



Adaptive FE Eigenvalue Computation 433

(ϕ,ψ)h :=
∑

T∈Th

δT (ϕ,ψ)T , ‖ϕ‖h = (ϕ, ϕ)1/2
h .

With this notation the discrete eigenvalue problem (19) uses the sesquilinear form

a′h(v̂h ; uh, ϕh) := a′(û; uh, ϕ)+ (A′(û)u − λhv,S(û)ϕ)h

which is not the derivative of the stabilized form ah(·; ·) , but rather a consistent
stabilization of a′(û; ·, ·) . Based on theoretical analysis the stabilization parameters
δT are chosen according to

δT = α
(

νh−2
T , β |vh |T ;∞h−1

T

)−1
, (16)

with the heuristic values α= 1
12 , β = 1

6 . Then, the discrete Navier-Stokes problem
determines ûh := {v̂h, p̂h} ∈ Vh+{v̂in

h , 0} by

ah(ûh ;ϕh) = F(ϕh) ∀ϕh ∈ Vh . (17)

This discretization is fully consistent with (8) in the sense that the continuous
solution û automatically satisfies (17). This implies “Galerkin orthogonality” what
in this case means

ah(û;ϕh)− ah(ûh ;ϕh) = 0, ϕh ∈ Vh . (18)

The associated discrete primal and dual eigenvalue problems seek uh = {vh, ph}
and u∗h = {v∗h , p∗h} in V\{0} and λh, λ

∗
h ∈ C , such that

a′h(ûh ; uh, ϕh) = λh m(uh, ϕh) ∀ϕh ∈ Vh, (19)

a′h(ûh ;ϕh, u∗h) = λ∗h m(ϕh, u∗h) ∀ϕh ∈ Vh, (20)

where m(uh, ϕh) := (vh, ϕ
v
h ) and m(ϕh, u∗h) := (ϕv

h , v
∗
h ) . The eigenfunctions are

usually normalized by m(uh, uh) = m(uh, u∗h) = 1 , assuming non-degeneracy of
the approximate eigenvalue λh . The question of possibly non-zero defect of this
eigenvalue will be addressed below.

For this approximation, we can recall a priori error estimates from the literature.
If the problem is H 2-regular, there holds an optimal-order error estimate for the
approximation of the base solution (see Girault and Raviart [8] or Rannacher [19]),

‖v̂h − v̂‖ = O(h2), (21)

and for a non-deficient eigenvalue (see Osborn [18]),

|λh − λ| = O(h2). (22)
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Further, for normalized discrete primal and dual eigenfunctions {uh, u∗h} ∈ Vh×
Vh , there exists an associated pair of eigenfunctions {uh, uh∗} ∈ V× V , such that

‖vh − vh‖ + ‖v∗h − vh∗‖ = O(h2). (23)

Here, the superscript in vh indicates that the continuous eigenfunction associated
to vh may vary with h . For a non-deficient eigenvalue λ with multiplicity m , there
are exactly m approximating eigenvalues

{

λi
h

}

i=1,...,m , counted according to their
algebraic multiplicities, such that

∣
∣
∣

m
∑

i=1

λi
h − λ

∣
∣
∣ = O(h2). (24)

If λ has non-trivial defect, we have to construct approximations ui j
h ∈ Vh to

higher-order generalized eigenfunctions of λ . This construction is technically com-
plicated and therefore not presented in this paper. For details, we refer to Heuveline
and Rannacher [12].

5 The Perturbed Stability Eigenvalue Problem

In the error estimates (22), (23), and (24) the linearization is assumed to be exact,
that is also in the approximate eigenvalue problem (19) the derivative of a(·; ·) is
taken at the true solution û . In the following a posteriori error analysis, we will
treat the full discretization error incorporating also the linearization due to replac-
ing û by ûh . For simplifying the presentation, we will only consider the case of
purely homogeneous Dirichlet boundary conditions, Γrigid = ∂Ω , and will omit
the terms related to the stabilization, that is, we will set δ = 0 . Then, the general
theory for a posteriori error estimation in Galerkin methods developed in Becker and
Rannacher [5] (see also Bangerth and Rannacher [2]) yields the following result.

Proposition 1 With the weighted residuals

�(ûh ; ·) := F(·)− aδ(ûh ; ·),
�∗(û∗h ; ·) := −a′′δ (û; ·, uh, u∗h)− a′δ(ûh ; ·, û∗h),

�({uh, λh}; ·) := λh m(uh, ·)− a′δ(ûh ; uh, ·),
�∗({u∗h, λh}; ·) := λh m(·, u∗h)− a′δ(ûh ; ·, u∗h),

there holds the eigenvalue error representation
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λ−λh = 1
2�(ûh ; û∗− Ihû∗)+ 1

2�
∗(û∗h ; û− Ihû)

︸ ︷︷ ︸

base solution residuals

+ 1
2�({uh, λh}; u∗− Ihu∗)+ 1

2�
∗({u∗h, λh}; u− Ihu)

︸ ︷︷ ︸

eigenvalue residuals

+ R(3)
h ,

(25)

for arbitrary Ihû∗, Ihû, Ihu∗, Ihu ∈ Vh. The remainder is given by

R(3)
h = 1

2 eλ(ev, ev∗)− 1
2 (êv · ∇ êv, êv∗)− 1

2 (êv · ∇ev, ev∗)− 1
2 (ev · ∇ êv, ev∗),

where eλ := λ − λh , êv := v̂ − v̂h , êv∗ := v̂∗ − v̂∗h , ev := v − vh , and ev∗ :=
v∗ − v∗h .

Proof We only give a brief sketch of the argument; for the details see Heuveline and
Rannacher [11, 12]. In order to use the general theory, we have to embed the present
situation into the framework of variational equations. To this end, we introduce the
product spaces V := V × V × C and Vh := Vh × Vh × C with elements U :=
{û, u, λ}, Φ = {ϕ̂, ϕ, μ} and Uh := {ûh, uh, λh} , respectively, and the semi-linear
form

A(U ;Φ) := F(ϕ̂)− aδ(û; ϕ̂)
︸ ︷︷ ︸

base solution

+ λm(u, ϕ)− a′δ(û; u, ϕ)
︸ ︷︷ ︸

eigenvalue problem

+μ
{

m(u, u)− 1
}

︸ ︷︷ ︸

normalization

.

With this notation the stationary Navier-Stokes equations for the base solution
and the associated stability eigenvalue problem with its normalization condition as
well as the corresponding Galerkin approximations can be written in the following
compact variational form:

A(U ;Φ) = 0 ∀Φ ∈ V, (26)

A(Uh ;Φh) = 0 ∀Φh ∈ Vh . (27)

The error in this approximation will be measured with respect to the evaluation
functional J (Φ) := μm(ϕ, ϕ) , which is motivated by J (U ) = λm(u, u) = λ .
For deriving a representation for the error J (U )− J (Uh) = λ− λh , we employ the
Euler-Lagrange approach used in optimal control theory. Computing J (U ) from
the solution of (26) is equivalent to determining stationary points of the Lagrangian
functional

L(U ; Z ) := J (U )− A(U ; Z ),

with the dual variable Z ∈ V . In this framework, we seek solutions {U, Z} ∈ V×V
to the Euler-Lagrange system

A(U ;Φ) = 0 ∀Φ ∈ V, (28)
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A′(U ;Φ, Z ) = J ′(U ;Φ) ∀Φ ∈ V. (29)

We note that the first equation of this system is just the considered variational
equation (26). The Galerkin approximation of system (28), (29) in the subspace
Vh ⊂ V seeks pairs {Uh, Zh} ∈ Vh×Vh , satisfying

A(Uh ;Φh) = 0 ∀Φh ∈ Vh, (30)

A′(Uh ;Φh, Zh) = J ′(Uh ;Φh) ∀Φh ∈ Vh . (31)

To the approximate solutions Uh ∈ Vh of (30) and Zh ∈ Vh of (31), we associate
the residuals

�(Uh ;Φ) := −A(Uh ;Φ), �∗(Zh ;Φ) := J ′(Uh ;Φ)− A′(Uh ;Φ, Zh),

which are defined for Φ ∈ V . For Φh ∈ Vh , we have �(Uh ;Φh) = �∗(Zh ;Φh) = 0,
by definition. For this situation, we have the following fundamental result of Becker
and Rannacher [5], which can be proved by elementary analysis:

J (U )− J (Uh) = 1
2 �(Uh ; Z − Ψh)+ 1

2 �
∗(Zh ; U −Φh)+ R(3)

h , (32)

for arbitrary elements Ψh, Φh ∈ Vh . The cubic remainder term R(3)
h is given by

R(3)
h := 1

2

∫ 1

0

{

J ′′′(Uh + s Eh ; Eh, Eh, Eh)

− A′′′(Uh + s Eh ; Eh, Eh, Eh, Zh + s E∗h )

− 3A′′(Uh + s Eh ; Eh, Eh, E∗h )
}

s(s−1) ds , (33)

where Eh := U −Uh and E∗h := Z − Zh . The residuals �(Uh ;Ψ ) and �∗(Zh ;Φ)
have the explicit form

�(Uh ;Ψ ) = −A(Uh ;Ψ ) = a(ûh ; ψ̂)− f (ψ̂)+ a′(ûh ; uh, ψ)− λh m(uh, ψ),

and

�∗(Zh ;Φ) = J ′(Uh ;Φ)− A′(Uh ;Φ, Zh)

= a′′(ûh ; ϕ̂, uh, u∗h)+ a′(ûh ; ϕ̂, û∗h)+ a′(ûh ;ϕ, u∗h)− λh m(ϕ, u∗h),

for Ψ = {ψ̂, ψ, χ} and Φ = {ϕ̂, ϕ, μ} . Finally, we have to evaluate the remainder
term. By a simple calculation, we have

J ′′′(Uh+s E ; E, E, E) = 6(λ− λh)‖v − vh‖2,

and, since the semilinear form A(U ; ·) is quadratic in U ,
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A′′′(Uh+s E ; E, E, E, Zh+s E∗) = 0.

Further, since a(û; ·) is quadratic in û ,

A′′(U ;Φ,Ψ, Z ) = −a′′(û; ϕ̂, ψ̂, ẑ)− a′′(û; ϕ̂, ψ, z)− a′′(û;ϕ, ψ̂, z)

+ μm(ψ, z)+ χ m(ϕ, z)+ 2 π̄ Re{m(ϕ,ψ)},

and consequently,

−3A′′(Uh+s E ; E, E, E∗) = 6(êv · ∇ êv, êv∗)
+ 6(êv · ∇ev, ev∗)+ 6(ev · ∇ êv, ev∗)
− 6(λ− λh) (v − vh, v

∗ − v∗h )

− 6(λ− λh)‖v − vh‖2.

Collecting the above results, we obtain

R(3)
h = 1

2 eλ (ev, ev∗)− 1
2

{

(êv · ∇ êv, êv∗)+ (êv · ∇ev, ev∗)+ (ev · ∇ êv, ev∗)
}

.

This completes the proof. ��

6 The Effect of Non-normality

In general, under discretization an eigenvalue λ with algebraic multiplicity m ≥ 2
will split into a group of m simple eigenvalues {λ(i)

h , i = 1, . . . ,m} which may
be considered as the approximation to λ . Only in special cases, for instance when
the discretization preserves certain symmetry properties of the continuous problem,
some of the discrete eigenvalues may have geometric multiplicity greater than one.
Further these eigenvalues will usually be non-degenerate because of asymmetries in
the discretization. The existence of an eigenvalue with Reλ < 0 inevitably causes
dynamic instability of the base flow v̂ , i.e., arbitrarily small perturbations may grow
without bound. For the solution operator S : J0 → J0 of the linearized perturbation
equation

(∂tw, ϕ)+ a′(v̂;w, ϕ) = 0 ∀ϕ ∈ J1, (34)

there holds the the growth property

‖S(t)‖ ≈ tαe−Reλ t , (35)

where λ is the eigenvalue with smallest Reλ > 0 and defect α ≥ 0. This can be
shown by standard “energy arguments” and linear algebra (see Gustavsson [9] and
Johnson et al. [15]). In the case α ≥ 1, (35) implies that
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sup
t>0
‖S(t)‖ ≈ α

|Reλ| , (36)

i.e., the amplification constant A in the stability estimate (4) becomes very large
and small perturbations may initially be amplified to an extent such that nonlinear
instability occurs.

Therefore, we are mainly interested in the case that all eigenvalues have positive
real part and want to compute the most “critical” eigenvalues, that is those λ with
minimal Reλ > 0 . The crucial question is how to detect a posteriori whether the
growth factor in the estimate (35) may become critical or not.

To this end, we may employ the following simple indicator: For any small h > 0 ,
let λh be one of the approximating eigenvalues of A′h(v̂) with corresponding right
and left eigenvectors vh and v∗h , satisfying ‖vh‖ = 1 and (vh, v

∗
h ) = 1. By theory,

there are associated (normalized) right and left eigenvectors (depending on h ), say
v and v∗ , corresponding to the eigenvalue λ of A′(v̂) , such that ‖vh − v‖ → 0
and ‖v∗h − v∗‖ → 0 , as h → 0 . If the limit eigenvalue λ is deficient, then there
must be an algebraic eigenvector w associated to v , such that

A′(v̂)w − λw = v.

The condition for the existence of such an algebraic eigenvector is that (v, v∗) = 0 .
Hence, in view of the normalization ‖vh‖ = (vh, v

∗
h ) = 1, we obtain the following

result.

Corollary 1 The blow-up

‖v∗h‖ → ∞ (h → 0), (37)

of the computed normalized adjoint eigenfunction, (vh, v
∗
h ) = ‖vh‖ = 1, with a

certain rate, can be used as an indicator for α(λ) > 0 .

However, a similar effect is also possible for non-deficient eigenvalues λ . This is
related to the concept of the “pseudo-spectrum” described in Trefethen and Embree
[22] and the literature cited therein (see also Landahl [17]). For ε ∈ R+ the
ε-pseudo-spectrum σε ⊂ C of the operator A′(v̂) is defined by

σε := {

z ∈ C, ‖(A′(v̂)− zI)−1‖ ≥ ε−1
}

.

In the following, we recall a result on the possible size of the amplification con-
stant A which in the finite dimensional case may be obtained from the so-called
“Kreiss matrix theorem” (see [22] and the references cited therein). For complete-
ness, we supply a proof by “energy arguments”.

Proposition 2 Let z ∈ C be a regular point of the operator A′(v̂) with Rez < 0 .
Then, for the solution operator S(t) : J0 → J0 of the linear perturbation equation
(34), there holds
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sup
t≥0
‖S(t)‖ ≥ |Rez| ‖(A′(v̂)− zI)−1‖. (38)

Proof Notice that, for z �∈ σ (A′(v̂)) , the resolvent (A′(v̂) − zI)−1 is well defined
as a bounded operator in J0 , and there holds

‖(A′(v̂)− zI)−1‖−1 = inf
v∈J1

(

sup
ϕ∈J1

|a′(v̂; v, ϕ)− z (v, ϕ)|
‖v‖ ‖ϕ‖

)

. (39)

We rewrite the perturbation equation (34) in the form

(∂tv, ϕ)+ z(v, ϕ)+ a′(v̂; v, ϕ)− z(v, ϕ) = 0,

and multiply by etz , to obtain

d

dt

[

etz(v, ϕ)
]+ etz

(

a′(v̂; v, ϕ)− z(v, ϕ)
) = 0.

Next, integrating this with respect to t , we conclude

|(v0, ϕ)| ≤ etRez|(v(t), ϕ)| + sup
ψ∈J1

a′(v̂;ψ, ϕ)− z(ψ, ϕ)

‖ψ‖
∫ t

0
esRez‖v‖ ds.

Taking ϕ = v0 , and observing Rez < 0 , we conclude that

‖v0‖ ≤ (

etRez + βz(v
0)|Rez|−1

)

max
[0,t]
‖v‖,

with the notation

βz(v
0) := sup

ψ∈J1

a′(v̂;ψ, v0)− z(ψ, v0)

‖ψ‖ .

Hence, recalling that v(t) = S(t)v0,

1 ≤
(

etRez + βz(v0)

|Rez|
)

max
[0,t]
‖S‖.

Since infv0∈J1
βz(v0) = ‖(A′(v̂)− zI)−1‖−1, we conclude that

|Rez| ‖(A′(v̂)− zI)−1‖ ≤ (

etRez|Rez| ‖(A′(v̂)− zI)−1‖ + 1
)

max
[0,t]
‖S‖,

for all t ≥ 0 . From this, the asserted estimate follows. Because, assuming the
contrary, we would have
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‖(A′(v̂)− zI)−1‖ < (

etRez|Rez| ‖(A′(v̂)− zI)−1‖ + 1
)‖(A′(v̂)− zI)−1‖,

which, since Rez < 0 , would result in a contradiction for sufficiently large t .
The next proposition relates the size of the resolvent norm ‖(A′(v̂)− zI)−1‖ to

easily computable quantities in terms of the eigenvalues and eigenfunctions of the
operator A′(v̂) .

Proposition 3 Let λ ∈ C be a non-deficient eigenvalue of the operator A′(v̂) with
corresponding primal and dual eigenvectors v, v∗ ∈ J1 normalized by ‖v‖ =
(v, v∗) = 1. Then, there exists a continuous function

ω(ε) → 1 (ε→ 0),

such that for λε := λ− εω(ε)‖v∗‖ , there holds

‖(A′(v̂)− λεI)−1‖ ≥ 1

ε
. (40)

Proof (i) Let b(·, ·) be a continuous bilinear form on J0, such that

sup
ψ,ϕ∈J1

|b(ψ, ϕ)|
‖ψ‖ ‖ϕ‖ ≤ 1.

We consider the perturbed eigenvalue problem, for ε ∈ R+ ,

a′(v̂; vε, ϕ)+ εb(vε, ϕ) = λε (vε, ϕ) ∀ϕ ∈ J1. (41)

Since this is a regular perturbation and λ non-deficient, there exist corresponding
eigenvalues λε ∈ C and associated eigenfunctions vε ∈ J1, ‖vε‖ = 1, such that

|λε − λ| = O(ε), ‖vε − v‖ = O(ε).

Furthermore, from the relation

a′(v̂; vε, ϕ)− λε(vε, ϕ) = −εb(vε, ϕ), ϕ ∈ J1,

we conclude that

sup
ϕ∈J1

|a′(v̂; vε, ϕ)− λε(vε, ϕ)|
‖ϕ‖ ≤ |ε| sup

ϕ∈J1

|b(vε, ϕ)|
‖ϕ‖ ≤ ε ‖vε‖,

and from this, if λε is not an eigenvalue of A′(v̂) ,

‖(A′(v̂)− λεI)−1‖−1 = inf
ψ∈J1

sup
ϕ∈J1

|a′(v̂;ψ, ϕ)− λε(ψ, ϕ)|
‖ψ‖ ‖ϕ‖ ≤ ε.
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This implies the asserted estimate

‖(A′(v̂)− λεI)−1‖ ≥ 1

ε
. (42)

Next, we analyze the dependence of the eigenvalue λε on ε in more detail.
Subtracting the equation for v form that for vε , we obtain

a′(v̂; vε − v, ϕ)+ εb(vε, ϕ) = (λε − λ)(vε, ϕ)+ λ(vε − v, ϕ).

Taking ϕ = v∗ yields

a′(v̂; vε − v, v∗)+ εb(vε, v
∗) = (λε − λ)(vε, v

∗)+ λ(vε − v, v∗)

and, using the equation satisfied by v∗,

εb(vε, v
∗) = (λε − λ)(vε, v

∗).

This yields

λε = λ+ εω(ε)b(v, v∗),

where, observing vε → v (ε→ 0) and (v, v∗) = 1,

ω(ε) := b(vε, v∗)
(vε, v∗)b(v, v∗)

→ 1 (ε→ 0).

(ii) It remains to construct an appropriate perturbation form b(·, ·) . For technical
convenience, we consider the renormalized dual eigenfunction ṽ∗ := v∗‖v∗‖−1,
satisfying ‖ṽ∗‖ = 1 . With the function w := (v − ṽ∗)‖v − ṽ∗‖−1 , we set

T v := v − 2Re(v,w)w, b(v, ϕ) := −(T v, ϕ).

The operator T : J0 → J0 acts like a Householder transformation mapping v

into ṽ∗ . In fact, observing ‖v‖ = ‖ṽ∗‖ = 1 , there holds

T v = v − 2Re(v, v − ṽ∗)
‖v − ṽ∗‖2

(v − ṽ∗)

= (2− 2Re(v, ṽ∗))v − 2Re(v, v − ṽ∗)(v − ṽ∗)
2− 2Re(v, ṽ∗)

= 2v − 2Re(v, ṽ∗)v − 2v + 2Re(v, ṽ∗)v + (2− 2Re(v, ṽ∗))ṽ∗

2− 2Re(v, ṽ∗)
= ṽ∗.

This implies that
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b(v, v∗) = −(T v, v∗) = −(ṽ∗, v∗) = −‖v∗‖.

Further, observing ‖w‖ = 1 and

‖T v‖2 = ‖v‖2 − 2Re(v,w)(v,w)− 2Re(v,w)(w, v)+ 4Re(v,w)2‖w‖2 = ‖v‖2,

we have

sup
v,ϕ∈J1

|b(v, ϕ)|
‖v‖ ‖ϕ‖ ≤ sup

v,ϕ∈J1

‖T v‖ ‖ϕ‖
‖v‖ ‖ϕ‖ = 1.

Hence, for this particular choice of the form b(·, ·) , we have

λε = λ− εω(ε)‖v∗‖, lim
ε→0

ω(ε) = 1,

as asserted.
Combining the two foregoing propositions, we obtain the following result. Under

the assumption that Reλε = Reλ− εReω(ε)‖v∗‖ < 0 , there holds

sup
t≥0
‖S(t)‖ ≥ |Reλε|

|ε| . (43)

Therefore, for ε := Reλ > 0 , we have

Reλε = Reλ− ReλReω(Reλ)‖v∗‖ = Reλ
(

1− Reω(Reλ)‖v∗‖) < 0,

for ‖v∗‖ sufficiently large. Consequently,

sup
t≥0
‖S(t)‖ ≥ ∣

∣1− Reω(Reλ)‖v∗‖∣∣. (44)

This consideration leads us to the following conclusion, which has to be observed
in the numerical stability analysis.

Corollary 2 For small Reλ > 0 , a large value ‖v∗‖ " 1 indicates a large growth
constant A and consequently possible nonlinear instability.

7 Practical Stability Analysis of the Navier-Stokes Equations

In the following, we want to convert the general a posteriori error representation
(25) into an a posteriori error estimate which can be used in practice for guiding
automatic mesh refinement.
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7.1 The Deficiency Test

As described above, first, we have to detect whether the limit eigenvalue λ may
be degenerate. To this end, in view of Corollary 1, we construct the normalized
dual eigenfunctions ui∗

h ∈ Vh , m(ui
h, ui

h) = m(ui
h, ui∗

h ) = 1 , corresponding to the
approximate eigenvalues λi

h (i = 1, . . . ,m) and check whether the blow-up

m(ui∗
h , ui∗

h ) →∞ (h → 0), (45)

with a certain rate is observed for any index i . If

sup
h∈R+

m(ui∗
h , ui∗

h ) ≤ K (i = 1, . . . ,m), (46)

with some constant K of moderate size, we can use the a posteriori error repre-
sentations (25). Otherwise it needs to be refined for the case of a degenerate limit
eigenvalue λ , which is complicated and not further considered here. For the details,
we refer to Heuveline and Rannacher [11]. However, in view of Corollary 2 also

sup
h∈R+

m(ui∗
h , ui∗

h ) " 1 (47)

can be taken as indication that the limiting eigenvalue λ satisfying 0 < Reλ ! 1 ,
though non-degenerate, may cause a large amplification constant A and conse-
quently nonlinear instability. In the following, we will only consider the case of
Proposition 1 in more detail.

7.2 Evaluation of the Error Representation

According to our consistency assumption, that is the convergence ûh → û, û∗h →
û∗, uh → u, and u∗h → u∗, as h → 0 , the higher-order remainder term R(3)

h in
the error representation (25) is supposed to be small and is therefore neglected. Let
ih : H2(Ω) → H̄h and jh : H 2(Ω) → Lh denote the generic operators of nodal
interpolation in the finite element spaces H̄h and Lh , respectively. The evaluation
of the residual terms is described only for the prototypical term

�(ûh ; û∗ − ψ̂h) = F(û∗ − ψ̂h)− a(ûh ; û∗ − ψ̂h).

Suppose that the forcing term is given in the form F(·) = ( f, ·) with some
density function f . Splitting the integrals over Ω into the contributions from each
cell T , and integrating cell-wise by parts, we obtain for ŵ∗ := {v̂∗ − ih v̂

∗, p̂∗ −
jh p̂∗}:
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�(ûh ; ŵ) =
∑

T∈Th

{

( f −A(ûh), ŵv∗)T − (ν∂nvh, ŵ
v∗)∂T − (ŵ p∗,∇ · v̂h)T

}

=
∑

T∈Th

{

( f −A(ûh), ŵv∗)T − 1
2 (ν[∂nvh], ŵv∗)∂T − (ŵ p∗,∇ · v̂h)T

}

,

where [∂nvh]Γ := ∂nvh|Γ + ∂n′vh|Γ denotes the jump of ∂nvh across the common
edge of two cells, Γ = T ∩T ′ . For cells with an edge Γ on the boundary ∂Ω , we
use the convention that [∂nvh]|Γ := 0 , if Γ ⊂ Γrigid ∪ Γin , and [∂nvh]|Γ := ∂nvh ,
if Γ ⊂ Γout .

While the cell-residual quantities f −A(ûh) , ν[∂nvh] , and ∇ · v̂h can be com-
puted exactly, the functions ŵv and ŵ p depend on the unknown dual solution û∗

and have to be approximated. However, this approximation does not need to be of
very high accuracy since these terms only play the role of “weights” for the residuals
in the error representation. Here, we consider patch-wise higher-order interpolation
as one of the simplest and cheapest options. Let û∗h be the approximation computed
on the current mesh. On square blocks of 2d neighboring cells the 3d nodal val-
ues of v̂h and p̂h are used to define d-quadratic interpolations i (2)

2h v̂
∗
h and j (2)

2h p̂∗h ,
respectively. These are then used in the approximation

v̂∗ − ih v̂
∗ ≈ i (2)

2h v̂
∗
h − v̂∗h , p̂∗ − jh p̂∗h ≈ j (2)

2h p̂∗h − p̂∗h .

In many applications this approximation has proved to be sufficiently accurate.
For a detailed discussion of this crucial aspect of using duality-based a posteriori
error representations of the type (25), we refer to Bangerth and Rannacher [2]. The
other residual terms �∗(û∗h ; û− ϕ̂h) , �(ui

h, λ
i
h ; ui∗ −ψ i

h) , and �∗(ui∗
h , λ

i∗
h ; ui − ϕi

h)
can be treated analogously. This leads us to the following result.

Proposition 4 With the notation of Proposition 1, we have the a posteriori error
estimate:

|λ− λh| ≈ η(ûh, û∗h, uh, u∗h, λh) :=
∑

T∈Th

{η̂T + ηλT }, (48)

with the cell-error indicators

η̂T := |( f −A(ûh), ŵv∗)T − 1
2 (ν[∂n v̂h], ŵv∗)∂T − (ŵ p∗,∇ · v̂h)T

+ (ŵv, g(vh, v
∗
h )+A′(ûh)û∗h)T − 1

2 (ŵv, ν[∂n v̂
∗
h ])∂T − (∇ · v̂∗h , ŵ p)T |,

ηλT := |(λhvh −A′(ûh)uh, w
v∗)T − 1

2 (ν[∂nvh], wv∗)∂T − (w p∗,∇ · vh)T

+ (wv, λhv
∗
h −A′(ûh)u∗h)T − 1

2 (wv, ν[∂nv
∗
h ])∂T − (∇ · v∗h , w p)T |,

where ŵv∗ := i (2)
2h v̂

∗
h − v̂∗h , ŵ p∗ := j (2)

2h p̂∗h − p̂∗h , ŵv := ŵv := i (2)
2h v̂h − v̂h ,

ŵ p := j (2)
2h p̂h − p̂h , wv∗ := i (2)

2h v
∗
h − v∗h , w p∗ := j (2)

2h p∗h − p∗h .

In the case |ηλT | ! |η̂T | the total error contribution by the cell T is dominated
by its component due to the base flow approximation. This would suggest the use of
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different meshes in computing the base flow and solving the eigenvalue problem in
order to decrease costs. The a posteriori error estimate (48) remains valid for such a
hybrid discretization.

7.3 Strategies for Mesh Refinement

We briefly discuss our strategy for automatic mesh adaptation based on the approxi-
mate a posteriori error estimate (48) derived above. Let TOL be a given error toler-
ance and Nmax the maximum number of mesh cells that can be used due to memory
constraints. Then, the mesh adaptation strategy aims to equilibrate the combined
indicators

ηT := |η̂T | + |ηλT |

by locally refining or coarsening the mesh.
Starting from a coarse mesh T0 := Th0 with mesh size distribution h0 , let after

l refinement cycles the mesh-level Tl := Thl with space Vl := Vhl be reached. Let
Nl ≈ dim(Vl) be the number of cells of the mesh Tl . On this mesh the approximate
solution {ûl, û∗l , ul , u∗l , λl} is computed and the associated cell-error indicators η̂T

and ηλT are evaluated.
Stopping criterion: If the criterion

∣
∣
∣

∑

T∈Th

{η̂T + ηλT }
∣
∣
∣ ≤ 1

2 TOL,
∣
∣
∣

∑

T∈Th

η̂T

∣
∣
∣ ≤

∣
∣
∣

∑

T∈Th

ηλT

∣
∣
∣ (49)

is satisfied on the mesh Tl , then the refinement process is stopped and λl is
accepted as approximation to λ . Otherwise, the next refinement cycle is started.

Adaptation step: The transition from mesh Tl to the next mesh Tl+1 may follow
the so-called “fixed rate” strategy. Here, in each refinement cycle, the goal is to
increase the number of mesh cells Nl by a fixed rate or to reduce the error estimator
ηλl (ûl, û∗l , ul , u∗l , λl) by a fixed rate. First, the cells T ∈ Tl are ordered according
to the size of the indicator values ηT , ηT,1 ≥ . . . ≥ ηT,i ≥ ηT,i+1 ≥ . . . ≥ ηT,Nl .
For prescribed fractions X and Y the cells are grouped according to

#{Ti , i = 1, . . . , N∗} ≈ X Nl, #{TNl−i+1, i = 1, . . . , N ∗} ≈ Y Nl .

If Nl+1 = Nl
(

1 − X − Y + 2d X + 2−dY
)

> Nmax , the refinement process is
stopped. Otherwise, the cells T1, . . . , TN∗ are refined and the cells TNl−N ∗+1, . . . , Nl

are coarsened. On the resulting mesh Tl+1 the adaptation process is continued.
By this strategy the number of mesh cells changes with a prescribed rate which
is advantageous in using a multigrid solver. In the test calculations discussed below,
we have used X = 20 and Y = 0 , i.e., only mesh refinement is performed.
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8 Numerical Examples

We present some results of calculations that are intended to illustrate the theoretical
statements in this paper.

8.1 Burgers Equation

The first test case is the two-dimensional Burgers equation

− νΔv̂ + v̂ · ∇v̂ = 0 in Ω, (50)

on the rectangular domain Ω := (0, 10) × (0, 1) ⊂ R
2 , with Dirichlet bound-

ary conditions corresponding to plane shear flow v̂ = (x2, 0)T along {x1 = 0} ,
{x2 = 0}, and {x2 = 1}, and Neumann boundary conditions along {x1 = 10} . Lin-
earization about this base solution results in the nonsymmetric eigenvalue problem

−νΔv1 + x2∂1v1 + v2 = λv1,

−νΔv2 + x2∂1v2 = λv2,
(51)

for v = {v1, v2} , with homogeneous boundary conditions. It is easily seen that all
eigenvalues have positive real part. Due to the coupling of the second component
v2 into the first equation, the most critical eigenvalue λcrit is expected to have
defect α > 0 . This property persists under discretization because of the partic-
ular structure of the problem. We introduce an additional coupling term h2v1 in
the second equation which makes the discrete eigenvalue λcrit

h split into two sim-
ple (real) eigenvalues λ1

h and λ2
h . As suggested by the a priori error analysis, we

take λh := 1
2 {λ1

h + λ2
h} as our primary approximation to the limit eigenvalue λ .

Table 2 presents the corresponding results obtained on a sequence of uniformly
refined meshes for the parameter value ν = 10−2. We observe the reduced order
O(h) for the error |λ1

h − λ| and the optimal order O(h2) for |λh − λ| . The same
order is obtained for the error estimator ηλweight . Furthermore, as predicted, the dual
eigenfunctions v∗h , normalized by (vh, v

∗
h ) = 1 have norms that blow up with order

O(h−1) .

8.2 Plane Shear Flow (Couette Flow)

We consider the two-dimensional stationary Navier-Stokes problem (2) on the rect-
angular domain Ω := (0, 10)× (0, 1) ⊂ R

2 , with boundary conditions correspond-
ing to plane shear flow as described in the preceding section. Linearization about
this base solution results in the nonsymmetric eigenvalue problem

−νΔv1 + x2∂1v1 + v2 + ∂1 p = λv1,
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Table 2 Computational results for the most critical eigenvalue λcrit = 2.1228 . . . of the Burgers
equation on uniform meshes ( ν = 10−2 )

h N |λ1
h − λ| |λh − λ| ηλω ‖v∗h‖

2−3 162 3.24e-2 7.07e-3 1.25e-2 19.3
2−4 578 1.79e-2 1.80e-3 2.77e-3 38.8
2−5 2178 9.42e-3 4.55e-4 6.54e-4 77.9
2−6 8450 4.82e-3 1.16e-4 1.39e-4 155.9
2−7 33282 2.43e-3 3.11e-5 3.47e-5 311.9
2−8 132098 1.21e-3 8.02e-6 8.58e-6 623.9
order O(h) O(h2) O(h2) O(h−1)

−νΔv2 + x2∂1v2 + ∂2 p = λv2,

∂1v1 + ∂2v2 = 0.

for v = {v1, v2} , with homogeneous boundary conditions. Again all eigenvalues
have positive real parts (see Landahl [17] and Gustavsson [9]). Hence linearized
stability theory would predict stability for any Reynolds number Re = 1/ν . How-
ever, experiments show transition to turbulence for Re = 300 − 1, 500 depending
on the experimental set-up. Since numerical computations indicate that the critical
eigenvalues are non-deficient the explanation of this discrepancy between theory
and experiment has to be sought in the possibly large pseudo-spectrum of these
critical eigenvalues λcrit . For a more detailed discussion of this aspect see Schmid
and Henningson [21] and the literature cited therein.

8.3 Stability of Drag-Minimal Flow

We consider the optimal control configuration described in Sect. 2. The question
is that of the stability of the computed stationary optimal flow state û = {v̂, p̂}
shown in Fig. 2. The locally refined mesh for the optimization cycle produced by
the adaptive algorithm seems to contradict intuition since the recirculation behind
the cylinder is not so well resolved. However, due to the particular structure of the
optimal velocity field (most of the flow leaves the domain at the control boundary), it
might be clear that this recirculation does not significantly influence the drag value.
Instead, a strong local refinement near the cylinder, where the drag is evaluated,
as well as near the control boundary is produced. However, the structure of the
flow field of the drag-minimal solution, which has actually been calculated in a
post-processing step on a finer mesh, indicates that this stationary flow may not be
(dynamically) stable and hence not physical. To test this, we consider the corre-
sponding stability eigenvalue problem (1). The state equation (7) has been solved
for several values of the control P with mesh adaptation on the basis of the corre-
sponding a posteriori error estimator. Figure 4 displays the real and imaginary parts
of the computed critical eigenvalue λcrit as function of the control mean pressure
P . The “optimal” control pressure for the stationary model is around P = 0.5
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Fig. 4 Real and imaginary parts of the critical eigenvalue as function of the control pressure

and the corresponding flow state actually turns out to be unstable, Heuveline and
Rannacher [11].

To test the reliability of this numerical stability analysis, we use the quality crite-
rion (49) stated in Sect. 7.3, i.e., the computed eigenvalue is accepted only if the indi-
cator for the error caused by the inexact computation of the base flow, i.e. the coef-
ficient in the stability eigenvalue problem, is significantly smaller than that due to
the discretization of the eigenvalue problem itself. Figure 5 shows the development
of these two components in the eigenvalue error estimator ηλh(ûh, û∗h, uh, u∗h, λh)
within the mesh refinement process. On coarse meshes the error in approximating
the base solution dominates while under further mesh refinement this error becomes
smaller than that of the eigenvalue approximation. In particular, we see that on the
finest mesh shown in Fig. 5, which is adapted in accordance to the drag minimiza-
tion process, we can reliably predict the instability of the corresponding flow state,
Heuveline and Rannacher [11].
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Fig. 5 The size of the two components of the error estimator ηλh (ûh, û∗h, uh, u∗h, λh) , i.e. the errors
in the base solution and the eigenvalue approximation, and automatically adapted meshes for the
optimization process (top) and the eigenvalue computation (bottom)
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Numerical Simulation of Laminar
Incompressible Fluid-Structure Interaction
for Elastic Material with Point Constraints

Mudassar Razzaq, Jaroslav Hron, and Stefan Turek

Abstract We present numerical techniques for solving the problem of fluid structure
interaction with a compressible elastic material in a laminar incompressible viscous
flow via fully coupled monolithic Arbitrary Lagrangian-Eulerian (ALE) formula-
tion. The mathematical description and the numerical schemes are designed in such
a way that more complicated constitutive relations can be easily incorporated. The
whole domain of interest is treated as one continuum and we utilize the well known
Q2 P1 finite element pair for discretization in space to gain high accuracy. We per-
form numerical comparisons for different time stepping schemes, including variants
of the Fractional-Step-θ -scheme, Backward Euler and Crank-Nicholson scheme for
both solid and fluid parts. The resulting nonlinear discretized algebraic system is
solved by a quasi-Newton method which approximates the Jacobian matrices by
the divided differences approach and the resulting linear systems are solved by a
geometric multigrid approach. In the numerical examples, a cylinder with attached
flexible beam is allowed to freely rotate around its axis which requires a special
numerical treatment. By identifying the center of the cylinder with one grid point
of the computational mesh we prescribe a Dirichlet type boundary condition for the
velocity and the displacement of the structure at this point, which allows free rota-
tion around this point. We present numerical studies for different problem parame-
ters on various mesh types and compare the results with experimental values from a
corresponding benchmarking experiment.

Keywords Fluid-structure interaction · Monolithic FEM · Incompressible Navier-
Stokes equations · ALE ·Multigrid

1 Introduction

We consider the problem of viscous fluid flow interacting with an elastic body which
is being deformed by the fluid action. Such a problem is encountered in many real
life applications of great importance. Typical examples of this type of problem are
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the areas of biomedical fluids which include joint lubrication and deformable carti-
lage and blood flow interaction with implants. The theoretical investigation of fluid
structure interaction problems is complicated by the need of a mixed description.
While for the solid part the natural view is the material (Lagrangian) description, for
the fluid it is the spatial (Eulerian) description. In the case of their combination some
kind of mixed description (usually referred to as the Arbitrary Lagrangian-Eulerian
description or ALE) has to be used which brings additional nonlinearity into the
resulting equations.

A numerical solution of the resulting equations of the fluid structure interac-
tion problem poses great challenges since it includes the features of elasticity, fluid
mechanics and their coupling. The easiest solution strategy, mostly used in the avail-
able software packages, is to decouple the problem into the fluid part and solid part,
for each of those parts using some well established method of solution; then the
interaction process is introduced as external boundary conditions in each of the sub-
problems. This has the advantage that there are many well tested numerical methods
for both separate problems of fluid flow and elastic deformation, while on the other
hand the treatment of the interface and the interaction is problematic. In contrast, the
approach presented here treats the problem as a single continuum with the coupling
automatically taken care of as internal interface, which in our formulation does not
require any special treatment.

2 Fluid-Structure Interaction Problem Formulation

A general fluid structure interaction problem consists of the description of the fluid
and solid fields, appropriate interface conditions at the interface and conditions for
the remaining boundaries, respectively. In this paper, we consider the flow of an
incompressible Newtonian fluid interacting with an elastic solid. We denote the
domain occupied by the fluid by Ω

f
t and the solid by Ωs

t at the time t ∈ [0, T ].
Let Γ 0

t = Ω̄
f

t ∩Ω̄s
t be the part of the boundary where the elastic solid interacts with

the fluid.
In the following, the fields and interface conditions are introduced. Furthermore,

problem configurations and solution procedure for each of the fields is presented in
detail.

2.1 Fluid

The fluid is considered to be Newtonian, incompressible and its state is described
by the velocity and pressure fields vf, p f respectively. The constant density of the
fluid is � f and the kinematic viscosity is denoted by ν f . The balance equations are:

� f Dv f

Dt
= div σ f , div v f = 0 in Ω

f
t (1)
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In order to solve the balance equations we need to specify the constitutive
relations for the stress tensors. For the fluid we use the incompressible Newtonian
relation

σ f = −p f I+ μ(grad v f + (grad v f )T ), (2)

where μ represents the dynamic viscosity of the fluid and p f is the Lagrange
multiplier corresponding to the incompressibility constraint in (1). The material
time derivative depends on the choice of the reference system. There are basically
3 alternative reference systems: the Eulerian, the Lagrangian, and the Arbitrary
Lagrangian Eulerian formulation. The most commonly used description for the fluid
structure interaction is the ALE description. For the ALE formulation presented in
this paper, discretization techniques are discussed in Sect. 3.

2.2 Structure

The structure is assumed to be elastic and compressible. Its configuration is described
by the displacement us, with velocity field vs = ∂us

∂t . The balance equations are:

�s ∂v
s

∂t
+ �s(∇vs)vs = div σ s + �sg, in Ωs

t . (3)

Written in the more common Lagrangian description, i.e. with respect to some
fixed reference (initial) state Ωs , we have

�s ∂
2us

∂t2
= div(Jσ s F−T )+ �sg, in Ωs . (4)

The constitutive relations for the stress tensors for the compressible structure
are presented, however, also incompressible structures can be handled in the same
way. The density of the structure in the undeformed configuration is �s . The mate-
rial elasticity is characterized by a set of two parameters, the Poisson ratio νs and
the Young modulus E . Alternatively, the characterization is described by the Lamé
coefficients λs and the shear modulus μs . These parameters satisfy the following
relations

νs = λs

2(λs + μs)
E = μs(3λs + 2μ2)

(λs + μs)
(5)

μs = E

2(1+ νs)
λs = νs E

(1+ νs)(1− 2νs)
, (6)

where νs = 1/2 for a incompressible and νs < 1/2 for a compressible structure.
In the large deformation case it is common to describe the constitutive equation
using a stress-strain relation based on the Green Lagrangian strain tensor E and
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the 2.Piola-Kirchhoff stress tensor S(E) as a function of E . The 2.Piola-Kirchhoff
stress can be obtained from the Cauchy stress σ s as

Ss = J F−1σ s F−T , (7)

and the Green-Lagrange tensor E as

E = 1

2
(F T F − I ). (8)

In this paper, the material is specified by giving the Cauchy stress tensor σ s by
the following constitutive law for the St.Venant-Kirchhoff material for simplicity

σ s = 1

J
F(λs(tr E)I + 2μs E)FT Ss = λs(tr E)I + 2μs E . (9)

J denotes the determinant of the deformation gradient tensor F , defined as
F = I + ∇us.

2.3 Interaction Condition

The boundary conditions on the fluid solid interface are assumed to be

σ f n = σ sn, v f = vs, on Γ 0
t , (10)

where n is a unit normal vector to the interface Γ 0
t . This implies the no-slip condition

for the flow and that the forces on the interface are in balance.

3 Discretization and Solution Techniques

The common solution approach is a separate discretization in space and time. We
first discretize in time by one of the usual methods known from the treatment of ordi-
nary differential equations, such as the Backward Euler (BE), the Crank-Nicholson
(CN), Fractional-Step-θ -scheme (FS) or a new modified Fractional-Step-θ -scheme
(GL). Properties of these time stepping schemes applying on incompressible Navier-
Stokes equations are described in detail below.

3.1 Time Discretization

We consider numerical solution techniques for the incompressible Navier-Stokes
equations

vt − νΔv + v · grad v + grad p = f, div v = 0, in Ω × (0, T ] , (11)
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for given force f and viscosity ν, with prescribed boundary values on the boundary
∂Ω and an initial condition at t = 0.

3.1.1 Basic θ -Scheme

Given vn and K = tn+1 − tn , then solve for v = vn+1 and p = pn+1

v − vn

K
+ θ [−νΔv + v · grad v]+ grad p = gn+1, div v = 0, in Ω (12)

with right hand side gn+1 := θ fn+1+ (1− θ )fn − (1− θ )[−νΔvn + vn · grad vn].

The parameter θ has to be chosen depending on the time-stepping scheme, e.g.,
θ = 1 for the Backward Euler, or θ = 1/2 for the Crank-Nicholson-scheme. The
pressure term grad p = grad pn+1 may be replaced by θ grad pn+1 +(1−θ ) grad pn ,
but, with appropriate post processing, both strategies lead to solutions of the same
accuracy. In all cases, we end up with the task of solving, at each time step, a
nonlinear saddle point problem of given type which has then to be discretized in
space.

In the past, explicit time-stepping schemes have been commonly used in non-
stationary flow calculations, but because of the severe stability problems inherent
in this approach, the required small time steps prohibit the efficient treatment of
long time flow simulations. Due to the high stiffness, one should prefer implicit
schemes in the choice of time-stepping methods for solving this problem. Since
implicit methods have become feasible thanks to more efficient nonlinear and lin-
ear solvers, the schemes most frequently used are still either the simple first-order
Backward Euler scheme (BE), with θ = 1, or more preferably the second-order
Crank-Nicholson scheme (CN), with θ = 1/2.

These two methods belong to the group of One-Step-θ -schemes. The CN scheme
occasionally suffers from numerical instabilities because of its only weak damping
property (not strongly A-stable), while the BE-scheme is of first order accuracy
only (however: it is a good candidate for steady-state simulations). Another method
which has proven to have the potential to excel in this competition is the Fractional-
Step-θ -scheme (FS). It uses three different values for θ and for the time step K at
each time level.

We define a time step with K = tn+1 − tn in the case of the Backward Euler or
the Crank-Nicholson scheme, with the same θ (θ = 0.5 or θ = 1) as above. In the
following, we use the more compact form for the diffusive and advective part:

N (v)v = −νΔv + v · grad v (13)

3.1.2 Backward Euler-Scheme

[I + K N (vn+1)]vn+1 + grad pn+1 = vn + K f n+1

div vn+1 = 0
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3.1.3 Crank-Nicholson-Scheme

[

I + K

2
N (vn+1)

]

vn+1 + grad pn+1 = [I − K

2
N (vn)]vn + K

2
f n+1 + K

2
f n

div vn+1 = 0

3.1.4 Fractional-Step-θ -Scheme

For the Fractional-Step-θ -scheme we proceed as follows. Choosing θ = 1 −√
2

2 , θ ′ = 1−2θ , and α = 1−2θ
1−θ , β = 1−α, the macro time step tn → tn+1 = tn+K

is split into the three following consecutive sub steps (with θ̃ := αθK = βθ ′K ):

[I + θ̃N (vn+θ )]vn+θ + grad pn+θ = [I − βθK N (vn)]vn + θK f n

div vn+θ = 0

[I + θ̃N (vn+1−θ )]vn+1−θ + grad pn+1−θ = [I − αθ ′K N (vn+θ )]vn+θ

+θ ′K f n+1−θ

div vn+1−θ = 0

[I + θ̃N (vn+1)]vn+1 + grad pn+1 = [I − βθK N (vn+1−θ )]vn+1−θ

+θK f n+1−θ

div vn+1 = 0

3.1.5 A Modified Fractional-Step-θ -Scheme

Consider an initial value problem of the following form, with X (t) ∈ Rd , d ≥ 1:

⎧

⎨

⎩

d X

dt
= f (X, t) ∀t > 0

X (0) = X0

(14)

Then, a modified θ -scheme (see [1, 2]) with macro time step Δt can be written
again as three consecutive sub steps, where θ = 1− 1/

√
2, X0 = X0, n ≥ 0 and Xn

is known:

Xn+θ − Xn

θΔt
= f

(

Xn+θ , tn+θ)

Xn+1−θ = 1− θ

θ
Xn+θ + 2θ − 1

θ
Xn

Xn+1 − Xn+1−θ

θΔt
= f

(

Xn+1, tn+1
)
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As shown in [2], the most important properties of this θ -scheme are that

• it is fully implicit;
• it is strongly A-stable;
• it is second order accurate (in fact, it is “nearly” third order accurate [2]).

These properties promise some advantageous behavior, particularly in implicit
CFD simulations for nonstationary incompressible flow problems. Applying one
step of this scheme to the Navier-Stokes equations, we obtain the following variant
of the scheme:

1.

⎧

⎪⎨

⎪⎩

vn+θ − vn

θΔt
+ N (vn+θ )vn+θ + grad pn+θ = f n+θ

div vn+θ = 0

2. vn+1−θ = 1−θ
θ

vn+θ + 2θ−1
θ

vn

3.

⎧

⎪⎪⎨

⎪⎪⎩

vn+1 − vn+1−θ

θΔt
+ N (vn+1)vn+1 + grad p̃n+1 = f n+1

div vn+1 = 0

3b. pn+1 = (1− θ )pn+θ + θ p̃n+1

These 3 substeps build one macro time step and have to be compared with
the previous description of the Backward Euler, Crank-Nicholson and the classical
Fractional-Step-θ -scheme which all have been formulated in terms of a macro time
step with 3 sub steps, too. Then, the resulting accuracy and numerical cost are better
comparable and the rating is fair. The main difference to the previous “classical”
FS scheme is that substeps 1. and 3. look like a Backward Euler step while substep
2. is an extrapolation step only for previously computed data such that no operator
evaluations at previous time steps are required.

Substep 3b. can be viewed as postprocessing step for updating the new pressure
which however is not a must. In fact, in our numerical tests [1] we omitted this sub-
step 3b. and accepted the pressure from substep 3. as final pressure approximation,
that means pn+1 = p̃n+1.

Summarizing, one obtains that the numerical effort of the modified scheme for
each substep is cheaper – at least for “small” time steps (treatment of the nonlinear-
ity) and complex right hand side evaluations while the resulting accuracy is similar.
Incidentally, the modified θ -scheme is a Runge-Kutta one; it has been derived in [2]
as a particular case of the Fractional-Step-θ -scheme.
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3.2 Space Discretization

Our treatment of the fluid structure-interaction problem as one system suggests that
we use the same finite elements for both the solid part and the fluid region. Since
the fluid is incompressible we have to choose a pair of finite element spaces known
to be stable for problems with incompressibility constraint.

3.2.1 The Conforming Element Q2 P1

One possible choice is the conforming biquadratic, discontinuous linear Q2 P1 pair,
see Fig. 1 for the location of the degrees of freedom. This choice results in 39
degrees of freedom per element in the case of displacement, velocity, pressure
formulation in two dimensions and 112 degrees of freedom per element in three
dimensions. Let us define the following spaces

U = {u ∈ L∞(I, [W 1,2(Ω)]3),u = 0 on ∂Ω},
V = {v ∈ L2(I, [W 1,2(Ωt )]

3) ∩ L∞(I, [L2(Ωt )]
3), v = 0 on ∂Ω},

P = {p ∈ L2(I, L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is to find
(u, v, p) ∈ U × V × P such that the equations are satisfied for all (ζ , ξ , γ ) ∈
U × V × P including appropriate initial conditions. The spaces U, V, P on an
interval [tn, tn+1] would be approximated in the case of the Q2, P1 pair as

Uh = {uh ∈ [C(Ωh)]2,uh |T ∈ [Q2(T )]2 ∀T ∈ Th,uh = 0 on ∂Ω},
Vh = {vh ∈ [C(Ωh)]2, vh |T ∈ [Q2(T )]2 ∀T ∈ Th, vh = 0 on ∂Ω},
Ph = {ph ∈ L2(Ωh), ph |T ∈ P1(T ) ∀T ∈ Th}.

Fig. 1 Location of the degrees of freedom for the Q2 P1 element
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Let us denote by un
h the approximation of u(tn), vn

h the approximation of v(tn) and
pn

h the approximation of p(tn). Consider for each T ∈ Th the bilinear transformation
ψT : T̂ → T to the unit square T . Then, Q2(T ) is defined as

Q2(T ) = {

q ◦ ψ−1
T : q ∈ span < 1, x, y, xy, x2, y2, x2 y, y2x, x2 y2 >

}

(15)

with nine local degrees of freedom located at the vertices, midpoints of the edges
and in the center of the quadrilateral. The space P1(T ) consists of linear functions
defined by

P1(T ) = {

q ◦ ψ−1
T : q ∈ span < 1, x, y >

}

(16)

with the function value and both partial derivatives located in the center of the
quadrilateral, as its three local degrees of freedom, which leads to a discontinuous
pressure. The inf-sup condition is satisfied (see [3]); however, the combination of
the bilinear transformation ψ with a linear function on the reference square P1(T̂ )
would imply that the basis on the reference square did not contain the full basis. So,
the method can at most be first order accurate on general meshes (see [3, 4])

‖p − ph‖ = O(h). (17)

The standard remedy is to consider a local coordinate system (ξ, η) obtained by
joining the midpoints of the opposing faces of T (see [4–6]). Then, we set on each
element T

P1(T ) := span < 1, ξ, η > . (18)

For this case, the inf-sup condition is also satisfied and the second order approx-
imation is recovered for the pressure as well as for the velocity gradient (see [3, 7])

‖p − ph‖ = O(h2) and ‖∇(u − uh)‖0 = O(h2). (19)

For a smooth solution, the approximation error for the velocity in the L2-norm is
of order O(h3) which can easily be demonstrated for prescribed polynomials or for
smooth data on appropriate domains.

3.3 Solution Algorithm

The system of nonlinear algebraic equations arising from the governing equations
prescribed in Sects. 2.1 and 2.2 is

⎡

⎣

Suu Suv 0
Svu Svv k B
cu BT

s cv BT
f 0

⎤

⎦

⎡

⎣

u
v

p

⎤

⎦ =
⎡

⎣

fu

fv

f p

⎤

⎦ (20)
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which is typical saddle point problem, where S describes the diffusive and convec-
tive terms from the governing equations. The above system of nonlinear algebraic
equations (20) is solved using Newton method as basic iteration. The basic idea of
the Newton iteration is to find a root of a function, R(X) = 0, using the available
known function value and its first derivative, where X = (uh, vh, ph) ∈ Uh×Vh×Ph .
One step of the Newton iteration can be written as

Xn+1 = Xn −
[
∂R
∂X

(Xn)

]−1

R(Xn). (21)

This basic iteration can exhibit quadratic convergence provided that the initial
guess is sufficiently close to the solution. To ensure the convergence globally, some
improvements of this basic iteration are used. The damped Newton method with line
search improves the chance of convergence by adaptively changing the length of the
correction vector (Fig. 2). The solution update step in the Newton method (21) is
replaced by

1. Let Xn be some starting guess.

2. Set the residuum vector Rn = R(Xn) and the tangent matrix A = ∂R
∂X (Xn).

3. Solve for the correction δX
AδX = Rn .

4. Find optimal step length ω.

5. Update the solution Xn+1 = Xn − ωδX.

Fig. 2 One step of the Newton method with line search

Xn+1 = Xn − ωδX, (22)

where the parameter ω is determined such that a certain error measure decreases
(see [6, 8] for more details). The Jacobian matrix ∂R(Xn)

∂X can be computed by finite
differences from the residual vector R(X)

[
∂R
∂X

]

i j

(Xn) ≈ [R]i (Xn + α j e j )− [R]i (Xn − α j e j )

2α j
, (23)

where e j are the unit basis vectors in R
n and the coefficients α j are adaptively taken

according to the change in the solution in the previous time step. Since we know
the sparsity pattern of the Jacobian matrix in advance, which is given by the used
finite element method, this computation can be done in an efficient way so that the
linear solver remains the dominant part in terms of the CPU time (see [6, 9] for more
details).
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3.4 Multigrid Solver

The solution of the linear problems is the most time consuming part of the solu-
tion process. A good candidate seems to be a direct solver for sparse systems like
UMFPACK (see [10]); while this choice provides very robust linear solvers, its
memory and CPU time requirements are too high for larger systems (i.e. more
than 20.000 unknowns). Large linear problems can be solved by Krylov space
methods (BiCGStab, GMRes, see [11]) with suitable preconditioners. One possi-
bility is the ILU preconditioner with special treatment of the saddle point character
of our system, where we allow certain fill-in for the zero diagonal blocks, see [12].
The alternative option for larger systems is the multigrid method presented in this
section.

We also utilize a standard geometric multigrid approach based on a hierarchy of
grids obtained by successive regular refinement of a given coarse mesh. The com-
plete multigrid iteration is performed in the standard defect-correction setup with
the V or F-type cycle. While a direct sparse solver [10] is used for the coarse grid
solution, on finer levels a fixed number (2 or 4) of iterations by local MPSC schemes
(Vanka-like smoother) [6, 13, 8] is performed. Such iterations can be written as

⎡

⎣

ul+1

vl+1

pl+1

⎤

⎦ =
⎡

⎣

ul

vl

pl

⎤

⎦− ω
∑

elementΩi

⎡

⎣

Suu|Ωi Suv|Ωi 0
Svu|Ωi Svv|Ωi k B|Ωi

cu BT
s|Ωi

cv BT
f |Ωi

0

⎤

⎦

−1 ⎡

⎣

defl
u

defl
v

de f l
p

⎤

⎦ .

The inverse of the local systems (39 × 39) can be done by hardware optimized
direct solvers. The full nodal interpolation is used as the prolongation operator P
with its transposed operator used as the restriction R = PT (see [14, 6] for more
details).

4 Objectives and Problem Configuration

The main objective of the following numerical investigation is to analyze and to
validate our monolithic approach for a configuration with a point constraint (“rigid
solid with rotational degree of freedom”) for a special experimental set up. In the
future, these numerical and experimental studies shall lead to a reliable data basis
for the validation and comparison purposes of different numerical methods and code
implementations for fluid-structure interaction simulations. These numerical studies
are focused on the two-dimensional periodical swiveling motion of a simple flexible
structure driven by a prescribed inflow velocity (see [15]). The structure has a linear
mechanical behavior and the fluid is considered incompressible and in the laminar
regime. The cylinder is fixed only at the center and can rotate freely. To allow for
this kind of additional rotational movement in our method, the cylinder has to be
included in the mesh in our recent approach. By prescribing zero displacement for
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D = 22

Fig. 3 Structure (dimensions in millimeters)

Table 1 Density values of the structure components

Cylinder (aluminum) 2.828× 10−6 kg/mm3

Beam (stainless steel) 7.855× 10−6 kg/mm3

Rear mass (stainless steel) 7.800× 10−6 kg/mm3

the node located in the center of the cylinder we eliminate the translational degree of
freedom of the whole structure but preserve the rotational freedom of the cylinder.
Hence, the position of all other nodes located inside the cylinder are taken into
account as part of the solution. We divided the numerical tests into two parts cor-
responding to the thickness of the elastic beam i.e for 1 mm thick beam and for
0.04 mm thick beam attached to an aluminum cylinder. At the trailing edge of the
elastic beam a rectangular stainless steel mass is located. Both the rear mass and
the cylinder are considered rigid. All the structure is free to rotate around an axis
located in the center point of the cylinder. The detailed dimensions of the structure
are presented in Fig. 3. The densities of the different materials used in the con-
struction of the model are given in Table 1. The shear modulus of stainless steel is
7.58 × 1013 kg/mms2 and Poisson ratio of the beam ν p is taken as 0.3. The Young
modulus is measured to be 200 kN/mm2. As fluid for the tests, a Polyethylene glycol
syrup is chosen because of its high viscosity and a density close to water. It has a
kinematic viscosity 164 mm2/s and the density of the fluid is 1.05× 10−6 kg/mm3.

4.1 Geometry of the Problem

The geometry of the physical domain coincides with the shape of the facility test
function. The co-ordinate system used is centered in the rotating axis of the flex-
ible structure front body. The x-axis is aligned with the incoming flow. Then, the
geometric details are as follows:

• The overall dimensions of the physical domain are length L = 338 mm and width
W = 240 mm.

• The center of the cylindrical front body is C which is located 55 mm downstream
of the beginning of the physical domain, and the radius r is 11 mm.

• The dimensions of the flow field measuring domain (hatched line) are given
by length L ′ = 272 mm and width W ′ = 170 mm. The measuring domain
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Fig. 4 Physical domain (continuous line) and flow field measuring domain (hatched line)

begins 19 mm after the beginning of the physical domain as shown in Fig. 4. The
Reynolds number is defined by Re = 2r V̄

ν f with mean velocity V̄ = 2
3v(0,W/2, t),

r radius of the cylinder and W height of the channel (see Fig. 4).

4.2 Boundary and Initial Conditions

The velocity profile prescribed at the left channel inflow is defined as approximation
of the experimental inflow data

v f (0, y) = Ū (1− (y/120)8)(1+ (y/120)8), (24)

such that the maximum of the inflow velocity profile is Ū . The outflow condition
effectively prescribes some reference value for the pressure variable p. While this
value could be arbitrarily set in the incompressible case, in the case of a compress-
ible structure this will have influence onto the stress and consequently the defor-
mation of the solid. The no-slip condition is prescribed for the fluid on the other
boundary parts, i.e. top and bottom wall, circle and fluid-structure interface Γ 0

t .
Suggested starting procedure for the non-steady tests is to use a smooth increase of
the velocity profile in time as
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v f (t, 0, y) =
⎧

⎨

⎩

v f (0, y)
1− cos(π t/2)

2
i f t < 1

v f (0, y) otherwise
(25)

where v f (0, y) is the velocity profile given in (24). Since the cylinder is allowed to
freely rotate around its axis, we need to incorporate this into our setup. As described
before, by identifying the center of the cylinder with one grid point of our mesh we
can prescribe a Dirichlet type boundary condition for the velocity and the displace-
ment of the structure at this point. This point constraint effectively fixes the position
of the cylinder axis, but still allows the free rotation around this point.

5 Experimental Results

Experimental studies on reference test cases were conducted in laminar flows
(Re ≤ 200) at the Institute of Fluid Mechanics at University of Erlangen-Nürnberg
(see [15]). The structure was defined to be constituted by a 0.04 mm thick stainless
steel sheet attached to an 22 mm diameter aluminum cylindrical front body. At the
trailing edge of the beam a 10 mm × 4 mm rectangular stainless steel mass was
located. All the structure was free to rotate around an axis located in the center
point of the front cylinder. Both the front cylinder and the rear mass were con-
sidered rigid. The structure model was tested in a viscous liquid flow at different
velocities up to 2000 mm/s. The minimum velocity needed for the movement of
the structure slightly varied from test to test. In most of the cases it was already
possible to achieve a consistent swiveling motion for velocities slightly smaller than
1000 mm/s. The frequency of the structure movement increased linearly with the
velocity of the approaching fluid. For velocity ranging from 1140 to 1300 mm/s, the
frequency of oscillations showed a pronounced hysteresis depending on increasing
versus decreasing flow velocity. There were two test cases performed using dif-
ferent flow velocity and the corresponding results were as follows: Using velocity
1080 mm/s (Re ≈ 145) one measures a frequency of oscillations of the structure
≈ 6 Hz, and with velocity 1450 mm/s (Re ≈ 195) a frequency of oscillations of
the structure ≈ 13.58 Hz is observed. At higher velocities the motion of the struc-
ture became faster and more complex. At around 1300 mm/s the structure shifted
abruptly to a new swiveling mode in which the second deflection mode played an
important role.

6 Numerical Investigations

In this section we will present numerical results for the 1 mm thick beam and pre-
liminary calculations for the 0.04 mm thick beam.
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6.1 Results for 1 mm Thick Beam

Experimental studies are conducted taking a 0.04 mm thick beam. However, in the
first numerical test we set the thickness of the beam 1 mm (see Fig. 3) and also we
reduce the rigidity of the beam (i.e., shear modulus) from 7.69 × 10 7 to 7.69 ×
104 kg/mms2 to make the problem numerically easier, all other parameters are from
Table 1. We applied the presented time stepping schemes, namely (BE, CN, FS, GL)
prescribed in Sect. 3.1 to analyze the behavior for different Δt . For Δt = 0.0005
almost the identical amplitude of oscillations (≈ 13.84) of rear mass is observed (see
Fig. 7) for the higher order schemes (CN, FS, GL) and for the 1st order Backward
Euler (BE) the amplitude of oscillations (≈ 12.42) of rear mass shows 10% less
accuracy compared to CN, FS and GL. For Δt = 0.00005 Backward Euler (BE)
shows better agreement of the amplitude of oscillations (≈ 13.71) of the rear mass to
CN, FS, GL. For larger time step, GL is more damped than CN and FS. We use two
different meshes (see Figs. 5 and 6) and also we increase the mesh refinement level
from level 1 to level 2. Corresponding plots for two different meshes and different
mesh refinement levels are given in Figs. 8 and 9 which shows that our solution is
almost independent of mesh type and mesh refinement levels. From experimental
results, for velocity 1130 mm/s the structure shows hysteric behavior, but in our
simulations no hysteric behavior could be observed so far and resulting frequency
of oscillations is≈ 10 Hz for applying all the four time stepping schemes mentioned
above as can be seen in the Figs. 10 and 11.

Fig. 5 Coarse mesh1 with 576 elements, 622 nodes and 11308 dof

Fig. 6 Coarse mesh2 with 529 elements, 574 nodes and 10407 dof
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Fig. 7 For Δt = 0.0005, the amplitude of oscillations of rear mass is almost identical for the
different time stepping schemes CN, FS, GL
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Fig. 8 For the two different meshes, the amplitude of oscillations is almost the same for the
Fractional-Step-θ -scheme



ALE–FSI Solver for Elastic Material 467

– 10

– 15

– 5

0

5

10

15

3 3.05 3.1 3.15 3.2 3.25  3.3

ve
rt

ic
al

 d
is

pl
ac

em
en

t

time[s]

level1
level2

Fig. 9 For refinement level 1 and 2 (mesh1) the amplitude of oscillation is almost identical

Fig. 10 Snapshots of the vertical displacement of the rear mass with frequency of oscillations
≈ 10 Hz for 1 mm thick beam

Fig. 11 Zoomed snapshots of the deformed 1 mm thick beam
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6.2 Results for 0.04 mm Thick Beam

In this test we keep the thickness of the beam 0.04 mm as described in the experi-
mental set up. The minimum velocity needed to excite the movement of the struc-
ture slightly varied from test to test. In our case for velocity 600 mm/s (Re ≈ 80)
we are able to excite the structure. Frequency of the structure movement increases
linearly with the increase of the velocity of the fluid. We used the velocity 600 mm/s
(Re ≈ 80) at beginning, then switching to 800 mm/s (Re ≈ 107) for simplicity,
see Figs. 14 and 15. Figure 12 shows the comparison between experimental versus
numerical results of the problem. Figure 13 shows the amplitude of oscillations of
rear mass attached to the elastic beam for velocity 1080 mm/s and the frequency
of oscillation observed is ≈ 9.5 Hz. Figure 16 shows resulting mesh deformation.
Figures 17 and 18 shows the deformed shape of the beam for velocity 1080 mm/s,
and for the velocity 1450 mm/s the deformation of the elastic beam is even more
significant, see Figs. 19 and 20.
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– 40
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– 80
– 20 0 20 40 60 80 100 120 140 160 180 200 220

Fig. 12 Experiment from Erlangen (left) and numerical result for velocity 1450 mm/s (right)

7 Summary and Future Developments

We presented a general ALE formulation of fluid-structure interaction problems
suitable for applications with finite deformations of the structure and laminar vis-
cous flows. The resulting discrete nonlinear systems arise from the finite element
discretization by using the high order Q2 P1 FEM pair which are solved mono-
lithically via discrete Newton iteration and special Krylov space and multigrid
approaches. We applied the Backward Euler, Crank Nicholson, Fractional-Step-
θ -scheme and a new modified Fractional-Step-θ -scheme for time discretization
which are numerically examined for several prototypical benchmark configurations.
Results have been given that are obtained from a rigid cylinder in laminar flow. The
structure consists of a thin elastic beam attached to the cylinder, which is identified
by the center of the cylinder with one grid point. This point constraint effectively
fixes the position of the cylinder axis, but still allows the free rotation around this
point. At the trailing end of the beam a rear mass is attached. We simulated two cases
corresponding to the thickness of the beam to be 1 and 0.04 mm, respectively. Addi-
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Fig. 13 Frequency of oscillations of the rear mass for velocity 1080 mm/s for the described numer-
ical set up is ≈ 9 Hz

Fig. 14 Snapshots of the vertical displacement of the rear mass with maximum amplitude ≈ 17.0
and frequency ≈ 4.5 Hz and velocity 800 mm/s

tionally, we present numerical studies on different mesh types. Numerical results are
provided for all time stepping schemes which show very reproducible symmetrical
two-dimensional swiveling motions. These numerical tests show that the solution
is independent of the mesh type and mesh refinement level. Preliminary results for
the experimental benchmark configuration are shown to see the qualitative behavior
of the elastic beam for a high velocity profile fluid. The next steps regarding better
efficiency of the solvers include the development of improved multigrid solvers, for
instance of global pressure Schur complement type [6], and the combination with
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Fig. 15 Zoomed snapshots of the deformed beam for velocity 800 mm/s

Fig. 16 Snapshot of the complete mesh

Fig. 17 Snapshots of the vertical displacement of the rear mass for velocity 1080 mm/s

Fig. 18 Zoomed snapshots for deformed thick beam
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Fig. 19 Snapshots of the vertical displacement of the rear mass and velocity 1450 mm/s

Fig. 20 Zoomed snapshots for the deformed beam

parallel high performance computing techniques in future, particularly towards 3D
configurations.
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On Stokes’ Problem

Remigio Russo

Abstract We consider the Stokes problem of viscous hydrodynamics in bounded
and exterior Lipschitz domains Ω of R

m (≥ 2) with boundary datum in L2(∂Ω).
We show that this problem has a unique very weak solution in bounded domains.
As far as exterior domains are concerned, we prove that a very weak solution exists
such that u = pk + O(r−1−m−k) at infinity, with pk a Stokes’s polynomial of degree
k, if and only if the data satisfy a suitable compatibility condition. In particular, we
derive the well-known Stokes’paradox of hydrodynamics for very weak solutions.
We use this results to prove the existence of a very weak solution to the Navier-
Stokes problem in bounded and exterior Lipschitz domains of R

3 by requiring that
the boundary datum belongs to L8/3(∂Ω).

Keywords Stokes problem · Existence and uniqueness theorems · Stokes paradox

1 Introduction

Let Ω be a domain (open connected set) of R
m , m ≥ 2. As is well-known [33],

the Stokes problem of stationary viscous hydrodynamics is to find a solution to the
equations

Δu −∇ p = f in Ω,

div u = 0 in Ω,

u = a on ∂Ω,

(1)

where u : Ω → R
m and p : Ω → R are the (unknown) kinetic field and pressure

field respectively, f : Ω → R
m and a : ∂Ω → R

m are the (assigned) body force
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field and boundary datum respectively. If Ω is an exterior domain we require that u
satisfies the condition at infinity

lim
r→+∞ u(x) = u∞, (2)

where u∞ is an assigned constant vector. In the last hundred years, problem (1) has
been the object of many papers. We quote [33] for an historical review and a rich
bibliography (see also [18, 26, 49, 52, 74, 80, 81]).

Under suitable regularity assumptions on the data for a Ω bounded or exterior
domain and m > 2 problems (1) and (2) have a unique weak solution (see, e.g,
[3, 10, 33, 41, 49, 74, 75, 80]). If Ω is exterior and m = 2, then (1) and (2) is
not solvable for arbitrary data even if they are of class C∞, in view of the Stokes
paradox [78, 11, 31, 35, 43, 47] and [33] Chap. V. To see this easily, let us note that
for f = 0 every weak solution u to (1) is of class C∞ and a biharmonic vector field
in Ω . Therefore, by a classical result of M. Picone [64] if u converges to a constant
vector u0 at infinity, then

u0 = 1

2π

∫ 2π

0
u(R, θ ). (3)

If ∂Ω is a disk of radius R0, then (3) implies that in order (1) and (2) to have a
solution a and u∞ must satisfy the necessary compatibility condition

u∞ = 1

2π

∫ 2π

0
a(R0, θ ). (4)

In particular, if a = 0, then (1) and (2) has no solution. This problem was solved
by G.P. Galdi and C.G. Simader [35] (see also [33] Chap. V, and [34]). Assuming
Ω of class C2, a ∈ W 1−1/q,q (∂Ω) and f ∈ D−1,q (Ω) (q > 1), they first prove that
the linear space H of solutions to the system

Δh −∇Q = 0 in Ω,

div h = 0 in Ω,

h = 0 on ∂Ω

has dimension 2, then they conclude that in order (1) and (2) to be solvable it is
necessary and sufficient that a, f and and u∞ satisfy the compatibility condition

∫

∂Ω

(a − u∞) · T [h, Q]n = 〈 f, h〉, ∀ h ∈ H, (5)

where

T [h, Q] = ∇h + ∇hT − Q I

is the Cauchy stress tensor. If ∂Ω is a disk, they observe that T [h, Q]n is a constant
vector so that for, f = 0, (5) reduces to (4).
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In [52] we performed a study of the Stokes problem by the Fredholm-Riesz-
Schauder theory of integral equations in bounded and exterior domains with Lia-
pounov boundaries and for continuous boundary data. A condition similar to (5)
was found for the existence of a classical solution in a plane exterior domain. In
[67] we extended these results to Lipschitz domains and boundary data in L2(∂Ω).
The purpose of this paper is to present in a reasonably simple way what is, to our
knowledge, the state of art for the existence and uniqueness problem for Stokes’
equations under nonslip boundary conditions, by following the method of integral
equations as developed in [67, 82]. We shall also present simpler proofs of well-
known theorems and obtain new results concerning exterior domains. In particular,
to (1) we append the condition at infinity

u = pk(x)+ O(r1−m−k), (6)

where pk is an assigned Stokes polynomial of degree k and determine a necessary
and sufficient condition on the data in order that (1), (6) admits a solution, which
generalizes the one found in [35, 52, 67] for k = 0.

The plan of the paper is as follows: in Section 2 we recall some general facts
concerning Eq. (1)1,2 and prove Stokes’ formula for exterior domains; in Sect. 3 we
summarize the classical potential theory for Liaponouv surfaces and its extension
to boundaries of class C1; in Sect. 4 we describe the L2–simple layer potential
approach to the solvability of (1) in Lipschitz domains, that we use in Sects. 5 and
6 respectively for bounded and exterior regions; in Sect. 7 we show that Stokes’
paradox is not confined to the Stokes problem with nonslip boundary conditions;
finally, in Sect. 8 we apply the foregoing results to prove an existence theorem
for the Navier-Stokes problem in three-dimensional bounded and exterior Lipschitz
domains for boundary datum a ∈ L8/3(∂Ω) and small fluxes.

NOTATION – R is the set of the real numbers; N is the set of the natural numbers
and N0 = N∪{0}. A domain (open connected set) Ω of R

m is said to be of class Ck,α

(k ∈ N0, α ∈ [0, 1]) if for every ξ ∈ ∂Ω , there exists a neighborhood of ξ in ∂Ω

which can be expressed as a graph of a function of class Ck,α; for (k = 0, α = 1)
and (k = 1, α ∈ (0, 1)) Ω is called Lipschitz and Liapounov respectively. Scalar,
vector and tensor valued functions are not distinguished in notation; it will be clear
from the context when we will refer to a scalar, vector or tensor field in Ω or on ∂Ω:
x, y denote points of R

3, (ζ, ξ ) points on surfaces and o the origin of the reference
frame (o, {ei }), with {ei }i=1...,m orthonormal basis of R

m ; SR = {x : r = |x | < R}
and TR = S2R \ SR , er = x/r , ΩR = Ω ∩ SR . The function spaces C(Ω), Ck,α(Ω),
C(Ω), Ck,α(Ω), C(∂Ω), Ck,α(∂Ω), W k,q (Ω), W α,q

0 (Ω), W k,q (∂Ω), W α,q (∂Ω) (α ∈
(0, 1), k ∈ N0, q ∈ (1,+∞)) have their usual meaning and W−α,q (Ω), W−α,q (∂Ω)
(1/q + 1/q ′ = 1) are the spaces dual to W α,q ′

0 (Ω) and W α,q ′ (∂Ω) respectively;
H1(Ω) denotes the space of all f ∈ L1(Ω) whose zero extensions belong to the
Hardy space H1(Rm); recall that if ϕ ∈ H1(Ω), then

∫

Ω
ϕ = 0. If � is a positive

function on Ω , we set Lq (Ω,�) = {ϕ ∈ L1
loc(Ω) : �ϕ ∈ Lq (Ω)}. To conform

notation we express the duality W−α,q (B)−W α,q ′ (B) by the symbol
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〈σ, ϕ〉 =
∫ +

B
ϕσ,

which must be understood as an usual integral when ϕσ ∈ L1(B). Moreover, if Ω
is bounded, we set

ϕB = 1

|Ω|
∫ +

Ω

ϕ

Throughout the paper, we shall use the same symbol to denote a space of scalar,
vector and tensor-valued functions. L1

loc is the space of all measurable functions ϕ
such that ϕ ∈ L1(K ) for every compact K contained in Ω; if V is a subspace of
L1

loc(Ω), Vσ stands for the subset of V of all vector fields u such that
∫

Ω
u · ∇ϕ = 0,

for all ϕ ∈ C∞0 (Ω). If u is a vector field in W 1,q
loc (Ω), we denote by ∇̂u and ∇̃u

the symmetric and skew parts of ∇u respectively. The symbol c will be reserved to
denote positive constants whose numerical values are not essential to our purposes.
The Landau symbols f (x) = o(g(r )) and f (x) = O(g(r )) are used to mean that
limr→+∞ | f (x)|/g(r ) = 0 and | f (x)| ≤ cg(r ) = 0, where f is a function defined in
�SR and g a positive function in (0,+∞).

2 The Stokes Formulae

Let Ωi (i = 0, 1, . . . , h ∈ N) be h + 1 bounded domains with connected and
Lipschitz boundaries such that

Ω ′ =
h
⋃

i=1

Ωi ⊂ Ω0, Ω i ∩Ω j = ∅, i �= j.

By bounded and exterior domain we mean the sets defined respectively by

Ω = Ω0 \Ω ′

and

Ω = R
m \Ω ′.

The direction of the unit normal n to ∂Ω is chosen in such a way that n is inner
for exterior domains and outer for bounded domains.

The equations

Δu −∇ p = 0,

div u = 0
(7)
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admits the Lorentz fundamental solution [33, 49]

S(x − y) = 1

2

[

U(x − y)I + (x − y)⊗∇yU(x − y)
]

,

P(x − y) = −∇xU(x − y),

where

U(x − y) =

⎧

⎪⎪⎨

⎪⎪⎩

− 1

(m − 2)ωm |x − y|m−2
, m > 2,

1

2π
log |x − y|, m = 2,

is the fundamental solution to the Laplacian, I the unit second-order tensor and ωn

the area of the unit sphere in R
m .

Let ϕ be a field on Ω . We say that ϕ has a (non tangential) value on ∂Ω , if there
is a family of “geometric solids” {γξ }ξ∈∂Ω contained in Ω such that

ϕ(ξ ) = lim
x→ξ

(x∈γ (ξ ))

ϕ(x)
def⇐⇒ϕ(x)

nt−→ ϕ(ξ )

for almost all ξ ∈ ∂Ω . If ∂Ω is of class C1, as γξ we can take a ball tangent to ∂Ω

at ξ . If ∂Ω is Lipschitz, as γξ we can choose a finite cone whose aperture depends
on the Lipschitz character of ∂Ω . It ϕ is defined in R

m \∂Ω and Ω is bounded, then
by ϕ+ [respect. ϕ−] we mean the (non tangential) value of the restriction of ϕ to Ω

[respect. �Ω]; if Ω is exterior, ϕ+ [respect. ϕ−] denotes the (non tangential) value
of the restriction of ϕ to Ω ′ [respect. Ω].

It is well-known that for a bounded Lipschitz domain Ω , if 1/q < α < 1+ 1/q,
q ∈ (1,+∞), and s = α − 1/q, the classical trace operators ϕ ∈ C(Ω) →
ϕ|∂Ω ∈ C(∂Ω) and u ∈ C(Ω) → (u · n)|∂Ω ∈ C(∂Ω) extend uniquely to
continuous operators from W α,q (Ω) onto W s,q (∂Ω) and from Lq

div(Ω) = {ϕ ∈
Lq (Ω : divϕ ∈ Lq (Ω)} onto W−1/q,q (∂Ω), respectively [4, 27, 80]. Moreover,
W α,q (∂Ω) ↪→ Lt (∂Ω), t = (m−1)q/(m−αq), and the Gauss generalized formula
holds (see, e.g., [33])

∫

Ω

div(ϕu) =
∫ +

∂Ω

ϕu · n

for all ϕ ∈ W 1,q (Ω) and u ∈ Lq ′
div(Ω).

A distributional or weak solution (variational solution for q = 2) to Eq. (1)1,2 is
a field u ∈ W 1,q

σ,loc(Ω) (q > 1) such that

∫

Ω

∇u · ∇ϕ +
∫ +

Ω

f · ϕ = 0, ∀ϕ ∈ C∞0,σ (Ω).
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To every solution u ∈ W 1,q
σ,loc(Ω) to (1)1,2 we can associate a pressure field p ∈

Lq
loc(Ω) such that the pair (u, p) is a distributional solution to equations (1)1,2 (see,

e.g., [33]), i.e.,

∫

Ω

∇u · ∇ϕ +
∫ +

Ω

f · ϕ =
∫

Ω

p divϕ, ∀ϕ ∈ C∞0 (Ω).

Of course, the pressure p is defined within an arbitrary additive constant. If Ω is
bounded, we normalize p by setting pΩ = 0.

Set (see [49], Chap. 3)

T ′[S,P](x − y) = P(x − y)I + ∇yS(x − y)+ ∇yS
T(x − y).

The following result is classical [49, 57].

Lemma 1 (Stokes’ formula for bounded domains) Let Ω be a bounded Lipschitz
domain and let u ∈ W 1,q (Ω)× Lq (Ω) be a weak solution to (1)1,2. If f ∈ H1(Ω),
then for almost all x ∈ Ω

u(x) =
∫

Ω

S(x − y) f (y) dvy +
∫

∂Ω

T ′[S,P](x − ζ )(u ⊗ n)(ζ ) daζ

−
∫ +

∂Ω

S(x − ζ )(T [u, p]n)(ζ ) daζ ,

p(x) =
∫

Ω

P(x − y) f (y) dvy − 2
∫

∂Ω

u(ζ ) · [∇xP(x − ζ )]n(ζ ) daζ

−
∫ +

∂Ω

P(x − ζ ) · (T [u, p]n)(ζ ) daζ

(8)

If m = 2, then (8)1 holds for all x ∈ Ω .

From Lemma 1 it follows that if f ∈ C∞(Ω), then a weak solution to Eq. (1)1,2

and the corresponding pressure are of class C∞ in Ω .
Let us extend (8) to exterior domains (see also [16, 33]).

Lemma 2 (Caccioppoli’s inequality) Let (u, p) be a solution to (7) in R
m. Then

∫

SR

|∇u|2 ≤ c

R2

∫

TR

|u|2, (9)

for all R > 0.

Proof Let g be a C∞ function in R
m , equal to 1 in SR , to zero outside S2R and such

that |∇k g| ≤ cR−k , with c independent of R and

∇k g = ∇ . . .∇
︸ ︷︷ ︸

k−times

g, ∇0g = g.
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Let h ∈ C∞0 (TR) be a solution to the problem [65] (see also [33] Chap. III)

div h = − div(g2u) in TR,

‖h‖W k+1,2(TR ) ≤ c‖ div(g2u)‖W k,2(TR ), k ∈ N0.
(10)

Then, a simple integration by parts yields

∫

Rm

|g∇u|2 = −2
∫

Rm

g(∇u)∇g +
∫

Rm

u ·Δh. (11)

Since by the arithmetic-geometric mean inequality

∣
∣
∣
∣

∫

Rm

g(∇u)∇g

∣
∣
∣
∣
≤ c

{
1

εR2

∫

TR

|u|2 + ε

∫

Rm

|g∇u|2
}

∣
∣
∣
∣

∫

Rm

u ·Δh

∣
∣
∣
∣
≤ c

{
1

εR2

∫

TR

|u|2 + εR2
∫

Rm

|Δh|2
}

for every positive ε, and by (10)2 and a rescaling argument

∫

Rm

|Δh|2 ≤ c

{
1

R4

∫

TR

|u|2 + R2
∫

Rm

|g∇u|2
}

,

(9) follows from (11) by properly choosing ε. �

Lemma 2 was first proved in [39]. The above proof is contained in [51].

Lemma 3 (Campanato’s inequality) Let (u, p) be a solution to (7) in R
m. Then

∫

S�

|∇ku|2 ≤ c
( �

R

)m
∫

SR

|∇ku|2, (12)

for all k ∈ N0 and for all R > � > 0.

Proof We follow [9]. Since any derivatives of (u, p) is a solution to (7) in R
m , from

(9) and Sobolev’s lemma we get

|u|2(x) ≤ c

Rm

∫

SR

|u|2,

for all x ∈ S� (� < R/4). Hence, integrating over S�, it follows

∫

S�

|u|2 ≤ c
( �

R

)m
∫

SR

|u|2 (13)

It is immediate to get (13) for � ∈ (R/4, R) and (12) is proved. �
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By a k-Stokes polynomial we mean a vector polynomial field pk of degree k ∈ N0

which satisfies (7) for a suitable associated harmonic polynomial qk−1 ∈ Ak−1 of
degree k − 1 (pressure field), if k ∈ N and constant if k = 0. We denote by Sk the
whole set of k–Stokes polynomial of degree k. It is well-known that [12]

dim Sk = m + m2 − 1+
k

∑

j=2

m

[(
m + j − 1

j

)

−
(

m + j − 3

j − 2

)]

Lemma 4 (Liouville’s theorem) Let (u, p) be a solution to (7) in R
m. If

u = o(rk+1) as r →+∞, (14)

with k ∈ N0, then

(u, p) ∈ Sk × Ak−1. (15)

Proof From (12) and (9) we have

∫

S�

|∇k+1u|2 ≤ c�m

Rm+2(k+1)

∫

S2(k+1)R\SR

|u|2.

Hence (15) follows, letting R →+∞ and taking into account (14). �
• In virtue of the reflexion principle of R.J. Duffin [21] a solution (u, p) to (7) in

the half-space R
+
m = {x : xm > 0}, vanishing on the boundary, can be analytically

continued across {xn = 0}. Therefore, (u, p) is the restriction to R
+
m of a solution

(u′, p′) to the Stokes equations in R
m . Moreover, if u = o(rk+1), then so does u′.

Under this condition, from Lemma 4 it follows that u is a Stokes polynomial of
degree k vanishing on the boundary. In particular, if u = o(r2) and ui = o(r ),
i = 1, . . .m − 1, then u = 0. This can also be seen in a direct way by noting that
from a Campanato’s inequality [39] and (9) written in S+R = R

+
m ∩ SR it follows

∫

S+�

∣
∣
∣∇u − (∇u)S+�

∣
∣
∣

2
≤ c

( �

R

)m+2
∫

S+R

|∇u|2 ≤ c�m+2

Rm+4

∫

S+2R\S+R

|u|2.

Theorem 1 (Stokes’s formula for exterior domains) Let Ω be an exterior Lipschitz
domain and let u ∈ W 1,q

σ,loc(Ω) be a weak solution to (1)1,2. If f ∈ H1(Ω) has
compact support and u satisfies (14), then there is a polynomial pk ∈ Sk such that

u(x) = pk +
∫

Ω

S(x − y) f (y) dvy +
∫ +

∂Ω

S(x − ζ )(T [u, p]n)(ζ )

−
∫

∂Ω

T ′[S,P](ζ − x)](u ⊗ n)(ζ ) daζ

(16)

holds for almost all x ∈ Ω . If m = 2, then (16) holds everywhere in Ω .
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Proof Writing (8) in ΩR for large R and recalling our choice of the direction of n,
we have

u(x)−
∫

Ω

S(x − y) f (y)−
∫ +

∂Ω

S(x − ζ )(T [u, p]n)(ζ )

+
∫

∂Ω

T ′[S,P](x − ζ )](u ⊗ n)(ζ ) daζ = J (x)

with

J (x) =
∫

∂SR

T ′[S,P](x − ζ )(u ⊗ eR)(ζ ) daζ −
∫

∂SR

S(x − ζ )(T [u, p]eR
)

(ζ )daζ .

Since J (x) does not depend on R, J (x) is a solution equations (7) in R
m

which satisfies (14). Therefore, by Lemma 4 J (x) ∈ Sk and (16) is proved. The
last assertion follows from the fact that the first integral in (16) is a continuous
function in R

2 [77]. �
The vector

� =
∫ +

∂Ω

T [u, p]n

gives the net force exerted by the fluid on Ω ′ and (16) can be written

u(x) = pk + S(x)� + J (x), (17)

with

S(x)� = O(U(x))

and

∇ jJ = O(r1−m− j ).

Likewise, for the pressure field we have

p(x) = qk−1 + P(x)� + J0(x), (18)

with

P(x)� = O(∇U(x))

and

∇ jJ0 = O(r−m− j ).

Of course, the decomposition (17) holds for every weak solution to (7) in �SR .
As a simple consequence of (17), we have the following uniqueness theorems.
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Theorem 2 Let Ω be an exterior Lipschitz domain. If u ∈ W 1,2
loc (Ω) is a variational

solution to (7) vanishing on ∂Ω and such that

u =
{

o(log r ), m = 2,

o(1), m > 2.
(19)

as r →+∞, then u = 0 in Ω .

Proof An integration by parts yields

2
∫

ΩR

|∇̂u|2 =
∫

∂SR

u · T [u, p]eR .

Hence the desired result follows, letting R →+∞ and taking into account (17),
(18), and (19). �
Theorem 3 Let Ω be an exterior Lipschitz domain. If u ∈ W 1,2

loc (Ω) is a variational
solution to (7) constant on ∂Ω and such that

u(x) = o(U(x)) as r →+∞ (20)

then u = 0 in Ω .

Proof From

2
∫

ΩR

|∇̂u|2 = −ū ·
∫ +

∂Ω

T [u, p]n +
∫

∂SR

u · T [u, p]eR,

where ū is the constant value of u on ∂Ω , the assertion of the theorem follows,
letting R →+∞ and noting that (17) and (20) imply that � = 0. �
Lemma 5 Let Ω be a bounded Lipschitz domain. If (u, p) ∈ W 1,2(Ω)× L2(Ω) is a
a variational solution to (7), then

∫

Ω

|∇u|2 +
∫

Ω

|p|2 ≤ c‖u|∂Ω‖W 1/2,2(∂Ω) (21)

Lemma 5 is well-known (see, e.g., [33] Chap. IV). The uniqueness of the varia-
tional solution is a simple consequence of (21).

Lemma 6 (Rellich’s inequality) – Let Ω be a bounded regular domain. If (u, p) is
regular solution to (7), then

∫

∂Ω

|T [u, p]n|2 ≤ c
∫

∂Ω

|∂t u|2. (22)

where ∂t u is the tangential derivative of u on ∂Ω .
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Lemma 6 is proved in [15, 26]. Starting from (22) and using the argument in [62]
Chap. 5, we have

Lemma 7 (Regularity of weak solutions at the boundary) – Let Ω be a bounded
Lipschitz domain. If (u, p) ∈ W 1,2(Ω)× L2(Ω) is a variational solution to (7) and
u|∂Ω ∈ W 1,2(∂Ω), then T [u, p]n|∂Ω ∈ L2(∂Ω).

3 The Classical Potential Theory

The volume potential with density f ∈ C∞0 (Ω) is the pair

V[ f ](x) =
∫

Ω

S(x − y) f (y) dvy,

P[ f ](x) =
∫

Ω

P(x − y) f (y) dvy .

It is a regular solution to (1)1,2. The following results are classical (cf., e.g.,
[27, 77]).

Let Ω be bounded. Then V[ f ] is continuous from W s−2,q (Ω) into W s,q (Ω), for
all s ∈ [0, 2] and for all q ∈ (1,+∞), and P[ f ] is continuous from W s−1,q (Ω) into
W s,q (Ω), for all s ∈ [0, 1] and for all q ∈ (1,+∞); if f ∈ W−1,q (Ω), then (V,P)
is a weak solution to (1)1,2.
∇2V[ f ] and ∇P[ f ] are continuous from H1(Rm) into L1(Rm). In particular, if

m = 2, then V[ f ] is continuous in R
2.

The simple and double layer potentials with densities ψ, ϕ ∈ Lq (∂Ω) (q ≥ 1)
are the pairs defined respectively by

v[ψ](x) = −
∫

∂Ω

S(x − ζ )ψ(ζ ) dσζ ,

P[ψ](x) = −
∫

∂Ω

P(x − ζ )ψ(ζ ) dσζ

(23)

and

w[ϕ](x) =
∫

∂Ω

T ′[S,P](x − ζ )(ϕ ⊗ n)(ζ ) daζ ,

� [ϕ](x) = −2
∫

∂Ω

ϕ(ζ ) · [∇xP(x − ζ )]n(ζ ) daζ

(24)

They are analytical solutions to (7) in R
m \ ∂Ω and behave at infinity according

to:

∇kv[ψ] = O(∇kU), ∇k P[ψ] = O(∇k+1U),

∇kw[ϕ] = O(∇k+1U), ∇k� [ϕ] = O(∇k+2U),
(25)
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for all k ∈ N0. Moreover,

∇kv[ψ] = O(∇k+1U), ∇k P[ψ] = O(∇k+2U) ⇔
∫

∂Ω

ψ = 0. (26)

If Ω is of class1 C2, classical results assure that (see, e.g., [57])

v[ψ]
nt−→S[ψ]

on “both faces” of ∂Ω . Moreover [49],

w[ϕ]±(ξ ) = ± 1
2ϕ(ξ )+

∫

∂Ω

T ′(S,P)(ξ − ζ )(ϕ ⊗ n)(ζ ) daζ

= (± 1
2 I +K

)

[ϕ](ξ ),

and

T
[

v[ψ], P[ψ]
]±

n(ξ ) = (± 1
2 I −K∗

)

[ψ](ξ ),

for almost all ξ ∈ ∂Ω , where K∗ denotes the adjoint operator to K. If ϕ ∈ W 1,q (Ω),
then the Liapounov – Tauber theorem holds [48, 57]

T
[

w[ϕ],� [ϕ]
]+

n(ξ ) = T
[

w[ϕ],� [ϕ]
]−

n(ξ ). (27)

for almost all ξ ∈ ∂Ω . Note that the above relations imply the jump conditions

ψ = T [v[ψ], P[ψ]]+n − T [[v[ψ], P[ψ]]−n,

ϕ = w[ϕ]+ − w[ϕ]−.
(28)

It is well-known that S is continuous from Lq (∂Ω) into W 1,q (∂Ω) and w± is
continuous from Lq (Ω) into itself and from W 1,q (∂Ω) into itself (see, e.g., [16, 56]).
Since K(Lq (∂Ω)) ⊂ C0,μ(∂Ω) [57], by Ascoli–Arzelà’s theorem K : Lq (∂Ω) →
Lq (∂Ω) is completely continuous. Therefore, one can use the Fredholm–Riesz–
Schauder theory (see, e.g., [58] Chap. VII) to get the existence of a solution to
the Stokes problems (1) and (2) (at least for m > 2) [29, 48, 49].

Let Ω be a bounded domain of class C2, let

f ∈ W s−2,t (Ω), (m − 1)t/(m − st) ≥ q, st > 1 (29)

and let a ∈ Lq (∂Ω) satisfies

∫

∂Ω

a · n = 0. (30)

1 We made this assumption only for the sake of simplicity. Indeed, for q > 1, it is sufficient to
assume that ∂Ω is a Liapounov surface (see [48, 57]).
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Note that (29) assures that V[ f ]|∂Ω ∈ Lq (∂Ω). Consider the homogeneous
equation

(S + 1
2 I +K∗

)

[ψ] = 0. (31)

If ψ ∈ Ker
(

S + 1
2 I +K∗

)

, then the pair

u = v[ψ],

p = P[ψ]
(32)

is a solution to the Robin Problem

Δu − ∇ p = 0 in �Ω,

div u = 0 in �Ω,

u − T [u, p]n = 0 on ∂Ω

(33)

The regularity properties of (u, p) allow us to integrate on Ω ′ to get

2
∫

Ω ′
|∇̂u|2 = −

∫

∂Ω ′
u · T [u, p]n = −

∫

∂Ω

|u|2

Hence it follows that u = 0, p = 0 in Ω ′. If m > 2 or ψ∂Ω = 0 for m = 2,
taking into account that by (26) u · T [u, p] = O(R−m), then we can let R → +∞
in the relation

2
∫

�Ω0∩SR

|∇̂u|2 +
∫

∂Ω0

|u|2 =
∫

∂SR

u · T [u, p]eR

to have that (32) vanish in �Ω0. Bearing in mind the continuity of the simple layer
potential through ∂Ω , a simple integration on Ω implies that u vanishes and p
is constant in Ω . Therefore, (28)1 yields ψ = αn for some scalar α. From the
expression of the simple layer potential with density n we have

v[n](x) = −
∫

∂Ω

S(x − ζ )n(ζ ) daζ = div
∫

Ω

S(x − y) dvy = 0

so that v[n] = 0 and P[n] is a constant in Ω . On the other hand, by (26) we easily
see that v[n] = 0 and P[n] = 0 in �Ω0. Hence it follows that n is a solution to (31),
unique for m > 2. If m = 2, then, setting

M
′ = Ker (S + 1

2 I +K∗
) \ sp {n},

we have that dim M
′ ≤ 2. Indeed, if ψ( �= 0) ∈ M

′, then necessarily ψ∂Ω �= 0; oth-
erwise, a simple integration and (26) implies that ψ ∈ sp {n}. Also, if {ψi }i=1,2,3 ⊂
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M
′, then the system {∫

∂Ω
ψi }i=1,2,3 is linearly dependent so that there are nonzero

scalars αi such that αi
∫

∂Ω
ψi = 0. Then the pair (v[ψ̄], P[ψ̄]), with ψ̄ = αiψi , is

a solution to (33) such that ψ̄∂Ω = 0. By what we said above we have the absurd
ψ̄ ∈ sp {n}. Hence

Ker (S + 1
2 I +K∗

) =
{

sp {n}, m > 2,

sp {n} ∪M
′ m = 2.

Set

γ =
{

0, m > 2 or M
′ = {0},

1, otherwise.

Looking for a solution to Eq. (1) expressed by (see, e.g., [48])

u = v[ϕ]+ w[ϕ]+ V[ f ]+ γ κ,

p = P[ϕ]+� [ϕ]+ P[ f ],
(34)

with κ constant vector, we are led to find a solution ϕ ∈ Lq (∂Ω) to the functional
equation

a − V[ f ]|∂Ω − γ κ = (

S + 1
2 I +K

)

[ϕ]. (35)

Since S is completely continuous from Lq (∂Ω) into itself and ( 1
2 I + K

)

:
Lq (∂Ω) → Lq (∂Ω) is Fredholm with index zero, then also S+ 1

2 I +K is Fredholm
with index zero, so that to solve (35) we can use Fredholm’s theory: Eq. (35) has a
solution if and only if

∫

∂Ω

(a − V[ f ]|∂Ω − γ κ) · ψ = 0, ∀ψ ∈ Ker (S + 1
2 I +K∗

)

.

Therefore, taking into account (30) and choosing κ such that

γ κ ·
∫

∂Ω

ψ =
∫

∂Ω

(a − V[ f ]|∂Ω ) · ψ, ψ ∈M
′, (36)

we have that (35) has a solution ϕ ∈ Lq (∂Ω) and the pair (34) gives the desired
solution to the Stokes problem (1). Of course, by the regularity properties of S and K
over regular surfaces [57], we have that if the data are more regular, then so does the
density ϕ; for instance, if a ∈ W 1,q (∂Ω) and f ∈ Lt (Ω), with (m−1)/(m−s) ≥ q,
then ϕ ∈ W 1,q (∂Ω). Therefore, we can state the following existence theorem.

Theorem 4 Let Ω be bounded domain of class C2. If a,V[ f ]∂Ω ∈ W α,q (∂Ω) (q ≥
1, α ∈ [0, 1]) and a satisfies (30), then (1) has a solution expressed by (34), with

ϕ ∈ W α,q (∂Ω), κ defined by (36), and if V[ f ] ∈ C(Ω), then u
nt−→ a. Moreover
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natural estimates hold; in particular, if f = 0 and a ∈ Ck,μ(∂Ω), (k = 0, 1, μ ∈
[0, 1), then

‖u‖Ck,μ(Ω) ≤ c‖a‖Ck,μ(∂Ω)

‖p‖C0,μ(Ω) ≤ c‖a‖C1,μ(∂Ω)

(37)

Inequality (37) for a ∈ C(∂Ω):

‖u‖C(Ω) ≤ c‖a‖C(∂Ω) (38)

is known as maximum modulus theorem (see, e.g., [54, 60]). If m = 2, a ∈ C(∂Ω)
and f ∈ H1(Ω), then we have

‖u‖C(Ω) ≤ c
{‖a‖C(∂Ω) + ‖ f ‖H1(Ω)

}

. (39)

If Ω is an exterior domain of class C2, then by reproducing the above argument
we can prove that

dim Ker (S + 1
2 I −K∗

) =
{

0, m > 2,

≤ 2, m = 2.

Then a solution to (1) in the form

u = v[ϕ]− w[ϕ]+ V[ f ]+ γ κ,

p = P[ϕ]−� [ϕ]+ P[ f ],
(40)

where now

γ =
{

0, m > 2 or dim Ker (S + 1
2 I −K∗

) = 0,

1, otherwise,

exists if and only if ϕ satisfies the equation

a − V[ f ]|∂Ω − γ κ = (

S + 1
2 I −K

)

[ϕ] (41)

and this is assured by choosing κ such that

γ κ ·
∫

∂Ω

ψ =
∫

∂Ω

(a − V[ f ]|∂Ω ) · ψ, ψ ∈ Ker (S + 1
2 I −K∗

)

. (42)

Therefore, we proved

Theorem 5 Let Ω be an exterior domain of R
m of class C2. If a,V[ f ]∂Ω ∈

W α,q (∂Ω) (q ≥ 1, α ∈ [0, 1]) and f has compact support, then (1)–(2) has a
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solution expressed by (40), with ϕ ∈ W α,q (∂Ω) and κ defined by (42). If V[ f ] ∈
C(Ω), then u

nt−→ a and for m > 2 u → 0 at infinity. Moreover, inequalities (37)
hold locally in Ω R and if f = 0, a ∈ C(∂Ω) and m > 2, then (38) holds.

To solve (1) and (2) in a plane exterior domain, one first defines the linear space

C0 = {ψ : S[ψ] = constant, P[ψ] = 0 in Ω ′} (43)

and shows that

dim C0 = 2.

Moreover, if {ψ1, ψ2} is a basis of C, then {∫
∂Ω

ψ1,
∫

∂Ω
ψ2} is a basis of R

2 [67].
Then, one observes that the pair

u′ = v[ϕ + ψ]− w[ϕ]+ V[ f ]+ u∞,

p′ = P[ϕ + ψ]−� [ϕ]+ P[ f ]
(44)

where ϕ is density appearing in (34), u∞ = −S[ψ] + γ κ and ψ ∈ C0 is chosen
such that

∫

∂Ω

(ϕ + ψ) = 0, (45)

is again a solution to (1), but now thanks to (26) and (45)

lim
r→+∞ u(x) = u∞.

Then, since an elementary calculation shows that

∫

∂Ω

(a − V[ f ]|∂Ω − u∞) · ψ ′ = 0, ψ ′ ∈ C0, (46)

we have

Theorem 6 Let Ω be an exterior domain of R
2 of class C2. Let a,V[ f ]∂Ω ∈

W α,q (∂Ω) (q ≥ 1, α ∈ [0, 1]) and let f have compact support. If (46) holds, then
(1) and (2) has a solution expressed by (44), with ϕ ∈ W α,q (∂Ω). If V[ f ] ∈ C(Ω),

then u
nt−→ a.

Note that:

• Theorems 5, 6 still hold for a ∈ Lq (∂Ω) and f ∈ H1(Ω).
• if f = 0 and a ∈ C(∂Ω), then from (46) it follows

|u∞| ≤ c‖a‖C(∂Ω),
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so that the solution in Theorem 6 satisfies (38). More regular are Ω , a and f ,
more regular is the corresponding solution. We do not insist on such a problem,
quoting [57] for an exhaustive treatment in spaces of regular functions.

• if (u, p) is a weak solution to (1) and (2), then the scalar multiplication of (1)1

by v[ψ ′], with ψ ′ ∈ C0, and a simple integration by parts imply that a and
u∞ must satisfy (46), which turns out to be also necessary to the existence of
a solution to (1) and (2). Then we recover Galdi–Simader’s result [35]. To see
that this result keeps holding for more general boundary data and forces (for
instance, a,V[ f ]|∂Ω ∈ Lq (∂Ω)) we need some additional considerations about
the uniqueness of a (non weak) solution. In general, a solution u to a boundary
value problem associated to an elliptic operator like the Stokes one, with bound-
ary data in Lq (∂Ω), is not unique [17, 19]. It is in a certain sense necessary
to require that u satisfies another condition, like an integral relation. We shall
discuss this question in the next sections and we shall prove that condition (46) is
also necessary to the existence of a solution of Eqs. (1) and (2) with less regular
boundary data in reasonable function classes.

By making use of a result of A.P. Calderón about the Lq – boundedness of the
Cauchy integral on a curve with a small Lipschitz constant, E.B. Fabes, M. Jodeit
Jr. and N.M. Rivière were able to extend (among other things) the classical trace
properties of the harmonic layer potentials to surfaces of class C1 and to show that
S is continuous from Lq (∂Ω) into W 1,q (∂Ω) and K is completely continuous from
Lq (∂Ω) into itself and from W 1,q (∂Ω) into itself. What they proved for harmonic
layer potentials can be easily extended to layer potentials that are weakly singular
on Liapounov surfaces, as layer hydrodynamical potentials (23) and (24). Then,
repeating the above argument we can prove the following theorems.

Theorem 7 Let Ω be a bounded domain of class C1. If a,V[ f ]∂Ω ∈ W α,q (∂Ω)
(q ∈ (1,+∞), α ∈ [0, 1]) and a satisfies (30), then (1) has a solution expressed by

(34), with ϕ ∈ W α,q (∂Ω), and if V[ f ] ∈ C(Ω), u
nt−→ a.

Theorem 8 Let Ω be an exterior domain of class C1. If a,V[ f ]∂Ω ∈ W α,q (∂Ω)
(q ∈ (1,+∞), α ∈ [0, 1]) and f has compact support, then (1) has a solution

expressed by (40), with ϕ ∈ W α,q (∂Ω). If V[ f ] ∈ C(Ω), then u
nt−→ a and for

m > 2 u → 0 at infinity.

Theorem 9 Let Ω be an exterior domain of R
2 of class C2. Let a,V[ f ]∂Ω ∈

W α,q (∂Ω) (q ∈ (1,+∞), α ∈ [0, 1]) and let f have compact support. If (46)
holds, then (1) and (2) has a solution expressed by (44), with ϕ ∈ W α,q (∂Ω) and, if

V[ f ] ∈ C(Ω), then u
nt−→ a.

Existence and uniqueness of a solution to the Stokes problem in domains of
class C1 or with a small Lipschitz constant have been obtained in a variational
context in [36].
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If Ω is of class C2,1, then the simple and double layer potentials, with densities
in W−1−1/q,q (∂Ω) and W−1/q,q (∂Ω) respectively, are defined respectively by

v[ψ](x) = −
∫ +

∂Ω

S(x − ζ )ψ(ζ ) dσζ ,

P[ψ](x) = −
∫ +

∂Ω

P(x − ζ )ψ(ζ ) dσζ ,

and

w[ϕ](x) =
∫ +

∂Ω

T ′[S,P](x − ζ )(ϕ ⊗ n)(ζ ) daζ ,

� [ψ](x) = −2
∫ +

∂Ω

ϕ(ζ ) · [∇xP(x − ζ )]n(ζ ) daζ

The boundary trace relations continue to hold as continuous extension of Lq (∂Ω)
to W−1/q,q (∂Ω) and the operator K is compact [16]. Therefore, we have

Theorem 10 Let Ω be bounded domain of class C2,1. If f satisfies (29) and a ∈
W−1/q,q (∂Ω), q > 1, satisfies

∫ +

∂Ω

a · n = 0 (47)

then (1) has a solution expressed by (34), with ϕ ∈ W−1/q,q (∂Ω), and

‖u‖Lq (Ω) ≤ c{‖a‖W−1/q,q (∂Ω) + ‖ f ‖W 2−s,t (Ω)}.

Theorem 11 Let Ω be an exterior domain of class C2,1. If a ∈ W−1/q,q (∂Ω), q > 1,
f satisfies (29) and has compact support, then (1) has a solution expressed by (40),
with ϕ ∈ W−1/q,q (∂Ω), and for m > 2 u → 0 at infinity.

Theorem 12 Let Ω be an exterior domain of R
2 of class C2,1. If a ∈ W−1/q,q (∂Ω),

q > 1, f satisfies (29) and has compact support and

∫ ∗

∂Ω

(a − V[ f ]|∂Ω − u∞) · ψ ′ = 0, ψ ′ ∈ C0,

then (1) and (2) has a solution expressed by (44), with ϕ ∈ W−1/q,q (∂Ω).

Existence and uniqueness of a solution to (1) in domains of class C2,1 and bound-
ary data in W−1/q,q (∂Ω) have been also studied in [28, 37] (see also [1, 40]).
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4 A Variant of G. Verchota’s Approach to Potential Theory
for Lipschitz Domains

In a seminal paper of 1982 [13] R.R. Coifman, A. McIntosh and Y. Meyer removed
the smallness restriction on the Lipschitz constant in Calderón theorem [8] so that
the techniques developed in [25] can be used to show that the trace of the layer
potentials on Lipschitz surfaces have meaning in the sense of non tangential conver-
gence. Moreover, S is continuous from Lq (∂Ω) into W 1,q (∂Ω) and K is continuous
from Lq (∂Ω) into itself and from W 1,q (∂Ω) into itself for all q ∈ (1,+∞). Never-
theless, since, in general, K is no longer completely continuous [24], the method in
Sect. 3 cannot be used to get invertibility of the functional equations (35) and (41),
which is the core of the Fredholm–Riesz–Schauder theory of integral equations.
However, what we really need to achieve this goal is that the trace operator we want
to invert has closed range and finite index [58]. For instance, if f = 0, a ∈ L2(∂Ω)
and we look for a solution expressed by a simple layer potential, it is sufficient to
detect whether S[W−1,2(∂Ω)] is a closed subspace of L2(∂Ω) and KerS∗ < +∞.
In such a case the equation

S[ψ] = a ∈ L2(∂Ω)

has a solution ψ ∈ W−1,2(∂Ω) if and only if

∫

∂Ω

a · ψ ′ = 0, ψ ′ ∈ KerS∗.

Two years after the publication of [13], G. Verchota [82] was able to find another
approach to the L2 – invertibility of the (double layer) harmonic trace integral equa-
tion based on some classical inequality of F. Rellich [66] (see also [62], Chap. V).
Roughly speaking, if u is a simple layer harmonic potential in R

3 (say) with density
in L2(∂Ω), then from the Rellich inequalities

∫

∂Ω

|∂nu|2 ≤ c

{∫

∂Ω

|∂t u|2 +
∫

∂Ω

u2

}

,

∫

∂Ω

|∂t u|2 ≤ c

{∫

∂Ω

|∂nu|2 +
∫

∂Ω

u2

}

,

the jump condition on ∂nva[ψ] and the continuity of ∂t u across ∂Ω , one shows that
the operator 1

2 ±K∗ from L2(∂Ω) into itself have closed ranges. Then, starting from
this basic property and proceeding in a more classical setting, Verchota proved the
solvability of the classical Dirichlet and Neumann problem in bounded or exterior
Lipschitz domains with connected boundaries (see also [23] and Chap. 15 of [55]).2

2 The general case of domains with non connected boundaries is considered in [27]
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An important feature of Verchota’s approach is that it is not confined to the
Laplacian but it is sufficiently general to tackle, in principle, any boundary value
problem associated to an elliptic operator with constant coefficients in Lipschitz
bounded or exterior domains, once one has at disposal inequalities of Rellich type
[23]. As a consequence, the great flexibility of Verchota’s technique leads to the
solvability of important problems of mathematical physics in Lipschitz domains
and with boundary data in L2, like for instance the displacement and the traction
problems of homogeneous and isotropic elasticity and the linearized hydrodynamics
([15, 26, 38, 46, 59, 68] and the references therein).

In 2003 [67] in the context of the Stokes problem we propose another approach
to the L2 – invertibility of the (simple layer) trace integral equation, based on the
Nečas theory of regularity of variational solutions [62], Chap. V. We first show that
S is Fredholm with index zero in W−1/2,2(∂Ω), then thanks to the results in [62]
we prove that S : L2(∂Ω) → W 1,2(∂Ω) has closed range and finite index. In this
section, we shall prove the above results by a simpler and more direct argument.

Let ∂Ω be Lipschitz. The operator

S : L2(∂Ω) → W 1,2(∂Ω)

is linear and continuous [13] and

v[ψ]
nt−→S∗[ψ],

where

S∗ : W−1,2(∂Ω) → L2(∂Ω)

is the adjoint operator to S, which coincides with the (unique) continuous extension
of S to W−1,2(∂Ω). Moreover, (28) holds and, denoting by δ(x) the distance of x
from ∂Ω , for Ω bounded we have [7, 27, 59]

‖u‖W 1,2(Ω,
√
δ) + ‖p‖L2(Ω,

√
δ) ≤ c‖ψ‖W−1,2(∂Ω),

‖u‖W 2,2(Ω,
√
δ) + ‖p‖W 1,2(Ω,

√
δ) ≤ c‖ψ‖L2(∂Ω).

Let

ni =
{

n, on ∂Ωi ,

0, on ∂Ω \ ∂Ωi ,
i = 1, . . . ,m,

Lemma 8 The operator S is Fredholm with index zero and

KerS = KerS∗ =
{

sp {n, ni }i=1,...,h, m > 2,

sp {n, ni }i=1,...,h ⊕M, m = 2,
(48)
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for Ω bounded, and

KerS = KerS∗ =
{

sp {ni }i=1,...,h, m > 2,

sp {ni }i=1,...,h ⊕M0, m = 2,
(49)

for Ω exterior, with

dim M, dim M0 ≤ 2. (50)

Proof Let Ω be exterior. If ψ ∈ W−1/2,2(∂Ω), then by (28), the trace theorem and
Lemma 5

‖ψ‖W−1/2,2(∂Ω) ≤ ‖T [v[ψ], P[ψ]]+n‖W−1/2,2(∂Ω) + ‖T [v[ψ], P[ψ]]−n‖W−1/2,2(∂Ω)

≤ c‖S[ψ]‖W 1/2,2(∂ΩR ) ≤ c‖S[ψ]‖W 1/2,2(∂Ω) + ‖compact map‖.

Hence, by a classical theorem of J. Peetre (see, e.g., [58] p. 618), it follows that
the self-adjoint operator

S0 : W−1/2,2(∂Ω) → W 1/2,2(∂Ω)

is Fredholm with index zero. Let ψ ∈ KerS0. If m > 2 a simple computation shows
that v[ψ] = 0 in R

m , P[ψ] = ci in Ωi and P[ψ] = 0 in Ω . Hence ψ ∈ sp {ni }.
On the other hand, it is not difficult to see that ni ∈ KerS0 and (49) is proved. If
m = 2, to prove (50) we can proceed as we did above to show that dim M

′ ≤ 2. Let
a ∈ W 1,2(∂Ω) be orthogonal to every ψ ∈ KerS0; by Fredholm’s alternative, there
exists ψ ∈ W−1/2,2(∂Ω) such that S0[ψ] = a. Then v[ψ] is a weak solution to the
Stokes problem in Ω ∩ SR corresponding to boundary value in W 1,2(∂Ω ∪ ∂SR) so
that from Lemma 7 it follows T [v[ψ], P[ψ]]n− ∈ L2(∂Ω). Since v[ψ] is also a
solution to Stokes system in Ω ′ corresponding to a, by the same argument we see
that T [v[ψ], P[ψ]]n+ ∈ L2(∂Ω) and (28) yields ψ ∈ L2(∂Ω). Hence the operator.

S : L2(∂Ω) → W 1,2(∂Ω)

has a closed range and its kernel is given by (49). Let ψ ∈ KerS∗. There exists a
sequence {ψk}k∈N in L2(∂Ω) which converges to ψ in W−1,2(∂Ω). Let ϕ ∈ C∞0 (Ω)
be such that for m = 2

∫

Ω

ϕ = 0,
∫

Ω

ϕ · v[ψ ′] = 0, ∀ψ ′ ∈ C0, (51)

with C0 defined by (43). Since a simple calculation and (51) imply

∫

∂Ω

V[ϕ] · ψ ′ = 0, ∀ψ ′ ∈ KerS \ C0,
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the system

Δz − ∇Q = ϕ in Ω,

div z = 0 in Ω,

z = 0 on ∂Ω,

lim
r→+∞ z(x) = 0

(52)

admits the solution

z = v[ψ̄]+ V[ϕ],

p = P(ψ̄)+ P[ϕ],

with ψ̄∂Ω = 0 for n = 2. Then an integration by parts yields

∫

Ω

v[ψk] · ϕ =
∫

∂Ω

S[ψk] · T (z, Q)n.

Hence, letting k →∞, it follows

∫

Ω

v[ψ] · ϕ = 0,

forall ϕ ∈ C∞0 satisfying (51). Repeating the above argument, with ϕ ∈ C∞0 (Ω ′)
and (z, Q) solution to (52)1,2,3 in Ω ′, we easily arrive at

∫

Ω ′
v[ψ] · ϕ = 0,

forall ϕ ∈ C∞0 . Hence it follows that KerS = KerS∗. The proof for Ω bounded
follows the same argument. �

Theorem 1 tells us in particular that any solution to the Stokes system (1)1,2

which behaves at infinity as O(rk+1) can be decomposed as a sum of a solution
which goes at infinity as the fundamental solution and a k-Stokes polynomial. In the
sequel we shall prove that such a solution actually exists provided f ∈ H1(Ω) has
compact support and a ∈ L2(∂Ω) satisfies

∫

∂Ωi

a · n = 0



On Stokes’ Problem 495

Let

C j = {ψ( �= ni ) : S[ψ]+ γ κ ∈ S j }, j ∈ N0,

C
′
j =

{

ψ ∈ C j :
∫

∂Ω

ξ ⊗ . . .⊗ ξ
︸ ︷︷ ︸

i−times

⊗ψ = 0, i = 1, . . . j − 1

}

, j ∈ N,

where

γ = dim M0.

Of course M0 ⊆ C0. By repeating the argument in the proof of Lemma 3 in [14],
we have

Lemma 9 It holds

Ck = C0 ⊕
k

⊕

j=1

C
′
j .

and dim Ck = dim Sk .

5 Existence, Uniqueness and Regularity of Very Weak Solutions
in Bounded Lipschitz Domains

We are now in a position to apply Fredholm’s theory to get the existence of a solution
to (1) in Lipschitz domains with boundary data in L2(∂Ω). To this end, consider the
vector field

σ (x) = −
h

∑

i=1

{

∇U(x − xi )
∫

∂Ω

a · ni

}

.

where xi is a (fixed) point in Ωi , i = 1, . . . , h.
Let Ω be bounded and assume that

a ∈ L2(∂Ω); f ∈ W s−2,t (Ω), (m − 1+ 2s)t ≥ 2m, st > 1. (53)

Note that (53)2 assures that V[ f ]|∂Ω ∈ L2(∂Ω); also, if f ∈ L2(Ω), then
V[ f ]|∂Ω ∈ W 1,2(∂Ω) [62]. Looking for a solution to problem (1) expressed by

u = v[ψ]+ σ + V[ f ]+ γ κ,

p = P[ψ]+ P[ f ],
(54)
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with κ a constant vector, we have to find a solution to the functional equation

S[ψ] = a − (σ + V[ψ])|∂Ω − γ κ. (55)

If a ∈ L2(∂Ω) [respect. a ∈ W 1,2(∂Ω) and f ∈ L2(Ω)], then, by what we
proved in the foregoing section, we have that (55) has a solution ψ ∈ W−1,2(∂Ω)
[respect. ψ ∈ L2(∂Ω)] if and only if we choose κ such that

γ κ ·
∫

∂Ω

ψ ′ =
∫

∂Ω

a · ψ ′ −
∫ +

Ω

f · v[ψ ′], ψ ′ ∈M.

It is evident that u satisfies natural estimates. For instance [59],

‖u‖W 1/2,2(Ω) ≤ c
{‖a‖L2(Ω) + ‖ f ‖W s−2,t (Ω)

}

. (56)

Let a ∈ L2(∂Ω) and let {ak}k∈N be a sequence in W 1,2(∂Ω) which converges
strongly in L2(∂Ω) to a. Let (uk, pk) be the solution corresponding to data (ak, f )
given by (54). Then, denoting by (z, Q) the solution to (52)1,2,3 with ϕ ∈ C∞0 (Ω),
an integration by parts yields

∫

Ω

uk · ϕ =
∫

∂Ω

ak · T [z, Q]n +
∫ +

Ω

f · z

Hence, letting k → +∞ and taking into account (56), it follows that u satisfies
the relation

∫

Ω

u · ϕ =
∫

∂Ω

a · T [z, Q]n +
∫ +

Ω

f · z (57)

for all ϕ ∈ C∞0 (Ω), with (z, Q) solution to (52)1,2,3. According to J. Nečas [62], we
call very weak solution to problem (1) a field u ∈ L2

σ (Ω) which satisfies (57).
Therefore, we can state

Theorem 13 Let Ω be a bounded Lipschitz domain. If a, f satisfy (30) and (53),
then (1) has a unique very weak solution expressed by (54) and natural estimates
hold; in particular,

‖u‖W 1,2(Ω,
√
δ) + ‖p‖L2(Ω,

√
δ) ≤ c

{‖a‖L2(∂Ω) + ‖ f ‖W s−2,t (Ω)

}

.

Moreover, if st > m, then u
nt−→ a; if a ∈ W 1,2(∂Ω) and f ∈ L2(Ω), then ψ ∈

L2(∂Ω) and

‖u‖W 2,2(Ω,
√
δ) + ‖p‖W 1,2(Ω,

√
δ) ≤ c

{‖a‖W 1,2(∂Ω) + ‖ f ‖L2(Ω)

}

.
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In virtue of well-known stability and interpolation results (see, e.g., [44, 59]),
there is a positive constant ε depending only on m and ∂Ω such that Theorem 13
can be stated for a ∈ W α,q (∂Ω) and f such that V[ f ]|∂Ω ∈ W α,q (∂Ω), with α ∈
[0, 1] and q ∈ (2 − ε, 2 + ε). If m ≤ 4, then by well–known results of R.M.
Brown and Z. Shen [7, 72] we can say much more; for instance, for m = 2 and
a ∈ C(∂Ω), f ∈ H1(Ω), that u ∈ C(Ω) and the maximum modulus theorem (39)
holds. Therefore, we can state the following

Theorem 14 If Ω be a bounded Lipschitz domain, then there is a positive constant ε
depending on ∂Ω such that if a,V[ f ]|∂Ω ∈ W α,q (∂Ω) (α ∈ [0, 1], q ∈ (2−ε, 2+ε))
and a satisfies (30), then (1) has a unique very weak solution expressed by (54),

natural estimates hold and if V[ f ] ∈ C(Ω), then u
nt−→ a. Moreover, if m = 3, then

there are positive constant ε′ and μ0 such that

• if a ∈ W 1−1/q.q (∂Ω) and f ∈ W−1,q (Ω), q ∈ [3/2, 3+ ε′), then

‖u‖W 1,q (Ω) + ‖p‖Lq (Ω) ≤ c
{‖a‖W 1−1/q,q (∂Ω) + ‖ f ‖W−1,q (Ω)

}

;

• if a ∈ C0,μ(∂Ω), μ ∈ [0, μ0), μ ∈ [0, μ0), and f ∈ W−1,q (Ω), q > 3(1 − μ),
then

‖u‖C0,μ(Ω) ≤ c
{‖a‖C0,μ(∂Ω) + ‖ f ‖W−1,q (Ω)

}

;

If Ω is of class C1 we can take μ0 = 1 andq ∈ (1,+∞).

If Ω is of class C2,1, f and a ∈ W−1/q,q (∂Ω) (q > 1) satisfy (29) and (47)
respectively, a field u ∈ Lq

σ (Ω) is a very weak solution to (1) provided the relation

∫

Ω

u · ϕ =
∫ +

∂Ω

a · T [z, Q]n +
∫ +

Ω

f · z

holds for all ϕ ∈ C∞0 (Ω), with (z, Q) solution to (52)1,2,3. It is readily seen
that system (1) has a unique very weak solution expressed by (54) with ψ ∈
W−1−1/q,q (∂Ω).

6 Existence and Uniqueness of Very Weak Solutions in Lipschitz
Exterior Domains

Let Ω be an exterior domain and assume that

a ∈ L2(∂Ω), f ∈ H1(Ω). (58)

It is quite evident that the argument used at the beginning of Sect. 5 can be
repeated to prove existence of a solution to (1) in Ω expressed by the pair (54) with
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ψ ∈ W−1,2(∂Ω) (and ψ ∈ L2(∂Ω), if a ∈ W 1,2(∂Ω)). As far as the uniqueness
of this solution is concerned, consider a sequence {ak}k∈N in W 1,2(∂Ω) which con-
verges to a strongly in L2(∂Ω). Let (uk, pk) be the solution corresponding to data
(ak, f ) given by (54). Then, denoting by (z, Q) the solution to (52) with ϕ ∈ C∞0 (Ω)
satisfying (51), then an integration by parts yields

∫

ΩR

uk · ϕ = −
∫

∂Ω

ak · T [z, Q]n +
∫

ΩR

f · z

+
∫

∂SR

eR · (T [z, Q]uk − T [uk, pk]z).

Hence, letting R → +∞ and taking into account the behavior at infinity of
(uk, pk) and (z, Q), it follows

∫

Ω

uk · ϕ = −
∫

∂Ω

ak · T [z, Q]n +
∫

Ω

f · z. (59)

Letting k →+∞ in (59) we see that (u, p) satisfies the relation

∫

Ω

u · ϕ = −
∫

∂Ω

a · T [z, Q]n +
∫

Ω

f · z. (60)

Moreover, if a = 0, f = 0 and m = 2, then

(u, p) ∈ F0 = {(v[ψ ′]− γS[ψ ′], P[ψ ′]), ψ ′ ∈ C0}.

Therefore, calling very weak solution to (1) in an exterior domain Ω a field
u ∈ L2

σ,loc(Ω) which meets (60), with (z, Q) solution to (52) and ϕ ∈ C∞(Ω)
satisfying (51), we can state

Theorem 15 Let Ω be an exterior Lipschitz domain. If a, f satisfy (58), then (1)
has a unique very weak solution expressed by (54) modulo a pair in F0 for m = 2.

Moreover, if f ∈ Lt (Ω), t > m/2, then u
nt−→ a; the regularity results stated in

Theorem 14 hold locally and natural estimates hold.

It is clear that, if f has compact support, then the solution in Theorem 15 behaves
at infinity as the function S(x). Then it is reasonable to look whether there are con-
ditions on the data assuring the corresponding solution to decay at infinity more
rapidly than ∇kS(x). To this end, choose ψk ∈ Ck such that

∫

∂Ω

ξ ⊗ . . .⊗ ξ
︸ ︷︷ ︸

i times

⊗(ψ + ψk) = 0, i = 0, . . . , k − 1.

where ψ is the density of the simple layer potential appearing in (54). Then setting
ψ̄ = ψ + ψk , the pair
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u = v[ψ̄]+ σ + V[ f ]+ pk + γ κ,

p = P[ψ̄]+ P[ f ]+ qk−1,
(61)

with S[ψk] = −pk , is a solution to (1) such that

v[ψ̄] = O(r1−m−k)

and we can state the following

Theorem 16 Let Ω be an exterior Lipschitz domain. If a, f satisfy (58), then there
is a density ψ ∈ W−1,2(∂Ω), with

∫

∂Ω

ξ ⊗ . . .⊗ ξ
︸ ︷︷ ︸

i−times

⊗ψ = 0, i = 0, 1, . . . k − 1,

and a k-Stokes polynomial defined by

∫

∂Ω

(a − σ ) · ψ ′ =
∫

∂Ω

pk · ψ ′ +
∫

Ω

f · v[ψ ′], ∀ψ ′ ∈ Ck, (62)

such that the pair (61) is a solution to (1).

If we assign a Stokes polynomial pk and aim at solving the problem

Δu − ∇ p = f in Ω,

div u = 0 in Ω,

u = a on ∂Ω,

u − pk = O(r1−m−k)

(63)

we have to require at least that a, f and pk satisfies a compatibility condition derived
from (62).

Let us call very weak solution to (63) a field u ∈ L2
σ,loc(Ω) which satisfies

∫

Ω

(u − pk) · ϕ = −
∫

∂Ω

(a − pk) · T [z, Q]n +
∫

Ω

f · z (64)

for all ϕ ∈ C∞0 (Ω), with (z, Q) solution to (52)1,2,3, z = o(rk+1). Set for k ∈ N

Fk = {(v[ψ ′]− S[ψ ′], P[ψ ′]), ψ ′ ∈ Ck}.

Starting from Theorem 16 it is not difficult to get
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Theorem 17 Let Ω be an exterior Lipschitz domain. If a ∈ L2(∂Ω) and f ∈
C∞0 (Ω) satisfy

∫

∂Ω

a · ni = 0,
∫

Ω

∇ j f = 0, j = 0, . . . k,

then (63) has a unique very weak solution up to a field in Fk if and only if

∫

∂Ω

a · ψ ′ =
∫

∂Ω

pk · ψ ′ +
∫

Ω

f · v[ψ ′], ∀ψ ′ ∈ Ck . (65)

Proof We have only to prove that condition (65) is necessary. Let u satisfy (64).
Since the field z + v[ψ ′]− S[ψ ′] is a solution to (52)1,2,3 for all ψ ′ ∈ Ck , then (65)
easily follows from (64). �

A simple consequence of Theorem 17 is the famous Stokes’ paradox.

Theorem 18 Let Ω be an exterior Lipschitz domain of R
2. If a ∈ L2(∂Ω) and

f ∈ H1(Ω), then (1) and (2) has a unique very weak solution (u, p) ∈ W 2,1
loc (Ω)×

W 1,1
loc (Ω), ∇u, p ∈ L2(Ω,

√
δ), expressed by

u = v[ψ]+ V[ f ]+ σ + u∞,

p = P[ψ]+ P[ f ]

with ψ ∈ W−1,2(∂Ω), if and only if

∫

∂Ω

a · ψ ′ =
∫

Ω

f · v[ψ ′]+ u∞ ·
∫

∂Ω

ψ ′, ∀ψ ′ ∈ C0. (66)

• Even if conditions (66) are necessary and sufficient for the existence of a
solution vanishing at infinity as r1−m , nevertheless they are not useful to select the
boundary data assuring the desired decay, unless we are able to discover the fields
of the linear spaces C0. As far as we are aware, this is possible only when ∂Ω is an
ellipsoid (cf., e.g., [42, 52]; see also [6, 14, 69]). Indeed, in such a case we have

C0 = sp {(ξ · n)ei }i=1,...,m .

7 The Stokes Paradox for the Robin Problem

We aim at noting that the validity of Stokes’ paradox is not confined to the Stokes
equations with nonslip boundary conditions [70]. To avoid unessential formal com-
plications we shall assume ∂Ω connected and f = 0. However, the general case
can be treated by the same argument.
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In an exterior Lipschitz domain Ω of R
2 consider the Robin problem

Δu = ∇ p in Ω,

div u = 0 in Ω,

R[u, p] = u − T (u, p)n = a on ∂Ω,

lim
r→+∞ u(x) = u∞.

(67)

Our aim is to show that (67) admits a solution provided a and u∞ satisfy a suit-
able compatibility condition (Stokes’ paradox).

Since 1
2 I + K∗ : L2(∂Ω) → L2(∂Ω) is Fredholm with index zero [67] and S is

completely continuous as an operator from L2(∂Ω) into itself, also S + 1
2 I +K∗ is

Fredholm with index zero. It is easy to see that

Ker (S + 1
2 I +K∗

) = sp {n} +M
′
0.

with dim M′
0 ≤ 2. Assume only for simplicity M

′
0 = {0}. If ϕ ∈ Ker (S + 1

2 I +K
)

,
then the pair

u = v[ϕ]+ w[ϕ],

p = P[ϕ]+� [ϕ]

is a solution to (7) in R
2 \ ∂Ω such that u = 0 and p = c in Ω ′ and from the jump

conditions it follows

u− = −ϕ, T [u, p]−n = cn − ϕ. (68)

If ϕ∂Ω = 0, then an integration by parts and (25)2, (26) yields

2
∫

Ω

|∇̂u|2 +
∫

∂Ω

|ϕ|2 = c
∫

∂Ω

ϕ · n.

Hence necessarily

∫

∂Ω

ϕ · n �= 0.

If ϕ∂Ω �= 0 and we choose

κ =
(∫

∂Ω

a · ϕ
)(∫

∂Ω

ϕ

)−2 ∫

∂Ω

ϕ,

the equation

a − κ = (

S + 1
2 I +K∗

)

[ψ]
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has a solution ψ ∈ L2(∂Ω). Hence it follows that the pair

u = v[ψ]+ κ,

p = P[ψ],
(69)

is a solution to (67). Let ϕ∂Ω = 0. Let us note that in such a case the constant c in
(68) is non zero, otherwise we have ϕ = 0. We look for a solution given by

u = v[ψ + ϕ]+ w[ϕ],

p = P[ψ + ϕ]+� [ϕ],

for some ϕ ∈ Ker (S + 1
2 I +K

)

. Therefore, we consider the equation

a −R
[

v[ϕ]+ w[ϕ],P [ϕ]+� [ϕ]
] = (

S + 1
2 I +K∗

)

[ψ].

Of course, the equation

∫

∂Ω

{

a −R
[

v[ϕ]+ w[ϕ],P [ϕ]+� [ϕ]
]} · ϕ′ = 0, ∀ϕ′ ∈ Ker (S + 1

2 I +K
)

,

is satisfied if and only if the homogeneous equation

∫

∂Ω

ϕ′ ·R[

v[ϕ]+ w[ϕ],P [ϕ]+� [ϕ]
] = 0, ∀ϕ′ ∈ Ker (S + 1

2 I +K
)

, (70)

has only the solution ϕ = 0. To show this choose ϕ′ = ϕ in (70). Then from (68)
we have

∫

∂Ω

ϕ · n = 0

Hence it follows the desired result. In the sequel we shall assume, to fix ideas,
that ϕ∂Ω �= 0. The case ϕ∂Ω = 0 is treated by the same argument (with minor
modifications).

In general v[ψ] = O(log r ). To find a solution which satisfies condition (67)4

too, define

C′ = {ψ ∈ L2(∂Ω) : R
[

v[ψ], P[ψ]
] = constant}

Reasoning as we did for the space C0 it is not difficult to see that dim C
′ = 2 and

if {ψ1, ψ2} is a basis of C
′, then {∫

∂Ω
ψ1,

∫

∂Ω
ψ2} is a basis of R

2. Let ψ̄ ∈ C
′ be

such that
∫

∂Ω
(ψ + ψ̄) = 0, where ψ is the density appearing in (69). Moreover, let

B = {ϕ ∈ W 1,2(∂Ω) : S[ϕ]+ w[ϕ]+ = constant, P[ϕ]+� [ϕ] = 0 in Ω ′}.
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If ϕ( �= 0) ∈ B, then u = (v[ϕ] + w[ϕ], p = P[ϕ] +� [ϕ]) is a solution to the
Stokes equations, constant in Ω ′. Then, taking in account (27) and (28), we have

u− = u+ − ϕ, T [u, p]−n = −ϕ

where u+ is constant. If ϕ∂Ω = 0, then an integration on Ω yields

2
∫

Ω

|∇̂u|2 = −
∫

∂Ω

u− · T [u, p]−n = −
∫

∂Ω

|ϕ|2 − u+ ·
∫

∂Ω

T [u, p]−n

so that we have the absurd ϕ = 0. Then, ϕ∂Ω �= 0 and, proceeding in the usual way,
we have that dim B = 2 and if {ϕ1, ϕ2} is a basis of B, then {∫

∂Ω
ϕ1,

∫

∂Ω
ϕ2} is a

basis of B.
From what we said above it follows that the pair

u = v[ψ + ψ̄]+ u∞,

p = P[ψ + ψ̄],

with u∞ = κ − Re[v[ψ̄],P[ψ̄]] is a solution to (67)1,2,3 which converges to the
constant vector u∞ and a simple computation shows that

∫

∂Ω

(a − u∞) · ϕ = 0, ϕ ∈ B. (71)

By proceeding in the same way as we did for system (1), we can give the defini-
tion of the class of the very weak solutions to (67) and prove uniqueness therein.
Therefore, we have

Theorem 19 (Stokes’ paradox for the Robin problem) Let Ω be an exterior Lips-
chitz domain of R

2. If a ∈ L2(∂Ω), then (67) has a unique very weak solution if
and only if a, and u∞ satisfy the compatibility condition (71).

The above argument can be also used to treat to the more general case when a ∈
W−1,2(∂Ω) for Lipschitz domains and a ∈ W α,q (∂Ω) (α ∈ [−1, 0], q ∈ (1,+∞))
for domains of class C1. Note that, taking into account that if ∂Ω is a disk and κ is a
constant vector, then S[κ]+w[κ]+ is constant in Ω ′, we can state a sort of Picone’s
result for system (67).

Corollary 1 Let Ω be the exterior of a disk. If a ∈ Lq (∂Ω), then (67) has a unique
very weak solution if and only if

1

2π

∫

Ω

a = u∞

Therefore, if u∞ �= 0 and a = 0, then (67) does not admit any solution.
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8 An Existence Theorem to the Steady-State
Navier-Stokes Problem

In this section we aim at showing how the results in Sect. 5 can be used to obtain
the existence of a solution to the Navier-Stokes problem

Δu − (∇u)u −∇ p = f in Ω,

div u = 0 in Ω,

u = a on ∂Ω

(72)

in a bounded or exterior domain Ω of R
3 under weak assumptions on f and a. For

exterior domains we also require that

lim
r→+∞ u(x) = u∞, (73)

with u∞ assigned constant vector. Let

Φ = 1

8π

h
∑

i=1

|Φi |
{

max
∂Ω

1

|x − xi | −min ∂Ω

1

|x − xi |
}

, Φi =
∫

∂Ωi

a · n,

where xi is a fixed point in Ωi . The following theorem holds true [67].

Theorem 20 Let Ω be a bounded Lipschitz domain of R
3. If f ∈ H1(Ω), a ∈

L8/3(∂Ω) satisfies (30) and

Φ < 1, (74)

then there is a pair (u, p) ∈ W 2,1
loc (Ω) × W 1,1

loc (Ω) which satisfies (72)1,2 pointwise
almost everywhere and (72)3 in the sense of the trace in Sobolev’s spaces. Moreover,

• if a ∈ Lq (∂Ω), q ∈ [8/3,+∞], then u ∈ W 1/q,q (Ω) and if q > 4, f ∈ Ls(Ω)

(s > 3/2) then u
nt−→ a;

and there are positive scalars ε and μ0 such that
• if a ∈ W 1−1/q,q (∂Ω) and f ∈ W−1,q (Ω), q ∈ [12/7, 3 + ε), then (u, p) ∈

W 1,q (Ω)× Lq (Ω);
• if a ∈ C0,μ(∂Ω) and f ∈ W−1,q (Ω), μ ∈ [0, μ0) and q > 3/(1 − μ), then

u ∈ C0,μ(Ω).

If Ω is of class C1, then we can take ε = +∞ and μ0 = 1.

Proof Let (us, ps) be the solution to the Stokes problem with data ( f, a). The oper-
ator V[(∇u)u] maps L4

σ (Ω) into W 1,2
σ (Ω). Denote by (K[u],Q[u]) the solution to

the Stokes problem with zero body force and boundary datum −V[(∇u)u]|∂Ω ∈
W 1/2,2(∂Ω). It is simple to see that the operator
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N [u] = K[u]+ V[(∇u)u]

is completely continuous from L4
σ (Ω) into itself and a fixed point of the map

u′ = us +N [u] (75)

gives the desired solution to (72); the corresponding pressure field is expressed by
ps +Q[u]+ P[(∇u)u]. If we show that the solutions to the equation

u = λ(us +N [u])

are bounded in L4
σ (Ω) uniformly for λ ∈ [0, 1], then from the Schaefer theorem

(see, e.g., [22] p. 504) it follows that (75) has a fixed point. To this end we follow a
classical argument of J. Leray [50] (see also, [5, 33, 49]). The field w = N [u] is a
variational solution to the system

Δw − λ[∇(us + w)](us + w) = ∇Q in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω.

(76)

If the variational solutions to (76) are not uniformly bounded in W 1,2
0 (Ω), then

two sequences ({λk}k∈N, {wk}k∈N) ∈ [0, 1]×W 1,2
σ,0 (Ω) exist such that

lim
k→+∞

λk = λ0 ∈ [0, 1], lim
k→+∞

‖∇wk‖L2(Ω) = +∞

and, setting w′k = wk/Jk with Jk = ‖∇wk‖L2(Ω), by the definition of variational
solution w′k satisfies

1

Jk

∫

Ω

∇ϕ · ∇w′k = λk

∫

Ω

(us

Jk
+ w′k

)

· (∇ϕ)
(us

Jk
+ w′k

)

(77)

for all ϕ ∈ W 1,2
σ,0 (Ω). Since ‖∇w′k‖L2(Ω) = 1, by Rellich selection theorem from

{w′k}k∈N we can extract a subsequence, still denoted by w′k , which converges weakly
in W 1,2(Ω) and strongly in Lq (Ω), q ∈ [1, 6), to a field w′ ∈ W 1,2

σ,0 (Ω), with
‖∇w′‖L2(Ω) ≤ 1. Then, choosing first ϕ ∈ C∞σ,0(Ω), then ϕ = wk in (77) and
letting k →+∞, it follows that w′ is a variational solution to the Euler equations

λ0(∇w′)w′ + ∇Q′ = 0 in Ω,

divw′ = 0 in Ω,

w′ = 0 on ∂Ω,

(78)



506 R. Russo

for some Q′ ∈ W 1,3/2(Ω), and satisfies the relation

1 = λ0

∫

Ω

us · (∇w′)w′. (79)

Moreover, Q′ is constant on every ∂Ωi [2, 45], say Q′i . Since us is expressed by
(54), taking into account (78) a simple computation yields

1 =λ0

∫

Ω

σ · (∇w′)w′ = λ0

h
∑

i=1

Φi

∫

Ω

|∇̂w′|2 − |∇̃w′|2
|x − xi |

+ λ0

∫

Ω

(us − σ ) · (∇w′)w′

Hence, taking into account that

2‖∇̂w′‖L2(Ω) = 2‖∇̃w′‖L2(Ω) = ‖∇w′‖L2(Ω)

and

∫

∂Ωi

(us − σ ) · n = 0,

it follows

1− λ0Φ ≤ λ0

∫

Ω

(us − σ ) · (∇w′)w′ = −λ0

h
∑

i=1

Q′i

∫

∂Ωi

(us − σ ) · n = 0.

Since this contradicts (74) we are in the hypotheses of Schaefer theorem and the
proof is completed, by noting that the regularity properties of (u, p) are a conse-
quence of the analogous ones concerning Stokes equations and the regularity prop-
erties of the operator V[(∇u)u]. �

The solution in Theorem 20 is unique provided ‖us‖L4(Ω) is sufficiently small.
Existence of a regular solution to (72) under the hypothesis of small fluxes comes
back to R. Finn [30]. For variational solutions and Lipschitz domains the results of
[30] were extended in [5] and [32]. In dimensions two and four Theorem 20 can be
proved under the assumptions a ∈ L2(∂Ω) and a ∈ L3(∂Ω) respectively (see [67]).
As far as we are aware, the first existence results for (72) in regular domains under
weak assumptions on the boundary datum (a ∈ W 1−1/q,q (∂Ω), q > 3/2) are due to
D. Serre [71]; in this connection see also [53].

Since the operator N in (75) obeys

‖N [u]‖L3(Ω) ≤ c‖u‖2
L3(Ω),
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if ‖us‖L3(Ω) < 1/(4c), then the map (75) is contractive in the ball {u ∈ L3
σ (Ω) :

‖u‖L3
σ (Ω)} < 1/(2c)}. Hence existence of a solution to (72) follows for “small”

‖a‖L2(∂Ω)+‖ f ‖H1(Ω) in virtue of Banach contractions’ theorem. Moreover, if f = 0
and a ∈ C(∂Ω), then one proves a maximum modulus theorem [67] (see also [76]).

The first part of Theorem 20 can be also stated for bounded domains of R
m ,

provided a ∈ Lq (∂Ω), q > m−1, and Ω is of class C1. Existence of solutions
to problem (72) under weak regularity hypotheses on (small) data have proved in
[20, 37], Starting from Theorem 20 and making use of Leray’s procedure of invading
domains [50] (see also [74] Chap. 5) we can prove the following existence theorem
for exterior domains.

Theorem 21 Let Ω be an exterior Lipschitz domain of R
3. If f ∈ H1(Ω) and

a ∈ L8/3(∂Ω) satisfies (74) then there is a pair (u, p) ∈ W 2,1
loc (Ω) × W 1,1

loc (Ω)
which satisfies (72)1,2 pointwise almost everywhere and (72)3 in the sense of trace
in Sobolev’s spaces. Moreover, the regularity properties in Theorem 20 hold locally
in Ω and if f ∈ Lq (Ω) (q > 3/2) then (73) is satisfied uniformly.

Note that the above procedure requires only that us ∈ L4
σ (Ω). Therefore, Theo-

rems 20 and 21 can also be stated for a boundary datum a ∈ W−1/4,4(∂Ω) and Ω of
class C2,1.

Let Ω be an exterior Lipschitz domain of R
3 and let a ∈ L∞(∂Ω), f ∈ C∞0 (Ω).

Let C[u] be the solution to the Stokes problem with zero body force and boundary
datum V[(∇u)u]|∂Ω . By classical results about the behavior at infinity of volume
potentials (see, e.g., [33], Lemma II.7.2) the operator ∇V[u ⊗ u] + C[u] maps
boundedly L∞(Ω, r ) into itself. Moreover, by the estimates about solutions to the
Stokes problem it holds

‖∇V[u ⊗ u]+ C[u]‖L∞(Ω,r ) ≤ c‖u‖2
L∞(Ω,r ),

Therefore, for ‖a∞‖L∞(∂Ω) sufficiently small the equation

u = us +∇V[u ⊗ u]+ C[u]

has a fixed point which is a solution to (72) such that u = O(r−1). Moreover, by
a result of V. Sverák and T-P Tsai [79], ∇ku = O(r−1−k) for every k ∈ N. In this
connection see also [61, 63, 73].
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8. A.P. Calderòn, Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad.
Sci. USA 74, 1324–1327 (1977)

9. S. Campanato, Equazioni Ellittiche del secondo ordine e spazi L2,λ . Ann. Mat. Pura Appl. 73,
321–380 (1965)

10. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend.
Sem. Mat. Padova 31, 308–340 (1961)

11. I–D Chang and R. Finn, On the solutions of a class of equations occurring in continuum
mechanics, with applications to the Stokes paradox. Arch. Rational Mech. Anal. 7, 388–401
(1961)

12. H. J. Choe and B.J. Jin, Characterization of generalized solutions for the homogeneous Stokes
equations in exterior domains. Nonlinear Anal. 48, 765–779 (2002)

13. R.R. Coifman, A. McIntosh and Y. Meyer, L’intégrale de Cauchy definit un operateur borné
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71. D. Serre, Équations de Navier–Stokes stationnaire avec données peu regulières. Ann. Sc.
Norm. Sup. Pisa 10(4), 543–559 (1982)

72. Z. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc.
Amer. Math. Soc. 123, 801–811 (1995)

73. Y. Shibata and M. Yamazaki, Uniform estimates in the velocity at infinity for stationary solu-
tions to the Navier-Stokes exterior problem. Japanese J. Math. 31, 225–279 (2005)

74. H. Sohr, The Navier–Stokes Equations, Birkhäuser, Basel (2001)
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On a C0 Semigroup Associated with a Modified
Oseen Equation with Rotating Effect

Yoshihiro Shibata

Abstract In this paper, we show the unique existence of solutions to the non-
stationary problem for the modified Oseen equation with rotating effect in Ω:

Dt u −Δu + k D3u + Mau + ∇ p = 0, div u = 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = f,
(OS)

where Ω is an exterior domain in R
3, Mau = −a(e3 × x) · ∇u + ae3 × u, x =

(x1, x2, x3) ∈ R
3 and e3 = (0, 0, 1). This problem arises from a linearization of

the Navier Stokes equations describing an incompressible viscous fluid flow past a
rotating obstacle. If 1 < q < ∞ and initial data f satisfies the conditions: f ∈
W 2

q (Ω), div f = 0 in Ω , f |∂Ω = 0 and Ma f ∈ Lq (Ω), then problem (OS) admits
a unique solution (u(t), p(t)) which satisfies the following conditions:

u(t) ∈ C1([0,∞), Lq (Ω)) ∩ C0([0,∞),W 2
q (Ω)), p(t) ∈ C0([0,∞), Ŵ 1

q (Ω)),

‖(u(t), t1/2∇u(t), t∇2u(t),∇ p(t))‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖Lq (Ω) ,

t (1/2)(1+(1/q))‖p(t)‖Lq (Ωb ) ≤ Ca0,k0,b,γ Eγ t‖ f ‖Lq (Ω) ,

‖Dt u(t)‖Lq (Ω) + ‖u(t)‖
W 2

q (Ω)
+ ‖∇ p(t)‖Lq (Ω) ≤

Ca0,k0,γ Eγ t (‖ f ‖
W 2

q (Ω)
+ ‖Ma f ‖Lq (Ω) )

for any t > 0 and large positive γ , where b is any number such that Bb ⊃ R
3 \Ω

and Ωb = Bb ∩ Ω with Bb = {x ∈ R
3 | |x | < b}. The estimate for pressure term

p is new and important for further researches of the corresponding full nonlinear
problem. We also prove the generation of a continuous semigroup associated with
problem (OS), which has been announced in Shibata [20, Theorem 1.1]. The result
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obtained in this paper is an extended version of Shibata [20, Theorem 1.1] with more
detailed proofs.

Keywords Oseen operator · Rotating effect · Continuous semigroup · Lq

framework

1 Introduction and Main Results

Consider a rigid body R moving through an incompressible viscous fluid that fills
the whole three-dimensional space R

3 exterior to R. We assume that with respect to
a frame attached to R, the translational velocity u∞ and the angular velocity ω of R
are both constant vectors. Without loss of generarity we may assume that ω = ae3,
e3 = T(0, 0, 1), TM standing for the transposed of M . If the flow is non-slip at the
boundary, then the motion of fluid is described by the following equation:

Dtv + v · ∇v −Δv +∇π = g, div v = 0 in Ω(t) (t > 0),

v(y, t)|∂Ω(t) = ω × y|∂Ω(t), lim
|y|→∞

v(y, t) = u∞, v(y, 0) = v0(y) (1)

in the time-dependent exterior domain: Ω(t) = O(at)Ω , where Dt = ∂/∂t , ∇ =
T(D1, D2, D3), D j = ∂/∂y j , Δ =

∑3
j=1 D2

j , Ω is a fixed exterior domain in R
3 with

C1,1 boundary ∂Ω and O(t) denotes the orthogonal matrix defined by the formula:

O(t) =
⎛

⎝

cos t − sin t 0
sin t cos t 0

0 0 1

⎞

⎠ .

To treat (1) in the time-independent domain Ω , we introduce the change of vari-
ables and unknown functions as follows:

x = TO(at)y, u(x, t) = TO(at)(v(y, t)− u∞), p(x, t) = π (y, t), (2)

and then (u, p) satisfies the modified Navier–Stokes equations:

Dt u + u · ∇u −Δu + (TO(at)u∞)+ Mau + ∇ p = f, div u = 0 in Ω(t),

u(x, t)|∂Ω = (ω × x − TO(t)u∞)|∂Ω, lim
|x |→∞

u(x, t) = 0, u(y, 0) = v0(y). (3)

Here and hereafter, Ma is the operator defined by the formula:

Mau = −a(e3 × x) · ∇u + ae3 × u. (4)

In this paper, we consider only the case where: u∞ = ke3, so that TO(at)u∞ = ke3

for any t > 0. Therefore, the Eq. (1) leads to the system:
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Dt u + u · ∇u −Δu + k D3u + Mau +∇ p = f, div u = 0 in Ω (t > 0),

u(x, t)|∂Ω = (ω × x − ke3)|∂Ω, lim
|x |→∞

u(x, t) = 0, u(x, 0) = v0(x)− u∞.

(5)

Our purpose of study is to show some stability of stationary solutions when f =
f (x), that is g = g(TO(at)y) (time periodic force). Here, (w(x), θ (x)) is called a
stationary solution to (5) if (w(x), θ (x)) satisfies the equation:

w · ∇w −Δw + k D3w + Maw + ∇θ = f, divw = 0 in Ω,

w(x)|∂Ω = (ω × x − ke3)|∂Ω, lim
|x |→∞

w(x) = 0. (6)

Setting u(x, t) = w(x)+ z(x, t) and p(x, t) = θ (x)+ κ(x, t) in (5), as equations
for new unknown functions (z, κ) we have

Dt z + z · ∇z + L(w)z −Δz + k D3z + Maz +∇κ = 0 in Ω × (0,∞)

div z = 0 in Ω × (0,∞),

z(x, t)|∂Ω = 0, lim
|x |→∞

z(x, t) = 0 for t > 0,

z(x, 0) = v0(x)− u∞ − w(x),

(7)

where we have set L(w)z = z·∇w+w·∇z. We say that the stationary solution (w, θ )
is stable if (7) admits a unique solution (z, κ) globally in time and the L∞ norm in
space of z tends to 0 as t goes to∞when v0−u∞−w is small enough in some sense.
Shibata [18] together with Kobayashi and Shibata [14] proved a stability theorem
of Finn’s physically reasonable solutions in the L3 framework, that is such stability
theorem was known when a = 0 (no-rotation) and k �= 0 ( cf., also Enomoto and
Shibata [2] and Shibata [19]). Recently, Galdi and Silvestre [9, 10] proved some
unique existence theorem for the stationary problem (6). Our goal is to extend the
result in [18] to the case where a �= 0 and k �= 0. Especially, we are interested in a
stability of the Galdi-Silvestre stationary solutions.

In this paper, we will discuss the unique existence theorem of solutions to the lin-
earized equaiton of (7), which is given as a non-stationary problem for the modified
Oseen equation with rotating effect in Ω:

Dt u + La,ku + ∇ p =0, div v = 0 in Ω × (0,∞),

u|∂Ω =0, u|t=0 = f,
(8)

where we have set La,ku = −Δu + k D3u + Mau.
To state our result, at this point we explain several symbols used throughout the

paper. For any domain D in R
3, Lq (D) and W m

q (D) stand for the usual Lebesgue
space and Sobolev space, respectively. ‖·‖Lq (D) and ‖·‖

W m
q (D)

stand for their norms. Let

R > 0 be a fixed constant such that R
3 \Ω ⊂ BR , where BL = {x ∈ R

3 | |x | < L}.
For b > R, we set Ωb = Ω ∩ Bb. For D = R

3, Ω or ΩR+3, we define the space
Ŵ 1

q (D) by the formula:
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Ŵ 1
q (D) = {p ∈ Lq,loc(D) | ∇ p ∈ Lq (D)3,

∫

ΩR+3

p(x) dx = 0}. (9)

Moreover, we set

C∞0,σ (D) = {u ∈ C∞0 (D)3 | div u = 0 in D},
Jq (D) = closure of C∞0,σ in Lq (Ω)3,

Gq (D) = {∇ p | p ∈ Ŵ 1
q (D)}.

Then, for any 1 < q < ∞ the Helmholtz decomposition: Lq (D) = Jq (D) ⊕
Gq (D) holds. Namely, given f ∈ Lq (D)3 there exist g ∈ Jq (D) and p ∈ Ŵ 1

q (D)
uniquely such that f = g + ∇ p. By the formulas: PD f = g and Q D f = p we
define the operators PD : Lq (D)3 → Jq (D) and Q D : L3(D)3 → Ŵ 1

q (D) and then
we know that

f = PD f +∇Q D f,

‖PD f ‖Lq (D) + ‖∇Q D f ‖Lq (D) ≤ CD,q‖ f ‖Lq (D) , (10)

(∇Q D f,∇θ )D = ( f,∇θ )D for any θ ∈ Ŵ 1
q ′ (D) with q ′ = q/(q − 1)

(cf., Fujiwara and Morimoto [7], Miyakawa [15], Galdi [8] and references therein),
where (u, v)D =

∫

D u(x) · v(x) dx . Here and hereafter, C stands for a generic con-
stant and Ca,b, ... denotes a generic constant depending on a, b, . . ..

The following two theorems are our main results in this paper.

Theorem 1 Let 1 < q <∞ and a0, k0 > 0. Assume that |a| ≤ a0 and |k| ≤ k0. Set

Dq (Ω) = { f ∈ Jq (Ω) ∩W 2
q (Ω) | f |∂Ω = 0, Ma f ∈ Lq (Ω)},

‖ f ‖Dq (Ω) = ‖ f ‖
W 2

q (Ω)
+ ‖Ma f ‖Lq (Ω) .

Then, for any f ∈ Dq (Ω) problem (8) admits a unique solution (u(t), p(t)) which
satisfies the following conditions:

u(t) ∈ C1([0,∞), Lq (Ω)) ∩ C0([0,∞),W 2
q (Ω)), p(t) ∈ C0([0,∞), Ŵ 1

q (Ω)),

‖(u(t), t1/2∇u(t), t∇2u(t),∇ p(t))‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖Lq (Ω) ,

t (1/2)(1+(1/q))‖p(t)‖Lq (Ωb ) ≤ Ca0,k0,b,γ Eγ t‖ f ‖Lq (Ω) ,

‖Dt u(t)‖Lq (Ω) + ‖u(t)‖Dq (Ω) + ‖∇ p(t)‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖Dq (Ω)

(11)

for any γ ≥ γ 0, b > R+3 and t > 0, where γ 0 is some constant≥ 1 which depends
on a0 and k0.



Modified Oseen Equation with Rotating Effect 517

Theorem 2 Let 1 < q < ∞ and let Dq (Ω) be the same as in Theorem 1. Let La,k

be the operator defined by the following operation:

La,ku = PΩ La,ku for u ∈ Dq (Ω). (12)

Then, −La,k generates a continuous semigroup {TΩ (t)}t≥0 on Jq (Ω).

Remark 1 Theorem 2 has been already announced in [20, Theorem 1.1]. Theorem 1
is an extended version of Theorem 2. In fact, Theorem 2 immediately follows from
Theorem 1. Our purpose of this paper is to give a detailed proof of Theorem 1.

Theorem 2 was proved by Geissert, Heck and Hieber [11] when k = 0. Our
theorem is an extension of their result to the case where k �= 0. But, our approach
is completely different from [11]. In fact, they solved the corresponding resolvent
problem along the large positive real axis, escaping the appearance of pressure term
in terms of Bogovski lemma, and the semigroup generated by −La,0 is constructed
via the technique of iterated convolutions. But, the core of our approach is to prove
that the semigroup {TΩ (t)}t≥0 associated with −La,k is represented in such a way
that

TΩ (t) f = lim
ω→∞

∫ γ+iω

γ−iω
(λI + La,k)−1 f dλ (γ ≥ 1) (13)

when f ∈ Dq (Ω) and the support of f is compact, which follows from some
summability properties of the resolvent operator (λI + La,k)−1 when the imaginary
part of resolvent parameter λ tends to infinity in the complex plane with positive real
part. And such summability properties follow from the investigation of the asymp-
totic behaviour not only of (λI+La,k)−1 but also of the pressure term with respect to
the large resolvent parameter. Without the analysis of the pressure term, we can not
get any representation formula like (13). The formula (13) also plays an important
role to show so called L p-Lq decay property of {TΩ (t)}t≥0 which is the core of our
approach to prove the stability of stationary solutions and will be proved in another
paper, because our proof is so long totally. Our main concern of this paper is to prove
Theorem 1, which tells us some detailed properties of solutions, especially the esti-
mate for pressure p is new and important in our approach to the stability theorem.
Theorem 2 follows almost automatically from Theorem 1. Since the rotation effect
implies the hyperbolic aspect of the equation (8), we can not expect any analyticity
of our semigroup {TΩ (t)}t≥0. In fact, we understand this fact rigorously by the result
due to Farwig and Neustupa [5] concerning a spectral property of the operator La,k .

The paper is orginized as follows: In Sect. 2 we consider the whole space problem
and derive several necessary properties of solutions to the nonstationary problem
and corresponding resolvent problem by using the concreate representation formula
of solutions. In Sect. 3, we consider a problem in a bounded domain. In Sect. 4,
using the results obtained in Sects. 2 and 3, we construct a parametrix for the corre-
sponding resolvent problem in Ω assuming that the support of the right member is
compact. In Sect. 5, we solve (8) assuming that initial data has a compact support. In
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Sect. 6, using the results in Sects. 2 and 5, by cut-off technique we prove Theorem
1. In appendix, we discuss the resolvent problem when the resolvent parameter is a
positive number.

2 Analysis of the Resolvent Problem in R
3

In this section, we consider the initial problem for the modified Oseen equation with
rotation effect in R

3:

vt + La,kv +∇θ = 0, div v = 0 in R
3 × (0,∞), v|t=0 = f, (14)

and the corresponding resolvent problem:

(λI + La,k)u +∇θ = f, div u = 0 in R
3. (15)

If f satisfies the divergence free condition: div f = 0 in R
3, in other words,

f ∈ Jq (R3), then by direct calculation we see that a solution (v, θ ) to problem (14)
is given by the formula:

v(x, t) = [Sa,k(t) f ](x) = TO(at)(EtOk f )(O(at)x), θ (x, t) = 0, (16)

where Ok = −Δ+ k D3, and

[EtOk f ](x) = (4π t)−
3
2

∫

R3
E−

|x−y−ke3 t |2
4t f (y) dy

= F−1
ξ [E−(|ξ |2+Ikξ3)tF[ f ](ξ )](x).

(17)

Here and hereafter, F and F−1
ξ stand for the Fourier transform and inverse

Fourier transform, respectively, which are defined by the formulas:

F[ f ](ξ ) = f̂ (ξ ) =
∫

R3
E−ix ·ξ f (x) dx (Fourier transform),

F−1
ξ [h(ξ )](x) = (2π )−3

∫

R3
Eix ·ξh(ξ ) dξ (inverse Fourier transform).

By using the Young inequality for the convolution operator, we have the follow-
ing theorem.

Theorem 3 Let 1 < q <∞. Set

Dq (R3) = {u ∈ Jq (R3) ∩ L3(R3)3 | Mau ∈ Lq (R3)},
‖u‖

Dq (R3)
= ‖u‖

W 2
q (R3)
+ ‖Mau‖

Lq (R3)
.
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Then, for any j ∈ N0, multi-index α ∈ N
3
0 with |α| ≥ j and f ∈ Lq (R3) with

Dβ
x f ∈ Lq (R3)3 (|β| = j), we have

‖Dα
x Sa,k(t) f ‖

Lq (R3)
≤ Cα, j,q t−

|α|− j
2 ‖∇ j f ‖

Lq (R3)
, (18)

where ∇ j f = (Dβ
x f | |β| = j) and N0 stands for the set of all non-negative

integers.
Moreover, for any f ∈ Dq (R3) we have

‖Dt Sa,k(t) f ‖
Lq (R3)

+ ‖Sa,k(t) f ‖
Dq (R3)

≤ C(1+ |k|)‖ f ‖
Dq (R3)

. (19)

Proof From (16) it follows that there exist 3×3 matrices of polynomials Mα,β(A, B)
with respect to (A, B) ∈ R

2 such that

Dα
x v(x, t) =

∑

|β|=|α|
Mα,β (sin at, cos at)(Dβ

x EtOk f )(O(at)x)

=
∑

|β|=|α|
Mα,β(sin at, cos at)

[ 1

(4π t)
3
2

Dβ
z

∫

R3
E−

|z−y|2
4t f (y + te3) dy

] ∣
∣
∣
z=O(at)x

.

Since O(at) is an orthogonal matrix, the Lq (R3) norm does not change under the
change of variable: z = O(at)x , so that by the Young inequality

for the convolution operator we have (18). To prove (19), we write

[Sa,k(t) f ](x) = 1

(2π )3

∫

R3
Ei(O(at)x)·ξ )E−(|ξ |2+ikξ3)t TO(at) f̂ (ξ ) dξ

= 1

(2π )3

∫

R3
Eix ·ξE−(|ξ |2+ikξ3)t TO(at) f̂ (O(at)ξ ) dξ.

(20)

Setting Xξ,a = a[(e3 × ξ ) · ∇ξ − e3×], we have

Dt [
TO(at)g(O(at)ξ )] = TO(at)[Xξ,ag](O(at)ξ ),

which implies that

Dt [Sa,k(t) f ](x) =
−1

(2π )3

∫

R3
Eix ·ξE−(|ξ |2+ikξ3)t (|ξ |2 + ikξ3) TO(at) f̂ (O(at)ξ ) dξ

+ 1

(2π )3

∫

R3
Eix ·ξE−(|ξ |2+ikξ3)t TO(at)(Xξ,a f̂ )(O(at)ξ ) dξ

= TO(at)[EtOk (Δ− k D3) f ](O(at)x)+ TO(at)[EtOk Ma f ](O(at)x],

This combined with (18) with α = 0 implies that
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‖Dt Sa,k(t) f ‖
Lq (R3)

≤ C(‖(Δ− k D3) f ‖
Lq (R3)

+ ‖Ma f ‖
Lq (R3)

). (21)

Since Ma Sa,k f = −Dt Sa,k f + (Δ−k D3)Sa,k f as follows from (14) with θ = 0,
combining (21) with (18) implies (19), which completes the proof of Theorem3. ��

Now, we consider the resolvent problem (15). The operators PR3 and QR3 corre-
sponding to the Helmholtz decomposition of Lq (R3)3 are given by using the Fourier
transform as follows:

PR3 f = F−1
ξ [P(ξ ) f̂ (ξ )](x), P(ξ ) = (δ jk − ξ jξk |ξ |−2) (3× 3 matrix),

QR3 f = F−1
ξ [

3
∑

j=1

ξ j f̂ j (ξ )(I|ξ |)−2](x)+ c0( f )
(22)

for f = T ( f1, f2, f3) ∈ Lq (R3)3 with 1 < q <∞, where c0( f ) is a constant chosen
in such a way that

∫

ΩR+3

QR3 f dx = 0 (23)

and δ jk is the Kronecker delta symbols. From (14) and (16) it follows that if we set
u(x, t) = [Sa,k(t)PR3 f ](x), then u(x, t) satisfies the equation:

ut + Lk,au = 0, div u = 0 in R
3 × (0,∞), u|t=0 = PR3 f. (24)

Let us define the operator AR3,a,k(λ) f by the formula:

AR3,a,k(λ) f = Lt [Sa,k(t)PR3 f ](λ, x) =
∫ ∞

0
e−λt [Sa,k(t)PR3 f ](x) dt (25)

where Lt stands for the Laplace transform. By (24) we have

(λI + La,k)AR3,a,k(λ) f = PR3 f, divAR3,a,k(λ) f = 0 in R
3, (26)

which combined with (10) with D = R
3 implies that

(λI + La,k)AR3,a,k(λ) f +∇QR3 f = f, divAR3,a,k(λ) f = 0 in R
3. (27)

Therefore, if we set (u, θ ) = (AR3,a,k(λ) f, QR3 f ), then (u, θ ) solves
problem (15).

In what follows, we always assume that |a| ≤ a0 and |k| ≤ k0. Ca0,k0,... denotes
a generic constant depending on a0, k0, . . ., but independent of a and k whenever
|a| ≤ a0 and |k| ≤ k0. In the following theorem, we shall state several properties of
AR3,a,k(λ), which will play an essential role in latter sections.
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Theorem 4 Let 1 < q <∞, a0, k0, σ > 0 and 0 < ε < π/2. Assume that |a| ≤ a0

and |k| ≤ k0. Let N be a natural number greater than 3. Set

Σε = {λ ∈ C \ {0} | | arg λ| < π − ε}, Σε,μ = {λ ∈ Σε | |λ| > μ},
Cγ = {λ ∈ C | Re λ > γ }, λ0 = λ0(k0, ε) = 2(1+ 2 sin−2(ε/2)) k2

0,

Lq,R+2(R3) = { f ∈ Lq (R3) | f (x) = 0 for |x | > R + 2 },
LR(R3) = L(Lq,R+2(R3)3,W 2

q (R3)3).

(28)

For a domain U in C and a Banach space X, Anal (U, X ) denotes the set of all
anayltic functions defined on U with their values in X. Then, we have

AR3,a,k(λ) ∈ Anal (C0,LR(R3)). (29)

Moreover, there exist operator-valued functions

AN
1,a,k(λ), Ã1,a,k(λ) ∈ Anal (Σε,λ0 ,LR(R3)), AN

2,a,k(λ) ∈ Anal (C0,LR(R3))

such that

AR3,a,k(λ) = AN
1,a,k(λ)+AN

2,a,k(λ),

AN
1,a,k(λ) = (λI +Ok,R3 )−1 PR3 + ÃN

1,a,k(λ),

‖Dβ
x AN

1,0,k(λ) f ‖
Lq (R3)

≤ Ca0,k0,q,R,ε,N (|λ| + k2
0)−(1−(|β|/2))‖ f ‖

Lq (R3)
, (30)

‖Dβ
x ÃN

1,0,k(λ) f ‖
Lq (R3)

≤ Ca0,k0,q,R,ε,N (|λ| + k2
0)−((3/2)−(|β|/2))‖ f ‖

Lq (R3)
(31)

for any f ∈ Lq,R+2(R3)3, λ ∈ Σε,λ0 and β ∈ N0 with |β| ≤ 2 , and

‖Dβ
x AN

2,a,k(λ) f ‖
Lq (R3)

≤ Ca0,k0,q,R,N ,σ |λ|−((N/2)−(|β|/2))‖ f ‖
Lq (R3)

(32)

for any f ∈ Lq,R+2(R3)3, λ ∈ Cσ , and β ∈ N
n
0 with |β| ≤ 2.

Here, (λ + Ok,R3 )−1 denotes the resolvent of the Oseen operator in R
3 which is

defined by the formula:

(λ+Ok,R3 )−1g = F−1
ξ [(λ+ |ξ |2 + ikξ3)−1ĝ(ξ )]. (33)

Proof From (21) we have

AR3,a,k(λ) f = 1

(2π )3

∫ ∞

0

∫

R3
E−(λ+|ξ |2+ikξ3)t Ei(O(at)x)·ξ TO(at)P(ξ ) f̂ (ξ ) dξdt.

(34)
First, we shall show the following lemma.

Lemma 1 Let k0, σ > 0 and 0 < ε < π/2 and let λ0 and Σε be the same as in
Theorem 4. Then, there exists a positive number c depending on ε, k0 and σ such
that
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|λ+ |ξ |2 + ikξ3| ≥ c(|λ| + |ξ |2 + k2
0) (35)

for any |k| ≤ k0, ξ ∈ R
3, and λ ∈ Σε with |λ| ≥ λ0, or λ ∈ C with Re λ ≥ 0 and

|λ| ≥ σ .

Proof Since

|λ+ |ξ |2| ≥ (sin(ε/2))(|λ| + |ξ |2) (36)

for any ξ ∈ R
n and λ ∈ Σε, we have

|λ+ |ξ |2 + ikξ3| ≥ (sin(ε/2))(|λ| + |ξ |2)− k|ξ3|
≥ (sin(ε/2))(|λ| + |ξ |2 + k2

0)− (sin(ε/2))k2
0 − k0|ξ |

≥ (sin(ε/2))(|λ| + |ξ |2 + k2
0)− (sin(ε/2))k2

0

− (1/2)(k2
0/ sin(ε/2))− (1/2)(sin(ε/2))|ξ |2

≥ (1/2)(sin(ε/2))(|λ| + |ξ |2 + k2
0)+ (1/2)(sin(ε/2))λ0

− (sin(ε/2)+ (2 sin(ε/2))−1)k2
0 .

If we set λ0 = (2+ (sin(ε/2)−2)k2
0, then we have

|λ+ |ξ |2 + ikξ3| ≥ (1/2)(sin(ε/2))(|λ| + |ξ |2 + k2
0) (37)

for λ ∈ Σε with |λ| ≥ λ0, |k| ≤ k0 and ξ ∈ R
3.

Now, we shall consider the case where |λ| ≤ λ0. If |ξ | is large enough, then

|λ+ |ξ |2 + ikξ3| ≥ |ξ |2 − λ0 − k0|ξ | ≥ (1/2)|ξ |2 − λ0 − (1/2)k2
0

≥ (1/4)(|ξ |2 + |λ| + k2
0)+ (1/4)|ξ |2 − (5/4)λ0 − (3/4)k2

0 .

Choose R so large that (1/4)R2 − (5/4)λ0 − (3/4)k2
0 ≥ 0, we have

|λ+ |ξ |2 + ikξ3| ≥ (1/4)(|ξ |2 + |λ| + k2
0) (38)

for any ξ ∈ R
3 with |ξ | ≥ R, λ ∈ C with |λ| ≤ λ0 and |k| ≤ k0.

We set K = {(λ, ξ, k) ∈ C×R
3 ×R | Re λ ≥ 0, σ ≤ |λ| ≤ λ0, |ξ | ≤ R, |k| ≤

k0} to consider the case where |ξ | ≤ R. To see that λ+ |ξ |2 + ikξ3 �= 0 for λ ∈ K ,
we observe that

λ+ |ξ |2 + ikξ3 �= 0 (39)

if Re λ+(Im λ/k)2 > 0 and k > 0. In fact, if λ+|ξ |2+ikξ3 = 0, then Re λ+|ξ |2 = 0
and Im λ + kξ3 = 0, which implies that Re λ + |ξ ′|2 + (Im λ/k)2 = 0, where
ξ ′ = (ξ1, ξ2). Therefore, Re λ + (Im λ/k)2 ≤ 0. By contraposition, we have (39).
When k = 0, obviously λ+ |ξ |2 �= 0 if Im λ �= 0 or Im λ = 0 and Re λ > 0. Since
K is a compact set, from above observations we have
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inf{|λ+ |ξ |2 + ikξ3| | (λ, ξ, k) ∈ K } = c0 > 0.

Since |λ| + |ξ |2 + k2
0 ≤ λ0 + R2 + k2

0 for (λ, ξ, k) ∈ K , we have

|λ+ |ξ |2 + ikξ3| ≥ c0 = c0(λ0 + R2 + k2
0)−1(|λ| + |ξ |2 + k2

0)

for any (λ, ξ, k) ∈ K , which combined with (37) and (38) implies the lemma. ��
Now, we shall show Theorem 4. Since (O(at)x) · ξ = x · (TO(at)ξ ), setting

O′(t) =
(

cos t − sin t
sin t cos t

)

, η′ =
(

η1

η2

)

, ξ ′ =
(

ξ1

ξ2

)

,

from (34) we have

[AR3,a,k(λ) f ](x) =
1

(2π )3

∫ ∞

0

∫

R3
E−(λ+|η|2+ikη3)t Ei x ·η TO(at)P(O(at)′η′, η3) f̂ (O(at)′η′, η3) dtdη.

For the notational simplicity, we set

Ia(t, η) f = TO(at)P(O(at)′η′, η3) f̂ (O(at)′η′, η3).

We can write

D j
t Ia(t, ξ ) f = a j

j
∑

k=0

|ξ ′|k(
∑

|α′|=k

a jk
α′ (sin at, cos at, ξ/|ξ |)(Dα′

ξ ′ f̂ )(O(at)′ξ ′, ξ3)
)

where Dα′
ξ ′ = Dα1

ξ1
Dα2
ξ2

with α′ = (α1, α2) ∈ N
2
0, a jk

α′ (A, B, η) are 3 × 3 matrices of
polynomials with respect to (A, B, η) ∈ R

5. Using these notations, by integration
by parts we have

AR3,a,k(λ) f =
N−1
∑

j=0

1

(2π )3

∫

R3

Eix ξ̇ D j
t Ia(t, ξ ) f |t=0

(λ+ |ξ |2 + ikξ3) j+1
dξ

+ 1

(2π )3

∫ ∞

0

∫

R3

E−(λ+|ξ |2+ikξ3)t Eix ·ξ

(λ+ |ξ |2 + ikξ3)N
DN

t Ia(t, ξ ) f dtdξ.

Since

Ia(t, ξ ) f |t=0 = f̂ (ξ ),

D j
t Ia(t, ξ ) f |t=0 = a j

j
∑

k=0

|ξ ′|k(
∑

|α′|=k

a jk
α′ (0, 1, ξ/|ξ |)Dα′

ξ ′ f̂ (ξ )
)

,
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we have

AR3,a,k(λ) f = (λ+OR3,k) f + ÃN
1,a,k(λ) f +AN

2,a,k(λ) f,

where we have set

(λ+OR3,k) f = 1

(2π )3

∫

R3

Eix ·ξ

λ+ |ξ |2 + ikξ3
f̂ (ξ ) dξ,

ÃN
1,a,k(λ) f =

N−1
∑

j=1

a j
j

∑

&=0

∑

|α′|=&

1

(2π )3

∫

R3

Eix ·ξ |ξ ′|&a j&
α′ (0, 1, ξ/|ξ |)

(λ+ |ξ |2 + ikξ3) j+1
(Dα′

ξ ′ f̂ )(ξ ) dξ,

AN
2,a,k(λ) f =

N
∑

j=0

a j
j

∑

&=0

∑

|α′|=&

1

(2π )3

∫ ∞

0

∫

R3
E−(λ+|ξ |2+ikξ3)t Eix ·ξ

|ξ ′|&a j&
α′ (sin at, cos at, ξ/|ξ |)
(λ+ |ξ |2 + Ikξ3)N

(Dα′
ξ ′ f̂ )(O(at)′ξ ′, ξ3) dξdt.

We shall show the Lq boundedness of each operators defined above by using the
following Fourier multiplier theorem (cf., Triebel [Sect. 2.2.4, Remark 3] [21]).

Theorem 5 Let 1 < q < ∞. Set U = R
3 \ {ξ ∈ R

3 | ξ j = 0 for some j = 1,2,
3}. Then, there exists a positive constant Cq such that for every P(ξ ) ∈ C3(U )
satisfying the estimate:

sup
ξ∈U,|α|≤3

|ξαDα
ξ P(ξ )| ≤ A

the operator f �→ F−1
ξ [P(ξ ) f̂ (ξ )] is extended to a bounded linear operator on

Lq (R3) with the estimate:

‖F−1
ξ [P(ξ ) f̂ (ξ )]‖

Lq (R3)
≤ Cq A‖ f ‖

Lq (R3)
.

To start with our estimate, first of all we observe that

|Dα
ξ (λ+ |ξ |2 + ikξ3)s | ≤ Cα,s,σ,ε,k0 (|λ| + |ξ |2 + k2

0)s |ξ |−|α| (40)

for any s ∈ R, α ∈ N
3
0, |k| ≤ k0, ξ ∈ R

3, and λ ∈ Σε with |λ| ≥ λ0 or λ ∈ C with
Re λ ≥ 0 and |λ| ≥ σ . In fact, let p(t) = t s . By the Bell formula we have

Dα
ξ (λ+ |ξ |2 + ikξ3)s =

|α|
∑

&=1

p(&)(λ+ |ξ |2 + ikξ3)×
∑

α1+···+α&=α
|αi |≥1

Γ α,&
α1,...,α&

Dα1
ξ (λ+ |ξ |2 + ikξ3) · · · Dα&

ξ (λ+ |ξ |2 + ikξ3)
(41)
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where p(&)(t) = d& p/dt& and Γ α,&
α1,...,α&

are some constants depending on α, &, α1, . . .,
α&. Since

|λ+ |ξ |2 + ikξ3| ≤ 2(|λ| + |ξ |2 + k2
0),

|Dα
ξ (λ+ |ξ |2 + ikξ3)| ≤ 2|ξ | + k ≤ 2(|λ| + |ξ |2 + k2

0)
1
2 (|α| = 1),

|Dα
ξ (λ+ |ξ |2 + ikξ3)| ≤ 2 = 2(|λ| + |ξ |2 + k2

0)0 (|α| = 2),

|Dα
ξ (λ+ |ξ |2 + ikξ3)| = 0 ≤ 2(|λ| + |ξ |2 + k2

0)−
|α|
2 (|α| ≥ 3),

we have

|Dα
ξ (λ+ |ξ |2 + ikξ3)| ≤ 2(|λ| + |ξ |2 + k2

0)1− |α|2 (42)

for any α ∈ N
3
0, λ ∈ C, ξ ∈ R

3 and 0 ≤ k ≤ k0. Combining (41), (42) and Lemma
1 we have (40).

By (40) with s = −1 and Theorem 5 we have

‖Dβ
x (λ+OR3,k)−1 f ‖

Lq (R3)
≤ Cq,k0,ε(|λ| + k2

0)−(1− |β|2 )‖ f ‖
Lq (R3)

. (43)

To estimate ÃN
1,a,k(λ) f , we set

B j,&,α′ (λ) f = 1

(2π )3

∫

R3

Eix ·ξ |ξ ′|&a j,&
α′ (0, 1, ξ/|ξ |)

(λ+ |ξ |2 + ikξ3) j+1
(Dα′

ξ ′ f̂ )(ξ ) dξ ′.

By (40) with s = −( j + 1) and Leibniz’s rule, we have

∣
∣
∣Dα

ξ

[ (iξ )β |ξ ′|&a j,&
α′ (0, 1, ξ/|ξ |)

(λ+ |ξ |2 + ikξ3) j+1

]∣
∣
∣

≤ Cα, j,&,k0,ε(|λ| + |ξ |2 + k2
0)−( j+1)|ξ |&|ξ ||β||ξ |−|α|

≤ Cα, j,k0,ε(|λ| + k2
0)
−
(

j+1− &+|β|
2

)

|ξ |−|α|

for any α ∈ N
3
0, 0 ≤ & ≤ j , β ∈ N

3
0 with |β| ≤ 2, ξ ∈ R

3, |k| ≤ k0 and λ ∈ Σε,λ0 .
By Theorem 5 we have

‖Dβ
x B j,&,α′ (λ) f ‖

Lq (R3)
≤ C j,&,k0,ε(|λ| + k2

0)
−
(

j+1− &+|β|
2

)

‖(−Ix ′)α
′
f ‖

Lq (R3)
(44)

where x ′ = (x1, x2) and α′ = (α1, α2) ∈ N
2
0. Since f ∈ Lq,R+2(R3), we have

‖(−Ix ′)α
′
f ‖

Lr (R3)
≤ CR,r‖ f ‖

Lq (R3)
(45)

for r = 1 and r = q where (x ′)α
′ = xα1

1 xα2
2 . Combining (45) with (44) implies that
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‖Dβ
x B j,&,α′ (λ) f ‖

Lq (R3)
≤ C j,&,α′,k0,ε,R (|λ| + k2

0)
−
(

j+1− &+|β|
2

)

‖ f ‖
Lq (R3)

(46)

for any λ ∈ Σε,λ0 and 0 ≤ & ≤ j ≤ N − 1. Since

ÃN
1,a,k(λ) f =

N−1
∑

j=1

a j
j

∑

&=0

∑

|α′|=&
B j,&,α′ f,

by (46) and (43) we have (30) and (31).
Now, we shall estimate AN

2,a,k(λ) f . By the change of variables: O(at)′ξ ′ = η′

and ξ3 = η3, we have

1

(2π )3

∫

R3

E−(|ξ |2+ikξ3)t Eix ·ξ |ξ ′|&a j,&
α′ (sin at, cos at, ξ/|ξ |)

(λ+ |ξ |2 + ikξ3)N
(Dα′

ξ ′ f̂ )(O(at)′ξ ′, ξ3) dξ

= 1

(2π )3

∫

R3

E−(|η|2+ikη3)t Ei(O(at)x)·η|η′|&ã j,&
α′ (sin at, cos at, η/|η|)

(λ+ |η|2 + ikη3)N
Dα′
η′ f̂ (η) dη

where we have set

ã j,&
α′ (sin at, cos at, η/|η|) = a j,&

α′ (sin at, cos at, (TO(at)′η′, η3)/|η|).

For the notational simplicity, we set

[Φα′, j,&,N (t, λ)g](x)

= 1

(2π )3

∫

R3

E−(|ξ |2+ikξ3)t Eix ·ξ |ξ ′|&ã j,&
α′ (sin at, cos at, ξ/|ξ |)

(λ+ |ξ |2 + ikξ3)N
ĝ(ξ ) dξ

and then we have

AN
2,a,k(λ) f =

N
∑

j=0

a j
j

∑

&=0

∑

|α′|=&

∫ ∞

0
e−λt [Φα′, j,&,N (t, λ)((−Ix ′)α

′
f )](O(at)x) dt.

(47)
To estimate AN

2,a,k(λ) f , we shall use Theorem 5. For this purpose, we shall
observe that

|Dα
ξ E−(|ξ |2+ikξ3)t | ≤ Cα(1+ tk2

0)|α||ξ |−|α| (48)

for any |k| ≤ k0, t > 0 and ξ ∈ R
3. In fact, setting q(s) = E−st , by the Bell formula

and (42) with λ = 0 we have

|Dα
ξ E−(|ξ |2+ikξ3)t | ≤ Cα

|α|
∑

&=1

|q (&)(|ξ |2 + ikξ3)|
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∑

α1+···+α&=α
|αi |≥1

|Dα1
ξ (|ξ |2 + Ikξ3)| · · · |Dα&

ξ (|ξ |2 + ikξ3)|

≤ Cα

|α|
∑

&=1

t&E−|ξ |
2t (|ξ |2 + k2

0)&|ξ |−|α|,

which implies (48). Combining (48) with (40) implies that

∣
∣
∣Dα

ξ

[

(iξ )βE−(|ξ |2+ikξ3)t |ξ ′|&ã j,&
α′ (sin at, cos at, ξ/|ξ |)
(λ+ |ξ |2 + ikξ3)N

]∣
∣
∣

≤ Cα, j,&,α′,k0 (1+ tk2
0)|α|(|λ| + |ξ |2 + k2

0)−N |ξ ′|&|ξ ||β||ξ |−|α|

≤ Cα, j,&,α′,k0 (1+ tk2
0)|α|(|λ| + k2

0)
−
(

N− &+|β|
2

)

|ξ |−|α|
(49)

for any λ ∈ Σε,λ0 , ξ ∈ R
3, t > 0, |k| ≤ k0, |α′| = & and 0 ≤ & ≤ j ≤ N . Therefore,

by Theorem 5 we have

‖Dβ
x Φ j,&,α′(t, λ)g‖

Lq (R3)
≤ C j,&,α′,k0 (1+ tk2

0)3|λ|−
(

N
2 − |β|2

)

‖g‖
Lq (R3)

. (50)

Since O(at) is an orthogonal matrix, the Lq norm does not change under the
change of variables: y = O(at)x , and then by (50) and (47) we have

‖Dβ
x AN

2,a,k(λ) f ‖
Lq (R3)

≤
N
∑

j=0

|a| j
j

∑

&=0

∑

|α|=&
C j,&,α′,k0

∫ ∞

0
e−Re λt (1+ tk2

0)3 dt |λ|−
(

N
2 − |β|2

)

‖(−Ix ′)α
′
f ‖

Lq (R3)
,

which combined with (45) implies (32), because E−Re λt ≤ E−σ t provided that λ ∈
Cσ and t > 0. This completes the proof of Theorem 4. ��

3 Interior Problem

In this section, we consider the following resolvent problem in ΩR+3 = Ω ∩ BR+3 :

(λI + La,k)u +∇ p = f, div u = 0 in ΩR+3, u|∂ΩR+3 = 0 (51)

where ∂ΩR+3 = ∂Ω ∪ SR+3 and SL = {x ∈ R
3 | |x | = L}. Using the Helmholtz

decomposition ( cf., (10) with D = Ω), we rewrite (51) as follows:

(λI + La,k)v + ∇(QΩ f + θ ) = f, div v = 0 in Ω, v|Ω = 0. (52)

We shall prove the following theorem.
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Theorem 6 Let 1 < q < ∞, a0, k0 > 0 and 0 < ε < π/2. Assume that |a| ≤ a0

and |k| ≤ k0. Let Σε,μ be the same as in Theorem 4. Then there exists a constant
λ1 = λ(a0, k0, ε) and operators

AΩ,a,k(λ) ∈ Anal (Σε,λ1(a0,k0,ε),L(Lq (Ω)3,W 2
q (Ω)3 ∩ Jq (Ω))),

BΩ,a,k(λ) ∈ Anal (Σε,λ1(a0,k0,ε),L(Lq (Ω)3, Ŵ 1
q (Ω)3))

such that v = AΩ,a,k(λ) f and θ = BΩ,a,k(λ) f uniquely solve (52), that is

(λI + La)AΩ,a(λ) f +∇[BΩ,a(λ) f + QΩ f ] = f in Ω,

divAΩ,a(λ) f = 0 in Ω,

AΩ,a(λ) f = 0 on ∂Ω, (53)

and satisfy the estimate:

(1+ |λ|)‖v‖Lq (Ω) + (1+ |λ|) 1
2 ‖∇v‖Lq (Ω) + ‖v‖W 2

q (Ω)

+ (1+ |λ| 1
2

(

1− 1
q

)

‖θ‖Lq (Ω) + ‖∇θ‖Lq (Ω) ≤ Cq,a0,k0,ε‖ f ‖Lq (Ω)

(54)

with some constant Cq,a0,k0,ε for any f ∈ Lq (Ω)3 and λ ∈ Σε,λ1(a0,k0,ε).

Remark 2 We note that

AΩR+3,a,k(λ) = AΩR+3,a,k(λ)PΩR+3, BΩR+3,a,k(λ) = BΩR+3,a,k(λ)PΩR+3 .

Let us define the operator LΩR+3,a,k by

{

Dq (LΩR+3,a,k) = {

v ∈ Jq (ΩR+3) ∩W 2
q (ΩR+3)3 | v|∂ΩR+3 = 0

}

,

LΩR+3,a,kv = PΩR+3 La,kv for v ∈ Dq (LΩR+3,a,k).

Then (52) is rewritten as

(λI + LΩR+3,a,k)v = PΩR+3 f in Jq (ΩR+3)

and Theorem 6 provides its solution operator

AΩR+3,a,k(λ) = (λI + LΩR+3,a,k)−1 PΩR+3 .

When f ∈ Jq (ΩR+3), estimate (54) for v = (λI + LΩR+3,a,k)−1 f implies that
the operator−LΩR+3,a,k generates a bounded analytic semigroup {TΩR+3,a,k(t)}t�0 of
class C0 on Jq (ΩR+3). Another important point in Theorem 6 is the structure of the
pressure p = QΩR+3 f + θ together with decay property (54) of θ = BΩR+3,a,k(λ) f
with respect to λ.
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Proof To show Theorem 6, we shall use the following fact: For any f ∈ Lq (ΩR+3)
there exists a unique solution (U, Ξ ) ∈ W 2

q (Ω)3× Ŵ 1
q (Ω) to the resolvent equation

of the usual Stokes operator:

(λI −Δ)U +∇Ξ = f, div U = 0 in Ω , U |
∂Ω
= 0 (55)

(cf., [6] and references therein). Using such U and Ξ , we define the operators
A0

Ω (λ) : Lq (Ω)3 → W 2
q (Ω)3 and B0

Ω (λ) : Lq (Ω)3 → Ŵ 1
q (Ω) by the relations:

A0
Ω (λ) f = U and B0

Ω (λ) f = Ξ − QΩ f , respectively. Using these notations, we
rewrite (55) as follows:

(λI −Δ)A0
Ω (λ) f +∇(QΩ + B0

Ω (λ)) f = f in ΩR+3,

divA0
Ω (λ) f = 0 in ΩR+3,

A0
Ω (λ) f |

∂Ω
= 0. (56)

From [6] we know the estimate:

|λ|‖A0
Ω (λ) f ‖Lq (Ω) + |λ|

1
2 ‖∇A0

Ω (λ) f ‖Lq (Ω)

+ ‖A0
Ω (λ) f ‖

W 2
q (Ω)
+ ‖B0

Ω (λ) f ‖
W 1

q (Ω)
≤ Cq,ε‖ f ‖Lq (Ω) (57)

provided that f ∈ Lq (Ω)3 and λ ∈ Σε ∪ {λ ∈ C | |λ| ≤ σ0} with some σ0 > 0.
Moreover, by Hishida and Shibata [13] (cf., also Noll and Saal [16] and Geiser-
Heck-Hieber [11]) we know that

‖B0
Ω (λ) f ‖Lq (Ω) ≤ Cq,R,ε|λ|−

1
2

(

1− 1
q

)

‖ f ‖Lq (Ω) (58)

for any f ∈ Lq (Ω)3 and λ ∈ Σε with |λ| ≥ 1.
Now, we shall solve (51) for f ∈ Lq (Ω)3. To solve (51), we set

v = A0
Ω (λ)g, p = (QΩ + B0

Ω (λ))g,

and then we have

(λI + La,k)v + ∇ p = g + Ka,k(λ)g. (59)

where Ka,k(λ) = (k D3 + Ma)A0
Ω (λ). If (I + Ka,k(λ))−1 exists as a bounded linear

operator on Lq (Ω)3, by (59), (57), and (58) v = A0
Ω (λ)(I + Ka,k(λ))−1 f and p =

(QΩ + B0
Ω (λ))(I + Ka,k(λ))−1 f solve problem (51). Therefore, our task is to show

the existence of (I + Ka,k(λ))−1. Let us denote the operator norm of the bounded
linear operators on Lq (Ω)3 by ‖ · ‖

L(Lq (Ω)3)
. Since Ω is bounded, in view of (57) we

have

‖Ka,k(λ)‖
L(Lq (Ω)3)

≤ Cq,a0,k0,ε,R|λ|−
1
2 (λ ∈ Σε, |λ| ≥ 1). (60)



530 Y. Shibata

From (60) it follows that there exists a large λ1 = λ1(a0, k0, ε) > 0 such that
‖Ka,k(λ)‖

L(Lq (Ω)3)
≤ 1/2 provided that |λ| ≥ λ1(a0, k0, ε) and λ ∈ Σε , and then we

have the inverse operator (I + Ka,k(λ))−1 ∈ L(Lq (Ω)3) and by (60)

‖(I + Ka,k(λ))−1 − I‖
L(Lq (Ω)3)

≤ Cq,a0,k0,ε,R|λ|−
1
2 (61)

for any λ ∈ Σε with |λ| ≥ λ1(ε, a0). Combining (61), (57), and (58), we have (54),
which completes the proof of Theorem 6. ��

By (52) and Theorem 6 we have the following corollary.

Corollary 1 Let 1 < q < ∞, a0, k0 > 0 and 0 < ε < π/2. Assume that |a| ≤ a0

and |k| ≤ k0. Let λ1(a0, k0, ε), Σε,λ1(a0,k0,ε), AΩ,a,k(λ) and BΩ,a,k(λ) be the same
constant, set and operators as in Theorem 6, respectively. For λ ∈ Σε,λ1(a0,k0,ε) and
f ∈ Lq (Ω)3, we set uλ = AΩ,a,k(λ) f and pλ = BΩ,a,k(λ) f . Then, for any m ∈ N

we have

‖(|λ|∂m
λ uλ, |λ| 1

2∇∂m
λ uλ)‖Lq (Ω) + ‖∂m

λ uλ‖W 2
q (Ω)
+ ‖∇∂m

λ pλ‖Lq (Ω)

+ (1+ |λ|) 1
2

(

1− 1
q

)

‖∂m
λ pλ‖Lq (Ω) ≤ Ck(1+ |λ|)−m‖ f ‖Lq (Ω) .

Proof Differentiating (52) m-times by λ, we have

(λI + La,k)[∂m
λ uλ]+∇[∂m

λ pλ] = −m∂m−1
λ uλ, div [∂m

λ uλ] = 0 in Ω,

∂m
λ uλ = 0 on ∂Ω.

Since uλ ∈ Jq (Ω) and ‖uλ‖Lq (Ω) ≤ C(1+ |λ|)−1‖ f ‖Lq (Ω) , by (54) and the mathe-
matical induction on m we have the corollary. ��

4 A Preparation for Construction of Parametrix
in an Exterior Domain

In this section, we shall construct a solution operator to the equations:

(λI + La,k)u + ∇ p = f, div u = 0 in Ω, u|
∂Ω
= 0. (62)

Throughout this section, we assume that |a| ≤ a0 and |k| ≤ k0. To state the main
result in this section, we have to prepare several symbols which will be used not
only in this section but also in later sections, so that the main result will be stated
at the end of this section. We start with the Bogovskiǐ - Pileckas operator, which is
used to keep the divergence free condition in the cut-off procedure.

Lemma 2 Let 1 < q < ∞. (1) Let D be a bounded, lipschitzian domain in R
3.

We set
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W m
q,0(D) = {u ∈ W m

q (D) | ∂αx u|∂D = 0 for |α| ≤ m − 1}

for any integer m ≥ 1 and W 0
q,0(D) = Lq (D). Then, there exists a bounded

linear operator B from W m
q,0(D) to W m+1

q (R3)3 such that supp B[ f ] ⊂ D and
‖B[ f ]‖

W m+1
q (R3)

≤ Cm,q‖ f ‖
W m

q (D)
. Moreover, if f ∈ W m

q,0(D) satisfies the average

free condition:
∫

D f dx = 0, then div B[ f ] = f0 in R
3, where f0(x) = f (x) for

x ∈ D and f (x) = 0 for x �∈ D.
(2) Let m be a positive integer and D be one of R

3, Ω and Ω . Let ψ be a function
in C∞ such that ψ or 1 − ψ has a compact support and supp∇ψ ⊂ DR+1,R+2 =
BR+2\BR+1. If u ∈ W m

q (D)3 satisfies the conditions: div u = 0 in D and ν ·u|∂D = 0
when D is Ω or Ω , then (∇ψ) · u ∈ W m

q,0(DR+1,R+2) and
∫

DR+1,R+2
(∇ψ) · u dx = 0.

(3) Let ψ be the same function as in (2). Then, we have for j = 1, 2, 3

‖B[(∇ψ) · (∂ jv)]‖
Lq (R3)

≤ Cq,R‖v‖Lq (DR+1,R+2) , v ∈ W 1
q,0(DR+1,R+2)3

‖B[(∇ψ) · (∇w)]‖
Lq (R3)

≤ Cq,R‖w‖Lq (DR+1,R+2) , w ∈ W 1
q,0(DR+1,R+2). (63)

Proof (1) For the proof of the assertion (1), we refer to [1] (cf., also Galdi [8,
Theorem 3.2] and references therein).
(2) Since supp∇ψ ⊂ DR+1,R+2, we trivially see that (∇ψ) · u ∈ W m

q,0(DR+1,R+2).
To check the average free, we consider the case where 1−ψ has a compact support
and D = Ω and observe that

∫

DR+1,R+2

(∇ψ) · u dx = −
∫

Ω

div ((1− ψ)u) dx = −
∫

∂Ω

(1− ψ)ν · u dσ = 0,

where dσ denotes the surface element of ∂Ω . In the case where ψ has a compact
support, analogously we have

∫

DR+1,R+2
(∇ψ) · u dx = 0.

(3) By employing the same argument as in the proof of [8, Lemma 3.1 in Chap. III],
we can prove (63) (more general bounded domain case being treated in [12]). This
completes the proof of Lemma 2. ��

Now, we shall define a parametrix to (62). Let ϕ be a cut-off function in C∞0 (R3)
such that ϕ(x) = 1 for |x | ≤ R + 1 and ϕ(x) = 0 for |x | ≥ R + 2. Given f ∈
Lq,R+2(Ω), r

ΩR+3
f denotes the restriction of f on Ω and f0 is the zero extension of

f to the whole space. We set

Φa,k(λ) f = (1− ϕ)AR3,a,k(λ) f0 + ϕAΩ,a,k(λ)r
ΩR+3

f + B[(∇ϕ) · Ca,k(λ) f ],

Ca,k(λ) f = AR3,a,k(λ) f0 −AΩ,a,k(λ)r
ΩR+3

f,

Ψa,k(λ) f = (1− ϕ)QR3 f0 + ϕ(QΩr
ΩR+3

f + BΩ,a,k(λ)r
ΩR+3

f ), (64)

T f = −(∇ϕ)(QR3 f0 − QΩr
ΩR+3

f )

− B[(∇ϕ) · ∇(QR3 f0 − QΩr
ΩR+3

f )], (65)
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Sa,k(λ) f = 2(∇ϕ) · ∇(Ca,k(λ) f )+ (Δϕ)Ca,k(λ) f − k(D3ϕ)Ca,k(λ) f

+ a((e3 × x) · ∇ϕ)Ca,k(λ) f + B[(∇ϕ) ·ΔCa,k(λ) f ]

− kB[(∇ϕ) · D3Ca,k(λ) f ]− B[(∇ϕ) · MaCa,k(λ) f ]

+ B[(∇ϕ) · ∇BΩ,a,k(λ)r
ΩR+3

f ]−ΔB[(∇ϕ) · Ca,k(λ) f ]

+ MaB[(∇ϕ) · Ca,k(λ) f ]+ (∇ϕ)BΩ,a,k(λ)r
ΩR+3

f, (66)

and then we have

(λI + La,k)Φa,k(λ) f + ∇Ψa,k(λ) f = (I + T ) f + Sa,k(λ) f in Ω ,

divΦa,k(λ) f = 0 in Ω , (67)

Φa,k(λ) f |
∂Ω
= 0. (68)

In fact, we observe that

(λI + La,k)Φa,k(λ) f +∇Ψa,k(λ) f

= (1− ϕ) f0 + ϕ(r
ΩR+3

f )+ 2(∇ϕ) · ∇Ca,k(λ) f

+ (Δϕ)Ca,k(λ) f − k(D3ϕ)Ca,k(λ) f + a((e3 × x) · ∇ϕ)Ca,k(λ) f

+ λB[(∇ϕ) · Ca,k(λ) f ]−ΔB[(∇ϕ) · Ca,k(λ) f ]+ k D3B[(∇ϕ) · Ca,k(λ) f ]

+ MaB[(∇ϕ) · Ca,k(λ) f ]+ (∇ϕ)BΩ,a,k(λ)r
ΩR+3

f

− (∇ϕ)(QR3 f0 − QΩr
ΩR+3

f ) (69)

Since f0 = r
ΩR+3

f on supp ∇ϕ, by (27) and (53) we have

λ(∇ϕ) · Ca,k(λ) f =(∇ϕ) · (ΔCa,k(λ) f − k D3Ca,k(λ) f − MaCa,k(λ) f

+∇BΩ,a,k(λ)r
ΩR+3

f −∇(QR3 f0 − QΩr
ΩR+3

f ))

which inserted into (69) implies (67) with (66).
In what follows, we discuss the existence of (I + T + Sa(λ))−1 ∈ L(Lq,R+2(Ω)).

Let λ0 and λ1 be the same constants as in Theorems 4 and 6, and set λ2 =
λ2(a0, k0, ε) = max(λ0, λ1, 1). Since Σε,λ2∩C+,0 ⊃ Cλ2 , by Theorems 4, 6, Lemma
2 and (66), we have

Sa,k(λ) ∈ Anal (Cλ2 ,L(Lq,R+2(Ω))),

‖Sa,k(λ)‖
L(Lq,R+2(Ω)3)

≤ Ca0,k0,q,R(1+ |λ|)−(1/2)(1−(1/q)) (λ ∈ Cλ2 ). (70)

The following lemma was proved by Hishida and Shibata [13].

Lemma 3 There exists an inverse operator (I + T )−1 ∈ L(Lq,R+2(Ω)).

Combining (70) and Lemma 3 we see that there exists a large number λ3 =
λ(a0, k0, ε) > 0 such that

‖(I + T )−1Sa,k(λ) f ‖Lq (Ω) ≤ (1/2)‖ f ‖Lq (Ω) (71)
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for any f ∈ Lq,R+2(Ω) and λ ∈ Cλ3 . By (71) and the Neumann series expansion
we have

(I + T + Sa,k(λ))−1 ∈ Anal (Cλ3 ,L(Lq,R+2(Ω))),

‖(I + T + Sa,k(λ))−1 f ‖Lq (Ω) ≤ 2‖(I + T )−1‖L(Lq,R+2(Ω))‖ f ‖Lq (Ω) ,

(I + T + Sa,k(λ))−1 = (I + T )−1 +
∞
∑

j=1

(−(I + T )−1Sa(λ)) j (I + T )−1

(72)

for any f ∈ Lq,R+2(Ω) and λ ∈ Cλ3 .
Now, we are in position to show the main result in this section.

Proposition 6 Let 1 < q < ∞, a0, k0 > 0 and 0 < ε < π/2. Let N be a natural
number > 3. Assume that |a| ≤ a0 and |k| ≤ k0. Then, there exists a number
λ3 = λ3(a0, k0, ε) ≥ 1 such that (I + T + Sa,k(λ))−1 ∈ L(Lq,R+2(Ω)) exists and

‖(I + T + Sa,k(λ))−1‖L(Lq,R+2(Ω)) ≤ K (73)

with some constant K > 0 for any λ ∈ Cλ3 .
Moreover, there exist two operator valued functions

U 1
a,k,N (λ) ∈ Anal (Σε,λ3 ,L(Lq,R+3(Ω))), U 2

a,k,N ∈ Anal (Cλ3 ,L(Lq,R+3(Ω)))

such that

(I + T + Sa,k(λ))−1 = (I + T )−1 +U 1
a,k,N (λ)+U 2

a,k,N (λ) (λ ∈ Cλ3 ),

‖U 1
a,k,N (λ)‖L(Lq,R+3(Ω) ≤ Ca0,k0,ε,q,N |λ|−

1
2

(

1− 1
q

)

(λ ∈ Σε,λ3 ), (74)

‖U 2
a,k,N (λ)‖L(Lq,R+3(Ω) ≤ Ca0,k0,ε,q,N |λ|−

(N−1)(1−(1/q))
4 (λ ∈ Cλ3 ).

Proof Equation (73) follows from Lemma 3 and (74), so that we shall prove (74).
In view of Theorems 4 and 6, we set

C1
a,k(λ) f = r

ΩR+3
AN

1,a,k(λ) f −AΩ,a,k(λ) f, C2
a,k(λ) f = r

ΩR+3
AN

2,a,k(λ) f.

Let λ0 and λ1 be the same constans as in Theorems 4 and 6 and set λ3 =
max(λ0, λ1, 1). By Theorems 4 and 6 we have Ca,k(λ) = C1

a,k(λ)+ C2
a,k(λ),

C1
a,k(λ) ∈ Anal (Σε,λ3 ,L(Lq,R+3(Ω),W 2

q (Ω)3)),

C2
a,k(λ) ∈ Anal (Cλ3 ,L(Lq,R+3(Ω),W 2

q (Ω))),

‖C1
a,k(λ)‖

L(Lq,R+3(Ω),W 1
q (Ω)3)

≤ Ca0,k0,ε,q,R,N |λ|−
1
2 ,

‖C2
a,k(λ)‖

L(Lq,R+3(Ω),W 1
q (Ω)3)

≤ Ca0,k0,ε,q,R,N |λ|−
N−1

2 .

(75)
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By using C1
a,k(λ) and C2

a,k(λ), we devide Sa,k(λ) as follows:

S1
a,k(λ) f = 2(∇ϕ) · ∇(C1

a,k(λ) f )+ (Δϕ)C1
a,k(λ) f − k(D3ϕ)C1

a,k(λ) f

+ a((e3 × x) · ∇ϕ)C1
a,k(λ) f + B[(∇ϕ) ·ΔC1

a,k(λ) f ]− kB[(∇ϕ) · D3C1
a,k(λ) f ]

− B[(∇ϕ) · MaC1
a,k(λ) f ]+ B[(∇ϕ) · ∇BΩ,a,k(λ)r

ΩR+3
f ]

−ΔB[(∇ϕ) · C1
a,k(λ) f ]+ MaB[(∇ϕ) · C1

a,k(λ) f ]+ (∇ϕ)BΩ,a,k(λ)r
ΩR+3

f,

S2
a,k(λ) f = Sa,k(λ) f − S1

a,k(λ) f.

By (75) and Theorem 6 we have

S1
a,k(λ) ∈ Anal (Σε,λ3 ,L(Lq,R+3(Ω),W 2

q (Ω)3)),

S2
a,k ∈ Anal (Cλ3 ,L(Lq,R+3(Ω),W 2

q (Ω))),

‖S1
a,k‖L(Lq,R+3(Ω),W 1

q (Ω)3)
≤ Ca0,k0,ε,q,R,N |λ|−

1
2

(

1− 1
q

)

,

‖S2
a,k‖L(Lq,R+3(Ω),W 1

q (Ω)3)
≤ Ca0,k0,ε,q,R,N |λ|−

N−1
2 .

(76)

In view of (75) and (72), choosing an integer M so large that M ≥ (N − 1)/2,
we set

U 1
a,k,N (λ) =

M−1
∑

j=1

(−(I + T )−1S1
a,k(λ)) j (I + T )−1,

U 2
a,k,N (λ) = (I + T + Sa,k(λ))−1 − (I + T )−1 −U 1

a,k,N (λ),

and then by (76) we have (74), which completes the proof of Proposition 6. ��
Especially, by Theorem 4, Theorem 6, (64), (67) and Proposition 6 we can find

the following operators: Set

Ra,k(λ) = Φa,k(λ)(I + T + Sa,k(λ))−1,

Πa,k(λ) = Ψa,k(λ)(I + T + Sa,k(λ))−1,
(77)

and then for any f ∈ Lq,R+2(Ω) we have

Ra,k(λ) f ∈ W 2
q (Ω)3, Πa,k(λ) f ∈ Ŵ 1

q (Ω), (78)

and Ra,k(λ) f and Πa,k(λ) f satisfy the equations:

(λI + La,k)Ra,k(λ) f +∇Πa,k(λ) f = f, div Ra,k(λ) f = 0 in Ω,

Ra,k(λ) f |∂Ω = 0.
(79)
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5 On a Unique Existence Theorem to the Nonstationary
Problem for the Initial Data in Lq,R+2(Ω)

In this section, we shall consider the non-stationary problem:

ut + Lu + ∇ p = 0, div u = 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = PΩ f in Ω (80)

for f ∈ Lq,R+2(Ω), and we shall show the following theorem.

Theorem 7 Let 1 < q < ∞, a0 k0 > 0 and let λ3 be the same constant as in
Proposition 6. Set R+ = (0,∞). Assume that |a| ≤ a0 and |k| ≤ k0. For every
f ∈ Lq,R+2(Ω), problem (80) admits a unique solution (u(t), p(t)) such that u(t)
and p(t) satisfy the regularity condition:

u(t) ∈ C1(R+, Lq (Ω)3) ∩ C0(R+,W 2
q (Ω)3) ∩ C0([0,∞), Lq (Ω)3),

p(t) ∈ C0(R+, Ŵ 1
q (Ω)), (81)

and the following estimates:

‖(u(t), t1/2∇u(t), t∇2u(t), tut (t), t∇ p(t))‖Lq (Ω) ≤Ca0,k0,γ Eγ t‖ f ‖Lq (Ω) ,

t (1/2)(1+(1/q))‖p(t)‖Lq (Ωb ) ≤Ca0,k0,γ,b Eγ t‖ f ‖Lq (Ω)

(82)

for any t > 0, γ > 2λ3 and b > R + 3, where λ3 is the same constant as in
Proposition 6, and Ca0,k0,γ and Ca0,k0,γ,b are constants independent of t > 0.

Moreover, u(t) is represented by

u(t) = lim
&→∞

1

2π i

∫ γ+i&

γ−i&
Eλt Ra,k(λ) f dλ (83)

for any f ∈ Lq,R+2(Ω), where Ra,k(λ) is the operator defined by (77) and the right
hand side in (83) converges strongly in W 1

q (Ω) for any t > 0.

Remark 3 The conditions: u(t) ∈ W 2
q (Ω)3, ut (t) ∈ Lq (Ω) and ∇ p(t) ∈ Lq (Ω)3

together with the Eq. (80) automatically imply that Mau(t) ∈ Lq (Ω)3, that is
Mau(t) ∈ Dq (Ω).

In the course of our proof of Theorem 7 below, we do not mention the dependence
of a0, k0, q and ε for generic constants, although constants depend on a0, k0, q and
ε in almost all the cases. Using the formula (83), we shall construct a solution to
(80) with f ∈ Lq,R+2(Ω). Our idea is to divide Ra,k(λ) into a sectorial operator and
an operator which is analytic only on Cλ3 but summable for large λ. More precisely,
there exist operators:

R1
a,k(λ) ∈ Anal (Σε,λ3 ,L(Lq,R+2(Ω),W 2

q (Ω)3)),
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R2
a,k(λ) ∈ Anal (Cλ3 ,L(Lq,R+2(Ω),W 2

q (Ω)3)),

Π1
a,k(λ) ∈ Anal (Σε,λ3 ,L(Lq,R+2(Ω), Ŵ 1

q (Ω))),

Π2
a,k(λ) ∈ Anal (Cλ3 ,L(Lq,R+2(Ω), Ŵ 1

q (Ω))), (84)

such that

Ra,k(λ) f = R1
a,k(λ) f + R2

a,k(λ) f,

Πa,k(λ) f = Q f +Π1
a,k(λ) f +Π2

a,k(λ) f,

Q f = (1− ϕ)QR3 [(1+ T )−1 f ]0 + ϕQΩr
ΩR+3

[(I + T )−1 f ], (85)

‖∂αx R1
a,k(λ) f ‖Lq (Ω) ≤ Cα,q,R|λ|−(1−(|α|/2))‖ f ‖Lq (Ω) (|α| ≤ 2) λ ∈ Σε,λ3 ,

‖R2
a,k(λ) f ‖

W 2
q (Ω)
≤ Cq,Rγ

−1|λ|−3‖ f ‖Lq (Ω) λ ∈ Cλ3 ,

‖∇Π1
a,k(λ) f ‖Lq (Ω) ≤ Cb,q,R,ε‖ f ‖Lq (Ω) λ ∈ Σε,λ3 ,

‖Π1
a,k(λ) f ‖Lq (Ωb ) ≤ Cb,q,R |λ|−(1/2)(1−(1/q))‖ f ‖Lq (Ω) λ ∈ Σε,λ3 ,

‖∇Π2
a,k(λ) f ‖Lq (Ω) + ‖Π2

a,k(λ) f ‖Lq (Ωb ) ≤ Cb,q,Rγ
−1|λ|−3‖ f ‖Lq (Ω) λ ∈ Cλ3 , (86)

where b is any number > R + 3.
To prove the above assertions, in view of Theorem 4 choosing N so large that

‖∂βx AN
1,a,k(λ) f ‖

Lq (R3)
≤ Cq,R|λ|−(1−(|β|/2))‖ f ‖

Lq (R3)
(λ ∈ Σε,λ3 , |β| ≤ 2),

‖AN
2,a,k(λ) f ‖

W 2
q (R3)

≤ Cq,R|λ|−3‖ f ‖
Lq (R3)

(λ ∈ Cλ3 ), (87)

we set AR3,a,k(λ) = AN
1,a,k(λ)+AN

2,a,k(λ). In view of Proposition 6 we set

R1
a,k(λ) f = (1− ϕ)AN

1,a,k(λ)[((1+ T )−1 +U 1
a (λ)) f ]0

+ ϕAΩ,a,k(λ)r
ΩR+3

[((I + T )−1 +U 1
a,k(λ)) f ]

+ B[(∇ϕ) · {AN
1,a,k(λ)[((I + T )−1 +U 1

a,k(λ)) f ]0

−AΩ,a,k(λ)r
ΩR+3

[((I + T )−1 +U 1
a,k(λ)) f ]}],

R2
a,k(λ) f = Ra,k(λ) f − R1

a,k(λ) f. (88)

Then, R1
a,k(λ) and R2

a,k(λ) satisfy the analytic properties in (84) and estimates in
(86). Concerning Πa,k(λ), if we set

Π1
a,k(λ) f = (1− ϕ)QR3 [U 1

a,k(λ) f ]0 + ϕQΩr
ΩR+3

[U 1
a,k(λ) f ]

+ ϕBΩ,a,k(λ)r
ΩR+3

[((I + T )−1 +U 1
a,k(λ)) f ],

Π2
a,k(λ) f = (1− ϕ)QR3 [U 2

a,k(λ) f ]0 + ϕQΩr
ΩR+3

[U 2
a,k(λ) f ]

+ ϕBΩ,a,k(λ)r
ΩR+3

[U 2
a,k(λ) f ],
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then we see that

Πa,k(λ) f =(1− ϕ)QR3 [(I + T )−1 f ]0 + ϕQΩr
ΩR+3

[(I + T )−1 f ]

+Π1
a,k(λ) f +Π2

a,k(λ) f,

and that Π1
a,k(λ) and Π2

a,k(λ) satisfy the analytic properties in (84) and the estimates
in (86).

Now, we shall define the velocity field u(t) and pressure term p(t) by the Laplace
inverse transform of Ra,k(λ) f and Πa,k(λ) f . For this purpose, we shall use u&(t) and
p&(t) which are defined by the relations:

u&(t) = 1

2π i

∫ γ+i&

γ−i&
Eλt Ra,k(λ) f dλ, p&(t) = 1

2π i

∫ γ+i&

γ−i&
EλtΠa.k(λ) f dλ (89)

respectively. Given any γ > λ3, we choose θ ∈ (π/2, π ) in such a way that

Γ = {γ + seiθ | s ≥ 0} ∪ {γ + se−iθ | s ≥ 0} ⊂ Σε,λ3 . (90)

To show the existence of the limits of u&(t) and p&(t) as & → ∞ and several
properties of their limit functions, we use the following two lemmas which were
proved in Hishida and Shibata [13, Lemmas 5.2 and 5.3].

Lemma 4 (1) Let X and ‖ ·‖X be a Banach space and its norm, respectively. (1) Let
γ 0 > 0 and let V (λ) be a function in Anal(Cγ 0 , X ) which satisfies the estimate:

‖V (λ)‖X ≤ MV |λ|−2

for any λ ∈ Cγ 0 . Set

v&(t) = 1

2π i

∫ γ+i&

γ−i&
Eλt V (λ) dλ, v(t) = 1

2π i

∫ γ+i∞

γ−i∞
Eλt V (λ) dλ (γ > γ 0).

Then, v(t) is independent of γ > γ 0, v(t) ∈ C0([0,∞), X ) and v(t) possesses the
following properties:

lim
&→∞

sup
0≤t≤T

‖v&(t)− v(t)‖X = 0 for any T > 0,

‖v(t)‖X ≤ Cγ MV Eγ t for any t > 0 and γ > γ 0,

where Cγ > 0 is a constant independent of v, V and MV .
(2) Let Γ and θ be the same as in (106). Let W (λ) be a function in Anal(Σε,λ3 , X )
which satisfies the estimate:

‖W (λ)‖X ≤ MW |λ|−σ
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for any λ ∈ Σε,λ3 with some σ ≤ 1. Set

w(t) = 1

2π i

∫

Γ

Eλt W (λ) dλ.

Then, w(t) is independent of γ > λ3, w(t) ∈ C0([0,∞), X ) and w(t) satisfies the
estimate:

‖w(t)‖X ≤ Cγ,θ MW Eγ t t−(1−σ ) for any t > 0,

where Cγ,θ > 0 is a constant independent of w, W and MW .
Moreover, when 0 < σ ≤ 1, if we set

w&(t) = 1

2π i

∫ γ+i&

γ−i&
Eλt W (λ) dλ,

then
lim
&→∞

sup
T1≤t≤T2

‖w&(t)− w(t)‖X = 0 for any 0 < T1 < T2.

Lemma 5 Let γ > 0. Then, we have

1

2π i

∫ γ+i∞

γ−i∞
Eλt dλ = δ(t) in D′(R), (91)

where δ(t) denotes the Dirac delta function. Here and hereafter, D′(D) denotes the
space of distributions on a domain D equipped with simple topology.

Remark 4 By Lemma 5 we see easily that

1

2π i

∫ γ+i∞

γ−i∞
Eλt dλ = 0 for t > 0 in the sense of D′(R+). (92)

In view of Lemma 4, Remark 4, (84), (85), and (86), we set

u1(t) = 1

2π i

∫

Γ

Eλt R1
a,k(λ) f dλ, u2(t) = 1

2π i

∫ γ+i∞

γ−i∞
Eλt R2

a,k(λ) f dλ,

p1(t) = 1

2π i

∫

Γ

EλtΠ1
a,k(λ) f dλ, p2(t) = 1

2π i

∫ γ+i∞

γ−i∞
EλtΠ2

a,k(λ) f dλ,

u j&(t) = 1

2π i

∫ γ+i&

γ−i&
Eλt R j

a,k(λ) f dλ, p j&(t) = 1

2π i

∫ γ+i&

γ−i&
EλtΠ

j
a,k(λ), dλ,

u(t) = u1(t)+ u2(t), p(t) = p1(t)+ p2(t).

In view of (84) and (86), we see that R1
a,k(λ) and Π1

a,k(λ) have good properties
of sectorial operators, so that u1(t) and p1(t) can be treated in the same way as in
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the theory of analytic semigroup ( cf., Pazy [17]). On the other hand, R2
a,k(λ) and

Π2
a,k(λ) are summable for large λ, so that we can apply Lemma 4 to treat u2(t) and

p2(t). By Lemma 4, (84) and (86),

lim
&→∞

sup
T1≤t≤T2

‖u j&(t)− u j (t)‖W 1
q (Ω)
= 0 ( j = 1, 2) for any 0 < T1 < T2,

lim
&→∞

sup
0�t≤T

‖∂t u2&(t)− ∂t u2(t)‖Lq (Ω) = 0 for any T > 0,

lim
&→∞

sup
T1≤t≤T2

‖∇{p2&(t)− p2(t)}‖Lq (Ω) = 0 for any 0 < T1 < T2,

lim
&→∞

sup
T1≤t≤T2

‖p j&(t)− p j (t)‖Lq (Ωb ) = 0 ( j = 1, 2) for any 0 < T1 < T2, (93)

u(t) ∈ C1(R+, Lq (Ω)3) ∩ C0(R+,W 2
q (Ω)3), p(t) ∈ C0(R+, Ŵ 1

q (Ω)), (94)

‖(u1(t), t1/2∇u1(t), t∇2u1(t), t∂t u1(t), t∇ p1(t))‖Lq (Ω) ≤ Cq,γ Eγ t‖ f ‖Lq (Ω) ,

t (1/2)(1+(1/q))‖p1(t)‖Lq (Ωb ) ≤ Cq,b,γ Eγ t‖ f ‖Lq (Ω) ,

‖(u2(t), ∂t u2(t),∇ p2(t))‖
W 2

q (Ω)
≤ Cq,γ Eγ t‖ f ‖Lq (Ω) ,

‖p2(t)‖Lq (Ωb ) ≤ Cq,b,γ Eγ t‖ f ‖Lq (Ω) . (95)

Here and hereafter, b denotes any real number > R+3 and γ is a constant > λ3.
If we set

p0&(t) = 1

2π i

∫ γ+i&

γ−i&
Eλt dλQ f

then by Remark 4 we have

p0,&(t) → 0 in D′(Ω × R+). (96)

Since u&(t) = u1&(t) + u2&(t) and p&(t) = p0&(t) + p1&(t) + p2&(t) as follows
from (85), by (93) and (96) we have

u&(t) → u(t) and p&(t) → p(t) as &→∞ in the sense of D′(Ω × R+).
(97)

Since

∂t u&(t)+ La,ku&(t)+∇ p&(t) = 1

2π i

∫ γ+i&

γ−i&
Eλt dλ f in Ω × R+

as follows from (79), by (97) and Lemma 5 we have

ut + La,ku +∇ p = 0 in the sense of D′(Ω × R+).
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Since div u&(t) = 0 in Ω and u&(t) = 0 on ∂Ω as also follows from (79) and
since u&(t) → u(t) as &→ ∞ for each t > 0 in W 1

q (Ω)3, we see that div u(t) = 0
in Ω × R+ and u(t) = 0 on ∂Ω × R+. Noting that

‖(u2(t), t1/2∇u2(t),t∇2u2(t), tut (t), t∇ p2(t))‖Lq (Ω)

≤ Cq,γ (1+ t) Eγ t‖ f ‖Lq (Ω) ≤ Cq,γ E2γ t‖ f ‖Lq (Ω)

t (1/2)(1+(1/q))‖p2(t)‖Lq (Ω) ≤ Cq,b,γ t (1/2)(1+(1/q)) Eγ t‖ f ‖Lq (Ω)

≤ Cq,b,γ E2γ t‖ f ‖Lq (Ω) ,

we see that u(t) and p(t) are solutions to (80) and satisfy the conditions (81) and
(82).

Our final task is to show that

lim
t→0+

‖u(t)− PΩ f ‖Lq (Ω) = 0. (98)

For this purpose, in view of Theorem 4, Theorem 6, Proposition 6 and (88), we
write

Ra,k(λ) f = R0
a,k(λ) f + T 1

a,k(λ) f + R2
a,k(λ) f,

where R2
a,k(λ) is the same operator as in (88), R0

a,k(λ) is the operator defined by the
formula:

R0
a,k(λ) f =(1− ϕ)(λ+OR3,k)−1 PR3 [(I + T )−1 f ]0

+ ϕAΩ,a,k(λ)rΩ (I + T )−1 f

+ B[(∇ϕ) · ((λ+OR3,k)−1 PR3 [(I + T )−1 f ]0

−AΩ,a,k(λ)rΩ (I + T )−1 f )]

and T 1
a,k(λ) is the linear operator possessing the following properties:

T 1
a,k(λ) ∈ Anal(Σε,λ3 ,L(Lq,R+2(Ω),W 2

q (Ω)3)),

‖T 1
a,k(λ) f ‖Lq (Ω) ≤ C |λ|−(1+(1/2)(1−(1/q)))‖ f ‖Lq (Ω) (λ ∈ Σε,λ3 ). (99)

Since
1

2π i

∫

Γ

Eλt (λ+OR3,k)−1 PR3 [(I + T )−1 f ]0 dλ

= (4π t)−
3
2

∫

R3
E−

|x−y−te3 |2
4t PR3 [(I + T )−1 f ]0(y) dy,

we see easily that
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lim
t→0+

1

2π i

∫

Γ

Eλt (λ+OR3,k)−1 PR3 [(I + T )−1 f ]0 dλ = PR3 [(I + T )−1 f ]0

strongly in Lq (R3)3. On the other hand, by Theorem 6 together with Remark 2, we
have the continuous analytic semigroup

TΩ,a(t) = 1

2π i

∫

Γ

Eλt (λI + LΩR+3,a)−1 dλ on Jq (Ω),

which satisfies

lim
t→0+

‖TΩ,a(t)g − g‖Lq (Ω) = 0 for any g ∈ Jq (Ω).

Therefore, if we set

u0(t) = 1

2π i

∫

Γ

Eλt R0
a,k(λ) f dλ,

W f =(1− ϕ)PR3 [(I + T )−1 f ]0 + ϕPΩr
ΩR+3

[(I + T )−1 f ]

+ B[(∇ϕ) · {PR3 [(I + T )−1 f ]0 − PΩr
ΩR+3

[(I + T )−1 f ]}], (100)

then from AΩR+3,a,k(λ) = (λI + LΩR+3,a,k)−1 PΩR+3 ( cf. Remark 2) it follows that

lim
t→0+

‖u0(t)−W f ‖Lq (Ω) = 0. (101)

Set

v1(t) = 1

2π i

∫

Γ

Eλt T 1
a,k(λ) f dλ, v2(t) = 1

2π i

∫ γ+i∞

γ−i∞
Eλt R2

a,k(λ) f dλ

and then u(t) = u0(t)+ v1(t)+ v2(t). To prove

lim
t→0+

‖v j (t)‖Lq (Ω) = 0 ( j = 1, 2), (102)

we use the following lemma which was proved in Hishida and Shibata [13, Lemma
2.3].

Lemma 6 Let X be a Banach space with norm ‖ · ‖X and γ > 0. Let Ψ (λ) ∈
Anal (Cγ , X ) such that

‖Ψ (λ)‖X ≤ Cγ |λ|−1−σ Re λ ≥ γ > 0 (103)

for some σ > 0. Then, we have

lim
t→0+

∥
∥
∥

∫ γ+i∞

γ−i∞
Eλt Ψ (λ) dλ

∥
∥
∥

X
= 0. (104)
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By (99) we can rewrite

v1(t) = 1

2π i

∫ γ+i∞

γ−i∞
Eλt T 1

a (λ) f dλ

and therefore by (86), (99) and Lemma 6 we have (102). Combining (102) with
(101) implies that

lim
t→0+

‖u(t)−W f ‖Lq (Ω) = 0 (105)

By Lemma 5.5 in Hishida and Shibata [13], we know W f = PΩ f , which com-
bined with (105) implies

lim
t→0+

‖u(t)− PΩ f ‖Lq (Ω) = 0.

Summing up, we have proved the existence of required solutions u(t) and p(t) of
problem (80), which satisfy (81) and (82). Moreover, from (93) we see that u(t) is
given by the formula (83).

Finally, we shall show the uniqueness. Let u(t) and p(t) satisfy (81), (82) and a
homogeneous equation:

ut + La,ku + ∇ p = 0, div u = 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = 0 in Ω.
(106)

Given any T > 0, we consider the dual problem:

−vt + L−a,−ku +∇θ = 0, div v = 0 in Ω × (−∞, T ),

v|∂Ω = 0, v|t=T = ϕ in Ω.
(107)

for any ϕ ∈ C∞0,σ (Ω). Then, employing the same argument as in the existence proof
of solutions in Theorem 7 which were given above, we can show the existence of v
and θ which satisfy the regularity conditions:

v(t) ∈ C1((−∞, T ), Lq ′ (Ω)3) ∩ C0((−∞, T ),W 2
q ′ (Ω)3) ∩ C0((−∞, T ], Lq ′ (Ω)3),

θ (t) ∈ C0((−∞, T ), Ŵ 1
q ′ (Ω)),

where q ′ = q/(q − 1). From Remark 3 we see that Mau(t) and M−av(t) belongs to
Lq (Ω)3 and Lq ′(Ω)3 for any 0 < t < T , respectively, so that by integration by parts
we have

(ut + La,ku +∇ p, v)Ω×(0,T ) =(u(T ), ϕ)Ω + (u,−vt + L−a,−kv +∇θ )Ω×(0,T )

=(u(T ), ϕ)Ω,
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where we have set

(u, v)Ω =
∫

Ω

u(x) · v(x) dx and (u, v)Ω×(0,T ) =
∫ T

0
(u(t), v(t))Ω dt.

Therefore, we have (u(T ), ϕ)Ω = 0 for any ϕ ∈ C∞0,σ (Ω). Since u(T ) ∈ Jq (Ω),
we have u(T ) = 0. But, T is also arbitrary positive number, so that u = 0, which
implies the uniqueness of solutions. This completes the proof of Theorem 7.

6 Proofs of Main Results

In this section, we consider the solvability of problem (8). We start with the follow-
ing theorem.

Theorem 8 Let 1 < q < ∞ and a0, k0 > 0. Assume that |a| ≤ a0 and |k| ≤ k0.
If f ∈ Lq,R+2(Ω) ∩ Dq (Ω), then problem (8) admits a unique solution (u(t), p(t))
satisfying not only (82) but also conditions:

u(t) ∈ C0([0,∞),W 2
q (Ω)) ∩ C1([0,∞), Lq (Ω)),

‖ut (t)‖Lq (Ω) + ‖u(t)‖Dq (Ω) + ‖∇ p(t)‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖
W 2

q (Ω)
,

(108)

for any t ≥ 0 and γ > 2λ3, where λ3 is the same constant as in Proposition 6.

Proof By Theorem 7 we know the existence of (u(t), p(t)) which solves (8) and
satisfies the conditions (81) and (82). Since f ∈ Lq,R+2(Ω) ∩ Dq (Ω), we have
La,k f ∈ Lq,R+2(Ω) and

‖PΩ La,k f ‖Lq (Ω) ≤ Ca0,k0‖ f ‖
W 2

q (Ω)
. (109)

Therefore, by Theorem 7 there exists a (v(t), θ (t)) which solves the equation:

vt + La,kv +∇θ = 0, div v = 0 in Ω × (0,∞),

v|∂Ω = 0, v|t=0 = −PΩ La,k f,
(110)

and conditions:

v(t) ∈ C1(R+, Lq (Ω)3) ∩ C0(R+,W 2
q (Ω)3) ∩ C0([0,∞), Lq (Ω)3),

θ (t) ∈ C0(R+, Ŵ 1
q (Ω)),

‖v(t)‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖PΩ La,k f ‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖
W 2

q (Ω)

(111)

for any t > 0 and γ > 2λ3. Our task is to show that ut = v. For this purpose we
consider
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w(x, t) = f (x)+
∫ t

0
v(x, s) ds (112)

Given ϕ ∈ Dq ′ (Ω) (q ′ = q/(q − 1)), by (112) we have

(wt (t), ϕ)Ω = (v(t), ϕ)Ω. (113)

On the other hand, from Remark 3 we see that Mav(t) ∈ Lq (Ω)3 for any t > 0,
and therefore by integration by parts we have

(vt (t), ϕ)Ω = −(La,kv(t)+ ∇θ (t), ϕ)Ω = −(v(t), L−a,−kϕ)Ω. (114)

Integrating (114) with respect to t and using (110) implies that

(v(t), ϕ)Ω = (−PΩ La,k f, ϕ)Ω −
∫ t

0
(v(s), L−a,−kϕ)Ω ds. (115)

Since f ∈ Dq (Ω) and ϕ ∈ Dq ′(Ω), we have

(PΩ La,k f, ϕ)Ω = (La,k f, PΩϕ)Ω = (La,k f, ϕ)Ω = ( f, L−a,−kϕ)Ω,

and therefore by (112) and (115) we have

(wt (t), ϕ)Ω + (w(t), L−a,−kϕ)Ω = 0. (116)

From Remark 3 we see that Mau(t) ∈ Lq (Ω)3 for t > 0, we have

(ut (t), ϕ)Ω = (−La,ku(t)−∇ p(t), ϕ)Ω = −(u(t), L−a,−kϕ)Ω,

which combined with (116) implies that

(wt (t)− ut (t), ϕ)Ω + (w(t)− u(t), L−a,−kϕ)Ω = 0 (117)

for any ϕ ∈ Dq ′(Ω) and t > 0. Now, given any ψ ∈ C∞0,σ (Ω) and T > 0, by
Theorem 7 let (z, τ ) be a solutions to the dual problem:

−zt + L−a,−k z +∇τ = 0, div z = 0 in Ω × (−∞, T ),

z|∂Ω = 0, z|t=T = ψ,
(118)

which satisfies the regularity condition:

z(t) ∈ C1((−∞, T ), Lq ′ (Ω)3) ∩ C0((−∞, T ),W 2
q ′ (Ω)3) ∩ C0((−∞, T ], Lq ′ (Ω)3),

τ (t) ∈ C0((−∞, T ), Ŵ 1
q ′ (Ω)). (119)



Modified Oseen Equation with Rotating Effect 545

From (119) and (118), z(t) ∈ Dq ′ (Ω) for any t ∈ (−∞, T ), so that by (117) and
(118) we have

0 =
∫ T

0
{(wt (t)− ut (t), z(t))Ω + (w(t)− u(t), L−a,−k z(t))Ω} dt

= (w(T )− u(T ), ψ)Ω +
∫ T

0
(w(t)− u(t),−zt (t)+ L−a,−k z(t)+∇τ (t))Ω dt

= (w(T )− u(T ), ψ)Ω.

Since ψ ∈ C∞0,σ (Ω) is chosen arbitrarily and since w(T ) − u(T ) ∈ Jq (Ω), we
have w(T ) = u(T ), which combined with the arbitrariness of choice of T > 0
implies that w(t) = u(t) for any t > 0. Therefore, we have ut (t) = v(t), which
combined with (111) implies that ut (t) ∈ C0([0,∞), Lq (Ω)3) and

‖ut (t)‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖
W 2

q (Ω)
(120)

for any t ≥ 0 and γ > 2λ3. Applying Theorem Ap.1 in the appendix below to the
equation:

u(t)+ La,ku(t)+∇ p(t) = −ut (t)+ u(t), div u(t) = 0 in Ω, u(t)|∂Ω = 0,

we have u(t) ∈ C0([0,∞),Dq (Ω)), p(t) ∈ C0([0,∞), Ŵ 1
q (Ω)) and

‖u(t)‖Dq (Ω) + ‖∇ p(t)‖Lq (Ω) ≤ Ca0,k0 (‖ut (t)‖Lq (Ω) + ‖u(t)‖Lq (Ω) ),

which combined with (120) and (82) completes the proof of Theorem 8. ��
Now, we shall give a

Proof of Theorem 1 Let ϕ be a function such that ϕ(x) = 1 for |x | ≤ R + 1 and
ϕ(x) = 0 for |x | ≥ R + 2. Given f ∈ Dq (Ω) we set g = (1− ϕ) f + B[(∇ϕ) · f ],
where B is the Bogovski ǐ-Pileckas operator. Then, g ∈ Dq (R3) and

‖g‖
Lq (R3)

≤ C‖ f ‖Lq (Ω) , ‖g‖W 2
q (R3)

≤ C‖ f ‖
W 2

q (Ω)
, ‖g‖Dq (Ω) ≤ Ca0,k0‖ f ‖Dq (Ω) . (121)

Recalling the symbol Sa,k(t) defined by (16), we set v0(t) = Sa,k(t)g. By Theo-
rem 3 and (121) we have

‖(v0(t), t
1
2∇v0(t), t∇2v0(t))‖

Lq (R3)
≤ C‖g‖

Lq (R3)
≤ C‖ f ‖Lq (Ω) ,

‖(∇2v0(t), t
1
2∇3v0(t))‖

Lq (R3)
≤ C‖∇2g‖

W 2
q (R3)

≤ C‖ f ‖
W 2

q (Ω)
,

‖Dtv0(t)‖
Lq (R3)

+ ‖v0(t)‖
W 2

q (R3)
≤ Ca0,k0‖g‖Dq (R3)

≤ Ca0,k0‖ f ‖Dq (Ω) .

(122)

We set
v(t) = (1− ϕ)v0(t)+ B[(∇ϕ) · v0(t)],
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and then we have

vt + La,kv = F, div v = 0 in Ω × (0,∞),

v|∂Ω = 0, v|t=0 = h,
(123)

where we have set

F =2(∇ϕ) · (∇v0(t))+ (Δϕ)v0(t)− k(D3ϕ)v0(t)

− a((e3 × x) · (∇ϕ))v0(t)g + DtB[(∇ϕ) · (v0(t))]+ La,kB[(∇ϕ) · (v0(t))],

h =(1− ϕ)g + B[(∇ϕ) · g].

Observing that

DtB[(∇ϕ) · v0(t)] = B[(∇ϕ) · Dtv0(t)] = −B[(∇ϕ) · (La,kv0(t)],

by Lemma 2, (121) and (122) we have

‖(v(t), (1+ t−
1
2 )−1∇v(t), (1+ t−1)−1∇2v(t))‖Lq (Ω) ≤ Ca0,k0‖ f ‖Lq (Ω) ,

‖vt (t)‖Lq (Ω) + ‖v(t)‖Dq (Ω) ≤ Ca0,k0‖ f ‖
W 2

q (Ω)
,

(124)

and

‖F(t)‖La (Ω) ≤ Ca0,k0 (1+ t−
1
2 )‖ f ‖Lq (Ω) , ‖F(t)‖Lq (Ω) ≤ Ca0,k0‖ f ‖Dq (Ω) ,

‖F(t)‖Dq (Ω) ≤ Ca0,k0 (1+ t−
1
2 )‖ f ‖

W 2
q (Ω)

, supp F(t) ⊂ BR+2 \ BR+1,

‖h‖Lq (Ω) ≤ C‖ f ‖Lq (Ω) , ‖h‖
D2

q (Ω)
≤ Ca0,k0‖ f ‖Dq (Ω) .

(125)

Now, we shall consider problem:

wt + La,kw = −F, divw = 0 in Ω × (0,∞),

w|∂Ω = 0, w|t=0 = f − h.
(126)

Since f −h = ϕ f = 0 for |x | ≥ R+2, div ( f −h) = 0 in Ω and ν ·( f −h)|∂Ω =
ν · f |∂Ω = 0 as follows from f ∈ Dq (Ω) where ν stands for the unit outer normal
to ∂Ω , we have f − h ∈ Dq (Ω) ∩ Lq,R+2(Ω) and

‖ f − h‖Lq (Ω) ≤ C‖ f ‖Lq (Ω) , ‖ f − h‖Dq (Ω) ≤ C‖ f ‖
W 2

q (Ω)
. (127)

In view of Theorem 8, for any g ∈ Lq,R+2(Ω) ∩ Dq (Ω), problem (8) admits a
unique solution z(t) and κ(t) and therefore we define the operator SΩ (t) and ΠΩ (t)
by the formulas: SΩ (t)g = z(t) and ΠΩ (t)g = κ(t) for the notational simplicity. By
Theorem 8, we have
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‖(SΩ (t)g, t
1
2∇SΩ (t)g, t∇2SΩ (t)g,∇ΠΩ (t)g)‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖g‖Lq (Ω)

‖ΠΩ (t)g‖Lq (Ωb ) ≤ Ca0,k0,b,γ Eγ t‖g‖Lq (Ω) ,

‖Dt SΩ (t)g‖Lq (Ω) + ‖SΩ (t)g‖Dq (Ω) + ‖∇ΠΩ (t)g‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖g‖
W 2

q (Ω)

(128)

for any t > 0 and γ > 2λ3, where λ3 is the same constant as in Proposition 6.
In view of Duhamel’s principle, we set

w(t) = SΩ (t)( f − h)−
∫ t

0
SΩ (t − s)F(s) ds,

p(t) = ΠΩ (t)( f − h)−
∫ t

0
ΠΩ (t − s)F(s) ds.

By (127) and (125) we have

‖(w(t), t
1
2∇w(t), t∇2w(t),∇ p(t))‖Lq (Ω)

≤ Ca0,k0,γ

[

Eγ t +
∫ t

0
eγ (t−s)(1+ s−

1
2 ) ds

]

‖ f ‖Lq (Ω) ≤ Ca0,k0,γ E2γ t‖ f ‖Lq (Ω) ,

‖p(t)‖Lq (Ωb )

≤ Ca0,k0γ

[

t
− 1

2

(

1+ 1
q

)

Eγ t +
∫ t

0
eγ (t−s)(t − s)

− 1
2

(

1+ 1
q

)

(1+ s−
1
2 ) ds

]

‖ f ‖Lq (Ω)

≤ Ca0,k0,b,γ t
− 1

2

(

1+ 1
q

)

E2γ t‖ f ‖Lq (Ω) ,

‖Dtw(t)‖Lq (Ω) + ‖w(t)‖Dq (Ω) + ‖∇ p(t)‖Lq (Ω)

≤ Ca0,k0,γ

[

Eγ t +
∫ t

0
eγ (t−s)(1+ s−

1
2 ) ds

]

‖ f ‖Dq (Ω) ≤ Ca0,k0,γ E2γ t‖ f ‖Dq (Ω) .

(129)

In fact, we observe that

∫ t

0
Eγ (t−s)(1+ s−

1
2 ) ds ≤ Eγ t

∫ t

0
E−γ s(s

1
2 + 1)s−

1
2 ds

≤ (1+ t
1
2 ) Eγ t

∫ t

0
s−

1
2 ds ≤ 2(γ−

1
2 + 1) E2γ t

Analogously, we have

∫ t

0
Eγ (t−s)(t − s)

− 1
2

(

1+ 1
q

)

(1+ s−
1
2 ) ds

= Eγ t
∫ t

0
(t − s)

− 1
2

(

1+ 1
q

)

s−
1
2 (s

1
2 + 1) E−γ s ds
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≤ Eγ t (t
1
2 + 1)t−

1
2q

∫ 1

0
(1− &)

− 1
2

(

1+ 1
q

)

&−
1
2 d& ≤ Cq (1+ γ−

1
2 )t
− 1

2

(

1+ 1
q

)

E2γ t .

Since lims→t−0 ‖SΩ (t−s)F(s)−F(t)‖Lq (Ω) = 0, (w(t), p(t)) satisfies (126). If we
set u(t) = v(t)+w(t), then by (123), (124), (126), and (129) we see that (u(t), p(t))
satisfies all the properties stated in Theorem 1 with γ 0 = 4λ3, which completes the
proof of Theorem 1.

Proof of Theorem 2 In view of Theorem 1, for any f ∈ Dq (Ω) problem (8)
admits a unique solution (u(t), p(t)), and therefore TΩ (t) is defined by the formula:
TΩ (t) f = u(t). From Theorem 1, TΩ (t) f ∈ Dq (Ω) for any t ≥ 0 and

lim
t→0+

‖TΩ (t) f − f ‖Lq (Ω) = 0 and ‖TΩ (t) f ‖Lq (Ω) ≤ Ca0,k0,γ Eγ t‖ f ‖Lq (Ω) (130)

for any t ≥ 0 and γ ≥ γ 0 = 4λ0. Moreover, by uniqueness of solutions we have
T (t+ s) f = T (t)T (s) f for any t, s > 0 and f ∈ Dq (Ω). Dq (Ω) is dense in Jq (Ω),
because C∞0,σ (Ω) ⊂ Dq (Ω) ⊂ Jq (Ω) and C∞0,σ (Ω) is dense in Jq (Ω). Therefore, in
view of (130) we can extend TΩ (t) to Jq (Ω) continuously. We write this extension
also by TΩ (t). Then, {TΩ (t)}t≥0 is a continous semigroup on Jq (Ω). What we have
to show is that −La,k is an infinitesimal generator of {TΩ (t)}t≥0. To this end, let us
define domain Dq (Ma,k) and the operator Ma,k by the formulas:

Dq (Ma,k) = { f ∈ Jq (Ω) | lim
t→0+

TΩ (t) f − f

t
exists in Jq (Ω)},

Ma,k f = lim
t→0+

TΩ (t) f − f

t
for f ∈ Dq (Ma,k).

When f ∈ Dq (Ω),

lim
t→0+

TΩ (t) f − f

t
= lim

t→0+
1

t

∫ t

0
Dt TΩ (s) f ds

= − lim
t→0+

1

t

∫ t

0
La,k TΩ (s) f ds = −La,k f,

which shows that

Dq (Ω) ⊂ Dq (Ma,k), −La,k f =Ma,k f ( f ∈ Dq (Ω)). (131)

It follows from the Hille-Yosida theorem that there exists a positive number γ1

such that �(Ma,k) ⊃ {λ ∈ R | λ > γ1}, where �(Ma,k) denotes the resolvent set
of Ma,k . Let λ > 1 be a number in �(Ma,k). Let f ∈ Dq (Ma,k). By Theorem
Ap.1 in the appendix below there exists a u ∈ Dq (Ω) such that (λI −Ma,k) f =
(λI+La,k)u. From (131),−La,ku =Ma,ku, so that (λI−Ma,k)( f −u) = 0. Since
λ ∈ �(Ma,k), we have f = u ∈ Dq (Ω), which shows that Dq (Ma,k) ⊂ Dq (Ω).
This completes the proof of Theorem 2.
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Appendix

In this appendix we consider the following problem:

λu + La,ku +∇ p = f, div u = 0 in Ω, u|∂Ω = 0 (132)

for any f ∈ Jq (Ω). We shall show the following theorem.

Theorem 9 Let 1 < q < ∞ and a0, k0 > 0. Assume that |a| ≤ a0 and |k| ≤ k0.
Then, problem (132) admits a unique solution (u, p) ∈ Dq (Ω) × Ŵ 1

q (Ω) for any
λ ≥ 1 and f ∈ Jq (Ω), which satisfies the estimate:

‖u‖Dq (Ω) + ‖∇ p‖Lq (Ω) ≤ Ca0,k0,λ‖ f ‖Lq (Ω) . (133)

Proof Since C∞0,σ (Ω) is dense in Jq (Ω), we may assume that f ∈ C∞0,σ (Ω). Since
supp f ⊂ Ω , the zero extension of f belongs to C∞0,σ (R3). We denote the zero
extension of f by f again. Let AR3,a,k(λ) be the operator defined by (25), and then
u0(x) = AR3,a,k(λ) f satisfies the equation:

(λI + La,k)u0 = f, div u0 = 0 in R
3. (134)

Applying Theorem 3 to (25), we have

‖u0‖Lq (R3)
≤ C

∫ ∞

0
E−(Re λ)t dt ‖ f ‖

Lq (R3)
= C(Re λ)−1‖ f ‖Lq (Ω) ,

‖∇u0‖Lq (R3)
≤ C

∫ ∞

0
E−(Re λ)t t−

1
2 dt ‖ f ‖

Lq (R3)
= C

√
π (Re λ)−

1
2 ‖ f ‖Lq (Ω) .

(135)

Concerning the estimate of second derivatives of u0, we write (134) as follows:

−Δu0 + Mau0 = f − λu0 + k D3u0 in R
3,

and then by an estimate due to Farwig-Hishida-Müller [4] ( cf., also Farwig [3]) and
(135) we have

‖∇2u0‖Lq (Ω) + ‖Mau0‖Lq (Ω) ≤ C‖ f − λu − k D3u‖
Lq (R3)

≤ Ca0,k0,λ‖ f ‖Lq (Ω) . (136)

Let ϕ be a function in C∞0 (R3) such that ϕ(x) = 1 for |x | ≤ R + 1 and ϕ(x) = 0
for |x | ≥ R + 2 and set u1 = (1− ϕ)u0 + B[(∇ϕ) · u0], where B is the Bogovskiǐ-
Pileckas operator. Then, by (134) and Lemma 2 we have

λu1 + La,ku1 = (1− ϕ) f + F, div u1 = 0 in Ω, u1|∂Ω = 0, (137)

where
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F =2(∇ϕ) · (∇u0)+ (Δϕ)u0 − k(D3ϕ)u0 − a((e3 × x) · (∇ϕ))u0

+ (λI + La,k)B[(∇ϕ) · u0].

By (136) and Lemma 2 we have

‖F‖Lq (Ω) ≤ Ca0,k0,λ‖ f ‖Lq (Ω) . (138)

Since F ∈ Lq,R+2(Ω), in view of (79) we set v = Ra,k(λ)(ϕ f − F) and p =
Πa,k(λ)(ϕ f − F). Then, we have

λv + La,kv +∇ p = ϕ f − F, div v = 0 in Ω, v|∂Ω = 0. (139)

Moreover, by (85) and (138) we have

‖v‖Dq (Ω) + ‖∇ p‖Lq (Ω) ≤ Ca0,k0,λ‖ f ‖Lq (Ω) , (140)

where we have used the relation: Mav = f − λv + Δv − k D3v − ∇ p. If we set
u(x) = u1(x) + v(x), then from (135), (136), (137), (139), and (140) we see that
(u, p) is a required solution to (132) which satisfies (133). The uniqueness follows
from the solvability of the dual problem, so that we have the theorem. ��
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A New Approach to the Regularity of Weak
Lq-Solutions of Stokes and Similar Equations
via the Cosserat Operator

Christian G. Simader

Abstract Throughout this paper let G ⊂ R
n(n ≥ 2) be a bounded domain with

sufficiently smooth boundary. We present a new approach to the problem of higher
regularity of weak Lq -solutions to Stokes’ equation, Stokes-like equations and
the Lamé-Navier equation. The key point is a regularity property of the so-called
Cosserat operator Zq . This can be easily deduced from an estimate due to Weyers.
With the help of this regularity result the regularity problem for the equations men-
tioned above can be reduced to the corresponding results for the Laplacian Δ and
the Bilaplacian Δ2.

Keywords Cosserat operator · Stokes-like equations · Regularity theorems

1 Introduction

For an arbitrary elliptic operator especially of order ≥ 4 the estimates up to the
boundary are difficult and technically involved (see e.g. [5, Sect. 9]). But Δ and
Δ2 respectively the associated sesquilinear forms are invariant under orthogonal
coordinate transforms of the independent variables. This property allows to use
the tangential hyperplane at a point x0 ∈ ∂G for local parametrization of ∂G and
flattening the boundary. Then the sesquilinear form in the new coordinates is defined
in a subset of the upper half-space and it is of the original form plus a suitable “good”
perturbation. The estimates for the sesquilinear forms associated with Δ [6] and Δ2

[4] in a half-space are well known. The usual difference quotient method applies
then. For Δ we did this in [6, Sect. II.8]. The same procedure is possible for Δ2 (see
[4, Lemmas III.17 and III.19]).

For the regularity of weak Lq -solutions of Stokes’ equation Temam [9] refers to
the very general theory of Agmon-Douglis-Nirenberg [1] for elliptic systems (see [9,
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Proposition 2.2, p. 33]). A much simpler direct and self-consistent approach is due
to Galdi [3, Chap. IV]. A different more recent approach was presented by Beirão
da Veiga [2]. We would like to mention that we don’t need any results on elliptic
systems. If we have a weak Lq -solution u of the stationary Navier-Stokes equation,
then we have certain information on the integrability properties concerning the non-
linear term u · ∇u. But then we treat it like an external force and apply the results
for the Stokes equation. Our method applies to exterior domains too. But because
of the presence of a null space of strong solutions things are more complicated and
we’ll present details separately in a forthcoming paper.

2 Notations

Throughout this paper let G ⊂ R
n (n ≥ 2) be a bounded domain with at least

∂G ∈ C2. For k ∈ N and 1 < q <∞ we consider the usual Sobolev spaces

H k,q (G) = {u ∈ Lq (G) : ∃Dαu ∈ Lq (G) for |α| ≤ k}

where Dαu denotes the weak derivative of u. For u ∈ H k,q (G) let

‖u‖k,q :=
⎛

⎝
∑

|α|≤k

‖Dαu‖q
q

⎞

⎠

1
q

where

‖ f ‖q :=
⎛

⎝

∫

G

| f (x)|qdx

⎞

⎠

1
q

for f ∈ Lq (G)

As usual let H k,q
0 (G) := C∞0 (G)

‖.‖k,q . In case k = 1 we use the equivalent norm
‖∇u‖q for u ∈ H 1,q

0 (G). Further let

H 1,q
0 (G) :=

(

H 1,q
0 (G)

)n
.

For u ∈ H 1,q
0 (G), ϕ ∈ H 1,q ′

0 (G)
(

q ′ := q
q−1

)

let

〈∇u,∇ϕ〉 =
n

∑

i,k=1

∫

G

∂i uk∂iϕkdx
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and for f ∈ Lq (G), g ∈ Lq ′(G) we set

〈 f, g〉 :=
∫

G

f gdx .

Let

Lq
0(G) :=

⎧

⎨

⎩
p ∈ Lq (G) :

∫

G

pdx = 0

⎫

⎬

⎭
.

3 Regularity Theorems for Δ,Δ2 and the Cosserat Operator

We need the following well-known regularity theorems for the operators Δ and Δ2.

Theorem 1 Let 1 < q < ∞, j ∈ N0 := N ∪ {0} and assume that ∂G ∈ C1+ j . Let
f ∈ H j,q (G) := [H j,q (G)]n (where H 0,q (G) := Lq (G)).

1. Then there is a unique u ∈ H 1,q
0 (G) ∩ H 1+ j,q (G) such that

〈∇u,∇ϕ〉 = 〈 f ,∇ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

(

q ′ = q

q − 1

)

(1)

and with a constant C j := C( j, q,G) > 0

‖u‖1+ j,q ≤ C j‖ f ‖ j,q (2)

2. If there is g ∈ H j−1,q (G) ( j ∈ N), there exists a unique u ∈ H 1,q
0 (G) ∩ H 1+ j

(G) such that

〈∇u,∇ϕ〉 = 〈g, ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G) (3)

and with a constant C ′j > 0

‖u‖1+ j,q ≤ C ′j‖g‖ j−1,q (4)

Theorem 2 (Compare [4]). Let 1 < q < ∞, j ∈ N0 and assume ∂G ∈ C2+ j .
Let f ∈ H j,q (G). Then there is a unique u ∈ H 2,q

0 (G) ∩ H 2+ j,q (G) satisfying

〈Δu,Δϕ〉 = 〈 f,Δϕ〉 ∀ϕ ∈ H 2,q ′
0 (G) (5)

and with a constant C ′j = C( j, q,G) > 0
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{

‖u‖2+ j,q ≤ C ′j‖ f ‖ j,q or equivalently

‖Δu‖ j,q ≤ C ′j‖ f ‖ j,q
(6)

The following decomposition theorem is an immediate consequence of Theo-
rem 2. Let

⎧

⎨

⎩

Aq (G) := {Δs : s ∈ H 2,q
0 (G)}

Bq
0 (G) :=

{

ph ∈ Lq (G) :
∫

G
ph(y)dy = 0, 〈p,Δs〉 = 0 ∀s ∈ H 2,q ′(G)

0

}
(7)

Since C∞0 (G) is dense in H 2,q ′
0 (G), by means of Weyl’s lemma, Bq

0 (G) consists of
all harmonic Lq (G)-functions with vanishing mean value (or more precisely, every
equivalence class of Bq

0 (G) contains a unique harmonic representative). We need
the following approximation theorem.

Theorem 3 Let 1 < q <∞ and let

Lq
0(G) :=

⎧

⎨

⎩
f ∈ Lq (G) :

∫

G

f (y)dy = 0

⎫

⎬

⎭
.

Let ∂G ∈ C2. Then the following direct (q = 2: orthogonal) decomposition holds
true:

Lq
0(G) = Aq (G)⊕ Bq

0 (G)

f = Δs + ph
(8)

In addition with Dq := (1+ 2C ′0) > 0 (with C ′q by Theorem 2)

‖Δs‖q + ‖ph‖q ≤ Dq‖Δs + ph‖q ∀s ∈ H 2,q
0 (G), ∀ph ∈ Bq

0 (G) (9)

If moreover j ∈ N and ∂G ∈ C2+ j then for f ∈ H j,q (G), f = Δs+ ph, it holds
s ∈ H 2,q

0 (G) ∩ H 2+ j,q (G), ph ∈ Bq
0 (G) ∩ H j,q (G) and with D j := (1+ 2C ′j )

‖Δs‖ j,q + ‖ph‖ j,q ≤ D j‖ f ‖ j,q = D j‖Δs + ph‖ j,q (10)

Proof 1. If g ∈ Aq (G) ∩ Bq
0 (G) then for ϕ ∈ C∞0 (G)

〈g,Δϕ〉 = 0

On the other hand g = Δs, s ∈ H 2,q
0 (G) and by density of C∞0 (G) in H 2,q

0 (G)

we see for ϕ ∈ H 2,q ′
0 (G)
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〈Δs,Δϕ〉 = 〈g,Δϕ〉 = 0

and by (62) with j = 0: Δs = 0. Therefore Aq (G) ∩ Bq
0 (G) = {0}.

2. Let f ∈ Lq
0(G). By Theorem 2 there is a unique s ∈ H 2,q

0 (G) such that

〈Δs,Δϕ〉 = 〈 f,Δϕ〉 ∀ϕ ∈ H 1,q ′
0 (G) (11)

There exists a sequence (sk) ⊂ C∞0 (G) such that ‖Δs−Δsk‖q → 0. By Hölder’s
inequality

‖Δs −Δsk‖1 ≤ ‖Δs −Δsk‖q |G|
1
q′

and therefore by the Gausian theorem
∫

G

Δsdy = lim
k→∞

∫

G

Δskdy = 0.

Therefore Δs ∈ Lq
0(G) and ph = f −Δs ∈ Lq

0(G), f = Δs + ph . Further, by
(11) and Weyl’s lemma

〈ph,Δϕ〉 = 〈 f −Δs,Δϕ〉 ∀ϕ ∈ C∞0 (G)

whence Δph = 0 (more precisely, there exists a unique harmonic function in the
equivalence class ph). By (62)

‖Δs‖q ≤ C ′0‖ f ‖q ,

‖ph‖q = ‖ f −Δs‖q ≤ (1+ C ′0)‖ f ‖q

and finally

‖Δs‖q + ‖ph‖q ≤ (1+ 2C ′0)‖ f ‖q

3. If j ∈ N and f ∈ H j,q (G), then by Theorem 2 s ∈ H 2,q
0 (G) ∩ H 2+ j,q (G),

ph = f −Δs ∈ H j,q (G) ∩ Bq
0 (G) and

‖Δs‖ j,q + ‖ph‖ j,q ≤ (1+ 2C ′j )‖ f ‖ j,q

��
For the proof of Theorem 5 we need an approximation property of harmonic

H k−1,q (G) functions by harmonic H k,q (G) functions (k ∈ N).
In case k = 1 the theorem was proved by Weyers ([10, Theorem 9.1]). If e.g.

G = B1 is the unit ball one can consider for 1 < R < ∞ pR(x) := p
(

1
R x

)

. Then
pR ∈ Bq

0 (BR) ∩ H k−1,q (BR). Since pR |B̄1
∈ C∞(B̄1), ΔpR = 0 in B̄1, we see

pR |B1∈ H k,q (B1). Because of ‖p − pR |B1 ‖H k−1,q (B1) → 0 (R → 1) we found the
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desired approximation. In the case of an arbitrary bounded domain with sufficiently
smooth boundary we have to proceed more carefully.

Theorem 4 Let k ∈ N and let 1 < q < ∞. Let G ⊂ R
n be a bounded domain

with ∂G ∈ Ck+2. Then for p ∈ Bq
0 (G) ∩ H k−1,q (G) there exists a sequence (pm)

∈ Bq
0 (G) ∩ H k,q (G) such that

‖p − pm‖k−1,q → 0 (m →∞)

Proof Let k ≥ 2 and let G ⊂⊂ G0 ⊂⊂ R
n . As is well known, since ∂G ∈ Ck+2 ⊂

Ck−1 there exists an continuous extension operator

E : H k−1,q (G) → H k−1,q
0 (Go) ⊂ H k−1,q

0 (Rn)

such that

E f |G= f ∀ f ∈ H k−1,q (G)

and with a constant C1 = C1(k, q,G) > 0

‖E f ‖k−1,q;G0 ≤ C1‖ f ‖k−1,q;G ∀ f ∈ H k−1,q (G) (12)

For p ∈ Bq
0 (G) ∩ H k−1,q (G) we consider for 0 < ε < ∞ the mollifications

(Ep)ε ∈ C∞0 (Rn). Since for |α| ≤ k − 1 it holds Dα(Ep)ε(x) = (DαEp)ε(x) for all
x ∈ R

n and therefore

‖(Ep)ε − p‖k−1,q;G ≤ ‖(Ep)ε − Ep‖k−1,q;Rn → 0 (ε→ 0). (13)

Clearly, (Ep)ε |G is no longer harmonic. Since (Ep)ε |G∈ H k,q (G) by Theorem 2
there exists a unique s(ε) ∈ H 2,q

0 (G) ∩ H 2+k,q (G) satisfying

〈Δs(ε),Δϕ〉 = 〈(Ep)ε,Δϕ〉 ∀ϕ ∈ H 2,q ′
0 (G). (14)

Since p ∈ Bq
0 (G), 〈p,Δϕ〉 = 0 ∀ϕ ∈ H 2,q ′

0 (G) and by (14) and estimate (6)

‖Δs(ε)‖k−1,q ≤ ‖(Ep)ε − p‖k−1,q;G → 0 (ε→ 0) (15)

From (14) we conclude by Weyl’s lemma that
[

(Ep)ε −Δs(ε)
] |G is harmonic in

G. For ε := 1
m (m ∈ N) let

pm :=
[

(Ep) 1
m
−Δs( 1

m )
]

|G .
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Then, by (13) and (15)

‖p − pm‖k−1,q;G ≤ ‖(Ep) 1
m
− p‖k−1,q;G + ‖Δs( 1

m )‖k−1,q;G → 0 (m →∞)

��
The following result on the solvability of the divergence equation is an easy

consequence of Theorem 3.4 from [7, p. 175]. Compare in addition [8, Satz 8.3.3,
p. 303]. We use the following notations: Let p ∈ Lq

0(G) and let v ∈ H 1,q
0 (G) be the

unique solution of

〈∇v,∇ϕ〉 = 〈p, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G) (16)

Then let

Tq : Lq
0(G) → H 1,q

0 (G), Tq p := v (17)

where v is the unique solution of (16). Let

Mq (G) := Tq (Lq
0(G)) (18)

If moreover p ∈ H j,q (G) ∩ Lq
0(G) ( j ∈ N) and ∂G ∈ C1+ j then by Theorem 1

Tq p = v ∈ H 1,q
0 (G) ∩ H 1+ j,q (G)

Further for ph ∈ Bq
0 (G) we define the Cosserat operator Zq by

Zq : Bq
0 (G) → Bq

0 (G), Zq ph := div Tq ph = div v (19)

It was proved in [7, Theorem 3.1] that Zq : Bq
0 (G) → Bq

0 (G) is bijektive and
Zq , Z−1

q are bounded.

Theorem 5 Let G ⊂ R
n be a bounded domain with boundary ∂G ∈ Ck+2 (k ∈ N).

If p ∈ Bq
0 (G) ∩ H k−1,q (G) (1 < q <∞) then

Zq (p)− 1

2
p ∈ Bq

0 (G) ∩ H k,q (G)

and there is a constant C̃k = C(k, q,G) > 0 such that
∥
∥
∥
∥

Zq (p)− 1

2
p

∥
∥
∥
∥

k,q

≤ C̃k‖p‖k−1,q ∀p ∈ Bq
0 (G) ∩ H k−1,q (G) (20)

Proof Estimate (20) was proved by Weyers [10, Lemma 13.3, p. 141] in case k ≥ 2
under the additional assumption that p ∈ H k,q (G). Observe that Weyers’ assump-
tion on ∂G is unnecessarily restrictive. Our assumption ∂G ∈ Ck+2 is sufficient.
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Let p ∈ Bq
0 (G) ∩ H k−1,q (G) and let k ≥ 2. By Theorem 4 there is a sequence

(pm) ⊂ Bq
0 (G) ∩ H k,q (G) such that ‖p − pm‖k−1,q → 0 (m → ∞). By Weyers’

result, (20) holds with p j − pm ∈ Bq
0 (G) ∩ H k,q (G) in place of p:

∥
∥
∥
∥

Zq (p j − pm)− 1

2
(p j − pm)

∥
∥
∥
∥

k,q

≤ C̃k‖p j − pm‖k−1,q → 0 ( j,m →∞)

By completeness of H k,q (G) there exists a unique v ∈ H k,q (G) such that

∥
∥
∥
∥
v − (Zq (pm))− 1

2
pm

∥
∥
∥
∥

k,q

→ 0 (m →∞).

On the other hand by (20) with k − 1 in place of k ≥ 2,

∥
∥
∥
∥

Zq (pm − p)− 1

2
(pm − p)

∥
∥
∥
∥

k−1,q

≤ C̃k−1‖pm − p‖k−2,q → 0

Since
∥
∥v − (

Zq (pm)− 1
2 pm

)∥
∥

k−1,q → 0 we conclude in H k−1,q (G): v =
Zq (p) − 1

2 p. Since v ∈ H k,q (G), we see Zq (p) − 1
2 p ∈ Bq

0 (G) ∩ H k,q (G). Now
(20) is true with pm in place of p and passing to the limit m → ∞ (20) follows
finally. ��

The following theorem tells us that for p ∈ Bq
0 (G) and for the solution v := Tq p

of (21) regularity properties of div v = Zq (p) ∈ Bq
0 (G) are transmitted in those of

v and p.

Theorem 6 Let k ∈ N and assume that ∂G ∈ Ck+2. Let 1 < q <∞, let p ∈ Bq
0 (G)

and let v = Tq p ∈ H 1,q
0 (G) be the solution of

〈∇v,∇ϕ〉 = 〈p, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G). (21)

Assume in addition that div v ∈ H k,q (G). Then p ∈ H k,q (G) and v ∈ H 1,q
0 (G) ∩

H 1+k,q (G). Further there are constants C ′k = C ′(k, q,G) > 0 and Dk = D(k, q,G)
such that

‖p‖k,q ≤ C ′k‖Zq (p)‖k,q = C ′k‖ div v‖k,q (22)

and

‖v‖1+k,q ≤ Dk‖Zq (p)‖k,q = Dk‖ div v‖k,q . (23)

Proof The proof is by induction on k ∈ N. Let k = 1, div v ∈ H 1,q (G). By The-
orem 5 div v − 1

2 p =: f1 ∈ H 1,q (G) whence p = 2(div v − f1) ∈ H 1,q (G).
Furthermore by (20)
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‖p‖1,q ≤
∥
∥
∥
∥

2

(
1

2
p − div v

)∥
∥
∥
∥

1,q

+ 2‖ div v‖1,q ≤ 2C̃1‖p‖q + 2‖ div v‖1,q

By [7, Theorem 3.2, p. 174] with C > 0

‖p‖q ≤ C‖ div v‖q ≤ C‖ div v‖1,q

and with C ′1 := 2(C̃1C + 1) it follows (22). Because of

〈∇vi ,∇ϕ〉 = 〈p, ∂iϕ〉 ∀ϕ ∈ H 1,q ′
0 (G), i = 1, . . . , n

we get from (1), (2) with C1 > 0

‖∇vi‖2,q ≤ C1‖p‖1,q

whence by (22)

‖∇v‖2,q =
(

n
∑

i=1

‖vi‖q
2,q

) 1
q

≤ n
1
q C1‖p‖1,q ≤ n

1
q C ′1‖ div v‖1,q .

With D1 := n
1
q C ′1 follows (23). Assume now that the assertion is true for some

k ∈ N and assume that div v ∈ H k+1,q (G) ⊂ H k,q (G). By induction hypothesis
p ∈ H k,q (G)∩ Bq

0 (G). By Theorem 5 div v − 1
2 p =: fk ∈ H k+1,q (G)∩ Bq

0 (G) and
(20) holds true with k + 1 in place of k. Then

p = 2(div v − fk) ∈ H k+1,q (G)

and by (20) and the induction hypothesis

‖p‖k+1,q ≤
∥
∥
∥
∥

2

(
1

2
p − div v

)∥
∥
∥
∥

k+1,q

+2‖ div v‖k+1,q ≤ 2C̃k‖p‖k,q+2‖ div v‖k+1,q ≤

≤ 2C̃kC ′k‖ div v‖k,q + 2‖ div v‖k+1,q ≤ 2(C̃kC ′k + 1)‖ div v‖k+1,q

and (22) follows with C ′k+1 := 2(C̃k+1C ′k)+1. Similarly to the case k = 1 we derive

(23) from (2) with Dk+1 := n
1
q C ′k+1. ��
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4 The Solution of the Equation div v = π with Prescribed
Boundary Values: Applications to Stokes’ Equation and
Similar Equations

Theorem 7 Let 1 < q < ∞, j ∈ N and let ∂G ∈ C2+ j . Then for π ∈ H j,q (G) ∩
Lq

0(G) there is a unique u ∈ Mq (G) ∩ H 1+ j,q (G) satisfying div u = π . If u = Tq p
with a unique p ∈ Lq

0(G), then p ∈ H j,q (G) ∩ Lq
0(G). Further with a constant

E j = E( j, q,G) > 0

‖p‖ j,q ≤ E j‖ div u‖ j,q = E j‖π‖ j,q

‖u‖1+ j,q ≤ E j‖π‖ j,q .
(24)

Proof We divide π = π0 + πh , π0 ∈ Aq (G), πh ∈ Bq
0 (G), where π0 = Δs,

s ∈ H 2,q
0 (G) is the unique solution of

〈Δs,Δϕ〉 = 〈π,Δϕ〉 ∀ϕ ∈ H 2,q ′
0 (G)

By Theorem 2 it follows that s ∈ H 2+ j,q (G), whence π0 = Δs ∈ H j,q (G). Let
πh := π −Δs. Then πh ∈ Bq

0 (G) ∩ H j,q (G) and by (10)

‖Δs‖ j,q + ‖πh‖ j,q ≤ (1+ 2C ′j )‖π‖ j,q . (25)

Let now ph ∈ Bq
0 (G), vh := Tq ph ∈ H 1,q

0 (G) such that Zq ph = div vh = πh .
By Theorem 4 we see ph ∈ Bq

0 (G) ∩ H j,q (G) and vh ⊂ H 1,q
0 (G) ∩ H 1+ j,q (G) and

with constants C ′j > 0 resp. D j > 0

‖ph‖ j,q ≤ C ′j‖ div vh‖ j,q

‖vh‖1+ j,q ≤ D j‖ div vh‖ j,q .
(26)

Let v0 := ∇s ∈ H 1,q
0 ∩ H 1+ j,q(G).Then u := v0 + vh ∈ H 1,q

0 (G) ∩ H 1+ j,q (G),
div u = Δs + div vh = π0 + πh = π . Since ‖s‖2+ j,q ≤ L‖Δs‖ j,q we get from (25)

‖u‖1+ j,q ≤ ‖v0‖1+ j,q + ‖vh‖1+ j,q ≤ L‖Δs‖ j,q + ‖vh‖ j,q

≤ max(1, L)(1+ 2C ′j )‖π‖ j,q .

��
Lemma 1 Let 1 < q < ∞, let j ∈ N0 and ∂G ∈ C2+ j . Then for a ∈ H 1+ j,q (G),
g ∈ H j,q (G) satisfying

∫

G

gdx =
∫

G

div adx (27)

there exists a unique w ∈ H 1+ j,q (G) such that

divw = g and (w − a) ∈ H 1,q
0 (G) ∩ H 1+ j,q (G). (28)
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With the constant E j > 0 by (24) it holds

‖w‖1+ j,q ≤ ‖a‖1+ j,q + E j‖g − div a‖ j,q . (29)

Proof Because of (27) (g − div a) ∈ Lq
0(G). By Theorem 7 there exists a unique

u ∈ Mq (G) ∩ H 1+ j,q (G) such that div u = g − div a and by (242)

‖u‖1+ j,q ≤ E j‖g − div a‖ j,q . (30)

Let w := a + u. Then w is the desired solution and (29) follows immediately from
(30). Suppose now that wi ∈ H 1+ j,q (G) (i = 1, 2) are solutions of (28). Then
div(w1 − w2) = 0 and w1 − w2 = (w1 − a)+ (a − w2) ∈ H 1,q

0 (G) and by (242)

‖w1 − w2‖1,q ≤ E1‖ div(w1 − w2)‖q = 0.

��
Theorem 8 Let 1 < q < ∞, let j ∈ N0 and ∂G ∈ C2+ j . Let f ∈ H j,q (G),

a ∈ H 2+ j,q (G) and g ∈ H 1+ j,q (G) be given such that (27) is satisfied. Then there
exists a unique v ∈ H 2+ j,q (G) and a unique p ∈ H 1+ j,q (G) ∩ Lq

0(G) such that for
μ > 0

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

μ〈∇v,∇ϕ〉 + 〈p, divϕ〉 = 〈 f , ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

−μΔv −∇ p = f in G

v − a ∈ H 1,q
0 (G)

div v = g in G

(31)

Furthermore we get with a constant Fj = F( j, q,G) > 0

μ‖v‖2+ j,q + ‖p‖ j+1,q ≤ Fj

(

‖ f ‖ j,q + μ‖a‖2+ j,q + μ‖g − div a‖ j+1,q

)

. (32)

Proof According Lemma 1 there is a unique w ∈ H 2+ j,q (G) such that divw = g
and w − a ∈ H 1,q

0 (G) ∩ H 2+ j,q (G). By (29) we get

‖w‖2+ j,q ≤ ‖a‖2+ j,q + E j+1‖g − div a‖ j+1,q . (33)

Consider the n Dirichlet problems for z̃ ∈ H 1,q
0 (G).

〈∇ z̃,∇ϕ〉 = 〈 f + μΔw, ϕ〉 = 〈 f , ϕ〉 − μ〈∇w,∇ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G) (34)

By Theorem 1 z̃ ∈ H 1,q
0 (G) ∩ H 2+ j,q (G) and

‖z̃‖2+ j,q ≤ C ′j+1(‖ f ‖ j,q + ‖w‖2+ j,q ). (35)
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Let z := 1
μ

z̃. Let π := div z ∈ Lq
0(G) ∩ H 1+ j,q (G). By Theorem 7 there is a

unique p̃ ∈ Lq
0(G)∩H 1+ j,q (G), such that with u := Tq p̃ ∈ H 1,q

0 (G)∩H 2+ j,q (G)∩
Mq (G) it holds div u = π . Furthermore

{

μ‖ p̃‖ j+1,q ≤ μE j+1‖ div z‖ j+1,q ≤ E j+1‖z̃‖2+ j,q

μ‖u‖2+ j,q ≤ μE j+1‖ div z‖ j+1,q ≤ E j+1‖z̃‖2+ j,q .
(36)

With v := z − u + w ∈ H 2+ j,q (G) we see v − a ∈ H 1,q
0 (G) ∩ H 2+ j,q (G),

div v = g and we derive from (34)

μ〈∇v,∇ϕ〉 + μ〈∇u,∇ϕ〉 = 〈 f , ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G).

u = Tq p̃ means

〈∇u,∇ϕ〉 = 〈 p̃, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

Let p := μ p̃. Then combining last equations leads to (311). Then (312) follows

by partial integration and by density of C∞0 (G) in Lq ′ (G). Let F ′j :=
[

(2E j+1 + 1)C ′j
+1]. Then (32) follows from (33), (35) and (36) with Fj := F ′j max(1, E j+1). ��

As a simple corollary we derive from Theorem 8 existence and regularity of the
following Stokes-like equation.

Theorem 9 Same assumptions as in Theorem 8. Let λ ∈ R. Then there exists a
unique v ∈ H 2+ j,q (G) and a unique p̃ ∈ H 1+ j,q (G) ∩ Lq

0(G) such that for μ > 0

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

μ〈∇v,∇ϕ〉 + λ〈div v, divϕ〉 + 〈 p̃, divϕ〉 = 〈 f , ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

−μΔv − λ∇ div v − ∇ p̃ = f in G

v − a ∈ H 1,q
0 (G)

div v = g in G
(37)

Furthermore, with Fj > 0 by (32)

‖v‖2+ j,q + ‖ p̃‖ j+1,q ≤ Fj

(

‖ f ‖ j,q + ‖a‖2+ j,q + ‖g − div a‖ j+1,q

)

+ |λ|‖g‖ j+1,q

(38)

Proof Consider the solution of (31) and write

μ〈∇v,∇ϕ〉 + λ〈div v, divϕ〉 + 〈p − λ div v, divϕ〉 = 〈 f , ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G).

We put p̃ := (p − λ div v) ∈ H 1+ j,q (G) ∩ Lq
0(G). This gives (371). (38) follows

immediately from (32) since div v = g. Let v(i) ∈ H 2+ j,q (G), p̃(i) ∈ H 1+ j,q (G) ∩
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Lq
0(G) be solutions of (371), i = 1, 2. Put u := v(1) − v(2) ∈ H 2+ j,q (G), π :=

p̃(1)− p̃(2) ∈ H 1+ j,q (G)∩ Lq
0(G). Moreover u = (

v(1) − a
)− (

v(2) − a
) ∈ H 1,q

0 (G)
and div u = 0. Then we get from (371)

μ〈∇u,∇ϕ〉 + 〈π, divϕ〉 = 0 ∀ϕ ∈ H 1,q ′
0 (G)

whence u ∈ H 1,q
0 (G) ∩ H 2+ j,q (G) is a solution of (31) (with f = a = 0, g = 0)

and therefore u = 0. ��
The next Stokes-like equation was considered by H. Beirão da Veiga [2].

Theorem 10 Same assumptions as in Theorem 8. Let μ > 0 and let λ ≥ 0. Then
there exists a unique uλ ∈ H 2+ j,q (G) and pλ ∈ H 1+ j,q (G) ∩ Lq

0(G) such that

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

μ〈∇uλ,∇ϕ〉 + 〈pλ, divϕ〉 = 〈 f , ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

−μΔuλ −∇ pλ = f in G

div uλ − λpλ = g in G

(uλ − a) ∈ H 1,q
0 (G)

(39)

Furthermore with the constant Fj > 0 from (32) and K j+1 = K ( j+1, q,G) > 0

μ‖uλ‖2+ j,q + ‖pλ‖2+ j,q ≤
≤ Fj (1+ λK j+1)

(

‖ f ‖ j,q + ‖a‖2+ j,q + ‖g − div a‖1+ j,q

)

. (40)

Let (v, p) be the solution of (37). Put u0 := v, p0 := p. Then with

K j+1 = K ( j + 1, μ, q,G)

μ‖uλ − u0‖2+ j,q + ‖pλ − p0‖1+ j,q ≤ 2K j+1λFj ·
·
(

‖ f ‖ j,q + ‖a‖2+ j,q + ‖g − div a‖1+ j,q

)

. (41)

Proof Let λ > 0. Consider the solution v ∈ H 2+ j,q (G), p ∈ H 1+ j,q (G)∩ Lq
0(G) of

(31). Let t ∈ Lq
0(G) be given and let w := Tq t ∈ H 1,q

0 (G), that is

〈∇w,∇ϕ〉 = 〈t, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G).

We consider

μ〈∇(v + w),∇ϕ〉 + 〈p − μt, divϕ〉 = 〈 f , ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)
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We would like to put uλ := v + w and pλ := p − μt . Then div u − λpλ = g if
and only if (observe div v = g)

divw = div Tq t = λ(p − μt). (42)

We split according (8)

p = p0 + ph, t = t0 + th, p0, t0 ∈ Aq (G), ph, th ∈ Bq
0 (G).

Let w0 := Tq t0, wh := Tq th , w = w0 + wh . Then divw0 = t0 and because of
(42) it must be satisfied t0 = λ(p0 − μt0) or equivalently

t0 := λ

1+ λμ
p0. (43)

Since divwh = Zqth because of (42) Zqth = λ(ph − μth) or equivalently

(Zq + λμI )th = λph (44)

must be satisfied.
Since p ∈ H 1+ j,q (G) ∩ Lq

0(G) we get from Theorem 3 that p = p0 + ph where
p0 = Δs, s ∈ H 2,q

0 (G)∩H 3+ j,q (G), ph ∈ H 1+ j,q (G)∩ Bq
0 (G). Then by Theorem 6

(

Zq ph − 1
2 ph

) ∈ H 2+ j,q (G) ∩ Bq
0 (G) and (22, 23) hold true with k = 2+ j . Since

the embedding of H 2+ j,q (G)∩Bq
0 (G) in H 1+ j,q (G)∩Bq

0 (G) is compact, the operator

Zq − 1

2
I : H 1+ j,q (G) ∩ Bq

0 (G) → H 1+ j,q (G) ∩ Bq
0 (G)

is compact. Therefore the operator

Zq + λμI =
(

Zq − 1

2
I

)

+
(

λμ+ 1

2

)

I

is a Fredholm operator. Suppose now that there is p ∈ H 1+ j,q ∩ Bq
0 (G) ⊂ Bq

0 (G)
with Zq p + λμp = 0 (λ > 0). Let v := Tq p ∈ H 1,q

0 (G) ∩ H 2+ j (G) ⊂ H 1,q
0 (G) be

the weak solution of (16), div v = Zq p = −λμp. Then

〈∇v,∇ϕ〉 = − 1

λμ
〈div v, divϕ〉.

By [10, Theorem 13.1] we conclude v ∈ H 1,2
0 (G) and ϕ := v is admissible,

whence

‖∇v‖2
2 = −

1

λμ
‖ div v‖2

2 ≤ 0.
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Therefore the kernel of (Zq + λμI ) is trivial. With the same arguments used
in parts (b) and (c) of the proof of Lemma 4.2 in [7] (replace Bq

0 (G) by Bq
0 (G) ∩

H 1+ j,q (G)) we see for � > −1 that the operator

�Zq + I : Bq
0 (G) ∩ H 1+ j,q (G) → Bq

0 (G) ∩ H 1+ j,q (G)

is bijective and with a constant C� > 0 holds

C�‖p + �Zq p‖1+ j,q ≥ ‖p‖1+ j,q ∀p ∈ Bq
0 (G) ∩ H 1+ j,q (G).

Therefore for λμ > 0 there is Dλ = D(λ,μ, j, q,G) > 0 such that

‖(Zq + λμI )p‖1+ j,q ≥ Dλ‖p‖1+ j,q ∀p ∈ Bq
0 (G) ∩ H 1+ j,q (G).

Similarly with the same arguments used in the proof of Theorem 3.2 in [7] there
is D0 > 0 such that

‖Zq p‖1+ j,q ≥ D0‖p‖1+ j,q ∀p ∈ Bq
0 (G) ∩ H 1+ j,q (G).

Let for λ ≥ 0

C(λ) := inf

{‖(Zq + λμ)p‖1+ j,q

‖p‖1+ j,q
: 0 �= p ∈ Bq

0 (G) ∩ H 1+ j,q (G)

}

≥ Dλ > 0.

Let λ′ ≥ 0. Then

‖Zq p + λ′μp‖1+ j,q = ‖Zq p + λμp + (λ′ − λ)μp‖1+ j,q ≥
≥ ‖Zq p + λμp‖1+ j,q − |λ′ − λ|μ‖p‖1+ j,q ≥
≥ (C(λ)− |λ′ − λ|μ)‖p‖1+ j,q

for all p ∈ Bq
0 (G) ∩ H 1+ j,q (G) and therefore

C(λ′) ≥ C(λ)− |λ′ − λ|μ.

Interchanging the roles of λ and λ′ gives C(λ) ≥ C(λ′)− |λ′ − λ| whence

|C(λ)− C(λ′)| ≤ |λ− λ′|μ ∀λ, λ′ ≥ 0.

The continuous and positive function C(.) attains its minimum on the compact

interval
[

0, 2
μ
‖Zq‖

]

. Let

d := min

{

C(λ) : 0 ≤ λ ≤ 2

μ
‖Zq‖

}

> 0.
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For λ ≥ 2
μ
‖Zq‖ we see

‖λμp + Zq p‖1+ j,q ≥ λμ‖p‖1+ j,q − ‖Zq‖‖p‖1+ j,q ≥ λμ

2
‖p‖1+ j,q .

Therefore we see

‖(Zq + λμI )p‖1+ j,q ≥ d0‖p‖q ∀λ ≥ 0, ∀p ∈ Bq
0 (G) ∩ H 1+ j,q (G) (45)

where d0 := max
(

d, λμ

2

) ≥ d. Let th ∈ Bq
0 (G) ∩ H 1+ j,q (G) be the unique solution

of (44). By (45) we get

‖th‖1+ j,q ≤ d−1λ‖ph‖1+ j,q . (46)

By Theorem 1 we see for wh := Tq th ∈ H 2+ j,q (G) and by (2), (10) and (46)

‖wh‖2+ j,q ≤ C j+1‖th‖1+ j,q ≤ C j+1d−1λ‖ph‖1+ j,q ≤
≤ C j+1d−1λ(1+ 2C ′j+1)‖p‖1+ j,q . (47)

As noted above, p0 = Δs with s ∈ H 2,q
0 (G) ∩ H 3+ j,q (G) and Tq p0 = ∇s ∈

H 1,q
0 (G) ∩ H 2+ j,q (G). Then because of (43)

w0 := Tq t0 = λ

1+ λμ
Tq p0 = λ

1+ λμ
∇s

and by (10)

‖w0‖2+ j,q ≤ λ

1+ λμ
‖Δs‖1+ j,q ≤ λ(1+ 2C ′j+1)‖p‖1+ j,q . (48)

With K j+1 := max(1,C j+1 · d−1)(1+ 2C ′j+1) > 0 we derive from (47) and (48)
for w := w0 + wh

‖w‖2+ j,q ≤ K j+1λ‖p‖1+ j,q . (49)

Since by (10)

‖t0‖1+ j,q = λ

1+ λμ
‖p0‖1+ j,q ≤ λ(1+ 2C ′j+1)‖p‖1+ j,q

we get from (46) and (10) for t := t0 + th

‖t‖1+ j,q ≤ K j+1λ‖p‖1+ j,q . (50)
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If we put now uλ := v+w and pλ := p−μt we derive from (32), (49) and (50)
estimate (40). We put u0 := v and p0 := p. Then uλ− u0 = w and pλ− p0 = −μt
and by (49), (50) and (32) we derive (41).

Uniqueness: In case λ = 0 (37) reduces to (31) and uniqueness follows from
Theorem 8. Assume now that λ > 0 and that u(i)

λ ∈ H 2+ j,q (G) and p(i)
λ ∈

H 1+ j,q (G)∩Lq
0(G) (i = 1, 2) are solutions of (37). Put z := u(1)

λ −u(2)
λ ∈ H 2+ j,q (G)

and π := p(1)
λ − p(2)

λ ∈ H 1+ j,q (G)∩ Lq
0(G). Further, z =

(

u(1)
λ − a

)

−
(

u(2)
λ − a

)

∈
H 1,q

0 (G) ∩ H 2+ j,q (G), div z = λπ and

μ〈∇z,∇ϕ〉 + 〈π, divϕ〉 = 0 ∀ϕ ∈ H 1,q ′
0 (G). (51)

Let now s ∈ C∞0 (G) and ϕ := ∇s ∈ H 1,q ′ (G). Since

〈∇z,∇ϕ〉 = −〈z,Δϕ〉 = −〈z,Δ∇s〉 = 〈div z,Δs〉

and from (51) we get (observe: div z = λπ )

0 = μ〈div z,Δs〉 + 〈π,Δs〉 =
(

μ+ 1

λ

)

〈div z,Δs〉 = 0.

This is true even for all s ∈ H 2,q ′
0 (G) which proves div z ∈ Bq

0(G). Further,
by (51)

〈∇z,∇ϕ〉 = − 1

λμ
〈div z divϕ〉 ϕ ∈ H 1,q ′

0 (G). (52)

Since − 1
λμ
∈ R \ {1, 2} by [10, Theorem 1.2], it follows z ∈ H 1,q̃

0 (G) for all

1 < q̃ <∞. For ϕ := z ∈ H 1,2
0 (G) by (49)

‖∇z‖2
2 = −

1

λμ
‖ div z‖2

2 ≤ 0.

Therefore z = 0 and λπ = div z = 0. ��
The method of proof of the following theorem is similar to that one used for the

proof of Theorem 4.3 in [7].

Theorem 11 Let 1 < q <∞, let j ∈ N0 and ∂G ∈ C2+ j . Let g ∈ H j,q (G) and let

� > −1. Then there exists u ∈ H 1,q
0 (G) ∩ H 2+ j,q (G) such that

⎧

⎪⎨

⎪⎩

〈∇u,∇ϕ〉 + �〈div u, divϕ〉 = 〈g, ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

or equivalently

−Δu − �∇ div u = g

(53)
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Further, there is a constant K j (�) = K ( j, �,G) > 0 such that

‖u‖2+ j,q ≤ K j (�)‖g‖ j,q . (54)

Proof Let w ∈ H 1,q
0 (G) be the solution of

〈∇w,∇ϕ〉 = 〈g, ϕ〉 ∀ϕ ∈ Ĥ
1,q ′

0 (G).

By Theorem 1 w ∈ H 1,q
0 (G)∩H 2+ j,q (G). Applying Theorem 8 with f := −Δw,

μ = 1, a = 0, g = 0 leads to v ∈ H 1,q
0 (G) ∩ H 2+ j,q (G) with div v = 0 and

p ∈ H 1+ j,q (G) ∩ Lq
0(G) such that

〈∇v,∇ϕ〉 + 〈p, divϕ〉 = 〈−Δw, ϕ〉 = 〈∇w,∇ϕ〉 = 〈g, ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G)

(55)
By (2)

‖w‖2+ j,q ≤ C ′j+1‖g‖ j,q

and by (32)

‖v‖2+ j,q + ‖p‖1+ j,q ≤ Fj‖Δw‖ j,q ≤ Fj‖g‖ j,q . (56)

Since div v = 0 we see trivially

〈∇v,∇ϕ〉 + �〈div v, divϕ〉 = 〈∇v,∇ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G) (57)

According Theorem 3 we split p ∈ H 1+ j,q (G) ∩ Lq
0(G), p = p0 + ph , where

p0 = Δs ∈ Aq (H ), s ∈ H 2,q
0 (G) ∩ H 3+ j,q (G) and ph ∈ Bq

0 (G) ∩ H 1+ j,q (G).
By (10)

‖Δs‖1+ j,q + ‖ph‖1+ j,q ≤ (1+ 2C ′j )‖p‖1+ j,q . (58)

Let v0 := ∇s ∈ H 1,q
0 (G) ∩ H 2+ j,q (G). Then

〈∇v0,∇ϕ〉 = 〈div v0, divϕ〉 = 〈Δs, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G).

Therefore

〈∇v0,∇ϕ〉 + �〈div v0, divϕ〉 = 〈(1+ �)Δs, divϕ〉.

We put z0 := 1
1+� v0. Then

〈∇z0,∇ϕ〉 + �〈div z0, divϕ〉 = 〈Δs, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G) (59)
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and by (58)

‖z0‖2+ j,q ≤ 1

1+ �
‖v0‖2+ j,q ≤

1+ 2C ′j+1

1+ �
‖p‖1+ j,q . (60)

In the proof of Theorem 10 we have shown that �Zq+ I : Bq
0 (G)∩H 1+ j,q (G) →

Bq
0 (G) ∩ H 1+ j,q (G) is bijective and with a constant C� > 0 holds

C�‖p + �Zq p‖1+ j,q ≥ ‖p‖1+ j,q ∀p ∈ Bq
0 (G) ∩ H 1+ j,q (G). (61)

Therefore there is a unique π ∈ Bq
0 (G) ∩ H 1+ j,q (G) such that

π + �Zqπ = ph .

Let t := Tqπ ∈ H 1,q
0 (G) ∩ H 2+ j,q (G), that is

〈∇t,∇ϕ〉 = 〈π, divϕ〉 = −〈∇π, ϕ〉 ∀ϕ ∈ H 1,q ′
0 (G).

By (2) and (61)

‖t‖2+ j,q ≤ C ′j+1‖π‖ j,q ≤ C ′j+1C�‖π + �Zqπ‖1+ j,q = C ′j+1C�‖ph‖1+ j,q . (62)

Since div t = Zqπ we see

〈∇t,∇ϕ〉 + �〈div t, divϕ〉 = 〈π + �Zqπ, divϕ〉 = 〈ph, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G).

(63)

Let u := v + z0 + t ∈ H 1,q
0 (G) ∩ H 2+ j,q (G). By (57), (59) and (63) and finally

(55) we see

〈∇u,∇ϕ〉 + �〈div u, divϕ〉 = 〈∇v,∇ϕ〉 + 〈Δs, divϕ〉 + 〈ph, divϕ〉 =
= 〈∇v,∇ϕ〉 + 〈p, divϕ〉 = 〈∇w,∇ϕ〉 = 〈g, ϕ〉 ∀ϕ ∈ H 1,q

0 (G).

Combining (56), (58), (60) and (62) leads to (54). Uniqueness: Let u(i) ∈
H 1,q

0 (G) ∩ H 2+ j,q (G) be solutions of (53). Let u := u(1) − u(2) ∈ H 1,q
0 (G) ∩

H 2+ j,q (G). Then

〈∇u,∇ϕ〉 = −�〈div u, divϕ〉 ∀ϕ ∈ H 1,q ′
0 (G). (64)

We proceed similarly to the proof of Theorem 10. Let s ∈ C∞0 (G) and ϕ := ∇s.
Then we see again

〈div u,Δs〉 = 〈∇u,∇ϕ〉 = −�〈div u,Δs〉,
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that is

(1+ �)〈div u,Δs〉 = 0 ∀s ∈ C∞0 (G).

Since 1+ � > 0 and C∞0 (G) dense in H 2,q ′
0 (G), it follows

〈div u,Δs〉 = 0 ∀s ∈ H 2,q ′
0 (G)

whence div u ∈ Bq
0 (G). Because of (60) and since−� ∈ R\{1, 2} again by Theorem

1.2 of [10] follows u ∈ H 1,q̃(G)
0 for all 1 < q̃ < ∞, especially for q̃ = 2. Then, by

(60) with ϕ := u

‖∇u‖2
2 = −�‖ div u‖2

2 ≤ 0.

��
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Large Time Behavior of Energy in Some Slowly
Decreasing Solutions of the Navier-Stokes
Equations

Zdeněk Skalák

Abstract We study the large time behavior of the energy in some slowly decreasing
global strong solutions of the Navier-Stokes equations. We show as the main result
of the paper that the energy concentrates in the lowest frequencies, while the middle
and high frequencies die out as time goes to infinity.

Keywords Navier-Stokes equations · Strong solution ·Asymptotic behavior · Energy
concentration

1 Introduction

Let Ω ⊆ R3 be uniformly regular of the class C3 (see [5]) for which the Poincaré
inequality does not hold (that is for every c > 0 there exists v ∈ W 1,2

0 (Ω) such that
||∇v|| ≤ c||v||). We study the large time behavior of global strong solutions of the
Navier-Stokes equations in Ω:

∂u

∂t
−Δu + u · ∇u + ∇ p = 0 in Ω × (0,∞), (1)

∇ · u = 0 in Ω × (0,∞), (2)

u|t=0 = u0, (3)

u = 0 on ∂Ω × (0,∞), (4)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the
unknown velocity vector field and the pressure and u0 = u0(x) = (u01(x), u02(x),
u03(x)) is a given initial velocity vector field.

There are plenty of papers dealing with various aspects of the large time behavior
of solutions of the Navier-Stokes equations, let us mention, for example, [6, 7, 10, 9].
In this paper we try to contribute to the study of the large time behavior of global
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strong solutions. Let u0 ∈ D(A1/4). Then the function u ∈ C([0,∞); D(A1/4)) ∩
C((0,∞); D(A)) ∩ C1((0,∞); L2

σ ) is called a global strong solution of (1), (2), (3),
and (4) if u(0) = u0 and du/dt+Au+Pσ (u ·∇u) = 0 for every t > 0 (see [5], where
the existence and asymptotic decays of global strong solutions were thoroughly
studied). We will show as our main result that there exist global strong solutions
in which middle and high frequencies disappear for times approaching infinity and
so the energy concentrates asymptotically only in the lowest frequencies. More pre-
cisely, if Ω is such a domain for which the Poincaré inequality does not hold then
there exist global strong solutions u of (1), (2), (3), and (4) such that

lim
t→∞

||Eλu(t)||
||u(t)|| = 1 (5)

for every λ > 0, where {Eλ; λ ≥ 0} is the resolution of identity of the Stokes
operator A.

The proof of (5) is based on the results from [5] and [13]: It was proved in [5]
that if u is a global strong solution of (1), (2), (3), and (4) then

||Aαu(t)|| = O(t−α), t →∞ (6)

for every α ∈ (0, 1]. The following theorem from [14] describes to some extent the
asymptotic behavior of frequencies in global strong solutions of (1), (2),(3), and (4).

Definition 1 Let u be a global strong solution of (1), (2), (3), and (4), u �= 0. Let
β ∈ (0, 1). We define

C(β) = lim
t→∞

‖Aβu(t)‖
‖u(t)‖ , Lβ = {λ ≥ 0; lim

t→∞
|||Eλu(t)|||β
|||u(t)|||β > 0},

Mβ = {λ ≥ 0; lim
t→∞

|||Eλu(t)|||β
|||u(t)|||β > 0}, B(β) = lim

t→∞

‖Aβu(t)‖
‖u(t)‖ ,

M = {λ ≥ 0; lim
t→∞

‖Eλu(t)‖
‖u(t)‖ > 0}, L = {λ ≥ 0; lim

t→∞
‖Eλu(t)‖
‖u(t)‖ > 0},

Aβ = inf Mβ, Dβ = inf Lβ, A = inf M, D = inf L .

Theorem 1 Let Ω ⊆ R3 be uniformly regular of the class C3, u be a global strong
solution of (1), (2), (3), and (4), u �= 0. Let further C(β0) < ∞ for some β0 ∈
[1/2, 1). Let β ∈ (0, β0]. Then 0 ≤ D ≤ A <∞ and

A = Aβ = C(β)1/β, D = Dβ = B(β)1/β . (7)

Further,

lim
t→∞

|||Eμu(t)|||β
|||u(t)|||β = lim

t→∞
||Eμu(t)||
||u(t)|| = 1, if μ > A, (8)
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lim
t→∞

|||Eμu(t)|||β
|||u(t)|||β = lim

t→∞
||Eμu(t)||
||u(t)|| = 1, if μ > D, (9)

lim
t→∞

|||Eμu(t)|||β
|||u(t)|||β = lim

t→∞

||Eμu(t)||
||u(t)|| = 0, if μ < A, (10)

lim
t→∞

|||Eμu(t)|||β
|||u(t)|||β = lim

t→∞
||Eμu(t)||
||u(t)|| = 0, if μ < D. (11)

Moreover, if μ ∈ (D, A) and ε ∈ (0, μ), then

lim
t→∞

||(Eμ+ε − Eμ−ε)u(t)||
||u(t)|| = lim

t→∞
|||(Eμ+ε − Eμ−ε)u(t)|||β

|||u(t)|||β = 1. (12)

Suppose that the assumptions of Theorem 1 are satisfied. Then only one of the
four disjunct possibilities can occur: (1) 0 = D = A, (2) 0 = D < A, (3) 0 < D =
A and (4) 0 < D < A. There are some open questions connected with Theorem 1,
especially, we do not know whether (2) and (4) can occur in some solutions. If it
was so, then (as follows from (12)) the particular solution would exhibit a complex
asymptotic behavior, at least as far as the asymptotic dynamics of its frequencies is
concerned. It was proved in [12] and [11] that if Ω is a smooth bounded domain then
for any solution u always 0 < D = A and A can be equal only to any eigenvalue
of the Stokes operator. So in this case the energy of u concentrates asymptotically
in eigenfunctions associated with some eigenvalue of the Stokes operator. If Ω is
such a domain for which the Poincaré inequality holds then Eλ = 0 for all positive
sufficiently small λ and using Remark 1 we get that either 0 < D = A or 0 <

D < A. However, it is not again clear, if both of these two conditions really occur.
If Ω is such a domain for which the Poincaré inequality does not hold then we are
not able to exclude any of the possibilities (1)–(4). On the other hand we know for
certain that either 0 < D = A or 0 < D < A occur for and only for exponentially
decreasing global strong solutions (as was shown in [14]). To prove our main result,
we will show that there exist global strong solutions in which C(β) = D = A = 0
for every β ∈ [1/2, 1). Equation (5) will then be an immediate consequence of (8).

Remark 1 It is known (see [4]) that λ ∈ σ (A) (spectrum of A) if and only if Eλ−ε �=
Eλ+ε for every positive ε. It follows from (12) that [D, A] ⊆ σ (A). Thus, the values
D and A cannot be separated by the points belonging to the resolvent set of A.

In the paper we use the standard notations: Lq = Lq (Ω), q ≥ 1, denotes the
Lebesgue spaces with the norm ‖ · ‖q . If q = 2, we denote ‖ · ‖ = ‖ · ‖2 and
(·, ·) is the inner product in L2. W s,q = W s,q (Ω), s ≥ 0, q ≥ 2, are the usual
Sobolev spaces with the norm ‖ · ‖s,q . L2

σ = L2
σ (Ω), resp. W 1,2

0,σ = W 1,2
0,σ (Ω), is

defined as the closure of C∞0,σ (Ω) = {ϕ ∈ C∞0 (Ω)3;∇ · ϕ = 0} in L2(Ω)3, resp.
W 1,2(Ω)3. Pσ denotes the orthogonal projection of L2(Ω)3 onto L2

σ . A is the Stokes
operator on L2

σ . A is positive selfadjoint with a dense domain D(A) ⊂ L2
σ . If Ω

is a uniform C2-domain or if Ω = R3 then D(A) = W 1,2
0,σ (Ω) ∩ W 2,2(Ω)3 and

Au = −PσΔu for every u ∈ D(A). Let Aα , α ∈ R, denote the fractional powers of
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A and {e−At ; t ≥ 0} be the Stokes semigroup generated by −A. {Eλ; λ ≥ 0} is the
resolution of identity of A. ||| · |||β , β ≥ 0, denotes the graph norm which is defined
as ||| · |||β = ‖Aβ · ‖ + ‖ · ‖.

2 Presentation and Proof of Main Results

The following theorem is the main result of this paper.

Theorem 2 Suppose that Ω ⊆ R3 is uniformly regular of the class C3 for which
the Poincaré inequality does not hold. Let u0 ∈ D(A1/4) and let either ||e−At u0|| ≥
ct−1/8 or c1t−γ ≥ ||e−At u0|| ≥ c2t−(1+5γ )/8+ε for every t ≥ t0, where γ ∈ (0, 1/3),
ε ∈ (0, (1+5γ )/8−γ ) and c, c1, c2 and t0 are positive constants. Let u be a global
strong solution of (1), (2), (3), and (4). Then A = D = 0, where A and D are the
numbers from Definition 1 and Theorem 1 and so

lim
t→∞

||Eλu(t)||
||u(t)|| = 1 (13)

for every λ > 0. Moreover,

lim
t→∞

|||Eλu(t)|||β
|||u(t)|||β = 1 and lim

t→∞
‖Aβu(t)‖
‖u(t)‖ = 0 (14)

for every λ > 0 and every β ∈ (0, 1).

Remark 2 It seems to be quite difficult to characterize in some way the initial condi-
tions u0 which satisfy the assumptions in Theorem 2. On the other hand a construc-
tion of such u0 is an easy task, see Appendix for one example.

The proof of Theorem 2 is a consequence of (6), Theorem 1 and the following
Lemmas 2 and 3 and is postponed to the end of this section. The proofs of Lemmas 1,
2 and 3 are based on the techniques developed in [2, 3, 8]. Lemma 1 was proved in
[2] (see Theorem 1.1) for the case of 3 and 4-dimensional domains and for suitable
nonzero functions f on the right hand side of (1). The estimate (15) in our version
of Lemma 1 is slightly better than the one derived in [2] due to the application of
(6). In Lemmas 2 and 3 we present some lower estimates of the decay rates of the
global strong solutions of (1), (2), (3), and (4). We use the technique from [3], where
analogical results were presented for the case Ω = Rn. The estimates from Lem-
mas 2 and 3 are weaker than the ones in [3] due to the fact that we work with general
domains Ω . See in this connection Lemma 7 from [3] or Lemma 5.1 from [1].

Lemma 1 Let α > 0, u0 ∈ D(A1/4) and ||e−At u0|| ≤ c1t−α for every t > 0, where
c1 is a positive constant. If u is a global strong solution of (1), (2), (3), and (4) then
there exists c > 0 such that

||u(t)|| ≤ ct−min(α,1/2) (15)

for every t > 0.
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Proof Let the assumptions of Lemma 1 be satisfied. Using the idea by Schonbek of
decomposing the frequency domain into two time dependent subsets, we obtain for
any r (t) > 0

d

dt
||u(t)||2 + r (t)||u(t)||2 ≤ r (t)||Er (t)u(t)||2, t > 0. (16)

We continue with the estimate of the right hand side of (16):

||Er (t)u(t)||

≤ ||Er (t)e
−At u0|| +

∫ t

0
||Er (t) A1/2e−A(t−s) A−1/2 Pσ (u(s) · ∇u(s))||ds

≤ ||e−At u0|| +
∫ t

0

(∫ r (t)

0
λe−2λ(t−s)d||EλA−1/2 Pσdiv(u(s)u(s))||2

)1/2

ds

≤ ||e−At u0|| + r (t)1/2
∫ t

0
||A−1/2 Pσdiv(u(s)u(s))||ds.

Since

||A−1/2 Pσdiv(uu)|| ≤ c||uu|| = c||u||24 ≤ c||A3/8u||2 ≤ c||u||1/2||A1/2u||3/2,

we get

||Er (t)u(t)|| ≤ ||e−At u0|| + cr (t)1/2
∫ t

0
||u(s)||1/2||A1/2u(s)||3/2ds

≤ ||e−At u0|| + cr (t)1/2||u||1/2
L2(0,t ;L2(Ω))||u||3/2

L2(0,t ;D(A1/2))

≤ ||e−At u0|| + cr (t)1/2t1/4.

(17)

Inserting the last inequality into (16), we get

d

dt
||u(t)||2 + r (t)||u(t)||2 ≤ cr (t)

(||e−At u0||2 + r (t)t1/2
)

, t > 0. (18)

Putting r (t) = β/t , where β > 0 is sufficiently large and multiplying (18) by tβ ,
we get for t > 0

||u(t)||2 ≤ ct−β
(∫ t

0
βsβ−1||e−Asu0||2ds + β2/(β − 1/2)tβ−1/2

)

. (19)

Since ||e−Asu0|| → 0 for s → ∞, it follows from (19) that ||u(t)|| → 0 for
t →∞ for any u0 ∈ D(A1/4). If we use the assumption ||e−At u0|| ≤ ct−α, t > 0,
we obtain

||u(t)||2 ≤ c(βt−2α + β2/(β − 1/2)t−1/2), t > 0. (20)

If α ≤ 1/4 than ||u(t)|| ≤ ct−α and the lemma is proved. Suppose that α > 1/4.
Then ||u(t)|| ≤ ct−1/4 and repeating the proof from the beginning we get instead of
(17) that
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||Er (t)u(t)|| ≤ ||e−At u0|| + cr (t)1/2
∫ t

0
||u(s)||5/4||Au(s)||3/4ds ≤

||e−At u0|| + cr (t)1/2(c +
∫ t

1
s−5/16s−3/4ds) ≤ ||e−At u0|| + cr (t)1/2.

So inserting the last estimate into (16) we arrive at the inequality

||u(t)||2 ≤ c(βt−2α + β2/(β − 1)t−1), t > 0, (21)

which completes the proof of the lemma. ��
Lemma 2 Let u0 ∈ D(A1/4) and ||e−At u0|| ≥ c1t−1/8 for every t ≥ t0, where c1 and
t0 are positive constants. If u is a global strong solution of (1), (2), (3), and (4) then
there exists c > 0 such that ||u(t)|| ≥ ct−1/8 for every t ≥ 1.

Proof Put v = e−At u0 and w = u − v. Proceeding in the same way as in the proof
of Lemma 1 we get

d

dt
||w(t)||2+r (t)||w(t)||2

≤ r (t)||Er (t)w(t)||2 + ||∇v(t)||||u(t)||5/4||Au(t)||3/4
(22)

for every t > 0 and

||Er (t)w(t)|| ≤ cr (t)1/2
∫ t

0
||u(s)||5/4||Au(s)||3/4ds.

Putting again r (t) = β/t , β > 0 sufficiently large, we arrive at the inequality

||w(t)||2 ≤ ct−β
∫ t

0
τβ−2

(∫ τ

0
||u(s)||5/4||Au(s)||3/4ds

)2

dτ +

ct−β
∫ t

0
τβ ||∇v(τ )||||u(τ )||5/4||Au(τ )||3/4dτ. (23)

If we use the decay rates ||u(s)|| = o(1), s → ∞, ||Au(s)|| = O(s−1), s → ∞
and ||∇v(τ )|| = O(τ−1/2), τ →∞, we get

∫ t

0
τ (β−2)

(∫ τ

0
||u(s)||5/4||Au(s)||3/4ds

)2

dτ = o(tβ−1/2), t →∞

and

∫ t

0
τβ ||∇v(τ )||||u(τ )||5/4||Au(τ )||3/4dτ = o(tβ−1/4), t →∞

and so ||w(t)|| = o(t−1/8), t →∞. It concludes the proof of the lemma. ��
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Lemma 3 Let γ ∈ (0, 1/3), u0 ∈ D(A1/4) and c1t−(1+5γ )/8+ε ≤ ||e−At u0|| ≤ c2t−γ

for every t ≥ t0, where c1, c2 and t0 are positive constants and ε ∈ (0, (1+ 5γ )/8−
γ ). If u is a global strong solution of (1), (2), (3), and (4), then there exists c > 0
such that ||u(t)|| ≥ ct−(1+5γ )/8+ε for every t ≥ 1.

Proof In the same way as in Lemma 2 one can derive (23). Let firstly γ ∈ (0, 1/5].
Using Lemma 1, the assumptions of Lemma 3 and the fact that ||∇v(τ )|| ≤
cτ−1/2, τ > 0, we get that

∫ τ

0
||u(s)||5/4||Au(s)||3/4ds ≤ cτ 1/4−5γ /4, τ > 0.

It follows elementarily from (23) that ||w(t)|| ≤ ct−(1+5γ )/8 and the proof fol-
lows. If γ ∈ (1/5, 1/3) then

∫ τ

0
||u(s)||5/4||Au(s)||3/4ds ≤ c <∞, τ > 0

and we get again from (23) that ||w(t)|| ≤ ct−(1+5γ )/8. The proof of the lemma
follows immediately. ��
Proof We are now prepared to prove Theorem 2. Let the assumptions of Theorem 2
be satisfied. It follows from Lemmas 2 and 3 that there exists c > 0 such that
||u(t)|| ≥ ct−1/3 for every t ≥ 1. Using (6) we get that C(β) = 0 for every β ∈
[1/2, 1), where C(β) was defined in Definition 1. Therefore, the equalities A =
D = 0 follow from (7) in Theorem 1 and the validity of (13) and (14) follows
immediately from (7) and (8). ��
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Appendix

Let e−n > an > an+1 > 0 for every n ∈ N . Choose un ∈ H (Ean − Ean+1 ) such that
||un|| = 1/n2. Then

||e−At un|| ≥ e−an t/n2

for every n ∈ N . Put u0 =
∑∞

n=1 un . Obviously, u0 ∈ D(A1/4) and

||e−At u0|| ≥ ||e−At un||

for every n ∈ N . Let c and α be arbitrary fixed positive numbers and put K =
⋃∞

k=1

[

(cek2)1/α, ek
]

. Then there exists t0 > 0 such that [t0,∞) ⊂ K . If t ∈ K , then
t ∈ [

(cen2)1/α, en
]

for some n ∈ N and
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||e−At u0|| ≥ ||e−At un|| ≥ e−ant/n2 ≥ e−1/n2 ≥ c/tα.

Thus, ||e−At u0|| ≥ c/tα for every t ∈ [t0,∞). Moreover, multiplying u0 by a
sufficiently small constant and using the existence theorem from [5], we have the
existence of a global strong solution of the Navier-Stokes equations with the initial
condition u0. By the choice α = 1/8 we see that u0 satisfies the assumptions of
Theorem 2.
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A Selected Survey of the Mathematical Theory
of 1D Flows

Ivan Straškraba

Abstract The global behavior of compressible fluid in a tube is investigated under
physically realistic assumptions. Different initial and boundary conditions are dis-
cussed. General conditions are established, under which the fluid stabilizes to an
equilibrium state. Motivation for this study is that apriori recognition of stabilization
of the fluid is important in many situations arising in industrial applications. This
contribution may serve as a partial survey of some results in this respect.

Keywords Compressible Navier-Stokes equations · Global behavior · Large data

1 Introduction and Main Results

Compressible flow in tubes is an important phenomenon appearing in many branches
of industry as construction of hydraulic machinery, pipelines, power stations, etc.
Contemporary technology requires more and more preliminary qualitative and quan-
titative analysis taking into account real physical aspects which cannot be ignored
since expected dynamics of the system is highly oscillatory and sensitive to fluctu-
ations in the model setting.

In the present paper we try to partially map the developments in the global in
time analysis of compressible fluids in tubes under different external conditions.

To be more concrete, let us consider the system called shortly “barotropic”,
described by equations

�(ut + uux )+ p(�)x − (μ(�)ux )x = � f, (1)

�t + (�u)x = 0, x ∈ (0, 1), t > 0, (2)

u(0, t) = u(1, t) = 0, t > 0, (3)

u(x, 0) = u0(x), �(x, 0) = �0(x), x ∈ [0, 1]. (4)
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The unknown quantities are the density � and the velocity u. The given data are
the functional dependence p = p(�) between the density � and the pressure p,
viscosity coeffcient μ = μ(�) as a function of density (can be a constant which
may play a decisive role), external force density f = f (x) (+possibly an oscillatory
part Δ f (x, t)), and the initial distribution u0 and �0 of the velocity and the density,
respectively.

The problem of the behavior of (�(·), u(·)) as t tends to infinity reaches to the
papers like [7]. Further details about history of the global behavior of fluids can be
found in the basic monograph of [1].

One of the principle questions is, whether, when, given regular initial data, the
solution of (1), (2), (3), and (4) stabilizes to a rest state.

There are several variants of the initial boundary value problems. For example,
instead of the Dirichlet boundary conditions, the free boundary condition

(μ(�)ux − p(�))|x=&(t) = pΓ (t) for t > 0. (5)

The function & = &(t) may be, in one space dimension, reduced to, say 1, if
we accept the Lagrangian mass coordinates. But if we hope to have, in the future,
if there is any, attempt to attack any more dimensional problem, then it seems to
be convenient to insist on more general formulation whether or not it is temporally
rational.

If the temperature is included, then we consider for example, the system

�t + (�u)x = 0

(�u)t + (�u2)x − μuxx + px = � f (6)
(

�
(

e + u2

2

))

t
+

(

�u
(

e + u2

2

)+ up
)

x
− (μuux )x + qx = � f u.

We may use the given constitutive relations

p(�, e) = (γ − 1)�e, q(e, ex ) = −κ(e)ex , (7)

and the initial conditions for unknowns (�, u, e) with boundary conditions as

u(0, t) = u(1, t) = ex (0, t) = ex (1, t) = 0. (8)

An important question is, whether the limit in any of these cases exists or at least
the ω−limit set

{(�(t), u(t), etc.); t > 0} (9)

is compact in an appropriate space like Lq (0, 1) (w.r.t. the space variable x), or
whatever is possible to prove.
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In an optimal case we expect a unique limit which is a steady state solution. For
Eqs. (1), (2), and (3) with Dirichlet boundary condition for the velocity the steady
state is given by the equations

us = 0 for all x, t,

p(�s)x = �s f for all x,
∫ 1

0
�s dx =

∫ 1

0
�0 dx . (10)

It is known that this problem can have multiple solutions when we allow the
density � vanish for some x ∈ (0, 1). The conditions under which it occurs or not
are known (see [2, 8, 4, 5, 3, 9, 10]).

The regular case is when

�s(x) ≥ �s > 0, x ∈ (0, &). (11)

Then the following theorem has been proved in [16]

Theorem 1 Let the steady state density �s satisfy (11), p(·) be continuous, increas-
ing and such that p(0) = 0, p(∞) = ∞, p′ ∈ L loc(R+), r p′(r ) = O(1) as r → 0+,
and p(r ) = O(rγ0 ) as r → 0+ for some 0 < γ0 ≤ 1. (Evidently, these conditions are
satisfied for the most popular state functions p(r ) = p1rγ with p1 > 0 and γ > 0.)
For simplicity assume μ to be a constant. Then, if in addition, 1/p′ ∈ L∞loc(R+) and
the initial density �0 belongs to W 1(0, 1), then the following global in time estimate
holds true:

‖�(·, t)− �s(·)‖L2(0,1) + ‖u(·, t)‖L2(0,1)

≤ const e−at
(

‖�0 − �s‖L2(0,1) + ‖u0‖L2(0,1) +
∫ t

0
eaτ‖Δ f (·, τ )‖L2(0,1) dτ

)

for all t ≥ 0. (12)

Here, a is a constant depending on the magnitude of the data, and Δ f is eventual
oscillation component of the external force density which we initially assumed to be
zero.

On the other hand, the situation with vacuums is more singular, since at least an
important estimate

inf
x,t

�(x, t) > 0 (13)

cannot be valid if we hope that �(x, t) → �s(x) in a stronger sense when {�s(x) =
0} �= ∅. The latter case is treated in our paper [11], which has been actually com-
pletely presented at the conference in Estoril, and we are able to prove the following
theorem:

Theorem 2 Let conditions concerning the function p(·) be as in the preceding Theo-
rem and let there exist a unique steady density �s such that meas {x ; �s(x) = 0} = 0.
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Then for any t0 ≥ 0 there are positive constants K and α dependent only on the
data such that

∫ 1

0

(

�u2 + �Π (�, �s)+ |� − �s |β
)

dx (14)

≤ K
{

e−α(t−t0)
[

1+
∫ t

t0

eαs‖Δ f (s)‖2
2 ds

]+
∫ ∞

t
‖Δ f (s)‖2

2

}1/2
,

where

Π (r, s) =
∫ r

s

p(σ )− p(s)

σ 2
dσ, r, s ≥ 0

and β ≥ 2 if γ < 2 or β ≥ γ if γ ≥ 2 is arbitrary but fixed.

The method of proof is, among other, based on uniform apriori estimates, con-
struction of an intermediate “quasistationary density” � given by

p(�(x, t)) =
∫ 1

0
p(�(ξ, t)) dξ +

∫ 1

0

∫ 1

ξ

�(η, t) f (η) dη dξ −
∫ 1

x
�(ξ, t) f (ξ ) dξ.

(15)
Notice, that � satisfies

p(�)x = � f, x ∈ (0, 1), t > 0,
∫ 1

0
p(�) dx =

∫ 1

0
p(�) dx, t > 0. (16)

Then, a “two layers” Lyapunov analysis is used. This means, that first we con-
struct an auxiliary Lyapunov like functional containing the function � (which is, of
course determined by the data only implicitly since constructed via �). Then by a
series of estimates it is shown that this function has some appropriate asymptotics
in time, and then it is used for the functional which has features of a real Lyapunov
functional that can be used to establish the global in time rate of convergence in the
sense of the preceding theorem.

2 Further Cases

Let us mention further variations of the model problem. First, we are able to modify
our approach to the free boundary problem. The corresponding result in the regular
case is given in our paper [17].

If it is assumed that the fluid leaks into vacuum, then the decay rate of the evolu-
tionary solution is described in [20].

Another variant mentioned already above, is the problem with density dependent
viscosity. When μ(·) is regular and μ(0) > 0, then we get the result quite analogous
to the regular case for μ = const.
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On the other hand, when μ(0) = 0 we have only conditional result assuming that
the kinetic energy over layers given by (x, t) ∈ (0, 1)× (t − 1, t) decays to zero as
t goes to infinity, but we have no idea how to prove that it is really true. The reason
is that the dissipation of energy near possible vacuums is approaching zero which
causes that we have no more tool to use it as before. There is a hope that careful
balance of behavior of μ(·) near zero with other data could give some result.

We use basically the method applied in [9, 10, 13] for the case of constant vis-
cosity, but there is a considerable obstacle in the weakness of the dissipation term
when the density is small if we allow the dependence of the viscosity be such that
μ = μ(�), where � can be zero at some points regardless how it is regular. Since,
as it has been observed in [13], the density may asymptotically vanish even if it is
strictly positive at any finite time we cannot in general to get the global estimates for
density as in [14]. To overcome this obstacle we derive weaker uniform Lq estimates
and find the play of the growth of function p(·) and that of μ(·) that allows us to pass
all steps analogously as in [14] under certain condition on the kinetic energy decay.

For related results for constant viscosity we refer to [15, 19] in one dimension,
and to [4, 9, 10] in 2 or 3 dimensional case. The global existence results for the
problem (1), (2), (3), and (4) with arbitrarily large data can be found in [6, 12, 18].

To be more detailed, let us present what we are able to prove.
First, let us make the following fundamental assumptions:

p(·) ∈ C1
loc(0,∞), p(0+) = p(0) = 0, p′(r ) > 0 for r > 0,

lim
r→∞ p(r ) = ∞; (17)

there exist c > 0, γ > 1, 0 ≤ α ≤ γ such that c−1rα ≤ μ(r ) ≤ crα, (18)

c−1rγ ≤ cr + r
∫ r

1

p(s)

s2
ds,

p(r ) ≤ c(1+ r + r
∫ r

1

p(s)

s2
ds) for r ≥ 0;

μ(·) ∈ C1
loc(0,∞) ∩ Cloc([0,∞)), μ(r ) > 0 for r > 0; (19)

f = f (x), f ∈ L∞(0, 1); (20)

u0 ∈ H 1(0, 1), u0(0) = u0(1) = 0, �0 ∈ H 1(0, 1), 0 < α0 ≤ �0(x)

for x ∈ [0, 1]. (21)

The stationary problem corresponding to (1), (2), (3), and (4) is given by the
equations

(�u2)x + p(�)x − (μ(�)ux )x = � f, (22)

(�u)x = 0, (23)

u(0) = u(1) = 0, (24)
∫ 1

0
� dx = 1, � ≥ 0. (25)
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While in the case of μ away from zero the only solutions of (22), (23), (24), and
(25) are rest states (u, �) = (0, �), this is not evident if μ(0) = 0 [14]. Nevertheless,
under certain conditions, we are able to show that despite of possible vacuums in
the limit as t → ∞ the evolution solutions stabilize to a rest state. The following
two theorems give an essence of the merit.

Theorem 3 Let the assumptions (17), (18), (19), (20), and (21) be satisfied. If

lim
t→∞

∫ t

t−1

∫ 1

0
�u2dxds = 0,

then for any q ∈ [1, γ ) and tn → ∞ there is a subsequence {sn} ⊂ {tn} such that
|�(sn)− �∞|q → 0 as n →∞, where

p(�∞)x = �∞ f, �∞ ∈ W 1,∞(0, 1), (26)
∫ 1

0
�∞ dx =

∫ 1

0
�0 dx := M0. (27)

If the rest state is uniquely determined (see [4, 3] for the optimal uniqueness condi-
tions for the rest state), then

lim
t→∞‖�(t)− �∞‖Lq (0,1) = 0, (28)

and

lim
t→∞

∫ 1

0
�(t)|u(t)|2 dx = 0. (29)

Theorem 4 Let, in addition to assumptions (17), (18), (19), (20), and (21), μ(0) >
0. Then, for any q ∈ [1,∞) and tn → ∞, there is a subsequence {sn} ⊂ {tn} such
that ‖�(sn)−�∞‖Lq (0,1) → 0 as n →∞, with �∞ satisfying (27) we have (28), and
(29) holds true.

Remark In fact all steps can be retraced with a weak solution of the regularity
�, �u, �u2, p(�), μ(�)ux ∈ L1((0, 1) × (0, T )) for any T > 0 if the generalized
formulation is applied. Then the smoothness of data can be relaxed as for example
in [18], where an appropriate existence theorem for weak solutions is given.
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A Numerical Method for Nonstationary
Stokes Flow

Werner Varnhorn

Abstract We consider a first order implicit time stepping procedure (Euler scheme)
for the non-stationary Stokes equations in a cylindrical domain (0, T ) × G where
G ⊂ R

3 is smoothly bounded. Using energy estimates we can prove optimal con-
vergence properties in the Sobolev spaces H m(G) (m = 0, 1, 2) uniformly for
t ∈ [0, T ], provided that the solution of the Stokes equations has a certain degree of
regularity. For the solution of the resulting Stokes resolvent boundary value prob-
lems we use a representation in form of hydrodynamical volume and boundary layer
potentials, where the unknown source densities of the latter can be determined from
uniquely solvable boundary integral equations’ systems. For the numerical compu-
tation of the potentials and the solution of the boundary integral equations a bound-
ary element method of collocation type is used. The main purpose of this paper is
to combine these steps to an efficient numerical algorithm for non-stationary Stokes
flow and illustrate its accuracy via different simulations of a model problem.

Keywords Stokes equations · Time stepping · Stokes resolvent potentials ·
Boundary element methods

1 Introduction and Notation

Let T > 0 be given and G ⊂ R
3 be a bounded domain with a sufficiently smooth

compact boundary S. In (0, T ) we consider the non-stationary Stokes equations

Dtv − νΔv +∇ p = F, div v = 0, v|s = 0, v|t=0 = v0 . (1)

These equations describe the linearized motion of a viscous incompressible fluid:
The vector v = (v1(t, x), v2(t, x), v3(t, x)) represents the velocity field and the
scalar p = p(t, x) the kinematic pressure function of the fluid at time t ∈ (0, T )
and at position x ∈ G. The constant ν > 0 is the kinematic viscosity, and the
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external force density F together with the initial velocity v0 are the given data. The
condition div v = 0 means the incompressibility of the fluid, and v = 0 on the
boundary S expresses the no-slip condition, i. e. the fluid adheres to the boundary.

It is the aim of the present paper to develop a method for the numerical solu-
tion of (1). This method consists of three steps. In the first step, the implicit Euler
method in time is used to transform (1) into a finite number of certain boundary
value problems. In the second step, these boundary value problems are studied with
methods of hydrodynamical potential theory. This leads to a representation of their
solutions consisting of volume and surface potentials, where the unknown densities
have to be determined from systems of boundary integral equations. In the third
step, for the discretization of the boundary integral equations and the numerical
computation of the potentials a boundary element method of collocation type and
suitable quadrature methods are used.

Let us consider the following semi-discrete first order Euler approximation
scheme for the Stokes equations (1): Setting

h = T/N > 0, tk = k h (k = 0, 1, . . . , N ) ,

we approximate the solution v, p of (1) at time tk by the solution vk, pk(k =
1, 2, . . . , N ) of the following equations in G:

(vk − vk−1)h−1 − νΔvk +∇ pk = h−1
kh∫

(k−1)h
F(t)dt ,

div vk = 0, v0 = v0, vk
|s = 0 .

(2)

Here F and v0 are the given data. Thus for every k = 1, 2, 3, . . . , N we have to
determine in G the solution vk, qk of the Stokes resolvent boundary value problem

(λ−Δ)vk + ∇qk = Fλ,k−1, div vk = 0, vk
|s = 0,

with λ = (νh)−1 > 0, qk = pk/ν, and

Fλ,k−1(x) = λ

⎛

⎜
⎝vk−1(x)+

kh∫

(k−1)h

F(t, x)dt

⎞

⎟
⎠ . (3)

Using methods of hydrodynamical potential theory we find a representation of
the solution vk, qk in the form

(vk(x), qk(x)) = (VλFλ,k−1)(x)+ (DλΨ )(x), x ∈ G . (4)

Here VλFλ,k−1 is a hydrodynamical volume potential with density Fλ,k−1, and
DλΨ is a double layer potential with an unknown source density Ψ , which can be
determined from the boundary integral equations
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− (V ∗λ Fλ,k−1)(x) = 1

2
Ψ (x)+ (D∗λΨ )(x)− (PNΨ )(x) , x ∈ S . (5)

Here the superscript ∗ indicates the velocity part of the above potentials. (D∗λΨ )
is the direct value of the hydrodynamical double layer potential for the velocity, and
PN is a one-dimensional perturbation operator, which ensures that the solution Ψ is
unique in the space of continuous vector fields on S. For the spatial discretization of
(5) we use a boundary element method of collocation type as described in [6, 5].

At this point, let us introduce our notations. Throughout the paper, G ⊂ R
3 is

a bounded domain having a compact boundary S of class C2. In the following, all
functions are real valued. As usual, C∞0 (G) denotes the space of smooth functions
defined in G with compact support, and L2(G) is equipped with scalar product and
norm

( f, g) =
∫

G

f (x)g(x)dx , || f || = ( f, f )
1
2 ,

respectively. For functions f, g ∈ L2(G) we need the following well-known
relations:

( f − g, f + g) = || f ||2 − ||g||2,
( f − g, 2 f ) = || f ||2 − ||g||2 + || f − g||2, (6)

2( f, g) ≤ 2 || f || ||g|| ≤ || f ||2 + ||g||2 .

The Sobolev space H m(G) (m = 0, 1, 2, . . .) is the space of functions f such
that Dα f ∈ L2(G) for all α = (α1, α2, α3) ∈ N

3
0 with |α| = α1 + α2 + α3 ≤ m. Its

norm is denoted by

|| f ||m = || f ||H m (G) =
⎛

⎝
∑

|α|≤m

||Dα f ||2
⎞

⎠

1
2

,

where Dα = Dα1
1 Dα2

2 Dα3
3 with Dk = d

dxk
(k = 1, 2, 3) is the distributional deriva-

tive. The completion of C∞0 (G) with respect to ||·||m is denoted by H m
0 (G)(H 0

0 (G) =
H 0(G) = L2(G)) . If f ∈ H 1

0 (G), in particular, we have Poincaré’s inequality

|| f ||2 ≤ CG ||∇ f ||2 , (7)

where here the constant λ1 = C−1
G is the smallest eigenvalue of the Laplace operator

−Δ in G with zero boundary condition.
The spaces C∞0 (G)3, L2(G)3, H m(G)3, . . . are the corresponding spaces of vec-

tor fields u = (u1, u2, u3). Here norm and scalar product are denoted as in the scalar
case, i. e. for example,
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(u, v) =
3

∑

k=1

(uk, vk) , ||u|| = (u, u)
1
2 =

∫

G

|u(x)|2dx
1
2 ,

where |u(x)| = (u1(x)2 + u2(x)2 + u3(x)2)
1
2 is the Euclidian norm of u(x) ∈ R

3.
The completion of

C∞0,σ (G)3 = {u ∈ C∞0 (G)3|div u = 0}

with respect to the norm || · || and || · ||1 are important spaces for the treatment of
the Stokes equations. They are denoted by

H (G)3 , V (G)3 ,

respectively. In H 1
0 (G)3 and V (G)3 we also use

(∇u,∇v) =
3

∑

k, j=1

(Dku j , Dkv j ) , ||∇u|| = (∇u,∇u)
1
2

as scalar product and norm. Moreover, we need the B-valued spaces Cm(J, B) and
H m(a, b, B), m ∈ N0, where J ⊂ R with a, b ∈ R (a < b), and where B is any of
the spaces above. In case of C0(, ) we simply write C(, ), and we use H, V, H m, . . .

instead of H (G), V (G), H m(G), . . ., if the domain of definition is clear from the
context. Finally, let

P : L2(G)3 −→ H (G)3 (8)

denote the orthogonal projection. Then we have

L2(G)3 = H (G)3 ⊕ {v ∈ L2(G)3|v = ∇ p for some p ∈ H 1(G)} ,

with means

(u,∇ p) = 0 for all u ∈ V (G)3 and p ∈ H 1(G) . (9)

2 An Implicit Euler Scheme

Because the projection P from (8) commutes with the strong time derivative Dt ,
from the Stokes equations (1) we obtain the following evolution equations for the
function t → v(t) ∈ H (G)3:

Dtv(t)− νPΔv(t) = P F(t) (t ∈ (0, T )) , v(0) = v0 . (10)
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In this case, the condition div v = 0 and the boundary condition v = 0 on S are
satisfied in the sense that we require v(t) ∈ V (G)3 for all t ∈ (0, T ). Concerning
the solvability of the evolution equations (10) it is known that for

v0 ∈ H 2(G)3 ∩ V (G)3 , F ∈ H 1(0, T, H (G)3) (11)

there is a unique solution v of (10) in G such that

v ∈ C([0, T ], H 2(G)3 ∩ V (G)3) , Dtv ∈ C([0, T ], H (G)3) ∩ L2(0, T, H 1(G)3),
(12)

and that there is some constant K depending only on G, ν, F, v0 and not on t ∈
[0, T ] such that for all t ∈ [0, T ]

t∫

0

||∇Dσ v(σ )||2dσ ≤ K , ||v(t)||2 ≤ K , ||Dtv(t)|| ≤ K . (13)

Let us now consider the discrete equations under the weaker assumptions

v0 ∈ H (G)3 , F ∈ L2(0, T, H (G)3) . (14)

Using P as above and noting that F = P F we obtain in G(h = T/N > 0)

(vk − vk−1)− hνPΔvk =
kh∫

(k−1)h

F(t)dt , v0 = v0 . (15)

It is known that under the above assumptions (14) there is a unique solution

vk ∈ H 2(G)3 ∩ V (G)3 (k = 1, 2, . . . , N ) (16)

of (15): If we define the Stokes operator A to be the extension of −PΔ in H (G)3,
then its domain of definition D(A) is H 2(G)3 ∩ V (G)3. Because λ = (νh)−1 > 0
belongs to the resolvent set of −A, the equations

vk = (λ+ A)−1 Fλ,k−1 , Fλ,k−1 ∈ H (G)3

(see (12)) are uniquely solvable with vk ∈ H 2(G)3 ∩ V (G)3, as asserted.
To prove the convergence of the discrete equations (15) to the evolution equa-

tions (10) and to estimate the discretization error, we use the approach “stability +
consistency→ convergence”. Let us define

(Πv) (tk) = v(tk)− v(tk−1)− νh PΔv(tk)
(

Π{v j }) (tk) = vk − vk−1 − νh PΔvk .
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Then the discretization error

ek = vk − v(tk) (17)

satisfies the identity

ek − ek−1 − νh PΔek = (

Π{v j }) (tk)− (Πv) (tk) = Rk, (18)

which is used to obtain estimates of ek in terms of the right hand side Rk (≈ stabil-
ity). Then the behavior of

Rk =
kh∫

(k−1)h

(Dtv(t)− νPΔv(t))dt − {(v(tk)− v(tk−1))− hνPΔv(tk)}

=
kh∫

(k−1)h

−νPΔ(v(t)− v(tk))dt (19)

= −νPΔEk

as h tends to zero (≈ consistency) follows from the regularity properties of the exact
solution of the Stokes equations (1).

The next theorem describes the convergence properties of the implicit Euler
scheme. Here the proposed C2-regularity of the boundary S – necessary for the
potential theoretical treatment of the resulting steady Stokes systems in the next
step – can be weakened. A more detailed convergence analysis, including higher
order schemes also for the non-linear equations, are given in [2, 4].

Theorem 1 Let T > 0, N ∈ N, and G ⊂ R
3 be a bounded domain with a smooth

boundary S of class C2. Assuming (2), let v and vk(k = 1, 2, . . . , N ) denote the
solution of (10) and (15), respectively. Then the discretization error ek (see (17))
satisfies the following estimates:

||ek ||2 +
k

∑

j=1

(hν||∇e j ||2 + ||e j − e j−1||2) ≤ K h2,

||∇ek ||2 +
k

∑

j=1

(2(hν)−1||e j − e j−1||2 + 1

2
||∇(e j − e j−1)||2) ≤ K h .

Here the constant K depends only on G, ν, and the data. Moreover, we even have
convergence with respect to the H 2-norm:

max{||ek ||2 | k = 1, 2, . . . , N } = ◦(1) as h −→ 0 or N −→∞ .
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Proof From (18) and (19) we obtain for the defect ek the identity

(ek − ek−1)− hνPΔek = −νPΔEk . (20)

Multiplying (20) scalar in L2 by 2ek and using (15) we obtain

||ek ||2 − ||ek−1||2 + ||ek − ek−1||2 + 2hν||∇ek ||2 = 2ν(∇Ek,∇ek) ≤
2 (hν)

1
2 ||∇ek || (h−1ν)

1
2 ||∇Ek || ≤ hν||∇ek ||2 + h−1ν||∇Ek ||2 = S1 + S2.

Because of

S2 = h−1ν

∥
∥
∥
∥

kh∫

(k−1)h

kh∫

t

Dσ∇v(σ )dσdt

∥
∥
∥
∥

2

≤ ν

kh∫

(k−1)h

∥
∥
∥
∥

kh∫

(k−1)h

|Dσ∇v(σ )|dσ
∥
∥
∥
∥

2

dt

≤ ν h

∥
∥
∥
∥

kh∫

(k−1)h

|∇v(σ )|dσ
∥
∥
∥
∥

2

≤ νh2

kh∫

(k−1)h

||Dσ∇v(σ )||2dσ ,

we find

||ek ||2− ||ek−1||2+ ||ek − ek−1||2+ hν||∇ek ||2 ≤ νh2

kh∫

(k−1)h

||Dσ∇v(σ )||2dσ (21)

for all k = 1, 2, . . . , N . Thus using ||e0||2 = 0 and (13), the first estimate is proved.
Next let us multiply (20) scalar in L2 by 2(ek − ek−1). Here we obtain

2||ek − ek−1||2 + 2hν(∇ek,∇(ek − ek−1))

= 2||ek − ek−1||2 + hν(||∇ek ||2 − ||∇ek−1||2 + ||∇(ek − ek−1)||2)

= 2ν(∇Ek,∇(ek − ek−1))

≤ 2 ·
(hν

2

) 1
2 ||∇(ek − ek−1)|| · (2h−1ν)

1
2 ||∇Ek ||

≤ hν

2
||∇(ek − ek−1)||2 + 2h−1ν||∇Ek ||2 = S3 + 2S2 .

Using the above estimate for S2 again, we have

2||ek − ek−1||2 + hν(||∇ek ||2 − ||∇ek−1||2)− hν

2
||∇(ek − ek−1)||2
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≤ 2νh2

kh∫

(k−1)h

||Dσ∇v(σ )||2dσ ,

hence

||∇ek ||2 − ||∇ek−1||2 + 2(hν)−1||ek − ek−1||2 + 1

2
||∇(ek − ek−1)||2

≤ 2h

kh∫

(k−1)h

||Dσ∇v(σ )||2dσ ,

which implies the second estimate. Next we want to prove convergence with respect
to the H 2-norm. From (20) we conclude

PΔek = (hν)−1(ek − ek−1)+ h−1 PΔEk,

which implies

||PΔek ||2 ≤ 2(hν)−2||ek − ek−1||2 + 2h−2||PΔEk ||2 . (22)

By (3) we find the following estimate for the second term:

2h−2||PΔEk ||2 ≤ 2h−2

∥
∥
∥
∥

kh∫

(k−1)h

PΔ(v(t)− v(tk))dt

∥
∥
∥
∥

2

≤ 2 max
σ,τ∈[0,T ]
|σ−τ |≤h

||PΔ(v(σ )− v(τ ))||2

= ◦(1) as h −→ 0 .

It remains to show that also the first term of (22) tends to zero. Using

T k = (ek − ek−1)

h
(k = 1, 2, . . . , N )

for abbreviation, from (20) we obtain the identity
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T k − T k−1 − hνPΔT k

= −h−1νPΔ

⎧

⎪⎨

⎪⎩

kh∫

(k−1)h

(v(t)− v(tk))dt −
(k−1)h∫

(k−2)h

(v(t)− v(tk−1))dt

⎫

⎪⎬

⎪⎭

= −h−1νPΔGk ,

where Gk is defined by the above term in brackets. Scalar multiplication in L2 by
2T k yields as above

||T k ||2−||T k−1||2+||T k−T k−1||2+2hν||∇T k ||2 ≤ hν||∇T k ||2+h−3ν||∇Gk ||2,
(23)

hence

||T k ||2 − ||T k−1||2 + ||T k − T k−1||2 + hν||∇T k ||2 ≤ h−3ν||∇Gk ||2 .

Because

Gk = −
kh∫

(k−1)h

kh∫

t

(Dσ v(σ )− Dσ v(σ − h))dσdt ,

we find the estimate

||∇Gk ||2 ≤ h3

kh∫

(k−1)h

||Dσ∇(v(σ )− v(σ − h))||2dσ .

Thus from (14) we obtain

||T k ||2−||T k−1||2+||T k−T k−1||2+hν||∇T k ||2 ≤ ν

kh∫

(k−1)h

||Dt∇(v(t)−v(t−h))||2dt ,

and

||T k ||2 +
k

∑

j=2

(||T j − T j−1||2 + νh||∇T j ||2)

≤ ||T 1||2 + ν

T∫

h

||Dt∇(v(t)− v(t − h))||2dt (24)

= ◦(1) as h −→ 0 ,
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because the integral vanishes as h → 0, and because by (21) (note ||e0|| = 0)

||T 1||2 = ||(e1 − e0)h−1||2 ≤ ν

h∫

0

||Dt∇v(t)||2dt = ◦(1) .

Thus (15) implies that also the first term of (22) tends to zero as h → 0, hence
||PΔek ||2 = ◦(1) as h → 0, and the asserted convergence with respect to the
H 2-norm follows by means of Cattabriga’s estimate. This proves the theorem. ��

3 Hydrodynamical Potential Theory

Because every time step tk = kh (k = 1, 2, . . . , N ∈ N; h = T
N > 0) requires

the solution of the boundary value problem (11), we consider for fixed h, k, and
λ = (hν)−1 > 0 in G the system

(λ−Δ)u +∇q = F , div u = 0 , u|s = 0 . (25)

Let us define the formal differential operator of (1) by

Sλ :

(
u

q

)

−→ Sλ
u

q
=

(
(λ−Δ)u +∇q

∇ · u
)

,

and let

S′λ :

(
u

q

)

−→ S′λ
u

q
=

(
(λ−Δ)u −∇q

−∇ · u
)

,

denote its formally adjoint operator. To construct an explicit solution u, q of (25)
with methods of potential theory, we first need the singular fundamental tensor Eλ =
(Eλ

jk) j,k=1,...,4, i.e. a solution of SλEλ = δ I4 in the space of tempered distributions.
Here δ is Dirac’s in R

3, I4 the 4 × 4 unity matrix, and SλEλ = (SEλ
1 , SEλ

3 , SEλ
4 )

with columns Eλ
k = (Eλ

jk) j=1,...,4 for k = 1, . . . , 4. It is well-known [6] that the
fundamental tensor Eλ = (Eλ

jk(x)) j,k=1,...,4 has the following form:

Eλ
jk(x) = 1

4π

{
δ jk

|x | e1(−
√
λ |x |)+ x j xk

|x |3 e2(−
√
λ |x |)

}

(k, j �= 4)

e1(ε) =
∞
∑

n=0

(n + 1)2

(n + 2)!
εn = exp(ε)(1− ε−1 + ε−2)− ε−2

e2(ε) =
∞
∑

n=0

1− n2

(n + 2)!
εn = exp(ε)(−1+ 3ε−1 − 3ε−2)+ 3ε−2 (26)
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Eλ
4k(x) = Eλ

k4(x) = xk

4π |x |3 (k �= 4) ,

Eλ
44(x) = δ(x)+ λ

4π |x | .

Using the exponential representation of the functions e1, e2 we obtain immedi-
ately the behavior of Eλ(x) for x → 0 and x → ∞. Setting r = |x | we have for
j, k �= 4:

Eλ
jk(x) = O(r−1) as r −→ 0

Eλ
jk(x) = O(r−3) as r −→∞ (λ > 0) (27)

Eλ
4k(x) = O(r−2) as r −→ 0 or r −→∞ .

Note that Eλ
jk(λ > 0) decays stronger than E0

jk( j, k �= 4) as r →∞.
Now using the right hand side F from (25) and the fundamental tensor Eλ, we

can construct the hydrodynamical volume potential

(U (x), Q(x)) =
∫

G

<

(
F(y)

0

)

, Eλ(x − y) > dy , (28)

which satisfies the equations Sλ
U
Q =

(F
0

)

in G due to its construction. Here and in
the sequel, for ξ ∈ R

n and matrices A = (A ji ) ∈ R
n × R

m (n,m ∈ N) we use

(ξ, A) =
⎛

⎝

n
∑

j=1

ξ j A j1, . . . ,

n
∑

j=1

ξ j A jm

⎞

⎠ ,

obtaining a row with m components.
In order to represent the solution of (Sλ) by means of potentials we need the

hydrodynamical Green’s formulae. They are given in terms of the formal differential
operators

Sλ :

(
u

q

)

−→ Sλ
u

q
, S′λ :

(
u

q

)

−→ S′λ
u

q

from above, and their corresponding adjoint stress tensors, which are defined by

T :

(
u

q

)

−→ T
u

q
= (−∇u − (∇u)T + q I3) ,

T ′ :

(
u

q

)

−→ T ′
u

q
= (−∇u − (∇u)T − q I3) .
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Here (∇u)T is the transposed matrix of ∇u = (Di uk)k,i=1,2,3 and I3 the 3 × 3
unity matrix.

Let us assume that u, v ∈ C2(G)3∩C1(G)3 are divergence-free vector fields, that
q, p ∈ C1(G)∩C0(G), and that Sλ

u
q , S′λ

v

p ∈ L1(G)3(λ > 0). Then we have Green’s
first identity

∫

G

(Sλ
u

q
,

(
v

p

)

)dy

=
∫

S

(T
u

q
N , v)doy +

∫

G

(λu, v)dy +
∫

G

1

2
(∇u + (∇u)T , ∇v + (∇v)T )dy,

(29)

and Green’s second identity

∫

G

{

(Sλ
u

q
,

(
v

p

)

)− (

(
u

q

)

, S′λ
v

p
)

}

dy =
∫

S

{

(T u
q N , v)− (u, T ′vp N )

}

doy .

(30)
Here we use

< ξ, η > =
n

∑

k=1

ξkηk for ξ, η ∈ R
n and < A, B > =

n
∑

i,k=1

Aik Bik

for matrices A, B ∈ R
n × R

n (n ∈ N). The vector N = N (y) ∈ R
3 denotes the

exterior normal in y ∈ S and T u
q N indicates the usual matrix vector product.

Now applying Green’s second identity with a solution u ∈ C2(G)3 ∩ C1(G)3,
q ∈ C1(G) ∩ C0(G) of Sλ

u
q =

(F
0

)

, and with v, p being the columns of the funda-
mental tensor Eλ, by cutting off the singularity in x ∈ G we obtain the following
representation (compare [3], p. 335) of u and q in x ∈ G (N denotes the exterior
normal on the C2-boundary S):

∫

G

(

(
F(y)

0

)

, Eλ(x − y))dy − (u(x), q(x))

=
∫

S

(T u
q (y)N (y), E (r )

λ (x − y))doy −
∫

S

(u(y), T ′y Eλ(x − y)N (y))doy .

(31)

Here E (r )
λ is the 3 × 4 matrix obtained from Eλ by eliminating the last row, and

the product in the last boundary integral equation is defined as follows: Treating the
4 columns of Eλ with T ′ yields four 3 × 3 matrices, which, multiplied by N , give
four columns with 3 components, hence a 3×4 matrix. The subscript y in T ′ means
differentiation with respect to y.

The representation formula (31) suggests to introduce hydrodynamical bound-
ary layer potentials for general vector valued source densities Ψ = (Ψ1, Ψ2, Ψ3) ∈
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C(S)3. For x ∈ R
3\S we define the single layer potential

(EλΨ )(x) =
∫

S

(Ψ (y), E (r )
λ (x − y))doy

and the double layer potential

(DλΨ )(x) =
∫

S

(Ψ (y), T ′y Eλ(x − y)N (y))doy .

Because Eλ = E T
λ , the single layer potential can be represented by

(EλΨ )(x) =
∫

S

E (c)
λ (x − y)Ψ (y)doy . (32)

Here the 4 × 3 matrix E (c)
λ is obtained from Eλ by eliminating the last column

and E (c)
λ Ψ indicates the usual matrix vector product. If no confusion is possible,

row representation and column representation will be identified. In order to develop
a similar representation for the double layer potential we proceed as follows. Due to
Dyi Eλ

jk(x − y) = −Dxi Eλ
jk(x − y)(i, j = 1, 2, 3; k = 1, . . . , 4) and observing the

definition of T and T ′ we have T ′y Eλ
k (x − y) = −Tx Eλ

k (x − y) where Eλ
k denotes

the kth column of Eλ(k = 1, . . . , 4). Defining the 3 × 4 matrix (Dλ(x, y))T =
−Tx Eλ(x − y)N (y), we first obtain the row vector

(DλΨ )(x) =
∫

∂G

< ψ(y), (Dλ(x, y))T > doy

and then the column

(DλΨ )(x) =
∫

∂G

Dλ(x, y)Ψ (y)doy , (33)

where the 4× 3 matrix Dλ(x, y) is defined by

Dλ(x, y) = (−Tx Eλ(x − y)N (y))T = (

(−Tx Eλ
k (x − y))i j N j (y)

)

ki .

Both the single layer potential (32) and the double layer potential (33) are ana-
lytic functions in R

3\S and satisfy there the homogeneous differential equations

Sλ
u

q
=

(
0

0

)

.
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By elementary calculations we find (compare [6]) that the 4 × 3 kernel matrix
Dλ = (Dλ

ki (x, y))k=1,...,4;i=1,2,3 of the double layer potential DλΨ has the following
form: Setting r = x − y and N = N (y) we have

Dλ
ki (x, y) = − 1

4π

{
rk Ni

| < r |3 d1(−
√
λ|r |)−

(
Nkri

|r |3 + δki
r · N

|r |3
)

d2(−
√
λ|r |)+

rkrir · N

|r |5 (3− 3d1(−
√
λ|r |)+ 2d2(−

√

λ|r |))
}

,

d1(ε) =
∞
∑

n=2

2(n2 − 1)

(n + 2)!
εn = exp(ε)(2− 6ε−1 + 6ε−2)− 6ε−2 + 1, (34)

d2(ε) =
∞
∑

n=2

n(n2 − 1)

(n + 2)!
εn = exp(ε)(ε − 3+ 6ε−1 − 6ε−2),

Dλ
4i (x, y) = − 1

4π

{

6
rir · N

|r |5 + λNi

|r | − 2
Ni

|r |3
}

− Niδ(r ) .

The series representation above yields d1(0) = d2(0) = 0, hence as λ → 0 we
obtain from (30) the well known (see [3], p. 336) double layer kernel matrix for the
Stokes equations (S0):

D0
ki (x, y) = − 3

4π

rkrir · N

|r |5 (k, i = 1, 2, 3) ,

D0
4i (x, y) = − 1

2π

(
3r · Nri

|r |5 − Ni

|r |3
)

− Niδ(r ) (i = 1, 2, 3) .
(35)

It follows easily that the last term in d1 comes from the pressure q. This term
determines the decay for r = |r | = |x − y| → 0 and r → ∞. Hence for k, i �= 4
we have (λ > 0):

Dλ
ki (x, y) = O(r−2) as r −→ 0 or r −→∞ (λ > 0) ,

Dλ
4i (x, y) = O(r−3) as r −→ 0 , (36)

Dλ
4i (x, y) = O(r−1) as r −→∞ .

In the following we consider the normal stresses of the single layer potential
EλΨ , which are defined in a neighborhood U ⊆ R

3 of S for x ∈ U\S and Ψ ∈
C(S)3 by

(H∗
λ Ψ )(x) =

∫

S

Tx (E (c)
λ (x − y)Ψ (y))N (x̃)doy .
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Here the superscript ∗ indicates a column vector with 3 components, and N (x̃)
denotes the outward unit normal in x̃ ∈ S, where x̃ is the unique projection of
x ∈ U\S on S. Note that S ∈ C2 allows the construction of parallel surfaces, which
implies the existence of such a neighborhood U . If we use the representation

(H∗
λ Ψ )(x) =

∫

S

Hλ(x, y)Ψ (y)doy (37)

with some 3× 3 matrix Hλ(x, y), then

Hλ(x, y) = D(r )
λ (y, x)T

with D(r )
λ is obtained by eliminating the last row of the 4×3 matrix Dλ given above.

The next statements concern the continuity properties of the potentials, if x ∈
R

3\S approaches a point z ∈ S. For x ∈ R
3\S let

(E∗λΨ )(x) =
∫

∂G

E (r,c)
λ (x − y)Ψ (y)doy , (38)

(D∗λΨ )(x) =
∫

∂G

D(r )
λ (x, y)Ψ (y)doy , (39)

denote the single layer and the double layer potential corresponding to the velocity
part of the potentials, respectively. Here E (r,c)

λ is the 3× 3 matrix obtained from Eλ

by eliminating the last row (≈ r ) and the last column (≈ c). We first consider some
potentials with special densities.

It is well known (see [3], p. 337) that for the case λ = 0 we have

(D∗0β)(x) =
∫

S

D0(x, y)βdoy =

⎧

⎪⎨

⎪⎩

β, x ∈ G ,

1
2β, x ∈ S ,

0, x ∈ R
3\G ,

(40)

where D0 is the 3×3 matrix defined in (35) and β ∈ R
3 is a constant column vector.

For λ > 0, however,

(D∗λβ)(x) = λ

∫

G

E (r,c)
λ (x − y)βdy =

⎧

⎪⎨

⎪⎩

β, (x ∈ G) ,
1
2β, (x ∈ S) ,

0, (x ∈ R
3\G) .

(41)

Moreover, if N denotes the outward unit normal field on S, then for the single
layer potential EλN (λ > 0) with density N we have
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(EλN )(x) =
∫

S

E (c)
λ (x − y)N (y)doy =

⎧

⎪⎪⎨

⎪⎪⎩

−(0
1

)

(x ∈ G) ,

− 1
2

(0
1

)

(x ∈ S) ,
(0

0

)

(x ∈ R
3\G) ,

(42)

which follows from Green’s second identity, and implies (E∗λN )(x) = 0 for all
x ∈ R

3.
Next let us study the continuity properties of potentials with general continuous

source densities. Setting

w(z) = lim
x→z∈S

x∈G

w(x) , w(z) = lim
x→z∈S
x∈R3\G

w(x) ,

we obtain on the boundary S the important relations

(E∗λΨ )i = E∗λΨ = (E∗λΨ )e , (43)

(D∗λΨ )i − D∗λΨ =
1

2
Ψ = D∗λΨ − (D∗λΨ )e , (44)

(H∗
λ Ψ )e − H∗

λ Ψ =
1

2
Ψ = H∗

λ − (H∗
λ Ψ )i , (45)

where E∗λΨ, D∗λΨ , and H∗
λ Ψ are defined by (38), (39), and (37), respectively.

Now let Gc = R
3\G be the complementing exterior domain having the same

boundary S as G. We consider the following boundary value problem: For a given
boundary value b ∈ C(S)3 find u ∈ C2(G)3∩C(G)3, q ∈ C1(G)∩C(G) satisfying

Sλ
u

q
=

(
0

0

)

in G , u = b on S . (46)

We refer to this problem as to the interior hydrodynamic Dirichlet problem.
Besides (46) we also consider the exterior hydrodynamic Neumann problem

Sλ
u

q
=

(
0

0

)

in Gc , T u
q N = b on S , (47)

being adjoint to (46). Using Green’s first identity we can easily prove that regular
solutions u, q of the exterior Neumann problem are uniquely determined provided
that we require for r = |x | → ∞(λ > 0)

u(x) = O(r−2) , ∇u(x) = O(r−1) , q(x) = O(r−1) , (48)

a condition, which takes into account the special decay properties of the potentials
(compare (27) and (36)).

Concerning the interior Dirichlet problem, u is uniquely determined, while q is
uniquely determined up to an additive constant only.
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In the following we prove the existence of a solution u, q of the interior Dirichlet
problem using the method of boundary integral equations. Let b ∈ C(S)3 be given
with

∫

S

b · N do = 0 . (49)

Choosing in x ∈ G the ansatz
(u

q

)

(x) = (DλΨ )(x) as double layer potential, due to

the jump relations we obtain on S the weakly singular (S is of class C2) boundary
integral equations

b = 1

2
Ψ + (D∗λΨ ) on S , (50)

which is a Fredholm system of the second kind on C(S)3. To solve it we have to
consider the corresponding homogeneous adjoint system

0 = 1

2
Φ + (H∗

λΦ) on S . (51)

It follows from (18) that the normal vector N ∈ C(S)3 is a solution: Due to
(H∗

λ N )(x) = (T (EλN ))(x)N (x̃) = −N (x̃) if x ∈ G (for x̃ see above (37)) and
(H∗

λ N )(x) = 0 if x ∈ Gc, from (21) we obtain

0 = 1

2
N + (H∗

λ N ) on S .

Moreover, if Φ ∈ C(S)3 is any solution of (51), then we have Φ ∈ βN with some
constant β ∈ R. To see this, consider the single layer potential

(u
q

) = EλΦ defined in
(32). It decays as required in (48), and it solves the exterior Neumann problem (47)
with zero boundary data due to (45) and (51). Thus we have EλΦ =

(0
0

)

in Gc from
the uniqueness statement, and E∗λΦ = 0 on S using (43). This again implies that
EλΦ also solves the interior Dirichlet problem with zero boundary data, and the
corresponding uniqueness statement yields EλΦ = (0

α

)

in G, with some constant
α ∈ R. Because H∗

λΦ = 0 in Gc and H∗
λΦ = αN in G, the assertion follows by

(45). Now using well known facts of Fredholm’s theory on integral equations of
second kind in spaces of continuous functions it follows that the condition (49) is
necessary and sufficient for the existence of a solution Ψ ∈ C(S)3 of (50).

Because (51) has a unique nontrivial solution Φ = N , the homogeneous version
of (50) has a nontrivial solution too. For numerical purposes, however, it is desirable
to deal with uniquely solvable systems. This can be achieved as follows: Instead of
(50) consider the boundary integral equations system

b = 1

2
Ψ + (D∗λΨ )− (PNΨ ) on S (52)
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with the one-dimensional operator Pn : C(S)3 → C(S)3 given by

(PNΨ )(x) = N (x)
∫

∂G

N · Ψ do .

Because the normal field N forms a basis of the null space of the operator
1
2 Ie + H∗

λ which is adjoint to 1
2 I3 + D∗λ, the system (52) is uniquely solvable ([7]).

Moreover, the solution solves the system (50) too, provided the compatibility con-
dition (49) is satisfied. Here the latter follows easily by multiplying (28) with N ,
integrating over S, and noting that

∫

∂G

(D∗λΨ ) · N do =
∫

∂G

Ψ · (H∗
λ N )do = −1

2

∫

∂G

Ψ · N do .

Thus we have shown

Theorem 2 Let b ∈ C(S)3 with (25) be given on a C2-boundary S of a bounded
domain G ⊆ R

3, and let 0 < λ ∈ R. Then the interior hydrodynamic Dirichlet
problem (22) has a solution u ∈ C2(G)3 ∩ C(G)3, q ∈ C1(G) ∩ C(G). Here u is
uniquely determined, while q is unique up to an additive constant, only. The solution
u, q can be represented in G as a pure double layer potential

(u
q

)

(x) = (DλΨ )(x),

where the source density Ψ ∈ C(S)3 is the unique solution of the second kind Fred-
holm boundary integral equations system

b = 1

2
Ψ + (D∗λΨ )− (PNΨ ) on S .

Here D∗λΨ is the velocity part of DλΨ and PN : C(S)3 → C(S)3 is defined by

(PNΨ )(x) = N (x)
∫

∂G

N · Ψ do .

4 A Boundary Element Method

Summarizing the results from the last two sections we find that the potential repre-
sentation given in (28) defines an approximate solution (vk(x), qk(x)) of the Stokes
equations (25) at time tk = kh (k = 1, 2, . . . , N ). It depends on the solution Ψ

of the boundary integral equations system (29), which – for each time step – has
the form (52). For the discretization of (52) we choose a collocation procedure as
described in [1, 5]. To be concrete, in the following let us restrict our consider-
ations to the case of the unit ball G ⊆ R

3 with boundary S and let us use the
parametrization
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f : S∧ = [0, 1]2 −→ S , f (ϑ, η) = (x1, x2, x3) ∈ S ,

i.e. x1 = sin(πϑ) cos(2πη), x2 = sin(πϑ) sin(2πη), x3 = cos(πϑ). For the sake
of illustration, in the following we suppress some analytical problems due to the
non-uniqueness of the inverse mapping f −1. For L ∈ N let σ = (2L)−1 and define
on S∧ a so-called collocation grid

C∧σ = {x∧ = (iσ, jσ )|i, j = 0, . . . , 2L}

consisting of (2L + 1)2 collocation points and an integration grid

J∧σ = {((i + 0.5)σ, ( j + 0.5)σ ) | i, j = 0, . . . , 2L − 1}

consisting of (2L)2 integration points. For y∧ = ((i + 0.5)σ, ( j + 0.5)σ ) ∈ J∧σ let

Q∧y = {(ϑ, η) | iσ < ϑ < (i + 1)σ, jσ < η < ( j + 1)σ }

be the square with length σ and center y∧. The projections of these sets on S are
denoted by

Cσ = f (C∧σ ), Jσ = f (J∧σ ), Qy = f (Q∧y ) .

Setting

ω(τ ) =

⎧

⎪⎪⎨

⎪⎪⎩

τ + 1 for − 1 ≤ τ ≤ 0 ,

1− τ for 0 ≤ τ ≤ 1 ,

0 elsewhere ,

for every x∧ = (x1, x2) ∈ C∧σ let us define a bilinear B-spline

ξ∧ : S∧ −→ R , ξ∧(ϑ, η) = ω

(
(ϑ − x1)

σ

)

ω

(
(η − x2)

σ

)

.

These splines are used for interpolation: the interpolate P∧σ Φ
∧ : S∧ → R

3 of
some vector function Φ∧ : S∧ → R

3 is defined by

(P∧σ Φ
∧)(ϑ, η) =

∑

x∧∈C∧σ

Φ∧(x∧)ξ∧(ϑ, η) ,

and it holds (P∧σ Φ
∧)(u∧) = Φ∧(z∧) for all z∧ ∈ C∧σ . Analogously, we call

PσΦ = (P∧σ (Φ ◦ f )) ◦ f −1

the interpolate of Φ : S → R
3.
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Let us now go back to the boundary integral equations system and look for an
approximate solution

Ψσ = Ψ ∧σ ◦ f −1 ,

where the vector function Ψ ∧σ : S∧ → R
3 has the form

Ψ ∧σ (ϑ, η) =
∑

x∧∈C∧σ

α(x∧, σ )ξ∧(ϑ, η) .

Here the unknown coefficients α(x∧, σ ) ∈ R
3 have to be determined from the

collocation procedure

Pσb = Pσ (
1

2
Ψσ + (D∗λ,σΨσ )− (PN ,σΨσ )) , (53)

where (compare (15) and (28))

(D∗λ,σΨσ )(x) =
∑

y∈Jσ

D(r )
λ (x, y)Φσ (y)|Qy| (x /∈ Jσ ) , (54)

(PN ,σΨσ )(x) = N (x)
∑

y∈Jσ

N (y) ·Φ(yσ )|Q|y (x ∈ S) , (55)

and

|Qy| =
∫

Qy

do .

Hence integration has been replaced by a quadrature formula (midpoint rule).
Thus considering (53) on the collocation grid only, we obtain a linear algebraic
system for 3(2L+1)2 unknowns (3 components, (2L+1)2 collocation points) with a
non-sparse but diagonal-dominant system matrix, which is invertible for sufficiently
small ω > 0. This follows with the usual perturbation theory from the fact that (52)
is uniquely solvable in C(S)3. Moreover, the following estimates can be obtained in
case of boundary values b ∈ C(S)3 as in [1]:

max
x∈S
|Ψ (x)− Ψσ (x)| ≤ c(λ)σ ln (

1

σ
) , (56)

max
x∈Gσ

|D∗λΨ (x)− D∗λ,σΨσ (x)| ≤ c(λ)σ ln (
1

σ
) . (57)

Here (Gσ )σ>0 is a family of subregions G − σ exhausting G as σ → 0.
Extending both grids from the boundary S into the domain G, the volume

potentials can be approximated analogously, using the midpoint rule as quadrature
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formula instead of integration. In the following, we present some test calculations
for the non-stationary Stokes equations (1) in the 3 − d unit ball, which have been
performed without using any symmetry property of the ball: Let

(t, x) −→ v(t, x) = (t + 1)(exp(−r2)− exp(−1))

⎛

⎝

x3 − x2

x1 − x3

x1 − x2

⎞

⎠ ,

(t, x) −→ p(t, x) = constant, r = (x2
1 + x2

2 + x2
3 )

1
2 .

Then v,∇ p is the unique solution of a constructed non-stationary Stokes problem
(1) with

ν = 1 , F = Dtv −Δv +∇ p , v0 = v(0) .

The following numerical results illustrate the accuracy of our approach. The sim-
ulation runs with a time step size h = 0.1 and a spatial step size σ ∈ { 1

4 ,
1
8 ,

1
16 } on a

PC with single precision. Let E( j), j = 1, 2, 3 denote the mean (over M collocation
points) relative error (%), i. e.

E( j) = 100

M

M
∑

l=1

∣
∣
∣
∣
∣

v
appr
j (xl)− vexe

j (xl)

vexe
j (xl)

∣
∣
∣
∣
∣
.

Development in time of E( j) (σ = 1
4 )

t j = 1 j = 2 j = 3

0.1 5.201 6.011 11.218
0.2 5.589 6.127 10.077
0.3 6.890 6.214 9.643
0.4 7.913 6.643 7.641
0.5 8.335 6.911 7.526
0.6 8.621 7.012 7.803
0.7 8.728 7.181 7.741
0.8 8.963 7.264 7.819
0.9 9.001 7.316 8.217
1.0 9.126 7.437 8.269
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Development in time of E( j) (σ = 1
8 )

t j = 1 j = 2 j = 3

0.1 2.627 3.074 6.664
0.2 2.764 2.808 5.216
0.3 3.442 3.140 4.338
0.4 3.920 3.413 3.982
0.5 4.133 3.541 3.907
0.6 4.255 3.611 3.910
0.7 4.353 3.659 3.940
0.8 4.434 3.698 3.988
0.9 4.494 3.727 4.047
1.0 4.537 3.768 4.114

Development in time of E( j) (σ = 1
16 )

t j = 1 j = 2 j = 3

0.1 1.216 1.594 2.932
0.2 1.316 1.373 2.721
0.3 1.517 1.354 2.490
0.4 1.615 1.354 2.331
0.5 1.748 1.392 2.229
0.6 1.872 1.444 2.159
0.7 1.931 1.454 2.099
0.8 1.991 1.466 2.049
0.9 2.049 1.478 2.012
1.0 2.108 1.492 1.985

The results show the linear behavior of the spatial discretization, as expected
from the convergence analysis.

Finally, let E := 1
3

∑3
j=1 E( j) denote the mean error of all three components in

the first time step for σ = 1
16 . In this case we obtain:

h 1 1
2

1
4

1
8

1
16

E 13.701 6.817 3.306 1.652 0.901

These results show the linear behavior of the discretization error in time,
as expected.
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A New Criterion for Partial Regularity
of Suitable Weak Solutions to the Navier-Stokes
Equations

Jörg Wolf

Abstract In the present paper we study local properties of suitable weak solutions
to the Navier-Stokes equation in a cylinder Q = Ω × (0, T ). Using the local rep-
resentation of the pressure we are able to define a positive constant ε+ such that for
every parabolic subcylinder Q R ⊂ Q the condition

R−2
∫

Q R

|u|3dxdt ≤ ε∗

implies u ∈ L∞(Q R/2). As one can easily check this condition is weaker then
the well known Serrin’s condition as well as the condition introduced by Farwig,
Kozono and Sohr. Since our condition can be verified for suitable weak solutions to
the Navier-Stokes system it improves the known results substantially.

Keywords Navier-Stokes equations · Partial regularity · Local regularity

1 Introduction and Main Result

Let Ω be a bounded domain in R
3 with ∂Ω ∈ C2. For T > 0 we set Q :=

Ω×]0, T [. We consider an incompressible Newtonian fluid which is governed by
the following Navier-Stokes system

div u= 0 in Q,

ut + div(u⊗ u) − Δu+∇ p= 0 in Q,

u= 0 on ∂Ω×]0, T [,
u(0)= a in Ω,

(1)
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where u = (u1, u2, u3) denotes the velocity field, p the pressure and a =
(a1, a2, a3) the initial velocity. The aim of the present paper is to introduce a new
criterion beyond Serrin’s class which guarantees interior regularity. At the same
time, this result will improve the condition given by Farwig et al. [3] which has been
obtained recently, using the notion of very weak solution. However our method to
obtain the desired result will be entirely different from the one stated above and is
based on local energy estimates as well as the representation of the local pressure
for suitable weak solutions to the Navier-Stokes equations (1).

Throughout the paper the following standard notion will be used. By x we denote
the points (x1, . . . , xn) in R

n (n ∈ N). For x, y ∈ R
n by x · y we denote the scalar

product x1 y1 + . . .+ xn yn and by |x | = (x · x)1/2 the Euclidean norm in R
n . By M

n

we denote the space of all n × n-matrices A = {Ai j }. Given A,B ∈ M
n by A : B

we denote the scalar product Ai j Bi j .1 Furthermore for A ∈ M
n we define the norm

|A| := (A : A)1/2 .
Weak solutions to (1). To begin with, let us introduce the function spaces which

will be used in what follows. By W m, q (Ω), W m, q
0 (Ω) (m = 1, 2, . . . ; 1 ≤ q <∞)

we denote the usual Sobolev spaces. Throughout the paper, we write Cα(Ω) :=
[Cα(Ω)]3,Lq (Ω) := [Lq (Ω)]3,Wm, q (Ω) := [W m, q (Ω)]3 etc.

Next, by Dσ (Ω) we denote the set of all solenoidal vector fields ϕ ∈ C∞0 (Ω).
Then define

L2
σ (Ω) := closure of Dσ (Ω) in L2(Ω),

W1,2
0,σ (Ω) := closure of Dσ (Ω) in W1, 2(Ω).

Given a normed vector space X with norm ‖ · ‖, we denote by Ls(a, b; X ) (1 ≤
s ≤ ∞) (−∞ ≤ a < b ≤ ∞) the vector space of all Bochner measurable functions
z :]a, b[→ X such that

b∫

a

‖z(t)‖sdt <∞ if 1 ≤ s <∞, ess sup
]a,b[

‖z(t)‖ <∞ if s = ∞.

(see, e.g., [14, Chap. IV,1] for details).

Definition 1 Given a ∈ L2
σ (Ω). A vector function u : Q → R

3 is called a weak
solution to (1) if

u ∈ L2(0, T ; W1,2
0,σ (Ω)) ∩ L∞(0, T ; L2

σ (Ω))

and there holds the following integral identity

1 Repeated subscripts imply summation over 1, . . . , n.
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∫

Q

{

− u · ∂tϕ + (u · ∇)u · ϕ +∇u : ∇ϕ
}

dxdt =
∫

Ω

a · ϕ(0)dx (2)

for all ϕ ∈ C∞0 ([0, T [;Dσ (Ω)) .

Remark 1 Let u : Q → R
3 be a weak solution to (1). Then u can be redefined on a

set of Lebesgue measure 0 such that u ∈ Cw([0, T [; L2
σ (Ω)), i.e. for all t > 0 there

holds u(t) ∈ L2
σ (Ω) such that

lim
s→t

∫

Ω

u(s) · ξdx =
∫

Ω

u(t) · ξdx ∀ ξ ∈ L2
σ (Ω).

In addition, we have

u(t) → a in L2
σ (Ω) as t → 0+.

Next, we recall the notion of a suitable weak solution which has been first intro-
duced by Scheffer [9] and by Caffarelli-Kohn-Nirenberg [1].

Definition 2 A weak solution u : Q → R
3 to (1) is called a suitable weak solution

if there exist p ∈ L3/2(Q), such that

∫

Q

{

− u · ∂ϕ
∂t
− (u⊗ u) : ∇ϕ +∇u : ∇ϕ

}

dxdt =
∫

Q

p div ϕdxdt (3)

for all ϕ ∈ C∞0 (Q) together with the local energy inequality

∫

Ω

|u(t)|2ϕ(t)dx + 2

t∫

0

∫

Ω

|∇u|2ϕdxds

≤
t∫

0

∫

Ω

|u|2
{∂ϕ

∂t
+Δϕ

}

dxds +
t∫

0

∫

Ω

(|u|2 + 2p)u · ∇ϕdxds

for almost all 0 < t <∞ and for all nonnegative functions ϕ ∈ C∞0 (Q).

Remark 2 1. The existence of a suitable weak solution to (1) is closely related to the
geometric properties of the domain Ω . In case of the whole space Ω = R

3 using the
theory of singular integrals the existence of a pressure can be proved just by solving
the Cauchy problem −Δp = div div(u⊗ u). For a bounded domain with ∂Ω ∈ C2

one obtains an appropriate pressure based on the Lq -theory for the non-stationary
Stokes system treating the nonlinear term div(u ⊗ u) = (u · ∇)u as a right hand
side of the corresponding system (cf. [14]). For unbounded domains the problem
appears to be rather difficult. There are various examples such as exterior domains,
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aperture domains, etc. for which the existence of a suitable weak solution is known.
For a general unbounded domain with uniformly C2-boundary the problem has been
solved recently by Farwig et al. in [2].

2. If Ω ⊂ R
3 is a general open set, the notion of a suitable weak solution does

not make any sense, since a pressure may not exist as a function but only as a
distribution in time (cf. [15]). However using the local pressure method introduced
in [18] one can construct a weak solution which obeys a local energy estimate in
terms of |u + ∇ ph |2 instead of |u|2, where ph denotes the harmonic part of the
pressure. This allows us to extent the result of the paper to any open set Ω .

Statement of the main result. For x0 ∈ R
3 and 0 < R < ∞ we define the open

ball

BR(x0) := {x ∈ R
3 | |x − x0| < R}.

Given t0 ∈ R and 0 < R <∞ we set

IR(t0) :=]t0 − R2, t0[.

If no confusion can arise we write BR (IR resp.) in place of BR(x0) (IR(t0) resp.).
By Q R = Q R(x0, t0) we denote the parabolic cylinder

Q R := BR(x0)× IR(t0).

We prove the following main result concerning local regularity of suitable weak
solutions to the Navier-Stokes equations

Theorem 1 For every 3 ≤ s, q ≤ ∞ there exists a constant ε+ = ε+(s, q) > 0
with the following property: Let u be a suitable weak solution to the Navier-Stokes
equations (1). Suppose that for a given cylinder Q R(x0, t0) ⊂ Q we have

‖u‖Ls (t0−R2,t0;Lq (BR (x0))) ≤ R
2
s+ 3

q−1
ε+. (4)

Then u is Hölder continuous on Q R/2(x0, t0).
Historical Remarks The mathematical theory of the Navier-Stokes equations has
been initiated by Leray’s historical paper [7], where hestudied the existence of weak
solutions and their structure for the case Ω = R

n . Later Hopf [5] introduced a
Galerkin method to get weak solutions to the system (1) in a bounded domain. In
both cases these weak solutions satisfy the so called energy inequality. Unfortu-
nately, it is not known whether this weak solutions are unique or not. By this reason
the regularity properties of weak solutions may depend on the construction of the
weak solution. The first results of existence and partial regularity of suitable weak
solutions are due to V. Scheffer [9, 10] and Caffarelli-Kohn-Nirenberg [1]. Later the
partial regularity of suitable weak solutions of the Navier-Stokes system has been
established by various authors. For more details on this subject we refer to the papers
[16, 8, 6, 11, 17].
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An alternative condition which guarantees the local regularity is the so called
Serrin’s condition. It says that if a weak solution u : Q → R

3 to (1) satisfies

u ∈ Ls(t0 − R2, t0; Lq (BR)),
2

s
+ 3

q
≤ 1, q > 3, (5)

where Q R = BR(x0)×]t0 − R2, t0[⊂ Q, then u is bounded on Q R/2.
Recently, based on the theory of very weak solutions Farwig et al. [3] have shown

that for 2 < s ≤ q <∞with 2
s + 3

q ≤ 1+ 1
q there exists an absolute constant ε+ > 0,

such that for every subcylinder Q R ⊂ Q the condition

‖u‖Ls (t0−R2,t0;Lq (BR )) ≤ R
2
s+ 3

q−1
ε+ (6)

implies that u is bounded on Q R/2. Clearly, this is a generalization of Serrin’s con-
dition above. However both condition’s (5) and (6) cannot be verified by a given
suitable weak solution since the only information we have is u ∈ Ls(0, T ; Lr (Ω))
for all 2 ≤ s, r ≤ ∞ with 2

s + 3
r ≤ 3

2 .
Clearly, the main theorem provides a new condition on u which uses the given

energy norm of the weak solution only and therefore represents a substantial
improvement of the conditions which has been known so far.

The paper is organized as follows. In Sect. 2 introducing the decomposition of
the space Ls(G) = As(G) ⊗ Bs(G) which is due to Simader we provide the main
tools for introducing a local pressure. In addition, we list few useful properties of
harmonic functions. Next, in Sect. 3 considering the heat equation we present a gen-
realization of the fundamental estimates for caloric functions. The aim of Sect. 4 is
to derive a Caccioppoli-type inequality on the basis of the local energy inequality. In
particular, we are able to replace the pressure term by the corresponding quantities
evolving u and ∇u only. This method cannot be found in the literature and seems to
be new. Finally, in Sect. 5 we will complete the proof of Theorem 1.

2 Preliminary Lemmas

In this section we list a few lemmas which will be used below. Throughout let
G ⊂ R

3 be an open and bounded set with ∂G ∈ C2. We start with a suitable
decomposition of the space Ls(G) (1 < s <∞). For, we define,

As(G) := {Δv | v ∈ W 2, s
0 (G)},

Bs(G) := {ph ∈ Ls(G) |Δph = 0 in G}.

The following result is due to Simader and can be found in [12].

Lemma 1 For every 1 < s <∞ there holds

Ls(G) = As(Ω)⊕ Bs(G). (7)
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Next, by means of [12] (Chap. III, Theorem 3.4) one gets the

Lemma 2 Let g ∈ Ls(BR)
(6

5
≤ s ≤ 2

)

and q0 ∈ A2(BR) with

∫

BR

g · ∇ϕdx =
∫

BR

q0Δϕdx ∀ϕ ∈ C∞0 (BR). (8)

Then q0 ∈ W 1, s(BR) and there exists a constant Cs, such that

‖∇q0‖Ls (BR ) ≤ Cs‖g‖Ls (BR ). (9)

(for the proof we refer to [12,13])
For reader’s convenience we present a Caccioppoli-type inequality for harmonic

functions, which will be used frequently below

Lemma 3 There exists an absolute constant c > 0, such that

‖q‖2
L3(BR/3) + R2‖∇q‖2

L3(BR/3) + R3‖D2q‖2
L2(BR/3) ≤ cR−2‖q‖2

L3/2(BR/2) (10)

for all q ∈ B3/2(BR/2).

Proof First, we consider the case R = 1. Let ϕ ∈ C∞(R3) be a cut-off function
with 0 ≤ ϕ ≤ 1 in R

3, ϕ ≡ 1 on B1/3, ϕ ≡ 0 in R
3 \B1/2 and |D2ϕ| + |∇ϕ| ≤ c0.

After applying integration by parts one easily estimates

∫

B1/2

|∇q|2ϕ6dx ≤ c
∫

B1/2

q2ϕ4dx .

On the other hand, by the aid of Hölder’s inequality together with Sobolev’s
inequality one gets

∫

B1/2

q2ϕ4dx ≤ ‖q‖L3/2(B1/2)

( ∫

B1/2

q3ϕ12dx

)1/3

≤ c‖q‖2
L3/2(B1/2) + c‖q‖L3/2(B1/2)

( ∫

B1/2

|∇q|2ϕ6dx

)1/2

.

Combining the two inequalities above using Young’s inequality gives

∫

B1/2

|∇q|2ϕ6dx ≤ c‖q‖2
L3/2(B1/2). (11)

Similarly, one proves
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∫

B1/2

|D2q|2ϕ8dx ≤ c
∫

B1/2

|∇q|2ϕ6dx ≤ c‖q‖2
L3/2(B1/2). (12)

Finally, making use of Sobolev’s embedding theorem taking into account (11)
and (12) one gets

( ∫

B1/2

|∇q|3ϕ12

)2/3

≤ c
∫

B1/2

|∇(∇qϕ4)|2dx

≤ c
∫

B1/2

|∇q|2ϕ6 + |D2q|2ϕ8dx ≤ c‖q‖2
L3/2(B1/2). (13)

Thus, (10) is obtained by (12) and (13).
For the general case 0 < R < ∞ the assertion easily follows from the case

R = 1 by using a standard scaling argument. ��

3 Fundamental Estimates for Caloric Functions

The aim of this section is to establish a fundamental estimate which plays a crucial
role in proving Theorem 1. Let us start with the definition of a caloric functions

Definition 3 Let D ⊂ R
4 be an open set. A function ϕ : D → R is called caloric in

D if ϕ ∈ C∞(D) and there holds

ϕt −Δϕ = 0 in D. (14)

Remark 3 Let ϕ ∈ L2(I1; L2
loc(B1)) such that

∫

Q1

−ϕψt + ∇ϕ · ∇ψdxdt = 0 ∀ψ ∈ C∞0 (Q1).

Using the standard mollification argument together with the Caccioppoli inequality
(15) for caloric functions (see Lemma 4 below) one easily deduces that ϕ ∈ C∞(Q1)
and thus ϕ is caloric.

Next, we present the Caccioppoli inequalities which holds for caloric functions

Lemma 4 For each k ∈ N there exists a constant ck > 0, such that

sup
t∈Ir

‖Dkϕ(t)‖2
L2(Br ) ≤

ck

(� − r )2k
‖ϕ‖2

L2(Q�) ∀ 0 < r < � < 1 (15)

for every caloric ϕ ∈ C∞(Q1).
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Now, we are in a position to prove the following important fundamental estimate
for caloric functions

Lemma 5 There exists an absolute constant c∗ > 0 such that for every caloric
function ϕ ∈ C∞(Q1) there holds

‖ϕ‖2
L3(Iτ ;L9/4(Bτ )) ≤ c∗τ 4‖ϕ‖2

L3(I1/2,0;L9/4(B1/2)) ∀ 0 < τ ≤ 1. (16)

Proof Obviously, the assertion holds for all τ ∈
[1

4
, 1

]

. Therefore without loss of

generality we can restrict ourself to the case 0 < τ <
1

4
. By means of Sobolev’s

embedding theorem one gets

‖ϕ‖2
L3(Iτ ;L9/4(Bτ )) ≤ cτ 4 sup

t∈I1/4

‖ϕ(t)‖2
L∞(B1/4) ≤ cτ 4 sup

t∈I1/4

‖ϕ(t)‖2
W 2, 2(B1/4).

Applying (15) with r = 1

4
and � = 1

2
it follows that

‖ϕ‖2
L3(Iτ ;L9/4(Bτ )) ≤ cτ 4‖ϕ‖2

L2(I1/2;L2(B1/2)).

To finish the proof, we estimate the right hand side of the last inequality by using
Jensen’s inequality. ��

We complete this section by establishing a fundamental estimate for local solu-
tions to the Stokes system, which plays an essential role in the regularity theory of
weak solutions to the Navier-Stokes equations. We have the following

Lemma 6 Let U ∈ L3(IR ; L9/4(BR)) and ph ∈ L3/2(IR ; L3/2(BR)) with Δph = 0 in
IR × BR, such that

∫

Q R

−U · ϕt + ∇U : ∇ϕdxdt =
∫

Q R

ph div ϕdxdt (17)

for every ϕ ∈ C∞0 (Q R). Then

R−2τ−2‖U‖2
L3(Iτ R ;L9/4(Bτ R ))

≤ cτ 2/3
{

R−2‖U‖2
L3(IR ;L9/4(BR )) + R−16/3‖ p̃h‖2

L3(IR ;L3/2(BR ))

}

(18)

for every 0 < τ < 1 with an absolute constant c > 0, where

p̃h(t) :=
t∫

t0−R2

ph(s)ds, t ∈ IR .
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Proof As above using an appropriate linear transformation it will be sufficient to
prove the estimate (18) for the case R = 1 and (x0, t0) = (0, 0). Furthermore, it

is readily seen that the assertion is trivially fulfilled for τ ∈
[1

4
, 1

[

. Thus, we may

assume 0 < τ <
1

4
.

First, define V := U+∇ p̃h . Since ph is harmonic from (17) one infers

∫

Q1

−V · ϕt + ∇V : ∇ϕdxdt = 0 ∀ϕ ∈ C∞0 (Q1). (19)

According to Remark 3 V is a caloric function. Thus, from Lemma 5 it follows that

‖V‖2
L3(Iτ ;L9/4(Bτ )) ≤ cτ 4‖V‖2

L3(I1/2;L9/4(B1/2)). (20)

Next, using the triangular inequality making use of (10) (cf. Lemma 3) one
estimates

‖U‖2
L3(Iτ ;L9/4(Bτ )) ≤ cτ 4

{

‖U‖2
L3(I1/2;L9/4(B1/2)) + ‖ p̃h‖2

L3(I1;L3/2(B1))

}

+ c‖∇ p̃h‖2
L3(I1;L9/4(Bτ )). (21)

In order to estimate the last term fix t ∈ I1. Recalling that p̃h(t) is harmonic in
B1 once more using (10) it follows

‖∇ p̃h(t)‖3
L9/4(Bτ ) ≤ cτ 4 sup

x∈B1/4

|∇ p̃h(x, t)|3

≤ cτ 4‖∇ p̃h(t)‖3
L2(B1/2) ≤ cτ 4‖ p̃h(t)‖3

L3/2(B1).

Then, integrating both sides of this inequality over the interval I1 gives

‖∇ p̃h‖2
L3(I1;L9/4(Bτ )) ≤ c τ 8/3‖ p̃h‖2

L3(I1;L3/2(B1)). (22)

Finally estimating the last term on the right of (21) by (22) leads to (18). ��

4 Caccioppoli-Type Inequality

In the present section we are going to prove a Caccioppoli-type inequality for suit-
able weak solutions to the Navier-Stokes equations. Hereby, the pressure p will
be estimated in terms of u and ∇u, which remarks a new type of estimate and
serves as a main ingredient for the proof of Theorem 1. Throughout let {u, p} denote
a suitable weak solution to the Navier-Stokes equations. First, we introduce the
main quantities which are invariant under the natural scaling of the Navier-Stokes
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equation. Given (x0, t0) ∈ Q for 0 < � < min {dist(x0, ∂Ω), t1/2
0 } we define

Φ(�) := �−4/3‖u‖2
L3(Q�),

Ψ (�) := �−2‖u‖2
L3(I� ;L9/4(B�)),

A(�) := �−1‖∇u‖2
L2(Q�),

B(�) := �−1‖u‖2
L3(I� ;L18/5(B�)).

Then we have the

Lemma 7 There exists an absolute constant c1 > 0, such that

A(R/4) + B(R/4) ≤ c1

{

Ψ (R) + [Φ(R)]3/2 + [Φ(R)]3
}

(23)

holds for all Q R ⊂ Q.

Proof Let Q R ⊂ Q be fixed. Let ϕ ∈ C∞(R4) denote a cut-off function, such that
0 ≤ ϕ ≤ 1 in R

4, ϕ ≡ 0 in ] − ∞, t0 − R2/4[×(R3\BR/3), ϕ ≡ 1 on [t0 −
R2/16,∞[×BR/4 with |ϕt | + |D2ϕ| + |∇ϕ|2 ≤ c0

R2
.

Since {u, p} is a suitable weak solution to the Navier-Stokes equations, we have
the local energy inequality

∫

BR/2

|u(t)|2ϕ4dx + 2

t∫

0

∫

Ω

|∇u|2ϕ4dxdt

≤
t∫

0

∫

BR/2

|u|2
{∂ϕ4

∂t
+Δϕ4

}

dxdt

+
t∫

0

∫

BR/2

(|u|2 + 2p)u · ∇ϕ4dxdt . (24)

Recalling that

L3/2(BR/2) = A3/2(BR/2)⊕ B3/2(BR/2),

there exist unique functions

p0,R/2 ∈ L3/2(0, T ; A3/2(BR/2)),

ph,R/2 ∈ L3/2(0, T ; B3/2(BR/2))

such that
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p(t)− p(t)BR/2 = p0,R/2(t) + ph,R/2(t) f.a.a. t ∈]0, T [.

On the other hand, one clearly finds t1 ∈ IR such that

‖u(t1)‖3
L3/2(BR ) =

1

R2

∫

IR

‖u(s)‖3
L3/2(BR )ds. (25)

Define,

p̃h,R/2(t) :=
t∫

t1

ph,R/2(s)ds, t ∈ IR .

Set v := u+∇ p̃h,R/2. Using this notation one can rewrite the local energy inequality
(24) as follows

∫

BR/2

|v(t)|2ϕ4(t)dx + 2

t∫

0

∫

BR/2

|∇v|2ϕ4dxdt

≤
t∫

0

∫

BR/2

|v|2
{∂ϕ4

∂t
+Δϕ4

}

dxdt

+
t∫

0

∫

BR/2

(|u|2u+ 2p0,R/2v) · ∇ϕ4dxdt

+
t∫

0

∫

BR/2

(u · ∇)u · ∇ p̃h,R/2ϕ
4dxdt

= I + I I + I I I (26)

for almost all t ∈ IR/2.
Firstly, by means of Caccioppoli’s inequality (cf. Lemma 3) we have

I ≤ c R−2‖u‖2
L2(Q R ) + c R−2‖ϕ∇ p̃h,R/2‖2

L2(IR/2;L2(BR/2))

≤ c R−2‖u‖2
L2(Q R ) + cR−4‖ p̃h,R/2‖2

L2(IR/2;L2(BR/3))

≤ cR
{

Ψ (R) + Ph(R/2)
}

,

where

Ph(�) := �−16/3‖ p̃h,�‖2
L3(I� ;L3/2(B�)).
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Secondly, using Hölder’s and Young’s inequality one estimates

I I ≤ cR−1‖u‖3
L3(Q R ) + cR−1‖p0,R/2‖3/2

L3/2(Q R )

+ cR−1‖∇ p̃h,R/2‖3
L3(IR/2;L3(BR/3))

≤ cR
{

[Φ(R)]3/2 + [Ph(R/2)]3/2
}

.

By a similar reasoning one estimates

I I I ≤ cR
{

[Φ(R)]3/2 + [Ph(R/2)]3/2
}

.

Inserting the estimates of I, I I and I I I into (26) leads to

ess sup
t∈IR/4

∫

BR/4

|v(t)|2dx +
∫

Q R/4

|∇v|2dxdt

≤ c R
{

Ψ (R) + Ph(R/2) + [Φ(R)]3/2 + [Ph(R/2)]3/2
}

. (27)

In addition, by the aid of Sobolev’s embedding theorem using multiplicative inequal-
ities together with (27) one verifies

‖v‖2
L3(IR/4;L18/5(BR/4))

≤ c

{

ess sup
t∈IR/4

∫

BR/4

|v(t)|2dx +
∫

Q R/4

|∇v|2dxdt + R−2‖v‖2
L2(Q R/4)

}

≤ c R
{

Ψ (R) + Ph(R/2) + [Φ(R)]3/2 + [Ph(R/2)]3/2
}

+ cR−2‖v‖2
L2(Q R/4).

Arguing as above we get

‖v‖2
L2(Q R/4) ≤ cR

{

Ψ (R) + Ph(R/2)
}

.

Thus,

B(R/4) ≤ c
{

Ψ (R) + Ph(R/2) + [Φ(R)]3/2 + [Ph(R/2)]3/2
}

.

Analogously, by means of (10) taking into account (27) one infers

A(R/4) ≤ 2R−1‖∇v‖2
L2(Q R/4) + 2R−1‖D2 p̃h,R/2‖2

L2(Q R/4)

≤ 2R−1‖∇v‖2
L2(Q R/4) + c Ph(R/2)
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≤ c
{

Ψ (R) + Ph(R/2) + [Φ(R)]3/2 + [Ph(R/2)]3/2
}

.

Combining the last two estimates gives

B(R/4)+ A(R/4)

≤ c
{

Ψ (R) + Ph(R/2) + [Φ(R)]3/2 + [Ph(R/2)]3/2
}

.
(28)

Estimation of Ph(R/2): Integrating (1)2 over the interval ]t1, t[ (t ∈ IR) using inte-
gration by parts yields

u(t)− u(t1)−Δũ(t) = − div H(t) − ∇ p̃(t) in BR, (29)

where

ũ(t) :=
t∫

t1

u(s)ds,

H(t) :=
t∫

t1

u(s)⊗ u(s)ds,

p̃(t) :=
t∫

t1

p(s)ds, t ∈ IR .

Recalling (7) making use of [4] (Theorems III.3.1 and III.5.2) one estimates

‖ p̃h,R/2(t)‖L3/2(BR/2) ≤ c‖ p̃(t)− p̃BR/2 (t)‖L3/2(BR/2)

≤ c‖∇ũ(t)‖L3/2(BR/2) + c‖H(t)‖L3/2(BR/2)

+ cR‖u(t)− u(t1)‖L3/2(BR/2). (30)

Fix t ∈ IR such that H(t) ∈ L3/2(BR) and u(t) ∈ L2(BR). Let w ∈W1, 2
0,σ (BR) be

a weak solution to the stationary Stokes problem

div w = 0 in BR,

−Δw + ∇q = − div H(t)− u(t)+ u(t1) in BR,

w = 0 on ∂BR .

(31)

From the well-known L p-theory for the Stokes equation [13] one obtains the esti-
mate

‖∇w‖L3/2(BR ) ≤ c‖H(t)‖L3/2(BR ) + cR‖u(t)− u(t1)‖L3/2(BR ). (32)

On the other hand, setting U := ũ(t)− w combining (29) and (31) implies
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div U = 0 in BR,

−ΔU + ∇P = 0 in BR .
(33)

In particular, from (33)2 it follows that curl U is harmonic in BR . Let ϕ ∈ C∞0 (BR)
denote a cut-off function such that 0 ≤ ϕ ≤ 1 in BR, ϕ ≡ 1 in BR/2 and |D2ϕ| +
|∇ϕ|2 ≤ c

R2
. Using integration by parts yields

∫

BR

|∇curl U|2ϕ4dx ≤ c

R2

∫

BR

|curl U|2ϕ2dx . (34)

Once more applying integration by parts shows that

∫

BR

|curl U|2ϕ2dx

≤
∫

BR

ϕ2U · curl curl Udx + c

R

∫

BR

|U| |curl U|ϕdx .

With help of Young’s inequality together with (34) one arrives at

R2
∫

BR

|∇curl U|2ϕ4dx +
∫

BR

|curl U|2ϕ2dx ≤ c

R2

∫

B2R

|U|2dx . (35)

Noticing that −ΔU = curl curl U in BR applying integration by parts making use
of (35) gives

∫

BR

|∇U|2ϕ2dx =
∫

BR

ϕ2U · curl curl Udx + 1

2

∫

BR

|U|2Δϕ2dx

≤ c

R2

∫

BR

|U|2dx .

Finally, with help of Hölder’s inequality one obtains

‖∇U‖L3/2(BR/2) ≤
c

R1/2
‖U‖L2(BR ). (36)

Combining (32) and (36) shows that

‖∇ũ(t)‖L3/2(BR/2) ≤ c‖H(t)‖L3/2(BR )

+ cR‖u(t)− u(t1)‖L3/2(BR ) +
c

R1/2
‖U‖L2(BR ). (37)
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Once more using (32) together with Sobolev’s inequality yields

c

R1/2
‖U‖L2(BR ) ≤

c

R1/2
‖̃u‖L2(BR ) + c‖∇w‖L3/2(BR )

≤ c

R1/2
‖̃u‖L2(BR ) + c‖H(t)‖L3/2(BR )

+ cR‖u(t)− u(t1)‖L3/2(BR ). (38)

Now estimating the right hand side of (37) by (38) implies

‖∇ũ(t)‖L3/2(BR ) ≤ c‖H(t)‖L3/2(BR )

+ cR‖u(t)− u(t1)‖L3/2(BR ) +
c

R1/2
‖̃u(t)‖L2(BR ). (39)

Combining (30) and (39) applying Minkowski’s inequality and Jensen’s inequality
yields

‖ p̃h,R/2(t)‖3
L3/2(BR/2) ≤ cR2‖u‖6

L3(Q R ) + cR3/2‖u‖3
L2(Q R )

+ cR3‖u(t)− u(t1)‖3
L3/2(BR ). (40)

Integrating both sides of this inequality over IR dividing the result by R8 gives

R−8
∫

IR

‖ p̃h,R(t)‖3
L3/2(BR )dt

≤ cR−4‖u‖6
L3(Q R ) + cR−3

∫

IR

‖u(t)‖3
L9/4(BR )dt. (41)

Hence,

Ph(R/2) ≤ c(Ψ (R) + [Φ(R)]2). (42)

Inserting this estimate into (28) using Jensen’s inequality along with Young’s
inequality completes the proof of (23). ��

5 Proof of Theorem 1

Fundamental estimate for Ψ (R). Let Q R ⊂ Q be fixed. Let W denote the weak
solution to the following parabolic problem

Wt −ΔW = −(u · ∇)u−∇ p0,R/4 in BR/4 × IR/4,

W = 0 on ∂BR/4 × IR/4,

W(t0 − R2/16) = 0 in BR/4.

(43)



628 J. Wolf

As in [19] one gets

‖W‖L3(IR/4;L9/4(BR/4)) ≤ c ‖(u · ∇)u‖L6/5(IR/4;L9/7(BR/4))

+ c ‖∇ p0,R/4‖L6/5(IR/4;L9/7(BR/4))

≤ c‖u‖L3(IR/4;L18/5(BR/4))‖∇u‖L2(Q R/4).

Hence,

R−2‖W‖2
L3(IR/4;L9/4(BR/4)) ≤ cA(R/4)B(R/4). (44)

Next, setting U := u−W it follows that

Ut −ΔU = −∇ ph,R/4 in Q R/4.

According to (18) one estimates

τ−2 R−2‖U‖2
L3(t0−τ 2 R2,t0;L9/4(Bτ R )) ≤

≤ cτ 2/3 R−2‖U‖2
L3(t0−R2,t0;L9/4(BR/4)) + cτ 2/3 Ph(R/4) (45)

for every 0 < τ <
1

4
. Using triangular inequality together with (45) replacing τ by

4τ
(

0 < τ <
1

16

)

therein yields

Ψ (4τ R) ≤ cτ−2 R−2‖U‖2
L3(t0−τ 2 R2,t0;L9/4(Bτ R ))

+ cτ−2 R−2‖W‖2
L3(IR ;L9/4(BR/4))

≤ cτ 2/3 R−2‖U‖2
L3(t0−R2/16,t0;L9/4(BR/4))

+ cτ 2/3 Ph(R/4) + cτ−2 R−2‖W‖2
L3(IR/4;L9/4(BR/4)).

Once more applying triangular inequality along with (44) and Hölder’s inequality
implies

Ψ (4τ R) ≤ cτ 2/3(Φ(R)+ Ph(R/4)) + cτ−2 A(R/4)B(R/4).

Taking into account (23) and (42) gives

Ψ (4τ R) ≤ cτ 2/3Φ(R) + cτ−2
{

[Φ(R)]3 + [Φ(R)]6
}

. (46)

On the other hand, using Jensen’s inequality thanks to (23) we have

Φ(τ R) ≤ cB(τ R) ≤ cΨ (4τ R) + c τ−4
{

[Φ(R)]3/2 + [Φ(R)]3
}

.
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Combining the last two inequalities gives

Φ(τ R) ≤ c1τ
2/3Φ(R) + c2τ

−4
{

[Φ(R)]3/2 + [Φ(R)]6
}

(47)

with two positive constants c1, c2.

Next, fix 0 < τ <
1

16
, such that τ 1/3c1 ≤ 1

2
. Then choose 0 < ε0 < 1 such that

cτ−4ε
1/2
0 ≤ τ

4
. Now, assume Φ(R) ≤ ε0. Then in view of (47) one finds

Φ(τ R) ≤ τ 1/3Φ(R) ≤ ε0.

By a standard iteration argument it follows that

Φ(�) ≤ c
( �

R

)1/3
∀ 0 < � < R.

From this inequality together with (4.1) and (46) we get

1

�

∫

Q�

|∇u|2dxdt = B(�) ≤ c
{

Φ(�)+ [Φ(�)]6
}

≤ c
( �

R

)1/3

for all 0 < � ≤ R. By the well-known Caffarelli-Kohn Nirenberg theorem this
inequality implies that (x0, t0) is a regular point. More precisely, there exists a con-

stant c3 not depending on R such that |u| ≤ c3

R5
a. e. in a neighborhood left to

(x0, t0).
Finally, set ε∗ := 2−4/3ε0. Assume Φ(R; x0, t0) ≤ ε∗. Then for every (y, s) ∈

Q R/2(x0, t0) the cube Q R/2(y, s) lies in Q R(x0, t0). Thus, by the definition of Φ one
obtains

Φ(R/2; y, s) ≤ 24/3Φ(R; x0, t0) ≤ 24/3ε∗ = ε0.

Therefore (y, s) is a regular point and for some constant c there holds |u| ≤ c

R5
a. e.

in Φ(R/2; x0, t0).
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An In Vitro Device for Evaluation of Cellular
Response to Flows Found at the Apex
of Arterial Bifurcations

Zijing Zeng, Bong Jae Chung, Michael Durka, and Anne M. Robertson

Abstract Intracranial aneurysms (ICA) are abnormal dilations of the cerebral arter-
ies, most commonly located at the apices of bifurcations. The ability of the arte-
rial wall, particularly the endothelial cells forming the inner lining of the wall, to
respond appropriately to hemodynamic stresses is critical to arterial health. ICA
initiation is believed to be caused by a breakdown in this homeostatic mechanism
leading to wall degradation. Due to the complex nature of this process, there is a
need for both controlled in vitro and in vivo studies. Chung et al. developed an in
vitro chamber for analyzing the response of biological cells to the hemodynamic
wall shear stress fields generated by the impinging flows found at arterial bifurca-
tions [6, 7]. Here, we build on this work and design an in vitro flow chamber that can
be used to reproduce specific magnitudes of wall shear stress (WSS) and gradients of
wall shear stress. Particular attention is given to reproducing spatial distributions of
these functions that have been shown to induce pre-aneurysmal changes in vivo [38].
We introduce a measure of the gradient of the wall shear stress vector (WSSVG)
which is appropriate for complex 3D flows and reduces to expected measures in
simple 2D flows. The WSSVG is a scalar invariant and is therefore appropriate for
use in constitutive equations for vessel remodeling in response to hemodynamic
loads [34, 35].
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1 Introduction

Due to the broad audience of this special volume, we begin this manuscript with a
general introduction and motivation for this work. The arterial system is in some
sense an optimized network of vessels [40]. In particular, it appears that the vascu-
lature is designed to maintain the wall shear stress in vessels in a specific range,
e.g. [15]. This is reflected in both the geometry of the vasculature and also in
its ability to locally modify the vessel caliber through dilation and remodeling in
response to changes in shear stress [23, 30, 50]. Throughout much of the arterial
system, the velocity field is predominantly parallel to the vessel centerline. However,
there are locations such as bifurcations, regions of sudden expansion and highly
curved segments where the hemodynamic loading is far from this idealized flow,
e.g. [26, 36]. These regions may display recirculation, flow impingement, accel-
eration/deceleration, and points of flow separation. In these areas, the magnitude
and direction of the wall shear stress vector, t s , may change in space and time and
be far from that associated with the nearly uni-directional flow found in straighter,
more uniform arteries. For this reason, these flows are often referred to as “disturbed
flows.”

The fact that pathological changes to the vessel wall are correlated with these
flows suggests the nature of the stress vector in these areas is outside the “optimal
range” and is challenging for the vasculature. For example, intimal thickening is
found to be correlated with regions of very low and oscillating wall shear stress
often found in the carotid artery sinus, e.g. [27]. The destructive remodeling of the
vessel wall in these regions appears to be a maladaptive response to hemodynamics
in this region.

The general nature of the term “disturbed flows” is misleading. It is now under-
stood that the endothelial cells (EC) which line our arteries can distinguish between
some types of complex flows. Their response to altered t s includes changes in cell
shape and alignment, changes in activation of ion channels, intercellular signaling,
gene expression changes at the level of transcription and protein synthesis (see, e.g.
[2, 9, 16, 36, 41]). These local responses can trigger a cascade of large scale events
such as vasodilation, and vessel remodeling.

Because of the importance of the EC in both the normal maintenance of the
arterial wall as well as pathological changes associated with disease, numerous in
vivo and in vitro studies have been directed at understanding the coupling between
t s and EC response. Various hemodynamic parameters have been introduced with
the intent of replacing this complex vector function with scalar quantities that cap-
ture the most significant features of t s for a given biomechanical response. One
such parameter is the magnitude of t s which is nearly uniformly accepted as an
appropriate measure of t s . It is simply denoted as WSS.

Another hemodynamic feature of interest is the surface gradient of the wall shear
stress. The choice of a scalar measure for this quantity is less clear. This is partic-
ularly true for curved surfaces where the spatial gradient of t s has an out of plane
contribution. A variety of scalar functions of the spatial gradient of t s are used in the
literature. Unfortunately, they are all denoted as WSSG, confounding comparison of
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results from different groups [5, 22, 25]. In most cases, a non-negative quantity is
used, which cannot capture the dependence of the biological response on the sign
of the gradient. In Sect. 2.1.1, we introduce a new measure of the wall shear stress
gradient denoted as WSSVG rather than WSSG to emphasize that it is dependent
on the gradient of the wall shear stress vector not the gradient of the WSS. This
parameter has a number of advantages. It is appropriate for complex 3D flows and
reduces to expected measures in simple 2D flows. The sign of WSSVG reflects the
increasing and decreasing nature of t s . In addition, this measure is a scalar invariant
of a second order tensor, so will be appropriate for use in constitutive equations for
vessel remodeling in response to hemodynamic loads (e.g. [34, 35]).

There is substantial evidence to support the hypothesis that hemodynamics also
play an important role in the initiation and development of intracranial aneurysms
(ICA), (see, e.g. [14, 19, 20, 24, 44, 45]). An ICA is a pathological condition of
cerebral arteries characterized by degeneration of the internal elastic lamina (IEL)
and media, accompanied by local enlargements of the arterial wall, typically into a
saccular shape. Cerebral aneurysms are predominantly found at the apices of bifur-
cations and outer bends of highly curved vessels in or near the circle of Willis,
a network of vessels at the base of the brain. At both these locations, the blood
impinges on the arterial wall where it is redirected with strong spatial variations in
t s downstream of the impingement point.

Earlier computational work suggested that the impulse of the incoming flow on
the apex region could directly damage even healthy arterial walls [11]. It was later
shown that the results supporting this conjecture were unphysical due to the use of
perfectly sharp corners in the study [18]. The local increase in pressure at the apex
is on the order of a few mmHg, much smaller than the normal variation in pressure
throughout the vasculature [6]. Since cerebral aneurysms can form in humans in the
absence of hypertension, we conjecture the role of elevated hemodynamic pressures
in aneurysm formation is to hasten mechanical damage and ultimate failure of an
IEL previously weakened by biochemical factors. The magnitude and spatial distri-
bution of t s at the apex of the bifurcation is drastically different from the seemingly
desired distribution of more uniform flow. It has been conjectured that some aspect
of t s at the apex of the bifurcation initiates a cascade of biochemical activities that
lead to the degradation of the IEL and media, rather than directly damaging the
wall. For example, the character of t s may lead to an imbalance in the production of
enzymes responsible for natural remodeling and turnover of the extracellular matrix.

Motivated by diseases such as atherosclerosis as well as the frequent onset of
intimal hyperplasia following bypass surgery, numerous in vitro and in vivo stud-
ies have been performed to explore the role of WSS and WSSVG in pathological
changes to the arterial wall (e.g. [5, 29, 41]). While some in vitro chambers are
designed to isolate the effect of specific parameters, others attempt to reproduce a
specific “disturbed” flow found in vivo. For example, parallel plate and cone-and-
plate flow chambers have been used to study the role of WSS under conditions
for which there is no spatial or temporal gradient in t s . A backward facing step
was introduced into these chambers to recreate the recirculating flow associated
with intimal hyperplasia in vivo [10], including a reattachment point and regions of
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deaccelerating and accelerating flow. DePaola et al. appear to be the first to conjec-
ture that endothelial cells may be sensitive to the gradient of t s [10].

Recent in vivo work suggests both the WSS and the WSSVG play an important
role in aneurysm initiation. Significantly, the sign of the gradient in t s has been
reported to be important for pre-aneurysmal changes [39]. However, the chambers
designed for atherosclerosis do not reproduce the salient hemodynamic features
found at the apices of bifurcations where aneurysms tend to form. In particular, the
WSS field downstream of the stagnation point is monotonic and the surface gradient
of t s is much smaller than that found at the apex of bifurcations. There is a pressing
need for an in vitro flow chamber which reproduces the WSS and WSSVG fields
associated with aneurysm formation in vivo.

An in vitro T-chamber for studies of cellular response to apex flows was first
introduced by Robertson et al. [6, 7]. This chamber well approximates the WSS
field found in idealized human cerebral bifurcations and forms the starting place
for the present work. In this work, we design a T-chamber which successfully
reproduces specific profiles in both WSS and WSSVG found to be associated with
pre-aneurysm changes in canine arterial bifurcations [38, 39].

2 Methods

2.1 Governing Equations

We perform numerical simulations in an idealized arterial bifurcation as well as in
segments of an in vitro flow chamber. For both cases, the fluid is idealized as incom-
pressible, homogeneous and linearly viscous (Newtonian) and the flow is modeled
as steady and isothermal. The relevant governing equations are therefore the incom-
pressibility condition and equation of linear momentum. Referred to rectangular
Cartesian coordinates, xi , the governing equations in the fluid domain, Ω , are

vi,i = 0,

� vi, jv j = − p,i + μ vi, j j ,

}

inΩ (1)

where vi are the components of the velocity vector v, p is the combined term repre-
senting the Lagrange multiplier arising from the incompressibility constraint (equiv-
alent to the mechanical pressure) and the gravitational potential, μ is the constant
viscosity and � is the constant mass density. The notation (),i denotes ∂()/∂xi and
repeated indices imply summation over the values of the index i = 1, 2, 3.

The bounding surface of Ω is composed of rigid walls where the velocity is pre-
scribed to be zero, as well as N inflow and outflow surfaces. The locations of these
N surfaces are somewhat arbitrary, arising when we truncate the physical domain in
order to make the computational problem tractable. The choice of boundary condi-
tions on these surfaces is not unique from the physical or mathematical perspective.
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We will specify the velocity on surfaces Γ̄α and the modified stress vector t ′ on
surfaces denoted as Γα where α ∈ [0, 1, 2, ..N − 1]. The choice of these surfaces
and the corresponding conditions are problem specific and therefore will be given
below for particular simulations. The modified stress vector is defined as

t ′i ≡ (−pδi j + μvi , j )n j (2)

where n j are the components of the outward normal to the surface Γα . It is physi-
cally reasonable and computationally straightforward in appropriately chosen FEM
formulations to prescribe t ′ to be parallel to n on inlet and outlet surfaces, so that
from (2),

(−pδi j + μvi , j )n j = Cni on Γα. (3)

For a discussion of the implementation of (3) using the finite element method see,
for example [3], for a comparison of this condition with other inflow/outflow con-
ditions see [17], and for numerical and some mathematical aspects of this boundary
condition, see [21]. More recently, Galdi has addressed the mathematical properties
of the system (1) for the case of steady and unsteady flows when condition (3) is
applied at all inflow and outflow surfaces [13]. Kučera and Skalák have considered
the unsteady problem with more general boundary conditions [28]. An early discus-
sion of physical anomalies arising when the usual Cauchy stress vector rather than
the modified stress vector is specified at outflow boundaries is given in [33].

2.1.1 Flow Parameters: Wall Shear Stress and Wall Shear Stress Gradient

In this section, we give a more precise meaning to the scalar quantities called the
wall shear stress and wall shear stress gradient. The central considerations are (i) that
these quantities be physically meaningful based on known biological data and (ii)
that they are scalar invariants. This last point is important when these quantities are
used in constitutive equations for destructive remodeling and damage of the arterial
wall such at the model proposed in [34, 35].

We now consider the fluid domain to be surrounded by a solid domain Ω ′ (the
wall), Fig. 1. Consider an arbitrary point P on the interface of these domains ∂Ω
with unit normal n directed into the fluid domain. The wall shear stress vector, t s at
P is defined as

t s = t − t · n n. (4)

We would like the WSS to be a scalar function of t s with dimensions of stress.
Since a scalar valued function of a vector is invariant if and only if it can be
expressed as a function of its inner product (e.g. [48]), the choice of WSS is clear,

WSS = |t s | =
√

t s · t s . (5)
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Fig. 1 Schematic of the vessel lumen and arterial wall

To our knowledge, there is only one work which does not use this definition [22].
We denote the spatial gradient of t s with respect to surface coordinates as grads t s .

For curved surfaces, grads t s may not be a two dimensional tensor because the gra-
dient of the surface base vectors may not lie on the surface. For example, consider
the surface of a cylinder of circular cross section which is parameterized in terms of
standard cylindrical components (θ, z). The grads t s has an er ⊗ eθ component. We
do not expect the biological cells to be sensitive to a purely geometric contribution
of this kind, so we define a modified gradient of the wall shear stress vector as

G = grads t s − n ⊗ (n · grads t s). (6)

The quantity G is a two dimensional second order tensor with two principal
invariants tr(G) and detG, (e.g. [48]). Based on physical motivations elaborated on
below, we define the W SSV G as,

WSSVG = tr G. (7)

We emphasize that WSSVG is an invariant of the gradient of the wall shear stress
vector and not the gradient of the WSS. To avoid confusion, we do not use the
notation WSSG. As we will see below, this is an important distinction and necessary
to ensure the WSSVG captures the desired physical behavior.

To attain a clearer understanding of the physical meaning of these quantities, we
consider the special case of 2D flow of an incompressible linearly viscous fluid over
a flat surface. Using 2D rectangular coordinates (x1, x2), we define a solid boundary
at x2 = 0 with normal e2 into the fluid and consider velocity fields of the form,
v = v1(x1, x2)e1 + v2(x1, x2)e2. For such flows,

2D flow : t s = ts1e1 = μ
∂v1

∂x2
e1, WSS = μ|∂v1

∂x2
| at x2 = 0, (8)

where we have made use of the no-slip condition. We see the WSS has the expected
meaning of the magnitude of the viscous drag per unit area on the wall by the fluid.
Furthermore, for these 2D flows,
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[

grads t s

] =

⎡

⎢
⎣

μ
∂2v1

∂x1∂ x2
0

0 0

⎤

⎥
⎦ , at x2 = 0. (9)

For flat plates, Eq. (6) simplifies to G = gradst s . It therefore follows directly
from (7) that,

2D flow : WSSVG = μ
∂2v1

∂x1∂ x2
. (10)

The second principal invariant, det(grads t s), is zero for these 2D flows and so
the choice to use the trace invariant is clear. A linear dependence on this invari-
ant is consistent with the desired dimensions of WSSVG. It is clear from (10) that
WSSVG is capable of distinguishing between increasing and decreasing ts1 through
its sign.

The difference in using the surface gradient of WSS rather than the surface gradi-
ent of the stress vector is clear if we consider a special case of the 2D flow which is
symmetric about the plane x1 = 0. As an example, consider flows for which the fluid
impinges on the plate with v1(−x1, x2) = −v1(x1, x2) and v2(−x1, x2) = v2(x1, x2).
The idealized 2D flow fields we consider below for the apex region of the T-chamber
display this symmetry. From the perspective of the response of the endothelial cells
to flow of this type, we would like our “measured” WSSVG to display a symme-
try about the plane x1 = 0 as well. It follows directly from the result (10), that
WSSVG(−x1, x2) =WSSVG(x1, x2), as desired. Note that grads WSS is an odd
function of x1 and so would predict different behavior on either side of the symmetry
plane.

2.2 Flow in Idealized Bifurcation Models

The T-chamber developed here is designed to reproduce shear stress fields which
are typical of the apex region of cerebral arterial bifurcations. With this in mind,
we briefly review the central features of such flows. Unsteady and steady flows in
arterial bifurcations have been the subject of intense research, due to their relevance
in atherosclerosis and other vascular diseases (see, e.g. [4, 18, 27, 51]). Here, we
concentrate on flow in the apex region of bifurcations, where cerebral aneurysms
are most likely to form.

Quantitative features of the bifurcation flow, such as the distribution of WSS, are
dependent on the bifurcation geometry as well as the flow and fluid parameters. One
such idealized bifurcation model with two planes of symmetry is shown in Fig. 2a, b.
The bifurcation geometry was created using a parametric model for human cerebral
bifurcations [6, 49]. Approximate solutions to (1) were obtained using the finite ele-
ment method, implemented in ADINA (Automatic Dynamic Incremental Nonlinear
Analysis, Watertown, MA). The velocity was prescribed to be zero on the lateral
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(rigid) walls. Boundary condition (3) was applied at the inlet and outlet surfaces
with C = 0 on (Γ1, Γ2) and C set equal to a positive constant on Γ0, chosen such
that a Reynolds number (Re) of 255 was achieved, where

Re = �V̄ D/μ, (11)

D is the diameter at Γ0 and V̄ = 4Q/(πD2) is the average velocity at the
same location. For these studies, we choose parameters � = 1.05 g/cm3 and
μ = 0.035 g/(cm s), D = 4 mm and from (11), V̄ = 21 cm/s. The diameter of
both daughter branches was set to 2.4 mm. These values are relevant for cerebral
aneurysm formation.

As blood travels up the parent branch into the bifurcation region it impinges on
the wall as it splits to flow into the two daughter branches, Fig. 2c. The blood then
follows the curved geometry of the bifurcation into the daughter branches. The fluid
close to the apex accelerates as it leaves the neighborhood of the impingement point,
Fig. 2c. Displayed in Fig. 2d are the surface stress vectors t s and iso-WSS contours

Fig. 2 Flow in an idealized bifurcation model. (a) Idealized geometry and computational domain
Ω . (b) Schematic of cutting planes for bifurcation. (c) Velocity vectors in longitudinal plane of
apex region. (d) Contours of the WSS (dynes/cm2) with vectors t s superimposed on iso-contours.
(e) WSS along apical ridge defined by the intersection of apex and longitudinal plane. Distance
is measured from impingement point. (f) WSS along apical ridge (slice 1) and planes parallel and
separated by 0.04 and 0.08 mm from the longitudinal plane (slice 2 and 3, respectively)
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for a saddle shaped region in the neighborhood of the bifurcation. In Fig. 2e, WSS
along the apical ridge (formed by the intersection of saddle region and the longitu-
dinal plane) is plotted as a function of distance from the impingement point. As can
be seen in these two figures, WSS is non-monotonic, increasing from zero at the
impingement point to a local maximum value and then decreasing again.

It is clear from Fig. 2d that the WSS field is fairly two dimensional in nature in
the bifurcation region. To assess this further, consider the WSS at points denoted
as slice 1 in Fig. 2f, corresponding to the curve in Fig. 2e. The WSS along two
other curves is shown (labeled slice 2 and 3) in Fig. 2f. These correspond to the
curves formed by the intersection of the saddle region with planes parallel to the
longitudinal plane, separated from it by distances of 0.04 and 0.08 mm, respectively.
If the stress field was perfectly two-dimensional, these curves would be identical.
Though the maximum drops slightly with distance from the longitudinal plane, the
WSS can be seen to be close to two-dimensional in this region. Furthermore the
direction of vectors t s are approximately tangent to these planes, Fig. 2d. This near
two-dimensionality is likely due to the fact that the principal radii of curvature at
the apex, are of opposite sign. Our in vitro chamber makes use of this near two
dimensionality in the neighborhood of the apex.

Meng et al. [39] evaluated the response of vascular tissue to sudden exposure
to apical t s fields. Artificial bifurcations were surgically created from native seg-
ments of common carotid arteries in dogs. Using CFD analysis in reconstructions
of these vessels, they obtained WSS fields similar in form to those shown in Fig. 2e.
They divided the apex into three distinct hemodynamic regions which we denote
as Regions A,B,C. Region A displays WSS ≤ 20 dynes/cm2, Region B displays
WSS > 20 dynes/cm2, and positive WSSVG and Region C displays WSS >

20 dynes/cm2 and negative WSSVG. Distinct histological responses were found in
these regions. Significantly, in five of six cases, Region B displayed pre-aneurysmal
changes including a thinned wall, disrupted IEL, reduction in SMCs and loss of
endothelium. However, these same changes were not found in region C where the
WSS magnitude was equally high though the WSSVG was of a negative sign. In
that work, elevated WSS and positive elevated WSSVG were found to be important
for aneurysm initiation.

2.3 Rationale Behind Design of Fluid Domain
in the Bifurcation Chamber

The geometric features of the T-chamber designed by Chung and collaborators [6, 7]
well approximates the WSS field found in an idealized human cerebral bifurcations.
This chamber forms the starting place of the present work. Motivated by the in vivo
results just discussed, this T-chamber was modified to reproduce the quantitative
features of both the WSS and WSSVG of the range reported in [39]. Many tests of
cellular function provide only a relative measure (e.g. Western blotting, etc.) and so
it is desirable to build the chamber to recreate both the bifurcation stress field as well
as control fields. We introduce two control regions for exposure of cells to constant
WSS.
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(a) (b)

Fig. 3 Schematic of main features of fluid domain in flow chamber. (a) Entire 3D fluid domain
(b) 2D cross section of fluid domain without reservoirs

A schematic of the general geometric features of the T-chamber are shown in
Fig. 3, where the chamber orientation is inverted relative to the bifurcations shown
in Fig. 2. Culture medium flows into the inlet reservoir, moves down the parent
(vertical) channel, flows into the two daughter channels, into the outlet reservoirs
and finally out of the chamber, Fig. 3a. Three separate slide regions are specified on
the bottom plate: one in the region of the T-junction (slide I), two in control regions
of constant WSS (slides II and III), Fig. 3b. Distinct slide banks are used to decrease
contamination of the final biological cells from each test region with those from the
transition regions. In addition, cross communication between cells in the different
regions will be lessened.

Following [8], we define Active Test Regions, ATR-I, ATR-II, ATR-III, where the
wall shear stress is within a chosen percentage of the desired 2D flow field for slides
I, II and III. For ATR-II and ATR-III, the desired stress field will be a constant,
corresponding to the solution for steady, fully developed, 2D, channel flow,

τ f d 2D = 6Qμ

wh2 = 4Voμ

h
, (12)

where Q is the volumetric flow rate, Vo is the centerline (maximum) velocity, w
is the channel width and h is the channel height. It follows from the exact analytic
solution for 2D flow that Vo = 3Q/(2hw). In the bifurcation slide, (slide I), the
desired 2D field will correspond to the 2D bifurcation flow field, discussed in more
detail below.

In summary, the T-chamber should meet the following criterion:

Design Criteria

1. A 2D WSS and WSSVG field is created on slide I which, with proper choice of
flow rates, is relevant to (i) the apex of human cerebral arterial bifurcations and
(ii) values for canine models in which pre-aneurysmal changes were reported.

2. Geometry of the flow domain creates nearly constant WSS fields on slides II and
III. For example, supra-physiological WSS and physiological stress levels could
be created in ATR-II and ATR-III, respectively.
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3. The shear stress field should be approximately two dimensional in a large per-
centage of the chamber. In particular, the width of chamber should be chosen
to provide sufficient quantities of cells for meaningful biological analysis in the
bifurcation region.

4. The thickness of the daughter channels should be machined to sufficient toler-
ance to obtain acceptable errors in WSS and WSSVG.

5. The flow chamber should be easily assembled.
6. The total volume of the chamber fluid domain should be minimized to reduce the

cost of the testing fluid, chamber body material and lessen the dilution of cellular
byproducts.

7. The components of the chamber should be suitable for repeated autoclaving dur-
ing sterilization.

A variety of perfusion fluids are used in the literature. In general, they have
approximately the same properties as water. In other cases, an attempt is made
to match the viscosity and density of blood. We take this latter approach and set
μ = 0.032 g/(cm s), � = 1.02 g/cm3. These values are within the range reported for
normal blood at 37◦C at shear rates higher than 400 s−1, (e.g. [42]). We use these
latter values here.

It should be recalled, that the solution (12) is for a 2D channel not a channel with
a finite width. An analytic series solution exists for fully developed flow in channels
of rectangular cross section and can be used to assess the error in using (12), [8].
The velocity is diminished in a boundary layer near the wall, so that for a given flow
rate, the average velocity and WSS will generally be higher outside the boundary
layer in the finite channel compared with the idealized 2D solution given in (12).
The difference between the WSS outside this boundary layer and that in of the 2D
solution can be controlled through the channel geometric ratio β = h/w, [8]. For
the geometries used here, this error is less than 2% and so it is convenient to simply
estimate the WSS in slides II and III using (12).

3 T-Chamber Design: Analysis and Results

3.1 Fluid Domain

A 2D computational analysis was used to select the relevant 2D chamber geometric
parameters in Fig. 4a such as the channel heights (h0, h1, h2) and the shape of the
bifurcation region. Next, the length of the daughter channel between the bifurcation
region and the constant WSS regions s1 and s2 was chosen to assure the flow is
nearly fully developed when it reaches slides II and III. Finally a 3D analysis was
performed to design the inlet and outlet reservoirs to diminish the effects of the
fluid entering and exiting the chamber. These reservoirs are essential for obtaining
a nearly 2D flow in the test regions. The final design was then checked using a
comprehensive CFD study of the full 3D chamber.
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3.1.1 Bifurcation Region

Criterion 1 was the central factor in the design of the bifurcation region. The 2D
computational domain for these studies was composed of the parent channel, the
bifurcation region and symmetric daughter branches of constant height, h1, Fig. 4a.
The modified stress vector t ′ was set to zero at the inlet and a parabolic profile with

(a)(a)

(b)(b)

Fig. 4 Geometric parameters considered in chamber design. (a) 2D domain (no reservoirs), (b) full
3D domain
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Fig. 5 Flow through a bifurcation with sharp corners (2D simulation). In (a), velocity vectors in
bifurcation region with vortex seen downstream of sharp corner. In (b) WSS distribution along
centerline of bottom plate in region x ∈ [0.0, 0.8] cm. Here, Q = 4518 ml/min, [h0, h1, h2] =
[1.0, 0.3, 0.3] mm

the desired flow rate was specified at each outlet. The FEM mesh was composed of
structured quadrilateral elements (between 250 and 500K elements).

The WSS distribution on slide I was found to be quite sensitive to the shape
of the juncture between the parent and daughter branches (the outer corner of the
bifurcation) and the design of this region required the most intense evaluation. A
simple sharp corner has been used in a recent T-chamber designs [47]. However, as
seen in Fig. 5a below and Fig. 1 of [47], corners of this type can produce standing
vortices. The qualitative nature of the WSSVG is altered by these vortices, Fig. 5b.
Furthermore, these vortices can potentially be shed and washed downstream, creat-
ing additional errors in the imposed WSS and WSSVG fields on the bottom plate.
Instabilities of this kind will not be captured in steady simulations.

These vortices can be removed by rounding the sharp corner to form a section
of an ellipse, Fig. 6. The elliptical geometry can be characterized by the ellipticity,

ε =
√

(r2
p − r2

d )/r2
p, where rp and rd are the half length of the major axis, Fig. 4a.

The original chamber introduced in [6, 7], provided a good match with the WSS
distribution in the idealized bifurcation using a circular corner (ε = 0), but there
were quantitative differences in the WSS from those reported in [38]. In particular,
for the canine model, the maximum in WSS (WSSmax) is found 2–3 mm from the
bifurcation point, nearly twice the distance of that in the T–chamber with a circular
corner. By elongating the circular corner (increasing ε), while holding other vari-
ables fixed, the location of the maximum in WSS shifts downstream. This effect can
be seen Fig. 7 where 2D solutions for the WSS and WSSVG on the bottom plate
are shown for a circular corner (ε = 0) and an elliptical corner with ε increased to√

3/2. Comparison of Figs. 7 and 8 demonstrates the effect of increasing flowrate
on the WSS and WSSVG profiles. The location where the WSSVG changes sign is
relatively insensitive to flowrate, while both WSSmax and WSSVGmax increase with
increasing Q. As can be seen in Fig. 9, the WSSmax is quite sensitive to the channel
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(a) (b)

Fig. 6 Flow through a bifurcation with elliptical corner (2D simulation). In (a), magnified view
of bifurcation with streamlines superimposed on iso-velocity contours (mm/s). In (b), magnified
view of velocity vectors in bifurcation region. Here, Q = 1333 ml/min and geometric parameters
are given in Table 1
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Fig. 7 Comparison of (a) WSS and (b) WSSVG on the bottom plate of T-chambers with elliptical,
circular and sharp corners, (2D simulations) Q = 1333 ml/min, ε = √3/2, Rc = 0.5 mm, with all
other geometric parameters given in Table 1

.

height of the daughter branch. As h1 is narrowed from 0.8 to 0.4 mm for fixed h0,
the WSSmax more than doubles with a very slight downstream shift in its location. It
was found that by adding a slight taper to the channel upstream of the bifurcation,
the magnitude and location of the WSSVGmax could be easily controlled with little
change in WSSmax, making it possible to closely match specific WSS and WSSVG
profiles.

Using these trends as guidelines, it was possible to select ε, h0, h1 and the
parent channel taper in such a away to obtain bifurcation WSS and WSSVG val-
ues that capture the main quantitative features of a given arterial bifurcation. For
example, shown in Fig. 10 is a comparison between WSS and WSSVG profiles
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Fig. 8 WSS and WSSVG distribution along centerline of bottom plate in bifurcation region (2D
simulations) with elliptical outer bifurcation ε = √3/2, h0, h1, h2 = [3.0, 0.8, 1.2] mm and all
other geometric parameters given in Table 1. Two flowrates are considered: (a) Q = 2000 ml/min,
(b) Q = 2400 ml/min. Region A is defined by WSS ≤ 20 dynes/cm2, Region B by WSS > 20
dynes/cm2 and positive WSSVG and Region C by WSS > 20 dynes/cm2 and negative WSSVG
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Fig. 9 WSS distribution along centerline of bottom plate in bifurcation region for h1 =
[0.4, 0.6, 0.8] mm, (2D simulations) with elliptical outer bifurcation ε = √3/2, Q = 1333 ml/min.
All other geometric parameters are given in Table 1

for a representative canine data set from [39] and results from a T-chamber model,
designed to obtain a quantitative match of this data.

3.1.2 Test Regions II and III

The chambers are designed to be run with an equal flow split between the two daugh-
ter branches. This ensures the flow in the bifurcation region is nearly symmetric
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Fig. 10 WSS and WSSVG profiles in bifurcation region of canine model and T-chamber. T-
chamber flowrate and geometry chosen to approximate maximum in WSS and WSSVG in
canine data as well as qualitative shapes of curves. In T-chamber study Ld0 = 18 mm and
Q = 1750 ml/min, (2D simulations). All other geometric parameters are given in Table 1

about the plane x = 0. In this case, the flowrate in each daughter channel is
Qd = Q/2. The transition regions between slides I and the slides in the daughter
branches are designed to achieve nearly fully developed flow prior to slides II and
III. Assuming the flow is approximately 2D, the WSS on each daughter slide can
then be calculated directly from (12). A 2D CFD analysis was performed to select
the geometry of the diffuser and slide location that would guarantee the flow to be
nearly fully developed on both slides. Values for the current chamber are shown in
Table 1.

Table 1 Values (in mm) of geometric parameters for T-chamber, Fig. 4. The ellipticity (ε) is
√

3/2.
The slide widths (in the flow direction) for slides I, II and III are 15, 25 and 25 mm, respectively

h0 h1 h2 L0 L1 = L2 w l2 Ld0 Ld2 s1 = s2 D0 D1 = D2 d1 = d2

3.0 0.8 1.2 50 70 48 14 30 7.5 45 16 6 15

3.2 Reservoir Design

As discussed in detail in [8], the size of the ATR is influenced by the magnitude of
the lateral wall effects as well as entrance and exit effects. While simply increasing
the length of the chamber segments upstream of the test regions will generally lead
to a more 2D flow it will also increase the volume of perfusion fluid. The cellular
byproducts of the cells in the chamber are sometimes evaluated from samples of
the perfusion fluid obtained during experiments [12]. By decreasing the volume of
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fluid, the cost of the experiment can be decreased and it will be possible to obtain
higher concentrations of these materials.

Parametric studies were performed to design the shape and size of the reservoirs
and diffusers for the parent and daughter channels. The 3D computational domain
for these studies consisted of the inlet/exit to the reservoir, the inlet/daughter reser-
voir and the adjacent parent/daughter channel, Fig. 4b. A uniform velocity profile
was applied at the inlet/outlet of the computational domain and the modified traction
vector was set to zero at the outlet/inlet. The width of the channel was set to 48 mm
to provide a large quantity of slides for cell culture while matching readily available
slip cover and slide lengths.

The inlet reservoirs decreased the incoming momentum of the flow from the tub-
ing and help to redistribute it across the width of the chamber, thereby contributing
to the 2D nature of the flow. The shape of the reservoir has a significant impact on
its effectiveness [8]. Following [7, 8], we chose cylindrical reservoirs with incoming
flow perpendicular to the flow direction in the neighboring channel, Fig. 4b. For the
inlet flow, a reservoir of circular cross section with D0 = 16 mm was found to
provide a good balance between damping effects and volume requirements. The
reservoir design was found to be very effective at damping the momentum of the
flow entering the inlet reservoir thereby diminishing the length of the parent chan-
nel needed to ensure the flow is nearly 2D in the test regions. Figure 11a displays
the iso-velocity (magnitude) contours in the symmetry plane (x = 0) of the inlet
reservoir and parent channel. The damping of the inlet jet can be seen within the
reservoir. The diffuser effectively converts the incoming jet to a nearly 2D flow, a
short distance downstream of the diffuser. There are two slight modifications in this
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Fig. 11 Evaluation of transition to fully developed flow in parent channel (3D simulations) with
(a) iso-velocity contours in yz-plane (mm/s) and (b) axial velocity (−vz) as a function of y just
upstream of bifurcation slide (x = 0, z = 36 mm), with Q = 1333 ml/min, [h0, h1, h2] =
[3.0, 0.8, 1.2] mm and all other geometric parameters are given in Table 1. Coordinate system
show in Fig. 3
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a b

Fig. 12 WSS (dynes/cm2) contours on bottom surface of flow domain, (3D simulation) for cham-
ber (a) without diffusers and (b) with diffusers at outlet reservoirs. Geometric parameters are given
in Table 1 and Q = 2000 ml/min

inlet reservoir design from that in [7, 8]. In the earlier chamber, a constant radius
extension of the reservoir was used on both sides of the channel. Here, the constant
radius inlet extension was replaced by a diffuser. The opposing extension on the
inlet reservoir was found to have little impact on the flow and was removed in the
current chamber.

The addition of two outlet diffusers upstream of the daughter reservoirs was
found to significantly lessen the upstream influence of the reservoirs, Fig. 12. These
reservoirs were designed independently from the parent reservoir and, for simplicity,
were chosen to be identical. The cross section shape of is the union of a half circle
of diameter D1 and a rectangle of height H1, Fig. 4b. The value of the geometric
parameters used in the final chamber design are given in Table 1.

3.2.1 Methods of Decreasing Fluid Volume

The fluid domain can potentially be reduced in volume by decreasing the reservoir
and channel volumes. Careful design of the reservoirs was used to diminish the
entrance and exit lengths of the neighboring flow and therefore the lengths (and
volume) of each channel. It was found that a region in the parent branch adjacent to
the inlet reservoir could be narrowed to a thickness h p = 1/3h0 and then gradually
expanded over a length Ld0 to the desired value of h0, Fig. 4a. Due to the gradual
nature of the taper, these alteration to the parent channel had no measurable effect
on the velocity field, WSS, or WSSVG in the bifurcation region. Values chosen for
this chamber are given in Table 1. The total chamber volume is 25.8 ml.

3.3 Validation of T-Chamber Design

The design of the various sections of the chamber were performed for subsets of the
entire final chamber geometry. It was therefore necessary to perform a 3D analysis
for the full 3D chamber, including the inlet port and reservoirs. This corresponds to
the complete computational domain shown in Fig. 4b using the geometric param-
eters in Table 1. A uniform velocity profile corresponding to the flowrate Qd was
prescribed at each of the outlets (Γ1, Γ2) to ensure equal flow division. The modified
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Fig. 13 WSS (dynes/cm2) contours on bottom surface of flow domain, with labeled slide regions
(3D simulation). Geometric parameters are given in Table 1 and Q = 1333 ml/min

Fig. 14 WSS (dynes/cm2) along centerline of bottom plate for flowrates, Q = [1333, 2000, 2400]
ml/min with the geometry given in Table 1

traction vector was set to zero at the inlet, Γ1. Approximately 70K structured hexa-
hedral elements were used for these 3D studies. The results of this validation study
are shown in Figs. 13 and 14.

The WSS on the bottom plate and reservoirs is shown in Fig. 13. The boundaries
of ATR-II and III based on a criterion that the WSS be within 10% of the desired
2D value are drawn. The slide locations are drawn in solid lines with the lateral
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boundaries of the ATR drawn as dashed lines. The slide widths in the direction of
flow are 15, 25 and 25 mm for slides I, II and III, respectively. For studies with Q =
1333 ml/min, the desired WSS values in ATR-II and ATR-III, are 70 dynes/cm2 and
31 dynes/cm2, respectively. Due to the no-slip condition at the lateral walls, there is
a boundary layer where the WSS differs substantially from the 2D value. Conserva-
tively, a domain excluding a 3 mm wide strip on each lateral side of the slides will
satisfy the ATR criterion. Shown in Fig. 13 are the slide regions, all within the appro-
priate ATR. Necessarily, the slide must extend beyond the lateral boundaries of the
ATR. This can be addressed either by removing these cells from the slide after test-
ing and prior to genetic analysis, or by bounding the domain occupied by the cells
(see, e.g. [37]). The effect of varying the flowrate on the WSS distribution on the
bottom surface of the final flow chamber (geometric parameters in Table 1), is shown
in Fig. 14. The three slides can be seen to be well located for all three flowrates
tested.

When the chamber is placed within a flow loop for testing, the flow division
can be controlled by downstream flow regulators. 2D CFD studies were performed
to investigate the possible impact of imbalances in this split. Shown in Fig. 15 are
results of a conservative study, in which a deviation of±10% from the desired value
was imposed. While the change in flow magnitude is reflected in the magnitude of
the WSS, it is clear that the locations of both the impingement point and the max-
imum in WSS are nearly insensitive to an imbalance of this magnitude. Therefore,
the interpretation of the three regions within slide I will not be jeopardized if an
experimental error of this kind is introduced.

–0.2 –0.1 0 0.1 0.2
0

50

100

150

200

Axial position on bottom plate (cm)

W
S

S
(d

yn
es

/c
m

2 )

Fig. 15 Evaluation of the effect of a flow imbalance relative to a balanced flow Q1 = Q2 = Qn .
WSS along the bottom plate for imbalances (Q1, Q2) = (1.1, 0.9) Qn (solid line) and (Q1, Q2) =
(0.9, 1.1) Qn (dashed line). Geometric parameters are given in Table 1 and Qn = 1000 ml/min
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4 Assembly Design and Manufacture

The 3D assembly design of the flow chamber is shown in Fig. 16a, generated using
Pro/ENGINEER Wildfire package (PTC Inc). The entire chamber is composed of
four plates which we denote as A, B, C, D from the top to bottom in Fig. 16(a)
and an inlet adaptor. The breakdown of the upper chamber into three layers was
necessary for precise machining of the parent channel which has a very high aspect
ratio (w/h0 = 16, w/hin = 48) and two different cross sectional shapes (constant
and tapered). Machining of this channel through layers A,B,C was the most demand-
ing aspect of the manufacturing process. The daughter branches, daughter diffusers
and daughter reservoirs were machined from the underside of Plate C. These three
plates were cut to a tolerance of ±0.002′′ (0.051 mm) using CNC milling (Atlantic
Diecasting, NY). The inlet reservoir of diameter D0 was drilled in the top piece.
The slide slots were machined to a tolerance of ±0.003′′ (0.076 mm) on the upper
side of layer D using CNC milling (Swanson School of Engineering, University of
Pittsburgh), Fig. 16a, b. These slots were custom cut to fit the slides to minimize any
change in height along the bottom boundary of the fluid domain. Standard AS-568A
o-rings were used to seal all sections of the T-chamber, Fig. 16a. The o-rings were
chosen to have 20–30% compression to ensure a positive seal while still allowing
the mating pieces to properly seat against each other. Precision ground alignment
pins were used to assure proper alignment of the pieces during assembly. They were
placed at opposite corners of the parts, which is sufficient for alignment on a plane.
Another critical aspect of the design was the decision to avoid any glued parts which

(a)
(c)

(b)

Fig. 16 (a) Exploded view of final T-chamber assembly design.(b) Cross section view of assembly
design of flow chamber. (c) Photograph of manufactured T-chamber
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could cause warping during autoclaving or potentially leak contaminants into the
test chamber. Instead, the pieces were held together by stainless steel, standard hex,
quarter 20 (1/4–20′′) bolts (McMaster), Fig. 16c. Polysulfone was chosen for the
chamber material due to its easy machinability and its ability to withstand autoclave
conditions (120◦C, 15 psi, 30 min). The final manufactured T-chamber is shown in
Fig. 16c. Significantly, the tolerance for the channel heights h0, h1, h2 are all set by
the machining tolerances. This is in contrast to the use of gaskets to set the height
in some channels.

5 Discussion

Cerebral aneurysms typically form at the apex region of arterial bifurcations. Hemo-
dynamic stresses are believed to play an important role in the initiation of this
pathology. Recent work in a canine model identified an association between pre-
aneurysmal changes and a combination of elevated WSS and WSSVG in bifur-
cations formed from a naive vessel. This study was the first to connect in vivo
histological changes with specific WSS and WSSVG profiles. The flow chamber
designed here provides a tool for exploring these results in a controlled setting.

Most studies of endothelial cell response to mechanical stresses have been moti-
vated by a desire to better understand the role of hemodynamics in the genesis and
development of atherosclerosis. A number of researchers have developed in vitro
chambers to evaluate the response of cellular components of the arterial wall (e.g.
endothelial and smooth muscle cells) to homogeneous stress fields or recirculating
flow fields of the type associated with atherosclerotic plaque formation. In early
work in this field, DePaola et al., designed a step flow chamber which created a
recirculating region [10]. At the edge of this region, the flow impinges on the wall
and then separates – part of the flow circulating backward toward the step and the
remainder moving downstream. However, the magnitude of the WSS and WSSVG
fields in this flow are much smaller than those associated with aneurysm formation.

In this work, we have used parametric CFD studies to design a T-chamber capable
of reproducing the qualitative and quantitative features of the WSS and WSSVG
fields studied in [39]. The geometry of the flow domain was chosen using 2D and
3D CFD analyses. Building on earlier work for a parallel plate flow chamber [8] and
the work in [6, 7], the magnitude of entrance and exit effects were controlled through
careful design of chamber reservoirs. A full 3D analysis including all chambers was
used to validate the final design. The chamber material was chosen for its easy
machinability and its capability to withstand the high temperatures necessary for
standard sterilization procedures.

To our knowledge, three previous T-chambers have been constructed [6, 8, 43, 46,
47]. The current chamber builds on that in [6, 8] with several principal changes. It
is capable of generating a good approximating of both the WSS and WSSVG fields
reported in [38, 39] and conjectured to lead to pre-aneurysmal changes. Secondly,
an elliptical rather than circular corner is used at the bifurcation in order to shift the
maximum in WSS further away from the impingement point. Thirdly, the chamber
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is designed so that it does not require any adhesives which could impact the cellular
response. As in [6, 8], the height of the chamber is machined into the plates, and is
not set by the width of a gasket as has been done in some earlier chambers.

Several features distinguish this T-chamber from that in [46, 47] including (i) the
use of inlet and outlet reservoirs to diminish entrance and exit effects, (ii) confine-
ment of wall effects to less than 5% of the chamber width, (iii) avoidance of vortex
formation in the bifurcation region, and (iv) the use of three separate test regions
for built in controls. Both T-chambers are directed at obtaining nearly 2D flow in
the test regions (approximately independent of y, Fig. 3). This is particularly import
due to inter-endothelial cell communication which is known to occur through both
humoral exchange and via gap junctions. Furthermore, if the cells are to be removed
from the slides for later analysis, the cells outside the ATR will contaminate the
data. The effects of the entrance flow, exit flow and walls preclude complete 2D
flow in the slide regions. Fortunately, the lateral wall effects can be diminished by
lowering the aspect ratio of the chamber [8]. A boundary layer thickness defined by
a WSS less than 90% of the centerline value can be estimated from the exact solution
for fully developed flow in a channel [8]. For the current chamber, β (the channel
thickness to width ratio) is quite small: 0.017, 0.025 and 0.0625 in the daughter
and parent branches with a corresponding boundary layer thickness of 4.2% or less
of the chamber width. However, for a parent value of β = 0.15 such as is found in
[46, 47], the boundary layer on each side of the channel will rise to nearly 10% of the
chamber width. The effect can be even more dramatic in the non-monotonic region
at the apex, (e.g. Fig. 2 of [47]). The reservoirs significantly diminish the effect of
the inlet and outlet flow for the chamber. The absence of reservoirs can result in
large entrance and exit lengths which cannot be predicted by simple boundary layer
theory [1, 8]. The chamber used in [46, 47] does not employ reservoirs. The inlets
and outlets were omitted from the CFD analysis in [46, 47], so the impact of this
design choice is not known. The connection of an inlet tube of circular cross section
to a rectangular channel in the parent branch in their chamber will be expected to
have a significant downstream influence.

Many tests of cell functionality provide only a relative measure of a particular
response. To address this issue, we have included two control sections within the
T-chamber. In the current chamber, the control flows are for a WSS of two different
magnitudes. By switching out the bottom plate it is possible to change these con-
trols. Other control flows of interest include flow over a backward facing step and
constant WSSVG flows.

The apex region of the current chamber was carefully designed to avoid gen-
erating vortices at the outer walls of the bifurcation. Even for steady flows, these
vortices will change the WSS profile on the bottom plate [46, 47]. Clearly this
will be even more problematic if the vortices become unstable and are washed
downstream.

A variety of WSSG definitions are used in the literature, unfortunately confound-
ing comparison of results from different groups. As in this work, several researchers
consider the G = grads t s to be of primary importance, (e.g. [5, 26, 32]). In these
works, an orthogonal surface basis composed of a unit vector in the time averaged
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direction of t s (for a cardiac cycle) and its perpendicular component are introduced.
The WSSG is then defined as the square root of the sum of the squares of the diag-
onal elements of G using this basis. In contrast in [22], G is replaced with the 3D
gradient of the full stress vector t . For both these definitions, a non-negative quantity
is used for the WSSG. In [25], the WSSG was approximated by the change in WSS
divided by the change in axial position. In other works, particularly those with 2D
flows in mind, the WSSG is not clearly defined. The variation in definitions may
be one reason why groups have reported different correlations between biological
markers for intimal hyperplasia and WSSG.

In this work, we have introduced a new measure of the gradient of the wall shear
stress, denoted as WSSVG to distinguish it from these definitions of WSSG and
to emphasize that it is not a measure of the gradient of WSS. We feel the WSSVG
definition (7) has some advantages. It differentiates between increasing and decreas-
ing shear stress through the sign of the WSSVG. It has been shown to be a scalar
invariant of grads t s and it does not require calculation of the time averaged direction
of WSS a priori. These last two points will become important if the WSSVG is to be
incorporated into constitutive equations of the arterial wall, for example, to capture
destructive remodeling during aneurysm formation [34, 35]. Furthermore, when the
definition (7) is specialized to 2D flows over a flat surface, the sign of the gradient
enters in a physically meaningful way.

In the future, it may be of interest to use this chamber for unsteady flows. In pre-
liminary studies, we have found little difference between WSS and WSSVG results
for steady simulations and the corresponding time averaged values for unsteady
simulations using the same time averaged flow rates. It will also be useful to study
the cellular response in real time. Modifications can be made to the bottom plate to
achieve this objective.
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